Exploring Combinatorial Aspects of the Stop Number Problem

Rafael Colares

- To cite this version:

Rafael Colares. Exploring Combinatorial Aspects of the Stop Number Problem. Modeling and Simulation. Université Clermont Auvergne [2017-2020], 2019. English. NNT: 2019CLFAC050 . tel02506055

HAL Id: tel-02506055
 https://theses.hal.science/tel-02506055

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE

Présentée par

Rafael COLARES

pour obtenir le diplôme de

Docteur d'université

Spécialité : Informatique

Exploring Combinatorial Aspects of the Stop Number Problem

Soutenue publiquement le 28 octobre 2019 devant le jury

M. ou Mme	Walid	BEN-AMEUR	Rapporteur et examinateur
	Ali Ridha	MAHJOUB	Rapporteur et examinateur
	Aurélie	LAGOUTTE	Examinatrice
Gautier	STAUFFER	Examinateur	
Hande	YAMAN	Examinatrice	
Mourad	BAÏOU	Directeur de Thèse	
Hervé	KERIVIN	Directeur de Thèse	

École Doctorale Sciences Pour l'Ingénieur

Université Clermont Auvergne

Acknowledgements

PhD students are traditionally undergraduate students who used to excel in some specific field they learned to appreciate during their education. However, many of these students never really needed to face the unknown before starting a PhD thesis. Whenever a question was proposed, the answer - as hard to understand as it could be - could be found in a book and/or explained by the teacher. Carrying on a research project is a whole different story. During the development of significant research, one is continuously faced with questions for which the answers are unknown and trying to solve such questions usually involve failing multiple times. Dealing with constant failure together with the pressure for meaningful discoveries can be sometimes overwhelming, which makes the conception of a PhD thesis a pretty rough task. I dedicate this section to all the ones that directly or indirectly contributed to the achievement of this thesis.

First and foremost I would like to express my admiration for all the professors that are able to manage their efforts between the development of scientific research and the challenging duties of teaching and inspiring undergraduate students. In this regard I would like to highlight professors Carlos Vênancio and Philippe Mahey. Without them the BRAFITEC exchange program between the Industrial Engineering Department from UFMG (Univerdade Federal de Minas Gerais) and the computer science engineering school ISIMA (Institut Supérieur d'Informatique, de Modélisation et de leurs Applications) would never have come to be the success it is today and I would never had the chance of pursuing my studies in France. Furthermore, I would like to stress my gratitude towards professor Martín Ravetti who first presented me to the operations research and optimization fields.

Secondly, I would like to thank my PhD advisors Mourad Baïou and Hervé Kerivin. I am truly honored and grateful for being accepted as the PhD student of such great researchers. I am glad to say today that these two form a fairly complementary team and that I was fortunate enough to have them by my side during these years. On the one hand, I was fascinated by the ability of Mourad to think outside the box and put together concepts that seemed to be unrelated
to me. In the most natural way, Mourad was capable of showing me how each scientific research field is nothing but a frame of a much bigger picture. Among many other things, he was also able of teaching me how failure should be accepted as an important part of the road to success and hence how relevant research should be faced. On the other hand, the countless and fruitful discussions with Hervé have helped me improving many skills, including scientific writing, methodology of research and various technical aspects of combinatorial optimization. Furthermore, his step-by-step guidance was illuminating when tackling the numerous complex problems faced throughout this thesis. All in all, I am proud of the relationship we have developed over these years.

Next I would like to thank my committee members Professors Walid Ben-Ameur, Aurélie Lagoutte, Ali Ridha Mahjoub, Gautier Stauffer and Hande Yaman for the time and effort invested in the reviewing phase of this manuscript. Their pertinent questions and remarks definitely contributed to the improvement of the thesis quality. Special thanks are due to Professor José Correa and all his research team not only for hosting me at Universidad de Chile during an enjoyable one-month visit but also for introducing me to the charming field of approximation algorithms and sharing their thoughtful insights with me. I also would like to thank the Laboratory of Excellence IMobS3 (Innovative Mobility: Smart and Sustainable Solutions) for founding my PhD, and LIMOS (Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes) for hosting me and providing all the physical conditions for the research development.

The past three and a half years at LIMOS have been an incredible experience, not only professionally but also personally. I thank my peer colleagues Benjamin Bergougnoux, Benjamin Dalmas, Matthieu Gondran, Rui Shibasaki - and many others - for their friendship and the memorable moments spent together (e.g., the PhD "Olympic" Games, Matthieu's bachelor party and marriage, the countless beers and board game parties shared). I also would like to thank the many friends I have made outside the LIMOS who have contributed to make this time joyful and fun.

I thank all my family for the endless support and love. I also thank all my childhood friends back in Brazil for their lifetime sincere friendship and trust. Special thanks are due to my BRAFITEC friends Ana Alice Barros, Guilherme Martino, Rui Shibasaki and Fábio Silva - among others - for the good time we have shared during my first years in France.

Last but definitely not least, I would like to thank my loving and supportive partner Pauline Huau for all the moments shared along these years. For all the dedication, patience, love and tenderness, thank you.

All truths are easy to understand once they are discovered; the point is to discover them.

Galileo Galilei

Abstract

The Stop Number Problem arises in the management of a dial-a-ride system with small autonomous electric vehicles. In such a system, a fleet of identical capacitated vehicles travels along a predefined circuit with fixed stations in order to serve clients requesting for a ride from an origin station to a destination station. Notice that multiple clients may share the same origin and/or destination stations. The Stop Number Problem consists of assigning each client request to a vehicle such that no vehicle gets overloaded. The goal is to minimize the number of times the fleet of vehicles stops for picking up or delivering clients. When every client requests for exactly one seat in a vehicle, Stop Number Problem is called Unit Stop Number Problem. In this thesis, Unit Stop Number Problem is addressed as a combinatorialoptimization problem.

First, we investigate the complexity of such problem. On the one hand, we study some properties of optimal solutions and derive a series of particular cases that are shown to be solvable in polynomial time. On the other hand, we show that Unit Stop Number Problem is $\mathcal{N} \mathcal{P}$-Hard even when restricted to case where each vehicle can take at most two clients at once and the graph induced by the client requests is planar bipartite. Such result - which positively answers a conjecture of Pimenta et al. [151] - is then extended to other related problems such as the k-Edge Partitioning and the Traffic Grooming problem, improving their respective state-of-the-art complexity standards.

In a second part, we consider an integer-programming formulation known in the literature for solving the Unit Stop Number Problem. A preliminary analysis is conducted in order to prove the weakness of such formulation. Afterwards, such formulation is reinforced through a polyhedral approach. We provide a facial study of the polytope associated with the solutions of this problem. New valid inequalities are introduced and necessary and sufficient conditions for which they are facetdefining are given.

Finally, based on the discussed polyhedral results, we derive a new efficient branch-and-cut algorithm. Performance boosting features such as symmetry break-
ing methods and variable elimination/relaxation are also investigated and implemented into the developed framework. Results convincingly demonstrate the strength of the reinforcing valid inequalities and therefore of our branch-and-cut algorithm.

Key words: dial-a-ride, stop number problem, combinatorial optimization, complexity, NP-Hardness, polyhedral combinatorics, branch-and-cut algorithm.

Contents

List of Figures xi
List of Tables xiv
Introduction 1
1 Preliminaries and notation 5
1.1 Graph Theory 5
1.2 Algorithms and Complexity 9
1.3 Polyhedra 14
1.4 Linear optimization 17
1.5 Integer and combinatorial optimization 20
2 The stop number problem 26
2.1 Context 26
2.2 Problem definition 30
2.2.1 General presentation 30
2.2.2 The Unit Stop Number Problem 32
2.2.3 The intersection case 34
2.3 State of the art 35
2.3.1 Transport related problems 35
2.3.2 Other related problems 42
2.4 Problem formulation and associated polytope 46
2.5 Concluding remarks and useful definitions 48
3 Properties and complexity 50
3.1 Properties 50
3.2 Polynomial Cases 57
$3.3 \boldsymbol{\mathcal { N }} \mathcal{P}$-Hardness 60
3.4 Approximability 72
3.4.1 An initial C-approximation algorithm 72
3.4.2 A $\frac{5}{3}$-approximation algorithm for $C=2$ 74
3.5 Conclusion 76
4 Polyhedral study 78
4.1 Methodology and Preliminary Analysis 79
4.2 Relaxations 85
4.2.1 Relaxing the stop variables 85
4.2.2 Relaxing assignment variables 86
4.2.3 Linear relaxation 90
4.3 Dimension and facial study 92
4.3.1 Dimension 94
4.3.2 Facial study 97
4.4 New valid inequalities and facets 110
4.4.1 Strong capacity inequalities 112
4.4.2 k-cardinality tree inequalities 121
4.4.3 Generalizing k-cardinality tree inequalities 131
4.4.4 Girth inequalities 139
4.4.5 Generating further valid inequalities 141
4.5 Conclusion 144
5 Computational study 145
5.1 Symmetry 145
5.1.1 Symmetry-breaking methods 146
5.1.2 Methods comparison 150
5.2 Eliminating variables 153
5.3 Relaxing variables 158
5.4 Branch-and-Cut 161
5.4.1 Strong capacity inequalities 162
5.4.2 k-cardinality tree inequalities 162
5.4.3 Girth inequalities 170
5.4.4 Further considerations 174
5.5 Final results 175
A Detailed computational results 191
B Preliminary results on the separation of valid inequalities 229
B. 1 Separation of k -cardinality forest inequalities 229
B. 2 Separation of k -cover tree inequalities 230
References 232

List of Figures

1.1 Partition of a graph G into its connected components 6
1.2 Rooted Trees 7
1.3 Contraction of node w and subdivision of edge $u v$ 8
1.4 Euler diagram for $\mathcal{N} \mathcal{P}$-Completeness theory 12
1.5 Hyperplane and halfspaces 15
1.6 Examples of convex and non-convex sets 16
1.7 Examples of extreme and non-extreme points 16
1.8 Simplex method overview 19
1.9 Illustration of feasible solution sets 20
1.10 Illustration of $P^{\prime}=\operatorname{conv}\left(P \cap \mathbb{Z}^{2}\right)$ 21
1.11 A valid inequality for $\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$ reinforcing the ILP formulation 24
1.12 Illustration of a facet-defining valid inequality of $P^{\prime}=\operatorname{conv}\left(P \cap \mathbb{Z}^{2}\right)$ 24
2.1 Retail e-commerce sales worldwide from 2014 to 2021 (in billion U.S. dollars) 27
2.2 Autonomous shuttle EZ10 by Easymile and Ligier 29
2.3 Circuit Scheme 31
2.4 Construction of the associated graph $G_{\mathcal{I}}$ from instance \mathcal{I}. 33
2.5 Illustration of $\Delta_{E}(v)$. 34
2.6 An example where \mathcal{I} is not an instance of Intersection U-SNP but $G_{\mathcal{I}}$ is bipartite. 35
2.7 Pickup and delivery problems. Adapted scheme from Parragh et al. [148]. 36
3.1 Counter-example instance used for proving $p_{\min } \neq p_{\text {opt }}$. 53
3.2 Counter-example on a tree T 54
3.3 Counter-example instance used for proving parallel demands might have to be separated 56
3.4 Sequence of demands in G 58
3.5 3DM bipartite graph $H=\left(T, S, E^{\prime}\right)$ 61
3.6 Partial construction of graph G 62
3.7 Final construction of graph G 63
3.8 Illustration of $\Delta_{E}\left(v^{\prime}\right)$ and $\Delta_{E}\left(v^{\prime \prime}\right)$ 63
3.9 Illustration of $\Delta_{E}\left(v^{\prime}\right)$ and $\Delta_{E}\left(v^{\prime \prime}\right)$ 65
3.10 Construction of graph G for Theorem 3.3 67
3.11 Construction of graph G for Theorem 3.4, with $k=2$ 69
3.12 Construction of graph G for Theorem 3.5, with $k=3$ 70
3.13 Construction of G^{\prime} 75
3.14 Consequences of having $\left|\delta_{G^{\prime}}^{-}\left(v_{i}\right)\right|=2$ 76
3.15 Instance showing the tightness of Merge Algorithm's approximation ratio 76
3.16 An overview of the complexity of U-SNP. 77
4.1 Progress of lower and upper bounds 81
4.2 An instance of U-SNP 88
4.3 Asymptotic analysis of the integrality gap 92
4.4 Illustration of $\mathcal{P}_{(V, E, C)}$ and $P_{(V, E, C)}$ 111
4.5 Progress of lower bounds 115
4.6 Example of instance where strong capacity inequalities are useless 116
4.7 How a k-cardinality tree gets dominated. Full edges in S^{\prime}, dashed edges in $S \backslash S^{\prime \prime}$ 122
4.8 A 3-cardinality tree associated with inequalities (4.41) 123
4.9 Non-facet-defining k-cardinality tree. Full edges in S, dashed edge in $E \backslash S$. 124
4.10 Illustration of $G[S]$ rooted at r. Demands in $T_{u^{\prime}} \cup T_{v^{\prime}}$ are assigned to vehicle i^{\prime} on solution (\bar{x}, \bar{y}) 129
4.11 Illustration of T_{v}, where v has 3 children and u is the parent of v 131
4.12 An instance where there is no k-cardinality tree inequality 132
4.13 Illustration of the obtained fractional solution 132
4.14 Illustration of the fractional solution obtained after the inclusion of k-cardinality forest inequalities. 135
4.15 How a k-cover tree gets dominated. 137
4.16 Illustration of the integer solution obtained after the inclusion of k - cover tree inequalities. 138
4.17 Illustration of the obtained fractional solution 143
5.1 Two symmetric solutions 146
5.2 Example of instance where $p_{\text {opt }}=\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil$. 155
5.3 Comparison of gap progression 162
5.4 Comparison of gap progression 168

List of Tables

4.1 Computational results of formulation (4.1)-(4.6) 82
4.2 How Strong Capacity inequalities reinforce the formulation 113
5.1 Comparison between symmetry-breaking methods 151
5.2 Impact of the new upper bound on $p_{\text {opt }}$ 156
5.3 Comparison between relaxations 159
5.4 Impact of the inclusion of k-cardinality tree inequalities 169
5.5 Impact of the inclusion of girth inequalities 173
5.6 Final results 177
A. 1 Detailed results of formulation $\operatorname{USNP}_{(V, E, C)}$ 193
A. 2 Detailed results for the comparison of symmetry-breaking methods 202
A. 3 Detailed results for evaluation of the impact of the new upper bound on $p_{\text {opt }}$ 211
A. 4 Detailed results for comparison between different relaxations 220

Introduction

"Begin at the beginning, the King said gravely, and go on till you come to the end: then stop."

- Lewis Carroll, Alice in Wonderland

Combinatorial optimization is a significant topic in computer science combining applied mathematics, algorithms and computation theory. A combinatorial optimization problem is typically stated as choosing the best element among a finite set of possibilities and generally arises - but not exclusively - from practical situations. Main applications areas include logistics and supply chains, manufacturing, transport, team and portfolio management, telecommunications, finance and many others.

More formally, given a finite set of elements $N=\{1, \ldots, n\}$, a family \mathcal{F} of subsets $F \subseteq N$ and a cost function $c: N \rightarrow \mathbb{R}$, a combinatorial optimization problem consists on determining an element $F \in \mathcal{F}$ such that $c(F)$ is maximum (or minimum) over \mathcal{F}. Such problems may appear easy to solve at first sight. For instance, an straightforward approach would be trying to enumerate all elements in \mathcal{F} - recall that \mathcal{F} is finite! - and simply choosing the best one according to the cost function c. Nevertheless, more often than not such family is composed of a very large (e.g., exponential in the size of N) number of elements, which prevents the problem's resolution through such approach within a life-time period using a limited resourced computer.

This observation has led scientists to investigate and develop cleverer and fancier methods to solve this kind of problems. Linear and integer programming as well as algorithms based on dynamic programming and/or min-max relationships between combinatorial structures are examples of such methods. However, even with all the knowledge developed throughout the history of computer science, some combinatorial problems are still hard to solve. This means that no algorithm with running time bounded by a polynomial function in the size of its input is known.

Among these hard problems, a certain class of problems stands out: the so-called
$\mathcal{N} \mathcal{P}$-Hard problems. Informally, a problem belongs to the $\mathcal{N} \mathcal{P}$-Hard class if it is at least as hard as any other problem in the $\mathcal{N} \mathcal{P}$ class, and a problem is in $\mathcal{N P}$ if it can be formulated as a yes-no question such that the instances where the answer is "yes" have efficiently verifiable proofs. With respect to combinatorial problems, this amounts to say that a combinatorial problem is in $\mathcal{N P}$ if it can be formulated through the question of whether or not there exists an element $F \in \mathcal{F}$ such that $c(F)$ is at least (or at most) a given value $B \in \mathbb{R}$, and $c(F)$ can be computed in polynomial time.

For $\mathcal{N} \mathcal{P}$-Hard problems, it is known that if an efficient algorithm exists for a single $\mathcal{N} \mathcal{P}$-Hard problem, then all $\mathcal{N} \mathcal{P}$-Hard problems can also be solved in polynomial time. Such property guided researchers to impose a dichotomy between efficiently verifiable problems (class $\mathcal{N} \mathcal{P}$) and efficiently solvable problems (class \mathcal{P}). Whether or not these two classes are equivalent has never been proved and remains one of the golden open questions in computer science. However, it is widely accepted that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

The needs for efficient algorithms to solve real-world problems has never ceased to increase since the construction of the first computers in the 40's. In this scenario, whenever a new combinatorial problem is proposed, one of the first questions one asks himself is whether such problem is in \mathcal{P} or in $\mathcal{N} \mathcal{P}$-Hard. If one is capable of proving that the problem belongs to $\mathcal{N} \mathcal{P}$-Hard, then an efficient algorithm for solving this problem is unlikely (to say the least) to be conceivable. On the other hand, $\mathcal{N} \mathcal{P}$-Hard combinatorial problems have plenty of applications in practice, and therefore it is unwise and counter-productive to just ignore them. Instead, for such problems one must aim at solving it not through a polynomial time algorithm but with a suitable algorithm, that is, as efficiently as possible.

The polyhedral approach, developed by Jack Edmonds in the 60's (see Edmonds [59]) over the maximum matching problem, combines the ideas behind linear and integer programming together with the concepts of discrete geometry in order to solve combinatorial problems. It consists on formulating a combinatorial problem as a linear program describing the polyhedron corresponding to the convex hull of its solutions.

Nonetheless, a complete description of such polyhedron might be tricky to obtain and often enough an exponential number of inequalities is needed. Luckily, when solving a combinatorial problem, a partial description of the convex hull of its solutions might be sufficient for solving it in polynomial time. A typical strategy is hence to develop a Branch-and-Cut framework capable of adding inequalities from such description on demand. In this sense, the work of Grötschel et al. [82] plays an
important role by stating that a combinatorial problem can be solved in polynomial time if and only if there exists a polynomial time algorithm capable of solving the associated separation problem, that is, given a point x, decide whether or not x belongs to the polyhedron and, if not, provide an inequality that separates x from the polyhedron. Accordingly, for $\mathcal{N} \mathcal{P}$-Hard combinatorial problems, one should expect the associated separation problem to be also $\mathcal{N} \mathcal{P}$-Hard. In such cases, one can still benefit from polyhedral approaches by trying to solve the associated separation problem heuristically. Such approach can hence be exploited to yield valid inequalities capable of enhancing the linear relaxation of a given formulation.

Polyhedral approaches have been given great attention in the past fifty years, from both theoretical and practical perspectives, and have proved to be powerful for optimally solving hard combinatorial problems. Indeed, many important state-of-the-art algorithms for solving such problems take advantage of the polyhedral approach. Among these, one of the most famous is the Concorde TSP Solver, a Branch-and-Cut based algorithm treating the classic Travelling Salesman Problem (see Applegate et al. [4, 6]).

In this thesis, we face a new combinatorial problem called the Stop Number Minimization Problem arising from the management of a fleet of autonomous vehicles and first introduced in Pimenta et al. [151]. In such problem, a fleet of identical capacitated vehicles travels through a predefined circuit with fixed stations, while customers demand for a ride between stations of their choice. Assigning a customer demand to a vehicle imposes such vehicle to stop for picking-up the customer at its departure station, carry it until its destination, and stop again for dropping it off at its destination station. The problem consists then in assigning each customer demand to a vehicle such that its capacity is respected all along the circuit and the total number of pick-up and drop-off operations is minimized.

In Chapter 1, an important and introductory background on the concepts exploited throughout this dissertation is provided. In Chapter 2, the context on which Stop Number problem arises is described in detail and the state-of-the-art concerning such problem is presented. Chapter 3 focus on the investigation of the problem's complexity, answering an open conjecture due to Pimenta et al. [151] and giving rise to new results that can be extended to other related problems. Once the problem is shown to belong to the class of $\mathcal{N} \mathcal{P}$-Hard problems, a polyhedral study is conducted in Chapter 4, yielding new facet-defining valid inequalities. In Chapter 5, the practical point of view is investigated. The symmetry hidden behind solutions of the Stop Number Minimization Problem is investigated and showed to slow down standard Mixed Integer Linear Programming performances. In order to counter such property, symmetry-breaking methods are developed and implemented for boosting
the computational results. Finally, a Branch-and-Cut framework is described and implemented where the valid inequalities previously presented are introduced to the formulation on demand. The implementation is made under C++ language using the standard Mixed Integer Linear Program solver IBM ILOG CPLEX 12.8 coupled with CPLEX Concert Technology. For the implementation of common data structures such as graphs the COIN-OR LEMON C++ library is exploited.

Chapter 1

Preliminaries and notation

> "It is worth noting that the notation facilitates discovery. This, in a most wonderful way, reduces the mind's labour."

- Gottfried W Leibniz

This chapter introduces some preliminary definitions, notation and background knowledge that will ease the reader's effort throughout this dissertation.

1.1 Graph Theory

The terminology employed is standard and follows the one applied in Diestel [54].
Graphs, vertices and edges. A simple graph is an ordered pair $G=(V, E)$, where V is a finite set of objects whose elements are called vertices, and E is a finite set of pairs of vertices in V called edges. Given a graph G, its vertex set is denoted by $V(G)$, and its edge set is denoted by $E(G)$. If set E is composed of unordered pairs of vertices, the graph is referred to as undirected. In contrast, if E is composed of ordered pairs of vertices, the graph is referred to as directed.

Endpoints, incidence and degree. For simplicity, an edge $\{u, v\} \in E$ can also be denoted by $u v$. Moreover, sets composed by a single element x can be simply represented by x instead of $\{x\}$. Given an edge $e=u v$, vertices u and v are called the endpoints of e. For a given graph $G=(V, E)$, we say that an edge $e \in E$ is incident to $v \in V$ if v is one of the endpoints of e. The set of edges incident to $v \in V$ is denoted by $\delta_{G}(v)$, or simply $\delta(v)$ if graph G is clear from context. The degree of a vertex $v \in V$ (i.e., the number of edges incident to $v \in V$), is denoted by $\operatorname{deg}_{G}(v)$, or simply $\operatorname{deg}(v)$ if graph G is clear from context.

Parallel edges and multigraphs. Two or more edges with the same endpoints are called multiple (or parallel) edges. In this case, E is a multiset. If $G=(V, E)$ admits multiple edges, the graph is referred to as a multigraph. An edge $e \in E$ such that $e=u u$ with $u \in V$ is called a loop.

Subgraphs and inductions. Given a graph $G=(V, E)$, the graph G^{\prime} is said to be a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$. For a subset of vertices $S \subseteq V(G)$, the set of edges in E having both endpoints in S, that is $\{u v \in E: u, v \in S\}$, is denoted by $E[S]$. We say that $E[S]$ is the set of edges induced (or spanned) by S. Moreover, we denote $G[S]=(S, E[S])$ the subgraph of G induced by the vertex set S. Analogously, for a subset of edges $S \subseteq E(G)$, the set of vertices induced (or spanned) by S is denoted by $V[S]$, and the subgraph of G induced by the edge set S is denoted by $G[S]=(V[S], S)$. A vertex-induced subgraph $G[S]$ is maximal (minimal) with respect to a given property if $G[S]$ satisfies such property but $G[S \cup v](G[S \backslash v])$ does not, for any given $v \in V(G) \backslash S$.

Paths and cycles. A path is a non-empty graph P where $V(P)=\left\{v_{0}, v_{1}, \ldots\right.$, $\left.v_{n}\right\}$ and $E(P)=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$ such that vertices v_{i} are all distinct for $i=0, \ldots, n$. Vertices v_{0} and v_{n} are called the ends of path P. A path P with ends $s \in V(P)$ and $t \in V(P)$ is called an st-path. The length of a path is given by the number of its edges. Given a path P, the graph $C=\left(V(P), E(P) \cup v_{n} v_{0}\right)$ is called a cycle.

Partitions and connectivity. An edge-partition of a graph G is a set $\Pi=$ $\left\{S_{1}, \ldots, S_{k}\right\}$ of subsets of $E(G)$ where subsets in Π are pairwise disjoint and their union gives $E(G)$. In other words, $\Pi=\left\{S_{1}, \ldots, S_{k}\right\}$ is an edge-partition of G if $\bigcup_{i=1}^{k} S_{i}=E(G)$ and $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$. Analogously, a vertex-partition of a graph G is a set $\Pi=\left\{S_{1}, \ldots, S_{k}\right\}$ of subsets of $V(G)$ where subsets in Π are pairwise disjoint and their union gives $V(G)$. That is to say, $\Pi=\left\{S_{1}, \ldots, S_{k}\right\}$ is a vertexpartition of G if $\bigcup_{i=1}^{k} S_{i}=V(G)$ and $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$. A graph G is said to be connected if there exists an st-path between any two vertices $s \in V(G)$ and $t \in V(G)$. A connected component of G is a maximal connected vertex-induced subgraph of G. A graph can be partitioned into its connected components (see Figure 1.1).

Figure 1.1: Partition of a graph \bar{G} into its connected components

Trees and forests. If a graph $T=(V, E)$ is acyclic, then it is called a forest. If T is also connected, then it is called a tree. A vertex $v \in V$ is called a leaf if $\operatorname{deg}_{T}(v)=1$. Analogously, an edge $u v \in E$ is called a leaf-edge if either u or v is a leaf. In contrast, a vertex $v \in V$ is called an internal vertex if $\operatorname{deg}_{T}(v) \geq 2$. A rooted tree is a tree with a distinguished vertex r called the root. For a rooted tree T, we say that a node $u \prec v$ if u lies in the unique path from r to v. For a given edge $u v \in E(T)$, if $u \prec v$, we say that u is the parent of v and v is a child of u. The set of the children of v on a rooted tree T is denoted by $\operatorname{ch}_{T}(v)$ (or simply ch (v), if the tree in question is implied by the context). If v is a leaf (and v is not the root), then $\operatorname{ch}_{T}(v)=\emptyset$. Given a rooted tree T, the rooted subtree of T that is rooted in a node $v \in V(T)$ is denoted by T_{v}. Notice that node $v^{\prime} \in V(T)$ belongs to T_{v} if and only if v lies in the unique path from r to v (see Figure 1.2). By definition, $T_{r}=T$.

Figure 1.2: Rooted Trees

Complements and cuts. Given a subset of vertices $S \subseteq V$ within a graph $G=(V, E)$, the complement of S, denoted by \bar{S}, is the set of vertices in $V \backslash S$. The cut induced by S, denoted by $\delta_{G}(S)$, is the set of edges having exactly one endpoint in S and one in \bar{S}. Precisely, $\delta_{G}(S)=\{u v \in E(G): u \in S, v \in \bar{S}\}$.

Complete, bipartite and complete bipartite graphs. A graph $G=(V, E)$ is said to be complete if there exists an edge between every pair of vertices (i.e., $u v \in E$ for any $u \in V$ and $v \in V)$. The complete graph with n vertices is denoted by K_{n}. A graph $G=(V, E)$ is said to be bipartite if there exists some subset $S \subseteq V$, for which $\delta_{G}(S)=E$. Equivalently, a graph G is bipartite if and only if it does not contain an odd cycle (i.e., a cycle with an odd number of edges). A graph $G=(V, E)$ is said to be complete bipartite if there exists some subset $S \subseteq V$, for which $\delta_{G}(S)=E$ and $u v \in E$ for any $u \in S$ and $v \in \bar{S}$. The complete bipartite graph with $|S|=n$ and $|\bar{S}|=m$ is denoted by $K_{n, m}$. The complete bipartite graph $K_{1, n}$ is called a star. A star can also be seen as a tree with n leaves and one internal vertex. A star with exactly 3 edges is called a claw.

Deletions, contractions and subdivisions. Given a graph $G=(V, E)$, the graph obtained by deleting some edge $e \in E$ is $G^{\prime}=(V, E \backslash e)$. On the other hand, the graph obtained by deleting some vertex $v \in V$ is $G^{\prime}=\left(V \backslash v, E \backslash \delta_{G}(v)\right)$. The contraction of an edge $u v \in E$ is done by deleting edge $u v$ and merging vertices u and v into a new vertex v^{\prime} (see Figure 1.3). More formally, the graph obtained by contracting an edge $e \in E$ is $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, with the vertex set

$$
V^{\prime}:=V \backslash\{u, v\} \cup v^{\prime},
$$

where v^{\prime} is the new "merged" vertex (i.e., $v^{\prime} \notin V$), and the edge set

$$
E^{\prime}:=\left\{E \backslash\left\{\delta_{G}(u) \cup \delta_{G}(v)\right\}\right\} \cup\left\{w v^{\prime}: u w \in E \backslash u v \text { or } v w \in E \backslash u v\right\} .
$$

The subdivision of an edge $u v \in E$ corresponds to the replacement of $u v$ by two edges $u w$ and $w v$ along with a new vertex w (see Figure 1.3). The graph obtained from the subdivision of edge $u v \in E$ is therefore

$$
G^{\prime}=(V \cup w, E \backslash u v \cup\{u w, w v\}) .
$$

Figure 1.3: Contraction of node w and subdivision of edge $u v$

Minors and planar graphs. A graph H is called a minor of graph G if H can be obtained from G by deleting edges and vertices and by contracting edges. A graph $G=(V, E)$ is planar if it can be embedded in the plane without crossing edges. Equivalently, a graph is planar if and only if it does not contain either K_{5} or $K_{3,3}$ as a minor.

Throughout this dissertation, all assessed graphs are considered to be loopless. Moreover, unless explicitly mentioned, all graphs are taken to be undirected multigraphs.

1.2 Algorithms and Complexity

Before addressing algorithms and computational complexity theory, the notion of what a problem is - at least from an algorithmic point of view - should be clear to any reader. According to Garey and Johnson [74, p. 4], a problem can be defined as a general question, normally containing a number of parameters (also called input). In this sense, a problem is fully described by providing a generic description of all its parameters and a specification of which properties the answer (also called output) should possess. An instance of a given problem is a set of well-specified values for the problem's input.

Example 1.1 gives the description of a well-studied problem called Facility Location Problem (FLP), on which a group of customers must be served by not yet built facilities. A decision maker must then choose among a set of possibilities where to install (open) such facilities so that the total cost of serving customers and installing facilities is the minimum possible.

Example 1.1 - Facility Location Problem

Input: A set $C=\left\{c_{1}, \ldots, c_{n}\right\}$ of customers, a set $F=\left\{f_{1}, \ldots, f_{m}\right\}$ of candidate facility sites, a cost $c_{j} \in \mathbb{R}^{+}$for opening facility $j \in F$ and a cost $d_{i j} \in \mathbb{R}^{+}$for serving client $i \in C$ from facility $j \in F$.

Output: A subset $F^{\prime} \subseteq F$ of opened facilities that minimizes the sum of service costs from each customer to its nearest facility, plus the sum of opening costs of facilities in F^{\prime}.

A decision problem is a problem whose output is either "yes" or "no". An instance whose output is "yes" is called a yes-instance or a no-instance, otherwise. An optimization problem is a problem that aims at maximizing or minimizing a given objective. The problem described in Example 1.1 is classified as an optimization problem. Notice however, that every optimization problem can be translated into a decision problem, giving rise to the so-called associated decision problem. Example 1.2 describes the decision problem associated to FLP.

Example 1.2 - Decision Facility Location Problem

Input: A set $C=\left\{c_{1}, \ldots, c_{n}\right\}$ of customers, a set $F=\left\{f_{1}, \ldots, f_{m}\right\}$ of candidate facility sites, a cost $c_{j} \in \mathbb{R}^{+}$for opening facility $j \in F$, a cost $d_{i j} \in \mathbb{R}^{+}$for serving client $i \in C$ from facility $j \in F$, and a budget $B \in \mathbb{R}^{+}$.

Output: Is there a subset $F^{\prime} \subseteq F$ of opened facilities such that the sum of service costs from each customer to its nearest facility, plus the sum of opening costs of facilities in F^{\prime} is at most B ?

Algorithms are step-by-step procedures conceived for solving problems. An algorithm is said to solve a problem \mathcal{P}, if for any given instance \mathcal{I} of \mathcal{P}, it produces a correct answer for that instance \mathcal{I}. Computer programs are the concrete product of the implementation of an algorithm.

Like in real life, a problem may be approached from various angles and some might perform more or less efficiently than others. This means that for a single problem \mathcal{P}, there exists a great variety of algorithms solving \mathcal{P}, each being more or less efficient. Take for example, the problem of finding the greatest common divisor of two given integers a and b. A naive approach would be writing down a list of all divisors for both integers a and b, and then choosing the greatest one appearing in both lists. However, a much more efficient algorithm is known for solving such problem. Indeed, the greatest common divisor can be found in just a few steps through the well-known Euclid's Algorithm (see Stark [169, p. 16]).

By efficiency of an algorithm we refer to the amount of computational resources such as time or memory - a computer needs to execute it. In fact, time requirements are often enough a dominant factor. Whether or not an algorithm is useful in practice is considerably determined by the computational time it requires. It is funny to imagine that if the algorithm used to find a driver's best route on a GPS took 20 minutes to be executed instead of some fraction of seconds, people would still be using physical paper maps.

It should be clear that the computational time needed to run an algorithm depends on the instance's size. It is entirely rational to imagine that sorting a vector with 1,000 entries should take longer than one with 10 entries. In this regard, a standard way of measuring the time complexity of an algorithm is by providing an upper bound on the running time of its worst-case scenario, that is, the longest running time for any input of size n.

The big O notation is the most common metric for analyzing the worst-case running time of an algorithm. By relating the time complexity of an algorithm to the number of steps required to complete it, the big O notation describes the asymptotic behaviour of the algorithm's running time as its input size grows.

Definition 1.1 - Big O notation

Given two function $f, g: \mathbb{R} \rightarrow \mathbb{R}, g(n)$ is said to belong to $\mathcal{O}(f(n))$, that is, $g(n) \in$ $\mathcal{O}(f(n))$ if there exists positive constants $c, n_{0} \in \mathbb{R}^{+}$such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

A polynomial time algorithm is an algorithm whose running time is bounded above by a function in $\mathcal{O}(p(n))$ where p is a polynomial function and n is the input size. Conversely, an algorithm whose running time cannot be bounded above by a
function in $\mathcal{O}(p(n))$ is called an superpolynomial algorithm. An algorithm is called exponential time algorithm if its running time is bounded above by a function in $\mathcal{O}\left(2^{n^{k}}\right)$, for some constant k.

We have seen above that different algorithms may have different time complexity, but what about problems? Once again, just like in real life, there exists problems that seems to be harder to solve than others. The complexity of a problem is taken to be the complexity of the best known algorithm solving such problem. It should be intuitive for any reader that finding all the divisors of an integer seems to be a much more complicated task than finding the greatest common divisor of two given integers. Such intuition is not entirely wrong. Indeed, if one knows how to find all the divisors of an integer, the problem of finding the greatest common divisor of two given integers becomes trivial. For this reason, one may remark that the first problem is at least as hard as the latter one. However, even if one is able to come up with an efficient (say polynomial time) algorithm for the latter problem, this remark does not give any clue on how to solve the first problem.

Indeed, showing that no polynomial time algorithm exists for some given problem might be just as hard as designing a polynomial time algorithm that does solve the problem. As a matter of fact, there exists many interesting problems for which no one was able to find an efficient algorithm or to rule out the existence of such an algorithm. In contrast, what has been largely done is to classify the hardness of a problem by comparing it to another, just as we did above for the greatest common divisor problem.

The theory of $\mathcal{N} \mathcal{P}$-Completeness introduced independently by Cook [36] and Levin [119] in the early seventies, remains up to now the most famous and applied classification system of a problem's complexity. A problem belongs to \mathcal{P} (Polynomial) if it can be solved through a polynomial time algorithm. Examples of problems in \mathcal{P} are the Minimum Spanning Tree problem (Kruskal [111], Prim [152]) and the Matching problem (Edmonds [60]). Recently, the problem of determining whether or not a given integer is prime was shown to be in \mathcal{P} (Agrawal et al. [2]).

A problem belongs to $\mathcal{N P}$ (Nondeterministic Polynomial) if a solution of this problem can be checked to meet the required properties in polynomial time. Notice, that obviously $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$. Informally, the set of $\mathcal{N} \mathcal{P}$-Hard problems refers to problems that are at least as hard as the hardest problems in $\mathcal{N P}$.

A decision problem \mathcal{A} is said to be polynomially reducible to another decision problem \mathcal{B}, denoted by $\mathcal{A} \propto \mathcal{B}$, if there exists a polynomial time algorithm that transforms
i. any "yes"-instance of \mathcal{A} into a "yes"-instance of \mathcal{B}, and
ii. any "no"-instance of \mathcal{A} into a "no"-instance of \mathcal{B}.

Proving that a problem is at least as hard as a problem can be done through polynomial reductions. In fact, given two problems \mathcal{A} and \mathcal{B}, if $\mathcal{A} \propto \mathcal{B}$, then $\mathcal{B} \in \mathcal{P}$ implies that $\mathcal{A} \in \mathcal{P}$. Equivalently, if $\mathcal{A} \propto \mathcal{B}$, then $\mathcal{A} \notin \mathcal{P}$ implies that $\mathcal{B} \notin \mathcal{P}$. Therefore, if $\mathcal{A} \propto \mathcal{B}$, then \mathcal{B} is at least as hard as a problem \mathcal{A}.

Taking the notion of reducibility into account, the class of $\mathcal{N} \mathcal{P}$-Hard problems can now be formally defined. A problem \mathcal{A} is $\mathcal{N} \mathcal{P}$-Hard if $\mathcal{B} \propto \mathcal{A}$ for any problem $\mathcal{B} \in \mathcal{N} \mathcal{P}$. A problem is said to be $\mathcal{N} \mathcal{P}$-Complete if it belongs to $\mathcal{N} \mathcal{P}$ and $\mathcal{N} \mathcal{P}$-Hard. The Satisfiability problem was the first problem showed to be $\mathcal{N} \mathcal{P}$-Hard through the following theorem in the famous paper by Cook [36].

Theorem 1.1-Cook's Theorem

If $\mathcal{A} \in \mathcal{N} \mathcal{P}$, then $\mathcal{A} \propto$ Satisfiability .

After this first step, many other problems were proved to belong in the class of $\mathcal{N} \mathcal{P}$-Hard problems as, for this time, it would suffice showing Satisfiability $\propto \mathcal{A}$ in order to prove \mathcal{A} is $\mathcal{N} \mathcal{P}$-Hard. It is worth mentioning here the admirable work of Karp [103], where 21 fundamental problems were proved to be $\mathcal{N} \mathcal{P}$-Complete. Figure 1.4 illustrates the arrangement of the mentioned complexity classes.

Figure 1.4: Euler diagram for $\mathcal{N} \mathcal{P}$-Completeness theory

Whether or not there exists some problem in $\mathcal{N} \mathcal{P}$ that is neither in \mathcal{P} nor $\mathcal{N} \mathcal{P}$ Complete is a million dollar question and remains a mystery to this day (see Ladner [113]). Indeed, proving whether $\mathcal{P}=\mathcal{N} \mathcal{P}$ or $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ is one of the greatest unsolved problems of mathematics (see Carlson et al. [28], Clay Mathematics Institute [34]).

The theory of $\mathcal{N} \mathcal{P}$-Completeness addresses the issue of classifying a problem according to its complexity. Suppose however that an optimization problem P has been shown to be $\mathcal{N} \mathcal{P}$-Hard. The question of how to approach such problem remains unanswered. All we know is that a polynomial time algorithm capable of solving the problem P is not known and that one is unlikely to find such algorithm, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$. In this scenario, two main strategies arise. First, if the input sizes are small, a "good" exponential time algorithm might be suitable for solving P.

Second, one may be satisfied with obtaining near-optimal solutions in polynomial time instead of looking for the very best solution.

In practice, near-optimal solutions are often good enough. But how to define what is a near-optimal solution? To answer such question, one needs to know how far the solution under consideration is from the actual optimal solution. A polynomial time algorithm that provides a guarantee on the solution quality is called an approximation algorithm. In other words, an approximation algorithm is an algorithm capable of providing, in polynomial time, solutions that will never differ from the optimal solution by more than a given percentage.

Given an instance of input size n, a $f(n)$-approximation algorithm is an algorithm returning a solution that is at most $f(n)$ times worse than the optimal solution. If opt denotes the optimal solution cost of a given optimization problem P and y denotes the cost of the solution provided by the $f(n)$-approximation algorithm, then

$$
\max \left\{\frac{o p t}{y}, \frac{y}{o p t}\right\} \leq f(n)
$$

This definition applies for both maximization and minimization problems and $f(n)$ is called the approximation factor. If $f(n)=1$ then the algorithm under consideration is actually an exact algorithm.

Just like with the theory of $\mathcal{N} \mathcal{P}$-Completeness, one can classify problems according to their approximation complexity. Problems admitting a constant-factor approximation algorithm running in polynomial time form the class of $\mathcal{A P} \mathcal{X}$ problems. Problems in $\mathcal{A P} \mathcal{X}$ class include Vertex Cover, Max Cut and Travelling Salesman Problem with metric distances ($c f$. Vazirani [177], Papadimitriou and Yannakakis [144], Rosenkrantz et al. [161]).

A polynomial-time approximation scheme is an approximation algorithm that takes as input an instance of the problem under analysis and a real number $\epsilon \in \mathbb{R}$ such that for any fixed value of $\epsilon>0$, the algorithm yields, in polynomial time, a solution that is at most $1+\epsilon$ times worse than the optimal solution. Problems admitting a polynomial-time approximation scheme form the class of $\mathcal{P} \mathcal{T} \mathcal{A S}$.

Clearly, $\mathcal{P} \mathcal{T} \mathcal{A S} \subseteq \mathcal{A} \mathcal{P} \mathcal{X}$. An optimization problem is said be $\mathcal{A P} \mathcal{X}$-Complete if it can be approximated within a constant factor but does not admit an approximation factor of $1+\epsilon$ unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

1.3 Polyhedra

This section presents some fundamental concepts and results from polyhedral theory. The terminology employed is standard and follows the one applied in Schrijver [164]. For further references on the topic, the reader is referred to Schrijver [163], Bazaraa et al. [12].

The euclidean space of dimension n, denoted by \mathbb{E}^{n}, is the set of all vectors of dimension n. Unless explicitly specified, a vector $x \in \mathbb{E}^{n}$ will be seen as a column vector, that is, a column array of n numbers. A vector with all its components equal to zero is called the zero vector and is denoted by $\mathbf{0}$. Conversely, a vector with all its components equal to one is denoted by $\mathbf{1}$. The i-th unit vector, denoted by \mathbf{e}_{i}, is a vector with all its components equal to zero, except for the component in the i-th position, which equals 1 . An identity matrix, denoted by I, is a square matrix with ones on the main diagonal and zeros elsewhere, that is

$$
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Given $n \in \mathbb{N}, \mathbb{R}^{n} \subseteq \mathbb{E}^{n}$ ($\mathbb{Z}^{n} \subseteq \mathbb{E}^{n}$, respectively) stands for the set of all vectors of dimension n such that each of its components are real numbers (integer numbers, respectively). Analogously, given a set S, \mathbb{R}^{S} (\mathbb{Z}^{S}, respectively) is also employed to refer to the set of all vectors of dimension $|S|$ with real (integer, respectively) components, each being associated to one specific element in S. A vector $x \in \mathbb{R}^{n}$ is said to be integral if each of its components are integer values. In other words, $x \in \mathbb{Z}^{n}$. If at least one of its components is a fraction, it is said to be a fractional vector.

A hyperplane $H \subset \mathbb{R}^{n}$ is the set of vectors $x \in \mathbb{R}^{n}$ defined as $H=\left\{x: a^{T} x=b\right\}$, where a is a nonzero vector in \mathbb{R}^{n}, and b is a real number. In other words, a hyperplane consists of all real vectors x satisfying the equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=b .
$$

A hyperplane can be seen as the generalization of the straight line in \mathbb{R}^{2}, or the plane in \mathbb{R}^{3}. It divides the euclidean space \mathbb{E}^{n} into two regions, called halfspaces denoted by $H^{\geq}=\left\{x: a^{T} x \geq b\right\}$ and $H^{\leq}=\left\{x: a^{T} x \leq b\right\}$. Figure 1.5 illustrates a hyperplane in \mathbb{R}^{2}.

Figure 1.5: Hyperplane and halfspaces

A vector $x \in \mathbb{R}^{n}$ is said to be a linear combination of vectors $a_{1}, a_{2}, \ldots, a_{k}$ in \mathbb{R}^{n}, if

$$
x=\sum_{i=1}^{k} \lambda_{i} a_{i},
$$

where coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are real numbers. A conical combination is a linear combination with non-negative coefficients. A convex combination has the additional conditions that $\sum_{i=1}^{k} \lambda_{i}=1$ and $0 \leq \lambda_{i} \leq 1$.

A finite collection of vectors is said to be linearly independent if and only if $\lambda_{i}=0$ for any $i \in\{1, \ldots, k\}$ is the only solution to

$$
\sum_{i=1}^{k} \lambda_{i} a_{i}=\mathbf{0} .
$$

Analogously, a finite collection of vectors $a_{1}, a_{2}, \ldots, a_{k}$ in \mathbb{R}^{n} is said to be affinely independent if and only if the only solution to the system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} \lambda_{i} a_{i}=\mathbf{0} \\
\sum_{i=1}^{k} \lambda_{i}=0
\end{array}\right.
$$

is $\lambda_{i}=0$ for any $i \in\{1, \ldots, k\}$. Linear independence clearly implies affine independence, but the opposite might not hold.

A set $S \subseteq E^{n}$ is said to be convex if for any two given points x_{a} and x_{b} in X, then

$$
\lambda x_{a}+(1-\lambda) x_{b} \in X \quad \forall \lambda \in[0,1] .
$$

In other words, S is a convex set if and only if all points lying on the segment of line between any $x_{a} \in S$ and $x_{b} \in S$ belong to S (see Figure 1.6). Notice that a halfspace is, by definition, a convex set. Moreover, the intersection of convex sets is also a convex set.

A polyhedron is the intersection of finitely many halfspaces. As a result, a polyhedron is convex. Since each halfspace can be defined through an inequality $a^{T} x \leq b$,

Figure 1.6: Examples of convex and non-convex sets
a polyhedron P can be represented by the system $A x \leq \mathbf{b}$, where A is the matrix composed by vectors a^{T} and \mathbf{b} is the vector composed by the independent terms b. In other words, $P=\left\{x \in \mathbb{R}^{n}: A x \leq \mathbf{b}\right\}$. A polytope P is a polyhedron bounded in all directions. That is, there exists a number $k \in \mathbb{R}$ such that $\|x\| \leq k$ for any $x \in P$.

An inequality $a^{T} x \leq b$ is called an implicit equality from polyhedron $P \subseteq \mathbb{R}^{n}$ if $P \subseteq\left\{x \in \mathbb{R}^{n}: a^{T} x=b\right\}$. The dimension of a polyhedron $P \subseteq \mathbb{R}^{n}$, denoted by $\operatorname{dim}(P)$, is the maximum number of affinely independent vectors in P minus one. A polyhedron is called full-dimensional if one can find $n+1$ affinely independent vectors in P, that is $\operatorname{dim}(P)=n$.

A vector x in a polyhedron $P=\{x: A x \leq \mathbf{b}, x \geq 0\}$ is called an extreme point of P, if x cannot be written as a strict convex combination of two distinct vectors x_{a} and x_{b} in P. That is, if

$$
x=\lambda x_{a}+(1-\lambda) x_{b} \in P,
$$

with $0<\lambda<1$ and $x_{a}, x_{b} \in P$, then $x=x_{a}=x_{b}$.
Notice that if P is a non-empty polytope, then the set of extreme points is not empty and finite. As a result, any vector $x \in P$ can be written as a convex combination of its extreme points. Figure 1.7 exhibits some examples of extreme and non-extreme points of a non-empty polytope : x_{1} is an extreme point whilst x_{2} and x_{3} are not.

Figure 1.7: Examples of extreme and non-extreme points

A polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is said to be an integral polyhedron if and
only if all its extreme points are integral vectors. A matrix A is said to be totally unimodular if each non-singular square sub-matrix of A has determinant $0,+1$ or -1 . A noteworthy link between totally unimodularity and integral polyhedrons is given by the following theorem due to Hoffman and Kruskal [92]:

Theorem 1.2-Hoffman and Kruskal's theorem

Let A be an integral matrix. Then A is totally unimodular if and only if for each integral vector b, the polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b, x \geq 0\right\}$ is integral.

An alternative characterization of totally unimodular matrices due to GhouilaHouri [77] is presented in the following theorem:

Theorem 1.3-Ghouila-Houri's characterization of total unimodularity

Let A be an integral matrix. Then A is totally unimodular if and only if each collection of columns of A can be split into two parts so that the sum of the columns in the first part minus the sum of the columns in the second part is a vector with entries $0,+1$, and -1 .

The following theorem is a result developed in many works (cf. Heller and Tompkins [89], Hoffman and Kruskal [92], Hoffman and Kuhn [93], Motzkin [135]) and can easily be deduced from Ghouila-Houri's characterization in Theorem 1.3. It will be particularly useful in Section 4.2.

Theorem 1.4 - Bipartite graphs and total unimodularity

Let $G=(V, E)$ be a graph and let A be the $V \times E$-incidence matrix of G. In other words, A is the $\{0,1\}$-matrix with rows and columns indexed by the vertices and edges of G, respectively, such that $A_{v e}=1$ if and only if $v \in V$ is an endpoint of $e \in E$. Then A is totally unimodular if and only if G is bipartite.

1.4 Linear optimization

A linear optimization problem (LP) consists of finding the vector $x \in \mathbb{R}^{n}$ that maximizes (or minimizes) a linear function $f(x)$ over a finite set of linear inequalities $A x \leq b$, where A is a $n \times m$ matrix and $b \in \mathbb{R}^{m}$. Therefore, a linear optimization problem can be stated as

$$
\begin{equation*}
\max \left\{f(x)=c^{T} x: A x \leq b\right\} . \tag{1.1}
\end{equation*}
$$

Since a polyhedron P can be represented by a system of linear inequalities (i.e. $P=\{x: A x \leq b\}$), the optimization problem can be equivalently represented by

$$
\max \left\{c^{T} x: x \in P\right\} .
$$

A vector $x \in \mathbb{R}^{n}$ is a feasible solution for the system of linear inequalities $A x \leq b$ if it satisfies all inequalities in $A x \leq b$. If the system of inequalities does not admit any feasible solution, that is $P=\emptyset$, the problem is said to be infeasible.

The linear function $c^{T} x$ is called the objective function, and vector $c \in \mathbb{R}^{n}$ is also known as the gradient since it gives the direction on which the objective function grows. A feasible solution x that maximizes (or minimizes) the objective function is called an optimal solution. If a problem has a feasible solution but does not have an optimal solution (i.e., the associated polyhedron is not bounded in the direction of the gradient), the problem is said to be unbounded.

Theorem 1.5 gives a relation between optimal solutions of $\max \left\{c^{T} x: x \in P\right\}$ and the extreme points of P. We consider here only the case where P is a nonempty polytope, since the problems treated in this dissertation do not admit an unbounded polyhedron. A more general result, considering the case where P is any polyhedron, can be found in Bazaraa et al. [12, p. 91].

Theorem 1.5- Optimal solutions vs. Extreme points

Given a non-empty polytope $P=\{x: A x \leq b\}$, the optimal solution of the linear optimization problem $\max \left\{c^{T} x: x \in P\right\}$ occurs in at least one extreme point of P.

Proof. Let $\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{k}}$ denote the extreme points of P. Recall that any point in P can be written as the convex combination of its extreme points. Therefore, the optimization problem can be rewritten as:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{i=1}^{k}\left(c^{T} \bar{x}_{i}\right) \lambda_{i} & \\
\text { subject to } & \sum_{i=1}^{k} \lambda_{i}=1 \\
& \lambda_{i} & \geq 0 \quad \forall i=1, \ldots, k
\end{array}
$$

To solve this problem, one may simply search for the smallest $c^{T} \bar{x}_{i}$, say $\overline{x_{p}}$, and assign $\lambda_{p}=1$ while all other λ_{i} 's get a value of zero. The extreme point $\overline{x_{p}}$ is thus an optimal solution of $\max \left\{c^{T} x: x \in P\right\}$.

Based on this strong property of linear optimization problems, George B. Dantzig developed in 1947 the famous simplex method (see Dantzig [44]), which looks for a starting extreme point and walks through the edges of the polyhedron, jumping between adjacent extreme points, according to the problem's gradient. Figure 1.8 illustrate the procedure of simplex algorithm over a polyhedron. For further details
on the simplex method and how it was conceived, the reader is referred to Dantzig [45, p. 94-119] and Dantzig [46].

Figure 1.8: Simplex method overview

Simplex method, although quite efficient in practice, was shown to have exponential behaviour in some well-designed instances by Klee and Minty [107]. It was not until 1979 that solving a linear optimization problem was shown to be possible in polynomial time with the development of ellipsoid and interior-point methods, due to Khachiyan [104] and Karmarkar [102], respectively.

If a linear optimization problem is stated as indicated in (1.1), then its dual problem is

$$
\begin{equation*}
\min \left\{g(y)=y^{T} b: y^{T} A \geq c\right\} . \tag{1.2}
\end{equation*}
$$

Conversely, problem (1.1) is called the primal problem. Notice that the dual of (1.2) is exactly the problem (1.1).

Duality is a key concept in linear optimization that develops the relationship between two specific linear optimization problems - the primal and dual problems. We restate here two of the most important results concerning duality attributed to Von Neumann [178] and Gale et al. [71], that shall be helpful for some of the results proposed in this dissertation. For further material about duality theory, the reader is referred to Dantzig [45, p. 120-144].

Theorem 1.6-Weak Duality Theorem

If x and y are feasible solutions for (1.1) and (1.2), respectively, then

$$
y^{T} b \geq c^{T} x .
$$

As a result, any feasible solution of problem (1.2) provides an upper bound to problem (1.1). Conversely, any feasible solution of problem (1.1) provides a lower bound to problem (1.1). Moreover, if the primal is unbounded, then the dual is infeasible (and vice-versa).

Theorem 1.7-Strong Duality Theorem

If x and y are feasible solutions of equal objective function value for (1.1) and (1.2), respectively, then x and y are optimal solutions of the respective problems.

1.5 Integer and combinatorial optimization

An integer linear optimization problem (ILP) is a linear optimization problem with the additional restriction that each variable admits only integer values. The formulation of an ILP can thus be stated as

$$
\max \left\{f(x)=c^{T} x: A x \leq b, x \in \mathbb{Z}^{n}\right\},
$$

or equivalently as

$$
\max \left\{f(x)=c^{T} x: x \in P, x \in \mathbb{Z}^{n}\right\}
$$

where P is a polyhedron.
If only a subset of the variables has this additional restriction, the problem called a mixed-integer linear optimization problem (MILP), and can be stated as

$$
\max \left\{f(x, y)=c^{T} x+h^{T} y: A x+D y \leq b, x \in \mathbb{Z}^{n}, y \in \mathbb{R}^{p}\right\} .
$$

Figure 1.9 illustrates the difference of the feasible solution sets of a LP, an ILP and a MILP over the polytope $P=\{(x, y): 2 y-x \leq 3, y+x \leq 4, x \geq 0, y \geq 0\}$.

Figure 1.9: Illustration of feasible solution sets

Given a finite subset $S \subseteq \mathbb{R}^{n}$, the convex hull of S, denoted by $\operatorname{conv}(S)$, is the smallest convex set containing S. In other words, $\operatorname{conv}(S)$ is the set of all vectors in \mathbb{R}^{n} that can be written as the convex combination of vectors in S.

The following fundamental theorem of integer programming, due to Meyer [132], states that given a polyhedron $P \subseteq \mathbb{R}^{n}$, the convex hull $\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$ is also a rational polyhedron. Figure 1.10 illustrates such fact.

Theorem 1.8-Fundamental Theorem of Integer Programming

Let $P=\{(x, y): A x+D y \leq b\}$ and $S=\left\{(x, y) \in P: x \in \mathbb{Z}^{n}\right\}$, where A and D are rational matrices and b is a rational vector. Then, there exists rational matrices A^{\prime}, D^{\prime} and a rational vector b^{\prime} such that

$$
\operatorname{conv}(S)=\left\{(x, y): A^{\prime} x+D^{\prime} y \leq b^{\prime}\right\}
$$

To its fullest extent, Theorem 1.8 precises that solving the LP $\max \left\{c^{T} x: x \in\right.$ $\left.\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)\right\}$, yields an optimal solution for the $\left.\operatorname{ILP} \max \left\{c^{T} x: x \in P, x \in \mathbb{Z}^{n}\right)\right\}$. Moreover, from Figure 1.10 it is easy to see that one single ILP may have an infinite number of formulations. Indeed, two polyhedrons P_{1} and P_{2} induce valid formulations for an ILP if and only if $P_{1} \cap \mathbb{Z}^{n}=P_{2} \cap \mathbb{Z}^{n}$.

Given a finite set $N=\{1, \ldots, n\}$ and weights $c_{i} \in \mathbb{R}$ for each $i \in N$, let \mathcal{F} be a family of feasible subsets $F \subseteq N$ (feasible solutions). Then, finding a maximum (or minimum) weight feasible subset is called a combinatorial optimization problem. In other words, a combinatorial optimization problem can be stated as

$$
\begin{equation*}
\max \left\{\sum_{i \in F} c_{i}: F \in \mathcal{F}\right\} \tag{1.3}
\end{equation*}
$$

For a given set $F \in \mathcal{F}$, the incidence vector $x^{F} \in\{0,1\}^{n}$ is defined as follows

$$
x_{i}^{F}= \begin{cases}0, & \text { if } i \in F \\ 1, & \text { otherwise }\end{cases}
$$

It follows directly that the combinatorial optimization problem (1.3) may be rewritten as

$$
\max \left\{\sum_{i \in N} c_{i} x_{i}^{F}: x^{F} \in S\right\}
$$

where $S \subseteq\{0,1\}^{n}$ is the set of incident vectors of \mathcal{F}.
Finally, from Theorem 1.5 and Theorem 1.8, it is easy to see that

$$
\max \left\{\sum_{i \in N} c_{i} x_{i}^{F}: x^{F} \in S\right\}=\max \left\{\sum_{i \in N} c_{i} x_{i}^{F}: x^{F} \in \operatorname{conv}(S)\right\} .
$$

In other words, the combinatorial problem (1.3) reduces to a linear problem over the convex hull of its feasible solutions. For an example of application of such theory, the reader is referred to the beautiful paper of Edmonds [59].

Gathering these results together with the fact that linear optimization problems can be solved in polynomial time (through ellipsoid and interior point methods), one might imagine that ILP's can be solved in polynomial time, once the convex hull of its feasible solutions, $\operatorname{conv}(S)$, is known. Unfortunately, obtaining a complete linear description of $\operatorname{conv}(S)$ is usually a difficult task. It turns out that unlike for LP's, no polynomial-time algorithm for solving a general ILP is known. Indeed, the problem of solving an ILP has been shown to be $\mathcal{N} \mathcal{P}$-Complete. With a polynomial reduction from Satisfiability problem, Karp [103] showed its membership to the class of $\mathcal{N} \mathcal{P}$-Hard problems and its membership in $\mathcal{N} \mathcal{P}$ was proved in Borosh and Treybig [18].

Two of the most famous algorithms for solving ILP's (and MILP's) are based on the concept of linear relaxation. The following statements will be given for ILP's but can obviously be extended for MILP's. Given an ILP $\max \left\{f(x)=c^{T} x: A x \leq b\right.$, $\left.x \in \mathbb{Z}^{n}\right\}$, its linear relaxation is the LP $\max \left\{f(x)=c^{T} x: A x \leq b, x \in \mathbb{R}^{n}\right\}$ obtained by dropping the integrality constraints.

The Branch-and-Bound algorithm proposed by Land and Doig [115] has been largely applied for solving $\mathcal{N} \mathcal{P}$-Hard optimization problems. Given a maximization ILP $\max \left\{c^{T} x: x \in P, x \in \mathbb{Z}^{n}\right\}$, the Branch-and-Bound algorithm consists of subdividing P into increasingly smaller polyhedrons through the branching procedure. For this, one has to solve the ILP's linear relaxation. If the optimal solution found x^{*} is integer, then it is also an optimal solution for the ILP. Otherwise, given a fractional component x_{i}^{*} of x^{*}, one constructs two new polyhedrons $P_{1}=\left\{x \in P, x_{i} \geq\left\lceil x_{i}^{*}\right\rceil\right\}$ and $P_{2}=\left\{x \in P, x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor\right\}$. Such procedure is repeated, constructing the so-called Branch-and-Bound tree, until every leaf of the tree yields an integer solution or no solution at all (characterizing infeasibility). Then, the optimal solution of the ILP is
the best solution among all such integer solutions. In order to shorten the branching procedure, branches on which there are proofs that one cannot find an optimal solution inside are pruned. Such proofs are gathered through the continuous updates on the upper and lower bounds and will be discussed more extensively later. For supplementary information on how Branch-and-Bound works the reader is referred to Wolsey [181, p.91].

The algorithm's performance relies considerably on obtaining "good" bounds. Notice that the linear relaxation of an ILP yields an upper bound for a given maximization ILP, that is

$$
\max \left\{c^{T} x: A x \leq b, x \in \mathbb{Z}^{n}\right\} \leq \max \left\{c^{T} x: A x \leq b, x \in \mathbb{R}^{n}\right\}
$$

Similarly, the linear relaxation yields a lower bound for a minimization ILP. For this reason, given two formulations P_{1} and P_{2} for the same ILP, P_{1} is said to be stronger than P_{2} if $P_{1} \subset P_{2}$. Alternatively, P_{1} is said to be stronger than P_{2} if the linear relaxation of P_{1} provides a better bound than the linear relaxation of P_{2} for any given objective function. That is,

$$
\max \left\{c^{T} x: x \in P_{1}\right\} \leq \max \left\{c^{T} x: x \in P_{2}\right\} \quad \forall c \in \mathbb{R}^{n}
$$

Let $\mathrm{OPT}=\max \left\{c^{T} x: A x \leq b, x \in \mathbb{Z}^{n}\right\}$ denote the optimal solution value of the ILP, and LR $=\max \left\{c^{T} x: A x \leq b, x \in \mathbb{R}^{n}\right\}$ denote the optimal solution value of its linear relaxation. A standard indicator of the strength of an ILP formulation is the integrality gap which is defined as the percentage difference between OPT and LR, that is,

$$
\mathrm{Gap}=\frac{\mathrm{LR}-\mathrm{OPT}}{\mathrm{OPT}}
$$

For a minimization problem, Gap $=\frac{\mathrm{OPT}-\mathrm{LR}}{\mathrm{OPT}}$.
Given $\alpha \in \mathbb{R}^{n}$ and $\beta \in \mathbb{R}$, an inequality $\alpha^{T} x \leq \beta$ is said to be a valid inequality for a set P if $\alpha^{T} x \leq \beta$ holds for any vector $x \in P$. With regard to integer programming, searching for valid inequalities is a major field of research. An emblematic example of application in which such theory can be found is over the Uncapacitated Facility Location (UFL) problem (see Jakob and Pruzan [96], Cornuéjols et al. [41]). The first attempts of using the principle of valid inequalities in order to tighten the integrality gap of a given "natural" formulation of UFL problem are due to Balinski [11], Manne [124], Kuehn and Hamburger [112].

Indeed, cleverly introducing valid inequalities to an ILP formulation $\max \left\{c^{T} x\right.$: $\left.x \in P, x \in \mathbb{Z}^{n}\right\}$ is a typical approach for reinforcing it. For this, the introduced
inequalities should be capable of cutting off solutions in $P \backslash \operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$. Figure 1.11 gives an illustration on the subject where the dashed area represents the solutions that are cut off by the valid inequality.

Figure 1.11: A valid inequality for $\stackrel{\bullet}{\operatorname{conv}}\left({ }^{\bullet} \cap \mathbb{Z}^{n}\right)$ 部inforcing the ILP formulation

For some valid inequality $\alpha^{T} x \leq \beta$ of a polyhedron $P, F=\left\{x \in P: \alpha^{T} x=\beta\right\}$ is called a face of P. If a face F of P has $\operatorname{dim}(F)=\operatorname{dim}(P)-1$, it is called a facet of P. In other words, F is called a facet of P if F is a maximal face of P. The valid inequality inducing a facet is called facet-defining (see Figure 1.12).

Figure 1.12: Illustration of a facet-defining valid inequality of $P^{\prime}=\operatorname{conv}\left(P \cap \mathbb{Z}^{2}\right)$

Another method for solving ILPs, based on the continuous strengthening of the ILP formulation, is the (60 years old!) iconic and well-studied cutting plane algorithm due to Gomory et al. [80]. Unlike the Branch-and-Bound algorithm, the cutting plane principle does not consists on dividing the original polyhedron P but on carving polyhedron P, through the successively insertion of wisely chosen valid inequalities (cutting planes) into P. For this, one starts by (again) solving the ILP's linear relaxation. If the optimal solution yielded is not integer, one searches for an inequality that holds for any integer solution in P but is capable of cutting off the current fractional solution found. The insertion of such inequality generates a new polyhedron P^{\prime} such that $\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right) \subseteq P^{\prime} \subset P$. This procedure is repeated until an integer solution is found. For supplementary information on how cutting plane
algorithm works the reader is referred to Conforti et al. [35] and Wolsey [181, p.113].
Given a polyhedron $P \subseteq \mathbb{R}^{n}$ and a vector $x \in \mathbb{R}^{n}$, the separation problem for P is to decide whether or not x belongs to P and, if not, provide an inequality $\alpha^{T} x \leq \beta$ that is valid for P but violated by x. The equivalence between optimization and separation was showed through Theorem 1.9 due to Grötschel et al. [82].

Theorem 1.9- Optimization \equiv Separation

The linear optimization over $\max \left\{c^{T} x: x \in P\right\}$ is polynomially solvable if and only if the separation problem for P is polynomially solvable.

This means that an ILP $\max \left\{c^{T} x: x \in P, x \in \mathbb{Z}^{n}\right\}$ can be solved in polynomial time if and only if the separation problem for $\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$ can be solved in polynomial time, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

In the context of integer and combinatorial optimization, the two presented methods - Branch-and-Bound and cutting plane - are often combined into the so-called Branch-and-Cut algorithm. In this case, cutting planes are generated in each node of the Branch-and-Bound tree with the intention of tightening the current bounds and thus providing a stronger pruning phase.

Further references on linear and integer optimization are Chvatal et al. [33], Schrijver [163], Wolsey [181].

Chapter 2

The stop number problem

> "The greatest challenge to any thinker is stating the problem in a way that will allow a solution."

- Bertrand Russell

In this chapter the context on which the Stop Number problem arises is introduced. The problem is then formally defined and the main related works are presented. Finally, we present the IP formulation on which the integrality of our study is based on.

2.1 Context

In modern societies, mobility plays a central role in economic and social activities such as commuting, manufacturing, distributing goods, or supplying energy (see Rodrigue et al. [158]). Mobility is supported and driven by transport systems allowing interactions among individuals, institutions and nations. In Delbosc [49], the role of transport systems in the development of the well-being and life satisfaction of a community is highlighted.

It is undeniable that transport systems have constantly progressed throughout human civilization's history. Nonetheless, the demand for faster, cheaper and more convenient forms of mobility has correspondingly evolved. Today, the world is changing at a faster pace than ever. According to the United Nations Department of Economic and Social Affairs [175], 55% of the world's population is concentrated today in urban areas and such proportion is expected to reach 68% by 2050. At the same time, the global demand for passenger mobility in urbanized areas - in terms of passengers-kilometers per year - is expected to double within thirty years (see Little [120]). The scenario for the transport of goods is even worse due to the
significant expansion of the e-commerce sector and the consequent boom in demand for last-mile delivery. As a matter of fact, e-commerce represented a 2.3 trillion US $\$$ market in 2017 and an expressive growth is expected for the years to come (see Statista [170]). Figure 2.1 illustrates such progression. Furthermore, the number of packages and parcels delivered annually in the United States is expected to expand from 11 billion in 2018 to 16 billion by 2020 (see Laseter et al. [116]). One of the major challenges facing the world today is therefore to implement an extensive reform of traditional mobility systems, particularly in urban areas.

Figure 2.1: Retail e-commerce sales worldwide from 2014 to 2021 (in billion U.S. dollars)

As stated by Gao et al. [72], Ehlers [64], the task of rethinking mobility is currently being guided by four major technology-driven trends in transportation: connectivity, autonomous driving, diverse mobility services and electrification. Each of these trends has the power to provide important innovations, but the combination of them gives rise to the so-called intelligent mobility which has the potential to deliver a true revolution to the sector. All in all, the intelligent mobility global market is forecast to be worth more than 1 trillion US $\$$ by 2030.

Connectivity. In Merlin [131], the perfect transport system is characterized by its low cost (ideally free of charges), instantaneous travel time and unlimited capacity and availability. In this sense, the transport of data has recently achieved impressive standards. Indeed, by having access to the internet, one is able to exchange messages on demand between peers of a network incredibly fast (if not instantly), at a negligible price. It is worth noting that the amount of connected sensors and data generators is growing at over 30\% each year and the Internet of Things (IoT)
is predicted to contain over 24 billion interconnected devices by 2020, as reported in Gubbi et al. [88]. In this scenario, by 2030 all new European vehicles are expected to be part of such network, being capable of communicating with each other and with other infrastructures (see European Automobile Manufacturers Association [65]). Such level of connectivity can allow an optimised traffic flow management through a better understanding and control of time and space in roads and urban areas.

Autonomous driving. Autonomous Vehicles (AVs) refer to vehicles with the capacity of navigating without human intervention. Several studies can be found in the literature linking the development of AVs to improvements on traffic mitigation and safety (e.g., Talebpour and Mahmassani [172], Fagnant and Kockelman [66], Kim et al. [105], Ozguner et al. [140]). Indeed, at least 90% of motor vehicle crashes are caused by human error, as reported in Singh [168]. In addition, the deployment of fully automated vehicles promises a revolution on the driving experience as users would be able to focus on other activities such as working, relaxing, or accessing entertainment. Finally, AVs have the potential to allow social benefits by providing independent mobility to excluded people such as younger, elderly or disabled passengers (see KPMG International [109]).

Electric vehicles. The concept of sustainability has received increasing attention in the recent decades (World Commission on Environment and Development [182]). The current form of individual motorized transportation represents a meaningful environmental threat. Recently, French government has announced a draft law to put an end to the sale of petrol and diesel cars by 2040 (see De Rugy and Borne [48]), even if these still represent today 95% of sales. In this scenario, electric vehicles represent flourishing market. While in 2017 only 3 million vehicles had electric engines, perspectives are that, due to supportive government policies and cost reductions, such number will raise to 125 million by 2030 (see Bunsen et al. [27, p.11]).

Diverse mobility. Tightening CO_{2} regulations and people's growing consciousness over environmental issues together with the struggle of urban centers to accommodate the ever growing traffic flow have transformed the image of traditional motorized vehicles in the collective mindset and made it synonymous with pollution, inconvenience, noise and stress. Alongside with this, the current model for individual motorized mobility is incredibly inefficient as an average private vehicle stands idle (i.e., parked at home or elsewhere) for 96% of the time (RAC Foundation [155, p.23]). An executive survey (KPMG International [108]) reveals that the majority of today's urban drivers will not want to own a car by 2025, even if demand for mobility is only increasing within urban areas. Such mentality change is giving rise to new transport systems proposing a more flexible, reactive and responsible way of
dealing with customers mobility demands. Among these systems one may refer to on-demand private ride hiring (e.g., Uber, Lyft) and vehicle sharing (e.g., Moov'in, car2go, Lime). Such systems can either perform in a free-floating network where vehicles can be picked up and left parked anywhere, or within hub/depot structures on which vehicles must be left in predefined parking stations.

New transport systems are striving to find their place between the established fully individual transportation and the standard collective mobility solutions (e.g., buses, subways and trams). A common key component for the successful implementation of such new systems is the capability of providing a complete (or almost complete) coverage of destinations for its users. This can be done by either by ensuring that clients and/or goods are picked up and delivered directly at their origin and destination points, or by providing a multi-modal integration of synchronized systems. VIPAFLEET project arises from this background by focusing on contributing to sustainable intelligent mobility through the development of models and algorithms for managing fleets of specific autonomous vehicles named VIPA, a French acronym ${ }^{1}$ for Autonomous Individual Passenger Vehicle. VIPA is an electrical vehicle, developed by Ligier ${ }^{2}$ and Easymile ${ }^{3}$, and designed to operate in fully autonomous manner (i.e., without any driver assistance), notably in semi-closed and closed sites like medical complexes, commercial or industrial areas and campuses. The most recent VIPA version named EZ10 is illustrated in Figure 2.2.

Figure 2.2: Autonomous shuttle EZ10 by Easymile and Ligier
The VIPA shuttles are designed to operate in different circulation modes:

- Tram mode: Shuttles travel around a predefined circuit always in the same direction and stop at a station upon request.
- Elevator mode: Shuttles perform as an horizontal elevator, travelling on a predefined line, reacting to users demands and therefore changing its driving direction accordingly.

[^0]- Taxi mode: Shuttles serve transport requests (defined by an origin station and a destination station) smartly choosing its path through a connected network.

It is worth noting that a VIPA shuttle can transport more than one passenger at the same time. Its latest version, EZ10, is designed to have a capacity of up to 15 passengers. This leads to a Pickup-and-Delivery (PDP) problem on which a fleet of capacitated vehicles is responsible for transporting clients or goods that must be moved from certain pickup locations to other delivery locations on a given network. A state of the art of the PDP and its variants is given in Section 2.3.

In practice, the transport system must be reactive and the fleet of vehicles should respond dynamically to the on-going flow of user demands through online algorithms. However, in order to better evaluate such reactive procedures, the static case (also called offline case) where demands are known in advance should be understood and mastered. Conversely, a good understanding of the properties and difficulties of the static case is essential to the development of better suited online algorithms. This thesis targets systems operating in tram mode and treats its offline case. For a study on other modes in the online case, the reader is referred to Bsaybes [25].

VIPAFLEET project is a collaboration of numerous partners in order to guarantee the reliability of such innovative transport system. Apart from the VIPA manufacturers Ligier and Easymile, other industrial partners, namely Michelin ${ }^{4}$ and Exotic Systems ${ }^{5}$, also supports the project. The research and development function is funded by the laboratory of excellence (LabEx) Innovative Mobility: Smart and Sustainable Solutions ${ }^{6}$ (IMobS3) and conducted by the research unities Laboratory of Computing, Modelling and Optimization of the Systems ${ }^{7}$ (LIMOS) and Institut Pascal ${ }^{8}$.

2.2 Problem definition

2.2.1 General presentation

The Stop Number Problem (SNP), first introduced in Pimenta et al. [151], arises from the management of a fleet of VIPA shuttles performing in tram mode. In this mode of operation, a circuit with predefined stations is fixed. A special station is

[^1]denoted the depot. Customers use their smartphones or a 'call terminal' to request for a ride from an origin station to some destination station of their choice. For its part, the fleet of identical capacitated vehicles travels around the circuit (always in the same direction) and stops at a station upon request.

Due to infrastructure restrictions, stations usually do not belong to the circuit but are attached to it (see Figure 2.3). This particularity produces a significant impact on the fleet management of such a system. Indeed, in order to respond to a client demand, the vehicle must slow down and make a deviation from its original course. Such deviations increases the travel times of on-board customers as well as the vehicle's battery consumption, a key resource for electrical vehicles. If the deviations lengths are supposed to be approximately the same, then improving the quality of service fairly corresponds to minimizing the total number of stops performed by the fleet of vehicles. Notice that if this is not the case, one may focus on minimizing the total deviation length. In Pimenta et al. [151], it is also pointed out that minimizing the total number of stops is a good way of improving the system's reliability by ensuring a steady flow of the vehicles.

Figure 2.3: Circuit Scheme

The Stop Number Problem (SNP) consists of assigning each client demand to a vehicle such that no vehicle gets overloaded, and the total number of vehicles' stops is minimized. For this, one may use as many vehicles as desired. Notice that, in the search for a better solution, a vehicle is allowed to make several tours before serving a demand. Tours performed before serving a demand are called waiting tours. In order to ensure the quality of service and deal with customers time windows, the maximum number of waiting tours is bounded by a given parameter $H \geq 0 \in \mathbb{N}$. Moreover, once a customer is picked up, it cannot stay on the vehicle for a full tour, that is, once loaded it has to be unloaded as soon as the vehicle reaches its destination. Finally, a customer demand may request for more than one seat on a single vehicle. In this sense, a demand is specified by an origin station, a destination station and a load that stands for the number of seats requested.

In order to investigate the core complexity of SNP, this thesis focus on a constrained version of SNP where no waiting tour is allowed (i.e., $H=0$) and each demand can only request for one seat at a vehicle. It is important to mention that even if each demand has an unity load, multiple demands having the same origin and destination are allowed. Such constrained variant, is hereafter denoted Unit Stop Number Problem (U-SNP). Next, the U-SNP is formally described.

2.2.2 The Unit Stop Number Problem

Let $V=\{1, \ldots, n\}$ be the set of predefined stations numbered as they appear along the circuit network. Notice that the depot does not belong to V. For any two subsets $S_{1} \subseteq V$ and $S_{2} \subseteq V$, we say $S_{1} \prec S_{2}\left(S_{1} \succ S_{2}\right)$, if all stations in S_{1} appear before (after) all stations in S_{2} on the circuit. In other words, $S_{1} \prec S_{2}$ if $i<j$ for any $i \in S_{1}$ and any $j \in S_{2}$. Let E be the set of m unit-load dial-a-ride demands, where each demand e is specified by a pick-up (origin) station $o_{e} \in V$ and a drop-off (destination) station $d_{e} \in V$ with $o_{e}<d_{e}$, that is, $e=\left(o_{e}, d_{e}\right)$. Without loss of generality ${ }^{9}$, we assume that each station of V appears as an endpoint of at least one demand of E.

To serve these m demands, we are given a fleet of p identical vehicles, each of them having the same capacity $C \in \mathbb{Z}^{+}$. Let $K=\{1, \ldots, p\}$ denote this set of available vehicles. Throughout this dissertation we make the assumption that the number of available vehicles is not a crucial resource. In other words, the decision maker has the choice to use as many vehicles as desired in order to reduce the total number of stops. With this in mind, unless explicitly specified, the number of available vehicles p is set to a trivial upper bound m (i.e., $p=m$).

Notice however that reducing the number of stops prevents the use of an unreasonable number of vehicles (this interdependence is further explained in sections 3.1 and 5.2). Moreover, unless explicitly specified, the results presented along this thesis can easily be extended to the case where the number of available vehicles p is part of the instance.

An instance of U-SNP is then defined by the network's stations V, the client demands E and the capacity C of the available vehicles. With any U-SNP instance $\mathcal{I}=(V, E, C)$, a graph $G_{\mathcal{I}}=(V, E)$ can be associated ${ }^{10}$ and henceforth, stations and demands may be referred to as nodes and edges, respectively. Notice that since $o_{e}<d_{e}$ for any $e \in E$, the associated graph $G_{\mathcal{I}}$ has a natural orientation.

[^2]Nonetheless, we usually represent it as an undirected graph for simplicity. A set of five demands represented as intervals over four stations and the associated graph are shown in Figure 2.4.

Figure 2.4: Construction of the associated graph $G_{\mathcal{I}}$ from instance \mathcal{I}.

Demands sharing the same extremities (e.g., e_{1} and e_{2} in Figure 2.4) are referred to as parallel demands and correspond to multiple edges in $G_{\mathcal{I}}$. Without loss of generality, we suppose that $G_{\mathcal{I}}$ is a (loopless) connected multigraph for otherwise solving U-SNP on $G_{\mathcal{I}}$ would reduce to independently solving as many U-SNPs as $G_{\mathcal{I}}$ has connected components.

For any subgraph H of $G_{\mathcal{I}}$, and any station $v \in V(H)$, let

$$
\delta_{H}^{-}(v)=\left\{e \in E(H): d_{e}=v\right\} \quad \text { and } \quad \delta_{H}^{+}(v)=\left\{e \in E(H): o_{e}=v\right\}
$$

denote the sets of demands in $E(H)$ that have v as their destination and origin station, respectively. For the instance depicted in Figure 2.4, $\delta_{G_{\mathcal{I}}}^{-}(3)=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\delta_{G_{\mathcal{I}}}^{+}(3)=\left\{e_{5}\right\}$.

For any subset $F \subseteq E$ and any station $v \in V$, let

$$
\Delta_{F}(v)=\left\{e \in F: o_{e} \leq v \leq d_{e}-1\right\}
$$

denote the set of demands in F that cross or starts at station v. Notice that demands having v as their destination station do not belong to $\Delta_{F}(v)$. All demands belonging to $\Delta_{E}(v)$ are said to intersect station v. On the associated graph G, the set of demands intersecting station v, that is $\Delta_{E}(v)$, is defined by the cutset $\delta_{G}(\{1, \ldots, v\})$. Figure 2.5 illustrates $\Delta_{E}(v)$, for each $v \in V$, in the instance described in Figure 2.4.

Every station v whose set $\Delta_{E}(v)$ is inclusion-wise maximal is referred to as a maximal-intersection station. In other words, a station $v \in V$ is said to be a maximal-intersection station if there exists no station $v^{\prime} \in V$ for which $\Delta_{E}(v) \subset$ $\Delta_{E}\left(v^{\prime}\right)$. For the example depicted in Figure 2.4, both stations 2 and 3 are maximalintersection, but stations 1 and 4 are not.

Any feasible solution to U-SNP is a partition of E into p subsets E_{1}, \ldots, E_{p} that

$$
\Delta_{E}(1)=\left\{e_{1}, e_{2}\right\} \quad \Delta_{E}(2)=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \quad \Delta_{E}(3)=\left\{e_{4}, e_{5}\right\} \quad \Delta_{E}(4)=\emptyset
$$

Figure 2.5: Illustration of $\Delta_{E}(v)$.
satisfy $\left|\Delta_{E_{i}}(v)\right| \leq C$ for $i=1, \ldots, p$ and all $v \in V$. U-SNP thus consists of finding a partition $\left\{E_{1}, \ldots, E_{p}\right\}$ that minimizes the cost function

$$
c\left(\left\{E_{1}, \ldots, E_{p}\right\}\right)=\sum_{i=1}^{p}\left|V\left[E_{i}\right]\right|
$$

where $V\left[E_{i}\right]$ represents the set of stations vehicle $i \in\{1, \ldots, p\}$ must stop at. To fix ideas, consider again the example depicted in Figure 2.4 with $C=2$. Then a feasible solution with five stops (i.e., $\left.c\left(\left\{E_{1}, \ldots, E_{p}\right\}\right)=5\right)$ is $E_{1}=\left\{e_{1}, e_{2}\right\}, E_{2}=\left\{e_{3}, e_{4}, e_{5}\right\}$, and $E_{i}=\emptyset$ for $i \in\{3,4,5\}$.

A minor relaxation to the problem is established below. From now on, we assume that a vehicle is allowed to naively stop at a station even when not requested (i.e., no pick-up or drop-off operation is expected). Such relaxation offers a greater freedom for future analysis of the solutions of U-SNP without impacting the structure of the optimal solutions as ensured by Property 1,

Property 1 - Trivial remark

Let \mathcal{I} be an instance of U-SNP. Then, in an optimal solution of \mathcal{I}, a vehicle only stops at the endpoint stations of the clients assigned to it.

Proof. Consider a solution where some vehicle stops at a station without picking up nor delivering any client. The solution obtained by removing this stop is feasible and strictly better than the former one.

2.2.3 The intersection case

An interesting particular case, hereafter denoted Intersection U-SNP, arises when there exists some station $v^{\prime} \in V$ wherein all demands intersect, that is, $\Delta_{E}\left(v^{\prime}\right)=E$. In such case, each vehicle $i \in K$ can serve at most C demands, that is, each subset E_{i} must have at most C edges.

Notice that the structure of the associated graph $G_{\mathcal{I}}$ is also affected if $\mathcal{I}=$ (V, E, C) is an instance of Intersection U-SNP. Indeed, if this is the case, $G_{\mathcal{I}}$ is, by
definition, bipartite (see Property 2). The opposite, however, may not hold. That is, if the associated graph $G_{\mathcal{I}}$ is bipartite, \mathcal{I} may not be an instance of Intersection U-SNP. Figure 2.6 provides an example where \mathcal{I} is not an instance of Intersection U-SNP even if $G_{\mathcal{I}}$ is bipartite.

Property 2 - Bipartiteness of Intersection U-SNP

Given an instance $\mathcal{I}=(V, E, C)$ of Intersection U-SNP, $G_{\mathcal{I}}$ is a bipartite graph.

Proof. Recall that $\Delta_{E}(v)=\delta_{G_{\mathcal{I}}}(\{1, \ldots, v\})$. Since \mathcal{I} is an instance of Intersection U-SNP, there exists some station $v^{\prime} \in V$ for which $\Delta_{E}\left(v^{\prime}\right)=E$. Therefore, $\Delta_{E}\left(v^{\prime}\right)=$ $\delta_{G_{\mathcal{I}}}\left(\left\{1, \ldots, v^{\prime}\right\}\right)=E$, and hence $G_{\mathcal{I}}$ is bipartite.

Figure 2.6: An example where \mathcal{I} is not an instance of Intersection U-SNP but $G_{\mathcal{I}}$ is bipartite.

It follows directly from Property 2 that one can easily construct an instance of Intersection U-SNP from any bipartite graph $G=(U, V, E)$, by numbering the nodes (stations) in U from 1 to $|U|$ and the nodes in V from $|U|+1$ to $|U|+|V|$.

To illustrate such particular case, consider again instance \mathcal{I} depicted in Figure 2.4. By definition, \mathcal{I} is not an instance of Intersection U-SNP. However, if \mathcal{I}^{\prime} is defined by removing e_{5} from \mathcal{I}, then every demand intersects station 2 (i.e., $\Delta_{E}(2)=$ $E)$, and hence \mathcal{I}^{\prime} is an instance of Intersection U-SNP.

2.3 State of the art

2.3.1 Transport related problems

The Stop Number Problem consists of transporting clients and/or goods from pickup points to delivery points, which characterizes the problem as a Vehicle Routing Problem with Pickups and Deliveries (VRPPD). In Parragh et al. [148, 147], VRPPD is shown to be composed of two major problem sub-classes. The first one concerns unpaired pickups and deliveries and is often referred to as Pickup and Delivery Travelling Salesman Problem (PDTSP) or Pickup and Delivery Vehicle Routing Problem (PDVRP). Such problems typically arises when the transported goods are identical
(e.g., money) and hence no traceability is required. In other words, the goods delivered at some delivery point are allowed to come from any pickup location. The second subclass accounts for the transportation of paired pickups and deliveries, that is, each transport demand is associated with an origin and a destination. In such situation, the vehicle serving a demand must stop at both its origin and destination points. This subclass comprises the classical Pickup and Delivery Problem (PDP) and the Dial-A-Ride Problem (DARP), where PDP deals with the transportation of goods and DARP deals with people transportation. In practice, the difference between PDP and DARP is related to additional constraints and/or objectives taking into account the user convenience for improving the service quality. The SNP is clearly inserted in this latter subclass. Figure 2.7, adapted from Parragh et al. [148], provides a scheme depicting the relations and inheritances of such family of problems.

Figure 2.7: Pickup and delivery problems. Adapted scheme from Parragh et al. [148].

Each of the mentioned problem classes has received considerable attention in the literature. Since SNP can be viewed as a DARP, we focus on providing only its state of the art, instead of a global overview of transport problems. For a more extensive presentation of recent research on vehicle routing problems, the reader is referred to Braekers et al. [21], where 277 articles published between 2009 and 2015 are analyzed and classified according to their contributions to the field. Furthermore, a taxonomy for the literature devoted to variants of vehicle routing problems is provided in Lahyani et al. [114]. Further reviews of transport related scientific literature can be found in Berbeglia et al. [15], Toth and Vigo [174, 173], Bodin [17].

Dial-A-Ride Problems

DARPs are commonly defined within the following generic framework. Let n denote the number of requests to be served and $G=(N, A)$ be a complete directed graph where $N=P \cup D \cup\{s, t\}, P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $D=\left\{d_{1}, \ldots, d_{n}\right\}$. Nodes s and t represent the initial and final depots, while subsets P and D refer to the sets of pickup and delivery locations, respectively. Hence, with each request $i \in\{1, \ldots, n\}$, an origin p_{i} and a destination d_{i} is associated. Let K denote the set of available vehicles, each with capacity Q_{k}, for $k \in K$. Finally, with each $\operatorname{arc}(i, j) \in A$, a travel time $t_{i j}$ and a routing cost $c_{i j}$ are associated. Other features may be incorporated to this general framework, according to the application on which the problem is based on. The most common features include:

- A maximum trip duration T_{k} for each $k \in K$, is typically considered when driver's working hours must be taken into account or when fuel is a critical resource;
- If requests are not homogeneous, a load q_{i} may be associated to each request $i \in\{1, \ldots, n\}$. This means that the vehicle serving request i has to pickup q_{i} units at p_{i} and to, identically, drop-off q_{i} units at d_{i}. Moreover, a service duration h_{i} can also be associated to each request $i \in\{1, \ldots, n\}$, forcing the vehicle serving request i to hold still for h_{i} time units at p_{i} for the pickup service to be concluded.
- Usually when transporting people, the quality of service is a key factor. For handling the customers waiting time, a time window $\left[e_{i}, l_{i}\right]$ can be associated with each request $i \in\{1, \ldots, n\}$, where e_{i} and l_{i} represent the earliest and latest time at which a service should begin at p_{i}. Moreover, a maximum riding time L_{i} may be associated to each request $i \in\{1, \ldots, n\}$ to avoid users remaining in the vehicle for too long.

Thereby, DARPs consist of assigning requests and constructing routes (i.e., deciding the order on which requests are picked up and delivered) for each vehicle in K such that (i.) each request is assigned to some vehicle; (ii.) the load of a vehicle never exceeds its capacity; (iii.) users and/or vehicle time restrictions are respected; and (iv.) the total route costs are minimized.

Most of the exact methods developed for treating DARPs found in the literature are based within a Branch-and-Cut (BC), Branch-and-Price (BP), or Branch-and-Price-and-Cut (BPC) framework.

Branch-and-Cut. The first attempt to optimally solve DARP through a BC algorithm is due to Cordeau [37], where a three-index MIP formulation for solving DARP is introduced. The families of valid inequalities explored are derived from well-known inequalities for the Vehicle Routing Problem and the Traveling Salesman Problem such as subtour elimination constraints, precedence constraints and order constraints. Instances with up to 32 requests were solved. In Ropke et al. [160] a tighter two-index formulation is presented and the valid inequalities from Cordeau [37] are adapted to fit such formulation. Moreover, two new families of valid inequalities are introduced based on the idea of incompatible user time windows. The same instances as in Cordeau [37] were solved. Experiments show that the both formulations (the two-indexed and the three-indexed) are competitive, even if the more compact one has a minor advantage.

In Parragh [146], a BC framework is proposed for dealing with a variant of standard DARP taking into account heterogeneous vehicles and users (H-DARP). A three-index formulation and a two-index formulation based on the works from Cordeau [37] and Ropke et al. [160] are proposed, and the valid inequalities proposed in such studies are adapted to fit H-DARP. Instances with up to 40 requests are solved to optimality and results show that the two-index formulation outperforms the three-index one. Also inspired by the works from Cordeau [37] and Ropke et al. [160], a BC algorithm for solving H-DARP with multiple depots (MD-H-DARP) is proposed in Braekers et al. [20].

Other BC algorithms have been developed in the literature for treating problemspecific features of the DARP. For instance, in Liu et al. [121] driver's lunch breaks are taken into account and hence a request cannot be served during this period of time. Moreover, due to a strict limit on the trip duration, vehicles are allowed (and forced) to make multiple trips per day. For treating these particularities, two families of valid inequalities are proposed. In Braekers and Kovacs [19], being assigned to a familiar driver is taken as an important aspect of service quality. For this reason, driver's consistency is considered in a multi-period DARP by limiting the maximum number of different drivers serving the same customer over a period of time. In Cortés et al. [42], a BC framework based on Benders Decomposition (Benders [14]) is proposed for solving a variant of DARP where passengers are allowed to switch vehicles on certain hub nodes.

A common picture in all such BC frameworks is the search for valid inequalities strengthening the formulation under study and hence improving its performances. However, it appears to exist a lack of theoretical research that is capable of truly evaluating the strength of such inequalities (e.g., by providing the conditions under which such cuts are facet-defining). Such criticism is also shared by other authors
(e.g., the literature review conducted by Ho et al. [91, p.403]). With this in mind, we take extra care on addressing this subject in Chapter 4 for the U-SNP.

Branch-and-Price.

Another common approach when dealing with DARP is to develop a BP framework. Just as BC algorithms, BPs are embedded in a Branch-and-Bound framework, but instead of generating cuts to reinforce the linear relaxation of a given formulation, BPs focus on column generation. Typically, BP requires a reformulation of the problem into a MIP having a better LP relaxation and a much larger number of variables. A subset of variables is then removed from such formulation giving rise to the so-called restricted master problem. Such action allows a faster resolution but, in return, it may prevent optimality since not all variables are considered. In order to handle this drawback, at each node of the Branch-and-Bound tree, a column generation procedure is applied by solving a pricing problem. The pricing problem either generates a variable capable of improving the relaxed solution or proves that such variable does not exists. If such variable is found, it is reintroduced to the formulation and the LP is reoptimized. Branchings take place when no improving variable can be found within the pricing problem and the candidate solution does not satisfies the integrality constraints.

Usually, when dealing with DARPs the pricing problem consists on generating feasible vehicle routes, while the master problem focus on finding a subset of the available routes that satisfies all requests and optimizes the problem's objective function (e.g., minimize the total route cost). Such reformulation is commonly referred to as Set Partitioning formulation and is showed to provide better LP relaxation bounds (see Bramel and Simchi-Levi [22]). The first BP framework for solving DARPs based on such reformulation is due to Dumas et al. [55]. In Garaix et al. [73], a DARP taking into account vehicles occupancy rate is treated through a BP algorithm, where the pricing problem is solved via dynamic programming. In Feng et al. [67], constraint programming is applied for solving the pricing problem. A column generation approach is also applied in Parragh et al. [150] for solving a HDARP.

Branch-and-Price-and-Cut.

If additional cutting planes are introduced to the restricted master problem in order to reinforce its linear relaxation, the resulting algorithm is called Branch-and-Price-and-Cut. BPC algorithms combines both column generation and cutting planes in order to solve combinatorial problems. In Qu and Bard [154], a BPC framework is developed for the HDARP where subset-row inequalities (due to Jepsen et al. [97]) are dynamically introduced to the master problem, together with adapted
constraints derived from Cordeau [37], Ropke et al. [160], Ropke and Cordeau [159]. In Gschwind and Irnich [85], a BPC algorithm is proposed for solving a DARP where intra-route constraints (i.e., constraints affecting single routes such as maximum trip duration, precedence and dynamic time windows) are considered. Recently, a BPC framework has been proposed in Luo et al. [123] for solving a multi-objective realistic DARP. In such version, requests are not forced to be served like in other typical DARP applications. Instead, the objective function is modified to first maximize the number of satisfied requests and then minimizing the total route costs. Moreover, some additional real-world constraints like driver's lunch breaks are also taken into account.

Heuristics and metaheuristics.

Due to the $\mathcal{N} \mathcal{P}$-Hardness of DARPs, only small-sized instances can be optimally solved within reasonable time using exact methods. For this reason, most of scientific research that has been dedicated to DARP focus on the development of computational efficient algorithms yielding effective solutions, even if optimality is not guaranteed. Many different heuristics and metaheuristics have been developed with this goal.

Tabu Search (TS) follows the concept of local search heuristics in the sense that local changes are applied to a given solution in order to obtain a new one. Tabu search enhances the performance of standard local search by constructing a tabu list of solutions that should not be revisited. Moreover, non-improving changes are accepted in order to avoid getting trapped in local optima. One of the first TS algorithms proposed for the DARP is due to Cordeau and Laporte [39]. Such algorithm uses simple local search procedures such as reassigning a request from a vehicle to another. Moreover, in order to guide the exploration towards new solutions, frequent changes are penalized and infeasible solutions are temporarily accepted. Many other TS algorithms for dealing with additional constraints and real-life applications are adapted versions of such pioneer TS (see Paquette et al. [145], Ho et al. [90], Kirchler and Calvo [106], Beaudry et al. [13]).

A huge number of other metaheuristics for DARPs can be found in the literature. These include simulated annealing (e.g., Braekers et al. [20], Zidi et al. [187], Reinhardt et al. [157]), genetic algorithms (e.g., Jorgensen et al. [98], Masmoudi et al. [129]) and variable neighborhood search (e.g., Parragh et al. [149]).

Usually heuristics are less effective than metaheuristics. However, when there is an urgent need for fast solutions, heuristics may be applied. Such situations arise typically when dealing with dynamic (online) DARPs or in order to provide a first feasible solution for a more complex method (see Braekers et al. [20]). In

Marković et al. [128] a real-world application requiring the resolution of a dynamic DARP uses a greedy insertion heuristic for obtaining solutions quickly. In Xiang et al. [185], a dynamic and stochastic DARP (i.e., a dynamic DARP dealing with time-dependent stochastic events such as fluctuating travel times, new requests, cancellations, vehicle's mechanical failures, etc) takes advantage of a local search heuristic that is called each time a new event take place. A local search procedure capable of solving instances with up to 2000 requests is also used in Xiang et al. [184] to obtain fast solutions for a large-scale static DARP.

Further extensive and detailed surveys on DARP are provided in Ho et al. [91], Cordeau and Laporte [40], Parragh et al. [147], Cordeau and Laporte [38], Molenbruch et al. [134].

Stop Number Problem

Stop Number Problem is a recent problem that was introduced in Pimenta et al. [151] as a reliability oriented DARP, following the conference paper of Deleplanque et al. [51]. Indeed, SNP can be seen as a Dial-a-Ride Problem where the arc costs $c_{i j}=0$ if nodes i and j correspond to the same station, and $c_{i j}=1$ otherwise. Notice however that some features of the DARP are handled indirectly in SNP. For instance, time windows are handled through parameter H representing the maximum number of waiting tours. Moreover, since the circuit network and its stations are fixed and predefined, the routing phase is also much less complex than in a standard DARP. Indeed, once the assignment of demands to vehicles is done, the routing problem in SNP is reduced to choosing on which tour $h \in\{0, \ldots, H\}$ each demand is served. As a consequence, if $H=0$, the routing problem is trivial.

Such considerations yield the question of whether or not SNP and U-SNP are as hard as DARPs. In Pimenta et al. [151], SNP was proved to be (weakly) NPHard through a simple reduction from the classic Partition Problem (see Garey and Johnson [74]). Indeed, if all requests have the same origin and destination stations, SNP is clearly optimized when the number of employed vehicles is minimum. Therefore, if one supposes

$$
C=\frac{\sum_{i \in E} l_{i}}{2}
$$

where l_{e} stands for the load of request i, then SNP fairly corresponds to solving a Partition Problem.

Notice however that such proof is fully based on the different request loads, and hence cannot be directly applied to U-SNP. The following theorem, due to Pimenta et al. [151], shows that U-SNP can be efficiently solved under some specific
conditions.
Theorem 2.1 - Pimenta et al. [151]
U-SNP is solvable in polynomial time if C and p are fixed constants through dynamic programming.

Nevertheless, the question of whether or not U-SNP is $\mathcal{N} \mathcal{P}$-Hard remains unanswered and the following conjecture is also proposed in Pimenta et al. [151].

Conjecture 1 - Pimenta et al. [151]

 U-SNP is $\mathcal{N} \mathcal{P}$-Hard.For solving SNP, an integer linear programming formulation is proposed in Pimenta et al. [151]. Such formulation is further detailed in Section 2.4. Moreover, a set partitioning reformulation yielding better bounds but containing an exponential number of variables is also proposed. The associated pricing problem is also shown to be $\mathcal{N} \mathcal{P}$-Hard. It is reported that only small-sized instances could be solved to optimality. Finally, a Greedy Randomized Adaptive Search Procedure (GRASP) is proposed for heuristically solving large instances. In Deleplanque et al. [51], SNP is studied within a Branch-and-Price framework based on the same set partitioning reformulation.

2.3.2 Other related problems

It is interesting to remark that some network design problems arising from the telecommunications field are closely related to the Stop Number Problem. To the best of our knowledge, the connections between the problems mentioned in this subsection and the SNP were never studied before. It is therefore natural to transfer and adapt some of the results known in the literature for these problems to the object of our study: the Stop Number Problem. Such transfers will be explained in detail at pertinent and suitable points across this dissertation. Notice however, that the other way around also holds, and some of the results we obtained in the study of U-SNP can and will be extended to these related problems.

The Intra-Ring Synchronous Optical Network Design Problem

SONET is an American standard of optical fiber transmission technology standing for Synchronous Optical NETworks (also known in Europe as Synchronous Digital Hierarchy, or SDH for short). The Intra-Ring Synchronous Optical Network Design Problem is a network design problem arising from the deployment
of SONETs. In such problem, one is given a set of telecommunication centers linked in a circular fashion by a cable of fixed capacity optic fibers, called rings. Moreover, a set of expected bandwidth requests, or demands, between pairs of centers is given. For each ring, a collection of demands must be assigned such that the sum of the bandwidth requests served by the same ring fits its capacity. Within each ring, an electronic termination called Add-Drop Multiplexer (ADM) must be placed at each center incident to one of the demands assigned to it. Demands assigned to the same ring and incident to the same center may share the same ADM. Due to the expensive costs of ADMs, the objective is to minimize the number of installed ADMs. For further technical information on SONETs and ADMs the reader is referred to Wu [183].

Formally, the Intra-Ring Synchronous Optical Network Design ProbLEM can be defined as follows. Consider a set of nodes N referring to the telecommunication centers. Let $w_{i j} \in \mathbb{R}^{+}$denote the bandwidth requested between nodes $i \in N$ and $j \in N$ and define an edge set $E=\left\{i j: w_{i j}>0\right\}$. The weight on edge $i j \in E$ is given by $w_{i j}$. Moreover, let M be the set of rings each with capacity k. The problem consists on partitioning E into $|M|$ subsets $E_{1}, \ldots, E_{|M|}$ that minimizes $\sum_{i=1}^{|M|}\left|V\left[E_{i}\right]\right|$, such that $\sum_{e \in E_{i}} w_{e} \leq k$, for each $i \in\{1, \ldots,|M|\}$. Notice that if $G=(N, E)$ is a bipartite graph, Intra-Ring Synchronous Optical Network Design Problem is equivalent to Intersection SNP with $H=0$ and no parallel demands.

In Sutter et al. [171], the number of available rings is taken to be irrelevant as the cost of ADMs are significantly higher than opening an extra ring. The authors propose exact methods and heuristics for solving the problem. A MIP formulation (with great similarities with the one proposed in Pimenta et al. [151] for the SNP) is proposed. Nonetheless, the authors report that due to the lack of a good upper bound on the number of rings, a great deal of symmetry is detected slowing down the performance of such formulation. Moreover, the weakness of lower bounds is pointed out as a main reason for which the formulation fails on solving the problem. A Column-Generation approach is also proposed to provide a quality certificate to the results obtained heuristically. However, since the column generation subproblem is also hard to solve, instances with more than 15 nodes could not be solved to optimality.

In Sherali et al. [167], Lee et al. [117], a variant where the number of ADMs within the same ring must respect a given constant limit $R \in \mathbb{N}$ is investigated. The problem is shown to be $\mathcal{N} \mathcal{P}$-Complete with a reduction from Partition Problem, using the same principle as in the proof of NP-Hardness given by Pimenta et al. [151] for the SNP. Valid inequalities reinforcing the formulation are introduced and used
to derive a Branch-and-Cut framework. Nonetheless, most of the valid inequalities presented require the presence of the ADM limit R. Furthermore, no facial study is conducted.

The k-Edge-Partitioning Problem

The k-Edge-Partitioning Problem appears in the literature as an uniform version of the Intra-Ring Synchronous Optical Network Design Problem. In such problem, all demands are said to request for the same bandwidth and the ring capacity is k times this common demand unit. Once again, the cost of using or opening a ring is considered insignificant, and thus one may use as many rings as desired.

The problem is formally defined as follows. Given a simple graph $G=(V, E)$, where V is the set of n centers and E is the set of m demands, and an integer $k \geq 1$, find a partition of E into R subsets E_{1}, \ldots, E_{R} that minimizes $\sum_{i=1}^{R}\left|V\left[E_{i}\right]\right|$, such that $\left|E_{i}\right| \leq k$ for each $i \in\{1, \ldots, R\}$. Notice that if G is a bipartite graph, k-Edge-Partitioning Problem is equivalent to Intersection U-SNP with no parallel demands.

In Goldschmidt et al. [78], the problem is shown to be solvable in polynomial time for $k=2$ and $\mathcal{N} \mathcal{P}$-Complete for $k \geq 3$. Notice however, that the $\mathcal{N} \mathcal{P}$-Completeness proof given uses a reduction from Edge-Partition into Triangles Problem. Since such problem is trivial in bipartite graphs, such proof cannot be immediately extended to show that Intersection U-SNP is also $\mathcal{N} \mathcal{P}$-Complete. The authors also propose a linear-time $\mathcal{O}(\sqrt{k})$-approximation algorithm. Such algorithm relies on covering the edges of G with trees of size at least $\left\lceil\frac{k}{2}\right\rceil$.

In Brauner et al. [24], a linear-time $\mathcal{O}(\sqrt{k})$-approximation algorithm based on the search for an Eulerian path is proposed. Such algorithm guarantees a better approximation ratio than the one proposed in Goldschmidt et al. [78], for Eulerian graphs or if $k \leq \frac{m-1}{\sqrt{2 m}-1}$. Moreover, a list of particular cases where the problem can be solved in polynomial time is given. More precisely, these cases are: i. G is a grid graph and $k=3$; ii. G is a tree and $k=3$; iii. G is a complete bipartite graph graph and $k=3$; iv. G is the complete bipartite graph $K_{2, n}$ graph and k is even.

In Brauner and Lemaire [23], a $\ln \sqrt{\frac{k}{2}}$-approximation algorithm is proposed based on the set covering greedy algorithm due to Chvátal [32]. However, the proposed algorithm only runs in polynomial time if k is a fixed constant, which characterizes the algorithm as pseudo-polynomial.

The Path Traffic Grooming Problem

With the development of wavelength division multiplexing (WDM) technology, it became possible to split the eligible bandwidth of an optical fiber into several wavelength channels. The number of available wavelength channels is given by $W \in \mathbb{N}$. This means that, given a WDM network $G=(V, E)$, instead of having one SONET ADM placed on every wavelength at each node of the network, it is possible to have an ADM installed only for the wavelengths used at a given node. Moreover, with the deployment of commercial WDM systems, it has become evident that the dominant costs in building optical networks are based on the cost of its components, that is, the number of ADMs installed.

In such networks, traffic demands between nodes must be assigned to a wavelength channel and routed in the network through a path. In order to use bandwidth more efficiently, some optical networks allow multiple traffic demands to share the capacity of a wavelength channel. If each traffic request uses $1 / g$ of the bandwidth of a wavelength, g is said to be the grooming ratio (or grooming factor). As a consequence, at most g traffic demands passing through a network edge $e \in E$ can be assigned to the same wavelength. Traffic Grooming Problem consists on assigning demands to wavelength channels as well as routing them through the network, in such a way that the wavelength channel's capacity is respected on every edge of the network and the number of ADMs required is minimized.

The concept of traffic grooming was introduced in Gerstel et al. [76]. After its appearance, Traffic Grooming has been widely studied within many different network topologies, notably rings (i.e., G is a cycle). See Modiano [133], Dutta and Rouskas [56], Zhu and Mukherjee [186] for surveys. The case where G is a path, and therefore, the routing decision is trivial was first considered in Huang et al. [95]. However, the problem studied in such paper considers that a given traffic demand occupies $1 / g$ of the bandwidth of a wavelength channel through the whole path G, which makes the problem equivalent to k-Edge Partitioning Problem described previously.

In Bermond et al. [16], a demand is said to only occupy the bandwidth over the path on which it is routed. We are more interested in this latter version named Path Traffic Grooming that can be formally defined as follows. Consider a path P_{n} with vertex set $V\left(P_{n}\right)=\{1, \ldots, n\}$ and edge set $E\left(P_{n}\right)$ composed of edges $u v$ where $1 \leq u \leq n-1$ and $v=u+1$. Given path a P_{n} representing the network, a graph $H=\left(V\left(P_{n}\right), E\right)$ representing the set of requests and a grooming factor g, find a partition of E into W subsets E_{1}, \ldots, E_{W}, such that for each edge $u v \in E\left(P_{n}\right)$, the number of edges $i j \in E_{w}$ with $i \leq u<j$ is at most g, for each $w \in\{1, \ldots, W\}$.

The goal is to minimize $\sum_{w=1}^{W}\left|V\left[E_{w}\right]\right|$. Notice that Path Traffic Grooming is equivalent to U-SNP with no parallel demands.

In Bermond et al. [16], Path Traffic Grooming is shown to be solvable in polynomial time if the set of traffic requests have a uniform all-to-all structure (i.e., H is a complete graph) and $g=2$. Moreover, the case where $g=1$, is solved in polynomial time for any set of traffic requests. In Amini et al. [3], the problem is shown to be $\mathcal{A} \mathcal{P} \mathcal{X}$-Complete for any fixed value of $g \geq 2$ and an unbounded number of available wavelengths. In addition, an $\mathcal{O}\left(n^{\frac{1}{3}} \log ^{2} n\right)$-approximation algorithm is provided.

In Shalom et al. [165], the problem is shown to be $\mathcal{N} \mathcal{P}$-Complete for any fixed $g \geq 2$ and bounded number of wavelengths through a reduction from k-Coloring of Circular Arc Graph. However, such result is contradictory with Theorem 2.1. We are convinced that the proof of $\mathcal{N} \mathcal{P}$-Completeness of Path Traffic Grooming presented only works for an unbounded number of wavelengths since k-Coloring of Circular Arc Graph can be solved in polynomial time when the number of colors k is fixed (see Garey et al. [75]).

Network design problems involving the deployment of SONETs in WDM networks have been largely studied throughout the literature. Notice however that the aim of this subsection is not to give a complete state-of-the-art of such problems. Instead, we have tried to give a glimpse on the problems that show a particular strong relation with the problem under analysis in this thesis: the Stop Number Problem.

2.4 Problem formulation and associated polytope

A natural IP formulation for the U-SNP is introduced by Pimenta et al. [151]. Such formulation is based on two sets of binary variables $x \in\{0,1\}^{m \times p}$ and $y \in\{0,1\}^{n \times p}$. The variable x_{e}^{i} represents the fact that demand $e \in E$ is assigned or not to vehicle $i \in K$, that is,

$$
x_{e}^{i}= \begin{cases}1, & \text { if } e \in E_{i} \\ 0, & \text { otherwise } .\end{cases}
$$

The variable y_{v}^{i} indicates whether or not vehicle $i \in K$ stops at station $v \in V$, that is,

$$
y_{v}^{i}= \begin{cases}1, & \text { if } v \in V\left[E_{i}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Given an instance $\mathcal{I}=(V, E, C)$ of $\mathrm{U}-\mathrm{SNP}$, such formulation is hereafter denoted by

$$
\operatorname{USNP}_{(V, E, C)}=\left\{x \in \mathbb{R}^{m \times p}, y \in \mathbb{R}^{n \times p}:(x, y) \text { verifies }(2.2)-(2.6)\right\}
$$

and is described below.

$$
\begin{equation*}
\min \sum_{v \in V} \sum_{i \in K} y_{v}^{i} \tag{2.1}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
\sum_{i \in K} x_{e}^{i}=1 & \forall e \in E, \\
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C & \forall v \in V, i \in K, \\
x_{e}^{i}-y_{v}^{i} \leq 0 & \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}, \\
x_{e}^{i} \in\{0,1\} & \forall e \in E, i \in K, \\
y_{v}^{i} \in\{0,1\} & \forall v \in V, i \in K . \tag{2.6}
\end{array}
$$

The objective function (2.1) stands for the total number of stops the fleet of vehicles is supposed to make. The assignment constraints (2.2) ensure that each demand is assigned to exactly one vehicle. The capacity constraints (2.3) guarantee the vehicle's capacity is respected all along the circuit. Stop constraints (2.4) imposes that a vehicle must stop at the pick-up and drop-off stations of a demand assigned to it. Finally, constraints (2.5) and (2.6) settle the domains of variables x and y.

Notice however that, one is not obliged to verify if the capacity is satisfied all along the circuit. Instead, it may focus exclusively on verifying if capacity is respected on maximal-intersection stations. This means that for the Intersection USNP the following property holds.

Property 3-Capacity constraints on Intersection U-SNP

If (V, E, C) is an instance of Intersection U-SNP, then capacity constraints (2.3) can be replaced by

$$
\begin{equation*}
\sum_{e \in E} x_{e}^{i} \leq C \quad \forall \quad i \in K \tag{2.7}
\end{equation*}
$$

Given an instance (V, E, C) of U-SNP, let

$$
\mathcal{P}_{(V, E, C)}=\operatorname{conv}\left(\operatorname{USNP}_{(V, E, C)}\right)
$$

be the convex hull of the solutions of U-SNP. To the best of our knowledge, such polytope has not yet been the subject of substantial research. In this sense, Chapter 4 is dedicated to such study.

2.5 Concluding remarks and useful definitions

Before diving into the main results of this dissertation, some additional remarks and definitions are made necessary for an easier extensive comprehension of the contents to come.

Definition 2.1-Idleness

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a feasible solution $\left\{E_{1}, \ldots, E_{p}\right\}$ of \mathcal{I}, vehicle $i \in K$ is said to be idle if no demand is assigned to vehicle i, that is, $E_{i}=\emptyset$. Analogously, for a solution $(\bar{x}, \bar{y}) \in \operatorname{USNP}_{(V, E, C)}$, vehicle $i \in K$ is said to be idle if $\bar{x}_{e}^{i}=0$ for every $e \in E$.

Definition 2.2-Full charge

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a feasible solution $\left\{E_{1}, \ldots, E_{p}\right\}$ of \mathcal{I}, vehicle $i \in K$ is said to be fully charged at station $v \in V$ if exactly C demands are present in vehicle i at station v, that is, $\left|\Delta_{E_{i}}(v)\right|=C$. Analogously, for a solution $(\bar{x}, \bar{y}) \in \operatorname{USNP}_{(V, E, C)}$, vehicle $i \in K$ is said to be fully charged at station $v \in V$ if $\sum_{e \in \Delta_{E}(v)} \bar{x}_{e}^{i}=C$.

Definition 2.3-Minimum and optimal number of vehicles

Given an instance $\mathcal{I}=(V, E, C)$ of $U-S N P$ and a feasible solution $\pi=\left\{E_{1}, \ldots, E_{p}\right\}$ of \mathcal{I}, let p_{π}^{\prime} denote the number of non-idle vehicles in solution π. When solution π is clear from the context, we may omit the subscript π. Moreover, let $p_{\text {min }}$ denote the minimum number of vehicles necessary to serve all the demands in E. In other words, if $\Pi_{\mathcal{I}}$ represents the set of all feasible solutions of \mathcal{I}, then

$$
p_{\min }=\min _{\pi \in \Pi_{\mathcal{I}}}\left\{p_{\pi}^{\prime}\right\} .
$$

Analogously, let $p_{\text {opt }}$ denote the minimum number of non-idle vehicles among the optimal solutions of \mathcal{I}. In other words, if $\Pi_{\mathcal{I}}^{*}$ represents the set of optimal solutions of \mathcal{I}, then

$$
p_{o p t}=\min _{\pi \in \Pi_{\mathcal{I}}^{*}}\left\{p_{\pi}^{\prime}\right\} .
$$

Definition 2.4-Merge

Given an instance $\mathcal{I}=(V, E, C)$ of $U-S N P$, a feasible solution $\left\{E_{1}, \ldots, E_{p}\right\}$ of \mathcal{I}, and a pair of vehicles i and j, the solution $\left\{\bar{E}_{1}, \ldots, \bar{E}_{p}\right\}$ is said to be obtained from $\left\{E_{1}, \ldots, E_{p}\right\}$ by merging vehicles i and j if

$$
\begin{aligned}
& \bar{E}_{i}=E_{i} \cup E_{j}, \\
& \bar{E}_{j}=\emptyset \\
& \bar{E}_{k}=E_{k} \quad \forall k \in K \backslash\{i, j\} .
\end{aligned}
$$

Analogously, given a solution $(x, y) \in \operatorname{USNP}_{(V, E, C)}$, the solution (\bar{x}, \bar{y}) is said to be obtained from (x, y) by merging vehicles i and j if

$$
\begin{array}{ll}
\bar{x}_{e}^{i}=x_{e}^{i}+x_{e}^{j} & \forall e \in E, \\
\bar{x}_{e}^{j}=0 & \forall e \in E, \\
\bar{x}_{e}^{k}=x_{e}^{k} & \forall e \in E, k \in K \backslash\{i, j\}, \\
\bar{y}_{v}^{i}=\max \left\{y_{v}^{i}, y_{v}^{j}\right\} & \forall v \in V, \\
\bar{y}_{v}^{j}=0 & \forall v \in V, \\
\bar{y}_{v}^{k}=y_{v}^{k} & \forall v \in V, k \in K \backslash\{i, j\} .
\end{array}
$$

Notice that merging two vehicles might result in a unfeasible solution. Indeed, the resulting solution $\left\{\bar{E}_{1}, \ldots, \bar{E}_{p}\right\}$ is only feasible if $\left|\Delta_{E_{i} \cup E_{j}}(v)\right| \leq C$ for every $v \in V$. Nonetheless, throughout this thesis we are cautious enough to invoke such operation only on suitable situations.

Chapter 3

Properties and complexity

"Simple things should be simple, complex things should be possible."

- Alan Kay

In this chapter, the complexity of U-SNP is deeply investigated. Firstly, a series of properties and lower bounds for the U-SNP are presented. Based on such results, some particular cases are shown to be solvable in polynomial time. Next, a collection of important observations are made in order to finally derive a proof of NP-Hardness for the U-SNP.

3.1 Properties

For U-SNP, a vehicle does not have to stop in every station of the circuit. Instead, a vehicle must stop at the endpoint stations of all the clients assigned to it. Such observation yields the following remark that must be made explicit to the reader even if it might seem trivial.

Proposition 3.1 - Trivial lower bound

Given an instance (V, E, C) of U-SNP, a trivial lower bound on the total number of stops is the number of stations n.

Proof. Each station $v \in V$ has at least one demand incident to it. Therefore, at least one vehicle must stop at v. If exactly one vehicle stops at each of the n stations, then one has a solution with n stops.

Notice however that such lower bound is only met in extremely particular cases. As a matter of fact, this can only be achieved if $\Delta_{E}(v)$ has at most C edges, for
each $v \in V$. Moreover, if this is the case, a single vehicle can handle all demands and U-SNP can be trivially solved. By taking into account the structure of the graph $G=(V, E)$, one may try to derive better quality lower bounds than the one described in Proposition 3.1.

Proposition 3.2 - Lower bound based on degrees

Given an instance $\mathcal{I}=(V, E, C)$ of $U-S N P$, a lower bound on the total number of stops is given by

$$
\begin{equation*}
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G_{I}}^{-}(v)\right|,\left|\delta_{G_{I}}^{+}(v)\right|\right\}}{C}\right\rceil . \tag{3.1}
\end{equation*}
$$

Proof. A single vehicle can take at most C demands among $\delta_{G_{\mathcal{I}}}^{-}(v)$ or $\delta_{G_{\mathcal{I}}}^{+}(v)$. Since all demands must be served by some vehicle, each station $v \in V$ must be visited by at least

$$
\left\lceil\frac{\max \left\{\left|\delta_{G_{\mathcal{I}}}^{-}(v)\right|,\left|\delta_{G_{\mathcal{I}}}^{+}(v)\right|\right\}}{C}\right\rceil
$$

different vehicles.

The next lower bound proposed here requires a further investigation on the minimum number of vehicles needed to serve the m demands in E (i.e., $p_{\text {min }}$), for a given instance (V, E, C) of U-SNP. A trivial lower bound for $p_{\min }$ is

$$
p_{\min } \geq \max _{v \in V}\left\{\left\lceil\left.\frac{\left|\Delta_{E}(v)\right|}{C} \right\rvert\,\right\}\right.
$$

for otherwise, the fleet is not capable of serving all demands in $\Delta_{E}\left(v^{\prime}\right) \subseteq E$, where

$$
v^{\prime}=\underset{v \in V}{\arg \max }\left\{\left|\Delta_{E}(v)\right|\right\}
$$

On the other hand, since the demands can be viewed as (half closed - half open) intervals of the real line, a solution using exactly $\max _{v \in V}\left\{\left\lceil\frac{\left|\Delta_{E}(v)\right|}{C}\right\rceil\right\}$ vehicles, clearly can be computed in polynomial time by a first-fit type algorithm with demands picked out in order of increasing pick-up station. The above results lead to the following proposition.

Proposition 3.3-The value of $p_{\text {min }}$

Given an instance (V, E, C) of U-SNP,

$$
p_{\min }=\max _{v \in V}\left\{\left\lceil\left.\frac{\left|\Delta_{E}(v)\right|}{C} \right\rvert\,\right\} .\right.
$$

Notice that if (V, E, C) is an instance of Intersection U-SNP, $\max _{v \in V}\left\{\left|\Delta_{E}(v)\right|\right\}=$
m and therefore,

$$
p_{\min }=\left\lceil\frac{m}{C}\right\rceil \text {. }
$$

Property 4 - Idle vehicles

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP, with $C \geq 2$, there always exists a solution $\left\{E_{1}, \ldots, E_{p}\right\}$ of \mathcal{I} where at least one vehicle is idle. That is, there exists some $i \in K$ for which $E_{i}=\emptyset$.

Proof. Trivial, since $p=m \geq p_{\text {min }}+1$.

In graph theory, the girth of a graph G corresponds to the length of the smallest cycle contained in G. In other words, a graph is said to have girth k if it contains no cycle of size smaller than k. Such notion can be explored in order to derive new lower bounds.

Property 5-Big cycles produce forests

Given an instance (V, E, C) of Intersection U-SNP, such that graph $G=(V, E)$ has girth greater than C, then in any feasible solution, $G\left(E_{i}\right)$ is a forest, for $i \in K$.

Proof. $G\left(E_{i}\right)$ cannot contain any cycle since the smallest cycle in G would violate the vehicle's capacity. Therefore, $G\left(E_{i}\right)$ is a forest.

Proposition 3.4 - Lower bound based on girth

Given an instance (V, E, C) of Intersection U-SNP, such that graph $G=(V, E)$ has girth greater than C, then a lower bound on the total number of stops is given by

$$
m+\left\lceil\frac{m}{C}\right\rceil
$$

Proof. From Property 5, one knows that in any feasible solution, $G\left(E_{i}\right)$ is a forest, for any $i \in K$. Recall that the cost of a solution is evaluated as

$$
\sum_{i \in K}\left|V\left[E_{i}\right]\right| .
$$

Let p^{\prime} denote the number of vehicles used in such feasible solution. Without loss of generality, assume $E_{i} \neq \emptyset$ for $i \leq p^{\prime}$. By definition, a tree with m edges has $m+1$ vertices. It follows that $\left|V\left[E_{i}\right]\right|=\left|E_{i}\right|+t_{i}$, where $t_{i} \geq 1$ is the number of trees in the forest $G\left(E_{i}\right)$, for $i \leq p^{\prime}$. Hence,

$$
\sum_{i \in K}\left|V\left[E_{i}\right]\right|=\sum_{i=1}^{p^{\prime}}\left(\left|E_{i}\right|+t_{i}\right) \geq \sum_{i=1}^{p^{\prime}}\left(\left|E_{i}\right|+1\right)=m+p^{\prime}
$$

Finally, since $p^{\prime} \geq p_{\text {min }}$,

$$
\sum_{i \in K}\left|V\left[E_{i}\right]\right| \geq m+\left\lceil\frac{m}{C}\right\rceil .
$$

In Pimenta et al. [151], it is pointed out - empirically - that for any given an instance (V, E, C) of U-SNP, $p_{\text {opt }}=p_{\text {min }}$. Next, we show that such statement holds if $C=2$ and (V, E, C) is an instance of Intersection U-SNP. However, for $C \geq 3$, such statement is false. We prove it by showing that even when $G=(V, E)$ is a tree, $p_{\text {opt }}$ can be strictly greater than $p_{\text {min }}$.

Proposition 3.5- On Intersection U-SNP with $C=2, p_{\text {opt }}=p_{\text {min }}$
Given an instance ($V, E, 2$) of Intersection U-SNP,

$$
p_{o p t}=p_{\text {min }}
$$

Proof. If, in an optimal solution, 2 or more vehicles are assigned less than 2 clients, then one can merge pairs of such vehicles in order to construct a solution where at most one vehicle is assigned one single client. Such constructed solution induces at most the same number of stops as the former solution. Therefore, the constructed solution is also optimal. Then,

$$
p_{o p t}=\left\lceil\frac{m}{2}\right\rceil=p_{\text {min }} .
$$

Proposition 3.6-On Intersection U-SNP with $C=3, p_{\text {opt }} \neq p_{\text {min }}$ On Intersection U-SNP, $p_{\text {opt }}$ might be strictly greater than $p_{\text {min }}$.

Proof. The proof is done through a counter-example. Consider the instance of Intersection U-SNP depicted in Figure 3.1 with $C=3$.

Figure 3.1: Counter-example instance used for proving $p_{\text {min }} \neq p_{\text {opt }}$.

The instance depicted here is composed of 3 triples of parallel demands, all with same origin, and a path of length 2 attached to each of their destinations. A feasible
solution with 15 stops is obtained by assigning each triple of parallel demands and each path of length 2 to a different vehicle. Moreover, this is an optimal solution since Proposition 3.2 ensures that

$$
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil=15
$$

is a lower bound on the number of stops. However, this solution uses 6 vehicles, while

$$
p_{\min }=\left\lceil\frac{m}{C}\right\rceil=\left\lceil\frac{15}{3}\right\rceil=5
$$

We show next that one cannot find an optimal solution using exactly $p_{\text {min }}$ vehicles. In order to obtain exactly 15 stops, each each station $v \in V$ must be visited by exactly $\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil$ vehicles. Hence, stations 2,3 and 4 must be visited by exactly 1 vehicle, which forces the paths of length 2 to be each on a different vehicle. Similarly, stations 5,6 and 7 must be visited by exactly 2 vehicles, and station 1 by exactly 3 vehicles. Additionally, using only 5 vehicles imposes each vehicle to carry exactly 3 demands. Thus each vehicle that takes a path of length 2 must also take one of the parallel demands incident to it, otherwise one of stations 5,6 or 7 must be visited by 3 vehicles. With this in mind, station 1 is already visited by 3 vehicles. However, some of the parallel demands have not been assigned yet, forcing station 1 to be visited by more than 3 vehicles, which prevents optimality.

To go even further, consider the tree $T=(V, E)$ represented in Figure 3.2 and let $\mathcal{I}=(V, E, 3)$ be an instance of Intersection U-SNP.

Figure 3.2: Counter-example on a tree T

Instance \mathcal{I} is composed of 15 demands, which means that $p_{\text {min }}=5$. Solving such instance with only 5 vehicles available yields an optimal solution stopping 22 times. On the other hand, if 6 vehicles are provided, an optimal solution with 21 stops can be achieved ${ }^{1}$. This shows that given an instance (V, E, C) of U-SNP, $p_{\text {opt }}$ can be

[^3]strictly larger than $p_{\min }$ even if $G=(V, E)$ is a tree.
Another intuition one may have when trying to solve U-SNP is to keep parallel demands together. Indeed, for the Intersection U-SNP with $C=2$, this policy does not prevent optimality as indicated by Proposition 3.7.

Proposition 3.7-Parallel demands on Intersection U-SNP

Given an instance $\mathcal{I}=(V, E, 2)$ of Intersection U-SNP such that E has two parallel demands e and e^{\prime}, there exists an optimal solution where e and e^{\prime} are assigned to the same vehicle.

Proof. Assume on the contrary that e and e^{\prime} are served by different vehicles in every optimal solution. Let $\left\{E_{1}^{*}, \ldots, E_{p}^{*}\right\}$ be an optimal solution such that, w.l.o.g., $e \in E_{1}^{*}$ and $e^{\prime} \in E_{2}^{*}$. Trivially, $\left|E_{1}^{*}\right|=2$, for otherwise $\left\{E_{1}^{*} \cup e^{\prime}, E_{2}^{*} \backslash e^{\prime}, E_{3}^{*}, \ldots, E_{p}^{*}\right\}$ would be a feasible solution with no more stops than $\left\{E_{1}^{*}, \ldots, E_{p}^{*}\right\}$. Similarly, $\left|E_{2}^{*}\right|=2$. Let f denote the other demand served by vehicle 1 , that is, $f=E_{1}^{*} \backslash e$. Likewise, let $f^{\prime}=E_{2}^{*} \backslash e^{\prime}$. Consider now the feasible solution $\left\{\left\{e, e^{\prime}\right\},\left\{f, f^{\prime}\right\}, E_{3}^{*}, \ldots, E_{p}^{*}\right\}$ and let $\alpha=\left|V\left[\left\{f, f^{\prime}\right\}\right]\right|$. Notice that $2 \leq \alpha \leq 4$. Then, one has

$$
\begin{equation*}
c\left(\left\{\left\{e, e^{\prime}\right\},\left\{f, f^{\prime}\right\}, E_{3}^{*}, \ldots, E_{p}^{*}\right\}\right)=c\left(\left\{E_{1}^{*}, \ldots, E_{p}^{*}\right\}\right)-\left(\left|V\left[E_{1}^{*}\right]\right|+\left|V\left[E_{2}^{*}\right]\right|\right)+2+\alpha . \tag{3.2}
\end{equation*}
$$

If e and f (or e^{\prime} and f^{\prime}) are parallel demands, then $\left|V\left[E_{1}^{*}\right]\right|+\left|V\left[E_{2}^{*}\right]\right|=2+\alpha$ and by (3.2), $\left\{\left\{e, e^{\prime}\right\},\left\{f, f^{\prime}\right\}, E_{3}^{*}, \ldots, E_{p}^{*}\right\}$ is optimal. On the other hand, if none of the sets E_{1}^{*} and E_{2}^{*} are composed of parallel demands, one has $\left|V\left[E_{1}^{*}\right]\right|+\left|V\left[E_{2}^{*}\right]\right| \geq$ $6 \geq 2+\alpha$ since $\alpha \leq 4$, and once again $\left\{\left\{e, e^{\prime}\right\},\left\{f, f^{\prime}\right\}, E_{3}^{*}, \ldots, E_{p}^{*}\right\}$ is optimal. Therefore, there always exists an optimal solution where the parallel demands e and e^{\prime} are served by the same vehicle.

Nonetheless, such strategy might be deceiving for more general cases. Proposition 3.8 provides evidence that adopting this strategy may prevent optimality.

Proposition 3.8 - Parallel demands on U-SNP

Given an instance $\mathcal{I}=(V, E, 2)$ of $U-S N P$ such that E has two parallel demands e and e^{\prime}, there might exist no optimal solution where e and e^{\prime} are assigned to the same vehicle.

Proof. The proof is done through a counter-example. Consider the instance of USNP described in Figure 3.3 with $C=2$.

A feasible solution with six stops can be obtained by assigning demands a, c and e to vehicle 1 and the others to vehicle 2. Notice that, in this solution the

[^4]

Figure 3.3: Counter-example instance used for proving parallel demands might have to be separated
parallel demands a and b are not served by the same vehicle. Next, we show that if one forces these demands to be served by the same vehicle, then one cannot find a solution with less than seven stops. In other words, no optimal solution wherein a and b are served by the same vehicle can be found.

For this, let $\left\{E_{1}, \ldots, E_{p}\right\}$ be a feasible solution such that, w.l.o.g., $a \in E_{1}$ and $b \in E_{1}$. Demands c and d must be served by other vehicles (i.e., $c \notin E_{1}$ and $d \notin E_{1}$), for otherwise the capacity of vehicle 1 is violated.

Suppose c and d are served by different vehicles. W.l.o.g, assume $c \in E_{2}$ and $d \in E_{3}$. Hence, the assignment of demands a, b, c and d already induces six stops (the vehicles 1,2 , and 3 have two stops each) and assigning e to any vehicle increases this value.

On the other hand, if c and d are served by the same vehicle (w.l.o.g., say $c \in E_{2}$ and $d \in E_{2}$), then the assignment of demands a, b, c and d already induces five stops (vehicle 1 has two stops and vehicle 2 has three stops). Notice that demands e and f cannot be served by vehicle 2 (i.e., $e \notin E_{2}$ and $f \notin E_{2}$), for otherwise its capacity is violated. Moreover, none of the remaining demands e and f can be served by other vehicle than vehicle 1 (i.e., $e \in E_{1}$ and $f \in E_{1}$), for otherwise a third vehicle would be required, and at least two more stops would be needed. However, the constructed solution $\{\{a, b, e, f\},\{c, d\}, \emptyset, \ldots, \emptyset\}$ requires at least seven stops. Therefore, no solution with six stops wherein a and b are assigned to the same vehicle can be found.

The results presented in this section offer an insight on how difficult it is to characterize the optimal solutions of U-SNP. At the same time, for some specific cases, it was possible to show that by adopting some simple intuitions, optimality remains preserved. The next section takes profit of such results to derive polynomial time algorithms that are capable of solving certain particular cases of U-SNP.

3.2 Polynomial Cases

When instance $\mathcal{I}=(V, E, C)$ meets some particular conditions, U-SNP can be solved in polynomial time. Some trivial cases arise when $C=1$ and (V, E, C) is an instance of Intersection U-SNP, or when $C \geq \max _{v \in V}\left\{\left|\Delta_{E}(v)\right|\right\}$. In the former case, each vehicle is constrained to serve exactly one demand, and therefore no solution with less than $2 m$ stops is achievable. In the latter case, all demands fit into one single vehicle since $p_{\text {min }}=1$, and this solution has n stops, which meets the lower bound provided by Proposition 3.1. Next, a series of less trivial cases are shown to be solvable in polynomial time.

Proposition 3.9- Unit Capacity

Let $\mathcal{I}=(V, E, 1)$ be an instance of $U-S N P$. Then, $U-S N P$ can be solved in $\mathcal{O}(m)$ time and the optimal solution has cost

$$
\sum_{v \in V} \max \left\{\left|\delta_{G_{I}}^{-}(v)\right|,\left|\delta_{G_{I}}^{+}(v)\right|\right\} .
$$

Proof. Notice that since $C=1$, parallel demands cannot be served by the same vehicle. In Bermond et al. [16], Path Traffic Grooming is shown to be solvable in polynomial time for grooming factor $g=1$. Since Path Traffic Grooming is equivalent to U-SNP with no parallel demands, we may use such result to derive a polynomial time algorithm capable of solving U-SNP for $C=1$. Consider the following greedy algorithm that, given an instance ($V, E, 1$) of U-SNP, sequentially:
i. selects a maximal sequence $\left(e_{1}, \ldots, e_{q}\right), q \geq 1$, of demands with $d_{e_{i}}=o_{e_{i+1}}$ for $i=1, \ldots, q-1$,
ii. assigns the demands of such sequence to an available vehicle, and
iii. removes the q demands of the sequence from E.

Such algorithm may run in $\mathcal{O}(m)$ time and yields a solution with

$$
\sum_{v \in V} \max \left\{\left|\delta_{G_{\mathcal{I}}}^{-}(v)\right|,\left|\delta_{G_{\mathcal{I}}}^{+}(v)\right|\right\}
$$

stops, which meets the lower bound provided by Proposition 3.2.

Proposition 3.10-Complete graphs and $C=2$
Let $(V, E, 2)$ be an instance of U-SNP such that $G=(V, E)$ is a complete graph K_{n}. Then U-SNP can be solved in polynomial time.

Proof. In Bermond et al. [16], Path Traffic Grooming is shown to be solvable in polynomial time when the request graph is a complete graph K_{n} and the grooming factor $g=2$. Since Path Traffic Grooming is equivalent to U-SNP with no parallel demands, such result also applies for U-SNP.

Proposition 3.11-Stars

Let (V, E, C) be an instance of U-SNP such that $G=(V, E)$ is a star. Then U-SNP can be solved in polynomial time and the optimal solution has cost

$$
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil .
$$

Proof. Construct an optimal solution of ($V, E, 1$) using the greedy algorithm described in Proposition 3.9. Using the output solution, construct a solution of (V, E, C) by merging groups of C vehicles. The resulting solution stops

$$
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil
$$

times, which meets the lower bound provided by Proposition 3.2.

Proposition 3.12 - Paths and cycles for the intersection case

Let (V, E, C) be an instance of Intersection U-SNP such that $G=(V, E)$ is a path (or a cycle). Then U-SNP can be solved in polynomial time and the optimal solution has cost

$$
m+\left\lceil\frac{m}{C}\right\rceil
$$

Proof. The proof is done for the case where G is a path, but it also holds if G is a cycle. Let $\left(e_{1}, \ldots, e_{m}\right)$ be the sequence in which the demands appear on path G (see Figure 3.4).

Figure 3.4: Sequence of demands in G

Consider the greedy algorithm that assigns each set of demands

$$
\left\{e_{i C+1}, \ldots, e_{\max \{m, i C+C\}}\right\}
$$

to a different vehicle, for $0 \leq i \leq\left\lceil\frac{m}{C}\right\rceil-1$. Such algorithm yields a solution with $\left\lceil\frac{m}{C}\right\rceil-1$ fully charged vehicles, each stopping $C+1$ times and one vehicle stopping

$$
\left[m-\left(\left[\frac{m}{C}\right\rceil-1\right) C\right]+1
$$

times. Therefore, the solution obtained has

$$
m+\left\lceil\frac{m}{C}\right\rceil
$$

stops, which meets the lower bound provided by Proposition 3.4.
Proposition 3.13 - Trees, grids and complete bipartite graphs for the intersection case with $C=3$
Let $(V, E, 3)$ be an instance of Intersection U-SNP such that $G=(V, E)$ is either a tree, a grid or a complete bipartite graph. Then U-SNP can be solved in polynomial time.

Proof. In Lemaire [118], k-Edge-Partitioning Problem is shown to be solvable in polynomial time if G is either a tree, a grid or a complete bipartite graph and $k=3$. Recall that if G is a bipartite graph, then k-Edge-Partitioning Problem is equivalent to Intersection U-SNP with no parallel demands. Since trees, grids and complete bipartite graphs are all examples of bipartite graphs, such result also applies for U-SNP.

So far, the particular cases presented in this section did not have to deal with the presence of parallel demands. For this reason, many results known in the literature for some related problems could be easily extended to the U-SNP. Next, we show that any instance (parallel demands allowed) of the Intersection U-SNP with $C=2$ can be solved in polynomial time.

Proposition 3.14- Intersection case with $C=2$
Intersection $U-S N P$ can be solved in $\mathcal{O}(m)$ time when $C=2$.

Proof. Consider an instance $\mathcal{I}=(V, E, 2)$ of Intersection U-SNP. By definition, each vehicle can serve at most two demands. We define a partition $\left\{\hat{E}_{1}, \ldots, \hat{E}_{p}\right\}$ of E as follows. Let each subset \hat{E}_{i} be composed of two parallel demands for $0 \leq i \leq q$, such that the set of remaining demands

$$
\tilde{E}=E \backslash\left\{\bigcup_{i=0}^{q} \hat{E}_{i}\right\}
$$

does not contain any pair of parallel demands. Notice that this step can be easily done in $\mathcal{O}(m)$ time through a simple greedy algorithm. Moreover, since Proposition 3.7 holds, $\left\{\hat{E}_{1}, \ldots, \hat{E}_{p}\right\}$ is an optimal solution of \mathcal{I} if and only if $\left\{\hat{E}_{q+1}^{*}, \ldots, \hat{E}_{p}^{*}\right\}$ is an optimal solution of $\tilde{\mathcal{I}}=(V, \tilde{E}, 2)$.

For $k=2$, it has been shown in Goldschmidt et al. [78] that k-Edge Partitioning Problem reduces to the Maximum 2-Chain Packing problem, which
can be solved in $O(m)$ time through an algorithm due to Masuyama and Ibaraki [130]. It follows that such algorithm can be applied to solve Intersection U-SNP for $C=2$, and therefore, $\left\{\hat{E}_{q+1}^{*}, \ldots, \hat{E}_{p}^{*}\right\}$ can be obtained in $O(m)$ time.

$3.3 \mathcal{N} \mathcal{P}$-Hardness

After showing that Intersection U-SNP can be solved in polynomial time for $C=2$, the question of whether or not the general U-SNP is $\mathcal{N} \mathcal{P}$-Hard for fixed values of $C \geq 2$ arises naturally. In Pimenta et al. [151], SNP is proved to be weakly $\mathcal{N} \mathcal{P}$-Hard through a simple reduction from Partition Problem. Indeed, if the demands are not said to be identical in terms of load, it is easy to see that some kind of Knapsack or Bin-Packing problems are hidden behind SNP. On the other hand, when dealing with the unitary variant of SNP (i.e., U-SNP), such problems become straightforward and the reduction proposed for SNP cannot be used. Nevertheless, the authors observe that, in practice, even the unitary variant of SNP remains difficult to solve through standard exact methods (e.g., Branch-and-Bound and Branch-and-Cut). Such observation together with the struggle to come up with a tractable algorithm capable of solving the problem, pushed the authors to conjecture U-SNP to be $\mathcal{N} \mathcal{P}$-Hard.

Notice that the simple statement of equivalence between U-SNP and Path Traffic Grooming made in Section 2.3 suffices to positively answer such conjecture. Nonetheless, our study on the complexity of U-SNP goes deeper, yielding stronger complexity results for U-SNP (that can obviously be extended for the related problems described in Section 2.3). More specifically, in this section, U-SNP is shown to be $\mathcal{N} \mathcal{P}$-Hard for any fixed capacity $C \geq 2$ even when restricted to the case where the associated graph G is a planar bipartite graph. The proofs presented next were inspired from the works of Dyer and Frieze [57].

The General Case

In Amini et al. [3], Path Traffic Grooming Problem is shown to be $\mathcal{A P} \mathcal{X}$-Hard (and thus, also $\mathcal{N} \mathcal{P}$-Hard), for any fixed grooming factor $g \geq 2$, through a reduction from the $\mathcal{A P} \mathcal{X}$-Complete problem of finding the maximum number of edge-disjoint triangles (i.e., cycles of length 3) in a tripartite graph. Recall that Path Traffic Grooming is equivalent to U-SNP with no parallel demands. Therefore, any result on the complexity of Path Traffic Grooming can be applied to U-SNP, by restriction.

Notice however, that if G is said to be bipartite, the problem of finding the maximum number of edge-disjoint triangles in G is trivial since, by definition, bipartite graphs do not contain any triangle. The proof proposed in Amini et al. [3] is therefore no longer valid, or at least, cannot directly show the $\mathcal{N} \mathcal{P}$-Hardness of Path Traffic Grooming (and thus, of U-SNP) on bipartite graphs. Next, we propose a polynomial reduction from 3-Dimensional Matching to prove U-SNP is indeed $\mathcal{N} \mathcal{P}$-Hard even when G is restricted to be a planar bipartite graph. For this, let us first recall the 3-Dimensional Matching Problem (3DM).

3-Dimensional Matching Problem - Garey and Johnson [74, p. 221]
Input: Three disjoint sets X, Y, and Z with equal cardinality q, and a set of triples $T \subseteq X \times Y \times Z$.
Output: Decide whether or not there is a subset $M \subseteq T$ such that $|M|=q$ and no two elements of M agree in any coordinate.

It is well known that 3DM problem is $\mathcal{N} \mathcal{P}$-Complete (see Karp [103]). In Dyer and Frieze [58], 3DM is shown to be NP-Complete even when the associated bipartite graph $H=\left(T, S, E^{\prime}\right)$ is restricted to be planar, where $S=X \cup Y \cup Z$ and

$$
E^{\prime}=\bigcup_{t=(x, y, z) \in T}\{(t, x),(t, y),(t, z)\} .
$$

When such restriction is applied, the problem is renamed as Planar 3DM. Figure 3.5 illustrates graph $H=\left(T, S, E^{\prime}\right)$.

Figure 3.5: 3DM bipartite graph $H=\left(T, S, E^{\prime}\right)$

Theorem 3.1- $\mathcal{N} \mathcal{P}$-Hardness of U-SNP for $C=2$
U-SNP is $\mathcal{N} \mathcal{P}$-Hard even when restricted to the case where $C=2$ and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q and a set of triples T, let $H=\left(T, S, E^{\prime}\right)$ be the planar bipartite graph described in Figure 3.5 where $S=X \cup Y \cup Z$ and

$$
E^{\prime}=\bigcup_{t=(x, y, z) \in T}\{(t, x),(t, y),(t, z)\} .
$$

Next, we construct an instance \mathcal{I} of U-SNP in polynomial time and claim that the 3DM instance has a matching if and only if \mathcal{I} has a solution with a certain amount of stops. For this, let us construct graph $G=(V, E)$ in the following manner.

Start with an empty graph G. For each element $i \in W=Y \cup Z$, add a vertex w_{i}. For each element $x \in X$, add a vertex x. For each triple $t=(x, y, z) \in T$, add a vertex x_{t}^{\prime} and let X^{\prime} denote this set of vertices. Finally, for each triple $t=(x, y, z) \in T$ add a vertex t and edges $\left(x_{t}^{\prime}, t\right),\left(x_{t}^{\prime}, x\right),\left(t, w_{y}\right)$, and $\left(t, w_{z}\right)$. This construction yields the graph depicted in Figure 3.6 with $2|T|+|S|$ vertices and $4|T|$ edges.

Figure 3.6: Partial construction of graph G

To complete the construction, attach $\operatorname{deg}(w)-1$ disjoint paths of length 3 to each vertex $w \in W$. Denote W_{j} the set of the j-th vertices of such paths. Additionally, attach $\operatorname{deg}(x)-1$ disjoint paths of length 2 edges to each vertex $x \in X$. Denote X_{j} the set of the j-th vertices of such paths. Notice that the constructed graph, illustrated in Figure 3.7, is planar bipartite if and only if graph H is also planar bipartite.

Figure 3.7: Final construction of graph G

Finally, number the vertices of G as they appear in Figure 3.7 from the left to the right, that is, $W_{3} \prec X^{\prime} \prec W_{2} \prec X_{1} \prec W_{4} \prec T \prec X_{3} \prec W_{1} \prec X_{2}$. Let $\mathcal{I}=(V(G), E(G), 2)$ be the constructed instance of U-SNP. Such construction can be done in polynomial time since $|V(G)|=10|T|-\frac{5}{3}|S|=10|T|-5 q$ and $|E(G)|=12|T|-\frac{8}{3}|S|=12|T|-8 q$.

We now claim that the planar 3DM instance has a matching if and only if \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{4}$ stops. Firstly, notice that each vehicle may take at most 4 demands, since capacity constraints must be respected and $\Delta_{E}\left(v^{\prime}\right) \cup \Delta_{E}\left(v^{\prime \prime}\right)=E$, where v^{\prime} and $v^{\prime \prime}$ are the stations with highest number in X^{\prime} and X_{3}, respectively (see Figure 3.8).

Figure 3.8: Illustration of $\Delta_{E}\left(v^{\prime}\right)$ and $\Delta_{E}\left(v^{\prime \prime}\right)$

Additionally, for any vehicle i, notice also that $G\left(E_{i}\right)$ cannot contain a cycle
since all cycles in G induce a violation on the vehicle's capacity. Therefore, $G\left(E_{i}\right)$ is a forest and each vehicle i stops $\left|E_{i}\right|+f_{i}$ times, where f_{i} is the number of connected components of $G\left(E_{i}\right)$. Given a solution of \mathcal{I}, let p^{\prime} denote the number of non-empty vehicles in such solution. The total number of stops of this solution of \mathcal{I} is therefore given by

$$
\sum_{i=1}^{p^{\prime}}\left|V\left[E_{i}\right]\right|=\sum_{i=1}^{p^{\prime}}\left(\left|E_{i}\right|+f_{i}\right)=|E(G)|+\sum_{i=1}^{p^{\prime}} f_{i}
$$

By definition, $\sum_{i=1}^{p^{\prime}} f_{i} \geq p^{\prime} \geq p_{\text {min }}$. Moreover, since each vehicle cannot take more than 4 demands, $p_{\text {min }} \geq \frac{|E(G)|}{4}$. It follows that $|E(G)|+\frac{|E(G)|}{4}$ is a lower bound on the number of stops of any solution of \mathcal{I}. Moreover, if a solution with $|E(G)|+\frac{|E(G)|}{4}$ stops exists, then

$$
\sum_{i=1}^{p^{\prime}} f_{i}=p^{\prime}=k_{\min }=\frac{|E(G)|}{4}
$$

This means that each non-empty vehicle is assigned exactly 4 connected demands and stops at exactly 5 stations. Therefore, the additional paths of length 3 attached to vertex $w \in W_{1}$ must be each in a different vehicle. In addition, they must form a connected component of size 4 with some other demand incident to w, coming from T. Removing these components leaves exactly one demand incident to each station in W_{1}. Analogously, the additional paths of length 2 attached to vertex $x \in X_{1}$ must be each in a different vehicle. Thus they must form a connected component of size 4 with another path of length 2 linking vertex x to some vertex in T. Removing such components leaves exactly one path incident to each station in X_{1}. This decomposition leaves G with connected components of size at most 4, each having exactly one vertex in T.

If \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{4}$ stops, the remaining connected components must be trees with one internal vertex in each set T and X^{\prime}, and one leaf in each set X, Y and Z (Figure 3.6 depicts such structure). Therefore, such vehicles induce a 3 -dimension matching on graph H. This decomposition can be easily reversed to show that any 3 -dimension matching in H induces a solution of \mathcal{I} with $|E(G)|+\frac{|E(G)|}{4}$ stops.

The idea used in the proof of Theorem 3.1 can be further exploited to derive a formal proof of $\mathcal{N} \mathcal{P}$-Hardness of U-SNP, for other fixed values of C. Indeed, such result can be easily obtained for any fixed capacity $C=2 k$, where $k \in \mathbb{Z}_{+}^{*}$.

Theorem 3.2- $\mathcal{N} \mathcal{P}$-Hardness of U-SNP for even capacities

The U-SNP is $\mathcal{N} \mathcal{P}$-Hard even when restricted to the case where $C=2 k$, for $k \in \mathbb{Z}_{+}^{*}$, and G is a planar bipartite graph.

Proof. Given a planar bipartite graph H associated with an instance of Planar 3DM
(see Figure 3.5), construct graph G depicted in Figure 3.7 in the same manner as described in the proof of Theorem 3.1. Next, construct graph G^{\prime} by replacing every edge in G by a path of length k. G^{\prime} can obviously be constructed in polynomial time since k is fixed. Moreover, if $k=1$ then $G^{\prime}=G$.

Finally, let $\mathcal{I}=\left(V\left(G^{\prime}\right), E\left(G^{\prime}\right), 2 k\right)$ be a constructed instance of U-SNP, by numbering the vertices of G^{\prime} in a way that (i.) every cycle in G^{\prime} induces a violation on the vehicle's capacity and (ii.) there exist two stations v^{\prime} and $v^{\prime \prime}$ such that

$$
\Delta_{E}\left(v^{\prime}\right) \cup \Delta_{E}\left(v^{\prime \prime}\right)=E, \quad \text { and } \quad\left|\Delta_{E}\left(v^{\prime}\right)\right|=\left|\Delta_{E}\left(v^{\prime \prime}\right)\right|=\frac{\left|E\left(G^{\prime}\right)\right|}{2}
$$

Such numeration can be easily found applying a similar idea as the one used in the proof of Theorem 3.1. Figure 3.9 gives an example (vertices are numbered from the left to the right) of such numeration for $k=2$ that can be extended for any $k \in \mathbb{Z}_{+}^{*}$.

Figure 3.9: Illustration of $\Delta_{E}\left(v^{\prime}\right)$ and $\Delta_{E}\left(v^{\prime \prime}\right)$

Hence, each vehicle may take at most $2 C$ demands and the arguments used in the proof of Theorem 3.1 can now be adjusted and applied here for showing that H has a 3-dimensional matching if and only if \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{2 C}$ stops.

Recall that Path Traffic Grooming is shown in Amini et al. [3] to be $\mathcal{N} \mathcal{P}$-Hard for any fixed grooming factor $g \geq 2$ even when restricted to the case where the graph of requests H is a tripartite graph. Since Path Traffic Grooming is equivalent to U-SNP with no parallel demands and the construction used in the proof of Theorem 3.2 does not include any parallel demand, the complexity result obtained for U-SNP can be extended to the Path Traffic Grooming, reinforcing the known complexity results for even values of grooming factor g.

Corollary 3.1 - Extended result for Path Traffic Grooming

Path Traffic Grooming is $\mathcal{N} \mathcal{P}$-Hard for any fixed grooming factor $g=2 k$, for $k \in \mathbb{Z}_{+}^{*}$, even when restricted to the case where the graph of requests H is a planar bipartite graph.

The results presented above can only treat the case where C is even. However, it seems strange that the parity of C plays such an important role on establishing the problem's complexity. It turns out that the $\mathcal{N} \mathcal{P}$-Hardness of U-SNP on planar bipartite graphs can indeed be extended to odd values of C. Such result will be achieved through the proof of Theorem 3.4.

After proving that U-SNP is $\mathcal{N} \mathcal{P}$-Hard for even values of C and knowing that Intersection U-SNP can be solved in polynomial time for $C=2$, the question of whether or not Intersection U-SNP is $\mathcal{N} \mathcal{P}$-Hard for higher capacities arises immediately. Such question is further investigated below.

The Intersection Case

In Goldschmidt et al. [78], k-Edge-Partitioning Problem is shown to be $\mathcal{N} \mathcal{P}$ Hard, for any fixed $k \geq 3$, through a reduction from Edge-Partition into Triangles Problem.

Edge-Partition into Triangles Problem

Input: An undirected graph $G=(V, E)$.
Output: Decide whether or not there exists a partition of E into sets inducing a subgraph of G isomorphic to K_{3}.

Recall that if G is a bipartite graph, then k-Edge-Partitioning Problem is equivalent to Intersection U-SNP with no parallel demands. It is therefore intuitive to try applying the same reduction to U-SNP. It turns out, however, that solving Edge-Partition into Triangles Problem on bipartite graphs is trivial as bipartite graphs, by definition, do not contain any odd cycle. Moreover, in Lemaire
[118], k-Edge-Partitioning Problem is also investigated and shown to be solvable in polynomial time for some sub-classes of bipartite graphs and $k=3$. The authors state however, that for an arbitrary bipartite graph, the problem's complexity is not known. Next, we propose a polynomial reduction from 3-Dimensional Matching to prove Intersection U-SNP is indeed $\mathcal{N} \mathcal{P}$-Hard. Such result can then be extended to k-Edge-Partitioning Problem.

Theorem 3.3- $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP for $C=3$

Intersection U-SNP is $\mathcal{N} \mathcal{P}$-Hard even when restricted to the case where $C=3$ and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q and a set of triples T, let $H=\left(T, S, E^{\prime}\right)$ be the planar bipartite graph described in Figure 3.5 where $S=X \cup Y \cup Z$ and

$$
E^{\prime}=\bigcup_{t=(x, y, z) \in T}\{(t, x),(t, y),(t, z)\}
$$

Next, we construct an instance \mathcal{I} of Intersection U-SNP in polynomial time and claim that the 3DM instance has a matching if and only if \mathcal{I} has a solution with a certain amount of stops. For this, let G be a graph obtained from H by attaching $\operatorname{deg}_{H}(i)-1$ disjoint paths of length $k+1$ to each vertex $i \in S$. Graph G is illustrated in Figure 3.10.

Figure 3.10: Construction of graph G for Theorem 3.3

Notice that if H is planar bipartite, then the constructed graph G is also planar bipartite. Let $\mathcal{I}=(V(G), E(G), 3)$. However, for \mathcal{I} to be an instance of Intersection U-SNP, the stations in $V(G)$ need to be numbered in a way that there exists some station v^{\prime} wherein all demands intersect. This can be easily done, since graph G
remains bipartite planar. For instance, if W and \bar{W} are the two disjoint independent sets inducing G, one can number vertices in W first and then vertices in \bar{W} afterwards.

The construction of instance \mathcal{I} can be done in polynomial time from any Planar 3DM instance, since $|V(G)|=7|T|-3 q$ and $|E(G)|=9|T|-6 q$. We now claim that the planar 3DM instance has a matching if and only if \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{3}$ stops.

Suppose that such solution exists. By definition, a vehicle cannot take more than $C=3$ demands, and by construction, there is no cycle in G of size smaller than $C+1$. Therefore, Property 5 stated in Section 3.1 applies and $G\left(E_{i}\right)$ must be a forest, for any vehicle i. Thus, vehicle i stops $\left|E_{i}\right|+f_{i}$ times, where f_{i} is the number of connected components of $G\left(E_{i}\right)$.

Let p^{\prime} denote the number of non-empty vehicles in such solution. Without loss of generality, assume $E_{i} \neq \emptyset$ for $i \leq p^{\prime}$ and $E_{i}=\emptyset$ for $i>p^{\prime}$. The total number of stops of this solution is therefore given by

$$
\sum_{i=1}^{p^{\prime}}\left|V\left[E_{i}\right]\right|=\sum_{i=1}^{p^{\prime}}\left(\left|E_{i}\right|+f_{i}\right)=|E(G)|+\sum_{i=1}^{p^{\prime}} f_{i} .
$$

Notice that since $f_{i} \geq 1$, for any $i \leq p^{\prime}$, one has that

$$
\sum_{i=1}^{p^{\prime}} f_{i} \geq p^{\prime} \geq k_{\min }=\left\lceil\frac{|E(G)|}{C}\right\rceil \geq \frac{|E(G)|}{3}
$$

This means that a solution with $|E(G)|+\frac{|E(G)|}{3}$ stops has $\sum_{i=1}^{p^{\prime}} f_{i}=\frac{|E(G)|}{3}$. Hence, each non-empty vehicle is assigned 3 connected demands and stops 4 times.

As a consequence, the additional paths of length 2 must be each in a different vehicle. In addition, they must form a connected component of size 3 with some other edge incident to i, coming from T. Removing these components leaves exactly one demand incident to each station in S. This decomposition leaves G with connected components of size at most 3, each having exactly one vertex in T.

If \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{3}$ stops, the remaining connected components are claws $K_{1,3}$ with internal vertex in T, and one leaf in each set X, Y and Z. Therefore, such vehicles induce a 3 -dimension matching on graph G. This decomposition can be easily reversed to show that any 3-dimension matching induces a solution of \mathcal{I} with $|E(G)|+\frac{|E(G)|}{3}$ stops.

The idea used in the proof of Theorem 3.3 can be further exploited to derive a formal proof of $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP, for other fixed values of C.

Theorem 3.4- $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP for odd capacities

The Intersection U-SNP is $\mathcal{N} \mathcal{P}$-Hard even when restricted to the case where $C=$ $2 k+1$, for $k \in \mathbb{Z}_{+}^{*}$, and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q and a set of triples T, consider again planar bipartite graph $H=\left(T, S, E^{\prime}\right)$ described in Figure 3.5. From H, let us construct graph G throughout the following operations:
i. Replace the edges between T and $S \backslash X$ with paths of length k.
ii. Attach $\operatorname{deg}_{H}(i)-1$ disjoint paths of length $k+1$ to each vertex $i \in S \backslash X$.
iii. Attach $\operatorname{deg}_{H}(i)-1$ disjoint paths of length $2 k$ to each vertex $i \in X$.

Graph G is illustrated in Figure 3.11 for $C=5$.

Figure 3.11: Construction of graph G for Theorem 3.4, with $k=2$

Notice that the construction of G preserves planarity and bipartiteness. Let $\mathcal{I}=$ $(V(G), E(G), 2 k+1)$ be an instance of Intersection U-SNP obtained by numbering the stations in $V(G)$ in the same manner as done in the proof of Theorem 3.3. The construction of \mathcal{I} can be done in polynomial time as $|V(G)|=(4 k+5)|T|-(4 k-1) q$ and $|E(G)|=(6 k+3)|T|-(4 k+2) q$.

We claim that the planar 3DM instance has a matching if and only if \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{2 k+1}$ stops. Since, by construction, graph G has no cycle of size less than $2 k+2($ i.e., $C+1)$, all the arguments used for the proof of Theorem 3.3 hold and the rest of this proof is done analogously.

From Theorem 3.2 and Theorem 3.4, we set the following corollaries:

Corollary 3.2-Extended result for U-SNP

The U-SNP is NP-Hard for any fixed capacity $C \geq 2$, even when restricted to the case where G is a planar bipartite graph.

Corollary 3.3-Extended result for Path Traffic Grooming

The Path Traffic Grooming is NP-Hard for any fixed grooming factor $g \geq 2$, even when restricted to the case where the graph of requests H is a planar bipartite graph.

After proving Intersection U-SNP is $\mathcal{N} \mathcal{P}$-Hard for odd capacities, we show next that a similar idea can be used for extending such result to even values of C.

Theorem 3.5- $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP for even capacities The Intersection U-SNP is $\mathcal{N} \mathcal{P}$-Hard even when restricted to the case where $C=$ $4+2 k$, for $k \in \mathbb{Z}_{+}^{*}$, and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q and a set of triples T, consider again planar bipartite graph $H=\left(T, S, E^{\prime}\right)$ described in Figure 3.5. From H, let us construct graph G throughout the following operations:
i. Replace the edges between T and $S \backslash X$ with paths of length $k+1$.
ii. Replace the edges between T and X with paths of length 2 (i.e., subdivide such edges).
iii. Attach $\operatorname{deg}_{H}(i)-1$ disjoint paths of length $k+3$ to each vertex $i \in S \backslash X$.
iv. Attach $\operatorname{deg}_{H}(i)-1$ disjoint paths of length $2 k+2$ to each vertex $i \in X$.

Graph G is illustrated in Figure 3.12 for $C=10$ (i.e., $k=3$).

Figure 3.12: Construction of graph G for Theorem 3.5, with $k=3$

Notice that the construction of G preserves the planarity and the bipartiteness from graph H. Let $\mathcal{I}=(V(G), E(G), 2 k+4)$ be an instance of Intersection U-SNP by numbering the stations in $V(G)$ in the same manner as done in the proof of Theorem 3.3. The construction of \mathcal{I} can be done in polynomial time since k is fixed and $|V(G)|=(6 k+10)|T|-(4 k-5) q$ and $|E(G)|=(6 k+12)|T|-(4 k+8) q$.

We claim that the planar 3DM instance has a matching if and only if \mathcal{I} has a solution with $|E(G)|+\frac{|E(G)|}{2 k+4}$ stops. Since, by construction, graph G has no cycle of size less than $2 k+5$ (i.e., $C+1$), all arguments used for the proof of Theorem 3.3 hold and the rest of this proof is done analogously.

From Theorem 3.4 and Theorem 3.5, we set the following corollary.

Corollary 3.4-Extended result for k-Edge-Partitioning Problem

The k-Edge-Partitioning Problem is NP-Hard for any fixed $k \geq 3, k \neq 4$, even when restricted to the case where G is a planar bipartite graph.

The key component enabling the development of our proofs of complexity is the ability of rejecting any cycle of size less than or equal to C in the construction of graph G, while maintaining the capacity to reach elements in X, Y and Z from T using only C edges. This is only made possible through the successive subdivisions of edges between T and S. Following this concept, for $C=4$, only one edge of the claw $\{(t, x),(t, y),(t, z)\}$ is allowed to be subdivided. However, if one tries to subdivide only edges between T and one of the disjoint sets X, Y or Z (w.l.o.g., say Z), cycles of size 4 may appear between sets T and the two other sets (X and $Y)$. As a consequence, the proof of $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP when G is planar bipartite remains unclear for $C=4$. On the other hand, there is no evidence to believe that a tractable algorithm for such case could be conceivable. The fact that $\mathcal{N} \mathcal{P}$-Hardness holds for $C=3$ and $C=5$, also pushes us in this direction. Therefore, following the steps of Jack Edmonds ${ }^{2}$, the following conjecture is proposed.

Conjecture 2 - $\mathcal{N} \mathcal{P}$-Hardness of Intersection U-SNP for any fixed capacity

 The Intersection U-SNP is NP-Hard even when restricted to the case where $C=4$ and G is a planar bipartite graph.[^5]
3.4 Approximability

Once a problem is shown to be $\mathcal{N} \mathcal{P}$-Hard, there is little hope that an algorithm with polynomially bounded running time can be achieved. Indeed, finding such algorithm would proof $\mathcal{P}=\mathcal{N} \mathcal{P}$, answering one of the "million dollar" questions that has been puzzling mathematicians for such a long time (see Clay Mathematics Institute [34]). For such problems, one may decide to sacrifice optimality in order to obtain a good solution within polynomially bounded time. Algorithms based on such principle are called heuristics. If an heuristic is capable of always providing near-optimal solutions, that is, if there exists a provable guarantee on the quality of the provided solutions, the heuristic is called an approximation algorithm. In this section, approximation algorithms for the U-SNP are investigated. We present some preliminary results that were obtained in collaboration with José R. Correa, Associate Professor at the Department of Industrial Engineering from Universidad de Chile, Santiago, Chile, during a one-month visit at Universidad de Chile.

The approximation ratio is a widely accepted measure of the goodness of approximation algorithms and can be defined as follows. Let P be an optimization (minimization) problem and A be an algorithm providing a feasible solution for P. Given an instance \mathcal{I} of P, let $O P T(\mathcal{I})$ denote the value of an optimal solution to instance \mathcal{I}. Moreover, let $A(\mathcal{I})$ denote the value of the solution provided by algorithm A for instance \mathcal{I}. The approximation ratio of algorithm A is defined as:

$$
R_{A}=\max _{\mathcal{I}} \frac{A(\mathcal{I})}{O P T(\mathcal{I})} .
$$

As previously stated, Path Traffic Grooming is known to be $\mathcal{A} \mathcal{P} \mathcal{X}$-Hard, that is, it can be approximated within a constant ratio but does not admit an approximation ratio of $1+\epsilon$ unless $\mathcal{P}=\mathcal{N} \mathcal{P}$. By restriction, one easily deduces that U-SNP is therefore also $\mathcal{A P} \mathcal{X}$-Hard.

3.4.1 An initial C-approximation algorithm

For developing an approximation algorithm for U-SNP, we use the fact that USNP can be solved optimally in polynomial time for $C=1$ (see Proposition 3.9). Given an instance (V, E, C) of U-SNP, let $\left\{E_{1}^{*}, E_{2}^{*}, \ldots, E_{p}^{*}\right\}$ be an optimal solution of (V, E, C) and let $O P T(V, E, C)$ denote its value. It is clear that increasing the vehicle's capacity constitutes a relaxation of the problem and hence

$$
\begin{equation*}
O P T(V, E, C) \leq O P T(V, E, C-1) \leq \cdots \leq O P T(V, E, 1) \tag{3.3}
\end{equation*}
$$

Such statement is evidenced by taking a look at formulation $\operatorname{USNP}_{(V, E, C)}$ and noticing that $\operatorname{USNP}_{(V, E, C)} \subseteq \operatorname{USNP}_{(V, E, C+1)}$.

Proposition 3.15-A C-approximation algorithm for U-SNP

The algorithm described in Proposition 3.9 for solving an instance $(V, E, 1)$ of U SNP is a C-approximation algorithm for instance (V, E, C).

Proof. If $\left\{E_{1}^{*}, E_{2}^{*}, \ldots, E_{p}^{*}\right\}$ is an optimal solution to (V, E, C), one can easily partition demands in E_{1}^{*} into C vehicles of capacity 1 by solving the instance ($V, E_{1}^{*}, 1$). Notice that, in the worst case, each "new" unit capacity vehicle stops at every station in $V\left[E_{1}^{*}\right]$. Therefore,

$$
O P T\left(V, E_{1}^{*}, 1\right) \leq C\left|V\left[E_{1}^{*}\right]\right| .
$$

By repeating such procedure for each vehicle $1 \leq i \leq p$, one obtains a solution for (V, E, C) with value

$$
\begin{equation*}
\sum_{i=1}^{p} O P T\left(V, E_{i}^{*}, 1\right) \leq C(O P T(V, E, C)) \tag{3.4}
\end{equation*}
$$

Lastly, it suffices to notice that such constructed solution of (V, E, C) is also a solution for ($V, E, 1$), and therefore

$$
O P T(V, E, 1) \leq \sum_{i=1}^{p} O P T\left(V, E_{i}^{*}, 1\right)
$$

Combining inequalities (3.3), (3.4) and (3.4.1), one finally gets a proof of approximability:

$$
O P T(V, E, C) \leq O P T(V, E, 1) \leq C(O P T(V, E, C))
$$

Notice that if (V, E, C) is an instance of Intersection U-SNP, one may take advantage of the fact that ($V, E, 2$) is optimally solvable in polynomial time (see Proposition 3.14), to derive a better approximation algorithm. Indeed, by following the same steps as in the proof of Proposition 3.15, one can easily remark that

$$
O P T(V, E, C) \leq O P T(V, E, 2) \leq\left\lceil\frac{C}{2}\right\rceil(O P T(V, E, C))
$$

Next we present a better constant-ratio approximation algorithm solving U-SNP when capacity is fixed to 2 - recall that such case is $\mathcal{N} \mathcal{P}$-Hard as shown by Theorem 3.1.

3.4.2 \quad A $\frac{5}{3}$-approximation algorithm for $C=2$

We use the following notation to describe the algorithm. Given an instance $\mathcal{I}=$ $(V, E, 2)$ of U-SNP, let $E_{u v}=\left\{e \in E: o_{e}=u\right.$ and $\left.d_{e}=v\right\}$ denote the set of parallel demands $u v$ in E. Then, consider an algorithm that, at first, merges pairs of parallel demands into a single demand and then solves the problem optimally with $C=1$ on the resulting graph. Such algorithm is denoted Merge and is formally defined as follows.

```
Algorithm 1 Merge Algorithm
Input: An instance \(\mathcal{I}=(V, E, 2)\) of U-SNP
Output: A feasible solution for \(\mathcal{I}\)
    \(E^{\prime}=\emptyset\)
    for all \(u \in V\) do
        for all \(v \in V\) do
            Add \(\left\lceil\frac{\left|E_{u v}\right|}{2}\right\rceil\) edges \(u v\) to \(E^{\prime}\)
        end for
    end for
    Optimally solve instance \(\left(V, E^{\prime}, 1\right)\)
```

Merge Algorithm clearly has a polynomial bounded running time since all its steps can be done in polynomial time. In fact, as stated in Algorithm 1 it may run in $\mathcal{O}\left(n^{2}\right)$ time, but with the right data structures this can be improved to $\mathcal{O}(m)$ time. Moreover, since no two parallel demands can be assigned to the same vehicle in instance ($V, E^{\prime}, 1$), Merge Algorithm provides a feasible solution for $(V, E, 2)$. We now prove its approximability.

Proposition 3.16-A $\frac{5}{3}$-approximation algorithm

Merge Algorithm is a $\frac{5}{3}$-approximation algorithm for U-SNP when $C=2$.

Proof. Let $\operatorname{Merge}(V, E, 2)$ denote the value of the solution obtained by applying Merge Algorithm over instance ($V, E, 2$). Clearly,

$$
\begin{equation*}
O P T(V, E, 2) \leq \operatorname{Merge}(V, E, 2) \tag{3.5}
\end{equation*}
$$

Moreover, for any feasible solution $\left\{E_{1}, E_{2}, \ldots, E_{p}\right\}$ to instance $(V, E, 2)$, it is easy to see that

$$
\begin{equation*}
\operatorname{Merge}(V, E, 2) \leq \sum_{i=1}^{p} \operatorname{Merge}\left(V\left[E_{i}\right], E_{i}, 2\right) \tag{3.6}
\end{equation*}
$$

Therefore, if $\left\{E_{1}^{*}, E_{2}^{*}, \ldots, E_{p}^{*}\right\}$ is an optimal solution to ($V, E, 2$), it follows that

$$
\begin{equation*}
\operatorname{Merge}(V, E, 2) \leq \sum_{i=1}^{p} \operatorname{Merge}\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right) \tag{3.7}
\end{equation*}
$$

Without loss of generality, $G\left[E_{i}^{*}\right]$ is assumed to be a connected graph, for any $1 \leq i \leq p$. We claim that

$$
\sum_{i=1}^{p} \operatorname{Merge}\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right) \leq \sum_{i=1}^{p} \frac{5}{3}\left|V\left[E_{i}^{*}\right]\right|=\frac{5}{3} O P T(V, E, 2)
$$

For this, let us consider Merge Algorithm with instance ($V\left[E_{i}^{*}\right], E_{i}^{*}, 2$) as its input, for each $i \in\{1, \ldots, p\}$. We then show that

$$
\operatorname{Merge}\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right) \leq \frac{5}{3}\left|V\left[E_{i}^{*}\right]\right|
$$

for any $1 \leq i \leq p$.
Since $C=2$, for any pair of nodes $u \in V\left[E_{i}^{*}\right]$ and $v \in V\left[E_{i}^{*}\right]$, one has $\left|E_{u v} \cap E_{i}^{*}\right| \leq$ 2. Therefore, graph $G^{\prime}=\left(V\left[E_{i}^{*}\right], E_{i}^{* \prime}\right)$ constructed in the first phase of Merge Algorithm has no parallel demands (i.e., G^{\prime} is simple). Figure 3.13 gives an example for the construction of such graph.

(a) Graph $G\left[E_{i}^{*}\right]$

(b) Graph G^{\prime} constructed by Merge Algorithm with instance $\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right)$ as its input

Figure 3.13: Construction of G^{\prime}

After constructing $G^{\prime}=\left(V\left[E_{i}^{*}\right], E_{i}^{* \prime}\right)$, Merge Algorithm optimally solves instance $\left(V\left[E_{i}^{*}\right], E_{i}^{* \prime}, 1\right)$. From Proposition 3.9, one has that

$$
\operatorname{Merge}\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right)=\sum_{v \in V\left[E_{i}^{*}\right]} \max \left\{\left|\delta_{G^{\prime}}^{-}(v)\right|,\left|\delta_{G^{\prime}}^{+}(v)\right|\right\}
$$

Furthermore, $\max \left\{\left|\delta_{G^{\prime}}^{-}(v)\right|,\left|\delta_{G^{\prime}}^{+}(v)\right|\right\} \leq 2$, for any $v \in V\left[E_{i}^{*}\right]$. We next show that given three consecutive nodes v_{i}, v_{i+1} and v_{i+2} in G^{\prime}, at least one of them cannot have $\max \left\{\left|\delta_{G^{\prime}}^{-}(v)\right|,\left|\delta_{G^{\prime}}^{+}(v)\right|\right\}=2$ and hence,

$$
\sum_{v \in V\left[E_{i}^{*}\right]} \max \left\{\left|\delta_{G^{\prime}}^{-}(v)\right|,\left|\delta_{G^{\prime}}^{+}(v)\right|\right\} \leq \frac{5}{3}\left|V\left[E_{i}^{*}\right]\right| .
$$

Suppose that such statement is false. Then, $\max \left\{\left|\delta_{G^{\prime}}^{-}(v)\right|,\left|\delta_{G^{\prime}}^{+}(v)\right|\right\}=2$, for $v \in\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$. For this, suppose $\left|\delta_{G^{\prime}}^{-}\left(v_{i}\right)\right|=2$. Hence, $\left|\delta_{G^{\prime}}^{-}\left(v_{i+1}\right)\right| \leq 1$, for otherwise there exists some node $j \prec v_{i}$ in $V\left[E_{i}^{*}\right]$ for which $\Delta_{E_{i}^{* \prime}}(j)>C$, a contradiction (see Figure 3.14a). Therefore, $\left|\delta_{G^{\prime}}^{+}\left(v_{i+1}\right)\right|=2$. However, this imposes $\max \left\{\left|\delta_{G^{\prime}}^{-}\left(v_{i+2}\right)\right|,\left|\delta_{G^{\prime}}^{+}\left(v_{i+2}\right)\right|\right\} \leq 1$ (see Figure 3.14b). The proof follows the same reasoning if one supposes $\left|\delta_{G^{\prime}}^{+}\left(v_{i}\right)\right|=2$.

(a) $\left|\delta_{G^{\prime}}^{-}\left(v_{i+1}\right)\right|$ cannot be greater than 1

Figure 3.14: Consequences of having $\left|\delta_{G^{\prime}}^{-}\left(v_{i}\right)\right|=2$

Finally, one has

$$
O P T(V, E, 2) \leq \operatorname{Merge}(V, E, 2) \leq \sum_{i=1}^{p} \operatorname{Merge}\left(V\left[E_{i}^{*}\right], E_{i}^{*}, 2\right) \leq \frac{5}{3} O P T(V, E, 2)
$$

which proves Merge Algorithm has an approximation ratio of $\frac{5}{3}$.
Moreover, the approximation ratio of $\frac{5}{3}$ from Merge Algorithm is tight. This can be easily verified by considering the instance of U-SNP with $C=2$ described in Figure 3.15. While Merge Algorithm yields a solution with 5 stops for such instance, the optimal solution consists of assigning all three demands to the same vehicle, which produces only 3 stops.

Figure 3.15: Instance showing the tightness of Merge Algorithm's approximation ratio

3.5 Conclusion

In this chapter we have investigated the computational complexity of U-SNP. At an initial stage, optimal solutions properties were studied in order to better understand the combinatorial problem behind U-SNP. A series of lower bounds for the U-SNP were then introduced and some particular cases were shown to be solvable in polynomial time. Based on such results we finally derived a proof of $\mathcal{N} \mathcal{P}$-Hardness for the

U-SNP, answering the conjecture proposed by Pimenta et al. [151]. Our presented proofs remain valid for any fixed capacity $C \geq 2$ even if the associated graph G is said to be planar bipartite.

To the best of our knowledge, the variant where every demand intersect a given station has not received particular attention in the literature. Such variant is also taken into account in our complexity study. Figure 3.16 gives a comprehensive picture of the computational complexity of U-SNP when the associated graph G is planar bipartite. It is important to notice that the obtained results are shown to be extensible to other related problems such as the Traffic Grooming problem. In the last section of the chapter, a preliminary study on the approximation of U-SNP is presented, yielding a $\frac{5}{3}$-approximation algorithm for the case where $C=2$.

Figure 3.16: An overview of the complexity of U-SNP.

Chapter 4

Polyhedral study

> "True optimization is the revolutionary contribution of modern research to decision processes."

— George B. Dantzig

If one is interested in exact optimal solutions, a common approach when tackling hard problems is to formulate and solve it as a MILP. Many combinatorial problems have taken benefit from the study of the facial structure of the convex hull of feasible solutions - also known as the integer polyhedron - for improving the associated MILP performances. Indeed, if a complete description of the integer polyhedron is known, the problem can be solved as a linear program over such polyhedron. Unfortunately, the complete description of such polyhedrons usually involves an exponential number of inequalities. Here, the equivalence between optimization and separation described by Theorem 1.9 in Section 1.5 plays an important role. Indeed, if the associated separation problem can be solved in polynomial time, then the optimization of a linear function over the polyhedron can also be done in polynomial time. The matching problem (see Edmonds [59, 60], Pulleyblank [153]) is a classic example where the integer polyhedron has been fully described and its separation problem shown to be solvable in polynomial time. On the other hand, a partial description of the integer polyhedron of $\mathcal{N} \mathcal{P}$-Hard problems is also desired when designing good algorithms. Notable examples of such cases are the traveling salesman problem (see Dantzig et al. [47], Grötschel and Padberg [81], Padberg and Hong [142], Balas and Christofides [9], Fischetti and Toth [69], Applegate et al. [5]) and the vertex packing problem (see Nemhauser and Trotter [136, 137], Wolsey [179]). In this chapter, such polyhedral study is conducted for the U-SNP.

4.1 Methodology and Preliminary Analysis

Let us recall the formulation provided in Pimenta et al. [151] for the U-SNP:

$$
\begin{equation*}
\min \sum_{v \in V} \sum_{i \in K} y_{v}^{i} \tag{4.1}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
\sum_{i \in K} x_{e}^{i}=1 & \forall e \in E, \\
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C & \forall v \in V, i \in K, \\
x_{e}^{i}-y_{v}^{i} \leq 0 & \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}, \\
x_{e}^{i} \in\{0,1\} & \forall e \in E, i \in K, \\
y_{v}^{i} \in\{0,1\} & \forall v \in V, i \in K .
\end{array}
$$

When dealing with VIPA's fleet management, gathering real instances is not an easy task. To the best of our knowledge, there is no standard benchmark sets of instances when dealing with such problems. In Pimenta et al. [151], Deleplanque et al. [50], Bsaybes et al. [26], instances were randomly generated. Moreover, most of the work done around the Stop Number Problem has considered weighted demands and/or a fixed number of tours (see Section 2.3). This prevents the reuse of the instances considered in such cases for our purposes.

For these reasons, in order to evaluate the strength of formulation (4.1)-(4.6), a new set of 315 randomly generated instances is proposed for the U-SNP as follows. Given a fixed number of stations n, two different numbers (say a and b) are picked at random between 1 and n to create a demand going from station a to station b if $a<b$ (or from b to a, otherwise). Notice however that the density of demands with respect to the number of stations, denoted by $\rho=\frac{m}{n}$, is a much more meaningful parameter than the number of stations n. The density provides information on the average degree of each station (the average degree corresponds to 2ρ) and therefore, allows the decision maker to forecast whether or not demands are likely to share a common station. Furthermore, once the density ρ and the number of demands m have been fixed, the number of stations is directly obtained from the definition of ρ.

A set of different scenarios based on the number of demands m, the capacity C and the density ρ is thus provided with $m \in\{30,35,40,45,50,55,60\}, C \in\{2,5,8\}$ and $\rho \in\{1.5,3.0,4.5\}$. For each combination of parameters, 5 instances were randomly generated. Each generated instance can then be referred to as the code $m_{-} C_{-} \rho_{-} i$, where i refers to the i-th instance generated with the given parameters.

For analysing the performance of formulation (4.1)-(4.6), we implemented it in C++ using CPLEX 12.8. All default settings of CPLEX (presolving, heuristics, cut generation and dynamic search, among other features) were left untouched. A computer machine provided with an Intel Xeon E5, 3.10GHz and 32 Gb of RAM was used for running performance tests. A time limit of 2 hours was set for solving each instance. The number of available threads was set to one.

For each combination of parameters m, C and ρ, Table 4.1 gives the average results obtained with such formulation, from the 5 generated instances. For detailed information on each instance, the reader is invited to check Table A. 1 on Appendix A. On Table 4.1, section Instances provides information about the instance's parameters. Columns cols and rows refer to the number of variables and inequalities, respectively - after the presolve elimination from CPLEX. Moreover, $p_{\text {min }}$ refers to the minimum number of vehicles needed to satisfy all demands and p^{\prime} to the number of vehicles used on the best solution found.

Next in order, section Root provides information about the optimization at the root node of the Branch-and-Bound tree, where time $_{r}$ refers to the time in seconds needed to solve the root node, $L B_{r}$ and $U B_{r}$ refer, respectively, to the best lower and upper bounds known at the root node and $g a p_{r}$ refers to the gap obtained after solving the root node calculated as $g a p_{r}=\frac{U B_{r}-L B_{r}}{U B_{r}}$.

At last, section Global provides information about the global optimization process, where time $_{g}$ refers to the time in seconds needed to solve the optimization problem and timeBest to the time in seconds required to find the best integer solution. Notice that timeBest \leq time $_{g}$. The difference between time $_{g}$ and timeBest corresponds to time spent proving the optimality of the solution found. Moreover, $L B_{g}$ and $U B_{g}$ refer, respectively, to the best lower and upper bounds known by the end of the optimization process and $g a p g^{g}$ refers to the final gap which is calculated as $g a p_{g}=\frac{U B_{g}-L B_{g}}{U B_{g}}$. Notice that if a solution could be found and proven to be optimal within the time limit, then $L B_{g}$ equals $U B_{g}$ and the $g a p_{g}$ is, by definition, null. Column Nodes refers to the number of nodes (in thousands) in the Branch-and-Bound tree processed during the optimization and column NLeft to the number of nodes in the Branch-and-Bound tree that remained to be processed by the end of the time limit. Clearly, NLeft is null if an optimal solution could be found within the time limit. Finally, column Cuts $_{C P}$ refers to the total number of cuts generated by CPLEX during the whole optimization process. More specifically, Cuts $_{C P}$ accounts for Cover cuts (see Crowder et al. [43], Balas [7]), GUB Cover cuts (see Wolsey [180], Gu et al. [86]), Flow Cover cuts (see Padberg et al. [143], Gu et al. [87]), Clique cuts (see Padberg [141]), Gomory Fractional cuts, Mixed-Integer Rounding cuts and Zero-half cuts (see Gomory et al. [80], Gomory [79]), Flow Path cuts (see

Van Roy and Wolsey [176]), Disjunctive cuts (see Balas [8]), Implied Bounds cuts (see Hoffman and Padberg [94]), Multi-Commodity Flow cuts (see Achterberg and Raack [1]) and Lift-and-Project cuts (see Balas et al. [10], Lovász and Schrijver [122]).

By comparing the values of time $_{g}$ and timeBest obtained in Table 4.1, one can easily see that frequently enough the best solution is found way before the end of the optimization process. Indeed, on average, more than 54% of the time spent on the optimization is dedicated to proving the optimality of an incumbent solution. This means that the upper bound converges to the optimum value much faster than the lower bound. Figure 4.1 illustrates such situation by depicting the evolution of lower and upper bounds during the optimization of an instance with 45 demands and capacity 5 . Figure 4.1a gives a scenario with sparse demands - density is set to 1.5 - and Figure 4.1b gives a scenario with dense demands - density is set to 4.5 .

Figure 4.1: Progress of lower and upper bounds
Table 4.1: Computational results of formulation (4.1)-(4.6)

Instances							Root				Global							
m	C	ρ	cols	rows	$p_{\text {min }}$	p^{\prime}	time $_{r}$	LB_{r}	UB_{r}	gap_{r}	time $_{g}$	timeBest	LB_{g}	UB_{g}	gap_{g}	Nodes	NLeft	Cuts ${ }_{\text {CP }}$
30	2	1.5	1500	2178	8.8	9.2	1.27	22.5	41.6	45.35	168.9	83.3	35.0	35.0	0.00	20.0	0.0	32.4
30	2	3.0	1200	2046	9.6	9.6	1.34	13.9	39.4	64.8	205.4	53.4	29.6	29.6	0.00	32.5	0.0	36.8
30	2	4.5	1080	1980	8.8	8.8	1.34	9.9	31.4	68.12	33.4	20.4	26.0	26.0	0.00	3.9	0.0	37
35	2	1.5	2030	2933	11.4	11.6	1.78	25.2	52.8	52	758.3	143.3	41.2	41.2	0.00	72.3	0.0	32.2
35	2	3.0	1610	2765	11.0	11.0	1.95	15.5	44.8	64.76	1606.0	963.7	33.6	33.6	0.00	179.2	0.0	38.4
35	2	4.5	1470	2681	11.0	11.0	2.08	12.5	39	67.87	746.0	69.9	31.6	31.6	0.00	108.1	0.0	47.2
40	2	1.5	2640	3768	11.2	12.8	2.92	28.2	63	55.16	5003.7	413.1	46.3	47.6	2.74	324.0	98.8	27.6
40	2	3.0	2120	3632	11.4	11.4	3.02	16.8	51.6	67.31	7200.0	259.2	34.4	38.8	11.33	312.8	181.2	21
40	2	4.5	1920	3520	11.0	11.0	3.25	11.9	45.8	73.75	4151.9	386.1	34.0	35.0	2.88	321.1	101.3	39.8
45	2	1.5	3375	4770	12.4	13.8	3.68	32.2	70.2	54.09	6503.5	1272.5	50.5	52.8	4.28	265.2	79.5	27.8
45	2	3.0	2700	4563	13.4	13.8	3.72	18.9	59.6	68.25	7200.0	2231.8	36.5	45.0	18.82	166.8	110.1	19.4
45	2	4.5	2475	4464	14.2	14.6	4.32	15.5	57	72.61	7200.0	1828.5	37.6	42.0	10.46	228.0	117.5	51
50	2	1.5	4150	6010	14.2	15.2	6.08	35.1	78	54.86	7200.0	2217.8	51.3	60.0	14.46	91.6	45.6	59.2
50	2	3.0	3300	5660	15.4	16.2	5.16	19.9	70.6	71.71	7200.0	1025.8	38.6	51.4	24.88	84.1	40.7	45
50	2	4.5	3050	5430	14.8	15.0	5.09	15.5	62.6	75.18	7200.0	2290.8	35.3	47.0	24.72	103.8	58.8	35.4
55	2	1.5	5005	7227	15.4	16.4	17.12	37.7	85.4	55.75	7200.0	3446.8	52.7	64.4	18.12	64.6	36.2	54.2
55	2	3.0	4015	6787	16.0	16.4	6.78	21.9	77.6	71.79	7200.0	3511	38.1	56.6	32.74	65.1	38.0	39
55	2	4.5	3685	6644	16.6	16.8	6.41	15.9	76.4	79.19	7200.0	3776.3	35.5	51.8	31.31	64.7	35.9	37.4
60	2	1.5	6000	8580	17.4	18.6	29.49	41.9	95.8	56.13	7200.0	4868.6	57.8	72.0	19.80	39.7	20.2	39.2
60	2	3.0	4800	8172	17.8	18.8	13.48	23.9	88.2	72.72	7200.0	6556.6	42.1	63.8	34.04	39.9	25.0	73
60	2	4.5	4380	7860	17.8	18.6	9.77	16.9	83.2	79.63	7200.0	2195.9	35.3	57.6	38.67	43.9	19.8	60.2
30	5	1.5	1500	2166	4.2	4.2	1.9	21.3	28.2	24.34	10.7	5.2	26.8	26.8	0.00	0.9	0.0	13.4
30	5	3.0	1200	2046	4.0	4.0	1.79	12.5	20	37.39	16.2	9.1	18.6	18.6	0.00	1.3	0.0	16.4

Table 4.1 - Continued

Instances							Root				Global							
m	C	ρ	cols	rows	$p_{\text {min }}$	p^{\prime}	time $_{r}$	LB_{r}	UB_{r}	gap_{r}	time $_{g}$	timeBest	LB_{g}	UB_{g}	gap_{g}	Nodes	NLeft	Cuts ${ }_{C P}$
30	5	4.5	1080	1974	3.8	3.8	1.7	8.8	14.2	37.87	5.1	3	13.4	13.4	0.00	0.3	0.0	21.6
35	5	1.5	2030	2954	4.6	4.6	3.33	24.2	34.6	29.72	66.8	55.2	31.0	31.0	0.00	3.4	0.0	14.2
35	5	3.0	1610	2758	4.6	4.6	2.69	13.4	24.6	44.71	276.2	136.7	21.8	21.8	0.00	15.8	0.0	23
35	5	4.5	1470	2695	4.8	4.8	2.43	9.7	19.2	48.86	22.6	7	16.8	16.8	0.00	1.1	0.0	48.4
40	5	1.5	2640	3928	4.4	4.6	4.53	27.8	41.6	32.45	266.4	131.4	36.0	36.0	0.00	10.7	0.0	15.2
40	5	3.0	2120	3632	5.2	5.2	3.95	15.5	30.6	49.06	914.2	569.9	25.4	25.4	0.00	24.7	0.0	25.2
40	5	4.5	1920	3488	5.0	5.0	3.57	10.8	23.4	53.51	286.6	77.8	19.4	19.4	0.00	9.8	0.0	26.4
45	5	1.5	3375	4752	6.0	6.4	4.79	31.2	46.4	32.72	1191.3	434.3	41.4	41.4	0.00	30.7	0.0	24.8
45	5	3.0	2700	4536	6.0	6.0	4.45	17.5	45.4	60.73	7200.0	614.7	27.6	30.8	10.51	123.8	54.2	37
45	5	4.5	2475	4446	5.8	5.8	4.21	12.9	33.2	61	4336.6	802.1	23.6	24.2	2.59	109.9	15.7	27.2
50	5	1.5	4150	5940	5.8	6.2	8.17	34.4	56.2	38.13	5684.2	1850.3	44.9	46.8	3.92	93.3	23.5	29
50	5	3.0	3300	5670	6.4	6.4	6.16	18.6	51.6	62.34	6589.8	3568.1	28.7	32.8	12.25	74.2	29.2	24.8
50	5	4.5	3050	5470	6.8	6.8	5.66	13.7	47.8	71.19	7200.0	2877.2	23.8	28.8	17.25	88.1	47.7	45.6
55	5	1.5	5005	7161	7.2	7.6	42.2	37.6	70.8	46.4	6586.7	3101.1	47.5	50.6	6.04	65.9	17.0	36.8
55	5	3.0	4015	6864	6.4	6.8	8.89	20.6	60.6	65.69	7200.0	4516.6	29.6	38.0	21.96	53.9	23.9	31.6
55	5	4.5	3685	6578	6.8	6.8	7.61	14.7	56.2	73.8	7200.0	3952.5	24.0	31.6	23.92	61.6	28.9	31
60	5	1.5	6000	8568	6.6	7.2	88.2	40	79.4	48.86	7200.0	2533.3	47.9	54.6	12.15	37.7	18.9	33.6
60	5	3.0	4800	8148	7.0	7.6	11.63	22.7	68.2	66.7	7200.0	6735.9	31.1	42.0	25.85	30.5	13.7	46.8
60	5	4.5	4380	7920	6.8	6.8	22.86	15.9	59.6	73.23	7200.0	4209.3	24.6	34.4	28.36	28.3	13.0	50.2
30	8	1.5	1500	2148	3.0	3.0	1.8	20.6	23.6	12.53	2.3	1.8	23.6	23.6	0.00	0.0	0.0	5.4
30	8	3.0	1200	2046	2.4	2.4	1.4	11.3	14.6	22.25	2.3	1.4	14.6	14.6	0.00	0.0	0.0	4.8
30	8	4.5	1080	1974	2.8	2.8	1.27	6.4	9.2	24.45	2.4	1.4	11.0	11.0	0.00	0.1	0.0	10.8
35	8	1.5	2030	2912	3.2	3.2	3.18	23.7	27.6	14.14	5.7	3.2	27.6	27.6	0.00	0.1	0.0	6.6

Table 4.1 - Continued

Instances							Root				Global							
m	C	ρ	cols	rows	$p_{\text {min }}$	p^{\prime}	time $_{r}$	LB_{r}	UB_{r}	gap_{r}	time $_{g}$	timeBest	LB_{g}	UB_{g}	gap_{g}	Nodes	NLeft	Cuts ${ }_{C P}$
35	8	3.0	1610	2786	2.8	2.8	2.65	12.8	17.2	24.8	8.6	3.6	17.0	17.0	0.00	0.3	0.0	5.6
35	8	4.5	1470	2674	3.0	3.0	2.34	8.9	12.8	30.4	5.1	2.3	12.8	12.8	0.00	0.1	0.0	8.8
40	8	1.5	2640	3816	3.4	3.4	5.59	26.5	34	21.89	28.6	22.1	32.0	32.0	0.00	0.7	0.0	6.2
40	8	3.0	2120	3608	3.6	3.6	4.84	15	23	34.2	143.9	65.9	21.8	21.8	0.00	3.4	0.0	9.8
40	8	4.5	1920	3504	3.4	3.4	3.21	10.1	15.6	34.61	34.4	6.6	15.2	15.2	0.00	1.1	0.0	14.4
45	8	1.5	3375	4887	3.4	3.4	6.9	30.2	39	22.6	73.4	52.6	36.8	36.8	0.00	1.3	0.0	6.4
45	8	3.0	2700	4581	3.8	3.8	5.49	16.9	27.4	38.03	480.0	279.4	24.8	24.8	0.00	8.0	0.0	13
45	8	4.5	2475	4455	3.6	3.6	6.64	12.1	20.4	40.36	320.8	55.8	19.2	19.2	0.00	7.0	0.0	18.6
50	8	1.5	4150	5910	4.2	4.4	14.34	32.5	45.4	28.19	497.6	460.6	40.2	40.2	0.00	4.5	0.0	13.2
50	8	3.0	3300	5620	4.0	4.0	7.31	18.2	30.6	40.39	5193.9	1731.1	27.9	28.2	1.20	60.4	3.9	11.4
50	8	4.5	3050	5480	4.4	4.4	6.34	13.4	25	46.09	1308.8	587.3	22.2	22.2	0.00	14.0	0.0	15
55	8	1.5	5005	7183	4.2	4.6	45.76	36.3	50.4	27.85	2364.3	473.9	44.8	45.2	0.88	21.1	4.8	10.4
55	8	3.0	4015	6776	4.6	4.6	8	20.2	44.2	53.35	6054.3	2261.8	28.9	31.8	8.77	42.9	17.2	15.8
55	8	4.5	3685	6644	4.4	4.4	7.54	14.3	33.2	56	5477.1	796.5	22.5	24.6	7.96	42.5	10.0	15.4
60	8	1.5	6000	8556	4.6	4.6	62.55	39.9	63.8	36.33	5776.5	2466.4	48.9	50.6	3.36	30.1	5.5	15.4
60	8	3.0	4800	8076	4.8	4.8	24.17	21.8	50.8	56.05	7200.0	3169.4	29.8	35.4	15.86	23.4	10.6	15.6
60	8	4.5	4380	7884	4.8	4.8	8.69	15.5	38	57.99	7200.0	3102.6	23.7	27.6	14.13	31.3	14.2	15.4

A major challenge is therefore to speed up the convergence of the lower bound towards the optimal solution. The next sections of this chapter are dedicated to finding answers to such challenge.

4.2 Relaxations

When solving an integer or combinatorial optimization problem $z=\min \left\{c^{T} x\right.$: $\left.x \in P \cap \mathbb{Z}^{n}\right\}$, testing whether or not a given solution x^{*} is the best possible solution can be quite challenging. A "naive" yet significant remark is that if one is able to find a lower bound $\underline{z} \leq z$ and an upper bound $\bar{z} \geq z$ so that $\underline{z}=c^{T} x^{*}=\bar{z}$, then a proof of the optimality of x^{*} is in hand.

Relaxations often play an important role in providing lower bounds (for a minimization problem) on the optimal value. In this section, we propose two "partial" linear relaxations which yield optimal solutions for the U-SNP. A performance comparison between these two relaxations is provided in Chapter 5. Finally, the "full" linear relaxation is studied, showing that the bounds it provides are particularly weak.

4.2.1 Relaxing the stop variables

It is easy to see that once variables x_{e}^{i} are fixed to $0-1$ values, that is, once one knows which vehicle takes each demand, the problem turns out to be trivial. Let \bar{x}_{e}^{i} represent such fixed-value variables. In fact, the value of variable y_{v}^{i} simply becomes 1 if there exists some demand $e \in E$ incident to v for which $\bar{x}_{e}^{i}=1$. On the other hand, if such a demand does not exist, the value of variable y_{v}^{i} becomes 0 . In other words,

$$
y_{v}^{i}=\max \left\{\bar{x}_{e}^{i}: e \text { is incident to } v\right\},
$$

for each $v \in V$ and $i \in K$. Indeed, this is just a consequence of the Property 1 stated in Section 2.2, which claims that in an optimal solution, a vehicle should only stop where its clients ask for and nowhere else.

For this reason, integrality constraints (4.6) may be replaced by

$$
\begin{equation*}
0 \leq y_{v}^{i} \leq 1 \quad \forall v \in V, i \in K \tag{4.7}
\end{equation*}
$$

and the integrality of variables y_{v}^{i} in any optimal solution is ensured by (4.1), (4.4) and (4.5). In fact, since variables y_{v}^{i} are bounded from below by the stop constraints
(4.4), one only needs the second part of inequalities (4.7), that is,

$$
\begin{equation*}
y_{v}^{i} \leq 1 \quad \forall v \in V, i \in K . \tag{4.8}
\end{equation*}
$$

Therefore, the following proposition holds.

Proposition 4.1 - Continuous stop variables for U-SNP

The relaxed formulation defined by (4.1)-(4.5), (4.8) solves the $U-S N P$.

Another way of achieving this result is to recognize that if vector $\bar{x} \in\{0,1\}^{m \times p}$ satisfies constraints (4.2) and (4.3), the remaining problem is

$$
\begin{equation*}
\min \sum_{v \in V} \sum_{i \in K} y_{v}^{i} \tag{4.9}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
y_{v}^{i} \geq \bar{x}_{e}^{i} & \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}, \\
y_{v}^{i} \in\{0,1\} & \forall v \in V, i \in K .
\end{array}
$$

However, the system defined by inequalities (4.8) and (4.10) is clearly total unimodular. Hence, the associated polytope

$$
P_{y}=\left\{y \in \mathbb{R}^{n \times p}: y \text { satisfies (4.8), (4.10) }\right\}
$$

is integral. Notice that P_{y} can be seen as a face of the polyhedron induced by the linear relaxation of formulation (4.1)-(4.5), (4.8), that is,
$P_{y}=\left\{x \in \mathbb{R}^{m \times p}, y \in \mathbb{R}^{n \times p}:(x, y)\right.$ satisfies (4.2)-(4.4), (4.8) $\} \cap\left\{x \in \mathbb{R}^{m \times p}: x=\bar{x}\right\}$.

Therefore, any extreme point $\left(x^{*}, y^{*}\right)$ of polyhedron

$$
\left\{x \in \mathbb{R}^{m \times p}, y \in \mathbb{R}^{n \times p}:(x, y) \text { satisfies (4.2)-(4.4), (4.8) }\right\}
$$

where x^{*} satisfies the integrality constraints (4.5) also verifies $y^{*} \in\{0,1\}^{n \times p}$, and hence Proposition 4.1 holds.

4.2.2 Relaxing assignment variables

The reverse question, that is, deciding whether or not one can deduce an optimal assignment of demands to vehicles given where each vehicle stops is less evident. Such question may be answered by showing that the associated polytope is integral when variables y_{v}^{i} are fixed to $0-1$ values.

In order to achieve such result, consider a vector $\bar{y} \in\{0,1\}^{n \times p}$ that represents the fixed values of the variables y_{v}^{i}. Then inequalities (4.4) become

$$
\begin{equation*}
x_{e}^{i} \leq \bar{y}_{v}^{i} \quad \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\} . \tag{4.12}
\end{equation*}
$$

Moreover, let integrality constraints (4.5) be replaced by

$$
\begin{equation*}
0 \leq x_{e}^{i} \leq 1 \quad \forall e \in E, i \in K \tag{4.13}
\end{equation*}
$$

In fact, since variables x_{e}^{i} are bounded from above by the stop constraints (4.4), one only needs the first part of inequalities (4.13), that is,

$$
\begin{equation*}
x_{e}^{i} \geq 0 \quad \forall e \in E, i \in K \tag{4.14}
\end{equation*}
$$

Finally, consider the polytope $P_{x}(V, E, C, \bar{y})$ associated with U-SNP when variables y_{v}^{i} are fixed to $0-1$ values (i.e., $y_{v}^{i}=\bar{y}_{v}^{i}$), defined as

$$
P_{x}(V, E, C, \bar{y})=\left\{x \in \mathbb{R}^{m \times p}: x \text { satisfies (4.2), (4.3), (4.12), (4.14) }\right\}
$$

If vector \bar{y} is known and $P_{x}(V, E, C, \bar{y})$ is integral, then an integer solution to U-SNP can be obtained in polynomial time through the ellipsoid or interior-point methods (see Khachiyan [104], Karmarkar [102]), and hence the relaxed formulation defined by (4.1)-(4.4), (4.6), (4.14) is capable of solving the U-SNP.

We next show that $P_{x}(V, E, C, \bar{y})$ is integral for the restricted case where (V, E, C) is an instance of Intersection U-SNP but it is not for the general U-SNP.

Theorem 4.1- Integrality of $P_{x}(V, E, C, \bar{y})$ for Intersection U-SNP

Given an instance (V, E, C) of Intersection U-SNP and a vector $\bar{y} \in\{0,1\}^{n \times p}$, the polytope $P_{x}(V, E, C, \bar{y})$ is integral.

Proof. From Property 3 stated in Section 2.4, capacity constraints (4.3) can be replaced by

$$
\begin{equation*}
\sum_{e \in E} x_{e}^{i} \leq C \quad \forall \quad i \in K \tag{4.15}
\end{equation*}
$$

Hence, the matrix A from the system of inequalities $A x \leq b$ defined by (4.2), (4.15) has the form

$$
A=\left[\begin{array}{cccc}
I_{1} & I_{2} & \cdots & I_{p} \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

where I_{i} (for $1 \leq i \leq p$) is a $m \times m$ identity matrix, $\mathbf{1}$ is a m-dimensional unit row-vector and $\mathbf{0}$ is a m-dimensional zero row-vector.

Matrix A has $2 m$ rows and m^{2} columns (recall that $p=m$), each containing exactly 2 non-zero entries. Let G be the graph obtained from the matrix A such that G has a vertex for each row of A and an edge $e=u v$ for each column such that $A_{u, e}=A_{v, e}=1$. It follows that G is a complete bipartite graph $K_{m, m}$. Hence, A is totally unimodular (cf. Theorem 1.3 and Theorem 1.4) and thus $P_{x}(V, E, C, \bar{y})$ is integral.

The total unimodularity of the system (4.2), (4.3), (4.12), (4.14) holds when (V, E, C) is an instance of Intersection U-SNP. However, it is not preserved in the general case. The following instance serves as a counter-example.

Example 4.1 - Total unimodularity is not present in general U-SNP

 Consider the following instance of U-SNP:

Figure 4.2: An instance of U-SNP

Given the instance illustrated above, the matrix A from the system of inequalities $A x \leq b$ defined by (4.2), (4.3) is

$$
A=\left[\begin{array}{cccc}
I & I & I & I \\
M & 0 & 0 & 0 \\
0 & M & 0 & 0 \\
0 & 0 & M & \mathbf{0} \\
0 & \mathbf{0} & 0 & M
\end{array}\right] \text {, where } M=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

and I is a 4×4 identity matrix.
Let A^{\prime} be the sub-matrix of A defined by rows 2,4,5,7,9 and columns 2,3,4,6,8, that is,

$$
A^{\prime}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Notice that $\operatorname{det}\left(A^{\prime}\right)=-2$, which proves A is not totally unimodular.

For this reason, the argument used for proving Theorem 4.1 cannot be applied if one wishes to extend such result to the general U-SNP. It turns out that if (V, E, C) is an instance of the general U-SNP, then $P_{x}(V, E, C, \bar{y})$ may indeed contain a fractional extreme point, that is, it may not be an integral polytope. For proving such statement let $(V, E, 1)$ be the instance depicted in Figure 4.2 with $C=1$. If $\bar{y}=\mathbf{1}$, then the following fractional solution \hat{x} belongs to $P_{x}(V, E, 1, \mathbf{1})$.

$$
\begin{array}{ll}
\hat{x}_{e}^{1}=\frac{1}{2} \text { for } e \in\{a, c, d\}, & \hat{x}_{e}^{1}=0 \text { for } e \in\{b\}, \\
\hat{x}_{e}^{2}=\frac{1}{2} \text { for } e \in\{a, b\}, & \hat{x}_{e}^{2}=0 \text { for } e \in\{c, d\}, \\
\hat{x}_{e}^{3}=\frac{1}{2} \text { for } e \in\{b, d\}, & \hat{x}_{e}^{3}=0 \text { for } e \in\{a, c\}, \\
\hat{x}_{e}^{4}=\frac{1}{2} \text { for } e \in\{c\}, & \hat{x}_{e}^{4}=0 \text { for } e \in\{a, b, d\} .
\end{array}
$$

For proving that \hat{x} is indeed an extreme point of $P_{x}(V, E, 1, \mathbf{1})$, it suffices to show that \hat{x} is the unique solution present in the face induced by the inequalities defining $P_{x}(V, E, 1, \mathbf{1})$ that are tight for \hat{x}.

Notice that the capacity constraints

$$
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C \quad \forall i \in K, v \in V
$$

are tight for vehicle 1 and stations 1 and 2 , for vehicle 2 and station 1 , and for vehicle 3 and station 2. Moreover, inequalities

$$
x_{e}^{i} \geq 0 \quad \forall e \in E, i \in K,
$$

are obviously tight for every zero component of \hat{x}. Considering such tight inequalities together with the assignment constraints

$$
\sum_{i \in K} x_{e}^{i}=1 \quad \forall e \in E,
$$

one obtains the following system

$$
\begin{aligned}
& x_{a}^{1}+x_{c}^{1} \quad=1 \\
& x_{c}^{1}+x_{d}^{1} \quad=1 \\
& x_{a}^{2}+x_{b}^{2}=1 \\
& x_{b}^{3}+x_{d}^{3} \quad=1 \\
& x_{a}^{1}+x_{a}^{2} \quad=1 \\
& x_{b}^{2}+x_{b}^{3}=1 \\
& x_{d}^{1}+x_{d}^{3} \quad=1 \\
& x_{c}^{1} \\
& +x_{c}^{4}=1
\end{aligned}
$$

for which the unique solution is

$$
\begin{equation*}
x_{a}^{1}=x_{c}^{1}=x_{d}^{1}=x_{a}^{2}=x_{b}^{2}=x_{b}^{3}=x_{d}^{3}=x_{c}^{4}=\frac{1}{2} . \tag{4.16}
\end{equation*}
$$

It follows directly from (4.16) that \hat{x} is indeed an extreme point of $P_{x}(V, E, 1, \mathbf{1})$.

4.2.3 Linear relaxation

The strength of a formulation can be measured by the dual bounds (lower bounds for a minimization problem) its linear relaxation is capable of providing. The better the bounds are, the stronger the formulation is. In Wolsey [181], the primal integrality gap is used as an indicator of how strong a given formulation is.

According to this concept, the relaxed formulations previously presented are equally strong as their linear relaxations are identical. Of course, there might still exist some differences on the performances of a branch-and-cut framework based on each of them (as we shall see in Chapter 5) due to the different branching decisions each formulation induces.

Next, we study the strength of formulation (4.1)-(4.6) by analyzing its linear relaxation. For this, let $P_{(V, E, C)}$ denote the polyhedron composed by inequalities (4.2)-(4.4), (4.8), (4.14), that is,

$$
P_{(V, E, C)}=\left\{x \in \mathbb{R}^{m \times p}, y \in \mathbb{R}^{n \times p}:(x, y) \text { satisfies (4.2) - (4.4), (4.8), (4.14) }\right\} .
$$

Theorem 4.2-Formulation's strength

The linear relaxation, defined by $\min \left\{0 x+1 y:(x, y) \in P_{(V, E, C)}\right\}$, provides a lower bound of n stops.

Proof. If one can find a primal and a dual solution of same objective-function value, then the strong duality theorem states that both solutions are optimal solutions for the respective problems. Next, given an instance (V, E, C) of U-SNP, we construct a primal and a dual solution having same cost equal to $|V|=n$.

The following dual formulation is defined by associating a variable α_{e} with each inequality in (4.2), a variable β_{v}^{i} with each inequality in (4.3), a variable γ_{e}^{i} with each inequality in (4.4) where $v=o_{e}$, and a variable μ_{e}^{i} with each inequality in (4.4) where $v=d_{e}$.

$$
\begin{equation*}
z_{\text {dual }}=\max \sum_{e \in E} \alpha_{e}-\sum_{v \in V} \sum_{i \in K} C \beta_{v}^{i} \tag{4.17}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\alpha_{e}-\sum_{v=o_{e}}^{d_{e}-1} \beta_{v}^{i}-\gamma_{e}^{i}-\mu_{e}^{i} \leq 0 & \forall e \in E, i \in K \\
\sum_{e \in \delta_{G}^{+}(v)} \gamma_{e}^{i}+\sum_{e \in \delta_{G}^{-}(v)} \mu_{e}^{i} \leq 1 & \forall i \in K, v \in V, \\
\beta_{v}^{i} \geq 0 & \forall v \in V, i \in K, \\
\gamma_{e}^{i} \geq 0 & \forall e \in E, i \in K, \\
\mu_{e}^{i} \geq 0 & \forall e \in E, i \in K . \tag{4.22}
\end{array}
$$

We construct a dual feasible solution $(\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}, \widehat{\mu})$ as follows. Let $\widehat{\beta}_{v}^{i}=0$ for all $v \in V, i \in K$. For each $v \in V$, let e^{\prime} be an arbitrarily chosen edge incident to v, that is, $e^{\prime} \in \delta_{G}^{+}(v) \cup \delta_{G}^{-}(v)$. If $e^{\prime} \in \delta_{G}^{+}(v)$, let $\widehat{\gamma}_{e^{\prime}}^{i}=1$ for all $i \in K$, and otherwise, let $\widehat{\mu}_{e^{\prime}}^{i}=1$ for all $i \in K$. Let every other variable $\widehat{\gamma}$ and $\widehat{\mu}$ be 0 . Inequalities (4.19) are thus satisfied at equality. Finally, let $\widehat{\alpha}_{e}=\widehat{\gamma}_{e}^{i}+\widehat{\mu}_{e}^{i}$ for all $e \in E, i \in K$. Inequalities (4.18) are thus also satisfied at equality and $(\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}, \widehat{\mu})$ is a feasible solution of the dual problem. By construction,

$$
\sum_{e \in E} \widehat{\alpha}_{e}-\sum_{v \in V} \sum_{i \in K} C \widehat{\beta}_{v}^{i}=|V|=n .
$$

We now give a primal feasible solution with the same cost to prove optimality. Let $\widehat{x}_{e}^{i}=\frac{1}{p}$ for all $e \in E, i \in K$, and $\widehat{y}_{v}^{i}=\frac{1}{p}$ for all $v \in V, i \in K$. Equations (4.2) are satisfied since $\sum_{i \in K} \frac{1}{p}=1$. Inequalities (4.3) are satisfied since $\sum_{e \in \Delta_{E}(v)} \frac{1}{p}=$ $\frac{\left|\Delta_{E}(v)\right|}{p} \leq C$. Inequalities (4.4) are clearly satisfied since $0 \leq \frac{1}{p} \leq \frac{1}{p}$. Therefore, $(\widehat{x}, \widehat{y})$ is a feasible solution of the primal problem. By construction,

$$
\sum_{v \in V} \sum_{i \in K} \widehat{y}_{v}^{i}=|V|=n
$$

From strong duality theorem, $(\hat{\alpha}, \widehat{\beta}, \widehat{\gamma}, \widehat{\mu})$ and $(\widehat{x}, \widehat{y})$ are both optimal solutions from the dual and primal problems, respectively.

Notice however, that a lower bound of n stops does not deliver any additional information since such bound is already known from Proposition 3.1. This would not be a problem if n was indeed a good lower bound. Unfortunately, even for the simplest instances, n is far from being a good lower bound and the integrality gap is quite large. The following example illustrates the situation.

Example 4.2 - How weak is the given formulation

Consider the following instance of U-SNP with m demands and capacity C.

Clearly, each non-empty vehicle must stop exactly 2 times. Therefore, an optimal solution is obtained using the minimum number of vehicles. Since $k_{\text {min }}=\left\lceil\frac{\mathrm{m}}{\mathrm{C}}\right\rceil$, the optimal integer solution has a cost of $2\left\lceil\frac{m}{C}\right\rceil$ stops. Theorem 4.2 indicates, however, that the linear relaxation provides a lower bound of 2 stops for the given instance. Therefore, the integrality gap of the given formulation can reach up to

$$
1-\frac{1}{\left\lceil\frac{m}{C}\right\rceil} .
$$

This means that if one sets $m=100$ and $C=1$ on the given example, the integrality gap equals 99% ! Moreover, an asymptotic analysis (see Figure 4.3), that is setting $m \rightarrow \infty$, yields a remarkable - in a bad way - integrality gap of 100%. Recall, in addition, that the case where $C=1$ can be solved in polynomial time. Such observations reveal that there exists a large room for improvements in the formulation (4.1)-(4.6) provided by Pimenta et al. [151].

Figure 4.3: Asymptotic analysis of the integrality gap

4.3 Dimension and facial study

In the previous section, the lower bound provided by the linear relaxation of formulation (4.1)-(4.6) was shown to be particularly poor. Such result provides evidences
on why typical Branch-and-Bound approaches have failed on solving such formulation (cf. Pimenta et al. [151]). In order to reinforce the given formulation, a natural approach is therefore to investigate the facial structure of the convex hull of the feasible solutions. Recall that for the U-SNP, such convex hull is given by the polytope $\mathcal{P}_{(V, E, C)}$, defined as

$$
\mathcal{P}_{(V, E, C)}=\operatorname{conv}\left(P_{(V, E, C)} \cap \mathbb{Z}^{(n+m) p}\right),
$$

where $P_{(V, E, C)}$ is the polyhedron composed by inequalities (4.2)-(4.4), (4.8), (4.14).
In this section we first investigate the dimension of $\mathcal{P}_{(V, E, C)}$. We then study the inequalities composing $P_{(V, E, C)}$ and identify necessary and sufficient conditions for which they are facet-defining for $\mathcal{P}_{(V, E, C)}$. However, before diving into such study, some additional definitions are made necessary for an easier lecture.

Definition 4.1 - Perfect idleness

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a solution $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)}$, vehicle $i \in K$ is said to be perfectly idle if $\bar{x}_{e}^{i}=0$ for every $e \in E$ and $\bar{y}_{v}^{i}=0$ for every $v \in V$. In other words, vehicle i is perfectly idle if it is idle and it does not stop at any station.

Definition 4.2 - Dumbness

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a solution $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)}$, vehicle $i \in K$ is said to be dumb if $\bar{y}_{v}^{i}=1$ for every $v \in V$, that is, vehicle i stops at all stations.

Definition 4.3-Perfect dumbness

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a solution $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)}$, vehicle $i \in K$ is said to be perfectly dumb if $\bar{x}_{e}^{i}=0$ for every $e \in E$ and $\bar{y}_{v}^{i}=1$ for every $v \in V$. In other words, vehicle i is perfectly dumb if it is idle and dumb.

The next definitions concern some operations that can be done once a feasible solution of U-SNP is known, in order to derive another solution. Notice that depending on the input solution, some of these operations might result in unfeasible solutions. Nonetheless, throughout this chapter we are cautious enough to invoke such operations only on suitable situations.

Definition 4.4-Transfer

Given an instance $\mathcal{I}=(V, E, C)$ of U-SNP and a solution $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)}$, the solution $(\hat{x}, \hat{y}) \in \mathcal{P}_{(V, E, C)}$ is said to be constructed by transferring a chosen demand e^{\prime} from vehicle k to vehicle j, if

$$
\begin{array}{ll}
\hat{x}_{e^{\prime}}^{j}=\bar{x}_{e^{\prime}}^{j}+\bar{x}_{e^{\prime}}^{k}, & \\
\hat{x}_{e^{\prime}}^{k}=0, & \forall i \in K \backslash\{j, k\}, \\
\hat{x}_{e^{\prime}}^{i}=\bar{x}_{e^{\prime}}^{i} & \forall i \in K, e \in E \backslash e^{\prime}, \\
\hat{x}_{e}^{i}=\bar{x}_{e}^{i} \\
\hat{y}_{o_{e^{\prime}}}^{j}=\bar{y}_{o_{e^{\prime}}}^{j}+\bar{y}_{o_{e^{\prime}}}^{k}, & \\
\hat{y}_{d_{e^{\prime}}}^{j}=\bar{y}_{d e^{\prime}}^{j}+\bar{y}_{d_{e^{\prime}}}^{k}, & \\
\hat{y}_{v}^{j}=\bar{y}_{v}^{j} & \forall v \in V \backslash\left\{o_{e^{\prime}}, d_{e^{\prime}}\right\}, \\
\hat{y}_{v}^{i}=\bar{y}_{v}^{i} & \forall v \in V, i \in K \backslash j .
\end{array}
$$

Definition 4.5-Sequential permutation
Given an instance $\mathcal{I}=(V, E, C)$ of $U-S N P$, a solution $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)}$ and a subset of vehicles $S=\left\{s_{1}, \ldots, s_{|S|}\right\} \subseteq K$, the solution $(\hat{x}, \hat{y}) \in \mathcal{P}_{(V, E, C)}$ is said to be a sequential permutation of (\bar{x}, \bar{y}) over S if

$$
\begin{array}{ll}
\hat{x}_{e}^{s_{i}}=\bar{x}_{e}^{s_{i+1}} & \forall i \in\{1, \ldots,|S|-1\}, e \in E, \\
\hat{x}_{e}^{s|S|}=\bar{x}_{e}^{s_{1}} & \forall e \in E, \\
\hat{x}_{e}^{i}=\bar{x}_{e}^{i} & \forall i \in K \backslash S, e \in E, \\
\hat{y}_{v}^{s_{i}}=\bar{y}_{v}^{s_{i+1}} & \forall i \in\{1, \ldots,|S|-1\}, v \in V, \\
\hat{y}_{v}^{|S|}=\bar{y}_{v}^{s_{1}} & \forall e \in E, \\
\hat{y}_{v}^{i}=\bar{y}_{v}^{i} & \forall i \in K \backslash S, v \in V .
\end{array}
$$

Notice that for $S=K=\{1, \ldots, p\}$, a solution $\left\{\hat{E}_{1}, \ldots, \hat{E}_{p}\right\}$ is said to be a sequential permutation of solution $\left\{E_{1}, \ldots, E_{p}\right\}$ if

$$
\left\{\hat{E}_{1}, \ldots, \hat{E}_{p}\right\}=\left\{E_{2}, \ldots, E_{p}, E_{1}\right\} .
$$

4.3.1 Dimension

The dimension of a polytope $\mathcal{P} \subseteq \mathbb{R}^{d}$, denoted by $\operatorname{dim}(\mathcal{P})$, is defined as the maximum number of affinely independent vectors in \mathcal{P} minus one. When \mathcal{P} is full dimensional, that is $\operatorname{dim}(\mathcal{P})=d$, searching for $d+1$ affinely independent vectors in \mathcal{P} is usually a fairly manageable task. Nonetheless, gathering such vectors for polytopes that are not full dimensional can be rather tricky.

For this reason, let us use an alternative definition of $\operatorname{dim}(\mathcal{P})$: given a polyhedron $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ where $A^{=} x \leq b^{=}$is the subsystem of implicit equalities in $A x \leq b$, the dimension of \mathcal{P} is equal to n minus the rank of $A^{=}$. Next, we show that $\operatorname{dim}\left(\mathcal{P}_{(V, E, C)}\right)=(n+m) p-m$ by showing that the only implicit equalities in $\mathcal{P}_{(V, E, C)}$ are those described by constraints (4.2) (up to a linear combination of them).

Theorem 4.3-No additional implicit equalities in $\mathcal{P}_{(V, E, C)}$

Let $\alpha^{T} x+\beta^{T} y=\gamma$ define a general hyperplane in $\mathbb{R}^{(n+m) p}$. If $C \geq 2$ and $\alpha^{T} x+\beta^{T} y=$ γ is an implicit equality in $\mathcal{P}_{(V, E, C)}$, then it can be written as a linear combination of equations (4.2).

Proof. By definition, if $\alpha^{T} x+\beta^{T} y=\gamma$ is an implicit equality in $\mathcal{P}_{(V, E, C)}$, then

$$
\mathcal{P}_{(V, E, C)} \subseteq\left\{(x, y) \in \mathbb{R}^{(n+m) p}: \alpha^{T} x+\beta^{T} y=\gamma\right\}
$$

The proof is organized in three steps:
i. showing $\beta_{v}^{i}=0$ for any station $v \in V$ and any vehicle $i \in K$;
ii. showing $\alpha_{e}^{i}=\alpha_{e}^{j}$ for any demand $e \in E$ and any pair of vehicles $i \in K, j \in K$;
iii. showing $\gamma=\sum_{e \in E} \alpha_{e}^{i}$ for any vehicle $i \in K$.

Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K$ is perfectly idle. Such a solution exists since Property 4 stated in Section 3.1 holds.

Step i :: Let us construct another feasible solution (\hat{x}, \hat{y}) in the following manner.

$$
\begin{aligned}
& \hat{x}_{e}^{i}=\bar{x}_{e}^{i} \quad \forall e \in E, i \in K, \\
& \hat{y}_{v}^{i}=\bar{y}_{v}^{i} \quad \forall v \in V, i \in K \backslash j, \\
& \hat{y}_{v}^{j}=\bar{y}_{v}^{j} \quad \forall v \in V \backslash v^{\prime}, \\
& \hat{y}_{v^{\prime}}^{j}=1
\end{aligned}
$$

for some arbitrarily chosen $v^{\prime} \in V$.
Both solutions are feasible and thus satisfy the equation $\alpha^{T} x+\beta^{T} y=\gamma$. Therefore, $\beta_{v^{\prime}}^{j}=0$. Since $v^{\prime} \in V$ and $j \in K$ can be arbitrarily chosen,

$$
\beta_{v}^{i}=0 \quad \forall v \in V, i \in K
$$

and the supposed implicit equality can be rewritten as

$$
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}=\gamma
$$

Step ii.: Consider again solution (\bar{x}, \bar{y}). Let e^{\prime} denote some arbitrarily chosen demand that is assigned to some vehicle $i \in K$. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demand e^{\prime} from vehicle i to vehicle j. Such construction is possible since vehicle j is idle.

Both solutions are feasible and thus satisfy the equation $\alpha^{T} x=\gamma$. Therefore $\alpha_{e^{\prime}}^{i}=\alpha_{e^{\prime}}^{j}$. Since vehicle $j \in K$ and demand $e^{\prime} \in E$ can be arbitrarily chosen,

$$
\alpha_{e^{\prime}}^{i}=\alpha_{e^{\prime}}^{j} \quad \forall e \in E, i \in K, j \in K,
$$

and the supposed implicit equality can be rewritten as

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}=\gamma, \tag{4.23}
\end{equation*}
$$

where $\lambda_{e}=\alpha_{e}^{i}$ for any $e \in E, i \in K$.
Step iii.: Finally, take solution (\bar{x}, \bar{y}) and construct other $p-1$ feasible solutions by taking $p-1$ times the sequential permutation of (\bar{x}, \bar{y}). Notice that, considering this pool of p feasible solutions, each demand is assigned to a vehicle $i \in K$ exactly once. Therefore, all these p solutions satisfy the equation (4.23) and summing up all such equations, one gets

$$
\sum_{e \in E} p \lambda_{e}=p \gamma
$$

which reduces to

$$
\sum_{e \in E} \lambda_{e}=\gamma
$$

Step iii. is thus finished and the supposed implicit equality can be rewritten as

$$
\sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}=\sum_{e \in E} \lambda_{e},
$$

which is clearly a linear combination of equations (4.2) with weights $\lambda \in \mathbb{R}^{m}$.
Notice that the system of equations defined by constraints (4.2) clearly has fullrank and hence

$$
\operatorname{rank}\left(A^{=}\right)=m,
$$

which yields the following result.
Corollary 4.1 - Dimension of $\mathcal{P}_{(V, E, C)}$
$\operatorname{dim}\left(\mathcal{P}_{(V, E, C)}\right)=(n+m) p-m$.
Notice that this result only remains true under the condition that Property 4 holds, that is, if $p \geq p_{\text {min }}+1$. For the case where $p=p_{\text {min }}$, one may have additional implicit equalities other than (4.2). For the sake of scientific curiosity, we take a quick glimpse at this particular case through Propositions 4.2 and 4.3. For the rest of our polyhedral study, however, we assume that $C \geq 2$ (as otherwise, the problem can be easily solved) and that $p=m>p_{\min }$ and therefore Property 4 holds.

Proposition 4.2-Implicit equalities when $p=p_{\text {min }}$

If $p=p_{\text {min }}$ and there exists a station $v^{\prime} \in V$ for which $\left|\Delta_{E}\left(v^{\prime}\right)\right|=p C$, then inequalities (4.3) associated with v^{\prime} are implicit equalities for each $i \in K$.

Proof. From the definition of $p_{\text {min }}$, if $p=p_{\min }$, then there exists at least one feasible solution. By definition, a single vehicle can take at most C demands in $\Delta_{E}\left(v^{\prime}\right)$. Since each demand must be assigned to some vehicle, every vehicle must take exactly C demands in $\Delta_{E}\left(v^{\prime}\right)$. Therefore,

$$
\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} x_{e}^{i}=C \quad \forall i \in K .
$$

Proposition 4.3 - Further implicit equalities when $p=p_{\text {min }}$

If $p=p_{\text {min }}$ and there exists a station $v^{\prime} \in V$ for which

$$
\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}\left(v^{\prime}\right)\right|,\left|\delta_{G}^{+}\left(v^{\prime}\right)\right|\right\}}{C}\right\rceil=p,
$$

then inequalities (4.8) associated with v^{\prime} are implicit equalities for each $i \in K$.

Proof. Without loss of generality, suppose $\left|\delta_{G}^{+}\left(v^{\prime}\right)\right| \geq\left|\delta_{G}^{-}\left(v^{\prime}\right)\right|$. Notice that $\delta_{G}^{+}\left(v^{\prime}\right) \subseteq$ $\Delta_{E}\left(v^{\prime}\right)$. Hence, the maximum number of demands in $\delta_{G}^{+}\left(v^{\prime}\right)$ a single vehicle can take is C. Since each demand must be assigned to some vehicle, one needs at least $\left\lceil\frac{\left|\delta_{G}^{+}\left(v^{\prime}\right)\right|}{C}\right\rceil$ vehicles to satisfy such demands. This means that if $p=\left\lceil\frac{\left|\delta_{G}^{+}\left(v^{\prime}\right)\right|}{C}\right]$, then all vehicles must take at least one demand in $\delta_{G}^{+}\left(v^{\prime}\right)$. Since each demand in $\delta_{G}^{+}\left(v^{\prime}\right)$ stops at v^{\prime}, every vehicle must stop at v^{\prime}. Therefore,

$$
y_{v^{\prime}}^{i}=1 \quad \forall i \in K .
$$

4.3.2 Facial study

Before tackling the facial study of $\mathcal{P}_{(V, E, C)}$, let us introduce a few lemmas based on the ideas used in the proof of Theorem 4.3. These lemmas will be useful and referenced multiple times in future proofs.

Let

$$
\begin{equation*}
\alpha^{T} x+\beta^{T} y \leq \gamma \tag{4.24}
\end{equation*}
$$

be a valid inequality for $\mathcal{P}_{(V, E, C)}$, that is,

$$
\mathcal{P}_{(V, E, C)} \subseteq\left\{(x, y) \in \mathbb{R}^{(n+m) p}: \alpha^{T} x+\beta^{T} y \leq \gamma\right\} .
$$

Moreover, let

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \alpha^{T} x+\beta^{T} y=\gamma\right\}
$$

denote the face of $\mathcal{P}_{(V, E, C)}$ induced by (4.24).

Lemma 4.1. Given an instance (V, E, C) of U-SNP, a station $v^{\prime} \in V$ and a vehicle $i^{\prime} \in K$, let $(\bar{x}, \bar{y}) \in \operatorname{USNP}_{(V, E, C)}$ be a feasible solution for (V, E, C) where $\bar{y}_{v^{\prime}}^{i^{\prime}}=0$, and let $(\hat{x}, \hat{y}) \in \operatorname{USNP}_{(V, E, C)}$ be a feasible solution constructed in the following manner.

$$
\begin{aligned}
& \hat{x}_{e}^{i}=\bar{x}_{e}^{i} \quad \forall e \in E, i \in K, \\
& \hat{y}_{v}^{i}=\bar{y}_{v}^{i} \quad \forall v \in V, i \in K \backslash i^{\prime}, \\
& \hat{y}_{v}^{i^{\prime}}=\bar{y}_{v}^{i^{\prime}} \quad \forall v \in V \backslash v^{\prime}, \\
& \hat{y}_{v^{\prime}}^{i^{\prime}}=1 .
\end{aligned}
$$

If both (\bar{x}, \bar{y}) and (\hat{x}, \hat{y}) belong to the same face

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \alpha^{T} x+\beta^{T} y=\gamma\right\}
$$

then $\beta_{v^{\prime}}^{i^{\prime}}=0$.

Proof. If $(\bar{x}, \bar{y}) \in F^{\prime}$, the following equality holds.

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} \bar{y}_{v}^{i}=\gamma \tag{4.25}
\end{equation*}
$$

If $(\hat{x}, \hat{y}) \in F^{\prime}$, the following equality holds.

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} \bar{y}_{v}^{i}+\beta_{v^{\prime}}^{i^{\prime}}=\gamma . \tag{4.26}
\end{equation*}
$$

By subtracting (4.25) from (4.26), one obtains $\beta_{v^{\prime}}^{i^{\prime}}=0$.

Lemma 4.2. Given an instance (V, E, C) of $U-S N P$, a demand $e^{\prime} \in E$ and vehicle $i^{\prime} \in K$, let $(\bar{x}, \bar{y}) \in \operatorname{USNP}_{(V, E, C)}$ be a feasible solution for (V, E, C) where vehicle i^{\prime} is perfectly idle, and let $(\hat{x}, \hat{y}) \in \operatorname{USNP}_{(V, E, C)}$ be a feasible solution constructed by transferring demand e^{\prime} that was assigned to some vehicle $k \in K \backslash i^{\prime}$ to vehicle i^{\prime}.

If both (\bar{x}, \bar{y}) and (\hat{x}, \hat{y}) belong to the same face

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \alpha^{T} x+\beta^{T} y=\gamma\right\},
$$

then $\alpha_{e^{\prime}}^{i^{\prime}}+\beta_{o_{e^{\prime}}}^{i^{\prime}}+\beta_{d_{e^{\prime}}}^{i^{\prime}}=\alpha_{e^{\prime}}^{k}$.

Proof. If $(\bar{x}, \bar{y}) \in F^{\prime}$, the following equality holds:

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} \bar{y}_{v}^{i}=\gamma \tag{4.27}
\end{equation*}
$$

If $(\hat{x}, \hat{y}) \in F^{\prime}$, the following equality holds:

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}-\alpha_{e^{\prime}}^{k}+\alpha_{e^{\prime}}^{i^{\prime}}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} \bar{y}_{v}^{i}+\beta_{o_{e^{\prime}}}^{i^{\prime}}+\beta_{d_{e^{\prime}}}^{i^{\prime}}=\gamma . \tag{4.28}
\end{equation*}
$$

By subtracting (4.27) from (4.28), one obtains $\alpha_{e^{\prime}}^{i^{\prime}}+\beta_{o_{e^{\prime}}}^{i^{\prime}}+\beta_{d_{e^{\prime}}}^{i^{\prime}}=\alpha_{e^{\prime}}^{k}$.

We are now ready to give the necessary and sufficient conditions for which the inequalities composing $P_{(V, E, C)}$ induce facets of $\mathcal{P}_{(V, E, C)}$. Let us begin by analysing the trivial inequalities (4.8) and (4.14).

Theorem 4.4 - Inequalities (4.8) defining facets

Inequalities

$$
\begin{equation*}
y_{v}^{i} \leq 1 \quad \forall v \in V, i \in K \tag{4.8}
\end{equation*}
$$

are facet-defining for $\mathcal{P}_{(V, E, C)}$.

Proof. Let v^{\prime} be any station in V and i^{\prime} be any vehicle in K. We show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: y_{v^{\prime}}^{i^{\prime}}=1\right\}
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore inequalities (4.8) are facet-defining. More specifically, we show that if there exists some face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\},
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega y_{v^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}+\omega\right\},
$$

that is, a linear combination of (4.8) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The proof is organized in the following three steps:
i. showing $\beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$ and $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash v^{\prime}$;
ii. showing $\alpha_{e}^{j}=\alpha_{e}^{i^{\prime}}$ for any $e \in E, j \in K \backslash i^{\prime}$;
iii. showing $\gamma=\sum_{e \in E} \alpha_{e}^{i}+\omega$ for any $i \in K$.

Step i :: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is idle and stops only at v^{\prime} (i.e., $\bar{y}_{v^{\prime}}^{i^{\prime}}=1$ and $\bar{y}_{v}^{i^{\prime}}=0$ for every $v \in V \backslash v^{\prime}$). By definition, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V \backslash v^{\prime}$. Therefore, $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash v^{\prime}$.

Consider now that (\bar{x}, \bar{y}) is a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and vehicle i^{\prime} is dumb. By definition, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V$, and therefore $\beta_{v}^{j}=0$ for any $v \in V$. Since vehicle j can be arbitrarily chosen (as long as $j \neq i^{\prime}$), $\beta_{v}^{j}=0$ for any $v \in V, j \in K \backslash i^{\prime}$.

Let $\omega \in \mathbb{R}$ be some real number such that $\omega=\beta_{v^{\prime}}^{i^{\prime}}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\omega y_{v^{\prime}}^{i^{\prime}}=\gamma\right\} .
$$

Step ii.: Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle and vehicle i^{\prime} is dumb. By definition, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.2 applies for vehicle j and any chosen demand $e \in E$. Notice that a demand $e \in E$ can be assigned to any vehicle $k \in K \backslash j$, by taking the necessary number of sequential permutations of (\bar{x}, \bar{y}) over $K \backslash j$. Since all such solutions belong to F, we have that $\alpha_{e}^{j}=\alpha_{e}^{k}$ for any $e \in E, k \in K$.

Let $\lambda \in \mathbb{R}^{m}$ be some real vector such that $\lambda_{e}=\alpha_{e}^{j}$ for any $e \in E$. Face F^{\prime} can now be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}=\gamma\right\} .
$$

Step iii.: Let (\bar{x}, \bar{y}) be a feasible solution where all vehicles are dumb. By definition, $(\bar{x}, \bar{y}) \in F$. Let us construct other $p-1$ solutions by taking $p-1$ times a sequential permutation of (\bar{x}, \bar{y}) over K. Since vehicle i^{\prime} stops at station v^{\prime} in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega=\gamma \tag{4.29}
\end{equation*}
$$

Notice that, considering this pool of p feasible solutions (the $p-1$ constructed solutions plus (\bar{x}, \bar{y})), each demand is assigned to a vehicle $i \in K$ exactly once. Summing up the p equations (4.29) associated with the pool of solutions considered,
one obtains

$$
p \sum_{e \in E} \lambda_{e}+p \omega=p \gamma .
$$

Therefore, $\sum_{e \in E} \lambda_{e}+\omega=\gamma$ and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega y_{v^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}+\omega\right\} .
$$

It is interesting to notice that even if constraints (4.8) are facet-defining, they are not significant from an optimization point of view. Such statement might seem odd and even contradictory. However, it turns out that U-SNP has a very precise objective function: minimizing the number of stops. For this reason, one may remove constraints (4.8) from $P_{(V, E, C)}$, and an optimal solution will still satisfy such constraints. Proposition 4.4 indicates such fact.

Proposition 4.4 - Constraints (4.8) are not necessary

Let $P_{(V, E, C)}^{\prime}$ be the polyhedron defined by inequalities (4.2)-(4.4), (4.14). If $(\widehat{x}, \widehat{y})$ is an optimal solution of the formulation defined by $P_{(V, E, C)}^{\prime}$ under the objective function (4.1), then constraints (4.8) are satisfied by (\hat{x}, \widehat{y}). That is,

$$
\widehat{y}_{v}^{i} \leq 1 \quad \forall v \in V, i \in K
$$

Proof. Suppose $(\widehat{x}, \widehat{y})$ is an optimal solution not respecting inequality (4.8) for a given station v^{\prime} and vehicle i^{\prime}. Then, $\widehat{y}_{v^{\prime}}^{i^{\prime}}=1+\epsilon>1$, for some $\epsilon>0$.

From constraints (4.2) and (4.14),

$$
0 \leq \widehat{x}_{e}^{i} \leq 1 \quad \forall e \in E, i \in K
$$

Therefore, one can construct a solution (\bar{x}, \bar{y}) in the following manner:

$$
\begin{array}{ll}
\bar{x}_{e}^{i}:=\widehat{x}_{e}^{i} & \forall e \in E, i \in K, \\
\bar{y}_{v}^{i}:=\widehat{y}_{v}^{i} & \forall v \in V \backslash v^{\prime}, i \in K \backslash i^{\prime}, \\
\bar{y}_{v^{\prime}}^{i^{\prime}}:=\widehat{y}_{v^{\prime}}^{i^{\prime}}-\epsilon . &
\end{array}
$$

Solution (\bar{x}, \bar{y}) is clearly feasible since it respects all constraints (4.2)-(4.4), (4.14). Moreover, the objective-function value of solution (\bar{x}, \bar{y}) is, by definition, smaller than that of solution $(\widehat{x}, \widehat{y})$. Therefore, $(\widehat{x}, \widehat{y})$ is not optimal - a contradiction.

Of course, from the moment one changes the gradient of the objective function (4.1), Proposition 4.4 is no longer valid, and constraints 4.8 might need to be reintegrated to the formulation.

Theorem 4.5 - Inequalities (4.14) defining facets

Inequalities

$$
\begin{equation*}
x_{e}^{i} \geq 0 \quad \forall e \in E, i \in K, \tag{4.14}
\end{equation*}
$$

are facet-defining for $\mathcal{P}_{(V, E, C)}$ if and only if $p \geq 3$.
Proof. Let e^{\prime} be any demand in E and i^{\prime} be any vehicle in K. We show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: x_{e^{\prime}}^{i^{\prime}}=0\right\},
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore inequalities (4.14) are facet-defining. More specifically, we show that if there exists some face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\},
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}
$$

that is, a linear combination of (4.14) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The necessity of condition $p \geq 3$, comes from the fact that if $K=\left\{i^{\prime}, j^{\prime}\right\}$ (i.e., $p=2$) and $x_{e^{\prime}}^{i^{\prime}}=0$, then $x_{e^{\prime}}^{j^{\prime}}=1$ from equalities (4.2). Therefore, $F \subseteq F^{\prime}$ where

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: x_{e^{\prime}}^{j^{\prime}}-y_{o_{e^{\prime}}}^{j^{\prime}}=0\right\}
$$

is the face induced by inequality (4.4) associated with demand e^{\prime}, vehicle j^{\prime} and station $o_{e^{\prime}}$.

The proof of sufficiency is organized in the following three steps:
i. showing $\beta_{v}^{i}=0$ for any $v \in V, i \in K$;
ii. showing $\alpha_{e}^{j}=\alpha_{e}^{i^{\prime}}$ for any $e \in E \backslash e^{\prime}, j \in K$, and $\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{k}$ for any $j \in K \backslash i^{\prime}, k \in$ $K \backslash i^{\prime}$;
iii. showing $\sum_{e \in E} \alpha_{e}^{i}=\gamma$ for any $i \in K$.

Step $i .:$ Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $i \in K$ is perfectly idle, and demand e^{\prime} is not assigned to vehicle i^{\prime}. Such solution exists, since $p \geq 3$ and Property 4 holds. By definition, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V$, and therefore $\beta_{v}^{i}=0$ for every $v \in V$.

Since vehicle i can be arbitrarily chosen, $\beta_{v}^{i}=0$ for any $v \in V, i \in K$, and face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}=\gamma\right\}
$$

Step ii.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.2 applies for any chosen demand $e \in E \backslash e^{\prime}$. Notice that a demand $e \in E \backslash e^{\prime}$ can be assigned to any vehicle $j \in K \backslash i^{\prime}$, by taking the necessary number of sequential permutations of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since all such solutions belong to F, one has that $\alpha_{e}^{j}=\alpha_{e}^{i^{\prime}}$ for any $e \in E \backslash e^{\prime}, j \in K$. Let $\lambda_{e} \in \mathbb{R}$ be some real number such that $\lambda_{e}=\alpha_{e}^{j}$ for any $e \in E \backslash e^{\prime}, j \in K$.

Consider now that (\bar{x}, \bar{y}) is a feasible solution where some arbitrarily chosen vehicle $j \in K$ is perfectly idle, and demand e^{\prime} is not assigned to vehicle i^{\prime}. By definition, $(\bar{x}, \bar{y}) \in F$. Notice that demand e^{\prime} can be assigned to any vehicle $j \in K \backslash i^{\prime}$, by taking the necessary number of sequential permutations of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. All such solutions belong to F. Therefore, from Lemma 4.2, $\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{k}$ for any $j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$. Let $\lambda_{e^{\prime}} \in \mathbb{R}$ be some real number such that $\lambda_{e^{\prime}}=\alpha_{e^{\prime}}^{j}$ for any $j \in K \backslash i^{\prime}$. Moreover, let $\omega \in \mathbb{R}$ be some real number such that $\omega=\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}$.

Face F^{\prime} can now be rewritten as

$$
\begin{aligned}
F^{\prime} & =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E \backslash e^{\prime}} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{i \in K \backslash i^{\prime}} \lambda_{e^{\prime}} x_{e^{\prime}}^{i}+\lambda_{e^{\prime}} x_{e^{\prime}}^{i^{\prime}}+\omega x_{e^{\prime}}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}=\gamma\right\}
\end{aligned}
$$

Step iii.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $(\bar{x}, \bar{y}) \in F$. Let us construct other $p-2$ solutions by doing $p-2$ times a sequential permutation of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since vehicle i^{\prime} remains idle in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}=\gamma \tag{4.30}
\end{equation*}
$$

Notice that, considering this pool of $p-1$ feasible solutions (the $p-2$ constructed solutions plus $(\bar{x}, \bar{y}))$, each demand is assigned to a vehicle $i \in K$ exactly once. Summing up equations (4.30) for each $p-1$ solution considered, one obtains

$$
(p-1) \sum_{e \in E} \lambda_{e}=(p-1) \gamma
$$

Therefore, $\sum_{e \in E} \lambda_{e}=\gamma$ and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\} .
$$

Through Theorem 4.4 and Theorem 4.5, we provide the necessary and sufficient conditions for which inequalities (4.8) and (4.14) define facets of $\mathcal{P}_{(V, E, C)}$. We now continue such study by considering next inequalities (4.4) and (4.3).

Theorem 4.6 - Inequalities (4.4) defining facets

The stop inequalities

$$
\begin{equation*}
x_{e}^{i}-y_{v}^{i} \leq 0 \quad \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}, \tag{4.4}
\end{equation*}
$$

are facet-defining for $\mathcal{P}_{(V, E, C)}$.
Proof. Let e^{\prime} be any demand in E and i^{\prime} be any vehicle in K. The proof described below is done for $v=o_{e^{\prime}}$, but it can trivially be adapted for $v=d_{e^{\prime}}$. We show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: x_{e^{\prime}}^{i^{\prime}}-y_{o_{e^{\prime}}}^{i^{\prime}}=0\right\},
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore a facet of $\mathcal{P}_{(V, E, C)}$. More specifically, we show that if there exists some face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\},
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\},
$$

that is, a linear combination of (4.4) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The proof is organized in the following five steps:
i. showing $\beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$ and $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash o_{e^{\prime}}$;
ii. showing $\alpha_{e}^{i^{\prime}}=\alpha_{e}^{j}$ for any $e \in E \backslash e^{\prime}, j \in K$;
iii. showing $\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{k}$ for any $j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$;
iv. showing $\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{i^{\prime}}+\beta_{o_{e^{\prime}}}^{i^{\prime}}$ for any $j \in K \backslash i^{\prime}$;
v. showing $\gamma=\sum_{e \in E} \alpha_{e}^{i}$ for any $i \in K \backslash i^{\prime}$.

Step i.: Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and demand e^{\prime} is assigned to vehicle $i^{\prime}\left(\right.$ i.e., $\bar{x}_{e^{\prime}}^{i^{\prime}}=1$). Since $\bar{x}_{e^{\prime}}^{i^{\prime}}=\bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=1,(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V$, and therefore $\beta_{v}^{j}=0$ for any $v \in V$. Since vehicle j can be arbitrarily chosen among $K \backslash i^{\prime}, \beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$.

Consider now that (\bar{x}, \bar{y}) is a feasible solution where vehicle i^{\prime} is perfectly idle. Since $\bar{x}_{e^{\prime}}^{i^{\prime}}=\bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=0,(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V \backslash o_{e^{\prime}}$, and therefore $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash o_{e^{\prime}}$. Let $\omega \in \mathbb{R}$ be some real number such that $\omega=-\beta_{o_{e^{\prime}}}^{i^{\prime}}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\} .
$$

Step ii.: Let (\bar{x}, \bar{y}) be a feasible solution such that some arbitrarily chosen demand $e \in E \backslash e^{\prime}$ and demand e^{\prime} are assigned to vehicle i^{\prime}. Moreover, consider that some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle. Such solution exists since ≥ 2. Since $\bar{x}_{e^{\prime}}^{i^{\prime}}=\bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=1,(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.2 applies for vehicle j and demand e, and therefore $\alpha_{e}^{i^{i}}=\alpha_{e}^{j}$. Since vehicle j and demand e can be both arbitrarily chosen among $K \backslash i^{\prime}$ and $E \backslash e^{\prime}$, respectively, one has $\alpha_{e}^{i^{\prime}}=\alpha_{e}^{j}$ for any $e \in E \backslash e^{\prime}$ and $j \in K$.

Let $\lambda_{e} \in \mathbb{R}$ be some real number such that $\lambda_{e}=\alpha_{e}^{i^{\prime}}$ for any $e \in E \backslash e^{\prime}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E \backslash e^{\prime}} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{i \in K} \alpha_{e^{\prime}}^{i} x_{e^{\prime}}^{i}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\}
$$

Step iii.: If $p=2$, the proof is trivial. Hence, let us assume $p \geq 3$. Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle and some arbitrarily chosen demand $e \in E \backslash e^{\prime}$ is the only demand assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Fixing vehicle i^{\prime} to be idle and vehicle j to take a single demand e, leaves $(p-2) C$ available seats for $m-1$ demands. By definition, $m-1$ demands can occupy at most $m-1$ seats simultaneously. Therefore, one must ensure that, $(p-2) C \geq m-1$. Since $C \geq 2$, one has $(p-2) C \geq 2 p-4$. Notice however, that $2 p-4 \geq m-1$ if and only if $p \geq 3$, since $p=m$. Hence, one has a proof of the existence of such (\bar{x}, \bar{y}) solution. Therefore, $(\bar{x}, \bar{y}) \in F$ and the following equality holds:

$$
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}-\omega \bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=\gamma
$$

Considering solution (\bar{x}, \bar{y}), let $k \in K \backslash\left\{i^{\prime}, j\right\}$ denote the vehicle on which demand e^{\prime} is assigned to. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demand e^{\prime} from vehicle k to vehicle j. Since solution (\hat{x}, \hat{y}) belongs to F, the following equality holds:

$$
\sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} \bar{x}_{e}^{i}+\alpha_{e^{\prime}}^{j}-\alpha_{e^{\prime}}^{k}-\omega \bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=\gamma
$$

It easily follows that $\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{k}$. Notice that demand e^{\prime} can be assigned to any vehicle $k \in K \backslash\left\{i^{\prime}, j\right\}$, by taking the necessary number of sequential permutations of (\bar{x}, \bar{y}) over $K \backslash\left\{i^{\prime}, j\right\}$. Therefore,

$$
\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime}}^{k} \quad \forall k \in K \backslash\left\{i^{\prime}\right\} .
$$

Let $\lambda_{e^{\prime}} \in \mathbb{R}$ be some real number such that $\lambda_{e^{\prime}}=\alpha_{e^{\prime}}^{i}$ for any $i \in K \backslash i^{\prime}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E \backslash e^{\prime}} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{i \in K \backslash i^{\prime}} \lambda_{e^{\prime}} x_{e^{\prime}}^{i}+\alpha_{e^{\prime}}^{i^{\prime}} x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\} .
$$

Step iv.: Let (\bar{x}, \bar{y}) be a feasible solution such that vehicle i^{\prime} is perfectly idle. Since $\bar{x}_{e^{\prime}}^{i^{\prime}}=\bar{y}_{o_{e^{\prime}}}^{i^{\prime}}=0,(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.2 applies for vehicle i^{\prime} and demand e^{\prime}. Therefore, $\alpha_{e}^{i^{\prime}}-\omega=\lambda_{e}$ and face F^{\prime} can now be rewritten as

$$
\begin{aligned}
F^{\prime} & =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E \backslash e^{\prime}} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{i \in K \backslash i^{\prime}} \lambda_{e^{\prime}} x_{e^{\prime}}^{i}+\lambda_{e^{\prime}} x_{e^{\prime}}^{i^{\prime}}+\omega x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E \backslash e^{\prime}} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{i \in K} \lambda_{e^{\prime}} x_{e^{\prime}}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\gamma\right\} .
\end{aligned}
$$

Step v.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $(\bar{x}, \bar{y}) \in F$. Let us construct other $p-2$ solutions by taking $p-2$ times the sequential permutation of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since vehicle i^{\prime} is perfectly idle in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}=\gamma \tag{4.31}
\end{equation*}
$$

Notice that, considering this pool of $p-1$ feasible solutions (the $p-2$ constructed
solutions plus (\bar{x}, \bar{y})), each demand is assigned to a vehicle $i \in K \backslash i^{\prime}$ exactly once. Summing up the $p-1$ equations (4.31) associated with the pool of solutions considered, one obtains

$$
(p-1) \sum_{e \in E} \lambda_{e}=(p-1) \gamma
$$

Therefore, $\gamma=\sum_{e \in E} \lambda_{e}$ and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\omega x_{e^{\prime}}^{i^{\prime}}-\omega y_{o_{e^{\prime}}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e} \cdot\right\} .
$$

Theorem 4.7-Inequalities (4.3) defining facets

The capacity constraints

$$
\begin{equation*}
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C \quad \forall v \in V, i \in K \tag{4.3}
\end{equation*}
$$

are facet-defining for a given station $v^{\prime} \in V$ and vehicle $i^{\prime} \in K$ if and only if

1. there is no station $v \in V$ such that $\Delta_{E}\left(v^{\prime}\right) \subset \Delta_{E}(v)$;
2. for any station $v \in V,\left|\Delta_{E}\left(v^{\prime}\right) \backslash \delta(v)\right| \geq C$.

Proof. We show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in \Delta_{E}\left(v^{\prime}\right)} x_{e}^{i^{\prime}}=C\right\}
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore inequalities (4.3) associated with station $v^{\prime} \in V$ and vehicle $i^{\prime} \in K$ is facet-defining. More specifically, we show that if there exists some face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\},
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}=\omega C+\sum_{e \in E} \lambda_{e}\right\}
$$

that is, a linear combination of (4.3) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The necessity of condition 1 , comes from the fact that if there exists a station $v \in V$ for which $\Delta_{E}\left(v^{\prime}\right) \subset \Delta_{E}(v)$, then $\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} x_{e}^{i^{\prime}}=C$ implies $\sum_{e \in \Delta_{E}(v)} x_{e}^{i^{\prime}}=$
C. Therefore, inequalities (4.3) for station v^{\prime} are dominated by inequalities (4.3) associated with station v. Condition 2 is necessary since if there exists a station $v \in V$, for which $\left|\Delta_{E}\left(v^{\prime}\right) \backslash \delta(v)\right|<C$, then any assignment of C demands in $\Delta_{E}\left(v^{\prime}\right)$ to vehicle i^{\prime} would induce the vehicle to stop at station v, that is $y_{v}^{i^{\prime}}=1$.

The proof of sufficiency is organized in the following five steps:
i. showing $\beta_{v}^{i}=0$ for any $v \in V, i \in K$;
ii. showing $\alpha_{e}^{j}=\alpha_{e}^{k}$ for any $e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$;
iii. showing $\alpha_{e}^{i^{\prime}}=\alpha_{e}^{j}$ for any $e \in E \backslash \Delta_{E}\left(v^{\prime}\right), j \in K$;
iv. showing $\alpha_{e_{1}}^{i^{\prime}}-\alpha_{e_{1}}^{j}=\alpha_{e_{2}}^{i^{\prime}}-\alpha_{e_{2}}^{j}$ for any $e_{1} \in \Delta_{E}\left(v^{\prime}\right), e_{2} \in \Delta_{E}\left(v^{\prime}\right), j \in K \backslash i^{\prime}$;
v. showing $\gamma=\sum_{e \in E} \alpha_{e}^{j}+C\left(\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime}}^{j}\right)$ for any $e^{\prime} \in \Delta_{E}\left(v^{\prime}\right), j \in K \backslash i^{\prime}$.

Step i.: Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and vehicle i^{\prime} is fully charged at station v^{\prime}. Such solution clearly belongs to F. Then, Lemma 4.1 applies for any chosen station $v \in V$, and therefore $\beta_{v}^{j}=0$ for any $v \in V$. Since vehicle j can be arbitrarily chosen among $K \backslash i^{\prime}, \beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$.

Consider now that (\bar{x}, \bar{y}) is a feasible solution where vehicle i^{\prime} is fully charged at station v^{\prime} and does not stops at some arbitrarily chosen station $v \in V$. Such a solution exists from condition 2. Then, Lemma 4.1 applies, and therefore $\beta_{v}^{i^{\prime}}=0$. Since station $v \in V$ can be arbitrarily chosen, $\beta_{v}^{i^{\prime}}=0$ for any $v \in V$. Hence, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}=\gamma\right\} .
$$

Step ii.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is fully charged at station v^{\prime} and some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle. Moreover, consider that some arbitrarily chosen demand $e \in E$ is assigned to some arbitrarily chosen vehicle $k \in K \backslash\left\{i^{\prime}, j\right\}$. Such solution exists since condition 2 implies that $\left|\Delta_{E}\left(v^{\prime}\right)\right| \geq C+1$. Since $(\bar{x}, \bar{y}) \in F$, Lemma 4.2 applies for vehicle j and demand e, and therefore $\alpha_{e}^{j}=\alpha_{e}^{k}$. Since vehicle j and demand e can be both arbitrarily chosen among $K \backslash i^{\prime}$ and E, respectively, one has $\alpha_{e}^{j}=\alpha_{e}^{k}$ for any $e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$.

Let $\lambda_{e} \in \mathbb{R}$ be some real number such that $\lambda_{e}=\alpha_{e}^{j}$ for any $e \in E$ and $j \in K \backslash i^{\prime}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}=\gamma\right\} .
$$

Step iii.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is fully charged at station v^{\prime} and some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle. Moreover, consider that some arbitrarily chosen demand $e^{\prime} \in E \backslash \Delta_{E}\left(v^{\prime}\right)$ is also assigned to vehicle i^{\prime}. Such solution exists from condition 1 . Since $(\bar{x}, \bar{y}) \in F$, Lemma 4.2 applies for vehicle j and demand e^{\prime}, and therefore $\alpha_{e^{\prime}}^{i^{\prime}}=\alpha_{e^{\prime}}^{j}$. Since vehicle j and demand e^{\prime} can be both arbitrarily chosen among $K \backslash i^{\prime}$ and $E \backslash \Delta_{E}\left(v^{\prime}\right)$, respectively, one has $\alpha_{e^{\prime}}^{i^{\prime}}=\alpha_{e^{\prime}}^{j}=\lambda_{e^{\prime}}$ for any $e^{\prime} \in E \backslash \Delta_{E}\left(v^{\prime}\right), j \in K$.

Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E \backslash \Delta_{E}\left(v^{\prime}\right)} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \lambda_{e}^{i^{\prime}} i_{e}^{i^{\prime}}=\gamma\right\} .
$$

Step iv.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is fully charged at station v^{\prime}. Let $S \subset \Delta_{E}\left(v^{\prime}\right)$ denote the set of demands assigned to vehicle i^{\prime}. Moreover, consider that some arbitrarily chosen demand $e^{\prime} \in \Delta_{E}\left(v^{\prime}\right)$ is the only demand assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Since $(\bar{x}, \bar{y}) \in F$, the following equality holds:

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash \Delta_{E}\left(v^{\prime}\right)} \lambda_{e} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}=\gamma .
$$

Now construct another feasible solution (\hat{x}, \hat{y}) by exchanging demands e^{\prime} and some arbitrarily chosen demand $e^{\prime \prime} \in S$. Then, (\hat{x}, \hat{y}) also belong to F, and the following equality holds:

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash \Delta_{E}\left(v^{\prime}\right)} \lambda_{e} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}-\lambda_{e^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime \prime}}^{i^{\prime}}+\lambda_{e^{\prime \prime}}=\gamma .
$$

Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\lambda_{e^{\prime \prime}}$. Since demands e^{\prime} and $e^{\prime \prime}$ can be arbitrarily chosen among $\Delta_{E}\left(v^{\prime}\right)$, one obtains

$$
\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\lambda_{e^{\prime \prime}} \quad \forall e^{\prime} \in \Delta_{E}\left(v^{\prime}\right), e^{\prime \prime} \in \Delta_{E}\left(v^{\prime}\right) .
$$

Let $\omega \in \mathbb{R}$ be some real number such that $\omega=\alpha_{e}^{i^{\prime}}-\lambda_{e}$ for any $e \in \Delta_{E}\left(v^{\prime}\right)$. Then, face F^{\prime} can be rewritten as

$$
\begin{aligned}
F^{\prime} & =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E \backslash \Delta_{E}\left(v^{\prime}\right)} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)}\left(\omega+\lambda_{e}\right) x_{e}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}=\gamma\right\}
\end{aligned}
$$

$$
=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}=\gamma\right\} .
$$

Step v.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is fully charged at station v^{\prime}. Let $S \subset \Delta_{E}\left(v^{\prime}\right)$ denote the set of demands assigned to vehicle i^{\prime}. Let us construct other $p-2$ solutions by taking $p-2$ times the sequential permutation of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since vehicle i^{\prime} is fully charged at station v^{\prime} in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E \backslash S} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in S} \lambda_{e}+\sum_{e \in S} \omega=\gamma \tag{4.32}
\end{equation*}
$$

Notice that, by definition, $|S|=C$. Therefore, equality (4.32) can be rewritten as

$$
\begin{equation*}
\sum_{e \in E \backslash S} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in S} \lambda_{e}+\omega C=\gamma . \tag{4.33}
\end{equation*}
$$

Considering this pool of $p-1$ feasible solutions (the $p-2$ constructed solutions plus (\bar{x}, \bar{y})), each demand in $E \backslash S$ is assigned to a vehicle $i \in K \backslash i^{\prime}$ exactly once. Summing up the $p-1$ equations (4.33) associated with the pool of solutions considered, one obtains

$$
(p-1) \sum_{e \in E \backslash S} \lambda_{e}+(p-1) \sum_{e \in S} \lambda_{e}+(p-1) \omega C=(p-1) \gamma,
$$

which reduces to

$$
\sum_{e \in E \backslash S} \lambda_{e}+\sum_{e \in S} \lambda_{e}+\omega C=\gamma
$$

Therefore, $\gamma=\sum_{e \in E} \lambda_{e}+\omega C$ and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \Delta_{E}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}+\omega C\right\}
$$

and the proof is done.

4.4 New valid inequalities and facets

In the previous section the necessary and sufficient conditions for which the inequalities composing polyhedron $P_{(V, E, C)}$ define facets of $\mathcal{P}_{(V, E, C)}$ were given. Indeed, whenever a necessary condition was not satisfied, the inequality under analysis was shown to be dominated by some other inequality composing $P_{(V, E, C)}$. At this point,
an inexperienced or reckless reader may question himself if $P_{(V, E, C)}$ isn't, in fact, the exact same polyhedron as $\mathcal{P}_{(V, E, C)}$. Nonetheless, the results from Section 4.2 clearly indicates that not only this is not the case, but also that the objective function gradient points towards an extreme point of $P_{(V, E, C)}$ that does not belong to $\mathcal{P}_{(V, E, C)}$, that is, a fractional extreme point. Figure 4.4 illustrates how such situation can be achieved. Of course, the reader should keep in mind that Figure 4.4 gives an example on a simple 2-dimensional space, and thus its reasoning should be abstracted to the higher dimensional space on which polyhedrons $P_{(V, E, C)}$ and $\mathcal{P}_{(V, E, C)}$ are inserted.

In Figure 4.4, each dot represents an integer solution. In Figure 4.4a, polyhedron $\mathcal{P}_{(V, E, C)}$ is given by the shaded area, while $P_{(V, E, C)}$ is defined as the intersection of halfspaces induced by inequalities 1,2 and 3 . Clearly, inequality 3 does not define a facet of $\mathcal{P}_{(V, E, C)}$. Moreover, such inequality is dominated by inequality 1 , since every solution of $\mathcal{P}_{(V, E, C)}$ satisfying inequality 3 at equality also satisfies inequality 1 at equality. In Figure 4.4b, polyhedron $P_{(V, E, C)}$ is defined as the intersection of halfspaces induced by the inequalities represented in grey dashed lines. Notice that all such inequalities are facet-defining for $\mathcal{P}_{(V, E, C)}$. Nonetheless, they are not sufficient for completely characterizing $\mathcal{P}_{(V, E, C)}$. Indeed, the inequality represented by the red line is required.

(a) Inequalities composing $P_{(V, E, C)}$ not defining facets of $\mathcal{P}_{(V, E, C)}$ are dominated by other inequalities composing $P_{(V, E, C)}$

(b) All inequalities composing $P_{(V, E, C)}$ define facets of $\mathcal{P}_{(V, E, C)}$. Yet, $P_{(V, E, C)} \neq \mathcal{P}_{(V, E, C)}$.

Figure 4.4: Illustration of $\mathcal{P}_{(V, E, C)}$ and $P_{(V, E, C)}$

This section focuses on the search for new valid inequalities capable of strengthening the formulation given by $P_{(V, E, C)}$ and thus reducing its integrality gap.

4.4.1 Strong capacity inequalities

Theorem 4.8 - Validity of strong capacity inequalities

The following Strong Capacity inequalities are valid for $\mathcal{P}_{(V, E, C)}$.

$$
\begin{array}{ll}
\sum_{e \in \delta_{G}^{-}(v)} x_{e}^{i}-C y_{v}^{i} \leq 0 & \forall v \in V, i \in K, \\
\sum_{e \in \delta_{G}^{+}(v)} x_{e}^{i}-C y_{v}^{i} \leq 0 & \forall v \in V, i \in K . \tag{4.34b}
\end{array}
$$

Proof. On any feasible solution, if vehicle $i \in K$ does not stop at station $v \in V$ (i.e. $y_{v}^{i}=0$) then it cannot take any demand with origin (or destination) on v. On the other hand, if it stops at station $v\left(\right.$ i.e. $\left.y_{v}^{i}=1\right)$, then it is capable of serving at most C demands.

Such inequalities yield a new lower bound capable of enhancing the trivial lower bound of n stops from Proposition 3.1. By summing up inequalities (4.34a) for each vehicle $i \in K$, one obtains

$$
\sum_{e \in \delta_{G}^{-}(v)} \sum_{i \in K} x_{e}^{i}-C \sum_{i \in K} y_{v}^{i} \leq 0 \quad \forall v \in V .
$$

However, from constraints (4.2) one has that

$$
\sum_{e \in \delta_{G}^{-}(v)} \sum_{i \in K} x_{e}^{i}=\left|\delta_{G}^{-}(v)\right| \quad \forall v \in V,
$$

and therefore,

$$
\begin{equation*}
\sum_{i \in K} y_{v}^{i} \geq \frac{\left|\delta_{G}^{-}(v)\right|}{C} \quad \forall v \in V . \tag{4.35}
\end{equation*}
$$

Since $\sum_{i \in K} y_{v}^{i}$ should be an integer value, one can derive the following ChvàtalGomory cuts from (4.35):

$$
\sum_{i \in K} y_{v}^{i} \geq\left\lceil\frac{\left|\delta_{G}^{-}(v)\right|}{C}\right\rceil \quad \forall v \in V .
$$

Of course, the same reasoning can be applied to (4.34b) to obtain

$$
\begin{equation*}
\sum_{i \in K} y_{v}^{i} \geq\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil \quad \forall v \in V \tag{4.36}
\end{equation*}
$$

After summing up inequalities (4.36) for each station $v \in V$, one derives the less trivial lower bound from Proposition 3.2. Such result is summarized by the following

Proposition.

Proposition 4.5 - Reinforcement from strong capacity inequalities

Let $P_{(V, E, C)}^{\prime}=\left\{(x, y) \in P_{(V, E, C)}:(x, y)\right.$ satisfies (4.34), (4.36) $\}$. Then,

$$
\min \left\{0 x+1 y:(x, y) \in P_{(V, E, C)}^{\prime}\right\} \geq \sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil
$$

It follows that, for $C=1$, the inclusion of inequalities (4.34), (4.36) allows the linear relaxation $\min \left\{\mathbf{0} x+\mathbf{1} y:(x, y) \in P_{(V, E, C)}^{\prime}\right\}$ to find a solution of optimal cost (cf. Proposition 3.9). In addition, if the associated graph $G=(V, E)$ is a star, then the linear relaxation also yields a solution of optimal cost for any capacity value C (cf. Proposition 3.11).

As a consequence, such inequalities are capable of cutting off the fractional optimal solution obtained by the linear relaxation proposed for Example 4.2. Indeed, in Example 4.2, $\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}=m$ for any of the two stations in V. Therefore, including inequalities (4.34), (4.36) reinforces the given formulation to a point where its linear relaxation is capable of finding a solution with cost $2\left\lceil\frac{m}{C}\right\rceil$. In other words, the integrality gap is reduced to 0 for the instance depicted in Example 4.2.

Table 4.2 gives a perspective on how such inequalities are capable of strengthening the formulation by comparing the gaps at the root node for the formulations with and without the inclusion of strong capacity inequalities. The results obtained with the original formulation (4.1)-(4.6) are displayed under section Default, while section StrongCap displays the results obtained with the original formulation (4.1)(4.6) reinforced by strong capacity inequalities (4.34), (4.36) included on demand. For each formulation, Table 4.2 shows the best lower bound ($L B_{r}$) and upper bound $\left(U B_{r}\right)$ known at the root node of the Branch-and-Bound tree. The gap at the root node is given under column gap $_{r}$, and the number of strong capacity inequalities added to the formulation is provided under column cuts. Finally, the gap percentage closed by the introduction of strong capacity inequalities is given under column $\Delta_{g a p}(\%)$, measured as $\frac{D-S}{D}$, where D and S refer to the $g a p_{r}$ under formulation Default and StrCap, respectively.

Table 4.2: How Strong Capacity inequalities reinforce the formulation

Table 4.2 - Continued

Instances				Default			StrCap				Comparison
m	C	ρ	i	LB_{r}	UB_{r}	gap_{r}	LB_{r}	UB_{r}	gap_{r}	cuts	$\Delta_{\text {gap }}(\%)$
40	2	1.5	1	27.8	64	56.55	41	53	22.64	1057	59.96
40	2	3.0	1	16.9	52	67.5	33	38	13.16	764	80.50
40	2	4.5	1	12	42	71.43	33	35	5.71	664	92.01
45	2	1.5	1	31.7	66	51.94	42	57	26.32	1209	49.33
45	2	3.0	1	18.8	54	65.12	39	46	15.22	1937	76.63
45	2	4.5	1	14	58	75.86	39	43	9.3	987	87.74
50	2	1.5	1	36.9	78	52.74	52.7	68	22.55	1677	57.24
50	2	3.0	1	20	75	73.33	45	55	18.18	2611	75.21
50	2	4.5	1	14.8	62	76.05	44	48	8.33	2007	89.05
55	2	1.5	1	38.9	91	57.3	53.5	68	21.32	2048	62.79
55	2	3.0	1	21.9	80	72.64	48	61	0	19584	100.00
55	2	4.5	1	15.9	74	78.58	46	50	8	2524	89.82
60	2	1.5	1	41.9	104	59.67	62	79	21.52	3252	63.93
60	2	3.0	1	23.9	78	69.33	56	65	13.85	14341	80.02
60	2	4.5	1	16.8	85	80.22	52	58	10.34	3397	87.11
30	5	1.5	1	19.5	27	27.74	20.4	29	29.56	71	-6.56
30	5	3.0	1	12.5	20	37.54	15.1	20	24.73	168	34.12
30	5	4.5	1	9.4	16	40.97	14	14	0	210	100.00
35	5	1.5	1	23.4	34	31.05	23.8	39	38.9	83	-25.28
35	5	3.0	1	13.4	23	41.93	15	25	40	158	4.60
35	5	4.5	1	10.3	21	50.92	16.6	19	12.63	337	75.20
40	5	1.5	1	28.3	49	42.27	28	39	28.26	50	33.14
40	5	3.0	1	15.7	29	46.02	19	30	36.64	324	20.38
40	5	4.5	1	10.8	24	55.2	15.2	20	24	436	56.52
45	5	1.5	1	30.6	42	27.19	30.6	42	27.19	0	0.00
45	5	3.0	1	17.5	47	62.87	20.5	34	39.72	429	36.82
45	5	4.5	1	12.6	34	62.94	19.6	28	30	926	52.34
50	5	1.5	1	34.5	52	33.59	35.7	69	48.26	146	-43.67
50	5	3.0	1	18.5	40	53.66	22.9	40	42.87	596	20.11
50	5	4.5	1	13.9	45	69.18	21.6	33	34.55	979	50.06
55	5	1.5	1	37.6	76	50.55	37.7	73	48.3	81	4.45
55	5	3.0	1	20.7	65	68.13	26.7	47	43.23	933	36.55
55	5	4.5	1	14.5	54	73.08	22.2	36	38.33	1174	47.55
60	5	1.5	1	38.5	74	47.91	39.5	76	47.97	161	-0.13
60	5	3.0	1	22.6	65	65.2	28.5	55	48.1	836	26.23
60	5	4.5	1	16.6	55	69.82	23.7	35	32.38	1374	53.62
30	8	1.5	1	21.4	24	10.94	21.4	24	10.94	0	0.00
30	8	3.0	1	11.9	16	25.87	12.3	18	31.82	33	-23.00
30	8	4.5	1	7.9	11	28.53	10.1	13	22.08	92	22.61
35	8	1.5	1	24.7	29	14.94	24.7	29	14.94	0	0.00
35	8	3.0	1	12.9	18	28.55	14.2	18	20.99	52	26.48
35	8	4.5	1	8.8	12	26.54	9.5	13	27.08	53	-2.03
40	8	1.5	1	26.7	32	16.46	26.7	32	16.46	0	0.00
40	8	3.0	1	14.4	22	34.71	14.4	22	34.71	0	0.00
40	8	4.5	1	10.2	14	27.06	11.2	16	30.26	64	-11.83
45	8	1.5	1	31.4	42	25.32	31.4	42	25.32	0	0.00
45	8	3.0	1	17.4	30	42.15	20.1	30	32.98	140	21.76
45	8	4.5	1	12.2	19	35.57	16	24	33.33	203	6.30
50	8	1.5	1	33.8	47	28	33.8	47	28	0	0.00
50	8	3.0	1	18.2	29	37.4	18.5	34	45.7	60	-22.19
50	8	4.5	1	13.3	24	44.55	15.4	26	40.94	175	8.10
55	8	1.5	1	35.6	49	27.33	35.6	49	27.33	0	0.00
55	8	3.0	1	20.3	39	47.86	21.6	51	57.69	218	-20.54
55	8	4.5	1	14.4	33	56.46	15.8	31	49.17	175	12.91
60	8	1.5	1	38.9	76	48.78	38.9	76	48.78	0	0.00
60	8	3.0	1	22.5	41	45.04	22.6	43	47.37	66	-5.17
60	8	4.5	1	15.4	33	53.31	19.3	31	37.63	537	29.41

Strong capacity inequalities are quite effective when the associated graph is dense with respect to C, that is, when nodes usually have degree greater than C. However, they fail to strengthen the formulation when the graph is relatively sparse. It is worth noting that the addition of such inequalities can only reinforce $L B_{r}$. Nonetheless, introducing such inequalities can slightly impact the CPLEX heuristics responsible for generating the upper bounds depicted under $U B_{r}$. Indeed, the few negative results obtained for $\Delta_{g a p}$ are due to this fact.

Figure 4.5 shows the evolution of the lower bounds during the optimization process of both formulations for the instance with 45 demands and capacity 5 . Figure 4.5 a gives a scenario with dense demands - density is set to 4.5 - and Figure 4.5 b gives a scenario with sparse demands - density is set to 1.5 . As expected, there is almost no improvement on the lower bound for the sparse case, whilst in the dense scenario a considerable improvement can be verified.

Figure 4.5: Progress of lower bounds

As a matter of fact, it easy to see that if $\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\} \leq C$, such constraints are dominated by a sum of inequalities (4.4). Indeed, this implies that even for the particular case of Intersection U-SNP where $C=2$ (that can be solved in polynomial time), an important integrality gap can still be obtained even after the inclusion of Strong Capacity inequalities to the formulation. The following example illustrates such situation.

Example 4.3 - Strong capacity inequalities can fail to reinforce the given formulation

Consider the instance of Intersection U-SNP given by the following graph with capacity $C=2$ and an even number of stations $n \geq 4$:

Figure 4.6: Example of instance where strong capacity inequalities are useless

Notice that in the given example, $m=n$. The optimal solution obtained with the polynomial time algorithm described in Section 3.2 has $\frac{3 m}{2}$ stops. Since $\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\} \leq C$ for any $v \in V$, the introduced inequalities are redundant. Therefore, Theorem 4.2 still applies and the linear relaxation provides a lower bound of m stops for the given instance. It follows that the integrality gap equals $\frac{1}{3}$.

Finally, we give the necessary and sufficient conditions for which inequalities (4.34a) and (4.34b) define facets of $\mathcal{P}_{(V, E, C)}$.

Theorem 4.9-Strong capacity inequalities defining facets

The strong capacity constraint (4.34a) associated with a station $v \in V$ and a vehicle $i \in K$ is facet-defining if and only if

$$
\left|\delta_{G}^{-}(v)\right| \geq C+1 .
$$

Proof. We show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} x_{e}^{i^{\prime}}-C y_{v^{\prime}}^{i^{\prime}}=0\right\}
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore inequality (4.34a) associated with station v^{\prime} and vehicle i^{\prime} is facet-defining. More specifically, we show that if there exists some
face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\}
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}
$$

that is, a linear combination of (4.34a) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The necessity of condition $\left|\delta_{G}^{-}(v)\right| \geq C+1$, comes from the fact that if $\left|\delta_{G}^{-}(v)\right| \leq$ C, then summing up inequalities

$$
x_{e}^{i^{\prime}}-y_{d_{e}}^{i^{\prime}} \leq 0
$$

for each $e \in \delta_{G}^{-}(v)$, yields the inequality

$$
\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} x_{e}^{i^{\prime}}-\left|\delta_{G}^{-}(v)\right| y_{v^{\prime}}^{i^{\prime}} \leq 0
$$

which dominates (4.34a).
The proof of sufficiency is organized in the following six steps:
i. showing $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash v^{\prime}$ and $\beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$;
ii. showing $\alpha_{e}^{j}=\alpha_{e}^{k}$ for any $e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$;
iii. showing $\alpha_{e}^{i^{\prime}}=\alpha_{e}^{j}$ for any $e \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right), j \in K$;
iv. showing $\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\alpha_{e^{\prime \prime}}^{j}$ for any $e^{\prime} \in \delta_{G}^{-}\left(v^{\prime}\right), e^{\prime \prime} \in \delta_{G}^{-}\left(v^{\prime}\right), j \in K \backslash i^{\prime}$;
v. showing $\alpha_{e}^{i^{\prime}}-\alpha_{e}^{j}=\frac{-\beta_{v}^{i^{\prime}}}{C}$ for any $e \in \delta_{G}^{-}\left(v^{\prime}\right), j \in K \backslash i^{\prime}$;
vi. showing $\gamma=\sum_{e \in E} \alpha_{e}^{i}$ for any $i \in K \backslash i^{\prime}$.

Step $i .:$ Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \bar{x}_{e}^{i^{\prime}}=C \bar{y}_{v^{\prime}}^{i^{\prime}}=0$ and therefore, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V \backslash v^{\prime}$. Therefore,

$$
\beta_{v}^{i^{\prime}}=0 \quad \forall v \in V \backslash v^{\prime}
$$

Consider now that (\bar{x}, \bar{y}) is a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and C demands among $\delta_{G}^{-}(v)$ are assigned to vehicle i^{\prime}. By definition, $\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \bar{x}_{e}^{i^{\prime}}=C \bar{y}_{v^{\prime}}^{i^{\prime}}=C$ and therefore, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V$, and therefore $\beta_{v}^{j}=0$ for any $v \in V$. Since vehicle j can be arbitrarily chosen (as long as $j \neq i^{\prime}$),

$$
\beta_{v}^{i}=0 \quad \forall v \in V, i \in K \backslash i^{\prime} .
$$

Let $\omega \in \mathbb{R}$ be some real number such that $\omega=-\frac{\beta_{\nu^{\prime}}}{C}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\}
$$

Step ii.: Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and C demands among $\delta_{G}^{-}(v)$ are assigned to vehicle i^{\prime}. Moreover, consider that some arbitrarily chosen demand $e \in E$ is assigned to some arbitrarily chosen vehicle $k \in K \backslash\left\{i^{\prime}, j\right\}$. Such solution exists since $\left|\delta_{G}^{-}\left(v^{\prime}\right)\right| \geq C+1$ and $p=m$. Since $(\bar{x}, \bar{y}) \in F$, Lemma 4.2 applies for vehicle j and demand e, and therefore $\alpha_{e}^{j}=\alpha_{e}^{k}$. Since vehicle j and demand e can be both arbitrarily chosen among $K \backslash i^{\prime}$ and E, respectively, one has

$$
\alpha_{e}^{j}=\alpha_{e}^{k} \quad \forall e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime} .
$$

Let $\lambda_{e} \in \mathbb{R}$ be some real number such that $\lambda_{e}=\alpha_{e}^{j}$ for any $e \in E$ and $j \in K \backslash i^{\prime}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\}
$$

Step iiiu: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. Moreover, consider that some arbitrarily chosen demand $e^{\prime} \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right)$ is assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Since $(\bar{x}, \bar{y}) \in F$, Lemma 4.2 applies for vehicle i^{\prime} and demand e^{\prime}, and therefore $\alpha_{e^{\prime}}^{i^{\prime}}=\alpha_{e^{\prime}}^{j}$. Since vehicle j and demand e^{\prime} can be both arbitrarily chosen among $K \backslash i^{\prime}$ and $E \backslash \delta_{G}^{-}\left(v^{\prime}\right)$, respectively, one has

$$
\alpha_{e^{\prime}}^{i^{\prime}}=\alpha_{e^{\prime}}^{j}=\lambda_{e^{\prime}} \quad \forall e^{\prime} \in E \backslash \Delta_{E}\left(v^{\prime}\right), j \in K .
$$

Then, face F^{\prime} can be rewritten as
$F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right)} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\}$.

Step iv.: Let (\bar{x}, \bar{y}) be a feasible solution where C demands among $\delta_{G}^{-}\left(v^{\prime}\right)$ are assigned to vehicle i^{\prime}. Let $S \subset \delta_{G}^{-}\left(v^{\prime}\right)$ denote this set of C demands. Moreover, consider that some arbitrarily chosen demand $e^{\prime} \in \delta_{G}^{-}\left(v^{\prime}\right)$ is the only demand assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Since $(\bar{x}, \bar{y}) \in F$, the following equality holds.

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right)} \lambda_{e} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}-\omega C \bar{y}_{v^{\prime}}^{i^{\prime}}=\gamma .
$$

Now construct another feasible solution (\hat{x}, \hat{y}) by exchanging demands e^{\prime} and some arbitrarily chosen demand $e^{\prime \prime} \in S$. Then, (\hat{x}, \hat{y}) also belong to F, and the following equality holds.

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right)} \lambda_{e} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}-\lambda_{e^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime \prime}}^{i^{\prime}}+\lambda_{e^{\prime \prime}}-\omega C \bar{y}_{v^{\prime}}^{i^{\prime}}=\gamma .
$$

Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\lambda_{e^{\prime \prime}}$. Since demands e^{\prime} and $e^{\prime \prime}$ can be arbitrarily chosen among $\delta_{G}^{-}\left(v^{\prime}\right)$, one obtains

$$
\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\lambda_{e^{\prime \prime}} \quad \forall e^{\prime} \in \delta_{G}^{-}\left(v^{\prime}\right), e^{\prime \prime} \in \delta_{G}^{-}\left(v^{\prime}\right) .
$$

Step v.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle, and C demands among $\delta_{G}^{-}(v)$ are assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Let $S \subset \delta_{G}^{-}\left(v^{\prime}\right)$ denote this set of C demands. Since $(\bar{x}, \bar{y}) \in F$, the following equality holds.

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}=\gamma \tag{4.37}
\end{equation*}
$$

Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demands in S from vehicle j to vehicle i^{\prime}. The constructed solution (\bar{x}, \bar{y}) also belongs to F. Therefore,

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in S} \alpha_{e}^{i^{\prime}}-\sum_{e \in S} \lambda_{e}-\omega C=\gamma . \tag{4.38}
\end{equation*}
$$

By subtracting (4.37) from (4.38), one obtains

$$
\sum_{e \in S}\left(\alpha_{e}^{i^{\prime}}-\lambda_{e}\right)-\omega C=0 .
$$

However, from step iv., it is clear that $\alpha_{e}^{i^{\prime}}-\lambda_{e}$ is a constant for any $e \in \delta_{G}^{-}(v)$. Moreover, by definition, $|S|=C$. Therefore, if e^{\prime} is taken to be any arbitrarily chosen demand in S, one has that

$$
C\left(\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}\right)-\omega C=0 \quad \forall e^{\prime} \in \delta_{G}^{-}(v),
$$

and thus

$$
\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\omega=\frac{-\beta_{v^{\prime}}^{i^{\prime}}}{C} \quad \forall e^{\prime} \in \delta_{G}^{-}(v)
$$

Then, face F^{\prime} can now be rewritten as

$$
\begin{aligned}
F^{\prime} & =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E \backslash \delta_{G}^{-}\left(v^{\prime}\right)} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)}\left(\lambda_{e}+\omega\right) x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \lambda_{e} x_{e}^{i^{\prime}}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\} \\
& =\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\gamma\right\} .
\end{aligned}
$$

Step vi.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $(\bar{x}, \bar{y}) \in F$. Let us construct other $p-2$ feasible solutions by taking $p-2$ times the sequential permutation of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since vehicle i^{\prime} is perfectly idle in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}=\gamma \tag{4.39}
\end{equation*}
$$

Notice that, considering this pool of $p-1$ feasible solutions (the $p-2$ constructed solutions plus (\bar{x}, \bar{y})), each demand is assigned to a vehicle $i \in K \backslash i^{\prime}$ exactly once. Summing up the $p-1$ equations (4.39) associated with the pool of solutions considered, one obtains

$$
(p-1) \sum_{e \in E} \lambda_{e}=(p-1) \gamma .
$$

Therefore, $\gamma=\sum_{e \in E} \lambda_{e}$ and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in \delta_{G}^{-}\left(v^{\prime}\right)} \omega x_{e}^{i^{\prime}}-\omega C y_{v^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}
$$

Theorem 4.10-Strong capacity inequalities defining facets

The strong capacity constraints (4.34b) associated with station $v^{\prime} \in V$ and vehicle
$i^{\prime} \in K$ is facet-defining if and only if

$$
\left|\delta_{G}^{+}(v)\right| \geq C+1
$$

Proof. Analogous to the proof of Theorem 4.9

4.4.2 k-cardinality tree inequalities

In Fischetti et al. [70], a k-cardinality tree is defined as a connected acyclic graph $T=(V(T), E(T))$ such that $|E(T)|=k$. Based on this definition, a new family of valid inequalities, denoted k-cardinality tree inequalities, is presented below.

Theorem 4.11 - Validity of k-cardinality tree inequalities

The following k-cardinality tree inequalities are valid for $\mathcal{P}_{(V, E, C)}$.

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j) \tag{4.40}
\end{equation*}
$$

such that $G[S]$ is a k-cardinality tree for $k \geq C+1$.

Proof. The proof of validity is done by showing that inequalities (4.40) can be seen as Chvátal-Gomory cuts (see Gomory et al. [80], Chvátal [31]). More precisely, we show that given a k-cardinality tree $T=G[S]$, for $k \geq C+1$, a conical combination of inequalities (4.3) and (4.4), yields the inequality

$$
k \sum_{e \in E(T)} x_{e}^{i}-k \sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)-1\right) y_{v}^{i} \leq C,
$$

which can be divided by k and the independent term $\frac{C}{k}$ rounded down to obtain:

$$
\sum_{e \in E(T)} x_{e}^{i}-\sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)-1\right) y_{v}^{i} \leq\left\lfloor\frac{C}{k}\right\rfloor=0
$$

For this, we arbitrarily choose a leaf node $r \in V(T)$ to be the root of T. For each edge $e=u v \in E(T)$, such that $u \prec v$ (remark that $v \neq r$), multiply inequality $x_{e}^{i}-y_{u}^{i} \leq 0$ by $\left(k-1-\left|E\left(T_{v}\right)\right|\right)$ and inequality $x_{e}^{i}-y_{v}^{i} \leq 0$ by $\left|E\left(T_{v}\right)\right|$, where T_{v} is the subtree of T rooted in v ($c f$. Section 1.1). Likewise, consider the following inequality that is dominated by (4.3) since $E(T) \subseteq \Delta_{E}(j)$.

$$
\sum_{e \in E(T)} x_{e}^{i} \leq C
$$

Summing up all such inequalities yields a new valid inequality where each variable
x_{e}^{i} for $e \in E(T)$ has coefficient k since

$$
\left(k-1-\left|E\left(T_{v}\right)\right|\right)+\left|E\left(T_{v}\right)\right|+1=k .
$$

Furthermore, on the right-hand side the independent term equals C. To finish the proof, let us show that variable y_{v}^{i} has coefficient $-k\left(\operatorname{deg}_{T}(v)-1\right)$ for any $v \in V(T)$.

Consider a node $u \in V(T)$. By definition u has $\left(\operatorname{deg}_{T}(u)-1\right)$ children and each child v of u contributes to the final coefficient of y_{u}^{i} with $-\left(k-1-\left|E\left(T_{v}\right)\right|\right)$. Therefore, the total contribution coming from its children equals

$$
-(k-1)\left(\operatorname{deg}_{T}(u)-1\right)+\left(\left|E\left(T_{u}\right)\right|-\left(\operatorname{deg}_{T}(u)-1\right)\right)=-k\left(\operatorname{deg}_{T}(u)-1\right)+\left|E\left(T_{u}\right)\right| .
$$

Finally, since the parent of u contributes with $-\left|E\left(T_{u}\right)\right|$, the proof is done.

Corollary 4.2-Chvàval-Gomory inequalities of rank 1

The k-cardinality tree inequalities (4.40) are Chvàval-Gomory inequalities of rank 1.

Let $G[S]$ be a k-cardinality tree such that $k \geq C+2$ and $S \subseteq \Delta_{E}(j)$, for some $j \in V$. Notice that the k-cardinality tree inequalities associated with tree $G[S]$ are always dominated by the k-cardinality tree inequalities associated with $G\left[S^{\prime}\right]$ where $S^{\prime} \subset S$ and $\left|S^{\prime}\right|>C$. In fact, the former can be written as a sum of stop inequalities (4.4) and the k-cardinality tree inequality associated with $G\left[S^{\prime}\right]$ (see Figure 4.7). For this reason, we consider from now on that the edge set inducing a k-cardinality tree inequality has exactly $C+1$ edges.

$$
\begin{array}{r}
x_{a}^{i}+x_{b}^{i}+x_{c}^{i}+x_{d}^{i}+x_{e}^{i}+x_{f}^{i}-2 y_{3}^{i}-2 y_{6}^{i}-y_{8}^{i} \leq 0 \\
x_{g}^{i}-y_{8}^{i} \leq 0 \\
\overline{x_{a}^{i}+x_{b}^{i}+x_{c}^{i}+x_{d}^{i}+x_{e}^{i}+x_{f}^{i}+x_{g}^{i}-2 y_{3}^{i}-2 y_{6}^{i}-2 y_{8}^{i} \leq 0}
\end{array}
$$

Figure 4.7: How a k-cardinality tree gets dominated. Full edges in S^{\prime}, dashed edges in $S \backslash S^{\prime}$

Next we investigate the effective strength of k-cardinality tree inequalities (4.40). For this, recall the instance depicted in Example 4.3. The inclusion of k-cardinality tree inequalities is capable of cutting off the fractional optimal solution obtained by the linear relaxation proposed for such instance. Indeed, in Example 4.3, all demands intersect station $\frac{m}{2}$, that is, $\Delta_{E}\left(\frac{m}{2}\right)=E$. Moreover, each station $v \in V$
has exactly 2 demands incident to it. Therefore, the following inequalities define k-cardinality tree inequalities for any given vehicle $i \in K$:

$$
\begin{equation*}
x_{e}^{i}+x_{e^{\prime}}^{i}+x_{e^{\prime \prime}}^{i}-y_{u}^{i}-y_{v}^{i} \leq 0, \quad \forall e=u v \in E, \tag{4.41}
\end{equation*}
$$

where $e^{\prime} \neq e$ and $e^{\prime \prime} \neq e$ are the demands (other than e) incident to u and v, respectively. Figure 4.8 illustrates the 3 -cardinality tree associated with such inequalities.

Figure 4.8: A 3-cardinality tree associated with inequalities (4.41)

It follows that each demand in E appears in exactly 3 different inequalities (4.41). Moreover, each station in V appears in exactly 2 different inequalities (4.41). Hence, summing up inequalities (4.41) for each demand $e \in E$, one obtains

$$
\begin{equation*}
\sum_{e \in E} 3 x_{e}^{i}-\sum_{v \in V} 2 y_{v}^{i} \leq 0 \tag{4.42}
\end{equation*}
$$

for any given vehicle $i \in K$. Since (4.42) is valid for any $i \in K$, one may sum up inequalities (4.42) for each vehicle $i \in K$ to obtain

$$
\sum_{e \in E} \sum_{i \in K} 3 x_{e}^{i}-\sum_{v \in V} \sum_{i \in K} 2 y_{v}^{i} \leq 0 .
$$

However, considering constraints (4.2) one has that

$$
3 m-\sum_{v \in V} \sum_{i \in K} 2 y_{v}^{i} \leq 0
$$

which yields the following lower bound

$$
\sum_{v \in V} \sum_{i \in K} y_{v}^{i} \geq \frac{3 m}{2}
$$

Therefore, including k-cardinality tree inequalities (4.40) reinforces the given formulation to a point where its linear relaxation is capable of finding a solution with cost $\frac{3 m}{2}$ for the instance depicted in Example 4.3. In other words, for the given instance, the integrality gap is reduced to 0 .

Indeed, the family of k-cardinality tree inequalities (4.40) is particularly efficient when it comes to strengthening the given formulation for relatively sparse instances. Unfortunately, the number of inequalities within this family is exponentially large, and therefore, adding all such inequalities to the formulation should be avoided
in practice. This issue will be discussed in more detail in Section 5.4. To prove the strength of such inequalities, the necessary and sufficient conditions for which inequalities (4.40) define facets of $\mathcal{P}_{(V, E, C)}$ are given below.

Theorem 4.12-k-cardinality tree inequalities defining facets

The k-cardinality tree inequalities (4.40) are facet-defining under the following necessary and sufficient conditions.
i. $G[S]$ is not a star;
ii. if $G[S]$ contains exactly 2 non-leaf nodes, then $E \backslash S$ cannot contain an edge (u, v) such that u and v are the non-leaf nodes of $G[S]$ - Figure 4.9 illustrates the case.

Figure 4.9: Non-facet-defining k-cardinality tree. Full edges in S, dashed edge in $E \backslash S$.

Proof. We first show necessity of conditions i. and ii.. If $G[S]$ is a star with central node v^{\prime}, then $\operatorname{deg}_{G[S]}\left(v^{\prime}\right)-1=C$, since $G[S]$ has $(C+1)$ edges. Moreover, either $S \subseteq \delta_{G}^{-}\left(v^{\prime}\right)$ or $S \subseteq \delta_{G}^{+}\left(v^{\prime}\right)$. Therefore, the inequality is dominated by either (4.34a) or (4.34b).

Since $G[S]$ is a $(C+1)$-cardinality tree, if $G[S]$ contains exactly 2 non-leaf nodes, say v^{\prime} and $v^{\prime \prime}$, then $\operatorname{deg}_{G[S]}\left(v^{\prime}\right)-1+\operatorname{deg}_{G[T]}\left(v^{\prime \prime}\right)-1=C$. Thus, if there exists an edge $e^{\prime}=\left(v^{\prime}, v^{\prime \prime}\right) \in E \backslash T$, the inequality

$$
x_{e^{\prime}}^{i^{\prime}}+\sum_{e \in S} x_{e}^{i^{\prime}}-\sum_{v \in V(G[T])}\left(\operatorname{deg}_{G[T]}(v)-1\right) y_{v}^{i^{\prime}} \leq 0 .
$$

is obviously valid and dominates (4.40). Notice that such remark can be used to lift inequalities (4.40) whenever condition ii. does not hold.

We now show that if conditions i. and ii. apply, then (4.40) is facet-defining. For this, we show that face F, defined as

$$
F=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in S} x_{e}^{i^{\prime}}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i^{\prime}}=0\right\},
$$

is a maximal face of $\mathcal{P}_{(V, E, C)}$, and therefore inequality (4.40) associated with tree $G[S]$ and vehicle i^{\prime} is facet-defining. More specifically, we show that if there exists
some face F^{\prime} of $\mathcal{P}_{(V, E, C)}$, defined as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \sum_{i \in K} \beta_{v}^{i} y_{v}^{i}=\gamma\right\}
$$

for which $F \subseteq F^{\prime}$, then F^{\prime} can be rewritten as
$F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in S} \omega x_{e}^{i^{\prime}}-\sum_{v \in V[S]} \omega\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}$,
that is, a linear combination of (4.40) itself and the implicit equalities (4.2), with weights $\omega \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{m}$, respectively. As a consequence, one has that $F=F^{\prime}$.

The proof is organized in the following seven steps:
i. showing $\beta_{v}^{i}=0$ for any $v \in V, i \in K \backslash i^{\prime}$;
ii. showing $\alpha_{e}^{j}=\alpha_{e}^{k}$ for any $e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime}$;
iii. showing $\beta_{v}^{i^{\prime}}=0$ for any $v \in V \backslash I(S)$, where $I(S)=\left\{v \in V[S]: \operatorname{deg}_{G[S]}(v) \geq 2\right\}$ is the set of internal vertices of $G[S]$;
iv. showing $\gamma=\sum_{e \in E} \alpha_{e}^{i}$ for any $i \in K \backslash i^{\prime}$;
v. showing $\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime}}^{j}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\alpha_{e^{\prime \prime}}^{j}$ for any $e^{\prime} \in S, e^{\prime \prime} \in S, j \in K \backslash i^{\prime} ;$
vi. showing $\alpha_{e}^{i^{\prime}}=\alpha_{e}^{j}$ for any $e \in E \backslash S, j \in K$;
vii. showing $\beta_{v}^{i^{\prime}}=-\left(\operatorname{deg}_{G[S]}(v)-1\right)\left(\alpha_{e}^{i^{\prime}}-\alpha_{e}^{j}\right)$ for any $v \in V[S], e \in S$.

Step i : Let (\bar{x}, \bar{y}) be a feasible solution where some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$ is perfectly idle, and all demands in $S \backslash e^{\prime}$ are assigned to vehicle i^{\prime}, for some arbitrarily chosen demand $e^{\prime} \in S$. By definition, $\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=C=$ $\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}$ and therefore, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V$. Since vehicle j can be arbitrarily chosen among $K \backslash i^{\prime}$, one has

$$
\beta_{v}^{i}=0 \quad \forall v \in V, i \in K \backslash i^{\prime}
$$

Hence, face F^{\prime} can now be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \alpha_{e}^{i} x_{e}^{i}+\sum_{v \in V} \beta_{v}^{i} y_{v}^{i^{\prime}}=\gamma\right\} .
$$

Step ii.: Consider again solution (\bar{x}, \bar{y}) defined in the proof of Step i. . Since $(\bar{x}, \bar{y}) \in F$, Lemma 4.2 applies for vehicle j and any demand $e \in E \backslash\left(S \backslash e^{\prime}\right)$.

Since vehicle j and demand e^{\prime} can be both arbitrarily chosen among $K \backslash i^{\prime}$ and S, respectively, one has

$$
\alpha_{e}^{j}=\alpha_{e}^{k} \quad \forall e \in E, j \in K \backslash i^{\prime}, k \in K \backslash i^{\prime} .
$$

Let $\lambda_{e} \in \mathbb{R}$ be some real number such that $\lambda_{e}=\alpha_{e}^{j}$ for each $e \in E$ and $j \in K \backslash i^{\prime}$. Then, face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}+\sum_{v \in V} \beta_{v}^{i} y_{v}^{i^{\prime}}=\gamma\right\}
$$

Step iii.: Let (\bar{x}, \bar{y}) be a feasible solution where vehicle i^{\prime} is perfectly idle. By definition, $\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}=0$ and therefore, $(\bar{x}, \bar{y}) \in F$. Then, Lemma 4.1 applies for any chosen station $v \in V \backslash I(S)$. Therefore,

$$
\beta_{v}^{i^{\prime}}=0 \quad \forall v \in V \backslash I(S)
$$

and face F^{\prime} can now be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} y_{v}^{i^{\prime}}=\gamma\right\}
$$

Step iv.: Consider again solution (\bar{x}, \bar{y}) defined in the proof of Step iii.. Let us construct other $p-2$ feasible solutions by taking $p-2$ times the sequential permutation of (\bar{x}, \bar{y}) over $K \backslash i^{\prime}$. Since vehicle i^{\prime} is perfectly idle in all such solutions, each constructed solution belongs to F and therefore satisfies

$$
\begin{equation*}
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}=\gamma \tag{4.43}
\end{equation*}
$$

Notice that, considering this pool of $p-1$ feasible solutions (the $p-2$ constructed solutions plus (\bar{x}, \bar{y})), each demand is assigned to a vehicle $i \in K \backslash i^{\prime}$ exactly once. Summing up the $p-1$ equations (4.43) associated with the pool of solutions considered, one obtains

$$
(p-1) \sum_{e \in E} \lambda_{e}=(p-1) \gamma .
$$

Therefore, $\gamma=\sum_{e \in E} \lambda_{e}$ and face F^{\prime} can be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} y_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\} .
$$

Step v.: Let (\bar{x}, \bar{y}) be a feasible solution where all demands in $S \backslash e^{\prime}$ are assigned to vehicle i^{\prime}, for some arbitrarily chosen demand $e^{\prime} \in S$. Moreover, consider that e^{\prime} is the only demand assigned to some arbitrarily chosen vehicle $j \in K \backslash i^{\prime}$. Since $(\bar{x}, \bar{y}) \in F$, the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

holds. Now construct another feasible solution (\hat{x}, \hat{y}) by exchanging demands e^{\prime} and some arbitrarily chosen demand $e^{\prime \prime} \in S \backslash e^{\prime}$. Then, (\hat{x}, \hat{y}) also belong to F, and the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}-\lambda_{e^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\alpha_{e^{\prime \prime}}^{i^{\prime}}+\lambda_{e^{\prime \prime}}=\sum_{e \in E} \lambda_{e} .
$$

holds. Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\alpha_{e^{\prime \prime}}^{i^{\prime}}-\lambda_{e^{\prime \prime}}$. Since demands e^{\prime} and $e^{\prime \prime}$ can be both arbitrarily chosen among S and $S \backslash e^{\prime}$, respectively, one has that the difference $\alpha_{e}^{i^{\prime}}-\lambda_{e}$ is constant for any $e \in S$. Let $\omega \in \mathbb{R}$ denote this constant.

Hence, $\alpha_{e}^{i^{\prime}}=\lambda_{e}+\omega$ for any $e \in S$ and face F^{\prime} can be rewritten as

$$
\begin{aligned}
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E}\right. & \sum_{i \in K \backslash i^{\prime}} \lambda_{e} x_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{\prime}} x_{e}^{i^{\prime}}+ \\
& \left.\sum_{e \in S}\left(\lambda_{e}+\omega\right) x_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} y_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\} .
\end{aligned}
$$

Step vi. is organized in three stages.
Step vi.a: Let us first focus on demands in $E \backslash S$ that are not incident to the internal vertices of $G[S]$, denoted by $I(S)$. Let (\bar{x}, \bar{y}) be a feasible where vehicle i^{\prime} is perfectly idle. By definition, $\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}=0$. Therefore, $(\bar{x}, \bar{y}) \in F$ and the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}=\sum_{e \in E} \lambda_{e}
$$

holds. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring some arbitrarily chosen demand $e^{\prime} \in E \backslash S$ that is not incident to any node in $I(S)$ from some vehicle $i \in K \backslash i^{\prime}$ to vehicle i^{\prime}. The new solution also belongs to F, since $\sum_{e \in S} \hat{x}_{e}^{i^{\prime}}=$ $\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \hat{y}_{v}^{i^{\prime}}=0$, and hence

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\sum_{e \in E} \lambda_{e} .
$$

Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}=\lambda_{e^{\prime}}$ for any demand $e^{\prime} \in E \backslash S$ that is not incident to $I(S)$, since demand e^{\prime} can be arbitrarily chosen.

Step vi.b: Next, let us consider demands in $E \backslash S$ that are incident to exactly one node in $I(S)$. For this, let e^{\prime} be an arbitrarily chosen demand in $E \backslash S$ that is incident to exactly one node $v^{\prime} \in I(S)$. Then, choose a leaf node $\left.r \in V[S]\right)$ to be the root of tree $G[S]$, such that v^{\prime} is not a child of r. Notice that this operation is always possible since $G[S]$ is not a star. Let $T_{v^{\prime}}$ denote the subtree of $G[S]$ rooted in v^{\prime} and let (\bar{x}, \bar{y}) be a feasible solution where all demands in $E\left(T_{v^{\prime}}\right)$ - and only demands in $E\left(T_{v^{\prime}}\right)$ - are assigned to vehicle i^{\prime}. Notice that, by definition,

$$
\sum_{v \in V\left(T_{v^{\prime}}\right)}\left(\operatorname{deg}_{T_{v^{\prime}}}(v)-1\right)=2\left|E\left(T_{v^{\prime}}\right)\right|-\left|V\left(T_{v^{\prime}}\right)\right|=\left|E\left(T_{v^{\prime}}\right)\right|-1 .
$$

Since v^{\prime} has a parent in $G[S]$,

$$
\sum_{v \in V\left(T_{v^{\prime}}\right)}\left(\operatorname{deg}_{G[S]}(v)-1\right)=1+\sum_{v \in V\left(T_{v^{\prime}}\right)}\left(\operatorname{deg}_{T_{v^{\prime}}}(v)-1\right)=\left|E\left(T_{v^{\prime}}\right)\right| .
$$

Therefore,

$$
\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}=\left|E\left(T_{v^{\prime}}\right)\right|,
$$

and hence, $(\bar{x}, \bar{y}) \in F$ and the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{i}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

holds. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demand e^{\prime} from some vehicle $i \in K \backslash i^{\prime}$ to vehicle i^{\prime}. Such operation is only possible since $\left|E\left(T_{v^{\prime}}\right)\right|<$ C. The new solution also belongs to F, since $\sum_{e \in S} \hat{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \hat{y}_{v}^{i^{\prime}}=$ $\left|E\left(T_{v^{\prime}}\right)\right|$, and hence

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y} v_{v}^{i^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}=\lambda_{e^{\prime}}$ for any demand $e^{\prime} \in E \backslash S$ that is incident to exactly one node in $I(S)$, since demand e^{\prime} can be arbitrarily chosen.

Step vi.c: Finally, let us consider demands in $E \backslash S$ that are incident to two nodes in $I(S)$. For this, let $e^{\prime}=u^{\prime} v^{\prime}$ be an arbitrarily chosen demand in $E \backslash S$ such that $u^{\prime} \in I(S)$ and $v^{\prime} \in I(S)$. Suppose first that e^{\prime} is not parallel to any demand in S. Then, there exists a unique path P in $G[S]$ from u^{\prime} to v^{\prime}, with at least three nodes. Let $I(P)=\left\{v \in V(P): \operatorname{deg}_{P}(v) \geq 2\right\}$ denote the set of internal vertices of P. By definition, $I(P) \neq \emptyset$. Choose some node in $I(P)$ to be the root of $G[S]$. Let (\bar{x}, \bar{y})
be a feasible solution where all demands in $E\left(T_{u^{\prime}}\right) \cup E\left(T_{v^{\prime}}\right)$ - and only demands in $E\left(T_{u^{\prime}}\right) \cup E\left(T_{v^{\prime}}\right)$ - are assigned to vehicle i^{\prime} (see Figure 4.10). Notice that, the same reasoning used in Step vi.b can be applied here to show that

$$
\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}=\left|E\left(T_{u^{\prime}}\right) \cup E\left(T_{v^{\prime}}\right)\right| .
$$

Therefore, $(\bar{x}, \bar{y}) \in F$ and the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

holds. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demand e^{\prime} from some vehicle $i \in K \backslash i^{\prime}$ to vehicle i^{\prime}. Such operation is only possible since $\left|E\left(T_{u^{\prime}}\right) \cup E\left(T_{v^{\prime}}\right)\right|<C$. The new solution also belongs to F, since $\sum_{e \in S} \hat{x}_{e}^{i^{\prime}}=$ $\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \hat{y}_{v}^{i^{\prime}}=\left|E\left(T_{u^{\prime}}\right) \cup E\left(T_{v^{\prime}}\right)\right|$, and hence

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\sum_{e \in E} \lambda_{e} .
$$

Thus, $\alpha_{e^{\prime}}^{i^{\prime}}=\lambda_{e^{\prime}}$ for any demand $e^{\prime} \in E \backslash S$ that is not parallel to any demand in S but is incident to two nodes in $I(S)$.

Figure 4.10: Illustration of $G[S]$ rooted at r. Demands in $T_{u^{\prime}} \cup T_{v^{\prime}}$ are assigned to vehicle i^{\prime} on solution (\bar{x}, \bar{y})

There remains now only the case where demand e^{\prime} is incident to two nodes in $I(S)$ and parallel to some demand in S. For this, root $G[S]$ from some node r in $I(S) \backslash\left\{u^{\prime}, v^{\prime}\right\}$. Such node exists from condition ii.. W.l.o.g. let u^{\prime} be the end-node of $e^{\prime \prime}$ that is closest to r. Let (\bar{x}, \bar{y}) be a feasible solution where all demands in $E\left(T_{u^{\prime}}\right)$ - and only demands in $E\left(T_{u^{\prime}}\right)$ - are assigned to vehicle i^{\prime}. Once again, by definition, $(\bar{x}, \bar{y}) \in F$ since $\sum_{e \in S} \bar{x}_{e}^{i^{\prime}}=\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i^{\prime}}=\left|E\left(T_{u^{\prime}}\right)\right|$, and hence the equality

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{i}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

holds. Now construct another feasible solution (\hat{x}, \hat{y}) by transferring demand e^{\prime} from some vehicle $i \in K \backslash i^{\prime}$ to vehicle i^{\prime}. Such operation is only possible since $\left|E\left(T_{u^{\prime}}\right)\right|<C$. The new solution also belongs to F, and hence

$$
\sum_{e \in E} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E \backslash S} \alpha_{e}^{i^{\prime}} \bar{x}_{e}^{i^{\prime}}+\sum_{e \in S}\left(\lambda_{e}+\omega\right) \bar{x}_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} \bar{y}_{v}^{i^{\prime}}+\alpha_{e^{\prime}}^{i^{\prime}}-\lambda_{e^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

Therefore, $\alpha_{e^{\prime}}^{i^{\prime}}=\lambda_{e^{\prime}}$ for any demand $e^{\prime} \in E \backslash S$ that is incident to two nodes in $I(S)$ and parallel to some demand in S. This finishes Step vi. and one can rewrite face F^{\prime} as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in S} \omega x_{e}^{i^{\prime}}+\sum_{v \in I(S)} \beta_{v}^{i} y_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}
$$

Step vii.: Choose some leaf node in $V(G[S])$ to be the root of $G[S]$, and let v^{\prime} be the parent of the deepest leaf in $G[S]$. Then, let (\bar{x}, \bar{y}) be a feasible solution where all demands in $E\left(T_{v^{\prime}}\right)$ - and only demands in $E\left(T_{v^{\prime}}\right)$ - are assigned to vehicle i^{\prime}. Notice that $T_{v^{\prime}}$ is a star composed by the children of v^{\prime} and hence $\left|E\left(T_{v^{\prime}}\right)\right|=\left(\operatorname{deg}_{G[S]}\left(v^{\prime}\right)-1\right)$. Therefore, $(\bar{x}, \bar{y}) \in F$ and the equality

$$
\sum_{e \in E \backslash E\left(T_{v^{\prime}}\right)} \sum_{i \in K \backslash i^{\prime}} \lambda_{e} \bar{x}_{e}^{i}+\sum_{e \in E\left(T_{v^{\prime}}\right)}\left(\lambda_{e}+\omega\right)+\beta_{v^{\prime}}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}
$$

holds. By doing the a sequential permutation $(p-2)$ times over $K \backslash i^{\prime}$ (just as in Step iv.), one obtains

$$
(p-1) \sum_{e \in E \backslash E\left(T_{v^{\prime}}\right)} \lambda_{e}+(p-1) \sum_{e \in E\left(T_{v^{\prime}}\right)}\left(\lambda_{e}+\omega\right)+(p-1) \beta_{v^{\prime}}^{i^{\prime}}=(|K|-1) \sum_{e \in E} \lambda_{e},
$$

which reduces to

$$
\beta_{v^{\prime}}^{i^{\prime}}=-\sum_{e \in E\left(T_{v^{\prime}}\right)} \omega=-\left|E\left(T_{v^{\prime}}\right)\right| \omega=-\left(\operatorname{deg}_{G[S]}\left(v^{\prime}\right)-1\right) \omega .
$$

As a result, the proof for $\beta_{v^{\prime}}^{i^{\prime}}$, where v^{\prime} is the parent of the deepest leaf in $G[S]$, is finished. Notice however, that a subtree T_{v} of $G[S]$ can be defined as the union of its children subtrees and the edges that ties v to its children, that is,

$$
T_{v}=\bigcup_{i \in \operatorname{ch}(v)}\left\{T_{i} \cup v i\right\}
$$

Figure 4.11 illustrates such composition. This notion can then be used to climb up the tree $G[S]$ until the unique child of the root node r (recall that r is chosen to be

Figure 4.11: Illustration of T_{v}, where v has 3 children and u is the parent of v
a leaf node). By doing so, the value of $\beta_{v}^{i^{\prime}}$, for each $v \in I(T)$, is recursively deduced. For any node $v^{\prime} \in I(S)$, one obtains

$$
\beta_{v^{\prime}}^{i^{\prime}}+\sum_{i \in \operatorname{ch}} \sum_{\left(v^{\prime}\right)} \sum_{v \in V\left(T_{i}\right)} \beta_{v}^{i^{\prime}}=-\left(\operatorname{deg}_{G[S]}\left(v^{\prime}\right)-1\right) \omega-\sum_{i \in \operatorname{ch}} \sum_{\left(v^{\prime}\right)}\left(\operatorname{deg}_{G \in V(S]}(v)-1\right) \omega
$$

Therefore, $\beta_{v}^{i^{\prime}}=-\left(\operatorname{deg}_{G[S]}(v)-1\right) \omega$ for any $v \in V[S]$, and face F^{\prime} can finally be rewritten as

$$
F^{\prime}=\left\{(x, y) \in \mathcal{P}_{(V, E, C)}: \sum_{e \in E} \sum_{i \in K} \lambda_{e} x_{e}^{i}+\sum_{e \in S} \omega x_{e}^{i^{\prime}}-\sum_{v \in V[S]} \omega\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i^{\prime}}=\sum_{e \in E} \lambda_{e}\right\}
$$

which concludes the proof.

4.4.3 Generalizing k-cardinality tree inequalities

In order to construct a k-cardinality tree inequality, one must look for an edge-set S of $C+1$ demands intersecting a given station $v \in V$ (i.e., $S \subseteq \Delta_{E}(v)$) such that S spans a tree (i.e., $G[S]$ is a $(C+1)$-cardinality tree). Nonetheless, such structure might not be available for some instances of U-SNP. If this is the case, it is possible that none of the reinforcing valid inequalities presented so far is able to strengthen the formulation. Example 4.4 illustrates an instance where such case appears.

Example 4.4-k-cardinality tree inequalities can fail to reinforce the given formulation

Consider the instance \mathcal{I} of U-SNP with $C=2$ depicted in Figure 4.12.
Notice that in the given instance \mathcal{I}, there exists no set $S \subseteq \Delta_{E}(v)$ spanning a $(C+1)$-cardinality tree, for any $v \in V$. This means that none of the presented valid inequalities can be used to reinforce the formulation. Therefore, Theorem 4.2 still

Figure 4.12: An instance where there is no k-cardinality tree inequality
applies, and hence the linear relaxation finds a fractional solution of cost 5. Such fractional solution is depicted below, where only two vehicles are used.

Figure 4.13: Illustration of the obtained fractional solution

Nonetheless, it is easy to see that any feasible solution should stop at least 6 times.

Indeed, the idea behind k-cardinality tree inequalities is to search for a "somehow" connected structure that violates the vehicle's capacity at some given station. On k-cardinality tree inequalities such structure is requested to be "fully connected" - recall that $G[S]$ is a tree - and "fully contained" in some intersection point - recall that $S \subseteq \Delta_{E}(v)$ for a given $v \in V$. Two questions emerges directly from this remark:
i. whether or not one can also consider "partially connected" structures;
ii. whether or not one can also consider structures that are only "partially contained" in some intersection point.

In order to answer such questions, two generalizations of k-cardinality tree inequalities are suggested. Each of these generalizations are capable of cutting off the fractional solution proposed in Example 4.4.

Considering partially connected structures

A generalization of k-cardinality tree inequalities for taking into account forests instead of trees is proposed below. For this, let us define a k-cardinality forest as an acyclic graph F such that $|E(F)|=k$.

Theorem 4.13 - Validity of k-cardinality forest inequalities

The following k-cardinality forest inequalities are valid for $\mathcal{P}_{(V, E, C)}$:

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq q-1 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j) \tag{4.44}
\end{equation*}
$$

such that $G[S]$ is a $(C+1)$-cardinality forest composed by $1 \leq q \leq C$ connected components.

Proof. The proof of validity is once again done by showing that inequalities (4.44) can be seen as Chvátal-Gomory cuts. More precisely, we show that given a (C+1)cardinality forest $F=G[S]$ composed by q trees, each denoted by T^{k} for $1 \leq k \leq q$, a conical combination of inequalities (4.3) and (4.4), yields the inequality

$$
(C+q) \sum_{k=1}^{q}\left(\sum_{e \in E\left(T^{k}\right)} x_{e}^{i}\right)-(C+1) \sum_{k=1}^{q}\left(\sum_{v \in V\left(T^{k}\right)}\left(\operatorname{deg}_{T^{k}}(v)-1\right) y_{v}^{i}\right) \leq q C,
$$

which can be divided by $C+1$. After rounding down the coefficients, one obtains

$$
\begin{equation*}
\left\lfloor\frac{C+q}{C+1}\right\rfloor \sum_{e \in E(F)} x_{e}^{i}-\sum_{v \in V(F)}\left(\operatorname{deg}_{F}(v)-1\right) y_{v}^{i} \leq\left\lfloor\frac{q C}{C+1}\right\rfloor . \tag{4.45}
\end{equation*}
$$

Since $1 \leq q \leq C$, one has that $C+1 \leq C+q \leq 2 C$ and hence

$$
\left\lfloor\frac{C+q}{C+1}\right\rfloor=1
$$

Moreover,

$$
\left\lfloor\frac{q C}{C+1}\right\rfloor=\left\lfloor\frac{(C+1) q-q}{C+1}\right\rfloor=\left\lfloor q-\frac{q}{C+1}\right\rfloor=q-1
$$

Therefore, inequality (4.45) reduces to

$$
\sum_{e \in E(F)} x_{e}^{i}-\sum_{v \in V(F)}\left(\operatorname{deg}_{F}(v)-1\right) y_{v}^{i} \leq q-1 .
$$

Such conical combination is constructed as follows. We arbitrarily choose a leaf node $r \in V\left(T^{k}\right)$ to be the root of T^{k}, for $k=1, \ldots, q$. For each edge $e=u v \in E\left(T^{k}\right)$, such that $u \prec v$ (remark that $v \neq r$), multiply inequality $x_{e}^{i}-y_{u}^{i} \leq 0$ by $\left(C-\left|E\left(T_{v}^{k}\right)\right|\right)$
and inequality $x_{e}^{i}-y_{v}^{i} \leq 0$ by $\left|E\left(T_{v}^{k}\right)\right|$, where T_{v}^{k} is the subtree of T^{k} rooted in $v(c f$. Section 1.1). Likewise, consider the inequality

$$
\sum_{e \in E(F)} x_{e}^{i} \leq C
$$

which is dominated by (4.3) since $E(F) \subseteq \Delta_{E}(j)$, then multiply it by q. Summing up all such inequalities yields a new valid inequality where each variable x_{e}^{i} for $e \in E(F)$ has coefficient $C+q$. Furthermore, on the right-hand side the independent term equals $q C$.

To finish the proof, let us show that for any $v \in V(F)$, variable y_{v}^{i} has coefficient $-\left((C+1)\left(\operatorname{deg}_{F}(v)-1\right)\right)$. For this, consider a node $u \in V\left(T^{k}\right)$. By definition u has ($\left.\operatorname{deg}_{F}(u)-1\right)$ children and each child v of u contributes to the final coefficient of y_{u}^{i} with $-\left(C-\left|E\left(T_{v}^{k}\right)\right|\right)$. Therefore, the total contribution coming from its children equals
$-C\left(\operatorname{deg}_{F}(u)-1\right)+\left(\left|E\left(T_{u}^{k}\right)\right|-\left(\operatorname{deg}_{F}(u)-1\right)\right)=-\left((C+1)\left(\operatorname{deg}_{F}(u)-1\right)\right)+\left|E\left(T_{u}^{k}\right)\right|$.

Finally, since the parent of u contributes with $-\left|E\left(T_{u}^{k}\right)\right|$, the proof is done.

Corollary 4.3 - Chvàval-Gomory inequalities of rank 1

The k-cardinality forest inequalities (4.44) are Chvàval-Gomory inequalities of rank 1.

Notice that, considering again instance \mathcal{I} depicted in Example 4.4, the inequalities

$$
\begin{equation*}
x_{1}^{i}+x_{2}^{i}+x_{3}^{i}-y_{1}^{i} \leq 1 \quad \forall i \in K, \tag{4.46}
\end{equation*}
$$

are k-cardinality forest inequalities capable of cutting off the fractional solution proposed in Figure 4.13. Moreover, such inequalities are actually facet-defining ${ }^{1}$ for $\mathcal{P}_{\mathcal{I}}$. The inclusion of such inequalities, however, does not close the integrality gap. In fact, a new fractional solution of same objective-function value is obtained. Figure 4.14 illustrates such solution. In order, to close this integrality gap, a different generalization of k-cardinality tree inequalities is required as one shall see next.

Considering partially intersected structures

On k-cardinality tree inequalities (4.40), the edge-set S is required to be a subset of $\Delta_{E}(v)$ for some given $v \in V$. This condition is imposed in order to prevent the

[^6]

Figure 4.14: Illustration of the fractional solution obtained after the inclusion of k-cardinality forest inequalities.
existence of a feasible solution where every demand in S is assigned to the same vehicle (recall that $|S|=C+1$). Notice however that this same result can be achieved by imposing that $S \subseteq E$ is a subset of demands covering $C+1$ demands in $\Delta_{E}(v)$, that is, $\left|S \cap \Delta_{E}(v)\right|=C+1$. A generalization of k-cardinality tree inequalities for taking into account such relaxed condition is proposed below.

Theorem 4.14 - Validity of k-cover tree inequalities

The following k-cover tree inequalities are valid for $\mathcal{P}_{(V, E, C)}$:

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq E, \tag{4.47}
\end{equation*}
$$

such that $G[S]$ is a tree and $\left|S \cap \Delta_{E}(j)\right|=C+1$.

Proof. The proof of validity is done by showing that inequalities (4.47) can be seen as Chvátal-Gomory cuts. More precisely, we show that given a subset $S \subseteq E$ such that $T=G[S]$ is a tree and $\left|S \cap \Delta_{E}(j)\right|=C+1$, a conical combination of inequalities (4.3), (4.4) and (4.13) yields the inequality

$$
|S| \sum_{e \in E(T)} x_{e}^{i}-|S| \sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)-1\right) y_{v}^{i} \leq C+\left|S \backslash \Delta_{E}(j)\right|,
$$

which can be divided by $|S|$ and the independent term $\frac{C+\left|S \backslash \Delta_{E}(j)\right|}{|S|}$ rounded down to obtain

$$
\begin{equation*}
\sum_{e \in E(T)} x_{e}^{i}-\sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)-1\right) y_{v}^{i} \leq\left\lfloor\frac{C+\left|S \backslash \Delta_{E}(j)\right|}{|S|}\right\rfloor . \tag{4.48}
\end{equation*}
$$

Since $\left|S \cap \Delta_{E}(j)\right|=C+1$, one has that $C+\left|S \backslash \Delta_{E}(j)\right|=|S|-1$, and therefore,
inequality (4.48) reduces to

$$
\sum_{e \in E(T)} x_{e}^{i}-\sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)-1\right) y_{v}^{i} \leq 0 .
$$

Such conical combination is constructed as follows. We arbitrarily choose a leaf node $r \in V(T)$ to be the root of T. For each edge $e=u v \in E(T)$, such that $u \prec v$ (remark that $v \neq r$), multiply inequality $x_{e}^{i}-y_{u}^{i} \leq 0$ by $\left(|S|-1-\left|E\left(T_{v}\right)\right|\right)$ and inequality $x_{e}^{i}-y_{v}^{i} \leq 0$ by $\left|E\left(T_{v}\right)\right|$, where T_{v} is the subtree rooted in v (cf. Section 1.1). Likewise, consider the inequality

$$
\sum_{e \in E(T) \cap \Delta_{E}(j)} x_{e}^{i} \leq C .
$$

that is dominated by (4.3). At last, consider inequalities (4.13)

$$
x_{e}^{i} \leq 1,
$$

for each $e \in E(T) \backslash \Delta_{E}(j)$. Summing up all such inequalities yields a new valid inequality where each variable x_{e}^{i} for $e \in E(T)$ has coefficient $|S|$. Furthermore, on the right-hand side the independent term equals $C+\left|S \backslash \Delta_{E}(j)\right|$.

To finish the proof, let us show that for any $v \in V(T)$, variable y_{v}^{i} has coefficient $-|S|\left(\operatorname{deg}_{T}(v)-1\right)$. Consider a node $u \in V(T)$. By definition, u has $\left(\operatorname{deg}_{T}(u)-\right.$ 1) children and each child v of u contributes to the final coefficient of y_{u}^{i} with $-\left(|S|-1-\left|E\left(T_{v}\right)\right|\right)$. Therefore, the total contribution coming from its children equals
$-(|S|-1)\left(\operatorname{deg}_{F}(u)-1\right)+\left(\left|E\left(T_{u}\right)\right|-\left(\operatorname{deg}_{F}(u)-1\right)\right)=-|S|\left(\operatorname{deg}_{T}(u)-1\right)+\left|E\left(T_{u}\right)\right|$.
Finally, since the parent of u contributes with $-\left|E\left(T_{u}\right)\right|$, the proof is done.

Corollary 4.4 - Chvàval-Gomory inequalities of rank 1

The k-cover tree inequalities (4.47) are Chvàval-Gomory inequalities of rank 1.
We next investigate conditions that are necessary to hold for k-cover tree inequalities (4.47) to define facets of $\mathcal{P}_{(V, E, C)}$.

Let $G[S]$ be a tree such that $\left|S \cap \Delta_{E}(j)\right|=C+1$, for some $j \in V$. Notice that if $G[S]$ has a leaf edge e such that $e \notin \Delta_{E}(j)$, then the k-cover tree inequalities associated with $G[S]$ are always dominated by the k-cover tree inequalities associated with $G[S \backslash e]$. Indeed, the former can be written as a sum of
i. stop inequalities (4.4) and
ii. the k-cover tree inequality associated with $G[S \backslash e]$.

Figure 4.15 illustrates such case by depicting an instance where $C=3, G[S]$ is a tree covering $C+1$ demands in $\Delta_{E}(4)$ and g is a leaf edge in $S \backslash \Delta_{E}(4)$.

Figure 4.15: How a k-cover tree gets dominated.

This yields a necessary condition to be satisfied by a facet-defining k-cover tree inequality: every leaf edge of $G[S]$ must be in $\Delta_{E}(j)$. However, such condition is not sufficient. In fact, the k-cover tree inequalities induced by $G[S \backslash g]$ in Figure 4.15 satisfy such condition but are dominated by the k-cover tree inequalities induced by $G[S \backslash\{f, g\}]$. Notice that $G[S \backslash\{f, g\}]$ does not cover $C+1$ demands in $\Delta_{E}(4)$, but it does in $\Delta_{E}(5)$. Therefore, the previously condition established can be further improved as follows. A k-cover tree inequality is facet-defining only if the associated tree $G[S]$ is not included in any other tree $G\left[S^{\prime}\right]$ associated with another valid k-cover tree inequality.

With this in mind, consider again instance \mathcal{I} depicted in Example 4.4. The following inequalities are k-cover tree inequalities capable of cutting off the fractional solution proposed in Figure 4.13 obtained after the inclusion of the k-cardinality forest inequalities

$$
\begin{equation*}
x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+x_{4}^{i}-y_{1}^{i}-y_{4}^{i}-y_{5}^{i} \leq 0 \quad \forall i \in K \tag{4.49}
\end{equation*}
$$

Moreover, such inequalities are actually facet-defining ${ }^{2}$ for $\mathcal{P}_{\mathcal{I}}$ and their inclusion not only closes the integrality gap but also provides an integer solution of optimal cost as depicted in Figure 4.16.

Combining both generalizations

As expected, one can now combine the two previously presented generalizations of k-cardinality tree inequalities, giving rise to the so-called k-cover forest inequalities.

[^7]

Figure 4.16: Illustration of the integer solution obtained after the inclusion of k-cover tree inequalities.

Theorem 4.15 - Validity of k-cover forest inequalities

The following k-cover forest inequalities are valid for $\mathcal{P}_{(V, E, C)}$:

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq q-1 \quad \forall i \in K, j \in V, S \subseteq E \tag{4.50}
\end{equation*}
$$

such that $G[S]$ is a forest composed by $1 \leq q \leq|S|$ connected components and $\left|S \cap \Delta_{E}(j)\right|=C+1$.

Proof. The proof of validity is once again done by showing that inequalities (4.50) can be seen as Chvátal-Gomory cuts. More precisely, we show that, given a forest $F=G[S]$ composed by q trees, each denoted by T^{k} for $1 \leq k \leq q$, and such that $\left|S \cap \Delta_{E}(j)\right|=C+1$, a conical combination of inequalities (4.3), (4.4) and (4.14), yields the inequality

$$
(|S|-1+q) \sum_{k=1}^{q}\left(\sum_{e \in E\left(T^{k}\right)} x_{e}^{i}\right)-|S| \sum_{k=1}^{q}\left(\sum_{v \in V\left(T^{k}\right)}\left(\operatorname{deg}_{T^{k}}(v)-1\right) y_{v}^{i}\right) \leq q C+q\left|S \backslash \Delta_{E}(j)\right|,
$$

which can be divided by $|S|$. After rounding down the coefficients one obtains

$$
\begin{equation*}
\left\lfloor\frac{|S|-1+q}{|S|}\right\rfloor \sum_{e \in E(F)} x_{e}^{i}-\sum_{v \in V(F)}\left(\operatorname{deg}_{F}(v)-1\right) y_{v}^{i} \leq\left\lfloor\frac{q C+q\left|S \backslash \Delta_{E}(j)\right|}{|S|}\right\rfloor \tag{4.51}
\end{equation*}
$$

Since $1 \leq q \leq|S|$, one has that $|S| \leq|S|-1+q \leq 2|S|-1$ and hence,

$$
\left\lfloor\frac{|S|-1+q}{|S|}\right\rfloor=1
$$

Moreover, since $\left|S \cap \Delta_{E}(j)\right|=C+1$,

$$
\left\lfloor\frac{q\left(C+\left|S \backslash \Delta_{E}(j)\right|\right)}{|S|}\right\rfloor=\left\lfloor\frac{q(|S|-1)}{|S|}\right\rfloor=\left\lfloor\frac{q|S|-q}{|S|}\right\rfloor=\left\lfloor q-\frac{q}{|S|}\right\rfloor=q-1 .
$$

Therefore, inequality (4.51) reduces to

$$
\begin{equation*}
\sum_{e \in E(F)} x_{e}^{i}-\sum_{v \in V(F)}\left(\operatorname{deg}_{F}(v)-1\right) y_{v}^{i} \leq q-1 . \tag{4.52}
\end{equation*}
$$

Such conical combination is constructed as follows. We arbitrarily choose a leaf node $r \in V\left(T^{k}\right)$ to be the root of T^{k}, for $k=1, \ldots, q$. For each edge $e=u v \in$ $E\left(T^{k}\right)$, such that $u \prec v$ (remark that $v \neq r$), multiply inequality $x_{e}^{i}-y_{u}^{i} \leq 0$ by $\left(|S|-1-\left|E\left(T_{v}^{k}\right)\right|\right)$ and inequality $x_{e}^{i}-y_{v}^{i} \leq 0$ by $\left|E\left(T_{v}^{k}\right)\right|$, where T_{v}^{k} is the subtree of T^{k} rooted in v (cf. Section 1.1). Likewise, consider the inequality

$$
\sum_{e \in E(F) \cap \Delta_{E}(j)} x_{e}^{i} \leq C
$$

which is dominated by (4.3), and multiply it by q. At last, consider inequalities (4.13)

$$
x_{e}^{i} \leq 1,
$$

for each $e \in E(F) \backslash \Delta_{E}(j)$ and multiply each by q. Summing up all such inequalities yields a new valid inequality where each variable x_{e}^{i} for $e \in E(F)$ has coefficient $|S|-1+q$. Furthermore, on the right-hand side the independent term equals $q\left(C+\left|S \backslash \Delta_{E}(j)\right|\right)$.

To finish the proof, let us show that variable y_{v}^{i} has coefficient $-|S|\left(\operatorname{deg}_{F}(v)-1\right)$ for any $v \in V(F)$. Consider a node $u \in V\left(T^{k}\right)$. By definition u has $\left(\operatorname{deg}_{F}(u)-\right.$ 1) children and each child v of u contributes to the final coefficient of y_{u}^{i} with $-\left(|S|-1-\left|E\left(T_{v}^{k}\right)\right|\right)$. Therefore, the total contribution coming from its children equals $-|S|\left(\operatorname{deg}_{T}(u)-1\right)+\left|E\left(T_{u}^{k}\right)\right|$. Finally, since the parent of u contributes with $-\left|E\left(T_{u}^{k}\right)\right|$, the proof is done.

4.4.4 Girth inequalities

So far, only the sparsest structures - such as stars, trees and forests - have been exploited to derive valid inequalities for $\mathcal{P}_{(V, E, C)}$. This issue is now addressed, by looking at some denser structures.

In graph theory, the girth of a graph G corresponds to the length of the smallest cycle contained in G. In other words, a graph is said to have girth k if it contains
no cycle of size smaller than k. Suppose $G=(V, E)$ has girth k. Then, $G[S]$ is a forest for any $S \subseteq E$ such that $|S| \leq k-1$. Based on such remark, a new family of valid inequalities, named girth inequalities, is introduced here below.

Theorem 4.16 - Validity of girth inequalities

The following girth inequalities are valid for $\mathcal{P}_{(V, E, C)}$:

$$
\begin{equation*}
\sum_{e \in S}(C+1) x_{e}^{i}-\sum_{v \in V[S]} C y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j) \tag{4.53}
\end{equation*}
$$

such that $G[S]$ has girth greater than or equal to $C+1$.

Proof. Let $(\bar{x}, \bar{y}) \in \mathcal{P}_{(V, E, C)} \cap \mathbb{Z}^{(n+m) p}$ represent an arbitrary feasible solution of U SNP. Moreover, let $S_{i} \subseteq S$ denote the set of demands in S that are assigned to vehicle i on solution (\bar{x}, \bar{y}). If $\left|S_{i}\right|=0$, then $\sum_{e \in S}(C+1) \bar{x}_{e}^{i}=0$ and (4.53) is obviously valid. Hence, assume $\left|S_{i}\right| \geq 1$. By definition,

$$
\sum_{e \in S}(C+1) \bar{x}_{e}^{i}=\sum_{e \in S_{i}}(C+1)=C\left|S_{i}\right|+\left|S_{i}\right| .
$$

Since $\left|S_{i}\right| \leq C$ and $G[S]$ has girth greater than or equal to $C+1, G\left[S_{i}\right]$ must be a forest and hence vehicle i stops on at least $\left|S_{i}\right|+1$ stations in $V[S]$. Therefore,

$$
\sum_{v \in V[S]} C \bar{y}_{v}^{i} \geq C\left|S_{i}\right|+C .
$$

Finally, one has that

$$
\sum_{e \in S}(C+1) \bar{x}_{e}^{i}=C\left|S_{i}\right|+\left|S_{i}\right| \leq C\left|S_{i}\right|+C \leq \sum_{v \in V[S]} C \bar{y}_{v}^{i},
$$

which proves inequality (4.53) is valid.

Notice that from the introduction of girth inequalities, one may derive new Chvàtal-Gomory cuts. For this, let $S \subseteq \Delta_{E}(j)$ for some $j \in V$ be a subset of edges such that $G[S]$ has girth greater than or equal to $C+1$. Then, the following inequalities belong to the family of girth inequalities:

$$
\sum_{e \in S}(C+1) x_{e}^{i}-\sum_{v \in V[S]} C y_{v}^{i} \leq 0 \quad \forall i \in K
$$

By summing up such inequalities, one obtains

$$
\sum_{v \in V[S]} \sum_{i \in K} C y_{v}^{i} \geq \sum_{e \in S} \sum_{i \in K}(C+1) x_{e}^{i} .
$$

However, from constraints (4.2) one has that

$$
\sum_{e \in S} \sum_{i \in K}(C+1) x_{e}^{i}=(C+1)|S|,
$$

and therefore,

$$
\sum_{v \in V|S|} \sum_{i \in K} y_{v}^{i} \geq \frac{(C+1)|S|}{C}=|S|+\frac{|S|}{C} .
$$

Since $\sum_{v \in V[S]} \sum_{i \in K} y_{v}^{i}$ should be an integer value, one can derive the following Chvàtal-Gomory cuts.

$$
\begin{equation*}
\sum_{v \in V[S]} \sum_{i \in K} y_{v}^{i} \geq|S|+\left\lceil\frac{|S|}{C}\right\rceil \quad \forall j \in V, S \subseteq \Delta_{E}(j) \tag{4.54}
\end{equation*}
$$

such that $G[S]$ has girth greater than or equal to $C+1$.
This means that the introduction of inequalities (4.53) and (4.54) allows the linear relaxation to yield the lower bound presented in Proposition 3.4. Such result is summarized below.

Proposition 4.6 - Reinforcement from girth inequalities

Let $P_{(V, E, C)}^{\prime}=\left\{(x, y) \in P_{(V, E, C)}:(x, y)\right.$ satisfies (4.53), (4.54) $\}$. Then, if (V, E, C) is an instance of Intersection U-SNP such that $G=(V, E)$ has girth greater than or equal to $C+1$,

$$
\min \left\{\mathbf{0} x+\mathbf{1} y:(x, y) \in P_{(V, E, C)}^{\prime}\right\} \geq m+\left\lceil\frac{m}{C}\right\rceil .
$$

Proof. Inequalities (4.53) and (4.54) are valid for $S=E$.

4.4.5 Generating further valid inequalities

In Grötschel et al. [84, 83], the authors study the linear ordering polytope and the acyclic subgraph polytope, respectively. Both these studies elegantly explore the idea of using a facet-defining inequality of a given polytope $P \subseteq \mathbb{R}^{n}$ to derive other facet-defining inequalities for a higher-dimension related polytope $Q \subseteq \mathbb{R}^{n+d}$. Notice that for many combinatorial problems, the lower-dimension polytope P can be seen as a face of the higher-dimension polytope Q. This means that the (partial) characterization of a face of a polytope can yield information on how to (partially) characterize other faces of this same polytope. Based on this idea, we show how one may generate new valid inequalities for the U-SNP through the exploitation of the properties of the facet-defining k-cardinality tree inequalities (4.40).

Theorem 4.17-Providing new valid inequalities

Let

$$
\begin{equation*}
\sum_{e \in \Delta_{E}(j)} a_{e}^{i} x_{e}^{i}+\sum_{v \in V} b_{v}^{i} y_{v}^{i} \leq r \tag{4.55}
\end{equation*}
$$

be any valid inequality for $\mathcal{P}_{(V, E, C)}$ such that $b_{v}^{i} \leq 0$ for any $v \in V$. Given a vehicle $i \in K$, a station $j \in V$ and a C-cardinality tree $G[S]$ for $S \subseteq \Delta_{E}(j)$, the inequality

$$
\begin{equation*}
\sum_{e \in \Delta_{E}(j)} a_{e}^{i} x_{e}^{i}+\sum_{v \in V} b_{v}^{i} y_{v}^{i}+\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq r \tag{4.56}
\end{equation*}
$$

is also valid for $\mathcal{P}_{(V, E, C)}$, if and only if

$$
\sum_{e \in S} a_{e}^{i}+\sum_{v \in V[S]} b_{v}^{i} \leq r-1 .
$$

Proof. Let (\bar{x}, \bar{y}) be any feasible solution of $\mathcal{P}_{(V, E, C)}$. Notice that, from Theorem 4.11,

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \tag{4.57}
\end{equation*}
$$

is a valid inequality for $\mathcal{P}_{(V, E, C-1)}$. With this in mind, if $\sum_{e \in S} \bar{x}_{e}^{i} \leq C-1$, then (4.57) is satisfied by (\bar{x}, \bar{y}). Consequently, (\bar{x}, \bar{y}) also satisfies (4.56) since (4.55) is valid.

Thus, the only possible way for (\bar{x}, \bar{y}) to violate (4.56) is if all C demands in S are assigned to vehicle i. This means that
i. $\sum_{e \in S} \bar{x}_{e}^{i}=C$,
ii. $\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i}=C-1$,
iii. $\sum_{e \in \Delta_{E}(j)} a_{e}^{i} \bar{x}_{e}^{i}=\sum_{e \in S} a_{e}^{i}$,
iv. $\sum_{v \in V} b_{v}^{i} \bar{y}_{v}^{i}=\sum_{v \in V[S]} b_{v}^{i}+\sum_{v \in V \backslash V[S]} b_{v}^{i} \bar{y}_{v}^{i}$.

It follows directly that (4.56) is valid if and only if

$$
\sum_{e \in S} a_{e}^{i}+\sum_{v \in V[S]} b_{v}^{i}+\sum_{v \in V \backslash V[S]} b_{v}^{i} y_{v}^{i} \leq r-1 .
$$

Since $b_{v}^{i} \leq 0$ for all $v \in V$, it is clear that $\sum_{v \in V \backslash V[S]} b_{v}^{i} \bar{y}_{v}^{i} \leq 0$. Moreover, this bound is achieved when $\bar{y}_{v}^{i}=0$ for all $v \in V \backslash V[S]$ and hence, the proof is done.

It is curious to remark that k-cardinality tree inequalities (4.40) can be obtained through the procedure described in Theorem 4.17 by taking inequalities (4.4) as
the starting valid inequality. It follows that one may now use k-cardinality tree inequalities (4.40) as a starting valid inequality to derive new non-redundant valid inequalities. The following example illustrates such situation.

Example 4.5-Generating new valid inequalities

Consider the following instance \mathcal{I} of U-SNP with $C=2$.

Even after the addition of all valid k-cardinality tree inequalities to the formulation, its linear relaxation still finds a fractional solution of cost 7. Such fractional solution is depicted below, where the values of variables x and y are given next to their corresponding edge and node, respectively.

Figure 4.17: Illustration of the obtained fractional solution

Notice that in the given instance \mathcal{I},

$$
\begin{equation*}
x_{a}^{i}+x_{c}^{i}+x_{d}^{i}-y_{1}^{i}-y_{4}^{i} \leq 0, \quad \forall i \in K, \tag{4.58}
\end{equation*}
$$

are valid k-cardinality tree inequalities. Obviously, the solution depicted in Figure 4.17 satisfies such inequalities. Moreover, consider the inequality

$$
\begin{equation*}
x_{b}^{i}+x_{e}^{i}-y_{5}^{i} \leq 0, \quad \forall i \in K \tag{4.59}
\end{equation*}
$$

induced by the C-cardinality tree formed by edges b and e. Inequality (4.59) is clearly not valid for the given instance. Notice however, that if $C=1$, then inequality
(4.59) becomes valid. With this in mind one may use inequalities (4.58) and (4.59) in Theorem 4.17 to derive the following new valid inequality:

$$
\begin{equation*}
x_{a}^{i}+x_{b}^{i}+x_{c}^{i}+x_{d}^{i}+x_{e}^{i}-y_{1}^{i}-y_{4}^{i}-y_{5}^{i} \leq 0, \quad \forall i \in K . \tag{4.60}
\end{equation*}
$$

Such inequality is capable of cutting off the fractional solution proposed in Figure 4.17. Moreover, the inclusion of inequality (4.60) to the formulation provides an integer solution of optimal cost.

4.5 Conclusion

In order to solve the U-SNP, we have studied in this chapter an integer programming formulation due to Pimenta et al. [151]. Based on such formulation, we provided two relaxations that are both capable of solving U-SNP. However, such formulation was shown to be particularly weak in the sense that its linear relaxation does not provide any significant information. In other words, the dual (lower) bounds it provides are trivial. In order to reinforce such formulation, we studied the facial structure of polytope $\mathcal{P}_{(V, E, C)}$ defined as the convex hull of the feasible solutions. For this, we have first investigated the dimension of such integer polyhedron as well as the necessary and sufficient conditions under which the inequalities composing the weak formulation from Pimenta et al. [151] are facet-defining. At last, several families of valid inequalities capable of reinforcing the formulation were introduced and the necessary and sufficient facet-defining conditions for some of these families were presented. The computational efficiency obtained by the inclusion of such inequalities is next presented in Chapter 5.

Chapter 5

Computational study

"Computers are useless. They only give you answers."

- Pablo Picasso

In this chapter a broad computational study on the resolution of U-SNP is conducted and a Branch-and-Cut framework is developed. The formulation $\operatorname{USNP}_{(V, E, C)}$, defined by inequalities (4.1)-(4.6), is taken as an starting point. Following the unsatisfactory performances of such formulation identified in Chapter 4, we propose a series of clever features capable of boosting its performances. These features include i. breaking the symmetry hidden behind U-SNP, ii. eliminating useless variables, iii. relaxing variables, and iv. integrating the reinforcing valid inequalities identified in Section 4.4 into the Branch-and-Cut framework. All the implementations involve the use of the standard MILP solver ILOG CPLEX 12.8 coupled with CPLEX Concert Technology for allowing an interface with CPLEX libraries using C++.

5.1 Symmetry

In Margot [127], a MIP is defined as being symmetric if its variables can be permuted without changing the problem's structure. In our case, since vehicles are considered to be identical, U-SNP hides a complete symmetry with respect to vehicles. In other words, for any given feasible solution, another solution with equivalent objective function value (i.e., the same number of stops) can be obtained by imposing a sequential permutation over any subset of vehicles. This means that the symmetry behind U-SNP results in the existence of p ! distinct equivalent solutions for each given assignment of demands to vehicles. Figure 5.1 depicts two symmetric solutions of an instance of U-SNP.

(a) A solution with e_{1} and e_{2} in vehicle blue and e_{3} in vehicle red

(b) A solution with e_{1} and e_{2} in vehicle red and e_{3} in vehicle blue

Figure 5.1: Two symmetric solutions

Numerous authors have highlighted the importance of eliminating - or at least reducing - symmetry when solving MIPs (e.g. Sherali and Smith [166], Kaibel and Pfetsch [100], Denton et al. [52], Ostrowski et al. [138]). Indeed, when solving a symmetric MIP through a Branch-and-Bound (or Branch-and-Cut) procedure, one is forced to solve isomorphic subproblems in the enumeration tree which represents an useless replication of efforts. In such scenario, proving optimality of a given solution requires exploring and fathoming each one of its symmetric pairs which can be terribly expensive. Typical combinatorial optimization problems having symmetry issues are Vertex Coloring, Partitioning and Packing problems (see Kaibel and Pfetsch [100]).

5.1.1 Symmetry-breaking methods

Facing symmetry can be done through several ways, each of which having its pros and cons. In this section we present some of the most popular methods capable of (partially) breaking symmetry of a MILP.

Pertubation

One of the first methods that come to mind when tackling symmetry is to perform some perturbation on the coefficients of variables in the objective function. However, according to Margot [127], making small perturbations is often counterproductive when testing for infeasibility or proving optimality. Indeed, if the MILP in question is infeasible, modifying the objective function accomplishes nothing as the Branch-and-Bound enumeration tree remains the same. Moreover, once an optimal solution is known, proving its optimality is equivalent to verifying the nonexistence of a better feasible solution, which requires the same amount of work as verifying a MILP's infeasibility. On the other hand, making huge perturbations can easily lead to numerical instability.

Isomorphism Pruning and Orbital Branching

A more refined approach consists on trying to break symmetry during the optimization process. This can be done either by pruning identified isomorphic branches of the Branch-and-Bound tree or by fixing variables in order to avoid the creation of such isomorphic nodes in the Branch-and-Bound tree. When it comes to pruning identified isomorphic branches, the works of Margot [125, 126] presenting Isomorphism Pruning and Ostrowski et al. [139] introducing Orbital Branching truly excel. Isomorphism Pruning is a method allowing to detect isomorphic nodes on the enumeration tree - and hence prune them - for a general ILP. Nonetheless, this symmetry detection phase can require a significant computational effort. Orbital Branching is a relaxed version of Isomorphism Pruning, in the sense that it does not guarantee the complete elimination of symmetry for a general ILP, whereas Isomorphism Pruning does. In practice however, it remains competitive with respect to Isomorphism Pruning. In addition, for some families of combinatorial problems (such as job scheduling, see Ostrowski et al. [138]) Orbital Branching does completely eliminate symmetry.

Orbitopal Fixing

In Kaibel et al. [101], a linear-time algorithm capable of completely removing symmetry from partition problems, called orbitopal fixing, is proposed. At each node of the enumeration tree, the method fixes variables based on a predefined lexicographic order and on the already fixed variables at the current node. Such lexicographic order consists to say $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ for a given group of symmetric variables. With respect to U-SNP, applying such lexicographic order would amount to impose that
i. the i-th demand must be assigned to one of the first i vehicles;
ii. a demand i cannot be assigned to an empty vehicle j if there exists some empty vehicle j^{\prime} such that $j^{\prime}<j$.

To illustrate it, consider the following two matrices of variables x, where the lines indicate the demands and the columns represent the vehicles. That is, the value of x_{e}^{i} is given by the entry located on line e and column i. Clearly, the first matrix $x^{l e x}$ follows the lexicographic order imposed by conditions i. and ii., while the second
one $x^{n o t}$ does not.

$$
x^{l e x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \quad x^{n o t}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

In order to test its performance on U-SNP, the method proposed by Kaibel et al. [101] is hence adapted. At each node of the Branch-and-Bound tree, Orbitopal Fixing tries to deduce which demands cannot be assigned to which vehicles (that is, to fix the associated variables x_{e}^{i} to zero) so that every feasible solution of the node respects the lexicographic order imposed by conditions i. and ii..

In the first part of Orbitopal Fixing one receives as input the list of fixed variables at the current node. Such list is defined by $\left(F_{0}, F_{1}\right)$, where F_{0} is the set of variables that have been fixed 0 and F_{1} the set of variables fixed to 1 . The algorithm's objective is to return as output an updated list of fixed variables $\left(F_{0}^{*}, F_{1}\right)$, where $F_{0} \subseteq F_{0}^{*}$. For this, let $a \in\{1, \ldots, p\}^{m}$ be a vector providing an upper bound on the largest indexed vehicle for each of the m demands. That is to say, if $a_{e}=j$, then demand $e \in E$ must be assigned to one of the first j vehicles. Consequently, x_{e}^{i} can be fixed to zero for any $i>j$. Of course, $a_{1}=1$ and, unless $a_{e-1}=p$, one has that $a_{e}=a_{e-1}+1$ for any $e \geq 2$, from condition i.. Notice however that condition ii. ensures that if for some reason (e.g., any previous branching decision), variable $x_{e}^{a_{e-1}+1}$ has been fixed to 0 , then $a_{e}=a_{e-1}$. A formal description of this first part of Orbitopal Fixing is given by Algorithm 2.

```
Algorithm 2 Fixing Zeros
Input: \(\left(F_{0}, F_{1}\right)\)
Output: \(\left(F_{0}^{*}, F_{1}\right)\) such that \(F_{0} \subseteq F_{0}^{*}\)
    Set \(F_{0}^{*}=F_{0}\) and \(a_{1}=1\)
    for \(e=2, \ldots, m\) do
        if \(a_{e-1} \neq p\) and \(x_{e}^{a_{e-1}+1} \notin F_{0}\) then
            \(a_{e}=a_{e-1}+1\)
        else
        \(a_{e}=a_{e-1}\)
        end if
        Set \(F_{0}^{*}=F_{0}^{*} \cup\left\{x_{e}^{i}: i>a_{e}\right\}\)
    end for
```

The second part of Orbitopal Fixing consists of fixing variables to one. For this, Algorithm 2 is employed to search for contradictions. More specifically, given vector a constructed in Algorithm 2, let $F_{0}^{\prime}=F_{0} \cup x_{e}^{a_{e}}$, where $x_{e}^{a_{e}}$ is a variable that has not been fixed yet. Then, if Algorithm 2 launched with $\left(F_{0}^{\prime}, F_{1}\right)$ as input, returns a list
of fixed variables $\left(F_{0}^{*}, F_{1}\right)$ such that $F_{0}^{*} \cap F_{1} \neq \emptyset$, it means that fixing variable $x_{e}^{a_{e}}$ to zero yields a contradiction, and hence one may fix $x_{e}^{a_{e}}$ to one. A formal description of this second part of Orbitopal Fixing is given by Algorithm 3.

```
Algorithm 3 Fixing Ones
Input: \(\left(F_{0}, F_{1}\right)\) and vector \(a\) constructed in Algorithm 2
Output: \(\left(F_{0}^{\prime}, F_{1}^{\prime}\right)\) such that \(F_{0} \subseteq F_{0}^{\prime}\) and \(F_{1} \subseteq F_{1}^{\prime}\)
    Set \(F_{0}^{\prime}=F_{0}\) and \(F_{1}^{\prime}=F_{1}\)
    for \(e=2, \ldots, m\) such that \(x_{e}^{a_{e}} \notin F_{1} \cup F_{0}\) do
        \(\left(F_{0}^{*}, F_{1}^{*}\right)=\) Algorithm \(2\left(F_{0}^{\prime} \cup x_{e}^{a_{e}}, F_{1}^{\prime}\right)\)
        if \(F_{0}^{*} \cap F_{1}^{*} \neq \emptyset\) then
            Set \(F_{1}^{\prime}=F_{1}^{\prime} \cup x_{e}^{a_{e}}\) and \(F_{0}^{\prime}=F_{0}^{\prime} \cup\left\{x_{e}^{i}: i \neq a_{e}\right\}\)
        end if
    end for
```


Symmetry-Breaking Constraints

If one prefers to not intervene in the branching process, a final alternative is to introduce symmetry-breaking inequalities to the ILP formulation. Such inequalities transgress the paradigm of valid inequalities. In fact, symmetry-breaking inequalities should not be valid. On the contrary, their purpose is to cut off part of feasible region, while guaranteeing that at least one optimal solution from the original problem remains feasible. Based on the lexicographic order of variables, the partitioning orbitope - the polytope obtained as the convex hull of non-symmetric solutions of a partitioning problem - is characterized in Kaibel and Pfetsch [100]. As expected, the linear description of the partitioning orbitope requires an exponential number of inequalities. In Denton et al. [52], a subclass of the inequalities describing the partitioning orbitope is adapted to tackle symmetry in operating room scheduling problems. Although, the inequalities employed are not sufficient to completely remove symmetry, important results were obtained applying only a polynomial number of such inequalities.

The inequalities presented in Denton et al. [52] are hence adapted to fit U-SNP, giving rise to the following symmetry-breaking inequalities:

$$
\begin{array}{rr}
\sum_{i=1}^{e} x_{e}^{i}=1 & \forall e \in E: e<p, \\
\sum_{j=i}^{\min \{e, p\}} x_{e}^{j}-\sum_{u=i-1}^{e-1} x_{u}^{i-1} \leq 0 & \forall e \in E, i \in K: e \geq i . \tag{5.2}
\end{array}
$$

Notice that constraints (5.1) and (5.2) impose exactly the lexicographic order
previously detailed. Indeed, inequalities (5.1) guarantee that the e-th demand must be assigned to one of the first e vehicles. On the other hand, inequalities (5.2) ensures that demand e can only be assigned to vehicle i if at least one of the first $e-1$ demands is assigned to vehicle $i-1$.

5.1.2 Methods comparison

With the intention of improving the Branch-and-Bound performances, Orbitopal Fixing and Symmetry-Breaking Constraints were adapted to fit U-SNP. Notice however that Orbitopal Fixing requires the user to interfere on the branching process of the chosen MIP solver. In practice, this means that the CPLEX branching function has to be overridden by implementing the BranchCallback macro. Anywise, overriding such function unables CPLEX to apply a series of default settings it uses, such as dynamic search and dual reductions. Unfortunately, we are unable to give more details on such CPLEX features as they are trade secrets from IBM (cf. Junglas [99]).

Therefore, for a fairer comparison, we have implemented a dummy callback (i.e., an empty callback) employed to deactivate such CPLEX features. Notice that such practice is frequent in the literature for proving the efficiency of branching, cutting planes or node selection methods. Such strategy is used in Carvajal et al. [29] where "[...] dummy callbacks were used when CPLEX was executed with default settings. We think this is necessary in order to get a fair comparison, since the only presence of a user callback function changes the underlying behavior of CPLEX." In Sabharwal et al. [162], the authors justify that "we use CPLEX [...] with node and branch 'callbacks' turned on (using empty callbacks) as our baseline CPLEX solver. [...] Note that this causes some features of CPLEX to be turned off (e.g., dynamic search) but is the only way to enhance CPLEX with a custom node selection strategy without access to the internals of CPLEX". In Fischetti and Monaci [68], the procedure is once again reported: "For a fair comparison, all codes use a (possibly dummy) callback function, thus deactivating IBM ILOG CPLEX's proprietary dynamic search." Finally, even if some CPLEX default features are disabled by the implementation of callbacks, the main CPLEX settings remains untouched such as presolving, cut generation and branching variable choice.

Table 5.1 provides the obtained results for instances with the number of demands m ranging from 30 to 60 , the capacity C ranging from 2 to 8 and the graph density ρ from 1.5 to 4.5. For each combination of parameters m, C and ρ, only instances $m_{_} C_{_} \rho_{-} 1$ are analysed. For a more exhaustive comparison, please refer to Table A. 2 in Appendix A. The three following scenarios have been tested:

- Section Default concerns the results obtained by CPLEX using a dummy callback function;
- Section Constraints concerns the results obtained by CPLEX with the inclusion of symmetry-breaking constraints to the root node of the enumeration tree;
- Section Orbitopal concerns the results obtained by CPLEX with the addition of Orbitopal Fixing method for breaking symmetry;

For each scenario, the total time in seconds required for the optimization is reported under column CPU. If the time limit of two hours is exceeded, the remaining gap percentage is displayed under column gap. The number of nodes (in thousands) explored in the enumeration tree is given under column node.

Table 5.1: Comparison between symmetry-breaking methods

Instances			Default			Constraints			Orbitopal		
m	C	ρ	CPU	gap	node	CPU	gap	node	CPU	gap	node
30	2	1.5	7200	35.3	808	7200	3.0	1623	3388	0.0	891
30	2	3.0	7200	42.1	775	7200	16.4	1598	7200	13.3	1645
30	2	4.5	7200	34.2	1252	7200	16.5	2143	7200	16.6	1947
35	2	1.5	7200	38.9	591	7200	12.0	814	7200	15.9	887
35	2	3.0	7200	59.6	616	7200	27.8	868	7200	25.3	909
35	2	4.5	7200	39.7	254	7200	33.9	925	7200	40.8	793
40	2	1.5	7200	47.4	357	7200	20.7	469	7200	20.5	544
40	2	3.0	7200	56.0	244	7200	33.8	453	7200	33.3	420
40	2	4.5	7200	60.4	284	7200	40.8	578	7200	38.5	489
45	2	1.5	7200	40.4	141	7200	17.0	268	7200	17.1	357
45	2	3.0	7200	60.5	70	7200	36.3	242	7200	37.1	293
45	2	4.5	7200	59.1	162	7200	45.3	316	7200	45.8	293
50	2	1.5	7200	43.6	60	7200	25.3	197	7200	22.9	220
50	2	3.0	7200	60.2	75	7200	39.6	189	7200	42.8	180
50	2	4.5	7200	72.6	55	7200	48.7	165	7200	50.0	166
55	2	1.5	7200	42.8	47	7200	24.9	119	7200	25.7	167
55	2	3.0	7200	63.7	29	7200	43.7	118	7200	45.2	159
55	2	4.5	7200	73.3	28	7200	52.2	134	7200	53.4	157
60	2	1.5	7200	45.2	17	7200	30.7	96	7200	29.4	89
60	2	3.0	7200	66.1	23	7200	45.9	70	7200	47.8	85
60	2	4.5	7200	76.4	23	7200	53.3	75	7200	51.9	108
30	5	1.5	7200	22.1	1319	95	0.0	15	39	0.0	7
30	5	3.0	7200	32.4	1041	193	0.0	35	62	0.0	11
30	5	4.5	7200	27.3	1282	169	0.0	43	250	0.0	76
35	5	1.5	7200	24.6	628	369	0.0	40	237	0.0	28
35	5	3.0	7200	39.8	589	2542	0.0	224	3281	0.0	406
35	5	4.5	7200	39.6	717	7200	4.5	946	7200	13.3	933
40	5	1.5	7200	25.0	573	7200	1.8	290	7200	4.2	594
40	5	3.0	7200	38.4	362	7200	11.2	247	7200	18.1	444
40	5	4.5	7200	43.6	349	7200	13.9	322	7200	22.2	567
45	5	1.5	7200	23.8	338	7200	3.7	159	7200	10.9	413
45	5	3.0	7200	46.8	198	7200	19.5	150	7200	23.0	322
45	5	4.5	7200	51.3	202	7200	23.0	218	7200	26.9	354
50	5	1.5	7200	28.3	193	7200	12.3	105	7200	11.0	254
50	5	3.0	7200	44.2	147	7200	27.9	97	7200	23.2	194
50	5	4.5	7200	56.7	117	7200	34.2	155	7200	31.5	253
55	5	1.5	7200	31.1	69	7200	13.8	63	7200	15.7	138
55	5	3.0	7200	51.7	61	7200	35.1	77	7200	31.7	148
55	5	4.5	7200	58.6	80	7200	38.1	59	7200	37.7	156
60	5	1.5	7200	26.4	66	7200	11.0	35	7200	11.8	91
60	5	3.0	7200	51.5	43	7200	35.8	42	7200	35.4	61
60	5	4.5	7200	56.8	57	7200	36.7	48	7200	34.6	114
				ntinu	on N	Page. .					

Table 5.1 - Continued

Instances			Default			Constraints			Orbitopal		
m	C	ρ	CPU	gap	node	CPU	gap	node	CPU	gap	node
30	8	1.5	2351	0.0	538	5	0.0	0.3	4	0.0	0.4
30	8	3.0	7200	22.5	983	11	0.0	1	7	0.0	1
30	8	4.5	7200	21.6	971	14	0.0	2	7	0.0	1
35	8	1.5	7200	14.0	701	16	0.0	1	19	0.0	2
35	8	3.0	7200	27.8	665	84	0.0	6	26	0.0	2
35	8	4.5	7200	21.7	732	51	0.0	6	44	0.0	6
40	8	1.5	7200	17.0	395	79	0.0	3	30	0.0	1
40	8	3.0	7200	34.1	402	1010	0.0	42	968	0.0	76
40	8	4.5	7200	27.4	433	75	0.0	2	77	0.0	6
45	8	1.5	7200	17.6	259	384	0.0	12	500	0.0	31
45	8	3.0	7200	34.1	277	5576	0.0	157	5692	0.0	301
45	8	4.5	7200	38.9	291	3685	0.0	123	7200	5.1	304
50	8	1.5	7200	19.3	194	1312	0.0	22	482	0.0	16
50	8	3.0	7200	39.3	156	7200	15.7	88	7200	17.3	203
50	8	4.5	7200	43.8	180	7200	13.8	102	7200	18.2	237
55	8	1.5	7200	21.1	100	7200	4.6	56	7200	6.5	165
55	8	3.0	7200	41.4	100	7200	23.0	61	7200	19.4	157
55	8	4.5	7200	45.8	131	7200	23.5	64	7200	21.2	167
60	8	1.5	7200	25.9	59	7200	16.0	35	7200	12.9	100
60	8	3.0	7200	43.8	58	7200	26.9	42	7200	25.0	104
60	8	4.5	7200	49.0	70	7200	31.2	39	7200	27.9	99

As expected, symmetry-breaking methods have a huge impact on the MILP performances. Notice that when no symmetry breaking method is applied, CPLEX could not solve almost any of tested instances to optimality (the exception is the instance with $m=30, C=8$ and $\rho=1.5)$. On the other hand, when symmetry methods were applied, some of the non-solved instances (notably instances with $C=8$) could be solved to optimality. More specifically, the number of solved instances increases from 1 to 19 out of the 63 tested instances. In addition, when optimality could not be proved within time limit using symmetry-breaking methods, the remaining gap obtained for such instances were greatly smaller than the ones obtained with default CPLEX. Such difference of performances is also reflected by the disparity of the enumeration tree sizes. Indeed, for the instances solved to optimality, the number of nodes explored in the enumeration tree is much smaller when symmetry-breaking methods are applied. This shows that such methods allow a much faster progression in the search for optimality.

Given such contrast of performances, the choice of applying such symmetrybreaking methods is therefore straightforward. Nonetheless, the choice of which method to employ is much less trivial. In fact, out the 19 instances solved to optimality, 12 instances were solved faster under scenario Orbitopal. Moreover, in all such instances, the number of nodes needed to be explored in the enumeration tree to prove optimality was also smaller under scenario Orbitopal. This is explained by the fact that Orbitopal Fixing is capable of fully removing the symmetry from partition problems while the symmetry constraints introduced to the formulation
only perform this job partially. For this reason, Orbitopal Fixing will be the elected method for breaking symmetry in future tests.

Nonetheless, one of the instances ($c f ., m=45, C=8, \rho=4.5$) solved under scenario Constraints could not be solved to optimality using Orbitopal Fixing method. Conversely, also one of the tested instances (cf., $m=30, C=2, \rho=1.5$) solved under scenario Orbitopal could not be solved to optimality using symmetrybreaking constraints. Moreover, when instances could not be solved to optimality, the performances of scenario Constraints are slightly better when compared to Orbitopal. Indeed, by the end of the time limit 24 out of the 44 instances were left with a smaller remaining optimality gap under scenario Constraints.

5.2 Eliminating variables

In Section 3.1, it was shown that unlike stated in Pimenta et al. [151], the number of vehicles used in an optimal solution of U-SNP may differ from the minimum number of vehicles needed to obtain a feasible solution, that is, $p_{\text {opt }} \neq p_{\text {min }}$. For this reason and in the absence of a better bound on $p_{\text {opt }}$, the number of available vehicles p was, up to now, taken to be m. Notice however, that the number of variables in the studied formulation is directly related to the number of available vehicles. More precisely, the formulation uses $(m+n) p$ variables. Therefore, providing a better upper bound on $p_{\text {opt }}$ would allow to considerably reduce the number of variables in the formulation. Moreover, recall from the previous section that the symmetry inherent to U-SNP is also closely related to the number of available vehicles. Indeed, for each feasible solution of a given instance of U-SNP, one may come up with p ! symmetric solutions. Reducing the value of p would hence reduce the MILP symmetry. The next theorem shows how, without loss of optimality, one may decrease the number of available vehicles for any given instance of U-SNP.

Theorem 5.1 - Upper bound on $p_{o p t}$

For any instance $\mathcal{I}=(V, E, C)$ of $U-S N P$,

$$
p_{o p t} \leq\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil
$$

Proof. Suppose there exists an instance \mathcal{I} of U-SNP for which

$$
\begin{equation*}
p_{o p t}=\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil+1 \tag{5.3}
\end{equation*}
$$

and let $\left\{E_{1}^{*}, \ldots, E_{p_{\text {opt }}}^{*}, \ldots, E_{m}^{*}\right\}$ be an optimal solution for \mathcal{I} using $p_{\text {opt }}$ vehicles.

Without loss of generality, assume that $E_{i} \neq \emptyset$ for $1 \leq i \leq p_{\text {opt }}$ and $E_{i}=\emptyset$ for $p_{o p t}+1 \leq i \leq m$. The proof of such upper bound on $p_{\text {opt }}$ relies on the fact that there can be no two non-empty vehicles taking, together, less than $C+1$ demands. Notice that if this is not the case, one can just merge such vehicles and find a solution of same cost using one less vehicle.

Therefore, at most one vehicle is allowed to take strictly less than $\left\lfloor\frac{C}{2}\right\rfloor+1$ demands. Assume such vehicle takes $1 \leq d \leq\left\lfloor\frac{C}{2}\right\rfloor$ demands. Every other non-empty vehicle must take at least $\left\lfloor\frac{C}{2}\right\rfloor+1$ demands. It follows that the inequality

$$
\begin{equation*}
m \geq\left(p_{o p t}-1\right)\left(\left\lfloor\frac{C}{2}\right\rfloor+1\right)+d \tag{5.4}
\end{equation*}
$$

must hold. Using equality (5.3) to replace $p_{\text {opt }}$ in (5.4), one obtains

$$
\begin{equation*}
m \geq\left(\left\lfloor\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil\right)\left(\left\lfloor\frac{C}{2}\right\rfloor+1\right)+d \tag{5.5}
\end{equation*}
$$

Notice that given two positive integers a and b,

$$
\begin{equation*}
a=\left\lceil\frac{a}{b}\right\rceil b-r, \tag{5.6}
\end{equation*}
$$

where $r=b-(a \bmod b)$ is, by definition, a non-negative integer number. Therefore, replacing a by m and b by $\left\lfloor\frac{C}{2}\right\rfloor+1$ on equation (5.6), one obtains

$$
\begin{equation*}
m=\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil\left(\left\lfloor\frac{C}{2}\right\rfloor+1\right)-r \tag{5.7}
\end{equation*}
$$

where $r=m \bmod \left(\left\lfloor\frac{C}{2}\right\rfloor+1\right)$. By comparing equation (5.7) with inequality (5.5), one finally gets

$$
\begin{equation*}
-r \geq d \tag{5.8}
\end{equation*}
$$

a contradiction, since d is positive and r is non-negative. Therefore,

$$
p_{o p t} \leq\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil
$$

Moreover, the proposed upper bound is tight as there exists examples of instances of U-SNP where such bound is achieved for any value of C.

Proposition 5.1-Tightness of $p_{\text {opt }}$ upper bound

The upper bound on $p_{\text {opt }}$ provided by Theorem 5.1 is tight for any capacity C.

Proof. Consider an instance of Intersection U-SNP composed of C sets of $\left\lfloor\frac{C}{2}\right\rfloor+1$ parallel demands. An example for $C=5$ is depicted in Figure 5.2.

Figure 5.2: Example of instance where $p_{\text {opt }}=\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil$.

In such instance, an optimal solution with n stops can only be obtained if each station is visited by exactly one vehicle. Since each set of parallel demands is composed of $\left\lfloor\frac{C}{2}\right\rfloor+1$ demands, each set must be in a different vehicle. Therefore, $p_{\text {opt }}=\left\lceil\frac{m}{\left[\frac{C}{2}\right]+1}\right\rceil$.

In order to understand the impact of setting the number of available vehicles p to the new bound provided by Theorem 5.1 has on the optimization process, Table 5.2 exposes the performances obtained with CPLEX using a dummy callback and default settings. The results displayed under section Default account for the case where p is set to m. When p is set to the new upper bound $\left[\frac{m}{\left[\frac{C}{2}\right]+1}\right]$ the results are provided under section Improved Bound. A third section Minimum is also put to analysis displaying the obtained results for p set to $p_{\text {min }}$.

For each scenario, the number of available vehicles is given under column p , and the number of variables in the formulation under column cols. Column best reports the cost - the total amount of stops - of the best solution found during the optimization process. The number of non-empty vehicles used in such solution is given under column p^{\prime}. The total time in seconds required for the optimization is reported under column CPU. If the time limit of two hours is exceeded, the remaining gap percentage is displayed under column gap. The number of nodes (in thousands) explored in the enumeration tree is given under column node.

Table 5.2 provides the obtained results for instances with the number of demands m ranging from 30 to 60 , the capacity C ranging from 2 to 8 and the graph density ρ from 1.5 to 4.5. For each combination of parameters m, C and ρ, only instances $m_{-} C_{-} \rho_{-} 1$ are analysed. For a more exhaustive comparison, the reader is referred to Table A. 3 in Appendix A.

As expected, reducing the number of available vehicles has an important impact on the MILP performance. Notice that when the trivial upper bound on $p_{\text {opt }}$ (i.e.,
Table 5.2: Impact of the new upper bound on $p_{\text {opt }}$

Instances			Default							Improved Bound							Minimum						
m	C	ρ	p	cols	p^{\prime}	best	CPU	gap	node	p	cols	p^{\prime}	best	CPU	gap	node	p	cols	p^{\prime}	best	CPU	gap	node
30	2	1.5	30	1500	11	35	7200	35.3	808.0	15	750	10	35	7200	22.7	2233.3	10	500	10	35	7200	16.5	3129.3
30	2	3.0	30	1200	11	31	7200	42.1	775.0	15	600	10	31	7200	35.6	2571.2	10	400	10	31	7200	28.0	3912.1
30	2	4.5	30	1080	7	24	7200	34.2	1251.6	15	540	7	24	7200	25.2	3145.8	7	252	7	24	181	0.0	221.7
35	2	1.5	35	2030	11	41	7200	38.9	591.1	18	1044	11	41	7200	27.9	1253.2	10	580	10	41	7200	19.4	2127.8
35	2	3.0	35	1610	12	35	7200	59.6	616.4	18	828	12	35	7200	51.0	1506.4	12	552	12	35	7200	41.3	2731.2
35	2	4.5	35	1470	12	32	7200	39.7	253.8	18	756	12	32	7200	49.1	1808.3	12	504	12	32	7200	35.7	3653.6
40	2	1.5	40	2640	14	51	7200	47.4	356.9	20	1320	13	50	7200	40.4	854.4	11	726	11	50	7200	29.3	1823.4
40	2	3.0	40	2120	11	38	7200	56.0	244.0	20	1060	11	38	7200	52.8	1087.7	11	583	11	38	7200	38.0	1647.1
40	2	4.5	40	1920	11	35	7200	60.4	284.2	20	960	11	35	7200	49.7	1354.1	11	528	11	35	7200	33.5	2552.8
45	2	1.5	45	3375	12	50	7200	40.4	141.1	23	1725	11	49	7200	35.1	621.4	11	825	11	49	7200	25.2	1574.7
45	2	3.0	45	2700	13	44	7200	60.5	69.8	23	1380	13	45	7200	56.9	617.4	13	780	13	45	7200	46.5	1330.9
45	2	4.5	45	2475	14	42	7200	59.1	162.2	23	1265	14	42	7200	55.7	771.0	14	770	14	42	7200	44.9	1423.3
50	2	1.5	50	4150	17	63	7200	43.6	59.5	25	2075	17	63	7200	39.0	430.4	16	1328	16	62	7200	29.3	683.8
50	2	3.0	50	3300	15	50	7200	60.2	75.1	25	1650	15	50	7200	55.2	402.1	15	990	15	50	7200	46.8	899.0
50	2	4.5	50	3050	14	47	7200	72.6	54.5	25	1525	15	47	7200	70.2	418.4	14	854	14	47	7200	57.1	963.4
55	2	1.5	55	5005	17	65	7200	42.8	47.4	28	2548	16	64	7200	39.3	228.7	14	1274	14	64	7200	34.2	805.8
55	2	3.0	55	4015	16	56	7200	63.7	29.2	28	2044	16	57	7200	57.7	214.0	16	1168	16	57	7200	54.8	517.8
55	2	4.5	55	3685	15	49	7200	73.3	27.7	28	1876	15	49	7200	68.5	276.1	15	1005	15	49	7200	63.0	886.3
60	2	1.5	60	6000	19	74	7200	45.2	17.2	30	3000	19	73	7200	42.7	162.7	19	1900	19	74	7200	38.2	436.3
60	2	3.0	60	4800	19	65	7200	66.1	22.5	30	2400	20	64	7200	62.1	168.9	18	1440	18	64	7200	61.7	282.8
60	2	4.5	60	4380	19	59	7200	76.4	23.0	30	2190	18	58	7200	71.6	177.5	16	1168	16	57	7200	68.1	434.4
30	5	1.5	30	1500	4	25	7200	22.1	1318.6	10	500	4	25	1593	0.0	1253.6	4	200	4	25	5	0.0	9.8
30	5	3.0	30	1200	4	19	7200	32.4	1040.6	10	400	5	19	4829	0.0	3825.6	4	160	4	19	8	0.0	17.3
30	5	4.5	30	1080	4	14	7200	27.3	1282.2	10	360	4	14	131	0.0	140.3	4	144	4	14	1	0.0	1.2
35	5	1.5	35	2030	5	31	7200	24.6	627.6	12	696	5	31	7200	11.4	2601.6	5	290	5	31	112	0.0	135.7
35	5	3.0	35	1610	4	22	7200	39.8	588.6	12	552	4	22	7200	21.6	2429.9	4	184	4	22	80	0.0	131.5
35	5	4.5	35	1470	6	18	7200	39.6	717.0	12	504	6	18	7200	19.2	2411.9	6	252	6	18	837	0.0	1096.0
40	5	1.5	40	2640	5	37	7200	25.0	572.7	14	924	5	37	7200	14.6	2056.6	4	264	4	37	105	0.0	126.1
40	5	3.0	40	2120	5	26	7200	38.4	361.8	14	742	5	26	7200	25.9	1389.8	5	265	5	26	5091	0.0	5092.7
40	5	4.5	40	1920	5	19	7200	43.6	348.9	14	672	5	19	7200	26.4	1409.6	5	240	5	19	342	0.0	369.9
45	5	1.5	45	3375	5	40	7200	23.8	337.9	15	1125	5	40	7200	15.0	1405.2	4	300	4	41	162	0.0	159.2
45	5	3.0	45	2700	6	31	7200	46.8	198.1	15	900	6	31	7200	34.1	819.2	6	360	6	30	7200	13.4	3070.4
45	5	4.5	45	2475	6	25	7200	51.3	201.9	15	825	6	25	7200	40.4	1253.8	6	330	6	25	7200	16.4	3669.9
50	5	1.5	50	4150	7	46	7200	28.3	192.6	17	1411	7	46	7200	20.8	994.4	6	498	6	46	7200	7.4	3294.2
50	5	3.0	50	3300	6	31	7200	44.2	146.6	17	1122	6	31	7200	34.6	706.9	6	396	6	31	7200	13.9	2670.7
50	5	4.5	50	3050	7	29	7200	56.7	117.0	17	1037	7	29	7200	45.0	774.3	7	427	7	29	7200	27.6	2327.4
55	5	1.5	55	5005	8	52	7200	31.1	69.2	19	1729	7	51	7200	23.3	614.2	7	637	7	51	7200	13.8	1933.8
55	5	3.0	55	4015	7	39	7200	51.7	61.2	19	1387	7	39	7200	43.5	449.4	7	511	7	39	7200	28.5	1650.9
55	5	4.5	55	3685	7	31	7200	58.6	79.8	19	1273	6	30	7200	47.5	617.5	6	402	6	30	7200	26.5	2353.6

Table 5.2 - Continued

Instances			Default							Improved Bound							Minimum						
m	C	ρ	p	cols	p^{\prime}	best	CPU	gap	node	p	cols	p^{\prime}	best	CPU	gap	node	p	cols	p^{\prime}	best	CPU	gap	node
60	5	1.5	60	6000	6	50	7200	26.4	66.3	20	2000	6	50	7200	21.1	370.2	5	500	5	50	7200	7.1	2715.8
60	5	3.0	60	4800	7	43	7200	51.5	43.2	20	1600	7	42	7200	44.0	326.9	7	560	7	42	7200	28.6	1261.6
60	5	4.5	60	4380	6	32	7200	56.8	57.3	20	1460	6	31	7200	45.6	437.7	6	438	6	31	7200	24.5	1880.9
30	8	1.5	30	1500	3	24	2351.4	0.0	538.0	6	300	3	24	1	0.0	0.8	3	150	3	24	0.3	0.0	0.1
30	8	3.0	30	1200	3	16	7200	22.5	982.9	6	240	3	16	8	0.0	8.6	3	120	3	16	1	0.0	0.9
30	8	4.5	30	1080	3	11	7200	21.6	970.5	6	216	3	11	3	0.0	3.7	3	108	3	11	0.3	0.0	0.2
35	8	1.5	35	2030	3	29	7200	14.0	701.3	7	406	3	29	16	0.0	13.7	3	174	3	29	1	0.0	1.0
35	8	3.0	35	1610	3	18	7200	27.8	665.1	7	322	3	18	71	0.0	65.6	3	138	3	18	1	0.0	1.3
35	8	4.5	35	1470	3	12	7200	21.7	732.0	7	294	3	12	7	0.0	6.8	3	126	3	12	1	0.0	0.1
40	8	1.5	40	2640	3	32	7200	17.0	394.5	8	528	3	32	89	0.0	48.6	3	198	3	32	1	0.0	1.2
40	8	3.0	40	2120	3	22	7200	34.1	402.4	8	424	3	22	2428	0.0	1477.3	3	159	3	22	3	0.0	7.8
40	8	4.5	40	1920	3	14	7200	27.4	432.8	8	384	3	14	61	0.0	29.3	3	144	3	14	1	0.0	0.6
45	8	1.5	45	3375	3	38	7200	17.6	259.2	9	675	3	38	1327	0.0	511.3	3	225	3	38	2	0.0	3.8
45	8	3.0	45	2700	4	25	7200	34.1	276.9	9	540	4	25	7200	11.0	2590.8	4	240	4	25	54	0.0	66.7
45	8	4.5	45	2475	4	19	7200	38.9	290.6	9	495	4	19	4574	0.0	1789.4	4	220	4	19	13	0.0	18.1
50	8	1.5	50	4150	4	41	7200	19.3	193.7	10	830	4	41	7200	5.1	1691.2	4	332	4	41	19	0.0	16.7
50	8	3.0	50	3300	4	28	7200	39.3	155.6	10	660	4	28	7200	19.9	1553.1	4	264	4	28	501	0.0	667.1
50	8	4.5	50	3050	4	22	7200	43.8	179.5	10	610	4	22	7200	20.6	1554.3	4	244	4	22	212	0.0	215.9
55	8	1.5	55	5005	5	44	7200	21.1	99.9	11	1001	4	44	7200	9.1	1261.1	4	364	4	44	132	0.0	128.3
55	8	3.0	55	4015	5	32	7200	41.4	99.7	11	803	5	32	7200	25.8	1092.3	5	365	5	31	7200	5.2	4197.1
55	8	4.5	55	3685	4	24	7200	45.8	130.5	11	737	4	24	7200	26.6	1171.6	4	268	4	24	251	0.0	260.4
60	8	1.5	60	6000	5	51	7200	25.9	58.5	12	1200	5	51	7200	16.3	829.0	5	500	5	51	7200	5.2	3430.0
60	8	3.0	60	4800	5	37	7200	43.8	57.9	12	960	5	37	7200	30.3	660.5	5	400	5	36	7200	13.1	3275.2
60	8	4.5	60	4380	5	27	7200	49.0	69.8	12	876	5	28	7200	34.9	831.4	5	365	5	27	7200	11.8	3200.9

$p=m$) is applied, CPLEX could only solve one of tested instances to optimality (cf. the instance with $m=30, C=8$ and $\rho=1.5$). On the other hand, when p is set to the aforementioned new upper bound on $p_{\text {opt }}\left(\right.$ i.e., $p=\left[\frac{m}{\left[\frac{C}{2}\right\rfloor+1}\right]$, the number of solved instances is raised to 14 . In addition, when optimality could not be proved within time limit, the remaining gap obtained was greatly smaller using the new upper bound on $p_{\text {opt }}$. Indeed, the average gap obtained with scenario Default was 40.4% and by applying the improved bound this percentage goes down to 27.6%. Such disparity of performances is due to the difference in the size of the LPs. In fact, setting the number of available vehicles to the upper bound provided by Theorem 5.1, reduces the number of variables in the formulation by 60% in average, for the tested instances. Furthermore, in some specific instances (with high capacities and high densities), a reduction of up to 80% of the variables could be achieved. This means that each LP node in the enumeration tree of scenario Improved Bound can be solved faster than the correspondent LP node in scenario Default, and hence the number of explored nodes within the same amount of time is much greater once the improved bound is applied. Notice that for this same reason, the scenario Minimum is capable of obtaining better results than the two previous ones. Nonetheless, this third scenario cannot be seen as a method for solving U-SNP since $p_{\text {min }}$ might differ from $p_{\text {opt }}$. Instead, it only provides an upper bound on the optimal solution value.

We insist in highlighting this scenario for a practical analysis of how often one can achieve optimality with only $p_{\min }$ vehicles available. In fact, in only 1 out of the 63 tested instances ($c f$. the instance with $m=45, C=5$ and $\rho=1.5$), strictly more than $p_{\text {min }}$ vehicles were necessary to obtain, within time limit, a better solution than the upper bound provided by scenario Minimum. Such behaviour is not a surprise since in Pimenta et al. [151], $p_{\text {opt }}$ was empirically claimed to be equivalent to $p_{\text {min }}$ based on tests developed with randomly generated instances. In fact, we believe that requiring more vehicles than the strict minimum needed $-p_{\text {min }}-$ in order to achieve an optimal solution relies on particular structures of the associated graph G, that may not arise quite often when the instances are randomly generated.

5.3 Relaxing variables

In Section 4.2, the linear relaxation of formulation $\operatorname{USNP}_{(V, E, C)}$ is shown to be particularly weak. Such linear relaxation is obtained by replacing the domain of variables $x_{e}^{i} \in\{0,1\}$ and $y_{v}^{i} \in\{0,1\}$ by $0 \leq x_{e}^{i} \leq 1$ and $0 \leq y_{v}^{i} \leq 1$ for $e \in E$, $v \in V, i \in K$. At the same time, the formulation obtained from the relaxation of variables y_{v}^{i} is shown to optimally solve U-SNP. Such formulation is hereafter denoted USNP-X ${ }_{(V, E, C)}$ as only variables x_{e}^{i} are constrained to be integers. On the
other hand, keeping the integrality of variables y_{v}^{i} and relaxing variables x_{e}^{i} does not guarantee integrality as stated in Section 4.2.2. For this reason, let us consider USNP- $\mathrm{Y}_{(V, E, C)}$ to be the formulation obtained from $\operatorname{USNP}_{(V, E, C)}$ while setting a priority of branching on variables y_{v}^{i}. In other words, a variable x_{e}^{i} can only be chosen as the branching variable if all variables y_{v}^{i} already satisfy the integrality constraints.

Recall that the strength of a formulation is measured by its integrality gap. Since the three aforementioned formulations - $\operatorname{USNP}_{(V, E, C)}, \operatorname{USNP}^{\left(V, Y_{(V, C)}\right.}{ }_{(V)}$ USNP-X ${ }_{(V, E, C)}$ - have the same linear relaxation, all three have the same strength. Nonetheless, their performances may differ. Indeed, the choice of which variable to branch on might influence the performance of the Branch-and-Bound procedure used for solving the MILP. With respect to the U-SNP, the information that can be derived from the fixing of a variable y_{v}^{i} is much different from that of a variable x_{e}^{i}. Fixing a variable y_{v}^{i} to 0 implies that $x_{e}^{i}=0$, for all $e \in \delta(v)$. On the other hand, fixing a variable x_{e}^{i} to 1 also fixes $y_{o_{e}}^{i}$ and $y_{d_{e}}^{i}$ to 1 , indirectly. Moreover, the denser the associated graph $G=(V, E)$ is, the bigger is the difference between the number of variables x and y. Therefore, it is expected that USNP- $\mathrm{Y}_{(V, E, C)}$ should achieve better results when G is dense.

In order to evaluate how these formulations perform in comparison with the original one, Table 5.3 reports the results obtained with each one of the formulations. For each formulation, the number of binary variables is given under column bin. The total time in seconds required for the optimization is displayed under column CPU. If the time limit of two hours is exceeded, the remaining gap percentage is displayed under column gap. The number of nodes (in thousands) explored in the enumeration tree is given under column node. In all tested scenarios, the Orbitopal Fixing symmetry-breaking method is applied and the number of available vehicles is set to the upper bound on $p_{\text {opt }}$ given by Theorem 5.1.

Table 5.3 provides information for instances with the number of demands m ranging from 30 to 60 , the capacity C ranging from 2 to 8 and the graph density ρ from 1.5 to 4.5 . For each combination of parameters m, C and ρ, only instances $m_{-} C_{-} \rho_{-} 1$ are displayed. For more exhaustive results, the reader is referred to Table A. 4 in Appendix A.

Table 5.3: Comparison between relaxations

Table 5.3 - Continued

Instances			$\mathrm{USNP}_{(V, E, C)}$				USNP-X ${ }_{(V, E, C)}$				USNP-Y ${ }_{(V, E, C)}$			
m	C	ρ	bin	CPU	gap	node	bin	CPU	gap	node	bin	CPU	gap	node
35	5	1.5	696	522	0	227.1	420	111	0	39.6	696	755.6	0	295.6
35	8	1.5	406	2.1	0	0.9	245	3.3	0	1.7	406	2.5	0	1.5
40	2	1.5	1320	7200	21.2	905.2	800	7200	22.1	949	1320	7200	25.0	748.9
40	5	1.5	924	1895.6	0	546.1	560	2182.5	0	501.3	924	7200	4.8	1637.2
40	8	1.5	528	7.3	0	2.8	320	7.4	0	3.1	528	2.9	0	0.9
45	2	1.5	1725	7200	18	563.3	1035	7200	14.2	748.1	1725	7200	22.3	517.3
45	5	1.5	1125	7200	5.7	1143.9	675	7200	7.1	1205.4	1125	7200	8.4	1062.7
45	8	1.5	675	19.6	0	4.8	405	45	0	10.9	675	64.3	0	19.9
50	2	1.5	2075	7200	20.6	389.1	1250	7200	20.9	418.6	2075	7200	24.7	346.9
50	5	1.5	1411	7200	9.5	858	850	7200	11	780.9	1411	7200	11.8	826.8
50	8	1.5	830	210.3	0	45.6	500	189.9	0	35.6	830	109.4	0	19.6
55	2	1.5	2548	7200	22.5	242	1540	7200	23.8	329.2	2548	7200	26.3	313.8
55	5	1.5	1729	7200	15.3	532.9	1045	7200	12.7	507.1	1729	7200	12.9	416.4
55	8	1.5	1001	1407.3	0	318.2	605	4161.8	0	630.2	1001	5378.7	0	1112.7
60	2	1.5	3000	7200	28.9	163.9	1800	7200	27.5	176.7	3000	7200	30.4	178.9
60	5	1.5	2000	7200	10.6	435.4	1200	7200	9.8	431	2000	7200	9.7	346
60	8	1.5	1200	7200	10.3	740.5	720	7200	11.1	684.4	1200	7200	9.8	665.3
30	2	3	600	7200	15.7	2560.6	450	6259.2	0	3726.9	600	7200	17.4	2140.2
30	5	3	400	92.2	0	60.5	300	39.6	0	20.7	400	167	0	107.3
30	8	3	240	1.4	0	1.1	180	2.3	0	1.7	240	0.7	0	0.4
35	2	3	828	7200	29.1	1406	630	7200	27.5	1401.8	828	7200	29.7	1118.1
35	5	3	552	1701.5	0	882.2	420	906.5	0	281.9	552	1640.4	0	704.3
35	8	3	322	2.2	0	0.9	245	7.9	0	4.1	322	1	0	0.4
40	2	3	1060	7200	33.9	817.8	800	7200	34.3	846.5	1060	7200	34.7	701.6
40	5	3	742	7200	14.7	1362.7	560	7200	10.8	1419.2	742	7200	11.8	1243.9
40	8	3	424	101.7	0	50.8	320	71.7	0	30.9	424	108.2	0	58.9
45	2	3	1380	7200	34.6	478.7	1035	7200	34.3	527.4	1380	7200	36.5	472.7
45	5	3	900	7200	22.3	992.7	675	7200	21.3	899.7	900	7200	23.3	853.8
45	8	3	540	564.5	0	204.5	405	509.3	0	145.9	540	196.1	0	65
50	2	3	1650	7200	38.9	413.7	1250	7200	41.6	363.9	1650	7200	40.9	367.2
50	5	3	1122	7200	23.7	705.1	850	7200	22.8	716.3	1122	7200	20.4	464.7
50	8	3	660	7200.1	16.2	1318.2	500	7200	8.5	1347.7	660	7200	8.5	1341.5
55	2	3	2044	7200	35.7	205.8	1540	7200	42.7	296.8	2044	7200	40.7	177.2
55	5	3	1387	7200	30.7	482	1045	7200	33.4	461.5	1387	7200	29.9	421.6
55	8	3	803	7200	20.5	991.1	605	7200	17.5	957.7	803	7200	17.7	865.9
60	2	3	2400	7200	43.3	142.5	1800	7200	46.6	163	2400	7200	46.1	136.7
60	5	3	1600	7200	29.5	336	1200	7200	34.1	381	1600	7200	33.6	340.3
60	8	3	960	7200	21.6	904.5	720	7200	20.6	775.2	960	7200	18.5	703.9
30	2	4.5	540	4316.2	0	2747.3	450	7200	13.5	3805	540	3479.2	0	2157.9
30	5	4.5	360	1.8	0	0.6	300	68.9	0	48.9	360	1.8	0	0.9
30	8	4.5	216	0.8	0	0.2	180	1.4	0	1.1	216	0.6	0	0.3
35	2	4.5	756	7200	36.7	1340	630	7200	39.2	1362.5	756	7200	32.3	1257.7
35	5	4.5	504	7200	8.2	3069.5	420	4329.6	0	2011.6	504	186	0	67.5
35	8	4.5	294	1.3	0	0.5	245	4	0	2.5	294	0.5	0	0.2
40	2	4.5	960	7200	31.3	1062.3	800	7200	39.7	1022	960	7200	33.9	1020.3
40	5	4.5	672	7200	16	1310.3	560	7200	18.4	1388.2	672	2130.2	0	498.6
40	8	4.5	384	2.8	0	0.9	320	14.5	0	6.8	384	1.8	0	0.5
45	2	4.5	1265	7200	37.3	627.4	1035	7200	41.8	591.1	1265	7200	35.6	456.3
45	5	4.5	825	7200	26.2	1056.3	675	7200	25	1082.2	825	7200	19.5	809
45	8	4.5	495	1025.5	0	365.5	405	919.6	0	300.4	495	220.6	0	77.8
50	2	4.5	1525	7200	46.9	330.6	1250	7200	48.9	368.6	1525	7200	48.3	278.5
50	5	4.5	1037	7200	27.9	755.3	850	7200	30.2	778.1	1037	7200	24.9	603.6
50	8	4.5	610	7200	13.7	1505.7	500	7200	14.6	1328	610	4471.8	0	1311.8
55	2	4.5	1876	7200	53.3	229.1	1540	7200	49.5	343.7	1876	7200	52.4	234.6
55	5	4.5	1273	7200	34.1	493.6	1045	7200	34.1	473.4	1273	7200	30.3	431.1
55	8	4.5	737	7200	17.9	992.7	605	7200	19.9	1150.5	737	7200	12.7	966
60	2	4.5	2190	7200	54.2	168.6	1800	7200	50.7	205.9	2190	7200	54.3	185.3
60	5	4.5	1460	7200	37.8	478.2	1200	7200	32.9	408.1	1460	7200	32.9	391.5
60	8	4.5	876	7200	23.7	895.6	720	7200	30.7	926.1	876	7200	16.1	744.1

Table 5.3 reveals that the difference of performances between the original formulation $\operatorname{USNP}_{(V, E, C)}$ and the other two proposed ones is far from being uniform.

Formulation $\operatorname{USNP}_{(V, E, C)}$ could solve 22 out of the 63 instances to optimality within time limit, while 23 instances could be solved through formulations USNP- $\mathrm{X}_{(V, E, C)}$ and USNP-Y ${ }_{(V, E, C)}$. Notice however, that some of the instances (e.g., $m=40$, $C=5, \rho=4.5$) could be solved to optimality with USNP-Y ${ }_{(V, E, C)}$ but not with $\operatorname{USNP}_{(V, E, C)}$ and USNP-X ${ }_{(V, E, C)}$ (and vice-versa).

As expected, formulation USNP- $\mathrm{Y}_{(V, E, C)}$ clearly outperforms its other two rivals - $\operatorname{USNP}_{(V, E, C)}$ and USNP-X ${ }_{(V, E, C)}$ - for instances with dense graphs (that is, $\rho=$ 4.5). Considering only instances with $\rho=4.5$, formulation USNP- $Y_{(V, E, C)}$ was generally either capable of solving the instance to optimality faster or the remaining gap obtained was smaller when compared to the two other formulations. On the other hand, for sparse instances (i.e., $\rho=1.5$), formulation USNP-Y ${ }_{(V, E, C)}$ could not beat the performances of USNP- $\mathrm{X}_{(V, E, C)}$ and $\operatorname{USNP}_{(V, E, C)}$.

Even if the results are quite heterogeneous according to the density of the graph, the results obtained from formulation USNP- $\mathrm{Y}_{(V, E, C)}$ are, in average, slightly better. In fact, the average remaining gap obtained by the end of the optimization process for $\operatorname{USNP}^{-Y_{(V, E, C)}}$ was of 16.1%, while for $\operatorname{USNP}^{\left(X_{(V, E, C)}\right.}$ and $^{U_{S N P}^{(V, E, C)}}{ }^{\text {this }}$ number raises to 16.8%.

It is worth noting that even a small reduction on the gap may represent a huge computational effort. Figure 5.3 depicts the gap progression through the optimization process for the instance with $m=60, C=8$, and $\rho=3$. At the beginning of the optimization, the bounds are constantly updated and the gap reduces quickly. At a certain point - which arises relatively early in the optimization process - the bounds progression hit a barrier and the gap evolution considerably slows down. The final gap obtained with formulation $\operatorname{USNP}_{(V, E, C)}$ is 21.6%, while with formulation USNP- $Y_{(V, E, C)}$ a final gap of 18.5% is obtained. Such difference may seem small at first. However, with formulation USNP- $Y_{(V, E, C)}$, the mark of 21.6% of gap is surpassed way before the end of the time limit.

5.4 Branch-and-Cut

A Branch-and-Cut framework consists of embedding a cutting plane algorithm before each branching phase of a Branch-and-Bound algorithm. In this section we show how the valid inequalities presented in Section 4.4 are integrated into our Branch-and-Cut framework used for solving U-SNP. Frequently, the separation problems associated with such valid inequalities require the definition and manipulation of data structures (mostly graphs) as well as the use of state-of-the-art combinatorial algorithms. For such tasks we make use of LEMON, an open source library written

Figure 5.3: Comparison of gap progression
in the C++ language providing efficient implementations of graph and network algorithms (see Dezső et al. [53], Egerváry Combinatorial Optimization Research Group [61]).

5.4.1 Strong capacity inequalities

The strong capacity inequalities (4.34), (4.36) appear in polynomial number. Therefore, stocking such inequalities in a pool and verifying their satisfaction at each node of the enumeration tree remains an efficient way of solving the separation problem. Another reasonable approach would be to directly impose such inequalities to the formulation, that is, introduce all of them in the root node of the enumeration tree. Notice however that if this second approach is chosen, the model image (i.e., its mathematical representation) is changed in the eyes of CPLEX, which might affect - for the better or for the worse - some of the heuristics CPLEX uses for deriving its own cuts and incumbent solutions. For a fairer comparison with the original model, such inequalities are chosen to be added on demand at each node.

5.4.2 k-cardinality tree inequalities

The k-cardinality tree inequalities (4.40), on the other hand, appear in exponential number. Such inequalities are recalled here below:

$$
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j),
$$

such that $G[S]$ is a k-cardinality tree, for $k=C+1$.
Listing all such inequalities is hence an unreasonable approach. Instead, one is obliged to design more creative ways of adding such inequalities on demand, that is, solving its separation problem. The separation problem associated with k cardinality tree inequalities (4.40) consists of, given a solution (\bar{x}, \bar{y}), decide whether or not there exists an inequality (4.40) that is violated by (\bar{x}, \bar{y}). Notice that a k cardinality tree inequality is defined by a vehicle $i \in K$ and a $(C+1)$-cardinality tree $G[S]$ such that $S \subseteq \Delta_{E}(j)$ for some station $j \in V$. Therefore, (\bar{x}, \bar{y}) violates a k-cardinality tree inequality if and only if there exists a vehicle $i \in K$, a station $j \in V$, and a $(C+1)$-cardinality tree $G[S]$ with $S \subseteq \Delta_{E}(j)$, for which

$$
\sum_{e \in S} \bar{x}_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i}>0 .
$$

The separation problem associated with k-cardinality tree inequalities is hence equivalent to finding

$$
\begin{equation*}
\omega=\max _{i \in K, j \in V}\left\{\sum_{e \in S} \bar{x}_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) \bar{y}_{v}^{i}: S \subseteq \Delta_{E}(j), G[S] \text { is a } C+1 \text { tree }\right\}, \tag{5.9}
\end{equation*}
$$

and there exists a k-cardinality tree inequality cutting (i.e., violated by) (\bar{x}, \bar{y}), if and only if $\omega>0$. However, before tackling directly the task of designing an algorithm capable of solving this separation problem, let us first analyse the complexity of such problem.

Theorem 5.2-Separation of k-cardinality tree inequalities

The separation problem associated with k-cardinality tree inequalities (4.40) is $\mathcal{N P}$ Hard.

Proof. We give a reduction from the k-Minimum Spanning Tree problem (k MST) which can be defined as follows. Given a graph $H=(V, E)$ with edge weights w_{e} and a constant $B \in \mathbb{R}$, find a tree $T=\left(V^{\prime}, E^{\prime}\right)$ spanning exactly k edges (or $k+1$ vertices) with total weight at most B.

When $k=n-1, k$-MST is nothing but the classic Minimum Spanning Tree problem and therefore can be solved in polynomial time by the famous greedy algorithm proposed by Kruskal [111], Prim [152]. Moreover, if k is a fixed constant, the problem is also polynomially solvable by a brute force enumeration algorithm. In Fischetti et al. [70], k-MST is showed to be polynomially solvable if H is itself a tree. In the general case, however, k-MST is $\mathcal{N} \mathcal{P}$-Hard (see Fischetti et al. [70], Ravi et al. [156]). Notice that for proving the $\mathcal{N} \mathcal{P}$-Hardness of k-MST, the reduction used in

Fischetti et al. [70] from the Steiner Tree problem preserves bipartiteness. Since Steiner Tree is $\mathcal{N} \mathcal{P}$-Hard even for bipartite graphs (see Garey and Johnson [74, p. 208]), k-MST can also be stated as $\mathcal{N} \mathcal{P}$-Hard for bipartite graphs.

Next, we show that given a bipartite graph $G=(V, E)$, with negative edge weights w_{e}, and a constant $B \in \mathbb{R}$, any tree T^{\prime} spanning k edges in G such that $w\left(T^{\prime}\right) \leq B-\epsilon$, corresponds to a violated k-cardinality tree inequality for the following point (\bar{x}, \bar{y}) : Let $(V, E, k-1)$ be an instance of Intersection U-SNP. Then, given a vehicle $i \in K$, let $\bar{y}_{v}^{i}=-\frac{B}{k-1}$ for all $v \in V$ and $\bar{x}_{e}^{i}=-w_{e}$ for all $e \in E$.

Let T denote the minimum cost k-cardinality tree in G. Notice that by definition, $|V(G[T])|=k+1$. Consequently, the term $\sum_{v \in V(G[T])}\left(d_{G[T]}(v)-1\right) \bar{y}_{v}^{i}$ becomes a constant:

$$
\begin{aligned}
\sum_{v \in V(G[T])}\left(d_{G[T]}(v)-1\right) \bar{y}_{v}^{i} & =\sum_{v \in V(G[T])} d_{G[T]}(i) \bar{y}_{v}^{i}-\sum_{v \in V(G[T])} \bar{y}_{v}^{i} \\
& =-\sum_{v \in V(G[T])}\left(d_{G[T]}(v) \frac{B}{k-1}\right)+\sum_{v \in V(G[T])} \frac{B}{k-1} \\
& =-2 k \frac{B}{k-1}+(k+1) \frac{B}{k-1} \\
& =-B
\end{aligned}
$$

Therefore, if one is able to find a violated k-cardinality tree inequality (i.e., $\sum_{e \in T} \bar{x}_{e}^{i}+B>0$), then the k-tree defined by T solves the k-MST problem. On the other hand, a k-tree T such that $w(T) \leq B-\epsilon$ defines a violated k-tree inequality.

Theorem 5.2 shows that, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, an efficient algorithm capable of solving the separation problem associated with k-cardinality tree inequalities (4.40) is inconceivable. For this reason, one may only hope that a good heuristic scheme will be good enough for generating violated cuts. In this scenario, we propose two heuristics for finding a violated k-cardinality tree inequality.

Minimum Spanning Tree based heuristic

The first heuristic we propose is based on the classic Minimum Spanning Tree problem. For each vehicle $i \in K$ and each station $j \in V$, we consider the graph $G\left[\Delta_{E}(j)\right]$ with edge weights $w_{e}=-\bar{x}_{e}^{i}$ for $e \in \Delta_{E}(j)$, and node weights $c_{v}=\bar{y}_{v}^{i}$ for $v \in V\left[\Delta_{E}(j)\right]$. Then, a $(C+1)$-cardinality tree is constructed by taking the minimum spanning tree T of $G\left[\Delta_{E}(j)\right]$ obtained with Kruskal's algorithm and pruning its
leaves until it becomes a tree with exactly $C+1$ edges. Notice that the node weights are not taken into account for constructing the spanning tree T, since it spans all nodes in $G\left[\Delta_{E}(j)\right]$. Instead, they are used for choosing the most suitable leaf to be pruned. Indeed, while T does not have exactly $C+1$ edges, the leaf edge $e \in E(T)$ with highest impact on (5.9) is chosen to be pruned, that is

$$
e \in \underset{e \in E(T)}{\arg \max }\left\{w_{e}+c_{v}: e \text { is a leaf-edge of } T \text { and } v \text { is the non-leaf endpoint of } e\right\} .
$$

If the $(C+1)$-cardinality tree obtained by the end of such procedure induces a k cardinality tree inequality that is violated by the given relaxed solution (\bar{x}, \bar{y}), then the inequality is added to the formulation as a cut. Algorithm 4 formally describes such procedure. It takes advantage of function Kruskal - implemented in LEMON (see Egerváry Combinatorial Optimization Research Group [63]) - taking as input a graph G and a cost map corresponding to the weights of edges in G, and returning a minimum cost spanning tree. Notice that the complexity of such algorithm is given by the complexity of Kruskal's algorithm (i.e., $\mathcal{O}(E \log V)$) which is executed for each vehicle and each station, that is, $\mathcal{O}(K V E \log V)$.

Without loss of generality, one may only consider stations $j \in V$ for which $\left|\Delta_{E}(j)\right| \geq C+1$, since otherwise no $(C+1)$-cardinality tree can be found. Moreover, if $G\left[\Delta_{E}(j)\right]$ has more than one connected component, then one can independently look for a $(C+1)$-cardinality tree on each of the connected components.

Greedy k-MST heuristic

Another heuristic for constructing a potentially violated k-cardinality tree inequality is to greedily build a $(C+1)$-cardinality tree from scratch. For this, given a vehicle $i \in K$ and a station $j \in V$, the graph $G\left[\Delta_{E}(j)\right]$ is considered. Edge weights w_{e} are set to \bar{x}_{e}^{i} for $e \in \Delta_{E}(j)$, and node weights c_{v} are set to $-\bar{y}_{v}^{i}$ for $v \in V\left[\Delta_{E}(j)\right]$. Next, start with an empty edge set $T=\emptyset$. By the end of the algorithm, T is supposed to define a $(C+1)$-cardinality tree. For this, a single edge is added to T at a turn. The first edge chosen to be part of T is the one with most fractional weight - recall that if (\bar{x}, \bar{y}) is integer, then no separation problem is needed. For the next C iterations, the chosen edge $e \in \Delta_{E}(j) \backslash T$ will be one that is incident to exactly one node of $V[T]$ and maximizes the value of $w_{e}+c_{v}$, that is,

$$
e=\underset{u v \in \Delta_{E}(j) \backslash T}{\arg \max }\left\{w_{u v}+c_{v}: v \in V[T] \text { and } u \notin V[T]\right\} .
$$

Finally, if the $(C+1)$-cardinality tree obtained by the end of such procedure

```
Algorithm 4 Separation of inequalities (4.40) by pruning MST
Input: An instance ( \(V, E, C\) ) of U-SNP, and a fractional solution \((\bar{x}, \bar{y})\) of the linear
    relaxation of \(\operatorname{USNP}_{(V, E, C)}\)
Output: A "good" candidate \(k\)-cardinality tree inequality for cutting ( \(\bar{x}, \bar{y}\) )
    for \(i=1, \ldots, p\) do
        for \(j=1, \ldots, n\) do
            for all \(e \in \Delta_{E}(j)\) do
                \(w_{e}=-\bar{x}_{e}^{i}\)
            end for
            for all \(v \in V\left[\Delta_{E}(j)\right]\) do
                \(c_{v}=\bar{y}_{v}^{i}\)
            end for
            \(T=\operatorname{Kruskal}\left(G\left[\Delta_{E}(j)\right], w\right)\)
            while \(|E(T)|>C+1\) do
                prunningEdge \(=\emptyset\)
                maxImprove \(=-\infty\)
                for all \(e \in E(T): e\) is a leaf edge of \(T\) do
                    nodeCost \(=c_{v}: v\) is the non-leaf endpoint of \(e\)
                    if \(\left(w_{e}+\right.\) nodeCost \()>\) maxImprove then
                        maxImprove \(=w_{e}+\) nodeCost
                        prunningEdge \(=e\)
                    end if
                end for
                Contract edge prunningEdge in \(T\)
            end while
            if \(\sum_{e \in T} \bar{x}_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) \bar{y}_{v}^{i}>0\) then
                Add inequality \(\sum_{e \in T} x_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) y_{v}^{i} \leq 0\) as a cut
            end if
        end for
    end for
```

induces a k-cardinality tree inequality that is violated by the given relaxed solution (\bar{x}, \bar{y}), then the inequality is added to the formulation as a cut. Algorithm 5 formally describes such procedure.

This approach seems less fancy than the aforementioned one taking into account Kruskal's algorithm, but its simplicity is rewarding. Indeed, skipping the construction of a spanning tree saves a lot of time, speeding up the separation process. Moreover, the vehicle's capacity tends to be far smaller than the average number of edges in $G\left[\Delta_{E}(j)\right]$, which makes construction of the $(C+1)$-cardinality tree in Algorithm 5 much faster than in Algorithm 4. Indeed, since the tree T can be constructed in linear time (i.e., $\mathcal{O}(E)$) the complexity of such algorithm is $\mathcal{O}(K V E)$. For these reasons, Algorithm 5 is the chosen heuristic to be applied for trying to solve the separation problem associated with k-cardinality tree inequalities (4.40).

Once again, one may consider only stations $j \in V$ for which $\left|\Delta_{E}(j)\right| \geq C+1$,

```
Algorithm 5 Separation of inequalities (4.40) by greedily construction of a ( \(C+1\) )-
cardinality tree
Input: An instance ( \(V, E, C\) ) of U-SNP, and a fractional solution \((\bar{x}, \bar{y})\) of the linear
    relaxation of \(\operatorname{USNP}_{(V, E, C)}\)
Output: A "good" candidate \(k\)-cardinality tree inequality for cutting ( \(\bar{x}, \bar{y}\) )
    for \(i=1, \ldots, p\) do
        for \(j=1, \ldots, n\) do
            for all \(e \in \Delta_{E}(j)\) do
                \(w_{e}=\bar{x}_{e}^{i}\)
            end for
            for all \(v \in V\left[\Delta_{E}(j)\right]\) do
                \(c_{v}=-\bar{y}_{v}^{i}\)
            end for
            Choose the edge \(e\) with most fractional weight.
            \(T=\{e\}\)
            for \(k=1, \ldots, C\) do
                Let \(e_{k} \in \arg \max _{u v \in \Delta_{E}(j) \backslash T}\left\{w_{u v}+c_{v}: v \in V[T]\right.\) and \(\left.u \notin V[T]\right\}\)
                \(T=T \cup\left\{e_{k}\right\}\)
            end for
            if \(\sum_{e \in T} \bar{x}_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) \bar{y}_{v}^{i}>0\) then
                Add inequality \(\sum_{e \in T} x_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) y_{v}^{i} \leq 0\) as a cut
            end if
        end for
    end for
```

since otherwise no $(C+1)$-cardinality tree can be found. Moreover, if $G\left[\Delta_{E}(j)\right]$ has more than one connected component, then one can independently look for a $(C+1)$-cardinality tree on each of the connected components.

Impact of k-cardinality tree inequalities

The introduction of k-cardinality tree inequalities into the branch-and-cut framework plays an important role in our constructed Branch-and-Cut framework, notably when dealing with sparse instances. Table 5.4 provides a comparison between the obtained performance results for sparse instances when the separation of such inequalities is active or not. The inactive scenario stands for the branch-and-cut framework taking into account the separation of strong capacity inequalities only, while the active one also includes the separation of k-cardinality tree inequalities. Columns time $_{g}, \mathrm{LB}_{g}, \mathrm{UB}_{g}$, gap $_{g}$ and Nodes provide information on the global optimization process by showing, respectively, the total time spent in seconds, the lower and upper bounds obtained by the end of the optimization, the remaining gap and the number of nodes investigated in the enumeration tree. Columns time ${ }_{r}$ and LB_{r} present, respectively, the time spent in seconds for solving the root node
and corresponding lower bound obtained from it. Finally Cuts and time ${ }_{c u t}$ display, respectively, the number of k-cardinality tree inequalities added to the formulation throughout the optimization process and the time spent on their separation routine.

As expected, in some cases (e.g., instance 60_2_1.5_5) the lower bound obtained from the LP relaxation on the root node is significantly improved by the inclusion of k-tree inequalities. Moreover, it is quite interesting to remark that, in other cases (e.g., instance 30_2_1.5_3), even if the inclusion of such constraints does not have a direct impact on the lower bound value obtained from the LP relaxation, the global performance is still substantially improved when such inequalities are taken into account. Indeed, the addition of k-cardinality tree inequalities greatly reduces the number of nodes in the enumeration tree that have to be verified in order to prove optimality. Figure 5.4 shows the progression of the lower bounds during the optimization process within each scenario for instance 30_2_1.5_3. On the other hand, the activation of the separation routine of k-cardinality tree inequalities greatly increases the time needed for solving the root node. Such behaviour is most perceived within instance 60_2_1.5_3, where no branching could be made within time limit. In other words, solving the root node required more than 2 hours of computational effort. All in all, the inclusion of k-tree inequalities considerably improves the Branch-and-Cut performances as the average final gap is reduced from 9.61% to 6.74%.

Figure 5.4: Comparison of gap progression
Table 5.4: Impact of the inclusion of k-cardinality tree inequalities

Instances				inactive							active								
m	C	ρ	i	time $_{g}$	LB_{g}	UB_{g}	gap_{g}	Nodes	time $_{r}$	LB_{r}	time $_{g}$	LB_{g}	UB_{g}	gap_{g}	Nodes	Cuts	time $_{\text {cut }}$	time $_{r}$	LB_{r}
30	2	1.5	1	3	35	35	0	0.2	0.9	32	15.1	35	35	0	0.4	420	0.9	9.4	33
30	2	1.5	2	7200	32.7	34	3.92	1917.5	1	32	134.7	34	34	0	24.8	481	1.5	2.3	32
30	2	1.5	3	3213.9	36	36	0	829.7	0.7	32	184.2	36	36	0	24.5	517	1.5	41.6	32
30	2	1.5	4	43	34	34	0	11.9	0.7	30	17.3	34	34	0	0.2	260	0.4	14.2	31
30	2	1.5	5	1163.4	36	36	0	502.3	0.9	30	252.2	36	36	0	82	478	1.4	47.6	30
35	2	1.5	1	7200	36.9	41	9.95	790.5	2.2	34	2068.4	41	41	0	283.5	777	3.3	128.6	35
35	2	1.5	2	7200	39.8	44	9.55	711.3	2.6	39	7200	40.8	44	7.19	695	924	7.8	184.2	39
35	2	1.5	3	1183.7	40	40	0	247.6	1.4	36	88.4	40	40	0	6.4	380	2.3	23.8	36
35	2	1.5	4	7200	38.3	41	6.62	965.7	1.5	37	7200	39.5	41	3.73	765	742	6.6	99.3	37
35	2	1.5	5	7200	37.7	40	5.69	1071	1.8	34	3297.4	40	40	0	409.3	1002	7	84.7	35
40	2	1.5	1	7200	44.5	50	11	594	4.6	41	7200	45.9	50	8.27	350.1	1467	11.7	451.3	42
40	2	1.5	2	7200	44.8	48	6.62	439.8	3	41	7200	45.3	48	5.71	357.1	1054	7	183.2	41.2
40	2	1.5	3	7200	42.2	46	8.19	694.6	2.6	39	4209.6	46	46	0	465.6	1000	4.3	314.4	40
40	2	1.5	4	7200	40.5	46	11.91	573.7	3.2	38	7200	43.1	46	6.25	244.6	1089	6.4	325.9	38
40	2	1.5	5	7200	41.5	49	15.22	669.1	2.2	39	7200	43.8	48	8.7	546.8	1220	7	387.4	39
45	2	1.5	1	7200	44.7	49	8.83	356	8.4	42	7200	45.9	49	6.4	336.6	1046	8.2	420.1	42
45	2	1.5	2	7200	47.5	53	10.38	286	11	46	7200	47.5	53	10.36	180.7	1674	18.9	1170.7	46
45	2	1.5	3	7200	47.3	55	13.95	398.1	7.6	46	7200	49.8	55	9.47	387.4	955	9.4	495	46
45	2	1.5	4	7200	47	54	12.93	290.1	13.7	46	7200	50.3	54	6.85	163.1	2050	16.8	2635.6	46
45	2	1.5	5	7200	47.7	53	9.96	333.8	7.9	46	7200	49.5	53	6.53	139.2	1723	13.4	1661.7	46
50	2	1.5	1	7200	56.6	62	8.71	145.8	11.5	52	7200	57.5	63	8.81	66.3	1892	20.4	1204.9	53
50	2	1.5	2	7200	52.4	59	11.27	152.4	8.4	51	7200	55.2	59	6.52	114.8	1375	13.9	1364.4	51
50	2	1.5	3	7200	52.6	58	9.39	335.7	5.2	48	7200	53.8	58	7.16	111.7	1314	15.4	419.9	50.5
50	2	1.5	4	7200	51.5	60	14.17	148.9	12.4	49	7200	53.6	60	10.59	92.9	1507	16.8	1461.7	49
50	2	1.5	5	7200	52	60	13.33	145.2	12.3	49	7200	54.7	60	8.77	64.3	1825	16.6	1602.8	51
55	2	1.5	1	7200	56.2	64	12.26	91	16.5	53	7200	59.1	64	7.65	32.6	1897	19.3	2266.2	56
55	2	1.5	2	7200	57.4	66	13.11	124.1	11.8	55	7200	61	66	7.64	16.9	2763	35.7	4939.3	57
55	2	1.5	3	7200	56.3	63	10.65	147.9	14.9	54	7200	57.3	63	9.04	46.1	1607	19.7	2175.4	54
55	2	1.5	4	7200	56.8	64	11.24	89.5	12.9	53	7200	58.1	65	10.67	29.9	2001	23.8	1732.2	54.8
55	2	1.5	5	7200	56.4	66	14.52	85.6	16.3	55	7200	58	66	12.1	17.8	2463	29.9	3353.9	55
60	2	1.5	1	7200	63.3	74	14.48	61.7	15.5	62	7200	65.1	73	10.82	2.5	3070	40.9	6452.9	64
60	2	1.5	2	7200	64.8	73	11.19	67.2	18.2	62	7200	64.6	73	11.47	14.1	2600	44.5	3690.7	63
60	2	1.5	3	7200	60.5	72	15.97	50.2	20.6	60	7200	60.4	80	24.5	0	2223	25.8	7200	60.4
60	2	1.5	4	7200	61.1	72	15.19	47.3	30.3	60	7200	63.5	72	11.81	3.2	2712	36	5957.5	63
60	2	1.5	5	7200	60.4	72	16.11	108	17.3	56	7200	63.7	70	9.02	41.2	2087	32.7	2629.6	60.8
AVERAGE				6331.6	47.8	53.4	9.61	385.2	8.6	45.1	5641.9	49.4	53.6	6.74	174.8	1446	15.1	1575.2	46.0

5.4.3 Girth inequalities

Let us first recall the family of girth inequalities (4.53):

$$
\sum_{e \in S}(C+1) x_{e}^{i}-\sum_{v \in V[S]} C y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j)
$$

such that $G[S]$ has girth greater than or equal to $C+1$.
The family of girth inequalities (4.53) also has an exponential number of inequalities, and hence the inclusion of such inequalities to the formulation should be done on demand through the resolution of its associated separation problem. The separation problem associated with girth inequalities (4.53) consists of, given a solution (\bar{x}, \bar{y}), decide whether or not there exists an inequality (4.53) that is violated by (\bar{x}, \bar{y}). More precisely, one has to decide whether or not there exists a triple (i, j, S), where $i \in K, j \in V$ and $S \subseteq \Delta_{E}(j)$ such that $G[S]$ has girth greater than or equal to $C+1$, for which

$$
\sum_{e \in S}(C+1) \bar{x}_{e}^{i}-\sum_{v \in V[S]} C \bar{y}_{v}^{i}>0 .
$$

This means that solving the separation problem associated with girth inequalities is equivalent to finding
$\omega=\max _{i \in K, j \in V}\left\{\sum_{e \in S}(C+1) \bar{x}_{e}^{i}-\sum_{v \in V[S]} C \bar{y}_{v}^{i}: S \subseteq \Delta_{E}(j), G[S]\right.$ has girth greater than $\left.C\right\}$,
and there exists a girth inequality cutting (i.e., violated by) (\bar{x}, \bar{y}), if and only if $\omega>0$. However, it turns out that solving such separation problem is $\mathcal{N} \mathcal{P}$-Hard.

Theorem 5.3-Separation of girth inequalities

The separation problem associated with girth inequalities (4.53) is $\mathcal{N} \mathcal{P}$-Hard.
Proof. We give a reduction from the Hamiltonian Cycle problem which can be defined as follows. Given a graph $G=(V, E)$, find an Hamiltonian cycle ${ }^{1} H=(V, S)$ with $S \subseteq E$. Hamiltonian Cycle is a classic $\mathcal{N} \mathcal{P}$-Hard problem (see Karp [103]). Moreover, it has been shown to remain $\mathcal{N} \mathcal{P}$-Hard even if graph G is said to be bipartite (see Krishnamoorthy [110]).

Next, we show that given a bipartite graph $G=(V, E)$, any Hamiltonian cycle in G corresponds to a violated girth inequality for the following point (\bar{x}, \bar{y}) : Let

[^8](V, E, n) be an instance of Intersection U-SNP. Then, given a vehicle $i \in K$, let $\bar{x}_{e}^{i}=\frac{1}{n}$ for all $e \in E$ and $\bar{y}_{v}^{i}=\frac{1+\epsilon}{n}$ for all $v \in V$, where $\epsilon \in \mathbb{R}^{+}$is an arbitrarily small positive number.

Firstly, notice that since $(V, E, n-1)$ is an instance of Intersection U-SNP, there exists some station $j \in V$ for which $\Delta_{E}(j)=E$. Therefore, the problem described by (5.10) reduces to
$\omega=\max _{i \in K}\left\{\sum_{e \in S} n \bar{x}_{e}^{i}-\sum_{v \in V[S]}(n-1) \bar{y}_{v}^{i}: S \subseteq E, G[S]\right.$ has girth greater than $\left.(n-1)\right\}$.

Moreover, if S is the edge set of an Hamiltonian cycle $H=(V, S)$ in G, then

$$
\begin{align*}
\sum_{e \in S} n \bar{x}_{e}^{i}-\sum_{v \in V[S]}(n-1) \bar{y}_{v}^{i} & =\sum_{e \in S} n \frac{1}{n}-\sum_{v \in V[S]}(n-1) \frac{1+\epsilon}{n} \\
& =|S|-|V[S]|(n-1) \frac{1+\epsilon}{n} \tag{5.12}\\
& =n-(n-1)(1+\epsilon) \\
& =1-\epsilon(n-1)>0
\end{align*}
$$

Therefore, finding an Hamiltonian cycle in G yields a girth inequality violated by (\bar{x}, \bar{y}). Conversely, we show that any violated girth inequality corresponds to an Hamiltonian cycle in G. Since \bar{x}_{e}^{i} and \bar{y}_{v}^{i} have constant values for any $e \in E$ and any $v \in V$, respectively,

$$
\sum_{e \in S} n \bar{x}_{e}^{i}-\sum_{v \in V[S]}(n-1) \bar{y}_{v}^{i}=|S|-|V[S]|(n-1) \frac{1+\epsilon}{n}
$$

and such expression is maximized when graph $G[S]$ is the densest possible. However, $G[S]$ is required to have girth greater than or equal to n. Hence, if $G[S]$ contains a cycle, it must be an Hamiltonian cycle. As showed by (5.12), if $G[S]$ is an Hamiltonian cycle, then there exists a girth inequality violated by (\bar{x}, \bar{y}). On the other hand, if $G[S]$ is acyclic (a forest), then $n \geq|V[S]| \geq|S|+1$, and hence

$$
\begin{aligned}
|S|-|V[S]|(n-1) \frac{1+\epsilon}{n} & \leq|S|-|V[S]|(|V[S]|-1) \frac{1+\epsilon}{|V[S]|} \\
& \leq|S|-(|S|)(1+\epsilon)=-|S| \epsilon \\
& \leq 0 .
\end{aligned}
$$

Thus if one is able to find a violated girth inequality, then the cycle defined by $G[S]$ solves the Hamiltonian Cycle problem on $G=(V, E)$.

Theorem 5.3 shows that, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, an efficient algorithm capable of solving the separation problem associated with girth inequalities (4.53) cannot be achieved. For this reason, such separation problem should be solved heuristically. Next, we propose an heuristic for finding a violated girth inequality.

Given a vehicle $i \in K$ and a station $j \in V$, consider graph $G\left[\Delta_{E}(j)\right]$ with edge weights $w_{e}=(C+1) \bar{x}_{e}^{i}$ for $e \in \Delta_{E}(j)$. The heuristic proposed for solving the separation problem associated with girth inequalities (4.53) is based on the idea of building a maximum cost spanning tree T of $G\left[\Delta_{E}(j)\right]$ and then including additional edges to T such that the resulting graph does not contain any cycle of size less than or equal to C.

Since a spanning tree is supposed to cover all vertices in the graph, node weights can be ignored in the construction of T. Moreover, notice that

$$
\sum_{v \in V[S]} C \bar{y}_{v}^{i} \leq \sum_{v \in V\left[\Delta_{E}(j)\right]} C \bar{y}_{v}^{i},
$$

for any $S \subseteq \Delta_{E}(j)$. Therefore, if S is set to $E(T)$, the value of the left-hand side of inequality

$$
\sum_{e \in S}(C+1) \bar{x}_{e}^{i}-\sum_{v \in V[S]} C \bar{y}_{v}^{i} \leq 0
$$

can only be increased by including additional edges to S. An edge $u v$ can only be added to S if it does not creates a cycle in $G[S]$ with size less than or equal to C. This can be verified by computing the shortest path between nodes u and v in $G[S]$ with unit edge lengths. If the shortest path has length greater than or equal to C, then adding $u v$ to S can only create cycles of size strictly greater than C. Algorithm 6 formally describes such heuristic. It takes advantage of functions Kruskal ${ }^{2}$ and Dijkstra implemented in LEMON ${ }^{3}$. Dijkstra function takes as input a graph G, a cost map corresponding to the edge lengths in G, and two nodes u and v in $V(G)$. It returns the length of the shortest path between such nodes.

Impact of girth inequalities

As expected, the girth inequalities are most impactful when the instance under analysis is dense. However, the influence of the inclusion of girth inequalities into the branch-and-cut framework is much less significant than the inclusion of k-cardinality trees. Table 5.5 provides a comparison between the obtained performance results for dense instances when the separation of girth inequalities is active or not. The

[^9]```
Algorithm 6 Separation of girth inequalities (4.53)
Input: An instance (\(V, E, C\)) of U-SNP, and a fractional solution \((\bar{x}, \bar{y})\) of the linear
 relaxation of \(\operatorname{USNP}_{(V, E, C)}\)
Output: A "good" candidate girth inequality for cutting \((\bar{x}, \bar{y})\)
 for \(i=1, \ldots, p\) do
 for \(j=1, \ldots, n\) do
 for all \(e \in \Delta_{E}(j)\) do
 \(w_{e}=(C+1) \bar{x}_{e}^{i}\)
 length \(_{e}=\infty\)
 end for
 \(T=\operatorname{Kruskal}\left(G\left[\Delta_{E}(j)\right],-w\right)\)
 \(S=E(T)\)
 for all \(e \in S\) do
 length \(_{e}=1\)
 end for
 for all \(u v \in \Delta_{E}(j) \backslash S\) do
 if \(\operatorname{Dijkstra}\left(G\left[\Delta_{E}(j)\right]\right.\), length \(\left., u, v\right) \geq C\) then
 length \(_{u v}=1\)
 \(S=S \cup\{u v\}\)
 end if
 end for
 if \(\sum_{e \in S}(C+1) \bar{x}_{e}^{i}-\sum_{v \in V[S]} C \bar{y}_{v}^{i}>0\) then
 Add inequality \(\sum_{e \in S}(C+1) \bar{x}_{e}^{i}-\sum_{v \in V[S]} C \bar{y}_{v}^{i} \leq 0\) as a cut
 end if
 end for
 end for
```

inactive scenario stands for the branch-and-cut framework taking into account the separation of strong capacity inequalities and $k$-cardinality tree inequalities only, while active scenario also includes the separation of girth inequalities. Columns time ${ }_{g}, \mathrm{LB}_{g}, \mathrm{UB}_{g}, \mathrm{gap}_{g}$ and Nodes provide information on the global optimization process by showing, respectively, the total time spent in seconds, the lower and upper bounds obtained by the end of the optimization, the remaining gap and the number of nodes investigated in the enumeration tree. Finally, column Cuts displays the number of girth inequalities added to the formulation throughout the optimization process.

Table 5.5: Impact of the inclusion of girth inequalities

| Instances |  |  |  | inactive |  |  |  |  | active |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | $i$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | Cuts |
| 30 | 2 | 4.5 | 1 | 12.7 | 24 | 24 | 0 | 1 | 8.9 | 24 | 24 | 0 | 0.5 | 12 |
| 30 | 2 | 4.5 | 2 | 1002 | 26 | 26 | 0 | 112.9 | 638.7 | 26 | 26 | 0 | 71.4 | 34 |
| 30 | 2 | 4.5 | 3 | 288.5 | 26 | 26 | 0 | 29 | 60 | 26 | 26 | 0 | 4.7 | 56 |
| 30 | 2 | 4.5 | 4 | 0.2 | 27 | 27 | 0 | 0 | 0.2 | 27 | 27 | 0 | 0 | 0 |
| 30 | 2 | 4.5 | 5 | 0.4 | 27 | 27 | 0 | 0 | 0.5 | 27 | 27 | 0 | 0 | 0 |
| 35 | 2 | 4.5 | 1 | 7200 | 31 | 32 | 3.12 | 360.5 | 7200 | 31 | 32 | 3.12 | 357.3 | 166 |
| 35 | 2 | 4.5 | 2 | 7200 | 29 | 32 | 9.33 | 635.2 | 7200 | 29 | 32 | 9.37 | 481.2 | 168 |
| Continued on Next Page. . |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5.5 - Continued

| Instances |  |  |  | inactive |  |  |  |  | active |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | $i$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | Cuts |
| 35 | 2 | 4.5 | 3 | 311.2 | 30 | 30 | 0 | 7.3 | 2388.8 | 30 | 30 | 0 | 31.7 | 252 |
| 35 | 2 | 4.5 | 4 | 28.8 | 33 | 33 | 0 | 2.1 | 46.2 | 33 | 33 | 0 | 1.9 | 96 |
| 35 | 2 | 4.5 | 5 | 7200 | 29.1 | 31 | 6.23 | 698.3 | 7200 | 29.5 | 31 | 4.84 | 826.4 | 157 |
| 40 | 2 | 4.5 | 1 | 7200 | 33.5 | 35 | 4.29 | 337.4 | 7200 | 34 | 35 | 2.86 | 404.4 | 167 |
| 40 | 2 | 4.5 | 2 | 7200 | 33.5 | 36 | 6.94 | 426.8 | 7200 | 33.7 | 36 | 6.44 | 282.3 | 226 |
| 40 | 2 | 4.5 | 3 | 7200 | 33 | 34 | 2.94 | 248.4 | 7200 | 33 | 34 | 2.94 | 172.4 | 124 |
| 40 | 2 | 4.5 | 4 | 7200 | 34 | 35 | 2.86 | 248.3 | 7200 | 34 | 35 | 2.86 | 216.6 | 193 |
| 40 | 2 | 4.5 | 5 | 7200 | 33 | 35 | 5.71 | 233.2 | 7200 | 33 | 35 | 5.71 | 190.2 | 482 |
| 45 | 2 | 4.5 | 1 | 7200 | 39 | 42 | 7.14 | 105.9 | 7200 | 39 | 42 | 7.14 | 110.4 | 473 |
| 45 | 2 | 4.5 | 2 | 7200 | 40.5 | 42 | 3.57 | 126.9 | 7200 | 40.2 | 42 | 4.29 | 84.7 | 764 |
| 45 | 2 | 4.5 | 3 | 7200 | 39.5 | 42 | 5.95 | 75.5 | 7200 | 40 | 42 | 4.76 | 59.7 | 750 |
| 45 | 2 | 4.5 | 4 | 7200 | 43 | 46 | 6.52 | 62.5 | 7200 | 43 | 45 | 4.44 | 55.5 | 1450 |
| 45 | 2 | 4.5 | 5 | 7200 | 36 | 39 | 7.58 | 66.5 | 7200 | 36.2 | 39 | 7.05 | 44 | 240 |
| 50 | 2 | 4.5 | 1 | 7200 | 44 | 47 | 6.38 | 103.6 | 7200 | 44 | 47 | 6.38 | 48.5 | 835 |
| 50 | 2 | 4.5 | 2 | 7200 | 41.5 | 44 | 5.68 | 62.7 | 7200 | 42 | 44 | 4.55 | 75.5 | 429 |
| 50 | 2 | 4.5 | 3 | 7200 | 44.5 | 48 | 7.29 | 67.7 | 7200 | 44.5 | 48 | 7.29 | 41.2 | 476 |
| 50 | 2 | 4.5 | 4 | 7200 | 44.5 | 49 | 9.18 | 22.9 | 7200 | 44.5 | 48 | 7.29 | 7.7 | 1110 |
| 50 | 2 | 4.5 | 5 | 7200 | 43 | 48 | 10.42 | 11.7 | 7200 | 43 | 49 | 12.24 | 7.3 | 970 |
| 55 | 2 | 4.5 | 1 | 7200 | 46 | 49 | 6.12 | 66.5 | 7200 | 46 | 49 | 6.12 | 18.1 | 880 |
| 55 | 2 | 4.5 | 2 | 7200 | 47.2 | 51 | 7.52 | 29.8 | 7200 | 47 | 51 | 7.84 | 19.4 | 695 |
| 55 | 2 | 4.5 | 3 | 7200 | 46 | 51 | 9.8 | 32.1 | 7200 | 46 | 51 | 9.8 | 17.2 | 760 |
| 55 | 2 | 4.5 | 4 | 7200 | 47 | 53 | 11.32 | 7.1 | 7200 | 47 | 53 | 11.32 | 0 | 1 |
| 55 | 2 | 4.5 | 5 | 7200 | 51 | 55 | 7.27 | 17.9 | 7200 | 51 | 57 | 10.53 | 10.5 | 1211 |
| 60 | 2 | 4.5 | 1 | 7200 | 52 | 59 | 11.86 | 2.6 | 7200 | 52 | 58 | 10.34 | 5.8 | 316 |
| 60 | 2 | 4.5 | 2 | 7200 | 49 | 59 | 16.95 | 0 | 7200 | 49 | 59 | 16.95 | 0 | 0 |
| 60 | 2 | 4.5 | 3 | 7200 | 53 | 57 | 7.02 | 16.8 | 7200 | 53 | 57 | 7.02 | 11.9 | 869 |
| 60 | 2 | 4.5 | 4 | 7200 | 54 | 59 | 8.47 | 11.9 | 7200 | 53.5 | 59 | 9.32 | 6.1 | 1714 |
| 60 | 2 | 4.5 | 5 | 7200 | 51 | 61 | 16.39 | 0 | 7200 | 51 | 61 | 16.39 | 0 | 0 |

The performance results obtained are varied. For some instances (e.g., 30_2_4.5_2 and 30_2_4.5_3) optimality could be proved faster with the inclusion of girth inequalities. On the other hand, there are cases (e.g., 35_2_4.5_3) where the inclusion of such inequalities significantly slows down the performance of the branch-and-cut algorithm. In average, the inclusion of girth inequalities resulted in the reduction of the remaining gap by $0.13 \%$. Moreover, considering only the instances that could be solved to optimality within the time limit, the number of nodes required to be explored in order to prove optimality went down from 21,757 to 15,743 in average.

The relative small number of cuts generated by the separation procedure is explained by the fact that Algorithm 6 is executed only when no violated strong capacity inequality nor $k$-cardinality tree inequality is identified. This explains the fact that for some instances (e.g., 60_2_4.5_2 and 60_2_4.5_5) no girth inequality was included and the obtained performances are exactly the same for both scenarios.

### 5.4.4 Further considerations

The separation of other families of valid inequalities identified in Chapter 4 such as the generalized k -cardinality tree inequalities (4.50) or the constructed valid inequalities presented in Section 4.4.5 are not implemented in our Branch-and-Cut
framework. Some work has been dedicated to the inclusion of such additional inequalities, but the preliminary results achieved so far do not yield better computational performances. In Appendix B, some of these results are briefly discussed.

Finally, it is likely that better performances could be achieved by taking into consideration such additional inequalities and including them using more refined heuristic separation procedures. The development of such procedures is by itself a relevant area of research that can be addressed in future works.

### 5.5 Final results

The final version of the developed Branch-and-Cut framework takes into account the strong capacity inequalities (4.34), (4.36), the $k$-cardinality tree inequalities (4.40) and the girth inequalities (4.53), (4.54). Such inequalities are added on demand by applying the algorithms presented in the previous section over each LP relaxation solution obtained during the optimization. For this, the algorithms are implemented within the UserCutCallback routine from CPLEX that is called after solving each node LP in the enumeration tree. Algorithms 5 and 6 are applied for solving the separation problems associated with inequalities (4.40) and (4.53), respectively. Since such algorithms are relatively slower if compared to the separation problem associated with strong capacity inequalities, they are only called when no additional strong capacity inequality is able of cutting off the given LP solution.

In addition, in order to avoid spending too much time in the search for valid inequalities, we choose to not apply the separation routine on every node LP. Such approach is widely applied in the literature and the strategy for deciding whether or not the separation routine should be called varies according to the problem under analysis. For instance, in Cordeau [37] the separation routine is only applied if a given subset of variables is integer in the current LP solution. In our case, the following scheme is applied. An integer parameter named pace is used to guide the strategy. Parameter pace indicates the rhythm on which separation routine should be skipped. That is, if pace $=i$, then the separation routine is applied on every $i$ nodes. Such parameter is initialized at 1 at the beginning of the optimization process, meaning that the separation routine should be called on every node at first. Once the separation routine is unable to find any violated cut, skipping separation is stimulated by multiplying ${ }^{4}$ pace by 2 . Finally, whenever the separation routine finds again a violated cut, pace is reset to 1 . Such strategy allows the optimization process to adapt itself to the instance being solved by ignoring the separation routine if it

[^10]is not capable of reinforcing the formulation.
Symmetry is handled by fixing variables on each branching phase, through the Orbitopal Fixing procedure described in Section 5.1. For this, Algorithms 2 and 3 are then implemented within the BranchCallback routine from CPLEX that is called after a branch has been selected but before the branch is effectively carried out during the optimization of a MILP. Moreover, a significant amount of variables are eliminated by applying the upper bound on $p_{\text {opt }}$ identified in Section 5.2.

In Section 5.3, the difference of performances obtained from the interference in the variable choice for branching is reported. Based on such results, we choose to relax variables $y$ and apply formulation USNP- $\mathrm{X}_{(V, E, C)}$ when the instance is sparse (i.e., $\rho=1.5$ ). For every other instance, we choose to impose a branching preference on variables $y$ and apply formulation USNP- ${ }_{(V, E, C)}$.

The following table provides a comparison between the results achieved by the developed Branch-and-Cut framework (section Branch-and-Cut) and the ones achieved by CPLEX applied to the original formulation of Pimenta et al. [151] with no usercut generation and a dummy callback (section CPLEX). Results are given for each one of the 315 generated instances. Columns time ${ }_{g}, \mathrm{LB}_{g}, \mathrm{UB}_{g}$, gap $_{g}$ and Nodes provide information on the global optimization process by showing, respectively, the total time spent in seconds, the lower and upper bounds obtained by the end of the optimization, the remaining gap and the number of nodes investigated in the enumeration tree. Column cuts ${ }_{C P}$ refers to the number of cuts generated by CPLEX itself that were added during the optimization. Columns cuts $S_{S C}$, cuts $_{K T}$ and cuts ${ }_{G}$ stand for the number of violated strong capacity inequalities, $k$-cardinality tree inequalities and girth inequalities included throughout the optimization, respectively. Finally, columns cuts $_{\text {tot }}$ and time ${ }_{\text {cut }}$ provides the total number of user cuts added and the time spent solving the respective separation problems.
Table 5.6: Final results

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | cuts $_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\operatorname{cuts}_{C P}$ | cuts ${ }_{S C}$ | cuts $_{K T}$ | $\operatorname{cuts}_{G}$ | cuts ${ }_{\text {tot }}$ | time $_{\text {cut }}$ |
| 30 | 2 | 1.5 | 1 | 7200 | 22.6 | 35 | 35.33 | 808 | 143 | 36.5 | 35 | 35 | 0 | 1.9 | 0 | 143 | 491 | 81 | 715 | 2.5 |
| 30 | 2 | 1.5 | 2 | 7200 | 23.5 | 34 | 30.98 | 1114.2 | 123 | 1970.7 | 34 | 34 | 0 | 216.7 | 0 | 137 | 596 | 104 | 837 | 4.3 |
| 30 | 2 | 1.5 | 3 | 7200 | 22.5 | 36 | 37.63 | 782.2 | 139 | 234.2 | 36 | 36 | 0 | 14.2 | 0 | 176 | 507 | 70 | 753 | 2.1 |
| 30 | 2 | 1.5 | 4 | 7200 | 22.3 | 34 | 34.38 | 910.9 | 131 | 105.8 | 34 | 34 | 0 | 7.8 | 0 | 128 | 359 | 70 | 557 | 1.5 |
| 30 | 2 | 1.5 | 5 | 7200 | 23.9 | 36 | 33.72 | 782.9 | 105 | 3428 | 36 | 36 | 0 | 839.8 | 0 | 128 | 579 | 64 | 771 | 5 |
| 35 | 2 | 1.5 | 1 | 7200 | 25.1 | 41 | 38.87 | 591.1 | 109 | 6007 | 41 | 41 | 0 | 433.1 | 0 | 207 | 835 | 75 | 1117 | 7 |
| 35 | 2 | 1.5 | 2 | 7200 | 27.7 | 44 | 36.94 | 274.9 | 503 | 7200 | 41 | 44 | 6.82 | 401.5 | 0 | 247 | 939 | 120 | 1306 | 9.3 |
| 35 | 2 | 1.5 | 3 | 7200 | 24.8 | 40 | 38.02 | 666.7 | 123 | 55.4 | 40 | 40 | 0 | 0.6 | 0 | 189 | 380 | 41 | 610 | 2.3 |
| 35 | 2 | 1.5 | 4 | 7200 | 24.8 | 41 | 39.39 | 354.4 | 152 | 7200 | 39.3 | 41 | 4.13 | 535.8 | 0 | 246 | 872 | 81 | 1199 | 6.3 |
| 35 | 2 | 1.5 | 5 | 7200 | 25.1 | 40 | 37.32 | 427 | 417 | 6452.4 | 40 | 40 | 0 | 345.7 | 0 | 206 | 1070 | 95 | 1371 | 9.8 |
| 40 | 2 | 1.5 | 1 | 7200 | 26.8 | 51 | 47.42 | 356.9 | 15 | 7200 | 45.5 | 50 | 9.07 | 308.4 | 0 | 252 | 1662 | 115 | 2029 | 19.4 |
| 40 | 2 | 1.5 | 2 | 7200 | 27.4 | 48 | 42.99 | 234.1 | 168 | 7200 | 45.3 | 48 | 5.56 | 309.3 | 0 | 252 | 1105 | 109 | 1466 | 13.1 |
| 40 | 2 | 1.5 | 3 | 7200 | 28.7 | 46 | 37.68 | 323.6 | 182 | 3701.5 | 46 | 46 | 0 | 232.6 | 0 | 252 | 1070 | 130 | 1452 | 6.6 |
| 40 | 2 | 1.5 | 4 | 7200 | 26.9 | 46 | 41.45 | 236.7 | 210 | 7200 | 43 | 46 | 6.57 | 319.2 | 0 | 252 | 1078 | 128 | 1458 | 10.5 |
| 40 | 2 | 1.5 | 5 | 7200 | 27.9 | 48 | 41.95 | 229.3 | 188 | 7200 | 44.5 | 49 | 9.26 | 381.3 | 0 | 210 | 1250 | 124 | 1584 | 9 |
| 45 | 2 | 1.5 | 1 | 7200 | 29.8 | 50 | 40.36 | 141.1 | 236 | 7200 | 45.7 | 49 | 6.79 | 206.4 | 0 | 287 | 1318 | 168 | 1773 | 14.5 |
| 45 | 2 | 1.5 | 2 | 7200 | 29.8 | 53 | 43.69 | 112.6 | 181 | 7200 | 48.4 | 53 | 8.6 | 112.8 | 0 | 359 | 1679 | 102 | 2140 | 19.4 |
| 45 | 2 | 1.5 | 3 | 7200 | 32.4 | 55 | 41.14 | 119.2 | 197 | 7200 | 49.8 | 55 | 9.36 | 249.3 | 0 | 335 | 958 | 142 | 1435 | 12.9 |
| 45 | 2 | 1.5 | 4 | 7200 | 30.3 | 55 | 44.87 | 92.3 | 163 | 7200 | 49.6 | 54 | 8.13 | 111.9 | 0 | 431 | 1909 | 118 | 2458 | 20.2 |
| 45 | 2 | 1.5 | 5 | 7200 | 31.1 | 53 | 41.37 | 122 | 209 | 7200 | 49.4 | 53 | 6.81 | 89.2 | 0 | 359 | 1737 | 174 | 2270 | 18.5 |
| 50 | 2 | 1.5 | 1 | 7200 | 35.5 | 63 | 43.63 | 59.5 | 231 | 7200 | 57 | 62 | 8 | 87.5 | 0 | 390 | 2109 | 335 | 2834 | 52.9 |
| 50 | 2 | 1.5 | 2 | 7200 | 33.8 | 60 | 43.65 | 62.8 | 224 | 7200 | 53.7 | 59 | 9 | 142.2 | 0 | 388 | 1407 | 195 | 1990 | 20.7 |
| 50 | 2 | 1.5 | 3 | 7200 | 32.7 | 58 | 43.66 | 97.2 | 201 | 7200 | 53.9 | 58 | 7.08 | 104.1 | 0 | 257 | 1234 | 142 | 1633 | 14.6 |
| 50 | 2 | 1.5 | 4 | 7200 | 32.7 | 62 | 47.2 | 36.8 | 148 | 7200 | 52.8 | 60 | 12.06 | 101.5 | 0 | 442 | 1534 | 179 | 2155 | 26.5 |
| 50 | 2 | 1.5 | 5 | 7200 | 33.3 | 61 | 45.46 | 83.7 | 245 | 7200 | 54.8 | 60 | 8.72 | 147.7 | 0 | 464 | 1775 | 95 | 2334 | 21.9 |
| 55 | 2 | 1.5 | 1 | 7200 | 37.2 | 65 | 42.8 | 47.4 | 290 | 7200 | 58.6 | 64 | 8.39 | 36.2 | 0 | 435 | 1913 | 171 | 2519 | 24.9 |
| 55 | 2 | 1.5 | 2 | 7200 | 38.3 | 67 | 42.85 | 59.8 | 300 | 7200 | 60 | 66 | 9.03 | 10.7 | 0 | 435 | 2725 | 149 | 3309 | 46.3 |
| 55 | 2 | 1.5 | 3 | 7200 | 36.8 | 63 | 41.64 | 40.9 | 224 | 7200 | 57 | 62 | 8.12 | 101.5 | 0 | 406 | 1652 | 179 | 2237 | 26.6 |
| 55 | 2 | 1.5 | 4 | 7200 | 36.2 | 65 | 44.38 | 43.8 | 274 | 7200 | 57.7 | 64 | 9.81 | 52.2 | 0 | 435 | 2048 | 160 | 2643 | 34.4 |
| 55 | 2 | 1.5 | 5 | 7200 | 34.9 | 66 | 47.16 | 52.3 | 203 | 7200 | 58 | 65 | 10.85 | 29.2 | 0 | 493 | 2360 | 220 | 3073 | 47 |
| 60 | 2 | 1.5 | 1 | 7200 | 40.6 | 74 | 45.17 | 17.2 | 306 | 7200 | 65.1 | 73 | 10.84 | 4.3 | 0 | 548 | 2812 | 135 | 3495 | 43.6 |
| 60 | 2 | 1.5 | 2 | 7200 | 40.6 | 74 | 45.1 | 37.8 | 216 | 7200 | 65.2 | 73 | 10.68 | 13.2 | 0 | 555 | 2597 | 329 | 3481 | 63.3 |
| 60 | 2 | 1.5 | 3 | 7200 | 39 | 72 | 45.83 | 24.4 | 240 | 7200 | 60 | 75 | 20 | 0 | 0 | 620 | 2027 | 0 | 2647 | 21.2 |
| 60 | 2 | 1.5 | 4 | 7200 | 41.3 | 72 | 42.58 | 34.5 | 369 | 7200 | 63 | 76 | 17.11 | 0 | 0 | 558 | 2648 | 0 | 3206 | 30.3 |
| 60 | 2 | 1.5 | 5 | 7200 | 40 | 71 | 43.62 | 27.3 | 284 | 7200 | 63.4 | 70 | 9.36 | 69.2 | 0 | 496 | 1973 | 318 | 2787 | 49.8 |
| 30 | 5 | 1.5 | 1 | 7200 | 19.5 | 25 | 22.08 | 1318.6 | 40 | 27.3 | 25 | 25 | 0 | 2.9 | 0 | 16 | 739 | 101 | 856 | 2.1 |
| 30 | 5 | 1.5 | 2 | 7200 | 22.4 | 27 | 16.99 | 1255.4 | 8 | 14 | 27 | 27 | 0 | 0.9 | 3 | 0 | 398 | 52 | 450 | 0.7 |
| 30 | 5 | 1.5 | 3 | 7200 | 22.6 | 27 | 16.25 | 1222.2 | 33 | 4.4 | 27 | 27 | 0 | 0.4 | 1 | 11 | 266 | 39 | 316 | 0.8 |
| 30 | 5 | 1.5 | 4 | 7200 | 21.4 | 27 | 20.58 | 1108.9 | 12 | 17.8 | 27 | 27 | 0 | 4 | 0 | 11 | 247 | 11 | 269 | 0.9 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | cuts $C P$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\operatorname{gap}_{g}$ | Nodes | cuts $_{C P}$ | cuts ${ }_{S C}$ | $\mathrm{cuts}_{K T}$ | cuts $_{G}$ | cuts $_{\text {tot }}$ | time $_{\text {cut }}$ |
| 30 | 5 | 1.5 | 5 | 7200 | 22.2 | 28 | 20.67 | 1138.5 | 6 | 55.5 | 28 | 28 | 0 | 6.2 | 2 | 0 | 637 | 28 | 665 | 1.1 |
| 35 | 5 | 1.5 | 1 | 7200 | 23.4 | 31 | 24.6 | 627.6 | 26 | 571 | 31 | 31 | 0.01 | 24.8 | 0 | 24 | 1387 | 440 | 1851 | 11.5 |
| 35 | 5 | 1.5 | 2 | 7200 | 25.1 | 31 | 18.98 | 711.2 | 7 | 185.8 | 31 | 31 | 0 | 16.8 | 0 | 0 | 711 | 61 | 772 | 2.1 |
| 35 | 5 | 1.5 | 3 | 7200 | 23.2 | 29 | 19.96 | 712.2 | 7 | 78.3 | 29 | 29 | 0.01 | 9.4 | 1 | 12 | 424 | 37 | 473 | 1.8 |
| 35 | 5 | 1.5 | 4 | 7200 | 25.2 | 33 | 23.71 | 803.9 | 7 | 2590 | 33 | 33 | 0.01 | 90 | 0 | 0 | 2244 | 458 | 2702 | 16.2 |
| 35 | 5 | 1.5 | 5 | 7200 | 24.1 | 31 | 22.18 | 828.1 | 14 | 309.8 | 31 | 31 | 0 | 23.8 | 2 | 13 | 973 | 99 | 1085 | 3.7 |
| 40 | 5 | 1.5 | 1 | 7200 | 27.7 | 37 | 25 | 572.7 | 6 | 6112.2 | 37 | 37 | 0.01 | 281.5 | 2 | 15 | 1283 | 109 | 1407 | 10.1 |
| 40 | 5 | 1.5 | 2 | 7200 | 27.5 | 36 | 23.56 | 461.3 | 11 | 190.5 | 36 | 36 | 0.01 | 31.5 | 0 | 0 | 112 | 5 | 117 | 0.3 |
| 40 | 5 | 1.5 | 3 | 7200 | 27.5 | 37 | 25.55 | 441.1 | 4 | 7200 | 33.8 | 37 | 8.56 | 387.3 | 0 | 0 | 1627 | 215 | 1842 | 12 |
| 40 | 5 | 1.5 | 4 | 7200 | 27.5 | 37 | 25.55 | 503.8 | 7 | 2368.9 | 37 | 37 | 0.01 | 170.2 | 0 | 15 | 871 | 41 | 927 | 4.4 |
| 40 | 5 | 1.5 | 5 | 7200 | 26.7 | 33 | 19.13 | 552.2 | 19 | 310.8 | 33 | 33 | 0 | 26.3 | 0 | 18 | 483 | 36 | 537 | 2.4 |
| 45 | 5 | 1.5 | 1 | 7200 | 30.5 | 40 | 23.75 | 337.9 | 4 | 7200 | 36.9 | 40 | 7.83 | 390.4 | 3 | 0 | 1400 | 187 | 1587 | 10.2 |
| 45 | 5 | 1.5 | 2 | 7200 | 31.7 | 41 | 22.74 | 377.9 | 34 | 7200 | 38 | 41 | 7.24 | 186 | 0 | 30 | 2999 | 524 | 3553 | 41.6 |
| 45 | 5 | 1.5 | 3 | 7200 | 29.5 | 41 | 27.98 | 204.4 | 18 | 7200 | 37.7 | 41 | 7.99 | 197.7 | 0 | 16 | 1960 | 435 | 2411 | 29.8 |
| 45 | 5 | 1.5 | 4 | 7200 | 31.6 | 42 | 24.73 | 284.5 | 13 | 7200 | 38.7 | 42 | 7.82 | 319.5 | 0 | 16 | 1768 | 132 | 1916 | 14.8 |
| 45 | 5 | 1.5 | 5 | 7200 | 29.6 | 43 | 31.25 | 218.4 | 15 | 7200 | 37.4 | 43 | 12.93 | 153.4 | 1 | 0 | 2712 | 366 | 3078 | 49.8 |
| 50 | 5 | 1.5 | 1 | 7200 | 33 | 46 | 28.26 | 192.6 | 5 | 7200 | 41 | 46 | 10.78 | 132 | 0 | 34 | 3406 | 727 | 4167 | 75.4 |
| 50 | 5 | 1.5 | 2 | 7200 | 33.9 | 47 | 27.84 | 146.1 | 27 | 7200 | 42.4 | 46 | 7.79 | 158.2 | 1 | 16 | 1525 | 230 | 1771 | 14.1 |
| 50 | 5 | 1.5 | 3 | 7200 | 34 | 46 | 26.09 | 169 | 3 | 7200 | 42.7 | 46 | 7.13 | 258.4 | 0 | 0 | 1276 | 138 | 1414 | 12 |
| 50 | 5 | 1.5 | 4 | 7200 | 32 | 48 | 33.42 | 120.8 | 13 | 7200 | 40.5 | 48 | 15.72 | 93.3 | 0 | 18 | 4002 | 614 | 4634 | 93.1 |
| 50 | 5 | 1.5 | 5 | 7200 | 32.9 | 48 | 31.52 | 133.5 | 12 | 7200 | 41.2 | 48 | 14.23 | 82 | 0 | 0 | 4225 | 213 | 4438 | 68.7 |
| 55 | 5 | 1.5 | 1 | 7200 | 35.8 | 52 | 31.07 | 69.2 | 19 | 7200 | 45 | 51 | 11.73 | 195.6 | 1 | 19 | 1701 | 152 | 1872 | 33.1 |
| 55 | 5 | 1.5 | 2 | 7200 | 35.8 | 51 | 29.72 | 58.9 | 59 | 7200 | 45.2 | 52 | 13.07 | 42.7 | 0 | 60 | 6032 | 499 | 6591 | 138.6 |
| 55 | 5 | 1.5 | 3 | 7200 | 36.9 | 50 | 26.28 | 116.8 | 37 | 7200 | 44.4 | 50 | 11.2 | 56.9 | 0 | 20 | 2831 | 831 | 3682 | 67.5 |
| 55 | 5 | 1.5 | 4 | 7200 | 33.8 | 50 | 32.32 | 67.7 | 67 | 7200 | 42.2 | 50 | 15.52 | 31.2 | 1 | 39 | 6316 | 1789 | 8144 | 174.2 |
| 55 | 5 | 1.5 | 5 | 7200 | 36.9 | 52 | 29.11 | 103.2 | 42 | 7200 | 44.8 | 52 | 13.91 | 110.3 | 4 | 20 | 3404 | 367 | 3791 | 54.9 |
| 60 | 5 | 1.5 | 1 | 7200 | 36.8 | 50 | 26.42 | 66.3 | 9 | 7200 | 44.8 | 50 | 10.48 | 54.8 | 0 | 41 | 3122 | 353 | 3516 | 47.6 |
| 60 | 5 | 1.5 | 2 | 7200 | 38.8 | 54 | 28.11 | 53.7 | 11 | 7200 | 48.1 | 53 | 9.25 | 47.9 | 0 | 40 | 3254 | 400 | 3694 | 59.9 |
| 60 | 5 | 1.5 | 3 | 7200 | 38.8 | 57 | 31.85 | 54.8 | 23 | 7200 | 48.5 | 56 | 13.47 | 61.9 | 0 | 39 | 4211 | 830 | 5080 | 92.8 |
| 60 | 5 | 1.5 | 4 | 7200 | 37.8 | 56 | 32.42 | 59.4 | 9 | 7200 | 46.8 | 54 | 13.37 | 87.6 | 0 | 21 | 3324 | 180 | 3525 | 52.3 |
| 60 | 5 | 1.5 | 5 | 7200 | 38.9 | 58 | 32.99 | 67.9 | 15 | 7200 | 48.7 | 57 | 14.54 | 33.3 | 0 | 0 | 5635 | 596 | 6231 | 142.6 |
| 30 | 8 | 1.5 | 1 | 2351.4 | 24 | 24 | 0 | 538 | 4 | 2 | 24 | 24 | 0 | 0.1 | 1 | 0 | 190 | 9 | 199 | 0.2 |
| 30 | 8 | 1.5 | 2 | 3311.8 | 23 | 23 | 0 | 569.7 | 5 | 1.1 | 23 | 23 | 0 | 0.1 | 2 | 0 | 74 | 14 | 88 | 0.1 |
| 30 | 8 | 1.5 | 3 | 7200 | 21.2 | 24 | 11.7 | 1037.3 | 11 | 0.8 | 24 | 24 | 0 | 0.3 | 2 | 0 | 32 | 2 | 34 | 0 |
| 30 | 8 | 1.5 | 4 | 7200 | 20.5 | 23 | 10.84 | 1200.1 | 6 | 1 | 23 | 23 | 0 | 0.6 | 3 | 0 | 15 | 0 | 15 | 0 |
| 30 | 8 | 1.5 | 5 | 3134.4 | 24 | 24 | 0 | 494.7 | 6 | 1.1 | 24 | 24 | 0 | 0.2 | 0 | 0 | 62 | 6 | 68 | 0.1 |
| 35 | 8 | 1.5 | 1 | 7200 | 25 | 29 | 13.95 | 701.3 | 4 | 5.1 | 29 | 29 | 0 | 1.1 | 0 | 0 | 129 | 7 | 136 | 0.4 |
| 35 | 8 | 1.5 | 2 | 7200 | 23.8 | 25 | 4.73 | 821.8 | 6 | 2.6 | 25 | 25 | 0 | 0 | 1 | 0 | 195 | 5 | 200 | 0.3 |
| 35 | 8 | 1.5 | 3 | 7200 | 24.7 | 29 | 14.7 | 638.2 | 4 | 12.4 | 29 | 29 | 0 | 0.2 | 2 | 0 | 858 | 87 | 945 | 2.3 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | gap $_{g}$ | Nodes | cuts $_{C P}$ | cuts $_{S C}$ | $\mathrm{cuts}_{K T}$ | $\mathrm{cuts}_{G}$ | cuts $_{\text {tot }}$ | time $_{\text {cut }}$ |
| 35 | 8 | 1.5 | 4 | 7200 | 24.3 | 27 | 9.88 | 744.5 | 7 | 10.8 | 27 | 27 | 0 | 0.1 | 2 | 0 | 567 | 144 | 711 | 1.7 |
| 35 | 8 | 1.5 | 5 | 7200 | 24 | 28 | 14.14 | 920.7 | 11 | 13 | 28 | 28 | 0 | 1.4 | 2 | 0 | 356 | 44 | 400 | 0.7 |
| 40 | 8 | 1.5 | 1 | 7200 | 26.6 | 32 | 16.96 | 394.5 | 3 | 9.7 | 32 | 32 | 0 | 1.9 | 0 | 0 | 147 | 9 | 156 | 0.3 |
| 40 | 8 | 1.5 | 2 | 7200 | 26.7 | 31 | 13.98 | 504.9 | 6 | 26.2 | 31 | 31 | 0 | 1.1 | 0 | 0 | 745 | 93 | 838 | 1.7 |
| 40 | 8 | 1.5 | 3 | 7200 | 24.4 | 31 | 21.2 | 457.5 | 5 | 466.8 | 31 | 31 | 0 | 19.7 | 0 | 0 | 1905 | 135 | 2040 | 8.1 |
| 40 | 8 | 1.5 | 4 | 7200 | 27.7 | 34 | 18.55 | 513.5 | 5 | 338 | 34 | 34 | 0 | 27.3 | 4 | 0 | 917 | 127 | 1044 | 4.8 |
| 40 | 8 | 1.5 | 5 | 7200 | 27.6 | 32 | 13.69 | 451.2 | 3 | 4.3 | 32 | 32 | 0 | 0.4 | 2 | 0 | 157 | 18 | 175 | 0.3 |
| 45 | 8 | 1.5 | 1 | 7200 | 31.3 | 38 | 17.62 | 259.2 | 4 | 227.6 | 38 | 38 | 0.01 | 13.4 | 0 | 0 | 1197 | 103 | 1300 | 5.2 |
| 45 | 8 | 1.5 | 2 | 7200 | 31.4 | 38 | 17.47 | 225.6 | 9 | 131.1 | 38 | 38 | 0 | 6.2 | 2 | 0 | 914 | 26 | 940 | 4.2 |
| 45 | 8 | 1.5 | 3 | 7200 | 28.4 | 36 | 21.22 | 289.7 | 7 | 4217.1 | 36 | 36 | 0.01 | 60.1 | 0 | 0 | 3156 | 881 | 4037 | 27.5 |
| 45 | 8 | 1.5 | 4 | 7200 | 29.3 | 36 | 18.6 | 263.7 | 2 | 346.3 | 36 | 36 | 0 | 13.7 | 0 | 0 | 1039 | 123 | 1162 | 6.7 |
| 45 | 8 | 1.5 | 5 | 7200 | 30.3 | 36 | 15.91 | 366.1 | 3 | 26.9 | 36 | 36 | 0 | 1.5 | 0 | 0 | 384 | 27 | 411 | 1.5 |
| 50 | 8 | 1.5 | 1 | 7200 | 33.1 | 41 | 19.3 | 193.7 | 4 | 1625.2 | 41 | 41 | 0.01 | 59.6 | 0 | 0 | 1216 | 129 | 1345 | 13.1 |
| 50 | 8 | 1.5 | 2 | 7200 | 31 | 38 | 18.42 | 191.7 | 6 | 1014.1 | 38 | 38 | 0.01 | 24.7 | 4 | 0 | 2266 | 67 | 2333 | 16.9 |
| 50 | 8 | 1.5 | 3 | 7200 | 31 | 39 | 20.51 | 176.2 | 5 | 835.9 | 39 | 39 | 0 | 23.5 | 0 | 0 | 1306 | 206 | 1512 | 10 |
| 50 | 8 | 1.5 | 4 | 7200 | 32 | 41 | 21.95 | 161.5 | 6 | 7200 | 39.6 | 41 | 3.41 | 239 | 0 | 0 | 2300 | 171 | 2471 | 23.7 |
| 50 | 8 | 1.5 | 5 | 7200 | 33 | 42 | 21.43 | 161.1 | 8 | 7200 | 40.2 | 42 | 4.18 | 158.6 | 0 | 0 | 2595 | 293 | 2888 | 37 |
| 55 | 8 | 1.5 | 1 | 7200 | 34.7 | 44 | 21.06 | 99.9 | 3 | 7200 | 40.8 | 44 | 7.32 | 162.1 | 2 | 0 | 2983 | 260 | 3243 | 32.7 |
| 55 | 8 | 1.5 | 2 | 7200 | 35.8 | 45 | 20.43 | 149.7 | 5 | 7200 | 42 | 45 | 6.63 | 194.1 | 0 | 0 | 2502 | 345 | 2847 | 29.7 |
| 55 | 8 | 1.5 | 3 | 7200 | 35.7 | 44 | 18.86 | 105 | 6 | 816.7 | 44 | 44 | 0 | 53.4 | 1 | 0 | 515 | 59 | 574 | 6.1 |
| 55 | 8 | 1.5 | 4 | 7200 | 36.7 | 46 | 20.16 | 94.4 | 4 | 7200 | 43.9 | 46 | 4.59 | 295 | 0 | 0 | 1448 | 81 | 1529 | 15.1 |
| 55 | 8 | 1.5 | 5 | 7200 | 34.8 | 47 | 26 | 64.5 | 7 | 7200 | 42.2 | 47 | 10.27 | 46.8 | 0 | 0 | 3821 | 2191 | 6012 | 130 |
| 60 | 8 | 1.5 | 1 | 7200 | 37.8 | 51 | 25.94 | 58.5 | 6 | 7200 | 45.2 | 51 | 11.35 | 36.7 | 0 | 0 | 6372 | 785 | 7157 | 111 |
| 60 | 8 | 1.5 | 2 | 7200 | 38.7 | 50 | 22.5 | 70.4 | 8 | 7200 | 45 | 50 | 9.96 | 34.5 | 0 | 0 | 6832 | 1865 | 8697 | 115.3 |
| 60 | 8 | 1.5 | 3 | 7200 | 40.8 | 53 | 23.06 | 54.3 | 4 | 7200 | 47.5 | 52 | 8.7 | 65 | 0 | 0 | 4248 | 1023 | 5271 | 98 |
| 60 | 8 | 1.5 | 4 | 7200 | 39.8 | 50 | 20.47 | 59 | 6 | 7200 | 46.1 | 50 | 7.73 | 71.1 | 1 | 0 | 4715 | 862 | 5577 | 77.9 |
| 60 | 8 | 1.5 | 5 | 7200 | 36.7 | 49 | 25.02 | 72.7 | 12 | 7200 | 43.8 | 49 | 10.68 | 64 | 0 | 11 | 6946 | 647 | 7604 | 89.1 |
| 30 | 2 | 3 | 1 | 7200 | 18 | 31 | 42.06 | 775 | 170 | 7200 | 28.7 | 31 | 7.55 | 1155.4 | 9 | 160 | 509 | 82 | 751 | 6.1 |
| 30 | 2 |  | 2 | 7200 | 16.5 | 29 | 43.01 | 834.1 | 131 | 1398.6 | 29 | 29 | 0 | 78.7 | 3 | 165 | 454 | 47 | 666 | 3.1 |
| 30 | 2 |  | 3 | 7200 | 15.2 | 31 | 50.94 | 806.6 | 169 | 7200 | 29.2 | 31 | 5.66 | 706.8 | 8 | 150 | 642 | 109 | 901 | 5.9 |
| 30 | 2 |  | 4 | 7200 | 15.1 | 27 | 43.98 | 636.1 | 157 | 111.6 | 27 | 27 | 0 | 5.4 | 0 | 144 | 482 | 107 | 733 | 2.8 |
| 30 | 2 | 3 | 5 | 7200 | 15.9 | 30 | 46.9 | 710.6 | 158 | 434.8 | 30 | 30 | 0 | 30.7 | 3 | 160 | 1130 | 114 | 1404 | 2.8 |
| 35 | 2 | 3 | 1 | 7200 | 14.1 | 35 | 59.6 | 616.4 | 121 | 7200 | 32.6 | 35 | 6.83 | 451.5 | 3 | 228 | 1389 | 156 | 1773 | 9.6 |
| 35 | 2 | 3 | 2 | 7200 | 14.4 | 33 | 56.44 | 443.6 | 119 | 173 | 33 | 33 | 0 | 7 | 5 | 247 | 818 | 73 | 1138 | 4.3 |
| 35 | 2 | 3 | 3 | 7200 | 18.8 | 35 | 46.43 | 365.7 | 189 | 3447.8 | 35 | 35 | 0 | 159.2 | 1 | 209 | 1036 | 244 | 1489 | 10.7 |
| 35 | 2 | 3 | 4 | 7200 | 17.7 | 32 | 44.79 | 590.4 | 161 | 25.5 | 32 | 32 | 0 | 0.2 | 0 | 203 | 420 | 71 | 694 | 1.8 |
| 35 | 2 | 3 | 5 | 7200 | 16.4 | 33 | 50.4 | 277.2 | 172 | 7200 | 32 | 33 | 3.03 | 841 | 7 | 208 | 680 | 42 | 930 | 6.1 |
| 40 | 2 | 3 | 1 | 7200 | 16.7 | 38 | 55.98 | 244 | 161 | 7200 | 34.8 | 38 | 8.39 | 168.3 | 4 | 294 | 1861 | 36 | 2191 | 12.2 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\operatorname{cuts}_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\operatorname{gap}_{g}$ | Nodes | cuts $_{C P}$ | cuts ${ }_{S C}$ | cuts $_{K T}$ | $\operatorname{cuts}_{G}$ | cuts $_{\text {tot }}$ | time $_{\text {cut }}$ |
| 40 | 2 | 3 | 2 | 7200 | 16.1 | 37 | 56.52 | 219.6 | 187 | 7200 | 34.4 | 37 | 6.99 | 123.5 | 4 | 315 | 1583 | 184 | 2082 | 14.2 |
| 40 | 2 | 3 | 3 | 7200 | 18.5 | 40 | 53.85 | 299.7 | 199 | 7200 | 36.6 | 40 | 8.55 | 115.7 | 2 | 315 | 2340 | 151 | 2806 | 13.4 |
| 40 | 2 | 3 | 4 | 7200 | 16.8 | 40 | 57.9 | 242 | 136 | 7200 | 37 | 40 | 7.5 | 236.8 | 2 | 272 | 1054 | 243 | 1569 | 20.2 |
| 40 | 2 | 3 | 5 | 7200 | 15.3 | 39 | 60.74 | 112.1 | 173 | 7200 | 33.9 | 39 | 12.96 | 118 | 3 | 315 | 2344 | 142 | 2801 | 19.6 |
| 45 | 2 | 3 | 1 | 7200 | 17.4 | 44 | 60.49 | 69.8 | 289 | 7200 | 39.7 | 44 | 9.85 | 125.2 | 1 | 360 | 1848 | 132 | 2340 | 24 |
| 45 | 2 | 3 | 2 | 7200 | 18.9 | 47 | 59.82 | 129.4 | 218 | 7200 | 42 | 47 | 10.55 | 19 | 3 | 384 | 3221 | 332 | 3937 | 38.7 |
| 45 | 2 | 3 | 3 | 7200 | 17.7 | 47 | 62.44 | 135.8 | 159 | 7200 | 42.8 | 47 | 8.84 | 64.2 | 2 | 336 | 2244 | 292 | 2872 | 37.7 |
| 45 | 2 | 3 | 4 | 7200 | 16.9 | 42 | 59.67 | 160.4 | 188 | 7200 | 39.5 | 42 | 5.97 | 147.1 | 0 | 427 | 1515 | 136 | 2078 | 26.7 |
| 45 | 2 | 3 | 5 | 7200 | 17.3 | 45 | 61.56 | 123.1 | 179 | 7200 | 40 | 45 | 11.05 | 67.5 | 1 | 408 | 1999 | 107 | 2514 | 19 |
| 50 | 2 | 3 | 1 | 7200 | 19.9 | 50 | 60.17 | 75.1 | 251 | 7200 | 45.5 | 50 | 9 | 34.9 | 1 | 490 | 2134 | 315 | 2939 | 45.4 |
| 50 | 2 | 3 | 2 | 7200 | 20.5 | 55 | 62.71 | 78 | 240 | 7200 | 48 | 55 | 12.73 | 0 | 0 | 390 | 2938 | 0 | 3328 | 14.2 |
| 50 | 2 | 3 | 3 | 7200 | 17.9 | 50 | 64.3 | 66.4 | 167 | 7200 | 43 | 49 | 12.24 | 9.8 | 0 | 416 | 2707 | 229 | 3352 | 30.5 |
| 50 | 2 | 3 | 4 | 7200 | 18.6 | 49 | 62.08 | 52.5 | 229 | 7200 | 45.3 | 49 | 7.64 | 15.7 | 4 | 416 | 2782 | 419 | 3617 | 52 |
| 50 | 2 | 3 | 5 | 7200 | 18.2 | 53 | 65.62 | 37.1 | 315 | 7200 | 43 | 52 | 17.31 | 0 | 0 | 468 | 2266 | 0 | 2734 | 10.3 |
| 55 | 2 | 3 | 1 | 7200 | 20.4 | 56 | 63.65 | 29.2 | 297 | 7200 | 48 | 57 | 15.79 | 0 | 0 | 609 | 1827 | 0 | 2436 | 11.5 |
| 55 | 2 | 3 | 2 | 7200 | 19.9 | 55 | 63.89 | 33.9 | 283 | 7200 | 48 | 57 | 15.79 | 0 | 0 | 551 | 2085 | 0 | 2636 | 12.2 |
| 55 | 2 | 3 | 3 | 7200 | 20.2 | 58 | 65.15 | 22.9 | 228 | 7200 | 49 | 61 | 19.67 | 0 | 0 | 551 | 1759 | 0 | 2310 | 11.4 |
| 55 | 2 | 3 | 4 | 7200 | 19.2 | 55 | 65.02 | 37.3 | 263 | 7200 | 48 | 58 | 17.24 | 0 | 0 | 609 | 1745 | 0 | 2354 | 11.8 |
| 55 | 2 | 3 | 5 | 7200 | 19.2 | 57 | 66.37 | 38.9 | 293 | 7200 | 50 | 56 | 10.71 | 0 | 0 | 551 | 2351 | 1 | 2903 | 16.1 |
| 60 | 2 | 3 | 1 | 7200 | 22 | 65 | 66.08 | 22.5 | 303 | 7200 | 56 | 67 | 16.42 | 0 | 0 | 744 | 1511 | 0 | 2255 | 13.4 |
| 60 | 2 | 3 | 2 | 7200 | 21.5 | 63 | 65.93 | 16 | 295 | 7200 | 54 | 63 | 14.29 | 0 | 0 | 651 | 1621 | 0 | 2272 | 13.7 |
| 60 | 2 | 3 | 3 | 7200 | 22.8 | 65 | 64.86 | 14.8 | 294 | 7200 | 55 | 64 | 14.06 | 0 | 0 | 651 | 1550 | 0 | 2201 | 13.1 |
| 60 | 2 | 3 | 4 | 7200 | 21.9 | 64 | 65.77 | 32.8 | 270 | 7200 | 54 | 66 | 18.18 | 0 | 0 | 651 | 1403 | 0 | 2054 | 11.3 |
| 60 | 2 | 3 | 5 | 7200 | 21.3 | 64 | 66.75 | 21.3 | 357 | 7200 | 56 | 64 | 12.5 | 0 | 0 | 651 | 1468 | 0 | 2119 | 12.7 |
| 30 | 5 | 3 | 1 | 7200 | 12.8 | 19 | 32.43 | 1040.6 | 59 | 64.3 | 19 | 19 | 0 | 14.5 | 2 | 43 | 476 | 53 | 572 | 1.2 |
| 30 | 5 | 3 | 2 | 7200 | 12.5 | 19 | 34.21 | 865.3 | 42 | 23.7 | 19 | 19 | 0 | 5.8 | 1 | 22 | 391 | 32 | 445 | 1 |
| 30 | 5 | 3 | 3 | 7200 | 12.8 | 18 | 28.76 | 1064.4 | 60 | 62.1 | 18 | 18 | 0 | 2.8 | 1 | 33 | 1760 | 390 | 2183 | 4.3 |
| 30 | 5 | 3 | 4 | 7200 | 12.8 | 18 | 29 | 1003.8 | 51 | 55 | 18 | 18 | 0 | 8.9 | 2 | 40 | 568 | 141 | 749 | 1.5 |
| 30 | 5 | 3 | 5 | 7200 | 12.7 | 19 | 32.97 | 1080.7 | 24 | 197.6 | 19 | 19 | 0 | 34.6 | 5 | 33 | 877 | 119 | 1029 | 1.8 |
| 35 | 5 | 3 | 1 | 7200 | 13.2 | 22 | 39.77 | 588.6 | 14 | 762.7 | 22 | 22 | 0 | 19.5 | 6 | 52 | 3491 | 214 | 3757 | 9.5 |
| 35 | 5 | 3 | 2 | 7200 | 13.5 | 21 | 35.77 | 760.5 | 32 | 144.8 | 21 | 21 | 0 | 31.4 | 3 | 52 | 287 | 49 | 388 | 1.8 |
| 35 | 5 | 3 | 3 | 7200 | 13.7 | 23 | 40.6 | 537.6 | 76 | 7200 | 21.2 | 23 | 7.67 | 438 | 9 | 65 | 1662 | 304 | 2031 | 10.9 |
| 35 | 5 | 3 | 4 | 7200 | 13.4 | 22 | 39.11 | 627.9 | 52 | 7200 | 19.3 | 22 | 12.09 | 147.8 | 1 | 52 | 3460 | 1340 | 4852 | 28.3 |
| 35 | 5 | 3 | 5 | 7200 | 13.5 | 21 | 35.69 | 574.4 | 75 | 278.3 | 21 | 21 | 0 | 42.8 | 5 | 43 | 425 | 63 | 531 | 1.9 |
| 40 | 5 | 3 | 1 | 7200 | 16 | 26 | 38.38 | 361.8 | 91 | 7200 | 23.9 | 26 | 7.91 | 133.1 | 1 | 75 | 3675 | 975 | 4725 | 37.3 |
| 40 | 5 | 3 | 2 | 7200 | 14.8 | 25 | 40.87 | 366 | 34 | 7200 | 23.1 | 25 | 7.75 | 252.1 | 2 | 73 | 2165 | 242 | 2480 | 15.9 |
| 40 | 5 | 3 | 3 | 7200 | 15 | 25 | 39.93 | 331.4 | 84 | 7200 | 22.4 | 25 | 10.38 | 223.8 | 4 | 74 | 1815 | 903 | 2792 | 22 |
| 40 | 5 | 3 | 4 | 7200 | 15 | 25 | 39.99 | 363.8 | 73 | 533.1 | 25 | 25 | 0 | 20.5 | 2 | 71 | 1400 | 600 | 2071 | 12.4 |
| 40 | 5 | 3 | 5 | 7200 | 15.2 | 26 | 41.52 | 325.5 | 87 | 7200 | 23.3 | 26 | 10.28 | 72.4 | 2 | 105 | 4870 | 1403 | 6378 | 43.8 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | gapg | Nodes | $\mathrm{cuts}_{C P}$ | $\mathrm{cuts}_{S C}$ | cuts $_{K T}$ | $\mathrm{cuts}_{G}$ | $\mathrm{cuts}_{\text {tot }}$ | time $_{\text {cut }}$ |
| 45 | 5 | 3 | 1 | 7200 | 16.5 | 31 | 46.79 | 198.1 | 87 | 7200 | 24.8 | 31 | 19.99 | 23.3 | 2 | 64 | 6931 | 3147 | 10142 | 92.3 |
| 45 | 5 | 3 | 2 | 7200 | 16.6 | 31 | 46.31 | 206.5 | 55 | 7200 | 24.7 | 31 | 20.32 | 52.8 | 1 | 78 | 4738 | 1751 | 6567 | 79.9 |
| 45 | 5 | 3 | 3 | 7200 | 16.8 | 30 | 44 | 183.9 | 91 | 7200 | 26.3 | 30 | 12.44 | 61.9 | 1 | 95 | 3375 | 2139 | 5609 | 69.1 |
| 45 | 5 | 3 | 4 | 7200 | 16.5 | 32 | 48.38 | 186.4 | 37 | 7200 | 25.9 | 32 | 19.1 | 9.9 | 0 | 96 | 9478 | 6379 | 15953 | 160.4 |
| 45 | 5 | 3 | 5 | 7200 | 16.7 | 31 | 46.24 | 240.5 | 66 | 7200 | 24.7 | 31 | 20.17 | 40.2 | 1 | 48 | 5542 | 3371 | 8961 | 96.2 |
| 50 | 5 | 3 | 1 | 7200 | 17.3 | 31 | 44.19 | 146.6 | 54 | 7200 | 26.6 | 33 | 19.48 | 37.6 | 1 | 108 | 6303 | 1650 | 8061 | 83.5 |
| 50 | 5 | 3 | 2 | 7200 | 17 | 35 | 51.43 | 114 | 77 | 7200 | 26.9 | 38 | 29.24 | 5.9 | 0 | 108 | 11041 | 5407 | 16556 | 244.6 |
| 50 | 5 | 3 | 3 | 7200 | 17 | 34 | 50 | 116 | 50 | 7200 | 26.4 | 36 | 26.77 | 19.2 | 3 | 88 | 7859 | 2957 | 10904 | 146.6 |
| 50 | 5 | 3 | 4 | 7200 | 17.3 | 34 | 49.24 | 116.2 | 104 | 7200 | 26.7 | 34 | 21.57 | 20.2 | 5 | 72 | 4915 | 4336 | 9323 | 159.6 |
| 50 | 5 | 3 | 5 | 7200 | 17.3 | 30 | 42.43 | 156.7 | 67 | 7200 | 26.5 | 30 | 11.73 | 107.8 | 4 | 125 | 2848 | 542 | 3515 | 51.5 |
| 55 | 5 | 3 | 1 | 7200 | 18.9 | 39 | 51.66 | 61.2 | 115 | 7200 | 29.8 | 41 | 27.35 | 7.9 | 0 | 140 | 9647 | 5309 | 15096 | 260.3 |
| 55 | 5 | 3 | 2 | 7200 | 18.8 | 36 | 47.65 | 70.3 | 109 | 7200 | 28 | 38 | 26.44 | 16.2 | 1 | 140 | 9654 | 3838 | 13632 | 194 |
| 55 | 5 | 3 | 3 | 7200 | 18.8 | 38 | 50.41 | 73.7 | 97 | 7200 | 29.3 | 40 | 26.8 | 16.5 | 1 | 140 | 8754 | 2055 | 10949 | 151.6 |
| 55 | 5 | 3 | 4 | 7200 | 18.8 | 34 | 44.64 | 83.1 | 63 | 7200 | 29.4 | 36 | 18.34 | 22.4 | 0 | 87 | 6170 | 2027 | 8284 | 125.8 |
| 55 | 5 | 3 | 5 | 7200 | 18.9 | 36 | 47.63 | 84.7 | 75 | 7200 | 30.3 | 36 | 15.81 | 54.3 | 3 | 114 | 5331 | 922 | 6367 | 145.6 |
| 60 | 5 | 3 | 1 | 7200 | 20.9 | 43 | 51.5 | 43.2 | 175 | 7200 | 31.5 | 45 | 29.93 | 14.2 | 3 | 116 | 10455 | 2848 | 13419 | 323.9 |
| 60 | 5 | 3 | 2 | 7200 | 20.8 | 42 | 50.36 | 45.4 | 116 | 7200 | 31.5 | 42 | 25.1 | 16.7 | 0 | 123 | 6882 | 2916 | 9921 | 214.9 |
| 60 | 5 | 3 | 3 | 7200 | 20.9 | 41 | 49.13 | 33.9 | 141 | 7200 | 32.2 | 43 | 25.02 | 10.2 | 0 | 168 | 11175 | 3280 | 14623 | 346.1 |
| 60 | 5 | 3 | 4 | 7200 | 20.8 | 39 | 46.54 | 52.4 | 82 | 7200 | 31.2 | 40 | 22.04 | 31.3 | 2 | 63 | 6749 | 1593 | 8405 | 160.9 |
| 60 | 5 | 3 | 5 | 7200 | 20.9 | 44 | 52.61 | 46.8 | 47 | 7200 | 31.6 | 44 | 28.19 | 14.5 | 0 | 111 | 6502 | 4316 | 10929 | 234 |
| 30 | 8 | 3 | 1 | 7200 | 12.4 | 16 | 22.45 | 982.9 | 32 | 0.4 | 16 | 16 | 0 | 0.2 | 8 | 7 | 2 | 0 | 9 | 0 |
| 30 | 8 | 3 | 2 | 233.4 | 13 | 13 | 0 | 35.3 | 27 | 0.2 | 13 | 13 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 30 | 8 | 3 | 3 | 1955.5 | 14 | 14 | 0 | 357 | 3 | 0.6 | 14 | 14 | 0 | 0.1 | 1 | 0 | 69 | 0 | 69 | 0.1 |
| 30 | 8 | 3 | 4 | 7200 | 12.5 | 15 | 16.41 | 1131 | 33 | 0.5 | 15 | 15 | 0 | 0 | 1 | 7 | 4 | 0 | 11 | 0 |
| 30 | 8 | 3 | 5 | 7200 | 12.5 | 15 | 16.47 | 1097.6 | 15 | 0.5 | 15 | 15 | 0 | 0.2 | 5 | 0 | 18 | 0 | 18 | 0 |
| 35 | 8 | 3 | 1 | 7200 | 13 | 18 | 27.78 | 665.1 | 39 | 2 | 18 | 18 | 0 | 0.5 | 2 | 13 | 128 | 9 | 150 | 0.3 |
| 35 | 8 | 3 | 2 | 7200 | 13.2 | 18 | 26.46 | 949.5 | 4 | 17.6 | 18 | 18 | 0 | 8.2 | 4 | 0 | 169 | 10 | 179 | 0.4 |
| 35 | 8 | 3 | 3 | 201.5 | 14 | 14 | 0 | 34.4 | 3 | 0.3 | 14 | 14 | 0 | 0 | 1 | 0 | 8 | 0 | 8 | 0 |
| 35 | 8 | 3 | 4 | 7200 | 12.9 | 17 | 24.12 | 686.2 | 37 | 1.3 | 17 | 17 | 0 | 0.7 | 2 | 15 | 18 | 0 | 33 | 0.1 |
| 35 | 8 | 3 | 5 | 7200 | 12.8 | 18 | 28.89 | 707.9 | 7 | 5.2 | 18 | 18 | 0 | 2.4 | 4 | 0 | 70 | 4 | 74 | 0.1 |
| 40 | 8 | 3 | 1 | 7200 | 14.5 | 22 | 34.12 | 402.4 | 8 | 423.2 | 22 | 22 | 0 | 92.5 | 2 | 0 | 628 | 30 | 658 | 2.5 |
| 40 | 8 | 3 | 2 | 7200 | 14.8 | 20 | 25.91 | 396.9 | 39 | 6.3 | 20 | 20 | 0 | 1.3 | 3 | 9 | 288 | 9 | 306 | 0.9 |
| 40 | 8 | 3 | 3 | 7200 | 14.5 | 23 | 36.97 | 386.8 | 5 | 646.7 | 23 | 23 | 0 | 59.2 | 11 | 0 | 1184 | 343 | 1527 | 7.1 |
| 40 | 8 | 3 | 4 | 7200 | 14.7 | 22 | 33.27 | 379.1 | 6 | 781.2 | 22 | 22 | 0 | 17.4 | 6 | 0 | 3155 | 1132 | 4287 | 18.9 |
| 40 | 8 | 3 | 5 | 7200 | 14.7 | 22 | 33.22 | 390.3 | 6 | 385.5 | 22 | 22 | 0 | 34.3 | 14 | 9 | 1231 | 129 | 1369 | 5.9 |
| 45 | 8 | 3 | 1 | 7200 | 16.5 | 25 | 34.13 | 276.9 | 21 | 416.2 | 25 | 25 | 0 | 16.1 | 3 | 30 | 1927 | 352 | 2309 | 16.4 |
| 45 | 8 | 3 | 2 | 7200 | 16.4 | 26 | 36.98 | 251.4 | 11 | 5106.7 | 26 | 26 | 0 | 254.2 | 4 | 19 | 2182 | 152 | 2353 | 16.1 |
| 45 | 8 | 3 |  | 7200 | 16.3 | 24 | 32.2 | 244.2 | 4 | 447.3 | 24 | 24 | 0 | 9.9 | 1 | 0 | 2816 | 315 | 3131 | 14.6 |
| 45 | 8 | 3 | 4 | 7200 | 16.4 | 25 | 34.29 | 279.3 | 16 | 3547.6 | 25 | 25 | 0 | 25.5 | 2 | 20 | 6503 | 412 | 6935 | 43.8 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | gap $_{g}$ | Nodes | cuts $_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | cuts $_{C P}$ | cuts $_{S C}$ | cuts $_{K T}$ | $\mathrm{cuts}_{G}$ | cuts $_{\text {tot }}$ | time $_{\text {cut }}$ |
| 45 | 8 | 3 | 5 | 7200 | 16.5 | 24 | 31.44 | 280.9 | 78 | 814.7 | 24 | 24 | 0 | 38 | 2 | 20 | 1506 | 609 | 2135 | 18 |
| 50 | 8 | 3 | 1 | 7200 | 17 | 28 | 39.29 | 155.6 | 6 | 7200 | 23.5 | 28 | 16.18 | 50.3 | 4 | 11 | 7749 | 1387 | 9147 | 63.1 |
| 50 | 8 | 3 | 2 | 7200 | 17.1 | 28 | 38.89 | 170.7 | 6 | 7200 | 23.7 | 28 | 15.21 | 39 | 2 | 0 | 7735 | 1952 | 9687 | 77.5 |
| 50 | 8 | 3 | 3 | 7200 | 17 | 28 | 39.29 | 170.6 | 32 | 7200 | 24.1 | 29 | 17.02 | 26 | 1 | 22 | 10719 | 1842 | 12583 | 94.9 |
| 50 | 8 | 3 | 4 | 7200 | 17 | 28 | 39.29 | 163.1 | 11 | 7200 | 25.2 | 29 | 13.11 | 94.7 | 1 | 22 | 5428 | 373 | 5823 | 50.2 |
| 50 | 8 | 3 | 5 | 7200 | 17.1 | 29 | 41.21 | 152 | 11 | 7200 | 24.5 | 29 | 15.39 | 64.3 | 0 | 22 | 5785 | 1022 | 6829 | 59.1 |
| 55 | 8 | 3 | 1 | 7200 | 18.8 | 32 | 41.35 | 99.7 | 10 | 7200 | 25.2 | 32 | 21.1 | 62.7 | 5 | 24 | 6806 | 1554 | 8384 | 114.9 |
| 55 | 8 | 3 | 2 | 7200 | 18.7 | 31 | 39.57 | 97.7 | 6 | 7200 | 23.4 | 30 | 21.91 | 20.5 | 0 | 9 | 9355 | 1413 | 10777 | 109.9 |
| 55 | 8 | 3 | 3 | 7200 | 18.7 | 31 | 39.54 | 86.8 | 5 | 7200 | 24.7 | 31 | 20.24 | 14.2 | 2 | 0 | 12251 | 3399 | 15650 | 158.9 |
| 55 | 8 | 3 | 4 | 7200 | 18.8 | 33 | 43.15 | 96 | 11 | 7200 | 26.6 | 33 | 19.46 | 23.4 | 0 | 12 | 10409 | 1752 | 12173 | 118.2 |
| 55 | 8 | 3 | 5 | 7200 | 18.8 | 34 | 44.79 | 75.6 | 8 | 7200 | 26.5 | 34 | 21.93 | 21.2 | 3 | 24 | 12903 | 2925 | 15852 | 204.8 |
| 60 | 8 | 3 | 1 | 7200 | 20.8 | 37 | 43.8 | 57.9 | 47 | 7200 | 27.3 | 37 | 26.18 | 17.2 | 2 | 13 | 6835 | 4053 | 10901 | 152.6 |
| 60 | 8 | 3 | 2 | 7200 | 20.8 | 36 | 42.32 | 56.1 | 9 | 7200 | 26.9 | 36 | 25.35 | 12.6 | 2 | 0 | 11743 | 3391 | 15134 | 201.3 |
| 60 | 8 | 3 | 3 | 7200 | 19.8 | 35 | 43.46 | 51.1 | 39 | 7200 | 26.8 | 36 | 25.62 | 14 | 0 | 13 | 11601 | 5844 | 17458 | 283.9 |
| 60 | 8 | 3 | 4 | 7200 | 20.7 | 34 | 38.99 | 63 | 6 | 7200 | 27 | 34 | 20.49 | 16.2 | 3 | 0 | 11422 | 1723 | 13145 | 142.5 |
| 60 | 8 | 3 | 5 | 7200 | 20.8 | 36 | 42.27 | 63.1 | 8 | 7200 | 27.3 | 39 | 29.99 | 5.8 | 1 | 0 | 18393 | 7957 | 26350 | 334.3 |
| 30 | 2 | 4.5 | 1 | 7200 | 15.8 | 24 | 34.17 | 1251.6 | 124 | 10.7 | 24 | 24 | 0 | 0.9 | 1 | 141 | 333 | 18 | 492 | 0.8 |
| 30 | 2 | 4.5 | 2 | 7200 | 15.8 | 26 | 39.1 | 954.9 | 142 | 82 | 26 | 26 | 0 | 14.7 | 11 | 142 | 274 | 22 | 438 | 1.2 |
| 30 | 2 | 4.5 | 3 | 7200 | 15.5 | 26 | 40.35 | 1064.8 | 138 | 36.1 | 26 | 26 | 0 | 2.8 | 2 | 127 | 370 | 50 | 547 | 1.2 |
| 30 | 2 | 4.5 | 4 | 7200 | 16.5 | 27 | 38.89 | 1055 | 154 | 0.2 | 27 | 27 | 0 | 0 | 6 | 113 | 0 | 0 | 113 | 0 |
| 30 | 2 | 4.5 | 5 | 7200 | 17.1 | 27 | 36.71 | 937.6 | 149 | 0.4 | 27 | 27 | 0 | 0 | 5 | 104 | 2 | 0 | 106 | 0 |
| 35 | 2 | 4.5 | 1 | 7200 | 19.3 | 32 | 39.74 | 253.8 | 745 | 7200 | 31 | 32 | 3.12 | 433.1 | 6 | 165 | 1052 | 160 | 1377 | 9.1 |
| 35 | 2 | 4.5 | 2 | 7200 | 17.5 | 32 | 45.18 | 621.6 | 221 | 7200 | 29.5 | 32 | 7.81 | 781 | 4 | 189 | 761 | 47 | 997 | 6.8 |
| 35 | 2 | 4.5 | 3 | 7200 | 17.1 | 30 | 43.06 | 354.9 | 179 | 159.7 | 30 | 30 | 0 | 2.8 | 2 | 169 | 659 | 169 | 997 | 4 |
| 35 | 2 | 4.5 | 4 | 7200 | 14.9 | 33 | 54.74 | 519 | 143 | 850.5 | 33 | 33 | 0 | 136.5 | 3 | 190 | 696 | 33 | 919 | 5.2 |
| 35 | 2 | 4.5 | 5 | 7200 | 16.7 | 31 | 46.29 | 525.3 | 179 | 2366.3 | 31 | 31 | 0 | 376.1 | 10 | 185 | 495 | 72 | 752 | 4.1 |
| 40 | 2 | 4.5 | 1 | 7200 | 13.9 | 35 | 60.4 | 284.2 | 173 | 7200 | 33.5 | 35 | 4.29 | 416.8 | 6 | 227 | 1031 | 139 | 1397 | 10.3 |
| 40 | 2 | 4.5 | 2 | 7200 | 16.2 | 36 | 54.92 | 287.3 | 212 | 7200 | 34.3 | 36 | 4.7 | 574.6 | 13 | 250 | 685 | 132 | 1067 | 10.6 |
| 40 | 2 | 4.5 | 3 | 7200 | 16 | 34 | 52.98 | 243.8 | 196 | 4454.5 | 34 | 34 | 0 | 221.6 | 4 | 240 | 374 | 47 | 661 | 3.4 |
| 40 | 2 | 4.5 | 4 | 7200 | 17.2 | 35 | 50.95 | 419.6 | 197 | 5371.7 | 35 | 35 | 0 | 267.7 | 14 | 205 | 850 | 85 | 1140 | 8.9 |
| 40 | 2 | 4.5 | 5 | 7200 | 15 | 35 | 57.14 | 393.3 | 133 | 5777.2 | 35 | 35 | 0 | 240.5 | 4 | 230 | 1529 | 304 | 2063 | 16 |
| 45 | 2 | 4.5 | 1 | 7200 | 17.2 | 42 | 59.11 | 162.2 | 235 | 7200 | 39 | 42 | 7.14 | 220.7 | 3 | 286 | 1171 | 182 | 1639 | 15.9 |
| 45 | 2 | 4.5 | 2 | 7200 | 18.3 | 42 | 56.48 | 194.8 | 243 | 7200 | 39.6 | 42 | 5.82 | 95.4 | 0 | 287 | 1477 | 354 | 2118 | 21.4 |
| 45 | 2 | 4.5 | 3 | 7200 | 17 | 42 | 59.52 | 171 | 253 | 7200 | 39.5 | 42 | 5.95 | 219 | 3 | 304 | 1248 | 171 | 1723 | 28.8 |
| 45 | 2 | 4.5 | 4 | 7200 | 20.5 | 45 | 54.46 | 213.4 | 260 | 7200 | 43 | 45 | 4.44 | 52.8 | 6 | 264 | 2199 | 757 | 3220 | 43.9 |
| 45 | 2 | 4.5 | 5 | 7200 | 15.3 | 39 | 60.82 | 136.2 | 207 | 7200 | 36.3 | 39 | 6.84 | 68.4 | 0 | 336 | 2313 | 254 | 2903 | 26.4 |
| 50 | 2 | 4.5 | 1 | 7200 | 12.9 | 47 | 72.64 | 54.5 | 203 | 7200 | 44 | 47 | 6.38 | 56.7 | 2 | 389 | 3198 | 585 | 4172 | 67.4 |
| 50 | 2 | 4.5 | 2 | 7200 | 15.4 | 44 | 64.94 | 86.9 | 221 | 7200 | 41.2 | 44 | 6.47 | 77.1 | 4 | 415 | 2075 | 327 | 2817 | 48.1 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | gap $_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | cuts $_{S C}$ | cuts $_{K T}$ | cuts $_{G}$ | $\mathrm{cuts}_{\text {tot }}$ | $\mathrm{time}_{\text {cut }}$ |
| 50 | 2 | 4.5 | 3 | 7200 | 16.4 | 47 | 65.01 | 114.7 | 239 | 7200 | 44.5 | 47 | 5.32 | 145.4 | 2 | 413 | 1489 | 244 | 2146 | 37.3 |
| 50 | 2 | 4.5 | 4 | 7200 | 24.4 | 49 | 50.11 | 46.8 | 1123 | 7200 | 44.5 | 48 | 7.29 | 38.2 | 0 | 390 | 3162 | 513 | 4065 | 52.4 |
| 50 | 2 | 4.5 | 5 | 7200 | 15.6 | 48 | 67.49 | 91.7 | 227 | 7200 | 42.5 | 47 | 9.57 | 19.9 | 4 | 390 | 3927 | 486 | 4803 | 62.7 |
| 55 | 2 | 4.5 | 1 | 7200 | 13.1 | 49 | 73.34 | 27.7 | 201 | 7200 | 46 | 49 | 6.12 | 50.3 | 1 | 548 | 1754 | 223 | 2525 | 41.9 |
| 55 | 2 | 4.5 | 2 | 7200 | 14.1 | 51 | 72.41 | 29.7 | 311 | 7200 | 47 | 51 | 7.84 | 48.9 | 1 | 463 | 2319 | 538 | 3320 | 72.1 |
| 55 | 2 | 4.5 | 3 | 7200 | 15.2 | 51 | 70.29 | 57.3 | 290 | 7200 | 46 | 51 | 9.8 | 34 | 3 | 434 | 2109 | 331 | 2874 | 42.1 |
| 55 | 2 | 4.5 | 4 | 7200 | 14 | 52 | 73.17 | 36.9 | 211 | 7200 | 47 | 53 | 11.32 | 8 | 0 | 464 | 3995 | 792 | 5251 | 79.4 |
| 55 | 2 | 4.5 | 5 | 7200 | 17.2 | 56 | 69.36 | 52.6 | 255 | 7200 | 51 | 56 | 8.93 | 20.3 | 1 | 377 | 4446 | 1164 | 5987 | 129.7 |
| 60 | 2 | 4.5 | 1 | 7200 | 13.9 | 59 | 76.37 | 23 | 291 | 7200 | 52 | 57 | 8.77 | 13.1 | 0 | 558 | 2600 | 148 | 3306 | 33.2 |
| 60 | 2 | 4.5 | 2 | 7200 | 15.4 | 57 | 72.9 | 17.4 | 314 | 7200 | 49 | 59 | 16.95 | 0 | 0 | 527 | 1842 | 0 | 2369 | 11.2 |
| 60 | 2 | 4.5 | 3 | 7200 | 16.2 | 58 | 72.07 | 25.4 | 320 | 7200 | 53 | 57 | 7.02 | 20.7 | 1 | 527 | 4276 | 991 | 5794 | 138.9 |
| 60 | 2 | 4.5 | 4 | 7200 | 15.8 | 59 | 73.26 | 18.1 | 294 | 7200 | 53.5 | 58 | 7.76 | 17.9 | 1 | 455 | 3593 | 804 | 4852 | 108.6 |
| 60 | 2 | 4.5 | 5 | 7200 | 15.4 | 57 | 72.94 | 28 | 273 | 7200 | 51 | 61 | 16.39 | 0 | 0 | 527 | 1680 | 0 | 2207 | 10.4 |
| 30 | 5 | 4.5 | 1 | 7200 | 10.2 | 14 | 27.29 | 1282.2 | 73 | 1.3 | 14 | 14 | 0 | 0.6 | 1 | 49 | 0 | 0 | 49 | 0 |
| 30 | 5 | 4.5 | 2 | 7200 | 9.7 | 13 | 25.38 | 1151.3 | 83 | 1 | 13 | 13 | 0 | 0.1 | 1 | 53 | 0 | 1 | 54 | 0 |
| 30 | 5 | 4.5 | 3 | 7200 | 10.2 | 13 | 21.23 | 1078.9 | 76 | 0.6 | 13 | 13 | 0 | 0.1 | 1 | 33 | 0 | 0 | 33 | 0 |
| 30 | 5 | 4.5 | 4 | 7200 | 9.7 | 14 | 30.55 | 1500.5 | 74 | 7.6 | 14 | 14 | 0 | 3.8 | 2 | 53 | 0 | 1 | 54 | 0 |
| 30 | 5 | 4.5 | 5 | 7200 | 9.9 | 13 | 23.66 | 1222.3 | 76 | 0.7 | 13 | 13 | 0 | 0.1 | 2 | 36 | 0 | 2 | 38 | 0 |
| 35 | 5 | 4.5 | 1 | 7200 | 10.9 | 18 | 39.58 | 717 | 99 | 13.3 | 18 | 18 | 0 | 2.6 | 4 | 69 | 6 | 1 | 76 | 0.1 |
| 35 | 5 | 4.5 | 2 | 7200 | 10.2 | 16 | 36.37 | 614.5 | 95 | 16.3 | 16 | 16 | 0 | 3.2 | 1 | 86 | 16 | 14 | 116 | 0.3 |
| 35 | 5 | 4.5 | 3 | 7200 | 10.1 | 17 | 40.78 | 547.3 | 96 | 27.9 | 17 | 17 | 0 | 6.6 | 1 | 67 | 1 | 2 | 70 | 0.1 |
| 35 | 5 | 4.5 | 4 | 7200 | 10.7 | 16 | 33.21 | 689.2 | 104 | 11.2 | 16 | 16 | 0 | 2.2 | 5 | 56 | 4 | 1 | 61 | 0.1 |
| 35 | 5 | 4.5 | 5 | 7200 | 10.9 | 17 | 36.17 | 687.2 | 96 | 13.4 | 17 | 17 | 0 | 2.3 | 1 | 93 | 3 |  | 100 | 0.2 |
| 40 | 5 | 4.5 | 1 | 7200 | 10.7 | 19 | 43.62 | 348.9 | 108 | 1983.6 | 19 | 19 | 0 | 206.9 | 2 | 103 | 743 | 78 | 924 | 3.6 |
| 40 | 5 | 4.5 | 2 | 7200 | 9.9 | 20 | 50.48 | 324.1 | 80 | 7200 | 18.6 | 20 | 7.17 | 962.8 | 4 | 110 | 240 | 77 | 427 | 3.8 |
| 40 | 5 | 4.5 | 3 | 7200 | 11.4 | 18 | 36.39 | 512.2 | 68 | 5 | 18 | 18 | 0 | 0.3 | 4 | 80 | 9 | 2 | 91 | 0.1 |
| 40 | 5 | 4.5 | 4 | 7200 | 10.4 | 20 | 47.85 | 475.7 | 56 | 444.9 | 20 | 20 | 0 | 56.4 | 5 | 89 | 283 | 23 | 395 | 1 |
| 40 | 5 | 4.5 | 5 | 7200 | 10.7 | 20 | 46.29 | 371.5 | 78 | 117.1 | 20 | 20 | 0 | 13.7 | 0 | 105 | 98 | 9 | 212 | 0.4 |
| 45 | 5 | 4.5 | 1 | 7200 | 12.2 | 25 | 51.33 | 201.9 | 96 | 7200 | 20.7 | 25 | 17.29 | 215.9 | 3 | 121 | 2418 | 482 | 3021 | 23.8 |
| 45 | 5 | 4.5 | 2 | 7200 | 11.6 | 23 | 49.57 | 275.7 | 52 | 4797.4 | 23 | 23 | 0 | 332.3 | 0 | 106 | 1290 | 190 | 1586 | 9.4 |
| 45 | 5 | 4.5 | 3 | 7200 | 12.3 | 24 | 48.93 | 149 | 128 | 7200 | 21.5 | 24 | 10.25 | 119.7 | 2 | 122 | 3471 | 892 | 4485 | 36.1 |
| 45 | 5 | 4.5 | 4 | 7200 | 11.6 | 25 | 53.42 | 286.2 | 49 | 7200 | 20.9 | 25 | 16.5 | 27.6 | 1 | 112 | 9082 | 2346 | 11540 | 82.8 |
| 45 | 5 | 4.5 | 5 | 7200 | 12.2 | 24 | 48.96 | 205.7 | 137 | 7200 | 21.7 | 24 | 9.43 | 181.6 | 3 | 93 | 2117 | 362 | 2572 | 17.2 |
| 50 | 5 | 4.5 | 1 | 7200 | 12.6 | 29 | 56.69 | 117 | 127 | 7200 | 23.3 | 30 | 22.2 | 31.8 | 3 | 153 | 5319 | 3881 | 9353 | 128.1 |
| 50 | 5 | 4.5 | 2 | 7200 | 13.1 | 30 | 56.47 | 157 | 96 | 7200 | 24.2 | 31 | 21.94 | 16 | 2 | 126 | 8259 | 5186 | 13571 | 161.2 |
| 50 | 5 | 4.5 | 3 | 7200 | 12.4 | 27 | 54.07 | 147 | 116 | 7200 | 22.5 | 30 | 25.11 | 21.6 | 2 | 136 | 10157 | 2344 | 12637 | 117.4 |
| 50 | 5 | 4.5 | 4 | 7200 | 12.4 | 26 | 52.44 | 144 | 121 | 7200 | 22.4 | 26 | 13.78 | 170.7 | 1 | 140 | 2655 | 516 | 3311 | 36.3 |
| 50 | 5 | 4.5 | 5 | 7200 | 12.3 | 29 | 57.51 | 148.4 | 99 | 7200 | 22.5 | 30 | 25.06 | 15.1 | 2 | 162 | 8904 | 4826 | 13892 | 141.9 |
| 55 | 5 | 4.5 | 1 | 7200 | 12.8 | 31 | 58.61 | 79.8 | 98 | 7200 | 23 | 32 | 28.12 | 10.7 | 0 | 199 | 12641 | 2448 | 15288 | 146.1 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | cuts $_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | cuts ${ }_{S C}$ | cuts $_{K T}$ | $\mathrm{cuts}_{G}$ | $\mathrm{cuts}_{\text {tot }}$ | time $_{\text {cut }}$ |
| 55 | 5 | 4.5 | 2 | 7200 | 13 | 30 | 56.67 | 92 | 114 | 7200 | 24.5 | 32 | 23.57 | 17.4 | 2 | 171 | 9573 | 3228 | 12972 | 152.5 |
| 55 | 5 | 4.5 | 3 | 7200 | 13 | 32 | 59.37 | 61 | 108 | 7200 | 22.2 | 32 | 30.67 | 13.2 | 1 | 176 | 13270 | 4544 | 17990 | 226.7 |
| 55 | 5 | 4.5 | 4 | 7200 | 12.8 | 31 | 58.57 | 102.1 | 66 | 7200 | 24 | 33 | 27.27 | 9.3 | 1 | 176 | 9531 | 4243 | 13950 | 138 |
| 55 | 5 | 4.5 | 5 | 7200 | 12.9 | 33 | 61.04 | 80 | 85 | 7200 | 24.3 | 33 | 26.43 | 15.7 | 0 | 160 | 7056 | 5648 | 12864 | 176.8 |
| 60 | 5 | 4.5 | 1 | 7200 | 13.8 | 32 | 56.81 | 57.3 | 125 | 7200 | 25.6 | 33 | 22.52 | 13.4 | 0 | 209 | 9986 | 2012 | 12207 | 124.4 |
| 60 | 5 | 4.5 | 2 | 7200 | 13.9 | 35 | 60.41 | 43.9 | 150 | 7200 | 26 | 37 | 29.64 | 9.9 | 0 | 176 | 8868 | 4767 | 13811 | 224.9 |
| 60 | 5 | 4.5 | 3 | 7200 | 13.9 | 33 | 57.98 | 48.5 | 172 | 7200 | 26.6 | 34 | 21.87 | 11.2 | 2 | 230 | 8036 | 4516 | 12782 | 211.9 |
| 60 | 5 | 4.5 | 4 | 7200 | 13.8 | 34 | 59.27 | 44.9 | 147 | 7200 | 27 | 35 | 22.92 | 7.5 | 1 | 251 | 10020 | 3115 | 13386 | 166.1 |
| 60 | 5 | 4.5 | 5 | 7200 | 13.8 | 33 | 58.08 | 48.3 | 154 | 7200 | 26.2 | 33 | 20.66 | 7.3 | 0 | 210 | 9388 | 4864 | 14462 | 185.2 |
| 30 | 8 | 4.5 | 1 | 7200 | 8.6 | 11 | 21.59 | 970.5 | 94 | 0.3 | 11 | 11 | 0 | 0.1 | 1 | 18 | 0 | 0 | 18 | 0 |
| 30 | 8 | 4.5 | 2 | 7200 | 9.9 | 11 | 10.33 | 1291.2 | 123 | 0.1 | 11 | 11 | 0 | 0 | 2 | 14 | 0 | 0 | 14 | 0 |
| 30 | 8 | 4.5 | 3 | 7200 | 9.1 | 12 | 24.27 | 1346.4 | 47 | 0.5 | 12 | 12 | 0 | 0.4 | 1 | 13 | 0 | 0 | 13 | 0 |
| 30 | 8 | 4.5 | 4 | 43.2 | 9 | 9 | 0 | 6 | 54 | 0.3 | 9 | 9 | 0 | 0 | 7 | 5 | 0 | 0 | 5 | 0 |
| 30 | 8 | 4.5 | 5 | 7200 | 9.1 | 12 | 23.78 | 1356.8 | 55 | 0.3 | 12 | 12 | 0 | 0.1 | 4 | 18 | 0 | 0 | 18 | 0 |
| 35 | 8 | 4.5 | 1 | 7200 | 9.4 | 12 | 21.71 | 732 | 99 | 0.5 | 12 | 12 | 0 | 0.2 | 4 | 15 | 0 | 0 | 15 | 0 |
| 35 | 8 | 4.5 | 2 | 7200 | 9.3 | 13 | 28.67 | 800.3 | 17 | 0.6 | 13 | 13 | 0 | 0.2 | 4 | 22 | 0 | 0 | 22 | 0 |
| 35 | 8 | 4.5 | 3 | 7200 | 9.5 | 14 | 32.42 | 803.5 | 54 | 2.5 | 14 | 14 | 0 | 1.2 | 8 | 16 | 0 | 0 | 16 | 0 |
| 35 | 8 | 4.5 | 4 | 7200 | 9.4 | 12 | 21.97 | 711.5 | 48 | 0.3 | 12 | 12 | 0 | 0 | 2 | 19 | 0 | 0 | 19 | 0 |
| 35 | 8 | 4.5 | 5 | 7200 | 9.2 | 13 | 29.58 | 842.4 | 74 | 1.5 | 13 | 13 | 0 | 0.8 | 3 | 19 | 0 | 0 | 19 | 0 |
| 40 | 8 | 4.5 | 1 | 7200 | 10.2 | 14 | 27.42 | 432.8 | 96 | 0.9 | 14 | 14 | 0 | 0.2 | 1 | 16 | 0 | 0 | 16 | 0 |
| 40 | 8 | 4.5 | 2 | 7200 | 9.7 | 17 | 42.74 | 476.4 | 21 | 21.2 | 17 | 17 | 0 | 8.9 | 5 | 26 | 0 | 0 | 26 | 0.1 |
| 40 | 8 | 4.5 | 3 | 7200 | 9.6 | 14 | 31.39 | 483.8 | 55 | 3.6 | 14 | 14 | 0 | 1.4 | 4 | 17 | 0 | 0 | 17 | 0 |
| 40 | 8 | 4.5 | 4 | 7200 | 9.7 | 14 | 31.06 | 405.7 | 68 | 1 | 14 | 14 | 0 | 0.2 | 4 | 11 | 0 | 0 | 11 | 0 |
| 40 | 8 | 4.5 | 5 | 7200 | 10.1 | 17 | 40.78 | 447.9 | 54 | 61.3 | 17 | 17 | 0 | 31.1 | 5 | 33 | 0 | 0 | 33 | 0.1 |
| 45 | 8 | 4.5 | 1 | 7200 | 11.6 | 19 | 38.86 | 290.6 | 60 | 42.9 | 19 | 19 | 0 | 11.4 | 2 | 40 | 21 | 0 | 61 | 0.2 |
| 45 | 8 | 4.5 | 2 | 7200 | 11.6 | 18 | 35.45 | 262.3 | 96 | 19.3 | 18 | 18 | 0 | 3.3 | 0 | 29 | 327 | 0 | 356 | 1.1 |
| 45 | 8 | 4.5 | 3 | 7200 | 11.4 | 18 | 36.56 | 231.7 | 58 | 84 | 18 | 18 | 0 | 20.3 | 4 | 26 | 122 | 0 | 148 | 0.5 |
| 45 | 8 | 4.5 | 4 | 7200 | 11.4 | 21 | 45.68 | 321.5 | 11 | 1848.6 | 21 | 21 | 0 | 658.6 | 2 | 30 | 12 | 0 | 42 | 1 |
| 45 | 8 | 4.5 | 5 | 7200 | 11.5 | 20 | 42.3 | 299.4 | 52 | 1968.2 | 20 | 20 | 0 | 576.5 | 4 | 26 | 113 | 0 | 139 | 1.4 |
| 50 | 8 | 4.5 | 1 | 7200 | 12.4 | 22 | 43.75 | 179.5 | 68 | 7200 | 18.7 | 22 | 15.11 | 510.3 | 3 | 33 | 1051 | 23 | 1107 | 8.4 |
| 50 | 8 | 4.5 | 2 | 7200 | 12.6 | 22 | 42.87 | 210.4 | 40 | 7200 | 19.6 | 22 | 10.73 | 287.7 | 7 | 42 | 1876 | 134 | 2052 | 11.9 |
| 50 | 8 | 4.5 | 3 | 7200 | 12.4 | 22 | 43.71 | 208 | 50 | 7200 | 20 | 22 | 8.93 | 270.9 | 5 | 27 | 3007 | 136 | 3170 | 18.8 |
| 50 | 8 | 4.5 | 4 | 7200 | 12.5 | 22 | 43.3 | 179.7 | 68 | 5383.1 | 22 | 22 | 0 | 863.8 | 5 | 33 | 276 | 0 | 309 | 3.4 |
| 50 | 8 | 4.5 | 5 | 7200 | 12.5 | 23 | 45.52 | 168.3 | 58 | 7200 | 20.9 | 23 | 9.11 | 370.9 | 9 | 43 | 1597 | 5 | 1645 | 8.6 |
| 55 | 8 | 4.5 | 1 | 7200 | 13 | 24 | 45.83 | 130.5 | 20 | 7200 | 21.1 | 24 | 11.9 | 22.2 | 1 | 36 | 14472 | 517 | 15025 | 91.3 |
| 55 | 8 | 4.5 | 2 | 7200 | 13 | 23 | 43.48 | 119.1 | 54 | 7200 | 20 | 23 | 13.06 | 50.2 | 3 | 45 | 7475 | 249 | 7769 | 42.1 |
| 55 | 8 | 4.5 | 3 | 7200 | 13 | 26 | 50 | 112.1 | 41 | 7200 | 22 | 27 | 18.66 | 136.2 | 3 | 35 | 3676 | 182 | 3893 | 35.8 |
| 55 | 8 | 4.5 | 4 | 7200 | 12.9 | 23 | 44.08 | 123 | 55 | 7200 | 19.1 | 23 | 16.96 | 474.9 | 2 | 21 | 1282 | 28 | 1331 | 12.4 |
| 55 | 8 | 4.5 | 5 | 7200 | 12.9 | 25 | 48.24 | 124 | 32 | 7200 | 20.4 | 25 | 18.3 | 104.9 | 5 | 48 | 6374 | 71 | 6493 | 46 |

Table 5.6 - Continued

| Instances |  |  |  | CPLEX |  |  |  |  |  | Branch-and-Cut |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | $\mathrm{time}_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | gap $_{g}$ | Nodes | $\operatorname{cuts}_{C P}$ | time $_{g}$ | $\mathrm{LB}_{g}$ | $\mathrm{UB}_{g}$ | $\mathrm{gap}_{g}$ | Nodes | $\mathrm{cuts}_{C P}$ | $\mathrm{cuts}_{S C}$ | $\mathrm{cuts}_{K T}$ | $\mathrm{cuts}_{G}$ | cuts $_{\text {tot }}$ | $\mathrm{time}_{\text {cut }}$ |
| 60 | 8 | 4.5 | 1 | 7200 | 13.8 | 27 | 49.04 | 69.8 | 61 | 7200 | 22 | 28 | 21.36 | 14.3 | 0 | 57 | 17065 | 1312 | 18434 | 121.5 |
| 60 | 8 | 4.5 | 2 | 7200 | 13.8 | 27 | 48.97 | 67.1 | 20 | 7200 | 22.1 | 29 | 23.69 | 10.4 | 1 | 52 | 17930 | 723 | 18705 | 118.5 |
| 60 | 8 | 4.5 | 3 | 7200 | 13.8 | 29 | 52.41 | 64.1 | 49 | 7200 | 23.1 | 29 | 20.18 | 28 | 1 | 61 | 9043 | 620 | 9724 | 86.9 |
| 60 | 8 | 4.5 | 4 | 7200 | 13.8 | 26 | 47.12 | 81.2 | 74 | 7200 | 21.8 | 26 | 16.2 | 35.2 | 4 | 37 | 9785 | 348 | 10170 | 61.6 |
| 60 | 8 | 4.5 | 5 | 7200 | 13.8 | 28 | 50.74 | 63.2 | 67 | 7200 | 21 | 30 | 30.15 | 7.9 | 0 | 52 | 22753 | 1456 | 24261 | 167.2 |

The results achieved with the Branch-and-Cut framework clearly outperform the ones obtained by CPLEX. Indeed, while CPLEX could only solve 7 out of 315 instances to optimality within the time limit, our developed framework could solve up to 129 instances to optimality. All instances solved by CPLEX could also be solved within the Branch-and-Cut framework. Considering only the 7 instances that were solved to optimality in both scenarios, the average CPU time required for CPLEX was 1604 seconds ( $\approx 26$ minutes), while Branch-and-Cut needed in average less than 1 second (precisely, 0.8 seconds). Moreover, the average number of nodes explored to prove optimality went down from 290,728 to 71 . It is worth noting that 3 of these 7 instances did not required any branching (i.e., were solved to optimality in the root node) once the cuts were added to the formulation. In addition, 6 more instances that could not be solved by CPLEX within the time limit were solved by the Branch-and-Cut algorithm in the root node (e.g. instances 35_8_1.5_2, 30_8_3.0_4, 30_2_4.5_4, 30_2_4.5_5, 30_8_4.5_2 and 35_8_4.5_4).

Even if the number of explored nodes required to prove optimality is greatly reduced in the Branch-and-Cut framework, the time spent within each LP node is considerably increased. Despite the fact that the LP size (i.e., the number of variables and constraints) is significantly reduced by the elimination of variables and the integration of symmetry-breaking methods described in Sections 5.2 and 5.1, such behaviour is not a surprise since many violated cuts are identified and introduced to the formulation, which requires the re-optimization of the node LP. Such fact can be spotted by analyzing the difference between the number of nodes explored within the two hours time limit in each approach for the instances that could not be solved to optimality. While CPLEX was able to explore, in average, 138,931 nodes, this number is reduced to 122,147 for the Branch-and-Cut algorithm. Notice that for some unsolved instances (e.g., 55_2_3.0_1), the optimization process was entirely performed in the root node. In other words, the Branch-and-Cut algorithm spent the totality of the two hours time limit searching for violated cuts and re-optimizing the root LP with such new cuts.

Such behaviour reveals a trade-off between quickly solving LP nodes and hence further exploring the enumeration tree, or instead, refining the LP node formulation through the continuous search for violated cuts. We estimate to have found a good balance between these two aspects. In fact, for the 186 instances that could not be solved within the time limit by any of the two approaches, the average lower bound obtained by CPLEX was 21.99 compared with 36.94 for the Branch-andCut. Moreover, the average remaining gap went down from $47.67 \%$ to $13.66 \%$.

It is important to highlight that even if the CPLEX automatic cut generation was not disabled in the Branch-and-Cut framework, very few cuts were introduced
through this feature, when compared with standard CPLEX. In average, 106 cuts were identified and introduced using CPLEX, while only 1.9 cuts were provided by CPLEX in the Branch-and-Cut algorithm. This indicates that the vast majority of the cuts automatically added by CPLEX might be, in fact, dominated by the ones added through our separation routine. Such presumption is enhanced by the fact that the heuristic procedures presented in Section 5.4 proved to be quite effective in the search for violated cuts. Indeed, the number of $k$-cardinality tree inequalities and girth inequalities added during the optimization process was, in average, of 2933.1 and 694.9 cuts, respectively. The total number of user cuts added was, in average, of 3772.8 cuts.

## Conclusion

> "We can only see a short distance ahead, but we can see plenty there that needs to be done."
— Alan Turing

In this dissertation, we have explored several aspects of a combinatorial problem emerging from the management of a Dial-a-Ride system involving a fleet of electric autonomous vehicles. We first presented the so-called Unit Stop Number Problem (U-SNP), a variant of the Stop Number Problem introduced by Pimenta et al. [151]. In addition, a variant of particular interest, called Intersection U-SNP, is also presented. A literature review on Dial-a-Ride problems was then provided and other problems arising from telecommunications were shown to have close relations with U-SNP.

We approached the U-SNP from three main complementary angles: theoretical complexity, polyhedra and computational test.

Firstly, we investigated the some theoretical properties of the problem. Such study yielded new bounds on the optimal solution value of the U-SNP as well as allowed to understand how optimality may be lost by adopting some "intuitive" greedy policies. Polynomial-time combinatorial algorithms were then proposed to solve some specific classes of instances (e.g., U-SNP with $C=1$, Intersection USNP with $C=2$ ). On the other hand, the $\mathcal{N} \mathcal{P}$-Hardness of U-SNP was proved for any given fixed capacity $C \geq 2$, answering the conjecture proposed by Pimenta et al. [151]. Moreover, Intersection U-SNP was showed to be also $\mathcal{N} \mathcal{P}$-Hard for any fixed capacity $C \geq 5$ and for $C=3$. We conjecture that the problem remains $\mathcal{N} \mathcal{P}$-Hard for $C=4$. It is worth noting that our proofs of complexity applies even when the associated graph is restricted to the class of planar bipartite graphs. Such property was then used to extend our results to other related problems (e.g., Traffic Grooming) improving their current state-of-the-art complexity classification.

Once U-SNP was proved to be $\mathcal{N} \mathcal{P}$-Hard, the idea of searching for a polynomialtime algorithm capable of optimally solving the problem had to be abandoned.

Nevertheless, the need for exact methods remained. A MILP formulation adapted from Pimenta et al. [151] was therefore studied and quickly showed to be particularly weak. A polyhedral study was then conducted in order to better understand how such formulation could be improved. The dimension of the integer polyhedron is then provided as well as the necessary and sufficient conditions under which the inequalities composing the formulation are facet-defining. Families of valid inequalities (e.g., strong capacity inequalities, $k$-cardinality tree inequalities, generalized $k$-cardinality tree inequalities, girth inequalities) capable of reinforcing the formulation were finally introduced. Necessary and sufficient facet-defining conditions for some of these families were presented.

Finally, the introduced valid inequalities were put to test within a Branch-andCut framework. The separation problems associated with each family of valid inequalities were investigated and when $\mathcal{N} \mathcal{P}$-hardness was detected, heuristic procedures were developed to efficiently search for violated cuts. In order to boost computational performances, symmetry-breaking methods known in the literature were studied and adapted to the U-SNP. A comparison between such methods was carried out and the Orbitopal Fixing algorithm due to Kaibel et al. [101] was chosen to be the one implemented in our Branch-and-Cut algorithm. Furthermore, two relaxations preserving optimality have been proposed and compared. Our tests allow to conclude that the choice of the most suited relaxation to be applied depends on the density of the associated graph. A new upper bound on the number of vehicles needed to achieve an optimal solution is also proposed, leading to significant variable eliminations.

Computational results have proved that our approach largely outperforms CPLEX traditional Branch-and-Cut algorithm. The remaining gap of all tested instances was reduced when applying our method. Moreover, a considerable set of instances that could not be solved to optimality within the time limit of two hours by CPLEX, could be solved using our developed Branch-and-Cut framework.

Certainly, there remains many unexplored aspects with significant scientific potential to be studied over the U-SNP. Future research lines may involve a deeper investigation of generalized $k$-cardinality tree inequalities, whose necessary and sufficient conditions for being facet-defining are still missing. Moreover, efficient separation procedures for taking into account such inequalities may improve even further the performance of our Branch-and-Cut algorithm. Considering such inequalities and based on empirical tests with PORTA software over small instances, we believe that the characterization of the integer polyhedron for the polynomial case Intersection U-SNP with $C=2$ is not far from being achieved. We also believe that an extended formulation with tighter linear relaxations might be the answer to escape
from the need of so many additional cuts in order to reinforce the formulation. For the complexity aspect, the answer to our conjecture stating that the Intersection U-SNP is NP-Hard for capacity $C=4$ (even when $G$ is restricted to the class of planar bipartite graphs) remains an open question that deserves attention.

The valid inequalities introduced by our study can be easily generalized for the general SNP where demands are allowed to reserve multiple seats within a single vehicle. Considering the impact such inequalities had on the performance of our Branch-and-Cut framework, computational tests over the general SNP (and other related problems such as $k$-Edge Partitioning and Traffic Grooming) seems appropriate. An even more rewarding challenge would be trying to adapt such inequalities for the general Dial-a-Ride Problem.

## Appendix A

## Detailed computational results

All tests were run on a machine provided with Intel Xeon E5, 3.10GHz and 32 Gb of RAM using CPLEX 12.8. A set of different scenarios based on the number of demands $m$, the capacity $C$ and the density $\rho$ is thus provided with $m=$ $\{30,35,40,45,50,55,60\}, C=\{2,5,8\}$ and $\rho=\{1.5,3.0,4.5\}$. For each combination of parameters, 5 instances were randomly generated.

Table A. 1 shows detailed computational results based on formulation $\operatorname{USNP}_{(V, E, C)}$ using CPLEX with all default settings applied. No callback function is implemented. The number of variables and constraints are given for each instance under columns cols and rows, respectively. The minimum number of vehicles needed is provided under column $p_{\text {min }}$, and the number of vehicles used on the best solution found under column $p^{\prime}$. Columns time $, L B_{r}, U B_{r}$ and gap provide information about the performance on the root node by showing, respectively, the time spent in seconds, the lower and upper bound obtained, and the remaining gap at root node. Information on the global optimization process is depicted under column Global. Columns time ${ }_{g}$ and timeBest provide the total time in seconds spent in the optimization process and the time needed for detecting the best solution found, respectively. Columns $L B_{r}$ and $U B_{r}$ present the best lower and upper bounds obtained by the end of the optimization process and column $g a p_{r}$ shows the associated remaining gap. The number of nodes explored and unexplored, by the end of the optimization, in the enumeration tree are given under columns Nodes and NLeft, respectively. Finally CCuts presents the number of CPLEX cuts added to the formulation throughout the optimization process.

Table A. 2 provides detailed computational results in order to compare symmetrybreaking methods. All tests were run using CPLEX with default settings and an implemented (possibly empty) callback function. Column Default stands for the results obtained with formulation $\operatorname{USNP}_{(V, E, C)}$. Column Constraints stands for the
results obtained with formulation $\operatorname{USNP}_{(V, E, C)}$ reinforced by the symmetry-breaking constraints described in Section 5.1. Column Orbitopal stands for the results obtained with formulation $\operatorname{USNP}_{(V, E, C)}$ using Orbitopal Fixing as the symmetry-breaking method. The information provided follows the structure described for Table A.1.

Table A. 3 provides detailed computational results in order to show the impact of setting the number of available vehicles $p$ to the new bound provided by Theorem 5.1. All tests were run using CPLEX with default settings and an implemented (possibly empty) callback function. Column Default stands for the case where $p$ is set to $m$. Column Improved Bound stands for the results obtained with formulation $\operatorname{USNP}_{(V, E, C)}$ when $p$ is set to the new upper bound $\left[\frac{m}{\left[\frac{C}{2}\right]+1}\right]$. Column Minimum stands for the results obtained when $p$ is set to $p_{\text {min }}$. The information provided follows the structure described for Table 5.2 in Section 5.2.

Table A. 4 provides detailed computational results of the formulations proposed in Section 4.2 in order to evaluate the impact of changing the branching policy. All tests were run using CPLEX with default settings together with the Orbitopal Fixing symmetry-breaking method. Moreover, the number of available vehicles is set to the upper bound on $p_{\text {opt }}$ given by Theorem 5.1. Column $\operatorname{USNP}_{(V, E, C)}$ stands for the results obtained with the original formulation $\operatorname{USNP}_{(V, E, C)}$. Column USNP-X ${ }_{(V, E, C)}$ stands for the results obtained from formulation $\operatorname{USNP}_{(V, E, C)}$ by relaxing variables $y_{v}^{i}$ and keeping the integrality constraints on variables $x_{e}^{i}$. Column USNP- $\mathrm{Y}_{(V, E, C)}$ stands for the results obtained from formulation $\operatorname{USNP}_{(V, E, C)}$ by setting a priority of branching on variables $y_{v}^{i}$. For each case, the number of binary variables in the formulation is displayed under column bin. The total time in seconds employed in the optimization process is given under CPU. The best lower bound and the best solution found within the time limit is given under lb and ub , respectively. The remaining gap associated with such bounds is then proposed under column gap. Since the variable choice for branching impacts the construction of the enumeration tree, the number of nodes explored in such tree is displayed under column node. Finally, this difference in the construction might impact the CPLEX heuristics for generating cuts. The number of CPLEX cuts added through the optimization is provided under cuts.
Table A.1: Detailed results of formulation $\operatorname{USNP}_{(V E C)}$

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 30 | 2 | 1.5 | 1 | 1500 | 2130 | 10 | 11 | 1.3 | 21.9 | 39 | 43.96 | 42.4 | 31.1 | 35 | 35 | 0 | 4.2 | 0 | 24 |
| 30 | 2 | 1.5 | 2 | 1500 | 2220 | 8 | 8 | 1 | 22.8 | 35 | 34.95 | 74.2 | 2.7 | 34 | 34 | 0 | 5.7 | 0 | 47 |
| 30 | 2 | 1.5 | 3 | 1500 | 2130 | 9 | 9 | 1.2 | 21.7 | 44 | 50.71 | 571 | 324.2 | 36 | 36 | 0 | 62.8 | 0 | 35 |
| 30 | 2 | 1.5 | 4 | 1500 | 2190 | 8 | 8 | 1.1 | 22.6 | 45 | 49.76 | 41.7 | 35.4 | 34 | 34 | 0 | 7.7 | 0 | 19 |
| 30 | 2 | 1.5 | 5 | 1500 | 2220 | 9 | 10 | 1.7 | 23.7 | 45 | 47.38 | 115.4 | 23.1 | 36 | 36 | 0 | 19.6 | 0 | 37 |
| 30 | 2 | 3.0 | 1 | 1200 | 2040 | 10 | 10 | 1.3 | 13.8 | 40 | 65.39 | 184.9 | 21.8 | 31 | 31 | 0 | 23.2 | 0 | 45 |
| 30 | 2 | 3.0 | 2 | 1200 | 2040 | 10 | 10 | 1.3 | 13.9 | 38 | 63.49 | 66 | 55.6 | 29 | 29 | 0 | 9.9 | 0 | 42 |
| 30 | 2 | 3.0 | 3 | 1200 | 2070 | 10 | 10 | 1.1 | 14 | 41 | 65.85 | 445.5 | 16.9 | 31 | 31 | 0 | 96.4 | 0 | 25 |
| 30 | 2 | 3.0 | 4 | 1200 | 2070 | 8 | 8 | 1.4 | 13.9 | 39 | 64.44 | 74.4 | 67.9 | 27 | 27 | 0 | 7.2 | 0 | 28 |
| 30 | 2 | 3.0 | 5 | 1200 | 2010 | 10 | 10 | 1.6 | 13.7 | 39 | 64.8 | 256 | 105 | 30 | 30 | 0 | 26.1 | 0 | 44 |
| 30 | 2 | 4.5 | 1 | 1080 | 1980 | 7 | 7 | 1.3 | 10 | 35 | 71.43 | 24 | 21.3 | 24 | 24 | 0 | 2 | 0 | 46 |
| 30 | 2 | 4.5 | 2 | 1080 | 1980 | 9 | 9 | 1.2 | 10 | 32 | 68.75 | 58.4 | 25.8 | 26 | 26 | 0 | 8.6 | 0 | 34 |
| 30 | 2 | 4.5 | 3 | 1080 | 1980 | 9 | 9 | 1.2 | 10 | 28 | 64.29 | 19.8 | 14.7 | 26 | 26 | 0 | 1.9 | 0 | 32 |
| 30 | 2 | 4.5 | 4 | 1080 | 1980 | 9 | 9 | 1.3 | 9.8 | 29 | 66.08 | 25.5 | 4.2 | 27 | 27 | 0 | 3.5 | 0 | 36 |
| 30 | 2 | 4.5 | 5 | 1080 | 1980 | 10 | 10 | 1.7 | 9.9 | 33 | 70.05 | 39.4 | 35.8 | 27 | 27 | 0 | 3.6 | 0 | 37 |
| 35 | 2 | 1.5 | 1 | 2030 | 2905 | 10 | 10 | 1.7 | 24.7 | 56 | 55.84 | 1947.8 | 243.3 | 41 | 41 | 0 | 200.8 | 0 | 85 |
| 35 | 2 | 1.5 | 2 | 2030 | 2940 | 13 | 13 | 1.6 | 25.8 | 58 | 55.56 | 614.8 | 37.3 | 44 | 44 | 0 | 50.8 | 0 | 41 |
| 35 | 2 | 1.5 | 3 | 2030 | 2940 | 11 | 12 | 2.1 | 25.8 | 46 | 43.9 | 157.1 | 146 | 40 | 40 | 0 | 11.4 | 0 | 13 |
| 35 | 2 | 1.5 | 4 | 2030 | 2975 | 11 | 11 | 1.9 | 25.8 | 53 | 51.38 | 783.7 | 153.1 | 41 | 41 | 0 | 76.6 | 0 | 11 |
| 35 | 2 | 1.5 | 5 | 2030 | 2905 | 12 | 12 | 1.7 | 23.8 | 51 | 53.32 | 288.2 | 136.9 | 40 | 40 | 0 | 21.9 | 0 | 11 |
| 35 | 2 | 3.0 | 1 | 1610 | 2695 | 12 | 12 | 1.6 | 14.8 | 50 | 70.4 | 2043.1 | 50 | 35 | 35 | 0 | 232.3 | 0 | 45 |
| 35 | 2 | 3.0 | 2 | 1610 | 2765 | 10 | 10 | 1.6 | 14.8 | 46 | 67.9 | 4509.5 | 4138.4 | 33 | 33 | 0 | 563.8 | 0 | 21 |
| 35 | 2 | 3.0 | 3 | 1610 | 2800 | 12 | 12 | 2.8 | 19.3 | 41 | 52.88 | 613.1 | 247.3 | 35 | 35 | 0 | 25.6 | 0 | 51 |
| 35 | 2 | 3.0 | 4 | 1610 | 2765 | 11 | 11 | 2 | 14 | 37 | 62.16 | 259.2 | 106.6 | 32 | 32 | 0 | 14.6 | 0 | 45 |
| 35 | 2 | 3.0 | 5 | 1610 | 2800 | 10 | 10 | 1.8 | 14.8 | 50 | 70.46 | 605 | 276.1 | 33 | 33 | 0 | 59.7 | 0 | 30 |
| 35 | 2 | 4.5 | 1 | 1470 | 2660 | 12 | 12 | 2.4 | 13.8 | 38 | 63.66 | 1923.3 | 60.2 | 32 | 32 | 0 | 281.7 | 0 | 26 |
| 35 | 2 | 4.5 | 2 | 1470 | 2695 | 11 | 11 | 2 | 11 | 43 | 74.42 | 663.1 | 80.1 | 32 | 32 | 0 | 125.9 | 0 | 43 |
| 35 | 2 | 4.5 | 3 | 1470 | 2695 | 10 | 10 | 2.1 | 10.9 | 36 | 69.75 | 153.5 | 131.6 | 30 | 30 | 0 | 9.8 | 0 | 45 |
| 35 | 2 | 4.5 | 4 | 1470 | 2660 | 12 | 12 | 2.4 | 15.8 | 38 | 58.47 | 696.3 | 52.9 | 33 | 33 | 0 | 55.6 | 0 | 83 |
| 35 | 2 | 4.5 | 5 | 1470 | 2695 | 10 | 10 | 1.5 | 10.8 | 40 | 73.06 | 293.4 | 24.7 | 31 | 31 | 0 | 67.6 | 0 | 39 |
| 40 | 2 | 1.5 | 1 | 2640 | 3800 | 11 | 13 | 2.3 | 27.8 | 64 | 56.55 | 7200 | 747.1 | 46 | 50 | 8.02 | 406.1 | 244.1 | 18 |
| 40 | 2 | 1.5 | 2 | 2640 | 3800 | 11 | 12 | 2.9 | 28.8 | 63 | 54.29 | 7200 | 187 | 45.3 | 48 | 5.69 | 498.7 | 250 | 16 |
| 40 | 2 | 1.5 | 3 | 2640 | 3640 | 12 | 14 | 2.6 | 27.9 | 63 | 55.77 | 1282.1 | 112.9 | 46 | 46 | 0 | 88.4 | 0 | 59 |
| 40 | 2 | 1.5 | 4 | 2640 | 3920 | 11 | 12 | 3 | 27.8 | 64 | 56.56 | 5450.2 | 699.9 | 46 | 46 | 0 | 301.1 | 0 | 23 |
| 40 | 2 | 1.5 | 5 | 2640 | 3680 | 11 | 13 | 3.8 | 28.9 | 61 | 52.63 | 3886 | 318.8 | 48 | 48 | 0 | 325.8 | 0 | 22 |
| 40 | 2 | 3.0 | 1 | 2120 | 3600 | 11 | 11 | 2.6 | 16.9 | 52 | 67.5 | 7200 | 574.6 | 33.3 | 38 | 12.31 | 249 | 132 | 22 |
| 40 | 2 | 3.0 | 2 | 2120 | 3640 | 10 | 10 | 3.7 | 16.7 | 46 | 63.71 | 7200 | 419.2 | 32.9 | 37 | 11.14 | 337 | 202.6 | 18 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 40 | 2 | 3.0 | 3 | 2120 | 3640 | 12 | 12 | 2.2 | 16.9 | 55 | 69.35 | 7200 | 116.9 | 35.8 | 40 | 10.44 | 308 | 182.6 | 23 |
| 40 | 2 | 3.0 | 4 | 2120 | 3640 | 13 | 13 | 4.1 | 16.8 | 51 | 67 | 7200 | 78 | 36.1 | 40 | 9.69 | 344.6 | 172.2 | 22 |
| 40 | 2 | 3.0 | 5 | 2120 | 3640 | 11 | 11 | 2.4 | 16.8 | 54 | 68.97 | 7200 | 107.2 | 33.9 | 39 | 13.06 | 325.4 | 216.8 | 20 |
| 40 | 2 | 4.5 | 1 | 1920 | 3520 | 11 | 11 | 3.4 | 12 | 42 | 71.43 | 2158.7 | 461.4 | 35 | 35 | 0 | 147.2 | 0 | 74 |
| 40 | 2 | 4.5 | 2 | 1920 | 3520 | 11 | 11 | 3.1 | 11.9 | 50 | 76.22 | 2193 | 89 | 36 | 36 | 0 | 143.9 | 0 | 39 |
| 40 | 2 | 4.5 | 3 | 1920 | 3520 | 11 | 11 | 3 | 12 | 51 | 76.47 | 7200 | 187.4 | 31.2 | 34 | 8.1 | 549.4 | 291.3 | 28 |
| 40 | 2 | 4.5 | 4 | 1920 | 3520 | 11 | 11 | 3.2 | 11.9 | 44 | 72.94 | 2008 | 1186.9 | 35 | 35 | 0 | 215.1 | 0 | 29 |
| 40 | 2 | 4.5 | 5 | 1920 | 3520 | 11 | 11 | 3.5 | 11.9 | 42 | 71.67 | 7200 | 6 | 32.8 | 35 | 6.29 | 550.1 | 215.2 | 29 |
| 45 | 2 | 1.5 | 1 | 3375 | 4815 | 11 | 11 | 4.1 | 31.7 | 66 | 51.94 | 3717.7 | 708.3 | 49 | 49 | 0 | 161 | 0 | 11 |
| 45 | 2 | 1.5 | 2 | 3375 | 4815 | 13 | 14 | 3.6 | 31.8 | 71 | 55.17 | 7200 | 3130.3 | 49.8 | 53 | 6.1 | 300.1 | 161.7 | 18 |
| 45 | 2 | 1.5 | 3 | 3375 | 4770 | 13 | 17 | 3.8 | 33.8 | 71 | 52.35 | 7200 | 199.3 | 53.8 | 55 | 2.15 | 434.9 | 19.7 | 21 |
| 45 | 2 | 1.5 | 4 | 3375 | 4590 | 13 | 14 | 3.7 | 31.8 | 72 | 55.8 | 7200 | 2087.1 | 50.6 | 54 | 6.28 | 205.3 | 93 | 31 |
| 45 | 2 | 1.5 | 5 | 3375 | 4860 | 12 | 13 | 3.3 | 31.8 | 71 | 55.17 | 7200 | 237.6 | 49.3 | 53 | 6.89 | 224.6 | 123.1 | 58 |
| 45 | 2 | 3.0 | 1 | 2700 | 4590 | 13 | 13 | 3.9 | 18.8 | 54 | 65.12 | 7200 | 1915.1 | 35.8 | 45 | 20.46 | 171.9 | 122 | 16 |
| 45 | 2 | 3.0 | 2 | 2700 | 4545 | 15 | 15 | 3.4 | 19 | 64 | 70.31 | 7200 | 2987.2 | 39.1 | 47 | 16.84 | 154.1 | 92.3 | 24 |
| 45 | 2 | 3.0 | 3 | 2700 | 4590 | 15 | 15 | 4.2 | 18.9 | 62 | 69.6 | 7200 | 3287.6 | 38.2 | 46 | 16.93 | 166.9 | 102.4 | 21 |
| 45 | 2 | 3.0 | 4 | 2700 | 4545 | 11 | 12 | 3.7 | 18.8 | 59 | 68.13 | 7200 | 478.9 | 35.3 | 42 | 15.88 | 177.9 | 117.3 | 23 |
| 45 | 2 | 3.0 | 5 | 2700 | 4545 | 13 | 14 | 3.3 | 18.8 | 59 | 68.09 | 7200 | 2490 | 34.2 | 45 | 24.01 | 163.3 | 116.5 | 13 |
| 45 | 2 | 4.5 | 1 | 2475 | 4455 | 14 | 14 | 4.3 | 14 | 58 | 75.86 | 7200 | 677 | 39.2 | 42 | 6.65 | 293.6 | 129.8 | 25 |
| 45 | 2 | 4.5 | 2 | 2475 | 4455 | 15 | 15 | 3.2 | 13.9 | 55 | 74.68 | 7200 | 336.4 | 37 | 42 | 11.91 | 209.6 | 116.8 | 30 |
| 45 | 2 | 4.5 | 3 | 2475 | 4500 | 13 | 15 | 4.1 | 14 | 60 | 76.67 | 7200 | 126.3 | 36.4 | 42 | 13.29 | 211.2 | 128 | 38 |
| 45 | 2 | 4.5 | 4 | 2475 | 4500 | 17 | 17 | 6.7 | 21.9 | 55 | 60.26 | 7200 | 6650.3 | 41.7 | 45 | 7.39 | 200.3 | 69.7 | 142 |
| 45 | 2 | 4.5 | 5 | 2475 | 4410 | 12 | 12 | 3.3 | 13.9 | 57 | 75.61 | 7200 | 1352.5 | 33.9 | 39 | 13.08 | 225.5 | 143.1 | 20 |
| 50 | 2 | 1.5 | 1 | 4150 | 5900 | 16 | 18 | 5.9 | 36.9 | 78 | 52.74 | 7200 | 4440.6 | 53.6 | 63 | 14.88 | 104.4 | 59.3 | 57 |
| 50 | 2 | 1.5 | 2 | 4150 | 6000 | 14 | 14 | 5.7 | 35.8 | 85 | 57.85 | 7200 | 880.4 | 54 | 59 | 8.42 | 76.3 | 31.9 | 56 |
| 50 | 2 | 1.5 | 3 | 4150 | 6150 | 12 | 14 | 6.5 | 33.8 | 73 | 53.66 | 7200 | 3171.5 | 48.8 | 58 | 15.89 | 116.8 | 75.4 | 54 |
| 50 | 2 | 1.5 | 4 | 4150 | 5950 | 15 | 15 | 5.7 | 34.9 | 75 | 53.52 | 7200 | 1290.6 | 51 | 60 | 15 | 83.5 | 29.5 | 62 |
| 50 | 2 | 1.5 | 5 | 4150 | 6050 | 14 | 15 | 6.6 | 34.4 | 79 | 56.51 | 7200 | 1305.9 | 49.1 | 60 | 18.11 | 76.9 | 32 | 67 |
| 50 | 2 | 3.0 | 1 | 3300 | 5700 | 15 | 16 | 4.8 | 20 | 75 | 73.33 | 7200 | 700.9 | 39.2 | 51 | 23.16 | 97.4 | 64.7 | 34 |
| 50 | 2 | 3.0 | 2 | 3300 | 5500 | 19 | 20 | 5.3 | 19.9 | 76 | 73.83 | 7200 | 551.1 | 39.4 | 55 | 28.38 | 84.2 | 53.6 | 57 |
| 50 | 2 | 3.0 | 3 | 3300 | 5600 | 14 | 14 | 5.1 | 19.8 | 66 | 69.94 | 7200 | 1563.9 | 38 | 50 | 24.03 | 89.8 | 12.7 | 29 |
| 50 | 2 | 3.0 | 4 | 3300 | 5750 | 15 | 16 | 5.5 | 20 | 66 | 69.7 | 7200 | 531.3 | 39.5 | 49 | 19.3 | 71.4 | 38 | 56 |
| 50 | 2 | 3.0 | 5 | 3300 | 5750 | 14 | 15 | 5 | 19.8 | 70 | 71.75 | 7200 | 1781.6 | 36.7 | 52 | 29.52 | 77.5 | 34.5 | 49 |
| 50 | 2 | 4.5 | 1 | 3050 | 5400 | 14 | 15 | 4.6 | 14.8 | 62 | 76.05 | 7200 | 2933.5 | 32.4 | 47 | 31.05 | 121.4 | 80.3 | 8 |
| 50 | 2 | 4.5 | 2 | 3050 | 5450 | 13 | 13 | 4.8 | 14.9 | 61 | 75.55 | 7200 | 980.6 | 36.7 | 44 | 16.66 | 88.6 | 34.5 | 48 |
| 50 | 2 | 4.5 | 3 | 3050 | 5450 | 15 | 15 | 5.4 | 14.9 | 65 | 77.03 | 7200 | 3951.1 | 35.5 | 47 | 24.38 | 105.1 | 50.4 | 27 |
| 50 | 2 | 4.5 | 4 | 3050 | 5400 | 17 | 17 | 5.9 | 17.9 | 61 | 70.6 | 7200 | 288.2 | 37.1 | 49 | 24.19 | 115.2 | 74.6 | 30 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 50 | 2 | 4.5 | 5 | 3050 | 5450 | 15 | 15 | 4.7 | 14.9 | 64 | 76.67 | 7200 | 3300.6 | 34.9 | 48 | 27.29 | 88.7 | 54 | 64 |
| 55 | 2 | 1.5 | 1 | 5005 | 7205 | 14 | 16 | 6.7 | 38.9 | 91 | 57.3 | 7200 | 2660.7 | 53 | 64 | 17.17 | 67.1 | 38.8 | 55 |
| 55 | 2 | 1.5 | 2 | 5005 | 7095 | 17 | 18 | 11.2 | 37.9 | 79 | 52.08 | 7200 | 3870.4 | 53.8 | 66 | 18.54 | 83.4 | 47.2 | 37 |
| 55 | 2 | 1.5 | 3 | 5005 | 7315 | 16 | 16 | 31.5 | 38.8 | 83 | 53.22 | 7200 | 6605.9 | 53.8 | 62 | 13.18 | 55.8 | 22.9 | 66 |
| 55 | 2 | 1.5 | 4 | 5005 | 7425 | 14 | 14 | 6.8 | 37.8 | 85 | 55.48 | 7200 | 1825.6 | 52.3 | 64 | 18.26 | 53.9 | 19.2 | 56 |
| 55 | 2 | 1.5 | 5 | 5005 | 7095 | 16 | 18 | 29.4 | 35 | 89 | 60.67 | 7200 | 2271.6 | 50.5 | 66 | 23.44 | 62.6 | 53 | 57 |
| 55 | 2 | 3.0 | 1 | 4015 | 6875 | 16 | 16 | 7 | 21.9 | 80 | 72.64 | 7200 | 833.9 | 39.7 | 58 | 31.47 | 64.7 | 40.4 | 43 |
| 55 | 2 | 3.0 | 2 | 4015 | 6655 | 16 | 16 | 6 | 21.9 | 73 | 70.07 | 7200 | 946.4 | 37 | 56 | 33.86 | 69.8 | 28 | 64 |
| 55 | 2 | 3.0 | 3 | 4015 | 6710 | 18 | 18 | 7.5 | 21.9 | 78 | 71.95 | 7200 | 6179.9 | 38.4 | 58 | 33.84 | 75 | 43.8 | 25 |
| 55 | 2 | 3.0 | 4 | 4015 | 6765 | 15 | 16 | 7 | 21.9 | 80 | 72.69 | 7200 | 6036.9 | 36.5 | 55 | 33.62 | 49.5 | 23.6 | 39 |
| 55 | 2 | 3.0 | 5 | 4015 | 6930 | 15 | 16 | 6.4 | 21.9 | 77 | 71.62 | 7200 | 3557.8 | 38.7 | 56 | 30.91 | 66.7 | 54.1 | 24 |
| 55 | 2 | 4.5 | 1 | 3685 | 6600 | 15 | 15 | 6.5 | 15.9 | 74 | 78.58 | 7200 | 2104.4 | 32.4 | 49 | 33.88 | 69.6 | 40.8 | 23 |
| 55 | 2 | 4.5 | 2 | 3685 | 6710 | 15 | 15 | 6.6 | 15.9 | 78 | 79.58 | 7200 | 7005.9 | 38.2 | 50 | 23.52 | 49.8 | 6.4 | 72 |
| 55 | 2 | 4.5 | 3 | 3685 | 6710 | 16 | 16 | 6.7 | 15.9 | 73 | 78.26 | 7200 | 6130.2 | 39.3 | 51 | 22.96 | 46.8 | 19 | 65 |
| 55 | 2 | 4.5 | 4 | 3685 | 6600 | 17 | 18 | 6.9 | 15.9 | 77 | 79.41 | 7200 | 2882 | 34.6 | 53 | 34.68 | 73.5 | 57.3 | 21 |
| 55 | 2 | 4.5 | 5 | 3685 | 6600 | 20 | 20 | 5.3 | 15.9 | 80 | 80.13 | 7200 | 759 | 32.8 | 56 | 41.5 | 84 | 56 | 6 |
| 60 | 2 | 1.5 | 1 | 6000 | 8280 | 19 | 20 | 9 | 41.9 | 104 | 59.67 | 7200 | 3432.1 | 60.5 | 73 | 17.14 | 38.1 | 28.1 | 18 |
| 60 | 2 | 1.5 | 2 | 6000 | 8640 | 19 | 20 | 31.5 | 41.9 | 93 | 54.9 | 7200 | 7000.7 | 57.8 | 73 | 20.86 | 33.8 | 9.8 | 34 |
| 60 | 2 | 1.5 | 3 | 6000 | 8580 | 17 | 18 | 26.2 | 40.9 | 94 | 56.52 | 7200 | 6652.1 | 55.2 | 71 | 22.26 | 45.4 | 19.4 | 34 |
| 60 | 2 | 1.5 | 4 | 6000 | 8700 | 16 | 18 | 27.7 | 42 | 89 | 52.85 | 7200 | 496.1 | 58.8 | 72 | 18.27 | 35.9 | 12.5 | 75 |
| 60 | 2 | 1.5 | 5 | 6000 | 8700 | 16 | 17 | 53.1 | 42.9 | 99 | 56.7 | 7200 | 6762.3 | 56.5 | 71 | 20.45 | 45.1 | 30.9 | 35 |
| 60 | 2 | 3.0 | 1 | 4800 | 8100 | 18 | 18 | 21.2 | 23.9 | 78 | 69.33 | 7200 | 5909.6 | 40.7 | 65 | 37.38 | 35.3 | 29 | 88 |
| 60 | 2 | 3.0 | 2 | 4800 | 8160 | 17 | 19 | 9.1 | 24 | 90 | 73.33 | 7200 | 6589.8 | 42.9 | 63 | 31.85 | 43.2 | 19 | 44 |
| 60 | 2 | 3.0 | 3 | 4800 | 8100 | 20 | 20 | 17.4 | 23.9 | 96 | 75.05 | 7200 | 6792.3 | 41.2 | 64 | 35.67 | 43.7 | 19.8 | 49 |
| 60 | 2 | 3.0 | 4 | 4800 | 8160 | 18 | 18 | 10 | 23.9 | 86 | 72.16 | 7200 | 6443.2 | 40.8 | 63 | 35.2 | 31 | 23.6 | 99 |
| 60 | 2 | 3.0 | 5 | 4800 | 8340 | 16 | 19 | 9.8 | 23.9 | 91 | 73.7 | 7200 | 7048 | 44.7 | 64 | 30.1 | 46.2 | 33.7 | 85 |
| 60 | 2 | 4.5 | 1 | 4380 | 7860 | 16 | 19 | 8.8 | 16.8 | 85 | 80.22 | 7200 | 4722.5 | 31.4 | 58 | 45.81 | 50.2 | 25.3 | 27 |
| 60 | 2 | 4.5 | 2 | 4380 | 7920 | 17 | 17 | 9 | 16.9 | 81 | 79.09 | 7200 | 532.3 | 37.1 | 57 | 34.84 | 46.7 | 22.9 | 51 |
| 60 | 2 | 4.5 | 3 | 4380 | 7860 | 19 | 19 | 13.3 | 17 | 83 | 79.52 | 7200 | 1138.4 | 37.7 | 57 | 33.95 | 39.3 | 15.3 | 81 |
| 60 | 2 | 4.5 | 4 | 4380 | 7860 | 19 | 20 | 8.5 | 16.9 | 82 | 79.33 | 7200 | 1581.2 | 35.5 | 59 | 39.87 | 41.2 | 17.3 | 81 |
| 60 | 2 | 4.5 | 5 | 4380 | 7800 | 18 | 18 | 9.2 | 17 | 85 | 80 | 7200 | 3005.2 | 34.8 | 57 | 38.89 | 42.3 | 18.3 | 61 |
| 30 | 5 | 1.5 | 1 | 1500 | 2190 | 4 | 4 | 2.2 | 19.5 | 27 | 27.74 | 15.8 | 3.3 | 25 | 25 | 0 | 1.4 | 0 | 36 |
| 30 | 5 | 1.5 | 2 | 1500 | 2250 | 4 | 4 | 2 | 21.4 | 27 | 20.62 | 4.1 | 2 | 27 | 27 | 0 | 0.1 | 0 | 8 |
| 30 | 5 | 1.5 | 3 | 1500 | 2100 | 5 | 5 | 1.7 | 22.4 | 30 | 25.4 | 6.5 | 6.2 | 27 | 27 | 0 | 0.5 | 0 | 9 |
| 30 | 5 | 1.5 | 4 | 1500 | 2130 | 4 | 4 | 1.7 | 21.2 | 28 | 24.38 | 9.9 | 5.7 | 27 | 27 | 0 | 0.9 | 0 | 6 |
| 30 | 5 | 1.5 | 5 | 1500 | 2160 | 4 | 4 | 1.9 | 22.2 | 29 | 23.55 | 17.4 | 8.9 | 28 | 28 | 0 | 1.6 | 0 | 8 |
| 30 | 5 | 3.0 | 1 | 1200 | 2040 | 4 | 4 | 1.8 | 12.5 | 20 | 37.54 | 20.7 | 6.1 | 19 | 19 | 0 | 1.9 | 0 | 15 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 30 | 5 | 3.0 | 2 | 1200 | 2070 | 4 | 4 | 1.7 | 12.4 | 20 | 38.19 | 23.8 | 12.3 | 19 | 19 | 0 | 2 | 0 | 20 |
| 30 | 5 | 3.0 | 3 | 1200 | 2070 | 4 | 4 | 1.7 | 12.9 | 21 | 38.44 | 13.2 | 13.2 | 18 | 18 | 0 | 0.9 | 0 | 25 |
| 30 | 5 | 3.0 | 4 | 1200 | 2040 | 4 | 4 | 1.9 | 12.5 | 19 | 34.34 | 6.6 | 4.3 | 18 | 18 | 0 | 0.4 | 0 | 12 |
| 30 | 5 | 3.0 | 5 | 1200 | 2010 | 4 | 4 | 1.9 | 12.3 | 20 | 38.42 | 16.6 | 9.6 | 19 | 19 | 0 | 1.4 | 0 | 10 |
| 30 | 5 | 4.5 | 1 | 1080 | 1950 | 4 | 4 | 1.9 | 9.4 | 16 | 40.97 | 4 | 3.1 | 14 | 14 | 0 | 0.2 | 0 | 15 |
| 30 | 5 | 4.5 | 2 | 1080 | 1980 | 4 | 4 | 1.4 | 9.3 | 14 | 33.79 | 2.4 | 2.1 | 13 | 13 | 0 | 0 | 0 | 24 |
| 30 | 5 | 4.5 | 3 | 1080 | 1980 | 4 | 4 | 1.6 | 8.2 | 14 | 41.38 | 6.1 | 6.1 | 13 | 13 | 0 | 0.3 | 0 | 21 |
| 30 | 5 | 4.5 | 4 | 1080 | 1980 | 4 | 4 | 1.9 | 9 | 14 | 35.71 | 8.9 | 1.9 | 14 | 14 | 0 | 0.7 | 0 | 30 |
| 30 | 5 | 4.5 | 5 | 1080 | 1980 | 3 | 3 | 1.8 | 8.1 | 13 | 37.49 | 4.4 | 1.8 | 13 | 13 | 0 | 0.2 | 0 | 18 |
| 35 | 5 | 1.5 | 1 | 2030 | 2905 | 5 | 5 | 3.6 | 23.4 | 34 | 31.05 | 111.3 | 67.4 | 31 | 31 | 0 | 3.9 | 0 | 20 |
| 35 | 5 | 1.5 | 2 | 2030 | 2940 | 4 | 4 | 3.6 | 24.5 | 32 | 23.44 | 17 | 12.4 | 31 | 31 | 0 | 0.8 | 0 | 10 |
| 35 | 5 | 1.5 | 3 | 2030 | 3010 | 4 | 4 | 3.5 | 23.5 | 32 | 26.65 | 25.6 | 19.5 | 29 | 29 | 0 | 1.2 | 0 | 8 |
| 35 | 5 | 1.5 | 4 | 2030 | 2905 | 5 | 5 | 2.7 | 25.4 | 37 | 31.4 | 117.2 | 116 | 33 | 33 | 0 | 7 | 0 | 19 |
| 35 | 5 | 1.5 | 5 | 2030 | 3010 | 5 | 5 | 3.3 | 24.3 | 38 | 36.05 | 63.1 | 60.7 | 31 | 31 | 0 | 3.9 | 0 | 14 |
| 35 | 5 | 3.0 | 1 | 1610 | 2765 | 4 | 4 | 2.3 | 13.4 | 23 | 41.93 | 225 | 63.5 | 22 | 22 | 0 | 12 | 0 | 22 |
| 35 | 5 | 3.0 | 2 | 1610 | 2730 | 5 | 5 | 3.3 | 13.4 | 21 | 36.28 | 94.9 | 3.3 | 21 | 21 | 0 | 5.5 | 0 | 19 |
| 35 | 5 | 3.0 | 3 | 1610 | 2765 | 5 | 5 | 2.8 | 13.5 | 30 | 55.05 | 538.8 | 251.3 | 23 | 23 | 0 | 35.5 | 0 | 24 |
| 35 | 5 | 3.0 | 4 | 1610 | 2765 | 5 | 5 | 2.8 | 13.4 | 26 | 48.42 | 360.3 | 351.3 | 22 | 22 | 0 | 20.4 | 0 | 19 |
| 35 | 5 | 3.0 | 5 | 1610 | 2765 | 4 | 4 | 2.3 | 13.4 | 23 | 41.86 | 161.8 | 14.1 | 21 | 21 | 0 | 5.8 | 0 | 31 |
| 35 | 5 | 4.5 | 1 | 1470 | 2695 | 6 | 6 | 2.1 | 10.3 | 21 | 50.92 | 22.6 | 16.7 | 18 | 18 | 0 | 1.1 | 0 | 62 |
| 35 | 5 | 4.5 | 2 | 1470 | 2695 | 4 | 4 | 2.2 | 9.5 | 16 | 40.47 | 12.4 | 2.2 | 16 | 16 | 0 | 0.5 | 0 | 32 |
| 35 | 5 | 4.5 | 3 | 1470 | 2695 | 4 | 4 | 2.6 | 9.5 | 17 | 44.27 | 45.3 | 2.6 | 17 | 17 | 0 | 2.5 | 0 | 70 |
| 35 | 5 | 4.5 | 4 | 1470 | 2695 | 5 | 5 | 2.4 | 9.4 | 19 | 50.48 | 13.9 | 8 | 16 | 16 | 0 | 0.5 | 0 | 33 |
| 35 | 5 | 4.5 | 5 | 1470 | 2695 | 5 | 5 | 2.9 | 9.6 | 23 | 58.18 | 18.9 | 5.7 | 17 | 17 | 0 | 0.9 | 0 | 45 |
| 40 | 5 | 1.5 | 1 | 2640 | 3840 | 4 | 5 | 5.4 | 28.3 | 49 | 42.27 | 445.8 | 113.6 | 37 | 37 | 0 | 23.8 | 0 | 15 |
| 40 | 5 | 1.5 | 2 | 2640 | 4080 | 4 | 4 | 5.8 | 27.8 | 39 | 28.85 | 64.9 | 42.9 | 36 | 36 | 0 | 2 | 0 | 5 |
| 40 | 5 | 1.5 | 3 | 2640 | 3840 | 5 | 5 | 3.3 | 28.3 | 41 | 30.93 | 376.2 | 362.6 | 37 | 37 | 0 | 11.8 | 0 | 18 |
| 40 | 5 | 1.5 | 4 | 2640 | 3880 | 5 | 5 | 4 | 27.7 | 43 | 35.59 | 312.3 | 18.9 | 37 | 37 | 0 | 13.4 | 0 | 18 |
| 40 | 5 | 1.5 | 5 | 2640 | 4000 | 4 | 4 | 4.2 | 27.1 | 36 | 24.63 | 132.8 | 119.1 | 33 | 33 | 0 | 2.7 | 0 | 20 |
| 40 | 5 | 3.0 | 1 | 2120 | 3680 | 5 | 5 | 3.7 | 15.7 | 29 | 46.02 | 1193.3 | 352 | 26 | 26 | 0 | 28.8 | 0 | 27 |
| 40 | 5 | 3.0 | 2 | 2120 | 3640 | 5 | 5 | 3.4 | 15.4 | 32 | 51.81 | 486.8 | 390.2 | 25 | 25 | 0 | 15.8 | 0 | 12 |
| 40 | 5 | 3.0 | 3 | 2120 | 3640 | 6 | 6 | 5 | 15.5 | 31 | 49.86 | 374.5 | 309.5 | 25 | 25 | 0 | 12.4 | 0 | 32 |
| 40 | 5 | 3.0 | 4 | 2120 | 3560 | 5 | 5 | 3.3 | 15.5 | 33 | 53.07 | 588.3 | 463 | 25 | 25 | 0 | 16.5 | 0 | 17 |
| 40 | 5 | 3.0 | 5 | 2120 | 3640 | 5 | 5 | 4.4 | 15.5 | 28 | 44.55 | 1928.1 | 1334.9 | 26 | 26 | 0 | 50.2 | 0 | 38 |
| 40 | 5 | 4.5 | 1 | 1920 | 3520 | 5 | 5 | 4.8 | 10.8 | 24 | 55.2 | 218.2 | 146.9 | 19 | 19 | 0 | 6.1 | 0 | 27 |
| 40 | 5 | 4.5 | 2 | 1920 | 3480 | 5 | 5 | 4.1 | 10.9 | 22 | 50.66 | 564.5 | 89.3 | 20 | 20 | 0 | 19.9 | 0 | 31 |
| 40 | 5 | 4.5 | 3 | 1920 | 3480 | 4 | 4 | 3 | 10.3 | 22 | 53.26 | 49.1 | 23.8 | 18 | 18 | 0 | 1.8 | 0 | 29 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 40 | 5 | 4.5 | 4 | 1920 | 3440 | 6 | 6 | 2.7 | 11.4 | 27 | 57.93 | 162.4 | 71.1 | 20 | 20 | 0 | 7.2 | 0 | 19 |
| 40 | 5 | 4.5 | 5 | 1920 | 3520 | 5 | 5 | 3.2 | 10.9 | 22 | 50.5 | 438.8 | 57.8 | 20 | 20 | 0 | 13.9 | 0 | 26 |
| 45 | 5 | 1.5 | 1 | 3375 | 4860 | 4 | 5 | 6 | 30.6 | 42 | 27.19 | 711 | 323.5 | 40 | 40 | 0 | 15.3 | 0 | 14 |
| 45 | 5 | 1.5 | 2 | 3375 | 4590 | 7 | 7 | 4.6 | 32.5 | 49 | 33.65 | 402.6 | 89.6 | 41 | 41 | 0 | 11 | 0 | 30 |
| 45 | 5 | 1.5 | 3 | 3375 | 4770 | 6 | 6 | 5.2 | 30.5 | 47 | 35.15 | 1391 | 685.4 | 41 | 41 | 0 | 29.3 | 0 | 22 |
| 45 | 5 | 1.5 | 4 | 3375 | 4815 | 6 | 7 | 4 | 32.5 | 49 | 33.71 | 938.3 | 787.3 | 42 | 42 | 0 | 26.7 | 0 | 20 |
| 45 | 5 | 1.5 | 5 | 3375 | 4725 | 7 | 7 | 4.2 | 29.7 | 45 | 33.91 | 2513.8 | 285.5 | 43 | 43 | 0 | 71.2 | 0 | 38 |
| 45 | 5 | 3.0 | 1 | 2700 | 4545 | 6 | 6 | 4.2 | 17.5 | 47 | 62.87 | 7200 | 1069.8 | 27 | 31 | 12.8 | 111.3 | 49.6 | 22 |
| 45 | 5 | 3.0 | 2 | 2700 | 4545 | 6 | 6 | 3.7 | 17.5 | 50 | 64.96 | 7200 | 287.8 | 27.9 | 31 | 10 | 101 | 44 | 46 |
| 45 | 5 | 3.0 | 3 | 2700 | 4545 | 6 | 6 | 4.5 | 17.5 | 53 | 66.98 | 7200 | 287.7 | 27.9 | 30 | 7.1 | 152.9 | 55.4 | 40 |
| 45 | 5 | 3.0 | 4 | 2700 | 4545 | 6 | 6 | 4.9 | 17.5 | 38 | 53.85 | 7200 | 864.8 | 27.1 | 31 | 12.66 | 115.7 | 52.4 | 34 |
| 45 | 5 | 3.0 | 5 | 2700 | 4500 | 6 | 6 | 5 | 17.6 | 39 | 55 | 7200 | 563.4 | 27.9 | 31 | 10 | 137.9 | 69.7 | 43 |
| 45 | 5 | 4.5 | 1 | 2475 | 4410 | 6 | 6 | 4.3 | 12.6 | 34 | 62.94 | 7200 | 1854.9 | 23.1 | 25 | 7.53 | 176.6 | 51.2 | 35 |
| 45 | 5 | 4.5 | 2 | 2475 | 4365 | 5 | 5 | 4.2 | 13.3 | 34 | 60.87 | 1148.3 | 339.1 | 23 | 23 | 0 | 31.9 | 0 | 14 |
| 45 | 5 | 4.5 | 3 | 2475 | 4500 | 6 | 6 | 4.2 | 12.5 | 32 | 60.88 | 5081.8 | 1271.6 | 24 | 24 | 0 | 108.3 | 0 | 22 |
| 45 | 5 | 4.5 | 4 | 2475 | 4455 | 6 | 6 | 4.2 | 12.5 | 36 | 65.38 | 7200 | 314.7 | 23.6 | 25 | 5.42 | 210.1 | 27 | 17 |
| 45 | 5 | 4.5 | 5 | 2475 | 4500 | 6 | 6 | 4.1 | 13.5 | 30 | 54.95 | 1052.9 | 230.4 | 24 | 24 | 0 | 22.7 | 0 | 48 |
| 50 | 5 | 1.5 | 1 | 4150 | 5850 | 6 | 7 | 5.8 | 34.5 | 52 | 33.59 | 4903.2 | 1211.1 | 46 | 46 | 0 | 126.3 | 0 | 30 |
| 50 | 5 | 1.5 | 2 | 4150 | 5900 | 5 | 5 | 8.5 | 35.4 | 54 | 34.41 | 7200 | 3375 | 43.8 | 46 | 4.68 | 106.4 | 27.3 | 27 |
| 50 | 5 | 1.5 | 3 | 4150 | 6100 | 5 | 6 | 10.9 | 34.7 | 50 | 30.67 | 1917.8 | 301.9 | 46 | 46 | 0 | 42.5 | 0 | 25 |
| 50 | 5 | 1.5 | 4 | 4150 | 5800 | 7 | 7 | 8.3 | 33.6 | 63 | 46.68 | 7200 | 4040.8 | 44.1 | 48 | 8.13 | 112.7 | 57.3 | 26 |
| 50 | 5 | 1.5 | 5 | 4150 | 6050 | 6 | 6 | 7.3 | 33.9 | 62 | 45.3 | 7200 | 322.7 | 44.8 | 48 | 6.77 | 78.5 | 33 | 37 |
| 50 | 5 | 3.0 | 1 | 3300 | 5550 | 6 | 6 | 5.8 | 18.5 | 40 | 53.66 | 7200 | 2520.8 | 28.3 | 31 | 8.71 | 96.8 | 42.2 | 17 |
| 50 | 5 | 3.0 | 2 | 3300 | 5650 | 7 | 7 | 6.4 | 18.6 | 61 | 69.52 | 7200 | 4894.8 | 28.7 | 35 | 18.02 | 66.4 | 30 | 21 |
| 50 | 5 | 3.0 | 3 | 3300 | 5750 | 6 | 6 | 5.7 | 18.5 | 56 | 66.96 | 7200 | 5889.2 | 27.8 | 34 | 18.3 | 74.6 | 39 | 33 |
| 50 | 5 | 3.0 | 4 | 3300 | 5650 | 7 | 7 | 6.7 | 18.8 | 63 | 70.21 | 7200 | 3795.3 | 28.5 | 34 | 16.2 | 70.4 | 34.7 | 35 |
| 50 | 5 | 3.0 | 5 | 3300 | 5750 | 6 | 6 | 6.2 | 18.5 | 38 | 51.32 | 4148.9 | 740.4 | 30 | 30 | 0 | 62.8 | 0 | 18 |
| 50 | 5 | 4.5 | 1 | 3050 | 5500 | 7 | 7 | 5.5 | 13.9 | 45 | 69.18 | 7200 | 6715.6 | 23.8 | 30 | 20.55 | 85.2 | 43.2 | 80 |
| 50 | 5 | 4.5 | 2 | 3050 | 5450 | 8 | 8 | 5.5 | 13.8 | 51 | 73.01 | 7200 | 2414.4 | 24.9 | 30 | 16.88 | 101.2 | 57.4 | 45 |
| 50 | 5 | 4.5 | 3 | 3050 | 5500 | 6 | 6 | 5.6 | 13.8 | 46 | 69.94 | 7200 | 1246.3 | 23 | 28 | 17.88 | 77 | 40.8 | 54 |
| 50 | 5 | 4.5 | 4 | 3050 | 5500 | 6 | 6 | 5.7 | 13.6 | 46 | 70.52 | 7200 | 2020.5 | 23.1 | 26 | 10.96 | 69.7 | 30.6 | 16 |
| 50 | 5 | 4.5 | 5 | 3050 | 5400 | 7 | 7 | 6.1 | 13.6 | 51 | 73.32 | 7200 | 1989.1 | 24 | 30 | 20 | 107.2 | 66.5 | 33 |
| 55 | 5 | 1.5 | 1 | 5005 | 7315 | 7 | 7 | 67 | 37.6 | 76 | 50.55 | 7200 | 2140.2 | 47.1 | 51 | 7.7 | 77.7 | 31 | 33 |
| 55 | 5 | 1.5 | 2 | 5005 | 7260 | 7 | 8 | 78.4 | 37.7 | 59 | 36.09 | 7200 | 4784.4 | 47.2 | 51 | 7.44 | 53.6 | 18.5 | 42 |
| 55 | 5 | 1.5 | 3 | 5005 | 6875 | 8 | 9 | 9.7 | 38.6 | 73 | 47.08 | 4133.7 | 386.9 | 50 | 50 | 0 | 76 | 0 | 34 |
| 55 | 5 | 1.5 | 4 | 5005 | 7315 | 7 | 7 | 36.3 | 35.7 | 72 | 50.43 | 7200 | 6756.8 | 45.2 | 49 | 7.66 | 52 | 16.1 | 34 |
| 55 | 5 | 1.5 | 5 | 5005 | 7040 | 7 | 7 | 19.5 | 38.6 | 74 | 47.86 | 7200 | 1437.4 | 48.1 | 52 | 7.41 | 70.2 | 19.5 | 41 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 55 | 5 | 3.0 | 1 | 4015 | 6765 | 7 | 7 | 9.4 | 20.7 | 65 | 68.13 | 7200 | 6516.5 | 30.1 | 40 | 24.72 | 58.3 | 30 | 27 |
| 55 | 5 | 3.0 | 2 | 4015 | 6985 | 6 | 6 | 8.3 | 20.7 | 50 | 58.68 | 7200 | 578.4 | 29.1 | 37 | 21.31 | 41.2 | 17.1 | 29 |
| 55 | 5 | 3.0 | 3 | 4015 | 6820 | 6 | 7 | 8.3 | 20.5 | 60 | 65.77 | 7200 | 1981.3 | 29 | 40 | 27.4 | 51.9 | 30.8 | 45 |
| 55 | 5 | 3.0 | 4 | 4015 | 6930 | 6 | 7 | 9.2 | 20.5 | 63 | 67.52 | 7200 | 6761.3 | 29 | 36 | 19.51 | 57.9 | 16.3 | 20 |
| 55 | 5 | 3.0 | 5 | 4015 | 6820 | 7 | 7 | 9.2 | 20.6 | 65 | 68.37 | 7200 | 6745.5 | 30.8 | 37 | 16.89 | 60.3 | 25.2 | 37 |
| 55 | 5 | 4.5 | 1 | 3685 | 6600 | 6 | 6 | 7.4 | 14.5 | 54 | 73.08 | 7200 | 109.9 | 22.7 | 32 | 29.12 | 57.1 | 33 | 19 |
| 55 | 5 | 4.5 | 2 | 3685 | 6600 | 7 | 7 | 8.2 | 14.9 | 51 | 70.85 | 7200 | 6858.6 | 24.3 | 30 | 19.1 | 49.1 | 17.7 | 28 |
| 55 | 5 | 4.5 | 3 | 3685 | 6600 | 7 | 7 | 6.8 | 14.7 | 59 | 75.04 | 7200 | 1197.1 | 25 | 32 | 21.74 | 52.2 | 26.5 | 52 |
| 55 | 5 | 4.5 | 4 | 3685 | 6545 | 7 | 7 | 7.4 | 14.6 | 56 | 73.96 | 7200 | 6525.8 | 23.7 | 31 | 23.57 | 70.1 | 23.2 | 42 |
| 55 | 5 | 4.5 | 5 | 3685 | 6545 | 7 | 7 | 8.3 | 14.6 | 61 | 76.05 | 7200 | 5071.2 | 24.4 | 33 | 26.09 | 79.5 | 44.3 | 14 |
| 60 | 5 | 1.5 | 1 | 6000 | 8880 | 5 | 6 | 90.1 | 38.5 | 74 | 47.91 | 7200 | 1756.4 | 45.7 | 50 | 8.64 | 33.6 | 9.4 | 20 |
| 60 | 5 | 1.5 | 2 | 6000 | 8640 | 6 | 7 | 86 | 40.7 | 65 | 37.34 | 7200 | 1919.3 | 48.8 | 53 | 7.87 | 37.8 | 12.3 | 50 |
| 60 | 5 | 1.5 | 3 | 6000 | 8340 | 7 | 7 | 70.8 | 40.6 | 92 | 55.89 | 7200 | 2054 | 49.7 | 57 | 12.87 | 47.3 | 21.6 | 28 |
| 60 | 5 | 1.5 | 4 | 6000 | 8640 | 7 | 7 | 107.2 | 39.7 | 83 | 52.13 | 7200 | 3026.2 | 47.2 | 56 | 15.72 | 33.2 | 25.6 | 24 |
| 60 | 5 | 1.5 | 5 | 6000 | 8340 | 8 | 9 | 86.8 | 40.7 | 83 | 51.01 | 7200 | 3910.7 | 48.1 | 57 | 15.63 | 36.8 | 25.8 | 46 |
| 60 | 5 | 3.0 | 1 | 4800 | 8340 | 7 | 7 | 20.8 | 22.6 | 65 | 65.2 | 7200 | 6825.3 | 30.9 | 44 | 29.8 | 28.5 | 9 | 70 |
| 60 | 5 | 3.0 | 2 | 4800 | 8100 | 7 | 8 | 9.4 | 22.6 | 72 | 68.66 | 7200 | 6630.5 | 30.4 | 42 | 27.68 | 31 | 10.3 | 41 |
| 60 | 5 | 3.0 | 3 | 4800 | 8220 | 7 | 8 | 9 | 22.7 | 72 | 68.41 | 7200 | 6631.1 | 31.3 | 42 | 25.43 | 33.7 | 12 | 39 |
| 60 | 5 | 3.0 | 4 | 4800 | 8040 | 7 | 7 | 9.1 | 22.7 | 67 | 66.09 | 7200 | 6780 | 31.9 | 39 | 18.25 | 26.2 | 14.8 | 63 |
| 60 | 5 | 3.0 | 5 | 4800 | 8040 | 7 | 8 | 9.8 | 22.7 | 65 | 65.13 | 7200 | 6812.5 | 30.9 | 43 | 28.11 | 33 | 22.4 | 21 |
| 60 | 5 | 4.5 | 1 | 4380 | 7920 | 6 | 6 | 79 | 16.6 | 55 | 69.82 | 7200 | 7146.6 | 24 | 33 | 27.38 | 17 | 11.8 | 28 |
| 60 | 5 | 4.5 | 2 | 4380 | 7920 | 7 | 7 | 9.8 | 15.7 | 62 | 74.69 | 7200 | 71.5 | 25.5 | 35 | 27.22 | 31.6 | 10.1 | 23 |
| 60 | 5 | 4.5 | 3 | 4380 | 7920 | 8 | 8 | 8.4 | 15.7 | 61 | 74.29 | 7200 | 136.3 | 25.3 | 34 | 25.6 | 30.9 | 8.8 | 99 |
| 60 | 5 | 4.5 | 4 | 4380 | 7920 | 7 | 7 | 8.7 | 15.6 | 59 | 73.57 | 7200 | 6763.5 | 23.7 | 35 | 32.27 | 32.5 | 12.1 | 73 |
| 60 | 5 | 4.5 | 5 | 4380 | 7920 | 6 | 6 | 8.3 | 16 | 61 | 73.77 | 7200 | 6928.5 | 24.7 | 35 | 29.31 | 29.8 | 22.1 | 28 |
| 30 | 8 | 1.5 | 1 | 1500 | 2130 | 3 | 3 | 1.3 | 21.4 | 24 | 10.94 | 1.7 | 1.3 | 24 | 24 | 0 | 0 | 0 | 5 |
| 30 | 8 | 1.5 | 2 | 1500 | 2130 | 3 | 3 | 1.8 | 20.4 | 23 | 11.52 | 2 | 1.8 | 23 | 23 | 0 | 0 | 0 | 6 |
| 30 | 8 | 1.5 | 3 | 1500 | 2130 | 3 | 3 | 1.9 | 20.5 | 24 | 14.39 | 2.7 | 1.9 | 24 | 24 | 0 | 0 | 0 | 6 |
| 30 | 8 | 1.5 | 4 | 1500 | 2190 | 3 | 3 | 2 | 19.6 | 23 | 14.87 | 2.9 | 2 | 23 | 23 | 0 | 0.1 | 0 | 3 |
| 30 | 8 | 1.5 | 5 | 1500 | 2160 | 3 | 3 | 2 | 21.4 | 24 | 10.94 | 2.4 | 2 | 24 | 24 | 0 | 0 | 0 | 7 |
| 30 | 8 | 3.0 | 1 | 1200 | 2070 | 3 | 3 | 1.7 | 11.9 | 16 | 25.87 | 3.7 | 1.7 | 16 | 16 | 0 | 0.1 | 0 | 13 |
| 30 | 8 | 3.0 | 2 | 1200 | 2070 | 2 | 2 | 1.1 | 10.8 | 13 | 17.31 | 1.4 | 1.1 | 13 | 13 | 0 | 0 | 0 | 2 |
| 30 | 8 | 3.0 | 3 | 1200 | 2040 | 2 | 2 | 0.9 | 10.9 | 14 | 22.36 | 1.3 | 0.9 | 14 | 14 | 0 | 0 | 0 | 2 |
| 30 | 8 | 3.0 | 4 | 1200 | 2010 | 2 | 2 | 1 | 11.7 | 15 | 21.75 | 1.9 | 1 | 15 | 15 | 0 | 0 | 0 | 2 |
| 30 | 8 | 3.0 | 5 | 1200 | 2040 | 3 | 3 | 2.2 | 11.4 | 15 | 23.96 | 3.1 | 2.2 | 15 | 15 | 0 | 0 | 0 | 5 |
| 30 | 8 | 4.5 | 1 | 1080 | 1980 | 3 | 3 | 1.3 | 7.9 | 11 | 28.53 | 2.1 | 1.3 | 11 | 11 | 0 | 0.1 | 0 | 12 |
| 30 | 8 | 4.5 | 2 | 1080 | 1980 | 3 | 3 | 1.9 | 7.7 | 11 | 30.27 | 3.3 | 1.9 | 11 | 11 | 0 | 0.1 | 0 | 14 |

Table A. 1 - Continued
Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | gap ${ }_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | $g a p_{g}$ | Nodes | NLeft | CCuts |
| 45 | 8 | 1.5 | 5 | 3375 | 4905 | 3 | 3 | 6.8 | 30.3 | 38 | 20.18 | 20.7 | 12.5 | 36 | 36 | 0 | 0.2 | 0 | 5 |
| 45 | 8 | 3.0 | 1 | 2700 | 4500 | 4 | 4 | 4 | 17.4 | 30 | 42.15 | 322.5 | 225.3 | 25 | 25 | 0 | 5.1 | 0 | 13 |
| 45 | 8 | 3.0 | 2 | 2700 | 4590 | 4 | 4 | 4.4 | 17.1 | 29 | 40.94 | 894.4 | 48.6 | 26 | 26 | 0 | 17 | 0 | 13 |
| 45 | 8 | 3.0 | 3 | 2700 | 4680 | 3 | 3 | 5 | 16.3 | 26 | 37.41 | 225.9 | 207.3 | 24 | 24 | 0 | 3.5 | 0 | 3 |
| 45 | 8 | 3.0 | 4 | 2700 | 4545 | 4 | 4 | 4.4 | 17.2 | 27 | 36.35 | 568.2 | 557.6 | 25 | 25 | 0 | 9.1 | 0 | 13 |
| 45 | 8 | 3.0 | 5 | 2700 | 4590 | 4 | 4 | 9.7 | 16.7 | 25 | 33.3 | 388.8 | 358.1 | 24 | 24 | 0 | 5.1 | 0 | 23 |
| 45 | 8 | 4.5 | 1 | 2475 | 4455 | 4 | 4 | 9 | 12.2 | 19 | 35.57 | 83.1 | 9 | 19 | 19 | 0 | 1.5 | 0 | 34 |
| 45 | 8 | 4.5 | 2 | 2475 | 4500 | 3 | 3 | 6.4 | 12 | 20 | 40.16 | 53.6 | 24.8 | 18 | 18 | 0 | 0.7 | 0 | 30 |
| 45 | 8 | 4.5 | 3 | 2475 | 4500 | 3 | 3 | 9.8 | 12 | 19 | 36.89 | 52.8 | 26.4 | 18 | 18 | 0 | 0.5 | 0 | 9 |
| 45 | 8 | 4.5 | 4 | 2475 | 4410 | 4 | 4 | 4.2 | 12.2 | 23 | 47.16 | 1050.9 | 30.3 | 21 | 21 | 0 | 26.3 | 0 | 9 |
| 45 | 8 | 4.5 | 5 | 2475 | 4410 | 4 | 4 | 3.8 | 12.2 | 21 | 42.02 | 363.5 | 188.3 | 20 | 20 | 0 | 6.1 | 0 | 11 |
| 50 | 8 | 1.5 | 1 | 4150 | 6000 | 4 | 5 | 16 | 33.8 | 47 | 28 | 286.1 | 132 | 41 | 41 | 0 | 2.1 | 0 | 20 |
| 50 | 8 | 1.5 | 2 | 4150 | 5800 | 4 | 4 | 18 | 31.4 | 41 | 23.51 | 183 | 183 | 38 | 38 | 0 | 1.6 | 0 | 6 |
| 50 | 8 | 1.5 | 3 | 4150 | 6100 | 4 | 4 | 13.8 | 31.4 | 44 | 28.62 | 262.6 | 232.6 | 39 | 39 | 0 | 2.5 | 0 | 11 |
| 50 | 8 | 1.5 | 4 | 4150 | 5800 | 4 | 4 | 7.2 | 32.5 | 47 | 30.75 | 596.8 | 596.8 | 41 | 41 | 0 | 6.8 | 0 | 14 |
| 50 | 8 | 1.5 | 5 | 4150 | 5850 | 5 | 5 | 16.7 | 33.6 | 48 | 30.08 | 1159.7 | 1158.7 | 42 | 42 | 0 | 9.5 | 0 | 15 |
| 50 | 8 | 3.0 | 1 | 3300 | 5550 | 4 | 4 | 6.5 | 18.2 | 29 | 37.4 | 6076.2 | 2919.1 | 28 | 28 | 0 | 59.4 | 0 | 11 |
| 50 | 8 | 3.0 | 2 | 3300 | 5700 | 4 | 4 | 6 | 17.8 | 31 | 42.55 | 3109.5 | 959.7 | 28 | 28 | 0 | 38 | 0 | 19 |
| 50 | 8 | 3.0 | 3 | 3300 | 5650 | 4 | 4 | 6.7 | 18.2 | 31 | 41.38 | 6300.1 | 2981.7 | 28 | 28 | 0 | 81.4 | 0 | 6 |
| 50 | 8 | 3.0 | 4 | 3300 | 5600 | 4 | 4 | 7.2 | 18.3 | 31 | 41.05 | 3283.6 | 1246.9 | 28 | 28 | 0 | 34.2 | 0 | 9 |
| 50 | 8 | 3.0 | 5 | 3300 | 5600 | 4 | 4 | 10.2 | 18.7 | 31 | 39.6 | 7200 | 547.9 | 27.3 | 29 | 5.98 | 88.9 | 19.7 | 12 |
| 50 | 8 | 4.5 | 1 | 3050 | 5550 | 4 | 4 | 6 | 13.3 | 24 | 44.55 | 761.6 | 338.3 | 22 | 22 | 0 | 7.1 | 0 | 19 |
| 50 | 8 | 4.5 | 2 | 3050 | 5300 | 5 | 5 | 5.3 | 13.4 | 24 | 44.28 | 1192.9 | 1109.6 | 22 | 22 | 0 | 13.6 | 0 | 8 |
| 50 | 8 | 4.5 | 3 | 3050 | 5500 | 4 | 4 | 7 | 13.2 | 27 | 51 | 1571.3 | 243.2 | 22 | 22 | 0 | 17.4 | 0 | 12 |
| 50 | 8 | 4.5 | 4 | 3050 | 5500 | 4 | 4 | 7.9 | 13.8 | 24 | 42.52 | 1017.8 | 727.3 | 22 | 22 | 0 | 8.3 | 0 | 17 |
| 50 | 8 | 4.5 | 5 | 3050 | 5550 | 5 | 5 | 5.5 | 13.5 | 26 | 48.07 | 2000.2 | 518.3 | 23 | 23 | 0 | 23.8 | 0 | 19 |
| 55 | 8 | 1.5 | 1 | 5005 | 7260 | 4 | 5 | 31.7 | 35.6 | 49 | 27.33 | 1478.9 | 1178 | 44 | 44 | 0 | 12.4 | 0 | 5 |
| 55 | 8 | 1.5 | 2 | 5005 | 7150 | 4 | 5 | 65.1 | 36.6 | 51 | 28.18 | 892.5 | 301.7 | 45 | 45 | 0 | 5 | 0 | 3 |
| 55 | 8 | 1.5 | 3 | 5005 | 7205 | 4 | 4 | 48.3 | 36.4 | 49 | 25.63 | 574.6 | 471 | 44 | 44 | 0 | 3.5 | 0 | 7 |
| 55 | 8 | 1.5 | 4 | 5005 | 7095 | 4 | 4 | 15.3 | 37.4 | 51 | 26.57 | 1675.8 | 249.5 | 46 | 46 | 0 | 13.8 | 0 | 12 |
| 55 | 8 | 1.5 | 5 | 5005 | 7205 | 5 | 5 | 68.4 | 35.6 | 52 | 31.54 | 7200 | 169 | 44.9 | 47 | 4.42 | 70.8 | 23.9 | 25 |
| 55 | 8 | 3.0 | 1 | 4015 | 6820 | 5 | 5 | 8.6 | 20.3 | 39 | 47.86 | 7200 | 6834.6 | 28.4 | 31 | 8.5 | 53.9 | 12.1 | 10 |
| 55 | 8 | 3.0 | 2 | 4015 | 6765 | 4 | 4 | 8.6 | 20.2 | 37 | 45.37 | 3615.9 | 866.8 | 30 | 30 | 0 | 20 | 0 | 12 |
| 55 | 8 | 3.0 | 3 | 4015 | 6820 | 4 | 4 | 7.7 | 19.5 | 51 | 61.76 | 5055.8 | 836.8 | 31 | 31 | 0 | 36.9 | 0 | 11 |
| 55 | 8 | 3.0 | 4 | 4015 | 6655 | 5 | 5 | 7.8 | 20.5 | 53 | 61.41 | 7200 | 516.7 | 27.1 | 33 | 17.76 | 58.4 | 43.2 | 9 |
| 55 | 8 | 3.0 | 5 | 4015 | 6820 | 5 | 5 | 7.3 | 20.4 | 41 | 50.36 | 7200 | 2254.2 | 28 | 34 | 17.59 | 45.3 | 30.7 | 37 |
| 55 | 8 | 4.5 | 1 | 3685 | 6600 | 4 | 4 | 9.9 | 14.4 | 33 | 56.46 | 7200 | 747 | 21.9 | 25 | 12.47 | 45.6 | 13.7 | 14 |

Table A. 1 - Continued

| Instances |  |  |  |  |  |  |  | Root |  |  |  | Global |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | i | cols | rows | $p_{\text {min }}$ | $p^{\prime}$ | time $_{r}$ | $L B_{r}$ | $U B_{r}$ | $g a p_{r}$ | time $_{g}$ | timeBest | $L B_{g}$ | $U B_{g}$ | gapg | Nodes | NLeft | CCuts |
| 55 | 8 | 4.5 | 2 | 3685 | 6710 | 4 | 4 | 7.5 | 14.1 | 29 | 51.26 | 4238.9 | 362.7 | 23 | 23 | 0 | 29.1 | 0 | 13 |
| 55 | 8 | 4.5 | 3 | 3685 | 6600 | 5 | 5 | 6.3 | 14.3 | 34 | 57.84 | 7200 | 1926.6 | 22 | 27 | 18.57 | 57.3 | 16.6 | 12 |
| 55 | 8 | 4.5 | 4 | 3685 | 6600 | 4 | 4 | 7.2 | 14.1 | 27 | 47.74 | 1546.7 | 540.8 | 23 | 23 | 0 | 10.3 | 0 | 19 |
| 55 | 8 | 4.5 | 5 | 3685 | 6710 | 5 | 5 | 6.9 | 14.3 | 43 | 66.7 | 7200 | 405.5 | 22.8 | 25 | 8.76 | 70.1 | 19.6 | 19 |
| 60 | 8 | 1.5 | 1 | 6000 | 8520 | 5 | 5 | 43.5 | 38.9 | 76 | 48.78 | 7200 | 1510.3 | 46.8 | 52 | 9.94 | 30 | 9.7 | 35 |
| 60 | 8 | 1.5 | 2 | 6000 | 8640 | 4 | 4 | 26.2 | 39.9 | 70 | 42.99 | 6014.2 | 984.1 | 50 | 50 | 0 | 33 | 0 | 12 |
| 60 | 8 | 1.5 | 3 | 6000 | 8580 | 5 | 5 | 94.2 | 41.6 | 64 | 35.07 | 5526.5 | 1171.6 | 52 | 52 | 0 | 31.5 | 0 | 12 |
| 60 | 8 | 1.5 | 4 | 6000 | 8460 | 5 | 5 | 69.8 | 40.6 | 55 | 26.23 | 2941.7 | 2824.1 | 50 | 50 | 0 | 16.6 | 0 | 11 |
| 60 | 8 | 1.5 | 5 | 6000 | 8580 | 4 | 4 | 79.1 | 38.6 | 54 | 28.59 | 7200 | 5842.1 | 45.6 | 49 | 6.86 | 39.2 | 17.8 | 7 |
| 60 | 8 | 3.0 | 1 | 4800 | 7980 | 5 | 5 | 80 | 22.5 | 41 | 45.04 | 7200 | 2471.1 | 29.5 | 37 | 20.33 | 21.9 | 10.6 | 15 |
| 60 | 8 | 3.0 | 2 | 4800 | 8160 | 5 | 5 | 9.6 | 21.6 | 48 | 54.97 | 7200 | 640.9 | 30.2 | 35 | 13.64 | 23.2 | 9.7 | 4 |
| 60 | 8 | 3.0 | 3 | 4800 | 8100 | 5 | 5 | 10.2 | 21.4 | 61 | 64.97 | 7200 | 1366.9 | 28.5 | 35 | 18.61 | 24.2 | 11.7 | 19 |
| 60 | 8 | 3.0 | 4 | 4800 | 8160 | 4 | 4 | 8.1 | 21.5 | 59 | 63.5 | 7200 | 4524.8 | 30.2 | 34 | 11.16 | 24.5 | 13 | 11 |
| 60 | 8 | 3.0 | 5 | 4800 | 7980 | 5 | 5 | 13 | 21.7 | 45 | 51.76 | 7200 | 6843.5 | 30.4 | 36 | 15.56 | 23.1 | 7.7 | 29 |
| 60 | 8 | 4.5 | 1 | 4380 | 7920 | 5 | 5 | 8.6 | 15.4 | 33 | 53.31 | 7200 | 1638.8 | 22.5 | 28 | 19.5 | 22 | 9.1 | 16 |
| 60 | 8 | 4.5 | 2 | 4380 | 7740 | 5 | 5 | 12.4 | 15.5 | 33 | 52.97 | 7200 | 4139.4 | 23.7 | 27 | 12.27 | 38 | 16.7 | 12 |
| 60 | 8 | 4.5 | 3 | 4380 | 7920 | 5 | 5 | 8.1 | 15.4 | 40 | 61.39 | 7200 | 3154.2 | 24.1 | 29 | 16.87 | 27.6 | 16.7 | 12 |
| 60 | 8 | 4.5 | 4 | 4380 | 7920 | 4 | 4 | 7.6 | 15.6 | 33 | 52.79 | 7200 | 5865.2 | 24.2 | 26 | 6.86 | 34.1 | 6.8 | 17 |
| 60 | 8 | 4.5 | 5 | 4380 | 7920 | 5 | 5 | 6.8 | 15.6 | 51 | 69.47 | 7200 | 715.2 | 23.8 | 28 | 15.15 | 34.6 | 21.8 | 20 |

Table A.2: Detailed results for the comparison of symmetry-breaking methods

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest |
| 30 | 2 | 1.5 | 1 | 7200 | 22.6 | 35 | 35.3 | 808 | 16.3 | 7200 | 33.9 | 35 | 3 | 1623.4 | 173.9 | 3387.7 | 35 | 35 | 0 | 891.1 | 11.2 |
| 30 | 2 | 1.5 | 2 | 7200 | 23.5 | 34 | 31 | 1114.2 | 10.7 | 6044.4 | 34 | 34 | 0 | 1508.7 | 205.9 | 7200 | 30.4 | 34 | 10.5 | 1604.7 | 267.2 |
| 30 | 2 | 1.5 | 3 | 7200 | 22.5 | 36 | 37.6 | 782.2 | 56.7 | 7200 | 34.5 | 36 | 4.2 | 1392.8 | 876.7 | 4079.7 | 36 | 36 | 0 | 1082.9 | 106.2 |
| 30 | 2 | 1.5 | 4 | 7200 | 22.3 | 34 | 34.4 | 910.9 | 582.4 | 7200 | 31.5 | 34 | 7.4 | 1327.8 | 682.2 | 6224.6 | 34 | 34 | 0 | 1960.8 | 631 |
| 30 | 2 | 1.5 | 5 | 7200 | 23.9 | 36 | 33.7 | 782.9 | 1.9 | 7200 | 33.8 | 36 | 6.1 | 1817.3 | 34 | 6696.5 | 36 | 36 | 0 | 2169.7 | 12.3 |
| 30 | 2 | 3.0 | 1 | 7200 | 18 | 31 | 42.1 | 775 | 15.8 | 7200 | 25.9 | 31 | 16.4 | 1597.8 | 646.8 | 7200 | 26.9 | 31 | 13.3 | 1645.2 | 36.1 |
| 30 | 2 | 3.0 | 2 | 7200 | 16.5 | 29 | 43 | 834.1 | 13.5 | 7200 | 24.3 | 29 | 16.3 | 1506.7 | 2632.7 | 7200 | 20.4 | 29 | 29.6 | 1121.9 | 50.9 |
| 30 | 2 | 3.0 | 3 | 7200 | 15.2 | 31 | 50.9 | 806.6 | 58 | 7200 | 24.8 | 31 | 19.9 | 1408 | 199 | 7200 | 22.6 | 31 | 27 | 1254.6 | 38.9 |
| 30 | 2 | 3.0 | 4 | 7200 | 15.1 | 27 | 44 | 636.1 | 78 | 7200 | 25 | 27 | 7.3 | 1315.8 | 2369.6 | 7200 | 25.4 | 27 | 6 | 1451.7 | 75.4 |
| 30 | 2 | 3.0 | 5 | 7200 | 15.9 | 30 | 46.9 | 710.6 | 67.5 | 7200 | 24.5 | 30 | 18.5 | 1679.8 | 6552.9 | 7200 | 24.9 | 30 | 17.1 | 1347.7 | 6750 |
| 30 | 2 | 4.5 | 1 | 7200 | 15.8 | 24 | 34.2 | 1251.6 | 8.7 | 7200 | 20 | 24 | 16.5 | 2142.5 | 107.7 | 7200 | 20 | 24 | 16.6 | 1946.5 | 2.7 |
| 30 | 2 | 4.5 | 2 | 7200 | 15.8 | 26 | 39.1 | 954.9 | 8.9 | 7200 | 19.3 | 26 | 25.9 | 2000.3 | 570.3 | 7200 | 18.4 | 26 | 29.2 | 1425.4 | 400.6 |
| 30 | 2 | 4.5 | 3 | 7200 | 15.5 | 26 | 40.4 | 1064.8 | 10.4 | 7200 | 20.8 | 26 | 20 | 1920.3 | 439.2 | 7200 | 21.9 | 26 | 15.9 | 1997.3 | 16.2 |
| 30 | 2 | 4.5 | 4 | 7200 | 16.5 | 27 | 38.9 | 1055 | 9.3 | 7200 | 20 | 27 | 25.9 | 1938.4 | 909.1 | 7200 | 19.8 | 27 | 26.8 | 1797.9 | 1.1 |
| 30 | 2 | 4.5 | 5 | 7200 | 17.1 | 27 | 36.7 | 937.6 | 7.7 | 7200 | 21.6 | 27 | 20.1 | 1517.3 | 40 | 7200 | 23.3 | 27 | 13.7 | 2067.8 | 30.4 |
| 35 | 2 | 1.5 | 1 | 7200 | 25.1 | 41 | 38.9 | 591.1 | 286.6 | 7200 | 36.1 | 41 | 12 | 813.6 | 1325.8 | 7200 | 34.5 | 41 | 15.9 | 887.1 | 387.7 |
| 35 | 2 | 1.5 | 2 | 7200 | 27.7 | 44 | 36.9 | 274.9 | 51 | 7200 | 38.5 | 44 | 12.5 | 849.6 | 60.6 | 7200 | 37 | 44 | 15.9 | 906.8 | 30.3 |
| 35 | 2 | 1.5 | 3 | 7200 | 24.8 | 40 | 38 | 666.7 | 17.2 | 7200 | 37.3 | 40 | 6.7 | 855.4 | 7040.1 | 7200 | 36.6 | 40 | 8.5 | 984.6 | 33.2 |
| 35 | 2 | 1.5 | 4 | 7200 | 24.8 | 41 | 39.4 | 354.4 | 26.4 | 7200 | 36.1 | 41 | 12 | 774.3 | 6595.1 | 7200 | 36.9 | 41 | 9.9 | 871.4 | 289.5 |
| 35 | 2 | 1.5 | 5 | 7200 | 25.1 | 40 | 37.3 | 427 | 40.6 | 7200 | 35.4 | 40 | 11.5 | 771.3 | 942.7 | 7200 | 32.4 | 40 | 19.1 | 770.7 | 148.3 |
| 35 | 2 | 3.0 | 1 | 7200 | 14.1 | 35 | 59.6 | 616.4 | 18.8 | 7200 | 26 | 36 | 27.8 | 867.5 | 241.9 | 7200 | 26.1 | 35 | 25.3 | 909.3 | 252.6 |
| 35 | 2 | 3.0 | 2 | 7200 | 14.4 | 33 | 56.4 | 443.6 | 46.2 | 7200 | 26.2 | 34 | 22.8 | 736.5 | 4901.1 | 7200 | 23.7 | 33 | 28.1 | 742.1 | 6702.7 |
| 35 | 2 | 3.0 | 3 | 7200 | 18.8 | 35 | 46.4 | 365.7 | 143.4 | 7200 | 26.8 | 36 | 25.5 | 985.5 | 6701.9 | 7200 | 26.8 | 35 | 23.5 | 733 | 328.5 |
| 35 | 2 | 3.0 | 4 | 7200 | 17.7 | 32 | 44.8 | 590.4 | 26.2 | 7200 | 25.3 | 33 | 23.3 | 813.6 | 50.5 | 7200 | 24.2 | 32 | 24.4 | 771.4 | 52.8 |
| 35 | 2 | 3.0 | 5 | 7200 | 16.4 | 33 | 50.4 | 277.2 | 144.5 | 7200 | 26.1 | 33 | 20.8 | 741.3 | 5882.6 | 7200 | 24.7 | 33 | 25 | 720.8 | 38 |
| 35 | 2 | 4.5 | 1 | 7200 | 19.3 | 32 | 39.7 | 253.8 | 37.8 | 7200 | 21.2 | 32 | 33.9 | 925.1 | 460.4 | 7200 | 18.9 | 32 | 40.8 | 792.7 | 49 |
| 35 | 2 | 4.5 | 2 | 7200 | 17.5 | 32 | 45.2 | 621.6 | 14.6 | 7200 | 20.8 | 32 | 35 | 1078.2 | 6748.8 | 7200 | 20.3 | 32 | 36.5 | 885.2 | 34.5 |
| 35 | 2 | 4.5 | 3 | 7200 | 17.1 | 30 | 43.1 | 354.9 | 26.7 | 7200 | 21.6 | 31 | 30.4 | 994.5 | 2664.9 | 7200 | 20.6 | 30 | 31.2 | 845.5 | 416.2 |
| 35 | 2 | 4.5 | 4 | 7200 | 14.9 | 33 | 54.7 | 519 | 24.7 | 7200 | 22.4 | 33 | 32.1 | 1023.8 | 993.5 | 7200 | 22.2 | 33 | 32.8 | 868.4 | 56.5 |
| 35 | 2 | 4.5 | 5 | 7200 | 16.7 | 31 | 46.3 | 525.3 | 17.3 | 7200 | 21.1 | 31 | 32.1 | 1060 | 6488 | 7200 | 22.2 | 31 | 28.3 | 1078.8 | 15.4 |
| 40 | 2 | 1.5 | 1 | 7200 | 26.8 | 51 | 47.4 | 356.9 | 188.2 | 7200 | 40.4 | 51 | 20.7 | 468.6 | 3696.3 | 7200 | 39.7 | 50 | 20.5 | 544.1 | 266.5 |
| 40 | 2 | 1.5 | 2 | 7200 | 27.4 | 48 | 43 | 234.1 | 396.2 | 7200 | 37.4 | 48 | 22.1 | 456 | 6070.5 | 7200 | 36.6 | 48 | 23.8 | 416 | 27.2 |
| 40 | 2 | 1.5 | 3 | 7200 | 28.7 | 46 | 37.7 | 323.6 | 34.4 | 7200 | 39 | 46 | 15.3 | 539.3 | 1988.4 | 7200 | 38.1 | 46 | 17.2 | 617.4 | 34.6 |
| 40 | 2 | 1.5 | 4 | 7200 | 26.9 | 46 | 41.5 | 236.7 | 322.7 | 7200 | 39.2 | 46 | 14.8 | 333.2 | 6990.5 | 7200 | 40.2 | 46 | 12.6 | 573.9 | 6300.4 |
| 40 | 2 | 1.5 | 5 | 7200 | 27.9 | 48 | 42 | 229.3 | 6776.9 | 7200 | 40.3 | 49 | 17.7 | 430.6 | 6566.6 | 7200 | 40.5 | 48 | 15.7 | 488.8 | 2114.9 |
| 40 | 2 | 3.0 | 1 | 7200 | 16.7 | 38 | 56 | 244 | 172.7 | 7200 | 25.8 | 39 | 33.8 | 452.6 | 6992.2 | 7200 | 25.4 | 38 | 33.3 | 420.4 | 1937.8 |
| 40 | 2 | 3.0 | 2 | 7200 | 16.1 | 37 | 56.5 | 219.6 | 77.6 | 7200 | 26 | 37 | 29.7 | 383 | 2990 | 7200 | 25.4 | 37 | 31.4 | 436.4 | 118.4 |
| 40 | 2 | 3.0 | 3 | 7200 | 18.5 | 40 | 53.9 | 299.7 | 259.2 | 7200 | 27.2 | 42 | 35.3 | 433.9 | 1068.2 | 7200 | 25.2 | 40 | 37 | 364.3 | 389.9 |
| 40 | 2 | 3.0 | 4 | 7200 | 16.8 | 40 | 57.9 | 242 | 169.6 | 7200 | 26.7 | 40 | 33.1 | 533.3 | 6853.2 | 7200 | 23.6 | 40 | 40.9 | 514.7 | 4050.2 |


| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | lb | $u b$ | gap | node | timeBest | CPU | $1 b$ | $u b$ | gap | node | timeBest | CPU | $1 b$ | ub | gap | node | timeBest |
| 40 |  | 3.0 | 5 | 7200 | 15.3 | 39 | 60.7 | 112.1 | 1191.7 | 7200 | 27.2 | 40 | 32.1 | 417.9 | 6527.5 | 7200 | 26.2 | 39 | 32.9 | 492.8 | 175.2 |
| 40 | 2 | 4.5 | 1 | 7200 | 13.9 | 35 | 60.4 | 284.2 | 61.4 | 7200 | 20.7 | 35 | 40.8 | 578 | 6828.5 | 7200 | 21.5 | 35 | 38.5 | 488.7 | 85.4 |
| 40 | 2 | 4.5 | 2 | 7200 | 16.2 | 36 | 54.9 | 287.3 | 178 | 7200 | 21.8 | 36 | 39.5 | 453.2 | 2898.6 | 7200 | 21.3 | 36 | 40.9 | 484.6 | 288.6 |
| 40 | 2 | 4.5 | 3 | 7200 | 16 | 34 | 53 | 243.8 | 36.1 | 7200 | 22.1 | 34 | 34.9 | 470.9 | 6844.2 | 7200 | 23.3 | 34 | 31.5 | 530.3 | 113.7 |
| 40 | 2 | 4.5 | 4 | 7200 | 17.2 | 35 | 51 | 419.6 | 1242 | 7200 | 21.9 | 35 | 37.4 | 512.2 | 117.3 | 7200 | 20.9 | 35 | 40.3 | 477.4 | 4476.8 |
| 40 | 2 | 4.5 | 5 | 7200 | 15 | 35 | 57.1 | 393.3 | 465.1 | 7200 | 22.1 | 35 | 37 | 532.7 | 6527.2 | 7200 | 23.1 | 35 | 34 | 519.8 | 104 |
| 45 | 2 | 1.5 | 1 | 7200 | 29.8 | 50 | 40.4 | 141.1 | 464.6 | 7200 | 40.7 | 49 | 17 | 267.9 | 6604.6 | 7200 | 40.6 | 49 | 17.1 | 356.8 | 6524.7 |
| 45 | 2 | 1.5 | 2 | 7200 | 29.8 | 53 | 43.7 | 112.6 | 102.2 | 7200 | 40.7 | 53 | 23.2 | 265.5 | 4253.1 | 7200 | 41.5 | 53 | 21.8 | 314.5 | 349 |
| 45 | 2 | 1.5 | 3 | 7200 | 32.4 | 55 | 41.1 | 119.2 | 101.5 | 7200 | 42.8 | 56 | 23.6 | 291.9 | 6695.1 | 7200 | 42.5 | 55 | 22.8 | 348.1 | 1248.5 |
| 45 | 2 | 1.5 | 4 | 7200 | 30.3 | 55 | 44.9 | 92.3 | 502.4 | 7200 | 43.5 | 54 | 19.5 | 244.5 | 6635.7 | 7200 | 42.3 | 54 | 21.7 | 334.1 | 2684.4 |
| 45 | 2 | 1.5 | 5 | 7200 | 31.1 | 53 | 41.4 | 122 | 1211.4 | 7200 | 43 | 53 | 18.9 | 259.4 | 6684 | 7200 | 42.9 | 53 | 19.1 | 344 | 277.4 |
| 45 | 2 | 3.0 | 1 | 7200 | 17.4 | 44 | 60.5 | 69.8 | 6721.1 | 7200 | 29.3 | 46 | 36.3 | 242.2 | 1220.8 | 7200 | 28.3 | 45 | 37.1 | 293.1 | 2795.4 |
| 45 | 2 | 3.0 | 2 | 7200 | 18.9 | 47 | 59.8 | 129.4 | 1709.4 | 7200 | 30.8 | 49 | 37.2 | 304 | 6832.5 | 7200 | 30.1 | 47 | 35.9 | 265.4 | 383.2 |
| 45 | 2 | 3.0 | 3 | 7200 | 17.7 | 47 | 62.4 | 135.8 | 547.5 | 7200 | 28.4 | 47 | 39.5 | 317.8 | 6956.9 | 7200 | 27.7 | 46 | 39.8 | 284.7 | 6881.7 |
| 45 | 2 | 3.0 | 4 | 7200 | 16.9 | 42 | 59.7 | 160.4 | 6735.9 | 7200 | 28.4 | 44 | 35.4 | 263.7 | 473.3 | 7200 | 28.8 | 42 | 31.4 | 288.2 | 7033.1 |
| 45 | 2 | 3.0 | 5 | 7200 | 17.3 | 45 | 61.6 | 123.1 | 324 | 7200 | 30.1 | 46 | 34.6 | 236.8 | 528.5 | 7200 | 30 | 44 | 31.9 | 314.8 | 6665 |
| 45 | 2 | 4.5 | 1 | 7200 | 17.2 | 42 | 59.1 | 162.2 | 305.9 | 7200 | 23.5 | 43 | 45.3 | 315.5 | 6566.4 | 7200 | 22.7 | 42 | 45.8 | 292.5 | 5471.1 |
| 45 | 2 | 4.5 | 2 | 7200 | 18.3 | 42 | 56.5 | 194.8 | 1607.1 | 7200 | 24.3 | 42 | 42.2 | 313.5 | 6574.5 | 7200 | 23.4 | 42 | 44.4 | 333.5 | 182.4 |
| 45 | 2 | 4.5 | 3 | 7200 | 17 | 42 | 59.5 | 171 | 80.7 | 7200 | 24.4 | 43 | 43.3 | 314.5 | 6507.2 | 7200 | 24.2 | 42 | 42.4 | 305.5 | 138.3 |
| 45 | 2 | 4.5 | 4 | 7200 | 20.5 | 45 | 54.5 | 213.4 | 72.7 | 7200 | 25.3 | 47 | 46.2 | 329.9 | 4902.5 | 7200 | 24.8 | 46 | 46.2 | 333.7 | 55 |
| 45 | 2 | 4.5 | 5 | 7200 | 15.3 | 39 | 60.8 | 136.2 | 635.9 | 7200 | 23.6 | 41 | 42.6 | 309.7 | 6544.7 | 7200 | 22.3 | 39 | 42.9 | 287.6 | 1145.1 |
| 50 | 2 | 1.5 | 1 | 7200 | 35.5 | 63 | 43.6 | 59.5 | 1675 | 7200 | 47.1 | 63 | 25.3 | 196.8 | 3625.2 | 7200 | 48.6 | 63 | 22.9 | 219.6 | 320.5 |
| 50 | 2 | 1.5 | 2 | 7200 | 33.8 | 60 | 43.7 | 62.8 | 425.8 | 7200 | 45.7 | 59 | 22.6 | 201.5 | 5236.5 | 7200 | 45.5 | 59 | 22.9 | 246.7 | 1453.4 |
| 50 | 2 | 1.5 | 3 | 7200 | 32.7 | 58 | 43.7 | 97.2 | 4101.3 | 7200 | 43.3 | 58 | 25.4 | 148 | 4225.6 | 7200 | 43.5 | 58 | 25.1 | 240.1 | 445.1 |
| 50 | 2 | 1.5 | 4 | 7200 | 32.7 | 62 | 47.2 | 36.8 | 3667 | 7200 | 44.3 | 60 | 26.1 | 188.6 | 6817.3 | 7200 | 45 | 60 | 25 | 255.5 | 50.2 |
| 50 | 2 | 1.5 | 5 | 7200 | 33.3 | 61 | 45.5 | 83.7 | 968.2 | 7200 | 45.6 | 62 | 26.4 | 195.3 | 6567.4 | 7200 | 44.8 | 60 | 25.4 | 203.4 | 6546.9 |
| 50 | 2 | 3.0 | 1 | 7200 | 19.9 | 50 | 60.2 | 75.1 | 2101.8 | 7200 | 30.2 | 50 | 39.6 | 188.6 | 3220.4 | 7200 | 29.2 | 51 | 42.8 | 180.3 | 103.8 |
| 50 | 2 | 3.0 | 2 | 7200 | 20.5 | 55 | 62.7 | 78 | 387.2 | 7200 | 32.3 | 56 | 42.4 | 223.2 | 7173 | 7200 | 32.2 | 55 | 41.4 | 226.1 | 258.2 |
| 50 | 2 | 3.0 | 3 | 7200 | 17.9 | 50 | 64.3 | 66.4 | 6558.9 | 7200 | 29.7 | 50 | 40.5 | 166.2 | 6729.4 | 7200 | 29.3 | 50 | 41.5 | 235.9 | 2733.7 |
| 50 | 2 | 3.0 | 4 | 7200 | 18.6 | 49 | 62.1 | 52.5 | 6743.1 | 7200 | 29.5 | 51 | 42.1 | 193.2 | 6955.3 | 7200 | 29.6 | 49 | 39.5 | 196.8 | 6544.3 |
| 50 | 2 | 3.0 | 5 | 7200 | 18.2 | 53 | 65.6 | 37.1 | 176 | 7200 | 30.2 | 52 | 41.9 | 158.6 | 6494.7 | 7200 | 30.6 | 52 | 41.1 | 198.7 | 236.8 |
| 50 | 2 | 4.5 | 1 | 7200 | 12.9 | 47 | 72.6 | 54.5 | 6769.3 | 7200 | 25.1 | 49 | 48.7 | 165.2 | 1245.4 | 7200 | 23.5 | 47 | 50 | 165.6 | 1964.4 |
| 50 | 2 | 4.5 | 2 | 7200 | 15.4 | 44 | 64.9 | 86.9 | 3535.1 | 7200 | 24.4 | 44 | 44.6 | 194.3 | 6529.1 | 7200 | 24.4 | 44 | 44.6 | 197 | 508.6 |
| 50 | 2 | 4.5 | 3 | 7200 | 16.4 | 47 | 65 | 114.7 | 3686.9 | 7200 | 25.9 | 48 | 46 | 191.8 | 6744.9 | 7200 | 23.8 | 47 | 49.4 | 198 | 2188 |
| 50 | 2 | 4.5 | 4 | 7200 | 24.4 | 49 | 50.1 | 46.8 | 267.7 | 7200 | 25.4 | 49 | 48.2 | 176.8 | 6669.3 | 7200 | 25.4 | 49 | 48.1 | 198.1 | 197.4 |
| 50 | 2 | 4.5 | 5 | 7200 | 15.6 | 48 | 67.5 | 91.7 | 754.8 | 7200 | 25.7 | 48 | 46.5 | 216.6 | 4674.7 | 7200 | 24.7 | 48 | 48.5 | 191.4 | 936.5 |
| 55 | 2 | 1.5 | 1 | 7200 | 37.2 | 65 | 42.8 | 47.4 | 273 | 7200 | 48.8 | 65 | 24.9 | 119.1 | 6524.9 | 7200 | 47.6 | 64 | 25.7 | 167.3 | 675.4 |
| 55 | 2 | 1.5 | 2 | 7200 | 38.3 | 67 | 42.9 | 59.8 | 6415 | 7200 | 48.4 | 70 | 30.8 | 149.8 | 6693.8 | 7200 | 47.6 | 66 | 27.9 | 135.2 | 3639.1 |
| 55 | 2 | 1.5 | 3 | 7200 | 36.8 | 63 | 41.6 | 40.9 | 6656.4 | 7200 | 48.9 | 64 | 23.7 | 126.2 | 5922.6 | 7200 | 47.9 | 63 | 24 | 116.9 | 6727 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | ub | gap | node | timeBest |
| 55 | 2 | 1.5 | 4 | 7200 | 36.2 | 65 | 44.4 | 43.8 | 6940.6 | 7200 | 46.4 | 66 | 29.7 | 111.5 | 6582.8 | 7200 | 46.1 | 64 | 28 | 132 | 7043.8 |
| 55 | 2 | 1.5 | 5 | 7200 | 34.9 | 66 | 47.2 | 52.3 | 6571 | 7200 | 46.2 | 66 | 30 | 127.1 | 6898.5 | 7200 | 46.6 | 65 | 28.4 | 151.8 | 6918.7 |
| 55 | 2 | 3.0 | 1 | 7200 | 20.4 | 56 | 63.7 | 29.2 | 6802.2 | 7200 | 33.2 | 59 | 43.7 | 117.9 | 6935.1 | 7200 | 31.8 | 58 | 45.2 | 159 | 1583.1 |
| 55 | 2 | 3.0 | 2 | 7200 | 19.9 | 55 | 63.9 | 33.9 | 186 | 7200.2 | 32.4 | 57 | 43.1 | 115.9 | 1437.1 | 7200 | 32.3 | 55 | 41.3 | 141.3 | 1746.6 |
| 55 | 2 | 3.0 | 3 | 7200 | 20.2 | 58 | 65.2 | 22.9 | 7060.1 | 7200 | 32.9 | 60 | 45.2 | 128.8 | 6792.4 | 7200 | 33.5 | 57 | 41.2 | 128 | 910.7 |
| 55 | 2 | 3.0 | 4 | 7200 | 19.2 | 55 | 65 | 37.3 | 7086 | 7200 | 32 | 56 | 42.8 | 107 | 6721 | 7200 | 31.3 | 55 | 43.1 | 139.4 | 6517.3 |
| 55 | 2 | 3.0 | 5 | 7200 | 19.2 | 57 | 66.4 | 38.9 | 142.8 | 7200 | 30.3 | 58 | 47.8 | 99.2 | 6706.4 | 7200 | 30.2 | 55 | 45.1 | 140.2 | 6607.7 |
| 55 | 2 | 4.5 | 1 | 7200 | 13.1 | 49 | 73.3 | 27.7 | 314.6 | 7200 | 23.9 | 50 | 52.2 | 133.8 | 2219.6 | 7200 | 22.8 | 49 | 53.4 | 157.2 | 6556.8 |
| 55 | 2 | 4.5 | 2 | 7200 | 14.1 | 51 | 72.4 | 29.7 | 154.1 | 7200 | 25 | 52 | 51.9 | 143.5 | 6878.4 | 7200 | 24.4 | 52 | 53.2 | 135 | 1217.3 |
| 55 | 2 | 4.5 | 3 | 7200 | 15.2 | 51 | 70.3 | 57.3 | 1153.5 | 7200 | 24.7 | 51 | 51.6 | 121.5 | 6669.8 | 7200 | 24.9 | 51 | 51.1 | 148.6 | 1821.1 |
| 55 | 2 | 4.5 | 4 | 7200 | 14 | 52 | 73.2 | 36.9 | 3477.8 | 7200 | 26.3 | 53 | 50.4 | 147.6 | 5812.9 | 7200 | 26.3 | 52 | 49.4 | 149.8 | 858.9 |
| 55 | 2 | 4.5 | 5 | 7200 | 17.2 | 56 | 69.4 | 52.6 | 3019.1 | 7200 | 26.4 | 59 | 55.2 | 134.8 | 6541.5 | 7200 | 27 | 55 | 50.9 | 156.7 | 6674.5 |
| 60 | 2 | 1.5 | 1 | 7200 | 40.6 | 74 | 45.2 | 17.2 | 6615.3 | 7200 | 52.7 | 76 | 30.7 | 95.9 | 7084.3 | 7200 | 52.3 | 74 | 29.4 | 88.5 | 1155.1 |
| 60 | 2 | 1.5 | 2 | 7200 | 40.6 | 74 | 45.1 | 37.8 | 4944.3 | 7200 | 50.8 | 75 | 32.2 | 100.6 | 3706 | 7200 | 50.1 | 73 | 31.4 | 103.2 | 1088.1 |
| 60 | 2 | 1.5 | 3 | 7200 | 39 | 72 | 45.8 | 24.4 | 6724.5 | 7200 | 48.8 | 72 | 32.3 | 89.3 | 2227.6 | 7200 | 48.9 | 71 | 31.1 | 88.9 | 5785.1 |
| 60 | 2 | 1.5 | 4 | 7200 | 41.3 | 72 | 42.6 | 34.5 | 2971.3 | 7200 | 49.5 | 74 | 33.1 | 73.4 | 6749.1 | 7200 | 50.3 | 72 | 30.1 | 91.9 | 2068.4 |
| 60 | 2 | 1.5 | 5 | 7200 | 40 | 71 | 43.6 | 27.3 | 6610.9 | 7200 | 52.2 | 74 | 29.5 | 84.3 | 7103.8 | 7200 | 52.3 | 72 | 27.4 | 90.6 | 3979.2 |
| 60 | 2 | 3.0 | 1 | 7200 | 22 | 65 | 66.1 | 22.5 | 2426.5 | 7200 | 34.6 | 64 | 45.9 | 70.4 | 6950.6 | 7200 | 34 | 65 | 47.8 | 85.1 | 1666.8 |
| 60 | 2 | 3.0 | 2 | 7200 | 21.5 | 63 | 65.9 | 16 | 4509.2 | 7200 | 34.3 | 63 | 45.5 | 80.3 | 6737.3 | 7200 | 33.5 | 62 | 46 | 89.4 | 683.1 |
| 60 | 2 | 3.0 | 3 | 7200 | 22.8 | 65 | 64.9 | 14.8 | 5394.1 | 7200 | 35.7 | 67 | 46.7 | 92.7 | 5911.9 | 7200 | 35.5 | 64 | 44.6 | 95.9 | 6296.5 |
| 60 | 2 | 3.0 | 4 | 7200 | 21.9 | 64 | 65.8 | 32.8 | 6807.8 | 7200 | 34.4 | 66 | 47.9 | 69.6 | 7026.5 | 7200 | 32.9 | 63 | 47.9 | 79.6 | 7015.1 |
| 60 | 2 | 3.0 | 5 | 7200 | 21.3 | 64 | 66.8 | 21.3 | 5721.8 | 7200 | 34.1 | 65 | 47.5 | 70.5 | 6720 | 7200 | 33 | 63 | 47.7 | 90.8 | 3160.9 |
| 60 | 2 | 4.5 | 1 | 7200 | 13.9 | 59 | 76.4 | 23 | 6619.6 | 7200 | 27.6 | 59 | 53.3 | 74.9 | 6841.3 | 7200 | 27.9 | 58 | 51.9 | 107.6 | 1600.9 |
| 60 | 2 | 4.5 | 2 | 7200 | 15.4 | 57 | 72.9 | 17.4 | 190.8 | 7200 | 26.7 | 60 | 55.5 | 75.6 | 6741 | 7200 | 26.3 | 56 | 53.1 | 103.5 | 6911 |
| 60 | 2 | 4.5 | 3 | 7200 | 16.2 | 58 | 72.1 | 25.4 | 2373.7 | 7200 | 27.5 | 58 | 52.5 | 83.6 | 6664.2 | 7200 | 25.9 | 57 | 54.6 | 95.1 | 1214.7 |
| 60 | 2 | 4.5 | 4 | 7200 | 15.8 | 59 | 73.3 | 18.1 | 7060.6 | 7200 | 27.9 | 59 | 52.7 | 81.3 | 6514.9 | 7200 | 27.2 | 59 | 53.9 | 90.7 | 4507.7 |
| 60 | 2 | 4.5 | 5 | 7200 | 15.4 | 57 | 72.9 | 28 | 4209.2 | 7200 | 26.9 | 57 | 52.9 | 85.6 | 6559 | 7200 | 26.6 | 57 | 53.4 | 88 | 7198.3 |
| 30 | 5 | 1.5 | 1 | 7200 | 19.5 | 25 | 22.1 | 1318.6 | 2.3 | 95.2 | 25 | 25 | 0 | 15.4 | 6.4 | 38.7 | 25 | 25 | 0 | 7 | 2.5 |
| 30 | 5 | 1.5 | 2 | 7200 | 22.4 | 27 | 17 | 1255.4 | 2 | 20.7 | 27 | 27 | 0 | 3.1 | 1.1 | 31.8 | 27 | 27 | 0 | 5.9 | 2.1 |
| 30 | 5 | 1.5 | 3 | 7200 | 22.6 | 27 | 16.3 | 1222.2 | 23.3 | 28.3 | 27 | 27 | 0 | 4.6 | 28.3 | 4.1 | 27 | 27 | 0 | 0.5 | 2.9 |
| 30 | 5 | 1.5 | 4 | 7200 | 21.4 | 27 | 20.6 | 1108.9 | 2 | 45.2 | 27 | 27 | 0 | 7.3 | 31.8 | 36.5 | 27 | 27 | 0 | 7.3 | 2.5 |
| 30 | 5 | 1.5 | 5 | 7200 | 22.2 | 28 | 20.7 | 1138.5 | 2.4 | 81.2 | 28 | 28 | 0 | 11.2 | 33.9 | 32.2 | 28 | 28 | 0 | 6.4 | 2.9 |
| 30 | 5 | 3.0 | 1 | 7200 | 12.8 | 19 | 32.4 | 1040.6 | 2.5 | 193 | 19 | 19 | 0 | 34.9 | 31.7 | 62.1 | 19 | 19 | 0 | 11 | 1.9 |
| 30 | 5 | 3.0 | 2 | 7200 | 12.5 | 19 | 34.2 | 865.3 | 13.3 | 161.4 | 19 | 19 | 0 | 28.3 | 78.8 | 173.4 | 19 | 19 | 0 | 33.1 | 27.2 |
| 30 | 5 | 3.0 | 3 | 7200 | 12.8 | 18 | 28.8 | 1064.4 | 2.8 | 85.2 | 18 | 18 | 0 | 12.5 | 49.8 | 121.7 | 18 | 18 | 0 | 22.2 | 81.8 |
| 30 | 5 | 3.0 | 4 | 7200 | 12.8 | 18 | 29 | 1003.8 | 2.6 | 130.6 | 18 | 18 | 0 | 18.1 | 64.9 | 140.6 | 18 | 18 | 0 | 25.4 | 2.6 |
| 30 | 5 | 3.0 | 5 | 7200 | 12.7 | 19 | 33 | 1080.7 | 2.6 | 272 | 19 | 19 | 0 | 53.9 | 1.7 | 502.6 | 19 | 19 | 0 | 97.4 | 2.4 |
| 30 | 5 | 4.5 | 1 | 7200 | 10.2 | 14 | 27.3 | 1282.2 | 3 | 169.1 | 14 | 14 | 0 | 43.2 | 127.5 | 249.6 | 14 | 14 | 0 | 75.9 | 4.8 |
| 30 | 5 | 4.5 | 2 | 7200 | 9.7 | 13 | 25.4 | 1151.3 | 2.1 | 28.5 | 13 | 13 | 0 | 5.7 | 8.5 | 58.1 | 13 | 13 | 0 | 10.1 | 18.8 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $1 b$ | $u b$ | gap | node | timeBest | CPU | 16 | $u b$ | gap | node | timeBest |
| 30 | 5 | 4.5 | 3 | 7200 | 10.2 | 13 | 21.2 | 1078.9 | 2.2 | 54.2 | 13 | 13 | 0 | 11.8 | 14.1 | 168.6 | 13 | 13 | 0 | 39.1 | 115.8 |
| 30 | 5 | 4.5 | 4 | 7200 | 9.7 | 14 | 30.6 | 1500.5 | 2.9 | 471.2 | 14 | 14 | 0 | 120 | 2.5 | 1086.8 | 14 | 14 | 0 | 245.6 | 8.4 |
| 30 | 5 | 4.5 | 5 | 7200 | 9.9 | 13 | 23.7 | 1222.3 | 2.8 | 35.4 | 13 | 13 | 0 | 7.1 | 4.3 | 35.1 | 13 | 13 | 0 | 6.6 | 1.7 |
| 35 | 5 | 1.5 | 1 | 7200 | 23.4 | 31 | 24.6 | 627.6 | 4.9 | 368.8 | 31 | 31 | 0 | 40.1 | 109.8 | 236.7 | 31 | 31 | 0 | 28 | 64 |
| 35 | 5 | 1.5 | 2 | 7200 | 25.1 | 31 | 19 | 711.2 | 75.4 | 214.2 | 31 | 31 | 0 | 18.7 | 127.6 | 118.1 | 31 | 31 | 0 | 14.4 | 65.4 |
| 35 | 5 | 1.5 | 3 | 7200 | 23.2 | 29 | 20 | 712.2 | 47.2 | 169.4 | 29 | 29 | 0 | 14.8 | 118.9 | 178 | 29 | 29 | 0 | 24.2 | 115 |
| 35 | 5 | 1.5 | 4 | 7200 | 25.2 | 33 | 23.7 | 803.9 | 4 | 1317.4 | 33 | 33 | 0 | 129.8 | 376.9 | 2448 | 33 | 33 | 0 | 325.7 | 846.8 |
| 35 | 5 | 1.5 | 5 | 7200 | 24.1 | 31 | 22.2 | 828.1 | 16.6 | 882.1 | 31 | 31 | 0 | 89.1 | 610.6 | 1928.1 | 31 | 31 | 0 | 262 | 82.9 |
| 35 | 5 | 3.0 | 1 | 7200 | 13.2 | 22 | 39.8 | 588.6 | 4.3 | 2541.7 | 22 | 22 | 0 | 224.3 | 78.6 | 3281.3 | 22 | 22 | 0 | 405.5 | 85.3 |
| 35 | 5 | 3.0 | 2 | 7200 | 13.5 | 21 | 35.8 | 760.5 | 5.1 | 853.2 | 21 | 21 | 0 | 106.3 | 311.5 | 855.8 | 21 | 21 | 0 | 90.5 | 26.1 |
| 35 | 5 | 3.0 | 3 | 7200 | 13.7 | 23 | 40.6 | 537.6 | 181.5 | 7200 | 21.2 | 24 | 11.7 | 632.3 | 601.7 | 7200 | 20.8 | 23 | 9.6 | 831 | 237.7 |
| 35 | 5 | 3.0 | 4 | 7200 | 13.4 | 22 | 39.1 | 627.9 | 48.1 | 7200 | 20.8 | 22 | 5.3 | 600.3 | 369.6 | 7200 | 18.5 | 22 | 15.7 | 775.6 | 6359.9 |
| 35 | 5 | 3.0 | 5 | 7200 | 13.5 | 21 | 35.7 | 574.4 | 4.2 | 864 | 21 | 21 | 0 | 81.7 | 123.7 | 1129.9 | 21 | 21 | 0 | 120.3 | 112.2 |
| 35 | 5 | 4.5 | 1 | 7200 | 10.9 | 18 | 39.6 | 717 | 19.4 | 7200 | 17.2 | 18 | 4.5 | 946.3 | 2406.7 | 7200 | 15.6 | 18 | 13.3 | 932.9 | 88.7 |
| 35 | 5 | 4.5 | 2 | 7200 | 10.2 | 16 | 36.4 | 614.5 | 4.3 | 721.9 | 16 | 16 | 0 | 81.1 | 61.9 | 2547.3 | 16 | 16 | 0 | 318.8 | 52.6 |
| 35 | 5 | 4.5 | 3 | 7200 | 10.1 | 17 | 40.8 | 547.3 | 4.7 | 7200 | 16.4 | 17 | 3.5 | 638.2 | 49.7 | 7200 | 14.5 | 17 | 14.5 | 875.7 | 71 |
| 35 | 5 | 4.5 | 4 | 7200 | 10.7 | 16 | 33.2 | 689.2 | 5.2 | 821.5 | 16 | 16 | 0 | 91.5 | 107 | 2840.7 | 16 | 16 | 0 | 357.2 | 91.3 |
| 35 | 5 | 4.5 | 5 | 7200 | 10.9 | 17 | 36.2 | 687.2 | 4.9 | 2683.5 | 17 | 17 | 0 | 333.1 | 27.9 | 7200 | 15.4 | 17 | 9.3 | 835.8 | 3.8 |
| 40 | 5 | 1.5 | 1 | 7200 | 27.7 | 37 | 25 | 572.7 | 107.9 | 7200 | 36.3 | 37 | 1.8 | 290 | 1675.8 | 7200 | 35.5 | 37 | 4.2 | 593.5 | 248.5 |
| 40 | 5 | 1.5 | 2 | 7200 | 27.5 | 36 | 23.6 | 461.3 | 5.1 | 2016.1 | 36 | 36 | 0 | 88.9 | 318.1 | 389.3 | 36 | 36 | 0 | 29.7 | 95.4 |
| 40 | 5 | 1.5 | 3 | 7200 | 27.5 | 37 | 25.6 | 441.1 | 2515.1 | 7200 | 35.9 | 37 | 3.1 | 234.3 | 3038.8 | 7200 | 34.9 | 37 | 5.8 | 477.3 | 5916.7 |
| 40 | 5 | 1.5 | 4 | 7200 | 27.5 | 37 | 25.6 | 503.8 | 4 | 6040.3 | 37 | 37 | 0 | 341.5 | 101.5 | 6451.1 | 37 | 37 | 0 | 647.2 | 105.4 |
| 40 | 5 | 1.5 | 5 | 7200 | 26.7 | 33 | 19.1 | 552.2 | 142.5 | 1181.9 | 33 | 33 | 0 | 53.5 | 1016.5 | 675.1 | 33 | 33 | 0 | 64 | 464.1 |
| 40 | 5 | 3.0 | 1 | 7200 | 16 | 26 | 38.4 | 361.8 | 18 | 7200 | 23.1 | 26 | 11.2 | 246.9 | 517.2 | 7200 | 21.3 | 26 | 18.1 | 443.9 | 3403 |
| 40 | 5 | 3.0 | 2 | 7200 | 14.8 | 25 | 40.9 | 366 | 5.7 | 7200 | 23.6 | 25 | 5.7 | 317.4 | 222.9 | 7200 | 23.9 | 25 | 4.4 | 559.7 | 3.2 |
| 40 | 5 | 3.0 | 3 | 7200 | 15 | 25 | 39.9 | 331.4 | 101.9 | 7200 | 23.6 | 25 | 5.6 | 362.8 | 89 | 7200 | 21.1 | 25 | 15.6 | 539.1 | 77 |
| 40 | 5 | 3.0 | 4 | 7200 | 15 | 25 | 40 | 363.8 | 76.9 | 7200 | 22.8 | 26 | 12.5 | 329.5 | 96.9 | 7200 | 22.9 | 25 | 8.3 | 496.1 | 2829.1 |
| 40 | 5 | 3.0 | 5 | 7200 | 15.2 | 26 | 41.5 | 325.5 | 3070.9 | 7200 | 23.2 | 27 | 14.1 | 310.2 | 278.6 | 7200 | 23.2 | 26 | 10.6 | 505.1 | 5153.5 |
| 40 | 5 | 4.5 | 1 | 7200 | 10.7 | 19 | 43.6 | 348.9 | 20 | 7200 | 17.2 | 20 | 13.9 | 322.2 | 108.3 | 7200 | 15.6 | 20 | 22.2 | 567.3 | 22.1 |
| 40 | 5 | 4.5 | 2 | 7200 | 9.9 | 20 | 50.5 | 324.1 | 7.4 | 7200 | 17.9 | 20 | 10.6 | 341.1 | 1225.4 | 7200 | 15.9 | 20 | 20.7 | 551.5 | 23.7 |
| 40 | 5 | 4.5 | 3 | 7200 | 11.4 | 18 | 36.4 | 512.2 | 55.9 | 7200 | 16.6 | 18 | 7.9 | 398 | 318 | 7200 | 15.1 | 18 | 16.3 | 536.8 | 1242.9 |
| 40 | 5 | 4.5 | 4 | 7200 | 10.4 | 20 | 47.9 | 475.7 | 18.1 | 7200 | 17.4 | 20 | 12.8 | 379.1 | 1233.3 | 7200 | 15.3 | 20 | 23.3 | 500.7 | 76.5 |
| 40 | 5 | 4.5 | 5 | 7200 | 10.7 | 20 | 46.3 | 371.5 | 6.7 | 7200 | 17.2 | 20 | 13.8 | 391.8 | 3839.9 | 7200 | 16.4 | 20 | 18 | 566.4 | 746.6 |
| 45 | 5 | 1.5 | 1 | 7200 | 30.5 | 40 | 23.8 | 337.9 | 365.1 | 7200 | 38.5 | 40 | 3.7 | 159.2 | 230.1 | 7200 | 35.7 | 40 | 10.9 | 413.1 | 85.5 |
| 45 | 5 | 1.5 | 2 | 7200 | 31.7 | 41 | 22.7 | 377.9 | 52 | 7200 | 38.7 | 41 | 5.6 | 188 | 3445.5 | 7200 | 37 | 41 | 9.8 | 441 | 121.5 |
| 45 | 5 | 1.5 | 3 | 7200 | 29.5 | 41 | 28 | 204.4 | 330.9 | 7200 | 38.5 | 41 | 6.1 | 174.1 | 766 | 7200 | 37.8 | 41 | 7.8 | 372 | 1419 |
| 45 | 5 | 1.5 | 4 | 7200 | 31.6 | 42 | 24.7 | 284.5 | 138 | 7200 | 38.9 | 43 | 9.5 | 182.9 | 1883 | 7200 | 38.4 | 42 | 8.6 | 351.5 | 2239.6 |
| 45 | 5 | 1.5 | 5 | 7200 | 29.6 | 43 | 31.3 | 218.4 | 2528.8 | 7200 | 37.5 | 43 | 12.8 | 214 | 1537.6 | 7200 | 37.2 | 43 | 13.4 | 356 | 280.2 |
| 45 | 5 | 3.0 | 1 | 7200 | 16.5 | 31 | 46.8 | 198.1 | 137.1 | 7200 | 24.1 | 30 | 19.5 | 150.3 | 2816.2 | 7200 | 23.9 | 31 | 23 | 321.8 | 265.5 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest | $C P U$ | $l b$ | $u b$ | gap | node | timeBest |
| 45 | 5 | 3.0 | 2 | 7200 | 16.6 | 31 | 46.3 | 206.5 | 278.9 | 7200 | 25.1 | 31 | 19.1 | 158 | 1903.8 | 7200 | 24.7 | 31 | 20.4 | 271.4 | 2133.1 |
| 45 | 5 | 3.0 | 3 | 7200 | 16.8 | 30 | 44 | 183.9 | 1476.3 | 7200 | 24.3 | 32 | 24.2 | 162 | 724.1 | 7200 | 24.3 | 30 | 18.9 | 282.6 | 6499.3 |
| 45 | 5 | 3.0 | 4 | 7200 | 16.5 | 32 | 48.4 | 186.4 | 47.2 | 7200 | 24.9 | 32 | 22.1 | 185.6 | 4414.1 | 7200 | 25.5 | 32 | 20.3 | 333.2 | 1732.9 |
| 45 | 5 | 3.0 | 5 | 7200 | 16.7 | 31 | 46.2 | 240.5 | 124.1 | 7200 | 24.2 | 31 | 22 | 171.5 | 6342.7 | 7200 | 23 | 32 | 28.2 | 329.6 | 1742.5 |
| 45 | 5 | 4.5 | 1 | 7200 | 12.2 | 25 | 51.3 | 201.9 | 358 | 7200 | 19.3 | 25 | 23 | 217.9 | 6588.6 | 7200 | 18.3 | 25 | 26.9 | 354.4 | 487.7 |
| 45 | 5 | 4.5 | 2 | 7200 | 11.6 | 23 | 49.6 | 275.7 | 9.2 | 7200 | 19.3 | 23 | 16 | 169.8 | 1798 | 7200 | 17.7 | 23 | 23 | 330.7 | 193.1 |
| 45 | 5 | 4.5 | 3 | 7200 | 12.3 | 24 | 48.9 | 149 | 53.4 | 7200 | 19.5 | 24 | 18.6 | 212.8 | 6575 | 7200 | 19.1 | 24 | 20.4 | 357.7 | 53.3 |
| 45 | 5 | 4.5 | 4 | 7200 | 11.6 | 25 | 53.4 | 286.2 | 28.8 | 7200 | 18.7 | 25 | 25.2 | 178.3 | 5185.9 | 7200 | 18.3 | 25 | 26.8 | 320.8 | 228.8 |
| 45 | 5 | 4.5 | 5 | 7200 | 12.2 | 24 | 49 | 205.7 | 55.7 | 7200 | 19.1 | 25 | 23.8 | 200.9 | 114 | 7200 | 18.6 | 24 | 22.6 | 366.3 | 226.9 |
| 50 | 5 | 1.5 | 1 | 7200 | 33 | 46 | 28.3 | 192.6 | 3576.7 | 7200 | 41.2 | 47 | 12.3 | 105.1 | 2687.7 | 7200 | 40.9 | 46 | 11 | 253.8 | 1048.9 |
| 50 | 5 | 1.5 | 2 | 7200 | 33.9 | 47 | 27.8 | 146.1 | 77 | 7200 | 41.2 | 47 | 12.3 | 109.8 | 391.6 | 7200 | 41 | 47 | 12.8 | 266.9 | 125.6 |
| 50 | 5 | 1.5 | 3 | 7200 | 34 | 46 | 26.1 | 169 | 86.7 | 7200 | 41.7 | 46 | 9.2 | 99.9 | 868.9 | 7200 | 40.9 | 46 | 11.1 | 256.5 | 725.4 |
| 50 | 5 | 1.5 | 4 | 7200 | 32 | 48 | 33.4 | 120.8 | 3012.1 | 7200 | 40.5 | 49 | 17.3 | 98.8 | 4182 | 7200 | 38.5 | 48 | 19.8 | 193 | 1683.7 |
| 50 | 5 | 1.5 | 5 | 7200 | 32.9 | 48 | 31.5 | 133.5 | 593.5 | 7200 | 40.4 | 48 | 15.8 | 90.9 | 3020.1 | 7200 | 40.6 | 48 | 15.4 | 186.6 | 6624.9 |
| 50 | 5 | 3.0 | 1 | 7200 | 17.3 | 31 | 44.2 | 146.6 | 882.7 | 7200 | 24.5 | 34 | 27.9 | 96.7 | 1392.1 | 7200 | 24.6 | 32 | 23.2 | 193.9 | 1102.4 |
| 50 | 5 | 3.0 | 2 | 7200 | 17 | 35 | 51.4 | 114 | 6619.7 | 7200 | 24.9 | 36 | 30.9 | 103.9 | 6882 | 7200 | 24.7 | 37 | 33.2 | 204.2 | 148.5 |
| 50 | 5 | 3.0 | 3 | 7200 | 17 | 34 | 50 | 116 | 6609.2 | 7200 | 24.4 | 35 | 30.2 | 99 | 572.7 | 7200 | 25 | 35 | 28.5 | 201.6 | 3023.1 |
| 50 | 5 | 3.0 | 4 | 7200 | 17.3 | 34 | 49.2 | 116.2 | 1859.3 | 7200 | 24.9 | 35 | 28.9 | 118.4 | 4569.8 | 7200 | 25.6 | 34 | 24.7 | 182 | 1651.3 |
| 50 | 5 | 3.0 | 5 | 7200 | 17.3 | 30 | 42.4 | 156.7 | 253.2 | 7200 | 24.9 | 31 | 19.5 | 88 | 3876.8 | 7200 | 24.6 | 30 | 18.1 | 210 | 171.5 |
| 50 | 5 | 4.5 | 1 | 7200 | 12.6 | 29 | 56.7 | 117 | 5037.3 | 7200 | 20.4 | 31 | 34.2 | 154.6 | 7080.1 | 7200 | 20.6 | 30 | 31.5 | 252.6 | 4805.5 |
| 50 | 5 | 4.5 | 2 | 7200 | 13.1 | 30 | 56.5 | 157 | 296.7 | 7200 | 19.8 | 31 | 36 | 139.4 | 6953.6 | 7200 | 20.1 | 31 | 35 | 260.2 | 204.9 |
| 50 | 5 | 4.5 | 3 | 7200 | 12.4 | 27 | 54.1 | 147 | 6953.8 | 7200 | 19.7 | 28 | 29.7 | 111.2 | 6705.7 | 7200 | 19.5 | 28 | 30.4 | 244.3 | 1352.3 |
| 50 | 5 | 4.5 | 4 | 7200 | 12.4 | 26 | 52.4 | 144 | 169.8 | 7200 | 19.1 | 27 | 29.1 | 101.3 | 7110 | 7200 | 18.8 | 26 | 27.8 | 234.2 | 666.5 |
| 50 | 5 | 4.5 | 5 | 7200 | 12.3 | 29 | 57.5 | 148.4 | 915.1 | 7200 | 19.2 | 31 | 37.9 | 125.2 | 6705.4 | 7200 | 20.3 | 30 | 32.3 | 231.8 | 2803.1 |
| 55 | 5 | 1.5 | 1 | 7200 | 35.8 | 52 | 31.1 | 69.2 | 251.2 | 7200 | 44 | 51 | 13.8 | 62.5 | 4239.6 | 7200 | 43 | 51 | 15.7 | 138 | 2282.7 |
| 55 | 5 | 1.5 | 2 | 7200 | 35.8 | 51 | 29.7 | 58.9 | 5360.7 | 7200 | 44.1 | 51 | 13.5 | 68.2 | 554.3 | 7200 | 43.6 | 51 | 14.6 | 143.8 | 2049.4 |
| 55 | 5 | 1.5 | 3 | 7200 | 36.9 | 50 | 26.3 | 116.8 | 254.7 | 7200 | 44 | 50 | 12 | 77.7 | 2080.4 | 7200 | 42.8 | 50 | 14.5 | 174.8 | 131.6 |
| 55 | 5 | 1.5 | 4 | 7200 | 33.8 | 50 | 32.3 | 67.7 | 388.7 | 7200 | 40.8 | 51 | 20.1 | 71.3 | 652.9 | 7200 | 40 | 50 | 20.1 | 103.2 | 565.5 |
| 55 | 5 | 1.5 | 5 | 7200 | 36.9 | 52 | 29.1 | 103.2 | 4968.2 | 7200 | 44.2 | 53 | 16.5 | 82 | 131.7 | 7200 | 43.7 | 52 | 16 | 136.6 | 2459.4 |
| 55 | 5 | 3.0 | 1 | 7200 | 18.9 | 39 | 51.7 | 61.2 | 6541.4 | 7200 | 26.6 | 41 | 35.1 | 76.6 | 6685 | 7200 | 26.6 | 39 | 31.7 | 147.7 | 7192.4 |
| 55 | 5 | 3.0 | 2 | 7200 | 18.8 | 36 | 47.7 | 70.3 | 7092.1 | 7200 | 26 | 37 | 29.8 | 76.4 | 6825.9 | 7200 | 25.8 | 38 | 32.1 | 150.7 | 444.2 |
| 55 | 5 | 3.0 | 3 | 7200 | 18.8 | 38 | 50.4 | 73.7 | 5850.3 | 7200 | 26.2 | 40 | 34.6 | 55.6 | 1615.3 | 7200 | 25.9 | 39 | 33.6 | 166.4 | 469.6 |
| 55 | 5 | 3.0 | 4 | 7200 | 18.8 | 34 | 44.6 | 83.1 | 3490.9 | 7200 | 26.9 | 37 | 27.4 | 58.6 | 7024.2 | 7200 | 26.9 | 34 | 20.8 | 137.7 | 685.2 |
| 55 | 5 | 3.0 | 5 | 7200 | 18.9 | 36 | 47.6 | 84.7 | 108.5 | 7200 | 27.2 | 37 | 26.6 | 67.3 | 6798.6 | 7200 | 25.6 | 37 | 30.9 | 168.1 | 315.8 |
| 55 | 5 | 4.5 | 1 | 7200 | 12.8 | 31 | 58.6 | 79.8 | 4981.9 | 7200 | 19.8 | 32 | 38.1 | 58.9 | 3799.8 | 7200 | 19.3 | 31 | 37.7 | 155.6 | 372.7 |
| 55 | 5 | 4.5 | 2 | 7200 | 13 | 30 | 56.7 | 92 | 1169.8 | 7200 | 20.4 | 32 | 36.4 | 94.9 | 1592.1 | 7200 | 20.7 | 30 | 31.2 | 154.2 | 3467.7 |
| 55 | 5 | 4.5 | 3 | 7200 | 13 | 32 | 59.4 | 61 | 356 | 7200 | 20 | 33 | 39.5 | 67.7 | 6814 | 7200 | 20 | 33 | 39.3 | 152.2 | 546.9 |
| 55 | 5 | 4.5 | 4 | 7200 | 12.8 | 31 | 58.6 | 102.1 | 136.6 | 7200 | 20 | 32 | 37.5 | 77 | 1092.1 | 7200 | 20.3 | 32 | 36.6 | 158 | 826 |
| 55 | 5 | 4.5 | 5 | 7200 | 12.9 | 33 | 61 | 80 | 153.1 | 7200 | 21.3 | 33 | 35.3 | 75.3 | 917.6 | 7200 | 20.6 | 32 | 35.5 | 165 | 6693.9 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest |
| 60 | 5 | 1.5 | 1 | 7200 | 36.8 | 50 | 26.4 | 66.3 | 409.1 | 7200 | 44.5 | 50 | 11 | 35.2 | 4006.1 | 7200 | 44.1 | 50 | 11.8 | 91.4 | 3359.9 |
| 60 | 5 | 1.5 | 2 | 7200 | 38.8 | 54 | 28.1 | 53.7 | 229.4 | 7200 | 45.3 | 56 | 19.2 | 44.3 | 1558 | 7200 | 46.2 | 53 | 12.8 | 113.8 | 6622.3 |
| 60 | 5 | 1.5 | 3 | 7200 | 38.8 | 57 | 31.9 | 54.8 | 6147.9 | 7200 | 46.6 | 56 | 16.8 | 48.3 | 6690.5 | 7200 | 46.7 | 56 | 16.6 | 109.7 | 902.2 |
| 60 | 5 | 1.5 | 4 | 7200 | 37.8 | 56 | 32.4 | 59.4 | 1847.4 | 7200 | 44.9 | 55 | 18.3 | 44.6 | 6708.9 | 7200 | 46 | 55 | 16.4 | 90.3 | 6712.3 |
| 60 | 5 | 1.5 | 5 | 7200 | 38.9 | 58 | 33 | 67.9 | 7096.6 | 7200 | 46.5 | 60 | 22.5 | 57.9 | 6607 | 7200 | 46.5 | 58 | 19.8 | 91.5 | 1114.4 |
| 60 | 5 | 3.0 | 1 | 7200 | 20.9 | 43 | 51.5 | 43.2 | 251.8 | 7200 | 28.3 | 44 | 35.8 | 42.3 | 6579 | 7200 | 28.4 | 44 | 35.4 | 61 | 6765.8 |
| 60 | 5 | 3.0 | 2 | 7200 | 20.8 | 42 | 50.4 | 45.4 | 5608.3 | 7200 | 28.1 | 42 | 33.1 | 40.6 | 2493.8 | 7200 | 28.3 | 41 | 30.9 | 77.8 | 1417.5 |
| 60 | 5 | 3.0 | 3 | 7200 | 20.9 | 41 | 49.1 | 33.9 | 7101.8 | 7200 | 28.7 | 42 | 31.6 | 49.5 | 6725.1 | 7200 | 29.7 | 42 | 29.4 | 80.3 | 6742.4 |
| 60 | 5 | 3.0 | 4 | 7200 | 20.8 | 39 | 46.5 | 52.4 | 6687.9 | 7200 | 28.6 | 41 | 30.2 | 40.5 | 2869 | 7200 | 28.8 | 38 | 24.2 | 86.5 | 736.3 |
| 60 | 5 | 3.0 | 5 | 7200 | 20.9 | 44 | 52.6 | 46.8 | 6559.8 | 7200 | 28.5 | 45 | 36.8 | 52.9 | 6876.1 | 7200 | 29.8 | 44 | 32.4 | 70.2 | 2337.4 |
| 60 | 5 | 4.5 | 1 | 7200 | 13.8 | 32 | 56.8 | 57.3 | 2977.9 | 7200 | 20.9 | 33 | 36.7 | 47.9 | 3943.5 | 7200 | 20.9 | 32 | 34.6 | 113.9 | 1159.6 |
| 60 | 5 | 4.5 | 2 | 7200 | 13.9 | 35 | 60.4 | 43.9 | 753.5 | 7200 | 20.6 | 36 | 42.7 | 46.6 | 3203 | 7200 | 21.3 | 35 | 39.2 | 89 | 7018.6 |
| 60 | 5 | 4.5 | 3 | 7200 | 13.9 | 33 | 58 | 48.5 | 7038.7 | 7200 | 21.3 | 35 | 39.2 | 43.6 | 3344.2 | 7200 | 20.6 | 34 | 39.4 | 95.6 | 6540 |
| 60 | 5 | 4.5 | 4 | 7200 | 13.8 | 34 | 59.3 | 44.9 | 6777.1 | 7200 | 20.3 | 35 | 41.9 | 44.7 | 3491.9 | 7200 | 21 | 34 | 38.1 | 93 | 2960.6 |
| 60 | 5 | 4.5 | 5 | 7200 | 13.8 | 33 | 58.1 | 48.3 | 4221.1 | 7200 | 20.8 | 34 | 38.9 | 45.2 | 7131.8 | 7200 | 20.8 | 34 | 38.9 | 87.3 | 7179.5 |
| 30 | 8 | 1.5 | 1 | 2351.4 | 24 | 24 | 0 | 538 | 1.1 | 4.5 | 24 | 24 | 0 | 0.3 | 0.9 | 3.5 | 24 | 24 | 0 | 0.4 | 1.2 |
| 30 | 8 | 1.5 | 2 | 3311.8 | 23 | 23 | 0 | 569.7 | 1.6 | 3.3 | 23 | 23 | 0 | 0.1 | 1.2 | 3 | 23 | 23 | 0 | 0 | 1.9 |
| 30 | 8 | 1.5 | 3 | 7200 | 21.2 | 24 | 11.7 | 1037.3 | 1.5 | 5.5 | 24 | 24 | 0 | 0.4 | 3 | 3.5 | 24 | 24 | 0 | 0.2 | 1.6 |
| 30 | 8 | 1.5 | 4 | 7200 | 20.5 | 23 | 10.8 | 1200.1 | 1.8 | 6 | 23 | 23 | 0 | 0.7 | 3 | 8.2 | 23 | 23 | 0 | 0.9 | 1.7 |
| 30 | 8 | 1.5 | 5 | 3134.4 | 24 | 24 | 0 | 494.7 | 1.3 | 4.3 | 24 | 24 | 0 | 0.3 | 1.2 | 3.3 | 24 | 24 | 0 | 0.1 | 1.5 |
| 30 | 8 | 3.0 | 1 | 7200 | 12.4 | 16 | 22.5 | 982.9 | 1.8 | 10.5 | 16 | 16 | 0 | 1.4 | 9.2 | 6.6 | 16 | 16 | 0 | 0.8 | 5.8 |
| 30 | 8 | 3.0 | 2 | 233.4 | 13 | 13 | 0 | 35.3 | 1.1 | 1.4 | 13 | 13 | 0 | 0 | 1.2 | 1.9 | 13 | 13 | 0 | 0 | 1.2 |
| 30 | 8 | 3.0 | 3 | 1955.5 | 14 | 14 | 0 | 357 | 1.2 | 5 | 14 | 14 | 0 | 0.3 | 5 | 2.3 | 14 | 14 | 0 | 0 | 1.3 |
| 30 | 8 | 3.0 | 4 | 7200 | 12.5 | 15 | 16.4 | 1131 | 1.1 | 6.1 | 15 | 15 | 0 | 0.5 | 3.2 | 5.5 | 15 | 15 | 0 | 0.4 | 1.2 |
| 30 | 8 | 3.0 | 5 | 7200 | 12.5 | 15 | 16.5 | 1097.6 | 2.1 | 9.1 | 15 | 15 | 0 | 0.6 | 4.2 | 3.4 | 15 | 15 | 0 | 0.1 | 1.7 |
| 30 | 8 | 4.5 | 1 | 7200 | 8.6 | 11 | 21.6 | 970.5 | 1.6 | 13.7 | 11 | 11 | 0 | 2.3 | 5.6 | 7 | 11 | 11 | 0 | 0.5 | 1.7 |
| 30 | 8 | 4.5 | 2 | 7200 | 9.9 | 11 | 10.3 | 1291.2 | 1.7 | 18.5 | 11 | 11 | 0 | 5.7 | 2.4 | 107.6 | 11 | 11 | 0 | 27.2 | 1.5 |
| 30 | 8 | 4.5 | 3 | 7200 | 9.1 | 12 | 24.3 | 1346.4 | 1.7 | 46.6 | 12 | 12 | 0 | 11.1 | 1.8 | 425.1 | 12 | 12 | 0 | 102.2 | 1.8 |
| 30 | 8 | 4.5 | 4 | 43.2 | 9 | 9 | 0 | 6 | 0.1 | 2 | 9 | 9 | 0 | 0.1 | 1.5 | 2.2 | 9 | 9 | 0 | 0 | 1.1 |
| 30 | 8 | 4.5 | 5 | 7200 | 9.1 | 12 | 23.8 | 1356.8 | 2.3 | 35.3 | 12 | 12 | 0 | 6.2 | 3.2 | 154.4 | 12 | 12 | 0 | 38.3 | 3.9 |
| 35 | 8 | 1.5 | 1 | 7200 | 25 | 29 | 14 | 701.3 | 3.7 | 16.1 | 29 | 29 | 0 | 0.9 | 1.9 | 19.3 | 29 | 29 | 0 | 1.8 | 3.3 |
| 35 | 8 | 1.5 | 2 | 7200 | 23.8 | 25 | 4.7 | 821.8 | 1.9 | 5.9 | 25 | 25 | 0 | 0.1 | 3 | 4.8 | 25 | 25 | 0 | 0.1 | 2.4 |
| 35 | 8 | 1.5 | 3 | 7200 | 24.7 | 29 | 14.7 | 638.2 | 3 | 23.6 | 29 | 29 | 0 | 1.2 | 1.7 | 7.8 | 29 | 29 | 0 | 0.3 | 2.4 |
| 35 | 8 | 1.5 | 4 | 7200 | 24.3 | 27 | 9.9 | 744.5 | 2.6 | 12.8 | 27 | 27 | 0 | 0.5 | 12.7 | 4.8 | 27 | 27 | 0 | 0.1 | 2.6 |
| 35 | 8 | 1.5 | 5 | 7200 | 24 | 28 | 14.1 | 920.7 | 3.7 | 63.4 | 28 | 28 | 0 | 5.7 | 2.2 | 54.9 | 28 | 28 | 0 | 7.3 | 2.3 |
| 35 | 8 | 3.0 | 1 | 7200 | 13 | 18 | 27.8 | 665.1 | 3.5 | 83.9 | 18 | 18 | 0 | 5.9 | 14.5 | 25.5 | 18 | 18 | 0 | 2.3 | 2.5 |
| 35 | 8 | 3.0 | 2 | 7200 | 13.2 | 18 | 26.5 | 949.5 | 4.2 | 73.7 | 18 | 18 | 0 | 6.1 | 17.9 | 72 | 18 | 18 | 0 | 8.6 | 2.6 |
| 35 | 8 | 3.0 | 3 | 201.5 | 14 | 14 | 0 | 34.4 | 0.2 | 3.8 | 14 | 14 | 0 | 0 | 3.2 | 3.1 | 14 | 14 | 0 | 0 | 3 |
| 35 | 8 | 3.0 | 4 | 7200 | 12.9 | 17 | 24.1 | 686.2 | 2.9 | 22.8 | 17 | 17 | 0 | 1.5 | 9.9 | 12.3 | 17 | 17 | 0 | 0.8 | 2.8 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | 16 | $u b$ | gap | node | timeBest | CPU | 16 | $u b$ | gap | node | timeBest | CPU | 16 | ub | gap | node | timeBest |
| 35 | 8 | 3.0 | 5 | 7200 | 12.8 | 18 | 28.9 | 707.9 | 2.8 | 99.6 | 18 | 18 | 0 | 5.1 | 1.4 | 24.3 | 18 | 18 | 0 | 2 | 2.7 |
| 35 | 8 | 4.5 | 1 | 7200 | 9.4 | 12 | 21.7 | 732 | 3.6 | 51.2 | 12 | 12 | 0 | 5.9 | 23.7 | 43.6 | 12 | 12 | 0 | 5.9 | 3 |
| 35 | 8 | 4.5 | 2 | 7200 | 9.3 | 13 | 28.7 | 800.3 | 3 | 36.5 | 13 | 13 | 0 | 2.8 | 21 | 34.6 | 13 | 13 | 0 | 3.6 | 2.6 |
| 35 | 8 | 4.5 | 3 | 7200 | 9.5 | 14 | 32.4 | 803.5 | 3.1 | 446.1 | 14 | 14 | 0 | 59.1 | 1.8 | 138.3 | 14 | 14 | 0 | 16.2 | 2.5 |
| 35 | 8 | 4.5 | 4 | 7200 | 9.4 | 12 | 22 | 711.5 | 3.8 | 10 | 12 | 12 | 0 | 0.4 | 6.7 | 5.1 | 12 | 12 | 0 | 0.2 | 4.6 |
| 35 | 8 | 4.5 | 5 | 7200 | 9.2 | 13 | 29.6 | 842.4 | 3.1 | 156.3 | 13 | 13 | 0 | 15.7 | 12.3 | 267.8 | 13 | 13 | 0 | 41.8 | 2.4 |
| 40 | 8 | 1.5 | 1 | 7200 | 26.6 | 32 | 17 | 394.5 | 4.4 | 79.2 | 32 | 32 | 0 | 2.9 | 2.9 | 30.3 | 32 | 32 | 0 | 1.4 | 4 |
| 40 | 8 | 1.5 | 2 | 7200 | 26.7 | 31 | 14 | 504.9 | 3.8 | 101.5 | 31 | 31 | 0 | 2.5 | 101.5 | 24.6 | 31 | 31 | 0 | 1.4 | 5.6 |
| 40 | 8 | 1.5 | 3 | 7200 | 24.4 | 31 | 21.2 | 457.5 | 6.2 | 265.5 | 31 | 31 | 0 | 9.9 | 106.5 | 176.8 | 31 | 31 | 0 | 11.7 | 25.1 |
| 40 | 8 | 1.5 | 4 | 7200 | 27.7 | 34 | 18.6 | 513.5 | 5.9 | 561.2 | 34 | 34 | 0 | 27.3 | 36.8 | 513.2 | 34 | 34 | 0 | 40.8 | 112.1 |
| 40 | 8 | 1.5 | 5 | 7200 | 27.6 | 32 | 13.7 | 451.2 | 4.1 | 26.7 | 32 | 32 | 0 | 0.8 | 2.6 | 10.5 | 32 | 32 | 0 | 0.2 | 3.7 |
| 40 | 8 | 3.0 | 1 | 7200 | 14.5 | 22 | 34.1 | 402.4 | 4.4 | 1010.3 | 22 | 22 | 0 | 42.1 | 21.5 | 968.4 | 22 | 22 | 0 | 76.1 | 25.5 |
| 40 | 8 | 3.0 | 2 | 7200 | 14.8 | 20 | 25.9 | 396.9 | 5 | 109.9 | 20 | 20 | 0 | 4.6 | 13.1 | 79.9 | 20 | 20 | 0 | 4.8 | 68 |
| 40 | 8 | 3.0 | 3 | 7200 | 14.5 | 23 | 37 | 386.8 | 6.7 | 2873.7 | 23 | 23 | 0 | 144.2 | 48.1 | 3802.6 | 23 | 23 | 0 | 291.8 | 218.7 |
| 40 | 8 | 3.0 | 4 | 7200 | 14.7 | 22 | 33.3 | 379.1 | 102.9 | 931.8 | 22 | 22 | 0 | 42.2 | 150.6 | 522.1 | 22 | 22 | 0 | 41.4 | 279.7 |
| 40 | 8 | 3.0 | 5 | 7200 | 14.7 | 22 | 33.2 | 390.3 | 7.2 | 482.5 | 22 | 22 | 0 | 28.7 | 188.1 | 584.2 | 22 | 22 | 0 | 38.3 | 243.6 |
| 40 | 8 | 4.5 | 1 | 7200 | 10.2 | 14 | 27.4 | 432.8 | 4.5 | 75.3 | 14 | 14 | 0 | 1.6 | 1.5 | 76.7 | 14 | 14 | 0 | 5.9 | 69.5 |
| 40 | 8 | 4.5 | 2 | 7200 | 9.7 | 17 | 42.7 | 476.4 | 5.9 | 4181 | 17 | 17 | 0 | 336 | 222.6 | 4477.6 | 17 | 17 | 0 | 348 | 86.4 |
| 40 | 8 | 4.5 | 3 | 7200 | 9.6 | 14 | 31.4 | 483.8 | 4.4 | 211 | 14 | 14 | 0 | 9.7 | 203.5 | 921.6 | 14 | 14 | 0 | 103.3 | 813 |
| 40 | 8 | 4.5 | 4 | 7200 | 9.7 | 14 | 31.1 | 405.7 | 5.2 | 115.5 | 14 | 14 | 0 | 6.6 | 9.4 | 34.8 | 14 | 14 | 0 | 1.7 | 5.9 |
| 40 | 8 | 4.5 | 5 | 7200 | 10.1 | 17 | 40.8 | 447.9 | 5.6 | 5319.4 | 17 | 17 | 0 | 410.4 | 11.3 | 7200 | 15.1 | 17 | 11.3 | 559.4 | 20.3 |
| 45 | 8 | 1.5 | 1 | 7200 | 31.3 | 38 | 17.6 | 259.2 | 325.2 | 384.2 | 38 | 38 | 0 | 12.2 | 170.2 | 499.8 | 38 | 38 | 0 | 31.2 | 307.7 |
| 45 | 8 | 1.5 | 2 | 7200 | 31.4 | 38 | 17.5 | 225.6 | 198.2 | 684.4 | 38 | 38 | 0 | 16.1 | 602.3 | 299.5 | 38 | 38 | 0 | 14.9 | 70.7 |
| 45 | 8 | 1.5 | 3 | 7200 | 28.4 | 36 | 21.2 | 289.7 | 6.3 | 2093.1 | 36 | 36 | 0 | 65.7 | 253.6 | 1291.4 | 36 | 36 | 0 | 66.1 | 6.1 |
| 45 | 8 | 1.5 | 4 | 7200 | 29.3 | 36 | 18.6 | 263.7 | 8.1 | 733.9 | 36 | 36 | 0 | 15 | 355.8 | 398.1 | 36 | 36 | 0 | 18.5 | 18.3 |
| 45 | 8 | 1.5 | 5 | 7200 | 30.3 | 36 | 15.9 | 366.1 | 5.6 | 119.8 | 36 | 36 | 0 | 2.7 | 37.4 | 84.5 | 36 | 36 | 0 | 3.3 | 8 |
| 45 | 8 | 3.0 | 1 | 7200 | 16.5 | 25 | 34.1 | 276.9 | 33.4 | 5576.2 | 25 | 25 | 0 | 157.3 | 162 | 5692.2 | 25 | 25 | 0 | 301.1 | 22.3 |
| 45 | 8 | 3.0 | 2 | 7200 | 16.4 | 26 | 37 | 251.4 | 8.8 | 7200 | 24.1 | 26 | 7.4 | 153 | 239.3 | 7200 | 23.6 | 26 | 9.3 | 326.4 | 223.7 |
| 45 | 8 | 3.0 | 3 | 7200 | 16.3 | 24 | 32.2 | 244.2 | 7.3 | 3923 | 24 | 24 | 0 | 91.7 | 2820.4 | 1068.3 | 24 | 24 | 0 | 42.6 | 74.9 |
| 45 | 8 | 3.0 | 4 | 7200 | 16.4 | 25 | 34.3 | 279.3 | 822.8 | 5294.8 | 25 | 25 | 0 | 123.5 | 3545 | 7200 | 22.7 | 25 | 9 | 371 | 6945.2 |
| 45 | 8 | 3.0 | 5 | 7200 | 16.5 | 24 | 31.4 | 280.9 | 13.8 | 1699.1 | 24 | 24 | 0 | 48.7 | 474.5 | 2108.8 | 24 | 24 | 0 | 101.6 | 568.8 |
| 45 | 8 | 4.5 | 1 | 7200 | 11.6 | 19 | 38.9 | 290.6 | 74.4 | 3685.3 | 19 | 19 | 0 | 123.2 | 809 | 7200 | 18 | 19 | 5.1 | 304.3 | 383.4 |
| 45 | 8 | 4.5 | 2 | 7200 | 11.6 | 18 | 35.5 | 262.3 | 7.7 | 1094.4 | 18 | 18 | 0 | 26.1 | 86.3 | 1153.8 | 18 | 18 | 0 | 52.5 | 5.6 |
| 45 | 8 | 4.5 | 3 | 7200 | 11.4 | 18 | 36.6 | 231.7 | 8.4 | 1042.8 | 18 | 18 | 0 | 21.1 | 191.2 | 409 | 18 | 18 | 0 | 13.9 | 129.5 |
| 45 | 8 | 4.5 | 4 | 7200 | 11.4 | 21 | 45.7 | 321.5 | 8.4 | 7200 | 18 | 21 | 14.1 | 174 | 623.1 | 7200 | 17.5 | 21 | 16.5 | 372.7 | 163.9 |
| 45 | 8 | 4.5 | 5 | 7200 | 11.5 | 20 | 42.3 | 299.4 | 26.4 | 7200 | 18 | 21 | 14.4 | 185.2 | 493.6 | 7200 | 16.8 | 20 | 16 | 339 | 317.8 |
| 50 | 8 | 1.5 | 1 | 7200 | 33.1 | 41 | 19.3 | 193.7 | 11.5 | 1311.9 | 41 | 41 | 0 | 22.4 | 134.7 | 481.5 | 41 | 41 | 0 | 16.1 | 88.3 |
| 50 | 8 | 1.5 | 2 | 7200 | 31 | 38 | 18.4 | 191.7 | 282.2 | 2597.4 | 38 | 38 | 0 | 33.7 | 2463.6 | 2544 | 38 | 38 | 0 | 126.8 | 2130.1 |
| 50 | 8 | 1.5 | 3 | 7200 | 31 | 39 | 20.5 | 176.2 | 90.9 | 3486.4 | 39 | 39 | 0 | 71.1 | 129.1 | 2969.1 | 39 | 39 | 0 | 80.6 | 12.8 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest | CPU | $l b$ | $u b$ | gap | node | timeBest |
| 50 | 8 | 1.5 | 4 | 7200 | 32 | 41 | 22 | 161.5 | 939.4 | 7200 | 40.4 | 42 | 3.7 | 94.5 | 1338.1 | 2796.7 | 41 | 41 | 0 | 86.6 | 422.4 |
| 50 | 8 | 1.5 | 5 | 7200 | 33 | 42 | 21.4 | 161.1 | 6673.9 | 7200 | 40.6 | 43 | 5.5 | 99.6 | 1454.1 | 7200 | 40.3 | 42 | 4.1 | 233.2 | 635 |
| 50 | 8 | 3.0 | 1 | 7200 | 17 | 28 | 39.3 | 155.6 | 126.1 | 7200 | 24.5 | 29 | 15.7 | 88.1 | 1218.4 | 7200 | 24 | 29 | 17.3 | 202.6 | 302.5 |
| 50 | 8 | 3.0 | 2 | 7200 | 17.1 | 28 | 38.9 | 170.7 | 66.2 | 7200 | 24.9 | 28 | 11.1 | 73.8 | 2215.3 | 7200 | 24.3 | 28 | 13.1 | 190.8 | 61.8 |
| 50 | 8 | 3.0 | 3 | 7200 | 17 | 28 | 39.3 | 170.6 | 1460.8 | 7200 | 24.1 | 28 | 13.8 | 100.6 | 4461 | 7200 | 23 | 29 | 20.5 | 230.9 | 1464.2 |
| 50 | 8 | 3.0 | 4 | 7200 | 17 | 28 | 39.3 | 163.1 | 905.3 | 7200 | 24.4 | 29 | 15.9 | 88.6 | 163.7 | 7200 | 24.2 | 28 | 13.4 | 249.5 | 7035.8 |
| 50 | 8 | 3.0 | 5 | 7200 | 17.1 | 29 | 41.2 | 152 | 14.3 | 7200 | 24.9 | 29 | 14 | 105.9 | 2321.4 | 7200 | 25 | 29 | 13.8 | 250.1 | 3058.8 |
| 50 | 8 | 4.5 | 1 | 7200 | 12.4 | 22 | 43.8 | 179.5 | 43.7 | 7200 | 19 | 22 | 13.8 | 101.8 | 4161.7 | 7200 | 18 | 22 | 18.2 | 236.8 | 823.3 |
| 50 | 8 | 4.5 | 2 | 7200 | 12.6 | 22 | 42.9 | 210.4 | 11.6 | 7200 | 19.4 | 23 | 15.7 | 145.9 | 126.1 | 7200 | 17.7 | 22 | 19.7 | 276.9 | 333.5 |
| 50 | 8 | 4.5 | 3 | 7200 | 12.4 | 22 | 43.7 | 208 | 62.1 | 7200 | 19 | 22 | 13.7 | 117.9 | 520.8 | 7200 | 17.7 | 22 | 19.5 | 247.6 | 75.6 |
| 50 | 8 | 4.5 | 4 | 7200 | 12.5 | 22 | 43.3 | 179.7 | 11.1 | 7200 | 19 | 22 | 13.7 | 93.1 | 3206.2 | 7200 | 18.2 | 22 | 17.3 | 246 | 1079.7 |
| 50 | 8 | 4.5 | 5 | 7200 | 12.5 | 23 | 45.5 | 168.3 | 113.8 | 7200 | 19.5 | 23 | 15.1 | 145.3 | 6527.5 | 7200 | 18.5 | 24 | 22.7 | 293.2 | 376.1 |
| 55 | 8 | 1.5 | 1 | 7200 | 34.7 | 44 | 21.1 | 99.9 | 1001.9 | 7200 | 42 | 44 | 4.6 | 56.3 | 5978.7 | 7200 | 41.1 | 44 | 6.5 | 165.2 | 722.4 |
| 55 | 8 | 1.5 | 2 | 7200 | 35.8 | 45 | 20.4 | 149.7 | 505.4 | 7200 | 43.4 | 45 | 3.6 | 58.6 | 1165.9 | 7200 | 42.8 | 45 | 5 | 183.1 | 273.2 |
| 55 | 8 | 1.5 | 3 | 7200 | 35.7 | 44 | 18.9 | 105 | 168.4 | 2613.9 | 44 | 44 | 0 | 25.1 | 320.5 | 2082.6 | 44 | 44 | 0 | 53.7 | 28.2 |
| 55 | 8 | 1.5 | 4 | 7200 | 36.7 | 46 | 20.2 | 94.4 | 75.8 | 7200 | 44.6 | 46 | 3.1 | 64.3 | 639.8 | 7200 | 43.8 | 46 | 4.8 | 184 | 349.7 |
| 55 | 8 | 1.5 | 5 | 7200 | 34.8 | 47 | 26 | 64.5 | 6650.2 | 7200 | 42.8 | 48 | 10.9 | 59.7 | 2028.9 | 7200 | 42.1 | 47 | 10.4 | 158.5 | 4242 |
| 55 | 8 | 3.0 | 1 | 7200 | 18.8 | 32 | 41.4 | 99.7 | 77.9 | 7200 | 25.4 | 33 | 23 | 60.6 | 2962.3 | 7200 | 25 | 31 | 19.4 | 156.8 | 539.3 |
| 55 | 8 | 3.0 | 2 | 7200 | 18.7 | 31 | 39.6 | 97.7 | 1885.9 | 7200 | 25.3 | 31 | 18.3 | 51.4 | 4859.4 | 7200 | 24.7 | 31 | 20.3 | 139.5 | 771.1 |
| 55 | 8 | 3.0 | 3 | 7200 | 18.7 | 31 | 39.5 | 86.8 | 6640.6 | 7200 | 26.3 | 32 | 17.8 | 50.2 | 6685.6 | 7200 | 26.1 | 31 | 15.9 | 139.4 | 946.2 |
| 55 | 8 | 3.0 | 4 | 7200 | 18.8 | 33 | 43.2 | 96 | 1207 | 7200 | 26.1 | 33 | 20.8 | 50 | 4626.6 | 7200 | 25.6 | 33 | 22.5 | 182.3 | 1353.7 |
| 55 | 8 | 3.0 | 5 | 7200 | 18.8 | 34 | 44.8 | 75.6 | 1603.5 | 7200 | 26.4 | 34 | 22.5 | 66.4 | 6523.1 | 7200 | 26.1 | 34 | 23.1 | 182 | 4797.3 |
| 55 | 8 | 4.5 | 1 | 7200 | 13 | 24 | 45.8 | 130.5 | 2460.5 | 7200 | 19.9 | 26 | 23.5 | 63.6 | 1220.6 | 7200 | 18.9 | 24 | 21.2 | 167.4 | 6549.8 |
| 55 | 8 | 4.5 | 2 | 7200 | 13 | 23 | 43.5 | 119.1 | 217.8 | 7200 | 19.1 | 23 | 17.1 | 62.8 | 681 | 7200 | 18.6 | 24 | 22.6 | 190.7 | 497.8 |
| 55 | 8 | 4.5 | 3 | 7200 | 13 | 26 | 50 | 112.1 | 124.3 | 7200 | 20.3 | 27 | 24.8 | 67.8 | 876.8 | 7200 | 19.9 | 26 | 23.6 | 178.7 | 1554.7 |
| 55 | 8 | 4.5 | 4 | 7200 | 12.9 | 23 | 44.1 | 123 | 13.2 | 7200 | 18.4 | 24 | 23.4 | 72.8 | 58.2 | 7200 | 17.8 | 24 | 25.8 | 182.4 | 6.3 |
| 55 | 8 | 4.5 | 5 | 7200 | 12.9 | 25 | 48.2 | 124 | 364.7 | 7200 | 19.3 | 26 | 25.7 | 65.8 | 168.5 | 7200 | 18.4 | 25 | 26.4 | 193 | 867.4 |
| 60 | 8 | 1.5 | 1 | 7200 | 37.8 | 51 | 25.9 | 58.5 | 2297.8 | 7200 | 44.5 | 53 | 16 | 34.7 | 2864.9 | 7200 | 44.4 | 51 | 12.9 | 100.2 | 6574.7 |
| 60 | 8 | 1.5 | 2 | 7200 | 38.7 | 50 | 22.5 | 70.4 | 241.5 | 7200 | 45.9 | 50 | 8.2 | 39.9 | 2061 | 7200 | 45.6 | 50 | 8.8 | 107.7 | 1272.9 |
| 60 | 8 | 1.5 | 3 | 7200 | 40.8 | 53 | 23.1 | 54.3 | 4192.2 | 7200 | 47.9 | 53 | 9.6 | 49 | 7171.7 | 7200 | 48 | 52 | 7.8 | 107 | 863.8 |
| 60 | 8 | 1.5 | 4 | 7200 | 39.8 | 50 | 20.5 | 59 | 6609.3 | 7200 | 47.3 | 50 | 5.5 | 41.4 | 2128.2 | 7200 | 48.3 | 50 | 3.4 | 121 | 4792.1 |
| 60 | 8 | 1.5 |  | 7200 | 36.7 | 49 | 25 | 72.7 | 65.9 | 7200 | 44.3 | 49 | 9.7 | 41.5 | 3355.7 | 7200 | 43.3 | 49 | 11.6 | 114.7 | 6853.9 |
| 60 | 8 | 3.0 | 1 | 7200 | 20.8 | 37 | 43.8 | 57.9 | 21.5 | 7200 | 27.8 | 38 | 26.9 | 41.7 | 254.8 | 7200 | 27.8 | 37 | 25 | 103.8 | 2753.6 |
| 60 | 8 | 3.0 | 2 | 7200 | 20.8 | 36 | 42.3 | 56.1 | 1076.4 | 7200 | 27.3 | 37 | 26.3 | 43.8 | 6991.8 | 7200 | 27.2 | 36 | 24.4 | 99.3 | 467.2 |
| 60 | 8 | 3.0 | 3 | 7200 | 19.8 | 35 | 43.5 | 51.1 | 2663 | 7200 | 26.4 | 36 | 26.7 | 38.4 | 4576 | 7200 | 26.1 | 35 | 25.4 | 83.4 | 6502.4 |
| 60 | 8 | 3.0 | 4 | 7200 | 20.7 | 34 | 39 | 63 | 3674.2 | 7200 | 28.4 | 34 | 16.5 | 39.1 | 3930.3 | 7200 | 29.2 | 34 | 14 | 100.3 | 2766.1 |
| 60 | 8 | 3.0 | 5 | 7200 | 20.8 | 36 | 42.3 | 63.1 | 4439.3 | 7200 | 27.7 | 38 | 27.2 | 46.8 | 5112.6 | 7200 | 28.7 | 37 | 22.5 | 89.6 | 3489.7 |
| 60 | 8 | 4.5 | 1 | 7200 | 13.8 | 27 | 49 | 69.8 | 356.3 | 7200 | 20 | 29 | 31.2 | 38.7 | 6418.7 | 7200 | 20.2 | 28 | 27.9 | 99.3 | 6566.7 |
| 60 | 8 | 4.5 | 2 | 7200 | 13.8 | 27 | 49 | 67.1 | 2836 | 7200 | 20.7 | 28 | 26.1 | 37.5 | 2696.9 | 7200 | 20.3 | 27 | 24.8 | 140.8 | 6533.4 |

Table A. 2 - Continued

| Instances |  |  |  | Default |  |  |  |  |  | Constraints |  |  |  |  |  | Orbitopal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | CPU | $1 b$ | $u b$ | gap | node | timeBest | CPU | $1 b$ | $u b$ | gap | node | timeBest | CPU | lb | ub | gap | node | timeBest |
| 60 | 8 | 4.5 | 3 | 7200 | 13.8 | 29 | 52.4 | 64.1 | 234.2 | 7200 | 21 | 31 | 32.4 | 54.4 | 2600.1 | 7200 | 20.5 | 29 | 29.2 | 124.9 | 7031.6 |
| 60 | 8 | 4.5 | 4 | 7200 | 13.8 | 26 | 47.1 | 81.2 | 870.8 | 7200 | 19.6 | 27 | 27.3 | 29.6 | 7040.6 | 7200 | 20.1 | 26 | 22.7 | 108.1 | 679.6 |
| 60 | 8 | 4.5 | 5 | 7200 | 13.8 | 28 | 50.7 | 63.2 | 1305.6 | 7200 | 19.3 | 29 | 33.4 | 70.4 | 6588.6 | 7200 | 19.1 | 28 | 31.6 | 136.7 | 909.9 |

Table A.3: Detailed results for evaluation of the impact of the new upper bound on $p_{\text {opt }}$

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 30 | 2 | 1.5 | 1 | 30 | 1500 | 11 | 35 | 7200 | 35.3 | 808 | 15 | 750 | 10 | 35 | 7200 | 22.7 | 2233.3 | 10 | 500 | 10 | 35 | 7200.1 | 16.5 | 3129.3 |
| 30 | 2 | 1.5 | 2 | 30 | 1500 | 9 | 34 | 7200 | 31 | 1114.2 | 15 | 750 | 9 | 34 | 7200 | 22 | 3221.5 | 8 | 400 | 8 | 34 | 7200 | 8.2 | 5115.1 |
| 30 | 2 | 1.5 | 3 | 30 | 1500 | 9 | 36 | 7200 | 37.6 | 782.2 | 15 | 750 | 9 | 36 | 7200 | 23.2 | 2316.5 | 9 | 450 | 9 | 36 | 7200 | 17.3 | 2908.3 |
| 30 | 2 | 1.5 | 4 | 30 | 1500 | 8 | 34 | 7200 | 34.4 | 910.9 | 15 | 750 | 8 | 34 | 7200 | 21.9 | 2409.5 | 8 | 400 | 8 | 34 | 7200 | 12.3 | 4971.4 |
| 30 | 2 | 1.5 | 5 | 30 | 1500 | 9 | 36 | 7200 | 33.7 | 782.9 | 15 | 750 | 9 | 36 | 7200 | 19.9 | 2112.6 | 9 | 450 | 9 | 36 | 7200 | 13.9 | 4048.5 |
| 30 | 2 | 3.0 | 1 | 30 | 1200 | 11 | 31 | 7200 | 42.1 | 775 | 15 | 600 | 10 | 31 | 7200 | 35.6 | 2571.2 | 10 | 400 | 10 | 31 | 7200 | 28 | 3912.1 |
| 30 | 2 | 3.0 | 2 | 30 | 1200 | 10 | 29 | 7200 | 43 | 834.1 | 15 | 600 | 10 | 29 | 7200 | 35.4 | 2787.7 | 10 | 400 | 10 | 29 | 7200 | 26.7 | 3884.4 |
| 30 | 2 | 3.0 | 3 | 30 | 1200 | 10 | 31 | 7200 | 50.9 | 806.6 | 15 | 600 | 10 | 31 | 7200 | 38 | 2211.4 | 10 | 400 | 10 | 31 | 7200.1 | 29.7 | 3106.7 |
| 30 | 2 | 3.0 | 4 | 30 | 1200 | 8 | 27 | 7200 | 44 | 636.1 | 15 | 600 | 8 | 27 | 7200 | 33.9 | 2061.9 | 8 | 320 | 8 | 27 | 7200 | 19.8 | 3980.8 |
| 30 | 2 | 3.0 | 5 | 30 | 1200 | 10 | 30 | 7200 | 46.9 | 710.6 | 15 | 600 | 10 | 30 | 7200 | 35 | 2134 | 10 | 400 | 10 | 30 | 7200 | 26.1 | 3164.8 |
| 30 | 2 | 4.5 | 1 | 30 | 1080 | 7 | 24 | 7200 | 34.2 | 1251.6 | 15 | 540 | 7 | 24 | 7200 | 25.2 | 3145.8 | 7 | 252 | 7 | 24 | 180.9 | 0 | 221.7 |
| 30 | 2 | 4.5 | 2 | 30 | 1080 | 9 | 26 | 7200 | 39.1 | 954.9 | 15 | 540 | 9 | 26 | 7200 | 28.5 | 3541.4 | 9 | 324 | 9 | 26 | 7200 | 19.7 | 4534.6 |
| 30 | 2 | 4.5 | 3 | 30 | 1080 | 9 | 26 | 7200 | 40.4 | 1064.8 | 15 | 540 | 9 | 26 | 7200 | 28.7 | 4144.5 | 9 | 324 | 9 | 26 | 7200 | 12.9 | 6468.7 |
| 30 | 2 | 4.5 | 4 | 30 | 1080 | 9 | 27 | 7200 | 38.9 | 1055 | 15 | 540 | 9 | 27 | 7200 | 28.2 | 4475 | 9 | 324 | 9 | 27 | 7200 | 9.3 | 5585.5 |
| 30 | 2 | 4.5 | 5 | 30 | 1080 | 10 | 27 | 7200 | 36.7 | 937.6 | 15 | 540 | 10 | 27 | 7200 | 24.3 | 3179.4 | 10 | 360 | 10 | 27 | 7200 | 15.4 | 3543.3 |
| 35 | 2 | 1.5 | 1 | 35 | 2030 | 11 | 41 | 7200 | 38.9 | 591.1 | 18 | 1044 | 11 | 41 | 7200 | 27.9 | 1253.2 | 10 | 580 | 10 | 41 | 7200 | 19.4 | 2127.8 |
| 35 | 2 | 1.5 | 2 | 35 | 2030 | 13 | 44 | 7200 | 36.9 | 274.9 | 18 | 1044 | 13 | 44 | 7200 | 34.2 | 1619 | 13 | 754 | 13 | 44 | 7200 | 32.1 | 2528.4 |
| 35 | 2 | 1.5 | 3 | 35 | 2030 | 12 | 40 | 7200 | 38 | 666.7 | 18 | 1044 | 12 | 40 | 7200 | 30 | 1711.8 | 11 | 638 | 11 | 41 | 7200 | 21.5 | 2446.9 |
| 35 | 2 | 1.5 | 4 | 35 | 2030 | 11 | 41 | 7200 | 39.4 | 354.4 | 18 | 1044 | 11 | 41 | 7200 | 32.4 | 1410.6 | 11 | 638 | 11 | 41 | 7200 | 24.5 | 2511.7 |
| 35 | 2 | 1.5 | 5 | 35 | 2030 | 12 | 40 | 7200 | 37.3 | 427 | 18 | 1044 | 12 | 40 | 7200 | 35.5 | 1560.7 | 12 | 696 | 12 | 40 | 7200 | 22.7 | 2723.5 |
| 35 | 2 | 3.0 | 1 | 35 | 1610 | 12 | 35 | 7200 | 59.6 | 616.4 | 18 | 828 | 12 | 35 | 7200 | 51 | 1506.4 | 12 | 552 | 12 | 35 | 7200 | 41.3 | 2731.2 |
| 35 | 2 | 3.0 | 2 | 35 | 1610 | 10 | 33 | 7200 | 56.4 | 443.6 | 18 | 828 | 10 | 33 | 7200 | 51.4 | 1354.9 | 10 | 460 | 10 | 33 | 7200 | 34.3 | 2311.7 |
| 35 | 2 | 3.0 | 3 | 35 | 1610 | 12 | 35 | 7200 | 46.4 | 365.7 | 18 | 828 | 12 | 35 | 7200 | 41 | 1509 | 12 | 552 | 12 | 35 | 7200 | 25.1 | 2190.3 |
| 35 | 2 | 3.0 | 4 | 35 | 1610 | 11 | 32 | 7200 | 44.8 | 590.4 | 18 | 828 | 11 | 32 | 7200 | 36.1 | 1753.6 | 11 | 506 | 11 | 32 | 7200 | 24.7 | 3338.3 |
| 35 | 2 | 3.0 | 5 | 35 | 1610 | 10 | 33 | 7200 | 50.4 | 277.2 | 18 | 828 | 10 | 33 | 7200 | 43.6 | 1663.3 | 10 | 460 | 10 | 33 | 7200 | 32.1 | 2316.8 |
| 35 | 2 | 4.5 | 1 | 35 | 1470 | 12 | 32 | 7200 | 39.7 | 253.8 | 18 | 756 | 12 | 32 | 7200 | 49.1 | 1808.3 | 12 | 504 | 12 | 32 | 7200 | 35.7 | 3653.6 |
| 35 | 2 | 4.5 | 2 | 35 | 1470 | 11 | 32 | 7200 | 45.2 | 621.6 | 18 | 756 | 11 | 32 | 7200 | 39.2 | 2466 | 11 | 462 | 11 | 32 | 7200 | 24.7 | 3344.5 |
| 35 | 2 | 4.5 | 3 | 35 | 1470 | 10 | 30 | 7200 | 43.1 | 354.9 | 18 | 756 | 10 | 30 | 7200 | 34.7 | 1423.4 | 10 | 420 | 10 | 30 | 7200 | 20.4 | 2807.8 |
| 35 | 2 | 4.5 | 4 | 35 | 1470 | 12 | 33 | 7200 | 54.7 | 519 | 18 | 756 | 12 | 33 | 7200 | 49.6 | 2015.3 | 12 | 504 | 12 | 33 | 7200 | 38.7 | 2680.2 |
| 35 | 2 | 4.5 | 5 | 35 | 1470 | 10 | 31 | 7200 | 46.3 | 525.3 | 18 | 756 | 10 | 31 | 7200 | 39 | 2465.6 | 10 | 420 | 10 | 31 | 7200 | 26.4 | 4401.4 |
| 40 | 2 | 1.5 | 1 | 40 | 2640 | 14 | 51 | 7200 | 47.4 | 356.9 | 20 | 1320 | 13 | 50 | 7200 | 40.4 | 854.4 | 11 | 726 | 11 | 50 | 7200 | 29.3 | 1823.4 |
| 40 | 2 | 1.5 | 2 | 40 | 2640 | 14 | 48 | 7200 | 43 | 234.1 | 20 | 1320 | 12 | 48 | 7200 | 38.4 | 1000.9 | 11 | 726 | 11 | 48 | 7200 | 27.8 | 1873.9 |
| 40 | 2 | 1.5 | 3 | 40 | 2640 | 14 | 46 | 7200 | 37.7 | 323.6 | 20 | 1320 | 14 | 46 | 7200 | 33.4 | 1258.9 | 12 | 792 | 12 | 46 | 7200 | 25.7 | 2127.9 |
| 40 | 2 | 1.5 | 4 | 40 | 2640 | 11 | 46 | 7200 | 41.5 | 236.7 | 20 | 1320 | 12 | 46 | 7200 | 35.7 | 965.1 | 11 | 726 | 11 | 46 | 7200 | 25.3 | 1858.9 |
| 40 | 2 | 1.5 | 5 | 40 | 2640 | 13 | 48 | 7200 | 42 | 229.3 | 20 | 1320 | 13 | 48 | 7200 | 36.1 | 1010.8 | 11 | 726 | 11 | 49 | 7200 | 27 | 1920.5 |
| 40 | 2 | 3.0 | 1 | 40 | 2120 | 11 | 38 | 7200 | 56 | 244 | 20 | 1060 | 11 | 38 | 7200 | 52.8 | 1087.7 | 11 | 583 | 11 | 38 | 7200 | 38 | 1647.1 |
| 40 | 2 | 3.0 | 2 | 40 | 2120 | 10 | 37 | 7200 | 56.5 | 219.6 | 20 | 1060 | 10 | 37 | 7200 | 47.6 | 618.4 | 10 | 530 | 10 | 37 | 7200 | 35.7 | 1608.7 |
| 40 | 2 | 3.0 | 3 | 40 | 2120 | 12 | 40 | 7200 | 53.9 | 299.7 | 20 | 1060 | 12 | 40 | 7200 | 48.5 | 1088.2 | 12 | 636 | 12 | 40 | 7200 | 34.9 | 1901.9 |
| 40 | 2 | 3.0 | 4 | 40 | 2120 | 14 | 40 | 7200 | 57.9 | 242 | 20 | 1060 | 13 | 40 | 7200 | 56.8 | 1085 | 13 | 689 | 13 | 40 | 7200 | 43.1 | 1732.8 |

Table A. 3 - Continued
Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 55 | 2 | 1.5 | 4 | 55 | 5005 | 15 | 65 | 7200 | 44.4 | 43.8 | 28 | 2548 | 15 | 64 | 7200 | 40.3 | 241.5 | 14 | 1274 | 14 | 64 | 7200 | 35.4 | 824.3 |
| 55 | 2 | 1.5 | 5 | 55 | 5005 | 18 | 66 | 7200 | 47.2 | 52.3 | 28 | 2548 | 19 | 66 | 7200 | 45.9 | 239.2 | 16 | 1456 | 16 | 66 | 7200 | 41.6 | 587.9 |
| 55 | 2 | 3.0 | 1 | 55 | 4015 | 16 | 56 | 7200 | 63.7 | 29.2 | 28 | 2044 | 16 | 57 | 7200 | 57.7 | 214 | 16 | 1168 | 16 | 57 | 7200 | 54.8 | 517.8 |
| 55 | 2 | 3.0 | 2 | 55 | 4015 | 16 | 55 | 7200 | 63.9 | 33.9 | 28 | 2044 | 16 | 55 | 7200 | 61.3 | 270.5 | 16 | 1168 | 16 | 55 | 7200 | 57.6 | 528.9 |
| 55 | 2 | 3.0 | 3 | 55 | 4015 | 19 | 58 | 7200 | 65.2 | 22.9 | 28 | 2044 | 18 | 57 | 7200 | 62 | 219.5 | 18 | 1314 | 18 | 57 | 7200 | 53.6 | 506.9 |
| 55 | 2 | 3.0 | 4 | 55 | 4015 | 16 | 55 | 7200 | 65 | 37.3 | 28 | 2044 | 16 | 56 | 7200 | 62.1 | 209.4 | 15 | 1095 | 15 | 55 | 7200 | 57.6 | 485.4 |
| 55 | 2 | 3.0 | 5 | 55 | 4015 | 16 | 57 | 7200 | 66.4 | 38.9 | 28 | 2044 | 16 | 56 | 7200 | 61.8 | 231.1 | 15 | 1095 | 15 | 55 | 7200 | 56.1 | 569.3 |
| 55 | 2 | 4.5 | 1 | 55 | 3685 | 15 | 49 | 7200 | 73.3 | 27.7 | 28 | 1876 | 15 | 49 | 7200 | 68.5 | 276.1 | 15 | 1005 | 15 | 49 | 7200 | 63 | 886.3 |
| 55 | 2 | 4.5 | 2 | 55 | 3685 | 15 | 51 | 7200 | 72.4 | 29.7 | 28 | 1876 | 16 | 50 | 7200 | 54.8 | 348.2 | 15 | 1005 | 15 | 50 | 7200 | 43.9 | 752.4 |
| 55 | 2 | 4.5 | 3 | 55 | 3685 | 16 | 51 | 7200 | 70.3 | 57.3 | 28 | 1876 | 16 | 51 | 7200 | 57.7 | 345.1 | 16 | 1072 | 16 | 51 | 7200 | 51.6 | 834.6 |
| 55 | 2 | 4.5 | 4 | 55 | 3685 | 18 | 52 | 7200 | 73.2 | 36.9 | 28 | 1876 | 18 | 53 | 7200 | 70.4 | 246 | 17 | 1139 | 17 | 53 | 7200 | 52.2 | 363.7 |
| 55 | 2 | 4.5 | 5 | 55 | 3685 | 21 | 56 | 7200 | 69.4 | 52.6 | 28 | 1876 | 20 | 56 | 7200 | 71.7 | 269.7 | 20 | 1340 | 20 | 55 | 7200 | 68.9 | 431.5 |
| 60 | 2 | 1.5 | 1 | 60 | 6000 | 19 | 74 | 7200 | 45.2 | 17.2 | 30 | 3000 | 19 | 73 | 7200 | 42.7 | 162.7 | 19 | 1900 | 19 | 74 | 7200 | 38.2 | 436.3 |
| 60 | 2 | 1.5 | 2 | 60 | 6000 | 22 | 74 | 7200 | 45.1 | 37.8 | 30 | 3000 | 21 | 73 | 7200 | 40.8 | 199.8 | 19 | 1900 | 19 | 73 | 7200 | 35.9 | 492.8 |
| 60 | 2 | 1.5 | 3 | 60 | 6000 | 18 | 72 | 7200 | 45.8 | 24.4 | 30 | 3000 | 18 | 71 | 7200 | 43.7 | 165.4 | 17 | 1700 | 17 | 71 | 7200 | 36 | 495.4 |
| 60 | 2 | 1.5 | 4 | 60 | 6000 | 19 | 72 | 7200 | 42.6 | 34.5 | 30 | 3000 | 17 | 72 | 7200 | 44.5 | 141.9 | 16 | 1600 | 16 | 71 | 7200 | 34.9 | 506.9 |
| 60 | 2 | 1.5 | 5 | 60 | 6000 | 17 | 71 | 7200 | 43.6 | 27.3 | 30 | 3000 | 16 | 70 | 7200 | 39.6 | 148 | 16 | 1600 | 16 | 70 | 7200 | 32.2 | 470.3 |
| 60 | 2 | 3.0 | 1 | 60 | 4800 | 19 | 65 | 7200 | 66.1 | 22.5 | 30 | 2400 | 20 | 64 | 7200.1 | 62.1 | 168.9 | 18 | 1440 | 18 | 64 | 7200 | 61.7 | 282.8 |
| 60 | 2 | 3.0 | 2 | 60 | 4800 | 19 | 63 | 7200 | 65.9 | 16 | 30 | 2400 | 17 | 62 | 7200 | 56.6 | 183.1 | 17 | 1360 | 17 | 62 | 7200 | 51.8 | 415.7 |
| 60 | 2 | 3.0 | 3 | 60 | 4800 | 21 | 65 | 7200 | 64.9 | 14.8 | 30 | 2400 | 20 | 63 | 7200 | 60 | 167.4 | 20 | 1600 | 20 | 65 | 7200 | 51.6 | 274.5 |
| 60 | 2 | 3.0 | 4 | 60 | 4800 | 19 | 64 | 7200 | 65.8 | 32.8 | 30 | 2400 | 18 | 62 | 7200 | 57.3 | 162.1 | 18 | 1440 | 18 | 62 | 7200 | 55 | 346.6 |
| 60 | 2 | 3.0 | 5 | 60 | 4800 | 17 | 64 | 7200 | 66.8 | 21.3 | 30 | 2400 | 18 | 63 | 7200 | 53.7 | 175 | 16 | 1280 | 16 | 62 | 7200 | 49.6 | 392.3 |
| 60 | 2 | 4.5 | 1 | 60 | 4380 | 19 | 59 | 7200 | 76.4 | 23 | 30 | 2190 | 18 | 58 | 7200 | 71.6 | 177.5 | 16 | 1168 | 16 | 57 | 7200 | 68.1 | 434.4 |
| 60 | 2 | 4.5 | 2 | 60 | 4380 | 17 | 57 | 7200 | 72.9 | 17.4 | 30 | 2190 | 17 | 58 | 7200 | 63 | 234.2 | 17 | 1241 | 17 | 56 | 7200 | 56.3 | 430.2 |
| 60 | 2 | 4.5 | 3 | 60 | 4380 | 19 | 58 | 7200 | 72.1 | 25.4 | 30 | 2190 | 19 | 58 | 7200 | 64.7 | 193.5 | 19 | 1387 | 19 | 57 | 7200 | 57.5 | 491.9 |
| 60 | 2 | 4.5 | 4 | 60 | 4380 | 20 | 59 | 7200 | 73.3 | 18.1 | 30 | 2190 | 20 | 59 | 7200 | 67.4 | 218 | 19 | 1387 | 19 | 58 | 7200 | 58.5 | 444.2 |
| 60 | 2 | 4.5 | 5 | 60 | 4380 | 18 | 57 | 7200 | 72.9 | 28 | 30 | 2190 | 18 | 57 | 7200 | 66.9 | 188 | 18 | 1314 | 18 | 57 | 7200 | 59.5 | 424.2 |
| 30 | 5 | 1.5 | 1 | 30 | 1500 | 4 | 25 | 7200 | 22.1 | 1318.6 | 10 | 500 | 4 | 25 | 1592.9 | 0 | 1253.6 | 4 | 200 |  | 25 | 4.8 | 0 | 9.8 |
| 30 | 5 | 1.5 | 2 | 30 | 1500 | 4 | 27 | 7200 | 17 | 1255.4 | 10 | 500 | 4 | 27 | 215.5 | 0 | 156 | 4 | 200 | 4 | 27 | 3.2 | 0 | 6.2 |
| 30 | 5 | 1.5 | 3 | 30 | 1500 | 5 | 27 | 7200 | 16.3 | 1222.2 | 10 | 500 | 5 | 27 | 297.8 | 0 | 176.4 | 5 | 250 | 5 | 27 | 3.7 | 0 | 4.3 |
| 30 | 5 | 1.5 | 4 | 30 | 1500 | 4 | 27 | 7200 | 20.6 | 1108.9 | 10 | 500 | 4 | 27 | 1005.3 | 0 | 737 | 4 | 200 | 4 | 27 | 5.7 | 0 | 10 |
| 30 | 5 | 1.5 | 5 | 30 | 1500 | 4 | 28 | 7200 | 20.7 | 1138.5 | 10 | 500 | 4 | 28 | 840.5 | 0 | 638.4 | 4 | 200 | 4 | 28 | 5.2 | 0 | 9.9 |
| 30 | 5 | 3.0 | 1 | 30 | 1200 | 4 | 19 | 7200 | 32.4 | 1040.6 | 10 | 400 | 5 | 19 | 4829.2 | 0 | 3825.6 | 4 | 160 | 4 | 19 | 8.2 | 0 | 17.3 |
| 30 | 5 | 3.0 | 2 | 30 | 1200 | 4 | 19 | 7200 | 34.2 | 865.3 | 10 | 400 | 4 | 19 | 5421.4 | 0 | 4237.2 | 4 | 160 | 4 | 19 | 18.4 | 0 | 37.7 |
| 30 | 5 | 3.0 | 3 | 30 | 1200 | 4 | 18 | 7200 | 28.8 | 1064.4 | 10 | 400 | 4 | 18 | 729.8 | 0 | 507.3 | 4 | 160 | 4 | 18 | 6.4 | 0 | 13.1 |
| 30 | 5 | 3.0 | 4 | 30 | 1200 | 4 | 18 | 7200 | 29 | 1003.8 | 10 | 400 | 4 | 18 | 1008.3 | 0 | 771 | 4 | 160 | 4 | 18 | 3.1 | 0 | 6.9 |
| 30 | 5 | 3.0 | , | 30 | 1200 | 4 | 19 | 7200 | 33 | 1080.7 | 10 | 400 | 4 | 19 | 5737 | 0 | 4416.9 | 4 | 160 | 4 | 19 | 6.5 | 0 | 16.7 |
| 30 | 5 | 4.5 | 1 | 30 | 1080 | 4 | 14 | 7200 | 27.3 | 1282.2 | 10 | 360 | 4 | 14 | 130.7 | 0 | 140.3 | 4 | 144 | 4 | 14 | 1 | 0 | 1.2 |
| 30 |  | 4.5 | 2 | 30 | 1080 | 4 | 13 | 7200 | 25.4 | 1151.3 | 10 | 360 | 4 | 13 | 88.3 | 0 | 78.6 | 4 | 144 | 4 | 13 | 0.9 |  | 1.2 |

Table A. 3 - Continued

Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 45 | 5 | 3.0 | 2 | 45 | 2700 | 7 | 31 | 7200 | 46.3 | 206.5 | 15 | 900 | 6 | 31 | 7200 | 35 | 1037.5 | 6 | 360 | 6 | 31 | 7200 | 16 | 3272.5 |
| 45 | 5 | 3.0 | 3 | 45 | 2700 | 6 | 30 | 7200 | 44 | 183.9 | 15 | 900 | 6 | 30 | 7200 | 32.6 | 970.5 | 6 | 360 | 6 | 30 | 7200 | 13.9 | 2904.2 |
| 45 | 5 | 3.0 | 4 | 45 | 2700 | 6 | 32 | 7200 | 48.4 | 186.4 | 15 | 900 | 6 | 31 | 7200 | 31.8 | 843.7 | 6 | 360 | 6 | 31 | 7200 | 15.6 | 3518.2 |
| 45 | 5 | 3.0 | 5 | 45 | 2700 | 6 | 31 | 7200 | 46.2 | 240.5 | 15 | 900 | 6 | 31 | 7200 | 35.9 | 1117.7 | 6 | 360 | 6 | 31 | 7200 | 15.4 | 3085.5 |
| 45 | 5 | 4.5 | 1 | 45 | 2475 | 6 | 25 | 7200 | 51.3 | 201.9 | 15 | 825 | 6 | 25 | 7200 | 40.4 | 1253.8 | 6 | 330 | 6 | 25 | 7200 | 16.4 | 3669.9 |
| 45 | 5 | 4.5 | 2 | 45 | 2475 | 5 | 23 | 7200 | 49.6 | 275.7 | 15 | 825 | 6 | 23 | 7200 | 35.6 | 1289.2 | 5 | 275 | 5 | 23 | 1600.9 | 0 | 1616.3 |
| 45 | 5 | 4.5 | 3 | 45 | 2475 | 6 | 24 | 7200 | 48.9 | 149 | 15 | 825 | 6 | 24 | 7200 | 33.2 | 992.6 | 6 | 330 | 6 | 24 | 7200 | 11.4 | 3994.6 |
| 45 | 5 | 4.5 | 4 | 45 | 2475 | 6 | 25 | 7200 | 53.4 | 286.2 | 15 | 825 | 6 | 25 | 7200 | 41.3 | 1310.7 | 6 | 330 | 6 | 25 | 7200 | 18.6 | 3734.8 |
| 45 | 5 | 4.5 | 5 | 45 | 2475 | 6 | 24 | 7200 | 49 | 205.7 | 15 | 825 | 6 | 24 | 7200 | 35.9 | 1090.6 | 6 | 330 | 6 | 24 | 7200 | 12 | 4235.2 |
| 50 | 5 | 1.5 | 1 | 50 | 4150 | 7 | 46 | 7200 | 28.3 | 192.6 | 17 | 1411 | 7 | 46 | 7200 | 20.8 | 994.4 | 6 | 498 | 6 | 46 | 7200 | 7.4 | 3294.2 |
| 50 | 5 | 1.5 | 2 | 50 | 4150 | 6 | 47 | 7200 | 27.8 | 146.1 | 17 | 1411 | 6 | 46 | 7200 | 18.4 | 956.1 | 5 | 415 | 5 | 46 | 6242.1 | 0 | 4411.1 |
| 50 | 5 | 1.5 | 3 | 50 | 4150 | 6 | 46 | 7200 | 26.1 | 169 | 17 | 1411 | 6 | 46 | 7200 | 18.2 | 902.7 | 5 | 415 | 5 | 46 | 3914.3 | 0 | 1975.6 |
| 50 | 5 | 1.5 | 4 | 50 | 4150 | 7 | 48 | 7200 | 33.4 | 120.8 | 17 | 1411 | 7 | 48 | 7200 | 26 | 711.7 | 7 | 581 | 7 | 48 | 7200 | 15.5 | 2025 |
| 50 | 5 | 1.5 | 5 | 50 | 4150 | 6 | 48 | 7200 | 31.5 | 133.5 | 17 | 1411 | 6 | 48 | 7200 | 21.9 | 585.8 | 6 | 498 | 6 | 48 | 7200 | 12 | 2739.1 |
| 50 | 5 | 3.0 | 1 | 50 | 3300 | 6 | 31 | 7200 | 44.2 | 146.6 | 17 | 1122 | 6 | 31 | 7200 | 34.6 | 706.9 | 6 | 396 | 6 | 31 | 7200 | 13.9 | 2670.7 |
| 50 | 5 | 3.0 | 2 | 50 | 3300 | 7 | 35 | 7200 | 51.4 | 114 | 17 | 1122 | 7 | 37 | 7200 | 44.7 | 653 | 7 | 462 | 7 | 37 | 7200 | 28.9 | 2053 |
| 50 | 5 | 3.0 | 3 | 50 | 3300 | 6 | 34 | 7200 | 50 | 116 | 17 | 1122 | 6 | 34 | 7200 | 40.4 | 719.7 | 6 | 396 | 6 | 34 | 7200 | 23 | 2492.1 |
| 50 | 5 | 3.0 | 4 | 50 | 3300 | 7 | 34 | 7200 | 49.2 | 116.2 | 17 | 1122 | 7 | 34 | 7200 | 37.7 | 710 | 7 | 462 | 7 | 35 | 7200.1 | 24.6 | 2400.1 |
| 50 | 5 | 3.0 | 5 | 50 | 3300 | 6 | 30 | 7200 | 42.4 | 156.7 | 17 | 1122 | 6 | 30 | 7200 | 31.9 | 785.2 | 6 | 396 | 6 | 30 | 7200 | 11.2 | 2916.3 |
| 50 | 5 | 4.5 | 1 | 50 | 3050 | 7 | 29 | 7200 | 56.7 | 117 | 17 | 1037 | 7 | 29 | 7200 | 45 | 774.3 | 7 | 427 | 7 | 29 | 7200 | 27.6 | 2327.4 |
| 50 | 5 | 4.5 | 2 | 50 | 3050 | 8 | 30 | 7200 | 56.5 | 157 | 17 | 1037 | 8 | 30 | 7200 | 44.6 | 732.3 | 8 | 488 | 8 | 30 | 7200 | 32.4 | 1801.5 |
| 50 | 5 | 4.5 | 3 | 50 | 3050 | 6 | 27 | 7200 | 54.1 | 147 | 17 | 1037 | 6 | 27 | 7200 | 43.2 | 834.6 | 6 | 366 | 6 | 27 | 7200 | 21.6 | 2970.7 |
| 50 | 5 | 4.5 | 4 | 50 | 3050 | 6 | 26 | 7200 | 52.4 | 144 | 17 | 1037 | 6 | 26 | 7200 | 41.3 | 730.1 | 6 | 366 | 6 | 26 | 7200 | 17.5 | 3107.7 |
| 50 | 5 | 4.5 | 5 | 50 | 3050 | 7 | 29 | 7200 | 57.5 | 148.4 | 17 | 1037 | 8 | 30 | 7200 | 49.2 | 859.6 | 7 | 427 | 7 | 29 | 7200 | 28 | 2499.7 |
| 55 | 5 | 1.5 | 1 | 55 | 5005 | 8 | 52 | 7200 | 31.1 | 69.2 | 19 | 1729 | 7 | 51 | 7200 | 23.3 | 614.2 | 7 | 637 | 7 | 51 | 7200 | 13.8 | 1933.8 |
| 55 | 5 | 1.5 | 2 | 55 | 5005 | 7 | 51 | 7200 | 29.7 | 58.9 | 19 | 1729 | 8 | 51 | 7200 | 23.5 | 490.6 | 7 | 637 | 7 | 51 | 7200 | 11.8 | 1508.7 |
| 55 | 5 | 1.5 | 3 | 55 | 5005 | 9 | 50 | 7200 | 26.3 | 116.8 | 19 | 1729 | 9 | 50 | 7200 | 18 | 552 | 8 | 728 | 8 | 50 | 7200 | 10.2 | 1418.1 |
| 55 | 5 | 1.5 | 4 | 55 | 5005 | 7 | 50 | 7200 | 32.3 | 67.7 | 19 | 1729 | 7 | 50 | 7200 | 23.1 | 380.1 | 7 | 637 | 7 | 50 | 7200 | 15.7 | 1882.3 |
| 55 | 5 | 1.5 | 5 | 55 | 5005 | 8 | 52 | 7200 | 29.1 | 103.2 | 19 | 1729 | 8 | 52 | 7200 | 21.4 | 468.3 | 7 | 637 | 7 | 52 | 7200 | 13.5 | 1986.2 |
| 55 | 5 | 3.0 | 1 | 55 | 4015 | 7 | 39 | 7200 | 51.7 | 61.2 | 19 | 1387 | 7 | 39 | 7200 | 43.5 | 449.4 | 7 | 511 | 7 | 39 | 7200 | 28.5 | 1650.9 |
| 55 | 5 | 3.0 | 2 | 55 | 4015 | 6 | 36 | 7200 | 47.7 | 70.3 | 19 | 1387 | 6 | 37 | 7200 | 41 | 534.3 | 6 | 438 | 6 | 36 | 7200 | 17.9 | 2564.4 |
| 55 | 5 | 3.0 | 3 | 55 | 4015 | 6 | 38 | 7200 | 50.4 | 73.7 | 19 | 1387 | 7 | 39 | 7200 | 43 | 409.7 | 6 | 438 | 6 | 39 | 7200 | 27.5 | 2171.2 |
| 55 | 5 | 3.0 | 4 | 55 | 4015 | 6 | 34 | 7200 | 44.6 | 83.1 | 19 | 1387 | 7 | 36 | 7200 | 39.5 | 536 | 6 | 438 | 6 | 34 | 7200 | 15.3 | 2506.9 |
| 55 | 5 | 3.0 | 5 | 55 | 4015 | 7 | 36 | 7200 | 47.6 | 84.7 | 19 | 1387 | 7 | 36 | 7200 | 39.8 | 584.9 | 7 | 511 | 7 | 36 | 7200 | 22.8 | 1850.4 |
| 55 | 5 | 4.5 |  | 55 | 3685 | 7 | 31 | 7200 | 58.6 | 79.8 | 19 | 1273 | 6 | 30 | 7200 | 47.5 | 617.5 | 6 | 402 | 6 | 30 | 7200 | 26.5 | 2353.6 |
| 55 | 5 | 4.5 | 2 | 55 | 3685 | 7 | 30 | 7200 | 56.7 | 92 | 19 | 1273 | 7 | 30 | 7200 | 44.1 | 446.3 | 7 | 469 | 7 | 30 | 7200 | 26.2 | 1888.7 |
| 55 | 5 | 4.5 |  | 55 | 3685 | 7 | 32 | 7200 | 59.4 | 61 | 19 | 1273 | 7 | 32 | 7200 | 47 | 510.4 | 7 | 469 | 7 | 31 | 7200 | 26.6 | 2032.3 |
| 55 | 5 | 4.5 | 4 | 55 | 3685 | 7 | 31 | 7200 | 58.6 | 102.1 | 19 | 1273 |  | 31 | 7200 | 49.6 | 587.8 | 7 | 469 | 7 | 30 | 7200 | 28.2 | 2008.5 |
| 55 |  | 4.5 | 5 | 55 | 3685 | 8 | 33 | 7200 | 61 | 80 | 19 | 1273 |  | 33 | 7200 | 52.5 | 587.1 | 7 | 469 | 7 | 32 | 7200 | 30.1 | 2133.5 |

Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 60 | 5 | 1.5 | 1 | 60 | 6000 | 6 | 50 | 7200 | 26.4 | 66.3 | 20 | 2000 | 6 | 50 | 7200 | 21.1 | 370.2 | 5 | 500 | 5 | 50 | 7200 | 7.1 | 2715.8 |
| 60 | 5 | 1.5 | 2 | 60 | 6000 | 8 | 54 | 7200 | 28.1 | 53.7 | 20 | 2000 | 8 | 54 | 7200 | 23.5 | 484 | 6 | 600 | 6 | 53 | 7200 | 9.9 | 2028.6 |
| 60 | 5 | 1.5 | 3 | 60 | 6000 | 9 | 57 | 7200 | 31.9 | 54.8 | 20 | 2000 | 7 | 56 | 7200 | 25.2 | 489.6 | 7 | 700 | 7 | 56 | 7200 | 15.5 | 1542 |
| 60 | 5 | 1.5 | 4 | 60 | 6000 | 7 | 56 | 7200 | 32.4 | 59.4 | 20 | 2000 | 7 | 55 | 7200 | 25.3 | 370.2 | 7 | 700 | 7 | 55 | 7200 | 16 | 1654.6 |
| 60 | 5 | 1.5 | 5 | 60 | 6000 | 9 | 58 | 7200 | 33 | 67.9 | 20 | 2000 | 9 | 58 | 7200 | 26.6 | 310.1 | 8 | 800 | 8 | 58 | 7200 | 18.3 | 1320.3 |
| 60 | 5 | 3.0 | 1 | 60 | 4800 | 7 | 43 | 7200 | 51.5 | 43.2 | 20 | 1600 | 7 | 42 | 7200 | 44 | 326.9 | 7 | 560 | 7 | 42 | 7200 | 28.6 | 1261.6 |
| 60 | 5 | 3.0 | 2 | 60 | 4800 | 7 | 42 | 7200 | 50.4 | 45.4 | 20 | 1600 | 7 | 41 | 7200 | 40.4 | 232.5 | 7 | 560 | 7 | 41 | 7200 | 26.6 | 1559.5 |
| 60 | 5 | 3.0 | 3 | 60 | 4800 | 8 | 41 | 7200 | 49.1 | 33.9 | 20 | 1600 | 7 | 41 | 7200 | 43 | 361.4 | 7 | 560 | 7 | 41 | 7200 | 27.4 | 1206.4 |
| 60 | 5 | 3.0 | 4 | 60 | 4800 | 7 | 39 | 7200 | 46.5 | 52.4 | 20 | 1600 | 7 | 39 | 7200 | 37.7 | 343.2 | 7 | 560 | 7 | 38 | 7200 | 19.4 | 1459.4 |
| 60 | 5 | 3.0 | 5 | 60 | 4800 | 8 | 44 | 7200 | 52.6 | 46.8 | 20 | 1600 | 8 | 42 | 7200 | 43.8 | 339.9 | 7 | 560 | 7 | 43 | 7200 | 31 | 1483.8 |
| 60 | 5 | 4.5 | 1 | 60 | 4380 | 6 | 32 | 7200 | 56.8 | 57.3 | 20 | 1460 | 6 | 31 | 7200 | 45.6 | 437.7 | 6 | 438 | 6 | 31 | 7200 | 24.5 | 1880.9 |
| 60 | 5 | 4.5 | 2 | 60 | 4380 | 8 | 35 | 7200 | 60.4 | 43.9 | 20 | 1460 | 7 | 34 | 7200 | 46 | 323.4 | 7 | 511 | 7 | 35 | 7200 | 32.4 | 1402 |
| 60 | 5 | 4.5 | 3 | 60 | 4380 | 8 | 33 | 7200 | 58 | 48.5 | 20 | 1460 | 8 | 34 | 7200 | 47.1 | 316.5 | 8 | 584 | 8 | 33 | 7200 | 32.7 | 1196.6 |
| 60 | 5 | 4.5 | 4 | 60 | 4380 | 7 | 34 | 7200 | 59.3 | 44.9 | 20 | 1460 | 7 | 34 | 7200 | 49.5 | 440.4 | 7 | 511 | 7 | 35 | 7200 | 34.9 | 1655.3 |
| 60 | 5 | 4.5 | 5 | 60 | 4380 | 6 | 33 | 7200 | 58.1 | 48.3 | 20 | 1460 | 6 | 34 | 7200 | 47.3 | 285.2 | 6 | 438 | 6 | 33 | 7200 | 26.4 | 1555.3 |
| 30 | 8 | 1.5 | 1 | 30 | 1500 | 3 | 24 | 2351.4 | 0 | 538 | 6 | 300 | 3 | 24 | 1 | 0 | 0.8 | 3 | 150 | 3 | 24 | 0.3 | 0 | 0.1 |
| 30 | 8 | 1.5 | 2 | 30 | 1500 | 3 | 23 | 3311.8 | 0 | 569.7 | 6 | 300 | 3 | 23 | 1.3 | 0 | 0.6 | 3 | 150 | 3 | 23 | 0.3 | 0 | 0.1 |
| 30 | 8 | 1.5 | 3 | 30 | 1500 | 3 | 24 | 7200 | 11.7 | 1037.3 | 6 | 300 | 3 | 24 | 2.2 | 0 | 2 | 3 | 150 | 3 | 24 | 0.5 | 0 | 0.3 |
| 30 | 8 | 1.5 | 4 | 30 | 1500 | 3 | 23 | 7200 | 10.8 | 1200.1 | 6 | 300 | 3 | 23 | 3 | 0 | 3.4 | 3 | 150 | 3 | 23 | 0.3 | 0 | 0.3 |
| 30 | 8 | 1.5 | 5 | 30 | 1500 | 3 | 24 | 3134.4 | 0 | 494.7 | 6 | 300 | 3 | 24 | 1.1 | 0 | 0.9 | 3 | 150 | 3 | 24 | 0.4 | 0 | 0.1 |
| 30 | 8 | 3.0 | 1 | 30 | 1200 | 3 | 16 | 7200 | 22.5 | 982.9 | 6 | 240 | 3 | 16 | 7.9 | 0 | 8.6 | 3 | 120 | 3 | 16 | 0.6 | 0 | 0.9 |
| 30 | 8 | 3.0 | 2 | 30 | 1200 | 2 | 13 | 233.4 | 0 | 35.3 | 6 | 240 | 2 | 13 | 0.8 | 0 | 0.2 | 2 | 80 | 2 | 13 | 0 | 0 | 0 |
| 30 | 8 | 3.0 | 3 | 30 | 1200 | 2 | 14 | 1955.5 | 0 | 357 | 6 | 240 | 2 | 14 | 1.1 | 0 | 0.7 | 2 | 80 | 2 | 14 | 0.1 | 0 | 0 |
| 30 | 8 | 3.0 | 4 | 30 | 1200 | 2 | 15 | 7200 | 16.4 | 1131 | 6 | 240 | 2 | 15 | 1.9 | 0 | 1.8 | 2 | 80 | 2 | 15 | 0 | 0 | 0 |
| 30 | 8 | 3.0 | 5 | 30 | 1200 | 3 | 15 | 7200 | 16.5 | 1097.6 | 6 | 240 | 3 | 15 | 2.5 | 0 | 3.2 | 3 | 120 | 3 | 15 | 0.3 | 0 | 0.5 |
| 30 | 8 | 4.5 | 1 | 30 | 1080 | 3 | 11 | 7200 | 21.6 | 970.5 | 6 | 216 | 3 | 11 | 3.3 | 0 | 3.7 | 3 | 108 | 3 | 11 | 0.3 | 0 | 0.2 |
| 30 | 8 | 4.5 | 2 | 30 | 1080 | 3 | 11 | 7200 | 10.3 | 1291.2 | 6 | 216 | 3 | 11 | 4.1 | 0 | 8.1 | 3 | 108 | 3 | 11 | 0.1 | 0 | 0.1 |
| 30 | 8 | 4.5 | 3 | 30 | 1080 | 3 | 12 | 7200 | 24.3 | 1346.4 | 6 | 216 | 3 | 12 | 22.4 | 0 | 39.3 | 3 | 108 | 3 | 12 | 0.3 | 0 | 0.5 |
| 30 | 8 | 4.5 | 4 | 30 | 1080 | 2 | 9 | 43.2 | 0 | 6 | 6 | 216 | 2 | 9 | 0.4 | 0 | 0.1 | 2 | 72 | 2 | 9 | 0 | 0 | 0 |
| 30 | 8 | 4.5 | 5 | 30 | 1080 | 3 | 12 | 7200 | 23.8 | 1356.8 | 6 | 216 | 3 | 12 | 14 | 0 | 21 | 3 | 108 | 3 | 12 | 0.3 | 0 | 0.5 |
| 35 | 8 | 1.5 | 1 | 35 | 2030 | 3 | 29 | 7200 | 14 | 701.3 | 7 | 406 | 3 | 29 | 16.3 | 0 | 13.7 | 3 | 174 | 3 | 29 | 0.7 | 0 | 1 |
| 35 | 8 | 1.5 | 2 | 35 | 2030 | 3 | 25 | 7200 | 4.7 | 821.8 | 7 | 406 | 3 | 25 | 1.6 | 0 | 0.7 | 3 | 174 | 3 | 25 | 0.3 | 0 | 0.1 |
| 35 | 8 | 1.5 | 3 | 35 | 2030 | 3 | 29 | 7200 | 14.7 | 638.2 | 7 | 406 | 3 | 29 | 21 | 0 | 15.2 | 3 | 174 | 3 | 29 | 0.6 | 0 | 0.6 |
| 35 | 8 | 1.5 | 4 | 35 | 2030 | 3 | 27 | 7200 | 9.9 | 744.5 | 7 | 406 | 3 | 27 | 4.4 | 0 | 2.5 | 3 | 174 | 3 | 27 | 0.3 | 0 | 0.1 |
| 35 | 8 | 1.5 | 5 | 35 | 2030 | 4 | 28 | 7200 | 14.1 | 920.7 | 7 | 406 | 4 | 28 | 25.1 | 0 | 18.9 | 4 | 232 | 4 | 28 | 1.7 | 0 | 2.5 |
| 35 | 8 | 3.0 | 1 | 35 | 1610 | 3 | 18 | 7200 | 27.8 | 665.1 | 7 | 322 | 3 | 18 | 70.9 | 0 | 65.6 | 3 | 138 | 3 | 18 | 0.7 | 0 | 1.3 |
| 35 | 8 | 3.0 | 2 | 35 | 1610 | 3 | 18 | 7200 | 26.5 | 949.5 | 7 | 322 | 3 | 18 | 82.7 | 0 | 80.6 | 3 | 138 | 3 | 18 | 0.7 | 0 | 1.5 |
| 35 | 8 | 3.0 | 3 | 35 | 1610 | 2 | 14 | 201.5 | 0 | 34.4 | 7 | 322 | 2 | 14 | 0.9 | 0 | 0.1 | 2 | 92 | 2 | 14 | 0 | 0 | 0 |
| 35 | 8 | 3.0 | 4 | 35 | 1610 | 3 | 17 | 7200 | 24.1 | 686.2 | 7 | 322 | 3 | 17 | 22.4 | 0 | 18.5 | 3 | 138 | 3 | 17 | 0.8 | 0 | 1 |

Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 35 | 8 | 3.0 | 5 | 35 | 1610 | 3 | 18 | 7200 | 28.9 | 707.9 | 7 | 322 | 3 | 18 | 70 | 0 | 69.2 | 3 | 138 | 3 | 18 | 0.8 | 0 | 1.7 |
| 35 | 8 | 4.5 | 1 | 35 | 1470 | 3 | 12 | 7200 | 21.7 | 732 | 7 | 294 | 3 | 12 | 7.4 | 0 | 6.8 | 3 | 126 | 3 | 12 | 0.5 | 0 | 0.1 |
| 35 | 8 | 4.5 | 2 | 35 | 1470 | 3 | 13 | 7200 | 28.7 | 800.3 | 7 | 294 | 3 | 13 | 16.6 | 0 | 15.6 | 3 | 126 | 3 | 13 | 0.3 | 0 | 0.5 |
| 35 | 8 | 4.5 | 3 | 35 | 1470 | 3 | 14 | 7200 | 32.4 | 803.5 | 7 | 294 | 3 | 14 | 43.8 | 0 | 45.1 | 3 | 126 | 3 | 14 | 0.9 | 0 | 1.4 |
| 35 | 8 | 4.5 | 4 | 35 | 1470 | 3 | 12 | 7200 | 22 | 711.5 | 7 | 294 | 3 | 12 | 5.5 | 0 | 4.5 | 3 | 126 | 3 | 12 | 0.4 | 0 | 0.1 |
| 35 | 8 | 4.5 | 5 | 35 | 1470 | 3 | 13 | 7200 | 29.6 | 842.4 | 7 | 294 | 3 | 13 | 39.3 | 0 | 46.5 | 3 | 126 | 3 | 13 | 0.4 | 0 | 0.8 |
| 40 | 8 | 1.5 | 1 | 40 | 2640 | 3 | 32 | 7200 | 17 | 394.5 | 8 | 528 | 3 | 32 | 89.3 | 0 | 48.6 | 3 | 198 | 3 | 32 | 1.1 | 0 | 1.2 |
| 40 | 8 | 1.5 | 2 | 40 | 2640 | 3 | 31 | 7200 | 14 | 504.9 | 8 | 528 | 3 | 31 | 41.4 | 0 | 17.9 | 3 | 198 | 3 | 31 | 0.4 | 0 | 0.2 |
| 40 | 8 | 1.5 | 3 | 40 | 2640 | 4 | 31 | 7200 | 21.2 | 457.5 | 8 | 528 | 4 | 31 | 495.9 | 0 | 285.3 | 4 | 264 | 4 | 31 | 9.5 | 0 | 13.4 |
| 40 | 8 | 1.5 | 4 | 40 | 2640 | 4 | 34 | 7200 | 18.6 | 513.5 | 8 | 528 | 4 | 34 | 504.1 | 0 | 322.8 | 4 | 264 | 4 | 34 | 9.3 | 0 | 14.1 |
| 40 | 8 | 1.5 | 5 | 40 | 2640 | 3 | 32 | 7200 | 13.7 | 451.2 | 8 | 528 | 3 | 32 | 33.2 | 0 | 17.1 | 3 | 198 | 3 | 32 | 0.7 | 0 | 0.7 |
| 40 | 8 | 3.0 | 1 | 40 | 2120 | 3 | 22 | 7200 | 34.1 | 402.4 | 8 | 424 | 3 | 22 | 2427.8 | 0 | 1477.3 | 3 | 159 | 3 | 22 | 2.9 | 0 | 7.8 |
| 40 | 8 | 3.0 | 2 | 40 | 2120 | 3 | 20 | 7200 | 25.9 | 396.9 | 8 | 424 | 3 | 20 | 144.4 | 0 | 78.6 | 3 | 159 | 3 | 20 | 0.7 | 0 | 1 |
| 40 | 8 | 3.0 | 3 | 40 | 2120 | 4 | 23 | 7200 | 37 | 386.8 | 8 | 424 | 4 | 23 | 6945.3 | 0 | 3761.7 | 4 | 212 | 4 | 23 | 61.5 | 0 | 107.8 |
| 40 | 8 | 3.0 | 4 | 40 | 2120 | 4 | 22 | 7200 | 33.3 | 379.1 | 8 | 424 | 4 | 22 | 2024.7 | 0 | 1208.4 | 4 | 212 | 4 | 22 | 25.4 | 0 | 30.6 |
| 40 | 8 | 3.0 | 5 | 40 | 2120 | 4 | 22 | 7200 | 33.2 | 390.3 | 8 | 424 | 4 | 22 | 1728 | 0 | 938.6 | 4 | 212 | 4 | 22 | 19.1 | 0 | 22.4 |
| 40 | 8 | 4.5 | 1 | 40 | 1920 | 3 | 14 | 7200 | 27.4 | 432.8 | 8 | 384 | 3 | 14 | 61.4 | 0 | 29.3 | 3 | 144 | 3 | 14 | 0.6 | 0 | 0.6 |
| 40 | 8 | 4.5 | 2 | 40 | 1920 | 4 | 17 | 7200 | 42.7 | 476.4 | 8 | 384 | 4 | 17 | 3985 | 0 | 3169.9 | 4 | 192 | 4 | 17 | 29.3 | 0 | 69.5 |
| 40 | 8 | 4.5 | 3 | 40 | 1920 | 3 | 14 | 7200 | 31.4 | 483.8 | 8 | 384 | 3 | 14 | 48.1 | 0 | 30.3 | 3 | 144 | 3 | 14 | 0.6 | 0 | 0.9 |
| 40 | 8 | 4.5 | 4 | 40 | 1920 | 3 | 14 | 7200 | 31.1 | 405.7 | 8 | 384 | 3 | 14 | 38.1 | 0 | 17.8 | 3 | 144 | 3 | 14 | 0.5 | 0 | 0.7 |
| 40 | 8 | 4.5 | 5 | 40 | 1920 | 4 | 17 | 7200 | 40.8 | 447.9 | 8 | 384 | 4 | 17 | 4824.6 | 0 | 3363.7 | 4 | 192 | 4 | 17 | 18.8 | 0 | 42.3 |
| 45 | 8 | 1.5 | 1 | 45 | 3375 | 3 | 38 | 7200 | 17.6 | 259.2 | 9 | 675 | 3 | 38 | 1327.2 | 0 | 511.3 | 3 | 225 | 3 | 38 | 2.4 | 0 | 3.8 |
| 45 | 8 | 1.5 | 2 | 45 | 3375 | 4 | 38 | 7200 | 17.5 | 225.6 | 9 | 675 | 4 | 38 | 811.3 | 0 | 289.8 | 4 | 300 |  | 38 | 12.1 | 0 | 15.5 |
| 45 | 8 | 1.5 | 3 | 45 | 3375 | 4 | 36 | 7200 | 21.2 | 289.7 | 9 | 675 | 4 | 36 | 6061.1 | 0 | 2214.1 | 4 | 300 | 4 | 36 | 31.2 | 0 | 39.7 |
| 45 | 8 | 1.5 | 4 | 45 | 3375 | 3 | 36 | 7200 | 18.6 | 263.7 | 9 | 675 | 3 | 36 | 1162.9 | 0 | 441.6 | 3 | 225 | 3 | 36 | 2.9 | 0 | 4 |
| 45 | 8 | 1.5 | 5 | 45 | 3375 | 3 | 36 | 7200 | 15.9 | 366.1 | 9 | 675 | 3 | 36 | 506.7 | 0 | 209.4 | 3 | 225 | 3 | 36 | 1.5 | 0 | 2.4 |
| 45 | 8 | 3.0 | 1 | 45 | 2700 | 4 | 25 | 7200 | 34.1 | 276.9 | 9 | 540 | 4 | 25 | 7200 | 11 | 2590.8 | 4 | 240 | 4 | 25 | 54 | 0 | 66.7 |
| 45 | 8 | 3.0 | 2 | 45 | 2700 | 4 | 26 | 7200 | 37 | 251.4 | 9 | 540 | 4 | 26 | 7200 | 13.9 | 2578.7 | 4 | 240 | 4 | 26 | 377.2 | 0 | 515.4 |
| 45 | 8 | 3.0 | 3 | 45 | 2700 | 3 | 24 | 7200 | 32.2 | 244.2 | 9 | 540 | 3 | 24 | 4220 | 0 | 1562.2 | 3 | 180 | 3 | 24 | 5.5 | 0 | 11.9 |
| 45 | 8 | 3.0 | 4 | 45 | 2700 |  | 25 | 7200 | 34.3 | 279.3 | 9 | 540 | 4 | 25 | 7200 | 9.1 | 2356.5 | 4 | 240 | 4 | 25 | 65.4 | 0 | 78.3 |
| 45 | 8 | 3.0 | 5 | 45 | 2700 | 4 | 24 | 7200 | 31.4 | 280.9 | 9 | 540 | 4 | 24 | 4432 | 0 | 1462.2 | 4 | 240 | 4 | 24 | 16.9 | 0 | 17.9 |
| 45 | 8 | 4.5 | 1 | 45 | 2475 | 4 | 19 | 7200 | 38.9 | 290.6 | 9 | 495 | 4 | 19 | 4574.2 | 0 | 1789.4 | 4 | 220 | 4 | 19 | 12.9 | 0 | 18.1 |
| 45 | 8 | 4.5 | 2 | 45 | 2475 | 3 | 18 | 7200 | 35.5 | 262.3 | 9 | 495 | 3 | 18 | 1626.9 | 0 | 591.5 | 3 | 165 | 3 | 18 | 2.3 | 0 | 3.5 |
| 45 | 8 | 4.5 | 3 | 45 | 2475 | 3 | 18 | 7200 | 36.6 | 231.7 | 9 | 495 | 3 | 18 | 1747.3 | 0 | 610.9 | 3 | 165 | 3 | 18 | 2.3 | 0 | 4.1 |
| 45 | 8 | 4.5 | 4 | 45 | 2475 | 4 | 21 | 7200 | 45.7 | 321.5 | 9 | 495 | 4 | 21 | 7200 | 19.7 | 2815.5 | 4 | 220 | 4 | 21 | 335.1 | 0 | 579.7 |
| 45 | 8 | 4.5 | 5 | 45 | 2475 | 4 | 20 | 7200 | 42.3 | 299.4 | 9 | 495 |  | 20 | 7200 | 14.7 | 2461.8 | 4 | 220 | 4 | 20 | 49.8 | 0 | 81 |
| 50 | 8 | 1.5 | 1 | 50 | 4150 | 4 | 41 | 7200 | 19.3 | 193.7 | 10 | 830 | 4 | 41 | 7200 | 5.1 | 1691.2 |  | 332 | 4 | 41 | 19.3 | 0 | 16.7 |
| 50 | 8 | 1.5 | 2 | 50 | 4150 | 4 | 38 | 7200 | 18.4 | 191.7 | 10 | 830 | 4 | 38 | 2684.2 | 0 | 738.2 | 4 | 332 | 4 | 38 | 21.5 | 0 | 18.1 |
| 50 | 8 | 1.5 | 3 | 50 | 4150 | 4 | 39 | 7200 | 20.5 | 176.2 | 10 | 830 | 4 | 39 | 7200 | 5.9 | 1653.1 |  | 332 | 4 | 39 | 33.5 | 0 | 34.7 |

Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | co | $p^{\prime}$ | best | CPU | gap | node | $p$ | 1 s | $p^{\prime}$ | best | CPU | gap | node | $p$ | 1 s | $p^{\prime}$ | best | CPU | gap | node |
| 50 | 8 | 1.5 | 4 | 50 | 4150 | 4 | 41 | 7200 | 22 | 161.5 | 10 | 830 | 4 | 41 | 7200 | 8 | 1668 | 4 | 332 | 4 | 41 | 40.4 | 0 | 31.7 |
| 50 | 8 | 1.5 | 5 | 50 | 4150 | 5 | 42 | 7200 | 21.4 | 161.1 | 10 | 830 | 5 | 42 | 7200 | 7.6 | 1575.8 | 5 | 415 | 5 | 42 | 213.5 | 0 | 158.5 |
| 50 | 8 | 3.0 | 1 | 50 | 3300 | 4 | 28 | 7200 | 39.3 | 155.6 | 10 | 660 | 4 | 28 | 7200 | 19.9 | 1553.1 | 4 | 264 | 4 | 28 | 501 | 0 | 667.1 |
| 50 | 8 | 3.0 | 2 | 50 | 3300 | 4 | 28 | 7200 | 38.9 | 170.7 | 10 | 660 | 4 | 28 | 7200 | 18.7 | 1687.2 | 4 | 264 | 4 | 28 | 456.3 | 0 | 579.8 |
| 50 | 8 | 3.0 | 3 | 50 | 3300 | 4 | 28 | 7200 | 39.3 | 170.6 | 10 | 660 | 4 | 28 | 7200 | 19.8 | 1720.9 | 4 | 264 | 4 | 28 | 197.5 | 0 | 258.8 |
| 50 | 8 | 3.0 | 4 | 50 | 3300 | 4 | 28 | 7200 | 39.3 | 163.1 | 10 | 660 | 4 | 28 | 7200 | 20 | 1624.3 | 4 | 264 | 4 | 28 | 715.5 | 0 | 718.8 |
| 50 | 8 | 3.0 | 5 | 50 | 3300 | 4 | 29 | 7200 | 41.2 | 152 | 10 | 660 | 4 | 29 | 7200 | 22.8 | 1614.9 | 4 | 264 | 4 | 29 | 691.3 | 0 | 1014.7 |
| 50 | 8 | 4.5 | 1 | 50 | 3050 | 4 | 22 | 7200 | 43.8 | 179.5 | 10 | 610 | 4 | 22 | 7200 | 20.6 | 1554.3 | 4 | 244 | 4 | 22 | 212.3 | 0 | 215.9 |
| 50 | 8 | 4.5 | 2 | 50 | 3050 | 5 | 22 | 7200 | 42.9 | 210.4 | 10 | 610 | 5 | 22 | 7200 | 19.1 | 1905.6 | 5 | 305 | 5 | 22 | 362.2 | 0 | 306.1 |
| 50 | 8 | 4.5 | 3 | 50 | 3050 | 4 | 22 | 7200 | 43.7 | 208 | 10 | 610 | 4 | 22 | 7200 | 22.2 | 2112 | 4 | 244 | 4 | 22 | 325.6 | 0 | 448.4 |
| 50 | 8 | 4.5 | 4 | 50 | 3050 | 4 | 22 | 7200 | 43.3 | 179.7 | 10 | 610 | 4 | 22 | 7200 | 20.7 | 1456.6 | 4 | 244 | 4 | 22 | 142 | 0 | 169.4 |
| 50 | 8 | 4.5 | 5 | 50 | 3050 | 5 | 23 | 7200 | 45.5 | 168.3 | 10 | 610 | 5 | 23 | 7200 | 22.6 | 1556.4 | 5 | 305 | 5 | 23 | 2093.6 | 0 | 1853.7 |
| 55 | 8 | 1.5 | 1 | 55 | 5005 | 5 | 44 | 7200 | 21.1 | 99.9 | 11 | 1001 | 4 | 44 | 7200 | 9.1 | 1261.1 | 4 | 364 | 4 | 44 | 131.8 | 0 | 128.3 |
| 55 | 8 | 1.5 | 2 | 55 | 5005 | 5 | 45 | 7200 | 20.4 | 149.7 | 11 | 1001 | 5 | 45 | 7200 | 9 | 1369.6 | 4 | 364 | 4 | 46 | 266.8 | 0 | 253.2 |
| 55 |  | 1.5 | 3 | 55 | 5005 | 4 | 44 | 7200 | 18.9 | 105 | 11 | 1001 | 4 | 44 | 7200 | 6.6 | 1487.6 | 4 | 364 |  | 44 | 57.9 | 0 | 50.9 |
| 55 | 8 | 1.5 | 4 | 55 | 5005 | 4 | 46 | 7200 | 20.2 | 94.4 | 11 | 1001 | 5 | 46 | 7200 | 8.6 | 1443.1 | 4 | 364 | 4 | 46 | 107.5 | 0 | 102 |
| 55 | 8 | 1.5 | 5 | 55 | 5005 | 5 | 47 | 7200 | 26 | 64.5 | 11 | 1001 | 5 | 47 | 7200 | 13.6 | 946.4 | 5 | 455 | 5 | 47 | 7200 | 5.2 | 3525.7 |
| 55 | 8 | 3.0 | 1 | 55 | 4015 | 5 | 32 | 7200 | 41.4 | 99.7 | 11 | 803 | 5 | 32 | 7200 | 25.8 | 1092.3 | 5 | 365 | 5 | 31 | 7200 | 5.2 | 4197.1 |
| 55 | 8 | 3.0 | 2 | 55 | 4015 | 4 | 31 | 7200 | 39.6 | 97.7 | 11 | 803 | 4 | 30 | 7200 | 20.3 | 1045 | 4 | 292 | 4 | 30 | 385.7 | - | 331.8 |
| 55 | 8 | 3.0 | 3 | 55 | 4015 | 4 | 31 | 7200 | 39.5 | 86.8 | 11 | 803 | 4 | 31 | 7200 | 22.9 | 1016.9 | 4 | 292 | 4 | 31 | 768.1 | , | 748.8 |
| 55 | 8 | 3.0 | 4 | 55 | 4015 | 5 | 33 | 7200 | 43.2 | 96 | 11 | 803 | 5 | 33 | 7200 | 27.3 | 1031.9 | 5 | 365 | 5 | 33 | 7200 | 11.5 | 4042.6 |
| 55 | 8 | 3.0 | 5 | 55 | 4015 | 5 | 34 | 7200 | 44.8 | 75.6 | 11 | 803 | 5 | 34 | 7200 | 29.9 | 949.4 | 5 | 365 | 5 | 34 | 7200 | 15.7 | 3681.4 |
| 55 | 8 | 4.5 | 1 | 55 | 3685 | 4 | 24 | 7200 | 45.8 | 130.5 | 11 | 737 | 4 | 24 | 7200 | 26.6 | 1171.6 | 4 | 268 | 4 | 24 | 250.7 | 0 | 260.4 |
| 55 | 8 | 4.5 | 2 | 55 | 3685 | 4 | 23 | 7200 | 43.5 | 119.1 | 11 | 737 | 4 | 23 | 7200 | 22.7 | 1074.8 | 4 | 268 | 4 | 23 | 340.5 | 0 | 325.8 |
| 55 | 8 | 4.5 | 3 | 55 | 3685 | 5 | 26 | 7200 | 50 | 112.1 | 11 | 737 | 5 | 27 | 7200 | 33.8 | 1151.7 | 5 | 335 | 5 | 26 | 7200 | 12.8 | 4154 |
| 55 |  | 4.5 |  | 55 | 3685 | 4 | 23 | 7200 | 44.1 | 123 | 11 | 737 | - | 23 | 7200 | 22.4 | 1161.7 | 4 | 268 | 4 | 23 | 245.8 | - | 261.6 |
| 55 | 8 | 4.5 | 5 | 55 | 3685 | 5 | 25 | 7200 | 48.2 | 124 | 11 | 737 | 5 | 25 | 7200 | 28.4 | 1185.5 | 5 | 335 | 5 | 25 | 7200 | 6.9 | 4603.4 |
| 60 | 8 | 1.5 | 1 | 60 | 6000 | 5 | 51 | 7200 | 25.9 | 58.5 | 12 | 1200 | 5 | 51 | 7200 | 16.3 | 829 | 5 | 500 | 5 | 51 | 7200 | 5.2 | 3430 |
| 60 | 8 | 1.5 | 2 | 60 | 6000 | 5 | 50 | 7200 | 22.5 | 70.4 | 12 | 1200 | 5 | 50 | 7200 | 13.2 | 831 | 4 | 400 | 4 | 50 | 805.7 | 0 | 562 |
| 60 | 8 | 1.5 | 3 | 60 | 6000 | 5 | 53 | 7200 | 23.1 | 54.3 | 12 | 1200 | 5 | 52 | 7200 | 11.9 | 853.6 | 5 | 500 | 5 | 52 | 1598.8 | 0 | 811.6 |
| 60 | 8 | 1.5 | 4 | 60 | 6000 | 5 | 50 | 7200 | 20.5 | 59 | 12 | 1200 | 5 | 50 | 7200 | 10.8 | 899.7 | 5 | 500 | 5 | 50 | 788.5 | 0 | 415.6 |
| 60 | 8 | 1.5 | 5 | 60 | 6000 | 4 | 49 | 7200 | 25 | 72.7 | 12 | 1200 | 5 | 49 | 7200 | 16 | 829.3 | 4 | 400 | 4 | 49 | 2266.4 | 0 | 1849.9 |
| 60 | 8 | 3.0 | 1 | 60 | 4800 | 5 | 37 | 7200 | 43.8 | 57.9 | 12 | 960 | 5 | 37 | 7200 | 30.3 | 660.5 | 5 | 400 | 5 | 36 | 7200 | 13.1 | 3275.2 |
| 60 | 8 | 3.0 | 2 | 60 | 4800 | 5 | 36 | 7200 | 42.3 | 56.1 | 12 | 960 | 5 | 35 | 7200 | 28 | 806 | 5 | 400 | 5 | 35 | 7200 | 12.4 | 2733.6 |
| 60 | 8 | 3.0 | ${ }^{5}$ | 60 | 4800 | 5 | 35 | 7200 | 43.5 | 51.1 | 12 | 960 | 5 | 35 | 7200 | 30 | 814.4 | 5 | 400 | 5 | 35 | 7200 | 13.8 | 3091.5 |
| 60 | 8 | 3.0 | 4 | 60 | 4800 | 4 | 34 | 7200 | 39 | 63 | 12 | 960 | 4 | 34 | 7200 | 25.2 | 785.1 |  | 320 | 4 | 34 | 3725.3 | 0 | 3034.4 |
| 60 | 8 | 3.0 | 5 | 60 | 4800 | 5 | 36 | 7200 | 42.3 | 63.1 | 12 | 960 | 5 | 35 | 7200 | 26 | 673.1 | 5 | 400 | 5 | 35 | 7200 | 8.8 | 3113.2 |
| 60 | 8 | 4.5 | 1 | 60 | 4380 | 5 | 27 | 7200 | 49 | 69.8 | 12 | 876 | 5 | 28 | 7200 | 34.9 | 831.4 | 5 | 365 | 5 | 27 | 7200 | 11.8 | 3200.9 |
| 60 | 8 | 4.5 | 2 | 60 | 4380 | 5 | 27 | 7200 | 49 | 67.1 | 12 | 876 | 5 | 27 | 7200 | 30.2 | 778 | 5 | 365 | 5 | 27 | 7200 | 9.9 | 3639.6 |

Table A. 3 - Continued

| Instances |  |  |  | Default |  |  |  |  |  |  | Improved Bounds |  |  |  |  |  |  | Minimum |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node | $p$ | cols | $p^{\prime}$ | best | CPU | gap | node |
| 60 | 8 | 4.5 | 3 | 60 | 4380 | 5 | 29 | 7200 | 52.4 | 64.1 | 12 | 876 | 6 | 29 | 7200 | 34.7 | 661.4 | 5 | 365 | 5 | 29 | 7200 | 17.5 | 2814.6 |
| 60 | 8 | 4.5 | 4 | 60 | 4380 | 4 | 26 | 7200 | 47.1 | 81.2 | 12 | 876 | 4 | 27 | 7200 | 31.5 | 756.2 | 4 | 292 | 4 | 26 | 567.9 | 0 | 412.7 |
| 60 | 8 | 4.5 | 5 | 60 | 4380 | 5 | 28 | 7200 | 50.7 | 63.2 | 12 | 876 | 5 | 28 | 7200 | 33.9 | 806.4 | 5 | 365 | 5 | 28 | 7200 | 15 | 3784.1 |

Table A.4: Detailed results for comparison between different relaxations

| Instances |  |  |  | $\mathrm{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y ${ }_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1 b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | lb | ub | gap | node | cuts |
| 30 | 2 | 1.5 | 1 | 750 | 6021.7 | 35 | 35 | 0 | 2930.2 | 40 | 450 | 4696.2 | 35 | 35 | 0 | 2367.2 | 14 | 750 | 7200 | 32.4 | 35 | 7.34 | 2127.6 | 40 |
| 30 | 2 | 1.5 | 2 | 750 | 5199.7 | 34 | 34 | 0 | 2672 | 23 | 450 | 729 | 34 | 34 | 0 | 350.4 | 11 | 750 | 7200 | 31.1 | 34 | 8.63 | 2298.5 | 23 |
| 30 | 2 | 1.5 | 3 | 750 | 7200 | 32.3 | 36 | 10.4 | 2268.7 | 19 | 450 | 6435.4 | 36 | 36 | 0 | 2903.7 | 12 | 750 | 7200 | 32.2 | 36 | 10.59 | 2116.8 | 19 |
| 30 | 2 | 1.5 | 4 | 750 | 7200 | 29.2 | 34 | 14 | 2217.4 | 33 | 450 | 2212.7 | 34 | 34 | 0 | 1244.8 | 9 | 750 | 7200 | 29.8 | 34 | 12.48 | 1982.8 | 34 |
| 30 | 2 | 1.5 | 5 | 750 | 7200 | 32.4 | 36 | 10 | 2373.8 | 33 | 450 | 5012.6 | 36 | 36 | 0 | 2792.8 | 13 | 750 | 7200 | 32.5 | 36 | 9.72 | 2050.1 | 33 |
| 30 | 2 | 3.0 | 1 | 600 | 7200 | 26.1 | 31 | 15.7 | 2560.6 | 28 | 450 | 6259.2 | 31 | 31 | 0 | 3726.9 | 3 | 600 | 7200 | 25.6 | 31 | 17.38 | 2140.2 | 23 |
| 30 | 2 | 3.0 | 2 | 600 | 7200 | 24.9 | 29 | 14.2 | 2653.4 | 23 | 450 | 7200 | 22.3 | 29 | 23.2 | 2449.5 | 5 | 600 | 7200 | 23.5 | 29 | 18.92 | 1884.8 | 28 |
| 30 | 2 | 3.0 | 3 | 600 | 7200 | 24.9 | 31 | 19.8 | 2296.8 | 31 | 450 | 7200 | 24.6 | 31 | 20.6 | 2340.2 | 3 | 600 | 7200 | 24.1 | 31 | 22.36 | 1654.7 | 34 |
| 30 | 2 | 3.0 | 4 | 600 | 7200 | 22.5 | 27 | 16.8 | 1996.7 | 25 | 450 | 7200 | 26.2 | 27 | 2.8 | 2371 | 5 | 600 | 7200 | 22.2 | 27 | 17.68 | 1779.4 | 25 |
| 30 | 2 | 3.0 | 5 | 600 | 7200 | 22.6 | 30 | 24.6 | 2073.6 | 28 | 450 | 7200 | 23.1 | 30 | 23.1 | 2130.1 | 12 | 600 | 7200 | 23.8 | 30 | 20.6 | 1940 | 27 |
| 30 | 2 | 4.5 | 1 | 540 | 4316.2 | 24 | 24 | 0 | 2747.3 | 38 | 450 | 7200 | 20.8 | 24 | 13.5 | 3805 | 13 | 540 | 3479.2 | 24 | 24 | 0 | 2157.9 | 38 |
| 30 | 2 | 4.5 | 2 | 540 | 7200 | 22.1 | 26 | 15 | 2774.7 | 49 | 450 | 7200 | 19.2 | 26 | 26.3 | 3233.2 | 3 | 540 | 7200 | 22.9 | 26 | 12.1 | 3308.2 | 42 |
| 30 | 2 | 4.5 | 3 | 540 | 7200 | 23.2 | 26 | 10.6 | 3449.9 | 46 | 450 | 7200 | 22.8 | 26 | 12.3 | 3872.9 | 12 | 540 | 7200 | 23.8 | 26 | 8.43 | 3489.4 | 41 |
| 30 | 2 | 4.5 | 4 | 540 | 7200 | 23.6 | 27 | 12.8 | 2486.3 | 120 | 450 | 7200 | 20.1 | 27 | 25.4 | 3118.9 | 3 | 540 | 1917.2 | 27 | 27 | 0 | 877.9 | 123 |
| 30 | 2 | 4.5 | 5 | 540 | 7200 | 23.2 | 27 | 14.2 | 2746 | 46 | 450 | 7200 | 21 | 27 | 22.2 | 3134.9 | 4 | 540 | 7200 | 24.4 | 27 | 9.6 | 2848.1 | 49 |
| 35 | 2 | 1.5 | 1 | 1044 | 7200 | 33.8 | 41 | 17.5 | 1212.6 | 31 | 630 | 7200 | 35.6 | 41 | 13.3 | 1526.5 | 14 | 1044 | 7200 | 33.5 | 41 | 18.34 | 1097.3 | 28 |
| 35 | 2 | 1.5 | 2 | 1044 | 7200 | 36.2 | 44 | 17.8 | 1300 | 14 | 630 | 7200 | 35.9 | 44 | 18.5 | 1502.3 | 14 | 1044 | 7200 | 36.1 | 44 | 17.92 | 1270.1 | 14 |
| 35 | 2 | 1.5 | 3 | 1044 | 7200 | 35.2 | 40 | 12 | 1368.8 | 10 | 630 | 7200 | 36.7 | 40 | 8.2 | 1613.8 | 13 | 1044 | 7200 | 34.2 | 40 | 14.47 | 1148.4 | 10 |
| 35 | 2 | 1.5 | 4 | 1044 | 7200 | 34.7 | 41 | 15.4 | 1281.6 | 13 | 630 | 7200 | 38.9 | 41 | 5.1 | 1814 | 14 | 1044 | 7200 | 33.5 | 41 | 18.37 | 1032.3 | 15 |
| 35 | 2 | 1.5 | 5 | 1044 | 7200 | 31.6 | 40 | 21.1 | 1173.6 | 13 | 630 | 7200 | 31.2 | 40 | 22 | 1293.6 | 15 | 1044 | 7200 | 32.1 | 40 | 19.68 | 1026.8 | 13 |
| 35 | 2 | 3.0 | 1 | 828 | 7200 | 24.8 | 35 | 29.1 | 1406 | 8 | 630 | 7200 | 25.4 | 35 | 27.5 | 1401.8 | 3 | 828 | 7200 | 24.6 | 35 | 29.65 | 1118.1 | 12 |
| 35 | 2 | 3.0 | 2 | 828 | 7200 | 25.4 | 33 | 23.1 | 1304.7 | 7 | 630 | 7200 | 25.7 | 34 | 24.5 | 1436.5 | 3 | 828 | 7200 | 25 | 34 | 26.58 | 1160.8 | 8 |
| 35 | 2 | 3.0 | 3 | 828 | 7200 | 24.4 | 35 | 30.3 | 1331.2 | 24 | 630 | 7200 | 27.9 | 35 | 20.4 | 1266.1 | 14 | 828 | 7200 | 25.3 | 35 | 27.84 | 1179.3 | 25 |
| 35 | 2 | 3.0 | 4 | 828 | 7200 | 25.5 | 32 | 20.4 | 1274.3 | 20 | 630 | 7200 | 28.6 | 32 | 10.6 | 1594.6 | 4 | 828 | 7200 | 24.4 | 32 | 23.72 | 1207.8 | 20 |
| 35 | 2 | 3.0 | 5 | 828 | 7200 | 26.8 | 33 | 18.9 | 1371.9 | 34 | 630 | 7200 | 24.1 | 33 | 27.1 | 1283.7 | 3 | 828 | 7200 | 27 | 33 | 18.11 | 1232.4 | 43 |
| 35 | 2 | 4.5 | 1 | 756 | 7200 | 20.3 | 32 | 36.7 | 1340 | 33 | 630 | 7200 | 19.5 | 32 | 39.2 | 1362.5 | 4 | 756 | 7200 | 21.7 | 32 | 32.3 | 1257.7 | 36 |
| 35 | 2 | 4.5 | 2 | 756 | 7200 | 24 | 32 | 24.9 | 1584.9 | 61 | 630 | 7200 | 20.8 | 32 | 35.1 | 1754.2 | 6 | 756 | 7200 | 23.6 | 32 | 26.18 | 1322.4 | 65 |
| 35 | 2 | 4.5 | 3 | 756 | 7200 | 25.7 | 30 | 14.5 | 1614.3 | 53 | 630 | 7200 | 20.3 | 30 | 32.3 | 1435.6 | 4 | 756 | 7200 | 25.7 | 30 | 14.37 | 1332.9 | 60 |
| 35 | 2 | 4.5 |  | 756 | 7200 | 22.6 | 33 | 31.4 | 1367.1 | 25 | 630 | 7200 | 22 | 33 | 33.3 | 1435.8 | 6 | 756 | 7200 | 22.9 | 33 | 30.69 | 1040.3 | 27 |
| 35 | 2 | 4.5 | 5 | 756 | 7200 | 24.8 | 31 | 20.1 | 1640 | 46 | 630 | 7200 | 20.8 | 31 | 32.9 | 1560.3 | 4 | 756 | 7200 | 24.6 | 31 | 20.64 | 1515.4 | 56 |
| 40 | 2 | 1.5 | 1 | 1320 | 7200 | 39.4 | 50 | 21.2 | 905.2 | 7 | 800 | 7200 | 39 | 50 | 22.1 | 949 | 0 | 1320 | 7200 | 37.5 | 50 | 24.97 | 748.9 | 8 |
| 40 | 2 | 1.5 | 2 | 1320 | 7200 | 36.7 | 48 | 23.5 | 828.4 | 12 | 800 | 7200 | 36.5 | 48 | 23.9 | 848.5 | 14 | 1320 | 7200 | 36.3 | 48 | 24.48 | 770.7 | 12 |
| 40 | 2 | 1.5 | 3 | 1320 | 7200 | 37.3 | 46 | 19 | 1160.1 | 11 | 800 | 7200 | 38.3 | 46 | 16.7 | 1100.8 | 14 | 1320 | 7200 | 37.4 | 46 | 18.72 | 867.4 | 11 |
| 40 | 2 | 1.5 | 4 | 1320 | 7200 | 38.1 | 46 | 17.2 | 906.8 | 14 | 800 | 7200 | 40.8 | 46 | 11.2 | 935.2 | 13 | 1320 | 7200 | 36.6 | 46 | 20.41 | 819.7 | 14 |
| 40 | 2 | 1.5 | 5 | 1320 | 7200 | 40.7 | 48 | 15.3 | 832.5 | 10 | 800 | 7200 | 39.4 | 49 | 19.5 | 923.3 | 6 | 1320 | 7200 | 39.3 | 48 | 18.13 | 761.5 | 9 |
| 40 | 2 | 3.0 | 1 | 1060 | 7200 | 25.1 | 38 | 33.9 | 817.8 | 22 | 800 | 7200 | 25 | 38 | 34.3 | 846.5 | 2 | 1060 | 7200 | 24.8 | 38 | 34.68 | 701.6 | 24 |
| 40 | 2 | 3.0 | 2 | 1060 | 7200 | 23.9 | 37 | 35.4 | 829.1 | 28 | 800 | 7200 | 26.1 | 37 | 29.5 | 794.5 | 4 | 1060 | 7200 | 25.4 | 37 | 31.27 | 689 | 28 |
| 40 | 2 | 3.0 | 3 | 1060 | 7200 | 29 | 40 | 27.5 | 798 | 50 | 800 | 7200 | 25.1 | 40 | 37.2 | 808.2 | 3 | 1060 | 7200 | 27.3 | 40 | 31.79 | 828.5 | 47 |
| 40 | 2 | 3.0 | 4 | 1060 | 7200 | 26.7 | 40 | 33.4 | 842.5 | 14 | 800 | 7200 | 28.1 | 40 | 29.6 | 960.4 | 2 | 1060 | 7200 | 26.2 | 40 | 34.55 | 639.6 | 14 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y ${ }_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | lb | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts |
| 40 | 2 | 3.0 | 5 | 1060 | 7200 | 25.2 | 39 | 35.4 | 833.2 | 5 | 800 | 7200 | 27.5 | 39 | 29.5 | 893.6 | 6 | 1060 | 7200 | 26.6 | 39 | 31.87 | 662.3 | 6 |
| 40 | 2 | 4.5 | 1 | 960 | 7200 | 24 | 35 | 31.3 | 1062.3 | 48 | 800 | 7200 | 21.1 | 35 | 39.7 | 1022 | 6 | 960 | 7200 | 23.2 | 35 | 33.85 | 1020.3 | 46 |
| 40 | 2 | 4.5 | 2 | 960 | 7200 | 24.6 | 36 | 31.7 | 1074.2 | 65 | 800 | 7200 | 20.6 | 36 | 42.7 | 865.1 | 2 | 960 | 7200 | 26.9 | 36 | 25.37 | 935.8 | 59 |
| 40 | 2 | 4.5 | 3 | 960 | 7200 | 25.7 | 34 | 24.4 | 1139.8 | 44 | 800 | 7200 | 22 | 34 | 35.4 | 876.3 | 4 | 960 | 7200 | 25.9 | 34 | 23.89 | 924.1 | 53 |
| 40 | 2 | 4.5 | 4 | 960 | 7200 | 24.8 | 36 | 31 | 941.3 | 54 | 800 | 7200 | 21.7 | 35 | 38.1 | 914.1 | 3 | 960 | 7200 | 23.7 | 35 | 32.24 | 931.9 | 49 |
| 40 | 2 | 4.5 | 5 | 960 | 7200 | 21.9 | 35 | 37.3 | 922.9 | 47 | 800 | 7200 | 22.4 | 35 | 36.1 | 878.4 | 4 | 960 | 7200 | 23.4 | 35 | 33.17 | 854.1 | 47 |
| 45 | 2 | 1.5 | 1 | 1725 | 7200 | 40.2 | 49 | 18 | 563.3 | 11 | 1035 | 7200 | 42 | 49 | 14.2 | 748.1 | 3 | 1725 | 7200 | 38.9 | 50 | 22.29 | 517.3 | 9 |
| 45 | 2 | 1.5 | 2 | 1725 | 7200 | 39.4 | 53 | 25.7 | 481.2 | 14 | 1035 | 7200 | 40.8 | 53 | 23.1 | 582.8 | 6 | 1725 | 7200 | 38.8 | 53 | 26.87 | 447.4 | 14 |
| 45 | 2 | 1.5 | 3 | 1725 | 7200 | 43.2 | 55 | 21.4 | 550.2 | 17 | 1035 | 7200 | 44 | 55 | 20.1 | 710.4 | 16 | 1725 | 7200 | 41.8 | 55 | 23.96 | 611.6 | 17 |
| 45 | 2 | 1.5 | 4 | 1725 | 7200 | 43.6 | 54 | 19.3 | 565.5 | 20 | 1035 | 7200 | 42.8 | 54 | 20.8 | 611.2 | 15 | 1725 | 7200 | 42 | 54 | 22.19 | 430.9 | 20 |
| 45 | 2 | 1.5 | 5 | 1725 | 7200 | 42.8 | 53 | 19.3 | 565.1 | 15 | 1035 | 7200 | 45.2 | 53 | 14.6 | 695.2 | 8 | 1725 | 7200 | 40.8 | 53 | 23.11 | 463.2 | 14 |
| 45 | 2 | 3.0 | 1 | 1380 | 7200 | 29.4 | 45 | 34.6 | 478.7 | 28 | 1035 | 7200 | 28.9 | 44 | 34.3 | 527.4 |  | 1380 | 7200 | 28.6 | 45 | 36.48 | 472.7 | 28 |
| 45 | 2 | 3.0 | 2 | 1380 | 7200 | 30.9 | 48 | 35.6 | 528.6 | 27 | 1035 | 7200 | 30.2 | 47 | 35.8 | 548.7 | 0 | 1380 | 7200 | 30 | 47 | 36.24 | 437.7 | 27 |
| 45 | 2 | 3.0 | 3 | 1380 | 7200 | 29.7 | 46 | 35.5 | 524 | 4 | 1035 | 7200 | 30 | 46 | 34.8 | 543.9 | 3 | 1380 | 7200 | 28.9 | 46 | 37.13 | 456.5 | 4 |
| 45 | 2 | 3.0 | 4 | 1380 | 7200 | 28.9 | 43 | 32.7 | 586.4 | 4 | 1035 | 7200 | 26 | 43 | 39.6 | 540.3 | 5 | 1380 | 7200 | 26.7 | 42 | 36.52 | 498.9 | 3 |
| 45 | 2 | 3.0 | 5 | 1380 | 7200 | 31.2 | 45 | 30.6 | 632.5 | 1 | 1035 | 7200 | 30.8 | 45 | 31.6 | 567.7 | 2 | 1380 | 7200 | 29.7 | 45 | 34.07 | 524.6 | 3 |
| 45 | 2 | 4.5 | 1 | 1265 | 7200 | 26.3 | 42 | 37.3 | 627.4 | 48 | 1035 | 7200 | 24.5 | 42 | 41.8 | 591.1 | 3 | 1265 | 7200 | 27.1 | 42 | 35.56 | 456.3 | 51 |
| 45 | 2 | 4.5 | 2 | 1265 | 7200 | 29.6 | 43 | 31.1 | 718.3 | 51 | 1035 | 7200 | 23.8 | 42 | 43.4 | 639.9 | 5 | 1265 | 7200 | 29.2 | 42 | 30.39 | 578.4 | 50 |
| 45 | 2 | 4.5 | 3 | 1265 | 7200 | 28.1 | 42 | 33.1 | 599.7 | 50 | 1035 | 7200 | 24 | 42 | 43 | 554.3 | 2 | 1265 | 7200 | 27.3 | 42 | 34.94 | 511.5 | 54 |
| 45 | 2 | 4.5 | 4 | 1265 | 7200 | 29.5 | 45 | 34.4 | 561 | 65 | 1035 | 7200 | 25.7 | 46 | 44 | 647.1 | 5 | 1265 | 7200 | 29 | 46 | 36.95 | 507.7 | 64 |
| 45 | 2 | 4.5 | 5 | 1265 | 7200 | 24.8 | 40 | 38.1 | 634 | 32 | 1035 | 7200 | 21.7 | 40 | 45.7 | 554.1 | 3 | 1265 | 7200 | 26.1 | 39 | 32.95 | 569.8 | 36 |
| 50 | 2 | 1.5 | 1 | 2075 | 7200 | 50 | 63 | 20.6 | 389.1 | 7 | 1250 | 7200 | 49 | 62 | 20.9 | 418.6 | 6 | 2075 | 7200 | 46.7 | 62 | 24.66 | 346.9 | 9 |
| 50 | 2 | 1.5 | 2 | 2075 | 7200 | 45.7 | 59 | 22.6 | 401.2 | 16 | 1250 | 7200 | 44.7 | 59 | 24.3 | 411.8 | 7 | 2075 | 7200 | 44.5 | 59 | 24.52 | 339.4 | 16 |
| 50 | 2 | 1.5 | 3 | 2075 | 7200 | 44.1 | 58 | 24 | 353.9 | 13 | 1250 | 7200 | 43.4 | 58 | 25.2 | 417.2 | 4 | 2075 | 7200 | 42.3 | 59 | 28.29 | 341.5 | 12 |
| 50 | 2 | 1.5 | 4 | 2075 | 7200 | 46.1 | 60 | 23.2 | 395.6 | 4 | 1250 | 7200 | 44.7 | 60 | 25.5 | 427.7 | 3 | 2075 | 7200 | 43.3 | 60 | 27.79 | 438 | , |
| 50 | 2 | 1.5 | 5 | 2075 | 7200 | 44.7 | 60 | 25.6 | 328.1 | 8 | 1250 | 7200 | 45 | 60 | 25.1 | 374.3 | 6 | 2075 | 7200 | 43.3 | 60 | 27.9 | 360.4 | 9 |
| 50 | 2 | 3.0 | 1 | 1650 | 7200 | 30.5 | 50 | 38.9 | 413.7 | 30 | 1250 | 7200 | 29.8 | 51 | 41.6 | 363.9 | 0 | 1650 | 7200 | 30.2 | 51 | 40.85 | 367.2 | 30 |
| 50 | 2 | 3.0 | 2 | 1650 | 7200 | 32.7 | 55 | 40.6 | 354.9 | 6 | 1250 | 7200 | 31.9 | 55 | 42 | 399.2 | 0 | 1650 | 7200 | 33 | 55 | 39.94 | 245.6 | 7 |
| 50 | 2 | 3.0 | 3 | 1650 | 7200 | 31.1 | 49 | 36.6 | 439 | 5 | 1250 | 7200 | 30.4 | 49 | 38 | 407.1 | 7 | 1650 | 7200 | 29.9 | 49 | 39.01 | 307.5 | 7 |
| 50 | 2 | 3.0 | 4 | 1650 | 7200 | 31.5 | 49 | 35.6 | 367.1 | 29 | 1250 | 7200 | 30.2 | 49 | 38.5 | 392.2 | 0 | 1650 | 7200 | 30.5 | 49 | 37.71 | 370.3 | 29 |
| 50 | 2 | 3.0 | 5 | 1650 | 7200 | 32.9 | 52 | 36.7 | 323.5 |  | 1250 | 7200 | 30.4 | 52 | 41.6 | 346.3 | 1 | 1650 | 7200 | 29.6 | 52 | 43.05 | 324.6 | 5 |
| 50 | 2 | 4.5 | 1 | 1525 | 7200 | 25.5 | 48 | 46.9 | 330.6 | 6 | 1250 | 7200 | 24.5 | 48 | 48.9 | 368.6 | 0 | 1525 | 7200 | 24.3 | 47 | 48.34 | 278.5 | 5 |
| 50 | 2 | 4.5 | 2 | 1525 | 7200 | 29.9 | 44 | 32 | 517.3 | 40 | 1250 | 7200 | 25.9 | 44 | 41.2 | 414.2 | 0 | 1525 | 7200 | 31.1 | 44 | 29.42 | 422.5 | 37 |
| 50 | 2 | 4.5 | 3 | 1525 | 7200 | 28.2 | 47 | 40.1 | 353.4 | 27 | 1250 | 7200 | 25.9 | 47 | 44.9 | 391.1 | 0 | 1525 | 7200 | 26.7 | 47 | 43.28 | 355.8 | 27 |
| 50 | 2 | 4.5 | 4 | 1525 | 7200 | 28.8 | 49 | 41.3 | 326.8 | 31 | 1250 | 7200 | 26.2 | 48 | 45.3 | 387.2 | 0 | 1525 | 7200 | 25.1 | 49 | 48.71 | 316.5 | 29 |
| 50 | 2 | 4.5 | 5 | 1525 | 7200 | 29.6 | 48 | 38.3 | 371.4 | 33 | 1250 | 7200 | 27.5 | 47 | 41.6 | 399.9 | 3 | 1525 | 7200 | 28.9 | 48 | 39.83 | 351.2 | 33 |
| 55 | 2 | 1.5 | 1 | 2548 | 7200 | 49.6 | 64 | 22.5 | 242 |  | 1540 | 7200 | 48.7 | 64 | 23.8 | 329.2 | 9 | 2548 | 7200 | 47.2 | 64 | 26.31 | 313.8 |  |
| 55 | 2 | 1.5 | 2 | 2548 | 7200 | 48.4 | 66 | 26.7 | 250.9 |  | 1540 | 7200 | 49.3 | 66 | 25.3 | 323.6 | 3 | 2548 | 7200 | 46.6 | 66 | 29.4 | 287.9 | 6 |
| 55 | 2 | 1.5 | 3 | 2548 | 7200 | 50.3 | 64 | 21.4 | 229.1 | 6 | 1540 | 7200 | 49.6 | 62 | 20 | 305.4 | 7 | 2548 | 7200 | 47.3 | 63 | 24.98 | 312.4 | 5 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X $_{(V, E, C)}$ |  |  |  |  |  |  | USNP- $_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1 l | ub | gap | node | cuts | bin | CPU | 1 b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | nod | cuts |
| 55 | 2 | 1.5 | 4 | 2548 | 7200 | 48.8 | 64 | 23.7 | 210.9 | 9 | 1540 | 7200 | 47.3 | 64 | 26.1 | 250.8 | 8 | 2548 | 7200 | 46.7 | 64 | 27.11 | 223.8 | 9 |
| 55 | 2 | 1.5 | 5 | 2548 | 7200 | 47.9 | 65 | 26.2 | 243.8 | 8 | 1540 | 7200 | 46.4 | 66 | 29.6 | 270.1 | 10 | 2548 | 7200 | 45.7 | 65 | 29.7 | 253.8 |  |
| 55 | 2 | 3.0 | 1 | 2044 | 7200 | 36.7 | 57 | 35.7 | 205.8 | 33 | 1540 | 7200 | 32.1 | 56 | 42.7 | 296.8 | 0 | 2044 | 7200 | 34.4 | 58 | 40.71 | 177.2 | 35 |
| 55 | 2 | 3.0 | 2 | 2044 | 7200 | 32.1 | 55 | 41.7 | 249.8 | 3 | 1540 | 7200 | 33.7 | 55 | 38.8 | 275 | 0 | 2044 | 7200 | 31.9 | 55 | 42.06 | 233.3 | 3 |
| 55 | 2 | 3.0 | 3 | 2044 | 7200 | 32.3 | 58 | 44.3 | 209.2 | 1 | 1540 | 7200 | 32.1 | 57 | 43.7 | 243.3 | 1 | 2044 | 7200 | 31.5 | 57 | 44.7 | 196.4 | 5 |
| 55 | 2 | 3.0 | 4 | 2044 | 7200 | 30.6 | 55 | 44.4 | 220.9 | 2 | 1540 | 7200 | 32.6 | 56 | ${ }^{41.8}$ | 233.4 | 0 | 2044 | 7200 | 33.1 | 54 | 38.67 | 194.4 |  |
| 55 | , | 3.0 | 5 | 2044 | 7200 | 30.7 | 57 | 46.2 | 215.1 | 3 | 1540 | 7200 | 31.1 | 57 | 45.4 | 340.6 | 0 | 2044 | 7200 | 31.3 | 56 | 44.09 | 194.1 |  |
| 55 | 2 | 4.5 | 1 | 1876 | 7200 | 23.3 | 50 | 53.3 | 229.1 | 9 | 1540 | 7200 | 24.8 | 49 | 49.5 | 343.7 | 0 | 1876 | 7200 | 23.3 | 49 | 52.36 | 234.6 |  |
| 55 | 2 | 4.5 | 2 | 1876 | 7200 | 29.6 | 51 | 42 | 241.8 | 62 | 1540 | 7200 | 25.6 | 52 | 50.7 | 267.8 | 0 | 1876 | 7200 | 30.7 | 50 | 38.58 | 250 | 62 |
| 55 | 2 | 4.5 | 3 | 1876 | 7200 | 29.5 | 51 | 42.2 | 240.8 | 69 | 1540 | 7200 | 26.6 | 51 | 47.8 | 289.3 | 0 | 1876 | 7200 | 28.8 | 51 | 43.54 | 259.9 | 66 |
| 55 | 2 | 4.5 | 4 | 1876 | 7200 | 27.4 | 52 | 47.4 | 237.7 | 3 | 1540 | 7200 | 26.2 | 53 | 50.5 | 298.7 | 0 | 1876 | 7200 | 26 | 53 | 50.96 | 197.7 | 3 |
| 55 | 2 | 4.5 | 5 | 1876 | 7200 | 27.6 | 56 | 50.7 | 272.6 | 9 | 1540 | 7200 | 27 | 55 | 50.9 | 281.6 | 0 | 1876 | 7200 | 27.2 | 56 | 51.44 | 179.2 | 11 |
| 60 | 2 | 1.5 | 1 | 3000 | 7200 | 52.6 | 74 | 28.9 | 163.9 | 8 | 1800 | 7200 | 53 | 73 | 27.5 | 176.7 | 2 | 3000 | 7200 | 51.5 | 74 | 30.38 | 178.9 |  |
| 60 |  | 1.5 | 2 | 3000 | 7200 | 50.6 | 73 | 30.7 | 209.6 | 13 | 1800 | 7200 | 51.2 | 73 | 29.9 | 185.6 | 7 | 3000 | 7200 | 50 | 73 | 31.56 | 194.4 | 13 |
| 60 | 2 | 1.5 | 3 | 3000 | 7200 | 50.1 | 73 | 31.4 | 136.5 | 8 | 1800 | 7200 | 51.1 | 71 | 28 | 182.3 | 6 | 3000 | 7200 | 48.4 | 72 | 32.77 | 201.4 |  |
| 60 |  | 1.5 | 4 | 3000 | 7200 | 51.8 | 72 | 28 | 167.5 | 34 | 1800 | 7200 | 51.5 | 71 | 27.5 | 189.7 | 0 | 3000 | 7200 | 50.1 | 73 | 31.36 | 153.2 | 35 |
| 60 | 2 | 1.5 | 5 | 3000 | 7200 | 52.7 | 70 | 24.8 | 179.8 | 5 | 1800 | 7200 | 53 | 70 | 24.4 | 211.8 | 8 | 3000 | 7200 | 52.2 | 70 | 25.39 | 171 |  |
| 60 | 2 | 3.0 | 1 | 2400 | 7200 | 36.3 | 64 | 43.3 | 142.5 | 4 | 1800 | 7200 | 34.7 | 65 | 46.6 | 163 | 0 | 2400 | 7200 | 35 | 65 | 46.11 | 136.7 |  |
| 60 | 2 | 3.0 | 2 | 2400 | 7200 | 41.6 | 62 | 32.9 | 153.2 | 38 | 1800 | 7200 | 33.5 | 62 | 45.9 | 157.4 | 5 | 2400 | 7200 | 37.5 | 62 | 39.51 | 141 | 38 |
| 60 | 2 | 3.0 | 3 | 2400 | 7200 | 38.9 | 64 | 39.3 | 197.6 | 38 | 1800 | 7200 | 36.1 | 63 | 42.7 | 163.6 | 0 | 2400 | 7200 | 35.2 | 63 | 44.11 | 138.9 | 34 |
| 60 | 2 | 3.0 | 4 | 2400 | 7200 | 35.7 | 64 | 44.3 | 137 | 34 | 1800 | 7200 | 35.5 | 63 | 43.7 | 147.2 | 0 | 2400 | 7200 | 36.2 | 63 | 42.53 | 106.6 | 35 |
| 60 | 2 | 3.0 | 5 | 2400 | 7200 | 36.6 | 64 | 42.9 | 145.9 | 64 | 1800 | 7200 | 33.7 | 63 | ${ }^{46.5}$ | 187.8 | 0 | 2400 | 7200 | 36.7 | 63 | 41.82 | 171.9 | 64 |
| 60 | , | 4.5 | 1 | 2190 | 7200 | 27 | 59 | 54.2 | 168.6 | 2 | 1800 | 7200 | 28.6 | 58 | 50.7 | 205.9 | 0 | 2190 | 7200 | 26.9 | 59 | 54.33 | 185.3 |  |
| 60 | 2 | 4.5 | 2 | 2190 | 7200 | 30.5 | 57 | 46.4 | 178.7 | 36 | 1800 | 7200 | 26.8 | 56 | 52.1 | 200.8 | 3 | 2190 | 7200 | 30.2 | 57 | 47.06 | 209 | 35 |
| 60 | 2 | 4.5 | 3 | 2190 | 7200 | 29.9 | 57 | 47.6 | 163.5 | 37 | 1800 | 7200 | 26 | 57 | 54.3 | 207.5 | 0 | 2190 | 7200 | 28.6 | 57 | 49.78 | 150.2 | 36 |
| 60 | 2 | 4.5 | 4 | 2190 | 7200 | 30.4 | 58 | 47.5 | 202.9 | 35 | 1800 | 7200 | 28.6 | 58 | 50.8 | 169.5 | 0 | 2190 | 7200 | 31.1 | 59 | 47.24 | 169.7 | 35 |
| 60 | 2 | 4.5 | 5 | 2190 | 7200 | 28.3 | 57 | 50.3 | 175.3 | 31 | 1800 | 7200 | 26.8 | 57 | 53.1 | 187.9 | 0 | 2190 | 7200 | 28.1 | 58 | 51.61 | 147.6 | 32 |
| 30 | 5 | 1.5 | 1 | 500 | 14.1 | 25 | 25 | , | 9.8 | 13 | 300 | 16.5 | 25 | 25 | 0 | 8.3 | 4 | 500 | 5 | 25 | 25 | 0 | 3.1 | 13 |
| 30 | 5 | 1.5 | 2 | 500 | 8.1 | 27 | 27 | 0 | 4.8 |  | 300 | 13.1 | 27 | 27 | 0 | 7.1 | ${ }_{6}$ | 500 | 9.3 | 27 | 27 | 0 | 5.6 |  |
| 30 | 5 | 1.5 | 3 | 500 | 3.2 | 27 | 27 | 0 | 0.9 | 22 | 300 | 2.3 | 27 | 27 | 0 | 0.9 | 11 | 500 | 2.7 | 27 | 27 | 0 | 0.6 | 24 |
| 30 | 5 | 1.5 | 4 | 500 | 13.6 | 27 | 27 | 0 | 7.9 | 7 | 300 | 17.4 | 27 | 27 | 0 | 10 | 3 | 500 | 40.3 | 27 | 27 | 0 | 21.2 |  |
| 30 | 5 | 1.5 | 5 | 500 | 9.6 | 28 | 28 | 0 | 5.8 | 7 | 300 | 7.3 | 28 | 28 | 0 | 3.7 | 1 | 500 | 18.5 | 28 | 28 | 0 | 10.6 | 7 |
| 30 | 5 | 3.0 | 1 | 400 | 92.2 | 19 | 19 | - | 60.5 | 20 | 300 | 39.6 | 19 | 19 | 0 | 20.7 | 6 | 400 | 167 | 19 | 19 | 0 | 107.3 | 18 |
| 30 | 5 | 3.0 | , | 400 | 31.8 | 19 | 19 | 0 | 20 | 15 | 300 | 33.8 | 19 | 19 | 0 | 18.9 | 2 | 400 | 24.4 | 19 | 19 | 0 | 14.7 | 14 |
| 30 | 5 | 3.0 | 3 | 400 | 39.3 | 18 | 18 | 0 | 21.1 | 14 | 300 | 41.8 | 18 | 18 | 0 | 19.9 | 7 | 400 | 20.2 | 18 | 18 | 0 | 10.1 | 15 |
| 30 | 5 | 3.0 |  | 400 | 28.9 | 18 | 18 | 0 | 19.4 | 12 | 300 | 82.8 | 18 | 18 | 0 | 39.3 | 4 | 400 | 88 | 18 | 18 | 0 | 65.9 | 11 |
| 30 | 5 | 3.0 | 5 | 400 | 209.8 | 19 | 19 | 0 | 156.8 | - | 300 | 186.2 | 19 | 19 | 0 | 101.4 | 2 | 400 | 92.5 | 19 | 19 | 0 | 63.1 | 8 |
| 30 | 5 | 4.5 | 1 | 360 | 1.8 | 14 | 14 | 0 | 0.6 | 19 | 300 | 68.9 | 14 | 14 | 0 | 48.9 | 1 | 360 | 1.8 | 14 | 14 | 0 | 0.9 | 18 |
| 30 | 5 | 4.5 | 2 | 360 | 3.5 | 13 | 13 | 0 | 1.8 | 42 | 300 | 25.4 | 13 | 13 | 0 | 15.1 | 2 | 360 | 1.3 | 13 | 13 | 0 | 0.3 | 43 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y ${ }_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts |
| 30 | 5 | 4.5 | 3 | 360 | 1.4 | 13 | 13 | 0 | 0.3 | 30 | 300 | 169.3 | 13 | 13 | 0 | 99.6 | 4 | 360 | 1 | 13 | 13 | 0 | 0.3 | 29 |
| 30 | 5 | 4.5 | 4 | 360 | 51.2 | 14 | 14 | 0 | 34.9 | 28 | 300 | 84.9 | 14 | 14 | 0 | 56.5 | 5 | 360 | 7.4 | 14 | 14 | 0 | 4 | 30 |
| 30 | 5 | 4.5 | 5 | 360 | 4 | 13 | 13 | 0 | 1.9 | 20 | 300 | 28.3 | 13 | 13 | 0 | 15.2 | 0 | 360 | 2.8 | 13 | 13 | 0 | 1.2 | 19 |
| 35 | 5 | 1.5 | 1 | 696 | 522 | 31 | 31 | 0 | 227.1 | 27 | 420 | 111 | 31 | 31 | 0 | 39.6 | 3 | 696 | 755.6 | 31 | 31 | 0 | 295.6 | 32 |
| 35 | 5 | 1.5 | 2 | 696 | 25.6 | 31 | 31 | 0 | 10.1 | 8 | 420 | 114.8 | 31 | 31 | 0 | 50 | 3 | 696 | 69.4 | 31 | 31 | 0 | 28.5 | 8 |
| 35 | 5 | 1.5 | 3 | 696 | 35.1 | 29 | 29 | 0 | 13.3 | 9 | 420 | 76.9 | 29 | 29 | 0 | 29.8 | 10 | 696 | 53.7 | 29 | 29 | 0 | 20.1 | 10 |
| 35 | 5 | 1.5 | 4 | 696 | 2583.6 | 33 | 33 | 0 | 1136 | 15 | 420 | 1033.1 | 33 | 33 | 0 | 409.5 | 1 | 696 | 1277.5 | 33 | 33 | 0 | 537.7 | 16 |
| 35 | 5 | 1.5 | 5 | 696 | 413.3 | 31 | 31 | 0 | 172.2 | 14 | 420 | 242 | 31 | 31 | 0 | 89 | 6 | 696 | 612.8 | 31 | 31 | 0 | 249.5 | 15 |
| 35 | 5 | 3.0 | 1 | 552 | 1701.5 | 22 | 22 | 0 | 882.2 | 12 | 420 | 906.5 | 22 | 22 | 0 | 281.9 | 5 | 552 | 1640.4 | 22 | 22 | 0 | 704.3 | , |
| 35 | 5 | 3.0 | 2 | 552 | 461.4 | 21 | 21 | 0 | 243.1 | 19 | 420 | 455.5 | 21 | 21 | 0 | 156.6 | 9 | 552 | 733 | 21 | 21 | 0 | 316.4 | 18 |
| 35 | 5 | 3.0 | 3 | 552 | 7200 | 19.3 | 23 | 16.1 | 2162.2 | 40 | 420 | 7200 | 21.4 | 23 | 6.8 | 2284.2 | 6 | 552 | 7200 | 19.8 | 23 | 13.91 | 1913.8 | 40 |
| 35 | 5 | 3.0 | 4 | 552 | 7200 | 19.9 | 22 | 9.6 | 2466.5 | 15 | 420 | 7200 | 19.5 | 22 | 11.3 | 2130 | 5 | 552 | 7051.9 | 22 | 22 | 0 | 2868.8 | 12 |
| 35 | 5 | 3.0 | 5 | 552 | 385.4 | 21 | 21 | 0 | 156.8 | 18 | 420 | 276.5 | 21 | 21 | 0 | 99.2 | 3 | 552 | 282.8 | 21 | 21 | 0 | 122.9 | 17 |
| 35 | 5 | 4.5 | 1 | 504 | 7200 | 16.5 | 18 | 8.2 | 3069.5 | 46 | 420 | 4329.6 | 18 | 18 | 0 | 2011.6 | 8 | 504 | 186 | 18 | 18 | 0 | 67.5 | 46 |
| 35 | 5 | 4.5 | 2 | 504 | 122.1 | 16 | 16 | 0 | 52.9 | 25 | 420 | 324.6 | 16 | 16 | 0 | 111.1 | 3 | 504 | 36.1 | 16 | 16 | 0 | 12.6 | 26 |
| 35 | 5 | 4.5 | 3 | 504 | 6202 | 17 | 17 | , | 3083.9 | 24 | 420 | 7200 | 15.2 | 17 | 10.4 | 2374.8 | 8 | 504 | 161 | 17 | 17 | 0 | 63.1 | 25 |
| 35 | 5 | 4.5 | 4 | 504 | 359.1 | 16 | 16 | 0 | 151 | 56 | 420 | 1182.6 | 16 | 16 | 0 | 430.7 | 5 | 504 | 158.6 | 16 | 16 | 0 | 54.8 | 59 |
| 35 | 5 | 4.5 | 5 | 504 | 193 | 17 | 17 | 0 | 91.9 | 27 | 420 | 1487.8 | 17 | 17 | 0 | 530.6 | 0 | 504 | 75.6 | 17 | 17 | 0 | 27.5 | 27 |
| 40 | 5 | 1.5 | 1 | 924 | 1895.6 | 37 | 37 | 0 | 546.1 | 7 | 560 | 2182.5 | 37 | 37 | 0 | 501.3 | 1 | 924 | 7200 | 35.2 | 37 | 4.79 | 1637.2 | 11 |
| 40 | 5 | 1.5 | 2 | 924 | 177.5 | 36 | 36 | 0 | 47 | 5 | 560 | 128.8 | 36 | 36 | 0 | 25.2 | 5 | 924 | 593.7 | 36 | 36 | 0 | 149.2 | 8 |
| 40 | 5 | 1.5 | 3 | 924 | 7200 | 33.9 | 37 | 8.3 | 1206.1 | 12 | 560 | 4112.6 | 37 | 37 | 0 | 840.6 | 4 | 924 | 7200 | 34.5 | 38 | 9.27 | 1249.3 | 11 |
| 40 | 5 | 1.5 | 4 | 924 | 2786.3 | 37 | 37 | 0 | 851.9 | 17 | 560 | 1908.9 | 37 | 37 | 0 | 439.3 | 12 | 924 | 4863.6 | 37 | 37 | 0 | 1304.7 | 17 |
| 40 | 5 | 1.5 | 5 | 924 | 127.6 | 33 | 33 | 0 | 30.5 | , | 560 | 223 | 33 | 33 | 0 | 60.2 | 5 | 924 | 179.1 | 33 | 33 | 0 | 44 | 11 |
| 40 | 5 | 3.0 | 1 | 742 | 7200 | 22.2 | 26 | 14.7 | 1362.7 | 36 | 560 | 7200 | 23.2 | 26 | 10.8 | 1419.2 | 3 | 742 | 7200 | 22.9 | 26 | 11.8 | 1243.9 | 41 |
| 40 | 5 | 3.0 | 2 | 742 | 7200 | 22.2 | 25 | 11.2 | 1473.7 |  | 560 | 7200 | 22.5 | 25 | 9.9 | 1445.8 | 3 | 742 | 7200 | 23.1 | 25 | 7.74 | 1468.2 | 16 |
| 40 | 5 | 3.0 | 3 | 742 | 7200 | 22.2 | 25 | 11.3 | 1574.9 | 26 | 560 | 7200 | 22.5 | 25 | 10.1 | 1557.6 | 2 | 742 | 7200 | 22.1 | 25 | 11.68 | 1284.9 | 36 |
| 40 | 5 | 3.0 | 4 | 742 | 7200 | 21.5 | 25 | 14 | 1436.7 | 24 | 560 | 7200 | 22.4 | 25 | 10.2 | 1519.6 | 3 | 742 | 7200 | 22.4 | 25 | 10.5 | 1292.1 | 24 |
| 40 | 5 | 3.0 | 5 | 742 | 7200 | 22 | 26 | 15.6 | 1325.3 | 40 | 560 | 7200 | 23.4 | 26 | 10 | 1324.2 | 1 | 742 | 7200 | 22.5 | 26 | 13.61 | 1154.1 | 41 |
| 40 | 5 | 4.5 | 1 | 672 | 7200 | 16 | 19 | 16 | 1310.3 | 37 | 560 | 7200 | 16.3 | 20 | 18.4 | 1388.2 | 4 | 672 | 2130.2 | 19 | 19 | 0 | 498.6 | 39 |
| 40 | 5 | 4.5 | 2 | 672 | 7200 | 16.3 | 20 | 18.3 | 1526.8 | 26 | 560 | 7200 | 17.2 | 20 | 14 | 1529.8 | 1 | 672 | 5773.4 | 20 | 20 | 0 | 1546.6 | 26 |
| 40 | 5 | 4.5 | 3 | 672 | 4727 | 18 | 18 | 0 | 1551.1 | 25 | 560 | 7200 | 15.1 | 18 | 16.1 | 1504.3 | 1 | 672 | 262.4 | 18 | 18 | 0 | 62.6 | 22 |
| 40 | 5 | 4.5 | 4 | 672 | 7200 | 16.4 | 20 | 17.9 | 1607.6 | 10 | 560 | 7200 | 16.3 | 20 | 18.3 | 1483.2 | 7 | 672 | 2305.2 | 20 | 20 | 0 | 773 | 10 |
| 40 | 5 | 4.5 | 5 | 672 | 2980.2 | 20 | 20 | 0 | 935 | 22 | 560 | 7200 | 18 | 20 | 9.9 | 1511.2 | 4 | 672 | 468.5 | 20 | 20 | 0 | 109.2 | 25 |
| 45 | 5 | 1.5 | 1 | 1125 | 7200 | 37.7 | 40 | 5.7 | 1143.9 | 6 | 675 | 7200 | 37.2 | 40 | 7.1 | 1205.4 | 0 | 1125 | 7200 | 36.6 | 40 | 8.44 | 1062.7 | 6 |
| 45 | 5 | 1.5 | 2 | 1125 | 7200 | 38.1 | 41 | 7.1 | 1036.2 | 44 | 675 | 7200 | 38.3 | 41 | 6.6 | 1312.9 | 18 | 1125 | 7200 | 37.8 | 41 | 7.75 | 944.4 | 47 |
| 45 | 5 | 1.5 | 3 | 1125 | 7200 | 37.1 | 41 | 9.5 | 1075 | 26 | 675 | 7200 | 38.8 | 41 | 5.5 | 993.3 | 4 | 1125 | 7200 | 37.2 | 41 | 9.38 | 850.7 | 29 |
| 45 | 5 | 1.5 | 4 | 1125 | 7200 | 39 | 42 | 7.2 | 1149.4 | 4 | 675 | 7200 | 38.6 | 42 | 8.2 | 1123.4 | 0 | 1125 | 7200 | 38.3 | 42 | 8.89 | 971.5 | 4 |
| 45 | 5 | 1.5 | 5 | 1125 | 7200 | 36.1 | 43 | 15.9 | 1040.5 | 13 | 675 | 7200 | 36.5 | 43 | 15.1 | 1133.5 | 11 | 1125 | 7200 | 36.3 | 43 | 15.63 | 1008.7 | 15 |
| 45 | 5 | 3.0 | 1 | 900 | 7200 | 23.3 | 30 | 22.3 | 992.7 | 30 | 675 | 7200 | 24.4 | 31 | 21.3 | 899.7 | 1 | 900 | 7200 | 23 | 30 | 23.33 | 853.8 | 30 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP- $\mathrm{X}_{(V, E, C)}$ |  |  |  |  |  |  | USNP- $_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | in | CPU | 1 l | ub | gap | node | cuts | bin | CPU | 1 lb | ub | gap | nod | uts | bin | CPU | 1 b | ub | gap | node | cuts |
| 45 | 5 | 3.0 | 2 | 900 | 7200 | 23.1 | 31 | 25.4 | 1035.5 | 13 | 675 | 7200 | 25.6 | 31 | 17.6 | 956.9 | 6 | 900 | 7200 | 24.5 | 31 | 20.91 | 842 | 13 |
| 45 | 5 | 3.0 | 3 | 900 | 7200 | 23.1 | 30 | 23.2 | 1047.4 | 30 | 675 | 7200 | 23.9 | 30 | 20.5 | 988.1 | 6 | 900 | 7200 | 23.6 | 30 | 21.24 | 844.6 | 31 |
| 45 | 5 | 3.0 | 4 | 900 | 7200 | 24.7 | 31 | 20.3 | 1020.5 | 10 | 675 | 7200 | 25.7 | 31 | 16.9 | 1014.4 | 8 | 900 | 7200 | 25.4 | 31 | 17.94 | 881.5 | 12 |
| 45 | 5 | 3.0 | 5 | 900 | 7200 | 23.6 | 31 | 23.7 | 994.4 | 9 | 675 | 7200 | 24.5 | 31 | 20.9 | 964.5 | 4 | 900 | 7200 | 24.6 | 31 | 20.53 | 859.9 | 10 |
| 45 | 5 | 4.5 | 1 | 825 | 7200 | 18.5 | 25 | 26.2 | 1056.3 | 54 | 675 | 7200 | 18.8 | 25 | 25 | 1082.2 | 3 | 825 | 7200 | 20.1 | 25 | 19.52 | 809 | 52 |
| 45 | 5 | 4.5 | 2 | 825 | 7200 | 17.7 | 23 | 22.9 | 1078.4 | 13 | 675 | 7200 | 18.4 | 23 | 19.8 | 1032.7 | 2 | 825 | 7200 | 19.3 | 23 | 16.24 | 879.7 | 15 |
| 45 | 5 | 4.5 | 3 | 825 | 7200 | 18.9 | 24 | 21.1 | 1130.6 | 53 | 675 | 7200 | 19.8 | 24 | 17.7 | 1039.2 | 5 | 825 | 7200 | 20.1 | 24 | 16.39 | 883.3 | 56 |
| 45 | 5 | 4.5 | 4 | 825 | 7200 | 19.4 | 25 | 22.2 | 993.1 | 23 | 675 | 7200 | 18.4 | 25 | 26.4 | 949.3 | 3 | 825 | 7200 | 20.6 | 25 | 17.45 | 913.6 | 27 |
| 45 | 5 | 4.5 | 5 | 825 | 7200 | 18.9 | 24 | 21.1 | 1137.7 | 50 | 675 | 7200 | 18.6 | 24 | 22.6 | 1039.3 | 1 | 825 | 7200 | 20.1 | 24 | 16.36 | 863.5 |  |
| 50 | 5 | 1.5 | 1 | 1411 | 7200 | 41.6 | 46 | 9.5 | 858 | 5 | 850 | 7200 | 41 | 46 | 11 | 780.9 | 0 | 1411 | 7200 | 40.6 | 46 | 11.83 | 826.8 |  |
| 50 | 5 | 1.5 | 2 | 1411 | 7200 | 41 | 46 | 10.8 | 780.4 | 14 | 850 | 7200 | 42.3 | 46 | 8.1 | 743.4 | 5 | 1411 | 7200 | 41.6 | 46 | 9.59 | 705.8 | 14 |
| 50 |  | 1.5 | , | 1411 | 7200 | 41.3 | 46 | 10.1 | 760.5 | 8 | 850 | 7200 | 41.7 | 46 | 9.4 | 724.7 | 0 | 1411 | 7200 | 41.1 | 46 | 10.75 | 670.6 |  |
| 50 | 5 | 1.5 | 4 | 1411 | 7200 | 40.7 | 48 | 15.3 | 708 | 12 | 850 | 7200 | 40 | 48 | 16.6 | 671.1 | 4 | 1411 | 7200 | 39.3 | 48 | 18.1 | 644.8 | 12 |
| 50 | 5 | 1.5 | 5 | 1411 | 7200 | 41.1 | 48 | 14.5 | 656.3 | 18 | 850 | 7200 | 41 | 48 | 14.5 | 661.6 | 3 | 1411 | 7200 | 40.7 | 48 | 15.2 | 569.9 | 18 |
| 50 | 5 | 3.0 | 1 | 1122 | 7200 | 24.4 | 32 | 23.7 | 705.1 | 17 | 850 | 7200 | 23.9 | 31 | 22.8 | 716.3 | 4 | 1122 | 7200 | 24.7 | 31 | 20.36 | 464.7 | 16 |
| 50 | 5 | 3.0 | 2 | 1122 | 7200 | 25.3 | 37 | 31.5 | 677.7 | 6 | 850 | 7200 | 25 | 36 | 30.6 | 611.4 | 2 | 1122 | 7200 | 26.1 | 36 | 27.61 | 512 |  |
| 50 | 5 | 3.0 | 3 | 1122 | 7200 | 25.2 | 35 | 28.1 | 682.3 | 6 | 850 | 7200 | 25.2 | 34 | 25.8 | 649.2 | 2 | 1122 | 7200 | 25.9 | 35 | 25.95 | 581.7 |  |
| 50 | 5 | 3.0 | 4 | 1122 | 7200 | 24.4 | 35 | 30.4 | 717.9 | 25 | 850 | 7200 | 25.3 | 35 | 27.8 | 561.6 | 2 | 1122 | 7200 | 26.2 | 34 | 22.89 | 624.6 | 25 |
| 50 | 5 | 3.0 | 5 | 1122 | 7200 | 24.2 | 30 | 19.5 | 729.7 | 13 | 850 | 7200 | 26.2 | 30 | 12.6 | 759 | 2 | 1122 | 7200 | 24.2 | 30 | 19.24 | 656.2 | 13 |
| 50 | 5 | 4.5 | 1 | 1037 | 7200 | 20.9 | 29 | 27.9 | 755.3 | 53 | 850 | 7200 | 21 | 30 | 30.2 | 778.1 | 3 | 1037 | 7200 | 21.8 | 29 | 24.92 | 603.6 | 53 |
| 50 | 5 | 4.5 | 2 | 1037 | 7200 | 21.1 | 31 | 31.8 | 775.8 | 26 | 850 | 7200 | 20.3 | 30 | 32.2 | 811.9 | 2 | 1037 | 7200 | 22.3 | 30 | 25.61 | 605.8 | 33 |
| 50 | 5 | 4.5 | 3 | 1037 | 7200 | 19.3 | 27 | 28.6 | 805.3 | 34 | 850 | 7200 | 19.9 | 28 | 28.9 | 749.7 | 4 | 1037 | 7200 | 20.7 | 28 | 26.15 | 630.9 | 34 |
| 50 | 5 | 4.5 | 4 | 1037 | 7200 | 18.9 | 26 | 27.4 | 824.1 | 14 | 850 | 7200 | 19.9 | 26 | 23.6 | 725.3 | 1 | 1037 | 7200 | 19.8 | 26 | 23.8 | 627.2 | 14 |
| 50 | 5 | 4.5 | 5 | 1037 | 7200 | 19.2 | 29 | 33.8 | 718.1 | 13 | 850 | 7200 | 19.2 | 30 | 36 | 650 | 2 | 1037 | 7200 | 20 | 30 | 33.45 | 504.8 | 12 |
| 55 | 5 | 1.5 | 1 | 1729 | 7200 | 43.2 | 51 | 15.3 | 532.9 | 16 | 1045 | 7200 | 44.5 | 51 | 12.7 | 507.1 | 0 | 1729 | 7200 | 44.4 | 51 | 12.92 | 416.4 | 16 |
| 55 | 5 | 1.5 | 2 | 1729 | 7200 | 44 | 51 | 13.7 | 567.2 | 10 | 1045 | 7200 | 43.7 | 51 | 14.3 | 507.4 | 1 | 1729 | 7200 | 43.5 | 52 | 16.39 | 469.4 | 10 |
| 55 | 5 | 1.5 | 3 | 1729 | 7200 | 43.1 | 50 | 13.8 | 588.4 | 21 | 1045 | 7200 | 43.7 | 50 | 12.7 | 652.5 | 15 | 1729 | 7200 | 43.3 | 50 | 13.45 | 556.4 | 25 |
| 55 | 5 | 1.5 |  | 1729 | 7200 | 40.6 | 50 | 18.8 | 520.8 | 8 | 1045 | 7200 | 40.5 | 49 | 17.4 | 478.6 | 6 | 1729 | 7200 | 40.6 | 49 | 17.24 | 474.6 |  |
| 55 | 5 | 1.5 | 5 | 1729 | 7200 | 44.3 | 52 | 14.7 | 583.9 | 17 | 1045 | 7200 | 43.9 | 52 | 15.5 | 547.1 | 9 | 1729 | 7200 | 44.2 | 52 | 15.06 | 464.3 | 17 |
| 55 | 5 | 3.0 | 1 | 1387 | 7200 | 27.7 | 40 | 30.7 | 482 | 10 | 1045 | 7200 | 26.6 | 40 | 33.4 | 461.5 | 1 | 1387 | 7200 | 27.3 | 39 | 29.88 | 421.6 |  |
| 55 | 5 | 3.0 | 2 | 1387 | 7200 | 26.3 | 37 | 29 | 453 | 20 | 1045 | 7200 | 25.8 | 36 | 28.3 | 426.7 | 2 | 1387 | 7200 | 25.9 | 37 | 29.98 | 482.9 | 21 |
| 55 | 5 | 3.0 | 3 | 1387 | 7200 | 26 | 39 | 33.4 | 519.9 | 28 | 1045 | 7200 | 26.4 | 39 | 32.2 | 458.5 | 2 | 1387 | 7200 | 26.7 | 39 | 31.44 | 336.9 | 29 |
| 55 | 5 | 3.0 | 4 | 1387 | 7200 | 27 | 34 | 20.6 | 488.5 | 6 | 1045 | 7200 | 26.8 | 34 | 21 | 521.9 | 4 | 1387 | 7200 | 28.1 | 35 | 19.63 | 385.2 | 6 |
| 55 | 5 | 3.0 | 5 | 1387 | 7200 | 27 | 37 | 27.1 | 475.8 | 10 | 1045 | 7200 | 26.7 | 37 | 27.7 | 510.9 | 2 | 1387 | 7200 | 27.6 | 37 | 25.41 | 414.2 | 11 |
| 55 | 5 | 4.5 | 1 | 1273 | 7200 | 20.4 | 31 | 34.1 | 493.6 |  | 1045 | 7200 | 20.4 | 31 | 34.1 | 473.4 | 3 | 1273 | 7200 | 20.9 | 30 | 30.31 | 431.1 | 7 |
| 55 | 5 | 4.5 | 2 | 1273 | 7200 | 20.4 | 31 | 34.2 | 513.8 | 60 | 1045 | 7200 | 19.6 | 31 | 36.7 | 553.1 | 3 | 1273 | 7200 | 21.5 | 31 | 30.78 | 378.2 | 60 |
| 55 | 5 | 4.5 | 3 | 1273 | 7200 | 20.8 | 32 | 35 | 581.5 | 43 | 1045 | 7200 | 21.3 | 31 | 31.4 | 435.9 | 2 | 1273 | 7200 | 22.1 | 32 | 30.8 | 355.4 | 44 |
| 55 | 5 | 4.5 | 4 | 1273 | 7200 | 20.9 | 32 | 34.6 | 512 | 11 | 1045 | 7200 | 21 | 32 | 34.4 | 541.2 | 2 | 1273 | 7200 | 21.7 | 30 | 27.78 | 406.8 | 13 |
| 55 | 5 | 4.5 | 5 | 1273 | 72 | 22 | 33 | 32. | 419.1 | 12 | 1045 | 7200 | 20.4 | 33 | 38. | 495.2 | 4 | 1273 | 7200 | 22 | 33 | 33.48 | 347.4 | 11 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y $_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | lb | ub | gap | node | cuts | bin | CPU | lb | ub | gap | node | cuts |
| 60 | 5 | 1.5 | 1 | 2000 | 7200 | 44.7 | 50 | 10.6 | 435.4 | 8 | 1200 | 7200 | 45.1 | 50 | 9.8 | 431 | 8 | 2000 | 7200 | 45.2 | 50 | 9.69 | 346 | 7 |
| 60 | 5 | 1.5 | 2 | 2000 | 7200 | 45.8 | 53 | 13.7 | 462.3 | 0 | 1200 | 7200 | 46.2 | 53 | 12.9 | 382.4 | 0 | 2000 | 7200 | 45.5 | 53 | 14.15 | 371.1 | 1 |
| 60 | 5 | 1.5 | 3 | 2000 | 7200 | 46.8 | 56 | 16.4 | 475.6 | 12 | 1200 | 7200 | 48.5 | 56 | 13.5 | 429.7 | 5 | 2000 | 7200 | 46.6 | 56 | 16.82 | 399.3 | 12 |
| 60 | 5 | 1.5 | 4 | 2000 | 7200 | 45 | 54 | 16.7 | 387.8 | 13 | 1200 | 7200 | 46.1 | 55 | 16.2 | 380.1 | 7 | 2000 | 7200 | 45.5 | 55 | 17.2 | 305.1 | 12 |
| 60 | 5 | 1.5 | 5 | 2000 | 7200 | 47.5 | 58 | 18 | 356.3 | 20 | 1200 | 7200 | 47.3 | 58 | 18.4 | 386.9 | 3 | 2000 | 7200 | 46.6 | 58 | 19.63 | 396.6 | 21 |
| 60 | 5 | 3.0 | 1 | 1600 | 7200 | 29.6 | 42 | 29.5 | 336 | 17 | 1200 | 7200 | 28.4 | 43 | 34.1 | 381 | 3 | 1600 | 7200 | 29.2 | 44 | 33.61 | 340.3 | 17 |
| 60 | 5 | 3.0 | 2 | 1600 | 7200 | 28.3 | 41 | 30.9 | 430.7 | 13 | 1200 | 7200 | 28.9 | 41 | 29.5 | 326.8 | 4 | 1600 | 7200 | 29.6 | 40 | 26.05 | 296.6 | 14 |
| 60 | 5 | 3.0 | 3 | 1600 | 7200 | 29.6 | 41 | 27.8 | 385.9 | 42 | 1200 | 7200 | 29.7 | 41 | 27.5 | 392.5 | 13 | 1600 | 7200 | 28.9 | 42 | 31.19 | 318.1 | 42 |
| 60 | 5 | 3.0 | 4 | 1600 | 7200 | 31.2 | 38 | 18 | 330.1 | 46 | 1200 | 7200 | 29.1 | 38 | 23.5 | 379.3 | 12 | 1600 | 7200 | 30.6 | 38 | 19.43 | 291.7 | 49 |
| 60 | 5 | 3.0 | 5 | 1600 | 7200 | 28.4 | 43 | 34 | 395.6 | 8 | 1200 | 7200 | 30.1 | 43 | 30.1 | 346.5 | 2 | 1600 | 7200 | 29.5 | 43 | 31.48 | 297.1 | 10 |
| 60 | 5 | 4.5 | 1 | 1460 | 7200 | 20.5 | 33 | 37.8 | 478.2 | 20 | 1200 | 7200 | 20.8 | 31 | 32.9 | 408.1 | 9 | 1460 | 7200 | 20.8 | 31 | 32.91 | 391.5 | 23 |
| 60 | 5 | 4.5 | 2 | 1460 | 7200 | 22.5 | 35 | 35.7 | 422 | 47 | 1200 | 7200 | 22 | 36 | 38.9 | 446 | 2 | 1460 | 7200 | 24.2 | 34 | 28.69 | 266.2 | 47 |
| 60 | 5 | 4.5 | 3 | 1460 | 7200 | 21.4 | 33 | 35.2 | 412.9 | 67 | 1200 | 7200 | 21.4 | 34 | 37 | 396.4 | 2 | 1460 | 7200 | 22.6 | 33 | 31.64 | 280.5 | 69 |
| 60 | 5 | 4.5 | 4 | 1460 | 7200 | 21.1 | 35 | 39.7 | 330.5 | 33 | 1200 | 7200 | 21.3 | 36 | 40.7 | 376.6 | 10 | 1460 | 7200 | 23 | 35 | 34.28 | 248.2 | 33 |
| 60 | 5 | 4.5 | 5 | 1460 | 7200 | 22.1 | 34 | 35.1 | 388.3 | 43 | 1200 | 7200 | 20.7 | 34 | 39 | 379 | 4 | 1460 | 7200 | 23.5 | 33 | 28.77 | 314.8 | 43 |
| 30 | 8 | 1.5 | 1 | 300 | 0.4 | 24 | 24 | 0 | 0.1 | 6 | 180 | 0.4 | 24 | 24 | 0 | 0.1 | 3 | 300 | 0.4 | 24 | 24 | 0 | 0.1 | 6 |
| 30 | 8 | 1.5 | 2 | 300 | 0.4 | 23 | 23 | 0 | 0 | 3 | 180 | 0.4 | 23 | 23 | 0 | 0.1 | 2 | 300 | 0.3 | 23 | 23 | 0 | 0.1 | 3 |
| 30 | 8 | 1.5 | 3 | 300 | 0.9 | 24 | 24 | 0 | 0.2 | 11 | 180 | 0.8 | 24 | 24 | 0 | 0.5 | 2 | 300 | 0.8 | 24 | 24 | 0 | 0.3 | 12 |
| 30 | 8 | 1.5 | 4 | 300 | 0.7 | 23 | 23 | 0 | 0.3 | 4 | 180 | 0.9 | 23 | 23 | 0 | 0.4 | 2 | 300 | 0.8 | 23 | 23 | 0 | 0.6 | 4 |
| 30 | 8 | 1.5 | 5 | 300 | 0.5 | 24 | 24 | 0 | 0.1 | 7 | 180 | 0.5 | 24 | 24 | 0 | 0.1 | 3 | 300 | 0.4 | 24 | 24 | 0 | 0.2 | 8 |
| 30 | 8 | 3.0 | 1 | 240 | 1.4 | 16 | 16 | 0 | 1.1 | 15 | 180 | 2.3 | 16 | 16 | 0 | 1.7 | 5 | 240 | 0.7 | 16 | 16 | 0 | 0.4 | 12 |
| 30 | 8 | 3.0 | 2 | 240 | 0.4 | 13 | 13 | 0 | 0 | 3 | 180 | 0.4 | 13 | 13 | 0 | 0.1 | 2 | 240 | 0.2 | 13 | 13 | 0 | 0 | 3 |
| 30 | 8 | 3.0 | 3 | 240 | 0.4 | 14 | 14 | 0 | 0 | 2 | 180 | 0.3 | 14 | 14 | 0 | 0 | 4 | 240 | 0.2 | 14 | 14 | 0 | 0 | 2 |
| 30 | 8 | 3.0 | 4 | 240 | 0.7 | 15 | 15 | 0 | 0.2 | 5 | 180 | 0.8 | 15 | 15 | 0 | 0.3 | 3 | 240 | 0.4 | 15 | 15 | 0 | 0.2 | 6 |
| 30 | 8 | 3.0 | 5 | 240 | 0.8 | 15 | 15 | 0 | 0.1 | 13 | 180 | 0.6 | 15 | 15 | 0 | 0.2 | 2 | 240 | 0.5 | 15 | 15 | 0 | 0.2 | 14 |
| 30 | 8 | 4.5 | 1 | 216 | 0.8 | 11 | 11 | 0 | 0.2 | 26 | 180 | 1.4 | 11 | 11 | 0 | 1.1 | 2 | 216 | 0.6 | 11 | 11 | 0 | 0.3 | 25 |
| 30 | 8 | 4.5 | 2 | 216 | 2.3 | 11 | 11 | 0 | 2 | 20 | 180 | 35.3 | 11 | 11 | 0 | 40.1 | 2 | 216 | 0.5 | 11 | 11 | 0 | 0.4 | 22 |
| 30 | 8 | 4.5 | 3 | 216 | 14 | 12 | 12 | 0 | 16.7 | 22 | 180 | 12.4 | 12 | 12 | 0 | 14.6 | 4 | 216 | 1.3 | 12 | 12 | 0 | 1.1 | 18 |
| 30 | 8 | 4.5 | 4 | 216 | 0.4 | 9 | 9 | 0 | 0 | 6 | 180 | 0.3 | 9 | 9 | 0 | 0 | 1 | 216 | 0.1 | 9 | 9 | 0 | 0 | 6 |
| 30 | 8 | 4.5 | 5 | 216 | 2 | 12 | 12 | 0 | 1.7 | 14 | 180 | 30.5 | 12 | 12 | 0 | 36.2 | 4 | 216 | 1 | 12 | 12 | 0 | 0.9 | 15 |
| 35 | 8 | 1.5 | 1 | 406 | 2.1 | 29 | 29 | 0 | 0.9 | 5 | 245 | 3.3 | 29 | 29 | 0 | 1.7 | 1 | 406 | 2.5 | 29 | 29 | 0 | 1.5 | 5 |
| 35 | 8 | 1.5 | 2 | 406 | 0.8 | 25 | 25 | 0 | 0.1 | 5 | 245 | 0.6 | 25 | 25 | 0 | 0.1 | 4 | 406 | 0.6 | 25 | 25 | 0 | 0.1 | 5 |
| 35 | 8 | 1.5 | 3 | 406 | 1.4 | 29 | 29 | 0 | 0.4 | 7 | 245 | 1.6 | 29 | 29 | 0 | 0.4 | 4 | 406 | 1 | 29 | 29 | 0 | 0.4 | 7 |
| 35 | 8 | 1.5 | 4 | 406 | 0.8 | 27 | 27 | 0 | 0 | 8 | 245 | 0.8 | 27 | 27 | 0 | 0.1 | 3 | 406 | 0.5 | 27 | 27 | 0 | 0.1 | 8 |
| 35 | 8 | 1.5 | 5 | 406 | 4.4 | 28 | 28 | 0 | 3.1 | 10 | 245 | 5.8 | 28 | 28 | 0 | 3.5 | 8 | 406 | 5.3 | 28 | 28 | 0 | 3.8 | 11 |
| 35 | 8 | 3.0 | 1 | 322 | 2.2 | 18 | 18 | 0 | 0.9 | 11 | 245 | 7.9 | 18 | 18 | 0 | 4.1 | 1 | 322 | 1 | 18 | 18 | 0 | 0.4 | 10 |
| 35 | 8 | 3.0 | 2 | 322 | 13.9 | 18 | 18 | 0 | 9.6 | 6 | 245 | 94.5 | 18 | 18 | 0 | 65.3 | 5 | 322 | 5.4 | 18 | 18 | 0 | 3.7 | 5 |
| 35 | 8 | 3.0 | 3 | 322 | 0.5 | 14 | 14 | 0 | 0 | 3 | 245 | 0.5 | 14 | 14 | 0 | 0 | 4 | 322 | 0.2 | 14 | 14 | 0 | 0 | 3 |
| 35 | 8 | 3.0 | 4 | 322 | 4.5 | 17 | 17 | 0 | 3.5 | 8 | 245 | 8.2 | 17 | 17 | 0 | 4.7 | 0 | 322 | 1.1 | 17 | 17 | 0 | 0.6 | 9 |


| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y $_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts |
| 35 | 8 | 3.0 | 5 | 322 | 6.5 | 18 | 18 | 0 | 4 | 5 | 245 | 5.3 | 18 | 18 | 0 | 2.8 | 3 | 322 | 2.1 | 18 | 18 | 0 | 1.4 | 4 |
| 35 | 8 | 4.5 | 1 | 294 | 1.3 | 12 | 12 | 0 | 0.5 | 13 | 245 | 4 | 12 | 12 | 0 | 2.5 | 1 | 294 | 0.5 | 12 | 12 | 0 | 0.2 | 12 |
| 35 | 8 | 4.5 | 2 | 294 | 7.7 | 13 | 13 | 0 | 5.4 | 11 | 245 | 18 | 13 | 13 | 0 | 10.2 | 1 | 294 | 0.7 | 13 | 13 | 0 | 0.3 | 8 |
| 35 | 8 | 4.5 | 3 | 294 | 71.5 | 14 | 14 | 0 | 52.7 | 23 | 245 | 1208.3 | 14 | 14 | 0 | 839.6 | 0 | 294 | 2.8 | 14 | 14 | 0 | 1.5 | 17 |
| 35 | 8 | 4.5 | 4 | 294 | 1.3 | 12 | 12 | 0 | 0.4 | 8 | 245 | 6.5 | 12 | 12 | 0 | 4.9 | 3 | 294 | 0.4 | 12 | 12 | 0 | 0.1 | 8 |
| 35 | 8 | 4.5 | 5 | 294 | 24.6 | 13 | 13 | 0 | 21.9 | 15 | 245 | 33.4 | 13 | 13 | 0 | 21.9 | 7 | 294 | 1.4 | 13 | 13 | 0 | 0.8 | 12 |
| 40 | 8 | 1.5 | 1 | 528 | 7.3 | 32 | 32 | 0 | 2.8 | 5 | 320 | 7.4 | 32 | 32 | 0 | 3.1 | 7 | 528 | 2.9 | 32 | 32 | 0 | 0.9 | 5 |
| 40 | 8 | 1.5 | 2 | 528 | 4.1 | 31 | 31 | 0 | 1.2 | 5 | 320 | 2.9 | 31 | 31 | 0 | 0.9 | 1 | 528 | 2.4 | 31 | 31 | 0 | 0.6 | 5 |
| 40 | 8 | 1.5 | 3 | 528 | 40.4 | 31 | 31 | 0 | 21.1 | 13 | 320 | 20.8 | 31 | 31 | 0 | 8 | 8 | 528 | 35.7 | 31 | 31 | 0 | 16.7 | 13 |
| 40 | 8 | 1.5 | 4 | 528 | 90.1 | 34 | 34 | 0 | 55.6 | 6 | 320 | 100.6 | 34 | 34 | 0 | 45.8 | 11 | 528 | 125.9 | 34 | 34 | 0 | 65 | 7 |
| 40 | 8 | 1.5 | 5 | 528 | 2.4 | 32 | 32 | 0 | 0.6 | 3 | 320 | 4.4 | 32 | 32 | 0 | 1.3 | 3 | 528 | 2.4 | 32 | 32 | 0 | 0.8 | 4 |
| 40 | 8 | 3.0 | 1 | 424 | 101.7 | 22 | 22 | 0 | 50.8 | 7 | 320 | 71.7 | 22 | 22 | 0 | 30.9 | 0 | 424 | 108.2 | 22 | 22 | 0 | 58.9 | 7 |
| 40 | 8 | 3.0 | 2 | 424 | 5.4 | 20 | 20 | 0 | 1.4 | 14 | 320 | 12.5 | 20 | 20 | 0 | 5.1 | 0 | 424 | 2.1 | 20 | 20 | 0 | 0.7 | 12 |
| 40 | 8 | 3.0 | 3 | 424 | 162.1 | 23 | 23 | 0 | 81.2 | 18 | 320 | 282.4 | 23 | 23 | 0 | 103.4 | 6 | 424 | 373.1 | 23 | 23 | 0 | 165.6 | 17 |
| 40 | 8 | 3.0 | 4 | 424 | 327.2 | 22 | 22 | 0 | 174.3 | 8 | 320 | 321.5 | 22 | 22 | 0 | 140.8 | 6 | 424 | 51.3 | 22 | 22 | 0 | 23.1 | 7 |
| 40 | 8 | 3.0 | 5 | 424 | 73.1 | 22 | 22 | 0 | 31.7 | 5 | 320 | 65.9 | 22 | 22 | 0 | 27.1 | 5 | 424 | 81.7 | 22 | 22 | 0 | 39.2 | 7 |
| 40 | 8 | 4.5 | 1 | 384 | 2.8 | 14 | 14 | 0 | 0.9 | 25 | 320 | 14.5 | 14 | 14 | 0 | 6.8 | 1 | 384 | 1.8 | 14 | 14 | 0 | 0.5 | 20 |
| 40 | 8 | 4.5 | 2 | 384 | 826.3 | 17 | 17 | 0 | 585.5 | 9 | 320 | 1552.1 | 17 | 17 | 0 | 746.9 | 9 | 384 | 61.9 | 17 | 17 | 0 | 32.3 | 8 |
| 40 | 8 | 4.5 | 3 | 384 | 82.8 | 14 | 14 | 0 | 42.4 | 12 | 320 | 22 | 14 | 14 | 0 | 9 | 1 | 384 | 3.9 | 14 | 14 | 0 | 1.8 | 13 |
| 40 | 8 | 4.5 | 4 | 384 | 3.7 | 14 | 14 | 0 | 1.1 | 23 | 320 | 4.1 | 14 | 14 | 0 | 1.3 | 2 | 384 | 1.2 | 14 | 14 | 0 | 0.4 | 20 |
| 40 | 8 | 4.5 | 5 | 384 | 1008.8 | 17 | 17 | 0 | 566.9 | 20 | 320 | 5580.5 | 17 | 17 | 0 | 3109.5 | 5 | 384 | 81.6 | 17 | 17 | 0 | 43.1 | 17 |
| 45 | 8 | 1.5 | 1 | 675 | 19.6 | 38 | 38 | 0 | 4.8 | 3 | 405 | 45 | 38 | 38 | 0 | 10.9 | 0 | 675 | 64.3 | 38 | 38 | 0 | 19.9 | 3 |
| 45 | 8 | 1.5 | 2 | 675 | 34.6 | 38 | 38 | 0 | 9.1 | 5 | 405 | 129.3 | 38 | 38 | 0 | 39.9 | 0 | 675 | 33.1 | 38 | 38 | 0 | 9 | 5 |
| 45 | 8 | 1.5 | 3 | 675 | 135.5 | 36 | 36 | 0 | 45.1 | 6 | 405 | 336.6 | 36 | 36 | 0 | 105.1 | 1 | 675 | 81.6 | 36 | 36 | 0 | 27.2 | 6 |
| 45 | 8 | 1.5 | 4 | 675 | 50.1 | 36 | 36 | 0 | 14.5 | 4 | 405 | 87.8 | 36 | 36 | 0 | 26.3 | 0 | 675 | 40.9 | 36 | 36 | 0 | 12.1 | 4 |
| 45 | 8 | 1.5 | 5 | 675 | 7.5 | 36 | 36 | 0 | 2.1 | 6 | 405 | 7.3 | 36 | 36 | 0 | 1.9 | 2 | 675 | 11.4 | 36 | 36 | 0 | 4 | 5 |
| 45 | 8 | 3.0 | 1 | 540 | 564.5 | 25 | 25 | 0 | 204.5 | 6 | 405 | 509.3 | 25 | 25 | 0 | 145.9 | 2 | 540 | 196.1 | 25 | 25 | 0 | 65 | 6 |
| 45 | 8 | 3.0 | 2 | 540 | 1844.9 | 26 | 26 | 0 | 779.3 | 7 | 405 | 4123.8 | 26 | 26 | 0 | 1141.5 | 5 | 540 | 1226.4 | 26 | 26 | 0 | 465.5 | 4 |
| 45 | 8 | 3.0 | 3 | 540 | 79.4 | 24 | 24 | 0 | 24.1 | 4 | 405 | 169.7 | 24 | 24 | 0 | 47.2 | 0 | 540 | 46.4 | 24 | 24 | 0 | 16 | 4 |
| 45 | 8 | 3.0 | 4 | 540 | 424.3 | 25 | 25 | 0 | 138.8 | 4 | 405 | 712.7 | 25 | 25 | 0 | 228.7 | 4 | 540 | 328.8 | 25 | 25 | 0 | 107.4 | 4 |
| 45 | 8 | 3.0 | 5 | 540 | 887.4 | 24 | 24 | 0 | 362.3 | 23 | 405 | 208 | 24 | 24 | 0 | 62 | 1 | 540 | 168.3 | 24 | 24 | 0 | 59.7 | 25 |
| 45 | 8 | 4.5 | 1 | 495 | 1025.5 | 19 | 19 | 0 | 365.5 | 19 | 405 | 919.6 | 19 | 19 | 0 | 300.4 | 0 | 495 | 220.6 | 19 | 19 | 0 | 77.8 | 19 |
| 45 | 8 | 4.5 | 2 | 495 | 60.1 | 18 | 18 | 0 | 21.5 | 19 | 405 | 359 | 18 | 18 | 0 | 125.9 | 2 | 495 | 10.2 | 18 | 18 | 0 | 2.9 | 18 |
| 45 | 8 | 4.5 | 3 | 495 | 172.8 | 18 | 18 | 0 | 65.9 | 12 | 405 | 122 | 18 | 18 | 0 | 39.5 | 1 | 495 | 20.2 | 18 | 18 | 0 | 6.4 | 12 |
| 45 | 8 | 4.5 | 4 | 495 | 7200 | 19.3 | 21 | 8.1 | 2430.5 | 8 | 405 | 7200 | 18.8 | 21 | 10.6 | 2157.3 | 3 | 495 | 1426 | 21 | 21 | 0 | 598.3 | 8 |
| 45 | 8 | 4.5 | 5 | 495 | 7200 | 17.9 | 20 | 10.6 | 2497.9 | 14 | 405 | 7200 | 18.4 | 20 | 7.9 | 2224.3 | 5 | 495 | 702 | 20 | 20 | 0 | 288.3 | 14 |
| 50 | 8 | 1.5 | 1 | 830 | 210.3 | 41 | 41 | 0 | 45.6 | 6 | 500 | 189.9 | 41 | 41 | 0 | 35.6 | 2 | 830 | 109.4 | 41 | 41 | 0 | 19.6 | 7 |
| 50 | 8 | 1.5 | 2 | 830 | 280.3 | 38 | 38 | 0 | 73.2 | 11 | 500 | 99.6 | 38 | 38 | 0 | 17.1 | 7 | 830 | 277.6 | 38 | 38 | 0 | 60.3 | 12 |
| 50 | 8 | 1.5 | 3 | 830 | 116.2 | 39 | 39 | 0 | 27.6 | 11 | 500 | 183.1 | 39 | 39 | 0 | 35.8 | 1 | 830 | 92.6 | 39 | 39 | 0 | 22.9 | 8 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y ${ }_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1 lb | ub | gap | node | cuts |
| 50 | 8 | 1.5 | 4 | 830 | 1616.6 | 41 | 41 | 0 | 441.7 | 7 | 500 | 927.8 | 41 | 41 | 0 | 203.5 | 4 | 830 | 6992.2 | 41 | 41 | 0 | 1618.1 | 7 |
| 50 | 8 | 1.5 | 5 | 830 | 1129.3 | 42 | 42 | 0 | 288.6 | 16 | 500 | 1634.8 | 42 | 42 | 0 | 318.3 | 8 | 830 | 2006.8 | 42 | 42 | 0 | 434.8 | 19 |
| 50 | 8 | 3.0 | 5 | 660 | 7200.1 | 24.3 | 29 | 16.2 | 1318.2 | 9 | 500 | 7200 | 25.6 | 28 | 8.5 | 1347.7 | 0 | 660 | 7200 | 25.6 | 28 | 8.48 | 1341.5 | 9 |
| 50 | 8 | 3.0 | 2 | 660 | 7200 | 26.2 | 28 | 6.4 | 1522.6 | 11 | 500 | 7200 | 25.6 | 28 | 8.6 | 1301 | 4 | 660 | 5516.3 | 28 | 28 | 0 | 1309 | 11 |
| 50 | 8 | 3.0 | 3 | 660 | 7200 | 24 | 28 | 14.1 | 1330.1 | 8 | 500 | 7200 | 25 | 28 | 10.9 | 1283.6 | 1 | 660 | 7200 | 25 | 28 | 10.83 | 1399.4 | 8 |
| 50 | 8 | 3.0 | 4 | 660 | 7200 | 25.7 | 28 | 8.1 | 1421.6 | 10 | 500 | 7200 | 25 | 28 | 10.8 | 1278.3 | 1 | 660 | 6543.6 | 28 | 28 | 0 | 1575.3 | 11 |
| 50 | 8 | 3.0 | 5 | 660 | 7200.2 | 23.6 | 29 | 18.6 | 1497 | 5 | 500 | 7200 | 25.8 | 29 | 11 | 1344.2 | 1 | 660 | 7200 | 23.9 | 29 | 17.65 | 1422.9 | 5 |
| 50 | 8 | 4.5 | 1 | 610 | 7200 | 19 | 22 | 13.7 | 1505.7 | 16 | 500 | 7200 | 18.8 | 22 | 14.6 | 1328 | 3 | 610 | 4471.8 | 22 | 22 | 0 | 1311.8 | 16 |
| 50 | 8 | 4.5 | 2 | 610 | 7200 | 18.6 | 22 | 15.6 | 1553.2 | 16 | 500 | 7200 | 18.5 | 22 | 16 | 1457.7 | 8 | 610 | 6068.3 | 22 | 22 | 0 | 1758 | 17 |
| 50 | 8 | 4.5 | 3 | 610 | 7200 | 18.4 | 22 | 16.2 | 1611.4 | 10 | 500 | 7200 | 18.9 | 22 | 14.3 | 1415 | 3 | 610 | 3402.9 | 22 | 22 | 0 | 1021.7 | 10 |
| 50 | 8 | 4.5 | 4 | 610 | 7200 | 19.1 | 22 | 13.3 | 1438.3 | 19 | 500 | 7200 | 19.4 | 22 | 12 | 1342.9 | 2 | 610 | 3419.1 | 22 | 22 | 0 | 827.5 | 19 |
| 50 | 8 | 4.5 | 5 | 610 | 7200 | 18.8 | 23 | 18.3 | 1511.5 | 14 | 500 | 7200 | 19.4 | 23 | 15.6 | 1459.1 | 8 | 610 | 7200 | 20.2 | 23 | 12.08 | 1499.8 | 17 |
| 55 | 8 | 1.5 | 1 | 1001 | 1407.3 | 44 | 44 | 0 | 318.2 | 6 | 605 | 4161.8 | 44 | 44 | 0 | 630.2 | 1 | 1001 | 5378.7 | 44 | 44 | 0 | 1112.7 | 6 |
| 55 | 8 | 1.5 | 2 | 1001 | 1505.5 | 45 | 45 | 0 | 328.2 | 7 | 605 | 2413.2 | 45 | 45 | 0 | 355.9 | 1 | 1001 | 4296.1 | 45 | 45 | 0 | 814.6 | 7 |
| 55 | 8 | 1.5 | 3 | 1001 | 732.2 | 44 | 44 | 0 | 143.6 | 7 | 605 | 371.7 | 44 | 44 | 0 | 55.3 | 4 | 1001 | 380.1 | 44 | 44 | 0 | 70.6 | 7 |
| 55 | 8 | 1.5 | 4 | 1001 | 704.2 | 46 | 46 | 0 | 149.7 | 4 | 605 | 1383.6 | 46 | 46 | 0 | 220 | 2 | 1001 | 1273.3 | 46 | 46 | 0 | 245.4 | 4 |
| 55 | 8 | 1.5 | 5 | 1001 | 7200 | 43.1 | 47 | 8.3 | 1055.2 | 5 | 605 | 7200 | 44.3 | 47 | 5.8 | 1120.4 | 4 | 1001 | 7200 | 43.4 | 47 | 7.58 | 913.5 | 5 |
| 55 | 8 | 3.0 | 1 | 803 | 7200 | 25.4 | 32 | 20.5 | 991.1 | 5 | 605 | 7200 | 25.6 | 31 | 17.5 | 957.7 | 15 | 803 | 7200 | 26.3 | 32 | 17.73 | 865.9 | 4 |
| 55 | 8 | 3.0 | 2 | 803 | 7200 | 26.1 | 30 | 13 | 926.7 | 7 | 605 | 7200 | 25.2 | 31 | 18.6 | 1003.3 | 2 | 803 | 7200 | 25.2 | 30 | 15.88 | 896.6 | 6 |
| 55 | 8 | 3.0 |  | 803 | 7200 | 25.9 | 31 | 16.3 | 1005.1 | 9 | 605 | 7200 | 27.8 | 31 | 10.3 | 936.1 | 5 | 803 | 7200 | 27.5 | 31 | 11.24 | 965.2 | 8 |
| 55 | 8 | 3.0 | 4 | 803 | 7200 | 26.5 | 33 | 19.7 | 1022.2 | 7 | 605 | 7200 | 26.8 | 33 | 18.8 | 1042.2 | 1 | 803 | 7200 | 27 | 33 | 18.18 | 961.7 | 7 |
| 55 | 8 | 3.0 | 5 | 803 | 7200 | 26.6 | 34 | 21.8 | 989.7 | 8 | 605 | 7200 | 27.1 | 34 | 20.3 | 1061 | 4 | 803 | 7200 | 27.2 | 34 | 19.89 | 918.2 | 8 |
| 55 | 8 | 4.5 | 1 | 737 | 7200 | 19.7 | 24 | 17.9 | 992.7 | 6 | 605 | 7200 | 19.2 | 24 | 19.9 | 1150.5 | 2 | 737 | 7200 | 20.9 | 24 | 12.73 | 966 | 6 |
| 55 | 8 | 4.5 | 2 | 737 | 7200 | 19.6 | 23 | 14.9 | 1033 | 20 | 605 | 7200 | 19.2 | 23 | 16.4 | 1026.5 | 3 | 737 | 4361.8 | 23 | 23 | 0 | 776.9 | 23 |
| 55 | 8 | 4.5 | 3 | 737 | 7200 | 21.1 | 26 | 19 | 1012.9 | 5 | 605 | 7200 | 21.4 | 27 | 20.6 | 941.1 | 2 | 737 | 7200 | 21.7 | 26 | 16.48 | 1042.5 | 5 |
| 55 | 8 | 4.5 |  | 737 | 7200 | 18.8 | 23 | 18.5 | 1145.7 | 12 | 605 | 7200 | 19 | 23 | 17.4 | 1083.7 | 7 | 737 | 7200 | 20.7 | 23 | 10.14 | 1271.3 | 12 |
| 55 | 8 | 4.5 | 5 | 737 | 7200 | 18.5 | 25 | 25.9 | 1147.2 | 14 | 605 | 7200 | 19.3 | 25 | 23 | 974.2 | 8 | 737 | 7200 | 19.8 | 25 | 20.64 | 1063.5 | 17 |
| 60 | 8 | 1.5 | 1 | 1200 | 7200 | 45.7 | 51 | 10.3 | 740.5 | 7 | 720 | 7200 | 45.3 | 51 | 11.1 | 684.4 | 6 | 1200 | 7200 | 46 | 51 | 9.8 | 665.3 | 6 |
| 60 | 8 | 1.5 | 2 | 1200 | 7200 | 46.5 | 50 | 7.1 | 758.3 | 4 | 720 | 7200 | 47 | 50 | 6 | 773.1 | 1 | 1200 | 7200 | 46.5 | 50 | 7.08 | 747.1 | 5 |
| 60 | 8 | 1.5 | 3 | 1200 | 7200 | 49.3 | 52 | 5.1 | 887.9 | 6 | 720 | 7200 | 49 | 52 | 5.7 | 800.4 | 3 | 1200 | 7200 | 48.1 | 52 | 7.58 | 791.3 | 6 |
| 60 | 8 | 1.5 |  | 1200 | 7200 | 48.5 | 50 | 3 | 1000.7 | 4 | 720 | 3097.1 | 50 | 50 | 0 | 319.8 | 4 | 1200 | 4501.7 | 50 | 50 | 0 | 648.5 | 4 |
| 60 | 8 | 1.5 | 5 | 1200 | 7200 | 45.2 | 49 | 7.7 | 791.9 | 6 | 720 | 7200 | 44.8 | 49 | 8.5 | 709.9 | 3 | 1200 | 7200 | 45.5 | 49 | 7.1 | 793 | 6 |
| 60 | 8 | 3.0 |  | 960 | 7200 | 28.2 | 36 | 21.6 | 904.5 | 20 | 720 | 7200 | 28.6 | 36 | 20.6 | 775.2 | 3 | 960 | 7200 | 29.4 | 36 | 18.47 | 703.9 | 20 |
| 60 | 8 | 3.0 | 2 | 960 | 7200 | 28.8 | 36 | 20.1 | 683.8 | 6 | 720 | 7200 | 29 | 36 | 19.4 | 724.1 | 5 | 960 | 7200 | 29.4 | 36 | 18.43 | 779 | 5 |
| 60 | 8 | 3.0 | 3 | 960 | 7200 | 26.3 | 36 | 26.9 | 824.5 | 4 | 720 | 7200 | 27.5 | 36 | 23.7 | 810 | 2 | 960 | 7200 | 27.3 | 35 | 21.91 | 770.4 | 4 |
| 60 | 8 | 3.0 | 4 | 960 | 7200 | 29.1 | 34 | 14.4 | 665.6 | 8 | 720 | 7200 | 29.1 | 34 | 14.6 | 658.7 | 3 | 960 | 7200 | 29.8 | 34 | 12.27 | 685.8 | 8 |
| 60 | 8 | 3.0 | 5 | 960 | 7200 | 28.7 | 36 | 20.4 | 720.7 | 10 | 720 | 7200 | 29.9 | 36 | 16.9 | 718.4 | 0 | 960 | 7200 | 29.7 | 35 | 15.24 | 672.5 | 10 |
| 60 | 8 | 4.5 | 1 | 876 | 7200 | 20.6 | 27 | 23.7 | 895.6 | 21 | 720 | 7200 | 20.1 | 29 | 30.7 | 926.1 | 1 | 876 | 7200 | 22.7 | 27 | 16.07 | 744.1 | 24 |
| 60 | 8 | 4.5 |  | 876 | 7200 | 20.3 | 28 | 27.6 | 875.7 | 11 | 720 | 7200 | 20.5 | 28 | 26.9 | 833.2 |  | 876 | 7200 | 20.8 | 27 | 22.94 | 815.2 | 11 |

Table A. 4 - Continued

| Instances |  |  |  | $\operatorname{USNP}_{(V, E, C)}$ |  |  |  |  |  |  | USNP-X ${ }_{(V, E, C)}$ |  |  |  |  |  |  | USNP-Y ${ }_{(V, E, C)}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | C | $\rho$ | \# | bin | CPU | 1 b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts | bin | CPU | 1b | ub | gap | node | cuts |
| 60 | 8 | 4.5 | 3 | 876 | 7200 | 22 | 29 | 24.3 | 910.7 | 5 | 720 | 7200 | 21.7 | 29 | 25.2 | 892.1 | 3 | 876 | 7200 | 23 | 29 | 20.76 | 818.7 | 6 |
| 60 | 8 | 4.5 | 4 | 876 | 7200 | 20.5 | 26 | 21.1 | 804.3 | 18 | 720 | 7200 | 20.5 | 27 | 24.1 | 783.4 | 4 | 876 | 7200 | 23 | 26 | 11.69 | 873.8 | 18 |
| 60 | 8 | 4.5 | 5 | 876 | 7200 | 19.6 | 28 | 29.9 | 861.7 | 19 | 720 | 7200 | 20 | 28 | 28.7 | 889.7 | 2 | 876 | 7200 | 21.2 | 28 | 24.4 | 819.5 | 19 |

## Appendix B

## Preliminary results on the separation of valid inequalities

Some preliminary studies concerning the separation of generalized k-cardinality tree inequalities are conducted here.

More precisely, even if we could not be able to derive a formal proof of the $\mathcal{N} \mathcal{P}$ Hardness of the separation problem associated with k-cardinality forest inequalities (4.44), we present an heuristic procedure for solving such separation problem. In practice however, the number of cuts found by such procedure was irrelevant to the optimization process and for this reason it was not included in the developed Branch-and-Cut procedure.

In contrast, a formal proof of the $\mathcal{N} \mathcal{P}$-Hardness of the separation problem associated with k -cover tree inequalities (4.47) is provided. On the other hand, a fast heuristic capable of yielding violated cuts remains a challenge to be tackled in future works.

## B. 1 Separation of k-cardinality forest inequalities

A simple adaptation of Algorithm 5 allows to derive an heuristic procedure for solving the separation problem associated with $k$-cardinality forest inequalities (4.44). Such procedure is described in Algorithm 7.

```
Algorithm 7 Separation of inequalities (4.44) by greedily construction of a (\(C+1\))-
cardinality forest
Input: An instance \((V, E, C)\) of U-SNP, and a fractional solution \((\bar{x}, \bar{y})\) of the linear
 relaxation of \(\operatorname{USNP}_{(V, E, C)}\)
Output: A "good" candidate \(k\)-cardinality tree inequality for cutting (\(\bar{x}, \bar{y}\))
 for \(i=1, \ldots, p\) do
 for \(j=1, \ldots, n\) do
 for all \(e \in \Delta_{E}(j)\) do
 \(w_{e}=\bar{x}_{e}^{i}\)
 end for
 for all \(v \in V\left[\Delta_{E}(j)\right]\) do
 \(c_{v}=\bar{y}_{v}^{i}\)
 end for
 Choose the edge \(e\) with most fractional weight.
 \(T=\{e\}\)
 for \(k=1, \ldots, C\) do
 Let \(\begin{aligned} e_{k} \in \arg \max _{u v \in \Delta_{E}(j) \backslash T}\{ & \left\{w_{u v}-c_{v}: v \in V[T] \text { and } u \notin V[T]\right\} \cup \\ & \left.\left\{w_{u v}-1: v \notin V[T] \text { and } u \notin V[T]\right\}\right\}\end{aligned}\)
 \(T=T \cup\left\{e_{k}\right\}\)
 end for
 if \(\sum_{e \in T} \bar{x}_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) \bar{y}_{v}^{i}>0\) then
 Add inequality \(\sum_{e \in T} x_{e}^{i}-\sum_{v \in V[T]}\left(\operatorname{deg}_{G[T]}(v)-1\right) y_{v}^{i} \leq 0\) as a cut
 end if
 end for
 end for
```


## B. 2 Separation of k-cover tree inequalities

Let us recall the family of $k$-cover tree inequalities (4.47):

$$
\begin{align*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \quad & \forall i \in K, j \in V, S \subseteq E \text {, such that } \\
& G[S] \text { is a tree and }\left|S \cap \Delta_{E}(j)\right|=C+1 . \tag{4.47}
\end{align*}
$$

The family of $k$-cover tree inequalities (4.47) clearly has an exponential number of inequalities as it generalizes the family of $k$-cardinality tree inequalities (4.40). In addition, it is easy to observe that when $(V, E, C)$ is an instance of Intersection U-SNP, these two families of inequalities (i.e., (4.47) and (4.40)) are equivalent. It follows directly that the separation problem associated with $k$-cover tree inequalities (4.47) is at least as hard as the one associated with $k$-cardinality tree inequalities (4.40).

## Theorem B. 1 - Separation of $k$-cover tree inequalities

The separation problem associated with $k$-cover tree inequalities (4.47) is $\mathcal{N P}$-Hard.

## References

[1] T. Achterberg and C. Raack. The mcf-separator: detecting and exploiting multi-commodity flow structures in mips. Mathematical Programming Computation, 2(2):125-165, 2010.
[2] M. Agrawal, N. Kayal, and N. Saxena. Primes is in p. Annals of mathematics, pages 781-793, 2004.
[3] O. Amini, S. Pérennes, and I. Sau. Hardness and approximation of traffic grooming. Theoretical Computer Science, 410(38-40):3751-3760, 2009.
[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Tsp cuts which do not conform to the template paradigm. In Computational combinatorial optimization, pages 261-303. Springer, 2001.
[5] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the dantzig-fulkerson-johnson algorithm for large traveling salesman problems. Mathematical programming, 97(1-2):91-153, 2003.
[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Concorde tsp solver. http://www.tsp.gatech.edu/concorde/, 2006. Accessed on May 04, 2019.
[7] E. Balas. Facets of the knapsack polytope. Mathematical programming, 8(1): 146-164, 1975.
[8] E. Balas. Disjunctive programming. In Annals of Discrete Mathematics, volume 5, pages 3-51. Elsevier, 1979.
[9] E. Balas and N. Christofides. A restricted lagrangean approach to the traveling salesman problem. Mathematical Programming, 21(1):19-46, 1981.
[10] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical programming, 58(1-3):295-324, 1993.
[11] M. L. Balinski. On finding integer solutions to linear programs. Technical report, Mathematica Princeton NJ, 1964.
[12] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming and network flows. John Wiley \& Sons, 2011.
[13] A. Beaudry, G. Laporte, T. Melo, and S. Nickel. Dynamic transportation of patients in hospitals. OR spectrum, 32(1):77-107, 2010.
[14] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische mathematik, 4(1):238-252, 1962.
[15] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and delivery problems: a classification scheme and survey. Top, 15(1):1-31, 2007.
[16] J.-C. Bermond, L. Braud, and D. Coudert. Traffic grooming on the path. Theoretical Computer Science, 384(2-3):139-151, 2007.
[17] L. Bodin. Routing and scheduling of vehicles and crews, the state of the art. Comput. Oper. Res., 10(2):63-211, 1983.
[18] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine equations. Proceedings of the American Mathematical Society, 55 (2):299-304, 1976.
[19] K. Braekers and A. A. Kovacs. A multi-period dial-a-ride problem with driver consistency. Transportation Research Part B: Methodological, 94:355-377, 2016.
[20] K. Braekers, A. Caris, and G. K. Janssens. Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B: Methodological, 67:166-186, 2014.
[21] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse. The vehicle routing problem: State of the art classification and review. Computers $\xi^{8}$ Industrial Engineering, 99:300-313, 2016.
[22] J. Bramel and D. Simchi-Levi. Set-covering-based algorithms for the capacitated vrp. In The vehicle routing problem, pages 85-108. SIAM, 2002.
[23] N. Brauner and P. Lemaire. A set-covering approach for sonet network design. rapport technique 62. Les Cahiers du Laboratoire Leibniz-IMAG, 2002.
[24] N. Brauner, Y. Crama, G. Finke, P. Lemaire, and C. Wynants. Approximation algorithms for the design of SDH/SONET networks. RAIRO-Operations Research, 37(4):235-247, 2003.
[25] S. Bsaybes. Modèles et algorithmes de gestion de flottes de véhicules vipa. PhD thesis, Ph. D. thesis, Université Clermont Auvergne, 2017.
[26] S. Bsaybes, A. Quilliot, and A. K. Wagler. Fleet management for autonomous vehicles: Online pdp under special constraints. arXiv preprint arXiv:1703.10565, 2017.
[27] T. Bunsen, P. Cazzola, M. Gorner, L. Paoli, S. Scheffer, R. Schuitmaker, J. Tattini, and J. Teter. Global ev outlook 2018: Towards cross-modal electrification. 2018.
[28] J. Carlson, J. A. Carlson, A. Jaffe, and A. Wiles. The millennium prize problems. American Mathematical Soc., 2006.
[29] R. Carvajal, S. Ahmed, G. Nemhauser, K. Furman, V. Goel, and Y. Shao. Using diversification, communication and parallelism to solve mixed-integer linear programs. Operations Research Letters, 42(2):186-189, 2014.
[30] T. Christof, A. Löbel, and S. Schenker. Polyhedron representation transformation algorithm. http://porta.zib.de/, 1997. Accessed on May 06, 2019.
[31] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete mathematics, 4(4):305-337, 1973.
[32] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of operations research, 4(3):233-235, 1979.
[33] V. Chvatal, V. Chvatal, et al. Linear programming. Macmillan, 1983.
[34] Clay Mathematics Institute. Millennium problems - p vs np problem. http: //claymath.org/millennium-problems/p-vs-np-problem, 2018. Accessed on Feb 01, 2019.
[35] M. Conforti, G. Cornuéjols, and G. Zambelli. Polyhedral approaches to mixed integer linear programming. In 50 years of integer programming 1958-2008, pages 343-385. Springer, 2010.
[36] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, pages 151-158. ACM, 1971.
[37] J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3):573-586, 2006.
[38] J.-F. Cordeau and G. Laporte. The dial-a-ride problem (darp): Variants, modeling issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2):89-101, 2003.
[39] J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multivehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579-594, 2003.
[40] J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algorithms. Annals of operations research, 153(1):29-46, 2007.
[41] G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility location problem. Technical report, Carnegie-mellon univ pittsburgh pa management sciences research group, 1983.
[42] C. E. Cortés, M. Matamala, and C. Contardo. The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method. European Journal of Operational Research, 200(3):711-724, 2010.
[43] H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large-scale zero-one linear programming problems. Operations Research, 31(5):803-834, 1983.
[44] G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. New York, 1951.
[45] G. B. Dantzig. Linear Programming and Extensions. RAND Corporation, 1963.
[46] G. B. Dantzig. Origins of the simplex method. Technical report, Stanford University CA Systems Optimization Lab, 1987.
[47] G. B. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal of the operations research society of America, 2(4):393-410, 1954.
[48] F. De Rugy and E. Borne. Projet de loi d'orientation des mobilités (tret1821032l). https://www.senat.fr/leg/pj118-157rec.html, 2018. Accessed on Jun 04, 2019.
[49] A. Delbosc. The role of well-being in transport policy. Transport Policy, 23: 25-33, 2012.
[50] S. Deleplanque, A. Luisa Marques Fernandes, L. Bernardes Real, R. Saraiva De Camargo, and A. Quilliot. The minimization of the number of stops problem - management of an autonomous vehicle fleet. 032014.
[51] S. Deleplanque, A. Quilliot, and B. Bernay. Branch and price for a reliability oriented darp model. pages 081-086. IEEE, 2014.
[52] B. T. Denton, A. J. Miller, H. J. Balasubramanian, and T. R. Huschka. Optimal allocation of surgery blocks to operating rooms under uncertainty. Operations research, 58(4-part-1):802-816, 2010.
[53] B. Dezső, A. Jüttner, and P. Kovács. Lemon-an open source c++ graph template library. Electronic Notes in Theoretical Computer Science, 264(5): 23-45, 2011.
[54] R. Diestel. Graph theory. Springer Publishing Company, Incorporated, 2018.
[55] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European journal of operational research, 54(1):7-22, 1991.
[56] R. Dutta and G. N. Rouskas. Traffic grooming in wdm networks: Past and future. IEEE network, 16(6):46-56, 2002.
[57] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics, 10(2):139-153, 1985.
[58] M. E. Dyer and A. M. Frieze. Planar 3dm is np-complete. Journal of Algorithms, 7(2):174-184, 1986.
[59] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of the National Bureau of Standards B, 69(125-130):55-56, 1965.
[60] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17 (3):449-467, 1965.
[61] E. Egerváry Combinatorial Optimization Research Group. Lemon graph library. https://lemon.cs.elte.hu/trac/lemon, 2003. Accessed on May 04, 2019.
[62] E. Egerváry Combinatorial Optimization Research Group. Lemon graph library documentation: lemon::dijkstra. http://lemon.cs.elte.hu/pub/doc/ latest-svn/a00193.html, 2009. Accessed on May 06, 2019.
[63] E. Egerváry Combinatorial Optimization Research Group. Lemon graph library documentation: lemon::kruskal. http://lemon.cs.elte.hu/pub/doc/ latest-svn/a00346.html, 2009. Accessed on May 04, 2019.
[64] D. C. Ehlers. Mobility of the future - connected, autonomous, shared, electric. In 30th International AVL Conference "Engine \& Environment", 2018.
[65] European Automobile Manufacturers Association. The 2030 urban mobility challenge: Acea's contribution. https://www.acea.be/ uploads/publications/The_2030_Urban_Mobility_Challenge_-_ACEAs_ Contribution_May_2016.pdf, 2016. Accessed on Jul 06, 2019.
[66] D. J. Fagnant and K. Kockelman. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77:167-181, 2015.
[67] L. Feng, E. Miller-Hooks, P. Schonfeld, and M. Mohebbi. Optimizing ridesharing services for airport access. Transportation Research Record, 2467(1):157167, 2014.
[68] M. Fischetti and M. Monaci. Exploiting erraticism in search. Operations Research, 62(1):114-122, 2014.
[69] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling salesman problem. Management Science, 43(11):1520-1536, 1997.
[70] M. Fischetti, H. W. Hamacher, K. Jørnsten, and F. Maffioli. Weighted kcardinality trees: Complexity and polyhedral structure. Networks, 24(1):1121, 1994.
[71] D. Gale, H. Kuhn, and A. Tucker. Linear programming and the theory of games, activity analysis of production and allocation, ed. tc koopmans, 1951.
[72] P. Gao, H.-W. Kaas, D. Mohr, and D. Wee. Automotive revolution-perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry. Advanced Industries, McKinsey \& Company, 2016.
[73] T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Optimization of occupancy rate in dial-a-ride problems via linear fractional column generation. Computers 83 Operations Research, 38(10):1435-1442, 2011.
[74] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New York, 2002.
[75] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods, 1(2):216-227, 1980.
[76] O. Gerstel, R. Ramaswami, and G. H. Sasaki. Cost-effective traffic grooming in WDM rings. IEEE/ACM Transactions On Networking, 8(5):618-630, 2000.
[77] A. Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. Comptes Redus Hebdomadaires des Séances de l'Académie des Sciences (Paris), 254:1192-1194, 1962.
[78] O. Goldschmidt, D. S. Hochbaum, A. Levin, and E. V. Olinick. The sonet edge-partition problem. Networks: An International Journal, 41(1):13-23, 2003.
[79] R. E. Gomory. An algorithm for the mixed integer problem. Technical report, RAND CORP SANTA MONICA CA, 1960.
[80] R. E. Gomory et al. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical society, 64(5):275-278, 1958.
[81] M. Grötschel and M. W. Padberg. On the symmetric travelling salesman problem i: inequalities. Mathematical Programming, 16(1):265-280, 1979.
[82] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169-197, 1981.
[83] M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope. Mathematical Programming, 33(1):28-42, 1985.
[84] M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Mathematical programming, 33(1):43-60, 1985.
[85] T. Gschwind and S. Irnich. Effective handling of dynamic time windows and its application to solving the dial-a-ride problem. Transportation Science, 49 (2):335-354, 2014.
[86] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Lifted cover inequalities for 0-1 integer programs: Computation. INFORMS Journal on Computing, 10 (4):427-437, 1998.
[87] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Lifted flow cover inequalities for mixed 0-1 integer programs. Mathematical Programming, 85(3):439-467, 1999.
[88] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A vision, architectural elements, and future directions. Future generation computer systems, 29(7):1645-1660, 2013.
[89] I. Heller and C. Tompkins. An extension of a theorem of dantzig's. Linear inequalities and related systems, 38:247-254, 1956.
[90] S. Ho, S. C. Nagavarapu, R. R. Pandi, and J. Dauwels. An improved tabu search heuristic for static dial-a-ride problem. arXiv preprint arXiv:1801.09547, 2018.
[91] S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering, and T. W. Tou. A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111:395-421, 2018.
[92] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. Linear Inequalities and Related Systems (H.W. Kuhn and A.J. Tucker, eds), pages 223-246, 1956.
[93] A. J. Hoffman and H. Kuhn. Systems of distinct representatives and linear programming. The American Mathematical Monthly, 63(7):455-460, 1956.
[94] K. L. Hoffman and M. W. Padberg. Improving lp-representations of zeroone linear programs for branch-and-cut. ORSA Journal on Computing, 3(2): 121-134, 1991.
[95] S. Huang, R. Dutta, and G. N. Rouskas. Traffic grooming in path, star, and tree networks: Complexity, bounds, and algorithms. IEEE Journal on Selected Areas in Communications, 24(4), 2006.
[96] K. Jakob and P. M. Pruzan. The simple plant location problem: Survey and synthesis. European journal of operational research, 12:36-81, 1983.
[97] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2):497-511, 2008.
[98] R. M. Jorgensen, J. Larsen, and K. B. Bergvinsdottir. Solving the dial-a-ride problem using genetic algorithms. Journal of the operational research society, 58(10):1321-1331, 2007.
[99] D. Junglas. What is really disabled by control callbacks. https: //www.ibm.com/developerworks/community/forums/html/topic?id= 5d8dc682-93c6-4bf5-b28d-aa0427b0e47d, 2018. Accessed on Feb 25,2019.
[100] V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes. Mathematical Programming, 114(1):1-36, 2008.
[101] V. Kaibel, M. Peinhardt, and M. E. Pfetsch. Orbitopal fixing. Discrete Optimization, 8(4):595-610, 2011.
[102] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302-311. ACM, 1984.
[103] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages 85-103. Springer, 1972.
[104] L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady Academii Nauk SSSR, volume 244, pages 1093-1096, 1979.
[105] S.-W. Kim, G.-P. Gwon, S.-T. Choi, S.-N. Kang, M.-O. Shin, I.-S. Yoo, E.-D. Lee, E. Frazzoli, and S.-W. Seo. Multiple vehicle driving control for traffic flow efficiency. In 2012 IEEE Intelligent Vehicles Symposium, pages 462-468. IEEE, 2012.
[106] D. Kirchler and R. W. Calvo. A granular tabu search algorithm for the dial-a-ride problem. Transportation Research Part B: Methodological, 56:120-135, 2013.
[107] V. Klee and G. J. Minty. How good is the simplex algorithm. Technical report, Washington University Seattle Dept. of Mathematics, 1970.
[108] KPMG International. Global automotive executive survey 2019,. https://home.kpmg/xx/en/home/insights/2019/01/global\unhbox $\backslash$ voidb@x\hbox\{-\}automotive\unhbox\voidb@x\hbox\{-\}executive\} unhbox\voidb@x\hbox\{-\}survey\unhbox\voidb@x\hbox\{-\}2019.html, 2019. Accessed on Jun 04, 2019.
[109] KPMG International. Mobility 2030: Transforming the mobility landscape. https://assets.kpmg/content/dam/kpmg/xx/pdf/2019/02/ mobility-2030-transforming-the-mobility-landscape.pdf, 2019. Accessed on Jun 04, 2019.
[110] M. S. Krishnamoorthy. An np-hard problem in bipartite graphs. ACM SIGACT News, 7(1):26-26, 1975.
[111] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society, 7(1): 48-50, 1956.
[112] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses. Management science, 9(4):643-666, 1963.
[113] R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM (JACM), 22(1):155-171, 1975.
[114] R. Lahyani, M. Khemakhem, and F. Semet. Rich vehicle routing problems: From a taxonomy to a definition. European Journal of Operational Research, 241(1):1-14, 2015.
[115] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. Econometrica: Journal of the Econometric Society, pages 497-520, 1960.
[116] T. Laseter, A. Tipping, and F. Duiven. The rise of the last-mile exchange. PWC Strategy+ Business, 92:30, 2018.
[117] Y. Lee, H. D. Sherali, J. Han, and S.-i. Kim. A branch-and-cut algorithm for solving an intraring synchronous optical network design problem. Networks: An International Journal, 35(3):223-232, 2000.
[118] P. Lemaire. Optimisation de réseaux sonet/sdh: éléments théoriques et résolution pratique. Mémoire de DEA, 2001.
[119] L. A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):115-116, 1973.
[120] A. D. Little. The Future of Mobility 3.0. Little, Arthur D, 2018. URL https://www.adlittle.com/futuremobilitylab/assets/file/180330_ Arthur_D.Little_\&_UITP_Future_of_Mobility_3_study.pdf.
[121] M. Liu, Z. Luo, and A. Lim. A branch-and-cut algorithm for a realistic dial-a-ride problem. Transportation Research Part B: Methodological, 81:267-288, 2015.
[122] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM journal on optimization, 1(2):166-190, 1991.
[123] Z. Luo, M. Liu, and A. Lim. A two-phase branch-and-price-and-cut for a dial-a-ride problem in patient transportation. Transportation Science, 53(1): 113-130, 2018.
[124] A. S. Manne. Plant location under economies-of-scale - decentralization and computation. Management Science, 11(2):213-235, 1964.
[125] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94(1):71-90, 2002.
[126] F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming, 98(1-3):3-21, 2003.
[127] F. Margot. Symmetry in integer linear programming. In 50 Years of Integer Programming 1958-2008, pages 647-686. Springer, 2010.
[128] N. Marković, R. Nair, P. Schonfeld, E. Miller-Hooks, and M. Mohebbi. Optimizing dial-a-ride services in maryland: benefits of computerized routing and scheduling. Transportation Research Part C: Emerging Technologies, 55: 156-165, 2015.
[129] M. A. Masmoudi, K. Braekers, M. Masmoudi, and A. Dammak. A hybrid genetic algorithm for the heterogeneous dial-a-ride problem. Computers ${ }^{8}$ operations research, 81:1-13, 2017.
[130] S. Masuyama and T. Ibaraki. Chain packing in graphs. Algorithmica, 6(1-6): 826-839, 1991.
[131] P. Merlin. Géographie des transports. Que sais-je?, 1992.
[132] R. R. Meyer. On the existence of optimal solutions to integer and mixed-integer programming problems. Mathematical Programming, 7(1):223-235, 1974.
[133] E. Modiano. Traffic grooming in wdm networks. IEEE communications Magazine, 39(7):124-129, 2001.
[134] Y. Molenbruch, K. Braekers, and A. Caris. Typology and literature review for dial-a-ride problems. Annals of Operations Research, 259(1-2):295-325, 2017.
[135] T. Motzkin. The assignment problem. In Proc. Symposia in Applied Mathematics, volume 6, pages 109-125, 1956.
[136] G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6(1):48-61, 1974.
[137] G. L. Nemhauser and L. E. Trotter. Vertex packings: structural properties and algorithms. Mathematical Programming, 8(1):232-248, 1975.
[138] J. Ostrowski, M. F. Anjos, and A. Vannelli. Symmetry in scheduling problems. Citeseer, 2010.
[139] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical Programming, 126(1):147-178, 2011.
[140] U. Ozguner, C. Stiller, and K. Redmill. Systems for safety and autonomous behavior in cars: The darpa grand challenge experience. Proceedings of the IEEE, 95(2):397-412, 2007.
[141] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical programming, 5(1):199-215, 1973.
[142] M. W. Padberg and S. Hong. On the symmetric travelling salesman problem: a computational study. In Combinatorial Optimization, pages 78-107. Springer, 1980.
[143] M. W. Padberg, T. J. Van Roy, and L. A. Wolsey. Valid linear inequalities for fixed charge problems. Operations Research, 33(4):842-861, 1985.
[144] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal of computer and system sciences, 43(3):425-440, 1991.
[145] J. Paquette, J.-F. Cordeau, G. Laporte, and M. M. Pascoal. Combining multicriteria analysis and tabu search for dial-a-ride problems. Transportation Research Part B: Methodological, 52:1-16, 2013.
[146] S. N. Parragh. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem. Transportation Research Part C: Emerging Technologies, 19(5):912-930, 2011.
[147] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery models part ii: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2):81-117, 2008.
[148] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery problems. Journal für Betriebswirtschaft, 58(1):21-51, 2008.
[149] S. N. Parragh, K. F. Doerner, and R. F. Hartl. Variable neighborhood search for the dial-a-ride problem. Computers \& Operations Research, 37(6):11291138, 2010.
[150] S. N. Parragh, J.-F. Cordeau, K. F. Doerner, and R. F. Hartl. Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR spectrum, 34(3):593-633, 2012.
[151] V. Pimenta, A. Quilliot, H. Toussaint, and D. Vigo. Models and algorithms for reliability-oriented dial-a-ride with autonomous electric vehicles. European Journal of Operational Research, 257(2):601-613, 2017.
[152] R. C. Prim. Shortest connection networks and some generalizations. Bell system technical journal, 36(6):1389-1401, 1957.
[153] W. R. Pulleyblank. Faces of Matching Polyhedra, Univ. of Waterloo, Dept. Combinatorics and Optimization. PhD thesis, Ph. D. Thesis, 1973.
[154] Y. Qu and J. F. Bard. A branch-and-price-and-cut algorithm for heterogeneous pickup and delivery problems with configurable vehicle capacity. Transportation Science, 49(2):254-270, 2014.
[155] RAC Foundation. Spaced out: Perspectives on parking policy. https://www.racfoundation.org/assets/rac_foundation/content/ downloadables/spaced_out-bates_leibling-jul12.pdf, 2012. Accessed on Jun 04, 2019.
[156] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees-short or small. SIAM Journal on Discrete Mathematics, 9 (2):178-200, 1996.
[157] L. B. Reinhardt, T. Clausen, and D. Pisinger. Synchronized dial-a-ride transportation of disabled passengers at airports. European Journal of Operational Research, 225(1):106-117, 2013.
[158] J.-P. Rodrigue, C. Comtois, and B. Slack. The geography of transport systems. Routledge, 2016.
[159] S. Ropke and J.-F. Cordeau. Branch and cut and price for the pickup and delivery problem with time windows. Transportation Science, 43(3):267-286, 2009.
[160] S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks: An International Journal, 49(4):258-272, 2007.
[161] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several heuristics for the traveling salesman problem. SIAM journal on computing, 6 (3):563-581, 1977.
[162] A. Sabharwal, H. Samulowitz, and C. Reddy. Guiding combinatorial optimization with uct. In International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pages 356-361. Springer, 2012.
[163] A. Schrijver. Theory of linear and integer programming. John Wiley \& Sons, 1998.
[164] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer Science \& Business Media, 2003.
[165] M. Shalom, W. Unger, and S. Zaks. On the complexity of the traffic grooming problem in optical networks. In International Conference on Fun with Algorithms, pages 262-271. Springer, 2007.
[166] H. D. Sherali and J. C. Smith. Improving discrete model representations via symmetry considerations. Management Science, 47(10):1396-1407, 2001.
[167] H. D. Sherali, J. C. Smith, and Y. Lee. Enhanced model representations for an intra-ring synchronous optical network design problem allowing demand splitting. INFORMS Journal on Computing, 12(4):284-298, 2000.
[168] S. Singh. Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report, NHTSA's National Center for Statistics and Analysis, 2015.
[169] H. M. Stark. An introduction to number theory. Markham Publishing Company Chicago, Illinois, 1970.
[170] Statista. Retail e-commerce sales worldwide from 2014 to 2021 (in billion u.s. dollars). https://www.statista.com/statistics/379046/ worldwide-retail-e-commerce-sales/, 2018. Accessed on Jul 05, 2019.
[171] A. S. Sutter, F. Vanderbeck, and L. A. Wolsey. Optimal placement of add/drop multiplexers: heuristic and exact algorithms. Operations Research, 46(5):719728, 1998.
[172] A. Talebpour and H. S. Mahmassani. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 71:143-163, 2016.
[173] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.
[174] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.
[175] United Nations Department of Economic and Social Affairs. 2018 revision of world urbanization prospects. https://www.un.org/development/desa/ publications/2018-revision-of-world-urbanization-prospects.html, 2018. Accessed on May 06, 2019.
[176] T. J. Van Roy and L. A. Wolsey. Valid inequalities and separation for uncapacitated fixed charge networks. Operations Research Letters, 4(3):105-112, 1985.
[177] V. V. Vazirani. Approximation algorithms. Springer Science \& Business Media, 2013.
[178] J. Von Neumann. Discussion of a maximum problem, John von Neumann: Collected Works, Vol. VI. Pergamon, 1963.
[179] L. A. Wolsey. Further facet generating procedures for vertex packing polytopes. Mathematical Programming, 11(1):158-163, 1976.
[180] L. A. Wolsey. Valid inequalities for 0-1 knapsacks and mips with generalised upper bound constraints. Discrete Applied Mathematics, 29(2-3):251-261, 1990.
[181] L. A. Wolsey. Integer Programming. Series in Discrete Mathematics and Optimization. Wiley-Interscience New Jersey, 1998.
[182] World Commission on Environment and Development. Our common future. Oxford University Press. Oxford, 1987.
[183] T.-H. Wu. Fiber network service survivability. Artech House, Inc., 1992.
[184] Z. Xiang, C. Chu, and H. Chen. A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints. European journal of operational research, 174(2):1117-1139, 2006.
[185] Z. Xiang, C. Chu, and H. Chen. The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments. European Journal of Operational Research, 185(2):534-551, 2008.
[186] K. Zhu and B. Mukherjee. A review of traffic grooming in wdm optical networks: Architectures and challenges. Optical Networks Magazine, 4(2):55-64, 2003.
[187] I. Zidi, K. Mesghouni, K. Zidi, and K. Ghedira. A multi-objective simulated annealing for the multi-criteria dial a ride problem. Engineering Applications of Artificial Intelligence, 25(6):1121-1131, 2012.

## Résumé en français

## Introduction et contexte

L'optimisation combinatoire est un domaine de recherche important des mathématiques appliquées, de l'algorithmique et de l'informatique théorique. Un problème d'optimisation combinatoire consiste à choisir le meilleur élément dans un ensemble fini. Ce genre de problèmes se posent habituellement - mais pas exclusivement dans des situations pratiques arrivant dans les télécommunications, le transport, la logistique, la finance entre autres.

Formellement, étant donnés un ensemble fini d'éléments $N=\{1, \ldots, n\}$, une famille $\mathcal{F}$ de sous-ensembles $F \subseteq N$ et une fonction de coût $c: N \rightarrow \mathbb{R}$, un problème d'optimisation combinatoire consiste à déterminer un élément $F \in \mathcal{F}$ tel que la somme $c(F)$ des coûts de ses éléments soit maximum (ou minimum). De tels problèmes peuvent paraître faciles à résoudre à première vue. Par exemple, une approche triviale serait d'énumérer tous les éléments dans $\mathcal{F}$ - rappelons que $\mathcal{F}$ est fini - et choisir simplement le meilleur élément selon la fonction de coût $c$. Cependant, cette famille de sous-ensembles est souvent composée d'un très grand (e.g., exponentiel dans la taille de $N$ ) nombre d'éléments, ce qui empêche la résolution du problème avec une telle approche dans un temps raisonnable en utilisant un ordinateur.

Cette remarque a conduit des scientifiques à étudier et développer des moyens plus intelligents et élégants pour la résolution de ce genre de problèmes. La programmation linéaire et la programmation linéaire en nombres entiers ainsi que les algorithmes basés sur le principe de la programmation dynamique et/ou les relations min-max entre différentes structures combinatoires sont des exemples de telles méthodes. Cependant, malgré tout le savoir développé à travers l'histoire de l'informatique, des algorithmes performants pour certains problèmes combinatoires restent inconnus. Autrement dit, cela signifie qu'aucun algorithme avec un temps d'exécution borné par une fonction polynomiale en la taille de l'entrée n'est connu.

Parmi ces problèmes difficiles à résoudre, une certaine classe de problèmes s'est démarquée : les problèmes appelés $\mathcal{N} \mathcal{P}$-Difficile. De façon informelle, un problème
appartient à la classe $\mathcal{N} \mathcal{P}$-Difficile s'il est au moins aussi difficile à résoudre que n'importe quel autre problème présent dans la classe $\mathcal{N} \mathcal{P}$, et un problème appartient à la classe $\mathcal{N} \mathcal{P}$ s'il peut être formulé comme une question ayant pour réponse oui ou non de façon que ses solutions peuvent être vérifiées de manière efficace (i.e., en temps polynomial). Par rapport aux problèmes combinatoires, cela revient à dire qu'un problème combinatoire appartient à $\mathcal{N} \mathcal{P}$ s'il peut être formulé par une question demandant l'existence ou non d'un élément $F \in \mathcal{F}$ tel que $c(F)$ vaut au moins (ou au plus) une valeur $B \in \mathbb{R}$ donnée, et que $c(F)$ peut être calculé en temps polynomial.

Il est bien connu que s'il existe un algorithme efficace pour résoudre un seul problème $\mathcal{N} \mathcal{P}$-Difficile, alors tous les problèmes appartenant à la classe $\mathcal{N} \mathcal{P}$-Difficile peuvent aussi être résolus en temps polynomial. Telle propriété a guidé les chercheurs en informatique à imposer une dichotomie entre les problèmes efficacement vérifiables (classe $\mathcal{N} \mathcal{P}$ ) et les problèmes efficacement solubles (classe $\mathcal{P}$ ). L'équivalence ou non de ces deux classes n'a pas pu être déterminée jusqu'à présent et représente ainsi une des principales questions ouvertes dans le domaine de l'informatique théorique. Il est cependant communément accepté que $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

Le besoin d'algorithmes performants capables de résoudre des problèmes réels n'a jamais cessé d'augmenter depuis la construction des premiers ordinateurs dans les années 40. Dans ce scénario, lorsqu'un nouveau problème combinatoire est proposé, l'une des premières questions que l'on se pose tourne autour de sa complexité. En effet, si l'on est capable de prouver son appartenance à $\mathcal{N} \mathcal{P}$-Difficile, alors un algorithme efficace pour résoudre ce problème est peu probable d'être concevable. Par ailleurs, les problèmes combinatoires $\mathcal{N} \mathcal{P}$-Difficiles possèdent plusieurs applications en pratique, et par conséquent il est insensé et contre-productive de les ignorer. Pour ces problèmes on doit plutôt se concentrer à les résoudre non pas à travers un algorithme polynomial mais à travers un algorithme approprié (i.e., aussi performant que possible).

L'approche polyédrale, développée par Jack Edmonds dans les années 60 (voir Edmonds 1965a) sur le problème du couplage maximal, combine les idées de la programmation linéaire et de la programmation linéaire en nombres entiers avec les concepts de la géométrie discrète et de l'algorithmique afin de résoudre des problèmes combinatoires. Elle consiste à formuler un problème combinatoire comme un programme linéaire dont les contraintes sont les inégalités linéaires décrivant l'enveloppe convexe des solutions réalisables.

Toutefois, une description explicite et complète d'un tel polyèdre peut être difficile à trouver et souvent il est nécessaire un nombre exponentiel d'inégalités pour ce
faire. Heureusement, une description partielle de l'enveloppe convexe peut permettre de trouver la solution optimale d'un problème combinatoire. Dans cette optique, les travaux de Grötschel, Lovász et Schrijver 1981 jouent un rôle très important en précisant qu'un problème combinatoire peut être résolu en temps polynomial si et seulement si il existe un algorithme polynomial capable de résoudre le problème de séparation associé. Ce dernier consiste, étant donné une solution $x$, à déterminer si $x$ appartient au polyèdre, et sinon à fournir une contrainte qui sépare $x$ du polyèdre. Dès lors, pour les problèmes combinatoires $\mathcal{N} \mathcal{P}$-Difficiles, on peut s'attendre à ce que le problème de séparation associé soit aussi $\mathcal{N} \mathcal{P}$-Difficile. Dans ces cas, l'approche polyédrale peut être encore utile en utilisant des heuristiques pour résoudre la séparation. Telle approche peut être exploité pour obtenir des inégalités valides capables de renforcer la relaxation linéaire de la formulation concernée.

Les approches polyédrales ont suscité une grande attention de la part de la communauté scientifique au cours des cinquante dernières années tant d'un point de vue théorique que pratique, et ont fait preuve d'efficacité en ce qui concerne la résolution optimale de problèmes combinatoires difficiles. En effet, plusieurs d'entre les algorithmes d'optimisation les plus performants bénéficient d'une approche polyédrale. Parmi ces algorithmes, l'un des plus célèbres est le Concorde TSP Solver, un algorithme basé sur le principe des Coupes et Branchements ${ }^{1}$ traitant le traditionnel problème du voyageur de commerce ${ }^{2}$ (voir Applegate et al. 2001; Applegate et al. 2006).

Dans cette dissertation, nous étudions un nouveau problème combinatoire appelé Problème de Minimisation du Nombre d'Arrêts - Stop Number Problem en anglais - découlant de la gestion d'un système de transport à la demande utilisant une flotte de véhicules électriques identiques et autonomes. En effet, des changements importants sont en train de se produire dans la façon dont les gens se déplacent d'un point à l'autre. Les réglementations plus restrictives en termes d'émissions de $\mathrm{CO}_{2}$, alliées à la croissance extraordinaire de l'utilisation des smartphones et des services en ligne, induisent des nouvelles tendances dans le secteur des transports. Selon GAO et al. 2016, dans le cadre de l'innovation de la mobilité et du transport, quatre tendances majeures méritent d'être soulignées: la diversification des systèmes de mobilité, la conduite autonome, l'électrification des moteurs et la connectivité entre les ressources présents dans le système de transport.

Le projet VIPAFLEET apparaît dans ce scénario contribuant à une mobilité plus durable en se concentrant sur le développement de modèles mathématiques et algorithmes capables d'aider à la gestion des flottes de véhicules autonomes et

[^11]électriques appelés VIPA ${ }^{3}$. VIPA est un véhicule électrique développé par Ligier ${ }^{4}$ et Easymile ${ }^{5}$, et conçu pour fonctionner de manière complètement autonome (i.e., sans aucune assistance humaine), notamment dans des environnements dits fermés ou semi-ouverts comme des sites commerciaux ou industriels, des campus universitaires et des complexes médicaux de grandes dimensions.

Les VIPA sont conçus pour opérer dans des différents modes de fonctionnement :

- Mode tramway : Les véhicules circulent toujours dans la même direction et s'arrêtent une fois sollicités.
- Mode ascenseur : Les véhicules circulent comme un ascenseur horizontal, voyageant dans un trajet linéaire prédéfini et réagissant aux demandes des clients pour changer de direction.
- Mode taxi : Les véhicules desservent les demandes des clients en choisissant de manière intelligente leurs itinéraires dans un réseau connexe.

Dans cette thèse nous nous intéressons à la gestion de tels véhicules fonctionnant en mode tramway. Par ailleurs, nous nous concentrons sur la version hors ligne de cette gestion, c'est-à-dire, toutes les demandes des clients sont connues à l'avance. Pour des études sur d'autres modes de fonctionnement en version en ligne, le lecteur est invité à consulter les travaux de Bsaybes 2017.

Le travail de recherche effectué au cours de cette thèse a été financé par le Laboratoire d'Excellence (Labex) IMobS3 ${ }^{6}$.

## Définition du problème

Le Problème de Minimisation du Nombre d'Arrêts est issu de la gestion des véhicules VIPA fonctionnant en mode tramway. Dans ce système, des véhicules identiques circulent à travers un circuit prédéfini avec des stations déterminés, en répondant à des sollicitations de clients pour un trajet entre une station de départ et une station d'arrivée. Nous remarquons que plusieurs clients peuvent partager les mêmes stations de départ et/ou d'arrivée.

À cause des restrictions d'infrastructure, les stations ne se situent pas à l'intérieur du circuit mais sont attachées à ce dernier (voir Figure 1) Cette particularité cause un impact sur la gestion de la flotte de véhicules. En effet, pour répondre à la demande d'un client, le véhicule doit ralentir et réaliser une déviation de son parcours

[^12]d'origine. Ces déviations augmentent le temps de trajet des clients à bord du véhicule ainsi que la consommation d'énergie de sa batterie. Par conséquent, améliorer la qualité de service proposé correspond à minimiser le nombre d'arrêts effectués par la flotte de véhicules.


Figure 1 - Schéma du circuit

Le Problème de Minimisation du Nombre d'Arrêts consiste à affecter un véhicule à chaque client de façon à ce que la capacité de chaque véhicule soit respectée tout au long du circuit. L'objectif est de minimiser le nombre d'arrêts effectués en prenant en charge les demandes. Nous remarquons que dans la recherche d'une solution optimale, un véhicule peut se permettre de réaliser plusieurs tours du circuit avant desservir une demande. Par contre, une fois qu'un client est récupéré, il ne doit pas rester plus d'un tour complet à bord du véhicule. Les tours réalisés avant la prise en charge d'une demande sont appelés tours d'attente. Dans le but d'assurer une qualité de service et faire face aux fenêtres de temps accordées par les clients, le nombre maximal de tours d'attente est borné par un paramètre donné $H \geq 0 \in \mathbb{N}$. Enfin, la demande d'un client peut solliciter un ou plusieurs sièges dans un même véhicule. Dans ce sens, une demande est caractérisée par sa station de départ, sa station d'arrivée et une charge spécifiant le nombre de sièges demandés.

Cette thèse se concentre sur l'étude et la résolution du Problème de Minimisation du Nombre d'Arrêts quand aucun tour d'attente n'est accordé, c'est-à-dire $H=0$, et chaque demande ne peut solliciter qu'un seul siège dans chaque véhicule, c'est-à-dire sa charge est unitaire. Cette version du problème est appelé Problème de Minimisation du Nombre d'Arrêts Unitaire ${ }^{7}$. Nous remarquons néanmoins que plusieurs demandes peuvent avoir les mêmes stations de départ et/ou d'arrivée.

Soit $V=\{1, \ldots, n\}$ l'ensemble de stations numérotés selon leur ordre d'apparition sur le circuit. Soit $E$ l'ensemble des $m$ demandes unitaires, où chaque demande $e$ est spécifiée par une station de départ $o_{e} \in V$ et par une station d'arrivée $d_{e} \in V$ tel que $o_{e}<d_{e}$, c'est-à-dire, $e=\left(o_{e}, d_{e}\right)$. Pour desservir ces $m$ demandes, une flotte
7. Unit Stop Number Problem, en anglais.
de $p$ véhicules identiques est fournie. Tous les véhicules possèdent la même capacité $C \in \mathbb{Z}^{+}$. Désignons par $K=\{1, \ldots, p\}$ l'ensemble de ces véhicules disponibles. Pour chaque instance $\mathcal{I}=(V, E, C)$ du problème, un graphe $G_{\mathcal{I}}=(V, E)$ peut être associé et par conséquent, les stations et les demandes peuvent être appelés noeuds et arêtes, respectivement. Puisque $o_{e}<d_{e}$ pour tout $e \in E$, le graphe associé $G_{\mathcal{I}}$ possède une orientation naturelle. Pour plus de simplicité, nous le considérons comme un graphe non-orienté.

Pour tout sous-graphe $H$ de $G_{\mathcal{I}}$, et toute station $v \in V(H)$, nous désignons par

$$
\delta_{H}^{-}(v)=\left\{e \in E(H): d_{e}=v\right\} \quad \text { et } \quad \delta_{H}^{+}(v)=\left\{e \in E(H): o_{e}=v\right\}
$$

les ensembles des demandes dans $E(H)$ qui possèdent $v$ comme leur station d'arrivée et de départ, respectivement. Pour tout sous-ensemble $F \subseteq E$ et toute station $v \in V$, nous désignons par

$$
\Delta_{F}(v)=\left\{e \in F: o_{e} \leq v \leq d_{e}-1\right\}
$$

l'ensemble des demandes dans $F$ qui traversent ou commencent à la station $v$. Les demandes appartenant à $\Delta_{E}(v)$ intersectent la station $v$.

Une solution réalisable est une partition de $E$ en $p$ sous-ensembles $E_{1}, \ldots, E_{p}$ telle que $\left|\Delta_{E_{i}}(v)\right| \leq C$ pour tout $i=1, \ldots, p$ et pour tout $v \in V$. Le Problème de Minimisation du Nombre d'Arrêts Unitaire consiste à trouver une partition $\left\{E_{1}, \ldots, E_{p}\right\}$ qui minimise le coût de la fonction

$$
c\left(\left\{E_{1}, \ldots, E_{p}\right\}\right)=\sum_{i=1}^{p}\left|V\left[E_{i}\right]\right|
$$

où $V\left[E_{i}\right]$ représente l'ensemble des stations où le véhicule $i \in\{1, \ldots, p\}$ doit s'arrêter.

Un cas particulier intéressant nommé Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection, se pose quand il existe une station $v^{\prime} \in V$ dont toutes les demandes intersectent, c'est-à-dire, $\Delta_{E}\left(v^{\prime}\right)=E$. Dans ce cas, chaque véhicule $i \in K$ peut servir au plus $C$ demandes, c'est-à-dire, chaque sous-ensemble $E_{i}$ doit posséder au plus $C$ arrêtes.

## Complexité

Dans cette section nous étudions de manière approfondie la complexité du Problème de Minimisation du Nombre d'Arrêts Unitaire. Tout d'abord, nous présentons une série de propriétés et de bornes inférieures pour ce problème. Sur la base de ces
résultats, nous montrons la solvabilité de quelques cas particuliers en temps polynomial. Ensuite, nous présentons une preuve de $\mathcal{N} \mathcal{P}$-Complétude pour ce problème, ce qui permet de répondre à une conjecture posée par Pimenta et al. 2017 sur la complexité du Problème de Minimisation du Nombre d'Arrêts Unitaire.

## Proposition 1 - Borne inférieure triviale

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire, le nombre de stations $n$ est une borne inférieure triviale sur le nombre total d'arrêts.

## Proposition 2 - Borne inférieure basée sur les degrés

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire,

$$
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G_{\mathcal{I}}}^{-}(v)\right|,\left|\delta_{G_{I}}^{+}(v)\right|\right\}}{C}\right\rceil
$$

est une borne inférieure sur le nombre total d'arrêts.

## Proposition 3 - Nombre minimum de véhicules

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire,

$$
p_{\min }=\max _{v \in V}\left\{\left\lceil\frac{\left|\Delta_{E}(v)\right|}{C}\right\rceil\right\}
$$

est le nombre minimum de véhicules nécessaires pour satisfaire à toutes les demandes dans $E$.

Dans le domaine de la théorie des graphes, la maille d'un graphe $G$ est la longueur du plus court de ses cycles.

## Proposition 4 - Grands cycles produisent des forêts

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection telle que le graphe $G_{\mathcal{I}}=(V, E)$ a une maille de $k>C$, alors pour toute solution réalisable $\left\{E_{1}, \ldots, E_{p}\right\}, G_{\mathcal{I}}\left[E_{i}\right]$ est une forêt pour tout $i \in K$.

## Proposition 5 - Borne inférieure basée sur la maille

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection telle que le graphe $G_{\mathcal{I}}=(V, E)$ a une maille de $k>C$, alors

$$
m+\left\lceil\frac{m}{C}\right\rceil
$$

est une borne inférieure sur le nombre total d'arrêts.

Dans Pimenta et al. 2017, les auteurs énoncent sans preuve théorique que pour toute instance ( $V, E, C$ ) du Problème de Minimisation du Nombre d'Arrêts Unitaire,
il existe au moins une solution optimale utilisant $p_{\min }$ véhicules. Nous montrons que cette affirmation est valide si $C=2$ et ( $V, E, C$ ) est une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection. Néanmoins, pour $C \geq 3$, nous montrons que l'affirmation n'est plus valide. Par conséquent, fixer le nombre de véhicules à $p_{\min }$ peut nuire à la recherche d'une solution optimale.

Une autre intuition raisonnable dans la recherche d'une solution optimale est de maintenir les demandes ayant les mêmes stations de départ et d'arrivée ensemble dans un même véhicule. En effet, pour toute instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection avec $C=2$, une telle démarche s'avère optimale. Autrement dit, il existe toujours au moins une solution optimale respectant cette règle. Une telle stratégie peut être problématique pour les cas plus généraux comme indique la proposition suivante.

## Proposition 6 - Demandes parallèles

Soit $\mathcal{I}=(V, E, 2)$ une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire telle que $e \in E$ et $e^{\prime} \in E$ sont deux demandes différentes ayant les mêmes stations de départ et d'arrivée, il se peut que dans aucune solution optimale les demandes e et é soient affectées au même véhicule.

Les résultats présentés jusqu'ici offrent un aperçu de la difficulté de caractériser les solutions optimales du problème. Parallèlement, pour quelques cas spécifiques, nous avons montré que quelques intuitions simples peuvent s'avérer pertinentes dans la construction d'une solution optimale. Nous montrons ensuite comment mettre à profit ces résultats pour concevoir des algorithmes polynomiaux capables de résoudre certains cas particuliers du Problème de Minimisation du Nombre d'Arrêts Unitaire.

## Proposition 7 - Capacité Unitaire

Soit $\mathcal{I}=(V, E, 1)$ une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire, alors le problème peut être résolu en $\mathcal{O}(m)$ et la solution optimale coûte

$$
\sum_{v \in V} \max \left\{\left|\delta_{G_{\mathcal{I}}}^{-}(v)\right|,\left|\delta_{G_{I}}^{+}(v)\right|\right\} .
$$

## Proposition 8 - Graphes complets et $C=2$

Soit ( $V, E, 2$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire telle que $G_{\mathcal{I}}=(V, E)$ est un graphe complet, alors le problème peut être résolu en temps polynomial.

## Proposition 9 - Étoiles

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire telle que $G_{\mathcal{I}}=(V, E)$ est un graphe étoile, alors le problème peut être résolu
en temps polynomial et la solution optimale coûte

$$
\sum_{v \in V}\left\lceil\frac{\max \left\{\left|\delta_{G}^{-}(v)\right|,\left|\delta_{G}^{+}(v)\right|\right\}}{C}\right\rceil .
$$

## Proposition 10 - Chemins et cycles pour le cas d'intersection

Soit ( $V, E, C$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection telle que $G_{\mathcal{I}}=(V, E)$ est un chemin (ou un cycle), alors le problème peut être résolu en temps polynomial et la solution optimale coûte

$$
m+\left\lceil\frac{m}{C}\right\rceil .
$$

Proposition 11 - Arbres, grilles et graphes bipartis complets pour le cas d'Intersection avec $C=3$
Soit ( $V, E, 3$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection telle que $G_{\mathcal{I}}=(V, E)$ est un arbre (ou une grille ou un graphe biparti complet), alors le problème peut être résolu en temps polynomial.

Proposition 12-Cas d'intersection avec $C=2$
Soit ( $V, E, 2$ ) une instance du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection, alors le problème peut être résolu en $\mathcal{O}(m)$ temps.

Une fois que le Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection avec $C=2$ peut être résolu en temps polynomial, la question de savoir si le Problème de Minimisation du Nombre d'Arrêts Unitaire en général avec $C \geq 2$ est $\mathcal{N} \mathcal{P}$-Difficile se pose immédiatement. Dans Pimenta et al. 2017, les auteurs conjecturent ce problème comme étant $\mathcal{N} \mathcal{P}$-Difficile. Nous répondons positivement à cette conjecture à travers la réduction polynomiale d'un problème $\mathcal{N} \mathcal{P}$-Complet au Problème de Minimisation du Nombre d'Arrêts Unitaire.

Theorem 1 - Problème de Minimisation du Nombre d'Arrêts Unitaire, avec $C \geq 2$
Le Problème de Minimisation du Nombre d'Arrêts Unitaire est $\mathcal{N} \mathcal{P}$-Difficile pour n'importe quelle capacité fixée à $C \geq 2$ même si $G=(V, E)$ est un graphe planaire biparti.

Theorem 2 - Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection, avec $C=3$
Le Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection est $\mathcal{N} \mathcal{P}$ Difficile même si $G=(V, E)$ est un graphe planaire biparti et $C=3$.

Theorem 3 - Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection, avec $C \geq 5$

Le Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection est $\mathcal{N P}$ Difficile pour n'importe quelle capacité fixée à $C \geq 5$ même si $G=(V, E)$ est un graphe planaire biparti.

La complexité du Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection avec $C=4$ reste une question ouverte à laquelle nous proposons la conjecture suivante.

## Conjecture 1 - Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection, $C=4$

Le Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection est $\mathcal{N P}$ Difficile même si $G=(V, E)$ est un graphe planaire biparti et $C=4$.

Il est important de souligner que les résultats obtenus sur la complexité des problèmes étudiés peuvent être étendus à d'autres problèmes associés comme le Traffic Grooming et le $k$-Edge Partitioning Problem. Une telle démarche permet d'améliorer les résultats connus dans littérature sur la complexité de ces problèmes (voir Amini, PÉrennes et Sau 2009 ; Goldschmidt et al. 2003 ; Lemaire 2001).

## Approche Polyédrale

Si on s'intéresse à des solutions optimales, une stratégie répandue face à un problème $\mathcal{N} \mathcal{P}$-Difficile est de formuler et résoudre ce dernier via la programmation linéaire en nombres entiers. Afin d'améliorer les performances de ce genre d'approche, beaucoup de problèmes combinatoires ont bénéficié de l'étude faciale de l'enveloppe convexe de ses solutions réalisables. En effet, si une description complète de cette enveloppe convexe est connue, le problème peut être résolu à travers un programme linéaire. Malheureusement, la description complète de ces polyèdres nécessite habituellement un nombre exponentiel d'inégalités. Ici, l'équivalence entre optimisation et séparation décrite par Grötschel, Lovász et Schrijver 1981 joue un rôle principal. En effet, si le problème de séparation associé peut être résolu en temps polynomial, alors l'optimisation d'une fonction objective linéaire sur un polyèdre convexe peut également s'effectuer en temps polynomial. Le problème du couplage parfait (voir Edmonds 1965a; Edmonds 1965b; Pulleyblank 1973) est un exemple classique où l'enveloppe convexe des solutions réalisables a été complètement décrit et le problème de séparation associé a été démontré résoluble en temps polynomial. En contrepartie, une description partielle de l'enveloppe convexe des solutions réalisables est également souhaitable dans la conception d'algorithmes performants. Dans cette section, nous nous intéressons à l'étude polyédrale de l'en-
veloppe convexe des solutions réalisables du Problème de Minimisation du Nombre d'Arrêts Unitaire.

Le programme linéaire en nombres entiers décrit ci-dessous a été introduit dans Pimenta et al. 2017.

$$
\begin{equation*}
\min \sum_{v \in V} \sum_{i \in K} y_{v}^{i} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{lr}
\sum_{i \in K} x_{e}^{i}=1 & \forall e \in E, \\
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C & \forall v \in V, i \in K, \\
x_{e}^{i}-y_{v}^{i} \leq 0 & \forall i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}, \\
x_{e}^{i} \in\{0,1\} & \forall e \in E, i \in K \\
y_{v}^{i} \in\{0,1\} & \forall v \in V, i \in K \tag{6}
\end{array}
$$

La formulation (1)-(6) est fondée sur deux ensembles de variables binaires $x \in$ $\{0,1\}^{m \times p}$ et $y \in\{0,1\}^{n \times p}$. La variable $x_{e}^{i}$ représente le fait qu'une demande $e$ soit ou non affectée au véhicule $i$, c'est-à-dire,

$$
x_{e}^{i}=\left\{\begin{array}{l}
1, \text { si } e \in E_{i} \\
0, \text { sinon }
\end{array}\right.
$$

La variable $y_{v}^{i}$ indique si le véhicule $i$ s'arrête à la station $v$, c'est-à-dire,

$$
y_{v}^{i}=\left\{\begin{array}{l}
1, \text { si } v \in V\left[E_{i}\right] \\
0, \text { sinon }
\end{array}\right.
$$

La fonction objectif (1) compte le nombre total d'arrêts réalisé par l'ensemble des véhicules. Les contraintes d'affectation (2) assurent que chaque demande est affectée à exactement un véhicule. Les contraintes de capacité (3) garantissent que la capacité de chaque véhicule est respectée tout au long du circuit. Les contraintes d'arrêt (4) imposent les véhicules de s'arrêter sur les stations de départ et d'arrivée associées aux clients qui lui ont été affectés. Finalement, les contraintes (5) et (6) établissent les domaines des variables $x$ et $y$.

Une analyse préliminaire des résultats expérimentaux obtenus avec la formulation (1)-(6) en utilisant le solveur CPLEX 12.8 montre que la solution optimale est
fréquemment obtenue bien avant la fin de la procédure d'optimisation. C'est-à-dire que la borne inférieure utilisée dans l'algorithme de Coupes et Branchements évolue de façon beaucoup plus lente que la borne supérieure, ce qui indique la faiblesse d'une telle formulation. Accélérer la convergence des bornes inférieures vers le coût de la solution optimale constitue donc un défi majeur.

La puissance d'une formulation peut être mesurée par les bornes duales (bornes inférieures pour un problème de minimisation) fournies par sa relaxation linéaire. Dans Wolsey 1998, l'écart d'intégralité est utilisé pour mesurer la puissance d'une formulation. Selon ce concept nous étudions la puissance de la formulation (1)-(6) en analysant sa relaxation linéaire. Il s'avère que les résultats obtenus confirment la faiblesse de cette formulation.

## Theorem 4 - Puissance de la formulation

La relaxation linéaire de la formulation (1)-(6) fournit toujours une borne inférieure de $n$ arrêts.

Néanmoins, cette borne inférieure ne fournit aucune nouvelle information par rapport à la borne triviale dérivée de la Proposition 1. Cela ne poserait pas de problème si une telle borne était réellement efficace. Cependant, nous proposons des exemples d'instances où l'écart d'intégralité obtenu avec une telle borne peut atteindre la valeur de

$$
1-\frac{1}{\left\lceil\frac{m}{C}\right\rceil},
$$

ce qui est en effet impressionnant.
Étant donné que la borne inférieure fournie par la relaxation linéaire n'est pas satisfaisante, nous nous intéressons à l'étude faciale de l'enveloppe convexe des solutions réalisables du Problème de Minimisation du Nombre d'Arrêts Unitaire pour essayer de renforcer la formulation (1)-(6). Pour cela, nous investiguons dans un premier temps la dimension de ce polyèdre, nommé $\mathcal{P}_{(V, E, C)}$. La dimension d'un polytope $\mathcal{P} \subseteq \mathbb{R}^{d}$, nommé $\operatorname{dim}(\mathcal{P})$, est définie comme étant le nombre maximum de vecteurs affinement indépendants dans $\mathcal{P}$ moins un. Nous montrons que

$$
\operatorname{dim}\left(\mathcal{P}_{(V, E, C)}\right)=(n+m) p-m .
$$

Ensuite nous proposons les conditions nécessaires et suffisantes pour que les inégalités composant la relaxation linéaire de la formulation (1)-(6) définissent des facettes du $\mathcal{P}_{(V, E, C)}$.

## Theorem 5 - Relaxation des contraintes (6) définissant des facettes

## L'inégalité

$$
y_{v}^{i} \leq 1
$$

définit une facette de $\mathcal{P}_{(V, E, C)}$ pour tout $v \in V, i \in K$.

## Theorem 6 - Relaxation des contraintes (5) définissant des facettes

 L'inégalité$$
x_{e}^{i} \geq 0
$$

définit une facette de $\mathcal{P}_{(V, E, C)}$ pour tout $e \in E, i \in K$, étant donné que $p \geq 3$.

## Theorem 7 - Inégalités (4) définissant des facettes

L'inégalité

$$
x_{e}^{i}-y_{v}^{i} \leq 0
$$

définit une facette de $\mathcal{P}_{(V, E, C)}$ pour tout $i \in K, e \in E, v \in\left\{o_{e}, d_{e}\right\}$.

## Theorem 8 - Inégalités (3) définissant des facettes

L'inégalité

$$
\sum_{e \in \Delta_{E}(v)} x_{e}^{i} \leq C
$$

définit une facette de $\mathcal{P}_{(V, E, C)}$ pour tout $i \in K$ si et seulement si

1. il n'existe aucune station $v^{\prime} \in V$ tel que $\Delta_{E}(v) \subset \Delta_{E}\left(v^{\prime}\right)$;
2. pour toute station $v^{\prime} \in V,\left|\Delta_{E}(v) \backslash \delta\left(v^{\prime}\right)\right| \geq C$.

Enfin nous proposons des nouvelles inégalités valides capables de renforcer la formulation (1)-(6).

Theorem 9 - Validité des inégalités de capacité fortifiée
Les inégalités de capacité fortifiée

$$
\begin{array}{cl}
\sum_{e \in \delta_{G}^{-}(v)} x_{e}^{i}-C y_{v}^{i} \leq 0 & \forall v \in V, i \in K, \\
\sum_{e \in \delta_{G}^{+}(v)} x_{e}^{i}-C y_{v}^{i} \leq 0 & \forall v \in V, i \in K, \tag{7b}
\end{array}
$$

sont valides pour $\mathcal{P}_{(V, E, C)}$.
Theorem 10 - Inégalités de capacité fortifiée définissant des facettes
L'inégalité de capacité fortifiée (7a) associée avec une station $v \in V$ et un véhicule $i \in K$ définit une facette de $\mathcal{P}_{(V, E, C)}$ si et seulement si

$$
\left|\delta_{G}^{-}(v)\right| \geq C+1
$$

De la même façon, l'inégalité de capacité fortifiée (7b) associée avec une station $v \in V$ et un véhicule $i \in K$ définit une facette de $\mathcal{P}_{(V, E, C)}$ si et seulement si

$$
\left|\delta_{G}^{+}(v)\right| \geq C+1
$$

Theorem 11 - Validité des inégalités d'arbres de cardinalité $k$
Les inégalités d'arbres de cardinalité $k$ suivantes sont valides pour $\mathcal{P}_{(V, E, C)}$ :

$$
\begin{equation*}
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j) \tag{8}
\end{equation*}
$$

tel que $G[S]$ est un arbre de cardinalité $k$ avec $k \geq C+1$.
Theorem 12 - Inégalités d'arbres de cardinalité $k$ définissant des facettes Les inégalités d'arbres de cardinalité $k$ (8) définissent des facettes de $\mathcal{P}_{(V, E, C)}$ si et seulement si les conditions suivantes sont vérifiées :
i. $G[S]$ n'est pas un graphe étoile ;
ii. si $G[S]$ contient exactement 2 noeuds internes, alors $E \backslash S$ ne contient pas une arrête $(u, v)$ tel que $u$ et $v$ sont les noeuds internes de $G[S]$.

L'idée derrière la construction d'une inégalité d'arbre de cardinalité $k$ est de trouver une structure en quelque sorte connexe qui viole la capacité du véhicule. Pour ces inégalités, la structure en question est complètement connexe ( $G[S]$ est un arbre) et fait complètement partie de $\Delta_{E}(v)$. Basé sur ces remarques nous sommes capables de généraliser les inégalités d'arbres de cardinalité $k$ comme suit.

## Theorem 13 - Validité des inégalités d'arbres de cardinalité $k$ généralisées

 Les inégalités$$
\sum_{e \in S} x_{e}^{i}-\sum_{v \in V[S]}\left(\operatorname{deg}_{G[S]}(v)-1\right) y_{v}^{i} \leq q-1 \quad \forall i \in K, j \in V, S \subseteq E
$$

où $G[S]$ est une forêt composée par $1 \leq q \leq|S|$ composantes connexes et $\mid S \cap$ $\Delta_{E}(j) \mid=C+1$, sont valides pour $\mathcal{P}_{(V, E, C)}$.

Jusqu'à présent seulement des structures ne comportant pas de cycles ont été considérées dans la construction des inégalités valides. Les inégalités de mailles présentées ci-dessous prennent en compte ces structures manquantes.

## Theorem 14 - Validité des inégalités de mailles

Les inégalités de maille

$$
\begin{equation*}
\sum_{e \in S}(C+1) x_{e}^{i}-\sum_{v \in V[S]} C y_{v}^{i} \leq 0 \quad \forall i \in K, j \in V, S \subseteq \Delta_{E}(j), \tag{9}
\end{equation*}
$$

où $G[S]$ a une maille d'au moins $C+1$, sont valides pour $\mathcal{P}_{(V, E, C)}$.

## Résultats expérimentaux

Dans cette section une large étude expérimentale sur le Problème de Minimisation du Nombre d'Arrêts Unitaire est menée et un algorithme de Coupes et Branchements est développé. La formulation (1)-(6) nous sert de point de départ. Suite aux performances insatisfaisantes obtenues avec cette formulation, nous proposons plusieurs atouts capables d'améliorer ces performances. Ces atouts incluent : i. casser la symétrie présente dans le Problème de Minimisation du Nombre d'Arrêts Unitaire, ii. éliminer des variables inutiles, iii. relaxer des variables, et iv. intégrer les inégalités valides identifiées renforçant la formulation dans l'algorithme de coupes et branchements. Toutes les implémentations utilisent le solveur ILOG CPLEX 12.8 couplé avec CPLEX Concert Technology pour permettre une interface avec les librairies CPLEX en utilisant le langage C++.

Un programme linéaire en nombres entiers est défini comme symétrique si l'on peut permuter ses variables sans changer la structure du problème (voir Margot 2010). Dans le cas du Problème de Minimisation du Nombre d'Arrêts Unitaire il est possible de constater que pour toute solution réalisable donnée, une autre solution réalisable de même coût peut être obtenue en permutant les véhicules. Face à des problèmes linéaires en nombres entiers, de nombreux auteurs ont souligné l'importance d'éliminer - ou au moins réduire - la symétrie (e.g. Sherali et Smith 2001; Kaibel et Pfetsch 2008; Denton et al. 2010 ; Ostrowski, Anjos et Vannelli 2010). En effet, pour résoudre un problème linéaire en nombres entiers symétrique via une procédure par séparation et évaluation ${ }^{8}$ (ou par coupes et branchements), nous sommes contraints de résoudre des sous-problèmes isomorphes présents dans l'arbre d'énumération, ce qui représente un effort computationnel inutile. Dans ce scénario, prouver l'optimalité d'une solution réalisable requiert d'explorer et d'éliminer chacun des noeuds isomorphes, ce qui peut être terriblement coûteux. Dans l'intention d'améliorer les performances de la formulation (1)-(6) nous étudions plusieurs méthodes permettant de casser la symétrie. Nous adaptons au Problème de Minimisation du Nombre d'Arrêts Unitaire l'algorithme linéaire appelé Fixation Orbitale ${ }^{9}$ (voir Kaibel, Peinhardt et Pfetsch 2011) permettant de fixer des variables au fur et à mesure que l'arbre d'énumération est exploré (i.e., à chaque branchement effectué), éliminant ainsi la symétrie.

Comme l'on pouvait s'y attendre, la méthode engagée pour briser la symétrie

[^13]du problème a eu un impacte considérable sur les performances de la formulation (1)-(6). En effet, avec l'ajout d'une telle méthode, le nombre d'instances résolues à l'optimalité dans le délai de 2 heures parmi l'ensemble de 63 instances testées a augmenté de 1 à 19 .

Étant donné que le nombre de véhicules utilisés dans une solution optimale peut différer du nombre minimum de véhicules nécessaires à l'obtention d'une solution réalisable, le nombre de véhicules disponibles $p$ était jusqu'à présent fixé à $m$. Parallèlement, nous constatons que le nombre de variables présentes dans la formulation (1)-(6) est $(m+n) p$. Par conséquent, trouver une meilleure borne supérieure pour la valeur de $p$, permettrait de réduire le nombre de variables nécessaires dans une telle formulation. De plus, la symétrie présente dans la formulation est étroitement liée au nombre de véhicules disponibles. Ainsi, réduire le nombre de véhicules disponibles permet de réduire davantage la symétrie derrière le problème.

Le théorème suivant affirme qu'on peut réduire le nombre de véhicules disponibles, sans perte d'optimalité, pour n'importe quelle instance du Problème de Minimisation du Nombre d'Arrêts Unitaire.

## Theorem 15-Borne supérieure pour $p$

Pour n'importe quelle instance $\mathcal{I}=(V, E, C)$ du Problème de Minimisation du Nombre d'Arrêts Unitaire,

$$
p_{o p t} \leq\left\lceil\frac{m}{\left\lfloor\frac{C}{2}\right\rfloor+1}\right\rceil \text {, }
$$

où $p_{\text {opt }}$ désigne le plus petit nombre de véhicules nécessaires à l'obtention d'une solution optimale.

De plus, nous montrons que la borne supérieure fournie par le Théorème 15 est serrée. Une telle démarche a permis une réduction de $60 \%$ des variables, en moyenne. Nous évaluons l'impacte de l'approche à travers une étude expérimentale comparant les performances obtenues en fixant $p$ à $m$ et en fixant $p$ à la nouvelle borne.

La méthode par coupes et branchements consiste à intégrer un algorithme de plans sécants avant chaque phase de branchement dans un algorithme par séparation et évaluation. L'algorithme par coupes et branchements que nous avons développé utilise les inégalités valides identifiées précédemment dans la construction de l'algorithme de plans sécants. Les algorithmes de séparation associés à ces inégalités nécessitent souvent la manipulation de structures de données complexes et l'implémentation d'algorithmes combinatoires de pointe. Pour ce faire, nous avons utilisé LEMON, une libraire de code source ouvert écrite en langage $\mathrm{C}++$ permettant l'implémentation de plusieurs algorithmes de graphes performants (voir Dezső, Jüttner et Kovács 2011; Egerváry Combinatorial Optimization

Research Group 2003).
Les inégalités valides de capacité fortifiée (7) se présentent en nombre polynomial. Par conséquent, stocker ces inégalités dans une réserve et vérifier leur satisfaction à chaque fois que l'algorithme de plans sécants est appelé, reste une façon efficace de résoudre leur problème de séparation. En revanche, les inégalités d'arbres de cardinalité $k$ (8) et les inégalités de maille (9) apparaissent en nombre exponentiel et ainsi nécessitent une approche plus ingénieuse pour résoudre leur problème de séparation.

## Theorem 16 - Séparation des inégalités d'arbres de cardinalité $k$

Le problème de séparation associé aux inégalités d'arbres de cardinalité $k$ (8) est $\mathcal{N} \mathcal{P}$-Difficile.

## Theorem 17 - Séparation des inégalités de maille

Le problème de séparation associé aux inégalités de maille (9) est $\mathcal{N P}$-Difficile.

De ce fait, la conception d'un algorithme polynomial capable de résoudre les problèmes de séparation associés aux inégalités d'arbres de cardinalité $k$ (8) et aux inégalités de maille (9) est invraisemblable, à moins que $\mathcal{P}=\mathcal{N} \mathcal{P}$. Il faut donc espérer qu'un algorithme heuristique soit satisfaisant dans la recherche des inégalités violées. C'est pourquoi nous proposons des heuristiques basées sur une approche gloutonne pour résoudre ces problèmes de séparation.

Les résultats obtenus avec l'algorithme par coupes et branchements développé surpassent nettement les performances obtenues avec CPLEX. En effet, nous avons pu résoudre à l'optimalité 117 parmi les 315 instances testées dans la limite de 2 heures de temps de calcul, tandis que CPLEX n'a résolu que 7 de ces instances.

## Conclusion

Dans cette thèse, nous avons exploré plusieurs aspects d'un problème combinatoire issu de la gestion d'un système de transport à la demande comprenant une flotte de véhicules électriques et autonomes.

Dans un premier temps, nous avons présenté le Problème de Minimisation du Nombre d'Arrêts Unitaire, une variante du Problème de Minimisation du Nombre d'Arrêts introduit par Pimenta et al. 2017. Une revue de la littérature sur les problèmes de transport à la demande a été fournie et d'autres problèmes issus du domaine des télécommunications se sont révélés proches du Problème de Minimisation du Nombre d'Arrêts Unitaire.

Ensuite, nous avons étudié quelques propriétés des solutions optimales du problème. Une telle étude a permis la découverte de nouvelles bornes sur le coût des solutions optimales ainsi qu'une meilleure compréhension des situations où l'optimalité peut être perdue si l'on adopte certaines politiques "intuitives". Des algorithmes combinatoires performant en temps polynomial et capables de résoudre des classes d'instances spécifiques ont été proposés. En revanche, le problème a été démontré $\mathcal{N} \mathcal{P}$-Difficile pour toute valeur de $C \geq 2$, ce qui a permis de répondre à la conjecture posée par Pimenta et al. 2017. Il est important de noter que les preuves de complexité utilisées sont valides même pour le cas où le graphe associé est planaire biparti. Une telle propriété nous a permis d'étendre nos résultats à des problèmes liés améliorant ainsi leur classification de complexité actuelle.

Une fois que le problème a été démontré $\mathcal{N} \mathcal{P}$-Difficile, l'idée de concevoir un algorithme exacte performant en temps polynomial a dû être abandonnée. Toutefois, le besoin de méthodes exactes demeurait. Une formulation linéaire en nombres entiers fournit par Pimenta et al. 2017 a été étudiée et s'est rapidement révélée particulièrement faible. Une étude faciale de l'enveloppe convexe des solutions réalisables du Problème de Minimisation du Nombre d'Arrêts Unitaire a donc été menée afin de mieux comprendre comment cette formulation pourrait être améliorée. La dimension d'un tel polyèdre est alors fournie ainsi que les conditions nécessaires et suffisantes dans lesquelles les inégalités composant la formulation définissent les facettes. Des familles d'inégalités valides capables de renforcer la formulation ont finalement été introduites. Les conditions nécessaires et suffisantes dans lesquelles certaines de ces familles définissent des facettes ont été présentées.

Enfin, les inégalités valides introduites ont été mises à l'épreuve dans le cadre d'une approche par coupes et branchements. Les problèmes de séparation associés à chaque famille d'inégalités valides ont été étudiés et lorsqu'ils ont été détectés comme $\mathcal{N} \mathcal{P}$-Difficile, des procédures heuristiques ont été développées pour rechercher efficacement des coupes violées. Afin d'améliorer les performances de calcul, des méthodes de rupture de symétrie connues dans la littérature ont été étudiées et adaptées au Problème de Minimisation du Nombre d'Arrêts Unitaire. Une comparaison entre ces méthodes a été effectuée et l'algorithme de Fixation Orbitale dû à Kaibel, Peinhardt et Pfetsch 2011 a été choisi pour être celui implémenté dans notre algorithme par coupes et branchements. Une nouvelle limite supérieure pour le nombre de véhicules nécessaires à l'obtention d'une solution optimale est également proposée, ce qui entraînera un grand nombre de variables éliminées.

Les résultats expérimentaux ont prouvé que notre approche surpasse largement l'algorithme traditionnel par coupes et branchements de CPLEX. L'écart d'intégralité restant de toutes les instances testées a été réduit lors de l'application de notre
méthode. De plus, un nombre considérable d'instances qui n'ont pas été résolues de façon optimale dans le délai de deux heures par CPLEX, ont finalement pu être résolues à l'aide de notre algorithme.

Il reste encore certainement beaucoup d'aspects inexplorés avec un potentiel scientifique important à étudier autour du Problème de Minimisation du Nombre d'Arrêts Unitaire. Les axes de recherche futurs pourraient impliquer une étude plus approfondie des inégalités d'arbres de cardinalité $k$ généralisées, dont les conditions nécessaires et suffisantes dans lesquelles des facettes sont définies font toujours défaut. De plus, des procédures de séparation efficaces pour la prise en compte de ces inégalités pourraient améliorer davantage la performance de notre algorithme par coupes et branchements. Nous pensons également qu'une formulation étendue avec une relaxation linéaire plus serrée pourrait être la réponse pour éviter d'avoir à procéder à autant de coupes supplémentaires afin de renforcer la formulation. Pour l'aspect de la complexité, la réponse à notre conjecture selon laquelle le Problème de Minimisation du Nombre d'Arrêts Unitaire d'Intersection est $\mathcal{N} \mathcal{P}$-Difficile pour la capacité $C=4$ (même lorsque $G$ est restreint à la classe des graphes bipartis planaires) reste une question ouverte qui mérite de l'attention.

## Bibliographie

Amini, Omid, Stéphane Pérennes et Ignasi Sau (2009). "Hardness and approximation of traffic grooming". In : Theoretical Computer Science 410.38-40, p. 37513760.

Applegate, David et al. (2001). "TSP cuts which do not conform to the template paradigm". In : Computational combinatorial optimization. Springer, p. 261-303.
Applegate, David et al. (2006). Concorde TSP Solver. URL : http://www.tsp. gatech.edu/concorde/ (visité le 04/05/2019).
Bsaybes, Sahar (2017). "Modèles et algorithmes de gestion de flottes de véhicules vipa". Thèse de doct. Ph. D. thesis, Université Clermont Auvergne.
Denton, Brian T et al. (2010). "Optimal allocation of surgery blocks to operating rooms under uncertainty". In : Operations research 58.4-part-1, p. 802-816.
Dezső, Balázs, Alpár Jüttner et Péter Kovács (2011). "LEMON-an open source C++ graph template library". In : Electronic Notes in Theoretical Computer Science 264.5, p. 23-45.
Edmonds, Jack (1965a). "Maximum matching and a polyhedron with 0 , 1 -vertices". In : Journal of research of the National Bureau of Standards B 69.125-130, p. 5556.

Edmonds, Jack (1965b). "Paths, trees, and flowers". In : Canadian Journal of mathematics 17.3, p. 449-467.

Egerváry Combinatorial Optimization Research Group, EGRES (2003). Lemon Graph Library. URL: https://lemon.cs.elte.hu/trac/lemon (visité le 04/05/2019).
GaO, Paul et al. (2016). "Automotive revolution-perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry". In : Advanced Industries, McKinsey E Company.
Goldschmidt, Olivier et al. (2003). "The SONET edge-partition problem". In : Networks : An International Journal 41.1, p. 13-23.
Grötschel, Martin, László Lovász et Alexander Schrijver (1981). "The ellipsoid method and its consequences in combinatorial optimization". In : Combinatorica 1.2, p. 169-197.

Kaibel, Volker, Matthias Peinhardt et Marc E Pfetsch (2011). "Orbitopal fixing". In : Discrete Optimization 8.4, p. 595-610.
Kaibel, Volker et Marc E Pfetsch (2008). "Packing and partitioning orbitopes". In : Mathematical Programming 114.1, p. 1-36.
Lemaire, P (2001). "Optimisation de réseaux SONET/SDH : éléments théoriques et résolution pratique". In : Mémoire de DEA.
Margot, François (2010). "Symmetry in integer linear programming". In : 50 Years of Integer Programming 1958-2008. Springer, p. 647-686.
Ostrowski, James, Miguel F Anjos et Anthony Vannelli (2010). Symmetry in scheduling problems. Citeseer.
Pimenta, Victor et al. (2017). "Models and algorithms for reliability-oriented Dial-a-Ride with autonomous electric vehicles". In : European Journal of Operational Research 257.2, p. 601-613.
Pulleyblank, WR (1973). "Faces of Matching Polyhedra, Univ. of Waterloo, Dept. Combinatorics and Optimization". Thèse de doct. Ph. D. Thesis.
Sherali, Hanif D et J Cole Smith (2001). "Improving discrete model representations via symmetry considerations". In : Management Science 47.10, p. 13961407.

Wolsey, Laurence A (1998). Integer Programming. Series in Discrete Mathematics and Optimization. Wiley-Interscience New Jersey.


[^0]:    ${ }^{1}$ Véhicule Individuel Public Autonome, in French.
    ${ }^{2}$ https://www.ligier.fr/nos-gammes/ez10.html, accessed on 07-06-2019
    ${ }^{3}$ https://easymile.com/, accessed on 07-06-2019

[^1]:    ${ }^{4}$ https://www.michelin.fr/, accessed on 07-06-2019.
    ${ }^{5}$ https://www.exotic-systems.com/, accessed on 07-06-2019.
    ${ }^{6}$ http://www.imobs3.uca.fr/index.php/en/, accessed on 07-06-2019.
    ${ }^{7}$ https://limos.fr/presentation, accessed on 07-06-2019.
    ${ }^{8}$ http://www.institutpascal.uca.fr/index.php/en/, accessed on 07-06-2019.

[^2]:    ${ }^{9}$ If it is not clear to the reader why the statement is true, Property 1 explicitly exposes the reasons.
    ${ }^{10}$ When instance $\mathcal{I}$ is clear from the context, we may omit the subscript $\mathcal{I}$.

[^3]:    ${ }^{1}$ Both optimal solutions mentioned were obtained by solving the MIP formulation proposed by

[^4]:    Pimenta et al. [151]

[^5]:    ${ }^{2}$ "I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know." - Jack Edmonds, 1966

[^6]:    ${ }^{1}$ This can be easily verified with PORTA (see Christof et al. [30]). PORTA is a free software, distributed under the GNU General Public Licence, containing a collection of routines developed by for analyzing polytopes and polyhedrons.

[^7]:    ${ }^{2}$ Verified with PORTA software (see Christof et al. [30]).

[^8]:    ${ }^{1}$ An Hamiltonian cycle (or Hamiltonian circuit) is a cycle in a graph visiting each vertex exactly once.

[^9]:    ${ }^{2}$ Function Kruskal has been already explained in the description of Algorithm 4 in Section 5.4.2
    ${ }^{3}$ The documentation of functions Kruskal and Dijkstra can be found in Egerváry Combinatorial Optimization Research Group [63, 62]

[^10]:    ${ }^{4}$ The choice of multiplying by 2 is merely empiric. In fact, one may multiply such parameter by any constant $c \geq 1$ in order to obtain a faster or slower progression of pace.

[^11]:    1. Branch-and-Cut, en anglais.
    2. Travelling Salesman Problem (TSP), en anglais.
[^12]:    3. Véhicule Individuel Public Autonome.
    4. https://www.ligier.fr/nos-gammes/ez10.html, consulté le 07-06-2019.
    5. https://easymile.com/, consulté le 07-06-2019.
    6. Innovative Mobility : Smart and Sustainable Solutions
[^13]:    8. Branch-and-Bound, en anglais.
    9. Orbitopal Fixing, en anglais.
