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Abstract

Partitioning and distributing of the data have been widely used in sharing nothing
systems, more particularly in the distributed systems that used the MapReduce
paradigm, such as Hadoop ecosystem and Spark. They have been used for many
purposes, such as load balancing, skipping to load unnecessary data partitions and
for guiding the physical design of distributed databases or data warehouses. To do
analysis with data warehouses, usually, we used OLAP queries. An OLAP query
is a complex query that contains several cost operations, such as the star join, the
projection, filtering, and aggregate functions. In this thesis, we propose different
static and dynamic approaches of partitioning and load balancing of the data, to
improve the performances of distributed big data warehouses over Hadoop cluster.
We have proposed different static and dynamic schemes of a big data warehouse
over a cluster of homogeneous nodes, which can help the distributed system to en-
hance the executing time of OLAP query operations, such as star join operation,
scanning tables, and Group-By operation. We have proposed four approaches:
The first approach, is a new data placement strategy which able to help a query
processing system to perform a star join operation in only one MapReduce cycle,
without a shuffle phase; In the second contribution, we propose different partition-
ing and bucketing techniques to skip loading some HDFS blocks and to enhance the
parallel treatment of the distributed system, based on a workload-driven model;
In the third approach, we propose a novel physical design of distributed big data
warehouse over Hadoop cluster, such as we combine between our first data-driven
approach and the second workload-driven solution; The fourth contribution has
been developed to improve Group-by and aggregate functions, by using a dynamic
method, which able to define on the fly the best partitioning scheme of the reducer
inputs. To evaluate our approaches, we have conducted some experiments on dif-
ferent cluster sizes, using different data warehouses volumes where the fact table
has more than 28 billions of records. We have used the TPC-DS benchmark, a
Hadoop-YARN platform, a Spark engine, and Ray and Hive system. Our experi-
ments show that our methods outperform the state-of-the-art approaches in many
aspects, especially on the OLAP query execution time.

Keywords : Big Data Warehouse, Partition, Bucket, Load Balancing, Star Join
operation, Skipping to load Unnecessary HDFS Blocks, MapReduce, Mappers,
Reducers, Shuffle, Multi-agent system.



Résumé

Le partitionnement et la distribution des données ont été largement utilisés dans
les systèmes "shared nothing systems", plus particulièrement dans les systèmes
distribués qui utilisent le paradigme MapReduce, tels que Hadoop et Spark. Ils
ont été utilisés pour l’équilibrage des charges de données, pour éviter le charge-
ment des partitions inutiles et pour guider la conception physique des bases de
données et des entrepôts de données distribuées. Pour effectuer des analyses sur
les données entreposées, nous utilisons généralement des requêtes OLAP. Une re-
quête OLAP est une requête complexe contenant plusieurs opérations coûteuses,
telles que la jointure en étoile, la projection, le filtrage et les opérations d’agrégats.
Dans cette thèse, nous proposons différentes approches statiques et dynamiques de
partitionnement et d’équilibrage des charges des données sur un cluster Hadoop,
afin d’améliorer les performances des entrepôts de données distribuées. Nous avons
proposé différents schémas statiques et dynamiques d’un entrepôt de données volu-
mineux distribué sur un cluster de n?uds homogènes ; ce qui peut aider le système
distribué à améliorer le temps d’exécution des opérations d’une requête OLAP.
Nous avons proposé quatre approches : la première est une nouvelle stratégie de
placement de données, pour permettre à un système de traitement des requêtes
d?exécuter la jointure en étoile en un seul cycle MapReduce, sans la phase de
shuffle. Dans la deuxième contribution, nous proposons différentes techniques de
partitionnement et de bucketing pour éviter le chargement inutile de certains blocs
de données HDFS et pour améliorer le traitement parallèle, en utilisant un modèle
piloté par une charge de requêtes. Dans la troisième approche, nous proposons
une nouvelle conception physique d’un entrepôt de données volumineux distribué
sur un cluster Hadoop, en combinant la première approche basée sur les données
et la seconde solution qui repose sur une charge de requêtes. La quatrième contri-
bution a été développée pour améliorer les fonctions de groupement (Group-By)
et d’agrégation en utilisant une approche dynamique capable de définir à la volée
le meilleur schéma de partitionnement des reducers. Pour évaluer nos approches,
nous avons fait des expérimentations avec différentes tailles de clusters, en util-
isant différents volumes d’entrepôts de données, et où la table des faits contient
plus de 28 milliards d’enregistrements. Nous avons utilisé le benchmark TPC-DS,
la plate-forme Hadoop-YARN, le moteur d’exécution Spark, le système Ray et
Hive. Les résultats expérimentaux obtenus montrent que nos méthodes sont plus
performantes que les approches existantes sur plusieurs aspects, notamment en
terme du temps d’exécution des requêtes OLAP.

Mots clés : Entrepôt de données massives, Partition, Bucket, Equilibrage des
charges, Jointure en étoile, requêtes OLAP MapReduce, Mappers, Reducers, Shuf-
fle, Système multi-agents.
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Chapter 1

General Introduction

Without big data, you are blind and deaf

and in the middle of a freeway.

Geoffrey Moore

1.1 Context

PROCESSING massive data is a big challenge for the companies; at the same
time, Hadoop becomes a standard platform to process Big Data. Nowadays,

many big companies such as Yahoo, Facebook, eBay, and so on, use this platform
to store and manage their vast data. The five keys [71] to make Big data a huge
business are Volume (have colossal size), Velocity (rapidity of the treatment),
Variety (different data sources: text, graph, and so on), Veracity (the quality
of the data), and the Value (the business benefit). In our context, we focus on
studying how to improve the performances of a distributed big data warehouse
over a Hadoop cluster. More precisely, we examine how to optimize OLAP queries
processing in a distributed big data warehouse over the Hadoop platform.
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Chapter 1: General Introduction

A Big Data Warehouse (BDW) can be seen as a massive database that is de-
signed for query and analysis rather than for transaction processing. The size of
a data warehouse is between hundreds of gigabytes and hundreds of petabytes or
more. A BDW can be modeled using a star schema, snowflake schema, and constel-
lation schema [78]. The most used is the star schema. A star schema consists of one
fact table and several independent dimension tables. To do analysis with BDW,
usually, we used OLAP queries. OLAP queries are typically expensive queries that
take a long time to be executed over distributed BDW. In distributed systems such
as Hadoop and Spark, improving OLAP query runtime is not a trivial task. OLAP
query is composed of several operations and clauses. Usually, it takes the form of
”Select... Function()... From... Where... Join-Predicates...Filters...Group By...".
In the MapReduce (MR) paradigm, each clause can be executed in the map phase
or in the reduce phase, and each operation needs one or several MR iterations for
being performed with a considerable amount of data shuffled among the Datanodes
of the cluster. For example, in some cases, the star join operation needs n-1 or
2(n-1) MR cycles [24] where n is the number of tables used by the OLAP query.
Some other issues could be addressed when running OLAP queries on distributed
BDW, such as scanning unnecessary data partitions, unbalanced in the mapper
and the reducer loads, data skew distribution, and so on.

To enhance the performances of an OLAP query and speed up their processing
on the cluster, the administrators of the distributed system applied some strategies
over the distributed BDW to overcome the above issues. The most known strategy
used is the partitioning and the load balancing (or distributing) of the BDW over
the cluster’ nodes.

There are two types of partitioning (fragmentation): vertical and horizontal
partitioning. While vertical partitioning technique is used generally to improve join
operation in Relational Database Management System (DBMS) [8, 14, 100] and
in NoSQL DBMS [22], Horizontal Partitioning (HP) has widely served for many
purposes, especially on the parallel DBMS [29, 79, 92, 125] and distributed systems
such as Hadoop MapReduce and Spark [33, 35, 37, 80, 82, 108, 110, 115]. The
HP techniques have used to skip loading irrelevant data partition in distributed
BDW [29, 79, 92, 103, 108], to improve join operation [9, 14, 15, 20, 22, 24, 33, 35,

2



Chapter 1: General Introduction

41, 75, 82, 96, 127], for load balancing and handling data skew in homogeneous and
heterogeneous environment [16, 27, 37, 40, 73, 80, 88, 89, 98, 110, 117, 120, 125],
and to guide the physical design of distributed databases or BDWs [7, 11, 19, 106,
115]. In the HP, we can use hash-partitioning or range-partitioning method, and
we can combine between the two processes. Hash-partitioning is the most useful
method in the current version of some frameworks such as Hive, Spark SQL, and
Pig. With this technique, we can partition and bucket the DW tables as we need.
We will use this technique widely in this thesis.

Generally, in a distributed system, partitioning the tables is followed by spread-
ing or load balancing of the fragments created over the cluster nodes. The objective
is to parallelize the treatment and to speed up the query processing. We can dis-
tinguish two categories of Partitioning and Load Balancing (PLB for short) of
the data [42] used in the distributed systems: static and dynamic. In static PLB
technique or off-line PLB, we partition and distribute the BDW before the treat-
ment (i.e., pre-processing). This category requires the prior knowledge of DW
scheme and some other information about the treatment. Alternatively, in dy-
namic technique, the PLB of the data may execute online and at the moment of
the treatment, namely, when a user launches the query, the system elaborates on
the fly the physical plan of the query by partitioning and distributing the data
over the cluster’ nodes.

Both static and dynamic PLB techniques are based on three models: the data-
driven model, the workload-driven, and the hybrid model. In data-driven model,
the PLB do independent of the used query workload, whereas in the workload-
driven model the PLB is based only on the workload used, and in the hybrid
approach we combine the two models. Each model has its advantages and its
limitations as we will show in the next chapters of this thesis. We should note that
our physical design for a distributed BDW proposed in this thesis, which based on
the different techniques of the PLB of the data, helps the query optimizer to make
the best physical plan of the query processing.

There are numerous technologies in distributed systems; the most known is
the parallel DBMS and the systems that used the MR paradigm (such as Hadoop,
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Spark, Tez, and so on). Both technologies are robust and high-performance com-
puting platforms. The parallel DBMSs outperform the MR system in some appli-
cations [128]; however, MR frameworks provide a more fault tolerance model than
parallel DBMSs. Moreover, the MR of the Hadoop system is much scalable than
all commercial parallel DBMS. Also, DBMSs require that data conform to a well-
defined schema, whereas MR permits data to be in any arbitrary format, that is,
the MR programmer is free to structure their data in any manner. Furthermore,
in parallel DBMS, and since the programmers only need to specify their goal in a
high-level language, they not burden by the underlying storage details, such as in-
dexing options and join strategies. In this thesis, we propose new approaches using
Hadoop platform with Spark as an execution engine which also based on the MR
paradigm with more flexibility. We should note that MapReduce is complementary
to DBMSs, not a competing technology.

In distributed systems, we can distinguish four sources of imbalance [42] that
can slow down the query processing: (1) imbalance due to partition sizes of the
split inputs of the BDW tables, stored as data blocks in HDFS. The split inputs
are the HDFS chunks scanned and uploaded by the mapper tasks. Unbalanced
in the distribution of the split inputs can drastically degrade the performances of
the parallel processing of a query being executed on a distributed system (partic-
ularly, in the first map tasks); (2) imbalance due to partition sizes of the reducer
inputs. Generally, an OLAP query is performed in multiple MR iterations or
Spark stages. Hence, balancing the split inputs is not enough to achieve high
performances. So, the system should balance the reducer loads to enhance query
processing; (3) imbalance due to heterogeneous of nodes (obviously, machines with
high performances are faster than computers with low performances); and finally
(4) imbalance due to computations. In some scientific domain, some partitions
take more execution time than others although they may have the same tuples’
numbers, e.g., using a nonlinear function in the reducer phase. In this thesis, we
tackle the issues (1) and (2) on a cluster of homogeneous nodes using the Hadoop
ecosystem.

In the Hadoop ecosystem, scanning a large number of HDFS blocks of a large
DW table is a costly task that can slow down the query processing. We can skip
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loading some unnecessary data blocks if we partition or index some DW tables
with the appropriate predicate attributes used in the query’s filters. However,
the way of selecting the candidates’ attributes remains a challenging task. In this
thesis, we show different approaches that tackle this problem, and we propose some
techniques to overcome this issue. In other words, we show how to manage the
metadata table of a distributed BDW, persisted in the memory by the Namenode
of the cluster.

As we have explained earlier, while the data split inputs of distributed BDW
tables can be balanced by using a static technique of the PLB of the data (based on
data-driven or workload-driven model) since we know in advance the load balancing
decision. However, some operations of an OLAP query such as Group by and
aggregate functions, which performed in the reduce phase, cannot be optimized
without using a dynamic PLB technique, because we cannot collect some relevant
information that can help the system to balance the reducer loads, only at the
query runtime. Namely, we must pick up some relevant information on the fly to
make good partition scheme of reducer inputs.

We can distinguish two categories of the approaches that deal with balancing
reducer loads problem. These that balance the reducer inputs in advance [27, 37,
40, 73, 98, 110, 120] using, for example, sampling method or on-line strategic, and
those attempt to balance the reducer loads after start performing the reducer func-
tion [16, 80], namely, after the shuffle phase. Some works of these categories [40, 73]
have changed the default synchronization mechanism of the MapReduce paradigm,
using a monitoring system or Multi-Agent System (MAS), to balance on the fly
the reducers loads. Whatever the technique used to balance the reducer loads, the
balancer algorithm used must be executed in real-time and should not affect the
query runtime itself.

In this thesis, we survey these dynamics strategies, and we propose a new smart
strategy based on MAS, to balance on the fly the reducer loads without change
the default mechanism of the MR paradigm, which can improve the Group-By
execution time.
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1.2 Objectives and contributions

The main objective of our work is to propose static and dynamic techniques of PLB
of data to improve OLAP query performances in distributed BDW, modelized in a
star schema. We close to use horizontal fragmentation for all our proposals. These
methods are based on data-driven, workload-driven, and hybrid model (data +
workload-driven). The methods proposed to revolve around four main axes:

1. Propose an approach based on a data or schema-driven model, using a static
technique of PLB of the data, for balancing the data split inputs of dis-
tributed BDW over a cluster of homogeneous nodes.

2. Propose an approach based on a workload driven model, using a static tech-
nique of PLB of data, to manage the metadata of the DW tables and avoid
loading some unnecessary data blocks.

3. Propose a hybrid approach (combine between data-driven and workload-
driven strategies) to build a new physical design of distributed BDW over
Hadoop cluster (combine between approaches 1 and 2).

4. Propose an approach based on a data-driven model, using dynamic PLB
technique, to balance on the fly the reducer loads of an OLAP query being
executed on a cluster of nodes, using Multi-Agent System (MAS).

In our contributions, we take into account several parameters such as DW size,
skew distribution of the values of the primary keys and the foreign keys of the
fact and dimension tables, and the cluster’s nodes characteristics (number of CPU
cores, memory size, and disc size, and so on). We tune these parameters to make a
good partition scheme of the split inputs and the reducers loads, and to minimize
the overhead in the distributed system which can enhance the performances of the
OLAP workload.

The objective of the first contribution is to optimize the star join operation.
This operation is the most expensive in an OLAP query and can create a bottleneck
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in the network due to the amount of data shuffled. Usually, this operation requires
multiple MR iterations to be performed, which can significantly slow down query
processing. We propose a heuristic technique of PLB of data, in which we can
execute this operation in only one MR iteration or Spark stage. Also, we show
how to improve this operation without considering the workload used. Namely, our
approach is based solely on the data-driven model. With this solution, many issues
have been tackled such as (1) the partitions’ number problem (i.e., number of the
fragments or the buckets), should be selected to partition the DW tables; (2) the
appropriate attribute selected to hash-partition the fact and the dimension tables;
and (3) how to build and spread the buckets of the fact table and the dimensions
to minimize data skew distribution and to enhance the parallel treatment.

The objective of the second proposal is to skip loading unnecessary HDFS
blocks when scanning BDW tables, and avoid obtaining big partitions of some
tables, which can disrupt the parallel processing. In this contribution, we trade-off
between the number of table’s partitions created and their sizes. We propose a
PLB technique based on the query workload, namely, using a stable workload.
In this approach, we combine between partitioning and bucketing technique such
that, we partition some DW tables by the frequent predicate attributes used in
the queries filters, and we bucketed some other tables by some other columns (e.g.,
bucketed table by its primary key).

In the third proposal, we combine between the two first approaches (data-driven
and workload-driven model). So, we propose a new physical design for distributed
BDW, in which we can perform the star join operation in a single Spark stage, and
the system can skip scanning some irrelevant HDFS blocks of some DW tables.

The fourth contribution is different to the precedent ones. In this approach,
we propose a new dynamic technique of PLB of data, using MAS, to balance
on the fly the reduce loads. The main objective of this solution is to optimize
Group by clause of an OLAP query and aggregate functions. This operation also
incurs a high rate of shuffle and degrade the parallel treatment. So, balancing the
intermediate results is also a mandatory requirement to improve this operation and
the query execution time. The main key of this proposal is that we don’t make any
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changes about the default mechanism of MR paradigm as some approaches have
done in [37, 40, 73]. In our method, we collect on the fly some relevant information
through the history execution of the OLAP queries, which can help the system to
elaborate a good partition scheme of the reducer loads. In our proposal, we tackle
the problem of data skew distribution in the reducer phase. Our solution based
on a data-driven model, such we do not assume any assumption about the query
workload used.

We propose an approach to spread smartly the clusters (keys, list(values)), pro-
duced by the mapper outputs (after execute filtering and the star join operation),
over the partitions of the reducers, using a knowledge base component, that can
help the system to make the best load balancing decision. Moreover, to implement
our MAS, we have used Ray [85] framework, which is a hybridization between
Bulk-synchronous parallel systems such as MapReduce and Apache Spark [123],
and the actor model for asynchronous tasks such as Akka [101].

1.3 Organization of the thesis

The thesis is organized into seven chapters.

Chapter 2 presents the state of the art of static and dynamic techniques used to
improve DW performances in a distributed system such as the Hadoop ecosystem
and Spark. We start by background about the distributed system technologies
such as Hadoop, Spark, MapReduce, and so on, and we present the different
storage formats supported by Hadoop which can use to split and storage the DW
tables, such as the column format Parquet and ORC. Then, we show the different
static and dynamic techniques of the PLB of the data, existed in the literature.
We detail some join algorithms such as shuffle hash join, broadcast hash join,
and other algorithms such as multi-way join and trie join, and hyper join. We also
show different physical design proposed which deal to the problem of data skipping,
load balancing, and optimize OLAP query processing. In the dynamic technique,
we focus particularly on the works that deal about data skew and balancing the
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reducers loads.

Chapter 3 exposes the problem of optimizing star join operation of an OLAP
query, the complexity of this operation. Then, we detail our data placement strat-
egy to optimize this operation based on the foreign keys of the fact table, primary
keys of dimensions, and the physical characteristics of the cluster’s nodes.

In Chapter 4, we propose our partitioning and bucketing techniques to skip
loading unnecessary HDFS block through a stable query workload. Such that, we
propose generals rules to speed up OLAP query processing in a distributed system
such as Spark and Hive, through the attributes used in the filters of an OLAP
workload.

In Chapter 5, we present our physical design of distributed BDW, such we
combine between the data placement proposed in chapter 3, and our skipping
technique proposed in chapter 4 to avoid scanning some unnecessary data partition
of some DW tables.

Chapter 6 exposes the problem of balancing reducer inputs and handling data
skew to improve Group by operation and aggregate functions, namely, we detail
our heuristic strategy which based on the cooperative agents to balance on the
fly the clusters(key, list(values)), produced after executing filters and star join
operation of an OLAP query.

Note that, in the previous chapters, i.e., from chapter 3 to chapter 6, we detail
our contributions with an experiments section, where we show how to implement
the different methods proposed, and how to evaluate them using a numerous ap-
proaches of the state-of-the-art.

We conclude the thesis in Chapter 7, where we summarize the different pro-
posed approaches, their advantages and their limitations, and finally, we donate
our perspectives and the future works.
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Chapter 2

State of the art

Big data is at the foundation of all of the megatrends

that are happening today, from social to mobile

to the cloud to gaming.

Chris Lynch.

2.1 Introduction

Partitioning and distribution techniques applied to manage a BDW upon the clus-
ter’ nodes have been widely studied in shared nothing system [9, 11, 14, 16, 20,
22, 24, 29, 33, 35, 40, 73, 75, 79, 80, 92, 108, 110, 115, 117, 125], such as parallel
DBMS and the Hadoop ecosystem. They have used for many purposes, such as
load balancing, for skipping to load unnecessary data partitions, and for guiding
the physical design of DW. As we have seen earlier in chapter 1, the DW can
be modeled by three models. The most used in the literature is the star-schema
with one fact table and many dimension tables. Data warehouses are dedicated
to the analysis and decision-making applications. This analysis is often performed
through OLAP queries. An OLAP query is composed of many operations such
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as projection, filtering, star join, grouping, and aggregate functions. Performing
such queries on distributed BDW, often take a very high response time that is
not acceptable to decision-makers who require reasonable response time to meet
decision-making needs. So the administrator must use different techniques for the
partitioning and load balancing of the data to decrease this time.

Executing an OLAP query with MapReduce paradigm requires many itera-
tions and multiple shuffle phases, and incur high communication cost. Also, in
distributed BDW, the problem of disc I/O and CPU overhead must be taken into
account, especially with a complex OLAP query. So, almost all the proposed
works that tackle OLAP query optimization in distributed BDW over Hadoop
cluster focused on minimizing the costs cited earlier. As we have presented in
the previous chapter, we can distinguish two types of the PLB of data that can
use to optimize the query processing over a distributed BDW: static and dynamic
techniques. Before detailing the different approaches that deal the problem of the
PLB of the data and the different join algorithms in the distributed systems, we
present some background about data warehouse concepts and design and the star
join schema, OLAP query, the different distributed systems technologies such as
Hadoop system, MapReduce paradigm, Spark engine, and the resource manager
YARN. Moreover, we present some storage formats supported by HDFS, used to
store the relational DW tables.

2.2 Background

We present in this section the data warehouse architecture, star join schema, the
structure of OLAP queries, the feature of Hadoop platform, MapReduce paradigm,
Spark engine, Hive, and Spark SQL query processing system, the different storage
formats supported in HDFS, more precisely column storage format, and we explain
the execution mechanism of the resource manager Hadoop-YARN.
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2.2.1 Data warehouse design and OLAP query

Data warehouse systems have become a key component of the corporate informa-
tion system architecture, in which they play a crucial role in building business
decision support systems [78]. Nowadays, data warehousing technologies are suc-
cessfully used in many industries, including retail, manufacturing, financial ser-
vices, banking, telecommunication, healthcare, and so on. We can consider a data
warehouse as a large database system with additional functionality; however, some
well optimizing techniques, such as indexing, data partitioning, materialized view,
and query optimization, are applied differently in the data warehouse systems.
Moreover, some other operations, such as data cleaning, data refreshment, and
multidimensional and parallel query optimization, are specific to the data ware-
houses only. Usually, the size of a data warehouse is between hundreds of gigabytes
and hundreds of petabytes.

A data warehouse can be modeled using a star schema that is the most com-
monly used, snowflake schema, and constellation schema. A star schema consists
of a central table, namely fact table, referencing several dimension tables, thus
resembling a star. Figure 2.2 shows a data warehouse architecture in star schema.

The content of a DW is analyzed by Online Analytical Processing (OLAP)
applications to discover trends, patterns of behaviors, and anomalies as well as for
finding hidden dependencies between data. OLAP queries are typically expensive
queries that take a long time to be performed over distributed Big Data Ware-
houses (BDW). In distributed BDW, improving OLAP query processing is not a
trivial task. An OLAP query is composed of several clauses, and it usually takes
the form of "Select..Function()..From..Where...Join-Predicates...Filters...GROUP

BY..". Each clause is performed in the map phase or in the reduce phase, and each
operation may need one or several MR iterations or Spark stages to be executed,
with a considerable amount of data shuffled among the data nodes. Figure 2.1
shows an example of OLAP query extracted from TPC-DS [48] benchmark. To
improve the OLAP query runtime, several techniques of Partitioning and distribut-
ing applied to improve DW performances as we will present in this thesis.
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2.2.2 Hadoop ecosystem

Hadoop [60] traces back to 2004 when Google published the second of a pair of
papers describing two of the key ideas behind its search success. The first detailed
the Google File System [38], or GFS, as a way of distributing data across hundreds
or thousands of inexpensive computers. To glean insights from that data, a second
tool, called MapReduce [30], which is a programming model that enables easy
development of scalable parallel applications to process vast amounts of data on
large clusters of commodity nodes [121].

Yahoo is the main contributor to the open-source HDFS, an open-source version
of Googles GFS [38], together with an open-source version of MapReduce [30], and
a SQL-like query interface called Pig [90]. After that, Apache Hadoop becomes
support other SQL interfaces like Hive-QL [112] and Spark SQL [13]. The first
version of Hadoop is able only to execute one framework at once time with MR
paradigm, until 2013, where Vavilapalli et al. [116] propose YARN module, a new
resource manager for Hadoop, that support not only MapReduce engine but other
flexible engines like Spark [123], Tez [102], and so on.

In the following, we give some details about the MapReduce paradigm, Hadoop
Data File System (HDFS), and the resource manager YARN.

2.2.2.1 MapReduce paradigm

In recent years the MR framework [30, 31] has emerged as one of the most widely
used parallel computing platforms for processing data on terabyte and petabyte
scales. MapReduce is substantially different from previously analyzed models
of parallel computation because it interleaves parallel and sequential computa-
tion [76]. In MR programming paradigm, the basic unit of information is a (key;
value) pair where each key and each value are binary strings. The input to any MR
algorithm is a set of (key; value) pairs. Operations on a set of pairs occur in three
stages: the map stage, the shuffle stage, and the reduce stage. In the map stage,
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the mapper µ takes as input a single (key; value) pair and produces as output any
number of new (key; value) pairs. During the shuffle stage, the underlying system
that implements MR sends all of the values that are associated with an individual
k key to the same machine. In the reduce stage, the reducer p takes all of the
values associated with a single key k and outputs a multi-set of (key; value) pairs
with the same k key. Note that the map and reduce stage perform in parallel over
the cluster’ nodes.

Many modern parallel engines like Spark, Tez, and so on, adapt the global
mechanism of MR with more flexibilities. In the version V-1.x of Hadoop, we
can only use MR, from version V-2.x, Hadoop supports other execution engines.
The standard Hadoop MR can slow down the query processing since it requires to
save intermediate results in the disc for each MR cycle. To overcome this issue, a
new execution engine like Spark and Tez works in-memory and exploit better the
node’ resources (CPU cores and memory). In some case, these engines improve
application runtime up to 100 times than Hadoop MR. In this thesis, we finish
using the Spark engine, which is adapted and used by many companies in the
world [70]. In Sect. 2.2.2, we detail the features of this engine.

2.2.2.2 Hadoop Data File System (HDFS)

The Hadoop Distributed File System (HDFS) [21, 104] is a distributed file system
designed to store massive data sets and to run on commodity hardware. It has
many similarities with existing distributed file systems. However, the differences
from other distributed file systems are significant. HDFS is highly fault-tolerant
and is designed to be deployed on low-cost hardware. In HDFS, files can be written
only once, and updates of existing files are not allowed. HDFS has a master/slave
architecture. An HDFS cluster consists of a single NameNode (multi NameNode
from HDFS V-2.x), a master server that manages the file system namespace and
regulates access to files by clients. Also, there are several DataNodes, usually one
per node in the cluster, which manages storage attached to the nodes that they
run on.
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HDFS is designed to reliably store very large files across machines (nodes) in
a large cluster. It stores each file as a sequence of blocks; The blocks of a file are
replicated for fault tolerance. The block size and replication factor (by default
3) are configurable per file. In Hadoop V-1.x, the size of the block was 64 MB;
From Hadoop V-2.x, the size of the block become 128 MB. HDFS support different
storage formats [12, 94, 114], and each block can split in many chunks. We will
explain some of these storage formats in Sect. 2.2.3.

2.2.2.3 YARN resource manager

As we have noted earlier, Hadoop V-1.x [34] Supports MapReduce processing
model only and does not support non-MR tools. From V-2.x [116], YARN module
is added to Hadoop distributed system, which allows Hadoop working with MR
as well as other distributed computing models like Apache Spark [66], Apache
Tez [69], and Apache HBase [61] processing engine. Hadoop-yarn architecture
separates resource management functions from the programming model. Namely,
MapReduce is just one of the applications running on top of YARN. Figure 2.3
shows the global architecture of Hadoop YARN. YARN controls resource man-
agement, scheduling, and security when we run applications on it. By default,
Hadoop-YARN uses MapReduce (MR) paradigm (see Fig. 2.3). When a user sub-
mits an application, the RM (i.e., YARN) allocates to the Application Master
(AM), which represent the main of the application, a container in any slave-node
for being performed. The AM handle the job’s tasks which run on the other con-
tainers of the Node-Managers. In this thesis, all our contributions are developed
using the Spark engine on Hadoop-YARN platform. In the next section, we detail
Spark features.

2.2.3 Apache Spark

Apache Spark [66] is an open-source framework for big data processing. It has
emerged as the next generation big data processing engine. In Wikibon site [70],
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ment for final result generation between cluster platform and driver. In contrast,
in cluster-mode, the driver component of spark job will not run on the local ma-
chine from which job is submitted but with ”Application Master". In this case,
network disconnection between driver and cluster infrastructure reduces. In this
thesis, all our experiences with Apache Spark done on YARN with client-mode.

2.2.4 Apache Hive and Spark SQL

Apache Hive [62] is a data warehouse system built on top of Apache Hadoop
that facilitates easy data summarization, ad-hoc queries, and the analysis of large
datasets stored in various databases and file systems. Hive [112, 113] supports
queries expressed in a SQL-like declarative language - HiveQL, which are compiled
into MapReduce jobs that are executed using Hadoop.

Hive manages the metadata of the DW tables stored in HDFS. Hive uses
MySQL or Hbase to store these metadata. In this thesis, we use Spark SQL [13]
as query processing which has Catalyst optimizer and Hive to manage the meta-
data. Spark SQL can use HiveMetastore to get the metadata of the data stored in
HDFS. This metadata enables Spark SQL to do better optimization of the queries
that it executes (we use Spark as a processing engine).

Figure 2.4 shows an example of Spark architecture with some component of
the Hadoop ecosystem [72].

2.2.5 Storage formats supported in HDFS

Nowadays, choosing the optimal file format in Hadoop is one of the essential factors
to improve performance for big data processing. We can distinguish two types of
storage formats supported in HDFS (see the works of Ahmed, S. et al. [12] and
Plase, D. et al. [94]): row-based storage format like text/CSV, SequenceFile, and
Avro; and column-based storage format like Parquet, RCFile and ORC (Optimized
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metadata with the data but also allow the specification of an independent schema
for reading the file. Moreover, Avro format is suitable in OLTP workload where
there are more data transactions. Note that the most compatible platform with
this format is Kafka [77].

Column-based storage format such as Apache Parquet [64] and ORC [63] are
a suitable format for distributed BDW since only the attributes solicited by an
OLAP query are loaded into memory, which can speed up the query processing.
Parquet is a columnar data storage format [118]; it uses binary data stored in the
form of columns. It is very effective and provides the best query performance on
the Hadoop platform. Like Avro format, Parquet is supported by Apache Spark
framework for the storage of BDW. ORC is also an optimized column-based storage
format but has built-in indexes to speed up query processing. It performs better
without compression than other data formats in Hive and Spark. It consumes less
execution time for reading, writing, and accessing data. This format works well on
Hive. Both formats employ compression to reduce the size of files. They support
several compression codecs, including Snappy, GZIP, deflate, and BZIP2. With
these formats, we reduce the size of the data on the disk and consequently the I/O
and CPU resources required to deserialize data.

For more detail, see the works of [12, 94, 114]. In our experiments, we have
using Parquet format, which is more compatible with Apache Spark.

2.3 Partitioning and load balancing of the data

In this section, we detail some static and dynamic techniques for the partitioning
and load balancing (PLB) of the data in the MapReduce paradigm.

20



Chapter 2: State-of-the-art

2.3.1 Static techniques of PLB of data

Numerous works used the static techniques of partitioning and load balancing of
data in the distributed systems. Data placement and guiding the physical design of
the databases and data warehouses over a cluster’ nodes have a significant impact
on improving query processing in a distributed system. Applied static techniques
of the PLB of the data requires in general prior knowledge of DB or DW scheme,
the workload used, and the type of the treatment that we want to do (e.g., type
of join operation). In static techniques, we make in advance a partitioning scheme
of the DW over the cluster’ nodes to speed up query processing (generally, we
balance the split inputs of the database). In other words, the query optimizer
can create efficient query plan through this static physical design, without needs
to repartition and redistribute the DW’s tables again during the first map stage.
Static techniques are based on two models: a data-driven model [7, 15, 18, 19, 33,
35, 115, 88, 89, 106] and a workload-driven model [11, 14, 29, 92, 108].

In this subsection, we detail some works that use the static techniques of PLB
to manage the data split inputs over the Hadoop ecosystem and the parallel DBMS.

2.3.1.1 HadoopDB

HadoopDB [7] is an architectural hybrid of MapReduce and DBMS technologies
for analytical workloads. Figure 2.5 shows the architecture of HadoopDB. The
basic idea behind HadoopDB is to connect multiple single-node database systems
using Hadoop as the task coordinator and network communication layer. By us-
ing the MapReduce framework, queries are parallelized. So, each SQL query is
transformed to a sequence of MR jobs. We can install PostgreSQL or MySQL in
database system or other flexible framework such as MonetDB [19].

HadoopDB is much better than naïve Hadoop in both scalability and efficiency.
Moreover, with this platform, join operation can perform in the map phase without
a shuffle phase. However, the results are still not satisfactory for DW applications,
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2.3.1.2 Hadoop++

Hadoop++ [33] is an improvement to Hadoop, where we can co-partition related
files using a Trojan index. Hadoop++ don’t replace the Hadoop framework at all
when integrating index Trojan index. Trojan indexes are built on data partitions,
which contain meta-data about each of these partitions such as, data set size,
index size, and the number of records. Note that Trojan Indexes are created
at data load time and so have no penalty at query execution time. The main
advantage of Hadoop++ is that we can join two tables in the map phase without
a shuffle phase; however, in Hadoop++, we can only co-partition two tables on
their join key. This drawback makes this approach not suitable for OLAP query
when joining several tables (generally, one fact table and several dimension tables).

2.3.1.3 CoHadoop

CoHadoop [35] is an extension of Hadoop++ [33]. With CoHadoop, we can co-
partition many log files on their join key. Moreover, CoHadoop places automati-
cally the blocks files that have the same join key in the same node. With CoHadoop
data placement, the query optimizer, such as HiveQL and Spark SQL, exploits this
fact to generate efficient query plans. In other words, with CoHadoop physical de-
sign, the system can perform join operation (of log files) locally, in map phase,
and without shuffle phase. The experiences show that CoHadoop enhances log
processing better than Hadoop, Hadoop++, and HadoopDB. Figure 2.6 shows an
example of data loading in CoHadoop.

Although CoHadoop is efficient in a small cluster, however, when the cluster
is large, co-locating log files will be problematic, such that if one or many nodes
crashes, the system needs to postpone the user transactions to launch the co-
locating algorithm. This can harm the system. So adapting an offline process to
gather some chunks that have the same join key in the same node would be better
in some cases, see the work of Nonava [89]. Another drawback of CoHadoop is
that it targeted nodes randomly for every new key (a key is the join condition).
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OLAP query. Haolap uses MOLAP model and may outperform some other MO-
LAP and ROLAP approaches (such as HadoopDB [7] and Hive [112]) in term of
query execution time2, however in BDW, and since the workload may change peri-
odically, this may take overhead the memory due to the size of cubes maintained.
Another drawback of Haolop is that it keeps dimensions in meta-data table and
the fact table in HDFS, this is not a realistic solution since some dimension in
BDW may have a big size, and the Namenode cannot maintain in memory this
huge metadata.

2.3.1.5 Cogset

Cogset [115] is a hybridization between the parallel DBMS and the Hadoop ecosys-
tem as HadoopDB [7], however instead to use DB systems such as MySQL or
PostgresSQL, Cogset has adapted only Hadoop system through a library of inter-
face adapters. The idea of Valvåg et al. [115] is to benefice from the efficiency of
the parallel DBMS, and the fault tolerance and load-balanced parallel processing
of Hadoop MapReduce. Cogset ensures co-locating files which can process join
operation locally (log files), The experiments done by Valvåg et al. revealed that
Cogset outperform native Hadoop (without considering the current storage format
such as Parquet and ORC), HadoopDB [7], and some commercial parallel database
system (e.g., Vertica [49]), in some MapReduce tasks such as joining two tables,
full scan table, and some aggregate functions.

The scalability of Cogset remains questionable since it has tested in a cluster
of 25 nodes, Moreover, for sophisticated star join queries with several dimensions,
Cogset still needs multiple MapReduce cycles to perform star join operation, and
the chained declustering [44] distributing strategy used cannot ensures collocating
the tuples that contain the foreign keys of a fact table and the primary keys of
the dimension tables in the same node, as our partitioning scheme can do, see our
contribution in Chapt. 3.

2Since it avoids the join operation which considers as a heavy task when big data are involved

[107]
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2.3.1.6 Partitioning scheme for OLTP workload

Curino et al. [29] have developed Schism project, a novel graph-based, workload-
driven partitioning system for transactional workloads, designed for disk-based
shared-nothing databases. The authors use static partitioning technique which
based on a stable workload, and their approach can reduce significantly the cross-
machine transactions for OLTP workloads in parallel databases systems. Schism
tackles two main issues: (1) distributed transactions and (2) temporal workload
skew. To overcome these drawbacks, Pavlo et al. [92] have developed Horticulture
system, which is a scalable tool to generate database designs for stored procedure-
based parallel OLTP systems automatically. We should note that the goal of the
partitioning for OLTP workload is not the same as in OLAP workload, such that
in large-scale analytical applications (i.e., data warehouses) the objective is to
distribute data across nodes to maximize intra-query parallelism; in contrast, to
achieve high consistency criteria in OLTP workload, we need multi-node coordi-
nation to perform the transactions. In our thesis, we focus on enhancing OLAP
query performance in a distributed big data warehouse over a Hadoop cluster.

2.3.1.7 Max skipping HDFS blocks

Sun et al. [108] have proposed a new algorithm to tackle the problem of Balanced
MaxSkip Partitioning. The bottom-up clustering method used by the authors,
which based on the hyper-graph technique, can max skip loading the tuples of the
blocks through a given workload, and can also parallelize the treatment since they
study the balancing constraint of the block sizes. Although the approach used by
Sun et al. can achieve max level of skipping loading HDFS blocks, however, they
use a sophisticated clustering algorithm (based on Graph theory) that usually
takes a long time to be performed by the system. Moreover, the authors make
some assumptions to the occurrence rate of the same filters used in the workload.
In this thesis, we use a smooth technique based on data mining measures to skip
loading some unnecessary HDFS blocks, without making any assumptions about
the filters used in the stable workload.
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2.3.1.8 BlinkDB

BlinkDB [11] is a project to improve the ad-hoc and OLAP workload execution
time in distributed big data warehouses. AGARWAL et al. [11] have used a sam-
pling method to response swiftly a complex query on a big data environment.
BlinkDB allows the users to introduce SQL query and perform it online (not as
HaLoap [106] project, which requires to pre-build the cube in advance). BlinkDB
is more adaptable for a stable workload (i.e. the set of columns used in Where and
Group By clauses remain fairly stable over time), which allows selecting the best
sample that gives best accurate results. The main drawback of BlinkDB is that it
can provide inconsistent results due to the sampling method used.

2.3.2 Dynamic techniques of PLB of the data

In the previous subsections, we have seen some static data placement strategies
in the parallel DBMS systems and the Hadoop ecosystem. Before detail some
approaches that used the dynamic techniques of the PLB of the data, we should
distinguish between two categories of these techniques: In the first category, the
system can incrementally rebuild a new data placement of a database according
to the change of the workload [79, 82, 103, 125] and the techniques of the second
category are used to partition and distribute the data partitions, at the moment
of the query processing [16, 27, 37, 40, 73, 80, 98, 110, 117, 120]. Note that the
methods of the first category produce a new permanent scheme of the database
or the DW and are suitable much more in parallel DBMS since the transfer of
HDFS data blocks is a difficult operation in the current versions of the Hadoop
ecosystem. The partitioning algorithms of the second category produce temporary
schemes, which usually, are served to reorganize the intermediate results and load
balancing the reducer loads, for a query being executed over a distributed system.

In the following, we detail some dynamic approaches cited earlier.
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2.3.2.1 Amoeba

Amoeba [103] used Hyper-partitioning technique to avoid scanning some unnec-
essary HDFS blocks based on the query workload, something that can speed
up query processing. Amoeba approach, versus to some state-of-the-art meth-
ods [29, 92, 108], doesn’t assume any assumption about the query workload used
(Ad-hoc or OLAP workload), it adapts the partition scheme incrementally as more
and more queries are observed (frequent queries). The main drawback of Amoeba
is that it is not suitable to enhance join operation, which is considered the most
costly task in analytic queries.

2.3.2.2 AdaptDB

To improve Ameoba [103] approach, Lu et al. [82] have proposed a new partition-
ing scheme called AdaptDB. AdaptDB repartitions datasets automatically to get
the best performance on frequent join queries. The authors have developed a new
algorithm called hyper-join that based on two techniques: two-phase partitioning
and smooth repartitioning. The challenge of the hyper-join method is not only
minimized the network communication cost during join operation but finding op-
timal splits to partition the data warehouse tables, something that allows reducing
the total amount of disk I/O (when scanning HDFS blocks). Although AdaptDB
is suitable for the three DW schemas, namely star schema, snowflake schema, and
constellation schema, however, this scheme still needs many MapReduce iterations
to perform the star join operation which can increase the query processing time.

2.3.2.3 SWORD

Kumar et al. [79] have proposed a new data placement strategy and replica mecha-
nism in the cloud computing to improve OLTP workload runtime, and to minimize
the resources consumed in executing the OLTP workload. For this, the authors
focus on handling the query span (the query span is the average number of ma-
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chines involved in the execution of a query). Compared to the previous works (e.g.,
Schism approach [29] and Pavlo et al. [92]), in SWORD project, the authors have
developed a heuristic algorithm to handle the workload change and to rebuild a
new database scheme automatically, according to the current workload used, with-
out interrupting the users’ transactions. Unfortunately, we should be noted that
the method used in SWORD is suitable in parallel DBMS and we cannot apply
straightforward in Hadoop technology due to the mechanism storage of HDFS.

2.3.2.4 Locality aware paritioning in parallel DBMS

Zamanian et al. [125] have proposed a novel partitioning scheme called Predicate-
Based Reference Partition (PREF) that allows to co-partition sets of tables based
on given join predicates. Their approach is based on a hybrid model (i.e., data-
driven and workload driven models). The authors propose two partitioning schemes:
in the first one, the system partitioned the database according to the schema of
tables and the data, and to build the second scheme, the system takes into ac-
count also the query workload used to reduce the search space when scanning
the partitions. PREF is designed for analytical workloads (not suitable for OLTP
workload) and work well for simple schema DW with uniformly distributed data
(such as TPC-H) and a complex schema with skewed data (such as TPC-DS [48]).
An example of how PREF partition database is illustrated in Fig. 2.7.

The main objective of PREF architecture is to maximize data-locality while
minimizing data-redundancy, something that look for in our proposals (see
next chapters), such that it can ensure local join between several tables, by parti-
tioning these tables on their join key and duplicate some tuples over the cluster’s
nodes. PREF approach, and contrary to some static methods[29, 92], it can re-
balance the partitions of the table automatically according to the workload used.
The experiments done by Zamanian et al. revealed that PREF is more efficient in
equi-join, anti-join, and outer join operation, however, in some case, either it may
need to the full replicate a table (such in some sophisticated star join query), or
it is obliged to perform the join remotely (such in Cartesian join and Theta join),
this makes the generality of the approach remains questionable.
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fragmentation, based on the partition cost model. Moreover, in their approach,
they consider also non-linear reducer functions used in some scientific data domain,
where we can obtain unbalanced in partition runtime although that the partitions
have the same number of tuples. In this thesis, we don’t tackle this problem since
the tuples of any data warehouse table have the same size.

Furthermore, though this approach is suitable to enhance Group By operation
and aggregate functions of an OLAP query, however, changing the default syn-
chronizing mechanism adopted in this approach can overload the memory buffer
of the intermediate results, and the system may crash. Also, if the mapper tasks
are fort unbalanced, we obtain stragglers in the map phase and the job runtime
increases. Moreover, in some aggregate functions of an OLAP queries, we cannot
split roughly the reducer partitions, since this enforce the system, in many cases,
to add another MapReduce cycle to finish performing the aggregate function.

2.3.2.7 LEEN approach

Data locality issue has been widely studied in some static partitioning approaches
used on sharing nothing systems [7, 14, 33, 35, 89, 115]. The main aim of these
solutions is to enhance the map tasks runtime. Ibrahim, S., et al. [73] have tack-
led the problem of data locality in the reduce phase to limit the data shuffling.
The authors have proposed a novel method, called LEEN, to balance the reducer
loads and to decrease the amount of data transferred in the shuffle phase. LEEN
remedies two issues when distributing the pairs (key, values) over the reducing
partitions: the first is the frequency variation of the keys produced by the map-
pers and the second is the inconsistency in the key’s distribution. Although LEEN
approach can improve the data locality along with fair distribution, however, it
has the same drawback as the solution of Gufler et al. [40], such that the au-
thors embrace an asynchronous map and reduce scheme to keep a track on all
the intermediate keys’ frequencies and key’s distributions. Figure 2.9 shows the
architecture of LEEN. Chen et al. [27] also have developed CLP approach to en-
hance data locality; however, instead of to use on the fly distribution as LEEN,
the authors adopt pre-processing phase to gather the frequent keys used, by using
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2.3.2.9 SCID partitioning

Zhuo et al. [110] have proposed the SCID algorithm (i.e., Splitting and Combi-
nation algorithm for skew Intermediate Data blocks) to balance the intermediate
results and enhance the reducer function runtime. SCID uses a sampling method
to predict the frequent keys produced in the map phase. Note that although
this algorithm uses sampling technique such as [120] and [98] which can affect to
the load balancing decision, it is efficient even with Big Data since it distributes
smartly the remainder mapper keys that haven’t considered in the sampling al-
gorithm. The defect of this method that we can be noticed is that the time of
sampling can slow down job processing when the size of the sampler increase.

2.3.2.10 Load balancing reducer loads using multi-agent system

In the previous approaches, namely the works of [27, 37, 40, 73, 98, 120], the
authors focus on balancing the reducer loads in advance using different partitioning
techniques. Baert et al. [16], contrary to the earlier methods, their algorithm
balances the reducer loads after the shuffle phase, using multi-agents system. The
authors inspired their work from Known et al. [80] approach, and their technique
is much suitable in the case of heavy data skew in the reducers; The drawback
of this method is it may degrade the system performances and slow down job
processing, since the system must halt the reducer tasks to trigger the re-balance
algorithm. Moreover, we cannot apply this technique in all aggregate functions,
e.g., standard deviation and variance function, since the system needs to create
more MapReduce cycles to complete calculating the aggregate function. We will
propose in this thesis (see chapter 6) a new approach based on a multi-agents
system which able to balance on the fly the reducer loads, without changing the
default mechanism of the MapReduce paradigm.
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2.4 Join Algorithms in the MapReduce Paradigm

We have seen in the previous section (Sect. 2.3), the different data placement
strategies (i.e., static and dynamic PLB techniques) and the various physical design
of the data warehouses and databases in parallel DBMS and distributed systems
such as Hadoop MapReduce and Spark. These physical designs or schemes help
the execution engine of a distributed system to perform the SQL queries and
other analytic applications swiftly. In OLAP queries, join is the most expensive
operation and can involve high network cost due to the shuffle phase, especially in a
star join with several dimension tables. In this section, we expose some algorithms
that can enhance join and star join operation in distributed systems.

Almost all of the existing join algorithms in the literature rely on dynamic
techniques of partitioning and load balancing of data, e.g., on-line partitioning
and load balancing, such as repartition (or hash-shuffle), hash-broadcast join [20],
multi-way join [9, 127], triejoin [75] and to perform star join operation such the
works of [24, 96]. Few are based on static techniques, such as trojan join [33] and
star join on HadoopDB [7]and JOUM [15]. This kind of algorithms requires prior
knowledge of the table schema and join conditions. In the following, we detail
some join algorithms.

2.4.1 Repartition join

Repartition join [20] is the same as a partitioned sort-merge join in the parallel
RDBMS literature [32]. The join in this algorithm is executed in the reduce phase.
This algorithm, which also called hash-shuffle join, is not suitable when using larges
tables due to the amount of data to be shuffled. Variant of the repartition join
are used in Pig [90], Hive [112], and Spark SQL [13]. Executing star join with this
type of join may need up to 2(n-1) MapReduce cycles [96], where n is the number
of tables involved in the query. Hash-shuffle join is the worst join algorithm in the
MapReduce paradigm that you should avoid to use it.
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2.4.2 Broadcast and Semi-join

In the case where we have a small table R joined with a large table L, the system
can use broadcast join [20], such that it spread the table R across the nodes where
each partition L will join with some records of R on the join key. This type of
algorithm requires that R table can fit in memory without the overhead. The
broadcast join is performed in the map phase and and is implemented in several
query processing systems like Pig [90], Hive [112], and Spark SQL [13]; moreover, it
is suitable in star join and OLAP queries if the dimensions of the data warehouses
are small enough to fit in memory; otherwise, the system needs to combine between
repartition join and broadcast join to perform the star join operation.

In the previous algorithm, many records of the table broadcasted (i.e., R) may
not be referenced by any records of the large table partitioned and are not used by
the join. To avoid sending all tuples of R across the nodes, Blanas et al. [20] have
implemented the Semi-join algorithm on MapReduce. The issue of this technique
is that it needs to scan L table to check the join keys values, before broadcasting
the subsets of R, which can increase the join runtime significantly. To decrease
this time, a preprocessing phase can be done to determine the subset of R that
will join with L.

2.4.3 Multi-way join

Usually, joining several tables in a distributed system needs multi MapReduce
iterations (e.g., in shuffle join, the system requires two MapReduce cycles to join
three tables). Afrati and Ulmane [9] have proposed multi-way join algorithm in
MapReduce environment which able to join several tables in one MapReduce job,
with low communication cost. Although this algorithm is executed on the fly
and not require any prior knowledge about the data warehouse placement and
scheme, however, the amount of data to be shuffle is not negligible, especially in
star join when joining larges tables. Another alternative of multi-way join has been
proposed to improve the not equi-join operation. Zhang et al [127] have developed
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a multi-way algorithm for Theta-join queries using MapReduce Paradigm, where
they have considered other operators such as (<, >) in the join condition function.
Other dynamic partitioning techniques have also been proposed to enhance the
performance of the two previous algorithms (namely the works in [9, 127]), such
that the approaches of Tao et al. [109] in cloud environment, Zhang, C., et al. [126],
and Myung et al. [87].

2.4.4 Optimize star join operation

As we have explained before star join is a ubiquitous and expensive operation
in OLAP queries. It increases the disk spill when scanning fact and dimensions
tables, rise the communication cost due to the shuffle phase and requires many
MapReduce cycles to perform it. To remedy these issues, many works have been
proposed [24, 41, 96, 109, 126, 129, 130]. In this subsection, we explain two recent
works, namely the approaches of Brito et al. [24] and Purdilǎ et al. [96].

2.4.4.1 Decrease disk spill and network cost in star join operation

To enhance star join operation in cloud computing, Brito et al. [24] have pro-
posed two efficient algorithms: the first called Spark Bloom-Filtered Cascade Join
(SBFCJ), which use Bloom filter [111], to avoid scanning some unnecessary records
of the fact table and the second called Spark Broadcast Join (SBJ). The two al-
gorithms are complementary, although SBJ requires that the dimension fit in the
executor memory of Spark. Moreover, this approach uses RDD and is developed
at the moment of producing Spark SQL by Armbrust et al. [13]. We should note
that Spark SQL is based on the Catalyst optimizer and usually gives better results
than Brito et al. solution.
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2.4.4.2 Single-scan approach

Purdilǎ et al. [96] have developed a novel dynamic algorithm called Single-scan
which can perform a star join operation in two MapReduce iterations. Single-scan
is much better than Bloom filter technique [24] and works well with small and large
dimensions, without any assumption about memory size. In the first MapReduce
pass, Single-scan adds filters to all dimensions, and in the second pass, it scans the
fact table and performs join between the fact and the dimension tables. You should
note that although the method proposed by the authors has reduced the number
of MapReduce iterations for the star join operation, however, their approach still
needs the shuffle phase, since it doesn’t take into account the data locality factor.

2.4.5 Bucket-map join and Sort-merge-bucket join

Hive and Spark SQL use two efficient join algorithms that can perform the join
operation in map side, which are: Bucket-map join and sort-merge-bucket join [52,
53]. The two algorithms are suitable for large tables. Bucket-map join needs that
the tables are bucketed with the join column and the number of the buckets of
each table is multiple or divisible to the other table. Moreover, it requires that
the tables are not sorted. The main drawback of this algorithm is it overhead
the memory in some cases. To overcome this issue, Hive-QL and Spark SQL use
Sort-Merge-Bucket (SMB) join which requires that all tables must bucket by the
same join key and all tables have the same number of the buckets. These two
algorithms can improve the performances of the join operation drastically. We can
notice that the major problem with these algorithms is that the tables need to be
bucketed in the same way how the SQL joins writes. We will provide more details
about these algorithms in our contributions (see chapter 3 and 5).

In this thesis, we adopt SMB join to improve star join operation runtime on a
distributed big data warehouses.
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2.5 Conclusion

We have seen in this section the different static and dynamic techniques of the
partitioning and the load balancing of the data in shared nothing systems (i.e.,
both parallel DBMS and distributed technologies such as Hadoop MapReduce and
Spark), and the different join algorithms existing in the literature. We have tackled
three main issues living in distributed big data warehouses and both OLTP and
OLAP workload which is: scanning unnecessary data partitions or data blocks,
optimize the join operation, more particularly the star joins task, and enhancing
the reduce functions (such as Group By operation and aggregates functions). All
our contributions in this thesis treated the issues cited earlier.

In the first contribution, we proposed a novel data placement strategy [1, 3, 4]
of distributed big data warehouses over Hadoop cluster. This static PLB technique
allows performing star join operation in only one Spark stage (or one MapReduce
iteration) whatever the size of the fact and the dimensions tables. We can consider
our contribution as an extension of the approaches of [33] and [9] to enhance star
join operation. The second contribution [2] is a generalization of Sun et al. [108]
approach, such we propose some methods (partitioning and bucketing techniques)
to avoid scanning some unnecessary HDFS blocks whatever the OLAP workload
used and to optimize the parallel treatment in the distributed systems. The third
contribution [6] is a hybridization between the first approach [4] and the second [2],
where we propose a novel physical design for distributed big data warehouses over
Hadoop cluster to perform the scan, the filtering and the star join operation swiftly.

The three previous contributions, namely the approaches [1, 2, 3, 4, 6], are
based on a static PLB of the data; to improve Group By and aggregate functions,
we need to use a dynamic PLB technique as we have done in the fourth approach.
So, our contribution [5] optimizes Group By task using a multi-agent system. This
approach is similar to the Gufler et al. [40] approach, such that we distribute on
the fly the fragments produced by the mappers (after execute scanning, filtering
and star join of an OLAP query) over the reducers. However, the main key of our
solution is that we keep the default mechanism of the MapReduce paradigm. In
the following chapters, we detail these contributions.
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Optimize Star Join Operation

for an OLAP Query

Information is the oil of the 21st century,

and analytics is the combustion engine.

Peter Sondergaard

3.1 Introduction

Improving OLAP query performance in a distributed system such as Hadoop and
Spark is a challenging task. An OLAP query is composed of several operations,
such as projection, filtering, join, and grouping. The star join operation is the
most expensive one and usually involve considerable communication cost. The
common method used to decrease the network traffic for the star join operation
is to co-partition some tables of a data warehouse on their join key. However,
this operation still requires many MapReduce cycles in existing data warehouses
partitioning schemes [18, 24, 96, 115]. In this chapter, we present the main part
of our data warehouse physical design over a Hadoop cluster. This part allows
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performing filtering, projection and the star join operation, locally and in only
one Spark stage, without a shuffle phase. We propose two methods called ”FKey"
and ”NewKey" based on a data mining technique to guide our physical design of a
BDW. Our partitioning and distribution scheme helps the query’s optimizer (e.g.,
Catalyst optimizer of Spark SQL) to make an efficient physical query plan, such
that the system does not need to re-partition and re-distributing the partitions of
the data warehouse tables again to perform the star join operation.

A Data Warehouse (DW) can be seen as a huge database that is designed
for query and analysis rather than for transaction processing. The size of a DW
is between hundreds of gigabytes and hundreds of petabytes. A commonly used
model in the data warehouses is the star schema. A star schema consists of one
fact table and several dimension tables.

In the literature, many studies have tackled the problem of the partitioning and
load balancing (PLB) of the data warehouses over Hadoop cluster. As we have
seen in section 2.3, we can distinguish two types of techniques, static and dynamic.
While static technique, used usually to balance the split inputs [7, 11, 14, 18, 108].
In dynamic techniques, the system performs the PLB algorithm at the moment
of query processing [16, 40, 73, 82, 110, 125], that is, it elaborates the partition
scheme on the fly. Note that making a good PLB of a BDW over a cluster can
help the query optimizer to make an efficient query plan, which can speed up the
query processing.

Apache Hadoop [60] uses different techniques for the PLB of the data to en-
hance query performances. However, the random distribution of Hadoop blocks
may slow down the query processing, especially with the OLAP query when join-
ing several tables. The join operation is the most expensive one and often involves
a high communication cost. In some cases, a star joins operation will need n − 1

or 2(n−1) MapReduce cycles [96], where n is the number of tables involved in the
query. To reduce the MapReduce iterations’ number, minimize the disk spill, and
decrease the network communication cost when performing a star join operation,
some solutions have been proposed [41, 24, 96]. However, to the best of our

knowledge, none of the previous proposals is able to perform a star join
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operation in only one Spark stage (or one MapReduce cycle), without

a shuffle phase, as our approach can do.

In this chapter, we propose a new data placement strategy for a distributed
BDW over a Hadoop cluster (see our contributions in [1, 3, 4]). We present two
methods called Fkey and NewKey, to guide the physical design of a distributed
BDW over a Hadoop cluster. Our static PLB technique allows performing the
star join operation in only one Spark stage, without a shuffle phase, based
solely on a data-driven model, to avoid the workload update issue. Fkey method
based on two measures: the density and the skewness, the second method, i.e.
NewKey, based on an efficient algorithm of the data mining called balanced K-

means algorithm [83]. In our contribution, we take into account: the size of
the DW, the distribution of the foreign and primary keys of the fact and dimen-
sions tables, and the characteristics of the cluster nodes. We have exploited the
Sort-Merge-Bucket (SMB) join algorithm of Spark SQL to execute star join
operation correctly. We have implemented and deployed our approach using Scala
language of Spark over a cluster of homogeneous nodes, Hadoop-YARN platform,
Spark engine, Hive system to manage the metadata of the DW tables, and the
TPC-DS benchmark.

The key points of our contribution are:

1. We propose a new data placement strategy which allows performing the star
join operation in a single Spark stage without a shuffle phase, by
exploiting the algorithm SMB join of Spark SQL.

2. We propose a heuristic technique for the PLB of the data to balance evenly
the data split inputs of a distributed BDW over a cluster of homogeneous
nodes, which can decrease the data skew of the mapper tasks and improve
the parallel treatment for executing an OLAP query.

In Section 3.2, we detail our data placement strategy and the two methods Fkey
and NewKey of our approach, We present our experiments in Section 3.3, and we
conclude in Section 3.4.
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3.2 Optimize star join operation approach

For the two methods proposed of our approach, namely FKey and NewKey, we
start by building horizontal fragments of the fact and dimensions tables, using
hash-partitioning technique, then we distribute these fragments evenly over the
cluster nodes, in order to perform filtering, projection, and the star join operation
in only one Spark stage without a shuffle phase, which can improve the OLAP
query runtime significantly. We assume that we know in advance the data ware-
house size and the characteristics of the cluster (i.e., the number of CPU cores and
the memory size of each data node). We can divide our approach into two phases:
(1) we construct the buckets of the fact and the dimension tables and (2) we place
the buckets that have the same join key in the same node as far as possible. Before
detailing the two methods, we define some notations used in this chapter.

3.2.1 Notations

We assume that we have a star schema DW, denoted E = {F,D1, D2, ..., Dk},
such as F is the fact table and Dd, d ∈ 1..k are the dimension tables. We de-
note by FK = {fk1, fk2, ..., fkk} the set of the foreign keys in F correspond
to the dimensions Dd, d ∈ 1..k, and PK = {pk1, pk2, ..., pkk} is the set of the
primary keys of these dimensions. We denote by fkm the key selected from
FK, to build the buckets of F and all Dd, d ∈ 1..k, by using FKey method,
and nk the new key added in F and all Dd, d ∈ 1..k, to build the buckets
of all tables of E, by using NewKey method. We denote by #B the num-
ber of the buckets should be built. Note that to build #B buckets of a table
T ∈ E, using any of its key k (of integer type), we use hash-partitioning tech-
nique. We denote by BF = {BF0, BF1, ..., BF#B−1} the set of the buckets of
F and by BDd = {BDd0, BDd1, ..., BDd#B−1} the set of the buckets of Dd,
where d ∈ 1..k. We denote also by SBF = {‖BF0‖, ‖BF1‖, ..., ‖BF#B−1‖} and
SBDd = {‖BDd0‖, ‖BDd1‖, ..., ‖BDd#B−1‖} the set of the buckets’ sizes of F

and Dd respectively. We denote by GB = {GB0, GB1, ..., GB#B−1} the set of the
buckets’ groups, where each group GBi, i ∈ 0..#B − 1, is a collection of buckets
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3.2.2 Construct the buckets

To create the buckets of the sets BF and BDd, d ∈ 1..k, we follow three steps:
(1) selecting the near-perfect number of the buckets should be built, i.e. #B; (2)
selecting the bucket key: fkm if we use FKey method and calculating the values
of nk if we use NewKey method; and (3) building the buckets of F and all Dd.

3.2.2.1 Selecting #B

Selecting the near-best number of the buckets, namely #B, to guide our parti-
tioning method is critical. To do that, we address some technical challenges as
outlined below.
We should select #B as follows:

#B ∈ [#Bmin, ..,#Bmax] (3.1)

Where #Bmin is the minimum value of the number of the buckets and #Bmax is
the maximum value. To determine these values, we follow these rules:

• Rule 1. We should exploit almost all idle CPU cores of the cluster’s nodes.
So, #Bmin should be equal to #CT , the total number of CPU cores assigned
to execute an application task. In other words, #CT is the total number
of CPU cores affected to all Spark executors. Our aim is: assign at least
one RDD partition to each CPU core (in our case, a Resilient Distributed
Dataset (RDD) partition is a group GBi, i ∈ 0..#B − 1).

• Rule 2. Selecting a large number of #B (#B ≫ #CT ) can disrupt the
distributed system as a result of increasing the number of HDFS chunk and
the I/O operations, and this can incur significant overhead for processing the
RDD partition and maintaining partition-level meta-data by the NameNode.
Hence, and since our processing is in-memory, using Spark, we determine
#Bmax as follows:

#Bmax ≤ ⌊#Bmin ×max(1, VE/VM)⌋ and #Bmax ≤ |T | (3.2)
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Where VE is the size of the DW E, VM is the sum of all memory sizes of all
slave nodes, and T is the smallest dimension in E.
Our argument is based on the following: the first part of Eq. (3.2) means
that if the total memory size of the cluster is large, i.e., VM ≈ VE, in that
case, we can process a large RDD partition. However, if the memory size is
small, namely, VM ≪ VE, then #Bmax increases and processing a small RDD
partition become preferable. The second part, i.e., #Bmax ≤ |T |, means that
we must not get an empty bucket for all BF and BDd.

• Rule 3. We have seen in the previous rules that we should select #B

from the interval [#CT, .., ⌊#CT ×
(

VE

VM

)

⌋]. However, and since the values’

number of the range ⌊#CT ×
(

VE

VM

)

⌋ −#CT may achieve several hundreds.
Hence, it’s not realistic to test all values of this interval to find the near-
perfect solution, namely, doing hundreds of empirical tests with different
values of #B. Thus, we should optimize our method to select #B. So, if
we assume that processing all tasks in each Spark wave finish roughly in the
same time, i.e., the number of all job tasks is divisible by #CT , therefore,
to select the near-best value of #B, we execute the queries with #B=#CT ,
and each time we increment #B, i.e. #B=#B+#CT , until #B=#Bmax or
until the execution time of the queries increases.

3.2.2.2 Selecting the bucketed key

As have indicated earlier, we can use two methods (FKey and NewKey) to select
the bucketed key. In the following, we detail these methods.

FKey method. In this section, we detail how to select fkm from the set FK.
The selecting of fkm is based on two important measures, namely the density

and the skewness. The two following rules explain how to use these measures to
select the best key fkm ∈ FK.

• Rule 1. The number of distinct values of a foreign key fki ∈ FK has
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an impact to the number of tuples in each bucket of BF . Thus to avoid
obtaining an empty bucket in BF , the foreign key fki must respect the
following formula:

1

Density(fki)
≥ #B (3.3)

Density(fki) =
1

number of distinct values of fki

• Rule 2. After selecting the set of the foreign keys that respect the Eq. (3.3).
To choose the fkm among these keys, we use the skewness measure (denoted
Sk):

Sk =
n

(n− 1)(n− 2)

∑

(
xj − µ

σ
)3 (3.4)

Where n is the cardinality of fki, xj is the element j of fki, σ is the standard
deviation of fki and µ is the average value in fki, (For more detail see
Wikipedia [54]).
The best key fkm is the foreign key fki that has the minimum value of Sk.
The advantage of the Eq. (3.4) is to control the homogeneity of the SBF

bucket’ sizes. The fact is that there are no criteria in the literature to ensure
that a distribution Dist has light or heavy data skew. According to the
recommendations of some works [36] and [39]), we can consider that a set
Dist has heavy data skew if |Sk| > 2.0.

Remark We can use other measures to evaluate the skewness such as the
covariance measure:

Cov(Dist) =
std

mn
× 100

Where std is the standard deviation of Dist and mn is the mean value of Dist.

NewKey method. We have seen earlier that the FKey method cannot ensure
always to obtain a near-zero standard deviation of SBF . To overcome this draw-
back, we propose a new method, called NewKey, to build BF and BDd, d ∈ 1..k.
In NewKey, we add a key nk at the fact table F such that the values of this key
allow obtaining buckets roughly equal in size when we bucketed F by this key in
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#B buckets. We can use the range-partitioning technique to achieve our objective
(i.e., obtain near-zero standard deviation of SBF ); however, there is an essential
factor that can influence to the size of the buckets of the new dimensions built
when constructing BDd, d ∈ 1..k, as we will show in subsection 3.2.2.3. This
factor is the similarity of the tuples in each bucket of BF . To overcome this issue
and obtain an approximately optimal solution, we propose the following method.

1. From the fact table F , we create the matrix MB, such that:

MB =

















VFD11 VFD21 .. VFDk1

.. .. .. ..

.. .. VFDdj ..

.. .. .. ..

VFD1n VFD2n .. VFDkn

















Where VFDdj is the value of the foreign key fkd at line j of the fact table F ,
and n = |F |. (these values are integer type)

2. After building MB, we clustered it in #B clusters. Thus, we obtain
the values of the column nk. Our clustering method should trade-off between
the number of tuples in each bucket against the similarity of the tuples in
each bucket. Apply traditional K-means to cluster this matrix can give
imbalanced clusters size, since, the objective of this algorithm is to lower
the intra-cluster distances. In the standard k-means algorithm, the most
common criterion to optimize is the Mean-Square-Error (MSE), calculated
by the following formula:

MSE =
k

∑

j=1

∑

Xi∈Cj

‖Xi − Cj‖
2

n

Where Xi denotes data point locations (in our case point is tuple or vector
of matrix MB), Cj denotes centroid locations, and n = |MB|.
In our method, we focus to use balance-constrained clustering [23, 83, 131],
where the cluster size balance is a mandatory requirement that must be met
and minimizing MSE is a secondary criterion. The first reason to choose this

48



Chapter 3: Optimize Star Join Operation

kind of algorithm is to get roughly balanced buckets’ sizes of the set BF , and
the second one is to minimize the disc space of the new created dimensions.

We have finished using the approach of [83] which used Hungarian algo-
rithm [25]. This algorithm has minimum complexity time O(n3), where n

is the size of MB. The first reason to choose this algorithm is to minimize
the standard deviation of SBF and the second one is to decrease the size of
the newly built dimensions D′d (see why and how to build D′d in subsec-
tion 3.2.2.3). The output of the algorithm is (n mod #B) clusters of size
⌈n/#B⌉ and #B-(n mod #B) clusters of size ⌊n/#B⌋.

3. Finally, we affect the cluster values obtained to the nk column, and we can
apply our bucketing method, as explained in the next section.

This clustering technique only ensures minimizing the standard deviation of
SBF and not all SBD′d. However, since the size of D′d is small compared to F , the
size of the bucket of SBD′d also remains small compared to the bucket of SBF , and
hence the sizes of the GBi, i ∈ 0..#B−1, remain roughly equal (see the notations in
Sect. 3.2.1). Moreover, in our clustering algorithm, we have not included another
factor which can increase the size of the new dimensions: the number of the
attributes of a dimension. Some dimensions can have a few attributes while others
have many attributes (e.g. hundreds or thousands). However, with the “Parquet”
and “ORC” storage formats, only the attributes solicited by the queries are loaded
into memory and not the whole bucket of the new dimension. Furthermore, with
the new compression and coding techniques in HDFS (e.g., Gzip and Snappy), the
column nk occupies negligible disk space since the number of its distinct values is
not large, i.e., values(nk) ∈ 0..#B-1.

3.2.2.3 Building the buckets

After selecting the near-best buckets’ number #B and the key of the bucketing
for both methods FKey and NewKey, in this section, we show how to build the
sets BF and BDd, d ∈ 1..k.
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FKey method After selecting fkm, it is trivial to create the buckets of F and
those of the dimension Dm (which correspond to the foreign key fkm), however to
build BDi, i ∈ 1..k/m, of the other dimensions, we must make some transforma-
tions to these dimensions, in order to can bucket them with the same join key fkm.
For this, first we construct an intermediate table, denoted IDi, correspond to the
dimension Di, i ∈ 1..k/m. IDi is composed of two columns: the first column is
the foreign key fki in F and the second, also denoted fkm, their values obtained
by the formula fkm[j] mod #B. Where fkm[j] is the values of the foreign key fkm

in F and j ∈ 1..|F |. Then we delete all duplicate tuples from IDi (Initially, we
have |IDi|=|F |). After that, we join IDi with Di to obtain a new dimension D′i,
i ∈ 1..k/m, that contains the join key fkm. Finally we build BD′i, as we have
done with BF and BDm. Figure 3.2 shows an example of how to build a new
dimension D′i with FKey method.

NewKey method The case of building the buckets in NewKey is straightfor-
ward as FKey method. So, after constructing BF using the key nk, we start to
build BDd, d ∈ 1..k. So, to have the same join key nk in these dimensions as
the fact table F , we make some transformations. For this, first we construct an
intermediate table, denoted IDd, correspond to the dimension Dd, d ∈ 1..k. IDd

is composed of two columns: the first column is the foreign key fkd in F , and the
second is the newly added key, namely nk. Then we delete the duplicate tuples
from IDd (Initially, we have |IDd|=|F |). The magic of balanced K-means algo-
rithm appears here (see subsection 3.2.2.2). By applying this algorithm to define
the values of nk, we increase the probability to obtain duplicate tuples in IDd,
since the similarity of the tuples in each bucket is high. As a result, we decrease
the size of IDd and the new dimension D′d, which obtained by joining IDd and
Dd. Finally, we build the buckets of BD′d, d ∈ 1..k, which contain the join key
nk. Figure 3.3 shows an example of how to build a new dimension D′1 and its
buckets with NewKey method.

Note that the sizes of the new dimensions D′d, d ∈ 1..k, are large compared
to the original ones in both methods. In NewKey method, the sizes of the newly
built dimensions changed according to (1) the value of #B and (2) our clustering
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3.2.4 Query Transformation

In our approach, we do some changes in the join condition yet such that it still
produces the correct join result. Namely, with FKey method we add to the join
condition F.fki = D′i.pki, i ∈ 1..k/m, the second condition F.fkm mod #B =

D′

i.fkm. That is, in FKey method, the join condition becomes (F.fki = D′i.pki

and F.fkm mod #B = D′i.fkm), where i ∈ 1..k/m. In NewKey method the join
condition becomes (F.fkd = D′d.pkd and F.nk = D′d.nk), where d ∈ 1..k. Note
that in the both methods, we must activate the Sort-Merge-Bucket (SMB) join
and disable Hash-Broadcast (HB) and Shuffle (SH) join of Spark SQL.

The following example demonstrates the execution plan of an OLAP query
with our approach (NewKey method). We consider an OLAP query Q extracted
from the TPC-DS benchmark, e.g.

select c_first_name, c_last_name, d_year, sum(ss_sales_price)
from customer, date_dim, store_sales where
customer.c_customer_sk = store_sales.ss_customer_sk
and store_sales.ss_sold_date_sk = date_dim.d_date_sk and date_dim.d_year=2000
Group by c_first_name, c_last_name, d_year;

After transformation, we obtain the query Q′:

select c_first_name, c_last_name, d_year, Sum(ss_sales_price)
from customer’, date_dim’, store_sales’ where
(store_sales’.nk = customer’.nk and store_sales’.ss_customer_sk=customer’.c_customer_sk)
AND (store_sales’.nk= date_dim’.nk and store_sales’.ss_sold_date_sk = date_dim’.d_date_sk)
AND date_dim.d_year=2000 Group by c_first_name, c_last_name, d_year;

The execution plan of the query Q′ in Spark SQL with our approach is as
follow: First the system scans each bucket of the table date_dim’, executes the
filter d_year=2000, and retrieves only the attributes involved in the query Q′, i.e.,
retrieves the fragments (date_dim.nk, date_dim.d_date_sk, date_dim.d_year).
As a result, we obtain the fragment f_date_dim’ (this fragment is distributed
over #B RDD partitions, where #B is the number of buckets); the same process
is applied to the other tables store_sales’ and customer’; we obtain the fragments
f_store_sales(store_sales’.nk, store_sales’.ss_sold_date_sk, store_sales’.ss_cus-
tomer_sk, store_sales’.ss_sales_price) and f_customer’(customer’.nk, customer’.
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3.2.5 Scalability of our approach using NewKey method

The update of the data warehouses is not as the databases, the changing of di-
mensions, and the fact table will be done infrequently (e.g., update every six
months). There are several methods to update the DW. In our case, to deal with
updating the DW, we use our bucketing technique as a “secondary” partitioning
scheme, namely, before bucketing the tables with nk, we partition some tables
which can change over time, by the date attribute (e.g. code in Hive "..Partitioned

By (date)...Bucketed By (nk) into #B buckets..."). For example, when a new par-
tition date=’2019-06-08’ is added to the customer table we run: ALTER TABLE

customer ADD PARTITION (date=’2019-06-08’).... So, with this technique, we
can invoke our bucketing technique and apply balanced K-means algorithm on
this newly inserted partition without affecting the existing data.

The following scenario explains the DW update process: Suppose that we have
loaded and distributed our DW, in first time at the date=’09-12-2018’ with our
method NewKey. After six months we want to update the DW tables, so, only
the tuples updated and the new tuples will be inserted into the new partition
(date=’08-06-2019’) using our data placement strategy, and so on. Moreover, to
obtain correct results, the optimizer of the system must execute the star join
operation of each partition in separate Spark waves. In other words, it cannot
gather the buckets located in independent HDFS-partitions in one RDD-partition,
although that has the same value of nk. Figure 3.5 shows this mechanism clearly.
We can notice in this schema, i.e., Fig. 3.5, that although some buckets of the
partition P1 and P2 have the same bucket number (i.e., the value of nk), they are
executed in different waves of Spark stage.

Remark Note that although this technique may increase data redundancy, how-
ever, it is necessary for a DW analysis purpose.
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data warehouse sizes, the first, denoted DW1 with 500 GB in CSV format, and
the second, denoted DW2, has about 5 TB in CSV format (about 1420 GB in
Parquet format). Each node is characterized by CPU Pentium I7 with 8 cores,
16 GB of memory, and 2 TB of a hard disk. We installed in all nodes Hadoop-
YARN V-2.9.2, Hive V-2.3.3, Apache Spark V-2.3.3, TPC-DS benchmark, Scala
language, and Java. To the master node we added MySQL server to store the Hive
meta-data, “Maven tools” and Scala Build Tool “SBT” to build jar packages. For
the HadoopDB tests (see Sect.3.3.2), we added PostgreSQL to all the data nodes.

In Apache Spark, there are more than 150 configurable parameters [93] that can
affect the job execution time. In our experiments, we focused on configuring the
candidate parameters as recommended in [17, 93]. So, we configured some Spark
parameters as follows: spark.executor.memory=6 GB and spark.executor.cores=3

CPU cores. In C1, we set spark.executor.instances=10 and in C2, spark.executor.-
instances=30. We kept the default block size 128 MB and kept 3 as the number
of replications. For the memory size and CPU cores, we should not exploit all idle
resources. Thus, for all slave nodes, we kept 4 GB and 2 CPU cores for “operating
system,” “executors,” and for “Application Master.” With this configuration, we
can run 3× 10 = 30 tasks in parallel in C1 and 3× 30 = 90 tasks in C2.

3.3.1.1 Data generation

We adapted the spark-sql-perf application [56], using Scala language and Spark.
In our experiments and since we focused of optimizing the star join operation,
we used one fact table among seven and nine dimensions among seventeen of the
TPC-DS [48] benchmark (see Table 3.1). Because of the limitations and physical
characteristics of our cluster and to avoid memory overflow during the data gener-
ation, we generated the fact table store_sales by partition. We chose the foreign
key ss_store_sk of dimension store as “partition key” because the primary key
of this table, namely ss_store_sk has the minimum number of distinct values
compared to the other keys of other dimensions (see Table 3.1).
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3.3.1.2 Implementation

To build the buckets of the fact and dimension tables, we used the instruction, e.g.

DF.write.bucketedBy(\#B, "nk").sortBy("nk").format("parquet").

mode("overwrite").saveAsTable("DB.tablename")

Where DF is a Spark dataframe, nk is the partition key with NewKey method,
parquet is the used storage format, DB is a Hive database, and tablename is the
name of the bucketed table. By applying the rules of Sect. 3.2.2-FKey method, the
bucketed key selected in the FKey method is the foreign key fkm=ss_item_sk

which correspond to the dimension item. In NewKey method, the values of nk are
calculated using our clustering method detailed in Sect. 3.2.2 (NewKey method).
We have implemented a balanced K-means algorithm using SparkR. To deploy the
first phase of our approach, we have used three essential components: Dataframe,
Dataset of Spark, and ArrayBuffer.

Bucketing with Spark: it creates many files for each bucket. To implement
the phase II of our approach (see our works [3, 4]), we do not modify the block
policy placement of HDFS as in [35], since the framework API of Hadoop V-2.x
or V-3.x would need severe modifications. Our strategy of placement is currently
implemented as an external balancer tool, that is to say, we let Hadoop distribute

Table 3.1: Characteristics of DW tables

Table name Data Warehouse 1 (DW1) Data Warehouse 2 (DW2)

Number of records Parquet Format Number of Records Parquet Format

1 store_sales 2 879 995 413 142.6 GB 28 799 954 135 1 420 GB

2 customer 12 000 000 607.8 MB 65 000 000 3 210 MB

3 customer_address 6 000 000 111.4 MB 32 500 000 603.63 MB

4 customer_demographics 1 920 800 7.4 MB 1 920 800 7.4 MB

5 item 300 000 27.3 MB 402 000 36.52 MB

6 time_dim 86 400 1 126 KB 86 400 1 126 KB

7 date_dim 73 049 1 740 KB 73 049 1 740 KB

8 household_demographics 7 200 30.0 KB 7 200 30.0 KB

9 promotion 1 500 76.0 KB 2 000 98.77 KB

10 store 1 002 88.0 KB 1 500 128.96 KB
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the HDFS blocks of the buckets by the default placement policy (random targeting
of the nodes), then with an off-line process, we rebalance the files or the blocks.
This has the advantage of keeping safe the code of the HDFS default block place-
ment policy and avoid invoking auto co-locating of the blocks when one or more
nodes crash, which can harm the distributed system. Moreover, although may we
cannot completely ensure placing all the buckets that have the same value of the
join key in the same node, however, in the both methods, i.e. FKey and NewKey,
by exploiting SMB join and disabling the HB and SH join (see related works in
section 2.4), the execution of the star join operation remains executed in a single
Spark stage without a shuffle phase.

3.3.2 Results

We carried out some experiments in the two clusters, C1 and C2, with two BDW,
namely DW1 and DW2. Table 3.2 shows different approaches used in our exper-
iments. Since we have used a DW part of the TPC-DS benchmark, we can only
use the queries that solicited our DW tables (about 32 among 99 queries). So,
in our experiments, and for reasons of simplicity (without loss of generality), we
used six queries from among the thirty-two (see Table 3.3) with different levels
of complexity. We aim to show how Catalyst optimizer of Spark SQL can run
the star join operation in only one stage with the two methods of our approach
whatever the used OLAP query. The different characteristics of the six queries are
detailed in Table 3.4. We executed these queries with five values of #B, which
selected according to our recommendations detailed in Sect. 3.2.2.1.
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Table 3.2: Notations for the compared approaches
Notation Description

SHDB default partitioning and distributing scheme of HadoopDB with PostgreSQL database

and Spark as the execution engine.

SSH default partitioning and distributing scheme of Hadoop and Spark, using default Spark

Shuffle Hash join (SH join). (like repartition join [20] in MapReduce.).

SHB default partitioning and distributing scheme of Hadoop and Spark, using Hash Broad-

cast Join (HB join).

FKey our partitioning scheme with FKey method, by exploiting Spark SMB join and dis-

abling HB and SH join, using #B buckets.

NewKey our partitioning scheme with NewKey method, by exploiting Spark SMB join and

disabling HB and SH join, using #B buckets.

NewKeyH our partitioning scheme with default Hadoop distribution policy, by exploiting Spark

SMB join and disabling HB and SH join, with NB buckets.

NewKeyR similar to NewKey but instead of using our balanced K-means algorithm, we just create

roughly equal buckets of the fact table randomly by using range partitioning method.

We consider SHDB, SSH, and SHB as the baseline approaches, which we com-
pare with our solutions, namely FKey, NewKeyH, NewKeyR, and NewKey. In
SSH and SHB approaches, we set the parameter spark.sql.shuffle.partitions to
180 in C1 and in C2 with DW1, and we set 630 in C2 with DW2 (these val-
ues are selected according to the bucket’s number in our approaches). To de-
activate the default hash-broadcast (HB) join of Spark, we add the instruction
Session.conf.set("spark.sql.autoBroadcastJoinThreshold",-1). In this case, Spark
executes Hash-Shuffle (SH) join (see section 2.4.1). In FKey, NewKeyH, NewKeyR,
and NewKey, since we bucket all the DW tables with the same attribute (i.e. join
key nk), we can run SMB join in the right way. With our configuration, we can run
30 tasks in parallel in the cluster C1 and 90 tasks in C2. Thus, by following the
rules of Sect. 3.2.2.1, in C1, we get: #Bmin = 30 and #Bmax ≤ ⌊30×

500
16×5
⌋ = 187

(we put #Bmax = 180). remember that the number of CPU cores exploited
in C1 is 30, our data warehouse size is 500 GB (i.e. in DW1), and the size
of the memory in each datanode is 16 GB. With the same way, in C2: with
DW1, we get #Bmin=90 and #Bmax=180; and with DW2, we get #Bmin=90 and
#Bmax=⌊90 × 5120

16×15
=1920. However, with DW2, since the smallest table store

has 1500 tuples (see Table 3.1), so by following Eq. 3.2, we get #Bmax=1440.
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Table 3.3: Selected queries
name query

Q1 select dt.d_year, item.i_brand, item.i_brand_id, sum(ss_sales_price) from date_dim

dt, item, store_sales where dt.d_date_sk = store_sales.ss_sold_date_sk and

store_sales.ss_item_sk = item.i_item_sk and item.i_manufact_id = 128 and

dt.d_moy=11 group by dt.d_year, item.i_brand, item.i_brand_id limit 100;

Q2 select dt.d_year, dt.d_month_seq, item.i_brand, item.i_brand_id, item.i_class,

sum(ss_sales_price) from date_dim dt, item, store_sales where dt.d_date_sk

= store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and

item.i_manufact_id = 128 and dt.d_moy=11 group by dt.d_year, dt.d_month_seq,

item.i_brand, item.i_brand_id, item.i_class limit 100;

Q3 select c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag,

c_birth_country, c_login, c_email_address, d_year, d_month_seq, sum(ss_sales_price)

from customer, date_dim, store_sales where c_customer_sk=ss_customer_sk and

ss_sold_date_sk=d_date_sk group by c_customer_id, c_first_name, c_last_name,

c_preferred_cust_flag, c_birth_country, c_login, c_email_address, d_year,

d_month_seq limit 100;

Q4 select a.ca_city, d.d_month_seq, i.i_brand, sum (ss_list_price) from customer_address

a, date_dim d, item i, store_sales s where a.ca_address_sk = s.ss_addr_sk and

s.ss_sold_date_sk = d.d_date_sk and s.ss_item_sk = i.i_item_sk and i.i_manufact_id

= 128 and dt.d_moy=11 group by a.ca_city, d.d_month_seq, i.i_brand limit 100;

Q5 select a.ca_city, d.d_month_seq, i.i_brand, sum(ss_list_price) from customer_address

a, date_dim d, item i, store_sales s where a.ca_address_sk = s.ss_addr_sk and

s.ss_sold_date_sk = d.d_date_sk and s.ss_item_sk = i.i_item_sk group by a.ca_city,

d.d_month_seq, i.i_brand limit 100;

Q6 select c.c_customer_id, c.c_first_name, c.c_last_name, c.c_preferred_cust_flag,

c.c_birth_country, c.c_login, a.ca_city, a.ca_state, a.ca_country, d.d_month_seq,

d.d_date, i.i_brand, i.i_class, i.i_product_name, sum(ss_list_price) from cus-

tomer_address a, customer c, date_dim d, item i, store_sales s where a.ca_address_sk

= s.ss_addr_sk and c.c_customer_sk = s.ss_customer_sk and s.ss_sold_date_sk

= d.d_date_sk and s.ss_item_sk = i.i_item_sk group by c.c_customer_id,

c.c_first_name, c.c_last_name, c.c_preferred_cust_flag, c.c_birth_country, c.c_login,

a.ca_city, a.ca_state, a.ca_country, d.d_month_seq, d.d_date, i.i_brand, i.i_class,

i.i_product_name limit 100;

Table 3.4: Characteristics of the six selected queries
query characteristics

Q1 we join 2 small dimensions with the fact table, we select a few attributes and we use 2 filters.

Q2 is similar to Q1, but we select more attributes.

Q3 we join 2 dimensions whose one is large with the fact table store_sales, and we selected more

attributes than Q1 and Q2 without using filters.

Q4 is similar to Q1, but we add the dimension customer_address.

Q5 is similar to Q4, but without using filters.

Q6 we perform star join operation with 4 dimensions of which 2 are large, and we select more

attributes than Q5.
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Figure 3.6 shows the queries runtime in C1 with DW1, Figures 3.7 and 3.8
show the queries runtime in C2 with DW1 and DW2 respectively.
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Figure 3.6: Queries runtime in C1 with DW1 (#B=180).
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Figure 3.7: Queries runtime in C2 with DW1 (#B=180).
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Figure 3.8: Queries runtime in C2 with DW2 (#B=630).
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In Fig. 3.9, we show the execution times of Q1, Q3, and Q6, with five val-
ues of #B ∈ {30, 60, 90, 180, 360}, in C1 with DW1, using NewKey approach.
Figures 3.10 and 3.11 show also the impact of the bucket’s number on the query
runtime in C2 with DW1 and DW2 respectively, using different values of #B.
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Figure 3.9: Impact of #B on the query execution time in C1 with DW1
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Figure 3.10: Impact of #B on the query execution time in C2 with DW1
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Figure 3.11: Impact of #B on the query execution time in C2 with DW2
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In Fig. 3.12 and Fig. 3.13, we compare the original dimension sizes (i.e. when
using SHB or SSH approaches) with the new built dimension sizes, i.e., when using
the methods NewKeyR and NewKey, with DW1 and DW2 respectively.
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Figure 3.12: Impact of #B on the size of dimensions with DW1
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Figure 3.13: Impact of #B on the size of dimensions with DW2
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3.3.3 Discussion

As shown in the bar chart of the Figures 3.6, 3.7, and 3.8 our strategy NewKey has
improved the query execution time compared to all other approaches (i.e., baseline
methods and our solutions FKey, NewKeyH, and NewKeyR). In all queries, we
can see that the worst results obtained with the SSH approach, this is due to the
high rate of data shuffling, especially with Q6 with data warehouse DW2 (in the
cluster C2). In Q1 and Q2, since we have selected few attributes of two small
dimensions, namely item and date_dim, the broadcasting of the RDD partitions
become fast, and we can see that the execution times of these queries in the SHB
approach are roughly the same as our approaches FKey, NewKeyR, and NewKey,
particularity with DW1 (see Figs. 3.6 and 3.7. However, in Q3, Q4, Q5, and
Q6, the performance of SHB suffers, especially with DW2 (see Fig. 3.8). The
reason is that in the SHB approach when the table is large, the system cannot
broadcast it, and must combine with broadcast-join and shuffle-join (i.e., SSH and
SHB approaches) to perform these queries.

We can see also that the results in FKey method not promised although the star
join operation executed in only one Spark stage, this due: (1) the join condition
added F.fkm mod #B = D′i.fkm (see Sect.3.2.4) may increase the JVM overhead
and the CPU cost, since the optimizer must first calculate the modulo operation
before checking the equality condition; and (2) the bucket sizes of the set SBF may
have high value of skewness since the distribution of the values of the foreign key
chosen (i.e., ss_item_sk1) is not homogeneous, and this can degrade the parallel
treatment and create stragglers in the map phase.

We can see that the baseline approach SHDB (when using HadoopDB) is much
better than the other baselines (i.e., SSH and SHB) and our method FKey with
DW1 and DW2. Of course, since in SHDB, we duplicated all dimensions over
the cluster nodes, the star-join operation can be performed locally and in one
MapReduce cycle. However, we can see that our approaches, namely NewKeyH,

1Note that according to our rules in subsection 3.2.2.2, we find that the near-best foreign key

to bucket the fact table and the dimensions is fkm=ss_item_sk
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NewKeyR, and NewKey, perform better than SHDB, especially for Q3 and Q6
(when using the two large dimensions customer and customer_address). The
reason is that although in SHDB all the primary keys and the foreign keys are
located in the same node, the system takes a long time to retrieve the relevant
tuples from the dimensions stored in the DBMS and join them with the tuples of
the fact table store_sales which stored in HDFS.

On the other hand, in our methods NewKeyH, NewKeyR, and NewKey, be-
cause we have bucketed all the new dimensions and the fact table with the same
join key nk, and since we have activated SMB join, and disable SH and HB join,
the optimizer of Spark SQL can gather all the buckets that have the same value
of the join key nk into one RDD partition, and performs the star join operation
locally2 and in only one Spark stage. In this case, almost all the work of an OLAP
query (except Group by operation and aggregate functions) performed in parallel
during the first Spark stage. Moreover, we can notice that the execution time of
the queries in NewKey is much better than in NewKeyR, and this demonstrates
the efficiency of our algorithm balanced K-means. Also, the random clustering ap-
plied in NewKeyR can increase the size of some new dimensions built and degrade
the system performance.

Furthermore, we can see from Figs. 3.6, 3.7, and 3.8 that NewKey is up to 1.20
times faster than NewKeyH with DW1 and up to 1.35 with DW2. Of course, in
NewKeyH the buckets of the fact table store_sales and the nine dimensions may
not be located in the same node and the network communication cost increase due
to data transfers. If the nodes located in different racks, the results in NewKey
will become 1.5 times better or more than NewKeyH.

Figures 3.9, 3.10 and 3.11 show that #B has an impact on the query per-
formance. In the queries Q1, Q3, and Q6, the best results are obtained when
#B ∈ [180, .., 360] in the cluster C1 with DW1, when #B ∈ [90, .., 180], with
the cluster C2 using data warehouse DW1, and when #B ∈ [630, .., 720], in C2

2We should note that in NewKeyH (and in few cases of NewKeyR and NewKey), the buckets

that have the same join key are not located in the same node, and the system must exchange

some buckets between the nodes to perform star join operation
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with DW2. These results confirm the reliability and efficiency of our method for
selecting the near-best value for the number of buckets (see subsection 3.2.2.1).
Furthermore, as shown in Figs. 3.12 and 3.13, we can notice that #B has a light
impact on the sizes of the new dimensions, such that the sizes of the new dimen-
sions built in our data warehouse are only increased by a factor of 2.8 compared
to the original ones with DW1 and about 4.5 factor with DW2. This percentage
doesn’t influence our approach performances.

Finally, we should note that if we had used the JOUM approach [15] (denormal-
ized model), we would have generated a massive amount of data. More specifically,
if we had applied this method to our DW2, which contains 179 attributes (sum
of all column tables), we would have obtained a big table, that has 15051 GB of
size (in Parquet format), this size is about 10 times greater than the size of the
original fact table store_sales.

3.4 Conclusion

In this chapter, we have presented a novel data placement strategy for distributed
big data warehouse over a Hadoop cluster. Our experiments show that our static
PLB strategy allows performing a star join operation of an OLAP query locally
and in only one Spark stage, without a shuffle phase. Also, the NewKey method
outperforms the existing data warehouses partitioning schemes in term of query
executing time, whatever the OLAP query used and the data warehouse size.
Moreover, we should note that it is easy to deal with the DW update with our
data placement strategy. Also, our approach is scalable to large clusters and for
huge amounts of data as we have shown in our experiments (see section refsec:3.3).
This approach has been acted in the papers [1, 3, 4].

Furthermore, we can adapt our approach with other distributed engine such
as Tez [69] and Flink [55]. In addition, we can extend our method to skip load-
ing some unnecessary data blocks if we partition some tables by the attributes
frequently used in the query filters (based on a stable OLAP workload), using
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the hash-partitioning technique, as we will show in the chapters 4 and 5. On the
other hand, we can noticed that although we have roughly balanced the buckets
sizes of the DW tables (i.e., balance the split inputs), we have, due to the data
skew, gotten unbalanced partition sizes after performing filtering and the star join
operation (i.e., unbalanced mapper outputs), this what you call imbalanced in the
intermediate results or reducer loads. Curing this issue can improve significantly
Group-By operation and aggregate functions, as we will show in chapter 6.
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Chapter 4

Skipping Loading Unnecessary

Data Blocks and Load balancing

I think you can have a ridiculously enormous and complex data set,

but if you have the right tools and methodology,

then it’s not a problem.

Aaron Koblin

4.1 Introduction

Horizontal partitioning techniques are used for many purposes in "shared-nothing
systems", such as load balancing, skipping unnecessary data loads [29, 92, 108],
and to guide the physical design of databases or data warehouses with workload-
driven [11, 79, 108]. Skipping to load some unnecessary blocks of tuples and
load balancing can significantly speed up the query processing, especially in the
OLAP workload. We can distinguish two types of horizontal partitioning: hash-
partitioning and range-partitioning. Range partitioning used for many purposes;
however, it may not be ideal for generating fine-grained blocks for skipping. Hash-
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partitioning is more suitable in the case where the distribution of the attribute
values is homogeneous, and the density value1 of the attribute is not very low;
otherwise, it may incur high unbalanced of blocks size and increasing the size of
metadata.

Hadoop becomes the standard platform for big data process. It was built to or-
ganize and store massive amounts of data. The main components of Hadoop V-2.x
are: (1) HDFS [21, 104], which is designed and optimized for storing very large files,
and (2) YARN [116], which supports a more flexible execution engine than MapRe-
duce [30], like Spark [123], Tez [102], and other frameworks. Apache Hive [62] is
considered as de facto standard for interactive SQL queries over petabytes of data
in Hadoop. In Hive and Spark SQL [13], we can use different partitioning and
bucketing techniques to manage the metadata of the data warehouse tables, and
we can cure the problem of the density and data skew; however, selecting the ap-
propriate attributes to Partition By the DW tables and the attributes to Bucket

by the DW tables remains questionable. If we partition a table with an attribute
that has a low density the number of partitions can increase while each partition is
a small file, the distributed system incurs significant overhead to process the parti-
tion and maintain the partition-level metadata. Also, if the density of an attribute
is high, we risk obtaining a large partition that can overflow the memory during
the process. On the other hand, if we partition a large table with an attribute that
has unbalanced distributed values (i.e., has high skewness value), some partitions
are much bigger than the others, and it generates a straggler in parallel execution.

In this chapter, we use a novel Partitioning, Bucketing, and Sorting techniques
(denoted PBS for short) to skip loading some unnecessary HDFS blocks and to
improve the parallel treatment of an OLAP query being executed over Hadoop
cluster. Our approach [2] has the same objective as the works of Sun et al. [108],
however, our method is different to it in two main points: (1) the work of [108]
focus on two factors, predicate selectivity, and data skew, and they make some
assumptions to the occurrence rate of the same filters used in the queries, in a way

1Here, the density of an attribute "A" in a table T is calculated by the formula:

Density(A)=
1

number of distinct values of A in T
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that their fine-grained partitioning method can achieve maximally level of skipping
the blocks, however, in our work, we focused on the density of the attributes and
data skew, without make any assumption to the filters used in the workload; (2)
though, we cannot achieve maximally level of skipping the blocks, however, instead
of using sophisticated clustering algorithm, we used smooth decision method base
on physical characteristics of the cluster’s nodes and the size of the data warehouse.

In our contribution, we have used the hash-partitioning technique without mak-
ing any assumptions about the filters used in the OLAP queries. Our method based
on the use frequencies of the attributes of the query filters. We have implemented
and evaluated our PBS (Partitioning, Bucketing, and Sorting) techniques over a
cluster of homogeneous nodes, to partition a big relational data warehouse, using a
workload composed of tens of OLAP queries, a Hadoop-YARN platform, and Hive
and Spark SQL systems. We take into account: the density of the attributes,
data skew, and the physical characteristics of the cluster.

The rest of the chapter is structured as follows. In Section 4.2 we detail our
approach, we present our experiments in Section 4.3, before concluding our work
in Section 4.4.

4.2 PBS approach

Our PBS approach consists of building horizontal fragments of the fact and di-
mension tables of a big relational data warehouse, using PBS techniques, based on
queries workload. As shown in Fig. 4.1, our solution is composed of 3 steps:

1. Selecting the frequent attributes. We select the attributes more fre-
quently used in the OLAP workload, using the frequent items mining tech-
nique.

2. Creating the reference table. We create the reference table, which allows
guiding our PBS techniques.
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4.2.1 Problem Formulation

Suppose we have a data warehouse E={F ,D1, D2,...,Dk}, in stars schema, such
that F is the fact table, and Di, i ∈ 1...k, are dimension tables. We denote by
A={A0,A1,...,Ak} the set of all attributes of E, such as A0 is the set of the fact
table attributes, and Ai, i ∈ 1...k, is the set of the dimension Di attributes. We also
denote by Q the set of the queries used, such that Q={q1,q2,...,qm}, and by ϕ the
set of the use frequencies of the queries qj, j ∈ 1...m, such as ϕ={f1,f2,...,fm}. We
define the queries workload W by the set of all queries Q, used by its corresponding
use frequencies ϕ, in a time period t (e.g. t = 24 hours), such that |W |=

∑m

j=1 fj.
We denote by R={R0,...,Rk} the set of all frequent predicate attributes used in the
filters of the queries workload W , such that R0 is the set of the frequent predicate
attributes used of the fact table F , and Ri correspond to the dimension tables Di,
i ∈ 1...k. Note that Ri ⊆ Ai and may |Ri|=0. We denote by N={n1,n2,...,nd},
the set of all homogeneous nodes of the cluster. Our issue is, how to partition the
tables of the data warehouse E, using the set of the frequent attributes R, upon
the cluster N , to obtain the optimal running time of the queries workload W . This
is an NP-hard problem as demonstrated by [84, 108]. So, using a heuristic method
to find the approximate solution is the right way. In the following, we detail our
heuristic solution.

4.2.2 Selecting the Frequent Predicates Attributes

In this step, we used the frequent items mining technique to select the frequent
attributes used in the filters of the workload. As formulated in Algorithm 1, we
take as an input the workload W , and we obtain the table of the attributes most
frequently used, denoted by TFA. In the first step, we prepared the table of the
items2 as an input (line 1 in Algorithm 1), denoted by TIF . For each query qj ∈ Q

(lines 2-7), we selected the set Ij, j ∈ 1...m, such as we denote by Ij the set of
all the attributes used in the query’s filters, then we add different distinct items
of the collection Ij to the TIF table fj times. For the queries that composed of

2In our case, an item is an attribute selected from the filters of a query.
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some subqueries qslj, such that l ∈ 1...b and b is the number of subqueries in the
query j, we create the set Islj for each subquery, we gather all Islj in one set (i.e.,
Ij), then we add different distinct items of the collection Ij to the TIF table fj

times. The reason of counting only once the attributes of subqueries is that the
system scan in the first stages the blocks HDFS from the disc, then for the rest of
the query processing stages, it may read from memory cache.

Algorithm 1: Selecting Frequent Predicate Attributes
Input: Q, ϕ, Th // see notations in section 4.2.1

Output: TFA // the table of frequent attributes used in the filters of

W.

1 TIF ←− ∅ /* set of items (i.e. attributes) */

2 for (qj ∈ Q, j = 1...m) do

3 Ij ←− ∅ ;
4 for ( subquery qslj ∈ qj, l ∈ 1..b) do

5 Islj ←− ∅ /* b is the total of subquery in the query qj */

6 select items from the "clause Where" of the subquery qslj

/* Islj ←− items */

7 Ij ←− Ij
⋃

Islj ;

8 delete duplicate items from the set Ij ;
9 insert items of Ij in the set TIF fj times ;

10 delete all the items of not integer type from the set TIF ;
11 delete from the table TIF all the items who have the rate of occurrence less

than the threshold Th ;
12 TFA←− TIF ;

We assume that an attribute is a frequent item if its rate of occurrence in the
table TIF is more or equal than the threshold Th. The parameter Th is defined by
the administrator of the system (Note that Th may change from table to another).
After that, we delete from the table TIF all the items that have the occurrence
rate less than Th and all the attributes of not integer type (i.e. real, boolean, and
string type) since we can only partition and bucket a table by an attribute of type
integer (lines 10-11 of Algorithm 1). Finally, we create TFA table3.

3You should not partition or bucket a small table, e.g., a table that has a few KB of size.
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Table 4.1: Examples of queries

query 1 query 2

select * from T1, T2 where

"join condition" and T1.attr1=25

and T1.attr2 = 3.5 and

T2.attr3="Smith" and T2.attr4=false

and T2.attr5=01/02/2018

select * from T1, (select attr2, attr3 from T2

where T2.attr2=12 and T2.attr3="julien"),

T3 where "join conditions" and T1.attr1>14

and T3.attr4 in (select distict(attr4) from T3

where T3.attr4*2>T3.attr5+20)

To more understand the Algorithm 1, let give you two examples (see Table 4.1).
For query 1, first we select the items from "Where clause" I1={attr1, attr2, attr3,
attr4, attr5}, then we add all items of I1 to the table TIF , f1 times, such as
f1 is the occurrence number of the query 1 in the workload W , query 2 has two
subqueries, we select Is1={attr2, attr3} from the first subquery and Is2={attr4,
attr5} from the second one. We obtain as a result the set I2={attr1, attr2, attr3,
attr4, attr5}. We add each item of I2 into TIF , f2 times. Finally, we delete from
the table TIF all the items of not integer type and who have the occurrence rate
less than the threshold Th.

4.2.3 Creating the Reference Table

From the table TFA (see precedent section), that contains all the frequent at-
tributes used (result of Algorithm 1), we create the set R, i.e., we assign each
attribute of the table TFA to correspond set Ri, i ∈ 0...k (e.g., R0 for the fact
table, R1 for dimension D1, and so on). Then, we build the reference table, de-
noted by RT , to guide our PBS techniques. The RT table has four columns (see
Fig. 4.1), the first column is the "table names" of the set E, the second is the set
of "partitioning attributes" of the table, the third column is the set of "bucket-
ing attributes", and the fourth one contains the "buckets’ number". If the third
column is empty, we put the number of the buckets equal to −1.
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Partitioning a big relational data warehouse upon a cluster is a challenging
task, many factors can influence to the partitioning scheme, such as the density

of the attributes, data skew, the predicate selectivity, the size of the tables, and
the physical characteristics of the cluster (e.g., number of CPU cores, memory size,
and so on). In our strategy, we focused on investigating the problem of data skew
and the density of the attributes used in the query’s filters.

Before detailing how to create the reference table, we need to define the fol-
lowing rules:
• Rule 1. We consider a set of values, denoted by Dist, has a high skewness
value, if the absolute value of the skewness, denoted by Sk, is bigger than the
value 2.0 (In fact, there isn’t a way in the literature to determine if a set is skewed
or not. We choose this number (i.e. 2.0) according to the recommendations of
some works [36] and [39]). There are several methods to calculate the skewness.
In our case, we choose this formula:

Sk =
n

(n− 1)(n− 2)

∑

(
xi − µ

σ
)3 (4.1)

Equation 4.1 is used in chapter 3 (i.e. Eq.3.4), to select the near-best foreign key
with FKey method. For more detail how to measure the skewness see [54]).
• Rule 2. Since our processing is In-Memory using Spark, we assume that any
attribute has a high density if its distinct values not exceed the value S, calculated
by the formula:

S = ⌊Nct × (VE/VM)⌋ (4.2)

Here Nct is the total number of CPU cores assigned for processing tasks, VE is the
volume of the data warehouse E, and VM is the overall size of memory used in
the Datanodes of the cluster N (see notations in section 4.2.1). If VE ≤ VM , we
put VE/VM=1. In other words, Nct is the total number of CPU cores affected to
all the Spark executors (an executor is worker nodes’ process in charge of running
individual tasks in a Spark job. We assign to an executor a couple of resources (α
cores, β of memory space) that are required to execute tasks, where α is the number
of CPU cores and β is the memory size allocated to perform tasks. By default,
one task per CPU core). According to our experiments with training dataset and
base on the recommendations in [93] and [105], to select the candidates Spark
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parameters, we consider that the maximum size of metadata table, persisted in
memory by the NameNode, should not exceed the value S. Our reason in this
is: if the total memory size allocated by the cluster is large (VM ≈ VE), the
number of partition decrease, therefore, we can process large partitions such as
we assign at least for each CPU core one Spark partition (i.e., we can process in
parallel Nct partitions in one wave of Spark stage4). Each stage can perform in
one or many waves. The number of waves calculated by the formula f=(number
of partitions/total number of CPU allocated for tasks)). However, if the memory
size is small (VM ≪ VE), processing small partition size is preferable.
•Rule 3. In the case where the attribute aj of the set Ri, i ∈ 1...k and j ∈ 1...|Ri|,
has low density (see Rule 2), we should bucket and sort table Di by the attribute
aj in Nb buckets. We denote by Nb the number of buckets. We should select Nb

such that:

Nb ∈ [Nct, ..., S], Nb modulo Nct = 0, and Nb <= |T | (4.3)

Here T is the smallest table in the data warehouse E. Our argument for choosing
the two bounds of this interval is the same as we have explained in the Rule 2

and subsection 3.2.2.1 of Chapt. 3, and the reason for choosing Nb value divided
by Nct, is to assign in each wave of Spark stage the same number of partitions (i.e.
we consider that almost tasks in each wave are roughly balanced5). Equations 4.2
and 4.3 is similar to Eqs. 3.1 and 3.2 in chapter 3, when selecting the near-best
bucket’s number.
Note that the administrator can determine the number of Nb, to bucket dimension
Di according to their sizes.
• Rule 4. We assume a table T ∈ E is small and occupied a negligible space
in memory if |T | ≤ 10 × S, otherwise it considers a large table. This formula,
i.e., 10 × S, is obtained according to our experiments, and the administrator can
adapt it according to their need, for example, changing the number 10. The size
of T also depends on the number of the attributes in this table and not only the
number of the tuples. To create the table RT , we follow the Algorithm 2.

4in Spark, a stage is a set of consecutive operators that can be grouped and executed together,

per partition (i.e., each partition per task)
5In fact the tasks may not finish at the same time due to various factors such as partitions

data skew, and the heterogeneity of the nodes.
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Algorithm 2: Create reference table "RT"
Input: E, TFA, Nct, VE, VM // see notations in sections 4.2.1 and

4.2.3.

Output: RT table // RT is composed of four columns.

1 create the set R={R0,..,Rk} from TFA table and the data warehouse E;
2 i←− 0;
3 partitioning or bucketing the fact table as detailing in Procedure 1;
4 add attribute(s) to RT ; // see detail of Procedure 1 below

5 i←− i+ 1;
6 while (i ≤ k) do

7 partitioning or bucketing dimension Di as detailing in Procedure 2;
8 add attribute(s) to RT ; // see detail of Procedure 2 below

9 i←− i+ 1;

• Procedure 1. Partitioning the fact table. In general, the fact table F

is composed of foreign keys of different dimensions and measures. Some measures
can be integer type and other real, string, or boolean type. Also may |R0| = 0 (i.e.
no frequent predicate attributes) or |R0| 6= 0, and some attributes have low density
and other have high density. Whatever the case, if we partition or bucket the fact
table by any attribute, we can obtain fort unbalanced block sizes, since the values
of an attribute may not uniformly distributed, and this can dramatically disrupt
the parallelism of the treatment. Moreover, if we hash-partition the fact table with
all the foreign keys, such as the number of these keys may reach the hundreds, the
volume of the metadata increases and the Namenode cannot manage the metadata
table. Hence, analyze the skewness of the distribution values in these attributes
becomes a mandatory requirement to partition the fact table.
To partition the fact table, we can distinguish three cases:

A) If R0 = ∅ (no frequent attribute or measure of the fact table found in the
predicates). In this case, for each measure of the fact table (we except the
foreign keys), of type integer, we calculate the value of skewness (see Rule

1), and we applied one of the following steps:
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A.1 If all the measures have high skewness value, whatever the density value,
we should bucket the fact table by a new attribute added, denoted by
index, into Nb buckets (see Rule 3). The values of index are selected
from the interval [0, .., Nb − 1] (see Eq. 4.3) and these values must
uniformly distributed. We fill in the values of index attribute with
round-robin fashion, such we start to put value 0, Nb times, then the
value 1 Nb times,..., value Nb-1 Nb times, and we restart the operation
with the same manner, until the last row of the fact table F . We
have chosen Nb as the value of repetition since Nb value is negligible
compared to |F |. With this method, we can create partitions of F

roughly equal in size.

A.2 If there are measures that have low skewness value, but all the measures
have low-density value, we bucketed the fact table by a new attribute
added as explained in the precedent step.

A.3 If there are measures that have low skewness and have high density,
we bucketed the fact table by the measure that has the lowest value of
skewness.

B) If |R0| = 1 (i.e., there is one frequent measure of the fact table, of type
Integer) and the measure of R0 has high-density value, we can distinguish
two cases:

B.1 If the measure of R0 has low skewness, we can partition the fact table
by this measure (see Rule 2).

B.2 If the measure of R0 has high skewness, we should bucket and sort the
fact table by a new attribute added as explained in Procedure 1, case

A.1.

If |R0| = 1 and the measure of R0 has low-density value, we can distinguish
two cases:

B.3 If the measure of R0 has low skewness, we can bucket the fact table by
this measure (see Rule 3).

B.4 If the measure of R0 has high skewness, we bucket and sort the fact table
by a new attribute added as explained in Procedure 1, case A.1.
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C) If |R0| > 1 (i.e., there is more than one frequent measure), we divided R0

into two sets, R′

0 and R′′

0 set, such as R′

0 contains only the measures that have
high density and R′′

0 that have low density. Then we sort R′

0 in the ascendant
way, where the attribute that has the highest density and the lowest skewness
value comes at the beginning. Then we partitioned or bucketed the fact table
as explained in Procedure 1, case B.

• Procedure 2. Partitioning the dimensions. We can distinguish three cases:

A) If Ri = ∅, we should bucket and sort dimension Di by its primary key (see
Rule 3).

B) If the |Ri|=1 and the attribute of Ri has high density (see Rule 2), we can
distinguish four cases:

B.1 If the attribute of Ri has low skewness (see Rule 1) and the dimension
Di is large (see Rule 4), we should partition dimension Di by this
attribute.

B.2 If the attribute of Ri has low skewness and Di is small, we should not
partition dimension Di since it occupied negligible memory space.

B.3 If the attribute of Ri has high skewness and Di is small, we should not
bucket dimension Di since it occupied negligible memory space in Spark
executor.

B.4 If the attribute of Ri has high skewness and Di is large, we should
bucket and sort Di by its primary key.

If the |Ri|=1 and the attribute of Ri has low density (see Rule 2), we can
distinguish four cases:

B.5 If the attribute of Ri has low skewness (see Rule 1) and the dimension
Di is large (see Rule 4), we should bucket and sort dimension Di by
this attribute into Nb buckets (see Eq. 4.3)

B.6 If the attribute of Ri has low skewness, but Di is small, we should not
bucket dimension Di since it occupied negligible memory space in Spark
executor.
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B.7 If the attribute of Ri has high skewness and Di is small, we should not
bucket dimension Di since it occupied negligible memory space in Spark
executor.

B.8 If the attribute of Ri has high skewness and Di is large, we should
bucket and sort dimension Di by its primary key.

C) If |Ri| > 1 we divided Ri into two sets, R′

i and R′′

i set, such as R′

i contains
only the attributes that have high density and R′′

i that have low density.
Then we sort R′

i in the ascendant way, where the attribute that has the
highest density and lowest skewness value comes at the beginning. Then we
partitioned, bucketed, and sorted Di as explained in Procedure 2, case B.

Remark. Please note that selecting too much partitioning attributes (case C

of the Procedure 1. and 2.) can overflow the memory since the system may
scan millions of files. To handle this issue, we limit the number of partitioning
attributes (i.e., |R′

i|, i ∈ 0...k), such that the maximum number of files created,
by our partitioning method, not exceed the value S × S. Moreover, although the
bucketing operation is not necessary for data skipping purposes, however, it is
essential to speed up the parallel processing of data blocks whatever the type of
the scan used (full scan table, range scan, etc.).

We have seen that our partitioning approach base on two factors: density and
data skew, using the physical characteristics of the cluster and the size of the
data warehouse tables. Also, we have used a sort operation to speed up query
processing, since we can avoid scanning all the tuples of a block or file, by reading
the metadata of the file (e.g., the min-max value of an attribute when we use
pushdown filters in Apache Parquet).

4.2.4 Partitioning and Distributing the Data Warehouse

From the reference table RT , we can redistribute the tables of data warehouse E

with the new partitioning scheme. For distributing data, since we have used a
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cluster of homogeneous nodes, and as we can write out partitions data on HDFS
in parallel, through Spark executors, we should keep the default block placement
policy of Apache Hadoop.

4.2.5 Scalability of the Approach

In a data warehouse environment, many tables partitioned by time, and most
queries have a time attribute range filter. For example, when a new partition
time=’2019-09-01’ is added to the table customer:
ALTER TABLE customer ADD PARTITION (time=’2019-09-01’)...

We can invoke our PBS techniques on this newly inserted partition without affect-
ing existing data. This method ensures the scalability of our approach, and the
tuples added to the new partitions do not influence on existing data. For this, we
applied our solution as secondary partitioning schema under each such partition,
i.e., we add in RT table, for some tables of the data warehouse, the time attribute
as the first "partition key." Our approach can be executed as an offline process at
data loading time and maybe re-executed later to account for workload changes
or update the data warehouse.

In our approach, if few nodes crash or we add few nodes to our cluster6, we
should not update the parameters S and Nb (see Eqs. 4.2 and 4.3), to keep safe
our partitioning scheme (note that, it is hard to redistribute a BDW every time).

4.3 Experiments

To evaluate our PBS approach, we have conducted some experiments with a BDW,
using a cluster of homogeneous nodes. The steps of our implementation and eval-
uation detailed in the next subsections.

6In the case when we add too many nodes to our cluster, we should update our partitioning

scheme. This issue has not studied in this thesis
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4.3.1 Experiment Setup

In this section, we present the implementation steps of our approach. First, we
generated the data warehouse using TPC-DS [48] benchmark, then we prepared
our queries workload. After that, we applied our partitioning scheme. To achieve
this, we used: 15 slave nodes and one master characterized by, CPU Pentium
I7 with 8 cores, 16 GB of memory and 2 TB of hard disk. We installed in all
nodes the last versions of the platform Apache Hadoop-YARN, Apache Hive sys-
tem, the processing engine Apache Spark, TPC-DS benchmark, Scala language,
Java JDK, and we add in the master node MySQL and the Scala Build Tool
(SBT) to build packages. Since we used YARN-client mode, Spark-driver exe-
cuted in the client machine where we submit the job.We configured the Spark
system as follows: spark.executor.instances=30, spark.executor.memory=6 GB,
spark.executor.cores=3 CPU cores. For the size of HDFS blocks, we kept the de-
fault size 128 MB and 3 as a replication number. For the memory size and CPU
cores, we should not exploit all resources idle. Thus, for all the slave nodes, we
keep 4 GB and 2 CPU cores for "operating system," "executors," and for "Appli-
cation Master." With this configuration, we can run 3× 30 = 90 tasks in parallel.
In the following, we detail the steps of our implementation.

4.3.2 Generation of Data and the Workload

We adapted spark-sql-perf [56], using Scala language and Spark, where we gener-
ated a part of the data warehouse composed of one fact table and nine dimensions
(see Table 4.2). Data stored in HDFS with Parquet format. We generated a big
data warehouse whose the fact table store_sales has more than 28.7 billion of tu-
ples (we can generate a data warehouse whose the size of the fact table store_sales

may be more than 287 billion of tuples if we use a cluster of 150 nodes or more). In
view of the physical characteristics limitations of our cluster and to avoid memory
overflow during data generation, we generated the fact table store_sales by par-
tition, where we chose the foreign key ss_store_sk as partition key, because the
key ss_store_sk has the highest density value and a low skewness (see data ware-
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house characteristics in Table 4.2. We have used this technique in the precedent
approach (see Chapt. 3). Note that by default the partition key of the fact table
store_sales is the attribute ss_sold_date_sk which has 73049 distinct values.
This number of partitions can harm our system). So, by using ss_store_sk which
as only 1500 distinct values, we decrease the size of the metadata table, persisted
in memory by the NameNode. The data generator of the TPC-DS benchmark
might create several null values of foreign keys in the fact table store_sales. By
using Spark dataframes, we update the fact table store_sales, to replace some
null values.

For the workload W , we selected 20 queries among the 99 queries of TPC-
DS [48] benchmark, namely, we selected only the queries that solicited our DW
tables. The set Q of the queries used and their frequencies given in Table 4.3.
The values of the use frequency of the queries are chosen according to the works
of [99], such as the small queries represent the majority of job submissions. Thus,
our distribution of ϕ values corresponds to 75%, 20%, and 5% for small, medium,
and large jobs, respectively. So we get |W |=

∑20

j=1 fj = 140, such fj ∈ ϕ.

4.3.3 Implementation

To evaluate our approach, we created three databases. We denoted by DB_DP the
database built by spark-sql-perf application, we construct from DB_DP a second
database, denoted by DB_CSV, using CSV format, and we denote by DB_PBS
the third database, built by our PBS scheme. We used Mysql as Hive Metastores,
and we activated the Hivecontext in Spark because it is deactivated by default
since version 2.0 of Spark, namely we use Spark SQL as a query-processing system
and Hive to manage the metadata of the tables. In all databases, we updated the
fact table store_sales, where we replace some null values of some foreign keys,
using the instruction dataframe.na.fill(..). After that, we create RT table (see
Table 4.4) where we follow Algorithm 2. To create the tables of DB_PBS, we use
the following instruction:
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Table 4.2: Characteristics of data warehouse tables

Table name tuples number Volume
store_sales 28 799 954 135 1 420 GB
customer 65 000 000 3 210 MB
customer_address 32 500 000 603.63 MB
customer_demographics 1 920 800 7.4 MB
item 402 000 36.52 MB
time_dim 86 400 1 080 KB
date_dim 73 049 1 740 KB
household_demographics 7 200 29.95 KB
promotion 2 000 98.77 KB
store 1 500 128.96 KB

Table 4.3: The queries used in the workload and their use frequency

Query The use frequency fi Query The use frequency fi
q3 9 q46 5

q6 1 q48 6

q7 5 q52 7

q13 2 q54 6

q19 8 q55 9

q27 6 q60 8

q34 10 q65 1

q42 7 q68 3

q43 12 q79 6

q44 16 q96 13

Session.sql("create\ table tablename (..put all the attributes of tablename ..)

using parquet partitioned by("att1",..) clustered by (bucketed\_attribute)

sorted by (bucketed\_attribute) into Nb\_Bucket buckets").

Such that we denote by tablename the name of table of the database DB_PBS,
"parquet" the data format storage, ’"att1",..,’ the set of attributes retrieved from
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the column 2 of the table RT , bucketed_attribute are the bucketed attribute
retrieved from the column 3 of RT , and Nb_Bucket is the number of buckets
retrieved from the column 4.

To load data, we execute the following instruction:

Session.sql("insert into table tablename select * from existtable").

Such that existtable is the table created in DB_DP. In our implementation, we
used three main components: Dataframe, DataSet of Spark, and ArrayBuffer.
As illustrated in Table 4.4 and explained in section 4.2.5, we add the attribute time

to the five dimensions customer, customer_address, item, promotion, store, and
the fact table store_sales, since their sizes may change with the time.
From the Rules of section 4.2.3, we have:
• The total number of CPU cores used is Nct = (3 × 30) = 90 CPU cores, S =

⌊Nct×

(

VE

VM

)

⌋ = ⌊90×

(

5000

16× 15

)

⌋ = 1875, and finally we get Nb ∈ [90, .., 1440],

Since the smallest table store has 1500 tuples (see Eq. 4.3).
• As shown in Table 4.4, we bucketed the fact table store_sales in 90 × 7 =

630 buckets. Also, since the sizes of dimensions are negligible compared to the
fact table, we chose the value 90 as buckets’ number to bucket some dimensions
like customer and customer_address. Note that since the size of dimensions
promotion and store are small, we should not partition or bucket whatever the
used workload.

4.3.4 Experiment Results

To evaluate our approach, we executed our queries workload W using the databases
DB_CSV, DB_DP, and DB_PBS, with two modes: full scan and range search.
Here we don’t confuse with other terms existing in literature, such as index full

scan or index-range scan of Oracle [47]. In our case, full scan or Parquet full scan,
means that the system reads the whole files or HDFS blocks to extract tuples, and
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Table 4.4: Reference table RT

Table name partitioning

attributes

bucketing

attributes

buckets’

number

store_sales time ss_ticket_number 630

customer time c_customer_sk 90

customer_address time, ca_state Null -1

customer_demographics cd_gender,

cd_marital_status,

cd_education_status

Null -1

item time,

i_manager_id

Null -1

time_dim t_hour, t_minute Null -1

date_dim d_moy, d_year Null -1

household_demographics Null Null -1

promotion time Null -1

store time Null -1

range search or optimize search, means that the system can read the metadata of
the file and skipping to scan the whole file or the block.

We launched our workload W as a single Spark framework and we run our job
using spark-submit in yarn-client mode. Also, we flush the operating system file
cache before each execution of a query. We randomly select a query from W , then
we perform it in one Spark session using the instruction:

SparkSession.builder().config(sparkConf).enableHiveSupport().getOrCreate();

In this way, we delete at each time all the RDD and the Dataframes, created during
the previous query execution.
Please note that in full scan and range search mode, we exploit the metadata of
Hive Metastores in the three databases.

Also, to ensure Parquet full scan table mode in Spark SQL (i.e. in DB_DP
and DB_PBS), we turn off three essential features: Parquet push-down, statistics
filtering, and dictionary filtering. To do this, we apply the following instructions:

Session.conf.set("parquet.filter.statistics.enabled", "false");
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Session.conf.set("parquet.filter.dictionary.enabled","false");

Session.conf.set("spark.sql.parquet.filterPushdown","false");

Also, we can turn-off schema merging and push-down features, if we execute the
instruction:

Session.conf.set("spark.sql.parquet.mergeSchema", "false");

Session.conf.set("spark.sql.hive.convertMetastoreParquet.mergeSchema", "false");

To use Parquet range search mode and exploit the metadata of Parquet file, we
turn on the precedents features, see the above instructions7.

We executed our application five times using the three databases with the two
modes described above (i.e., full scan and range search), and we took the average
running time for each mode. Figure 4.2 shows the execution time of the workload
W using the three databases with the two modes (i.e. full scan and range search).
Figure 4.3a shows in detail the execution time of the 20 queries of the workload
W (see Table 4.3) using the two approaches (i.e., DB_DP and DB_PBS) in full

scan mode, and Fig. 4.3b shows the amount of data read during the execution of
the 20 queries.

Full scan Range search
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Figure 4.2: Execution time of the workload W using the three databases DB_CSV,
DB_DP and DB_PBS with two modes.

7Note that by default, these features are enabled.
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(a) Response time of the queries with full scan mode
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(b) The amount of data loaded in each query with full scan mode

Figure 4.3: Queries performances with DB_DP and DB_PBS approaches

4.3.5 Discussion

First, we interpret the result of RT table (see Table 4.4). The fact table store_sales

is bucketed and sorted by the attribute ss_ticket_number into 630 (Note that
630 ∈ [90, .., 1440], see Rule 3, section 4.2.3). Since we haven’t any frequent
attribute of store_sales, has been selected from the filters of the workload W ,
and because the measure ss_ticket_number is of integer type has low-density
value and his skewness less than 2.0, we can apply Procedure 1, case A.3 in

section 4.2.3. For dimension customer, since no frequent attributes of this di-
mension are used in the predicates, we bucketed and sorted the dimension by its
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primary key c_customer_sk into 90 buckets (see Procedure 2, case A in sec-
tion 4.2.3). For dimension customer_address, we note that the attribute ca_state

is most frequently used in the filters, has a high density, and has low skewness value
(i.e. Sk ≤ 2.0), so we can partitioned this dimension by ca_state (see Proce-

dure 2, case B.1). For dimensions customer_demographics, time_dim, and
date_dim, we applied Procedure 2, case C. The case of dimension item like
customer_address, such as we partitioned by the attribute i_manager_id. For
dimensions household_demographics, promotion, and store, since their sizes are
negligible (i.e. less than 10 × S, see Rule 4 in section 4.2.3), we should not
partition or bucket them. Moreover, we notice that we have added the attribute
time as the fist partitioned schema for some tables to ensure the scalability of our
approach (see section 4.2.5).

We can note from Fig. 4.2 and according to the full table scan and range search

bar chart, that CSV database, i.e. DB_CSV, shows worst performance compared
to the other approaches8. Such as the queries of W , executed with DB_DP and
DB_PBS, are 20x faster than DB_CSV. The reason is in CSV format, we load
the whole file into memory, not as in Parquet format, where we load only the
attributes solicited by a query. We also notice that in CSV format the time in full

scan mode is the same as the range search mode.

On the other hand, we notice that our approach has improved the execution
time of the workload W up to 38% compared to DB_BP with full scan mode
and up to 50% with range search mode. Moreover, we notice that the range

search mode is better than the full scan mode for both the approaches. Thus,
exploited pushdown filtering and metadata statistics of Parquet file have an impact
on speeding up the scan for some tables (e.g., read min-max or null values of a
column from file metadata)9.

Moreover, it seems that the percentages 38% and 50% not promised rates
of improvement, because almost of queries used in the workload W is selected

8Note that the execution time of the workload W is obtained as follow: T(W )=
∑

(T (qi)∗fi),

such as T (qi) is executed time of query qi.
9Please note that in general pushdown filter is efficient only for the attributes of integer type.
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randomly from TPC-DS benchmark, and they haven’t any filters that used the
attributes of the fact table store_sales, which is the biggest table in the data
warehouse. So, since the highest rate of a query execution time taken by scanning
the fact table, we obtain such results. For example, if we have an attribute of
integer type in the table store_sales frequently used in the filters of the queries,
we can obtain significant improvement in scan operation.

We also notice from Fig. 4.3a, that the best improvement have obtained in the
queries q13 and q48 (up to 60%), the reason is that in the filters of these queries,
the attribute frequently used is ca_state, which relevant to the large dimension
customer_addresse. Also, we note that the execution time of the query q44 is
negligible compared to the other queries, because the system doesn’t scan the fact
table store_sales. In Fig. 4.3b, we noticed that the amount of data skipped is
little, although, with our approach PBS, we improved the query executed time
between 25% to 60% compared to DB_DP , as illustrated in Fig. 4.3a. If we
do some calculus, using SparkMeasure tool [58], we can note that the system in
PBS approach has skipped to load 117.01 GB of data (such as 117.01=(5843.72-
5726.71)=

∑

(data load in each query qi ∈ W using DB_DP ) -
∑

(data load in
each query qi ∈ W using our approach, i.e. DB_PBS)).

Finally, we should note that the use of the index has been introduced recently
in Spark SQL to speed up the scan of HDFS blocks, such as the work of Cui et
al. [28] and the current version of Apache Parquet (parquet-index version 0.2.3
or above). However, there are three essentials lacks when using the index in the
current versions of Spark SQL: (1) Indexed columns must be top-level primitive
columns with some type such "Integer, Long and String;" (2) Indexed columns
cannot be the same as partitioning columns; and (3) Append mode is note yet
supported for Parquet table when creating index (see Ref. [57]). Moreover, some
NoSQL systems, such Cassandra [46] and HBase [61] use also index (e.g. secondary

index scan) to improve query processing. In this thesis, we haven’t compared our
approach with these systems, and we plan to do this in the future works.
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4.4 Conclusion

In this chapter, we have developed and implemented a novel strategy for parti-
tioning and bucketing tables of a big relational data warehouse to speed up query
processing in Hadoop ecosystems. Our experiments show that our PBS techniques
not only allow to skip scanning some unnecessary HDFS blocks, but also improve
the load balancing and the parallel treatment. Though our approach may not
achieve max skipping level, however, our decision method, which based on density
and skewness measures, is smooth and doesn’t require to make some assumptions
about the filters used in the workload. Moreover, although PBS approach is scal-
able for a large cluster and a massive amount of data, however, if the workload is
significantly changed or when we update the data warehouse, we need to update
our partitioning scheme, something that can harm the distributed system. We will
address this problem in our future research.

We have a proposed in the precedent chapter, a novel approach based on the
data-driven model, which can improve the star join operation and the OLAP query
execution time. Moreover, in this chapter, we have proposed a new method to avoid
scanning some unnecessary data blocks and to enhance the parallel treatment, base
on a stable workload (workload-driven model). In the next chapter, we show how
to combine between the two precedent contributions to build a novel physical
design strategy for a distributed BDW over a Hadoop cluster.
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SkipSJoin: A New Physical

Design for Distributed Big Data

Warehouse on Hadoop Cluster

Big data will replace the need for 80% of all doctors

Vinod Khosla

5.1 Introduction

We have proposed in the two precedents contributions (see Chapters 3 and 4) two
novel approaches. The first approach published in [1, 3, 4], is a static PLB based
on data or schema-driven model of distributed BDW over a cluster of homoge-
neous nodes, this data placement allows performing star join operation in only
Spark stage without a shuffle phase, something that can enhance the OLAP query
execution time drastically compared to some partitioning schemes. In the second
approach published in [2], we have proposed, some novels rules that allow omitted
loading some unnecessary data blocks through a static OLAP workload and en-
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hance the parallel treatment of a query being executed through a load balancing
strategy.

In this chapter, we propose a new physical design for a distributed BDW over
a Hadoop cluster, called SkipSJoin, which based on a model that is both data-
driven and workload driven, using a static technique for the PLB of the data. We
take into account: the size of the DW, the distribution of the foreign and the
primary keys of the fact and dimension tables, the used query workload, and the
cluster’s characteristics. Our strategy allows performing the filtering, projection,
and the star join operations of an OLAP query, locally and in a single Spark stage.
Moreover, with SkipSJoin, we can avoid reading some data blocks that are not
relevant to an OLAP query, based on a stable OLAP workload. We have developed
and evaluated our approach on the TPC-DS [48] benchmark using Scala language
over a cluster of homogeneous nodes, a Hadoop-YARN [60], a Spark [66] engine,
and Hive [62].

The key points of our contributions are:

1. We propose a heuristic technique for the PLB of data to balance the split
inputs of a distributed BDW evenly over a Hadoop cluster, to improve the
parallel treatment for executing an OLAP query.

2. We propose a new data placement strategy which allows performing the star
join operation in only one Spark stage without a shuffle phase, no matter
what OLAP query is used, based on a data-driven model, using the bucketing
technique.

3. We propose a new method of partitioning to skip loading unnecessary HDFS
blocks through a stable workload.

The rest of this chapter is organized as follows. In Section 5.2 we detail our physical
design, We present our experiments in Section 5.3, before concluding our work in
Section 5.4.
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5.2 SkipSJoin Approach

In the first part of SkipSJoin, we build horizontal fragments (buckets) of the
fact and dimension tables of the DW, using our hash-partitioning method, i.e.
bucketing technique (see section 5.2.2 and section 3.2.2 in Chapt. 3). Then, we
distribute these buckets evenly over the cluster’s nodes, in which we can execute
the star join of an OLAP query locally and in only one Spark stage (i.e. one
MapReduce cycle). The second part of SkipSJoin allows skipping the scanning
of some unnecessary data blocks, by hash-partitioning some DW tables with the
most frequent attributes of the queries’ filters. That is, we extend the first part
using a stable workload 1.

We suppose that we have a priori knowledge of the DW schema and the work-
load used, as well as the characteristics of the cluster. Our approach is composed
of 6 steps (see Fig. 5.1): (1) Selecting the near-best number of buckets; (2) Adding
a new partition key to the fact table; (3) Creating the new dimensions that con-
tain the same bucketed key as the fact table; (4) Retrieving the most frequent
attributes from the queries’ filters; (5) Partitioning and bucketing the tables of the
DW; and finally (6) Balancing the buckets over the cluster’s nodes. Before giving
the details SkipSJoin, let’s formulate our problem.

5.2.1 Formalization

Suppose, we have a star schema DW E={F , D1, D2,..,Dk}, such that F is the
fact table and Dd, d ∈ 1..k, are the dimension tables. We denote by FK the set of
all foreign keys of the fact table F coming from dimension Dd and by PK the set
of primary keys of the dimensions Dd. We denote by Q the set of distinct queries
used, such that Q={q1, q2,...,qm}, and by ϕ the set of the use frequencies of the
queries qj, j ∈ 1...m, such that ϕ={f1,f2,...,fm}. We define the workload W the

1A stable workload means the set of columns used in Where clauses and Group by remains

relatively stable over time but the filters may change. The validity of this assumption has been

empirically observed in a variety of real-world production workloads [10, 11].
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set of all queries Q, used by its corresponding use frequencies ϕ, in a period of time
t (e.g., t is one week), such that |W |=

∑m

j=1 fj. We denote by R={R0,...,Rk} the
set of all frequent attributes used in the queries’ filters of the workload W , such
that R0 is the most frequent attribute selected to hash-partition the fact table F ,
and Rd, d ∈ 1...k, is the most frequent attribute selected to hash-partition the
dimension Dd (Note that at most |Ri| = 1, i ∈ 0..k). We denote by Bkey the
partition key used to bucket the fact and all dimensions tables in #B buckets,
here #B is the number of the buckets should be created. We denote by BF =

{BF0, BF1, ..., BF#B−1} the set of distinct buckets created by bucketing the fact
table F with Bkey into #B buckets, and by BDd = {BDd0, BDd1, ..., BDd#B−1},
the set of distinct buckets of each dimension Dd, d ∈ 1..k. We denote by BSF =

{BSF0, BSF1, ..., BSF#B−1} the set of sizes of the buckets of the fact table F , and
BSDd = {BSDd0, BSDd1, ..., BSDd#B−1}, d ∈ 1..k, the set of buckets sizes of
each dimension Dd, d ∈ 1..k. Note that each bucket is composed of a set of chunks
(i.e., files). We denote by a group the set of the buckets that have the same value
of Bkey, it is composed of one bucket of F and one bucket of each Dd. We denote
by N={n1, n2,.., ne} the set of all homogeneous nodes of the cluster.

The first aim is to choose Bkey and #B for building the buckets of BF and
all BDd, d ∈ 1..k, in such a way as to keep them roughly balanced in size, i.e.,
with the minimum standard deviation of BSF and all BSDd, d ∈ 1..k, and how
to distribute them over the cluster N to perform filtering, projection, and the star
join operation, locally and in only one Spark stage (as we have done in Chapt. 3).
The second objective of SkipSJoin is to construct and exploit the set R to skip
loading unnecessary HDFS blocks of some DW tables through the workload W .

Figure 5.1 summarize the steps of our partitioning strategy. In the following,
we detail our heuristic solution step by step.
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5.2.2 Selecting #B and Bkey

In this section, we give in detail the first three steps of our approach (i.e., steps 1,
2, and 3 of Fig. ??). In step 1, we determine #B; In step 2, we show how to add
the Bkey column to fact table F , and how to fill this key; In step 3, we show how
to add Bkey to all dimensions Dd, d ∈ 1..k.

5.2.2.1 Selecting #B

To know how to select the near-best bucket’s number #B, you can refer to the
subsection 3.2.2.1 of Chapt 3.

5.2.2.2 Adding Bkey column to the fact table

To create a group of the buckets which allow performing the star join operation in
a single Spark stage, we can add a new key Bkey of integer type to all the tables
of the DW E and co-partition the tables of E by Bkey. However, the way to
fill the Bkey column remains a challenging task. If the distribution of the values
of Bkey is skew and not uniform, we obtain unbalanced bucket sizes in BSF

and all BSDd, d ∈ 1..k. In this case, our application seems un-parallelizable.
So, to balance the split inputs of our DW, we should study how to calculate
the values of the Bkey column. Moreover, since the sizes of the dimensions are
small compared to the fact table, we can focus on only minimizing the standard
deviation of BSF and not all BSDd, d ∈ 1..k, by bucketing F with a simple range
partitioning method. However, there is an essential factor that can affect the size
of the newly constructed dimensions (denoted D′d): the similarity of the tuples
in each bucket of BF . This can increase the number of tuples in each bucket of
BD′d, d ∈ 1..k, as we will show in the following. To overcome this issue and
obtain an approximately optimal solution, we use balanced K-means algorithm,
as explained in subsection 3.2.2.2 (NewKey method).
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5.2.2.3 Adding Bkey column to the dimension tables

After adding Bkey to F , and in order to construct the groups, we must also add
Bkey to all the Dd, d ∈ 1..k, and obtaining new dimesions D′d, d ∈ 1..k. To do
this, we carry out the following steps. First, we create an intermediate table IDd

corresponding to the dimension Dd. The IDd table is composed of two columns,
fkd and Bkey, such that: (1) fkd is the foreign key of dimension Dd in fact table
F and (2) Bkey is the partition key added in F . The IDd table initially has
the same number of tuples as the fact table F . So, before joining IDd with Dd

to obtain D′d, we delete all duplicate tuples in IDd. This method is similar to
the NewKey method in Chapt.3. By creating D′d we can build BD′d and BD′d,
d ∈ 1..k, (see section 3.4). Note that the sizes of the new dimensions D′d, d ∈ 1..k,
are large compared to the original ones, their sizes are changed according to (1)
the value of #B and (2) our clustering method applied to choose the values of
Bkey and to limit the data redundancy, however, the size of D′d remains small
compared to the fact table F whatever the size of the original dimensions Dd.

5.2.3 Selecting the Frequent Attributes

In this section (step 4 in Fig. 5.1), we show how to select the most frequent at-
tribute used in the queries’ filters, i.e., how to create the set R. The main idea
in the creation of R is to hash-partition some tables through the corresponding
attributes of R so that the system can skip the loading of unnecessary data blocks.
You should note here that instead of selecting several frequent attributes for each
DW table (as we have done in the approach of Chapt. 4), we choose only the most
frequent attribute for each DW table if exist. The objective of this is to handle the
metadata table size, persisted in memory by the Namenode. To construct R, but
without using a sophisticated clustering method like the max skipping algorithm
[108], we finish by using a smooth decision strategy which based on three essentials
rules (see section 4.2.3). Note that this step is independent of the previous ones.
Before explaining how to create R, we recall these rules.
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• Rule 1. We consider that a distribution Dist has a heavy data skew if the
value of the skewness, denoted by Sk, is more than 2.0. There are numerous
methods to calculate Sk of a given set. In our case, we use the equation 4.1 of
chapter 4.
• Rule 2. Since our processing is in-memory, using the Spark engine, we assume
that an attribute A of a table T has a high density D if:

#Bmin ≤ 1/D(A) ≤ #Bmax

where D(A) = 1
number of distinct values of A in T

, #Bmin, and the #Bmax are selected
as we have explained in the rules 2 and 3 of section 4.2.3.

To create the set R, we follow these steps: (1) We retrieve from the queries’
filters all the attributes of integer type and we keep only the frequent ones, as we
have done in section 4.2.2; (2) we keep only one attribute, i.e., the most frequent
attribute, for each table of the DW E that has a high density D and the lowest
value of the skewness Sk; Finally (3) we create the set Ri, i ∈ 0..k. For more
details about these techniques, see chapter 4. The main reason for choosing these
rules is to strike a balance between the number of HDFS files created and the sizes
of these files.

5.2.4 Building the Partitions and the Buckets

After adding Bkey to F , building the new dimensions D′d, d ∈ 1..k, and creating
the set R, we can construct BF and BD′d, d ∈ 1..k. Thus, for each table T of
the DW E, we hash-partition T by the corresponding attribute a ∈ Ri, i ∈ 0..k if
one exists, then we bucket T by the Bkey column into #B buckets. For example,
to build the buckets of the set BF , we assign each tuple of F that has the same
value of Bkey to the corresponding BFi, i ∈ 0..#B − 1. Hence, for each table, T ,
we obtain a set of chunks, as shown in step 5 of Fig. 5.1.
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5.2.5 Placement of the Buckets

In this section, see step 6 of Fig. ??, we redistribute the groups created evenly
over the cluster nodes, using round robin fashion. Formally, we can denote by
groupi = BF ′

i ⊎
k
d=1 BD′di, i ∈ 0..#B − 1. Thus, we start to place the group0 in

node 1, group1 in node 2,..., and the groupp−1 in the node e, such e=p modulo #B

and p <= #B. We restarted the operation with same way, we put groupp in node
1, groupp+1 in node 2,..., until the last group#B−1. This physical design allows
performing star join operation in a single spark stage whatever the OLAP query
used, and allows to skip loading some unnecessary HDFS chunks of some DW
tables.

Remark Note that the way to update the DW tables with our method is a trivial
task as we have explained in section 3.2.5.

5.3 Experiments

To evaluate our physical design SkipSJoin, we have done some experiments as
outlined in the next section.

5.3.1 Experimental Setup

In this section, we present the steps that implement our approach. First of all,
we generate the DW using the TPC-DS benchmark; After that, we implement the
different phases of our approach. We used a cluster of 15 slave data nodes and one
master node characterized by CPU Pentium I7 with 8 cores, 16 GB of memory,
and 2 TB of the hard disk. We installed in all nodes Hadoop-YARN V-2.9.2, Hive
V-2.3.3, Apache Spark V-2.3.2, TPC-DS benchmark, Scala language, and Java.
As we have done in sections 3.3.1 and 4.3.1.
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5.3.1.1 Generation of the data and the workload

To generate the data, we adopted the spark-sql-perf [56] application, using the
Scala language and Spark; we created a part of the DW composed of one fact table
from the seven fact tables of the TPC-DS [48] benchmark and nine dimensions from
among its seventeen, see the DW characteristic in Table 4.2. For the workload W ,
we selected 20 queries from among the 99 queries of the benchmark. Namely, we
selected only the queries that solicited our DW tables. The set Q of the queries
used and their frequencies ϕ are given in Table 4.3.

5.3.1.2 Implementation of SkipSJoin

To build the partitions and the buckets of our DW tables, we use the instruction:

DF.write.PartitionBy("a").bucketedBy(#B,"Bkey").sortBy("Bkey").format("parquet").

mode("overwrite").saveAsTable("DB.tablename")

Where DF is a dataframe, the column a is the partition key, retrieved from
the set R (see Section 3.3), #B is the best number of buckets, Bkey is the bucketed
key, parquet is the storage format used, DB is the database created in Hive, and
tablename is the name of the partition table. If a does not exist, we only bucket DF.
Before creating the buckets of the fact table store_sales, we add Bkey column.
The values of this attribute are calculated using balanced k-means algorithm (see
Sect. 3.2). To implement the steps 1 to 5 (see Fig. 5.1) of our approach, we have
used two essential components: Dataframe and Dataset.

For distributing the chunks, we use the same re-balancing technique used in
section 3.3.1.2. Note that, although may we cannot ultimately ensure placing all
buckets that have the equal value of join key Bkey in the same node; however the
star join operation always performed in only one spark stage, without a shuffle
phase.
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5.3.2 Results

To evaluate our approach, we carried out some experiments with a BDW, denoted
DW , which has about 5 TB in the CSV format (about 1420 GB in the Parquet
format, see Table 4.2). We divided our experiments into two parts.

In the first part, we carried out some experiments without using the workload
W , as NewKey method in the experiments of section 3.3.2. The aim of this is to
show how to perform filtering, projection, and the star join operation in a single
Spark stage whatever the used OLAP query. We have compared our approach
with different baseline approaches in detail in Table 5.1. In this case, we have
selected 6 queries from the TPC-DS benchmark with different levels of complexity
(see Tables 3.3 and 3.4).

We executed the six queries with five values of #B, #B ∈ {90, 180, 630, 1080, 1440}.
These values are selected according to our recommendations (detailed in Sect. 3.2.2.1).
In SSH and SHB we set the parameter spark.sql.shuffle.partitions to 630. In
our approach, since we bucketed all the tables with the same join key Bkey and
since we disable the broadcast and shuffle join of Spark SQL, we can exploit SMB
join correctly, which allows performing star join operation in only one Spark stage
without a shuffle phase. With our configuration, we can run 90 tasks in parallel.

In the second part of the experiments, we included our hash-partitioning tech-
nique based on the W (we combine between the data-driven and the workload-
driven strategy). So, in SkipSJoin, we use our bucketing technique as in the
SSMBO approach (NewKey method in Chapt.3) and our skipping method as
given in detail in Section 5.2.3.

Figure 5.2 shows, for the different approaches, the execution time of the six
selected queries. Note that in this experiment, we applied only our bucketing
technique based on a data-driven model.

In Figure 5.3, we compare the runtimes of W in the approaches SHB, SSMBO,
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Table 5.1: Notations for the approaches

Notation Description

SSH default partitioning and distributing schema of Hadoop/Spark, using
default Spark Shuffle Hash join (SH join). (like repartition join [20]
in MapReduce.). We deactivated Hash Broadcast Join by setting
spark.sql.autoBroadcastJoinThreshold to "-1".

SHB default partitioning and distributing schema of Hadoop/Spark, using Hash
Broadcast Join.

SSMBO our partitioning schema (i.e., our bucketing technique only without based
on queries workload), using balanced k-means, and exploiting Spark SMB

join optimization.

SSMBO’ like SSMBO but without using balanced k-means algorithm. In this case,
we just create roughly equal buckets’ size of the fact table, using range-
partitioning method.

Table 5.2: Reference table RT

Table name P. attributes B. key

store_sales − Bkey

customer − Bkey

customer_address ca_state Bkey

customer_demographics cd_gender Bkey

item i_manager_id Bkey

time_dim t_hour Bkey

date_dim d_moy Bkey

household_demographics − Bkey

promotion − Bkey

store − Bkey
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Figure 5.3: Execution time of W with different approaches

and the hybrid approach SkipSJoin, using Table 5.2 to guide our partitioning and
bucketing strategy. Note, that we get Table 5.2 from the set R and the bucketed
key Bkey. So, to perform W , we randomly selected a query from W w.r.t ϕ,
then we executed it in one Spark session. In this way, we delete at each time
all the RDD partitions created during the previous query execution, and we can
ensure that the system can’t read data from the HDFS cache. Note that in our
experiments, we turn-on three essential features: Parquet push-down, statistics
filtering, and dictionary filtering.

5.3.3 Discussion

As shown in the bar chart of Fig. 5.2, the query execution time with SSMBO
approach is up 2 times better over the SHB approach. We can see that the worst
results obtained with the SSH approach; this is due to the high rate of data
shuffling and JVM overheads. In Q1 and Q2, since we have selected few attributes
of only two small dimensions item and date_dim, the broadcasting of the RDD
partitions become fast and as a result, the execution time of these queries in the
SHB approach is roughly the same as with our strategies SSMBO’ and SSMBO.
However, in Q3, Q4, Q5, and Q6, the performance of SHB suffers. The reason is
that in the SHB approach when the table is large, the system cannot broadcast it,
and must combine with broadcast join and the shuffle join (i.e., SSH approach) to
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perform these queries.

We noticed that the runtime of the queries with SSMBO approach is much
better than the SSMBO’ approach, and this demonstrates the efficiency of our
balanced k-means algorithm. The random clustering applied in SSMBO’ can in-
crease the size of some new dimensions and degrade the system performances, as
we have explained in section 3.3.3. Moreover, we can see from Fig. 5.3 that our
hybrid approach SkipSJoin is much better than SSMBO. The reason is that since
we hash-partition some tables by the most frequent selected attributes from the
queries’ filters of W , we can omit loading some chunks into memory.

We have seen that our physical design SkipSJoin is reliable and has benefits
for OLAP queries, especially with large dimensions. We have also seen that our
approach is much better than the other state-of-the-art schemes. We have also
dealt with the problem of data availability and balancing the split inputs. Also,
by considering a given workload, we have omitted loading unnecessary data blocks.

5.4 Conclusion

In this chapter, we have presented a new strategy for partitioning and distributing
a big data warehouse over a Hadoop cluster. Our approach SkipSJoin [6] allows
performing the star join operation of an OLAP query locally and in only one Spark
stage, without a shuffle phase. Moreover, by taking into consideration the given
workload, SkipSJoin can skip loading some unnecessary data blocks. Furthermore,
We can adapt SkipSJoin smoothly to other processing engines, such as Tez [69] or
Flink [55]. We have seen that although we have roughly balanced the split inputs,
we get unbalanced intermediate results due to the selectivity of some of the filters.

In the next chapter, we will propose a dynamic approach to balance on the
fly the reducer loads or the intermediate results (i.e., the mapper outputs, after
performing filtering, projection and the star join operation).
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SGMAS: Optimize Group-By

Operation Using Multi-agent

System

Every company has big data in its future, and every company

will eventually be in the data business

Thomas H. Davenport

6.1 Introduction

We have seen in the previous chapters (i.e., Chapt. 3 to 5), different static ap-
proaches of partitioning and load balancing of a distributed big data warehouse
over Hadoop cluster. These approaches enhance star join operation and skip load-
ing some unnecessary data blocks when scanning the DW tables. Our experiments
show that these approaches improve the OLAP query execution time drastically.

OLAP queries are typically expensive queries that take a long time to be per-
formed over a distributed Big Data Warehouses (BDW). In distributed BDW, im-
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proving OLAP query processing is a challenging task. An OLAP query is composed
of several clauses, and it usually takes the form of "Select... Function()...From...

Where...Join-Predicates...Filters...Group-By...." Each clause can be performed in
the map phase or in the reduce phase, and each operation executed in one or sev-
eral MapReduce iterations or Spark stages, with a considerable amount of data
shuffled among the Datanodes. For example, in some case, the star joins operation
will need n−1 or 2(n−1) [96] Spark stages with many shuffle phases, where n is the
number of tables used by the OLAP query. A star join is not the only expansive
operation for an OLAP query, Group-By also may involve considerable communi-
cation cost during the shuffle phase and may incur the stragglers (a straggler is
a task that performs more poorly than similar ones due to insufficient assigned
resources) in the reduce phase, especially with Rollup and Cube operators.

In our previous works [6] (see also chapters 3 to 5 for more details), a new
physical design for a distributed BDW has been proposed, which allows executing
projection, filtering, and the star joins operation of an OLAP query in only one
Spark stage, without a shuffle phase, and helps the system to skip loading some
irrelevant data blocks through a stable workload. This chapter is a complement
to our project [6], where we propose a smart method, called SGMAS (Smart
Grouping using Multi-Agent System), to balance the reducer loads, something
that can improve Group-By operation and aggregate functions execution time.

The standard method to enhance Group-By task for an OLAP query is to
balance the Intermediate Results (IRs) and avoid the need to obtain heavy data
skew in the Reducer Inputs (RIs). Note that while the balancing of data split
inputs (e.g., chunks of HDFS blocks) can be handled by using a static balancing
technique [1, 3, 4, 6], since the load balancing decisions may be known in advance,
however, to make an efficient partition scheme of the RIs, the system needs to
pick up some knowledge on the fly, by using a dynamic technique of Partitioning
and Load Balancing (PLB) of the data. Numerous studies have tackled the issue
of the load imbalance between reducers for the MapReduce paradigm. While we
cannot list them all in this chapter, we can divide them into two categories. The
first category [27, 37, 73, 98, 110, 120] attempt to balance the RIs in advance, by
changing the default hash-partitioning technique used by some distributed systems
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such as Hadoop and Spark. The second category [16, 80] uses heuristic algorithms
to balance reducer loads during reducer process, namely, after the shuffle phase.
Whatever the technique used to balance the reducer loads, the algorithms used
for the PLB technique used to balance the reducer tasks must be executed swiftly
and in real-time, and should not affect the job runtime itself.

Some works of the first category [98, 110, 120] have used sample technique with
approximative calculus to obtain near-optimal solutions. Although these methods
can give an efficient partition scheme of the RIs, by using a sampling technique
over a considerable amount of data [81] can provide wrong results, because some
of the mappers’ keys may not consider in the distribution. Moreover, some other
works such as [40, 73] have changed the default mechanism of MapReduce, such
that they require waiting until all or majority of map tasks are completed to gather
partition size information before shuffle phase can begin.

Note that changing the default synchronizing method between the mappers
and the reducers can: (1) overload the memory buffer of the IRs and the system
may crash; (2) if the mapper loads are heavily skewed, then we obtain stragglers
in the map phase and the job runtime increases. On the other hand, the solutions
of the second category (i.e., [16, 80]) may also degrade the system performances
and slow down the query processing, because the system must halt the reducer
tasks before it triggers the re-balance algorithm. Our approach SGMAS is similar
to Gufler et al. [40] solution, such we used Multi-Agent System (MAS) to balance
on the fly the reducer loads, however, the main key of our contribution is that we
keep the default mechanism of the MapReduce paradigm.

In many practical scenarios, the OLAP workload is stable during a period and
may slightly be updated if the need analysis changes; that is, the set of columns
used in Where clauses and Group-By remain relatively stable over time1. This
assumption has been empirically observed in a variety of real-world production
workloads [10, 11]. This means that we have a high probability to obtain the
same fragments (here a data fragment is the subset of all tuples with the same
key and list(values)[43]) produced by the mappers when performing these OLAP

1Obviously, the variation in filters also impacts the fragments produced by the mappers
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queries on a cluster nodes. Hence, the occurrence frequencies of these fragments

also remain stable2 during a period of time and may change when new workload
comes or when we update the Data Warehouse (DW).

Meanwhile, with some cluster Resource Manager (RM) such as YARN of
Hadoop, Mesos, and Spark, the execution of a set of OLAP queries over cluster
nodes can be done concurrently or sequentially. In other words, the RM assigns
the resources to the users that launch a set of queries, where these queries have a
different level of complexity, and the RM can affect dynamically or statically, and
with a smart way, a specific set of resources (e.g., executors or workers) to perform
each query, this means that the RM can allocate the appropriate idle resources
for each query (i.e., each query has a minimum and maximum of resources needed
to be performed). Namely, the fragments produced by a query before Group-By

operation would be the same every time (except when we update the DW or when
the workload change); however, for each execution of a query, the number of the
mappers and the reducers (i.e., CPU cores and the number of partitions (or buck-
ets) in the reducer phase) assigned by the RM to execute a query varies from time
to time.

Based on the OLAP workload specifications and some real RMs features, we
can propose a smart method to balance the RIs on the fly and improve Group-By

operation runtime. SGMAS approach can benefit from the previous executions
of the queries such that the system can react with an online fashion to make an
efficient partition scheme of the RIs.

Our idea is as follows: we add to the query optimizer of such distributed sys-
tem, like Spark SQL or Hive-QL, a MAS which can spread the fragments smartly
over the reducers, such that a smart agent learns through interaction with the
environment and exploit the execution history of the queries, to adapt on the fly
a good partition scheme of the RIs, which can help the system to parallelize the
treatment when performing the aggregate functions.

2However the distribution of the fragments over the reducers changes from an execution to

another following data locality and the number of reducing buckets (or partitions).
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The rest of this chapter is structured as follows. In Section 6.2, we explain our
issue through an example. We detail our approach in Section 6.3. We present our
experiments in Section 6.4, and we conclude in Section 6.5.

6.2 Problem Explanation and Motivation

The following example explains our issue. We assume an OLAP query Q from
TPC-DS benchmark, such as:

SELECT d_year, i_brand_id, SUM(ss_sales_price)

FROM date_dim, item, store_sales

WHERE date_dim.d_date_sk = store_sales.ss_sold_date_sk

AND store_sales.ss_item_sk = item.i_item_sk

AND i_manufact_id = 128

GROUP BY d_year, i_brand_id;

The execution plan of this query with Spark SQL system is as follows: for
each table, the system scans HDFS blocks, retrieves the attributes involved by the
query, executes filters (e.g., i_manufact_id = 128 ), then it performs the star join
operation (e.g., using SMB join as in [4, 6]), and finally it executes Group-By and
SUM (ss_sales_price). Figure 6.1 shows a part of the execution steps of this query
after running star join operation. In Fig. 6.1, we have 6 map tasks executed by
3 mappers (e.g. 3 CPU cores) and 3 reduce tasks executed by 3 reducers. The
mappers generate 7 keys. Note that each fragment (i.e., shape) has a key, and the
number inside the shape represents a list(values) of this fragment. For example,
the shape triangle of map task M1 has the key number 1 and the list(values)
contains 20 tuples, such that each tuple contains the value of (d_year, i_brand_id,
ss_sales_price). Note that in this example, we do not consider combine phase3

(i.e., we calculate SUM function only in the reduce phase). By using the blind
hash-partitioning method, the reducers R1 receives 7 fragments with 141 tuples,

3Some functions, like standard-deviation and variance, could be only performed in the reduce

phase.
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cannot know the numbers of the fragments produced by the other mappers, nor
their sizes (number of the tuples of the fragment). Therefore, we need to develop a
method that able to define or predict the unknown parameters cited above (i.e. the
fragments produced by each mapper and the appropriate place of these fragments

in the bucket of the IRs), in order to balance the reducer loads.

In several real systems, each query retrieved from the OLAP workload, has a use
frequency, i.e., many users use it, So, if the system use the blind hash-partitioning
technique to distribute the fragments over reducing buckets (in Group-By oper-
ation), then a considerable time is lost. If we assume that we have thousands
of OLAP queries that are used by thousands of users, then the time lose will be
exponential when the system uses the blind technique. Hence, proposing a smart
distribution of these fragments is a mandatory requirement to overcome this issue.
In the following, we detail our SGMAS approach.

6.3 Our Proposal SGMAS

As we have indicated earlier, we can resolve our issue using a smart method based
on multi-agent system, such that each mapper become an Agent-Mapper (AM),
and each reducer becomes an Agent-Reducer (AR). We can consider that the
number of the mappers and the reducers are equal to the number of CPU cores
assigned by the RM of the system. So, the RM allocates appropriate idle resources
to perform each query launched by a user (Note that each query executed over a
subset of Datanodes called small-cluster). In this small-cluster, the system (driver
or Application-Master) create a MAS which composed of a Supervisor Agent (AS)
(i.e., handle-agent or actor), a set of AMs (as workers or actors in Spark [66]
or Ray [59] system), a set of ARs. This MAS exchange information throws a
Knowledge Base (KB) (which can consider as a black-board component). This
KB shared between all of the existing small-clusters. In other words, with the KB,
the AS and the other agents can coordinate with each other to build an efficient
partition scheme of the RIs. This KB contains the meta-data of the execution
history of the OLAP queries which can help the AMs to assign the fragments to
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the appropriate reducer. Namely, through the KB, an AM can place each fragment

in the appropriate reducing bucket.

We can consider that the problem of distributing the fragments over the reduc-
ers is similar to a stochastic games or repeated games, which can be modeled by
Markov Decision Process (MDP), where the components of the game are the frag-

ments and the actions of this MDP is to place the fragment produced by the AMs
in the appropriate reducing bucket. This MDP has two unknown parameters, the
fragment provided by each AM (i.e., the state), and where the AM places this frag-

ment in the appropriate bucket of IRs (i.e., the transaction). The standard method
to define or predict these parameters (i.e., expect the payoff values (or rewards) of
each action and the probabilities of the transactions) is to explore and exploit the
history executions of the queries, by using, e.g. Reinforcement Learning method,
such as the Bayesian Multi-Agents Reinforcement Learning (BMRL) technique of
[26]. However, since the space of the states (i.e., number of fragments produced
at each stage) and the area of the actions (i.e., the number of possible places to
assign the fragments over reducers) are considerable in big DW environment, this
involves that using the previous solutions is an infeasible task. Meanwhile, since,
in our case, we can know the fragments produced by each query through the KB,
then the AS can find the best distribution of the fragments over the reducers that
can achieve the near-best equilibrium [74], by using a smart method as we will
show in the next sections. Note that making the best equilibrium means obtaining
light data skew in the reducer loads.

Before detailing the architecture of SGMAS, we will first define some concepts
and notations used in this chapter.

6.3.1 Preliminary Concepts and Notations

As we have seen earlier, we can consider that distributing the fragments, produced
by the AMs, over the ARs, for a Group-By operation, as stochastic games G with
n-player cooperative (have common interest). Each player i is an AMi. From
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standard game-theoretic terminology [86], we assume a collection α of n AM4 and
n AR, each AMi i ∈ α having available to it a finite set of individual actions Ai.
An action ai ∈ Ai taken by an AMi is placing a fragment(key,list(values)) in the
appropriate bucket in the IRs (see Fig. 6.1). Note that the number of the buckets
in the IRs is the same as the number of the partitions of the reducers, denoted by
p. We denote by a fragment key F.key, and its size (sum of tuples) F.size. The
chosen actions by all of the AMs of the set α, at any state s, constitute a joint
action, denoted by ă=×i∈αai. At each execution of ă, the system passes from stage
l to stage l+1. An AMi can reach a state s′ after executing an action ai from the
state s. An AMi executes some available actions ai ∈ Ai to achieve its objective.

A randomize strategy for an AMi is a distribution πi ∈ ∆(Ai) (where ∆(Ai)

is the set of all possible distributions of the fragments over the AM’s action set
Ai). We denote by a strategy profile Π = {πi : i ∈ α}, a collection of all possible
strategies for all the AMs. Note that at each time t ∈ T = {t0, t1, ..}, an AMi may
follow any strategy πt

i . It is possible that we have πt0
i =πt1

i , where (t0, t1) ∈ T . We
denote by the distribution profile Πe ∈ Π, the profile where the system can achieve
the equilibrium [74]. In other words, the distribution Πe ∈ Π allows to balance the
partitions of the reducers. We denote by D = {v1, ..., vp} a distribution values of
the fragments ’ sizes over p partitions5 at the final state, such as vj =

∑fj
k=1 Fk.size,

and fj is the number of the fragment Fk in each partition j (j ∈ 1..p). For example,
in Fig. 6.1, at the final stage, we have D = {141, 74, 40}.

In our approach SGMAS, since we can pick up the final fragments distribu-
tion, for each query, through the KB, we do not need to define the probabilities
transaction for each action, nor the received rewards as used in some prediction
mechanism (e.g. BMRL method of [26]).

4You should note that n is the number of CPU cores used to perform a query and is not the

number of chunks of HDFS blocks, this means that each AMi treats many map tasks.
5each partition treated in one reducer task (like the parameter: spark.sql.shuffle.partitions in

Spark.)
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6.3.2.1 Knowledge Base (KB) Size

We should note that using a Reinforcement Learning technique such as the work of
[26], need to pick up and maintain a considerable amount of data in the belief state
(i.e., in KB), to make a right prediction. In our case, keeping all of this information
(i.e., different probabilities transactions and different possibles received rewards for
each action executed) is an unnecessary and infeasible task.

In SGMAS, we can cure the above problem as follows: for the first execution of
a query q, launched by any user u, at a time t ∈ T , The driver creates a MAS, the
AS maintains only in KB, the critical information that can help it to define the
best profile distribution in the future execution. Therefore, the AS maintains a
part of the strategy profile Πq information. This part denoted Π_Fq, is composed
of the different fragments produced by each AMi at the final stage (i.e., after
executing all joint actions). Consequently, from this profile, the AS can define the
strategy profile Πe

q that can help the AMs to achieve the best equilibrium (see an
example of the best distribution in a small-cluster, in Fig. 6.2). To measure the
equilibrium, see subsection 6.3.2.2.

In the KB, the structure of Π_Fq is a dictionary with multiple keys, as shown
in Fig. 6.4. Such that the key is a list of the query names, e.g., q1 and q5 in Fig. 6.4,
and the value is a list of fragments meta-data. For each new execution of a query
q at time t, the driver of the system creates a MAS running in the small-cluster.
The AS creates, if q not exist in KB, a new list (i.e. new key) for this query and
a list of values that contain some meta-data of all the fragments produced by the
AMs (see lists values L1,..,Ls in Fig. 6.4). For the sake of clarity, we call fragment-

merged the fragment maintained in the KB. Note that we have many keys (query
names) for each list of the fragments-merged. That is, it is possible to find some
queries that produce the same fragments. As shown in Fig. 6.4, we maintain only
some meta-data of the fragments-merged, namely, the fragment key, and the sum
of all the fragments sizes that have the same key. Note that the size of Π_Fq is
negligible. The driver can create many MASs to perform the queries concurrently
and also controls how the ASs of these MASs read and write the lists in the KB.
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librium: the best equilibrium is when Cov(D) < 20.0; if 20.0 ≤ Cov(D) < 40.0,
the system achieves suboptimal equilibrium; the non-equilibrium or the worst case
is when 40.0 ≤ Cov(D). Briefly, the objective of our approach is not reaching the
perfect equilibrium, but we look for the best or at least suboptimal equilibrium.

6.3.2.3 Avoid Infeasible Calculus

As we have seen earlier, our aim is to achieve the best equilibrium, or at least
obtain suboptimal ones, and avoid drastic distribution of the fragments over the
reducers. Figure. 6.5 shows another example of distributing 5 fragments by 3 AMs
over 2 reducers R1 and R2 (i.e. two partitions). Fig. 6.5 (a) shows a strategy profile
Πe, where the system achieves best equilibrium (Cov(D) = 51.39

85
× 100 = 8.44),

and Fig. 6.5 (b) shows different possible strategies profiles πt
i , that can be followed

by each AMi at time t (here we have 3 AMs). Note that some strategies are not
reachable. For example, the two strategies surrounded by the red color cannot
be realized together, because if AM1 decides to place the fragment F1(22) in
R1, AM2 cannot place F1(7) in R2 because we have the same fragment key.
The same case between AM1 and AM3 with F2. Also, we can notice that some
actions should not be taken, because they are not needed anyway (i.e., repeated
transactions). Moreover, some computations are not necessary at all and may be
infeasible, especially with a high number of the fragments and the reducers (note
that the possible transactions for an AMi that distributes c fragments (c > 1) over
r reducers is given by the equation δ = 1−rc+1

1−r
− 1).

Given these reasons, developing a smart technique that can define the best Πe

for each query or at least obtaining suboptimal equilibrium, with simple calculus,
is a mandatory requirement to achieve our objective and enhancing Group-By

operation.

After defining some constraints and rules of our system, in the following section,
we explain in detail our smart method SGMAS.
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Algorithm 3: The steps our approach
Input: q ∈ W = {q1, q2, ..., qf}, KB
/* q is an OLAP query to be launched by a user u and KB is the knowledge

base of the system */

Output: OLAP query out put.
1 while true do

2 user u launch a query q;
3 define the parameters n and p by the RM of the system ; /* n is the

number of the AMs and ARs (CPU cores) and p is the number of

partitions. see Fig. 6.2 */

4 the driver triggers the AS of the MAS;
5 exist:=CheckingExisting(q) ; // exist is boolean variable

6 the driver or application-master starts to perform filtering, projection
and star join operation;

7 if exist==true then

8 DefineBestProfile() ; /* the AS define the best profile if exist,

i.e. create Πe
q. */

9 else

10 the AMs use the default blind hash-partitioning method to
distribute the fragments ;

11 the AMs continue the execution of the query through the default
mechanism of the MapReduce paradigme, using Πe

q or the default blind
hash-partitioning method ;

12 if exist==false then

13 the AS captures from the reducers the last joint action taken by the
AMs and retrieves all meta-data of the fragments produced ;
// before to start executing the function in the reduce phase.

14 The AMs perform the function of the OLAP query q ; // e.g. Sum,

Average, and so on

15 the AS return the result to the driver and this one send it to the user u ;

The driver assigns one worker to the AS of the MAS and n workers for the
AMs and ARs. After that the system (e.g., Application-Master or driver in Spark)
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triggers the AS in line 4 (i.e., step 1 of our approach), the AS checks the existing of
q in KB through the function CheckingExisting(q) (see line 5). In this function,
we have used a simple lexical and syntactic analysis method to check the similarity
of q in KB. In step 2 (i.e., line 6 in Algorithm 3), the Application-Master continues
to perform filtering, projection and star join operation. Note that the step 1 and
2 done in parallel. When the AS ensures the existing of q in the KB, it launches
the DefineBestProfile() procedure in line 8. The result of Algorithm 4 is Πe

q

table, which contains the different actions must be taken by the AMs to achieve
the equilibrium; that is, the best place of each fragment in the bucket of the IRs.
This table is maintained in the KB and broadcasted over the nodes, such that all
the AMs can read it locally. Table 6.1 shows the structure of Πe

q table. Before
detail the Algorithm 4, we continue to explain Algorithm 3.

In the step, 3 of our architecture the AS decide to use either the default blind
hash-partitioning technique or the scheme of our SGMAS approach. So, if q does
not exist in KB, the AMs use the default hash partitioning technique to distribute
the fragments (see lines 7 to 10 in Algorithm 3). Moreover, in our case, the AMs
follow the default mechanism of the MapReduce paradigm (see line 11); that is,
after the first AMi finishes distributing its fragments over the buckets of the IRs,
the shuffle phase can start transferring the fragments.

In the line 13 (i.e., step 4 in Fig. 6.2), the AS captures the different fragments in
the RIs before performing the merge operation (i.e., before gathering the fragments

that have the same key in one partition) and executes the aggregate functions.
Finally (i.e., step 5 in Fig. 6.2), the AS outputs the results to the driver, and this
one send it to the final user.

The inputs of Algorithm 4 are the variable list of the fragments-merged pro-
duced by a query q, retrieved from the KB and the variable P which contains the
list of the partitions. In the line 1 of Algorithm 4, we create the list stack to
sort the fragments-merged list in a descended way; that is, the fragments-merged

that has the most significant size goes in the first position, and the second-highest
goes next, and so on. In line 2, we calculate the average size of stack. This pa-
rameter (i.e., range) helps to balance loads of the reducers (i.e., the partitions).
The idea of our approach is trying to distribute the fragments-merged evenly over
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Algorithm 4: Define best profile
Input: listF = {F1, F2, ..., Fk}, P={P1, P2,..,Pp}
/* listF is a list of fragments-merged of KB and P is a set of the

partitions treated by the ARs. */

Output: Πe
q ; // table of fragments placement (i.e., actions)

1 stack:=listF .sort ; // sorted list in descended way

2 range:=⌈

∑k

j=1 Fj.size

p
⌉ ; // average size of reducers

3 nP :=1, round:=1 ; // nP number of the partition

4 for j:=1 to p do

5 P [j].size=0; // initialize partition

6 while (stack!=null) or (round<=p) do

7 pos:=0; decho:=stack.size;
8 while (P [nP − 1].size ≤ range) or (pos<stack.size) do

9 frag=stack[pos] ; // get the first fragment-merged

10 P [nP − 1].size:=P [nP − 1].size+frag.size;
11 if (P [nP − 1].size ≤ range) or (frag.size>=range) then

12 P [nP − 1].add(frag);
13 stack.deleteElement(frag);
14 round:=1;
15 pos:=pos+⌈decho/2⌉, decho:=⌈decho/2⌉;

16 else

17 P [nP − 1].size:=P [nP − 1].size-frag.size;
18 pos:=pos+⌈decho/2⌉, decho:=⌈decho/2⌉;
19 if pos>=stack.size then

20 round++;

21 nP :=nP mod p+1;

22 DitributeRemindFragments(stack, P );
23 CreateBestProfile();
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Table 6.1: Πe
q structure

Query q

Fragments F1 F2 ... Fk

Actions Pos1 Pos5 ... Pos2

the reducers of the set P , which can minimize the covariance Cov (i.e., obtain
best or at least sub-optimal equilibrium). We can distinguish two significant prob-
lems that can obstruct to achieve our objective: (1) may some fragments-merged

size are bigger than the average size range, and (2) the distribution values of the
fragments-merged size of stack list is fort imbalanced. The two above problems
increases the value of Cov and slow down the Group-By operation.

To cure the problem (1), we have decided to distribute these fragments-merged

earlier (i.e. in the first round of the loop While, see condition (frag.size>=range)
in line 11), because, if the system split this big fragments-merged to the small
chunks (as some state-of-the-art approaches done [40, 110]), it needs to create
more MapReduce cycles to complete evaluating the aggregate functions. To resolve
the issue (2), we have adapted the round-robin fashion to distribute evenly the
fragments-merged over the reducers. Moreover, we have used the dichotomy search
to scan all the elements of stack list. The advantage of this is to fill in each
reducer with variant size values of the fragments-merged (see lines 15 and 18). This
technique allows for minimizing the degree of data skew between the reducers.

At the end of Algorithm 4, we add the procedure DitributeRemindFrag-

ments (Stack,R) to distribute the reminders of the stack elements, and the pro-
cedure CreateBestProfile() (see Algorithm 6) to create Πe

q table. The idea of
Algorithm 5 is simple, such that we put the higher fragment-merged size in the
lower partition size. Note that our heuristic method, used in Algorithm 4

ensures achieving best or suboptimal equilibrium in several cases, as we

will show in our experiments6.

6Note that if the distribution of the fragments sizes is heavy skewed, then we obtain the

stragglers in the reduce phase.
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Algorithm 5: DitributeRemindFragments(Stack, P )

1 while (stack!=null) do

2 frag:=stack.getElement() ; // get the first element

3 part:=min(P ) ; // select the lower reducer in size

4 part.add(frag) ; // add the fragment to the reducer

5 stack.delete(frag) ; // delete the fragment from stack list

Algorithm 6: CreateBestProfile()

1 indice=1;
2 for (j=1 to P .size) do

3 part=P [j];
4 for k=1 to part.listFragments.size do

5 Πe
q[indice].key=part.listFragments[k].key ; // get a fragment key

6 Πe
q[indice].position=j; // placement of the fragment in the

partition.

7 indice++;

6.4 Experiments

To evaluate our approach SGMAS, we have done some experiments, as outlined
in the next sections.

6.4.1 Experiment Setting

We have evaluated our approach SGMAS on a practical test cluster where the
experimental environment based on the Ray [85] system, which allows simulating
of the MapReduce paradigm. Ray [59] is a flexible, high-performance distributed
execution framework designed for reinforcement learning applications. Ray is a
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hybridization between Bulk-synchronous parallel systems such as MapReduce and
Apache Spark, and the actor model for asynchronous tasks such as akka [50].
Note that we have not directly implement SGMAS on Spark or Hadoop for two
reasons: (1) it is not trivial to change the default synchronization mechanism of
these systems, especially with the current API of Spark SQL (we plan to do this
in the future works); (2) we can smoothly simulate some baseline approaches on
Ray cluster such as Hash-partitioning partitioning approach (denoted HashP for
short), or Gufler et al. [40] approach (denoted Closer), and compared them with
our method SGMAS.

6.4.1.1 Implementation

We have evaluated SGMAS on a cluster composed of 6 nodes, each node has
8 CPU cores and 16 GB of memory size (note that these nodes haven’t GPU).
We have installed in all nodes Redis [45] server, Ray library version 0.7.0.dev3,
Anaconda [65] system with python version 3.7.3, and other dependencies libraries.

In Ray cluster and unlike Hadoop or Spark cluster, each node can be the
master node at any time by executing the instruction ray start - - head - -redis-

port=6379, such that 6379 is the port of Redis server. A node can joint the cluster
after performing the instruction "ray start - - redis-address=IP-address:6379", such
that IP-address is the address of the head node previously defined. Ray system
cannot use all resources of the nodes, so we must keep some resources for the
operating system and other applications. Namely, we use in each node, 6 CPU
cores, and 12 GB for Ray system and Redis server.

To implement the agent mappers (AMs), agent reducers (ARs), and the agent
supervisor (AS), we have used the actor model of Ray. The actor works au-
tonomously in the node. When we instantiate an actor, a new worker created, and
the methods of this actor are scheduled on that specific worker and can access and
mutate the state of that worker7. The below example shows a part of the program

7A worker is a process that executes tasks invoked by a driver or another worker [85]
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code in Python to implement the AS:

import ray

import numpy as np

....

@ray.remote

class AgentSupervisor(object):

numPart=1

step=1

....

def buildBestProfile(self):

if self.checkExistOfQuery():

listClusters.sort(key=lambda C: C.sumsize,

reverse=True)

....

.....

In the previous code, we defined the actor as a class with some attributes and
methods. To execute these methods remotely, we add the instruction @ray.remote

before to define the class. Tha AS defined in the Application-Master (i.e., Driver
or main program) as a Handle-actor8.

The structure of the knowledge base KB is a dictionary dict(). The other
agents, namely, AMs and ARs, have the same structure as the AS but not handle-
actor. The result of the AS is a dictionary represents the best profile Πe

q, such
that the key of this dict() is the fragment key and their value is the number of the
bucket of the IRs of each AM. With the Ray system, it is not hard to simulate the
MapReduce paradigm with asynchronous methods. So, when the first AM finishes
its works (i.e., write out all the fragments in the buckets), the AS can trigger the
ARs to perform the shuffle phase (i.e., transform data from each bucket of the AM
to the partition).

8Note that for the sack of clarity, our Application-Master create one MAS to show how our

SGMAS method work.
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To estimate the advantages and the defects of SGMAS, we have compared
it with five baseline approaches as detailed in Table 6.2. We have tested these
approaches in a dataset that has a different level of data skew (i.e., different queries
level complexity), as we will show in the next subsection.

Table 6.2: Approach notations

Notation Description

HashP HashP is the default mechanism in the Spark computation environ-

ment and Hadoop MapReduce. HashP can obtain a good perfor-

mance only when keys equally appear with a uniform distribution

of the cluster sizes.

RangeP The range partition algorithm is widely used in partitioning dis-

tribution. In this method, the intermediate (key, value) tuples are

sorted by key first, and then the tuples are assigned to reduce tasks

according to this key range sequentially. RangeP can enhance the

data balance among reduce tasks if data (i.e., size of fragment) is

uniformly distributed [67].

SCID SCID algorithm [110](i.e. Splitting and Combination algorithm for

skew Intermediate Data blocks). SCID uses a sampling method

to predict the frequent keys produced. Note that although this

algorithm uses sampling technique such as [120] and [98] which

can affect to the load balancing decision, it is efficient even with

Big Data, since it distributes smartly the remainder mapper keys

which haven’t considered in the sampling algorithm.

Closer This dynamic method [40] distributes on the fly the fragment by

changing the default synchronization mechanism of MapReduce

paradigm.

LEEN Ibrahim, S., et al. [73] have developed LEEN approach to mini-

mize data transfer during shuffle phase by ensuring data locality

in reducer task. To do this the authors have changed the default

synchronization mechanism of MapReduce to make good partition

scheme of reducer loads.
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6.4.1.2 Preparation the data and OLAP workload

In the current version of Ray, there is no API as Spark SQL to execute SQL queries.
So, given that our aim is to improve Group-By operation, we do not need to run
the filtering and join process in our experiments. To well show the skew in the
mappers and the reducers we have used the TPC-DS benchmark which vouched
for DBMS to implement data skew [97].

We have generated data with spark-sql-perf tool [56], using Scala language
and Spark, where we store data directly in HDFS. We set the HDFS replication
factor to 1 only, and we keep the default parameters of Spark. Moreover, since we
use star DW schema, we have used a part of this benchmark composed of one fact
table among seven and nine dimensions among 17 of the TPC-DS benchmarks (see
Table 6.3). We have generated two DWs, the first denoted DW1, has 10 GB of size,
and the second indicated DW2, has 100 GB (in parquet format). Furthermore, we
have selected and adapted 18 queries among 99 ones of the benchmark; namely,
we choose only those queries that solicited our DWs tables, and we eliminate some
nested queries and those that use ROLLUP and CUBE operator9.

We cannot run these queries directly in Ray; we must transform as shown in
Table 6.4. So first we delete Group-By operation and aggregate functions, and
we keep the other operations. After that, we performed the queries transformed
with Spark, and we write-out the result on HDFS with Parquet format. We can
assume that each result represents a materialized view stored as files (chunks) in
HDFS. Finally, we can load these files with Ray cluster, and performing Group-By

operation and aggregate functions of the original queries. Note that each chunk
(i.e., Parquet file of this materialize view), loading by an AM, will be transformed
to a Panda DataFrame10 to facilitate its treatment.

9Note that in this chapter we do not consider the operators CUBE and ROLLUP which

require to generate other keys and values in the intermediate results
10Note that Pandas on Ray become a component of Modin. Moreover, unlike Spark

DataFrame, the in-memory format for Pandas on Ray is a Pandas DataFrame on each parti-

tion.
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Table 6.3: Characteristics of the DW tables

Table name
1 store_sales
2 customer
3 customer_address
4 customer_demographics
5 item
6 time_dim
7 date_dim
8 household_demographics
9 promotion
10 store

6.4.2 Performance Evaluation

Since our aim is enhancing Group-By operation and aggregate function for an
OLAP query, and optimize the parallel treatment, we have evaluated and com-
pared SGMAS with the baseline approaches cited in Table 6.2, in two aspects: (1)
execution time and (2) load balancing.

(1) Execution time. We have divided the 18 queries selected in two categories,
those that have light and medium data skew of the mapper keys, and those that
have heavy skew distribution. Figure 6.6 shows the execution of the queries with
DW1 and Fig. 6.7 with DW2 in different approaches. Note that for the sake of
clarity, we have shown the execution time of 9 queries among the 18 queries.

With light and medium data skew distribution of the mapper keys (see Fig. 6.6 (a)
and Fig. 6.7 (a)), SGMAS outperforms almost the baseline approaches. We can
notice that the worst results obtained with the blind approach HashP and RangeP,
this due to the unaware distribution with these techniques. In Fig. 6.6 (a), SCID
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Table 6.4: Query tranformation

Query original Query after transformations

SELECT d_year, i_brand_id, SUM(ss_sales_price)

FROM date_dim, item, store_sales

WHERE date_dim.d_date_sk=store_sales.

ss_sold_date_sk

AND store_sales.ss_item_sk=item.i_item_sk

AND i_manufact_id=128

GROUP BY d_year, i_brand_id;

SELECT d_year, i_brand_id, ss_sales_price

FROM date_dim, item, store_sales

WHERE date_dim.d_date_sk=store_sales.

ss_sold_date_sk

AND store_sales.ss_item_sk=item.i_item_sk

AND i_manufact_id = 128;
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Figure 6.6: Queries runtime in different approaches with DW1
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Figure 6.7: Queries runtime in different approaches with DW2

has slightly had the same performance as SGMAS; the reason is since the number
of keys is not too large, the time of sampling in SCID becomes negligible. In
Fig. 6.7 (a), LEEN provides roughly the same result as SGMAS with the queries
Q4, Q13, and Q46, this because LEEN focuses on data locality optimization and
this decrease the amount of data shuffled between the nodes, compared to the
other approaches. Moreover, We can see that although the Closer approach can
provide better load balancing than all the approaches, as we will show in the next
experiments, however, it takes a considerable time to gather some relevant infor-
mation that helps to make right load balancing decision. Hence, the results in
Closer still not promised.

With heavy data skew in DW1, i.e., Fig. 6.6 (b), the results of SGMAS, LEEN,
and SCID are roughly the same. The reason is that in SGMAS, we don’t look for
achieving optimal load balancing (i.e., getting optimal equilibrium), which involve
some stragglers in the reducers and the query runtime increases. In Fig. 6.6 (b)),
due to the rise of data load (the amount of data shuffled growth), LEEN is slightly
better than the other approaches. We can see that Closer remains suffer because
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Figure 6.8: Load balancing of the reducers with DW1
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Figure 6.9: Load balancing of the reducers with DW2

of the unbalance in the mapper tasks. Further, we can see that the long-time
took with Q4, this because in this query, we select many attributes of the large
dimension customer without using any filters.

(2) Load balancing. Figures 6.8 and 6.9 show the load balancing of the reduc-
ers. We can see that although the execution times of the queries with SGMAS are
better than the baseline approaches; however, in the load balancing, SGMAS is
not the best, this because Closer and SCID look to achieve optimal load balanc-
ing, while in our approach, we look for getting best or suboptimal load balancing,
and we focus on decreasing the Group-By execution time. We can notice that the
blind methods HashP and RangeP give the worst load balance results, this due
to the unaware distribution of the keys over the reducers. We can see also that
since LEEN focus on data locality optimization, it is not well in the load balancing
aspect, compared to Closer and SCID approaches.

134



Chapter 6: Optimize Group-By Operation Using MAS

6.5 Conclusion

In this chapter, we have presented a new method to enhance Group-By operation
for OLAP Workload. Our contribution is a complement to the previous static
approaches (see Chapts 3-5). In the SGMAS approach, we have used a novel
dynamic partitioning technique, based on multi-agent system, which can improve
Group-By and aggregate functions without change the default synchronization
mechanism of the MapReduce paradigm. Our experiments show that SGMAS
outperforms the baseline approaches in the situation of light or medium data
skew distribution of the mappers’ keys and provide promise results with heavy
data skew. We have also seen how to model the MapReduce paradigm using
asynchronous tasks through Ray system. Moreover, although SGMAS doesn’t
achieve optimal load balancing of the reducer loads, such in the SCID and the
Closer approaches, however, our method is smooth and efficient in several kinds
of OLAP workload.

In the future research: (1) we consider more complicate operators such as
CUBE and ROLLUP operators (2) we improve our approach through data locality
technique such as LEEN approach and (3) we integrate our algorithm in Spark
SQL or Hive-QL system.
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Chapter 7

General Conclusion and

Perspectives

The data fabric is the next middleware.

Todd Papaioannou.

7.1 Conclusion

We have seen in this thesis different static and dynamic partitioning and load
balancing techniques for distributed Big data warehouse over Hadoop cluster. We
have seen in the state-of-the-art chapter the different partitioning and distributing
techniques that can improve the performances of databases and data warehouses in
both the parallel DBMS and in distributed systems (i.e., MapReduce technologies)
such as Hadoop and Spark. Although in this thesis, we have focused on improving
the OLAP query executed time on distributed big data warehouse over Hadoop
cluster, however, and to clarify more the different partitioning and load balancing
techniques applied in the shared-nothing systems, we have tackled in the chapter 2
different approaches that enhance OLTP and OLAP workload for both parallel
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DBMS and in the distributed systems that use MapReduce paradigm.

We have proposed a novel static partitioning and load balancing technique
on distributed big data warehouse over Hadoop cluster to enhance the star join
operation for an OLAP query. This operation increases the disk spill when scan-
ning large dimensions and the fact table. In addition, this operation rises the
network communication cost drastically during the shuffle phase, especially with
large dimension tables.

To overcome the above issues, we have proposed a new data placement strategy,
which allow to perform the star join operation in only one Spark stage (i.e., one

MapReduce cycle), without a shuffle phase, whatever the OLAP query used
(i.e., approach based on data-driven model). With our static partitioning scheme,
the distributed system can become ovoid the memory overhead, since we control in
advance the size of the partitions (or the buckets), based on a heuristic technique.
Moreover, our approach is scalable for the considerable amount of data and for the
large cluster as our experiments demonstrate, and is stable for the DW updates.
Although our static PLB technique has some limitations, however, we can cure
them in the future works and extend it without making a complex changed to our
DW scheme.

To enhance scan operation and the parallel treatment for an OLAP query being
executed on a distributed BDW over a Hadoop cluster, we have proposed a novel
approach which able to avoid scanning some unnecessary data blocks through the
filters of the OLAP workload. Our static PLB technique also improves the paral-
lel treatment and prevent the memory overflow, which can happen following the
increase of the metadata table size, persisted in memory by the Namenode. These
have cured in our PBS approach through some Data Mining methods. Moreover,
although our static PLB techniques cannot achieve max-skipping level, however,
our process is smooth and reliable for any stable OLAP workload (i.e., without
making any assumptions on the filters). Furthermore, although our PBS approach
has some limitations, since, is evaluated on a stable workload, however, we can
deal with the workload changed and DW updates based on some techniques. We
will plan in the future works (see our perspectives in the next section).
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We have also proposed a hybrid approach, when we have combineed between
our data-driven approach presented in Chapt. 3 and our heuristic strategy de-
scribed in Chapt.4, which based on a workload-driven model. Our new physical
design for a distributed big data warehouse, use both partitioning and bucketing
techniques and ability to perform the star join operation in a single Spark stage,
without a shuffle, and to avoid loading some HDFS chunks that are not relevant to
an OLAP query. As the previous approaches, this scheme has also some drawbacks
that will plan to resolve them in our future research.

The approaches presented in the chapters 3, 4, and 5 are based on static PLB
of the data, using data-driven and workload-driven models, and have tackled the
problems of the star join and data scan operations for an OLAP query. As we
have discussed before, OLAP query is typically expensive query which composed
of some cost operations, such as filtering, projection, star join, group-by, and aggre-
gate functions. While optimize filtering and star join operation could be handled
through static partitioning and load balancing technique, since we can collect in
advance some knowledge that can help the distributed system to elaborate good
DW scheme (i.e., balance the data split inputs), however, to improve Group-By

operation execution time and load balancing the reducing buckets, we need to use
a dynamic technique of PLB of data, where the system collects on the fly some
pertinent information that can help it to balance the intermediate results or the
reducer inputs.

Although the SGMAS approach has tested on a simulated environment with
Ray system, however, our experiments reveal that SGMAS is suitable and reliable
and outperforms some baseline approaches in term of execution time. Note that it
is not hard to adapt SGMAS in real query processing systems such as Spark SQL
and Hive-QL. Moreover, we can extend our solution by considering other operators
such as Cube and Roll-up, as we have planned in the perspectives.
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7.2 Perspectives

Nevertheless, no work is perfect, and all work must be subject to constructive
criticism. We have seen in the conclusion section and the different chapters of our
thesis, the limitations of our proposed approaches , so in the future research we
plan to:

1. Attempt to extend the first approach with a cost model (such as the cost
model of [17, 105]), to demonstrate (not only with experiments evaluation as
we have done in section 3.3) that our data placement strategy gives better
performances than some partitioning scheme for star join operation.

2. Improve our technique method to select the best bucket’ number in the
approaches of chapters 3, 4, and 5.

3. Compare the performances of our physical design of a distributed big data
warehouse, deployed on a Hadoop cluster (see chapter 5 and our work [6]),
with No-SQL data warehouses schemes, such as Cassandra and HBase sys-
tem.

4. Extend our heuristic technique (NewKey method used in chapters 3 and 5)
to support other DW schema (not only star data warehouse schema), such
as constellation schema, e.g., joining two fact tables.

5. Study how to deal with the workload changed in the static approaches pro-
posed in the chapters 4 and 5, such we extend these approaches in a way
that the distributed system can re-balance the data warehouse automatically
over the cluster node if the workload changed, without interrupting the user
transactions.

6. Plan to implement our SGMAS approach (presented in chapter 6) in Spark
SQL query processing system.

7. Plan to take into account other sophisticated operators such as as Cube

and Roll-up to balance the reducer loads with our SGMAS approach. Note
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that using these operators in Group-By operation need to produce new keys
in intermediate results, and obviously the load balancing decision of our
SGMAS approach must be adapted.

8. Attempt to combine data locality technique (such as LEEN approach [73])
and SGMAS approach to decrease the amount of data shuffled when Group-

By operation executed.
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Glossary

AM Agent-Mapper.

AR Agent-Reducer.

AS Agent-Supervisor.

PLB Partitioning and Load Balancing.

DW Data Warehouse.

BDW Big Data Warehouse.

MAS Multi-Agent System.

HB Hash-Broadcast join.

HDFS Hadoop Data File System.

IRs Intermediate Results are the outputs of the Map phase.

KB The Knowledge Base is a distributed memory space over the cluster’s

nodes to maintain the fragments metadata.

MP MapReduce paradigm.

OLAP On-Line Analytical Processing.

PBS Partitioning, Bucketing, and Sorting techniques.

RDD Resilient Distributed Dataset.

RIs Reducer Inputs are the partitions of the reduce phase, after performing

the shuffle phase and before starting to calculate the reduce function.

RM Resources Manager of the distributed system.

RT References Table.

SGMAS Smart Grouping of the fragments using Multi-Agent System.

SH Hash-Shuffle join.

SkipSJoin Skip to scan unnecessary data blocks and optimize Star Join operation.

W Workload.

SMB Sort-Merge-Bucket join.

YARN Yet-Another Resource Negotiator.
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