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Mourad BAÏOU Directeur de Thèse
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Abstract

The Stop Number Problem arises in the management of a dial-a-ride system with
small autonomous electric vehicles. In such a system, a fleet of identical capacitated
vehicles travels along a predefined circuit with fixed stations in order to serve clients
requesting for a ride from an origin station to a destination station. Notice that
multiple clients may share the same origin and/or destination stations. The Stop
Number Problem consists of assigning each client request to a vehicle such that
no vehicle gets overloaded. The goal is to minimize the number of times the fleet
of vehicles stops for picking up or delivering clients. When every client requests
for exactly one seat in a vehicle, Stop Number Problem is called Unit Stop Number
Problem. In this thesis, Unit Stop Number Problem is addressed as a combinatorial-
optimization problem.

First, we investigate the complexity of such problem. On the one hand, we
study some properties of optimal solutions and derive a series of particular cases
that are shown to be solvable in polynomial time. On the other hand, we show that
Unit Stop Number Problem is N P-Hard even when restricted to case where each
vehicle can take at most two clients at once and the graph induced by the client
requests is planar bipartite. Such result – which positively answers a conjecture
of Pimenta et al. [151] – is then extended to other related problems such as the
k-Edge Partitioning and the Traffic Grooming problem, improving their respective
state-of-the-art complexity standards.

In a second part, we consider an integer-programming formulation known in the
literature for solving the Unit Stop Number Problem. A preliminary analysis is
conducted in order to prove the weakness of such formulation. Afterwards, such
formulation is reinforced through a polyhedral approach. We provide a facial study
of the polytope associated with the solutions of this problem. New valid inequalities
are introduced and necessary and sufficient conditions for which they are facet-
defining are given.

Finally, based on the discussed polyhedral results, we derive a new efficient
branch-and-cut algorithm. Performance boosting features such as symmetry break-
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ing methods and variable elimination/relaxation are also investigated and imple-
mented into the developed framework. Results convincingly demonstrate the strength
of the reinforcing valid inequalities and therefore of our branch-and-cut algorithm.

Key words: dial-a-ride, stop number problem, combinatorial optimization,
complexity, NP-Hardness, polyhedral combinatorics, branch-and-cut algorithm.
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Introduction

”Begin at the beginning, the King said gravely, and
go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Combinatorial optimization is a significant topic in computer science combining
applied mathematics, algorithms and computation theory. A combinatorial opti-
mization problem is typically stated as choosing the best element among a finite
set of possibilities and generally arises – but not exclusively – from practical situa-
tions. Main applications areas include logistics and supply chains, manufacturing,
transport, team and portfolio management, telecommunications, finance and many
others.

More formally, given a finite set of elements N = {1, . . . , n}, a family F of
subsets F ⊆ N and a cost function c : N → R, a combinatorial optimization
problem consists on determining an element F ∈ F such that c(F ) is maximum
(or minimum) over F . Such problems may appear easy to solve at first sight. For
instance, an straightforward approach would be trying to enumerate all elements in
F – recall that F is finite! – and simply choosing the best one according to the cost
function c. Nevertheless, more often than not such family is composed of a very
large (e.g., exponential in the size of N) number of elements, which prevents the
problem’s resolution through such approach within a life-time period using a limited
resourced computer.

This observation has led scientists to investigate and develop cleverer and fancier
methods to solve this kind of problems. Linear and integer programming as well as
algorithms based on dynamic programming and/or min-max relationships between
combinatorial structures are examples of such methods. However, even with all the
knowledge developed throughout the history of computer science, some combinato-
rial problems are still hard to solve. This means that no algorithm with running
time bounded by a polynomial function in the size of its input is known.

Among these hard problems, a certain class of problems stands out: the so-called
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N P-Hard problems. Informally, a problem belongs to the N P-Hard class if it is at
least as hard as any other problem in the N P class, and a problem is in N P if it
can be formulated as a yes-no question such that the instances where the answer
is “yes” have efficiently verifiable proofs. With respect to combinatorial problems,
this amounts to say that a combinatorial problem is in N P if it can be formulated
through the question of whether or not there exists an element F ∈ F such that
c(F ) is at least (or at most) a given value B ∈ R, and c(F ) can be computed in
polynomial time.

For N P-Hard problems, it is known that if an efficient algorithm exists for a sin-
gle N P-Hard problem, then all N P-Hard problems can also be solved in polynomial
time. Such property guided researchers to impose a dichotomy between efficiently
verifiable problems (class N P) and efficiently solvable problems (class P). Whether
or not these two classes are equivalent has never been proved and remains one of
the golden open questions in computer science. However, it is widely accepted that
P �= N P.

The needs for efficient algorithms to solve real-world problems has never ceased
to increase since the construction of the first computers in the 40’s. In this scenario,
whenever a new combinatorial problem is proposed, one of the first questions one
asks himself is whether such problem is in P or in N P-Hard. If one is capable
of proving that the problem belongs to N P-Hard, then an efficient algorithm for
solving this problem is unlikely (to say the least) to be conceivable. On the other
hand, N P-Hard combinatorial problems have plenty of applications in practice, and
therefore it is unwise and counter-productive to just ignore them. Instead, for such
problems one must aim at solving it not through a polynomial time algorithm but
with a suitable algorithm, that is, as efficiently as possible.

The polyhedral approach, developed by Jack Edmonds in the 60’s (see Edmonds
[59]) over the maximum matching problem, combines the ideas behind linear and
integer programming together with the concepts of discrete geometry in order to
solve combinatorial problems. It consists on formulating a combinatorial problem
as a linear program describing the polyhedron corresponding to the convex hull of
its solutions.

Nonetheless, a complete description of such polyhedron might be tricky to ob-
tain and often enough an exponential number of inequalities is needed. Luckily,
when solving a combinatorial problem, a partial description of the convex hull of its
solutions might be sufficient for solving it in polynomial time. A typical strategy is
hence to develop a Branch-and-Cut framework capable of adding inequalities from
such description on demand. In this sense, the work of Grötschel et al. [82] plays an

2 List of Tables
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important role by stating that a combinatorial problem can be solved in polynomial
time if and only if there exists a polynomial time algorithm capable of solving the
associated separation problem, that is, given a point x, decide whether or not x

belongs to the polyhedron and, if not, provide an inequality that separates x from
the polyhedron. Accordingly, for N P-Hard combinatorial problems, one should ex-
pect the associated separation problem to be also N P-Hard. In such cases, one
can still benefit from polyhedral approaches by trying to solve the associated sep-
aration problem heuristically. Such approach can hence be exploited to yield valid
inequalities capable of enhancing the linear relaxation of a given formulation.

Polyhedral approaches have been given great attention in the past fifty years,
from both theoretical and practical perspectives, and have proved to be powerful
for optimally solving hard combinatorial problems. Indeed, many important state-
of-the-art algorithms for solving such problems take advantage of the polyhedral
approach. Among these, one of the most famous is the Concorde TSP Solver, a
Branch-and-Cut based algorithm treating the classic Travelling Salesman Problem
(see Applegate et al. [4, 6]).

In this thesis, we face a new combinatorial problem called the Stop Number Min-
imization Problem arising from the management of a fleet of autonomous vehicles
and first introduced in Pimenta et al. [151]. In such problem, a fleet of identical
capacitated vehicles travels through a predefined circuit with fixed stations, while
customers demand for a ride between stations of their choice. Assigning a customer
demand to a vehicle imposes such vehicle to stop for picking-up the customer at
its departure station, carry it until its destination, and stop again for dropping it
off at its destination station. The problem consists then in assigning each customer
demand to a vehicle such that its capacity is respected all along the circuit and the
total number of pick-up and drop-off operations is minimized.

In Chapter 1, an important and introductory background on the concepts ex-
ploited throughout this dissertation is provided. In Chapter 2, the context on which
Stop Number problem arises is described in detail and the state-of-the-art concern-
ing such problem is presented. Chapter 3 focus on the investigation of the problem’s
complexity, answering an open conjecture due to Pimenta et al. [151] and giving rise
to new results that can be extended to other related problems. Once the problem
is shown to belong to the class of N P-Hard problems, a polyhedral study is con-
ducted in Chapter 4, yielding new facet-defining valid inequalities. In Chapter 5,
the practical point of view is investigated. The symmetry hidden behind solutions
of the Stop Number Minimization Problem is investigated and showed to slow down
standard Mixed Integer Linear Programming performances. In order to counter such
property, symmetry-breaking methods are developed and implemented for boosting
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the computational results. Finally, a Branch-and-Cut framework is described and
implemented where the valid inequalities previously presented are introduced to the
formulation on demand. The implementation is made under C++ language using
the standard Mixed Integer Linear Program solver IBM ILOG CPLEX 12.8 coupled
with CPLEX Concert Technology. For the implementation of common data struc-
tures such as graphs the COIN-OR LEMON C++ library is exploited.
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Chapter 1

Preliminaries and notation

”It is worth noting that the notation facilitates
discovery. This, in a most wonderful way, reduces the
mind’s labour.”

— Gottfried W Leibniz

This chapter introduces some preliminary definitions, notation and background
knowledge that will ease the reader’s effort throughout this dissertation.

1.1 Graph Theory

The terminology employed is standard and follows the one applied in Diestel [54].

Graphs, vertices and edges. A simple graph is an ordered pair G = (V, E),
where V is a finite set of objects whose elements are called vertices, and E is a finite
set of pairs of vertices in V called edges. Given a graph G, its vertex set is denoted
by V (G), and its edge set is denoted by E(G). If set E is composed of unordered
pairs of vertices, the graph is referred to as undirected. In contrast, if E is composed
of ordered pairs of vertices, the graph is referred to as directed.

Endpoints, incidence and degree. For simplicity, an edge {u, v} ∈ E can
also be denoted by uv. Moreover, sets composed by a single element x can be simply
represented by x instead of {x}. Given an edge e = uv, vertices u and v are called
the endpoints of e. For a given graph G = (V, E), we say that an edge e ∈ E is
incident to v ∈ V if v is one of the endpoints of e. The set of edges incident to
v ∈ V is denoted by δG(v), or simply δ(v) if graph G is clear from context. The
degree of a vertex v ∈ V (i.e., the number of edges incident to v ∈ V ), is denoted
by degG(v), or simply deg(v) if graph G is clear from context.

5
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Parallel edges and multigraphs. Two or more edges with the same endpoints
are called multiple (or parallel) edges. In this case, E is a multiset. If G = (V, E)
admits multiple edges, the graph is referred to as a multigraph. An edge e ∈ E such
that e = uu with u ∈ V is called a loop.

Subgraphs and inductions. Given a graph G = (V, E), the graph G′ is
said to be a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For a subset
of vertices S ⊆ V (G), the set of edges in E having both endpoints in S, that is
{uv ∈ E : u, v ∈ S}, is denoted by E[S]. We say that E[S] is the set of edges
induced (or spanned) by S. Moreover, we denote G[S] = (S, E[S]) the subgraph
of G induced by the vertex set S. Analogously, for a subset of edges S ⊆ E(G),
the set of vertices induced (or spanned) by S is denoted by V [S], and the subgraph
of G induced by the edge set S is denoted by G[S] = (V [S], S). A vertex-induced
subgraph G[S] is maximal (minimal) with respect to a given property if G[S] satisfies
such property but G[S ∪ v] (G[S \ v]) does not, for any given v ∈ V (G) \ S.

Paths and cycles. A path is a non-empty graph P where V (P ) = {v0, v1, . . . ,

vn}and E(P ) = {v0v1, v1v2, . . . , vn−1vn} such that vertices vi are all distinct for
i = 0, . . . , n. Vertices v0 and vn are called the ends of path P . A path P with ends
s ∈ V (P ) and t ∈ V (P ) is called an st-path. The length of a path is given by the
number of its edges. Given a path P , the graph C = (V (P ), E(P ) ∪ vnv0) is called
a cycle.

Partitions and connectivity. An edge-partition of a graph G is a set Π =
{S1, . . . , Sk} of subsets of E(G) where subsets in Π are pairwise disjoint and their
union gives E(G). In other words, Π = {S1, . . . , Sk} is an edge-partition of G if⋃k

i=1 Si = E(G) and Si ∩ Sj = ∅ for i �= j. Analogously, a vertex-partition of a graph
G is a set Π = {S1, . . . , Sk} of subsets of V (G) where subsets in Π are pairwise
disjoint and their union gives V (G). That is to say, Π = {S1, . . . , Sk} is a vertex-
partition of G if ⋃k

i=1 Si = V (G) and Si ∩ Sj = ∅ for i �= j. A graph G is said
to be connected if there exists an st-path between any two vertices s ∈ V (G) and
t ∈ V (G). A connected component of G is a maximal connected vertex-induced
subgraph of G. A graph can be partitioned into its connected components (see
Figure 1.1).

Figure 1.1: Partition of a graph G into its connected components

6 Chapter 1. Preliminaries and notation
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Trees and forests. If a graph T = (V, E) is acyclic, then it is called a forest.
If T is also connected, then it is called a tree. A vertex v ∈ V is called a leaf if
degT (v) = 1. Analogously, an edge uv ∈ E is called a leaf-edge if either u or v is
a leaf. In contrast, a vertex v ∈ V is called an internal vertex if degT (v) ≥ 2. A
rooted tree is a tree with a distinguished vertex r called the root. For a rooted tree
T , we say that a node u ≺ v if u lies in the unique path from r to v. For a given
edge uv ∈ E(T ), if u ≺ v, we say that u is the parent of v and v is a child of u. The
set of the children of v on a rooted tree T is denoted by chT (v) (or simply ch(v),if
the tree in question is implied by the context). If v is a leaf (and v is not the root),
then chT (v) = ∅. Given a rooted tree T , the rooted subtree of T that is rooted in a
node v ∈ V (T ) is denoted by Tv. Notice that node v′ ∈ V (T ) belongs to Tv if and
only if v lies in the unique path from r to v (see Figure 1.2). By definition, Tr = T .

r

v1

v4

v10

v5 v6

v2

v7

v3

v8 v9

(a) A tree T

v1

v4

v10

v5 v6

(b) Rooted subtree Tv1

Figure 1.2: Rooted Trees

Complements and cuts. Given a subset of vertices S ⊆ V within a graph
G = (V, E), the complement of S, denoted by S, is the set of vertices in V \ S. The
cut induced by S, denoted by δG(S), is the set of edges having exactly one endpoint
in S and one in S. Precisely, δG(S) = {uv ∈ E(G) : u ∈ S, v ∈ S}.

Complete, bipartite and complete bipartite graphs. A graph G = (V, E)
is said to be complete if there exists an edge between every pair of vertices (i.e.,
uv ∈ E for any u ∈ V and v ∈ V ). The complete graph with n vertices is denoted
by Kn. A graph G = (V, E) is said to be bipartite if there exists some subset S ⊆ V ,
for which δG(S) = E. Equivalently, a graph G is bipartite if and only if it does
not contain an odd cycle (i.e., a cycle with an odd number of edges). A graph
G = (V, E) is said to be complete bipartite if there exists some subset S ⊆ V , for
which δG(S) = E and uv ∈ E for any u ∈ S and v ∈ S. The complete bipartite
graph with |S| = n and |S| = m is denoted by Kn,m. The complete bipartite graph
K1,n is called a star. A star can also be seen as a tree with n leaves and one internal
vertex. A star with exactly 3 edges is called a claw.

Chapter 1. Preliminaries and notation 7
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Deletions, contractions and subdivisions. Given a graph G = (V, E), the
graph obtained by deleting some edge e ∈ E is G′ = (V, E \ e). On the other hand,
the graph obtained by deleting some vertex v ∈ V is G′ = (V \ v, E \ δG(v)). The
contraction of an edge uv ∈ E is done by deleting edge uv and merging vertices u

and v into a new vertex v′ (see Figure 1.3). More formally, the graph obtained by
contracting an edge e ∈ E is G′ = (V ′, E ′), with the vertex set

V ′ := V \ {u, v} ∪ v′,

where v′ is the new ”merged” vertex (i.e., v′ �∈ V ), and the edge set

E ′ := {E \ {δG(u) ∪ δG(v)}} ∪ {wv′ : uw ∈ E \ uv or vw ∈ E \ uv}.

The subdivision of an edge uv ∈ E corresponds to the replacement of uv by two
edges uw and wv along with a new vertex w (see Figure 1.3). The graph obtained
from the subdivision of edge uv ∈ E is therefore

G′ = (V ∪ w, E \ uv ∪ {uw, wv}).

u v u w v

subdivision

contraction
Figure 1.3: Contraction of node w and subdivision of edge uv

Minors and planar graphs. A graph H is called a minor of graph G if H

can be obtained from G by deleting edges and vertices and by contracting edges.
A graph G = (V, E) is planar if it can be embedded in the plane without crossing
edges. Equivalently, a graph is planar if and only if it does not contain either K5 or
K3,3 as a minor.

Throughout this dissertation, all assessed graphs are considered to be loopless.
Moreover, unless explicitly mentioned, all graphs are taken to be undirected multi-
graphs.

8 Chapter 1. Preliminaries and notation
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1.2 Algorithms and Complexity

Before addressing algorithms and computational complexity theory, the notion of
what a problem is – at least from an algorithmic point of view – should be clear to
any reader. According to Garey and Johnson [74, p. 4], a problem can be defined as
a general question, normally containing a number of parameters (also called input).
In this sense, a problem is fully described by providing a generic description of all its
parameters and a specification of which properties the answer (also called output)
should possess. An instance of a given problem is a set of well-specified values for
the problem’s input.

Example 1.1 gives the description of a well-studied problem called Facility Loca-
tion Problem (FLP), on which a group of customers must be served by not yet built
facilities. A decision maker must then choose among a set of possibilities where to
install (open) such facilities so that the total cost of serving customers and installing
facilities is the minimum possible.

Example 1.1 - Facility Location Problem
Input: A set C = {c1, . . . , cn} of customers, a set F = {f1, . . . , fm} of candidate
facility sites, a cost cj ∈ R

+ for opening facility j ∈ F and a cost dij ∈ R
+ for

serving client i ∈ C from facility j ∈ F .

Output: A subset F ′ ⊆ F of opened facilities that minimizes the sum of service
costs from each customer to its nearest facility, plus the sum of opening costs of
facilities in F ′. �

A decision problem is a problem whose output is either ”yes” or ”no”. An
instance whose output is ”yes” is called a yes-instance or a no-instance, otherwise.
An optimization problem is a problem that aims at maximizing or minimizing a given
objective. The problem described in Example 1.1 is classified as an optimization
problem. Notice however, that every optimization problem can be translated into a
decision problem, giving rise to the so-called associated decision problem. Example
1.2 describes the decision problem associated to FLP.

Example 1.2 - Decision Facility Location Problem
Input: A set C = {c1, . . . , cn} of customers, a set F = {f1, . . . , fm} of candidate
facility sites, a cost cj ∈ R

+ for opening facility j ∈ F , a cost dij ∈ R
+ for serving

client i ∈ C from facility j ∈ F , and a budget B ∈ R
+.

Output: Is there a subset F ′ ⊆ F of opened facilities such that the sum of
service costs from each customer to its nearest facility, plus the sum of opening
costs of facilities in F ′ is at most B? �

Chapter 1. Preliminaries and notation 9
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Algorithms are step-by-step procedures conceived for solving problems. An al-
gorithm is said to solve a problem P , if for any given instance I of P , it produces
a correct answer for that instance I. Computer programs are the concrete product
of the implementation of an algorithm.

Like in real life, a problem may be approached from various angles and some
might perform more or less efficiently than others. This means that for a single
problem P , there exists a great variety of algorithms solving P , each being more or
less efficient. Take for example, the problem of finding the greatest common divisor
of two given integers a and b. A naive approach would be writing down a list of
all divisors for both integers a and b, and then choosing the greatest one appearing
in both lists. However, a much more efficient algorithm is known for solving such
problem. Indeed, the greatest common divisor can be found in just a few steps
through the well-known Euclid’s Algorithm (see Stark [169, p. 16]).

By efficiency of an algorithm we refer to the amount of computational resources –
such as time or memory – a computer needs to execute it. In fact, time requirements
are often enough a dominant factor. Whether or not an algorithm is useful in
practice is considerably determined by the computational time it requires. It is
funny to imagine that if the algorithm used to find a driver’s best route on a GPS
took 20 minutes to be executed instead of some fraction of seconds, people would
still be using physical paper maps.

It should be clear that the computational time needed to run an algorithm de-
pends on the instance’s size. It is entirely rational to imagine that sorting a vector
with 1,000 entries should take longer than one with 10 entries. In this regard, a
standard way of measuring the time complexity of an algorithm is by providing an
upper bound on the running time of its worst-case scenario, that is, the longest
running time for any input of size n.

The big O notation is the most common metric for analyzing the worst-case
running time of an algorithm. By relating the time complexity of an algorithm
to the number of steps required to complete it, the big O notation describes the
asymptotic behaviour of the algorithm’s running time as its input size grows.

Definition 1.1 - Big O notation
Given two function f, g : R → R, g(n) is said to belong to O(f(n)), that is, g(n) ∈
O(f(n)) if there exists positive constants c, n0 ∈ R

+ such that g(n) ≤ c f(n) for all
n ≥ n0.

A polynomial time algorithm is an algorithm whose running time is bounded
above by a function in O(p(n)) where p is a polynomial function and n is the input
size. Conversely, an algorithm whose running time cannot be bounded above by a
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function in O(p(n)) is called an superpolynomial algorithm. An algorithm is called
exponential time algorithm if its running time is bounded above by a function in
O(2nk), for some constant k.

We have seen above that different algorithms may have different time complexity,
but what about problems? Once again, just like in real life, there exists problems
that seems to be harder to solve than others. The complexity of a problem is taken
to be the complexity of the best known algorithm solving such problem. It should
be intuitive for any reader that finding all the divisors of an integer seems to be a
much more complicated task than finding the greatest common divisor of two given
integers. Such intuition is not entirely wrong. Indeed, if one knows how to find all
the divisors of an integer, the problem of finding the greatest common divisor of
two given integers becomes trivial. For this reason, one may remark that the first
problem is at least as hard as the latter one. However, even if one is able to come up
with an efficient (say polynomial time) algorithm for the latter problem, this remark
does not give any clue on how to solve the first problem.

Indeed, showing that no polynomial time algorithm exists for some given problem
might be just as hard as designing a polynomial time algorithm that does solve the
problem. As a matter of fact, there exists many interesting problems for which no
one was able to find an efficient algorithm or to rule out the existence of such an
algorithm. In contrast, what has been largely done is to classify the hardness of a
problem by comparing it to another, just as we did above for the greatest common
divisor problem.

The theory of N P-Completeness introduced independently by Cook [36] and
Levin [119] in the early seventies, remains up to now the most famous and applied
classification system of a problem’s complexity. A problem belongs to P (Polyno-
mial) if it can be solved through a polynomial time algorithm. Examples of problems
in P are the Minimum Spanning Tree problem (Kruskal [111], Prim [152]) and
the Matching problem (Edmonds [60]). Recently, the problem of determining
whether or not a given integer is prime was shown to be in P (Agrawal et al. [2]).

A problem belongs to N P (Nondeterministic Polynomial) if a solution of this
problem can be checked to meet the required properties in polynomial time. No-
tice, that obviously P ⊆ N P. Informally, the set of N P-Hard problems refers to
problems that are at least as hard as the hardest problems in N P .

A decision problem A is said to be polynomially reducible to another decision
problem B, denoted by A ∝ B, if there exists a polynomial time algorithm that
transforms

i. any ”yes”-instance of A into a ”yes”-instance of B, and
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ii. any ”no”-instance of A into a ”no”-instance of B.

Proving that a problem is at least as hard as a problem can be done through
polynomial reductions. In fact, given two problems A and B, if A ∝ B, then B ∈ P
implies that A ∈ P . Equivalently, if A ∝ B, then A /∈ P implies that B /∈ P .
Therefore, if A ∝ B, then B is at least as hard as a problem A.

Taking the notion of reducibility into account, the class of N P-Hard problems
can now be formally defined. A problem A is N P-Hard if B ∝ A for any problem
B ∈ N P. A problem is said to be N P-Complete if it belongs to N P and N P-Hard.
The Satisfiability problem was the first problem showed to be N P-Hard through
the following theorem in the famous paper by Cook [36].

Theorem 1.1 - Cook’s Theorem
If A ∈ N P, then A ∝ Satisfiability. �

After this first step, many other problems were proved to belong in the class of
N P-Hard problems as, for this time, it would suffice showing Satisfiability ∝ A
in order to prove A is N P-Hard. It is worth mentioning here the admirable work
of Karp [103], where 21 fundamental problems were proved to be N P-Complete.
Figure 1.4 illustrates the arrangement of the mentioned complexity classes.

N P
P

N P-
Complete

N P-Hard

Figure 1.4: Euler diagram for N P-Completeness theory

Whether or not there exists some problem in N P that is neither in P nor N P-
Complete is a million dollar question and remains a mystery to this day (see Ladner
[113]). Indeed, proving whether P = N P or P �= N P is one of the greatest unsolved
problems of mathematics (see Carlson et al. [28], Clay Mathematics Institute [34]).

The theory of N P-Completeness addresses the issue of classifying a problem
according to its complexity. Suppose however that an optimization problem P has
been shown to be N P-Hard. The question of how to approach such problem remains
unanswered. All we know is that a polynomial time algorithm capable of solving
the problem P is not known and that one is unlikely to find such algorithm, unless
P = N P . In this scenario, two main strategies arise. First, if the input sizes
are small, a ”good” exponential time algorithm might be suitable for solving P .

12 Chapter 1. Preliminaries and notation



Exploring Combinatorial Aspects of the Stop Number Problem

Second, one may be satisfied with obtaining near-optimal solutions in polynomial
time instead of looking for the very best solution.

In practice, near-optimal solutions are often good enough. But how to define
what is a near-optimal solution? To answer such question, one needs to know
how far the solution under consideration is from the actual optimal solution. A
polynomial time algorithm that provides a guarantee on the solution quality is called
an approximation algorithm. In other words, an approximation algorithm is an
algorithm capable of providing, in polynomial time, solutions that will never differ
from the optimal solution by more than a given percentage.

Given an instance of input size n, a f(n)-approximation algorithm is an algorithm
returning a solution that is at most f(n) times worse than the optimal solution. If opt

denotes the optimal solution cost of a given optimization problem P and y denotes
the cost of the solution provided by the f(n)-approximation algorithm, then

max
{

opt

y
,

y

opt

}
≤ f(n).

This definition applies for both maximization and minimization problems and
f(n) is called the approximation factor. If f(n) = 1 then the algorithm under
consideration is actually an exact algorithm.

Just like with the theory of N P-Completeness, one can classify problems ac-
cording to their approximation complexity. Problems admitting a constant-factor
approximation algorithm running in polynomial time form the class of APX prob-
lems. Problems in APX class include Vertex Cover, Max Cut and Travel-

ling Salesman Problem with metric distances (cf. Vazirani [177], Papadimitriou
and Yannakakis [144], Rosenkrantz et al. [161]).

A polynomial-time approximation scheme is an approximation algorithm that
takes as input an instance of the problem under analysis and a real number ε ∈ R

such that for any fixed value of ε > 0, the algorithm yields, in polynomial time,
a solution that is at most 1 + ε times worse than the optimal solution. Problems
admitting a polynomial-time approximation scheme form the class of PT AS.

Clearly, PT AS ⊆ APX . An optimization problem is said be APX -Complete if
it can be approximated within a constant factor but does not admit an approxima-
tion factor of 1 + ε unless P = N P .
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1.3 Polyhedra

This section presents some fundamental concepts and results from polyhedral theory.
The terminology employed is standard and follows the one applied in Schrijver [164].
For further references on the topic, the reader is referred to Schrijver [163], Bazaraa
et al. [12].

The euclidean space of dimension n, denoted by E
n, is the set of all vectors of

dimension n. Unless explicitly specified, a vector x ∈ E
n will be seen as a column

vector, that is, a column array of n numbers. A vector with all its components equal
to zero is called the zero vector and is denoted by 0. Conversely, a vector with all
its components equal to one is denoted by 1. The i-th unit vector, denoted by ei, is
a vector with all its components equal to zero, except for the component in the i-th
position, which equals 1. An identity matrix, denoted by I, is a square matrix with
ones on the main diagonal and zeros elsewhere, that is

I =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Given n ∈ N, Rn ⊆ E
n (Zn ⊆ E

n, respectively) stands for the set of all vectors
of dimension n such that each of its components are real numbers (integer numbers,
respectively). Analogously, given a set S, R

S (ZS, respectively) is also employed
to refer to the set of all vectors of dimension |S| with real (integer, respectively)
components, each being associated to one specific element in S. A vector x ∈ R

n

is said to be integral if each of its components are integer values. In other words,
x ∈ Z

n. If at least one of its components is a fraction, it is said to be a fractional
vector.

A hyperplane H ⊂ R
n is the set of vectors x ∈ R

n defined as H = {x : aT x = b},
where a is a nonzero vector in R

n, and b is a real number. In other words, a
hyperplane consists of all real vectors x satisfying the equation

n∑
i=1

aixi = b.

A hyperplane can be seen as the generalization of the straight line in R
2, or the

plane in R
3. It divides the euclidean space E

n into two regions, called halfspaces
denoted by H≥ = {x : aT x ≥ b} and H≤ = {x : aT x ≤ b}. Figure 1.5 illustrates a
hyperplane in R

2.
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direction
of a Hyperplane H

Halfspace H≤

Figure 1.5: Hyperplane and halfspaces

A vector x ∈ R
n is said to be a linear combination of vectors a1, a2, . . . , ak in R

n,
if

x =
k∑

i=1
λiai,

where coefficients λ1, λ2, . . . , λk are real numbers. A conical combination is a linear
combination with non-negative coefficients. A convex combination has the additional
conditions that ∑k

i=1 λi = 1 and 0 ≤ λi ≤ 1.

A finite collection of vectors is said to be linearly independent if and only if
λi = 0 for any i ∈ {1, . . . , k} is the only solution to

k∑
i=1

λiai = 0.

Analogously, a finite collection of vectors a1, a2, . . . , ak in R
n is said to be affinely

independent if and only if the only solution to the system
⎧⎪⎨⎪⎩
∑k

i=1 λiai = 0,∑k
i=1 λi = 0.

is λi = 0 for any i ∈ {1, . . . , k}. Linear independence clearly implies affine indepen-
dence, but the opposite might not hold.

A set S ⊆ En is said to be convex if for any two given points xa and xb in X,
then

λxa + (1 − λ)xb ∈ X ∀λ ∈ [0, 1].

In other words, S is a convex set if and only if all points lying on the segment
of line between any xa ∈ S and xb ∈ S belong to S (see Figure 1.6). Notice that a
halfspace is, by definition, a convex set. Moreover, the intersection of convex sets is
also a convex set.

A polyhedron is the intersection of finitely many halfspaces. As a result, a polyhe-
dron is convex. Since each halfspace can be defined through an inequality aT x ≤ b,
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xa

xb

xa xb

convex set non-convex set

Figure 1.6: Examples of convex and non-convex sets

a polyhedron P can be represented by the system Ax ≤ b, where A is the matrix
composed by vectors aT and b is the vector composed by the independent terms b.
In other words, P = {x ∈ R

n : Ax ≤ b}. A polytope P is a polyhedron bounded
in all directions. That is, there exists a number k ∈ R such that ‖x‖ ≤ k for any
x ∈ P .

An inequality aT x ≤ b is called an implicit equality from polyhedron P ⊆ R
n

if P ⊆ {x ∈ R
n : aT x = b}. The dimension of a polyhedron P ⊆ R

n, denoted by
dim(P ), is the maximum number of affinely independent vectors in P minus one.
A polyhedron is called full-dimensional if one can find n + 1 affinely independent
vectors in P , that is dim(P ) = n.

A vector x in a polyhedron P = {x : Ax ≤ b, x ≥ 0} is called an extreme point
of P , if x cannot be written as a strict convex combination of two distinct vectors
xa and xb in P . That is, if

x = λxa + (1 − λ)xb ∈ P,

with 0 < λ < 1 and xa, xb ∈ P , then x = xa = xb.

Notice that if P is a non-empty polytope, then the set of extreme points is
not empty and finite. As a result, any vector x ∈ P can be written as a convex
combination of its extreme points. Figure 1.7 exhibits some examples of extreme
and non-extreme points of a non-empty polytope : x1 is an extreme point whilst x2

and x3 are not.

x1

x2

x3

Figure 1.7: Examples of extreme and non-extreme points

A polyhedron P = {x ∈ R
n : Ax ≤ b} is said to be an integral polyhedron if and
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only if all its extreme points are integral vectors. A matrix A is said to be totally
unimodular if each non-singular square sub-matrix of A has determinant 0, +1 or
−1. A noteworthy link between totally unimodularity and integral polyhedrons is
given by the following theorem due to Hoffman and Kruskal [92]:

Theorem 1.2 - Hoffman and Kruskal’s theorem
Let A be an integral matrix. Then A is totally unimodular if and only if for each
integral vector b, the polyhedron P = {x ∈ R

n : Ax ≤ b, x ≥ 0} is integral. �

An alternative characterization of totally unimodular matrices due to Ghouila-
Houri [77] is presented in the following theorem:

Theorem 1.3 - Ghouila-Houri’s characterization of total unimodularity
Let A be an integral matrix. Then A is totally unimodular if and only if each
collection of columns of A can be split into two parts so that the sum of the columns
in the first part minus the sum of the columns in the second part is a vector with
entries 0, +1, and −1. �

The following theorem is a result developed in many works (cf. Heller and
Tompkins [89], Hoffman and Kruskal [92], Hoffman and Kuhn [93], Motzkin [135])
and can easily be deduced from Ghouila-Houri’s characterization in Theorem 1.3.
It will be particularly useful in Section 4.2.

Theorem 1.4 - Bipartite graphs and total unimodularity
Let G = (V, E) be a graph and let A be the V × E-incidence matrix of G. In other
words, A is the {0,1}-matrix with rows and columns indexed by the vertices and
edges of G, respectively, such that Ave = 1 if and only if v ∈ V is an endpoint of
e ∈ E. Then A is totally unimodular if and only if G is bipartite. �

1.4 Linear optimization

A linear optimization problem (LP) consists of finding the vector x ∈ R
n that max-

imizes (or minimizes) a linear function f(x) over a finite set of linear inequalities
Ax ≤ b, where A is a n × m matrix and b ∈ R

m. Therefore, a linear optimization
problem can be stated as

max
{
f(x) = cT x : Ax ≤ b

}
. (1.1)

Since a polyhedron P can be represented by a system of linear inequalities (i.e.
P = {x : Ax ≤ b}), the optimization problem can be equivalently represented by
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max
{
cT x : x ∈ P

}
.

A vector x ∈ R
n is a feasible solution for the system of linear inequalities Ax ≤ b

if it satisfies all inequalities in Ax ≤ b. If the system of inequalities does not admit
any feasible solution, that is P = ∅, the problem is said to be infeasible.

The linear function cT x is called the objective function, and vector c ∈ R
n is also

known as the gradient since it gives the direction on which the objective function
grows. A feasible solution x that maximizes (or minimizes) the objective function
is called an optimal solution. If a problem has a feasible solution but does not have
an optimal solution (i.e., the associated polyhedron is not bounded in the direction
of the gradient), the problem is said to be unbounded.

Theorem 1.5 gives a relation between optimal solutions of max
{
cT x : x ∈ P

}
and the extreme points of P . We consider here only the case where P is a non-
empty polytope, since the problems treated in this dissertation do not admit an
unbounded polyhedron. A more general result, considering the case where P is any
polyhedron, can be found in Bazaraa et al. [12, p. 91].

Theorem 1.5 - Optimal solutions vs. Extreme points
Given a non-empty polytope P = {x : Ax ≤ b}, the optimal solution of the linear
optimization problem max

{
cT x : x ∈ P

}
occurs in at least one extreme point of P .

Proof. Let x̄1, x̄2, . . . , x̄k denote the extreme points of P . Recall that any point in
P can be written as the convex combination of its extreme points. Therefore, the
optimization problem can be rewritten as:

maximize ∑k
i=1 (cT x̄i)λi

subject to ∑k
i=1 λi = 1

λi ≥ 0 ∀i = 1, . . . , k

To solve this problem, one may simply search for the smallest cT x̄i, say x̄p, and
assign λp = 1 while all other λi’s get a value of zero. The extreme point x̄p is thus
an optimal solution of max

{
cT x : x ∈ P

}
. �

Based on this strong property of linear optimization problems, George B. Dantzig
developed in 1947 the famous simplex method (see Dantzig [44]), which looks for
a starting extreme point and walks through the edges of the polyhedron, jumping
between adjacent extreme points, according to the problem’s gradient. Figure 1.8
illustrate the procedure of simplex algorithm over a polyhedron. For further details
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on the simplex method and how it was conceived, the reader is referred to Dantzig
[45, p. 94-119] and Dantzig [46].

x3

x2

x1

Figure 1.8: Simplex method overview

Simplex method, although quite efficient in practice, was shown to have expo-
nential behaviour in some well-designed instances by Klee and Minty [107]. It was
not until 1979 that solving a linear optimization problem was shown to be possible
in polynomial time with the development of ellipsoid and interior-point methods,
due to Khachiyan [104] and Karmarkar [102], respectively.

If a linear optimization problem is stated as indicated in (1.1), then its dual
problem is

min
{
g(y) = yT b : yT A ≥ c

}
. (1.2)

Conversely, problem (1.1) is called the primal problem. Notice that the dual of
(1.2) is exactly the problem (1.1).

Duality is a key concept in linear optimization that develops the relationship
between two specific linear optimization problems – the primal and dual problems.
We restate here two of the most important results concerning duality attributed to
Von Neumann [178] and Gale et al. [71], that shall be helpful for some of the results
proposed in this dissertation. For further material about duality theory, the reader
is referred to Dantzig [45, p. 120-144].

Theorem 1.6 - Weak Duality Theorem
If x and y are feasible solutions for (1.1) and (1.2), respectively, then

yT b ≥ cT x. �
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As a result, any feasible solution of problem (1.2) provides an upper bound to
problem (1.1). Conversely, any feasible solution of problem (1.1) provides a lower
bound to problem (1.1). Moreover, if the primal is unbounded, then the dual is
infeasible (and vice-versa).

Theorem 1.7 - Strong Duality Theorem
If x and y are feasible solutions of equal objective function value for (1.1) and (1.2),
respectively, then x and y are optimal solutions of the respective problems. �

1.5 Integer and combinatorial optimization

An integer linear optimization problem (ILP) is a linear optimization problem with
the additional restriction that each variable admits only integer values. The formu-
lation of an ILP can thus be stated as

max
{
f(x) = cT x : Ax ≤ b, x ∈ Z

n
}

,

or equivalently as
max

{
f(x) = cT x : x ∈ P, x ∈ Z

n
}

,

where P is a polyhedron.

If only a subset of the variables has this additional restriction, the problem called
a mixed-integer linear optimization problem (MILP), and can be stated as

max
{
f(x, y) = cT x + hT y : Ax + Dy ≤ b, x ∈ Z

n, y ∈ R
p
}

.

Figure 1.9 illustrates the difference of the feasible solution sets of a LP, an ILP
and a MILP over the polytope P = {(x, y) : 2y − x ≤ 3, y + x ≤ 4, x ≥ 0, y ≥ 0}.

y

x

(a) LP: x ∈ R, y ∈ R

y

x

(b) ILP: x ∈ Z, y ∈ Z

y

x

(c) MILP: x ∈ Z, y ∈ R

Figure 1.9: Illustration of feasible solution sets
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Given a finite subset S ⊆ R
n, the convex hull of S, denoted by conv(S), is the

smallest convex set containing S. In other words, conv(S) is the set of all vectors in
R

n that can be written as the convex combination of vectors in S.

The following fundamental theorem of integer programming, due to Meyer [132],
states that given a polyhedron P ⊆ R

n, the convex hull conv(P ∩ Z
n) is also a

rational polyhedron. Figure 1.10 illustrates such fact.

P ′

P

Figure 1.10: Illustration of P ′ = conv(P ∩ Z
2)

Theorem 1.8 - Fundamental Theorem of Integer Programming
Let P = {(x, y) : Ax + Dy ≤ b} and S = {(x, y) ∈ P : x ∈ Z

n}, where A and D are
rational matrices and b is a rational vector. Then, there exists rational matrices A′,
D′ and a rational vector b′ such that

conv(S) = {(x, y) : A′x + D′y ≤ b′} . �

To its fullest extent, Theorem 1.8 precises that solving the LP max{cT x : x ∈
conv(P ∩ Z

n)}, yields an optimal solution for the ILP max
{
cT x : x ∈ P, x ∈ Z

n)
}
.

Moreover, from Figure 1.10 it is easy to see that one single ILP may have an in-
finite number of formulations. Indeed, two polyhedrons P1 and P2 induce valid
formulations for an ILP if and only if P1 ∩ Z

n = P2 ∩ Z
n.

Given a finite set N = {1, . . . , n} and weights ci ∈ R for each i ∈ N , let F be a
family of feasible subsets F ⊆ N (feasible solutions). Then, finding a maximum (or
minimum) weight feasible subset is called a combinatorial optimization problem. In
other words, a combinatorial optimization problem can be stated as

max
{∑

i∈F

ci : F ∈ F
}

. (1.3)

For a given set F ∈ F , the incidence vector xF ∈ {0, 1}n is defined as follows

xF
i =

⎧⎪⎨⎪⎩
0, if i ∈ F

1, otherwise.
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It follows directly that the combinatorial optimization problem (1.3) may be
rewritten as

max
{∑

i∈N

cix
F
i : xF ∈ S

}
,

where S ⊆ {0, 1}n is the set of incident vectors of F .

Finally, from Theorem 1.5 and Theorem 1.8, it is easy to see that

max
{∑

i∈N

cix
F
i : xF ∈ S

}
= max

{∑
i∈N

cix
F
i : xF ∈ conv(S)

}
.

In other words, the combinatorial problem (1.3) reduces to a linear problem over
the convex hull of its feasible solutions. For an example of application of such theory,
the reader is referred to the beautiful paper of Edmonds [59].

Gathering these results together with the fact that linear optimization problems
can be solved in polynomial time (through ellipsoid and interior point methods),
one might imagine that ILP’s can be solved in polynomial time, once the convex
hull of its feasible solutions, conv(S), is known. Unfortunately, obtaining a complete
linear description of conv(S) is usually a difficult task. It turns out that unlike for
LP’s, no polynomial-time algorithm for solving a general ILP is known. Indeed, the
problem of solving an ILP has been shown to be N P-Complete. With a polynomial
reduction from Satisfiability problem, Karp [103] showed its membership to the
class of N P-Hard problems and its membership in N P was proved in Borosh and
Treybig [18].

Two of the most famous algorithms for solving ILP’s (and MILP’s) are based on
the concept of linear relaxation. The following statements will be given for ILP’s
but can obviously be extended for MILP’s. Given an ILP max{f(x) = cT x : Ax ≤ b,
x ∈ Z

n}, its linear relaxation is the LP max{f(x) = cT x : Ax ≤ b, x ∈ R
n} obtained

by dropping the integrality constraints.

The Branch-and-Bound algorithm proposed by Land and Doig [115] has been
largely applied for solving N P-Hard optimization problems. Given a maximization
ILP max{cT x : x ∈ P , x ∈ Z

n}, the Branch-and-Bound algorithm consists of subdi-
viding P into increasingly smaller polyhedrons through the branching procedure. For
this, one has to solve the ILP’s linear relaxation. If the optimal solution found x∗ is
integer, then it is also an optimal solution for the ILP. Otherwise, given a fractional
component x∗

i of x∗, one constructs two new polyhedrons P1 = {x ∈ P, xi ≥ �x∗
i �}

and P2 = {x ∈ P, xi ≤ �x∗
i �}. Such procedure is repeated, constructing the so-called

Branch-and-Bound tree, until every leaf of the tree yields an integer solution or no
solution at all (characterizing infeasibility). Then, the optimal solution of the ILP is
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the best solution among all such integer solutions. In order to shorten the branching
procedure, branches on which there are proofs that one cannot find an optimal so-
lution inside are pruned. Such proofs are gathered through the continuous updates
on the upper and lower bounds and will be discussed more extensively later. For
supplementary information on how Branch-and-Bound works the reader is referred
to Wolsey [181, p.91].

The algorithm’s performance relies considerably on obtaining ”good” bounds.
Notice that the linear relaxation of an ILP yields an upper bound for a given max-
imization ILP, that is

max
{
cT x : Ax ≤ b, x ∈ Z

n
}

≤ max
{
cT x : Ax ≤ b, x ∈ R

n
}

.

Similarly, the linear relaxation yields a lower bound for a minimization ILP. For
this reason, given two formulations P1 and P2 for the same ILP, P1 is said to be
stronger than P2 if P1 ⊂ P2. Alternatively, P1 is said to be stronger than P2 if the
linear relaxation of P1 provides a better bound than the linear relaxation of P2 for
any given objective function. That is,

max
{
cT x : x ∈ P1

}
≤ max

{
cT x : x ∈ P2

}
∀c ∈ R

n.

Let OPT = max
{
cT x : Ax ≤ b, x ∈ Z

n
}

denote the optimal solution value of the
ILP, and LR = max

{
cT x : Ax ≤ b, x ∈ R

n
}

denote the optimal solution value of its
linear relaxation. A standard indicator of the strength of an ILP formulation is the
integrality gap which is defined as the percentage difference between OPT and LR,
that is,

Gap = LR − OPT
OPT .

For a minimization problem, Gap = OPT−LR
OPT .

Given α ∈ R
n and β ∈ R, an inequality αT x ≤ β is said to be a valid inequality for

a set P if αT x ≤ β holds for any vector x ∈ P . With regard to integer programming,
searching for valid inequalities is a major field of research. An emblematic example of
application in which such theory can be found is over the Uncapacitated Facility

Location (UFL) problem (see Jakob and Pruzan [96], Cornuéjols et al. [41]). The
first attempts of using the principle of valid inequalities in order to tighten the
integrality gap of a given ”natural” formulation of UFL problem are due to Balinski
[11], Manne [124], Kuehn and Hamburger [112].

Indeed, cleverly introducing valid inequalities to an ILP formulation max{cT x :
x ∈ P, x ∈ Z

n} is a typical approach for reinforcing it. For this, the introduced
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inequalities should be capable of cutting off solutions in P \conv(P ∩Z
n). Figure 1.11

gives an illustration on the subject where the dashed area represents the solutions
that are cut off by the valid inequality.

P

αT x ≤ β

Figure 1.11: A valid inequality for conv(P ∩Z
n) reinforcing the ILP formulation

For some valid inequality αT x ≤ β of a polyhedron P , F = {x ∈ P : αT x = β}
is called a face of P . If a face F of P has dim(F ) = dim(P ) − 1, it is called a facet
of P . In other words, F is called a facet of P if F is a maximal face of P . The valid
inequality inducing a facet is called facet-defining (see Figure 1.12).

P ′

P

αT x ≤ β

Figure 1.12: Illustration of a facet-defining valid inequality of P ′ = conv(P ∩Z
2)

Another method for solving ILPs, based on the continuous strengthening of
the ILP formulation, is the (60 years old!) iconic and well-studied cutting plane
algorithm due to Gomory et al. [80]. Unlike the Branch-and-Bound algorithm, the
cutting plane principle does not consists on dividing the original polyhedron P but
on carving polyhedron P , through the successively insertion of wisely chosen valid
inequalities (cutting planes) into P . For this, one starts by (again) solving the ILP’s
linear relaxation. If the optimal solution yielded is not integer, one searches for an
inequality that holds for any integer solution in P but is capable of cutting off the
current fractional solution found. The insertion of such inequality generates a new
polyhedron P ′ such that conv(P ∩ Z

n) ⊆ P ′ ⊂ P . This procedure is repeated until
an integer solution is found. For supplementary information on how cutting plane
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algorithm works the reader is referred to Conforti et al. [35] and Wolsey [181, p.113].

Given a polyhedron P ⊆ R
n and a vector x ∈ R

n, the separation problem for P is
to decide whether or not x belongs to P and, if not, provide an inequality αT x ≤ β

that is valid for P but violated by x. The equivalence between optimization and
separation was showed through Theorem 1.9 due to Grötschel et al. [82].

Theorem 1.9 - Optimization ≡ Separation
The linear optimization over max{cT x : x ∈ P} is polynomially solvable if and only
if the separation problem for P is polynomially solvable. �

This means that an ILP max{cT x : x ∈ P, x ∈ Z
n} can be solved in polyno-

mial time if and only if the separation problem for conv(P ∩ Z
n) can be solved in

polynomial time, unless P = N P.

In the context of integer and combinatorial optimization, the two presented meth-
ods - Branch-and-Bound and cutting plane - are often combined into the so-called
Branch-and-Cut algorithm. In this case, cutting planes are generated in each node
of the Branch-and-Bound tree with the intention of tightening the current bounds
and thus providing a stronger pruning phase.

Further references on linear and integer optimization are Chvatal et al. [33],
Schrijver [163], Wolsey [181].
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Chapter 2

The stop number problem

”The greatest challenge to any thinker is stating the
problem in a way that will allow a solution.”

— Bertrand Russell

In this chapter the context on which the Stop Number problem arises is in-
troduced. The problem is then formally defined and the main related works are
presented. Finally, we present the IP formulation on which the integrality of our
study is based on.

2.1 Context

In modern societies, mobility plays a central role in economic and social activities
such as commuting, manufacturing, distributing goods, or supplying energy (see Ro-
drigue et al. [158]). Mobility is supported and driven by transport systems allowing
interactions among individuals, institutions and nations. In Delbosc [49], the role
of transport systems in the development of the well-being and life satisfaction of a
community is highlighted.

It is undeniable that transport systems have constantly progressed throughout
human civilization’s history. Nonetheless, the demand for faster, cheaper and more
convenient forms of mobility has correspondingly evolved. Today, the world is chang-
ing at a faster pace than ever. According to the United Nations Department of
Economic and Social Affairs [175], 55% of the world’s population is concentrated
today in urban areas and such proportion is expected to reach 68% by 2050. At
the same time, the global demand for passenger mobility in urbanized areas – in
terms of passengers-kilometers per year – is expected to double within thirty years
(see Little [120]). The scenario for the transport of goods is even worse due to the
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significant expansion of the e-commerce sector and the consequent boom in demand
for last-mile delivery. As a matter of fact, e-commerce represented a 2.3 trillion
US$ market in 2017 and an expressive growth is expected for the years to come (see
Statista [170]). Figure 2.1 illustrates such progression. Furthermore, the number
of packages and parcels delivered annually in the United States is expected to ex-
pand from 11 billion in 2018 to 16 billion by 2020 (see Laseter et al. [116]). One of
the major challenges facing the world today is therefore to implement an extensive
reform of traditional mobility systems, particularly in urban areas.

Figure 2.1: Retail e-commerce sales worldwide from 2014 to 2021 (in billion U.S.
dollars)

As stated by Gao et al. [72], Ehlers [64], the task of rethinking mobility is cur-
rently being guided by four major technology-driven trends in transportation: con-
nectivity, autonomous driving, diverse mobility services and electrification. Each of
these trends has the power to provide important innovations, but the combination of
them gives rise to the so-called intelligent mobility which has the potential to deliver
a true revolution to the sector. All in all, the intelligent mobility global market is
forecast to be worth more than 1 trillion US$ by 2030.

Connectivity. In Merlin [131], the perfect transport system is characterized by
its low cost (ideally free of charges), instantaneous travel time and unlimited capacity
and availability. In this sense, the transport of data has recently achieved impres-
sive standards. Indeed, by having access to the internet, one is able to exchange
messages on demand between peers of a network incredibly fast (if not instantly),
at a negligible price. It is worth noting that the amount of connected sensors and
data generators is growing at over 30% each year and the Internet of Things (IoT)
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is predicted to contain over 24 billion interconnected devices by 2020, as reported in
Gubbi et al. [88]. In this scenario, by 2030 all new European vehicles are expected to
be part of such network, being capable of communicating with each other and with
other infrastructures (see European Automobile Manufacturers Association [65]).
Such level of connectivity can allow an optimised traffic flow management through
a better understanding and control of time and space in roads and urban areas.

Autonomous driving. Autonomous Vehicles (AVs) refer to vehicles with the
capacity of navigating without human intervention. Several studies can be found
in the literature linking the development of AVs to improvements on traffic miti-
gation and safety (e.g., Talebpour and Mahmassani [172], Fagnant and Kockelman
[66], Kim et al. [105], Ozguner et al. [140]). Indeed, at least 90% of motor vehicle
crashes are caused by human error, as reported in Singh [168]. In addition, the
deployment of fully automated vehicles promises a revolution on the driving expe-
rience as users would be able to focus on other activities such as working, relaxing,
or accessing entertainment. Finally, AVs have the potential to allow social benefits
by providing independent mobility to excluded people such as younger, elderly or
disabled passengers (see KPMG International [109]).

Electric vehicles. The concept of sustainability has received increasing atten-
tion in the recent decades (World Commission on Environment and Development
[182]). The current form of individual motorized transportation represents a mean-
ingful environmental threat. Recently, French government has announced a draft
law to put an end to the sale of petrol and diesel cars by 2040 (see De Rugy and
Borne [48]), even if these still represent today 95% of sales. In this scenario, elec-
tric vehicles represent flourishing market. While in 2017 only 3 million vehicles had
electric engines, perspectives are that, due to supportive government policies and
cost reductions, such number will raise to 125 million by 2030 (see Bunsen et al. [27,
p.11]).

Diverse mobility. Tightening CO2 regulations and people’s growing conscious-
ness over environmental issues together with the struggle of urban centers to ac-
commodate the ever growing traffic flow have transformed the image of traditional
motorized vehicles in the collective mindset and made it synonymous with pollution,
inconvenience, noise and stress. Alongside with this, the current model for individ-
ual motorized mobility is incredibly inefficient as an average private vehicle stands
idle (i.e., parked at home or elsewhere) for 96% of the time (RAC Foundation [155,
p.23]). An executive survey (KPMG International [108]) reveals that the majority
of today’s urban drivers will not want to own a car by 2025, even if demand for
mobility is only increasing within urban areas. Such mentality change is giving rise
to new transport systems proposing a more flexible, reactive and responsible way of
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dealing with customers mobility demands. Among these systems one may refer to
on-demand private ride hiring (e.g., Uber, Lyft) and vehicle sharing (e.g., Moov’in,
car2go, Lime). Such systems can either perform in a free-floating network where
vehicles can be picked up and left parked anywhere, or within hub/depot structures
on which vehicles must be left in predefined parking stations.

New transport systems are striving to find their place between the established
fully individual transportation and the standard collective mobility solutions (e.g.,
buses, subways and trams). A common key component for the successful imple-
mentation of such new systems is the capability of providing a complete (or almost
complete) coverage of destinations for its users. This can be done by either by
ensuring that clients and/or goods are picked up and delivered directly at their
origin and destination points, or by providing a multi-modal integration of synchro-
nized systems. VIPAFLEET project arises from this background by focusing on
contributing to sustainable intelligent mobility through the development of models
and algorithms for managing fleets of specific autonomous vehicles named VIPA, a
French acronym1 for Autonomous Individual Passenger Vehicle. VIPA is an elec-
trical vehicle, developed by Ligier2 and Easymile3, and designed to operate in fully
autonomous manner (i.e., without any driver assistance), notably in semi-closed and
closed sites like medical complexes, commercial or industrial areas and campuses.
The most recent VIPA version named EZ10 is illustrated in Figure 2.2.

Figure 2.2: Autonomous shuttle EZ10 by Easymile and Ligier

The VIPA shuttles are designed to operate in different circulation modes:

• Tram mode: Shuttles travel around a predefined circuit always in the same
direction and stop at a station upon request.

• Elevator mode: Shuttles perform as an horizontal elevator, travelling on a
predefined line, reacting to users demands and therefore changing its driving
direction accordingly.

1Véhicule Individuel Public Autonome, in French.
2https://www.ligier.fr/nos-gammes/ez10.html, accessed on 07-06-2019
3https://easymile.com/, accessed on 07-06-2019
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• Taxi mode: Shuttles serve transport requests (defined by an origin station
and a destination station) smartly choosing its path through a connected net-
work.

It is worth noting that a VIPA shuttle can transport more than one passenger
at the same time. Its latest version, EZ10, is designed to have a capacity of up to
15 passengers. This leads to a Pickup-and-Delivery (PDP) problem on which a fleet
of capacitated vehicles is responsible for transporting clients or goods that must be
moved from certain pickup locations to other delivery locations on a given network.
A state of the art of the PDP and its variants is given in Section 2.3.

In practice, the transport system must be reactive and the fleet of vehicles should
respond dynamically to the on-going flow of user demands through online algorithms.
However, in order to better evaluate such reactive procedures, the static case (also
called offline case) where demands are known in advance should be understood and
mastered. Conversely, a good understanding of the properties and difficulties of the
static case is essential to the development of better suited online algorithms. This
thesis targets systems operating in tram mode and treats its offline case. For a study
on other modes in the online case, the reader is referred to Bsaybes [25].

VIPAFLEET project is a collaboration of numerous partners in order to guar-
antee the reliability of such innovative transport system. Apart from the VIPA
manufacturers Ligier and Easymile, other industrial partners, namely Michelin4 and
Exotic Systems5, also supports the project. The research and development function
is funded by the laboratory of excellence (LabEx) Innovative Mobility: Smart and
Sustainable Solutions6 (IMobS3) and conducted by the research unities Laboratory
of Computing, Modelling and Optimization of the Systems7 (LIMOS) and Institut
Pascal8.

2.2 Problem definition

2.2.1 General presentation

The Stop Number Problem (SNP), first introduced in Pimenta et al. [151], arises
from the management of a fleet of VIPA shuttles performing in tram mode. In this
mode of operation, a circuit with predefined stations is fixed. A special station is

4https://www.michelin.fr/, accessed on 07-06-2019.
5https://www.exotic-systems.com/, accessed on 07-06-2019.
6http://www.imobs3.uca.fr/index.php/en/, accessed on 07-06-2019.
7https://limos.fr/presentation, accessed on 07-06-2019.
8http://www.institutpascal.uca.fr/index.php/en/, accessed on 07-06-2019.
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denoted the depot. Customers use their smartphones or a ’call terminal’ to request
for a ride from an origin station to some destination station of their choice. For its
part, the fleet of identical capacitated vehicles travels around the circuit (always in
the same direction) and stops at a station upon request.

Due to infrastructure restrictions, stations usually do not belong to the circuit
but are attached to it (see Figure 2.3). This particularity produces a significant
impact on the fleet management of such a system. Indeed, in order to respond
to a client demand, the vehicle must slow down and make a deviation from its
original course. Such deviations increases the travel times of on-board customers as
well as the vehicle’s battery consumption, a key resource for electrical vehicles. If
the deviations lengths are supposed to be approximately the same, then improving
the quality of service fairly corresponds to minimizing the total number of stops
performed by the fleet of vehicles. Notice that if this is not the case, one may
focus on minimizing the total deviation length. In Pimenta et al. [151], it is also
pointed out that minimizing the total number of stops is a good way of improving
the system’s reliability by ensuring a steady flow of the vehicles.

Figure 2.3: Circuit Scheme

The Stop Number Problem (SNP) consists of assigning each client demand to a
vehicle such that no vehicle gets overloaded, and the total number of vehicles’ stops
is minimized. For this, one may use as many vehicles as desired. Notice that, in the
search for a better solution, a vehicle is allowed to make several tours before serving
a demand. Tours performed before serving a demand are called waiting tours. In
order to ensure the quality of service and deal with customers time windows, the
maximum number of waiting tours is bounded by a given parameter H ≥ 0 ∈ N.
Moreover, once a customer is picked up, it cannot stay on the vehicle for a full
tour, that is, once loaded it has to be unloaded as soon as the vehicle reaches its
destination. Finally, a customer demand may request for more than one seat on a
single vehicle. In this sense, a demand is specified by an origin station, a destination
station and a load that stands for the number of seats requested.
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In order to investigate the core complexity of SNP, this thesis focus on a con-
strained version of SNP where no waiting tour is allowed (i.e., H = 0) and each
demand can only request for one seat at a vehicle. It is important to mention that
even if each demand has an unity load, multiple demands having the same origin
and destination are allowed. Such constrained variant, is hereafter denoted Unit
Stop Number Problem (U-SNP). Next, the U-SNP is formally described.

2.2.2 The Unit Stop Number Problem

Let V = {1, . . . , n} be the set of predefined stations numbered as they appear along
the circuit network. Notice that the depot does not belong to V . For any two
subsets S1 ⊆ V and S2 ⊆ V , we say S1 ≺ S2 (S1 � S2), if all stations in S1 appear
before (after) all stations in S2 on the circuit. In other words, S1 ≺ S2 if i < j for
any i ∈ S1 and any j ∈ S2. Let E be the set of m unit-load dial-a-ride demands,
where each demand e is specified by a pick-up (origin) station oe ∈ V and a drop-off
(destination) station de ∈ V with oe < de, that is, e = (oe, de). Without loss of
generality9, we assume that each station of V appears as an endpoint of at least one
demand of E.

To serve these m demands, we are given a fleet of p identical vehicles, each of
them having the same capacity C ∈ Z

+. Let K = {1, . . . , p} denote this set of
available vehicles. Throughout this dissertation we make the assumption that the
number of available vehicles is not a crucial resource. In other words, the decision
maker has the choice to use as many vehicles as desired in order to reduce the
total number of stops. With this in mind, unless explicitly specified, the number of
available vehicles p is set to a trivial upper bound m (i.e., p = m).

Notice however that reducing the number of stops prevents the use of an un-
reasonable number of vehicles (this interdependence is further explained in sections
3.1 and 5.2). Moreover, unless explicitly specified, the results presented along this
thesis can easily be extended to the case where the number of available vehicles p is
part of the instance.

An instance of U-SNP is then defined by the network’s stations V , the client
demands E and the capacity C of the available vehicles. With any U-SNP instance
I = (V, E, C), a graph GI = (V, E) can be associated10 and henceforth, stations
and demands may be referred to as nodes and edges, respectively. Notice that
since oe < de for any e ∈ E, the associated graph GI has a natural orientation.

9If it is not clear to the reader why the statement is true, Property 1 explicitly exposes the
reasons.

10When instance I is clear from the context, we may omit the subscript I.
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Nonetheless, we usually represent it as an undirected graph for simplicity. A set of
five demands represented as intervals over four stations and the associated graph
are shown in Figure 2.4.

e1
e2

e3
e4

e5

1 2 3 4

1

4

3

2

e2

e1

e3

e4

e5

Figure 2.4: Construction of the associated graph GI from instance I.

Demands sharing the same extremities (e.g., e1 and e2 in Figure 2.4) are referred
to as parallel demands and correspond to multiple edges in GI . Without loss of
generality, we suppose that GI is a (loopless) connected multigraph for otherwise
solving U-SNP on GI would reduce to independently solving as many U-SNPs as
GI has connected components.

For any subgraph H of GI , and any station v ∈ V (H), let

δ−
H(v) = {e ∈ E(H) : de = v} and δ+

H(v) = {e ∈ E(H) : oe = v}

denote the sets of demands in E(H) that have v as their destination and origin
station, respectively. For the instance depicted in Figure 2.4, δ−

GI (3) = {e1, e2, e3}
and δ+

GI (3) = {e5}.

For any subset F ⊆ E and any station v ∈ V , let

ΔF (v) = {e ∈ F : oe ≤ v ≤ de − 1}

denote the set of demands in F that cross or starts at station v. Notice that
demands having v as their destination station do not belong to ΔF (v). All demands
belonging to ΔE(v) are said to intersect station v. On the associated graph G,
the set of demands intersecting station v, that is ΔE(v), is defined by the cut-
set δG({1, . . . , v}). Figure 2.5 illustrates ΔE(v), for each v ∈ V , in the instance
described in Figure 2.4.

Every station v whose set ΔE(v) is inclusion-wise maximal is referred to as
a maximal-intersection station. In other words, a station v ∈ V is said to be a
maximal-intersection station if there exists no station v′ ∈ V for which ΔE(v) ⊂
ΔE(v′). For the example depicted in Figure 2.4, both stations 2 and 3 are maximal-
intersection, but stations 1 and 4 are not.

Any feasible solution to U-SNP is a partition of E into p subsets E1, . . . , Ep that
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e1
e2

e3
e4

e5

1 2 3 4

ΔE(1) = {e1, e2} ΔE(2) = {e1, e2, e3, e4} ΔE(3) = {e4, e5} ΔE(4) = ∅

Figure 2.5: Illustration of ΔE(v).

satisfy |ΔEi
(v)| ≤ C for i = 1, . . . , p and all v ∈ V . U-SNP thus consists of finding

a partition {E1, . . . , Ep} that minimizes the cost function

c({E1, . . . , Ep}) =
p∑

i=1
|V [Ei]|

where V [Ei] represents the set of stations vehicle i ∈ {1, . . . , p} must stop at. To fix
ideas, consider again the example depicted in Figure 2.4 with C = 2. Then a feasible
solution with five stops (i.e., c({E1, . . . , Ep}) = 5) is E1 = {e1, e2}, E2 = {e3, e4, e5},
and Ei = ∅ for i ∈ {3, 4, 5}.

A minor relaxation to the problem is established below. From now on, we assume
that a vehicle is allowed to naively stop at a station even when not requested (i.e., no
pick-up or drop-off operation is expected). Such relaxation offers a greater freedom
for future analysis of the solutions of U-SNP without impacting the structure of the
optimal solutions as ensured by Property 1,

Property 1 - Trivial remark
Let I be an instance of U-SNP. Then, in an optimal solution of I, a vehicle only
stops at the endpoint stations of the clients assigned to it.

Proof. Consider a solution where some vehicle stops at a station without picking up
nor delivering any client. The solution obtained by removing this stop is feasible
and strictly better than the former one. �

2.2.3 The intersection case

An interesting particular case, hereafter denoted Intersection U-SNP, arises when
there exists some station v′ ∈ V wherein all demands intersect, that is, ΔE(v′) = E.
In such case, each vehicle i ∈ K can serve at most C demands, that is, each subset
Ei must have at most C edges.

Notice that the structure of the associated graph GI is also affected if I =
(V, E, C) is an instance of Intersection U-SNP. Indeed, if this is the case, GI is, by
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definition, bipartite (see Property 2). The opposite, however, may not hold. That
is, if the associated graph GI is bipartite, I may not be an instance of Intersection
U-SNP. Figure 2.6 provides an example where I is not an instance of Intersection
U-SNP even if GI is bipartite.

Property 2 - Bipartiteness of Intersection U-SNP
Given an instance I = (V, E, C) of Intersection U-SNP, GI is a bipartite graph.

Proof. Recall that ΔE(v) = δGI ({1, . . . , v}). Since I is an instance of Intersection
U-SNP, there exists some station v′ ∈ V for which ΔE(v′) = E. Therefore, ΔE(v′) =
δGI ({1, . . . , v′}) = E, and hence GI is bipartite. �

e1
e2

e3

1 2 3 4
Instance I Graph GI

1

4

2

3

e1

e2

e3

Figure 2.6: An example where I is not an instance of Intersection U-SNP but
GI is bipartite.

It follows directly from Property 2 that one can easily construct an instance of
Intersection U-SNP from any bipartite graph G = (U, V, E), by numbering the nodes
(stations) in U from 1 to |U | and the nodes in V from |U | + 1 to |U | + |V |.

To illustrate such particular case, consider again instance I depicted in Figure
2.4. By definition, I is not an instance of Intersection U-SNP. However, if I ′ is
defined by removing e5 from I, then every demand intersects station 2 (i.e., ΔE(2) =
E), and hence I ′ is an instance of Intersection U-SNP.

2.3 State of the art

2.3.1 Transport related problems

The Stop Number Problem consists of transporting clients and/or goods from pickup
points to delivery points, which characterizes the problem as a Vehicle Routing Prob-
lem with Pickups and Deliveries (VRPPD). In Parragh et al. [148, 147], VRPPD
is shown to be composed of two major problem sub-classes. The first one concerns
unpaired pickups and deliveries and is often referred to as Pickup and Delivery Trav-
elling Salesman Problem (PDTSP) or Pickup and Delivery Vehicle Routing Problem
(PDVRP). Such problems typically arises when the transported goods are identical
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(e.g., money) and hence no traceability is required. In other words, the goods de-
livered at some delivery point are allowed to come from any pickup location. The
second subclass accounts for the transportation of paired pickups and deliveries, that
is, each transport demand is associated with an origin and a destination. In such
situation, the vehicle serving a demand must stop at both its origin and destination
points. This subclass comprises the classical Pickup and Delivery Problem (PDP)
and the Dial-A-Ride Problem (DARP), where PDP deals with the transportation
of goods and DARP deals with people transportation. In practice, the difference
between PDP and DARP is related to additional constraints and/or objectives tak-
ing into account the user convenience for improving the service quality. The SNP
is clearly inserted in this latter subclass. Figure 2.7, adapted from Parragh et al.
[148], provides a scheme depicting the relations and inheritances of such family of
problems.

Vehicle Routing Problem with
Pickups and Deliveries (VRPPD)

unpaired
pickups and deliveries

paired
pickups and deliveries

PDTSP,
PDVRP

classical Pickup and
Delivery Problem (PDP)

Dial-A-Ride Problem
(DARP)

Stop Number
Problem (SNP)

Figure 2.7: Pickup and delivery problems. Adapted scheme from Parragh et al.
[148].

Each of the mentioned problem classes has received considerable attention in the
literature. Since SNP can be viewed as a DARP, we focus on providing only its state
of the art, instead of a global overview of transport problems. For a more extensive
presentation of recent research on vehicle routing problems, the reader is referred
to Braekers et al. [21], where 277 articles published between 2009 and 2015 are
analyzed and classified according to their contributions to the field. Furthermore,
a taxonomy for the literature devoted to variants of vehicle routing problems is
provided in Lahyani et al. [114]. Further reviews of transport related scientific
literature can be found in Berbeglia et al. [15], Toth and Vigo [174, 173], Bodin [17].
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Dial-A-Ride Problems

DARPs are commonly defined within the following generic framework. Let n denote
the number of requests to be served and G = (N, A) be a complete directed graph
where N = P ∪ D ∪ {s, t}, P = {p1, . . . , pn} and D = {d1, . . . , dn}. Nodes s and
t represent the initial and final depots, while subsets P and D refer to the sets of
pickup and delivery locations, respectively. Hence, with each request i ∈ {1, . . . , n},
an origin pi and a destination di is associated. Let K denote the set of available
vehicles, each with capacity Qk, for k ∈ K. Finally, with each arc (i, j) ∈ A, a travel
time tij and a routing cost cij are associated. Other features may be incorporated to
this general framework, according to the application on which the problem is based
on. The most common features include:

• A maximum trip duration Tk for each k ∈ K, is typically considered when
driver’s working hours must be taken into account or when fuel is a critical
resource;

• If requests are not homogeneous, a load qi may be associated to each request
i ∈ {1, . . . , n}. This means that the vehicle serving request i has to pickup
qi units at pi and to, identically, drop-off qi units at di. Moreover, a service
duration hi can also be associated to each request i ∈ {1, . . . , n}, forcing the
vehicle serving request i to hold still for hi time units at pi for the pickup
service to be concluded.

• Usually when transporting people, the quality of service is a key factor. For
handling the customers waiting time, a time window [ei, li] can be associated
with each request i ∈ {1, . . . , n}, where ei and li represent the earliest and
latest time at which a service should begin at pi. Moreover, a maximum
riding time Li may be associated to each request i ∈ {1, . . . , n} to avoid users
remaining in the vehicle for too long.

Thereby, DARPs consist of assigning requests and constructing routes (i.e., de-
ciding the order on which requests are picked up and delivered) for each vehicle in
K such that (i.) each request is assigned to some vehicle; (ii.) the load of a vehicle
never exceeds its capacity; (iii.) users and/or vehicle time restrictions are respected;
and (iv.) the total route costs are minimized.

Most of the exact methods developed for treating DARPs found in the literature
are based within a Branch-and-Cut (BC), Branch-and-Price (BP), or Branch-and-
Price-and-Cut (BPC) framework.
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Branch-and-Cut. The first attempt to optimally solve DARP through a BC al-
gorithm is due to Cordeau [37], where a three-index MIP formulation for solving
DARP is introduced. The families of valid inequalities explored are derived from
well-known inequalities for the Vehicle Routing Problem and the Traveling Salesman
Problem such as subtour elimination constraints, precedence constraints and order
constraints. Instances with up to 32 requests were solved. In Ropke et al. [160] a
tighter two-index formulation is presented and the valid inequalities from Cordeau
[37] are adapted to fit such formulation. Moreover, two new families of valid in-
equalities are introduced based on the idea of incompatible user time windows. The
same instances as in Cordeau [37] were solved. Experiments show that the both
formulations (the two-indexed and the three-indexed) are competitive, even if the
more compact one has a minor advantage.

In Parragh [146], a BC framework is proposed for dealing with a variant of
standard DARP taking into account heterogeneous vehicles and users (H-DARP).
A three-index formulation and a two-index formulation based on the works from
Cordeau [37] and Ropke et al. [160] are proposed, and the valid inequalities proposed
in such studies are adapted to fit H-DARP. Instances with up to 40 requests are
solved to optimality and results show that the two-index formulation outperforms
the three-index one. Also inspired by the works from Cordeau [37] and Ropke et al.
[160], a BC algorithm for solving H-DARP with multiple depots (MD-H-DARP) is
proposed in Braekers et al. [20].

Other BC algorithms have been developed in the literature for treating problem-
specific features of the DARP. For instance, in Liu et al. [121] driver’s lunch breaks
are taken into account and hence a request cannot be served during this period of
time. Moreover, due to a strict limit on the trip duration, vehicles are allowed (and
forced) to make multiple trips per day. For treating these particularities, two families
of valid inequalities are proposed. In Braekers and Kovacs [19], being assigned to a
familiar driver is taken as an important aspect of service quality. For this reason,
driver’s consistency is considered in a multi-period DARP by limiting the maximum
number of different drivers serving the same customer over a period of time. In
Cortés et al. [42], a BC framework based on Benders Decomposition (Benders [14])
is proposed for solving a variant of DARP where passengers are allowed to switch
vehicles on certain hub nodes.

A common picture in all such BC frameworks is the search for valid inequalities
strengthening the formulation under study and hence improving its performances.
However, it appears to exist a lack of theoretical research that is capable of truly
evaluating the strength of such inequalities (e.g., by providing the conditions under
which such cuts are facet-defining). Such criticism is also shared by other authors
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(e.g., the literature review conducted by Ho et al. [91, p.403]). With this in mind,
we take extra care on addressing this subject in Chapter 4 for the U-SNP.

Branch-and-Price.

Another common approach when dealing with DARP is to develop a BP frame-
work. Just as BC algorithms, BPs are embedded in a Branch-and-Bound framework,
but instead of generating cuts to reinforce the linear relaxation of a given formu-
lation, BPs focus on column generation. Typically, BP requires a reformulation of
the problem into a MIP having a better LP relaxation and a much larger number of
variables. A subset of variables is then removed from such formulation giving rise to
the so-called restricted master problem. Such action allows a faster resolution but,
in return, it may prevent optimality since not all variables are considered. In order
to handle this drawback, at each node of the Branch-and-Bound tree, a column
generation procedure is applied by solving a pricing problem. The pricing problem
either generates a variable capable of improving the relaxed solution or proves that
such variable does not exists. If such variable is found, it is reintroduced to the
formulation and the LP is reoptimized. Branchings take place when no improving
variable can be found within the pricing problem and the candidate solution does
not satisfies the integrality constraints.

Usually, when dealing with DARPs the pricing problem consists on generating
feasible vehicle routes, while the master problem focus on finding a subset of the
available routes that satisfies all requests and optimizes the problem’s objective
function (e.g., minimize the total route cost). Such reformulation is commonly
referred to as Set Partitioning formulation and is showed to provide better LP
relaxation bounds (see Bramel and Simchi-Levi [22]). The first BP framework for
solving DARPs based on such reformulation is due to Dumas et al. [55]. In Garaix
et al. [73], a DARP taking into account vehicles occupancy rate is treated through
a BP algorithm, where the pricing problem is solved via dynamic programming. In
Feng et al. [67], constraint programming is applied for solving the pricing problem.
A column generation approach is also applied in Parragh et al. [150] for solving a
HDARP.

Branch-and-Price-and-Cut.

If additional cutting planes are introduced to the restricted master problem in
order to reinforce its linear relaxation, the resulting algorithm is called Branch-
and-Price-and-Cut. BPC algorithms combines both column generation and cutting
planes in order to solve combinatorial problems. In Qu and Bard [154], a BPC
framework is developed for the HDARP where subset-row inequalities (due to Jepsen
et al. [97]) are dynamically introduced to the master problem, together with adapted
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constraints derived from Cordeau [37], Ropke et al. [160], Ropke and Cordeau [159].
In Gschwind and Irnich [85], a BPC algorithm is proposed for solving a DARP where
intra-route constraints (i.e., constraints affecting single routes such as maximum trip
duration, precedence and dynamic time windows) are considered. Recently, a BPC
framework has been proposed in Luo et al. [123] for solving a multi-objective realistic
DARP. In such version, requests are not forced to be served like in other typical
DARP applications. Instead, the objective function is modified to first maximize
the number of satisfied requests and then minimizing the total route costs. Moreover,
some additional real-world constraints like driver’s lunch breaks are also taken into
account.

Heuristics and metaheuristics.

Due to the N P-Hardness of DARPs, only small-sized instances can be opti-
mally solved within reasonable time using exact methods. For this reason, most of
scientific research that has been dedicated to DARP focus on the development of
computational efficient algorithms yielding effective solutions, even if optimality is
not guaranteed. Many different heuristics and metaheuristics have been developed
with this goal.

Tabu Search (TS) follows the concept of local search heuristics in the sense that
local changes are applied to a given solution in order to obtain a new one. Tabu
search enhances the performance of standard local search by constructing a tabu
list of solutions that should not be revisited. Moreover, non-improving changes
are accepted in order to avoid getting trapped in local optima. One of the first
TS algorithms proposed for the DARP is due to Cordeau and Laporte [39]. Such
algorithm uses simple local search procedures such as reassigning a request from
a vehicle to another. Moreover, in order to guide the exploration towards new
solutions, frequent changes are penalized and infeasible solutions are temporarily
accepted. Many other TS algorithms for dealing with additional constraints and
real-life applications are adapted versions of such pioneer TS (see Paquette et al.
[145], Ho et al. [90], Kirchler and Calvo [106], Beaudry et al. [13]).

A huge number of other metaheuristics for DARPs can be found in the literature.
These include simulated annealing (e.g., Braekers et al. [20], Zidi et al. [187], Rein-
hardt et al. [157]), genetic algorithms (e.g., Jorgensen et al. [98], Masmoudi et al.
[129]) and variable neighborhood search (e.g., Parragh et al. [149]).

Usually heuristics are less effective than metaheuristics. However, when there
is an urgent need for fast solutions, heuristics may be applied. Such situations
arise typically when dealing with dynamic (online) DARPs or in order to provide
a first feasible solution for a more complex method (see Braekers et al. [20]). In
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Marković et al. [128] a real-world application requiring the resolution of a dynamic
DARP uses a greedy insertion heuristic for obtaining solutions quickly. In Xiang
et al. [185], a dynamic and stochastic DARP (i.e., a dynamic DARP dealing with
time-dependent stochastic events such as fluctuating travel times, new requests,
cancellations, vehicle’s mechanical failures, etc) takes advantage of a local search
heuristic that is called each time a new event take place. A local search procedure
capable of solving instances with up to 2000 requests is also used in Xiang et al.
[184] to obtain fast solutions for a large-scale static DARP.

Further extensive and detailed surveys on DARP are provided in Ho et al. [91],
Cordeau and Laporte [40], Parragh et al. [147], Cordeau and Laporte [38], Molen-
bruch et al. [134].

Stop Number Problem

Stop Number Problem is a recent problem that was introduced in Pimenta et al.
[151] as a reliability oriented DARP, following the conference paper of Deleplanque
et al. [51]. Indeed, SNP can be seen as a Dial-a-Ride Problem where the arc costs
cij = 0 if nodes i and j correspond to the same station, and cij = 1 otherwise. Notice
however that some features of the DARP are handled indirectly in SNP. For instance,
time windows are handled through parameter H representing the maximum number
of waiting tours. Moreover, since the circuit network and its stations are fixed and
predefined, the routing phase is also much less complex than in a standard DARP.
Indeed, once the assignment of demands to vehicles is done, the routing problem in
SNP is reduced to choosing on which tour h ∈ {0, . . . , H} each demand is served.
As a consequence, if H = 0, the routing problem is trivial.

Such considerations yield the question of whether or not SNP and U-SNP are
as hard as DARPs. In Pimenta et al. [151], SNP was proved to be (weakly) NP-
Hard through a simple reduction from the classic Partition Problem (see Garey
and Johnson [74]). Indeed, if all requests have the same origin and destination sta-
tions, SNP is clearly optimized when the number of employed vehicles is minimum.
Therefore, if one supposes

C =
∑

i∈E li
2 ,

where le stands for the load of request i, then SNP fairly corresponds to solving a
Partition Problem.

Notice however that such proof is fully based on the different request loads,
and hence cannot be directly applied to U-SNP. The following theorem, due to
Pimenta et al. [151], shows that U-SNP can be efficiently solved under some specific
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conditions.

Theorem 2.1 - Pimenta et al. [151]
U-SNP is solvable in polynomial time if C and p are fixed constants through dynamic
programming. �

Nevertheless, the question of whether or not U-SNP is N P-Hard remains unan-
swered and the following conjecture is also proposed in Pimenta et al. [151].

Conjecture 1 - Pimenta et al. [151]
U-SNP is N P-Hard. �

For solving SNP, an integer linear programming formulation is proposed in Pi-
menta et al. [151]. Such formulation is further detailed in Section 2.4. Moreover, a
set partitioning reformulation yielding better bounds but containing an exponential
number of variables is also proposed. The associated pricing problem is also shown
to be N P-Hard. It is reported that only small-sized instances could be solved to
optimality. Finally, a Greedy Randomized Adaptive Search Procedure (GRASP) is
proposed for heuristically solving large instances. In Deleplanque et al. [51], SNP
is studied within a Branch-and-Price framework based on the same set partitioning
reformulation.

2.3.2 Other related problems

It is interesting to remark that some network design problems arising from the
telecommunications field are closely related to the Stop Number Problem. To the
best of our knowledge, the connections between the problems mentioned in this
subsection and the SNP were never studied before. It is therefore natural to transfer
and adapt some of the results known in the literature for these problems to the object
of our study: the Stop Number Problem. Such transfers will be explained in detail
at pertinent and suitable points across this dissertation. Notice however, that the
other way around also holds, and some of the results we obtained in the study of
U-SNP can and will be extended to these related problems.

The Intra-Ring Synchronous Optical Network Design Problem

SONET is an American standard of optical fiber transmission technology standing
for Synchronous Optical NETworks (also known in Europe as Synchronous Digital
Hierarchy, or SDH for short). The Intra-Ring Synchronous Optical Net-

work Design Problem is a network design problem arising from the deployment

42 Chapter 2. The stop number problem



Exploring Combinatorial Aspects of the Stop Number Problem

of SONETs. In such problem, one is given a set of telecommunication centers linked
in a circular fashion by a cable of fixed capacity optic fibers, called rings. Moreover,
a set of expected bandwidth requests, or demands, between pairs of centers is given.
For each ring, a collection of demands must be assigned such that the sum of the
bandwidth requests served by the same ring fits its capacity. Within each ring, an
electronic termination called Add-Drop Multiplexer (ADM) must be placed at each
center incident to one of the demands assigned to it. Demands assigned to the same
ring and incident to the same center may share the same ADM. Due to the expen-
sive costs of ADMs, the objective is to minimize the number of installed ADMs. For
further technical information on SONETs and ADMs the reader is referred to Wu
[183].

Formally, the Intra-Ring Synchronous Optical Network Design Prob-

lem can be defined as follows. Consider a set of nodes N referring to the telecom-
munication centers. Let wij ∈ R

+ denote the bandwidth requested between nodes
i ∈ N and j ∈ N and define an edge set E = {ij : wij > 0}. The weight on edge
ij ∈ E is given by wij. Moreover, let M be the set of rings each with capacity k.
The problem consists on partitioning E into |M | subsets E1, . . . , E|M | that mini-
mizes ∑|M |

i=1 |V [Ei]|, such that ∑e∈Ei
we ≤ k, for each i ∈ {1, . . . , |M |}. Notice that if

G = (N, E) is a bipartite graph, Intra-Ring Synchronous Optical Network

Design Problem is equivalent to Intersection SNP with H = 0 and no parallel
demands.

In Sutter et al. [171], the number of available rings is taken to be irrelevant as
the cost of ADMs are significantly higher than opening an extra ring. The authors
propose exact methods and heuristics for solving the problem. A MIP formulation
(with great similarities with the one proposed in Pimenta et al. [151] for the SNP)
is proposed. Nonetheless, the authors report that due to the lack of a good upper
bound on the number of rings, a great deal of symmetry is detected slowing down
the performance of such formulation. Moreover, the weakness of lower bounds is
pointed out as a main reason for which the formulation fails on solving the problem.
A Column-Generation approach is also proposed to provide a quality certificate to
the results obtained heuristically. However, since the column generation subproblem
is also hard to solve, instances with more than 15 nodes could not be solved to
optimality.

In Sherali et al. [167], Lee et al. [117], a variant where the number of ADMs
within the same ring must respect a given constant limit R ∈ N is investigated. The
problem is shown to be N P-Complete with a reduction from Partition Problem,
using the same principle as in the proof of NP-Hardness given by Pimenta et al. [151]
for the SNP. Valid inequalities reinforcing the formulation are introduced and used
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to derive a Branch-and-Cut framework. Nonetheless, most of the valid inequalities
presented require the presence of the ADM limit R. Furthermore, no facial study is
conducted.

The k-Edge-Partitioning Problem

The k-Edge-Partitioning Problem appears in the literature as an uniform ver-
sion of the Intra-Ring Synchronous Optical Network Design Problem.
In such problem, all demands are said to request for the same bandwidth and the
ring capacity is k times this common demand unit. Once again, the cost of using
or opening a ring is considered insignificant, and thus one may use as many rings as
desired.

The problem is formally defined as follows. Given a simple graph G = (V, E),
where V is the set of n centers and E is the set of m demands, and an integer
k ≥ 1, find a partition of E into R subsets E1, . . . , ER that minimizes ∑R

i=1 |V [Ei]|,
such that |Ei| ≤ k for each i ∈ {1, . . . , R}. Notice that if G is a bipartite graph,
k-Edge-Partitioning Problem is equivalent to Intersection U-SNP with no par-
allel demands.

In Goldschmidt et al. [78], the problem is shown to be solvable in polynomial time
for k = 2 and N P-Complete for k ≥ 3. Notice however, that the N P-Completeness
proof given uses a reduction from Edge-Partition into Triangles Problem.
Since such problem is trivial in bipartite graphs, such proof cannot be immediately
extended to show that Intersection U-SNP is also N P-Complete. The authors also
propose a linear-time O(

√
k)-approximation algorithm. Such algorithm relies on

covering the edges of G with trees of size at least
⌈

k
2

⌉
.

In Brauner et al. [24], a linear-time O(
√

k)-approximation algorithm based on
the search for an Eulerian path is proposed. Such algorithm guarantees a better
approximation ratio than the one proposed in Goldschmidt et al. [78], for Eulerian
graphs or if k ≤ m−1√

2m−1 . Moreover, a list of particular cases where the problem can
be solved in polynomial time is given. More precisely, these cases are: i. G is a grid
graph and k = 3; ii. G is a tree and k = 3; iii. G is a complete bipartite graph graph
and k = 3; iv. G is the complete bipartite graph K2,n graph and k is even.

In Brauner and Lemaire [23], a ln
√

k
2 -approximation algorithm is proposed based

on the set covering greedy algorithm due to Chvátal [32]. However, the proposed
algorithm only runs in polynomial time if k is a fixed constant, which characterizes
the algorithm as pseudo-polynomial.
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The Path Traffic Grooming Problem

With the development of wavelength division multiplexing (WDM) technology, it
became possible to split the eligible bandwidth of an optical fiber into several wave-
length channels. The number of available wavelength channels is given by W ∈ N.
This means that, given a WDM network G = (V, E), instead of having one SONET
ADM placed on every wavelength at each node of the network, it is possible to have
an ADM installed only for the wavelengths used at a given node. Moreover, with the
deployment of commercial WDM systems, it has become evident that the dominant
costs in building optical networks are based on the cost of its components, that is,
the number of ADMs installed.

In such networks, traffic demands between nodes must be assigned to a wave-
length channel and routed in the network through a path. In order to use bandwidth
more efficiently, some optical networks allow multiple traffic demands to share the
capacity of a wavelength channel. If each traffic request uses 1/g of the bandwidth
of a wavelength, g is said to be the grooming ratio (or grooming factor). As a con-
sequence, at most g traffic demands passing through a network edge e ∈ E can
be assigned to the same wavelength. Traffic Grooming Problem consists on
assigning demands to wavelength channels as well as routing them through the net-
work, in such a way that the wavelength channel’s capacity is respected on every
edge of the network and the number of ADMs required is minimized.

The concept of traffic grooming was introduced in Gerstel et al. [76]. After
its appearance, Traffic Grooming has been widely studied within many different
network topologies, notably rings (i.e., G is a cycle). See Modiano [133], Dutta
and Rouskas [56], Zhu and Mukherjee [186] for surveys. The case where G is a
path, and therefore, the routing decision is trivial was first considered in Huang
et al. [95]. However, the problem studied in such paper considers that a given traffic
demand occupies 1/g of the bandwidth of a wavelength channel through the whole
path G, which makes the problem equivalent to k-Edge Partitioning Problem

described previously.

In Bermond et al. [16], a demand is said to only occupy the bandwidth over the
path on which it is routed. We are more interested in this latter version named
Path Traffic Grooming that can be formally defined as follows. Consider a
path Pn with vertex set V (Pn) = {1, . . . , n} and edge set E(Pn) composed of edges
uv where 1 ≤ u ≤ n − 1 and v = u + 1. Given path a Pn representing the network, a
graph H = (V (Pn), E) representing the set of requests and a grooming factor g, find
a partition of E into W subsets E1, . . . , EW , such that for each edge uv ∈ E(Pn),
the number of edges ij ∈ Ew with i ≤ u < j is at most g, for each w ∈ {1, . . . , W}.
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The goal is to minimize ∑W
w=1 |V [Ew]|. Notice that Path Traffic Grooming is

equivalent to U-SNP with no parallel demands.

In Bermond et al. [16], Path Traffic Grooming is shown to be solvable in
polynomial time if the set of traffic requests have a uniform all-to-all structure (i.e.,
H is a complete graph) and g = 2. Moreover, the case where g = 1, is solved in
polynomial time for any set of traffic requests. In Amini et al. [3], the problem is
shown to be APX -Complete for any fixed value of g ≥ 2 and an unbounded number
of available wavelengths. In addition, an O(n 1

3 log2 n)-approximation algorithm is
provided.

In Shalom et al. [165], the problem is shown to be N P-Complete for any fixed
g ≥ 2 and bounded number of wavelengths through a reduction from k-Coloring

of Circular Arc Graph. However, such result is contradictory with Theorem
2.1. We are convinced that the proof of N P-Completeness of Path Traffic

Grooming presented only works for an unbounded number of wavelengths since
k-Coloring of Circular Arc Graph can be solved in polynomial time when
the number of colors k is fixed (see Garey et al. [75]).

Network design problems involving the deployment of SONETs in WDM net-
works have been largely studied throughout the literature. Notice however that the
aim of this subsection is not to give a complete state-of-the-art of such problems.
Instead, we have tried to give a glimpse on the problems that show a particular
strong relation with the problem under analysis in this thesis: the Stop Number
Problem.

2.4 Problem formulation and associated polytope

A natural IP formulation for the U-SNP is introduced by Pimenta et al. [151]. Such
formulation is based on two sets of binary variables x ∈ {0, 1}m×p and y ∈ {0, 1}n×p.
The variable xi

e represents the fact that demand e ∈ E is assigned or not to vehicle
i ∈ K, that is,

xi
e =

⎧⎪⎨⎪⎩
1, if e ∈ Ei

0, otherwise.

The variable yi
v indicates whether or not vehicle i ∈ K stops at station v ∈ V , that

is,

yi
v =

⎧⎪⎨⎪⎩
1, if v ∈ V [Ei]

0, otherwise.
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Given an instance I = (V, E, C) of U-SNP, such formulation is hereafter denoted
by

USNP(V,E,C) = {x ∈ R
m×p, y ∈ R

n×p : (x, y) verifies (2.2) − (2.6)},

and is described below.

min
∑
v∈V

∑
i∈K

yi
v (2.1)

subject to∑
i∈K

xi
e = 1 ∀e ∈ E, (2.2)

∑
e∈ΔE(v)

xi
e ≤ C ∀v ∈ V, i ∈ K, (2.3)

xi
e − yi

v ≤ 0 ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (2.4)

xi
e ∈ {0, 1} ∀e ∈ E, i ∈ K, (2.5)

yi
v ∈ {0, 1} ∀v ∈ V, i ∈ K. (2.6)

The objective function (2.1) stands for the total number of stops the fleet of
vehicles is supposed to make. The assignment constraints (2.2) ensure that each
demand is assigned to exactly one vehicle. The capacity constraints (2.3) guarantee
the vehicle’s capacity is respected all along the circuit. Stop constraints (2.4) imposes
that a vehicle must stop at the pick-up and drop-off stations of a demand assigned
to it. Finally, constraints (2.5) and (2.6) settle the domains of variables x and y.

Notice however that, one is not obliged to verify if the capacity is satisfied all
along the circuit. Instead, it may focus exclusively on verifying if capacity is re-
spected on maximal-intersection stations. This means that for the Intersection U-
SNP the following property holds.

Property 3 - Capacity constraints on Intersection U-SNP
If (V, E, C) is an instance of Intersection U-SNP, then capacity constraints (2.3) can
be replaced by ∑

e∈E

xi
e ≤ C ∀ i ∈ K. (2.7)

Given an instance (V, E, C) of U-SNP, let

P(V,E,C) = conv
(
USNP(V,E,C)

)
be the convex hull of the solutions of U-SNP. To the best of our knowledge, such
polytope has not yet been the subject of substantial research. In this sense, Chapter
4 is dedicated to such study.
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2.5 Concluding remarks and useful definitions

Before diving into the main results of this dissertation, some additional remarks and
definitions are made necessary for an easier extensive comprehension of the contents
to come.

Definition 2.1 - Idleness
Given an instance I = (V, E, C) of U-SNP and a feasible solution {E1, . . . , Ep} of
I, vehicle i ∈ K is said to be idle if no demand is assigned to vehicle i, that is,
Ei = ∅. Analogously, for a solution (x̄, ȳ) ∈ USNP(V,E,C), vehicle i ∈ K is said to
be idle if x̄i

e = 0 for every e ∈ E.

Definition 2.2 - Full charge
Given an instance I = (V, E, C) of U-SNP and a feasible solution {E1, . . . , Ep} of I,
vehicle i ∈ K is said to be fully charged at station v ∈ V if exactly C demands are
present in vehicle i at station v, that is, |ΔEi

(v)| = C. Analogously, for a solution
(x̄, ȳ) ∈ USNP(V,E,C), vehicle i ∈ K is said to be fully charged at station v ∈ V if∑

e∈ΔE(v) x̄i
e = C.

Definition 2.3 - Minimum and optimal number of vehicles
Given an instance I = (V, E, C) of U-SNP and a feasible solution π = {E1, . . . , Ep}
of I, let p′

π denote the number of non-idle vehicles in solution π. When solution π

is clear from the context, we may omit the subscript π. Moreover, let pmin denote
the minimum number of vehicles necessary to serve all the demands in E. In other
words, if ΠI represents the set of all feasible solutions of I, then

pmin = min
π∈ΠI

{p′
π}.

Analogously, let popt denote the minimum number of non-idle vehicles among the
optimal solutions of I. In other words, if Π∗

I represents the set of optimal solutions
of I, then

popt = min
π∈Π∗

I
{p′

π}.

Definition 2.4 - Merge
Given an instance I = (V, E, C) of U-SNP, a feasible solution {E1, . . . , Ep} of I,
and a pair of vehicles i and j, the solution {Ē1, . . . , Ēp} is said to be obtained from
{E1, . . . , Ep} by merging vehicles i and j if

Ēi = Ei ∪ Ej,

Ēj = ∅,

Ēk = Ek ∀k ∈ K \ {i, j}.
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Analogously, given a solution (x, y) ∈ USNP(V,E,C) , the solution (x̄, ȳ) is said to
be obtained from (x, y) by merging vehicles i and j if

x̄i
e = xi

e + xj
e ∀e ∈ E,

x̄j
e = 0 ∀e ∈ E,

x̄k
e = xk

e ∀e ∈ E, k ∈ K \ {i, j},

ȳi
v = max{yi

v, yj
v} ∀v ∈ V,

ȳj
v = 0 ∀v ∈ V,

ȳk
v = yk

v ∀v ∈ V, k ∈ K \ {i, j}.

Notice that merging two vehicles might result in a unfeasible solution. Indeed,
the resulting solution {Ē1, . . . , Ēp} is only feasible if |ΔEi∪Ej

(v)| ≤ C for every
v ∈ V . Nonetheless, throughout this thesis we are cautious enough to invoke such
operation only on suitable situations.
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Chapter 3

Properties and complexity

”Simple things should be simple, complex things
should be possible.”

— Alan Kay

In this chapter, the complexity of U-SNP is deeply investigated. Firstly, a series
of properties and lower bounds for the U-SNP are presented. Based on such results,
some particular cases are shown to be solvable in polynomial time. Next, a collection
of important observations are made in order to finally derive a proof of NP-Hardness
for the U-SNP.

3.1 Properties

For U-SNP, a vehicle does not have to stop in every station of the circuit. Instead,
a vehicle must stop at the endpoint stations of all the clients assigned to it. Such
observation yields the following remark that must be made explicit to the reader
even if it might seem trivial.

Proposition 3.1 - Trivial lower bound
Given an instance (V, E, C) of U-SNP, a trivial lower bound on the total number of
stops is the number of stations n.

Proof. Each station v ∈ V has at least one demand incident to it. Therefore, at least
one vehicle must stop at v. If exactly one vehicle stops at each of the n stations,
then one has a solution with n stops. �

Notice however that such lower bound is only met in extremely particular cases.
As a matter of fact, this can only be achieved if ΔE(v) has at most C edges, for
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each v ∈ V . Moreover, if this is the case, a single vehicle can handle all demands
and U-SNP can be trivially solved. By taking into account the structure of the
graph G = (V, E), one may try to derive better quality lower bounds than the one
described in Proposition 3.1.

Proposition 3.2 - Lower bound based on degrees
Given an instance I = (V, E, C) of U-SNP, a lower bound on the total number of
stops is given by ∑

v∈V

⌈
max{|δ−

GI (v)|, |δ+
GI (v)|}

C

⌉
. (3.1)

Proof. A single vehicle can take at most C demands among δ−
GI (v) or δ+

GI (v). Since
all demands must be served by some vehicle, each station v ∈ V must be visited by
at least ⌈

max{|δ−
GI (v)|, |δ+

GI (v)|}
C

⌉

different vehicles. �

The next lower bound proposed here requires a further investigation on the
minimum number of vehicles needed to serve the m demands in E (i.e., pmin), for a
given instance (V, E, C) of U-SNP. A trivial lower bound for pmin is

pmin ≥ max
v∈V

{⌈
|ΔE(v)|

C

⌉}
,

for otherwise, the fleet is not capable of serving all demands in ΔE(v′) ⊆ E, where

v′ = arg max
v∈V

{|ΔE(v)|} .

On the other hand, since the demands can be viewed as (half closed - half open)
intervals of the real line, a solution using exactly maxv∈V

{⌈ |ΔE(v)|
C

⌉}
vehicles, clearly

can be computed in polynomial time by a first-fit type algorithm with demands
picked out in order of increasing pick-up station. The above results lead to the
following proposition.

Proposition 3.3 - The value of pmin

Given an instance (V, E, C) of U-SNP,

pmin = max
v∈V

{⌈
|ΔE(v)|

C

⌉}
.

Notice that if (V, E, C) is an instance of Intersection U-SNP, maxv∈V {|ΔE(v)|} =
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m and therefore,
pmin =

⌈
m

C

⌉
. �

Property 4 - Idle vehicles
Given an instance I = (V, E, C) of U-SNP, with C ≥ 2, there always exists a solution
{E1, . . . , Ep} of I where at least one vehicle is idle. That is, there exists some i ∈ K

for which Ei = ∅.

Proof. Trivial, since p = m ≥ pmin + 1. �

In graph theory, the girth of a graph G corresponds to the length of the smallest
cycle contained in G. In other words, a graph is said to have girth k if it contains
no cycle of size smaller than k. Such notion can be explored in order to derive new
lower bounds.

Property 5 - Big cycles produce forests
Given an instance (V, E, C) of Intersection U-SNP, such that graph G = (V, E) has
girth greater than C, then in any feasible solution, G(Ei) is a forest, for i ∈ K.

Proof. G(Ei) cannot contain any cycle since the smallest cycle in G would violate
the vehicle’s capacity. Therefore, G(Ei) is a forest. �

Proposition 3.4 - Lower bound based on girth
Given an instance (V, E, C) of Intersection U-SNP, such that graph G = (V, E) has
girth greater than C, then a lower bound on the total number of stops is given by

m +
⌈

m

C

⌉
.

Proof. From Property 5, one knows that in any feasible solution, G(Ei) is a forest,
for any i ∈ K. Recall that the cost of a solution is evaluated as

∑
i∈K

|V [Ei]|.

Let p′ denote the number of vehicles used in such feasible solution. Without loss
of generality, assume Ei �= ∅ for i ≤ p′. By definition, a tree with m edges has m + 1
vertices. It follows that |V [Ei]| = |Ei| + ti, where ti ≥ 1 is the number of trees in
the forest G(Ei), for i ≤ p′. Hence,

∑
i∈K

|V [Ei]| =
p′∑

i=1
(|Ei| + ti) ≥

p′∑
i=1

(|Ei| + 1) = m + p′.
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Finally, since p′ ≥ pmin,

∑
i∈K

|V [Ei]| ≥ m +
⌈

m

C

⌉
. �

In Pimenta et al. [151], it is pointed out – empirically – that for any given an
instance (V, E, C) of U-SNP, popt = pmin. Next, we show that such statement holds
if C = 2 and (V, E, C) is an instance of Intersection U-SNP. However, for C ≥ 3,
such statement is false. We prove it by showing that even when G = (V, E) is a
tree, popt can be strictly greater than pmin.

Proposition 3.5 - On Intersection U-SNP with C = 2, popt = pmin

Given an instance (V, E, 2) of Intersection U-SNP,

popt = pmin.

Proof. If, in an optimal solution, 2 or more vehicles are assigned less than 2 clients,
then one can merge pairs of such vehicles in order to construct a solution where at
most one vehicle is assigned one single client. Such constructed solution induces at
most the same number of stops as the former solution. Therefore, the constructed
solution is also optimal. Then,

popt =
⌈

m

2

⌉
= pmin. �

Proposition 3.6 - On Intersection U-SNP with C = 3, popt �= pmin

On Intersection U-SNP, popt might be strictly greater than pmin.

Proof. The proof is done through a counter-example. Consider the instance of In-
tersection U-SNP depicted in Figure 3.1 with C = 3.

1 2 3 4 5 6 7 8 9 10

1

6

5 7

3

9

2

8

4

10

Figure 3.1: Counter-example instance used for proving pmin �= popt.

The instance depicted here is composed of 3 triples of parallel demands, all with
same origin, and a path of length 2 attached to each of their destinations. A feasible
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solution with 15 stops is obtained by assigning each triple of parallel demands and
each path of length 2 to a different vehicle. Moreover, this is an optimal solution
since Proposition 3.2 ensures that

∑
v∈V

⌈
max{|δ−

G(v)|, |δ+
G(v)|}

C

⌉
= 15

is a lower bound on the number of stops. However, this solution uses 6 vehicles,
while

pmin =
⌈

m

C

⌉
=
⌈15

3

⌉
= 5.

We show next that one cannot find an optimal solution using exactly pmin vehi-
cles. In order to obtain exactly 15 stops, each each station v ∈ V must be visited
by exactly

⌈
max{|δ−

G(v)|,|δ+
G(v)|}

C

⌉
vehicles. Hence, stations 2, 3 and 4 must be visited by

exactly 1 vehicle, which forces the paths of length 2 to be each on a different vehicle.
Similarly, stations 5, 6 and 7 must be visited by exactly 2 vehicles, and station 1 by
exactly 3 vehicles. Additionally, using only 5 vehicles imposes each vehicle to carry
exactly 3 demands. Thus each vehicle that takes a path of length 2 must also take
one of the parallel demands incident to it, otherwise one of stations 5, 6 or 7 must be
visited by 3 vehicles. With this in mind, station 1 is already visited by 3 vehicles.
However, some of the parallel demands have not been assigned yet, forcing station
1 to be visited by more than 3 vehicles, which prevents optimality. �

To go even further, consider the tree T = (V, E) represented in Figure 3.2 and
let I = (V, E, 3) be an instance of Intersection U-SNP.

0 7

1 10

2 11

8

3

12

4

13

9

514

615
Figure 3.2: Counter-example on a tree T

Instance I is composed of 15 demands, which means that pmin = 5. Solving such
instance with only 5 vehicles available yields an optimal solution stopping 22 times.
On the other hand, if 6 vehicles are provided, an optimal solution with 21 stops can
be achieved1. This shows that given an instance (V, E, C) of U-SNP, popt can be

1Both optimal solutions mentioned were obtained by solving the MIP formulation proposed by
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strictly larger than pmin even if G = (V, E) is a tree.

Another intuition one may have when trying to solve U-SNP is to keep parallel
demands together. Indeed, for the Intersection U-SNP with C = 2, this policy does
not prevent optimality as indicated by Proposition 3.7.

Proposition 3.7 - Parallel demands on Intersection U-SNP
Given an instance I = (V, E, 2) of Intersection U-SNP such that E has two parallel
demands e and e′, there exists an optimal solution where e and e′ are assigned to
the same vehicle.

Proof. Assume on the contrary that e and e′ are served by different vehicles in every
optimal solution. Let {E∗

1 , . . . , E∗
p} be an optimal solution such that, w.l.o.g., e ∈ E∗

1

and e′ ∈ E∗
2 . Trivially, |E∗

1 | = 2, for otherwise {E∗
1 ∪ e′, E∗

2 \ e′, E∗
3 , . . . , E∗

p} would
be a feasible solution with no more stops than {E∗

1 , . . . , E∗
p}. Similarly, |E∗

2 | = 2.
Let f denote the other demand served by vehicle 1, that is, f = E∗

1 \ e. Likewise,
let f ′ = E∗

2 \ e′. Consider now the feasible solution {{e, e′}, {f, f ′}, E∗
3 , . . . , E∗

p} and
let α = |V [{f, f ′}]|. Notice that 2 ≤ α ≤ 4. Then, one has

c({{e, e′}, {f, f ′}, E∗
3 , . . . , E∗

p}) = c({E∗
1 , . . . , E∗

p})−(|V [E∗
1 ]|+|V [E∗

2 ]|)+2+α. (3.2)

If e and f (or e′ and f ′) are parallel demands, then |V [E∗
1 ]| + |V [E∗

2 ]| = 2 + α

and by (3.2), {{e, e′}, {f, f ′}, E∗
3 , . . . , E∗

p} is optimal. On the other hand, if none of
the sets E∗

1 and E∗
2 are composed of parallel demands, one has |V [E∗

1 ]| + |V [E∗
2 ]| ≥

6 ≥ 2 + α since α ≤ 4, and once again {{e, e′}, {f, f ′}, E∗
3 , . . . , E∗

p} is optimal.
Therefore, there always exists an optimal solution where the parallel demands e and
e′ are served by the same vehicle. �

Nonetheless, such strategy might be deceiving for more general cases. Proposi-
tion 3.8 provides evidence that adopting this strategy may prevent optimality.

Proposition 3.8 - Parallel demands on U-SNP
Given an instance I = (V, E, 2) of U-SNP such that E has two parallel demands e

and e′, there might exist no optimal solution where e and e′ are assigned to the same
vehicle.

Proof. The proof is done through a counter-example. Consider the instance of U-
SNP described in Figure 3.3 with C = 2.

A feasible solution with six stops can be obtained by assigning demands a, c

and e to vehicle 1 and the others to vehicle 2. Notice that, in this solution the

Pimenta et al. [151]
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a

b
c

d
e

f

1 2 3 4

1 2

3

4

Figure 3.3: Counter-example instance used for proving parallel demands might
have to be separated

parallel demands a and b are not served by the same vehicle. Next, we show that if
one forces these demands to be served by the same vehicle, then one cannot find a
solution with less than seven stops. In other words, no optimal solution wherein a

and b are served by the same vehicle can be found.

For this, let {E1, . . . , Ep} be a feasible solution such that, w.l.o.g., a ∈ E1 and
b ∈ E1. Demands c and d must be served by other vehicles (i.e., c /∈ E1 and d /∈ E1),
for otherwise the capacity of vehicle 1 is violated.

Suppose c and d are served by different vehicles. W.l.o.g, assume c ∈ E2 and
d ∈ E3. Hence, the assignment of demands a, b, c and d already induces six stops
(the vehicles 1,2, and 3 have two stops each) and assigning e to any vehicle increases
this value.

On the other hand, if c and d are served by the same vehicle (w.l.o.g., say c ∈ E2

and d ∈ E2), then the assignment of demands a, b, c and d already induces five
stops (vehicle 1 has two stops and vehicle 2 has three stops). Notice that demands
e and f cannot be served by vehicle 2 (i.e., e /∈ E2 and f /∈ E2), for otherwise
its capacity is violated. Moreover, none of the remaining demands e and f can be
served by other vehicle than vehicle 1 (i.e., e ∈ E1 and f ∈ E1), for otherwise a third
vehicle would be required, and at least two more stops would be needed. However,
the constructed solution {{a, b, e, f}, {c, d}, ∅, . . . , ∅} requires at least seven stops.
Therefore, no solution with six stops wherein a and b are assigned to the same vehicle
can be found. �

The results presented in this section offer an insight on how difficult it is to
characterize the optimal solutions of U-SNP. At the same time, for some specific
cases, it was possible to show that by adopting some simple intuitions, optimality
remains preserved. The next section takes profit of such results to derive polynomial
time algorithms that are capable of solving certain particular cases of U-SNP.

56 Chapter 3. Properties and complexity



Exploring Combinatorial Aspects of the Stop Number Problem

3.2 Polynomial Cases

When instance I = (V, E, C) meets some particular conditions, U-SNP can be
solved in polynomial time. Some trivial cases arise when C = 1 and (V, E, C) is an
instance of Intersection U-SNP, or when C ≥ maxv∈V {|ΔE(v)|}. In the former case,
each vehicle is constrained to serve exactly one demand, and therefore no solution
with less than 2m stops is achievable. In the latter case, all demands fit into one
single vehicle since pmin = 1, and this solution has n stops, which meets the lower
bound provided by Proposition 3.1. Next, a series of less trivial cases are shown to
be solvable in polynomial time.

Proposition 3.9 - Unit Capacity
Let I = (V, E, 1) be an instance of U-SNP. Then, U-SNP can be solved in O(m)
time and the optimal solution has cost

∑
v∈V

max
{
|δ−

GI (v)|, |δ+
GI (v)|

}
.

Proof. Notice that since C = 1, parallel demands cannot be served by the same
vehicle. In Bermond et al. [16], Path Traffic Grooming is shown to be solvable
in polynomial time for grooming factor g = 1. Since Path Traffic Grooming

is equivalent to U-SNP with no parallel demands, we may use such result to derive
a polynomial time algorithm capable of solving U-SNP for C = 1. Consider the
following greedy algorithm that, given an instance (V, E, 1) of U-SNP, sequentially:

i. selects a maximal sequence (e1, . . . , eq), q ≥ 1, of demands with dei
= oei+1 for

i = 1, . . . , q − 1,

ii. assigns the demands of such sequence to an available vehicle, and

iii. removes the q demands of the sequence from E.

Such algorithm may run in O(m) time and yields a solution with

∑
v∈V

max
{
|δ−

GI (v)|, |δ+
GI (v)|

}

stops, which meets the lower bound provided by Proposition 3.2. �

Proposition 3.10 - Complete graphs and C = 2
Let (V, E, 2) be an instance of U-SNP such that G = (V, E) is a complete graph Kn.
Then U-SNP can be solved in polynomial time.
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Proof. In Bermond et al. [16], Path Traffic Grooming is shown to be solvable in
polynomial time when the request graph is a complete graph Kn and the grooming
factor g = 2. Since Path Traffic Grooming is equivalent to U-SNP with no
parallel demands, such result also applies for U-SNP. �

Proposition 3.11 - Stars
Let (V, E, C) be an instance of U-SNP such that G = (V, E) is a star. Then U-SNP
can be solved in polynomial time and the optimal solution has cost

∑
v∈V

⌈
max{|δ−

G(v)|, |δ+
G(v)|}

C

⌉
.

Proof. Construct an optimal solution of (V, E, 1) using the greedy algorithm de-
scribed in Proposition 3.9. Using the output solution, construct a solution of
(V, E, C) by merging groups of C vehicles. The resulting solution stops

∑
v∈V

⌈
max{|δ−

G(v)|, |δ+
G(v)|}

C

⌉

times, which meets the lower bound provided by Proposition 3.2. �

Proposition 3.12 - Paths and cycles for the intersection case
Let (V, E, C) be an instance of Intersection U-SNP such that G = (V, E) is a path
(or a cycle). Then U-SNP can be solved in polynomial time and the optimal solution
has cost

m +
⌈

m

C

⌉
.

Proof. The proof is done for the case where G is a path, but it also holds if G is
a cycle. Let (e1, . . . , em) be the sequence in which the demands appear on path G

(see Figure 3.4).

e1 e2 . . . em

Figure 3.4: Sequence of demands in G

Consider the greedy algorithm that assigns each set of demands

{
eiC+1, . . . , emax{m,iC+C}

}
to a different vehicle, for 0 ≤ i ≤

⌈
m
C

⌉
− 1. Such algorithm yields a solution with⌈

m
C

⌉
− 1 fully charged vehicles, each stopping C + 1 times and one vehicle stopping

[
m −

(⌈
m

C

⌉
− 1
)

C
]

+ 1
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times. Therefore, the solution obtained has

m +
⌈

m

C

⌉

stops, which meets the lower bound provided by Proposition 3.4. �

Proposition 3.13 - Trees, grids and complete bipartite graphs for the
intersection case with C = 3
Let (V, E, 3) be an instance of Intersection U-SNP such that G = (V, E) is either a
tree, a grid or a complete bipartite graph. Then U-SNP can be solved in polynomial
time.

Proof. In Lemaire [118], k-Edge-Partitioning Problem is shown to be solvable
in polynomial time if G is either a tree, a grid or a complete bipartite graph and
k = 3. Recall that if G is a bipartite graph, then k-Edge-Partitioning Problem

is equivalent to Intersection U-SNP with no parallel demands. Since trees, grids
and complete bipartite graphs are all examples of bipartite graphs, such result also
applies for U-SNP. �

So far, the particular cases presented in this section did not have to deal with the
presence of parallel demands. For this reason, many results known in the literature
for some related problems could be easily extended to the U-SNP. Next, we show
that any instance (parallel demands allowed) of the Intersection U-SNP with C = 2
can be solved in polynomial time.

Proposition 3.14 - Intersection case with C = 2
Intersection U-SNP can be solved in O(m) time when C = 2.

Proof. Consider an instance I = (V, E, 2) of Intersection U-SNP. By definition, each
vehicle can serve at most two demands. We define a partition {Ê1, . . . , Êp} of E as
follows. Let each subset Êi be composed of two parallel demands for 0 ≤ i ≤ q, such
that the set of remaining demands

Ẽ = E \
{ q⋃

i=0
Êi

}

does not contain any pair of parallel demands. Notice that this step can be easily
done in O(m) time through a simple greedy algorithm. Moreover, since Proposition
3.7 holds, {Ê1, . . . , Êp} is an optimal solution of I if and only if {Ê∗

q+1, . . . , Ê∗
p} is

an optimal solution of Ĩ = (V, Ẽ, 2).

For k = 2, it has been shown in Goldschmidt et al. [78] that k-Edge Parti-

tioning Problem reduces to the Maximum 2-Chain Packing problem, which
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can be solved in O(m) time through an algorithm due to Masuyama and Ibaraki
[130]. It follows that such algorithm can be applied to solve Intersection U-SNP for
C = 2, and therefore, {Ê∗

q+1, . . . , Ê∗
p} can be obtained in O(m) time. �

3.3 N P-Hardness

After showing that Intersection U-SNP can be solved in polynomial time for C = 2,
the question of whether or not the general U-SNP is N P-Hard for fixed values
of C ≥ 2 arises naturally. In Pimenta et al. [151], SNP is proved to be weakly
N P-Hard through a simple reduction from Partition Problem. Indeed, if the
demands are not said to be identical in terms of load, it is easy to see that some
kind of Knapsack or Bin-Packing problems are hidden behind SNP. On the other
hand, when dealing with the unitary variant of SNP (i.e., U-SNP), such problems
become straightforward and the reduction proposed for SNP cannot be used. Nev-
ertheless, the authors observe that, in practice, even the unitary variant of SNP
remains difficult to solve through standard exact methods (e.g., Branch-and-Bound
and Branch-and-Cut). Such observation together with the struggle to come up with
a tractable algorithm capable of solving the problem, pushed the authors to conjec-
ture U-SNP to be N P-Hard.

Notice that the simple statement of equivalence between U-SNP and Path

Traffic Grooming made in Section 2.3 suffices to positively answer such con-
jecture. Nonetheless, our study on the complexity of U-SNP goes deeper, yielding
stronger complexity results for U-SNP (that can obviously be extended for the re-
lated problems described in Section 2.3). More specifically, in this section, U-SNP
is shown to be N P-Hard for any fixed capacity C ≥ 2 even when restricted to the
case where the associated graph G is a planar bipartite graph. The proofs presented
next were inspired from the works of Dyer and Frieze [57].

The General Case

In Amini et al. [3], Path Traffic Grooming Problem is shown to be APX -Hard
(and thus, also N P-Hard), for any fixed grooming factor g ≥ 2, through a reduction
from the APX -Complete problem of finding the maximum number of edge-disjoint
triangles (i.e., cycles of length 3 ) in a tripartite graph. Recall that Path Traffic

Grooming is equivalent to U-SNP with no parallel demands. Therefore, any result
on the complexity of Path Traffic Grooming can be applied to U-SNP, by
restriction.

60 Chapter 3. Properties and complexity



Exploring Combinatorial Aspects of the Stop Number Problem

Notice however, that if G is said to be bipartite, the problem of finding the
maximum number of edge-disjoint triangles in G is trivial since, by definition, bi-
partite graphs do not contain any triangle. The proof proposed in Amini et al. [3]
is therefore no longer valid, or at least, cannot directly show the N P-Hardness of
Path Traffic Grooming (and thus, of U-SNP) on bipartite graphs. Next, we
propose a polynomial reduction from 3-Dimensional Matching to prove U-SNP
is indeed N P-Hard even when G is restricted to be a planar bipartite graph. For
this, let us first recall the 3-Dimensional Matching Problem (3DM).

3-Dimensional Matching Problem – Garey and Johnson [74, p. 221]
Input: Three disjoint sets X, Y , and Z with equal cardinality q, and a set of
triples T ⊆ X × Y × Z.
Output: Decide whether or not there is a subset M ⊆ T such that |M | = q and
no two elements of M agree in any coordinate.

It is well known that 3DM problem is N P-Complete (see Karp [103]). In Dyer
and Frieze [58], 3DM is shown to be NP-Complete even when the associated bipartite
graph H = (T, S, E ′) is restricted to be planar, where S = X ∪ Y ∪ Z and

E ′ =
⋃

t=(x,y,z)∈T

{(t, x), (t, y), (t, z)}.

When such restriction is applied, the problem is renamed as Planar 3DM. Figure
3.5 illustrates graph H = (T, S, E ′).

...
t
...

T

x

...
X

y

...
Y

z

...
Z

S

Figure 3.5: 3DM bipartite graph H = (T, S, E′)

Theorem 3.1 - N P-Hardness of U-SNP for C = 2
U-SNP is N P-Hard even when restricted to the case where C = 2 and G is a planar
bipartite graph.
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Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q

and a set of triples T , let H = (T, S, E ′) be the planar bipartite graph described in
Figure 3.5 where S = X ∪ Y ∪ Z and

E ′ =
⋃

t=(x,y,z)∈T

{(t, x), (t, y), (t, z)}.

Next, we construct an instance I of U-SNP in polynomial time and claim that the
3DM instance has a matching if and only if I has a solution with a certain amount
of stops. For this, let us construct graph G = (V, E) in the following manner.

Start with an empty graph G. For each element i ∈ W = Y ∪ Z, add a vertex
wi. For each element x ∈ X, add a vertex x. For each triple t = (x, y, z) ∈ T ,
add a vertex x′

t and let X ′ denote this set of vertices. Finally, for each triple
t = (x, y, z) ∈ T add a vertex t and edges (x′

t, t), (x′
t, x), (t, wy), and (t, wz). This

construction yields the graph depicted in Figure 3.6 with 2|T |+ |S| vertices and 4|T |
edges.

x′
t ...
...

X ′

x

...

X

t

...

...

T

wy

...

wz

...

W

Y

Z

Figure 3.6: Partial construction of graph G

To complete the construction, attach deg(w)−1 disjoint paths of length 3 to each
vertex w ∈ W . Denote Wj the set of the j-th vertices of such paths. Additionally,
attach deg(x) − 1 disjoint paths of length 2 edges to each vertex x ∈ X. Denote
Xj the set of the j-th vertices of such paths. Notice that the constructed graph,
illustrated in Figure 3.7, is planar bipartite if and only if graph H is also planar
bipartite.
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...

W3

x′
t ...
...

X ′

...

W2

x

...

X1

Additional (deg(x) − 1)
paths of length 2

...

W4

t

...

...

T

...

X3

wy

...
wz

...

W1

Additional (deg(wz) − 1)
paths of length 3

...

X2

Figure 3.7: Final construction of graph G

Finally, number the vertices of G as they appear in Figure 3.7 from the left
to the right, that is, W3 ≺ X ′ ≺ W2 ≺ X1 ≺ W4 ≺ T ≺ X3 ≺ W1 ≺ X2.
Let I = (V (G), E(G), 2) be the constructed instance of U-SNP. Such construction
can be done in polynomial time since |V (G)| = 10|T | − 5

3 |S| = 10|T | − 5q and
|E(G)| = 12|T | − 8

3 |S| = 12|T | − 8q.

We now claim that the planar 3DM instance has a matching if and only if I has a
solution with |E(G)|+ |E(G)|

4 stops. Firstly, notice that each vehicle may take at most
4 demands, since capacity constraints must be respected and ΔE(v′) ∪ ΔE(v′′) = E,
where v′ and v′′ are the stations with highest number in X ′ and X3, respectively
(see Figure 3.8).

...

W3

x′
t ...
...

X ′

...

W2

x

...

X1

...

W4

t

...

...

T

...

X3

wy

...
wz

...

W1

...

X2
ΔE(v′) ΔE(v′′)

Figure 3.8: Illustration of ΔE(v′) and ΔE(v′′)

Additionally, for any vehicle i, notice also that G(Ei) cannot contain a cycle
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since all cycles in G induce a violation on the vehicle’s capacity. Therefore, G(Ei) is
a forest and each vehicle i stops |Ei| + fi times, where fi is the number of connected
components of G(Ei). Given a solution of I, let p′ denote the number of non-empty
vehicles in such solution. The total number of stops of this solution of I is therefore
given by

p′∑
i=1

|V [Ei]| =
p′∑

i=1
(|Ei| + fi) = |E(G)| +

p′∑
i=1

fi.

By definition, ∑p′
i=1 fi ≥ p′ ≥ pmin. Moreover, since each vehicle cannot take more

than 4 demands, pmin ≥ |E(G)|
4 . It follows that |E(G)| + |E(G)|

4 is a lower bound on
the number of stops of any solution of I. Moreover, if a solution with |E(G)|+ |E(G)|

4

stops exists, then
p′∑

i=1
fi = p′ = kmin = |E(G)|

4 .

This means that each non-empty vehicle is assigned exactly 4 connected demands
and stops at exactly 5 stations. Therefore, the additional paths of length 3 attached
to vertex w ∈ W1 must be each in a different vehicle. In addition, they must form
a connected component of size 4 with some other demand incident to w, coming
from T . Removing these components leaves exactly one demand incident to each
station in W1. Analogously, the additional paths of length 2 attached to vertex
x ∈ X1 must be each in a different vehicle. Thus they must form a connected
component of size 4 with another path of length 2 linking vertex x to some vertex
in T . Removing such components leaves exactly one path incident to each station
in X1. This decomposition leaves G with connected components of size at most 4,
each having exactly one vertex in T .

If I has a solution with |E(G)| + |E(G)|
4 stops, the remaining connected compo-

nents must be trees with one internal vertex in each set T and X ′, and one leaf in
each set X, Y and Z (Figure 3.6 depicts such structure). Therefore, such vehicles
induce a 3-dimension matching on graph H. This decomposition can be easily re-
versed to show that any 3-dimension matching in H induces a solution of I with
|E(G)| + |E(G)|

4 stops. �

The idea used in the proof of Theorem 3.1 can be further exploited to derive a
formal proof of N P-Hardness of U-SNP, for other fixed values of C. Indeed, such
result can be easily obtained for any fixed capacity C = 2k, where k ∈ Z

∗
+.

Theorem 3.2 - N P-Hardness of U-SNP for even capacities
The U-SNP is N P-Hard even when restricted to the case where C = 2k, for k ∈ Z

∗
+,

and G is a planar bipartite graph.

Proof. Given a planar bipartite graph H associated with an instance of Planar 3DM
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(see Figure 3.5), construct graph G depicted in Figure 3.7 in the same manner as
described in the proof of Theorem 3.1. Next, construct graph G′ by replacing every
edge in G by a path of length k. G′ can obviously be constructed in polynomial
time since k is fixed. Moreover, if k = 1 then G′ = G.

Finally, let I = (V (G′), E(G′), 2k) be a constructed instance of U-SNP, by num-
bering the vertices of G′ in a way that (i.) every cycle in G′ induces a violation on
the vehicle’s capacity and (ii.) there exist two stations v′ and v′′ such that

ΔE(v′) ∪ ΔE(v′′) = E, and |ΔE(v′)| = |ΔE(v′′)| = |E(G′)|
2 .

Such numeration can be easily found applying a similar idea as the one used in
the proof of Theorem 3.1. Figure 3.9 gives an example (vertices are numbered from
the left to the right) of such numeration for k = 2 that can be extended for any
k ∈ Z

∗
+.

...

T

...

W1 ...

...
...

W2

...
...

W3

...
...

W4

...

...

X ′...

...

X1 ...

...

X2 ...

...

X3

ΔE(v′)

ΔE(v′′)

Figure 3.9: Illustration of ΔE(v′) and ΔE(v′′)

Hence, each vehicle may take at most 2C demands and the arguments used in
the proof of Theorem 3.1 can now be adjusted and applied here for showing that
H has a 3-dimensional matching if and only if I has a solution with |E(G)| + |E(G)|

2C

stops. �
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Recall that Path Traffic Grooming is shown in Amini et al. [3] to be N P-Hard
for any fixed grooming factor g ≥ 2 even when restricted to the case where the graph
of requests H is a tripartite graph. Since Path Traffic Grooming is equivalent to
U-SNP with no parallel demands and the construction used in the proof of Theorem
3.2 does not include any parallel demand, the complexity result obtained for U-SNP
can be extended to the Path Traffic Grooming, reinforcing the known complexity
results for even values of grooming factor g.

Corollary 3.1 - Extended result for Path Traffic Grooming
Path Traffic Grooming is N P-Hard for any fixed grooming factor g = 2k, for
k ∈ Z

∗
+, even when restricted to the case where the graph of requests H is a planar

bipartite graph. �

The results presented above can only treat the case where C is even. However,
it seems strange that the parity of C plays such an important role on establishing
the problem’s complexity. It turns out that the N P-Hardness of U-SNP on planar
bipartite graphs can indeed be extended to odd values of C. Such result will be
achieved through the proof of Theorem 3.4.

After proving that U-SNP is N P-Hard for even values of C and knowing that
Intersection U-SNP can be solved in polynomial time for C = 2, the question of
whether or not Intersection U-SNP is N P-Hard for higher capacities arises imme-
diately. Such question is further investigated below.

The Intersection Case

In Goldschmidt et al. [78], k-Edge-Partitioning Problem is shown to be N P-
Hard, for any fixed k ≥ 3, through a reduction from Edge-Partition into Tri-

angles Problem.

Edge-Partition into Triangles Problem

Input: An undirected graph G = (V, E).
Output: Decide whether or not there exists a partition of E into sets inducing a
subgraph of G isomorphic to K3.

Recall that if G is a bipartite graph, then k-Edge-Partitioning Problem is
equivalent to Intersection U-SNP with no parallel demands. It is therefore intuitive
to try applying the same reduction to U-SNP. It turns out, however, that solving
Edge-Partition into Triangles Problem on bipartite graphs is trivial as bi-
partite graphs, by definition, do not contain any odd cycle. Moreover, in Lemaire
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[118], k-Edge-Partitioning Problem is also investigated and shown to be solv-
able in polynomial time for some sub-classes of bipartite graphs and k = 3. The
authors state however, that for an arbitrary bipartite graph, the problem’s complex-
ity is not known. Next, we propose a polynomial reduction from 3-Dimensional

Matching to prove Intersection U-SNP is indeed N P-Hard. Such result can then
be extended to k-Edge-Partitioning Problem.

Theorem 3.3 - N P-Hardness of Intersection U-SNP for C = 3
Intersection U-SNP is N P-Hard even when restricted to the case where C = 3 and
G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q

and a set of triples T , let H = (T, S, E ′) be the planar bipartite graph described in
Figure 3.5 where S = X ∪ Y ∪ Z and

E ′ =
⋃

t=(x,y,z)∈T

{(t, x), (t, y), (t, z)}.

Next, we construct an instance I of Intersection U-SNP in polynomial time and
claim that the 3DM instance has a matching if and only if I has a solution with a
certain amount of stops. For this, let G be a graph obtained from H by attaching
degH(i)−1 disjoint paths of length k+1 to each vertex i ∈ S. Graph G is illustrated
in Figure 3.10.

...
t
...

T

x
Additional (deg(i) − 1) paths of length 2

... X

y

... Y

z

... Z

Figure 3.10: Construction of graph G for Theorem 3.3

Notice that if H is planar bipartite, then the constructed graph G is also planar
bipartite. Let I = (V (G), E(G), 3). However, for I to be an instance of Intersection
U-SNP, the stations in V (G) need to be numbered in a way that there exists some
station v′ wherein all demands intersect. This can be easily done, since graph G

Chapter 3. Properties and complexity 67



Exploring Combinatorial Aspects of the Stop Number Problem

remains bipartite planar. For instance, if W and W are the two disjoint indepen-
dent sets inducing G, one can number vertices in W first and then vertices in W

afterwards.

The construction of instance I can be done in polynomial time from any Planar
3DM instance, since |V (G)| = 7|T | − 3q and |E(G)| = 9|T | − 6q. We now claim
that the planar 3DM instance has a matching if and only if I has a solution with
|E(G)| + |E(G)|

3 stops.

Suppose that such solution exists. By definition, a vehicle cannot take more than
C = 3 demands, and by construction, there is no cycle in G of size smaller than
C + 1. Therefore, Property 5 stated in Section 3.1 applies and G(Ei) must be a
forest, for any vehicle i. Thus, vehicle i stops |Ei| +fi times, where fi is the number
of connected components of G(Ei).

Let p′ denote the number of non-empty vehicles in such solution. Without loss
of generality, assume Ei �= ∅ for i ≤ p′ and Ei = ∅ for i > p′. The total number of
stops of this solution is therefore given by

p′∑
i=1

|V [Ei]| =
p′∑

i=1
(|Ei| + fi) = |E(G)| +

p′∑
i=1

fi.

Notice that since fi ≥ 1, for any i ≤ p′, one has that

p′∑
i=1

fi ≥ p′ ≥ kmin =
⌈

|E(G)|
C

⌉
≥ |E(G)|

3 .

This means that a solution with |E(G)| + |E(G)|
3 stops has ∑p′

i=1 fi = |E(G)|
3 . Hence,

each non-empty vehicle is assigned 3 connected demands and stops 4 times.

As a consequence, the additional paths of length 2 must be each in a different
vehicle. In addition, they must form a connected component of size 3 with some other
edge incident to i, coming from T . Removing these components leaves exactly one
demand incident to each station in S. This decomposition leaves G with connected
components of size at most 3, each having exactly one vertex in T .

If I has a solution with |E(G)| + |E(G)|
3 stops, the remaining connected compo-

nents are claws K1,3 with internal vertex in T , and one leaf in each set X, Y and
Z. Therefore, such vehicles induce a 3-dimension matching on graph G. This de-
composition can be easily reversed to show that any 3-dimension matching induces
a solution of I with |E(G)| + |E(G)|

3 stops. �

The idea used in the proof of Theorem 3.3 can be further exploited to derive a
formal proof of N P-Hardness of Intersection U-SNP, for other fixed values of C.
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Theorem 3.4 - N P-Hardness of Intersection U-SNP for odd capacities
The Intersection U-SNP is N P-Hard even when restricted to the case where C =
2k + 1, for k ∈ Z

∗
+, and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q

and a set of triples T , consider again planar bipartite graph H = (T, S, E ′) described
in Figure 3.5. From H, let us construct graph G throughout the following operations:

i. Replace the edges between T and S \ X with paths of length k.

ii. Attach degH(i) − 1 disjoint paths of length k + 1 to each vertex i ∈ S \ X.

iii. Attach degH(i) − 1 disjoint paths of length 2k to each vertex i ∈ X.

Graph G is illustrated in Figure 3.11 for C = 5.

...
t
...

T

x
Additional (deg(i) − 1) paths of length 2k

... X

y

... Y

z

... Z

Path of length k

Additional (deg(i) − 1) paths of length k + 1

Additional (deg(i) − 1) paths of length k + 1

Figure 3.11: Construction of graph G for Theorem 3.4, with k = 2

Notice that the construction of G preserves planarity and bipartiteness. Let I =
(V (G), E(G), 2k + 1) be an instance of Intersection U-SNP obtained by numbering
the stations in V (G) in the same manner as done in the proof of Theorem 3.3. The
construction of I can be done in polynomial time as |V (G)| = (4k+5)|T |−(4k−1)q
and |E(G)| = (6k + 3)|T | − (4k + 2)q.

We claim that the planar 3DM instance has a matching if and only if I has a
solution with |E(G)| + |E(G)|

2k+1 stops. Since, by construction, graph G has no cycle of
size less than 2k + 2 (i.e., C + 1), all the arguments used for the proof of Theorem
3.3 hold and the rest of this proof is done analogously. �

From Theorem 3.2 and Theorem 3.4, we set the following corollaries:
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Corollary 3.2 - Extended result for U-SNP
The U-SNP is NP-Hard for any fixed capacity C ≥ 2, even when restricted to the
case where G is a planar bipartite graph. �

Corollary 3.3 - Extended result for Path Traffic Grooming
The Path Traffic Grooming is NP-Hard for any fixed grooming factor g ≥ 2,
even when restricted to the case where the graph of requests H is a planar bipartite
graph. �

After proving Intersection U-SNP is N P-Hard for odd capacities, we show next
that a similar idea can be used for extending such result to even values of C.

Theorem 3.5 - N P-Hardness of Intersection U-SNP for even capacities
The Intersection U-SNP is N P-Hard even when restricted to the case where C =
4 + 2k, for k ∈ Z

∗
+, and G is a planar bipartite graph.

Proof. Given an instance of Planar 3DM with disjoint sets X, Y, Z of cardinality q

and a set of triples T , consider again planar bipartite graph H = (T, S, E ′) described
in Figure 3.5. From H, let us construct graph G throughout the following operations:

i. Replace the edges between T and S \ X with paths of length k + 1.

ii. Replace the edges between T and X with paths of length 2 (i.e., subdivide
such edges).

iii. Attach degH(i) − 1 disjoint paths of length k + 3 to each vertex i ∈ S \ X.

iv. Attach degH(i) − 1 disjoint paths of length 2k + 2 to each vertex i ∈ X.

Graph G is illustrated in Figure 3.12 for C = 10 (i.e., k = 3).
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Additional (deg(i) − 1) paths of length k + 3

Figure 3.12: Construction of graph G for Theorem 3.5, with k = 3
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Notice that the construction of G preserves the planarity and the bipartiteness
from graph H. Let I = (V (G), E(G), 2k + 4) be an instance of Intersection U-SNP
by numbering the stations in V (G) in the same manner as done in the proof of
Theorem 3.3. The construction of I can be done in polynomial time since k is fixed
and |V (G)| = (6k + 10)|T | − (4k − 5)q and |E(G)| = (6k + 12)|T | − (4k + 8)q.

We claim that the planar 3DM instance has a matching if and only if I has a
solution with |E(G)| + |E(G)|

2k+4 stops. Since, by construction, graph G has no cycle of
size less than 2k + 5 (i.e., C + 1), all arguments used for the proof of Theorem 3.3
hold and the rest of this proof is done analogously. �

From Theorem 3.4 and Theorem 3.5, we set the following corollary.

Corollary 3.4 - Extended result for k-Edge-Partitioning Problem
The k-Edge-Partitioning Problem is NP-Hard for any fixed k ≥ 3, k �= 4,
even when restricted to the case where G is a planar bipartite graph. �

The key component enabling the development of our proofs of complexity is the
ability of rejecting any cycle of size less than or equal to C in the construction of
graph G, while maintaining the capacity to reach elements in X, Y and Z from T

using only C edges. This is only made possible through the successive subdivisions
of edges between T and S. Following this concept, for C = 4, only one edge of
the claw {(t, x), (t, y), (t, z)} is allowed to be subdivided. However, if one tries to
subdivide only edges between T and one of the disjoint sets X, Y or Z (w.l.o.g.,
say Z), cycles of size 4 may appear between sets T and the two other sets (X and
Y ). As a consequence, the proof of N P-Hardness of Intersection U-SNP when G

is planar bipartite remains unclear for C = 4. On the other hand, there is no
evidence to believe that a tractable algorithm for such case could be conceivable.
The fact that N P-Hardness holds for C = 3 and C = 5, also pushes us in this
direction. Therefore, following the steps of Jack Edmonds2, the following conjecture
is proposed.

Conjecture 2 - N P-Hardness of Intersection U-SNP for any fixed capacity
The Intersection U-SNP is NP-Hard even when restricted to the case where C = 4
and G is a planar bipartite graph.

2”I conjecture that there is no good algorithm for the traveling salesman problem. My reasons
are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility,
and (2) I do not know.” – Jack Edmonds, 1966
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3.4 Approximability

Once a problem is shown to be N P-Hard, there is little hope that an algorithm
with polynomially bounded running time can be achieved. Indeed, finding such
algorithm would proof P = N P , answering one of the ”million dollar” questions
that has been puzzling mathematicians for such a long time (see Clay Mathematics
Institute [34]). For such problems, one may decide to sacrifice optimality in order
to obtain a good solution within polynomially bounded time. Algorithms based on
such principle are called heuristics. If an heuristic is capable of always providing
near-optimal solutions, that is, if there exists a provable guarantee on the quality
of the provided solutions, the heuristic is called an approximation algorithm. In
this section, approximation algorithms for the U-SNP are investigated. We present
some preliminary results that were obtained in collaboration with José R. Correa,
Associate Professor at the Department of Industrial Engineering from Universidad
de Chile, Santiago, Chile, during a one-month visit at Universidad de Chile.

The approximation ratio is a widely accepted measure of the goodness of ap-
proximation algorithms and can be defined as follows. Let P be an optimization
(minimization) problem and A be an algorithm providing a feasible solution for P .
Given an instance I of P , let OPT (I) denote the value of an optimal solution to in-
stance I. Moreover, let A(I) denote the value of the solution provided by algorithm
A for instance I. The approximation ratio of algorithm A is defined as:

RA = max
I

A(I)
OPT (I) .

As previously stated, Path Traffic Grooming is known to be APX -Hard,
that is, it can be approximated within a constant ratio but does not admit an
approximation ratio of 1+ε unless P = N P . By restriction, one easily deduces that
U-SNP is therefore also APX -Hard.

3.4.1 An initial C-approximation algorithm

For developing an approximation algorithm for U-SNP, we use the fact that U-
SNP can be solved optimally in polynomial time for C = 1 (see Proposition 3.9).
Given an instance (V, E, C) of U-SNP, let {E∗

1 , E∗
2 , . . . , E∗

p} be an optimal solution
of (V, E, C) and let OPT (V, E, C) denote its value. It is clear that increasing the
vehicle’s capacity constitutes a relaxation of the problem and hence

OPT (V, E, C) ≤ OPT (V, E, C − 1) ≤ · · · ≤ OPT (V, E, 1). (3.3)
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Such statement is evidenced by taking a look at formulation USNP(V,E,C) and notic-
ing that USNP(V,E,C) ⊆ USNP(V,E,C+1).

Proposition 3.15 - A C-approximation algorithm for U-SNP
The algorithm described in Proposition 3.9 for solving an instance (V, E, 1) of U-
SNP is a C-approximation algorithm for instance (V, E, C).

Proof. If {E∗
1 , E∗

2 , . . . , E∗
p} is an optimal solution to (V, E, C), one can easily parti-

tion demands in E∗
1 into C vehicles of capacity 1 by solving the instance (V, E∗

1 , 1).
Notice that, in the worst case, each ”new” unit capacity vehicle stops at every station
in V [E∗

1 ]. Therefore,
OPT (V, E∗

1 , 1) ≤ C|V [E∗
1 ]|.

By repeating such procedure for each vehicle 1 ≤ i ≤ p, one obtains a solution
for (V, E, C) with value

p∑
i=1

OPT (V, E∗
i , 1) ≤ C

(
OPT (V, E, C)

)
. (3.4)

Lastly, it suffices to notice that such constructed solution of (V, E, C) is also a
solution for (V, E, 1), and therefore

OPT (V, E, 1) ≤
p∑

i=1
OPT (V, E∗

i , 1).

Combining inequalities (3.3), (3.4) and (3.4.1), one finally gets a proof of ap-
proximability:

OPT (V, E, C) ≤ OPT (V, E, 1) ≤ C
(
OPT (V, E, C)

)
. �

Notice that if (V, E, C) is an instance of Intersection U-SNP, one may take ad-
vantage of the fact that (V, E, 2) is optimally solvable in polynomial time (see Propo-
sition 3.14), to derive a better approximation algorithm. Indeed, by following the
same steps as in the proof of Proposition 3.15, one can easily remark that

OPT (V, E, C) ≤ OPT (V, E, 2) ≤
⌈

C

2

⌉ (
OPT (V, E, C)

)
.

Next we present a better constant-ratio approximation algorithm solving U-SNP
when capacity is fixed to 2 – recall that such case is N P-Hard as shown by Theorem
3.1.
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3.4.2 A 5
3-approximation algorithm for C = 2

We use the following notation to describe the algorithm. Given an instance I =
(V, E, 2) of U-SNP, let Euv = {e ∈ E : oe = u and de = v} denote the set of parallel
demands uv in E. Then, consider an algorithm that, at first, merges pairs of parallel
demands into a single demand and then solves the problem optimally with C = 1
on the resulting graph. Such algorithm is denoted Merge and is formally defined as
follows.

Algorithm 1 Merge Algorithm
Input: An instance I = (V, E, 2) of U-SNP
Output: A feasible solution for I

1: E ′ = ∅
2: for all u ∈ V do
3: for all v ∈ V do
4: Add

⌈ |Euv |
2

⌉
edges uv to E ′

5: end for
6: end for
7: Optimally solve instance (V, E ′, 1)

Merge Algorithm clearly has a polynomial bounded running time since all its
steps can be done in polynomial time. In fact, as stated in Algorithm 1 it may run
in O(n2) time, but with the right data structures this can be improved to O(m)
time. Moreover, since no two parallel demands can be assigned to the same vehicle
in instance (V, E ′, 1), Merge Algorithm provides a feasible solution for (V, E, 2). We
now prove its approximability.

Proposition 3.16 - A 5
3-approximation algorithm

Merge Algorithm is a 5
3-approximation algorithm for U-SNP when C = 2.

Proof. Let Merge(V, E, 2) denote the value of the solution obtained by applying
Merge Algorithm over instance (V, E, 2). Clearly,

OPT (V, E, 2) ≤ Merge(V, E, 2). (3.5)

Moreover, for any feasible solution {E1, E2, . . . , Ep} to instance (V, E, 2), it is easy
to see that

Merge(V, E, 2) ≤
p∑

i=1
Merge(V [Ei], Ei, 2). (3.6)

Therefore, if {E∗
1 , E∗

2 , . . . , E∗
p} is an optimal solution to (V, E, 2), it follows that

Merge(V, E, 2) ≤
p∑

i=1
Merge(V [E∗

i ], E∗
i , 2). (3.7)
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Without loss of generality, G[E∗
i ] is assumed to be a connected graph, for any

1 ≤ i ≤ p. We claim that

p∑
i=1

Merge(V [E∗
i ], E∗

i , 2) ≤
p∑

i=1

5
3 |V [E∗

i ]| = 5
3OPT (V, E, 2).

For this, let us consider Merge Algorithm with instance (V [E∗
i ], E∗

i , 2) as its input,
for each i ∈ {1, . . . , p}. We then show that

Merge(V [E∗
i ], E∗

i , 2) ≤ 5
3 |V [E∗

i ]|,

for any 1 ≤ i ≤ p.

Since C = 2, for any pair of nodes u ∈ V [E∗
i ] and v ∈ V [E∗

i ], one has |Euv ∩E∗
i | ≤

2. Therefore, graph G′ = (V [E∗
i ], E∗

i
′) constructed in the first phase of Merge

Algorithm has no parallel demands (i.e., G′ is simple). Figure 3.13 gives an example
for the construction of such graph.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

(a) Graph G[E∗
i ]

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

(b) Graph G′ constructed by Merge Algorithm with instance (V [E∗
i ], E∗

i , 2) as its input
Figure 3.13: Construction of G′

After constructing G′ = (V [E∗
i ], E∗

i
′), Merge Algorithm optimally solves instance

(V [E∗
i ], E∗

i
′, 1). From Proposition 3.9, one has that

Merge(V [E∗
i ], E∗

i , 2) =
∑

v∈V [E∗
i ]

max{|δ−
G′(v)|, |δ+

G′(v)|}.

Furthermore, max{|δ−
G′(v)|, |δ+

G′(v)|} ≤ 2, for any v ∈ V [E∗
i ]. We next show that

given three consecutive nodes vi, vi+1 and vi+2 in G′, at least one of them cannot
have max{|δ−

G′(v)|, |δ+
G′(v)|} = 2 and hence,

∑
v∈V [E∗

i ]
max{|δ−

G′(v)|, |δ+
G′(v)|} ≤ 5

3 |V [E∗
i ]|.
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Suppose that such statement is false. Then, max{|δ−
G′(v)|, |δ+

G′(v)|} = 2, for
v ∈ {vi, vi+1, vi+2}. For this, suppose |δ−

G′(vi)| = 2. Hence, |δ−
G′(vi+1)| ≤ 1, for

otherwise there exists some node j ≺ vi in V [E∗
i ] for which ΔE∗

i
′(j) > C, a con-

tradiction (see Figure 3.14a). Therefore, |δ+
G′(vi+1)| = 2. However, this imposes

max{|δ−
G′(vi+2)|, |δ+

G′(vi+2)|} ≤ 1 (see Figure 3.14b). The proof follows the same
reasoning if one supposes |δ+

G′(vi)| = 2.

vi vi+1. . .

. . .

. . .

(a) |δ−
G′(vi+1)| cannot be greater than 1

vi+1 vi+2

. . .

. . .

. . .

. . .

(b) |δ+
G′(vi+2)| cannot be greater than 1

Figure 3.14: Consequences of having |δ−
G′(vi)| = 2

Finally, one has

OPT (V, E, 2) ≤ Merge(V, E, 2) ≤
p∑

i=1
Merge(V [E∗

i ], E∗
i , 2) ≤ 5

3OPT (V, E, 2),

which proves Merge Algorithm has an approximation ratio of 5
3 . �

Moreover, the approximation ratio of 5
3 from Merge Algorithm is tight. This

can be easily verified by considering the instance of U-SNP with C = 2 described
in Figure 3.15. While Merge Algorithm yields a solution with 5 stops for such
instance, the optimal solution consists of assigning all three demands to the same
vehicle, which produces only 3 stops.

a

b
c

1 2 3
1 3

2

Figure 3.15: Instance showing the tightness of Merge Algorithm’s approxima-
tion ratio

3.5 Conclusion

In this chapter we have investigated the computational complexity of U-SNP. At an
initial stage, optimal solutions properties were studied in order to better understand
the combinatorial problem behind U-SNP. A series of lower bounds for the U-SNP
were then introduced and some particular cases were shown to be solvable in polyno-
mial time. Based on such results we finally derived a proof of N P-Hardness for the
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U-SNP, answering the conjecture proposed by Pimenta et al. [151]. Our presented
proofs remain valid for any fixed capacity C ≥ 2 even if the associated graph G is
said to be planar bipartite.

To the best of our knowledge, the variant where every demand intersect a given
station has not received particular attention in the literature. Such variant is also
taken into account in our complexity study. Figure 3.16 gives a comprehensive
picture of the computational complexity of U-SNP when the associated graph G is
planar bipartite. It is important to notice that the obtained results are shown to be
extensible to other related problems such as the Traffic Grooming problem. In the
last section of the chapter, a preliminary study on the approximation of U-SNP is
presented, yielding a 5

3 -approximation algorithm for the case where C = 2.

Intersection U-SNP with C = 2:
Polynomial

U-SNP with C ≥ 2:
N P-Hard

Intersection U-SNP with C = 3:
N P-Hard

Intersection U-SNP with C = 4:
Open

Intersection U-SNP with C ≥ 5:
N P-Hard

Figure 3.16: An overview of the complexity of U-SNP.
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Chapter 4

Polyhedral study

”True optimization is the revolutionary contribution
of modern research to decision processes.”

— George B. Dantzig

If one is interested in exact optimal solutions, a common approach when tackling
hard problems is to formulate and solve it as a MILP. Many combinatorial problems
have taken benefit from the study of the facial structure of the convex hull of feasible
solutions – also known as the integer polyhedron – for improving the associated MILP
performances. Indeed, if a complete description of the integer polyhedron is known,
the problem can be solved as a linear program over such polyhedron. Unfortunately,
the complete description of such polyhedrons usually involves an exponential number
of inequalities. Here, the equivalence between optimization and separation described
by Theorem 1.9 in Section 1.5 plays an important role. Indeed, if the associated
separation problem can be solved in polynomial time, then the optimization of a
linear function over the polyhedron can also be done in polynomial time. The
matching problem (see Edmonds [59, 60], Pulleyblank [153]) is a classic example
where the integer polyhedron has been fully described and its separation problem
shown to be solvable in polynomial time. On the other hand, a partial description
of the integer polyhedron of N P-Hard problems is also desired when designing good
algorithms. Notable examples of such cases are the traveling salesman problem (see
Dantzig et al. [47], Grötschel and Padberg [81], Padberg and Hong [142], Balas and
Christofides [9], Fischetti and Toth [69], Applegate et al. [5]) and the vertex packing
problem (see Nemhauser and Trotter [136, 137], Wolsey [179]). In this chapter, such
polyhedral study is conducted for the U-SNP.
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4.1 Methodology and Preliminary Analysis

Let us recall the formulation provided in Pimenta et al. [151] for the U-SNP:

min
∑
v∈V

∑
i∈K

yi
v (4.1)

subject to∑
i∈K

xi
e = 1 ∀e ∈ E, (4.2)

∑
e∈ΔE(v)

xi
e ≤ C ∀v ∈ V, i ∈ K, (4.3)

xi
e − yi

v ≤ 0 ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4.4)

xi
e ∈ {0, 1} ∀e ∈ E, i ∈ K, (4.5)

yi
v ∈ {0, 1} ∀v ∈ V, i ∈ K. (4.6)

When dealing with VIPA’s fleet management, gathering real instances is not an
easy task. To the best of our knowledge, there is no standard benchmark sets of
instances when dealing with such problems. In Pimenta et al. [151], Deleplanque
et al. [50], Bsaybes et al. [26], instances were randomly generated. Moreover, most of
the work done around the Stop Number Problem has considered weighted demands
and/or a fixed number of tours (see Section 2.3). This prevents the reuse of the
instances considered in such cases for our purposes.

For these reasons, in order to evaluate the strength of formulation (4.1)–(4.6), a
new set of 315 randomly generated instances is proposed for the U-SNP as follows.
Given a fixed number of stations n, two different numbers (say a and b) are picked
at random between 1 and n to create a demand going from station a to station b if
a < b (or from b to a, otherwise). Notice however that the density of demands with
respect to the number of stations, denoted by ρ = m

n
, is a much more meaningful

parameter than the number of stations n. The density provides information on the
average degree of each station (the average degree corresponds to 2ρ) and therefore,
allows the decision maker to forecast whether or not demands are likely to share a
common station. Furthermore, once the density ρ and the number of demands m

have been fixed, the number of stations is directly obtained from the definition of ρ.

A set of different scenarios based on the number of demands m, the capacity C

and the density ρ is thus provided with m ∈ {30, 35, 40, 45, 50, 55, 60}, C ∈ {2, 5, 8}
and ρ ∈ {1.5, 3.0, 4.5}. For each combination of parameters, 5 instances were ran-
domly generated. Each generated instance can then be referred to as the code
m C ρ i, where i refers to the i-th instance generated with the given parameters.
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For analysing the performance of formulation (4.1)–(4.6), we implemented it in
C++ using CPLEX 12.8. All default settings of CPLEX (presolving, heuristics,
cut generation and dynamic search, among other features) were left untouched. A
computer machine provided with an Intel Xeon E5, 3.10GHz and 32 Gb of RAM
was used for running performance tests. A time limit of 2 hours was set for solving
each instance. The number of available threads was set to one.

For each combination of parameters m, C and ρ, Table 4.1 gives the average
results obtained with such formulation, from the 5 generated instances. For detailed
information on each instance, the reader is invited to check Table A.1 on Appendix
A. On Table 4.1, section Instances provides information about the instance’s pa-
rameters. Columns cols and rows refer to the number of variables and inequalities,
respectively - after the presolve elimination from CPLEX. Moreover, pmin refers to
the minimum number of vehicles needed to satisfy all demands and p′ to the number
of vehicles used on the best solution found.

Next in order, section Root provides information about the optimization at the
root node of the Branch-and-Bound tree, where timer refers to the time in seconds
needed to solve the root node, LBr and UBr refer, respectively, to the best lower
and upper bounds known at the root node and gapr refers to the gap obtained after
solving the root node calculated as gapr= UBr−LBr

UBr
.

At last, section Global provides information about the global optimization pro-
cess, where timeg refers to the time in seconds needed to solve the optimization
problem and timeBest to the time in seconds required to find the best integer so-
lution. Notice that timeBest ≤ timeg. The difference between timeg and timeBest
corresponds to time spent proving the optimality of the solution found. Moreover,
LBg and UBg refer, respectively, to the best lower and upper bounds known by the
end of the optimization process and gapg refers to the final gap which is calculated
as gapg= UBg−LBg

UBg
. Notice that if a solution could be found and proven to be op-

timal within the time limit, then LBg equals UBg and the gapg is, by definition,
null. Column Nodes refers to the number of nodes (in thousands) in the Branch-
and-Bound tree processed during the optimization and column NLeft to the number
of nodes in the Branch-and-Bound tree that remained to be processed by the end of
the time limit. Clearly, NLeft is null if an optimal solution could be found within the
time limit. Finally, column CutsCP refers to the total number of cuts generated by
CPLEX during the whole optimization process. More specifically, CutsCP accounts
for Cover cuts (see Crowder et al. [43], Balas [7]), GUB Cover cuts (see Wolsey
[180], Gu et al. [86]), Flow Cover cuts (see Padberg et al. [143], Gu et al. [87]),
Clique cuts (see Padberg [141]), Gomory Fractional cuts, Mixed-Integer Rounding
cuts and Zero-half cuts (see Gomory et al. [80], Gomory [79]), Flow Path cuts (see
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Van Roy and Wolsey [176]), Disjunctive cuts (see Balas [8]), Implied Bounds cuts
(see Hoffman and Padberg [94]), Multi-Commodity Flow cuts (see Achterberg and
Raack [1]) and Lift-and-Project cuts (see Balas et al. [10], Lovász and Schrijver
[122]).

By comparing the values of timeg and timeBest obtained in Table 4.1, one can
easily see that frequently enough the best solution is found way before the end of
the optimization process. Indeed, on average, more than 54% of the time spent on
the optimization is dedicated to proving the optimality of an incumbent solution.
This means that the upper bound converges to the optimum value much faster than
the lower bound. Figure 4.1 illustrates such situation by depicting the evolution of
lower and upper bounds during the optimization of an instance with 45 demands
and capacity 5. Figure 4.1a gives a scenario with sparse demands - density is set to
1.5 - and Figure 4.1b gives a scenario with dense demands - density is set to 4.5.
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A major challenge is therefore to speed up the convergence of the lower bound
towards the optimal solution. The next sections of this chapter are dedicated to
finding answers to such challenge.

4.2 Relaxations

When solving an integer or combinatorial optimization problem z = min {cT x :
x ∈ P ∩Z

n}, testing whether or not a given solution x∗ is the best possible solution
can be quite challenging. A ”naive” yet significant remark is that if one is able to
find a lower bound z ≤ z and an upper bound z̄ ≥ z so that z = cT x∗ = z̄, then a
proof of the optimality of x∗ is in hand.

Relaxations often play an important role in providing lower bounds (for a min-
imization problem) on the optimal value. In this section, we propose two ”partial”
linear relaxations which yield optimal solutions for the U-SNP. A performance com-
parison between these two relaxations is provided in Chapter 5. Finally, the ”full”
linear relaxation is studied, showing that the bounds it provides are particularly
weak.

4.2.1 Relaxing the stop variables

It is easy to see that once variables xi
e are fixed to 0-1 values, that is, once one

knows which vehicle takes each demand, the problem turns out to be trivial. Let x̄i
e

represent such fixed-value variables. In fact, the value of variable yi
v simply becomes

1 if there exists some demand e ∈ E incident to v for which x̄i
e = 1. On the other

hand, if such a demand does not exist, the value of variable yi
v becomes 0. In other

words,
yi

v = max{x̄i
e : e is incident to v},

for each v ∈ V and i ∈ K. Indeed, this is just a consequence of the Property 1
stated in Section 2.2, which claims that in an optimal solution, a vehicle should only
stop where its clients ask for and nowhere else.

For this reason, integrality constraints (4.6) may be replaced by

0 ≤ yi
v ≤ 1 ∀v ∈ V, i ∈ K, (4.7)

and the integrality of variables yi
v in any optimal solution is ensured by (4.1), (4.4)

and (4.5). In fact, since variables yi
v are bounded from below by the stop constraints
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(4.4), one only needs the second part of inequalities (4.7), that is,

yi
v ≤ 1 ∀v ∈ V, i ∈ K. (4.8)

Therefore, the following proposition holds.

Proposition 4.1 - Continuous stop variables for U-SNP
The relaxed formulation defined by (4.1)-(4.5), (4.8) solves the U-SNP. �

Another way of achieving this result is to recognize that if vector x̄ ∈ {0, 1}m×p

satisfies constraints (4.2) and (4.3), the remaining problem is

min
∑
v∈V

∑
i∈K

yi
v (4.9)

subject to

yi
v ≥ x̄i

e ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4.10)

yi
v ∈ {0, 1} ∀v ∈ V, i ∈ K. (4.11)

However, the system defined by inequalities (4.8) and (4.10) is clearly total uni-
modular. Hence, the associated polytope

Py = {y ∈ R
n×p : y satisfies (4.8), (4.10)}

is integral. Notice that Py can be seen as a face of the polyhedron induced by the
linear relaxation of formulation (4.1)-(4.5), (4.8), that is,

Py = {x ∈ R
m×p, y ∈ R

n×p : (x, y) satisfies (4.2)–(4.4), (4.8)} ∩ {x ∈ R
m×p : x = x̄}.

Therefore, any extreme point (x∗, y∗) of polyhedron

{x ∈ R
m×p, y ∈ R

n×p : (x, y) satisfies (4.2)–(4.4), (4.8)},

where x∗ satisfies the integrality constraints (4.5) also verifies y∗ ∈ {0, 1}n×p, and
hence Proposition 4.1 holds.

4.2.2 Relaxing assignment variables

The reverse question, that is, deciding whether or not one can deduce an optimal
assignment of demands to vehicles given where each vehicle stops is less evident.
Such question may be answered by showing that the associated polytope is integral
when variables yi

v are fixed to 0-1 values.
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In order to achieve such result, consider a vector ȳ ∈ {0, 1}n×p that represents
the fixed values of the variables yi

v. Then inequalities (4.4) become

xi
e ≤ ȳi

v ∀i ∈ K, e ∈ E, v ∈ {oe, de}. (4.12)

Moreover, let integrality constraints (4.5) be replaced by

0 ≤ xi
e ≤ 1 ∀e ∈ E, i ∈ K. (4.13)

In fact, since variables xi
e are bounded from above by the stop constraints (4.4), one

only needs the first part of inequalities (4.13), that is,

xi
e ≥ 0 ∀e ∈ E, i ∈ K. (4.14)

Finally, consider the polytope Px(V, E, C, ȳ) associated with U-SNP when variables
yi

v are fixed to 0-1 values (i.e., yi
v = ȳi

v), defined as

Px(V, E, C, ȳ) = {x ∈ R
m×p : x satisfies (4.2), (4.3), (4.12), (4.14)}.

If vector ȳ is known and Px(V, E, C, ȳ) is integral, then an integer solution to
U-SNP can be obtained in polynomial time through the ellipsoid or interior-point
methods (see Khachiyan [104], Karmarkar [102]), and hence the relaxed formulation
defined by (4.1)-(4.4), (4.6), (4.14) is capable of solving the U-SNP.

We next show that Px(V, E, C, ȳ) is integral for the restricted case where (V, E, C)
is an instance of Intersection U-SNP but it is not for the general U-SNP.

Theorem 4.1 - Integrality of Px(V, E, C, ȳ) for Intersection U-SNP
Given an instance (V, E, C) of Intersection U-SNP and a vector ȳ ∈ {0, 1}n×p, the
polytope Px(V, E, C, ȳ) is integral.

Proof. From Property 3 stated in Section 2.4, capacity constraints (4.3) can be
replaced by ∑

e∈E

xi
e ≤ C ∀ i ∈ K. (4.15)

Hence, the matrix A from the system of inequalities Ax ≤ b defined by (4.2),
(4.15) has the form

A =

⎡⎢⎢⎢⎢⎢⎢⎣
I1 I2 · · · Ip

1 0 · · · 0
0 1 · · · 0
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦
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where Ii (for 1 ≤ i ≤ p) is a m × m identity matrix, 1 is a m-dimensional unit
row-vector and 0 is a m-dimensional zero row-vector.

Matrix A has 2m rows and m2 columns (recall that p = m), each containing
exactly 2 non-zero entries. Let G be the graph obtained from the matrix A such
that G has a vertex for each row of A and an edge e = uv for each column such that
Au,e = Av,e = 1. It follows that G is a complete bipartite graph Km,m. Hence, A

is totally unimodular (cf. Theorem 1.3 and Theorem 1.4) and thus Px(V, E, C, ȳ) is
integral. �

The total unimodularity of the system (4.2), (4.3), (4.12), (4.14) holds when
(V, E, C) is an instance of Intersection U-SNP. However, it is not preserved in the
general case. The following instance serves as a counter-example.

Example 4.1 - Total unimodularity is not present in general U-SNP
Consider the following instance of U-SNP:

a

b
c

d

1 2 3 4
Figure 4.2: An instance of U-SNP

Given the instance illustrated above, the matrix A from the system of inequalities
Ax ≤ b defined by (4.2), (4.3) is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I I

M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where M =

⎡⎢⎢⎢⎣
1 1 1 0
0 1 1 1
0 0 1 1

⎤⎥⎥⎥⎦

and I is a 4 × 4 identity matrix.

Let A′ be the sub-matrix of A defined by rows 2,4,5,7,9 and columns 2,3,4,6,8,
that is,

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
0 0 1 0 1
1 1 0 0 0
0 1 1 0 0
0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice that det(A′) = −2, which proves A is not totally unimodular. �
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For this reason, the argument used for proving Theorem 4.1 cannot be applied if
one wishes to extend such result to the general U-SNP. It turns out that if (V, E, C)
is an instance of the general U-SNP, then Px(V, E, C, ȳ) may indeed contain a frac-
tional extreme point, that is, it may not be an integral polytope. For proving such
statement let (V, E, 1) be the instance depicted in Figure 4.2 with C = 1. If ȳ = 1,
then the following fractional solution x̂ belongs to Px(V, E, 1, 1).

x̂1
e = 1

2 for e ∈ {a, c, d}, x̂1
e = 0 for e ∈ {b},

x̂2
e = 1

2 for e ∈ {a, b}, x̂2
e = 0 for e ∈ {c, d},

x̂3
e = 1

2 for e ∈ {b, d}, x̂3
e = 0 for e ∈ {a, c},

x̂4
e = 1

2 for e ∈ {c}, x̂4
e = 0 for e ∈ {a, b, d}.

For proving that x̂ is indeed an extreme point of Px(V, E, 1, 1), it suffices to show
that x̂ is the unique solution present in the face induced by the inequalities defining
Px(V, E, 1, 1) that are tight for x̂.

Notice that the capacity constraints

∑
e∈ΔE(v)

xi
e ≤ C ∀i ∈ K, v ∈ V,

are tight for vehicle 1 and stations 1 and 2, for vehicle 2 and station 1, and for
vehicle 3 and station 2. Moreover, inequalities

xi
e ≥ 0 ∀e ∈ E, i ∈ K,

are obviously tight for every zero component of x̂. Considering such tight inequalities
together with the assignment constraints

∑
i∈K

xi
e = 1 ∀e ∈ E,

one obtains the following system

x1
a + x1

c = 1
x1

c + x1
d = 1

x2
a + x2

b = 1
x3

b + x3
d = 1

x1
a + x2

a = 1
x2

b + x3
b = 1

x1
d + x3

d = 1
x1

c + x4
c = 1
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for which the unique solution is

x1
a = x1

c = x1
d = x2

a = x2
b = x3

b = x3
d = x4

c = 1
2 . (4.16)

It follows directly from (4.16) that x̂ is indeed an extreme point of Px(V, E, 1, 1).

4.2.3 Linear relaxation

The strength of a formulation can be measured by the dual bounds (lower bounds for
a minimization problem) its linear relaxation is capable of providing. The better the
bounds are, the stronger the formulation is. In Wolsey [181], the primal integrality
gap is used as an indicator of how strong a given formulation is.

According to this concept, the relaxed formulations previously presented are
equally strong as their linear relaxations are identical. Of course, there might still
exist some differences on the performances of a branch-and-cut framework based on
each of them (as we shall see in Chapter 5) due to the different branching decisions
each formulation induces.

Next, we study the strength of formulation (4.1)-(4.6) by analyzing its linear
relaxation. For this, let P(V,E,C) denote the polyhedron composed by inequalities
(4.2)-(4.4), (4.8), (4.14), that is,

P(V,E,C) = {x ∈ R
m×p, y ∈ R

n×p : (x, y) satisfies (4.2) − (4.4), (4.8), (4.14)}.

Theorem 4.2 - Formulation’s strength
The linear relaxation, defined by min{0x + 1y : (x, y) ∈ P(V,E,C)}, provides a lower
bound of n stops.

Proof. If one can find a primal and a dual solution of same objective-function value,
then the strong duality theorem states that both solutions are optimal solutions for
the respective problems. Next, given an instance (V, E, C) of U-SNP, we construct
a primal and a dual solution having same cost equal to |V | = n.

The following dual formulation is defined by associating a variable αe with each
inequality in (4.2), a variable βi

v with each inequality in (4.3), a variable γi
e with

each inequality in (4.4) where v = oe, and a variable μi
e with each inequality in (4.4)

where v = de.

zdual = max
∑
e∈E

αe −
∑
v∈V

∑
i∈K

Cβi
v (4.17)
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subject to

αe −
de−1∑
v=oe

βi
v − γi

e − μi
e ≤ 0 ∀e ∈ E, i ∈ K (4.18)

∑
e∈δ+

G(v)

γi
e +

∑
e∈δ−

G(v)

μi
e ≤ 1 ∀i ∈ K, v ∈ V, (4.19)

βi
v ≥ 0 ∀v ∈ V, i ∈ K, (4.20)

γi
e ≥ 0 ∀e ∈ E, i ∈ K, (4.21)

μi
e ≥ 0 ∀e ∈ E, i ∈ K. (4.22)

We construct a dual feasible solution (α̂, β̂, γ̂, μ̂) as follows. Let β̂i
v = 0 for all

v ∈ V, i ∈ K. For each v ∈ V , let e′ be an arbitrarily chosen edge incident to v,
that is, e′ ∈ δ+

G(v) ∪ δ−
G(v). If e′ ∈ δ+

G(v), let γ̂i
e′ = 1 for all i ∈ K, and otherwise, let

μ̂i
e′ = 1 for all i ∈ K. Let every other variable γ̂ and μ̂ be 0. Inequalities (4.19) are

thus satisfied at equality. Finally, let α̂e = γ̂i
e + μ̂i

e for all e ∈ E, i ∈ K. Inequalities
(4.18) are thus also satisfied at equality and (α̂, β̂, γ̂, μ̂) is a feasible solution of the
dual problem. By construction,

∑
e∈E

α̂e −
∑
v∈V

∑
i∈K

Cβ̂i
v = |V | = n.

We now give a primal feasible solution with the same cost to prove optimality.
Let x̂i

e = 1
p

for all e ∈ E, i ∈ K, and ŷi
v = 1

p
for all v ∈ V, i ∈ K. Equations (4.2)

are satisfied since ∑i∈K
1
p

= 1. Inequalities (4.3) are satisfied since ∑e∈ΔE(v)
1
p

=
|ΔE(v)|

p
≤ C. Inequalities (4.4) are clearly satisfied since 0 ≤ 1

p
≤ 1

p
. Therefore, (x̂, ŷ)

is a feasible solution of the primal problem. By construction,

∑
v∈V

∑
i∈K

ŷi
v = |V | = n.

From strong duality theorem, (α̂, β̂, γ̂, μ̂) and (x̂, ŷ) are both optimal solutions
from the dual and primal problems, respectively. �

Notice however, that a lower bound of n stops does not deliver any additional
information since such bound is already known from Proposition 3.1. This would
not be a problem if n was indeed a good lower bound. Unfortunately, even for the
simplest instances, n is far from being a good lower bound and the integrality gap
is quite large. The following example illustrates the situation.

Example 4.2 - How weak is the given formulation
Consider the following instance of U-SNP with m demands and capacity C.
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e1
e2

...
em−1
em

1 2

Clearly, each non-empty vehicle must stop exactly 2 times. Therefore, an optimal
solution is obtained using the minimum number of vehicles. Since kmin =

⌈
m
C

⌉
, the

optimal integer solution has a cost of 2
⌈

m
C

⌉
stops. Theorem 4.2 indicates, however,

that the linear relaxation provides a lower bound of 2 stops for the given instance.
Therefore, the integrality gap of the given formulation can reach up to

1 − 1⌈
m
C

⌉ . �

This means that if one sets m = 100 and C = 1 on the given example, the
integrality gap equals 99%! Moreover, an asymptotic analysis (see Figure 4.3), that
is setting m → ∞, yields a remarkable – in a bad way – integrality gap of 100%.
Recall, in addition, that the case where C = 1 can be solved in polynomial time.
Such observations reveal that there exists a large room for improvements in the
formulation (4.1)-(4.6) provided by Pimenta et al. [151].

50 100 150 200

0.85

0.9

0.95

m

gap(%)

Figure 4.3: Asymptotic analysis of the integrality gap

4.3 Dimension and facial study

In the previous section, the lower bound provided by the linear relaxation of formu-
lation (4.1)-(4.6) was shown to be particularly poor. Such result provides evidences
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on why typical Branch-and-Bound approaches have failed on solving such formula-
tion (cf. Pimenta et al. [151]). In order to reinforce the given formulation, a natural
approach is therefore to investigate the facial structure of the convex hull of the fea-
sible solutions. Recall that for the U-SNP, such convex hull is given by the polytope
P(V,E,C), defined as

P(V,E,C) = conv(P(V,E,C) ∩ Z
(n+m)p),

where P(V,E,C) is the polyhedron composed by inequalities (4.2)-(4.4), (4.8), (4.14).

In this section we first investigate the dimension of P(V,E,C). We then study the
inequalities composing P(V,E,C) and identify necessary and sufficient conditions for
which they are facet-defining for P(V,E,C). However, before diving into such study,
some additional definitions are made necessary for an easier lecture.

Definition 4.1 - Perfect idleness
Given an instance I = (V, E, C) of U-SNP and a solution (x̄, ȳ) ∈ P(V,E,C), vehicle
i ∈ K is said to be perfectly idle if x̄i

e = 0 for every e ∈ E and ȳi
v = 0 for every

v ∈ V . In other words, vehicle i is perfectly idle if it is idle and it does not stop at
any station.

Definition 4.2 - Dumbness
Given an instance I = (V, E, C) of U-SNP and a solution (x̄, ȳ) ∈ P(V,E,C), vehicle
i ∈ K is said to be dumb if ȳi

v = 1 for every v ∈ V , that is, vehicle i stops at all
stations.

Definition 4.3 - Perfect dumbness
Given an instance I = (V, E, C) of U-SNP and a solution (x̄, ȳ) ∈ P(V,E,C), vehicle
i ∈ K is said to be perfectly dumb if x̄i

e = 0 for every e ∈ E and ȳi
v = 1 for every

v ∈ V . In other words, vehicle i is perfectly dumb if it is idle and dumb.

The next definitions concern some operations that can be done once a feasible
solution of U-SNP is known, in order to derive another solution. Notice that de-
pending on the input solution, some of these operations might result in unfeasible
solutions. Nonetheless, throughout this chapter we are cautious enough to invoke
such operations only on suitable situations.

Definition 4.4 - Transfer
Given an instance I = (V, E, C) of U-SNP and a solution (x̄, ȳ) ∈ P(V,E,C), the
solution (x̂, ŷ) ∈ P(V,E,C) is said to be constructed by transferring a chosen demand
e′ from vehicle k to vehicle j, if
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x̂j
e′ = x̄j

e′ + x̄k
e′ ,

x̂k
e′ = 0,

x̂i
e′ = x̄i

e′ ∀i ∈ K \ {j, k},

x̂i
e = x̄i

e ∀i ∈ K, e ∈ E \ e′,

ŷj
oe′ = ȳj

oe′ + ȳk
oe′ ,

ŷj
de′ = ȳj

de′ + ȳk
de′ ,

ŷj
v = ȳj

v ∀v ∈ V \ {oe′ , de′},

ŷi
v = ȳi

v ∀v ∈ V, i ∈ K \ j.

Definition 4.5 - Sequential permutation
Given an instance I = (V, E, C) of U-SNP, a solution (x̄, ȳ) ∈ P(V,E,C) and a subset
of vehicles S = {s1, . . . , s|S|} ⊆ K, the solution (x̂, ŷ) ∈ P(V,E,C) is said to be a
sequential permutation of (x̄, ȳ) over S if

x̂si
e = x̄si+1

e ∀i ∈ {1, . . . , |S| − 1}, e ∈ E,

x̂
s|S|
e = x̄s1

e ∀e ∈ E,

x̂i
e = x̄i

e ∀i ∈ K \ S, e ∈ E,

ŷsi
v = ȳsi+1

v ∀i ∈ {1, . . . , |S| − 1}, v ∈ V,

ŷ
s|S|
v = ȳs1

v ∀e ∈ E,

ŷi
v = ȳi

v ∀i ∈ K \ S, v ∈ V.

Notice that for S = K = {1, . . . , p}, a solution {Ê1, . . . , Êp} is said to be a
sequential permutation of solution {E1, . . . , Ep} if

{Ê1, . . . , Êp} = {E2, . . . , Ep, E1}.

4.3.1 Dimension

The dimension of a polytope P ⊆ R
d, denoted by dim(P), is defined as the maximum

number of affinely independent vectors in P minus one. When P is full dimensional,
that is dim(P) = d, searching for d+1 affinely independent vectors in P is usually a
fairly manageable task. Nonetheless, gathering such vectors for polytopes that are
not full dimensional can be rather tricky.

For this reason, let us use an alternative definition of dim(P): given a polyhedron
P = {x ∈ R

n : Ax ≤ b} where A=x ≤ b= is the subsystem of implicit equalities in
Ax ≤ b, the dimension of P is equal to n minus the rank of A=. Next, we show that
dim(P(V,E,C)) = (n+m)p−m by showing that the only implicit equalities in P(V,E,C)

are those described by constraints (4.2) (up to a linear combination of them).
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Theorem 4.3 - No additional implicit equalities in P(V,E,C)

Let αT x+βT y = γ define a general hyperplane in R
(n+m)p. If C ≥ 2 and αT x+βT y =

γ is an implicit equality in P(V,E,C), then it can be written as a linear combination
of equations (4.2).

Proof. By definition, if αT x + βT y = γ is an implicit equality in P(V,E,C), then

P(V,E,C) ⊆ {(x, y) ∈ R
(n+m)p : αT x + βT y = γ}.

The proof is organized in three steps:

i. showing βi
v = 0 for any station v ∈ V and any vehicle i ∈ K;

ii. showing αi
e = αj

e for any demand e ∈ E and any pair of vehicles i ∈ K, j ∈ K;

iii. showing γ = ∑e∈E αi
e for any vehicle i ∈ K.

Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle j ∈ K is
perfectly idle. Such a solution exists since Property 4 stated in Section 3.1 holds.

Step i.: Let us construct another feasible solution (x̂, ŷ) in the following manner.

x̂i
e = x̄i

e ∀e ∈ E, i ∈ K,

ŷi
v = ȳi

v ∀v ∈ V, i ∈ K \ j,

ŷj
v = ȳj

v ∀v ∈ V \ v′,

ŷj
v′ = 1

for some arbitrarily chosen v′ ∈ V .

Both solutions are feasible and thus satisfy the equation αT x + βT y = γ. There-
fore, βj

v′ = 0. Since v′ ∈ V and j ∈ K can be arbitrarily chosen,

βi
v = 0 ∀v ∈ V, i ∈ K,

and the supposed implicit equality can be rewritten as

∑
e∈E

∑
i∈K

αi
ex

i
e = γ.

Step ii.: Consider again solution (x̄, ȳ). Let e′ denote some arbitrarily chosen
demand that is assigned to some vehicle i ∈ K. Now construct another feasible so-
lution (x̂, ŷ) by transferring demand e′ from vehicle i to vehicle j. Such construction
is possible since vehicle j is idle.
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Both solutions are feasible and thus satisfy the equation αT x = γ. Therefore
αi

e′ = αj
e′ . Since vehicle j ∈ K and demand e′ ∈ E can be arbitrarily chosen,

αi
e′ = αj

e′ ∀e ∈ E, i ∈ K, j ∈ K,

and the supposed implicit equality can be rewritten as

∑
e∈E

∑
i∈K

λex
i
e = γ, (4.23)

where λe = αi
e for any e ∈ E, i ∈ K.

Step iii.: Finally, take solution (x̄, ȳ) and construct other p − 1 feasible solutions
by taking p − 1 times the sequential permutation of (x̄, ȳ). Notice that, considering
this pool of p feasible solutions, each demand is assigned to a vehicle i ∈ K exactly
once. Therefore, all these p solutions satisfy the equation (4.23) and summing up
all such equations, one gets ∑

e∈E

pλe = pγ,

which reduces to ∑
e∈E

λe = γ.

Step iii. is thus finished and the supposed implicit equality can be rewritten as

∑
e∈E

∑
i∈K

λex
i
e =
∑
e∈E

λe,

which is clearly a linear combination of equations (4.2) with weights λ ∈ R
m. �

Notice that the system of equations defined by constraints (4.2) clearly has full-
rank and hence

rank(A=) = m,

which yields the following result.

Corollary 4.1 - Dimension of P(V,E,C)

dim
(
P(V,E,C)

)
= (n + m)p − m. �

Notice that this result only remains true under the condition that Property 4
holds, that is, if p ≥ pmin +1. For the case where p = pmin, one may have additional
implicit equalities other than (4.2). For the sake of scientific curiosity, we take a
quick glimpse at this particular case through Propositions 4.2 and 4.3. For the rest
of our polyhedral study, however, we assume that C ≥ 2 (as otherwise, the problem
can be easily solved) and that p = m > pmin and therefore Property 4 holds.
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Proposition 4.2 - Implicit equalities when p = pmin

If p = pmin and there exists a station v′ ∈ V for which |ΔE(v′)| = pC, then inequal-
ities (4.3) associated with v′ are implicit equalities for each i ∈ K.

Proof. From the definition of pmin, if p = pmin, then there exists at least one feasible
solution. By definition, a single vehicle can take at most C demands in ΔE(v′). Since
each demand must be assigned to some vehicle, every vehicle must take exactly C

demands in ΔE(v′). Therefore,

∑
e∈ΔE(v′)

xi
e = C ∀i ∈ K. �

Proposition 4.3 - Further implicit equalities when p = pmin

If p = pmin and there exists a station v′ ∈ V for which
⌈

max{|δ−
G(v′)|, |δ+

G(v′)|}
C

⌉
= p,

then inequalities (4.8) associated with v′ are implicit equalities for each i ∈ K.

Proof. Without loss of generality, suppose |δ+
G(v′)| ≥ |δ−

G(v′)|. Notice that δ+
G(v′) ⊆

ΔE(v′). Hence, the maximum number of demands in δ+
G(v′) a single vehicle can

take is C. Since each demand must be assigned to some vehicle, one needs at least⌈
|δ+

G(v′)|
C

⌉
vehicles to satisfy such demands. This means that if p =

⌈
|δ+

G(v′)|
C

⌉
, then

all vehicles must take at least one demand in δ+
G(v′). Since each demand in δ+

G(v′)
stops at v′, every vehicle must stop at v′. Therefore,

yi
v′ = 1 ∀i ∈ K. �

4.3.2 Facial study

Before tackling the facial study of P(V,E,C), let us introduce a few lemmas based
on the ideas used in the proof of Theorem 4.3. These lemmas will be useful and
referenced multiple times in future proofs.

Let
αT x + βT y ≤ γ (4.24)

be a valid inequality for P(V,E,C), that is,

P(V,E,C) ⊆ {(x, y) ∈ R
(n+m)p : αT x + βT y ≤ γ}.
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Moreover, let
F ′ =

{
(x, y) ∈ P(V,E,C) : αT x + βT y = γ

}
denote the face of P(V,E,C) induced by (4.24).

Lemma 4.1. Given an instance (V, E, C) of U-SNP, a station v′ ∈ V and a vehicle
i′ ∈ K, let (x̄, ȳ) ∈ USNP(V,E,C) be a feasible solution for (V, E, C) where ȳi′

v′ = 0, and
let (x̂, ŷ) ∈ USNP(V,E,C) be a feasible solution constructed in the following manner.

x̂i
e = x̄i

e ∀e ∈ E, i ∈ K,

ŷi
v = ȳi

v ∀v ∈ V, i ∈ K \ i′,

ŷi′
v = ȳi′

v ∀v ∈ V \ v′,

ŷi′
v′ = 1.

If both (x̄, ȳ) and (x̂, ŷ) belong to the same face

F ′ =
{
(x, y) ∈ P(V,E,C) : αT x + βT y = γ

}
,

then βi′
v′ = 0.

Proof. If (x̄, ȳ) ∈ F ′, the following equality holds.

∑
e∈E

∑
i∈K

αi
ex̄

i
e +
∑
v∈V

∑
i∈K

βi
vȳi

v = γ. (4.25)

If (x̂, ŷ) ∈ F ′, the following equality holds.

∑
e∈E

∑
i∈K

αi
ex̄

i
e +
∑
v∈V

∑
i∈K

βi
vȳi

v + βi′
v′ = γ. (4.26)

By subtracting (4.25) from (4.26), one obtains βi′
v′ = 0. �

Lemma 4.2. Given an instance (V, E, C) of U-SNP, a demand e′ ∈ E and vehicle
i′ ∈ K, let (x̄, ȳ) ∈ USNP(V,E,C) be a feasible solution for (V, E, C) where vehicle i′

is perfectly idle, and let (x̂, ŷ) ∈ USNP(V,E,C) be a feasible solution constructed by
transferring demand e′ that was assigned to some vehicle k ∈ K \ i′ to vehicle i′.

If both (x̄, ȳ) and (x̂, ŷ) belong to the same face

F ′ =
{
(x, y) ∈ P(V,E,C) : αT x + βT y = γ

}
,

then αi′
e′ + βi′

oe′ + βi′
de′ = αk

e′.
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Proof. If (x̄, ȳ) ∈ F ′, the following equality holds:

∑
e∈E

∑
i∈K

αi
ex̄

i
e +
∑
v∈V

∑
i∈K

βi
vȳi

v = γ. (4.27)

If (x̂, ŷ) ∈ F ′, the following equality holds:

∑
e∈E

∑
i∈K

αi
ex̄

i
e − αk

e′ + αi′
e′ +

∑
v∈V

∑
i∈K

βi
vȳi

v + βi′
oe′ + βi′

de′ = γ. (4.28)

By subtracting (4.27) from (4.28), one obtains αi′
e′ + βi′

oe′ + βi′
de′ = αk

e′ . �

We are now ready to give the necessary and sufficient conditions for which the
inequalities composing P(V,E,C) induce facets of P(V,E,C). Let us begin by analysing
the trivial inequalities (4.8) and (4.14).

Theorem 4.4 - Inequalities (4.8) defining facets
Inequalities

yi
v ≤ 1 ∀v ∈ V, i ∈ K, (4.8)

are facet-defining for P(V,E,C).

Proof. Let v′ be any station in V and i′ be any vehicle in K. We show that face F ,
defined as

F =
{
(x, y) ∈ P(V,E,C) : yi′

v′ = 1
}

,

is a maximal face of P(V,E,C), and therefore inequalities (4.8) are facet-defining. More
specifically, we show that if there exists some face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωyi′

v′ =
∑
e∈E

λe + ω

}
,

that is, a linear combination of (4.8) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The proof is organized in the following three steps:

i. showing βi
v = 0 for any v ∈ V, i ∈ K \ i′ and βi′

v = 0 for any v ∈ V \ v′;

ii. showing αj
e = αi′

e for any e ∈ E, j ∈ K \ i′;
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iii. showing γ = ∑e∈E αi
e + ω for any i ∈ K.

Step i.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is idle and stops only at
v′ (i.e., ȳi′

v′ = 1 and ȳi′
v = 0 for every v ∈ V \ v′). By definition, (x̄, ȳ) ∈ F . Then,

Lemma 4.1 applies for any chosen station v ∈ V \ v′. Therefore, βi′
v = 0 for any

v ∈ V \ v′.

Consider now that (x̄, ȳ) is a feasible solution where some arbitrarily chosen
vehicle j ∈ K \ i′ is perfectly idle, and vehicle i′ is dumb. By definition, (x̄, ȳ) ∈ F .
Then, Lemma 4.1 applies for any chosen station v ∈ V , and therefore βj

v = 0 for
any v ∈ V . Since vehicle j can be arbitrarily chosen (as long as j �= i′), βj

v = 0 for
any v ∈ V, j ∈ K \ i′.

Let ω ∈ R be some real number such that ω = βi′
v′ . Then, face F ′ can be rewritten

as
F ′ =

{
(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

αi
ex

i
e + ωyi′

v′ = γ

}
.

Step ii.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle
j ∈ K \ i′ is perfectly idle and vehicle i′ is dumb. By definition, (x̄, ȳ) ∈ F . Then,
Lemma 4.2 applies for vehicle j and any chosen demand e ∈ E. Notice that a
demand e ∈ E can be assigned to any vehicle k ∈ K \ j, by taking the necessary
number of sequential permutations of (x̄, ȳ) over K \ j. Since all such solutions
belong to F , we have that αj

e = αk
e for any e ∈ E, k ∈ K.

Let λ ∈ R
m be some real vector such that λe = αj

e for any e ∈ E. Face F ′ can
now be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ = γ

}
.

Step iii.: Let (x̄, ȳ) be a feasible solution where all vehicles are dumb. By
definition, (x̄, ȳ) ∈ F . Let us construct other p − 1 solutions by taking p − 1 times
a sequential permutation of (x̄, ȳ) over K. Since vehicle i′ stops at station v′ in all
such solutions, each constructed solution belongs to F and therefore satisfies

∑
e∈E

∑
i∈K

λex
i
e + ω = γ. (4.29)

Notice that, considering this pool of p feasible solutions (the p − 1 constructed
solutions plus (x̄, ȳ)), each demand is assigned to a vehicle i ∈ K exactly once.
Summing up the p equations (4.29) associated with the pool of solutions considered,

100 Chapter 4. Polyhedral study



Exploring Combinatorial Aspects of the Stop Number Problem

one obtains
p
∑
e∈E

λe + pω = pγ.

Therefore, ∑e∈E λe + ω = γ and face F ′ can finally be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωyi′

v′ =
∑
e∈E

λe + ω

}
. �

It is interesting to notice that even if constraints (4.8) are facet-defining, they
are not significant from an optimization point of view. Such statement might seem
odd and even contradictory. However, it turns out that U-SNP has a very precise
objective function: minimizing the number of stops. For this reason, one may
remove constraints (4.8) from P(V,E,C), and an optimal solution will still satisfy such
constraints. Proposition 4.4 indicates such fact.

Proposition 4.4 - Constraints (4.8) are not necessary
Let P ′

(V,E,C) be the polyhedron defined by inequalities (4.2)-(4.4), (4.14). If (x̂, ŷ) is an
optimal solution of the formulation defined by P ′

(V,E,C) under the objective function
(4.1), then constraints (4.8) are satisfied by (x̂, ŷ). That is,

ŷi
v ≤ 1 ∀v ∈ V, i ∈ K.

Proof. Suppose (x̂, ŷ) is an optimal solution not respecting inequality (4.8) for a
given station v′ and vehicle i′. Then, ŷi′

v′ = 1 + ε > 1, for some ε > 0.

From constraints (4.2) and (4.14),

0 ≤ x̂i
e ≤ 1 ∀e ∈ E, i ∈ K.

Therefore, one can construct a solution (x̄, ȳ) in the following manner:

x̄i
e := x̂i

e ∀e ∈ E, i ∈ K,

ȳi
v := ŷi

v ∀v ∈ V \ v′, i ∈ K \ i′,

ȳi′
v′ := ŷi′

v′ − ε.

Solution (x̄, ȳ) is clearly feasible since it respects all constraints (4.2)-(4.4), (4.14).
Moreover, the objective-function value of solution (x̄, ȳ) is, by definition, smaller
than that of solution (x̂, ŷ). Therefore, (x̂, ŷ) is not optimal – a contradiction. �

Of course, from the moment one changes the gradient of the objective func-
tion (4.1), Proposition 4.4 is no longer valid, and constraints 4.8 might need to be
reintegrated to the formulation.
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Theorem 4.5 - Inequalities (4.14) defining facets
Inequalities

xi
e ≥ 0 ∀e ∈ E, i ∈ K, (4.14)

are facet-defining for P(V,E,C) if and only if p ≥ 3.

Proof. Let e′ be any demand in E and i′ be any vehicle in K. We show that face
F , defined as

F =
{
(x, y) ∈ P(V,E,C) : xi′

e′ = 0
}

,

is a maximal face of P(V,E,C), and therefore inequalities (4.14) are facet-defining.
More specifically, we show that if there exists some face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ =
∑
e∈E

λe

}
,

that is, a linear combination of (4.14) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The necessity of condition p ≥ 3, comes from the fact that if K = {i′, j′} (i.e.,
p = 2) and xi′

e′ = 0, then xj′
e′ = 1 from equalities (4.2). Therefore, F ⊆ F ′ where

F ′ =
{
(x, y) ∈ P(V,E,C) : xj′

e′ − yj′
oe′ = 0

}
is the face induced by inequality (4.4) associated with demand e′, vehicle j′ and
station oe′ .

The proof of sufficiency is organized in the following three steps:

i. showing βi
v = 0 for any v ∈ V, i ∈ K;

ii. showing αj
e = αi′

e for any e ∈ E \e′, j ∈ K, and αj
e′ = αk

e′ for any j ∈ K \ i′, k ∈
K \ i′;

iii. showing ∑e∈E αi
e = γ for any i ∈ K.

Step i.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle
i ∈ K is perfectly idle, and demand e′ is not assigned to vehicle i′. Such solution
exists, since p ≥ 3 and Property 4 holds. By definition, (x̄, ȳ) ∈ F . Then, Lemma
4.1 applies for any chosen station v ∈ V , and therefore βi

v = 0 for every v ∈ V .
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Since vehicle i can be arbitrarily chosen, βi
v = 0 for any v ∈ V, i ∈ K, and face F ′

can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e = γ

}
.

Step ii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, (x̄, ȳ) ∈ F . Then, Lemma 4.2 applies for any chosen demand e ∈ E \ e′.
Notice that a demand e ∈ E \ e′ can be assigned to any vehicle j ∈ K \ i′, by taking
the necessary number of sequential permutations of (x̄, ȳ) over K \ i′. Since all such
solutions belong to F , one has that αj

e = αi′
e for any e ∈ E \ e′, j ∈ K. Let λe ∈ R

be some real number such that λe = αj
e for any e ∈ E \ e′, j ∈ K.

Consider now that (x̄, ȳ) is a feasible solution where some arbitrarily chosen
vehicle j ∈ K is perfectly idle, and demand e′ is not assigned to vehicle i′. By
definition, (x̄, ȳ) ∈ F . Notice that demand e′ can be assigned to any vehicle j ∈ K\i′,
by taking the necessary number of sequential permutations of (x̄, ȳ) over K \ i′.
All such solutions belong to F . Therefore, from Lemma 4.2, αj

e′ = αk
e′ for any

j ∈ K \ i′, k ∈ K \ i′. Let λe′ ∈ R be some real number such that λe′ = αj
e′ for any

j ∈ K \ i′. Moreover, let ω ∈ R be some real number such that ω = αi′
e′ − λe′ .

Face F ′ can now be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E\e′

∑
i∈K

λex
i
e +

∑
i∈K\i′

λe′xi
e′ + λe′xi′

e′ + ωxi′
e′ = γ

⎫⎬⎭
=
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ = γ

}
.

Step iii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, (x̄, ȳ) ∈ F . Let us construct other p − 2 solutions by doing p − 2 times a
sequential permutation of (x̄, ȳ) over K \ i′. Since vehicle i′ remains idle in all such
solutions, each constructed solution belongs to F and therefore satisfies

∑
e∈E

∑
i∈K\i′

λex
i
e = γ. (4.30)

Notice that, considering this pool of p−1 feasible solutions (the p−2 constructed
solutions plus (x̄, ȳ)), each demand is assigned to a vehicle i ∈ K exactly once.
Summing up equations (4.30) for each p − 1 solution considered, one obtains

(p − 1)
∑
e∈E

λe = (p − 1)γ.
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Therefore, ∑e∈E λe = γ and face F ′ can finally be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ =
∑
e∈E

λe

}
. �

Through Theorem 4.4 and Theorem 4.5, we provide the necessary and sufficient
conditions for which inequalities (4.8) and (4.14) define facets of P(V,E,C). We now
continue such study by considering next inequalities (4.4) and (4.3).

Theorem 4.6 - Inequalities (4.4) defining facets
The stop inequalities

xi
e − yi

v ≤ 0 ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4.4)

are facet-defining for P(V,E,C).

Proof. Let e′ be any demand in E and i′ be any vehicle in K. The proof described
below is done for v = oe′ , but it can trivially be adapted for v = de′ . We show that
face F , defined as

F =
{
(x, y) ∈ P(V,E,C) : xi′

e′ − yi′
oe′ = 0

}
,

is a maximal face of P(V,E,C), and therefore a facet of P(V,E,C). More specifically, we
show that if there exists some face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ − ωyi′
oe′ =

∑
e∈E

λe

}
,

that is, a linear combination of (4.4) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The proof is organized in the following five steps:

i. showing βi
v = 0 for any v ∈ V, i ∈ K \ i′ and βi′

v = 0 for any v ∈ V \ oe′ ;

ii. showing αi′
e = αj

e for any e ∈ E \ e′, j ∈ K;

iii. showing αj
e′ = αk

e′ for any j ∈ K \ i′, k ∈ K \ i′;

iv. showing αj
e′ = αi′

e′ + βi′
oe′ for any j ∈ K \ i′;
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v. showing γ = ∑e∈E αi
e for any i ∈ K \ i′.

Step i.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle
j ∈ K \ i′ is perfectly idle, and demand e′ is assigned to vehicle i′ (i.e., x̄i′

e′ = 1).
Since x̄i′

e′ = ȳi′
oe′ = 1, (x̄, ȳ) ∈ F . Then, Lemma 4.1 applies for any chosen station

v ∈ V , and therefore βj
v = 0 for any v ∈ V . Since vehicle j can be arbitrarily chosen

among K \ i′, βi
v = 0 for any v ∈ V, i ∈ K \ i′.

Consider now that (x̄, ȳ) is a feasible solution where vehicle i′ is perfectly idle.
Since x̄i′

e′ = ȳi′
oe′ = 0, (x̄, ȳ) ∈ F . Then, Lemma 4.1 applies for any chosen station

v ∈ V \oe′ , and therefore βi′
v = 0 for any v ∈ V \oe′ . Let ω ∈ R be some real number

such that ω = −βi′
oe′ . Then, face F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e − ωyi′

oe′ = γ

}
.

Step ii.: Let (x̄, ȳ) be a feasible solution such that some arbitrarily chosen de-
mand e ∈ E \ e′ and demand e′ are assigned to vehicle i′. Moreover, consider that
some arbitrarily chosen vehicle j ∈ K \ i′ is perfectly idle. Such solution exists
since ≥ 2. Since x̄i′

e′ = ȳi′
oe′ = 1, (x̄, ȳ) ∈ F . Then, Lemma 4.2 applies for vehicle j

and demand e, and therefore αi′
e = αj

e. Since vehicle j and demand e can be both
arbitrarily chosen among K \ i′ and E \ e′, respectively, one has αi′

e = αj
e for any

e ∈ E \ e′ and j ∈ K.

Let λe ∈ R be some real number such that λe = αi′
e for any e ∈ E \ e′. Then,

face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E\e′

∑
i∈K

λex
i
e +
∑
i∈K

αi
e′xi

e′ − ωyi′
oe′ = γ

⎫⎬⎭ .

Step iii.: If p = 2, the proof is trivial. Hence, let us assume p ≥ 3. Let (x̄, ȳ)
be a feasible solution where vehicle i′ is perfectly idle and some arbitrarily chosen
demand e ∈ E \ e′ is the only demand assigned to some arbitrarily chosen vehicle
j ∈ K \ i′. Fixing vehicle i′ to be idle and vehicle j to take a single demand e,
leaves (p − 2)C available seats for m − 1 demands. By definition, m − 1 demands
can occupy at most m − 1 seats simultaneously. Therefore, one must ensure that,
(p − 2)C ≥ m − 1. Since C ≥ 2, one has (p − 2)C ≥ 2p − 4. Notice however, that
2p − 4 ≥ m − 1 if and only if p ≥ 3, since p = m. Hence, one has a proof of the
existence of such (x̄, ȳ) solution. Therefore, (x̄, ȳ) ∈ F and the following equality
holds: ∑

e∈E

∑
i∈K

αi
ex̄

i
e − ωȳi′

oe′ = γ.

Chapter 4. Polyhedral study 105



Exploring Combinatorial Aspects of the Stop Number Problem

Considering solution (x̄, ȳ), let k ∈ K\{i′, j} denote the vehicle on which demand
e′ is assigned to. Now construct another feasible solution (x̂, ŷ) by transferring
demand e′ from vehicle k to vehicle j. Since solution (x̂, ŷ) belongs to F , the
following equality holds:

∑
e∈E

∑
i∈K

αi
ex̄

i
e + αj

e′ − αk
e′ − ωȳi′

oe′ = γ.

It easily follows that αj
e′ = αk

e′ . Notice that demand e′ can be assigned to any
vehicle k ∈ K \ {i′, j}, by taking the necessary number of sequential permutations
of (x̄, ȳ) over K \ {i′, j}. Therefore,

αj
e′ = αk

e′ ∀k ∈ K \ {i′}.

Let λe′ ∈ R be some real number such that λe′ = αi
e′ for any i ∈ K \ i′. Then,

face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E\e′

∑
i∈K

λex
i
e +

∑
i∈K\i′

λe′xi
e′ + αi′

e′xi′
e′ − ωyi′

oe′ = γ

⎫⎬⎭ .

Step iv.: Let (x̄, ȳ) be a feasible solution such that vehicle i′ is perfectly idle.
Since x̄i′

e′ = ȳi′
oe′ = 0, (x̄, ȳ) ∈ F . Then, Lemma 4.2 applies for vehicle i′ and demand

e′. Therefore, αi′
e − ω = λe and face F ′ can now be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E\e′

∑
i∈K

λex
i
e +

∑
i∈K\i′

λe′xi
e′ + λe′xi′

e′ + ωxi′
e′ − ωyi′

oe′ = γ

⎫⎬⎭
=
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E\e′

∑
i∈K

λex
i
e +
∑
i∈K

λe′xi
e′ + ωxi′

e′ − ωyi′
oe′ = γ

⎫⎬⎭
=
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ − ωyi′
oe′ = γ

}
.

Step v.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, (x̄, ȳ) ∈ F . Let us construct other p − 2 solutions by taking p − 2 times
the sequential permutation of (x̄, ȳ) over K \ i′. Since vehicle i′ is perfectly idle in
all such solutions, each constructed solution belongs to F and therefore satisfies

∑
e∈E

∑
i∈K\i′

λex
i
e = γ. (4.31)

Notice that, considering this pool of p−1 feasible solutions (the p−2 constructed
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solutions plus (x̄, ȳ)), each demand is assigned to a vehicle i ∈ K \ i′ exactly once.
Summing up the p − 1 equations (4.31) associated with the pool of solutions con-
sidered, one obtains

(p − 1)
∑
e∈E

λe = (p − 1)γ.

Therefore, γ = ∑e∈E λe and face F ′ can finally be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e + ωxi′

e′ − ωyi′
oe′ =

∑
e∈E

λe.

}
. �

Theorem 4.7 - Inequalities (4.3) defining facets
The capacity constraints

∑
e∈ΔE(v)

xi
e ≤ C ∀v ∈ V, i ∈ K, (4.3)

are facet-defining for a given station v′ ∈ V and vehicle i′ ∈ K if and only if

1. there is no station v ∈ V such that ΔE(v′) ⊂ ΔE(v);

2. for any station v ∈ V , |ΔE(v′) \ δ(v)| ≥ C.

Proof. We show that face F , defined as

F =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈ΔE(v′)

xi′
e = C

⎫⎬⎭ ,

is a maximal face of P(V,E,C), and therefore inequalities (4.3) associated with station
v′ ∈ V and vehicle i′ ∈ K is facet-defining. More specifically, we show that if there
exists some face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈ΔE(v′)

ωxi′
e = ωC +

∑
e∈E

λe

⎫⎬⎭ ,

that is, a linear combination of (4.3) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The necessity of condition 1, comes from the fact that if there exists a station
v ∈ V for which ΔE(v′) ⊂ ΔE(v), then ∑e∈ΔE(v′) xi′

e = C implies ∑e∈ΔE(v) xi′
e =
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C. Therefore, inequalities (4.3) for station v′ are dominated by inequalities (4.3)
associated with station v. Condition 2 is necessary since if there exists a station
v ∈ V , for which |ΔE(v′) \ δ(v)| < C, then any assignment of C demands in ΔE(v′)
to vehicle i′ would induce the vehicle to stop at station v, that is yi′

v = 1.

The proof of sufficiency is organized in the following five steps:

i. showing βi
v = 0 for any v ∈ V, i ∈ K;

ii. showing αj
e = αk

e for any e ∈ E, j ∈ K \ i′, k ∈ K \ i′;

iii. showing αi′
e = αj

e for any e ∈ E \ ΔE(v′), j ∈ K;

iv. showing αi′
e1 − αj

e1 = αi′
e2 − αj

e2 for any e1 ∈ ΔE(v′), e2 ∈ ΔE(v′), j ∈ K \ i′;

v. showing γ = ∑e∈E αj
e + C(αi′

e′ − αj
e′) for any e′ ∈ ΔE(v′), j ∈ K \ i′.

Step i.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle
j ∈ K \ i′ is perfectly idle, and vehicle i′ is fully charged at station v′. Such solution
clearly belongs to F . Then, Lemma 4.1 applies for any chosen station v ∈ V , and
therefore βj

v = 0 for any v ∈ V . Since vehicle j can be arbitrarily chosen among
K \ i′, βi

v = 0 for any v ∈ V, i ∈ K \ i′.

Consider now that (x̄, ȳ) is a feasible solution where vehicle i′ is fully charged
at station v′ and does not stops at some arbitrarily chosen station v ∈ V . Such a
solution exists from condition 2. Then, Lemma 4.1 applies, and therefore βi′

v = 0.
Since station v ∈ V can be arbitrarily chosen, βi′

v = 0 for any v ∈ V . Hence, face
F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e = γ

}
.

Step ii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is fully charged at
station v′ and some arbitrarily chosen vehicle j ∈ K \ i′ is perfectly idle. Moreover,
consider that some arbitrarily chosen demand e ∈ E is assigned to some arbitrarily
chosen vehicle k ∈ K \ {i′, j}. Such solution exists since condition 2 implies that
|ΔE(v′)| ≥ C + 1. Since (x̄, ȳ) ∈ F , Lemma 4.2 applies for vehicle j and demand e,
and therefore αj

e = αk
e . Since vehicle j and demand e can be both arbitrarily chosen

among K \i′ and E, respectively, one has αj
e = αk

e for any e ∈ E, j ∈ K \i′, k ∈ K \i′.

Let λe ∈ R be some real number such that λe = αj
e for any e ∈ E and j ∈ K \ i′.

Then, face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

αi′
e xi′

e = γ

⎫⎬⎭ .
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Step iii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is fully charged at
station v′ and some arbitrarily chosen vehicle j ∈ K \ i′ is perfectly idle. Moreover,
consider that some arbitrarily chosen demand e′ ∈ E \ ΔE(v′) is also assigned to
vehicle i′. Such solution exists from condition 1. Since (x̄, ȳ) ∈ F , Lemma 4.2
applies for vehicle j and demand e′, and therefore αi′

e′ = αj
e′ . Since vehicle j and

demand e′ can be both arbitrarily chosen among K \ i′ and E \ ΔE(v′), respectively,
one has αi′

e′ = αj
e′ = λe′ for any e′ ∈ E \ ΔE(v′), j ∈ K.

Then, face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +

∑
e∈E\ΔE(v′)

λex
i′
e +

∑
e∈ΔE(v′)

αi′
e xi′

e = γ

⎫⎬⎭ .

Step iv.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is fully charged at sta-
tion v′. Let S ⊂ ΔE(v′) denote the set of demands assigned to vehicle i′. Moreover,
consider that some arbitrarily chosen demand e′ ∈ ΔE(v′) is the only demand as-
signed to some arbitrarily chosen vehicle j ∈ K \ i′. Since (x̄, ȳ) ∈ F , the following
equality holds:

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\ΔE(v′)

λex̄
i′
e +

∑
e∈ΔE(v′)

αi′
e x̄i′

e = γ.

Now construct another feasible solution (x̂, ŷ) by exchanging demands e′ and
some arbitrarily chosen demand e′′ ∈ S. Then, (x̂, ŷ) also belong to F , and the
following equality holds:

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\ΔE(v′)

λex̄
i′
e +

∑
e∈ΔE(v′)

αi′
e xi′

e − λe′ + αi′
e′ − αi′

e′′ + λe′′ = γ.

Therefore, αi′
e′ − λe′ = αi′

e′′ − λe′′ . Since demands e′ and e′′ can be arbitrarily
chosen among ΔE(v′), one obtains

αi′
e′ − λe′ = αi′

e′′ − λe′′ ∀e′ ∈ ΔE(v′), e′′ ∈ ΔE(v′).

Let ω ∈ R be some real number such that ω = αi′
e −λe for any e ∈ ΔE(v′). Then,

face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +

∑
e∈E\ΔE(v′)

λex
i′
e +

∑
e∈ΔE(v′)

(ω + λe)xi′
e = γ

⎫⎬⎭
=
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

λex
i′
e +

∑
e∈ΔE(v′)

ωxi′
e = γ

⎫⎬⎭
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=
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈ΔE(v′)

ωxi′
e = γ

⎫⎬⎭ .

Step v.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is fully charged at
station v′. Let S ⊂ ΔE(v′) denote the set of demands assigned to vehicle i′. Let us
construct other p − 2 solutions by taking p − 2 times the sequential permutation of
(x̄, ȳ) over K \ i′. Since vehicle i′ is fully charged at station v′ in all such solutions,
each constructed solution belongs to F and therefore satisfies

∑
e∈E\S

∑
i∈K\i′

λex
i
e +
∑
e∈S

λe +
∑
e∈S

ω = γ. (4.32)

Notice that, by definition, |S| = C. Therefore, equality (4.32) can be rewritten
as ∑

e∈E\S

∑
i∈K\i′

λex
i
e +
∑
e∈S

λe + ωC = γ. (4.33)

Considering this pool of p − 1 feasible solutions (the p − 2 constructed solu-
tions plus (x̄, ȳ)), each demand in E \ S is assigned to a vehicle i ∈ K \ i′ exactly
once. Summing up the p − 1 equations (4.33) associated with the pool of solutions
considered, one obtains

(p − 1)
∑

e∈E\S

λe + (p − 1)
∑
e∈S

λe + (p − 1)ωC = (p − 1)γ,

which reduces to ∑
e∈E\S

λe +
∑
e∈S

λe + ωC = γ.

Therefore, γ = ∑e∈E λe + ωC and face F ′ can finally be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈ΔE(v′)

ωxi′
e =

∑
e∈E

λe + ωC

⎫⎬⎭ ,

and the proof is done. �

4.4 New valid inequalities and facets

In the previous section the necessary and sufficient conditions for which the inequal-
ities composing polyhedron P(V,E,C) define facets of P(V,E,C) were given. Indeed,
whenever a necessary condition was not satisfied, the inequality under analysis was
shown to be dominated by some other inequality composing P(V,E,C). At this point,
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an inexperienced or reckless reader may question himself if P(V,E,C) isn’t, in fact, the
exact same polyhedron as P(V,E,C). Nonetheless, the results from Section 4.2 clearly
indicates that not only this is not the case, but also that the objective function gra-
dient points towards an extreme point of P(V,E,C) that does not belong to P(V,E,C),
that is, a fractional extreme point. Figure 4.4 illustrates how such situation can be
achieved. Of course, the reader should keep in mind that Figure 4.4 gives an example
on a simple 2-dimensional space, and thus its reasoning should be abstracted to the
higher dimensional space on which polyhedrons P(V,E,C) and P(V,E,C) are inserted.

In Figure 4.4, each dot represents an integer solution. In Figure 4.4a, polyhedron
P(V,E,C) is given by the shaded area, while P(V,E,C) is defined as the intersection of
halfspaces induced by inequalities 1, 2 and 3. Clearly, inequality 3 does not define
a facet of P(V,E,C). Moreover, such inequality is dominated by inequality 1, since
every solution of P(V,E,C) satisfying inequality 3 at equality also satisfies inequality
1 at equality. In Figure 4.4b, polyhedron P(V,E,C) is defined as the intersection
of halfspaces induced by the inequalities represented in grey dashed lines. Notice
that all such inequalities are facet-defining for P(V,E,C). Nonetheless, they are not
sufficient for completely characterizing P(V,E,C). Indeed, the inequality represented
by the red line is required.

1

2

3

P(V,E,C)

P(V,E,C)

(a) Inequalities composing P(V,E,C) not
defining facets of P(V,E,C) are domi-
nated by other inequalities compos-
ing P(V,E,C)

P(V,E,C)

(b) All inequalities composing P(V,E,C)
define facets of P(V,E,C). Yet,
P(V,E,C) �= P(V,E,C).

Figure 4.4: Illustration of P(V,E,C) and P(V,E,C)

This section focuses on the search for new valid inequalities capable of strength-
ening the formulation given by P(V,E,C) and thus reducing its integrality gap.
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4.4.1 Strong capacity inequalities

Theorem 4.8 - Validity of strong capacity inequalities
The following Strong Capacity inequalities are valid for P(V,E,C).

∑
e∈δ−

G(v)

xi
e − Cyi

v ≤ 0 ∀v ∈ V, i ∈ K, (4.34a)

∑
e∈δ+

G(v)

xi
e − Cyi

v ≤ 0 ∀v ∈ V, i ∈ K. (4.34b)

Proof. On any feasible solution, if vehicle i ∈ K does not stop at station v ∈ V (i.e.
yi

v = 0) then it cannot take any demand with origin (or destination) on v. On the
other hand, if it stops at station v (i.e. yi

v = 1), then it is capable of serving at most
C demands. �

Such inequalities yield a new lower bound capable of enhancing the trivial lower
bound of n stops from Proposition 3.1. By summing up inequalities (4.34a) for each
vehicle i ∈ K, one obtains

∑
e∈δ−

G(v)

∑
i∈K

xi
e − C

∑
i∈K

yi
v ≤ 0 ∀v ∈ V.

However, from constraints (4.2) one has that

∑
e∈δ−

G(v)

∑
i∈K

xi
e = |δ−

G(v)| ∀v ∈ V,

and therefore, ∑
i∈K

yi
v ≥ |δ−

G(v)|
C

∀v ∈ V. (4.35)

Since ∑i∈K yi
v should be an integer value, one can derive the following Chvàtal-

Gomory cuts from (4.35):

∑
i∈K

yi
v ≥
⌈

|δ−
G(v)|
C

⌉
∀v ∈ V.

Of course, the same reasoning can be applied to (4.34b) to obtain

∑
i∈K

yi
v ≥
⌈

max{|δ−
G(v)|, |δ+

G(v)|}
C

⌉
∀v ∈ V. (4.36)

After summing up inequalities (4.36) for each station v ∈ V , one derives the less
trivial lower bound from Proposition 3.2. Such result is summarized by the following
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Proposition.

Proposition 4.5 - Reinforcement from strong capacity inequalities
Let P ′

(V,E,C) = {(x, y) ∈ P(V,E,C) : (x, y) satisfies (4.34), (4.36)}. Then,

min
{
0x + 1y : (x, y) ∈ P ′

(V,E,C)

}
≥
∑
v∈V

⌈
max{|δ−

G(v)|, |δ+
G(v)|}

C

⌉
. �

It follows that, for C = 1, the inclusion of inequalities (4.34), (4.36) allows the
linear relaxation min{0x + 1y : (x, y) ∈ P ′

(V,E,C)} to find a solution of optimal cost
(cf. Proposition 3.9). In addition, if the associated graph G = (V, E) is a star, then
the linear relaxation also yields a solution of optimal cost for any capacity value C

(cf. Proposition 3.11).

As a consequence, such inequalities are capable of cutting off the fractional opti-
mal solution obtained by the linear relaxation proposed for Example 4.2. Indeed, in
Example 4.2, max{|δ−

G(v)|, |δ+
G(v)|} = m for any of the two stations in V . Therefore,

including inequalities (4.34), (4.36) reinforces the given formulation to a point where
its linear relaxation is capable of finding a solution with cost 2

⌈
m
C

⌉
. In other words,

the integrality gap is reduced to 0 for the instance depicted in Example 4.2.

Table 4.2 gives a perspective on how such inequalities are capable of strength-
ening the formulation by comparing the gaps at the root node for the formulations
with and without the inclusion of strong capacity inequalities. The results obtained
with the original formulation (4.1)–(4.6) are displayed under section Default, while
section StrongCap displays the results obtained with the original formulation (4.1)–
(4.6) reinforced by strong capacity inequalities (4.34), (4.36) included on demand.
For each formulation, Table 4.2 shows the best lower bound (LBr) and upper bound
(UBr) known at the root node of the Branch-and-Bound tree. The gap at the root
node is given under column gapr, and the number of strong capacity inequalities
added to the formulation is provided under column cuts. Finally, the gap percent-
age closed by the introduction of strong capacity inequalities is given under column
Δgap(%), measured as D−S

D
, where D and S refer to the gapr under formulation

Default and StrCap, respectively.

Table 4.2: How Strong Capacity inequalities reinforce the formulation
Instances Default StrCap Comparison

m C ρ i LBr UBr gapr LBr UBr gapr cuts Δgap(%)

30 2 1.5 1 21.9 39 43.96 32 37 13.51 276 69.27
30 2 3.0 1 13.8 40 65.39 27 33 18.18 453 72.20
30 2 4.5 1 10 35 71.43 23 25 8 329 88.80

35 2 1.5 1 24.7 56 55.84 35 44 20.45 711 63.38
35 2 3.0 1 14.8 50 70.4 31 36 13.89 1172 80.27
35 2 4.5 1 13.8 38 63.66 31 33 6.06 409 90.48

Continued on Next Page. . .
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Table 4.2 – Continued

Instances Default StrCap Comparison
m C ρ i LBr UBr gapr LBr UBr gapr cuts Δgap(%)

40 2 1.5 1 27.8 64 56.55 41 53 22.64 1057 59.96
40 2 3.0 1 16.9 52 67.5 33 38 13.16 764 80.50
40 2 4.5 1 12 42 71.43 33 35 5.71 664 92.01

45 2 1.5 1 31.7 66 51.94 42 57 26.32 1209 49.33
45 2 3.0 1 18.8 54 65.12 39 46 15.22 1937 76.63
45 2 4.5 1 14 58 75.86 39 43 9.3 987 87.74

50 2 1.5 1 36.9 78 52.74 52.7 68 22.55 1677 57.24
50 2 3.0 1 20 75 73.33 45 55 18.18 2611 75.21
50 2 4.5 1 14.8 62 76.05 44 48 8.33 2007 89.05

55 2 1.5 1 38.9 91 57.3 53.5 68 21.32 2048 62.79
55 2 3.0 1 21.9 80 72.64 48 61 0 19584 100.00
55 2 4.5 1 15.9 74 78.58 46 50 8 2524 89.82

60 2 1.5 1 41.9 104 59.67 62 79 21.52 3252 63.93
60 2 3.0 1 23.9 78 69.33 56 65 13.85 14341 80.02
60 2 4.5 1 16.8 85 80.22 52 58 10.34 3397 87.11

30 5 1.5 1 19.5 27 27.74 20.4 29 29.56 71 -6.56
30 5 3.0 1 12.5 20 37.54 15.1 20 24.73 168 34.12
30 5 4.5 1 9.4 16 40.97 14 14 0 210 100.00

35 5 1.5 1 23.4 34 31.05 23.8 39 38.9 83 -25.28
35 5 3.0 1 13.4 23 41.93 15 25 40 158 4.60
35 5 4.5 1 10.3 21 50.92 16.6 19 12.63 337 75.20

40 5 1.5 1 28.3 49 42.27 28 39 28.26 50 33.14
40 5 3.0 1 15.7 29 46.02 19 30 36.64 324 20.38
40 5 4.5 1 10.8 24 55.2 15.2 20 24 436 56.52

45 5 1.5 1 30.6 42 27.19 30.6 42 27.19 0 0.00
45 5 3.0 1 17.5 47 62.87 20.5 34 39.72 429 36.82
45 5 4.5 1 12.6 34 62.94 19.6 28 30 926 52.34

50 5 1.5 1 34.5 52 33.59 35.7 69 48.26 146 -43.67
50 5 3.0 1 18.5 40 53.66 22.9 40 42.87 596 20.11
50 5 4.5 1 13.9 45 69.18 21.6 33 34.55 979 50.06

55 5 1.5 1 37.6 76 50.55 37.7 73 48.3 81 4.45
55 5 3.0 1 20.7 65 68.13 26.7 47 43.23 933 36.55
55 5 4.5 1 14.5 54 73.08 22.2 36 38.33 1174 47.55

60 5 1.5 1 38.5 74 47.91 39.5 76 47.97 161 -0.13
60 5 3.0 1 22.6 65 65.2 28.5 55 48.1 836 26.23
60 5 4.5 1 16.6 55 69.82 23.7 35 32.38 1374 53.62

30 8 1.5 1 21.4 24 10.94 21.4 24 10.94 0 0.00
30 8 3.0 1 11.9 16 25.87 12.3 18 31.82 33 -23.00
30 8 4.5 1 7.9 11 28.53 10.1 13 22.08 92 22.61

35 8 1.5 1 24.7 29 14.94 24.7 29 14.94 0 0.00
35 8 3.0 1 12.9 18 28.55 14.2 18 20.99 52 26.48
35 8 4.5 1 8.8 12 26.54 9.5 13 27.08 53 -2.03

40 8 1.5 1 26.7 32 16.46 26.7 32 16.46 0 0.00
40 8 3.0 1 14.4 22 34.71 14.4 22 34.71 0 0.00
40 8 4.5 1 10.2 14 27.06 11.2 16 30.26 64 -11.83

45 8 1.5 1 31.4 42 25.32 31.4 42 25.32 0 0.00
45 8 3.0 1 17.4 30 42.15 20.1 30 32.98 140 21.76
45 8 4.5 1 12.2 19 35.57 16 24 33.33 203 6.30

50 8 1.5 1 33.8 47 28 33.8 47 28 0 0.00
50 8 3.0 1 18.2 29 37.4 18.5 34 45.7 60 -22.19
50 8 4.5 1 13.3 24 44.55 15.4 26 40.94 175 8.10

55 8 1.5 1 35.6 49 27.33 35.6 49 27.33 0 0.00
55 8 3.0 1 20.3 39 47.86 21.6 51 57.69 218 -20.54
55 8 4.5 1 14.4 33 56.46 15.8 31 49.17 175 12.91

60 8 1.5 1 38.9 76 48.78 38.9 76 48.78 0 0.00
60 8 3.0 1 22.5 41 45.04 22.6 43 47.37 66 -5.17
60 8 4.5 1 15.4 33 53.31 19.3 31 37.63 537 29.41

114 Chapter 4. Polyhedral study



Exploring Combinatorial Aspects of the Stop Number Problem

Strong capacity inequalities are quite effective when the associated graph is dense
with respect to C, that is, when nodes usually have degree greater than C. However,
they fail to strengthen the formulation when the graph is relatively sparse. It is worth
noting that the addition of such inequalities can only reinforce LBr. Nonetheless,
introducing such inequalities can slightly impact the CPLEX heuristics responsible
for generating the upper bounds depicted under UBr. Indeed, the few negative
results obtained for Δgap are due to this fact.

Figure 4.5 shows the evolution of the lower bounds during the optimization
process of both formulations for the instance with 45 demands and capacity 5.
Figure 4.5a gives a scenario with dense demands – density is set to 4.5 – and Figure
4.5b gives a scenario with sparse demands – density is set to 1.5. As expected, there
is almost no improvement on the lower bound for the sparse case, whilst in the dense
scenario a considerable improvement can be verified.
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(a) Dense scenario: density 4.5
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(b) Sparse scenario: density 1.5

Figure 4.5: Progress of lower bounds
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As a matter of fact, it easy to see that if max{|δ−
G(v)|, |δ+

G(v)|} ≤ C, such con-
straints are dominated by a sum of inequalities (4.4). Indeed, this implies that even
for the particular case of Intersection U-SNP where C = 2 (that can be solved in
polynomial time), an important integrality gap can still be obtained even after the
inclusion of Strong Capacity inequalities to the formulation. The following example
illustrates such situation.

Example 4.3 - Strong capacity inequalities can fail to reinforce the given
formulation
Consider the instance of Intersection U-SNP given by the following graph with
capacity C = 2 and an even number of stations n ≥ 4:

n
2

1

...

n

n
2 + 1

...

Figure 4.6: Example of instance where strong capacity inequalities are useless

Notice that in the given example, m = n. The optimal solution obtained
with the polynomial time algorithm described in Section 3.2 has 3m

2 stops. Since
max{|δ−

G(v)|, |δ+
G(v)|} ≤ C for any v ∈ V , the introduced inequalities are redundant.

Therefore, Theorem 4.2 still applies and the linear relaxation provides a lower bound
of m stops for the given instance. It follows that the integrality gap equals 1

3 . �

Finally, we give the necessary and sufficient conditions for which inequalities
(4.34a) and (4.34b) define facets of P(V,E,C).

Theorem 4.9 - Strong capacity inequalities defining facets
The strong capacity constraint (4.34a) associated with a station v ∈ V and a vehicle
i ∈ K is facet-defining if and only if

|δ−
G(v)| ≥ C + 1.

Proof. We show that face F , defined as

F =

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑

e∈δ−
G(v′)

xi′
e − Cyi′

v′ = 0

⎫⎪⎬⎪⎭ ,

is a maximal face of P(V,E,C), and therefore inequality (4.34a) associated with station
v′ and vehicle i′ is facet-defining. More specifically, we show that if there exists some
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face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈δ−

G(v′)

ωxi′
e − ωCyi′

v′ =
∑
e∈E

λe

⎫⎪⎬⎪⎭ ,

that is, a linear combination of (4.34a) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The necessity of condition |δ−
G(v)| ≥ C + 1, comes from the fact that if |δ−

G(v)| ≤
C, then summing up inequalities

xi′
e − yi′

de
≤ 0

for each e ∈ δ−
G(v), yields the inequality

∑
e∈δ−

G(v′)

xi′
e − |δ−

G(v)|yi′
v′ ≤ 0,

which dominates (4.34a).

The proof of sufficiency is organized in the following six steps:

i. showing βi′
v = 0 for any v ∈ V \ v′ and βi

v = 0 for any v ∈ V, i ∈ K \ i′;

ii. showing αj
e = αk

e for any e ∈ E, j ∈ K \ i′, k ∈ K \ i′;

iii. showing αi′
e = αj

e for any e ∈ E \ δ−
G(v′), j ∈ K;

iv. showing αi′
e′ − αj

e′ = αi′
e′′ − αj

e′′ for any e′ ∈ δ−
G(v′), e′′ ∈ δ−

G(v′), j ∈ K \ i′;

v. showing αi′
e − αj

e = −βi′
v′

C
for any e ∈ δ−

G(v′), j ∈ K \ i′;

vi. showing γ = ∑e∈E αi
e for any i ∈ K \ i′.

Step i.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, ∑e∈δ−

G(v′) x̄i′
e = Cȳi′

v′ = 0 and therefore, (x̄, ȳ) ∈ F . Then, Lemma 4.1
applies for any chosen station v ∈ V \ v′. Therefore,

βi′
v = 0 ∀v ∈ V \ v′.
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Consider now that (x̄, ȳ) is a feasible solution where some arbitrarily chosen vehicle
j ∈ K \ i′ is perfectly idle, and C demands among δ−

G(v) are assigned to vehicle i′.
By definition, ∑e∈δ−

G(v′) x̄i′
e = Cȳi′

v′ = C and therefore, (x̄, ȳ) ∈ F . Then, Lemma 4.1
applies for any chosen station v ∈ V , and therefore βj

v = 0 for any v ∈ V . Since
vehicle j can be arbitrarily chosen (as long as j �= i′),

βi
v = 0 ∀v ∈ V, i ∈ K \ i′.

Let ω ∈ R be some real number such that ω = −βi′
v′
C

. Then, face F ′ can be
rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e − ωCyi′

v′ = γ

}
,

Step ii.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehicle
j ∈ K \ i′ is perfectly idle, and C demands among δ−

G(v) are assigned to vehicle i′.
Moreover, consider that some arbitrarily chosen demand e ∈ E is assigned to some
arbitrarily chosen vehicle k ∈ K \ {i′, j}. Such solution exists since |δ−

G(v′)| ≥ C + 1
and p = m. Since (x̄, ȳ) ∈ F , Lemma 4.2 applies for vehicle j and demand e, and
therefore αj

e = αk
e . Since vehicle j and demand e can be both arbitrarily chosen

among K \ i′ and E, respectively, one has

αj
e = αk

e ∀e ∈ E, j ∈ K \ i′, k ∈ K \ i′.

Let λe ∈ R be some real number such that λe = αj
e for any e ∈ E and j ∈ K \ i′.

Then, face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

αi′
e xi′

e − ωCyi′
v′ = γ

⎫⎬⎭ .

Step iii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. More-
over, consider that some arbitrarily chosen demand e′ ∈ E \ δ−

G(v′) is assigned to
some arbitrarily chosen vehicle j ∈ K \ i′. Since (x̄, ȳ) ∈ F , Lemma 4.2 applies for
vehicle i′ and demand e′, and therefore αi′

e′ = αj
e′ . Since vehicle j and demand e′ can

be both arbitrarily chosen among K \ i′ and E \ δ−
G(v′), respectively, one has

αi′
e′ = αj

e′ = λe′ ∀e′ ∈ E \ ΔE(v′), j ∈ K.
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Then, face F ′ can be rewritten as

F ′ =

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K\i′

λex
i
e +

∑
e∈E\δ−

G(v′)

λex
i′
e +

∑
e∈δ−

G(v′)

αi′
e xi′

e − ωCyi′
v′ = γ

⎫⎪⎬⎪⎭ .

Step iv.: Let (x̄, ȳ) be a feasible solution where C demands among δ−
G(v′) are

assigned to vehicle i′. Let S ⊂ δ−
G(v′) denote this set of C demands. Moreover, con-

sider that some arbitrarily chosen demand e′ ∈ δ−
G(v′) is the only demand assigned

to some arbitrarily chosen vehicle j ∈ K \ i′. Since (x̄, ȳ) ∈ F , the following equality
holds. ∑

e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\δ−

G(v′)

λex̄
i′
e +

∑
e∈δ−

G(v′)

αi′
e x̄i′

e − ωCȳi′
v′ = γ.

Now construct another feasible solution (x̂, ŷ) by exchanging demands e′ and some
arbitrarily chosen demand e′′ ∈ S. Then, (x̂, ŷ) also belong to F , and the following
equality holds.

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\δ−

G(v′)

λex̄
i′
e +

∑
e∈δ−

G(v′)

αi′
e xi′

e − λe′ + αi′
e′ − αi′

e′′ + λe′′ − ωCȳi′
v′ = γ.

Therefore, αi′
e′ − λe′ = αi′

e′′ − λe′′ . Since demands e′ and e′′ can be arbitrarily chosen
among δ−

G(v′), one obtains

αi′
e′ − λe′ = αi′

e′′ − λe′′ ∀e′ ∈ δ−
G(v′), e′′ ∈ δ−

G(v′).

Step v.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle, and C

demands among δ−
G(v) are assigned to some arbitrarily chosen vehicle j ∈ K \ i′. Let

S ⊂ δ−
G(v′) denote this set of C demands. Since (x̄, ȳ) ∈ F , the following equality

holds. ∑
e∈E

∑
i∈K\i′

λex̄
i
e = γ. (4.37)

Now construct another feasible solution (x̂, ŷ) by transferring demands in S from
vehicle j to vehicle i′. The constructed solution (x̄, ȳ) also belongs to F . Therefore,

∑
e∈E

∑
i∈K\i′

λex̄
i
e +
∑
e∈S

αi′
e −
∑
e∈S

λe − ωC = γ. (4.38)

By subtracting (4.37) from (4.38), one obtains

∑
e∈S

(αi′
e − λe) − ωC = 0.
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However, from step iv., it is clear that αi′
e − λe is a constant for any e ∈ δ−

G(v).
Moreover, by definition, |S| = C. Therefore, if e′ is taken to be any arbitrarily
chosen demand in S, one has that

C(αi′
e′ − λe′) − ωC = 0 ∀e′ ∈ δ−

G(v),

and thus
αi′

e′ − λe′ = ω = −βi′
v′

C
∀e′ ∈ δ−

G(v).

Then, face F ′ can now be rewritten as

F ′ =

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K\i′

λex
i
e +

∑
e∈E\δ−

G(v′)

λex
i′
e +

∑
e∈δ−

G(v′)

(λe + ω)xi′
e − ωCyi′

v′ = γ

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

λex
i′
e +

∑
e∈δ−

G(v′)

ωxi′
e − ωCyi′

v′ = γ

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈δ−

G(v′)

ωxi′
e − ωCyi′

v′ = γ

⎫⎪⎬⎪⎭ .

Step vi.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, (x̄, ȳ) ∈ F . Let us construct other p − 2 feasible solutions by taking p − 2
times the sequential permutation of (x̄, ȳ) over K \i′. Since vehicle i′ is perfectly idle
in all such solutions, each constructed solution belongs to F and therefore satisfies

∑
e∈E

∑
i∈K\i′

λex
i
e = γ. (4.39)

Notice that, considering this pool of p − 1 feasible solutions (the p − 2 constructed
solutions plus (x̄, ȳ)), each demand is assigned to a vehicle i ∈ K \ i′ exactly once.
Summing up the p − 1 equations (4.39) associated with the pool of solutions con-
sidered, one obtains

(p − 1)
∑
e∈E

λe = (p − 1)γ.

Therefore, γ = ∑e∈E λe and face F ′ can finally be rewritten as

F ′ =

⎧⎪⎨⎪⎩(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

λex
i
e +

∑
e∈δ−

G(v′)

ωxi′
e − ωCyi′

v′ =
∑
e∈E

λe

⎫⎪⎬⎪⎭ . �

Theorem 4.10 - Strong capacity inequalities defining facets
The strong capacity constraints (4.34b) associated with station v′ ∈ V and vehicle
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i′ ∈ K is facet-defining if and only if

|δ+
G(v)| ≥ C + 1.

Proof. Analogous to the proof of Theorem 4.9 �

4.4.2 k-cardinality tree inequalities

In Fischetti et al. [70], a k-cardinality tree is defined as a connected acyclic graph
T = (V (T ), E(T )) such that |E(T )| = k. Based on this definition, a new family of
valid inequalities, denoted k-cardinality tree inequalities, is presented below.

Theorem 4.11 - Validity of k-cardinality tree inequalities
The following k-cardinality tree inequalities are valid for P(V,E,C).

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j), (4.40)

such that G[S] is a k-cardinality tree for k ≥ C + 1.

Proof. The proof of validity is done by showing that inequalities (4.40) can be seen
as Chvátal-Gomory cuts (see Gomory et al. [80], Chvátal [31]). More precisely, we
show that given a k-cardinality tree T = G[S], for k ≥ C + 1, a conical combination
of inequalities (4.3) and (4.4), yields the inequality

k
∑

e∈E(T )
xi

e − k
∑

v∈V (T )
(degT (v) − 1)yi

v ≤ C,

which can be divided by k and the independent term C
k

rounded down to obtain:

∑
e∈E(T )

xi
e −

∑
v∈V (T )

(degT (v) − 1)yi
v ≤
⌊

C

k

⌋
= 0.

For this, we arbitrarily choose a leaf node r ∈ V (T ) to be the root of T . For
each edge e = uv ∈ E(T ), such that u ≺ v (remark that v �= r), multiply inequality
xi

e − yi
u ≤ 0 by (k − 1 − |E(Tv)|) and inequality xi

e − yi
v ≤ 0 by |E(Tv)|, where Tv

is the subtree of T rooted in v (cf. Section 1.1). Likewise, consider the following
inequality that is dominated by (4.3) since E(T ) ⊆ ΔE(j).

∑
e∈E(T )

xi
e ≤ C.

Summing up all such inequalities yields a new valid inequality where each variable
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xi
e for e ∈ E(T ) has coefficient k since

(k − 1 − |E(Tv)|) + |E(Tv)| + 1 = k.

Furthermore, on the right-hand side the independent term equals C. To finish the
proof, let us show that variable yi

v has coefficient −k(degT (v)−1) for any v ∈ V (T ).

Consider a node u ∈ V (T ). By definition u has (degT (u) − 1) children and
each child v of u contributes to the final coefficient of yi

u with −(k − 1 − |E(Tv)|).
Therefore, the total contribution coming from its children equals

−(k − 1)(degT (u) − 1) + (|E(Tu)| − (degT (u) − 1)) = −k(degT (u) − 1) + |E(Tu)|.

Finally, since the parent of u contributes with −|E(Tu)|, the proof is done. �

Corollary 4.2 - Chvàval-Gomory inequalities of rank 1
The k-cardinality tree inequalities (4.40) are Chvàval-Gomory inequalities of rank
1. �

Let G[S] be a k-cardinality tree such that k ≥ C + 2 and S ⊆ ΔE(j), for some
j ∈ V . Notice that the k-cardinality tree inequalities associated with tree G[S] are
always dominated by the k-cardinality tree inequalities associated with G[S ′] where
S ′ ⊂ S and |S ′| > C. In fact, the former can be written as a sum of stop inequalities
(4.4) and the k-cardinality tree inequality associated with G[S ′] (see Figure 4.7).
For this reason, we consider from now on that the edge set inducing a k-cardinality
tree inequality has exactly C + 1 edges.

3

84
g

5

f

e

7
d

6

1

a

2
b

c xi
a + xi

b + xi
c + xi

d + xi
e + xi

f − 2yi
3 − 2yi

6 − yi
8 ≤ 0

xi
g − yi

8 ≤ 0

xi
a + xi

b + xi
c + xi

d + xi
e + xi

f + xi
g − 2yi

3 − 2yi
6 − 2yi

8 ≤ 0

Figure 4.7: How a k-cardinality tree gets dominated. Full edges in S′, dashed
edges in S \ S′

Next we investigate the effective strength of k-cardinality tree inequalities (4.40).
For this, recall the instance depicted in Example 4.3. The inclusion of k-cardinality
tree inequalities is capable of cutting off the fractional optimal solution obtained
by the linear relaxation proposed for such instance. Indeed, in Example 4.3, all
demands intersect station m

2 , that is, ΔE(m
2 ) = E. Moreover, each station v ∈ V
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has exactly 2 demands incident to it. Therefore, the following inequalities define
k-cardinality tree inequalities for any given vehicle i ∈ K:

xi
e + xi

e′ + xi
e′′ − yi

u − yi
v ≤ 0, ∀e = uv ∈ E, (4.41)

where e′ �= e and e′′ �= e are the demands (other than e) incident to u and v, respec-
tively. Figure 4.8 illustrates the 3-cardinality tree associated with such inequalities.

u ve′
e

e′′

Figure 4.8: A 3-cardinality tree associated with inequalities (4.41)

It follows that each demand in E appears in exactly 3 different inequalities (4.41).
Moreover, each station in V appears in exactly 2 different inequalities (4.41). Hence,
summing up inequalities (4.41) for each demand e ∈ E, one obtains

∑
e∈E

3xi
e −
∑
v∈V

2yi
v ≤ 0, (4.42)

for any given vehicle i ∈ K. Since (4.42) is valid for any i ∈ K, one may sum up
inequalities (4.42) for each vehicle i ∈ K to obtain

∑
e∈E

∑
i∈K

3xi
e −
∑
v∈V

∑
i∈K

2yi
v ≤ 0.

However, considering constraints (4.2) one has that

3m −
∑
v∈V

∑
i∈K

2yi
v ≤ 0,

which yields the following lower bound

∑
v∈V

∑
i∈K

yi
v ≥ 3m

2 .

Therefore, including k-cardinality tree inequalities (4.40) reinforces the given
formulation to a point where its linear relaxation is capable of finding a solution
with cost 3m

2 for the instance depicted in Example 4.3. In other words, for the given
instance, the integrality gap is reduced to 0.

Indeed, the family of k-cardinality tree inequalities (4.40) is particularly efficient
when it comes to strengthening the given formulation for relatively sparse instances.
Unfortunately, the number of inequalities within this family is exponentially large,
and therefore, adding all such inequalities to the formulation should be avoided
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in practice. This issue will be discussed in more detail in Section 5.4. To prove
the strength of such inequalities, the necessary and sufficient conditions for which
inequalities (4.40) define facets of P(V,E,C) are given below.

Theorem 4.12 - k-cardinality tree inequalities defining facets
The k-cardinality tree inequalities (4.40) are facet-defining under the following nec-
essary and sufficient conditions.

i. G[S] is not a star;

ii. if G[S] contains exactly 2 non-leaf nodes, then E \ S cannot contain an edge
(u, v) such that u and v are the non-leaf nodes of G[S] – Figure 4.9 illustrates
the case.

v

u

Figure 4.9: Non-facet-defining k-cardinality tree. Full edges in S, dashed edge
in E \ S.

Proof. We first show necessity of conditions i. and ii.. If G[S] is a star with central
node v′, then degG[S](v′) − 1 = C, since G[S] has (C + 1) edges. Moreover, either
S ⊆ δ−

G(v′) or S ⊆ δ+
G(v′). Therefore, the inequality is dominated by either (4.34a)

or (4.34b).

Since G[S] is a (C +1)-cardinality tree, if G[S] contains exactly 2 non-leaf nodes,
say v′ and v′′, then degG[S](v′) − 1 + degG[T ](v′′) − 1 = C. Thus, if there exists an
edge e′ = (v′, v′′) ∈ E \ T , the inequality

xi′
e′ +
∑
e∈S

xi′
e −

∑
v∈V (G[T ])

(degG[T ](v) − 1)yi′
v ≤ 0.

is obviously valid and dominates (4.40). Notice that such remark can be used to lift
inequalities (4.40) whenever condition ii. does not hold.

We now show that if conditions i. and ii. apply, then (4.40) is facet-defining.
For this, we show that face F , defined as

F =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈S

xi′
e −

∑
v∈V [S]

(degG[S](v) − 1)yi′
v = 0

⎫⎬⎭ ,

is a maximal face of P(V,E,C), and therefore inequality (4.40) associated with tree
G[S] and vehicle i′ is facet-defining. More specifically, we show that if there exists
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some face F ′ of P(V,E,C), defined as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

∑
i∈K

βi
vyi

v = γ

}
,

for which F ⊆ F ′, then F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +
∑
e∈S

ωxi′
e −

∑
v∈V [S]

ω(degG[S](v) − 1)yi′
v =

∑
e∈E

λe

⎫⎬⎭ ,

that is, a linear combination of (4.40) itself and the implicit equalities (4.2), with
weights ω ∈ R and λ ∈ R

m, respectively. As a consequence, one has that F = F ′.

The proof is organized in the following seven steps:

i. showing βi
v = 0 for any v ∈ V, i ∈ K \ i′;

ii. showing αj
e = αk

e for any e ∈ E, j ∈ K \ i′, k ∈ K \ i′;

iii. showing βi′
v = 0 for any v ∈ V \I(S), where I(S) = {v ∈ V [S] : degG[S](v) ≥ 2}

is the set of internal vertices of G[S];

iv. showing γ = ∑e∈E αi
e for any i ∈ K \ i′;

v. showing αi′
e′ − αj

e′ = αi′
e′′ − αj

e′′ for any e′ ∈ S, e′′ ∈ S, j ∈ K \ i′;

vi. showing αi′
e = αj

e for any e ∈ E \ S, j ∈ K;

vii. showing βi′
v = −(degG[S](v) − 1)(αi′

e − αj
e) for any v ∈ V [S], e ∈ S.

Step i.: Let (x̄, ȳ) be a feasible solution where some arbitrarily chosen vehi-
cle j ∈ K \ i′ is perfectly idle, and all demands in S \ e′ are assigned to vehicle
i′, for some arbitrarily chosen demand e′ ∈ S. By definition, ∑e∈S x̄i′

e = C =∑
v∈V [S](degG[S](v) − 1)ȳi′

v and therefore, (x̄, ȳ) ∈ F . Then, Lemma 4.1 applies for
any chosen station v ∈ V . Since vehicle j can be arbitrarily chosen among K \ i′,
one has

βi
v = 0 ∀v ∈ V, i ∈ K \ i′.

Hence, face F ′ can now be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K

αi
ex

i
e +
∑
v∈V

βi
vyi′

v = γ

}
.

Step ii.: Consider again solution (x̄, ȳ) defined in the proof of Step i.. Since
(x̄, ȳ) ∈ F , Lemma 4.2 applies for vehicle j and any demand e ∈ E \ (S \ e′).
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Since vehicle j and demand e′ can be both arbitrarily chosen among K \ i′ and S,
respectively, one has

αj
e = αk

e ∀e ∈ E, j ∈ K \ i′, k ∈ K \ i′.

Let λe ∈ R be some real number such that λe = αj
e for each e ∈ E and j ∈ K \ i′.

Then, face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

αi′
e xi′

e +
∑
v∈V

βi
vyi′

v = γ

⎫⎬⎭ .

Step iii.: Let (x̄, ȳ) be a feasible solution where vehicle i′ is perfectly idle. By
definition, ∑e∈S x̄i′

e = ∑v∈V [S](degG[S](v)−1)ȳi′
v = 0 and therefore, (x̄, ȳ) ∈ F . Then,

Lemma 4.1 applies for any chosen station v ∈ V \ I(S). Therefore,

βi′
v = 0 ∀v ∈ V \ I(S),

and face F ′ can now be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

αi′
e xi′

e +
∑

v∈I(S)
βi

vyi′
v = γ

⎫⎬⎭ .

Step iv.: Consider again solution (x̄, ȳ) defined in the proof of Step iii.. Let
us construct other p − 2 feasible solutions by taking p − 2 times the sequential
permutation of (x̄, ȳ) over K \i′. Since vehicle i′ is perfectly idle in all such solutions,
each constructed solution belongs to F and therefore satisfies

∑
e∈E

∑
i∈K\i′

λex
i
e = γ. (4.43)

Notice that, considering this pool of p − 1 feasible solutions (the p − 2 constructed
solutions plus (x̄, ȳ)), each demand is assigned to a vehicle i ∈ K \ i′ exactly once.
Summing up the p − 1 equations (4.43) associated with the pool of solutions con-
sidered, one obtains

(p − 1)
∑
e∈E

λe = (p − 1)γ.

Therefore, γ = ∑e∈E λe and face F ′ can be rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K\i′

λex
i
e +
∑
e∈E

αi′
e xi′

e +
∑

v∈I(S)
βi

vyi′
v =

∑
e∈E

λe

⎫⎬⎭ .
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Step v.: Let (x̄, ȳ) be a feasible solution where all demands in S \ e′ are assigned
to vehicle i′, for some arbitrarily chosen demand e′ ∈ S. Moreover, consider that
e′ is the only demand assigned to some arbitrarily chosen vehicle j ∈ K \ i′. Since
(x̄, ȳ) ∈ F , the equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e +
∑
e∈E

αi′
e x̄i′

e +
∑

v∈I(S)
βi

vȳi′
v =

∑
e∈E

λe

holds. Now construct another feasible solution (x̂, ŷ) by exchanging demands e′ and
some arbitrarily chosen demand e′′ ∈ S \ e′. Then, (x̂, ŷ) also belong to F , and the
equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e +
∑
e∈E

αi′
e x̄i′

e +
∑

v∈I(S)
βi

vȳi′
v − λe′ + αi′

e′ − αi′
e′′ + λe′′ =

∑
e∈E

λe.

holds. Therefore, αi′
e′ − λe′ = αi′

e′′ − λe′′ . Since demands e′ and e′′ can be both
arbitrarily chosen among S and S \ e′, respectively, one has that the difference
αi′

e − λe is constant for any e ∈ S. Let ω ∈ R denote this constant.

Hence, αi′
e = λe + ω for any e ∈ S and face F ′ can be rewritten as

F ′ =
{

(x, y) ∈ P(V,E,C) :
∑
e∈E

∑
i∈K\i′

λex
i
e +

∑
e∈E\S

αi′
e xi′

e +

∑
e∈S

(λe + ω)xi′
e +

∑
v∈I(S)

βi
vyi′

v =
∑
e∈E

λe

⎫⎬⎭ .

Step vi. is organized in three stages.

Step vi.a: Let us first focus on demands in E \ S that are not incident to the
internal vertices of G[S], denoted by I(S). Let (x̄, ȳ) be a feasible where vehicle i′ is
perfectly idle. By definition, ∑e∈S x̄i′

e = ∑v∈V [S](degG[S](v) − 1)ȳi′
v = 0. Therefore,

(x̄, ȳ) ∈ F and the equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e =
∑
e∈E

λe

holds. Now construct another feasible solution (x̂, ŷ) by transferring some arbitrarily
chosen demand e′ ∈ E \S that is not incident to any node in I(S) from some vehicle
i ∈ K \ i′ to vehicle i′. The new solution also belongs to F , since ∑e∈S x̂i′

e =∑
v∈V [S](degG[S](v) − 1)ŷi′

v = 0, and hence

∑
e∈E

∑
i∈K\i′

λex̄
i
e + αi′

e′ − λe′ =
∑
e∈E

λe.
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Therefore, αi′
e′ = λe′ for any demand e′ ∈ E \ S that is not incident to I(S), since

demand e′ can be arbitrarily chosen.

Step vi.b: Next, let us consider demands in E \ S that are incident to exactly
one node in I(S). For this, let e′ be an arbitrarily chosen demand in E \ S that is
incident to exactly one node v′ ∈ I(S). Then, choose a leaf node r ∈ V [S]) to be
the root of tree G[S], such that v′ is not a child of r. Notice that this operation is
always possible since G[S] is not a star. Let Tv′ denote the subtree of G[S] rooted
in v′ and let (x̄, ȳ) be a feasible solution where all demands in E(Tv′) – and only
demands in E(Tv′) – are assigned to vehicle i′. Notice that, by definition,

∑
v∈V (Tv′ )

(degTv′ (v) − 1) = 2|E(Tv′)| − |V (Tv′)| = |E(Tv′)| − 1.

Since v′ has a parent in G[S],

∑
v∈V (Tv′ )

(degG[S](v) − 1) = 1 +
∑

v∈V (Tv′ )
(degTv′ (v) − 1) = |E(Tv′)|.

Therefore, ∑
e∈S

x̄i′
e =

∑
v∈V [S]

(degG[S](v) − 1)ȳi′
v = |E(Tv′)|,

and hence, (x̄, ȳ) ∈ F and the equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v =
∑
e∈E

λe

holds. Now construct another feasible solution (x̂, ŷ) by transferring demand e′ from
some vehicle i ∈ K \ i′ to vehicle i′. Such operation is only possible since |E(Tv′)| <

C. The new solution also belongs to F , since ∑e∈S x̂i′
e = ∑v∈V [S](degG[S](v)−1)ŷi′

v =
|E(Tv′)|, and hence

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v + αi′
e′ − λe′ =

∑
e∈E

λe.

Therefore, αi′
e′ = λe′ for any demand e′ ∈ E \ S that is incident to exactly one node

in I(S), since demand e′ can be arbitrarily chosen.

Step vi.c: Finally, let us consider demands in E\S that are incident to two nodes
in I(S). For this, let e′ = u′v′ be an arbitrarily chosen demand in E \ S such that
u′ ∈ I(S) and v′ ∈ I(S). Suppose first that e′ is not parallel to any demand in S.
Then, there exists a unique path P in G[S] from u′ to v′, with at least three nodes.
Let I(P ) = {v ∈ V (P ) : degP (v) ≥ 2} denote the set of internal vertices of P . By
definition, I(P ) �= ∅. Choose some node in I(P ) to be the root of G[S]. Let (x̄, ȳ)
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be a feasible solution where all demands in E(Tu′) ∪ E(Tv′) – and only demands in
E(Tu′) ∪ E(Tv′) – are assigned to vehicle i′ (see Figure 4.10). Notice that, the same
reasoning used in Step vi.b can be applied here to show that

∑
e∈S

x̄i′
e =

∑
v∈V [S]

(degG[S](v) − 1)ȳi′
v = |E(Tu′) ∪ E(Tv′)|.

Therefore, (x̄, ȳ) ∈ F and the equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v =
∑
e∈E

λe

holds. Now construct another feasible solution (x̂, ŷ) by transferring demand e′

from some vehicle i ∈ K \ i′ to vehicle i′. Such operation is only possible since
|E(Tu′) ∪ E(Tv′)| < C. The new solution also belongs to F , since ∑e∈S x̂i′

e =∑
v∈V [S](degG[S](v) − 1)ŷi′

v = |E(Tu′) ∪ E(Tv′)|, and hence

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v + αi′
e′ − λe′ =

∑
e∈E

λe.

Thus, αi′
e′ = λe′ for any demand e′ ∈ E \ S that is not parallel to any demand in S

but is incident to two nodes in I(S).

r

Tu′ Tv′

u′ v′

Figure 4.10: Illustration of G[S] rooted at r. Demands in Tu′ ∪ Tv′ are assigned
to vehicle i′ on solution (x̄, ȳ)

There remains now only the case where demand e′ is incident to two nodes in
I(S) and parallel to some demand in S. For this, root G[S] from some node r in
I(S)\{u′, v′}. Such node exists from condition ii.. W.l.o.g. let u′ be the end-node of
e′′ that is closest to r. Let (x̄, ȳ) be a feasible solution where all demands in E(Tu′)
– and only demands in E(Tu′) – are assigned to vehicle i′. Once again, by definition,
(x̄, ȳ) ∈ F since ∑e∈S x̄i′

e = ∑v∈V [S](degG[S](v) − 1)ȳi′
v = |E(Tu′)|, and hence the

equality

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v =
∑
e∈E

λe
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holds. Now construct another feasible solution (x̂, ŷ) by transferring demand e′

from some vehicle i ∈ K \ i′ to vehicle i′. Such operation is only possible since
|E(Tu′)| < C. The new solution also belongs to F , and hence

∑
e∈E

∑
i∈K\i′

λex̄
i
e +

∑
e∈E\S

αi′
e x̄i′

e +
∑
e∈S

(λe + ω)x̄i′
e +

∑
v∈I(S)

βi
vȳi′

v + αi′
e′ − λe′ =

∑
e∈E

λe.

Therefore, αi′
e′ = λe′ for any demand e′ ∈ E \ S that is incident to two nodes in I(S)

and parallel to some demand in S. This finishes Step vi. and one can rewrite face
F ′ as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +
∑
e∈S

ωxi′
e +

∑
v∈I(S)

βi
vyi′

v =
∑
e∈E

λe

⎫⎬⎭ .

Step vii.: Choose some leaf node in V (G[S]) to be the root of G[S], and let v′ be
the parent of the deepest leaf in G[S]. Then, let (x̄, ȳ) be a feasible solution where all
demands in E(Tv′) – and only demands in E(Tv′) – are assigned to vehicle i′. Notice
that Tv′ is a star composed by the children of v′ and hence |E(Tv′)| = (degG[S](v′)−1).
Therefore, (x̄, ȳ) ∈ F and the equality

∑
e∈E\E(Tv′ )

∑
i∈K\i′

λex̄
i
e +

∑
e∈E(Tv′ )

(λe + ω) + βi′
v′ =

∑
e∈E

λe

holds. By doing the a sequential permutation (p − 2) times over K \ i′ (just as in
Step iv.), one obtains

(p − 1)
∑

e∈E\E(Tv′ )
λe + (p − 1)

∑
e∈E(Tv′ )

(λe + ω) + (p − 1)βi′
v′ = (|K| − 1)

∑
e∈E

λe,

which reduces to

βi′
v′ = −

∑
e∈E(Tv′ )

ω = −|E(Tv′)|ω = −(degG[S](v′) − 1)ω.

As a result, the proof for βi′
v′ , where v′ is the parent of the deepest leaf in G[S],

is finished. Notice however, that a subtree Tv of G[S] can be defined as the union
of its children subtrees and the edges that ties v to its children, that is,

Tv =
⋃

i∈ch(v)

{Ti ∪ vi}.

Figure 4.11 illustrates such composition. This notion can then be used to climb up
the tree G[S] until the unique child of the root node r (recall that r is chosen to be
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v

u

i1 i2 i3

Ti1 Ti2 Ti3

Figure 4.11: Illustration of Tv, where v has 3 children and u is the parent of v

a leaf node). By doing so, the value of βi′
v , for each v ∈ I(T ), is recursively deduced.

For any node v′ ∈ I(S), one obtains

βi′
v′ +

∑
i∈ch(v′)

∑
v∈V (Ti)

βi′
v = −(degG[S](v′) − 1)ω −

∑
i∈ch(v′)

∑
v∈V (Ti)

(degG[S](v) − 1)ω.

Therefore, βi′
v = −(degG[S](v) − 1)ω for any v ∈ V [S], and face F ′ can finally be

rewritten as

F ′ =
⎧⎨⎩(x, y) ∈ P(V,E,C) :

∑
e∈E

∑
i∈K

λex
i
e +
∑
e∈S

ωxi′
e −

∑
v∈V [S]

ω(degG[S](v) − 1)yi′
v =

∑
e∈E

λe

⎫⎬⎭
which concludes the proof. �

4.4.3 Generalizing k-cardinality tree inequalities

In order to construct a k-cardinality tree inequality, one must look for an edge-set
S of C + 1 demands intersecting a given station v ∈ V (i.e., S ⊆ ΔE(v)) such that
S spans a tree (i.e., G[S] is a (C + 1)-cardinality tree). Nonetheless, such structure
might not be available for some instances of U-SNP. If this is the case, it is possible
that none of the reinforcing valid inequalities presented so far is able to strengthen
the formulation. Example 4.4 illustrates an instance where such case appears.

Example 4.4 - k-cardinality tree inequalities can fail to reinforce the given
formulation
Consider the instance I of U-SNP with C = 2 depicted in Figure 4.12.

Notice that in the given instance I, there exists no set S ⊆ ΔE(v) spanning a
(C + 1)-cardinality tree, for any v ∈ V . This means that none of the presented valid
inequalities can be used to reinforce the formulation. Therefore, Theorem 4.2 still
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1
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Figure 4.12: An instance where there is no k-cardinality tree inequality

applies, and hence the linear relaxation finds a fractional solution of cost 5. Such
fractional solution is depicted below, where only two vehicles are used.
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Figure 4.13: Illustration of the obtained fractional solution

Nonetheless, it is easy to see that any feasible solution should stop at least 6
times. �

Indeed, the idea behind k-cardinality tree inequalities is to search for a ”some-
how” connected structure that violates the vehicle’s capacity at some given station.
On k-cardinality tree inequalities such structure is requested to be ”fully connected”
– recall that G[S] is a tree – and ”fully contained” in some intersection point – recall
that S ⊆ ΔE(v) for a given v ∈ V . Two questions emerges directly from this remark:

i. whether or not one can also consider ”partially connected” structures;

ii. whether or not one can also consider structures that are only ”partially con-
tained” in some intersection point.

In order to answer such questions, two generalizations of k-cardinality tree in-
equalities are suggested. Each of these generalizations are capable of cutting off the
fractional solution proposed in Example 4.4.
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Considering partially connected structures

A generalization of k-cardinality tree inequalities for taking into account forests
instead of trees is proposed below. For this, let us define a k-cardinality forest as an
acyclic graph F such that |E(F )| = k.

Theorem 4.13 - Validity of k-cardinality forest inequalities
The following k-cardinality forest inequalities are valid for P(V,E,C):

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ q − 1 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j), (4.44)

such that G[S] is a (C + 1)-cardinality forest composed by 1 ≤ q ≤ C connected
components.

Proof. The proof of validity is once again done by showing that inequalities (4.44)
can be seen as Chvátal-Gomory cuts. More precisely, we show that given a (C+1)-
cardinality forest F = G[S] composed by q trees, each denoted by T k for 1 ≤ k ≤ q,
a conical combination of inequalities (4.3) and (4.4), yields the inequality

(C + q)
q∑

k=1

⎛⎝ ∑
e∈E(T k)

xi
e

⎞⎠− (C + 1)
q∑

k=1

⎛⎝ ∑
v∈V (T k)

(degT k(v) − 1)yi
v

⎞⎠ ≤ qC,

which can be divided by C + 1. After rounding down the coefficients, one obtains
⌊

C + q

C + 1

⌋ ∑
e∈E(F )

xi
e −

∑
v∈V (F )

(degF (v) − 1)yi
v ≤
⌊

qC

C + 1

⌋
. (4.45)

Since 1 ≤ q ≤ C, one has that C + 1 ≤ C + q ≤ 2C and hence
⌊

C + q

C + 1

⌋
= 1.

Moreover, ⌊
qC

C + 1

⌋
=
⌊

(C + 1)q − q

C + 1

⌋
=
⌊
q − q

C + 1

⌋
= q − 1.

Therefore, inequality (4.45) reduces to

∑
e∈E(F )

xi
e −

∑
v∈V (F )

(degF (v) − 1)yi
v ≤ q − 1.

Such conical combination is constructed as follows. We arbitrarily choose a leaf
node r ∈ V (T k) to be the root of T k, for k = 1, . . . , q. For each edge e = uv ∈ E(T k),
such that u ≺ v (remark that v �= r), multiply inequality xi

e−yi
u ≤ 0 by (C−|E(T k

v )|)
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and inequality xi
e − yi

v ≤ 0 by |E(T k
v )|, where T k

v is the subtree of T k rooted in v (cf.
Section 1.1). Likewise, consider the inequality

∑
e∈E(F )

xi
e ≤ C,

which is dominated by (4.3) since E(F ) ⊆ ΔE(j), then multiply it by q. Summing up
all such inequalities yields a new valid inequality where each variable xi

e for e ∈ E(F )
has coefficient C + q. Furthermore, on the right-hand side the independent term
equals qC.

To finish the proof, let us show that for any v ∈ V (F ), variable yi
v has coefficient

− ((C + 1)(degF (v) − 1)). For this, consider a node u ∈ V (T k). By definition u has
(degF (u) − 1) children and each child v of u contributes to the final coefficient of
yi

u with −(C − |E(T k
v )|). Therefore, the total contribution coming from its children

equals

−C(degF (u)−1)+(|E(T k
u )|− (degF (u)−1)) = − ((C + 1)(degF (u) − 1))+ |E(T k

u )|.

Finally, since the parent of u contributes with −|E(T k
u )|, the proof is done. �

Corollary 4.3 - Chvàval-Gomory inequalities of rank 1
The k-cardinality forest inequalities (4.44) are Chvàval-Gomory inequalities of rank
1. �

Notice that, considering again instance I depicted in Example 4.4, the inequali-
ties

xi
1 + xi

2 + xi
3 − yi

1 ≤ 1 ∀ i ∈ K, (4.46)

are k-cardinality forest inequalities capable of cutting off the fractional solution
proposed in Figure 4.13. Moreover, such inequalities are actually facet-defining1

for PI . The inclusion of such inequalities, however, does not close the integrality
gap. In fact, a new fractional solution of same objective-function value is obtained.
Figure 4.14 illustrates such solution. In order, to close this integrality gap, a different
generalization of k-cardinality tree inequalities is required as one shall see next.

Considering partially intersected structures

On k-cardinality tree inequalities (4.40), the edge-set S is required to be a subset
of ΔE(v) for some given v ∈ V . This condition is imposed in order to prevent the

1This can be easily verified with PORTA (see Christof et al. [30]). PORTA is a free software,
distributed under the GNU General Public Licence, containing a collection of routines developed
by for analyzing polytopes and polyhedrons.
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Figure 4.14: Illustration of the fractional solution obtained after the inclusion
of k-cardinality forest inequalities.

existence of a feasible solution where every demand in S is assigned to the same
vehicle (recall that |S| = C + 1). Notice however that this same result can be
achieved by imposing that S ⊆ E is a subset of demands covering C + 1 demands in
ΔE(v), that is, |S∩ΔE(v)| = C+1. A generalization of k-cardinality tree inequalities
for taking into account such relaxed condition is proposed below.

Theorem 4.14 - Validity of k-cover tree inequalities
The following k-cover tree inequalities are valid for P(V,E,C):

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ E, (4.47)

such that G[S] is a tree and |S ∩ ΔE(j)| = C + 1.

Proof. The proof of validity is done by showing that inequalities (4.47) can be seen
as Chvátal-Gomory cuts. More precisely, we show that given a subset S ⊆ E such
that T = G[S] is a tree and |S∩ΔE(j)| = C+1, a conical combination of inequalities
(4.3), (4.4) and (4.13) yields the inequality

|S|
∑

e∈E(T )
xi

e − |S|
∑

v∈V (T )
(degT (v) − 1)yi

v ≤ C + |S \ ΔE(j)|,

which can be divided by |S| and the independent term C+|S\ΔE(j)|
|S| rounded down to

obtain ∑
e∈E(T )

xi
e −

∑
v∈V (T )

(degT (v) − 1)yi
v ≤
⌊

C + |S \ ΔE(j)|
|S|

⌋
. (4.48)

Since |S ∩ ΔE(j)| = C + 1, one has that C + |S \ ΔE(j)| = |S| − 1, and therefore,
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inequality (4.48) reduces to

∑
e∈E(T )

xi
e −

∑
v∈V (T )

(degT (v) − 1)yi
v ≤ 0.

Such conical combination is constructed as follows. We arbitrarily choose a leaf
node r ∈ V (T ) to be the root of T . For each edge e = uv ∈ E(T ), such that u ≺ v

(remark that v �= r), multiply inequality xi
e − yi

u ≤ 0 by (|S| − 1 − |E(Tv)|) and
inequality xi

e − yi
v ≤ 0 by |E(Tv)|, where Tv is the subtree rooted in v (cf. Section

1.1). Likewise, consider the inequality

∑
e∈E(T )∩ΔE(j)

xi
e ≤ C.

that is dominated by (4.3). At last, consider inequalities (4.13)

xi
e ≤ 1,

for each e ∈ E(T ) \ ΔE(j). Summing up all such inequalities yields a new valid
inequality where each variable xi

e for e ∈ E(T ) has coefficient |S|. Furthermore, on
the right-hand side the independent term equals C + |S \ ΔE(j)|.

To finish the proof, let us show that for any v ∈ V (T ), variable yi
v has coefficient

−|S|(degT (v) − 1). Consider a node u ∈ V (T ). By definition, u has (degT (u) −
1) children and each child v of u contributes to the final coefficient of yi

u with
− (|S| − 1 − |E(Tv)|). Therefore, the total contribution coming from its children
equals

−(|S| − 1)(degF (u) − 1) + (|E(Tu)| − (degF (u) − 1)) = −|S|(degT (u) − 1) + |E(Tu)|.

Finally, since the parent of u contributes with −|E(Tu)|, the proof is done. �

Corollary 4.4 - Chvàval-Gomory inequalities of rank 1
The k-cover tree inequalities (4.47) are Chvàval-Gomory inequalities of rank 1. �

We next investigate conditions that are necessary to hold for k-cover tree in-
equalities (4.47) to define facets of P(V,E,C).

Let G[S] be a tree such that |S ∩ ΔE(j)| = C + 1, for some j ∈ V . Notice
that if G[S] has a leaf edge e such that e /∈ ΔE(j), then the k-cover tree inequalities
associated with G[S] are always dominated by the k-cover tree inequalities associated
with G[S \ e]. Indeed, the former can be written as a sum of

i. stop inequalities (4.4) and
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ii. the k-cover tree inequality associated with G[S \ e].

Figure 4.15 illustrates such case by depicting an instance where C = 3, G[S] is a
tree covering C + 1 demands in ΔE(4) and g is a leaf edge in S \ ΔE(4).

7

54
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g

e

3
d

6

1

a

2
b

c xi
g − yi

5 ≤ 0 [i]

xi
a + xi

b + xi
c + xi

d + xi
e + xi

f − yi
5 − 2yi

6 − 2yi
7 ≤ 0 [ii.]

xi
a + xi

b + xi
c + xi

d + xi
e + xi

f + xi
g − 2yi

5 − 2yi
6 − 2yi

7 ≤ 0

G[S]

Figure 4.15: How a k-cover tree gets dominated.

This yields a necessary condition to be satisfied by a facet-defining k-cover tree
inequality: every leaf edge of G[S] must be in ΔE(j). However, such condition is not
sufficient. In fact, the k-cover tree inequalities induced by G[S \ g] in Figure 4.15
satisfy such condition but are dominated by the k-cover tree inequalities induced by
G[S \ {f, g}]. Notice that G[S \ {f, g}] does not cover C + 1 demands in ΔE(4),
but it does in ΔE(5). Therefore, the previously condition established can be further
improved as follows. A k-cover tree inequality is facet-defining only if the associated
tree G[S] is not included in any other tree G[S ′] associated with another valid k-cover
tree inequality.

With this in mind, consider again instance I depicted in Example 4.4. The
following inequalities are k-cover tree inequalities capable of cutting off the fractional
solution proposed in Figure 4.13 obtained after the inclusion of the k-cardinality
forest inequalities

xi
1 + xi

2 + xi
3 + xi

4 − yi
1 − yi

4 − yi
5 ≤ 0 ∀ i ∈ K. (4.49)

Moreover, such inequalities are actually facet-defining2 for PI and their inclusion
not only closes the integrality gap but also provides an integer solution of optimal
cost as depicted in Figure 4.16.

Combining both generalizations

As expected, one can now combine the two previously presented generalizations of
k-cardinality tree inequalities, giving rise to the so-called k-cover forest inequalities.

2Verified with PORTA software (see Christof et al. [30]).
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Figure 4.16: Illustration of the integer solution obtained after the inclusion of
k-cover tree inequalities.

Theorem 4.15 - Validity of k-cover forest inequalities
The following k-cover forest inequalities are valid for P(V,E,C):

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ q − 1 ∀i ∈ K, j ∈ V, S ⊆ E (4.50)

such that G[S] is a forest composed by 1 ≤ q ≤ |S| connected components and
|S ∩ ΔE(j)| = C + 1.

Proof. The proof of validity is once again done by showing that inequalities (4.50)
can be seen as Chvátal-Gomory cuts. More precisely, we show that, given a forest
F = G[S] composed by q trees, each denoted by T k for 1 ≤ k ≤ q, and such that
|S ∩ ΔE(j)| = C + 1, a conical combination of inequalities (4.3), (4.4) and (4.14),
yields the inequality

(|S|−1+q)
q∑

k=1

⎛⎝ ∑
e∈E(T k)

xi
e

⎞⎠−|S|
q∑

k=1

⎛⎝ ∑
v∈V (T k)

(degT k(v) − 1)yi
v

⎞⎠ ≤ qC +q|S\ΔE(j)|,

which can be divided by |S|. After rounding down the coefficients one obtains
⌊

|S| − 1 + q

|S|

⌋ ∑
e∈E(F )

xi
e −

∑
v∈V (F )

(degF (v) − 1)yi
v ≤
⌊

qC + q|S \ ΔE(j)|
|S|

⌋
. (4.51)

Since 1 ≤ q ≤ |S|, one has that |S| ≤ |S| − 1 + q ≤ 2|S| − 1 and hence,
⌊

|S| − 1 + q

|S|

⌋
= 1.
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Moreover, since |S ∩ ΔE(j)| = C + 1,
⌊

q(C + |S \ ΔE(j)|)
|S|

⌋
=
⌊

q(|S| − 1)
|S|

⌋
=
⌊

q|S| − q

|S|

⌋
=
⌊
q − q

|S|

⌋
= q − 1.

Therefore, inequality (4.51) reduces to

∑
e∈E(F )

xi
e −

∑
v∈V (F )

(degF (v) − 1)yi
v ≤ q − 1. (4.52)

Such conical combination is constructed as follows. We arbitrarily choose a leaf
node r ∈ V (T k) to be the root of T k, for k = 1, . . . , q. For each edge e = uv ∈
E(T k), such that u ≺ v (remark that v �= r), multiply inequality xi

e − yi
u ≤ 0 by

(|S| − 1 − |E(T k
v )|) and inequality xi

e − yi
v ≤ 0 by |E(T k

v )|, where T k
v is the subtree

of T k rooted in v (cf. Section 1.1). Likewise, consider the inequality

∑
e∈E(F )∩ΔE(j)

xi
e ≤ C,

which is dominated by (4.3), and multiply it by q. At last, consider inequalities
(4.13)

xi
e ≤ 1,

for each e ∈ E(F )\ΔE(j) and multiply each by q. Summing up all such inequalities
yields a new valid inequality where each variable xi

e for e ∈ E(F ) has coefficient
|S| − 1 + q. Furthermore, on the right-hand side the independent term equals
q(C + |S \ ΔE(j)|).

To finish the proof, let us show that variable yi
v has coefficient −|S|(degF (v)−1)

for any v ∈ V (F ). Consider a node u ∈ V (T k). By definition u has (degF (u) −
1) children and each child v of u contributes to the final coefficient of yi

u with
−(|S| − 1 − |E(T k

v )|). Therefore, the total contribution coming from its children
equals −|S|(degT (u) − 1) + |E(T k

u )|. Finally, since the parent of u contributes with
−|E(T k

u )|, the proof is done. �

4.4.4 Girth inequalities

So far, only the sparsest structures – such as stars, trees and forests – have been
exploited to derive valid inequalities for P(V,E,C). This issue is now addressed, by
looking at some denser structures.

In graph theory, the girth of a graph G corresponds to the length of the smallest
cycle contained in G. In other words, a graph is said to have girth k if it contains
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no cycle of size smaller than k. Suppose G = (V, E) has girth k. Then, G[S] is a
forest for any S ⊆ E such that |S| ≤ k − 1. Based on such remark, a new family of
valid inequalities, named girth inequalities, is introduced here below.

Theorem 4.16 - Validity of girth inequalities
The following girth inequalities are valid for P(V,E,C):

∑
e∈S

(C + 1)xi
e −

∑
v∈V [S]

Cyi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j), (4.53)

such that G[S] has girth greater than or equal to C + 1.

Proof. Let (x̄, ȳ) ∈ P(V,E,C) ∩ Z
(n+m)p represent an arbitrary feasible solution of U-

SNP. Moreover, let Si ⊆ S denote the set of demands in S that are assigned to
vehicle i on solution (x̄, ȳ). If |Si| = 0, then ∑e∈S(C + 1)x̄i

e = 0 and (4.53) is
obviously valid. Hence, assume |Si| ≥ 1. By definition,

∑
e∈S

(C + 1)x̄i
e =
∑
e∈Si

(C + 1) = C|Si| + |Si|.

Since |Si| ≤ C and G[S] has girth greater than or equal to C + 1, G[Si] must be a
forest and hence vehicle i stops on at least |Si| + 1 stations in V [S]. Therefore,

∑
v∈V [S]

Cȳi
v ≥ C|Si| + C.

Finally, one has that

∑
e∈S

(C + 1)x̄i
e = C|Si| + |Si| ≤ C|Si| + C ≤

∑
v∈V [S]

Cȳi
v,

which proves inequality (4.53) is valid. �

Notice that from the introduction of girth inequalities, one may derive new
Chvàtal-Gomory cuts. For this, let S ⊆ ΔE(j) for some j ∈ V be a subset of
edges such that G[S] has girth greater than or equal to C + 1. Then, the following
inequalities belong to the family of girth inequalities:

∑
e∈S

(C + 1)xi
e −

∑
v∈V [S]

Cyi
v ≤ 0 ∀i ∈ K.

By summing up such inequalities, one obtains

∑
v∈V [S]

∑
i∈K

Cyi
v ≥
∑
e∈S

∑
i∈K

(C + 1)xi
e.
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However, from constraints (4.2) one has that

∑
e∈S

∑
i∈K

(C + 1)xi
e = (C + 1)|S|,

and therefore, ∑
v∈V [S]

∑
i∈K

yi
v ≥ (C + 1)|S|

C
= |S| + |S|

C
.

Since ∑v∈V [S]
∑

i∈K yi
v should be an integer value, one can derive the following

Chvàtal-Gomory cuts.

∑
v∈V [S]

∑
i∈K

yi
v ≥ |S| +

⌈
|S|
C

⌉
∀j ∈ V, S ⊆ ΔE(j), (4.54)

such that G[S] has girth greater than or equal to C + 1.

This means that the introduction of inequalities (4.53) and (4.54) allows the
linear relaxation to yield the lower bound presented in Proposition 3.4. Such result
is summarized below.

Proposition 4.6 - Reinforcement from girth inequalities
Let P ′

(V,E,C) = {(x, y) ∈ P(V,E,C) : (x, y) satisfies (4.53), (4.54)}. Then, if (V, E, C)
is an instance of Intersection U-SNP such that G = (V, E) has girth greater than or
equal to C + 1,

min
{
0x + 1y : (x, y) ∈ P ′

(V,E,C)

}
≥ m +

⌈
m

C

⌉
.

Proof. Inequalities (4.53) and (4.54) are valid for S = E. �

4.4.5 Generating further valid inequalities

In Grötschel et al. [84, 83], the authors study the linear ordering polytope and
the acyclic subgraph polytope, respectively. Both these studies elegantly explore
the idea of using a facet-defining inequality of a given polytope P ⊆ R

n to derive
other facet-defining inequalities for a higher-dimension related polytope Q ⊆ R

n+d.
Notice that for many combinatorial problems, the lower-dimension polytope P can
be seen as a face of the higher-dimension polytope Q. This means that the (partial)
characterization of a face of a polytope can yield information on how to (partially)
characterize other faces of this same polytope. Based on this idea, we show how one
may generate new valid inequalities for the U-SNP through the exploitation of the
properties of the facet-defining k-cardinality tree inequalities (4.40).
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Theorem 4.17 - Providing new valid inequalities
Let ∑

e∈ΔE(j)
ai

ex
i
e +
∑
v∈V

bi
vyi

v ≤ r (4.55)

be any valid inequality for P(V,E,C) such that bi
v ≤ 0 for any v ∈ V . Given a vehicle

i ∈ K, a station j ∈ V and a C-cardinality tree G[S] for S ⊆ ΔE(j), the inequality

∑
e∈ΔE(j)

ai
ex

i
e +
∑
v∈V

bi
vyi

v +
∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ r (4.56)

is also valid for P(V,E,C), if and only if

∑
e∈S

ai
e +

∑
v∈V [S]

bi
v ≤ r − 1.

Proof. Let (x̄, ȳ) be any feasible solution of P(V,E,C). Notice that, from Theorem
4.11, ∑

e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 (4.57)

is a valid inequality for P(V,E,C−1). With this in mind, if ∑e∈S x̄i
e ≤ C − 1, then

(4.57) is satisfied by (x̄, ȳ). Consequently, (x̄, ȳ) also satisfies (4.56) since (4.55) is
valid.

Thus, the only possible way for (x̄, ȳ) to violate (4.56) is if all C demands in S

are assigned to vehicle i. This means that

i. ∑e∈S x̄i
e = C,

ii. ∑v∈V [S](degG[S](v) − 1)ȳi
v = C − 1,

iii. ∑e∈ΔE(j) ai
ex̄

i
e = ∑e∈S ai

e,

iv. ∑v∈V bi
vȳi

v = ∑v∈V [S] bi
v +∑v∈V \V [S] bi

vȳi
v.

It follows directly that (4.56) is valid if and only if

∑
e∈S

ai
e +

∑
v∈V [S]

bi
v +

∑
v∈V \V [S]

bi
vyi

v ≤ r − 1.

Since bi
v ≤ 0 for all v ∈ V , it is clear that ∑v∈V \V [S] bi

vȳi
v ≤ 0. Moreover, this

bound is achieved when ȳi
v = 0 for all v ∈ V \V [S] and hence, the proof is done. �

It is curious to remark that k-cardinality tree inequalities (4.40) can be obtained
through the procedure described in Theorem 4.17 by taking inequalities (4.4) as
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the starting valid inequality. It follows that one may now use k-cardinality tree
inequalities (4.40) as a starting valid inequality to derive new non-redundant valid
inequalities. The following example illustrates such situation.

Example 4.5 - Generating new valid inequalities
Consider the following instance I of U-SNP with C = 2.
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e

1 2 3 4 5 6

1

4 2
d
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5 3
eb

6

c

Even after the addition of all valid k-cardinality tree inequalities to the formu-
lation, its linear relaxation still finds a fractional solution of cost 7. Such fractional
solution is depicted below, where the values of variables x and y are given next to
their corresponding edge and node, respectively.
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Figure 4.17: Illustration of the obtained fractional solution

Notice that in the given instance I,

xi
a + xi

c + xi
d − yi

1 − yi
4 ≤ 0, ∀ i ∈ K, (4.58)

are valid k-cardinality tree inequalities. Obviously, the solution depicted in Figure
4.17 satisfies such inequalities. Moreover, consider the inequality

xi
b + xi

e − yi
5 ≤ 0, ∀ i ∈ K, (4.59)

induced by the C-cardinality tree formed by edges b and e. Inequality (4.59) is clearly
not valid for the given instance. Notice however, that if C = 1, then inequality
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(4.59) becomes valid. With this in mind one may use inequalities (4.58) and (4.59)
in Theorem 4.17 to derive the following new valid inequality:

xi
a + xi

b + xi
c + xi

d + xi
e − yi

1 − yi
4 − yi

5 ≤ 0, ∀ i ∈ K. (4.60)

Such inequality is capable of cutting off the fractional solution proposed in Figure
4.17. Moreover, the inclusion of inequality (4.60) to the formulation provides an
integer solution of optimal cost. �

4.5 Conclusion

In order to solve the U-SNP, we have studied in this chapter an integer programming
formulation due to Pimenta et al. [151]. Based on such formulation, we provided
two relaxations that are both capable of solving U-SNP. However, such formulation
was shown to be particularly weak in the sense that its linear relaxation does not
provide any significant information. In other words, the dual (lower) bounds it
provides are trivial. In order to reinforce such formulation, we studied the facial
structure of polytope P(V,E,C) defined as the convex hull of the feasible solutions.
For this, we have first investigated the dimension of such integer polyhedron as well
as the necessary and sufficient conditions under which the inequalities composing
the weak formulation from Pimenta et al. [151] are facet-defining. At last, several
families of valid inequalities capable of reinforcing the formulation were introduced
and the necessary and sufficient facet-defining conditions for some of these families
were presented. The computational efficiency obtained by the inclusion of such
inequalities is next presented in Chapter 5.
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Computational study

”Computers are useless. They only give you answers.”

— Pablo Picasso

In this chapter a broad computational study on the resolution of U-SNP is con-
ducted and a Branch-and-Cut framework is developed. The formulation USNP(V,E,C),
defined by inequalities (4.1)-(4.6), is taken as an starting point. Following the un-
satisfactory performances of such formulation identified in Chapter 4, we propose a
series of clever features capable of boosting its performances. These features include
i. breaking the symmetry hidden behind U-SNP, ii. eliminating useless variables,
iii. relaxing variables, and iv. integrating the reinforcing valid inequalities identified
in Section 4.4 into the Branch-and-Cut framework. All the implementations involve
the use of the standard MILP solver ILOG CPLEX 12.8 coupled with CPLEX Concert
Technology for allowing an interface with CPLEX libraries using C++.

5.1 Symmetry

In Margot [127], a MIP is defined as being symmetric if its variables can be permuted
without changing the problem’s structure. In our case, since vehicles are considered
to be identical, U-SNP hides a complete symmetry with respect to vehicles. In other
words, for any given feasible solution, another solution with equivalent objective
function value (i.e., the same number of stops) can be obtained by imposing a
sequential permutation over any subset of vehicles. This means that the symmetry
behind U-SNP results in the existence of p! distinct equivalent solutions for each
given assignment of demands to vehicles. Figure 5.1 depicts two symmetric solutions
of an instance of U-SNP.
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e1
e2

e3

1 2 3 4
(a) A solution with e1 and e2 in ve-

hicle blue and e3 in vehicle red

e1
e2

e3

1 2 3 4
(b) A solution with e1 and e2 in ve-

hicle red and e3 in vehicle blue
Figure 5.1: Two symmetric solutions

Numerous authors have highlighted the importance of eliminating – or at least
reducing – symmetry when solving MIPs (e.g. Sherali and Smith [166], Kaibel
and Pfetsch [100], Denton et al. [52], Ostrowski et al. [138]). Indeed, when solving a
symmetric MIP through a Branch-and-Bound (or Branch-and-Cut) procedure, one is
forced to solve isomorphic subproblems in the enumeration tree which represents an
useless replication of efforts. In such scenario, proving optimality of a given solution
requires exploring and fathoming each one of its symmetric pairs which can be
terribly expensive. Typical combinatorial optimization problems having symmetry
issues are Vertex Coloring, Partitioning and Packing problems (see Kaibel
and Pfetsch [100]).

5.1.1 Symmetry-breaking methods

Facing symmetry can be done through several ways, each of which having its pros
and cons. In this section we present some of the most popular methods capable of
(partially) breaking symmetry of a MILP.

Pertubation

One of the first methods that come to mind when tackling symmetry is to perform
some perturbation on the coefficients of variables in the objective function. However,
according to Margot [127], making small perturbations is often counterproductive
when testing for infeasibility or proving optimality. Indeed, if the MILP in question
is infeasible, modifying the objective function accomplishes nothing as the Branch-
and-Bound enumeration tree remains the same. Moreover, once an optimal solution
is known, proving its optimality is equivalent to verifying the nonexistence of a
better feasible solution, which requires the same amount of work as verifying a
MILP’s infeasibility. On the other hand, making huge perturbations can easily lead
to numerical instability.
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Isomorphism Pruning and Orbital Branching

A more refined approach consists on trying to break symmetry during the optimiza-
tion process. This can be done either by pruning identified isomorphic branches of
the Branch-and-Bound tree or by fixing variables in order to avoid the creation of
such isomorphic nodes in the Branch-and-Bound tree. When it comes to pruning
identified isomorphic branches, the works of Margot [125, 126] presenting Isomor-
phism Pruning and Ostrowski et al. [139] introducing Orbital Branching truly excel.
Isomorphism Pruning is a method allowing to detect isomorphic nodes on the enu-
meration tree - and hence prune them - for a general ILP. Nonetheless, this symmetry
detection phase can require a significant computational effort. Orbital Branching
is a relaxed version of Isomorphism Pruning, in the sense that it does not guaran-
tee the complete elimination of symmetry for a general ILP, whereas Isomorphism
Pruning does. In practice however, it remains competitive with respect to Isomor-
phism Pruning. In addition, for some families of combinatorial problems (such as job
scheduling, see Ostrowski et al. [138]) Orbital Branching does completely eliminate
symmetry.

Orbitopal Fixing

In Kaibel et al. [101], a linear-time algorithm capable of completely removing sym-
metry from partition problems, called orbitopal fixing, is proposed. At each node of
the enumeration tree, the method fixes variables based on a predefined lexicographic
order and on the already fixed variables at the current node. Such lexicographic or-
der consists to say x1 ≥ x2 ≥ · · · ≥ xn for a given group of symmetric variables.
With respect to U-SNP, applying such lexicographic order would amount to impose
that

i. the i-th demand must be assigned to one of the first i vehicles;

ii. a demand i cannot be assigned to an empty vehicle j if there exists some empty
vehicle j′ such that j′ < j.

To illustrate it, consider the following two matrices of variables x, where the lines
indicate the demands and the columns represent the vehicles. That is, the value of
xi

e is given by the entry located on line e and column i. Clearly, the first matrix xlex

follows the lexicographic order imposed by conditions i. and ii., while the second
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one xnot does not.

xlex =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , xnot =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
1 0 0 0
0 0 1 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

In order to test its performance on U-SNP, the method proposed by Kaibel
et al. [101] is hence adapted. At each node of the Branch-and-Bound tree, Orbitopal
Fixing tries to deduce which demands cannot be assigned to which vehicles (that is,
to fix the associated variables xi

e to zero) so that every feasible solution of the node
respects the lexicographic order imposed by conditions i. and ii..

In the first part of Orbitopal Fixing one receives as input the list of fixed variables
at the current node. Such list is defined by (F0, F1), where F0 is the set of variables
that have been fixed 0 and F1 the set of variables fixed to 1. The algorithm’s
objective is to return as output an updated list of fixed variables (F ∗

0 , F1), where
F0 ⊆ F ∗

0 . For this, let a ∈ {1, . . . , p}m be a vector providing an upper bound on the
largest indexed vehicle for each of the m demands. That is to say, if ae = j, then
demand e ∈ E must be assigned to one of the first j vehicles. Consequently, xi

e can
be fixed to zero for any i > j. Of course, a1 = 1 and, unless ae−1 = p, one has
that ae = ae−1 + 1 for any e ≥ 2, from condition i.. Notice however that condition
ii. ensures that if for some reason (e.g., any previous branching decision), variable
xae−1+1

e has been fixed to 0, then ae = ae−1. A formal description of this first part
of Orbitopal Fixing is given by Algorithm 2.

Algorithm 2 Fixing Zeros
Input: (F0, F1)
Output: (F ∗

0 , F1) such that F0 ⊆ F ∗
0

Set F ∗
0 = F0 and a1 = 1

for e = 2, . . . , m do
if ae−1 �= p and xae−1+1

e /∈ F0 then
ae = ae−1 + 1

else
ae = ae−1

end if
Set F ∗

0 = F ∗
0 ∪ {xi

e : i > ae}
end for

The second part of Orbitopal Fixing consists of fixing variables to one. For this,
Algorithm 2 is employed to search for contradictions. More specifically, given vector
a constructed in Algorithm 2, let F ′

0 = F0 ∪ xae
e , where xae

e is a variable that has not
been fixed yet. Then, if Algorithm 2 launched with (F ′

0, F1) as input, returns a list
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of fixed variables (F ∗
0 , F1) such that F ∗

0 ∩F1 �= ∅, it means that fixing variable xae
e to

zero yields a contradiction, and hence one may fix xae
e to one. A formal description

of this second part of Orbitopal Fixing is given by Algorithm 3.

Algorithm 3 Fixing Ones
Input: (F0, F1) and vector a constructed in Algorithm 2
Output: (F ′

0, F ′
1) such that F0 ⊆ F ′

0 and F1 ⊆ F ′
1

Set F ′
0 = F0 and F ′

1 = F1
for e = 2, . . . , m such that xae

e /∈ F1 ∪ F0 do
(F ∗

0 , F ∗
1 ) = Algorithm 2 (F ′

0 ∪ xae
e , F ′

1)
if F ∗

0 ∩ F ∗
1 �= ∅ then

Set F ′
1 = F ′

1 ∪ xae
e and F ′

0 = F ′
0 ∪ {xi

e : i �= ae}
end if

end for

Symmetry-Breaking Constraints

If one prefers to not intervene in the branching process, a final alternative is to
introduce symmetry-breaking inequalities to the ILP formulation. Such inequalities
transgress the paradigm of valid inequalities. In fact, symmetry-breaking inequali-
ties should not be valid. On the contrary, their purpose is to cut off part of feasible
region, while guaranteeing that at least one optimal solution from the original prob-
lem remains feasible. Based on the lexicographic order of variables, the partitioning
orbitope – the polytope obtained as the convex hull of non-symmetric solutions of
a partitioning problem – is characterized in Kaibel and Pfetsch [100]. As expected,
the linear description of the partitioning orbitope requires an exponential number
of inequalities. In Denton et al. [52], a subclass of the inequalities describing the
partitioning orbitope is adapted to tackle symmetry in operating room scheduling
problems. Although, the inequalities employed are not sufficient to completely re-
move symmetry, important results were obtained applying only a polynomial number
of such inequalities.

The inequalities presented in Denton et al. [52] are hence adapted to fit U-SNP,
giving rise to the following symmetry-breaking inequalities:

e∑
i=1

xi
e = 1 ∀e ∈ E : e < p, (5.1)

min{e,p}∑
j=i

xj
e −

e−1∑
u=i−1

xi−1
u ≤ 0 ∀e ∈ E, i ∈ K : e ≥ i. (5.2)

Notice that constraints (5.1) and (5.2) impose exactly the lexicographic order
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previously detailed. Indeed, inequalities (5.1) guarantee that the e-th demand must
be assigned to one of the first e vehicles. On the other hand, inequalities (5.2)
ensures that demand e can only be assigned to vehicle i if at least one of the first
e − 1 demands is assigned to vehicle i − 1.

5.1.2 Methods comparison

With the intention of improving the Branch-and-Bound performances, Orbitopal
Fixing and Symmetry-Breaking Constraints were adapted to fit U-SNP. Notice how-
ever that Orbitopal Fixing requires the user to interfere on the branching process of
the chosen MIP solver. In practice, this means that the CPLEX branching function
has to be overridden by implementing the BranchCallback macro. Anywise, overrid-
ing such function unables CPLEX to apply a series of default settings it uses, such
as dynamic search and dual reductions. Unfortunately, we are unable to give more
details on such CPLEX features as they are trade secrets from IBM (cf. Junglas
[99]).

Therefore, for a fairer comparison, we have implemented a dummy callback (i.e.,
an empty callback) employed to deactivate such CPLEX features. Notice that such
practice is frequent in the literature for proving the efficiency of branching, cutting
planes or node selection methods. Such strategy is used in Carvajal et al. [29] where
“[...] dummy callbacks were used when CPLEX was executed with default settings.
We think this is necessary in order to get a fair comparison, since the only pres-
ence of a user callback function changes the underlying behavior of CPLEX.” In
Sabharwal et al. [162], the authors justify that “we use CPLEX [...] with node and
branch ‘callbacks’ turned on (using empty callbacks) as our baseline CPLEX solver.
[...] Note that this causes some features of CPLEX to be turned off (e.g., dynamic
search) but is the only way to enhance CPLEX with a custom node selection strat-
egy without access to the internals of CPLEX”. In Fischetti and Monaci [68], the
procedure is once again reported: “For a fair comparison, all codes use a (possibly
dummy) callback function, thus deactivating IBM ILOG CPLEX’s proprietary dy-
namic search.” Finally, even if some CPLEX default features are disabled by the
implementation of callbacks, the main CPLEX settings remains untouched such as
presolving, cut generation and branching variable choice.

Table 5.1 provides the obtained results for instances with the number of demands
m ranging from 30 to 60, the capacity C ranging from 2 to 8 and the graph density
ρ from 1.5 to 4.5. For each combination of parameters m, C and ρ, only instances
m C ρ 1 are analysed. For a more exhaustive comparison, please refer to Table A.2
in Appendix A. The three following scenarios have been tested:

150 Chapter 5. Computational study



Exploring Combinatorial Aspects of the Stop Number Problem

• Section Default concerns the results obtained by CPLEX using a dummy
callback function;

• Section Constraints concerns the results obtained by CPLEX with the in-
clusion of symmetry-breaking constraints to the root node of the enumeration
tree;

• Section Orbitopal concerns the results obtained by CPLEX with the addition
of Orbitopal Fixing method for breaking symmetry;

For each scenario, the total time in seconds required for the optimization is
reported under column CPU. If the time limit of two hours is exceeded, the remaining
gap percentage is displayed under column gap. The number of nodes (in thousands)
explored in the enumeration tree is given under column node.

Table 5.1: Comparison between symmetry-breaking methods
Instances Default Constraints Orbitopal

m C ρ CPU gap node CPU gap node CPU gap node

30 2 1.5 7200 35.3 808 7200 3.0 1623 3388 0.0 891
30 2 3.0 7200 42.1 775 7200 16.4 1598 7200 13.3 1645
30 2 4.5 7200 34.2 1252 7200 16.5 2143 7200 16.6 1947
35 2 1.5 7200 38.9 591 7200 12.0 814 7200 15.9 887
35 2 3.0 7200 59.6 616 7200 27.8 868 7200 25.3 909
35 2 4.5 7200 39.7 254 7200 33.9 925 7200 40.8 793
40 2 1.5 7200 47.4 357 7200 20.7 469 7200 20.5 544
40 2 3.0 7200 56.0 244 7200 33.8 453 7200 33.3 420
40 2 4.5 7200 60.4 284 7200 40.8 578 7200 38.5 489
45 2 1.5 7200 40.4 141 7200 17.0 268 7200 17.1 357
45 2 3.0 7200 60.5 70 7200 36.3 242 7200 37.1 293
45 2 4.5 7200 59.1 162 7200 45.3 316 7200 45.8 293
50 2 1.5 7200 43.6 60 7200 25.3 197 7200 22.9 220
50 2 3.0 7200 60.2 75 7200 39.6 189 7200 42.8 180
50 2 4.5 7200 72.6 55 7200 48.7 165 7200 50.0 166
55 2 1.5 7200 42.8 47 7200 24.9 119 7200 25.7 167
55 2 3.0 7200 63.7 29 7200 43.7 118 7200 45.2 159
55 2 4.5 7200 73.3 28 7200 52.2 134 7200 53.4 157
60 2 1.5 7200 45.2 17 7200 30.7 96 7200 29.4 89
60 2 3.0 7200 66.1 23 7200 45.9 70 7200 47.8 85
60 2 4.5 7200 76.4 23 7200 53.3 75 7200 51.9 108
30 5 1.5 7200 22.1 1319 95 0.0 15 39 0.0 7
30 5 3.0 7200 32.4 1041 193 0.0 35 62 0.0 11
30 5 4.5 7200 27.3 1282 169 0.0 43 250 0.0 76
35 5 1.5 7200 24.6 628 369 0.0 40 237 0.0 28
35 5 3.0 7200 39.8 589 2542 0.0 224 3281 0.0 406
35 5 4.5 7200 39.6 717 7200 4.5 946 7200 13.3 933
40 5 1.5 7200 25.0 573 7200 1.8 290 7200 4.2 594
40 5 3.0 7200 38.4 362 7200 11.2 247 7200 18.1 444
40 5 4.5 7200 43.6 349 7200 13.9 322 7200 22.2 567
45 5 1.5 7200 23.8 338 7200 3.7 159 7200 10.9 413
45 5 3.0 7200 46.8 198 7200 19.5 150 7200 23.0 322
45 5 4.5 7200 51.3 202 7200 23.0 218 7200 26.9 354
50 5 1.5 7200 28.3 193 7200 12.3 105 7200 11.0 254
50 5 3.0 7200 44.2 147 7200 27.9 97 7200 23.2 194
50 5 4.5 7200 56.7 117 7200 34.2 155 7200 31.5 253
55 5 1.5 7200 31.1 69 7200 13.8 63 7200 15.7 138
55 5 3.0 7200 51.7 61 7200 35.1 77 7200 31.7 148
55 5 4.5 7200 58.6 80 7200 38.1 59 7200 37.7 156
60 5 1.5 7200 26.4 66 7200 11.0 35 7200 11.8 91
60 5 3.0 7200 51.5 43 7200 35.8 42 7200 35.4 61
60 5 4.5 7200 56.8 57 7200 36.7 48 7200 34.6 114

Continued on Next Page. . .

Chapter 5. Computational study 151



Exploring Combinatorial Aspects of the Stop Number Problem

Table 5.1 – Continued

Instances Default Constraints Orbitopal
m C ρ CPU gap node CPU gap node CPU gap node

30 8 1.5 2351 0.0 538 5 0.0 0.3 4 0.0 0.4
30 8 3.0 7200 22.5 983 11 0.0 1 7 0.0 1
30 8 4.5 7200 21.6 971 14 0.0 2 7 0.0 1
35 8 1.5 7200 14.0 701 16 0.0 1 19 0.0 2
35 8 3.0 7200 27.8 665 84 0.0 6 26 0.0 2
35 8 4.5 7200 21.7 732 51 0.0 6 44 0.0 6
40 8 1.5 7200 17.0 395 79 0.0 3 30 0.0 1
40 8 3.0 7200 34.1 402 1010 0.0 42 968 0.0 76
40 8 4.5 7200 27.4 433 75 0.0 2 77 0.0 6
45 8 1.5 7200 17.6 259 384 0.0 12 500 0.0 31
45 8 3.0 7200 34.1 277 5576 0.0 157 5692 0.0 301
45 8 4.5 7200 38.9 291 3685 0.0 123 7200 5.1 304
50 8 1.5 7200 19.3 194 1312 0.0 22 482 0.0 16
50 8 3.0 7200 39.3 156 7200 15.7 88 7200 17.3 203
50 8 4.5 7200 43.8 180 7200 13.8 102 7200 18.2 237
55 8 1.5 7200 21.1 100 7200 4.6 56 7200 6.5 165
55 8 3.0 7200 41.4 100 7200 23.0 61 7200 19.4 157
55 8 4.5 7200 45.8 131 7200 23.5 64 7200 21.2 167
60 8 1.5 7200 25.9 59 7200 16.0 35 7200 12.9 100
60 8 3.0 7200 43.8 58 7200 26.9 42 7200 25.0 104
60 8 4.5 7200 49.0 70 7200 31.2 39 7200 27.9 99

As expected, symmetry-breaking methods have a huge impact on the MILP
performances. Notice that when no symmetry breaking method is applied, CPLEX
could not solve almost any of tested instances to optimality (the exception is the
instance with m = 30, C = 8 and ρ = 1.5). On the other hand, when symmetry
methods were applied, some of the non-solved instances (notably instances with
C = 8) could be solved to optimality. More specifically, the number of solved
instances increases from 1 to 19 out of the 63 tested instances. In addition, when
optimality could not be proved within time limit using symmetry-breaking methods,
the remaining gap obtained for such instances were greatly smaller than the ones
obtained with default CPLEX. Such difference of performances is also reflected by
the disparity of the enumeration tree sizes. Indeed, for the instances solved to
optimality, the number of nodes explored in the enumeration tree is much smaller
when symmetry-breaking methods are applied. This shows that such methods allow
a much faster progression in the search for optimality.

Given such contrast of performances, the choice of applying such symmetry-
breaking methods is therefore straightforward. Nonetheless, the choice of which
method to employ is much less trivial. In fact, out the 19 instances solved to
optimality, 12 instances were solved faster under scenario Orbitopal. Moreover, in
all such instances, the number of nodes needed to be explored in the enumeration tree
to prove optimality was also smaller under scenario Orbitopal. This is explained
by the fact that Orbitopal Fixing is capable of fully removing the symmetry from
partition problems while the symmetry constraints introduced to the formulation
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only perform this job partially. For this reason, Orbitopal Fixing will be the elected
method for breaking symmetry in future tests.

Nonetheless, one of the instances (cf., m = 45, C = 8, ρ = 4.5) solved under
scenario Constraints could not be solved to optimality using Orbitopal Fixing
method. Conversely, also one of the tested instances (cf., m = 30, C = 2, ρ = 1.5)
solved under scenario Orbitopal could not be solved to optimality using symmetry-
breaking constraints. Moreover, when instances could not be solved to optimality,
the performances of scenario Constraints are slightly better when compared to
Orbitopal. Indeed, by the end of the time limit 24 out of the 44 instances were left
with a smaller remaining optimality gap under scenario Constraints.

5.2 Eliminating variables

In Section 3.1, it was shown that unlike stated in Pimenta et al. [151], the number of
vehicles used in an optimal solution of U-SNP may differ from the minimum number
of vehicles needed to obtain a feasible solution, that is, popt �= pmin. For this reason
and in the absence of a better bound on popt, the number of available vehicles p

was, up to now, taken to be m. Notice however, that the number of variables in
the studied formulation is directly related to the number of available vehicles. More
precisely, the formulation uses (m+n)p variables. Therefore, providing a better up-
per bound on popt would allow to considerably reduce the number of variables in the
formulation. Moreover, recall from the previous section that the symmetry inherent
to U-SNP is also closely related to the number of available vehicles. Indeed, for each
feasible solution of a given instance of U-SNP, one may come up with p! symmetric
solutions. Reducing the value of p would hence reduce the MILP symmetry. The
next theorem shows how, without loss of optimality, one may decrease the number
of available vehicles for any given instance of U-SNP.

Theorem 5.1 - Upper bound on popt

For any instance I = (V, E, C) of U-SNP,

popt ≤
⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥ .

Proof. Suppose there exists an instance I of U-SNP for which

popt =
⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥+ 1, (5.3)

and let {E∗
1 , . . . , E∗

popt
, . . . , E∗

m} be an optimal solution for I using popt vehicles.
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Without loss of generality, assume that Ei �= ∅ for 1 ≤ i ≤ popt and Ei = ∅ for
popt +1 ≤ i ≤ m. The proof of such upper bound on popt relies on the fact that there
can be no two non-empty vehicles taking, together, less than C +1 demands. Notice
that if this is not the case, one can just merge such vehicles and find a solution of
same cost using one less vehicle.

Therefore, at most one vehicle is allowed to take strictly less than
⌊

C
2

⌋
+ 1 de-

mands. Assume such vehicle takes 1 ≤ d ≤
⌊

C
2

⌋
demands. Every other non-empty

vehicle must take at least
⌊

C
2

⌋
+ 1 demands. It follows that the inequality

m ≥ (popt − 1)
(⌊

C

2

⌋
+ 1
)

+ d, (5.4)

must hold. Using equality (5.3) to replace popt in (5.4), one obtains

m ≥
⎛⎝⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥
⎞⎠(⌊C

2

⌋
+ 1
)

+ d, (5.5)

Notice that given two positive integers a and b,

a =
⌈

a

b

⌉
b − r, (5.6)

where r = b− (a mod b) is, by definition, a non-negative integer number. Therefore,
replacing a by m and b by

⌊
C
2

⌋
+ 1 on equation (5.6), one obtains

m =
⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥
(⌊

C

2

⌋
+ 1
)

− r, (5.7)

where r = m mod
(⌊

C
2

⌋
+ 1
)
. By comparing equation (5.7) with inequality (5.5),

one finally gets
− r ≥ d, (5.8)

a contradiction, since d is positive and r is non-negative. Therefore,

popt ≤
⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥ . �

Moreover, the proposed upper bound is tight as there exists examples of instances
of U-SNP where such bound is achieved for any value of C.

Proposition 5.1 - Tightness of popt upper bound
The upper bound on popt provided by Theorem 5.1 is tight for any capacity C.
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Proof. Consider an instance of Intersection U-SNP composed of C sets of
⌊

C
2

⌋
+ 1

parallel demands. An example for C = 5 is depicted in Figure 5.2.

1 2 3 4 5 6 7 8 9 10

1 10

2 9

3 8

4 7

5 6

Figure 5.2: Example of instance where popt =
⌈

m

� C
2 �+1

⌉
.

In such instance, an optimal solution with n stops can only be obtained if each
station is visited by exactly one vehicle. Since each set of parallel demands is
composed of

⌊
C
2

⌋
+ 1 demands, each set must be in a different vehicle. Therefore,

popt =
⌈

m

�C
2 �+1

⌉
. �

In order to understand the impact of setting the number of available vehicles p

to the new bound provided by Theorem 5.1 has on the optimization process, Table
5.2 exposes the performances obtained with CPLEX using a dummy callback and
default settings. The results displayed under section Default account for the case
where p is set to m. When p is set to the new upper bound

⌈
m

�C
2 �+1

⌉
the results

are provided under section Improved Bound. A third section Minimum is also put to
analysis displaying the obtained results for p set to pmin.

For each scenario, the number of available vehicles is given under column p,
and the number of variables in the formulation under column cols. Column best
reports the cost – the total amount of stops – of the best solution found during the
optimization process. The number of non-empty vehicles used in such solution is
given under column p′. The total time in seconds required for the optimization is
reported under column CPU. If the time limit of two hours is exceeded, the remaining
gap percentage is displayed under column gap. The number of nodes (in thousands)
explored in the enumeration tree is given under column node.

Table 5.2 provides the obtained results for instances with the number of demands
m ranging from 30 to 60, the capacity C ranging from 2 to 8 and the graph density
ρ from 1.5 to 4.5. For each combination of parameters m, C and ρ, only instances
m C ρ 1 are analysed. For a more exhaustive comparison, the reader is referred to
Table A.3 in Appendix A.

As expected, reducing the number of available vehicles has an important impact
on the MILP performance. Notice that when the trivial upper bound on popt (i.e.,
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p = m) is applied, CPLEX could only solve one of tested instances to optimality
(cf. the instance with m = 30, C = 8 and ρ = 1.5). On the other hand, when p is
set to the aforementioned new upper bound on popt (i.e., p =

⌈
m

�C
2 �+1

⌉
), the number

of solved instances is raised to 14. In addition, when optimality could not be proved
within time limit, the remaining gap obtained was greatly smaller using the new
upper bound on popt. Indeed, the average gap obtained with scenario Default was
40.4% and by applying the improved bound this percentage goes down to 27.6%.
Such disparity of performances is due to the difference in the size of the LPs. In fact,
setting the number of available vehicles to the upper bound provided by Theorem
5.1, reduces the number of variables in the formulation by 60% in average, for the
tested instances. Furthermore, in some specific instances (with high capacities and
high densities), a reduction of up to 80% of the variables could be achieved. This
means that each LP node in the enumeration tree of scenario Improved Bound can
be solved faster than the correspondent LP node in scenario Default, and hence the
number of explored nodes within the same amount of time is much greater once the
improved bound is applied. Notice that for this same reason, the scenario Minimum
is capable of obtaining better results than the two previous ones. Nonetheless, this
third scenario cannot be seen as a method for solving U-SNP since pmin might differ
from popt. Instead, it only provides an upper bound on the optimal solution value.

We insist in highlighting this scenario for a practical analysis of how often one
can achieve optimality with only pmin vehicles available. In fact, in only 1 out of the
63 tested instances (cf. the instance with m = 45, C = 5 and ρ = 1.5), strictly more
than pmin vehicles were necessary to obtain, within time limit, a better solution than
the upper bound provided by scenario Minimum. Such behaviour is not a surprise
since in Pimenta et al. [151], popt was empirically claimed to be equivalent to pmin

based on tests developed with randomly generated instances. In fact, we believe
that requiring more vehicles than the strict minimum needed – pmin – in order to
achieve an optimal solution relies on particular structures of the associated graph
G, that may not arise quite often when the instances are randomly generated.

5.3 Relaxing variables

In Section 4.2, the linear relaxation of formulation USNP(V,E,C) is shown to be
particularly weak. Such linear relaxation is obtained by replacing the domain of
variables xi

e ∈ {0, 1} and yi
v ∈ {0, 1} by 0 ≤ xi

e ≤ 1 and 0 ≤ yi
v ≤ 1 for e ∈ E,

v ∈ V , i ∈ K. At the same time, the formulation obtained from the relaxation
of variables yi

v is shown to optimally solve U-SNP. Such formulation is hereafter
denoted USNP-X(V,E,C) as only variables xi

e are constrained to be integers. On the
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other hand, keeping the integrality of variables yi
v and relaxing variables xi

e does
not guarantee integrality as stated in Section 4.2.2. For this reason, let us consider
USNP-Y(V,E,C) to be the formulation obtained from USNP(V,E,C) while setting a
priority of branching on variables yi

v. In other words, a variable xi
e can only be

chosen as the branching variable if all variables yi
v already satisfy the integrality

constraints.

Recall that the strength of a formulation is measured by its integrality gap.
Since the three aforementioned formulations – USNP(V,E,C), USNP-Y(V,E,C) and
USNP-X(V,E,C) – have the same linear relaxation, all three have the same strength.
Nonetheless, their performances may differ. Indeed, the choice of which variable
to branch on might influence the performance of the Branch-and-Bound procedure
used for solving the MILP. With respect to the U-SNP, the information that can be
derived from the fixing of a variable yi

v is much different from that of a variable xi
e.

Fixing a variable yi
v to 0 implies that xi

e = 0, for all e ∈ δ(v). On the other hand,
fixing a variable xi

e to 1 also fixes yi
oe

and yi
de

to 1, indirectly. Moreover, the denser
the associated graph G = (V, E) is, the bigger is the difference between the number
of variables x and y. Therefore, it is expected that USNP-Y(V,E,C) should achieve
better results when G is dense.

In order to evaluate how these formulations perform in comparison with the
original one, Table 5.3 reports the results obtained with each one of the formulations.
For each formulation, the number of binary variables is given under column bin.
The total time in seconds required for the optimization is displayed under column
CPU. If the time limit of two hours is exceeded, the remaining gap percentage is
displayed under column gap. The number of nodes (in thousands) explored in the
enumeration tree is given under column node. In all tested scenarios, the Orbitopal
Fixing symmetry-breaking method is applied and the number of available vehicles
is set to the upper bound on popt given by Theorem 5.1.

Table 5.3 provides information for instances with the number of demands m

ranging from 30 to 60, the capacity C ranging from 2 to 8 and the graph density
ρ from 1.5 to 4.5. For each combination of parameters m, C and ρ, only instances
m C ρ 1 are displayed. For more exhaustive results, the reader is referred to Table
A.4 in Appendix A.

Table 5.3: Comparison between relaxations
Instances USNP(V,E,C) USNP-X(V,E,C) USNP-Y(V,E,C)
m C ρ bin CPU gap node bin CPU gap node bin CPU gap node

30 2 1.5 750 6021.7 0 2930.2 450 4696.2 0 2367.2 750 7200 7.3 2127.6
30 5 1.5 500 14.1 0 9.8 300 16.5 0 8.3 500 5 0 3.1
30 8 1.5 300 0.4 0 0.1 180 0.4 0 0.1 300 0.4 0 0.1
35 2 1.5 1044 7200 17.5 1212.6 630 7200 13.3 1526.5 1044 7200 18.3 1097.3

Continued on Next Page. . .
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Table 5.3 – Continued

Instances USNP(V,E,C) USNP-X(V,E,C) USNP-Y(V,E,C)
m C ρ bin CPU gap node bin CPU gap node bin CPU gap node

35 5 1.5 696 522 0 227.1 420 111 0 39.6 696 755.6 0 295.6
35 8 1.5 406 2.1 0 0.9 245 3.3 0 1.7 406 2.5 0 1.5
40 2 1.5 1320 7200 21.2 905.2 800 7200 22.1 949 1320 7200 25.0 748.9
40 5 1.5 924 1895.6 0 546.1 560 2182.5 0 501.3 924 7200 4.8 1637.2
40 8 1.5 528 7.3 0 2.8 320 7.4 0 3.1 528 2.9 0 0.9
45 2 1.5 1725 7200 18 563.3 1035 7200 14.2 748.1 1725 7200 22.3 517.3
45 5 1.5 1125 7200 5.7 1143.9 675 7200 7.1 1205.4 1125 7200 8.4 1062.7
45 8 1.5 675 19.6 0 4.8 405 45 0 10.9 675 64.3 0 19.9
50 2 1.5 2075 7200 20.6 389.1 1250 7200 20.9 418.6 2075 7200 24.7 346.9
50 5 1.5 1411 7200 9.5 858 850 7200 11 780.9 1411 7200 11.8 826.8
50 8 1.5 830 210.3 0 45.6 500 189.9 0 35.6 830 109.4 0 19.6
55 2 1.5 2548 7200 22.5 242 1540 7200 23.8 329.2 2548 7200 26.3 313.8
55 5 1.5 1729 7200 15.3 532.9 1045 7200 12.7 507.1 1729 7200 12.9 416.4
55 8 1.5 1001 1407.3 0 318.2 605 4161.8 0 630.2 1001 5378.7 0 1112.7
60 2 1.5 3000 7200 28.9 163.9 1800 7200 27.5 176.7 3000 7200 30.4 178.9
60 5 1.5 2000 7200 10.6 435.4 1200 7200 9.8 431 2000 7200 9.7 346
60 8 1.5 1200 7200 10.3 740.5 720 7200 11.1 684.4 1200 7200 9.8 665.3
30 2 3 600 7200 15.7 2560.6 450 6259.2 0 3726.9 600 7200 17.4 2140.2
30 5 3 400 92.2 0 60.5 300 39.6 0 20.7 400 167 0 107.3
30 8 3 240 1.4 0 1.1 180 2.3 0 1.7 240 0.7 0 0.4
35 2 3 828 7200 29.1 1406 630 7200 27.5 1401.8 828 7200 29.7 1118.1
35 5 3 552 1701.5 0 882.2 420 906.5 0 281.9 552 1640.4 0 704.3
35 8 3 322 2.2 0 0.9 245 7.9 0 4.1 322 1 0 0.4
40 2 3 1060 7200 33.9 817.8 800 7200 34.3 846.5 1060 7200 34.7 701.6
40 5 3 742 7200 14.7 1362.7 560 7200 10.8 1419.2 742 7200 11.8 1243.9
40 8 3 424 101.7 0 50.8 320 71.7 0 30.9 424 108.2 0 58.9
45 2 3 1380 7200 34.6 478.7 1035 7200 34.3 527.4 1380 7200 36.5 472.7
45 5 3 900 7200 22.3 992.7 675 7200 21.3 899.7 900 7200 23.3 853.8
45 8 3 540 564.5 0 204.5 405 509.3 0 145.9 540 196.1 0 65
50 2 3 1650 7200 38.9 413.7 1250 7200 41.6 363.9 1650 7200 40.9 367.2
50 5 3 1122 7200 23.7 705.1 850 7200 22.8 716.3 1122 7200 20.4 464.7
50 8 3 660 7200.1 16.2 1318.2 500 7200 8.5 1347.7 660 7200 8.5 1341.5
55 2 3 2044 7200 35.7 205.8 1540 7200 42.7 296.8 2044 7200 40.7 177.2
55 5 3 1387 7200 30.7 482 1045 7200 33.4 461.5 1387 7200 29.9 421.6
55 8 3 803 7200 20.5 991.1 605 7200 17.5 957.7 803 7200 17.7 865.9
60 2 3 2400 7200 43.3 142.5 1800 7200 46.6 163 2400 7200 46.1 136.7
60 5 3 1600 7200 29.5 336 1200 7200 34.1 381 1600 7200 33.6 340.3
60 8 3 960 7200 21.6 904.5 720 7200 20.6 775.2 960 7200 18.5 703.9
30 2 4.5 540 4316.2 0 2747.3 450 7200 13.5 3805 540 3479.2 0 2157.9
30 5 4.5 360 1.8 0 0.6 300 68.9 0 48.9 360 1.8 0 0.9
30 8 4.5 216 0.8 0 0.2 180 1.4 0 1.1 216 0.6 0 0.3
35 2 4.5 756 7200 36.7 1340 630 7200 39.2 1362.5 756 7200 32.3 1257.7
35 5 4.5 504 7200 8.2 3069.5 420 4329.6 0 2011.6 504 186 0 67.5
35 8 4.5 294 1.3 0 0.5 245 4 0 2.5 294 0.5 0 0.2
40 2 4.5 960 7200 31.3 1062.3 800 7200 39.7 1022 960 7200 33.9 1020.3
40 5 4.5 672 7200 16 1310.3 560 7200 18.4 1388.2 672 2130.2 0 498.6
40 8 4.5 384 2.8 0 0.9 320 14.5 0 6.8 384 1.8 0 0.5
45 2 4.5 1265 7200 37.3 627.4 1035 7200 41.8 591.1 1265 7200 35.6 456.3
45 5 4.5 825 7200 26.2 1056.3 675 7200 25 1082.2 825 7200 19.5 809
45 8 4.5 495 1025.5 0 365.5 405 919.6 0 300.4 495 220.6 0 77.8
50 2 4.5 1525 7200 46.9 330.6 1250 7200 48.9 368.6 1525 7200 48.3 278.5
50 5 4.5 1037 7200 27.9 755.3 850 7200 30.2 778.1 1037 7200 24.9 603.6
50 8 4.5 610 7200 13.7 1505.7 500 7200 14.6 1328 610 4471.8 0 1311.8
55 2 4.5 1876 7200 53.3 229.1 1540 7200 49.5 343.7 1876 7200 52.4 234.6
55 5 4.5 1273 7200 34.1 493.6 1045 7200 34.1 473.4 1273 7200 30.3 431.1
55 8 4.5 737 7200 17.9 992.7 605 7200 19.9 1150.5 737 7200 12.7 966
60 2 4.5 2190 7200 54.2 168.6 1800 7200 50.7 205.9 2190 7200 54.3 185.3
60 5 4.5 1460 7200 37.8 478.2 1200 7200 32.9 408.1 1460 7200 32.9 391.5
60 8 4.5 876 7200 23.7 895.6 720 7200 30.7 926.1 876 7200 16.1 744.1

Table 5.3 reveals that the difference of performances between the original for-
mulation USNP(V,E,C) and the other two proposed ones is far from being uniform.
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Formulation USNP(V,E,C) could solve 22 out of the 63 instances to optimality within
time limit, while 23 instances could be solved through formulations USNP-X(V,E,C)

and USNP-Y(V,E,C). Notice however, that some of the instances (e.g., m = 40,
C = 5, ρ = 4.5) could be solved to optimality with USNP-Y(V,E,C) but not with
USNP(V,E,C) and USNP-X(V,E,C) (and vice-versa).

As expected, formulation USNP-Y(V,E,C) clearly outperforms its other two rivals
– USNP(V,E,C) and USNP-X(V,E,C) – for instances with dense graphs (that is, ρ =
4.5). Considering only instances with ρ = 4.5, formulation USNP-Y(V,E,C) was
generally either capable of solving the instance to optimality faster or the remaining
gap obtained was smaller when compared to the two other formulations. On the
other hand, for sparse instances (i.e., ρ = 1.5), formulation USNP-Y(V,E,C) could
not beat the performances of USNP-X(V,E,C) and USNP(V,E,C).

Even if the results are quite heterogeneous according to the density of the graph,
the results obtained from formulation USNP-Y(V,E,C) are, in average, slightly better.
In fact, the average remaining gap obtained by the end of the optimization process
for USNP-Y(V,E,C) was of 16.1%, while for USNP-X(V,E,C) and USNP(V,E,C) this
number raises to 16.8%.

It is worth noting that even a small reduction on the gap may represent a huge
computational effort. Figure 5.3 depicts the gap progression through the optimiza-
tion process for the instance with m = 60, C = 8, and ρ = 3. At the beginning of
the optimization, the bounds are constantly updated and the gap reduces quickly.
At a certain point – which arises relatively early in the optimization process – the
bounds progression hit a barrier and the gap evolution considerably slows down.
The final gap obtained with formulation USNP(V,E,C) is 21.6%, while with formu-
lation USNP-Y(V,E,C) a final gap of 18.5% is obtained. Such difference may seem
small at first. However, with formulation USNP-Y(V,E,C), the mark of 21.6% of gap
is surpassed way before the end of the time limit.

5.4 Branch-and-Cut

A Branch-and-Cut framework consists of embedding a cutting plane algorithm be-
fore each branching phase of a Branch-and-Bound algorithm. In this section we show
how the valid inequalities presented in Section 4.4 are integrated into our Branch-
and-Cut framework used for solving U-SNP. Frequently, the separation problems
associated with such valid inequalities require the definition and manipulation of
data structures (mostly graphs) as well as the use of state-of-the-art combinatorial
algorithms. For such tasks we make use of LEMON, an open source library written
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Figure 5.3: Comparison of gap progression

in the C++ language providing efficient implementations of graph and network algo-
rithms (see Dezső et al. [53], Egerváry Combinatorial Optimization Research Group
[61]).

5.4.1 Strong capacity inequalities

The strong capacity inequalities (4.34), (4.36) appear in polynomial number. There-
fore, stocking such inequalities in a pool and verifying their satisfaction at each node
of the enumeration tree remains an efficient way of solving the separation problem.
Another reasonable approach would be to directly impose such inequalities to the
formulation, that is, introduce all of them in the root node of the enumeration tree.
Notice however that if this second approach is chosen, the model image (i.e., its
mathematical representation) is changed in the eyes of CPLEX, which might affect
– for the better or for the worse – some of the heuristics CPLEX uses for deriving its
own cuts and incumbent solutions. For a fairer comparison with the original model,
such inequalities are chosen to be added on demand at each node.

5.4.2 k-cardinality tree inequalities

The k-cardinality tree inequalities (4.40), on the other hand, appear in exponential
number. Such inequalities are recalled here below:

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j),
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such that G[S] is a k-cardinality tree, for k = C + 1.

Listing all such inequalities is hence an unreasonable approach. Instead, one
is obliged to design more creative ways of adding such inequalities on demand,
that is, solving its separation problem. The separation problem associated with k-
cardinality tree inequalities (4.40) consists of, given a solution (x̄, ȳ), decide whether
or not there exists an inequality (4.40) that is violated by (x̄, ȳ). Notice that a k-
cardinality tree inequality is defined by a vehicle i ∈ K and a (C + 1)-cardinality
tree G[S] such that S ⊆ ΔE(j) for some station j ∈ V . Therefore, (x̄, ȳ) violates
a k-cardinality tree inequality if and only if there exists a vehicle i ∈ K, a station
j ∈ V , and a (C + 1)-cardinality tree G[S] with S ⊆ ΔE(j), for which

∑
e∈S

x̄i
e −

∑
v∈V [S]

(degG[S](v) − 1)ȳi
v > 0.

The separation problem associated with k-cardinality tree inequalities is hence
equivalent to finding

ω = max
i∈K,j∈V

⎧⎨⎩∑
e∈S

x̄i
e −

∑
v∈V [S]

(degG[S](v) − 1)ȳi
v : S ⊆ ΔE(j), G[S] is a C + 1 tree

⎫⎬⎭ ,

(5.9)
and there exists a k-cardinality tree inequality cutting (i.e., violated by) (x̄, ȳ), if and
only if ω > 0. However, before tackling directly the task of designing an algorithm
capable of solving this separation problem, let us first analyse the complexity of
such problem.

Theorem 5.2 - Separation of k-cardinality tree inequalities
The separation problem associated with k-cardinality tree inequalities (4.40) is N P-
Hard.

Proof. We give a reduction from the k-Minimum Spanning Tree problem (k-
MST) which can be defined as follows. Given a graph H = (V, E) with edge weights
we and a constant B ∈ R, find a tree T = (V ′, E ′) spanning exactly k edges (or
k + 1 vertices) with total weight at most B.

When k = n − 1, k-MST is nothing but the classic Minimum Spanning Tree

problem and therefore can be solved in polynomial time by the famous greedy algo-
rithm proposed by Kruskal [111], Prim [152]. Moreover, if k is a fixed constant, the
problem is also polynomially solvable by a brute force enumeration algorithm. In
Fischetti et al. [70], k-MST is showed to be polynomially solvable if H is itself a tree.
In the general case, however, k-MST is N P-Hard (see Fischetti et al. [70], Ravi et al.
[156]). Notice that for proving the N P-Hardness of k-MST, the reduction used in
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Fischetti et al. [70] from the Steiner Tree problem preserves bipartiteness. Since
Steiner Tree is N P-Hard even for bipartite graphs (see Garey and Johnson [74,
p. 208]), k-MST can also be stated as N P-Hard for bipartite graphs.

Next, we show that given a bipartite graph G = (V, E), with negative edge
weights we, and a constant B ∈ R, any tree T ′ spanning k edges in G such that
w(T ′) ≤ B − ε, corresponds to a violated k-cardinality tree inequality for the fol-
lowing point (x, y): Let (V, E, k − 1) be an instance of Intersection U-SNP. Then,
given a vehicle i ∈ K, let ȳi

v = − B
k−1 for all v ∈ V and x̄i

e = −we for all e ∈ E.

Let T denote the minimum cost k-cardinality tree in G. Notice that by definition,
|V (G[T ])| = k + 1. Consequently, the term ∑

v∈V (G[T ])(dG[T ](v) − 1)ȳi
v becomes a

constant:

∑
v∈V (G[T ])

(d
G[T ](v) − 1)ȳi

v =
∑

v∈V (G[T ])
d

G[T ](i)ȳ
i
v −

∑
v∈V (G[T ])

ȳi
v

= −
∑

v∈V (G[T ])
(d

G[T ](v) B

k − 1) +
∑

v∈V (G[T ])

B

k − 1

= −2k
B

k − 1 + (k + 1) B

k − 1
= −B

Therefore, if one is able to find a violated k-cardinality tree inequality (i.e.,∑
e∈T x̄i

e + B > 0), then the k-tree defined by T solves the k-MST problem. On the
other hand, a k-tree T such that w(T ) ≤ B − ε defines a violated k-tree inequality.

�

Theorem 5.2 shows that, unless P = N P , an efficient algorithm capable of
solving the separation problem associated with k-cardinality tree inequalities (4.40)
is inconceivable. For this reason, one may only hope that a good heuristic scheme
will be good enough for generating violated cuts. In this scenario, we propose two
heuristics for finding a violated k-cardinality tree inequality.

Minimum Spanning Tree based heuristic

The first heuristic we propose is based on the classic Minimum Spanning Tree

problem. For each vehicle i ∈ K and each station j ∈ V , we consider the graph
G[ΔE(j)] with edge weights we = −x̄i

e for e ∈ ΔE(j), and node weights cv = ȳi
v for

v ∈ V [ΔE(j)]. Then, a (C+1)-cardinality tree is constructed by taking the minimum
spanning tree T of G[ΔE(j)] obtained with Kruskal’s algorithm and pruning its
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leaves until it becomes a tree with exactly C + 1 edges. Notice that the node
weights are not taken into account for constructing the spanning tree T , since it
spans all nodes in G[ΔE(j)]. Instead, they are used for choosing the most suitable
leaf to be pruned. Indeed, while T does not have exactly C + 1 edges, the leaf edge
e ∈ E(T ) with highest impact on (5.9) is chosen to be pruned, that is

e ∈ arg max
e∈E(T )

{we + cv : e is a leaf-edge of T and v is the non-leaf endpoint of e}.

If the (C +1)-cardinality tree obtained by the end of such procedure induces a k-
cardinality tree inequality that is violated by the given relaxed solution (x̄, ȳ), then
the inequality is added to the formulation as a cut. Algorithm 4 formally describes
such procedure. It takes advantage of function Kruskal – implemented in LEMON
(see Egerváry Combinatorial Optimization Research Group [63]) – taking as input a
graph G and a cost map corresponding to the weights of edges in G, and returning a
minimum cost spanning tree. Notice that the complexity of such algorithm is given
by the complexity of Kruskal’s algorithm (i.e., O(E log V )) which is executed for
each vehicle and each station, that is, O(KV E log V ).

Without loss of generality, one may only consider stations j ∈ V for which
|ΔE(j)| ≥ C +1, since otherwise no (C +1)-cardinality tree can be found. Moreover,
if G[ΔE(j)] has more than one connected component, then one can independently
look for a (C + 1)-cardinality tree on each of the connected components.

Greedy k-MST heuristic

Another heuristic for constructing a potentially violated k-cardinality tree inequality
is to greedily build a (C + 1)-cardinality tree from scratch. For this, given a vehicle
i ∈ K and a station j ∈ V , the graph G[ΔE(j)] is considered. Edge weights we are
set to x̄i

e for e ∈ ΔE(j), and node weights cv are set to −ȳi
v for v ∈ V [ΔE(j)]. Next,

start with an empty edge set T = ∅. By the end of the algorithm, T is supposed to
define a (C +1)-cardinality tree. For this, a single edge is added to T at a turn. The
first edge chosen to be part of T is the one with most fractional weight – recall that
if (x̄, ȳ) is integer, then no separation problem is needed. For the next C iterations,
the chosen edge e ∈ ΔE(j) \ T will be one that is incident to exactly one node of
V [T ] and maximizes the value of we + cv, that is,

e = arg max
uv∈ΔE(j)\T

{wuv + cv : v ∈ V [T ] and u /∈ V [T ]}.

Finally, if the (C + 1)-cardinality tree obtained by the end of such procedure
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Algorithm 4 Separation of inequalities (4.40) by pruning MST
Input: An instance (V, E, C) of U-SNP, and a fractional solution (x̄, ȳ) of the linear

relaxation of USNP(V,E,C)
Output: A ”good” candidate k-cardinality tree inequality for cutting (x̄, ȳ)

for i = 1, . . . , p do
for j = 1, . . . , n do

for all e ∈ ΔE(j) do
we = −x̄i

e

end for
for all v ∈ V [ΔE(j)] do

cv = ȳi
v

end for
T = Kruskal(G[ΔE(j)], w)
while |E(T )| > C + 1 do

prunningEdge = ∅
maxImprove = −∞
for all e ∈ E(T ) : e is a leaf edge of T do

nodeCost = cv : v is the non-leaf endpoint of e
if (we + nodeCost) > maxImprove then

maxImprove = we + nodeCost
prunningEdge = e

end if
end for
Contract edge prunningEdge in T

end while
if
∑

e∈T x̄i
e −∑v∈V [T ](degG[T ](v) − 1)ȳi

v > 0 then
Add inequality ∑e∈T xi

e −∑v∈V [T ](degG[T ](v) − 1)yi
v ≤ 0 as a cut

end if
end for

end for

induces a k-cardinality tree inequality that is violated by the given relaxed solution
(x̄, ȳ), then the inequality is added to the formulation as a cut. Algorithm 5 formally
describes such procedure.

This approach seems less fancy than the aforementioned one taking into account
Kruskal’s algorithm, but its simplicity is rewarding. Indeed, skipping the construc-
tion of a spanning tree saves a lot of time, speeding up the separation process.
Moreover, the vehicle’s capacity tends to be far smaller than the average number
of edges in G[ΔE(j)], which makes construction of the (C + 1)-cardinality tree in
Algorithm 5 much faster than in Algorithm 4. Indeed, since the tree T can be con-
structed in linear time (i.e., O(E)) the complexity of such algorithm is O(KV E).
For these reasons, Algorithm 5 is the chosen heuristic to be applied for trying to
solve the separation problem associated with k-cardinality tree inequalities (4.40).

Once again, one may consider only stations j ∈ V for which |ΔE(j)| ≥ C + 1,
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Algorithm 5 Separation of inequalities (4.40) by greedily construction of a (C +1)-
cardinality tree
Input: An instance (V, E, C) of U-SNP, and a fractional solution (x̄, ȳ) of the linear

relaxation of USNP(V,E,C)
Output: A ”good” candidate k-cardinality tree inequality for cutting (x̄, ȳ)

for i = 1, . . . , p do
for j = 1, . . . , n do

for all e ∈ ΔE(j) do
we = x̄i

e

end for
for all v ∈ V [ΔE(j)] do

cv = −ȳi
v

end for
Choose the edge e with most fractional weight.
T = {e}
for k = 1, . . . , C do

Let ek ∈ arg maxuv∈ΔE(j)\T {wuv + cv : v ∈ V [T ] and u /∈ V [T ]}
T = T ∪ {ek}

end for
if
∑

e∈T x̄i
e −∑v∈V [T ](degG[T ](v) − 1)ȳi

v > 0 then
Add inequality ∑e∈T xi

e −∑v∈V [T ](degG[T ](v) − 1)yi
v ≤ 0 as a cut

end if
end for

end for

since otherwise no (C + 1)-cardinality tree can be found. Moreover, if G[ΔE(j)]
has more than one connected component, then one can independently look for a
(C + 1)-cardinality tree on each of the connected components.

Impact of k-cardinality tree inequalities

The introduction of k-cardinality tree inequalities into the branch-and-cut frame-
work plays an important role in our constructed Branch-and-Cut framework, notably
when dealing with sparse instances. Table 5.4 provides a comparison between the
obtained performance results for sparse instances when the separation of such in-
equalities is active or not. The inactive scenario stands for the branch-and-cut
framework taking into account the separation of strong capacity inequalities only,
while the active one also includes the separation of k-cardinality tree inequalities.
Columns timeg, LBg, UBg, gapg and Nodes provide information on the global op-
timization process by showing, respectively, the total time spent in seconds, the
lower and upper bounds obtained by the end of the optimization, the remaining
gap and the number of nodes investigated in the enumeration tree. Columns timer

and LBr present, respectively, the time spent in seconds for solving the root node
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and corresponding lower bound obtained from it. Finally Cuts and timecut display,
respectively, the number of k-cardinality tree inequalities added to the formulation
throughout the optimization process and the time spent on their separation routine.

As expected, in some cases (e.g., instance 60 2 1.5 5) the lower bound obtained
from the LP relaxation on the root node is significantly improved by the inclusion
of k-tree inequalities. Moreover, it is quite interesting to remark that, in other
cases (e.g., instance 30 2 1.5 3), even if the inclusion of such constraints does not
have a direct impact on the lower bound value obtained from the LP relaxation,
the global performance is still substantially improved when such inequalities are
taken into account. Indeed, the addition of k-cardinality tree inequalities greatly
reduces the number of nodes in the enumeration tree that have to be verified in
order to prove optimality. Figure 5.4 shows the progression of the lower bounds
during the optimization process within each scenario for instance 30 2 1.5 3. On the
other hand, the activation of the separation routine of k-cardinality tree inequalities
greatly increases the time needed for solving the root node. Such behaviour is most
perceived within instance 60 2 1.5 3, where no branching could be made within
time limit. In other words, solving the root node required more than 2 hours of
computational effort. All in all, the inclusion of k-tree inequalities considerably
improves the Branch-and-Cut performances as the average final gap is reduced from
9.61% to 6.74%.
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Figure 5.4: Comparison of gap progression
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5.4.3 Girth inequalities

Let us first recall the family of girth inequalities (4.53):

∑
e∈S

(C + 1)xi
e −

∑
v∈V [S]

Cyi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j),

such that G[S] has girth greater than or equal to C + 1.

The family of girth inequalities (4.53) also has an exponential number of inequal-
ities, and hence the inclusion of such inequalities to the formulation should be done
on demand through the resolution of its associated separation problem. The sepa-
ration problem associated with girth inequalities (4.53) consists of, given a solution
(x̄, ȳ), decide whether or not there exists an inequality (4.53) that is violated by
(x̄, ȳ). More precisely, one has to decide whether or not there exists a triple (i, j, S),
where i ∈ K, j ∈ V and S ⊆ ΔE(j) such that G[S] has girth greater than or equal
to C + 1, for which ∑

e∈S

(C + 1)x̄i
e −

∑
v∈V [S]

Cȳi
v > 0.

This means that solving the separation problem associated with girth inequalities
is equivalent to finding

ω = max
i∈K,j∈V

⎧⎨⎩∑
e∈S

(C + 1)x̄i
e −

∑
v∈V [S]

Cȳi
v : S ⊆ ΔE(j), G[S] has girth greater than C

⎫⎬⎭ ,

(5.10)
and there exists a girth inequality cutting (i.e., violated by) (x̄, ȳ), if and only if
ω > 0. However, it turns out that solving such separation problem is N P-Hard.

Theorem 5.3 - Separation of girth inequalities
The separation problem associated with girth inequalities (4.53) is N P-Hard.

Proof. We give a reduction from the Hamiltonian Cycle problem which can be
defined as follows. Given a graph G = (V, E), find an Hamiltonian cycle1 H = (V, S)
with S ⊆ E. Hamiltonian Cycle is a classic N P-Hard problem (see Karp [103]).
Moreover, it has been shown to remain N P-Hard even if graph G is said to be
bipartite (see Krishnamoorthy [110]).

Next, we show that given a bipartite graph G = (V, E), any Hamiltonian cycle
in G corresponds to a violated girth inequality for the following point (x, y): Let

1An Hamiltonian cycle (or Hamiltonian circuit) is a cycle in a graph visiting each vertex exactly
once.
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(V, E, n) be an instance of Intersection U-SNP. Then, given a vehicle i ∈ K, let
x̄i

e = 1
n

for all e ∈ E and ȳi
v = 1+ε

n
for all v ∈ V , where ε ∈ R

+ is an arbitrarily small
positive number.

Firstly, notice that since (V, E, n−1) is an instance of Intersection U-SNP, there
exists some station j ∈ V for which ΔE(j) = E. Therefore, the problem described
by (5.10) reduces to

ω = max
i∈K

⎧⎨⎩∑
e∈S

nx̄i
e −

∑
v∈V [S]

(n − 1)ȳi
v : S ⊆ E, G[S] has girth greater than (n − 1)

⎫⎬⎭ .

(5.11)

Moreover, if S is the edge set of an Hamiltonian cycle H = (V, S) in G, then

∑
e∈S

nx̄i
e −

∑
v∈V [S]

(n − 1)ȳi
v =
∑
e∈S

n
1
n

−
∑

v∈V [S]
(n − 1)1 + ε

n

= |S| − |V [S]|(n − 1)1 + ε

n

= n − (n − 1)(1 + ε)

= 1 − ε(n − 1) > 0

(5.12)

Therefore, finding an Hamiltonian cycle in G yields a girth inequality violated
by (x, y). Conversely, we show that any violated girth inequality corresponds to an
Hamiltonian cycle in G. Since x̄i

e and ȳi
v have constant values for any e ∈ E and

any v ∈ V , respectively,

∑
e∈S

nx̄i
e −

∑
v∈V [S]

(n − 1)ȳi
v = |S| − |V [S]|(n − 1)1 + ε

n
,

and such expression is maximized when graph G[S] is the densest possible. However,
G[S] is required to have girth greater than or equal to n. Hence, if G[S] contains a
cycle, it must be an Hamiltonian cycle. As showed by (5.12), if G[S] is an Hamil-
tonian cycle, then there exists a girth inequality violated by (x, y). On the other
hand, if G[S] is acyclic (a forest), then n ≥ |V [S]| ≥ |S| + 1, and hence

|S| − |V [S]|(n − 1)1 + ε

n
≤ |S| − |V [S]|(|V [S]| − 1) 1 + ε

|V [S]|
≤ |S| − (|S|)(1 + ε) = −|S|ε
≤ 0.

Thus if one is able to find a violated girth inequality, then the cycle defined by
G[S] solves the Hamiltonian Cycle problem on G = (V, E). �
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Theorem 5.3 shows that, unless P = N P , an efficient algorithm capable of
solving the separation problem associated with girth inequalities (4.53) cannot be
achieved. For this reason, such separation problem should be solved heuristically.
Next, we propose an heuristic for finding a violated girth inequality.

Given a vehicle i ∈ K and a station j ∈ V , consider graph G[ΔE(j)] with edge
weights we = (C + 1)x̄i

e for e ∈ ΔE(j). The heuristic proposed for solving the
separation problem associated with girth inequalities (4.53) is based on the idea of
building a maximum cost spanning tree T of G[ΔE(j)] and then including additional
edges to T such that the resulting graph does not contain any cycle of size less than
or equal to C.

Since a spanning tree is supposed to cover all vertices in the graph, node weights
can be ignored in the construction of T . Moreover, notice that

∑
v∈V [S]

Cȳi
v ≤

∑
v∈V [ΔE(j)]

Cȳi
v,

for any S ⊆ ΔE(j). Therefore, if S is set to E(T ), the value of the left-hand side of
inequality ∑

e∈S

(C + 1)x̄i
e −

∑
v∈V [S]

Cȳi
v ≤ 0,

can only be increased by including additional edges to S. An edge uv can only be
added to S if it does not creates a cycle in G[S] with size less than or equal to C.
This can be verified by computing the shortest path between nodes u and v in G[S]
with unit edge lengths. If the shortest path has length greater than or equal to C,
then adding uv to S can only create cycles of size strictly greater than C. Algorithm
6 formally describes such heuristic. It takes advantage of functions Kruskal2 and
Dijkstra implemented in LEMON3. Dijkstra function takes as input a graph G, a cost
map corresponding to the edge lengths in G, and two nodes u and v in V (G). It
returns the length of the shortest path between such nodes.

Impact of girth inequalities

As expected, the girth inequalities are most impactful when the instance under
analysis is dense. However, the influence of the inclusion of girth inequalities into the
branch-and-cut framework is much less significant than the inclusion of k-cardinality
trees. Table 5.5 provides a comparison between the obtained performance results
for dense instances when the separation of girth inequalities is active or not. The

2Function Kruskal has been already explained in the description of Algorithm 4 in Section 5.4.2
3The documentation of functions Kruskal and Dijkstra can be found in Egerváry Combinatorial

Optimization Research Group [63, 62]
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Algorithm 6 Separation of girth inequalities (4.53)
Input: An instance (V, E, C) of U-SNP, and a fractional solution (x̄, ȳ) of the linear

relaxation of USNP(V,E,C)
Output: A ”good” candidate girth inequality for cutting (x̄, ȳ)

for i = 1, . . . , p do
for j = 1, . . . , n do

for all e ∈ ΔE(j) do
we = (C + 1)x̄i

e

lengthe = ∞
end for
T = Kruskal(G[ΔE(j)], −w)
S = E(T )
for all e ∈ S do

lengthe = 1
end for
for all uv ∈ ΔE(j) \ S do

if Dijkstra(G[ΔE(j)], length, u, v) ≥ C then
lengthuv = 1
S = S ∪ {uv}

end if
end for
if
∑

e∈S(C + 1)x̄i
e −∑v∈V [S] Cȳi

v > 0 then
Add inequality ∑e∈S(C + 1)x̄i

e −∑v∈V [S] Cȳi
v ≤ 0 as a cut

end if
end for

end for

inactive scenario stands for the branch-and-cut framework taking into account the
separation of strong capacity inequalities and k-cardinality tree inequalities only,
while active scenario also includes the separation of girth inequalities. Columns
timeg, LBg, UBg, gapg and Nodes provide information on the global optimization
process by showing, respectively, the total time spent in seconds, the lower and
upper bounds obtained by the end of the optimization, the remaining gap and
the number of nodes investigated in the enumeration tree. Finally, column Cuts
displays the number of girth inequalities added to the formulation throughout the
optimization process.

Table 5.5: Impact of the inclusion of girth inequalities
Instances inactive active

m C ρ i timeg LBg UBg gapg Nodes timeg LBg UBg gapg Nodes Cuts

30 2 4.5 1 12.7 24 24 0 1 8.9 24 24 0 0.5 12
30 2 4.5 2 1002 26 26 0 112.9 638.7 26 26 0 71.4 34
30 2 4.5 3 288.5 26 26 0 29 60 26 26 0 4.7 56
30 2 4.5 4 0.2 27 27 0 0 0.2 27 27 0 0 0
30 2 4.5 5 0.4 27 27 0 0 0.5 27 27 0 0 0
35 2 4.5 1 7200 31 32 3.12 360.5 7200 31 32 3.12 357.3 166
35 2 4.5 2 7200 29 32 9.33 635.2 7200 29 32 9.37 481.2 168

Continued on Next Page. . .
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Table 5.5 – Continued

Instances inactive active
m C ρ i timeg LBg UBg gapg Nodes timeg LBg UBg gapg Nodes Cuts

35 2 4.5 3 311.2 30 30 0 7.3 2388.8 30 30 0 31.7 252
35 2 4.5 4 28.8 33 33 0 2.1 46.2 33 33 0 1.9 96
35 2 4.5 5 7200 29.1 31 6.23 698.3 7200 29.5 31 4.84 826.4 157
40 2 4.5 1 7200 33.5 35 4.29 337.4 7200 34 35 2.86 404.4 167
40 2 4.5 2 7200 33.5 36 6.94 426.8 7200 33.7 36 6.44 282.3 226
40 2 4.5 3 7200 33 34 2.94 248.4 7200 33 34 2.94 172.4 124
40 2 4.5 4 7200 34 35 2.86 248.3 7200 34 35 2.86 216.6 193
40 2 4.5 5 7200 33 35 5.71 233.2 7200 33 35 5.71 190.2 482
45 2 4.5 1 7200 39 42 7.14 105.9 7200 39 42 7.14 110.4 473
45 2 4.5 2 7200 40.5 42 3.57 126.9 7200 40.2 42 4.29 84.7 764
45 2 4.5 3 7200 39.5 42 5.95 75.5 7200 40 42 4.76 59.7 750
45 2 4.5 4 7200 43 46 6.52 62.5 7200 43 45 4.44 55.5 1450
45 2 4.5 5 7200 36 39 7.58 66.5 7200 36.2 39 7.05 44 240
50 2 4.5 1 7200 44 47 6.38 103.6 7200 44 47 6.38 48.5 835
50 2 4.5 2 7200 41.5 44 5.68 62.7 7200 42 44 4.55 75.5 429
50 2 4.5 3 7200 44.5 48 7.29 67.7 7200 44.5 48 7.29 41.2 476
50 2 4.5 4 7200 44.5 49 9.18 22.9 7200 44.5 48 7.29 7.7 1110
50 2 4.5 5 7200 43 48 10.42 11.7 7200 43 49 12.24 7.3 970
55 2 4.5 1 7200 46 49 6.12 66.5 7200 46 49 6.12 18.1 880
55 2 4.5 2 7200 47.2 51 7.52 29.8 7200 47 51 7.84 19.4 695
55 2 4.5 3 7200 46 51 9.8 32.1 7200 46 51 9.8 17.2 760
55 2 4.5 4 7200 47 53 11.32 7.1 7200 47 53 11.32 0 1
55 2 4.5 5 7200 51 55 7.27 17.9 7200 51 57 10.53 10.5 1211
60 2 4.5 1 7200 52 59 11.86 2.6 7200 52 58 10.34 5.8 316
60 2 4.5 2 7200 49 59 16.95 0 7200 49 59 16.95 0 0
60 2 4.5 3 7200 53 57 7.02 16.8 7200 53 57 7.02 11.9 869
60 2 4.5 4 7200 54 59 8.47 11.9 7200 53.5 59 9.32 6.1 1714
60 2 4.5 5 7200 51 61 16.39 0 7200 51 61 16.39 0 0

The performance results obtained are varied. For some instances (e.g., 30 2 4.5 2
and 30 2 4.5 3) optimality could be proved faster with the inclusion of girth inequal-
ities. On the other hand, there are cases (e.g., 35 2 4.5 3) where the inclusion of
such inequalities significantly slows down the performance of the branch-and-cut
algorithm. In average, the inclusion of girth inequalities resulted in the reduction of
the remaining gap by 0.13%. Moreover, considering only the instances that could
be solved to optimality within the time limit, the number of nodes required to be
explored in order to prove optimality went down from 21,757 to 15,743 in average.

The relative small number of cuts generated by the separation procedure is ex-
plained by the fact that Algorithm 6 is executed only when no violated strong
capacity inequality nor k-cardinality tree inequality is identified. This explains the
fact that for some instances (e.g., 60 2 4.5 2 and 60 2 4.5 5) no girth inequality was
included and the obtained performances are exactly the same for both scenarios.

5.4.4 Further considerations

The separation of other families of valid inequalities identified in Chapter 4 such
as the generalized k-cardinality tree inequalities (4.50) or the constructed valid in-
equalities presented in Section 4.4.5 are not implemented in our Branch-and-Cut
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framework. Some work has been dedicated to the inclusion of such additional in-
equalities, but the preliminary results achieved so far do not yield better computa-
tional performances. In Appendix B, some of these results are briefly discussed.

Finally, it is likely that better performances could be achieved by taking into
consideration such additional inequalities and including them using more refined
heuristic separation procedures. The development of such procedures is by itself a
relevant area of research that can be addressed in future works.

5.5 Final results

The final version of the developed Branch-and-Cut framework takes into account the
strong capacity inequalities (4.34), (4.36), the k-cardinality tree inequalities (4.40)
and the girth inequalities (4.53), (4.54). Such inequalities are added on demand by
applying the algorithms presented in the previous section over each LP relaxation
solution obtained during the optimization. For this, the algorithms are implemented
within the UserCutCallback routine from CPLEX that is called after solving each
node LP in the enumeration tree. Algorithms 5 and 6 are applied for solving the sep-
aration problems associated with inequalities (4.40) and (4.53), respectively. Since
such algorithms are relatively slower if compared to the separation problem asso-
ciated with strong capacity inequalities, they are only called when no additional
strong capacity inequality is able of cutting off the given LP solution.

In addition, in order to avoid spending too much time in the search for valid
inequalities, we choose to not apply the separation routine on every node LP. Such
approach is widely applied in the literature and the strategy for deciding whether or
not the separation routine should be called varies according to the problem under
analysis. For instance, in Cordeau [37] the separation routine is only applied if a
given subset of variables is integer in the current LP solution. In our case, the
following scheme is applied. An integer parameter named pace is used to guide the
strategy. Parameter pace indicates the rhythm on which separation routine should
be skipped. That is, if pace = i, then the separation routine is applied on every
i nodes. Such parameter is initialized at 1 at the beginning of the optimization
process, meaning that the separation routine should be called on every node at first.
Once the separation routine is unable to find any violated cut, skipping separation is
stimulated by multiplying4 pace by 2. Finally, whenever the separation routine finds
again a violated cut, pace is reset to 1. Such strategy allows the optimization process
to adapt itself to the instance being solved by ignoring the separation routine if it

4The choice of multiplying by 2 is merely empiric. In fact, one may multiply such parameter
by any constant c ≥ 1 in order to obtain a faster or slower progression of pace.
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is not capable of reinforcing the formulation.

Symmetry is handled by fixing variables on each branching phase, through the
Orbitopal Fixing procedure described in Section 5.1. For this, Algorithms 2 and
3 are then implemented within the BranchCallback routine from CPLEX that is
called after a branch has been selected but before the branch is effectively carried
out during the optimization of a MILP. Moreover, a significant amount of variables
are eliminated by applying the upper bound on popt identified in Section 5.2.

In Section 5.3, the difference of performances obtained from the interference in
the variable choice for branching is reported. Based on such results, we choose to
relax variables y and apply formulation USNP-X(V,E,C) when the instance is sparse
(i.e., ρ = 1.5). For every other instance, we choose to impose a branching preference
on variables y and apply formulation USNP-Y(V,E,C).

The following table provides a comparison between the results achieved by the de-
veloped Branch-and-Cut framework (section Branch-and-Cut) and the ones achieved
by CPLEX applied to the original formulation of Pimenta et al. [151] with no user-
cut generation and a dummy callback (section CPLEX). Results are given for each one
of the 315 generated instances. Columns timeg, LBg, UBg, gapg and Nodes provide in-
formation on the global optimization process by showing, respectively, the total time
spent in seconds, the lower and upper bounds obtained by the end of the optimiza-
tion, the remaining gap and the number of nodes investigated in the enumeration
tree. Column cutsCP refers to the number of cuts generated by CPLEX itself that
were added during the optimization. Columns cutsSC , cutsKT and cutsG stand for
the number of violated strong capacity inequalities, k-cardinality tree inequalities
and girth inequalities included throughout the optimization, respectively. Finally,
columns cutstot and timecut provides the total number of user cuts added and the
time spent solving the respective separation problems.
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The results achieved with the Branch-and-Cut framework clearly outperform
the ones obtained by CPLEX. Indeed, while CPLEX could only solve 7 out of 315
instances to optimality within the time limit, our developed framework could solve
up to 129 instances to optimality. All instances solved by CPLEX could also be
solved within the Branch-and-Cut framework. Considering only the 7 instances
that were solved to optimality in both scenarios, the average CPU time required
for CPLEX was 1604 seconds (≈ 26 minutes), while Branch-and-Cut needed in
average less than 1 second (precisely, 0.8 seconds). Moreover, the average number
of nodes explored to prove optimality went down from 290,728 to 71. It is worth
noting that 3 of these 7 instances did not required any branching (i.e., were solved
to optimality in the root node) once the cuts were added to the formulation. In
addition, 6 more instances that could not be solved by CPLEX within the time
limit were solved by the Branch-and-Cut algorithm in the root node (e.g. instances
35 8 1.5 2, 30 8 3.0 4, 30 2 4.5 4, 30 2 4.5 5, 30 8 4.5 2 and 35 8 4.5 4).

Even if the number of explored nodes required to prove optimality is greatly
reduced in the Branch-and-Cut framework, the time spent within each LP node is
considerably increased. Despite the fact that the LP size (i.e., the number of vari-
ables and constraints) is significantly reduced by the elimination of variables and the
integration of symmetry-breaking methods described in Sections 5.2 and 5.1, such
behaviour is not a surprise since many violated cuts are identified and introduced
to the formulation, which requires the re-optimization of the node LP. Such fact
can be spotted by analyzing the difference between the number of nodes explored
within the two hours time limit in each approach for the instances that could not be
solved to optimality. While CPLEX was able to explore, in average, 138,931 nodes,
this number is reduced to 122,147 for the Branch-and-Cut algorithm. Notice that
for some unsolved instances (e.g., 55 2 3.0 1), the optimization process was entirely
performed in the root node. In other words, the Branch-and-Cut algorithm spent
the totality of the two hours time limit searching for violated cuts and re-optimizing
the root LP with such new cuts.

Such behaviour reveals a trade-off between quickly solving LP nodes and hence
further exploring the enumeration tree, or instead, refining the LP node formulation
through the continuous search for violated cuts. We estimate to have found a good
balance between these two aspects. In fact, for the 186 instances that could not
be solved within the time limit by any of the two approaches, the average lower
bound obtained by CPLEX was 21.99 compared with 36.94 for the Branch-and-
Cut. Moreover, the average remaining gap went down from 47.67% to 13.66%.

It is important to highlight that even if the CPLEX automatic cut generation
was not disabled in the Branch-and-Cut framework, very few cuts were introduced

186 Chapter 5. Computational study



Exploring Combinatorial Aspects of the Stop Number Problem

through this feature, when compared with standard CPLEX. In average, 106 cuts
were identified and introduced using CPLEX, while only 1.9 cuts were provided by
CPLEX in the Branch-and-Cut algorithm. This indicates that the vast majority of
the cuts automatically added by CPLEX might be, in fact, dominated by the ones
added through our separation routine. Such presumption is enhanced by the fact
that the heuristic procedures presented in Section 5.4 proved to be quite effective
in the search for violated cuts. Indeed, the number of k-cardinality tree inequalities
and girth inequalities added during the optimization process was, in average, of
2933.1 and 694.9 cuts, respectively. The total number of user cuts added was, in
average, of 3772.8 cuts.
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Conclusion

”We can only see a short distance ahead, but we can
see plenty there that needs to be done.”

— Alan Turing

In this dissertation, we have explored several aspects of a combinatorial problem
emerging from the management of a Dial-a-Ride system involving a fleet of electric
autonomous vehicles. We first presented the so-called Unit Stop Number Problem
(U-SNP), a variant of the Stop Number Problem introduced by Pimenta et al.
[151]. In addition, a variant of particular interest, called Intersection U-SNP, is also
presented. A literature review on Dial-a-Ride problems was then provided and other
problems arising from telecommunications were shown to have close relations with
U-SNP.

We approached the U-SNP from three main complementary angles: theoretical
complexity, polyhedra and computational test.

Firstly, we investigated the some theoretical properties of the problem. Such
study yielded new bounds on the optimal solution value of the U-SNP as well as
allowed to understand how optimality may be lost by adopting some ”intuitive”
greedy policies. Polynomial-time combinatorial algorithms were then proposed to
solve some specific classes of instances (e.g., U-SNP with C = 1, Intersection U-
SNP with C = 2). On the other hand, the N P-Hardness of U-SNP was proved
for any given fixed capacity C ≥ 2, answering the conjecture proposed by Pimenta
et al. [151]. Moreover, Intersection U-SNP was showed to be also N P-Hard for
any fixed capacity C ≥ 5 and for C = 3. We conjecture that the problem remains
N P-Hard for C = 4. It is worth noting that our proofs of complexity applies even
when the associated graph is restricted to the class of planar bipartite graphs. Such
property was then used to extend our results to other related problems (e.g., Traffic
Grooming) improving their current state-of-the-art complexity classification.

Once U-SNP was proved to be N P-Hard, the idea of searching for a polynomial-
time algorithm capable of optimally solving the problem had to be abandoned.
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Nevertheless, the need for exact methods remained. A MILP formulation adapted
from Pimenta et al. [151] was therefore studied and quickly showed to be particu-
larly weak. A polyhedral study was then conducted in order to better understand
how such formulation could be improved. The dimension of the integer polyhedron
is then provided as well as the necessary and sufficient conditions under which the
inequalities composing the formulation are facet-defining. Families of valid inequal-
ities (e.g., strong capacity inequalities, k-cardinality tree inequalities, generalized
k-cardinality tree inequalities, girth inequalities) capable of reinforcing the formu-
lation were finally introduced. Necessary and sufficient facet-defining conditions for
some of these families were presented.

Finally, the introduced valid inequalities were put to test within a Branch-and-
Cut framework. The separation problems associated with each family of valid in-
equalities were investigated and when N P-hardness was detected, heuristic pro-
cedures were developed to efficiently search for violated cuts. In order to boost
computational performances, symmetry-breaking methods known in the literature
were studied and adapted to the U-SNP. A comparison between such methods was
carried out and the Orbitopal Fixing algorithm due to Kaibel et al. [101] was chosen
to be the one implemented in our Branch-and-Cut algorithm. Furthermore, two re-
laxations preserving optimality have been proposed and compared. Our tests allow
to conclude that the choice of the most suited relaxation to be applied depends on
the density of the associated graph. A new upper bound on the number of vehicles
needed to achieve an optimal solution is also proposed, leading to significant variable
eliminations.

Computational results have proved that our approach largely outperforms CPLEX
traditional Branch-and-Cut algorithm. The remaining gap of all tested instances was
reduced when applying our method. Moreover, a considerable set of instances that
could not be solved to optimality within the time limit of two hours by CPLEX,
could be solved using our developed Branch-and-Cut framework.

Certainly, there remains many unexplored aspects with significant scientific po-
tential to be studied over the U-SNP. Future research lines may involve a deeper
investigation of generalized k-cardinality tree inequalities, whose necessary and suffi-
cient conditions for being facet-defining are still missing. Moreover, efficient separa-
tion procedures for taking into account such inequalities may improve even further
the performance of our Branch-and-Cut algorithm. Considering such inequalities
and based on empirical tests with PORTA software over small instances, we believe
that the characterization of the integer polyhedron for the polynomial case Inter-
section U-SNP with C = 2 is not far from being achieved. We also believe that an
extended formulation with tighter linear relaxations might be the answer to escape
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from the need of so many additional cuts in order to reinforce the formulation. For
the complexity aspect, the answer to our conjecture stating that the Intersection
U-SNP is NP-Hard for capacity C = 4 (even when G is restricted to the class of
planar bipartite graphs) remains an open question that deserves attention.

The valid inequalities introduced by our study can be easily generalized for the
general SNP where demands are allowed to reserve multiple seats within a single
vehicle. Considering the impact such inequalities had on the performance of our
Branch-and-Cut framework, computational tests over the general SNP (and other
related problems such as k-Edge Partitioning and Traffic Grooming) seems appro-
priate. An even more rewarding challenge would be trying to adapt such inequalities
for the general Dial-a-Ride Problem.

190 Chapter 5. Computational study



Appendix A

Detailed computational results

All tests were run on a machine provided with Intel Xeon E5, 3.10GHz and 32
Gb of RAM using CPLEX 12.8. A set of different scenarios based on the num-
ber of demands m, the capacity C and the density ρ is thus provided with m =
{30, 35, 40, 45, 50, 55, 60}, C = {2, 5, 8} and ρ = {1.5, 3.0, 4.5}. For each combina-
tion of parameters, 5 instances were randomly generated.

Table A.1 shows detailed computational results based on formulation USNP(V,E,C)

using CPLEX with all default settings applied. No callback function is implemented.
The number of variables and constraints are given for each instance under columns
cols and rows, respectively. The minimum number of vehicles needed is provided un-
der column pmin, and the number of vehicles used on the best solution found under
column p′. Columns timer, LBr, UBr and gapr provide information about the per-
formance on the root node by showing, respectively, the time spent in seconds, the
lower and upper bound obtained, and the remaining gap at root node. Information
on the global optimization process is depicted under column Global. Columns timeg

and timeBest provide the total time in seconds spent in the optimization process
and the time needed for detecting the best solution found, respectively. Columns
LBr and UBr present the best lower and upper bounds obtained by the end of the
optimization process and column gapr shows the associated remaining gap. The
number of nodes explored and unexplored, by the end of the optimization, in the
enumeration tree are given under columns Nodes and NLeft, respectively. Finally
CCuts presents the number of CPLEX cuts added to the formulation throughout
the optimization process.

Table A.2 provides detailed computational results in order to compare symmetry-
breaking methods. All tests were run using CPLEX with default settings and an
implemented (possibly empty) callback function. Column Default stands for the
results obtained with formulation USNP(V,E,C). Column Constraints stands for the
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results obtained with formulation USNP(V,E,C) reinforced by the symmetry-breaking
constraints described in Section 5.1. Column Orbitopal stands for the results ob-
tained with formulation USNP(V,E,C) using Orbitopal Fixing as the symmetry-breaking
method. The information provided follows the structure described for Table A.1.

Table A.3 provides detailed computational results in order to show the impact
of setting the number of available vehicles p to the new bound provided by Theorem
5.1. All tests were run using CPLEX with default settings and an implemented
(possibly empty) callback function. Column Default stands for the case where p is
set to m. Column Improved Bound stands for the results obtained with formulation
USNP(V,E,C) when p is set to the new upper bound

⌈
m

�C
2 �+1

⌉
. Column Minimum

stands for the results obtained when p is set to pmin. The information provided
follows the structure described for Table 5.2 in Section 5.2.

Table A.4 provides detailed computational results of the formulations proposed
in Section 4.2 in order to evaluate the impact of changing the branching policy.
All tests were run using CPLEX with default settings together with the Orbitopal
Fixing symmetry-breaking method. Moreover, the number of available vehicles is set
to the upper bound on popt given by Theorem 5.1. Column USNP(V,E,C) stands for the
results obtained with the original formulation USNP(V,E,C). Column USNP-X(V,E,C)

stands for the results obtained from formulation USNP(V,E,C) by relaxing variables
yi

v and keeping the integrality constraints on variables xi
e. Column USNP-Y(V,E,C)

stands for the results obtained from formulation USNP(V,E,C) by setting a priority
of branching on variables yi

v. For each case, the number of binary variables in the
formulation is displayed under column bin. The total time in seconds employed in
the optimization process is given under CPU. The best lower bound and the best
solution found within the time limit is given under lb and ub, respectively. The
remaining gap associated with such bounds is then proposed under column gap.
Since the variable choice for branching impacts the construction of the enumeration
tree, the number of nodes explored in such tree is displayed under column node.
Finally, this difference in the construction might impact the CPLEX heuristics for
generating cuts. The number of CPLEX cuts added through the optimization is
provided under cuts.
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Appendix B

Preliminary results on the
separation of valid inequalities

Some preliminary studies concerning the separation of generalized k-cardinality tree
inequalities are conducted here.

More precisely, even if we could not be able to derive a formal proof of the N P-
Hardness of the separation problem associated with k-cardinality forest inequalities
(4.44), we present an heuristic procedure for solving such separation problem. In
practice however, the number of cuts found by such procedure was irrelevant to
the optimization process and for this reason it was not included in the developed
Branch-and-Cut procedure.

In contrast, a formal proof of the N P-Hardness of the separation problem asso-
ciated with k-cover tree inequalities (4.47) is provided. On the other hand, a fast
heuristic capable of yielding violated cuts remains a challenge to be tackled in future
works.

B.1 Separation of k-cardinality forest inequalities

A simple adaptation of Algorithm 5 allows to derive an heuristic procedure for solv-
ing the separation problem associated with k-cardinality forest inequalities (4.44).
Such procedure is described in Algorithm 7.
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Algorithm 7 Separation of inequalities (4.44) by greedily construction of a (C +1)-
cardinality forest
Input: An instance (V, E, C) of U-SNP, and a fractional solution (x̄, ȳ) of the linear

relaxation of USNP(V,E,C)
Output: A ”good” candidate k-cardinality tree inequality for cutting (x̄, ȳ)

for i = 1, . . . , p do
for j = 1, . . . , n do

for all e ∈ ΔE(j) do
we = x̄i

e

end for
for all v ∈ V [ΔE(j)] do

cv = ȳi
v

end for
Choose the edge e with most fractional weight.
T = {e}
for k = 1, . . . , C do

Let ek ∈ arg maxuv∈ΔE(j)\T {{wuv − cv : v ∈ V [T ] and u /∈ V [T ]} ∪
{wuv − 1 : v /∈ V [T ] and u /∈ V [T ]}}

T = T ∪ {ek}
end for
if
∑

e∈T x̄i
e −∑v∈V [T ](degG[T ](v) − 1)ȳi

v > 0 then
Add inequality ∑e∈T xi

e −∑v∈V [T ](degG[T ](v) − 1)yi
v ≤ 0 as a cut

end if
end for

end for

B.2 Separation of k-cover tree inequalities

Let us recall the family of k-cover tree inequalities (4.47):

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ E, such that

G[S] is a tree and |S ∩ ΔE(j)| = C + 1.

(4.47)

The family of k-cover tree inequalities (4.47) clearly has an exponential number
of inequalities as it generalizes the family of k-cardinality tree inequalities (4.40).
In addition, it is easy to observe that when (V, E, C) is an instance of Intersection
U-SNP, these two families of inequalities (i.e., (4.47) and (4.40)) are equivalent. It
follows directly that the separation problem associated with k-cover tree inequalities
(4.47) is at least as hard as the one associated with k-cardinality tree inequalities
(4.40).

Theorem B.1 - Separation of k-cover tree inequalities
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The separation problem associated with k-cover tree inequalities (4.47) is N P-Hard.
�
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Résumé en français

Introduction et contexte

L’optimisation combinatoire est un domaine de recherche important des mathé-
matiques appliquées, de l’algorithmique et de l’informatique théorique. Un problème
d’optimisation combinatoire consiste à choisir le meilleur élément dans un ensemble
fini. Ce genre de problèmes se posent habituellement – mais pas exclusivement –
dans des situations pratiques arrivant dans les télécommunications, le transport, la
logistique, la finance entre autres.

Formellement, étant donnés un ensemble fini d’éléments N = {1, . . . , n}, une
famille F de sous-ensembles F ⊆ N et une fonction de coût c : N → R, un pro-
blème d’optimisation combinatoire consiste à déterminer un élément F ∈ F tel que
la somme c(F ) des coûts de ses éléments soit maximum (ou minimum). De tels pro-
blèmes peuvent paraître faciles à résoudre à première vue. Par exemple, une approche
triviale serait d’énumérer tous les éléments dans F – rappelons que F est fini – et
choisir simplement le meilleur élément selon la fonction de coût c. Cependant, cette
famille de sous-ensembles est souvent composée d’un très grand (e.g., exponentiel
dans la taille de N) nombre d’éléments, ce qui empêche la résolution du problème
avec une telle approche dans un temps raisonnable en utilisant un ordinateur.

Cette remarque a conduit des scientifiques à étudier et développer des moyens
plus intelligents et élégants pour la résolution de ce genre de problèmes. La pro-
grammation linéaire et la programmation linéaire en nombres entiers ainsi que les
algorithmes basés sur le principe de la programmation dynamique et/ou les rela-
tions min-max entre différentes structures combinatoires sont des exemples de telles
méthodes. Cependant, malgré tout le savoir développé à travers l’histoire de l’infor-
matique, des algorithmes performants pour certains problèmes combinatoires restent
inconnus. Autrement dit, cela signifie qu’aucun algorithme avec un temps d’exécu-
tion borné par une fonction polynomiale en la taille de l’entrée n’est connu.

Parmi ces problèmes difficiles à résoudre, une certaine classe de problèmes s’est
démarquée : les problèmes appelés N P-Difficile. De façon informelle, un problème
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appartient à la classe N P-Difficile s’il est au moins aussi difficile à résoudre que
n’importe quel autre problème présent dans la classe N P , et un problème appartient
à la classe N P s’il peut être formulé comme une question ayant pour réponse oui
ou non de façon que ses solutions peuvent être vérifiées de manière efficace (i.e.,
en temps polynomial). Par rapport aux problèmes combinatoires, cela revient à
dire qu’un problème combinatoire appartient à N P s’il peut être formulé par une
question demandant l’existence ou non d’un élément F ∈ F tel que c(F ) vaut au
moins (ou au plus) une valeur B ∈ R donnée, et que c(F ) peut être calculé en temps
polynomial.

Il est bien connu que s’il existe un algorithme efficace pour résoudre un seul pro-
blème N P-Difficile, alors tous les problèmes appartenant à la classe N P-Difficile
peuvent aussi être résolus en temps polynomial. Telle propriété a guidé les cher-
cheurs en informatique à imposer une dichotomie entre les problèmes efficacement
vérifiables (classe N P) et les problèmes efficacement solubles (classe P). L’équi-
valence ou non de ces deux classes n’a pas pu être déterminée jusqu’à présent et
représente ainsi une des principales questions ouvertes dans le domaine de l’infor-
matique théorique. Il est cependant communément accepté que P �= N P .

Le besoin d’algorithmes performants capables de résoudre des problèmes réels
n’a jamais cessé d’augmenter depuis la construction des premiers ordinateurs dans
les années 40. Dans ce scénario, lorsqu’un nouveau problème combinatoire est pro-
posé, l’une des premières questions que l’on se pose tourne autour de sa complexité.
En effet, si l’on est capable de prouver son appartenance à N P-Difficile, alors un al-
gorithme efficace pour résoudre ce problème est peu probable d’être concevable. Par
ailleurs, les problèmes combinatoires N P-Difficiles possèdent plusieurs applications
en pratique, et par conséquent il est insensé et contre-productive de les ignorer. Pour
ces problèmes on doit plutôt se concentrer à les résoudre non pas à travers un al-
gorithme polynomial mais à travers un algorithme approprié (i.e., aussi performant
que possible).

L’approche polyédrale, développée par Jack Edmonds dans les années 60 (voir
Edmonds 1965a) sur le problème du couplage maximal, combine les idées de la
programmation linéaire et de la programmation linéaire en nombres entiers avec les
concepts de la géométrie discrète et de l’algorithmique afin de résoudre des pro-
blèmes combinatoires. Elle consiste à formuler un problème combinatoire comme
un programme linéaire dont les contraintes sont les inégalités linéaires décrivant
l’enveloppe convexe des solutions réalisables.

Toutefois, une description explicite et complète d’un tel polyèdre peut être diffi-
cile à trouver et souvent il est nécessaire un nombre exponentiel d’inégalités pour ce

2



Exploring Combinatorial Aspects of the Stop Number Problem

faire. Heureusement, une description partielle de l’enveloppe convexe peut permettre
de trouver la solution optimale d’un problème combinatoire. Dans cette optique, les
travaux de Grötschel, Lovász et Schrijver 1981 jouent un rôle très important
en précisant qu’un problème combinatoire peut être résolu en temps polynomial si et
seulement si il existe un algorithme polynomial capable de résoudre le problème de
séparation associé. Ce dernier consiste, étant donné une solution x, à déterminer si
x appartient au polyèdre, et sinon à fournir une contrainte qui sépare x du polyèdre.
Dès lors, pour les problèmes combinatoires N P-Difficiles, on peut s’attendre à ce
que le problème de séparation associé soit aussi N P-Difficile. Dans ces cas, l’ap-
proche polyédrale peut être encore utile en utilisant des heuristiques pour résoudre
la séparation. Telle approche peut être exploité pour obtenir des inégalités valides
capables de renforcer la relaxation linéaire de la formulation concernée.

Les approches polyédrales ont suscité une grande attention de la part de la com-
munauté scientifique au cours des cinquante dernières années tant d’un point de vue
théorique que pratique, et ont fait preuve d’efficacité en ce qui concerne la résolution
optimale de problèmes combinatoires difficiles. En effet, plusieurs d’entre les algo-
rithmes d’optimisation les plus performants bénéficient d’une approche polyédrale.
Parmi ces algorithmes, l’un des plus célèbres est le Concorde TSP Solver, un algo-
rithme basé sur le principe des Coupes et Branchements 1 traitant le traditionnel
problème du voyageur de commerce 2 (voir Applegate et al. 2001 ; Applegate

et al. 2006).

Dans cette dissertation, nous étudions un nouveau problème combinatoire appelé
Problème de Minimisation du Nombre d’Arrêts – Stop Number Problem en anglais
– découlant de la gestion d’un système de transport à la demande utilisant une
flotte de véhicules électriques identiques et autonomes. En effet, des changements
importants sont en train de se produire dans la façon dont les gens se déplacent d’un
point à l’autre. Les réglementations plus restrictives en termes d’émissions de CO2,
alliées à la croissance extraordinaire de l’utilisation des smartphones et des services
en ligne, induisent des nouvelles tendances dans le secteur des transports. Selon
Gao et al. 2016, dans le cadre de l’innovation de la mobilité et du transport, quatre
tendances majeures méritent d’être soulignées : la diversification des systèmes de
mobilité, la conduite autonome, l’électrification des moteurs et la connectivité entre
les ressources présents dans le système de transport.

Le projet VIPAFLEET apparaît dans ce scénario contribuant à une mobilité
plus durable en se concentrant sur le développement de modèles mathématiques
et algorithmes capables d’aider à la gestion des flottes de véhicules autonomes et

1. Branch-and-Cut, en anglais.
2. Travelling Salesman Problem (TSP), en anglais.
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électriques appelés VIPA 3. VIPA est un véhicule électrique développé par Ligier 4 et
Easymile 5, et conçu pour fonctionner de manière complètement autonome (i.e., sans
aucune assistance humaine), notamment dans des environnements dits fermés ou
semi-ouverts comme des sites commerciaux ou industriels, des campus universitaires
et des complexes médicaux de grandes dimensions.

Les VIPA sont conçus pour opérer dans des différents modes de fonctionnement :

— Mode tramway : Les véhicules circulent toujours dans la même direction et
s’arrêtent une fois sollicités.

— Mode ascenseur : Les véhicules circulent comme un ascenseur horizontal,
voyageant dans un trajet linéaire prédéfini et réagissant aux demandes des
clients pour changer de direction.

— Mode taxi : Les véhicules desservent les demandes des clients en choisissant
de manière intelligente leurs itinéraires dans un réseau connexe.

Dans cette thèse nous nous intéressons à la gestion de tels véhicules fonctionnant
en mode tramway. Par ailleurs, nous nous concentrons sur la version hors ligne de
cette gestion, c’est-à-dire, toutes les demandes des clients sont connues à l’avance.
Pour des études sur d’autres modes de fonctionnement en version en ligne, le lecteur
est invité à consulter les travaux de Bsaybes 2017.

Le travail de recherche effectué au cours de cette thèse a été financé par le
Laboratoire d’Excellence (Labex) IMobS3 6.

Définition du problème

Le Problème de Minimisation du Nombre d’Arrêts est issu de la gestion des
véhicules VIPA fonctionnant en mode tramway. Dans ce système, des véhicules
identiques circulent à travers un circuit prédéfini avec des stations déterminés, en
répondant à des sollicitations de clients pour un trajet entre une station de départ
et une station d’arrivée. Nous remarquons que plusieurs clients peuvent partager les
mêmes stations de départ et/ou d’arrivée.

À cause des restrictions d’infrastructure, les stations ne se situent pas à l’intérieur
du circuit mais sont attachées à ce dernier (voir Figure 1) Cette particularité cause
un impact sur la gestion de la flotte de véhicules. En effet, pour répondre à la
demande d’un client, le véhicule doit ralentir et réaliser une déviation de son parcours

3. Véhicule Individuel Public Autonome.
4. https://www.ligier.fr/nos-gammes/ez10.html, consulté le 07-06-2019.
5. https://easymile.com/, consulté le 07-06-2019.
6. Innovative Mobility : Smart and Sustainable Solutions
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d’origine. Ces déviations augmentent le temps de trajet des clients à bord du véhicule
ainsi que la consommation d’énergie de sa batterie. Par conséquent, améliorer la
qualité de service proposé correspond à minimiser le nombre d’arrêts effectués par
la flotte de véhicules.

Figure 1 – Schéma du circuit

Le Problème de Minimisation du Nombre d’Arrêts consiste à affecter un véhicule
à chaque client de façon à ce que la capacité de chaque véhicule soit respectée tout au
long du circuit. L’objectif est de minimiser le nombre d’arrêts effectués en prenant
en charge les demandes. Nous remarquons que dans la recherche d’une solution
optimale, un véhicule peut se permettre de réaliser plusieurs tours du circuit avant
desservir une demande. Par contre, une fois qu’un client est récupéré, il ne doit pas
rester plus d’un tour complet à bord du véhicule. Les tours réalisés avant la prise
en charge d’une demande sont appelés tours d’attente. Dans le but d’assurer une
qualité de service et faire face aux fenêtres de temps accordées par les clients, le
nombre maximal de tours d’attente est borné par un paramètre donné H ≥ 0 ∈ N.
Enfin, la demande d’un client peut solliciter un ou plusieurs sièges dans un même
véhicule. Dans ce sens, une demande est caractérisée par sa station de départ, sa
station d’arrivée et une charge spécifiant le nombre de sièges demandés.

Cette thèse se concentre sur l’étude et la résolution du Problème de Minimi-
sation du Nombre d’Arrêts quand aucun tour d’attente n’est accordé, c’est-à-dire
H = 0, et chaque demande ne peut solliciter qu’un seul siège dans chaque véhicule,
c’est-à-dire sa charge est unitaire. Cette version du problème est appelé Problème
de Minimisation du Nombre d’Arrêts Unitaire 7. Nous remarquons néanmoins que
plusieurs demandes peuvent avoir les mêmes stations de départ et/ou d’arrivée.

Soit V = {1, . . . , n} l’ensemble de stations numérotés selon leur ordre d’appari-
tion sur le circuit. Soit E l’ensemble des m demandes unitaires, où chaque demande
e est spécifiée par une station de départ oe ∈ V et par une station d’arrivée de ∈ V

tel que oe < de, c’est-à-dire, e = (oe, de). Pour desservir ces m demandes, une flotte

7. Unit Stop Number Problem, en anglais.
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de p véhicules identiques est fournie. Tous les véhicules possèdent la même capacité
C ∈ Z

+. Désignons par K = {1, . . . , p} l’ensemble de ces véhicules disponibles. Pour
chaque instance I = (V, E, C) du problème, un graphe GI = (V, E) peut être asso-
cié et par conséquent, les stations et les demandes peuvent être appelés noeuds et
arêtes, respectivement. Puisque oe < de pour tout e ∈ E, le graphe associé GI pos-
sède une orientation naturelle. Pour plus de simplicité, nous le considérons comme
un graphe non-orienté.

Pour tout sous-graphe H de GI , et toute station v ∈ V (H), nous désignons par

δ−
H(v) = {e ∈ E(H) : de = v} et δ+

H(v) = {e ∈ E(H) : oe = v}

les ensembles des demandes dans E(H) qui possèdent v comme leur station d’arrivée
et de départ, respectivement. Pour tout sous-ensemble F ⊆ E et toute station v ∈ V ,
nous désignons par

ΔF (v) = {e ∈ F : oe ≤ v ≤ de − 1}

l’ensemble des demandes dans F qui traversent ou commencent à la station v. Les
demandes appartenant à ΔE(v) intersectent la station v.

Une solution réalisable est une partition de E en p sous-ensembles E1, . . . , Ep telle
que |ΔEi

(v)| ≤ C pour tout i = 1, . . . , p et pour tout v ∈ V . Le Problème de Mini-
misation du Nombre d’Arrêts Unitaire consiste à trouver une partition {E1, . . . , Ep}
qui minimise le coût de la fonction

c({E1, . . . , Ep}) =
p∑

i=1
|V [Ei]|

où V [Ei] représente l’ensemble des stations où le véhicule i ∈ {1, . . . , p} doit s’arrê-
ter.

Un cas particulier intéressant nommé Problème de Minimisation du Nombre
d’Arrêts Unitaire d’Intersection, se pose quand il existe une station v′ ∈ V dont
toutes les demandes intersectent, c’est-à-dire, ΔE(v′) = E. Dans ce cas, chaque
véhicule i ∈ K peut servir au plus C demandes, c’est-à-dire, chaque sous-ensemble
Ei doit posséder au plus C arrêtes.

Complexité

Dans cette section nous étudions de manière approfondie la complexité du Pro-
blème de Minimisation du Nombre d’Arrêts Unitaire. Tout d’abord, nous présentons
une série de propriétés et de bornes inférieures pour ce problème. Sur la base de ces
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résultats, nous montrons la solvabilité de quelques cas particuliers en temps polyno-
mial. Ensuite, nous présentons une preuve de N P-Complétude pour ce problème,
ce qui permet de répondre à une conjecture posée par Pimenta et al. 2017 sur la
complexité du Problème de Minimisation du Nombre d’Arrêts Unitaire.

Proposition 1 - Borne inférieure triviale
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire, le nombre de stations n est une borne inférieure triviale sur le nombre total
d’arrêts. �

Proposition 2 - Borne inférieure basée sur les degrés
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire, ∑

v∈V

⌈
max{|δ−

GI (v)|, |δ+
GI (v)|}

C

⌉

est une borne inférieure sur le nombre total d’arrêts. �

Proposition 3 - Nombre minimum de véhicules
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire,

pmin = max
v∈V

{⌈
|ΔE(v)|

C

⌉}

est le nombre minimum de véhicules nécessaires pour satisfaire à toutes les demandes
dans E. �

Dans le domaine de la théorie des graphes, la maille d’un graphe G est la longueur
du plus court de ses cycles.

Proposition 4 - Grands cycles produisent des forêts
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire d’Intersection telle que le graphe GI = (V, E) a une maille de k > C, alors
pour toute solution réalisable {E1, . . . , Ep}, GI [Ei] est une forêt pour tout i ∈ K. �

Proposition 5 - Borne inférieure basée sur la maille
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire d’Intersection telle que le graphe GI = (V, E) a une maille de k > C, alors

m +
⌈

m

C

⌉

est une borne inférieure sur le nombre total d’arrêts. �

Dans Pimenta et al. 2017, les auteurs énoncent sans preuve théorique que pour
toute instance (V, E, C) du Problème de Minimisation du Nombre d’Arrêts Unitaire,
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il existe au moins une solution optimale utilisant pmin véhicules. Nous montrons que
cette affirmation est valide si C = 2 et (V, E, C) est une instance du Problème de
Minimisation du Nombre d’Arrêts Unitaire d’Intersection. Néanmoins, pour C ≥ 3,
nous montrons que l’affirmation n’est plus valide. Par conséquent, fixer le nombre
de véhicules à pmin peut nuire à la recherche d’une solution optimale.

Une autre intuition raisonnable dans la recherche d’une solution optimale est de
maintenir les demandes ayant les mêmes stations de départ et d’arrivée ensemble
dans un même véhicule. En effet, pour toute instance du Problème de Minimisation
du Nombre d’Arrêts Unitaire d’Intersection avec C = 2, une telle démarche s’avère
optimale. Autrement dit, il existe toujours au moins une solution optimale respectant
cette règle. Une telle stratégie peut être problématique pour les cas plus généraux
comme indique la proposition suivante.

Proposition 6 - Demandes parallèles
Soit I = (V, E, 2) une instance du Problème de Minimisation du Nombre d’Arrêts
Unitaire telle que e ∈ E et e′ ∈ E sont deux demandes différentes ayant les mêmes
stations de départ et d’arrivée, il se peut que dans aucune solution optimale les
demandes e et e′ soient affectées au même véhicule. �

Les résultats présentés jusqu’ici offrent un aperçu de la difficulté de caractériser
les solutions optimales du problème. Parallèlement, pour quelques cas spécifiques,
nous avons montré que quelques intuitions simples peuvent s’avérer pertinentes dans
la construction d’une solution optimale. Nous montrons ensuite comment mettre à
profit ces résultats pour concevoir des algorithmes polynomiaux capables de résoudre
certains cas particuliers du Problème de Minimisation du Nombre d’Arrêts Unitaire.

Proposition 7 - Capacité Unitaire
Soit I = (V, E, 1) une instance du Problème de Minimisation du Nombre d’Arrêts
Unitaire, alors le problème peut être résolu en O(m) et la solution optimale coûte

∑
v∈V

max
{
|δ−

GI (v)|, |δ+
GI (v)|

}
. �

Proposition 8 - Graphes complets et C = 2
Soit (V, E, 2) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire telle que GI = (V, E) est un graphe complet, alors le problème peut être résolu
en temps polynomial. �

Proposition 9 - Étoiles
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire telle que GI = (V, E) est un graphe étoile, alors le problème peut être résolu
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en temps polynomial et la solution optimale coûte

∑
v∈V

⌈
max{|δ−

G(v)|, |δ+
G(v)|}

C

⌉
. �

Proposition 10 - Chemins et cycles pour le cas d’intersection
Soit (V, E, C) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire d’Intersection telle que GI = (V, E) est un chemin (ou un cycle), alors le
problème peut être résolu en temps polynomial et la solution optimale coûte

m +
⌈

m

C

⌉
. �

Proposition 11 - Arbres, grilles et graphes bipartis complets pour le cas
d’Intersection avec C = 3
Soit (V, E, 3) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire d’Intersection telle que GI = (V, E) est un arbre (ou une grille ou un graphe
biparti complet), alors le problème peut être résolu en temps polynomial. �

Proposition 12 - Cas d’intersection avec C = 2
Soit (V, E, 2) une instance du Problème de Minimisation du Nombre d’Arrêts Uni-
taire d’Intersection, alors le problème peut être résolu en O(m) temps. �

Une fois que le Problème de Minimisation du Nombre d’Arrêts Unitaire d’Inter-
section avec C = 2 peut être résolu en temps polynomial, la question de savoir si
le Problème de Minimisation du Nombre d’Arrêts Unitaire en général avec C ≥ 2
est N P-Difficile se pose immédiatement. Dans Pimenta et al. 2017, les auteurs
conjecturent ce problème comme étant N P-Difficile. Nous répondons positivement
à cette conjecture à travers la réduction polynomiale d’un problème N P-Complet
au Problème de Minimisation du Nombre d’Arrêts Unitaire.

Theorem 1 - Problème de Minimisation du Nombre d’Arrêts Unitaire,
avec C ≥ 2
Le Problème de Minimisation du Nombre d’Arrêts Unitaire est N P-Difficile pour
n’importe quelle capacité fixée à C ≥ 2 même si G = (V, E) est un graphe planaire
biparti. �

Theorem 2 - Problème de Minimisation du Nombre d’Arrêts Unitaire
d’Intersection, avec C = 3
Le Problème de Minimisation du Nombre d’Arrêts Unitaire d’Intersection est N P-
Difficile même si G = (V, E) est un graphe planaire biparti et C = 3. �

Theorem 3 - Problème de Minimisation du Nombre d’Arrêts Unitaire
d’Intersection, avec C ≥ 5
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Le Problème de Minimisation du Nombre d’Arrêts Unitaire d’Intersection est N P-
Difficile pour n’importe quelle capacité fixée à C ≥ 5 même si G = (V, E) est un
graphe planaire biparti. �

La complexité du Problème de Minimisation du Nombre d’Arrêts Unitaire d’Inter-
section avec C = 4 reste une question ouverte à laquelle nous proposons la conjecture
suivante.

Conjecture 1 - Problème de Minimisation du Nombre d’Arrêts Unitaire
d’Intersection, C = 4
Le Problème de Minimisation du Nombre d’Arrêts Unitaire d’Intersection est N P-
Difficile même si G = (V, E) est un graphe planaire biparti et C = 4. �

Il est important de souligner que les résultats obtenus sur la complexité des
problèmes étudiés peuvent être étendus à d’autres problèmes associés comme le
Traffic Grooming et le k-Edge Partitioning Problem. Une telle démarche permet
d’améliorer les résultats connus dans littérature sur la complexité de ces problèmes
(voir Amini, Pérennes et Sau 2009 ; Goldschmidt et al. 2003 ; Lemaire 2001).

Approche Polyédrale

Si on s’intéresse à des solutions optimales, une stratégie répandue face à un
problème N P-Difficile est de formuler et résoudre ce dernier via la programmation
linéaire en nombres entiers. Afin d’améliorer les performances de ce genre d’ap-
proche, beaucoup de problèmes combinatoires ont bénéficié de l’étude faciale de
l’enveloppe convexe de ses solutions réalisables. En effet, si une description com-
plète de cette enveloppe convexe est connue, le problème peut être résolu à travers
un programme linéaire. Malheureusement, la description complète de ces polyèdres
nécessite habituellement un nombre exponentiel d’inégalités. Ici, l’équivalence entre
optimisation et séparation décrite par Grötschel, Lovász et Schrijver 1981
joue un rôle principal. En effet, si le problème de séparation associé peut être résolu
en temps polynomial, alors l’optimisation d’une fonction objective linéaire sur un
polyèdre convexe peut également s’effectuer en temps polynomial. Le problème du
couplage parfait (voir Edmonds 1965a ; Edmonds 1965b ; Pulleyblank 1973)
est un exemple classique où l’enveloppe convexe des solutions réalisables a été com-
plètement décrit et le problème de séparation associé a été démontré résoluble en
temps polynomial. En contrepartie, une description partielle de l’enveloppe convexe
des solutions réalisables est également souhaitable dans la conception d’algorithmes
performants. Dans cette section, nous nous intéressons à l’étude polyédrale de l’en-
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veloppe convexe des solutions réalisables du Problème de Minimisation du Nombre
d’Arrêts Unitaire.

Le programme linéaire en nombres entiers décrit ci-dessous a été introduit dans
Pimenta et al. 2017.

min
∑
v∈V

∑
i∈K

yi
v (1)

subject to∑
i∈K

xi
e = 1 ∀e ∈ E, (2)

∑
e∈ΔE(v)

xi
e ≤ C ∀v ∈ V, i ∈ K, (3)

xi
e − yi

v ≤ 0 ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4)

xi
e ∈ {0, 1} ∀e ∈ E, i ∈ K, (5)

yi
v ∈ {0, 1} ∀v ∈ V, i ∈ K. (6)

La formulation (1)-(6) est fondée sur deux ensembles de variables binaires x ∈
{0, 1}m×p et y ∈ {0, 1}n×p. La variable xi

e représente le fait qu’une demande e soit
ou non affectée au véhicule i, c’est-à-dire,

xi
e =

⎧⎪⎨⎪⎩
1, si e ∈ Ei

0, sinon.

La variable yi
v indique si le véhicule i s’arrête à la station v, c’est-à-dire,

yi
v =

⎧⎪⎨⎪⎩
1, si v ∈ V [Ei]

0, sinon.

La fonction objectif (1) compte le nombre total d’arrêts réalisé par l’ensemble
des véhicules. Les contraintes d’affectation (2) assurent que chaque demande est
affectée à exactement un véhicule. Les contraintes de capacité (3) garantissent que
la capacité de chaque véhicule est respectée tout au long du circuit. Les contraintes
d’arrêt (4) imposent les véhicules de s’arrêter sur les stations de départ et d’arrivée
associées aux clients qui lui ont été affectés. Finalement, les contraintes (5) et (6)
établissent les domaines des variables x et y.

Une analyse préliminaire des résultats expérimentaux obtenus avec la formulation
(1)-(6) en utilisant le solveur CPLEX 12.8 montre que la solution optimale est
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fréquemment obtenue bien avant la fin de la procédure d’optimisation. C’est-à-dire
que la borne inférieure utilisée dans l’algorithme de Coupes et Branchements évolue
de façon beaucoup plus lente que la borne supérieure, ce qui indique la faiblesse
d’une telle formulation. Accélérer la convergence des bornes inférieures vers le coût
de la solution optimale constitue donc un défi majeur.

La puissance d’une formulation peut être mesurée par les bornes duales (bornes
inférieures pour un problème de minimisation) fournies par sa relaxation linéaire.
Dans Wolsey 1998, l’écart d’intégralité est utilisé pour mesurer la puissance d’une
formulation. Selon ce concept nous étudions la puissance de la formulation (1)-(6)
en analysant sa relaxation linéaire. Il s’avère que les résultats obtenus confirment la
faiblesse de cette formulation.

Theorem 4 - Puissance de la formulation
La relaxation linéaire de la formulation (1)-(6) fournit toujours une borne inférieure
de n arrêts. �

Néanmoins, cette borne inférieure ne fournit aucune nouvelle information par
rapport à la borne triviale dérivée de la Proposition 1. Cela ne poserait pas de
problème si une telle borne était réellement efficace. Cependant, nous proposons
des exemples d’instances où l’écart d’intégralité obtenu avec une telle borne peut
atteindre la valeur de

1 − 1⌈
m
C

⌉ ,
ce qui est en effet impressionnant.

Étant donné que la borne inférieure fournie par la relaxation linéaire n’est pas
satisfaisante, nous nous intéressons à l’étude faciale de l’enveloppe convexe des so-
lutions réalisables du Problème de Minimisation du Nombre d’Arrêts Unitaire pour
essayer de renforcer la formulation (1)-(6). Pour cela, nous investiguons dans un
premier temps la dimension de ce polyèdre, nommé P(V,E,C). La dimension d’un po-
lytope P ⊆ R

d, nommé dim(P), est définie comme étant le nombre maximum de
vecteurs affinement indépendants dans P moins un. Nous montrons que

dim
(
P(V,E,C)

)
= (n + m)p − m.

Ensuite nous proposons les conditions nécessaires et suffisantes pour que les
inégalités composant la relaxation linéaire de la formulation (1)-(6) définissent des
facettes du P(V,E,C).

Theorem 5 - Relaxation des contraintes (6) définissant des facettes
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L’inégalité
yi

v ≤ 1

définit une facette de P(V,E,C) pour tout v ∈ V, i ∈ K. �

Theorem 6 - Relaxation des contraintes (5) définissant des facettes
L’inégalité

xi
e ≥ 0

définit une facette de P(V,E,C) pour tout e ∈ E, i ∈ K, étant donné que p ≥ 3. �

Theorem 7 - Inégalités (4) définissant des facettes
L’inégalité

xi
e − yi

v ≤ 0

définit une facette de P(V,E,C) pour tout i ∈ K, e ∈ E, v ∈ {oe, de}. �

Theorem 8 - Inégalités (3) définissant des facettes
L’inégalité ∑

e∈ΔE(v)
xi

e ≤ C

définit une facette de P(V,E,C) pour tout i ∈ K si et seulement si

1. il n’existe aucune station v′ ∈ V tel que ΔE(v) ⊂ ΔE(v′) ;

2. pour toute station v′ ∈ V , |ΔE(v) \ δ(v′)| ≥ C. �

Enfin nous proposons des nouvelles inégalités valides capables de renforcer la
formulation (1)-(6).

Theorem 9 - Validité des inégalités de capacité fortifiée
Les inégalités de capacité fortifiée

∑
e∈δ−

G(v)

xi
e − Cyi

v ≤ 0 ∀v ∈ V, i ∈ K, (7a)

∑
e∈δ+

G(v)

xi
e − Cyi

v ≤ 0 ∀v ∈ V, i ∈ K, (7b)

sont valides pour P(V,E,C). �

Theorem 10 - Inégalités de capacité fortifiée définissant des facettes
L’inégalité de capacité fortifiée (7a) associée avec une station v ∈ V et un véhicule
i ∈ K définit une facette de P(V,E,C) si et seulement si

|δ−
G(v)| ≥ C + 1.
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De la même façon, l’inégalité de capacité fortifiée (7b) associée avec une station
v ∈ V et un véhicule i ∈ K définit une facette de P(V,E,C) si et seulement si

|δ+
G(v)| ≥ C + 1. �

Theorem 11 - Validité des inégalités d’arbres de cardinalité k

Les inégalités d’arbres de cardinalité k suivantes sont valides pour P(V,E,C) :

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j), (8)

tel que G[S] est un arbre de cardinalité k avec k ≥ C + 1. �

Theorem 12 - Inégalités d’arbres de cardinalité k définissant des facettes
Les inégalités d’arbres de cardinalité k (8) définissent des facettes de P(V,E,C) si et
seulement si les conditions suivantes sont vérifiées :

i. G[S] n’est pas un graphe étoile ;

ii. si G[S] contient exactement 2 noeuds internes, alors E \S ne contient pas une
arrête (u, v) tel que u et v sont les noeuds internes de G[S]. �

L’idée derrière la construction d’une inégalité d’arbre de cardinalité k est de
trouver une structure en quelque sorte connexe qui viole la capacité du véhicule.
Pour ces inégalités, la structure en question est complètement connexe (G[S] est un
arbre) et fait complètement partie de ΔE(v). Basé sur ces remarques nous sommes
capables de généraliser les inégalités d’arbres de cardinalité k comme suit.

Theorem 13 - Validité des inégalités d’arbres de cardinalité k généralisées
Les inégalités

∑
e∈S

xi
e −

∑
v∈V [S]

(degG[S](v) − 1)yi
v ≤ q − 1 ∀i ∈ K, j ∈ V, S ⊆ E

où G[S] est une forêt composée par 1 ≤ q ≤ |S| composantes connexes et |S ∩
ΔE(j)| = C + 1, sont valides pour P(V,E,C). �

Jusqu’à présent seulement des structures ne comportant pas de cycles ont été
considérées dans la construction des inégalités valides. Les inégalités de mailles pré-
sentées ci-dessous prennent en compte ces structures manquantes.

Theorem 14 - Validité des inégalités de mailles
Les inégalités de maille

∑
e∈S

(C + 1)xi
e −

∑
v∈V [S]

Cyi
v ≤ 0 ∀i ∈ K, j ∈ V, S ⊆ ΔE(j), (9)
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où G[S] a une maille d’au moins C + 1, sont valides pour P(V,E,C). �

Résultats expérimentaux

Dans cette section une large étude expérimentale sur le Problème de Minimisa-
tion du Nombre d’Arrêts Unitaire est menée et un algorithme de Coupes et Branche-
ments est développé. La formulation (1)-(6) nous sert de point de départ. Suite aux
performances insatisfaisantes obtenues avec cette formulation, nous proposons plu-
sieurs atouts capables d’améliorer ces performances. Ces atouts incluent : i. casser
la symétrie présente dans le Problème de Minimisation du Nombre d’Arrêts Uni-
taire, ii. éliminer des variables inutiles, iii. relaxer des variables, et iv. intégrer les
inégalités valides identifiées renforçant la formulation dans l’algorithme de coupes
et branchements. Toutes les implémentations utilisent le solveur ILOG CPLEX 12.8
couplé avec CPLEX Concert Technology pour permettre une interface avec les li-
brairies CPLEX en utilisant le langage C++.

Un programme linéaire en nombres entiers est défini comme symétrique si l’on
peut permuter ses variables sans changer la structure du problème (voir Margot

2010). Dans le cas du Problème de Minimisation du Nombre d’Arrêts Unitaire il est
possible de constater que pour toute solution réalisable donnée, une autre solution
réalisable de même coût peut être obtenue en permutant les véhicules. Face à des
problèmes linéaires en nombres entiers, de nombreux auteurs ont souligné l’impor-
tance d’éliminer – ou au moins réduire – la symétrie (e.g. Sherali et Smith 2001 ;
Kaibel et Pfetsch 2008 ; Denton et al. 2010 ; Ostrowski, Anjos et Vannelli

2010). En effet, pour résoudre un problème linéaire en nombres entiers symétrique
via une procédure par séparation et évaluation 8 (ou par coupes et branchements),
nous sommes contraints de résoudre des sous-problèmes isomorphes présents dans
l’arbre d’énumération, ce qui représente un effort computationnel inutile. Dans ce
scénario, prouver l’optimalité d’une solution réalisable requiert d’explorer et d’éli-
miner chacun des noeuds isomorphes, ce qui peut être terriblement coûteux. Dans
l’intention d’améliorer les performances de la formulation (1)-(6) nous étudions plu-
sieurs méthodes permettant de casser la symétrie. Nous adaptons au Problème de
Minimisation du Nombre d’Arrêts Unitaire l’algorithme linéaire appelé Fixation
Orbitale 9 (voir Kaibel, Peinhardt et Pfetsch 2011) permettant de fixer des
variables au fur et à mesure que l’arbre d’énumération est exploré (i.e., à chaque
branchement effectué), éliminant ainsi la symétrie.

Comme l’on pouvait s’y attendre, la méthode engagée pour briser la symétrie
8. Branch-and-Bound, en anglais.
9. Orbitopal Fixing, en anglais.
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du problème a eu un impacte considérable sur les performances de la formulation
(1)-(6). En effet, avec l’ajout d’une telle méthode, le nombre d’instances résolues
à l’optimalité dans le délai de 2 heures parmi l’ensemble de 63 instances testées a
augmenté de 1 à 19.

Étant donné que le nombre de véhicules utilisés dans une solution optimale peut
différer du nombre minimum de véhicules nécessaires à l’obtention d’une solution
réalisable, le nombre de véhicules disponibles p était jusqu’à présent fixé à m. Paral-
lèlement, nous constatons que le nombre de variables présentes dans la formulation
(1)-(6) est (m+n)p. Par conséquent, trouver une meilleure borne supérieure pour la
valeur de p, permettrait de réduire le nombre de variables nécessaires dans une telle
formulation. De plus, la symétrie présente dans la formulation est étroitement liée au
nombre de véhicules disponibles. Ainsi, réduire le nombre de véhicules disponibles
permet de réduire davantage la symétrie derrière le problème.

Le théorème suivant affirme qu’on peut réduire le nombre de véhicules dispo-
nibles, sans perte d’optimalité, pour n’importe quelle instance du Problème de Mi-
nimisation du Nombre d’Arrêts Unitaire.

Theorem 15 - Borne supérieure pour p

Pour n’importe quelle instance I = (V, E, C) du Problème de Minimisation du
Nombre d’Arrêts Unitaire,

popt ≤
⎡⎢⎢⎢ m⌊

C
2

⌋
+ 1

⎤⎥⎥⎥ ,

où popt désigne le plus petit nombre de véhicules nécessaires à l’obtention d’une
solution optimale.

De plus, nous montrons que la borne supérieure fournie par le Théorème 15 est
serrée. Une telle démarche a permis une réduction de 60% des variables, en moyenne.
Nous évaluons l’impacte de l’approche à travers une étude expérimentale comparant
les performances obtenues en fixant p à m et en fixant p à la nouvelle borne.

La méthode par coupes et branchements consiste à intégrer un algorithme de
plans sécants avant chaque phase de branchement dans un algorithme par sépara-
tion et évaluation. L’algorithme par coupes et branchements que nous avons dé-
veloppé utilise les inégalités valides identifiées précédemment dans la construction
de l’algorithme de plans sécants. Les algorithmes de séparation associés à ces in-
égalités nécessitent souvent la manipulation de structures de données complexes et
l’implémentation d’algorithmes combinatoires de pointe. Pour ce faire, nous avons
utilisé LEMON, une libraire de code source ouvert écrite en langage C++ per-
mettant l’implémentation de plusieurs algorithmes de graphes performants (voir
Dezső, Jüttner et Kovács 2011 ; Egerváry Combinatorial Optimization
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Research Group 2003).

Les inégalités valides de capacité fortifiée (7) se présentent en nombre polynomial.
Par conséquent, stocker ces inégalités dans une réserve et vérifier leur satisfaction
à chaque fois que l’algorithme de plans sécants est appelé, reste une façon efficace
de résoudre leur problème de séparation. En revanche, les inégalités d’arbres de
cardinalité k (8) et les inégalités de maille (9) apparaissent en nombre exponentiel
et ainsi nécessitent une approche plus ingénieuse pour résoudre leur problème de
séparation.

Theorem 16 - Séparation des inégalités d’arbres de cardinalité k

Le problème de séparation associé aux inégalités d’arbres de cardinalité k (8) est
N P-Difficile.

Theorem 17 - Séparation des inégalités de maille
Le problème de séparation associé aux inégalités de maille (9) est N P-Difficile.

De ce fait, la conception d’un algorithme polynomial capable de résoudre les
problèmes de séparation associés aux inégalités d’arbres de cardinalité k (8) et aux
inégalités de maille (9) est invraisemblable, à moins que P=N P . Il faut donc espérer
qu’un algorithme heuristique soit satisfaisant dans la recherche des inégalités violées.
C’est pourquoi nous proposons des heuristiques basées sur une approche gloutonne
pour résoudre ces problèmes de séparation.

Les résultats obtenus avec l’algorithme par coupes et branchements développé
surpassent nettement les performances obtenues avec CPLEX. En effet, nous avons
pu résoudre à l’optimalité 117 parmi les 315 instances testées dans la limite de 2
heures de temps de calcul, tandis que CPLEX n’a résolu que 7 de ces instances.

Conclusion

Dans cette thèse, nous avons exploré plusieurs aspects d’un problème combina-
toire issu de la gestion d’un système de transport à la demande comprenant une
flotte de véhicules électriques et autonomes.

Dans un premier temps, nous avons présenté le Problème de Minimisation du
Nombre d’Arrêts Unitaire, une variante du Problème de Minimisation du Nombre
d’Arrêts introduit par Pimenta et al. 2017. Une revue de la littérature sur les
problèmes de transport à la demande a été fournie et d’autres problèmes issus du
domaine des télécommunications se sont révélés proches du Problème de Minimisa-
tion du Nombre d’Arrêts Unitaire.
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Ensuite, nous avons étudié quelques propriétés des solutions optimales du pro-
blème. Une telle étude a permis la découverte de nouvelles bornes sur le coût des
solutions optimales ainsi qu’une meilleure compréhension des situations où l’optima-
lité peut être perdue si l’on adopte certaines politiques "intuitives". Des algorithmes
combinatoires performant en temps polynomial et capables de résoudre des classes
d’instances spécifiques ont été proposés. En revanche, le problème a été démontré
N P-Difficile pour toute valeur de C ≥ 2, ce qui a permis de répondre à la conjec-
ture posée par Pimenta et al. 2017. Il est important de noter que les preuves de
complexité utilisées sont valides même pour le cas où le graphe associé est planaire
biparti. Une telle propriété nous a permis d’étendre nos résultats à des problèmes
liés améliorant ainsi leur classification de complexité actuelle.

Une fois que le problème a été démontré N P-Difficile, l’idée de concevoir un algo-
rithme exacte performant en temps polynomial a dû être abandonnée. Toutefois, le
besoin de méthodes exactes demeurait. Une formulation linéaire en nombres entiers
fournit par Pimenta et al. 2017 a été étudiée et s’est rapidement révélée particuliè-
rement faible. Une étude faciale de l’enveloppe convexe des solutions réalisables du
Problème de Minimisation du Nombre d’Arrêts Unitaire a donc été menée afin de
mieux comprendre comment cette formulation pourrait être améliorée. La dimension
d’un tel polyèdre est alors fournie ainsi que les conditions nécessaires et suffisantes
dans lesquelles les inégalités composant la formulation définissent les facettes. Des
familles d’inégalités valides capables de renforcer la formulation ont finalement été
introduites. Les conditions nécessaires et suffisantes dans lesquelles certaines de ces
familles définissent des facettes ont été présentées.

Enfin, les inégalités valides introduites ont été mises à l’épreuve dans le cadre
d’une approche par coupes et branchements. Les problèmes de séparation associés
à chaque famille d’inégalités valides ont été étudiés et lorsqu’ils ont été détectés
comme N P-Difficile, des procédures heuristiques ont été développées pour recher-
cher efficacement des coupes violées. Afin d’améliorer les performances de calcul,
des méthodes de rupture de symétrie connues dans la littérature ont été étudiées
et adaptées au Problème de Minimisation du Nombre d’Arrêts Unitaire. Une com-
paraison entre ces méthodes a été effectuée et l’algorithme de Fixation Orbitale dû
à Kaibel, Peinhardt et Pfetsch 2011 a été choisi pour être celui implémenté
dans notre algorithme par coupes et branchements. Une nouvelle limite supérieure
pour le nombre de véhicules nécessaires à l’obtention d’une solution optimale est
également proposée, ce qui entraînera un grand nombre de variables éliminées.

Les résultats expérimentaux ont prouvé que notre approche surpasse largement
l’algorithme traditionnel par coupes et branchements de CPLEX. L’écart d’intégra-
lité restant de toutes les instances testées a été réduit lors de l’application de notre
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méthode. De plus, un nombre considérable d’instances qui n’ont pas été résolues
de façon optimale dans le délai de deux heures par CPLEX, ont finalement pu être
résolues à l’aide de notre algorithme.

Il reste encore certainement beaucoup d’aspects inexplorés avec un potentiel
scientifique important à étudier autour du Problème de Minimisation du Nombre
d’Arrêts Unitaire. Les axes de recherche futurs pourraient impliquer une étude plus
approfondie des inégalités d’arbres de cardinalité k généralisées, dont les conditions
nécessaires et suffisantes dans lesquelles des facettes sont définies font toujours dé-
faut. De plus, des procédures de séparation efficaces pour la prise en compte de
ces inégalités pourraient améliorer davantage la performance de notre algorithme
par coupes et branchements. Nous pensons également qu’une formulation étendue
avec une relaxation linéaire plus serrée pourrait être la réponse pour éviter d’avoir à
procéder à autant de coupes supplémentaires afin de renforcer la formulation. Pour
l’aspect de la complexité, la réponse à notre conjecture selon laquelle le Problème
de Minimisation du Nombre d’Arrêts Unitaire d’Intersection est N P-Difficile pour
la capacité C = 4 (même lorsque G est restreint à la classe des graphes bipartis
planaires) reste une question ouverte qui mérite de l’attention.
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