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Résumé en français

Ce travail porte sur l’étude de l’ingénierie de la structure de bande ainsi que de

l’interaction des résonateurs pour les ondes élastiques à base de matériaux micro et nano

structurés déposés sur un substrat piézoélectrique recouvert d’une couche guidante.

En particulier, nous nous intéressons à l’interaction des ondes acoustiques de surface

polarisées transversalement (ondes de Love) avec des structures périodiques composées

de micro-trous ou/et de micro-piliers disposés en réseau carré.

Introduction

Les cristaux phononiques (CPns) sont des matériaux synthétiques formés par des

variations périodiques des propriétés acoustiques, comme l’élasticité et la masse. [50,

52]. Ils suscitent depuis une vingtaine d’années un intérêt de plus en plus croissant.

Ces matériaux artificiels présentent des bandes interdites, c’est-à-dire des plages de

longueur d’onde ou de fréquence dans lesquelles les ondes élastiques ne peuvent pas

se propager à travers la structure. Ce qui est à l’origine de multiples applications pour

contrôler la propagation des ondes.

Les bandes interdites des CPns sont généralement classées en deux types : l’un

est dû à la diffraction de Bragg, l’autre à la résonance locale. Le mécanisme de Bragg

existe dans les systèmes périodiques et repose sur l’interférence destructive des ondes

diffusées par les inclusions. Pour la bande interdite de type résonance locale, ou bande

interdite d’hybridation, qui découle du croisement évité de deux modes couplées (mode

1
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de résonance propre d’un résonateur et mode qui se propage dans la structure) dans la

bande de fréquences inférieure, la résonance d’un seul résonateur joue le rôle principal.

Les CPns ont été principalement étudié en intéragissant avec les ondes de volume,

les ondes de Rayleigh, les ondes de Lamb et les ondes de Love. Cependant, les ondes de

volume et les ondes de Rayleigh sont facilement diffusées. En plus, les dispositifs des

ondes de volume à haute fréquence sont difficile à réaliser [98]. Les ondes de Lamb quant

à lui se propagent dans une couche fine d’epaisseur de longueur d’onde ou sous-longueur

d’onde. Ce qui rend ses dispositifs fragiles difficile à manipuler [154]. Les ondes de

Love sont considérées comme une compromise entre les ondes de Rayleigh et les onde

de Lamb. Ils sont confinées à la surface comme ils se propagent dans une fine couche

guidante. Ses dispositifs sont solides parce que la couche guidante est déposée sur un

substrat semi-unfini. En outre, les ondes de Love sont compatibles avec l’environnement

liquide [15, 16], ce qui en fait un candidat idéal pour les applications de biocapteurs.

Ces dernières années, le contrôle des vibrations mécaniques en tant que élément

constitutif de la recherche sur les effets liés aux quantiques a suscité un intérêt considé-

rable [116, 136, 158, 161, 163, 164, 166–171]. Le contrôle cohérent des propriétés de

vibration[166, 167], effets de couplage[160, 171, 172], dissipatif[173] et caractéristiques

non linéaires[174] des résonateurs mécaniques donne lieu à une grande variété d’appli-

cations dans les capteurs[175–177] et traitement de signal[178–180]. Différents modes

dans un seul résonateur mécanique peuvent être couplés en ajustant les paramètres[166,

174, 181, 182], alors que différents résonateurs mécaniques peuvent être couplés à

travers divers milieux[159, 160, 169, 171, 183, 184] ou par interaction directe.[185,

186]. En acoustique, des résonateurs couplés ont été rapportés dans des systèmes tels

que des cavités[171], guides d’ondes[169], cavités/guides d’ondes [116] ou résonateurs

locaux[170, 187]. L’interaction entre différents résonateurs permet aux mécanismes

correspondants d’être mis à l’échelle au réseau de résonateurs afin de gérer des systèmes

avec une finesse supérieure [133, 136, 171, 180, 188, 189].
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L’objectif de cette thèse est d’étudier numériquement le mécanisme d’interaction des

ondes de Love avec les modes de résonances des microstructures sous forme de trous

et/ou de plots déposés périodiquement à la surface d’un matériau piézoélectrique. Le but

est de comprendre les méchanismes des bandes interdites, de concevoir et d’optimiser

de nouveaux résonateurs à forte résonance, et d’étudier l’interaction entre différents

résonateurs pour le développement des fonctions avancées de traitement du signal.

Interaction des ondes de Love avec cristaux phononiques parfaits

les modèles théoriques sont implémentés dans le logiciel COMSOL Multiphysics

afin d’étudier les structures de bande et les spectres de transmission de différents CPns

en interaction avec les ondes de Love. La profondeur d’énergie normalisée (PEN) est

calculée pour sélectionner les ondes de surface, ainsi que le rapport de composante de

déplacement transversal horizontal (TH) afin de distinguer les ondes de Love.

Nous avons d’abord étudié les structures de bandes pour les CPns à trous et/ou à

Ni plots en réseau carré sur une couche guidante en SiO2 construite sur un substrat de

quartz coupe-90ST. Les ondes de Love se propagent suivant l’axe x (l’axe y du quartz

coupe-ST). La surface est perpendiculaire à l’axe z. La constante du réseau pour les CPns

à trous et/ou à plots est a=4µm, le rayon des trous (ou des plots) est rh=0,2a ( ou rp),

l’épaisseur de la couche guidante (= la profondeur des trous) est H=0,6a, la hauteur des

plots est h.

Un example de diagrammes de bandes est montré sur la Fig 1 pour les réseaux

(a) à trous et (b) à plots. Les paramètres géométriques pour les plots sont rp=0.2a et

h=0.6a. Les lignes noires pleines / en pointillés indiquent la vitesse des ondes TH

dans le substrat / la couche guidante. Les couleurs rouge-jaune indiquent le rapport

de composant TH. Les lignes grises sont les modes se propageant dans le volume. Un

mode en rouge est un mode TH au surface. La zone bleue indique la bande interdite

partielle ou absolue des modes de Love. On voit que le CPn à trous donne lieu à une
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grande bande interdite partielle de Bragg suivant l’axe x. Le CPn à plots quant à lui

est capable de générer des modes de résonances locaux au-dessous des fréquence d’un

petite bande interdite partielle de Bragg. Grâce à la génération exclusive d’ondes TH

dans notre structure (SiO2 / 90ST quartz) suivant la direction x, nous ne présentons à

droite de chaque diagramme que les modes TH (rapport TH> 0,5) dans la région ΓX.

Les déplacements, déformations des modes de surface ont été fournis et expliquées. Les

polarisations correspondantes se sont révélées cohérentes avec les calculs. Ensuite, nous

(a) (b)

Figure 1 – Structures de bandes complètes au sein des réseaux carrés (a) à trous et (b) à
plots. C est la vitesse des ondes TH se propageant suivant l’axe x dans le substrat. La
structure de bande des modes TH dans la région ΓX sont affichées à droite de chaque
diagramme.

avons proposé et étudié les influences des paramètres géometriques (le rayon du trou et

plot, l’épaisseur de la couche guidante et la hauteur du plot) sur les bandes interdites.

En comparant différents matériaux des plots (diamant, silicium et or), on a montré que

plus la vitesse acoustique est faible, plus les fréquences propres des modes sont basses.

Et puis, pour comprendre comment le structure de bande se traduit sur une trans-

mission, nous avons développé et implémenté un modèle sous COMSOL. Un exemple de

résultat est illustré sur la Fig 2. Il présente la transmission des ondes de Love à travers le

réseau à plots. On observe clairement que les bandes interdites (Bragg ou de résonances

locaux) se traduisent par les intervals d’absorption sur la transmission.

Nous avons également mené une série de simulation en combinant et réglant les

CPns à trous et à plots. nous avons démontré que les CPns mélangés ont les capacités

d’élargir le bande interdite ou de générer un mode isolé dans la bande interdite.
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Figure 2 – (gauche) Structure de bande des modes TH pour le CPn à plots dans la direc-
tion ΓX. (droite) Spectre de transmission relative ∆S21 des ondes de Love se propageant
suivant l’axe x à travers le CPn à plots. rp = 0,2a,h = 0,6a,H = 0,6a,a = 4µm. Le nombre
de plots suivant l’axe x est NCP n = 10.

Résonateurs locaux de surface

L’interaction des résonateurs locaux (piliers) avec les ondes Love ont été étudiée

pour la première fois sur les méta-surfaces à un ou deux lignes de piliers suivant l’axe y

(perpendiculaires à la direction de propagation x). La périodicité suivant la direction y

est ap=2µm. La taille du plot est rp=0,2ap et h=0,6ap. L’epaisseur de la couche guidante

est H=2,4µm.

Premièrement, on a démontré que le mode de torsion intrinsèque des piliers est bien

excité par les ondes de Love. Une ligne de piliers identiques peut provoquer une forte

absorption de transmission dû à une interférence destructive.

Deuxièmement, l’analogue acoustique de Autler-Townes Splitting (ATS) et de la

resonance Fabry-Perot (FP) des ondes de Love sont démontrés dans deux lignes de

piliers identiques en faisant varier la distance entre les lignes de piliers. L’ATS apparaît

lorsque la distance est inférieure à la demi-longueur d’onde et qu’un fort couplage est

généré entre les lignes des piliers, ce qui provoque la division du creux de transmission

induit par le mode de pilier en deux creux avec une fenêtre de transparence au milieu. La

Version intermédiaire en date du 28 novembre 2019



6 Résumé en français

résonance FP existe aux positions où la distance entre les lignes des piliers est un multiple

de la demi-longueur d’onde. La proximité de la résonance FP avec le mode intrinsèque

de pilier donne naissance aux modes de cavité avec amélioration de la transmission sur

les deux bords du creux unique. Nous avons évité de confondre les résonances FP avec

les modes de cavité en présentant les différentes variations de fréquence par rapport à

la distance entre les piliers. Troisièmement, le rayon d’une ligne de pilier est modifié

pour désaccorder la fréquence de résonance des piliers. Dans la région de couplage

des piliers, l’effet de couplage décroît avec l’augmentation de la différence des rayons

(see Fig 3(a) et (b)).Lorsque la distance entre les lignes des piliers est un multiple de la

moitié de la longueur d’onde, la résonance FP ainsi que les résonances des deux piliers

différents donnent lieu à la transparence induite acoustiquement (AIT), see Fig 3(c) et

(f). Les phénomènes ATS et AIT sont ensuite ajustés respectivement avec les modèles

de formule correspondants, montrant de bons accords. Les paramètres d’ajustement

sont présentés comme fonctions du paramètre géométrique. Le critère d’information

d’Akaike (AIC) est ensuite utilisé pour la première fois dans un système acoustique pour

évaluer quantitativement la qualité des modèles d’ajustement, ce qui illustre le passage

de l’ATS à l’AIT ainsi que la périodicité de l’AIT en augmentant la distance entre les

lignes des piliers. Nous avons montré que La différenciation théorique et analytique de

l’ATS et de l’AIT devrait être utilisée conjointement pour discriminer l’attribution du

spectre observé à l’un ou l’autre des mécanismes physiques.

Ensuite, on a démontré que deux piliers différents qui s’alternent sur une même ligne

soulèvent deux creux avec un pic au milieu. Le premier creux avec le pic donne lieu à une

résonance Fano lorsque les deux piliers présentent un petit décalage géométrique et que

le couplage entre les piliers est assez fort que les creux désaccordent avec les fréquences

de mode de chaque pilier. Cette résonance peut être de plus en plus confineée en

réduisant la périodicité le long de la direction y, avec un facteur de qualité allant jusqu’à

3,33×105. Les phénomènes ci-dessus peuvent également être obtenus en désaccordant
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Figure 3 – Spectre de transmission relative des ondes de Love avec d= (a)0,5ap, (b)ap,
(c)2ap, (d)2,4ap lors du changement progressif du rayon du deuxième pilier rp2 de
0.195ap à 0.205ap. Le rayon du premier pilier est rp1=0.2ap, ap = 2µm. (e) Champs de
déplacement uy aux creux et au pic pour l’ATS avec d=0,5ap et rp1=rp2=0,2ap. (f) est les
mêmes que (e) mais pour l’AIT avec d=2ap, rp1=0,2ap et rp2=0,202ap. La résonance FP
tombe à d=2ap.

la hauteur des piliers.

Modes de defaut couplés avec les résonateurs locaux

Les modes de cavité dans la bande interdite pour les ondes de Love sont démontrés

pour la première fois en supprimant des lignes de trous dans la couche guidante du CPn

à trous. Les pics de transmission des modes de cavité dans la bande interdite originale

du CPn à tous sont attribués à l’apparition de nouveaux modes plats dans la structure

de bande, see Fig 4(a). Les spectres de transmission sont en accord avec les prévisions

de structure de bande. On a montré que le rayon des trous a un effet important sur le

confinement des ondes et les performances de transmission. Les fréquences de résonance

des modes de cavité sont liées à la largeur de cavité. Les modes de cavité symétriques et

asymétriques apparaissent alternativement avec l’augmentation de la largeur de la cavité.

Le facteur de qualité peut être amélioré en augmentant la taille du cristal. Toutefois,

la transmission sera réduite en raison d’une perte d’énergie. Des modes de cavité ont

également été démontrés dans des CPns à piliers et mélangés.
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Figure 4 – (a) Structure de bande des modes de Love pour le CPn à trous contenant une
cavité dans la direction ΓX. La région bleu est la bande interdite originale du CPn à trous.
La largeur de cavité est W=5a. (b) Spectre de transmission relative des ondes de Love
avec et sans défaut (cavité). Le nombre de trous à chaque côté est NCP n=4. (c) Champs
de déplacement totals et déformations dans la supercellule pour les deux modes de
cavité. Conditions périodiques sont appliqués suivant la direction y. rh=0,2a, H=0,6a,
a=4µm.

Une cavité de taille optimale est ensuite choisie pour coïncider avec la fréquence du

mode de torsion du pilier. La cavité contenant des piliers pour les ondes de Love est

démontrée pour la première fois en introduisant les piliers dans la cavité. En divisant la

cavité en deux parties (N / M) en fonction de l’amplitude du déplacement, nous avons

systématiquement étudié l’effet de couplage entre le pilier et le mode cavité. Le pilier en

position N (au nœud) peut être excité et est couplé au mode cavité, amenant le pic du

mode cavité à se scinder en deux pics. Tandis que le pilier en position M (anti-nœud)

n’est pas couplé au mode cavité mais peut encore donner lieu à un pic en émettant une

onde supplémentaire. L’effet de division des pics est expliqué comme un croisement

évité lorsque le mode de la cavité est couplé au mode intrinsèque du pilier, see Fig 5.

L’efficacité du mode cavité peut être améliorée lorsqu’il est couplé au mode pilier.

L’augmentation du nombre de piliers permet d’améliorer les performances de résonance

du pilier et l’efficacité de la cavité, see Fig 6. Le pic de transmission le plus confiné créé à

la fréquence du mode cavité d’origine présente un facteur de qualité 240 fois supérieur.

Par rapport à l’augmentation de la taille du cristal de cavité nue (sans pilier), la cavité
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Figure 5 – (a) Fréquences propres des modes de Love comme une function du rayon
du pilier losque un pilier est mis au différentes positions de la cavité. N (M) position
indique que le pilier est au nœud (anti-nœud) du mode de cavité. La largeur de cavité
est W=4,5a. (b) et (c) sont les spectres de transmission des modes cavité lorsqu’un pilier
de rayon rp=0,1a est mis respectivement au nœud et anti-nœud de la cavité. rh=0,2a,
H=0.6a, h=0.3a, a=4µm.

couplée fournit une méthode pour améliorer de manière significative le facteur Q tout

en maintenant un niveau de transmission élevé.

Figure 6 – Spectre de transmission et structures de bande des modes TH de surface pour
les CPn à trous contenant la cavité (a) sans et (b) avec piliers. Les zones bleues sont la
région de la bande interdite d’origine du CPn à trous. La ligne pointillée représente la
fréquence du mode de torsion des piliers. La périodicité des piliers suivant la direction
x est ap. (c) Champs de déplacement uy et des pics de transmission élargis de modes
C2 (mode cavité nue), Cp2 (mode de cavité couplé aux piliers) et 1er mode des piliers.
W=4,5a, rh=0,2a, rp=0.2ap, H=0.6a, h=0.6ap, a=4µm, ap=2µm.
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Conclusion

Dans ce travail, l’étude des matériaux micro et nano structurés pour l’ingénierie des

bandes interdites acoustiques dans les dispositifs électro-acoustiques a été présentée, en

particulier pour l’étude des CPns 2D à trous et / ou à Ni piliers interagissant avec les

ondes de Love et de l’interaction entre les différents résonateurs.

En étudiant les CPns infinis à trous et à piliers, on a compris les méchanismes des

bandes interdites et l’influence des paramètres géométriques et élastiques sur celles-ci.

En combinant et en ajustant la position et la taille des trous et des piliers, nous avons

étudié le couplage entre la bande interdite de Bragg (du CPn à trous) et la résonance

locale (du CPn à piliers).

On a ensuite étudié l’interaction entre les ondes de Love et les méta-surfaces à piliers.

Les couplages entre les piliers identiques et différents ont donné lieu aux phénomènes

divers comme ATS, résonance FP, modes de cavité, AIT et résonance Fano. Les distinc-

tions théorique et analytique de l’ATS et l’AIT se sont révélées méthodologiquement

complémentaires.

Par la suite, on a créé un défaut linéaire dans le CPn à trous et a observé des modes

de défaut (cavité). En insérant les piliers dans la cavité, on a étudié l’interaction entre

les modes cavité et la résonance local d’un seul pilier ou des piliers collectifs, ce qui

donne lieu à un effet de division des pics et peut considérablement améliorer le facteur

de qualité des modes cavité sans augmenter la taille des cristaux.

Les résultats présentés dans cette étude pourraient être utilisés pour des applications

acoustiques potentielles telles que le traitement du signal, le contrôle des ondes, les

méta-matériaux et les biocapteurs.
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Introduction

Phononic crystals

phononic crystals (PnCs) have received increasing attention in the last two decades

and are widely investigated for their potential applications in various areas, inclu-

ding RF communications[1–7], acoustic isolators[8–13], sensors[14–19], thermoelectric

materials[20–23] and meta-materials[24–32].

The PnCs are synthetic materials formed by periodic variations of acoustic properties,

such as elasticity and density. They are used primarily to control the acoustic waves

propagation. From the point of view of the wave propagation, the wavelengths that

can propagate in the structure are called modes. The groups of modes are the passing

bands. The frequency ranges where the waves can not propagate are the band gaps.

The dispersion diagram can be used to predict passing bands, band gaps, negative

group velocity branches, flat branches, and so on. The concept of band gap is the key

element for the manipulation and control of wave propagation. PnCs is an elastic analog

of the photonic crystals (PtCs) that interact with electromagnetic waves, as well as

the atomic lattices that interact with the electronic waves. The periodic dielectric &

magnetic constants/atoms are replaced by the periodic elastic parameters & density,

and the generated photonic/energy band gaps are replaced by acoustic band gaps.

Band gaps of PnCs are generally classified into two types : One is due to Bragg

11
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diffraction, the other is due to local resonance. The Bragg mechanism exists in the

periodic systems and is based on the destructive interference of the scattered waves by

the inclusions. The central frequency of the first Bragg band gap is anti-proportional

with the lattice constant, with the wavelength of the same order of magnitude as the

lattice constant. The use of periodic structures for the manipulation of elastic waves in

piezoelectric materials was proposed in 1965 by White and Voltmer by the invention

of the concept of inter-digital transducers (IDTs). These metal structures deposited on

the surface of a piezoelectric material that can excite, detect waves and also implement

advanced functions of signal processing (filtering, compression, delay lines for color TV

receivers). By analogy with optics and crystallography, these structures were used to

make Bragg reflectors and other structures in the fields of electronics, signal processing

and telecoms. At the beginning of the 90s, physicists introduced phononic crystal termi-

nology by analogy with optics and electronics to design a periodic medium, which result

in the passage of nano-metric, micro-metric, milli-metric or even metric wavelengths.

The designs were then extended to all materials with inhomogeneity or contrast of

physical properties. The local resonance type band gap, or hybridization band gap,

comes from the avoided crossing of two coupled bands in the lower frequency range.

This band gap depends mainly on the intrinsic vibration of the individual particle, but

nearly not on the periodicity of PnC. That is, the hybridization gaps persist even with

structural disorder. The central frequency of the hybridization band is anti-proportional

with the individual particle size, which is at a scale smaller than the wavelength. In

2000, local resonant PnC was first demonstrated by Liu et al. They showed that their

PnC behaves as a medium with a negative effective elastic constant, which integrate into

the category of acoustic meta-materials.

Since the 2000s, research has focused on engineering the physical properties of

phononic crystals and meta-materials. The scientists have shown that band gaps are

determined by several factors, such as the physical properties of each constituent of the
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artificial material, the geometric parameters, and the symmetry of the lattice [33–49]. In

general, for a given lattice constant, a wider band gap means that PnC devices can be

made more compact. In the case of meta-materials, a larger ratio between the wavelength

of interest and the characteristic dimension of the unit cell implies a lightweight artificial

material. As a result, many studies have been conducted to achieve these goals and can

be summarized in three different strategies : the inherent Bragg scattering in the periodic

structure [33, 34], the local resonance of the unit cell [35–43], and the coupling between

the two approaches [43, 44]. Many original topologies have been proposed and optimized

to widen the band gap [45–49]. The study of PnCs / Meta-materials has thus become

one of the most active and rapidly growing disciplines in physics (condensed matter

physics, propagation of waves in heterogeneous and periodic media) and in engineering

(telecoms, acoustics , ultrasound, mechanical engineering, geophysics).

PnCs are no doubt one of the most promising approaches to the manipulation and

control of acoustic and elastic wave propagation [50–52]. Cavities and waveguides based

on PnCs, for example, offer the possibility of advanced engineering of the scattering pro-

perties and can potentially provide modes with greatly reduced group speeds (near-flat

modes). These have been theoretically and experimentally demonstrated for different

acoustic waves (such as bulk waves [1, 2], Rayleigh waves [53, 54] and Lamb waves [3,

55]) in the solid/solid or solid/fluid PnCs. In recent years, much work has been done on

PnCs and meta-materials to control elastic waves in micro-electromechanical system

(MEMS) resonators to reduce energy losses via supports and anchors, and sensitivity

to noise disturbances from sources of environmental vibration [56–58]. However, re-

searchers still face the challenge that concepts are both original and compatible with

MEMS technologies. Robustness is a point that is not often taken into account, since

the performance of PnCs integrated MEMS imposes strict restrictions on the area and

volume of structures. Establishing robust topologies and optimizing PnCs performance

and meeting the requirements of MEMS applications remains a major problem.
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Objectives

This work is interested in the resonators periodically deposited on a substrate ope-

rating in hypersonic regimes. The idea in this thesis is to design and characterize new

concepts and structures of artificial materials by theoretical and numerical approaches,

for optimally isolating or confining an acoustic wave. The objective of this thesis is

divided into two main lines : 1) Investigate the interaction of elastic Love waves with

holey or pillared PnCs and propose new resonators for the development of advanced

functions for signal processing. 2) Study the interaction of Love waves with pillared

meta-surface to explore the coupling between adjacent pillars for potential applications

in wave control. The detailed goals of our work are listed below :

•Study the Interaction of Love waves with periodic structures like PnCs and meta-

surface. Understand the mechanisms of phononic band gaps, which refer to Bragg

scattering and local resonance.

•Build theoretical models to study band structures and transmission spectra of two

dimensional holey and/or pillared PnCs by the finite element method. Highlight the

existence of band gaps and local resonances.

•Discuss the geometrical and elastic parameters influences on the resonances.

•Design and characterize new resonators with strong resonances, which refer to

isolated modes or interaction of adjacent surface resonators. Study and optimize their

performance.

•Propose solutions to exploit the mechanisms of new resonators for the development

of advanced functions for signal processing.
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Thesis organisation

Besides the current introduction, the content of this thesis is divided into 6 chapters :

Chapter 1 brings up the history of phononic crystals and gives the bibliography

of materials with periodic structures, the experimental methods and technologies, the

waves involved to interact with PnCs, and the interaction between different acoustic

resonators. Applications of PnCs are also presented.

Chapter 2 reviews the fundamental theories of PnCs used in this work, including

essential elastic theory, the propagation of different surface acoustic waves (SAW), lattice

and band structure theories as well as the mechanisms of band gaps.

Chapter 3 describes the theoretical models built with the Finite Element Method

(FEM) using COMSOL software in order to study the band structures and transmission

spectra of different PnCs interacting with Love waves. Energy depth is calculated to

select the surface waves, as well as the shear horizontal polarization ratio to distinguish

Love waves from SAW. Displacements and polarizations of surface eigenmodes are

provided. Different geometrical parameters are discussed as well as the consideration of

material composition.

Chapter 4 studies the local resonance of the pillared PnC. The relation between

hybridization band and the periodicity is provided. Acoustic analogue of Autler-Townes

Splitting, cavity modes and acoustically induced transparency are observed for two lines

of pillars that are perpendicular to the direction of waves propagation. The distance

between the two lines of pillars plays a main role on the pillars performance. Fano

resonances are observed for the geometrically different pillars which is alternate in a

line that is perpendicular to the waves propagation direction. The coupling between the

different pillars become more strong when their geometrical difference or the periodicity

decreases. By combing these two simple structures, a passing band with tunable width
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and frequency can be realized.

Chapter 5 introduces defect states into the holey PnC by removing lines of holes

from the guiding film perpendicularly to the propagation direction. New flat cavity

modes are observed in the band gap of the perfect PnC and give rise to transmission

peaks isolated from outside band. Geometrical parameters such as holes radius, cavity

width and crystal size are discussed. Cavity modes in pillared and mixed PnCs are also

observed. By introducing lines of pillars into the cavity, we studied the coupling between

the pillars mode and the cavity modes. Single pillar line in the cavity is investigated by

modifying the position of the pillar. Collective pillars give rise to extremely flat modes

that lead to sharp transmission peak. When pillar mode frequency approaches the cavity

mode, peak splitting effect is observed on the original cavity mode. The pillars are found

to be able to significantly improve the quality factor and transmission of the cavity

mode.

The last chapter summaries all works and gives some perspectives.
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Chapitre1
States of the Art

This Chapter brings up the context of phononic crystals (PnCs) and meta-materials.

The presentation is divided into three lines : the first line reviews the history and

advances of materials with periodic structures, as well as the experimental methods

and technologies. The second line is about the involved waves that interact with PnCs.

The third line presents the interaction between different acoustic resonators. Finally, the

applications of PnCs are given in the last part.

1.1 History and context of phononic crystals and meta-materials

The theory of PnCs is based on the elastic waves propagation in periodic structures.

Corresponding investigations can go back to Floquet’s research on the unidimensional

Mathieu equation in 1883 [59]. Then, Rayleigh initiated the study on the propagation

characteristics of elastic waves in continuous periodic structures in 1887 [60], where he

predicted the existence of certain frequency ranges in which the waves can not propagate.

In 1953, Brillouin conducted a comprehensive systematic study of the propagation

properties of periodic materials [61]. In 1965, acoustic Bragg mirrors were introduced

as an idea of unidimensional periodic organizations to reflect waves [62].

17
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Initially inspired by an analogy with the quantum mechanical band theory of solids

in which electronic waves interact with a periodically arranged atomic lattice to form

energy bands separated by band gaps, photonic crystals (PtC) were proposed by E.

Yablonovitch [63] et S. John [64] in 1987, where they proved that the systems composed of

periodic structures of dielectric materials for dispersive components of electromagnetic

waves can provide frequency bands in which the electromagnetic waves are completely

reflected.

Time comes to 90 decades. In 1992, inspired by PtCs studies, M. M. Sigalas and E.

N. Economou have theoretically demonstrated the existence of band gaps for elastic

waves propagating in periodic structures [50]. The term "phononic crystals" was first

proposed by Kushwaha, Halevi, Dobrizynski and Djafari-Rouhani [52] in 1993 when

studied out of plane waves in a periodic array of nickel alloy cylinder in an aluminum

alloy matrix. Then in 1994, they proposed several basic rules about two-dimensional

(2D) structures involving metal cylinders in a solid matrix [65]. Two-dimension denotes

that the periodicity of PnC is two dimensional. In 1995, the first manifestation with a

band gap in a 2D PnC was presented by Martinez-Sala [66] using a minimalist sculpture

of Eusebio Sempere exposed in Madrid that can be seen in the figure 1.1. The sound

attenuation is measured in outdoor conditions for sound-wave vectors perpendicular to

the cylinders’ vertical axis. The observed attenuation peak frequency, the volume fraction

occupied by the scatterers and the velocity ratio are all compatible with theoretical

predictions. The existence of band gap in PnCs was first confirmed. Since then, the PnCs

investigation has caused a great deal of concern.

Before 2000, all PnCs were designed on the theoretical basis of Bragg scattering,

which requires lattice constants corresponding to wavelengths. This is the limit of the

construction of PnCs. In 2000, Liu et al.[35] designed a matrix of silicon-coated lead

spheres embedded in epoxy, as shown in figure 1.2, which has a much smaller periodicity

than propagating wavelengths and is capable of opening band gaps in the sonic regime.
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Figure 1.1 – First demonstration of phononic band gap by the sculpture of Eusebio
Sempere.[66]

This PnC is called locally resonant phonon crystal (LRPnC), since the band gap results

from the relative motions of the individual constituents of the crystal. They showed

that their PnC behaves as a medium with a negative effective elastic constant, which

integrate into the category of acoustic meta-materials. This discovery has developed

another search domain for PnCs.

In addition to these most important discoveries that we have mentioned above, in

the whole research process of PnCs, there are also many great achievements in this

domain, which have made tremendous contributions to the subsequent research. The

first bi-dimensional PnC in the laboratory was realized simultaneously by Vasseur et al.

[67] and Sanchez-Perez et al. [68] in 1998. In the same year, Sprik et al. [69] proposed

the idea of transfer from 2D PnC to 3D PnC. Two years later, the first demonstration of

a 3D PnC was realized [35]. By the mid-2000s, many practical demonstrations had been

performed, but all were in macroscopic scales (single inclusion diameter >1 mm) [1, 2,
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Figure 1.2 – First demonstration of LRPnC. (A) Cross section of a coated lead sphere
that forms the basic structure unit (B) for an 8×8×8 sonic crystal. (C) Calculated (solid
line) and measured (circles) amplitude transmission coefficient along the [100] direction
as a function of frequency. (D) Band structure of a simple cubic structure of coated
spheres. [110] direction is on the left of Γ point while [100] direction is on the right [35].

68, 70–79]. This results in large structures limited to frequencies below 1 MHz. These

hand-assembled devices were expensive, inherently lossy, time consuming and difficult

to replicate [10]. With the development of micro-fabrication techniques, the research of

PnCs was transferred from macroscopic scales to microscopic scales (single inclusion

diameter < 100 µm). PnC-based devices could be miniaturized and experimentally

verified at very high frequencies (VHF :30-300MHz) and ultra-high frequencies (UHF :

300-3000MHz) [80–83].

Two-dimensional (2D) PnCs attracted the most attention because of the abundant

physical connotation. 2D PnC are generally constructed on a semi-infinite substrate or a

plate, where the periodic arrays of the inclusions are on or in the host matrix. Wu et al.

[81] presented the first realization of a microscopic 2D PnC with a lattice constant of

10µm, as shown in figure 1.3. 2D PnC Band gaps have been observed in several material

systems,including Si / air [20, 55, 81, 84–86], SiC / air [11], AlN-TiN / air [87], LiNbO3

/ air [88–90], Si / W [91] and SiO2 / W [4, 10, 92–96]. Solid/solid PnCs demonstrated
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lower sensitivity to lithography compared with solid/air PnCs [97], allowing higher

operating frequency for radio frequency (RF) and thermal applications. Some devices,

such as cavities, requiring very low material damping have been better achieved in

solid/air systems by using materials with a high quality factor of resonance (high Q

materials) such as Si [55] et SiC [11].

Figure 1.3 – (a) Schematic of air/Si PnC and slanted-finger inter-digital transducers
(SFITs) ; (b) a microscopic picture of the 2D PnC ; (c) Cross section of the 2D PnC.[81]

Early investigations of PnCs use bulk acoustic waves (BAW). However, the utilization

of BAW is limited in the microscopic experimental aspects because it is really hard

to obtain spaced holes with a diameter of 1µm in a material that has a thickness of

several hundred micrometers [98]. As a result, surface acoustic waves (SAW)-based PnC

have broader application prospects [8, 99, 100]. SAW are guided along the surface, and

are confined in the direction perpendicular to the surface. The SAW-interacted PnCs

had always been based on periodic holes [25, 101, 102] in the previous investigations

before the pillar-based PnCs [103–106] were proposed. In comparison to holes-based

PnCs, pillar-based PnCs can avoid the limitation of the host materials thickness. In

addition, pillar-based PnCs have a new geometrical parameter (the height of pillars)

which can adjust the frequency of acoustic mode and the position of band gaps, along

with other parameters [104, 107], resulting in more complex propagation physics and

waves confinement [108]. Pillar-based PnCs exhibit Bragg band gap as well as complete

local resonant band gap that was proved to be independent of the periodicity [104, 109].

Different forms of inclusions have been discussed to modify the properties of PnCs.
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A. C. Hladky-Hennion et al. [110] studied the foam-like PnC consisting of a single

metallic phase. It is represented, theoretically and experimentally, to display a perfect

adaptation of the negative refractive index and a focusing capacity when it is surrounded

by water. S. Hemon et al. [87] presented the PnC based on conical holes drilled in a

two-layer plate. The composite plate is formed with a layer of aluminum nitride (AlN)

deposited on a thin metal film made of titanium nitride (TiN). The introduction of

the TiN plate contributes to slowly widening the band gap which becomes narrow

when the holes become conical and which close when the radius of a face of the cone

exceeds 15% the radius of the other face. C.-N. Tsai and L.-W. Chen [111] presented

the PnC with rectangular pillars. As the length-width ratio of the stud can change the

straightness of the equi-frequency curves in the band structure, the waveguide without

defect, the application of self-collimation, can be realized with the rectangular pillars .

The propagation direction of a self-collimated beam can be manipulated effectively by

varying the orientation angle of the inclusions. The coaxial tubes are made by H. Larabi

et al. [112]. The inner cylinder (core) is made of steel. This core is covered by alternating

shells constituted, respectively, by a thin layer of elastically soft material and a thin layer

of a hard material (steel). This coaxial tube is embedded in a water matrix. At very low

frequency, strong dips appear in the transmission spectrum. The number of dips evolves

in relation to the number of shells. Oral Oltulu et al. [15] proposed the PnC in elliptic

section of BaTiO3 pillars in a polar liquid (water). The band structure and the width

of the band gap are the functions of the orientation angle. The largest standardized

band gap was found at two different angles, θ = 0° and θ = 90°. The appearance and

disappearance of the band gap implies a rotational anisotropy for angles of ±45°. The

hierarchical structure is proposed by Y. Chen and L. Wang [113] as a class of honeycombs,

shown in Fig 1.4. The composition of regular honeycombs and hierarchical honeycombs

is a vitreous polymer, SU-8. Hierarchical honeycombs have large and multiple acoustic

band gaps. The mechanisms responsible for these band gaps depend on the geometric
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characteristics of hierarchical honeycombs rather than their composition.

Figure 1.4 – (a) Diagram of a classic honeycomb and hierarchical honeycombs. l0 and
t0 are the length and thickness of the cell walls. Dashed lines indicate supercells. (b)
Diagram of the cell walls of classical honeycombs, hexagonal, kagome and triangular
hierarchical honeycombs, respectively. [113]

By removing a subset of the diffusers, defects can be created in the PnCs. The defects

can introduce small passing band into the initial band gap [1], giving rise to applications

such as waveguide [2, 93, 114], cavity [1, 55, 115], filter [5, 75] and multiplexer [116]. An

example was given by the group of R. H. Olsson III [10]. Figure 1.5 shows the waveguide

made in the PnC based on the W inclusions in a SiO2 matrix. In the center of each

tungsten inclusion is a release hole. Aluminum nitride (AIN) transducers were utilized

on each side of the PnC for electrical characterization. The idea of defect is not limited

to removing inclusions. Any irregularity in the crystals can be regarded as a defect. Tube

in a pillared PnC were developed by Yabin Jin et al. [115].The tubes and pillars are made

of silicon, as well as the plate on which they are built. Lamb waves were generated. A

small bandwidth appears in the forbidden band due to the whispering-gallery mode of

the tube. By changing the inner radius of the tube, these modes can exist both within

Bragg band and low frequency band. The quality factor can be greatly improved by

introducing an additional cylinder between the tube and the plate.

Based on the idea of defect, A. Salman et al. [18] digitally realized a Mach-Zehnder

interferometer (MZI) formed by fluid-filled linear-defect waveguides in a 2D PnC, shown
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Figure 1.5 – SEM image of a waveguide made by removing 2 rows of W scatterers from
a phononic crystal square lattice plate. Inset shows the suspended plate and an AIN
transducer[10]

in Figure 1.6, to detect low concentrations of a analyte. PnC is composed of a square

array of empty steel cylinders. The detection of low concentrations of ethanol in the

order of 0.1 % in a binary mixture with water is achieved by replacing the contents of a

number of waveguide cells in an arm of the interferometer with the analyte.

Figure 1.6 – Schematic of the MZI incorporating waveguides with linear defects and
their T branches in the PnC [18].

A new emerging topic is the research for periodic dual phononic and photonic
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materials in which the phonon-photon interaction can be considerably improved with

the simultaneous confinement of electromagnetic and acoustic waves [117–119]. Called

phoxonic crystals, they have been proved to exhibit phononic as well as photonic band

gaps, and to be capable of sensing separately the sound and light velocity with defect

states [120, 121].

Besides the topics related to the existence of band gap, there is a continuing increa-

sing interest in the refraction properties of phononic crystals, in particular : negative

refraction phenomena and their applications in imaging and focusing (see Fig 1.7) of the

sub-wavelength in PnCs [14, 24, 122–124], auto-collimation and beam-splitting with

respect to the shape of the equi-frequency surfaces [125] , control of sound propaga-

tion with meta-materials focusing on cloaking phenomena [126] ,hyper-lenses [24] and

gradient index (GRIN) crystals (see Fig 1.8) [127, 128].

((c1)

(c2)

Figure 1.7 – Waves focusing based on negative refraction phenomena in PnC consisting
of 0.8-mm-diameter tungsten carbide beads surrounded by water. The beads are arran-
ged in a face centered cubic structure. (a) Experimental setup with rays indicating the
predicted directions of group velocity. (b) Diagram showing the focusing condition in
the PnC with negative refraction. Filed patterns measured without (c1) and with (c2)
the crystal in place. x′ and y′ axes are in the plane parallel to the sample surface. [78]
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(b) (c)

neff

(a)

Figure 1.8 – PnC with gradient (positive) refraction index by modifying the inclusion
radius. (a) Optical image of air holes in a silicon plate. (b) Designed (blue line) and
experimental (green line) profiles of the effective refraction index nef f . (c) Experimental
maximum of uz in the acoustic lens with 30 columns of air inclusions. Ray trajectories
(thin dashed lines) were obtained by using the experimental wave numbers. [127, 128]

1.2 Involved waves

Nowadays, the potential application of elastic wave devices is the field of mobile

communications. The field of sensors is also concerned but in a reduced way for the

moment. They are mainly used to filter signals transmitted / received by mobile trans-

ceivers. In current systems there are two types of devices : surface acoustic waves (SAW)

and bulk acoustic waves (BAW) devices that have been and continue to be the subject of

massive scientific production in recent decades. Therefore, most concerning research

of PnCs is based on the bulk waves [1, 5, 35, 66, 70, 74], Rayleigh waves [9, 53, 80, 81,

104] and Lamb waves [84, 87, 129]. Many efforts have been made to reduce the number

of SAW / BAW devices, or even completely remove them. However, no competitive

technology can offer the same performance at the same size and cost today. The trend is

therefore in the opposite direction, motivated by the demand for ever higher data rates

and the desire to use the same transmitters / receivers in all regions of the world. The

number of elastic wave devices in a mobile phone increases with each new generation

for mobile communications. The end of this trend is not yet predictable. For the sensor

applications, including bio-sensors, the design of resonators is based on surface waves,
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typically Love waves and shear horizontal plate waves, since they are compatible with

the liquid environment [15, 16] due to a lack of shear motion in liquid [130]. In recent

years, the exploitation of Love waves interacting with PnCs has been presented [12,

131–133] and demonstrated to have great application potential.

1.2.1 Bulk waves

Bulk waves propagating in space are frequently used in the PnCs research [35, 66,

70, 74]. Bulk waves devices in vacuum and isolated from the substrate can confine

the energy in a 2D acoustic band gap [94]. However, in general, the energy of the

bulk waves dissipates faster than that of the surface waves. Substrate insulation is

therefore commonly used to confine the waves to the surface [10], as shown in Fig 1.9.

High reflectivity is achieved by the Bragg mirror, a 1D PnC, for longitudinal waves

propagating normal to the mirror. The reflection of off-axis waves and transverse waves

is degraded, which limits the isolation of the substrate and the quality factor (Q). In

contrast, 3D PnCs reflect acoustic waves incident at any angle and the band gap covers a

wide frequency range to reflect longitudinal and transverse waves.

Figure 1.9 – (a) Substrate isolation by a 1D Bragg mirror of ¼ wavelength thick of each
layer ; (b) Substrate isolation by a 3D PnC. [10]

Khelif et al. [1, 2] presented a square array of steel cylinders dipped in water, and

observed a complete band gap, shown in Fig 1.10. After adding a point defect, they

observed a peak in the band gap region, due to a resonance mode caused within the
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defect. The number of resonance modes corresponds to the number of peaks. The

continuous defect points, i.e. a linear defect, gives rise to a passing band in the band

gap. The wave is thus guided by the defect. The appearance of passing band is due to

the appearance of new resonance modes, or defect modes, in the band structure. Some

other examples of defect based application designs were also proposed by their group

and are shown in Fig 1.11 [5, 75, 116, 134]. In addition to the removal of a point or a

line, multiple processes are used to create defects : to drill a hole on a cylinder, i.e. the

substitution of a tube for a cylinder [75, 115] ; to discard two lines of pillars or to vary

the height of a pillar[5], etc. The idea is to provoke an irregularity in the system.

Figure 1.10 – (a) Band structure of the perfect PnC; (b) Steel cylinders with linear
defect or waveguide ; (c) Transmission curves for different point defects in PnC; (d)
Corresponding resonant modes or defect modes in PnC. [1, 2]
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Figure 1.11 – Different defect based application designs for 2D PnCs. [5, 75, 116, 134]

Bulk waves are used in many PnCs applications, including communications radio

frequency (RF) (waveguides [2], cavities [1], filters [75], multiplexers [116], the acoustic

diodes [6]) and isolators [10], the control of sound propagation [83], the liquid cap-

tors [18], the thermoelectric materials [22], meta-materials (including hyperlens [24],

imaging [26, 79], focalization [31, 78, 110], auto-collimation [30], beam-splitting [29],

interferometer [32], cloaking [126]), etc. Given its incompatibility with the use in liquid

medium, applications like bio-sensor are few.

1.2.2 Rayleigh waves

Rayleigh waves propagating on the surface of a semi-infinite substrate are widely

investigated [9, 80, 81, 101, 104, 135]. They have two components : the longitudinal

waves and the vertical transverse waves. Wu et al. [9] presented a holey PnC on a

substrate composed of Si/ZnO. Figure 1.12 shows the two-port SAW device, surrounded

by two PnCs as reflective grating to isolate the acoustic waves.

Benchabana et al. [53, 54] etched a square array of holes on a LiNbO3 substrate.

Transmission attenuations were observed, with the peak value at -37dB, shown at

Fig 1.13. Then they added a linear defect, a waveguide. Nevertheless, the transmission

was also attenuated, with the peak value at -35dB. This means that the transmission

curves of the two cases are not very different. The effect of defects has not been proven
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Figure 1.12 – Schematic of two-port SAW device using holey PnC as reflective grating.
[9]

on the Rayleigh waves. We think that it is because Rayleigh waves are easily diffused in

volume, so that the defect modes on the surface are difficult to produce.

Figure 1.13 – (a) Schematic of the experimental setup used to study the Rayleigh
wave propagation in a square array of holes on a semi-infinite LiNbO3 substrate ; (b)
Transmission of Rayleigh waves through the perfect PnC. The green line indicates the
transmission without PnC ; (c) Schematic of PnC with linear defect ; (d) Transmission of
Rayleigh waves through the waveguide. The red line indicates the transmission without
PnC. [53, 54]

The interaction of Rayleigh waves with pillar based PnCs has also been investigated.

Since pillared PnCs can give rise to both Bragg and local resonant band gaps, investi-

gation on the effect of lattice symmetry and pillar form has become the main subjects

of many studies. In 2011, Achaoui et al. [103] experimentally validated this principle
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by using a square array of nickel pillars on a lithium niobate substrate (Fig 1.14(A)).

In their later work, they investigated the nickel pillars arranged in different lattice

symmetries [104], see Fig 1.14(C), and demonstrated that locally resonant band gap

in the low frequency range is almost independent of periodicity. However, it has been

shown that Rayleigh waves interacting with pillared PnCs is easily diffracted because

they are not well confined at the surface. Oudich et al. [136] proposed the multi-layered

pillars constructed by alternating layers of silicon and PMMA, see Fig 1.14(D). This

structure has been shown to be capable of well confining Rayleigh waves to the surface

of the substrate. The group of G.R. Nash reported the interaction of Rayleigh waves

with annual holes consisting of 128°YX-LiNbO3, shown in Fig 1.15. These annual holes

support locally resonant band gaps, analogous to pillar-based geometries, but improve

upon them in a potentially transformative way and give rise to enormous band gap

attenuation of up to an order-of-magnitude larger than that achieved with the pillars of

the same size.

(A)

(C)

(B)

(D)

Figure 1.14 – Examples of pillar based PnCs interacting with Rayleigh waves. (A) [103],
(B) [137], (C) [104], (D) [136].

Rayleigh waves-based PnCs could be used in the acoustic isolators [8, 9], focalization

[127], auto-collimation [25], sensor [14], etc. Note that Rayleigh wave scattering has

limited its applications.
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Figure 1.15 – (left) Section of a square array of annular holes made of 128°YX-LiNbO3.
(right) Cross section depth profile of an individual annular hole [138].

1.2.3 Lamb waves

On the other hand, Lamb waves are confined in a very thin plate, on the order of

wavelength or sub-wavelength. It is like two Rayleigh waves propagating on the two

surfaces of the plate respectively, and interacting with each other. These structures make

it possible to confine mechanical energy in 3D with a fabrication process compatible

with microelectronics technologies. The investigation of Lamb waves is also widespread

[39, 72, 84, 87, 92, 129].

In the case of membrane-based PnCs, modifying the properties of the crystal requires

acting on the geometric shape of the holes and the thickness of the membrane as well

as on the choice of material in the case of inclusions based on a material differing from

that of the membrane. Several studies have been carried out in this direction during

the last decade to show the existence of band gaps, in particular for the engineering of

the quality factor in MEMS resonators to minimize leakage of mechanical energy [87,

139–141]. Fig 1.16 illustrates some examples of membrane-based PnCs.

Mohammadi et al. [55] presented the hexagonal lattice PnC of holes on a silicon

plate. A band gap between 115 et 150 MHz was observed, shown in Fig 1.17. After

removing 4 rows (one period) of holes, surrounded by 12 rows (3 periods) of holes on

both sides, a resonance frequency in the middle of the band gap caused a peak with a

large quality factor (up to 6300), promoting sensor performance.

Version intermédiaire en date du 28 novembre 2019



1.2. Involved waves 33

(A) (B) (C)

(D)

Figure 1.16 – Examples of recently proposed designs of Lamb waves based MEMS
resonators for quality factor engineering. (A) [139], (B) [140], (C) [141] (D) [87].

Figure 1.17 – (a) Perfect PnC band structure based on hexagonal holey lattice PnC on a
silicon plate ; (b) Schematic of PnC with a waveguide in center ; (c) Transmission of Lamb
waves at the frequency in the middle of the band gap, through the defect-containing
PnC. [55]

Pillared PnCs interacting with Lamb waves has also been investigated. Some examples

of designs are illustrated in Fig 1.18. In 2008, two teams reported independently the

PnC via the plate with resonant pillars. Pennec et al. [142] numerically studied a crystal

of this type by analyzing the influence of geometric parameters and plate as well as
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resonant cylinders materials. Wu et al. [143] simultaneously published an article on a

similar structure formed by cylindrical aluminum pillars periodically arranged on an

aluminum plate.

Figure 1.18 – Examples of PnC designs based on pillars deposited on a membrane. (a)
[142], (b) [39], (c) [144] (d) [42], (e) [109].

In 2010, Oudich et al. [39] studied a phononic crystal formed of an epoxy plate,

on which are periodically deposited cylindrical pillars formed of a bilayer of silicone

and lead, see Fig 1.18(b). These authors have demonstrated that the opening of the

band gap is well associated with the local resonance mechanism. The choice of a soft

material (epoxy) for the plate and a composite for the resonant pillar, led to a very

weak coupling between the plate and the pillar. This made it possible to obtain a very

localized resonance of the mode in the pillar, whereas the resonances are less localized in

the structures of Pennec et al. and those of Wu et al. [142, 143] because of the materials

chosen. Bilal et al. [144] have proposed a phononic crystal design where they exploited

both the pillars and the holes to expand the band gaps, see Fig 1.18(c). Assouar et al.
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[42] have demonstrated the possibility of expanding the band gaps of the local resonant

crystals by attaching resonant pillars symmetrically to one side and the other of the

plate, see Fig 1.18(d). Pourabolghasem et al. [109] have reported a first experimental RF

frequency demonstration of a PnC design based on AlN membrane and platinum pillars

(Fig 1.18(e)).

Lamb-based PnCs could be used in RF communications (including waveguides

[3, 4, 7], cavities and filters [10]), the acoustic isolators [11, 13], focalizations and

auto-collimations [28, 145, 146], the thermal control [20, 21, 23], sensors [15–17], etc.

Nevertheless, the thin plates used to propagate the Lamb waves are often fragile and

therefore difficult to manufacture.

1.2.4 Love waves

As for Love waves, they propagate in a plate constructed on a substrate. So they are

also confined to the surface but with a more tough device. They have only one com-

ponent : the horizontal transverse wave, or shear horizontal (SH) waves. The existence of

Love waves requires that the SH velocity in the guiding layer be smaller than that of the

substrate. Therefore, many combinations between guiding layer and substrate have been

demonstrated. For example, ST-cut quartz substrate with different guiding layers such

as SiO2 [147, 148], PMMA [149, 150] and ZnO [151]. Or it could be a substrate of LiTaO3

with different guiding layers as SiO2 [152], ZnO [153], gold, SU-8 and parylene-C [152].

Love waves have mainly contributed to the development of liquid sensors [19, 147,

154, 155], and have recently been introduced in the PnCs investigation. In 2013, M. E.

Korotyaeva et al. [156] reported Love waves propagating in PnCs based on periodic

baffles or cylinders of Pb embedded in a guiding layer of epoxy lying on the uniform sub-

strate of Si, see Fig 1.19. The dispersion characteristics of the structure were investigated

by modifying the depth of Pb baffles (or cylinders).

In 2014, T.-W. Liu et al. [12, 131] investigated the interaction of Love waves with
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(a) (b)

Figure 1.19 – Periodic (a) baffles or (b) cylinders of Pb embedded in a guiding layer of
epoxy lying on the uniform substrate of Si. The structure is periodic in the sagittal plane
and uniform along the out-of-plane direction. [156]

PnC based on etched holes in a SiO2 plate on a quartz substrate, shown in Fig 1.20,

and observed partial band gaps in the x-axis direction. Note that the complete band

gap is preferred in the sensor manipulation to avoid waves diffusion in all directions.

The partial band gaps is waiting to be improved. In 2019, J. Bonhomme et al. [157]

brought the concept of multi-layered pillars into Love wave based PnC for mass sensing

application, see Fig 1.21. The pillar is made of successive layers of silica (SiO2) and

tungsten (W) with the SiO2 layer on its both ends. Despite the technical difficulty, it

was numerically demonstrated that this structure can give rise to a sharp transmission

attenuation.

Despite the lack of results for PnC investigation on Love waves, we could consider

them given the confinement of Love waves. This is why we introduce Love waves into

this work. We will investigate Love waves interacting with different structures such as

defect states in PnC, pillar based PnC and pillared meta-surface.
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Figure 1.20 – (a) Schematic of the PnC composed of holes etched on a SiO2 plate
deposited on a quartz substrate ; (b) Transmission of Love waves through the PnC along
the direction ΓX ; (c) PnC band structure. Red indicates Love modes, blue indicates
Rayleigh modes. [12, 131]

Figure 1.21 – Schematic representation of the unit cell used for simulation of the
multi-layered pillar based system. The periodicity is along the y direction. [157]

1.3 Interaction of acoustic resonators

In recent years, the control of mechanical vibration as building block for the inves-

tigation of quantum related effects has attracted considerable attentions in platforms
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such as opto-mechanics [158–162], plasmonics [163–165], nano-mechanics [166, 167]

and acoustics [116, 136, 168–171]. The coherent control of the vibration properties [166,

167], coupling effects [160, 171, 172], dissipative [173] and nonlinear characteristics

[174] of the mechanical resonators gives rise to a wide variety of applications in sensors

[175–177] and signal processing [178–180]. While different modes in a single mechanical

resonator can be coupled by tuning related parameters [166, 174, 181, 182], different

mechanical resonators can be coupled through various medium [116, 159–161, 169, 171,

183, 184] or via direct contact interaction [185, 186]. In acoustics, coupled resonators

has been reported in systems such as cavities [171], waveguides [169], cavity/waveguide

[116] or local resonators [170, 187]. The interaction between different resonators allows

correlation mechanisms to be scaled up to the resonator array to handle systems with

higher fineness [133, 136, 171, 180, 188, 189].

Y. Jin et al. [183, 187] reported the interaction between pillars arranged perpendicu-

larly or parallel to the Lamb waves propagation direction, see Fig 1.22. Strong coupling

effect was observed between the pillars and was proved to be function of the geometric

parameters. These simple structures exhibit different features related to condensed mat-

ter physics such as transmission zero, Fano resonance, acoustic analog of Autler-Townes

Splitting (ATS) and electromagnetically induced transparency (EIT).

(a) (b)

Figure 1.22 – Schematic of the unit cells of pillared meta-surfaces. Lamb waves propa-
gate along the x-axis. (a) [187], (b) [183]

R. A. Jahdali et al. [180] reported the design of a sound trapping device based

on the coupled Helmholtz resonators (HRs) loaded to an air waveguide, as shown in

Fig 1.23(b). The HR can be modeled by a classical mass-spring system, and the effective
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Figure 1.23 – Schematic of the building block of (a)single HR and (b)three coupled
HRs meta-material, and the corresponding mechanical mass-spring system. (c,d) The
transmission coefficient of a plane wave incidence from the left side on the unit cell
theoretical prediction (black solid curve), and numerical simulation (red solid curve),
compared with the transmission coefficient of the same plane wave incident on an
effective homogeneous slab (blue dots curve) for the unit cell is illustrated in (a,b),
respectively. [180]

bulk modulus is calculated based on the effective medium theory (EMT). N coupled

resonators cause negative effective bulk modulus near the resonance frequency and

induce N flat bands that give rise to the confinement of the incoming wave inside the

resonators with corresponding strong absorptions in the transmission spectrum.

A. V. Korovin et al. [171] investigated a silicon corrugated nanobeam including two

cavity connected by a waveguide, shown in Fig 1.24. The cavity combines symmetric

stubs grafted on each side and circular holes drilled in the middle. The overlapping

of two closely spaced phononic cavity modes leads to the formation of symmetric and

antisymmetric modes, which can be used for the modulation of the frequency and the

quality factors of the propagating cavity modes. The efficient coupling of cavity modes

of the same symmetry with the standing modes of a phononic waveguide has been
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demonstrated. Such coupling can be used for routing, controlling, and modulating the

phononic cavity modes over large distances between cavities.

Figure 1.24 – Schematic presentation of the phononic nanobeam including two cavity
connected by a waveguide. [171]

(b)

Si
PMMA

SAW

Figure 1.25 – (a) Schematic view for the transmission through three rows of PC pillars
spaced by 18µm in the x direction. (b) Phononic pillar where the structural defect is
constructed by changing the thickness WSi of the central Si layer. [136]

M. Oudich et al. [136] designed a cavity in multi-layered pillars constructed by a

periodic stacking of PMMA and Si layers on a Si substrate, as shown in Fig 1.25. The

pillar acts like 1D PnC and gives rise to band gaps along the pillar. When coupled with

surface acoustic waves (SAW), local resonant modes are found at the pillar substrate

interface and produce SAW attenuation. By tailoring a defect inside the pillar, cavity
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modes were created in the band gap and lead to sharp SAW transmissions. The strong

coupling between the cavity modes and the confined local resonant modes can give rise

to a Fano-like resonance as well as an acoustic analog of electromagnetically induced

transparency (EIT).

In this work, we will design and characterize different resonators with strong reso-

nances, which refer to isolated modes or local resonant modes. The interaction between

these resonators will be investigated to develop advanced functions for signal processing

or sensing applications.

1.4 Interests and applications

By analogy with electrons, the development of photon devices contributes to wireless

communication and the use of optical fibers and microwaves [190]. Since electrons and

photons play an important role in electronics and optics, phonons as another important

type of particles are responsible for the transmission of sound and heat in acoustics

and thermodynamics. This is because sound and heat can be described as mechanical

vibrations in atomic networks. The difference is that acoustic waves oscillate at low

frequencies and propagate over a wide distance, whereas most heat vibrations oscillate

at high frequencies and propagate in short distances.

Since the band structure is scalable with the dimensions of unit cell, phononics play

a role in a wide frequency range from Hz to THz, which gives PnCs a great potential for

applications. With the development of PnCs in both the theoretical and experimental

aspects, tremendous works has been devoted to the propagation of waves in the range of

sonic (kHz) and ultrasonic (MHz) frequencies in the past two decades. The easiest to

understand is an acoustic isolator, which reduces acoustic waves by taking advantage of

band gaps, using in the scientific aspect (including substrate isolation [10], the reflective

grating [9, 11, 12] and the acoustic diode [6, 191, 192]) and in everyday life (including
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noise attenuation [130] and the anti-seismic structure [8]), see Fig 1.26.

(a) (b) (c) (d)

Figure 1.26 – Different applications based on band gap effect of the PnCs : (a) substrate
isolation [10], (b) reflective grating [9], (c) acoustic diode [192], (d) anti-seismic structure
[8].

Many functional devices for RF communications originate from the introduction of

point or linear defects in PnCs, such as waveguides [2, 93, 114],cavities [1], filters [75],

multiplexers [116] and devices based on their combination, see Fig 1.27.

(a) (b) (d)(c)

Figure 1.27 – Different applications based on defect states in PnCs : (a) cavity [1], (b)
waveguide, (c) cavity combined with waveguide [5], (d) multiplexers [116].

As the resonant frequency (and therefore the phase velocity) is affected by the

working environment, sensors could be created by a disturbance of the characteristics

of the trajectory on which the acoustic waves propagate, see Fig 1.28, including the

concentration of the liquid (or gas) [15, 17, 18], the pressure [14] and the mass applied

to the PnCs surface [19], etc.

Besides the band-gap-based applications for confining and controlling the elas-

tic waves propagation, the applications of the wave dispersion characteristics can be

quite interesting even without the appearance of band gap, such as negative refraction

phenomena and self-collimation, which are at the origin of the potential applications,

including imaging [26], focalization [24, 78, 122–124], beam-splitting [125], no-defect
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(a) (b)

Figure 1.28 – Sensor applications based on PnCs. (a) [19], (b) [18].

(a) (b) (c)

(d) (e)

Figure 1.29 – Applications of acoustic meta-materials : (a) deep sub-wavelength imaging
[26], (b) negative refraction based focalization [31], (c) positive gradient refraction based
focalization [127], (d) beam-splitting [29], (e) cloaking phenomenon [193].

waveguide [30], sound propagation control [83], cloaking [126, 193] and hyperlens [24],

etc. They can control the propagation of waves surprisingly, and are therefore called me-

tamaterials. A similar theory was used to make thermal metamaterials [27, 190] for high

frequency phonons, see Fig 1.30. Understanding and controlling the properties of PnCs

also provides us opportunities to thermally insulate the construction and transform lost

heat into electricity, etc.
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Figure 1.30 – Thermal meta-materials : (a) A thermal shield (top), bottom shows cor-
responding measured temperature profile for horizontal heat flux (white arrow). (b) A
thermal concentrator. (c) A thermal inverter. [190]

1.5 conclusion

In this chapter, we reviewed in the first step the history and context of the phononic

crystals (PnCs) and meta-materials. As an analogy of the periodically arranged atomic

lattice/dielectric materials that can provide band gaps to prevent the propagation

of electronic/electromagnetic waves, these elastic materials with periodic structure

provides band gaps for the acoustic waves. The band gap effect of PnCs have attracted a

great deal of concern since 90 decades. After the first demonstration of the local resonant

PnC in 2000, the investigation of meta-materials has caused increasingly attention. PnCs

can be periodically arranged in all the three spatial dimensions. Among them, 2D PnCs is

regarded as the most interesting, of which the inclusions can be either holes or pillars. In

addition to the Bragg band gap resulting from the periodicity of inclusions, pillar-based

PnCs exhibit local resonant band gaps that are almost independent of the periodicity.

Different material combinations and inclusion forms are capable of providing variable

device properties. The introduction of defects into PnCs can introduce passing band
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into the initial band gap and is therefore at the origin of multiple applications such as

signal processing and sensors. The investigation on the refraction properties of PnCs

gives rise to divers applications for meta-materials.

Secondly, according to the involved acoustic waves that interact with PnCs, we

divided most of the existing literature into 4 categories : Bulk waves, Rayleigh waves,

Lamb waves and Love waves. They all can give rise to band gaps in PnCs. Since the

energy of bulk waves dissipates faster than that of the surface waves, Bragg mirror

can be used to confined the waves to the surface. Nevertheless, bulk waves is less

used for high frequency devices due to the limit of the manipulation. We compared

their functions at the presence of defects, and showed that Rayleigh waves can not

well interact with the defect modes because they are not well confined to the surface,

which limits their applications. Lamb waves devices are often fragile and difficult to

manufacture, although Lamb waves are well confined to the surface. Love waves is

considered as a compromise between Rayleigh waves and Lamb waves since they are

well confined to the surface and exhibit device toughness. However, there has been a

lack of investigation on Love-wave-based PnC devices. Therefore, we chose to study

Love waves in this work.

Thirdly, we bought up the interest of investigating the vibration properties and

interaction effects of the acoustic resonators. An acoustic resonator may be a cavity,

a waveguide, or a local resonator (pillar, Helmholtz resonator, etc.) Coupling may

happen for different modes in a single resonator by tuning related parameters, or among

different resonators through various medium. The coupling effects allows to handle

systems with higher fineness. Our goal is to design and characterize different resonators

with strong resonances, and to investigate the interaction between these resonators to

develop advanced functions for signal processing or sensing applications.

Finally, based on different physical properties, we presented divers applications of

PnCs, such as acoustic isolators based on band gap effect, thermal control based on high
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frequency waves, RF communications based on defect modes, sensors based on wave

propagation, and meta-materials based on wave dispersion characteristics.
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Chapitre2
Fundamental Theories on Phononic

Crystals

In this chapter, we review the fundamental theories of phononic crystals (PnCs)

used in this work. Firstly, we present the essential elastic theory for the deformation of a

solid. By considering the piezoelectricity of the materials, we obtain the elastic waves’

propagation equations in piezoelectric structures. Then, the propagation equations are

adapted to different surface acoustic waves (SAW, including Rayleigh waves, Lamb

waves and Love waves) by adopting corresponding boundary conditions. Next, we

present lattice and band structure theories for analyzing the periodic systems. Finally,

we introduce two different mechanisms of band gaps that may exist in the PnCs.

2.1 Elastic waves propagation

2.1.1 Generalized Hooke’s law

Under the action of external forces, a solid undergoes a deformation as its particles

move relatively to each other. Suggest that ui(xj ) is the displacement of a material point

at coordinates xj (i, j = 1,2,3) in an orthonormal coordinate system. The deformations
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are defined by the strain tensor :

Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.1)

The stresses that develop in this solid tend to restore it to its initial form. In an elastic

medium, the stresses are canceled when the deformations cease. Hooke’s law is used for

small deformations where we can assume that the relation between stress and strain is

linear :

Tij = cijklSkl = cijkl
∂ul
∂xk

(2.2)

by summing from 1 to 3 on all repeated indices. Tij is the ie component of the force

acting on the unit of surface perpendicular to the axis xj . The tensor of elastic rigidity of

four rank, cijkl , is symmetric with regard to the first two indices (since Tij = Tji), and to

the last two (since Skl = Slk). It is therefore reduced to the rigidity matrix cαβ with α and

β varying form 1 to 6.

The balance of forces acting on a volume V delimited by the surface S inside a

solid is ∫
V
FidV +

∫
S
Ti(~n)dS = 0 (2.3)

with Ti(~n) = Tijnj . ~n is the unitary vector normal to the elemental surface dS . ~F is the

external volume force density. According to the Green theory, the equilibrium condition

of a volume leads to :

Fi = −
∂Tij
∂xj

(2.4)

By denoting by ρ the density of the solid and by üi the acceleration of the particles, the

fundamental law of dynamics applied to an elementary volume dV leads to the equation

of translational motion
∂Tij
∂xj

= ρüi −Fi (2.5)
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2.1.2 Elastic-electric field

In piezoelectric materials, the mechanical subsystem is coupled to the electroma-

gnetic one. Since the velocity of the elastic waves is much lower than the that of the

electromagnetic waves, the electromagnetic field becomes quasi static. Therefore, the

magnetic field is negligible ( ~rot~E = −∂~B∂t ≈ 0) and the Maxwell equations are simplified

to : 
Ei = −∂Φ∂xi
∂Dj
∂xj

= ρe

(2.6)

with Ei ,Φ,Dj ,ρe denoting the electric field , potential, electric displacement field and

free charge density per unit volume, respectively.

The direct piezoelectric effect expresses the polarisability of certain dielectrics when

they are deformed ; the opposite effect indicates that a piezoelectric material, placed in

an electric field, is subjected to stresses and deforms. This gives the additional terms

which express the mechano-electric coupling by the piezoelectric constant e :


D = εE + eS

T = cS − eE
(2.7)

2.1.3 Propagation equations

The substitution of the relations (2.2) into the equations (2.7), then to the equations

(2.5) and (2.6) leads to, in the absence of external sources (Fi et ρe = 0 ), four homoge-

neous partial differential equations of order two, called the propagation equations :


ρüi = cijkl

∂2ul
∂xj∂xk

+ ekij
∂2Φ
∂xj∂xk

ejkl
∂2ul
∂xj∂xk

= εjk
∂2Φ
∂xj∂xk

(2.8)
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These are the fundamental equations of elastic waves propagating in a piezoelectric

medium. The resolution of the previous system in plane waves, of polarization °ui ,

propagating in a direction indicated by the unit lj , at the speed V =ω/k :


ui = °uie

j(ωt−kljxj )

Φ =Φ0ej(ωt−kljxj )
(2.9)

leads to the three plane waves propagating in the same direction whose polarizations

are orthogonal.

2.2 Surface acoustic waves

In order to predict the different types of surface waves, the influence of the boundary

conditions on waves propagation will be examined. The case of the isotropic medium is

presented as an example.

2.2.1 Rayleigh waves

Rayleigh waves propagating on the surface of a semi-infinite medium have two

components : the longitudinal and transverse vertical waves (contained in the sagittal

plane defined by the normal to the surface and the wave vector).These two components

are out of phase by π/2. Therefore the polarization is elliptical. The amplitudes of these

components decay differently with depth. The wave propagation causes a vibration of

the surface, which is felt to a depth of the order of the wavelength λ. Let’s set Ox3 the

normal to the free surface directed to the interior of the solid and Ox1 the direction of

propagation. A wave decreasing with the distance x3 to the surface is expressed as :

ui = °uie
−kχx3ej(ωt−kx1) (2.10)
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with Re[χ] > 0. The mechanical boundary condition is the cancellation of the stress Ti3

on the free surface x3 = 0 :

Ti3(x3 = 0) = 0 (2.11)

The report of equation (2.10) in equations (2.8) leads to the resolution of the propagation

equations for the two components of Rayleigh waves :


u1 = °u1[e−kχ1x3 −√χ1χ2e−kχ2x3]ej(ωt−kx1)

u3 = j
√
χ1
χ2

°u1[e−kχ2x3 −√χ1χ2e−kχ1x3]ej(ωt−kx1)
(2.12)

with 
χ1 =

(
1− V 2

V 2
L

)1/2

χ2 =
(
1− V 2

V 2
T V

)1/2
(2.13)

where V ,VL =
√
c11/ρ,VT V =

√
c55/ρ are respectively the phase velocity, the longitudinal

and transverse speed, with V < VT V < VL. Rayleigh waves are widely used because they

are relatively easy to generate on the surface of piezoelectric crystals.

2.2.2 Lamb waves

When a solid is bounded by two parallel planes, two Rayleigh waves propagate

independently on each plane as long as their distance is large compared with the

wavelength λ. When the thickness H of the plate becomes of the order of λ, the surface

wave components become coupled, and give rise to symmetric or anti-symmetrical Lamb

waves.

The Viktorov method proposed a way to understand Lamb waves : suggest that

φ = φ(x3)ej(ωt−kx1) is a scalar potential and ~ψ = ~ψ(x3)ej(ωt−kx1) a vectorial potential, the
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displacement field can be written as :

~u = ~∇φ+ ~∇∧ ~ψ (2.14)

where ~∇φ is a longitudinal wave and ~∇∧ ~ψ a transversal wave. The two components u1

and u3 can be calculated : 
u1 = jkφ− ∂ψ2

∂x3

u2 = jkψ2 + ∂φ
∂x3

(2.15)

The substitution of equations (2.15) in propagation equations (2.8) by neglecting the

piezoelectric effect leads to : 
ρφ̈ = c11∇2φ

ρψ̈2 = c55∇2ψ2

(2.16)

with c55 = c11−c33
2 in isotropic medium. The velocity of the longitudinal waves is VL =√

c11/ρ =ω/kL and that of the transversal waves is VSV =
√
c55/ρ =ω/kSV . The expression

(2.16) becomes : 
∂2φ
∂x2

3
+ (k2

L − k
2)φ = 0

∂2ψ2

∂x2
3

+ (k2
SV − k

2)ψ2 = 0
(2.17)

φ(x3) and ψ2(x3) are in this way resolved, with solution :


φ = C1 cos(px3 +B)ej(ωt−kx1)

ψ2 = C2 cos(qx3 +B)ej(ωt−kx1)
(2.18)

where p =
√
k2
L − k2 and q =

√
k2
SV − k2. C1,C2 and B are the constants to be determined.

The boundary conditions are the cancellation of stress T13 and T33 on the two surface
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x3 = ±H2 : 
T13(x3 = ±H2 ) = 0

T33(x3 = ±H2 ) = 0
(2.19)

The substitution of the equations (2.18) in the boundary conditions indicates that B = 0

or π
2 , with the determinant :

(k2 − q2)2 tan
(
q
H
2

+B
)

+ 4k2pq tan
(
p
H
2

+B
)

= 0 (2.20)

This is the dispersion equation. When B = 0, u1 is pair and u3 impair, it indicates a

symmetric mode. When B = π
2 , u1 is impair and u3 pair, it is an asymmetric mode.

2.2.3 Love waves

As for a plate rigidly connected to a semi-infinite substrate whose transverse wave

velocity is greater than that in the plate, a shear horizontal wave (of polarization parallel

to the surface) bears the name of Love. This wave propagates in different modes and

is reflected without changing nature. The polarization of Love waves is along the axis

Ox2 :

u2 = u2(x3)ej(ωt−kx1) (2.21)

The substitution of the formula (2.21) in the propagation equation (2.8) by neglecting

the piezoelectric effect suggests :

c44
∂2u2

∂x2
3

− 2jkc46
∂u2

∂x3
+ (ρω2 − k2c66)u2 = 0 (2.22)

In the plate (guiding layer) isotropic, of thickness H , c44c = c66c = ρV 2
SHc and c46c = 0.
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The expression (2.22) is simplified :

∂2u2

∂x2
3

+

 ω2

V 2
SHc

− k2

u2 = 0 (2.23)

This is a differential equation of order two. To allow a guiding wave in the layer, it

is necessary that the discriminant ∆ = −4
(
ω2

V 2
SHc
− k2

)
= −4

(
V 2

V 2
SHc
− 1

)
k2 is less than 0

(otherwise the solution will be exponential, which is not a guiding mode). This implies :

V > VSHc (2.24)

This results in the periodic solution :

u2(x3) = °u2 cos

k
√

V 2

V 2
SHc

− 1(x3 −H)

 (2.25)

H is a constant determined by the mechanical boundary conditions on the surface

x3 =H :

T23(x3 =H) = 0 (2.26)

In the piezoelectric substrate (x3 ≤ 0), therefore, anisotropic, the discriminant of the

equation (2.22) is : ∆ = −4k2ρsV
2
SHsc44s

(
V 2

V 2
SHs
− 1

)
, with

VSHs =
(
c44sc66s−c2

46s
c44sρs

)1/2
being the shear horizontal velocity in the substrate. The displace-

ment should be null for x3 = −∞, which implies ∆ > 0. This results in :

V < VSHs (2.27)

and the solution :

u2(x3) = C1em1x3 +C2em2x3 (2.28)

with m1,2 = j2kc46s±
√
∆

2c44s
and C1,C2 the constants to be determined. The attenuation of
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waves in the substrate implies that C2 = 0. Supposing the substrate is isotropic or has

a direct axis of symmetry of order 4 or 6, we have c44s = c66s = ρsV
2
SHs and c46s = 0.

Therefore, the solution is :

u2(x3) = C1 exp

k
√

1− V 2

V 2
SHs

x3

 (2.29)

The value of C1 and the Love mode are determined by the boundary conditions at the

substrate/guiding layer interface (at the plane x3 = 0) : Continuity of displacement and

normal stresses : 
u2(x3 = 0+) = u2(x3 = 0−)

T23(x3 = 0+) = T23(x3 = 0−)
(2.30)

This leads to : 
C1 = °u2 cos(Hkχ1)

tan(Hkχ1) = χ2c44s
χ1c44c

(2.31)

with 
χ1 =

(
V 2

V 2
SHc
− 1

)1/2

χ2 =
(
1− V 2

V 2
SHs

)1/2
(2.32)

The last formula (2.31) is the dispersion equation, which has an infinite number of

solutions :

(Hk)n =
1
χ1

arctan(
χ2c44s

χ1c44c
) +n

π
χ1

n = 0,1,2, . . . (2.33)

This formula reflects an increase ∆H = π
kχ1

in guiding layer thickness from one

mode to the next. Figure 2.1 shows the variation of the phase velocity as a function

of the guiding layer thickness. The wave thus described is guided in the guiding layer

(periodic solution) and its amplitude decreases exponentially in the substrate. Note that

the propagation of Love waves is only possible if the shear horizontal waves velocity in

the guiding layer is inferior than that of the substrate, and that the fraction of energy
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transported in the layer increases with the increase of the guiding layer thickness.

mode 1mode 2mode 3mode 4

x1
x3x2

Figure 2.1 – Love waves phase velocity as a function of the guiding layer thickness. The
deformation fields of the first 4 modes are shown on the right side.

2.3 Lattice periodic condition

Periodic systems are supposed to be very large or even infinite. The idea to inves-

tigate such a structure is to reduce the periodic system to a unit cell, and to apply

periodic conditions on the boundaries of this cell. The periodic conditions depend on

the periodicity along the directions, to express the fact that the conditions of the input

acoustic waves are identical to those of the output waves of the cell, with a defined phase

shift. According to Bloch-Floquet’s theorem, a formula is used to describe the periodic

behaviors of the displacement field and the propagation of the elastic waves. Thus, for a

periodic infinite domain, the periodic boundary conditions can be written in the form of

plane waves : 
u(~x+ ~a) = e−j~k~au(~x)

Φ(~x+ ~a) = e−j~k~aΦ(~x)
(2.34)

where ~a is the periodic vector of the crystal. u is the displacement and Φ the potential.
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2.3.1 Bloch theorem on PnC lattice

A point is used to represent a basic cell that repeats indefinitely in the PnC. Then,

the PnC can be considered as a spatial matrix of points. A crystal can be constructed

by translating the unit cell with 3 non-planetary vectors ~a1,~a2,~a3, which are the basic

vectors of the lattice. The coordinates of each point in the crystal can be expressed by a

linear composition of the 3 basic vectors :

~Rn = n1 ~a1 +n2 ~a2 +n3 ~a3 (2.35)

where ~Rn is the direct or Bravais lattice vector. For any position ~r, its physical quantity

f (~r) (like density, elastic constants, etc.) also has a periodicity that satisfies :

f (~r + ~Rn) = f (~r) (2.36)

f (~r) is periodic and can therefore be developed as a Fourier series :

f (~r) =
∑
h

F( ~Gh)ej ~Gh~r (2.37)

The substitution of 2.37 in 2.36 leads to the relation :

~Rn · ~Gh = 2kπ (2.38)

where k is an integer, ~Gh is the vector of the reciprocal lattice, represented by 3 non-

planetary vectors ~b1, ~b2, ~b3, which are called the basic vectors of the reciprocal lattice :

~Gh = h1
~b1 + h2

~b2 + h3
~b3 (2.39)
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In this way, the relation between the basic vector of the direct lattice and that of the

reciprocal lattice is :

~ai · ~bj = 2πδij i, j = 1,2,3 (2.40)

The crystals have a spatial periodicity and symmetry. As a result, eigenfrequencies

and eigenmodes have a certain symmetry. When studying eigenfield, the problem can

be relatively simplified.

The first Brillouin zone (BZ) in reciprocal space represents the smallest space divided

for each point Γ , ie a primitive cell. It is defined as the Wigner-Seitz cell in reciprocal

space, formed by the intersection of the vertical plane passing through the middle K of

the two points, a point of origin and all points closest to the origin (see Table 2.1).

If the space of the first BZ has a certain symmetry for a group of points, the first BZ

can be further reduced. The new zone is called the irreducible Brillouin zone.

According to Bloch-Floquet’s theorem, a linear system of translational periodicity

has the same periodicity as crystals. The eigenvalues and the eigenvectors have the

properties : 
λ~k,n = λ~k+ ~Gh,n

u~k,n(~x+ ~Rn) = u~k,n(~x)
(2.41)

This means that there is no new eigenvalue outside the irreducible Brillouin zone.

Therefore, all values of wave vector are in the irreducible Brillouin zone, which greatly

reduces the ranges of ~k.

The calculations of irreducible BZ, following the direct and reciprocal lattices, deter-

mine the ranges of wave vectors for analysis, see Table 2.1.

2.3.2 Band structure

For a given wave vector ~k, a series of eigenvalues and corresponding eigenvectors

can be obtained. Each eigenvalue and the corresponding eigenvector represents an
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Lattice
type

Direct
lattice

Reciprocal
lattice

1st & Irreducible
BZ

Direct & Reciprocal
basic vectors

Square

~a1 = a(1,0)

~a2 = a(0,1)

~b1 = 2π
a (1,0)

~b2 = 2π
a (0,1)

Tri.

~a1 = a(1,0)

~a2 = a(1
2 ,
√

3
2 )

~b1 = 2π
a (1,−

√
3

3 )
~b2 = 2π

a (0, 2
√

3
3 )

Hex.

~a1 = a(
√

3,0)

~a2 = a(
√

3
2 ,

3
2 )

~b1 = 2π
a (
√

3
3 ,−

1
3 )

~b2 = 2π
a (0, 2

3 )

Tableau 2.1 – Direct and reciprocal lattices, first and irreducible Brillouin zones of the
common 2D PnCs lattices in isotropic medium. a is the lattice constant. The first BZ are
the square (hexagonal) regions while the irreducible BZ are the black triangle regions.
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eigenfrequency and corresponding displacement. Since the wave vector is a continuous

variable, each eigenvalue becomes a function of ~k. When choosing ~k as the horizontal

axis and the eigenvalues (eigenfrequencies) as the vertical axis, the relation between

them is called the band structure or the dispersion diagram.

It is meaningful to study the band structure of PnCs as it can give much physical

information about the crystals. Almost all the investigations and applications of PnCs

relies on a band structure analysis.

2.4 Band Gap Mechanism

Phononic band gaps are the ranges of wavelength or frequency within which elastic

waves cannot propagate through the structure. Band gaps of PnCs are generally classified

into two types : One is due to Bragg diffraction, the other is due to local resonance. The

position and width of the band gap depend on the waves propagating directions. Gaps

may occur for particular directions of the wave vector, and can also cover the whole

Brillouin zone. Generally, a wide band gap requires two main conditions : a large contrast

in elastic properties, acoustic velocity and density ; a sufficient filling factor. Materials

and lattice type will also influence the band gaps.

2.4.1 Bragg diffraction

The Bragg’s law was first established by W. H. Bragg and W. L. Bragg[194] when

investigating the diffraction of X-ray in crystals, which could be interpreted as a periodic

arrangement of parallel planes, as shown in Fig 2.2. The waves are reflected by the

successive layers and will interfere constructively if the path difference is an integer

multiple of the wavelength :

nλ = 2asinθ (2.42)
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where n is an integer, λ is the wavelength, a is the distance between two crystallographic

planes and θ is the angle between the incident wave and the crystal surface. The Bragg’s

law can be applied more generally in the scattering of a plane wave in periodic media,

here for the PnCs are the inclusions with lattice constant a. As the path difference

depends on the lattice constant, such Bragg scattering mechanism occurs when the λ is

comparable to a.

a

Figure 2.2 – Schematic of Bragg diffraction

When the PnC is 1D, i.e. a successive of plate surfaces with two alternate permittivi-

ties, ε1 and ε2, we are in the case of a Bragg mirror. The thickness of these two layers are

e1 and e2, with e1 + e2 = a the periodicity. If a normal incident plane wave satisfies :

λ = 2nef f a (2.43)

where nef f is the effective index, the reflected waves will all be in the same phase as the

incident wave. Therefore, there is constructive interference between the incident and

reflected waves. The reflectivity is maximum and the transmission is null.

2.4.2 Local resonance

Local resonance type band gap, or hybridization band gap, comes from the avoided

crossing of two coupled bands in the low frequency range, as shown in Fig 2.3. The gene-

ration of locally resonant band gaps depends on the interaction between the scatterers’

resonant characteristic and the progressive waves. Because of the resonant scattering,
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elastic waves are attenuated sharply during the propagation. The resonance of a single

resonator plays the main role. This band gap depends mainly on the intrinsic vibration of

the individual particle and persists even with structural disorder. The central frequency

of the hybridization band is anti-proportional with the individual particle size. The

width of the band gaps increases with the increasing of filling fraction.

Bragg

Resonant mode

Bragg

Hybridization

k k k

f f f

Figure 2.3 – Schematic of hybridization band gap formation

Locally resonant phononic crystals were first proposed by Zhengyou LIU in 2000

[35]. Composites which comprise a single microstructure unit composed of relatively

high density lead balls and an elastically soft silicone rubber coating are embedded in

an epoxy media to form a three-component 3D PnC. The theoretical and experimental

results all show that the wavelength corresponding to the band gap of the PnC is much

greater than the lattice constant. They also found the existence of band gaps without

periodic structures.

2.5 conclusion

In this chapter, we present firstly the generalized Hooke’s law as basic elastic theory

for small deformations of a solid under the action of external forces. By simplifying the

Maxwell equations and considering the piezoelectricity of the materials, we obtain the

elastic waves’ propagation equations in piezoelectric medium, which can be used to

analyze different elastic waves in adopting their corresponding boundary conditions. The
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eigenvalue is the wavelength (or frequency) and the eigenvectors are the displacement

components. In particular, Love waves exist only when the shear horizontal waves

velocity in the guiding layer is smaller than that of the substrate. Love waves amplitude

decreases exponentially in the substrate, and the energy transported in the guiding layer

increases with the increase of the layer thickness. In a certain system, the thicker the

guiding layer, the more modes there are.

Next, we presented the direct and reciprocal lattice of the PnCs, as well as their first

and irreducible Brillouin zone (BZ). According to Bloch-Floquet’s theorem, the periodic

lattices of PnCs leads to periodic displacements. We can therefore calculate the band

structure, i.e. the eigen-frequency as function of wave vector, only in the irreducible BZ

to analyze the physical characteristics of the PnCs.

Finally, we introduced two different mechanisms of band gaps that may exist in the

PnCs. One is the Bragg band gap that results from the Bragg diffraction of waves in

the periodic lattice of the PnCs. The central frequency of the Bragg band gap is anti-

proportional with the lattice constant, and the corresponding wavelength is comparable

to the lattice constant. Another is the local resonant or hybridization band gap which

is almost independent of the periodicity of PnCs. It is the coupling result between the

intrinsic vibration of the individual particle and the progressive waves. The central

frequency of the hybridization band gap is anti-proportional with the particle size, and

the corresponding wavelength is much larger than the lattice constant.

This chapter brings up essential theories for analyzing the PnCs, which serves as the

basis for comprehension in the next chapters.
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Chapitre3
Interaction of Love Waves with PnCs

based on Holes and/or Pillars

Cylinders are the basic inclusion shapes of a 2D PnC. They are usually presented in

the form of holes or pillars. This chapter will numerically investigate the interaction of

Love waves with basic PnCs based on holes and/or pillars. Love waves are distinguished

from SAW by calculating the energy depth and the shear horizontal (SH) polarization

ratio. The band structures and the transmissions of Love waves through the PnCs are

calculated. Bragg and hybridization band gaps as well as isolated modes are demonstra-

ted. The effects of geometrical parameters are discussed. Different pillar materials are

considered to show the effect of the elastic parameters. The modeling and simulation of

PnCs was calculated using the finite element method (FEM, COMSOL MULTIPHYSICS).

3.1 Basic unit cell models

Two PnCs based on holes and pillars have been studied in square lattice (Fig 3.1).

The unit cells constructed for calculating the band structures for these lattices are shown

in Fig 3.2.
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Figure 3.1 – Square lattice based on holes (left) and pillars (right).

(!! , 0) 

(0,!!) 

Γ�

M�Y�

X� kx�

ky�

Figure 3.2 – Unit cells of the PnCs with square arrayed cylindrical holes, or Ni pillars,
respectively in, or on, the silica film deposited on a 90ST-cut quartz. rh=rp=0.2a, h=0.6a,
H=0.6a, ap = a = 4µm. The 1st BZ is shown on the right side of the unit cells. Gray region
is the irreducible BZ.

The unit cell used in the Comsol software consists of a 90ST-cut quartz substrate

(Euler angles=(0°, 47.25°, 90°), LH 1978 IEEE), a guiding layer of amorphous SiO2 (ρ =

2200kg/m3,E = 70GPa,ν = 0.17) and cylindrical hole/nickel pillar (ρ = 8900kg/m3,E =

219GPa,ν = 0.31). Holes were etched and pillars were built on the guiding layer. The

substrate has been rotated 90 degrees around the z-axis from the ST-cut quartz, since

a fast SH waves (5000m/s) can be generated by the electric field along the x-axis (the

y-axis of the ST-cut quartz), where Rayleigh waves can not be generated[12] due to a

zero electromechanical coupling factor to the substrate. The shear wave velocity in the

silica film is 3438m/s, less than that in the 90ST-cut quartz substrate, indicating the

existence of Love waves.

The square array period or the lattice constant is a = 4µm. The height of the substrate
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is 40µm. The thickness of the SiO2 layer is H = 0.6a = 2.4µm, which equals to the hole

depth. The hole radius is rh = 0.2a = 0.8µm . The pillar has the same size as the hole, i.e. a

height of h = 0.6a and a radius of rp = 0.2a. The substrate thickness is considered infinite,

compared to the SiO2 layer thickness and the pillars height. The air hole/Ni pillar are

chosen because of their strong contrast in density and elastic constants with regard to the

matrix. The first Brillouin zone (BZ) of the PnCs is shown in Fig 3.2(b). Considering the

anisotropy of the quartz substrate, the irreducible BZ is a square bounded by Γ -X-M-Y-Γ .

Before meshing the unit cell, the substrate is divided equally into two parts. Subpart

is responsible for damping and loss. The bottom of the substrate is assumed fixed. A

three-dimensional tetrahedral mesh is used to mesh the unit cell. The size of the element

for the substrate is chosen as 2 µm and that for the SiO2 layer and pillar varies from 50

nm to 1 µm.

The complete structure is constructed by the repetition of unit cells along both

directions of the basic vectors. The Floquet periodic conditions expressed in equation :

~udst = ~usrce
−j ~kF ·( ~rdst− ~rsrc) (3.1)

are applied on the lateral sides of the unit cell to represent the infinity of PnC, where

~udst and ~usrc are the displacement vectors of the destination and the source, ~rdst and ~rsrc

are the vectors of the destination and the source, ~kF is the wave vector. The range of ~kF

is the boundary of the irreducible BZ.

3.1.1 Surface modes selection

Since the eigenfrequencies of the PnCs have been calculated using a finite-depth

substrate which is supposed to be semi-infinite for Love waves, Lamb modes and bulk

modes appear. Therefore, the wavelength normalized energy depth (NED) [132] is
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calculated to select the surface modes :

NED =

#
D

1
2TijS

∗
ij(−z)dxdydz

nλ
#
D

1
2TijS

∗
ijdxdydz

(3.2)

where Tij is the stress and Sij the strain. The asterisk (*) signifies the complex conjugate.

D denotes the whole domain of the unit cell. λ is the wavelength. The surface of the

PnC coincides with the plane z = 0. Note that the integral in the denominator is the

total acoustic potential energy in the unit cell and that the integral in the numerator is

weighted by the depth of the point where the acoustic energy is not zero. That means if

the average depth of the energy is less than the wavelength, the NED will be less than

1. The NED can well select the modes with speed less than the SH wave velocity of the

substrate, where the wave vector k is relatively large. As for a relatively small k, λ is

fixed to 2a that is resulting from k = π
a and k = 2π

λ . n=1 for the holey PnC and n=1+h/λ

for the pillared PnC because of the pillar height.

3.1.2 Waves polarization distinguish

Rayleigh waves comprise longitudinal and shear vertical components while Love

wave is a shear horizontal (SH) wave. Surface modes include SH type SAW and Rayleigh

type SAW. The ratio of SH polarization is calculated to distinguish Love waves and

Rayleigh waves.

SH ratio =

#
D uSHu

∗
SHdxdydz#

D(uxu∗x +uyu∗y +uzu∗z)dxdydz
(3.3)

where ux,uy and uz are, respectively, the displacements along the x,y,z directions. uSH

is the SH displacement component that can be expressed as ux cosθ − uy sinθ, which

is perpendicular to the wave vector ~k. θ is the angle between ~k and the y-axis with

tanθ = kx
ky

.

Version intermédiaire en date du 28 novembre 2019



3.2. Band structures of unit cells 69

3.2 Band structures of unit cells

3.2.1 Holey PnC

band structure and displacement

The complete band structure of the holey PnC is shown in Fig 3.3. The vertical axis

is the normalized frequency ωa/c, where ω = 2πf is the angular frequency and c is

the x-axis-propagating SH waves velocity (here the fast shear waves) in the substrate.

The gray part is the radiation zone, where the waves diffuse to the volume (the bulk

waves). The slope of the black line is the propagating velocity of the SH waves in the

substrate, according to v = 2πf
k . Black dotted lines are the dispersion curves of the

shear waves in the SiO2 layer. A mode between these two lines is a guided mode in

the SiO2 layer decaying into the substrate, and a mode below the black dotted line

is an evanescent mode or a localized mode in the pillars. The branches in red and

yellow denote the surface vibrating modes. With the change of propagation direction,

certain modes become gray as they start to diffuse into the volume. The modes colors

are determined by their SH ratio. The red modes have a large SH ratio, indicating the

Love modes. The yellower the modes, the closer they are to the Rayleigh type. Thanks to

the exclusive generation of SH waves in our structure (SiO2/90ST-cut quartz) in the x

direction, on the right side we only show the SH modes (SH ratio>0.5) in the ΓX region.

The radiation part is uncovered to show the SH modes beyond the upper limit of the

velocity (VSH in substrate). It can be seen that beyond this limit, the second branch of

Love modes is still confined to the surface but coupled with the bulk modes.

Since our SiO2/ST-cut quartz structure only allows the propagation of SH waves,

only SH modes in the band structure will be studied. It can be seen that the modes in the

holey PnC exist at high frequencies, of which two are Love modes. In the Γ -X direction,

the Love waves are not coupled to the Rayleigh waves, showing a large partial Bragg

band gap ranged from 2.2 to 2.75 between the two Love modes. This band gap is derived

Version intermédiaire en date du 28 novembre 2019



70 CHAPITRE 3. Interaction of Love Waves with PnCs based on Holes and/or Pillars

Figure 3.3 – (left) Complete band structures of square arrayed holey PnC. Black so-
lid/dotted lines indicate the velocity of the SH waves in the substrate/guiding layer.
Red-yellow colors denote the SH component ratio. Gray lines are the modes propagating
into the volume. The blue zone indicates the partial band gap of Love modes in the x
direction. C is the x-axis-propagating SH waves velocity in the substrate. (right) Band
structure of SH modes in the ΓX region.

Figure 3.4 – Total displacements and deformations of the surface modes at point X of
the BZ corresponding to the band structures of the holey PnC.

from the periodic variation of the density and elastic parameters of the inclusions (air

holes) and the matrix (SiO2).

Fig 3.4 shows the total displacements and deformations of the surface modes at

point X in the irreducible BZ corresponding to the band structures of the holey PnC.

The displacement direction of the unit cell reveals the waves polarization. Fig 3.5 shows

the polarizations for each surface mode. The wave vector is chosen as the limit of the

ΓX direction in the irreducible Brillouin zone (point X). The total displacement can be

divided into 3 components u, v and w, representing the displacement in the x, y and

z directions, respectively. It is observed that for the 2 modes indicated in red in the

band structure of the holey PnC, i.e. the 1st and 4th modes, the polarization is along
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Figure 3.5 – Displacement components of the surface modes in the holey PnC at point X
of the irreducible Brillouin zone.

the y direction as they do not have displacement component in the xz plane. Since

the propagation direction of the waves is along the x axis (we are at point X), we can

summarize that these two are Love modes. The other 3 modes are Rayleigh modes whose

polarization is in the xz plane.

Due to the large SH polarization ratio of Love modes, as well as the exclusive

generation of SH waves by the electric field in our structure, we only need to study the

transverse component uy for the SH modes.

geometrical parameters consideration

To better understand the band properties of the PnCs, we investigated the evolution

of the modes with the variation of the geometrical parameters. Here for the holey PnC
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are the thickness of the layer H (i.e. the holes depth) and the radius of the holes rh. We

study the effect of these parameters on the SH surface modes (SH ratio > 0.5).
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Figure 3.6 – Evolution of the SH surface modes normalized eigenfrequencies at the
point X of the irreducible BZ by modifying the thickness of the guiding layer for (a) the
square array without hole or pillar, (b) the holey PnC.

Fig 3.6 shows the evolution of the SH surface modes normalized eigenfrequencies at

the point X of the irreducible Brillouin zone by modifying the thickness of the guiding

layerH , for the bare square lattice (without hole or pillar) and holey PnC. The horizontal

axis is the thickness of the guiding layer normalized by the lattice constant. For the

holey PnC, the relative layer thickness varies from 0.1 to 1 with a step of 0.005. The

other geometrical parameters remain the same : rh = 0.2a,a = 4µm.

For the structure without hole or pillar, the Fig 3.6(a) gives the coherent dispersion

relation as calculated in 2.2.3. It is found that in the interval [0.1, 1] of the normalized

thickness, there is only one mode. As the layer becomes relatively thicker, modes with

higher orders appear and the frequency of each mode decreases, i.e. the waves velocity

of each mode becomes smaller, between the upper limit (corresponding to the SH waves

velocity in substrate) and the lower limit (corresponding to the SH waves velocity in the

guiding layer).

After adding holes, more modes appear due to more vibration types. To avoid the

appearance of too many modes,we only study in the range [0.1, 1] of the normalized
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thickness. In Fig 3.6(b) for the holey PnC, the modes still tend to decrease. it is observed

that the holes have decreased the lower limit of the wave velocity, while maintaining the

upper limit. This means the holes are capable of slowing down the Love waves. However,

the modes remain in high frequency. The Bragg band gap between the 2 Love modes

opens with the increase of the layer thickness.
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Figure 3.7 – Evolution of the SH surface modes normalized eigenfrequencies at the
point X of the irreducible BZ by modifying the radius of the hole/pillar for the (a) holey,
(b) pillared and (c) mixed lattice.

Fig 3.7 shows the evolution of the SH modes normalized eigenfrequencies at the

limit of the irreducible BZ (point X) by modifying the hole radius of the holey PnC.

The horizontal axis is the radius normalized by the lattice constant. Other geometrical

parameters are fixed : H = 0.6a and a = 4µm. Bragg band gap is between the two Love

modes for the holey PnC. This band gap opens and then closes with the increase of the

hole radius, which directly affects the filling factor. the band width reaches a maximum

at r/a=0.29. Since the center of the band gap tends to decrease with the increase of the

normalized radius, the relative band width (∆f /fcenter ) reaches its maximum (37.1%) at

r/a=0.31. Note that this is a partial band gap at the direction ΓX.
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3.2.2 pillared PnC

band structure and displacement

Figure 3.8 – (left) Complete band structure of the pillared PnC. Blue zones indicate the
complete band gaps. (right) Band structure of SH modes in the γX region.

Figure 3.9 – Total displacements and deformations of the surface modes at point X of
the BZ corresponding to the band structures of the pillared PnC.

The band structure of the pillared PnC is shown in Fig 3.8. Compared with the

holey PnC, more modes are observed. Corresponding total displacement fields and

deformations for the modes at point X are shown in Fig 3.9. The first 6 are local resonant

pillar modes. The first two are flexion modes along x and y directions, respectively.

The 3rd is a torsion mode in x − y plan and the 4th a tensile mode along z-axis. The

torsional motion of the 3rd mode can be verified by the corresponding Uy component of

Love modes shown in Fig 3.10. Since the displacement of torsion mode has also a Ux

component, this mode is denoted in orange. The 5th and 6th are mixed modes composed

of expanding and flexion modes. At higher frequencies, there are two Love modes guided

in the layer and coupling with pillars. These two modes give rise to a partial Bragg band
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gap that is due to the periodicity of the pillared PnC. This Bragg band gap is much

narrower than that generated by the holey PnC. Note that the pillars generate complete

band gaps for Love waves, in the ranges of (0.45, 0.7) and (1.9, 2.1). These complete

band gaps are of local resonance type, which result from the coupling of the individual

pillar and the progressive SH waves.

Figure 3.10 – uy of SH surface modes at point X for the pillared lattice.

geometrical parameters consideration

Besides the guiding layer thickness H and the inclusion radius (here the pillar radius

rp), the pillared PnC has a new geometrical parameter (the pillar height h) compared

with the holey PnC. We studied the effects of these three geometrical parameters on the

SH surface modes.
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Figure 3.11 – Evolution of the SH surface modes normalized eigenfrequencies at the
point X of the irreducible BZ by modifying the guiding layer thickness H of the pillared
PnC.
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In Fig 3.11, SH surface modes normalized eigenfrequencies at the point X are shown

as functions of the normalized guiding layer thickness H/a of the pillared lattice. Other

geometrical parameters remain fixed : rp = 0.2a,h = 0.6a,a = 4µm. Two guiding Love

modes at higher frequency range tend to decrease with the increase of the silica thickness.

However, the partial Bragg band gap width defined by these two modes at point X has

not much changed after H/a exceeding 0.3. On the other hand, the 3 pillar modes at

lower frequency (there are 3 SH modes among the 6 pillar modes) are little affected by

the evolution of the guiding layer, since they are dominant by the intrinsic vibration of

the pillar.

Figure 3.12 – Evolution of the SH surface modes normalized eigenfrequencies at the
point X of the irreducible BZ by modifying the pillar radius rp of the pillared PnC.

Fig 3.12 shows the evolution of the SH surface modes normalized eigenfrequencies at

the point X by modifying the pillar radius of the pillared lattice, with other geometrical

parameters fixed : h = 0.6a,H = 0.6a,a = 4µm. In the high frequency range, two Love

modes guided in the SiO2 layer give rise to the partial Bragg band gap at the direction

ΓX. This band gap opens with the increase of hole radius before rp/a reaching 0.3. Then

the band width remains almost unchanged before rp/a=0.4. At lower frequency, the 1st

SH pillar mode (flexion mode) increases while the 2nd SH pillar modes (torsional mode)

decrease, with the increase of the radius. The 3rd SH pillar mode tends to decrease in
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the normalized pillar radius range of [0.15, 0.45].

Figure 3.13 – SH surface modes normalized eigenfrequencies at the point X as functions
of the normalized pillar height of the pillared PnC.

Fig 3.13 shows the evolution of the SH modes normalized eigenfrequencies at the

point X by modifying the pillar height of the pillared PnC. The horizontal axis is the

pillar height normalized by the lattice constant. Other geometrical parameters keep

fixed : rp = 0.2a,H = 0.6a,a = 4µm. The first 3 are pillar modes and the others are guiding

modes coupled with pillars. Guiding modes begin to appear for different heights. It

can be seen that the evolution of the pillar height causes a tendency of decreasing the

eigenfrequencies of all the modes, since these modes are all dependent on the pillar’s

vibration. Nevertheless, the detailed tendency of the pillar modes do not resemble those

of the guiding modes in terms of the curve slope.

materials consideration

As we have introduced above, the PnCs are the periodic structures of elasticity

or mass, and the phononic band gap is highly dependent on the contrast in physical

properties (elasticity, density and acoustic velocity). Therefore, it is meaningful to study

the materials of PnCs.

To simplify the model, both of the matrix and inclusions materials are considered
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isotropic. ρ and E are the density and Young’s modulus. The subscript i and m represent

inclusions and matrix. It is known that the formation of a band gap of PnC is due to the

diffraction of the phonons that propagate in a crystal at the interface between the matrix

and the inclusions. The acoustic impedance of a material is :

Zi,m = sqrt(ρi,mEi,m) (3.4)

The propagating velocity in a material is :

Vi,m = sqrt(Ei,m/ρi,m) (3.5)

In the following part, the composition of the material will be discussed. Gold,

diamond and silicon are chosen respectively because of their high density, high Young’s

modulus and facility of manipulation, relative to nickel. The guiding layer is SiO2. The

density and Young’s modulus for diamond, silicon, nickel, gold, and SiO2 are shown in

Table 3.1. Fig 3.14 shows the band structures for the square lattice based on diamond,

Si, Ni, and Au pillars. The geometrical parameters are the same : rp = 0.3a,h = 0.6a,H =

0.6a,a = 4µm, with rp,h,H,a respectively the pillar radius, the pillar height, the guiding

layer thickness and the lattice constant.

/ Diamond Si Ni Au SiO2
Density ρ(kg/m3) 3520 2329 8900 19300 2200

Young’s modulus E(GPa) 1220 170 219 70 70
Acoustic velocity V (m/s) 18617 8543 4960 1904 5640

Tableau 3.1 – Relative physical properties of different materials

Diamond studs have relatively high eigenfrequencies, since its acoustic velocity

is the highest due to a great Young’s modulus. The first 3 modes are the same as the

first 3 pillar modes that we have discussed. In the higher frequency range, where the

normalized frequency> 2, there are 3 surface modes guided in the layer and coupled
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Figure 3.14 – Band structures of phononic crystals based on (a) diamond, (b) silicon, (c)
nickel and (d) gold pillars. Blue zones denote the band gaps in the Γ -X-M-Γ region of
the BZ.

with the pillar.

Gold pillars have lower eigenfrequencies due to its lower acoustic velocity, and

therefore more eigenmodes can be excited. The first 6 modes are the pillar modes that

have been studied. Nevertheless, at higher frequency range, the guiding modes in the

layer are mixed with the pillar modes of higher orders.

The eigenfrequencies is found to be proportional with the Young’s modulus and anti-

proportional with the density, and is therefore proportional with the acoustic velocity.

That is, a soft and heavy material helps to obtain lower eigenfrequencies. Additionally,

we observe that the modes are very flat in the band structure for the gold pillar, which

means a high Q factor.

3.3 Transmission spectrum

The band structures show the intrinsic properties of PnCs, such as the resonances

and the polarizations. However, these results are calculated for the ideal infinite models.

Therefore, it is necessary to calculate the transmission spectra of finite 3D PnCs to

confirm the theoretical results obtained by the band structures. Moreover, the transmis-

sion spectra also help to better understand the band structures.
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3.3.1 Transmission model

The calculation of transmission spectra is realized by simulating a SAW device

consisting of two parts of aluminum inter-digital transducers (IDTs) and a PnC located

between the IDTs. The height of IDTs is hIDT = 200nm. The IDTs are constructed on the

quartz surface which is piezoelectric to generate the electric field. The graphic repre-

sentation of the model is shown in Fig 3.15, here we take the holey PnC as an example.

Since the device has translational symmetry along the y-axis which is perpendicular

to the direction of propagation, periodic boundary conditions are applied along the

y-axis, reducing the simulation structure to only one period. The model is surrounded

by perfectly matched layers (PMLs) for absorbing the undesired reflections from the

boundary. The bottom and lateral sides are assumed fixed. One of the IDTs performing

as a transmitter is given a harmonic voltage signal, with an amplitude of 1V , to excite

acoustic waves in the quartz substrate. These waves are confined in the silica film and

propagate through the PnC. They are received by the IDT on the other side. The output

is measured by averaging the voltage difference between the odd and even fingers. The

odd fingers of the input and output IDTs are assigned to the electrical ground. The even

fingers of the output IDT are set to zero surface charge accumulation. Note that the

width of the IDT fingers LIDT should be updated for each frequency in the spectrum

according to the relation LIDT = λ
4 = v

4f . v is the velocity of Love waves for H = 0.6a,

resulting from the basic dispersion relation of Love waves. That is, each frequency cor-

responds to a single wave velocity and wavelength. This model has been validated in the

previous work[106] by giving coincident results between simulations and experiments.

3.3.2 Transmission spectrum for holey PnC

Fig 3.16(b) shows the transmission spectrum of the holey PnC, calculated with

10 PnC holes in center and 20 IDT fingers on each side. This frequency response is

then normalized by that of the matrix (without PnC), referred to as normalized or
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xyz

Figure 3.15 – Schematic of the SAW device model for calculating the transmission
spectra of Love waves through the holey PnC. rh = 0.2a, H = 0.6a, a = 4µm

relative transmissions ∆S21, to show the transmission loss contributed by the PnC

only in Fig 3.16(c). The band structure of SH modes around the band-gap zone in

the ΓX direction is shown aside. The transmission attenuation appears clear and is

consistent with the band structure prediction. It can be seen that the Love modes at

higher frequency continues to propagate even after exceeding the limit of the substrate

velocity due to a good confinement to the surface.

3.3.3 Transmission spectrum for pillared PnC

The transmissions of Love waves through the pillared lattice are shown in Fig 3.17.

We can see that the band structures are compatible with the normalized transmission

spectra. It is observed that the hybridization bands at lower frequency give rise to sharp

transmission attenuations because of the waves resonant scattering in the pillars. The

Bragg band gaps at higher frequency arouse wide attenuation, which come from the

periodicity of the PnC.
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Figure 3.16 – (a)Zoom of the band structure of SH modes around the band-gap zone in
the ΓX direction of the holey PnC; (b)Transmission and (c) Normalized transmission
spectra of Love waves propagating through the holey PnC around the band-gap zone.
rh = 0.2a, H = 0.6a, a = 4µm, NP nC = 10.
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Figure 3.17 – (a) Band structure of SH modes in the ΓX direction of the pillared PnC. (b)
Normalized transmission spectrum for the pillared PnC. rp = 0.2a,h = 0.6a,H = 0.6a,a =
4µm,NP nC = 10.
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3.4 Mixed lattices

After studying the holey and pillared PnCs separately, it is interesting to consider

a lattice with mixed holes and pillars to see if we only obtain the simple combined

resonant properties.

3.4.1 Design 1

Band structure and displacement

Firstly, we design a mixed lattice in which the holes/pillars are located at the corners

of the unit cell of the pillared/holey PnC, as shown in Fig 3.18. The holes and pillars are

respectively arranged in square array. We refer to this lattice as D-PnC since the holes

and pillars alternate along the diagonal of the unit cell.

Figure 3.18 – Unit cell of the D-PnC. Corresponding schematic of the lattice is shown
on the right side. rh=rp=0.2a, h=0.6a, H=0.6a, a = 4µm.

The complete band structure of the D-PnC is shown in Fig 3.19. SH modes in the x

direction is shown on the right side of the complete band structure. The total displace-

ment fields of the surface modes at point X are shown in Fig 3.20. The displacement of

the SH surface modes have the behaviors similar to that of the pillared PnC, therefore
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Figure 3.19 – (left) Complete band structures of the D-PnC. Blue zones denote the
complete band gaps. (right) Band structure of SH modes in the ΓX region.

Figure 3.20 – Total displacements and deformations of the surface modes at point X of
the BZ corresponding to the band structures of the D-PnC.

we will not show their Uy component here. It can be seen that when holes and pillars are

mixed, the surface eigenmodes bloom in high and low frequencies. It is found that the

mixed lattice contains both the effects of the holes and pillars. The 6 pillars modes at low

frequencies still remain. However, in comparison with the pillared PnC, a downward

frequency shift of the 3rd SH surface mode (the 5th pillar mode) is observed. It is because

that the interaction between the guiding layer and the pillar is more intensive for this

mode than the first two SH surface modes. Therefore this mode is more sensitive to

the change of guiding layer. Moreover, more guiding modes are confined to the surface

due to the holes effect. That is, thanks to the holes, the bulk modes that are filtered out

by equation 3.2 and appear gray in the band structure of the pillared PnC (Fig 3.8),

become surface modes in the D-PnC. The width of the partial Bragg band gap (in the

ΓX direction) between the 2 Love modes at high frequency is almost the same as that of

the pillared PnC. However, the complete band gaps become much wider, which results
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from the increased frequencies at Γ point of all the progressive SH modes (bulk and

surface). This phenomenon also leads to a higher frequency for the appearance of the

first guiding mode.

We can conclude that the Bragg band gap is partial in the x direction. The pillars

can give rise to complete band gaps, while the holes can promote the confinement of

guiding modes. The D-PnC has widened the band gaps.

Geometrical parameters consideration

The evolution of the SH surface modes with the variation of the geometrical para-

meters (H , r and h) are shown in Fig 3.21. Here we set rh = rp = r. Compared with the

pillared PnC, the mode eigenfrequencies of the D-PnC evolve in much the same way for

each case. However, it is worth noting some slight differences :
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Figure 3.21 – Evolution of the SH surface modes normalized eigenfrequencies at the
point X of the irreducible BZ by modifying (a) the guiding layer thickness, (b) the
hole/pillar radius and (c) the pillar height of the pillared PnC. The parameters are fixed
when they are not the ones being changed : rh = rp = 0.2a,h = 0.6a,H = 0.6a,a = 4µm.

•For the mode frequencies as functions of the guiding layer thicknessH (Fig 3.21(a)) :

(1) The 3rd pillar mode is more sensitive to the guiding layer evolution when the

thickness is relatively small (H/a<0.6). (2) The 2 guiding modes appear in a thicker

layer, at H/a=0.15 and 0.35 respectively, compared with H/a=0.01 and 0.2 for the

pillared PnC, respectively.

•For the mode frequencies as functions of the hole/pillar radius r (Fig 3.21(b)) : (1)
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The partial Bragg band gap closes with the increase of the hole/pillar radius, while the

Bragg band gap opens with the increase of the pillar radius for the pillared PnC. (2) The

upper limit of the normalized radius becomes 0.35 due to a construction limitation.

•For the mode frequencies as functions of the pillar height h (Fig 3.21(c)) : (1)

Certain modes in the mixed lattice meet and cross, i.e. at the point of intersection, the

polarization of the two modes occurs simultaneously. This is the case for both the local

resonant pillar modes and the guiding modes. (2) The guiding modes begin to appear

for different pillar heights compared with the pillared PnC.

Transmission spectrum

(a) (b)

min

max

0

(c)

Figure 3.22 – (a) Band structure of SH modes in the ΓX direction for the D-PnC. (b)
Normalized transmission spectrum of Love waves propagating through the D-PnC.
(c) Displacement field uy of SH surface modes at point X. rh = rp = 0.2a,h = 0.6a,H =
0.6a,a = 4µm,NP nC = 10.

The transmissions of Love waves through the D-PnC are shown in Fig 3.22. Similar

as the second surface SH mode branch of the holey PnC case, a short part of the surface

SH mode beyond the black line (red part of the 4th branch) can still propagate. Another
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point to note is that the first branch is flat since the SH progressive wave starts to be

guided in the silica layer at a higher frequency, compared with the pillared PnC. This

single flat branch, denoting the pillar flexion mode, still gives rise to a transmission

attenuation because of the waves scattering in the pillars.

3.4.2 Design 2

Since the 2nd SH surface mode (pillar torsional mode) can give rise to a sharp dip in

the transmission spectrum of Love waves, it is conceivable to reset this mode into the

band gap of the holey PnC to see the coupling results. Therefore, we halve the pillar size

to double the torsional mode frequency, namely rp = 0.1a and h = 0.3a. The hole size

remains the same : rh = 0.2a, H = 0.6a and a = 4µm. The lattice arrangement is the same

as the D-PnC. We refer to this lattice as Ds-PnC.

Figure 3.23 – (left) Complete band structures of the Ds-PnC. Blue zones denote the
partial band gaps in the ΓX direction. (right) Band structure of SH modes in the ΓX
direction.

The band structure of the Ds-PnC is shown in Fig 3.23. It can be seen that the pillar

mode frequencies are doubled due to the halved pillar size compared with the D-PnC.

The second local resonant mode (torsional mode, around 500 MHz) has been modified

to the medium of the partial band gap. Another point to be noted is that this structure

maintains the increased frequencies of the progressive SH modes at the Γ point. The
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Figure 3.24 – (a) Band structure of SH modes in the ΓX direction for the Ds-PnC. (b)
Normalized transmission spectrum of Love waves propagating through the Ds-PnC. (c)
Displacement field uy of SH surface modes at point X. rp = 0.1a, rh = 0.2a,h = 0.3a,H =
0.6a,a = 4µm,NP nC = 10.

transmission spectrum of Love waves propagating through the Ds-PnC is shown in

Fig 3.24. In the lower frequency range, the flexion mode (around 180 MHz) raises a small

hybridization band gap due to the waves scattering in the pillars. Nevertheless, different

from the above results, the torsional mode here gives rise to a sharp transmission peak.

This can be understood as the pillar is a secondary source that also generates waves by

vibrating. The details of this phenomenon will be discussed in chapter 5.

3.4.3 Design 3

Based on the Ds-PnC, we changed the relative position of the holes and pillars to

make them alternate in a line that parallel to the propagation direction, as shown in

Fig 3.25. We refer to this lattice as Ls-PnC.

The band structure of the Ls-PnC is shown in Fig 3.26. It can be seen that the

increased frequencies of the SH modes at point Γ are canceled. As a result, the guiding

mode appears at the original frequency (close to zero). The transmission spectrum of
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Figure 3.25 – Unit cell of the Ls-PnC. Corresponding schematic of the lattice is shown
on the right side. rp = 0.1a, rh = 0.2a,h = 0.3a,H = 0.6a,a = 4µm

the Ls-PnC (in Fig 3.27) is almost the same as that of the Ds-PnC despite their different

dispersion curves of SH surface modes in the lower frequency range.

Figure 3.26 – (left) Complete band structures of the Ls-PnC. Blue zones denote the
partial band gaps in the ΓX direction. (right) Band structure of SH modes in the ΓX
direction.

By comparing the transmission spectra corresponding to the first pillar mode (flexion

mode) for the three mixed lattices (D-PnC, Ds-PnC and Ls-PnC), we find that this mode

always gives rise to a transmission dip even when it is isolated. This is because the waves

scattering by the local resonant mode is independent of the lattice symmetry.
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Figure 3.27 – (a) Band structure of SH modes in the ΓX direction for the Ls-PnC. (b)
Normalized transmission spectrum of Love waves propagating through the Ls-PnC. (c)
Displacement field uy of SH surface modes at point X. rp = 0.1a, rh = 0.2a,h = 0.3a,H =
0.6a,a = 4µm,NP nC = 10.

3.5 conclusion

This chapter describes the theoretical models built with the FEM using COMSOL

software in order to study the band structures and transmission spectra of different

PnCs interacting with Love waves. Normalized energy depth (NED) is calculated to

select the surface waves, as well as the shear horizontal (SH) displacement component

ratio to distinguish Love waves from SAW.

Firstly, band structures for square arrayed holey and Ni pillared PnCs were studied

on a guiding layer of SiO2 constructing on a 90ST quartz substrate. Displacements

and deformations of surface eigenmodes are provided. The different polarizations of

the modes have been observed and explained, which are consistent with the results

calculated by equations (NED and SH ratio). The holey PnC gives rise to two widely

separated Love modes at the X point of the irreducible Brillouin zone, denoting a large

partial Bragg band gap for Love waves in the x direction. The pillared PnC arouses three
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pillar SH modes below the frequencies of two narrowly separated guiding modes at the

X points, corresponding to three absolute hybridization band gaps below a small partial

Bragg band gap for Love waves.

Then, the effects of geometrical parameters and elastic parameters (different mate-

rials) on PnC band gaps were proposed and analyzed. For the holey PnC, Love mode

frequencies decreases with the increase of guiding layer thickness, similar as the case

for the homogeneous matrix (without hole). The holes are capable of slowing down the

Love waves. The hole radius variation leads to the open and close of the Bragg band

gap. For the pillared PnC, The guiding layer thickness can nearly not affect the pillar

mode frequencies, since the latter result from the intrinsic vibration of the pillar. With

the increase of pillar radius, the first SH mode (flexion) frequency increases while the

other two pillar SH modes (torsion and mixed modes) frequencies decrease. However,

all the three pillar mode frequencies decrease with the increase of pillar height. By

changing the pillar materials to diamond, Silicon and gold, we showed that a lower

acoustic velocity leads to lower mode eigenfrequencies.

Next, a SAW device model is built to calculate Love waves transmissions through

different PnCs. The effect of the band gaps elicited the absorption intervals in the

transmission spectra. The transmissions are compatible with the band structures of the

PnCs. Love modes above the transverse velocity of the substrate can still be excited.

By combining and adjusting the holey and pillared PnC, we demonstrated that the

mixed PnC has a capacity to enlarge the band gap (D-PnC) or to generate isolated mode

in the band gap (Ds-PnC and Ls-PnC). An upward shift of the progressive SH modes

were observed when the holes and pillars alternate along the diagonal of the unit cell

(D-PnC and Ds-PnC), resulting in a higher frequency for the appearance of the guiding

mode. The first two local resonant SH modes are proved independent of the lattice

symmetry.

This chapter provides a study for the infinite PnCs which serves as the basis of design
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for the acoustic resonators in next chapters.
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Chapitre4
Surface Local Resonators

Acoustic Local resonators are individual particles giving intrinsic vibrations at a

relative low frequency range compared to the Bragg band gap. In this chapter, we use

the pillars as local resonators. Although the periodicity is not a requirement, these

pillars are generally regularly arranged, leading to the appearance of Bragg scattering.

Phononic pillared meta-surface is a recently proposed structure that stems from the

pillared phononic crystals. It consists of a single or a line of pillars on top of a slab, with

which one can thoroughly investigate the pillar resonant properties without considering

the Bragg scattering. The pillar size, periodicity and the slab thickness are all sub-

wavelength-scaled[195, 196]. Several studies have been devoted to the interaction of

pillared meta-surface with Rayleigh waves [136] and Lamb waves [187, 197], but no

work has been done on Love waves.

Electromagnetically induced transparency (EIT) is a well-known physical effect in

atomic systems that arise because of quantum destructive interferences between two

excitation pathways to an upper atomic level [198]. Steep dispersion and low absorption

take place in a sharp transparency window, which makes it very attractive for a plenty of

potential applications in slowing light, enhancing optical nonlinearity and data storage

[199–201]. Autler–Townes splitting [202] (ATS) which is the field-induced splitting of
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the optical response, is not associated with interference effects and has been described

as an incoherent sum of two Lorentzians [203]. EIT and ATS may phenomenologically

look similar, but they are different in nature, one being a quantum interference and the

other a linear alternating current (AC) Stark effect. EIT and ATS were first observed in

quantum/atom systems[202, 204]. In recent years, classic analogues of EIT and ATS have

attracted increasing interest in platforms such as photonics [205–207], optomechanics

[208–210], plasmonics [163–165] and metamaterials [211–213]. Many discussions have

been devoted to their easily confused absorption or transmission spectra.[205, 214–216]

Besides their differences in the physical mechanisms, the Akaike Information Criterion

(AIC) has been proposed to quantitatively discern EIT from ATS,[214] and the transition

from ATS to EIT is thereby carried out.[217] A crossover from EIT to ATS has been shown

to exist in hot molecules[218], and in open ladder systems[219]. In acoustic, the analogue

of EIT, also referred to as AIT, has been investigated in different structures[220–224],

but the analogue of ATS and its comparison with AIT is only recently reported[183].

Additionally, the distinction and transition between acoustic analogue of ATS and AIT

has not been quantitatively investigated before.

This chapter will investigate the interaction of Love waves with the pillared meta-

surface. We show that these simple structures present different properties related to

condensed matter physics such as transmission zeros, Fano interference, acoustic ana-

logue of Autler-Townes Splitting(ATS), cavity modes and acoustically induced transpa-

rency (AIT). These results should have important consequences for potential acoustic

applications such as wave control, designing of meta-materials and bio-sensors.

4.1 resonant properties of single pillar line

Since a sharp hybridization band gap is found for the 2nd SH mode in the pillared PnC

around 250 MHz, see Fig 3.17, we halved the pillar size to obtain a resonance around 500
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MHz.Namely, the pillar radius, height and lattice constant is rp = 0.2ap,h = 0.6ap, and

ap = 2µm, respectively. The thickness of SiO2 layer remains unchanged, i.e. H = 2.4µm.

Love waves propagate along the x-axis. Although H/ap has increased, which refers to a

decrease in normalized frequencies of the guiding modes, the Bragg band gap still stays

beyond the pillar modes, see Fig 3.11. In this way we can investigate the pure resonance

properties of the pillars even if they are periodic along the x direction.

Here firstly, we construct a supercell corresponding to a meta-surface of one single

pillar line perpendicular to the propagating direction, as shown in Fig 4.1. The period

along the y-axis is ap = 2µm. The length of the unit cell L is 20a to insure a decoupling

between the unit cells. Floquet periodic boundary conditions are applied along the x

and y directions. The surfaces of the pillars coincide with the plane z = 0. The bottom of

the substrate is assumed fixed.

Figure 4.1 – supercell of one line of cylindrical Ni pillars on the SiO2 film deposited on
a 90ST-cut quartz. The period is ap along the y direction. Love waves propagate along
the x-axis. rp=0.2ap, h = 0.6ap, H=2.4µm, L=20ap, ap = 2µm.

Corresponding SH modes (SH ratio>0.5) band structure in the x direction is shown

in Fig 4.2(b). The modes colors are determined by their NED values (λ in the eq. 3.2 is

still fixed at 8µm). The modes in red are well confined to the surface, and can therefore

be excited by Love waves. Certain modes become pink as they are less confined to the

surface. Two hybridization band gaps are observed respectively in the frequency range

[177.3, 183.1] MHz and [501.8, 503.3] MHz, indicated in blue, which originates from the
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coupling of local resonant pillar modes and the SH SAW. Note that in the frequency range

[100, 600] MHz, the wavelength ranges from 6.8 to 48.8µm. Therefore, our structure is

indeed a meta-surface with sub-wavelength-scaled pillar size, periodicity and guiding

layer thickness.
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Figure 4.2 – (a) Transmission spectrum of Love waves propagating through a single
pillar line. Inset is the zoom of the torsional mode induced dip. (b)Band structure of
SH modes in ΓX direction for the unit cell of a single pillar line. The red-white colors
denote the normalized energy depth. A mode in red can be excited by Love waves.
(c) uy component of the displacement fields for two local resonant pillar modes. The
amplitudes in the pillar are normalized to the maximum amplitude in the SiO2 film.
r = 0.2ap. h = 0.6ap, ap = 2µm.

The transmission spectra is calculated by simulating the same dispersive SAW device

introduced in Ch 3, with the supercell located between IDTs. The relative transmission

is denoted as ∆S21. Fig 4.2(a) shows the transmission spectrum of the single pillar

line. It can be seen that the transmission spectrum corroborates well with the band
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Figure 4.3 – (a) Complex plot of the normalized emitted waves in the frequency range
[500, 505] MHz. The rose dot corresponds to the transmission dip at 502.1 MHz. (b)
Phase of total transmitted waves. Red dotted line denotes the reference phase (incident
waves without pillar). (c) Group delay time of the transmitted waves with and without
pillar.

structure prediction. The displacement fields and the deformations at the two dips are

shown in Fig 4.2(c). Due to their large SH component ratio, as well as the exclusive

generation of SH waves by the electric field, we only show the transverse component uy .

The amplitude in pillar is normalized to the maximum amplitude in the matrix and is

indicated beside the pillar. The two dips correspond to the pillar’s intrinsic bending and

torsional modes, respectively. The torsional mode induced transmission dip is better

attenuated, since the excited torsional motion leads to, on the side opposite to the

incident wave, a wave of identical amplitude and opposite phase, which is responsible

for a destructive interference. To further confirm this mechanism, the emitted wave Em

is calculated by subtracting the incident waves I (transmitted waves on the bare matrix

without pillar) from the totally transmitted waves T : Em = T − I . Em is then normalized

by I . Fig 4.3(a) is the complex plot of the normalized emitted wave in the frequency

range [500, 505] MHz around the torsional mode. The rose dot corresponds to the dip
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at resonant frequency of 502.1 MHz. This mode falls at point (-1,0), which refers to

the same amplitude with a phase shift of 180°with respect to the incident waves. This

results in a destructive interference and a strong attenuation in transmission. The phase

shift of full transmitted waves is shown in Fig 4.3(b). Red dotted lines represent the

incident waves. The dip corresponds to a π change in phase with respect to the incident

waves. The phase shift is 0 (2π) before (after) the resonant frequency, meaning that the

transmitted waves are in phase with the incident waves when they deviate from the

resonant frequency. The corresponding phase derivative or group delay time τg of the

transmitted waves is shown in Fig 4.3(c), with τg = dφ
dω , where φ denotes the phase and

ω = 2πf is the angular frequency. The waves are delayed at the resonant frequency.

It can be seen that the resonance is characterized by a rapid variation of phase and

amplitude.
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Figure 4.4 – Normalized transmission spectrum and of Love waves propagating through
(a) 2 lines and (b) 10 lines of pillars.). rp = 0.2ap. h = 0.6ap, ap = 2µm.

This single pillar line is then changed to two lines, with a center distance equals to

ap. The transmission spectrum is shown in Fig 4.4(a). It can be seen that this structure

enlarged the attenuation width while giving rise to two dips due to a coupling between

the two pillars on the way of the waves propagation, which is a phenomenon that will

be discussed in the section4.2. Fig 4.4(b) is the transmission spectrum obtained by 10

lines of pillars. The lower limit of the transmission has augmented whereas the dip
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becomes wider until full stretched between the two limits of the hybridization band gap.

Therefore, we can conclude that the lines number can affect the depth and the width of

the resonant dip.

4.1.1 periodicity consideration

The effect of the lattice constance ap on the resonant behaviors is then investigated.

We modify gradually the value of ap while keeping the pillar size, i.e. rp = 0.4µm

and h = 1.2µm. Fig 4.5 shows the dip frequency and width as functions of the lattice

constance. It can be seen that the dip frequency decreases and then becomes almost

constant with the increase of ap, as a result of decreased coupling effect between the

adjacent pillars. When ap exceeds 2µm, the pillar coupling becomes very weak and the

dip frequency is close to the pillar intrinsic torsional mode frequency. The dip width,

here the full width at half maximum (FWHM) also decreases with the increase of ap,

which denotes an increase in the Q factor. To avoid a great pillar coupling effect in the y

direction, we keep ap at 2µm in the sections below.
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Figure 4.5 – Dip frequency (blue dots) and width (brown cycles) as functions of the
lattice constance ap. rp = 0.4µm, h = 1.2µm.
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4.2 Two lines of pillars

4.2.1 Two lines of identical pillars : Autler-Townes Splitting & cavity mode

Transmission spectra are then calculated around the torsional mode frequency

for two lines of identical pillars. Corresponding supercell is shown in Fig.4.6. Two

cylindrical Ni pillars on the silica film have a radius of rp1 = rp2 = 0.2ap. The distance

between the centers of the two pillars is denoted by d. In addition to our intuitively

predicted transmission dip, different phenomena appear when we gradually increase the

distance d between the pillar lines. When d < 1.4ap (Fig 4.7(a)), a coupling effect arises

between the pillar lines, causing a lifting of frequency degeneracy of the pillar torsional

mode, and the original transmission dip splits into two dips with a transparency window

in the middle, referred to as acoustic analogue of Autler-Townes Splitting (ATS). The

coupling becomes stronger when d gets smaller, as shown in Fig 4.7(a). Note that the

pillar coupling also depends on the pillar mass. Therefore, the distance limit 1.4ap can

be detuned by changing the pillar size (radius or height). The displacement fields uy

at the dips and peak for d = 0.5ap are shown aside in Fig 4.7(d). It is found that the

largest amplitude is located in the pillars for dip1 at 499.8 MHz. The two pillars are in

opposite phase at dip1 frequency and in-phase at dip2 frequency, which is a feature of

the ATS resonance that can be confirmed by calculating the phase difference between

the two pillars. Since the pillars are in torsional mode in the range of measurement, all

the points on the side of the pillar that faces the incident waves are in phase. The phases

of uy on the wave-facing sides of the two pillars are probed. The cases of d = 0.5ap and

d = ap are shown as examples in Fig 4.8(a) and (b). Rose and green dots correspond

to transmission dips and peaks, respectively. It can be seen that the two pillars have a

phase difference of π at the first dip, meaning that they are 180°out-of-phase. The phase

difference is 2π at the second dip, indicating that they are in-phase. This reveals that the

pillar vibrations are symmetrical at the dip1 frequency and asymmetrical at the dip2
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frequency.

Figure 4.6 – Unit cell of two lines of cylindrical Ni pillars on the SiO2 film deposited on
a 90ST-cut quartz. The period is ap along the y direction. Love waves propagate along
the x-axis. rp1=rp2=0.2ap, h = 0.6ap, H=2.4µm, L=20ap, ap = 2µm.
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Figure 4.7 – Normalized transmission spectrum of Love waves propagating through
the two identical pillar lines around the resonant frequency of torsional mode at 502.1
MHz with different central distance d : (a) presents the lifting of degeneracy and the
apparition of Autler-Townes Splitting with the decrease of d ; (b) shows the red-shift of
cavity mode by increasing d when d < 2ap (c) presents the appearance of cavity mode
peak when d > 2ap. (d) and (e) are the displacement fields uy at the dips and peaks for
d=0.5ap and 2.4ap, respectively. rp1=rp2=0.2ap, ap = 2µm.

Since we work around 500MHz with Love waves velocity v around 4200 m/s, the

wavelength λ = v/f is therefore around 8.4µm. d ≈ 2ap (ap = 2µm) indicates a distance

around λ/2 corresponding to the Fabry-Perot (FP) resonance. This resonance is almost

invisible in the transmission spectrum when it matches the pillar torsion mode, since
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Figure 4.8 – Pillar phase differences for ATS in the case of (a) d = 0.5ap and (b)
d = ap. Rose and green dots correspond to transmission dips and peaks, respectively.
r1=r2=0.2ap, ap = 2µm.

the waves are almost totally reflected. However, when we change the distance between

pillars around λ/2, the proximity of FP resonance with the pillar mode gives rise to

the cavity modes at the two edges of the dip, as shown in Fig 4.7(b) and (c). In these

cases, the two pillars act like partial reflectors, and the normally incident waves are

multiply reflected to produce multiple transmitted waves with path difference equal

to nλ, where n is an integer. In this way, constructive interference occurs, leading to

a resonant enhancement. The two pillars along with the guiding layer between them

become a cavity to confine the waves. Nevertheless, in the transmission spectra, the

behaviors for d < 2ap (Fig 4.7(b)) are less marked than that for d > 2ap (Fig 4.7(c)),

where peaks rise at the lower edge of the dip, and give rise to Fano-like resonance

line-shapes. However, we have verified that it can not be fitted by a Fano type formula.

The displacement field uy at the peak and dip for d = 2.4ap are shown aside in Fig 4.7(e),

since the transmission curve for d = 2.4ap presents the most confined peak. At the peak

frequency, large amplitudes are observed for the three parts of the cavity (two pillars

and the guiding layer in between). This behavior is different from that of ATS, the largest

amplitude in the pillars occurs at the peak where the waves in the guiding layer are

highly confined in the cavity.

To show more clearly the transition of the cavity mode with respect to the dip when
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Figure 4.9 – (a)Complex plots of the normalized transmissiosn in the frequency range
[500, 505] MHz for d varies from 1.8ap to 2.2ap. The rose and green marks correspond
to the dip and cavity mode frequencies, respectively. rp1=rp2=0.2ap. (b) Complex plots
of the normalized transmissions for d = 2ap ≈ λ/2 when all the pillars’ radius vary from
0.196ap to 0.204ap. Inset shows the transmission spectra of corresponding curves.

d changes, we draw the complex plots of the normalized transmissions in Fig 4.9(a). The

cavity mode is manifested as an additional perturbation on the original ellipse. Since

the phase changes clockwise, it can be seen that the cavity mode passes the dip as d

increases. When the cavity mode approaches to the dip, the perturbation decreases. For

d = 2ap, the cavity mode coincides with the FP resonance and becomes almost invisible.

Additionally, we can see that the behaviors for d < 2ap and for d > 2ap are quite similar,

with the perturbation frequency either larger or smaller than the dip frequency.

Fig 4.9(b) shows the complex plots of the normalized transmissions of Love waves

for d = 2ap when we change the radius of both pillars from 0.196ap to 0.204ap, indi-

cating a shift in pillar resonant frequency. It is found that the cavity mode remains

almost invisible, i.e. still coincides with the FP resonance. That is because the distance

between pillars corresponding to the FP resonance is almost unchanged in our range of

measurement (from 498 to 506 MHz), i.e. λ/2 is always around d = 2ap. Therefore when

we change the pillar vibration frequency, we obtain the parallel cavity modes for the

same value of d.
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Figure 4.10 – Dip, peak and cavity mode frequencies as functions of the distance d
between two identical pillar lines. Blue dotted line is the dip frequency of a single
pillar line. ATS appears in the coupling region of d < 1.4ap. The 1st and 2nd Fabry-Perot
resonances fall at d=λ/2 and λ, respectively. rp1=rp2=0.2ap, ap = 2µm.

To give an overview of the resonance behaviors, the dip and peak frequencies for

different d are shown in Fig 4.10. Blue dotted line is the dip frequency of the single

pillar line. It can be seen that the pillar coupling induced ATS is in the region d < 1.4ap,

where the two dips are mismatched with the single pillar resonant frequency. This

coupling disappears when d exceeds 1.4ap, and only one dip (quasi-zero transmission)

remains. This dip matches the single pillar resonant frequency except when the cavity

modes appear below (upon), the dip frequency shifts slightly upward (downward).

The interaction between the pillars is much stronger for d/ap=2 than that for d/ap=4.

Therefore, the resonances around d=λ are too weak to be observed. Note that the

frequency of the cavity modes changes much slower than that of the FP resonance. The

1st and 2nd FP resonance exists only in the very closed regions around d = 2ap and 4ap,

respectively. In these two cases, FP resonances are particular cases of the cavity modes

when the later coincide with the dip. In the other regions, one should avoid to mix up

the cavity mode with the FP resonance.

In order to show the behavior of the cavity modes at the vicinity of the transmission

dip, we plotted in Fig 4.11(a) the transmission spectra for d = 2.4ap when all the pillars’
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Figure 4.11 – (a)Transmission spectra for d = 2.4ap when all the pillars’ radius vary
from 0.196ap to 0.204ap. (b) Cavity modes (black lines) for two lines of identical pillars
when changing the pillar resonant frequency (blue lines). Red line denotes the 1st FP
resonance.

radius vary from 0.196ap to 0.204ap. It can be seen that we obtain almost the same

cavity mode at different frequencies. Along with Fig 4.9(b), we can present in Fig 4.11(b)

the relation between cavity modes (black lines) and FP resonance (red line). When we

change the pillar resonant frequency (blue lines), FP resonance remains at almost the

same position. For each radius value, the FP resonance is a particular case of the cavity

modes when the later coincide with the dip.

4.2.2 Two lines of dissimilar pillars : Autler-Townes Splitting, cavity & Acous-

tically Induced Transparency

Since an increase of pillar radius or height will induce a decrease in the torsional

mode frequency, one can gradually tune the position of the dip by modifying the pillar

size. Here we modify the pillar radius as example since the radius is easier to be tuned

in experimental process.

The effect of pillar radius on the hybridization band gap is presented in Fig 4.12(a).

An increase of radius will induce a decrease in resonant frequency and an increase in

band gap width.

In the case below, the second pillar radius rp2 is tuned from 0.195ap to 0.205ap, while

the first pillar radius rp1 being fixed to 0.2ap. Fig 4.13 shows the transmission spectra
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Figure 4.12 – Hybridization band gap as a function of the pillar radius. The band gap is
between the two dotted lines. ap = 2µm.

of Love waves propagating through the two dissimilar pillar lines for different d that

remains unchanged for each case. Dotted blue and rose lines denote the dip positions

for a single line of pillars with radius equals to rp1 and rp2, respectively. Fig 4.13(a)

corresponds to the case d = 0.5a, where the coupling between the pillars is so strong

that the two dips stay all the way mismatched with their corresponding single pillar dip

positions. When d gets larger, the coupling becomes weaker : Fig 4.13(b) corresponds

to the case d = ap. It is found that this coupling decreases with the increase of radius

mismatch. In the case of rp2 = 0.195ap and 0.205ap, each dip almost coincides with the

corresponding resonant frequency of one single pillar. In order to show the anti-crossing

lines of ATS for d < 1.4ap, we plotted in Fig 4.14 the dip frequencies for different d as

functions of rp2. It can be seen that with the increase of pillar distance, the anti-crossing

lines get closer to the crossing line (for d = 1.4ap), and that each anti-crossing line will

rejoin its individual pillar resonant frequency when the radius mismatch is sufficiently

large. This means the pillar coupling effect decreases when their distance or/and their

radius difference increases.

For d = 2ap as shown in Fig 4.13(c), two pillars with different radius give rise to

two dips with a transparency window in the middle. These peaks have a narrower
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Figure 4.13 – (a) Transmission spectra of Love waves for d= (a)0.5ap, (b)ap, (c)2ap,
(d)2.4ap when gradually changing the radius of the second pillar from 0.195ap to 0.205ap.
The radius of the first pillar rp1 is fixed to 0.2ap. ap = 2µm.
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Figure 4.14 – Anti-crossing lines for ATS when d < 1.4ap. Dip frequencies for different
d as a function of the second pillar radius rp2. rp1 is fixed to 0.2ap. ap = 2µm.

line-shapes compared with the cases of ATS (see also Fig 4.16). Each dip is consistent

with the corresponding dip frequency of one single pillar since no more coupling exists,

which means each of them originates from individual pillar’s torsional mode. The dis-

placement fields uy for r2 = 0.202ap are presented in Fig 4.15. It can be seen that each

dip corresponds to a large amplitude in a single pillar, indicating the attenuation of

transmission at each pillar’s resonant frequency due to the destructive interferences.

The peak correspond to a Fabry-Perot resonance since d is close to λ/2. The two detuned
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Figure 4.15 – Displacement field uy at the dips and peak for AIT in the case of d = 2ap.
The two pillars differ in radius with rp2 = 0.202ap and rp1 = 0.2ap. ap = 2µm.

pillar modes act as two partial reflectors and are hence able to support the constructive

interference of the FP resonance, where large amplitudes are observed for the three parts

of the cavity (two pillars and the guiding layer in between). This three-resonance system

induced transparency window is referred to as the Acoustic analogue of Electromagneti-

cally Induced Transparency, also called Acoustically Induced Transparency (AIT). The

peak rises and gets wider with the increase of radius difference. As for d = 2.4ap shown

in Fig 4.13(d), where a cavity mode peak is observed for the two identical pillars, it is

found that with the increase of pillar radius mismatch, the peak confinement decreases

and the dip1 becomes evident for rp2 = 0.198ap and 0.202ap. Compared with the case

of d = 2ap (Fig 4.13(d)), the peak between two dips is less confined due to the red shift

of cavity mode with respect to the pillar resonant frequency. Note that AIT requires a

well excited resonance between the two dips. Therefore, in the case of d = 2.4ap, the

transparency window is only two dips resulting from the different resonant frequencies

of two pillars.

The transmission spectra of AIT are similar with those of ATS, however, they origi-

nate from different mechanisms. ATS appears only when the two pillars are coupled to

each other, and exists even when the two pillars are identical. AIT appears when d is

out of the pillar coupling region and only when the two pillars are different. The pillars

and the cavity interact at the peak. Moreover, AIT requires a clearly identified 3-level

resonant system, which is not the case for ATS.

Besides the different mechanisms related to ATS and AIT as presented above, cor-
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responding analytical formulas of ATS and AIT for transmission spectra can be used to

fit the numerical data to better distinguish these different transparency windows. The

transmission curves for ATS can be written as the sum of two separate inverse Lorent-

zian profiles representing the two dips, while the transmission for AIT is expressed as

the difference of a broad Lorentzian profiles and a narrow one with a similar central

frequency [205, 216] :

TAT S = 1− C1(Γ1/2)2

(f − δ1)2 + (Γ1/2)2 −
C2(Γ2/2)2

(f − δ2)2 + (Γ2/2)2 , (4.1)

TAIT = 1− C+(Γ+/2)2

(f − δc − ε)2 + (Γ+/2)2 +
C−(Γ−/2)2

(f − δc)2 + (Γ−/2)2 , (4.2)

where C1, C2, C+, C− are the amplitudes of the Lorentzian profiles, Γ1, Γ2, Γ+, Γ− are

their full width at half maximum (FWHM). δ1, δ2, δc are the central frequencies with ε

denoting a possible slight shift on δc. Γ1, Γ2, δ1, δ2 and δc can be directly taken from the

transmission spectra.

In an intermediate state, the transmission spectra can be fitted by a transition formula

that considers both the features of ATS and AIT :

TAT S/AIT = 1− Ca(Γa/2)2

(f − δ1)2 + (Γa/2)2 −
Cb(Γb/2)2

(f − δ2)2 + (Γb/2)2

−
(f − δ1)Cd(Γd/2)2

(f − δ1)2 + (Γd/2)2 +
(f − δ2)Ce(Γe/2)2

(f − δ2)2 + (Γe/2)2 ,

(4.3)

where Ca, Cb, Cd , Ce, Γa, Γb, Γd , Γe are parameters to be determined. Note that this formula

can also be used to fit the ATS and AIT cases.

Fig 4.16 shows the numerical data (black dots) together with the best fit functions

TAT S (red lines) and TAIT (blue lines) for the four values of d in Fig 4.13 which stand

for strong coupling ATS, weak coupling ATS, AIT and intermediate states, respectively,

in the case of rp2 = 0.202ap and rp1 fixed to 0.2ap. The best fit functions are determined

Version intermédiaire en date du 28 novembre 2019



110 CHAPITRE 4. Surface Local Resonators

by resorting to the least-squares method, that is, by searching the fit parameters that

minimize the sum of squared errors between numerical data and fit function :

∑
(FEMi −Fi)2, i ∈ [1,N ] (4.4)

where N is the number of values calculated by FEM. Fi is the value of TAT S or TAIT

corresponding to each data frequency. It can be seen that, as expected, for d = 0.5ap

and ap where coupling exists between the pillars, TAT S fits the numerical data much

better than TAIT . Whereas for d = 2ap , TAIT fits the numerical data better than TAT S . For

d = 2.4ap, both TAT S and TAIT do not fit the numerical data well. In this case, TAT S/AIT

(green line) fits the data better.

By fitting the numerical data to the model fits of TAT S and TAIT for different rp2 (rp1

fixed), the relation between the fits parameters and rp2 can be obtained as shown in

Fig 4.17, where Fig 4.17(a) presents the fit parameters of the ATS model for d = 0.5ap

and Fig 4.17(b) are those of the AIT model for d = 2ap. The parameters of ATS model

describing each Lorentzian curve are independent of each other. It can be seen that Γ1

increases with the increase of radius mismatch while Γ2 increases with the increase of

rp2. We think this is resulting from the symmetrical/asymmetrical vibration of the two

pillars at dip1/dip2 in the ATS cases. C1 is relatively stable while C2 presents a slight

tendency to increase. The parameters of AIT model are related to each other. As can be

seen in Fig 4.17(b), these four parameters all increase as the radius mismatch increases

and are almost symmetrical in our range of measurement. Despite a larger values of Γ+

compared with Γ−, C+ and C− are almost the same for different rp2 .

With the increase of distance between pillars, the transition from ATS to AIT can

be quantitatively studied by evaluating the quality of these model fits. The Akaike

information criterion (AIC)[225] is used to discern AIT from ATS, which provides a

method to select the best model from a set of models. This criterion quantifies the
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Figure 4.16 – Transmission spectra and model fits of ATS and AIT, for r1 = 0.2ap,
r2 = 0.202ap and ap = 2µm. Numerical data (black dots) are presented together with the
best fits of functions TAT S (red lines) and TAIT (blue lines). For (a) d=0.5ap and (b)d = ap,
TAT S fits the numerical data better than TAIT . (c) For d=2ap, TAIT fits the numerical data
better than TAT S . (d) For d=2.4ap, TAT S/AIT (green line) can be used to fit the numerical
data whereas TAT S and TAIT do not fit well.
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(b)d = 2ap with model fits TAIT . rp1 = 0.2ap, ap = 2µm

amount of information lost, i.e. the degree of unfitness, and is given as Ij = 2k − 2ln(Lj ),

where k = 4 is the number of unknown parameters and Lj the maximum likelihood for

the considered models, i.e. j =ATS or AIT. Since we already found the best fit functions

of TAT S and TAIT , it is sufficient to calculate the likelihood of these two functions. Then,

the AIC weight Wj = e−Ij /2/
∑N

1 e
−Ij /2 can give the relative likelihood of a candidate

model. N is the number of considered model. In our case, N = 2 as only two models

are involved. Since we have more than one calculated data for each model, we utilize

the AIC mean per-point weight[214] wj = e−Ij /2n/
∑N

1 e
−Ij /2n to calculate the statistically

synthesized likelihood of the candidate model. n is the calculated data number. The AIC

mean weight can be rewritten as :

wAT S =
e−IAT S /2n

e−IAT S /2n + e−IAIT /2n
(4.5)
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with wAT S +wAIT = 1.
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Figure 4.18 – AIC mean weight as a function of the distance between pillars d for ATS
model (red line) and AIT model (blue line), in the case of rp2 = 0.202ap. rp1 = 0.2ap,
ap = 2µm

Fig 4.18 shows the AIC mean weight of the ATS and AIT models as function of the

distance between pillars, in the case of rp2 = 0.202ap and rp1 = 0.2ap. It can be seen that,

as expected, the AIC mean weight of ATS model is dominant for the small distance

region, which means it is preferable to use the ATS model. When the d increases, the

AIC mean weight of AIT model starts to increase as well, and becomes dominant for

d ∈[1.8ap, 2.2ap]. Since cavity mode is not presented at the peak for d = 1.8ap, and starts

to interact with the dip1 for d = 2.2ap, the AIT is hence in the distance range of d ∈[1.9ap,

2.1ap]. When d continues to increase, the AIC mean weight of ATS becomes dominant

again until d increases to around 4ap, i.e. the position of the second FP resonance, where

we found the second AIT position for d ∈[3.9ap, 4.1ap] . The periodicity of AIT, which is

a behavior that hasn’t been addressed before in the existing literature, results from the

periodic apparition of FP resonance. The AIC mean weight of the second AIT region is

smaller than that of the first AIT region, since the interaction of the system decreases

with the increase of distance between pillars d. Note that the ATS in our case exists
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only for d < 1.4ap, therefore the transition region d ∈[1.4ap, 1.8ap] as well as the larger

distances other than the AIT regions do not represent ATS or AIT. We can see that the

theoretical distinction between ATS and AIT helps the comprehension of the analytical

results. On the other hand, this criterion is useful when we cannot theoretically rule

out the AIT phenomenon. This happens for example when the radius mismatch is so

large that the peak is much wider with respect to the two dips. In this case, although

FP resonance is still present between two dips, the transmission spectra can not be well

fitted by the AIT model and therefore cannot be ascribed to an AIT.
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Figure 4.19 – Frequencies of dips, peaks and cavity modes as a function of the distance
d between two dissimilar pillar lines, in the case of (a) rp1 = 0.2ap and rp2 = 0.201ap, and
(b) rp1 = 0.2ap and rp2 = 0.202ap. ap = 2µm.

Fig 4.19 gives the same results as in Fig 4.10, but with two lines of dissimilar pillars.

Fig 4.19(a) is the case of rp1 = 0.2ap and rp2 = 0.201ap. Dip1 corresponds to the second

pillar. It can be seen that outside the ATS region, this dip becomes invisible after d

exceeding 2.2ap. This is because on the one hand, the interaction between the two pillars

becomes too weak and on the other hand, the radius mismatch is too small : This dip
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become visible again when d approaches to 4ap, since the interaction between the two

pillars regains its strength in the AIT region. When we enlarge the radius difference (see

Fig 4.19(b)), most of the dip1 in this region become visible. Moreover, we can see that

the cavity modes cross the center of the two dips at d=2ap and 4ap, where we obtain

the AIT type of FP resonance. This behavior is compatible with the cavity mode-FP

resonance relation that we presented in Fig 4.11(b). FP resonances are particular cases

of the cavity modes when the later fall in the center of the two dips.

pillar height mismatch

The radius of the two pillars are increased/reduced from the original radius rp =

0.2ap by the same amount ∆r. That is, rp1 = rp +∆r and rp2 = rp −∆r, with the height h

fixed at 0.6ap. Fig 4.20(a) shows the transmission spectra of Love waves through the two

lines of pillars when d = 2ap, i.e. in the region of AIT. It can be seen that by decreasing

∆r, the two dips approach to each other and the peak with almost unchanged frequency

decreases and becomes invisible for identical pillars.
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Figure 4.20 – (a)Normalized transmission spectra of Love waves propagating through
the two lines of pillars with different radii, rp1=rp+∆r and rp2=rp-∆r, in the case of
d = 2ap. AIT peak rises and becomes wider with the increase of pillar height mismatch.
h = 0.6ap, rp = 0.2ap. (b)Same as (a) but detuning the pillar heights : h1=h+∆h and
h2=h-∆h, in the case of d = 2ap. h = 0.6ap, rp1,p2 = 0.2ap and ap = 2µm

Since the pillar intrinsic mode is sensitive to the pillar size, the above effects can

also be obtained by detuning the pillar height. In the same way, the heights of the two

pillars are increased/reduced from the original height h = 0.6ap by the same amount
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∆h, i.e. h1 = h+∆h and h2 = h −∆h. The radius of both the two pillars rp1 and rp2 are

fixed at 0.2ap. The distance between the two pillars is also d = 2ap. Fig 4.20(b) shows the

corresponding transmission spectra. It can be seen that the modification of pillar height

has similar effects on the line-shapes of the transmission spectra.

4.3 Fano resonance by geometrical mismatch

In this section we will investigate one line of alternating pillars that differ in geome-

trical parameters, namely the radius and the height. Fig 4.21 shows the supercell of this

structure, which contains only two pillars with periodic conditions applied along the y

axis.

Figure 4.21 – Supercell of one line of alternating Ni pillars on the SiO2 film deposited
on a 90ST-cut quartz. The period is 2ap along the y direction. Love waves propagate
along the x-axis. rp1=0.2ap, h = 0.6ap, H=2.4µm, L=20ap, ap = 2µm.

As indicated in Fig 4.22, two pillars in different radius give rise to two dips. Each dip

is consistent with the corresponding resonant frequency of one single pillar, meaning

that each of them originate from individual pillar’s torsional mode. The displacement

fields are presented aside. It can be seen that each dip corresponds to a large amplitude

in a single pillar, indicating the attenuation of transmission at each pillar’s resonant

frequency. Between these two dips is a passing band. The maximum transmission in

this passing band is denoted as a peak p. Note that single pillar dips are calculated by
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Figure 4.22 – Normalized transmission spectra of Love waves through the pillar line. uy
for two dips are shown aside. rp1 = 0.2ap, rp2 = 0.205ap. H = 2.4µm, ap = 2µm.

removing the other one, i.e. a pillar with a periodicity of 2ap, since this line of alternating

pillars is actually a combination of two pillared PnCs of which each has a periodicity

of 2ap. These two dips are well suited to each single pillar dip since the difference in

radius is not small enough, so the coupling between the two pillar is quite weak.
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Figure 4.23 – (a) Dips and peak frequency as a function of the radius of pillar2. Gray
dashed line and blue dotted line are respectively the dip frequency of a single pillar of
rp1 and rp2 with doubled periodicity 2ap ; (b) Normalized transmission spectra for rp2
varies from 0.2005ap to 0.205ap. rp1 = 0.2ap, ap = 2µm.

If we gradually reduce the difference between the two pillar radii, these two dips will
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become closer until the coupling between the pillars is strong enough and the two dips

become mismatched with their corresponding single pillar dips, as shown in Fig 4.23(a).

In this whole view of the pillars coupling behaviors, it can be seen that the mismatching

region, i.e. the coupling region, for rp2 is between 0.199ap and 0.201ap. One interesting

point is that when rp2 approaches to rp1, the peak intensity does not decrease and the

peak starts to be very close to the first dip, forming along with the dip1 the asymmetric

transmission line-shapes, referred to as Fano resonances. It is worth noting that, when

rp1 = rp2, the only dip is induced by a line of same pillars with a period of ap, where

a weak coupling between the pillars results in a mismatch from the pillar intrinsic

torsional mode frequency (the intersection point of the blue and gray lines). Fig 4.23(b)

describes the transmission spectra for rp2 varies from 0.2005ap to 0.205ap. As we can

see, dip1 become increasingly finer, as it moves to the peak. When rp2 ≤ 0.201ap, where

the coupling become relatively strong, the peak starts to appear sharp.
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Figure 4.24 – (a) Phase shift of the full transmitted Love waves, red dotted line is the
phase of the incident waves ; (b) Complex plot of Love waves emitted by the pillar
line in the frequency range (501.21, 501.35) MHz. The two frequencies marked in rose
corresponds to the dip1 and peak when rp2 = 0.199ap. rp1 = 0.2ap, ap = 2µm.

Fig 4.24(a) shows the phase shift of the full transmitted waves for rp2 = 0.199ap and
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4.3. Fano resonance by geometrical mismatch 119

rp1 = 0,2ap. Red dotted line is the phase of the incident waves (transmitted waves without

pillars). The two frequencies marked in rose corresponds to the dip1 (at f = 501.223

MHz) and peak (at f = 501.338 MHz). It can be seen that dip1 corresponds to a phase

shift of π and the peak corresponds to a phase shift of 2π. The normalized emitted

waves for rp2 = 0.199ap and rp1 = 0,2ap are calculated and a Complex plot of normalized

emitted wave are shown in Fig 4.24(b). At f = 501.223 MHz, the normalized emitted

wave is near the point (-1,0), indicating an amplitude close to 1 and a 180°out-of-phase

with respect to the incident waves, which results in a destructive interference and a

strong attenuation in transmission. At f = 501.338 MHz, the emitted wave is close to

(0,-0.3) point, indicating a small amplitude with 90°phase shift, which will induce a

slight amplitude enrichment.
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Figure 4.25 – (a) Phase shift on the wave-facing side of the pillars in the frequency range
(501.1, 501.4) MHz. rp1 = 0.2ap, rp2 = 0.199ap, ap = 2µm.

Fig 4.25 shows the displacement phase on the wave-facing sides of the two pillars,

in the frequency range of (501.1, 501.4) MHz. It can be seen that the two pillars have a

phase difference of π, and each pillar has a phase shift of π
2 from dip1 (at 501.223 MHz)

to peak (at 501.338 MHz).
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The above results allow us to conclude that a Fano resonance can be induced by a

slight radius difference for the two dissimilar pillars. The origin of this Fano resonance

is a strong coupling between the two pillars, which arouses a degeneracy of both modes

from their individual resonant frequecy. The Fano resonance is an asymmetric trans-

mission line-shape resulting from the interference between the emitted and incident

waves. The anti-resonance (dip1) corresponds to an amplitude close to 1 and a phase

shift of π for the normaliezed emitted waves, whereas the resonance peak corresponds

to an small amplitude with a phase shift of π/2 , which enriches the incident waves

amplitude. This resonance peak persists as long as the radius differece is not canceled,

and can be confined by reducing the radius mismatch.

4.3.1 Periodicity influence

Since a small lattice constance in the y direction can induce a strong coupling

effect between the pillars as shown in Fig 4.5, we decrease ap in the cases below while

maintaining the pillar size. Fig 4.26(a) shows the transmission spectra of Love waves

propagating through the alternating pillar line for different ap, in the case of rp1 = 0.4µm

and rp2 = 0.398µm. It can be seen that with the decrease of ap, dip1 becomes shaper and

the peak changes to the other side of the dip1. Corresponding quality factors (Q) of the

dip1 are shown in the table above the figure. Moreover, dip1 frequency decreases to show

a greater mismatch with the corresponding single pillar dip frequency. Fig 4.26(b) shows

the dips and peak frequencies as functions of the lattice constance ap. The frequency

difference between the two dips becomes larger when decreasing ap, resulting from the

increased pillar coupling effect.

ap(µm) 1 1.2 1.4 1.6 1.8 2
Q 3.33e5 4.76e4 5.56e4 1.67e4 1.43e4 1.25e4

When gradually varying the second pillar radius rp2 from 0.39µm to 0.41µm, the
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Figure 4.26 – (a)Normalized transmission spectra of Love waves for ap varies from
1µm to 2µm. (b)Dips and peak frequencies as functions of the lattice constance ap.
rp1 = 0.4µm, rp2 = 0.398µm, h = 1.2µm

transmission spectra for different ap are shown in Fig 4.27. Dotted blue and rose lines

denote the single pillar dip frequencies with a periodicity of 2ap and a radius equal

to rp1 and rp2, respectively. Fig 4.27(a) corresponds to the case ap = 1µm, where the

coupling of the pillars is so strong that the two dips stays all the way mismatched

with their corresponding single pillar dip frequency. When ap gets larger, the coupling

becomes weaker. Fig 4.27(b) corresponds to the case of ap = 2µm. Since this coupling

effect decreases with the increase of radius mismatch, the dips almost coincide with

the corresponding single pillar dip frequency in the case of rp2 = 0.39µm and 0.41µm.

Strong coupling occurs in the radius region of rp2 ∈[0.398, 0.402] µm. Fig 4.27(c) shows

the case of ap = 4µm, where the coupling effect between the adjacent pillars is very weak.

It can be seen that dip1 becomes shorter when rp2 approaches to rp1.

4.3.2 pillar height mismatch

Since the pillar intrinsic mode is sensitive to the pillar size, the effects of pillar

height is also studied by increasing the height of the second pillar h2 from 0.6005ap to

0.604ap, while fixing h1 at 0.6ap. The two pillars are characterized by the same radius

rp1,p2 = 0.2ap. Fig 4.28 shows the evolution of dip1 and peak when we gradually modify
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Figure 4.27 – Normalized transmission spectra of Love waves for ap= (a)1µm, (b)2µm
and (c)4µm, when gradually changing rp2 from 0.39µm to 0.41µm. Dotted blue and rose
lines indicate the single pillar dip frequencies with a periodicity of 2ap and a radius
equal to rp1 and rp2, respectively. rp1=0.4µm.

the pillar height from 0.6005ap to 0.604ap. It is found that the peak is relatively wider

than that for the same radius mismatch in Fig 4.23(b), indicating a relatively weaker

coupling induced by the height mismatch.
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Figure 4.28 – Normalized transmission spectra for h2 varies from 0.6005ap to 0.604ap.
h1 = 0.6ap, ap = 2µm.
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4.4. tunable passing band 123

4.4 tunable passing band

From the investigations presented above we know that the different pillars give

rise to separate dips, and that two lines of same pillars are able to either separate dips

or widen one dip. Therefore it is conceivable to design a passing band by a simple

combination of these two cases : two lines of alternating dissimilar pillars. Here in

Fig 4.29 we present two passing band based on pillars differ in radius.
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Figure 4.29 – Passing band formed by two lines of alternating dissimilar pillars with rp2
equals to (a) 0.19ap and (b) 0.205ap. rp1 = 0.2ap. h = 0.6ap, d = ap, ap = 2µm.

In fact, the different radius are employed to determine the position of the dips,

whereas the distance between the two pillar lines is used to design the width of the dip.

In this way, we can realize a tunable passing band by only two lines of simple pillars.

4.5 Conclusion

In this chapter, the interaction of Love waves with one and two lines of cylindrical

Ni pillars are investigated on the silica film deposited on the 90ST quartz substrate.

Firstly, pillar intrinsic torsional mode is demonstrated to be well excited by Love
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waves. One line of identical pillars can give rise to a sharp transmission dip due to a

destructive interference. The coupling between the adjacent pillars become weak when

the periodicity along the y direction exceeds 2µm (i.e. rp/ap<0.2).

Secondly, acoustic analogue of Autler-Townes Splitting (ATS) and Fabry-Perot reso-

nance of Love waves are first demonstrated in two lines of identical pillars by varying

the distance between the pillar lines. ATS appears when the distance is smaller than

the half wavelength and a strong coupling is aroused between the pillar lines, causing

the pillar mode induced transmission dip to split into two dips with a transparency

window in the middle. This coupling decreases with the increase of pillar distance. We

demonstrated the different pillar vibration symmetries at the two dip frequencies, which

lead to different dip widths. Fabry-Perot resonance exists at the positions where the

distance between the pillar lines is a multiple of half wavelength. The proximity of

Fabry-Perot resonance with pillar intrinsic mode gives rise to the cavity modes with

transmission enhancement on the two edges of the single dip. We avoided to mix up

the FP resonances with the cavity modes by presenting the different frequency variation

with respect to the distance between the pillars.

Thirdly, the radius of one line of pillar is modified to detune the pillar resonant

frequency. In the pillar coupling region, the coupling effect decreases with the increase

of radius mismatch, and the two dips will rejoin their individual pillar mode frequencies.

When the distance between the pillar lines is a multiple of half wavelength, Fabry-Perot

resonance along with the two different pillars’ resonances give rise to the Acoustically

Induced Transparency (AIT). With similar transparency window in the transmission

spectra, ATS and AIT phenomena are then fitted respectively with the corresponding

formula models, showing good agreements. The fit parameters are demonstrated as

functions of the geometrical parameter. The Akaike information criterion (AIC) is first

used in acoustic system to quantitatively evaluate the quality of the fit models, which

illustrates the transition from ATS to AIT as well as the periodicity of AIT by increasing
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the distance between the pillar lines. The theoretical and analytical differentiation of

ATS and AIT should be used together to discriminate the assignment of the observed

spectrum to one or the other physical mechanism.

Next, two dissimilar pillars that alternate in a single line are demonstrated to raise

two dips with a peak in middle. The first dip along with the peak give rise to a Fano

resonance when the two pillars have a small geometrical mismatch and the coupling

between the pillars is so strong that the dips are mismatched with their individual

pillar mode frequencies. This resonance can be increasingly confined by reducing

the periodicity along the y direction, with a Q-factor of up to 3,33×105. The results

presented in this study could be used to potential acoustic applications such as signal

processing, wave control, meta-materials and bio-sensors. The above phenomena can

also be obtained by detuning the pillar height.

The resonant properties of local resonators and their coupling effects studied in

this chapter can be used for further investigation on the interaction between different

resonators, which will be presented in the next chapter.
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Chapitre5
Love Waves in Defect States

The introduction of defects into PnCs is at the origin of multiple applications such

as waveguide [2, 93, 114], cavity [1, 55, 115], filter [5, 75] and multiplexer [116]. Most

research on the defect modes is based on the bulk waves [1, 2, 5], Rayleigh waves [54]

and Lamb waves [55, 72], while sensors, especially the bio-sensors, are based on the

Love waves and shear horizontal Lamb waves, which are compatible with the liquid

environment [15, 16] and leak less energy in the liquid. However, Lamb waves propagate

on the extremely thin slabs, making them comparably fragile and therefore difficult to

manipulate. Whereas Love waves exist in the guiding layer deposited on a semi-infinite

substrate, which guarantees both the confinement of the energy and the toughness of

the device, in comparison with the Lamb waves devices. In recent years, the partial

band-gap effect of PnCs on Love waves has been reported and a reflective grating was

then proposed[12, 131]. Nevertheless, the exploitation of Love waves interacting with

the defect states in PnCs remains to be investigated.

Coupling modes have been investigated in both PnCs [116, 136, 168–171] and PtCs

[158–162], exhibiting features such as energy transferring [116, 159, 169], absorption

[168, 170], wave confinement [159] and frequency modulation [171]. Most of the research

is based on the cavity/waveguide [116, 159, 171], cavity/cavity [161, 171] or waveguide/
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waveguide [169] systems. Wang et al. [170] demonstrated the transmission cancellations

due to the coupling modes of a 1D locally resonant PnC. Ohta et al. [160] studied the

coupling between a PtC nanobeam cavity and a quantum dot. The emission peak of the

quantum dot could be tuned by temperature to cross the cavity mode which splits into

two peaks. In recent years, peak splitting phenomena have also been discussed in the

coupling of two PnC cavities [171], giving rise to a capacity of frequency modulation as

well as improved quality factors. We believe that it is conceivable to investigate similar

effects in different PnC devices.

This chapter introduces defect states into the holey PnC by removing lines of holes

from the guiding film perpendicularly to the propagation direction. New flat cavity

modes are observed in the band gap of the perfect PnC and give rise to transmission

peaks isolated from outside band. Geometrical parameters such as holes radius, cavity

width and crystal size are discussed. Cavity modes in pillared and mixed PnCs are also

observed. By introducing lines of pillars into the cavity, we studied the coupling between

the pillars mode and the cavity modes. Single pillar line in the cavity is investigated by

modifying the position of the pillar. Collective pillars give rise to extremely flat modes

that lead to sharp transmission peak. When pillar mode frequency approaches the cavity

mode, peak splitting effect is observed on the original cavity mode. The pillars are found

to be able to significantly improve the quality factor and transmission of the cavity

mode.

5.1 Supercell model with cavity

The resonator is realized by removing W lines of holes along the y direction in the

PnC lattice, forming a cavity perpendicular to the propagation direction. A supercell

containing 1×(6 +W/a) unit cells is constructed and shown in Fig 5.1, with periodic

boundary conditions applied in the x and y directions.

Version intermédiaire en date du 28 novembre 2019



5.2. Band structure and transmission spectrum of supercell 129

(a) (b)(a)�

(b)�

(a)�

(b)�

a aW

xyz

Figure 5.1 – (a) Schematic diagram of the PnC lattice containing a defect (cavity). The
arrow denotes the direction of waves propagation ; (b) Supercell of the defect-included
PnC containing 6+W/a unit cells, with NP nC = 3 on each side of the cavity.

5.2 Band structure and transmission spectrum of supercell

5.2.1 Band structure calculation
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Figure 5.2 – (a) Repeated band structure of Love waves for an over-calculated wave
vector of the supercell. Black line is the dispersion curve of the SH waves in substrate.
Band gap of the perfect holey PnC is indicated in blue. L = 6 +W/a, W = 5a, rh = 0.2a.
H = 0.6a, a = 4µm, NP nC = 3

First we set the cavity width to W = 5a. The band structures of Love waves in the
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PnCs containing the defect are calculated along Γ -X. Love modes are selected by the

same formulas (3.2 and 3.3) introduced in chapter 3. Note that the Γ -X will be 11

times smaller as we calculate for a supercell which is 11 times longer. That is, kx in the

irreducible Brillouin zone will be 11 times shorter, since the eigenfrequencies will be

repeated in the inner part of the supercell. As a result, the band structure will be folded

and repeated 11 times in the rest part. Fig 5.2 shows an example of the repeated band

structure for an over-calculated wave vector.

5.2.2 Cavity modes in holey PnC

The Love waves band structures of the defect-containing PnCs are shown in Fig 5.3(a)

and (d), for rh/a=0.2 and 0.3 respectively. It is found that new flat modes, referred to as

defect modes or cavity modes, appear inside the previously observed band gaps. These

band structures are attributed to the coupling between the cavity and the perfect PnCs.

Two cavity modes are predicted in Fig 5.3(a), respectively at 479.5 MHz and 538.5 MHz.

In Fig 5.3(d), another two are at 401.4 and 475.9 MHz.

The corresponding displacement fields of the cavity modes are shown in Fig 5.3(c)

and (f). The displacements are concentrated in the center of the model (in the cavity) and

attenuated at both ends. Inside the cavity, the displacements are uniform throughout

the defect with maximums near the edges. In both cases, one of the cavity mode is

symmetrical and the other one is antisymmetric. It can be seen that the cavity modes for

rh = 0.2a are more confined to the surface than that for the radius of 0.3a. In Fig 5.3(d),

the flat mode on the upper limit of the band-gap region is not referred to as a cavity

mode, since its displacement is no more concentrated in the cavity. Fig 5.3(b) and (e)

show the normalized transmission spectra with and without the cavity in the PnCs, for

the two different radius, calculated with 4 holes on each side of the cavity (NP nC=4).

For rh = 0.2a, two obvious peaks are found at 478 MHz and 540.6 MHz, consistent

with the predicted resonant frequencies with small shifts due to the numeric mesh
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Figure 5.3 – Band structures of Love modes on the defect-containing PnCs in the Γ -X
direction around the band-gap region with (a)rh = 0.2a and (d)rh = 0.3a, Blue zones
are the predicted band gaps of the perfect PnCs ; Normalized transmission spectra of
Love waves with and without the defect (cavity) for (b)rh = 0.2a and (e)rh = 0.3a, with
NP nC = 4 ; Displacement fields of the supercells at the resonant frequencies of the cavity
modes for (c)rh = 0.2a and (f)rh = 0.3a. W = 5a, H = 0.6a, a = 4µm

construction process of the FEM. These two flat cavity modes give rise to the highly

confined transmission peaks. This means the cavity enables the propagation of waves

that are otherwise forbidden in the perfect PnC. Each of the two transmission peaks

possesses an asymmetric line-shape. The 1st transmission peak starts with an anti-

resonance and ends with a resonance, while the 2nd transmission peak possesses the

opposite behavior. In Fig 5.3(e) for rh = 0.3a, only a small dip is found at 403.2 MHz,
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corresponding to the first defect mode in the band-gap region. This resonance is rather

difficult to recognize from the band-gap bottom. Furthermore, no resonance has been

found at the 2nd predicted resonant frequency, which is referred to as a deaf mode.

These phenomena might be resulting from the less confinement of the cavity modes for

rh/a = 0.3. In other parts of the band-gap region, a superposition of the two curves is

observed.

5.3 Geometrical parameters consideration

5.3.1 holes radius effects
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Figure 5.4 – Love modes eigenfrequencies of the defect-containing PnC as a function of
the hole radius. Inside the two black curves delimiting the band-gap zone of the perfect
PnC are the cavity modes. Red-white colors denote the normalized energy depth (NED)
of the Love modes. Red indicates a good confinement to the surface. The cavity width is
(a) W = 2a and (b) W = 5a. r = 0.2a, H = 0.6a, a = 4µm, NP nC = 3.

Fig 5.4(a) and (b) shows the eigenfrequency-radius relation of a 2 and 5 holes

removed supercell (W=2a and 5a), respectively, with 3 holes on each side of the cavity

(NP nC=3), calculated at the limit of the BZ (point X). Between the two black curves is the

band-gap region of the perfect PnC, which has been presented by Fig ??(a) in Chapter 3.

For the cavity width W/a = 2, only one cavity mode is observed. It cuts through the
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band gap with the increase of holes radius, and its frequency is little influenced by the

holes radius. However, the waves become less confined to the surface as the red gets less

intense.

As for the cavity width W/a = 5, two cavity modes are already in the band-gap

region when rh/a is near 0. They are separated with a certain distance as the radius

increases. The two modes below penetrate into the band gap and become cavity modes.

It seems that the four cavity modes have a tendency to reach a similar distance from

each other, referred to as mode spacing, the same way as the Love modes with rh/a

close to 0. Once this distance is reached, the lower external modes will cut in and their

frequencies will be little affected by the normalized radius of the PnC. The modes

outside are disturbed when approaching the band gap, and begin to surround this

region. Nevertheless, a larger radius of the holes and a lower order of the cavity modes

result in a deeper mode energy (less confined to the surface), leading to a drop of energy

transmission. The lowest cavity mode that appears around rh/a=0.45 becomes even

difficult to recognize. This explained the different transmission peaks for the rh = 0.2a

and rh = 0.3a defect-containing PnCs presented in Fig 5.3.

Although the number and frequencies of cavity modes are different for the two cavity

width, one can draws some common points to understand the hole radius effects : the

radius has little influence on the cavity frequencies. However, the waves confinement

and hence the transmission performances are strongly dependent on the holes radius.

5.3.2 Cavity width effects

Fig 5.5 is the eigenfrequency-cavity width relation of a supercell with rh = 0.2a,

calculated at point X. Inside the band gap denoted in blue are the cavity modes. As the

cavity width increases, the frequencies of cavity modes decrease and modes with higher

order appear (denoted by numbers). Apart the 1st cavity mode, other modes are in

pairs, and each pair is twisted outside the band-gap region and mutually merged. In our
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1 2 3 4 5 6 7 

Figure 5.5 – Love modes eigenfrequencies as a function of the cavity width. Blue zone is
the predicted band gap of the perfect PnC. The numbers denote the order of the cavity
modes. r = 0.2a, H = 0.6a, a = 4µm, NP nC = 3.
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Figure 5.6 – Displacement and deformation in xy plane corresponding to cavity modes
of different orders (from 1 to 8). rh = 0.2a, H = 0.6a, a = 4µm, NP nC = 3.

range of measurement (for W from −0.6a to 6a), the confinement of Love modes in the

band-gap region is better for a larger cavity width (W > 3a) or a squeezed cavity width

(W < −0.3a) . As the order of the cavity modes increases, the modes become less inclined,
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Figure 5.7 – Normalized transmission spectra for the defect-included holey PnC on
the (a) 5th and (b) 6th cavity mode. Corresponding dispersion curve for each peak is
shown on the left. Blue zones denote the predicted band gap of the perfect PnC. The
displacement field of each mode at point X is shown on the right side. rh = 0.2a,H = 0.6a,
a = 4µm, NP nC = 4.

providing a larger cavity width range for each mode inside the band-gap region. For

example, from 1a to 2.3a for the 3rd cavity mode, and from 3a to 4.7a for the 5th cavity

mode. The wave period in the cavity increases by one-half for every higher mode order

as shown in Fig 5.6, resulting in an alternating symmetry as the mode order increases.

According to the cavity modes predictions in Fig 5.5(b), the transmission peaks of

cavity modes can be displaced inside the band-gap region by changing the width of the

cavity. The fifth and sixth cavity modes are shown as examples in Fig 5.7. As the cavity

width increases, the resonant frequency of each cavity mode decreases, with different

occurring order of resonance and anti-resonance on the transmission peaks. This proved

the possibility of manipulation on the position of transmission peaks.

However, significant changes in shape are observed. This can be explained after

carefully observing the dispersion curve of each peak. It is found that the group velocity

is negative for the 5th cavity mode and is positive for the 6th cavity mode. This is not
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influenced by the change in cavity width. However, the continuity and homogeneity

of the dispersion curves are altered. A well confined (denoted in red) and smooth

dispersion curve gives rise to a high and sharp transmission peak, see the cases of

W = 4a and W = 5a for the 6th mode in Fig 5.7(b). If the mode is leaky (denoted in

white) somewhere in the dispersion curve and causes the curve to break (discontinuity

or non-smoothness), the corresponding transmission peak might be affected, in terms

of height and/or sharpness. The transmission peak of the 6th mode is perturbed on a

W = 5.5a cavity, exhibiting a shift at the resonant frequency compared to the dispersion

curve, which might be another explication of its shortened peak. A confined mode at

point X is hence only a prerequisite for a high and sharp peak. The dispersion curves for

the 6th cavity mode are more compact than the curves for the 5th mode, as it possesses a

larger range of cavity width within the band gap. Displacement field uy of the 1st and

2nd cavity modes with NP nC varies from 4 to 8 are shown in Fig 5.9.

5.3.3 Crystal size effects

Fig 5.8(a) shows the influences of the number of PnC holes (the crystal size) on the

formation of peaks. As NP nC augments, the band-gap effect increases and it becomes

harder for the waves to penetrate through the crystal, so the cavity peaks become shorter

and sharper. The 1st transmission peak (at 478 MHz) drops more quickly than the 2nd

peak, due to the enhanced band-gap effect in the center of the band-gap region, and

eventually disappears after NP nC exceeds 7. On the other hand, insufficient crystal size

(NP nC below 4) results in the blunt peaks, i.e., insufficient to filter out waves in the

band-gap range other than the cavity frequencies.

The changes in quality factors (Qs) of the two peaks are shown in Fig 5.8(b). As

NP nC augments, the Qs have a tendency to increase and then decrease. The Q of the 1st

resonant mode decreases earlier due to its rapidly shortened peak. The Q of the 2nd peak

reaches a maximum (1100) at NP nC = 7, where a highly confined cavity mode appears at
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Figure 5.8 – (a)Transmission spectra of the PnC containing the defect, with the number
of PnC holes on each side of the cavity varies from 3 to 8. Blue zone is the predicted
band gap of the perfect PnC. Inset shows the zoomed peak at 540 MHz for NP nC = 7 ; (b)
Quality factors of the defect modes as a function of the number of PnC holes on each
side of the cavity. W = 5a, r = 0.2a, H = 0.6a, a = 4µm.

Figure 5.9 – Displacement field uy of the (a) 1st cavity mode (around 478 MHz) and (b)
2nd cavity modes (around 540 MHz) with NP nC = 4, 6 and 8. W = 5a, r = 0.2a, H = 0.6a,
a = 4µm.

540 MHz, shown in the inset of Fig 5.8(a). It begins to decrease at NP nC = 8, owing to

the shortened peak. For this reason, the crystal size should be properly chosen to keep a

good quality factor as well as an isolation of the cavity modes. It is further confirmed

that in our range of measurement (3 ≤NP nC ≤ 8), the eigenfrequencies of cavity modes

are independent of the crystal size, with only slight frequency shifts on the transmission

peaks, which is mainly due to the mesh construction of the FEM.
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5.4 Cavity modes by different lattices

a aW a aW

.

Figure 5.10 – Love modes eigenfrequencies as a function of the cavity width based on
(a) pillared PnC and (b) D-PnC. Blue zone is the corresponding predicted band gap of
the two perfect PnCs. rh = rp = 0.2a, h = 0.6a, H = 0.6a, a = 4µm, NP nC = 3

Figure 5.11 – Transmission spectra for the defect-included (a) pillared PnC with W =
4.5a and (b) D-PnC with W = 5a. Corresponding displacement fields are shown aside.
Blue zones denote the corresponding band gap of the two perfect PnCs. rh = rp = 0.2a,
h = 0.6a, H = 0.6a, a = 4µm, NP nC = 4.

Cavity modes are also demonstrated for the other PnCs (based on pillars and mixed

holes/pillars). Since the cavity mode frequency is related to the cavity width W , Fig 5.10
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Figure 5.12 – Transmission spectra for the defect-included (a) Ds-PnC and (b) Ls-PnC
with W = 5a. Blue zones denote the corresponding band gap of the two perfect PnCs.
(c) Displacement fields Uy of the cavity modes C1, C2 and pillar mode P for the defect-
included Ds-PnC. rh = 0.2a, rp = 0.1a, h = 0.3a, H = 0.6a, a = 4µm, NP nC = 4.

shows the eigenfrequency-W relation of the supercells of the pillared PnC and D-PnC

with rh = rp = 0.2a, calculated at point X. It can be seen that the cavity modes are well

confined in the Bragg band gap region (at higher frequency range), which means the

cavity modes require a periodicity of the crystals. Corresponding transmission spectrum

and displacement field are shown in Fig 5.11, calculated on the cavity widths close to

the previous case for the holey PnC. However, the transmission peaks are less confined.

The cavity modes of the Ds-PnC and Ls-PnC with the same cavity width as the holey

PnC are demonstrated and are shown in Fig 5.12(a) and (b), respectively. It can be seen

that they are combinations of the cavity modes of the defect-containing holey PnC and

the local resonant mode of the pillar. However, the intensity of the cavity modes are

decreased compared with those of the defect-containing holey PnC. The displacement

field of these three modes for the defect-included Ds-PnC are shown in Fig 5.12(c). We

shown the SH component Uy that is more adequate to present the pillar torsional mode

as well as the SH waves. It can be seen that the cavity modes (C1 and C2) are similar as

that of the defect-containing holey PnC. As for the pillar mode P, the waves are highly

confined in pillars, instead of in the cavity. No coupling is found between the cavity
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modes and the pillar mode. However, when the pillar mode frequency becomes close to

a cavity mode frequency, these two modes can be coupled to show different behaviors.

The details of this phenomenon will be discussed in the following section.

5.5 Coupling between defect states and local resonance

5.5.1 single pillar line in cavity

The goal of this section is to provide in a comprehensive way a numerical study of

the coupling effects of a single pillar line introduced into a cavity interacting with Love

waves. We profit from the cavity based on holey PnC that has been introduced above,

where the cavity modes has been predicted for every different cavity width.

Since our pillar (same pillar as Chapter 4) works around 500 MHz, we set the cavity

width W to 4.5a as a cavity mode is predicted near 500 MHz, where a = 4µm is the

lattice constant of the holey PnC. In this way, the pillar is likely to be coupled to the

cavity mode. The normaliezed transmission spectrum is presented in Fig !5.13(a). As we

can see, two cavity modes are in the band-gap region of the perfect holey PnC that is

denoted in blue. The seconde cavity mode, which has a shorter peak than the first cavity

mode, is at 507.5 MHz. To well match this frequency, we adjusted out pillar radius to

0.18ap, with the pillar height unchanged : h = 0.6ap with ap = 2µm. The guiding layer

thickness is fixed at 2.4µm.

The displacement field of this cavity mode is shown in Fig 5.13(b). This cavity mode

is symmetric with respect to the center of the cavity. Here we divide the cavity into

two parts according to the displacement field : red parts where the center is marked

as M, is a max/min displacement ; gray parts where the center is marked as N is a zero

displacement, as indicated in in Fig 5.13(c). Then, the pillar will be placed in different

parts in the cavity.
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Figure 5.13 – (a) Transmission curve of Love waves for cavity with W = 4.5a ; (b) uy
of the cavity mode at 507.5 MHz; (c) Schematic division of cavity according to the
amplitude of displacement. The centers of red/gray parts, marked as M/N, denote the
max/zero amplitude. rh = 0.2a. H = 0.6a, a = 4µm.
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Figure 5.14 – (a) Zoom of the transmission curve of Love waves for the cavity mode at
507.5 MHz. (b)(c)(d) Transmission spectra when a pillar is added at three different N.
Pillar position is presented by the cavity division diagram on top of the transmission
spectra. uy of the corresponding peak/dips are shown for the first position rh=0.2a,
rp=0.18ap, H=2.4µm, h = 0.6ap, a = 4µm, ap = 2µm

Firstly, the pillar is placed in the center of the gray parts. The normalized transmis-

sion spectra are shown in Fig 5.14. Since the cavity mode is symmetric, we only study the
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Figure 5.15 – Transmission spectrum when a pillar is added in the center of a N and M.
Transmission without pillar is shown aside as reference.

first three positions. Corresponding pillar positions are shown above the transmission

spectra.

It can be seen that the inserted pillar has given rise to an additional dip on the side

of the cavity mode, with a small improvement on the cavity mode peak. The cavity mode

frequency has decreased a little due to the added mass as well as a degeneracy of the

cavity mode. For the three different N, the transmission curves are almost the same. uy

of the peak and two dips are shown for the first case. It is found that the cavity mode

are coupled to the pillar mode for both peak and dips, and the displacement fields are

quite similar, only with different amplitude in pillar and in guiding layer : for the peak

of cavity mode, both the pillar and guiding layer present a large amplitude, while the

dip of the cavity mode has only a small amplitude, which is reasonable for the waves

propagation. Whereas at the dip of the pillar mode, great amplitude is found in the
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Figure 5.16 – (a)(b) Transmission spectra when a pillar is added at two different M. uy
of the pillar induced peak is shown for the first position. Transmission without pillar is
shown on the left as reference.

pillar while the displacement in the guiding layer is as weak as for the cavity mode

dip. This pillar mode appears like the case that we found for the single pillar line in

Chapter 4.

The position of the pillar is then changed to the center of N and M, noted as C. Since

the different cases for C position give almost the same results, we only present one center

position, as shown in Fig 5.15. This structure also arouses an additional dip beside the

cavity mode, since the torsion mode can still be excited. However, it is found that the

pillar mode has moved closer to the cavity mode.

Next, the pillar is placed at M positions, where the torsional mode is unlikely to be

excited, since they are positions where there is no displacement difference on the two
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Figure 5.17 – Love modes eigenfrequencies as a function of the cavity width when (a) a
pillar is placed in the center of the cavity ; (b) two pillars are inserted respectively at the
two edges of the cavity. Blue zone is the predicted band gap of the perfect holey PnC.
The numbers denote the order of the fundamental cavity modes. rh=0.2a, rp=0.18ap,
H=2.4µm, h = 0.6ap, a = 4µm, ap = 2µm. Holey PnC size is three on each side of the
cavity.

sides of the pillar. Same as the cases for N positions, we only study the left two parts

due to the symmetry. The red part next to the hole is not studied since the pillar would

be superimposed on the hole. Fig 5.16 shows the corresponding transmission curves.

The dip for the pillar mode has disappeared as we predicted. However, it is remarkable

that a small peak appears at the torsional mode frequency. The zoom of this peak are

shown aside as well as the corresponding displacement field. It can be seen that the

torsional mode is excited for the peak, except that the waves in the guiding layer has

changed its phase after passing through the pillar. As a result, the displacement in the

guiding layer has become totally different from the cavity mode. This phenomenon can

be explicated as an effect of the pillar which acts as a second source and emits another

wave. That means the pillar can resonate even if the outside excitation is not favorable

for its resonance. Additionally, the M position near the edge of the cavity appears to be

more favorable for the peak excitation.

These pillar-cavity coupling effects can be understood from an overview diagram
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Figure 5.18 – Transmission spectra of Love waves when the pillar is at N. The pillar
radius is (b) 0.18ap, (c) 0.19ap, (d) 0.2ap. FIgure (a) serves as reference.

presented by Fig 5.17, where we found exactly the same cavity modes as we showed

by Fig 5.10 in Chapter 5, except that the pillar intrinsic mode appear at its resonant

frequency (the straight line around 500 MHz ) and become coupled to the cavity modes.

The fundamental cavity mode orders are indicated by the numbers. Fig 5.17(a) shows

the case of one pillar placed in the center of the cavity. Since the symmetry of cavity

modes alternates with the increase of mode order (asymmetric for the 2nd , 4th and 6th

cavity modes ; symmetric for the 3rd and 5th cavity modes), the pillar position (of N or

M) is alternative, i.e. the pillar is at N position for the 2nd , 4th and 6th cavity modes while

is at M position for the 3rd and 5th cavity modes. Therefore, the pillar is excited and

coupled to the even cavity modes but not to the odd ones. These coupling has induced

the avoided crossing and one cavity mode splits into two. This can explicate the same
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Figure 5.19 – Transmission spectra of Love waves when the pillar is at M. The pillar
radius is (b) 0.18ap, (c) 0.19ap, (d) 0.2ap. FIgure (a) serves as reference.

displacement field between the two resonances in Fig 5.14(b). Fig 5.17(b) is the case of

two pillars inserted at the two edges of the cavity, which means both the pillars are at N

positions of the cavity modes. Therefore, the pillars are excited and coupled to every

cavity modes. The cavity mode splits into two modes with a pure pillar mode in the

center of the two modes.

If we gradually change the pillar size, for example the radius, this pillar mode can be

displaced so as to see more clearly how it is coupled to the cavity mode. Fig 5.18/5.19

shows the transmission spectra of the coupled cavity modes for rp equals to 0.18ap,

0.19ap and 0.2ap, respectively, when the pillar is at N/M position. It can be seen that

when the pillar is at N position, the pillar mode is gradually displaced around the cavity

mode. By comparing these three cases in Fig 5.18, we can see that when the pillar mode

is on the side of the cavity anti-resonance (case for rp = 0.18a), the pillar mode not only
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Figure 5.20 – Anti-crossing / crossing lines for a pillar coupled / uncoupled to the cavity
mode. Love modes eigenfrequencies as a function of the pillar radius when a pillar is
inserted at an N position (blue lines), a M position (rose lines), or in the center of N and
M positions (cyan lines).

gives rise to a transmission dip, but also a small peak, as the cases for rp = 0.19ap and

rp = 0.2ap. This pillar induced resonance is like a vertical disturbance on the cavity mode,

leaving the cavity mode line-shape to continue after this interruption. One interesting

point is that when the pillar mode matches well the cavity peak, we come to dig a dip in

the center of the peak (case for rp = 0.19ap). When the pillar is at M position (Fig 5.19),

the small peak is also displaced accordingly. Additionally, in the insets of the zoomed

transmission curves, we found that an anti-resonance appears for the cases rp = 0.19a

and rp = 0.2a. These behaviors can be grouped and represented by Fig 5.20. When the

pillar is at N position, the cavity mode is coupled to the pillar mode and we obtain the

blue anti-crossing lines, which correspond to the two resonances in the transmission

spectra (see Fig 5.18). When the pillar is at M position, the cavity mode is uncoupled to

the pillar mode and crosses each other. Thus we obtain the rose crossing lines, where
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the horizontal straight line represents the cavity mode and the declined line denotes the

pillar intrinsic mode. When the pillar is in the center of N and M, we also obtain two

resonances with a slightly smaller frequency difference compared with that for the case

of a pillar at N position.

5.5.2 Multiples pillar lines in cavity

In this section the number of pillars will be gradually increased to find more efficient

coupling performance.
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Figure 5.21 – (a)Transmission curve of Love waves for the cavity mode at 507.5 MHz.
(b)(c)(d) Transmission spectra when two pillar is at (b) NN, (c) NM, (d) MM, respectively.
Pillar position is presented by the cavity division diagram on top of the transmission
curves. rh=0.2a, rp=0.18ap, a = 4µm, ap = 2µm

First, we consider two pillars at different positions, where three kinds of combina-

tions are possible : NN, NM and MM. Since one pillar in all the N(or M) position gives

almost the same transmission results, we present only one result for each combination.

Fig 5.21 shows the transmission spectra of the three cases. It can be seen that two pillars
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Figure 5.22 – Transmission spectra when all the (b) M (c) N positions hold a pillar.
Figure (a) serves as reference.
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Figure 5.23 – uy for the pillar induced dips or peaks when pillars are at (a)N or (b)M.
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Figure 5.24 – Transmission spectra of Love waves when all N and M are occupied by a
pillars. The pillar radius is (a) 0.18ap and (b)0.19ap. ap = 2µm

at N position still arouse a dip beside the cavity mode. This dip is shorter than that

for a single pillar at N position, since the pillar-induced dip becomes shorter with the

increase of pillar’s number, see 4.1. Two pillars at M position induce a small peak that is

closer to the cavity mode, while the combination of N and M position gives rise to a dip

with a small disturbance beside the dip. The resonant frequency of the dip for the case

NM is between that for the cases NN and MM, like the way of a single pillar in the center

of N and M position. Additionally, the difference between the cavity mode frequency

and the pillar resonant frequencies have been enlarged, the cavity mode is displaced

to a lower frequency, and the transmission of the two peaks (of cavity mode and pillar

mode) have been slightly improved, compared with the cases for a single pillar.
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Figure 5.25 – Normalized transmission spectra and band structures of SH surface modes
for the cavity-containing h-PnCs (a)without and (b)with pillars. Blue zones are the band-
gap region of the perfect holey PnC. Dotted line is the pillar torsional mode frequency
fp2 ; (c) uy and enlarged transmission peaks of C2, Cp2 and 1st of ∀p. Insets : zoomed
pillars.

Since the NM case gives a synthetic result of the case N and M, we can study

separately the effect of the number of pillars placed at N or M position. Fig 5.22 shows

the transmission curves calculated when all M/N positions hold a pillar. It is found that,

compared with the above results, the pillar induced peak (in Fig 5.22(b)) is enhanced

by increasing the pillar number. The cavity mode transmission has been ameliorated in

both cases and the frequency difference between the two resonances has been enlarged.

The frequency of cavity mode has a tendency to decrease and the distance between the

cavity mode and the peak/dip becomes larger. One should notice that the antiresonance

of the cavity mode becomes less deeper when we increase the pillar number, and the

Fano resonance line-shape (asymmetric profile) tends to become a Lorentzian resonance

(symmetric profile).

Fig 5.23 gives an overview of uy for the pillar modes when pillars are at N or M

positions. One can see that when pillars are at N positions, they are coupled to the

cavity mode and the amplitude in the guiding layer corresponds well to the bare cavity

mode. There are 2.5 wave periods in the cavity which indicating a wavelength λ = 2a

However, when pillars are at M positions, as we have stated above, the pillars generate

a wave which interfere with the waves in background, so as to change the amplitude

in the guiding layer. It is interesting that when we change the number of pillars at

M position, there are always 6 zero displacement along the propagating direction in
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the cavity (agaist 5 for the position N cases), as if the wavelength has been changed.

Additionally, when pilllars are at N position, the amplitude in pillars are uniform, while

when pillars are at M position, the maximum amplitude is presented in a single pillar.

It is worth noting that when we combine the above two cases, that is, N and M

positions are all occupied by a pillar, this structure gives rise to a synthetic performance

of pillar induced peak and dip. Fig 5.24 shows the examples for rp = 0.18ap and rp =

0.19ap. It is found that the pillar induced peak is significantly enhanced for both the

transmission and confinement. This can be explicated by a stronger coupling effect

between the adjacent pillars. Moreover, a smaller periodicity ensures that the Bragg

band gap of the p-PnC does not appear in the frequency range of our interest.

Between the two transmission profiles, small frequency shifts are found for the pillar

induced peaks and dips because of the different pillar radius. However, the transmission

line-shapes are almost the same despite the different results for the single pillar cases

(in Fig 5.18 and 5.19). Additionally, the transmission peak of the cavity mode has also

been increased by increasing the pillar number.

The Love waves normalized transmission spectra and band structures around the

whole band-gap region for the cavity without and with pillars are shown in Fig 5.25(a)

and (b), respectively, in the case rp = 0.18ap. The fundamental cavity modes C1 and C2

are coupled to the pillars and become two new modes Cp1 and Cp2, while multiple

pillar modes ∀p appear around the pillar intrinsic torsional mode frequency (fp2). It

can be seen that due to the inserted pillars mass, Cp1 at 433.4 MHz has a slight down

frequency shift compared with C1, whereas Cp2 has shifted down to 490.5 MHz as has

been noticed above. The frequency shift of Cp2 results from both the mass loading and

the peak splitting effect that is attributed to a degeneracy of the cavity mode [171], that

is, a coupling of cavity mode with pillar mode as shown in Fig 5.17.

Compared with mode Cp1, the transmission peak of Cp2 is significantly sharper

than that of the mode C2, as a result of the matched frequencies between fC2 and fp2.
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The pillar modes ∀p are different combinations of pillars vibrating in torsional mode,

with the maximum displacements existing in different pillars. The number of pillar

modes equals to the number of pillars, i.e., 9 pillar modes with adjacent frequencies

around fp2, which can be adjusted by the pillar’s parameters. The dispersion curves of

∀p are zoomed on the right of Fig 5.25(b). The first pillar mode gives rise to the sharp

transmission peak at 507.3MHz. The last mode, with a less smoothing and homogeneous

dispersion curve, only arouses a small resonance at 517.5 MHz. Other pillar modes

disappear in the transmission spectrum because they are not well coupled to the SH

waves, as shown in the inset of the transmission curve. This transmission spectrum

results from a coupling between the p-PnC and the bare cavity-containing h-PnC.

The differences in sharpness of the transmission peaks for modes C2, Cp2 and the 1st

of ∀p could be explained after observing their displacement fields shown in Fig 5.25(c).

When Love waves propagate through the cavity, the displacement of C2 is concentrated

in the center of the model and is confined in the silica guiding film. For the mode Cp2 as

we investigated above, the maximum displacement amplitude is in the pillars, leading to

an energy more confined to the surface (a smaller NED). This is proved by the dispersion

curve of Cp2 whose red color is more intense than that of C2. Note that the pillars at

position N and M is alternating along the propagating direction. The torsional mode can

be excited for the pillars at N, while the pillars at M are moved according to the layer’s

displacement. As for the 1st collective pillar mode of ∀p, only tiny displacement exists

in the guiding layer, leading to the most confined energy and the sharpest transmission

peak. The magnification of these three peaks is shown aside. The quality factor (Q)

of the mode Cp2 is 5 times greater than that of the mode C2. The Q of the sharpest

peak is 240 times greater than that of C2, with a transmission peak at almost the same

frequency. This means that the efficiency of the cavity could be significantly enhanced

by introducing the optimally sized pillars.
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5.6 Conclusion

In this chapter, cavity modes in the phononic band gap for Love waves are first

demonstrated by removing lines of holes from the guiding film of the holey PnC. The

transmission peaks of cavity modes in the original band gap of the perfect holey PnC is

attributed to the appearance of new flat modes in the band structure. The transmission

spectra are proved to be consistent with the band structure predictions. The holes radius

has a strong effect on the waves confinement and the transmission performance. The

resonant frequencies of cavity modes are related to the cavity width. The symmetrical

and asymmetrical cavity modes appear alternatively with the increase of cavity width.

The quality factor can be enhanced by increasing the crystal size, the transmission,

however, will be decreased due to an energy loss. A well confined and flat cavity mode,

as well as a properly chosen PnC size, is essential for obtaining sharp transmission peaks.

Cavity modes have also been demonstrated in pillared and mixed PnCs.

An optimally sized cavity is then chosen to match the pillar torsional mode frequency.

Pillar-containing cavity for Love waves is first demonstrated by introducing the pillars

into the cavity. By dividing the cavity into two parts (N/M) according to the displacement

amplitude, we systematically studied the coupling effect between the pillar and the

cavity mode. The pillar at position N can be excited and is coupled to the cavity mode,

leading the cavity mode peak to split into two peaks. Whereas the pillar at M position is

not coupled to the cavity mode but can still give rise to a peak by emitting an additional

wave. Peak splitting effect is explained as an avoided crossing when the cavity mode is

coupled to the pillar intrinsic mode. The cavity mode efficiency can be improved when

it is coupled to the pillar mode. The pillar’s resonant performance as well as the cavity

efficiency can be enhanced by increasing the pillar number. The sharpest transmission

peak created at the original cavity mode frequency has a 240 times greater quality factor.

Compared with the holey PnC based bare cavity, the coupled cavity provides a method
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to significantly ameliorate the Q factor while maintaining a high transmission level.

This study could be used for potential applications of Love wave-based PnC devices

such as meta-materials and bio-sensors.
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Conclusion

Phononic crystals are objects that appeared in the 1990s and offer unlimited means

of controlling acoustic/elastic waves. Among the models that appeared in the literature,

their sturctures and materials, interactions with different waves, their performances

for different waves interacting with defects states and the interaction between different

resonators were discussed. In this thesis, the investigation of micro and nano structured

materials for acoustic band gaps engineering in electro-acoustic devices was presented,

especially for the study of two-dimensional holey and/or pillared phononic crystals

interacting with Love waves and the interaction between different resonators.

The theoretical background introduced in Chapter 2 is the fundamental knowledge

accumulation for this work. We systematically talked about different surface acoustic

waves propagating in piezoelectric materials by considering the elasticity, the lattice

and band theories, as well as two mechanisms (Bragg scattering and local resonance) of

phononic band gaps.

In Chapter 3, the theoretical modeling of the band structures was computed on

COMSOL Multiphysics, a finite element simulation software. Firstly We studied the

effect of the different square lattices (holey or/and Ni pillared) built on a guiding layer of

SiO2 deposited on the 90ST quartz substrate. Love waves are selected from bulk waves.

The different polarizations of the modes within different lattices have been observed

and explained. The effects of geometrical and elastic parameters on the band structures

were proposed and analyzed. Then, a SAW device module is built to calculate the Love
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wave transmissions through the different PnCs. The effect of the band gaps gave rise to

the attenuation intervals in the transmission spectra. The transmissions are compatible

with the band structures of the different PnCs. By combining and adjusting the holey

and pillared PnC, we demonstrated that the mixed PnC has a capacity to enlarge the

band gap or to generate isolated mode in the band gap.

In Chapter 4, we investigate the interaction of Love waves with one- or two-line

pillared meta-surface. The pillar lines are perpendicular to the waves propagation

direction. Acoustic analogue of Autler-Townes Splitting (ATS) and cavity modes are

first demonstrated in two lines of identical pillars by varying the distance between the

pillar lines. ATS appears when the distance is smaller than the half wavelength and a

strong coupling is aroused between the pillar lines. Fabry-Perot resonance exists at the

positions where the distance between the pillar lines is a multiple of half wavelength.

The proximity of Fabry-Perot resonance with pillar intrinsic mode gives rise to the cavity

modes. Then, the radius of one line of pillars is modified to detune the pillar resonant

frequencies. In the pillar coupling region, the coupling effect decreases with the increase

of radius mismatch. When the distance between the pillar lines is a multiple of half

wavelength, Fabry-Perot resonance along with the two different pillar resonances give

rise to the acoustic analogue of Electromagnetically Induced Transparency (AIT). ATS

and AIT formula models are used to fit the transmission spectra, showing good agree-

ments with numerical results. The quality of the fit models is quantitatively evaluated by

resorting to the Akaike information criterion (AIC). ATS and AIT are theoretically and

analytically discriminated. Fano resonance is demonstrated for two dissimilar pillars

that alternate in a single line. This resonance can be increasingly confined by reducing

the geometrical mismatch between the two pillars or by reducing the periodicity along

the direction perpendicular to the propagation direction.

In Chapter 5, the defect or cavity modes for Love waves are demonstrated for the

first time by removing lines of holes perpendicularly to the direction of propagation, for
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the holey PnC. The transmission peaks of cavity modes in the band gap are attributed to

the appearance of new flat modes in the band structure. The transmission spectra are

in agreement with the band structure predictions. A smaller hole radius promotes the

confinement of the cavity modes. Cavity resonant frequencies are related to the cavity

width. The confinement of the dispersion curves plays a role in the behavior of the

resonances. The crystal size on each side of the cavity has an effect on the quality factor.

Cavity modes are also demonstrated in the other 2 PnCs (pillared & mixed). After the

studies of the cavity and the pure pillars, pillar-containing cavity is first demonstrated

by introducing the pillars into the bare cavity. The pillar torsional mode is capable of

being coupled to the cavity mode when these two modes fall at close frequencies. The

position and number of pillars in the cavity can affect the frequency, transmission, and

quality factor of the coupled cavity modes as well as the pillar mode. Pillars at the max /

min amplitude positions (anti-nodes) would give rise to a sharp transmission peak. The

displacement field for this peak is different from that of the cavity modes that sandwich

it, because of the waves generated by the pillars. A full coupling of the cavity mode to

the pillar mode is then created with significant improvement on the cavity efficiency.
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Etude de cristaux phononiques à base des matériaux micro/nano structurés pour la 
manipulation des ondes de Love 

RESUME 

Le contrôle de la propagation des ondes élastiques repose principalement sur la conception de milieu artificiel à 
base de matériaux structurés pour obtenir une ingénierie avancée de la dispersion de la propagation. Au cours de 
la thèse, la dispersion du mode guidé de polarisation transverse horizontale (mode de Love) dans la structure multi-
couche SiO2/Quartz (Coupe ST-90°) a été numériquement investiguée et les applications qui en découlent 
explorées. Il a été étudié les propriétés des cristaux phononiques à base de trous micro-usinés dans la couche de 
SiO2, et également les mécanismes d’interaction de ce mode avec des plots déposés à la surface de cette couche 
guidante. Dans le cas des cristaux phononiques à base de trous nous avons montré qu’il est possible d’ouvrir des 
bandes interdites, cette propriété a été exploitée pour le design d’un résonateur cavité. Les performances des modes 
de ce résonateur sont étudiées en fonction des paramètres géométriques caractérisant le cristal phononique. Il est 
également proposé d’étudier l’interaction des modes du résonateur cavité avec les modes de résonances de plots 
déposés à la surface de la cavité. Les paramètres géométriques des plots sont choisis de manière à faire coïncider 
les modes de résonances des plots et de la cavité. Cela a pour effet un meilleur confinement des modes et donc 
une amélioration drastique du facteur de qualité des différents modes. On s’est intéressé aussi à l’interaction entre 
le mode Love et des méta-surfaces à base de plots déposés à la surface de SiO2. Les couplages entre des plots de 
géométries identiques ou différentes ont donné lieu aux phénomènes divers comme analogue acoustique de Autler-
Townes Splitting (ATS), résonance Fabry-Perot, modes de cavité, transparence induite acoustiquement (AIT) et 
résonance Fano. Les résultats présentés dans cette étude pourraient être utilisés pour des applications acoustiques 
potentielles telles que le traitement du signal, le contrôle des ondes, les méta-matériaux et les biocapteurs. 
 

Mots-Clés: - Ondes acoustiques de surface  - Méta-surface 
 - Cristaux phononiques - MEMS 
 - Capteur - Ondes de Love 

 

Artificial micro-nano structured materials based phononic crystals for Love waves 
manipulation 

ABSTRACT 

The control of the propagation of elastic waves relies mainly on the design of artificial medium based on structured 
materials to obtain an advanced engineering of the dispersion of the propagation. During the thesis, the dispersion 
of the shear horizontal polarised guided mode (Love mode) in the multilayer SiO2/Quartz structure (90ST-cut) was 
numerically investigated and the resulting applications were explored. The properties of phononic crystals based 
on micro-machined holes in the SiO2 layer, as well as the interaction mechanisms of this mode with pillars 
deposited on the surface of this guiding layer, have been studied. In the case of hole-based phononic crystals we 
have shown that it is possible to open band gaps, this property has been exploited for the design of a cavity 
resonator. The performances of the modes of this resonator are studied according to the geometrical parameters 
characterizing the phononic crystal. It is also proposed to study the interaction of the modes of the cavity resonator 
with the resonance modes of pillars deposited on the surface of the cavity. The geometric parameters of the pillars 
are chosen so as to match the resonance modes of the pillars and the cavity. This has the effect of a better 
confinement of the modes and thus a drastic improvement of the quality factor of the different modes. We also 
investigated the interaction between the Love mode and meta-surfaces based on pillars deposited on the surface of 
SiO2. The couplings between pillars of identical or different geometries gave rise to various phenomena like 
acoustic analogue of Autler-Townes Splitting (ATS), Fabry-Perot resonance, cavity modes, acoustically induced 
transparency (AIT) and Fano resonance. The results presented in this study could be used for potential acoustic 
applications such as signal processing, wave control, meta-materials and biosensors. 
 

Keywords: - Surface acoustic waves  - Meta-surface 
 - Phononic crystals - MEMS 
 - Sensor - Love waves  
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