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Combinatorial structure of monomial ideals

In this Thesis, we study monomial ideals from a combinatorial point of view.

We are mainly interested in the structure of the associated Groebner escalier but, sometimes, we have also to deal with the initial ideal.

First of all, we examine all the existing combinatorial methods to compute the Groebner escalier N(I(X)) associated to the zerodimensional radical ideal I(X) of a finite set of distinct points X. More precisely, we start from Cerlienco-Mureddu correspondence and we examine the other methods which came up later on, such as Gao-Rodrigues-Stroomer method, Lederer's variation and Lex Game.

. In iii this Thesis we give an alternative constructive proof, together with an algorithm computing concretely the factorization and we study deeply the structure of the Groebner escalier, in connection to the Axis of Evil factorization. Then, we develop a visual language in order to represent finite sets of terms and infinite order ideals via bidimensional pictures, the Bar Codes.

) and to develop an iterative version of the Axis of Evil algorithm.

Thanks to the Bar Code structure, moreover, we are able to connect commutative algebra and enumerative combinatorics, by giving a bound for the number of strongly stable ideals with a fixed constant affine Hilbert polynomial, by putting them in biunivocal correspondence with plane partitions.

Finally, we show how the Axis of Evil theorem can be applied to coding theory, more precisely to the decoding procedure for binary BCH codes and to the computation of sparse general error locator polynomials.

Introduction

This thesis is centered on an exam of the combinatorial structure of both the initial ideal and the Groebner escalier of an ideal of the ring of polynomials.

Many properties of an ideal I can be deduced by studying its initial ideal with respect to some term ordering. The initial ideal is a monomial ideal, namely it has a generating set only composed of terms and it is possible to recover the monomial basis of the quotient algebra (the Groebner escalier) from it.

In the case of a zerodimensional radical ideal I, namely the ideal of a finite set of distinct points X, the Groebner escalier N(I) is a finite set.

Clearly it is possible to recover it from the initial ideal, but this is rather ineffective. Indeed, in order to get the initial ideal it is necessary to compute the Groebner basis of I from some generating set of polynomials. The computation is performed via Buchberger algorithm, and it is well known that this algorithm is heavy from a computational point of view. The first mathematicians who dealt with this problem are Buchberger and Moeller in [START_REF] Buchberger | The construction of multivariate polynomials with preassigned zeros[END_REF] (1982). computing the lexicographical Groebner escalier directly from the points of X, exploiting a series comparisons among the coordinates. This algorithm provides a biunivocal correspondence between the points in X and the terms in the Groebner escalier: the so called Cerlienco-Mureddu Correspondence.

Next, other methods, optimizing Cerlienco-Mureddu algorithm, have been developed, for instance by Felszeghy-B. Ráth-Rónyai, Gao-Rodrigues-Stroomer and Lederer.

We give an overall view of these methods, equipped with detailed examples.

Thanks to the structure of the (finite) lexicographical Groebner escalier, it is possible to examine also the structure of the zerodimensional radical ideal defining a given finite set of distinct points X.

Via the so called Axis of Evil theorem, M.G. Marinari and T. Mora enhanced the classical Lazard structural theorem to the case of n > 2 variables. The Axis of Evil theorem assures, for a minimal lexicographical Groebner basis of a zerodimensional radical ideal, the existence of a factorization linear in the leading terms.

The Axis of Evil theorem is one of the main topics of this thesis.

We will give a computational proof of the theorem, providing an interpolation algorithm à la Moeller, which computes the above factorization (called Axis of Evil factorization) and then we will give some variations of the aforesaid algorithm. Moreover, we give another combinatorial method to compute the Groebner escalier, providing an ordering on the terms and on the corresponding points which makes the interpolation simpler.

The Axis of Evil factorization can be applied to the field of coding theory. More precisely, we deal with the decoding of BCH codes, in the realm of the so called Cooper's philosophy [START_REF] Cooper | Direct solution of BCH decoding equations[END_REF][START_REF] Cooper | Finding BCH error locator polynomials in one step[END_REF], which introduces the use of Groebner bases for decoding.

Starting from the works by Chen [START_REF] Chen | General principles for the algebraic decoding of cyclic codes[END_REF][START_REF] Chen | Use of Groebner bases to decode binary cyclic codes up to the true minimum distance[END_REF][START_REF] Chen | Algebraic decoding of cyclic codes: a polynomial ideal point of view[END_REF]], Cooper's ideas have been improved by introducing and studying the syndrome variety in order to optimize the decoding process. In this context are also placed many interesting works by Mora, Orsini and Sala [START_REF] Mora | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF][START_REF] Orsini | Correcting errors and erasures via the syndrome variety[END_REF][START_REF] Orsini | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF], from which arises the application of the Axis of Evil theorem to decoding BCH codes. In these papers, the general error locator polynomial, whose roots are the exactly the error locations, is introduced.

Sparsity of this polynomial would be rather important for pratical applications and it would be appreciable if such polynomial grew linearly with the cardinality if the base field F q over which the code is defined.

In a joint work with M. Sala and T. Mora, we exploit the Axis of Evil factorization to find a sparse general error locator polynomial, minimizing the number of points to work with and computing the structure of the associated Groebner escalier.

We will see that encouraging results can be found in some simplified case. The points con-figurations we get, turn out to have a very precise structure, connected to the cycles of the base field.

Since it is a work in progress, we will give only partial results for the mentioned cases.

Studying the Groebner escalier, the necessity to represent it visually arose. There are some graphical representation of the Groebner escalier in literature, but they are rather complicated to draw if the cardinality of N(I) is a big number (and impossible in the case of an infinite N(I)) or if the number of involved variables is higher than five.

In this thesis we develop a simple bidimensional representation for finite and infinite Groebner escaliers, called Bar Code diagram. Such a diagram is also simple to encode in a computer, so it can be useful from a computational point of view.

First of all, it enabled us to find a new combinatorial method for the Groebner escalier, analogous to the aforesaid ones and enjoying many of their best features. Secondly, it gave us the possibility to find an iterative algorithm to compute the Axis of Evil factorization of a minimal lexicographical Groebner basis for the ideal of a finite set of distinct points.

Moreover, studying the shape of the Bar Code diagram for strongly stable monomial ideals with constant affine Hilbert polynomial we noticed that the diagrams are joined by a sort of "pattern".

Examining it, we started connecting objects belonging to different fields, namely: strongly stable ideals (from commutative algebra), and plane partitions of integer numbers (from enumerative combinatorics). This work is still in progress and we display here only partial results, namely the ones for strongly stable ideals in two or three variables, with constant affine Hilbert polynomial.

For the case of two variables, we have proved a biunivocal correspondence between strongly stable ideals and integer partitions of p, so we are able to count exactly their number. For three variables, instead, we have proved the biunivocal correspondence between strongly stable ideals and some particular plane partitions, for whose number, for now, we only have an upper bound.

Finally, exploiting the properties of the generating sets of monomial ideals, it is possible to deal with the following Problem 0.0.1. Given any monomial ideal J P := k[x 1 , ..., x n ], find a characterization for the family Mf (J) of all homogeneous ideals I P such that the basis of P/I is given by the set of terms in the Groebner escalier N(J) of J.

This problem has been deeply analyzed in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF][START_REF] Lella | Rational components of Hilbert schemes[END_REF] for the case J strongly stable ideal, which is also the most suitable case for studying the Hilbert scheme. In [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF], the families of the form Mf (J) for J strongly stable have studied, giving also computational methods to deal with them.

In a joint work with T. Mora and M. Roggero [START_REF] Ceria | Term-ordering free involutive bases[END_REF], we generalize the problem above to arbitrary monomial ideals on the polynomial ring with coefficients in a commutative ring.

In order to give such a generalization, we exploit and enhance some concepts introduced by Janet [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF][START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Lecons sur les systèmes d'équations aux dérivées partelles[END_REF], such as the definition of multiplicative variable and the one of complete system, leading to the so called Janet decomposition for terms.

Starting from the generating set of a monomial ideal, Janet gives a very precise decomposition of the ideal itself (and also of its Groebner escalier). In Janet's theory the ideals are generated by the so called involutive bases.

If we draw the Bar Code of a finite set of terms (not necesarily an order ideal) we can answer some combinatorial problems on Janet decomposition. For example, we can detect the multiplicative variables or decide on the completeness of a system.

We have to point out that Janet gave two different definitions of multiplicative variable, presented in [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF] and in [START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF], totally equivalent if we are in general coordinates. In [START_REF] Ceria | Term-ordering free involutive bases[END_REF], we compare them and we introduce the notion of stably complete set of terms, indicating sets for which both conditions hold. Each monomial ideal J has one and only one stably complete set of generators (possibly made of infinitely many terms) that we call star set and denote by F(J). The star set can be computed from the Groebner escalier of J using again the Bar Code structure in a very simple way. Furthermore, in analogy with [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] we define a reduction procedure with respect to a homogeneous set of polynomials marked on a stably complete system proving its noetherianity.

The most interesting cases are the ones involving ideals with finite stably complete generating set , i.e. the quasi stable ideals, whose star set is exactly the Pommaret basis. Note that a monomial ideal is stable if and only if its star set coincides with the monomial basis.

In chapter 1, we give all the notation needed in the whole thesis, involving polynomials and Groebner bases, Groebner duality and Macaulay bases, Graph Theory, expecially trees and tries, and we recall the main features of Moeller algorithm. We also define the existing visual representations for terms: the tower structure and the diagrams introduced by M.G.

Marinari and L. Ramella.

Chapter 2 is devoted to the study of all the combinatorial methods for computing the Groebner escalier of the ideal of a finite set of distinct points. We start with Cerlienco-Mureddu correspondence, then we examine Gao-Rodrigues-Stroomer method with the variation proposed by Lederer and finally the Lex Game algorithm by Felszeghy-B. Ráth-Rónyai.

In chapter 3, after explaining Lazard's algorithm for monomial bases, the Macaulay's trick and Lazard structural theorem, we introduce the Axis of Evil theorem by Marinari and Mora and the associated algorithm. This algorithm gives a simple proof for Marinari-Mora theorem.

The whole chapter 4 describes a new version of the Axis of Evil algorithm, under suitable hypotheses. In order to make the interpolation process simpler, we define an interpolation oriented alternative to the algorithms described in chapter 2.

In chapter 5 we first define the Bar Code of a finite set of terms, studying its main features.

Then we define the star set in terms of Bar Codes (so from the Groebner escalier point of view), proving its characterization in terms of generating sets. After that, we extend both the notion of Bar Code and of star set to infinte Groebner escaliers. We give then some applications, such as another alternative algorithm to the ones of chapter 2 and a related iterative version of the Axis of Evil algorithm. Moreover, we present some first results in enumerative combinatorics for strongly stable ideals.

In chapter 6, we first recall the theory developed in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] for J-marked families, explaining how it leads to the Singular libraries we implemented. After that, we deal with Janet decomposition for terms, relating the problem to the Bar Code structure of the generating set for a monomial ideal.

After defining the star set, we characterize stable and quasi stable ideals and we define the notherian reduction procedure for homogeneous polynomials, marked on a stably complete set. Moreover, we study J-marked families using the reduction procedure.

We give then an historical note on the concepts by Janet we exploited and, at the very end, we describe the Moeller version which computes an involutive basis in the zerodimensional radical case. Dulcis in fundo, chapters 7 and 8 are devoted to apply the Axis of Evil algorithm to coding theory.

More precisely, chapter 7 starts giving the most important notions of error correcting codes Introduction and then it focuses on cyclic and BCH codes, by treating Cooper's decoding philosophy, Chen's works on the syndrome variety and all the improvements by T. Mora, E. Orsini and M. Sala, introducing the concept of general error locator polynomial. On the other hand, chapter 8, treats the decoding process for BCH codes by determining the general error locator polynomial and showing how the structure of the Groebner escalier and the Axis of Evil algorithm can help in finding a sparser locator.

Finally appendix A and B contain respectively the Singular code of our libraries and the data obtained by computing the locator polynomials and the related points configurations.

Part I Getting started.

CHAPTER 1 Notation and preliminaries.

Polynomials and Groebner bases.

In this thesis, we follow the notation of [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF][START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF].

We let P := k[x 1 , ..., x n ] the graded ring of polynomials in n variables with coefficients in the field k.

We usually denote by S := k[x 0 , ..., x n ] the ring of polynomials in n + 1 variables and coefficients in the base field k.

The semigroup of terms, generated by the set {x 1 , ..., x n } is:

T := {x α1 1 • • • x αn n , (α 1 , ..., α n ) ∈ N n }.
Denoting τ = x α1 1 • • • x αn n , we define deg(τ ) = n i=1 α i , the degree of τ and, for each h ∈ {1, ..., n} deg h (τ ) := α h is the h-degree of τ . . We use analogous notation for P, observing that by abuse of notation we also denote by P(d) the vector space gener-Chapter 1. Notation and preliminaries.

ated by T (d).

Letting α = (α 1 , ..., α n ) ∈ N n , we will often write x α instead of x α1 1 • • • x αn n . We define also the set

T [m] := T ∩ k[x 1 , ..., x m ] = {x a1 1 • • • x am m / (a 1 , ..., a m ) ∈ N m }.
A semigroup ordering < on T is a total ordering such that τ 1 < τ 2 ⇒ τ τ 1 < τ τ 2 , ∀τ, τ 1 , τ 2 ∈ T .

A semigroup ordering is called inf-limited if:

• x i < 1, for each i ∈ {1, ..., n};

• for each infinite decreasing sequence in T , τ 1 > ... > τ j > ... and each τ ∈ T there is an r ∈ N, with τ r < τ .

For each semigroup ordering < on T , we can represent a polynomial f ∈ P as a linear combination of terms arranged w.r.t. <, with coefficients in the base field k:

f = τ ∈T c(f, τ )τ = s i=1 c(f, τ i )τ i : c(f, τ i ) ∈ k * , τ i ∈ T , τ 1 > ... > τ s ,
with T(f ) = Lt(f ) := τ 1 the leading term of f , Lc(f ) := c(f, τ 1 ) the leading coefficient of f , Lm(f ) = M(f ) := c(f, τ 1 )τ 1 the leading monomial of f and tail(f ) := f -c(f, T(f ))T(f ) the tail of f .

Letting δ := deg n (f ) the degree of f w.r.t. x n we can write uniquely

f = δ i=0 g i x i n ∈ k[x 1 , ..., x n-1 ][x n ], g i ∈ k[x 1 , ..., x n-1 ], g δ = 0
denoting by Lp(f ) := g δ the leading polynomial of f and by Tp(f ) = g 0 the trailing polynomial of f w.r.t n.

For each term τ ∈ T and x j |τ , the only υ ∈ T such that τ = x j υ is called j-th predecessor of τ .

A subset N ⊆ T is an order ideal if τ ∈ N ⇒ σ ∈ N ∀σ|τ 1 . A subset N ⊆ T is an order ideal if and only if T \ N = J is a semigroup ideal (i.e. τ ∈ J ⇒ στ ∈ J, ∀σ ∈ T ).

For each semigroup ideal J ⊂ T , N(J) := T \ T(J) and its monomial basis G(J) satisfies the conditions below G(J) := {τ ∈ J | each predecessor of τ ∈ N(J)} = = {τ ∈ T | N(J) ∪ {τ } order ideal, τ / ∈ N(J)}.

For all subsets G ⊂ P, T{G} := {T(g), g ∈ G} and T(G) is the semigroup ideal {τ T(g), τ ∈ T , g ∈ G}.

We define also M{G} := {M(g), g ∈ G} and M(G) := {M(aτ g), a ∈ k * , τ ∈ T , g ∈ G}.

For any ideal I P the monomial basis of the semigroup ideal T(I) = T{I} is called monomial basis of I, the ideal In(I) := (T(I)) is the initial ideal and the border set of I is: Definition 1.1.2 ([20]). Given a term order , a monomial basis for A := P/I(X), [τ 1 ], ..., [τ S ], with τ 1 ... τ S is minimal w.r.t if, for each monomial basis [τ 1 ], ..., [τ S ], with τ 1 ... τ S it holds ∀j = 1, ..., S, τ j τ j .

B(I) := {x h τ, 1 ≤ h ≤ n, τ ∈ N(I)} \ N(I) = = T(I) ∩ ({1} ∪ {x h τ, 1 ≤ h ≤ n, τ ∈ N(I)}).
We will usually denote a monomial basis for a quotient algebra only with the terms, omitting the square brackets.

Definition 1.1.3 ([79]). A Groebner basis of I is a set G ⊂ I such that T(G) = T{I}; a minimal Groebner basis is a Groebner basis H such that do not exist divisibility relations among the leading terms of its members: T{H} = G(I); the unique reduced Groebner basis of I is the set: G (I) := {τ -Can(τ, I) : τ ∈ G(I)}.

Each member of the reduced Groebner basis has a leading term which does not divide any term of another member.

Unless otherwise specified, we consider the lexicographic order induced by (x 0 <)x 1 < ... < x n , i.e:

(x α0 0 )x α1 1 • • • x αn n < (x β0 0 )x β1 1 • • • x βn n ⇔ ∃j | α j < β j , α i = β i , ∀i > j.
This is a term order, that is a semigroup ordering such that 1 is lower than every variable or, equivalently, it is a well ordering.

If N = {τ 1 , ..., τ m } is an order ideal and τ 1 < ... < τ m w.r.t. lex, then also N = {τ 1 , ..., τ h } is an order ideal, ∀h < m.

A term order is called degree compatible if, for each τ 1 , τ 2 ∈ T ,

deg(τ 1 ) < deg(τ 2 ) ⇒ τ 1 < τ 2 .
Let X = {P 1 , ..., P S } ⊂ k n be a finite set of distinct points, P i := (a i1 , ..., a in ), i = 1, ..., S, the ideal of points of X is I(X) := {f ∈ P : f (P i ) = 0, ∀i}.

On the contrary, if I P is an ideal, we define its associated variety as

V (I) = {P ∈ k n , f (P ) = 0, ∀f ∈ P}.
For each 1 ≤ m ≤ n, we define the projection maps as:

π m : k n → k m
(X 1 , .., X n ) → (X 1 , ..., X m ),

π m : k n → k n-m+1
(X 1 , .., X n ) → (X m , ..., X n )

and, for P ∈ k n , X ⊂ k n , let With the same notation π m we indicate also

π m : T ∼ = N n → N m ∼ = T [m] such that x a1 1 • • • x an n → x a1 1 • • • x am m .
Consider and ideal I P. We denote the set of polynomials in I with degree lesser or equal then d by I(d) = I ∩ P(d). Such a set is a vector subspace of the vector space P(d). We describe now the analogous concepts for the homogeneous case. Let S d ⊂ S be the set consisting of the homogeneous polynomials of total degree d and the polynomial 0, and Finally, we recall the following definitions, which will be particularly useful in chapter 6.

I
Definition 1.1.7. Let F = {τ 1 , ..., τ s } ⊆ T be an ordered subset of terms, generating an ideal J = (F ). The module Syz(F ) = {(g 1 , ..., g s ) ∈ P s , s i=1

g i τ i = 0}
is the syzygy module of F .

We denote an element in Syz(F ) by (g 1 , ..., g s ) and we call it syzygy among F .

Definition 1.1.8. The S-polynomial of two polynomials f and g w.r.t. a term ordering <, such that Lc(f ) = Lc(g) = 1 is S(f, g) := lcm(T(f ), T(g)) T(f ) f -lcm(T(f ), T(g)) T(g) g

Groebner duality

In this section, we consider P = k[x 1 , ..., x n ] as a k-vector space. In this perspective, we define the k-functionals on P.

Definition 1.2.1. A k-functional l on P is a linear morphism l : P → k, i.e. an element of the k-vector space P * := Hom k (P, k).

We point out that

f ∈ P, l ∈ P * ⇒ l(f ) = τ ∈T c(f, τ )l(τ ).
We can equip P * with a P-modulo structure, defining ∀l ∈ P * , f ∈ P (l • f )(g) := l(f g), ∀g ∈ P.

Definition 1.2.2. Two sets L := {l 1 , ..., l s } ⊆ P * and q = {q 1 , ..., q s } ⊆ P are called:

• triangular if l i (q j ) = 0, ∀i < j;

• biorthogonal if l i (q j ) = δ ij = 1, i = j 0, i = j
Given a k-vector subspace L ⊆ P * let P(L) := {g ∈ P | l(g) = 0, ∀l ∈ L} and, for each k-vector subspace Q ⊆ P let L(Q) = {l ∈ P * | l(g) = 0, ∀g ∈ Q}.

Definition 1.2.3. A subset of P * is called dual basis of a k-vector subspace Q ⊂ P if it is a basis of L(Q).

Lemma / Definition 1.2.4 ( [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]). For each k-vector subspace Q, Q 1 , Q 2 ⊂ P, L, L 1 , L 2 ⊂ P * it holds:

1. Q P ⇒ L(Q) is a P-module;

2. L is a P-module ⇒ P(L) P;

3. Q 1 ⊆ Q 2 ⇒ L(Q 1 ) ⊇ L(Q 2 ); 4. L 1 ⊆ L 2 ⇒ P(L 1 ) ⊇ P(L 2 ); 5. L(Q 1 ∩ Q 2 ) ⊃ L(Q 1 ) + L(Q 2 );
6. P(L 1 ∩ L 2 ) ⊃ P(L 1 ) + P(L 2 );

7. L(Q 1 + Q 2 ) = L(Q 1 ) ∩ L(Q 2 );
8. P(L 1 + L 2 ) = P(L 1 ) ∩ P(L 2 );

9. Q = P(L(Q));

10. L ⊂ L(P(L));

11. dim k (L) < ∞ ⇒ L = L(P(L)).
An ideal has a finite dual basis (L 1 , ..., L s ) if and only if it is zerodimensional of degree s. P and L define a duality between finite dimensional P-modules of functionals and zerodimensional ideals.

Let X = {P 1 , ..., P S } ⊂ k n a finite set of points P i := (a i1 , ..., a in ), i = 1, ..., S.

For each i we denote by l i ∈ P * the linear functional consisting of the evaluation at P i , i.e.

l i (f ) = ev Pi (f ) = f (a i1 , ..., a in ), ∀f (x 1 , ..., x n ) ∈ P,

We can extend definition 1.2.2 in order to work with finite sets of distinct points.

If X = {P 1 , ..., P S } is such a set and q = {q 1 , ..., q S } ⊆ P, we say that they are triangular (biorthogonal) if, letting l i := evaluation at P i , ∀1 ≤ i ≤ S, q and L := {l 1 , ..., l S } are triangular (biortogonal).

Then, we call L(X) := Span k ({l i , 1 ≤ i ≤ S}) ⊂ P * ;

which is dual to the ideal of points I(X).

Now, we loosely base on [START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF], sketching the main properties of differential operators.

For each i 1 , ..., i n ∈ N define the differential operators D(i 1 , ..., i n ) : P → P

given by

1 i 1 ! • • • i n ! ∂ i1+...+in ∂x i1 1 • • • ∂x in n .
The summation i 1 + ... + i n is called degree of D(i 1 , ..., i n ).

By the natural isomorphism N n ∼ = T we indifferently use the notation D(i 1 , ..., i n ) and D(τ ), Chapter 1. Notation and preliminaries.

if τ = x i1 1 • • • x in n ∈ T . We point out that D(0, ..., 0) = D(1) is the identity.

Then, we denote D := {D(τ )|τ ∈ T } and by Span k (D) the k-vector space generated by D and we define the degree of an element in Span k (D) as the maximal degree of the D(τ )'s appearing in it.

For each j = 1, ..., n we define σ xj : D → D ∪ {0} the antiderivative w.r.t. x j as σ xj (D(i 1 , ..., i n )) := D(i 1 , ..., i j -1, ..., i n ) if i j ≥ 1 We notice that ∀τ, τ ∈ T , σ τ σ τ = σ τ τ and we point out that σ τ D(µ) = 0 if and only if τ |µ. Definition 1.2.5. A k-vector subspace V ⊂ Span k (D) is closed if the following conditions hold:

1. dim k V ≤ ∞;
2. ∀τ ∈ T , ∀∂ ∈ V, σ τ (∂) ∈ V .

Let P = (a 1 , ..., a n ) ∈ k n and M(P ) = (x 1 -a 1 , ..., x n -a n ) P be the corresponding maximal ideal and ev(P ) the evaluation functional in P .

Each ∂ ∈ Span k (D) induces a functional ∂(P ) ∈ P * defined by ∂(P )(f ) = ev(P )(∂f ). Proposition 1.2.6. ∀f ∈ P,

∂ ∈ D ∂(x k f ) = x k ∂(f ) + σ x k (∂)(f )
therefore ∂(P )(x j g) = a j ∂(P )(g) + ev(P )(σ xj (∂)(g)).

Proposition 1.2.7. Let P ∈ k n , ∆ := {∂ 1 , ..., ∂ r } ⊂ Span k (D); then the set Q := {f ∈ P|∂ i (P )(f ) = 0, i = 1, ..., r} is an ideal if and only if ∆ is closed. Proposition 1.2.8. Let P ∈ k n , M(P ) the corresponding maximal ideal and V ⊂ Span k (D) a closed subspace; then J P (V ) := {f ∈ P|∂(P )(f ) = 0, ∀∂ ∈ V } is an M(P )-primary ideal. Proposition 1.2.9. There is a one to one correspondence between the M(P )-primary ideals of P and the closed subspaces of Span k (D).

More precisely, each M(P )-primary ideal Q corresponds to a closed subspace ∆ P (Q) := {∂|∂(P )(f ) = 0, ∀f ∈ Q}, while each closed subspace V ⊂ Span k (D) corresponds to the M(P )-primary ideal

J P (V ) := {f ∈ P|∂(P )(f ) = 0, ∀∂ ∈ V }. Moreover, dim k (∆ P (Q)) = mult(Q) = deg(Q) e mult(J P (V )) = dim k (V ).
Let M P be a maximal ideal without zeroes in k n and Y = {P 1 , P 2 , ..., P r } its zeroes in k n , where k is the algebraic closure of k. We call k i the minimal algebraic field extension of k, containing all the coordinates of P i .

Proposition 1.2.10. Let M P be a maximal ideal without zeroes in k n and Y = {P 1 , P 2 , ..., P r } its zeroes in k n , where k is the algebraic closure of k. Then there is a one to one correspondence, between M-primary ideals and the closed subspaces of Span k1 (D).

Each M-primary ideal Q corresponds to the closed subspace of Span k1 (D) ∆(Q) = {∂|∂(P 1 )(f ) = 0 ∀f ∈ Q}.

To each closed subspace V ⊂ Span k1 (D) corresponds the M-primary ideal J (V ) = {f ∈ P |∂(P 1 )(f ) = 0, ∀∂ ∈ V }, so that Q = J (∆(Q)) and V = ∆(J (V )).

Theorem 1.2.11. Every 0-dimensional ideal I P is uniquely defined by a set of points P 1 , ..., P r ∈ k n (k the algebraic closure of k) which are not conjugate over k and, for any point P i = (a i1 , ..., a in ) a closed subspace

∆ i = Span ki (∂ i1 , ..., ∂ in ) ⊂ Span ki (D), k i = k(a i1 , .
.., a in ) so that f ∈ I if and only if ∀i, j, ∂ ij (P )(f ) = 0.

For each i, let α i1 , ..., α it i a k-basis of k i so that ∀i, j exist k-functionals L ijk ∈ P * , k = 1, ..., t i with ∂ ij (P i )(f ) = L ijk (f )α ik .

Then I is defined by {L ijk |i = 1, ..., r, j = 1, ..., s i , k = 1, ..., t i }. Now, following [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF], we give a glimmer of Macaulay bases.

For each polynomial f ∈ P (or for each series f ) we denote by L(f ) its lowest degree non-zero homogeneous component, whereas ord(f ) = deg(L(f )) is its order or underdegree.

We 

1 • • • x -αn n ∈ k[[x -1 1 , ..., x -n n ]].
The set of all Laurent series which are inverse functions of I is called inverse system. For each term τ ∈ T we can define a functional

M (τ ) : P → k f → c(f, τ ),
for each f = τ ∈T c(f, τ )τ ∈ P.

We denote by M = {M (τ ), τ ∈ T } the set containing all these functionals, whereas Span k (M) ⊆ P * is the k-vector space generated by M.

Each semigroup ordering < on T induces an ordering on M:

M (τ ) ≤ M (ω) ⇔ τ ≤ ω.
For each l = τ ∈T c(τ, l)M (τ ) ∈ Span k (M), we define the support of l as S(l) = {τ ∈ T , c(τ, l) = 0}.

If f := τ ∈T a τ τ ∈ P and l := τ ∈T c τ M (τ ) ∈ Span k (M) we have

l(f ) = τ ∈T a τ c τ = τ ∈S(l)∩S(f ) a τ c τ ,
so Span k (M) is the set of all the Noetherian equations.

For each Λ ⊂ Span k (M) and for each k-vector subspace P ⊂ P we denote I(Λ) := {f ∈ P : l(f ) = 0, ∀λ ∈ Λ};

M(P) := {l ∈ Span k (M), l(f ) = 0, ∀f ∈ P}.
In analogy with the antiderivatives for elements of T , for each j ∈ {1, ..., n}, given M ∈ Span k (M) we define for each τ ∈ T

σ j (M (τ )) := M (ω) if τ = x j ω 0 if x j τ
Since for each i, j σ i σ j = σ j σ i we can define inductively σ τ ∈ End k (Span k (M)), for each τ ∈ T , σ xj τ := σ xj σ τ so that, for all τ , ω ∈ T ordered so that each vector subspace L σ := Span k ({l 1 , ..., l σ }) is a P-module.

Then, we set Y = {Y 1 , ..., Y s }{(P, ν) ∈ N < (λ P (Q P )), P ∈ X} enumerated so that Y j = (P, ν) ⇔ λ j = l νP λ P .

Following [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF], we suppose each λ P (Q P ) to be a monomial ideal. Moreover, if ∀λ = l νP λ P ∈ L, λ = M (λ) = M (ν)λ P then I is a Cerlienco-Mureddu ideal.

Graphs, trees, forests.

Here we recall some basic notions of Graph Theory. For more details see [START_REF] Graham | Handbook of Combinatorics[END_REF].

Definition 1.3.1.

A graph G is the datum of:

• a nonempty set V (G) whose elements are called vertices or nodes;

• a set of non ordered couples of distinct vertices E(G) whose elements are called edges.

We summarize some terminology of Graph Theory Notation 1.3.2. The degree deg(a) of a given vertex a ∈ V (G) is the number of edges incident with a.

A subgraph of a given G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).

A walk in a graph G is a sequence a 0 , e 1 , a 1 , ...., e h , a h , a 0 , ..., a h ∈ V (G) and e 1 , ..., e h ∈ E(G), such that a j-1 , a j are connected by e j , j = 1, ..., h.

A path is a walk whose set of vertices does not contain repeated elements; a cycle or circuit is a closed walk i.e. a walk such that a 0 = a h .

A graph G is:

• connected if for any couple of vertices there exists a path joining them;

• acyclic or forest if it does not contain any cycle;

• a tree if it is acyclic and connected (any subgraph of a tree is also a tree). All the trees of more than one vertex contain at least two vertices of degree 1, called leaves.

To each graph G can be associated a picture consisting of points (corresponding to the nodes of V (G)) and segments (corresponding to the edges of E(G)).

In particular, for each drawing of a given tree, the topmost node is called root of the tree. A rooted tree is a tree with a conspicuous root.

Fixed a root, we can read the elements of a tree from the root to the leaves.

The level of a node in a tree is its distance from the root. In particular, the root is at level 0.

The height of a tree is the maximal level of its nodes.

In a couple of nodes connected by an edge (so that their levels differ by one) the node of lowest level is called father and the other one is called child. In a similar way, we speak of ancestors and descendants for connected nodes whose levels differ for more than one.

Definition 1.3.3. A trie is a rooted tree such that each edge is labeled by an element of a fixed alphabet.

Points, terms and towers.

In this section, we introduce a simple way to represent points and terms. It will be very useful, especially while studying the combinatorial methods to compute the Groebner escalier associated to the ideal of a finite set of distinct points. We will exploit the natural isomorphism T ↔ N n , starting with the case of n = 2 and then generalizing to an arbitrary n.

Given a set X = {P 1 , ..., P S } ⊂ k 2 let r be the number of distinct prime coordinates of the P i 's, we group the points w.r.t. their first coordinates, obtaining r subset X 1 = {P 1,1 , ..., P 1,l1 }, ..., X r = {P r,1 , ..., P r,lr }.

Each point P i,j = (a 1,i,j , a 2,i,j ) ∈ X is represented in the plane as a rectangle, labeled with the couple (a 1,i,j , a 2,i,j ). If P i,j , P k,l belong to the same X h ⊂ X , their corresponding rectangles are superimposed and the rectangle on the bottom is the one corresponding to the point appearing first in X h , so each X h is said corresponding to a tower in the plane.

(a1,a2) (a3,a4) (a8,a9) (a1,a5) (a3,a6) (a3,a7)

Figure 1.1: Tower structure in the plane [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF].

The first tower has to be drawn so that the left side lies on the x 2 -axis and all the subsequent towers have the left side lying on the right side of the previous one, as shown in the picture above.

Each rectangle in the tower is associated to a couple in N 2 , representing its position, in the following way

(0,0) (1,0) (2,0) (0,1) (1,1) 
(1,2)

Figure 1.2: Tower structure in the plane [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF].

Consider the isomorphism T → N 2 , sending a term x α = x α1 1 x α2 2 ∈ T to the point (α 1 , α 2 ) ∈ N 2 . We can naturally associate to each point in the tower the term identified by its position. For the picture above, we get {1, x 1 , x 2 1 , x 2 , x 1 x 2 , x 1 x 2 2 }.

Example 1.4.1. Let X = {(0, 0), (1, 1), (0, 1), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF], (1, 3)}.

Grouping the points w.r.t. their first coordinates we get X 0 = {(0, 0), (0, 1)} X 1 = {(1, 1), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF], (1, 3)}.

and we cand draw the towers as in picture 1.3

(0,0) (1,1) (0,1) (1,2) 
(1,3)

Figure 1.3: The tower structure of X : points.

Identifying each term x α = x α1 1 x α2 2 ∈ k[x 1 , x 2 ] with the point (α 1 , α 2 ) ∈ N 2 we can also draw the picture with terms below where points and terms are related by their position. Let us see another example. A Groebner basis (actually the reduced one, computed here using Singular, [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF]) of I(X ) w.r.t. lex induced by

x 1 < x 2 is {x 2 1 -x 1 , x 1 x 2 2 -x 2 2 -x 1 x 2 +x 2 , x 3 2 -2x 1 x 2 2 -4x 2 2 +x 2 1 x 2 +7x 1 x 2 + 3x 2 -3x 2
1 -3x 1 } and so the lexicographical Groebner escalier is N = {1, x 1 , x 2 , x 1 x 2 , x 2 2 }. Such a set does not coincide with the one identified by the towers we drew.

For 1.4.2, the situation is different. The reduced Groebner basis is {x 2 1 -3x 1 + 2, x 1 x 2 -x 2 -3x 1 + 3, x 2 2 -x 2 -6x 1 + 6} and then the Groebner escalier is N = {1, x 1 , x 2 }, coinciding with the one identified by the towers. If, in example 1.4.1 we shift to the right the point [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF], we obtain again a picture with towers but we have the coincidence as in 1.4.2. In the case n = 2, such a shifting can be avoided by reordering the towers in decreasing order by height. An explanation of this fact is given in chapter 2, especially in remark 2.2.8.

If the picture with towers of a set X leads to the Groebner escalier of I(X ), we call it tower structure of X . It is mixed if one or more shifts have been performed in order to obtain a representation of the Groebner escalier, unmixed otherwise.

Associating a tower structure to X , we notice that the horizontal lines represent the powers of x 1 appearing in terms with a fixed exponent of x 2 .

It means that, if we take a term τ = x α1 1 x α2 2 , all the other terms appearing in the horizontal line which contains τ are of the form σ = x β1 1 x α2 2 . Browsing these rows ordinately from the bottom to the top we associate to each one of them a power of x 2 : more precisely to the lowest one x 0 2 , to the one lying above x 1 2 , and so on. We call these horizontal lines x 2 -ranges, while the x 1 -ranges are the single rectangles. We will give a formal definition of range in chapter 5, while introducing the Bar Code structure.

Notice that also the exponents of x 1 are ordered if we read each line from left to right. Now, given S points, we have associated them S terms. We consider the x 2 -ranges, increasingly ordered with respect to the exponent of x 2 identifying them. Let r 2,0 , ..., r 2,j their cardinalities.

The terms of the x 2 -range corresponding to x 0 2 are numbered from 1 to r 2,0 , the ones of the x 2 -range corresponding to x 1 2 from r 2,0 + 1 and r 2,0 + r 2,1 and so on. We can see an example of such a reordering in picture 1.52 . All these definitions can be generalized to the case of 3 or more variables.

We deal then with a set X = {P 1 , ..., P L } ⊂ k 3 , constructing the towers similarly.

1. We draw the tower picture of X := π 2 (X). For each couple (a 1 , a 2 ) ∈ X , label the rectangle corresponding to it with one of the points in the fiber π -1 2 (a 1 , a 2 ), say (a 1 , a 2 , a 3 ).

Since π -1

2 (a 1 , a 2 ) may contain more than one point, draw the rectangles corresponding to the elements of π -1 2 (a 1 , a 2 ) \ {(a 1 , a 2 , a 3 )} over (a 1 , a 2 , a 3 ) along the x 3 direction.

Example 1.4.3. Consider the set X = {(1, 0, 0), (1, 0, 1), (2, 0, 0), (1, 1, 0), (2, 0, 1), (1, 1, 1), (2, 1, 0), (2, 1, 1)} ⊆ k 3 .

We have π 2 (X ) = {(1, 0), (2, 0), (1, 1), (2, 1)}:

(1,0,0) (2,0,0)

(1,1,0) (2,1,0)

Since π -1 2 (1, 0) = {(1, 0, 0), (1, 0, 1)}, π -1 2 (2, 0) = {(2, 0, 0), (2, 0, 1)}, π -1 2 (1, 1) = {(1, 1, 0), (1, 1, 1)} and π -1 2 (2, 1) = {(2, 1, 0), (2, 1, 1)}, we get the picture on the left. We display on the right the terms whose exponents' lists represent the positions in which the points are placed.

Points:

(1,0,0) (2,0,0)

(1,1,0) (2,1,0)

(1,0,1) (2,0,1)

(1,1,1) (2,1,1)

Terms:

1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3
A Groebner basis of I(X ) w.r.t. lex induced by x 1 < x 2 < x 3 is {x 2 1 -3x 1 +2, x 2 2 -x 2 , x 2 3 -x 3 } and so the corresponding Groebner escalier is {x 1 x 2 x 3 , x 2 x 3 , x 1 x 3 , x 3 , x 1 x 2 , x 2 , x 1 , 1}, which is an order ideal and it is exactly the set of terms characterized by the tower picture, which turns out to be an unmixed structure for X .

Consider the x 3 -ranges, increasingly ordered with respect to the exponent of x 3 indentifying them and let r 3,0 , ..., r 3,h their cardinalities.

We number from 1 to r 3,0 the terms of the form x i 1 x j 2 x 0 3 , according to the rule stated above for the case of two variables.

Then, we number from r 3,0 + 1 to r 3,0 + r 3,1 the terms of the form x i 1 x j 2 x 1 3 , according to the rule stated above for the case of two variables and so on.

Notice that if a term τ = x α1 1 x α2 2 x α3 3 , belongs to a certain x 3 -range, all the other terms of the same x 3 -range are of the form σ = x β1 1 x β2 2 x α3 3 . The following picture 1.6 represents an example of the reordering rule.

We numbered the 8 x 1 -ranges with the normal font, the 4 x 2 -ranges in boldface and the 2 x 3 -ranges with the gothic font.

One can repeat all the construction (obtaining analogous mixed and unmixed tower structures) in the same way, applying it to any finite set of distinct points X = {P 1 , ..., P S } ⊆ k n , n > 3 and generalize the idea of range. 

Graphical representation of terms in a small number of variables.

In this section we show how to represent graphically terms of degree r in 3, 4 or 5 variables.

We will construct some diagrams, developed by M. G. Marinari and L. Ramella in [START_REF] Marinari | Borel Ideals in three variables[END_REF] in order to draw strongly stable ideals.

Consider first the case of terms of degree r, belonging to the polynomial ring k[x, y, z] in 3 variables, ordered as x < y < z.

First of all, we draw on the bottom right the maximal variable (namely z), raised to the power r. Then, we construct a diagram, drawing the other terms, according to the rules below.

↑: the exponent of z decreases by one, while the exponent of y increases by one;

←: the exponent of y decreases by one, while the exponent of x increases by one.

Example 1.5.1. According to the rules ↑, ←, the diagram representing the 10 terms of degree 3 in three variables is:

x 3 x 2 y xy 2 y 3 x 2 z xyz y 2 z xz 2 yz 2 z 3
As a matter of fact, every time we move up in the diagram above, the exponents of the variable z decrease, in favour of the powers of y.

In the same way, each step to the left means decreasing the exponent of y, making the one of x increase.

Suppose now to have one variable more, namely consider the polynomial ring k[x, y, z, t] with x < y < z < t.

We start again drawing on the bottom right the maximal term w.r.t. the lexicographical order, namely t r . Then we extend the rules ↑, ← explained for three variables as : the exponent of t decreases by one, while the exponent of z increases by one;

←: the exponent of z decreases by one, while the exponent of y increases by one;

↑: the exponent of y decreases by one, while the exponent of x increases by one.

Example 1.5.2. The diagram representing the 20 terms of degree 3 in 4 variables is As in the case of three variables, the picture above follows the rules , ↑, ← .

For brevity's sake, we can also draw the diagram without specify the terms and substituting them with bullets. This method can be very useful in order to display the terms of a certain degree r, distinguishing the ones contained in a certain ideal and the ones belonging to the Groebner escalier.

For this purpose, we will use black bullets for the terms in the ideal and white bullets for the terms belonging to the associated Groebner escalier.

Example 1.5.3. Consider the ideal I = (x, z 2 , y 2 ) k[x, y, z]. At degree 2 we will have:

In chapter 5, we will introduce a new graphical representation for terms, allowing to increase ad libitum the number of variables.

We display here also a diagram in five variables In 1982, Buchberger and Moeller ( [START_REF] Buchberger | The construction of multivariate polynomials with preassigned zeros[END_REF]) proposed an algorithm that, given a zerodimensional ideal I defined by s functionals l 1 , ..., l s and a term order <, computes a Groebner basis and a triangular sequence q 1 , ..., q s for a permutation l σ(1) , ..., l σ(s) of the given functionals.

Many different versions of Moeller algorithm have been deeply studied by M.G. Marinari, H.M. Moeller and T. Mora in [START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF]. Here we briefly sketch two of them 3 .

The first version is iterative on terms and it computes the reduced Groebner basis G and a triangular sequence q. This version generalizes the original Buchberger-Moeller algorithm, for the case in which functionals are evaluations at a point.

The elements of the Groebner escalier and of the reduced Groebner basis are contained in two lists, which are updated in each iterative step, until each element of T is in N(I) or in T(G). At each step, the algorithm finds the minimal term τ not already settled in N(I) or in T(G) and computes vect(τ ), the vector of evaluations of τ at the functionals. If vect(τ ) is linearly dependent w.r.t. {vect(σ), σ ∈ N(I)} then a new element is added to G; otherwise, we update the list q.

Remark 1.6.1. We point out that Moeller algorithm is independent from the given term order <.

The algorithm leans on the subroutine GaussRed, which performs Gaussian reduction.

Algorithm 1 Gaussian reduction.

1: procedure GAUSSRED(p, v, q 1 , ..., q r , vect(1), ..., vect(r)) → p, v 2:

for i = 1, ..., r do 3: v = v -l i (p)vect(i) 4: p = p -l i (p)q i 5:
end for

6: end procedure

The second version is iterative on functionals. At each step the Groebner escalier, the triangular sequence and the reduced Groebner basis are computed.

Algorithm 3 Moeller algorithm 2.

1: procedure MOEL2(l 1 , ..., l s ) → G, q 2: G = {1} 3:
v(1) = (l 1 (1), ..., l s (1))

4:

for r = 1...s do 5: 

τ = min{T(f ), f ∈ G, l r (f ) = 0} 6: let f ∈ G, with T(f ) = τ 7: G = G \ {f } 8: q r = l -1 r (f )f 9: vect(r) = l -1 r (f )v(f ) 10: for each f ∈ G s.t. T(f ) > τ do 11: f = f -l r (f )q r 12: v(f ) = v(f ) -l r (f )vect(r)
if x i τ / ∈ (T(G)) then 16: v = (l 1 (x i τ ), ..., l s (x i τ )) 17: 
(p, v(p)) = GaussRed(x i τ, q 1 , ..., q r ) 18:

G = G ∪ {p} 19: end if 20:
end for

21:

end for Chapter 1. Notation and preliminaries.

In [START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF] is also proved that the computational complexity of the algorithms above is the same, in term of operations in k.

More precisely, denote by

• n the number of variables;

• s the number of functionals;

• g = |G|;
• f the cost of functional evaluation.

The latter is actually a distributed cost: csf is the number of operations needed in order to evaluate s functionals at c terms.

More precisely:

• f = 1 if the functionals are evaluations at rational points;

• f ≤ s if the functionals are evaluations at algebraic points or evaluations of differential conditions at rational points 4 .

• f ≤ 2ns if functionals include coefficients of canonical forms under a change of coordinates • f ≤ s 2 if functionals are evaluations at rational points with multiplicity conditions given by differential conditions.

Proposition 1.6.2. Both the algorithm have complexity

1 2 s 3 + s 2 g + f s(s + g) ≤ O(ns 3 + f ns 2 ).
3. use a purely combinatorial algorithm (the one we call Cerlienco-Mureddu correspondence).

giving a minimal monomial basis for the quotient, w.r.t lex induced by x 1 ≺ .... ≺ x n ) directly from X.

Remark 2.2.1. We point out that the Groebner escalier associated to a zerodimensional ideal I is also provided by Moeller algorithm [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Buchberger | The construction of multivariate polynomials with preassigned zeros[END_REF][START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF].

The elementary ideal and problem (1).

In the first part of [START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF], Cerlienco-Mureddu describe a way to compute a system of generators for a zerodimensional radical ideal I(X), given X = {P 1 , ..., P S }. We only sketch it and show a very simple example. 

I = (γ 1 (x 1 ), ..., γ n (x n )).
Clearly this set of polynomials is also its reduced Groebner basis w.r.t. any term order.

Take then X and perform the following steps.

1. Associate to it an elementary ideal I :

• take the supset X of X consisting of the points P = (a 1 , ..., a n ) ∈ k n such that for each 1 ≤ j ≤ n, a j is the j-th coordinate of some point of X2 ;

• I = I(X ) is an elementary ideal, say I = (γ 1 , ..., γ n ), where

γ j ∈ k[x j ], deg(γ j ) =
h j are such that γ j (a) = 0 if and only if a is the j-th coordinate of at least a point in X.

2.

Observe that the Groebner escalier turns out to be

N < (X ) = {x α = x α1 1 • • • x αn n , | 0 ≤ α j ≤ h j -1} = {x α (1) , ..., x α (n) };
3. Let H be the matrix whose rows consist of the evaluations of the terms in N(X ) in the points of X . This is a non-degenerate matrix, so it has an inverse matrix H -1 = (h r,s ).

4. Associate to the s-th column of H -1 the polynomial

p s = S r=1 h r,s x αr .
5. J := (p S+1 , ..., p h , γ 1 , ..., γ n ) = I even if in general this system of generators is not a Groebner basis for I.

Example 2.2.3. Consider the polynomial ring k[x, y], equipped with the lexicographical order induced by 1 < x < y, take the simple set X 0 = {(0, 0), (1, 0), (1, 1)} and complete it to X 0 = {(0, 0), (1, 0), (1, 1), (0, 1)}. Since there are 2 possible values for each coordinate, it is

clear that |X 0 | = 4 > 3 = |X 0 |.
We can compute (using Singular)

I = (x 2 -x, y 2 -y), N < = {1, x, y, xy}. The first matrix is H =       1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0      
and it is not degenerate, det(H) = -1; the inverse matrix is

H -1 =       1 0 0 0 -1 1 0 0 -1 0 0 1 0 -1 1 -1       .
So, adding to the generators of I the polynomial p 4 = y -xy we obtain a system of generators for I3 .

If we know a Groebner basis G and the Groebner escalier N of I, the solution of problem 1 is trivial:

1. consider H and its inverse H -1 ;

2. let χ = t (χ 1 , ..., χ S );

the required polynomial is

p = m j=1 (H -1 χ) j x αj .
Example 2.2.4. Consider the same X 0 of example 2.2.3 and χ = (1, 2, 3). In this situation the reduced Groebner basis {x 2 -x, y 2 -y, xy -y} is very simple and the Groebner escalier is likewise simple: N = {1, x, y}. We have then

B =    1 0 0 1 1 0 1 1 1    ,
and det(B) = -1, while the inverse matrix is

B -1 =    1 0 0 -1 1 0 0 -1 1    .
The required polynomial is then p = x + y + 1.

In order to obtain the same result we can also proceed in another way:

1. attach χ i as n + 1-th coordinate of P i , for each i = 1, ..., S, forming a new set Y;

2. add a new variable t to the ring supposing it much bigger w.r.t. the other ones;

3. compute the reduced Groebner basis of I(Y) and take the polynomial q whose leading term is t: (-1) • (q -t) is our required p.

Example 2.2.5.

Referring to examples 2.2.3, 2.2.4, we take again X 0 and construct Y = {(0, 0, 1), (1, 0, 2), (1, 1, 3)} from it.

We also take χ = (1, 2, 3). We have I(Y) = (x 2 -x, xy -y, y 2 -y, t -y -x -1), so, as we expected, p = x + y + 1.

Matrices and problem (1).

Until now, for their purposes, Cerlienco-Mureddu required the knowledge of the Groebner escalier that we have always computed by using the reduced Groebner basis of the treated ideal.

In section 3.3 of [START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF], Cerlienco-Mureddu state a one-to-one correspondence between the bases of the quotient algebra and the nonzero order S minors of the matrix H obtained as H, but only using the points in X.

If A is one of such minors, B A := {b 1 , ..., b S } is the set of terms corresponding to A's columns and we take B A as a basis of the quotient algebra.

We then find y = p(x 1 , ..., x n ) using

      b 1 . . . b S y α 1 A . . . α S       = 0
If the chosen minor is somehow "convenient" 4 one can use it to compute the reduced Groebner basis of our ideal of points in the following way.

1. Take G = {τ 1 , ..., τ l } the monomial basis for the semigroup ideal T \ N(I(X)).

2. Denote C (i) := {b 1 , ..., b S , τ i } and by D i the matrix whose first row is

C (i)
< , while the other ones are the rows of C (i) < (X) 5 . Let then g i = det(D i ).

3. The reduced Groebner basis is {g 1 , ..., g l }.

Example 2.2.6. Take again the set X 0 . G = {x 2 , xy, y 2 }. We then have to define three matrices:

D 1 =       1 x y x 2 1 0 0 0 1 1 0 1 1 1 1 1       . whose determinant is g 1 = -x 2 + x, D 2 =       1 x y xy 1 0 0 0 1 1 0 0 1 1 1 1       .
whose determinant is g 2 = -xy + y and

D 3 =       1 x y y 2 1 0 0 0 1 1 0 0 1 1 1 1       .
whose determinant is g 3 = -y 2 + y. We have obtained the reduced Groebner basis of the ideal I(X).

The combinatorial algorithm.

Cerlienco-Mureddu define a purely combinatorial algorithm in order to produce directly the lexicographical Groebner escalier from X. More precisely, they prove that there is a one-to-one correspondence which sends each point of X to a term in the Groebner escalier N(I(X)). The idea underlying the algorithm is the following: take a point P i ∈ X, i > 1 6 and find the exponent d is of the maximal variable x s , s ≤ n appearing in the term to be associated to P i by Φ. It consists finding the maximal length s for a sequence of coordinates-from the first on-shared by P i with a previous point:s = s + 1. Then, among the points sharing the first s coordinate with P i , we choose the one with maximal index (say P m : in the algorithm we only keep trace of the index m).

It is d is = d ms + 1.
This means that our P i will be drawn in the first range w.r.t x s+1 , ..., x n and the exponent of x s gives us also the x s -range in which to put it.

Then the algorithm restricts to this range and proceeds in the same way with x 1 , ..., x s-1 7 .

Repeating all the procedure we are able, in a finite number of steps, to settle P i and obtain Φ(P i ) via the list of exponents of the corresponding term.

More precisely we have algorithm 4. Consider the points numbered in the order in which they appear in X 1 .

We run now Cerlienco-Mureddu algorithm on X 1 :

P 1 = (1, 1, 2,
3): it is the first point so it corresponds automatically to 1.

P 2 = (1, 1, 2, 4): s = 4, m = 1, so Φ(P 2 ) = x ? y ? z ? t; then we repeat the algorithm on

Q = {(1, 1, 2)} obtaining {1} and then Φ(P 2 ) = t. P 3 = (1, 1, 2, 5): s = 4, m = 2
, so Φ(P 3 ) = x ? y ? z ? t 2 ; we then repeat the algorithm on

Q = {(1, 1, 2)} obtaining {1} and then Φ(P 3 ) = t 2 .
P 4 = (1, 2, 1, 1): s = 2, m = 3, so Φ(P 4 ) = x ? yz 0 t 0 = x ? y; we then repeat the algorithm on

Q = {(1)
} obtaining {1} and then Φ(P 4 ) = y.

P 5 = (1, 2, 1, 2): s = 4, m = 4
, so Φ(P 5 ) = x ? y ? z ? t; we then repeat the algorithm on

Q = {(1, 1, 2), (1, 2, 1)}.
Algorithm 4 Cerlienco-Mureddu algorithm.

1: procedure CEMU(X) → Φ(X)

2: if S = 1 then 3:
Φ(X) := {d 1 } = {(0, ..., 0)}.

4:

end if 

d 1 = (0, ..., 0)
This is the base step for the algorithm 7:

for l = 2 to S do 8:

s = σ(P l , X).

9:

for i = n to 1 do 10:

if i > s then 11:
d li = 0.

12: end if 13:

if i = s then 14:
find the maximal integer m, (1

≤ m ≤ l -1) s.t π s-1 (P m ) = π s-1 (P l ), π s+1 (d m ) = (0, ..., 0) = π s+1 (d l ).
Pm is the σ -antecedent of P l w.r.t. (P 1 , ..., P l-1 ), Φ((P 1 , ..., P l-1 )).

15:

d ls = d ms + 1. 

Q := π s-1 (W(P l , X)). If h < r = |W(P l , X)|, then π s-1 (P jh ) = π s-1 (P l ). Moreover, since Φ is inductive, if h < k ≤ r then π s-1 (P jh ) = π s-1 (P jk ). |Q| = |W(P l , X)| = r < l. 20: Φ(Q) = CEMU(Q) := { d 1 , .., d r } 21: π s-1 (d l ) = d r . We know Φ(Q) = ( d 1 , .., dr ) and ∀1 ≤ i < r, d i = π s-1 (d ji ).

22:

break. end if 27: return Φ(X).

28: end procedure P 5,1 = (1, 1, 2): it is the first point, corresponding to 1. P 5,2 = (1, 2, 1): s = 2, m = 1, so Φ(P 5,2 ) = x ? y 1 z 0 ; we then repeat the algorithm on Q = {1}, obtaining {1} and then Φ(P 5,2 ) = y.

We obtain by recursion the partial result {1, y} and then Φ(P 5 ) = yt. P 6 = (1, 2, 2, 1): s = 3, m = 5, so Φ(P 6 ) = x ? y ? z 1 t 0 = x ? y ? z; we then repeat the algorithm on Q = {(1, 2)}, obtaining {1} and then Φ(P 6 ) = z. P 7 = (1, 2, 2, 2): s = 4, m = 6, so Φ(P 7 ) = x ? y ? z ? t; we then repeat the algorithm on

Q = {(1, 1, 2), (1, 2, 1), (1, 2, 2)}. P 7,1 = (1, 1, 2)
: it is the first point, corresponding to 1.

P 7,2 = (1, 2, 1): s = 2, m = 1
, so Φ(P 7,2 ) = x ? y 1 z 0 ; we then repeat the algorithm on Q = {1}, obtaining {1} and then Φ(P 7,2 ) = y.

P 7,3 = (1, 2, 2): s = 3, m = 2
, so Φ(P 7,3 ) = x ? y ? z 1 ; we then repeat the algorithm on

Q = {(1, 2)}, obtaining {1} and then Φ(P 7,3 ) = z.
We obtain by recursion the partial result {1, y, z} and then Φ(P 7 ) = zt.

P 8 = (3, 1, 1, 2): s = 1, m = 7, so Φ(P 8 ) = x 1 y 0 z 0 t 0 = x. P 9 = (3, 1, 2, 2): s = 3, m = 8
, so Φ(P 9 ) = x ? y ? z 1 t 0 = x ? y ? z; we then repeat the algorithm

on Q = {(1, 2), (3, 1)}: P 9,1 = (1, 2)
: it is the first point, so we associate 1 to it;

P 9,2 = (3, 1): s = 1, m = 1, so Φ(P 9,2 ) = xy 0 z 0 t 0 = x.
We obtain by recursion the partial result {1, x}, so Φ(P 9 ) = xz. P 10 = (3, 1, 2, 3):s = 4, m = 9, so Φ(P 10 ) = x ? y ? z ? t; we then repeat the algorithm on

Q = {(1, 1, 2)
, (1, 2, 1), (1, 2, 2), (3, 1, 2)}.

P 10,1 = (1, 1, 2): it is the first point, corresponding to 1.

P 10,2 = (1, 2, 1): s = 2, m = 1, so Φ(P 10,2 ) = x ? y 1 z 0 ; we then repeat the algorithm on Q = {1}, obtaining {1} and then Φ(P 10,2 ) = y. P 10,3 = (1, 2, 2): s = 3, m = 2, so Φ(P 10,3 ) = x ? y ? z 1 ; we then repeat the algorithm on

Q = {(1,
2)}, obtaining {1} and then Φ(P 10,3 ) = z.

P 10,4 = (3, 1, 2): s = 1, m = 3, so Φ(P 10,4 ) = x 1 y 0 z 0 = x.
We obtain by recursion the partial result {1, y, z, x}, so Φ(P 10 ) = xt. P 11 = (3, 3, 1, 1): s = 2, m = 10, so Φ(P 11 ) = x ? y 1 z 0 t 0 = x ? y; we then repeat the algorithm on Q = {1, 3}. P 11,1 = 1: the first point is associated to 1;

P 11,2 = 3: s = 1, then Φ(P 11,2 ) = x.
We obtain by recursion the partial result {1, x}, so Φ(P 11 ) = xy. P 12 = (3, 4, 1, 1): s = 2, m = 11, so Φ(P 12 ) = x ? y 2 z 0 t 0 = x ? y 2 ; we then repeat the algorithm on Q = {3}, obtaining {1}, so Φ(P 12 ) = y 2 .

P 13 = (3, 4, 1, 2):s = 4, m = 12, so Φ(P 13 ) = x ? y ? z ? t; we then repeat the algorithm on

Q = {(1, 1, 2)
, (1, 2, 1), (1, 2, 2), (3, 1, 2), (3, 4, 1)}.

P 13,1 = (1, 1, 2): it is the first point, corresponding to 1.

P 13,2 = (1, 2, 1): s = 2, m = 1, so Φ(P 13,2 ) = x ? y 1 z 0 ; we then repeat the algorithm on Q = {1}, obtaining {1} and then Φ(P 13,2 ) = y.

P 13,3 = (1, 2, 2): s = 3, m = 2, so Φ(P 13,3 ) = x ? y ? z 1 ; we then repeat the algorithm on We obtain by recursion the partial result {1, y, z, x, xy}, so Φ(P 13 ) = xyz.

Q = {(1, 2)},
In conclusion, the final result is N = Φ(X 1 ): [START_REF] Marinari | A remark on a remark by Macaulay or Enhancing Lazard Structural Theorem[END_REF][START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]). In the case of the polynomial ring in two variables, we can find in a simple way a possible Cerlienco-Mureddu-like correspondence between points and terms.

N[1] = 1 N[2] = t N[3] = t 2 N[4] = y N[5] = yt N[6] = z N[7] = zt N[8] = x N[9] = xz N[10] = xt N[11] = xy N[12] = y 2 N[13] = xyt Remark 2.2.8 ([
Given a finite set of distinct points X = {P 1 , ..., P S } ⊂ k 2 , with P i = (a i1 , a i2 ), we compute the projection w.r.t. the first coordinate, namely π 1 (X) = {a 0 , ..., a r-1 } and we denote

d(i) := |{(x 1 , x 2 ) ∈ X, x 1 = a i }|.
We can assume d(1) ≥ .... ≥ d(r), up to a renumbering of the elements a i , i = 0, ..., r -1.

There exist values b i,l , i ∈ {0, ..., r -1}, l ∈ {0, ..., d(i) -1} such that

X = {(a i , b il ), 0 ≤ i ≤ r -1, 0 ≤ l < d(i)}. Therefore 1. N(I(X)) = {x i 1 x l 2 , 0 ≤ i ≤ r -1, 0 ≤ l < d(i)}; 2. Φ(a i , b il ) = x i 1 x l 2 .
This means reordering the towers by height in order to compute the tower structure.

The most important feature of Cerlienco-Mureddu algorithm is its iterativity on X.

Cerlienco-Mureddu do not study the computational complexity of their algorithm, but

Lundqvist ( [START_REF] Lundqvist | Vector space bases associated to vanishing ideals of points[END_REF]) does it, stating the following Proposition 2.2.9 ([67]). The combinatorial algorithm described has complexity O(n 2 S 2 ).

In [START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF] and [START_REF] Cerlienco | From algebraic sets to monomial linear bases by means of combinatorial algorithms[END_REF], Cerlienco-Mureddu generalize their procedure to multiple points.

Application to the reduced Groebner basis.

In their papers [START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF][START_REF] Cerlienco | From algebraic sets to monomial linear bases by means of combinatorial algorithms[END_REF][START_REF] Cerlienco | Multivariate Interpolation and Standard Bases for Macaulay Modules[END_REF], Cerlienco-Mureddu refer to the properties of of Ferrers diagrams. For a Ferrers diagram, they also employ the notion of dihedral elements in the proof of the correctness for their combinatorial algorithm.

Definition 2.2.10. If F is a Ferrers diagram, an element j ∈ N n is external dihedral for F if: 1. {i ∈ N n /i < j} ⊆ F; 2. {i ∈ N n /j ≤ i} ∩ F = ∅.
Definition 2.2.11. With the same notation of definition 2.2.10, an element j ∈ N n is called internal dihedral for F if:

1. {i ∈ N n /i ≤ j} ⊆ F; 2. {i ∈ N n /j > i} ∩ F = ∅.
They develop an algorithm which computes the reduced Groebner basis of I(X), inductively on |X|.

Denote by F the Ferrers diagram associated to N(I(X))8 , and let f 1 < ... < f s their external dihedral elements. The reduced Groebner basis of I(X) has the form

G(I(X)) = {x f1 -p 1 , ..., x fs -p s },
where p i only contain terms smaller than x fi .

Take P = (a 1 , ..., a n ) / ∈ X, X = X ∪ {P } and let F , G the analogous sets as F, G.

Let j the minimal index such that P is not a zero of x fj -p j , then one can easily see that N(I(X)) ∪ {x fj } is a basis for k[x 1 , ..., x n ]/I(X ).

Notice that the external dihedral elements of F, different from f j are external dihedral also of F ; the possible remaining elements of F are of the shape f j + e h (e 1 = (1, 0, ..., 0), ..., e n = (0, 0, ..., 1)). In order to find the basis G we have to consider the following polynomials:

1. for each external dihedral f i different from f j (i = j) we have

g i = x fi -p i - A i A j (x fj -p j ),
where A i = ev P (x fi -p i ), A j = ev P (x fj -p j );

for each

f j + e h , g j,h = (x h -a h )(x fj -p j ).
Actually, here they are only rewriting Moeller algorithm in the version iterative on functionals ( [START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF], algorithm 2).

In [START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF], Cerlienco-Mureddu discuss how to simiplify the algorithm in the bidimensional case.

Proposition 2.2.12. Let X ⊂ k 2 . If the points of X have r different x-coordinates ρ 1 , ..., ρ r and there are h i points having ρ i as first coordinate. Assuming h 1 ≥ ... ≥ h r , the associated order ideal is: 1, y, ..., y h1-1

x, xy, ..., xy h2-1

...

x r-1 , ..., x r-1 y hr-1 .

If we think again about the tower structure introduced above, we can interpret the proposition 2.2.12 as follows: ordering the towers in non-increasing order by height, we obtain the Groebner escalier, under the identification defined above. 

X = {(1, 0, 0), ( 2 
, 0, 0), (1, 1, 0), (2, 1, 0), (1, 0, 1), (2, 0, 1), (1, 1, 1), (2, 1, 1)},

where the points are taken in the order they are listed.

In [START_REF] Cerlienco | From algebraic sets to monomial linear bases by means of combinatorial algorithms[END_REF][START_REF] Cerlienco | Multivariate Interpolation and Standard Bases for Macaulay Modules[END_REF] Cerlienco-Mureddu also state an application of the algorithm to n-linearly recursive functions.

Gao-Rodrigues-Stroomer method.

In [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF], Gao-Rodrigues-Stroomer , in the special case k perfect field, study the relationship between the fibers π n-1 (X) ⊆ k n-1 of a given set of distinct points X ⊆ k n and a minimal Groebner basis for I(X) under an elimination order for x n .

Moreover they explain how to use their results in order to simplify systems of equations.

They "do not describe how to calculate a Groebner basis for a given set of points" (p.3), but there is a paper by Farr and Gao doing it [START_REF] Farr | Computing Groebner Bases for Vanishing Ideals of Finite Sets of Points[END_REF], as well as, clearly, Moeller algorithm does [START_REF] Buchberger | The construction of multivariate polynomials with preassigned zeros[END_REF][START_REF] Marinari | Groebner Bases of Ideals Defined by Functionals with an Application tp Ideals of Projective Points[END_REF].

In the case where the elimination ordering is exactly the lexicographical one (x 1 < ... < x n ), Gao-Rodrigues-Stroomer introduced a combinatorial non-iterative algorithm in order to compute directly the Groebner escalier N(I(X)), i.e. an alternative algorithm to the one by Cerlienco-Mureddu .

Actually they compute the Ferrers diagram F(X) containing the exponents' lists of the terms belonging to N(I(X)).

They first make some preprocessing on the given points, namely they construct a tree associated to them and this is the step excluding iterativity.

Then, usign a "merging" procedure, they read the tree and return the Groebner escalier.

Let us examine the procedure more in details.

The first step consists to associate to X a tree T (X) of height n, whose nodes are labeled with the coordinates of the points (except that the root, i.e. the 0 level node, which is simply labeled with "root").

From the root arise as many edges as the first coordinate values, from each 1 level node arise as many edges as the second coordinate values corresponding to the given first coordinate value and so on. The S leaves (one for each point) are so ordinately labeled with the n-th coordinates.

If two points share the first k coordinates, then their corresponding paths coincide from level 0 to level k + 1.

After giving the tree construction, they define the merging procedure of Ferrers diagrams.

Procedure 2.3.1. Let F 1 , ..., F k ⊆ N n-1 be Ferrers diagrams.

For each P = (p 2 , ..., p N ) ∈ N n-1 let δ(P ) be the number of Ferrers diagrams containing P .

Merging these Ferrers diagrams means construct the Ferrers diagram

F := M (F 1 , ..., F k ) = {(j, p 2 , ..., p N ) | 0 ≤ j < δ(p 2 , ..., p N )} ⊆ N n
Gao-Rodrigues-Stroomer algorithm then, consists of the following three steps:

• construct T (X);

• if n = 1, then F(X) = {0, 1, ..., |X| -1};
• otherwise:

consider the subtrees T 1 , ..., T l of T (X), obtained removing the root from it and taking the elements of the resulting subforest;

assume to have computed recursively F 1 , ..., F l , i.e. the Ferrers diagrams associated to the points drawn in T 1 , ..., T l ; -F(X) is obtained by merging F 1 , ..., F l .

Example 2.3.2. Take (as in example 2.2.7) the set and consider the ring k[x, y, z, t], equipped with the lexicographical order induced by 1 < x < y < z < t. The tree associated to the set is root

X 1 = {(1, 1, 2, 3), (
1 3 1 2 1 3 4 2 1 2 1 2 1 1 3 4 5 1 2 1 2 2 2 3 1 1 2
The merging process works as follows. In the picture below, we represent each step of the root root The final result is then root In both the previous pictures, the numbers not surrounded by the circles are not to be in-tended as nodes for some graph. They denote the indices of the points corresponding to the element of the Ferrers diagram at each step (see 2.3.3 below for more details). We summarize here the steps outlined in the picture. Start with the leaves:

0 1 0 1 2 0 1 0 0 1 0 0 0 1 2 0 1 0 1 0 1 0 0 0 1 1 2 3 6 7 
0 1 0 1 2 0 1 0 1 0 0 0 1 0 0 1 2 0 1 0 1 0 0 1 0 0 1 1 2 3 
F 1 = {0, 1, 2} F 2 = {0, 1} F 3 = {0, 1} F 4 = {0} F 5 = {0, 1} F 6 = {0} F 7 = {0, 1}
and perform the first merging step.

F 8 = M (F 1 ) = {(0, 0), (0, 1), (0, 2)} F 9 = M (F 2 , F 3 ) = {(0, 0), (0, 1), (1, 0), (1, 1)} F 10 = M (F 4 , F 5 ) = {(0, 0), (0, 1), (1, 0)} F 11 = M (F 6 ) = {(0, 0)} F 12 = M (F 7 ) = {(0, 0), (0, 1)}.
Now we merge again:

F 13 = M (F 8 , F 9 ) = {(0, 0, 0), (0, 0 , 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)} 
F 14 = M (F 10 , F 11 , F 12 ) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0)} and, in conclusion, F(X) = F 15 = M (F 13 , F 14 ) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 2, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),

(1, 1, 0, 0), (1, 1, 0, 1)}, so the final result, as expected, is N(I(X)) = {1, t, t 2 , z, , zt, y, yt, y 2 , x, xt, xz, xy, xyt}.

Remark 2.3.3. Reading [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF], we can notice that there is no explicit intent to stress a biunivocal correspondence between the points and the terms belonging to N(I(X)).

There is only one example (i.e. exactly example 2.3.2) which can be interpreted in this direction (as I did in the picture).

Moreover there is no explicit intent to give the output arranged in some order.

Anyway, we can notice a rather strange fact (again from example 2.3.2): the terms are ordered w.r.t. lex, but induced by x n < ... < x 1 (t < z < y < x), while the Groebner escalier is computed using the reversed ordering x 1 < ... < x n (x < y < z < t).

The authors do not give any complexity analysis of their algorithm.

Remark 2.3.4. I underline here a strange fact about Gao-Rodrigues-Stroomer method.

In [START_REF] Farr | Computing Groebner Bases for Vanishing Ideals of Finite Sets of Points[END_REF], the authors explicitly say for the first time their way to sort the points of the given X, referring to [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF], and so making one think that this is the sorting criterion also for [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF].

Actually, in [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF] there is no declaration on how to decide what is the order of the i-th coordinates to be drawn at level i.

To be more precise, in [START_REF] Farr | Computing Groebner Bases for Vanishing Ideals of Finite Sets of Points[END_REF], they say:

The details of this ordering, motivated by [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF], are quite simple. If x 1 < x 2 < ... < x n , then group the points first according to the x 1 -coordinate; these groups are ordered in a nonincreasing order by size. Within each of the groups, repeat the process, but according to the x 2 -coordinate. Continue for

x 3 , ..., x m .
The surprising fact is that this criterion is not followed in the only example displayed in [START_REF] Gao | Groebner basis structure of finite sets of points[END_REF] (1, 1, 2, 5), but it is only one example of this curious fact. The tree, according to [START_REF] Farr | Computing Groebner Bases for Vanishing Ideals of Finite Sets of Points[END_REF], should have been:

root

1 3 2 1 1 4 3 1 2 2 1 2 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1 
Lundqvist, Felszeghy-B. Ráth-Rónyai never say anything about it (even if their tree mirrors it), while Lederer does not display any example of the Groebner escalier's construction.

Lederer's variation.

Lederer, in [START_REF] Lederer | The vanishing ideal of a finite set of closed points in affine space[END_REF], gives an alternative to Buchberger-Moeller algorithm, in order to compute a lexicographical Groebner basis of a zerodimensional radical ideal, basing his computation on Lagrange interpolation.

In the same paper he discusses a non-iterative method in order to compute directly the Groebner escalier. It turns out that this method is equivalent to the one by Gao-Rodrigues-Stroomer discussed above (for less than a reordering on the set to be "merged").

Let D n the set containing all the Ferrers diagram in N n and take two elements D, D ∈ D n .

Lederer defines their sum D + D ∈ D n :

D + D := {d ∈ N n 0 | d ∈ p(D) ∪ p(D ), d 1 < |p -1 ( d) ∩ D| + |p -1 ( d) ∩ D |}.
Then he gives a representation of the summation operator: "Draw a coordinate system of N n In conclusion the summation of two Ferrers diagrams consists of make one "slide on the other", only avoiding the overlapping of elements.

Clearly the summation (which is commutative and associative!) can be extended to more than two Ferrers diagrams.

Remark 2.4.1. It is very simple to notice that the summation defined above is totally equivalent to the merging operation, while taking away a coordinate means "restrict to a subtree", as Gao-Rodrigues-Stroomer do.

These informations are the only ones needed in order to compute the Groebner escalier.

Lederer, given X, proceeds by induction over n.

If n = 1, F(X) = {1, ..., |X| -1}.
In order to pass from n -1 to n, proceed as follows.

1. Take ∀a 1 ∈ p(X) the set H(a 1 ) = p -1 (a 1 ) ∩ X.

2.

Consider H(a 1 ) as a subset of k n-1 via the projection map p: in this way F(H(a 1 )) ⊆ D n-1 is defined by the induction hypothesis.

3.

Identify each F(H(a 1 )) as an element of D n , adding a 0 as first component to each element of it. We can perform Lederer's algorithm on this set. Since we will need to compute H(a 1 ) in more than one nested step, we will use superscripts in order to distinguish the different steps.

The first coordinates of the points in X 1 are 1, 3: H(1) = {P 1 , ..., P 7 } H(3) = {P 8 , ..., P 13 }. Denote by P (i) the set containing the indexes of the points in H(i).

We should compute F(H(1)) + F(H(3)), but we need to know the addenda.

Focus on H(1) (forget H(3), for the moment), thinking about it in k 3 . Focus on H (1) thinking about it in k 2 :

H(1) = {(1, 2, 3), (
H (1) = {(2, 3), (2, 4), (2, 5)}. 
It has only 2 as first coordinate, so we have only

H (2) = {3, 4, 5}, P (2) = {1, 2, 3}.
The Ferrers diagram F(H (2)) = {0, 1, 2} (corresponding to the points individuated by the elements of P (2), taken in order) can be thought in k 2 as explained in 3., so F(H (1)) = {(0, 0), (0, 1), (0, 2)}.

Now consider H (2) in k 2 : H (2) = {(1, 1), (1, 2), (2, 1), (2, 2)}. Its first coordinates are 1, 2, so F(H (2)) = F(H (1)) + F(H (2)), with H (1) = {1, 2} P (1) = {4, 5} H (2) = {1, 2} P (2) = {6, 7}.
We have F(H (1)) = {0, 1} = F(H (2)) and we see it in k 2 , obtaining F(H (2)) = {(0, 0), (1, 0), (0, 1), (1, 1)}.

While summing we take the elements in order i.e. for example we have two couples with 0 in second place since we find 0 in both F(H (1)) and F(H (2)), so we associate (0, 0) to P 4 We always behave this way for the sum.

Finally we can compute F(H(1)) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)}, associated to the following reordering of P (1): {1, 4, 6, 2, 5, 7, 3}.

The Lex Game.

The mathematicians Felszeghy-B. Ráth-Rónyai , in [START_REF] Felszeghy | Rónyai The Lex Game and some applications[END_REF], introduce the so called "Lex Game", which leads to a non-iterative combinatorial algorithm in order to compute the Groebner escalier of I(X), the ideal of a finite set X of distinct points, w.r.t the lexicographical order, induced by x n < ... < x 1 .

They do not compute a Groebner basis of I(X) (but they cite a couple of papers studying it, namely [START_REF] Hegedus | Standard monomials for q-uniform families and a conjecture of Babai and Frankl[END_REF][START_REF] Kézdy | Polynomials that vanish on distinct nth roots of unity. Combinatorics[END_REF]), focusing their efforts on computing the Groebner escalier of I(X), when X is a set of points admitting as components only 0, 1 and having the number of ones (Hamming weight) in a fixed D ⊆ Z.

In the same paper is stated a formula for triangular polynomials and also another formula which permits to compute the normal form of a polynomial using the separators.

The "Lex Game", from which their reasoning starts, is a game with two players (Lea and Stan), consisting of the following rules. Take a field k, a finite set ∅ = V ⊆ k n and w = (w 1 , ..., w n ) ∈ N n .

V and w are "public", the players know them.

Lea's goal is to guess the element v ∈ V which Stan is thinking about. She has w n attempts in order to guess v n and she wins if she manages to do it; if not, Stan reveals v n and Lea tries with v n-1 .

Lea wins if guesses a v i right, while Stan wins if he has to reveal v 1 .

Stan's strategy is to keep saying "no" as long as the suffix known to Lea is consistent with some v ∈ V .

It turns out that Stan is able to win this way if and only if x w ∈ N(I(V )) and this leads to the study of the Groebner escalier.

A very precise description of the algorithm, together with a full example and a complexity study can be found in [START_REF] Lundqvist | Vector space bases associated to vanishing ideals of points[END_REF].

The first step consists on a preprocessing on the given points, in order to associate them a tree, called "point trie" by Lundqvist.

Let us equip k with an equivalence relation, denoted by = and extend it to Consider now our points P 1 , ...P S ∈ X ⊆ k n and denote by Σ i the the set of equivalence classes of π i (P j ), i = 1, ..., n, j = 1, ..., S. We represent an equivalence class as a set containing the indices of the points in the class, instead of taking trace of the points. We usually order the classes by size, even if the algorithm works for any other ordering.

k n by a = (a 1 , ..., a n ) = (b 1 , ..., b n ) = b if a i = b i , ∀i ∈ {1, ..., n}.
Clearly Σ 0 = {{1, ...S}}, Σ n = {{1}, ..., {S}}, |Σ n | = S Definition 2.5.2. The witness list is the set W of all i ∈ {1, ..., n} such that Σ i-1 = Σ i , i.e. the set of witnesses.

Definition 2.5.3. The witness matrix is an upper-triangular matrix C = (c ij ) with elements in W ∪ {0} such that , for i < j, the value c ij is the witness of v i and v j .

Using the Σ i 's we can represent the points in a trie structure (namely the point trie).

More precisely we label the vertices with the elements of Σ i 's and there is an edge from

Σ i,k ∈ Σ i to Σ i+1,h , ∈ Σ i+1 when Σ i+1,h ⊆ Σ i,k
. Such an edge is labeled v i+1,j for some

j ∈ Σ i+1,h .
This way, we have fixed a one-to-one correspondence between the elements of X and the paths from the root to the leaves in the tree.

We point out that the point trie is constructed iteratively on the points of the given set.

Once the point trie is constructed, we have to read it, constructing a new trie, the "lex trie", from which is possible to recover the Groebner escalier. We proceed in the following way.

• Fix some level h > 0 and call v 0 , ..., v j the set of vertices on level h (at level 0 we have

v 0 = {1, ..., S}). • For a class {i 1 , ..., i k } ∈ Σ n-h we let v a,b = v a,b ∪ {i k } if i k ∈ v a and exactly b elements in {i 1 , ..., i k-1 } also belong to v a .
• The vertex set of level h + 1 consists of the nonempty v a,b .

• If v a,b = ∅, there is an edge b between v a and v a,b .

This new construction is no more iterative: we need to know all the elements in the given set and their structure summarized in the point tree in order to get the lex trie. Working with this set X 2 it is the same as working with 

X 1 = {(1, 1, 2, 3), (
{4, 5, 6, 7} {1, 2, 3} {8, 9, 10} {12, 13} {11} {4, 5} {6, 7} {1, 2, 3} {9, 10} {8} {12, 13} {11} {4} {5} {6} {7} {1} {2} {3} {9} {10} {8} {12} {13} {11} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
Now we proceed with the lex trie construction:

v 0 = {1, 2, ..., 13} h = 1 : iteration on Σ 3 : v 0,0 = {4, 6, 1, 9, 8, 12, 11} =: v 0 v 0,1 = {5, 7, 2, 10, 13} =: v 1 v 0,2 = {3} =: v 2 h = 2: iteration on Σ 2 : v 0,0 = {4, 1, 8, 12, 11} =: v 0 v 0,1 = {6, 9} =: v 1 v 1,0 = {5, 2, 10, 13} =: v 2 v 1,1 = {7} =: v 3 v 2,0 = {3} =: v 4 h = 3: iteration on Σ 1 : v 0,0 = {1, 8} =: v 0 v 0,1 = {4, 11} =: v 1 v 0,2 = {12} =: v 2 v 1,0 = {6, 9} =: v 3 v 2,0 = {2, 10} =: v 4 v 2,1 = {5, 13} =: v 5 v 3,0 = {7} =: v 6 v 4,0 = {3} =: v 7 h = 4: iteration on Σ 0 : v 0,0 = {1} v 0,1 = {8} v 1,0 = {4} v 1,1 = {11} v 2,0 = {12} v 3,0 = {6} v 3,1 = {9} v 4,0 = {2} v 4,1 = {10} v 5,0 = {5} v 5,1 = {13} v 6,0 = {7} v 7,0 = {3}
The lex trie is then 

{3} {1, 8} {4, 11} {12} {6, 9} {2, 10} {5, 13} {7} {3} {1} {8} {4} {11} {12} {6} {9} {2} {10} {5} {13} {7} {3} 0 1 2 0 1 0 1 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0
Lastly, the Groebner escalier is N(I(X)) = {1, x, y, xy, y The last conclusive bound they found for the complexity is

O(nS + S min(S, nr)),
where S is the number of points in the given finite set X and n the number of variables in the ring. This is actually the complexity of the (iterative) construction of the point trie, since the construction of the lex trie is O(nS).

CHAPTER 3

The original Axis of Evil Theorem.

Introduction

In this chapter we begin to face the problem of "constructing a linear factorization of a lexicographical Groebner basis" for zerodimensional radical ideals.

Initially in [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] and then in [START_REF] Marinari | Cerlienco-Mureddu Correspondence and Lazard Structural Theorem[END_REF][START_REF] Marinari | A remark on a remark by Macaulay or Enhancing Lazard Structural Theorem[END_REF][START_REF] Marinari | Some Comments on Cerlienco-Mureddu Algorithm and Enhanced Lazard Structural Theorem[END_REF], M.G. Marinari and T. Mora studied the structure of a zerodimensional ideal I, especially in the case in which I = √ I and its Macaulay basis B(I) consists of the evaluations at a finite set of distinct points X (see also [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]).

The obtained result, named "Axis of Evil theorem" by T. Mora in some lecture notes soon after, presents a precise description of the structure of a zerodimensional ideal.

In this setting, this theorem represents, to all intents and purposes, an enhancement for the description of the Groebner basis of an ideal in k[x 1 , x 2 ] given by Lazard in [START_REF] Lazard | Ideal Basis and Primary Decomposition: Case of two variables[END_REF].

The theorem says that in a restricted case which includes the radical one 1 , for each term τ := x d1 1 • • • x dn n belonging to the monomial basis G(I) of the initial ideal of I, it is possible to produce linear factors 1 The most general version of the Axis of Evil Theorem holds for Cerlienco-Mureddu ideals (see 1.2.17 We quote here the original statement of the Axis of Evil theorem as in [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] Theorem 3.1.1. Let X = {P 1 , ..., P s } ⊂ k n be a finite set of points I ⊂ P the radical ideal whose roots are the elements in X, < the lexicographical order on P N := N < (I) the result of Cerlienco-Mureddu Correspondence

γ mδτ := x i -f (x 1 , . . . , x i-1 ), 1 ≤ m ≤ n, 1 ≤ δ ≤ d m such
G < (I) := {τ 1 , ..., τ r } the monomial basis of T < (I) := T \ N, τ i := x d1i 1 • • • x dνi ν for each i.
Then there is a combinatorial algorithm such that letting for each i, m, δ, N mδi := N(X mδi ) be the result of Cerlienco-Mureddu Correspondence γ mδi := x m + ω∈N mδi c(γ mτ , ω)ω the unique polynomial (computable by interpolation) s.t. γ mδi (x) = 0 for all x ∈ X mδi and

γ mi = δ γ mδi p i := γ νi l i := ν-1 j=1 γ ij ∈ k[x 1 , ...x ν-1 ] H i := l i p i
and it holds:

1. {H 1 , ..., H r } is a (not-reduced) minimal Groebner basis of I; 2. if j ν is the value such that τ jν < x ν+1 ≤ τ jν +1 , then {H τ1 , ..., H τj ν } is a minimal Groebner basis of I ∩ k[x 1 , ..., x ν ];

3. if j(νδ) is the value such that τ j(νδ) < x δ ν+1 ≤ τ j(νδ)+1 ; then {l 1 , ..., l j(νδ) } is a Groebner basis of J(Y νδ );

4. for each i, 2 ≤ i ≤ r, p i ∈ (H j , j < i) : l i .
The theorem 3.1.1 above has been proved by T. Mora in [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF], as a consequence of Moeller algorithm and interpreted as a sort of "interpolating variation" of Cerlienco-Mureddu algorithm.

In the book [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF], the theorem above is presented in its most generalized version for Cerlienco-Mureddu ideals (see definition 1.2.17).

In this thesis, we want to provide a constructive proof for the existence of the factorization in the radical case.

Such a proof turns out to be naturally associated to an algorithm (i.e. algorithm 5), allowing to get concretely the "linear" factorization of a zerodimensional radical ideal I, starting from the finite set of distinct points X = V (I).

We will call algorithm 5 Axis of Evil algorithm from now on.

In order to compute the factorization we need to calculate the Groebner escalier N = N(I), directly from the elements in X and the monomial basis G = G(I) from N = N(I). As seen in chapter 2, the first problem is solved using alternatively the Cerlienco-Mureddu Correspondence, the Lex Game, the Gao-Rodrigues-Stroomer algorithm or the Lederer's algorithm. The second problem can be solved by an algorithm due to Lazard.

In section 3.2 we will deal exactly with Lazard's algorithm.

In section 3.3, we will give an overview of Lazard's structural theorem and of another result about factorization, named Macaulay's Trick.

In the fourth section we will explain the Axis of Evil algorithm in detail, and in section 3.5 we will summarize some results which can be considered as consequences of the Axis of Evil theorem.

Finally, in section 3.6 we will give a very detailed example of execution of the original Axis of Evil algorithm 5.

Considerations on the monomial basis and Lazard's algorithm.

In this section, we make some remarks on the behaviour of the monomial basis G(I) of a zerodimensional ideal I.

First of all, we deal with the most efficient way to compute it from the Groebner escalier N(I) of I, namely Lazard's algorithm.

After that, we will study the structure of G(I) degree by degree, defining the concept of natural expansion.

We will exploit the diagrams defined in 1.5 in order to represent and distinguish the terms in N(I) and G(I).

Lazard's algorithm ( [START_REF] Faugere | Efficient computation of zero-dimensional Gröbner bases by change of ordering[END_REF][START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]) is a very simple but powerful tool in order to study zerodimensional ideals.

It has been developed in [START_REF] Faugere | Efficient computation of zero-dimensional Gröbner bases by change of ordering[END_REF], actually being a part of FGLM algorithm.

The aim of Lazard's algorithm is to compute the monomial basis G(I) of a zerodimensional ideal I k[x 1 , ..., x n ] having, as input, only the Groebner escalier N(I). This algorithm is iterative on the terms in N(I) = {τ 1 , ..., τ s }. Start with |N(I)| = 1, namely N(I) = {1} 2 . Then the monomial basis is G(I) = {x 1 , ..., x n }, since for each j ∈ {1, ..., n} the only existing predecessor of x j is 1 ∈ N(I), while no other term σ can belong to G(I), being multiple of at least a variable.

Set also L = [x 1 , ..., x n ] i.e. a list containing the products 1 • x j , for j = 1, ..., n.

The above steps constitute the basis for our procedure.

Let |N(I)| > 1, G i-1 = {τ 1 , ..., τ h } be the monomial basis associated to the order ideal N i-1 = {1, τ 2 , ..., τ i-1 }, i ≤ S and L the list (ordered w.r.t. lex) containing the products of the form τ k x j , for k = 1, ..., i -1, j = 1, ..., n, with τ k x j / ∈ N i-1 . We do not allow repetitions in L, so if σ = x j0 τ j0 = x j1 τ j1 , σ is reported only once in L, but it is marked with a number, i.e. the number of times it has been computed.

Consider then τ i ∈ N(I); in order to compute the monomial basis associated to N i = {τ 1 , ..., τ i }, Lazard's algorithm performs the the steps displayed below on τ i .

• remove τ i both from L and from G i-1 ;

• Computes all the products σ j,i = x j τ i , for each j = 1, ..., n.

• Inserts each σ j,i in L. For each σ j,i already appearing in L, the algorithm marks the number of times it has been computed and selected for insertion.

• All the terms appearing in L, marked exactly with the number of their variables, are the elements of G i , the monomial basis associated to N i .

Remark 3.2.1 ([36]

). We study now Lazard algorithm from the efficiency point of view. As proved in [START_REF] Faugere | Efficient computation of zero-dimensional Gröbner bases by change of ordering[END_REF], its complexity is O(n 2 s 2 ), where s = |N(I)| and n is the number of variables in the given polynomial ring. In the same paper, the authors remarked also that, with a more efficient implementation, involving priority queues, the complexity of the algorithm can be improved to O(n 2 s log(ns)).

We give now a simple example of execution for Lazard's algorithm.

Example 3.2.2. Consider the order ideal

N(I) = {1, x 1 , x 2 , x 1 x 2 , x 3 } ⊆ k[x 1 , x 2 , x 3 ].
In order to compute G(I) we proceed term by term as displayed in in the list below.

1: this is the base case, so we get L = [x 1 , x 2 , x 3 ] and all the terms coincide with the monomial basis associated to {1}.

x 1 : we get L = [x 2 1 , x 2 , x 1 x 2 , x 3 , x 1 x 3 ].
All terms appear only once, two of them containing two variables, namely x 1 x 2 , x 1 x 3 , do not belong to the monomial basis associated to {1, x 1 }.

x 2 : we get L = [x 2 1 , x 1 x 2 2 times , x 2 2 , x 3 , x 1 x 3 , x 2 x 3 ]
. This time, x 1 x 2 turns out to be in the monomial basis, since it appears twice and it contains two variables, which is not the case for x 1 x 3 , x 2 x 3 .

x 1 x 2 : here, we obtain

L = [x 2 1 , x 2 1 x 2 , x 2 2 , x 1 x 2 2 , x 3 , x 1 x 3 , x 2 x 3 , x 1 x 2 x 3 ].
All the terms appear once, so we remove all the ones containing more than one variable.

x 3 : for x 3 , finally, we get

L = [x 2 1 , x 2 1 x 2 , x 2 2 , x 1 x 2 2 , x 1 x 3 2 times , x 2 x 3 2 times , x 1 x 2 x 3 , x 2 3 ]
. Here, we have to remove

x 2 1 x 2 , x 1 x 2 2 , x 1 x 2 x 3 .
The monomial basis for

N(I) = {1, x 1 , x 2 , x 1 x 2 , x 3 } is then G(I) = {x 2 1 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 }.
Dealing with the monomial basis, we also study its behaviour degree by degree, representing it in a very concrete way. This goal can be achieved defining the natural expansion.

Definition 3.2.3. Let H ⊆ T j for some j ∈ N * we set C (0) (H) := H and, for all

l ∈ N * C (l) (H) = {τ ∈ T l , ∃σ ∈ H, σ | τ }.
The set C (l) (H) is the natural expansion of H at degree l.

Given then a finite order ideal N, we arrange it by degree, obtaining

N 0 , N 1 , • • • N h ,
where h is the maximal degree of terms belonging to N.

The monomial basis G associated to such an N can have at most degree h + 1.

As a matter of fact, if τ ∈ G with deg(τ ) = d > h + 1 its predecessors will belong to N and then we have terms of degree d -1 ≥ h + 1 in the order ideal, what is impossible by hypothesis.

Example 3.2.4.

There are situations in which N contains monomials of degree at most h, but also the minimal basis shares the same property.

Take I = (x 3 , y 2 , z 2 , xy) k[x, y, z], whose Groebner escalier is:

N 0 = {1} N 1 = {x, y, z} N 2 = {yz, xz, x 2 } N 3 = {x 2 z}:
The monomial basis does not contain elements of degree 4.

We call G i the i-degree part of the monomial basis G(I).

Lemma 3.2.5. For all i = 0, ..., h + 1

T i \ (N i ∪ i-1 j=1 C (i) (G j )) = G i . Proof: The inclusion T i \ (N i ∪ i-1 j=1 C (i) (G j )
) ⊇ G i is trivial, so we only prove the converse,

T i \ (N i ∪ i-1 j=1 C (i) (G j )) ⊆ G i . Consider τ ∈ T i \ (N i ∪ i-1 j=1 C (i) (G j )). Clearly τ ∈ I. Let σ the h-th predecessor of τ ; if σ ∈ I, ∃θ ∈ G(I) with σ = θ • µ for a suitable µ ∈ T . Then τ = θ • µ • x h i.e. τ ∈ i-1 j=1 C (i) (G j ).
Example 3.2.6. For I = (x 3 , y 2 , z 2 , xy) k[x, y, z], (see example 3.2.4) we have

G 0 = G 1 = ∅, G 2 = T 2 \ {yz, xz, x 2 } = {y 2 , z 2 , xy} and G 3 = T 3 \ ({xy 2 , xyz, x 2 y, xz 2 , yz 2 , z 3 , y 3 , y 2 z} ∪ {x 2 z}) = {x 3 }.

Macaulay Trick and Lazard Structural Theorem.

In this section, we focus on two famous results on factorized Groebner bases, namely Macaulay Trick and Lazard structural theorem.

We start dealing with the setting examined by Macaulay, studying a way to solve the problem below. Problem 3.3.1. Given a finite set of terms {τ 1 , ..., τ r } ⊂ T and a term order < on T , construct a set of polynomials {g 1 , ..., g r } ⊂ P such that:

• for each i ∈ {1, ..., r}, T(g i ) = τ i ;

• G := {g 1 , ..., g r } is a Groebner basis for the ideal I = (G), that is

T(I) = T(G) = (τ 1 , ..., τ r ).
Description 3.3.2. In order to look for a solution, we first construct a finite sequence

M := [σ 1 , ..., σ s ] ⊆ T satisfying:
a. for each i, 1 ≤ i ≤ r exists a subset J i ⊂ {1, ..., s} such that τ i = l∈Ji σ l ; b. for each i, j 1 ≤ i < j ≤ r, lcm(τ i , τ j ) = l∈Ji∪Jj σ l Remark 3.3.3. We point out that, by definition, M is a finite sequence and not a set, so repetitions among the elements appearing in M are allowed. Using the list M 1 , we have

J 1 = {1, 2}, J 2 = {2, 3}. Indeed, we have x • x 3 = x 4 = τ 1 , x 3 • y 3 = x 3 y 3 = τ 2 and it holds lcm(x 4 , x 3 y 3 ) = x 4 y 3 = x • x 3 • y 3 = l∈J1∪J2 σ l .
Moreover, we notice that GCD(x 4 , x 3 y 3 ) = x 3 = l∈J1∩J2 σ l .

However, M 1 is not the unique sequence compatible with conditions a. and b.

Consider indeed the sequence

M 2 := [x, x, x, x, y, y, y].
For M 2 , we get J 1 = {1, 2, 3, 4}, J 2 = {1, 2, 3, 5, 6, 7}.

Indeed, x • x • x • x = x 4 = τ 1 and x • x • x • y • y • y = x 3 y 3 = τ 2 .
Moreover, it holds lcm(x 4 , x 3 y 3 ) =

x 4 y 3 = x • x • x • x • y • y • y.
We describe now an algorithmic method in order to compute concretely a sequence of the required shape.

Given a set of terms {τ 1 , ..., τ r } ⊂ T , defined as

τ 1 := x α1,1 1 • • • x α1,n n , ..., τ r := x αr,1 1 • • • x αr,n n .
For this set, we can consider the following sequence, only composed by single variables:

M := [x 1 , ...., x 1 , x 2 , ..., x 2 , ...., x n , ..., x n ],
where for each 1 ≤ h ≤ n, x h appears exactly α h := max{α 1,h , ..., α r,h } times so that |M | = n h=1 α h and we number the elements of M from 1 to |M |.

Given any term τ

i = x αi,1 1 • • • x αi,n n
in the given set, the associated J i can be computed as follows

J i = {1, ..., α i,1 , α i + 1, ..., α 1 + α i,2 -1, ..., α 1 + ... + α n-1 + 1, ..., α 1 + ... + α n-1 + α i,n -1}.
We show a simple example of the above construction.

Example 3.3.7. If the given terms are

τ 1 = x 4 1 , τ 2 = x 3 1 , τ 3 = x 2 , τ 4 = x 2 1 , we consider the sequence M = [x 1 , x 1 , x 1 , x 1 , x 2 ],
labelling its elements as L = [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4,[START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF]. The term τ 1 = x 4 1 contains only x 1 , with exponent 4, so we get J 1 = {1, 2, 3, 4}.

For τ 2 = x 3 1 , we take the first three numbers, labelling copies of x 1 , so J 2 = {1, 2, 3}. Since τ 3 = x 2 , we get J 3 = {5} and finally, for τ 4 = x 2 1 , we obtain J 4 = {1, 2}. The crucial fact is to take the first numbers of the list L for the variables. Indeed, if we take J 4 = {3, 4} instead of J 4 , we get lcm(τ 2 , τ 4 ) = x 4 1 , since we have to derive it from J 2 ∪ J 4 = {1, 2, 3, 4}, but this is clearly false.

Clearly, condition a. of description 3.3.2 is fulfilled:

τ i = l∈Ji σ l .
On the other hand, suppose to consider the union J i ∪ J j of two sets obtained from a finite sequence as above. Such operation corresponds to take the common and non common factors of the associated terms τ i , τ j , raised to the maximal exponents they appear with. It exactly means computing the least common multiple between τ i and τ j :

lcm(τ i , τ j ) = l∈Ji∪Jj σ l .
For each l, 1 ≤ l ≤ s we choose a polynomial h l ∈ P = k[x 1 , ..., x n ] such that T(h l ) < σ l and we define:

γ l := σ l -h l , ∀l, 1 ≤ l ≤ s; g i := l∈Ji γ l , ∀i, 1 ≤ i ≤ r. It holds T(g i ) = l∈Ji σ l .
With the above notation, for each couple of indices i, j, 1 ≤ i < j ≤ r, denoted

T(i, j) = lcm(T(g i ), T(g j )) = lcm(τ i , τ j ),
we choose t i,j , t j,i ∈ T defined as t i,j T(g i ) = t j,i T(g j ).

Assuming

lcm(τ i , τ j ) = l∈Ji σ l • l∈Jj σ l l∈Ji∩Jj σ l = l∈Ji∪Jj σ l = l∈Ji σ l • l∈Jj \Ji σ l = l∈Jj σ l • l∈Ji\Jj σ l ,
it clearly holds t i,j := Proof: We prove that, considered two arbitrary i, j, 1 ≤ i < j ≤ r, the S-polynomial S(i, j) has a Groebner representation.

For this purpose, we define φ i,j :=

l∈Jj \Ji γ l -t i,j ; φ j,i := l∈Ji\Jj γ l -t j,i ;
We know that t i,j = T l∈Jj \Ji γ l t j,i = T l∈Ji\Jj γ l and, since in φ i,j , φ j,i we subtract to the above products exactly the leading terms, we can affirm that T(φ i,j ) < t i,j and T(φ j,i ) < t j,i .

We prove then that the required representation is

S(i, j) = -φ i,j g i + φ j,i g j .
In effect this is true since, by the properties of union

0 = - l∈Ji∪Jj γ l + l∈Jj ∪Ji γ l =
so, manipulating the formula, we get

= - l∈Ji γ l l∈Jj \Ji γ l + l∈Ji γ l l∈Ji\Jj γ l = = -g i l∈Jj \Ji γ l + g j l∈Ji\Jj γ l =
but, by definition of φ i,j , φ j,i , = -(φ i,j + t i,j )g i + (φ j,i + t j,i )g j = -φ i,j g i + φ j,i g j -(t i,j g i -t j,i g j ) =

and by definition of S-polynomial = -φ i,j g i + φ j,i g j -S(i, j).

For being effectively a Groebner representation, the condition on the leading terms must be fulfilled.

Anyway, the following relations imply directly that condition:

T(φ i,j g i ) < t i,j T(g i ) = lcm(T(g i ), T(g j )) = t j,i T(g j ) > T(φ j,i g j ).
This way, we have then solved the problem 3.3.1.

We switch now to a new problem, solved by Macaulay.

Consider a finite set of distinct points X = {P 1 , ..., P S } ⊂ k n , with P i := (a i1 , ..., a in ) and set the following notation:

• ∀i, l i ∈ P * = Hom k (P, k) is the linear functional, operating the "evaluation" in the associated point:

l i (f ) = f (a i1 , ..., a in ) ∀f (x 1 , ..., x n ) ∈ P; • L(X) := Span k ({l i , 1 ≤ i ≤ S}) ⊂ P *
• I(X) := {f ∈ P : f (P i ) = 0, ∀i} = P(L(X)), the ideal of points for X.

Under the above notation, we can present the following result by Macaulay (see [START_REF] Macaulay | Some properties of enumeration in the theory of modular systems[END_REF]).

Let N ⊂ T be a finite order ideal.

Let J := T \ N be the associated semigroup ideal and G(J) := {τ 1 , ..., τ r }, with

τ l = x α 1l 1 • • • x α nl n for each l.
Since N is a finite set, for each i ∈ {1, ..., n} we need to have a d i ∈ N such that

x di i ∈ G(J)
and, moreover, α il ≤ d i ∀l.

Example 3.3.9. If we consider the polynomial ring k[x 1 , x 2 ] and we take the finite order ideal N = {1, x 1 , x 2 , x 2 2 , x 1 x 2 }, the associated monomial basis is

G = {x 3 2 , x 2 1 , x 1 x 2 2 } and, in this case, d 1 = 2, d 2 = 3.
For each i, j, e, j = e we choose the elements

a ij ∈ k, 1 ≤ i ≤ n, 0 ≤ j ≤ d i : a ij = a ie and, for each l, 1 ≤ l ≤ r g l := n i=1 α il -1 j=0 (x i -a ij ),
for which, trivially T(g l ) = τ l holds.

We associate to each term t

= x α1 1 • • • x αn n ∈ N an affine point a(t) := (a 1α1 , ..., a nαn ) ∈ k n
and we set

X := {a(t) : t ∈ N }.
We obtain then Corollary 3.3.10. With the above notation, for each degree-compatible term order, we have:

1. N = N(I(X));

2. G(I(X)) := {g 1 , ..., g r } is the reduced Groebner basis of I(X).

Proof: First of all, we notice that we are under the hypotheses of proposition 3.3.8. Indeed, the chosen numbers a ij play the role of the elements h l defined above ( we consider the list containing all the terms σ l constructed as explained before: a ij is the element related to the i-th variable and the j + 1-th exponent for x i ).

Moreover, the product constituting the polynomials g i 's, for i = 1, ..., n and j = 0, ..., α il -1 coincides with the product of the γ l with l ∈ J i .

With that, the set G = {g 1 , ..., g r } represents a Groebner basis for the ideal J = (g 1 , ..., g r )

and N is the Groebner escalier for the ideal whose Groebner basis is G.

Since by construction, all the polynomials vanish over X, we have J ⊆ I(X).

Moreover, by the relations

mult(J) = |N| = |X| = mult(I(X)),
we can conclude J = I(X).

We can say that G = G(J) = G(I(X)) is a Groebner basis of I(X) and N = N(I(X)).

Such a basis is also the reduced one because:

• it is composed by monic polynomials;

• G is minimal;

• the polynomials g i , i = 1, ..., r, have the form T(g i ) -Can(T(g i ), i), since Supp(g i ) \

{T(g i )} ⊆ N. Actually, these terms divide T(g i ) by construction. Moreover, the polynomials g i belong to the ideal.

Let us consider now a very simple example.

Example 3.3.11. In the polynomial ring k[x, y], we consider the finite order ideal N = {1, x, y}. In our notation the monomial basis turns out to be G = {x 2 , xy, y 2 }.

The pure powers of x, y in G 3 have to be raised to the exponents d 1 = d 2 = 2 in the above notation, since 2 is the minimal power of x, y in N. Indeed, no mixed products of the form x i y j can have i or j greater than the value in the corresponding pure power, by minimality of G and x 2 , y 2 ∈ G.

Fix the following values: a 10 = 0, a 11 = 1, a 20 = 0, a 21 = 1, obtaining the points:

a(1) = (0, 0); a(x) = (0, 1); a(y) = (1, 0), i.e. X = {(0, 0), (0, 1), (1, 0)}. The polynomials g i , i = 1, ..., 3, will be

g 1 := x 2 -x; g 2 := xy; g 3 := y 2 -y,
and we have exactly I(X) = {g 1 , g 2 , g 3 }.

Given an arbitrary

σ = x α1 1 • • • x αn n ∈ {x j τ /1 ≤ j ≤ n, τ ∈ N},
in the zerodimensional case, we have that α i ≤ d i , for each i ∈ {1, ..., n}, so it is natural to consider the following polynomials:

g σ := n i=1 αi-1 j=0 (x i -a ij ), σ = x α1 1 • • • x αn n ∈ {x j τ /1 ≤ j ≤ n, τ ∈ N }
and study their relations, leaning on the notation above.

First of all, we reorder the order ideal N := {τ 1 , ..., τ S } increasingly w.r.t the lexicographical order induced by x 1 < ... < x n and we set a i := a(t i ) in order to fix also an order both on X and L(X).

Finally, we set q i := g τi , for each i ∈ {1, ..., S}. It holds Lemma 3.3.12. With the above notation, we get

1. B(I(X)) = {g τ /τ ∈ B(I(X))}; 2. G(I(X)) = {g τ /τ ∈ G(I(X))}; 3. q(X) = {q i /1 ≤ i ≤ S}.
Proof:

1. For this statement, we barely follow the line of 3.3.10: the polynomials belong to I(X)

and their leading terms are in the border set, while the other terms appearing in their support belong to the Groebner escalier;

2. it is 3.3.10;

3. we have to prove that the q i 's are triangular, i.e. l i (t j ) = 0 for i < j.

In our case, the functionals are the evaluations at points, so we need to prove that g tj (a(t i )) = 0, i < j.

By the ordering given to the terms, τ i < τ j . It means that, if

τ i = x αi,1 1 • • • x αi,n n and τ j = x αj,1 1 • • • x αj,n n
, there exists h ∈ {1, ..., n} such that α j,h > α i,h .

For this reason, constructing g τj we get a factor vanishing in a τi and then we can conclude.

If we deal with the polynomial ring in two variables k[x 1 , x 2 ], the Groebner basis constructed via Macaulay's trick for an ideal I as before, is an example illustrating Lazard structural theorem.

This theorem describes the structure of a lexicographical minimal Groebner basis for an

ideal I k[x 1 , x 2 ]. The proof considers P = k[x 1 , x 2 ] = k[x 1 ][x 2
] and bases on the fact that k[x 1 ] is a Principal Ideal Domain (PID).

We can then extend it to the more general case R[x], with R PID, to describe Groebner bases.

In order to understand the statement of Lazard structural theorem, we first recall the following definitions.

Definition 3.3.13. The content r f ∈ R, with R PID, of a polynomial f (x) ∈ R[x] is the GCD of its coefficients. A polynomial f (x) ∈ R[x] is called primitive if r f = 1. The primitive part of f (x) ∈ R[x] is the polynomial p 0 (x) ∈ R[x] such that f (x) = r f p 0 (x).
We first prove the following Proposition 3.3.14. Let R be a principal ideal ring and I P := R[x] an ideal. Let F := {f 0 , ..., f s } be a minimal Groebner basis of I, ordered so that

deg(f 0 ) ≤ ... ≤ deg(f s )
and, for each i, denote by c i := Lc(f i ), r i ∈ R \ {0} and by p i ∈ P the content and the primitive part of f i . We can further assume that such basis is reduced, in the sense that

f i = M(f i ) + Can(M(f i ), F ). Then 1. deg(f 0 ) < ... < deg(f s ); 2. for each 0 ≤ i < s there is G i+1 ∈ R such that c i = G i+1 c i+1 3. G i+1 f i+1 ∈ (f 0 , ..., f i ) for each 0 ≤ i < s. Proof: Let us set d(i) := deg(f i ) for each i. By hypothesis, we have d(i) ≤ d(i + 1).
We prove, first of all, that the case

d(i) = d(i + 1) cannot occur. Indeed, if d(i) = d(i + 1) we can define the element h := b i f i + b i+1 f i+1 ∈ I, where c, b i , b i+1 belong to R and b i c i + b i+1 c i+1 = c = GCD(c i , c i+1 ), so that cx d(i+1) = M(h) ∈ M(I).
Since M(h) ∈ M(I) there exists an index j with

M(f j ) | M(h) | M(f i+1 ) 4 .
This chain of relations assures that M(f j )|M(f i+1 ) i.e. gives a divisibility relation between the leading terms of two elements in the basis. By the minimality, this is impossible, so d(i) < d(i + 1).

Both x d(i+1)d(i) f i and f i+1 are in the ideal and have degree

d(i + 1); then for c, b i , b i+1 ∈ R such that b i c i + b i+1 c i+1 = c = GCD(c i , c i+1 ), h := b i x d(i+1)-d(i) f i + b i+1 f i+1 ∈ I, so that cx d(i+1) = M(h) ∈ M(I) and M(f j ) | M(h) for some j. If c i+1 = GCD(c i , c i+1 ), then j < i + 1
and M(f j )|M(f i+1 ), getting a contradiction. As a conclusion, c i+1 | c i for each i. 

Since G i+1 f i+1 -xd(i + 1) -d(i)f i is
:= r s ∈ R \ {0} the content of of f s , then for each i, 0 ≤ i < s there is H i+1 ∈ P , d(i) := deg(H i ) such that • f 0 = pG 1 • • • G s+1 ; • f j = pH j G j+1 • • • G s+1 , 1 ≤ j ≤ s and 1. r i = G i+1 • • • G s 2.
Lc(H i ) = 1 for each i 3. d(1) < ... < d(s);

4. for each i, we have

H i+1 ∈ (G 1 • • • G i , H 1 G 2 • • • G i , ..., H i-1 G i , H i );
Proof: Let p and G s+1 be, respectively, the primitive part and the content of GCD(f 0 , ..., f k ) in R[x]; a set {g 0 , ..., g s } is a minimal Groebner basis if and only if so is for {gg 0 , ..., gg s }, we can divide by pG s+1 and assume that p = G s+1 = 1 and GCD(f 0 , ..., f s ) = 1. Under this assumption, G i+1 f i+1 ∈ (f 0 , ..., f i ) for each i, 0 ≤ i < k so, inductively, we have

• p 0 |f j , ∀j ≤ i ⇒ p 0 |f j , ∀j ≤ i + 1; • c i |f j , ∀j ≤ i ⇒ c i = G i+1 c i+1 |G i+1 f i+1 , ∀j ≤ i + 1 ⇒ ⇒ c i+1 |f j , ∀j ≤ i + 1.
Therefore, GCD(f 0 , ..., f s ) = 1 gives that p 0 = c s = 1 and each c i verifies c i |f i , so it coincides with r i .

By induction, we have

lc(p)r i = c i = G i+1 c i+1 = lc(p)G i+1 r i+1 = lc(p)G i+1 • • • G s .
Setting H i := fi ci for each i, we obtain lc(H

i ) = 1, d(i) + deg(p) = deg(f i ) and finally, we point out that G i+1 f i+1 ∈ (f 0 , ..., f i ): dividing G i+1 • • • G s we can conclude.
Example 3.3.16. Consider again example 3.3.11, and set the lexicographical order, x < y. The Groebner basis is {x 2 -x, xy, y 2 -y}, which is ordered as in 3.3.15.

We have p = 1,

G 1 = x 1 , G 2 = x, G 3 = 1, H 1 = y, H 2 = y 2 -y, d(1) = 1 < d(2) = 2 and H 2 ∈ (G 1 , H 1 ).
In the next example, we apply Macaulay trick, showing a relationship with Lazard structural theorem.

Example 3.3.17. Consider the polynomial ring in three variables P = k[x 1 , x 2 , x 3 ], the associated set of terms T and the lexicographical order induced by x 1 < x 2 < x 3 .

Moreover, consider the order ideal

N := {1, x 1 , x 2 1 , x 2 , x 1 x 2 , x 2 1 x 2 , x 2 2 , x 1 x 2 2 , x 3 2 , x 3 , x 1 x 3 , x 2 1 x 3 , x 2 x 3 , x 2 2 x 3 , x 3 2 x 3 , x 2 3 }.
For each couple of indices i, j, we choose a ij = j and we consider the terms σ ∈ ({1} ∪ {x j τ /1 ≤ j ≤ n, τ ∈ N}).

We will get:

1 : is a term in the order ideal N: t 1 = 1 ∈ N. The corresponding point is a(1) = (a 10 , a 20 , a 30 ) = (0, 0, 0) ∈ k 3 and we have g 1 = q 1 = 1 ∈ q(X).

x 1 : t 2 = x 1 ∈ N, a(x 1 ) = (1, 0, 0), so q 2 = g t2 = g x1 = x 1 ∈ q(X).

x 2 1 :

t 3 = x 2 1 ∈ N, a(x 2 1 ) = (2, 0, 0), so q 3 = g t3 = g x 2 1 = x 1 (x 1 -1) ∈ q(X). x 3 1 : x 3 1 /
∈ N, and it is the product by x 1 of a term in N. Actually x 3 1 ∈ G (all the predecessors belong to N). Finally g x 3 1 = x 1 (x 1 -1)(x 1 -2) ∈ G(I). We proceed similarly:

x 2 : τ 4 = x 2 ∈ N, a(x 2 ) = (0, 1, 0), q 4 = g τ4 = g x2 = x 2 ∈ q(X). x 1 x 2 : τ 5 = x 1 x 2 ∈ N, a(x 1 x 2 ) = (1, 1, 0), q 5 = g τ5 = g x1x2 = x 1 x 2 ∈ q(X). x 2 1 x 2 : τ 6 = x 2 1 x 2 ∈ N, a(x 2 1 x 2 ) = (2, 1, 0), q 6 = g τ6 = g x 2 1 x2 = x 1 (x 1 -1)x 2 ∈ q(X). x 3 1 x 2 : x 3 1 x 2 ∈ B (caveat lector: x 3 1 / ∈ N!), g x 3 1 x2 = x 2 (x 1 -1)(x 1 -2) ∈ B(I).
x 2 2 :

τ 7 = x 2 2 ∈ N, a(x 2 2 ) = (0, 2, 0), q 7 = g τ7 = g x 2 2 = x 2 (x 2 -1) ∈ q(X). x 1 x 2 2 : τ 8 = x 1 x 2 2 ∈ N, a(x 1 x 2 2 ) = (1, 2, 0), q 8 = g τ8 = g x1x 2 2 = x 1 x 2 (x 2 -1) ∈ q(X). x 2 1 x 2 2 : x 2 1 x 2 2 ∈ G, g x 2 1 x 2 2 = x 1 (x 1 -1)x 2 (x 2 -1) ∈ G(I).
x 3 2 :

τ 9 = x 3 2 ∈ N, a(x 3 2 ) = (0, 3, 0), q 9 = g τ9 = g x 3 2 = x 2 (x 2 -1)(x 2 -2) ∈ q(X).
x 1 x 3 2 :

τ 10 = x 1 x 3 2 ∈ N, a(x 1 x 3 2 ) = (1, 3, 0), q 10 = g τ10 = g x1x 3 2 = x 1 x 2 (x 2 -1)(x 2 -2) ∈ q(X). x 2 1 x 3 2 : x 2 1 x 3 2 ∈ B, g x 2 1 x 3 2 = x 1 (x 1 -1)x 2 (x 2 -1)(x 2 -2) ∈ B(I). x 4 2 : x 4 2 ∈ G, g x 4 2 = x 2 (x 2 -1)(x 2 -2)(x 2 -3) ∈ G(I). x 1 x 4 2 : x 1 x 4 2 ∈ B, g x1x 4 2 = x 1 x 2 (x 2 -1)(x 2 -2)(x 2 -3) ∈ B(I).
x 3 : τ 11 = x 3 ∈ N, a(x 3 ) = (0, 0, 1), q 11 = g τ11 = g x3 = x 3 ∈ q(X).

x 1 x 3 :

τ 12 = x 1 x 3 ∈ N, a(x 1 x 3 ) = (1, 0, 1), q 12 = g τ12 = g x1x3 = x 1 x 3 ∈ q(X).
x 2 1 x 3 :

τ 13 = x 2 1 x 3 ∈ N, a(x 2 1 x 3 ) = (2, 0, 1), q 13 = g τ13 = g x 2 1 x3 = x 1 (x 1 -1)x 3 ∈ q(X).
x 3 1 x 3 :

x 3 1 x 3 ∈ B, g x 3 1 x3 = x 1 (x 1 -1)(x 1 -2)x 3 ∈ B(I).
x 2 x 3 : τ 14 = x 2 x 3 ∈ N, a(x 2 x 3 ) = (0, 1, 1), q 14 = g τ14 = g x2x3 = x 2 x 3 ∈ q(X).

x 1 x 2 x 3 :

x 1 x 2 x 3 ∈ G, g x1x2x3 = x 1 x 2 x 3 ∈ G(I). x 1 x 4 2 : x 1 x 4 2 ∈ B, g x1x 4 2 = x 1 x 2 (x 2 -1)(x 2 -2)(x 2 -3) ∈ B(I).
x 2 1 x 2 x 3 :

x 2 1 x 2 x 3 ∈ B, g x 2 1 x2x3 = x 1 (x 1 -1)x 2 x 3 ∈ B(I).
x 2 2 x 3 :

τ 15 = x 2 2 x 3 ∈ N, a(x 2 2 x 3 ) = (0, 2, 1), g x 2 2 x3 = g 15 = q 15 = x 2 (x 2 -1)x 3 ∈ q(X). x 1 x 2 2 x 3 : x 1 x 2 2 x 3 ∈ B, g x1x 2 2 x3 = x 1 x 2 (x 2 -1)x 3 ∈ B(I). x 3 2 x 3 : τ 16 = x 3 2 x 3 ∈ N, a(x 3 2 x 3 ) = (0, 3, 1), g x 3 2 x3 = g 16 = q 16 = x 2 (x 2 -1)(x 2 -2)x 3 ∈ q(X). x 1 x 3 2 x 3 : x 1 x 3 2 x 3 ∈ B, g x1x 3 2 x3 = x 1 x 2 (x 2 -1)(x 2 -2)x 3 ∈ B(I). x 4 2 x 3 : x 4 2 x 3 ∈ B, g x 4 2 x3 = x 2 (x 2 -1)(x 2 -2)(x 2 -3)x 3 ∈ B(I).
x 2 3 :

τ 17 = x 2 3 ∈ N, a(x 2 
3 ) = (0, 0, 2), g x 2 3 = g 17 = q 17 = x 3 (x 3 -1) ∈ q(X).

x

1 x 2 3 : x 1 x 2 3 ∈ G, g x1x 2 3 = x 1 x 3 (x 3 -1) ∈ G(I). x 2 1 x 2 3 : x 2 1 x 2 3 ∈ B, g x 2 1 x 2 3 = x 1 (x 1 -1)x 3 (x 3 -1) ∈ B(I). x 2 x 2 3 : x 2 x 2 3 ∈ G, g x2x 2 3 = x 2 x 3 (x 3 -1) ∈ G(I). x 2 2 x 2 3 : x 2 2 x 2 3 ∈ B, g x 2 2 x 2 3 = x 2 (x 2 -1)x 3 (x 3 -1) ∈ B(I). x 3 2 x 2 3 : x 3 2 x 2 3 ∈ B, g x 3 2 x 2 3 = x 2 (x 2 -1)(x 2 -2)x 3 (x 3 -1) ∈ B(I). x 3 3 : x 3 3 ∈ G, g x 3 3 = x 3 (x 3 -1)(x 3 -2) ∈ G(I)
. Now, we connect to Lazard Structural Theorem, considering the ideal

I ∩ k[x 1 , x 2 ], whose Groebner basis is {g x 3 1 , g x 2 1 x 2 2 , g x 4 2 } = {f 0 , f 1 , f 2 }.
The structure is exactly the one of the theorem

• f 0 = x 1 (x 1 -1)(x 1 -2) = G 1 G 2 , dove G 1 = (x 1 -2), G 2 = x 1 (x 1 -1); • f 1 = x 1 (x 1 -1)x 2 (x 2 -1) = H 1 G 2 , con H 1 = x 2 (x 2 -1); • f 2 = x 2 (x 2 -1)(x 2 -2)(x 2 -3) = H 2 ; p = G 3 = 1, fulfilling the theorem.

The Axis of Evil algorithm.

For I = √ I, the Axis of Evil Theorem by Marinari and Mora, somehow extends Lazard structural theorem 3.3.15 to the case of n variables, giving a remarkable improvement.

In this thesis, we give a constructive proof for Theorem 3.4.1 (Marinari-Mora). Consider a 0-dimensional radical ideal I. Denote by N(I) the associated Groebner escalier and

G(I) = {τ 1 , ..., τ r } ⊂ T , τ i := x di,1 1 • • • x di,n n
the monomial basis for the lexicographical initial ideal In(I).

A combinatorial algorithm and interpolation provide polynomials

γ mδi = x m -g mδi (x 1 , ..., x m-1 ),
for each i ∈ {1, ..., r}, m ∈ {1, ..., n} and δ ∈ {1, ..., d i,m } such that the products

f i = m δ γ mδi , i = 1, ..., r
form a minimal Groebner basis of I, with respect to the lexicographical order induced by x 1 < ... < x n .

Clearly, for the polynomials f i of theorem 3.4.1, we have T(f i ) = τ i for i = 1, ..., r.

Hence, taken a finite set of distinct points X = {P 1 , ..., P S } and denoted by I := I(X)

the ideal of X, the first step in order to find the factorized minimal Groebner basis G := G(I(X)) of I is to compute the monomial basis G(I).

Clearly G(I) can be computed passing through the usual Groebner basis computation. Anyway, we want to do it in a pure combinatorial way, deriving G(I) from the Groebner escalier N(I) := N(I(X)).

As explained in chapter 2, we can get N(I) directly from the points in X via the Cerlienco-Mureddu correspondence or the Felszeghy-B. Ráth-Rónyai Lex Game, them Gao-Rodrigues-Stroomer method or the Lederer's algorithm.

For the time being, we follow [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF] and we only use Cerlienco-Mureddu Correspondence, but also the other methods work.

Moreover, in next chapter, we will study how to improve the Axis of Evil algorithm, exploiting a suitable method for computing the Groebner escalier.

At this stage, we can suppose as known:

• N(I), obtained via Cerlienco-Mureddu Correspondence;

• G(I), produced applying Lazard's algorithm to N(I).

The pseudocode of the algorithm is displayed in 5. For an implementation, see [START_REF] Steidel | Procedures for computing a factorized lex GB of the vanishing ideal of a set of points via the Axis-of-Evil Theorem[END_REF].

If the variables in P = k[x 1 , ..., x n ] are ordered as usual, namely x 1 < x 2 < ... < x n , we know that the first generator

τ 1 in G(I) is τ 1 = x d1,1 1 
for some d 1,1 ∈ N, since I is zerodimensional.

Computing the factors composing the polynomial

f 1 ∈ G such that T(f 1 ) = τ 1 is particu- larly simple. Indeed, if τ 1 = x d1,1 1 
∈ G(I), then all the terms 1, x 1 , ..., x d1,1-1 1

∈ N(I).

As seen in chapters 1, 2, while discussing Moeller algorithm and the computational methods for the Groebner escalier, the condition 1, x 1 , ..., x d1,1-1 1

∈ N(I), means that the points in X have exactly d 1,1 different first coordinates.

Being an element of G, f 1 has to vanish at all points of X. Hence, if we compute the set

N 1 (τ 1 ) := {x i 1 / i < d 1,1 } = {ω ∈ T [1], τ 1 > ωx d1,2 2 • • • x d1,n n ∈ N(I)}, being d 1,2 = ... = d 1,n = 0, we get exactly N 1 (τ 1 ) = {1, x 1 , ..., x d1,1-1 1 }.
These terms correspond, by Cerlienco-Mureddu correspondence, to the first d 1,1 points with different first coordinates, say A 1 (τ 1 ) = {P α1 , ..., P α d 1,1 }.

For each 1 ≤ j ≤ d 1,1 , let a j be the first coordinate of P aj . We let B 1 (τ 1 ) = {a 1 , ..., a d1,1 } and Algorithm 5 The Axis of Evil algorithm.

1: procedure AOE(X, G(I(X)) := {τ 1 , ..., τ r }) → R R contains a factorized minimal Groebner basis of I.

Require:

We denote τ j = x dj,1 1

• • • x dj,n n
for j = 1, ..., n.

Ensure: Axis of Evil factorization. for i = 1 to r do 4:

N 1 (τ j ) := {x i 1 / i < d j,1 } = {ω ∈ T [1], τ j > ωx dj,2 2 • • • x dj,n n ∈ N} 5: A 1 (τ j ) := {Φ -1 (x i 1 x dj,2 2 • • • x dj,n n )/ i < d j,1 } ⊂ X. 6: B 1 (τ j ) := π 1 (A 1 (τ j )) ⊂ k. 7:
γ 1τj := a∈B1(τj ) (x 1 -a).

8:

for m = 2 to n do 9:

ζ mτj := m-1 ν=1 γ ντj .
10: break.

D m0 := {P i ∈ X/ ζ mτj (P i ) = 0}.
14: A mδ (τ j ) := {Φ -1 (vx

end if 15: N m (τ j ) := {ω ∈ T [m], τ j > ωx dj,m+1 m+1 • • • x dj,n n ∈ N}.
dj,m-δ m x dj,m+1 m+1 • • • x dj,n n )|v ∈ T [m -1], vx dj,m-δ m ∈ N m (τ j )} ∩ D m(δ-1) (τ j ).
18:

E mδ (τ j ) := Φ(π m (A mδ (τ j ))).

19:

γ mδτj := x m + ω∈E mδ (τj ) c(γ mτj , ω)ω,
such that γ mδτj (P ) = 0, ∀P ∈ A mδ (τ j ).

20:

ξ mδ := m-1 ν=1 γ ντj δ d=1 γ mdτ .
21:

D mδ (τ j ) := {P i ∈ X/ ξ mδ (P i ) = 0} ⊆ X 22: if |D mδ (τ j )| = 0 then 23: R = [R, ξ mδ ].

24:

break.

25:

end if

26:

end for 27:

γ mτj := δ γ mδτj .

28:

end for

29:

end for 30: return R.

31: end procedure we compute the polynomial

γ 1τ1 := d1,1 j=1 (x 1 -a j ).
Since T(γ 1τ1 ) = τ 1 and γ 1τ1 vanishes over all X, f 1 = γ 1τ1 , so we have found the first element of G.

Moreover, not only the factors composing f 1 but also

f 1 itself is reduced, since Supp(f 1 ) \ {τ 1 } ⊆ {1, x 1 , ..., x d1,1-1 1
} ⊆ N(I). We point out that f 1 has been determined as the product of exactly d Since we are dealing now with points in only 2 coordinates, Cerlienco-Mureddu algorithm turns out to be simplified. More precisely, we get the Groebner escalier by a tower reordering (2.2.8), so

N(I) = {1, x 1 , x 2 1 , x 3 1 , x 4 1 , x 2 , x 1 x 2 , x 2 1 x 2 , x 2 2 }. The monomial basis is G(I) = {x 5 1 , x 3 1 x 2 , x 1 x 2 2 , x 3 
2 }, so min Lex (G(I)) = x 5 1 . We get

N 1 (τ 1 ) := {1, x 1 , x 2 1 , x 3 1 , x 4 1 }
and its elements correspond to the points (4,[START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], (0, 7), (1, 0), (5, 2)}.

A 1 (τ 1 ) = {(2, 3),
The projection π 1 (A 1 (τ 1 )) is exactly the set containing the first coordinates, so it turns out to be B 1 (τ 1 ) = {2, 4, 0, 1, 5}.

We obtain the polynomial (fulfilling the tasks of lines from 4 to 7 of algorithm 5)

f 1 = γ 1τ1 = x 1 (x 1 -2)(x 1 -4)(x 1 -1)(x 1 -5) = x 5 1 -12x 4 1 + 49x 3 1 -78x 2 1 + 40x 1 ,
clearly vanishing at all X.

We know that f 1 belongs to the minimal Groebner basis of theorem 3.4.1, but it also belongs to the reduced Groebner basis, since x 1 , x 2 1 , x 3 1 , x 4 1 ∈ N(I). Actually, if we compute via Singular [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF] the reduced Groebner basis of I(X) we get

• x 5 1 -12x 4 1 + 49x 3 1 -78x 2 1 + 40x 1 , that is exactly our f 1 ; • 2x 3 1 x 2 -12x 2 1 x 2 + 16x 1 x 2 -x 4 1 + 7x 3 1 -14x 2 1 + 8x 1 ; • 4x 1 x 2 2 -8x 2 2 + 6x 2 1 x 2 -64x 1 x 2 + 104x 2 -9x 4 1 + 107x 3 1 -426x 2 1 + 664x 1 -336; • 12x 3 2 -192x 2 2 -18x 2 1 x 2 + 36x 1 x 2 + 972x 2 -149x 4 1 + 1583x 3 1 -5218x 2 1 + 5296x 1 -1512.
We show now how to find f j from τ j = x dj,1 1

• • • x dj,n n , j ≤ r = |G(I)|.
We refer to algorithm 5.

Similarly to what done for τ 1 , we first study the first coordinates, namely we compute the set

N 1 (τ j ) := {x i 1 / i < d j,1 } = {ω ∈ T [1], τ j > ωx dj,2 2 • • • x dj,n n ∈ N(I)}.
By Cerlienco-Mureddu correspondence, each term in N(I) is associated to a point of X, so we can define

A 1 (τ j ) := {Φ -1 (x i 1 x dj,2 2 • • • x dj,n n )/ i < d j,1 } ⊂ X
and, if we project w.r.t the first coordinate, we get B 1 (τ j ) := π 1 (A 1 (τ j )) ⊂ k. The factors in x 1 are of the form (x 1 -a) for a ∈ B 1 (τ j ), so the partial factor in x dj,1 1 is

γ 1τj := a∈B1(τj ) (x 1 -a),
again following lines from 4 to 7 of algorithm 5.

We construct now the set

D 20 := {P i ∈ X/ γ 1τj (P i ) = 0},
containing all the points in the given X such that γ 1τj do not vanish. If D 20 is the empty set, then f j = γ 1τj . In this case, we do not have to deal with τ j anymore 5 (we have executed what prescribed in lines 9-14).

Otherwise, we construct the set

N 2 (τ j ) := {ω ∈ T [2], τ j > ωx dj,3 3 
• • • x dj,n n ∈ N(I)},
containing the terms ω in the two variables x 1 , x 2 such that τ j > ωx dj,3 3

• • • x dj,n n
in the Groebner escalier (line 15) and, for each δ from 1 to d j,2 , we compute the set of points where to interpolate, namely

A 2δ (τ j ) := {Φ -1 (vx dj,2-δ 2 x dj,3 3 
• • • x dj,n n )|v ∈ T [1], vx dj,2-δ 2 ∈ N 2 (τ j )} ∩ D 2(δ-1) (τ j )
5 It happens only for τ 1 since only one pure power of x 1 can occur in G(I), by the minimality of G(I).

and the set of terms appearing in the current factor, i.e. E 2δ (τ j ) := Φ(π 2 (A 2δ (τ j ))).

With the above data, we perform the interpolation step and we finally get the factor

γ 2,δτj := x 2 + ω∈E 2δ (τj ) c(γ 2τj , ω)ω,
such that γ 2δτj (P ) = 0, ∀P ∈ A 2δ (τ j ).

We compute then D 2δ (τ j ) := {P i ∈ X/ ξ 2δ (P i ) = 0} ⊆ X, where ξ 2δ is the product of all the factors we have computed for τ j . We stop if it is empty.

Repeating for each δ, we get all the factors with leading term x 2 . The set N 2 (τ j ) turns out to be partitioned w.r.t. the exponents of x 26 (and we have fulfilled the tasks of lines from 16 to

26).

At this point, we check whether the product of the current factors vanishes over all X. If so, such a product is f j , so we continue with another term in G(I). Otherwise, we repeat for x 3 , ..., x n , stopping the procedure for τ j and storing f j when we reach the last coordinate or when the product of the current factors vanish over all X (see line [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Bertone | A division algorithm in an affine framework for flat families covering Hilbert schemes[END_REF][START_REF] Bertone | A Borel open cover of the Hilbert scheme[END_REF][START_REF] Buchberger | Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory[END_REF][START_REF] Buchberger | The construction of multivariate polynomials with preassigned zeros[END_REF][13][START_REF] Cartan | Sur l'intégration des systèmes d'équations aux différentielles totals[END_REF].

When f j is stored, we perform in the same way with the other generators (line 3).

We point out that the polynomials γ mδτj we get are only linear in the leading terms.

From now on we will call such a factorization (linear) Axis of Evil factorization. Even if algorithm 5 leans on Cerlienco-Mureddu correspondence, whose most important feature is iterativity on the points, it is not iterative on the elements of X. Indeed all the Cerlienco-Mureddu biunivocal correspondence has to be known in order to proceed in the execution of the algorithm. We point out that N m (τ j ) ⊆ N h (τ j ) for m ≤ h.

If ω ∈ N m (τ j ), ω ∈ T [m] and τ j > ωx dm+1 m+1 • • • x dn n ∈ N(I). Since m ≤ h, ω ∈ T [h]; as ωx d h+1 h+1 • • • x dn n | ωx dm+1 m+1 • • • x dn n we have ωx d h+1 h+1 • • • x dn n ∈ N(I) and ωx d h+1 h+1 • • • x dn n ≤ x dm+1 m+1 • • • x dn n < τ j .
Since for each term µ ∈ N(I) such that µ > τ j , Cerlienco-Mureddu provides a point P µ such that ∃k ∈ {1, ..., n} P µ , P µ have the first k coordinates and µ < µ, in order to obtain polynomials vanishing on all the points of X it is not necessary to interpolate in the whole Φ -1 (N) as it suffices to consider only those corresponding to µ ∈ N(I) with µ < τ j .

Example 3.4.6. Consider the set X = {(0, 1, 2), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4,[START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], (0, 2, 1), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF], (0, 3, 0), (0, 2, 5), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4,[START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF]4)} and denote, as usual, I := I(X).

As shown in the (mixed) tower structure below, the Groebner escalier of its associated ideal is

N(I) = {1, x 1 , x 2 , x 1 x 2 , x 2 2 , x 3 , x 1 x 3 , x 2 x 3 }. 0,1, 2 1,4,5 0,2,1 1,5,3 0,3,0 0,2,5 1,5,4 1,4,6 
The monomial basis is then G(I) = {x 2 1 , x 1 x 2 2 , x 3 2 , x 1 x 2 x 3 , x 2 2 x 3 , x 2 3 }. We focus on τ 2 = x 1 x 2 2 and we observe that x 2 x 3 ∈ N(I) is greater than τ 2 w.r.t. the lexicographical order induced by x 1 < x 2 < x 3 .

With the notation due to Cerlienco-Mureddu we can say that Φ -1 (x 2 x 3 ) = (1, 5, 4), and we can notice that:

• the factor x 2 -5 produced in order to make f 2 vanish on the point (1, 5, 3) makes also f 2 vanish on the point (1, 5, 4), since π 2 (1, 5, 3) = (1, 5) = π 2 (1, 5, 4);

• we have (1, 5, 3) = Φ -1 (x 1 x 2 ) and x 1 x 2 < τ 2 .
For completeness' sake, we report here the whole Axis of Evil factorization of I, computed using Singular:

x 2 1 : f 1 = x 1 (x 1 -1); x 1 x 2 2 : f 2 = x 1 (x 2 -5)(x 2 -4); x 3 2 : f 3 = (x 2 -3)(x 2 -3x 1 -2)(x 2 -3x 1 -1); x 1 x 2 x 3 : f 4 = (x 1 -1)(x 2 -2)(x 3 + x 2 -3); x 2 2 x 3 : f 5 = (x 2 -5)(x 2 -2x 1 -2)(x 3 + x 2 -3) x 2 3 : f 6 = (x 3 + 2x 2 -5x 1 -9)(x 3 + x 1 x 2 + x 2 -10x 1 -3).
Remark 3.4.7. The terms mentioned in remark 3.4.5, smaller than the current τ j , are found "releasing" all the variables one by one.

Imagining the terms in T as points in N n (each term is identified with the n-tuple of its exponents, see chapter 1) we can think of our releasing as an increment by one of the 'directions' where we can move.

At each step we count out all the points in which the polynomial already vanishes and we stop the computation when the current factorized polynomial vanishes on the whole X. We point out that in the first step for τ j , while computing N 1 (τ j ) and A 1 (τ j ), we release only x 1 and we list the terms of the form

x i 1 x dj,2 2 • • • x dj,n
n , so the ones with the same exponents as τ j in x 2 , ..., x n , which correspond to points lying in a higher tower than the one over which τ j lies.

We have

N(I) = {1, x 1 , x 2 1 , x 3 1 , x 4 1 , x 2 , x 1 x 2 , x 2 1 x 2 , x 2 2 },
and the monomial basis is G(I) = {x 5 1 , x 3 1 x 2 , x 1 x 2 2 , x 3 2 }. For example, focus on τ 2 = x 3 1 x 2 . For this term we have N 1 (τ 2 ) = {1, x 1 , x 2 1 } and, consequentely, A 1 (τ 2 ) = {(2, 6), (4, 1), (0, 6)}. As shown in the (unmixed) tower structure below, the terms belong to towers higher than the one over which τ 2 lies: Remark 3.4.9. For each δ ∈ {0, ..., d j,m } and for each τ j ∈ G(I(X)), τ j = τ 1 , define the sets

S mδ (τ j ) := {vx dj,m-δ m ∈ N m (τ j ), v ∈ T [m -1]} ⊂ N m (τ j ).
Notice that, for δ 1 , δ 2 ∈ {0, ..., d j,m }, δ 1 = δ 2 , we get S mδ1 (τ j ) ∩ S mδ2 (τ j ) = ∅ and that N m (τ j ) = dj,m δ=0 S mδ (τ j ), so the subsets S mδ (τ j ) which are nonempty form a partition of

N m (τ j ).
Even if in Algorithm 5 there is no need to define explicitly the subsets S mδ (τ j ), those for δ ∈ {1, ..., d j,m } are essentially used in the construction of the sets A mδ (τ j ), δ ∈ {1, ..., d j,m } (see line [START_REF] Ceria | A library for Singular which performs JM basis test[END_REF]. This means that the subsets S mδ (τ j ) come into play in the choice of the points where to interpolate while constructing of the current factor.

Notice that

S m0 (τ j ) = {vx dj,m m ∈ N m (τ j ), v ∈ T [m -1]} ⊂ N m (τ j ).
is not used in the construction (in line 16 we consider δ = 1, ..., d j,m ), even if by any chance S m0 (τ j ) = ∅. Actually, it holds S m0 (τ j ) ⊆ N m-1 (τ j ), so each σ ∈ S m0 (τ j ) has already been considered: the current factorized polynomial already vanishes in Φ -1 (σx

dj,m+1 m+1 • • • x dj,n n ).
Remark 3.4.10. The steps made by the algorithm on each τ j are totally independent both on those made and on those to be made on a term τ k (it is indifferent whether j ≷ k) belonging to G(I), so we will obtain the same factorizations even if we launch the computation on a list of unordered terms.

Clearly, the result of our computation is not the reduced Groebner basis of the given ideal, it is only one of the minimal Groebner bases but we can obtain the reduced Groebner basis via simple reduction. We already know the Axis of Evil factorization by example 3.4.6, but now we reduce all the polynomials.

The underlined terms represent the ones we have to reduce.

x 2 1 :

f 1 = x 2 1 -x 1 is already reduced. x 1 x 2 2 : f 2 = x 1 x 2 2 -9x 1 x 2 + 20x
1 is again reduced, so there is nothing to do.

x 3 2 : f 3 = x 3 2 -6x 1 x 2 2 -6x 2 2 + 9x 2 1 x 2 + 27x 1 x 2 + 11x 2 -27x 2 1 -27x 1 -6 is not reduced. We have to reduce it using f 1 , f 2 , obtaining f 3 = x 3 2 -6x 2 2 -18x 1 x 2 + 11x 2 + 66x 1 -6.
x 1 x 2 x 3 :

f 4 = x 1 x 2 x 3 -x 2 x 3 -2x 1 x 3 + 2x 3 + x 1 x 2 2 -x 2 2 -5x 1 x 2 + 5x 2 + 6x 1 -6 has to be reduced using f 2 . One gets f 4 = x 1 x 2 x 3 -x 2 x 3 -2x 1 x 3 + 2x 3 -x 2 2 + 4x 1 x 2 + 5x 2 -14x 1 -6.
x 2 2 x 3 :

f 5 = x 2 2 x 3 -2x 1 x 2 x 3 -7x 2 x 3 + 10x 1 x 3 + 10x 3 + x 3 2 -2x 1 x 2 2 -10x 2 2 + 16x 1 x 2 + 31x 2 - 30x 1 -
30 is not reduced. We have to preform Buchberger reduction on it using f 2 , f 3 and we get

f 5 = x 2 2 x 3 -9x 2 x 3 + 6x 1 x 3 + 14x 3 -6x 2 2 + 24x 1 x 2 + 30x 2 -84x 1 -36.
x 2 3 :

f 6 = x 2 3 + x 1 x 2 x 3 + 3x 2 x 3 -15x 1 x 3 -12x 3 + 2x 1 x 2 2 + 2x 2 2 -5x 2 1 x 2 -34x 1 x 2 -15x 2 + 50x 2 1 + 105x 1 + 27 is not reduced. If we use f 1 , f 2 , f 4 on it, we obtain f 6 = x 2 3 + 4x 2 x 3 - 13x 1 x 3 -14x 3 + 3x 2 2 -25x 1 x 2 -20x 2 + 129x 1 + 33.
The reduced Groebner basis turns then out to be ([73]). Notice that the sets E mδ (τ j ) and the interpolating polynomials γ mδτj of algorithm 5 can be obtained via Moeller algorithm and projection through π m of the points found A mδ (τ j ), as well as via Cerlienco-Mureddu Correspondence and other interpolation methods.

G = {x 2 1 -x 1 , x 1 x 2 2 -9x 1 x 2 + 20x 1 , x 3 2 -6x 2 2 -18x 1 x 2 + 11x 2 + 66x 1 -6, x 1 x 2 x 3 -x 2 x 3 -2x 1 x 3 + 2x 3 -x 2 2 + 4x 1 x 2 + 5x 2 -14x 1 -6, x 2 2 x 3 -9x 2 x 3 + 6x 1 x 3 + 14x 3 -6x 2 2 + 24x 1 x 2 + 30x 2 -84x 1 -36, x 2 3 + 4x 2 x 3 -13x 1 x 3 -14x 3 + 3x 2 2 -25x 1 x 2 -20x 2 + 129x 1 + 33} Remark 3.4.12
Remark 3.4.13. Fix a term τ j ∈ G(I). 

If some P = (a 1 , ..., a n ) ∈ X belongs to A mδ (τ j ), 2 ≤ m ≤ n, 1 ≤ δ ≤ d j,m ,
G = {x 3 -4x 2 + 3x, xy -x 2 -x, y 3 - 4 3 xy 2 -8y 2 + 32 3 xy + 12y -16x},
and the linear factors identifying G are a. x;

b. x -1; c. x -3; d. y -x -1;
e. y -6;

f. y -2;

g. y -4 3 x.

Factors a, b, c, e, f are of the form x -l, y -h, with l, h constants, so their support is formed by the leading terms x or y and by 1 ∈ N. Factors d and g satisfy again the property of 3.4.14, since

• Supp(y -x -1) \ {y} = {1, x} ⊂ N(I) and 1 < x < y;

• Supp(y -4 3 x) \ {y} = {x} ⊂ N(I) and x < y.

Developing an algorithm one has to face the problems of termination and correctness.

As for our algorithm, termination is guaranteed since it essentially operates with the following three loops:

a loop on the elements of G(I) (line 3);

a loop on the variables of the polynomial ring (line 8);

for each variable appearing in a term τ j ∈ G(I), a loop on its exponent (line 16).

The first loop is clearly finite by Dickson's Lemma (c.f. [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]), while the second is finite since the polynomial ring has a finite number of variables.

As regards the third one, it is trivially finite since the exponents are natural numbers.

The algorithm could go to infinity if it was |N(I)| = ∞, but this is not the case for our zerodimensional radical ideal I. Finally, it relies on Cerlienco-Mureddu algorithm and Moeller algorithm so also the computation of the set A mδ (τ j ) and the interpolation step terminate.

Let us study the correctness of the algorithm.

Lemma 3.4.16. The obtained factorized polynomials vanish on each point of X.

Proof: Consider the polynomial γ τ associated to the term

τ = x α1 1 • • • x αn n ∈ G(I).
We prove that it vanishes on P µ ∈ X, corresponding, via Cerlienco-Mureddu , to the term

µ = x β1 1 • • • x βn n ∈ N(I). Since τ ∈ G(I) and µ ∈ N(I), τ = µ.
Therefore, there are only two possibilities:

1. µ < Lex τ . By the definition of Lex, ∃i ∈ {1, ..., n} such that α i > β i and α j = β j for each i + 1 ≤ j ≤ n, so β i = α i -δ, for some δ > 0. We set ω := x β1 1 • • • x βi i . By hypothesis, µ ∈ N(I) and µ = ωx αi+1 i+1 • • • x αn n < τ , so ω ∈ N i (τ ). As P µ = Φ -1 (µ) = Φ -1 (x β1 1 • • • x βi-1 i-1 x αi-δ i x αi+1 i+1 • • • x αn n ), either P µ ∈ D i(δ-1) (τ ) (thus γ τ vanishes in P µ ), or P µ ∈ A iδ (τ ) but,
in this case, by the interpolation step (lines 18-19), γ τ vanishes in P µ .

2. µ > Lex τ . This time ∃i ∈ {1, ..., n} such that β i > α i , β j = α j for each j ∈ {i + 1, ..., n}.

By Cerlienco-Mureddu correspondence, ∃µ

:= x β 1 1 • • • x β n n ∈ N(I) such that: a. Φ -1 (µ ) = P µ with π i-1 (P µ ) = π i-1 (P µ ); b. β h = α h , ∀h ∈ {i, i + 1, ..., n}.
If µ < τ , then µ ∈ N i-1 (τ ) so, as in 1, γ τ vanishes in P µ and the linear factor making γ τ vanish in P µ is computed involving at most the first i -1 coordinates of P µ (c.f. remark 3.4.13), so that γ τ turns out to vanish also in P µ .

If µ > τ , we can repeat with µ instead of µ and conclude by induction.

Corollary 3.4.17. The ideal generated by our polynomials is exactly I(X).

Proof: By lemma, 3.4.16, the polynomials vanish on all the points of the set X and the equality comes out by multiplicity reasons. • they vanish on all the points of X (lemma 3.4.16);

• their heads T(f 1 ) = τ 1 , ..., T(f r ) = τ r form exactly G(I(X)). Remark 3.4.19. We point out that:

• if τ j = x dj,1 1 • • • x dj,n n ∈ G(I)
, the polynomials we are looking for have to contain exactly n i=1 d i factors. It is impossible that a partial product vanishes on the whole X. In fact, if so, there would be a polynomial f ∈ I such that T(f ) / ∈ (G(I)).

• if we obtain a factorized polynomial f such that its leading term T(f ) belongs to the minimal basis G(I), then f vanishes over all X, because of 3.4.16.

This implies that the termination criteria for algorithm 5 are correct.

Remark 3.4.20. Cerlienco-Mureddu Correspondence is performed on an ordered set of points and this ordering influences the biunivocal correspondence we get. For example, if we consider first the set

X 1 = (P 1 = (1, 0), P 2 = (1, 1)) we obtain Φ(P 1 ) = 1, Φ(P 2 ) = x 2 , whereas if we have X 2 = (P 2 = (1, 1), P 1 = (1, 0)), we obtain Φ(P 2 ) = 1, Φ(P 1 ) = x 2 .
The Axis of Evil algorithm works correctly for each biunivocal correspondence we can get by ordered sets of points (so also with the biunivocal correspondences we can recover from another method for the Groebner escalier).

It is well known that Cerlienco-Mureddu correspondence allows to compute the Groebner escalier of zerodimensional ideals, even if they are not radical. Unfortunately, in general, it is not possible to produce an Axis of Evil factorization in case of multiplicity.

We display here a meaningful counterexample, due to M.G. Marinari and T. Mora.

Example 3.4.21 ([70, 79]). Consider the following ideal, given with its primary decomposition: [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]), but it is not radical as

J := (x 2 1 , x 2 + x 1 , x 3 ) ∩ (x 2 1 , x 2 -x 1 , x 3 -1) = = (x 2 1 , x 1 x 2 , x 2 2 , x 1 x 3 -1 2 x 1 -1 2 x 2 , x 2 x 3 -1 2 x 1 -1 2 x 2 , x 2 3 -x 3 ) C[x 1 , x 2 , x 3 ]. Denote by f 1 , ..., f 6 the generators. J is 0-dimensional being x 2 1 , x 2 2 , x 2 3 ∈ T(J) (see
√ J = (x 2 , x 2 3 -x 3 , x 1 ).
For such an ideal the Axis of Evil does not hold.

Consider the polynomial

f 4 = x 1 x 3 -1 2 x 1 -1 2 x 2 .
By the Axis of Evil theorem (3.4.1), its factorization should be of the form:

(x 1 + ...)(x 3 + ...)
and we should have

x 1 x 3 - 1 2 x 1 - 1 2 x 2 + P x 2 1 + Qx 1 x 2 + Rx 2 2 , P, Q, R ∈ C[x 1 , x 2 , x 3 ],
we can only reduce deleting the multiples of x 2 1 , x 1 x 2 , x 2 2 , in order to obtain f 4 so we must have - 1 2 x 2 in it. We can not obtain it through reductions, so the only chance is to have a product of the form k * hx 2 , with h, k constants such that hk = -1 2 , in particular both different from 0. A priori, there are two possibilities:

-(x 1 + k)(x 3 + hx 2 + ...); -(x 1 + hx 2 + ...)(x 3 + k + ...).
The second one is impossible: the polynomial having x 1 as head can not contain variables greater than x 1 , so we consider only:

(x 1 + k + ...)(x 3 + hx 2 + ...) obtaining x 1 x 3 + hx 1 x 2 + kx 3 - 1 2 x 2 + ...
We can delete the term x 1 x 2 but kx 3 can not be reduced.

The Axis of Evil Theorem can be generalized in case of Cerlienco-Mureddu ideals (see [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF] for more details).

Consequences of the Axis of Evil Theorem.

We enumerate here some theorems which can be viewed as "corollaries" of the Axis of Evil Theorem (see , for example, [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF]), quoting their general statements. Clearly they can only be deduced by 3.4.1 under our hypotheses.

We start with Lazard Structural Theorem 3.3.15, concerning minimal lexicographical Groebner basis of an ideal

I k[x 1 , x 2 ]. The original proof, viewing k[x 1 , x 2 ] as k[x 1 ][x 2 ], strongly uses that k[x 1 ] is a Principal Ideal Domain (PID). Norton-Sȃlȃgean [81] reformulated it for R[x] with R any PIR 7 .
Next result is the one by Norton-Sȃlȃgean.

Theorem 3.5.1 (Norton-Sȃlȃgean). With the notation of theorem 3.3.15, each

H i+1 ∈ (f j , j < i) : r i .
In fact, we have

r i = n-1 m=1 dm δ=1 γ mδti and H i = dn δ=1 γ nδti .
The next result is Kalkbrener theorem ([60], [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]), which is a stronger characterization of the lexicographical ordering.

For each subset

G ⊂ k[x 1 , ..., x n ], i ∈ {1, ..., n}, ∀δ ∈ N set G i,δ = {p ∈ G |p ∈ k[x 1 , ..., x i ], deg i (p) ≤ δ} and Lp i,δ (G) = {Lp(p), p ∈ G i,δ } ⊆ k[x 1 , ..., x i-1 ].
Theorem 3.5.2 (Kalkbrener). With the previous notation, let I k[x 1 , ..., x n ] be an ideal. Then the following are equivalent:

• G is a Groebner basis of I w.r.t, the lexicographical order < induced by x 1 < ... < x n ;

• Lp i,δ (G) is a Groebner basis of Lp i,δ (I), i = 1, ..., n, ∀δ ∈ N.
Finally we mention Gianni-Kalkbrener theorem, whose situation is a bit more complicated (see [START_REF] Kalkbrenner | Solving Systems of Algebraic Equations by Using Groebner Bases[END_REF], [START_REF] Gianni | Properties of Gröbner Bases under Specialization[END_REF], [START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]).

Theorem 3.5.3 (Gianni-Kalkbrener). Consider the lex order induced by x 1 < ... < x n and a zerodimensional ideal I k[x 1 , ..., x n ] with Groebner basis G" whose elements are increasingly ordered w.r.t. lex on the leading terms, and

G d = G ∩ k[x 1 , ..., x d ]. For α = (b 1 , ..., b d ) ∈ V (I d ) define the projection map Φ α : k[x 1 , ..., x n ] → k[x d+1 , ..., x n ] s.t. f (x 1 , ..., x n ) → f (b 1 , ..., b d , x d+1 , ..., x n ).
Let σ be the minimal value s.t. Φ α (Lp(g σ )) = 0 and j, δ the values s.t.

g σ = Lp(g σ )x δ+1 j + ... ∈ k[x 1 , ..., x j ] \ k[x 1 , ..., x j-1 ]. Then 1. j = d + 1 2. ∀g ∈ G d , Φ α (g) = 0; 3. ∀g ∈ G d+1,δ , Φ α (g) = 0; 4. Φ α (g σ ) = gcd(Φ α (g), g ∈ G d+1 ) ∈ k[x d+1 ]; 5. ∀b ∈ k, (b 1 , ..., b d , b) ∈ V (I d+1 ) ⇔ Φ α (g σ )(b) = 0.
Clearly (1-3) are essentially a corollary of theorem 3.5.1; on the other side, (4-5) apparently cannot be deduced from the Axis of Evil Theorem.

The Axis of Evil in pratice: a detailed example.

In this paragraph, we simulate in detail the Axis of Evil algorithm, giving a precise example of its main features.

We will examine the redistribution performed on the given points using their mixed tower structure.

Consider the set X := {(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (2, 1, 3), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF]4,[START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF], (2, 4, 2), (1, 0, 2)}.

First of all, we apply Cerlienco-Mureddu algorithm on X. P 1 := (4, 0, 0) : is a single point, so Φ({(4, 0, 0)}) = (0, 0, 0) 

P 2 := (2, 1, 4) : s = 1, m = 1, (1, 0, 0) P 3 := (2, 4, 0) : s = 2, m = 2, (0, 1 , 0) 
P 9 := (1, 0, 2) : s = 2, m = 6, W = {(2, 4, 0), (1, 0, 2)}, t 9 = (1, 1, 0). Then N := {1, x 1 , x 2 , x 2 1 , x 3 , x 3 1 , x 2 x 3 , x 2 3 , x 1 x 2 }.
We display here the tower structure individuated by Cerlienco-Mureddu correspondence between X and N.

4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0, 2 2,4,3 2,1,3 2,4,2 
We apply now Lazard algorithm in order to get the monomial basis:

1 : we get L = [x 1 , x 2 , x 3 ] and G 1 = {x 1 , x 2 , x 3 };
x 1 : removing x 1 and computing the products, we have

L = {x 2 1 , x 2 , x 1 x 2 , x 3 , x 1 x 3 }, so G 2 = {x 2 1 , x 2 , x 3 }; x 2 : L = {x 2 1 , x 1 x 2 2times , x 2 2 , x 3 , x 1 x 3 , x 2 x 3 }, so G 3 = {x 2 1 , x 1 x 2 , x 2 2 , x 3 }; x 2 1 : L = {x 3 1 , x 1 x 2 2times , x 2 1 x 2 , x 2 2 , x 3 , x 1 x 3 , x 2 1 x 3 , x 2 x 3 }, so G 4 = {x 3 1 , x 1 x 2 , x 2 2 , x 3 }; x 3 : L = {x 3 1 , x 1 x 2 2times , x 2 1 x 2 , x 2 2 , x 1 x 3 2times , x 2 1 x 3 , x 2 x 3 2times , x 2 3 }, so G 5 = {x 3 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 }; x 3 1 : L = {x 4 1 , x 1 x 2 2times , x 2 1 x 2 , x 3 1 x 2 , x 2 2 , x 1 x 3 2times , x 2 1 x 3 x 3 1 x 3 , x 2 x 3 2times , x 2 3 }, so G 6 = {x 4 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 }; x 2 x 3 : L = {x 4 1 , x 1 x 2 2times , x 2 1 x 2 , x 3 1 x 2 , x 2 2 , x 1 x 3 2times , x 2 1 x 3 x 3 1 x 3 , x 1 x 2 x 3 , x 2 2 x 3 , x 2 3 , x 2 x 2 3 }, so G 7 = {x 4 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 3 }; x 2 3 : L = {x 4 1 , x 1 x 2 2times , x 2 1 x 2 , x 3 1 x 2 , x 2 2 , x 2 x 3 2times , x 2 1 x 3 x 3 1 x 3 , x 1 x 2 x 3 , x 2 2 x 3 , x 1 x 2 3 , x 2 x 2 3 2times , x 3 3 }, so G 8 = {x 4 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 2 3 , x 3 3 }; x 1 x 2 : L = {x 4 1 , x 2 1 x 2 2times , x 3 1 x 2 , x 2 2 , x 1 x 2 2 , x 1 x 3 2times , x 2 1 x 3 x 3 1 x 3 , x 1 x 2 x 3 2times , x 2 2 x 3 , x 1 x 2 3 , x 2 x 2 3 2times , x 3 3 }, so G 9 = {x 4 1 , x 2 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 2 3 , x 3 3 }.
Then we obtain

G = {x 4 1 , x 2 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 2 3 , x 3 3 }
The terms in G are exactly the input for the Axis of Evil algorithm and they are already ordered w.r.t. our ordering. We denote them by τ i for i = 1, ..., 6.

Starting with τ 1 = x 4 1 we obtain: [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4), (3, 0, 1), (1, 3, 4)}: these are the corresponding points via Cerlienco-

N 1 (τ 1 ) = {1, x 1 , x 2 1 , x 3 1 }, A 1 (τ 1 ) = {(4, 0, 0),
Mureddu; B 1 (τ 1 ) = {4, 2, 3, 1} γ 1τ1 = (x 1 -4)(x 1 -2)(x 1 -3)(x 1 -1):
all the linear factors are only depending from x 1 and they are computed in the same time.

We highlight in the picture the points making γ 1τ1 vanish and we distinguish them, using colours, w.r.t. the linear factor vanishing on them (i.e. w.r.t. their first coordinates).

4,0,0 For

τ 2 = x 2 1 x 2 we get: N 1 (τ 2 ) = {1, x 1 }, A 1 (τ 2 ) = {(2, 4, 0), (1, 0, 2)}, B 1 (τ 2 ) = {2, 1}, γ 1τ2 = (x 1 -2)(x 1 -1) 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2
Passing to m = 2 we have:

ζ mτ2 = γ 1τ2 D 20 (τ 2 ) = {(4, 0, 0), ( 3 
, 0, 1)} (the two non-colored points in the picture above).

We cannot stop here, since we got a polynomial not vanishing at all the points. Moreover, we point out that its head is different from

τ 2 ∈ G. N 2 (τ 2 ) = {1, x 1 , x 2 1 , x 3 1 , x 2 , x 1 x 2 };
doing so, we find all the terms of the previous step and some new ones. We start the loop on δ: δ = 1:

A 21 (τ 2 ) = {(4, 0, 0), (3, 0, 1)} = D 20
The terms vx dm-δ m are 1, x 1 , x 2 1 , x 3 1 , corresponding to the points P 1 , P 2 , P 4 , P 6 . Since the polynomial already vanishes on P 2 , P 6 , we consider only the other two points.

E 21 (τ 2 ) = {1, x 1 }, γ 21τ2 = x 2 ; ξ 21 = γ 1τ2 γ 21τ2 = (x 1 -2)(x 1 -1)x 2 ; D 21 (τ 2 ) = ∅: 4,0,0 2,1,4 3,0, 1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 
Remark that γ 2τ2 is actually

γ 21τ2 . τ 3 = x 2 2 : N 1 (τ 3 ) = ∅; A 1 (τ 3 ) = ∅; B 1 (τ 3 ) = ∅ m = 2 : D 20 (τ 3 ) = X N 2 (τ 3 ) = {1, x 1 , x 2 1 , x 3 1 , x 2 , x 1 x 2 }; δ = 1: A 21 (τ 3 ) = {(2, 4, 0), (1, 0, 2)}; E 21 (τ 3 ) = {1, x 1 }; γ 21τ3 = x 2 -4x 1 + 4 ξ 21 = γ 1τ3 γ 21τ3 = x 2 -4x 1 + 4; D 21 (τ 3 ) = {(4, 0, 0), (2, 1, 4), (3, 0, 1), (2, 1, 3), (1, 3, 4)}; δ = 2: A 22 (τ 3 ) = {(4, 0, 0), (2, 1, 4), (3, 0, 1), (1, 3, 4)}
The terms vx dm-δ m are 1, x 1 , x 2 1 , x 3 1 corresponding exactly to P 1 , P 2 , P 4 , P 6 . [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), (1, 0, 2)}; δ = 1:

E 22 (τ 3 ) = {1, x 1 , x 2 1 , x 3 1 }; γ 22τ3 = 2x 2 -x 2 1 + 7x 1 -12; ξ 22 = (x 2 -4x 1 + 4)(2x 2 -x 2 1 + 7x 1 -12); D 22 (τ 3 ) = ∅; 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0, 2 2,4,3 2,1,3 2,4,2 
τ 4 = x 1 x 3 : N 1 (τ 4 ) = {1}; A 1 (τ 4 ) = {(2, 1, 3)}; B 1 (τ 4 ) = {2} γ 1τ4 = (x 1 -2) 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 m = 2 : N 2 (τ 4 ) = {1}, D 20 (τ 4 ) = {(4, 0, 0), (3, 0, 1), (1, 3, 4), (1, 0, 2)} δ = 1; D 21 (τ ) = D 20 (τ ); m = 3 : N 3 (τ 4 ) = {1, x 1 , x 2 , x 2 1 , x 3 , x 3 1 , x 1 x 2 }; ζ mτ4 = (x 1 -2); D 30 (τ 4 ) = {(4, 0, 0), (3, 0, 1),
A 31 (τ 4 ) = {(4, 0, 0), (3, 0, 1), (1, 3, 4), (1, 0, 2)} The terms are 1, x 1 , x 2 1 , x 3 1 , x 2 , x 1 x 2
, corresponding to P 1 , P 2 , P 3 , P 4 , P 6 , P 9 , and P 2 , P 3 can be neglected.

E 31 (τ 4 ) = {1, x 1 , x 2 1 , x 2 }; γ 31 (τ 4 ) = 6x 3 -4x 2 + x 2 1 -x 1 -12; ξ 31 = (x 1 -2)(6x 3 -4x 2 + x 2 1 -x 1 -12); D 31 (τ 4 ) = ∅ and γ 3τ4 = γ 31 (τ 4 ).
4,0,0

τ 5 = x 2 x 2 3 : N 1 (τ 5 ) = ∅; A 1 (τ 5 ) = ∅; B 1 (τ 5 ) = ∅ m = 2: N 2 (τ 5 ) = {1}; D 20 (τ 5 ) = X; δ = 1: A 21 (τ 5 ) = {(2, 4, 2)}; E 21 (τ 5 ) = {1}; γ 21τ5 = x 2 -4 ξ 21 = x 2 -4; D 21 (τ 5 ) = {(4, 0, 0), (2, 1, 4), (3, 0, 1), (2, 1, 3), (1, 3, 4), (1, 0, 2)}; m = 3 : ζ 3τ5 = x 2 -4; D 30 (τ 5 ) = D 21 (τ 5 ); 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 N 3 (τ ) = N(X); δ = 1: A 31 (τ ) = {(2, 1, 3)}. E 31 (τ ) = {1}; γ 21τ = x 3 -3 ξ 31 = (x 2 -4)(x 3 -3); D 31 (τ ) = {(4, 0, 0), 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 
(1, 3, 4), (1, 0, 2)};

4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 δ = 2 : A 32 (τ ) = D 31 (τ ); E 32 (τ ) = {1, x 1 , x 2 1 , x 3 1 , x 2 }; γ 32τ = x 3 -4x 2 -5x 3 1 + 41x 2 1 -96x 1 + 48; ξ 32 = (x 2 -4)(x 3 -3)(x 3 -4x 2 -5x 3 1 + 41x 2 1 -96x 1 + 48); D 32 (τ ) = ∅; γ 3τ = (x 3 -3)(x 3 -4x 2 -5x 3 1 + 41x 2 1 -96x 1 + 48); 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 τ 6 = x 3 3 : N 1 (τ 6 ) = ∅; A 1 (τ 6 ) = ∅; B 1 (τ 6 ) = ∅ m = 2 : D 20 (τ 6 ) = X; N 2 (τ 6 ) = ∅; δ = 1 : A 21 (τ 6 ) = ∅; D 21 (τ 6 ) = X; m = 3 : D 30 = X; N 3 (τ 6 ) = N(X); δ = 1: A 31 (τ 6 ) = {(2, 4, 2)}; E 31 (τ 6 ) = {1}; γ 31τ6 = x 3 -2; ξ 31 = x 3 -2; 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 D 31 (τ 6 ) = {(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (2, 1, 3), (1, 3, 4), (2, 4, 3)}; δ = 2 : A 32 (τ 6 ) = {(2, 1, 3), (2, 4, 3)}; E 32 (τ 6 ) = {1, x 2 }; γ 32τ6 = x 3 -3; ξ 32 = (x 3 -2)(x 3 -3); D 32 = {(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (1, 3, 4)}; 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0,2 2,4,3 2,1,3 2,4,2 δ = 3 : A 33 (τ 6 ) = D 32 ; E 33 (τ 6 ) = {1, x 1 , x 2 1 , x 3 1 , x 2 }; γ 33τ6 = 6x 3 + 8x 2 -5x 3 1 + 35x 2 1 -54x 1 + 24; ξ 33 = (x 3 -2)(x 3 -3)(6x 3 + 8x 2 -5x 3 1 + 35x 2 1 -54x 1 + 24); D 33 (τ 6 ) = ∅; γ 3τ6 = (x 3 -2)(x 3 -3)(6x 3 + 8x 2 -5x 3 1 + 35x 2 1 -54x 1 + 24). 4,0,0 2,1,4 3,0,1 1,3,4 2,4,0 1,0, 2 2,4,3 2,1,3 2,4,2 
The factorized reduced Groebner basis for I(X) w.r.t. lex is:

G(I(X)) = (x 1 -4)(x 1 -2)(x 1 -3)(x 1 -1), (x 1 -2)(x 1 -1)x 2 , (x 2 -4x 1 + 4)(2x 2 -x 2 1 + 7x 1 -12), (x 1 -2)(6x 3 -4x 2 + x 2 1 -x 1 -12), (x 2 -4)(x 3 -3)(x 3 -4x 2 -5x 3 1 + 41x 2 1 -96x 1 + 48), (x 3 -2)(x 3 -3)(6x 3 + 8x 2 -5x 3 1 + 35x 2 1 -54x 1 + 24) ,
while the reduced Groebner basis of I(X) w.r.t. lex is:

G (I(X)) = x 4 1 -10x 3 1 + 35x 2 1 -50x 1 + 24, x 2 x 2 1 -3x 2 x 1 + 2x 2 , x 2 2 -2x 2 x 1 -x 2 + 2x 3 1 -16x 2 1 + 38x 1 -24, x 3 x 1 -2x 3 -2 3 x 2 x 1 + 4 3 x 2 + + 1 6 x 3 -1 2 x 2 1 -5 3 x 1 + 4, x 2 3 x 2 -4x 2 3 -7x 3 x 2 + 28x 3 + 8 3 x 2 x 1 + + 20 3 x 2 -16 3 x 3 + 48x 2 -344 3 x 1 + 32, x 3 3 -5x 2 3 + 8 3 x 3 x 2 -14 3 x 3 -16 9 x 2 x 1 -40 9 x 2 + 73 9 x 3 1 -197 3 x 2 1 + 1358 9 x 1 -72 ,
and it is obtained reducing the polynomials in G(I(X)), each one w.r.t. the previous ones.

CHAPTER 4

Intermezzo: factorization à la Macaulay.

Introduction.

As we explained in chapter 3, given a finite set of distinct points X = {P 1 , ..., P S }, the orig- To be more precise, if some factor f appears in the Axis of Evil factorization associated to r terms, then it is computed independently r times. In this chapter we study the tower structure of points (see 1.4) in order to establish up to what extent it is possible to minimize the number of computed factors.

We will obtain again an Axis of Evil factorization for a minimal Groebner basis of the ideal I = I(X), starting from X and passing through the computation of both the Groebner escalier N(I), via some combinatorial algorithm, and of G(I) from N(I), via Lazard algorithm 3.2.

We will also show that, in some cases, we can get an Axis of Evil factorization à la Macaulay,

in the sense that, if τ = x α1 1 • • • x αn n ∈ G(I), f τ is the polynomial in I(X)
whose factorization we want to compute and f (j) i are linear factors with T(f

(j) i ) = x i , then f τ = f (1) 1 • • • f (α1) 1 f (1) 2 • • • f (α2) 2 • • • f (1) n • • • f (αn) n .
Actually, we will show that it is not possible in general.

We will show then that it is possible to construct a similar factorization for some more sets of points, explaining

• how to decide whether a set of points admits such a factorization;

• how to get concretely the factorization.

For this factorization, no repeated factors are computed. More precisely, once examined the tower structure associated to X, we exactly know how many factors we need in order to obtain the factorization and which are the corresponding ranges. We only deal with these factors, computing them iteratively on the points.

Anyway, the whole algorithm is not iterative on X, requiring some preprocessing on the points: we need to know all their tower structure before starting the computation.

For this aim, we define another combinatorial method for computing the Groebner escalier N(I) directly from X, namely the Jumping algorithm, whose aim is to provide a biunivocal correspondence between points and terms in N(I), taking into account the tower structure.

First step: back to towers.

In this section, we examine the tower structures of some sets of points in k n , n ≥ 2, putting these structure in relation with the Axis of Evil factorization.

Let us start with the case n = 2. In two variables, the situation is rather simple.

Indeed, as seen in 2.2.8 each set of points X ⊂ k 2 has an unmixed tower structure. Indeed, it is possible to find out the Groebner escalier by reordering the towers in nonincreasing order by height. For example, if X = {(0, 0), (1, 3), (0, 1), (0, 2), (1, 4)} and, as usual, I = I(X), we can get the following unmixed tower structure, associated to

N(I) = {1, x 1 , x 2 , x 1 x 2 , x 2 2 } ⊂ k[x 1 , x 2 ] 0,0 1,3 0,1 1,4 0,2
The monomial basis associated to

N(I) is G(I) = {x 2 1 , x 1 x 2 2 , x 3 2 }
, so, if we want to get an Axis of Evil factorization, we have to compute a linear factorization for

f x 2 1 , f x1x 2 2 and f x 3 2 , such that T(f x 2 1 ) = x 2 1 , T(f x1x 2 2 ) = x 1 x 2 2 and T(f x 3 2 ) = x 3 2 .
Consider the following lists of polynomials:

Ξ 1 = [x 1 , x 1 -1] = [f (1) 1 , f (2) 1 ] Ξ 2 = [x 2 -3x 1 , x 2 -3x 1 -1, x 2 -2] = [f (1) 2 , f (2) 2 , f (2) 3 ] 
.

Actually, f (1) 1 , f (2) 1
come from interpolation on the points corresponding to 1, x 1 , i.e. to the terms of the first x 2 -range, whereas f

(1) 2 , f (2) 2 , f (2) 
3 are interpolated respectively on the points of the first, the second and the third x 2 -range.

If we take

f x 2 1 = x 1 (x 1 -1) = f (1) 1 f (2) 1 f x1x 2 2 = x 1 (x 2 -3x 1 )(x 2 -3x 1 -1) = f (1) 1 f (1) 2 f 
(2) 2

f x 3 2 = (x 2 -3x 1 )(x 2 -3x 1 -1)(x 2 -2) = f (1) 2 f (2) 2 f 
(2) 3

we obtain an Axis of Evil factorization à la Macaulay for a minimal Groebner basis of I(X).

The case of n = 3 is a bit more cumbersome. Indeed for some sets does not exist an unmixed tower structure.

Let us consider a minimal example, i.e. X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1)}.

For this, the towers turn out to be mixed regardless the way in which the points are disposed.

For example we can represent the Groebner escalier N(I(X)) as

0,0,0 1,0,0 0,1,0 1,0,1
The monomial basis associated to

N(I(X)) is G(I(X)) = {x 2 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 }.
The fact of having mixed towers actually affects the factorization. Consider the lists of polynomials

Ξ 1 = [x 1 , x 1 -1] = [f (1) 1 , f (2) 1 ] Ξ 2 = [x 2 , x 2 -1] = [f (1) 2 , f (2) 2 ] Ξ 3 = [x 3 , x 3 -1] = [f (1) 3 , f (2) 3 ].
We got the polynomials in Ξ 1 interpolating in the points of the first x 2 -range. The polynomials in Ξ 2 are obtained by interpolating over the first and the second x 2 -range, whereas the ones in Ξ 3 interpolating respectively on the first and the second x 3 -range.

We get an Axis of Evil factorization for a minimal Groebner basis of I(X) by

f x 2 1 = x 1 (x 1 -1) = f (1) 1 f 
(2) 1

f x1x2 = x 1 x 2 = f (1) 1 f (1) 2 f x 2 2 = x 2 (x 2 -1) = f (1) 2 f 
(2) 2

f x1x3 = (x 1 -1)x 3 = f (2) 1 f (1) 3 f x2x3 = x 2 x 3 = f (1) 2 f 
(1) 3

f x 2 3 = x 3 (x 3 -1) = f (1) 3 f (2) 3 . 
Notice that

f x1x3 = (x 1 -1)x 3 = f (2) 1 f (1) 
3 that we have highlighted on purpose, is not really Macaulay-like, since we do not take f

(1)

1 . Anyway, it is not so different and, mainly, the factors in Ξ 1 , Ξ 2 , Ξ 3 are enough to get the whole factorization.

Let us consider the case n = 4. Here, the situation can be even more complicated. Clearly there can be sets which cannot have unmixed towers. Look at the following simple set: X = {(2, 0, 0, 0), (1, 0, 0, 0), (2, 1, 0, 0), (1, 1, 0, 0), (2, 0, 1, 0), (1, 0, 1, 0), (2, 0, 0, 2), (1, 1, 0, 2)}.

We can represent its tower structure as:

x 1 x 2 x 3 x 4 x 1 x 2 x 3 2,0,0,0 1,0,0,0 2,1,0,0 1,1,0,0 2,0,1,0 1,0,1,0 2,0,0,2 1,1,0,2
and the Groebner escalier is

N(I(X)) = {1, x 1 , x 2 , x 1 x 2 , x 3 , x 1 x 3 , x 4 , x 1 x 4 }. Consider now the sets Ξ 1 = [x 1 -2, x 1 -1] = [f (1) 1 , f (2) 1 ] 
Ξ 2 = [x 2 , x 2 -1] = [f (1) 2 , f (2) 2 ] 
Ξ 3 = [x 3 , x 3 -1] = [f (1) 
3 , f

Ξ 4 = [x 4 , x 4 -2] = [f (1) 4 , f (2) 3 ] 
4 ],

obtained as in the examples above. The term x 2 x 4 belongs to the monomial basis associated to N(I(X)). If we want to find a factorization for f x2x4 we first take f

4 , vanishing at all the points of the first x 4 -range, but none of the linear factors in Ξ 2 vanishes at both (2, 0, 0, 2) and (1, 1, 0, 2): the factors in Ξ 2 are not enough to provide the whole Axis of Evil factorization.

Second step: the Jumping algorithm.

The Jumping algorithm places itself in the context introduced in chapter 2, where combinatorial methods to compute the (finite) Groebner escalier of a zerodimensional radical ideal are defined. This algorithm configures itself as an alternative to the methods already proposed and, in particular, it shows a strong relationship with Felszeghy-B. Ráth-Rónyai Lex Game of which it is, to all intents and purposes, a variation. Indeed, it exploits again the idea of ordering the points of a given finite set in a trie structure, but it proceeds differently in its concrete construction.

The result of this new construction is again a one to one correspondence between the points in the set and the terms constituting the Groebner escalier, but the tower reordering is taken into account while constructing the Groebner escalier.

We can interpret the Jumping algorithm as an interpolation oriented Lex Game, since in some case it can help to produce an Axis of Evil factorization à la Macaulay.

We explain now the algorithm in detail.

Consider a finite set of distinct points X = {P 1 , ..., P S } ⊆ k n .

As usual, we denote by I = I(X) the (zerodimensional radical) ideal associated to X and N(I) = N(I(X)) its Groebner escalier. In order to construct N(I), the algorithm a) constructs a trie T(X) associated to X, we name children trie, a variation of the point trie by Felszeghy-B. Ráth-Rónyai ; b) constructs the lex trie as in the Lex Game.

As we had already studied step b) in chapter 2, we only deal with step a).

Therefore, we equip again k n with the equivalence relation we denoted by

= a = (a 1 , ..., a n ) = (b 1 , ..., b n ) = b if a i = b i , ∀i ∈ {1, ..., n} (see 2.5).
Taken then our points P 1 , ...P S ∈ X ⊆ k n , we define the equivalence classes of π i (P j ), i = 1, ..., n, j = 1, ..., S, calling them Σ i and representing them as sets containing the indices of the points in the class, instead of taking trace of the points.

Clearly Σ 0 = {{1, ..., S}}, Σ n = {{1}, ..., {S}}, |Σ n | = S.
Then, we construct a trie whose vertices are labeled with the elements

Σ i,k ∈ Σ i , for i = 1, ..., n, k = 1, ..., |Σ i |. We set an edge from Σ i,k ∈ Σ i to Σ i+1,h , ∈ Σ i+1 when Σ i+1,h ⊆ Σ i,k
and we label it with the (i + 1)-th coordinate of the points in Σ i+1 .

As a second step, we have to put an ordering on the classes. More precisely, we examine the levels from n-2 to 0 and we order the children of each node in the level under consideration. We perform the steps described below. a) For each node a at level n -2, we order its children b 1 , ..., b h1 , according to the number of leaves depending on them. If c i nodes depend on b i and and c j nodes depend on b j and c i > c j for i, j ∈ {1, ..., h 1 }, then we pose b i on the left of b j . Possibly, there can be nodes from which depend the same number of leaves. In this case, their mutual position is indifferent.

While making this ordering, we keep track in a list L of the number of leaves depending on each child. We do not allow repetitions in L, so if some number occurs more than once, we keep track of it together with the number of time it occurs. b) For each node a at level n -3 we order its children b 1 , ..., b h2 , associating to each of them a list containing the number of children and the list obtained in the previous step, separating with a marker the two objects. Then we compare the lists. We put on the left a node if in the corresponding list we find a bigger number or the same number occurring more times. If two lists are equal, the mutual position of the associated children is indifferent.

While ordering the nodes, we prepare a new list, analogous to the list L of a) in which, for each block identified by the markers, we write down the numbers we examine, again equipped with the number of times they occur. c) For each node a of level i, we order its children. Each of them is equipped as before with a list, containing the number of nodes depending on it and the list obtained in the previous step (always equipped with markers). Then we compare the lists as before, keeping track again of the data in order to use them in the next step.

At the end we obtain an ordering on the classes in the trie.

Example 4.3.1. Consider the set

X 1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), (3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)}.
For this set, we compute the equivalence classes Σ i , i = 0, ..., 4.

The first class, Σ 0 , is trivial:

Σ 0 = {{1, 2, 3, ..., 13}} For Σ 1 , we observe that π 1 (X 1 ) = {1, 3}, so |Σ 1 | = 2.
Its two elements are the set Σ 1,1 = {1, 2, 3, 4, 5, 6, 7} and the set Σ 1,2 = {8, 9, 10, 11, 12, 13}.

We have Σ 1 = {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13}}.

For Σ 2 we proceed in the same way and we put the points starting with the couples (1, 2), (1, 1), (3, 1), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]:

Σ 2 = {{1, 2, 3}, {4, 5, 6, 7}{8, 9, 10}, {11}, {12, 13}}.
Constructing Σ 3 , we are setting the points starting with these 3-tuples: (3, 1, 2), (3, 1, 1), (3, 4, 1), (3, 3, 1), (1, 2, 1), (1, 2, 2), (1, 1, 2).

Consequently, we get

Σ 3 = {{1, 2, 3}, {4, 5}, {6, 7}, {8}, {9, 10}, {11}, {12, 13}}.
Finally, we write down the single points: Σ 4 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}}. Up to now, we did not yet order the classes, so we get: 2,3,4,5,6,7,8,9 

{1,
{1} {2} {3} {4} {5} {6}{7} {8} {9}{10} {11}{12}{13} 1 3 1 2 1 3 4 2 1 2 1 2 1 1 3 4 5 1 2 1 2 2 2 3 1 1 2
Now we order the classes.

Since the node {1, 2, 3} at level 3 is the only one depending on the node {1, 2, 3} at level 2 we do not have to order it. We only keep track that 3 leaves depend on it.

We have to order the nodes {4, 5}, {6, 7} at level 3 (depending on the node {4, 5, 6, 7} at level 2). Since two leaves depend on each of them, their mutual position is indifferent. We keep track of the fact that 2 leaves occur twice.

Consider then {8}, {9, 10} (depending on the level 2 node {8, 9, 10}). The set {9, 10} goes on the left of {8}. Indeed {9, 10} has 2 leaves, whereas {8} has only one. We keep track of the numbers of leaves, which are 2, 1, each one appearing once. The sets {11} and {12, 13} have not to be ordered (as it was for the first set). We only keep track of the leaves. So we have:

[ 3 1 ] [ 2 2 ] [ 2 1 1 1 ] [ 1 1 ] [ 2 1 ] {1,2,3} {4,5} {6,7} {9,10}{8} {11} {12,13} {1} {2} {3} {4} {5} {6} {7} {9}{10}{8} {11} {12}{13}
Then, for each node at level 2, we attach to the corresponding lists obtained before and displayed in the first row of the above picture also the number of children, obtaining:

[1| 3 1 ] [2| 2 2 ],
referring to the children of {1, 2, 3, 4, 5, 6} and

[2| 2 1 , 1 1 ] [1| 1 1 ] [1| 2 1 ],
referring to the children of {8, 9, 10, 11, 12, 13}.

Then we compare the lists and we get

[ 2 1 , 1 1 | 3 1 , 2 2 ] [ 2 1 1 2 | 2 2 1 2 ] {4,5,6,7} {1,2,3} {4,5} {6,7} {1,2,3} {4} {5} {6} {7} {1} {2} {3} {8,9,10} {12,13} {11} {9,10} {8} {12,13} {11} {9} {10} {8} {12}{13}{11}
The lists we have to compare to order {1, 2, 3, 4, 5, 6, 7} and {8, 9, 10, 11, 12, 13} are

[2| 2 1 , 1 1 | 3 1 , 2 2 
] and [3| 2

1 1 2 | 2 2 1 2 ].
Since 3 > 2 we get 

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
After computing and ordering Σ 1 , ..., Σ n as explained above, we consider Σ n . This class is composed of singletons, since the elements of X are all distinct by hypothesis.

We report on Σ n-1 , ..., Σ 0 the ordering of the points induced by the order of the singletons in Σ n . This means that we reorder the points in the sets composing the classes. The children trie T(X) is such that ht(T(X)) = n. Clearly, we have defined a biunivocal correspondence between the points in the given set X and the paths from the root to the leaves in the tree. 

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
which has a strong link with the Lex Game point trie. Anyway, both the ordering of the classes and the internal order of elements in the classes are different.

Namely, the Lex Game point trie is:

{1,2 ,3,4,5,6,7,8,9,10,11,12,13} {1,2,3,4,5,6,7} {8,9,10,11,12,13} {4 
,5,6,7} {1,2,3} {8,9,10} {12,13} {11} {4,5} {6,7} {1,2,3} {9,10} {8} {12,13}{11} {4} {5} {6} {7} {1} {2} {3} {9}{10}{8}{12}{13}{11} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
which turns out to be different from the children trie displayed above.

Once we have computed the children trie T(X), we only have to perform the lex trie algorithm on T(X) in order to determine the Groebner escalier N(I). We set h = 1, so we iterate on Σ 3 , getting v 0,0 = {9, 8, 12, 11, 4, 6, 1} =:

v 0 v 0,1 = {10, 13, 5, 7, 2} =: v 1 v 0,2 = {3} =: v 2 .
For h = 2, we perform the iteration on Σ 2 :

v 0,0 = {9, 12, 11, 4, 1} =: v 0 v 0,1 = {8, 6} =: v 1 v 1,0 = {10, 13, 5, 2} =: v 2 v 1,1 = {7} =: v 3 v 2,0 = {3} =: v 4 .
For h = 3, the iteration on

Σ 1 produces v 0,0 = {9, 4} =: v 0 v 0,1 = {12, 1} =: v 1 v 0,2 = {11} =: v 2 v 1,0 = {8, 6} =: v 3 v 2,0 = {10, 5} =: v 4 v 2,1 = {13, 2} =: v 5 v 3,0 = {7} =: v 6 v 4,0 = {3} =: v 7
Finally, for h = 3, the iteration on

Σ 0 gives v 0,0 = {9} =: v 0 v 0,1 = {4} =: v 1 v 1,0 = {12} =: v 2 v 1,1 = {1} =: v 3 v 2,0 = {11} =: v 4 v 3,0 = {8} =: v 5 v 3,1 = {6} =: v 6 v 4,0 = {10} =: v 7 v 4,1 = {5} =: v 8 v 5,0 = {13} =: v 9 v 5,1 = {2} =: v 10 v 6,0 = {7} =: v 11 v 7,0 = {3} =: v 12
So the output trie is 

,4} {12,1} {11} {8,6} {10,5} {13,2} {7} {3} {9} {4} {12} {1} {11} {8} {6} {10} {5} {13} {2} {7} {3} 0 1 2 0 1 0 1 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0
The correctness of the algorithm follows from the one of the Lex Game (see chapter 2).

For each h = 1, ..., n, at level n -h, the points in the same class have at least the first n -h coordinates in common, but we have already settled the corresponding powers of x n-h+2 , ..., x n . When we examine h and n -h in the lex trie construction, we settle the powers of x n-h+1 , looking at the number of points with the same first n -h coordinates and whose corresponding terms have the same powers of x n-h+2 , ..., x n .

Thanks to the children trie construction, while browsing the points, the first points we take into account are those corresponding to higher towers in the subsequent variable (and in case of equality, to the bigger number of high towers in such a variable). If we get again an equality, the comparison passes to the next variable.

This way, we are taking into account the tower reordering, trying to avoid shifts, when it is possible.

Notice that the reordering of the points in the single classes is crucial, as it is shown in the following example.

Example 4.3.6. Take, as usual, the set

X 1 = {(1, 1, 2 , 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), (3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2) 
}, and compute the sets Σ i , taking care to order the equivalence classes as in the Jumping algorithm, but not reordering the points in the classes.

Σ 0 = {{1, 2, 3, ..., 13}} Σ 1 = {{8, 9, 10, 11, 12, 13}, {1 , 2, 3, 4, 5, 6, 7}}. 
The class starting with 3 is put before the one starting with 1. Σ 2 = {{8, 9, 10}, {12, 13}, {11}, {4, 5, 6, 7}, {1, 2, 3}}.

We put now in order the following couples:

(3, 1), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF].

Σ 3 = {{9, 10}, {8}, {12, 13}, {11}, {4, 5}, {6, 7}, {1, 2, 3}}. The 3-tuples are: (3, 1, 2), (3, 1, 1), (3, 4, 1), (3, 3, 1), (1, 2, 1), (1, 2, 2), (1, 1, 2). Σ 4 = {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}
The classes are now in the order set by the jumping algorithm and the tree has exactly the same shape, even if it contains the points in a different order (see example 4.3.4).

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} {8, 9, 10, 11, 12, 13} {1, 2, 3, 4, 5, 6, 7}

{8, 9, 10} {12, 13} {11} {4, 5, 6, 7} {1, 2, 3} {9, 10} {8} {12, 13} {11} {4, 5} {6, 7} {1, 2, 3} {9} {10} {8} {12} {13}{11} {4} {5} {6} {7} {1} {2} {3} 3 1 1 4 3 2 1 2 1 1 1 1 2 2 2 3 2 1 2 1 1 2 1 2 3 4 5
The root of the lex trie is v 0 = {1, 2, 3, 4, 5, 6, 7, , 8, 9, 10, 11, 12, 13}.

For h = 1, we iterate on Σ 3 , so v 0,0 = {9, 8, 12, 11, 4, 6, 1} =:

v 0 v 0,1 = {10, 13, 5, 7, 2} =: v 1 v 0,2 = {3} =: v 2 .
For h = 2, performing an iteration on Σ 2 we get v 0,0 = {8, 12, 11, 4, 1} =:

v 0 v 0,1 = {9, 6} =: v 1 v 1,0 = {10, 13, 5, 2} =: v 2 v 1,1 = {7} =: v 3 v 2,0 = {3} =: v 4 .
For h = 3, iterating on Σ 1 we get v 0,0 = {8, 1} =:

v 0 v 0,1 = {11, 4} =: v 1 v 0,2 = {12} =: v 2 v 1,0 = {9, 6} =: v 3 v 2,0 = {10, 2} =: v 4 v 2,1 = {13, 5} =: v 5 v 3,0 = {7} =: v 6 v 4,0 = {3} =: v 7 .
Finally for h = 4, we have an iteration on Σ 0 , so

v 0,0 = {1} =: v 0 v 0,1 = {8} =: v 1 v 1,0 = {4} =: v 2 v 1,1 = {11} =: v 3 v 2,0 = {12} =: v 4 v 3,0 = {6} =: v 5 v 3,1 = {9} =: v 6 v 4,0 = {2} =: v 7 v 4,1 = {10} =: v 8 v 5,0 = {5} =: v 9 v 5,1 = {13} =: v 10 v 6,0 = {7} =: v 11 v 7,0 = {3} =: v 12 .
The final trie is 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
{1, 8} {4, 11} {12}{6, 9} {2, 10} {5, 13} {7} {3} {1} {8} {4} {11} {12} {6} {9} {2} {10} {5} {13} {7} {3} 0 1 2 0 1 0 1 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0
In conclusion, if we do not order the points we obtain another biunivocal correspondence.

We represent it below, by displaying the associated tower structure:

Not ordered:

x y z t x y z t x y z 1,1,2,3 3,1,1,2 1,2,1,1 3,3,1,1 3,4,1,1 x y z t x y z t x y z 1,2,2,1 3,1,2,2 1,1,2,4 3,1,2,3 1,2,1,2 3,4,1, 2 1,2,2,2 1,1,2,5 
Ordered:

x y z t x y z t x y z 3,1,2,2 1,2,1,1 3,4,1,1 1,1,2,3 3,3,1,1 3,1,1,2 1,2,2,1 3,1,2,3 1,2,1,2 3,4,1,2 1,1,2, 4 1,2,2,2 1,1,2,5 
Let us see an example of unmixed towers.

Example 4.3.7. Consider the set X = {(1, 1, 2, 4), (0, 1, 0, 0), (1, 2, 3, 6), (0, 3, 0, 1), (0, 2, 0, 0), (0, 5, 3, 1), (0, 1, 0, 1), (0, 1, 1, 1), (0, 2, 1, 0), (1, 1, 2, 5), (0, 3, 0, 4), (0, 2, 0, 1), (1, 1, 1, 3), (0, 2, 1, 3),

(1, 1, 1, 4), (0, 1, 1, 2)} = {P 1 , ..., P 16 }.

The associated children trie is 

,1} {5,3}{4} {6} {8,13} {9} {7,10} {12} {11} {16,15} {14} {2} {1} {5} {3} {4} {6} {8}{13}{9} {7}{10}{12}{11}{16} {15}{14} 0 1 0 1 0 1 0 1 2 3 0 1 0 1 2 0 1 0 1 0 1 0 00 1 0 0 1 0 0 0 1 0
and the following tower structure, that is unmixed.

0,1,0,0 1,1,2,4 0,2,0,0 1,2,3,6 0,3,0,1 0,5,3,1

x 1 x 2 x 3 x 4 x 1 x 2 x 3 0,1,1,1 1,1,1,3 0,2,1,0 0,1,0,1 1,1,2,5 0,2,0,1 0,3,0,4 0,1,1, 2 1,1,1,4 0,2,1,3 

Third step: Axis of Evil Macaulay factorization.

In this section, denoting as usual by X a finite set of distinct points and by I = I(X) the zerodimensional radical ideal of points, we try to compute an Axis of Evil factorization of a lexicographical minimal Groebner basis of I, so that it is as similar as possible to the factorization à la Macaulay examined in 4.2 and minimizing the number of factors to compute.

For the original Axis of Evil algorithm, we pointed out that the method used in order to construct the Groebner escalier does not affect the correctness of the algorithm (3.4.20).

In this case, we suppose to employ always the Jumping algorithm in order to properly pass from the points in X to the terms in the Groebner escalier N(I(X)).

Take the set X and apply the Jumping algorithm, obtaining the Groebner escalier N(I(X))

ordered in the lex trie, but also keeping stored in memory the children trie.

We denote by

Φ Jumping : X → N(I(X))
4.4. Third step: Axis of Evil Macaulay factorization.

123

P i → τ i ,
the biunivocal correspondence provided by the Jumping algorithm.

Notice that we have a biunivocal correspondence between points in X and terms in the Groebner escalier, we consider X reordered by the algorithm above in such a way that P i ↔ τ i and that the τ i are in increasing order w.r.t. lex.

For brevity's sake, we employ the notation X j = {P 1 , ..., P j } and N j = N(I(X j )).

In order to compute the required factorization, we proceed as follows.

1. The first term is τ 1 = 1 and it corresponds to a point

P 1 = (a 1,1 , ..., a 1,n ) 1 .
2. Construct n lists Ξ i , i = 1, ..., n2 , each one containing the factor x i -a 1,i , i = 1, ..., n.

3. Construct 2 list L 1 , H 1 containing n entries equal to 1.

Set

G 1 = {x 1 , ..., x n } 5. For τ j = x j1 1 • • • x jn n ∈ N(I(X)), j = 2, ..., n repeat steps 6-9 6. Construct lists L j = L j-1 , H j = [j, ..., j n times ].
7. Compute the minimal monomial basis G j associated to N j . The idea is to perform for each point one step of Lazard algorithm (c.f. section 3.2). Referring to the explanation given of Lazard's algorithm it essentially means removing τ j from the current basis and inserting x 1 τ j , ..., x n τ j , possibly incrementing the number associated to them if they already appeared in the basis: the elements of G j are the ones appearing as many times as the number of variables dividing them.

8. If j n = 0 compute the triangular polynomial associated to the corresponding P j w.r.t X j-1 , exactly as performed in Moeller algorithm (see section 1.6).

More precisely:

• associate to τ j the corresponding linear factors, via the Association procedure described in (2) below, and multiply them, obtaining a polynomial f j , such that T (f j ) = τ j ;

• the triangular polynomial is q j =1 fj (Pj ) f j .

Otherwise, if j n = 0 go directly to the next step. 9. Let x h = max(τ j ). Perform a sort of BFS3 on the children trie starting from the root Σ 0 , from level 1 to n, namely

• consider the first point P l of Σ 1,k ∀Σ 1,k ∈ Σ 1 4 ;
• if P l = P j , set L j [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF] = k and Σ 0 = Σ 1,k as new root and repeat the horizontal reading on the subtree whose root is Σ 1,k , using the projection π 2 to compare the points;

• if P l = P j and π 1 (P l ) = π 1 (P j ) set L j [1] = L l [1], H j [1] = H l [1] and Σ 0 = Σ 1,k
as new root and repeat the horizontal reading on the subtree whose root is Σ 1,k , using the projection π 2 to compare the points;

• if P l = P j and π 1 (P l ) = π 1 (P j ) continue the horizontal reading with Σ 1,k+1 .

10. For each x s , s < h, take the x s -range of P j and of the point P l found for level l in the BFS. For each point P m in the x s -range of P j check whether there is a point in the x srange of P l , sharing the first s coordinates with P m . If it is not possible to find it stop the execution. The factorized polynomials f σ , σ ∈ G(I) of the minimal Groebner basis we are looking for are computable via the association procedure described below, for each σ ∈ G(I), σ < τ j . For the other ones, we have to switch to the first Axis of Evil algorithm 5 5 .

11. For each x l , l ≥ h, we update the factors in the variable x l as follows.

• If τ j = x m h , i.e. it is a pure power, then add x h -a j,h to the linear factors whose leading term is x h . Then interpolate the factors in x h+1 , ..., x n associated to the ranges containing P j , using the interpolation algorithm (1) described below. Set

L j [h] = |Ξ h |.
• If τ j , is not a pure power, use the interpolation algorithm (1) on the last factors in

x i , i = h..., n and set L j [h] = |Ξ h |.
12. Associate to each term in G m = G(I(X)) a factorized polynomial via the Association procedure (2) and return the result.

Let us now examine the subroutines needed to perform the algorithm.

(1) Interpolation algorithm for the point P j , j = 2, ..., m and a generic factor p, letting Φ Jumping (P j ) = τ j and max(τ j ) = x h . Denote by P s the point found for level h-1 in the BFS and by q s its associated triangular polynomial.

i) Compute v = ev Pj (p);
ii) If T (p) ≤ τ j assign to p the value p -vq s .

iii) If T (p) > τ j assign to p the value p -vq j ;

(2) Association procedure

for a term σ = x j1 1 • • • x j h h .
1) store the first j h factors in Ξ j ;

2

) set σ = x j h h 3) consider P l = Φ -1 Jumping (σ ); 4) compute x i = max( σ σ ); 5) store Ξ i [L l [i]]; 6) set σ = σ x i ; 7) set P l = Φ -1 Jumping (σ ); 8) repeat steps from 4) to 7) until σ = σ. Remark 4.4.1. If τ j ∈ N(I), max(τ j ) =
x n , then we can omit the computation of the corresponding triangular polynomial q j . Indeed, T(q j ) = τ j ≥ x n , so this q j can never be used to interpolate the linear factors, since if so, q j can modify the leading term.

Remark 4.4.2. Notice that, unlike the originary Axis of Evil algorithm, this version performs a loop on X.

Anyway, it cannot be really iterative on the points since we need to have performed the Jumping algorithm as a preprocessing.

Remark 4.4.3. Given X = {P 1 , ...., P S } (ordered via the jumping algorithm), consider subsets Y = {P 1 , ..., P t } ⊆ X, t ≤ S.

We point out that our algorithm, being iterative on the points, can also produce the linear factorization for a minimal Groebner basis of the vanishing ideal of every such Y. If such factorization is needed we can show it, computing G(I(Y)) and applying the association procedure not only at the end (step 12.).

Algorithm 6

The Macaulay-like Axis of Evil algorithm.

1: procedure AOE2(X, N, T(X)) → G G contains a factorized minimal Groebner basis of I(X).

Require: the elements N are in increasing order w.r.t lex, x 1 < ... < x n and they have been computed via the Jumping algorithm, so that also X is consequently ordered.

Ensure: the Macaulay-like Axis of Evil factorization.

2:

for i = 1 to n do 3:

Ξ i = x i -a 1i 4: L 1 [i] = 1 5: H 1 [i] = 1 6: G 1 [i] = x i 7:
end for 8:

for j = 2 to S do 9:

L j = L j-1
10:

H j = [j, ..., j n times ] 11: G j = Laz(N[1, ..., j])
Laz is one step of Lazard's algorithm.

12:

if α jn = 0 then 13:

R j = Assoc(τ j , Ξ 1 , ..., Ξ n , L 1 , ..., L j-1 , N[1, ..., j])
14:

f j = |Rj | k=1 R j [k]
15:

q j = fj fj (Pj ) 16: end if 17: h = max(τ j ) 18:
BF S(T(X), h, P j )

19: Test(τ j , h -1)
Test is a procedure which compares the coordinates of the points as explained in step 10 of the algorithm.

20:

if τ j = x m h then 21:

Ξ h = x h -a jh 22: L j [h] = |Ξ h | 23: for l = h + 1 to n do 24: Ξ l [|Ξ l |] = Interp(P j , Ξ l [|Ξ l |], N[1, ..., j], H j ) 25:
end for for l = h to n do 28: 

Ξ l [|Ξ l |] = Interp(P j , Ξ l [|Ξ l |], N[1, ...,
G = Assoc(σ h , Ξ 1 , ..., Ξ n , L 1 , ..., L S , N) 34:
end for [START_REF] Farr | Computing Groebner Bases for Vanishing Ideals of Finite Sets of Points[END_REF]: end procedure Algorithm 7 The Association Procedure.

1: procedure ASSOC(σ, Ξ 1 , ..., Ξ n , L 1 , ..., L i , N → R)
R contains the linear factors.

Require: the elements N are in increasing order w.r.t the lexicographical order w.r.t. x 1 < ... < x n and they have been computed via the Jumping algorithm, so that also X is consequently ordered.

Ensure: the factors for the polynomial in the minimal basis whose head is σ.

2:

h = max(σ) 3: R = [Ξ h [1], ..., Ξ h [j h ]] 4: σ = x j h h 5: P = Φ -1 Jumping (σ ) 6:
while(σ = σ)

7: i = max( σ σ ) 8: R = R ∪ [Ξ i [L P [i]]] 9:
σ = σ x i 10: Require: the elements N are in increasing order w.r.t the lexicographical order w.r.t. x 1 < ... < x n and they have been computed via the Jumping algorithm, so that also X is consequently ordered.

P = Φ -1 Jumping (σ)
Ensure: interpolation of p in P j .

2: Require: T(X) is the children trie, h is the maximal level of T(X) we have to deal with and P k the point under consideration.

v = p(P j ) 3: if T(p) ≤ τ j then 4: h = max(τ j ) 5: s = H j [h -1]

Ensure:

The BFS of the children trie.

2:

for i = 1 to n do 3:

for j = 1 to T(X)[i] do T(X)[i] is the number of nodes at level i 4: if T(X)[i][j][1] == P k then 5: L k [i] = j 6: T = Subtree(T(X)[i][j], T(X)) 7:
break;

8:

end if 9: if T(X)[i][j][1][i] == P k [i] then 10: L k [i] = L T(X)[i][j][1] [i] 11: L k [i] = T(X)[i][j][1]
12: By construction, the factors having x l as head vanish on the point of the shape (a i,1 , ..., a i,l ) ∈ k l and we have exactly one factor for each x l -range contained in the first x l+1 -range.

T = Subtree(T(X)[i][j], T(X))
By the association procedure, we can observe that, for each h, the first l x h -factors vanish at the points, corresponding via the Jumping algorithm, to terms τ with max(τ ) = x h and deg h (τ ) < l.

Remark 4.4.5. Consider a point P j ∈ X, corresponding to a term τ j ∈ N(I(X)), and the execution of our algorithm on it, referring especially to step 8. For each m = 1, ..., h -1,

consider the set Ω m = {P ∈ X j-1 | π m (P ) = π m (P j )}.
In step 8 we are looking for the point

P l ∈ Ω m , such that τ l = min(Φ Jumping (Ω m )).
Performing it, we do not need to scan all the points in X j-1 , but only one for each element of the class Σ m in the children trie. This is a facility provided by the jumping algorithm: the first element of each Σ m is always put in biunivocal correspondence with the minimal lexicographical term in the class.

Remark 4.4.6. We point out that the computation of the triangular polynomial and the interpolation process come directly from Moeller algorithm (see section 1.6).

The algorithm ends in a finite number of steps, performing loops in a finite set of points and terms.

Suppose now that the test of step 10 passes for each point so that we continue with the algorithm in this chapter until we reach the last point and we prove that our new algorithm is correct. First of all, we need the following 

(J) = N(I) ∪ {τ }, τ = max Lex (N(J)). If x k > min(τ ), then x k τ / ∈ G(J). Proof: By assumption, τ ∈ G(I), τ = max Lex (N(J)). Let x k > min(τ ). Since x k τ min(τ ) > τ , then x k τ min(τ ) / ∈ N(J), so x k τ / ∈ G(J)
, by the characterization of G(J) 6 . 

Proof: It is obvious that G 1 = G(I({P 1 })). Suppose that G i-1 = G(I({P 1 , ..., P i-1 })).
We prove that the analogous equality holds for G i .

First of all, we point out that, since the Groenbner escalier has been constructed via the Jumping algorithm, the term σ i = x β1 1 • • • x βn n , associated to P i is the maximal term in N i w.r.t. lex (by the lex trie construction, described in [START_REF] Felszeghy | Rónyai The Lex Game and some applications[END_REF][START_REF] Lundqvist | Vector space bases associated to vanishing ideals of points[END_REF]).

By the above comment and by lemma 4.4.

7, if τ = x α1 1 • • • x αn n ∈ G i := G(I({P 1 , ..., P i })) then, either τ = x k σ i , x k ≤ min(τ ) or τ ∈ G i-1 .
In the first case, we observe that σ i ∈ G i-1 , so f σi vanishes 7 at P 1 , ..., P i-1 and f σi | f x k σi by the association procedure.

Moreover, the exponents' list of σ i identifies the first point not annihilating f σi (the first x krange whose corresponding points do not make f σi vanish is the x k -range containing σ i ).

The interpolation procedure and the association procedure on the variable x k ensure then that f x k σi vanishes at P 1 , ..., P i . Indeed f σi vanishes in P 1 , ..., P i-1 and the factor in x k we take vanishes in P i .

In the second case, namely τ ∈ G i-1 , it can be either τ > σ i or τ < σ i .

In order to continue, we need the technical fact proved below. Fact 4.4.9. For the case τ > σ i , only two possibilities may arise, namely:

A) τ = x h , x h > max(σ i ); B) τ = x αj 0 j0 x αj 0 +1 j0+1 • • • x αn n , with α n = deg n (σ i ), α n-1 = deg n-1 (σ i ),...,α j0+1 = deg j0+1 (σ i ) and α j0 = deg j0 (σ i ) + 1.
In order to prove the assertion, we first prove that two variables x l > x k ≥ max(σ i ) cannot appear with nonzero exponent in τ . Indeed, if it was so, τ

x k ∈ N i (being τ ∈ G i ) and τ x k > σ i , that contradicts the maximality of σ i ∈ N i .

On the other hand, if some

x k ≥ max(σ i ) appears in τ and deg k (τ ) = deg k (σ i ) + l, with l > i, again τ
x k ∈ N i and τ x k > σ i , thus also this possibility cannot occur. By the comments above, if x h > max(σ i ), x h | τ , then any other x l ≥ max(σ i ) does not divide τ and, moreover, deg h (τ ) = 1.

Being σ i τ (σ i , τ ∈ G i-1 ), for j = 1, ..., max(σ i ), it cannot be always α j ≥ β j , so ∃k ∈ {1, ..., max(σ i )} with α k < β k . If α k > 0, τ
x k ∈ N i and τ x k > σ i , so this possibility cannot occur. Otherwise, if α k = 0 and there is some l ∈ {1, ..., max(σ i )} with α l > 0, by the same argument as before we have a contradiction. Thus, necessarily deg h (τ ) = 1, deg l (τ ) = 0, for all l = h.

Let now max(τ ) = max(σ i ). Then, as τ > σ, α n > β n or α n = β n , . . ., α j0+1 = β j0+1 , α j0 > β j0 , reasoning as above, α j0 = β j0 + 1. No variables x l , l ∈ {1, ..., j 0 -1} can divide τ by 7 The polynomial fσ i is such that T(fσ i ) = σ i .

the maximality of σ i in N i . Thus we conclude that τ = x

αj 0 j0 x αj 0 +1 j0+1 • • • x αn n , with α n = deg n (σ i ), α n-1 = deg n-1 (σ i ),. . .,α j0+1 = deg j0+1 (σ i ) and α j0 = deg j0 (σ i ) + 1.
Let then τ ∈ G i-1 , τ > σ i . By the above lemma we know that only cases A), B) can occur, so we study them from an interpolation point of view. We know that f τ already vanishes at P 1 , ..., P i-1 .

A) f x h vanishes at P i : it is a straightforward consequence of the interpolation procedure. B) f τ vanishes at P i : the first x i -range whose corresponding points do not make f σi vanish is the one containing σ i , so the assertion is again a consequence of the interpolation procedure, applied to the x i -factor corresponding to that range.

If, instead, τ < σ i , let x h = max(σ i ). Then, by the correspondence given by the Jumping algorithm, there is a point P j , sharing with P i the first h -1 coordinates, such that for the corresponding term σ j deg h (σ j ) = deg h (σ i ). If f τ vanishes at P j , then it also vanishes at P i , by the association procedure. If σ j < τ ,f τ vanishes at P j and then in P i (remark 4.4.4).

Otherwise, we can we can repeat with σ j instead of σ i and conclude by induction. Once computed the border set B(I(X)), we proceed as before. The only modification needed is in the association procedure, since, in step (2) it can happen to obtain a term τ / ∈ N(I(X)), so it is impossible to apply Φ Jumping . This is the case for terms τ ∈ B(I(X)) \ G(I(X)).

We solve the problem picking randomly the needed number of factors in the lists Ξ 1 , ..., Ξ n involved by the variables of τ not already associated to a factor.

In order to get the border basis from the factorization, clearly, we have to reduce.

We show now some examples of the execution.

Example 4.4.12. We consider again the set 

X 1 = {(1, 1, 2, 3), (
, 4} {12, 1} {11}{8, 6} {10, 5} {13, 2} {7} {3} {9} {4} {12} {1} {11} {8} {6} {10} {5} {13} {2} {7} {3} 0 1 2 0 1 0 1 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0
Therefore, we can start the new interpolation process.

We denote in boldface the points involved by the BFS. The first point is P 9 = (3, 1, 2, 2), corresponding τ 9 = 1. The linear factors involved here are trivially 

X = {x -3} = {x 1 }, Y = {y -1} = {y 1 }, Z = {z -2} = {z 1 }, T = {t -2} = {t 1 }, while L 9 = [1, 1, 1, 1].
1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
The second point in the new configuration is

P 4 = (1, 2, 1, 1), corresponding to τ 4 = x,
while the triangular polynomial is

q 4 = 1 ev P 4 (x1) = -1 2 (x -3). The minimal monomial basis is G = {x 2 , y, z, t}.
We list now the factors: For P 12 = (3, 4, 1, 1) we perform as before: N = {1, x, y}, q 12 = 1 ev P 12 (y1) = 1 3 y 1 and the minimal monomial basis is G = {x 2 , xy, y 2 , z, t}. The factors are: X = {x -3, x -1} = {x 1 , x 2 }: the factors in x remain unchanged from now on, so we stop listing them. Y = {y + 1 2 x -5 2 , y -4} = {y 1 , y 2 }: we add y 2 , so y 1 remains unchanged from now on. y-factor and then x 1 since P 12 has 3 as first coordinate. For P 1 = (1, 1, 2, 3) we have:

X = {x -3, x -1} = {x 1 , x 2 }: we add a new factor in x. Y = {y + 1 2 x -5 2 } = {y 1 }: we assign to y 1 the new value y 1 -ev P4 (y 1 )q 4 . Z = {z -1 2 x -1 2 } = {z 1 }: z 1 → ev P4 (z 1 )q 4 . T = {t -1 2 x -1 2 } = {t 1 }: t 1 → ev P4 (t 1 )q 4 . We have L 4 = [2, 1,
Z = {z + 1 3 y -1 3 x -4 3 } = {z 1 }: z 1 → z 1 -ev P12 (z 1 )q 12 . T = {t + 1 3 y -1 3 x -4 3 } = {t 1 }: t 1 → t 1 -ev P12 (t 1 )q 12 . L 12 = [1, 2,
N = {1, x, y, xy}, q 1 = 1 ev P 1 (x1y1) = 1 2 x 1 y 1 and G = {x 2 , y 2 , z, t}.
For the listed factors we have:

Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 } = {y 1 , y 2 }:
we interpolate y 2 , but we cannot use the triangular polynomial q 1 since T (q 1 ) = xy > y. So we go down and pick q 4 , obtaining For P 11 = (3, 3, 1, 1), since N = {1, x, y, xy, y 2 } and q 11 = -1 2 y 1 y 2 , we have to add a factor in y and interpolate z 1 , t 1 using q 11 . The monomial basis is G = {x 2 , xy 2 , y 3 , z, t}, whereas the factors are: 

y 2 → y 2 - ev P1 (y 2 )q 4 . Z = {z -1 3 xy + 4 3 y -1 6 x 2 + x -23 6 } = {z 1 }: here we can use q 1 : z 1 → z 1 -ev P1 (z 1 )q 1 . T = {t -5 6 xy + 17 6 y -5 12 x 2 + 3x -91 12 } = {t 1 }: t 1 → t 1 -ev P1 (t 1 )q 1 . L 1 = [2, 2,
Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 , y -3} = {y 1 , y 2 , y 3 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 } = {z 1 } T = {t -
{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
The point

P 8 = (3, 1, 1, 2) gives N = {1, x, y, xy, y 2 , z}, q 8 = -z 1 and G = {x 2 , xy 2 , y 3 , xz, yz, z 2 , t}. Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2
, y -3} = {y 1 , y 2 , y 3 }: from now on, the factors in y remain unchanged, so we stop listing them. We only have to interpolate t 2 , using t 2 -ev P5 (t 2 )q 4 : 

Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z -1} = {z 1 , z 2 }: we add a new factor. T = {t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 } = {t 1 }: t 1 → t 1 -ev P8 (t 1 )q 8 . G = {x 1 x 2 , y 1 y 2 x 1 , y 1 y 2 y 3 , x 1 z 1 , y 1 z 1 , z 1 z 2 , t 1 }. L 8 = [1, 1,
P 6 = (1, 2, 2, 1), N = {1, x, y, xy, y 2 , z, xz}, q 6 = -1 2 x 1 z 1 , G = {x 2 , xy 2 , y 3 , yz, z 2 , t} Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 , z 2 }: z 2 → z 2 -ev P6 (z 2 )q 4 , since T (q 6 ) = xz > z. T = {t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 } = {t 1 }: t 1 → t 1 -ev P6 (t 1 )q 6 . L 6 = [2, 1,
T = {t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 , t -1 2 x -3 2 } = {t 1 , t 2 } L 5 = [2, 1, 1, 2].
X = {x -3, x -1} = {x 1 , x 2 } Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 , y -3} = {y 1 , y 2 , y 3 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 , z 2 } We interpolate again t 2 , but using q 12 : T = {t-1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x-59 8 , t+ 1 3 y -1 3 x-7 3 } = {t 1 , t 2 }, so t 2 → t 2 -ev P13 (t 2 )q 12 , obtaining L 13 = [1, 2, 1, 2].
G = {x 2 , xy 2 , y 3 , yz, z 2 , y 2 t, zt, t 2 }. X = {x -3, x -1} = {x 1 , x 2 } Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 , y -3} = {y 1 , y 2 , y 3 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 , z 2 } We interpolate t 2 : t 2 → t 2 -ev P2 (t 2 )q 1 : T = {t -
{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
The point 

P 7 = (1, 2, 2, 2) gives N = {1, x, y, xy, y 2 , z, xz, t, xt, yt, xyt, zt}, G = {x 2 , xy 2 , y 3 , yz, z 2 , y 2 t, xzt, t 2 }. X = {x -3, x -1} = {x 1 , x 2 } Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 , y -3} = {y 1 , y 2 , y 3 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 ,
X = {x -3, x -1} = {x 1 , x 2 } Y = {y + 1 2 x -5 2 , y -3 2 x + 1 2 , y -3} = {y 1 , y 2 , y 3 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 , z 2 }
Here we only add a factor: T = {t- 

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3} 1 3 2 1 1 4 3 1 2 2 2 1 1 1 1 2 1 2 3 4 5 2 3 2 1 2 1
The final Groebner basis is:

G = {x 1 x 2 , y 1 y 2 x 1 , y 1 y 2 y 3 , y 1 z 1 , z 1 z 2 , y 2 y 1 t 1 , x 2 z 1 t 1 , t 1 t 2 x 2 , t 1 t 2 y 2 , t 1 t 2 z 1 t 1 t 2 t 3 }, i.e.
• f 1 = (x -3)(x -1);

• f 2 = (y + x -5 2 )(y -3 2 x + 1 2 )(x -3); • f 3 = (y + x -5 2 )(y -3 2 x + 1 2 )(y -3); • f 4 = (y + x -5 2 )(z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 ); • f 5 = (z - y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 )(z + 1 2 x - 5 
2 ); In this example we have considered a mixed tower structure but we could go to the end of the algorithm.

• f 6 = (y + x -5 2 )(y -3 2 x + 1 2 )(t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 ); • f 7 = (x -1)(z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 )(t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 ); • f 8 = (x -1)(t -
If for some set of points X we know (for example for theoretical reasons) that it is possible to associate to it an unmixed tower structure, we can appreciably simplify the execution.

Indeed, we know that.

• We do not need the sort of BFS on the trie (and actually we do not need the lists H i , L i ): by the unmixed tower structure we already know that if P τ corresponds to τ =

x α1 1 • • • x αn n then P τ , corresponding to τ = τ x α i i •••x αn n share its first (i -1) coordinates with P τ .
• We do not need the association procedure : the factorization we obtain is properly à la Macaulay.

• We do not need to perform any test on the ranges. Let us see an example of this situation.

Example 4.4.13. Let us consider the set X = {(0, 1, 1), (1, 1, 1), (0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0)}. Let us start computing N(I(X)).

We have:

Σ 0 = {{1, 5, 3, 2, 6, 4}} Σ 1 = {{1, 5, 3}, {2, 6, 4}} Σ 2 = {{1, 5}, {3}, {2, 6}, {4}} Σ 3 = {{1}, {5}, {3}, {2}, {6}, {4}}
The children trie is

{1,5,3,2,6,4} {1,5,3} {2,6,4} {1,5} {3} {2,6} {4} {1} {5} {3} {2} {6} {4} 0 1 1 2 1 2 1 0 0 1 0 0
Now we construct the lex trie. For h = 1, we have n -h = 2, so we iterate on Σ 2 , getting

v 0 = {1, 3, 2, 4} v 1 = {5, 6}.
Then we continue with h = 2 and, since n -h = 1, we iterate on Σ 1 , obtaining

v 0,0 = {1, 2} =: v 0 v 0,1 = {3, 4} =: v 1 v 1,0 = {5, 6} =: v 2
Finally, for h = 3, we iterate on Σ 0 and we finally get

v 0,0 = {1} v 0,1 = {2} v 1,0 = {3} v 1,1 = {4} v 2,0 = {5} v 2,1 = {6}
and the lex trie is

{1,2,3,4,5,6} {1,3,2,4} {5,6} {1,2} {3,4} {5,6} {1} {2} {3} {4} {5} {6} 0 1 0 1 0 0 1 0 1 0 1
Now, we deal with the factorization, iterating on the points. In this case, the tower structure is unmixed, so we can simplify the execution:

0,1,1 1,1,1 0,2,0 1,2,0 0,1,0 1,1,0
Let us start with P 1 = (0, 1, 1), corresponding to τ 1 = 1 ∈ N(I). The associated triangular polynomial is q 1 = 1 and, up to now, the linear factors are

Ξ 1 = {x 1 } Ξ 2 = {x 2 -1} Ξ 3 = {x 3 -1}.
The second point, P 2 = (1, 1, 1), corresponds to τ 2 = x 1 and we have q 2 = x 1 . The lists of factors are

Ξ 1 = {x 1 , x 1 -1}: we added a new polynomial in x 1 Ξ 2 = {x 2 -1} Ξ 3 = {x 3 -1}.
Consider now P 3 = (0, 2, 0), corresponding to τ 3 = x 2 and to the triangular polynomial

q 3 = x 2 -1.
The lists of factors are

Ξ 1 = {x 1 , x 1 -1} Ξ 2 = {x 2 -1, x 2 -2}: we added a new polynomial in x 2 Ξ 3 = {x 3 + x 2 -2}: we have interpolated as x 3 -1 → (x 3 -1) + q 3 .
For P 4 = (1, 2, 0) we have τ 4 = xy, q 4 = x 1 (x 2 -1) and the factors become:

Ξ 1 = {x 1 , x 1 -1} Ξ 2 = {x 2 -1, x 2 -2} Ξ 3 = {x 3 + x 2 -2}.
For P 5 = (0, 1, 0), we get τ 5 = x 3 and we do not compute the triangular polynomial, since its head term would be x 3 and we cannot use it to interpolate.

The list of factors are

Ξ 1 = {x 1 , x 1 -1} Ξ 2 = {x 2 -1, x 2 -2} Ξ 3 = {x 3 + x 2 -2,
x 3 }: we added a new factor in x 3 .

For P 6 = (1, 1, 0), we get τ 6 = x 1 x 3 and, as for P 5 , we have no need to compute the triangular polynomial.

The final list of factors are

Ξ 1 = {x 1 , x 1 -1} Ξ 2 = {x 2 -1, x 2 -2} Ξ 3 = {x 3 + x 2 -2, x 3 }.
The factorization we get is:

G = {x 1 (x 1 -1), (x 2 -1)(x 2 -2), (x 3 + x 2 -2)(x 2 -1), x 3 (x 3 + x 2 -1)}
and it is an Axis of Evil factorization à la Macaulay

The version of the Axis of Evil algorithm we are examining now displays many differences with the original one.

The factors are updated at each step and not computed each time from the beginning. Moreover, some linear factors are used several times i.e. in relation with more than one head, even if they have been computed only once.

This was not in the original Axis of Evil procedure, where for each term in G(I) it was necessary to interpolate specifically each factor, possibly computing the same factor more than once.

Example 4.4.14. Given X = {(0, 0, 0), (1, 0, 2), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), (0, 2, 0), (1, 2, 4), (0, 3, 3), (0, 0, 1), (1, 0, 1)}, we perform on it both the original Axis of Evil algorithm and the second version.

We suppose X and N(I(X)) = {1, x, x 2 , y, xy, y 2 , z, xz} be ordered as provided by the jumping algorithm. As explained before, this is necessary only for the second version.

The tower structure turns out to be 0,0,0

The monomial basis is G(I(X)) = {x 3 , x 2 y, xy 2 , y 3 , x 2 z, yz, z 2 }.

The original algorithm produces:

• f 1 = x(x -1)(x -3); • f 2 = x(x -1)(y -3); • f 3 = x(y -2)(y -3 2 x + 3 2 ); • f 4 = y(y -2)(y -3); • f 5 = x(x -1)(z -4); • f 6 = y(z -3y + 11 6 x 2 -35 6 x + 6); • f 7 = (z -1)(z -y 2 -xy + 2y + 7 3 x 2 -13 3 x
). All the repeated factors have been computed each time they appear in the factorization, so, for example, we compute the same factor (x -1) three times.

Consider now the second algorithm. The factorized basis we get is

• x(x-1)(x-3); • x(x-1)(y-1 2 x(x-1)); • x(y-1 2 x(x-1))(y-2); • (y-3)(y-1 2 x(x-1))(y-2); • x(x-1)(z-y 2 + 1 2 x 2 y-3 2 xy+2y+ 1 2 x 3 -7 6 x 2 -4 3 x); • (y-1 2 x(x-1))(z-y 2 + 1 2 x 2 y-3 2 xy+2y+ 1 2 x 3 -7 6 x 2 -4 3 x); • (z-y 2 + 1 2 x 2 y-3 2 xy+2y+ 1 2 x 3 -7 6 x 2 -4 3 x)(z-1).
In this case, even if a factor repeats more than once in the factorized basis, it is computed only once.

There is something more: in this new version of the Axis of Evil algorithm, we interpolate at each point P ∈ X, only in some variables. More precisely, if Φ Jumping (P ) = τ and max(τ ) = x h , we interpolate only in x h , ..., x n .

In the original algorithm, we compute separately all the needed factors.

This means that the number of computed factors decreases with the second version of the algorithm.

In 4.4.14, for example, we noticed that, from P 4 , the list of the factors in x maintains unchanged. The same happens for the y factors from P 7 on.

Let q i be the triangular polynomial associated to a point P i ∈ X.

We have T(q i ) = Φ Jumping (P i ) = τ i . If τ i is bigger than the variable in which we are interpolating it is not possible to use q i because if we do it, we would change the leading term of the linear factor.

For example, if Φ Jumping (P i ) = xy we cannot interpolate the y factor vanishing in P i using q i .

We would need then another triangular polynomial, but we don't have to compute it, thanks to the list L, constructed exploiting the sort of BFS we perform on the children tree 4.4.1.

We also notice that, when we reach a term τ ∈ N(I(X)) such that max(τ ) = x n we do not need to compute any triangular polynomial more: the ones we have are enough in order to perform the whole interpolation step. While performing our algorithm, we only have to compute and store the triangular polynomial associated to (2, 3), even if |X| = 12. This happens because the term corresponding to the third point, i.e. (1, 2), contains the maximal variable and so does every subsequent term.

The arrangement of X in towers is all we need in order to interpolate: once it is given, we exactly know which are the points and the polynomials to pick in order to obtain the correct factors.

In the original Axis of Evil we had to check at each step which points already vanish in a partial factorized polynomial.

On the other hand, computational evidence shows that in general the linear factors obtained The first Axis of Evil factorization is

• f 1 = x(x -1); • f 2 = x(y -2); • f 3 = (y -3)(y -2x).
while the second one is

• f 1 = x(x -1); • f 2 = x(y -2x); • f 3 = (y -2x)(y -3).
A factorization à la Macaulay requires only two factors in x and two factors in y, so the first factorization is not à la Macaulay, while the second does.

Remark 4.4.17. Given a finite set of distinct points X, the Axis-of-Evil theorem finds for the lexicographical Groebner basis of I(X) a factorization linear in the leading terms, passing through the lexicographical Groebner escalier à la Cerlienco-Mureddu N(X) of I(X), while Macaulay's trick, given an order ideal N finds a set of points X such that N(I( X)) = N and the lexicographical Groebner basis of I( X) is linearly factorized .

If X is a finite set of distinct points as generated by Macaulay's trick, the Axis-of-Evil factorization is linear, not only in the heads.

If X is a finite set of arbitrary distinct points, the Axis-of Evil factorization is not really linear and, given an order ideal N there exist sets X of distinct points such that N(I(X)) = N, but the lexicographical Groebner basis of I(X) has no linear factorization à la Macaulay.

We display now an example which shows that the Axis of Evil algorithm makes Macaulay's trick not work.

Consider again the set X 0 = {(3, 0, 0), (

} and the polynomial ring k[x, y, z] equipped with the lexicographical order induced by 1 < x < y < z. The Groebner escalier associated to I(X 0 ) is N(I(X 0 )) = {1, x, y, z}, while the minimal monomial basis of

the initial ideal is G(I(X 0 )) = {x 2 , xy, xz, y 2 , yz, z 2 }.
According the second procedure, there should be two factors whose leading term is x, say X 1 , X 2 , two factors whose leading term is y (Y 1 , Y 2 ) and two factors whose leading term is

z (Z 1 , Z 2 )
. These factors should be of the following form:

• x + a, a ∈ k; • y + f (x), f (x) ∈ k[x]; • z + g(x, y), g(x, y) ∈ k[x, y].
Focus on xy, xz. If Macaulay's trick holds in the required Groebner basis there should be both X 1 Y 1 and X 1 Z 1 . The factor X 1 can be only (x -1), (x -3), so there are two cases:

• X 1 = (x -1): the polynomial (x -1)Y 1 must vanish on all the points of X 0 . We know that it vanishes on (1, 2, 3), (1, 2, 5) because of the factor (x-1), so Y 1 should vanish on (3, 0, 0), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4). It means that it must hold simultaneously f (3) = 0 and f (3) = -1, but the evaluation of a polynomial f (x) ∈ k[x] is unique, so we have a contradiction;

• X 1 = (x -3): there are no problems for (x -3)Y 1 , while we encounter an analogous contradiction for (x -3)Z 1 . The latter should vanish on all the points of X 0 and we know that it does for (3, 0, 0), [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4). This means that Z 1 should vanish on both This example is minimal, since if we remove a point from X 0 the argument does not work anymore.

Notice that the problem is related to the left shifting of the towers we have in the second z-range.

Conversely, we can show that the Axis-of-Evil context includes cases which are not contemplated by Macaulay's trick.

Take for example N = {1, x, y, z} ⊆ k[x, y, z], imposing, as usual, the lexicographical order with x < y < z. Macaulay recovers from N a set of points X and a set G of polynomials such that, called I = I(X), N = N(I) and G is the reduced Groebner basis of I.

We stress the fact that Macaulay's trick imposes strong conditions on the set of points, so it does not recover all the sets of points with a given Groebner escalier N.

First of all, Macaulay recovers from N(I) the monomial basis G(I). In our example

G(I) = {x 2 , xy, xz, y 2 , yz, z 2 }.
In G(I) he isolates the pure powers of all the variables, which are present there since N is a finite set:

d 1 = d x = 2, d 2 = d y = 3, d 3 = d z = 2.
After that, for each i, j, l, j = l takes the elements a i,j ∈ k, i = 1, ..., 3, j = 1, ..., d i , a i,j = a i,l , namely a 1,0 = 1, a 1,1 = 2, a 2,0 = 3, a 2,1 = 4, a 3,0 = 5, a 3,1 = 6.

The polynomials in the reduced Groebner basis are defined by the following formula, where X = [x, y, z] :

g m = 3 i=1 ei,m-1 j=0 (X[i] -a i,j ), m ∈ G(I).
In our example we have: [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4,[START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], (1, 3, 6)}.

g 1 = (x -1)(x -2), T (g 1 ) = x 2 g 2 = (x -1)(y -3), T (g 2 ) = xy g 3 = (x -1)(z -5), T (g 3 ) = xz g 4 = (y -3)(y -4), T (g 4 ) = y 2 g 5 = (y -3)(z -5), T (g 5 ) = yz g 6 = (z -5)(z -6), T (g 6 ) = z 2 . Finally X = {(a 1,e1 , ..., a 3,e3 ) ∈ k n | x e1 y e2 z e3 ∈ N}, i.e. X = {(1, 3, 5),
For example, also X = {(1, 3, 5), [START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4,[START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF], [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF]} has the same Groebner escalier as X, but we cannot recover it since there are only two possible third coordinates.

We display now an example of tower structure making our algorithm stop before getting the whole factorization.

Example 4.4.18. Let us consider the set X = {(2, 0, 0, 0), (1, 0, 0, 0), (2, 1, 0, 0), (1, 1, 0, 0), (2, 0, 1, 0), (1, 0, 1, 0), (2, 0, 0, 2), (1, 1, 0, 2)} with tower structure

x 1 x 2 x 3 x 4
x 1

x 2

x 3 2,0,0,0 1,0,0,0 2,1,0,0 1,1,0,0 2,0,1,0 1,0,1,0 2,0,0,2 1,1,0,2

The Groebner escalier is

N(I(X)) = {1, x 1 , x 2 , x 1 x 2 , x 3 , x 1 x 3 , x 4 , x 1 x 4 } and the monomial basis is G(I(X)) = {x 2 1 .x 2 2 , x 2 x 3 , x 2 3 , x 2 x 4 , x 3 x 4 , x 2 4 }.
Let us start with P 1 = (2, 0, 0, 0), which corresponds to τ 1 = 1 and to the triangular polynomial q 1 = 1. The lists of factors are

Ξ 1 = {x 1 -2} Ξ 2 = {x 2 } Ξ 3 = {x 3 } Ξ 4 = {x 4 }
For P 2 = (1, 0, 0, 0) we have τ 2 = x and q 2 = -(x 1 -2). The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 } Ξ 3 = {x 3 } Ξ 4 = {x 4 }
For P 3 = (2, 1, 0, 0) we get τ 3 = x 2 and q 3 = x 2 . The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 , x 2 -1} Ξ 3 = {x 3 } Ξ 4 = {x 4 } For P 4 = (1, 1, 0, 0) we have τ 4 = x 1 x 2 and q 4 = -(x 1 -2)x 2 .
The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 , x 2 -1} Ξ 3 = {x 3 } Ξ 4 = {x 4 }
For P 5 = (2, 0, 1, 0) we get τ 5 = x 3 and q 5 = x 3 . The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 , x 2 -1} Ξ 3 = {x 3 , x 3 -1} Ξ 4 = {x 4 }
For P 6 = (1, 0, 1, 0) we have τ 6 = x 1 x 3 and q 6 = -x 3 (x 1 -2). The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 , x 2 -1} Ξ 3 = {x 3 , x 3 -1} Ξ 4 = {x 4 }
For P 7 = (2, 0, 0, 2) we get τ 7 = x 4 and we do not need to compute the triangular polynomial since τ 7 contains the maximal variable. The lists of factors are

Ξ 1 = {x 1 -2, x 1 -1} Ξ 2 = {x 2 , x 2 -1} Ξ 3 = {x 3 , x 3 -1} Ξ 4 = {x 4 , x 4 -2}
For P 8 = (1, 1, 0, 2) we get τ 8 = x 1 x 4 and we do not need to compute the triangular polynomial since τ 8 contains the maximal variable. This time we have to stop. Indeed, we have to compare the x 2 -ranges of P 4 and P 8 and, as one can see by the tower structure drawn above, the test fails.

We can then keep the computed factors and use the Association procedure to produce:

(x 1 -1)(x 1 -2), x 2 (x 2 -1), x 2 x 3 , x 3 (x 3 -1)
but, in order to finish, we have to switch to the original Axis of Evil algorithm:

x 4 (x 2 + x 1 -2), x 3 x 4 , x 4 (x 4 -2).

Part III

The Bar-Code language and some applications.

CHAPTER 5

The Bar-Code.

Introduction.

In this chapter, we define the main tool of this thesis: the Bar-Code diagram associated to a set of terms M .

In chapter 1, we defined two graphical representations for an M :

1. the diagrams introduced by M.G. Marinari and L. Ramella for terms in 3, 4, 5 variables, which are particularly useful when dealing with problems involving terms arranged by degree (1.5); 2. the pictures with towers and the towers structures, which have been used connecting points and terms (1.4).

Actually, these representations can be handled only if we have a small number of terms and variables, otherwise the pictures become too complicated, if not impossible: how to draw, for example, a 5-dimensional picture with towers?

For our studies, we usually have to represent the Groebner escalier of a monomial ideal J.
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If J is not zerodimensional, however, N(J) is an infinite set, so it becomes very difficult to draw it: how to bridle the infinite?

In order to break through this impasse, we introduced the Bar-Code diagram, which is a bidimensional picture mirroring exactly all the properties of the potential n-dimensional picture described above for any given set of terms M . The Bar-Code flattens everything in dimension 2 (simpler to handle) and is also very easy to draw.

Starting with the finite case, we will see how to connect such a picture to M and how to read properties directly by it.

After that, we will define infinite Bar Codes, in order to represent infinite set of terms.

Then, we will start dealing with applications of this construction, which turn out to be mainly combinatorial.

What is a Bar-Code? The finite case.

In this section we explain how to construct a Bar-Code diagram.

First of all, we associate to each term τ = x α1 1 • • • x αn n ∈ T a list of n terms ( one for each variable in P). More precisely, for each i ∈ {1, ..., n}, we let

P xi (τ ) := x αi i • • • x αn n ∈ T , i.e. P xi (τ ) = τ x α1 1 • • • x αi-1 i-1
.

We can extend this procedure to a finite set of terms M ⊂ T , defining, for each i ∈ {1, ..., n},

M [i] := P xi (M ) := {σ ∈ T | ∃τ ∈ M, P xi (τ ) = σ}.
These operations on a term τ will play a fundamental role for the construction of the Bar-Code diagram.

Here we list some useful features.

1. For each τ ∈ T , P x1 (τ ) = τ.

2. If τ = x α1 1 • • • x αn n , α i = deg i (τ ) = 0 then P xi (τ ) = x αi+1 i+1 • • • x αn n .
3. The lex inequalities are maintained:

τ < Lex σ ⇒ P xi (τ ) ≤ P xi (σ).
4. For each term τ and for any couple of indices i, j, say 1 ≤ i < j ≤ n we have

x i ≤ x j ⇒ P xj (P xi (τ )) = P xi (P xj (τ )) = P xj (τ ). Example 5.2.1. In k[x 1 , x 2 , x 3 ] consider τ = x 1 x 3 2 x 4 3 . Clearly P x1 (τ ) = x 1 x 3 2 x 4 3 , while P x2 (τ ) = x 3 2 x 4 3 and P x3 (τ ) = x 4 3 . For σ 1 = x 2 x 5 3 > Lex τ , P x2 (τ ) = x 3 2 x 4 3 < Lex P x2 (σ 1 ) = x 2 x 5 3 . For σ 2 = x 5 1 x 3 2 x 4 3 > Lex τ , P x2 (τ ) = x 3 2 x 4 3 = P x2 (σ 2 ). P x3 (P x2 (τ )) = P x2 (x 3 2 x 4 3 ) = x 4 3 = P x2 (P x3 (τ )).
Now M ⊆ T will be a finite list of terms increasingly ordered w.r.t. lex.

Proposition 5.2.2. With the previous notation, if M is an order ideal in T then, for each

1 < i ≤ n, M [i] is an order ideal in T [i, n].
Proof: It is sufficient to prove the statement for i = 2; the general case can be brought back to this one by changing the indices of the variables.

For each σ ∈ M [2] and υ | σ we have υ ∈ M [2] . Namely, by definition of M [2] there exists τ ∈ M such that τ = x α1 1 σ. Clearly υ | τ , so that υ ∈ M and υ = P x2 (υ) ∈ M [2] .

The following examples show that the converse of proposition 5.2.2 does not hold.

Example 5.2.3.

In k[x 1 , x 2 , x 3 ], the set M = M [1] = {1, x 1 , x 2 , x 1 x 2 , x 2 1 x 2 } ⊂ k[x 1 , x 2 , x 3 ] is not an order ideal, since x 2 1 x 2 ∈ M but x 2 1 / ∈ M , x 2 1 | x 2 1 x
2 . Yet M [3] = {1, 1, 1, 1, 1}, and M [2] = {1, 1, x 2 , x 2 , x 2 } (seen as sets, so removing repeated elements) are order ideals.

Example 5.2.4. The set M = M [1] = {1, x 1 , x 2 , x 3 , x 1 x 3 , x 2 x 3 , x 2 2 x 3 } is not an order ideal, since x 2 2 x 3 ∈ M and x 2 2 / ∈ M , as well as M [2] = {1, 1, x 2 , x 3 , x 3 , x 2 x 3 , x 2 2 x 3 } (x 2 2 x 3 ∈ M [2] , while x 2 2 / ∈ M [2] ), whereas M [3] = {1, 1, x 3 , x 3 , x 3 , x 3 } is an order ideal.

Basing on the properties stated above, we construct a picture associated to a list M = [τ 1 , ..., τ m ]. Description 5.2.5. The Bar Code (or, simply, B-C) B := B M of M is a "matrix", obtained in the following way.

We construct a (n + 1) × m table, containing ordinately the terms of M in the 0-th row, and in the (i, j) position, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, the term P xi (τ j ).

The first row contains then the terms in M [1] , i.e. the given elements of M , the second row contains the terms in M [2] and so on: .

τ 1 ...
If a row contains some repeated terms, they are adjacent.

We replace the above "matrix" with an (n + 1) × m table, constructed as follows.

The first row contains the ordered terms of M (assumed not to contain repeated terms). The second row (corresponding to M [1] ) contains as many segments as the elements of M .

The i-th row (corresponding to

M [i-1]
) contains as many segments as the distinct elements of M [i-1] in such a way that to a set of r equal elements in

M [i-1] corresponds a unique segment of length r, for each 2 ≤ i ≤ n.
The segments composing the i-th line are called x i -bars or, simply, i-bars.

Remark 5.2.6. Point out that we required not to have repeated elements in M in order for 1-bars all to have the same length, that we set as unitary.

Therefore, from now on, we suppose to have always finite lists of distinct terms.

Example 5.2.7.

Given M = {x 1 , x 2 1 , x 2 x 3 , x 1 x 2 2 x 3 , x 3 2 x 3 } ⊂ k[x 1 , x 2 , x 3 ],
we have:

M [1] = {x 1 , x 2 1 , x 2 x 3 , x 1 x 2 2 x 3 , x 3 2 x 3 } M [2] = {1, 1, x 2 x 3 , x 2 2 x 3 , x 3 2 x 3 } M [3] = {1, 1, x 3 , x 3 , x 3 },
leading to the 4 × 5 table on the left and then to the B-C on the right:

x 1 x 2 1 x 2 x 3 x 1 x 2 2 x 3 x 3 2 x 3 x 1 x 2 1 x 2 x 3 x 1 x 2 2 x 3 x 3 2 x 3 1 1 x 2 x 3 x 2 2 x 3 x 3 2 x 3 1 1 x 3 x 3 x 3 x 1 x 2 1 x 2 x 3 x 1 x 2 2 x 3 x 3 2 x 3 0 1 2 3
We now give a formal definition for the concept of range introduced in 1.4.

Definition 5.2.8. Given M = {τ 1 , ..., τ m } ⊆ T , for any τ j ∈ M (j = 1, ..., m), and 1 ≤ i ≤ n, the x i -range of τ j in M is the set

R(i, τ j ) := {σ ∈ M |P xi (σ) = P xi (τ j )}.
We will consider as representative for a range R(i, τ j ) its minimal element w.r.t. lex.

By construction, there is a one to one correspondence between ranges and bars in each line.

Example 5.2.9. Given M = {x 1 , x 2 1 , x 2 x 3 , x 1 x 2 2 x 3 , x 3 2 x 3 } as in example 5.2.7, the bars in B M (read from the left to the right) correspond to the ranges in the following way:

• first line (thick in the picture below): R(1, x 1 ), R(1, x 2 1 ), R(1, x 2 x 3 ), R(1, x 1 x 2 2 x 3 ), R(1, x 3 2 x 3 );
• second line (thin in the picture below): R(2, x 1 ), R(2, x 2 x 3 ), R(2, x 1 x 2 2 x 3 ), R(2, x 3 2 x 3 );

• third line (dotted in the picture below): R(3, x 1 ), R(3, x 2 x 3 ).

x 1 x 2 1 x 2 x 3 x 1 x 2 2 x 3 x 3 2 x 3 0 1 2 3
Up to now, we represented each term τ = x α1 1 • • • x αn n ∈ T , as a point in the n-dimensional space, considering the k-th exponent α k as the k-th coordinate, k = 1, ..., n of the corresponding point P τ (see section 1.4). We point out that this representation mirrors the range's subdivision.

Example 5.2.10.

Given N = {1, x 1 , x 2 1 , x 2 , x 3 } ⊆ k[x 1 , x 2 , x 3 ],
we get the picture below:

1 x1 x 2 1 x2 x3
As in section 1.4, we notice that the single rectangles correspond to the x 1 -ranges.

We select as many "planes" as the x 3 -exponents of the elements in N. On the "plane" corresponding to x 0 3 we group the elements in N in horizontal lines according to their x 2 -exponent so that on the bottom line lie the terms of N which are pure powers of x 1 , in increasing order w.r.t. lex and in the higher line the terms having 1 as x 2 -exponent, and so on. A similar procedure is followed in the remaining x 3 -planes. Such a representation can become very complicated, when the number of the points and/or the variables increases, i.e. when dealing with a large number of points, and/or high-dimensional spaces. If we want to keep track of the range subdivision and of the properties of the terms which can be read by their mutual position in the n-dimensional space, we pass to the corresponding B-C. This is always a bidimensional picture but all the information on the terms is stored there.

Example 5.2.11. Considering again the set

M = {1, x 1 , x 2 1 , x 2 , x 3 } ⊆ k[x 1 , x 2 , x 3 ] of example 5.
2.10 we can easily draw B M , the corresponding B-C:

3 2 1 0 1 x1 x 2 1 x2 x3
The 1-bars represent the single terms. The 2-bars group together the terms which were represented before as grouped horizontally rectangles. Finally, the 3-bars include all the terms whose corresponding rectangles lie in the same plane.

Point out that M is an order ideal. Now, we describe the properties of Bar-Codes, in order to characterize the corresponding pictures. For each 1 ≤ i ≤ n, we denote by Consider for example the dotted line. It is composed of two bars A 1 , A 2 (A 1 is the blue bar, whereas A 2 is the red bar). We have l 1 (A 1 ) = 2, l 1 (A 2 ) = 3 and l 2 (A 1 ) = 1, l 2 (A 2 ) = 3. Remark 5.2.14. 1) Conditions 1-5 of definition 5.2.12, mirror the properties of the P xi .

A (i) 1 , ..., A (i) 
2) Given B, an n-B-C, one gets an (n -h)-B-C erasing h lines of B.

3) Fixed any i-bar (2 ≤ i ≤ n) of an n-B-C, the bars of the first i -1 lines lying above it

form an (i -1)-(sub) B-C. 4) µ(1) ≥ µ(2) ≥ ... ≥ µ(n).
Given a Bar Code B:

• a sub-Bar Code of B is the set B obtained by extracting some (even non-consecutive) lines from B;

• for every 1 ≤ l < n, an l-block associated to a bar A of B is the set containing A itself and all the bars of the (l -1) lines lying immediately above A.

Example 5.2.15. In the Bar-Code B displayed below, the outlined part is a 2-block, namely the one associated to A

1 .

1 2 3
We come now to a turning point of our deal, since we need to associate to a given n-Bar-

Code B, a finite set of terms M B , with B = B M B .
In order to achieve this goal follow the rules below:

Bc1. Let {A (n) 1 , ..., A (n) µ(n) }, denote the n-bars of B and let l 1 (A (n) 1 ) = l 0 , ..., l 1 (A (n) µ(n) ) = l µ(n) . Substitute A (n)
1 with l 0 copies of a random pure power x a0 n , A

2 with l 1 copies of a pure power x a1 n , a 1 > a 0 , . . ., A

(n) µ(n) with l µ(n)-1 copies of a pure power x a µ(n) n , a µ(n)-1 > a µ(n)-2 .
Bc2. Take lines i, i + 1, i = 1, ..., n -1 and construct all the possible blocks.

Repeat the construction inductively on the blocks, multiplying each term obtained in the i-th line (1 ≤ i < n) by the term corresponding to the bar lying under it.

These two rules produce exactly the P xi 's for some M B , so that operating on M B according to description 5.2.5, we obtain back B.

Notice that the sets of terms which can be produced using Bc1 and Bc2 on a Bar-Code B are infinite. Indeed, we can start in Bc1 with any power of x n and we can increase such a power by any natural number, while passing to a subsequent n-bar and the same reasoning can be applied to each inductive step, as shown in the example below.

Example 5.2.16. Consider the following B:

3 2 1
Two consistent sets of terms associated to B are, for example:

x 2 x 3 1 x 2 x 5 1 x 2 x 5 2 x 1 x 5 2 x 6 3 x 2 x 3 1 x 2 x 5 1 x 2 x 5 2 x 1 x 5 2 x 6 3 x 2 x 2 x 2 x 5 2 x 5 2 x 6 3 1 1 1 1 1 x 6 3 , 1 x 1 x 2 1 x 2 x 1 x 2 x 3 1 x 1 x 2 1 x 2 x 1 x 2 x 3 1 1 1 x 2 x 2 x 3 1 1 1 1 1 x 3 that is M B = {x 2 , x 3 1 x 2 , x 5 1 x 2 , x 5 2 , x 1 x 5 2 , x 6 
3 } and M B = {1, x 1 , x 2 1 , x 2 , x 1 x 2 , x 3 }; note that M B is an order ideal whereas M B is not.

In both cases, if we repeat on the 4 × 6 tables above the construction described in 5.2.5 we obviously get back to B.

Making Bc1 stricter, one gets BBc1, which can improve the properties of the resulting set M B ⊂ T :

BBc1. Let {A (n) 1 , ..., A (n) µ(n)+1 } be the n-bars of the given B, with l 1 (A (n) 1 ) = l 0 , ..., l 1 (A (n) µ(n) ) = l µ(n) . Substitute A (n) 1 with l 0 copies of x 0 n , A (n) 2
with l 1 copies of x 1 n , . . ., A

(n) µ(n) with l µ(n)-1 copies of x µ(n)-1 n .
Point out that BBc1 is simply a particular case of Bc1.

Example 5.2.17. Referring to example 5.2.16, the first set of terms associated to B can be obtained only if we apply Bc1, whereas the second is obtained using BBc1. This is the reason making order ideal the (unique!) set of terms obtained using BBc1 (see next lemma

5.2.23).

In this context, we need to point out that we cannot associate an order ideal to every Bar-Code.

Example 5.2.18. Given M = {x 1 , x 2 1 , x 2 x 3 , x 1 x 2 2 x 3 , x 3 2 x 3 } (which is not an order ideal) the associated B-C is B M :

0 1 2 3 x 1 x 2 1 x 2 x 3 x 1 x 2 2 x 3 x 3 2 x 3
which cannot be associated to any order ideal.

Using either Bc1, Bc2 or BBc1,Bc2, we obtain terms of the form:

x α1 1 x β1 2 x γ1 3 x α2 1 x β1 2 x γ1 3 x δ1 2 x γ2 3 x δ2 2 x γ2 3 x δ3 2 x γ2 3 x β1 2 x γ1 3 x β1 2 x γ1 3 x δ1 2 x γ2 3 x δ2 2 x γ2 3 x δ3 2 x γ2 3 x γ1 3 x γ1 3 x γ2 3 x γ2 3 x γ2 3 , with γ 1 < γ 2 , δ 1 < δ 2 < δ 3 , α 1 < α 2
and so:

M B = {x α1 1 x β1 2 x γ1 3 , x α2 1 x β1 2 x γ1 3 , x δ1 2 x γ2 3 , x δ2 2 x γ2 3 , x δ3 2 x γ2 3 }.
If M B were an order ideal, all the divisors of its elements should have to belong to M B , so, even supposing γ 1 = 0, γ 2 = 1 and δ 1 = 0, δ 2 = 1, δ 3 = 2, we would need to simultaneously have

β 1 = 0, β 1 = 1, β 1 = 2, that is clearly impossible.
Actually the problem is that to a power of x 3 which is not the smallest one we associate three increasing powers of x 2 , whereas to the smallest power of x 3 we only associate 1 as power of x 2 . This implies that any set of terms associated to the given B cannot be an order ideal, since some divisors are surely missing.

Inspired by example 5.2.18, we define admissible Bar-Codes as follows:

Definition 5.2.19. A Bar Code B is admissible if it exists at least one order ideal M B .

A non-admissible B-C cannot be associated to an order ideal by definition, whereas the reverse does not hold, as we showed in example 5.2.16 where an admissible B-C is associated to a set M B not satisfying the order ideal property.

A question then arises: which are the admissible Bar Codes?

Let B be a Bar Code and let M B be the associated set of terms, via rules Bbc1 and Bc2.

For each i ∈ {1, ..., n -1}, we fix a 3-block, composed of a (i + 2)-bar A, all the (i + 1)-bars B 1 , ..., B h over A and all the i-bars over A1 .

We check whether l i (B j ) ≥ l i (B j+1 ), j = 1, ..., h -1. If not, B is not admissible. If so, for i = 3, ..., n, fixed an (i + 1)-bar we consider two consecutive i-blocks B 1 , and B 2 , lying over it and consisting of two consecutive i-bars A 1 , A 2 and of all the bars lying above them. By the previous relation, l i-1 (A 1 ) ≥ l i-1 (A 2 ).

For each j = 1, ..., l i-1 (A 2 ), we check l i-2 (C 1,j ) ≥ l i-2 (C 2,j ), where C 1,j , C 2,j are the j-th (i -1)-bars over A 1 , A 2 . If this test fails for some j, then the Bar-Code is not admissible. Then, isolated the (i -1)-blocks associated to C 1,j , C 2,j , we check the analogous property for all the couples of (i -2)-bars above the isolated blocks and so on. We prove now that if all the tests pass, then M B is an order ideal.

If τ = x α1 1 • • • x αn n ∈ M B and x i | τ let τ = τ xi = x α1 1 • • • x αi-1 i • • • x αn n .
We want to prove that in the original B there is a bar corresponding to τ so that τ ∈ M B .

For each

1 ≤ j ≤ n let A (j)
hj be the j-bar underlying τ . Since τ, τ have the same n, (n -1), ..., (i + 1) exponents, if really τ ∈ M B , then it must lie over A (j)

hj for j = i + 1, ..., n. Additionally, τ lies over

A (i) hi-1 . Since l i-1 (A (i) hi-1 ) ≥ l i-1 (A (i)
hi ), we can find the (i -1)-bar

A (i-1) l over A (i)
hi-1 corresponding to the exponent α i-1 of τ . By the second test, the inequality also held for

A (i-1) l and A (i-1)
hi-1 , so we can find a bar corresponding to the exponent α i-2 of τ . By induction, we can conclude that τ ∈ M B .

We now prove that conversely, if N is an order ideal, its associated Bar Code B N passes the two tests above.

For each bar C (i+2) , i = 1, ..., n-1 2 , consider the associated 3-block denoting 2 Again we consider also the "degenerate" (n + 1)-bar. Even if we apply BBc1 and Bc2 to B we do not get an order ideal: the resulting set is indeed

B (i+1) 1 , ..., B (i+1) h the (i + 1)-bars over C (i+2) . If β 1 = l i (B (i+1) j ) < l i (B (i+1) j+1 ) = β 2 , for some j < h. By Bbc1, Bc2, σ = x β2-1 i x j i+1 x αi+2 i+2 • • • x αn n ∈ N. But, since β 1 = l i (B (i+1) j ) < l i (B (i+1) j+1 ) = β 2 , the term σ = x β2-1 i x j-1 i+1 x αi+2 i+2 • • • x αn n / ∈ N,
M B = {1, x 1 , x 2 , x 3 , x 2 x 3 , x 2 3 , x 1 x 2 3 } and x 1 x 2 3 ∈ M B , whereas x 1 x 3 / ∈ M B .
Focus on the second and the third line and consider the blocks associated to A

2 and A

3 , namely:

1 2 3 the fact that x 1 x 2 3 ∈ M B , whereas x 1 x 3 / ∈ M B is mirrored by the fact that l 1 (A (2) 
3 ) < l 1 (A

).

Remark 5.2.22. Consider a finite set of distinct terms M = {τ 1 , ..., τ m } ⊆ T and fix an i ∈ {1, ..., n}. For j = 2, ..., m, compute τ j,j-1 = τj GCD(τj ,τj-1) . If M is an order ideal, then τ j,j-1 consists of a unique variable by definition.

If max(τ j,j-1 ) > x i , then τ j-1 , τ j do not lie over the same i-bar.

By rules BBc1 and Bc2 the following holds trivially. Lemma 5.2.23. If B is an admissible B-C there is only one order ideal M B associated to it.

In the remaining sections, we will mostly deal with admissible Bar Codes, even if we will have some applications in which this property will not be required.

The star set.

We are going to associate to a finite order ideal N ⊆ T a new set of terms, arising from its admissible Bar Code B N . Rather loosely, these terms appear in correspondence with the ends of the rows from 1 to n and with some "holes" inside the rows from 1 to n -1.

In this section, N = {τ 1 , ..., τ r } will be an order ideal, B = B N the associated admissible Bar Code and I the monomial ideal such that N(I) = N.

First of all, we put a star at the end of each row of B as identification mark. We also put the same mark at each "hole" (between two consecutive bars) lying above a "hole" of the next line (hence no such star occurs in the last row).

Finally, we associate to each star a term, for instance to a star lying in the i-th row and after the j-th column we associate x i P xi (τ j ) (thus to the end of the i-th row we associate

x i P xi (τ r )).
We denote by F N the obtained set of terms and call it the star set of N.

We will call Bar Code pictures the Bar Codes equipped with the star set. 

= {1, x 1 , x 2 , x 3 } ⊂ k[x 1 , x 2 , x 3 ], so that N = N(I) with I = (x 2 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 
3 ), its admissible B-C is B:

3 2 1 0 1 x1 x2 x3
The "hole" between A

(1)

1 and A

2 does not lie above a hole of the second row, so we do not associate any star to it; on the other hand, in the hole between A

(1) 2 andA (1)

3 we put a star to which we associate x 2 1 . Continuing this way along all B, we obtain the following two pictures

0 3 2 1 * * * * * * 1 x1 x2 x3 0 3 2 1 x 2 3 x 2 2 x 2 x 3 x 2 1 x 1 x 2 x 1 x 3 1 x1 x2 x3
for which

F N = {x 2 1 , x 1 x 2 , x 1 x 3 , x 2 2 , x 2 x 3 , x 2 3 }. Note that in this case it holds F N = G(I).
Next example shows that in general the star set F N does not coincide with the minimal generating set of the monomial ideal I.

Example 5.3.2. Given the order ideal

N = {1, x 1 , x 2 , x 2 2 , x 3 } ⊂ k[x 1 , x 2 , x 3 ], so that N = N(I) with I = (x 2 1 , x 1 x 2 , x 3 2 , x 1 x 3 , x 2 x 3 , x 2 
3 ), the corresponding admissible Bar Code, equipped with the star set is and In Janet's context, for a monomial ideal I, it arises the set

F N = {x 2 1 , x 1 x 2 , x 1 x 2 2 , x 1 x 3 , x 3 2 , x 2 x 3 , x 2 3 } G(I). 3 2 1 0 x 2 3 x 3 2 x 2 x 3 x 2 1 x 1 x 2 x 1 x 2 2 x 1 x 3 1 x1 x2 x 2 
F(I) = {x α ∈ T \ N(I) | x α min(x α ) ∈ N(I)}
(especially connected with the so called involutive bases, see chapter 6).

As a matter of fact we can prove: Proof: First of all, we prove F N ⊆ F(I).

Let σ be the term corresponding to the star between P xi (τ j ) and P xi (τ j+1 ), for τ j , τ j+1 ∈ N.

Then, σ = x i P xi (τ j ) by definition and

deg i (σ) > deg i (τ j ), but deg h (σ) = deg h (τ j ), for each h > i.
We now show that σ / ∈ N.

If σ ∈ N, then it must lie over the same (i + 1)-bar as τ j , but over the subsequent i-bar w.r.t.

to the i-bar associated to τ j , which cannot exist since σ arises from a star.

On the other hand, σ min(σ) = P xi (τ j ) | τ j , so P xi (τ j ) ∈ N by definition of order ideal. Thus σ ∈ F(I).

We prove now that

F(I) ⊆ F N . Let σ ∈ F(I), min(σ) = x k , so that σ x k ∈ N. Let A be the k-bar of σ
x k and let τ l ∈ N be the rightmost element lying over A (so that deg h (τ l ) = deg h ( σ

x k ), h = k, ..., n). We have to examine the terms τ l , τ l+1 ∈ N.

First of all, notice that τ l+1 > Lex τ l by assumption and it cannot be that deg h (τ l+1 ) = deg h (τ l ), h = k, ..., n since, if it were so, τ l would not have been the rightmost term lying over the k-bar A.

If deg k (τ l+1 ) > deg k (τ l ) and deg j (τ l+1 ) = deg j (τ l ), j = k + 1, ..., n, then it would be that σ ∈ N, contradicting σ ∈ F(I).
Thus, the (k+1)-bar underlying A breaks in correspondence to the end of A itself, so σ ∈ F N .

Thanks to proposition 5.3.3, by abuse of notation, we will call star set both F N and F(I). 

N = {1, x 2 , x 2 2 , x 3 2 , x 4 2 } ⊂ k[x 1 , x 2 ], so that I = (x 1 , x 5 
2 ). The associated B-C picture is:

2 1 0 x 5 2 x 1 x 1 x 2 x 1 x 2 2 x 1 x 3 2 x 1 x 4 2 1 x2 x 2 2 x 3 2 x 4 2
We have

F N = {x 1 , x 1 x 2 , x 1 x 2 2 , x 1 x 3 2 , x 1 x 4 2 , x 5 2 } = B(I). b) Let N = {1, x 1 , x 2 1 , x 2 , x 3 , x 1 x 3 } ⊂ k[x 1 , x 2 , x 3 ], so that I = (x 3 1 , x 1 x 2 , x 2 2 , x 2 1 x 3 , x 2 x 3 , x 2 
3 ). The associated Bar Code picture is:

1 x1 x 2 1 x2 x3 x1x3 0 1 2 3 x 3 1 x1x2 x 2 1 x3 x 2 2 x2x3 x 2 3 Since F N = G(I) = {x 3 1 , x 1 x 2 , x 2 2 , x 2 1 x 3 , x 2 x 3 , x 2 3 }, B N is a full B-C. B(I) = {x 3 1 , x 1 x 2 , x 2 1 x 2 , x 2 2 , x 2 1 x3, x 2 x 3 , x 1 x 2 x 3 , x 2 1 x 3 , x 2 3 } F N .

Infinite Bar Codes.

In this section we extend the notion of Bar Code to the case of non-zerodimensional monomial ideals.

We will first explain how to draw their B-C diagram, showing how to represent the infinite part of the Groebner escalier and then we will also study how to derive the star set from the B-C diagram.

If J is a non-zerodimensional monomial ideal we have |N(J)| = ℵ 0 and still its minimal basis G(J) is a finite set, say G(J) = {σ 1 , ..., σ r }.

We start examining the structure of N(J) in a very simple case.

Example 5.4.1.

Let J = (x 1 x 2 ) k[x 1 , x 2 ]
. In this simple case, we can represent the Groebner escalier N(J) = {x m 1 , m ≥ 0} ∪ {x l 2 , l ≥ 0} in the plane:

1 x1 x 3 1 ••• x2 x 2 2
. . . If we examine the x 2 -ranges composing N(J), we can observe that R(2, 1)

is an infinite set, being R(2, 1) = {x m 1 , m ≥ 0}. Since x 1 x 2 ∈ G(J), R(2, x 2 ) is the singleton R(2, x 2 ) = {x 2 }.
All the terms x α1 1 x α2 2 , α 1 , α 2 ≥ 1 belong to J, and no pure powers of x 2 belong to J, so, for each i > 1, R(2, x i

2 ) is the singleton containing x i 2 itself: therefore we have an infinite x 2 -tower in the Groebner escalier.

We will draw the Bar Code inductively on the variables x 1 , ..., x n , using as a benchmark the monomial basis G(J).

In the case n = 1, if J = (x α1 1 ) we have:

1 x 1 ..... x α1-1 1 0 1 and, if J = (0) 1 →
where the symbol → stays for infinitely many 1 blocks, corresponding to the powers x i 1 , i ∈ N * which belong to the (infinite) Groebner escalier. Let us deal with the simple case n = 2. a) Consider the set G(J) ∩ T [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF], possibly containing the unique element of G(J), which is a pure power of x 1 . We then distinguish G(J) ∩ T

[1] = ∅ and G(J) ∩ T [1] = ∅.
In the first case, x α 1 ∈ G(J), so N(J) ∩ T [1] = {1, x 1 , ..., x α-1

1

} and we draw its Bar-Code obtaining:

1 x 1 ..... x α-1 1 0 1
underlining it by a unique x 2 -bar; we obtain a Bar-Code that we denote by B 1 .

In the second case, no pure power of x 1 occurs in G(J), so we draw only the Bar-Code of term 1, putting after its single bar the symbol → underlining the obtained picture with a 2-bar: we denote again B 1 the obtained picture.

The symbol → stays for infinitely many 1 blocks, corresponding to the powers x i 1 , i ∈ N * which belong to the (infinite) Groebner escalier. b) Then we consider G(J) \ (G(J) ∩ T [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]), containing all the terms divisible by x 2 , x 1 x 2 .

If it is the empty set, we put the symbol → after the 2-bar, the one drawn in B 1 before.

Otherwise, we order its elements w.r.t. lex. Let τ 1 be the first element and let deg 2 (τ 1 ) = e.

We multiply the terms lying over B 1 by x 2 , ..., x e 2 and we copy, under them, the Bar-Code structures of B 1 e times.

On the first (e -1) 2-bars we cannot have any multiple of a generator, since, in this case, there would be an element σ ∈ G(J) \ (G(J) ∩ T [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]) with deg 2 (σ) < e.

The possible multiples of the generators will lie over the last 2-bar we drew. Considering this bar:

• if τ 1 = x e
2 we delete τ 1 and all the bars under it;

• if τ 1 = x l 1 x e 2 consider the 1-bars. More precisely, if x e 2 is followed by →, we remove the symbol and we add the terms x 1 x e 2 , ..., x l-1 1 x e 2 , each one underlined by a 1-bar. Otherwise, we delete all the multiples of τ 1 , checking the terms from right to left.

Then repeat this procedure for the other terms in the set, replacing B 1 with the last 2-block.

At the end, we put a symbol → after the last 2-block if no pure powers of x 2 occur in the set.

Let us see a first example Example 5.4.2. Consider the monomial ideal

J = (x 2 1 x 2 2 ) k[x 1 , x 2 ]. We have G(J) ∩ T [1] = ∅,
so the first step produces the Bar Code B 1 below.

1 → Then, we consider σ ∈ G(J) \ (G(J) ∩ T [1]) = {x 2 1 x 2 2 }. Since deg 2 (x 2 1 x 2 
2 ) = 2 we get:

1 → x 2 → x 2 2 →
We consider the last 2-bar. Since we have the symbol →, but x 2 1 x 2 2 ∈ G(J) we finally get:

1 → x 2 → x 2 2 x 1 x 2 2 →
We now state the general procedure for the case n > 2.

Suppose we have computed B h-1 , 2 ≤ h ≤ n, involving the terms divisible only by x 1 , ..., x h-1 . We find the first h-block by underlining B h-1 with the first h-bar.

Consider G[h] := (G(J) ∩ T [h]) \ (G(J) ∩ T [h -1]).
If G[h] is empty, we put an → after the first h-bar (meaning that the first h-block repeats infinitely many times and at each repetition the terms over the previous copy are multiplied by x h ). Then, we underline the obtained picture with the first (h + 1)-bar.

Otherwise, if G[h] = ∅, we order it w.r.t. lex and, for each τ ∈ G[h], by definition, max(τ ) =

x h . Denoting F the rightmost h-block we drew, we let deg h (τ ) = α h and β the maximal h-degree of the terms lying above F (of course β = 0 if τ is the smallest element of G[h]). We write α h -β copies of F and at each repetition the terms over the previous copy are again multiplied by x h . If some multiple of τ appears among the terms inserted so far in the Bar Code picture it will lie above the (α h -β)-th copy of F , from now on denoted by F (since for the previous ones the h-degree is too small) and it has to be removed since it cannot belong to N(J), so we have to modify F .

(a) If τ = x α h h we simply need to remove the whole F .

(b) If τ = x α1 1 • • • x α h-1 h-1 x α h h , (α 1 , ..., α h-1 ) = (0, ..., 0) let x i = max( τ x α h h
) < x h , we must distinguish two subcases:

(b1) x i = min(τ ): for each i-bar of F we consider the related i-block. We must erase the possible multiples of τ and all the bars of F lying under them. In particular, if the i-block under consideration is followed by an →, denoting γ the i-degree of the terms involved, we add α i -γ -1 copies of our i-block erasing from them the possible multiples of τ and related bars, as well as the → (if α i -γ -1 < 0 both the whole i-block and the → have to be deleted).

(b2) Otherwise we again consider the i-blocks of the i-bars of F , distinguishing three possibilities for each i-block H.

1. The i-degree of the terms over H is smaller then α i and H is not followed by an →. In this case, no term over H is multiple of τ as its i-degree is too small, so H does not have to be modified.

2. The i-degree γ of the terms over H is smaller than α i , but H is followed by an →. In this case we remove the arrow and we make α i -γ copies of H putting an → on the lower right-hand corner of the last copy H. By construction, the terms lying above H have α i as i-degree, so the possible multiples of τ should lie over it. We then compute max( τ

x α i i x α h h
), repeating (b) for H and

τ x α i i x α h h
, until we reach min(τ ) (and we apply (b1) for it).

3. The i-degree of the terms over H is greater or equal than α i . In this case computing max( τ

x α i i x α h h
), we repeat the last part of 2.

We show that for each τ ∈ G[h], steps (a),(b) ensure that the Bar Code picture we obtain does not contain τ . If τ is a pure power of x h , by (a) clearly the Bar Code picture we obtain does not contain τ (as we have deleted the whole F ). If τ is not a pure power of x h , step (b) essentially checks whether for each variable x i < x h , such that x i | τ , it can be that an i-degree is greater or equal than α i and deletes all the possible elements satisfying this condition.

At this point, the only possible multiples σ of τ that could appear in the Bar Code picture we drew treating τ are such that max(σ) = x h and deg h (σ) = α h (up to this moment there does not appear in the picture neither terms containing the variables greater than x h nor terms with maximal variable x h and deg h greater than α h ). If τ were a pure x h -power we would have deleted all the F block (and so all the multiples of τ w.r.t. x 1 , ..., x h ) by (a). If τ were not a pure x h -power by (b) we would have deleted inside F all the terms having exponents greater or equal to those of τ w.r.t. x 1 , ..., x h . So no σ with τ | σ, max(σ) = x h and deg h (σ) = α h appears in the Bar Code picture obtained up to τ .

Possible multiples σ of τ with either max(σ) > x h or deg h (σ) > α h should arise from terms of G(J) greater than τ . Let τ be the term in G(J) next to τ and let H be the last H-block we got from τ , all of whose terms have x h as maximal variable.

We distinguish three possibilities according to the part of the Bar Code we have to copy:

1. the last h-block H a finite number of times; 2. the whole Bar Code (i.e. we are constructing the first (h + 1)-block);

a sub-Bar Code ending with an →.

As for 1 we are adding h-blocks, incrementing the x h -exponents of the involved terms keeping the other exponents fixed: this way we cannot get multiples of τ since the x i -exponents i = 1, ..., h -1 are too small.

As for 2 we are introducing (h+1)-blocks incrementing the x h+1 exponents of the involved terms keeping fixed the exponents of x 1 , ..., x h and again we cannot get multiples of τ .

As for 3 we are copying a sub-Bar Code ending with an →. Since we have already seen how the exponents of x h , x h+1 can increase (respectively in 1 and 2), we know that our arrow must refer to an i-block with i = 1, ..., h -1. Increasing the x i -exponents again we must distinguish whether the i-block we are manipulating is a copy of something inside H (in which case some exponent of the variables smaller than x h is too little) or not (this means that it lays on an h-block with x h -exponent smaller than α h ).

Up to now we have seen that no terms in T(J) can appear in the Bar Code picture we are drawing. Finally, we show that each τ ∈ N(J) actually appears in the Bar Code picture.

We know that 1 actually appears, this implies that for each i-block the leftmost term over it does not contain variables smaller than x i .

Let τ ∈ N(J) and let max(τ ) = x h . By construction if τ belongs to the Bar Code picture it must lie over the first h + 1, ..., n bar. Let then α h = deg h (τ ) and let β be the maximal h-degree of terms of the first (h + 1)-bar (so that the last h-block we drew has an → or x β+1 h ∈ G(J)). Two possibilities can arise:

• α h ≤ β: we move to the h-bar corresponding to α h and look what happens for the [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF], thus after the last h-block there is an arrow. So there is σ ∈ N(J) with deg h (σ) = β and if σ is represented in N(J) also τ does. We look then for σ inductively on the variables.

x h-1 -exponent; • α h > β means that x β+1 h / ∈ G(J)
Clearly if we have an arrow in the inductive step we do not have a pure power but also x α h h and the intermediate variables which have already been fixed [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF].

Let us see some significant examples.

Example 5.4.3. Let J = (x 2 2 x 3 ) k[x 1 , x 2 , x 3 ]
. Assume we have computed the Bar Code B 2 of the terms divided only by x 1 and x 2 , underlining B 2 by a first 3-bar. We have:

0 1 2 3 1 → → Consider G(J) \ (G(J) ∩ T [2]
). Since it is not empty, we deal with its only element τ = x 2 2 x 3 . We have deg 3 (τ ) = 1, so we make only one copy of the first 3-block and we get:

0 1 2 3 1 x 3 → → → → Now, x 2 = max( τ x3 ) = min(τ )
, so we perform as in (b1), getting:

0 1 2 3 1 x 3 x 2 x 3 → → → →
Since there are no pure powers of x 3 , we finally get:

0 1 2 3 1 x 3 x 2 x 3 → → → → → Example 5.4.4. Let J = (x 1 x 2 x 3 ) k[x 1 , x 2 , x 3 ].
The first two steps are the same as in example 5.4.3 so we have:

0 1 2 3 1 x 3 → → → → Then, since max( τ x3 ) = x 2 = min(x 1 x 2 x 3 )
we first draw:

0 1 2 3 1 x 3 x 2 x 3 → → → → →
and finally, dealing with x 1 = min(τ ), we get the final picture:

0 1 2 3 1 x 3 x 2 x 3 → → → → →
Given a Bar Code B, we naturally extend to infinity the concept of j-length. The only difference is the presence of →: if, over an (i + 1)-bar C there are the i-bars A 1 , ..., A k and after A k → occurs, then l i (C) = ∞.

Also for infinite Bar Codes we can define the analogous of rules Bbc1 and Bc2, in order to associate to them infinite sets of terms. The only difference is again represented by →, in this case we write down as many terms as the 1 bars really drawn in the diagram, performing the same Bbc1 and Bc2 as in the finite case, so disregarding →.

Again, the problem of admissibility arises, but it can be solved exactly as in the finite case, exploiting the extension to infinity of the length functions. 

→

We have l 2 (A

(3) 1 ) = ∞, l 2 (A (3) 2 ) = 2.
If we apply Bbc1, Bc2 we get

1 x 1 x 2 x 3 x 1 x 3 x 2 x 3 → 1 1 x 2 x 3 x 3 x 2 x 3 1 1 1 x 3 x 3 x 3 so M B = {1, x 1 , x 3 , x 1 x 3 , x 2 x 3 } ∪ {x m 2 , m ≥ 1}.
Such a set is an order ideal and actually B passes both the admissibility tests generalized to infinity. 

As for the finite case, we can read the (infinite) star set F N directly from the Bar-Code.

First of all, we consider the holes between two bars, not filled by → and we proceed as in the finite case (computing the P x_(_) 's of the last term before the hole) and we do the same also for the bars at the end of a line, if there is not the symbol →.

The obtained terms belong to F N for the same reasons as for finite Bar Codes and we call them finite terms. Proposition 5.4.9. With the notation above, the star set F N consists of the terms of the form

τ x αj 1 j1 • • • x αj l j l , α ji ≥ 0,
where:

• τ is a finite term in the h-th bar (h ∈ {1, ..., n}); • x ji , j i > h, s.t. on the j j -bar, under the star corresponding to τ , there is the symbol "→".

Proof:

In what follows, we denote by J the monomial ideal such that N = N(J). If τ is a finite term, it belongs to F N by 5.3.3. If we consider a finite term x k ω ∈ F N , min(x k ω) = x k and we suppose to have the symbol → on a hole in the x l -line (l > k) under the star corresponding to x k ω ∈ F N , we get that ωx m l ∈ N for each m and x k ωx n l ∈ J, being a multiple of x k ω. This implies x k ωx m l ∈ F N for each m. This holds also in the case we have more than one variable displaying → under a finite term.

The only difference is that we can increase the exponent of each of these variables.

Consider now x

k ω ∈ F N , min(x k ω) = x k .
If it is a finite term we have nothing to prove. Suppose then that x k ω is not a finite term. This means that ω ∈ N is represented in the Bar Code in the repetition induced by → placed on one or more than one variable greater than x k . Then, there is ω ∈ N, i.e. the term followed by the symbols →, obtained dividing it by these variables. The term x k ω is a finite term, so we can conclude. 

= (x 1 x 3 , x 2 x 2 3 ) k[x 1 , x 2 , x 3 ]. 0 1 2 3 1 x 3 x 2 3 → → → → We get F(J) = {x 1 x m 2 x 3 , m ≥ 0} ∪ {x 1 x l 3 , l ≥ 2} ∪ {x 2 x k 3 , k ≥ 2}.
Example 5.4.11. For the monomial ideal

J = (x 2 , x 2 3 ) k[x 1 , x 2 , x 3 ] we have 0 1 2 3 1 x 3 → →
The star set is F N = {x 2 , x 2 x 3 , x 2 3 }. We point out that in those case the star set is finite, even if the Groebner escalier is infinite.

How to encode a Bar Code?

Given a finite set of terms M = {τ 1 , ..., τ m } ⊆ T , we have to face the problem of encoding a Bar Code in a computer. Indeed there are differences between the visual representation one can give to data and the way a computer stores them in memory.

The most suitable data structure which can be used to encode a Bar Code is the trie structure.

More precisely, we label the root with the set M , that we suppose, as usual, ordered w.r.t. lex. Each edge adjacent to the root represents an increasing P xn w.r.t. lex and we label each node at level 1 with the sets of terms sharing the same P xn 's. Continuing this way with x n-1 , ..., x 1 we get a trie in which the terms are arranged w.r.t. their P xi 's, grouping together at level 1 ≤ i ≤ n the ones whose P xi 's are the same.

Essentially, each edge represents a bar: the edges connecting level 0 to level 1 are the n-bars, the ones connecting level 1 to level 2 are the (n -1)-bars and so on. This way, reading information from a Bar Code becomes the same as reading information from a trie.

Example 5.5.1. For

M = {x 1 , x 3 1 , x 2 x 3 , x 2 2 x 3 , x 5 3 } ⊆ k[x 1 , x 2 , x 3 ],
we have:

x 1 x 3 1 x 2 x 3 x 2 2 x 3 x 5 3 x 1 x 3 1 x 2 x 3 x 2 2 x 3 x 5 3 1 1 x 2 x 3 x 2 2 x 3 x 5 3 1 1 x 3 x 3 x 5 3
so the Bar Code is:

x 1 x 3 1 x 2 x 3 x 2 2 x 3 x 5 3 0 1 2 3
and we encode it as

M {x 1 , x 3 1 } {x 2 x 3 , x 2 2 x 3 } {x 5 3 } {x 1 , x 3 1 } {x 2 x 3 } {x 2 2 x 3 } {x 5 3 } {x 1 } {x 3 1 } {x 2 x 3 } {x 2 2 x 3 } {x 5 3 } 1 x3 x 5 3 1 x2x3 x 2 2 x3 x 5 3 x1 x 3 1 x2x3 x 2 2 x3 x 5 3
As seen in description 5.2.5, we have to compute the P x_ (_) of each τ j ∈ M, j = 1, ..., m and τ j , τ j+1 lie over the same i-bar if P xi (τ j ) = P xi (τ j+1 ), for j = 1, ..., m -1, i = 1, ..., n.

Since M is ordered w.r.t. lex, thus possible repeated P _ (_) are adjacent, we can perform the construction as follows:

• read the x n exponents and arrange the terms into the x n -ranges, allocating the first level of the trie;

• for each node in the trie, read the x n-1 exponents and allocate the second level;

• repeat until x 1 is reached.

Such an encoding has complexity O(nm), since, for each τ j ∈ M, j = 1, ..., m we only have to read the exponents, one by one. Now we discuss the next item, i.e. how to encode the Bar Code picture, adding the stars.

Since the bars are in correspondence with the edges in the trie, the construction we perform to settle the stars, costs computationally speaking, as attaching a new node to each node of level 0, ..., n -1, so it is O(nr), where r + 1 is the maximal degree of a node in the trie.

The encoding of an infinite Bar Code is similar, but we label only the edges followed by → with an R, meaning that the corresponding bar (and the whole subtree depending on it) is repeated infinite times.

For the complexity of an infinite Bar Code, we notice that we have to deal at most with terms of degree d, where d is the sum of the maximal degrees of x 1 , ..., x n in the terms of G(J) and we deal with them at most once for each variable.

A Bar-Code algorithm for a finite set of distinct points.

In this section, we describe how to compute the Groebner escalier N of the ideal I(X) of a finite set of distinct points X, setting a biunivocal correspondence between such points and the elements of N.

As explained in chapter 1, there are several algorithms dealing with this problem, such as, for example, Cerlienco-Mureddu Correspondence and the Lex Game.

The most important feature of Cerlienco-Mureddu Correspondence is its iterativity on the elements of X, whereas the Lex Game (as the other methods described in chapter 1) is faster then Cerlienco-Mureddu algorithm but, requiring some preprocessing on X, it is not iterative.

The algorithm developed here, places itself halfway between the Cerlienco-Mureddu Correspondence and the other methods. Indeed, our algorithm maintains Cerlienco-Mureddu's iterativity but, thanks to the B-C structure, it shares some facilities with the Lex Game.

Let us consider a set X = {P 1 , ..., P S } ⊆ k n , P i = (a i1 , ..., a in ), for i = 1, ..., S and define N(i) := N(I({P 1 , ..., P i })) = {τ 1 , ..., τ i }, B(i) = B N(i) and X i = {P 1 , ..., P i }.

First of all, we recall that

|N(S)| = |N (X)| = |X| = S.
We can associate a trie T(X) to the set X. Such a trie is constructed iteratively on the points of X and ht(T(X)) = n is the number of coordinates of each point.

The edges are labeled with the coordinates of the points. The root is labeled with the set {1, ..., S}, whereas a node at level l is labeled by the set {α 1 , ..., α h }, α 1 < ... < α h , where P α1 , ..., P α h ∈ X are the points whose first l coordinates are equal to the ones identified by the edges in the path from the root to the considered node.

Example 5.6.1. Given the set X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}, we display here the construction of T(X).

We start with P 1 = (1, 0, 0), associating to it T(X 1 ):

{1} {1} {1} {1} 1 0 0
The second point P 2 = (0, 1, 0) has no common coordinates with P 1 , so T(X 2 ) is The sets labeling the nodes correspond to the classes Σ i , i = 0, ..., n in the Lex Game algorithm and in the Jumping algorithm but in this case they are not ordered w.r.t. any criterion. Indeed, their order depends only on the order of the elements in X.

{1, 2} {1} 
Example 5.6.2. Take the set X of example 5.6.1, but order the points in this way: X = {P 2 , P 1 , P 3 , P 4 }.

For the set ordered this way, we get

{2, 1, 3, 4} {2} {1, 3, 4} {2} {1, 4} {3} {2} {1} {4} {3} 0 1 1 0 1 0 0 3 2
The trie we constructed and the Bar Code are the main tools for our algorithm.

Let us explain the whole construction for X = {P 1 , ..., P S }.

For S = 1 we construct T(X 1 ) and we set N(1) = {1}. The B(1) displayed below is the associated B-C:

1 . . . x 1 xn
The above construction for i = 1 has to be considered as the base step for the algorithm.

This step is correct since, if the given set is the singleton {P 1 }, the associated ideal is the maximal ideal I({P 1 }) = (x 1 -a 1,1 , ..., x n -a 1,n ) and so the Groebner escalier is clearly N(1) = {1}.

We construct N inductively on i = 2, ..., S, associating a term τ i to each P i , through the following steps. ] 3 .

Construct T(X i ).

3. Compute the maximal integer s, such that Π s-1 (P i , X) = ∅, i.e. the level of the trie in which the path in T (X i ) corresponding to P i forks4 .

4. Since τ i will then belong to R(s + 1, 1), point to its corresponding bar, namely A (s+1) 1

.

5. Let L be the subset of the set of terms over A (s+1) 1

, consisting of all the terms τ j corresponding to points P j such that π s-1 (P i ) = π s-1 (P j ). Then compute τ l = M ax Lex (L)

and keep track of the value l, calling it the s -1 antecedent of P i . (c) read the path of P i in the coordinate trie, from level s to level 0, looking for the first node f whose label contains at least an element α j (index of a point in Y) in addition to i: f + 1 is the new σ-value.

Browsing the elements of the node's label keeping the left, the f -antecedent of P i is its nearest element not sharing more than f coordinates with any of the remaining points of the label (so we are in the first s -1, ..., f + 2 bar).

(d) Repeat the steps 6 -8, until level 0 has been reached. 9. We obtain N(i) = {τ 1 , ..., τ i } and B(i), the associated B-C. If i < S increment it by one and repeat all. Otherwise quit.

Example 5.6.3. Consider the set: X = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 2, 3), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 2, 3)} ⊆ R 4 .

The first point, P 1 = (0, 0, 0, 0), corresponds to τ 1 = 1:

{1} {1} {1} {1} {1} 0 0 0 0 1 x 1 x 2 x 3 x 4
We set D = ∅ and we proceed with P 2 = (0, 0, 0, 1).

{1, 2} {1, 2} {1, 2} {1, 2} {1} {2} 0 0 0 0 1
The σ-value is s = 4, whereas the B-C antecedent is clearly P 1 . Since there is not a x 4 -bar after the one over which τ 1 lies, we construct it, setting τ 2 = x 4 . The Bar Code turns out to be:

x 1

x 2

x 3

x 4 1 x 4

For P 3 = (0, 1, 2, 3) we have

{1, 2, 3} {1, 2, 3} {1, 2} {3} {1, 2} {3} {1} {2} {3} 0 0 0 0 1 1 2 3
and s = 2, so the term τ 3 we have to determine will lie on the first x 3 -bar of the first x 4 -bar.

The B-C antecedent is then P 1 and we construct a new x 2 -bar, getting τ 3 = x 2 .

x 1

x 2

x 3

x 4

1 x 2 x 4
For P 4 = (1, 0, 0, 0), s = 1.

{1, 2, 3, 4} {1, 2, 3} {4} {1, 2} {3} {4} {1, 2} {3} {4} {1} {2} {3} {4} 0 0 0 0 1 1 2 3 1 0 0 0
The B-C antecedent is P 1 and we construct a new x 1 -bar, so τ 4 = x 1 .

1 x 1 x 2 x 4 x 1 x 2 x 3
x 4

For P 5 = (1, 0, 0, 1), s = 4 and l = 4: In this recursive step, we have s = 1, l = 2, then τ 5 = x 1 x 4 .

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {3} {4, 5} {1, 2} {3} 
1 x 1 x 2 x 4 x 1 x 4 x 1 x 2 x 3 x 4
Finally, we deal with P 6 = (1, 1, 2, 3), for which s = 2 and l = 4.

{1, 2, 3, 4, 5, 6} The Groebner escalier is N = {1, x 1 , x 2 , x 1 x 2 , x 4 , x 1 x 4 } and the Bar Code is The accuracy of the algorithm follows from the one of Cerlienco-Mureddu correspondence, since we are essentially following the same line, exploiting the information we obtain at each step.

{1, 2, 3} {4, 5, 6} {1, 2} {3} {4, 5} {6} {1, 2} {3} 
1 x 1 x 2 x 1 x 2 x 4 x 1 x 4 x 1 x 2 x 3
The algorithm terminates since it performs a loop on |X| and reads the trie, whose levels are n and these numbers are finite.

Let us now deal with the computational complexity of the algorithm.

As seen in chapter 2, the complexity of the original Lex Game algorithm is:

O(nS + S min(S, nr)),
where S is the number of points in the given finite set X and n is the number of variables in the ring, i.e. the complexity of the (iterative) construction of the point trie, since the construction of the lex trie is O(nS).

Let us now examine the differences between our algorithm and the Lex Game.

Fix a point P j , j = 1. In step j, we first compute the analogous of Cerlienco-Mureddu σ-value s and of the σ-antecedent; we exploit them in order to settle the exponent of the maximal variable in the associated term τ j .

Such a step is totally equivalent to one of the iterative steps in the point trie construction, so, for each point, we will have O(n + min(S, nr)).

Then we have the inductive step, that is essentially the composition of the following steps:

1. take the s bar containing τ j (which has been fixed in the first step) and restrict to the corresponding points in the point trie: we get a reduced point trie (RPT from now on). This goal is achieved exploiting the list D, whose nonempty entries are only the ones associated to the paths we are restricting to;

2. find the lowest level f + 1 in the RPT in which P j forks, finding the σ-value and the f -antecedent;

This settles the penultimate variable appearing in τ j . We have to repeat the above two steps for each variable occurring in τ j .

By the way, we have to point out that if we are in an x i -bar different from the first (and this is the case for each recursion step), we need to have at least half of the P 1 , ..., P j-1 in the first bar, by the admissibility for Bar-Codes. This means that the RTP we construct contains at most half of the points in the first recursion step, a quarter of the points in the second and so on.

We remind also that each level is examined twice.

This leads to the following complexity for P j : O(nr + 2 n i=1 S 2 i ), where r is the maximal number of forks depending on a node. We can conclude that the complexity for a single point is O(n + min(S, nr) + nr + S) = O(nr + S + min(S, nr)) Now, we have to deal with S points, so we get O(nrS + S 2 + S min(S, nr)).

Clearly O(nrS + S 2 + S min(S, nr)) ≥ O(nS + S min(S, nr)) and it is due to having an iterative construction.

The complexity of our algorithm is strictly inferior than the complexity O(n 2 S 2 ) of the original Cerlienco-Mureddu algorithm, where the main advantage was exactly iterativity.

The star set and the monomial basis.

As explained in section 5.2, we can associate the star set F N to each B-C, corresponding to an order ideal N.

In general, F N is not the minimal set of generators for the monomial ideal I whose Groebner escalier is N. In remark 5.3.4, we showed that G(I) ⊆ F N ⊆ B(I).

First of all, we explain how F N is modified by the insertion of a new element in N.

Consider a finite set of distinct points X = {P 1 , ..., P S-1 }.

Suppose we have found the Groebner escalier of I(X ), namely N = {τ 1 , ..., τ S-1 } and suppose the Bar-Code to have been drawn. Moreover, we suppose F N to be known, so we have already associated the star set to the Bar Code. We add to X a new point P S , obtaining the set X = {P 1 , ..., P S }.

We explained before that we can get the term τ S corresponding to the new point P S exploiting the Bar Code. We obtain this way the Groebner escalier associated to I(X), namely N = {τ 1 , ..., τ S } and we modify consequently the Bar Code.

Let x h = min(τ S ) be the minimal variable appearing in the new term τ S .

The Bar-Code is modified this way:

• for each x i , i ≤ h, we add a new x i -bar under τ S ;

• for each x i , i > h we extend the x i -bar under τ S .

This implies that we have to modify only the stars lying on lines corresponding to the vari-

ables x i , i ≤ h.
Since setting a star on the i-th line means looking at the "holes" in the (i + 1)-th line, we have to look at lines 2, ..., h + 1.

More precisely, we proceed this way.

1 Look at the (h+1)-bar lying under τ S . Since we added a new h-bar, we have to remove the star before the h-bar corresponding to τ S , replacing it with a star after that bar.

2 We add a star after each 1, ..., h -1 bar lying under τ S .

We obtain this way the star set F N . If we want to obtain the monomial basis G(I(X)), we only have to check whether the new inserted elements are multiple of the previous terms in the same bar.

The construction above bases on the following Proposition 5.7.1. Let N = N(I), |N| < ∞ be the Groebner escalier associated to a zerodimensional radical ideal and let F N be the corresponding (finite) star set.

Given τ ∈ G(I), we denote by N = N(I) ∪ {τ } the order ideal obtained by adding τ to N, that is naturally associated to a monomial ideal J, so that N = N(J). It holds:

F N = (F N \ {τ }) ∪ {x j τ, x j ≤ min(τ )}.
Proof: By remark 5.3.4, we have G(J) ⊆ F N ⊆ B(J) and, by definition of border set, B(J) = (B(I) \ {τ }) ∪ {x j τ, j = 1, ..., n}.

Clearly, if x j ≤ min(τ ) then We will see in chapter 6 that the set F N represents the leading set for a lexicographical involutive basis. Let us consider an example.

Example 5.7.2. We start with one single point in R 4 , namely P 1 = (0, 0, 0, 0). We set

I 1 = I({P 1 }) and N 1 = N(I 1 ).
Applying the Bar-Code algorithm for the Groebner escalier, we get N 1 = {1} and the diagram below:

0 1 2 3 4 1 * * * *
The stars (read from the top to the bottom) correspond to the terms x 1 , x 2 , x 3 , x 4 .

We get

F N1 = G(I 1 ) = {x 1 , x 2 , x 3 , x 4 }.
We add a new point P 2 = (0, 1, 0, 0) and we set I 2 = I({P 2 }) and N 2 = N(I 2 ).

We get N 2 = {1, τ 2 = x 2 }, with the Bar-Code below:

0 1 2 3 4 1 x 2 * * * * * *
The red stars are the modified ones, whereas the blue one is the one we delete.

We get

F N2 = {x 1 , x 1 x 2 , x 2 2 , x 3 , x 4 } and, being x | xy, G(I 2 ) = {x 1 , x 2 2 , x 3 , x 4 }.
Setting P 3 = (1, 0, 0, 0) and

I 3 = I({P 3 }), we get N 3 = N(I 3 ) = {1, τ 2 , τ 3 = x 1 }.
The associated Bar-Code is:

0 1 2 3 4 1 x 1 x 2 * * * * * *
In this case the star set coincides with the monomial basis, having:

F N3 = G(I 3 ) = {x 2 1 , x 1 x 2 , x 2 
2 , x 3 , x 4 }. We consider P 4 = (1, 0, 1, 0) and we define:

I 4 = I({P 1 , P 2 , P 3 , P 4 }).
The Groebner escalier is

N 4 = N(I 4 ) = {1, τ 2 , τ 3 , τ 4 = x 4 }. 0 1 2 3 4 1 x 1 x 2 x 3 * * * * * * * *
Removing the blue star and putting on the red one, we get:

F N4 = G(I 4 ) = {x 2 1 , x 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 , x 4 }
Considered P 5 = (1, 1, 0, 0), we have: I 5 = I({P 1 , P 2 , P 3 , P 4 , P 5 }) and

N 5 = N(I 5 ) = {1, τ 2 , τ 3 , τ 4 , τ 5 = x 1 x 2 }.
The associated Bar-Code is:

0 1 2 3 4 1 x 1 x 2 x 1 x 2 x 3 * * * * * * * *
Removing the blue star and adding the red one, we get

F N5 = {x 2 1 , x 2 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 
3 , x 4 }. This time, the star set does not coincide with the monomial basis, namely

G(I 5 ) = {x 2 1 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 , x 4 }.
The point P 6 = (1, 0, 0, 1) corresponds to τ 6 = t, so I 6 = I({P 1 , P 2 , P 3 , P 4 , P 5 , P 6 }) and N 6 = N(I 6 ) = {1, τ 2 , τ 3 , τ 4 , τ 5 , τ 6 } :

0 1 2 3 4 1 x 1 x 2 x 1 x 2 x 3 x 4 * * * * * * * * * * *
Removing the blue star and adding the red ones, we get

F N6 = {x 2 1 , x 2 1 x 2 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }.
The monomial basis is

G(I 6 ) = {x 2 1 , x 2 2 , x 1 x 3 , x 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }.
We add P 7 = (0, 0, 1, 0) and we have I 7 = I({P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 }),

N 7 = N(I 7 ) = {1, τ 2 , τ 3 , τ 4 , τ 5 , τ 6 , τ 7 = x 1 x 3 }.
The Bar-Code is:

0 1 2 3 4 1 x 1 x 2 x 1 x 2 x 3 x 1 x 3 x 4 * * * * * * * * * * *
We obtain

F N7 = {x 2 1 , x 2 1 x 2 , x 2 2 , (x 2 1 x 3 ), x 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }
and

G(I 7 ) = {x 2 1 , x 2 2 , (x 2 1 x 3 ), x 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }.
Finally, for P 8 = (1, 1, 1, 0), we set I 8 = I({P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 , P 8 }) and

N 7 = N(I 7 ) = {1, τ 2 , τ 3 , τ 4 , τ 5 , τ 6 , τ 7 , τ 8 = x 2 x 3 }.
The Bar-Code is displayed below:

0 1 2 3 4 1 x 1 x 2 x 1 x 2 x 3 x 1 x 3 x 2 x 3 x 4 * * * * * * * * * * * *
We finally get

F N8 = {x 2 1 , x 2 1 x 2 , x 2 2 , x 2 1 x 3 , x 1 x 2 x 3 , x 2 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }, and 
G(I 8 ) = {x 2 1 , x 2 2 , x 1 x 2 x 3 , x 2 3 , x 1 x 4 , x 2 x 4 , x 3 x 4 , x 2 4 }.
Remark 5.7.3. Let B be a B-C and suppose the above steps have been performed. If we read the terms corresponding to the remaining stars proceeding vertically, from the leftmost star to the rightmost one, we obtain the elements of G(I) ordered w.r.t <, simply by construction.

Indeed, given τ j = x α1 1 • • • x αn n , it is clearly obvious that

x i P xi (τ j ) = x αi+1 i x αi+1 i+1 • • • x αn n < x αi+1+1 i+1 x αi+1 i+2 • • • x αn n = x i+1 P xi+1 (τ j ),
so the lex inequality holds for terms corresponding to superimposed stars. Now, let x h be the maximal variable for which the h-bar underlying τ j is followed by a star.

This means that the last bar breaking after τ j is the underlying (h + 1)-bar. We have then to compare x 1 P x1 (τ j+l ), l > 0 and x h P x h (τ j ). The terms over the subsequent (h + 1)-bar, w.r.t. τ j , have either a bigger (h + 1)-degree or a bigger k-degree, for k > h + 1. From this fact we can conclude that x h P x h (τ j ) < x 1 P x1 (τ j+l ).

A Bar Code version of the Axis of Evil algorithm.

In this section, we develop a third version of the Axis of Evil algorithm. Such a version will be iterative on the elements of the given finite set X = {P 1 , ..., P S } of distinct points and it will exploit the Bar Code structure in order to give the Axis of Evil factorization for:

• a lexicographical involutive basis I(X);

• a minimal lexicographical Groebner basis of I(X).

If B is the B-C corresponding to N = N(I(X)), we associate a polynomial to each bar in B in such a way that, if p (i) j is the polynomial associated to a bar A (i) j in the i-th line, i = 1, ..., n; j = 1, ..., |µ(i)|, then T(p (i) j ) = x i . We also show how to multiply the obtained factors in order to get the factorized bases J S and G S for I(X).

We give first the main algorithm, supposing the following subroutines to be known:

• T p(l, B, τ i ), which is devoted to the computations of triangular polynomials • DiagReading(B, τ i ) i.e. the one producing the polynomials of the required bases.

Consider initially the case S = 1. As explained in section 5.6, the B-C associated to a single point is naturally: We define the triangular polynomial q 1 = 1 and n sets X 1 = {x 1 -a 1,1 }; ....; X n = {x n -a 1,n }, one for each variable in the polynomial ring. The required polynomials are the elements of X = n i=1 X i . We notice that G 1 = J 1 = {x 1 -a 1,1 , ..., x n -a 1,n } is the reduced Groebner basis of I({P 1 }) and it coincides with the involutive basis.

These computations constitute the base step for our algorithm.

Consider now the case S > 1. For each i = 2, ..., S perform the following steps.

We compute the term τ

i = x α1 1 • • • x αn n ∈ N(i)
, associated to P i , and B(i) = B N(i) , the associated B-C, by the algorithm developed in section 5.6.

Compute the triangular polynomial q

i = T p(n + 1, B(i), τ i ).
3. As explained in remark 5.6.4, for each l ∈ {1, ..., n}, only one l-bar, say A (l) j l , is modified by the algorithm of section 5.6. We have to make some small adjustments only on the polynomials corresponding to the modified bars, i.e. p j1 , ..., p jn , maintaining the other ones unchanged. More precisely, if min(τ i ) = x j , max(τ i ) = x h , j, h ≤ n we proceed as follows:

(a) for each l ∈ {1, ..., j}, compute the polynomial x l -a i,l and insert it in X l in the position corresponding to the one of the added bar in the l-th line;

(b) for each l ∈ j + 1, ..., h, compute p j l -ev Pi (p j l )T p(l, B(i), τ i );

(c) for each l ∈ h + 1, ..., n, compute p j l -ev Pi (p j l )T p(n + 1, B(i), τ i ).

When i = S , if we want to compute the minimal Groebner basis, then compute

G(I(X)) by the algorithm of section 5.7 and, for each σ ∈ G(I(X)) perform

DiagReading(B(i), σ). The elements of X j , j = 1, ..., n are the polynomials of theorem 3.4.1, while the output produced by DiagReading(B(i), σ) is a minimal Groebner basis for I(X).

If the involutive basis is required, we proceed the same way with F(I(X)) instead of G(I(X)).

We explain now the procedure T p(l, B, τ i ), which computes the l-th triangular polynomial, for l = 2, ..., n + 1.

1. For l = 2, ..., n take the l-bar lying under τ i , say A 

f i ∈ G i-1 such that T (f i ) = τ i ; 4. Set q i = 1 ev P i (fi) f i
Lastly, we examine the procedure DiagReading(B, τ i ), whose task is to multiply conveniently the polynomials in X j , j = 1, ..., n, in order to produce a polynomial

f i ∈ G i-1 such that T (f i ) = τ i = x α1 1 • • • x αn n . 1. Compute f (n) i = p (n) 1 • • • p (n)
αn , where p

(n) 1 , ..., p (n) 
αn are the polynomials in X n corresponding to the bars

A (n) 1 , ..., A (n) αn . 2. Let A (n-1) l the leftmost bar lying over A (n+1) αn . Then f (n-1) i = p (n-1) l • • • p (n-1)
αn-1 , where p 3. Repeat step (2) for n -2, n -3, ..., 1.

f

i = f (n) i • f (n-1) i • • • f (1) i .
Remark 5.8.1. The subroutine T p(l, B, τ i ) produces interpolators à la Moeller. It essentially computes the polynomial of the minimal Groebner basis G i-1 , whose leading term is τ i , without computing or storing the whole G i-1 . Thanks to the B-C structure and to the procedure DiagReading(B, τ i ), we can exploit the (previously computed) polynomials of X j , j = 1, ..., n in order to get the required interpolators.

The algorithm explained above ensures the existence of the polynomials of the form stated in theorem 3.4.1.

We prove now the following Proposition 5.8.2. With the above notation, we have

I := ({DiagReading(B, σ) | σ ∈ G(I(X))}) = I(X).
Proof: Consider the polynomial γ τ associated to the term τ = x α1 1 • • • x αn n ∈ G(I). We prove that it vanishes on P µ ∈ X, corresponding to the term µ = x β1 1 • • • x βn n ∈ N(I). Since τ ∈ G(I) and µ ∈ N(I), τ = µ. Therefore, there are only two possibilities: 1) µ < Lex τ . In this case the polynomial obviously vanishes by DiagReading, since we pick a bar under µ and the polynomial corresponding to that bar has already been interpolated at the point.

2) µ > Lex τ . This time ∃i ∈ {1, ..., n} such that β i > α i , β j = α j for each j ∈ {i + 1, ..., n}.

By Cerlienco-Mureddu correspondence, ∃µ

:= x β 1 1 • • • x β n n ∈ N(I) such that: a. Φ -1 (µ ) = P µ with π i-1 (P µ ) = π i-1 (P µ ); b. β h = α h , ∀h ∈ {i, i + 1, ..., n}.
If µ < τ , then, as in 1, γ τ vanishes in P µ and the linear factor making our polynomial vanish in P µ is computed using at most the first i -1 coordinates of P µ , so that γ τ turns out to vanish also in P µ .

If µ > τ , we can repeat with µ instead of µ and conclude by induction.

Example 5.8.3. Let us consider the set X = {(0, 0, 0), (1, 2, 3), (1, 4, 5), (0, 1, 4), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]4,[START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], (0, 0, 2), (0, 2, 2)}.

Take first P 1 = (0, 0, 0), for which τ 1 = 1, then N(1) = {1} and B(1) is the B-C displayed below.

x 1

x 2 x 3 1 We have q 1 = 1 and X 1 = {x 1 }, X 2 = {x 2 }, X 3 = {x 3 }. Consider then P 2 = (1, 2, 3), for which τ 2 = x 1 , N(2) = {1, x 1 } and B(2) is 1 x 1 x 1 x 2 x 3
The diagonal reading is trivial and it leads to q 2 = x 1 . The factors are: X 1 = {x 1 , x 1 -1} to get this set from the X 1 of the previous step, we add the polynomial corresponding to the new bar;

X 2 = {x 2 -2x 1 }, obtained as x 2 -ev P2 (x 2 )q 2 ; X 3 = {x 3 -3x 1 }, i.e. x 3 -ev P2 (x 3 )q 2 .
Take then P 3 = (1, 4, 5). We get τ 2 = x 2 , N(3) = {1, x 1 , x 2 } and q 3 = 1 2 (x 2 -2x 1 ).

1 x 1 x 2 x 1 x 2 x 3
The factors are:

X 1 = {x 1 , x 1 -1, x 1 -1} X 2 = {x 2 -2x 1 , x 2 -4} X 3 = {x 3 -x 2 -x 1 } i.e. (x 3 -3x 1 ) -ev P3 (x 3 -3x 1 )q 3 .
Consider P 4 = (0, 1, 4), which is associated to τ 4 = x 1 x 2 . The current Groebner escalier is N(4) = {1, x 1 , x 2 , x 1 x 2 }, corresponding to the following B(4):

1 x 1 x 2 x 1 x 2 x 1 x 2 x 3
The polynomials in the three variables x 1 , x 2 , x 3 are:

X 1 = {x 1 , x 1 -1, x 1 -1, x 1 }; X 2 = {x 2 -2x 1 , x 2 -4 -3(x 1 -1)}, since T (q 4 ) = x 1 x 2 > x 2 , we compute T p(2, B(4), τ 4 ) = -(x 1 -1); X 3 = {x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 - 1 
)}; being T (q 4 ) = x 1 x 2 < x 3 we do not need to compute another interpolator.

Take then

P 5 = (1, 4, 6), getting τ 5 = x 3 , N(5) = {1, x 1 , x 2 , x 1 x 2 , x 3 } and q 5 = x 3 -x 2 - x 1 + 3(x 2 -2x 1 )(x 1 -1). 1 x 1 x 2 x 1 x 2 x 3 x 1 x 2 x 3
The factors are:

X 1 = {x 1 , x 1 -1, x 1 -1, x 1 , x 1 -1} X 2 = {x 2 -2x 1 , x 2 -4 -3(x 1 -1), x 2 -4} X 3 = {x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1), x 3 -6}.
Take P 6 = (0, 0, 2), associated to τ 6 = x 1 x 3 . The current Groebner escalier is N(6) = {1, x 1 , x 2 , x 1 x 2 , x 3 , x 1 x 3 } and the interpolator is

q 6 = -1 2 (x 1 -1)(x 3 -x 2 -x 1 + 3(x 2 - 2x 1 )(x 1 -1)). 1 x 1 x 2 x 1 x 2 x 3 x 1 x 3 x 1 x 2 x 3
The factors are:

X 1 = {x 1 , x 1 -1, x 1 -1, x 1 , x 1 -1, x 1 } X 2 = {x 2 -2x 1 , x 2 -4 -3(x 1 -1), x 2 -4 -4(x 1 -1)} X 3 = {x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1), x 3 -6 -4(x 1 -1)}; being T (q 6 ) = x 1 x 3 > x 3 ,
we compute q = -(x 1 -1), via the procedure T p(3, B(6), x 1 x 3 ), so restricting to the block containing only A

(1)

5 , A (1) 
6 , A

3 . The last point, P 7 = (0, 2, 2) is associated to τ 7 = x 2 2 , so the final Groebner escalier is

N = N(7) = {1, x 1 , x 2 , x 2 2 , x 1 x 2 , x 3 , x 1 x 3 }. We have q 7 = 1 2 (x 2 -2x 1 )(x 2 -4 -3(x 1 - 1 

)). We compute now the minimal monomial basis

G = {x 2 1 , x 1 x 2 2 , x 3 2 , x 2 x 3 , x 2 3 } and the set F(I) = {x 2 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 2 , x 2 1 x 3 , x 2 x 3 , x 2 3 }. 1 x 1 x 2 x 1 x 2 x 2 2 x 3 x 1 x 3 x 1 x 2 x 3
The factors are:

X 1 = {x 1 , x 1 -1, x 1 -1, x 1 , x 1 , x 1 -1, x 1 } X 2 = {x 2 -2x 1 , x 2 -4 -3(x 1 -1), x 2 -2, x 2 -4 -4(x 1 -1)} X 3 = {x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1)), x 3 -6 -4(x 1 -1)}.
At the end we have

G 7 = {x 1 (x 1 -1), x 1 (x 2 -2x 1 )(x 2 -4 -3(x 1 -1)), (x 2 -2x 1 )(x 2 -4 -3(x 1 -1))(x 2 -2), (x 2 -4 -4(x 1 -1))(x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1))), (x 3 -6 -4(x 1 -1))(x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1)))} and J 7 = {x 1 (x 1 -1), (x 2 -2x 1 )x 1 (x 1 -1), x 1 (x 2 -2x 1 )(x 2 -4 -3(x 1 -1)), (x 2 -2x 1 )(x 2 -4 -3(x 1 -1))(x 2 -2), x 1 (x 1 -1)(x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1))), (x 2 -4 -4(x 1 -1))(x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1))), (x 3 -6 -4(x 1 -1))(x 3 -x 2 -x 1 + 3(x 2 -2x 1 )(x 1 -1) + 3(x 2 -2x 1 )(x 2 -4 -3(x 1 -1)))}

Enumerative combinatorics on strongly stable ideals.

This section is about a possible application of Bar Codes to enumerative combinatorics.

Using the Bar Code structure, we want to approach the quest for an integer bounding the number of some special zerodimensional monomial ideals, called strongly stable ideals, with fixed constant Hilbert polynomial.

We will start to outline a connection between two objects, which appear to be very different and far, namely: a) strongly stable monomial ideals I P; b) integer partitions and plane partitions.

Objects of type a) belong to the field of commutative algebra, whereas those of type b) are related to enumerative combinatorics. Linking them by means of the Bar Code structure of the Groebner escaliers, we will give a bound to the number of zerodimensional strongly stable monomial ideals of a fixed multiplicity.

First of all, we recall the definition of strongly stable ideal. Chapter 6 will deal with strongly stable ideals.

Definition 5.9.1 ([27]). A monomial ideal I P = k[x 1 , ..., x n ] is called strongly stable if, for every term τ ∈ I and pair of variables x i , x j such that x i |τ and x i < x j , then also A first property, useful for the following computations, is that Bar Codes of strongly stable ideals are full.

Lemma 5.9.2. For all strongly stable ideal J P, it holds:

F(J) = {x α ∈ T \ N(J) | x α min(x α ) ∈ N(J)} = G(J),
i.e. all the stars in the associated Bar Code correspond to a term of the monomial basis.

Proof:

The inclusion G(J) ⊆ F(J) holds for any monomial ideal I k[x 1 , ..., x n ] (5.3.4), so we only prove the other one. Actually, it easily comes from the definition of strongly stable ideal. Indeed, consider x α ∈ F(J). We show that all its predecessors belong to the Groebner escalier N(J).

Let x i = min(x α ) and let x j > x i be a variable appearing in x α with nonzero exponent.

By definition x α xi ∈ N(J) and also x α xj = x α xi xi xj ∈ N(J), so we can conclude.

We will see another proof of this fact in chapter 6, while defining stable ideals.

Let us now examine the shape of the Bar Code of a strongly stable ideal, that for short we will call strongly stable Bar Code.

Proposition 5.9.3. Let J k[x 1 , ..., x n ] be a zerodimensional strongly stable monomial ideal, and B := B N(J) the Bar Code associated to its (finite) Groebner escalier.

Fixed a (i + 2)-bar A, for i ∈ {1, ..., n -1}5 , let C 1 , ..., C h be the (i + 1)-bars over A. Then l i (C 1 ) > ... > l i (C h ).

Proof:

In order to prove the assertion, we proceed by contradiction. Since the case l i (C j ) < l i (C l ) for i < l implies that the Bar Code is even not admissible, suppose that l i (C j ) = l i (C l ) for i < l and take τ = x α1 1 • • • x αn n , i.e. the rightmost term lying over C l . Over C l we have α i + 1 i-bars.

By definition of strongly stable ideal, the term

σ = x α1 1 • • • x αi+1 i x αi+1-1 i+1 • • • x αn n ∈ N(J).
But this implies that we should have at least α i + 2 > α i + 1 i-bars over C l and this is a contradiction.

Remark 5.9.4. The condition of proposition 5.9.3 holds for each strongly stable ideal, but there are also non-strongly stable monomial ideals fulfilling them, so the reverse does not hold.

Let us see an example of the problem emphasized in remark 5.9.4.

Example 5.9.5.

Let J = (x 3 1 , x 1 x 2 , x 2 2 , x 2 1 x 3 , x 2 x 3 , x 2 
3 ) k[x 1 , x 2 , x 3 ] (see example 5.3.5). The corresponding Groebner escalier is N = N(J) = {1, x 1 , x 2 1 , x 2 , x 3 , x 1 x 3 } and the associated Bar Code B is displayed in the picture below:

0 1 2 3 1 x1 x 2 1 x2 x3 x1x3 x 3 1 x1x2 x 2 1 x3 x 2 2 x2x3 x 2 3
The bar list of B is (6, 3, 2) and the star set is Anyway, J is not a strongly stable ideal, since xz ∈ N(J), while xy ∈ J.

F N = G(J) = {x 3 1 , x 1 x 2 , x 2 2 , x 2 1 x 3 , x 2 x 3 , x 2 
Remark 5.9.6. Let B be the Bar Code associated to the Groebner escalier N(J) of a zerodimensional strongly stable ideal J.

If we consider the bars

A (i+1) 1 , ..., A (i+1) 
µ(i+1) in the (i + 1)-th line, it is not true in general that l i (A Example 5.9.7. For I = (t 2 , tz, z 2 , ty, zy, y 2 , tx, zx, yx, x 3 ) k[x, y, z, t] the associated B-C is:

0 1 2 3 4 t 2 z 2 zt y 2 yz yt x 3 xy xz xt 1 x x 2 y z t
The ideal I is strongly stable, but we have

2 = l 2 (A (3) 1 ) > l 2 (A (3) 
2 ) = l 2 (A

3 ) = 1.

Example 5.9.8. The monomial ideal I = (z 2 , zy 2 , y 3 , zyx, y 2 x, zx 2 , yx 2 , x 3 ) k[x, y, z] is associated to the Bar Code displayed below

0 1 2 3 z 2 y 3 y 2 z x 3 x 2 y xy 2 x 2 z xyz 1 x x 2 y xy y 2 z xz yz
This monomial ideal is strongly stable, but

l 1 (A (2) 1 ) = 3, l 1 (A (2) 
2 ) = 2, l 1 (A

3 ) = 1, l 1 (A

4 ) = 2 and l 1 (A

5 ) = 1, so the considered lengths are not all in nonincreasing order.

Let us start examining the Bar Code structure of the Groebner esalier for zerodimensional strongly stable ideals, starting from the case of two variables.

First of all, let us look to some examples.

The only strongly stable ideal with affine Hilbert polynomial equal to 1 is the maximal ideal J 1 = (x 1 , x 2 ), whose Bar Code is trivially

0 1 2 1 x 1 x 2
The associated bar list is then (1, 1).

If we examine the strongly stable monomial ideals in two variables with affine Hilbert polynomial equal to 2 we get J 1 = (x 2 1 , x 2 ), whose Bar Code is

0 1 2 1 x 1 x 2 1
x 2

and the associated bar list is (2, 1).

For the affine Hilbert polynomial H _ (t) = 3 we have

J 1 = (x 3 1 , x 2 ) J 2 = (x 2 1 , x 1 x 2 , x 2 
2 ). The Bar Code associated to J 1 is

0 1 2 1 x 1 x 2 1 x 3 1 x 2
and the bar list is (3, 1).

The Bar Code associated to J 2 is

0 1 2 1 x 1 x 2 x 2 1 x 1 x 2 x 2 2
and the bar list is (3, 2).

We summarize in the following table the bar lists of strongly stable ideals corresponding to each H _ (t).

H _ (t) Bar lists Ideals

H _ (t) = 1 (1, 1) (x 1 , x 2 ) H _ (t) = 2 (2, 1) (x 2 1 , x 2 ) H _ (t) = 3 (3, 1), (3, 2) (x 3 1 , x 2 ), (x 2 1 , x 1 x 2 , x 2 2 ) H _ (t) = 4 (4, 1), (4, 2) (x 4 1 , x 2 ), (x 3 1 , x 1 x 2 , x 2 
2 ) H _ (t) = 5

(5, 1), (

(x 5 1 , x 2 ), (x 4 1 , x 1 x 2 , x 2 2 ), (x 3 1 , x 2 1 x 2 , x 5, 2), (5, 2) 
2 ) H _ (t) = 6 (6, 1), (6, 2), (6, 2), (6, 3) (x 6 1 , x 2 ), (

x 5 1 , x 1 x 2 , x 2 2 ), (x 4 1 , x 2 1 x 2 , x 2 2 ), (x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 2 ) • • • • • • • • •
Observing the second column of the table, we can notice some "pattern" in their distributions.

Driven by this pattern, we examine more deeply the Bar code structure of these ideals.

For this purpose, we need the following Definition 5.9.9

([101]). A partition of p ∈ N is a sequence (α 1 , ..., α k ) ∈ N k such that k i=1 α i = p and α 1 ≥ ... ≥ α k
We regard two partitions as identical if they only differ in the number of terminal 0's.

For example (3, 2, 1) = (3, 2, 1, 0, 0).

Informally, we regard a partition α = (α 1 , ..., α k ), say with α k > 0 as a way of writing p as a sum of positive integers, disregarding the order of the summands.

The nonzero terms are called parts of α and we say that α has k parts if

k = |{i, α i > 0}|.
We are interested to the special case α 1 > ... > α k i.e. to integer partitions of p into k distinct parts.

We are now ready to prove the following proposition Proposition 5.9.10. The number of strongly stable Bar Codes for terms in k[x 1 , x 2 ], whose bar list is (p, h), p, h ∈ N, p ≥ h equals the number of integer partitions of p in h distinct parts, namely p = α 1 + ... + α h , α i > 0, i = 1, ..., h.

Proof:

In order to prove the assertion, we want to establish a biunivocal correspondence between B (p,h) := {strongly stable Bar Codes with bar list (p, h)} and

I (p,h) := {(α 1 , ..., α h ) ∈ N h , α 1 > ... > α h , h i=1 α i = p}.
We set then

Ξ : B (p,h) -→ I (p,h) B → (l 1 (A (2) 1 ), ..., l 1 (A (2) h )).
Let B be a strongly stable Bar-Code, whose bar list is (p, h). It is associated to the set of terms

M B = N(J), for J k[x 1 , x 2 ] strongly stable.
The sequence (l 1 (A

1 ), ..., l 1 (A

(2) h )) satisfies l 1 (A (2) 1 ) > ... > l 1 (A (2) 
h ) by proposition 5.9.3 and since |N(J)| = p, then h i=1 l 1 (A (2) i ) = p, so we exactly have an integer partition of p into h distinct parts.

On the other hand, let (α 1 , ..., α h ) ∈ I (p,h) . We construct the (unique) Bar Code B (p,h) associated to this h-tuple, namely a Bar Code formed by h x 2 -bars such that over the first x 2 -bar there lie α 1 x 1 -bars, and so on.

We have to prove that the associated M B is the Groebner escalier N(J) of a strongly stable 6 . By definition 5.9.1, we only have to prove that σ = σx1 x2 ∈ M B , but this is obviously true, since, over the (β 2 -1)-th x 2 -bar it lies at least one x 1 -bar more than the x 1 -bars lying over the β 2 -th x 2 -bar.

ideal J k[x 1 , x 2 ]. Consider σ := x β1 1 x β2 2 ∈ M B , 0 < β 2 < h
We point out that, if H _ (t) = p, the Bar list (p, 1) corresponds to the ideal J = (x p 1 , x 2 ) which is a very particular strongly stable ideal: a lex segment ideal.

More precisely, for each degree i, J is k-spanned by the first H _ (i) terms w.r.t. lex.

The bar list (p, 1) is clearly the one presenting the minimal value for h. Now we should try to understand which is the maximal value for h. Proposition 5.9.11. The maximal value for h in a bar list (p, h) of a strongly stable Bar Code is the maximal integer h such that h(h+1) 2 ≤ p. Proof: By proposition 5.9.10, the strongly stable Bar Codes are in biunivocal correspondence with the integer partitions of H _ (t) = p into h distinct parts α 1 + ... + α h = p. The minimal values we can assign to α i , i = 1, ..., h are (h -1), (h -2), ..., 2, 1, whose sum is

h(h+1) 2 
. Since we are looking for partitions of p, we should have h(h+1)

2

≤ p.

In order to deal with strongly stable ideals J k[x 1 , ..., x n ] for n > 2, the following corollary will be rather useful.

Corollary 5.9.12. The number of strongly stable Bar Codes for terms in k[x 1 , ..., x n ], n > 2, whose bar list is (p, h, 1, ..., 1), p, h ∈ N, p ≥ h equals the number of integer partitions of p in h distinct parts, namely

p = α 1 + ... + α h , α i > 0, i = 1, ..., h.
Moreover, the maximal value for h in the bar list (p, h, 1, ..., 1) is the maximal integer h such that h(h+1) 2 ≤ p.

Proof: It is a straightforward consequence of propositions 5.9.10 and 5.9.11, noticing that, if we have only 1 x 3 , ..., x n -bars, x 3 , ..., x n do not occur in any term of M B with nonzero exponent.

By the previous comments, we are able to count the number of strongly stable ideals J

k[x 1 , x 2 ] with H _ (t, J) = p.
The following proposition is a consequence of 5.9.10 and 5.9.11.

Proposition 5.9.13. The number of strongly stable ideals J with

H _ (t, J) = p is h i=1 Q(p, i),
where h is the maximal integer such that h(h+1)

2

≤ p and Q(p, i) is the number of integer partitions of p into i distinct parts.

The number Q(p, i) of integer partitions of p into i distinct parts has already been studied in literature. For example, we can find in [START_REF] Stanley | Enumerative Combinatorics[END_REF] the formulas regulating it:

∀p, i ∈ N, i = 1, Q(p, i) = P p - i 2 , i , Q(p, 1) = 1 where ∀n, k ∈ N, P (n, k) = P (n -1, k -1) + P (n -k, k), with      P (n, k) = 0 for k > n P (n, n) = 1 P (n, 0) = 0
Example 5.9.14. For the polynomial ring k[x 1 , x 2 ], consider H _ (t) = 10.

By our formulas, we have exactly 10 strongly stable monomial ideals with H _ (t) = 10.

More precisely, they are:

J 1 = (x 10 1 , x 2 ); J 2 = (x 9 1 , x 1 x 2 , x 2 
2 );

J 3 = (x 8 1 , x 2 1 x 2 , x 2 
2 );

J 4 = (x 7 1 , x 3 1 x 2 , x 2 
2 );

J 5 = (x 7 1 , x 1 x 2 2 , x 2 x 2 1 , x 3 
2 );

J 6 = (x 6 1 , x 4 1 x 2 , x 2 
2 );

J 7 = (x 6 1 , x 1 x 2 2 , x 3 1 x 2 , x 3 
2 );

J 8 = (x 5 1 , x 2 2 x 1 , x 2 x 4 1 , x 3 
2 );

J 9 = (x 5 1 , x 2 2 x 2 1 , x 2 x 3 1 , x 3 
2 );

J 10 = (x 4 1 , x 3 2 x 1 , x 2 2 x 2 1 , x 2 x 3 1 , x 4 
2 ).

Example 5.9.15. The strongly stable monomial ideals with H _ (t) = 100 are exactly 444793.

We now try to study the case of three variables, which is a little more cumbersome than the previous case of only two variables.

Let us start with some examples.

If, in k[x 1 , x 2 , x 3 ], x 1 < x 2 < x 3 , we consider H _ (t) = 1,
we can associate to it only one strongly stable monomial ideal, namely the maximal ideal J 1 = (x 1 , x 2 , x 3 ), whose Bar Code is

0 1 2 3 1 x 1 x 2 x 3
and the associated bar list is (1, 1, 1).

For H _ (t) = 2, we get

J 1 = (x 2 1 , x 2 , x 3 ) k[x 1 , x 2 , x 3 ], whose Bar Code is 0 1 2 3 1 x 1
x 2 1

x 2

x 3

and the corresponding bar list is (2, 1, 1).

Let us take now H _ (t) = 3.

The associated strongly stable ideals are If we continue taking p(t) = 4 we obtain 3 different strongly stable ideals, namely

J 1 = (x 3 1 , x 2 , x 3 ), J 2 = (x 2 1 , x 1 x 2 , x 2 
J 1 = (x 3 , x 2 , x 4 1 ), J 2 = (x 3 , x 2 2 , x 2 x 1 , x 3 1 ) and J 3 = (x 2 3 , x 3 x 2 , x 2 2 , x 3 x 1 , x 2 x 1 , x 2 1 
). Their Bar-lists are (4, 1, 1), (4, 2, 1), (4, 3, 2), corresponding to the following Bar Codes:

0 1 2 3 x 3 x 2 x 4 1 1 x1 x 2 1 x 3 0 1 2 3 x 3 x 2 2 x 3 1 x 1 x 2 1 x1 x 2 1 x2 0 1 2 3 x 2 3 x 2 2 x 2 x 3 x 2 1 x 1 x 2 x 1 x 3 1 x1 x2 x3
As for the bidimensional case, we summarize some partial result in the following table:

H _ (t)
Bar lists Ideals

1 (1, 1, 1) (x 1 , x 2 , x 3 ) 2 (2, 1, 1) (x 2 1 , x 2 , x 3 ) 3 (3, 1, 1), (3, 2, 1) (x 3 1 , x 2 , x 3 ), (x 2 1 , x 1 x 2 , x 2 2 , x 3 ) 4 (4, 1, 1), (4, 2, 1), (x 3 , x 2 , x 4 1 ), (4, 3, 2) (x 3 , x 2 2 , x 2 x 1 , x 3 1 ), (x 2 3 , x 3 x 2 , x 2 2 , x 3 x 1 , x 2 x 1 , x 2 1 
).

5

(5, 1, 1), (5, 2, 1), (x 3 , x 2 , x 5 1 ), (x 3 , x 2 2 , x 1 x 2 , x 4 1 ) (5, 2, 1), [START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] 

(x 3 , x 2 2 , x 2 x 2 1 , x 3 1 ), (x 2 3 , x 3 x 2 , x 2 2 , x 3 x 1 , x 2 x 1 , x 3 1 ) 
Table 5.1: Strongly stable ideals, with affine Hilbert polynomial and bar lists.

By corollary 5.9.12, we can use the formulas for two variables in order to count the strongly stable monomial ideals associated to bar lists of the form (p, h, 1). This means that we only have to deal with the bar lists of the form (p, h, k), such that k > 1.

Definition 5.9.16. The minimal sum of a given list of positive integers [α 1 , ..., α g ] is the integer

Sm([α 1 , ..., α g ]) := g i=1 α i (α i + 1) 2 .
The following lemma is a straightforward consequence of proposition 5.9.3.

Lemma 5.9.17. With the previous notation, it holds:

1. min(k) = 2;

2. max(k) = max k≥2 {k| ∃L ∈ I (p,k ) , with Sm(L) ≤ p}, k = k(k+1) 2 3. min(h) = k(k+1) 2 ; 4. max(h) = max k(k+1) 2 ≤l≤p-1 {l| Q(h, k) = 0 and L ∈ I (h,k) ⇒ Sm(L) ≤ p}.
Thanks to the previous lemma 5.9.17 we know which are the bar lists that occur in the computation for H _ (t) = p.

Next step is to understand how many strongly stable ideals with H _ (t) = p and bar-list (p, h, k) there exist.

More precisely, fixed (p, h, k), we compute the integer partitions of h in k parts, representing the numbers of x 2 -bars over the k x 3 -bars. Suppose (α 1 , ..., α k ), α 1 > ... > α k , k i=1 α i = h being one of these partitions. Then, we construct a k × α 1 matrix M having the following shape: 

M =       a 1,
0 ... 0 a k,k ... a k,α k +k-1 0...      
.

Each row represents the structure over an x 3 bar:

• let α jhj be a nonzero entry of the j-th row; then over A

(3) j (the corresponding 3-bar) of B there lie exactly α jhj 2-bars;

• the value of each a i,j is the number of x 1 -bars over the j-th 2-bar of the j-th 3-bar.

Moreover, we set the following two conditions, holding on the entries of the matrix for i = 1, ..., k -1 j = 1, ..., α 1 -1:

1. a i,j > a i,j+1 ; 2. a i,j ≥ a i+1,j ; 3. k-1 i α1-1 j a i,j = p.
The number of nonzero entries is clearly h. From now on we use these matrices, that we call IP-type associated to (p, h, k) 7 , in order to count strongly stable monomial ideals, with H _ (t) = p.

We only have to prove that a i,j ≥ a i+1,j .

By the previous comments, the case a i,j = 0, a i+1,j = 0 cannot occur.

If a i,j = 0, a i+1,j = 0 there is nothing to prove, so we only have to deal with the case a i,j , a i+1,j = 0.

The value a i,j means that x ai,j -1 1

x β 2 x i-1 3 ∈ N(J), lying over A (3) 
i is the (β + 1)-th term of the 2-bars lying over A

(3) i and also that x ai,j

1 x β 2 x i-1 3 / ∈ N(J).
Similar comments hold for a i+1,j , for which x ai+1,j -1 1

x β-1

2
x i 3 ∈ N(J). Suppose by contradiction a i,j < a i+1,j . By the strongly stable property, x ai+1,j -1 1

x β 2 x i-1

3

∈ N(J), but this is impossible since

x ai+1,j -1 1 x β 2 x i-1 3 | x ai,j 1 x β 2 x i-1 3 / ∈ N(J).
Let now M be an IP-type (k × α k )-matrix, with h nonzero entries and

k-1 i α1-1 j a i,j = p.
We associate M to a Bar Code B as follows:

• we draw k 3-bars, one for each row of the matrix;

• we draw over the i-th 3-bar as many 2-bars as the number of nonzero entries in the i-th row of M ;

• we conclude drawing over the j-th 2-bar as many 1-bars as the value of the nonzero entry corresponding to the j-th x 2 -bar in the matrix.

By construction, the above B is admissible.

Moreover, since

k-1 i α1-1 j a i,j = p, we have exactly p 1-bars, so we are representing the Groebner escalier N(J) of a zerodimensional ideal such that H _ (t, J) = p.

We prove that it is strongly stable. More precisely, for each x α1 1 x α2 2 x α3 3 ∈ N(J), we need to prove that

1. x α1 1 x α2+1 2 x α3-1 3 ∈ N(J); 2. x α1+1 1 x α2 2 x α3-1 3 ∈ N(J); 3. x α1+1 1 x α2-1 2 x α3 3 ∈ N(J).
Point 1 is clearly true by a i,j ≥ a i+1,j . Indeed α 3 -1 and α 3 represent two consecutive rows and α 2 + 1 and α 2 represent the same column by the shifting. We are requiring that there is α 1 in the position identified by

α 3 -1, α 2 + 1.
Similarly, point 2 is true by a i,j > a i,j+1 and a i,j ≥ a i+1,j , whereas a i,j > a i,j+1 ensures point 3.

Thanks to this proposition, we can find a bound for the number of strongly stable Bar Codes with H _ (t) = p.

For this purpose, we need some definitions from the theory of plane partitions. A plane partition α is called row strict if it is decreasing on the rows and column strict if it is decreasing on the columns.

We call shape of the plane partition α the list (α 1 , ..., α k ), where α i is the number of entries for the i-th row of the array, i = 1, ..., k.

Conventionally, the zero values in the table are not written down and they are replaced by blanks.

Example 5.9.20. The matrix

4 2 1 3 1
represents a plane partition of p = 11 with shape (3, 2). Such a plane partition is simultaneously row strict and column strict.

The following plane partition of p = 12 is only column strict 4 4

and its shape is (2, 2). Definition 5.9.21. A strict shifted plane partition is a plane partition such that each row is indented only one space w.r.t. the previous row and

• rows are weakly decreasing (from the left to the right);

• columns are strictly decreasing (from the top to the bottom).

Example 5.9.22. The plane partition 4 4 3 3 1

is a strict shifted plane partition of p = 15.

Definitions 5.9.19 5.9.21 and are classical definitions, found in literature.

For our purpose, we require our partitions to be:

• such that the rows will be indented potentially more than one space;

• weakly decreasing down columns;

• strictly decreasing across rows.

Definition 5.9.23. The hook length of an entry c in a matrix M is the following sum:

h(c) = d(c) + s(c) + 1
where d(c) are the entries on the right of c, while s(c) is the number of entries below c.

We also need the following Lemma 5.9.24. If a plane partition is an array as

      a 1,1 a 1,2 a 1,3 ... . . . . . . . . .... a 1,2 a 2,2 0 
a 1,3 0 0       .
and it is column strict, then it contains the arrays of the form Proof: With the previous notation, since a i,j > a i,j+1 ≥ a i+1,j+1 , then a i,j > a i+1,j+1 , for i = 1, ..., k -1 j = 1, ..., α 1 -1.

      a 1,1 a 1,
Remark 5.9.25. The correspondence between the two plane partitions of lemma 5.9.24 is not a bijection since for example 12 8 6 11 5 0 .

cannot be shifted to the right.

If λ is the integer partition of µ( 2), giving the shape of the matrix, we can give the generating function of column strict plane partitions of p with shape λ, namely

q N (λ) c 1 1 -q h(c) ,
where c is an entry of the matrix, h(c) its hook length and N (λ) = i iλ i . This function gives the number of matrices of shape λ arranged by weight: its Taylor series at a given degree p gives the number of matrices of weight p.

Let us see a trivial example. .

We now count the number of matrices of the above type via the generating function. The shape of the matrix is (2, 1).

We have h(A) = 3, h(B) = h(C) = 1 and the the generating function turns out to be

q 4 1 1 -q 3 1 (1 -q) 2 .
If we take its Taylor series at degree 4 we have exactly 1.

In this case, the number of these plane partitions coincides with the one of the particular plane partitions we are looking for, even if it is not true in the general case, where we only obtain an upper bound. Now we apply these facts to a very precise affine Hilbert polynomial, making detailed computations.

Example 5.9.27. Let us count the number of strongly stable ideals in k[x 1 , x 2 , x 3 ] having affine Hilbert polynomial H _ (t) = 10.

First of all, we enumerate the bar-lists. There are bar lists of the form (10, h, 1), for h = 1, ..., 4. Then, there are others of the form (10, h, k) where k = 2, 3. Indeed, we cannot find a partition of 10 = 4•5 2 in 4 parts, such that their minimal sum is smaller or equal than 10, whereas for k = 3 we can find a partition of 6 = 3 We proceed as in 2 variables: Q(10, 1) + Q(10, 2) + Q(10, 3) + Q(10, 4) = 10. Consider now [START_REF] Bertone | A Borel open cover of the Hilbert scheme[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF]. Since 3 = 2 + 1 we only have matrices of type

M = a 1,1 a 1,2 0 a 2,2 .
We shift and we get the hook lengths

M = 3 1 1 0 ,
while N (λ) = 4, so the generating function we have to examine is q 4 1 1-x 3 1

(1-x) 2 and we get a bound of 12 strongly stable Bar Codes.

Direct computation shows that their actual number in this case is 7.

Take then (10, 4, 2)

Since 4 = 3 + 1, we only have to deal with these matrices

M = a 1,1 a 1,2 a 1,3 0 a 2,2 0 ,
leading to the following hook numbers

M = 4 2 1 1 0 0 , N (λ 
) = 5 and the generating function

q 5 1 (1-q 4 ) 1 (1-q 2 ) 1 (1-q) 2 .
In conclusion we get a bound of 14 over 5 real strongly stable Bar Codes.

Consider now (10, 5, 2). We have 5 = 4 + 1 = 3 + 2, so we would have two cases to examine but, since Sm([4, 1]) > 10, we only deal with the second partition, getting the matrices

M = a 1,1 a 1,2 a 1,3 0 a 2,2 a 2,3 .
and

M = 4 3 1 2 1 0 .
Since N (λ) = 7, we have q 7 1 (1-q 4 )(1-q 3 )(1-q 2 )(1-q) 2 , from which we get a bound of 7 strongly stable Bar Codes. Their actual number is 1 (again by direct computation).

We conclude with [START_REF] Bertone | A Borel open cover of the Hilbert scheme[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF], for which by 6 = 3 + 2 + 1. We obtain the matrices

M =    a 1,1 a 1,2 a 1,3 0 a 2,2 a 2,3 0 0 a 3,3    .
and

M =    5 3 1 3 1 0 1 0 0    .
Since N (λ) = 10 we have q 10 1 (1-q 5 )(1-q 3 ) 2 (1-q) 3 leading to 1 which is simultaneously the bound and the exact number.

In conclusion we have exactly 24 strongly stable ideals in 3 variables with constant affine Hilbert polynomial H _ (t) = 10 and our bound returns 44.

This work is still in progress. As shown by example 5.9.27, it would be good to sharpen this bound and I think it could be done by concentrating our study on generating functions for plane partitions. Moreover, we are studying a generalization to n variables. CHAPTER 6 J-marked bases and J-marked families.

Introduction.

In this chapter, ideals I P are examined from another point of view. Indeed, while our previous studies were mainly focused on the Groebner escalier N(I), now our starting point is a generating set for I, which in general is not the monomial basis G(I) (so multiple terms are allowed).

In particular, we deal with the following problem Problem 6.1.1. Given any monomial ideal J P find a characterization for the family Mf (J) of all homogeneous ideals I P such that the basis of P/I is given by the set of terms in the Groebner escalier N(J) of J.

The most relevant examples of ideals I ∈ Mf (J) are the ideals I such that In < (J) w.r.t. some term-ordering <, but in general these form a proper subset of Mf (J). Therefore, we 215 must overcome the Groebner framework.

A computational description of the whole family Mf (J) is obtained in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] for J strongly stable. These families are optimal for many applications, for instance for an effective study of Hilbert schemes (see [START_REF] Bertone | A Borel open cover of the Hilbert scheme[END_REF]).

In section 6.2, we recall the main results of [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] and we explain how the connected algorithms, described and analyzed in the above two papers can be concretely implemented in Singular [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF]. This is a work done in collaboration with F. Cioffi, W. Decker, H. Schoenemann and M. Roggero.

Then, we relax both the assumption of polynomial ring over a field allowing polynomial rings over any commutative ring and the assumption of strong stability for J, allowing any monomial ideal, so we pass from

P = k[x 1 , ..., x n ] to Q := A[x 1 , ..., x n ],
where A is any commutative ring. We address then the problem below: Problem 6.1.2. Given any monomial ideal J Q, find a characterization for the family Mf (J) of all homogeneous ideals I Q such that the A-module Q/I is free with basis given by the set of terms in the Groebner escalier N(J) of J.

In this chapter, we give then an overall view on what can be said about the above question for an arbitrary monomial ideal J, enhancing some ideas introduced by Janet in [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF][START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF]. This is a joint work with Teo Mora and Margherita Roggero [START_REF] Ceria | Term-ordering free involutive bases[END_REF].

The main ideas we deal with are those of multiplicative variable and complete system, leading to the so called Janet decomposition for terms (see section 6.3). These concepts date back to the late nineteenth century and the first decades of the twentieth one. In the historical note at section 6.7 we present a detailed overview of their appearances, evolution and applications.

By exploiting the he Bar Code B M associated to a finite set of terms M = {τ 1 , ..., τ m } ⊂ Q, it is very simple to find the multiplicative variables of each τ j , j = 1, ..., m and to detect the completeness of M .

Both the multiplicative variables of τ j ∈ M and the completeness of M itself strongly depend on the order given to the variables.

A problem one can face is: Problem 6.1.3. Given a finite set of terms M = {τ 1 , ..., τ m } ⊆ T is there any ordering on the variables x 1 , ..., x n such that M is complete?

We will show that also this problem can be solved exploiting the Bar Code (6.3). In Janet's theory the ideals I are generated by the so called involutive bases (after Zarkov). Indeed, Janet develops his ideas assuming to be in generic coordinates. Hence the homogeneous ideals I and J he considers satisfy many good properties that always hold after having performed a generic linear change of coordinates. In particular, J is the generic initial ideal of I w.r.t. the (deg)-revlex ordering.

From a computational point of view, a general change of coordinates is remarkably heavy. For this reason, we are interested to enhance the theory, getting rid of the generic coordinate assumption. Indeed, Janet's ideas permit to go beyond this context and to recover results and techniques of both Groebner basis theory and J-marked basis theory. In fact we do not need to impose a term-ordering on the given polynomial ring.

We identify two essential features that are key points for most computations in both the above frameworks: I) I is generated by a set of polynomials, marked on the terms of a suitable generating set of the monomial ideal J; II) there is a reduction process w.r.t. these marked polynomials, that is used to rewrite each element of P/I as an element of the free A-module N(J) .

Janet's notions of multiplicative variable and complete system allow to construct such marked set of generators for I and to define an efficient reduction process.

We examine and compare two different definitions of multiplicative variable given by Janet in [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF] and in [START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF], that are equivalent in general coordinates. We underline similarities and differences and introduce the notion of stably complete set of terms, when both conditions hold. We show that every monomial ideal J has only one stably complete set of generators (possibly made of infinitely many terms) that we called star set and denoted by F(J) (5.3, 6.4).

Furthermore, we define a reduction procedure with respect to a homogeneous set of polynomials marked on a stably complete system F(J) and prove its noetherianity (6.5).

As a consequence we are able to give a first, general answer to Problem 6.1.2 .

Of course, the most interesting cases are those of ideals J such that their generating stably complete set M is finite. We prove that they are the quasi stable ideals (6.4) and that F(J) is their Pommaret basis. Among them, those such that F(J) coincides with the monomial basis are exactly the stable ones.

For the class of quasi stable ideals J we give a more complete and effective answer to Problem 6.1.2. Indeed, we prove that our description of Mf (J) is natural, in the sense that it defines a representable functor from the category of Z-algebras to the category of sets. We give then an effective procedure computing equations for the scheme that represents this functor (c.f. 6.6).

Moreover, switching to our usual point of view on ideals, so mainly dealing with the Groebner escalier, we show how to generalize Moeller algorithm in order to obtain an involutive basis for a zerodimensional radical ideal, starting with the associated finite set of distinct points (see 6.6).

Singular libraries on strongly stable ideals and marked bases.

In the papers [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF], given a strongly stable monomial ideal J, the authors study the families Mf (J) := {I S, such that S = I ⊕ N(J) as kvector space}, and they establish what are the conditions making Mf (J) an affine scheme.

In order to study these families, they introduce some special homogeneous polynomials, called J-marked polynomials, naming J-marked sets the sets of J-marked polynomials.

A J-marked set G such that I := (G) ∈ Mf (J) is called J-marked basis.
If J is a strongly stable monomial ideal1 such a basis shares many properties with the homogeneous reduced Groebner basis .

Then, they define a reduction procedure and a Buchberger-like criterion, in order to decide whether a J-marked set is a J-marked basis or not. Moreover, they prove that there is a biunivocal correspondence between the ideals I ∈ Mf (J) and the points of an affine scheme, consequentely named J-marked scheme in [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF].

Basing on the theory developed in these papers, we implemented two libraries in order to study J-marked bases and J-marked schemes.

They have been written in the programming language provided by the open source computer algebra system Singular ( [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF]) and integrated in the 3-1-6 release of this software.

More precisely:

• JMBTest.lib ( [START_REF] Ceria | A library for Singular which performs JM basis test[END_REF]) is a library which checks whether a J-marked set G is a J-marked basis or not;

• JMSConst.lib ( [START_REF] Ceria | A library for Singular which constructs J-Marked Schemes[END_REF]) is a library which computes the equations of the J-marked scheme associated to a strongly stable monomial ideal J.

In this section, we recall the theory underlying the implementations and we explain the libraries themselves.

In the next sections, while talking about involutiveness, we will generalize most of the notions below to monomial ideals satisfying weaker properties than the strongly stable one.

The source code can be found in appendix A.

Let us start recalling the concept of J-normal form. Definition 6.2.1. Given a monomial ideal J S and an ideal I S, a J-normal form modulo I of a polynomial h ∈ S is a polynomial h 0 ∈ S such that h -h 0 ∈ I and Supp(h 0 ) ⊆ N(J).

Clearly, if I is an homogeneous ideal, also the J-normal from modulo I of an homogeneous polynomial turns out to be homogeneous. Definition 6.2.2. A marked polynomial is a polynomial f ∈ S, with a specific term in Supp(f ) that we call head term of f , denoting it Ht(f ).

We denote by

G = {f τ = τ - c τ γ x γ , Ht(f τ ) = τ }
a finite set of homogeneous marked polynomials Definition 6.2.3. The set G is called J-marked set if the head terms Ht(f τ ) constitute the monomial basis G(J) of a given J and all the x γ are in N(J).

A J-marked set G is a J-marked basis if N(J) is a basis of S/G as a k-vector space.

We usually denote by G p the degree p part of G.

Given a set G of J-marked polynomials, the Singular library JMBTest.lib ( [START_REF] Ceria | A library for Singular which performs JM basis test[END_REF]) checks whether such a set is a J-marked basis or not.

The output is a boolean value: 1 for true, 0 for false, following the usual conventions.

In order to increase the computation's speed, the input marked polynomials are arranged by degree, as a list of lists of polynomials: G = [G a J , ..., G a J +h ], where a J is the minimal degree for a homogeneous polynomial in the given J-marked set G and a J + h is clearly their maximal degree.

The head terms of the elements in G have to make up the monomial basis G(J) of a strongly stable ideal J and we think them ordered with respect to a degree compatible term order.

In the procedure, our usual variable ordering x 1 < x 2 < ... < x n (or x < y < z in the case of three variables or less) is supposed.

Since the head terms we choose for the input G are not necessarily the leading terms of the given polynomials with respect to any term order (see [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] for more details), it is necessary to highlight them precisely and this makes essential the introduction of a new data type, satisfying this requirement.

In JMBTest.lib, a new data type for Singular, i.e. jmp, the J-marked polynomial, is then introduced. where the suffix .h identifies the head terms, while the suffix .t identifies the tails. Definition 6.2.5. We call J-marked family, the family Mf (J) containing all the homogeneous ideals I such that N(J) is a basis S/I as a k-vector space.

Given a homogeneous ideal I and fixed a term ordering <, if In < (I) = J, then I ∈ Mf (J), but in general also other ideals belong to a J-marked family. Proposition 6.2.6 ([27]). If G is a J-marked set, TFAE:

1. G is a J-marked basis; 2. (G) ∈ Mf (J);

each polynomial h ∈ S has a unique J-normal form modulo (G).

If I ∈ Mf (J) then it obviously contains a J-marked set.

If G ⊂ S is a J-marked basis, it is unique for I := (G).

Since J-marked sets have better properties in the case J strongly stable (5.9.1), we place us in this case. The strongly stable property for J can be checked by examining only the elements of G(J) ( [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF]). Basing on this fact, we implemented the procedure BorelCheck, a subroutine for the main procedure of the library JMSConst.lib, which can also be used on his own. This subroutine takes G(J) and the base ring as input, returning 1 if J is strongly stable and 0 otherwise. Its functioning is rather simple, since it iterates on the monomial basis and, ∀τ ∈ G(J), ∀x i | τ, x j > x i , it checks whether τ ij := τ xj xi is in the ideal or not, breaking and reporting a failure when it detects a τ ij / ∈ J.

Given an invertible matrix A = (a ij ) ∈ GL n (k) and a polynomial f ∈ S, we denote by A(f ) the standard action of GL n (k) on S, under the substitution

x i → j a ij x j
and, for I S, A(I)

:= {A(f )| f ∈ I}.
The strongly stable property implies the Borel-fixed one, i.e. if J S is strongly stable, it is fixed under the action of the subgroup of lower triangular invertible matrices, the notions being equivalent in the case char(k) = 0 (c.f. [START_REF] Deery | Rev-lex segment ideals and minimal Betti numbers[END_REF][START_REF] Mora | Solving polynomial equation systems: Macaulay's paradigm and Groebner technology[END_REF]).

As it will be useful to understand the whole chapter, we recall here the following Definition 6.2.7 ([43]). A property holding for A(I) for each matrix A in a Zariski open subset of GL n (k) is said to hold for general or generic coordinates.

Galligo's theorem ( [START_REF] Galligo | Théoreme de division et stabilité en géométrie analytique locale[END_REF]) says that, if we are in generic coordinates and fixed a term order <, the initial ideal of some ideal I w.r.t <, is a constant Borel-fixed monomial ideal, conventionally denoted by gin(I) and called the generic initial ideal of I.

The strongly stable property is very important, since it allows many different applications as, for example, tho study the Hilbert scheme [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF][START_REF] Lella | Rational components of Hilbert schemes[END_REF].

In [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF], given a J-marked set

G = {f τ = τ - c τ γ x γ , Ht(f τ ) = τ ∈ G(J)}
the authors define a reduction process à la Buchberger w.r.t. G, denoting it by G -→.

Definition 6.2.8. A reduction relation

G -→ is noetherian if the length r of any sequence h = h 0 G -→ h 1 G -→ . . . G -→ h r is bounded by an integer number m = m(h).
The noetherianity says that if we continue rewriting terms according to G -→, we always obtain, after a finite number of reductions, a polynomial whose support is contained in N(J).

We will write h

G -→ * g if h G
-→ g and Supp(g) ⊂ N(J), so it is not possible to reduce anymore.

An important result of [START_REF] Buchberger | Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory[END_REF][START_REF] Reeves | A note on polynomial reduction[END_REF] is that, if such a reduction process à la Buchberger is noetherian, then there exists an admissible term ordering < such that

{Ht(f ), f ∈ G} = {T < (f ), f ∈ G}.
We remark that for J-marked sets the reduction can be non-noetherian.

We recall now some results from [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF].

Proposition 6.2.9 ([27]). We have the following properties.

• If G = {f τ = τ - c τ γ x γ , Ht(f τ ) = τ ∈ G(J)
} is a J-marked set, with J strongly stable, each polynomial in P has a J-normal form modulo (G).

• Let J a strongly stable ideal and G a J-marked set. Then G is a J-marked basis if and only if N(J) is free in P/(G).

• For I S homogeneous, it holds I ∈ Mf (J) ⇔ I has a J-marked basis Consider now a strongly stable monomial ideal J, a J-marked set G, and the homogeneous ideal I = (G). We outline the procedure of [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] in order to determine a J-normal form of an homogeneous polynomial modulo G. This is the basis for our Singular libraries.

First of all, for each degree m we define

W m = {x δ f α , deg(x δ ) + deg(Ht(f α )) = m, f α ∈ G}, letting Ht(x δ f α ) = x δ Ht(f α ), W m is a J-marked set.
Then, denoted by a J := min{m ∈ N, I m = (0)}, we define for m = a J , ..., s (c.f. [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF]):

V m := G m for m = a J V m := G m ∪ {g β : x β ∈ J m \ G m } for m > a J
where g β := x i g with x i = min(x β ) and g the unique polynomial of V m-1 whose head term is exactly x = x β /x i .

The procedure of TestJMark.lib constructing the polynomials V m is VConst, which follows the algorithm VConstructor of [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF].

VConst takes G as input, together with an integer number c, representing the maximal degree for the V m 's we need to construct2 .

The output is a list V , containing the polynomials V m 's, arranged by degree. More precisely, since actually each g ∈ V m is the product of a marked polynomial f τ ∈ G by a term σ ∈ T such that max(σ) ≤ min(τ ), we store only:

• σ ∈ T ;

• the position of the marked polynomial f τ in the list G.

The polynomials in V m are constructed iteratively on the degree, from the minimal one, a J , to the required c.

The polynomials in V a J are exactly the ones in G (a J ) . For each j = a J + 1, ..., c, we add to the elements of G j3 all the products of polynomials f τ ∈ V j-1 's by the variables x i ≤ min(τ ).

Each V m can be equipped with a total ordering m according to the following rules.

1. Considered two polynomials f α , f α ∈ G set f α ≤ min f α ⇔ deg(f α ) ≤ deg(f α ) or deg(f α ) = deg(f α ) and min Ht(f α ) GCD(Ht(f α ), Ht(f α )) ≤ min Ht(f α ) GCD(Ht(f α ), Ht(f α )) . 2. Let x δ f α , x δ f α ∈ W m , then x δ f α m x δ f α ⇔ x δ > Lex x δ or x δ = x δ and f α ≥ f α .
Given the list V , obtained running VConst, the subroutine OrderingV produces the ordering induced by the two rules above. It depends on GJmpMins which deals with rule 1. and TernCompare which deals with rule 2.

Since each element of V has not been encoded as a jmp, but with a term and the position of its related polynomial of G, the procedure directly deals with this information and does not need concretely to construct the involved jmp's.

The polynomials in V are fundamental both for the J-marked basis test and for the Jmarked scheme constructor because of the following Proposition 6.2.10. Let J be a strongly stable monomial ideal, G a J-marked set and I = (G).

Each term τ ∈ J m \ G m can be reduced to a J-normal form modulo G using V m and the reduction procedure is noetherian in S m .

The first version of the Buchberger-like criterion for J-marked families is: Theorem 6.2.11 ([27]). Let J a strongly stable monomial ideal G a J-marked set and I = (G).

Then, ∀f τ , f τ ∈ G:

I ∈ Mf (J) ⇔ S(f τ , f τ ) Vm --→ * 0.
Such a criterion has been enhanced in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF], via the introduction of the star decomposition and Eliahou-Kervaire S-polynomials. Definition 6.2.12 ([8, 33]). Given a strongly stable monomial ideal J in S, with monomial basis G(J), and a monomial x γ ∈ J, we define x γ = x α * J x η , with γ = α + η, x α ∈ G(J) and min(x α ) ≥ max(x η ). Such a decomposition exists and is unique.

Definition 6.2.13. Given a J-marked set G, a couple of polynomials f α , f β ∈ G, with Ht(f α ) = x α , Ht(f β ) = x β , is called Eliahou-Kervaire couple if it holds: x j x α = x β * J x η for some
x j > min(x α ). The S-polynomials between an Eliahou-Kervaire couple of polynomials f α , f β are called Eliahou-Kervaire S-polynomials of G and they are denoted by S EK (f α , f β ).

By definition S

EK (f α , f β ) = x j f α -x η f β , for some x j > min(x α ), with x j x α = x β * J x η .
The Eliahou-Kervaire polynomials (or EK-polynomials, see [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Eliahou | Minimal resolutions of some monomial ideals[END_REF]) are constructed by the procedures below, which arise from the star product:

• EKCouples, which checks whether a couple of terms is an Eliahou-Kervaire couple;

• EKPolys, which construct all the EK-couples, given the input J-marked set G;

• EKPolynomials, which finally computes the Eliahou-Kervaire polynomials.

While constructing the EK-polynomials, we also keep track of their maximal degree s. Proposition 6.2.14 ([8]). With the usual notation it holds I ∈ Mf (J) if and only if for each EK-polynomial computed by G, it holds S EK (f α , f β )

Vm --→ * 0.

Once we have obtained the polynomials of the list V and the EK-polynomials, the last step consists of reducing each EK-polynomial q of degree m with respect to the V m 's, via a Buchberger-type reduction denoted by Vm --→. If one of these EK-polynomials does not reduce to 0, the algorithm breaks and reports a negative outcome.

Given then a J-marked set G, we can then summarize the steps executed by the main function TestJMark in JMBTest.lib as follows:

1. if G contains only one polynomial return 14 ; 2. if not, perform the following steps:

a. compute the list E of the EK-couples and keep track of their degree;

b. store the minimal degree a J of the elements of G (i.e. the degree of its first element) and store also the maximal degree s of the EK-polynomials found in the previous step; c. compute V a J , V a J +1 , ..., V s ; d. for i from 1 to |E|, compute the i-th EK-polynomial q corresponding to the i-th EK-couple stored in E and denote by w be its degree; e. reduce q w.r.t V w , returning 0 and breaking if the reduction does not produce 0 and going again to step d. otherwise;

The Buchberger-type reduction is performed via the Singular command reduce, in order to take advantage of its potentialities. In order to make the procedure reduce individuate the head terms (which can eventually not be compatible with any term order), we multiply them by a fictitious variable, much greater than x n .

We display now two examples of execution for JMBTest.lib. The first is very simple and presented with some more comments. The second is heavier from a computational point of view and it is displayed with its execution time. Executing our test we obtain that it is not a J-marked basis:

TestJMark(G1,r); ⇒ 0.

In fact, the three EK-polynomials are S EK f17.t=poly(0); list G1V= list( list(f6,f10,f8,f5,f3,f9,f7,f4,f2,f1), list(f16,f14,f12,f15,f13,f11), list(f17)); TestJMark(G1V,r); Running TestJMark on them we obtain that this set is a J-marked basis, for all values of the parameter and the result is achieved in 4870ms.

V 3 = {y2z -x 2 y, yz 2 , z 3 } V 4 = {xy 2 z -x 3 y, xyz 2 , xz 3 , y 3 z -x 2 y 2 , y 2 z 2 , yz 3 , z 4 } V 5 = {y 5 , x 2 y 2 z -x 4 y, x 2 yz 2 , x 2 z 3 , xy 3 z -x 3 y 2 , xy 2 z 2 , xyz 3 , y 4 z -x 2 y 3 , y 3 z 2 , y 2 z 3 , xz 4 , yz 4 , z 5 } V 6 = {xy5, x 3 y 2 z -x 5 y, x 3 yz 2 , x 3 z 3 , y 6 , x 2 y 3 z -x 4 y 2 , x 2 y 2 z 2 , x 2 yz 3 , xy 4 z -x 3 y 3 , xy 3 z 2 , xy 2 z 3 , y 5 z -x 2 y 4 , y 4 z 2 , y 3 z 3 , x 2 z 4 , xyz
f 1 := x 2 5 + 4x 2 1 + 17 3 x 1 x 2 -83 12 x 1 x 3 -23 4 x 2 x 3 , f 2 := x 4 x 5 -3 4 x 2 x 3 -5 4 x 1 x 3 + x 1 x 2 , f 3 := x 2 4 -ax 4 + x 2 a + 25 6 x 2 x 3 + x 2 2 + 71 18 x 1 x 3 -28 9 x 1 x 2 -5x 2 1 , f 4 := x 3 x 5 -3 4 x 2 x 3 + 3 4 x 1 x 3 -x 1 x 2 , f 5 := x 3 x 4 -x 2 x 3 , f 6 := x 2 3 -85 24 x 2 x 3 -317 72 x 1 x 3 + 71 18 x 1 x 2 + 2x 2 1 , f 7 := x 2 x 5 -3 4 x 2 x 3 -5 4 x 1 x 3 + x 1 x 2 , f 8 := x 2 x 4 -x 2 x 3 -x 1 x 3 + x 1 x 2 , f 9 := x 1 x 5 -1 4 x 2 x 3 + 1 4 x 1 x 3 -x 1 x 2 , f 10 := x 1 x 4 -x 1 x 2 , f 11 := x 2 2 x 3 + x 3 1 , f 12 := x 3 2 -x 2 x 3 a -x 3 x 1 a + ax 2 2 + x 2 x 1 a + 5 9 x 3 1 , f 13 := x 2 x 1 x 3 -11 9 x 3 1 , f 14 := x 1 x 2 2 -8 9 x 3 1 , f 15 := x 2 1 x 3 + x 3 1 , f 16 := x 2 1 x 2 + 2 3 x 3 1 , f 17 := x
As it can be seen by the example 6.2.16 above, the library JMBTest.lib clearly works if the coefficients are numerical but also if the coefficients contain some parameters, provided that they are correctly defined in the ring declaration, according to Singular's syntax.

In [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] is provided the construction of an affine scheme, whose points are in biunivocal correspondence with the ideals I ∈ Mf (J) for J strongly stable.

Taken an x α ∈ G(J), construct the polynomials F α := x α -c αγ x γ , where x γ ∈ N (J) |α| and the c αγ 's are parameters, calling C the set containing them and defining N := |C|. Let G be the set of all the F α , which turns out to be a J-marked set with Ht(F α ) = x α . Using the J-marked set G, via an unique specialization of the elements of C in k N , we can obtain the J-marked basis of every ideal I ∈ Mf (J) by the uniqueness of the J-marked basis. Remember that not all the specializations produce an ideal of Mf (J). Once we have computed the analogous of the V m polynomials, whose coefficients are allowed to be parameters, that we call V m , we produce the EK-couples and the analogous of the EK-polynomials for this case.

For each EK-polynomial q, deg(q) = m, we reduce it w.r.t. V m and we consider the coefficients of the obtained polynomial as generators of an ideal I of k[C]. Theorem 6.2.17. There is a one to one correspondence between the ideals of Mf (J) and the points of the affine scheme in k N defined by the ideal I. Definition 6.2.18. The affine scheme defined by the ideal I is called J-marked scheme and it is denoted by S(J).

Given the monomial basis G(J) of a strongly stable ideal J, arranged in a list increasingly ordered by degree, the Singular library JMSConst.lib computes the equations of the associated J-marked scheme (6.2.18).

It is strongly related with JMBTest.lib, since the criterion used in order to perform the J-marked basis test is exploited also here (c.f. 6.2.14).

Employing the calculation of the Groebner escalier, degree by degree 5 , the software (more precisely the subroutine NumNewVar) computes the cardinality N of the set C, containing the parameters and then it generates a tail for each head τ ∈ G(J) (see the procedure New-Tails).

Then, ArrangeTails reorders the obtained jmp's by degree in a list of lists G.

Next step is, exactly as before, the computation of the EK-polynomials and of the V polynomials of the same required degrees.

After that, a Buchberger-type reduction is again performed on the EK-polynomials, w.r.t. the V polynomials of the same degree 6 and the nonzero coefficient of the resulting polynomials are precisely the equations of the required J-marked scheme, so they are collected and returned as final output.

We summarize here the steps of the main function JMarkedScheme on an input ideal J: a. perform BorelCheck and exit if J is not strongly stable; b otherwise, continue as follows:

1. for each generator x α of J find the Groebner escalier of degree |α|, N (J) |α| and store both N (J) |α| and its cardinality; 2. produce a J-marked set, attaching to each x α a tail, which is a linear combination of parameters in C, with coefficients in N (J) |α| for each |α|;

3. compute the list E of EK-couples, taking track of the degree of the corresponding EK-polynomials; 4. for i from 1 to |E|, compute the i-th EK-polynomial q corresponding to the i-th EK-couple previously stored inE and let w be its degree; 5. reduce q w.r.t V w , and store the coefficients of the reduced polynomial in a list S; 6. repeat step 5. for all the EK-polynomials.

At the end, S contains the equations of the required scheme (see [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF]). Now we display two examples of execution of JMSConst.lib. As for JMBTest.lib, the first example is simple and provided with some comments, while the second is heavier and displayed with the execution time. In fact, there are 20 new parameters to insert and the obtained marked polynomials depending on the new variables are

x 3 + (c 1 )x 2 + (c 2 )x 1 + (c 3 )x 0 , x 1 x 2 + (c 4 )x 0 x 2 + (c 5 )x 2 1 + (c 6 )x 0 x 1 + (c 7 )x 2 0 ,x 2 2 + (c 8 )x 0 x 2 + (c 9 )x 2 1 + (c 10 )x 0 x 1 + (c 11 )x 2 0 , x 8 1 + (c 12 )x 7 0 x 2 + (c 13 )x 0 x 7 1 + (c 14 )x 2 0 x 6 1 + (c 15 )x 3 0 x 5 1 + (c 16 )x 4 0 x 4 1 + (c 17 )x 5 0 x 3 1 + (c 18 )x 6 0 x 2 1 + (c 19 )x 7 0 x 1 + (c 20 )x 8 0 . The 5 EK-polynomials are (c 4 ) * x 0 * x 2 * x 3 + (c 5 ) * x 2 1 * x 3 + (c 6 ) * x 0 * x 1 * x 3 + (c 7 ) * x 2 0 * x 3 + (-c 1 ) * x 1 * x 2 2 + (-c 2 ) * x 2 1 * x 2 + (-c 3 ) * x 0 * x 1 * x 2 (c 4 ) * x 0 * x 2 2 + (c 5 ) * x 2 1 * x 2 + (-c 8 + c 6 ) * x 0 * x 1 * x 2 + (c 7 ) * x 2 0 * x 2 + (-c 9 ) * x 3 1 + (-c 10 ) * x 0 * x 2 1 + (-c 11 ) * x 2 0 * x 1 (c 8 ) * x 0 * x 2 * x 3 + (c 9 ) * x 2 1 * x 3 + (c 10 ) * x 0 * x 1 * x 3 + (c 11 ) * x 2 0 * x 3 + (-c 1 ) * x 3 2 + (-c 2 ) * x 1 * x 2 2 + (-c 3 ) * x 0 * x 2 2 (c 12 ) * x 7 0 * x 2 * x 3 + (c 13 ) * x 0 * x 7 1 * x 3 + (c 14 ) * x 2 0 * x 6 1 * x 3 + (c 15 ) * x 3 0 * x 5 1 * x 3 + (c 16 ) * x 4 0 * x 4 1 * x 3 + (c 17 ) * x 5 0 * x 3 1 * x 3 + (c 18 ) * x 6 0 * x 2 1 * x 3 + (c 19 ) * x 7 0 * x 1 * x 3 + (c 20 ) * x 8 0 * x 3 + (-c 1 ) * x 8 1 * x 2 + (-c 2 ) * x 9 1 + (-c 3 ) * x 0 * x 8 1 (c 12 ) * x 7 0 * x 2 2 + (c 13 -c 4 ) * x 0 * x 7 1 * x 2 + (c 14 ) * x 2 0 * x 6 1 * x 2 + (c 15 ) * x 3 0 * x 5 1 * x 2 + (c 16 ) * x 4 0 * x 4 1 * x 2 + (c 17 ) * x 5 0 * x 3 1 * x 2 + (c 18 ) * x 6 0 * x 2 1 * x 2 + (c 19 ) * x 7 0 * x 1 * x 2 + (c 20 ) * x 8 0 * x 2 + (-c 5 ) * x 9 1 + (-c 6 ) * x 0 * x 8 1 + (-c 7 ) * x 2 0 * x 7 1
, from which the above equations can be found.

Example 6.2.20. Consider now a more complicated example. We type on Singular the following code:

LIB"JMSConst.lib"; ring r = 0, (x(0..5)),rp;

ideal Borid=x(1) 2 * x(2), x(0) * x(2) 2 , x(1) * x(2) 2 , x(2) 3 , x(1) 2 * x(3), x(0) * x(2) * x(3), x(1) * x(2) * x(3), x(2) 2 * x(3), x(0) * x(3) 2 , x(1) * x(3) 2 , x(2) * x(3) 2 , x(3) 3 , x(1) 2 * x(4), x(0) * x(2) * x(4), x(1) * x(2) * x(4), x(2) 2 * x(4), x(0) * x(3) * x(4), x(1) * x(3) * x(4), x(2) * x(3) * x(4), x(3) 2 * x(4), x(0) * x(4) 2 , x(1) * x(4) 2 , x(2) * x(4) 2 , x(3) * x(4) 2 , x(4) 3 , x(1) 2 * x(5), x(0) * x(2) * x(5), x(1) * x(2) * x(5), x(2) 2 * x(5), x(0) * x(3) * x(5), x(1) * x(3) * x(5), x(2) * x(3) * x(5), x(3) 2 * x(5), x(0) * x(4) * x(5), x(1) * x(4) * x(5), x(2) * x(4) * x(5), x(3) * x(4) * x(5), x(4) 2 * x(5), x(0) * x(5) 2 , x(1) * x(5) 2 , x(2) * x(5) 2 , x(3) * x(5) 2 , x(4) * x(5) 2 , x(5) 3 , x(1) 4 ; 0 1 2 x 3 1 x 3 2 x 4 1 x 2 x 3 x 2 3 3 * * * * * * * *
Then:

• mult(x 3 1 ) = {x 1 }; • mult(x 3 2 ) = {x 1 x 2 }; • mult(x 4 1 x 2 x 3 ) = {x 1 , x 2 }; • mult(x 2 3 ) = {x 1 , x 2 , x 3 }.
In paper [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF], Janet defining multiplicative variables as in Definition 6.3.1, provides both a decomposition for the semigroup ideal T(M ) generated by a finite set of terms M and a decomposition for the complementary set N(M ).

On the other hand, in [START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF][START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF], he defines multiplicative variables in the following way.

6.3.6.

A variable x j is multiplicative for τ ∈ T if and only if x j ≤ min(τ ).

We denote by mult the multiplicative variables in this sense.

These two definitions of multiplicative variables appear to be very different.

First of all, in the first formulation, the set of multiplicative variables for a term in M depends on the whole set M , while in the second it is completely independent on the set M .

Indeed, the two notions are not equivalent for a general set M , as shown by the following examples.

Example 6.3.7.

In k[x 1 , x 2 , x 3 ] consider the ideal I = (x 2 1 x 2 , x 1 x 2 2
) and let M be its monomial basis. Then, mult M (x 2 1 x 2 ) = {x 1 , x 3 } and mult M (x 1 x 2 2 ) = {x 1 , x 2 , x 3 } while only x 1 can be multiplicative according to the other notion of multiplicative variable.

Example 6.3.8. Taken the set M = {x 2 1 x 2 , x 1 x 2 2 } ⊆ k[x 1 , x 2 ], we get mult M (x 1 x 2 2 ) = {x 1 , x 2 }, while of course x 1 ≤ min(x 1 x 2 2 ) but x 2 > min(x 1 x 2 2 ).
However, they are equivalent in Janet setting, that is if M is the generating set of the generic initial ideal of homogeneous ideals I.

More generally, we will see that they turn out to be equivalent also if M is the monomial basis G(J) of a strongly stable ideal J and if M is the special set of generators of any monomial ideal J denoted by F(J) (see 5.3 and 6.4).

We will see that stronger results can be proved when a set M is such that the two definitions of multiplicative variables coincide.

The following definition is a key point for this chapter. Definition 6.3.9. [54, ppg.75-9] A set of terms M ⊂ T is called complete if for every τ ∈ M and x j / ∈ mult M (τ ), there exists τ ∈ M such that x j τ ∈ off M (τ ).

Moreover, M is stably complete if it is complete and for every τ

∈ M it holds mult M (τ ) = {x i | x i ≤ min(τ )}.
If a set M is stably complete and finite, then it is the Pommaret basis of J = (M ) and we denote it by H(J).

Remark 6.3.10. If M = {τ } ⊆ Q is a singleton, it is complete, with mult(τ ) = {x 1 , ..., x n }.
Let us examine some examples.

Example 6.3.11. In k[x 1 , x 2 , x 3 ] consider the ideal I = (x 2 1 , x 1 x 2 , x 3 ). Both M 0 = {x 2 1 , x 1 x 2 ,
x 3 } and each generating set of I with the shape

M i = {x 2 1 , x 1 x 2 , x 3 , x 2 x 3 , ..., x i 2 x 3 } are complete systems of terms. In fact, for M 0 : -mult M0 (x 2 1 ) = {x 1 }, x 2 1 x 2 ∈ off M0 (x 1 x 2 ), x 2 1 x 3 ∈ off M0 (x 3 ); -mult M0 (x 1 x 2 ) = {x 1 , x 2 }, x 1 x 2 x 3 ∈ off M0 (x 3 ); -mult M0 (x 3 ) = {x 1 , x 2 , x 3 }.
For M i , i ≥ 1: The monomial basis M 0 = G(J) = {xy} is a complete system with mult M0 (xy) = {x, y}.

-mult Mi (x 2 1 ) = {x 1 }, x 2 1 x 2 ∈ off Mi (x 1 x 2 ), x 2 1 x 3 ∈ off Mi (x 3 ); -mult Mi (x 1 x 2 ) = {x 1 , x 2 }, x 1 x 2 x 3 ∈ off Mi (x 2 x 3 ); -mult Mi (x 3 ) = {x 1 , x 3 }, x 2 x 3 ∈ off Mi (x 2 x 3 ); -mult Mi (x j 2 x 3 ) = {x 1 , x 3 }, x j+1 2 x 3 ∈ off Mi (x j+1 2 x 3 ), 0 ≤ j < i; -mult Mi (x i 2 x 3 ) = {x 1 , x 2 , x 3 }.
Also the set M = {x h y | h ≥ 1} ⊆ k[x, y],
x < y, is a complete system, again according to the first definition. It generates the same ideal (xy), but has infinitely many elements. Anyway, it is not stably complete. In fact, for each x h y ∈ M , mult M (x h y) = {y}, since no terms of the form x l y e with e > 1 belong to M ; on the other hand x / ∈ mult M (x h y) since x h+1 y ∈ M .

Example 6.3.13. Let M be the set of terms {x, y 2 } in k[x, y], with x < y.

The multiplicative variables for every term in M are those lower than or equal to its minimal one: mult(x) = {x} mult(y 2 ) = {x, y}.

However, M is not complete since yx does not belong to the offspring of any term in M .

The following example shows that a complete generating set of terms can loose completeness when the ideal is enlarged.

Example 6.3.14. Let M = {x 2 , xy} ⊂ k[x, y] and J = (M ).
It is a complete system, but it is not stably complete, since y is multiplicative for xy, although min(xy) = x.

Adding to M a term in N(J), we get a new set M 0 and J 0 = (M 0 ), whose Janet decomposition clearly changes. For example, if M 0 = {x 2 , xy, y 2 } we get a stably complete system.

On the other hand, if M 0 = {x 2 , xy, y 3 } the system is not complete anymore, since xy 2 does not belong to the offspring of any term in the set.

From definition 6.3.1 of multiplicative variable, Janet deduces the following straightforward corollary Corollary 6.3.15 ([54]). Let M = {τ 1 , ..., τ m } ⊆ T be a finite set of terms,

τ i = x α (i) 1 1 • • • x α (i) n n and τ i = x α (i) 1 1 • • • x α (i) n-1 n-1 = τi x degn(τ i ) n , for i = 1, ..., m. Let D n := {β ∈ N|∃τ ∈ M, deg n (τ ) = β}, α (n) := max(D) and, for each β ∈ D n , define M β := { τ x degn (τ ) n , τ ∈ M and deg n (τ ) = β} .
Then M is complete if and only if the two conditions below hold:

1. ∀β ∈ D n , M β is a complete set; 2. ∀τ i ∈ M β , β < α (n) there exists j ∈ {1, ..., m} such that • τ i ∈ off(τ j ); • τ j ∈ M β+1 .
Completeness of a given finite set M can be detected by exploiting the Bar Code structure.

If τ ∈ M and x i / ∈ mult(τ ), let A be the i-bar underlying τ and A the subsequent i-bar7 .

If, ∀σ over A , σ x i τ , the system is not complete.

If ∃σ over A , σ | x i τ , so that x i τ = ση, let V := {x j , 1 ≤ j ≤ n, x j | η}, the set of the variables appearing in η with nonzero exponent. If, for each x j ∈ V , the j-bar underlying σ is followed by a star, then τ ∈ off(σ) and we continue examining the next term in M .

If there exists a variable x j ∈ V such that the the j-bar underlying σ is not followed by a star, then the system is not complete.

First of all, we explain why we look for σ only over A and not over other i-bars.

• x i τ / ∈ off(σ) for σ lying over A, since A is not followed by a star.

• Let A be an i-bar posed on the right of A . If σ lies over A , x i τ / ∈ off(σ) since σ τ , being deg j (σ) > deg j (x i τ ) for some j ≥ i.

• Let A be an i-bar posed on the left of A. If σ = x β1 1 • • • x βn n lies over A , then σ < Lex τ and σ cannot be such that deg j (σ) = α j for j = i, ..., n because, if it is like that, it would lay over A.

This implies that if x j = max{x h , h = 1, ..., n, deg h (σ) < deg h (τ )}, then x j / ∈ mult(σ): τ = x α1 1 • • • x αn n , α j > β j , α j+1 = β j+1 , ..., β n = α n Now, let τ ∈ M , x 1 ∈ mult(τ ),
A the i-bar underlying τ and A the subsequent i-bar.

If it is possible to find a σ | x i τ lying over A , with all the bars lying under σ and corresponding to the variables of η := xiτ σ followed by stars, then τ ∈ off(σ). It is clear since the variables in η turn out to be multiplicative for τ .

On the other hand, if τ ∈ off(σ), the bars underlying σ, which correspond to the variables of η := xiτ σ are followed by stars. Indeed, η is composed by multiplicative variables for σ.

Another problem one can pose is: Problem 6.3.16. Given a finite set of terms M = {τ 1 , ..., τ m } ⊆ T is there any ordering on the variables x 1 , ..., x n such that M is complete?

As explained above, the Bar Code construction allows to detect the completeness of M . Clearly such a construction depends on the variables' ordering, so if we want to solve problem 6.3.16 we should draw and check n! different Bar Codes, which turns out to be rather tedious and time consuming.

Exploiting again the Bar Code structure and corollary 6.3.15, we can look for the solution of 6.3.16 in a "greedy" way, so that most of the tests can be skipped. More precisely, considered M = {τ 1 , ..., τ m }, we perform the steps described below.

Step a) Quest for the maximal variable.

Let C be the set containing all the candidates for being the maximal variable in the ordering we are going to construct. A priori, all the variables can be good candidates for the role of maximal variable, so C = {x 1 , ..., x n }. It is necessary to examine the variables, in order to estabilish which of them can really hold this position, in order to have a complete system. 1. For i = 1, ..., n, compute the sets

D i := {β ∈ N|∃τ ∈ M, deg i (τ ) = β}.
2. Read each of these sets: if, for some 1 ≤ j ≤ n, there are two γ 1 , γ 2 ∈ D j , γ 1 < γ 2 -1 and ∃γ 3 , γ 1 < γ 3 < γ 2 , such that γ 3 / ∈ D j , then x j cannot be the maximal variable for our ordering. Indeed, if so, M γ3 = ∅ and this contradicts corollary 6.3.15. In this case, exclude x j from C.

Test) If C = ∅, none of the variables can be the maximal one and this implies that the system is not complete for any variable ordering. Otherwise, we continue.

Choice) Pick an element x i ∈ C = ∅ which we assume to be the maximal variable for the ordering we are constructing. Then set

C = C \ {x i } 8 .
Step b) Divisors and multiplicative variables.

1. Write down the terms in M , arranging them w.r.t. their i-degree. If, for some τ j1 , τ j2 ∈ M , deg i (τ j1 ) = deg i (τ j2 ) and τ j1 | τ j2 , then write τ j1 on the left of τ j2 .

This operation is equivalent to draw the lowest line of the Bar Code associated to the variable ordering we are creating step by step 9 . From now on, we denote by A (i) _ these bars. We encode them, together with the terms.

2. For each τ j1 , lying over

A (i)
1 , check whether there are terms τ j2 over

A (i) 2 such that deg h (τ j2 ) ≤ deg h (τ j1 ), for each h = i. Do the same for the couples of consecutive i-bars A (i) 2 , A (i) 3 ; ...;A (i) µ(i)-1 , A (i) µ(i) .
-If the quest has positive outcome, we keep track of the terms we found, together with all the variables h = i for which the strict inequality holds. These are those we need to belong to mult(τ j2 ) so that x i τ j1 ∈ off(τ j2 ).

-If, for some term τ there are no σ satisfying the properties described above, the test fails 10 . So we break.

Test 2) If Step b) reports a failure, delete the bars and go to Test) 11 . Otherwise continue.

Once a variable has been selected, we have to choose the following one in order of magnitude.

We have as information, the Bar Code already drawn, the variable already settled, together with the list of the other possible candidates for the whole set of positions under consideration at this point and the list of variables we need to be multiplicative for each term.

Moreover, if we are not dealing with the second variable in order of magniture, we have some information on the previous variables, namely for which terms they are multiplicative.

We have to repeat what follows for settling down the other variables, until we get either an ordering (i.e. we have settled all the variables, so that we can quit with a positive outcome) or a situation in which all the bars are unitary (we will explain this situation below).

Ordering) If all the variables have been settled, we have found an ordering on the variables, for which M is complete, so we quit with positive outcome. Otherwise we continue with the next step.

Unitary) If all the examined bars are unitary 12 , we can quit with a positive outcome since the ordering on the other variables, not already examined, is indifferent. Otherwise we continue with the next step.

Step c) Next variable.

Candidates) For each bar A (j)

h , h = 1, ..., µ(j), on the topmost line already drawn, there is a set of terms lying over it.

Execute

Step a) over each of these sets (forgetting about the variables already settled) and intersect the obtained sets of candidates.

Test 3) If such an intersection is empty, we have to come back. More precisely we delete the topmost line in the Bar Code (and the related information, except that the candidate list). Then, if there are no bar left, we go to Test), otherwise, we repeat Test 3) on the set of candidates related to the variable treated in the previous step 13 . If it is nonempty, we continue with the following step. Compatibility) The new candidate x l has to be compatible with the variables chosen so far.

1. Read the terms of which we have kept track, together with the variables we need to be multiplicative, in order to have a complete set of terms.

2. If x l is one of the variables associated to some τ , check whether is multiplicative or not. This means looking whether τ lies on the rightmost l-bar over the underlying bar (in this case x l is multiplicative for τ ) or not. Notice that a negative outcome do not authomatically exclude the completeness of the system, since a term could potentially have associated to it more than one term arising from Steps b), b'), equipped with some variables, required to be multiplicative. * If x l is not multiplicative for some τ , but τ is not the only term we have recorded for the term under consideration, we mark τ as failed w.r.t x l 14 . * If, for some term in M , all the associated terms we have kept track of give a negative outcome, the test fails 15 . So we break.

Test 4) If the Compatibility) fails, we change candidate for the current variable, i.e. we reset the markers set for x l , we delete the upmost line in the Bar Code and we go to Test 3). Otherwise we quit Step c).

Redirection) Go to Ordering).

Example 6.3.17.

Consider M = {x 1 x 3 2 , x 3 1 x 2 } ⊂ k[x 1 , x 2 ]. Such a set is not complete by a) since D 1 = D 2 = {1, 3}.
As a confirmation, we can see that, if x 1 < x 2 , we have 14 If the test passes, the failed terms are not examined anymore. 15 The first condition of 6.3.15 is not verified.

0 1 2 x 3 1 x 2 x 1 x 3 2 * * * Then mult(x 3 1 x 2 ) = {x 1 }, mult(x 1 x 3 2 ) = {x 1 , x 2 } and x 3 1 x 2 2
does not belong either to off(x 3 1 x 2 ) or to off(x 1 x 3

2 ). On the other hand, if x 2 < x 1 , we have

0 2 1 x 1 x 3 2 x 3 1 x 2 * * * Thus mult(x 1 x 3 2 ) = {x 2 }, mult(x 3 1 x 2 ) = {x 1 , x 2 } and x 2 1 x 3 2 does not belong either to off(x 3 1 x 2 ) or to off(x 1 x 3 2 ). Example 6.3.18. Consider M = {x 2 x 3 , x 2 1 , x 2 3 , x 2 2 , x 1 x 2 , x 1 x 2 x 4 , x 2 1 x 4 , x 4 x 3 , x 2 2 x 4 , x 2 1 x 3 } ⊂ k[x 1 , x 2 , x 3 , x 4 ].
Step a)

D 1 = D 2 = D 3 = {0, 1, 2}, D 4 = {0, 1}.
Each variable is a good candidate for being the maximal one, so we move to Step b), choosing, for example, x 3 , getting

x 2 1 x 1 x 2 x 2 2 x 2 1 x 4 x 1 x 2 x 4 x 2 2 x 4 x 2 1 x 3 x 2 x 3 x 4 x 3 x 2 3 3 For A (3) 1 , A (3) 2 , A 
3 we test the divisors. For A

(3) 1 , A (3) 2 : 
• x 2 1 → x 2 1 x 3 . We do not keep track of any variable.

• x 1 x 2 → x 2 x 3 . We keep track of x 1 . • x 2 2 → x 2 x 3 . We keep track of x 2 . • x 2 1 x 4 → x 2 1 x 3 . We keep track of x 4 . x 2 1 x 4 → x 3 x 4 .
We keep track of x 1 .

• x 1 x 2 x 4 → x 2 x 3 . We keep track of x 1 , x 4 . x 1 x 2 x 4 → x 3 x 4 . We keep track of x 1 , x 2 . • x 2 2 x 4 → x 2 x 3 . We keep track of x 2 , x 4 . x 2 2 x 4 → x 3 x 4 . We keep track of x 2 . x 2 1 x 1 x 2 x 2 2 x 2 1 x 4 x 1 x 2 x 4 x 2 2 x 4 x 2 1 x 3 x 2 x 3 x 3 x 4 x 2 3 2 4 3
This way, all the sets overlying the 2-bars are singletons. We check on the 2-bars to have nonincreasing exponents for x 1 and this is true. Moreover, we check that x 2 is multiplicative where it is marked, i.e. for x 2 x 3 , x 3 x 4 but it clearly holds.

The system M is complete for x 1 < x 2 < x 4 < x 3 and its final Bar Code w.r.t. the chosen ordering is

x 2 1 x 1 x 2 x 2 2 x 2 1 x 4 x 1 x 2 x 4 x 2 2 x 4 x 2 1 x 3 x 2 x 3 x 3 x 4 x 2 3 1 2 4 3
The following technical lemma will be very useful throughout the paper. As a first application, we will prove (theorem 6.3.20) that a system of terms M (possibly infinite) is complete if and only if the offsprings of the elements in M form a partition of the semigroup ideal generated by M . Lemma 6.3.19. [57, pg.23] Let τ , τ be elements of a set of terms M and x j be a variable such that x j / ∈ mult M (τ ) and x j τ ∈ off M (τ ). Then τ < Lex τ . If, moreover, x j ≤ min(τ ), then

τ x j = τ ∈ M .
Proof. First of all, we observe that τ = τ , since x j / ∈ mult M (τ ). By definition of offspring, we have that τ x j = τ σ , where σ is a product of multiplicative variables for τ .

Let us assume by contradiction that τ > Lex τ and let x i be the maximal variable such that If, moreover, M is complete and T(M ) is the semigroup ideal it generates, then ∀γ ∈ T(M ), ∃τ ∈ M such that γ ∈ off M (τ ). Hence, the offsprings of the elements in M give a partition of T(M ).

deg i (τ ) > deg i (τ ). Then, x i |σ , hence x i ∈ mult M (τ ),
Proof. To prove the first assertion, let us assume by contradiction that τ σ = τ σ ∈ off M (τ ) ∩ off M (τ ) = ∅ and let τ > lex τ . If x i is the maximal variable such that deg i (τ ) > deg i (τ ), then x i |σ . By definition of offspring, x i ∈ mult M (τ ), but this is impossible by definition of multiplicative variable, since also τ is in M . Now we assume that M is complete and prove the second fact. We argue by contradiction. Suppose T(M ) O := σ∈M off M (σ) and take any term γ in T(M ) \ O. As M generates T(M ), there are terms in M that divide γ: let τ be the one which is maximal with respect to < lex . If γ = τ σ, the term σ contains at least a variable x i which is not multiplicative for τ , since τ σ / ∈ off M (τ ). Then γ = τ x i η and τ x i / ∈ off M (τ ).

By the completeness of M , we have τ x i ∈ O, namely there is a term τ ∈ M such that τ x i = τ σ ∈ off M (τ ). By Lemma 6.3.19 i), τ > Lex τ , and this is not possible since

τ |γ = τ x i η = τ σ η.
Thanks to the previous result, if M is a complete system, each term in T(M ) can be written in a unique way as a product of 1. an element τ ∈ M ; 2. a term

x η = x ηi i • • • x ηj j , with x i , ..., x j ∈ mult M (τ ).
This fact suggests the following Definition 6.3.21. Let M be a complete system of terms. The star decomposition of every term γ ∈ (M ) with respect to M , is the unique couple of terms (τ, η), with τ ∈ M , such that γ = τ η and γ ∈ off M (τ ). If (τ, η) is the star decomposition of γ with respect to M , we will write γ = τ * M η.

Remark 6.3.22. From the results stated above, we obtain the following explicit formula for the Hilbert function of (M ):

h HF (M ) (k) = k + n n - τ ∈M deg(τ )≤k k -deg(τ ) + s τ -1 s τ -1 ,
where s τ is the number of multiplicative variables for τ w.r.t M and we set equal to 0 every binomial with a negative numerator or a negative denominator.

Thus, this formula makes sense also for infinite sets M , since for every k there are only finitely many non-zero summands.

If M is a finite set of terms and r is the maximal degree of its elements, this formula gives the value of the Hilbert polynomial for every k ≥ r.

The following lemma will be very useful for the reduction process we will define in section 6.5.

Lemma 6.3.23. Let M be a stably complete system of terms and let γ be a term such that γ = τ * M η and also γ = ση with σ / ∈ T(M ).

Then η > Lex η.

Proof. By definition of stable completeness, min(τ ) ≥ max(η). If η < Lex η, then η |η and τ |σ. This is not possible since τ ∈ T(M ) and σ / ∈ T(M ).

Star set and quasi stable ideals

In this section, we take again under consideration the star set of a given monomial ideal J P :

F(J) := {x α ∈ T \ N(J) | x α min(x α ) ∈ N(J)}.
We will prove that it is a complete system with many interesting properties in common with the minimal monomial basis of strongly stable ideals.

Theorem 6.4.1. For every monomial ideal J, the star set F(J) is the unique stably complete system of generators of J. Hence, if M is stably complete, M = F((M )).

Proof. Let τ := x α k k • • • x αn n be any monomial in F(J). Assume x i is not multiplicative, so that x i τ ∈ J, x i τ = τ σ , τ ∈ M . Then Lemma 6.3.19 implies τ < Lex τ whence x i > min(τ ).

Let x i > x k := min(τ ) and set σ 0 := τ x i , σ r := σr-1 min(σr-1) for r = 1 . . . , α k + • • • + α i-1 . Note that x αi i • • • x αn n / ∈ J, since it divides τ min(τ ) ∈ N(J), while σ := σ 0 ∈ J, since it is a multiple of τ . Then, in the sequence of terms σ i , 0 ≤ i ≤ α k + • • • + α i-1
, we find an element σ j that belongs to J, while the following one does not.

Then σ j ∈ F(J), so that x i τ ∈ off F (J) (σ j ) and x i is not multiplicative for τ w.r.t. F(J).

Take τ = x α k k • • • x αn n
∈ F(J), and a variable x i / ∈ mult F (J) (τ ). By the previous re-

sult x i > x k = min(τ )
. By definition of non-multiplicative variable, there is a term σ =

x t i x αi+1 i+1 • • • x αn n ∈ F(J)
, for some integer t > α i . Let us consider the minimum one.

If t = α i + 1, then x i τ = x α k k • • • x t i • • • x αn n ∈ off F (J) (σ ). If, on the contrary, t > α i + 1, then σ = x αi+1 i • • • x αn n ∈ N(J) by definition.
Let us consider, as in the previous proof, the sequence of terms σ 0 := τ x i ∈ J, σ r := σr-1 min(σr-1) for r = 1 . . . , k-1 j=k α j . Since the last one is σ , we can find in this sequence a suitable σ j ∈ I such that σ j+1 ∈ N(J), that is σ j ∈ F(J) and x i τ ∈ off F (J) (σ j ).

In order to prove that every stably complete set of terms M , with J = (M ) is exactly F(J), we first notice that clearly G(J) ⊆ M and G(J) ⊆ F(J).

Moreover, it is sufficient to prove that F(J) ⊆ M . Let σ ∈ F(J), i.e. σ min(σ) = ω ∈ N(J). Then, there exists τ ∈ M such that σ ∈ off(τ ) and so σ = τ η, with either η = 1 or max(η) ≤ min(τ ).

This implies that either τ = σ or τ | ω, but the second alternative is impossible since both τ ∈ M and ω ∈ N(J). Remark 6.4.2.

i. For an arbitrary monomial ideal J the set F(J) can be infinite. For

example, if J = (x) k[x, y], x < y, then F(J) = {xy n | n ∈ N}.
ii. Not all the complete systems turn out to be of the form of a star set.

For example, the complete system M = {x h y, h ≥ 1} ⊆ k[x, y] of Example 6.3.12 is not the star set of the ideal J := (M ).

Indeed, N(J) = {x m , m ≥ 0} ∪ {y l , l > 0} and all the terms of the form

xy k , k > 1, do not belong to M , even if xy k min(xy k ) = y k ∈ N(M ). Moreover, for h > 1, x h y x = x h-1 y ∈ M , so x h y / ∈ F(J).
Better results hold if the monomial ideal J satisfies one of the following conditions, weaker then the strongly stable property (see section 6.6).

Definition 6.4.3. A monomial ideal J is called stable if it holds τ ∈ J, x j > min(τ ) =⇒ x j τ min(τ ) ∈ J A monomial ideal J is called quasi stable if it holds τ ∈ J, x j > min(τ ) =⇒ ∃t ≥ 0 : x t j τ min(τ ) ∈ J.
We will show that this notion of quasi stable ideal coincides with the one given in [START_REF] Seiler | A Combinatorial Approach to Involution and Delta-Regularity II: Structure Analysis of Polynomial Modules with Pommaret Bases, Applicable Algebra in Engineering[END_REF],

by proving that J actually has a Pommaret basis. Remark 6.4.4.

• Obviously, a stably complete system M is also stable, and a stable set is also quasi stable.

• In order to verify whether the conditions above are satisfied for a given ideal J it is sufficient to check the terms in the basis G(J). Proposition 6.4.5. Let J be a monomial ideal. Then TFAE:

i) J is stable ii) F(J) = G(J) Proof. i) ⇒ ii)
The inclusion G(J) ⊆ F(J) is true for every monomial ideal by definition of star set. We prove now that γ / ∈ F(J) for every term γ ∈ J \ G(J).

By hypothesis, ∃τ ∈ G(J), such that γ = τ σ and σ = 1.

Let x k := min(γ). If x k |σ, then γ min(γ) = τ σ x k ∈ J, so that γ / ∈ F(J).
If, on the other hand, x k σ and x j is any variable dividing σ, then x j > x k and x k = min(τ ). By the stability of J we have

xj τ x k ∈ J, hence γ x k = τ σ xj xj x k ∈ J, hence again γ / ∈ F(J).
ii) ⇒ i) If ii) holds, then G(J) is the only stably complete system generating J. By remark 6.4.4, we can check the stability on the terms x α ∈ G(J). Let x j > x k := min(x α ).

By hypothesis there exists x β ∈ G(J) such that x j x α ∈ off G(J) (x β ), and, since

x α ∈ G(J), of course x α x j / ∈ G(J). Hence x β | xj x α
x k and so

x α xj x k ∈ J.
Proposition 6.4.6. Let J be a monomial ideal. Then TFAE:

i) J is quasi stable ii) |F(J)| < ∞ iii) F(J) = H(J) is the Pommaret basis of J.
Proof. i) ⇒ ii) Let a be the maximum of the degrees of elements in G(J) and let t be such that x t j x α min(x α ) ∈ J for every x α ∈ G(J) and x j > min(x α ). We prove that F(J) is contained in P <d where d := a + tn. Let x α x η ∈ J ≥d with x α ∈ G(J) and x k be min(

x α x η ). If x k |x η , then obviously x α x η x k = x α x η
x k ∈ J, so x α x η / ∈ F(J). If, on the other hand, x k |x η , then

x k = min(x α ). Moreover, every variable dividing x η is higher than x k and at least one of them , let us call it x j , appears in x η with exponent ≥ t, as deg(x η ) ≥ nt. Then

x t j x α x k ∈ J, hence x α x η x k = x t j x α x k • x η x t j ∈ J and x α x η / ∈ F(J).
ii) ⇒ iii) By ii) F(J) is finite, and by 6.4.1 is stably complete, so it is clearly the Pommaret basis of J.

iii) ⇒ i) By remark 6.4.4, we check the quasi stability on the terms x α ∈ G(J). Let x j >

x k := min(x α ). By the hypothesis on the finiteness of F(J), there exists m 0 such that x α x m j / ∈ F(J). Moreover, being F(J) a stably complete system, there exists

x β ∈ F(J) such that x m j x α ∈ off F (J) (x β ) and x β | x m j x α
x k . Therefore,

x m j x α
x k ∈ J, namely J is quasi stable.

Example 6.4.7. In k[x, y, z] with x < y < z:

• considered J = (z, y 2 ), we get M = F(J) = G(J) = {z, y 2 }, since J is stable;

• taken the ideal J = (z 2 , y), we get M = F(J) = {z 2 , yz, y} ⊃ G(J).

In fact, J is quasi stable, but it is not stable;

• given J = (y), the star set is M = F(J) = {z k y | k ≥ 0}, and |F(J)| is infinite, since J is not stable.

Remark 6.4.8. By remark 6.4.6, each zerodimensional ideal is quasi stable, since its star set is finite, as one can see by drawing the Bar Code of the corresponding Groebner escalier (see section 6.8 for more details).

Moreover, for non zerodimensional ideals, we can simply decide about their quasi stability by their (infinite) Bar Codes.

Indeed, by proposition 5.4.9, we only have to draw the corresponding infinite Bar Code and to check whether there is a finite term, under which lies at least one →. If it is the case , the ideal is not quasi stable, since the star set is infinite. If not, the ideal is quasi stable.

M -marked sets and reduction process.

In this section, we generalize the notions of J-marked polynomial, J-marked basis and Jmarked family given in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] for J strongly stable.

In those papers, the involved polynomials are marked on the monomial basis of the given monomial ideal J. Here, we give the analogous definitions for any monomial ideal, provided that the involved polynomials are marked on a complete generating system in the sense of definition 6.3.9.

After determining the setting, we extend to it the reduction process of the quoted papers.

At the end, we will see that such a generalized procedure does not need to be noetherian for every complete system of terms. We will need to add some hypotheses on the given complete system in order to overcome this problem.

We point out that, as in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF], we do not introduce any term-ordering and this represents an important difference w.r.t. Janet's papers.

Moreover, we consider polynomials with coefficients in a ring, not necessarily in a field. Definition 6.5.1. Let M be a complete system of terms and J be the ideal it generates.

• An M -marked set is a finite set G of homogeneous (monic) marked polynomials f α =

x α -c αγ x γ , with Ht(f α ) = x α ∈ M and Supp(f α -x α ) ⊂ N(J), so that |Supp(f ) ∩ J| = 1.

• An M -marked basis G is an M -marked set such that N(J) is a basis of Q/(G) as Amodule, i.e. Q = (G) ⊕ N(J) as an A-module.

• The M -marked family Mf (M ) is the set of all homogeneous ideals I that are generated by an M -marked basis.

Remark 6.5.2. Observe that the above definition of marked family Mf (M ) is consistent with that given in the Introduction of Mf (J) for a monomial ideal J. Indeed, if I ∈ Mf (M ), then I ∈ Mf (J) with J = (M ). On the other hand, for every given J there are complete systems M that generate it, for instance M = F(J) and Mf (J) = Mf (M ). In fact, if I ∈ Mf (J), every polynomial h can be uniquely written as a sum f + g with f ∈ I and g ∈ N(J) ; especially for every x α ∈ M , we have

x α = f α + g α , f α ∈ I and g α ∈ N(J) . (6.1) 
Then I contains the M -marked basis

G = {f α = x α -g α , x α ∈ M }. Furthermore G is an M -marked basis since (G) ⊆ I and Q = (G) + N(J) = I ⊕ N(J) .
The only difference between the two notations Mf (J) and Mf (M ) with M a complete system generating J, is that using the second one we present every ideal of the family by means of a special set of generators depending on M . Note that, by the definition itself of Mf (J), we can assert that for every ideal I ∈ Mf (J) the M -marked basis generating it is unique.

We define now a reduction procedure for terms and polynomials, with respect to a homogeneous set G of polynomials, marked on a complete system of terms M .

The usual reduction process with respect to G consists of substituting each term x α x η , multiple of an head term x α = Ht(f α ), with the polynomial

(x α -f α )x η = g α x η .
We add an extra condition to the standard procedure, namely that this substitution can be performed only in the case x α x η = x α * M x η . Definition 6.5.3. Let M be a complete system and G an M -marked set. We will denote by

G -→ the transitive closure of the relation h G -→ h -cf α x η , where x α x η = x α * M x η is a term
that appears in h with a non-zero coefficient c. We will say that

G -→ is noetherian if the length r of any sequence h = h 0 G -→ h 1 G -→ . . . G -→ h r is bounded by an integer number m = m(h).
This is equivalent to say that if we continue rewriting terms in this way we always obtain, after a finite number of reductions, a polynomial whose support is contained in N(J).

We will write h

G -→ * g if h G
-→ g and Supp(g) ⊂ N(J).

In general, the relation G -→ is not noetherian, namely there are sequences of reduction of infinite length.

Example 6.5.4. Let M := {xz, yz, y 2 } a set of terms in k[x, y, z] with x < y < z. We find the following sets of multiplicative variables:

• mult M (xz) = {x, z} • mult M (y 2 ) = {x, y} • mult M (yz) = {x, y, z}
and check that M is complete.

Let G the M -marked set {f xz = xz -xy, f yz = yz -z 2 , f y 2 = y 2 }.
Then we have the infinite sequence of reductions:

xz 2 = xz * M z G -→ xz 2 -f xz z = xyz = yz * M x G -→ xyz -f yz x = xz 2 ...
However, the reduction G -→ is always noetherian if G is marked on a stably complete system. In order to prove this fact we will use the following special subset of the ideal (G). Definition 6.5.5. Let G be an M -marked set on a complete system of terms M and let J := (M ). For each degree s, we will denote by G (s) the set of homogeneous polynomial

G (s) := {f α x η | x α * M x η ∈ (M ) s }
marked on the terms of J s in the natural way Ht(f α x η ) = x α x η . Remark 6.5.6. Observe that if G is a M -marked set on a stably complete system of terms M , for every homogeneous polynomial g of degree s, g

G -→ h implies that g-h = m i=1 c i f αi x ηi ∈ G (s) .
It is worth noticing as a direct consequence of Lemma 6.3.23 that if f α x η ∈ G, then every term in Supp(x α x η -f α x η ) either belongs to N((M )) or is of the type x α * M x η with x η < Lex x η . Lemma 6.5.7. Let G be a M -marked set on the stably complete system of terms M = F(J).

1. Every term in Supp(x β x -f β x ) either belongs to N((M )) or is of the type x α * M x η with x η < Lex x .

2. If f β ∈ F(J), then all the polynomials f αi x ηi ∈ G (s) used in the reduction of x β x (except f β x if it belongs to G (s) ) are such that x > Lex x ηi .

3. If g = m i=1 c i f αi x ηi , with c i ∈ k -{0} and f αi x ηi ∈ G (s) are pairwise different, then g = 0 and its support contains some term of the ideal J.

Proof. (1) is a direct consequence of Lemma 6.3.23.

(2) Assume that the statement holds for every term x β x , with x < Lex x . At a first step of reduction of x β x we use the polynomial f α x η where x β x = x α * M x η , so that x η ≤ Lex x ; moreover every term in the support of the obtained polynomial either belongs to N((M )) or is of the type x α * M x η with x η < Lex x η (Remark 6.5.6). Then we conclude since we assumed the property holds for all those terms.

(3) We assume that the summands in g are ordered so that x η1 ≥ Lex x ηi for every i = 1, . . . , m and show that x η1+α1 belongs to the support of g.

The term x α1+η1 cannot appear as the head of f αi x ηi for some i = 1 because the star decomposition of a term is unique. Moreover it cannot appear in f αi x ηi -x αi+ηi since x α1+η1 = x β x ηi , with x β ∈ N(J) would imply x ηi > Lex x η1 (see Lemma 6.3.23), against the assumption. Theorem 6.5.8. Let G be an M -marked set on a stably complete system of terms M and let J be the ideal generated by M .

Then the reduction process G -→ is noetherian and, for every integer s, Q s = G (s) ⊕ N(J) s . Indeed, for every h ∈ Q s

h = f + g with f ∈ G (s) and g ∈ N(J) s ⇐⇒ h G -→ * g and f = h -g Proof. Let G = {f α | x α ∈ M }.
We observe that we have G (s) ∩ N(J) s = {0} by Lemma 6.5.7.

In order to prove that the module G (s) + N(J) s coincides with P s it is sufficient to show that it contains all the terms in J s \ M , being obvious for those in M , for which x α = f α + g α (see 6.1).

Let τ be a term in J s . If τ = x α * M x η , we may assume of having already proved the statement for all the terms τ = x α * M x η with x η < Lex x η .

We have x α x η = f α x η + (x α -f α )x η where Supp(x α -f α ) ⊂ N(J). If x β is any term in this support, then either x β+η ∈ N(J) or x β+η = x α * M x η with x η < Lex x η by Lemma 6.3.23. This allows us to conclude Q s = G (s) + N(J) s .

Finally, in order to prove that G -→ is noetherian it is sufficient to observe that every reduction step substitutes a term of J of the type x α * M x η with x α x η -f α x η . Indeed, by remark 6.5.6, each τ ∈ Supp(x α x η -f α x η ) \ N((M )) has the form x α * M x η , x η < Lex x η and this permits to conclude by induction.

As a straightforward consequence of the previous result, we obtain the following Corollary 6.5.9. If M is a stably complete system and G is an M -marked set, the following are equivalent:

• G is an M -marked basis • for every s:

G (s) = (G) s • for every h ∈ (G): h G -→ * 0 • if h -g ∈ (G)
and Supp(g) ⊂ N(J), then h G -→ * g. Remark 6.5.10. We point out that if G is a M -marked set, but not a M -marked basis, then there are polynomials in the ideal (G) whose support is contained in N((M )). Hence, we do not have a "normal form" of a polynomial h modulo (G), since, in general, there are several polynomials g such that Supp(g ) ⊂ N(J) and h -g ∈ (G). However, the reduction process h G -→ * g with respect to a F(J)-marked set G gives a unique reduced polynomial g for every polynomial h.

Using the reduction process, we can now answer Problem 6.1.2 and characterize the ideals I that belong to the marked family Mf (J). Theorem 6.5.11. Let G be a F(J)-marked set. Then:

(G) ∈ Mf (J) ⇐⇒ ∀f β ∈ G, ∀x i > min(x β ) : f β x i G -→ * 0
Proof. Since "⇒" is a straightforward consequence of Corollary 6.5.9, we only prove "⇐".

More precisely, we prove that (G) m = (G (m) ), showing that if f β ∈ G and deg(x β+ ) = m, then f β x is either an element of G (m) itself or a linear combination of polynomials in G (m) .

If this were not true, we can choose an element f β x / ∈ G (m) with x minimal with respect to < Lex . As f β x / ∈ G (m) , at least one variable x i appearing in x with nonzero exponent is non-multiplicative for x β . Let x = x i x . By hypothesis

f β x i G -→ * 0, so that f β x i is a linear combination c i f αi x ηi of polynomials in G (|β|+1)
. By Lemma 6.5.7 we have

x ηi < Lex x i . Now f β x = (f β x i )x = ( c i f αi x ηi )x = c i f αi x ηi+ , where x ηi+ < Lex x i x = x .
Now we get a contradiction, since f αi x ηi+ ∈ G (m) by the minimality of x .

Example 6.5.12. Let J be the monomial ideal (x 3 , xy, y 3 ) in k[x, y] with x < y. Its star set is F(J) = {x 3 , xy, xy 2 , y 3 }. Using the criterion given in Theorem 6.5.11, we can easily check that the F(J)-marked set G := {f 1 := x 3 , f 2 := xy -x 2 -y 2 , f 3 := xy 2 , f 4 = y 3 } (in bold the head terms) is a F(J)-market basis:

• yf 1 = xf 1 + x 2 f 2 + xf 3 G -→ * 0, • yf 2 = f 1 -xf 2 -f 4 G -→ * 0 • yf 3 = xf 4 G -→ * 0.
This is a simple example of a marked basis which is not a Groebner basis. In fact, it is obvious that Ht(f 2 ) = xy cannot be the leading term of f 2 with respect to any term-ordering and, more generally, that J cannot be the initial ideal of the ideal (G), even though

(G) ⊕ N(J) = k[x, y].
A wider family of ideals of this type are presented in [START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF]Example 3.18 and Appendix].

Remark 6.5.13. Let x β x i = Ht(f

β x i ), if x β x i = x α x η ∈ off(x α ) then the first step of reduc- tion of the polynomial f β x i is actually f β x i G -→ S(f β , f α ) := lcm(x β ,x α ) x β f β -lcm(x β ,x α ) x α f α = f β x i -f α x η
, namely the S-polynomial of f α , f β . Therefore we could reformulate the criterion given by Theorem 6.5.11 as follows:

(G) ∈ Mf (J) ⇐⇒ ∀f α , f β ∈ G : S(f α , f β ) G -→ * 0.
However Theorem 6.5.11 shows that it is sufficient to check a special subset of the S-polynomials that corresponds to the basis for the first syzygies of the terms in F(J). If J is quasi stable, this basis is the one considered in [START_REF] Seiler | A Combinatorial Approach to Involution and Delta-Regularity I: Involutive Bases in Polynomial Algebras of Solvable Type[END_REF]. It is obvious that the maximal degree of these special S-polynomials cannot exceed 1 + max{deg(x α ) | x α ∈ F(J)}. Indeed, if J is quasi stable, reg(J) = max{deg(τ ), τ ∈ F(J)} as proved in [START_REF] Hashemi | Quasi-Stability versus Genericity[END_REF][START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Seiler | A Combinatorial Approach to Involution and Delta-Regularity II: Structure Analysis of Polynomial Modules with Pommaret Bases, Applicable Algebra in Engineering[END_REF].

Remark 6.5.14. If J is a quasi stable monomial ideal and G is an F(J)-marked set, then there are only a finite number of reduction to perform in order to decide if a F(J)-marked set G is a basis. We will use this algorithm in order to endow the marked family Mf (J) of a structure of affine scheme If the considered monomial ideal is not quasi stable, then the (unique) stably complete generating set is infinite. Actually this does not necessarily exclude we can exploit it even from a computational point of view.

Marked families, schemes and functors

In this section we follow [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] and show how it is possible to associate a scheme to each marked family Mf (J). Due to the naturality of this construction, we can mimic the one of [START_REF] Lella | Rational components of Hilbert schemes[END_REF], and define marked families as functors.

Our results are very similar, but more general, than those of [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF][START_REF] Lella | Rational components of Hilbert schemes[END_REF]; in fact in those papers the ideal J is assumed to be strongly stable.

Obviously, a strongly stable ideal is also stable, so that F(J) = G(J). If J is strongly stable, the notions of G(J)-marked sets, G(J)-marked bases and G(J)-marked family introduced in the previous sections exactly correspond to those of J-marked sets, J-marked bases, J-marked family considered in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] and the reduction procedure Moreover, for such an ideal J, the scheme structure that we will define is the same obtained in [START_REF] Bertone | Upgraded methods for the effective computation of marked schemes on a strongly stable ideal[END_REF][START_REF] Cioffi | Flat families by strongly stable ideals and a generalization of Gröbner bases[END_REF] and used in [START_REF] Bertone | A Borel open cover of the Hilbert scheme[END_REF][START_REF] Lella | Rational components of Hilbert schemes[END_REF] for a local study of Hilbert schemes. Indeed, for every monomial ideal J, if I ∈ Mf (J), then the ideals I and J share the same Hilbert polynomial (and also the same Hilbert function), so that they correspond to points in the same Hilbert scheme.

The scheme we associate to Mf (J) only depends on the monomial ideal J, but the way we use in order to define it needs a set of generators M complete, finite and such that for every M -marked set G the reduction procedure

G -→ is noetherian.
Then, in the following J will be a quasi stable monomial ideal and M will be its finite star-set F(J), (according to Seiler's notation, it is the Pommaret basis H(J)).

Let {x α1 , ..., x αs } be the terms in M and consider the polynomial ring B := A[C], where C is a compact notation for the set of variables C i,β i = 1, . . . , s and x β ∈ N(J) deg(αi) . We also define the M -marked set in B[x 1 , ..., x n ]

G := {f αi := x αi + C i,β x β | x β ∈ N(J) |αi| , Ht(f αi ) = x αi }.
Clearly, every M -marked set can be obtained specializing G, namely as φ(G) for a suitable morphism of A-algebras φ : A[C] → A. Moreover, by the uniqueness of the M -marked basis generating each ideal in Mf (J), we can assert that for every ideal I ∈ Mf (J) there exists a unique specialization φ such that (φ(G)) = I.

We use Theorem 6.5.11 in order to construct a set of polynomials R that will define the scheme we associate to M . If g is a polynomial in B[x 1 , ..., x n ], we denote by coeff x (g) the set of coefficients of g with respect to the only set of variables x 1 , . . . , x n ; hence coeff x (g) ⊂ B = A[C] is a set of polynomials in the variables C. For every x αi ∈ M and x j > min(x αi ), let g αi,j ∈ B[x 1 , . . . , x n ] be such that f αi x j G -→ * g αi,j . Definition 6.6.1. Let M be a stably complete system in T , A be any ring, and R be the union of coeff x (g αi,j ) for every x αi ∈ M and x j > min(x αi ).

We will call M -marked scheme over the ring A, and denote by Mf M (A) the affine scheme Spec(A[C]/(R)). Remark 6.6.2. Every M -marked set in A[x 1 , . . . , x n ] is a M -marked basis if and only if the coefficients of the terms in the tails satisfy the conditions given by R.

In particular, if A = k is an algebraically closed field, then the closed points of Mf M (A) correspond to the ideals in the marked family Mf (J) where J is the ideal in k[x 1 , . . . , x n ] generated by M . Remark 6.6.3. The above construction of R is in fact independent from the fixed commutative ring A, in the sense that it is preserved by extension of scalars. We can first choose Z as the coefficient ring and then apply the standard map Z → A.

More formally, for every stably complete set of terms M we can define a functor between the category of Z-algebras to the category of sets Moreover, again following [START_REF] Lella | Rational components of Hilbert schemes[END_REF], it is possible to prove that Mf M is a representable functor represented by the scheme Mf M (Z) = Spec(Z[C]/(R)).

Historical notes.

Through the trivial interpretation of derivatives

1 α 1 ! • • • α n ! ∂ α1+α2+...+αn ∂x α1 1 ∂x α2 2 . . . ∂x αn n ,
in terms of the corresponding term τ = x α1 1 x α2 2 . . . x αn n ∈ T , Riquier [START_REF] Riquier | De l'existence des intégrales dans un système differentiel quelconque[END_REF][START_REF] Riquier | Sur une questione fondamentale du Calcul intégral[END_REF][START_REF] Riquier | Les systèmes d'équations aux dérivées partielles[END_REF] was able to algebraically transform the problem of solving differential partial equations in terms of ideal membership.

After introducing the concept (but not the notion) of S-polynomials he proved that if the normal form (in terms of Gauss-Buchberger reduction) of each S-polynomial among the elements of the basis G goes to zero then

• the given basis G generates the related ideal;

• the generic solution of the PDE can be given (and computed) as series in terms of initial conditions which can be described and formulated in terms of a Hironaka-Galligolike decomposition [START_REF] Galligo | Théoreme de division et stabilité en géométrie analytique locale[END_REF][START_REF] Hironaka | Idealistic exponents of singularity In: Algebraic Geometry[END_REF] (but more general) of the related escalier N;

if not all normal forms are 0, then, exactly as in Buchberger Algorithm, the non-zero normal forms are included in the basis and the procedure is repeated.

For instance, the system [89, pp.188-9]

∂ 3 u ∂y 3 = A(x, y, z), ∂ 2 u ∂x∂z = B(x, y, z), ∂ 3 u ∂x 2 ∂y = C(x, y, z),
must satisfy the integrability conditions

∂ 2 A ∂x∂z = ∂ 3 B ∂y 3 , ∂ 2 A ∂x 2 = ∂ 2 C ∂y 2 , ∂ 2 B ∂x∂y = ∂C ∂z ;
in which case the initial conditions have the shape

                                   u = φ 0 (z) ∂u ∂y = φ 1 (z) ∂ 2 u ∂y 2 = φ 2 (z)      x -x 0 = y -y 0 = 0, ∂u ∂x = α 0 ∂ 2 u ∂x∂y = α 1 ∂ 3 u ∂x∂y 2 = α 2      x -x 0 = y -y 0 = z -z 0 = 0, ∂ 2 u ∂x 2 = ψ(x) y -y 0 = z -z 0 = 0.
In his theory, Riquier was assuming that the set T of the terms was ordered by a termordering; he was mainly using [89, p.67] the deglex ordering induced by

x 1 > x 2 > • • • > x n ,
but he gave a large class of term-orderings to which his theory was applicable; actually (but he never stated that) his characterization is the classical one of all term-orderings [START_REF] Erdös | On the structure of ordered real vector spaces[END_REF][START_REF] Robbiano | Term orderings on the polynomial ring[END_REF].

He was however forced to restrict himself to degree-compatible term-orderings in order to be granted convergency.

In his gaussian reduction, Riquier, as Buchberger, considered as head term of each "marked" polynomial its maximal term.

In his considerations on generic initial ideal, Delassus [START_REF] Delassus | Extension du théorème de Cauchy aux systèmes les plus généraux d'équations aux dérivées partielles[END_REF], followed by Robinson [START_REF] Robinson | Sur les systémes d'équations aux dérivées partialles[END_REF] used (deg)-rev-lex induced by x 1 < x 2 • • • < x n and the minimal term as head term of each "marked" polynomial.

Next, in 1924, Janet [START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF] moved his interest in extending the study to the homogeneous case, adapting his approach on one side to the solution of partial differential equation given by E. Cartan [START_REF] Cartan | Sur l'intégration des systèmes d'équations aux différentielles totals[END_REF][START_REF]Cartan Sur la structure des groupes infinis de transformations[END_REF][START_REF] Cartan | Sur les systèmes en involution d'équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendentes[END_REF] via his characters and test and on the other side to the introduction by Delassus [START_REF] Delassus | Extension du théorème de Cauchy aux systèmes les plus généraux d'équations aux dérivées partielles[END_REF] of the concept of generic initial ideal and the precise description of it given by Robinson [START_REF] Robinson | Sur les systémes d'équations aux dérivées partialles[END_REF][START_REF] Robinson | A new canonical form for systems of partial differential equations[END_REF] and Gunther [START_REF] Gunther | Sur la forme canonique des systèmes déquations homogènes[END_REF][START_REF] Gunther | Sur la forme canonique des equations algébriques[END_REF]; he thus discussed the notion of système de forms (de même ordere) en involution. The notion, as he explains, is independent from the variable chosen and allows to assign to the system a series of values σ [57, p.87] sont évidemment invariables lorsq'on fait un changement linéaire et homogène des variables indépendantes which, under the assumption of generality, allow to describe the structure of the generic escalier of the considered ideal.

(p) i , 1 ≤ i ≤ n, p ∈ N which
The procedure, given a finite set G of forms, repeatedly produces à la Macaulay a linear basis B p of (G) p by performing linear algebra on the set {x i g : g ∈ B p-1 , 1 ≤ i ≤ n}; termination is granted when the formula (6.2) below is satisfied.

Given a homogeneous ideal I ⊂ k[x 1 , x 2 , . . . , x n ], where the variables are assumed to be generic, so that N(I) is stable, Janet defined [55, pp.30-2], [56, p.30], [57, pp.90 (Janet). It holds,

1. σ 1 + σ 2 + . . . + σ n ≤ σ 1 + 2σ 2 + . . . + nσ n ; 2. n i=1 σ i = n i=1 iσ i =⇒ σ j = n i=j σ i for each j. 3. n i=1 σ i = n i=1 iσ i =⇒ n i=1 σ (P +1) i = n i=1 iσ (P ) i for each P > p.
He can then state Definition 6.7.2 (Janet). [57, pp.90-1] A finite set E ⊂ P of forms of degree at most p generating the ideal I ⊂ P , is said to be involutive 16 Thus, once the iterated Macaualy-like procedure satisfies (6.2) at degree p then it successfully terminates and the finite bases produced by it is involutive; Janet is therefore able to present the ideal {τ ∈ T(I), deg(τ ) ≥ p} by explicitly producing [START_REF] Janet | Lecons sur les systèmes d'équations aux dérivées partelles[END_REF] the decomposition

{τ ∈ T(I), deg(τ ) ≥ p} = τ ∈M off M (τ )
where M is the stably complete set M = {τ ∈ T(I), deg(τ ) ≥ p} and to express its Hilbert polynomial as

h H I (t) = n-1 h=1 t -p + h -1 h -1 σ (p) h (I).
In our context, the characterization of σ The same equality holds if I is a homogeneous ideal generated by a J-marked basis G with J quasi stable.

Therefore G is an involutive basis.

Proof. For the first statement we observe that if p ≥ p every term τ ∈ J p+1 can be written in a unique way as a product τ = θx i , with θ ∈ J p and x i a multiplicative variable for θ, i.e.

x i ≤ min(θ).

If I is the homogeneous ideal generated by a J-marked set G, then for the corresponding f τ ∈ G (p+1) we have f τ = f θ x i with f θ in G (p) and of course x i ≤ min(θ).

If G is a J-marked basis, then we get the equality since (G) t = (G (t) ) for every t (Corollary 6.5.9).

Note that for an ideal I generated by a J-marked set G which is not a marked basis, only the inequality

n i=1 σ (p+1) i ≤ n i=1 iσ (p) i holds true, since (G) t ⊇ (G (t) ).
The iterated Macaualy-like procedure gives also a fine decomposition of N(I) ≥ p-1 as follows:

• Janet partitions the set N(I) p-1 as N p-1 = n-1 i=0 N i associating to -N 0 the monomials τ ∈ N p-1 (I) for which x 1 τ ∈ T(I);

while each of the σ 1 elements τ = υ x1 ∈ N(I) p-1 \ N 0 , class(υ) = 1 17 , is inserted in N i if it is one of the σ i elements which can be expressed as τ = υi xi , class(υ i ) = i but is not one of the σ i+1 elements which can be expressed as τ = υi+1 xi+1 , class(υ i+1 ) = i + 1.

• he then associates to each τ ∈ N i a set mult(τ ) = {x j , 1 ≤ j ≤ i} of multiplicative variables and a set off(τ ) := {τ ω, ω ∈ T [1, i]} as its offspring

• and states

{τ ∈ N(I), deg(τ ) ≥ p -1} = n-1 i=0 τ ∈Ni off(τ ).
Riquier's and Janet's results were introduced to the Computational Algebra commutative at the MEGA-90 Symposium in 1990 by a survey by Pommaret [START_REF] Pommaret | Effective Methods for Systems of Algebraic Partial Differential Equations[END_REF] of his theory and, two years later, through a paper by F. Schwarz [START_REF] Schwartz | Reduction and Completion Algorithm for Partial Differential Equations[END_REF] where he remarked:

The concept of a Gröbner base and algorithmic methods for constructing it for a given system of multivariate polynomials has been established as an extremely important tool in commutative algebra. It seems to be less well known that similar ideas have been applied for investigating partial differential equations This prompted V. Gerdt to suggest his coworkers Zharkov and Blinkov to investigate whether the results by Janet and Pommaret could be translated from pde's to polynomial rings in order to produce an effective alternative approach to Buchberger's Algorithm; the conclusion of this investigation [START_REF] Zarkov | Involution Approach to Investing Polynomial Systems[END_REF][START_REF] Zarkov | Solving zero-dimensional involutive systems[END_REF] was successful -the proposed algorithm was able to give a solution with a speed-up of 20 w.r.t. degrevlex Buchberger's algorithm on classical test-suites and caused sensation in the community.

Unfortunately, among the two constructions proposed by Janet, they hitted the involutive one, which is not a Buchberger-like procedure and presented it as such, remarking that in general does not terminate and that the basis is not necessarily finite unless the ideal is 0-dimensional. What is worst, they attributed to Pommaret their mistakes, thus introducing in literature a "bad" fictional Pommaret division compared with the "good" Janet division (related to Janet completion [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF] procedure).

An algorithm based on Janet's notion [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF] of completeness is reported in [START_REF] Gerdt | Involutive Algorithms for Computing Groebner Bases[END_REF][START_REF] Gerdt | Involutive bases of Polynomial Ideals[END_REF][START_REF] Gerdt | Minimal involutive bases[END_REF] Involutiveness is the argument of the Habilitation thesis (2002) of Seiler [START_REF] Seiler | Involution -The Formal Theory of Differential Equations and its Applications in Computer Algebra and Numerical Analysis Habilitation Thesis[END_REF][START_REF] Seiler | A Combinatorial Approach to Involution and Delta-Regularity I: Involutive Bases in Polynomial Algebras of Solvable Type[END_REF][START_REF] Seiler | A Combinatorial Approach to Involution and Delta-Regularity II: Structure Analysis of Polynomial Modules with Pommaret Bases, Applicable Algebra in Engineering[END_REF]; an improved version has recently appeared as [START_REF] Seiler | Involution -The Formal Theory of Differential Equations and its Applications in Computer Algebra[END_REF]. Finiteness is a required condition for the notion of Pommaret bases [START_REF] Hashemi | Quasi-Stability versus Genericity[END_REF].

An involutive Moeller Algorithm.

In this section we develop a version of Moeller algorithm which computes a lexicographical reduced involutive basis for a zero-dimensional radical ideal I, requiring only the finite set of distinct points X := V (I).

Consider a finite set of distinct points X = {P 1 , ..., P S }. As explained while talking about the Bar-Code Axis of Evil algorithm, if X = {P 1 }, P 1 = (a 1,1 , ..., a 1,n ), the ideal I = I(X) is the maximal ideal I = (x 1 -a 1,1 , ..., x n -a 1,n ).

The initial ideal J = In < (I) = (x 1 , ..., x n ) is quasi stable, being zerodimensional (6.4.8). As a matter of fact, given τ ∈ J, ∃x h | τ , 1 ≤ h ≤ n. Consider now x j > min(τ ) and compute σ = xj τ min(τ ) . Clearly x j | σ, so σ ∈ J and J is definitively quasi stable. We can also get the quasi stability of J using the Bar Code. In fact, the Groebner escalier associated to J is N(J) = {1} and the Bar Code is 1 . . . The star set is then F(J) = {x 1 , ..., x n } and equals the monomial basis G(J), so J is stable by proposition 6.4.5.

Clearly, this implies that the reduced Groebner basis G 1 = {x 1 -a 1,1 , ..., x n -a 1,n } is also the reduced involutive basis. J 1

We point out that the polynomials in J 1 are ordered. More precisely, the first polynomial is the one whose leading term is x 1 = min(G(J)). The leading term of the second polynomial is x 2 > x 1 and so on. The last polynomial is x n -a 1,n and x n = max(G(J)). We say, by abuse of notation, that the polynomials are ordered with respect to lex.

The triangular polynomial for

{P 1 } is q 1 = 1.
We consider the data obtained for the singleton {P 1 } as the basis for our procedure in the case |X| = m > 1.

In this setting, we consider the point P 2 = (a 2,1 , ..., a 2,n ). If, for some j ∈ {1, ..., n}, a 1,j = a 2,j , the polynomial x j -a 1,j ∈ J 1 computed before vanishes in P 2 . This implies that if f ∈ J 1 is the minimal polynomial with respect to lex not vanishing in P 2 and x j = T (f ), j ≤ n, then P 2 shares the first j -1 coordinates with P 1 : a 1,1 = a 2,1 , ..., a j-1,1 = a j-1,2 .

As seen while talking about the original Moeller algorithm, T (f ) is the term corresponding to P 2 in the Groebner escalier N({P 1 , P 2 }).

Since T (f ) ∈ N({P 1 , P 2 }), it cannot belong to the minimal basis anymore, so we remove f from the Groebner basis.

More precisely f vanishes in P 1 , while f (P 2 ) = 0. We construct then q 2 = 1 f (P2) f which is the second triangular polynomial.

All the polynomials in J 1 whose leading term is smaller than T (f ) vanish in P 2 , and so they automatically belong to J 2 , but we cannot assert the same for the polynomials g ∈ J 1 with T(g) > T(f ) so we need to interpolate them in P 2 . The polynomials obtained this way belong to J 2 . By proposition 5.7.1, now, we have to insert in J 2 the polynomials τ -Can(τ, I({P 1 , P 2 })), for τ ∈ {x j T (f ), x j ≤ min(T(f ))}.

In order to compute them, we only have to perform the interpolating procedure GaussRed from the original Moeller algorithm on these terms. Once this step is completed, we get J 2 .

Suppose now to have computed J i-1 and let us explain the steps to perform for the point

P i . -Find τ = min{T(f ) | f ∈ J i-1 and f (P i ) = 0}. Let τ = T(g) for g ∈ J i-1 .
-As before, τ ∈ N(I({P 1 , ..., P -i})), so we add it to the Groebner escalier, removing it from the monomial basis.

-Set J i = J i-1 \ {g}.

-Compute the triangular polynomial q i = 1 g(P1) g.

-For each f ∈ J i-1 with T(f ) > τ , interpolate in

P i : f = f -f (P i )q i . Substitute in J i f
with its new value.

-Compute the terms x j τ , for x j ≤ min(τ ) (5.7.1). We have at least one term, namely min(τ )τ .

-Apply the subroutine GaussRed to the terms of the previous step.

-Insert in J i the obtained polynomials.

If i = S, the algorithm stops and returns J i = J S . Otherwise, i is incremented by one and the steps above repeated.

We display now the pseudocode of this Moeller version.

We display now an example of the execution of algorithm 10.

Algorithm 10

Involutive basis Moeller algorithm.

1: procedure JANM(X) → J , N, q J is the reduced involutive basis of I, N is the associated Groebner escalier and q is a triangular set for X. Denote X = {P 1 , ..., P S }, P i = (a i,1 , ..., a i,n ), i = 1, ..., n.

2:

J = {x 1 -a 1,1 , ..., x n -a 1,n } 3: N = {1} 4:
q = {1} This is the output for the case |X| = 1.

5:

for i = 2 to n do

6: τ = min{T(f ), f ∈ J , f (P i ) = 0} 7: N = N ∪ {τ } 8: Let f ∈ J such that T(f ) = τ 9: J = J \ {f } 10: q = q ∪ { 1 f (Pi) f } 11:
for each f ∈ J with T(f ) > τ do

12:

f = f -f (P i )q i 13:
end for 14:

for j ≤ min(τ ) do end forreturn J , N, q.

19: end procedure Example 6.8.1. We consider the set X = {(0, 1, 4), (1, 0, 1), (0, 2, 0), [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4), (0, 3, 2), (1, 0, 6)} ∈ R 3 and we apply to it algorithm 10 in order to compute the reduced involutive basis of

I = I(X) k[x 1 , x 2 , x 3 ].
In order to clarify how the structure varies as we add a new point, we draw the Bar Code and the tower structure step by step.

As explained in the comments above, the first point P 1 = (0, 1, 4) is associated to

• J = {x 1 , x 2 -1, x 3 -4};
• N = {1};

• q = {1}.

The Bar Code equipped with the star set is

1 x1 x2 x3 0 1 2 3
while the tower structure is

0,1,4
We take these data as base points for the procedure and we continue with P 2 = (1, 0, 1).

Since the minimal polynomial in the current J , not vanishing in P 2 is x 1 , then N = {1, x 1 } and q 2 = x 1 . The Bar Code is

0 1 2 3 1 x 1 x 2 1 x2 x3
and the tower structure is 0,1,4 1,0,1

We remove x 1 from the involutive basis, so J = {x 2 -1, x 3 -4}. We interpolate these polynomials using q 2 in order to make them vanish both in P 1 and in P 2 :

x 2 -1 → x 2 -1 -ev P2 (x 2 -1)q 2 = x 2 + x 1 -1; x 3 -4 → x 3 + 3x 1 -4;
so we get J = {x 2 + x 1 -1, x 3 + 3x 1 -4}.

Since min(x 1 ) = x 1 , we only have to apply GaussRed only to the term x 2 1 . Since x 2 1 already vanishes in P 1 , we get x 2 1 -x 1 , so J = {x 2 1 -x 1 , x 2 + x 1 -1, x 3 + 3x 1 -4}. We consider now the point P 3 = (0, 2, 0). Since x 2 1 -x 1 vanishes in P 3 , while ev P3 (x 2 + x 1 -1) = 1, we get N = {1, x 1 , x 2 } and q 3 = x 2 + x 1 -1.

The Bar Code is

0 1 2 3 1 x 1 x 2 x 2 1 x1x2 x 2 2 x3
the tower structure is

0,1, 4 1,0,1 0,2,0 
We get J = {x 2 1 -x 1 , x 3 + 3x 1 -4}. We interpolate the polynomial in x 3 :

x 3 + 3x 1 -4 → x 3 + 3x 1 -4 -ev P3 (x 3 + 3x 1 -4)q 3 = x 3 + 4x 2 + 7x 1 -8.
Since min(x 2 ) = x 2 , we add to the star set the terms x 1 x 2 , x 2 2 , so we have to apply GaussRed to these terms:

x 1 x 2 → x 1 x 2 ; x 2 2 → x 2 2 -3x 2 -2x 1 + 2.
Then we get [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4). The first polynomial non vanishing in P 4 is x 1 x 2 , so N = {1, x 1 , x 2 , x 1 x 2 } and q 4 = 1 3 x 1 x 2 . The Bar Code is

J = {x 2 1 -x 1 , x 1 x 2 , x 2 2 -3x 2 -2x 1 + 2, x 3 + 4x 2 + 7x 1 -8}. Consider the point P 4 = (1,
0 1 2 3 1 x 1 x 2 x 1 x 2 x 2 1 x 2 1 x2 x 2 2 x3
the tower structure is 0,1,4 1,0,1 0,2,0 1,3,4

We have

J = {x 2 1 -x 1 , x 2 2 -3x 2 -2x 1 + 2, x 3 + 4x 2 + 7x 1 -8}
, so we interpolate the last two polynomials:

x 2 2 -3x 2 -2x 1 + 2 → x 2 2 -3x 2 -2x 1 + 2 x 3 + 4x 2 + 7x 1 -8 → x 3 -5x 1 x 2 + 4x 2 + 7x 1 -8, then J = {x 2 1 -x 1 , x 2 2 -3x 2 -2x 1 + 2, x 3 -5x 1 x 2 + 4x 2 + 7x 1 -8}. Since min(x 1 x 2 ) = x 1 , we have to deal with x 2 1 x 2 , obtaining x 2 1 x 2 -x 1 x 2 , so J = {x 2 1 - x 1 , x 2 1 x 2 -x 1 x 2 , x 2 2 -3x 2 -2x 1 + 2, x 3 -5x 1 x 2 + 4x 2 + 7x 1 -8}.
We continue with P 5 = (0, 3, 2). The first polynomial not vanishing in

P 5 is x 2 2 -3x 2 -2x 1 +2, so N = {1, x 1 , x 2 , x 1 x 2 , x 2 2 } and q 5 = 1 2 (x 2 2 -3x 2 -2x 1 + 2). The Bar Code is 1 x 1 x 2 x 1 x 2 x 2 2 0 1 2 3 x 2 1 x 2 1 x2 x1x 2 2 x 3 2 x3
the tower structure is

0,1,4 1,0,1 0,2,0 1,3,4 0,3,2
We have J = {x 2 1 -x 1 , x 2 1 x 2 -x 1 x 2 , x 3 -5x 1 x 2 + 4x 2 + 7x 1 -8} and we only have to interpolate the polynomial in x 3 :

x 3 -5x 1 x 2 + 4x 2 + 7x 1 -8 → x 3 -5x 1 x 2 -3x 2 2 + 13x 2 + 13x 1 -14.
Since min(x 2 2 ) = x 2 , we apply GaussRed to x 1 x 2 2 , x 3 2 :

x 1 x 2 2 → x 1 x 2 2 -3x 1 x 2 ; x 3 2 → x 3 2 -6x 2 2 -2x 1 x 2 + 11x 2 + 6x 1 -6, so J = {x 2 1 -x 1 , x 2 1 x 2 -x 1 x 2 , x 1 x 2 2 -3x 1 x 2 , x 3 2 -6x 2 2 -2x 1 x 2 + 11x 2 + 6x 1 -6, x 3 -5x 1 x 2 - 3x 2 
2 + 13x 2 + 13x 1 -14}. At the end, we conclude with P 6 = (1, 0, 6). All the polynomials in the current J vanish in P 6 but x 3 -5x 1 x 2 -3x 2 2 + 13x 2 + 13x 1 -14. Thereby, the final Groebner escalier is N = {1, x 1 , x 2 , x 1 x 2 , x 2 2 , x 3 } and q 6 = 1 5

(x 3 -5x 1 x 2 - 3x 2 2 + 13x 2 + 13x 1 -14). Then J = {x 2 1 -x 1 , x 2 1 x 2 -x 1 x 2 , x 1 x 2 2 -3x 1 x 2 , x 3 2 -6x 2 2 -2x 1 x 2 + 11x 2 + 6x 1 -6}.
The Bar Code is

0 1 2 3 1 x 1 x 2 x 1 x 2 x 2 2 x 3 x 2 1 x 2 1 x2 x1x 2 2 x1x3 x 3 2 x2x3 x 2 3
the tower structure is

0,1, 4 1,0,1 0,2,0 1,3,4 0,3,2 1,0,6 
In order to get the involutive basis we only have to perform GaussRed to x 1 x 3 , x 2 x 3 , x 2 3 :

x 1 x 3 → x 1 x 3 -x 3 + 4x 1 x 2 + 3x 2 2 -13x 2 -14x 1 + 14; x 2 x 3 → x 2 x 3 -5x 2 2 -8x 1 x 2 + 19x 2 + 18x 1 -18; x 2 3 → x 2 3 -7x 3 + 11x 2 2 + 14x 1 x 2 -45x 2 -4x 1 + 46.
The output is then

• N = {1, x 1 , x 2 , x 1 x 2 , x 2 2 , x 3 }; • q = {1, x 1 , x 2 +x 1 -1, 1 3 x 1 x 2 , 1 2 (x 2 2 -3x 2 -2x 1 +2), 1 5 (x 3 -5x 1 x 2 -3x 2 2 +13x 2 +13x 1 -14)}; • J = {x 2 1 -x 1 , x 2 1 x 2 -x 1 x 2 , x 1 x 2 2 -3x 1 x 2 , x 3 2 -6x 2 2 -2x 1 x 2 + 11x 2 + 6x 1 -6, x 1 x 3 - x 3 + 4x 1 x 2 + 3x 2 2 -13x 2 -14x 1 + 14, x 2 x 3 -5x 2 2 -8x 1 x 2 + 19x 2 + 18x 1 -18, x 2 3 -7x 3 + 11x 2 2 + 14x 1 x 2 -45x 2 -4x 1 + 46}.
In these works, given some well determined set of polynomials, the lexicographical reduced Groebner basis is computed and employed for the decoding process, in order to detect and correct the errors eventually occurred during a transmission, by making some computations with the so called locator polynomials. • they gave an approach to decoding via Newton identities, which was improved by Augot-Bardet-Faugere [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4];

• they introduced the so called syndrome variety and the related syndrome ideal and proposed to deduce via a Groebner basis pre-computation a series of polynomials from which they deduce the plain error locator polynomial for each error and associated syndromes. This approach has been refined by Loustaunau and York [START_REF] Loustaunau | On the decoding of cyclic codes using Grà űbner bases[END_REF] and Caboara-Mora [13].

The investigation on the structure of the syndrome variety and on its Groebner basis shows that most of its roots are spurious [START_REF] Chen | General principles for the algebraic decoding of cyclic codes[END_REF] and that the pre-computed polynomials have telescopical relations [START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF]13].

Finally, Orsini and Sala [START_REF] Mora | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF] improved the decoding process by eliminating the spurious solutions of the system and introduced the general error locator polynomial.

In further investigations (in cooperation with Teo Mora) [START_REF] Orsini | Correcting errors and erasures via the syndrome variety[END_REF][START_REF] Orsini | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF], they also highlighted the importance for the general error locator polynomial to be sparse: this is the main link with our work (chapter 8).

In the first section, we recall the basic concepts of coding theory, starting with the communication channel model proposed by Shannon. In sections 7.3 and 7.4 we deal with linear codes and a peculiar typology of linear codes, called cyclic codes, showing their main features.

In section 7.5, we introduce Cooper's philosophy and the developments proposed in the following years.

A glimmer of error correcting codes.

It is possible to declare that both coding theory and information theory date back to the milestone paper by Claude Elwood Shannon "A mathematical theory of communication", pub-lished in 1948 [START_REF] Shannon | A mathematical theory of communication[END_REF].

In this paper, the author describes a scheme of a communication channel, as in the following A communication channel consists five different parts.

• The Information source: is the source producing the message to be sent to a receiving terminal. As remarked by Shannon, the message can be of various types, such as a sequence of letters as in a telegraph or a single function of time f (t) as occurs for radio or telephony.

• The Transmitter: is the device operating on the message, encoding it, in order to produce a signal, which is suitable for the transmission on the channel.

• The Channel: is the medium used to transmit the signal from the transmitter to the receiver. For example a channel can be a band of radio frequencies or a cable.

• The Receiver: is the device performing the inverse operation of the transmitter. More precisely, it decodes the signal, extracting the message from it.

• The Destination: is the person or thing to which the message is intended.

The channel can be noisy, i.e. when the information passes through it, there can be some interference.

The encoding procedure is an injective map from the space containing the possible messages to a larger space. Roughly speaking, it adds some redundancy to the given message, lengthening it.

On the other hand, the decoding procedure recovers the original message.

For simplicity's sake, from now on we assume (as it is usually done) the encoding to be a linear function between two vector spaces.

In the next sections, we give an overall view of the fundamentals of coding theory, loosely following [START_REF] Huffman | Fundamentals of Error-correcting Codes[END_REF][START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF].

Linear codes.

Linear codes have been deeply studied, since they have algebraic properties making them much easier to describe than the non-linear ones.

We denote by F q := GF (q), with q = p m and p a prime number, the finite field of cardinality q and we write (F q ) n for the vector space constituted by the n-tuples of the elements in F q , which are regarded as row vectors.

Definition 7.3.1. Given k, n ∈ N, such that 1 ≤ k ≤ n, a linear code C is a vector subspace of (F q ) n of dimension k.

We say that C is a linear code over F q of length n and dimension k, for short [n, k] q code.

A vector c ∈ C is named codeword or word for short.

The codewords are indifferently denoted by

c = (c 1 , ..., c n ) = c 1 c 2 ...c n .
Each c i , i = 1, ..., n is called symbol.

We define the usual scalar product on (F q ) n and we denote it by "•". This way, if C ⊂ (F q ) n is a vector subspace, then we can define the dual vector space C ⊥ and then we can talk about dual codes.

Definition 7.3.2. If C is an [n, k] q code,
its dual code is the set C ⊥ , containing the vectors orthogonal to all the words in C, i.e.

C ⊥ = {c ∈ (F q ) n , c • c = 0, ∀c ∈ C}.
The dual code of an [n, k] q code is clearly an [n, n -k] q code. Definition 7.3.3. A generator matrix of an [n, k] q code C is a (k × n)-matrix G whose rows form a basis of C as a F q -vector space.

An [n, k] q code C, in general, has more than one generating matrix.

If G = (I k |A), where I k is the (k × k)-identity matrix, G is a generator matrix in standard form.

Given a generator matrix G of the given [n, k] q code C, any set of k independent columns of G corresponds to a set of coordinates, forming the so called information set of C.

The remaining r = n -k coordinates form the redundancy set of C, while r is its redundancy.

The encoding of a linear code is very simple. Given a message m ∈ (F q ) k and a generator matrix G, we can obtain the word c ∈ (F q ) n by simple matrix multiplication c = mG.

When G is a generator matrix in standard form we get c = (m, mA): the message m is composed by the first k components of c. Such an encoding is called systematic. We can represent a linear code C exploiting the parity-check matrix H:

∀x ∈ (F q ) n , H t x = 0 ⇔ x ∈ C.
Let us now briefly describe a transmission process. Suppose one has to send the message x ∈ (F q ) k . The transmitted word is then c = xG ∈ (F n q ). Let y ∈ (F q ) n the received n-tuple. Due to the interference peculiar to the channel, there are exactly four possibilities which can come up: In order to correct the errors, the receiver needs to find the codeword having the "highest possibility" of been sent by the transmitter, so it needs to understand how the noise can affect the transmitted word.

Definition 7.3.5 ([77]). A q-ary symmetric channel, denoted by SC from now on, is a channel satisfying the conditions below:

1. the component of a transmitted word (an element of F q that here we name generally "symbol") can be changed by the noise only to another element of F q ;

2. the probability that a symbol becomes another one is the same for all pairs of symbols;

3. the probability that a symbol changes during the transmission 1 does not depend on its position;

4. if the i-th component is changed, then this fact does not affect the probability of change for the j-th components, even if j is close to i.

In his paper [START_REF] Shannon | A mathematical theory of communication[END_REF], Shannon considers a channel with input alphabet a 1 , ..., a k and output alphabet b 1 , ..., b l , supposing that each output letter depends statistically on the corresponding input letter only according to a fixed probability. We write P(b j |a i ) for the probability that b j is received if a i is transmitted.

Such a channel is called discrete memoryless channel, DMC for short.

In particular, he deals with binary symmetric codes [START_REF] Van Lint | Coding Theory[END_REF].

If we take a binary code of k words of length n (we choose k out of 2 n words), we say that the information rate is R = n -1 log 2 (k).

Consider a binary symmetric code with error probability 0 < p < 1 2 and suppose to have a code consisting of M vectors, chosen in {0, 1} n , with some decoding rule. Denote by P i the probability that an error occurs, after decoding, if x i ∈ M is transmitted. The probability of error when using this code is

P error = M -1 M i=1 P i .
We define P * (M, n, p) as the minimum of P error over all codes with the given parameters.

The capacity of the binary symmetric code is

C = 1 + p • log(p) + (1 -p)log(1 -p).
We state now Shannon's fundamental theorem. Theorem 7.3.6. Let M n := 2 [Rn] , where 0 < R < C.

Then P * (M n , n, p) → 0 if n → ∞.
This means that there is a sequence of codes with information rate tending to R and error probability tending to 0. In other words, given > 0 and R < C there is a code with rate > R and error probability < .

From now on, we assume to have a SC, such that all the words are sent with the same probability and that the probability of a symbol to be corrupted is less than the one of being maintained unchanged by the interference.

Actually, this assumption is merely theoretical, since it is not reasonable in practice. Anyway, it allows a simple construction of the theory, so it is classically accepted.

Under our hypotheses, we can construct a "good code" separating the codewords inside (F q ) n as much as possible and this leads to the following Definition 7.3.7. Given two elements v, w ∈ (F q ) n , the Hamming distance of v, w is the number d H (v, w) of coordinates in which they differ. 

= min{d H (v, w)| v, w ∈ C, v = w}. Given an [n, k] q code C, we denote it by [n, k, d] q code if d = d H (C).
The distance is very important for a linear code, since it allows to compute two fundamental numbers:

• the error detection capability, i.e. the number of errors that the code can detect;

• the error correction capability, namely the number of errors that the code can correct. • error correction capability t = (d-1)

2

.

From now on, we denote t the error correction capability of a code C.

Theorem 7.3.11 (Singleton Bound, [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF]). Given an an [n, k, d] q code C it holds

d ≤ n -k + 1.
Each code for which equality holds is called minimum distance separable code or simply M DS.

Proposition 7.3.12 ([52]). If the employed code is SC with error correction capability t and the probability of a symbol to be corrupted is less than the one of being maintained unchanged by the interference, then the sent codeword with the highest probability is the one nearest w.r.t. Hamming distance to the received vector. Such a codeword is unique if no more than t errors have occurred.

Consider an [n, k] q code C and let

• c ∈ (F n q ) the transmitted word;

• e ∈ (F n q ) the occurred error;

• y ∈ (F n q ) the received vector.

It holds y = c + e and, given y, we want to find an e of minimal weight such that ye ∈ C. For this purpose, we consider the parity check matrix H and we have

H t y = H t (c + e) = H t (e) = s ∈ (F n-k q ).
Definition 7.3.13. All the elements of the form s = H t y ∈ (F n-k q ) are called syndromes. In particular, we say that s is the syndrome corresponding to y.

We point out that the syndrome depends only on the occurred error, not on the transmitted word.

If v ∈ (F q ) n we define its associated coset as

v + C = {v + c| c ∈ C}.
We get: v, w ∈ (F q ) n are in the same coset ⇔ vw ∈ C.

The given vector space (F q ) n can be partitioned into q n-k cosets of size q k . Proposition 7.3.14. Given an [n, k, d] q code C, v, w ∈ (F q ) n belong to the same coset if and only if they have the same syndrome. 

G =       g 0 g 1 • • • g n-k 0 • • • 0 0 g 0 • • • g n-k 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 g 0 g 1 • • • g n-k       Moreover, given f ∈ R, we have f ∈ C ⇔ ∃q ∈ R| f = qg.
In analogy with matrices, we can define the parity check polynomial of C from the generator polynomial.

Actually, g | (x n -1) and it is unique, so the parity check polynomial is simply the polyno-

mial h ∈ R such that h(x) = x n -1 g(x)
and, for f (x) ∈ C, we have

f (x) ∈ C ⇔ f (x) = q(x)g(x) ⇔ f (x)h(x) = q(x)(g(x)h(x)) = 0 in R.
We remark also that the generator polynomial of the dual code C ⊥ is g ⊥ (x) = x deg(h) h(x -1 ) (c.f. [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF]).

We deal now with the problem of encoding and decoding, given an [n, k, d] q code C with generator polynomial g, which allows to encode q-ary messages of length k by adding n -k symbols as redundancy.

Let then m = (m 0 , ..., m k-1 ) a message and consider the associated m

(x) = k-1 i=0 m i x i ∈ R.
We can obtain a systematic encoding for m(x). For this purpose, we multyply m(x) by x n-k and we divide the result by g(x), getting m(x)x n-k = q(x)g(x) + r(x) with deg(r(x)) < deg(g(x)) = n -k, so the reminder r(x) can be viewed as an (n -k)-vector.

Joining the k-vector m with the (nk)-vector r we obtain an nvector c, which is the encoded word, i.e. c(x) := m(x)x n-k -r(x).

Therefore, the decoding process is immediate, if no errors occur, since the message is constituted by the last k components of the received vector.

When the receiver gets a vector and has to check the presence or absence of errors, only has to check whether the remainder of the division of the polynomial associated to the received vector by g is equal to zero to state that "probably" no errors have occurred. If the reminder is not zero, it gives the syndrome, so the error can be corrected in the same way as described in the previous section.

Given F q , we have x n -1 = r j=1 f j , f j irreducible over the base field. Since cyclic codes of length n over F q are generated by divisors of x n -1, each of these codes corresponds to a subset of {f j } r j=1 . In particular, let us assume GCD(n, q) = 1, F q m the splitting field of x n -1 over F q and a a primitive n-th root of unity over F q . Clearly

x n -1 = n-1 i=0 (x -a i )
and the generator polynomial of G has, as roots, some powers of a Definition 7.4.3. The complete defining set of an [n, k, d] q cyclic code C with GCD(n, q) = 1 and generator polynomial g C is

S C,a := S C = {i 1 , ..., i n-k |g C (a ij ) = 0, j = 1, ..., n -k}
From now on, we fix a primitive n-th root of the unity a and we always write S C instead of S C,a .

We can collect the integers modulo n into q-cyclotomic classes C i :

{1, ..., n -1} = C i , C i = {1, qi, ..., q r i},
where r is the smallest integer such that i ∼ = iq r mod n.

The complete defining set is then a collection of q-cyclotomic classes. For this reason, there are some S C ⊂ S C which are sufficient to specify the code unambiguously. We call each of them defining set.

Some special cyclic codes are the so called BCH codes, which allow decoding procedures that are faster than the one sketched above (see [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF] for more details).

Theorem 7.4.4 (BCH bound). Consider an [n, k, d] q cyclic code C, with GCD(n, q) = 1 and defining set S C = {i 1 , ..., i n-k }. Suppose there are δ -1 consecutive number in S C , say

{m 0 + i, 0 ≤ i ≤ δ -2} ⊂ S C . Then d ≥ δ. Definition 7.4.5. If C is the [n, k, d] q cyclic code, with defining set S = {m 0 + i, 0 ≤ i ≤ δ -2, m 0 ≥ 0, m 0 + δ -2 ≤ n -1}, then C is a BCH code of designed distance δ.
A BCH code is narrow sense if m 0 = 1 and primitive if n = q m -1.

There are several methods in order to decode a BCH code. For example, we can use the extended Euclid algorithm.

We consider a BCH code of length n over F q , with error correction capability t and designed distance δ = 2t + 1 and we denote by a a primitive n-th root of unity in F q m . We take a word c(x) = c 0 + ... + c n-1 x n-1 and we denote by v(x) = v 0 + ... + v n-1 x n-1 the received word.

We can represent the error vector as the error polynomial e(x) = e 0 + ... + e n-1 x n-1 .

If µ ≤ t is the weight of the error, let L = {l|e l = 0, 0 ≤ l ≤ n -1} be the set of the error positions and {a l |l ∈ L} the set of error locators. We call error values the values e l , l ∈ L. The classical error locator polynomial is

σ(x) = l∈L (1 -xa l ),
but we can recover the error locations also using the plain error locator polynomial, i.e.

L e (x) = l∈L (x -a l ).
The error evaluator polynomial is

ω(x) = l∈L e l a l i∈L\{l} (1 -xa i ).
In order to correct the errors, we find σ(x) and ω(x):

an error is in position l if and only if σ(a -l ) = 0 and in this case the value of the error is

e l = -a -l ω(a -l ) σ (a -l ) ,
where σ (x) is the first derivative of σ(x).

Lemma 7.4.6. The polynomials σ(x), ω(x) defined above are coprime.

In order to decode the given BCH code, we first compute the syndrome of the received vector v(x):

H t v =       1 a a 2 • • • a n-1 1 a 2 a 4 • • • a 2(n-1) . . . . . . . . . • • • . . . 1 a δ-1 a 2(δ-1) • • • a (δ-1)(n-1)             e 0 e 1 . . . e n-1       =       e(a)
e(a 2 ) . . .

e(a δ-1 )       =       S 1 S 2 . . . S 2t       . The syndrome polynomial is S(x) = 2t i=1 S i x i-1
, with S i = l∈L e l a il . Theorem 7.4.7 (Key equation, [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF]). For the polynomials σ(x), ω(x) the key equation holds σ(x)S(x) ∼ = ω(x) mod x 2t .

If there are polynomials σ (x), ω (x) with deg(ω (x)) < deg(σ (x)) ≤ t, satisfying the key equation, then there is a polynomial λ(x) such that σ (x) = λ(x)σ(x) and ω (x) = λ(x)ω(x)

The decoding algorithm consists essentially of finding σ(x) and ω(x), availing of the key equation and the extended Euclid algorithm and Bézout identity [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF].

Once noticed that deg(σ(x)) ≤ t and deg(ω(x)) ≤ t-1, we divide the polynomial f (x) := x 2t and g(x) = S(x) using the extended Euclid algorithm, denoting the reminder at each step h by d h (x). We stop when we find a d k-1 (x) and

d k (x) such that deg(d k-1 (x)) ≥ t and deg(d k (x)) ≤ t -1.
Then, applying the procedure for Bézout identity, we get

d k (x) = x 2t u k (x) + S(x)v k (x), with deg(v k (x)) = deg(x 2t ) -deg(d k-1 (x)) ≤ 2t -t = t.
Theorem 7.4.8. With the above notation, it holds σ(x) = λv k (x) and ω(x) = λd k (x) for some λ ∈ F q .

We have λ = v k (0) -1 , so that σ(x) = v k (x) v k (0) and ω(x) = d k (x) v k (0) . Finally, if one wants to compute the error values, he can simply use the relations e l = -a l ω(a -l ) σ (a -l ) , i = 1, ..., µ.

We point out that we can also decode a BCH code using Berlekamp-Massey algorithm [START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF] or the so called Cooper's philosophy, explained in next section.

Cooper's philosophy and further improvements.

In his papers [START_REF] Cooper | Direct solution of BCH decoding equations[END_REF][START_REF] Cooper | Finding BCH error locator polynomials in one step[END_REF], Cooper suggested to employ Groebner basis theory in order to decode cyclic codes.

More precisely, he considers a primitive binary BCH code of length n = 2 m -1.

Let a ∈ F 2 m a primitive n-th root of unity and C our primitive BCH code over F 2 , with defining set S C = {2i + 1, i = 0, ..., t -1}.

The related complete defining set is the union S C = t-1 i=0 C 2i+1 , so it contains all the odd numbers from 1 to 2t -1. Each even number 1 < α < 2t -1 is in the set, since α = 2 l h for some odd number h < 2t -1 and so α ∈ C h . This means that all the numbers from 1 to 2t -1 are in S C . Moreover 2t ∈ C t ⊂ S C and so we have at least 2t consecutive elements in S C and the designed distance is δ ≥ 2t + 1.

By the BCH bound (7.4.4), the distance is d ≥ 2t + 1 and the error correction capability turns out to be t ≥ (δ-1) 2 .

Once received v ∈ (F 2 ) n , the decoder computes the syndrome (7.3.13) s = (s 0 , ..., s 2t-1 ) ∈ (F 2 m ) 2t , in order to find the error location a j .

We define new variables z 1 , ..., z t , standing for the t error locations a li , l i ∈ L. Then, the error locations are a solution (ξ 1 , ..., ξ t ) ∈ (F 2 m ) t of a system of t polynomials over

F 2 m [z 1 , ..., z t ], i.e. F C = {f i : t j=1 z 2i-1 j -s 2i-1 , i = 1, ..., t}.
The problem for this nonlinear system is that sometimes is ineffective to compute its solutions, so Cooper proposes to find another simpler system, with the same solutions. Let 

then I = (F C ) F 2 m [z 1 , ..., z t ], V ( 
• E = Z = {ξ|g(ξ) = 0}; • |E| = µ = deg(g) ≤ t;
• g is the polynomial whose roots are the error locators;

• σ(z) = z µ g(z -1 )
In [START_REF] Chen | Use of Groebner bases to decode binary cyclic codes up to the true minimum distance[END_REF], Chen et al. generalize Cooper's idea to use Groebner techniques to binary cyclic codes.

They consider a binary cyclic code C with length n and defining set S. We denote by µ the number of occurred errors and v an integer such that 0 < v ≤ t and µ ≤ v. Then, using the z j 's variables for the error locations 2 , we can consider the following system where each 2 They are n-th root of unity F q [x 1 , ..., x n-k , z t , ..., z 1 , y 1 , ..., y t ] = F q [x, y, z]. Then, we consider

F CRHT := { t j=1 y j z i j -x i , i ∈ S}∪{z n+1 j -z j , 1 ≤ j ≤ t}∪{y 2 m -1 j -1, 1 ≤ j ≤ t} ⊂ F q [x, y, z], I = I(F CRHT ) F 2 m [x, y, z], V (I) ⊂ (F q m ) 2µ
and G the lexicographical reduced Groebner basis with x 1 < ... < x n-k < z t , ..., z 1 < y 1 < ... < y t .

Definition 7.5.4. The zerodimensional ideal I is the syndrome ideal and its variety V (I) the syndrome variety.

Loustaunau and York, in [START_REF] Loustaunau | On the decoding of cyclic codes using Grà űbner bases[END_REF], improved the approach introduced by Chen. They suggested to use the FGLM algorithm to make the Groebner computation.

Caboara and Mora, in [13], gave a corrected and optimized version of Chen's algorithm, basing on the studies on the structure of Groebner bases for zerodimensional ideals by Gianni [START_REF] Gianni | Properties of Gröbner Bases under Specialization[END_REF] and Kalkbrener [START_REF] Kalkbrenner | Solving Systems of Algebraic Equations by Using Groebner Bases[END_REF], who stated Gianni-Kalkbrener theorem (see 3.5.3).

We sketch now the improvements due to M.Sala and E.Orsini.

Consider the syndrome variety V (I) defined by Caboara-Mora in [13] and a correctable syndrome s ∈ (F m q ) n-k ; there are some points in the variety that uniquely determine the potential error locations and error values, but, unfortunately, there are also points, called spurious solutions (see theorem 7.5.3) from now on, not corresponding directly to some error vector.

Essentially, as explained in [START_REF] Sala | Groebner basis techniques to compute weight distributions of shortened cyclic codes[END_REF], the spurious solutions are the points containing zero in correspondence to some error value (the error value cannot be zero) and the ones containing repeated locations (indeed, they must correspond to different positions for the error values). Moreover, they are also the solutions outside the base field.

M.Sala and E.Orsini propose a new syndrome variety eliminating these points.

They consider an [n, k, d] q cyclic code with GCD(q, n) = 1 and give the following Definition 7.5.5. Let n ∈ N be an integer. We denote p ll ∈ F q [z 1 , ..., z t ] as

p ll := z n l -z n l z l -z l , 1 ≤ l < l ≤ t.
The syndrome ideal is I = (F OS ) with

F OS = {f i , h -j, χ i , λ j , p ll , 1 ≤ l < l ≤ t, 1 ≤ i ≤ n -j, j ∈ S} ⊂ F q [x, y, z] with • f i := t l=1 y l z j l -x i • h j := z n+1 j -z j ;
• λ j := y q-1 j -1;

• χ i := x q m i -x i ; • p ll = z l z l p ll If Q := F q [x 1 , ..., x n-k ],
G is the usual reduced Groebner basis and for each ι = 1, ..., t, for each l, 

G ι := G ∩ Q[z t , ..., z ι ], G ιl = {g ∈ G ι \ G ι+1 , deg ι (g) =
. G ∩ Q[z 1 , ..., z t ] = t i=1 G i ; 2. G i = i δ=1 G iδ , G iδ = ∅, 1 ≤ i ≤ t, 1 ≤ δ ≤ i; 3. G ii = {g ii1 }, 1 ≤ i ≤ t; 4. T(g ii1 ) = z i i , Lp(g ii1 ) = 1; 5. if 1 ≤ i ≤ t, 1 ≤ δ ≤ i -1, then ∀g ∈ G iδ ,
and the trailing polynomial is equal to 0.

Let g tt1 the unique polynomial in G t with deg zt (g tt1 ) = t:

g tt1 = z t t + t l=1 b t-l z t-l t .
T.F.A.E.:

1. there are exactly µ errors;

2. b t-l (s) = 0 for l > µ and b t-µ (s) = 0;

3. g tt1 (s, z t ) = z t-µ (Le(z)).
This means σ(z) = z µ g tt1 (s, z -1 ), i.e. g tt1 ∈ Q[z] is a monic polynomial such that given a syndrome vector s ∈ (F q m ) n-k , corresponding to an error of weight µ ≤ t, its t roots are the µ location plus zero, counted with multiplicity t -µ.

It is called general error locator polynomial of C.

Theorem 7.5.7 ([82]). Every cyclic code possesses a general error locator polynomial.

Once we get a general error locator polynomial for C, the decoding algorithm only consists on evaluating it in the syndromes, so its efficiency depends on the sparsity of the involved general error locator polynomial.

Theorem 7.5.8. Let C be a code with error correction capability t = 1 and s a correctable syndrome, then the general error locator polynomial is

L C (X, z) = z + a, a ∈ F 2 [X]. More-
over, there is one error if and only if a(s) = 0, being a(s) itself the error location.

Let C be a code with t = 2, s a correctable syndrome and z 1 , z 2 the error locations. Then

L C (X, z) = z 2 + az + b, a, b ∈ F 2 [X] and b(s) = z 1 z 2 , a(s) = z 1 + z 2 .
Moreover, there are two errors if and only if b(s) = 0, and there is an error if and only if b(s) = 0 and a(s) = 0.

We recall here the main theorems stated in [START_REF] Mora | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF]. Seven possibilities can occur: Even if at present there is no known theoretical proof of the sparsity of general error locator polynomials, there are some experimental evidence, at least in the binary case. Some improvements to the algorithm have been given in [START_REF] Mora | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF].

1. n is such that C has S C = {0, 1} and d ≤ 5; 2. C is a BCH code (S C = {1, 3}) and b = x n-1 1 (x 3 1 + x 2 ); 3. S C = {1, n -1, l}, l = 0, n 3 and b =    x 1 x -1 2 (1 + x 3 ), l = 0 x 3 3 +1 x n/3 1 x 2/3n 2 x3+1 , l = n 3 ; 4 
In [START_REF] Orsini | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF] is stated that Actually 3 the number of monomials of L apparently grows linearly, since |L| ≤ n.

We give some theoretical explanations for the sparsity of our polynomials, in all cases except two.

A complete proof for all cases (any and any) seems far beyond our means, at present, but we plan to investigate more and more particular cases, hoping sooner or later to get the profound reason behind the sparsity, whose experimental evidence is apparent (at least in the binary case). 3 In the paper [START_REF] Orsini | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF], L is the general error locator polynomials CHAPTER 8

Some experiments on locator polynomials.

Introduction.

In this chapter we treat some partial results of a joint work with Massimiliano Sala and Teo Mora, connecting the Axis of Evil Theorem to error correcting codes.

In our context, we consider a binary BCH code C of length n = 2 m -1 with error correction capability t = 2, correcting simultaneously 1 and 2 errors studying the general error locator polynomial and the related syndrome variety V (F OS ) from a different point of view.

Up till now, we have computed lexicographical reduced Groebner bases of polynomial ideals. Due to the huge number of variables, such a computation is rather inefficient, so we try to reverse our point of view, approaching the problem à la Moeller, rather than à la Buchberger.

Instead of considering a system of equations, we consider directly the syndrome variety by

Orsini and Sala, trying to derive the general error locator polynomial via interpolation.

As explained in the previous chapter, it would be important to prove the sparsity of the gen-293 eral error locator polynomial.

We will show that Cerlienco-Mureddu Correspondence and the Axis of Evil theorem, with the related algorithm, can be helpful for our purpose. Indeed, thanks to Cerlienco-Mureddu Correspondence, we can give a precise description of the Groebner escalier associated to V (F OS ). Such a description and the properties of the Axis of Evil factorization permit us to reduce appreciably the number of points to deal with.

Moreover, we will see that in some special cases, we can find a structure underlying some sparse general locator polynomials, which involve the cycle structure of the base field and Frobenius automorphism.

Our aim is to prove that the number of terms in the general error locator polynomial grows linearly with the cardinality of the base field.

Since this is still a work in progress, we cannot give here complete results. Anyway, the half-time results we will give in the following sections are rather encouraging.

These partial results have been computed implementing timely procedures, using the programming language provided by Singular [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF] and exploiting, as usual, the library pointid.lib by S. Steidel [START_REF] Steidel | Procedures for computing a factorized lex GB of the vanishing ideal of a set of points via the Axis-of-Evil Theorem[END_REF] for the Axis of Evil factorization.

Section 8.2 explains out problem in details and gives a precise description of the structure of the Groebner escaliers we have to deal with. Sections 8.3, 8.4 give the first partial results we got in the case of F 8 , F 16 . Since these results are not optimal, we continued our investigation on F 8 , obtaining the results of section 8.5. Finally, in section 8.6, we explain our future projects of generalization for the encouraging results in F 8 .

Our problem.

In this section, we start giving more details about our problem. Precise data for the specific examined cases will be given in the following sections. We deal with the points in the syndrome variety by Sala and Orsini, deciding to correct 1 and 2 errors simultaneously.

More precisely, we start considering all the points of the form

(x 1 , x 2 , z 1 , z 2 ) = (a + b, a 3 + b 3 , a, b),
where are the variables x 1 , x 2 represent the syndromes and z 1 , z 2 the locations (x 1 < x 2 < z 1 < z 2 ), letting a, b vary in F q := F 2 m in all possible ways. The forms assumed by the syndromes come from the ones of polynomials f i ∈ F OS : f i := t l=1 y l z j l -x i , where the error values are y l = 1, since we are dealing with a binary code. The related syndromes are therefore a + b, a 3 + b 3 (see section 7.5 for more details).

There are q 2 such points, but we have to exclude the spurious solutions, not corresponding univocally to an error vector. We start excluding the point (0, 0, 0, 0), since it corresponds to the absence of errors. Moreover, we exclude the 4-uples of the form (0, 0, a, a), a ∈ F q \ {0}: for x 1 = x 2 = 0 we authomatically have the couples of error locations (a, a).

Consequently, the points we have to examine are only the ones of the form (a+b,

a 3 +b 3 , a, b), with a, b ∈ F q , a = b.
Being a + b, a 3 + b 3 univocally determined once one knows a, b ∈ F q , sometimes, we will identify the 4-tuple (a + b, a 3 + b 3 , a, b) with the couple (a, b) and we will write them indifferently.

After the exclusion of spurious solutions, we get q 2 -q distinct points, forming a set we denote by X and, as usual, we write I := I(X) for the corresponding zerodimensional radical ideal.

We give now a characterization for the lexicographical Groebner escalier (x 1 < x 2 < z 1 < z 2 ) associated to I. In order to describe it, we state the following Notation 8.2.1. If τ ∈ T is a term and H ⊂ T , τ H := {τ σ, σ ∈ H}. Proposition 8.2.2. With the above notation, set H = {1, x 1 , ..., x q-2 1 }, where q is the cardinality of the base field.

The lexicographical Groebner escalier (x 1 < x 2 < z 1 < z 2 ) of the ideal I = I(X) described as the ideal associated to

X = {(a + b, a 3 + b 3 , a, b), a, b ∈ F 2 m , a, = b} has the form N(I) = N ∪ z 1 N , where N = H ∪ x 2 H ∪ ... ∪ x q 2 -1 2 
H.

Proof: Consider the set X. If we fix a, b ∈ F 2 m and we consider the associated points 

X = X 1 X 2 , such that if, for some a, b ∈ F 2 m (a +b, a 3 +b 3 , a, b) ∈ X 1 , necessarily (a + b, a 3 + b 3 , b, a) ∈ X 2 and if N 1 = N(I(X 1 )) then N = N(I(X 1 )) ∪ z 1 N(I(X 1 )).
We restrict then to X 1 .

By hypothesis, a = b ∈ F 2 m hence, clearly, a + b = 0; on the other hand, ∀c ∈ F * q , ∀a ∈ F * q , a = c, let b = ca. We have b = a, b = 0 and c = a + b. Clearly it also holds c = c + 0.

The above relations imply that the points in X 1 have (q -1) different first coordinates, so 1, x 1 , ..., x q-2 1 ∈ N. Since the Groebner escalier has always this shape, we know that z 2 1 , z 2 always belongs to the monomial basis G(I).

Moreover, we know that z 2 = z 1 + x 1 ∈ I, since for each couple of elements a, b ∈ F q , (a + b) + a = b (actually it even belongs to the lexicographical reduced Groebner basis of I, being x 1 , z 1 ∈ N(I)), so, once one has determined a, b can be simply computed via that linear (and very sparse) relation. This implies that, among the polynomials in a minimal lexicographical Groebner basis of I, we only have to deal with the one whose leading term is z 2 1 , which allows to compute the values for the first error.

By the evident symmetry of N(I), applying the Axis of Evil algorithm to the points (x 1 , x 2 , z 1 , z 2 ), for the factorization of the required polynomial, we get two factors F a := z 1 + f a (x 1 , x 2 ) and

F b := z 1 + f b (x 1 , x 2 ). Moreover X is partitioned in two subsets Z a , Z b ⊂ X, with |Z a | = |Z b | = 1 2 |X| = q 2 
1 such that:

• F a vanishes on the points of Z a

• F b vanishes on the points of Z b

• (x 1 , x 2 , z 1 , z 2 ) ∈ Z a ⇔ (x 1 , x 2 , z 2 , z 1 ) ∈ Z b .
Then, we can restrict to one of the subsets, say Z a and compute F a : the other points come

from z 2 = z 1 + x 1 .
Therefore, we arrange the points in couples of the form

[(a + b, a 3 + b 3 , a, b), (a + b, a 3 + b 3 , b, a)],
according to their first three coordinates, since we do not need any computation involving z 2 .

Then, we choose one point for each couple2 . The choice of the points influences the sparsity of the locator polynomial F a . Our aim is to determine locator polynomials linearly growing with the cardinality of the base field, characterizing them, if possible, with a pattern, in order to generalize the construction to larger cases. We start reporting here the partial results obtained for F 8 , F 16 , F 32 .

8.3

The case of F 8 : cyclic configurations.

The simplest base field for our study is the one corresponding to m = 3, namely

F 8 = {0, 1, a, a + 1, a 2 , a 2 + 1, a 2 + a, a 2 + a + 1},
with primitive element a: a 3 = a + 1.

For brevity's sake, from now on, we will set F 8 = {0, 1, a, a 2 , a 3 , a 4 , a 5 , a 6 }.

Our code is a binary

[n, k, d] BCH code with n = 2 3 -1 = 7, d = δ = 7, k = 1.
Its error correction capability is t = 2 and we suppose to correct 1 and 2 errors simultaneously.

As explained in section 8.2, the points we first take in to account are 64 = 8 2 , and they have the form

(a + b, a 3 + b 3 , a, b), a, b ∈ F 8 ,
Thanks to proposition 8.2.2, the tower structure of the Groebner escalier we have to work with is

1 x1 x 2 1 x 3 1 x 4 1 x 5 1 x 6 1 x2 x1x2 x 2 1 x2 x 3 1 x2 x 4 1 x2 x 5 1 x2 x 6 1 x2 x 2 2 x1x 2 2 x 2 1 x 2 2 x 3 1 x 2 2 x 4 1 x 2 2 x 5 1 x 2 2 x 6 1 x 2 2 x 3 2 x1x 3 2 x 2 1 x 3 2 x 3 1 x 3 2 x 4 1 x 3 2 x 5 1 x 3 2 x 6 1 x 3 2
In order to deal with this problem, we employ the original Axis of Evil algorithm. Indeed, as explained in chapter 3 even if the minimal Groebner basis we get is not reduced, the linear factors produced are. Moreover, the interpolation step in algorithm 5, line 19 ensures that the maximal number of terms composing each linear factor is

|X| + 1 = |N(I(X))| + 1.
We compute the polynomials using Singular. More precisely, we run on the points the facG-BIdeal procedure from the library pointid.lib [START_REF] Decker | Schönemann: SINGULAR 3-1-4 -A computer algebra system for polynomial computations[END_REF][START_REF] Steidel | Procedures for computing a factorized lex GB of the vanishing ideal of a set of points via the Axis-of-Evil Theorem[END_REF].

For example, for the following choice of the points 

poly tcontrollo1 = U 1[2][3][1]; ncols(coef(controllo1, x 1 x 2 z 1 )); ⇒ z 1 + x 6 1 x 3 2 + ax 5 1 x 3 2 + a 2 x 4 1 x 3 2 + a 3 x 3 1 x 3 2 + a 4 x 2 1 x 3 2 + a 5 x 1 x 3 2 + a 6 x 3 2 + ax 6 1 x 2 2 + x 5 1 x 2 2 + ax 4 1 x 2 2 + a 5 x 3 1 x 2 2 + a 2 x 2 1 x 2 2 + a 4 x 1 x 2 2 + a 5 x 2 2 + x 6 1 x 2 + a 4 x 5 1 x 2 + a 3 x 4 1 x 2 + a 4 x 3 1 x 2 + a 5 x 2 1 x 2 + a 6 x 1 x 2 + a 2 x 2 + a 2 x 6 1 + a 3 x 4 1 + a 6 x 3 1 + x 2 1 + ax 1 + a 4
As a first result, we found 7 configurations presenting an easy structure, leading to polynomials made up of 18 terms.

It is possible to describe such a structure in a very precise way.

The 7 configurations are connected to cyclic permutations of powers of the primitive element a in the sense described below 4 .

We choose the first points configuration so that we get:

• 7 points whose third coordinate is a i1 , i 1 ∈ {1, ..., 7};

• 6 points whose third coordinate is a i2 , i 2 ∈ {1, ..., 7} \ {i 1 };

• ...

• 1 point points whose third coordinate is a i7 , i 7 ∈ {1, ..., 7} \ {i 1 , ...., 1 6 };

• no points whose third coordinate is 0.

We summarize such a choice in a We notice that the "cyclic permutations" we are considering arise from the multiplication by the primitive element a. For example, in configuration 1 we have 7 points whose third coordinate is a 2 , while in configuration 2 we have 7 points whose third coordinate is a 3 .

It is easy to verify that this happens for all the entries in the tables associated to configurations 1, 2 and that it happens also for configurations 3, ..., 7, whose data are displayed in appendix B,B.1.2.

In order to study the similarities among the polynomials we got, we first consider the 7 × 4 matrix

M =              x 6 1 x 6 1 x 2 x 6 1 x 2 2 x 6 1 x 3 2 x 5 1 x 5 1 x 2 x 5 1 x 2 2 x 5 1 x 3 2 x 4 1 x 4 1 x 2 x 4 1 x 2 2 x 4 1 x 3 2 x 3 1 x 3 1 x 2 x 3 1 x 2 2 x 3 1 x 3 2 x 2 1 x 2 1 x 2 x 2 1 x 2 2 x 2 1 x 3 2 x 1 x 1 x 2 x 1 x 2 2 x 1 x 3 2 1 x 2 x 2 2 x 3 2              (8.1)
Then, we describe the coefficients of the polynomial p i associated to configuration i, i = 1, ..., 7 with a 7 × 4 matrix

A [i] = (a [i] l,m ), such that a [i]
l,m is the coefficient of the term m l,m in p i .

We list here only the matrices A [1] , A [2] , associated to configurations 1, 2. The reader can find the other ones in appendix B, B.1.2.

Configuration 1: corresponds to

A [1] =              0 0 a 5 0 0 a 4 a 3 a 6 a 3 0 a 6 a 5 0 a 5 a 3 a 5 0 0 a 6 a 3 a a 3 0 a 6 a 6 0 0 a 3              Configuration 2 corresponds to A [2] =              0 0 a 0 0 a 4 1 1 1 0 a 4 1 0 1 a 2 a 0 0 a 6 1 a 1 0 a 4 1 0 0 a 2             
The coefficients summarized above present some common properties.

In general, the matrices A [1] , ..., A [7] have a very precise shape, hightlighted in the following "general" matrix:

A [gen] =              0 0 C 0 0 a 4 D A D 0 E B 0 B F C 0 0 a 6 D a D 0 E A 0 0 F              ; A, B, C, D, E, F ∈ F 8 .
The existence of an A [gen] , whose entries summarize the coefficients of the polynomials p 1 , .., p 7 of the 7 configurations obtained by the cyclic permutations, tells us that the multiplication by a we perform to swich from a configuration to another one "preserves the supports of polynomials", in the sense that Supp(p 1 ) = Supp(p 2 ) = ... = Supp(p 7 ).

Moreover, as we can see in the above A [gen] , some values are stable among A [1] , ..., A [7] , namely a Each configuration is identified by the number of points (a + b, a 3 + b 3 , a, b) for each appearing third coordinate , i.e. the number of occurrences of some a as third coordinate.

For each configuration, we denote by M the value of the third coordinate a appearing once 5 and we get

A = a 5 M (8.2) B = a 3 M 2 C = a 2 M 3 D = a 6 M 4 E = aM 5 F = a 4 M 6
If, instead, we denote by M the value of the third coordinate a appearing twice, we get the set of formulas:

A = a 6 M (8.3) B = a 5 M 2 C = a 5 M 3 D = a 3 M 4 E = a 6 M 5 F = a 3 M 6
For 8.2 we have a sort of "symmetry", since we have a 5 M → aM 5 , a 3 M 2 → a 2 M 3 , a 6 M 4 → a 4 M 6 , which is not mirrored in 8.3.

Choosing M as the value of the third coordinate appearing 7 times, 6 times and so on, we get different formulas. More precisely the powers of M do not change, but the multiplicative coefficients vary. The entire set of formulas is displayed in appendix B.

The set of formulas 8.2 is connected to the structure of cycles in F 8 and the same happens for the all the other ones (appendix B, B.1.2).

This means that the multiplication by a, i.e. the transformation among the 7 points configurations we have, preserves the cycles in F 8 .

We recall that the cycles of F 8 are:

α) a → a 2 → a 4 → a; β) a 3 → a 6 → a 5 → a 3 ; γ) a 7 = 1. δ) 0.
We consider the elements having the minimal exponent of a in each cycle as preferential representatives of the corresponding cycle 6 .

Consider the set of formulas 8.2. The powers (1, 2, 4) of M (which are exactly the exponents of the cycle α), are multiplied to powers of a corresponding to cycle β. The powers [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF] of M are multiplied to powers of a corresponding to cycle α, so we can summarize the obtained relations as (powers of M, powers of a), namely: (α, β), (β, α).

We have similar relations for the other sets of formulas. For example, for 8.3 we have (α, β), (β, β).

8.4

The case of F 16 : cyclic configurations.

Drove by the simple structure of the configurations described in the previous section, we try to generalize them, enlarging the base field.

Consider then The first configuration we could find is Configuration 1:

F 16 = {0, a, a
6 They are the elements in boldface font. 7 We follow again the representation of the elements in the field as powers of the primitive element. The configuration list is The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
and the locator is again made up of 85 terms (see appendix B, section B.2).

As for the cyclic configurations in F 8 we consider the 15 × 8 matrix x 9 1

M =                                  x 14 1 x 14 
x 9 1 x 2 x 9 1 x 2 2 x 9 1 x 3 2 x 9 1 x 4 2 x 9 1 x 5 2 x 9 1 x 6 2 x 9 1 x x 8 1 x 8 1 x 2 x 8 1 x 2 2 x 8 1 x 3 2 x 8 1 x 4 2 x 8 1 x 5 2 x 8 1 x 6 2 x 8 1 x x 7 1 x 7 1 x 2 x 7 1 x 2 2 x 7 1 x 3 2 x 7 1 x 4 2 x 7 1 x 5 2 x 7 1 x 6 2 x 7 1 x x 6 1 x 6 1 x 2 x 6 1 x 2 2 x 6 1 x 3 2 x 6 1 x 4 2 x 6 1 x 5 2 x 6 1 x 6 2 x 6 1 x x 5 1 x 5 1 x 2 x 5 1 x 2 2 x 5 1 x 3 2 x 5 1 x 4 2 x 5 1 x 5 2 x 5 1 x 6 2 x 5 1 x x 4 1 x 4 1 x 2 x 4 1 x 2 2 x 4 1 x 3 2 x 4 1 x 4 2 x 4 1 x 5 2 x 4 1 x 6 2 x 4 1 x x 3 1 x 3 1 x 2 x 3 1 x 2 2 x 3 1 x 3 2 x 3 1 x 4 2 x 3 1 x 5 2 x 3 1 x 6 2 x 3 1 x x 2 1 x 2 1 x 2 x 2 1 x 2 2 x 2 1 x 3 2 x 2 1 x 4 2 x 2 1 x 5 2 x 2 1 x 6 2 x 2 1 x x 1 x 1 x 2 x 1 x 2 2 x 1 x 3 2 x 1 x 4 2 x 1 x 5 2 x 1 x 6 2 x 1 x 1 x 2 x 2 2 x 3 2 x 4 2 x 5 2 x 6 2 x 8 2                                  (8.4)
and we use similar matrices in order to summarize the coefficients of the polynomials associated to our configurations (the whole list is in B.2.2).

Configuration 1

A

[1] =                                 
a 9 a 11 0 a 6 0 0 a 11 a 14 0 a 12 0 0 0 a 4 a 5 a a 3 a 12 0 0 a 13 0 0 a 7 a 10 a 9 0 0 a 6 a 10 0 a 11 0 a 4 a 2 0 a 2 a 8 a 4 1 a 13 0 0 0 a 5 a 13 a 3 a 12 a 6 a 10 0 0 a 14 a 6 a 10 a 9 0 0 0 a 10 a a 2 a 8 a 4 a 5 a 13 a 3 0 a 7 a 5 a 13 a 3 a 14 a 6 a 10 0 a 11 a 14 a 6 a 10 0 a 2 a 8 0 a 9 a a 2 a 8 a 7 0 0 a 3 0 a 7 a 5 a 13 a 11 a 14 a 6 0 a 9 a 11 a 14 a 6

Configuration 2

A [2] =                                 
a 11 a 10 0 a 14 0 0 a 10 a 10 0 a 12 0 0 0 a 7 a 5 a 13 a 7 a 13 0 0 a 5 0 0 a 5 1 a 11 0 0 a 14 1 0 a 10 0 a 7 a 2 0 a 11 a 14 a 7 1 a 5 0 0 0 1 a 5 a 7 a 13 a 14 1 0 0 a 10 a 14 1 a 11 0 0 0 a 10 a 13 a 11 a 14 a 7 1 a 5 a 7 0 a 5 1 a 5 a 7 a 10 a 14 1 0 a 10 a 10 a 14 1 0 a 11 a 14 0 a 9 a 13 a 11 a 14 Notice that the capital letters appearing in the table (the different non-stable values for the coefficients) are 14, i.e. again one less than the number of configurations.

We can find formulas for the letters A -P , depending on a value Q. If Q is the value of the first coordinate appearing once, one gets

A = a 12 Q 14 B = a 7 Q 2 C = a 13 Q 8 D = a 3 Q 11 E = aQ 3 F = a 4 Q 12 G = a 14 Q 4 H = a 11 Q I = a 6 Q 7 L = a 9 Q 13 M = a 5 Q 5 N = a 8 Q 9 O = a 2 Q 6 P = a 10 Q 10
If, instead, Q is the value of the first coordinate appearing twice, one gets

A = a 11 Q 14 B = a 9 Q 2 C = a 6 Q 8 D = a 14 Q 11 E = a 4 Q 3 F = aQ 12 G = a 3 Q 4
Moreover, from a sparsity point of view, the polynomials we get can be defined "intermediate", but they are not optimal.

Indeed, in the case of F 8 , we had the chance to hit a configuration leading to a polynomial made up of 9 terms, by which we deduced a configuration leading to a polynomial made up of 8 terms.

If Z a is the set of points leading to the polynomial made up of 9 terms, observing that F a + F b = x 1 , with the above notation, we can deduce that, if x 1 ∈ Supp(F a ), then Z b leads to a polynomial made up of 8 terms, i.e. as many terms as the cardinality of the base field. The gives the locator polynomial z 1 +x 6 1 x 3 2 +a 3 x 6 1 x 2 2 +a 5 x 4 1 x 2 2 +a 6 x 6 1 x 2 +a 3 x 2 1 x 2 +a 5 x 3 1 +a 6 x 2 1 +x 1 , made up of 9 terms (see appendix B, B.3.1 for more details on the configuration).

The locator polynomial contains x 1 , so we get the 8 terms configuration, from the set described above. Such a set, corresponds to the configuration list [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2], whose data are described in appendix B.3.4 8 Notice that, for the cyclical configurations described in the previous section, the choices for the points were univocal. We had to choose 7 points with some third coordinate a, but among the points under consideration, there were only 7 such points. Then, we chose 6 points with some third coordinate b, but among the points under consideration, there were only 6 such points and so on. Thus, all the choices were univocal. In the case of 9 terms, the choice for the points is not univocal as it was before. Moreover, for some of these choices, we got denser polynomials and so was also for the cyclical permutations of the 9 terms configuration (see for example appendix B, B.3.1 for a permutation giving a denser polynomial). Definition 8.5.1. An optimal configuration in F 2 m is a configuration leading to a polynomial made up of 2 m terms.

The optimal configuration we deduced by the one made up of 9 terms is analogous to the cyclical configurations of the previous section. Indeed, via some investigations, we could find out that it is invariant for cyclical permutations in the usual sense. Moreover it presents an interesting structure, somehow connected to the cycles in F 8 .

We implemented then a researching algorithm, looking for optimal configurations with an analogous structure and we found out three of them.

We study now the obtained configurations, arranging them in types A,B,C,D and showing the common features of the configurations belonging to the same type. Each column in the table above represents a possible choice and the different choices are cyclically permuted as in the intermediate case.

We will explain afterwards why we hightighted in bold the second column.

We use for example type A configurations in order to explain the structure.

The first column is associated to the following configuration list: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2.

The associated polynomial is z 1 + a 3 x 6 1 x 2 2 + a 6 x 3 1 x 2 2 + x 2 1 x 2 2 + a 6 x 6 1 x 2 + a 5 x 2 + a 3 x 5 1 + a 5 x 3 1 and the matrix of coefficients (completely analogous to table 8.1) turns out to be:

A [1] =             
0 a 6 a 3 0 a 3 0 0 0 0 0 0 0 a 5 0 a 6 0 0 0 1 0 0 0 0 0 0 a 5 0 0

            
The second column corresponds to the list below: The coefficient table is All the data for Type A configurations are contained in B.3.2.

A [2] =              0 
Let us now focus on the boldface column.

As one can easily see by the configuration list, the couples (z 1 , z 2 ) we have chosen are (a, 0) (a 2 , 0) (a 4 , 0) (a, a 2 ) (a 2 , a 4 ) (a 4 , a)

(a, a 5 ) (a 2 , a 3 ) (a 4 , a 6 ) (a, 1) (a 2 , 1) (a 4 , 1) (a 3 , 0) (a 6 , 0) (a 5 , 0) (a 3 , a) (a 6 , a 2 ) (a 5 , a 4 ) (a 3 , a 4 ) (a 6 , a) (a 5 , a 2 ) (a 3 , a 6 ) (a 6 , a 5 ) (a 5 , a 3 ) (a 3 , 1) (a 6 , 1) (a 5 , 1)

(1, 0) Table 8.2: An optimal Frobenius configuration.

We describe now the properties of the configuration summarized in the above table.

By table 8.1, we impose the third coordinate of all our points to be nonzero. Since for our problem, taken b ∈ F * 8 we have to choose between two couples of the form (z 1 , z 2 )9 , namely (b, 0) and (0, b) and 0 cannot be picked as third coordinate, we have to choose (b, 0) for each b ∈ F * 8 . On the other hand, we notice that table 8.1 imposes the third coordinate of one and only one point to be equal to 1. Since, by the above comment, we picked the couple (1, 0), each other couple containing the value 1 has to be of the form (b, 1) with b ∈ F 8 \ {1, 0}.

From the table above, we notice that for the boldface configuration if b ∈ F * 8 is the preferential representative for a cycle in F 8 and we pick the couple (b, c), c ∈ F * 8 , also the couples (b 2 , c 2 ), (b 4 , c 4 ) have been chosen.

Look at the cycle α, i.e. a → a 2 → a 4 → a.

The preferential representative of α is a. The choices for (a 2 , * ), (a 4 , * ) (i.e. for the four occurrences of a 2 , a 4 as third coordinate, required by table 8.1) depend on the four choices made for the couples (a, b), b ∈ F 8 , in the sense we will explain below.

Look for example to the second row of the table, i.e.

(a, a 2 ), (a 2 , a 4 ), (a 4 , a).

We have (a 2 , a 4 ) = ((a) 2 , (a 2 ) 2 ) and (a 4 , a) = ((a 2 ) 2 , (a 4 ) 2 ) = (((a) 2 ) 2 , ((a 2 ) 2 ) 2 ).

The same holds also for cycle β, i.e. a 3 → a 6 → a 5 → a 3 , whose preferential element is a 3 .

We have only made some choices for a 3 : the occurrences of a 6 , a 5 come "by squarings". For example the row (a 3 , a), (a 6 , a 2 ), (a 5 , a 4 ) can be viewed as made of one independent choice and a couple of squarings, as shown below:

(a 6 , a 2 ) = ((a 3 ) 2 , (a) 2 ) (a 5 , a 4 ) = ((a 6 ) 2 , (a 2 ) 2 ) = (((a 3 ) 2 ) 2 , ((a) 2 ) 2 ).

The above comments hold also for γ and δ in an obvious way, since 1 2 = 1, 0 2 = 0.

Let us recall the following Definition 8.5.2. Let F q be a finite field of characteristic p, so that q = p n . The Frobenius automorphism is defined as

σ : F q → F q a → a p .
The Frobenius automorphism preserves the cycles: The Frobenius automorphism is the generator of the cyclic group of the automorphisms in F 8 . All these authomorphisms, namely id, σ, σ 2 preserve both the cycles and the syndromes. In our case, i.e. q = 8 and p = 2, the squaring is simply the application of Frobenius mapping.

Another property of our configuration is In view of the fact that our initial list P contains the couples of points [(a 4 , a 4 , a, a 2 ), (a 4 , a 4 , a 2 , a)],

[(a 2 , a 2 , a, a 4 ), (a 2 , a 2 , a 4 , a)],

[(a, a, a 2 , a 4 ), (a, a, a 4 , a 2 )],

we need to pair off a with some elements of cycle α, so, a priori, we can choose without restriction between (a, a 2 ), (

(a, a 4 ) (8.7)

and we have chosen (a, a 2 ).

On the other hand, we cannot make both choices in the same configuration, since we would simultaneously have (a, a 2 ), (a 2 , a 4 ), (a 4 , a)

and (a, a 4 ), (a 2 , a), (a 4 , a 2 ).

This contradicts the requirement to choose only one element for each couple in P , which is the first requirement on our configurations, descending from the structure of N and from the Axis of Evil. Moreover, we know that we cannot choose any other value of b neither in α, nor in γ, nor in δ: γ, δ only contain one element and for α we have one and only one available choice.

Then, in order to get the last couple we must pick the last b in the cycle β, by elimination.

Actually, we have chosen (a, a 5 ). Another property of our optimal configuration is the following Consider two distinct cycles θ, θ , such that b ∈ F * 8 is the preferential element of θ and c ∈ F * 8 is the preferential element of θ . Suppose we have made all the For the optimal Frobenius configuration described above, the independent choices we have made are really a few. Most of the couples come by the application of Frobenius mapping and, as explained before, there are some restrictions on the choices. The couples marked in red in the table above represent these independent choices we have made.

In our investigation, we looked for optimal Frobenius configurations among the Frobenius ones and then for their associated semi-Frobenius configurations. We found three optimal Remark 8.5.5. As seen above, the formulas for the coefficients of type A configurations are

A = M 6 B = M 3 C = M 5 .
The value M is the coordinate appearing only once. Since for the boldface column, i.e. the optimal Frobenius configuration, it holds M = 1, we obtain a locator polynomial whose coefficients are all equal to 1 Moreover, every polynomial different from it, has as coefficients 1 and the elements of only one of the other cycles, i.e. α or β.

The configurations type B,C,D behave in the same way of type A configurations. More precisely, there is for each type, one and only one optimal Frobenius configuration satisfying the restrictions above, while the others come by cyclical permutations.

Optimal Frobenius configurations: what can be generalized?

In this section, we give some partial results on the generalization of the optimal Frobenius and semi-Frobenius configurations to fields larger than F 8 .

For this purpose, we first recall that the cycles in F 8 are α) a → a 2 → a 4 → a; β) a 3 → a 6 → a 5 → a 3 ; γ) a 7 = 1; δ) 0.

In this case, the order of the Frobenius mapping is 3.

The cycles in F 16 are: α ) a → a 2 → a 4 → a 8 → a; β ) a 3 → a 6 → a 12 → a 9 → a 3 ; γ ) a 5 → a 10 → a 5 ; δ ) a 7 → a 14 → a 13 → a 11 → a 7 ;

) a 15 = 1;

ζ ) 0.
and the order of the Frobenius mapping is 4, so we have id, σ, σ 2 , σ 3 . Notice that Frobenius mapping preserves both cycles and syndromes, so it preserves the structure of the points.

The cycle structure of F 16 is rather different than the one of F 8 and it influences our possibilities in constructing points configurations with analogous restrictions as the optimal Frobenius configurations of the previous section.

First of all, we notice that the length of cycles in F p m divides m. In the case of F 8 , m = 3 and the cycles have length 1 (the trivial ones) and 3. In the case of F 16 , m = 4 and the lengths of the cycles are 1, 2, 4.

Consider first cycle γ . Clearly, we have to pair off two elements of γ . More precisely, we must have either (a 5 , a 10 ) or (a 10 , a 5 ). But if we choose (a 5 , a 10 ) and we apply as for F 8 the Frobenius mapping we get the couple (a 10 , a 5 ). But, in our problem, we have escluded the occurrence of both these couples. So this "degenerate short cycle" is not compatible with the application of Frobenius mapping as in F 8 and it makes necessary to change the way to generate a configuration.

But there is something more. Consider for example the couples of the form (a, b). We have to deal with those for which b is an element in cycle α . If we choose for example the couple (a, a 2 ), by the application of Frobenius mapping, we get (a, a 2 ), (a 2 , a 4 ), (a 4 , a 8 ), (a 8 , a) and, similarly, for (a, a 8 ) (a, a 8 ), (a 2 , a), (a 4 , a 2 ), (a 8 , a 4 ).

Clearly we cannot choose both these couples 10 , but we notice that, if we pick only one of them, we do not deal respectively with (a, a 4 ), (a 4 , a) and (a 2 , a 8 ), (a 8 , a 2 ), so we do not treat all the couples of elements in α . Anyway, if we pick the couple (a, a 4 ) and we apply as usual the Frobenius mapping we get (a, a 4 ), (a 2 , a 8 ), (a 4 , a), (a 8 , a 2 ), which is incompatible with our usual requirement on the couples: we only want to choose one and only one between (a, b) and (b, a).

This problem clearly occurs also for β and δ .

We can relate the problem to the theory of permutations. Consider cycle α and suppose to make the following choice for (a, b), with b in α , applying Frobenius as usual:

(a, a 2 ), (a 2 , a 4 ), (a 4 , a 8 ), (a 8 , a).

Such a choice can be seen as a cyclical permutation of α , i.e. a a 2 a 4 a 8 a 2 a 4 a 8 a = (a, a 2 , a 4 , a 8 ) = λ.

Making another such choice for a (i.e. pairing a with another element of cycle α) and applying Frobenius means taking a power of λ.

Now, the i-th power of a cycle of length m is a cycle ⇔ GCD(i, m) = 1.

If such a permutation is not a cycle, is a product of disjoint cycles of the same length.

If the permutation is a cycle (as λ), then we cannot find in the application of Frobenius both the couples of the form (a, b) and (b, a): if it was so, the permutation would be the product of disjoint transpositions, so it would not be cyclic.

So the cases presenting some problems w.r.t. Frobenius applications are the ones corresponding to powers of permutations which are products of disjoint transpositions.

This cannot happen for F 8 , since m is a prime number, whereas it is exactly what happens for F 16 .

We can overcome the problem of finding both the couples of the form means that, when the permutation is not a cycle, we consider the couples corresponding to the distinct cycles in which it is decomposed 11 . For α , for example, we can take the long application (a, a 2 ), (a 2 , a 4 ), (a 4 , a 8 ), (a 8 , a), a a 2 a 4 a 8 a 2 a 4 a 8 a = (a, a 2 , a 4 , a 8 ) = λ.

jointed with the short application (a, a 4 ), (a 2 , a 8 ).

a a 2 a 4 a 8 a 4 a 8 a a 4 = (a, a 4 ), (a 2 , a 8 ) = λ 2 .

This way, we can pair a with all the other elements in α, without getting both the couples of the form (a, b) and (b, a), situation we have excluded.

Clearly, the problem can only arise for couples (b, c), b, c in the same cycle. Consequently, the kind of search we are developing now (still in progress) is to check the configurations obtained by choosing the couples and applying long and short applications in a consistent way, in order to get the analogous of a Frobenius configuration for F 16 .

There are many types of such configurations, we will start with the type related to the following table, only because, in analogy with the tables for type A,B,C,D in F 8 , it involves only 2 consecutive numbers and 1 (see the "total" column). In this table, we have counted the couples arising from short applications, long applications and no applications of Frobenius (as explained above for γ ). The total m displayed in the table for a certain power a i means that there are m couples of the form (a i , b). The number displayed in the "long" cell is the number of such couples arising by a long Frobenius application on an independent choice and the one displayed in the "short" cell is the number of couples arising by a short Frobenius application 12 .

The line of a 15 = 1 and the one relative to an element in γ are particular since there can be "no Frobenius applications".

We remark that the short applications of the Frobenious mapping are related only to couples (a i , a j ) such that a i , a j belong to the same cycle.

Finally, consider the cycle structure in F 32 : 

α ) a → a 2 →
θ ) 0.
Here, the cycles have the same structure as F 8 . All the cycles (excluded the cycles of 0 and 1) have the same length. Moreover, in this case m = 5 is a prime number, so all the powers of a cycle are cycles: we do not need short and long applications. and the tower structure is a,a 3 ,a a 2 ,a 6 ,a 2 a 3 ,a 2 ,a 3 a 4 ,a 5 ,a 4 a 5 ,a,a 5 a 6 ,a 4 ,a 6 1,1,1 a,a,a 2 a 2 ,a 2 ,a a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a a 6 ,1,a 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,a 2 1,a 3 ,a 2 a,a 2 ,a 5 a 2 ,a 5 ,1 a 3 ,1,a 4 a 4 ,a 3 ,1 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 As explained in 8.3, the formulas in the table above are linked with the cycles in F 8 . We list here the couples of cycles connected to each set of formulas. B.2 Cyclical configurations in F 16 .

B.2.1 The cyclical configurations.

Here we list the 15 cyclical configurations in F 16 (8.4). 

B.2.2 Coefficient matrices and formulas.

The matrix whose entries are the terms which possibly can appear in the tail of our general error locator polynomial (8.4) is

M =                                 
x The couples of cycles corresponding to the formulas grouped above are:

1: (α , δ ), (β , α ), (γ , γ ), (δ , β ); 

B.3.2 Type A.

Here we have all the data for Type A configurations from 8.5. Here we have all the data for Type B configurations from 8.5.

Type B:

Number Let us now focus on the boldface column i.e. the second one.

As one can easily see by the configuration list, the couples (z 1 , z 2 ) we choose are (a, 0) (a 2 , 0) (a 4 , 0) (a, a 2 ) (a 2 , a 4 ) (a 4 , a)

(a, a 6 ) (a 2 , a 5 ) (a 4 , a 3 ) (a, 1) (a 2 , 1) (a 4 , 1) (a 3 , 0) (a 6 , 0) (a 5 , 0) (a 3 , a) (a 6 , a 2 ) (a 5 , a 4 ) (a 3 , a 2 ) (a 6 , a 4 ) (a 5 , a) (a 3 , a 5 ) (a 6 , a 3 ) (a 5 , a 6 ) (a 3 , 1) (a 6 , 1) (a 5 , 1)

(1, 0)

As in type A configurations, only the choices made for a, a 3 , 1 are independent, while the other ones come by applying Frobenius mapping. For example (a, a 2 ), (a 2 , a 4 ), (a 4 , a)

is such that (a 2 , a 4 ) = (σ(a), σ(a 2 )) (a 4 , a) = (σ(a 2 ), σ(a 4 )) = (σ(σ(a)), σ(σ(a 2 ))).

The other type B configurations come from the optimal Frobenius configuration by cyclic The second column, hightlighted as usual in boldface font, is the optimal Frobenius configurations, from which the others arise by cyclic permutations.

We display here the table of the couples (z 1 , z 2 ) in order to lay great stress on the application of Frobenius mapping:

(a, 0) (a 2 , 0) (a 4 , 0) (a, a 3 ) (a 2 , a 6 ) (a 4 , a 5 ) (a, a 4 ) (a 2 , a) (a 4 , a 2 ) (a, 1) (a 2 , 1) (a 4 , 1) (a 3 , 0) (a 6 , 0) (a 5 , 0) (a 3 , a 2 ) (a 6 , a 4 ) (a 5 , a) (a 3 , a 4 ) (a 6 , a) (a 5 , a 3 ) (a 3 , a 6 ) (a 6 , a 5 ) (a 5 , a 3 ) (a 3 , 1) (a 6 , 1) (a 5 , 1)

(1, 0)

B.3.5 Type D.

Here we have all the data for Type D configurations from 8.5. In the Frobenius configuration of type D, the the numbers for a and a 3 in tableB.5 below are exchanged with respect to type A,B,C. The second column represents theunique optimal type D Frobenius configuration, as shown in the table (a, 0) (a 2 , 0) (a 4 , 0) (a, a 2 ) (a 2 , a 4 ) (a 4 , a) (a, a 3 ) (a 2 , a 6 ) (a 4 , a 5 ) (a, a 6 ) (a 2 , a 5 ) (a 4 , a 3 ) (a, 1) (a 2 , 1) (a 4 , 1) (a 3 , 0) (a 6 , 0) (a 5 , 0) (a 3 , a 2 ) (a 6 , a 4 ) (a 5 , a)

(a 3 , a 5 ) (a 6 , a 3 ) (a 5 , a 6 ) (a 3 , 1) (a 6 , 1) (a 5 , 1)

(1, 0)

Each other type D configuration arises from the optimal Frobenius configuration via cyclic permutations.

For

  each d ∈ N, T d denotes the d-degree part of T , and for each M ⊆ T , M d = M ∩ T d , whereas T (d) is the degree ≤ d part of T , with |T d | = n+d-1 d

  If I := (G) we have M(I) := M(G).

Fixed a term

  order < on T , we have the following results: Lemma / Definition 1.1.1 ([70, 79]). It holds: P ∼ = I ⊕ k[N(I)]; P/I ∼ = k[N(I)]; ∀f ∈ P, ∃!g := Can(f, I) = τ ∈N(I) γ(f, τ, <)τ ∈ k[N(I)], called canonical form of f with respect to I, such that f -g ∈ I.

Π

  s (P, X) := {P i ∈ X|π s (P i ) = π s (P )}, Π s (P, X) := {P i ∈ X|π s (P i ) = π s (P )}, extending in the obvious way the meanings of π s (d), π s (d), Π s (d, D), Π s (d, D) to d ∈ N n and D ⊆ N n .

Definition 1 . 1 . 4 .Definition 1 . 1 . 5 .

 114115 Let I P be an ideal. The affine Hilbert function of I is the function HF I : N → N d → dim(P(d)/I(d)).For d sufficiently large, the affine Hilbert function of I can be written as HF I (d) = where l is the Krull dimension of V (I),b i are integers and b 0 is positive. The polynomial which is equal to HF I (d) for d sufficiently large is called the affine Hilbert polynomial of I. It is denoted by H I (d).

Definition 1 . 1 . 6 .

 116 d = I ∩ S d with I S homogeneous ideal. With the above notation, the Hilbert function of I is h HF I : N → N d → dim(S d /I d ). Given a homogeneous ideal I S, for d sufficiently large, we can write the Hilbert function as a polynomial, namely h HF I (d) = . the Hilbert polynomial of I, denoted by h H I (d).

σ

  xj (D(i 1 , ..., i n )) := 0 if i j = 0 We use the notation σ xixj for σ xi σ xj = σ xj σ xi =: σ xixj and, for each τ ∈ T , defining σ τ xj = σ xj σ τ , we have a map σ τ : D → D ∪ {0}, which can be extended to a k-endomorphism of Span k (D) still denoted by σ τ .

Definition 1 . 2 . 13 .

 1213 fix an infinite set of indeterminates, labeled with the elements in T , namely Z = {ζ τ , τ ∈ T } and we have naturally the rings k[ζ τ ] τ ∈T and k[[ζ τ ]] τ ∈T .Definition 1.2.12. A dialytic equation of an ideal I P is a linear combinationτ ∈T a τ ζ τ ∈ k[ζ τ ] τ ∈T such that τ ∈T a τ τ ∈ I.For each term ν ∈ T , the ν-derivative of τ ∈T a τ ζ τ is the dialytic equation τ ∈T a τ ζ τ ν , corresponding to τ ∈T a τ τ ν = ν τ ∈T a τ τ ∈ I. The inverse functions or modular equations of I are the equations of the form τ ∈T c τ ζ τ ∈ k[[ζ τ ]] τ ∈T , with τ ∈T c τ a τ = 0, for each τ ∈T a τ τ ∈ I. We can naturally extend the notion of lowest degree component and order to dialytic equations and inverse functions and, for each inverse function τ ∈T c τ ζ τ ∈ k[[ζ τ ]] τ ∈T , we can define a linear functional γ ∈ P * , namely the one associating the element c τ to each τ . Following Macaulay's notation, we express these equations as Laurent series τ ∈T c τ τ -1 = (α1,...,αn)∈N n c (α1,...,αn) x -α1

Definition 1 . 2 . 14 .

 1214 An inverse function τ ∈T c τ τ -1 for which exists γ ∈ N such that deg(τ ) > γ ⇒ c τ = 0 is called Noetherian equation.

Definition 1 . 2 . 17 .

 1217 With the previous notation, the ordered sets L and Y are a Macaulay representation and a Cerlienco-Mureddu skeleton of I := P(L); each λ = l νP λ P is a Cerlienco-Mureddu functional and each Y = (P, ν) ∈ Y a Cerlienco-Mureddu card.

Figure 1 . 4 :Example 1 . 4 . 2 .

 14142 Figure 1.4: The tower structure of X : terms.

Figure 1 . 5 :

 15 Figure 1.5: Reordering of ranges in 2 variables.

4 Figure 1 . 6 :

 416 Figure 1.6: Reordering of ranges in 3 variables.

Example 2 . 2 . 7 .

 227 Take the set, proposed for the first time by Gao-Rodrigues-Stroomer in[START_REF] Gao | Groebner basis structure of finite sets of points[END_REF] X 1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), (3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)}, and consider the ring k[x, y, z, t], equipped with the lexicographical order induced by 1 < x < y < z < t.

  l , X) := {P ∈ X| Φ(P ) = d = ( * , ... * , d ls , 0, ..., 0), } = {P j1 , ..., P jr }.

  obtaining {1} and then Φ(P 13,3 ) = z. P 13,4 = (3, 1, 2): s = 1, m = 3, so Φ(P 13,4 ) = x 1 y 0 z 0 = x. P 13,5 = (3, 4, 1) : s = 2, m = 4, so Φ(P 13,5 ) = x ? y 1 z 0 = x ? y; we repeat the algorithm on Q = {1, 3}: P 13,5,1 = 1: the first point corresponds to 1; P 13,5,2 = 3: s = 1, m = 1, so Φ(P 13,5,2 ) = x.

0

  and insert D. Place a translate of D somewhere on the 1-axis. The translate has to be sufficiently far out, so that D and the translate of D do not intersect. Then take the elements of the translate of D and drop them down along the 1-axis until they lie on top of an element of D, just as in the popular game Connect4, which might be known to one reader or the other. The result is D + D ."

( 4

 4 is associated to the 0 element of the first Ferrers diagram) and (1, 0) to P 6 (6 is associated to the 0 element of the second Ferrers diagram).

Definition 2 . 5 . 1 .

 251 The witness of two different n-tuples a, b is the minimal i such that a i = b i .

Remark 2 . 5 . 4 .Example 2 . 5 . 5 . 2 = {( 3 , 2

 254255232 Neither Felszeghy-B. Ráth-Rónyai nor Lundqvist say to have intent to define a one to one correspondence between points of X and terms in N(I(X)). Anyway, this correspondence is clearly defined in their examples, namely in the lex trie construction (see 2.5.5 below). Take the set X ring k[x, y, z, t], equipped with the lexicographical order induced by t < z < y < x.

). 63 that

 63 the polynomials f τ := n m=1 dm δ=1 γ mδτ form a minimal lexicographical Groebner basis of I; each such factors were obtained by producing an appropriate decomposition of the given Macaulay basis B(I) = n m=1 dm δ=1 S mδ (τ ) and interpolating over the monomial set obtained applying Cerlienco-Mureddu Algorithm over the set of functionals S mδ (τ ).

Example 3 . 3 . 4 .Remark 3 . 3 . 5 .Example 3 . 3 . 6 .

 334335336 For the terms τ 1 := x 2 and τ 2 := xy in k[x, y], we get σ 1 := σ 2 := x, σ 3 := y and J 1 := {1, 2}, J 2 := {1, 3}. The finite sequence satisfying conditions a. and b. is not unique. Given {τ 1 , ..., τ r } ⊂ T , more than one sequence can produce the required result, as shown in the following example. For the terms τ 1 := x 4 , τ 2 := x 3 y 3 in k[x, y] we can consider first the sequence M 1 := [x, x 3 , y 3 ].

Proposition 3 . 3 . 8 .

 338 With the above notation, the set G := {g 1 , ..., g r } is a Groebner basis.

11 :

 11 if |D m0 | = 0 then 12: R = [R, ζ mτj ].

16 :

 16 for δ = 1 to d j,m do 17:

Remark 3 . 4 . 3 .

 343 By construction and essentially by Cerlienco-Mureddu correspondence and the consequent construction of the sets E mδ (τ j ), we get T(γ mδτj ) = x m .

Remark 3 . 4 . 4 .∈Remark 3 . 4 . 5 .

 344345 Let τ j := x G(I). The required polynomial f j = τ j + tail(f j ) ∈ G(I) has exactly d j = n i=1 d j,i factors: d j,1 with leading term x 1 , d j,2 with leading term x 2 and so on. As we can see in line 16 of algorithm, every variable x i , i = 1, ..., n, appears only d j,i times in the execution of the algorithm. The sets N m (τ j ) := {ω ∈ T [m], τ j > ωx dj,m+1 m+1 • • • x dj,n n∈ N(I)} are constructed in order to find the points where one has to interpolate.

Example 3 . 4 . 8 .

 348 Consider again the setX = {(1, 0),[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF],(4,[START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], (0, 7), (5, 2), (4, 1),[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], (2, 7), (0, 6)} ⊂ R 2 of example 3.4.2.

Example 3 . 4 . 11 .

 3411 Consider again the set X = {(0, 1, 2),[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF] 4,[START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], (0, 2, 1), (1, 5, 3), (0, 3, 0), (0, 2, 5),[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF] 4,[START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF], (1, 5, 4)} of example 3.4.6 and denote, I := I(X).

Remark 3 . 4 . 14 .Example 3 . 4 . 15 .

 34143415 then the linear factor vanishing in P , namely γ mδτj , is constructed involving only the first m coordinates of P , i.e. a 1 , ..., a m . Although the minimal Groebner basis we get by the Axis of Evil algorithm is not reduced, we can point out that the linear factors γ mδτj we get are reduced in the sense that Supp(γ mδτj ) \ {x m } ⊆ {τ ∈ N(I) | τ < x m } by the construction of E mδ (τ j ). If we consider the set X = {(0, 0), (1, 2), (0, 2),[START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF] 4), (0, 6)}, the minimal Groebner basis produced by the Axis of Evil algorithm is

Algorithm 5 1 . 3 . 4 . 18 .

 513418 and lemma 3.4.16 constitute a constructive proof of the Axis of Evil Theorem 3.4.Remark The polynomials f 1 , ..., f r of theorem 3.4.1 form a minimal Groebner basis because:

P 4 :

 4 = (3, 0, 1) : s = 1, m = 1, (2, 0, 0) P 5 := (2, 1, 3) : s = 3, m = 2, (0, 0, 1) P 6 := (1, 3, 4) : s = 1, m = 4, (3, 0, 0) P 7 := (2, 4, 3) : s = 3, m = 3, W = {(2, 1, 3), (2, 4, 3)}, t 7 = (0, 1, 1) P 8 := (2, 4, 2) : s = 3, m = 7, (0, 0, 2)

, 2 m = 2 :

 22 ζ 2τ1 = γ 1τ1 . Since, as we can also see in the picture above, D 20 (τ ) = ∅, we stop here obtaining, as first result, a polynomial f 1 := ζ 2τ1 = γ 1τ whose leading term is τ 1 ∈ G, while the lower monomials belong to N. By construction, f 1 ∈ I(X), since it vanishes in every point of X. It is then an element of our minimal Groebner basis.

  Axis of Evil algorithm provides a minimal Groebner basis for the zerodimensional radical ideal of these points I := I(X), factorized in a very peculiar way we called "Axis of Evil factorization". Such a factorization is constructed providing, for each term τ ∈ G(I) a partition X = n m=1 dm δ=1 S mδ (τ ) of the points. As we highlighted in the detailed example of section 3.6, the points are grouped differently at each step: the points in which we have to interpolate the single factors depend on the term τ ∈ G(I) we are considering in the current step of the algorithm. Moreover, we can notice that in the original Axis of Evil algorithm 5 of chapter 3 some linear factors appearing in the Axis of Evil factorization associated to some terms in G(I) are 105 independently computed more than once.

Example 4 . 3 . 2 .Σ 1 =Σ 3 =Σ 4 =Definition 4 . 3 . 3 .

 432134433 Referring to example 4.3.1, we have n = 4 and we reorder the points according to Σ 4 = {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}, obtaining Σ 0 = {{9, 10, 8, 12, 13, 11, 4, 5, 6, 7, 1, 2, 3}} {{9, 10, 8, 12, 13, 11}, {4, 5, 6, 7, 1, 2, 3}} Σ 2 = {{9, 10, 8}, {12, 13}, {11}, {4, 5, 6, 7}, {1, 2, 3}} {{9, 10}, {8}, {12, 13}, {11}, {4, 5}, {6, 7}, {1, 2, 3}} {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}. The children trie T(X) of a finite set of distinct points X is the point trie associated to classes ordered w.r.t. the rules explained above.

Example 4 . 3 . 5 .

 435 Referring to the set X 1 of example 4.3.4, we perform the lex trie construction. The first set is: v 0 = {9, 10, 8, 12, 13, 11, 4, 5, 6, 7, 1, 2, 3}.

Algorithm 9

 9 The BFS Procedure.1: procedure BFS(T(X), h, P k ) → L L is the list of factors associated to P k .

Lemma 4 . 4 . 7 .

 447 Let N(I), |N(I)| < ∞ be the Groebner escalier of a zerodimensional radical ideal I and let N

Proposition 4 . 4 . 8 .

 448 With the previous notation, G := G S = G(I(X)).

Remark 4 . 4 . 10 .

 4410 The algorithm works correctly in each characteristic for the base field. Remark 4.4.11. The same interpolating algorithm can also be used in order to compute an Axis of Evil factorization for the border basis of our ideal I(X).

Example 4 . 4 . 15 .

 4415 If we take, for example, the set X = {(1, 1),[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF],[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF],[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] 4),[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF],[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF],[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF] 4),[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF],[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Berlekamp | Binary BCH codes for correcting multiple errors, Algebraic Coding Theory[END_REF],[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF],[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Buchberger | Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory[END_REF], (2, 14)} ⊂ k 2 , the Groebner escalier is N(I(X)) = {1, x, y, xy, y 2 , xy 2 , y 3 , xy 3 , y 4 , xy 4 , y 5 , xy 5 } ⊂ k[x, y].

  from the original Axis of Evil algorithm are sparser than the ones obtained via the new algorithm. Actually, for the first version, we know that the number of terms for a linear factor is bounded above by |X| + 1 (the leading term plus as many terms as the points to interpolate in, by the interpolation step of 5), whereas we do not have such a bound for the second version. Moreover, in the second version, the factors are not reduced.Let us deal with Macaulay's trick and the Axis of Evil.Example 4.4.16. Taken the set X = {(0, 0), (1, 2), (0, 3)}, we have N(I(X)) = {1, x, y} and G(I(X)) = x 2 , xy, y 2 .

( 1 , 2 , 3 )

 123 and[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF][START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF], so it should hold g(1, 2) = -3 and g(1, 2) = -5, i.e. again a contradiction.

Definition 5 . 2 . 12 .

 5212 An n-B-C diagram B consists of n superimposed, horizontal lines, fragmented in segments called bars. Lines and bars are numbered from the top to the bottom and from the left to the right. Bars are such that 1. the bars composing the i-th row are called i-bars; 2. for each 1 ≤ i ≤ n -1, under each i-bar in B lies at most one (i + 1)-bar of B; 3. the 1-length of each 1-bar in B is conventionally set equal to 1; 4. for each 1 ≤ j < i ≤ n and for each i-bar A in B, the length of A w.r.t. j (shortly, the j-length of A) is the number of j-bars in B lying above A and is denoted by l j (A); the 1-length of A is simply called length of A and is denoted by l(A); 5. for each 1 ≤ i ≤ n the sum of the lengths of the i-bars is the same. Therefore, if a bar C lies under a bar D, l(C) ≥ l(D).

Example 5 . 2 . 13 .

 5213 µ(i) the i-bars. We call bar list of a Bar-Code B the list L B := (µ(1), ..., µ(n)), i.e. the list reporting the number of segments composing each row in B. Let B be the B-C.

Example 5 . 2 . 20 .Example 5 . 2 . 21 .

 52205221 and this contradicts the order ideal property, being σ | σ. Example 5.2.18 shows a B-C failing the first test at the 3-blocks depending on the "degenerate" 4-bar: Taken the following B, we show that the second test fails:

Example 5 . 3 . 1 .

 531 Given the order ideal N

2 x3Figure 5 . 1 :

 251 Figure 5.1: A Bar Code picture.

Proposition 5 . 3 . 3 .

 533 With the above notation F N = F(I).

Remark/Definition 5 . 3 . 4 .

 534 It holds G(I) ⊆ F N ⊆ B(I). Since F N = F(I), we have F N ⊆ B(I) because of the definition of F(I) and in general this inclusion may be strict. Analogously G(I) ⊆ F N . If F N = G(I), we say that B N is a full Bar Code. Example 5.3.5. a) Consider the order ideal

Example 5 . 4 . 5 .

 545 Consider the infinite Bar Code B

Example 5 . 4 . 6 . 1 x 2 x 3 → 2 3 → 8 .

 546123238 The Bar Code x is not admissible, failing simultaneously both the tests. Example 5.4.7. The Bar Code 1 is not admissible, since it fails the first test for the 3-block formed by the 3 block associated to the A Consider the Bar Code displayed below.

1 2 3 →

 13 It passes the first test, but it fails the second one: the comparison failing is the one between the 2-blocks over A

Example 5 . 4 . 10 .

 5410 Let us consider the ideal J

00

  The point P 3 = (1, 1, 2) shares the first coordinate with P 1 , so for T(X 3 ) we get{1,The point P 4 = (1, 0, 3) shares the first two coordinates with P 1 . The final trie T(X) = T(X 4 ) is {1, 2, 3, 4} {1,

1 .

 1 Set a list D = [∅, ..., ∅ m times.

3] 6 . 1 . 8 .

 618 If we set D[3] = 4, we imagine D = [∅, ∅, 4, ∅, ..., ∅ m-3 times. Take the s-bar lying under τ l , say A (s) h . The term τ i has to lie over A There are two different possibilities: a. this A (s) h+1 has not been constructed yet; b. this A (s) h+1 has already been constructed. 7. If a. occurs, set τ i = x s τ j , where τ j := M in(R(s, τ l )) and update the B-C adding A If b. occurs, move to A (s) h+1 . Then (a) let Y = {P α1 , ..., P α h } be the set of points corresponding to the terms lying over A (s) h+1 ; (b) set D[α j ] = 1, j = 1, ..., h;

  We restrict to the second x 4 -bar, setting D[2] = 1. This means restricting to the trie

1and s = 1 ,

 1 We restrict to P 3 , P 6 , so D[3] = 1: l = 3 then τ 6 = x 1 x 2 .

x 4 Remark 5 . 6 . 4 .

 4564 If min(τ i ) = x j , the algorithm adds a new j-bar to the diagram and, by the properties of P x_ (_), also an l-bar lying over it, for each l = 1, ..., j -1. The (j + 1), ..., n-bars lying under the added ones are simply lengthened by 1 each time, while all the other bars remain unchanged.

  = τ ∈ N . If x j > min(τ ) we have two possibilities: a. x j τ ∈ F N : in this case xj τ min(τ ) ∈ N and xj τ min(τ ) = τ , so x j τ ∈ F N b. x j τ / ∈ F N : in this case xj τ min(τ ) = τ / ∈ N and then x j τ / ∈ F N . All the terms in F N \ {τ } also belong to F N whereas, for each σ ∈ (B(I) \ {τ }) \ F N , if σ min(σ) = τ then we are in case b. above; otherwise σ / ∈ F N .

  have N = {1}.

j 2 .

 2 and isolate the block B composed by the 1, 2, ..., (l -1)-bars lying over A For l = n + 1 we have B = B and τ i = τ i .3. Perform the diagonal reading DiagReading(B , τ i ), obtaining a polynomial

1

 1 are the polynomials in X n-1 corresponding to the bars A

  to I or, equivalently, for every σ ∈ N(I), and pair of variables x i , x j such that x i |σ and x i > x j , then also σxj xi belongs to N(I).

  [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF] }. The condition of Lemma 5.9.3 holds with i = 1, 2. Indeed we can only isolate the subcondition holds and the same is valid for the x 2 -bars, with respect to the whole diagram:

1 )

 1 > ... > l i (A (i+1) µ(i+1) ), as shown in the examples below.

2 , x 3 )

 23 , whose bar lists are (3, 1, 1), (3, 2, 1), since their Bar Codes are, respectively,

Definition 5 . 9 . 19 .

 5919 A plane partition α of a positive integer p ∈ N, is a partition of p in which the parts have been arranged in a 2-dimensional array.Such an array is weakly decreasing across rows and down columns. Different configurations are regarded as different plane partitions.

2 a 1 , 3 .

 13 

Example 5 . 9 . 26 .

 5926 Let p = 4; we want to count the number of matrices of type A B C 0 with A + B + C = 4.It turns out that there exists only one matrix of this kind, namely

•4 2 in 3 3 2

 33 parts with minimal sum smaller or equal than 10, namely6 = 3 + 2 + 1, Sm([3, 2, 1]) = 10. For k = 2 we have min(α) = 3 = 2•and max(α) = 5 since there are no partitions of 6 into two distinct parts with minimal sum smaller or equal than 10, whereas there is one for 5, i.e. 5 = 3 + 2, Sm([3, 2]) = 9.We repeat for k = 3 finding min(α) = 6 = max(α). The bar-lists are then:1. (10, 1, 1);

Example 6 . 2 . 4 .

 624 To define r 3 = zy 2 -x 2 y ∈ k[x, y, z], Ht(r 3 ) = zy 2 we type: jmp r3; r3.h= z * y 2 ; r3.t=-x 2 * y;

1 = 0, S EK 2 = -x2yz, S EK 3 =

 123 x2y4, while the V polynomials are:

4 1 .

 1 and homogenize them, obtaining the Singular code: ring r=(0, a),(x(0..5)),rp; jmp f1; f1.h=x(5) 2 ; f1.t=4 * x(1) 2 + (17/3) * x(1) * x(2) -(83/12) * x(1) * x(3) -(23/4) * x(2) * x(3); jmp f2; f2.h=x(4) * x(5); f2.t=-(3/4) * x(2) * x(3) -(5/4) * x(1) * x(3) + x(1) * x(2); jmp f3; f3.h=x(4) 2 ; f3.t=-a * x(0) * x(4) + a * x(0) * x(2) + (25/6) * x(2) * x(3) + x(2) 2 + (71/18) * x(1) * x(3) -(28/9) * x(1) * x(2) -5 * x(1) 2 ; jmp f4; f4.h=x(3) * x(5); f4.t=-(3/4) * x(2) * x(3) + (3/4) * x(1) * x(3) -x(1) * x(2); jmp f5; f5.h=x(3) * x(4); f5.t=-x(2) * x(3); jmp f6; f6.h=x(3) 2 ; f6.t=-(85/24) * x(2) * x(3) -(317/72) * x(1) * x(3) + (71/18) * x(1) * x(2) + 2 * x(1) 2 ; jmp f7; f7.h=x(2) * x(5); f7.t=-(3/4) * x(2) * x(3) -(5/4) * x(1) * x(3) + x(1) * x(2); jmp f8; f8.h=x(2) * x(4); f8.t=-x(2) * x(3) -x(1) * x(3) + x(1) * x(2); jmp f9; f9.h=x(1) * x(5); f9.t=-(1/4) * x(2) * x(3) + (1/4) * x(1) * x(3) -x(1) * x(2); jmp f10; f10.h=x(1) * x(4); f10.t=-x(1) * x(2); jmp f11; f11.h=x(2) 2 * x(3); f11.t=x(1) 3 ; jmp f12; f12.h=x(2) 3 ; f12.t=-a * x(0) * x(2) * x(3) -a * x(0) * x(3) * x(1) + a * x(0) * x(2) 2 + a * x(0) * x(2) * x(1) + (5/9) * x(1) 3 ; jmp f13; f13.h=x(2) * x(1) * x(3); f13.t=-(11/9) * x(1) 3 ; jmp f14; f14.h=x(1) * x(2) 2 ; f14.t=-(8/9) * x(1) 3 ; jmp f15; f15.h=x(1) 2 * x(3); f15.t=x(1) 3 ; jmp f16; f16.h=x(1) 2 * x(2); f16.t=(2/3) * x(1) 3 ; jmp f17; f17.h=x(1) 4 ;

Example 6 . 2 . 19 ., x 2 2 , x 1 x 2 , x 3 )

 6219223 Let us first take the simple example given by the strongly stable ideal J = (x8 1 of k[x 0 , ..., x 3 ]. The corresponding Singular code is ring r=0,(x(0..3)),rp; ideal Borid=x(3), x(1) * x(2), x(2) 2 , x(1)8 ; JMarkedScheme(Borid,r); [1] : (-c(1) * c(7) + c(1) * c(4) * c(6) -c(1) * c(4) 2 * c(5)) [2] : (c(1) * c(9) + c(1) * c(5) 2 ) [3] : (c(1) * c(10) + c(1) * c(4) * c(9) -c(1) * c(5) * c(8) + 2 * c(1) * c(5) * c(6) -c(1) * c(4) * c(5) 2 ) [4] : (c(1) * c(11) + c(1) * c(4) * c(10) -c(1) * c(6) * c(8) + c(1) * c(5) * c(7) + c(1) * c(6) 2 -c(1) * c(4) * c(5) * c(6)) [5] : (c(1) * c(4) * c(11) -c(1) * c(7) * c(8) + c(1) * c(6) * c(7) -c(1) * c(4) * c(5) * c(7)) [6] : (c(7) -c(4) * c(6) + c(4) 2 * c(5)) (10) -c(4) * c(9) + c(5) * c(8) -2 * c(5) * c(6) + c(4) * c(5) 2 ) [9] : (-c(11) -c(4) * c(10) + c(6) * c(8) -c(5) * c(7) -c(6) 2 + c(4) * c(5) * c(6)) [10] : (-c(4) * c(11) + c(7) * c(8) -c(6) * c(7) + c(4) * c(5) * c(7)) [11] : (-c(1) * c(20) + c(1) * c(4) * c(19) -c(1) * c(4) 2 * c(18) + c(1) * c(4) 3 * c(17) -c(1) * c(4) 4 * c(16) + c(1) * c(4) 5 * c(15) -c(1) * c(4) 6 * c(14) + c(1) * c(4) 7 * c(13) + c(1) * c(8) * c(12)c(1) * c(6) * c(12) + 2 * c(1) * c(4) * c(5) * c(12) -c(1) * c(4) 8 ) [12] : (c(1) * c(7) -c(1) * c(4) * c(6) + c(1) * c(4) 2 * c(5)) [13] : (c(1) * c(7) * c(13) -c(1) * c(4) * c(6) * c(13) + c(1) * c(4) 2 * c(5) * c(13) -c(1) * c(4) * c(7) + c(1) * c(4) 2 * c(6) -c(1) * c(4) 3 * c(5)) [14] : (c(1) * c(7) * c(14) -c(1) * c(4) * c(6) * c(14) + c(1) * c(4) 2 * c(5) * c(14) -c(1) * c(4) * c(7) * c(13) + c(1) * c(4) 2 * c(6) * c(13) -c(1) * c(4) 3 * c(5) * c(13) + c(1) * c(4) 2 * c(7) -c(1) * c(4) 3 * c(6) + c(1) * c(4) 4 * c(5)) [15] : (c(1) * c(7) * c(15) -c(1) * c(4) * c(6) * c(15) + c(1) * c(4) 2 * c(5) * c(15) -c(1) * c(4) * c(7) * c(14)+c(1) * c(4) 2 * c(6) * c(14)-c(1) * c(4) 3 * c(5) * c(14)+c(1) * c(4) 2 * c(7) * c(13)-c(1) * c(4) 3 * c(6) * c(13) + c(1) * c(4) 4 * c(5) * c(13) -c(1) * c(4) 3 * c(7) + c(1) * c(4) 4 * c(6) -c(1) * c(4) 5 * c(5)) [16] : (c(1) * c(7) * c(16) -c(1) * c(4) * c(6) * c(16) + c(1) * c(4) 2 * c(5) * c(16) -c(1) * c(4) * c(7) * c(15) + c(1) * c(4) 2 * c(6) * c(15) -c(1) * c(4) 3 * c(5) * c(15) + c(1) * c(4) 2 * c(7) * c(14) -c(1) * c(4) 3 * c(6) * c(14) + c(1) * c(4) 4 * c(5) * c(14) -c(1) * c(4) 3 * c(7) * c(13) + c(1) * c(4) 4 * c(6) * c(13) -c(1) * c(4) 5 * c(5) * c(13) + c(1) * c(4) 4 * c(7) -c(1) * c(4) 5 * c(6) + c(1) * c(4) 6 * c(5)) [17] : (c(1) * c(7) * c(17) -c(1) * c(4) * c(6) * c(17) + c(1) * c(4) 2 * c(5) * c(17) -c(1) * c(4) * c(7) * c(16)+c(1) * c(4) 2 * c(6) * c(16)-c(1) * c(4) 3 * c(5) * c(16)+c(1) * c(4) 2 * c(7) * c(15)-c(1) * c(4) 3 * c(6) * c(15)+c(1) * c(4) 4 * c(5) * c(15)-c(1) * c(4) 3 * c(7) * c(14)+c(1) * c(4) 4 * c(6) * c(14)-c(1) * c(4) 5 * c(5) * c(14)+c(1) * c(4) 4 * c(7) * c(13)-c(1) * c(4) 5 * c(6) * c(13)+c(1) * c(4) 6 * c(5) * c(13)+ c(1) * c(9) * c(12) + c(1) * c(5) 2 * c(12) -c(1) * c(4) 5 * c(7) + c(1) * c(4) 6 * c(6) -c(1) * c(4) 7 * c(5)) [18] : (-c(1) * c(5) * c(20) + c(1) * c(4) * c(5) * c(19) + c(1) * c(7) * c(18) -c(1) * c(4) * c(6) * c(18) -c(1) * c(4) * c(7) * c(17) + c(1) * c(4) 2 * c(6) * c(17) + c(1) * c(4) 2 * c(7) * c(16) -c(1) * c(4) 3 * c(6) * c(16) -c(1) * c(4) 3 * c(7) * c(15) + c(1) * c(4) 4 * c(6) * c(15) + c(1) * c(4) 4 * c(7) * c(14) -c(1) * c(4) 5 * c(6) * c(14) -c(1) * c(4) 5 * c(7) * c(13) + c(1) * c(4) 6 * c(6) * c(13) + c(1) * c(10) * c(12) + c(1) * c(5) * c(6) * c(12) + c(1) * c(4) 6 * c(7) -c(1) * c(4) 7 * c(6)) [19] : (-c(1) * c(6) * c(20) + c(1) * c(4) * c(5) * c(20) + c(1) * c(7) * c(19) -c(1) * c(4) * c(7) * c(18) + c(1) * c(4) 2 * c(7) * c(17)-c(1) * c(4) 3 * c(7) * c(16)+c(1) * c(4) 4 * c(7) * c(15)-c(1) * c(4) 5 * c(7) * c(14)+c(1) * c(4) 6 * c(7) * c(13)+c(1) * c(11) * c(12)+c(1) * c(5) * c(7) * c(12)-c(1) * c(4) 7 * c(7)) [20] : (c(20) -c(4) * c(19) + c(4) 2 * c(18) -c(4) 3 * c(17) + c(4) 4 * c(16) -c(4) 5 * c(15) + c(4) 6 * c(14) -c(4) 7 * c(13) -c(8) * c(12) + c(6) * c(12) -2 * c(4) * c(5) * c(12) + c(4) 8 ) [21] : (-c(7) + c(4) * c(6) -c(4) 2 * c(5)) [22] : (-c(7) * c(13)+c(4) * c(6) * c(13)-c(4) 2 * c(5) * c(13)+c(4) * c(7)-c(4) 2 * c(6)+c(4) 3 * c(5)) [23] : (-c(7) * c(14) + c(4) * c(6) * c(14) -c(4) 2 * c(5) * c(14) + c(4) * c(7) * c(13) -c(4) 2 * c(6) * c(13) + c(4) 3 * c(5) * c(13) -c(4) 2 * c(7) + c(4) 3 * c(6) -c(4) 4 * c(5)) [24] : (-c(7) * c(15) + c(4) * c(6) * c(15) -c(4) 2 * c(5) * c(15) + c(4) * c(7) * c(14) -c(4) 2 * c(6) * c(14) + c(4) 3 * c(5) * c(14) -c(4) 2 * c(7) * c(13) + c(4) 3 * c(6) * c(13) -c(4) 4 * c(5) * c(13) + c(4) 3 * c(7) -c(4) 4 * c(6) + c(4) 5 * c(5)) [25] : (-c(7) * c(16) + c(4) * c(6) * c(16) -c(4) 2 * c(5) * c(16) + c(4) * c(7) * c(15) -c(4) 2 * c(6) * c(15) + c(4) 3 * c(5) * c(15) -c(4) 2 * c(7) * c(14) + c(4) 3 * c(6) * c(14) -c(4) 4 * c(5) * c(14) + c(4) 3 * c(7) * c(13) -c(4) 4 * c(6) * c(13) + c(4) 5 * c(5) * c(13) -c(4) 4 * c(7) + c(4) 5 * c(6) -c(4) 6 * c(5)) [26] : (-c(7) * c(17) + c(4) * c(6) * c(17) -c(4) 2 * c(5) * c(17) + c(4) * c(7) * c(16) -c(4) 2 * c(6) * c(16) + c(4) 3 * c(5) * c(16) -c(4) 2 * c(7) * c(15) + c(4) 3 * c(6) * c(15) -c(4) 4 * c(5) * c(15) + c(4) 3 * c(7) * c(14) -c(4) 4 * c(6) * c(14) + c(4) 5 * c(5) * c(14) -c(4) 4 * c(7) * c(13) + c(4) 5 * c(6) * c(13) -c(4) 6 * c(5) * c(13) -c(9) * c(12) -c(5) 2 * c(12) + c(4) 5 * c(7) -c(4) 6 * c(6) + c(4) 7 * c(5)) [27] : (c(5) * c(20) -c(4) * c(5) * c(19) -c(7) * c(18) + c(4) * c(6) * c(18) + c(4) * c(7) * c(17) -c(4) 2 * c(6) * c(17) -c(4) 2 * c(7) * c(16) + c(4) 3 * c(6) * c(16) + c(4) 3 * c(7) * c(15) -c(4) 4 * c(6) * c(15) -c(4) 4 * c(7) * c(14) + c(4) 5 * c(6) * c(14) + c(4) 5 * c(7) * c(13) -c(4) 6 * c(6) * c(13) -c(10) * c(12) -c(5) * c(6) * c(12) -c(4) 6 * c(7) + c(4) 7 * c(6)) [28]: (c(6) * c(20) -c(4) * c(5) * c(20) -c(7) * c(19) + c(4) * c(7) * c(18) -c(4) 2 * c(7) * c(17) + c(4) 3 * c(7) * c(16) -c(4) 4 * c(7) * c(15) + c(4) 5 * c(7) * c(14) -c(4) 6 * c(7) * c(13) -c(11) * c(12) -c(5) * c(7) * c(12) + c(4) 7 * c(7))

Example 6 . 3 . 12 .

 6312 Consider the ideal J = (xy) k[x, y].

  Pick) Select an element x l from the list of candidates found in Candidates) and delete it from the list.Step b') Divisors and multiplicative variables. Since this step is analogous to Step b), we only sketch it, referring to Step b). 1. Order the terms over each bar w.r.t. their degree on the new candidate. If, for some τ j1 , τ j2 ∈ M , deg i (τ j1 ) = deg i (τ j2 ) and τ j1 | τ j2 , then write τ j1 on the left of τ j2 . Draw the associated bars. 2. Repeat the same test as in Step b) 2 for all the couples of consecutive bars lying over the same one w.r.t. the variable treated in the previous step. Keep track of the terms or report failure and break as in Step b) 2. Test 2) If Step b') reports a failure, delete the upmost line of the Bar Code and go back to Test 3). Otherwise continue with next step.

  but this is impossible by definition of multiplicative variable, since also τ is in M . Now let us assume that x j ≤ min(τ ) and σ = 1. If x j |σ , then τ = σ xj τ ∈ M ∩ off M (τ ), which is not possible by Remark 6.3.4. If, on the contrary, x j |σ we get a contradiction with the previous assertion, since in this case τ ≤ Lex τ σ max(σ ) < Lex τ σ xj = τ . Theorem 6.3.20. Let M be a set of terms (possibly infinite). If τ, τ ∈ M and τ = τ , then off M (τ ) ∩ off M (τ ) = ∅.

G- →

 → with respect to a G(J)-marked set G introduced in definition 6.5.3 coincides with the one used in those papers.

  Mf M : Z-Alg → Set that associates to any Z-algebra A the set Mf M (A) := Mf (M A[x 1 , . . . , x n ]) and to any morphism φ : A → B the map Mf J (φ) : Mf M (A) -→ Mf M (B) I -→ I ⊗ A B.

  is possible) for every 1 ≤ i ≤ n, and p ∈ N, which can be described as σ (p) i := # {τ ∈ N(I), deg(τ ) = p, min(τ ) = i} and, fixing a value p and denoting σ i := σ (p) i , and σ i := σ

  if, with the present notation, it satisfes the formula

Proposition 6 . 7 . 3 .

 673 With the previous notation, if J is a quasi stable monomial ideal, then

(

  pde's) around the turn of the century in the pioneering work of the French mathematicians Riquier and Janet. [...] their theory [...] is basically a criticalpair/completion procedure. All basic concepts like term-ordering, reductions and formation of critical pairs are already there.

  Being rather complicated to get the errors from the syndromes, Cooper has the idea to turn the problem into a problem on polynomials. More precisely, Cooper takes a (finite) set of polynomials F C , such that the error locations are in V (F C ) and he computes the lexicographical reduced Groebner basis of I = (F C ). The required error locator polynomial can be directly computed via the elimination property of lexicographical Groebner bases. Chen et al. developed Cooper's theory, following two directions. More precisely:

Figure 7 . 1 :

 71 Figure 7.1: The communication channel by C.E. Shannon.

Definition 7 . 3 . 4 .

 734 A parity-check matrix for an [n, k] q code C is a generator ((n-k)×n)-matrix H for C ⊥ .

  a. y = c ∈ C: the receiver deduces (correctly) that no errors have occurred during the transmission and recovers the message as x.b. y / ∈ C: the receiver is able to deduce that some error has occurred. It detects and corrects the errors by supposing that the correct word is the one in C differing from y in the minimal number of positions.c. y / ∈ C: again the receiver is able to deduce that some error has occurred, but if it tries a correction as in b. it gets another codeword, different from c and so it gets a wrong message.d. y ∈ C, but y = c: in this case, the receiver believes no errors have occurred and it is completely wrong.

Definition 7 . 3 . 8 .Definition 7 . 3 . 9 .

 738739 The Hamming weight of v ∈ (F q ) n is the number of its nonzero coordinates, i.e. w(u) := d H (u, 0). The distance of a code C is the minimal distance between two distinct words d H (C) :

Theorem 7 . 3 .

 73 10 ([77]). If C is an [n, k, d] q code it has• error detection capability l = d -1;

  I) the defined variety, G the reduced Groebner basis of I, w.r.t. the lexicographical ordering, induced by z 1 < ... < z t and g ∈ F 2 m [z 1 ] the unique polynomial such that G ∩ F 2 m [z 1 ] = {g}. We state here Cooper's theorem Theorem 7.5.1 ([29]). If E = {ξ 1 , ..., ξ µ } is the set of error locations and Z = {ξ|(ξ, b 2 , ..., b t ) ∈ V (I)} contains the components of all solutions of F C , then

  l} and the polynomials are ordered such that their leading terms are ordered w.r.t. lex, then Theorem 7.5.6. It holds 1

Theorem 7 . 5 . 9 .+ x k 1 ; 2 .x h 2 ; 3 .Theorem 7 . 5 . 10 .Theorem 7 . 5 . 11 .

 759122375107511 Let C a binary [n, k, d] code, with n ≤ 61 and d = 3, 4, t = 1. If S is a defining set for C and L C ∈ F q [x 1 , .., x n-k ][z] a general error locator polynomial, four possibilities can occur: 1. if S = {m} with GCD(n, m) = 1, there exists an integer k mod n such that L C = z if S = {m, h} with GCD(h, m) = 1, there exist two integers m , h mod n such that L C = z + x m 1 C is a sub-code of C , of type 1 or 2 and L C = L C ; 4. C is equivalent to a code C of type 1, 2 or 3 and we can trivially obtain L C from L C Let C be a code with length n ∈ {3, ..., 125}, n = 105 and distance d = 5, 6. Then C is equivalent to another code D with 1 ∈ S D . Let C be a binary [n, k, d] code with n ∈ {7, ..., 62}, n odd, d = 5, 6 and t = 2.

  . S C = {1, n/l} for some l ≤ 3; 5. C is one of the following: n = 31, S C = {1, 15}; n = 31, S C = {1, 5}; n = 45, S C = {1, 21}; n = 51, S C = {1, 9}; n = 51, S C = {0, 1, 5}; 6. C is a sub-code of one of those presented above; 7. C is equivalent to one of those presented above.

  Let us consider a binary BCH code C of length n = 2 m -1 for some m ≥ 3, with error correction capability t = 2 and defining set S C = {1, 3}. The complete defining set is S C = C 1 ∪ C 3 and we denote by δ the designed distance. We set d = δ and we have k = n -|S C |. [77].

P 1 :

 1 = (a + b, a 3 + b 3 , a, b), P 2 := (a + b, a 3 + b 3 , b, a), clearly P 1 , P 2 share the same first two coordinates so, by Cerlienco-Mureddu Correspondence we can partition X as

2 2a 3 + b 3 = c 3 + d 3 then

 2333 Moreover, by the partition formulas of[START_REF] Muratović-Ribić | Partitions and compositions over finite fields[END_REF], the couples (a, b) such that a+ b = c ∈ F * 2 m are exactly 2 m -if we impose a, b = 0. Since also c + 0 = 0, we add the couple (c, 0), obtaining that there are 2 m-1 distinct points for each first coordinate.The assertion is proved by Cerlienco-Mureddu Correspondence if we can show that, among the points having the first coordinate, it is impossible that two points share also the second coordinate.What I meant so far, is that if for some a, b, c, d ∈ F * 2 m we havea + b = c + d = 0 {a, b} = {c, d }.Indeed, by a 3 + b 3 = c 3 + d 3 we have(a + b)(a 2 + b 2 + ab) = (c + d )(c 2 + d 2 + cd ) ⇒ (a + b) 2 + ab = (c + d ) 2 + cd ⇒ ab = cd .The elements a, b, c, d are then the roots in F 2 m of x 2 + (a + b)x + ab. Being them only two [65] and since a, b are obviously roots of the trinomial, we necessarily have {a, b} = {c, d } and we can conclude.

8 | - 1 .

 81 Notice that the capital letters appearing in the table (i.e. the different non-stable values for the coefficients) are 6, i.e. |F * We can get general formulas for the values A, B, C, D, E, F ∈ F 8 .

5 a 14 a 10 0 a 11 0 0 a 10 a 13 a 11

 51411 10 a 10 a 14 0 a 11 a 10 a 10 a

a 6 a 5 a 4 a 3 a 2 4 a 2 a 1 a 6 a 5 a 4 a 3 4 a 3 a 2 a 1 a 6 a 5 a 4 4 a 5 a 4 a 3 a 2 a 1 a 6 5 a 4 a 3 a 2 a 1 a 6 a 5 5 a 6 a 5 a 4 a 3 a 2 a 1 5 1 a 6 a 5 a 4 a 3 a 2 a 8 . 1 :

 34651281 Table Type A configurations in F 8 .

A = M 6 ( 8 . 5 )B = M 3 C

 6853 find formulas for A, B, C. We take as M the value of the third coordinate appearing once, getting = M 5 so, in analogy with the intermediate configurations, we have the couple of cycles (β, γ).

∀b ∈ F 8

 8 , σ(b) = c, and b, c belong to the same cycle. Moreover, since in a field of characteristic p, (a + b) p = a p + b p and in our case p = 2, we can deduce that Frobenius homomorphism preserves syndromes and then it preserves the points' structure.

If b ∈ F * 8

 8 is the preferential representative for a cycle in F 8 , only one couple (b, c) with c in the same cycle of b has been chosen. Let us consider for example the quest for couples of the form (a, b), b ∈ F 8 .

For

  the couples of form (a, b), b = a, b in the cycle α, we have made one and only one choice. By table 8.1, there are four couples of form (a, b), b ∈ F 8 and we have examined three of them, namely 0, 1 and a 2 . We have to examine the last occurrence of a as third coordinate i.e. the last couple.

a 6 a 5 a 4 a 3 a 2 4 a 2 a 1 a 6 a 5 a 4 a 3 4 a 3 a 2 a 1 a 6 a 5 a 4 4 a 5 a 4 a 3 a 2 a 1 a 6 5 a 4 a 3 a 2 a 1 a 6 a 5 5 a 6 a 5 a 4 a 3 a 2 a 1 5 1 a 6 a 5 a 4 a 3 a 2 aa 1 a 6 a 5 a 4 a 3 a 2 4 a 2 a 1 a 6 a 5 a 4 a 3 4 a 3 a 2 a 1 a 6 a 5 a 4 4 a 5 a 4 a 3 a 2 a 1 a 6 5 a 4 a 3 a 2 a 1 a 6 a 5 5 a 6 a 5 a 4 a 3 a 2 a 1 5 1 a 6 a 5 a 4 a 3 a 2 aa 6 a 5 a 4 a 3 a 2 4 a 4 a 3 a 2 a 1 a 6 a 5 4 a 6 a 5 a 4 a 3 a 2 a 1 4 1 a 6 a 5 a 4 a 3 a 2 a 5 a 2 a 1 a 6 a 5 a 4 a 3 5 a 3 a 2 a 1 a 6 a 5 a 4 5 a 5 a 4 a 3 a 2 1 1 a 6

 346512346512251346 Frobenius configurations. The boldface columns of type B,C,D are optimal Frobenius configurations while the other ones in the tables are semi-Frobenius configurations. the Type Type All the data for type B,C,D are in the appendix (see B.3.3,B.3.4,B.3.5).

  (a, b) and (b, a) while pairing off elements of the same cycle, by admitting two distinct kinds of application of the Frobenius mapping for F 16 : short and long applications. A long application is the analogous of what done in F 8 , i.e., given a couple (b, c) we compute (σ(b), σ(c)), ..., (σ 4 (b), σ 4 (c)). A short application admits only the couples (b, c) and (σ(b), σ(c)) ((σ 2 (b), σ 2 (c)) = (c, b)): it

F M 6 4 3 2 1 7 6 5 Table B. 1 :

 51 Configurations in F 8 .

1 :

 1 (α, β), (β, α); 2: (α, β), (β, β); 3: (α, γ), (β, α); 4: (α, α), (β, α); 5: (α, α), (β, γ); 6: (α, β), (β, β); 7: (α, α), (β, β).

2 x 1 x 1 x 2 x 1 x 2 2 x 1 x 3 2 x 1 x 4 2 x 1 x 5 2

 22225 

2 : 3 : 4 :

 234 (α , β ), (β , α ), (γ , ), (δ , δ ); (α , β ), (β , γ ), (γ , γ ), (δ , δ ); (α , α ), (β , δ ), (γ , γ ), (δ , γ ); 5: (α , δ ), (β , α ), (γ , ), (δ , α ); 6: (α , β ), (β , α ), (γ , γ ), (δ , α );

  ax

B = M 3 C = M 5 B. 3 . 3

 3533 We take as M the value of the third coordinate appearing once, gettingA = M 6 (B.90) Type B.

.A = M 3 (B. 91 )B = M 5 C = M 6 so

 39156 As done for type A, we can choose as a value M the value occurring once as a third coordinate and we get , we have again the couple of cycles (β, γ).

.B = M 3 C = M 5 so

 35 Taking as M the value for the third coordinate appearing once in the configuration, we getA = M 6(B.92) we have again the couple (β, γ) of F 8 cycles.

a 6 a 5 a 4 a 3 a 2 B = M 1 C = M 2 so

 212 Taking as M the value appearing once in each type D configurationwe get the formulasA = M 4(B.93) we have the couple (α, γ) of F 8 cycles.

  See 2.2.8

	Remark 2.2.13. Come now back to examples 1.4.1, 1.4.2. We can see that the towers are not
	non-increasingly ordered, but that, if we do it, we obtain the Groebner escalier.
	If we look at example 1.4.3, we see that it is exactly the output of Cerlienco-Mureddu
	algorithm on

  7} since the first coordinate values are 1 and 2 we will need to work

	1, 2, 4), (1, 2, 5), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, corresponding to the
	set of indexes (of the associated points)
	P (1) = {1, 2, 3, 4, 5, 6,

with H (1) = {(1, 2, 3),

[START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF][START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] 4)

, (1, 2, 5)}

P (1) = {1, 2, 3} H (2) = {(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)} P (2) = {4, 5, 6, 7} and F(H(1)) = F(H (1)) + F(H (2)).

  2 , z, xz, t, xt, yt, xyt, zt, t 2 }, corresponding to the following reorder-

	ing of our point set: {1, 8, 4, 11, 12, 6, 9, 2, 10, 5, 13, 7, 3}, the order of the lex trie's leaves, read
	from left to right.

The complexity of the Lex Game algorithm by Felszeghy-B. Ráth-Rónyai has been stud-ied both by Lundqvist and by the authors themselves.

Theorem 3.3.15. With

  a polynomial of degree less than d(i + 1) reducing to 0 w.r.t. the Groebner basis, so G i+1 f i+1 ∈ (f 0 , ..., f i ). the same notation, if moreover R is a domain, denoting by p := p 0 the primitive part of f 0 and G s+1

  1,1 factors.

	Example 3.4.2. Let X = {(1, 0), (2, 3), (4, 6), (0, 7), (5, 2), (4, 1), (2, 6), (2, 7), (0, 6)} ⊂ R 2 .
	We draw the unmixed tower structure we can get from X in order to have an overall view
	of the set.				
	2,7				
	2,6	4,1	0,6		
	2,3	4,6	0,7	1,0	5,2

  j], H j )

	29:	end for
	30:	end if
	31:	end for
	32:	

for h = 1 to |G S | do 33:

  Let {(a i,1 , ..., a i,l , * , ..., * )} be the points in biunivocal correspondence to the terms of a certain x l -range.

		Remark 4.4.4.
	13:	break;
	14:	end if
	15:	end for
	16:	end for
	17: end procedure

  For P 5 = (1, 2, 1, 2), we have N = {1, x, y, xy, y 2 , z, xz, t, xt} and G = {x 2 , xy 2 , y 3 , yz, z 2 , yt, zt, t 2 }.

				{9,10,8,12,13,11,4,5,6,7,1,2,3}
					1		3
			{9,10,8,12,13,11}	{4,5,6,7,1,2,3}
			2	1	1			4	3
	{9,10,8}	{12,13} {11}	{4,5,6,7}	{1,2,3}
	1 2		2		2	1 1	1
	{9,10}	{8} {12,13} {11}	{4,5} {6,7} {1,2,3}
	1 2		1	2 3		4	5 2	3 2	1 2 1
	{9}	{10}{8}{12}{13}	{11}	{4} {5} {6} {7} {1} {2} {3}
				{9,10,8,12,13,11,4,5,6,7,1,2,3}
					1		3
			{9,10,8,12,13,11}	{4,5,6,7,1,2,3}
			2	1	1			4	3
	{9,10,8}	{12,13} {11}	{4,5,6,7}	{1,2,3}
	1 2		2		2	1 1	1
	{9,10} {8} {12,13} {11}	{4,5} {6,7} {1,2,3}
	1 2		1	2 3		4	5 2	3 2	1 2 1
	{9}	{10}{8}{12}{13}	{11}	{4} {5} {6} {7} {1} {2} {3}
	2, 1] :						

Take now P 10 = (3, 1, 2, 3), obtaining N = {1, x, y, xy, y 2 , z, xz, t}. From now on we do not need to compute triangular polynomials anymore.

G = {x 2 , xy 2 , y 3 , yz, z 2 , xt, yt, zt, t 2 } Z = {z -1 6 y 2 -1 6 xy + 5 3 y -1 24 x 2 + 1 3 x -29 8 , z + 1 2 x -5 2 } = {z 1 , z 2 }

Since also the factors in z remain unchanged from now on, we stop listing them. T = {t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 , t -3} = {t 1 , t 2 }: we add a new factor t 2 (t 1 remains always unchanged) and we have L 10 = [1, 1, 1, 2]

  z 2 } Since t 2 vanishes in P 7 there are no changes to perform on the factors:For P 3 = (1,1, 2, 5) we have: N = {1, x, y, xy, y 2 , z, xz, t, xt, yt, xyt, zt, t 2 }, G = {x 2 , xy 2 , y 3 , yz, z 2 , y 2 t, xzt, xt 2 , yt 2 , zt 2 t 3 }.

	T = {t -1 6 y 2 -2 3 xy + 19 6 y -7 24 x 2 + 7 3 x -59 8 , t -5 6 xy + 17 6 y -5 12 x 2 + 3x -103 12 } = {t 1 , t 2 } and
	we obtain						
	L 7 = [2, 1, 2, 2].						
				{9,10,8,12,13,11,4,5,6,7,1,2,3}
					1		3
			{9,10,8,12,13,11}	{4,5,6,7,1,2,3}
			2	1	1			4	3
	{9,10,8}	{12,13} {11}	{4,5,6,7}	{1,2,3}
	1 2		2		2	1 1	1
	{9,10}	{8} {12,13} {11}	{4,5} {6,7} {1,2,3}
	1 2		1	2 3		4	5 2	3 2	1 2 1
	{9}	{10}{8}{12}{13}	{11}	{4} {5} {6} {7} {1} {2} {3}

  τ n P x1 (τ 1 ) ... P x1 (τ M )

	P x2 (τ 1 ) ... P x2 (τ M )
	. . .	. . .

P xn (τ 1 ) ... P xn (τ M )

  1 ... ...

				... ...	...	a 1,α1
	0	... a 2,2 ... ...	a 2,α2+1	0...
	. . .	. . .	. . .	. . .	. . .	. . .	. . .

  -1],[84, p.93, p.99] multiplicative variables according 6.3.6, introduced values σ

Definition 7.3.15. Given

  With the previous notation, we define correctable syndromes. If s is a syndrome corresponding to an error of weight w(s) ≤ t , then we say that s is a correctable syndrome.It holds deg(g) = n -k and g | x n -1. Using g =

	i=0 g i x i one can recover a generator Definition 7.3.16. Theorem 7.3.17 (Correctable syndromes, [77]). If C is an [n, k] n-k matrix for the code:

a coset v + C of an [n, k, d] q code C and a vector w ∈ v + C, w is a coset leader if it is an element of minimum weight in v + C. q code with error correction capability t and the occurred errors are in number smaller or equal then t, then there exists only one error e corresponding to the correctable syndrome s = He and e is the unique coset leader of e + C.

table Number

 Number it is made up of 18 terms.

	Configuration 2		
	This configuration corresponds to the cyclic permutation summarized in the table below:
		Number of points Third coordinate
		7	a 3
		6	a 4
		5	a 5
		4	a 6
		3	1
		2	a
		1	a 2
	whose associated configuration list is	
	[2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
	Configuration 7.2		
		Number of points Third coordinate
		7	a 2
		6	a 3
		of points Third coordinate 5 a 4
		7 4	i 1 a 5
		6 3	i 2 a 6
		5 2	i 3 1
		4 1	i 4 0
	3 and we obtain a general error locator polynomial made up of 25 terms (see appendix B, i 5
	B.1.1 for further details).	2	i 6
		1	i 7
	Then, for the same values of i 1 , ..., i 7 , which are pairwise different by construction, we
	choose another point configuration such that	

4 

They are exactly 7 since the powers of a are 7 and the cyclic permutations of a cycle of length h are h. and Again it leads to a polynomial made up of 18 terms (see appendix B). Remark 8.3.1. We remark that the cyclic permutations are fundamental for getting 18 terms. If we break the pattern even by one only point, we get a remarkably denser polynomial. For example, if we modify a little configuration 1, changing only the last point, we get

  2 , a 3 , a 4 , a5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 11 , a 12 , a 13 , a 14 , 1}, with minimal polynomial a 4 + a + 17 .By the structure of the Groebner escalier 8.2.2, we take again one point for each couple, conveniently chosen w.r.t. the third coordinate.The cyclic configurations of 8.3 can be easily generalized to the case of F 16 , and we have concretely produced them. They are 15, namely as many as the number of cyclic permutations of the elements in F * 16 . We show again some of them, referring to appendix B, B.2.1, for details.

Suppose to have again a binary [n, k, d] BCH code C of length n = 15, with error correction capability t = 2, designed distance δ = 5, distance d = δ = 5. We have k = 7 and we suppose again to correct 1 and 2 errors simultaneously.

At the beginning we have 16 2 = 256 points but, excluding as for F 8 the spurious ones, corresponding to couples of the form (z 1 , z 2 ) = (a, a), we get 240 points we arrange into a list P of 120 couples.

  1, 1 nomials, each one made up of 85 terms. Let us see another configuration.

	Configuration 2:	
	Number of points Third coordinate
	15	a 2
	14	a 3
	13	a 4
	12	a 5
	11	a 6
	10	a 7
	9	a 8
	8	a 9
	7	a 10
	6	a 11
	5	a 12

  2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1

	and to the locator polynomial
	z 1 + x 6 1 x 2 2 + x 3 1 x 2 2 + x 2 1 x 2 2 + x 6 1 x 2 + x 2 + x 5 1 + x 3 1

Table 8 .

 8 a 4 → a 8 → a 16 → a; 3: Generalization to F 16 .β ) a 3 → a 6 → a 12 → a 24 → a 17 → a 3 ; γ ) a 5 → a 10 → a 20 → a 9 → a 18 → a 5 ; δ ) a 7 → a 14 → a 28 → a 25 → a 19 → a 7 ; ) a 11 → a 22 → a 13 → a 26 → a 21 → a 11 ; ζ ) a 15 → a 30 → a 29 → a 27 → a 23 → a 15 ;

	a ?	Long Short No Total
	a	8	1	0	9
	a 2	8	1	0	9
	a 3	8	1	0	9
	a 4	8	0	0	8
	a 5	8	0	1	9
	a 6	8	1	0	9
	a 7	8	1	0	9
	a 8	8	0	0	8
	a 9	8	0	0	8
	a 10	8	0	0	8
	a 11	8	0	0	8
	a 12	8	0	0	8
	a 13	8	0	0	8
	a 14	8	1	0	9
	a 15 = 1	0	0	1	1

η ) a 31 = 1;

  Now, we are verifying the behaviour of generalized configurations to F 16 and F 32 . Chapter 8. Some experiments on locator polynomials. More precisely, again in analogy with F 8 , we are dealing with this table for F 32 : [(a 6 , a 3 , a 3 , a 4 )], (B.20) [(a 2 , a 4 , a 3 , a 5 )], (B.21) [(a 4 , a, a 3 , a 6 )], (B.22) [(a, a 6 , 1, a 3 )], (B.23) [(1, a 6 , a 4 , a 5 )], (B.24) [(a 3 , 1, a 4 , a 6 )],

	r2.h=z^2 * y; The points are:			
	r2.t=poly(0); jmp r3; r3.h=z * y^2; r3.t=-x^2 * y; jmp r4; r4.h=y^5; r4.t=poly(0);	a ? a a 2 a 3 a 4 a 5	Number of points [(a, a 3 , a, 0)], 19 [(a 2 , a 6 , a 2 , 0)], 19 [(a 3 , a 2 , a 3 , 0)], 18 19 [(a 4 , a 5 , a 4 , 0)], 17 [(a 5 , a, a 5 , 0)],	(B.2) (B.3) (B.4) (B.5) (B.6)
	a 6 a 7 a 8 StartOrderingV(VConst(G2F,4,basering)[1],G2F); list G2F=list(list(r1,r2,r3),list(r4)); [(a 6 , a 4 , a 6 , 0)], 18 16 19 [(1, 1, 1, 0)],	(B.7) (B.8)
		a 9	17 [(a 4 , a 4 , a, a 2 )],	(B.9)
		a 10	17 [(1, a 5 , a, a 3 )],	(B.10)
		a 11 a 12	15 18 [(a 2 , a 2 , a, a 4 )],	(B.11)
		a 13	15	
		a 14	16	
		a 15	14	
		a 16	19	
		a 17	18	
	jmp K;	a 18	17	
	K.h=L[1] * g.h;	a 19	16	
	K.t=L[1] * g.t;	a 20	17	
	return(K);	a 21	15	
	}	a 22	15	
	//example	a 23	14	
	{ "EXAMPLE:"; echo = 2;	a 24	18	
	ring r=0, (x,y,z), rp;	a 25	16	
	list P=x^2,1,1;	a 26	15	
	jmp r1;	a 27	14	
	r1.h=z^3;	a 28	16	
	r1.t=poly(0); jmp r2; r2.h=z^2 * y; r2.t=poly(0);	a 29 a 30 a 31 = 1 [(a 5 , a 4 , 1, a 4 )], 14 14 1 [(a, a 2 , a 5 , a 6 )],	(B.25) (B.26) (B.27)
	jmp r3; r3.h=z * y^2 ;		[(a 4 , a 3 , 1, a 5 )],	(B.28)
	r3.t=-x^2 * y;			
	jmp r4;			

}

//////////////////////////////////////////////////////////////////// proc Multiply(list L, list G) / * "USAGE: moltiplica(L,G); L list, G list RETURN: jmp: K NOTE: Input: a 3-ple,G. It performs the product associated to the 3-uple. EXAMPLE: example Multiply; shows an example" * / { jmp g=G[L[2]][L[3]];

[(a 6 , 1, a, a 5 )],

(B.12)

[(a 5 , a 6 , a, a 6 )], (B.13)

[(a 3 , a, 1, a)], (B.14) [(a 5 , 1, a 2 , a 3 )],

(B.15)

[(a, a, a 2 , a 4 )], (B.16) [(a 3 , a 5 , a 2 , a 5 )], (B.17) [(1, a 3 , a 2 , a 6 )], (B.18) [(a 6 , a 2 , a 2 , 1)], (B.19) [(a 2 , a 5 , 1, a 6 )]. (B.29)

  1,a6 ,a4 corresponding to the configuration list[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2]. + a 4 x 5 1 x 2 + ax 3 1 x 2 + a 2 x 1 x 2 + a 2 x 4 1 + ax 1 + a 4 (B.30)[(a 6 , a 3 , a 3 , a 4 )], (B.49) [(a 2 , a 4 , a 3 , a 5 )], (B.50) [(a 4 , a, a 3 , a 6 )], (B.51) [(a 6 , a 3 , a 3 , a 4 )], (B.78) [(a 2 , a 4 , a 3 , a 5 )], (B.79) [(a 4 , a, a 3 , a 6 )], (B.80) [(a, a 6 , a 3 , 1)], (B.81) [(1, a 6 , a 4 , a 5 )], (B.82) [(a 3 , 1, a 4 , a 6 )],

	The points are: we get		
		[(a, a 3 , 0, a)],		(B.60)
		[(a, a 3 , a, 0)], [(a 2 , a 6 , a 2 , 0)],		(B.31) (B.61)
		[(a 2 , a 6 , a 2 , 0)], [(a 3 , a 2 , a 3 , 0)],		(B.32) (B.62)
		[(a 3 , a 2 , a 3 , 0)], [(a 4 , a 5 , a 4 , 0)],		(B.33) (B.63)
		[(a 4 , a 5 , a 4 , 0)], [(a 5 , a, a 5 , 0)],		(B.34) (B.64)
		[(a 5 , a, a 5 , 0)], [(a 6 , a 4 , a 6 , 0)],		(B.35) (B.65)
		[(a 6 , a 4 , a 6 , 0)], [(1, 1, 1, 0)],		(B.36) (B.66)
		[(1, 1, 1, 0)], [(a 4 , a 4 , a 2 , a)],		(B.37) (B.67)
		[(a 4 , a 4 , a, a 2 )], [(1, a 5 , a 3 , a)],		(B.38) (B.68)
		[(1, a 5 , a, a 3 )], [(a 2 , a 2 , a 4 , a)],		(B.39) (B.69)
	The polynomial we get is	[(a 2 , a 2 , a, a 4 )],		(B.40)
	z 1 + a 4 x 5 1 x 3 2 + ax 4 1 x 3 2 + a 6 x 3 1 x 3 2 + a 2 x 2 1 x 3 2 + a 3 x 1 x 3 2 +
	a 5 x 3 2 + a 6 x 6 1 x 2 2 + a 2 x 5 1 x 2 2 + a 3 x 4 1 x 2 2 + a 5 x 3 1 x 2 2 +
	a 6 x 2 1 x 2 2 Configuration 7		
		Number of points Third coordinate [(a, a 6 , a 3 , 1)],	(B.52)
		7 [(1, a 6 , a 4 , a 5 )],	a	(B.53) (B.83)
		6 5 [(a 3 , 1, a 4 , a 6 )], [(a 5 , a 4 , a 4 , 1)], 4 [(a 5 , a 4 , a 4 , 1)], [(a, a 2 , a 5 , a 6 )], 3 [(a, a 2 , a 5 , a 6 )], [(a 4 , a 3 , a 5 , 1)],	a 2 a 3 a 4 a 5	(B.84) (B.54) (B.85) (B.55) (B.56) (B.86)
		2	a 6
		1	1	(B.58)
		415	

[(a 6 , 1, a, a 5 )],

(B.41)

[(a 5 , a 6 , a, a

6 

)], (B.42)

[(a 3 , a, a

, 1)], (B.43)

[(a 5 , 1, a 2 , a 3 )], (B.44) [(a, a, a 2 , a 4 )], (B.45) [(a 3 , a 5 , a 2 , a 5 )], (B.46) [(1, a 3 , a 2 , a 6 )], (B.47) [(a 6 , a 2 , a 2 , 1)], (B.48) [(a 4 , a 3 , a 5 , 1)], (B.57) [(a 2 , a 5 , a 6 , 1)]. [(a 6 , 1, a 5 , a)], (B.70) [(a 5 , a 6 , a 6 , a)], (B.71) [(a 3 , a, 1, a)], (B.72) [(a 5 , 1, a 2 , a 3 )], (B.73) [(a, a, a 2 , a 4 )], (B.74) [(a 3 , a 5 , a 2 , a 5 )], (B.75) [(1, a 3 , a 2 , a 6 )], (B.76) [(a 6 , a 2 , a 2 , 1)], (B.77) [(a 2 , a 5 , a 6 , 1)]. (B.87) The tower structure is As explained in chapter 8, choosing differently the value M , we have different sets of formulas, summarized in the table below.

  The numbers 1, ..., 15 of the first row represent the number of occurrences of the value we take as Q (B.2.2). Table B.2: Configurations in F 16 .

	A-P	Q ?	1	2	3	4	5	6	7	8	9 10 11 12 13 14 15
	A	Q 14 12 13 14 15 1	2	3	4	5	6	7	8	9 10 11
	B	Q 2	7	5	3	1 14 12 10 8	6	4	2 15 13 11 9
	C	Q 8 13 5 12 4 11 3 10 2	9	1	8 15 7 14 6
	D	Q 11	3	7 11 15 4	8 12 1	5	9 13 2	6 10 14
	E	Q 3	1 13 10 7	4	1 13 10 7	4	1 13 10 7	4
	F	Q 12	4	7 10 13 1	4	7 10 13 1	4	7 10 13 1
	G	Q 4 14 10 6	2 13 9	5	1 12 8	4 15 11 7	3
	H	Q	11 10 9	8	7	6	5	4	3	2	1 15 14 13 12
	I	Q 7	6 14 7 15 8	1	9	2 10 3 11 4 12 5 13
	L	Q 13	9 11 13 15 2	4	6	8 10 12 14 1	3	5	7
	Q	Q 5	5 15 10 5 15 10 5 15 10 5 15 10 5 15 10
	N	Q 9	8 14 5 11 2	8 14 5 11 2	8 14 5 11 2
	O	Q 6	2 11 5 14 8	2 11 5 14 8	2 11 5 14 8
	P	Q 10 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5
												F N
						H		L P	0		G H	L P

  2 1 x 2 2 + a 6 x 1 x 2 2 + ax 2 2 + a 2 x 6 1 x 2 + a 2 x 5 1 x 2 + a 3 x 4 1 x 2 + x 3 1 x 2 + a 6 x 2 1 x 2 + a 4 x 1 x 2 + a 6 x 2 + a 2 x 6 1 + a 4 x 5 1 + a 5 x 3 1 + a 4 x 2 1 + a 4 x 1 + a 3 .In analogy with the intermediate configuration, we try to remove the possibility for zero to be the third coordinate.

	Number of points Third coordinate
	7	0
	6	1
	3	a
	3	a 2
	3	a 3
	2	a 5
	2	a 4
	2	a 6

  6 a 5 a 4 a 3 a 2 a Table B.3: Type B configurations in F 8 . The first column is associated to the list 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1

	of points			Third coordinates
	1	a	1 a 6 a 5 a 4 a 3 a
	4	a 2	a	1 a 6 a 5 a 4 a
	4	a 3 a 2	a	1 a 6 a 5 a
	4	a 5 a 4 a 3 a 2	a	1 a
	5	a 4 a 3 a 2	a	1 a 6 a
	5	a 6 a 5 a 4 a 3 a 2	a	1
	5	1 a	

The corresponding notion for N n is named Ferrers diagram.

The x 1 -ranges have been numbered using normal font numbers, while the x 2 -ranges have been numbered using boldface numbers.

There are also versions computing the Border basis[START_REF] Marinari | A remark on a remark by Macaulay or Enhancing Lazard Structural Theorem[END_REF].

22: end procedure

Note that if we have h j possible values for the j-th coordinate, for each1 ≤ j ≤ n, h = |X | = h 1 • • • hn ≥ S.We suppose to append to X the points of X \ X.

In this oversimplified situation it holds that {x 2 -x, y 2 -y, y -xy} is actually a Groebner basis of I. But this is not true in general.

Convenient means that if we take another set of S terms (among the ones in the Groebner escalier of the elementary ideal I(X )) which are smaller or equal to the maximal in B A , the determinant of the corresponding minor (evaluating in X) is 0.

in Cerlienco-Mureddu notation, it means evaluating the terms of C in X. The j-th row of C is the evaluation of te terms in C in P j ∈ X

Obviously, Φ(P 1 ) = 1, since I({P 1 }) is maximal and so its Groebner escalier is clearly the singleton {1}. We take the first point as a base case for this inductive algorithm.

So we project the points of the restricted range with π s-1

It is simply the set of the n-tuples of exponents corresponding to the elements of the Groebner escalier.

The only order ideal with cardinality one is exactly the singleton {1}, by the definition of order ideal itself.

The first divisibility relation comes from the fact that M(h) ∈ M(I), while the second one is consequence of T(f i+1 ) = x d(i+1) and c = GCD(c i , c i+1 )|c i+1 .

By computing the terms appearing in A mδ (τ j ).

Principal ideal ring.

This is the base case for our algorithm, since I({P 1 }) = (x 1 -a 1,1 , ..., xn -a 1,n ), which is "naturally factorized".

[START_REF] Alonso | The big Mother of all Dualities 2: Macaulay Bases, Applicable Algebra in Engineering[END_REF] One list for each variable: they will contain all the necessary linear factors in order to find the required minimal Groebner basis.

In the sense that the nodes of the trie are examined horizontally, see[START_REF] Knuth | The art of computer programming[END_REF].

We are reading the first point for each set labeling the nodes in the first level of the children trie.

This is not a problem since the factorization of algorithm 5 is computed independently for each term in the monomial basis (see 3.4.10).

At least one of the predecessors of x k τ does not belong to N(J).

Such a condition is degenerate for i = n -1, since A would be an (n + 1)-bar, so, for convenience, we imagine in the proof the whole diagram underlined by a unique "(n + 1)-bar".

In Cerlienco-Mureddu language, this integer is the σ-value of the point P i ; see[START_REF] Cerlienco | Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2[END_REF][START_REF] Cerlienco | From algebraic sets to monomial linear bases by means of combinatorial algorithms[END_REF][START_REF] Cerlienco | Multivariate Interpolation and Standard Bases for Macaulay Modules[END_REF] for more details.

For i = n -1, we consider as (n + 1)-bar a line underlining the whole diagram. We use it only in theory, for some proofs, even if we never draw it concretely.

For β 2 = 0 there is nothing to prove since we cannot perform any operations as in definition 5.9.1.

This name stands for integer partition type, since we will connect them to the classical theory of integer partitions.

It is enough for J to be strongly stable, we do not require J to be zerodimensional as was in 5.9.

The criterion to determine the value of c will be explained in what follows.

We remark that, possibly, G j = ∅.

If only one polynomial r1 is given in input, the function automatically gives positive answer, since a single polynomial is surely a J-marked basis. Clearly this situation happens under the hypothesis that the ideal J of S is a principal strongly stable ideal.

The computation refers to the generators of J.

Remember that we are dealing with homogeneous polynomials.

We recall that the last term in M is ξ := max Lex (M ) and, by the comments above, mult(ξ) = {x 1 , ..., xn}.

This means that we examine x i as maximal variable only once.

If x i is the maximal variable, for each τ ∈ M , Px i (τ ) = x deg i (τ ) i, so each i-bar identifies an i-degree.

Actually, this means that, in corollary 6.3.15, point 2. is not verified.

i.e. we change the candidate maximal variable: M cannot be complete w.r.t. any variable ordering with maximal variable x i .

Notice that singletons are complete. Moreover, all the variables not already settled have to be multiplicative.

We are selecting another element in the list of candidates for the variable treated in the previous step.

en involution.

It is the error probability, namely the probability of an error to occur.

They mirror the simmetry of the Groebner escalier.

This fact represents a further proof of 1 2 |X| = q 2 , since the idea is that we are taking the couples (a, b) ∈ (Fq) 2 , a = b disregarding the entries' order.

The configuration list is [1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2].

For example, for configuration 1, we have M = a and for configuration 2, M = a 2 .

We recall that z 1 , z 2 are respectively the third and the fourth coordinates for our points.

It is similar to what done with F 8 : we would contradict the requirement to have only one couple between (a, b) and (b, a).

For finite fields F 2 m , m not a prime number, we need to study the cyclic structure of permutations, in order to find the corresponding configurations.

Clearly they represent the choice we make if we are looking at the row of a preferential representative!

The correctness of the algorithm is a straightforward consequence of the one of the original Moeller algorithm and from proposition 5.7.1 on the variations of the star set when we add a term to the Groebner escalier.

We believe we will be able to find optimal Frobenius configurations among the configurations described in the tables above.

Proposition 5.9.18. There is a one-to-one correspondence between strongly stable Bar Codes in three variables, with bar list (p, h, k) and IP-type matrices associated to (p, h, k).

Proof: Consider a strongly stable Bar Code B, with bar list (p, h, k), associated to N(J), the Groebner escalier of the strongly stable ideal J. We associate to B a (k × l 2 (A (3) 1 ))-matrix with the same procedure as above. More precisely:

i,j ) otherwhise, where B

(2) i,j is the i-th 2-bar over the j-th 3-bar.

The relation

k-1 i α1-1 j a i,j = p is a straightforward consequence of the definition of Bar Code.

Since l 2 (A

1 ) > ... > l 2 (A

k ), each row is shifted to the right of one entry and, again by proposition 5.9.3, a i,j > a i,j+1 .

JMarkedScheme(Borid,r); According to the Singular timer function, the 1860 equations resulting for the ideal J = Borid in k[x 0 , ..., x 5 ] have been computed in about 1 minute and 12 seconds.

To conclude, we point out that the libraries JMBTest.lib and JMSConst.lib provide solutions only for the homogeneous case. As explained in [START_REF] Bertone | A division algorithm in an affine framework for flat families covering Hilbert schemes[END_REF], it is possible to work with marked bases and schemes in the non-homogeneous case and so we would like to provide also an implementation in this new setting. A possible application is the problem of smoothability of some local Gorenstein Artin algebras.

Janet decomposition.

In this section we loosely base on the paper [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF], where Janet first defines the notion of multiplicative variable for a term τ with respect to a given set M ⊆ T .

For completeness' sake, we recall Janet's decomposition into disjoint classes for terms in the semigroup ideal generated by M .

Each of them contains:

1. a term τ ∈ M ; 2. the set of terms obtained multiplying τ by products of multiplicative variables, that we call offspring of τ and denote by off M (τ ).

The main difference with respect to Janet's papers is that we remove the finiteness condition on M , showing that it is not necessary for our purposes. Definition 6.3.1. [54, ppg.75-9] Let M ⊂ T be a set of terms and τ = x α1 1 • • • x αn n be an element of M . A variable x j is called multiplicative for τ with respect to M if there is no term in M of the form τ = x β1 1 • • • x βj j x αj+1 j+1 • • • x αn n with β j > α j . We will denote by mult M (τ ) the set of multiplicative variables for τ with respect to M . 

1 , so α 1 = 3, α 2 = α 3 = 0. The variable x 1 is multiplicative for τ w.r.t M since there are no terms τ = x β1 1 x β2 2 x β3 3 ∈ M satisfying both conditions:

• β 1 > 3;

• β 2 = β 3 = 0.

On the other hand, x 2 is not multiplicative for τ since τ = x 3 2 ∈ M satisfies τ = x γ1 1 x γ2 2 x γ3 3 with γ 2 = 3 > 0 = α 2 , γ 3 = α 3 = 0. Similarly, x 3 is not multiplicative since x 2 3 ∈ M . In conclusion, we have mult M (τ ) = {x 1 }. Remark 6.3.4. Observe that, by definition of multiplicative variable, the only element in off M (τ ) ∩ M is τ itself. Indeed, if τ ∈ M and also τ σ ∈ M for a non constant term σ, then max(σ) cannot be multiplicative for τ , hence τ σ / ∈ off M (τ ).

Given a finite set of terms M ⊆ T , we can easily list the multiplicative variables of its elements by a Bar Code construction.

More precisely, let B M the Bar Code associated to M , as defined in 5.2.5. After drawing B M , we place the stars in the diagram as for the star set computation, obtaining the Bar Code picture (c.f. section 5.3).

Let A be an i-bar, followed by a star. Then, for all τ = x α1 1 • • • x αn n ∈ M lying over A,

Indeed, if i = n, σ ∈ M such that deg n (σ) > α n because, if there was such a σ, by hypothesis, being σ > Lex τ , it would lie over a n-bar posed on the right of A so, by construction, A

would not be followed by a star.

On the other hand, if i < n, let B be the (i + 1)-bar over which A lies. The bar A is followed by a star so, as explained in section 5.3, also B interrupts in correspondence of the end of the bar A.

If x i was non multiplicative for τ then ∃σ = x β1

The term σ would lie over B (deg i+1 (σ) = α i+1 = deg i+1 (τ )) but it would be over an i-bar A , posed on the right of A over B, which cannot exist by the procedure to set the stars.

Let now τ = x α1 1 • • • x αn n ∈ M and let x i ∈ mult(τ ). We prove that the i-bar A underlying τ is followed by a star.

As done for the comments above, we denote by B the (i + 1)-bar over which the bar A lies.

If A is not followed by a star, B does not interrupt in correspondence to the end of A, so there is an i-bar A over B and posed on the right of A.

If σ ∈ M is a term lying over A , deg i (σ) = α i + 1, deg i+1 (σ) = α i+1 ,...,deg n (σ) = α n and so, by definition 6.3.1, x i is not multiplicative for τ .

Example 6.3.5. For the set M = {x 3 1 , x 

• x 2 1 x 3 → x 2 3 . We keep track of x 1 .

• x 2 x 3 → x 2 3 . We keep track of x 2 .

• x 3 x 4 → x 2 3 . We keep track of x 4 .

We do not have a negative outcome for any term, so we continue with Step c). Being A

(3) 3

overlied only by x 2 3 (only one term!) we do not need to take this bar into account (all the variables different from x 3 are good candidates!).

All the variables are good candidates for being the second in order of magnitude and, for example, we choose x 4 , getting:

We check the divisors (forgetting about x 3 ):

• x 2 1 → x 2 1 x 4 . We do not keep track of any variable.

• x 1 x 2 → x 1 x 2 x 4 . We do not keep track of any variable.

• x 2 2 → x 2 2 x 4 . We do not keep track of any variable. and • x 2 1 → x 4 . We keep track of x 1 .

• x 2 → x 4 . We keep track of x 2 .

Then we pass to Compatibility):

• x 2 1 x 4 : x 2 1 x 3 does not lie on the rightmost 4-bar, so x 4 is not multiplicative. Since we have more than one term associated to x 2 1 x 4 , we only delete x 2 1 x 3 and keep x 3 x 4 . The same reasoning holds for x 1 x 2 x 4 , x 2 2 x 4 .

• x 3 x 4 : x 2 3 lies on the rightmost 4-bar so it passes the test.

We continue choosing x 2 as next variable and we get:

In order to "harmonize" the two notations, Janet in [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF][START_REF] Janet | Lecons sur les systèmes d'équations aux dérivées partelles[END_REF] applied deglex induced by x 1 < x 2 < • • • < x n and chose the maximal term as head term, but expressed all terms as (!)

x αn n x αn-1 n-1 . . . x α1 1 , while in [START_REF] Janet | Les modules de formes algébriques et la théorie générale des systemes différentiels[END_REF] went back to use deglex induced by

What is worst, in [START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF] Janet not only applied deglex induced by x 1 < x 2 , • • • < x n but presented all results within his notation; so, in his presentation of Delassus's result, the head term is again, à la Buchberger, the maximal one. This is not helpful, as regards his reformulation of the previous results on generic initial ideals and stability; thus while, for Robinson [START_REF] Robinson | Sur les systémes d'équations aux dérivées partialles[END_REF][START_REF] Robinson | A new canonical form for systems of partial differential equations[END_REF] and Gunther [START_REF] Gunther | Sur la forme canonique des systèmes déquations homogènes[END_REF][START_REF] Gunther | Sur la forme canonique des equations algébriques[END_REF] a generic initial ideal (I) satisfies

according [START_REF] Janet | Les systèmes d'équations aux dérivées partelles[END_REF] the formula is

Under the suggestion of Hadamard [START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF], Janet dedicated his doctorial thesis [START_REF] Janet | Sur les systèmes d'équations aux dérivées partelles[END_REF] to a reformulation of Riquier's results in terms of Hilbert's results [START_REF] Hilbert | Uber die Theorie der algebraicschen Formen[END_REF].

In particular, given a finite set of monomials M , he associates to each term τ ∈ M , as functions of its relation with the other elements of M , a set of variables which he labels multiplicative (Definition 6.3.1) and a subset of terms in (M ) which he called his class and which we labeled as its offspring and considered M complete (Definition 6.3.9) when the disjoint offsprings of M cover (M ).

He then gave [54, p.80] a procédé régulier pour obtenir un système complet base d'un module donné which ne pourra se prolonger indéfiniment; it simply consisted to enlarge M with the elements xt / ∈ ∪ τ ∈M off M (τ ), t ∈ M , x non-multiplicative for t.

Janet can now formulate [57, p.75] Riquier's procedure. One can assume to have a finite basis G ⊂ P; denoting M = {T(f ) : f ∈ G},

• we enlarge M in order to made it complete and at the same time

• we similarly enlarge G, adding xg to G when we add xT(g) / ∈ ∪ τ ∈M off M (τ );

• we then perform Riquier's test, which, for a complete systems, consists in computing the normal form of each element xg, g ∈ G, x non-multiplicative for T(g).

Janet [54, p.112-3] further remarks (in connection with Hilbert's syzygy theory) that the reduction-to-zero of all such elements give a basis S of the syzygy module of G. Actually he repeatedly applied the same procedure to S, thus computing a resolution of G and anticipating Schreyer's Algorithm [START_REF] Schreyer | A standard basis approach to syzygies of canonical curves[END_REF].

Part IV

The Axis of Evil Theorem applied to error correcting codes.

CHAPTER 7

Error correcting codes and locator polynomials.

Introduction.

Coding theory is a rather recent subject. As a matter of fact, it dates back to 1948, with an illuminating paper by Claude Elwood Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF], which originated both coding theory and information theory.

In this chapter we recall the notions on error correcting codes, needed to understand the joint work with Massimiliano Sala and Teo Mora, examined in chapter 8, which links the Axis of Evil Theorem to error correcting codes.

First of all, we introduce the notion of code and some preliminary definitions.

Starting with the so called Cooper's philosophy [START_REF] Cooper | Direct solution of BCH decoding equations[END_REF][START_REF] Cooper | Finding BCH error locator polynomials in one step[END_REF], going on with Chen's works [START_REF] Chen | Use of Groebner bases to decode binary cyclic codes up to the true minimum distance[END_REF][START_REF] Chen | Algebraic decoding of cyclic codes: a polynomial ideal point of view[END_REF] and with the papers by Teo Mora, Emanuela Orsini and Massimiliano Sala [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF][START_REF] Orsini | Correcting errors and erasures via the syndrome variety[END_REF][START_REF] Orsini | General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63[END_REF],

the idea of exploiting Groebner bases computations in order to decode cyclic codes gained around and became more and more important. Now we are ready to decode a linear code.

Given the received vector y ∈ (F q ) n , we first compute the syndrome s = Hy. Then we find a coset leader for the coset associated to s (7.3.14), say z. The decoded word is c = yz and we only have to recover the message from it.

In order to perform the procedure above, we need to construct a matrix, called standard array, containing all the vectors in (F q ) n , which are 2 n , ordered by coset. We can conclude that the complexity of the decoding procedure is exponential in terms of memory occupancy.

Both the problem of decoding a linear code and the general problem of finding the distance of a linear code are NP-complete, as shown in [START_REF] Barg | On the complexity of minimum distance decoding of long linear codes[END_REF][START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF][START_REF] Vardy | Algorithmic complexity in coding theory and the minimum distance problem[END_REF]. There are no algorithms decoding linear codes in polynomial time.

Cyclic codes.

In this thesis we will deal with some peculiar codes, called cyclic codes.

Essentially, definition 7.4.1 says that a cyclic permutation of the components of a word gives again a word of C.

Cyclic codes can be algebraically described through a polynomial representation for words.

More precisely, denoted by F q [x] the polynomial ring in one variable with coefficients in the finite field F q , we consider the principal ideal I = (x n -1) F q [x] and the quotient R := F q [x]/I and we construct the following bijection

Thanks to W p, we can view a linear code as a subset of R; in the following theorem, we characterize cyclic codes.

Being R a PIR, for each C, there is a unique monic polynomial generating it, the generator polynomial g of C.

syndrome s i ∈ F 2 m represents a value:

Such a system defines an ideal

whose zero set gives the error locations and the error vector, occurred in the transmission. We look for it using Groebner bases .

Proposition 7.5.2. With the above notation

Theorem 7.5.3 ([24]). It holds:

In [START_REF] Chen | General principles for the algebraic decoding of cyclic codes[END_REF] Chen et al. generalize Cooper's philosophy to q-adic codes proposing a solution for decoding an error whose weight is assumed known.

Moreover, they give an alternative approach via Newton's identities in the binary case, but, since it goes beyond our interest, we do not treat it. For details, one can see [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF]. For the improvements by Augot-Bardet-Faugere, one can see [START_REF] Augot | Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases[END_REF]4].

In the context defined so far, for any word to be decoded, we need to compute a Groebner basis and the syndromes are considered as parameters, computed expressively from the received word and substituted into the system. Moreover, different Groebner basis computations must be performed for different potential error weights, until the true weight of the actual error is obtained.

In [START_REF] Chen | Algebraic decoding of cyclic codes: a polynomial ideal point of view[END_REF], Chen et al. proposed a new method which consists of considering the syndromes as variables x i and computing the Groebner basis as a preprocessing. The growth of the number of variables is a problem of this method. On the other hand, the Groebner basis is computed only once.

Following [START_REF] Perret | Groebner Bases, Coding, and Cryptography[END_REF], we denote by x, y, z the multivariables representing, respectively, the syndromes, the locations and the error values, i.e. the variables for the polynomial ring where x 1 = a + b, x 2 = a 3 + b 3 are the syndromes and z 1 = a, z 2 = b the error locations.

We discard now the spurious solutions, namely the points of the form (0, 0, a, a): if x 1 = x 2 = 0 we have the 8 couples of locations (a, a).

Applying the Axis of Evil algorithm on the remaining 56 points (x 1 , x 2 , z 1 , z 2 ), we get two polynomials

) and a partition of the 56 points in two subsets Z a , Z b of cardinality 28, satisfying the properties stated in the previous section.

We arrange then the 56 points in 28 couples, according to their first three coordinates, i.e. each couple will be of the form

More precisely, we get a list P containing the following 28 couples:

[(a, a 3 , 0, a), (a, a 3 , a, 0)],

[(a 2 , a 6 , 0, a 2 ), (a 2 , a 6 , a 2 , 0)],

[(a 3 , a 2 , 0, a 3 ), (a 3 , a 2 , a 3 , 0)],

[(a 4 , a 5 , 0, a 4 ), (a 4 , a 5 , a 4 , 0)],

[(a 5 , a, 0, a 5 ), (a 5 , a, a 5 , 0)],

[(a 6 , a 4 , 0, a 6 ), (a 6 , a 4 , a 6 , 0)],

[(1, 1, 0, 1), (1, 1, 1, 0)],

[(a 4 , a 4 , a, a 2 ), (a 4 , a 4 , a 2 , a)],

[(1, a 5 , a, a 3 ), (1, a 5 , a 3 , a)],

[(a 2 , a 2 , a, a 4 ), (a 2 , a 2 , a 4 , a)],

[(a 6 , 1, a, a 5 ), (a 6 , 1, a 5 , a)],

[(a 5 , a 6 , a, a 6 ), (a 5 , a 6 , a 6 , a)],

[(a 3 , a, a, 1), (a 3 , a, 1, a)],

[(a 5 , 1, a 2 , a 3 ), (a 5 , 1, a 3 , a 2 )],

[(a, a, a 2 , a 4 ), (a, a, a 4 , a 2 )],

[(a 3 , a 5 , a 2 , a 5 ), (a 3 , a 5 , a 5 , a 2 )],

[(1, a 3 , a 2 , a 6 ), (1, a 3 , a 6 , a 2 )],

• 7 points whose third coordinate is a i7 ;

• 6 points whose third coordinate is a i1 ;

• ...

• 1 point points whose third coordinate is a i6 ;

• no points points whose third coordinate is 0.

This choice can be summarized in an analogous table and we can proceed this way for each cyclic permutation of i 1 , ..., i 7 , obtaining another configuration in correspondence.

We point out that each cyclic permutation corresponds to only one point configuration, by the structure of the couples in P .

Indeed, let us consider, for example the cyclic permutation associated to the table above.

Among the 56 non spurious points, only 7 of them have i 1 as third coordinate: they are the ones of the form

and since we exclude the case (0, 0, i 1 , i 1 ), there are exactly 7 possible values for b. Thus, we have no choice and we have to take exactly that points.

Then we consider the second row of the table: we need to choose 6 points with i 2 = i 1 as third coordinate. Again there are 7 points of this shape. Nevertheless, among these 7 points, there is also (i 2 +i 1 , i 3 2 +i 3 1 , i 2 , i 1 ). Since for our configuration we have choosen all the 7 points with third coordinate equal to i 1 , (i 1 +i 2 , i 3 1 +i 3 2 , i 1 , i 2 ) belongs to our configuration.

On the other hand, for each couple of the form

we want to choose only one point, so we cannot choose (i 2 + i 1 , i 3 2 + i 3 1 , i 2 , i 1 ) and this implies that we have only 6 points with i 2 as third coordinate to take into account and again we have no choice while picking them. Following the same line for i 3 , ..., i 7 we get the unique point configuration associated to the table above. Considering a cyclic permutation of i 1 , .., i 7 in the sense explained before we get another (unique) point configuration.

Every polynomial we obtain by applying algorithm 5 to the unique point configuration associated to one of the 7 cyclic permutation of i 1 , ..., i 7 is composed by the same number of terms, i.e. 18.

Let us examine two of them. The precise data for all the 7 points configurations are contained in appendix B, B.1.1.

Configuration 1

This configuration corresponds to the permutation represented in following table :   Number of points Third coordinate The unique point configuration associated to that table is:

[(a 2 , a 6 , a 2 , 0)],

[(a 3 , a 2 , a 3 , 0)],

[(a 4 , a 5 , a 4 , 0)],

[(a 5 , a, a 5 , 0)],

[(a 6 , a 4 , a 6 , 0)],

[(1, 1, 1, 0)],

[(a 4 , a 4 , a 2 , a)],

[(1, a 5 , a 3 , a)],

[(a 2 , a 2 , a 4 , a)],

[(a 6 , 1, a 5 , a)],

while the configuration list is

and the associated locator polynomial turns out to be

and the associated locator polynomial is made up of 85 terms z 1 + a 14 x 14 1 x 7 2 + ax 

As for F 8 , if we choose differently Q, the formulas change only on the multiplicative coefficient of Q, not in the power.

The cycles in

If we define the couples (powers of Q, powers of a), the first set of formulas corresponds to (α , δ ), (β , α ), (γ , γ ), (δ , β ).

The second set of formulas gives (α , β ), (β , α ), (γ , ), (δ , δ ).

The case of F 8 (2): optimal Frobenius configurations.

The cyclic configurations found in section 8.3, i.e. the ones leading to polynomials constituted by 18 terms present a very simple structure and lots of connections with the cycle structure of the base field. Unfortunately, the locator polynomials associated to them are not sparse enough.

Indeed, our aim is to prove linearity on the growth of the polynomial and the patterns observed in sections 8.3, 8.4 seem to be quadratic: starting from q 2 points we reduce to ∼ q 2 2 and the terms in the locator polynomials are ∼ q 2 4 , for q = 8, 16.

choices for the couples (b, f ), f ∈ F 8 and to look for the couples (c, d ), where d ∈ θ. The possible values for d depend on the couples of the form (b, e), where e is an element of the cycle θ , as we explain below.

Let us examine then the couples of the form (a Indeed, if we choose the couple (a 3 , a 2 ), we have both (a 2 , a 3 ) (coming by the application of the Frobenius mapping to (a, a 5 )) and (a 3 , a 2 ) (chosen for a 3 ) in the same configuration, thing we have excluded.

Then we choose (a 3 , a), (a 3 , a 4 ) and we apply Frobenius, getting (a 3 , a), (a 6 , a 2 ), (a 5 , a 4 ) (a 3 , a 4 ), (a 6 , a), (a 5 , a 2 ).

Driven by this examination, we give the following Definition 8.5.3. A Frobenius configuration for F 8 is a configuration in F 8 such that

• for each b ∈ F * 8 , all the couples (b, 0) are in the configuration;

• (1, 0) belongs to the configuration;

• if b ∈ F * 8 is the preferential representative for a cycle in F 8 and the couple (b, c), c ∈ F * 8 , is in the configuration, also the couples (b 2 , c 2 ), (b 4 , c 4 ) do; We display in this section the source code of the Singular libraries presented in section 6.2 of chapter 6. We point out that all the polynomials are homogeneous and they must be arranged by degree.

The libraries available with Singular

The fundamental steps are the following:@ * -construct the Vm polynomials, via the algorithm VConstructor explained in [CR];@ * -construct the Eliahou-Kervaire polynomials defined in [BCLR];@ * -reduce the Eliahou-Kervaire polynomials using the Vm's;@ * -if it exist an Eliahou-Kervaire polynomial such that its reduction mod Vm is different from zero, the given one is not a J-Marked basis.

The algorithm terminates only if the ordering is rp.

Anyway, the number of reduction steps is bounded. 

if(var(i)<=Minimus(variables(V[m-1][j][1] * p.h)))

{ //Can I multiply by the current variable? //print("minoremin"); //print("fin qui ci sono"); 

if(Minimus(variables(P.h/gcdMon(P.h,Q.h)))<Minimus(variables(Q.h/gcdMon(P.h,

//print("Per Indice"); //R will contain results but at the beginning it is empty list M=list(); This procedure performs J-marked basis test.@ * The input is a list of J-marked polynomials (jmp) arranged by degree, so G1 is a list of list.@ * The output is a boolean evaluation: / * //////////////////////////////////////////////////////////////////// version="$Id:$"; category="Algebraic Geometry"; // summary description of the library info=" LIBRARY: JMSConst.lib A library for Singular which constructs J-Marked Schemes.

AUTHOR: Michela Ceria, email: michela.ceria@unito.it SEE ALSO: JMBTest_lib KEYWORDS: J-marked schemes, Borel ideals OVERVIEW:

The library performs the J-marked computation, as described in [BCLR].

As in JMBTest.lib we construct the V polynomials and we reduce the EK polynomials w.r.t. them, putting the coefficients as results.

The algorithm terminates only if the ordering is rp.

Anyway, the number of reduction steps is bounded. pp.t=M [START_REF] Alonso | The big Mother of all Dualities : Möller algorithm[END_REF]; 

if(var(i)<=Minimus(variables(V[m-1][j][1] * p.h)))

{ //Can I multiply by the current variable? //print("minoremin"); //print("fin qui ci sono"); 

B.1.1 The seven cyclical configurations.

We display here all the data concerning the seven cyclical configurations defined in section 8.3.

All the polynomials have been computed using Singular.

Configuration 1

Number of points Third coordinate

The tower structure is a,a 3 ,a a 2 ,a 6 ,a 2 a 3 ,a 2 ,a 3 a 4 ,a 5 ,a 4 a 5 ,a,a 5 a 6 ,a 4 ,a 6 1,1,1 a,a,a 2 a 2 ,a 2 ,a 4 a 3 ,a,1 a 4 ,a 4 ,a 2 a 5 ,a 6 ,a 6 a 6 ,1,a 5 1,a 5 ,a a,a 6 ,a 3 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,a 2 1,a 3 ,a a,a 2 ,a 5 a 2 ,a 5 ,a 6 a 3 ,1,a 4 a 4 ,a 3 ,a 5 a 5 ,a 4 ,a 4 a 6 ,a 3 ,a 3 1,a 6 ,a while the configuration list is

and the associated polynomial is

Configuration 2

The point configuration is a,a 3 ,a a 2 ,a 6 ,a 2 a 3 ,a 2 ,a 3 a 4 ,a 5 ,a 4 a 5 ,a,a 5 a 6 ,a 4 ,a 6 1,1,1 a,a,a 4 a 2 ,a 2 ,a 4 a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a 6 a 6 ,1,a 5 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 5 a 3 ,a 5 ,a 5 a 4 ,a,a 6 a 5 ,1,a 2 a 6 ,a 2 ,1 1,a 3 ,a 6 a,a 2 ,a 5 a 2 ,a 5 ,a 6 a 3 ,1,a 4 a 4 ,a 3 ,a 5 a 5 ,a 4 ,a 4 a 6 ,a 3 ,a 4 3 1,a 6 ,a 4 5

and the corresponding list is

We get

a,a,a 2 a 2 ,a 2 ,a a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a 6 a 6 ,1,a 5 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 5 a 3 ,a 5 ,a 5 a 4 ,a,a 6 a 5 ,1,a 2 a 6 ,a 2 ,1 1,a 3 ,a 6 a,a 2 ,a 5 a 2 ,a 5 ,a 6 a 3 ,1,a 6 a 4 ,a 3 ,a 5 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 1,a 6 ,a 5

The configuration list is

corresponding to the polynomial

Configuration 5

Number of points Third coordinate

a,a,a 2 a 2 ,a 2 ,a a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a 6 a 6 ,1,a 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 6 a 5 ,1,a 2 a 6 ,a 2 ,1 1,a 3 ,a 6 a,a 2 ,a 6 a 2 ,a 5 ,a 6 a 3 ,1,a 6 a 4 ,a 3 ,1 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 1,a 6 ,a 4

Therefore, the configuration list is

and the polynomial we get is

Configuration 6

Number of points Third coordinate and their configuration list is

The tower structure is a,a 3 ,a a 2 ,a 6 ,a 2 a 3 ,a 2 ,a 3 a 4 ,a 5 ,a 4 a 5 ,a,a 5 a 6 ,a 4 ,a 6 1,1,1 a,a,a 2 a 2 ,a 2 ,a a 3 ,a,a a 4 ,a 4 ,a a 5 ,a 6 ,a a 6 ,1,a 1,a 5 ,a a,a 6 ,a 3 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,a 2 1,a 3 ,a 2 a,a 2 ,a 5 a 2 ,a 5 ,a 6 a 3 ,1,a 4 a 4 ,a 3 ,a 5 a 5 ,a 4 ,a 4 a 6 ,a 3 ,a 3 1,a 6 ,a 4 and the corresponding polynomial is and the associated tower structure is a,a 3 ,0 a 2 ,a 6 ,0 a 3 ,a 2 ,0 a 4 ,a 5 ,0 a 5 ,a,0 a 6 ,a 4 ,0 1,1,0 a,a,a 4 a 2 ,a 2 ,a a 3 ,a,a a 4 ,a 4 ,a a 5 ,a 6 ,a a 6 ,1,a 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 5 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,a 2 1,a 3 ,a a,a 2 ,a 6 a 2 ,a 5 ,a 6 a 3 ,1,a 4 a 4 ,a 3 ,a 5 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 1,a 6 ,a

The locator polynomial we get is: The points are:

[(a, a 3 , 0, a)],

[(a 2 , a 6 , 0, a 2 )],

[(a 3 , a 2 , 0, a 3 )],

[(a 4 , a 5 , 0, a 4 )],

[(a 5 , a, 0, a 5 )],

[(a 6 , a 4 , 0, a 6 )],

[(1, 1, 1, 0)],

corresponding to and to a,a 3 ,0 a 2 ,a 6 ,0 a 3 ,a 2 ,0 a 4 ,a 5 ,0 a 5 ,a,0 a 6 ,a 4 ,0 1,1,1 a,a,a 2 a 2 ,a 2 ,a a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a 6 a 6 ,1,a 5 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,1 1,a 3 ,a 6 a,a 2 ,a 5 a 2 ,a 5 ,1 a 3 ,1,a 4 a 4 ,a 3 ,1 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 1,a 6 ,a 4

The polynomial we get is: and to a,a 3 ,0 a 2 ,a 6 ,0 a 3 ,a 2 ,0 a 4 ,a 5 ,0 a 5 ,a,0 a 6 ,a 4 ,0 1,1,0 a,a,a 2 a 2 ,a 2 ,a a 3 ,a,1 a 4 ,a 4 ,a a 5 ,a 6 ,a 6 a 6 ,1,a 5 1,a 5 ,a a,a 6 ,1 a 2 ,a 4 ,a 3 a 3 ,a 5 ,a 2 a 4 ,a,a 3 a 5 ,1,a 2 a 6 ,a 2 ,1 1,a 3 ,a 6 a,a 2 ,a 5 a 2 ,a 5 ,1 a 3 ,1,a 4 a 4 ,a 3 ,1 a 5 ,a 4 ,1 a 6 ,a 3 ,a 3 1,a 6 ,a 4

The obtained polynomial is made up of 28 terms: z 1 + a 6 x 5 1 x 3 2 + a 5 x 4 1 x 3 2 + x 

B.3.4 Type C.

Here we have all the data for Type C configurations from 8.5.

Type C:

Number of points

Third coordinates