
HAL Id: tel-02507447
https://theses.hal.science/tel-02507447

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation et Vérification Formelles de Systèmes de
Contrôle de Trains

Yuchen Xie

To cite this version:
Yuchen Xie. Modélisation et Vérification Formelles de Systèmes de Contrôle de Trains. Other [cs.OH].
Ecole Centrale de Lille, 2019. English. �NNT : 2019ECLI0001�. �tel-02507447�

https://theses.hal.science/tel-02507447
https://hal.archives-ouvertes.fr

N° d’ordre : 372

CENTRALE LILLE

THÈSE

Présentée en vue d’obtenir le grade de

DOCTEUR

En

Spécialité : Automatique, Génie informatique, Traitement du signal et des images

Par

Yuchen XIE

DOCTORAT DÉLIVRÉ PAR CENTRALE LILLE

Titre de la thèse :

Formal Modeling and Verification of Train Control Systems

Modélisation et Vérification Formelles de Systèmes de Contrôle de Trains

Soutenue le 14 Février 2019 devant le jury d’examen :

Président, Rapporteur Jean-François PETIN, Professeur, Université de Lorraine

Rapporteur Audine SUBIAS, Maître de Conférences HDR, INSA de Toulouse

Examinateur Pascal BERRUET, Professeur, IUT de Lorient

Examinateur Thomas BOURDEAUD'HUY, Maître de Conférences, Centrale Lille

Directeur de thèse Armand TOGUYENI, Professeur, Centrale Lille

Co-encadrante de thèse Manel KHLIF-BOUASSIDA, Maître de Conférences, Centrale Lille

Thèse préparée au Centre de Recherche en Informatique, Signal et Automatique de Lille,

CRIStAL, CNRS UMR 9189

Ecole Doctorale Sciences Pour l'Ingénieur (ED SPI 072)

i

CONTENTS
CONTENTS ... I

LIST OF FIGURES .. VII

LIST OF TABLES .. XI

LIST OF TERMINOLOGIES .. XIII

CHAPTER 1 INTRODUCTION .. 1

1.1 APPLICATION FRAMEWORK AND MOTIVATION .. 1
1.1.1 Safety-critical Systems .. 1
1.1.2 Autonomous Trains .. 2
1.1.3 Difficulties and Current Situation of Applying Autonomous Trains 3

1.2 THEORETICAL FRAMEWORK ... 5
1.2.1 Modeling of Discrete Event System (DES) .. 5
1.2.2 Verification of Discrete Event System (DES) ... 5

1.3 PROBLEM STATEMENT .. 6
1.4 CONTRIBUTION OF THE DISSERTATION ... 8

1.4.1 Methodological Contributions .. 8
1.4.2 Technical Contributions .. 9
1.4.3 Railway Control Applications .. 10

1.5 ORGANIZATION OF THE DISSERTATION ... 10

CHAPTER 2 RAILWAY SYSTEM AND TRAIN CONTROL .. 11

2.1 INTRODUCTION TO CHAPTER 2 ... 11
2.2 TERMINOLOGY OF RAILWAY SYSTEMS .. 11

2.2.1 Railway network structure ... 11
2.2.1.1 Railway line ... 11
2.2.1.2 Railway station and railway node ... 12

2.2.2 Basic Railway Elements and Equipment ... 12
2.2.3 Train Detection, Blocks and Balise ... 14

2.2.3.1 Train Detection and Track Circuit ... 14
2.2.3.2 Railway Blocks ... 15
2.2.3.3 Balise ... 16

2.3 TRAIN CONTROL SYSTEMS ... 17
2.3.1 Terminology of Train Control.. 17
2.3.2 History of Train Control System Development ... 18

2.4 AUTOMATIC TRAIN CONTROL (ATC) OF METRO SYSTEMS AND CBTC 22
2.4.1 Metro Systems and Grades of Automation (GoA) .. 22
2.4.2 Automatic Train Control (ATC) System ... 23
2.4.3 Communications-Based Train Control (CBTC) .. 23

2.5 DEVELOPMENT TENDENCY OF TRAIN CONTROL SYSTEMS ... 25
2.5.1 Information transmission ... 25
2.5.2 Onboard and trackside equipment ... 25

CONTENTS

ii

2.5.3 Moving blocks ... 25
2.5.4 Interoperability and fusion of different train control systems 26

2.6 ERTMS / ETCS .. 27
2.6.1 Necessity of Developing and implementing ERTMS ... 27
2.6.2 ERTMS Specifications and Legislation .. 28
2.6.3 ERTMS System Composition ... 29
2.6.4 ETCS Levels and their Train Control Methods ... 30

2.7 CONCLUSION OF CHAPTER 2 .. 33

CHAPTER 3 STATE-OF-THE-ART FOR THE TRAIN CONTROL SYSTEM DEVELOPMENT 35

3.1 INTRODUCTION TO CHAPTER 3 ... 35
3.2 REVIEW OF METHODS FOR TRAIN CONTROL SYSTEMS DEVELOPMENT .. 35

3.2.1 Railway Safety Standards and Formal Methods .. 35
3.2.1.1 Railway safety standards .. 35
3.2.1.2 Formal methods application in the railway industry .. 37

3.2.2 Requirements Specification Methods ... 38
3.2.2.1 Requirement Modeling Methods and Tools ... 39
3.2.2.2 Requirements Verification and Validation .. 44

3.2.3 System Design Modeling .. 46
3.2.3.1 System Structural Modeling.. 47
3.2.3.2 System Behavior Modeling ... 47

3.2.4 Implementation Methods ... 49
3.2.5 Verification Methods and Tools ... 51

3.2.5.1 Testing ... 51
3.2.5.2 Simulation ... 52
3.2.5.3 Model checking ... 53
3.2.5.4 Theorem proving... 53
3.2.5.5 Equivalence checking .. 53
3.2.5.6 Abstract Interpretation and Invariant Method ... 54
3.2.5.7 Quantitative Analysis .. 54
3.2.5.8 Comparison of Verification and Validation Methods ... 54

3.2.6 Whole lifecycle tools ... 55
3.2.6.1 Rodin Based on Event-B .. 55
3.2.6.2 SCADE Suite ... 57
3.2.6.3 CPN Tools based on Petri nets .. 57
3.2.6.4 RAISE development method ... 58
3.2.6.5 Comparison of whole lifecycle tools ... 59

3.3 PETRI NETS .. 59
3.3.1 Classification of Petri Net Variants ... 60

3.3.1.1 Vertical dimension: Abstraction and hierarchy of Petri nets 60
3.3.1.2 Horizontal dimension: Extensions of Petri net ... 61
3.3.1.3 Ease of theoretical analysis ... 62

3.3.2 Colored Petri Net (CPN) .. 62
3.3.2.1 Multiset ... 63
3.3.2.2 Syntax of CPN .. 63
3.3.2.3 Semantics of CPN .. 64
3.3.2.4 CPN Tools and CPN Extensions ... 66

3.3.3 Well-Formed Petri Nets and Symbolic Reachability Graph 69
3.3.3.1 The Trade-off between Expressiveness and Analysis Capability 69

CONTENTS

iii

3.3.3.2 Informal introduction to well-formed Petri nets .. 70
3.3.3.3 Symbolic Reachability Graph (SRG)... 72
3.3.3.4 Tools supporting WFN .. 74

3.4 PETRI NETS BASED MODELING METHODS FOR TRAIN CONTROL SYSTEMS 75
3.4.1 CPN-Based Modeling Methods for Train Control ... 75
3.4.2 WFN based modeling formalism and comparison with CPN 76

3.5 CONCLUSION OF CHAPTER 3 .. 78

CHAPTER 4 MODULAR MODELING FOR TRAIN CONTROL SYSTEMS 81

4.1 INTRODUCTION TO CHAPTER 4 ... 81
4.2 MODULAR MODELING METHODOLOGY OF TRAIN CONTROL SYSTEMS .. 82

4.2.1 Structural Decomposition ... 83
4.2.2 Functional Decomposition .. 83
4.2.3 Mapping the Structural and Functional Decompositions 84
4.2.4 Specification of Abstracted System Model ... 86

4.2.4.1 Example of an abstracted system model .. 86
4.2.4.2 Modeling assumptions of the abstract system model .. 88

4.3 STRUCTURAL MODELING OF TRAIN CONTROL SYSTEM .. 88
4.3.1 Introduction to Structural Modeling... 88
4.3.2 Component Modeling ... 89

4.3.2.1 Parametric module representation .. 89
4.3.2.2 Structured token representation .. 93

4.3.3 Interface Modeling and Communication Techniques .. 95
4.3.3.1 Introduction to the modeling of communication ... 95
4.3.3.2 Modeling of Interface by CPN Tools hierarchy ... 96
4.3.3.3 Modeling of Interface by fusion places ... 98
4.3.3.4 Modeling of Interface via the file system ... 99

4.4 FUNCTIONAL MODELING FOR ETCS ONBOARD SYSTEM .. 102
4.4.1 Functional Analysis of ETCS Onboard System .. 102
4.4.2 Modeling of Modes and Mode Transitions .. 104

4.4.2.1 Introduction to ETCS Modes ... 104
4.4.2.2 Introduction to Mode Transitions ... 105
4.4.2.3 Modeling of Mode and Mode Transitions in CPN Tools 107

4.4.3 Modeling of Procedures ... 112
4.4.3.1 Introduction to the Modeling of Procedures .. 112
4.4.3.2 Stage 1: Syntactic Transformation .. 113
4.4.3.3 Stage 2: Semantic refinement with operations and conditions 116
4.4.3.4 Stage 3: Semantic Reduction with Aggregation Rules .. 120

4.4.4 Modeling of Onboard Functions ... 122
4.4.4.1 ETCS Onboard Function Introduction ... 122
4.4.4.2 Modeling of Onboard Functions ... 122

4.4.5 Modeling of Onboard Data .. 126
4.4.5.1 Introduction to onboard data ... 126
4.4.5.2 Modeling method of onboard data using CPN Tools .. 126

4.5 MODELING OF RAILWAY NODE WITH AUTOMATED ROUTING FUNCTION 129
4.5.1 Routing Function in a Railway Node .. 129
4.5.2 Modeling of railway node component using CPN Tools 131
4.5.3 Perspectives of modeling a railway node ... 133

CONTENTS

iv

4.6 GENERAL WFN MODELING PATTERNS: APPLICATION FOR RBC MODELING 134
4.6.1 Modeling of RBC Component using WFN ... 134
4.6.2 General WFN Modeling Patterns for Complex DES .. 135

4.6.2.1 Conditional arc modeling in WFN ... 135
4.6.2.2 Predecessor function and its WFN implementation ... 137
4.6.2.3 Modeling of the list structure in high-level Petri nets .. 139

4.6.3 Modeling of RBC Component using WFN Modeling Patterns 145
4.6.3.1 Introduction to RBC and MA ... 145
4.6.3.2 Modeling of RBC model in WFN ... 146

4.7 CONCLUSION OF CHAPTER 4 .. 150

CHAPTER 5 VERIFICATION METHODS OF TRAIN CONTROL SYSTEM 153

5.1 INTRODUCTION TO CHAPTER 5 ... 153
5.2 FORMAL VERIFICATION AND ANALYSIS TECHNIQUES OF PETRI NETS MODELS 154

5.2.1 Formal Verification Based on State Space Methods .. 155
5.2.1.1 Model Checking .. 155
5.2.1.2 State space construction and exploration .. 156
5.2.1.3 Challenges and solutions to the state space analysis techniques 157

5.2.2 Formal Verification based on Invariant Calculation ... 161
5.2.3 Formal Description of Properties .. 162

5.2.3.1 Related works of the property description ... 162
5.2.3.2 Property description of Petri nets .. 163
5.2.3.3 Formalisms of property specification and temporal logic 165

5.2.4 Verification for CPN Tools Models .. 167
5.2.4.1 ASK-CTL ... 167
5.2.4.2 Verification within CPN Tools ... 168
5.2.4.3 ASAP .. 170

5.3 MODULAR VERIFICATION AND ANALYSIS METHODS FOR PETRI NETS MODELS 171
5.3.1 Introduction to Modular Verification Methods of Petri Nets Models 172
5.3.2 Analysis Methods for Modular Petri Nets .. 172
5.3.3 Compositional Verification ... 175
5.3.4 Assume-Guarantee Reasoning ... 177
5.3.5 Incremental Analysis Approach .. 178

5.4 STATE REDUCTION BASED ON REACTIVE SEMANTICS AND TRANSITION PRIORITY 179
5.4.1 Reactive Nets .. 179

5.4.1.1 Related definition ... 179
5.4.1.2 An informal introduction to Reactive Nets ... 180

5.4.2 Global System Composed of Multiple Reactive Components 182
5.4.3 State Reduction using Transition Priority ... 183

5.5 CASE STUDY: VERIFICATION OF MODE TRANSITIONS ... 186
5.5.1 Verification of Mode Transitions in an Isolated Way 187
5.5.2 Verification of Safety Property in a Global Way with a Scenario 190

5.6 CASE STUDY: VERIFICATION OF MA FUNCTION USING ASSUME-GUARANTEE 193
5.6.1 Background of the Case Study and the desired Property 193
5.6.2 Environment Abstraction using Assume-Guarantee .. 194

5.6.2.1 Abstraction of Balise ... 195
5.6.2.2 Abstraction of RBC and the predecessor train.. 195

5.6.3 Verification of Train Model using Assume-Guarantee 196

CONTENTS

v

5.6.4 Discussion of the Verification Result and Improvement 196
5.7 CONCLUSION OF CHAPTER 5 .. 197

CHAPTER 6 CONCLUSIONS OF THE THESIS AND PERSPECTIVES.................................. 199

6.1 CONCLUSIONS ... 199
6.2 PERSPECTIVES ... 200

APPENDIX A INTRODUCTION TO PETRI NETS .. 203

A.1 PLACE/TRANSITION-NETS .. 203
A.2 PREDICATE/TRANSITION-NETS .. 205
A.3 FIRST CP-NETS .. 207
A.4 HIGH-LEVEL PETRI NETS .. 209

A.4.1 Introduction to high-level Petri nets ... 209
A.4.2 High-level Petri Nets Standardization and PNML ... 210

A.5 HISTORICAL DEVELOPMENT OF CPN AND TERMINOLOGY .. 211
A.6 PETRI NETS SOFTWARE AND PROGRAMMING LANGUAGES ... 213

A.6.1 Petri Nets Software... 213
A.6.2 Petri nets and programming languages ... 214

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM 216

B.1 ETCS MODE TRANSITIONS .. 216
B.1.1 Transitions Table in System Requirements Specification 216
B.1.2 ETCS Mode Transitions Model .. 217

B.2 PROCEDURE “START OF THE MISSION” (SOM) .. 220
B.2.1 Flowchart of Procedure “Start of the Mission” (SoM) 220

B.3 LITERAL MODEL OF PROCEDURE “START OF THE MISSION” (SOM) ... 221
B.3.1 Refined CPN Model of Procedure “Start of the Mission” (SoM) 222

APPENDIX C IMPROVEMENT TO THE CASE STUDY IN §5.6 .. 223

REFERENCES... 225

RESUME SUBSTANTIEL (EN FRANÇAIS) ... 245

vii

LIST OF FIGURES
Figure 1-1 V-model of complex DES development ... 6

Figure 2-1 Layout of a simple railway node .. 13

Figure 2-2 DC track circuit system .. 14

Figure 2-3 Railway lines and block system.. 15

Figure 2-4 Balise between the rails (and its LEU) ... 16

Figure 2-5 Information chain from trackside to train ... 17

Figure 2-6 Word frequency of synonyms of “train control” .. 18

Figure 2-7 Trackside and onboard device of BRS (Crocodile) system 19

Figure 2-8 Cab signaling by coded track circuit .. 19

Figure 2-9 Transponder and reader in PZB .. 20

Figure 2-10 Major national signaling systems in Europe (in 2017) 21

Figure 2-11 Moving block system.. 26

Figure 2-12 ERTMS/ETCS System composition .. 29

Figure 2-13 ETCS level 2 schematic .. 31

Figure 3-1 Safety related standards .. 36

Figure 3-2 Methods and tools for train control system development..................................... 38

Figure 3-3 Test cases and test sequences for ETCS ... 52

Figure 3-4 CPN variables of a transition .. 64

Figure 3-5 A system of n identical 3-states processes.. 72

Figure 3-6 Analyzability comparison of CPN and WFN ... 77

Figure 4-1 Train control system modeling methodology ... 82

Figure 4-2 Structural decomposition of the railway control system 83

Figure 4-3 Functional decomposition of a railway control system .. 84

Figure 4-4 Operational scheme of multiple trains management in ETCS-2 85

Figure 4-5 Mapping of functions and structural decompositions ... 85

Figure 4-6 Railway system structure for the abstract model .. 87

Figure 4-7 General form of parametric modules .. 90

Figure 4-8 Example of parameter places of train component .. 91

Figure 4-9 An example of modeling by parametric module representation 93

Figure 4-10 Comparison of two methods to model a component module 94

LIST OF FIGURES

viii

Figure 4-11 Modeling of interfaces by CPN Tools hierarchy .. 96

Figure 4-12 Fusion places in CPN Tools ... 98

Figure 4-13 Interfaces via file sharing ... 100

Figure 4-14 Functional analysis of the ETCS onboard system behavior 102

Figure 4-15 Functional modeling for ETCS onboard system .. 104

Figure 4-16 Example of a mode transition in CPN .. 108

Figure 4-17 Part of ETCS mode transitions model .. 109

Figure 4-18 Conditions and priorities for mode transitions ... 110

Figure 4-19 General process of building CPN models for procedures 113

Figure 4-20 Literal translation rules with extract of procedure “SoM” 115

Figure 4-22 Refinement of an action in a procedure .. 119

Figure 4-23 Behavioral refinements on route transitions of a decision 120

Figure 4-24 Semantic reduction with aggregation rules .. 121

Figure 4-25 Modeling of blocking function “MA Request” .. 123

Figure 4-26 Part of the procedure model “SoM” with a function call 123

Figure 4-27 Modeling of the function “Request MA by timer elapsing” 125

Figure 4-28 Example of data manipulation in CPN models .. 127

Figure 4-29 CPN model for railway node module ... 130

Figure 4-30 Modeling of conditional arc based on transitions with guard 136

Figure 4-31 WFN realization of a predecessor function .. 138

Figure 4-32 Multiset in Petri nets ... 139

Figure 4-33 Structure and connotation of TRAINITEM tokens .. 141

Figure 4-34 Example of a train list of three trains ... 141

Figure 4-35 Example of query operation ... 142

Figure 4-36 Example of the insert operation in a list ... 143

Figure 4-37 Example of removal operation in a list ... 144

Figure 4-38 Example of updating the position value in a list .. 145

Figure 4-39 Modeling of RBC component (WFN) .. 147

Figure 4-40 Algorithm of the EOA calculation in the RBC model 149

Figure 4-41 EOA algorithm implementation in WFN ... 149

Figure 5-1 Process of model checking ... 155

Figure 5-2 Exhaustive (a) and partial-order (b) state space generation 159

Figure 5-3 User-specified properties in CPN Tools ... 169

LIST OF FIGURES

ix

Figure 5-4 Error log in CPN Tools ... 170

Figure 5-5 Templates of verification in ASAP .. 171

Figure 5-6 Transformation from shared places into shared transitions 174

Figure 5-7 Example of a system composed of two components .. 176

Figure 5-8 The system example after compositional minimization 176

Figure 5-9 Incremental approach in state space analysis ... 179

Figure 5-10 Internal and external part of a reactive net ... 181

Figure 5-11 Global system made of multiple reactive components 182

Figure 5-12 Concurrency of two reactive components .. 183

Figure 5-13 Two homogenous reactive components with regulable step numbers 184

Figure 5-14 Semantics and transition priority in a global system .. 185

Figure 5-15 State space of isolated mode transitions model .. 187

Figure 5-16 Model checking of reachability using a pre-defined function 188

Figure 5-17 Model checking of dead marking using pre-defined function (Terminal) 189

Figure 5-18 Example of the scenario in procedure SoM.. 191

Figure 5-19 Verification of Mode Transition Model ... 192

Figure 5-20 Abstraction of the train’s environment ... 195

Figure 5-21 State space of the train model under the assumption .. 196

Figure 6-1 Structure of this manuscript .. 200

Figure A-1 Place/Transition-net example .. 204

Figure A-2 Predicate/Transition-nets example of resource management 205

Figure A-3 Comparison of Pr/T-net and CP-net .. 208

Figure A-4 Efficient expression in high-level Petri nets .. 210

Figure B-1 ETCS mode transition model (CPN) ... 219

Figure B-2 Flowchart for Procedure “Start of the Mission” (SoM) 220

Figure B-3 Literal CPN model of procedure “Start of Mission” ... 221

Figure B-4 Refined CPN Model of Procedure “Start of the Mission” (part) 222

Figure C-1 Improved train module of the case study ... 224

xi

LIST OF TABLES
Table 2-1 Grades of Automation (GoA) .. 22

Table 3-1 Safety Integrity Levels (SIL) Definition .. 36

Table 3-2 Comparison of requirement modeling methods and supporting tools 43

Table 3-3 Comparison of verification and Validation Methods ... 56

Table 3-4 Comparison of whole lifecycle tools ... 59

Table 3-5 Petri nets in four abstract levels ... 60

Table 3-6 Example of state space reduction with symmetry.. 73

Table 4-1 Principal train control functions in the abstracted model 86

Table 4-2 Comparison of two reusability methods for component models 94

Table 4-3 Comparison of different modeling methods of interfaces 102

Table 4-4 Part of ETCS mode transitions .. 105

Table 4-5 Translation to Table 4-4 (Part of ETCS mode transitions) 106

Table 4-6 Socket/port pairs in function subpage and the caller model 124

Table 4-7 Modeling of conditions and events .. 128

Table 4-8 Example of an interlocking table ... 129

Table 4-9 Example of a Token of Type NodeTRAIN ... 132

Table 4-10 Example of tokens of type RouteDetail ... 132

Table 5-1 Comparison of state spaces with/without additional priority 185

Table 5-2 Case studies in Chapter 5 ... 197

Table A-1 Petri net software and features .. 214

Table B-1 Complete ETCS mode transitions ... 216

xiii

LIST OF TERMINOLOGIES
Term Explanation

ALSN (Russian: АЛСН - автоматическая локомотивная сигнализация
непрерывного действия) A Russian railway control system

ASFA (Spanish: Anuncio de Señal y Frenado Automático) A Spanish train control
system

ATACS (Advanced Train Administration and Communications System) A
Japanese radio-based train control system developed by JR East.

ATB (Dutch: Automatisch Train Beïnvloeding) A Dutch train control system

ATP Automatic Train Protection Systems

AVV (Czech: Automatické Vedeni Vladu) A Czech automatic train control
system

AWS Automatic Warning System, a British cab signaling system

BACC (Italian: Blocco Automatico Correnti Codificate) An Italian train control
system

BRS (French: Brosse Répétition Signal) Brush signal repetition, also called
crocodile, a cab signaling system used in France, Belgium, Luxembourg

CBTC Communications-Based Train Control, a kind of train control

CCS Continuous Cab Signals, a train control system introduced by American
Pennsylvania Railroad

CPN Colored Petri Nets

CTC Centralized Traffic Control, a centralized and remote system for train
routing, dispatching, traffic flows, instead of local signal operators

DES Discrete Event System

DMI Driver Machine Interface, also called MMI (Man Machine Interface), a
standardized interface between ETCS onboard equipment and driver

Ebicab A train control system mainly used in Sweden

ERTMS European Rail Traffic Management System

ETCS European Train Control System, part of ERTMS

LIST OF TERMINOLOGIES

xiv

EVM A Hungarian train control system

FFB (German: Funk Fährbetrieb) A German radio-based train control system
mainly for low-traffic branch lines (where the speed is less than 160km/h).

FZB (German: Funk Zugbeeinflussung) A German radio-based train control
system

GSM-R Global System Mobile – Railway

KHP (Polish: Kontrola Hamowania Pociągu) A Polish train control system
which replaces the older system (SHP)

KVB (French: Contrôle de vitesse par balises) A French train control system
used for high-speed railway

LS (Czech: Liniový Systém, continuous system) A Czech train control system

LZB (German: Linienzugbeeinflussung, linear train influencing) A German train
control system based on conductor cable loops

MA Movement Authority, permission for a train to move to a specific location
with the supervision of speed, used in ERTMS/ETCS

PZB (German: Punktförmige Zugbeeinflussung, Point-shaped train control) A
German train control system used in many countries, also called “Indusi”
(inductive train protection)

RBC Radio Block Centre, a system in ERTMS to manage the location of each
train in its controlled area

RSDD An Italian train control system based on balises

SHP (Polish: Samoczynne Hamowanie Pociągu) A Polish train control system

Signum A Swiss train control system

TBL Transmission Balise Locomotive, a Belgian train control system

TPWS Train Protection and Warning System, a British train control system for
passenger lines

TVM (French: Transmission Voie Machine) A train control system used in
France and in some other countries

WFN Well-formed Petri nets

ZUB A train control system used in Denmark and in Switzerland

1

Chapter 1 INTRODUCTION
Nowadays, a growing number of automated and autonomous systems appear in a lot of
domains: transportation, manufacturing, medical devices, etc. The complexity of these
systems is increasing since more functions and performance requirements become mandatory.

This thesis deals with modeling and verification of complex Discrete Event Systems (DES)
controllers modeled in Colored Petri Nets (CPN) and mainly focuses on their application to
autonomous trains in railway systems. Railway systems are a good example of safety-critical
systems, whose operations are related to human life or other safety factors. The control of a
safety-critical system requires highly rigorous system development processes to avoid
catastrophes.

This work is accomplished in the research team MOSES (Modèles et Outils formels pour des
Systèmes à Evénements discrets Sûrs) of the laboratory CRIStAL (Centre de Recherche en
Informatique, Signal et Automatique de Lille, UMR 9189) in France, supervised by Prof.
Armand Toguyéni and co-supervised by Dr. Manel Khlif-Bouassida.

1.1 Application Framework and Motivation

This thesis focuses on the modeling and verification of train control systems in the framework
of the ERTMS (European Rail Traffic Management System) / European Train Control System
(ETCS). The final objective of this study could be the implementation on the embedded
controllers of the onboard equipment and on the trackside devices of the ground infrastructure
in railway systems.

Train control systems is a typical application of complex discrete event systems which are
concurrent, distributed and safety critical.

1.1.1 Safety-critical Systems

As an example of safety-critical systems, the highest level safety guarantee is required in the
development of train control systems to reduce the risk of loss of human life. It is a custom to
apply the fail-safe principle in the design of train control systems, which means that in case of
failure, the system responds in an inherent way that would cause minimal harm (or no harm at
all). For example, the electromechanical interlocking equipment (e.g., relay) uses gravity to
lead a device to the fail-safe state (e.g., a related signal turns red). However, after the
application of computer-based interlocking, the interlocking software running on computers
cannot use such a physical way (i.e., gravity) as a guarantee, it is thus difficult to predict the
system state after the occurrence of a fault. For this reason, the railway control engineering

Chapter 1 Introduction

2

always needs very stable technology and thus requests the highest possible guarantees to
ensure the safety.

Formal methods are a particular kind of mathematics-based techniques for specification
engineering, system design and verification. Since the underlying mathematical theory can
lead to more reliable system development, formal methods are considered as an appropriate
technique to check the correctness of hardware and software systems and to ensure the safety
(Batra et al. 2013). Even though railway signaling is often considered as one of the most
successful areas of intervention by formal methods (Fantechi et al. 2012), the further practice
and application of formal methods in railway control domain are confronted with a lot of
challenges (e.g., learning costs for industrial engineers, combinatorial explosion problem, the
details are introduced in §1.3). It is thus very important to find the appropriate methodology
to apply formal methods in the development of train control systems, which is one of the
contributions of this thesis.

1.1.2 Autonomous Trains

The modernization of European railway networks is motivated by the following three issues:

• The increasing train speed, which also requires a communication-based train control
system as the trackside signals are no longer recognizable for the drivers of high-speed
trains;

• The adoption of a unified train control system throughout Europe – ERTMS (European
Rail Traffic Management System);

• The idea to develop autonomous trains.

Recently, the development of autonomous trains raises an interest in the railway domain.

Autonomous trains have been successfully used in many automatic subway systems but are
not yet implemented in mainline railways. European railway companies are now in a
competition of developing autonomous trains to conduct higher-density transportation and to
ensure safety and reliability. Both the French and German national railway operator SNCF
(SNCF 2017) and Deutsche Bahn (Bahn 2017) have the planning to apply autonomous trains
by 2023, which raises a large variety of issues related to the design and verification of the next
generation of railway control systems.

Recently, the SNCF has launched a call for contribution within the framework of a five-year
project for the development of autonomous trains. This call for contributions concerns railway
companies as well as academic laboratories like CRIStAL.

The motivation of developing autonomous trains could be to improve the competitiveness of
railway systems compared to the other means of transportation. The application of autonomous
trains can bring advantages in several aspects.

Chapter 1 Introduction

3

Punctuality and reliability

Digitalization provides new opportunities and technologies to make the railway transport more
punctual, compared to the manual operation. Some European railway operators have decided
to develop autonomous trains also due to frequent labor disputes. In recent years, European
railway networks are often crippled during the general strikes led by the unions of train drivers.
The railway stakeholders believe that the application of autonomous trains can lead to a more
reliable railway network.

Speed and capacity

Speed is a key factor in the competition for customers and market shares. The autonomy
technology increases the speed, it can also speed up the frequency by introducing more trains
without more drivers. All the autonomous trains operate at their optimized speed so the traffic
of the railway network and its capacity can be improved.

Challenge and opportunities inspired by the autonomous car industry

Self-driving cars are seldom out of the headlines in the recent years. The race by car
manufacturers and tech firms to cash in on driverless technology is a wake-up call for the rail
industry. Road transport is already a major competitive threat to railway and any technology
that makes cars and roads easier to use will only intensify the competition.

However, the autonomy technology also brings opportunities as well. Mass production is
likely to drive down the cost of the components used by self-driving cars, particularly sensors,
which brings the prospect of re-purposing automotive technology to build a railway-specific
solution for train autonomy.

Influence on the current ERTMS/ETCS systems

Research being carried out on autonomous trains could also have important implications for
the development of the European Train Control System (ETCS) for mainline railway
operations. The next evolution of the standard – ETCS Level 3 – is likely to draw heavily on
advanced technologies, e.g., the use of GNSS (Global Navigation Satellite System), from
outside the traditional railway arena.

1.1.3 Difficulties and Current Situation of Applying Autonomous

Trains

The idea of autonomous trains is to operate the trains in the railway system without a driver
onboard. Autonomous trains are nowadays widely used in subways and tramways in more and
more cities across the world and have already shown that fully automated rail service is
possible without any manual control in a driver's cab.

Chapter 1 Introduction

4

Even if autonomous trains have been successfully used in subway systems, it is much more
difficult to apply the autonomous trains in the mainline railway network with long distance
trains. Some possible reasons are listed below:

- Track environment: A subway train is normally running on the closed tracks (e.g., in
tunnels), where the tracks’ condition can be guaranteed. However, the mainline railway
systems have a degraded track environment during its long-distance journey. It is thus
necessary to detect the obstacles on its tracks and to deal with some emergency cases
like track damage, weather disaster, etc.

- Mix traffic circulation: A subway system is normally designed for only one vehicle
type, and all the vehicles run at the same speed level. However, in mainline railway,
freight trains and passenger trains of different speed levels may circulate on the same
railway line and sometimes even the circulations of opposite travel directions may
appear on the same railway line. In this complex context, some operations such as
passing and overtaking may apply to manage the mixed traffic, which heavily increases
the complexity of the traffic management and control.

- Railway network complexity: The subway network structure is relatively simple.
Different subway lines can be connected by some interchange stations but normally
there are no intersections of tracks among different lines. However, in the mainline
railway network, different railway lines are crossed in different types of railway
stations and railway nodes, which are far more complex than the subway system.

Currently, the railway stakeholders are searching for solutions of autonomous trains in the
following 3 aspects.

• The automation of speed control to guarantee safety;

• The automation of traffic management;

• The observation of the environment, such as obstacle detecting on the tracks.

In our research, we will mainly consider the automation of speed control in the development
of the logic controllers for the autonomous train control system. These controllers implement
two levels of speed control: the train-centric level implemented by onboard equipment and the
railway network level implemented by trackside infrastructure to offer the centralized
supervision.

The design and implementation of railway systems are extremely complex due to the huge
system size and the heterogeneity caused by different kinds of subsystems (e.g., trackside
components, onboard components, communication components). Consequently, it is
somehow inevitable to have some flaws in the system design, which may cause breakdowns
after the system implementation.

Chapter 1 Introduction

5

However, as railway control systems is a typical safety-critical system, it is too costly to have
safety-related defects, especially for autonomous trains where no driver is in a cab to double-
check the critical operations manually.

In this context, the verification and validation of the system become a strong necessity to
ensure the safety, which is also a tough challenge for researchers.

Our research proposes a methodology which allows the systematic and rigorous modeling and
verification of railway control system before its implementation, in order to reduce the whole
system development cost and to ensure safety. The target application field is the train control
system of the mainline railway network and can also be generalized to similar industrial
domains.

1.2 Theoretical Framework

1.2.1 Modeling of Discrete Event System (DES)

Discrete event system (DES) (Cassandras and Lafortune 2009) can be informally defined as a
system with the following features:

(1) the system states are discrete;

(2) the transition mechanism of states is driven by events.

Different methods and tools can be used to model a discrete event system, among which
automata theory (Sakarovitch 2009) and Petri Nets (Murata 1989) are most commonly used.

Finite State Machine (Finite State Automaton) is a well-known formalism in the automata
theory to present all the system states and the transitions between its states. This technique is
generally intuitive but less powerful faced with the complex and concurrent systems.

Petri nets have been used for about half a century and have shown its ability to model
concurrent processes adequately. Compared to automata, Petri nets are a formalism far more
compact to express the behavior of a DES. However, it is still not easy to model complex
processes using classical Petri nets. Therefore, many extensions of Petri nets have been
proposed. This thesis mainly uses its colored extensions in the modeling phase of complex
DES.

1.2.2 Verification of Discrete Event System (DES)

For safety-critical systems, current development methods cannot give a “real guarantee” that
the developed system could respect all its requirements and behave “safely”. This shows an
urgent demand to integrate verification processes into the system design as early as possible.

Chapter 1 Introduction

6

Formal verification methods are strongly recommended for safety-critical system
development. While in practice it is usually not easy to be applied due to following reasons:

(1) the notations appear complex for the domain experts;

(2) there are many candidate techniques and tools but currently these tools work only in
an isolated way, which results in difficulties of considering the modeling and
verification phases together.

In this context, this thesis contributes to a reliable process combining the formal modeling and
formal verification processes, taking railway control systems for an example. One challenge
of this work is also to use formal models to model and verify other tasks of the automation of
a complex system. We want notably to be able to generate code for different types of
components such as microcontrollers, FPGA or PLC (Programmable Logical Controller).
Formal models can also allow automating the generation of tests scenarios for the implemented
system’s validation.

1.3 Problem Statement

Using the software development as a reference, a whole lifecycle of complex Discrete Event
System (DES) development can be presented by a V-model as shown in Figure 1-1.

Figure 1-1 V-model of complex DES development

In general, the whole lifecycle of complex DES development falls into three phases: the design
phase, the implementation phase, and the testing phase.

The design phase can be separated into several stages because we usually start the design phase
from a high-level abstraction that can be gradually refined and finally implemented in the
implementation phase by a wide variety of ways.

System Definition &
Application Conditions

validation

validation

validation

Implementation

Acceptance

Integration Test

Unit Test
Verification

Requirement
Specification

System
Design

Verification

Chapter 1 Introduction

7

The traditional testing methods usually use pilot experiments that are conducted after the
system has been implemented. This method might be easy to conduct for some flexible
projects, e.g., software system development. However, when it comes to the huge projects
such as railway systems, testing is too costly for the errors made in the design phase to be
corrected in the testing phase as the implementation and installation of such a large system are
and are difficult to be modified.

In this thesis, we are more interested in the application of formal modeling and verification
methods to ensure a qualified system design before it is finally implemented.

We first identify the difficulties in the modeling and verification of a complex DES.

Structurally, a DES such as train control system is said to be “complex” because:

• It always has a large size and contains several subsystems and system components in
a hierarchical structure;

• The subsystems and components can be executed in parallel and are coupled with a
complex relationship between them.

Theoretically, a complex DES is composed of a huge number of states and have complex
transition rules among these states. The principal difficulty of developing and analyzing such
a complex DES is the combinatorial explosion problem (also called the state explosion
problem), which can be observed in both the system modeling and verification stages.

In order to fight against the combinatorial explosion problem, the researchers have proposed
numerous techniques to facilitate both the modeling and the verification of complex DES
according to their different purposes and application fields.

In the modeling stage, the major objective is to find appropriate modeling methods (tools,
formalisms or patterns) which have the following features:

- The modeling tools have an efficient expressive power and are thus able to model a
complex DES in a compact and intuitive way for engineers to use;

- The modeling formalisms need to provide means for formal verification phase and
consider facilitating the verification, which is often ignored in a lot of existing study
focused only on modeling phase;

- The modeling methods are compatible with the characteristics of the application
domain. For example, in the railway control domain, hierarchical, modular and
reusable modeling patterns and approaches are usually necessary to build a complex
railway system model consist of numerous railway devices.

In the verification stage, the appropriate verification methods need to be compatible with the
underlying modeling patterns and to be coincident with the property expressions of the system
requirements. It should also be capable of dealing with computational complexity (i.e., space

Chapter 1 Introduction

8

complexity and/or time complexity). In other words, the ideal verification methods for
complex DES possess the following capabilities:

- The verification methods work well with the chosen modeling formalism;

- The verification tools can perfectly express the system properties to verify;

- The verification patterns offer some techniques to reduce the computational
complexity, according to the underlying models and the properties to verify.

In terms of formal methods, they have been proven to be able to contribute to the reliability
and robustness of system development. However, the industrial application of formal methods
is usually regarded as a labor-intensive and expensive process as the application of formal
methods needs both a good understanding of railway domain knowledge and qualified skills
of the mathematical methods. Once the formal methods are adopted, the formal models need
to be built for each part of the system not only during the system design, but also at each update
or modification of the system already in operation to always keep the system and the formal
model aligned. Moreover, the verification and validation process needs to be conducted on
these formal models and the results need to be interpreted and communicated to stakeholders
and other domain experts.

Nowadays, formal methods are applied in the industry in two major ways:

- One-shot application: the formal methods are used in an isolated way, such as proof
of the consistency of system requirements specification or the correctness of a
particular algorithm or a function, which is actually the major application of formal
methods;

- Lifecycle integration: the application of formal methods is integrated into the whole
lifecycle of the system development process and even the operation and maintenance.

Whilst the former usage has been well studied, the latter application, which is more important,
always encounters some obstacles and is short of promising research results. The situation is
mainly caused due to the diversity of formal methods and the lack of an appropriate
methodology and tool support during the whole development lifecycle of complex DES.

1.4 Contribution of the Dissertation

The thesis contributes to three subjects as follows.

1.4.1 Methodological Contributions

This thesis provides modeling and verifying methodology in colored Petri nets faced with
large-scale and complex DES development, taking train control systems as an example.

Chapter 1 Introduction

9

A good formalism for whole lifecycle development needs to consider the modeling,
verification and implementation phases together. We first justify our choice of colored Petri
nets as formalism (and CPN Tools as modeling tool) thanks to its versatile expressivity to cope
with the large-scale and complex DES (i.e., the combinatorial explosion of system states in
modeling phase) together with a firm mathematical and theoretical basis, making it possible
to employ different verification methods on the models built.

In order to alleviate the combinatorial explosion problem in both the modeling and the
verification stages, we propose a systematic methodology to develop a practical train control
system, with some methods to reduces the complexity in both the modeling and verification
stages by exploiting the modularity and by considering the features in the application fields.

In the modeling stage, structural and functional modularity is exploited, making it possible to
build a global model of a whole train control system in a compact way.

In the verification stage, the most primitive idea to verify Petri nets models is based on the
generation of the reachability graph for the whole system. However, in this case, the
combinatorial explosion problem will block almost all of the methods based on state space
exploration. We combine some (concrete) verification techniques together with some
(abstracted) modular analysis methods to fight against the combinatorial explosion problem
and to reduce the necessary states for the verification purpose. We show that the verification
of several properties for a whole train control system is thus possible.

1.4.2 Technical Contributions

In a formal development of complex train control systems using colored Petri nets, we are
faced with some obstacles in both the modeling stage and the verification stage. During this
study, we have proposed some formal techniques to overcome the encountered difficulties and
these techniques can also be generalized to be used in the development of other complex DES.

This thesis proposes some modeling and verification patterns to model DES using colored
Petri nets and CPN Tools, taking train control system and particularly ETCS as an example.
These patterns can also be generalized to other similar industrial systems.

In the modeling stage, in order to model complex train control systems with well-formed Petri
nets (WFN), we propose three modeling patterns of WFN to widen the applications of this
formalism and while maintaining all its advantages for the analysis.

In the verification stage, we exploit the reactive semantics and the transition priority of a global
system composed of multiple components and propose a technique to reduce the unnecessary
system states caused by concurrency.

Chapter 1 Introduction

10

1.4.3 Railway Control Applications

The thesis offers practical control models compatible with the European Train Control System
(ETCS) requirements specification (European Railway Agency 2016a). These models can be
used in the research projects (e.g., UniRAIL in Centrale Lille) to support different kinds of
studies of railway control.

1.5 Organization of the Dissertation

In Chapter 1, the application framework and the theoretical framework of this research are
provided. The main problems discussed in this thesis are stated. The contributions and the
organization of the manuscript are presented.

In Chapter 2, the train control systems are systematically introduced. The chapter begins with
an introduction to some basic terminology of a railway system. Then, the train control system
and its development are presented in a historical point of view. The Communications-Based
Train Control (CBTC) and Automatic Train Control (ATC) are also introduced as examples
of modern train control systems with high automation level. Last but not least, the European
Railway Traffic Management System (ERTMS) / European Train Control System (ETCS) is
presented as our target train control system to be analyzed.

In Chapter 3, the literature review of different approaches for the whole lifecycle of train
control system development is given. Since Petri nets are chosen as the modeling formalism,
we provide a brief introduction to the family of Petri nets and emphasize two high-level Petri
nets variants: Colored Petri Nets (CPN) and Well-formed Petri Nets (WFN). A literature
review of modeling methods based on these two formalisms is given in the end of the chapter.

In Chapter 4, a methodology of train control system modeling is proposed based on both the
structural modularity and the functional modularity. The structural modeling method deals
with the components and their relationship to form a whole system model. The functional
modeling method are applied to model ETCS onboard equipment with respect to its
requirements specification. The railway node model in CPN and the RBC model in WFN are
provided respectively. Some general WFN modeling patterns are also proposed, which
facilitate the modeling of complex DES with WFN.

In Chapter 5, the formal verification and analysis techniques of Petri net models are first
introduced. Then a literature review of modular verification methods to alleviate the
combinatorial explosion problem is presented. We have also proposed a state reduction
technique based on reactive semantics and transition priority. Different case studies of
verification are introduced in the end of the chapter.

In Chapter 6, the conclusion and some perspectives of this thesis are stated.

11

Chapter 2 RAILWAY SYSTEM AND TRAIN
CONTROL

2.1 Introduction to Chapter 2

In this chapter, we first present some preliminary knowledge and the terminology of railway
systems from the point of view of train control.

Then we introduce the basic idea of train control as well as the different types of train control
systems, especially those used in Europe.

Automatic Train Control (ATC) is introduced to present the main functions of a railway
signaling and control system. Communications-Based Train Control (CBTC) is also
introduced because of their rapid development in recent years and wide application in metro
systems.

After a summary of the development tendency of train control systems, we introduce
ERTMS/ETCS, which is the uniform European train control system under deployment. Our
study is also based on ERTMS/ETCS.

2.2 Terminology of Railway Systems

2.2.1 Railway network structure

Railway system is a means of transport for passengers or goods using trains running on rails
(also known as tracks). Railway network consists of railway lines and railway stations/nodes.

2.2.1.1 Railway line

A railway line connects two or more railway nodes (or stations) by rails. The most common
double-track railway line is composed of two tracks to separates the trains of opposite
directions of travel, while on a single-track railway line both directions shares the same track.

According to their functionality, railway lines can be classified by:

• Mainline railway: the inter-city railway lines or even international lines, where the
trains can run at a relatively high speed;

• Suburban railway lines: relatively low-speed railway lines mainly for commuters,
e.g., RER (French: Réseau Express Régional) for Paris area;

Chapter 2 Railway System and Train Control

12

• Urban rail transit: various types of local rail systems within or around urban areas,
e.g., metro (subway), tram, light rail.

Unless specifically mentioned, the term “railway line” in this thesis considers the mainline
railway systems, where one is confronted with the high operation speed, the most rigorous
safety requirements and operational complexity.

2.2.1.2 Railway station and railway node

Railway station

A railway station is a railway yard where a train starts/ends its journey or where it stops during
its travel. The main function of a passenger railway station (for passengers) is to offer
platforms where passengers can board and alight from trains.

There also exist other types of railway stations for goods:

- A freight train station is a yard which is exclusively used for loading and unloading
cargo;

- A classification yard (or marshaling yard) is used to separate a freight train to isolated
cars or, contrarily, to compose a freight train from isolated cars. The operation in thus
a station is called “shunting”.

Railway node

Other than the well-known railway stations for the passengers, our study pays more attention
to railway nodes from the point of view of train control. We first explain the nuance between
a railway node and a railway station.

The so-called “railway node” in this thesis refers to a node in a railway network that connects
different railway lines. It offers the possibilities for trains to change the railway lines according
to their destinations. A railway node is usually in the form of a group of several neighboring
stations, e.g., “Lille-Roubaix-Tourcoing railway node” or “Lyon railway node” (French: nœud
ferroviaire Lyonnais).

A railway node can be a large railway station as long as it takes the function to connect several
railway lines. However, it is also possible that a railway node exists only for technical
operation in railway traffic and does not possess any platforms, in this case, a train usually
pass it without stopping in the railway node.

2.2.2 Basic Railway Elements and Equipment

Figure 2-1 shows the layout of a very simple railway node, where we can find some basic
railway elements for train control. The layout describes how these components are

Chapter 2 Railway System and Train Control

13

topologically configured. In this layout, each element is given a unique identifier. We will
introduce these elements by their types.

Figure 2-1 Layout of a simple railway node

Track segment

From the train control point of view, track segments (tracks for short) are minimal elements
to comprise the rails and are given “tcxx” identifiers in Figure 2-1. Each track segment is
isolated by the electrical insulation and is equipped with train detection devices (such as track
circuits or axle counters, later introduced in §2.2.3.1), which can detect if a train is on it. When
there is a train on a particular track segment, the track segment is said to be “occupied”,
otherwise it is “clear”.

Signal

Railway signals (signals hereinafter for short) are shown as the “lollipop” signs and are given
“sx” identifiers in Figure 2-1. Signals inform the train drivers of the status of the rails ahead
by a visual method (normally colored lights) to avoid collisions. Signals have different aspects
and indications. An aspect is the visual appearance and the indication is the meaning in
indicates. Due to different application cases, there are a lot of forms of railway signals in
practice depending on the countries and railway networks.

Modern railway control systems also use “cab (onboard) signals” because it is more and more
impractical for train drivers to see trackside signals with the increasing train speed.

Point or switch

Points are given “ptx” as identifiers in Figure 2-1. They are also called switches or turnouts.
A point is a mechanical installation enabling trains to be guided from one railway line to
another. A simple point has two possible positions, i.e., normal and reverse. The normal
position allows a train to travel in a straight direction, while the reverse position leads a train
to a branch.

To ensure the safety, a point always has a security lock of its position. A train can only pass a
point if the point has been physically fixed into a definite position (normal or reverse) by
trackside devices and has been locked in this position.

Chapter 2 Railway System and Train Control

14

Route and interlocking

A route consists of a combination of sequentially connected track segments, corresponding
points, and one or more signals to protect this route. The definition of routes is an effective
way to allocate and make use of the resources of a railway system.

Interlocking is officially defined in the US as “An arrangement of signals and signal appliances
so interconnected that their movements must succeed each other in proper sequence”
(Josserand and Forman 1957). It is a safety guarantee system to prevent conflicting movements
in the railway system especially where the tracks have junctions or crossings. In an
interlocking system, the signaling appliances and tracks can be collectively referred to a train
route. It is thus impossible to display an open signal to the driver unless all the corresponding
resources have been reserved and the route is proven safe.

2.2.3 Train Detection, Blocks and Balise

2.2.3.1 Train Detection and Track Circuit

Train detection has been considered as a primary need for a train control system (Kichenside
and Williams 1998). There are nowadays two popular methods for train detection: track circuit
and axle counter.

Track circuit was patented by William Robinson in 1872 (Robinson 1872). The invention of
the track circuit makes it is possible to know the status of the track segment (occupied or clear)
by making use of the rails’ electrical conductivity.

A simple DC (Direct Current) track circuit is shown in Figure 2-2. The track segment in middle
is protected by the signal. When the track segment is clear, the relay is picked up and the signal
displays “clear”. Otherwise, when a train is on the track segment, the relay will be dropped
out (due to the short circuit) and signal displays “occupied”. The display will also be
“occupied” in case that the rails or wires are broken, which is thus “fail-safe”, an important
concept in safety-critical system design.

Figure 2-2 DC track circuit system

insulation

RR

senderreceiver

insulation

signal

Chapter 2 Railway System and Train Control

15

In addition to the train detection function, track circuit also contributes to the information
transmission. The electrical signals used for train detection can also be captured by the train
and it can thus convey more control information. The track circuit signal is usually modulated
and called “coded track circuits”, which will be introduced in §2.3.2.

Over more than one century, the track circuit system has been developed from DC to AC, from
unmodulated to coded, from analog to digital. It is nowadays widely used around the world as
an important railway safety device.

Axle counter is an alternative method for train detection by capturing and counting the
number of the train axles passing an axle-counter device. Another advantage of an axle counter
system is that it can simultaneously check the train integrity by comparing the number of axles
entering a section with the result of those counted out.

2.2.3.2 Railway Blocks

A railway line connects two adjacent railway stations or railway nodes. There may have many
trains traveling in a railway line in a sequence and a railway block system is used to avoid
train collisions, ensuring the safe and efficient operations of railway systems.

To introduce the railway block system, we first consider only one direction of a double-track
railway line, i.e., a single railway line composed of two rails that has a fixed direction where
all the trains operate in the same direction.

Such a railway line can be divided into numerous blocks. For safety reasons, at any time each
block must contain no more than one train. Only after the train previously occupied the current
block has left (the block is then “clear”), another train can be authorized to enter this block.

Figure 2-3 Railway lines and block system

Figure 2-3 shows a basic three-arrangement block system with the red/yellow/green signaling
system. A train (or an obstruction) occupying the first block (Block C25) prevents other trains
from entering the same block by showing a red aspect, prompts a warning signal by yellow
aspect to slow down a train before entering the second block (Block C24), and allows full
speed by indicating a green aspect for those entering the third block (Block C23) or farther
blocks. Nowadays, with the increasing train speed and the demand of a higher capacity,
arrangements for four or more blocks and more sophisticated signaling systems are used in
order that trains can be given multiple kinds of warnings of an impending obstruction.

Block C22 Block C23 Block C24 Block C25

Signal FC22 Signal FC23 Signal FC24 Signal FC25

Operation Direction

Train T1Train T2

Chapter 2 Railway System and Train Control

16

The length of a block is usually from 500m to 1500m, taking into consideration the train’s
length, the speed and the braking performance. The occupancy of a block is checked by track
circuit or other train detection systems. When using the track circuit, a block can consist of
one or more track segments.

2.2.3.3 Balise

Balise is a term originally from French and refers to a beacon or a transponder used to transmit
information to trains at some appropriate places, as shown in Figure 2-4.

Figure 2-4 Balise between the rails (and its LEU)*

A balise is usually a passive transponder installed between or beside the rails. A train equipped
with an induction coil can thus “read” a balise when passing it. If necessary, a balise can be
tele-powered by the passing train.

The information that a balise sends to trains is packaged in a “telegram”. Based on the telegram
it offers, a balise may be:

- A “fixed data balise”, which always sends the same telegram, e.g., the position for
localization purpose, or to help the train stop at an exact position;

- A “transparent data balise”, also called a “switchable balise” or a “controllable balise”,
which is connected to a Lineside Electronics Unit (LEU) to transmit dynamic
information to the train, e.g., the next signal aspect in advance.

The train can track its location by counting wheel rotations like a car, and this location can be
corrected by balises as they are installed at known locations. A balise may be installed alone

* Image from Internet.

Chapter 2 Railway System and Train Control

17

or in a balise group. A train passing a balise group that contains at least two balises can infer
its travel direction by analyzing the order of the passed balises in the group.

2.3 Train Control Systems

2.3.1 Terminology of Train Control

Since it was invented, the most important role of train control is to manage multiples trains
running in a railway network and thus ensure the safety. It is then necessary to convey the
control information from the trackside systems to the trains (or their drivers).

Figure 2-5 shows several information chains, which can be helpful to explain the different
forms of train control.

Figure 2-5 Information chain from trackside to train

The top arrow in yellow shows the information delivered to the train driver by physical and
visual signals beside the tracks. The driver operates the locomotive in accordance with the
signals which indicate the track status in front of it.

The middle arrow in blue can be called cab signaling, which repeats or replaces the trackside
signals in the cab (i.e., driver’s compartment of a locomotive). The in-cab signals are
continually displayed to the driver and updated in time, making it easier to read, especially for
the high-speed railway. Besides the repetition of trackside signals, more sophisticated cab
signaling systems can also display speed limit, dynamic information about the location of
nearby trains, track condition ahead, etc.

Today, cab signals are always integrated into a more comprehensive train protection system
that can automatically intervene the train movement (e.g., brakes) if the driver does not
respond appropriately to a dangerous condition, or to optimize the train operation. The
automatic intervention is indicated by the orange arrow in the bottom of Figure 2-5.

Media
trackside

equipment
onboard

equipment driver engine

signals

traffic
management

Interlocking
systems

train control systems

Chapter 2 Railway System and Train Control

18

We also want to explain and make clear some terminologies in the train control domain. Due
to some historical reasons, researchers and engineers often mix up some terms and concepts,
which could be very confusing in some cases.

Train control system refers to the information chain dotted frame on Figure 2-5 which may
have two major processes (Vincze and Tarnai 2006):

- (mandatory) the transmission of signaling information to the train driver in the cab (in-
cab signaling) as well as other auxiliary train control information;

- (optional) the automated intervention on the train movement without driver operation
is offered in the more advanced train control systems.

In short, a train control system is a cab signaling system which may include Automatic Train
Protection (ATP). An ATP system is also part of a modern train control system such as
ERTMS/ETCS, which is illustrated further in §2.6.

Railway signaling system initially refers to all forms of physical signals and in-cab signals.
However, with a tendency to use in-cab signals as well as the integration of cab signaling and
automatic train protection, the concept of this term has been broadened to have an equivalent
meaning of “train control system”.

Figure 2-6 is the word frequency graph made by Google Ngram Viewer comparing the usage
of several synonyms, i.e., train control, railway signal(l)ing, railway control and train
signal(l)ing, in the Google Books documents dated from 1840 to 2008. According to the
results, we choose to use the most preferred term “train control systems” in this thesis.

Figure 2-6 Word frequency of synonyms of “train control”

2.3.2 History of Train Control System Development

In history, the major objective of train control was to transmit information between the
trackside system and the trains. Therefore, the milestones in the development of train control
system are based on the evolutions of transmission method between the trackside systems and
the onboard equipment. In this section, we give a brief history of train control systems along
with the transmission media development.

Chapter 2 Railway System and Train Control

19

1. First galvanic contact based train control system

In 1872, the BRS (French: Brosse Répétition Signal, brush signal repetition) was invented in
France and is still used in France, Belgium and Luxembourg today. A more well-known name
of BRS is “Crocodile”, referring to the shape of its trackside device shown in Figure 2-7 (a).
This system uses a metal brush below the train and a metal ramp between the two rails to
establish an electro-mechanical (galvanic) contact, which sends the closed signal (+20V) or
opened signal (-20V) to the train and can also warn the driver by sound. The improved version
of this system is equipped with the automatic emergency brake intervention.

(a) (b)
Figure 2-7 Trackside and onboard device of BRS (Crocodile) system*

2. Track circuit based train control systems

In 1920, the first coded track circuit system CSS (Continuous Cab Signals) was developed by
the American company Pennsylvania Railroad. The principle of such a system is shown in
Figure 2-8.

Figure 2-8 Cab signaling by coded track circuit

CSS establishes a continuous inductive contact between the track circuits and locomotive’s
receiver coils to offer continuous track-to-train transmission, and the track circuit signal is

* Image source: https://fr.wikipedia.org/wiki/Crocodile_(signalisation_ferroviaire).

https://fr.wikipedia.org/wiki/Crocodile_(signalisation_ferroviaire)
https://fr.wikipedia.org/wiki/Crocodile_(signalisation_ferroviaire)

Chapter 2 Railway System and Train Control

20

modulated to convey more information compared to the Crocodile system. It can thus display
the aspect of the next signal to the driver using colored lights in the cab. CSS is so successful
a cab signaling system that some railway lines equipped CCS have given up the trackside
signals to economize costs.

Meanwhile, in Europe, the idea of using track circuit to send cab signals was also applied in
many countries, such as BACC in Italy, EVM in Hungary, ATB in the Netherlands, ALSN in
Russia.

In France, TVM (French: Transmission Voie-Machine, track-to-train transmission) is a
successful track circuit based train control system deployed in France for TGV (French: Train
à Grande Vitesse, high-speed train) lines. TVM is based on the track circuit systems UM71
(analog track circuit for TVM300) / UM2000 (digital track circuit for TVM430). TVM is also
used in the Channel Tunnel between France and the UK, the High Speed 1 (HS1, legally the
Channel Tunnel Rail Link, CTRL) in the UK and the High-Speed Line 1 (HSL 1) in Belgium.

3. Spot inductive contact or balise-based train control systems

In 1931, the German company Siemens developed a spot inductive train control system PZB
(German: Punktförmige Zugbeeinflussung, point-shaped train control), with its former name
INDUSI (short for “Induktive Zugsicherung” in German, which means "inductive train
protection"). The train control information is delivered by an inductive contact in discrete spots
from the trackside resonator (transponder) installed at appropriate locations to the onboard
generator (reader), as shown in Figure 2-9.

(a) (b)
Figure 2-9 Transponder and reader in PZB*

In the same period and based on similar ideas, Switzerland started to introduce its magnet-
based Signum system since 1933. Nowadays, the similar spot inductive contact is used in
many sophisticated control train control systems as a complementarity to the track circuit
transmission. The trackside transponder is called “balise” and has been introduced in §2.2.3.3.

* Image sources: (a) https://en.wikipedia.org/wiki/Punktf%C3%B6rmige_Zugbeeinflussung;
 (b) https://commons.wikimedia.org/wiki/File:Indusi_TRAXX.JPG.

https://en.wikipedia.org/wiki/Punktf%C3%B6rmige_Zugbeeinflussung
https://en.wikipedia.org/wiki/Punktf%C3%B6rmige_Zugbeeinflussung
https://commons.wikimedia.org/wiki/File:Indusi_TRAXX.JPG
https://commons.wikimedia.org/wiki/File:Indusi_TRAXX.JPG

Chapter 2 Railway System and Train Control

21

The train control systems using balise include the KVB (in France), the ZUB, the Ebicab, etc.
Balise is also used for train localization purpose in the European Train Control System
(ETCS). A balise which complies with the ETCS specification is called a d.

4. Continuous bi-directional communication based train control systems

Since the 1960s, train control system manufacturers started to test continuous and bi-
directional communication technology in order to meet more sophisticated train control
requirements.

In 1965, LZB (German: Linienzugbeeinflussung, linear train influencing) was first
demonstrated in Germany. LZB uses conductor cable loops between rails and is installed in
high-speed railway networks in Germany and Spain. The cable loops allow continuous and bi-
directional transmission between the trackside LZB control center and the trains. However,
from a modern point of view, the installation of cable loops has greatly increased the
complexity of trackside equipment and thus augments the construction and maintenance cost.
It is also very difficult to achieve interoperability with other train control systems.

Today, with the development of wireless communication, especially the GSM (Global System
for Mobile), modern train control systems can establish a radio link between the trackside
control center and the onboard equipment. The wireless communication is continuous, bi-
directional and has a big advantage in communication capacity and compatibility.

Some examples of radio-based train control systems are: FZB and FFB in Germany, ETCS
(level 2 and level 3) in Europe, ATACS in Japan, and CTCS (level 3) in China.

In 2017, there are nearly 30 different signaling systems in Europe (European Commission
2017a), and we have shown the major systems on a map in Figure 2-10.

Figure 2-10 Major national signaling systems in Europe (in 2017)

Ebicab 700 / L 10000

Ebicab 900

ZUB 123

PZB / LZB / FZB

SHP / KHP

EVM

PZB / LZB

AWS / TPWS

BRS / TBL / TVM

TVM / KVB

ASFA / LZB

Ebicab 700

Signum / ZUB 121

BACC / RSDD

ATB

LS + AVV

Chapter 2 Railway System and Train Control

22

2.4 Automatic Train Control (ATC) of Metro Systems
and CBTC

2.4.1 Metro Systems and Grades of Automation (GoA)

Compared to the mainline railway network, a metro (subway) system is quite different and is
often less complex due to the following reasons:

- Most metro lines are double-track systems and have barely junction or crossing
between lines (there may have “junction” stations in the urban metro network
composed by multiple metro lines, but normally they are not physical rail junctions);

- The rolling stock (all the vehicles) in a metro line is homogeneous;

- The speed of a metro train is relatively low (normally less than 80km/h);

- The environment of a metro system is an enclosed space, without level crossing, which
can prevent the presence of a person or an obstacle on the rails.

These conveniences have given metro systems the chance of being a pioneer to apply higher-
level automated technologies prior to the mainline railway network.

With the development of automated metro systems, several different Grades of Automation
(GoA) for metro and railway systems are defined in IEC 62267/62290 standards (IEC 2009;
IEC 2014), as shown in Table 2-1.

Table 2-1 Grades of Automation (GoA)

GoA Description
Speed
supervision

Acceleration
and braking

Obstacle
detection

Door
closing

Emergency
situations

GoA0 On-sight Driver Driver Driver Driver Driver

GoA1 Non-automated Partial Driver Driver Driver Driver

GoA2 Semi-Automated Auto Auto Driver Driver Driver

GoA3 Driverless Auto Auto Auto Partial Driver

GoA4 Unattended Auto Auto Auto Auto Auto

Chapter 2 Railway System and Train Control

23

2.4.2 Automatic Train Control (ATC) System

An Automatic Train Control (ATC) system can be used to control the modern metro systems.
It usually has the following three functions: Automatic Train Protection (ATP), Automatic
Train Operation (ATO) and Automatic Train Supervision (ATS).

Automatic Train Protection (ATP) is responsible to avoid collisions with another train. ATP
ensures that the speed of a train is compatible with the authorized speed. If necessary, ATP
automatically executes an emergency brake to stop the train. A train control system equipped
with ATP corresponds (at least) to GoA1, which is also the most common situation of train
control systems for current mainline railway networks, e.g., the ERTMS/ETCS system (c.f.,
§2.6)

Automatic Train Operation (ATO) implements partial or complete automatic train piloting
(acceleration and braking) and performs the functions of a driver. A system can be called ATO
when it corresponds (at least) to GoA2. Recent systems may implement a completely
automated control system and are thus “driverless” (GoA3), nevertheless in most cases a driver
is always onboard to mitigate risks of emergency situations or unintended failures.

Automatic Train Supervision (ATS) allows the supervision in the trackside control and
operation center to display train status. ATS may also perform remote control for individual
trains. ATS can thus be used to adjust the train’s performance to optimize its schedules, to
minimize the inconveniences caused by irregularities, or to perform any other remote action
based on staff’s intervention.

It is worth noting the confusing usage of some “ATx” terminologies. In this section and in the
context of metro systems, these terms refer to a kind of train control systems or a general
function. However, they are also names of some specific train control systems. For example,
the term “ATC” in (Matsumoto et al. 2001) refers to a Japanese train control system family
used for high-speed trains as a replacement for its predecessor “ATS” (Automatic Train Stop,
another Japanese train control system). In the UK, “ATC” (Vincze and Tarnai 2006) is also
the name of an earlier Crocodile-like British train control system installed on the Great
Western Railway since 1906 and has been gradually supplanted by AWS.

2.4.3 Communications-Based Train Control (CBTC)

The automation of train control for metro systems is also driven by the development of
Communications-Based Train Control (CBTC) technology.

As defined in the IEEE 1474 standard (IEEE Std. 2004), a CBTC system is a continuous,
automatic train control system with the following features:

- High-resolution train location determination techniques which are independent of track
circuits;

Chapter 2 Railway System and Train Control

24

- Continuous, high-capacity, bi-directional train-to-trackside data communications;

- The onboard and trackside equipment implement ATP functions, as well as optional
ATO and ATS functions.

In practice, the CBTC systems are developed by different companies and vary a lot in scope,
size, composition and use different concrete technologies to implement the abstract
international standards. Some CBTC systems and the corresponding standards can be found
in (Ferrari et al. 2012). Nowadays there have been lots of examples of CBTC systems all
around the world, including Paris Métro (Line 1, 3, 5 and 13), Barcelona Metro (Line 9 and
11), Beijing Subway (Line 1, 4, 2, 6, 8, 9, 10, 15, Daxing Line, Fangshan Line and Airport
Express) and several lines in New York City Subway.

Besides the high automation degree, the major CBTC systems usually have the following two
features: moving block and radio-based communication.

Moving block

Unlike traditional track circuit based railway control systems where the blocks are always
fixed, a CBTC system can use the moving block concept thanks to its modern positioning
technology. The moving block is also defined in ETCS level 3 and more details have been
introduced in §2.5.

A CBTC system based on moving block captures a train's exact position via continuous
communication and uses the target-distance curve to control the train speed. It can thus adopt
a higher-level flexibility and more accurate control mechanism to guarantee the safe distance
between adjacent trains while improving the efficiency.

Radio-based communication

In history, CBTC has its former origins in the inductive loop based systems developed by
Alcatel SEL (now Thales) for the Bombardier Automated Rapid Transit (ART) systems in
Canada during the mid-1980s, which were also referred to as Transmission-Based Train
Control (TBTC). AirTrain for San Francisco International Airport (SFO) was the first radio-
based CBTC system and nowadays most CBTC systems use radio-based communication
technologies, such as leaky coaxial cables (Wang et al. 2016), leaky waveguide (Heddebaut
2009), Wi-Fi (Zhu et al. 2009), GSM and LTE (Choi et al. 2015).

The update to CBTC systems is economically effective for stakeholders. A report by the
Federal Transit Administration (FTA) in the US has shown that the application of a moving
block CBTC is much better than a traditional three-speed code fixed-block train control in
safety, reliability, capacity, system diagnostics, and operational cost (Rojas and Phillips 2011).

Chapter 2 Railway System and Train Control

25

2.5 Development Tendency of Train Control Systems

The history of the of train control systems has shown some tendencies in the following
categories, which may also be used to infer the upcoming features of future systems.

2.5.1 Information transmission

In order to increase the speed, to reduce the safety distance and to optimize the capacity, there
are several tendencies in the development of train control systems:

- from discrete (spotted) transmission to continuous transmission;

- from one-way (trackside to onboard) information chain to bi-directional information
exchange;

- from analog signals to digital signals.

Several modern communication techniques with the above features, e.g., GSM, Wi-Fi, leaky
waveguide, loop cables, have been used in the recent train control systems. It is worth noting
that more and more train control systems have chosen the GSM-based technology since it is
well-developed and low-cost.

2.5.2 Onboard and trackside equipment

From a structural point of view, another tendency of train control system development is the
modularization and intelligentization of onboard equipment along with the diminution of
trackside infrastructure. Owing to some historical reasons, old train control systems depend
much on different trackside devices to complete train detection, localization, speed control,
automatic braking, etc. These trackside systems, potentially invented in different historical
periods, require a long construction cycle with high cost, only work with limited compatible
onboard systems, and are difficult to be updated. Therefore, modern train control systems
assign more and more roles and tasks to onboard equipment and use modular and intelligent
onboard devices to save cost and to achieve better interoperability. For example, instead of
receiving braking curve from the trackside (e.g., LZB), modern onboard equipment can
perform the real-time calculation of a target-distance speed curve (e.g., ETCS level-2/3). The
one-step braking operation can be applied by considering the target-distance speed curve and
the braking performance of each train, which finally reduces the braking distance.

2.5.3 Moving blocks

In order to increase the railway network capacity, the interval distance between two trains
should be reduced. In a traditional fixed block railway line (presented in §2.2.3), the interval
distance is related to the train speed as well as the block partition. However, the fixed block

Chapter 2 Railway System and Train Control

26

length is calculated by the most rigorous case (high speed and poor braking performance),
which will no doubt affect the capacity of the whole railway line of mixed types of trains.

Different from the fixed block sections defined by track circuit insulation, a moving block
system does not have physical blocks. Safe zones around each train are calculated by
computers in real time, as shown in Figure 2-11.

Figure 2-11 Moving block system

A moving block system requires continuous and bi-directional communication between the
trackside and the trains to know the real-time location and speed of each train. Moving block
allows reducing interval distance between trains while maintaining the necessary safety
distance, which can thereby increase the overall capacity of the railway network.

Moving block is considered in ERTMS/ ETCS level 3, which is not yet implemented in
Europe. Whereas the concept of moving block has been applied in the Japanese ATACS and
some metro systems using Communications-Based Train Control (CBTC).

2.5.4 Interoperability and fusion of different train control systems

Figure 2-10 has shown the diversity of train control systems. Normally these systems are
incompatible with each other, which causes the interoperability problem for international
trains and even for domestic trains operated across the railway lines equipped with different
train control systems. In Europe, the unique solution for interoperability is ERTMS/ETCS,
which takes advantage of different train control systems and defines several operation levels
for different applications. ERTMS/ETCS is expected to replace many national train control
systems in the various member states of the European Union.

Since more and more study and application of ETCS, there have appeared several ETCS-like
train control systems (or those can be referred to certain ETCS levels), such as the Chinese
Train Control System (CTCS). There are also some studies about a new Unified Train Control
System – UTCS (Nakamura 2016).

fixed block

Operation Direction

occupancy

fixed block

occupancy

exact positionexact position

(a) Fixed block system

(b) Moving block system

Braking curve

Braking curve

Chapter 2 Railway System and Train Control

27

From the technical point of view, we also see a tendency of the fusion of train control for
mainline railway networks and those for metro systems, with the help of the development of
CBTC. Metro systems have efficiently utilized the advantages of the mature technology
developed by the train control systems for the mainline railway network, and can be a pioneer
to test the latest techniques such as moving block, driverless train operation, etc. On the other
hand, the mainline railway operators have also announced to develop autonomous trains (Bahn
2017; SNCF 2017), which is certainly motivated by the successful application in automated
metro systems. The concept “ATO over ETCS” is proposed (Emery 2017) to integrate
Automatic Train Operation (ATO) function in the existing ERTMS/ETCS system for mainline
railway network. A Next Generation Train Control (NGTC) project has also been proposed to
develop a uniform train control system for both mainline and urban networks, benefiting from
the advantages of both the ETCS and CBTC.

2.6 ERTMS / ETCS

2.6.1 Necessity of Developing and implementing ERTMS

The interoperability problem of different train control systems is particularly outstanding in
Europe since many European countries close to each other, where the international railway
lines are very common. Thanks to the European Union and the Schengen Agreement, it is
usually not necessary for international trains to stop at borders for border inspection from the
governmental point of view.

However, even though the railway networks are well developed in European countries,
especially in Western and Central Europe, these countries have their own national train control
systems as shown in Figure 2-10, which causes the famous interoperability problem for
international trains. Currently, there are two solutions for international trains to pass the
borders in Europe:

(1) The cab should be equipped with different train control systems onboard, and the
handover process usually requires a stop or a slowing-down.

(2) The train should stop at the border and the locomotive should be changed to a national
one (the driver may also be changed).

The first solution leads to a very complex configuration of the onboard system for international
trains, which increases the installation and maintenance costs; while the second solution is
quite time-consuming and thus arises a conflict with the optimization and efficiency
requirements by the railway stakeholders. In this context, the idea of developing a unified
European railway control system was born since more than 20 years ago.

ERTMS (the European Railway Traffic Management System) is a solution for the
interoperability of trains in European railway network. It aims to develop a complete,

Chapter 2 Railway System and Train Control

28

interoperable, modular and generic system of railway control and management shared by all
European national operators. In addition to the interoperability, which is obviously the main
benefit, ERTMS increases the railway network capacity as well as guarantees a higher level
of safety, reliability, punctuality, and cost-effectiveness, compared to a majority of the existing
national signaling systems.

Nowadays, ERTMS has been agreed as the unique railway signaling system in Europe by all
the Member States. The development of ERTMS is part of the European harmonization
process and the implementation of ERTMS is assured by European Union law (European
Commission 2017b). The migration process from different national train control systems to a
unique ERTMS is a huge challenge but is already in progress.

2.6.2 ERTMS Specifications and Legislation

The ERTMS-related specifications and legislation can be classified into three levels:

1) High-level essential requirements;

2) Legal description of ERTMS main functions, components, and subsystems;

3) Complete technical specifications to achieve interoperability e.g. system requirements,
functional interface specifications, dimensioning rules, performance…

From a hierarchical point of view, the highest-level document related to the interoperability
for the European railway network is the Interoperability Directive (2008/57/EC) (European
Commission 2008). This EC Directive is currently in force, setting out the interoperability
requirements about safety, reliability, availability, health, environmental protection and
compatibility with other subsystems. The EC recommendation (2014/897/EC) (European
Commission 2014) has defined the procedure to put ERTMS into service.

A legal description of ERTMS specification is the Technical Specifications of Interoperability
for Control Command and Signaling (TSI CCS) (European Commission 2016). From the legal
point of view, this EU regulation should be applied directly to all member states without a
transposition to the national law. It defines the essential ERTMS requirements, the functional
and technical specifications of subsystems and interfaces, as well as the necessary methods
and procedures for system assessment.

The complete technical specifications can be found in Annex A of the CCS TSI (European
Union Agency for Railways 2016), which defines a list of several “subsets” of the ERTMS
system requirements specification and functional description of its different constituents,
among which there are two types of documents:

• Mandatory specifications, which must be fulfilled by all ERTMS systems, subsystems
or components to achieve the interoperability. Any deviation from the mandatory

Chapter 2 Railway System and Train Control

29

specifications must be explicitly indicated and its potential impacts on interoperability
will be assessed.

• Optional specifications, which provide additional recommendations for the ERTMS
subsystems definitions.

The System Requirements Specification (SRS) (European Railway Agency 2016a) is one of
the mandatory specifications stated in Annex A of the CCS TSI and is also known as “SUBSET-
026”. It is the main document containing all the detailed technical specifications of the
ERTMS.

The System Requirements Specification is coedited by ERA, UNISIG and EEIG ERTMS Users
Group. The European Railway Agency (ERA) is the ERTMS system authority in charge of the
management, change and production of the ERTMS specifications, and it has been replaced
and succeeded by the European Union Agency for Railways in 2016. The UNISIG is an
international association of signaling companies in the railway industry and an industrial
consortium created to develop the ERTMS/ETCS technical specifications. The ERTMS Users
Group is a European Economic Interest Grouping (EEIG) formed in 1995 by several
cooperating railway operating companies in different countries and is dedicated to technical
and operational matters and guidance on commercial implications and impact (EEIG ERTMS
Users Group 2016).

This thesis work is based on the latest SRS version v3.6.0 published on 15/06/2016. However,
these ERTMS specifications are still being revised.

2.6.3 ERTMS System Composition

A simplified ERTMS/ETCS structure is shown by Figure 2-12. Some parts not considered in
this study (e.g., Euroloop - inductive loop cables communication) are omitted.

Figure 2-12 ERTMS/ETCS System composition

Chapter 2 Railway System and Train Control

30

ERTMS is globally composed of two main parts:

- ETCS, the European Train Control System, shown by the blue parts in Figure 2-12;

- GSM-R (Global System for Mobile Communications – Railways), a GSM-based
radio system providing voice and data communications between the trackside and
trains, as shown by the green part in Figure 2-12.

ETCS can be further divided into ETCS onboard system and ETCS trackside system.

Onboard Equipment

ETCS onboard system interacts with a driver by using a normalized interface DMI (Display
Machine Interface) and can control the train engine and the braking system via TIU (Train
Interface Unit). Each train is equipped with one or more GSM-R mobiles which support the
Euroradio protocol. The ATP (Automatic Train Protection) functions such as braking curve
calculation are processed in EVC (European Vital Computer), which will be further introduced
in §2.6.4 based on different ETCS levels.

Trackside Equipment

The most important trackside devices are RBC (Radio Block Centre) and Eurobalise. These
two devices are also connected to other trackside signaling systems beyond the ERTMS/ETCS
scope (shown as the yellow part in Figure 2-12), such as interlocking system and Traffic
Control Center (TCC).

An RBC manages the trains in a defined area to ensure the safe distance between the
neighboring trains. Bi-directional continuous communication between the trains and the RBC
via GSM-R (for ETCS level 2 or level 3) is established. When a train crosses the border of
two areas managed by different RBCs, it needs a specific operation “RBC handover”.

A Eurobalise is a specific type of balise used in ETCS. Eurobalises are mainly used for
localization purpose and can offer position telegrams to the trains passing over them. Whereas
some transparent data balises can pick up signal aspects from the existing trackside signals via
LEU (Lineside Electronics Unit (LEU) and send them to the trains to realize the cab signaling.
Trackside data can also be sent to trains in this way. The balise telegrams are received by
onboard equipment via BTM (Balise Transmission Module).

2.6.4 ETCS Levels and their Train Control Methods

ERTMS/ETCS is specified in several different application levels (levels for short hereinafter)
to achieve the possible operating compatibilities between trackside and trains. Different levels
require different installations of the trackside/onboard equipment and can support different
train control functions.

Chapter 2 Railway System and Train Control

31

In the latest ERTMS/ETCS System Requirements Specification Baseline 3 (European Railway
Agency 2016a), five levels are defined: level 0, level NTC, level 1, level 2 and level 3. Levels
are downwards compatible for ETCS onboard system, for example, an ETCS-2 equipped train
can also operate on ETCS-1 equipped lines.

Level 0

Level 0 is defined for non-ETCS trackside condition. It applies when an ETCS-equipped train
operates on a non-ETCS railway line.

Level NTC

Level NTC (National Train Control) is newly defined in ERTMS/ETCS Baseline 3 and
replaces the former name STM (Specific Transmission Modules). It is in fact a compromise
for the interoperability of a railway line already equipped with a well-developed national
system (e.g., in France and Germany).

Level 1

Level 1 is for the ETCS-equipped trains to operate on a railway line equipped with Eurobalises
but without RBC and GSM-R. In practice, Level 1 is usually superimposed over an existing
signaling system. In level 1, Eurobalises pick up signal aspects from the existing signaling
system and transmit Movement Authority (MA, permission for a train to move to a specific
location with the supervision of speed) to trains at discrete spots. The onboard computer EVC
calculates the braking curve and continuously monitors the speed.

Due to the spot transmission method, a train must travel over a Eurobalise to obtain or update
its MA. Hence, when a train is at a standstill, it needs another way (e.g., physical trackside
signals) to get the first permission to start its travel. Some infill techniques (Euroloop or radio
or extra balises) are defined to improve the performance in level 1 but are rarely applied.

Figure 2-13 ETCS level 2 schematic

braking

onboard EVC

Eurobalise

DMI
positionspeed

STM

GSM-R Mobile

RBC

MA

position reports

Interlocking

track circuit

TCC

ETCS-2 line

ETCS Equipped Eurocab

Chapter 2 Railway System and Train Control

32

Level 2

Level 2 is used for a railway line controlled by Radio Block Centre (RBC) and equipped with
Eurobalises and Euroradio. It is based on bi-directional continuous data communications
between RBC and trains via GSM-R.

As shown in Figure 2-13, level 2 has the following features:

- No more physical trackside signals required;

- Eurobalises are only used for location reference purpose. Between the Eurobalises, the
train can continuously determine its exact position (e.g., by counting wheel rotations).
It can report its current position to RBC via GSM-R at any time when necessary;

- Movement authorities (MA) can be continuously transmitted from RBC to each train
through GSM-R, together with authorized speed and route data (slopes, curves, etc.).
RBC is responsible for MA generation as it knows from trains their positions and
collects the information from other trackside systems such as the track circuits,
interlocking system and TCC.

- Onboard EVC calculates a speed profile taking into account the received MA and the
train’s characteristics (mass, length, braking performance, etc.). The authorized speed
is continuously displayed to the driver and is also monitored by ATP to apply braking
in case of a speed excess.

- Train detection and train integrity check are performed by trackside equipment.

ETCS Level 2 is a successful application level as it combines many advantages:

- Long-term compatibility with many existing national railway lines in Europe is
guaranteed by the use of Eurobalises;

- Reliable continuous bi-directional trackside - train transmission ensured by the low-
cost and mature radio communication technology GSM-R;

- The possibility to abandon the trackside signals can minimize trackside equipment,
which reduces time and costs for infrastructure implementation and maintenance.

Currently, ETCS level 2 is the most interesting level being applied in Europe and studied
around the world. For this reason, we have chosen level 2 as our major research subject.

Level 3

It is based on the train control methods of level 2, with the following differences:

- Train integrity check is performed by onboard equipment (vs. by trackside in level 2);
- Moving block is applied for track occupation check, track circuit is therefore not

necessary (track circuit may be still used at specific locations, e.g., shunting).

Level 3 is still a future standard that has not yet been implemented.

Chapter 2 Railway System and Train Control

33

Level transitions

Level transitions are an important function in ERTMS/ETCS. For example, a train coming
from level 1 area and entering to level 2 area needs to operate a special procedure for the level
transition. Before the level transition, some conditions need to be satisfied, e.g., the registration
to the GSM-R network, the establishment of the communication with RBC, the MA and the
system configuration parameters received from RBC. With all the conditions satisfied, the
train will operate the transition level 1 to level 2 at a level transition point.

2.7 Conclusion of Chapter 2

This chapter introduces the railway systems and train control systems.

Some basic concepts in railway system are presented to help the reader better understand our
research work.

We introduce the railway control systems in three sections, emphasizing their application in
mainline railway networks, in automated metro systems, and their development trends,
respectively.

The objective of the study of train control systems is to build intelligent rail infrastructure,
intelligent mobility management, smart rail services, and a new generation of railway vehicles
ultimately form the requirements of a seamless high data rate wireless connectivity for future
rail development, as specified in the European “Shift2Rail” project*.

At the end of this section, we are interested in ERTMS/ETCS because it is currently one of
the best train control systems and is widely used not only in Europe but around the world.

The ETCS level 2 is chosen as the target system to support the rest of this study as it can be
regarded as a good example of complex discrete event systems (DES). It is also a safety-
critical system and thus needs to be modeled and validated by appropriate methods, which is
the objective of this thesis.

* http://www.shift2rail.org/

35

Chapter 3 STATE-OF-THE-ART FOR THE
TRAIN CONTROL SYSTEM DEVELOPMENT

3.1 Introduction to Chapter 3

This chapter is the literature review of different approaches to study the development of train
control systems, an example of complex discrete event systems (DES).

§3.2 considers all the phases in the system development life cycle of the train control systems
and introduces various methods applicable for each phase. By introducing and comparing a
large number of approaches we justify our choice of Petri nets as the modeling formalism.

§3.3 concentrates on Petri nets as this formalism has been chosen to model the train control
systems in this study. Different Petri net variants are discussed, where two high-level Petri
nets variants – colored Petri nets (CPN) and well-formed Petri nets (WFN) – are underlined.
For the readers not familiar to Petri nets, the introduction to Petri nets offered in Appendix A
should be helpful to approach to the topic.

§3.4 presents some related research about the Petri nets based modeling methods and will be
focused on CPN and WFN. The discussion and comparison of these two formalisms are also
given to balance the efficient modeling expressivity and the potential to facilitate the
verification phase.

§3.5 conclude this chapter.

3.2 Review of Methods for Train Control Systems

Development

3.2.1 Railway Safety Standards and Formal Methods

3.2.1.1 Railway safety standards

With the increasing complexity and degree of automation of transportation systems, the
development of such a system with guarantee becomes more and more difficult. It also gives
high priority to the system development methods that ensure the safety. In this context, several
safety-related standards have been created for different application domains, as shown in
Figure 3-1.

Chapter 3 State-of-the-Art for the Train Control System Development

36

Figure 3-1 Safety related standards

Among these standards, IEC 61508 is of our particular interest as it serves as the basis for
some domain-specific standards, e.g., railway systems.

In Europe, the European Committee for Electrotechnical Standardization (CENELEC) applies
IEC 61508 to different domains by creating several European standards. The following
standards (CENELEC 2003; CENELEC 2010; CENELEC 2011; CENELEC 2017) are used
as a mandatory for system design and application in the railway industry.

• EN 50126:2017—The specification and demonstration of Reliability, Availability,
Maintainability, and Safety (RAMS)

• EN 50128:2011—Software for railway control and protection systems.

• EN 50129:2003—Safety-related electronic systems for signaling.

• EN 50159:2010—Safety-related communication in transmission systems.

Table 3-1 Safety Integrity Levels (SIL) Definition

SIL
Demand Mode*:

probability of failure on demand (PFD)
Continuous Mode:

probability of failure per hour (PFH)

SIL-4 10−5 ≤ PFD < 10−4 10−9 ≤ PF < 10−8

SIL-3 10−4 ≤ PFD < 10−3 10−8 ≤ PF < 10−7

SIL-2 10−3 ≤ PFD < 10−2 10−7 ≤ PF < 10−6

SIL-1 10−2 ≤ PFD < 10−1 10−6 ≤ PF < 10−5

SIL-0 Safety systems not required to meet a SIL standard are referred to as SIL-0.

* “Demand Mode” is defined in IEC 61508 but is abandoned in EN 50129.

Chapter 3 State-of-the-Art for the Train Control System Development

37

In these safety-related standards, five Safety Integrity Levels (SIL) from SIL-0 (lowest level)
to SIL-4 (highest level) are defined, as shown in Table 3-1.

These safety standards are used as a framework to guide and to estimate the system safety. In
order to provide concrete and appropriate methods and techniques for the systems
development, formal methods are strongly recommended in these safety-related standards to
be applied throughout all the phases of the system development (Boulanger 2014).

3.2.1.2 Formal methods application in the railway industry

Formal methods are a particular kind of techniques based on mathematics and logical
reasoning for the specification, design, and verification of software and hardware systems.
There are a large number of formal methods, and they share some advantages:

- Formal representations have precise semantics which is free of ambiguity;

- Formal models can be mathematically verified and are thus proved to be correct;

- Formal models can be read by computers, which allows the automated or semi-
automated development process.

In fact, the railway industry is always regarded as a leader in the adoption of formal methods.
IEC 61508 “highly recommended” formal methods for SIL-4 systems and functions. In the
railway industry domain, EN 50128 “recommends” formal methods for SIL-1/2 systems, and
“highly recommends” them for SIL-3/4 systems in the following modeling phases:

• Software Requirements Specification (Table A.2 in (CENELEC 2011))

• Software Architecture (Table A.3 in (CENELEC 2011))

• Modeling (Table A.17 in (CENELEC 2011))

Also in the verification and testing phase, formal proof is “recommended” for SIL-1/2 and
“highly recommended” for SIL-3/4 (Table A.5 in (CENELEC 2011)). Formal proof of
correctness of data is “highly recommended” for SIL-3/4 to be used as data preparation
techniques (Table A.5 in (CENELEC 2011)).

Some concrete formal methods, e.g., Timed Petri Nets, are also recommended in EN 50128.

This study will only concentrate on formal methods in the DES development. It is worth noting
that formal methods can also be used in continuous systems or hybrid systems. For example,
Sandia National Laboratories (Department of Energy, USA) has conducted some research
based on the Bay Area Rapid Transit (BART) to design and validate the train acceleration
control function with continuous profiles (Kapur et al. 2001); the German Transregional
Collaborative Research Center - AVACS (Automatic Verification and Analysis of Complex
System) has also studied formal verification by taking the ETCS as an example of hybrid
system (Platzer and Quesel 2009).

Chapter 3 State-of-the-Art for the Train Control System Development

38

Different formalisms appropriate for train control system development (a majority of which
are formal methods) are presented in Figure 3-2 to give the readers a general idea. This figure
also shows the major application phase of each method in a whole development lifecycle.
However, please note that many methods are not dedicated to just one phase.

Figure 3-2 Methods and tools for train control system development

In the following sections of §3.2, different formalisms used in the train control system
development will be introduced:

• §3.2.2 introduces the modeling, verification and validation methods in the system
requirements specification phase;

• §3.2.3 and §3.2.4 present the modeling methods in the system design modeling phase
and the implementation phase, respectively;

• §3.2.5 introduces the verification and validation techniques used in system design
modeling phase and implementation phase;

• §3.2.6 presents some tools that can be used in the whole lifecycle development for train
control systems.

3.2.2 Requirements Specification Methods

In the very early stage of the development of train control systems, it is necessary to collect
the system requirements.

A requirement specifies the capability (which may be performed by a function) the system
should satisfy or the performance condition that the system must achieve (Belloir et al. 2014).

Once the system requirements are defined, the specification documents are obtained.

System requirements specifications are usually written in natural languages (e.g., English,
French) as it is the most intuitive way for engineering applications. These specification

Whole Lifecycle Development Tools (Rodin, SCADE, CPN Tools)

Requirement specification phase

UML, SysML,
PSL; SDL; SCP,
Z notation, B

Method, VDM

Manual
inspection;
Simulation;

Test;
Formal

Verification

System design phase

Petri Nets,
Automata,

UPPAAL, Raise,
AADL

Model Checking;
Theorem
proving;

Computer
Simulation

Implementation phase

SFC,
VHDL,
C, C++

Simulation
Platform;
Test Case

Generation

IBM Rational
Software, RATSY

ProB, CASDL
Tester, PHAVer,

Atelier B

CPN Tools, TINA,
DESUMA,
Supremica

NuSMV, PRISM,
PVS,

UPPAAL-SMC
(for simulation)

Unity PRO
(Schneider),

Step 7 (Siemens)

HIL, RailSim,
OpenTrack;

For Test:
Holodesk

System
development

life cycle

Examples of
Tools and
platforms

Examples of
formalism

Modeling Verification Modeling Verification Implementation Verification

Chapter 3 State-of-the-Art for the Train Control System Development

39

documents are then served as the basis for the following system design and implementation
stages.

Even though these specification documents in natural languages can be inspected by domain
experts against the potential errors, there is no deterministic assurance by such a manual
inspection. Obviously, these documents are also difficult to be validated or to be integrated
into the development lifecycle in an automated way.

In order to guarantee the correctness and the conformity within the specification, formal
methods are strongly recommended for the system specifications. Two stages starting from
the specification documents are usually necessary:

• Specification modeling according to the specification documents;

• Specification verification on the undertaken models.

3.2.2.1 Requirement Modeling Methods and Tools

Among the numerous formal methods created with different characteristics and special
applicability, a lot of them can be used to model specifications. While, very few of them have
been proven to be adapted for modeling railway system specifications.

These methods include Z notation, B-Method, the Vienna Development Method (VDM), OBJ,
etc. These methods adapted for railway specifications can be classified by several groups:

Logic-based methods and especially the B method

There is a large set of formal methods based on the set theory and first-order logic. These
methods are usually used for requirements specification modeling by rewriting the
specifications using well-defined syntax which has mathematically precise semantics. Then,
verification and analysis can be done on the specification models by using logical deduction
reasoning and/or theorem proving methods. A theorem proving process can be manual or
interactive or automated (thus called automated theorem proving in this case).

On the other hand, by an iteration process of the system refinement, some logic-based methods
can finally generate the refined models which facilitate the following system design and
implementation phase.

The first use of formal methods in the French railway industry can be dated to the beginning
of 1980 with the Vital Coded Processor (VCP) technique for the SACEM project, an automatic
train control system demanded by RATP (French: Régie Autonome des Transports Parisiens,
Autonomous Operator of Parisian Transports). Later in 1992, B method was chosen by
Siemens Mobility (known as “Matra Transport International” before 2001) to develop and
validate the automatic train operation system for Paris Metro Line 14 (known as “Météor”
project in history) in order to prevent software design errors and to reach zero-fault (Behm et
al. 1999). During the system development using the B method, 27,800 lemmas had been

Chapter 3 State-of-the-Art for the Train Control System Development

40

proven, 90% of which were proven automatically, and the rest were proven interactively.
Many errors were found during the proving activities while no further bugs were detected in
the testing phase after that. It is thus considered as a good example of formal method
application and has also made B method popular in the development of railway system
requirements specification in France and in Europe.

B method was invented by Jean-Raymond Abrial (Abrial 2005). It describes a system as an
Abstract Machine, which includes a set of states and a set of operations that modify the state
values. An invariant predicate is defined on each state; a pre-condition and a post-condition
are defined on each operation to describe the effect(s) of the operation on state values. When
executing an operation in a state, it must be proved that both the pre-condition of operation
and the invariant predicate are satisfied, and the state after the execution satisfies both the
post-condition and the invariant predicate. When it comes to the refinement, it must be proved
that the required system properties are preserved. Thus, a specification is transformed into a
set of proof obligations, which can be later verified in the theorem provers.

The successor of B method is Event-B (Abrial 2010) which was later invented by the same
author Abrial with the extension of event support. Today, B method and Event-B are both
widely used in the requirements specification engineering of modern train control system. In
(Abo and Voisin 2013), B method is used to model the data validation process in the trackside
system of CBTC, as a result, some mistakes in the requirements specification are found and
corrected; in (Reichl et al. 2016), Event-B model is used for the verification and validation of
a railway interlocking system.

Other similar formal methods usually used in the railway industry include VDM (Vienna
Development Method), Z notation and OBJ, which are invented before the B method.

In (Hansen 1994), VDM is used to model and validate the principles and concepts of the
Danish railway interlocking systems together with the simulation by ML.

Besides the requirements specification modeling, Z notation is also able to model the data and
operations. In (Faber et al. 2007), Z notation is used to model the complex data types defined
in the requirements specification and to describe the Radio Block Centre (RBC) in ETCS.

A study based on the railway interlocking system specification models and validates the
moving block concept using both Z notation (Zafar 2009; Zafar et al. 2012) and VDM (Zafar
2006).

Process calculus based methods

Process calculus based formal methods pays attention to concurrent behaviors and are
appropriate for modeling the interactions between different components or simultaneous
processes.

Chapter 3 State-of-the-Art for the Train Control System Development

41

CSP (Hoare 1978) was invented by Hoare in 1978 for distributed and concurrent software
design. It can be used in railway control domain to model and verify some results caused by
concurrent processes. In (Faber et al. 2007), CSP is used to model two concurrent train control
processes in ETCS: the train operation control and the emergency message treatment.

CSP can also be used with a hybrid extension Hybrid CSP. In (Zou et al. 2013), several
operational scenarios defined in the system requirements specification of Chinese Train
Control System (CTCS) are modeled with Hybrid CSP to support the uncertainty analysis of
the mode transitions.

Some other similar formal methods based on process calculus include: Calculus of
Communicating Systems (CCS) (Milner 1980), which is useful for evaluating the qualitative
correctness such as deadlock or livelock; LOTOS (ISO 1989), an ISO (International
Organization for Standardization) standard of a formal description method based on the
temporal order of observational behavior. The difference between these methods can be found
in (Fidge 1994).

Property-based methods

A common property-based language is Property Specification Language (PSL), initially
developed by Accellera as a hardware description language (HDL) to specify properties and
assertions in hardware designs. PSL subsumes the linear temporal logic LTL-style (Pnueli
1977) operators with the aim of both the ease of expression and the enhancement of its
expressive power.

Besides the hardware design, PSL can also be used in requirements specification in industry.
The requirements specification modeled by PSL consist of:

• Formal models defining the system behaviors;

• A set of assertions defining the obligations of the system behaviors;

• A set of properties defining the allowable behaviors of the system.

The models built with PSL can be simulated directly with RATSY (Requirements Analysis
Tool with Synthesis) (Bloem et al. 2010). An example could be found in (Zhao et al. 2012),
where the mode transitions rules in the requirements specification of CTCS are translated into
PSL models and are then verified with the requirement analysis tool RATSY.

Description based methods

A basis of description based methods is Specification and Description Language (SDL), a
formal language defined by the International Telecommunication Union–Telecommunication
Standardization Sector (ITU-T) as recommendation Z.100 (ITU-T 2016).

Chapter 3 State-of-the-Art for the Train Control System Development

42

SDL was initially used for telecommunication systems and was mainly designed to specify
and describe the functional behavior of systems. It is able to describe the structure, behavior,
and data of a system.

SDL has a Graphic Representation (SDL/GR) and a textual Phrase Representation (SDL/PR),
and both of them are equivalent to the same underlying semantics. SDL/GR has an intuitive
expression which supports the object-oriented and top-down developing approaches and is
convenient for engineers to use, while SDL/PR can serve as the format of exchange models
for the SDL modeling tools such as SDL Suite.

In (Yuan et al. 2011), functional requirements for the onboard system of CTCS is modeled by
SDL with three levels:

• System level: interface definition and onboard data exchange format;

• Module level: functions, interactivities, and data flow of each module;

• Function level: implementation of the functions.

Issad has extended SDL to SDLg (Issad et al. 2014) for the modeling of complex systems
architectures, and then further extended SDLg to Scola, a Scenario Oriented Language (Issad
et al. 2015) to facilitate the modeling of the complex systems such as CBTC in a more natural
and intuitive way similar to UML.

UML based methods

Unified Modeling Language (UML) is a general-purpose, developmental, modeling language
for industrial applications. It was adopted as an ISO standard (ISO/IEC 2005) and has become
the facto specification language for most software design, especially for those using the object-
oriented approach.

Different from the formal methods already introduced, UML is a semi-formal method. Even
though it has a well-defined syntax, some types of UML diagrams (especially some static
descriptive diagrams, e.g., class diagram) have elements provided in prose and do not have an
inherent, unambiguous and mathematically precise semantics. As a result, a UML model can
be computer-readable, but is difficult to be computed in a deterministic way due to the lack of
completely formalized semantics.

On the other hand, there exist methods that can formally interpret some UML diagrams (e.g.,
State Diagrams) into a formal language to model the requirements specification (Hu 2008).

Some other trials to formalize UML propose to use formal descriptions on some UML
diagrams to support formal verification. In (Chiappini et al. 2010), a constraint language CNL
(Controlled Natural Language), which is based on a subset of PSL and which mixes LTL,
regular expressions, first-order logic, and hybrid aspects, is proposed together with a subset of
UML to model the ETCS, where:

Chapter 3 State-of-the-Art for the Train Control System Development

43

• UML Sequence diagrams are used to model the interaction between the specified
objects (e.g., trackside system and onboard system) in a sequential order;

• UML State Machines are used to describe the state change of the Movement Authority
(MA) management.

In (Jabri et al. 2009), UML is used to model the ERTMS specifications. An automatic
transformation from UML State Machines and UML Sequence diagrams into Predicate
Transition Petri Net (PrT-nets, details can be found in Appendix A) is also developed with the
aim of the generation of test scenarios.

The advantage of UML based methods is the versatile expressive power inherited from the
diversified charts and diagrams to model the structure and behavior of a complex system. It is
also worth noting that in UML, we have the ability to create a new Domain-Specific Language
(DSL) thanks to the flexibility of UML. A good example is Systems Modeling Language
(SysML), defined on a subset of UML 2.0 with some extensions using UML's profile
mechanism to meet the requirements of systems engineering. A DSL based on UML for the
train control field is possible to be proposed by applying some constraints and extensions to
the standard UML.

The weakness of a UML based method is often caused by the lack of a completely formal
expression. Although there exist formalization methods, the constraints to apply these methods
will no doubt limit the application of UML and weaken its advantages introduced above.

Comparison of different specification design methods

Table 3-2 Comparison of requirement modeling methods and supporting tools

Methods Behavior Safety Real-time Advantages Support Tools

UML based √ × √ Graphical, intuitive Rational Rose,

Property based √ √ × Simulation support RATSY

Description
based

√ × ×
Top-down

approach support
Rational SDL

Suite

Process
calculus based

√ √ √
Concurrence

support
PAT

Logic based √ √ √
Refinement

support, automated
theorem proving

Atelier B

Rodin (Event-B)

Legend: √ – the method has the feature × – the method does not have the feature

Chapter 3 State-of-the-Art for the Train Control System Development

44

The advantage of UML based methods is the versatile expressive power inherited from the
diversified charts and diagrams to model the structure and behavior of a complex system. It is
also worth noting that in UML, we have the ability to create a new Domain-Specific Language
(DSL) thanks to the flexibility of UML. A good example is Systems Modeling Language
(SysML), defined on a subset of UML 2.0 with some extensions using UML's profile
mechanism to meet the requirements of systems engineering. A DSL based on UML for the
train control field is possible to be proposed by applying some constraints and extensions to
the standard UML.

The weakness of a UML based method is often caused by the lack of a completely formal
expression. Although there exist formalization methods, the constraints to apply these methods
will no doubt limit the application of UML and weaken its advantages introduced above.

 compares the aforementioned requirements specification methods in the aspects of their
supports for behavior modeling, safety feature and real-time feature. The advantages and
supporting tools for each method are also listed.

3.2.2.2 Requirements Verification and Validation

Requirements specification is the basis for the following system development process.
However, due to the huge size and complexity of train control systems, it is somehow
inevitable to have some defect or safety risks in the system requirements specification.

In this context, the adequate verification (i.e., the fulfillment of properties such as
completeness and consistency) and validation (i.e., the correspondence of the system model
with the customer needs) of requirements specification is thus necessary to prevent errors from
propagating into later development phases where it will be far more expensive to correct a
fault derived from the requirements specification.

In the requirements specification phase, the verification techniques are used to check the
correctness, consistency and completeness.

We introduce several approaches to take on the requirements specification verification.

Requirements inspection

A requirements inspection is also called a requirement review or walk-through. It is usually a
meeting where the stakeholders, domain experts, and system developers are together to walk
through the requirements specification, page-by-page, line-by-line, to ensure that the
specification documents represent the need of every aspect and do not contain errors,
depending on the their experience. For large-scale systems, there are some requirement
management tools such as IBM Rational RequisitePro to facilitate the requirement
organization and inspection

Chapter 3 State-of-the-Art for the Train Control System Development

45

A requirement inspection is relatively easy to conduct and thus widely applied in the industry.
However, the drawback is also obvious: one cannot obtain a formal proof by this experience-
based process. Even with the help of requirement management tools, the inspection process is
always a human labor and cannot be automated by computer.

Model-based requirements validation

Since the requirements specification written in natural language can only be validated
manually, which may contain human errors, a more reliable means of requirements validation
could be to build a model of the requirements and then to verify the model using appropriate
model-based techniques.

Different kinds of models are used according to the different properties to validate,

- Mental model is used in (Lee et al. 2014) to guarantee the good understanding of the
stakeholders’ needs. Through this method, it is possible to result in products that better
satisfy customers’ perspective.

- Prototype model is usually used in Agile Development to help the customers validate
the requirements by the interactions with a prototype other than the lecture of the
documents. In (Aceituna et al. 2011), a requirement validation technique, Virtual
Requirements Prototype (VRP), is proposed. On the one hand, it avoids the physical
prototyping which is costly and time-consuming; on the other hand, it allows
stakeholders to validate the requirements through interaction with the virtual model.

- Scenario-based model is used in (Aceituna et al. 2010) to provide an interactive and
systematic way to validate a requirements model. The approach transforms the
requirements into three components: a set of scenario questions, a set of constraint
patterns, and a set of inference constraints. A Scenario Question Query Engine (SQ2E)
can query the model by executing the scenarios.

Formal requirements verification methods

Formal verification methods can be used when the requirements specification is presented
using formal models. According to the different theories on which the formal methods are
based, different formal verification methods are used to achieve a logical verification.

Model-Driven Engineering (MDE) based transformation is often used in the formal
verification of requirements specification. On the one hand, it can realize the model
transformation between certain formal models to facilitate the verification. For example, in
(Olderog 2012), The requirements models of the modular language CSP-OZ-DC are
transformed into Transition Constraint Systems (TCS) by using the Phase Event Automata
(PEA). As the result, the Abstraction Refinement Model Checking (ARMC) tool can be put in
practice to perform the automated model checking.

Chapter 3 State-of-the-Art for the Train Control System Development

46

On the other hand, MDE technology may also allow the formal verification of several
properties on semi-formal models and thus bridge the gap between the semi-formal modeling
and the formal verification (Liu and Tang 2011).

The formal verification techniques can avoid the ambiguity in the requirements specification,
provide a complete coverage and a high-level assurance. Some formal methods can be highly
automated. These features make it appropriate to use the formal verification in the in the
development of safe-critical systems. However, the formal methods themselves cannot
guarantee that the formal model and formal verification correctly and completely express the
final users’ intention. The application of formal methods requires the experts who know well
not only the formal methods and tools, but also the domain knowledge as well as the systems
to be verified.

Train control systems are finally implemented in a complicated operational environment.
Formal methods are powerful in verifying the requirements specification consistency but are
usually less expressive to consider the uncertain factors and external events. As a result, one
may meet some difficulty to verify several properties considering the system’s behavior in a
complicated environment.

Another obstacle to apply the formal methods is the famous “combinatorial explosion”
problem. Lots of formal verification techniques provide the formal guarantee by analyzing all
the possible system states. As the railway control system is a complex and concurrency system,
the system states can be quite large or even close to infinity. The combinatorial explosion
encountered during the formal verification also restricts its application range.

Table 3-3 further compares the verification methods in the requirements specification phase.

3.2.3 System Design Modeling

In the very ideal conditions, we hope that the requirements specification model could be
transformed into an implementation mechanism. For the moment, the MDE techniques are not
able to conduct the direct model transformation from requirements specification model to an
implementation method. In practice, we need to build the system design models based on the
requirements specification in the system design phase. Currently, most system design models
are still built manually and are thus error-prone.

In this context, it is necessary to have some appropriate methods and techniques to build and
verify the system design models. In this section, we introduce some system design methods
appropriate for train control systems, among which we can see that the formal methods are
also widely used in the system design phase.

From an engineering point of view, the system design models can be classified into two
categories:

Chapter 3 State-of-the-Art for the Train Control System Development

47

- the structural models, static models to describe the system hierarchy and composition;

- the behavior models, dynamic models to describe the behaviors of the system.

It is worth noting that this classification is not absolute. Most modern methods can support
both the structural and behavior modeling formalisms to build the complex system models.

3.2.3.1 System Structural Modeling

Architecture Analysis & Design Language (AADL)

AADL is proposed by SAE International (Society of Automotive Engineers, US) as an SAE
standard AS5506 (SAE 2004). It is a language to describe the architecture of the software
system and the embedded, real-time, and performance-critical systems, especially in the
automotive and aerospace applications.

An AADL architecture describes the properties and interfaces of two types of components:

• execution platform components: processors, buses, memory, etc.;

• application components: application and software modules.

An AADL model mainly describes how a complete system is integrated from its components.
The performance-critical aspects of the whole system can thus be analyzed by the assembly
of the individual components. In (Li and Zhang 2015), several AADL models are introduced
for ATP, ATO, and ATS in CBTC, emphasizing the definition of some complex types.

Besides its advantages in structural modeling, AADL can also be used to model the system
behaviors via AADL behavior model defined in the annex. In (Ahmad et al. 2015), AADL is
used to model the behaviors of the CTCS with Movement Authority (MA) scenario.

An open-source platform OSATE (Open Source AADL Tool Environment) can be used for
modeling, analysis and code generation proposes (The SEI AADL Team 2005).

UML Based structural diagrams

The class diagrams and package diagrams in UML are widely used to build structural models
in system design. Class diagrams are used in architecture or hierarchy design while package
diagram is used to define the entities. As a variant and an extension of UML, SysML an better
describe the system structure with its Block Definition Diagram and Internal Block Diagram.

Lots of recent studies can be found about modeling CBTC system structure using UML class
and package diagrams (Yang et al. 2008; Di Claudio et al. 2014).

3.2.3.2 System Behavior Modeling

In contrast to the structural models which describe the static aspects of a system, the behavior
models represent how the system works and interacts.

Chapter 3 State-of-the-Art for the Train Control System Development

48

Automata-based methods

Methods based on automata theory or, more specifically, finite-state-machine (FSM) are
widely used in engineering. An FSM can make a transition from one state to another in
response to the current state and external inputs. For complex system modeling, some
automata extensions are also used, for example:

- Hybrid Automata (Henzinger 2000) is used in (Bu et al. 2011) to model the Movement
Authority (MA) management between the trains and the RBC;

- Timed Automata (Alur and Dill 1994) is used in (Khan et al. 2016) to model a
computer-based automated interlocking system.

There are many modeling tools based on automata theory, where one of the most popular tools
is UPPAAL (Bengtsson et al. 1995), jointly developed by Uppsala University in Sweden and
Aalborg University in Denmark. UPPAAL is a modeling and verification tool based on timed
automata. In (Sacha 2008), dependable train controller models are originally built by UML
State Machine and then conversed to the timed finite state machine. The latter is then checked
with UPPAAL and finally transformed to PLC code in STEP 7 via automatic code generation.

Besides UPPAAL, automata models can be built in many tools, such as Simulink (by using
Stateflow), SCADE Suite.

Petri nets based methods

Petri nets combine a graphic expression and a formal notation to model systems with
concurrent behaviors. In most large-scale and complex DES, concurrency is very common and
must be seriously treated at different levels of abstraction and in both software and hardware
design. Petri nets based methods have been widely used in the complex and concurrent DES
design. A large variety of Petri nets applications can be found in the issue of the modeling and
verification of railway systems (Bjørner 2003).

After more than fifty years’ development of Petri net theory, there have been lots of Petri net
variants and tools. This thesis focuses on the modeling and verification of train control systems
using colored Petri nets. More details about Petri net based methods can be found in §3.3, §3.4
and Appendix A.

Probability-based methods

Probability-based methods can be used to model stochastic and/or dynamical systems. The
train control system behavior mainly depends on the current system state other than the history
states, so researchers often employed models based on Markov chain or Markov decision
process (MDP) as the foundation of the system behavior modeling, which allows a new
decision of the next state to be made according to the current state. Probability-based methods

Chapter 3 State-of-the-Art for the Train Control System Development

49

make it possible to consider all the paths of the dynamic system behaviors, which makes the
behavior model more accurate and complete.

Probability models can be built by general mathematical tools, e.g., MATLAB. However, the
ability for probability support can also be introduced by creating an extension of the existing
methods in order to benefit from the two formalisms. An example could be stochastic Petri
nets (SPN), whose transitions can fire with a probabilistic delay determined by a random
variable (Marsan 1988).

Probability-based modeling methods are often aimed at some kinds of quantitative
performance analysis, e.g., the probability analysis of failure. There are some statistical
verification tools for stochastic models, e.g., Plasma Lab (Boyer et al. 2013; Legay et al.
2016), a statistical and stochastic model checking platform invented by INRIA (the French
Institute for Research in Computer Science and Automation), PRISM (Kwiatkowska et al.
2002), a probabilistic model checker to estimate and compare the prototype designs and
evaluate the probabilistic risk of hazards.

In (Zhou and Zhao 2015), MDP is used with the modeling of the non-deterministic and
stochastic behaviors of Chinese Train Control System level 3 in its physical behavior models,
normal behavior models and fault behavior models, based on which the quantitative safety
analysis is conducted.

While, our study is mainly concentrated on the qualitative safety properties of train control
systems and thus does not use probability-based methods.

UML based behavior diagrams

The UML/SysML diagrams that describe system behaviors include Interaction Diagrams
(Sequence Diagram and Collaboration Diagram), State Diagram, Activity Diagram, etc.

For example. UML/SysML Sequence Diagrams can be used to describe the system interaction
by scenarios in the system modeling phase of CBTC (Yang et al. 2008), UML State Machines
can be used to represent the controller logic (Di Claudio et al. 2014).

3.2.4 Implementation Methods

The implementation phase is a process that removes freedom and choice from the system
design model and transforms the abstract system representation into a concrete and
deterministic representation (Sgroi et al. 2000). However, the system behavior of the
implementation should be consistent with the abstract representation (in requirements
specification phase and system design phase).

Different implementation methods and formalisms can be used according to the different
application fields.

Chapter 3 State-of-the-Art for the Train Control System Development

50

Software system implementation

Software systems are implemented with different software programming languages to
implement functions and algorithms. There are hundreds of programming languages, among
which C, C++, Java, Python are most popular according to TIOBE Index (TIOBE 2018).

Hardware implementation

Electronic hardware, such as integrated circuits, are often described with a hardware
description language (HDL). The most common HDLs include VHDL (VHSIC Hardware
Description Language, standardized as IEEE 1164) (IEEE 1993) and Verilog (standardized as
IEEE 1364) (IEEE 2006).

These HDLs might be similar to software programming languages but are more specialized in
the treatment of the digital or analog signal.

System-level implementation

As we have just introduced before, the implementation methods for software systems and
those for hardware system vary a lot. However, a complex DES such as train control system
is usually a mixed system with hardware and software components. In order to implement both
the software components and the hardware components in a uniform way, several methods are
available to offer a system-level implementation.

SystemC (standardized as IEEE 1666) (IEEE 2012) and SystemVerilog (standardized as IEEE
1800) (IEEE 2017) are examples of system-level implementation methods. On the one hand,
these languages usually include support for modeling at hardware levels, e.g., the register
transfer level (RTL) and the gate-level; on the other hand, they support object-oriented
programming and provide application programming interfaces (APIs) to cooperate with other
programming languages.

Simulink® is a graphical programming environment developed by MathWorks and is
integrated within the MATLAB environment. Thanks to its graphical block diagram library,
Simulink also allows implementing and simulating the software and hardware components at
the system level and is widely used in automatic control domain.

A weakness of the system-level implementation methods is that they are often defined for
simulation purpose and may be difficult to support various formal analysis methods.

Industrial implementation

In the industrial application, Programmable Logic Controller (PLC) is widely used as it offers
high reliability, ease of programming and process fault diagnosis. PLC has become the most
powerful change to occur in the electronics world for factory automation (Kissell 2002).

Chapter 3 State-of-the-Art for the Train Control System Development

51

PLC is a solid-state device, designed to operate in noisy industrial environments and can
perform all the logic functions which are previously implemented using electro-mechanical
relays, drum switch, mechanical timers and counters (Bhuyan and Ahasanol Kabir 2010).

The standard IEC 61131-3 (IEC 2003) specifies five languages that can be used in PLC
programming:

• Sequential function chart (SFC), a graphical language which allows the programming
for sequential and parallel control processing;

• Ladder diagram (LD), a graphical programming language commonly used in PLC;

• Function block diagram (FBD), a graphical programming language;

• Structured text (ST), a textual programming language;

• Instruction list (IL), a textual programming language.

Based on this standard, a wide range of PLC manufacturers offer different Integrated
Development Environment (IDE). Step 7 (by Siemens) Unity PRO (by Schneider), OpenPCS
(by Infoteam Software AG) are some toolsets offering PLC hardware configuration,
communications, programming, testing, commissioning, operational and/or diagnostic
functions during the implementation of the industrial systems using PLC (John and
Tiegelkamp 2001).

PLC is widely used in railway control systems, especially for interlocking systems. In (Sacha
2008), the train controllers is implemented using SFC code for PLC in STEP 7 via an
automatic code generation.

3.2.5 Verification Methods and Tools

3.2.5.1 Testing

Testing might be the most common verification method in the industrial application as it is
intuitive, easy to conduct and appropriate to all kinds of systems.

In railway control domain, test cases and test sequences are used to make the testing process
more controllable. A good example could be the ETCS mandatory specification subset-076
(European Railway Agency 2016b; European Railway Agency 2016c; European Railway
Agency 2016d), which defines the functional tests to be used in the validation of the technical
conformity and functionality for the ETCS onboard subsystem.

A test case is a basic testing unit for a feature (function point) defined in the system
requirements specification. A test case contains the system start conditions, the step-by-step
procedure description, the expected system reactions and the end conditions. It is possible to
have several different test cases for a single feature as a feature usually needs to be tested in
different situations.

Chapter 3 State-of-the-Art for the Train Control System Development

52

A test sequence concatenates several test cases to a scenario that can be executed during an
actual test. Some additional operations might also be added as the transition between the test
cases to satisfy the start conditions of the next test case to be tested, as shown in Figure 3-3.

Figure 3-3 Test cases and test sequences for ETCS

As the testing of railway control systems is time and cost consuming to provide a full coverage
of all the test cases, a good design of test sequences can help save testing time, expense and
human labor. There are studies about the automatic generation of test sequences to improve
the test efficiency on the premise of a good test coverage (Zhang et al. 2014).

The limit of a testing is exposed by the famous quote from Edsger Wybe Dijkstra, “Testing
can prove the presence of errors, but not their absence”, which means that not all the mistakes
can be discovered by testing. Another shortcoming of the testing is that the errors found in a
testing process are usually too late and hence costly to be corrected.

3.2.5.2 Simulation

When a test is conducted in a simulated environment (often conducted in a laboratory) before
the system deployment in reality, it is also called a simulation (test).

A simulation can use a virtual hardware or software environment in a laboratory to observe
the system behaviors in normal and specified conditions. Simulation can be conducted before
the product is finally implemented and allows the verification of the system in standard
situations, extreme situations and even in failures.

Nowadays, simulation is widely used in industrial engineering because it is easy to conduct,
especially for complex DES with too many or even infinite states, where formal verification
always meets some obstacles.

Compared to testing, the simulation may offer a larger verification coverage by a well-
designed simulation planning. However, just as the testing, a simulation can neither offer the
religious guarantee that all possible cases have been considered. For this reason, the simulation
should be regarded as a solution when formal verification cannot be executed.

Similar to the test sequences, simulation models are used to test the target systems. The Model
Driven Engineering (MDE) techniques make it possible to automatically generate the
simulation models for certain kinds of control systems (Prat et al. 2017).

Test Case 1 End-State

Test Sequence

State 1 State 2 State 3 Test Case n测试案例1测试案例1
Test Case

2,3,4
State Transition Operation
(No test cases are executed) State m…Initial-State

Chapter 3 State-of-the-Art for the Train Control System Development

53

3.2.5.3 Model checking

Model checking is a formal verification method to verify the behavioral properties of systems.
Model checking can be automated and is thus widely used in industrial applications. Based on
a special model of the considered system, a model checker tool allows verifying the given
requirements and properties by an exhaustive search of the possible system states. The model
checker provides the answer "true" if the model satisfies the property. On the contrary, the
answer is "false" with the counterexample(s) to be given.

Usually, a traversal of all the system states is needed therefore the model checking method
requires enough memory and time. For some models and properties, a state pruning can be
pre-proceeded in order to fight against the combinatorial explosion problem. More details of
model checking will be introduced in §5.2.1.

3.2.5.4 Theorem proving

Theorem proving is a formal verification method based on deductive reasoning. It requires
less memory than model checking and has a relatively higher flexibility to support different
verification methods. However, its proof procedures usually need to be written manually
before they can be checked by the theorem prover or via the interaction verification process.

Due to the low automation degree, the theorem proving is nowadays used rather in research
study than in industrial application. One of the most common theorem provers is the Coq Proof
Assistant (Bertot and Castéran 2004) developed by INRIA, France. A good example of its
application is CompCert (Leroy 2009), a trustworthy C compiler already verified using
theorem proving with Coq to guarantee the semantic consistency between the source code and
the object code. In (Yang et al. 2011), a group used several years to find the bugs in the existing
and widely used C compilers (e.g., VC, GCC) and the result has shown that only in the verified
parts of CompCert they did not find any bugs. Jean-Francois Monin also verified several
protocols and algorithms using Coq (Monin 1996; Courant and Monin 2006; Deng and Monin
2009; Deng et al. 2011; Shi et al. 2011).

3.2.5.5 Equivalence checking

Equivalence checking (Kuehlmann and Eijk 2002) is another formal verification method.
Given two Boolean functions, the equivalence checking can tell whether the two are
functionally equivalent.

This method is often used in electronic design automation (EDA), e.g., the development of
digital integrated circuits. In industrial application, a new design can be equivalence-checked
together with a golden model that has already been verified to formally prove that the two
representations have exactly the same behavior.

Chapter 3 State-of-the-Art for the Train Control System Development

54

3.2.5.6 Abstract Interpretation and Invariant Method

Abstract interpretation is a theory of sound approximation of the system semantics. It allows
obtaining some information about the system semantics via a formal static calculation other
than performing a full execution. An example could be the invariant methods of Petri nets.

This method extracts some abstract values to analyze the system behaviors other than the
concrete values via an exhaustive study of all the system states. It can thus alleviate the
combinatorial explosion. However, the abstract interpretation method can only analyze very
limited system properties that are able to be presented by the abstract values. It does not offer
much help for the analysis of concrete behaviors of systems.

3.2.5.7 Quantitative Analysis

The operation of train control systems in the real environment is complex as there exist
different kinds of uncertainty such as the communication loss. In order to verify the non-
functional requirements (e.g., usability, real-time performance, see §5.2.3), quantitative
analysis methods are applied via two different analysis techniques: probability analysis and
statistical analysis.

Probability Analysis

Probability analysis is applied on formal models. In (Zhou and Zhang 2015), security analysis
based on a Bayesian network is conducted on a train control center (TCC) model. In (Xu et al.
2009) and (Hongli Zhao et al. 2009), stochastic reward net (SRN) and stochastic automation
networks (SANs) are used, respectively, to analyze the reliability and availability for the data
communication system (DCS) between trains and trackside equipment in CBTC system.

Statistical Analysis

Besides the probability analysis based on the mathematical and formal models, statistical
model checking (SMC) (Bu et al. 2011) can also be used together with hypothesis testing to
quantitively evaluate the system behavior. For example, in (Gu et al. 2016), the UML activity
diagrams are extended to accurately capture and quantify the overall timing behaviors of the
complex systems. An onboard subsystem of CBTC is modeled as a case study and the
quantitative reasoning can be performed by statistical model checker UPPAAL-SMC, which
demonstrates the effectiveness of this analysis methods.

The statistical analysis can also be performed with simulation, which needs relatively less
memory cost and is easy to be applied on the large-scale and complex systems.

3.2.5.8 Comparison of Verification and Validation Methods

Table 3-3 compares several verification ad validation methods.

Chapter 3 State-of-the-Art for the Train Control System Development

55

3.2.6 Whole lifecycle tools

Many formal methods that we have introduced can contribute to different phases in the train
control system development to support their requirements specification, system design,
verification and validation. However, most of these methods are suited to a particular phase in
the system development lifecycle. Since the different formal methods are based on different
theories, the transition between the formal models in different phases could sometimes be an
obstacle.

For example, even though that the requirements specification can be modeled and verified by
some formal methods, the transformation into the system design model is usually conducted
manually, which needs a lot of human labor by the experts with a good understanding of both
the domain knowledge and the modeling techniques.

There might not exist a particular method which can cover all the modeling and verification
in all the phases, but we have found some tools that could apply some formal methods to cover
the most the phases and can thus be called “whole lifecycle tools”.

3.2.6.1 Rodin Based on Event-B

As the B method was proven to be useful in the maturity assessment of railway control domain
(Behm et al. 1999), there are many studies about using B method and its successor Event-B to
assist the system development of railway control. The use of B method / Event-B is extended
from requirements specification modeling to other system development phases. Meanwhile,
there are also tentative results of using model checking methods to verify its models besides
the inherent theorem proving approach.

The toolset Rodin offers a basis of a User Interface (UI) and a proving engine for modeling
and verification with Event-B. It is also compatible with several plug-ins for visualization,
modeling and verification purposes. For all these reasons we regard Rodin as a whole lifecycle
development tool based on Event-B.

More examples of the system development using Event-B and Rodin can be found in
(Romanovsky and Thomas 2013).

The limit of these methods is that the B method is more appropriate to model the requirements
specification. Even though there are methods to extend its applicable scope, the development
needs to begin from a well-written formal requirements specification in Event-B. As for the
verification, the model checking method is less well supported compared to the theorem
proving, even though the former is more applicable in the industrial domain.

56

Table 3-3 Comparison of verification and Validation Methods

Type Method Phase(s) Principle Reliability Automation Expressivity C. E.

Traditional

Inspection R. / D. Reading Low Low

High Low Testing All phases General Middle Middle

Simulation D. / I. Execution Middle High

Formal

Model checking D. / I. Traversal High High High High

Theorem Proving R. / D. Reasoning High Low Low Middle

Abstract Interpretation R. / D. Calculation High Low Low Low

Equivalence checking D. / I. Logical analysis High High High High

Quantitative
Analysis

Probability Analysis R. / D. Stochastic analysis High Middle Middle High

Statistical Analysis D. / I. Execution Middle High High Low

Abbreviations: R. – Requirements Specification; D. – System Design; I. – Implementation; C.E. - Combinatorial Explosion

Chapter 3 State-of-the-Art for the Train Control System Development

57

3.2.6.2 SCADE Suite

SCADE Suite (Safety-Critical Application Development Environment) is a whole lifecycle
and high-quality system design solution of a model-based development environment for
critical embedded software.

With the native integration of the well-defined SCADE language based on the formal language
Lustre, SCADE Suite supports different representations of the target system, e.g., a graphical
and hierarchical Safe State Machine (SSM) which can be mixed with the data flow, arrays and
iterators. SCADE Suite offers a complete toolchain to undertake the prototyping, modeling,
simulation, verification, optimization, and certified code generation for embedded systems
controls, logic and algorithm designs.

In (Cho et al. 2011), ATP and ATO functions for CBTC onboard systems are designed with
SCADE. Some functions are then tested using the SCADE simulator. As for implementation,
C code is generated by KCG, a C-code generator certified by the EN 50128 standard.

However, as a commercial software developed by Esterel Technologie, a subsidiary of Ansys,
Inc., SCADE Suite is very expensive and needs to be paid each year. As an academic research,
the focus of this thesis is more oriented to the free or open source tools which can guarantee a
reliable support for the long-term system development such as that of railway systems.

3.2.6.3 CPN Tools based on Petri nets

Compared to the B-Method which is appropriate for sequential software, Petri nets have been
successfully applied for concurrent systems (Choppy and Petrucci 2004) thanks to its
combination of a graphic representation and a formal and mathematical base. The expressivity
of Petri nets is dramatically increased by the use of high-level Petri nets or colored Petri nets.

CPN Tools (Ratzer, A. et al., 2003) is a free software and a powerful tool based on colored
Petri nets theory. It is especially useful for industrial application as its graphical representation
allows the data flow and the control flow to be visualized, making it much easier for domain
experts to understand system behavior.

CPN Tools combines the colored Petri nets theory with several extensions, e.g., the
programming language ML (Jensen 1998), to gain an enhanced expressivity.

CPN theory offers:

- Petri net primitives of parallelism useful for the synchronization of concurrent
processes, which is always a drawback of automata-based methods;

- high-level abstraction and hierarchy, which makes it possible to model large-scale and
complex DES;

- the well-developed Petri net theory, which is supported by many tools and methods
and is still being enriched.

Chapter 3 State-of-the-Art for the Train Control System Development

58

ML programming language provides:

- a definition of complex data types;

- the manipulation of data values via sophisticated functions and algorithm;

- the access to the integrated model checker and other CPN Tools functions.

As a whole lifecycle development tool, CPN Tools offers:

- a graphical environment to construct CPN models;
- a simulator with debugging (e.g., stop conditions) for the testing and validation;
- the generation of full state space, partial state space and condensed state space
- the standard analysis and ASK-CTL (Cheng A. et al., 1996) based model checking,

which can be conducted to achieve a functional verification (She et al. 2014);
- the support of PNML (Petri Net Markup Language), which makes it possible to reuse

the models in other tools;

All these features make CPN Tools a powerful tool with which we can design, simulate and
analyze the models based on colored Petri nets during the whole development lifecycle for
distributed and parallel systems where concurrency is an important characteristic.

In the requirements specification phase, the system requirements represented in CPN models
is subjected to analysis methods to prove properties (ISO/IEC 2004). In the system design
phase, the execution of CPN models allows the testing, simulation, and performance analysis
on prototypes or design models before implementation. Meanwhile, in the implementation
phase, code generation is also possible from CPN models (Mortensen 2000; Espensen et al.
2009; Kristensen and Westergaard 2010; Simonsen and Kristensen 2014).

More introduction to CPN Tools can be found in §3.3.3.4

3.2.6.4 RAISE development method

RAISE stands for Rigorous Approach to Industrial Software Engineering. It is a formal method
originally created by Anne Haxthausen in Technical University of Denmark (Haxthausen et
al. 1993). RAISE provides facilities for the use of formal methods in industrial software
development. It supports the system design modeling from RSL, the RAISE Specification
Language and is suitable to model concurrent and distributed systems such as train control
systems (Haxthausen and Peleska 2000; Madsen and Bæk 2005).

In (Haxthausen and Peleska 2000), a distributed railway control system is designed and
verified with RAISE. Derived from abstract requirements, the concrete safety specification is
generated and its soundness and completeness are validated. In order to reduce the complexity,
a domain model and a controller model are used to describe the system behavior. The domain
model represents the physical system in absence of control, meanwhile, the controller model

Chapter 3 State-of-the-Art for the Train Control System Development

59

serves as a monitor of the domain model to decide whether it is safe for a train to move or for
a point to be switched based on a safety-related control mechanism.

For the moment, two RAISE tools are developed:

• eden: the original core toolset for SUN workstations which requires the user to have
both a deep knowledge of programming and the RSL (Dandanell et al. 1993) ;

• rsltc: a RAISE tool for Windows and Linux which is designed to be used from the
command line or from an EMACS editor. After 2013 an Eclipse plugin eRAISE for
rsltc is available but with limited support for only an essential subset of the rsltc
functions, e.g., syntax and type checking, conversion to LaTeX, translation to SML,
execution of test cases (Fasie 2013).

In a word, the RAISE tool is promising but for the moment less matured compared to the other
whole lifecycle development methods to be applied in the industrial domains.

3.2.6.5 Comparison of whole lifecycle tools

The four whole lifecycle tools introduced in this section are compared in Table 3-4.

Table 3-4 Comparison of whole lifecycle tools

Tools Modeling Verification Major limits

Rodin Event-B Theory proving
Need to begin from formal

specifications

SCADE Suite SSM + Lustre
Interactive simulation,
Symbology verification

Commercial software

RAISE RSL
Theory proving,

Informal verification
Limited tool support

which is not graphical

CPN Tools CPN + ML
Simulation,

Model checking
Combinatorial explosion

in model-checking

3.3 Petri Nets

On the basis of the previous discussion, we have chosen Petri nets as the formalism to model
and verify the train control systems in this study.

In this section, with a classification of Petri nets variants we introduce two important Petri nets
variants, CPN and WFN, that we used in this study to build the models. CPN Tools is also
emphasized as it is the main modeling and verification tool used in this thesis.

Chapter 3 State-of-the-Art for the Train Control System Development

60

3.3.1 Classification of Petri Net Variants

There have been many Petri nets variants and new ones are still being created. In this section,
we discuss several common classes of Petri nets, especially those of high-level Petri nets. We
classify the Petri nets variants by different dimensions as follows.

3.3.1.1 Vertical dimension: Abstraction and hierarchy of Petri nets

A tendency to create the new Petri nets variants is to achieve a more condensed and “high-
level” description of systems while preserving analysis abilities by maintaining an equivalence
with ordinary Petri nets, called the underlying Petri net (Haddad and Pradat-Peyre 2004).

In fact, we can classify the Petri nets variants and PN-like formalisms into four levels as shown
in Table 3-5, according to their abstract degree. The classification from level 1 to level 3 is
inspired by (Bernardinello and Cindio 1992) and (Rozenberg and Engelfriet 1998).

The first level is the most fundamental and is especially well-suited for a thorough
investigation of the foundational issues of concurrent systems. The basic models in this level
are Elementary Net Systems. However the EN systems are not very suitable for practical
applications because the size of the model explodes even for simple but nontrivial applications
(Rozenberg and Thiagarajan 1986; Rozenberg 1987; Thiagarajan 1987).

Table 3-5 Petri nets in four abstract levels

PN level Main characteristics Examples

1
(elementary)

A place is marked 0 or 1 (Boolean).
Elementary Net

Systems

2
(ordinary)

Place markings are integers (ℕ) of
anonymous tokens.

P/T-nets

3
(high-level)

Places are marked by multiset*of
colored and structured tokens.

Pr/T-nets; CP-nets

4
(hierarchical high-level)

A set of HLPN on which a parent-
child relationship is defined.

Hierarchical CPN
(CPN Tools)

The second level is the ordinary Petri nets model, e.g., the Place/Transition-nets. Compared to
the EN systems, a P/T-nets model can be regarded as a net that folds some repetitive features
of EN systems model in order to get more compact representations.

The third level is the high-level Petri nets (HLPN) introduced in §A.4, where some algebraic
and logical concepts are used to generate more compact nets.

* A formal presentation of “multiset” can be found in §3.3.2.

Chapter 3 State-of-the-Art for the Train Control System Development

61

Finally, the fourth level uses the concept of hierarchy (Huber et al. 1991; Buchholz 1994) to
create a hierarchical high-level Petri net (HHPN). HHPN further “folds” the high-level Petri
nets in a new dimension. If we regard the folding from ordinary PN to HLPN as a “flat”
folding, the abstraction used in HHPN is somehow vertical by the reuse of sub-nets.

It is worth noting that the “folding” of Petri nets to higher level itself is entirely backward
compatible with the original Petri nets. That is to say, a Petri net in a higher level in Table 3-5
can always be “unfolded” to a lower-level model while maintaining exactly the same modeling
semantics and behaviors.

HHPN are suited to model complex systems. However, the hierarchy can be implemented by
different techniques in order to substitute the subnets. For example, in (Bouyakoub and Belkhir
2008) the substitution is based on place, while in (Mascheroni 2010) the path concept is
introduced to represent the hierarchy. In this study, the CPN Tools models are hierarchical
models where the substitution transitions are used to replace the subsets in the higher level.
More modeling details in CPN Tools will be further introduced later.

It is worth noting that even though the hierarchy concept has Significant results when it is used
with high-level Petri nets, it can also be applied with ordinary (low-level) Petri nets.

3.3.1.2 Horizontal dimension: Extensions of Petri net

An important motivation for the introduction of new Petri nets classes is to enhance the
expressive power of Petri nets models. Before a new revolutionary net would appear, most
variants are obtained by adding extensions to the basic Petri nets to enhance the expressivity
in a particular aspect according to the different applications.

Some examples of extensions are:

• Time constraints (Camurri et al. 1991; Reinaldo and del Foyo 2012);

• Stochastic properties (Balbo 2001) for performance evaluation;

• Reset arc, inhibitor arc and capacity limit (Bedők 2016), which add limits to the
basic firing rules;

• Prioritized transitions (Guan et al. 1998; Westergaard and Verbeek 2011) which
changes the token-game semantics;

• Algebraic Petri-nets (Best et al. 2001) and Concurrent OO Petri Nets (Agha et al.
2001) based on the former, both enable the use of algebraic and more data types;

• More exertions can be found in (He and Murata 2005).

The definition and application of extensions will facilitate the modeling process. However, the
execution, simulation, and analysis of these Petri nets with extensions always require
specialized tools that are compatible with these extensions.

Chapter 3 State-of-the-Art for the Train Control System Development

62

3.3.1.3 Ease of theoretical analysis

The use of high-level Petri nets facilitates the modeling phase of complex DES as the models
can be compact and well-structured. However, it also brings the burden to the analysis phase.

Most analysis methods have been designed for ordinary Petri nets (Place/Transition-nets). The
analysis of other Petri nets variants is faced with two problems.

- For high-level Petri nets which are obtained via abstraction and especially those with
hierarchy, although one can always apply the general analysis methods after an
unfolding process, the application of these methods is at risk of combinatorial
explosion problem during the unfolding process;

- For a Petri net class created with some extensions (which is usually the case to achieve
the modeling facility in some specialized areas), the extensions may bring some
difficulties to unfold and analyze the high-level models using the traditional methods.

In short, the enhancement of the modeling power usually increases the difficulty for analysis.

In this context, some high-level Petri nets variants with the aim of “ease of analysis” are
proposed with some modeling constraints on the basic of HLPN, in order to have a better
compatibility with the (formal) analysis methods, which is somehow on the contrary of the
import of extensions.

The advantage of these variants is that they are designed to bring a good eligibility for some
direct analysis or reduction methods on the high-level Petri nets models.

A good example is the well-formed colored Petri nets (WFN) (Chiola et al. 1991a), where
different constraints are defined on the colorsets (domains) for places, on the guards for
transition, and on the functions for arc-inscriptions. More details are introduced in §3.3.2.4.

Compared to the basic high-level Petri nets, the WFN, on the one hand, allows the common
high-level modeling for general purpose to have a compact model; on the other hand, ensures
the accessibility to a series of formal analysis methods and are free-tuned to allow efficient
use of various analysis tools. (Brgan and Poitrenaud 1995; Haddad et al. 1995).

Another similar example of high-level Petri net for ease of analysis could be Symmetric Nets
(Haddad et al. 2009; Colange et al. 2011).

3.3.2 Colored Petri Net (CPN)

In this section, we introduce a Petri net variant which is broadly used today — Colored Petri
Nets. The notation used in this section can be referred to (Jensen and Kristensen 2009a).

It is worth noting that there exist different variants of colored Petri nets, which is quite
confusing (a detailed and interesting discussion can be found in §A.5). In order to avoid the

Chapter 3 State-of-the-Art for the Train Control System Development

63

confusion in this thesis, we tacitly use the abbreviations and notations as follows if they appear
without a clear illustration by the context:

• CP-nets, for the original version of “colored Petri nets” in (Jensen 1981a);

• CPN, for the popularly spread graphical representation of “Colored Petri Nets” in
(Jensen and Kristensen 2009a);

• CPN (enhanced with CPN Tools), for the CPN implementation by CPN Tools
with CPN ML, hierarchy, and other extensions supported by this tool.

3.3.2.1 Multiset

Multiset needs to be defined before we can understand the CPN definition.

A multiset is a generalized type of set with multiple occurrences of the set elements. Let 𝑆𝑆 =
{𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, ⋯ } be a non-empty set. Then a multiset over 𝑆𝑆 is a function 𝑚𝑚 ∶ 𝑆𝑆 → 𝑁𝑁 mapping
each element 𝑠𝑠 ∈ 𝑆𝑆 into a non-negative integer 𝑚𝑚(𝑠𝑠) ∈ 𝑁𝑁, i.e., the coefficient of 𝑠𝑠 in 𝑚𝑚.

In other words, a multiset 𝑚𝑚 can be written in the form of a sum:

 � 𝑚𝑚(𝑠𝑠)`𝑠𝑠 = 𝑚𝑚(𝑠𝑠1)`𝑠𝑠1 + +𝑚𝑚(𝑠𝑠2)`𝑠𝑠2 + +𝑚𝑚(𝑠𝑠3)`𝑠𝑠3 + + ⋯
�∈�

++
 (3-1)

We use a special character – “grave accent” character (`) – to explicitly indicate the relation
between the coefficient and the set element. This expression is also a convention in Kurt
Jensen’s Colored Petri Nets related research and is used by some software like CPN Tools.

The operator “+ +” means the addition operation of multisets (to distinguish from numbers).

The notation 𝑆𝑆�� is an infinite set containing all multisets over S and ∅�� , the empty multiset.

Other details and operations of multiset can be found in (Jensen and Kristensen 2009a).

3.3.2.2 Syntax of CPN

There are different versions of definitions of CPN. In this thesis, we refer to the definition 4.2
in (Jensen and Kristensen 2009a).

Definition 3-1 A non-hierarchical Colored Petri Net is a 9-tuple 𝐶𝐶𝐶𝐶𝑁𝑁 = <
𝐶𝐶, 𝑇𝑇, 𝐴𝐴, 𝛴𝛴, 𝑉𝑉, 𝐶𝐶, 𝐺𝐺, 𝐸𝐸, 𝐼𝐼 > which contains:

• Net structure definitions:

- 𝐶𝐶 is a finite set of places;

- 𝑇𝑇 is a finite set of transitions, and 𝐶𝐶 ∩ 𝑇𝑇 ≠ ∅;

- 𝐴𝐴 ⊆ 𝐶𝐶 × 𝑇𝑇 ∪ 𝑇𝑇 × 𝐶𝐶 is a set of directed arcs;

Chapter 3 State-of-the-Art for the Train Control System Development

64

• Type and variable definitions:

- 𝛴𝛴 is a finite set of non-empty colorsets;

- 𝑉𝑉 is a finite set of typed variables and ∀ 𝑣𝑣 ∈ 𝑉𝑉, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝑣𝑣] ∈ 𝛴𝛴;

• Net inscription definitions

- 𝐶𝐶 ∶ 𝐶𝐶 → 𝛴𝛴 is a colorset function that assigns a colorset to each place;

- 𝐺𝐺 ∶ 𝑇𝑇 → 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸�
* is a guard function that assigns a guard to each transition

𝑡𝑡 ∈ 𝑇𝑇 such that 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝐺𝐺(𝑡𝑡)] = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵;

- 𝐸𝐸 ∶ 𝐴𝐴 → 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸� is an arc expression function that assigns an arc expression
to each arc 𝑎𝑎 ∈ 𝐴𝐴 , such that 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝐸𝐸(𝑎𝑎)] = 𝐶𝐶(𝑇𝑇)�� , where 𝑇𝑇 is the place

connected to the arc 𝑎𝑎;

- 𝐼𝐼 ∶ 𝐶𝐶 → 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸∅
† is an initialization function that assigns an initialization

expression to each place 𝑇𝑇 ∈ 𝐶𝐶 such that 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝐼𝐼(𝑇𝑇)] = 𝐶𝐶(𝑇𝑇)��

3.3.2.3 Semantics of CPN

CPN Markings

A CPN marking is a function 𝑀𝑀 which maps each place 𝑇𝑇 into a multiset of tokens 𝑀𝑀(𝑇𝑇) ∈
𝐶𝐶(𝑇𝑇)��, where the token values must belong to the colorset of the place.

Variables

The scope and lifetime of variables in CPN are bound to a firing of a transition. That is to say,
the considered variables are those that appear in the guard or in an arc expression of an arc
connected to the transition. The set of variables of a transition 𝑡𝑡 is denoted by 𝑉𝑉𝑎𝑎𝑉𝑉(𝑡𝑡) ∈ 𝑉𝑉.

An example is shown in Figure 3-4, where 𝑉𝑉𝑎𝑎𝑉𝑉(𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠) = {𝑡𝑡𝑉𝑉, 𝑇𝑇𝐵𝐵𝑠𝑠}.

Figure 3-4 CPN variables of a transition

* 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸� is an expression where all variables must belong to 𝑉𝑉.
† 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸∅ means that an initialization expression is not allowed to contain any variables.

1 1`Trai

Chapter 3 State-of-the-Art for the Train Control System Development

65

Bindings and binding elements

A binding of a transition 𝑡𝑡 is a function 𝑏𝑏 that maps each variable 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎𝑉𝑉(𝑡𝑡) into a value
𝑏𝑏(𝑣𝑣) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝑣𝑣]. All the bindings for a transition 𝑡𝑡 can be denoted as a set 𝐵𝐵(𝑡𝑡).

A binding is always written in angle brackets, e.g., a binding of transition Pass in Figure 3-4
could be 〈𝑡𝑡𝑉𝑉 = 𝑇𝑇𝑉𝑉𝑎𝑎𝑇𝑇𝑇𝑇(1), 𝑇𝑇𝐵𝐵𝑠𝑠 = 1〉.

A binding element is a pair (𝑡𝑡, 𝑏𝑏) which combines a transition 𝑡𝑡 to a binding 𝑏𝑏 ∈ 𝐵𝐵(𝑡𝑡), which
assigns values for the variables in the surroundings of a transition 𝑡𝑡, i.e., 𝑉𝑉𝑎𝑎𝑉𝑉(𝑡𝑡).

All the binding elements of a transition 𝑡𝑡 is denoted as a set 𝐵𝐵𝐸𝐸(𝑡𝑡). And the set of all binding
elements in a CPN is denoted as 𝐵𝐵𝐸𝐸.

Enabling and occurrence of a single binding element

The rules for enabling an occurrence of a single binding element in CPN are based on
evaluations of guards and arc expressions, which are:

• 𝐺𝐺(𝑡𝑡)〈𝑏𝑏〉, the evaluation of a guard expression for transition 𝑡𝑡 with the binding 𝑏𝑏;

• 𝐸𝐸(𝑎𝑎)〈𝑏𝑏〉, the evaluation of the arc expression on an arc 𝑎𝑎 with the binding 𝑏𝑏;

• 𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉, the evaluation of the arc expression on the arc from place 𝑇𝑇 to transition 𝑡𝑡,
with the binding 𝑏𝑏. If such an arc does not exist, then 𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉 = ∅��;

• 𝐸𝐸(𝑡𝑡, 𝑇𝑇)〈𝑏𝑏〉, the evaluation of the arc expression on the arc from transition 𝑡𝑡 to place 𝑇𝑇,
with the binding 𝑏𝑏. If such an arc does not exist, then 𝐸𝐸(𝑡𝑡, 𝑇𝑇)〈𝑏𝑏〉 = ∅��.

A binding element (𝑡𝑡, 𝑏𝑏) ∈ 𝐵𝐵𝐸𝐸 is said to be enabled in a marking 𝑀𝑀 iff the following two

conditions are fulfilled:

• 𝐺𝐺(𝑡𝑡)〈𝑏𝑏〉 = 𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇;

• For all 𝑇𝑇 ∈ 𝐶𝐶, 𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉 ≤ 𝑀𝑀(𝑇𝑇)*.

When a binding element (𝑡𝑡, 𝑏𝑏) ∈ 𝐵𝐵𝐸𝐸 is enabled in a marking M, it may occur, which will then
lead to a new marking 𝑀𝑀′ where for all 𝑇𝑇 ∈ 𝐶𝐶,

 𝑀𝑀′(𝑇𝑇) = (𝑀𝑀(𝑇𝑇) − −𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉) + + 𝐸𝐸(𝑡𝑡, 𝑇𝑇)〈𝑏𝑏〉. (3-2)

Enabling and occurrence of step

We define a step 𝑌𝑌 ∈ 𝐵𝐵𝐸𝐸�� as a non-empty and finite multiset of binding elements.

* The operator (for integer) “≤” is overloaded to mean “smaller than or equal” for multisets.

Chapter 3 State-of-the-Art for the Train Control System Development

66

A step 𝑌𝑌 ∈ 𝐵𝐵𝐸𝐸�� is said to be enabled in a marking M iff the following two conditions are

fulfilled:

• For all (𝑡𝑡, 𝑏𝑏) ∈ 𝑌𝑌, 𝐺𝐺(𝑡𝑡)〈𝑏𝑏〉 = 𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇;

• For all 𝑇𝑇 ∈ 𝐶𝐶, ∑ 𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉(�,�)∈���

++ ≤ 𝑀𝑀(𝑇𝑇)*.

When a step Y ∈ 𝐵𝐵𝐸𝐸�� is enabled in a marking M, it may occur, which will then lead to a
new marking 𝑀𝑀′ where for all 𝑇𝑇 ∈ 𝐶𝐶,

 𝑀𝑀′(𝑇𝑇) = 𝑀𝑀(𝑇𝑇) − − ∑ 𝐸𝐸(𝑇𝑇, 𝑡𝑡)〈𝑏𝑏〉 + +(�,�)∈���

++ ∑ 𝐸𝐸(𝑡𝑡, 𝑇𝑇)〈𝑏𝑏〉(�,�)∈���

++ . (3-3)

Some notations about enabling and occurrence of step with markings are:

• 𝑀𝑀1
�
→ 𝑀𝑀2 , which means that step Y occurs in marking 𝑀𝑀1 and leads to marking M2;

• M1 → 𝑀𝑀2, which means that marking M2 can be reached from marking M1 by the
occurrence of an unknown step;

• 𝑀𝑀1
�
→ , which means that step Y is enabled in marking M1 (and leads to an unknown

marking).

Occurrence sequence

A finite occurrence sequence (of step) is defined as:

 𝑀𝑀1
�1
→ 𝑀𝑀2

�2
→ 𝑀𝑀3 ⋯ ⋯ 𝑀𝑀�

��
→ 𝑀𝑀�+1 (3-4)

where n is said to be its length and n ≥ 0.

In (3-4), all markings presented in the sequence are reachable from M1. Each marking is also

reachable from itself by an occurrence sequence of length 0.

An infinite occurrence sequence (of step) is defined as:

 𝑀𝑀1
�1
→ 𝑀𝑀2

�2
→ 𝑀𝑀3 ⋯ ⋯. (3-5)

We denote ℛ(M) the set of markings reachable from M.

3.3.2.4 CPN Tools and CPN Extensions

The latest developments of colored Petri nets can be classified into two dimensions:

* ∑ ��

++ means the sum over a multiset.

Chapter 3 State-of-the-Art for the Train Control System Development

67

- the improvement to colored Petri net theory;

- the versatility and practicability to apply colored Petri nets in complex industrial
systems design.

CPN Tools (Ratzer et al. 2003) is developed in Eindhoven University of Technology and is
aimed at the practical use of CPN in industrial applications. CPN Tools was developed from
Design/CPN, the first computer-based tool for editing, simulation and state-space analysis of
colored Petri nets.

CPN Tools integrates the CPN theory with several extensions and features to widen its
application in the industry. These extensions and features include:

• CPN ML (Jensen and Kristensen 2009b).

• Hierarchy in Colored Petri Nets (Huber et al. 1991);

• Time concept;

• Transition priority;

• Some special types e.g., a queuing place (syntactical sugar for the list construction,
hence it does not alter the compatibility for simulation or state space analysis).

In our research, CPN Tools is used to build and analyze the train control system models. CPN
Tools is efficient to be used in the modeling of large-scale and complex DES mainly thanks
to the integration of CPN ML and the hierarchy.

CPN ML

CPN ML is based on the famous functional programming language Standard ML (Appel and
MacQueen 1991; Milner et al. 1997). At the beginning of the development of CPN Tools,
CPN ML was offered only to help specify types and net inscriptions, e.g., to declare colorsets,
variables, and functions. In this context, the introduction of CPM ML was not an extension as
it did not affect the general definition of CPN, which is independent of a concrete syntax and
semantics for net inscriptions. Besides CPN ML there exists a number of other tools that use
some other languages or methods to define types and net inscriptions.

However, we have noticed that the current version of CPN Tools has integrated much more
features from ML language to enhance the expressive power of the models built using CPN
Tools. For example, several types such as list type and their operations are not natively
supported in CPN theory; ML code segment can be used to control the occurrence of
transitions; file I/O operations make the nets’ behavior dependent on the environment… From
this point of view, the use of CPN ML may affect the behavior of CPN and should thus be
regarded an extension to CPN.

Chapter 3 State-of-the-Art for the Train Control System Development

68

A simple CPN ML code example shown in Code 3-1 are used to an integer colorset SPEED
(and two variables s, max of this type), an index colorset TRAINNO, an enumeration colorset
MODE, a product colorset MODExMODE (might be used to define a mode transition),
together with a function Alert(SPEED, SPEED) whose output is a Boolean value according to
the parameters s and max.

Code 3-1 Example of CPN ML declaration in CPN Tools
 1 colset SPEED = INT;
 2 var s,max: SPEED;
 3 colset TRAINNO = index T with 0..5;
 4 colset MODE = with

NP|SB|PS|SH|FS|LS|SR|OS|SL|NL|UN|TR|PT|SF|IS|SN|RV;
 5 colset MODExMODE = product MODE * MODE;
 6 fun Alert (s: SPEED, max: SPEED) = (s>max);

Hierarchy in CPN Tools

The basic idea behind the hierarchical CPNs is to allow the construction of a large model by
using a set of sub-models in a well-defined and reusable way. This is similar to the situation
in which a programmer builds a large program by means of a set of program modules.

CPN Tools can support up to ten different hierarchical levels. The support of hierarchy brings
several advantages to the modeling with CPN Tools:

- The structure of a hierarchical CPN model is a better choice especially for the modeling
of complex and large-scale DES. Without hierarchical structuring feature, such a
model should have to be drawn as a single (very large) network, which might become
incomprehensible for the engineers;

- To reuse of the subnets makes the modeling more efficient for a system that consists
of several components of the same type and thus allows a compact presentation. Each
instance of a subnet will have its own markings which are totally independent of the
markings of the other instance.

CPN Tools is also an open-source tool. For the users who want to further develop their own
Petri net tools or extensions based on the CPN Tools’ features and model format, they can also
use Access/CPN (Westergaard and Kristensen 2009), another tool which has the similar
functions as CPN Tools but offers the programming interfaces for developers and researchers.
Some examples of Access/CPN application include:

• ASAP (Westergaard, Evangelista, et al. 2009), a state space analysis platform
compatible with CPN Tools models;

• Automatic code generation (Espensen et al. 2009; Kristensen and Westergaard 2010);

Chapter 3 State-of-the-Art for the Train Control System Development

69

• Co-simulation of CPN models and SystemC programming language (Westergaard,
Kristensen, et al. 2009)

• Integration of CPN models and process mining (Van Zelst et al. 2015)

3.3.3 Well-Formed Petri Nets and Symbolic Reachability Graph

3.3.3.1 The Trade-off between Expressiveness and Analysis Capability

As we have introduced in §3.3.1.3, a difficulty to choose a good formalism for the modeling
and analysis of complex and large-scale DES is that a formalism with higher abstraction level
and more extensions is usually more expressive but less friendly for the analysis and
verification (Haddad et al. 2009).

For example, The CPN Tools models obtain an excellent expressiveness via very loose
restraints on the types and functions, which is implemented with the help of ML programming
language in CPN Tools. However, the analysis of these models is limited to the generation of
state space. And the state space of these models may only be generated by CPN Tools, which
can handle the ML definitions and functions. The reduction techniques and other analysis
methods proposed for general CPNs are hence difficult, or even impossible to apply, which
hampers its analysis capabilities.

In order to obtain a good trade-off between the expressiveness and the analysis capability,
Regular Nets (Haddad 1987) have been proposed as a restriction on CP-nets (Jensen 1981a).
With some constraints on the colorsets and on the arc expressions, it allows the computation
of flows, net reductions and the application of symbolic reachability graph (SRG), which is
normally more condensed than the whole state space and maintains the possibility for an
exhaustive analysis (Chiola et al. 1997).

Well-Formed Petri Nets (WFN) were defined as an extension of Regular Nets to support more
general classes like those in CPN. Thus, WFN can also be regarded as CPN that satisfies a set
of syntactical constraints. These constraints are well designed so that the modeling power of
WFN is said to be the same as the general CPN in spite of the use of all these constraints
(Haddad et al. 1995). In (Chiola et al. 1991b; Chiola et al. 1993), it is pointed out that any
general CPN can be represented by an equivalent WFN model with the same underlying
structure with a rewrite of the color class definitions and color function expressions in a more
explicit and parametric form according to the basic constructs provided by the WFN
formalism.

In some more recent research, Well-formed Petri nets are also called Symmetric Nets (SN)
with some subtle differences. For example, several variants such as Symmetric Nets with Bags
(SNB) are proposed in Symmetric Nets (Haddad et al. 2009). In this thesis, we introduce WFN
as a representative of this family of Petri net classes.

Chapter 3 State-of-the-Art for the Train Control System Development

70

WFN is useful to model a system where several instances (with different identifiers) of a same
entity share the same behaviors, e.g., the dining philosophers problem (Ras 2016). When it
comes to the verification phase, WFN allows the generation of SRG to support more efficient
analysis algorithms based on the symbolic markings, which will be introduced later in
§3.3.3.3.

While, according to our experience, WFN is still less convenient in practical use to model the
large-scale and communication-based system with complex behaviors, such as the modern
train control systems. In (Chiola et al. 1993), it was also said that “in practical modeling this
translation (from CPN to WFN) is hardly needed and most (if not all) CPN models published
in the literature can be directly represented as WFN even without exploiting several powerful
formalisms provided by WFN, e.g., arc-labeling functions with predicate guards.” We believe
that this statement is no longer true faced with the complexity of the practical modeling for
the modern communication-based systems. Thus, in this study, we also propose several
modeling patterns to facilitate the modeling of certain DES behavior in WFN (see §4.6).

3.3.3.2 Informal introduction to well-formed Petri nets

Since WFN is in fact a restriction on colored Petri nets (CPN) that we have introduced in
§3.3.2. We will introduce the definition of WFN informally by emphasizing the differences
(i.e., the constraints) compared with CPN. The complete formal definition can be found in
(Chiola et al. 1991a; Chiola et al. 1991b; Chiola et al. 1993).

We first introduce some basic elements necessary for the WFN definition.

Basic Color Classes and Color Domains

Similar to CPN, a colored token in WFN incorporates some information. The “data type”
associated with each place and each transition can be a basic color class or a color domain.

A basic color class is usually finite and defined by enumeration of its elements, as shown by
the first line in (4-9). A neutral color is depicted as ε, maintaining the compatibility with
uncolored Petri nets.

CLASS TRAIN = < t1, t2, t3, … , t10 >;

CLASS MSG = < m1, m2, m3 >∪< ack >
DOMAIN TRAINxMSG = < TRAIN, MSG >.

(3-6)

A basic color class can be partitioned into a conjunction of several static subclasses. As shown
by the second line in (4-9), a basic color class MSG is partitioned into two subclasses (which
can be denoted by 𝐷𝐷���,1 and 𝐷𝐷���,2). Each static subclass usually defines a group of
elements that share some common property. The terminology static subclass is used as
opposite to dynamic subclass, which is another concept to define the symbolic marking in the
analysis of WFN using SRG.

Chapter 3 State-of-the-Art for the Train Control System Development

71

A basic color class may be ordered or unordered. An ordered color class allows the use of the
successor function which returns the next element. The details will be introduced later.

A color domain is a Cartesian product of several basic color classes (or, it can contain only
one basic color class) as shown by the third line in (4-9). A color domain can be assigned to a
transition or a place.

The color domain of a place 𝑇𝑇 is denoted ∁(𝑇𝑇). Similar to CPN, the marking of place 𝑇𝑇,
denoted as 𝑀𝑀(𝑇𝑇), represents a multiset on ∁(𝑇𝑇) according to the marking 𝑀𝑀.

The color domain of a transition 𝑡𝑡 is denoted ∁(𝑡𝑡). It is a combination of all the color domains
of its input and output places. A color 𝑐𝑐 ∈ ∁(𝑡𝑡) implies how the transition 𝑡𝑡 is fired. It is thus
called a firing instance, which is similar to a (single) binding element in CPN (cf. §3.3.2). The
relation between a firing instance of a transition 𝑡𝑡 and the tokens consume/generated of its
input/output places is defined through the functions on the arc expressions, which will be
introduced later.

Color functions

We denote the family of basic color classes of a WFN by C = {𝐶𝐶1, … , 𝐶𝐶ℎ, 𝐶𝐶ℎ+1, … , 𝐶𝐶�} where:

• 0 ≤ ℎ ≤ 𝑇𝑇,

• ∀ 𝑇𝑇 ≠ 𝑗𝑗 → 𝐶𝐶� ∩ 𝐶𝐶� = ∅,

• {𝐶𝐶1, … , 𝐶𝐶ℎ} are non-ordered classes and {𝐶𝐶ℎ+1, … , 𝐶𝐶�} are ordered classes

A transition color domain can be denoted as ∁(𝑡𝑡) = 𝐶𝐶1
�1 × ⋯ × 𝐶𝐶�

�� where 𝑇𝑇� is the times of
appearances* of a basic color class 𝐶𝐶� in ∁(𝑡𝑡). Correspondingly, a color 𝑐𝑐 ∈ ∁(𝑡𝑡) is denoted as
𝑐𝑐 = 𝑐𝑐1

�1 × ⋯ × 𝑐𝑐�
��.

Three kinds of basic functions on such a transition color domain ∁(𝑡𝑡) are defined:

- The identity function is denoted 𝐸𝐸�
�(𝑐𝑐) = 𝑐𝑐�

�, which selects the 𝑗𝑗�ℎ instance (1 ≤ 𝑗𝑗 ≤
𝑇𝑇�) of a color element of 𝐶𝐶�. The identity function is also the basis of the following
two basic functions. In practical use, an identity function is usually depicted by a
variable (e.g. 𝐸𝐸, 𝑌𝑌) for short;

- The successor function ⊕ 𝐸𝐸�
� returns successor† of the color element 𝐸𝐸�

�, supposing
that the basic color class 𝐶𝐶� is an ordered class (i.e., h < i ≤ n). Given a variable X =

𝐸𝐸�
�, the successor function ⊕ Xi

j can also be denoted as X + 1;

* Note that if 𝑇𝑇� = 0, 𝐶𝐶� does not appear.
† An ordered color class is always circular, so the successor function applied to the last color
element returns the first one.

Chapter 3 State-of-the-Art for the Train Control System Development

72

- The diffusion function All(𝐸𝐸�
�) returns the multiset of all the colors elements of a basic

color class 𝐶𝐶� (if 𝐶𝐶� is not partitioned) or a static subclass D�,� (if 𝐶𝐶� is partitioned and

𝐸𝐸�
� ∈ D�,�).

Color functions are formal sums of guarded functions built by standard operations (linear
combination, composition, etc.) on the three basic functions.

Predicates and Guards

An atomic predicate may identify two variables ([X=Y]), compare a variable to another using
successor function ([𝐸𝐸 =⊕ 𝑌𝑌]), or restrict a variable within a static subclass D ([X∈D]).

There are two scenes where the guards are used in WFN, i.e., the guarded transitions and the
guarded functions. A guard is defined as a logical combination of atomic predicates.

Till now we have introduced the WFN formalisms from the three aspects above. Obviously,
most of the techniques used in WFN are designed for the system symmetry. However, the
static subclass partition and the use of guards also allow the representation of some asymmetric
behaviors, which has strengthened the modeling power of WFN.

3.3.3.3 Symbolic Reachability Graph (SRG)

We use an example to illustrate the application of SRG.

Figure 3-5 shows a system comprised of 𝑇𝑇 identical processes (𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇�) in parallel,
where each process has three local states (A, B, and C), the system may have 3� global states.

Figure 3-5 A system of n identical 3-states processes

If the 𝑇𝑇 processes are identical up to renaming, the state graph of such a system usually
exhibits considerable symmetry. Taking an example of the system where 𝑇𝑇 = 2, its state space
M contains 9 states shown in the first row of Table 3-6. A global state A{𝑇𝑇1}, B{𝑇𝑇2} represents
the state where the process 𝑇𝑇1 is in its local state A while process 𝑇𝑇2 is in the local state B.

Two states A{𝑇𝑇1}, B{𝑇𝑇2} and A{𝑇𝑇2}, B{𝑇𝑇1} can be related by applying a permutation (1, 2)
which changes the process index 1 to 2 and 2 to 1. The states after applying the permutation
(1, 2) is shown in the second row of Table 3-6. It is easy to find that the transition of applying

Chapter 3 State-of-the-Art for the Train Control System Development

73

the permutation on M has resulted in M again, which means that the permutation (1, 2) is an
automorphism of M.

Table 3-6 Example of state space reduction with symmetry

State Permutation (𝑇𝑇1, 𝑇𝑇2) applied Aggregated state

A{𝑇𝑇1, 𝑇𝑇2} A{𝑇𝑇1, 𝑇𝑇2} A{2}

A{𝑇𝑇1}, B{𝑇𝑇2} A{𝑇𝑇2}, B{𝑇𝑇1}
A{1}, B{1}

A{𝑇𝑇2}, B{𝑇𝑇1} A{𝑇𝑇1}, B{𝑇𝑇2}

A{𝑇𝑇1}, C{𝑇𝑇2} A{𝑇𝑇2}, C{𝑇𝑇1}
A{1}, C{1}

A{𝑇𝑇2}, C{𝑇𝑇1} A{𝑇𝑇1}, C{𝑇𝑇2}

B{𝑇𝑇1, 𝑇𝑇2} B{𝑇𝑇1, 𝑇𝑇2} B{2}

B{𝑇𝑇1}, C{𝑇𝑇2} B{𝑇𝑇2}, C{𝑇𝑇1}
B{1}, C{1}

B{𝑇𝑇2}, C{𝑇𝑇1} B{𝑇𝑇1}, C{𝑇𝑇2}

C{𝑇𝑇1, 𝑇𝑇2} C{𝑇𝑇1, 𝑇𝑇2} C{2}

The states that are equivalent by applying a permutation are said to be symmetric and can be
aggregated to an abstract state, as shown in the last row of Table 3-6. Aggregated states imply
the general distribution of tokens rather than the concrete tokens with identifiers. The state
space is thus reduced based on symmetry.

The use of symmetry to construct a reduced reachability graph of high-level Petri nets was
first introduced in (Huber et al. 1986) with the symmetries defined by the modeler and the
same firing rules as the ordinary Petri nets. Then the automatic detection of symmetries was
introduced to colored Petri nets in (Junttila 2003) to achieve automatic symbolic verification.

In (Chiola et al. 1997), the construction of symbolic reachability graph (SRG) was proposed
on well-formed Petri nets together with the symbolic firing rule. The construction can be
automated by a general algorithm. Several Petri net tools such as GreatSPN (Chiola et al.
1995), CPN-AMI (Kordon and Paviot-Adet 1999) and Crocodile (Colange et al. 2011) can be
used to construct and analyze WFN models, which will be later introduced in 3.3.3.4.

The equivalence of several structural properties (e.g., reachability, liveness and numerical
properties) in SRG are proven. The model checking of general temporal logic formulas can be
extended to the SRG (Emerson and Sistla 1996; Ilié and Ajami 1997). It is worth noting that
the symmetry detection within ordinary Petri nets is also possible (Schmidt 2000).

Chapter 3 State-of-the-Art for the Train Control System Development

74

Even though the construction of SRG offers great potential to fight against the combinatorial
explosion problem, there are some obstacles to applying this method in the modeling and
verification of the train control systems.

Firstly, other than the demos and examples of protocols which are often used to show the
interest of the symmetry, the global behavior of train control systems is not symmetric.
Meanwhile, the design of train control systems may contain some symmetries somewhere. In
(Emerson and Trefler 1999) and (Baarir et al. 2005), partially symmetric systems are studied
and some verification and evaluation procedures are proposed on these partially symmetric
models. However, there are not yet mature tools which can analyze the partial symmetry
automatically, which makes it a huge amount of work to identify and separate the symmetric
parts in the large-scale and complex system models.

Secondly, the modern train control systems are always communication-based systems with the
support for Movement Authority (MA) management. When modeled with colored Petri nets,
most of the behavior of these systems is rather based on the values other than the distribution
of the colored tokens. In this case, it is always too difficult to take advantage of the symmetry.

3.3.3.4 Tools supporting WFN

GreatSPN (Chiola et al. 1995) is a Petri net modeling, validation, and performance evaluation
tool developed by the University of Turin in cooperation with the University of Eastern
Piedmont. It supports Generalized Stochastic Petri Nets (GSPN) and its high-level and well-
formed version: Stochastic Well-formed Nets (SWN). For the latter, Symbolic Reachability
Graph analysis is supported. GreatSPN supports time concept. It also implements several
efficient analysis algorithms to facilitate complex system design and allows the analysis of
models running on different machines in a distributed computing environment.

CPN-AMI (Kordon and Paviot-Adet 1999) is developed by LIP6 (French: Laboratoire
d'Informatique de Paris 6) and supports well-formed Petri nets (WFN). It defines AMI-Net as
a WFN implementation with a specific syntax. CPN-AMI allows users to build AMI-Net
models, to analyze the structural and behavioral properties, and to unfold high-level Petri nets
to Place/Transition-nets. It supports PNML format and can be used together with some other
tools. However, it seems that the developer has stopped the support and update of this tool.

Crocodile (Colange et al. 2011) is another tool developed by LIP6, which takes CPN-AMI as
a reference and supports Symmetric Nets (SN, similar to WFN) and Symmetric Nets with
Bags (SNB).

It is worth noting that besides the tools who claim support of the well-formed Petri nets, one
could also choose from a variety of tools for colored Petri nets and High-level Petri Nets to
build their WFN models with respect to the WFN definition.

Chapter 3 State-of-the-Art for the Train Control System Development

75

3.4 Petri Nets Based Modeling Methods for Train
Control Systems

The principal difficulty of modeling complex DES (e.g., railway systems) is caused by their
numerous states. Petri nets are an ideal modeling tool for complex and concurrent systems.
Researchers use different kinds of extensions of Petri Nets to fight against the huge number of
states in railway system controllers.

In this section, based on the formalisms we have chosen in this study, we introduce some
modeling methods based on CPN (CPN Tools) and WFN, respectively.

3.4.1 CPN-Based Modeling Methods for Train Control

Among the numerous variant of Petri Nets, CPN is the most widely used one as it incorporates
data, hierarchy, and can support some extensions such as time (van der Aalst et al. 2013). CPN
Tools is a tool for editing, simulating and analyzing CPN, which is first introduced in (Ratzer
et al. 2003; Jensen et al. 2007). The wide application of CPN Tools made it possible to develop
more complex models using CPN.

In (Janczura 1999), a whole process of modeling and analyzing a railway network is proposed
using CPN. The network considers two types of trains (i.e., express and normal) advancing in
the same direction. A safety property (each block in the railway line can only be occupied by
exactly one train or empty) and four operational properties are analyzed. However, this thesis
report only considers a quite simple model and does not respect the ERTMS/ETCS standard.

The Institute of Control and Automation Engineering of the Technical University of
Braunschweig used CPN Tools to model the ETCS for the German railway operator Deutsche
Bahn AG (Jansen et al. 1998; Meyer zu Hörste 1999). In this project, a CPN hierarchical
framework is proposed to model ERTMS/ETCS (mainly in level 2). Several generic modeling
paradigms and techniques (e.g., distributed modeling, communication between separate CPNs,
synchronization, etc.) are created to build their CPN models and formal methods can be used
to analyze these models. This study mainly focuses on the hierarchical and structural problems
of modeling ETCS specifications instead of the implementation of concrete functional models.
(Barger et al. 2009) also studied the feasibility to model ERTMS/ETCS with CPN Tools and
confirmed its expressional power.

A summary of (colored) Petri Nets models of railway stations is given in (Žarnay 2004).
Different models are divided into four levels (i.e., technical equipment level, movement level,
train processing level and decision-making level) according to their different objectives and
different abstract levels.

Chapter 3 State-of-the-Art for the Train Control System Development

76

In (van der Aalst et al. 2013), several CPN design patterns and strategies including the
hierarchical modeling are proposed using CPN Tools, showing some solutions to several
typical design problems in terms of modeling complex processes.

In (Vanit-Anunchai 2009; Vanit-Anunchai 2010; Vanit-Anunchai 2014), railway interlocking
system models are proposed using CPN Tools. The two essential pieces of these models are
the signaling layout and the interlocking tables. Vanit-Anunchai manipulated the modeling
flexibility of CPN Tools to store the geographic data of signaling layout in the tokens and to
implement the logic of interlocking tables by ML functions on arc inscriptions or in guards.
The main advantage of these models is that they can be reused to model different railway
interlocking systems, regardless of their variable structures or sizes. Such a modeling method
using CPN Tools also makes it possible to conduct some elementary formal verification on
the interlocking tables. While, these models store too many data (e.g., geographic information)
in colored tokens, which made the CPN models very difficult to read for the railway signal
engineers. Based on these research works aimed on interlocking tables, a more complete CPN
model for the railway signaling system was proposed in (Vanit-Anunchai 2018), taking into
consideration a double-line station with one passing loop. More properties including the train
movements are verified or simulated. However, these models only consider the manipulation
of a single train other than the control for a railway system including multiple trains.

In (Xie et al. 2016), we used CPN Tools to explore the modeling of the automated control of
railway systems managing heterogeneous traffic. In this study, we are interested in modeling
logic controllers needed for automatic control of the train without any driver on board. Several
models are built to manage the multiple trains on a railway line and cross the railway node
based on ERTMS/ECTS level 2 infrastructure with some simplifying assumptions. The
automated routing function in a railway node is also provided. Through this study, we show
that these functions can be integrated using CPN models to achieve automated control of
railway systems. The generic models proposed here can be reused and allow the agile
modeling of different structures of railway systems.

3.4.2 WFN based modeling formalism and comparison with CPN

In the literature, different modeling methods and formalisms based on Petri nets are used to
model the train control systems and other complex DES. The objective of most modeling work
is to explore and apply the possible verification approaches for some considered properties
(e.g., safety for train control systems) and then to implement the model (e.g., by model
transformation).

Therefore, from the point of view of a whole system development lifecycle, our standards to
evaluate a modeling formalism include:

- capacity and agility of correctly modeling the considered system structure and
behavior;

Chapter 3 State-of-the-Art for the Train Control System Development

77

- compatibility and facility with future system development phases, e.g., the possibility
of verifying essential properties, the compatible model transformation method to
generate the control code for implementation.

For a complex DES such as train control systems, high-level Petri nets are a good choice as
they are provided with not only more compact representation, but also data manipulation.
Among the different variants of high-level Petri nets, Colored Petri Nets (CPN) and Well-
Formed Nets (WFN) as two common modeling approaches. They share the high-level Petri
nets characteristics but have their own particularity.

Figure 3-6 compares the CPN and WFN approaches of modeling complex DES and the
possible analysis methods applicable to their models.

Earlier in (Xie et al. 2016), we have modeled an entire train control system in CPN Tools and
tried to analyze the CPN models of a railway control system using the different approaches,
as shown in the left part of Figure 3-6.

Figure 3-6 Analyzability comparison of CPN and WFN

The most direct analysis method to analyze CPN models is to generate its reachability graph
which enables to check the required properties. The way is always theoretically correct,
however, the application of this method to such a large-scale railway control system
encounters the famous combinatorial explosion problems and it can thus be used in very
limited cases.

One possible way to combat this combinatorial explosion would be to reduce the initial CPN
models before constructing the reachability graph. However, there are very little reduction
rules applicable to CPNs and each of them has their own rigorous applicable constraints. For
example, the reduction rules proposed in (Esparza and Hoffmann 2016) are only applicable to

Railway Requirement Specifications

Colored Petri Net Models (CPNs) Well-Formed Net Models
(WFNs)

Reachability
Graph

Unfolded PNs

Reduced WFNs
Reduced

PNs

Colored
invariants

Symbolic
Reachability Graph

Modelling

Model
Transforming

Analysis and
Verification

Reduced
CPNs

P/T invariants

Reduction Unfolding

Reduction

Reduction

Chapter 3 State-of-the-Art for the Train Control System Development

78

certain structures in free choice workflow nets with the objective of maintaining the soundness
property. This is probably a result of the high abstract degree and agility of CPN.

In order to make use of more general reduction rules, an available solution is to first go through
an unfolding process of CPN to get the underlying ordinary PNs. Then it is possible to apply
some existing reduction rules of ordinary PNs (Berthelot and Lri-Iie 1986; Murata 1989). This
approach seems to be a good idea but in practice, it is always blocked when it comes to
complex and large-scale DES, e.g. train control system, because one is often confronted with
a combinatorial explosion problem in the unfolding operation.

It is also worth noting that some extensions of colored Petri nets are integrated with different
kinds of techniques to further enhance its expressivity (e.g., the use of ML – Meta-Language
– in CPN Tools). The use of these extensions always results in a loss of eligibility to apply the
reduction and analysis methods and makes it more difficult to unfold the nets as not all the
methods are compatible with the extensions.

Essentially, the problematic situation is a compromise between the modeling power of the
selected modeling approaches and the possibility of making formal verification.

To deal with this problem, some colored Petri nets with constraints are proposed, among which
the Well-formed Petri Nets (WFN) are of interest to us. WFN have some syntactical
constraints as shown in its name and some good features which facilitate its analysis. It is also
pointed out in (Haddad et al. 1995) that WFNs have the same expressive power as general
CPN (Jensen 1982) despite a very rigorous syntax.

The right part of Figure 3-6 describes the possible analysis approaches applicable to WFN
models. To avoid the combinatorial explosion, several reduction rules could first be applied.
As WFN are Petri nets abbreviations and can always be unfolded to ordinary Petri nets, the
Colored nets reduction theory based on folding proposed in (Haddad 1991) can also be applied.
With regard to the state space analysis, the symbolic reachability graph will greatly reduce the
size of the reachability graph for the models including symmetries.

As the objective of this thesis is to propose appropriate Petri Net patterns whose properties
can be checked before the models are implemented, we have chosen to use WFN as modeling
formalism for modeling autonomous railway control systems, in order to benefit from the
advantages of analyzing a WFN model.

3.5 Conclusion of Chapter 3

This chapter introduces the theoretical framework of the thesis.

First, we review lots of common system development approaches that can be used for the train
control system design. We conclude that Petri nets are an ideal formalism.

Chapter 3 State-of-the-Art for the Train Control System Development

79

Then, we review the Petri nets theory and discuss different Petri net variants. Taking into
consideration the complexity of train control systems, we prefer to use high-level Petri nets as
they have a more compact expression. Two formalisms – colored Petri nets (CPN) and well-
formed Petri nets (WFN) – are used in this thesis for the reason of abundant extensions and
the facility of analysis, respectively. We introduced these two formalisms and the software for
them, e.g., CPN Tools.

At the end of this chapter, a literature review of modeling methods and practice with these two
Petri net formalisms are given. We also compare the advantages and inconvenient of them.

81

Chapter 4 MODULAR MODELING FOR
TRAIN CONTROL SYSTEMS

4.1 Introduction to Chapter 4

Train control systems are large-scale and complex Discrete Event Systems (DES). In order to
model the train control systems in an efficient way, this chapter introduces a modeling
methodology containing different modular modeling methods and techniques.

§4.2 introduces our modular modeling methodology as a whole. Faced with such a complex
train control system, our methodology considers both a structural decomposition and a
functional decomposition to reduce the complexity. Then, the two kinds of decomposition are
integrated by conducting a mapping between them to an abstracted system model faced with
a certain modeling objective. The abstracted system model contains different structural
components and functions. Following this approach, an abstracted system model is
constructed and is used as the global railway model in this chapter.

§4.3 introduces the structural modeling of a railway control system. The global railway system
is modeled by different components and their interfaces. Each type of component is modeled
as a generic module in colored Petri nets and can be reused by its different instances. Two
different methods to implement the reusability are compared. Different modeling methods of
interfaces are also proposed to implement the communications and information exchange
within or between the component models.

In the rest of this chapter, we introduce the modeling methods for the three main components
in a railway control system: the ETCS onboard system (train), the RBC and the railway node
controller. The concrete modeling of each component is developed from a functional
viewpoint.

§4.4 concentrates on the functional modeling ETCS onboard system, which may be the most
sophisticated component in the global abstracted model. In order to further reduce the
modeling complexity, we propose to use the functional modeling approach within the scope
of the onboard system. The onboard system behavior is analyzed, and three levels of
functionality are modeled by mode (transition), procedure, and onboard function, with respect
to the ETCS system requirements specification.

The automatization of a train control depends on the interaction and cooperation of both the
onboard system and the trackside system. That is why we introduce the modeling of railway

Chapter 4 Modular Modeling for Train Control Systems

82

node component with automated routing function in §4.5, and the modeling of the RBC
component with the Movement Authority (MA) function in §4.6.

In order to illustrate the advantages and the drawbacks of different formalisms, the train
component and railway node component are modeled using colored Petri nets with CPN Tools,
while the RBC component is modeled with well-formed Petri nets (WFN) with the expectation
to benefit from its favorable compatibility with different analysis techniques. However, the
constraints of modeling in WFN could be an obstacle to model some sophisticated behaviors
of the RBC component. Thus, we propose three general modeling patterns to enhance the
modeling expressivity of WFN. It is worth noting that these patterns are general techniques
that can be applied to the modeling of a similar system in WFN.

§4.7 concludes this chapter.

4.2 Modular Modeling Methodology of Train Control
Systems

Faced with the modeling task of a complex DES, the modular design based on decomposition
is usually an intuitive choice for the modelers as well as for the domain experts to fight against
the system complexity.

The decomposition of a global system can be achieved by the following two approaches:

• Structural decomposition in reference to the real system architecture;

• Functional decomposition of the global system or subsystems.

In order to facilitate the modeling of the complex system, we decompose the system in both a
structural way and a functional way by applying a top-down approach, as shown in Figure 4-1.
Then, we conduct a mapping process of the structural decomposition and functional
decomposition to obtain an abstracted system model.

Figure 4-1 Train control system modeling methodology

The modular design has many advantages. The modularity implies the reusability of the
system modules. The modular modeling methods can also facilitate modular verification by
using the same system architecture, which provides efficient and flexible analysis techniques
(Christensen and Petrucci 2000). In the field of manufacturing systems, the modular design

Functional
decomposition

Structural
decomposition

Abstracted
system model

Mapping the structural and
functional decompositions

Chapter 4 Modular Modeling for Train Control Systems

83

allows a distributed workshop, which can facilitate the dynamic reconfiguration of flexible
production lines (Da Silveira et al. 2002).

Some Petri nets formalisms, e.g., hierarchical colored Petri nets (Jensen 1992), can offer the
support for a modular design approach.

4.2.1 Structural Decomposition

The practical railway control system is very large, complex and distributed system with
thousands of components deployed in different places. In order to be able to model such a
system, a structural decomposition is necessary. Figure 4-2 follows a top-down approach
based on structural modularity to decompose the whole railway control system.

In this structural decomposition, most of the components are reusable and may be found of
multiple duplicates in a decomposition. For example, there may be several RBCs for a railway
line. Different higher-level components may also use the same lower-level component. For
example, the track circuit is used as a train detection device both in the blocks of a railway
line and in the railway stations or nodes as parts of the interlocking system.

Figure 4-2 Structural decomposition of the railway control system

4.2.2 Functional Decomposition

There are many functions in a railway control system. In order to better identify and analyze
the functions, we use a top-down hierarchical functional decomposition to represent the major
functions in a modern train control system, as shown in Figure 4-3.

Different levels can be found in the functional decomposition. A macro-function, which is
presented by rounded-corner rectangles with a bold border, can be decomposed to several sub-
functions, which are presented by simple rounded-corner rectangles. For example, the macro-
function “Movement Authority (MA) Management” can be decomposed to the sub-functions
“MA request, generation and update”, “RBC handover” and “Emergency stop”. Each sub-
function can be further realized by concrete functions, which are represented by shadowed
rounded-corner rectangles in Figure 4-3.

Railway control system
(Structural decomposition)

Infrastructure Onboard

Railway
line

Railway station
(or railway node)

CTC Block signalingRBCStation signaling

Eurobalise
(station)

Track circuit
(station)

Switch
(station)

Eurobalise
(block)

Track circuit
(block)

Switch
(block)

ETCS onboard equipment

TIU DMI BTM EuroradioEVC

Chapter 4 Modular Modeling for Train Control Systems

84

Figure 4-3 Functional decomposition of a railway control system

The concrete functions often reflect the specific articles in the system requirements
specification. These concrete functions need to be implemented by relevant hardware or
software system. In Figure 4-3, the concrete functions can be found in the system requirements
specification (SRS) of ERTMS/ETCS (European Railway Agency 2016a). The dotted lines
with the tag <ref> connect the concrete functions to the text references in SRS. Later in this
chapter, we will further introduce how to model these concrete functions in CPN Tools.

4.2.3 Mapping the Structural and Functional Decompositions

The structural and functional decompositions show the way that a whole railway control
system is composed of many components and has numerous functions. These components and
functions are intertwined with each other. Thus, the modeling of the whole railway control
system is difficult but, in most cases, unnecessary. We propose a modeling methodology
which allows the modelers to form abstracted and representative models according to their
different modeling objectives. The abstracted models are obtained by mapping the structural
and functional decompositions together.

In practice, a modeling objective can be expressed by several items in the functional
decompositions (i.e., macro-functions, sub-functions or concrete functions). These functions
are associated with the necessary components from the structural decompositions.

For example, an important operational scene in ERTMS/ETCS level-2 is the management of
multiple trains in the railway lines based on Movement Authorities (MA, permission for a

Railway Control System
(Functional Decomposition)

Position / Speed
Management

MA
Management

Train Speed
Supervision

Speed Profile Determination

Speed monitoring and intervention

Special movements supervision

Traffic control
and dispatching

Position detection

Speed and acceleration detection

Position request and report

MA request, generation and update

RBC handover

Emergency stop

Temporary Speed Restrictions (TSR)

Override and trip management

Station (node) pass-through

Onboard requests MA Cyclically
respect to location approach or timer
elapsing (level 2/3)

Onboard requests MA Cyclically
when “Start” is selected (level 2/3)

Determination of EoA (End of
authority), danger point, etc.

···

SRS 3.8.2.3 a);
SRS 3.8.2.3 b)

SRS 4.4.11;
SRS 5.4;
SRS 5.11

SRS 3.8.4;
SRS 3.8.5

<ref
>

<ref>

<ref>

Chapter 4 Modular Modeling for Train Control Systems

85

train to move to a specific location with the supervision of its speed) generated by trackside
infrastructure. This operational scheme is shown in Figure 4-4.

Figure 4-4 Operational scheme of multiple trains management in ETCS-2

In order to model this operational scene, we need to identify the necessary functions from the
functional decomposition. This operational scene mainly describes three sub-functions:

• Position detection;

• Position request and report;

• MA request, generation and update.

Figure 4-5 Mapping of functions and structural decompositions

Train 2Train 1

End of Authority (EOA)

Block NBlock N-1Block N-2

Movement Authority (MA)Direction

Radio Block Centre (RBC)Position report, MA request., etc.

Eurobalises

Speed

Station 2Station 1
Block 1 Block N-3

MA

Railway control system
(Structural cecomposition)

Infrastructure Onboard

Railway
line

Railway station
(or railway node)

CTC Block signalingRBCStation signaling

Eurobalise
(station)

Track circuit
(station)

Switch
(station)

Eurobalise
(block)

Track circuit
(block)

Switch
(block)

ETCS onboard equipment

TIU DMI BTM EuroradioEVC

Position request and reportPosition and
speed detection

<associate>

MA Management MA request, generation and update

Onboard requests MA Cyclically
respect to location approach or

timer elapsing (level 2/3)

Onboard requests MA Cyclically
when “Start” is selected (level 2/3)

Determination of EoA (End of
authority), danger point, etc.

<associate>

Part of functional decomposition of railway control system

Position detection <associate>

Chapter 4 Modular Modeling for Train Control Systems

86

The implementation of these functions relies on relevant components. A function may be
associated with a single component or different components which are even across the
infrastructure and the onboard system.

According to different modeling objective, the mapping can be actualized by considering the
different depths in the structural and functional decomposition.

Figure 4-5 shows the mapping of three sub-functions and the structural decomposition. A
dotted line with <associate> tag associates a function to its relevant components. Our method
is to choose the appropriate components and to build their connections according to the
concerned functions to finally create the abstracted model.

4.2.4 Specification of Abstracted System Model

4.2.4.1 Example of an abstracted system model

The idea of building an abstracted system model is based on the fact that a railway control
system is too large to be analyzed in its full size and too complex to be modeled with all the
components in detail.

The aforementioned structural decomposition, functional decomposition and the mapping
between them show how the different parts are coupled to construct the global system. Based
on the decompositional analysis and the practical modeling objective, we can finally build an
abstract system model of a reduced size by identifying the principal train control functions in
question and by modeling only the necessary components as well as the connection between
them with regard to these functions.

This study aims to contribute to the feasibility of autonomous trains in the context of
ERTMS/ETCS. It needs the cooperation of the onboard system and the trackside components.

The modeling objective of the abstracted system model is to allow a passthrough of a train in
the railway system with a certain degree of automation. We consider the following functions
shown in Table 4-1.

Table 4-1 Principal train control functions in the abstracted model

 Traffic management in railway lines Railway node (station) automation

Onboard
Speed supervision and control with

respect to movement authority (MA)
Passing the railway node (station)

along the assigned routes.

Trackside
MA generation (in RBC) according to

the traffic in railway lines
Automated route selection and

interlocking

Considering these functions listed in Table 4-1, the following components concerned will be
modeled in the abstracted system model:

Chapter 4 Modular Modeling for Train Control Systems

87

• Onboard (Train):

o EVC

o BTM (modeled as an external interface)

o Euroradio (modeled as an external interface)

o DMI (modeled as an external interface)

• Trackside:

o Railway line:

 RBC

 Eurobalise (to offer the balise telegrams)

o Railway node or railway station:

 Track circuit

 Switch

 Signal machine

For the trackside components, the relationship between the different components in practice
could be very different depending on the railway network architecture. In this chapter, we use
a simple but representative railway system structure illustrated in Figure 4-6 to build the
abstract system model. This structure also has a good coherence with the layout of the railway
node previously presented in Figure 2-1.

Figure 4-6 Railway system structure for the abstract model

The considered trackside components are:

- Four stations (Stations A, B, C and D) and a railway node (Node N);

- Four railway lines connecting these stations and the node, where all the trains
considered are in the same direction;

- RBC 1 and RBC 2, which manage the railway line from Station A to Node N, and that
from Node N to Station C, respectively.

A C

B D

Node N

Station A

Station DStation B

Station C

RBC 1 controlled area RBC 2 controlled area

Direction

Chapter 4 Modular Modeling for Train Control Systems

88

4.2.4.2 Modeling assumptions of the abstract system model

Our modeling methods to be proposed respect the actual ERTMS/ETCS system requirements
specification (European Railway Agency 2016a). However, a set of simplifying assumptions
are also considered to reduce the complexity of the models so that they could be represented
in a thesis. We believe that these assumptions do not affect the presentation of our modeling
methodology.

The principal simplifying assumptions are shown as follows:

1. Train length is not taken into account for simplification reasons. Thanks to this
assumption, we can use a single position to represent several different position-based
concepts, e.g., “min safe train front end” and “max safe train front end” are merged.

2. A railway line is considered to have a fixed operation direction and trains on a railway
line cannot overtake (by using passing siding rails). This assumption results in a non-
exchangeable order of the trains on a railway line.

3. A single RBC manages all the trains on the same railway line. In other words, the “RBC
handover” function is not supported.

4. Movement Authority (MA) is simplified to only one section and some optional timer
parameters are also ignored. In an MA message, only the EOA (End of Authority)
position is in our interest.

5. Since the modeling method is DES-oriented and the modeling objective is the general
behavior of the whole railway system, i.e., the control of multiples trains other than a
standalone onboard system, some details of continuous concepts, e.g., train speed,
braking performance, the train’s exact position in a block section, are simplified. As a
consequence, we assume that a train can always stop before the end of the current block
it occupies.

4.3 Structural Modeling of Train Control System

4.3.1 Introduction to Structural Modeling

This study proposes a structural modeling method based on colored Petri nets to model
complex systems, taking train control system as an example. This method focuses on the
modeling of a global railway system. It takes advantage of the structural decomposition to
model each type of physical component as a reusable component module. Then the instances
of these components are connected together according to their relationship to obtain a global
system model.

In this section, we propose to model each kind of structural component (e.g., train, RBC,
railway node) by a generic module using colored Petri net. Such a generic module is reusable

Chapter 4 Modular Modeling for Train Control Systems

89

by all its instances. The major difficulties are to distinguish different instances of the same
module and to deal with the connection and communication between different modules or their
instances.

Faced with these difficulties, we introduce two techniques of component modeling to achieve
the reusability: the parametric module representation and the structured token representation.
The former exploits the hierarchical support in CPN Tools via the substitution transition, while
the latter takes advantage of the compound structure of colored token. The two techniques
allow the existence of multiple instances in a global system model by building only one generic
module. We compare the two approaches and explain our preference to the parametric module
representation, which contributes to an intuitive and structural representation of the global
system model.

We also introduce several modeling methods of interfaces and communication techniques
between different modules and their instances, according to different modeling objectives.
These interface modeling methods, together with the component modeling methods, allow the
construction of a global system model.

The examples of the implementation of the structural modeling method will be represented
with CPN Tools.

4.3.2 Component Modeling

A generic component module is defined as a reusable modeling brick and can have multiple
instances in a global system. The reusability can be achieved in different ways. We propose
two modeling techniques to represent the multiple instances of the same component by reusing
a generic component module: the parametric module representation and the structured token
representation.

4.3.2.1 Parametric module representation

The parametric module representation defines a general modeling form of a system
component by a CPN parametric module with the following parts:

• Module body;

• Parameter place(s);

• Interface place(s).

Figure 4-7 shows three instances of two different modules modeling using the parametric
module representation. The rectangles named with “Module X (instance Y)” represent the
module body. The white ellipses named with “P X.Y.N” shows the Nrd parameter place of the
instance Y of module X. The colored ellipses represent the interface between different
instances of the same module or those between different modules.

Chapter 4 Modular Modeling for Train Control Systems

90

Figure 4-7 General form of parametric modules

We first introduce the module body and the parameter place. The interface place of a module
will be later introduced in §4.3.3 together with other kinds of interfaces.

Module body

A module body is the principal part of a component module and can be a complex colored
Petri net model. In Figure 4-7, each module body is represented by a rectangle.

Some places in the CPN model of a module body can be initially marked. Different instances
of the same module body must have the same initial marking. However, in the execution,
different instances of the same module can certainly have different markings.

Parameter places

The parameter places always have initial markings. These colored tokens in the parameter
places represent the parameters of different instances of a module and usually have different
values.

Among these parameters, we usually need to have an “identifier” as a special parameter. The
identifier is used to distinguish different instances of the same module, especially when it
comes to communication. Obviously, each instance of the same module needs to have a unique
identifier.

We recommend the modeling of identifiers by an index colorset if the modeling tool supports
it. The following introduction will be illustrated using CPN Tools. An index colorset has
indexed values are sequences of values comprised of an identifier-name and an index specifier.
Other parameters are represented by their convenient types and can be merged into a record
or product colorset to have a compact representation.

Module 1 (instance 1)

P1.1.1

Module 1 (instance 2)

Module 2 (instance 1)

P1.1.2

Interface
(M1)

P1.2.1 P1.2.2

Interface
(M1toM2)

Interface
(M2toM1)

P2.1.1

Chapter 4 Modular Modeling for Train Control Systems

91

Code 4-1 shows an example of the declaration of the parameters of a train component. Among
these parameters, colorset TRAINNO is defined as an index colorset and is used as an identifier.
The examples of its values could be Train (1), Train (2), …, Train (10). A record colorset
TrainAttribute assigns other parameters to an instance of the train component, such as train
type, train mass, its origin and destination stations.

Code 4-1 Declarations for parameter places of component train (part of)
 1 (*Declaration for parameter places of component train*)
 2 colset TRAINNO = index Train with 0..10;
 3 var tno: TRAINNO;
 4 colset TrainType = with Passenger | freight;
 5 colset TrainMass = int with 0..100000;
 6 colset StationName = string;
 7 colset TrainAttribute = record tType:TrainType *

tMass:TrainMass * tOrigin:StationName * tDesti:StationName;

In Petri net models, a parameter place is usually linked to its module body via a bi-directional
arc as shown by the example in Figure 4-8. The bi-directional arc implies that a parameter
place can be accessed by the component model but will always maintain their values
throughout the execution. In other words, a parameter place is usually read-only for the
module body.

Figure 4-8 Example of parameter places of train component

Reusability of a parametric module

The component model offers the modeling bricks and can be reused. The parametric module
representation exploits the hierarchy support in CPN Tools to represent different instances in
a global model of the railway system.

The parametric module representation proposes to model the instances of components in two
layers: the global layer (higher level) and the (lower) component layer (lower level).

The global layer mainly defines the configuration of the instances of the components and
illustrates the connections between them, as shown in Figure 4-7. This global layer is also
modeled as a colored Petri net model. In CPN Tools, the module body of each instance is
represented by a substitution transition (rectangles with double-line borders in Figure 4-8) in
this global layer. The use of substitution transition has double advantages:

Chapter 4 Modular Modeling for Train Control Systems

92

• For the modeling, the detailed structure of the module body in the global layer is
hidden, which allows a simplified broad overview of each instance to help the modelers
concentrate on their relationship;

• For the execution, the underlying component instance model for each substitution
transition can be executed independently by the support of CPN Tools.

As an example, let us consider the global model of a simple case study. Following the
decomposition of §4.2.1, we abstract the railway control system as composed of ETCS
onboard system (train hereafter for simplicity), RBCs and controllers of railway node (node
hereafter for simplicity). Based on the structure of the abstracted system presented in Figure
4-6, two instances of the component Train (Train 1 and Train 2), two instances of component
RBC (RBC 1 and RBC 2) and an instance of railway node (Node N) are modeled in Figure
4-9 using the parametric module representation.

In the global layer, each instance is modeled as a substitution transition and is parametrized
by its parameter place. The two instances of the train module are modeled by the substitution
transitions noted respectively Train1 and Train2. Each of these transitions is linked to its
parameter place noted T1info (for Train1) and T2info (for Train2) by bi-directional arcs. In
order to have a more compact representation, we use a unique parameter place with a
compound colored token in a form of (4-1) to represent both the train identifier and the

necessary train attributes.

 (Identifier, Attribute 1, Attribute 2, … , Attribute n) (4-1)

In the same way, the two instances of the RBC component are also modeled by substitution
transitions noted respectively RBC1 and RBC2, together with the parameter places RBCinfo1
and RBCinfo2. The instance nodeN has a parameter place NodeName which is used to store
its identifier.

The interface places enable to model the communication from one type of components to
another type of components. For example, in Figure 4-9 the place Train2RBC models the
communications from the train instances to the RBC instances and in the example is not
possible for RBCs and the node N to communicate directly. The structure of colored tokens
put in the interface places enables to define the concrete participants of the communication,
which will be later introduced in §4.3.3.

The global layer model can be easily modified by connecting/disconnecting components to
the corresponding interfaces.

As to the component layer, it defines a concrete model for each type of component. We will
later introduce the modeling method for the train, RBC and node component module

Chapter 4 Modular Modeling for Train Control Systems

93

respectively in §4.4–4.6§. With the support of CPN Tools hierarchy, each instance of
component module behind a substitution transition can be executed independently.

Figure 4-9 An example of modeling by parametric module representation

4.3.2.2 Structured token representation

An alternative technique of reusing a component module to represent its different instances is
also possible. Instead of using the hierarchical support in CPN Tools, this technique takes
advantage of the flexibility of colored token in colored Petri nets.

It represents each instance of the same component by a structured colored token, which
contains the identifier, the parameters and possibly some necessary execution states. The
structured token representation models the whole system in a flat structure without explicit
hierarchy. In the system model, each component module has only one presence regardless of
the number of its instances. The different instances of the same component module are thus
represented by different structured colored tokens in the places of the component module. In
order to distinguish the behavior of different instances in the single model, it is obliged to
assign an identifier for each instance and to include the identifier filed in each colorset of the
component model. The structured token can be implemented by some compound types, such
as the color domain in WFN, and the product colorset or record colorset in CPN Tools.

Figure 4-10 compares a part of the train component model implemented with parametric
module representation via CPN Tools hierarchy (a) and the corresponding model implemented
with structure token representation via product colorset (b).

The differences can be found in the following aspects:

(1) A neutral colorset (colorset “UNIT”) in (a) is modeled as the identifier’s colorset
“TRAINNO” in (b);

(2) A product colorset “A x B x … x C” is modeled as “TRAINNO x A x B x … x C” in
(b);

Chapter 4 Modular Modeling for Train Control Systems

94

(3) Any other colorset “COL” excluding neutral/product in (a) is modeled as a product
colorset “TRAINNO x COL” in (b);

(4) For any expression in (a) without a variable of colorset “TRAINNO”, it is modeled by
a corresponding expression with a variable of colorset “TRAINNO” (variable “tno” in
the example);

(5) The parameter place only to assign an identifier in (a) is no longer necessary in (b) as
the identifier is repeated in every place.

Figure 4-10 Comparison of two methods to model a component module

In Table 4-2, the characteristics of the two representation methods are further compared.

Table 4-2 Comparison of two reusability methods for component models

Representation Parametric module Structured token

Modeling tool support CPN Tools hierarchy Colored Petri nets

Model readability Good Middle

Dynamic feature
(Add/remove instances)

Difficult Middle

Global state space Same orders-of-magnitude

By using the structured token representation, the global model may be more compact
compared to the parametric module representation, but less readable because the system
structure is not explicitly represented.

An advantage of the structured token representation could also be the possibility of adding
and removing instances by manipulating the tokens. These operations could be more difficult

Chapter 4 Modular Modeling for Train Control Systems

95

for a parametric representation where the instances are represented by substitution transitions,
and the alteration may only be accomplished by modifying the global model structure.

After considering the advantages and drawbacks of both the two representation methods, we
favor parametric module representation and use it in the rest of the thesis because the models
built by this method are presented in different layers and have a better readability, which can
be helpful to illustrate our modeling methodology. The dynamic feature may facilitate several
kinds of simulation (e.g., to insert a new train to the system in the execution), however, since
in Chapter 5 we will focus on formal verification of the model, it is not an indispensable
property.

4.3.3 Interface Modeling and Communication Techniques

4.3.3.1 Introduction to the modeling of communication

Modern train control systems are communication-based, large-scale and concurrent systems.
The synchronization of the concurrency implies the communication among different system
components. However, communication is often intertwined with the components’ behavior,
which makes it difficult to model and analyze the components in a modular and structural way.
It is thus essential to separate the communication from the components’ stand-alone behavior
in order the reduce the modeling and analysis complexity.

In Petri net models, both the transition and place can be used to synchronize the
communication between two models. For example, in (Battiston et al. 1991; Christensen and
Damgaard Hansen 1994) the modeling formalisms used transitions and in (Huber et al. 1991;
Jensen 1997) the models used places.

When it comes to the communication between different components and the communication
is about data exchange,

As previously stated, a railway control system is composed of several components operating
in parallel. These components have internal behaviors modeled later by colored Petri nets
models. In some situations, these components (or their instances) must communicate with each
for data exchange. The communications are therefore asynchronous. It is much more
straightforward to model it via places, which imply the communication channels, together
with colored tokens, which imply the information exchanged.

In a broad sense, we use the term interface to call the places for exchange purpose in the
colored Petri net models for train control systems. These interface places are used as the
abstraction of different kinds of communications in practice, including:

• The information shared among different parts (e.g., processes) within a model;

• The information exchange between different component (or instance) model;

Chapter 4 Modular Modeling for Train Control Systems

96

• The extra information between the considered system and its environment, which is
usually used for simulation or verification purpose (e.g. the sequence of drive
operations).

From a point of view of the modeling formalism in colored Petri nets using CPN Tools, we
propose three different modeling methods of interfaces for different purposes and practical
requirements.

4.3.3.2 Modeling of Interface by CPN Tools hierarchy

The hierarchical feature supported in CPN Tools offers a possibility of implementing the
interfaces between different component models or their instances.

Figure 4-11 shows an example system modeled with two layers: the global layer and the
component layer. Two components “Train” and “RBC” are modeled using the component
modeling method of the parametric module representation. In the example, one instance of
each component is used to build a global model. Transitions “Train” and “RBC” are
substitution transitions in CPN Tools and their details are modeled in the module body of the
corresponding component modules. Places “Train1” and “RBC1” are parameter places where
are used to assign different identifiers and parameters to different instances of the same
component. Place “T2RBC” is an interface place which is used to transform information from
a train instance model to an RBC instance model.

Figure 4-11 Modeling of interfaces by CPN Tools hierarchy

An interface modeled by CPN hierarchy is implemented by port/socket assignments, which
are used to equate places on the two layers. Such a place on the lower layer (component layer)
is called a port, and that on the higher layer (global layer) is called a socket.

A port is always associated with a port-type tag (the blue tags in Figure 4-11) and can be one
of the three kinds according to the direction: tag “In” for “input”; tag “Out” for “output” and
tag “In/Out” for both the two directions.

RBC

global layer

Component layer (CPN Tools subnets)

T2RBCTrainTrain1 RBC1

Train Module Body RBC Module Body

Out In

In/Out In/Out

Chapter 4 Modular Modeling for Train Control Systems

97

A socket is an input place or an output place of a substitution transition, i.e. there is always at
least one arc between a substitution transition and a socket.

By using the port/socket assignments, a component module can be “glued together” with the
surroundings of its corresponding substitution transition. Each socket must be assigned to a
port on the corresponding subpage. A port with a tag “In” must be assigned to a socket which
is an input place of the substitution transition. Analogously, an “Out” port requires a socket
which is used an output place of the substitution transition.

While, a port with tag “In/Out” indicates that the socket must be both an input place and output
place (other than “either of them”). In the example, the “In/Out” ports are used by the
parameter places because that the identifiers and parameters in these places are normally to be
referred to, other than to be generated nor to be consumed.

An interface place is a socket place with multiple port/socket assignments (i.e., multiple ports
from different components or instances are assigned to the interface place). In the example,
the interface place “T2RBC” is a socket on the global layer. Both an “Out” port from the train
module and an “In” port from the RBC component are assigned to it. By this method, all the
three places are somehow equated. By this method, the information can be transferred between
different components or instances. Specifically, in the example of Figure 4-11, the train
component model sends a piece of information to the RBC by generation a token in its port
with an “Out” tag. This token ascends to the interface place “T2RBC” on the global layer owe
to a port/socket assignment between the global model and the train module. Another
port/socket assignment between the global model and the RBC component allows the RBC
component to obtain this token from the interface place “T2RBC”, which models the reception
of the information sent by the train.

In our modeling methodology, an interface implemented by CPN Tools hierarchy is mainly
used to model the mono-directional communication between two components or their
instances, i.e., from a component of type i to a component of type j. Bidirectional
communications between two types of components can be modeled by using a pair of
interfaces.

In this context, A particular interface is modeled on the global layer to transfer information
from a certain type of component (sender) to a certain type of component (receiver). In the
example shown in Figure 4-7, three interfaces places are defined for:

• Information exchange from an instance of component Module 1 to an instance of
Module 2;

• Information exchange from an instance of component Module 2 to an instance of
Module 1;

• Information exchange between different instances of Module 1.

Chapter 4 Modular Modeling for Train Control Systems

98

When multiple instances of a type of components participate in the communication, an
interface place is in fact a multiple-reader, multiple-writer channel. In order to distinguish the
different instances of the same component as a concrete sender or receiver, a colored token to
be used in the interface places need to be defined as a compound colorset as follows:

 (Sender Identifier, Receiver Identifier, Message) (4-2)

The “Message” in (4-4) can also be a compound colorset, which is usually composed of a

“MessageType” filed and one or more value(s). An example of a position report sent by a train
instance to an RBC instance to update its position could be:

 (Train (1), RBC (1), (UPDATE, Train(1), 10)) (4-3)

In this message, “UPDATE” is the message type, followed by the values “Train (1), 10”.

It is worth noting that in the functional modeling of ETCS onboard system, the hierarchical
support by substitution transition in CPN Tools is also used to transfer information between
the model of a function and the model who calls this function, details can be found in §4.4.4.

4.3.3.3 Modeling of Interface by fusion places

The interface implemented by CPN Tools hierarchy is easy to be used on a well-defined
module, e.g., a component. However, there are many occasions when we need to transfer
information among some models without an explicit hierarchical structure. For example, the
ETCS onboard system is modeled by many subpages (each subpage is a CPN model), several
values (e.g., modes, position) need to be shared among these models in different subpages.

Fusion place is a feature supported by CPN Tools to define a set of places as a fusion set. All
the places in the same fusion set are associated with the same fusion tag as the blue tag “Cntr”
shown in Figure 4-12, anything that happens to each place in the fusion set also happens to all
the other places in the set. These places are thus functionally identical.

Figure 4-12 Fusion places in CPN Tools

Chapter 4 Modular Modeling for Train Control Systems

99

The members of a fusion set can be from almost anywhere. Several common cases are as
follows:

- If all the places are on the same page, we could, in fact, replace the fusion set with a
single place and connect to it all the arcs that are previously connected to any place of
the fusion set. It helps to improve the modeling in terms of aesthetics and readability.
An example can be found in Figure B-1 with the fusion set “CurrentMode”.

- The places of a fusion set could also be from different pages. A page is used as a
container in CPN Tools where a CPN model is built. A complex model is usually
separated into different pages thus each page could have a particular modeling
objective. In this case, the fusion places are in fact connectors of different pages.

- The fusion places can be used together with a hierarchical model and a fusion set can
contain members from models of different layers. In fact, the port/socket pair of the
CPN Tools hierarchy is implemented by a special fusion set whose members are
limited to the port/socket assignments. However, fusion places offer a more general
approach to share the tokens from any places, which allows a communication method
throughout all the global model.

One should be careful to use the fusion places with a hierarchical model with multiple
component instances. In fact, the fusion set works like a global variable in the programming
language. Any part of the model can access it and modify it. If a fusion place is used in the
component module, the corresponding places in different component instants are always in
the same fusion set and cannot have different markings.

4.3.3.4 Modeling of Interface via the file system

We have introduced two methods of modeling the interfaces for different objectives in CPN
Tools. The two methods can cover the most requirements to model the interfaces in the scope
of a CPN Tools net (i.e., a CPN Tools project).

However, for a very large-scale and complex system, the analysis or simulation of such a
system may be distributed to different modeling projects implemented by different computers.
In this situation, even the CPN Tools does not offer native support to connect the two models.

We propose a universal solution to make the connection between two models by establishing
an interface via the file system. Thus, the different entities using this interface could be in the
same model, in different models on the same computer, or even on different computers as long
as they can access the storage where stores the interface file. This method is also useful to
implement the communication between different kinds of models using different modeling
tools (e.g., a CPN Tools model and a WFN model) as long as the modeling tools offer the
conversion method between file stream and multiset.

Chapter 4 Modular Modeling for Train Control Systems

100

Figure 4-13 Interfaces via file sharing

Figure 4-13 shows an illustrative example of interface modeling via the file system. We
consider the transmission of the position report from a train instance to an RBC instance. The
example is like that of Figure 4-11, however, by using the interface via the file system, the
two-component model (i.e., train model and RBC model) can be on different computers.

The position report message to be transmitted is modeled using the format
(𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑉𝑉 𝐼𝐼𝑆𝑆𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇𝑉𝑉, 𝐸𝐸𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑣𝑣𝑇𝑇𝑉𝑉 𝐼𝐼𝑆𝑆𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇𝑉𝑉, 𝑀𝑀𝑇𝑇𝑠𝑠𝑠𝑠𝑎𝑎𝑀𝑀𝑇𝑇), and the Message filed is simplified to a
position value. Part of the definition of colorsets and variables used in the example can be
found in Code 4-2.

Code 4-2 Declaration for example of interface via file system

 1 colset TRAIN = index T with 1..10;
 2 colset RBC = index RBC with 1..10;
 3 colset POS = int with ~1..1000000;
 4 colset TxRBCxPOS = product TRAIN * RBC * POS;
 5 colset TRAINxPOS= product TRAIN * POS;
 6 var msg: TxRBCxPOS;
 7 var tr: TRAIN;
 8 var rbc: RBC;
 9 var pos: POS;
10 var i, j:INT;

The interface via file system should be modeled in each communication participant module
according to its role (i.e., sender or receiver) in the communication. The blue part in Figure

Chapter 4 Modular Modeling for Train Control Systems

101

4-13 (a) shows the interface in a sender while the green part in Figure 4-13 (b) shows the
interface in a receiver.

An interface via file system in a module is always modeled by an interface places (one of the
two places “Train2RBC” in Figure 4-13) and a process transition (one of the two transitions
“int_proc”), together with an optional counter (place “counter”), regardless the role of the
participant. The major difference lies in the code segment inscription of the process transition.

An interface place contains the colored token(s) to send or the colored token(s) received. In
this example, it is a position report message of colorset TxRBCxPOS, which could be
represented by a variable msg or a vector of variables (tr, rbc, pos) as shown in Figure 4-13.

A process transition executes the conversion between the colored token(s) and the file stream.
It contains the code segment inscription, which uses an input()-output()-action() pattern to
execute some actions when the transition is fired. In addition, one can define new constants
and functions by means of the let-in-end structure for local, i.e., within the scope of the codes
in the action() clause.

In a sender model, the code segment of the process transition declares the variable of the
message to send as its input pattern. Then the action codes contain:

- create a handle to a file (“FileInterface.dat” in the example of Figure 4-13) of output
mode;

- convert the colored token (i.e., msg) to file stream by calling the corresponding version
of the overloaded function output() or output_ms();

- close the file handle.

Analogously, the code segment of the process transition in a receiver model has only an output
variable instead of one of input. It also executes three operations in the action codes:

- create a handle to the same interface file of input mode;

- read the file stream and convert it to a colored token (i.e., msg) by calling the
corresponding version of the overloaded function input();

- close the file handle.

By accessing the same file in the code segments, we create the interface between two or
more different models. The file can be stored in a network location so that it can support the
widened scope of application.

The implementation of an interface via the file system can be appropriate for the modeling of
a distributed system, or a complex system that needs different computers for the modeling. It
is especially useful for simulation purpose.

Table 4-3 compares the following different modeling methods of interfaces introduced in
§4.3.3.

Chapter 4 Modular Modeling for Train Control Systems

102

Table 4-3 Comparison of different modeling methods of interfaces

Modeling method CPN hierarchical Fusion place File system

Application scope 2 adjacent layers global global / across-model

Modeling safety very safe type safe modeler-dependent

Implementation difficulty middle easy difficult

4.4 Functional Modeling for ETCS Onboard System

This section focuses on the modeling of ETCS onboard system. As a crucial part of the railway
control system, the ETCS onboard system is very complex and contains many functions which
are coupled with each other by sophisticated rules. It is thus important to correctly model these
functions and the relation between them to offer the required functionality.

Faced with this objective and based on our understanding of the ETCS onboard system
operation rules, this thesis proposes a detailed functional modeling method for ETCS onboard
system, which can be used as a modeling framework to organize all the functions offered in
ETCS onboard system with respect to system requirements specification of ERTMS/ETCS
(European Railway Agency 2016a).

This functional modeling method for ETCS onboard system is introduced with CPN Tools.

4.4.1 Functional Analysis of ETCS Onboard System

By conducting a functional decomposition process (see §4.2.2) we have identified the
functions to be implemented in the ETCS onboard system. The concrete functions are
consistent with the system requirements specification of ERTMS/ETCS (European Railway
Agency 2016a). However, these functions are not independent of each other. In order to
guarantee the required behavior of the onboard system, these functions need to be organized
and modeled in a proper manner.

Figure 4-14 Functional analysis of the ETCS onboard system behavior

Mode 1 Mode 2

Function 1

Function 3

Function 4

Mode Transition

ETCS Onboard System

Data
stored

onboard
Function 2

Procedure 1

RBCVia GSM-R

Passing
Eurobalises Eurobalises

···

<data accessibility>

<applicability>

Chapter 4 Modular Modeling for Train Control Systems

103

Figure 4-14 illustrates a functional view of the ETCS onboard system behavior. With respect
to the system requirements specification of ERTMS/ETCS (European Railway Agency
2016a), the ETCS onboard system behavior can be described by three levels:

• Modes;

• Procedures;

• Functions.

It is worth noting that the term “function” in this section and in the system requirements
specification (European Railway Agency 2016a) refers to the “concrete function” in the
functional decomposition introduced in §4.2.2.

Modes and Mode Transitions

Modes are top-level operational states of ETCS onboard system. At any time (even if the
equipment is not powered), the onboard system is considered to be in one and only one mode.

In different modes, the onboard system has different behaviors, reactions, and responsibilities.
The detailed introduction to each mode can be found in §4.4.2. According to the current mode,
the onboard system can execute a procedure or some functions to complete the operational
tasks.

In certain specific circumstances, a mode transition is triggered by the satisfaction of one
condition or a combination of several conditions. As the name implies, a mode transition will
change the current mode of the onboard system.

Procedures

Procedures are mainly defined for the onboard interaction with the driver or other system
components. A procedure is usually composed of a series of operations, which will lead to
some major changes of the onboard system states, e.g., “start of mission” or “change of train
orientation”. A procedure always has very clear entry and exit(s), it is thus described as a
flowchart in the system requirements specification (European Railway Agency 2016a).

As indicated by the arrowed lines with the tag <applicability> in Figure 4-14, a procedure has
its applicable mode(s), i.e., in which mode(s) the procedure can be started.

In the accomplishment of a procedure, it can execute several functions that are already defined
to facilitate the operation. For example, Procedure 1 in Figure 4-14 relies on Function 1 and
Function 2.

Functions

A function is defined to offer a specific operation. An example can be the “concrete functions”
illustrated in Figure 4-3 in §4.2.2.

Chapter 4 Modular Modeling for Train Control Systems

104

Like the procedures, a function also has its applicable mode(s). When the onboard system is
in one of its applicable modes, a function can be executed directly, it can also be used as part
of a procedure, or be called by another function.

As a result of the concurrency of ETCS onboard system and the existence of lots of supervision
functions, in the most modes, there are always several functions being executing in parallel.

Data stored onboard

Apart from the current mode, there are also lots of data store onboard, e.g., the speed, location.
The values of these data represent the operational conditions of the whole onboard system.

The data can be accessed and modified by the three kinds of operation already introduced:
mode transition, procedure, and function. The mode value can also be regarded as a special
kind of data; however, the current mode can only be modified by a mode transition.

Based on the functional analysis of the ETCS onboard system behavior, we propose to
functionally model the ETCS onboard system as shown in Figure 4-15. Some abbreviations
are examples of names of modes or procedures, which will be introduced later.

Figure 4-15 Functional modeling for ETCS onboard system

The details of the modeling method will be proposed in §4.4.2-§4.4.5.

4.4.2 Modeling of Modes and Mode Transitions

4.4.2.1 Introduction to ETCS Modes

According to the latest version 3.6.0 of the ERTMS/ETCS system requirements specification
(European Railway Agency 2016a), 17 modes are defined as follows:

• Full Supervision (FS)

• Limited Supervision (LS)

• On Sight (OS)

• Staff Responsible (SR)

• Shunting (SH)

• Unfitted (UN)

• Passive Shunting (PS)

• Sleeping (SL)

• Stand By (SB)

• Trip (TR)

Mode
Transition

Procedures

Functions ···

Modes
···

NP SB FS
SHOS

NP

SB

SB

SH

SB

OS

OS

FS

OS

SB

OS

FS

SH

SB

SB

NP ···

···

F_023F_015 F_015 F_105 F_113 F_210

SoM EoM ShDrv
Data stored

onboardApplicable mode(s)

Values

Chapter 4 Modular Modeling for Train Control Systems

105

• Post Trip (PT)

• System Failure (SF)

• Isolation (IS)

• No Power (NP)

• Non-Leading (NL)

• National System (SN)

• Reversing (RV)

These modes cover all the operation conditions of the onboard system. In this thesis, we mainly
consider the commonly used modes as follows to introduce our modeling method:

NP: No Power is the mode in which the equipment shall be when it is not powered.

SB: Stand-By is a default mode when the system awakes from NP. In this mode, the desk can
be open or closed and the onboard equipment performs the standstill supervision.

FS: Full Supervision is the complete supervision mode of the train. When all train and track
data required is available on board and a valid Movement Authority (MA) is received, the train
shall enter this mode automatically.

SR: As its name suggests, Staff Responsible mode allows the driver to operate the train under
his own responsibility. This mode is used when the onboard system does not know the route
information (e.g., just after the onboard equipment starts-up).

OS: On Sight mode enables the train to enter a block section that is indicated occupied (e.g.,
occupied by another train or obstructed by an obstacle). The onboard system offers max speed
supervision and the train movement is under the driver’s responsibility.

SH: Shunting mode is defined for shunting operation, which means a process of sorting items
of rolling stock into complete trains, or the reverse. In this mode, the onboard equipment
ensures the train movements against a ceiling speed and in the shunting zones according to a
list of expected balises. Otherwise, an emergency brake will be executed.

4.4.2.2 Introduction to Mode Transitions

Table 4-4 Part of ETCS mode transitions

<29
-p2-

<29
-p2-

<19,
27,30
-p5-

4>
-p2-

5, 6,
50>
-p7-

<28
-p5-

<29
-p2-

<5,6,
50,51
-p6-

10>
-p7-

NP

SH

SB

FS

Chapter 4 Modular Modeling for Train Control Systems

106

Table 4-4 shows part of the ETCS mode transitions. A complete mode transitions table is
defined as “Transitions Table” in (European Railway Agency 2016a), which can also be found
as Table B-1 in Appendix A of this thesis.

By this example, we explicate the information implied in the mode transitions table:

- The symbol “>” or “<” indicates the transition direction;

- The numbers before the arrows “>” or “<” refer to the conditions defined in the
“Transition Conditions Table” in (European Railway Agency 2016a);

- Each transition has a priority order which is indicated by “-px-”, a smaller x number
has a higher priority. The use of priority is to avoid a conflict between several
transitions of the same original mode when their conditions are satisfied at the same
time;

- The blank cell with diagonal stripes means that there is no corresponding transition
(e.g., no transitions NP→SH, NP→FS nor SH→FS in Table 4-4).

Table 4-4 can thus be translated to a more explicit form as shown in Table 4-5 with the
necessary definitions of conditions.

Table 4-5 Translation to Table 4-4 (Part of ETCS mode transitions)

Origin Mode Target Mode Priority Condition(s)

NP SB p2 Cond.4

SB NP p2 Cond.2

SB SH p7 Cond.5, Cond.6 or Cond.50

SB FS p7 Cond.10

SH NP p2 Cond.29

SH SB p5 Cond.19, Cond.27 or Cond.30

FS NP p2 Cond.29

FS SB p5 Cond.28

FS SH p6 Cond.5, Cond.6 or Cond.51

Conditions:

[2] A desk is open.

[4] Onboard system is powered.

[5] “Train is at standstill” and “current level is 0 or NTC or 1” and “driver selects shunting
mode”.

Chapter 4 Modular Modeling for Train Control Systems

107

[6] “Train is at standstill” and “current level is 2 or 3” and “reception of the information
‘Shunting granted by RBC’ after a shunting request initialized by the driver and”.

[10] (Valid Train Data is stored on board) and (MA + SSP + gradient parameters are on-
board) AND (no specific mode is required by a Mode Profile)

[19] “Driver selects ‘exit Shunting’” and “train is at standstill”.

[27] “Desks are closed” and “function ‘Continue Shunting on desk closure’ is not active”.

[28] Desks are closed.

[29] Onboard system is NOT powered.

[30] “Desks are closed” and “no ‘passive shunting’ input signal is received”.

[50] “A request to acknowledge shunting is displayed on DMI” and “the driver
acknowledges”.

[51] “A Mode Profile defining the entry of a Shunting area is used onboard” and “The max
safe front end of the train is inside the Shunting area”.

We then introduce the modeling of the modes and model transitions in CPN.

4.4.2.3 Modeling of Mode and Mode Transitions in CPN Tools

Using colored Petri nets, “mode” can be declared as an enumerated colorsets 𝑀𝑀𝑀𝑀𝐷𝐷𝐸𝐸 by
enumerating all its values, as shown in Code 4-3. We also declare some variable
𝑚𝑚, 𝑚𝑚𝐵𝐵𝑆𝑆𝑇𝑇1, 𝑚𝑚𝐵𝐵𝑆𝑆𝑇𝑇2 of the type 𝑀𝑀𝑀𝑀𝐷𝐷𝐸𝐸 to operate the mode value.

Code 4-3 Declarations of mode and mode transitions (part of)
 1 (*Declaration of Mode and Mode Transitions*)
 2 colset MODE= with

NP|SB|PS|SH|FS|LS|SR|OS|SL|NL|UN|TR|PT|SF|IS|SN|RV;
 3 var m, mode1, mode2: MODE;
 4 val P1=101; val P2=102; val P3=103; val P4=104; val P5=105; val

P6=106; val P7=107;

As already introduced in 4.4.2.2 there are different priorities for different mode transitions.
Thanks to the support of priority inscription of transitions in CPN Tools (Westergaard and
Verbeek 2011), we defined the values 𝐶𝐶1 − 𝐶𝐶7 are reserved for priority control and will be
discussed later.

For the mode transitions, the basic idea to model each mode-to-mode transition by a transition
in CPN. Figure 4-16 shows the modeling of the mode transition NP→SB, triggered by
Condition 4 (“onboard system is powered”, “C4” for short in the model), with the priority p2.
The transition is named C4_P2 to refer to condition C4 and priority P2. The input arc of
transition C4_P2 is annotated with the value NP and the output arc with the value SB.

Chapter 4 Modular Modeling for Train Control Systems

108

The place “Current MODE” is always marked with one and only one token representing the
current mode value.

Figure 4-16 Example of a mode transition in CPN

The whole mode transitions table in the system requirements specification (European Railway
Agency 2016a) has 129 different mode-to-mode transitions with 7 priority levels. These
transitions can be triggered by 74 different conditions. If we distinguish the mode transitions
with the same origin and target modes but triggered by different conditions (e.g., the mode
transition SB→SH can be triggered by Condition 5, 6 or 50, as shown in Table 4-5), there are
200 different mode transitions with specific origin modes, target modes, priorities and
conditions.

In order to better organize the modeling process and to improve the readability of the mode
transitions model, we propose a grouping view to classify these mode transitions into different
zones, together with the modeling methods of the priorities and conditions for mode
transitions.

Modeling of mode transitions by grouping views

In order to build a compact and understandable model, we use a classification method to group
these 200 different mode transitions into different groups.

Our grouping rules are as follows:

(1) The mode transitions with the same target mode are modeled in a group for this target
mode. For example, Figure 4-17 (a) and (b) show the models for the mode transitions
with target mode SB and FS, respectively.

(2) Different mode transitions with the same target mode, the same condition, the same
priority but different origin modes are modeled with one transition. Instead of directly
using values as CPN arc inscriptions (c.f. Figure 4-16), we use the variable 𝑚𝑚 for the
origin mode as arc expression on the input arc of the transition and a Boolean
expression as the guard on the transitions. Thus, a single transition can treat several
mode transitions with different origin modes, e.g., the transition labeled “C28_p4” in
Figure 4-17 (a). This single transition models the mode transition UN→SB and the
mode transition SN→SB, both with the condition C28 and the priority p4.

(3) Same mode transitions with the same origin mode, the same target mode, the same
priorities but different conditions can be aggregated into one single transition, e.g., the

Chapter 4 Modular Modeling for Train Control Systems

109

transition labeled “C28_C47_p3” aggregate two mode transitions triggered by
Condition 28 and Condition 47.

(4) The rules (2) and (3) above can be used together to achieve a more compact
representation, e.g., the transition labeled “C31_C32_p6” in Figure 4-17 (b). It is worth
noting that in this example it is necessary that each of the mode transitions LS→FS,
SR→SH or OS→SH could be triggered by either Condition 31 or Condition 32.

By applying the grouping rules, we obtain a mode transition model of ETCS onboard system
for 12 modes: NP, SB, PS, SH, FS, SR, OS, NL, SF, IS, RV and PT. Figure 4-17 shows part
of the model of mode transitions. A complete version can be found in Figure B-1. The whole
model uses 6 groups and 37 transitions to model 84 mode transitions for the 12 considered
modes.

(a) Transitions with target=SB (b) Transitions with target=FS

Figure 4-17 Part of ETCS mode transitions model

It is worth noting that the places labeled “CurrentMode” use the fusion place feature in CPN
Tools, details can be found in §4.3.3.3.

Modeling of conditions for mode transitions

The mode transitions need to be triggered when appropriate conditions are satisfied. This
sounds like the basic enabling rules of the transitions in Petri nets, i.e., the input places are
regarded as the precondition of enabling a transition.

We model the conditions for mode transitions by linking or adding some condition places as
the input places of the mode transitions, as well as by using arc expressions to have more
precise control on the conditions.

Figure 4-18 illustrates some mode transitions linked with their appropriate conditions modeled
by some places (can be called condition places) on the right side. Each transition is connected
to one or more places as a condition may be refined by several sub-conditions (e.g., Condition
46). This model can enable the corresponding mode transitions by checking the satisfaction of
these (sub-)conditions.

Chapter 4 Modular Modeling for Train Control Systems

110

Figure 4-18 Conditions and priorities for mode transitions

These conditions places are always fusion places as the conditions are always some onboard
data that are also used in other operations where their value shall be modified.

Colored tokens in the condition places contain values of Boolean or other types. The required
values to trigger the mode transitions can be assigned on the arc expressions and thus be used
to check the satisfaction of the conditions. We distinguish two kinds of values by their different
treatments.

(1) The first kind of condition values belong to the general onboard data, i.e., a variable
which always has a value, e.g., “train powered” (type Boolean) or “speed” (Numeric).
Normally the condition place contains one and only one token which is used to specify
the required value for the mode transition. The firing of the mode transition checks but
does not change the value (i.e., “read-only” for the mode transition). In this case, we
use a bi-directional arc to link the condition places of these “read-only” value and the
mode transition.

(2) The second kind of condition values is, in fact, a semaphore to inform of an event, e.g.,
the onboard equipment receives a certain message, or the drive has confirmed a
proposition via DMI. We also use colored tokens to represent these condition values
but by a single-direction arc from the condition place to the transition if the condition
is only used to trigger the mode transition and should only be used once.

Chapter 4 Modular Modeling for Train Control Systems

111

In more sophisticated cases, the guards of CPN transitions can also be used to check the
satisfaction of conditions, the same way as they are used to select the origin mode in Figure
4-17 and Figure 4-18.

Modeling of Priority in Mode Transitions

The priority for different mode transitions is implemented in the CPN model by applying the
priority inscription formalism offered by CPN Tools (Westergaard and Verbeek 2011). A
CPN transition with higher priority is given a smaller priority value and is forced to occur
before other transitions with lower priorities. The CPN transitions without an explicit priority
value are assigned 𝐶𝐶_𝑁𝑁𝑀𝑀𝐸𝐸𝑀𝑀𝐴𝐴𝑁𝑁 = 1000 by default.

In Figure 4-18, all the transitions are prioritized transitions and the priority can be found at the
lower left corner of each transition with the values already declared in Code 4-3. In the
example model, two transitions are assigned the priority P2, one transition of P3, and the other
two of P6.

In Figure 4-18 several condition places are marked and Transition “C13_p3” is the only
enabled transition. According to the current marking, the condition for Transition “C13_p3”
and for Transition “C46_p6” are both satisfied. However, Transition “C13_p3” has a higher
priority and prevent Transition “C46_p6” from being enabled.

However, we have noticed that there exist some lots of mode transitions with the same priority.
We classify the mode transitions with the same priority into two classes:

(1) Those with the contradictory conditions which can be verified by analyzing the syntax
of the mode transitions model, e.g., Transition “C4_p2” and Transition “C29_p2”
shown in Figure 4-18. In this example, the former is for the origin mode “NP” and the
latter is for an origin mode “m≠NP”. What’s more, their Boolean conditions “powered”
and “not powered” can never be satisfied at the same time.

(2) Those without syntactically contradictory conditions, e.g., Transition “C46_p6” and
Transition “C59_p6” in Figure 4-18. Supposing a case that current mode is “FS”, “LS”
or “OS” and the train is at standstill, it is seemingly possible that the conditions for
both the two transitions might be satisfied but all depend on the constraints on these
conditions.

The second class of mode transitions with the same priority interests us. As says the system
requirements specification (European Railway Agency 2016a), “it is obvious that these
transitions cannot occur at the same time, and so can never lead to a conflicting situation”.
However, from an academic point of view, there is just a weak explanation but no explicit
guarantee to ensure that the onboard system shall not simultaneously satisfy the conditions for
multiples mode transitions with the same priority in the current version of the system

Chapter 4 Modular Modeling for Train Control Systems

112

requirements specification. A case study of verification to the certainty of mode transition will
be introduced in §5.5.2.

4.4.3 Modeling of Procedures

4.4.3.1 Introduction to the Modeling of Procedures

A procedure defines a series of operations of ETCS onboard system, which usually contain
the interactions between different subsystems and components, information exchanged, or
events triggered.

In the current version 3.6.0 of ETCS system requirements specification (SRS) (European
Railway Agency 2016a), 17 procedures are defined in SRS

• Start of mission

• End of Mission

• Shunting Initiated by Driver

• Override

• RBC/RBC Handover

• Level Transitions

• Train Reversing

• Change of Train Orientation

• Changing Train Data from sources
different from the driver

• On-Sight

• Train Trip

• Joining / Splitting

• Indication of Track Conditions

• Limited Supervision

• Entry in Shunting with Order from
Trackside

• Passing a non-protected Level
Crossing

• Generation of Track Conditions
related information to an ETCS
external function 91

A procedure has its applicable modes and can call several functions, as already shown in
Figure 4-14 and Figure 4-15. In the SRS, each procedure is illustrated by a flowchart with text
annotations. It usually has one entry but may have different exits.

In this thesis study, we propose a method to build the CPN models for each procedure based
on the procedure flowcharts in the SRS. The general process of this modeling method is shown
as Figure 4-19.

Starting from the flowcharts in SRS, we perform the operation syntactic transformation,
which syntactically transforms the flowchart into a literal PN model based on the analysis of
the structure.

Then, semantic refinement and reduction can be executed several times to finally achieve a
final CPN model of procedure. The semantic refinement adds or links the conditions,

Chapter 4 Modular Modeling for Train Control Systems

113

operations, etc. to the literal PN model, while the semantic reduction generates a more
condensed model by conducting aggregations of states and operations.

In order to better present our modeling method of procedures, the rest of this section will be
introduced based on an example of the procedure “Start of Mission” (SoM), whose flowchart
is shown by Figure B-2 in Appendix A. However, we can always use some general methods
to model other procedures.

Figure 4-19 General process of building CPN models for procedures

4.4.3.2 Stage 1: Syntactic Transformation

In this first stage of the modeling of procedures, we apply the following syntactic
transformation rules to get a literal model based on the analysis of the structure of procedure
flowchart in the requirements specification. This stage can be conducted without the railway
control system domain knowledge. In this stage, the literal models may be either presented in
Petri Nets (PN) or Colored Petri Nets (CPN), anyhow they will later be transformed to CPN
model in the semantic refinement stage.

Chapter 4 Modular Modeling for Train Control Systems

114

We propose the syntactic transformation rules according to the different types of elements in
the original flowchart. Each element in the flowchart can be transformed into a corresponding
Petri net element, which is introduced as follows.

State

A state in the procedure is represented by a rectangle labeled with “S xx” in the procedure
flowchart. A state can be regarded as a projection of the status of the ETCS onboard system
and is composed of a specific set of onboard data.

A state often means that the onboard system is in a relatively stable state. The onboard system
is considered to stay in the current state before the conditions to trigger the transition to another
state are completely satisfied. A transition to a new state indicates that the system behavior in
which we are interested differs from its previous state. Thus, the definition of a state is based
on the modeling objective. For example, even if the train is advancing and its location is
changing, it can be regarded to remain in a state as long as it does not pass a key location point,
e.g., EOA (End of Authority).

The states in a procedure are transformed to places in the literal Petri net model. When the
place representing a state is marked, it means the onboard system is in this particular state.
Some examples can be found in Figure 4-20 (a) as shown by Places S0, S1 and S2.

Action

An Action in the procedure is represented by a rounded rectangle labeled with “A xx” in the
procedure flowchart. It is transformed into a place in the literal Petri net model, as shown by
some examples in Figure 4-20 (b) as A32, A33, etc. In the refinement phase, these places
transformed from action may be refined in different ways according to their meaning, which
will be introduced later.

Decision

A decision in the procedure is represented by a rhombus labeled with “D xx” in the procedure
flowchart. It is transformed to a place in the literal Petri net model, which presents a relatively
temporary state which is about to branch depending on some extra information (e.g., different
choices made by the driver). Examples can be found in Figure 4-20 (a) with decision D2 and
D3. These temporary states for decisions can usually be agglomerated with neighboring states
in the reduction phase.

Branching arrow with decision option

A branching arrow in the flowchart just follows the decision symbol and is labeled with
decision option, e.g., “yes” or “no”. It is transformed into a transition in the literal Petri net
model. According to the different decision options, it will lead the system to different future
states, as shown by the transitions “D2_Yes” and “D2_No” in Figure 4-20 (a). These

Chapter 4 Modular Modeling for Train Control Systems

115

transitions will be later refined by adding the conditions to model the semantics of the decision
options.

Event

An event in the procedure is represented by an arrow labeled with “E xx” in the procedure
flowchart. It is also transformed to a transition in the literal Petri net model, an example of the
transition “E1” can be found in Figure 4-20 (a).

An event transition will lead the system to another state as the result of the occurrence of the
expected event (e.g., reception of a response from other components). Similar to the branching
arrows with decision option, the capturing of the event will be modeled in the refinement phase
by adding appropriate conditions to the event transition.

Unlabeled arrow

There may exist some unlabeled arrows in the procedure flowchart, mainly for the reason of
maintaining the structure of the procedure flowchart. These unlabeled arrows are transformed
to transitions in the literal Petri net model and can be called “route transitions”. An example
is the first transition in Figure 4-20 (a)These transitions might later be removed in the reduction
phase due to the aggregation of its input and output places.

Figure 4-20 Literal translation rules with extract of procedure “SoM”

S0
Mode is SB and desk open and no communication session is established or is being established

S1
The on-board requests the driver to enter/re-validate Driver-ID, offers the driver the possibility to enter/revalidate

the Train running number and offers the driver the possibility to set/remove a Virtual Balise Cover

D2
Stored position & stored level

are "valid"

E1
Driver has entered/validated Driver-ID

D3
Level

S2
Onboard requests Driver to enter/re-validate level

No

Yes

S0

S1

S2

D2 D3

E1

D2_No

D2_Yes

A33
Onboard reports "valid" position to RBC

A32
Onboard informs Driver

A35
RBC reports to Onboard "valid" position

A24
Onboard deletes stored position data

A40
Onboard informs Driver

S10
Waiting for Driver selection

A32

A33

A40

A24

S10A35

Extract of Procedure “SoM” (Flowchart) Syntactic model (PN)

(a)

(b)

Chapter 4 Modular Modeling for Train Control Systems

116

Union of multiple arrows

Union of multiple arrows in the procedure flowchart are transformed into some separated
transitions in the literal Petri net model which have the common output arc(s). An example
can be found in Figure 4-20 (b).

After applying the above rules, all kinds of elements in the flowchart are replaced by the two
basic Petri net elements – places and transitions – in the literal Petri net model.

We then use arcs to connect these places and transitions according to their connectivity in the
original flowchart. We also put the text labels linked to each flowchart element on their
corresponding elements in this Petri net literal model to facilitate the following refinement and
reduction phases.

Figure 4-20 shows some extracted parts of the flowchart of the procedure “Start of Mission”
and their corresponding Petri net literal models. A complete version of the literal model of
procedure “Start of Mission” can be found in Figure B-3 in Appendix A.

This literal Petri net model is, in fact, a structural projection of the procedure flowchart in Petri
Nets. It is an intermediate model because the semantics of these places and transitions in Petri
net are still represented by the text labels which is not yet implemented. The implementation
of the semantics will be conducted in the semantic refinement stage.

By the way, this literal Petri net model allows several kinds of the reachability verification of
the procedure.

4.4.3.3 Stage 2: Semantic refinement with operations and conditions

The refinement phase is to implement the semantics of the literal Petri net model. This can be
done by adding extra Petri net structures and by building the connections between the literal
model of the procedure and other system models.

We distinguish structural refinement and behavioral refinement.

Structural refinement

A structural refinement is to replace some places and transitions in the literal Petri net model
by refined Petri net structures according to their semantics. As shown in Figure 4-21, a place
can be refined by a place-transition-place structure and a transition can be refined by a
transition-place-transition structure. Thus, we refine the literal Petri net model vertically by
the structural refinement.

The structural refinement is meanly to refine the elements related to the actions. We have
introduced that an action in the flowchart is transformed into a place in the literal Petri net
model. This place may be refined in different ways according to the semantics of the action
modeled:

Chapter 4 Modular Modeling for Train Control Systems

117

- Continuous action: the system is executing a continuous action until it changes to
another state (e.g., a braking until the train is standstill). The corresponding place in
the literal model does not need structural refinement and remains as shown in Figure
4-21 (a). This place can be called an execution place and the condition to stop the
action depends on its output transition.

- Instant action: if the place is transformed from an instant action, it can be refined by
a place-transition-place structure as shown in Figure 4-21 (b). The refined structure
uses two state places to model the states before and after the execution of the action,
and an action transition to execute an instant action. This transition will be further
refined.

- External action: the place implies an action executed by external parts of the system
model, e.g., a demand to another system component or a function call. In this case, the
place is first replaced by a place-transition-place structure similar to an instant action.
Then the transition needs to be further refined by a transition-place-transition
structure with an external parallel structure as shown in Figure 4-21 (c). Transition
“Start” is an action transition to send the request or to call a function; place “wait” is
a state place where the system waits the response or the result of the execution of the
function called; transition “Finish” is an event transition triggered by the reception
when the external action is finished. The two places “request” and “response” are all
data places.

Figure 4-21 Structural refinement examples

Chapter 4 Modular Modeling for Train Control Systems

118

The objective of a structural refinement is to model all the steps in the procedure by Petri net
places and transitions. The structural refinement can be done in several iterations. After
finishing the structure refinement, each place or transition has one of the following semantics.

There are three categories of places after the structural refinement:

- State place, which indicates the current state in the procedure when it is marked.
normally no more than one state place shall be marked in the procedure (except for a
procedure with parallel flows);

- Execution place, which indicates an operation being occurred as long as the place is
marked. If the concrete execution device is modeled, it may be related to this execution
place in the procedure model;

- Data Place, where the onboard data are stored or exchanged. It is also used by the
semaphore to synchronize the global model, e.g., a function call.

Every transition will have one of the three semantics after the refinement:

- Event transition, which represents the occurrence of an external event, e.g., the
manipulation of the driver through DMI, or the reception of the balise telegrams while
the train passes a Eurobalise;

- Action transition, which means that the system performs an instant action, e.g., the
modification of a value of the onboard data. Compared to an execution place which
models a continuous execution as long as the place is marked, an action transition
implies the action is done with the firing of the transition and thus can be finished in
no time.

- Route transition, which is used for the flow-control purpose in a Petri nets model for
the procedure. They are used to connect different places in sequence, to represent the
branching with different decision options, or to check the satisfaction of the conditions.

Behavioral refinement

After the structural refinement which vertically refines a procedure model, the number of the
elements (i.e., transitions and places of Petri nets) is quasi-fixed. However, it is still necessary
to implement the behavior of each element by horizontally adding some extra manipulations
and establishing the relationship with other parts of the model.

The behavioral refinement is mainly conducted on the three kinds of transitions after the
structural refinement. The behavioral refinement includes, but is not limited to, adding arc
expressions to manipulate the appropriate colored tokens, defining transition guards to check
the satisfaction of the necessary conditions, creating the connections between the refined
structure and other parts within the same procedure model or in another model (e.g., via fusion
place).

Chapter 4 Modular Modeling for Train Control Systems

119

Figure 4-22 Refinement of an action in a procedure

Figure 4-22 (a) shows a place in the literal Petri net model transformed from an action “A24:
Onboard equipment deletes the stored position data” in the flowchart of the procedure “Start
of Mission”. Both the structural and behavioral refinement for this place is made as shown in
Figure 4-22 (b), where the behavioral refinement is marked in blue.

The action is to delete the position data stored onboard, which is an instant action. Following
our structural refinement rules, we use a place-transition-place structure to replace the action
place in the literal model. Then for the behavioral refinement, we associate the action
transition with the place where stores the onboard data “Position” by adding the arc
expressions in blue between them. The two arc expressions delete the current position by
taking its old value and putting a special value “UNKNOWN” to the fusion place
“CurrentPosition”. The value “UNKNOWN” is generated by calling an ML function
“Unknown ()” defined in CPN Tools, which will be introduced later in 4.4.5.

Figure 4-23 shows another behavioral refinement on the route transitions with decision
options. The decision “D3” lead to a branching in the onboard system state according to the
current system level:

• If the level is level-0, level-1 or NTC, the procedure goes to state “S10”;

• If the level is level 2 or level 3, the procedure goes to “D7”.

The literal Petri net model transformed from this decision “D3” is shown as Figure 4-23 (a),
two route transitions are used to represent the two decision options, but their semantics are
not implemented. In Figure 4-23 (b), the two transitions are associated to a data place
“CurrentLevel”, thus the different conditions for the two decision options are modeled by the
arc expressions and the transition guards in blue.

Other kinds of behavioral refinement (e.g., for an event transition) can be conducted in a
similar way. Due to the space limitation, they are no more discussed. More examples can be
found in a refined CPN model of procedure “Start of Mission” shown by Figure B-4 in
Appendix A.

Chapter 4 Modular Modeling for Train Control Systems

120

Figure 4-23 Behavioral refinements on route transitions of a decision

4.4.3.4 Stage 3: Semantic Reduction with Aggregation Rules

After the refinement phase, there are usually some redundant structures states due to the
refinement of different elements in the Petri net model, e.g., two adjacent states in a sequence
which are in fact not necessary.

Some general syntactical reduction rules for colored Petri net models are proposed in (Lee-
Kwang et al. 1987; Joel et al. 1988; Haddad 1991; Evangelista et al. 2005; Esparza and
Hoffmann 2016). The difficulty of the application of these reduction rules in our models is
caused by two facts:

(1) There are several types of “colored Petri nets” as we have introduced in §3.3.2 and in
§A.5, the models built in this thesis mainly use the CPN enhanced with CPN Tools;

(2) The reduction rules above are usually proposed based on quite different types of
colored Petri net, respectively, which are, however, usually much more basic than the
CPN enhanced with CPN Tools.

In other words, while taking full advantage of the modeling expressivity and the flexibility of
the modeling formalism, the applicable reduction rules for these models of the onboard system
are very limited.

Chapter 4 Modular Modeling for Train Control Systems

121

However, some aggregation rules can still be applied to eliminate these redundant structures
by analyzing their semantics. The basic idea of the reduction is based on the aggregation of a
sequence of states (or operations) into an atomic state (or operation) if it is not necessary to
distinguish them according to the modeling objective.

As shown in Figure 4-24, the place-transition-place structure in the zone of dotted lines is
obtained by the structural refinement of two actions, and there is only a route transition
without condition to connect the two sequential actions. In this case, once the system is in the
state “finished” of Action 1, it will not stay there but will directly go to the place “not started”
of Action 2. Thus, the place-transition-place structure in the zone of dotted line with two state
places and a transition can be replaced by a single state place.

Figure 4-24 Semantic reduction with aggregation rules

Another reduction rule can be applied to an “event transition – state place – action transition”
structure, where the state place does have an execution semantics. This structure can be
reduced to a single transition that integrates the event and the action semantics. Due to space
limitation, we do not explain this rule in detail.

It is not necessary to conduct the reduction after all the model is totally refined. In order to
limit the model size, a provisional model can also be reduced before a further refinement. By
this method, refinement and reduction can be conducted several times to obtain a final
procedure model, as emphasized in Figure 4-19. After the semantic refinement and reduction,
part of the final CPN model for the procedure “Start of Mission” is shown in Figure B-4 in
Appendix A.

The semantic reduction based on aggregation rules help both to build a procedure model with
improved readability and to obtain a compact model to facilitate the state-space based
verification in the future phase of the system development cycle.

Chapter 4 Modular Modeling for Train Control Systems

122

4.4.4 Modeling of Onboard Functions

4.4.4.1 ETCS Onboard Function Introduction

The operation of train control systems is based on the combination of different functions. A
list of onboard functions is defined in the system requirements specification (European
Railway Agency 2016a), e.g., “Request MA Cyclically respect to approach of target indication
point or MA timer elapsing”, “Speed restriction to ensure a given permitted braking distance”
and “Override related speed restriction”.

These onboard functions, in fact, the concrete functions already introduced in §4.2.2. etc. Each
function has its applicable mode(s). It can be triggered in the applicable mode(s) or be called
by a procedure.

It is important to not confound an onboard function, which is a concept to describe the system
behavior in our functional modeling framework, with an ML function, which is a programming
technique integrated into CPN Tools to enhance the expressivity of colored Petri nets. During
the modeling, we can exploit all the modeling approaches offered by CPN Tools, including
the ML functions, to build the onboard system models, which surely include the models of
onboard functions.

4.4.4.2 Modeling of Onboard Functions

Because of the diversity of the onboard functions and the expressive ability of modeling using
CPN Tools, modelers have the flexibility to model the onboard functions according to their
understandings and practice. Each function is modeled by a subpage in CPN Tools

However, we can still classify the modeling of functions under two categories which have very
different modeling approaches.

• Blocking function: which is always called by a procedure or by another function. When
the called function is ongoing, the execution of the caller model is blocked.

• Non-blocking function: which is activated when its conditions are satisfied. These
conditions can also be set on purpose to activate the function. Anyway, the execution
of the function is in parallel with any other processes.

Blocking function modeling

A blocking function can be modeled by using the hierarchical features in CPN Tools. A
blocking function is modeled as a subpage with input and output ports. Then the function can
be called as a substitution transition in the model of its caller, which can be a procedure or
another function.

Figure 4-25 shows the subpage model of a blocking function “MA Request”. This function
can form a colored token of product type “TrainxRBCxMsg” by specifying the TrainNumber,

Chapter 4 Modular Modeling for Train Control Systems

123

RBCID and Message=MAReq, where the values of TrainNumber and RBCID are obtained by
accessing the fusion places TID and CurrentRBC. Then, this token is sent to the interface place
T2RBC by firing the transition SendMAReq.

Figure 4-25 Modeling of blocking function “MA Request”

By using the CPN Tools hierarchy, the two places with double-bordered ellipse are ports and
we assign the input port-type tag “In” to the place Start, and output port-type tag “Out” to the
place End. The model of its caller contains socket places in the context of a substitution
transition which replaces the underlying subpage. Similar to the implementation of interface
places introduced in §4.3.3.2, the socket/port pair is used to pass the colored token(s) between
the models of the caller and the function. A blocking function is usually activated when its
input port(s) is(are) marked.

A blocking function can be integrated into a procedure, as shown in Figure 4-26. It can also be
called by another function, as shown in Figure 4-27.

Figure 4-26 Part of the procedure model “SoM” with a function call

Figure 4-26 shows part of the procedure model “Star of Mission”. Figure 4-26 (a) is the literal
model transformed from the flowchart. Figure 4-26 (b) shows the CPN model after refinement
and reduction. It is worth noting that the place “S21 Send MA Request to RBC and wait” in

Chapter 4 Modular Modeling for Train Control Systems

124

Figure 4-26 (a) is identified as an external action according to our structural refinement rules,
regardless of its original identifier beginning with “S” which normally means a state. A
reduction rule is also applied to aggregate two transitions after the refinement, before Figure
4-26 (b) is finally obtained.

The structure with pink color uses a substitution transition “Call_F_ReqMA_in_SoM”, which
is in fact executed in the subpage of the function “MA Request” (Figure 4-25). The socket/port
pairs are established between the function subpage and the caller model as shown in Table
4-6.

Table 4-6 Socket/port pairs in function subpage and the caller model

Direction
Port places in function subpage

“MA Request” (Figure 4-25)

Socket places in the caller model

Figure 4-26 (b) Figure 4-27

Input Start F_ReqMA_Start F_ReqMA_End

Output End F_ReqMA_Start F_ReqMA_End

According to the requirement of the procedure, it is necessary to send the MA request before
the procedure could be in a state “wait (for MA)”. For this reason, the “sending of MA
Request” is a blocking function for the procedure. The reader may have noticed that we use a
parallel structure in Figure 4-26 (b) to call the function by adding a waiting place to block the
procedure. That is because in a procedure the state places usually need to be defined as an
appropriate colorset (“SoMState” in the example), which cannot be processed by a general-
purpose function. We will soon see that in the example of calling the same function (“MA
Request”) in another function “Request MA by timer elapsing”, the called function can be
directly merged into the caller’s main process without the parallel structure (Figure 4-27).

A blocking function usually models an immediate execution. A blocking function is called
when the caller needs to make sure that the called function is finished before performing other
operations. It can also be used to obtain an execution result which might be a data processing,
in which case the ports of the function need to be defined as appropriate colorset(s) to pass the
parameter and to return the result.

We benefit from the CPN Tools hierarchy to strengthen the reusability of a blocking function.
Thanks to the support of the substitution transitions, CPN Tools creates an exclusive and local
subpage for each substitution transition being fired. That is to say, it is possible to execute the
same function in different callers at the same time, without considering the synchronization
issue.

Non-blocking function modeling

Different from the blocking functions which are usually called explicitly in another operation,
non-blocking functions are activated with respect to the satisfaction of the appropriate

Chapter 4 Modular Modeling for Train Control Systems

125

conditions, including mode, level, etc. and especially as a result of the occurrence of certain
events, e.g., the expiration of a timer.

A non-blocking function is also modeled as a subpage, but it does not have hierarchical
elements, i.e., the ports. Thus, a non-blocking function model can be executed in parallel with
the all the other models (e.g., procedure models, other function models). The execution of a
non-blocking completes an operation or makes some changes on the onboard data. Fusion
places are frequently used in a non-blocking function model to offer the conditions or to make
the changes to the onboard system.

Figure 4-27 shows the model of a non-blocking function “Request MA respect to timer
elapsing of T_MAR or T_TIMEOUTRQST”. The place Start is initially marked with an
uncolored token (type UNIT in CPN Tools). Two transitions T_TIMEOUTQST_Req and
T_MAR_Req are associated with the corresponding places in which a Boolean token of “true”
value will be generated when the timer is expired. That the calculation and management of
these timers consider the approach of perturbation location or MA timer elapsing
configuration, which are beyond the scope of the function in question. In Figure 4-27 we only
use the Boolean value as the representation of two different events.

Figure 4-27 Modeling of the function “Request MA by timer elapsing”

The two transitions T_TIMEOUTQST_Req and T_MAR_Req can also check the satisfaction
of the applicable conditions (i.e., mode and level in this example). The firing of one of the
transitions is a result of both the satisfaction of the conditions and the occurrence of the
specified event. Any of the two transitions can generate a token in the place F_Req_MA_Start.

The bottom part of Figure 4-27 in pink color calls the function “MA Request” that we have
already introduced. It also shows that a function can be called in another function.

Chapter 4 Modular Modeling for Train Control Systems

126

After being executed once, the transition Return leads to its initial marking. So that the
function can wait for a new event to be executed at another time.

From the examples, the reader can infer that the modeling method of a non-blocking function
is quite different from that of a blocking function. Firstly, a non-blocking function does not
have ports, it is activated as a result of the condition(s) and/or events. Secondly, a non-blocking
function does not have different callers and there is only one (subpage) model for each non-
blocking function in the global system. That is also the reason why a non-blocking function
needs an initial marking to control the operation loop. Even if the two different events in Figure
4-27 are satisfied at the same time, the function model needs to run two times to be completed.

A large part of ETCS onboard system functionality can be modeled by non-blocking functions,
especially when it is concerned to supervision purpose. Lots of non-blocking functions are
ongoing in parallel and asynchronously to guarantee the good operation of the ETCS onboard
system.

4.4.5 Modeling of Onboard Data

4.4.5.1 Introduction to onboard data

Similar to the modeling of most computer-based systems, we distinguish data and operations
(which manipulate the data) during the modeling. This discrimination makes the modeling
process clearer and the models built are easier to be implemented by programming languages
in a future phase of the system development lifecycle.

We have introduced the modeling methods of three kinds of operations (i.e., mode transition,
procedure and function) in §4.4.2 – §4.4.4, respectively. Along with the introduction to the
modeling of these operations, we have already shown some examples of onboard data without
discussing them systematically. This subsection introduces the modeling methods of onboard
data.

Onboard data refer to all kinds of values stored in the onboard system such as speed, position,
and even messages, etc. The values of these data may either be initially stored onboard, be
obtained from the environment, or be recalculated by the onboard system during the execution.
They are modeled as different data types and can be accessed and modified by appropriate
operations to maintain the correct functionality of the onboard system.

4.4.5.2 Modeling method of onboard data using CPN Tools

Using CPN, a place can be used as the container of a variable of a particular type provided
that the place never contains more than one token. In this case, the colorset of such a place is
equal to the variable data type and the unique token in the place presents the value of the
represented variable. Sometimes an empty place is also authorized, which represents an

Chapter 4 Modular Modeling for Train Control Systems

127

uninitialized variable or another particular connotation according to the modeler. Based on
this idea, we introduce a more sophisticated to model the onboard data.

The principal task of modeling onboard data is to define the corresponding colorsets and to
facilitate the data manipulation. CPN Tools offers abundant basic types e.g., Boolean, Integer,
Real, String, Enumerated, Index, and several compound types, e.g., Product, Record, List.

According to the system requirements specification (European Railway Agency 2016a),
several data have their validity besides the value.

The data validity may be in one of the three states:

• Valid: the stored value is known to be correct;

• Invalid: the stored value may be wrong;

• Unknown: no stored value available (after it is deleted etc.).

The data validity can be modified in certain special situations. For example, when the ETCS
onboard system exits an old mode and enters a new mode, several data may be invalidated
(thus invalid) or deleted (thus unknown).

Code 4-4 illustrates an example to model the position of a train by two colorsets “POS” and
“POS_VALID”.

Code 4-4 Declaration of data with validity
1 (*Declaration of POS and its validity*)
2 colset POS=int with ~1..1000000;
3 val UNKNOWN = ~1;
4 colset POS_VALID = bool;
5 var p, q: POS;
6 var pv: POS_VALID;
7 colset POSxVALID = product POS * POS_VALID;

The colorset “POS” is defined as an integer with its boundary. The non-negative integers
represent the train’s position in a coordinate system with a unit. The value “~1”(−1) is reserved
to represent an “UNKNOWN” value. The product colorset “POS x VALID” is defined to have
a compact representation of the two data which are always related.

Figure 4-28 Example of data manipulation in CPN models

Chapter 4 Modular Modeling for Train Control Systems

128

The onboard system model stores these data by colored tokens in some places. These data can
be accessed and modified during the operation of trains, which are usually modeled by
transitions. Figure 4-28 shows an example to increase and delete the train position.

It is important that a colored token of a special value is always necessary to represent the case
of non-existence in the practical onboard system. The reason is that the non-existence of a
special value may be a condition to operate an action. However, in Petri nets, the detection of
an empty place (the non-existence of tokens) is quite difficult. Some solutions e.g., inhibitor
arc, will largely increase the complexity of the modeling.

In the example of train position, we use a special value “UNKNOWN” to represent the state
after the train position is deleted. Thus, the place Position is always marked with a colored
token. The condition of the non-existence of the train position can be modeled by a detection
of the value “UNKNOWN”.

It is also worth noting that the two colorsets POS and POS_VALID could be combined as a
product colorset (which is the case in the example) or a record colorset, but should not be
merged into a union colorset as shown in Code 4-5.

Code 4-5 Declaration of position by union colorset
1 (*Declaration of position by union colset*)
2 colset POS=int with ~1..1000000;
3 colset POS_Special = with InVALID | UNKNOWN;

4 colset POS_EXT = union POS + POS_Special;

The difference is that in the former case, the value POS and POS_VALID can have their values
at the same time, which is useful to model a situation that a train has an invalid position value
(such as the onboard system is just powered and has a stored position at the end of the last
journey with a doubt that train might be moved meanwhile). However, the latter with a solution
of union colorset cannot correctly model it.

Some data do not need to be modeled with validity, such as a condition, which indicates the
satisfaction of an assertion (e.g., the cab is powered), or an event (e.g., timer elapsing). For the
same reason of the detection of non-existence in Petri nets, a condition/event is recommended
to be modeled as Boolean other than a Unit (neutral) type, as shown in Table 4-7.

Table 4-7 Modeling of conditions and events

Modeling method
Condition Event

Satisfaction Non-satisfaction Happened Not happened

Recommended true: bool False: bool true: bool False: bool

Not recommended

Chapter 4 Modular Modeling for Train Control Systems

129

4.5 Modeling of Railway Node with Automated Routing
Function

4.5.1 Routing Function in a Railway Node

The automatization of a train control depends on the interaction and cooperation of both the
onboard system and the trackside system. As an important part of the trackside system, a
railway node (see §2.2.1.2) allows the passthrough of trains according to their itineraries,
which is implemented by the train routing function.

In reality, train routing is still a manual function in rail systems even with the use of
ERTMS/ETCS. We propose here a model allowing to consider the automatic assignment of
an appropriate route to each train arriving at the entrance of a node.

To better illustrate our proposition, let us consider a railway node example in the global
abstracted system model previously introduced in Figure 4-6 which has a concrete structure
as shown in Figure 2-1. The railway node is supposed to have a unique operation direction. It
has two entrances (A and B) and two exits (C and D).

We have introduced the concept route, which is an itinerary from an entry to an exit in a
railway node. From the point of view of train control, a route can be characterized by the
resources that the train must use during its itinerary, e.g., tracks, signals and points (c.f.,
§2.2.2). By defining an interlocking table in the form of Table 4-8, the necessary resources
can be reserved for a particular train to pass the node.

Table 4-8 Example of an interlocking table

No. In Out Signal Tracks* Points**

1 A C s1 tc01, tc03, tc05, tc07, tc09, (tc11) pt1, pt2

2 B D s2 tc02, tc04, tc06, tc08, tc10, (tc12) pt3, pt4

3 A D s1 tc01, tc06, tc08, tc10, (tc12) pt4, pt1(r), pt3(r)

4 B C s2 tc02, tc04, tc06, tc09, (tc11) pt3, pt2(r), pt4(r)

5 A C s1 tc01, tc06, tc09, (tc11) pt1(r), pt2(r), pt3(r), pt4(r)

In the interlocking table, each route is assigned a route number, together with its resources,
i.e., the signal protecting the route, the tracks composing the route and the points in the route.
The points with “(r)” after their identifiers need to be locked in the reverse position while the
others in normal position. The tracks in brackets show the first track after the route, which is
usually necessary to be reserved together with the other resources in the same route.

Chapter 4 Modular Modeling for Train Control Systems

130

Figure 4-29 CPN model for railway node module

Chapter 4 Modular Modeling for Train Control Systems

131

Each railway node has its own structure different from another and has thus a particular
interlocking table. The information listed in the interlocking table needs to be integrated into
the railway node model, which makes it possible to automatically select an appropriate route
for the trains passing the node.

However, as our modeling objective is to offer a reusable module, the railway node structure
and the corresponding interlocking table information should not affect the modeling of the
component model. In other words, the structure of the railway node module should be
independent of the interlocking table logic. By following the component modeling method of
the parametric module, we present a modeling method to express the interlocking table
information by compound colored tokens in one of its parameter places.

4.5.2 Modeling of railway node component using CPN Tools

The railway node model is shown in Figure 4-29. Some related declarations are defined in
Code 4-6.

Code 4-6 Declarations for a railway node module
 1 colset TrainID = index T with 1..10;
 2 colset Station = with StationA | StationB | Station C | Station

D | NodeN;
 3 colset TRAIN = product TrainID * Station * Station ;
 4 colset Connect = with A | B | C | D | unknown;
 5 colset RBC2Node= product MsgType * Station * Connect * TRAIN ;
 6 colset NodeTRAIN = product TRAIN * Connect * Connect;
 7 colset TCID = index TC with 1..12;
 8 colset PID = index PT with 1..4;
 9 colset NR = with Nm | Rv;
10 colset Point = product PID * NR;
11 colset SID = index Signal with 1..4;
12 colset RouteDetail = product RouteID * Connect * Connect * SID

* PTList * TCList;
13 colset TRAINxRouteID = product TRAIN * RouteID;
14 colset RouteIDxBOOL = product RouteID * bool;

The principal function of this railway node model is to set a route which allows the passage of
the train automatically.

We suppose that when a train is approaching the railway node, the RBC that manages the train
issues a route request by generating a token of TypeRouteReq into the place RBC2Node. This
route request contains the train’s information and the entrance it is approaching.

The first task for the railway node model is to determine an exit from which the train is
supposed to leave the node. The decision of this exit depends on the train’s destination station.

Chapter 4 Modular Modeling for Train Control Systems

132

An ML function NodeSchedule() on the output arc inscription of transition ReceiveRouteReq
implements this task. Then a token of type NodeTRAIN is put in place ScheduledTrain.

In order to better explain the functions of the railway node model, we consider an example of
colored token of type NodeTRAIN ((Train(1), StationA, StationC), (A,C)) in place
ScheduledTrain. The implied information is shown as Table 4-9. This example will also be
used to explain the following process of the railway node model.

Table 4-9 Example of a Token of Type NodeTRAIN

TrainID Origin Destination Node entrance Node exit

Train (1) Station A Station C A C

As shown in the left part of Figure 4-29, Transition CheckResources checks the possibility of
setting a route from entrance A to exit C. The corresponding resources are indicated by the
tokens in places Idle Routes, Available Tracks and Available Points, which represent
respectively the routes that have not been set, the tracks and the points that have not been taken
by another route.

Place Routelib also plays a vital role as it contains the tokens of type RouteDetail that store
the information describing how each route is composed, according to the interlocking table as
shown in Table 4-8. Since the arcs connected to place Routelib are all bi-directional arcs, the
tokens will never be really removed. However, they are used to create the correct binding
elements for transition CheckResources. An example of two tokens representing Route(1) and
Route(5) are shown in Table 4-10 in the form of a multiset.

Table 4-10 Example of tokens of type RouteDetail

1`(Route(1), A, C, Signal(1),
 [(PT(1), Nm), (PT(2), Nm)],
 [TC(1), TC(2), TC(3), TC(4), TC(5), TC(11)]) ++
1`(Route(5), A, C, Signal(1),
 [(PT(1), Rv), (PT(3), Rv), (PT(4), Rv), (PT(2), Rv)],
 [TC(1), TC(8), TC(5), TC(11)])

We suppose that all the resources in Node N are available when the route request of Train(1)
is received. In this case, for transition CheckResources, two binding elements are possible: the
binding element of Route(1) and another of Route(5).

Assume that the binding element of Route(5) is chosen and transition CheckResources is fired,
the relevant resources will be taken and a token of type TRAINxRouteID will be put into place
WaitforPoints. Transition CheckResources also sends a command to the part of point switch
(place PointOrder) in order to change the corresponding points into desired positions and then
lock them.

Chapter 4 Modular Modeling for Train Control Systems

133

Our model does not contain functions of the infrastructure like switch machines, so we just
use a simple transition LockPts to simulate this process and give the result of this operation. If
for any reasons the necessary points are not correctly positioned and locked, transition
CheckPoints receives a token with a bool variable false. Then the route request will be
canceled, and all the resources already taken will be released and the token representing the
route request will be put again in place ScheduledTrain.

If the points are positioned and locked as desired, a token of type TRAINxRouteID is put into
place ReadyToSet then transition SetRoute is fired. After that, the token is transferred into
place ReadyRoute, the protective signal of this route is then set to be green (a token indicating
the route is put into Place Route2Signal). The node sends the route information to the train,
and it informs the train’s next RBC (the one managing the block sections that the train will
enter after passing through the node). So far, the route is finally set, and the train is expected
to go through it.

After the train has successfully passed the route and arrived in the first block of the line
managed by a new RBC, the new RBC sends a message of TypeRegAck to inform the node.
Transition TrainPassed is then fired to unlock the route and release the resources.

We point out that the functions of some infrastructure equipment (e.g. point machines, signals)
are not included in our model. These devices are actually the concrete actuators of the railway
systems. Consequently, this study only considers the control of these devices rather than model
their concrete behavior.

4.5.3 Perspectives of modeling a railway node

The railway node model realized the “automated routing” function of a railway node, based
on a fixed interlocking table. However, there are also studies for a dynamic routing strategy in
a railway node, which allocates (locks) and retrieves (releases) the necessary resources in a
dynamic and more efficient way. A dynamic routing could mean:

- The fixed interlocking table is replaced by an algorithm that can calculate a route when
the train is approaching;

- The occupied resources in a route could be released gradually (e.g., track by track)
along with the train’s passage to improve the resources utilization;

- An assigned and even occupied route might be altered again according to the real-time
change of the resources, with respect to safety rules.

The use of such a dynamic routing will certainly improve the passthrough capacity of a railway
node. However, as a safety-critical system, the railway operators need a safety guarantee
before a new strategy could be implemented. Thus, a perspective of an improved railway node
model could be to implement the dynamic routing in Petri nets which can be formally verified.

Chapter 4 Modular Modeling for Train Control Systems

134

4.6 General WFN Modeling Patterns: Application for
RBC Modeling

4.6.1 Modeling of RBC Component using WFN

In this section, we pose several problems in terms of modeling and then propose solutions.

The first problem we want to illustrate here is how to model the behavior of a train system
component from a functional point of view. We are interested here in the modeling of some
functions related to the movement authority (MA) management, no longer in the ETCS
onboard component as introduced in §4.4, but this time on the trackside, implemented by the
RBC component.

The second problem that we want to address in this section is the necessary compromise for a
designer between the modeling expressivity and the analysis facility. Generally speaking, the
stronger expressiveness a modeling formalism has, the more difficulty one meets when it
comes to the analysis. For example, we use CPN Tools to model the complex system behaviors
of the onboard system (§4.4) and railway node (§4.5) taking advantage of its expressivity and
flexibility. However, the use of some extensions of CPN Tools, e.g., the list structure, could
bring a difficulty to make the formal verification on models built with these extensions (Xie
et al. 2017a; Xie et al. 2017b).

In order to facilitate a posteriori stage of verification, we were thus interested in formalisms
with better analyzability. Based on the discussion of different Petri net classes in §3.3.1, well-
formed Petri nets (WFN) (Chiola et al. 1991a) is a variant of colored Petri nets created for the
aim of “ease of analysis” and with some constraints of modeling. This study makes an attempt
to model the complex DES using WFN, by taking the movement authority function in the RBC
component as an example.

As a trade-off choice between the expressivity and analyzability of colored Petri net variants,
WFN also brings some inconvenience to the modeling phase of a complex train control system,
compared to the general colored Petri nets or some enhanced variants as that used in CPN
Tools. These constraints and inconvenience could be a challenge to build complex DES
models using WFN with its syntactical constraints.

In the modeling practice, one could be faced with some system structure or behavior that is
difficult to be modeled using WFN, especially when it comes to asymmetry behavior or data
manipulation. We identify three useful kinds of modeling formalism which are supported by
CPN Tools and some other colored Petri net variants but are not supported in WFN. These
formalisms are necessary to model the RBC component with respect to our modeling
objective.

Chapter 4 Modular Modeling for Train Control Systems

135

In the first part of this section (§4.6.2), we propose three general modeling patterns in WFN,
which allows the implementation of the same formalisms while respecting the WFN
constraints. In the second part (§4.6.3), these WFN modeling patterns are applied in the
modeling of the desired functions of the RBC component. However, the application of these
general modeling patterns could be much larger and extended to any other similar complex
DES modeled with WFN.

4.6.2 General WFN Modeling Patterns for Complex DES

In this section, we propose three practical modeling patterns to increase the WFN’s usability
and thus the productivity without sacrificing its theoretical foundation.

These modeling patterns are:

• An equivalent alternative structure in WFN to the “if-then-else” expression available
in CPN Tools;

• The definition and implementation of a “predecessor function” in WFN based on the
existing successor function;

• A “list structure” in WFN with the corresponding operations on it, i.e., inserting an
item, removing an item, modifying a value, querying a value.

A case study that uses all these modeling patterns is the modeling of the RBC component of a
railway control system. This RBC model in WFN is introduced in §4.6.3.2.

4.6.2.1 Conditional arc modeling in WFN

The conditional arc with “if-then-else” expression is a powerful structure facilitating the
modeling of diverse behaviors caused by different conditions, which is commonly used by
almost all the structured programming languages. In several colored Petri net variants or tools
such as CPN Tools, such a conditional arc is supported, which is, unfortunately, not the case
in WFN.

This thesis study proposes two WFN equivalent structures which have the same semantics of
the conditional arc. One solution is based on guarded functions, the other is based on
transitions with the guard.

Notation

Consider a transition 𝑡𝑡 and a place 𝑇𝑇. Let ∁(t) = 𝐶𝐶1 × 𝐶𝐶2 × ⋯ × 𝐶𝐶�.

Considering a post-incidence function Wpost(𝑇𝑇, 𝑡𝑡) on the arc connecting the transition t and
one of its output places 𝑇𝑇 ∈ 𝑡𝑡• (or respectively, a pre-incidence function Wpre(𝑇𝑇, 𝑡𝑡) on the arc
connecting the transition t and one of its input places 𝑇𝑇 ∈ 𝑡𝑡 •), which is a conditional arc with
a general “if-then-else” expression:

Chapter 4 Modular Modeling for Train Control Systems

136

 Wpost (pre)(𝑇𝑇, 𝑡𝑡) = 𝑇𝑇𝐼𝐼 𝑀𝑀 𝑡𝑡ℎ𝑇𝑇𝑇𝑇 𝐹𝐹� 𝑇𝑇𝐵𝐵𝑠𝑠𝑇𝑇 𝐹𝐹� (4-4)

Where 𝑀𝑀 is a condition defined on ∁(t). 𝐹𝐹� and 𝐹𝐹� are two unguarded colored functions from

∁(t) to the multiset of ∁(p), which can also be expressed by sums of a tuple of basic functions
in WFN.

𝐹𝐹� = � �𝐼𝐼1

�, 𝐼𝐼2
�, … , 𝐼𝐼�

��
�

𝐹𝐹� = � �𝐼𝐼1
�, 𝐼𝐼2

�, … , 𝐼𝐼�
��

�

(4-5)

The “if-then-else” expression 𝑊𝑊 ����(���)(𝑇𝑇, 𝑡𝑡) is not supported by WFN syntax, we propose
two equivalent approaches to represent the same semantics.

Conditional arc modeling based on guarded functions

We define the equivalent function 𝑊𝑊�
���� (���)(𝑇𝑇, 𝑡𝑡) to replace Equation (4-4).

 WE
post (pre)(p, t) = [g] 𝐹𝐹� + [¬g] 𝐹𝐹� (4-6)

Equation (4-6) has the same semantics of Equation (4-4) and it can be transformed to a form

that respects the definition of WFN standard functions, as shown in Equation (4-7).

WE
post (pre)(p, t) = [g] 𝐹𝐹� + [¬g] 𝐹𝐹�

= [g] � ⟨f1
t , f2

t ,…, fk
t ⟩

m
+[¬g] � �f1

f , f2
f ,…, fk

f �
n

= � [g]⟨f1
t , f2

t ,…, fk
t ⟩

m
+ � [¬g]�f1

f , f2
f ,…, fk

f �
n

(4-7)

Conditional arc modeling based on transitions with guard

An alternative solution to model the conditional arc in WFN is to use two transitions with their
guards to model the "then" clause and "else" clause respectively. This solution is pretty useful
for some software that does not support the concept of guarded function.

Figure 4-30 Modeling of conditional arc based on transitions with guard

𝑊𝑝𝑜𝑠𝑡 𝑝 𝑡 =

Chapter 4 Modular Modeling for Train Control Systems

137

Figure 4-30 (a) shows an example of a conditional arc as an output arc of transition 𝑡𝑡 with the

“if-then-else” expression 𝑊𝑊�
����(𝑇𝑇, 𝑡𝑡). 𝐺𝐺 is the guard of transition 𝑡𝑡 (it is possible that 𝐺𝐺 =

𝑇𝑇𝐸𝐸𝑇𝑇𝐸𝐸, i.e., transition t does not have a guard) while g is the condition in the “if-then-else”
expression.

We propose an equivalent structure to replace transition t by two transitions 𝑡𝑡� et 𝑡𝑡� . The
model with a conditional arc in Figure 4-30 (a) is replaced by a structure shown as Figure 4-30
(b) by defining an equivalent WFN model

 𝑊𝑊𝐹𝐹𝑁𝑁′ = (𝐶𝐶′, 𝑇𝑇′, ∁′, 𝑊𝑊 post, 𝑊𝑊 pré, Φ′) (4-8)

where:

- 𝐶𝐶′ = 𝐶𝐶 ; 𝑇𝑇′ = 𝑇𝑇 \ {𝑡𝑡} ∪ �𝑡𝑡�, 𝑡𝑡�� ;

- ∁′�𝑡𝑡�� = ∁′�𝑡𝑡�� = ∁(t) ; ∀𝑠𝑠 ∈ 𝐶𝐶′ ∪ 𝑇𝑇′ \ �𝑡𝑡�, 𝑡𝑡��, ∁′(𝑠𝑠) = ∁(𝑠𝑠) ;

- 𝑊𝑊 ����′�𝑇𝑇, 𝑡𝑡�� = 𝐹𝐹�,𝑊𝑊 ����′�𝑇𝑇, 𝑡𝑡�� = 𝐹𝐹�,𝑊𝑊 ��e′�𝑇𝑇, 𝑡𝑡�� = 𝑊𝑊 ��e′�𝑇𝑇, 𝑡𝑡�� = 𝑊𝑊 pre(𝑇𝑇, 𝑡𝑡) ;

- ∀𝑇𝑇′ ≠ p ∈ 𝐶𝐶′, 𝑊𝑊 ∗′� 𝑇𝑇′, 𝑡𝑡�� = 𝑊𝑊 ∗′� 𝑇𝑇′, 𝑡𝑡�� = 𝑊𝑊 ∗(𝑇𝑇′, 𝑡𝑡), where ∗ ∈ {𝑇𝑇𝐵𝐵𝑠𝑠𝑡𝑡, 𝑇𝑇𝑉𝑉é} ;

- ∀𝑡𝑡′ ∈ 𝑇𝑇′ \ �𝑡𝑡�, 𝑡𝑡��, ∀𝑇𝑇′ ∈ 𝐶𝐶′, 𝑊𝑊 ∗′(𝑇𝑇′, 𝑡𝑡′) = 𝑊𝑊 ∗(𝑇𝑇′, 𝑡𝑡′), where ∗ ∈ {𝑇𝑇𝐵𝐵𝑠𝑠𝑡𝑡, 𝑇𝑇𝑉𝑉é} ;

- Φ′�𝑡𝑡�� = G⋀g, Φ′�𝑡𝑡�� = G⋀¬g ; ∀𝑡𝑡′ ∈ 𝑇𝑇′ \ �𝑡𝑡�, 𝑡𝑡��, Φ′(𝑡𝑡′) = Φ(𝑡𝑡′) ;

The proposition has been illustrated with an output arc of transition 𝑡𝑡. If the conditional arc is

one of the input arcs of transition 𝑡𝑡 , the analogue solution is to replace 𝑊𝑊�
����(𝑇𝑇, 𝑡𝑡) by

𝑊𝑊�
���(𝑇𝑇, 𝑡𝑡).

4.6.2.2 Predecessor function and its WFN implementation

In WFNs the successor function ⊕ 𝐸𝐸�
� (also denoted as 𝐸𝐸 + 1 by using the variable X to

replace the identity function 𝐸𝐸�
�) is defined as an elementary function. While in some modeling

practice, it is also necessary to use a predecessor function, which is not defined in WFNs.

We propose to define a predecessor function that can be denoted as ⊝ 𝐸𝐸�
�.With respect to

some application constraints, a model using predecessor functions can be represented by an
equivalent WFN model using only successor functions with the same behavior.

Let ⊝ 𝐸𝐸�
�(𝑐𝑐) be an application from 𝑐𝑐 ∈ 𝐶𝐶 = 𝐶𝐶1

�1 × ⋯ × 𝐶𝐶�
�� to the predecessor element of 𝑐𝑐�

�
in an ordered class 𝐶𝐶�. Similar to the successor function, it will also be denoted as 𝐸𝐸 − 1 after

replacing the identity function 𝐸𝐸�
� by a variable X. It is worth noting that in an ordered class,

the predecessor of the first element in 𝐶𝐶� is the last element.

Chapter 4 Modular Modeling for Train Control Systems

138

To benefit from the features of WFN, we propose to transform a colored net using predecessor
functions defined above to an equivalent WFN.

Figure 4-31 (a) shows an example of a colored net using predecessor defined above, it could
be transformed to an equivalent WFN model as shown in Figure 4-31 (b).

Figure 4-31 WFN realization of a predecessor function

In Figure 4-31, ∁(𝑡𝑡) = 𝐶𝐶1 × 𝐶𝐶1; X, 𝑌𝑌 are two variables representing two identity functions
𝐸𝐸 = 𝐸𝐸1

1, 𝑌𝑌 = 𝐸𝐸1
2; (𝐸𝐸 − 1) and (𝐸𝐸 + 1) are notations of predecessor and successor functions

that (𝐸𝐸 − 1) = ⊝ 𝐸𝐸1
1, (𝐸𝐸 + 1) = ⊕ 𝐸𝐸1

1. For variable Y there are similar notations.

Figure 4-31 (a) uses the predecessor function (𝐸𝐸 − 1) in the output arc of transition t. In order
to replace this structure by an equivalent WFN, we follow the two steps:

Step 1:

Search for all the instances of the variable X in the “context of transition 𝑡𝑡”, which includes
the arcs connected with transition t and the guard of transition t. Then replace them with the
corresponding successor function (𝐸𝐸 + 1).

It is worth noting that the three atomic predicates defined in WFN are replaced by the
following rules, respectively:

- [𝐸𝐸 = 𝑌𝑌] is replaced by (𝐸𝐸 + 1);

- [𝐸𝐸 = (𝑌𝑌 + 1)] is replaced by [(𝐸𝐸 + 1) = (𝑌𝑌 + 1)], and finally [𝐸𝐸 = 𝑌𝑌];

- [X ∈ D] is replaced by [(𝐸𝐸 + 1) ∈ D], which is not in the valid form for a WFN guard.
In this case, let 𝐷𝐷 = {𝑥𝑥� ⋯ 𝑥𝑥�} be a subclass, we define a new subclass 𝐷𝐷′ =
{𝑥𝑥�−1 ⋯ 𝑥𝑥�−1} where 𝑥𝑥�−1and𝑥𝑥�−1 are the predecessors of 𝑥𝑥� and 𝑥𝑥�, respectively.
Then [(𝐸𝐸 + 1) ∈ D] is transformed to [𝐸𝐸 ∈ 𝐷𝐷′].

In the example, the two instances are found in the guard of transition t and on the output arc
from the transition t respectively in Figure 4-31 (a), which are then replaced by (X+1) in Figure
4-31 (b).

Step 2:

Replace the predecessor function (𝐸𝐸 − 1) in the “context of transition 𝑡𝑡” by the variable 𝐸𝐸.

Cl = {1. . 5}

(a) (b)

p1

C1

p2

C1

p3

C1xC1

t

[X=Y]
X

Y

((X-1) , Y)
p1

C1

p2

C1

p3

C1xC1

t

[(X+1) = Y]
X+1

Y

(X, Y)

Chapter 4 Modular Modeling for Train Control Systems

139

In the example, the predecessor function (𝐸𝐸 − 1) found in the output arc of transition t in the
model of Figure 4-31 (a), is replaced by the variable 𝐸𝐸 in Figure 4-31 (b).

Application constraints:

In order that the replacement above can be performed, for a color instance 𝐸𝐸�
� , if the

predecessor function ⊝ 𝐸𝐸�
� is used, the corresponding successor function ⊕ 𝐸𝐸�

� cannot appear
in the context of the same transition t. In other words, we cannot use the predecessor and the

successor function of a same color instance 𝐸𝐸�
� simultaneously and in the “context of a

transition”.

4.6.2.3 Modeling of the list structure in high-level Petri nets

In high-level Petri nets (e.g., WFN, Colored Petri nets), the set of colored tokens in a particular
place are called a multiset. The colored tokens in such a multiset may differ from each other
and do not have priority. In a Petri net example shown in Figure 4-32, there are five colored
tokens in place p1 (or, in the multiset of place p1) which may be different from each other.
Among these five colored tokens, transition t1 is fired by choosing one token randomly.

Figure 4-32 Multiset in Petri nets

While modeling practical systems, one is often confronted with the need to model a structure
of multiple elements of the same type but with an order or a priority. Lots of examples can be
found as a communication protocol with a FIFO (First-In First-Out) buffer, or a queue of trains
in a railway line in the railway control system in which the first train needs to be first served.

In colored Petri nets, when a transition is enabled by different binding elements, the choice
from these binding elements is, in fact, to assign the token priority to different tokens in a
multiset. Some solutions are proposed by using different Petri nets extensions. For example,
FIFO nets (Memmi and Finkel 1985) proposed to use places with FIFO property; while in
CPN Tools, the advanced data type “list” and ML code segment can also be used to change
the random selection behavior, in a manner like a programming language (WANG et al. 2008).
However, the Petri nets models using these new features and extensions are usually only
analyzable within the tools that support these extensions. One is always confronted with some
difficulties when it comes to the analysis and verification methods proposed on some general
colored Petri nets variants, including the analysis convenience proposed by WFN.

This study proposes a technique to model a “list” structure, which attaches an order to the
different colored tokens in a multiset without creating a new type. We use the basic structures

Chapter 4 Modular Modeling for Train Control Systems

140

supported by general high-level Petri nets to implement this list structure and propose
necessary operations such as item insert, item removal, value modification, value query.

To help the reader better understand the proposition, it is illustrated in this thesis by a practical
modeling pattern of a list of multiple trains in the RBC component model in WFN. It is worth
noting that this technique can also be applied to other variants of high-level Petri nets other
than WFN, and to any other similar list structure in any other domains.

The RBC manages multiple trains in an area of a railway line. It regards these trains under
management as a list. In the RBC model in WFN, it is also necessary to have a centralized
place to store this list of trains. Based on the necessity to implement the offer the basic
movement authority (MA) function, the stored information should include at least the
identifier and the position of each train, as well as the order of the sequence of the trains.

Using WFN, we define color class and color domain to illustrate the train identifier, position,
and other necessary information.

Declarations

CLASS POS = < 0 >∪< 1, 2, … , N >∪< END >;
CLASS TID = < T(0), T(1), T(2), … , T(M) >;

DOMAIN TRAINITEM = < POS, TID, POS >.

(4-9)

The color class TID enumerates the different identifiers of trains, where does not represent a
real train. The value T(0) is reserved as a special value and its usage will be explained later.

The color class POS is defined as an ordered and is divided into three static subclasses. Each
position in <1, 2, …, N> represents a particular block in the railway line (which has N blocks;
where N is consequently a parameter that is bound to a specific value for each real line). The
other two subclasses <0> and <END> are for special purposes and will be explained in the
following paragraphs, where END is a constant defined by END = N + 1 for the
convenience of the illustration.

The color domain TRAINITEM is a 3-tuples Cartesian product color domain. We illustrate
how to establish an ordered relation among the different tokens of color domain TRAINITEM
by firstly introducing the connotation it implies.

The connotation of a token of color domain TrainItem

The color domain TRAINITEM has 3 fields with their connotations shown in Figure 4-33. For
each token of color domain TRAINITEM, the value of the first filed (type: POS) is the train’s
current position, the value of the second filed (type: TID) is the identifier of the train. The third
field of each token stores a position value (type: POS), which is the position of its preceding
train. Thus, all the tokens of TRAINITEM are linked together to form a “list” structure.

Chapter 4 Modular Modeling for Train Control Systems

141

Figure 4-33 Structure and connotation of TRAINITEM tokens

We need (m + 1) tokens of color domain TRAINITEM to model a list of m trains. Figure 4-34
shows an example of a 3-trains list presented by 4 tokens of color domain TRAINITEM. We
first introduce some special tokens to help the reader understand this proposition.

TrainQueueRear: the token “TrainQueueRear” in Figure 4-34 doesn’t represent a real train
and should be regarded as a pointer to the position of the last train (i.e., the train in the rear
position of the queue). The first and second fields of a “TrainQueueRear” token are always
“0: POS” and “T0: TID”. Its third field indicates the position of the last train. We have
introduced that the value “0: POS” and “T(0): TID” are reserved values and do not represent
a physical position nor a train. This token always exists in the multiset to model the trains’ list
even if the real trains’ list is empty.

First Train: The first train in the queue refers to the one that does not have a preceding train
in the railway line area managed by this RBC. Thus, we give a special value “END: POS” to
its third field where END is defined as a constant outside the valid range of the physical
position value (e.g., END = N + 1). Thus, the value END is used to indicate the end of the
list.

Figure 4-34 Example of a train list of three trains

More generally, in each token of type TRAINITEM, an extra field is added, and it has the same
type as another value filed (can be called “linking filed”). This extra field is assigned the same
value of the linking filed of its neighbor element. By this method, we form a chain through the
tokens to form the list. The linking direction is alternative according to the modeling objective.

It is worth noting that our illustrative example is a little special as the position value of a token
can, in fact, imply its order in the list by being compared with all the others. However, in a
more general case, the values of the linking filed do not need to indicate the list order, a token
for an item in the list is modeled as:

 (𝐵𝐵𝑇𝑇𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑀𝑀 𝐼𝐼𝑇𝑇𝐵𝐵𝑇𝑇𝑆𝑆, 𝑎𝑎𝑡𝑡𝑡𝑡𝑉𝑉𝑇𝑇𝑏𝑏𝑡𝑡𝑡𝑡𝑇𝑇 1, 𝑎𝑎𝑡𝑡𝑡𝑡𝑉𝑉𝑇𝑇𝑏𝑏𝑡𝑡𝑡𝑡𝑇𝑇 2, … , 𝑎𝑎𝑡𝑡𝑡𝑡𝑉𝑉𝑇𝑇𝑏𝑏𝑡𝑡𝑡𝑡𝑇𝑇 𝑇𝑇, 𝑇𝑇𝑥𝑥𝑡𝑡𝑉𝑉𝑎𝑎 𝐼𝐼𝑇𝑇𝐵𝐵𝑇𝑇𝑆𝑆) (4-10)

Chapter 4 Modular Modeling for Train Control Systems

142

List structure model

In the WFN model, the list structure is modeled by two places, i.e., place TrainList:
TRAINITEM and an auxiliary place FreeBlock: POS.

Tokens in place TrainList are of color domain “TRAINITEM” which is well introduced before.
For a special case that there are no trains in the list, the place TrainList still exists contains a
token, i.e., the “TrainQueueRear” token <0: POS, T(0): TID, END: POS> where the third
field is set to the “END” constant.

Tokens in place FreeBlock represents the free blocks (positions) that are not occupied by any
train. For the case that there are no trains in the list, the place FreeBlock have all the N tokens
from “1: POS” to “N: POS”. This place is necessary to guarantee that a single position value
will not be assigned to more than one token in another place TrainList, i.e., “Current Position”
field of each valid train is different. It is better to explain the usage of the two places by
introducing some operations to manage the list structure.

Query operation and the choice of linking field

Generally speaking, the query operation of a list is to find a particular item by citing a known
value of a field of this token which should be unique.

The query operation can be very easily implemented in CPN models thanks to the occurrence
rule of occurrence of a binding element. Figure 4-35 shows an example to obtain the particular
element of type TrainItem in the trains list by an identifier “tr”. The query operation is widely
used and serves as the basis of other operations.

Figure 4-35 Example of query operation

A filed whose value differs from each other for all the tokens in the list, we can call it a
representative field. The identifier is always a representative field. A representative filed can
be used to locate a particular token, e.g., in the query operation. In the example of Figure 4-33,
all the fields can be used as a representative filed as no two trains can have the same position
at the same time (neither can they have the same position of their preceding trains).

A linking filed is a representative filed which is chosen to construct the link throughout the
tokens using our modeling method so that they can be regarded as in a list. In the example of
Figure 4-34, obviously, we use the Current Position as the linking field.

Chapter 4 Modular Modeling for Train Control Systems

143

Generally speaking, the most intuitive choice is to use an identifier filed as the linking filed,
i.e., to use Train ID other than Train Position in the example. Thus, our choice of the linking
filed rewards a little discussion.

Considering our practical modeling objective, the list of trains is used in the RBC component,
whose major functions include the generation of MA. The calculation of EOA position in an
MA for a particular train needs the querying of the position of its preceding train (a train can
advance until the position of its preceding train c.f. §4.6.3.2).

Thus, it is very convenient to use the Train Position (other than the Train ID) as the linking
field and to use the linking direction from the train in question to the one that precedes it. With
this configuration, the extra field in each token represents the position of its preceding train.
This extra field not only helps to form the the list of trains, but also facilitates query operation,
which contributes to a more compact model.

In the example, we use the position as the representative field, and the linking direction is
considered to facilitate the gain of the position of the preceding train, as this information is
useful to generate an MA (see §4.6.3.2 for MA generation algorithm).

Operation: item insert

The insert operation adds a new train to the rear position of the list (i.e., the new train will be
the last train in the queue) to model that a train just enters the area managed by this RBC. In
this example, a new train will always have the position value “1: POD”.

Besides the adding of a new token that represents the new train, the insert operation needs to
modify two concerned tokens already existing in the place TrainList to maintain the linking
chain, i.e., the “TrainQueueRear” token, and the “LastTrain” token before the insert operation.

This operation is shown in Figure 4-36. where tr is the identifier of the train to insert, and
p_last is the position of the last train before executing this inserting operation.

Figure 4-36 Example of the insert operation in a list

Two special cases need some more discussion:

- If there is already a train in block 1 (the first block in the area) before the insert
operation, the token <1: POS> should not be found in place FreeBlock, the new train
to be inserted needs to wait until this block 1 is set free again;

Chapter 4 Modular Modeling for Train Control Systems

144

- If the list is previously empty, the insert operation can correctly insert the train by
setting its third field to the value p_last = END: POS.

Operation: item removal

The removal operation removes the first train who is leaving the area managed by RBC. This
train to be removed is always found on the last block (Position N). Its token in the place
TrainList to be removed has the value <N: POS, tr: TID, END: POS> where tr is the identifier
of the train to be removed.

The removal operation is modeled in Figure 4-37. For the place TrainList, the removal
operation removes the token <N: POS, tr: TID, END: POS>, and updates the token of its
successor train <p1: POS, t1: TID, N: POS> to <p1: POS, t1: TID, END: POS> as the later
has become the first train. For the place FreeBlock, the token of the block <N: POS> is released
and thus be put to place FreeBlock.

Figure 4-37 Example of removal operation in a list

It is worth noting that:

- When the train to be removed is the only train in the list, it does not have a successor
train. In this case, the “TrainQueueRear” token is updated and then becomes the only
token in the place TrainList with its value <0: POS, T(0): TID, END: POS>, which
means the list is empty;

- The variable “tr: TID” is in fact not necessary to identify the token to be removed, as
we know that it must be found in the position “N”. However, in the example, we still
use the train identifier “tr” to guarantee that the right train is removed.

Operation: value modification

Generally speaking, the value modification can update some information of a particular item
in the list structure without altering its order. In the example of the list of trains, the only value
to update is the position of a train when it advances to another block. We do not consider the
overtaking on the railway line so the update to the train position does not affect the trains’
order of in the queue.

Figure 4-38 illustrates the WFN implementation of this operation. Two tokens in the place
TrainList need to be updated. The update operation is done by executing two transitions.

Chapter 4 Modular Modeling for Train Control Systems

145

Transition Update1 replaces the position of the advanced train (tr: TID) with a new position
value (p: POS) and temporarily stores its old position value (p0: POS) in the place OldPos.
While transition Update2 identifies the token of its successor train by the value p0, and deals
with this token to maintains the chain links representing the order.

For the place FreeBlock, when transition Update1 is fired, the new position value (p: POS) is
fetched and the old position value (p0: POS) recycled. On the arc expressions, we use two
guarded functions with the guard [p<>p0] to avoid the manipulation to place FreeBlocks when
the new value equals the old one (i.e., the train does not advance).

Figure 4-38 Example of updating the position value in a list

The two places T2RBC and RBC2T model the interfaces between the train model and the RBC
model. We suppose that the update operation is always triggered when RBC receives a position
report <tr: TID, p: POS> from the interface place T2RBC. After the update operation, it is
necessary to send back an acknowledgment to the train via the interface place RBC2T.

4.6.3 Modeling of RBC Component using WFN Modeling Patterns

4.6.3.1 Introduction to RBC and MA

A Radio Block Centre (RBC) is a centralized system to trace the position of each train traveling
in its controlled area on a railway line and to guarantee the safety intervals between these
trains. An RBC receives the position reports from all its controlled trains and provides them
with movement authorities via GSM-R continuously(Zimmermann and Hommel 2003).

Movement Authority (MA) is the permission to allow a train to travel to a specific location
with the supervision of speed. An MA message can be composed of several sections where
the last one is called the End Section. (If the MA contains only one section, it is regarded as
the End Section.) In an MA message, a key position point is called End of Authority (EOA),
which is the location before which the train must stop. If the MA allows the train to pass a

Chapter 4 Modular Modeling for Train Control Systems

146

target position with a speed not higher than an authorized speed other than to stop, this target
position point is then called a Limit of Authority (LOA).

MA is used to avoid the collision of trains. With respect to its MA, the train can advance safely
without collision risk to the EOA (or to the LOA at authorized speed). In order to not stop and
restart (or frequently decelerate and accelerate), the MA stored in the train needs to be updated
before the train approaches its EOA (or LOA).

During the travel, the train will regularly send MA requests to RBC when the onboard system
is in certain modes with supervision (e.g., FS). RBC generates a new MA according to the
location of the train who requires MA, the position of other concerning trains traveling in the
same area, the railway line condition, and the railway signaling regulations.

In this thesis study, we simplify the generation algorithm and the update mechanism of MA
for the modeling practice. In terms of MA generation, we suppose that the RBC allows a train
to advance as far as the anterior block to the current position of its predecessor train recorded
in the RBC. And the update of MA is always supposed to be initiated by the onboard system
by sending MA request.

Apart from the generation of MA, an RBC has other functions, for examples:

• the registration and disconnection of trains;

• the acceptance of the position report from a train and the update of its position

• RBC handover, which allows the train to pass the boundary of two RBCs without
stopping or even slowing down;

• the communication with other trackside systems, e.g., the interlocking system in a
railway node, Traffic Control Center (TCC);

• the transmit of Temporary Speed Restriction (TSR) messages and emergency messages
to the trains it managed.

Based on our modeling objectives, we only consider the simplified versions of train
registration, train cancellation, train position update and communication with railway node to
offer the basic RBC functions.

4.6.3.2 Modeling of RBC model in WFN

By using the abstracted system structure shown in Figure 4-6, we suppose that an RBC control
all the railway line area between two stations (or nodes). In the RBC controlled area, all the
trains travel in a unique direction. Figure 4-39 models such an RBC in WFN. An RBC model
to control a railway line area of double tracks (each for a travel direction) can be easily
obtained by duplicate the model.

Chapter 4 Modular Modeling for Train Control Systems

147

Figure 4-39 Modeling of RBC component (WFN)

We apply the component modeling method proposed in §4.3.2 to model the RBC as a
parametric module. The parameter places and interface places are:

- The parameter place RBC_Id_Info stores a token of type RBCInfo, a product colorset
of the identifier RBCID and several parameters (the connected stations/railway nodes
and the number of blocks controlled by this RBC);

- The interface places RBC2T and T2RBC are used to model the bi-directional
communication between train and RBC. The RBC model receives different kinds of
messages in the interface place T2RBC from the train, the following operations depend
on the message received. The different message types are defined as an enumerated
colorset which has four enumerated values INSERT (for train registration), REMOVE
(for train cancellation), UPDATE (for position report) and MAREQ (for MA request).
The interface RBC2T is to provide the train with its MA.

- The interface place RBC2Station is used to mode the communication from RBC to a
related station or railway node. In our model it is used on two occasions: (1) RBC
sends a confirmation to message the antecedent station or railway node when a train
enters into the first block in its controlled area and finishes the registration; (2)When
a train approaches the end of the railway line, RBC informs the subsequent station or
railway node to prepare a route for the train.

The other part is the module body with several principal operations. Two places TrainQueue
and FreeBlocks model a list structure of managed trains by applying the WFN modeling
patterns for complex DES proposed in §4.6.2.3. The application of the other modeling patterns
in §4.6.2 will be introduced together with the explication of the RBC operations.

Chapter 4 Modular Modeling for Train Control Systems

148

Train Registration (Transition InsertTrain)

We consider that a train with its identifier tr initializes a registration process by sending to
RBC a message of type INSERT when it is in the first block of the RBC controlled area (i.e.,
Block 1). Thus, a token (INSERT, tr, 1) is received in the interface place T2RBC and transition
InsertTrain can be fired. This transition applies the “item insert” operation of the WFN list
structure to add a new train to the list of trains. It also sends a message of TypeRegAck to the
place RBC2Station to inform the connected station or railway node, from which the train
comes from, that the train has successfully passed the station or railway node.

In the model shown in Figure 4-39, the RBC considers sending an MA message to each train
who just finishes the registration. Thus, the transition InsertTrain also generates a token of the
train identifier to the place Request to activate the MA request operation, which will be
introduced later.

Train Disconnection (Transition RemoveTrain)

We suppose that when a train is about to pass the last block (Block N) in the RBC controlled
area and to enter in a station or a railway node, it sends a message of type REMOVE to the
RBC, which allows removing this train from the list of trains by firing the transition
RemoveTrain. This transition applies the “item removal” operation of the WFN list structure
to remove the first train that is leaving the RBC controlled area.

Position Update (Transitions Update1 and Update2)

After receiving a position report message of type UPDATE, the two transition Update1 and
Update2 implement the “value modification” operation of the WFN list structure to update the
train’s position. In the model shown in Figure 4-39, for simplicity purposes, we regard the
position report as an MA request (i.e., the train requests a new MA each time it sends a position
report to RBC). That is why a token of the train identifier is also put in the place Request to
activate the MA request operation.

MA Generation (Transitions QueryEOA1 and QueryEOA2)

We consider several situations in which an MA should be generated: (1) just after the train
registration (the firing of the transition InsertTrain); (2) the reception of a position report
which is also regarded as MA request for convenience (after firing the transition Update2); (3)
the reception of an explicit MA request message of type MAREQ. In all these three cases, a
token of the train identifier “tr” is put into the place Request in the RBC model to activate the
MA generation.

By applying our modeling assumptions in §4.2.4.2, a complete MA message is simplified to
the EOA position. We consider the generation of an MA with the maximum possible length
for each train to obtain the traveling efficiency.

Chapter 4 Modular Modeling for Train Control Systems

149

Figure 4-40 shows the algorithm to calculate the EOA position of the train who requests its
MA.

Figure 4-40 Algorithm of the EOA calculation in the RBC model

If the considered train is the first train in the railway line (i.e., no trains are in front of it), it
can advance until the last block of this railway line, so its EOA will be the block N. Otherwise,
the EOA is related to the position of its predecessor train. Suppose that the predecessor train
is in the block “𝑇𝑇_𝑇𝑇𝑉𝑉𝑇𝑇” according to the list of trains stored in the RBC model, its EOA should
be the block “𝑇𝑇_𝑇𝑇𝑉𝑉𝑇𝑇 − 1”.

Figure 4-41 EOA algorithm implementation in WFN

This selective structure is usually expressed by a conditional arc with the “if-then-else”
expression “ EOA = if (p_pre = END) then 𝑁𝑁 else (𝑇𝑇_𝑇𝑇𝑉𝑉𝑇𝑇 − 1) ”, which is not directly
supported by WFN. We apply the WFN modeling pattern of the conditional arc (by guarded
transitions) proposed in §4.6.2.1 and implement it with two transitions QueryEOA1 and
QueryEOA2 as shown in Figure 4-41.

Chapter 4 Modular Modeling for Train Control Systems

150

However, the expression in the else clause (𝑇𝑇_𝑇𝑇𝑉𝑉𝑇𝑇 − 1) also contains a predecessor function,
which is not originally supported in WFN, either. We apply the solution introduced in §4.6.2.2
to replace it with an equivalent structure. The two transitions QueryEOA1 and QueryEOA2 in
Figure 4-39 show the final model compatible with WFN by applying a substitution 𝑇𝑇𝐵𝐵𝑎𝑎 =
𝑇𝑇_𝑇𝑇𝑉𝑉𝑇𝑇 − 1, we also remind the readers that 𝐸𝐸𝑁𝑁𝐷𝐷 = 𝑁𝑁 + 1.

The firing the transition QueryEOA1 implies that it is the first train approaching the subsequent
station or a railway node. Thus, this transition also generates a route request in the place
RBC2Station to inform the station or railway node forward.

4.7 Conclusion of Chapter 4

The chapter focuses on the modeling methods of colored Petri nets for the train control system,
which is regarded as an example of complex, large-scale, concurrency and communication-
based discrete event system.

The contribution of this chapter can be classified into three categories:

• A systematical modeling methodology for a whole railway control system;

• Petri net modeling techniques for complex discrete systems,

• Practical models with respect to the European standard of train control systems

We propose a modeling methodology by considering two degrees of modularity to reduce the
complexity of the train control system, i.e., the structural decomposition and the functional
decomposition. Faced with a certain modeling objective, the two kinds of decomposition are
mapped together in order to create an abstracted system for the ease of modeling. Some
structural modeling methods are demonstrated to allows the modeling of a global railway
system by components and interfaces. Focused on the onboard system, we illustrate the
functional modeling methods to systematically implement the behavior by different abstract
levels, i.e., modes, procedures, functions, and data. It is worth noting that these methods may
be further improved and applied to similar complex DES in various domains other than train
control systems.

In terms of modeling techniques, we illustrate the necessary compromise between the
expressivity and the analyzability of a formalism. The well-formed nets (WFN) appear to be
a better formalism than the CPNs (with CPN Tools’ extensions) from the point of view of the
formal verification, despite its less powerful modeling expressivity. We propose some
modeling patterns in WFN to enhance it expressivity while maintaining all its advantages for
the future analysis. These patterns are proposed faced with the obstacles while modeling the
RBC in a railway control system, but they are in fact general techniques to facilitate the
modeling of a complex system including data manipulation. Thus, the techniques widen the

Chapter 4 Modular Modeling for Train Control Systems

151

applications of WFN of modeling, some of them can even be used for reference in the
modeling practice with other kinds of colored Petri nets.

Finally, the thesis study demonstrates the possibility of modeling a whole railway control
system using colored Petri nets. The study offers several practical component models which
can be used as modeling bricks in further research. The ETCS onboard system component and
the railway node component in CPN Tools, while the RBC component is modeled in WFN.
This choice also shows that by using our modeling methodology, the encapsulation of the
internal behavior of a component masks the details of its implementation and thus allows the
use of complementary formalisms to implement each component.

The modeling of the onboard system is consistent with the latest standard of ERTMS/ETCS
system requirements specification (UNISIG 2008); the RBC model implements the principal
movement authority management functions in the scope of ERTMS/ETCS level 2; the railway
node models consider the automated routing operation and we also give our perspectives of it.

In order that these components could be integrated into a systematic development approach, it
is necessary to ensure that they have good properties to be implemented in a safety-critical
system. This is finally the subject of a next chapter which deals with the formal verification of
the models proposed in this chapter.

153

Chapter 5 VERIFICATION METHODS OF
TRAIN CONTROL SYSTEM

5.1 Introduction to Chapter 5

The combinatorial explosion is the major difficulty for all the system design phases. In the
modeling phase, the use of high-level Petri nets and the Petri net extensions offers compact
representations of data and action, making it possible to create Petri net models for large-scale
and complex systems. However, these modeling formalisms cannot avoid the huge size of
models, which leads to the difficulty of the analysis of the total model.

Formal methods are highly recommended to be used with safety-critical systems development.
However, for large-scale and complex DES, the combinatorial explosion problem in the
formal verification is inevitable. As a result, the industrial application still prefers to use
informal verification methods.

In this chapter, we propose to use formal methods for a complex train control system based on
high-level Petri net models.

§5.2 introduces the verification and analysis techniques of Petri nets, especially for CPN
models built in CPN Tools. We are most interested in the state space method because it can
be automated, and it allows the verification of user-specified properties. Several reduction
techniques can also be used to alleviate the famous state space explosion problem.

However, these state space verification techniques are still critical to be applied to the CPN
models of the whole train control system that we have proposed in Chapter 4. The large system
scale, the ubiquitous concurrency and the synchronism between different components make
the verification stage especially problematic.

Faced with the verification on such a global system, §5.3 introduce several modular
verification methods which are useful for verifying large-scale and complex system modeled
by Petri nets. These modular methods share a common ground that the verification for the
global system can be achieved by conducting several verifications in relatively smaller scopes.
The modular methods reduce the verification’s complexity in a higher-level and can be used
together with the traditional state space techniques introduced in §5.2.

In §5.4 we propose a state reduction method applicable to generate a global but reduced state
space for a system composed of reactive components. We identify the execution semantics
and configure the transition priority to avoid the generation of unnecessary states caused by

Chapter 5 Verification Methods of Train Control System

154

the concurrence of different components which are not useful for the verification. This
technique can be applied to Petri net models of complex DES with similar configuration.

In the following sections of Chapter 5, we introduce some case studies of different kinds of
verification.

§5.5 shows the verification related to mode transitions of ETCS onboard system, where §5.5.1
emphasizes the model checking of standard Petri nets properties using ASK-CTL, §5.5.2
shows the verification of a user-specified property and the possibility to use compositional
verification and on-the-fly technique.

§5.6 presents the verification of the Movement Authority (MA) function via a case that a train
advances by following another. This case study is complex due to both the complexity of MA
generation and the heterogeneity of modeling formalism (module Train is modeled using CPN
while module RBC is modeled using WFN). We use assume-guarantee method to deal with
this case and the result shows that the safety property is verified but the follower train cannot
extend its MA once it is stopped due to a design defect. We discuss the cause and give the
solution.

5.2 Formal Verification and Analysis Techniques of Petri
Nets Models

In §3.2.5, we have briefly introduced several formal verification approaches of complex DES.
Since we have chosen colored Petri nets as modeling formalism, this section concentrates on
the formal verification and analysis methods of Petri net models.

Petri nets models can be formally analyzed either by using a state-space exploration method,
or by directly analyzing the structure of the model without an execution, e.g., the invariants
computation (Murata 1989).

The state space exploration method is one of the most important approaches to computer-
aided validation and verification (Bérard et al. 2001). The basic idea is to construct a directed
graph representing all reachable states and state changes of the system. The main advantages
of state space exploration include their high-level automation in industrial application and the
possibility of investigating the user-specified properties of the underlying system.

The invariants computation method can give some general information about the Petri nets by
calculating the places invariants and/or transitions invariants (Narahari and Viswanadham
1986), which allows the verification of certain properties such as boundedness or liveness.

For a complex system, the desired properties are usually not easy to write as a result of both
the complexity of the system model and the use of formal languages for the property
description. Details of property description are discussed in §5.2.3.

Chapter 5 Verification Methods of Train Control System

155

Since we have chosen CPN Tools as a major modeling tool, we discuss the compatible
verification and analysis techniques for models built in CPN Tools in §5.2.4.

5.2.1 Formal Verification Based on State Space Methods

5.2.1.1 Model Checking

Model checking (Bérard et al. 2001) is a technique to verify the correctness of finite-state
systems which is widely applied in software and industrial fields.

The key idea behind the model checking approach is shown in Figure 5-1.

Figure 5-1 Process of model checking

In order to validate that a system satisfies certain properties, the following three elements are
necessary:

• The system modeled in (or transformed to) a form supported by the model checker,
e.g., state space;

• The desired properties represented by a certain specification language, e.g., by
temporal logic;

• The verifier technique that checks the satisfaction of the properties on the system
model(s). If a property is not valid, one (or some) counterexample(s) will be returned,
based on which the users can identify the errors in the model and correct them. The
inner mechanism of a model checker is not necessary to be understood by its final
users.

The systems to be model checked are often modeled using Transition System (Kripke
structure), Petri nets, etc. Petri nets offer a compact and expressive approach for modeling
complex DES. However, for the verification purpose, Petri net models need to be transformed
to state space for verification purpose.

State space (also called occurrence graph, reachability graph or reachability tree) is a set of
all the states with the transition rules of a system model. Most of the developed model-
checking techniques are based on state space. The transformation from a Petri net model to its
state space is called state space construction or generation. When a state space is obtained

System
models

Abstracted
properties

Model
checker

System properties
validated

System properties
not satisfied

System
to verify

Properties
to verify

System
modeling

Properties
modeling

Counterexample(s)

State
Space

Transform

Chapter 5 Verification Methods of Train Control System

156

from a CPN model, each node in the state space represents a reachable marking, while each
arc represents the occurrence of a single binding element, leading from the marking of the
source node to the marking of the destination node.

The basic idea of the state space methods is thus to present all the reachable states as well as
the state changes of the Petri net model as a directed graph where the nodes represent states
and arcs represent occurrences of events. State space can be constructed fully automatically
and can be used to verify a large set of behavior properties using model checking techniques.

A major obstacle of the state space method is the famous state explosion problem (Valmari
1998), which means that the state space becomes exponentially larger due to the size and the
complexity of the highly concurrent industrial systems. The combinatorial explosion often
results in the impracticability of the exploration of the whole state space.

Another difficulty to analyze a complex system model using model checking method is the
expression of the properties, i.e., the modeling of properties.

The following part of §5.2.1 will be focused on these two aspects.

5.2.1.2 State space construction and exploration

By mapping each marking in the Petri net model onto a node and each transition (with a
particular firing mode for colored Petri nets) onto a directed edge, the state space can be
obtained as a transition system reachable from the initial marking. An exhaustive algorithm of
state space construction for ordinary Petri nets is shown as Algorithm 1.

Algorithm 1 State space construction

Step 1: Add the initial marking 𝑚𝑚0 in the GRAPH as the ROOT and mark it NEW.

Step 2: While a marking marked NEW exists, do:

 a) Select a marking 𝑚𝑚 marked NEW;

 b) If no transitions are enabled at 𝑚𝑚, then mark 𝑚𝑚 DEAD-END;

 c) for all enabled transition 𝑡𝑡 at 𝑚𝑚 such that 𝑚𝑚
�

→ 𝑚𝑚′ do:

 i. Obtain the marking 𝑚𝑚′ that results from firing 𝑡𝑡 at 𝑚𝑚;

 ii. If 𝑚𝑚′ does not appear in the GRAPH then add 𝑚𝑚′ and mark it NEW;

 iii. Draw an arc with label 𝑡𝑡 from 𝑚𝑚 to 𝑚𝑚′ (if not already present).

Step 3: Output the GRAPH.

For a Petri net model, the state space construction is usually automated. For hierarchical Petri
nets, the state space is computed from the flattened model. The use of time and data extensions
often yields an infinite reachability graph, which makes its analysis intractable in the general
case. Techniques such as state class graphs have been defined in the case of T-Time Petri nets

Chapter 5 Verification Methods of Train Control System

157

to allow the construction of the finite state space (Berthomieu and Menasche 1983; Hadjidj
and Boucheneb 2006).

Explicit state space exploration is the main approach to the verification of Petri net models. A
standard algorithm for sequential explicit state space exploration (Kristensen and Petrucci
2004) can be expressed as Algorithm 2.

Algorithm 2 State space exploration

Step 1: Create a set of unprocessed nodes 𝑊𝑊𝐴𝐴𝐼𝐼𝑇𝑇 ← {𝑠𝑠0} where 𝑠𝑠0 is the 𝐸𝐸𝑀𝑀𝑀𝑀𝑇𝑇 node.

Step 2: Create a set of visited nodes 𝑉𝑉𝐼𝐼𝑆𝑆𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 ← {𝑠𝑠0}.

Step 3: While ¬WAIT.Empty(), do:

 a) 𝑠𝑠 ← 𝑊𝑊𝐴𝐴𝐼𝐼𝑇𝑇. 𝑆𝑆𝑇𝑇𝐵𝐵𝑇𝑇𝑐𝑐𝑡𝑡();

 b) for all (𝑇𝑇, 𝑠𝑠′) such that 𝑠𝑠
�

→ 𝑠𝑠′ do:

 if ¬VISITED.Contains(𝑠𝑠′) then:

 (1) VISITED.Add(𝑠𝑠′);

 (2) WAIT.Add(𝑠𝑠′);

In the algorithm, two sets of nodes (states) WAIT and VISITED are created:

- WAIT contains the nodes whose successor nodes have not yet been computed;

- VISITED is a set of the nodes that have been already visited, 𝑉𝑉𝐼𝐼𝑆𝑆𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 ← {𝑠𝑠0} implies
the visit to node 𝑠𝑠0, VISITED.Add(𝑠𝑠′) implies the visit to node 𝑠𝑠′.

The algorithm starts from the root node s0, and operates a loop operation until the set WAIT is
empty. In each iteration of step 3, a node 𝑠𝑠 is selected randomly and is deleted from the set
WAIT by calling the function Select(). All the successor nodes s′ of s are examined in turn,
where the successors that have not been previously visited are added into set WAIT to be
examined in a future iteration.

The exploration by the traversal of the state space is the most intuitive method which provides
an exact characterization for bounded systems and partial approximations for unbounded
systems (Lautenbach 1986). When the traversal is impracticable or difficult to conduct faced
with the combinatorial explosion, a variety of techniques has been proposed to alleviate this
problem.

5.2.1.3 Challenges and solutions to the state space analysis techniques

In order to alleviate the state explosion, in the literature, several kinds of techniques are
proposed to achieve a more efficient state space analysis, which can be classified into three
different categories:

Chapter 5 Verification Methods of Train Control System

158

(a) Generation of condensed state space, which allows merging some “similar” states into
an abstract state during the state space generation process;

(b) Reduction of state space, which uses transformation techniques to reduce the full state
space to a smaller one by preserving the properties under analysis;

(c) On-the-fly method, which conducts the construction and the exploration of state space
at the same time and can stop the construction under a certain condition;

(d) More efficient exploration and storage optimization of state space;

(e) The combination of multiple state space analysis techniques.

(a) Condensed state space techniques

An example of condensed state space generation for colored Petri nets is Symbolic
Reachability Graph (SRG) (Chiola et al. 1991a; Chiola et al. 1992; Chiola et al. 1997).
Symmetries can often be found in the CPN models of large DES systems, which may lead to
lots of repetitions or similar compositions in their reachability graphs. Symbolic Reachability
Graph is proposed for the sake of analysis efficiency, which groups the symmetrical states into
equivalence classes. Instead of representing all the states, only the representative marking of
each class is included in the graph. As the states in the same class share similar behaviors,
most of the properties are preserved and can be analyzed in a condensed form. In order to
allow a fully automated construction procedure for the Symbolic Reachability Graph, the
system should be modeled with Well-Formed nets (WFN), a syntactically restricted class of
Colored Petri nets.

(Haddad et al. 1995) extends the original SRG method to support “partially symmetrical”
systems by proposing an “Extended Symbolic Reachability Graphs”. (Ilié and Ajami 1997)
shows how to conduct CTL* model checking on SRG.

(b) Reduced state space techniques

It is possible to generate a reduced state space by maintaining some properties of Petri net
models that are useful for the verification. Reduction of state space can be applied in different
ways according to the properties under analysis. We introduce the Strongly Connected
Components (SCC) method and the partial-order reduction techniques as two examples.

For some properties based on reachability and connectivity, the SCC method can be used. The
reduction idea is to use an abstract SCC to represent several states that are strongly connected
(Cheng et al. 1996) and thus obtain a corresponding SCC graph which has a smaller size than
the ordinary reachability graph. The model checking on SCC mainly maintains reachability
properties (liveness, home marking, etc.). The SCC graph transformation tool is integrated
into the software CPN Tools. An efficient CTL-like model checking method ASK-CTL
(Christensen and Mortensen 1996) can be executed on an SCC graph.

Chapter 5 Verification Methods of Train Control System

159

Another approach to obtaining a reduced state space can be based on partial-order reduction
as shown in Figure 5-2. In asynchronous systems, different independent concurrent processes
are interleaved, the order of their executions may not have an effect on the system but will
generate many redundancy states. Partial-order reduction techniques (Nielsen et al. 1981;
McMillan and Probst 1995; Clarke et al. 1999; Bošnački et al. 2009) proposes to construct a
condensed state space by choosing a representative order, which leads to a visit of only a
subset of the reachable states for several kinds of analysis.

Figure 5-2 Exhaustive (a) and partial-order (b) state space generation

Under certain conditions, a model can be reduced by using reduction rules to remove places
or transitions without changing the desired properties of the initial model. For example, in
(Evangelista et al. 2005) the authors propose rules that allow the aggregation of certain
transitions of a transition sequence. The reachability graph of the reduced model then has
fewer states and transitions, allowing easier and faster verification of the properties of the
initial model. In (Li et al. 2016), the authors propose reduction rules to guarantee the prior
reduction of a Labeled Petri Net model while guaranteeing the conservation of the
diagnosticability property.

(c) On-the-fly technique

The verification by model checking approach requires the exploration of the state space. An
on-the-fly exploration (Bouajjani et al. 1997; Hadjidj and Boucheneb 2006) can be conducted
at the same time of state space construction from the underlying Petri nets.

Petri net model

Exhaustive
construction

Complete
State Space

Verification

Verification Result

Property

Petri net model

Partial order
construction

Reduced
State Space

Verification

Verification Result

(b)(a)

Chapter 5 Verification Methods of Train Control System

160

The on-the-fly technique is quite interesting for the verification of existential properties for
which it is enough to find one required state. In this case, the on-the-fly verification allows the
state space construction to be stopped as soon as the desired property is proved to be verified
or violated. A full generation of the state space is avoided and only the minimal amount of
information required to be stored in memory by the verification procedure. Some examples
include the deadlocks detection (the state space construction can be stopped when a
counterexample is found) and the reachability of a certain state from the initial marking (the
state space construction can be stopped when the required state is reached).

In terms of tool support, Neco (Fronc and Duret-Lutz 2013) allows the transform from Petri
nets models into native shared libraries that allows the on-the-fly verification using model
checking methods on its state space.

However, in the case that the verification of properties requires the traversal of all the states
in the state space, the on-the-fly technique is usually less efficient than the construction of
state space and the verification on the state space calculated. In application, lots of safety-
related properties require to traverse all the possible states to guarantee that the system is free
of the dangerous states, which makes the on-the-fly technique less favorable to be applied.

(d) Efficient exploration and storage optimization

Besides the basic algorithms introduced in §5.2.1.2, different optimized algorithms are
proposed, which allow more efficient state space construction and exploration to achieve the
time optimization and/or space optimization. These algorithms include: distributed state space
exploration (Kristensen and Petrucci 2004), Sweep-Line method (Christensen et al. 2001),
ComBack Method (Westergaard et al. 2007).

These techniques do not really reduce the states to be explored but propose to improve the
memory usage and/or the duration during the state space exploration. Thus, they also
contribute to a more efficient state space exploration.

Sweep-Line is a state exploration technique allowing some states to be deleted from memory
when they are no longer required. Such a technique reduces the peak memory usage to store a
large number of states, while maintaining the possibility of exploring the full state space.

The ComBack method represents a good time-space trade-off by using hash compaction to
reduce memory usage and by using backtracking to ensure the full coverage of the state space.

Symbolic model checking (SMC) is a representative of the implicit model checking method
(Burch et al. 1992; McMillan 1993). SMC method considers a set of states at each step, instead
of enumerating them one by one in an explicit model checking. This technique allows the
modeling of the states and transition rules of the system by Boolean logic functions, which are
represented by a compact data structure Binary Decision Diagrams (BDD), or other types of
data structure.

Chapter 5 Verification Methods of Train Control System

161

Model checking of temporal logic properties can thus be reduced to symbolic fix point
computation. This technique can be used in synchronous hardware designs but is difficult to
be applied with a complex system consisting of different asynchronous components which are
coupled by communicating processes.

(e) Combination of multiple state space analysis techniques

Since these techniques are proposed in different aspects with various objectives, it is possible
that two or more techniques can be used together to achieve a more efficient model checking
approach, what is applied by lots of model checkers. As examples, we can mention:

- (Bouajjani et al. 1997) uses SMC (BDD) method and on-the-fly model checking.

- (Alur et al. 1997) uses partial-order reduction and SMC (BDD) method.

- (Peled 1996) combines partial-order reduction and on-the-fly model checking.

- (Emerson et al. 1997) combines partial-order reduction and symmetry reduction.

5.2.2 Formal Verification based on Invariant Calculation

The invariant calculation is a structural technique which can provide information of the model
based on the underlying structure of the Petri net.

Invariants (place-invariants and transition invariants) are some special vectors maintaining
certain properties of the Petri nets. Invariants can also be calculated in Colored Petri nets
(Narahari and Viswanadham 1986). The invariant calculation in (colored) Petri nets analysis
can be used in 2 ways:

• Some Petri nets based analysis and verification can be accomplished using invariants
without state space generation, which is useful for large systems and parametric models
(Jensen 1991);

• Invariants can be used to reduce the complexity of the model for the verification
purpose.

(Liu 2012) used T-invariants for the colorizing/unfolding process of Colored Petri nets.
(Haddad 1991) used P-invariants to accomplish the implicit colored place simplification,
which reduces the model before it is analyzed. (Couvreur and Martínez 1991) proposed several
reduction rules of colored Petri nets based on a calculation of colored invariants.

For a large-scale system, if a property can be verified by both the state space methods and the
calculation of invariants analysis, the time consumption of the invariant methods is usually
much less compared to the state space construction and exploration.

However, the information contained in the invariants is also much less than in a state space.
Thus, for the verification purpose, the supported verifications are very limited. One can hardly
specify the desired properties in this case.

Chapter 5 Verification Methods of Train Control System

162

Another inconvenience of invariant methods is that the calculated invariants are less
significative and always need an interpretation with the knowledge of the system models to
indicate whether some properties are verified or violated.

5.2.3 Formal Description of Properties

5.2.3.1 Related works of the property description

Besides the appropriate modeling of system behaviors, a good description of properties that
the system must satisfy is also a cornerstone towards a successful verification process.

It is usually necessary to extract the properties to verify from the system requirements
specification written in natural language, e.g., the ERTMS/ETCS system requirements
specification (European Railway Agency 2016a), since a specification for a complex system
generally stems from the understanding among a number of stakeholders.

In such a requirements specification written in natural language, it is usually difficult to
distinguish the system behavioral requirements and the properties. The former is usually more
operative while the latter more descriptive, although the difference could be quite nuanced.

Another point of view offers the criteria to classify the requirements into two categories:
functional requirements and non-functional requirements. A functional requirement describes
what a system should do, while a non-functional requirement sets constraints on how the
system will do so. For example, Safety and some performance-related requirements are
usually regarded as non-functional requirements. Following this classification standard, the
non-functional requirements are also depicted as properties, which is also called non-
functional requirement modeling.

In practice, the specification of properties is always more challenging than it first appears to
be, especially for a complex system. And it requires the experts who master the knowledge in
the following aspects:

• A good understanding of the undertaken system and the requirements specification;

• Mastering the temporal logic formulae and model checking techniques;

• Knowing well the modeling method by which the system is abstracted.

In the whole system development lifecycle, these verification experts need to specify the
properties, conduct the verification and translate the verification results and counterexamples
to the system stakeholders. It is also necessary to identify and verify again the involved
properties after each update of the undertaken system or its requirements specification.

Some studies are thus conducted towards a higher-level abstraction of properties other than
the concrete languages for the description of properties. These research works are aimed to
bridge the gap between the theoretical verification techniques and their slow practical

Chapter 5 Verification Methods of Train Control System

163

application in the industry which is mainly caused by the situation that the practitioners of the
practical systems are always unfamiliar with the details of formal languages.

(Dwyer et al. 1999) proposes some property specification patterns by summarizing over 500
examples. These patterns are less independent of the concrete languages and this pattern-based
approach might help improve the adoption of formal methods in practice.

(Peres et al. 2012) proposes a refinement approach to transform the informal requirements into
formal specifications with a high-level abstraction. The method is based on a formal graph
structure, i.e., the requirement graph.

Choppy and her co-authors propose a framework of general property-oriented specification
methods (GPSm) for dynamic systems. (Choppy and Reggio 2006) proposes an extension of
the (logical-algebraic) language CASL (Common Algebraic Specification Language) —
CASL-LTL to deal with the features in dynamic systems. This work was aimed at “supporting
visual presentations of formal specifications, so as to make the best of both formal and
informal worlds”. In (Choppy and Petrucci 2004), the aforementioned method is applied with
Petri net models as an attempt to provide systematic guidelines for Petri net property
description. The property description methodology was introduced together with an
illustrative Petri net model for train control.

Several types of research are oriented to a special application domain. In the domain of train
control, (Chiappini et al. 2010) proposed Controlled Natural Language (CNL), which takes
advantage of LTL, PSL, regular expressions, first-order logic, and hybrid aspects, to represent
and verify some CBTC properties.

However, compared to a large number of modeling methodologies proposed regarding the
description of system behaviors using Petri nets and other formal languages, there are still very
little works devoted to the specification methodology of properties.

Among the limited number of researches, most of the methods or patterns are only theoretical
propositions illustrated with academic examples. These methods and patterns might be useful
for some properties of several kinds of systems. However, it is still difficult to be used for the
verification of a global train control system modeled by modular and hierarchical CPNs with
data communication mechanisms, as proposed in Chapter 4.

5.2.3.2 Property description of Petri nets

According to the verification objectives and the features of Petri nets, the desired properties
of a Petri net model can be classified into the following three categories:

• Standard Petri net properties;

• User-specified properties;

• Performance properties.

Chapter 5 Verification Methods of Train Control System

164

Standard Petri net properties

For a Petri net model, there exist several standard properties which are always used to describe
the undertaken system behavior. Some examples of common standard properties are:

• Boundedness (integer boundedness and multiset boundedness for CPN);

• Liveness and dead markings;

• Home marking.

These standard properties can reflect some basic system behaviors and can expose modeling
errors. Several standard properties can be verified using the invariant calculation methods.
They can also be formalized with temporal logic formulae and then be verified by model
checking methods.

User-Specified properties

The user-specified properties are used to describe the system behaviors that depend on the
study area and the concerned application domain.

The user-specific properties are usually transformed and formalized from the system
requirements specification written in natural language. System modelers are always concerned
about the investigation of these properties because they are used to represent both the
functional and non-functional requirements.

Safety is the state of being “safe”, which depends on the application fields. Thus, safety is
usually a user-specified property. For example, in a whole railway control system, safety may
indicate the absence of collision, i.e., no two trains can be allowed to present on the same track
segment at the same time. While for a particular device, safety can also refer to the fail-safe
engineering design.

The proposition of a proper method to specify and verify the safety-related properties of
ERTMS/ETCS train control system is also one of the objectives of this thesis study. For
example, the verification that the specifications (European Railway Agency 2016a) guarantee
the no-collision of two neighboring trains that we will seek to verify in this work.

Performance properties

Performance properties are quantitative information to evaluate the performance of a system
on various aspects, e.g., how effectively a system works. The results are usually used to
compare different system configurations. These properties usually represent the non-
functional requirements in the system specifications.

The performance properties may be analyzed in a formal way by using the extensions of Petri
nets. For example, stochastic Petri nets offer the possibility of generating a reachability graph

Chapter 5 Verification Methods of Train Control System

165

equivalent to a Markov process. The formal performance analysis is usually applied for a
relatively simple Petri net of small size.

Another approach to the performance analysis is via simulation, which leads to an informal
approximate evaluation of the performance properties. Simulation-based performance analysis
uses statistical techniques to investigate some random output data during the execution of the
Petri net model.

Some Petri net tools offer powerful support to analyze the performance properties. For
example, in CPN Tools, the performance properties can be analyzed by examining the
markings, by investigating the output data, or by using monitors. In (Song et al. 2017), CPN
Tools was used to analyze the time delay in a train to train distance measurement system
(TTDMS). In (Ndiaye et al. 2016), the informal description of the ICS (Industrial Control
Systems) architecture can be transformed into models of CPN Tools via an automatic
generation with the objective of performance assessment.

It is thus proven that the CPN Tools models are qualified for both the deterministic analysis
(e.g., the safety properties) and the stochastic analysis (Pinna et al. 2013a; Pinna et al. 2013b).

However, this chapter mainly concentrates on the formal verification of safety-related
properties. The performance properties will not be concerned.

5.2.3.3 Formalisms of property specification and temporal logic

There are several formalisms which can be used to specify a property. The choice of an
appropriate property specification formalism usually needs to consider the modeling
formalism, the verification technique and the properties to check.

A good formalism of property specification should meet many standards:

- It should be easy to write and to understand;

- It should support some efficient verification techniques;

- It should be compatible with the common modeling formalisms.

Generally, there are informal, semi-formal and formal approaches to represent the properties.
Informal approaches usually use natural languages, despite the possibility of using some
patterns, the informal properties are always difficult to be analyzed.

UML is a good example of semi-formal approaches which has been widely used in software
development. SysML is a profile of UML with several extensions to better support the
requirement modeling with a point of view of system engineering. These semi-formal
approaches always provide visual notations such as diagrams, which makes them more
comprehensible. However, the lack of determinacy of these presentation approaches does not
allow a formal verification.

Chapter 5 Verification Methods of Train Control System

166

Formal approaches have a formal sound semantic basis but always use mathematical formulae
or symbolic expressions, which makes it quite difficult to write the properties, especially faced
with a quite sizable system. However, for a safety-critical system or function, the verification
via a formal approach is obliged.

Formal properties are typically written in temporal logic formulae or regular expressions for
the system models represented by (or transformed to) transition systems, especially as the
application of model checking spreads in industry.

Temporal logic provides a formal expression system to qualitatively describe and reason some
assertions about the system behavior which change their values over time.

In 1977, Linear Temporal Logic (LTL) was first introduced as a temporal logic by referring a
modal logic to time (Pnueli 1977).

Later in 1981, Edmund M. Clarke and E. Allen Emerson proposed the use of model checking
as a verification technique for finite state concurrent systems. The first model checking
algorithm was introduced together with Computation Tree Logic (CTL), a branching-time
logic as the specification language for the properties (Clarke and Emerson 1981). This research
group pioneered the use of model checking for hardware verification and developed the
famous model checker SMV (Symbolic Model Verifier).

Although CTL and LTL are somehow alike, there are properties expressible only in CTL and
properties expressible only in LTL. To facilitate the representation of properties, CTL* was
defined in (Emerson and Halpern 1986) and all properties expressible in either CTL or LTL
can thus be expressed in CTL*.

For example, CTL uses path quantifiers and temporal operators with assertions to form its
formulae. A property that “the system can finally run into the state working once after it is
started” can be expressed in CTL as follows:

 𝐴𝐴 𝐺𝐺 (𝑠𝑠𝑇𝑇𝑠𝑠𝑡𝑡𝑇𝑇𝑚𝑚. 𝑠𝑠𝑡𝑡𝑎𝑎𝑉𝑉𝑡𝑡𝑇𝑇𝑆𝑆 → 𝐴𝐴 𝐹𝐹 (𝑊𝑊𝐵𝐵𝑉𝑉𝑙𝑙𝑇𝑇𝑇𝑇𝑀𝑀)). (5-1)

The operators can be used with an assertion 𝑇𝑇 and 𝑞𝑞 are categorized into quantifiers over paths
and temporal operators.

• Quantifiers over paths:

- 𝑨𝑨 (𝑇𝑇) – All: 𝑇𝑇 must hold on all paths starting from the current state;

- 𝑬𝑬 (𝑇𝑇) – Exists: there exists at least one path starting from the current state
where 𝑇𝑇 holds.

• Temporal operators:

- 𝑿𝑿 (𝑇𝑇) – Next: 𝑇𝑇 must hold at the next state (sometimes noted 𝑵𝑵 instead of 𝑿𝑿);

- 𝑮𝑮 (𝑇𝑇) – Globally: 𝑇𝑇 must hold on the entire subsequent path;

Chapter 5 Verification Methods of Train Control System

167

- 𝑭𝑭 (𝑇𝑇) – Finally: 𝑇𝑇 eventually hold (somewhere on the subsequent path);

- 𝑼𝑼 (𝑇𝑇, 𝑞𝑞) – Until: 𝑇𝑇 has to hold at least until at a position where 𝑞𝑞 holds, which
implies that 𝑞𝑞 will be verified in the future;

- 𝑾𝑾 (𝑇𝑇, 𝑞𝑞) – Weak until: 𝑇𝑇 has to hold until 𝑞𝑞 holds. The 𝑊𝑊 operator is
sometimes called "unless". Its difference with the 𝑇𝑇 operator is that there is no
guarantee that 𝑞𝑞 will ever be verified.

5.2.4 Verification for CPN Tools Models

In this thesis, the most models of the train control system are built in CPN Tools. It is thus
necessary to explore the possible verification and analysis methods and tools compatible with
CPN Tools models.

5.2.4.1 ASK-CTL

ASK-CTL (Cheng et al. 1996) is a CTL-like temporal logic with extensions. ASK-CTL is
especially useful for model checking properties of colored Petri net models thanks to the
following two features:

(a) Compared to the traditional CTL model checking which considers only the nodes
(states), ASK-CTL allows model checking properties both on the node (state)
information and on the arc (transition) information, which makes it convenient for the
verification of Petri net properties. For example, the liveness is a property about the
transitions in a Petri net model, which will be easier to be verified using arc (transition)
information on its state space;

(b) ASK-CTL allows rather general predicates, which are useful for verification of colored
Petri nets. When it is limited to basic predicates (α and β below), ASK-CTL has
exactly the same expressivity as traditional CTL.

ASK-CTL defines the “state formulas (𝒜𝒜)” to describe node information and “transition
formulas (ℬ)” to describe arc information. The two syntactical categories are mutually
recursive.

A state formula 𝒜𝒜 could be:

𝒜𝒜 ∷= 𝑇𝑇𝑇𝑇 | 𝛼𝛼 | ¬𝒜𝒜 | 𝒜𝒜1 ∨ 𝒜𝒜2

| 𝐸𝐸𝑇𝑇 (𝒜𝒜1 ∨ 𝒜𝒜2)

| 𝐴𝐴𝑇𝑇 (𝒜𝒜1 ∨ 𝒜𝒜2)

| 𝑀𝑀𝑀𝑀𝐷𝐷𝐸𝐸𝑁𝑁(ℬ)

(5-2)

Chapter 5 Verification Methods of Train Control System

168

A transition formula ℬ could be:

ℬ ∷= 𝑇𝑇𝑇𝑇 | 𝛽𝛽 | ¬ℬ | ℬ1 ∨ ℬ2

| 𝐸𝐸𝑇𝑇 (ℬ1 ∨ ℬ2)

| 𝐴𝐴𝑇𝑇 (ℬ1 ∨ ℬ2)

| 𝑀𝑀𝑀𝑀𝐷𝐷𝐸𝐸𝑁𝑁(𝒜𝒜)

(5-3)

where:

- “TT” is a Boolean constant for “true” value;

- 𝛼𝛼 is a predicate on the state information, i.e., a function from the set of reachable
markings to the set of Boolean values (ℛ(M0) → {𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇, 𝐼𝐼𝑎𝑎𝐵𝐵𝑠𝑠𝑇𝑇});

- 𝛽𝛽 is a predicate on the transition information, i.e., a function from the set of binding
elements to the set of Boolean values (𝐵𝐵𝐸𝐸 → {𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇, 𝐼𝐼𝑎𝑎𝐵𝐵𝑠𝑠𝑇𝑇});

- 𝐸𝐸𝑇𝑇 and 𝐴𝐴𝑇𝑇 are combinations of standard CTL path quantifiers with temporal
operators. For example, 𝐸𝐸𝑇𝑇 expresses the existence of a path from a given marking
with the property that 𝒜𝒜1 holds until a marking is reached at which 𝒜𝒜2 holds; while
𝐴𝐴𝑇𝑇 (𝒜𝒜1 ∨ 𝒜𝒜2) requires the property to hold along all paths from a given marking;

- “MODAL” operator is proposed to transform a formula of one domain to another.
Given a formula “ℬ” in the transition domain (a transition formula), “MODAL(ℬ)” is
in the state domain (thus a state formula). “MODAL(ℬ)” is true if and only if there
exists an immediate transition, on which its argument “ℬ” is true. The transition
formula “MODAL(𝒜𝒜)” is simpler in its semantics. Since a transition always has an
immediate destination state, “MODAL(𝒜𝒜)” is true if and only if its destination state
satisfies its argument “𝒜𝒜”, which is a state formula.

Code 5-1 shows an example to check whether a given marking is dead. The example is written
using CPN ML code which can be executed in CPN Tools. The first line defines an ASK-CTL
formula, while the second line checks if the given marking (5) is dead.

Code 5-1 Model checking with ASK-CTL formula
val myASKCTLformula = NOT (MODAL (TT));
eval_node myASKCTLformula 5 ;

5.2.4.2 Verification within CPN Tools

CPN Tools has an integrated state space tool, which supports the construction of state space
from CPN model and the model checking on the state space.

Chapter 5 Verification Methods of Train Control System

169

For the state space generation, the state space tool in CPN Tools uses a breadth-first
exploration method. It is said in (University of Aarhus 2006) that this state space tool can
support up to 20,000-200,000 nodes and 50,000-2,000,000 arcs, provided that the underlying
computer has sufficient RAM. It also supports the SCC (Cheng et al. 1996) generation.

A standard state space report can be exported for each model, which includes some standard
Petri net properties applicable to all CPN Tools models, e.g., boundedness, home, liveness,
and fairness properties.

User-specified properties are investigated by means of execution of queries, which are based
on the ASK-CTL model checking (Christensen and Mortensen 1996) and are written in the
form of CPN ML code (Jensen and Kristensen 2009b). A typical query consists of 5-20 lines
of CPN ML code, which can be composed of:

• Standard query functions, e.g., reachability;

• State space search functions, which offer some patterns for the state space exploration;

• ASK-CTL formulas library, by using the pre-defined files “BitArray.sml” and
“ASKCTL.sml”.

The state space tool is no doubt an agile function integrated into CPN Tools to conduct the
verification. However, it is not yet a professional verification tool for a practical large-scale
verification project.

In terms of the standard report function, CPN Tools may be pretty convenient to use thanks to
the standard state space report tool.

When it comes to the user-specified properties, the state-space tool combines SCC and ASK-
CTL model checking but provides only very rough support. The only way to write the user-
specified properties is to write CPN ML functions and properties are written by creating a
textbox using the auxiliary text tool, as shown in Figure 5-3.

Figure 5-3 User-specified properties in CPN Tools

The query is executed by evaluating the auxiliary text using an “evaluate ML” tool. The model
checking result is presented in a bubble and will be discarded after the presence of the bubble,
which makes it very difficult to track the result and practice any further analysis.

Chapter 5 Verification Methods of Train Control System

170

Another inconvenience is the weak support of debugging. During the verification, it should be
very important to treat the messages of errors, warnings or exceptions thrown by the model
checker. These messages are useful to locate the errors in the models and the properties in
order to correct or improve them. However, CPN Tools just pops up a very simple bubble in
the bottom left corner for these messages using different colors (red for errors; orange for
warnings and green for successes) as shown in Figure 5-4.

Figure 5-4 Error log in CPN Tools

In summary, it seems that the integrated support in CPN Tools for formal verification and
analysis is largely detached from its editing and simulation features, which makes it a little
difficult to be applied in a large verification project.

Another limitation of using the CPN Tools for verification is that among the different methods
of state space methods introduced in §5.2.1.3, the tool only supports SCC and ASK-CTL,
without the flexibility to benefit from other efficient techniques.

5.2.4.3 ASAP

Besides the verification functions integrated into CPN Tools, an alternative way to deal with
the formal verification of CPN Tools models is ASAP (Westergaard, Evangelista, et al. 2009).

ASAP (ASCoVeCo State Space Analysis Platform) is a graphical model checker and is part
of the ASCoVeCO (Advanced State Space Methods and Computer tools for Verification of
Communication Protocols) project*. The project was initialized to develop the next generation
of computer tool support for state space exploration of CPN (Tools) models, taking into
account of many lessons learned through the development and application of state space
methods in CPN Tools.

Compared to the state space tool in CPN Tools, ASAP has an open vision to support a large
set of optimized algorithms and reduction techniques, e.g., the hash compaction, the sweep-
line method, the ComBack method, and the external memory algorithms. ASAP also allows
users to extend the tool with new state space methods.

In terms of modeling formalisms, ASAP is compatible with CPN models built by CPN Tools.
It can also support DVE models via a plug-in, which is the default modeling language of the
DiVinE model checker (Baranová et al. 2017). Based on the benchmarks of state space
exploration time on several representative models (Westergaard, Evangelista, et al. 2009),

* http://www.cs.au.dk/~ascoveco/asap.html

http://www.cs.au.dk/%7Eascoveco/asap.html
http://www.cs.au.dk/%7Eascoveco/asap.html

Chapter 5 Verification Methods of Train Control System

171

ASAP has significantly better efficiency than the state space tool in CPN Tools and similar
performance as DiVinE.

In terms of properties, the current version of ASAP (v1.9.0) offers a template to verify
deadlocks property as shown in Figure 5-5.

Figure 5-5 Templates of verification in ASAP

However, the support of temporal logic in ASAP is less developed. Compared to the state
space tool in CPN Tools which supports ASK-CTL, ASAP only supports the basic LTL
formulas, which is not very convenient to write complex user-specified properties for a colored
Petri net model.

In this thesis, we will mainly use ASK-CTL to describe the properties. Thus, we still use CPN
Tools to model check the train control system models. We will then introduce some modular
verification techniques to alleviate the state explosion problem.

5.3 Modular Verification and Analysis Methods for Petri
Nets Models

The mission of modeling complex DES gives high priority to the use of high-level Petri nets.
The main analysis technique to be used with high-level Petri nets is based on state space.
However, the generation and analysis of the state space of high-level Petri nets have faced
particularly acute combinatorial explosion problem than that of ordinary Petri nets.

Chapter 5 Verification Methods of Train Control System

172

To cope with that, state space reduction methods need to be introduced with high-level Petri
nets. However, as a result of its compact and abstract representation and especially the data
manipulation, traditional reduction techniques proposed for ordinary Petri nets are always
faced with some obstacle to be extended to high-level Petri nets application

5.3.1 Introduction to Modular Verification Methods of Petri Nets

Models

It is well known that modularity can help “reduce” the complexity of systems as it allows the
modeler to treat each part of the system independently. In Chapter 4 we also proposed the
modeling methods based on structural and functional modularity, which makes it possible to
model a global train control system. We believe that a modular approach of analysis could
also be interesting to decrease the complexity of the analysis stage. In this section, we
introduce several modular analysis methods that may be appropriate to apply to such a modular
model.

Modular verification approaches aim to avoid exploring the whole state space by applying
independent examination of each system module. Compared to the traditional reduction
methods introduced in §5.2, these modular methods are also introduced to alleviate the
combinatorial explosion problems but should be treated as the higher-level reduction
formalisms. The basic idea is to take advantage of the modularity and to prove properties of
the global system model by investigating each module separately. For complex DES, the
modular verification is always considered together with the modular system architecture in
order to provide more efficient and flexible analysis approaches. In order to achieve this
objective, some domain knowledge about these system modules and their behaviors are often
necessary.

It is also possible and preferable to simultaneously use the modular verification methods and
the traditional state space reduction techniques.

Another benefit of using the modular verification methods could be that it is not necessary to
force all the modules to use the same modeling formalism and verification method.

This section introduces several different modular verification methods

5.3.2 Analysis Methods for Modular Petri Nets

A large system model often consists of a set of modules. The idea behind the modular state
space method is to avoid the construction of a single state space of the entire system and to
infer a property of the global system by checking the local properties of each module
separately.

Chapter 5 Verification Methods of Train Control System

173

A set of modeling and analysis method based on modular Petri nets has been proposed by
Christensen and Petrucci. An introduction to their methods can be found in (Christensen and
Petrucci 2000), with more modeling cases represented in (Petrucci 2005). The methods of
Christensen and Petrucci include:

• The definition of modular Petri nets, including:

o Modular Petri nets synchronized by shared places;*

o Modular Petri nets synchronized by shared transitions††††;

• The analysis methods of modular Petri nets, including:

o Analysis of certain properties via place invariants;

o Analysis of certain properties via modular state space.

In terms of the analysis methods, both the two of the most important analysis methods for Petri
nets can be performed in a modular way. The place invariant proposition supports both the
two types of modular Petri nets (i.e., those containing shared places or/and shared transitions,
as shown in Figure 5-6). The invariants of the whole modular Petri net model can be
constructed from the invariants of the individual modules.

We are more interested in the modular state space method. This method works well with the
modular Petri nets synchronized by shared transitions. It identifies several transitions (in the
global system model) as shared transitions and thus divides the system into several modules.
The partition of modules can either take advantage of a modular design in the earlier modeling
phase or be applied in the verification phase just for the sake of the modular verification. The
modular state space will be built by two parts:

- The local state space of each module

- The synchronization graph to synchronize the local state spaces for all the modules;

By using the modular state space method, the number of total states may be reduced with
varying degrees depending on the system structure.

It is proved possible to decide several properties of the global Petri net model from the modular
state space, i.e., the state spaces of the individual modules together with the synchronization
graph. Some algorithms of model checking the standard Petri net properties such as
reachability, deadlock, and liveness are proposed in (Lakos and Petrucci 2004; Boukala and
Petrucci 2011).

* In some related works, the shared places/transitions are also called places/transition fusions.
It is noteworthy to not confound them with the “fusion places” concept in CPN Tools (c.f.
§4.3.3.3), although they share some essential similarity.

Chapter 5 Verification Methods of Train Control System

174

Figure 5-6 Transformation from shared places into shared transitions

The modular state space analysis methods were first introduced with P/T-net. For high-level
Petri nets such as colored Petri nets or even hierarchical colored Petri Nets, there were also
some attempts. (Christensen and Petrucci 1992) extended the modular modeling proposition
and invariants analysis proposition to colored Petri nets; (Christensen and Petrucci 1995)
presented the modular state space analysis for colored Petri nets; (Mäkelä 2003) extended the
approach of Christensen and Petrucci to a slightly more general version, i.e., hierarchical
modular High-level Petri nets. The modular state space construction has also been extended
to timed Petri nets (Lakos and Petrucci 2007a).

The principal limitation of the modular state space method is that it has good compatibility
with the modular Petri nets synchronized by shared transitions, but not with those
synchronized by shared places. However, both the practice of modeling the systems with data
manipulation (e.g., the modern communications-based train control systems) and the high-
level modeling formalisms (e.g., the hierarchical colored Petri nets) use rather the shared place
mechanism.

(a) Modular model by shared place

(b) Modular model by shared transition

shared places

shared transitions

module 1 module 2

module 1 module 2

new module

Chapter 5 Verification Methods of Train Control System

175

In (Lakos and Petrucci 2007b), an extended version of modular state space method supporting
shared places was proposed by first applying a transformation of models with shared places
into those only having shared transitions. Figure 5-6 also shows an example of the transition
from a modular model containing a shared place into a modular model containing only shared
transitions. The transformation removes the shared place in each module and creates a new
module containing only the shared place and its input and output transitions. These transitions
become shared transitions in all the modules.

Since this solution is not natively based on shared place mechanism but achieved by a
transformation, there are some limitations. In practical application, the modular state space
methods may work with P/T-net models and some simple colored Petri net. However, for an
interface place between multiple instance models of different components in a large-scale train
control system as introduced in §4.3, the interactions between the models will be determined
by the values in some fields of the tokens in the interface place. In this case, the transformation
is not very efficient since an unfolding of the colored tokens might be necessary to create the
corresponding shared transitions.

However, there are always too many interactions between these components that the individual
behavior of a component cannot be totally isolated and need to be analyzed together with the
behavior of some other components.

Another limit of the modular analysis methods of Christensen and Petrucci is the diversity of
properties that can be verified using these methods. Their methods require to express the
desired properties on the modular state space. The expressions of standard Petri net properties
are introduced in (Christensen and Petrucci 2000), whereas it is difficult to find a general
pattern to express user-specified properties using modular state space. Even though the
possibility of checking LTL-X* formulas on the synchronization graph is shown in (Latvala
and Mäkelä 2004) and the similar solutions presented in (Klai 2003), the full support of model
checking by temporal logic is not well developed.

5.3.3 Compositional Verification

Compositionality can be employed to reduce the system design complexity not only for the
modeling phase but also for the verification phase.

Compositional verification (Clarke et al. 1989; Long 1993) is proposed for a system composed
of several components. This formalism takes advantage of the natural decomposition of a
complex system and verifies each component in isolation. The global properties of the whole
system are inferred from the local properties of the concerned components. The difficulty is
usually in the separation of a global property into components’ local properties.

* The subset of LTL where the ‘next’ operator X is not allowed is denoted LTL-X.

Chapter 5 Verification Methods of Train Control System

176

The compositional verification can be illustrated by an example of a system composed of two
components (e.g., processes) P and Q in Figure 5-7. Each component can communicate with
another component or communicate with their environment.

Figure 5-7 Example of a system composed of two components

The system can be denoted P ∥ Q, the symbol “∥” means the relationship between the two
parallel components P and Q. Given the property 𝜑𝜑 defined on the system P ∥ Q, the property
𝜑𝜑� defined on the component P, the property 𝜑𝜑� defined on the component Q, and the symbol
“⊨” which means “satisfy”, the basic inference rule of the compositional verification is shown
as follows:

 𝐶𝐶 ⊨ 𝜑𝜑�
 𝑄𝑄 ⊨ 𝜑𝜑�

𝜑𝜑�, 𝜑𝜑� ⊨ 𝜑𝜑
 𝐶𝐶 ∥ 𝑄𝑄 ⊨ 𝜑𝜑

(5-4)

Compositional verification tries to alleviate the problem by considering components in
isolation and then to reason about the system as a whole.

Compositionality allows one to package a DES model into a single process that can be
executed within another DES model (Sgroi et al. 2000). Compositional minimization (Graf
and Steffen 1990; Graf et al. 1996) is a method to generate a reduced version of the global
state space based on the structure of the system and the way the components interact. For
example, the system example in Figure 5-7 can be represented by Figure 5-8 where the
component Q′ is a reduced version of the original component Q as well as its environment (in
Figure 5-7) that only keeps the behavior of the component 𝑄𝑄 that can be observed by the
component 𝐶𝐶 via the communication interface.

Figure 5-8 The system example after compositional minimization

The inference rule can be introduced as follows:

Component P Comm. Component Q

Environment

Component P Comm. Reduced
component Q’

Environment

Chapter 5 Verification Methods of Train Control System

177

𝑄𝑄 ↓ ∑ 𝐶𝐶 ≡ 𝑄𝑄′

 𝜑𝜑 ∈ 𝑁𝑁 (∑ 𝐶𝐶)
 𝐶𝐶 ∥ 𝑄𝑄′ ⊨ 𝜑𝜑
 𝐶𝐶 ∥ 𝑄𝑄 ⊨ 𝜑𝜑

(5-5)

In the inference (5-5), the symbol ∑ 𝐶𝐶 denotes a system containing the component 𝐶𝐶 and its

interaction with its environment; the formula 𝑄𝑄 ↓ ∑ 𝐶𝐶 ≡ 𝑄𝑄′ denotes that 𝑄𝑄′ is a reduction of
𝑄𝑄 via its interface with 𝐶𝐶; the expression 𝜑𝜑 ∈ 𝑁𝑁 (∑ 𝐶𝐶) denotes that 𝜑𝜑 is a property that can be
defined on ∑ 𝐶𝐶.

However, the construction of the reduced state space highly depends on the property to check.
For several safety-related properties such as deadlock-free which requires a full traversal of
state space, the compositional verification might be difficult to apply.

Some other papers (Dias da Silva and Perkusich 2003; Xie and Browne 2006) also propose a
modeling and verification schema for component-based systems. However, lots of properties
still need to be verified on the integrated model, which makes the modular verification for
more difficult than the modular modeling.

5.3.4 Assume-Guarantee Reasoning

The assume-guarantee reasoning (Pnueli 1985; Grumberg and Long 1991) offers another point
of view of inferring the properties of a global system by isolating a certain component from
its environment which contains all the other components of the system.

By using the assume-guarantee reasoning, we concentrate on a particular component and
assume that the environment of this component behaves in a certain manner. If the behavior
of the environment can be guaranteed by the other components, we can conclude that this
property is verified for the whole system.

The typical assume-guarantee reasoning can be expressed as follows. We divide the whole
system into two parts: the component model 𝑀𝑀 and its environment 𝑀𝑀′. Given two properties
〈𝜓𝜓〉 and 〈𝜑𝜑〉, the notion 〈𝜓𝜓〉𝑀𝑀〈𝜑𝜑〉 means “if the environment of component 𝑀𝑀 satisfies 〈𝜓𝜓〉,
then component 𝑀𝑀 in its environment satisfies 〈𝜑𝜑〉”, then the inference is shown as formula
(5-6).

 〈𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇〉 𝑀𝑀′ 〈𝜓𝜓〉

 〈𝜓𝜓〉 𝑀𝑀 〈𝜑𝜑〉

〈𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇〉 𝑀𝑀 ∥ 𝑀𝑀′ 〈𝜑𝜑〉.

(5-6)

Chapter 5 Verification Methods of Train Control System

178

By integrating the structural decomposition and the assume-guarantee method, we are able to
analyze the system more efficiently. The property 〈𝜑𝜑〉 to be verified may represent a behavior
about the combination of 𝑀𝑀 and its environment 𝑀𝑀′ , instead of merely 𝑀𝑀 , which is very
common for the verification of a component in a complex system. The assume-guarantee
reasoning avoids the construction of the state space of a global system 𝑀𝑀 ∥ 𝑀𝑀′ by only
checking the property 〈𝜑𝜑〉 in 𝑀𝑀 with the assumption 〈𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇〉𝑀𝑀′〈𝜓𝜓〉. Of course, this assumption
needs to be proved by analyzing the other components. However, once a guarantee is proved,
it can be used as an assumption in the next reasoning. By this measure, we finally construct a
deduction chain to replace the verification of a difficult property by multiple assume-guarantee
inferences and a basic statement to verify without assumptions.

Another advantage of the assume-guarantee method is that it allows the verification of a
hierarchical system without transforming the hierarchical model into the flattened ones.

The difficulty of this method is that for each property 〈𝜑𝜑〉 about the component 𝑀𝑀 to be
verified in a global system, the user must specify a corresponding property 〈𝜓𝜓〉 about its to
form the assumption. The specification of the assumptions may need some domain knowledge
of the system behavior as well as the verification methods, e.g., the feedback from the verifier
in an interactive verification.

5.3.5 Incremental Analysis Approach

An incremental approach usually means creating a new object by modifying an existing one,
which is a popular approach for handling complex and concurrent systems in all the phases of
the system development, e.g., the refinement-based approach in the system design phase
introduced in §4.4.3.

In the verification phase, an incremental analysis approach of state space is proposed (Lewis
and Lakos 2001; Lewis 2002). The incremental analysis approach attempts to alleviate the
state space explosion problem by taking advantage of the refinement-based CPN modeling
formalism, which is called the incremental CPN modeling in (Lewis 2002).

Different kinds of incremental CPN modeling approach are defined as follows:

• Type refinement: projecting each value of the refined type onto a value of the abstract
type;

• Subnet refinement: enlarging a subnet with additional places, transitions, and arcs. The
refined system behavior must be consistent with the abstract system;

• Node refinement: replace a place or a transition by a subnet, which also requires a
corresponding behavior in the refined system.

Chapter 5 Verification Methods of Train Control System

179

The construction of incremented state space will be based on the incremental CPN modeling
approach. For example, a node refinement and its corresponding incremented state space is
shown in Figure 5-9,

Figure 5-9 Incremental approach in state space analysis

As the incremental development is fundamental to object-orientation, it is widely adopted in
software engineering and embedded systems that have complex behavior.

The difficulty to apply this method is the necessity to consider its application from the
modeling stage in order to synchronize the modeling and verification in the abstract level and
in the refined level, which is always ignored by the system designers in the industrial
application.

5.4 State Reduction based on Reactive Semantics and

Transition Priority

In this section, we identify the reactive semantics in the colored Petri net models for a complex
DES in order to exactly model the behavior of a global system composed of several reactive
components.

We also exploit the reactive semantics and the transition priority to reduce the concurrency in
the state space.

5.4.1 Reactive Nets

5.4.1.1 Related definition

Reactive systems

A reactive system is “a system that is able to create desired effects in its environment by
enabling, enforcing, or preventing events in the environment” as defined in (Wieringa 2003).

Chapter 5 Verification Methods of Train Control System

180

The applications of reactive systems include control systems, concurrent systems, operation
systems and real-time systems (Manna and Pnueli 1992). They are computing systems which
are interactive with strict requirements on the delay of its process.

Workflow Nets

A workflow net is a special class of a Petri net with the following constraints:

- It has a unique and dedicated input place 𝑇𝑇 such that ∙ 𝑇𝑇 = ∅;
- It has a unique and dedicated output place 𝐵𝐵 such that 𝐵𝐵 ∙= ∅;
- Every other transition and place are on the path from 𝑇𝑇 to 𝐵𝐵;
- For the initial marking 𝑀𝑀0, 𝑀𝑀0(𝑇𝑇) = 1, ∀𝑇𝑇 ≠ 𝑇𝑇: 𝑀𝑀0(𝑇𝑇) = 0.

Workflow management system (WFMS)

A workflow management system (WFMS) can be divided into two parts:

- The workflow engine (WF engine), which is the heart of a WFMS and can be
represented by a workflow net;

- The environment running in parallel with the WF engine.

The WF engine in a WFMS is always regarded as a reactive system.

5.4.1.2 An informal introduction to Reactive Nets

The execution of Petri net models normally uses a token-game semantics, which is the standard
semantics of Petri nets. The token-game semantics implies that if a transition t is enabled, it
may fire but does not have to. This firing rule is also called a may-fire rule (Wikarski 1996).
The may-fire rule of the token-game semantics introduces two levels of non-determinism:

• For a particular enabled transition, the may-fire rule can either execute an enabled task
or defer its execution, in the worst case the firing can be postponed forever;

• For a marking with several enabled transitions that are mutually exclusive, the may-
fire rule chooses one transition to fire randomly.

The non-determinism is useful to model and analyze the concurrency of a system. However,
it may also lead to unintended behavior when Petri nets are used to model the systems in some
special domains, e.g., the workflow management domain.

(Eshuis and Dehnert 2003) considers the modeling of a workflow management system
(WFMS) using Petri nets. However, the WF engine is a reactive system. In a reactive system
modeled by Petri nets, an enabled transition must fire immediately, otherwise, the system
would fail to respond to a certain event. That is to say, in the Petri net model of a WFMS, the
WF engine implies a reactive semantics with a must-fire rule while its environment uses the
standard may-fire semantics with the may-fire rule. Unfortunately, the standard Petri nets

Chapter 5 Verification Methods of Train Control System

181

cannot correctly model the behavior of the WF engine. Thus, the behavior of the model could
be different from the behavior of the modeled system in reality.

Motivated by this problem, (Eshuis and Dehnert 2003) proposes Reactive Nets by integrating
the reactive semantics with Petri nets formalism. In a Reactive Net, the transitions are divided
into two kinds, as shown in Figure 5-10:

- Internal transitions, which are inside the reactive system (e.g., WF engine);

- External transitions, which are in the environment of the reactive system.

Figure 5-10 Internal and external part of a reactive net

A marking M of a Reactive Net is called unstable if at least an internal transition t is enabled.
An external transition t could be enabled only in a stable marking, i.e., when there are no more
enabled internal transitions. In other words, the internal transitions have a higher priority than
the external ones.

Based on their practice senses, the transitions can be classified into 4 types:

• Event transitions (external transitions);

• Decision transitions (internal transitions);

• Routing transitions (internal transitions);

• Task transitions, which will be further refined as four sequential stages: announce_task
(internal transition), begin_task (external transition), end_task (external transition),
and record_task_completion (internal transition).

Some similar works e.g., (Tjell 2007) and (Gonçalves and Fernandes 2013), further develop
this idea to a Colored Petri nets version to systematize the distinction between the environment
and the reactive system in colored Petri net models.

These works contribute to the identification of the semantics of transitions in a global model
of a reactive system and its environment built in (colored) Petri nets. It is also proved that
several properties (i.e., soundness) of such a system can be verified by analyzing the
underlying (colored) Petri net models.

However, when the state space is generated using the standard Petri net semantics, we usually
found that the state space of such a global system is normally much larger than it should be.

External

Internal

Chapter 5 Verification Methods of Train Control System

182

In this thesis, we exploit the reactive semantics in a global railway control system model to
reduce the unnecessary states caused by the concurrence of different components and the
environment. This idea will be introduced in the following subsections.

5.4.2 Global System Composed of Multiple Reactive Components

We consider a practical case that a global system is made of multiple components and the
environment, where each component is a reactive system and it can interact with the
environment. In this thesis, we call such a component that has the reactive semantics a reactive
component. Figure 5-11 illustrates a global system with two reactive components.

Figure 5-11 Global system made of multiple reactive components

The application of such a global system configuration is very common in control systems.
Taking the MA management function in the ETCS as an example, two reactive components
could be the onboard system (which requests and receives MAs) and the RBC (which
generates MAs based on the MA requests); the transitions in the environment could be the
changes in the train position (e.g., the reception of the telegram from a new balise for location
purpose).

It is obvious that in this example, the internal transitions of the two should use reactive
semantics. For the onboard system component, once the condition to request a new MA is
satisfied, it should be executed immediately to maintain the continuous advancement of the
train. For the RBC component, when an MA request is received, the generation of a new MA
also should be processed as soon as possible to keep the functionality. While the transitions of
train advancement in the environment should have the standard token-game semantics because
they represent in fact the events and the occasions that they are fired are not controllable in
such a system.

Essentially, the distinction between the two semantics of different transitions stands for two
priority levels of the transitions. As said in (Westergaard and Verbeek 2011), high-priority
transitions can be used to model exception handling and low-priority transitions can be used
to model background tasks that should only be executed when no other transition is enabled.

Environment

Component A Component B

Chapter 5 Verification Methods of Train Control System

183

The application of the two kinds of semantics discussed above can avoid the unnecessary states
caused by the standard may-fire semantics of Petri net models, e.g., a train has advanced a lot,
but the new MA is not required or generated.

However, for a global system that is composed of multiple components, the distinction of
reactive semantics and standard token-game semantics is not enough to eliminate the
concurrency between the internal transitions of different reactive components.

Considering a simple example of Figure 5-12, which shows only the two reactive components
in the global system without the transitions in the environment. Place A1 and Place B1 are
initially marked. The reactive semantics is adapted to all the transitions in Figure 5-12.

Figure 5-12 Concurrency of two reactive components

However, when we calculate the state space of such a global model, the concurrency exists as
both the two components use reactive semantics. Even if the enabled transitions in each
component should be fired immediately, the different firing sequences generate some states
that may not be necessary, e.g., marking {A2, B3} and marking {A3, B2}. The parallel
execution of different reactive components causes the combinatorial explosion problem when
the model is more complicated.

5.4.3 State Reduction using Transition Priority

We propose to apply an additional distinction of priorities of transitions in different reactive
components, which could force the enabled transitions in one reactive component to be fired
always before the firing of enabled transitions in another reactive component. The state space

Chapter 5 Verification Methods of Train Control System

184

of the example of Figure 5-12 has 9 nodes and 12 arcs. By applying the additional priority to
any of the two components, the state space can be reduced to 6 nodes and 6 arcs.

More states the concurrent processing in each reactive component is modeled by, more
interesting is the reduction effect. Figure 5-13 extends the example of Figure 5-12 to a general
version of two homogenous reactive components with variable numbers of the steps in their
linear processing in concurrency, where 𝑇𝑇, 𝑗𝑗 are two variants of colorset INT and 𝑆𝑆𝑇𝑇𝐸𝐸𝐶𝐶 is a
constant (value) of colorset INT. The state space of Figure 5-13 and that of Figure 5-12 will
be essentially the same when 𝑆𝑆𝑇𝑇𝐸𝐸𝐶𝐶 = 1.

Figure 5-13 Two homogenous reactive components with regulable step numbers

For such a system composed of two reactive components, the size of the state space is a
quadratic function of the number of the processing steps in each reactive component. By
applying the additional priority to one of the reactive components, the size of the state space
can be reduced to a linear function of the number of steps.

Table 5-1 compares the calculation time* and the size of state space when the model in Figure
5-13 is configured to different numbers of the steps in the linear processing of each reactive
component. The additional priority can be applied either on component A (i.e., the set of
transitions { 𝑇𝑇𝐴𝐴1, 𝑇𝑇𝑇𝑇𝑠𝑠𝐴𝐴, 𝑇𝑇𝐴𝐴3 }) or on component B (i.e., the set of transitions
{𝑇𝑇𝐵𝐵1, 𝑇𝑇𝑇𝑇𝑠𝑠𝐵𝐵, 𝑇𝑇𝐵𝐵3}).

* Executed on a PC with Intel® Core™ i7-870 (2.93GHz) CPU and 4 GB RAM, CPN Tools
Version 4.0.1 running on Windows 10 x64 operation system.

Chapter 5 Verification Methods of Train Control System

185

For such a system composed of two reactive components, the size of the state space is a
quadratic function of the number of the processing steps in each reactive component. By
applying the additional priority to one of the reactive components, the size of the state space
can be reduced to a linear function of the number of steps.

Table 5-1 Comparison of state spaces with/without additional priority

STEP (𝑠𝑠) Without additional priority With additional priority (on A or B)

Cal. Time Nodes No. Arcs No. Cal. Time Nodes No. Arcs No.

1 5s 9 12 4s 6 6

10 6s 144 264 5s 24 24

100 10s 10404 20604 6s 204 204

200 48s 40804 81204 6s 404 404

𝐹𝐹(𝑠𝑠) - 𝑠𝑠2 + 4𝑠𝑠 + 4 2𝑠𝑠2 + 6𝑠𝑠 + 4 - 2𝑠𝑠 + 4 2𝑠𝑠

For a global system composed of multiple reactive components and environment, the reduction
method can be applied by defining different levels of priority for the transitions in different
reactive components, as shown in Figure 5-14.

Figure 5-14 Semantics and transition priority in a global system

This reduction technique is effective when the state space explosion is caused by the
concurrence of the inner states of different reactive components. We explain the application
rules of this reduction technique.

The reduction technique can be applied to a (colored) Petri net model of a global system
composed of different reactive components and the environment. A reactive component
should not contain external transitions (e.g., event transitions), which can only appear in the
environment.

Environment (Transitions are of lowest priority)

Component 1
(Priority 1

higher) Component 2
(Priority 2)

Component N
(Priority N -

lower)

…
Reactive

Semantics

Token-game
Semantics

Chapter 5 Verification Methods of Train Control System

186

The reactive components are interleaving in a manner that they are “reactive” to (or “driven”
by) the tokens in the concerned interface places between them and the environment. For a
particular component, the changes occurred in the interface places, e.g., the presence of new
tokens, can be regarded as an input which turns some transitions in the reactive component
enabled. Then, the reactive component executes the processing steps until no more transitions
are enabled. As a result, it usually produces some changes in some related interface places as
an output. These changes are then used as input for another reactive component.

In terms of properties that can be verified, the application of this technique is based on the
promise that the processing in each reactive component is rather independent, which means
the combinations of the internal states in different reactive components is irrelevant to the
desired system properties.

Particularly, this technique is not applicable to the modeling of the competition of resources
by different reactive components where exists an uncertainty.

This technique is based on the analysis of the semantics of the transitions and takes advantage
of the system modularity. It is implemented by assigning different priorities to the transitions
in different reactive components. Compared to the other modular methods introduced in §5.3,
the advantage of this method is that it allows the verification of the properties about the whole
system using the reduced but global state space. In other words, it does not require the
decomposition (which could be very difficult) of the desired properties or the state space.

In terms of implementation of the reactive semantics and the transition priorities, CPN Tools
supports the prioritized transitions (Guan et al. 1998; Westergaard and Verbeek 2011), which
have been introduced in §4.4.2.3.

5.5 Case Study: Verification of Mode Transitions

Mode transitions are an important function in the modeling of ETCS onboard system (see
§4.4.1). A set of various properties can be verified on the model of mode transitions in §B.1.2.

We propose to verify the ETCS mode transitions function in two ways:

- In an isolated way: we isolate the mode transitions model by setting all the mode
transition conditions to “true” (or by removing all the conditions) and by unifying all
the transitions to the same priority. Thus, we can generate a reachability graph of the
mode transitions model indicating all the possibilities of mode transitions, which is
especially useful for the verification of reachability properties.

- In a global way with a scenario: the mode transitions model with conditions and
priorities is needed, as well as the necessary models to execute a scenario. It is useful
to verify the user-specified properties about the mode transitions during the execution
of the scenario, some examples are shown below.

Chapter 5 Verification Methods of Train Control System

187

5.5.1 Verification of Mode Transitions in an Isolated Way

The state space of the isolated mode transitions model considering 12 modes (considered
modes: NP, SB, PS, SH, FS, SR, OS, NL, SF, IS, RV, PT; not-considered modes: LS, SL, UN,
TR, SN) is shown in Figure 5-15.

Figure 5-15 State space of isolated mode transitions model

Boundedness Verification

According to the ETCS system requirements specification, at any time (even if the equipment
is not powered), the onboard system must be in one and only one mode. This requirement can
be transformed into the boundedness verification of the place “Current_Mode”, in which the
token indicates the current ETCS mode.

The boundedness property is one of the standard Petri nets properties, which can be found in
the state space report generated by CPN Tools. It can also be checked by using two pre-defined
functions “UpperInteger ()” and “LowerInteger ()”, as shown in Code 5-2

Code 5-2 Model checking of the boundedness using pre-defined functions
01 val ModeUpperBound= UpperInteger (Mark.Mode_Transitions'Current_Mode

1) ;
02 val ModeLowerBound = LowerInteger (Mark.Mode_Transitions'Current_Mode

1) ;
03 val Result = (ModeUpperBound=1) andalso (ModeLowerBound=1);

Chapter 5 Verification Methods of Train Control System

188

Reachability Verification

As a basic Petri net property, the reachability of two nodes can be checked by using the pre-
defined function “Reachable ()” or its chatty version “Reachable’ ()” which also returns a text
explanation about the (shortest path), as shown in Figure 5-16.

Figure 5-16 Model checking of reachability using a pre-defined function

The reachability property can also be checked by evaluating an ASK-CTL expression.

For example, Code 5-3 checks if it is possible from the initial marking, where the current mode
is “NP” (No Power), to reach a marking where the mode is “PT” (Post Trip).

Code 5-3 Model checking of reachability using ASK-CTL
01 fun IsInModePT n = (Mark.Mode_Transitions'Current_Mode 1 n = 1`SF);
02 val myASKCTLformula = POS (NF ("In Mode PT", IsInModePT));
03 eval_node myASKCTLformula InitNode;

The first line defines a function whose argument is a node in the state space and returns a
Boolean value to indicate whether the current mode in this state is “SF”. The ASK-CTL
expression uses the operator “POS” (POSsible), which means that a future state which satisfies
its argument is reachable from the state where we evaluate the expression. The function “NF”
will be explained later.

The result of the verification is false. In fact, mode PT can only be entered from the mode
“TR” (Trip). As the mode TR is currently not considered in the mode transitions model, it is
rational that a state, where the mode is PT, is unreachable whatever the initial mode.

Dead marking

The ETCS requirements specification says, “to leave Isolation (IS) mode, a special operation
procedure is needed”, which means “no transition from Isolation mode is specified”. In the
Petri net model, it means that a node representing the system in Mode IS should be a dead
marking.

Using ASK-CTL model checking, the dead marking property can be checked by using
“MODAL” operator, which checks the existence of immediate transitions of a node (marking),
as shown in Code 5-4.

Chapter 5 Verification Methods of Train Control System

189

Code 5-4 Model checking of dead marking using ASK-CTL
01 val IsInModeIS n = Mark.Mode_Transitions'Current_Mode 1 n = 1`IS;
02 (* In the example node 2 is in Mode IS*)
03 IsInModeIS 2;
04 val IsDeadMarking = NOT (MODAL (TT);
05 eval_node IsDeadMarking 2;

After having acquired the information that the node 2 is in Mode IS, another way to execute
the model checking verification is to use the pre-defined functions “fun DeadMarking : Node
-> bool” or “fun Terminal : Node -> bool”, as shown in Figure 5-17.

Figure 5-17 Model checking of dead marking using pre-defined function (Terminal)

The result shows that the node 2 in the state space (the system in Mode IS) is a dead marking.

User-specified property of the switch to SF mode

The system designer can use the pre-defined functions in CPN Tools and ASK-CTL formulas
to check more complicated properties. In order to give an example, we verify the switch from
other modes to System Failure (SF) mode.

In any working mode (all the ETCS modes except for IS, NP, SL, NL, SF), when the system
detects a failure, the ETCS onboard system will switch immediately to SF mode, which assures
the safety (as in SF mode the onboard equipment permanently executes the emergency brakes).
This property can be checked by a property written using ASK-CTL as shown in Code 5-5.

Code 5-5 Model checking of reachability using ASK-CTL
01 fun GetMode n = Mark.Mode_Transitions'Current_Mode 1 n;
02 fun IsInModeSF n = (GetMode n = 1`SF);
03 fun IsNoWorking n = (GetMode n = 1`IS) orelse (GetMode n = 1`NP)

orelse (GetMode n = 1`SL) orelse (GetMode n = 1`NL) orelse
(IsInModeSF n);

04 val PredSF= NF ("In Mode SF", IsInModeSF);
05 val PredNoWorking = NF ("In Mode IS or NP or SL or NL or SF",

IsNoWorking);
06 val myASKCTLformula = INV (OR (PredNoWorking, EXIST_NEXT (PredSF));
07 eval_node myASKCTLformula InitNode;

The first three lines define several functions to get and classify the mode value. The fourth and
the fifth lines define two atomic predicates using the NF function (val NF: string *
(Node -> bool) -> A), which in fact transforms a function of the type “Node -> bool”
to an ASK-CTL “state formulas (𝒜𝒜)”. There exists correspondingly another function AF (val

Chapter 5 Verification Methods of Train Control System

190

AF: string * (Arc -> bool) -> B) which transforms a function of the type “Arc
-> bool” to an ASK-CTL “transition formulas (ℬ)”.

The sixth line specifies the ASK-CTL formula to check. “INV” (short for “invariant”) is a
derived path quantification operator. When used as a state formula, “INV (𝒜𝒜)” is true iff its
argument (𝒜𝒜) is always true for all the reachable states from the state we are now.
“EXIST_NEXT” is an immediate successor operator. The expression “myASKCTLformula”
in Code 5-5 means that for all the reachable states, if a state is not in one of the NoWorking
modes, it shall have the possibility to be switched to SF mode immediately (in case a failure
is detected). The last line evaluates this expression on the initial state.

The result is true, which shows that the desired property is verified.

5.5.2 Verification of Safety Property in a Global Way with a Scenario

Safety-related properties usually mean the searching of some dangerous states in all the
possible states of a system. In order to conduct the safety verification on the actual operation
situation of the ETCS onboard system, it is necessary to combine the models of mode
transitions, procedures, onboard functions, etc., as introduced in §4.4.

We are interested in a safety-related property about the certainty of (onboard) mode transition,
which is, at any moment, the ETCS onboard system cannot have more than one possibility to
switch to another mode. In other words, if the onboard system is ready to switch to another
mode, the future mode should be unique. This requirement has been discussed from the
modeling point of view in §4.4.2.3. In this case study, we propose to verify this requirement
using compositional verification.

Formally, we present the Mode Transitions Table (Table B-1 in Appendix A) as a set 𝑀𝑀𝑇𝑇𝑇𝑇 of
mode transitions. A mode transition 𝑚𝑚𝑡𝑡 ∈ 𝑀𝑀𝑇𝑇𝑇𝑇 is a 4-tuple structure 𝑚𝑚𝑡𝑡 =< 𝑚𝑚𝐵𝐵, 𝑚𝑚𝑆𝑆, 𝑇𝑇, 𝐶𝐶 >,
where:

- 𝑚𝑚𝐵𝐵 is the origin mode, 𝑚𝑚𝐵𝐵 ∈ 𝑀𝑀 the set of all the modes;

- 𝑚𝑚𝑆𝑆 is the target mode, 𝑚𝑚𝑆𝑆 ∈ 𝑀𝑀;

- 𝑇𝑇 is the priority value, 𝑇𝑇 ∈ 𝐶𝐶 = {𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇7};

- 𝐶𝐶 is a condition 𝑐𝑐 ∈ 𝐶𝐶 (𝐶𝐶 is the set of conditions) that is necessary to enable the mode
transition 𝑚𝑚𝑡𝑡.

The desired property 𝜑𝜑 is specified as 𝜑𝜑: ∀𝑚𝑚0 ≠ 𝑚𝑚1 ≠ 𝑚𝑚2, there should not have a reachable
marking 𝑀𝑀 ∈ ℛ(M0) that enables two different mode transitions 𝑚𝑚𝑡𝑡′ = {𝑚𝑚0, 𝑚𝑚1, 𝑇𝑇′, 𝑐𝑐′} and
𝑚𝑚𝑡𝑡′′ = {𝑚𝑚0, 𝑚𝑚2, 𝑇𝑇′′, 𝑐𝑐′′}.

Chapter 5 Verification Methods of Train Control System

191

We applicate the compositional verification method to separate the property 𝜑𝜑 into two sub
properties 𝜑𝜑� and 𝜑𝜑�:

- 𝜑𝜑� : ∀𝑚𝑚0 ≠ 𝑚𝑚1 ≠ 𝑚𝑚2 , and 𝑇𝑇′ ≠ 𝑇𝑇′′ , two different mode transitions 𝑚𝑚𝑡𝑡′ =

{𝑚𝑚0, 𝑚𝑚1, 𝑇𝑇′, 𝑐𝑐′} and 𝑚𝑚𝑡𝑡′′ = {𝑚𝑚0, 𝑚𝑚2, 𝑇𝑇′′, 𝑐𝑐′′} are not able to be enabled at the same
time;

- 𝜑𝜑�: ∀𝑚𝑚0 ≠ 𝑚𝑚1 ≠ 𝑚𝑚2, if there exists two mode transitions 𝑚𝑚𝑡𝑡′ = {𝑚𝑚0, 𝑚𝑚1, 𝑇𝑇, 𝑐𝑐′} and

𝑚𝑚𝑡𝑡′′ = {𝑚𝑚0, 𝑚𝑚2, 𝑇𝑇, 𝑐𝑐′′} where 𝑚𝑚0 ≠ 𝑚𝑚1 ≠ 𝑚𝑚2 , there exists not a marking 𝑀𝑀 ∈
ℛ(M0) that satisfies both 𝑐𝑐′ and 𝑐𝑐′′.

𝜑𝜑� can be verified by the isolated Mode Transitions model easily. In fact, the modeling
formalism of Petri nets with prioritized transitions (see Figure 4-18) already ensures this
property.

𝜑𝜑� needs to be verified via a traversal on the global state space of a global system. However,
an actual operation of the ETCS onboard system depends on a lot of interactions with other
systems and the driver’s choices. In order to generate part of the state space of the onboard
system, we consider the procedure “Start of Mission (SoM)” (see B.2) and we create an
operation scenario which allows the onboard system to execute the following operations:

 𝑀𝑀𝐵𝐵𝑆𝑆𝑇𝑇 𝑁𝑁𝐶𝐶 → 𝑀𝑀𝐵𝐵𝑆𝑆𝑇𝑇 𝑆𝑆𝐵𝐵
��������� ���
����������→ 𝑀𝑀𝐵𝐵𝑆𝑆𝑇𝑇 𝑆𝑆𝑆𝑆 (5-7)

The operation scenario for the procedure SoM is defined by two parts:

- The initial operation states corresponding to the initial mode NP;

- The necessary interactions during the execution of the scenario, an example is shown
in Figure 5-18.

Figure 5-18 Example of the scenario in procedure SoM

The scenario is executed on a combination of the complete model of mode transitions, the
model of procedure SoM and the models of concerned onboard functions.

Chapter 5 Verification Methods of Train Control System

192

In order to verify the property 𝜑𝜑� in this example scenario where 𝑚𝑚0 = 𝑆𝑆𝐵𝐵 (in procedure

SoM), all the possible combinations of 𝑚𝑚𝑡𝑡′ = {𝑚𝑚0, 𝑚𝑚1, 𝑇𝑇, 𝑐𝑐′} and 𝑚𝑚𝑡𝑡′′ = {𝑚𝑚0, 𝑚𝑚2, 𝑇𝑇, 𝑐𝑐′′} need
to be verified.

Figure 5-19 shows the possibility to verify that for 𝑚𝑚𝑡𝑡′ = {𝑚𝑚0 = 𝑆𝑆𝐵𝐵, 𝑚𝑚1 = 𝑁𝑁𝑆𝑆, 𝑇𝑇 = 𝑇𝑇7, 𝑐𝑐′ =
𝐶𝐶70} and 𝑚𝑚𝑡𝑡′′ = {𝑚𝑚0 = 𝑆𝑆𝐵𝐵, 𝑚𝑚2 = 𝑀𝑀𝑆𝑆, 𝑇𝑇 = 𝑇𝑇7, 𝑐𝑐′′ = 𝐶𝐶15}. The result shows that no markings
in this scenario allows the two conditions C70 (“Show LS Proposal”) and C15 (“Show OS
Proposal”) to be satisfied simultaneously.

Figure 5-19 Verification of Mode Transition Model

In Figure 5-19 the function CalculateOccGraph is used to generate the state space and the
function SearchNodes is used to traverse the nodes of the state space. The details about these
functions can be referred to (University of Aarhus 2006).

This verification can also be executed on-the-fly if the size of the state space generated by the
scenario is important. In CPN Tools, a predicate of type (fn n => bool) in the StopOptions can
be set for to automatically stop the state space generation. We have shown the methods to
verify the property φq in a scenario. It can be used together with φp to infer the property φ
about the global system in a compositional way.

Code 5-6 shows the configuration for the state space generation with the on-the-fly verification
for the same verification objective above. In the example, the option Secs is set to 300s to
avoid a too long waiting time caused by errors. If the size of the state space is expected to be
longer, the option can be altered.

We have shown the methods to verify the property 𝜑𝜑� in a scenario. It can be used together

with 𝜑𝜑� to infer the property 𝜑𝜑 about the global system in a compositional way.

Chapter 5 Verification Methods of Train Control System

193

Code 5-6 Model checking with ASK-CTL formula
01 fun shown_LS_Proposal n = Mark.Mode_Transitions'LS_Proposal 1 <> [];
02 fun shown_OS_Proposal n = Mark.Mode_Transitions'OS_Proposal 1 <> [];
03 OGSet.StopOptions{
04 Nodes = NoLimit,
05 Arcs = NoLimit,
06 Secs = 300,
07 Predicate = (fn n => shown_LS_Proposal
 andalso shown_OS_Proposal)};
08 CalculateOccGraph;

However, it can be predicted that the assertion “two mode transition conditions with the same
priority will never be satisfied simultaneously” (i.e., the property 𝜑𝜑�) would be very difficult
even not feasible as it requires the generation of a state space that covers all the possible system
operation states. In terms of the system testing, there are studies about the automatic generation
of test sequences based on test cases to provide a best test coverage (Zhang et al. 2014), but it
is still far from the requirement to formally cover all the possible operation states.

Thus, from the point of view of redaction of the system requirements specification, we would
personally suggest using more rigorous constraints for the mode transition rules, i.e., the
assignment of a unique priority to each mode transition with the same origin mode and without
syntactically contradictory conditions. The proposition will not change the desired behavior
of the train control system but can avoid some design errors in a very early phase.

5.6 Case Study: Verification of MA Function using

Assume-Guarantee

5.6.1 Background of the Case Study and the desired Property

The case study applies the assume-guarantee reasoning to verify the MA function in a railway
system, i.e., an RBC with multiple trains. The case study considers the train model of MA
function presented in (Xie et al. 2017a) and the RBC model in Figure 4-39.

We recall some modeling assumptions of the MA function:

(1) Each time a train enters in a new block, we assume that it receives its current position
from a Eurobalise and then sends a position report to the corresponding RBC, instead
of considering the specified report format according to ERTMS/ETCS-2 standard.

(2) Once the RBC receives the position report from a train, it updates its location in the
database. The RBC also considers the location report as an MA request (see Place
Request in Figure 4-39). Consequently, it generates MA for the train that just advanced.

Chapter 5 Verification Methods of Train Control System

194

The verification to conduct is a classical test in the railway control system: a train follows
another train to advance.

The objective of verifying this property is twofold. On the one hand, the property implies the
safety (collision-free) that the follower train will never run into its predecessor. On the other
hand, if the follower train can always follow the predecessor train to stop and to advance, it
can partially verify the correctness of the train operation regulated by MA.

This property is quite difficult to be verified due to the following complex reasons:

(1) In this thesis, we propose to model the RBC module in WFN while the train module is
modeled using CPN enhanced with CPN Tools. The heterogeneity of the different
modeling formalisms could be an obstacle to generate the global state space;

(2) The MA generation function in the RBC part needs to consider the state (position) of
other trains. The RBC model interactives with each train and uses the centralized
storage for the positions of all the trains (see §4.6). It is thus very difficult to isolate
the RBC model to generate an independent state space.

We propose to use the assume-guarantee reasoning to verify the property.

5.6.2 Environment Abstraction using Assume-Guarantee

The desired property is to verify that a follower train can “follows” its predecessor train, which
means, it stops if the predecessor train stops and it can restart after the predecessor train
advances.

The verification will be focused on the follower train (i.e., the train behind) and considers all
the other parts in the global system as its environment, including the RBC and the predecessor
train.

In order to better present the verification in the thesis, we consider a simple railway line
composed of only five blocks, managed by an RBC.

We assume that the environment of the follower train behaves in this order:

(1) Initially, the follower train is in Block 1 and the predecessor train is in Block 4;

(2) The follower train has advanced but the predecessor train is at standstill in Block 4;

(3) During the duration that the follower train is in Block 3, the predecessor train advances,
passes Block 4 and Block 5, and leaves this railway line.

Using the assume-guarantee reasoning expressed in (5-6), the considered follower train model
is denoted by 𝑀𝑀, its environment is denoted by 𝑀𝑀′, and the assumed environment behavior is
denoted by 𝜓𝜓.

Now we focus on the verification of the expression 〈𝜓𝜓〉 𝑀𝑀 〈𝜑𝜑〉 on follower train model M.

Chapter 5 Verification Methods of Train Control System

195

The assumption 𝜓𝜓 is implemented via some extra models built in CPN Tools, which is attached
with the train model. In order to conduct the verification, we also need the information from
the Balise to represent the advancement of the follower train in the railway lines. Thus, the
environment of the follower train also includes an abstracted model of Balise to send the
positioning Balise telegrams.

As a result, two abstracted models are attached to the train model, as shown in Figure 5-20.

Figure 5-20 Abstraction of the train’s environment

5.6.2.1 Abstraction of Balise

As the Balises are out of the scope of the train controller, they are not considered in our models.
To verify the functions of train controller, the corresponding balise messages should be
regularly sent to the interface place of balise (Place Balise in Figure 5-20 or Places TxBTM in
Figure 4-9).

The left part of Figure 5-20 simulates the behaviors of Balises. We use Time Stamp in CPN
Tools to control the time interval of Balise message generation.

If the condition [EOA>POS] is satisfied, a new token representing Balise message will be
generated and put into Place Balise, with value = POS+1 where POS is the current block that
the train is occupying.

5.6.2.2 Abstraction of RBC and the predecessor train

Based on the analysis of the environment’s behavior at the beginning of §5.6.2, we use a single
transition with its necessary auxiliary parts (e.g., some places and functions) as a simplification
of the RBC component as shown in the right part of Figure 5-20.

The functions of this abstracted RBC model are:

Position

POS 1`1

EOA

POS

1

Train
In/Out TID

1`T(1)

T2RBC

TypexTIDxPOS

RBC2T

TypexTIDxPOS

Balise
In POS

Registered

BOOL

1`false

Delay

UT

()@1 TIDComm

TID

1`T(1) History

INT

1

Advance

[pos

<>

1]

ReceiveMA

Disconnect

Register

NextBlock

[eoa

>

pos]
AbsRBC

(UPDATE,tid,pos)

(MAMSG,tid,neoa)

neoa

tpos

tid

N
(REMOVE,tid,N)

(INSERT,tid,1)

false

true

false

true true

()@+5

()

pos+1

pos

tid

tid

tid

(tp,tid,pos)

if (tp=MAMSG)
then (MAMSG, tid,
if (i

<

=3) then 3 else 5)
else (tp,tid,pos)

tid

eoa

1

if (tp=MAMSG)
then (i+1) else i

i

pos

pos

eoa

pos

pos

WAck

TypexTID

(UPDATE,tid)

(REMOVE,tid)

(INSERT,tid)

In

In/Out

Abstraction
of Balise

Abstraction of
RBC and the

predecessor train

Chapter 5 Verification Methods of Train Control System

196

- For the first three position reports (regarded as MA requests) received from the
follower train (sent in Block 1, 2 and 3), the RBC provides the train with the MA
whose EOA=3 (since the predecessor train is on block 4);

- For the future position reports / MA requests sent by the follower train (if there are),
the RBC shall provide the train with an MA whose EOA=5 (since the predecessor
train has left).

5.6.3 Verification of Train Model using Assume-Guarantee

After the assumption 𝜓𝜓 is implemented by the abstracted models, the expression 〈𝜓𝜓〉 𝑀𝑀 〈𝜑𝜑〉
can be verified by analyzing the train model together with the two attached parts.

The state space of such a model is easily generated. A simplified version (after the aggregation
of some linear states to achieve a compact representation) is presented in Figure 5-21.

Figure 5-21 State space of the train model under the assumption

Obviously, Node 11 in the state space represents an unexpected deadlock marking. This dead
marking indicates that after the follower train arrives at EOA position (POS=EOA=3), it
cannot advance anymore.

Even though the situation could be regarded to be “safe”, it does not totally satisfy the desired
property. With our assumption, after the follower train enters Block 3 and its predecessor train
has gone, the RBC is ready to provide the follower train with extended MA whose EOA=5.

By using the state space analysis method, we can conclude that the behavior of the train model
under the aforementioned assumptions does not satisfy the desired property. It is even not
necessary to verify the assumption about the environment 〈𝑡𝑡𝑉𝑉𝑡𝑡𝑇𝑇〉 𝑀𝑀′ 〈𝜓𝜓〉.

5.6.4 Discussion of the Verification Result and Improvement

In this case study, we have found a design defect in the models presented in our previous work
(Xie et al. 2017a). After the analysis, the problem is due to a combination of the two factors:

Chapter 5 Verification Methods of Train Control System

197

(1) For simplification reason, the train model does not send explicit MA request. The
request of new MA is implicit by the position report. For this reason, once the train
stops, it loses the ability to require a new MA;

(2) The strategy that RBC replies an MA request: the RBC module replies the train
immediately even if the new EOA is the end position of the current Block occupied by
the train, which has no sense for the MA update of the onboard system. After this
“update” the train requires no more MA even if the RBC might be able to extend it.

The solution could be to separate the MA request and the position report, and the request of
MA should be executed periodically even if the train is at standstill. In the modeling of ETCS
onboard system in §4.4 of this thesis, the requirement “Request MA Cyclically respect to
approach of target indication point or MA timer elapsing” has been taken into consideration.
Thus, the problem should not appear.

5.7 Conclusion of Chapter 5

This chapter deals with the verification of the colored Petri nets models of the train control
systems built following the methodology presented in Chapter 4.

In this chapter, we first review the possible techniques to verify the Petri net model of a
complex DES, among which the model checking technique is most commonly used. As an
important of the verification, the property specification is also discussed.

To fight the famous combinatorial explosion problem, we introduce both some efficient state
space analysis techniques and several modular verification methods. These approaches can
reduce the state space on two levels and may be applied together to achieve the result.

Faced with the difficulty of verifying the global system model of train control, we are inspired
by the reactive semantics which was first introduced in reactive nets. We identify the reactive
components in a global system and propose to reduce the global state space based on reactive
semantics and transition priority. This technique can be used in similar complex DES.

We also summarize the case studies introduced in this chapter in Table 5-2

Table 5-2 Case studies in Chapter 5

Case study Property State Space Technique Modular Method

§5.5.1 Standard, User-specified ASK-CTL, CPN Tools
pre-defined functions

-

§5.5.2 User-specified On-the-fly Compositional

§5.6 Safety, User-specified State space exploration Assume-guarantee

199

Chapter 6 CONCLUSIONS OF THE THESIS
AND PERSPECTIVES

6.1 Conclusions

This thesis deals with the formal modeling and verification of complex train control systems
using colored Petri nets, as an example of complex Discrete Event Systems (DES).

The most important problem in the development of complex DES is the combinatorial
explosion, which exists both in the modeling stage and the verification stage due to the huge
number of states. The alleviation of this problem can be proposed on several levels:

• Technical level

• Methodological level

• Level of application domains

This thesis exploits the three kinds of propositions in order to obtain efficient modeling and
verification approaches, taking train control systems as an example.

The contributions of this thesis are threefold:

(1) This thesis synthesizes the modeling and verification formalisms in literature and
proposes a methodology of modeling and verification for train control systems. The
methodology offers the possibility to model and verify a global train control system
using colored Petri nets (CPN) in a modular way, in order to reduce the complexity.

(2) Faced with some difficulties, we propose some techniques that can be regarded as the
general technical contributions of the development of complex DES. In the modeling
stage, we propose several modeling patterns of well-formed Petri nets (WFN) to
facilitate the modeling using this formalism; in the verification stage, we analyze the
reactive semantics and the transition priority of a global system composed of multiple
reactive components and propose a technique to reduce the system states.

(3) From an industrial point of view, this thesis has produced several practical CPN models
compatible with the latest standards of the European Train Control System (ETCS).
These models can be used as modeling bricks in the projects (e.g., UniRAIL in Centrale
Lille) for different modeling and analysis objectives.

The structure of this thesis is shown in Figure 6-1.

Chapter 6 Conclusions of the Thesis and Perspectives

200

Figure 6-1 Structure of this manuscript

6.2 Perspectives

In terms of the improvement of this work, we would like to point out the following
perspectives:

(1) The modeling stage and the verification stage in this thesis study are somehow
“separated”, which results in some inconvenience in the downstream stage – verification
stage. From a global point of view, the modeling stage and the verification stage might
be better coordinated to facilitate the verification of desired properties. Particularly,
incremental approaches in both modeling and verification stages should be emphasized,
which might facilitate the verification to some extent.

Chapter 1
Introduction

Motivations / Objectives

Chapter 2
Application Framework:

Railway Systems and Train Control
Emphasis on ERTMS/ETCS

Chapter 3
Theoretical Framework:

Complex DES Development Formalisms
Emphasis on Colored Petri nets

Chapter 4
Modular Modeling of Train Control Systems

- Systematical modeling methodology for train control systems;
- Structural modeling based on components in a whole railway system;
- Functional modeling of ETCS onboard equipment;
- Modeling of Railway node with automated routing using CPN Tools;
- Modeling of RBC with MA management function using WFN;
- Proposition of general modeling patterns in WFN.

Chapter 5
Verification Methods of Train Control Systems and Case Studies

- Review of verification techniques for colored Petri nets;
- Review of modular verification approaches for complex DES;
- Formal description of properties for colored Petri net models;
- State reduction based on reactive semantics and transition priority;
- Case studies of verification of railway control systems.

Chapter 6
Conclusion and Perspectives

Chapter 6 Conclusions of the Thesis and Perspectives

201

(2) The verification presented in this thesis depends too much on state space methods,
despite the potential of invariant analysis for Petri nets. The situation may result from
the complexity to apply colored invariants and the limited support of properties for the
verification. However, we believe that the colored invariant methods should be exploited
either for the verification purpose or for the reduction purpose.

In terms of the whole lifecycle (Figure 1-1) of the complex DES development, we focus on
the system design directly derived from the requirements specification and the verification.
The extensions of this study are expected in the following aspects:

(1) Better lifecycle management of system development which clarifies different stages of
requirements engineering, architecture design, and system design, etc. using model-
driven engineering (MDE) and refinement-based approaches.

(2) Considering the implementation of control models, automatic code generation from Petri
nets is quite necessary.

(3) Considering the practical need of testing the train control system before it is put into
service (European Union Agency for Railways 2017), it would be useful to generate the
test cases and test sequences from the control models.

203

Appendix A INTRODUCTION TO PETRI NETS
Petri nets were invented by Carl Adam Petri in the 1960s (Petri 1962). It uses very simple
syntax and structure to graphically present precise semantics, and is also a mathematical
modeling and analysis tool (Murata 1989). Thanks to these features, Petri nets have been a
popular formalism to model complex DES systems, especially for those with concurrency.

It is worth noting that the major contribution of Carl Adam Petri is not just a single modeling
method (the initial model was the so-called Condition/Event nets, where the state is expressed
in terms of Boolean variables), but the foundation of a set of net-based modeling formalisms
within the “Petri nets” paradigm that have been developed over half a century (Silva 2012).
All these formalisms are in the scope of “General Net Theory” founded by Carl Adam Petri
(Petri 1980).

This appendix can be regarded as a complement of §3.3. It gives the reader an overview of the
Petri nets theory and the most important Petri nets classes.

§A.1–§A.4 present some fundamental and famous Petri nets classes from a historical and
developmental point of view. Each class is introduced with attention to its advancement and
difference compared to its predecessors or analogs. A classification of these Petri nets variants
can be found in §3.3.1.

§A.5 gives our explanation to a rather confusing situation of colored Petri net terminologies
in the literature and clarifies the relevant definitions in this thesis.

§A.6 presents several Petri nets software, as a complement of §3.3.2.4 and §3.3.3.4.

A.1 Place/Transition-nets

Among the different Petri nets variants invented and still being developing by researchers, one
of the most used and well-known types is the Place/Transition-nets (P/T-nets or PTN), which
was defined in (Best and Fernández 1986). A P/T-net equipped with an initial marking
constitutes a “Place/Transition (P/T) system” (Reisig 1986).

The Place/Transition-nets is such a fundamental class that it is also called classical/ordinary
Petri nets, or just “Petri nets” in most of the literature.

Some important definitions of Place/Transition-nets are given as follows. Compared to how it
was initially defined, we have slightly changed the expressive from in order to make it easier
to understand.

APPENDIX A INTRODUCTION TO PETRI NETS

204

Definition A-1 A Place/Transition-net with initial marking is defined by a 5-tuple 𝐶𝐶𝑇𝑇𝑁𝑁 =
(𝐶𝐶, 𝑇𝑇, 𝑊𝑊 −, 𝑊𝑊 +, 𝑚𝑚0) where:

• 𝐶𝐶 is the finite set of places;

• 𝑇𝑇 is the finite set of transitions, 𝐶𝐶 ∩ 𝑇𝑇 = ∅, 𝐶𝐶 ∪ 𝑇𝑇 = ∅;

• 𝑊𝑊 −: 𝐶𝐶 × 𝑇𝑇 → ℕ is the pre-incidence (or backward incidence) matrix that represents
the integer weight from places to transitions;

• 𝑊𝑊 +: 𝐶𝐶 × 𝑇𝑇 → ℕ is the post-incidence (or forward incidence) matrix that represents the
integer weight from transitions to places;

• 𝑚𝑚0 is an integer vector indexed by P and is called the initial marking (a marking is a
particular state of a Petri net).

An example of Place/Transition-net can be found in Figure A-1.

Figure A-1 Place/Transition-net example

In this example, the set of places 𝐶𝐶 = {𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4}, the set of transitions 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}, the pre-
incidence matrix, the post-incidence matrix and the initial marking are respectively:

 W− =

𝑡𝑡1 𝑡𝑡2
𝑇𝑇1
𝑇𝑇2
𝑇𝑇3
𝑇𝑇4 ⎣

⎢
⎢
⎡

1 0
0 1
0 2
0 1⎦

⎥
⎥
⎤, W+ =

𝑡𝑡1 𝑡𝑡2
𝑇𝑇1
𝑇𝑇2
𝑇𝑇3
𝑇𝑇4 ⎣

⎢
⎢
⎡

0 0
1 0
2 0
0 1⎦

⎥
⎥
⎤, 𝑚𝑚0 =

𝑇𝑇1
𝑇𝑇2
𝑇𝑇3
𝑇𝑇4 ⎣

⎢
⎢
⎡

1
0
0
1⎦

⎥
⎥
⎤

. (A-1)

Petri nets have not only a mathematical structural definition, but also a formal definition of
their execution semantics.

Definition A-2 Let 𝐶𝐶𝑇𝑇𝑁𝑁 = (𝐶𝐶, 𝑇𝑇, 𝑊𝑊 −, 𝑊𝑊 +, 𝑚𝑚0) be a marked Place/Transition-net, then:

• 𝑡𝑡 ∈ 𝑇𝑇 is called firable from a marking m (denoted by “ 𝑚𝑚[𝑡𝑡⟩ ” iff ∀𝑇𝑇 ∈ 𝐶𝐶, 𝑚𝑚(𝑇𝑇) ≥
𝑊𝑊 − (𝑇𝑇, 𝑡𝑡);

APPENDIX A INTRODUCTION TO PETRI NETS

205

• the firing of a transition 𝑡𝑡 ∈ 𝑇𝑇 firable from a marking 𝑚𝑚 leads to the marking 𝑚𝑚′
(denoted by “ 𝑚𝑚[𝑡𝑡⟩𝑚𝑚′ ”) defined by ∀𝑇𝑇 ∈ 𝐶𝐶, 𝑚𝑚′(𝑇𝑇) = 𝑚𝑚(𝑇𝑇) + 𝑊𝑊(𝑇𝑇, 𝑡𝑡) where 𝑊𝑊 is
the incidence matrix defined by 𝑊𝑊 = 𝑊𝑊 + − 𝑊𝑊 −.

A.2 Predicate/Transition-nets

Along with widening the application of modeling with Petri nets, some inconvenience was
found when one is confronted with a modeling task of complex systems using
Place/Transition-nets. For example, it is often necessary to have several identical structures in
P/T-nets to model the similar operation processes but for different entities, because the folding
into a single process will no more distinguish between different entities.

Faced with this problem, Predicate/Transition-nets (Pr/T-nets) were first proposed by H. J.
Genrich and K. Lautenbach in (Genrich and Lautenbach 1979). Compared to the traditional
Place/Transition-nets, Predicate/Transition-nets combine several new concepts with Petri nets:

• The first-order predicate logic;

• Individual token (or colored token) presentation with identifiers;

• Formulae as transition selectors (or guards);

• Annotations and variables.

A mathematic definition of Predicate/Transition-nets given by its inventor can be found in
(Genrich 1986). As Predicate/Transition-nets are not widely used today and its concept has
been taken by colored Petri nets and high-level Petri nets, in this thesis we will only introduce
it informally with an example model of a resource management system taken from (Genrich
and Lautenbach 1981), which is shown in Figure A-2.

Figure A-2 Predicate/Transition-nets example of resource management

APPENDIX A INTRODUCTION TO PETRI NETS

206

This net representation is about a community of users C = {a, b, c} and two identic resources.
Two modes (𝑚𝑚 ∈ 𝑀𝑀 = {𝑇𝑇, 𝑠𝑠}) are defined for a user u ∈ C = {a, b, c} to use the resource(s):

- m=e (exclusive), which means that the user takes all the two resources;

- m=s (shared), which means that the user takes only one resource and thus two users
can use their resources in this mode simultaneously.

Then as indicated by its name, the system is modeled in terms of four predicates:

- H<u>: user u is halted and has thus nothing to do with the resource;

- W<u, m>: user u is waiting to use the resource(s) in mode m;

- U<u, m>: user u is using the resource(s) in mode m;

- D<u, m>: user u has done his task with the resource(s).

An integer quantity 𝐸𝐸 (𝐸𝐸 ≤ 2) is the number of the resource(s) available to use. The place R
is an ordinary place as those in a Place/Transition-net and does not contain tokens of different
identifiers (or “colors”). In Predicate/Transition-nets such a place is treated as zero-place
predicate and a token inside are denoted by 𝜀𝜀.

We will explain the execution of a Place/Transition-net briefly with this example. A user u,
initially in place H<u>, can be replaced by a 2-tuple in place W<u, m> by assigning it a mode
m when transition t1 is fired. Then, according to its mode, one of the transitions t2s and t2e
can be fired if enough resource is found in place R and the user is now using the resource in
place U<u, m>. When it finishes the use of the resource, one of the transitions t3s and t3e
occurs, always depending on its mode m, and resource occupied is returned to place R for
future use. At the end of the cycle, this user u passes again to place H<u> by firing transition
t4.

We can see that the description of a Predicate/Transition net is very intuitive by using the
variables on the arc annotations and by using formulae as transition selectors. When the net
is executed, the variables on the different arcs connected to a transition are “bound” to a set of
values (which satisfies the transition selector) when this transition is fired. We will see that
this formalism has an important influence (e.g., guards, bindings) on the evolution of Colored
Petri Nets in §3.3.2.

Predicate/Transition-nets is a significant improvement in the Petri nets theory as it brought to
Petri nets modeling a new dimension (Genrich and Lautenbach 1981). In other words, each
token in PrT-nets can carry different information and are defined as different individuals; each
transition can be fired in different ways according to the bindings. It is thus possible to
distinguish between the processes for different individuals even though there is just a single
structure for the process. In this way, Predicate/Transition-nets succeeded in “folding” the

APPENDIX A INTRODUCTION TO PETRI NETS

207

similar structures in (low-level) Petri nets and has an efficient expression. It is thus regarded
as the first class of the so-called high-level Petri nets, which will be introduced later.

A.3 First CP-nets

The earliest presentation about colored tokens can be found in the diplom thesis* in German
of Michael Schiffers (Schiffers 1977) and later in English in (Schiffers and Wedde 1978). The
invention of Predicate/Transition-nets was also inspired by this colored token idea (Genrich
and Lautenbach 1979), and later a systematic version of colored Petri nets (CP-nets) was
proposed by Kurt Jensen in (Jensen 1981a). In order to avoid confusion with later definitions
of Colored Petri Nets (CPN), we prefer to use the term CP-nets for the type of Petri nets that
we introduce in this section.

The proposition of CP-nets by Kurt Jensen was mainly to overcome a problem of
Predicate/Transition-nets where the generalized place-invariants may contain free variables,
i.e., over sets of colors (Jensen 1981a). In fact, the imperfection of Predicate/Transition-net
theory can be exposed in different ways. The binding of variables on arc expression is an
intuitive way to represent different identifiers like users. However, if we use colored tokens to
model a more complex information unit (such as the entire state of a process or the content of
a data buffer) where some treatment is needed to change the tokens when firing a transition,
one is always faced with the insufficiency of the expressive power of the Predicate/Transition-
nets.

We introduce now the formal definition of the CP-net proposed by Jensen (Jensen 1981a).
Firstly, let 𝐴𝐴 be a non-empty set and let 𝔻𝔻 be ℕ or ℤ. Then by [𝐴𝐴 → 𝔻𝔻]� we denote the set of

functions 𝑀𝑀 ∈ [𝐴𝐴 → 𝔻𝔻], where the support {𝑎𝑎 ∈ 𝐴𝐴 | 𝑀𝑀(𝑎𝑎) ≠ 0} is finite. Obviously, for a finite
wet 𝐴𝐴 we always have [𝐴𝐴 → 𝔻𝔻] = [𝐴𝐴 → 𝔻𝔻]� . This expression had given the basis to the

multiset concept that will be introduced later in §3.3.2.

Definition A-3 A CP-net is a 5-tuple 𝐶𝐶𝑁𝑁 = < 𝐶𝐶, 𝑇𝑇, 𝐶𝐶, 𝑊𝑊, 𝑚𝑚0 >, where

- 𝐶𝐶 is the non-empty and finite set of places;

- 𝑇𝑇 is the non-empty and finite set of transitions, 𝐶𝐶 ∩ 𝑇𝑇 = ∅, 𝐶𝐶 ∪ 𝑇𝑇 = ∅;

- 𝐶𝐶 is the color function defined from 𝐶𝐶 ∪ 𝑇𝑇 into 𝜔𝜔 where 𝜔𝜔 is a set including the non-
empty sets of color. C(𝑠𝑠) denotes the color domain (set of color) for each 𝑠𝑠 ∈ 𝐶𝐶 ∪ 𝑇𝑇
and an item of 𝐶𝐶(𝑠𝑠) is called a color;

* A Diplom is an academic degree mainly in some German-speaking countries e.g., Germany,
Austria.

APPENDIX A INTRODUCTION TO PETRI NETS

208

- 𝑊𝑊 is the incidence-function defined on 𝐶𝐶 × 𝑇𝑇 such that 𝑊𝑊(𝑇𝑇, 𝑡𝑡) ∈ �𝐶𝐶(𝑡𝑡) → [𝐶𝐶(𝑇𝑇) →

ℤ]�� for all (𝑇𝑇, 𝑡𝑡) ∈ 𝐶𝐶 × 𝑇𝑇;

- 𝑚𝑚0 is the initial marking function defined on 𝐶𝐶 such that 𝑚𝑚(𝑇𝑇) ∈ [𝐶𝐶(𝑇𝑇) → ℕ]� for all

𝑇𝑇 ∈ 𝐶𝐶.

This CP-net definition is in a very compact form. In order to help the readers to better
understand the CP-net concept and to compare it with the Predicate/Transition-net, we convert
part of the Pr/T-net example model in Figure A-2 to an equivalent CP-net model as shown in
Figure A-3. We will also give some interpretation to the CP-net definition.

Figure A-3 Comparison of Pr/T-net and CP-net

Let 𝑇𝑇 be a place and 𝑡𝑡 be a transition. Elements of 𝐶𝐶(𝑇𝑇) and 𝐶𝐶(𝑡𝑡) are called colors of place
and colors of transition. Colors of places differs the tokens that can be found in a same place.
Colors of transition denotes the different modes that a transition can be fired. In
Predicate/Transition-nets there are no colors of transition and the different firings of a
transition are implicitly indicated by the bindings.

The incidence-function W associates with each transition 𝑡𝑡 and with each place 𝑇𝑇 a color
mapping from 𝐶𝐶(𝑡𝑡) to [𝐶𝐶(𝑇𝑇) → ℤ]�, which defines the numbers of tokens that are consumed

from or produced to place 𝑇𝑇 by different firing modes of the transition 𝑡𝑡. Therefore, 𝑇𝑇 is an
input place (or output place) for 𝑡𝑡 iff 𝑊𝑊(𝑇𝑇, 𝑡𝑡)(𝑐𝑐′)(𝑐𝑐′′) < 0 (or > 0) for at least one pair of
colors 𝑐𝑐′ ∈ 𝐶𝐶(𝑡𝑡) and 𝑐𝑐′′ ∈ 𝐶𝐶(𝑇𝑇). Note that from a structural point of view a place may be both

a
b c m∈Mu <u,m>

t1

a
b c U

H<u>

p2

2t

UxM

p3

W<u,m>

p1

p4

C(t2)

𝑊(𝑝3, 𝑡2) 𝑐 ∈ 𝐶(𝑡2) 𝑊(𝑝4, 𝑡2)

< −𝑎 > ← 𝑐1 → < 𝑎, 𝑒 >

< −𝑎 > ← 𝑐2 → < 𝑎, 𝑠 >

< −𝑏 > ← 𝑐3 → < 𝑏, 𝑒 >

< −𝑏 > ← 𝑐4 → < 𝑏, 𝑠 >

< −𝑐 > ← 𝑐5 → < 𝑐, 𝑒 >

< −𝑐 > ← 𝑐6 → < 𝑐 ,𝑠 >

U= a, b, c ; M = {e, s}; C t2 = c1, c2,⋯ , c6

(a) Predicate/Transition-net

(b) Equivalent CP-net

APPENDIX A INTRODUCTION TO PETRI NETS

209

input place and output place for the same transition, however, for a certain pair of colors 𝑐𝑐′ ∈
𝐶𝐶(𝑡𝑡) and 𝑐𝑐′′ ∈ 𝐶𝐶(𝑇𝑇), the place p can only serve as input place or output place of transition t
or, place p has no relation with transition t. That is to say, in CP-net we cannot “test” (i.e.,
take and return the same tokes) the presence (and quantity) of a certain color c′′ ∈ C(p) in
place p by a same firing mode of transition t indicated by the color of transition 𝑐𝑐′ ∈ 𝐶𝐶(𝑡𝑡).

Compared to Predicate/Transition net, CP-nets uses an explicit manner to define different
firing modes of a transition, i.e., the colors of a transition, thanks to which it can lead to a
precise invariant-calculus (Jensen 1981b).

The definition of the incidence-function 𝑊𝑊 also removes some limits of the binding concept
concerning the relationship of the tokens consumed and the tokens produced when a transition
is fired. Thus CP-nets can use the high abstracted Petri net structure to model more general
systems with this enhanced expressive force.

However, CP-nets can also be criticized as it has a less intuitive expression compared to
Predicate/Transition-nets. On the other hand, it is incapable to model certain system behaviors,
e.g., the “test of the presence of some tokens” we just mentioned before.

An improved version of CP-nets will be later introduced later in §3.3.2 as Colored Petri Nets
(CPN).

A.4 High-level Petri Nets

A.4.1 Introduction to high-level Petri nets

High-level Petri nets stem from the benchmark net, Place/Transition-nets and are based on the
idea to somehow “fold” the (low-level) Petri nets and are thus called “high-level Petri nets
(HLPN)”. The two fundamental forms of high-level Petri nets:

• Predicate/Transition-nets, based on expressive logic symbolism, and

• CP-nets, based on a precise invariant-calculus.

The term “high-level Petri nets” is used rather informally for a whole class of Petri nets whose
objective is to have a condensed representation of Petri nets. In other words, a high-level Petri
net can always be unfolded into an equivalent ordinary (low-level) Petri net system, called an
underlying Petri net (Smith 1996).

To achieve this efficient expression, the basic ideas of high-level Petri nets are:

(1) Places can be marked with multiset of colored tokens or even structured tokens;

(2) Transitions can be fired in different modes. Each firing mode indicates how the firing
removes tokens from some places and adds tokens to some.

APPENDIX A INTRODUCTION TO PETRI NETS

210

Figure A-4 Efficient expression in high-level Petri nets

Figure A-4 shows how Petri nets with anonymous tokens are folded in high-level Petri nets by
using colored tokens and structured tokens. In Figure A-4 (a), two railway routes are modeled
in Petri nets and they can be either free or reserved. Figure A-4 (a) can be “folded” to Figure
A-4 (b) by adding colors to different tokens and by assigning different firings to transition 𝑡𝑡3.
For a more complex model, structured colored tokens can be used to further condense the
model expression. As shown in Figure A-4 (d), tokens of 2-tuple can be used in place 𝑇𝑇9 to
indicate that “a route 𝑉𝑉 is reserved by a train 𝑡𝑡𝑉𝑉”, which may require up to four places in (low
level) Petri nets to express the same meaning.

A.4.2 High-level Petri Nets Standardization and PNML

High-level Petri nets are now standardized as the international standard ISO/IEC 15909 as a
semi-graphical modeling language for the specification, design and analysis of discrete event
systems (DES). Currently, this standard has two parts.

In Part 1 (ISO/IEC 2004), high-level Petri nets are conceptually and mathematically defined
as a powerful method to provide unambiguous specifications and design descriptions of
systems. It is recommended to be used for technical systems such as computer software and
hardware, manufacturing, business processes, telecommunication networks, signaling,
mechatronics, postal services, defense and avionics systems. It can also be used in biological
and sociotechnical systems.

Part 2 (ISO/IEC 2011) defines the Petri Net Markup Language (PNML), an XML-based
transfer format for Petri nets. It facilitates the exchange of Petri nets models among different
Petri net tools and among different users. Besides the PNML Core Model, which is the
common concept to all Petri nets, ISO/IEC 15909-2 also defines three concrete Petri net types:

t2

t3

(a) anonymous tokens (b) colored tokens

t1

p1: route(1) is free p2: route(1) is reserved

p4: route(2) is reservedp3: route(2) is free

p5: free p6: reserved

ROUTE ROUTE

𝑅𝑂𝑈𝑇𝐸 = 𝑟𝑜𝑢𝑡𝑒 1 , 𝑟𝑜𝑢𝑡𝑒(2 };

𝑟:𝑅𝑂𝑈𝑇𝐸;

𝑇𝑅𝐴𝐼𝑁 = 𝑡𝑟𝑎𝑖𝑛 1 , 𝑡𝑟𝑎𝑖𝑛(2 };

𝑡𝑟:𝑇𝑅𝐴𝐼𝑁.

t4

(c) structured tokens

ROUTE

TRAIN

p7: free routes

p8: trains

p9: routes reserved
by trains

ROUTE x TRAIN

(,)

(d) definition

APPENDIX A INTRODUCTION TO PETRI NETS

211

• Place/Transition-Nets (P/T-Nets);

• High-level Petri Nets (HLPN);

• Symmetric Nets, which is inspired by well-formed nets.

This standard is a reference for developers of Petri net tools. It is also useful for researchers
who will define new extensions and variants of Petri nets. It is worth noting that this standard
just offers a definition framework that is still open for future extensions and variants of Petri
nets to be added. The concrete and exact definition of Petri net variants and extensions (e.g.,
modularity constructs, hierarchies, time extensions), is not included in ISO/IEC 15909-2, but
may be defined as Petri net type definition later in ISO/IEC 15909-3 (Kindler 2006).

There are some PNML implementations available for developers of Petri net software:

- PNML Framework (Hillah et al. 2010) is a free and open-source prototype
implementation developed by LIP6 (French: Laboratoire d'Informatique de Paris 6)
and LIPN (French: Laboratoire d'Informatique de Paris Nord);

- ePNK (Kindler 2012) is a graphical editor for Petri nets defined in PNML, which is
developed by Technical University of Denmark using Graphical Modeling Framework
(GMF) of Eclipse.

PNML is also supported by lots of Petri net tools, a list can be found in Table A-1.

A.5 Historical Development of CPN and Terminology

The Petri nets theory has an enormous vitality with new classes continuously being introduced
and some definition of existing classes being renovated. A good example of the definition
renovation can be found with colored Petri nets. However, this could also be very confusing
in a terminological point of view.

It is thus very necessary to make clarify the development of colored Petri nets and to give
some terminological remarks as some serious confusions about the colored Petri nets
definitions could be found due to historical reasons.

We have introduced in §3.3.2 the CP-nets defined in (Jensen 1981a) as the first version of
Colored* Petri nets. More precisely, we use CP81-nets for ease of comparison. The invention
of CP81-nets was directly inspired by Predicate/Transition-nets defined in (Genrich and
Lautenbach 1981), where the difference is that the relation between a firing mode and the
involved colored tokens is defined explicitly by (arc) functions in CP81-nets, but is represented
more implicitly by (arc) expressions in Pr/T-nets.

* In order to keep the consistency of American English spelling in this thesis, we always use
“Colored” even though it was initially defined as “Coloured Petri Nets” in British English.

APPENDIX A INTRODUCTION TO PETRI NETS

212

However, for practical applications, it seems that the use of these functions (arc expressions)
defined on transition colors in CP81-nets need always more time to build the model, and is
more difficult to read and understand compared to Pr/T-nets. Moreover, with the development
of symbolic invariant methods, there was a trend to define high-level nets mainly via syntactic
inscriptions (Smith 1996). This situation finally gave birth to a mix of the two similar classes
(i.e., CP81-nets and Pr/T-nets) in order to create a better Petri net class. This improved Petri
net class was later introduced by Jensen under the name of “high-level Petri nets” or “HL-
nets” in (Jensen 1982). Historically, it was not a good name as the researchers were used to
referring the term “high-level” to a set of Petri net classes instead of a particular one.

As a compromise, Jensen reused the term “Colored Petri nets (CP-net)” in (Jensen 1986) to
rename the aforementioned “HL-nets”, indicating that it was a subsequence of CP81-nets. Let
us call the new version CP86-nets. Something new in this version of CP86-nets was that it has
two forms of definition:

• CP-matrix*, a functional representation almost identical to CP81-nets;

• CP-graph, a graphical representation that uses the arc expression in the same ways as
used by PrT-nets.

The two definitions are essentially identical, and a formal bi-directional translation is offered.

Since the 1990s, it seems that Jensen preferred the CP-graph representation of CP86-nets,
probably because of its convenience for industrial applications. This representation was later
cited as the definition of non-hierarchical CP-net in (Jensen 1991), CP-net in (Jensen 1998)
and non-hierarchical Colored Petri Net in (Jensen and Kristensen 2009a). It is worth noting
that the well-know CPN Tools also uses a modeling formalism similar to the CP-graph
representation.

Meanwhile, the CP-matrix representation of CP86-nets (i.e., CP81-nets) is still active in
academic or rather theoretical research as this form turns out to be more tractable when it
comes to the analysis methods especially the invariant calculation. This choice would be very
easy to understand when we consider the original motivation of Jensen to introduce CP81-nets
(c.f. §A.3).

Due to the existence of different versions of colored Petri nets, it is very important to clearly
indicate the particular definition used in a study, which is, unfortunately, often ignored by the
researchers in their articles.

The situation is being even more confusing after the popularization of CPN Tools, which
enhances the modeling power and the ease of use of colored Petri nets by offering the
possibility of using some extensions that may only be supported by this tool. As CPN Tools is

* The name “CP-matrix” resulted from the incidence-function in its definition, which is
traditionally called an incidence-matrix. See §A.3 for more details.

APPENDIX A INTRODUCTION TO PETRI NETS

213

also co-developed by Kurt Jensen, the inventor of colored Petri nets, in lots of papers (even
some papers written by Jensen) the authors do not distinguish the colored Petri nets restricted
to its formal definition, and those enhanced by the extensions offered in CPN Tools.

A.6 Petri Nets Software and Programming Languages

This subsection is mainly aimed to introduce the common software for the modeling and
analysis of Petri nets.

Since CPN and WFN will be used in our modeling methods for a train control system (c.f.
Chapter 4), the tools for these two formalisms are introduced in §3.3.2.4 and §3.3.3.4,
respectively. §A.6.1 makes a brief introduction to some other Petri net software in literature
and in practice. §A.6.2 shows that Petri nets have also promoted the development of a general-
purpose programming language — Scala.

A.6.1 Petri Nets Software

We introduce and compare several widely used Petri net tools that keep updating. More Petri
net tools can be found in (Störrle 1998) and on the Petri Net World* website.

Roméo (Gardey et al. 2005; Lime et al. 2009) is a Time Petri net designer and analyzer
developed in IRCCyN (French: Institut de Recherche en Communications et Cybemétique de
Nantes). It has a GUI to edit and design Time Petri nets and offers simulation and formal
analysis. Roméo supports T-Time Petri nets (TPN) with a scheduling extension (stopwatches)
and a parametric extension.

SNOOPY (Heiner et al. 2012) is a Petri net editor developed by Brandenburg University of
Technology Cottbus-Senftenberg. SNOOPY supports a large set of Petri net and high-level
Petri net classes with hierarchical, stochastic, time(d) extensions. It can be used together with
S4 (Herajy and Heiner 2014), a steering and remote simulation server of SNOOPY, Charlie
(Heiner et al. 2015), a Petri net model analyzer and Marcie (Heiner et al. 2013), a model
checker for generalized stochastic Petri nets.

TimeNET (Zimmermann 2017) is a graphical modeling and analysis tool of colored Petri nets
and Stochastic Petri nets developed by Technische Universität Ilmenau. It supports numerous
performance evaluation based on Markov chains as well as some structural analysis algorithms
and an interactive token-game simulation.

TINA (TIme Petri Net Analyzer) (Berthomieu et al. 2004) is an editing and analysis toolbox
develop by LAAS-CNRS (Laboratory for Analysis and Architecture of Systems, French
National Centre for Scientific Research). It supports models of Automata, Petri nets and Time
Petri Nets with inhibitor arcs, read arcs, priorities, stopwatches, and a data handling extension

* Available at http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

APPENDIX A INTRODUCTION TO PETRI NETS

214

Time Transition Systems. TINA offers a set of integrated tools for reachability graph
construction, structural and path analysis, LTL model checking, etc.

WoPeD (Freytag and Sänger 2014) is an open-source software developed by Baden-
Württemberg Cooperative State University. It is aimed to be a modeling, simulating and
analyzing tool for workflow nets (van der Aalst and van Hee 2002), a Petri net class
appropriate for workflow or business process management. Eindhoven). It supports the
graphical design, interactive simulation, coverability graph visualization, soundness checking,
quantitative analysis and capacity planning of workflow nets.

Table A-1 summarizes some Petri net software by their features based on their latest versions
on 2018-06-30.

Table A-1 Petri net software and features

Software
High-
level

Time Hieratical Simulation
Formal

Analysis
Performance
Evaluation

PNML

CPN-AMI WFN yes no yes yes no yes

CPN Tools CPN yes yes yes yes yes yes

GreatSPN WFN yes no yes yes yes no

Roméo no yes no yes yes no no

SNOOPY CPN yes yes plugin plugin plugin yes

TimeNET CPN yes no yes yes yes yes

TINA no yes no yes yes no yes

WoPeD no no yes yes yes yes yes

Legends:

Yes – the tool supports this feature; No – the tool does not support this feature;

Plugin – the tool supports this feature but the function is offered by a plugin;

CPN – the tool supports colored Petri nets as high-level Petri net form;

WFN – the tool supports well-formed Petri nets as high-level Petri net form.

A.6.2 Petri nets and programming languages

As the Petri nets representation is very simple and expressive at the same time to model the
concurrent system, this idea is also borrowed to develop a new branch of programming
languages in the domain of computer science.

APPENDIX A INTRODUCTION TO PETRI NETS

215

Functional Nets (Odersky 2000a) combine the ideas of functional programming and Petri nets.
The fusion of the two powerful formalisms in different areas results in a programming style
with simple notation and strong expressivity for general purpose.

Funnel (Odersky 2000b) was created as a programming language to implement Functional
Nets. After that, a new programming language Scala was released following on from the work
on Funnel.

Scala (Odersky and Rompf 2014) is a general-purpose and object-oriented programming
language. Scala source code is compiled to Java bytecode to run on the Java platform (Java
virtual machine) and is compatible with existing Java programs. Scala benefits from Petri nets
to have a very concise design from its inception also has the support for functional
programming. The good interoperability with Java and simply notation (compared to Java)
makes it well-suited to a lot of development purposes.

216

Appendix B MODELING DETAILS OF ETCS
ONBOARD SYSTEM
B.1 ETCS Mode Transitions

B.1.1 Transitions Table in System Requirements Specification

The complete mode transitions table defined in section 4.6.2 in the specification (European
Railway Agency 2016a) is shown in Table B-1.

Table B-1 Complete ETCS mode transitions

Table Source: “4.6.2 Transition Table” in (European Railway Agency 2016a)

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

217

B.1.2 ETCS Mode Transitions Model

We have built a complete model for the mode transitions between the 12 considered modes:
NP, SB, PS, SH, FS, SR, OS, NL, SF, IS, RV, PT. Other 5 modes (LS, SL, UN, TR, SN) are
not yet included in this version.

The model uses the grouping views introduced in §4.4.2.3. The model for the mode transitions
with target modes SB, FS, OS, SR and SH are separated in different groups according to their
target modes, as shown in Figure 4-17 from (a) to (e). The mode transitions from any other
modes to NP, NL, SF, IS, PS or RV are aggregated into the same group as shown in Figure
4-17 (f).

(a) From other modes to SB

(b) From other modes to FS

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

218

(c) From other modes to OS

(d) From other modes to SR

(e) From other modes to SH

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

219

(f) From other modes to NP, NL, SF, IS, PS or RV

Figure B-1 ETCS mode transition model (CPN)

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

220

B.2 Procedure “Start of the Mission” (SoM)

B.2.1 Flowchart of Procedure “Start of the Mission” (SoM)

Figure B-2 Flowchart for Procedure “Start of the Mission” (SoM)

Source: Figure 5.4.4 in (European Railway Agency 2016a)

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

221

B.3 Literal Model of Procedure “Start of the Mission” (SoM)

Figure B-3 shows the whole literal model in CPN Tools for procedure “Start of Mission” after
the syntactic transformation from the flowchart Figure B-2.

Figure B-3 Literal CPN model of procedure “Start of Mission”

APPENDIX B MODELING DETAILS OF ETCS ONBOARD SYSTEM

222

B.3.1 Refined CPN Model of Procedure “Start of the Mission” (SoM)

Figure B-4 shows part of the refined CPN model of procedure “Start of Mission”.

Figure B-4 Refined CPN Model of Procedure “Start of the Mission” (part)

223

Appendix C IMPROVEMENT TO THE CASE
STUDY IN §5.6
This appendix contains the improvements to a design defect found by verification in the case
of §5.6. The original model is presented in (Xie et al. 2017a).

Figure C-1 shows the improved version of the train module (red part shows the modification).
In the improved model, MA Request as a new message type sent from the train module to the
RBC module. The MA request will be sent when:

• After the registration (1st MA request);

• Each time the train enters a new block;

• In case necessary (e.g., the situation in 2).

When the train received an MA with (EOA=POS), where POS is its current position, and it is
not on the last block of the railway line, the train will again request for its MA.

Correspondingly, the RBC will no longer see the Position Report or Registration Request as
MA Request, it will only send MA to the train after receiving an MA Request.

APPENDIX C IMPROVEMENT TO THE CASE STUDY IN §5.6

224

Figure C-1 Improved train module of the case study

225

REFERENCES
van der Aalst WMP, van Hee KM. 2002. Workflow Management: Models, Methods, and
Systems. Cambridge, MA, USA: MIT Press.

van der Aalst WMP, Stahl C, Westergaard M. 2013. Strategies for Modeling Complex
Processes Using Colored Petri Nets. In: Jensen K, van der Aalst WMP, Balbo G, Koutny M,
Wolf K, editors. Transactions on Petri Nets and Other Models of Concurrency VII. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 6–55.

Abo R, Voisin L. 2013. Formal Implementation of Data Validation for Railway Safety-Related
Systems with OVADO. In: Counsell S, Núñez M, editors. SEFM 2013: Software Engineering
and Formal Methods. Madrid, Spain: Springer-Verlag New York, Inc. p. 221–236.

Abrial J-R. 2005. The B-book: Assigning Programs to Meanings. New York, NY, USA:
Cambridge University Press.

Abrial J-R. 2010. Modeling in Event-B: System and Software Engineering. Cambridge:
Cambridge University Press.

Aceituna D, Do H, Lee S-W. 2010. SQ^(2)E: An Approach to Requirements Validation with
Scenario Question. In: 2010 Asia Pacific Software Engineering Conference. IEEE. p. 33–42.

Aceituna D, Do H, Lee S-W. 2011. Interactive requirements validation for reactive systems
through virtual requirements prototype. In: 2011 Model-Driven Requirements Engineering
Workshop. IEEE. p. 1–10.

Agha GA, De Cindio F, Rozenberg G, editors. 2001. Concurrent Object-Oriented Programming
and Petri Nets. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture Notes in Computer
Science).

Ahmad E, Dong Y, Larson B, Lü J, Tang T, Zhan N. 2015. Behavior modeling and verification of
movement authority scenario of Chinese Train Control System using AADL. Sci China — Inf
Sci. 58(11):1–20. doi:10.1007/s11432-015-5346-2.

Alur R, Brayton RK, Henzinger TA, Qadeer S, Rajamani SK. 1997. Partial-order reduction in
symbolic state space exploration. In: Grumberg O, editor. CAV 1997: Computer Aided
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 340–351.

Alur R, Dill DL. 1994. A theory of timed automata. Theor Comput Sci. 126(2):183–235.
doi:10.1016/0304-3975(94)90010-8.

Appel AW, MacQueen DB. 1991. Standard ML of New Jersey. p. 1–13.

Baarir S, Dutheillet C, Haddad S, Ilie JM. 2005. On the use of exact lumpability in partially
symmetrical well-formed nets. In: Second International Conference on the Quantitative
Evaluation of Systems (QEST’05). IEEE. p. 23–32.

Bahn D. 2017. DB presses ahead with train automation. [accessed 2017 Sep 1].
http://www.deutschebahn.com/en/Digitalization/automation.html.

Balbo G. 2001. Introduction to Stochastic Petri Nets. In: Brinksma E, Hermanns H, Katoen J-

REFERENCES

226

P, editors. Lectures on Formal Methods and Performance Analysis (EEF School 2000).
Springer Berlin Heidelberg. p. 84–155.

Baranová Z, Barnat J, Kejstová K, Kučera T, Lauko H, Mrázek J, Ročkai P, Štill V. 2017. Model
Checking of C and C++ with DIVINE 4. In: Automated Technology for Verification and Analysis
(ATVA 2017). Vol. 10482. Springer. (LNCS). p. 201–207.

Barger P, Schön W, Bouali M. 2009. A Study of Railway ERTMS Safety with Colored Petri Nets.
In: Bris GS, Martorell, editors. The European Safety and Reliability Conference (ESREL’09).
Vol. 2. Prague, Czech Republic: Taylor & Francis Group. p. 1303–1309.

Batra M, Malik A, Dave M. 2013. Formal Methods : Benefits , Challenges and Future Direction.
J Glob Res Comput Sci. 4(5):2–6.

Battiston E, De Cindio F, Mauri G. 1991. OBJSA Nets: A Class of High-level Nets Having Objects
as Domains. In: Jensen K, Rozenberg G, editors. High-level Petri Nets. Berlin, Heidelberg:
Springer Berlin Heidelberg. p. 189–212.

Bedők D. 2016. Application of Petri-nets in object-oriented environment. In: 2016 IEEE 17th
International Symposium on Computational Intelligence and Informatics (CINTI 2016). IEEE.
p. 117–122.

Behm P, Benoit P, Faivre A, Meynadier J-M. 1999. Météor: A Successful Application of B in a
Large Project. In: Wing JM, Woodcock J, Davies J, editors. FM 1999: Formal Methods. Springer
Berlin Heidelberg. p. 369–387.

Belloir N, Bruel J-M, Faudou R. 2014. Modélisation des exigences en UML/SysML. Rev Génie
Logiciel.(111):6–12.

Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W. 1995. UPPAAL — a Tool Suite for
Automatic Verification of Real-Time Systems. In: Hybrid Systems III: Verification and Control.
Springer--Verlag. (Lecture Notes in Computer Science). p. 232–243.

Bérard B, Bidoit M, Finkel A, Laroussinie F, Petit A, Petrucci L, Schnoebelen P, McKenzie P.
2001. Systems and Software Verification: Model-Checking Techniques and Tools. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Bernardinello L, Cindio F. 1992. A survey of basic net models and modular net classes. In:
Rozenberg G, editor. Advances in Petri Nets 1992. Berlin, Heidelberg: Springer Berlin
Heidelberg. p. 304–351.

Berthelot G, Lri-Iie. 1986. Checking properties of nets using transformations. In: Rozenberg
G, editor. Advances in Petri Nets 1985. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 19–
40.

Berthomieu B, Menasche M. 1983. An Enumerative Approach For Analyzing Time Petri Nets.
In: the IFIP 9th World Computer Congress, volume 9 of Information Processing. North
Holland/ IFIP. p. 41–46.

Berthomieu B, Ribet P-O, Vernadat F. 2004. The tool TINA – Construction of abstract state
spaces for petri nets and time petri nets. Int J Prod Res. 42(14):2741–2756.
doi:10.1080/00207540412331312688.

Bertot Y, Castéran P. 2004. Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. Berlin, Heidelberg: Springer Berlin

REFERENCES

227

Heidelberg (Texts in Theoretical Computer Science An EATCS Series).

Best E, Devillers R, Koutny M. 2001. Petri Net Algebra. Berlin, Heidelberg: Springer Berlin
Heidelberg (Monographs in Theoretical Computer Science An EATCS Series).

Best E, Fernández C. 1986. Notations and terminology on Petri net theory. In: Arbeitspapiere
der GMD No. 195. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin.

Bhuyan M, Ahasanol Kabir M. 2010. PLC based Automatic Railway Gate Control System. In:
National Conference on Electronics and Telecommunications for Digital Bangladesh.
Bangladesh Electronics Society, Dhaka, Bangladesh.

Bjørner D. 2003. New results and trends in formal techniques and tools for the development
of software for transportation systems — A review. In: Tarnai G, Schnieder E, editors.
FORMS2003: 4th Symposium on Formal Methods for Railway Operation and Control
Systems. L’Harmattan Hongrie, Budapest, Hungary.

Bloem R, Cimatti A, Greimel K, Hofferek G, Könighofer R, Roveri M, Schuppan V, Seeber R.
2010. RATSY – A New Requirements Analysis Tool with Synthesis. In: Touili T, Cook B, Jackson
P, editors. CAV 2010: 22nd International Conferenc on Computer Aided Verification. Vol.
217069. Edinburgh, UK: Springer-Verlag Berlin Heidelberg. p. 425–429.

Bošnački D, Leue S, Lluch Lafuente A. 2009. Partial-order reduction for general state exploring
algorithms. Int J Softw Tools Technol Transf. 11(1):39–51. doi:10.1007/s10009-008-0093-y.

Bouajjani A, Tripakis S, Yovine S. 1997. On-the-fly symbolic model checking for real-time
systems. In: Proceedings Real-Time Systems Symposium. IEEE Comput. Soc. p. 25–34.

Boukala MC, Petrucci L. 2011. Distributed Verification of Modular Systems. In: CompoNet
and SUMo 2011.

Boulanger J-L. 2014. Formal Methods Applied to Industrial Complex Systems. Wiley (ISTE).

Bouyakoub S, Belkhir A. 2008. H-SMIL-Net: A Hierarchical Petri Net Model for SMIL
Documents. In: Tenth International Conference on Computer Modeling and Simulation
(uksim 2008). IEEE. p. 106–111.

Boyer B, Corre K, Legay A, Sedwards S. 2013. PLASMA-lab: A Flexible, Distributable Statistical
Model Checking Library. In: Joshi K, Siegle M, Stoelinga M, D’Argenio PR, editors. QEST 2013:
International Conference on Quantitative Evaluation of Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg. p. 160–164.

Brgan R, Poitrenaud D. 1995. An efficient algorithm for the computation of stubborn sets of
well formed Petri Nets. In: De Michelis G, Diaz M, editors. ICATPN 1995: Application and
Theory of Petri Nets 1995. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 121–140.

Bu L, Wang Q, Chen X, Wang L, Zhang T, Zhao J, Li X. 2011. Toward online hybrid systems
model checking of cyber-physical systems’ time-bounded short-run behavior. ACM SIGBED
Rev. 8(2):7–10. doi:10.1145/2000367.2000368.

Buchholz P. 1994. Hierarchical High Level Petri Nets for complex system analysis. In: Valette
R, editor. Application and Theory of Petri Nets 1994Application and Theory of Petri Nets
(ICATPN) 1994. Zaragoza, Spain: Springer Berlin Heidelberg. p. 119–138.

Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ. 1992. Symbolic model checking: 10^20

REFERENCES

228

States and beyond. Inf Comput. 98(2):142–170. doi:10.1016/0890-5401(92)90017-A.

Camurri A, Franchi P, Gandolfo F. 1991. A timed colored Petri nets approach to process
scheduling. In: [1991] Proceedings, Advanced Computer Technology, Reliable Systems and
Applications. p. 304–309.

Cassandras CG, Lafortune S. 2009. Introduction to Discrete Event Systems (Second Edition).
Springer US (SpringerLink Engineering).

CENELEC. 2003. EN 50129:2003—Railway applications. Communication, signalling and
processing systems. Safety related electronic systems for signalling.

CENELEC. 2010. EN 50159:2010—Railway applications. Communication, signalling and
processing systems. Safety-related communication in transmission systems.

CENELEC. 2011. EN 50128:2011—Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems.

CENELEC. 2017. EN 50126-1:2017—Railway Applications. The Specification and
Demonstration of Reliability, Availability, Maintainability and Safety (RAMS). Generic RAMS
Process.

Cheng A, Christensen S, Mortensen KH. 1996. Model Checking Coloured Petri Nets Exploiting
Strongly Connected Components. In: International Workshop on Discrete Event Systems
(WODES’96). Vol. 26. Edinburgh, Scotland, UK.

Chiappini A, Cimatti A, Macchi L, Rebollo O, Roveri M, Susi A, Tonetta S, Vittorini B. 2010.
Formalization and validation of a subset of the European Train Control System. In: ICSE2010:
32nd ACM/IEEE International Conference on Software Engineering. Vol. 2. ACM Press. p.
109–118.

Chiola G, Dutheillet C, Franceschinis G, Haddad S. 1991a. On Well-Formed Coloured Nets and
Their Symbolic Reachability Graph. In: High-level Petri Nets. Berlin, Heidelberg: Springer
Berlin Heidelberg. p. 373–396.

Chiola G, Dutheillet C, Franceschinis G, Haddad S. 1991b. Stochastic Well-Formed Coloured
Nets and Multiprocessor Modelling Applications. In: Jensen K, Rozenberg G, editors. High-
level Petri Nets. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 504–530.

Chiola G, Dutheillet C, Franceschinis G, Haddad S. 1993. Stochastic well-formed colored nets
and symmetric modeling applications. IEEE Trans Comput. 42(11):1343–1360.
doi:10.1109/12.247838.

Chiola G, Dutheillet C, Franceschinis G, Haddad S. 1997. A symbolic reachability graph for
coloured petri nets. Theor Comput Sci. 176(1–2):39–65. doi:10.1016/S0304-3975(96)00010-
2.

Chiola G, Franceschinis G, Gaeta R. 1992. A symbolic simulation mechanism for well-formed
coloured Petri nets. In: Proceedings. 25th Annual Simulation Symposium. IEEE Comput. Soc.
Press. p. 192–201.

Chiola G, Franceschinis G, Gaeta R, Ribaudo M. 1995. GreatSPN 1.7: Graphical editor and
analyzer for timed and stochastic Petri nets. Perform Eval. 24(1–2):47–68. doi:10.1016/0166-
5316(95)00008-L.

REFERENCES

229

Cho CH, Choi DH, Quan ZH, Choi SA, Park GS, Ryou MS. 2011. Modeling of CBTC carborne
ATO functions using SCADE. In: 2011 11th International Conference on Control, Automation
and Systems. p. 1089–1093.

Choi J-K, Cho H, Oh H-S, Kim K-H, Bhang M-J, Yu I-S, Ryu H-G. 2015. Challenges of LTE high-
speed railway network to coexist with LTE public safety network. In: 17th International
Conference on Advanced Communication Technology (ICACT 2015). p. 543–547.

Choppy C, Petrucci L. 2004. Towards a methodology for modeling with Petri nets. Proc Work
Pract Use Coloured Petri Nets Aarhus Denmark.(October):39–56.

Choppy C, Reggio G. 2006. A formally grounded software specification method. J Log Algebr
Program. 67(1–2):52–86. doi:10.1016/j.jlap.2005.09.003.

Christensen S, Damgaard Hansen N. 1994. Coloured Petri Nets extended with channels for
synchronous communication. In: Valette R, editor. ICATPN 1994: Application and Theory of
Petri Nets 1994. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 159–178.

Christensen S, Kristensen LM, Mailund T. 2001. A Sweep-Line Method for State Space
Exploration. In: Margaria T, Yi W, editors. TACAS 2001: Tools and Algorithms for the
Construction and Analysis of Systems. p. 450–464.

Christensen S, Mortensen KH. 1996. Design/CPN ASK-CTL Manual (Version 0.9).

Christensen S, Petrucci L. 1992. Towards a modular analysis of coloured Petri nets. Appl
Theory Petri Nets 1992.:113–133.

Christensen S, Petrucci L. 1995. Modular State Space Analysis of Coloured Petri Nets. In:
Application and Theory of Petri Nets 1995. Turin, Italy.

Christensen S, Petrucci L. 2000. Modular Analysis of Petri Nets. Comput J. 43(3):224–242.
doi:10.1093/comjnl/43.3.224.

Clarke EM, Emerson EA. 1981. Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen D, editor. Logics of Programs. Berlin/Heidelberg:
Springer-Verlag. p. 52–71.

Clarke EM, Grumberg O, Minea M, Peled D. 1999. State space reduction using partial order
techniques. Int J Softw Tools Technol Transf. 2(3):279–287. doi:10.1007/s100090050035.

Clarke EM, Long DE, McMillan KL. 1989. Compositional model checking. In: Parikh R, editor.
Proceedings of the 4th Annual Symposium on Logic in computer science. IEEE Computer
Society Press. p. 353–362.

Di Claudio M, Fantechi A, Martelli G, Menabeni S, Nesi P. 2014. Model-based development
of an automatic train operation component for communication based train control. In: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE. p. 1015–
1020.

Colange M, Baarir S, Kordon F, Thierry-Mieg Y. 2011. Crocodile: A Symbolic/Symbolic Tool for
the Analysis of Symmetric Nets with Bag. In: Kristensen LM, Petrucci L, editors. PETRI NETS
2011: Applications and Theory of Petri Nets. Berlin, Heidelberg: Springer Berlin Heidelberg.
p. 338–347.

Courant J, Monin J-F. 2006. Defending the Bank with a Proof Assistant. In: 6th International

REFERENCES

230

Workshop on Issues inthe Theory of Security (WITS 2006). p. 87–98.

Couvreur JM, Martínez J. 1991. Linear invariants in commutative high level nets. In:
Rozenberg G, editor. Advances in Petri Nets 1990. Springer Berlin Heidelberg. p. 146–164.

Dandanell B, Gørtz J, Pedersen JS, Zierau E. 1993. Experiences from applications of RAISE. In:
Woodcock JCP, Larsen PG, editors. FME ’93: Industrial-Strength Formal Methods.
Berlin/Heidelberg: Springer-Verlag. p. 52–63.

Deng Y, Grumbach S, Monin J-F. 2011. A Framework for Verifying Data-Centric Protocols. In:
Bruni R, Dingel J, editors. FMOODS 2011, FORTE 2011: Formal Techniques for Distributed
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 106–120.

Deng Y, Monin J-F. 2009. Verifying Self-stabilizing Population Protocols with Coq. In: 2009
Third IEEE International Symposium on Theoretical Aspects of Software Engineering. IEEE. p.
201–208.

Dias da Silva L, Perkusich A. 2003. Formal Verification of Component-Based Software
Systems. In: New Technologies for Information Systems, Proceedings of the 3rd International
Workshop on New Developments in Digital Libraries, NDDL 2003, and the 1st International
Workshop on Validation and Verification of Software for Enterprise Information Systems, .
ICEIS press. p. 113–124.

Dwyer MB, Avrunin GS, Corbett JC. 1999. Patterns in property specifications for finite-state
verification. In: ICSE‘99： the 21st international conference on Software engineering. New
York, New York, USA: ACM Press. p. 411–420.

EEIG ERTMS Users Group. 2016. Mission of the ERTMS Users Group.

Emerson EA, Halpern JY. 1986. “Sometimes” and “not never” revisited: on branching versus
linear time temporal logic. J ACM. 33(1):151–178. doi:10.1145/4904.4999.

Emerson EA, Jha S, Peled D. 1997. Combining partial order and symmetry reductions. In:
Brinksma E, editor. TACAS 1997: Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 19–34.

Emerson EA, Sistla AP. 1996. Symmetry and model checking. Form Methods Syst Des. 9(1–
2):105–131. doi:10.1007/BF00625970.

Emerson EA, Trefler RJ. 1999. From Asymmetry to Full Symmetry: New Techniques for
Symmetry Reduction in Model Checking. In: Pierre L, Kropf T, editors. CHARME 1999: Correct
Hardware Design and Verification Methods. Berlin, Heidelberg: Springer Berlin Heidelberg.
p. 142–157.

Emery D (TRANSP-O. 2017. Towards Automatic Train Operation for long distance services:
State-of-the art and challenges. In: 17th Swiss Transport Research Conference (STRC 2017).
Ascona, TI, CH.

Eshuis R, Dehnert J. 2003. Reactive Petri Nets for Workflow Modeling. Appl Theory Petri Nets
2003. 2679:295–314. doi:10.1007/3-540-44919-1_20.

Esparza J, Hoffmann P. 2016. Reduction Rules for Colored Workflow Nets. In: Fundamental
Approaches to Software Engineering: 19th International Conference (FASE 2016). p. 342–
358.

REFERENCES

231

Espensen KL, Kjeldsen MK, Kristensen LM, Westergaard M. 2009. Towards Automatic Code-
generation from Process-partitioned Coloured Petri Nets.

European Commission. 2008. Directive 2008/57/EC of the European Parliament and of the
Council of 17 June 2008 on the interoperability of the rail system within the Community.

European Commission. 2014. 2014/897/EU: Commission Recommendation of 5 December
2014 on matters related to the placing in service and use of structural subsystems and
vehicles under Directives 2008/57/EC and 2004/49/EC of the European Parliament and of the
Council.

European Commission. 2016. Commission Regulation (EU) 2016/919 of 27 May 2016 on the
technical specification for interoperability relating to the ‘control-command and signalling’
subsystems of the rail system in the European Union (TSI CCS).

European Commission. 2017a. Fact Sheets on ERTMS. [accessed 2017 Jan 5].
https://ec.europa.eu/transport/sites/transport/files/2017-01-05-memo-ertms.pdf.

European Commission. 2017b. Commission Implementing Regulation (EU) 2017/6 of 5
January 2017 on the European Rail Traffic Management System European deployment plan.

European Railway Agency. 2016a. ERTMS/ETCS System Requirements Specification (SUBSET-
026) v3.6.0.

European Railway Agency. 2016b. ERTMS/ETCS Test Cases Related to Features (SUBSET-076-
5-2) v3.1.0.

European Railway Agency. 2016c. ERTMS/ETCS Test Sequences (SUBSET-076-6-3) v3.0.0.

European Railway Agency. 2016d. ERTMS UNIT Scope of the Test Specifications (SUBSET-076-
7) v3.1.0.

European Union Agency for Railways. 2016. TSI CCS Current Legal Reference. [accessed 2018
Apr 30]. http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Current-Legal-
Reference.aspx.

European Union Agency for Railways. 2017. ETCS TEST PLAN AND METHODOLOGY FOR SS-
076 (v1.0.0).

Evangelista S, Haddad S, Pradat-Peyre J-F. 2005. Syntactical Colored Petri Nets Reductions.
In: Peled DA, Tsay Y-K, editors. Automated Technology for Verification and Analysis: Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7, 2005. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 202–216.

Faber J, Jacobs S, Sofronie-Stokkermans V. 2007. Verifying CSP-OZ-DC Specifications with
Complex Data Types and Timing Parameters. In: IFM’07: Proceedings of the 6th International
Conference on Integrated Formal Methods. Berlin, Heidelberg: Springer-Verlag. p. 233–252.

Fantechi A, Fokkink W, Morzenti A. 2012. Some Trends in Formal Methods Applications to
Railway Signaling. In: Gnesi S, Margaria T, editors. Formal Methods for Industrial Critical
Systems: A Survey of Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc. p. 61–84.

Fasie MV. 2013. An Eclipse based Development Environment for RAISE. Technical University
of Denmark.

Ferrari A, Spagnolo GO, Martelli G, Menabeni S. 2012. Product Line Engineering Applied to

REFERENCES

232

CBTC Systems Development. In: Margaria T, Steffen B, editors. Leveraging Applications of
Formal Methods, Verification and Validation. Applications and Case Studies (ISoLA 2012).
Heraklion, Crete, Greece. p. 216–230.

Fidge C. 1994. A Comparative Introduction to CSP, CCS and LOTOS.

Freytag T, Sänger M. 2014. WoPeD - An educational tool for workflow nets. In: Proceedings
of the BPM Demo Sessions. Vol. 1295. Eindhoven, The Netherlands. p. 31–35.

Fronc Ł, Duret-Lutz A. 2013. LTL Model Checking with Neco. In: Proceedings of the 11th
International Symposium on Automated Technology for Verification and Analysis (ATVA’13).
Vol. 8172. Hanoi, Vietnam: Springer. (Lecture Notes in Computer Science). p. 451–454.

Gardey G, Lime D, Magnin M, Roux OH. 2005. Romeo: A Tool for Analyzing Time Petri Nets.
In: Computer Aided Verification. Vol. 1. Springer. p. 418–423.

Genrich HJ. 1986. Predicate/Transition Nets. In: Brauer W, Reisig W, Rozenberg G, editors.
Petri Nets: Central Models and Their Properties (ACPN 1986). Berlin/Heidelberg: Springer
Berlin Heidelberg. p. 207–247.

Genrich HJ, Lautenbach K. 1979. The analysis of distributed systems by means of
predicate/transition-nets. In: Kahn G, editor. Semantics of Concurrent Computation.
Berlin/Heidelberg: Springer. p. 123–146.

Genrich HJ, Lautenbach K. 1981. System modelling with high-level Petri nets. Theor Comput
Sci. 13(1):109–135. doi:10.1016/0304-3975(81)90113-4.

Gonçalves M, Fernandes JM. 2013. Guidelines for Modelling Reactive Systems with Coloured
Petri Nets. In: Machado RJ, Maciel RSP, Rubin J, Botterweck G, editors. MOMPES 2012:
Model-Based Methodologies for Pervasive and Embedded Software. Berlin, Heidelberg:
Springer Berlin Heidelberg. p. 126–137.

Graf S, Steffen B. 1990. Compositional minimization of finite state systems. In: Clarke EM,
Kurshan RP, editors. Computer-Aided Verification. Berlin/Heidelberg: Springer-Verlag. p.
186–196.

Graf S, Steffen B, Lüttgen G. 1996. Compositional minimisation of finite state systems using
interface specifications. Form Asp Comput. 8(5):607–616. doi:10.1007/BF01211911.

Grumberg O, Long DE. 1991. Model checking and modular verification. In: Baeten JCM,
Groote JF, editors. CONCUR 1991: International Conference on Concurrency Theory. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 250–265.

Gu F, Zhang X, Chen M, Große D, Drechsler R. 2016. Quantitative timing analysis of UML
activity diagrams using statistical model checking. In: 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). p. 780–785.

Guan S-U, Yu H-Y, Yang J-S. 1998. A prioritized Petri net model and its application in
distributed multimedia systems. IEEE Trans Comput. 47(4):477–481. doi:10.1109/12.675716.

Haddad S. 1987. Une catégorie régulière de réseau de Petri de haut-niveau : définition,
propriétés et réductions. Application à la validation de systèmes distribués. Universite P. et
M. Curie, Paris, France.

Haddad S. 1991. A Reduction Theory for Coloured Nets. In: Jensen K, Rozenberg G, editors.

REFERENCES

233

High-level Petri Nets: Theory and Application. Berlin, Heidelberg: Springer Berlin Heidelberg.
p. 399–425.

Haddad S, Ilié JM, Taghelit M, Zouari B. 1995. Symbolic reachability graph and partial
symmetries. In: De Michelis G, Diaz M, editors. ICATPN 1995: International Conference on
Application and Theory of Petri Nets 1995. Berlin, Heidelberg: Springer Berlin Heidelberg. p.
238–257.

Haddad S, Kordon F, Petrucci L, Pradat-Peyre J-F, Treves L. 2009. Efficient state-based analysis
by introducing bags in Petri nets color domains. In: 2009 American Control Conference. IEEE.
p. 5018–5025.

Haddad S, Pradat-Peyre J-F. 2004. Efficient Reductions for LTL Formulae Verification. Paris,
France.

Hadjidj R, Boucheneb H. 2006. On-the-fly TCTL model checking for Time Petri Nets using state
class graphs. In: Sixth International Conference on Application of Concurrency to System
Design (ACSD’06). IEEE. p. 111–122.

Hansen KM. 1994. Formalising Railway Interlocking Systems. In: Nordic Seminar on
Dependable Computing Systems 1994. Technical University of Denmark, DK 2800 Lyngby,
Denmark. p. 83–94.

Haxthausen AE, Pedersen JS, Prehn S. 1993. Raise: a product supporting industrial use of
formal methods. Tech Sci Informatiques. 12(3):319–346.

Haxthausen AE, Peleska J. 2000. Formal development and verification of a distributed railway
control system. IEEE Trans Softw Eng. 26(8):687–701. doi:10.1109/32.879808.

He X, Murata T. 2005. High-Level Petri Nets—Extensions, Analysis, and Applications. In: The
Electrical Engineering Handbook. Elsevier. p. 459–475.

Heddebaut M. 2009. Leaky Waveguide for Train-to-Wayside Communication-Based Train
Control. IEEE Trans Veh Technol. 58(3):1068–1076. doi:10.1109/TVT.2008.928635.

Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. 2012. Snoopy – A Unifying Petri Net Tool. In:
Proc. PETRI NETS 2012. Vol. 7347. Springer. (LNCS). p. 398–407.

Heiner M, Rohr C, Schwarick M. 2013. MARCIE – Model Checking and Reachability Analysis
Done Efficiently. In: Colom J-M, Desel J, editors. PETRI NETS 2013: Application and Theory of
Petri Nets and Concurrency. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 389–399.

Heiner M, Schwarick M, Wegener J-T. 2015. Charlie – An Extensible Petri Net Analysis Tool.
In: Devillers R, Valmari A, editors. Proc. PETRI NETS 2015. Vol. 9115. Springer. (LNCS). p. 200–
211.

Henzinger TA. 2000. The Theory of Hybrid Automata. In: Inan MK, Kurshan RP, editors.
Verification of Digital and Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p.
265–292.

Herajy M, Heiner M. 2014. A Steering Server for Collaborative Simulation of Quantitative
Petri Nets. In: Ciardo G, Kindler E, editors. PETRI NETS 2014: Application and Theory of Petri
Nets and Concurrency. Cham: Springer International Publishing. p. 374–384.

Hillah LM, Kordon F, Petrucci L, Trèves N. 2010. PNML Framework: An Extendable Reference

REFERENCES

234

Implementation of the Petri Net Markup Language. In: Lilius J, Penczek W, editors. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 318–327.

Hoare CAR. 1978. Communicating sequential processes. Commun ACM. 21(8):666–677.
doi:10.1145/359576.359585.

Hongli Zhao, Tianhua Xu, Tao Tang. 2009. Towards modeling and evaluation of availability of
communication based train control (CBTC) system. In: 2009 IEEE International Conference on
Communications Technology and Applications. IEEE. p. 860–863.

Hu G. 2008. A Formal Specification of UML Class and State Diagrams. In: Lee R, editor.
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.
Berlin, Heidelberg: Springer Berlin Heidelberg. p. 247–257.

Huber P, Jensen AM, Jepsen LO, Jensen K. 1986. Reachability trees for high-level petri nets.
Theor Comput Sci. 45:261–292. doi:10.1016/0304-3975(86)90046-0.

Huber P, Jensen K, Shapiro RM. 1991. Hierarchies in coloured petri nets. In: Rozenberg G,
editor. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 313–341.

IEC. 2003. IEC 61131-3 Programmable Controllers – Part 3: Programming languages.

IEC. 2009. IEC 62267:2009—Railway applications - Automated Urban Guided Transport
(AUGT) - Safety Requirements.

IEC. 2014. IEC 62290:2014—Railway applications - Urban guided transport management and
command/control systems.

IEEE. 1993. IEEE Std 1164-1993 - IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Std_logic_1164). doi:10.1109/IEEESTD.1993.115571.

IEEE. 2006. IEEE Std. 1364-2005 - IEEE Standard for Verilog Hardware Description Language.
doi:10.1109/IEEESTD.2006.99495.

IEEE. 2012. IEEE Std. 1666-2011 - IEEE Standard for Standard SystemC Language Reference
Manual. doi:10.1109/IEEESTD.2012.6134619.

IEEE. 2017. IEEE Std. 1800-2017 - IEEE Standard for SystemVerilog—Unified Hardware Design,
Specification, and Verification Language. doi:10.1109/IEEESTD.2018.8299595.

IEEE Std. 2004. IEEE Standard for Communications-Based Train Control (CBTC) Performance
and Functional Requirements. IEEE Std 14741-2004 (Revision IEEE Std 14741-1999).:0_1-45.
doi:10.1109/IEEESTD.2004.95746.

Ilié JM, Ajami K. 1997. Model checking through symbolic reachability graph. In: Bidoit M,
Dauchet M, editors. TAPSOFT ’97: Theory and Practice of Software Development. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 213–224.

ISO/IEC. 2004. ISO/IEC 15909-1:2004 - Systems and software engineering - High-level Petri
nets - Part 1: Concepts, definitions and graphical notation. :38.

ISO/IEC. 2005. ISO/IEC 19501:2005 (OMG-UML VER 1.3) — Information technology - Open
Distributed Processing - Unified Modeling Language (UML) Version 1.4.2.

ISO/IEC. 2011. ISO/IEC 15909-2:2011 - Systems and software engineering - High-level Petri
nets - Part 2: Transfer format. :102.

REFERENCES

235

ISO. 1989. ISO 8807:1989 — Information processing systems - Open Systems Interconnection
- LOTOS - A formal description technique based on the temporal ordering of observational
behaviour.

Issad M, Kloul L, Rauzy A. 2014. A Model-Based Methodology to Formalize Specifications of
Railway Systems. In: Ortmeier F, Rauzy A, editors. IMBSA 2014: 4th International Symposium
of Model-Based Safety and Assessment. Munich, Germany. p. 28–42.

Issad M, Koul L, Rauzy A. 2015. A contribution to safety analysis of railway CBTC systems using
Scola. In: ESREL 2015: Safety and Reliability of Complex Engineered Systems. Zurich,
Switzerland: CRC Press. p. 459–467.

ITU-T. 2016. Recommendation Z.100 (04/16) : Specification and Description Language (SDL).

Jabri S, El Koursi EM, Lemaire E, Bourdeaud’huy T. 2009. Modelling of the European Rail
Traffic Management System (ERTMS) for checking objectives. IFAC Proc Vol. 42(15):84–90.
doi:10.3182/20090902-3-US-2007.0097.

Janczura CW. 1999. Modelling and Analysis of Railway Network Control Logic using Coloured
Petri Nets. University of South Australia.

Jansen L, Meyer zu Hörste M, Schnieder E. 1998. Technical Issues in Modelling the European
Train Control System (ETCS) Using Coloured Petri Nets and the Design/CPN Tools. In: Jensen
K, editor. Workshop on Practical Use of Coloured Petri Nets and Design. Daimi PB-532,
Aarhus, Denmark: Aarhus University. p. 103–115.

Jensen K. 1981a. Coloured Petri Nets and the Invariant-Method. Theor Comput Sci.
14(3):317–336. doi:10.1016/0304-3975(81)90049-9.

Jensen K. 1981b. How to find invariants for coloured Petri nets. In: Gruska J, Chytil M, editors.
Mathematical Foundations of Computer Science 1981: Proceedings, 10th Symposium
{Š}trbsk{é} Pleso, Czechoslovakia August 31 -- September 4, 1981. Berlin, Heidelberg:
Springer Berlin Heidelberg. p. 327–338.

Jensen K. 1982. High-Level Petri Nets. In: Pagnoni A, Rozenberg G, editors. 3rd European
Workshop on Application and Theory of Petri Nets. Varenna, Italy: Springer Berlin Heidelberg.
p. 166–180.

Jensen K. 1986. Coloured Petri Nets. In: Brauer W, Reisig W, Rozenberg G, editors. Petri Nets:
Central Models and Their Properties (ACPN 1986). Springer Berlin Heidelberg. p. 248–299.

Jensen K. 1991. Coloured petri nets: A high level language for system design and analysis. In:
Rozenberg G, editor. Advances in Petri Nets 1990 (Lecture Notes in Computer Science). Vol.
483. Springer Berlin Heidelberg. p. 342–416.

Jensen K. 1992. Hierarchical Coloured Petri Nets. In: Jensen K, editor. Coloured Petri Nets
(EATCS Monographs in Theoretical Computer Science). Berlin, Heidelberg: Springer Berlin
Heidelberg. p. 89–121.

Jensen K. 1997. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Volume 3. Berlin, Heidelberg: Springer Berlin Heidelberg (Monographs in Theoretical
Computer Science An EATCS Series).

Jensen K. 1998. An introduction to the practical use of coloured Petri Nets. In: Reisig W,
Rozenberg G, editors. ACPN 1996: Lectures on Petri Nets II: Applications. p. 237–292.

REFERENCES

236

Jensen K, Kristensen LM. 2009a. Formal Definition of Non-hierarchical Coloured Petri Nets.
In: Jensen K, Kristensen Lars M., editors. Coloured Petri Nets (Modelling and Validation of
Concurrent Systems). Berlin, Heidelberg: Springer Berlin Heidelberg. p. 79–94.

Jensen K, Kristensen LM. 2009b. CPN ML Programming. In: Jensen K, Kristensen Lars M.,
editors. Coloured Petri Nets (Modelling and Validation of Concurrent Systems). Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 43–77.

Jensen K, Kristensen LM, Wells L. 2007. Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems. Int J Softw Tools Technol Transf. 9(3–4):213–254.
doi:10.1007/s10009-007-0038-x.

Joel F, Wu H, Hyung L-K. 1988. Reduction Method Of Coloured Petri Nets. IEEE Int Conf Syst
Man, Cybern. 2:984–987. doi:10.1109/ICSMC.1988.712855.

John K-H, Tiegelkamp M. 2001. IEC 61131-3: Programming Industrial Automation Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Josserand P, Forman HW. 1957. Rights of trains (5th edition). 5th editio. New York: Simmons-
Boardman Pub. Corp.

Junttila T. 2003. On the symmetry reduction method for Petri nets and similar formalisms.
Helsinki University of Technology.

Kapur D, Winter VL, Berg RS. 2001. Designing a Controller for a Multi-Train Multi-Track
System. Electron Notes Theor Comput Sci. 50(1):65–79. doi:10.1016/S1571-0661(04)00166-
5.

Khan U, Ahmad J, Saeed T, Mirza SH. 2016. On the real time modeling of interlocking system
of passenger lines of Rawalpindi Cantt train station. Complex Adapt Syst Model. 4(1):17.
doi:10.1186/s40294-016-0028-5.

Kichenside GM, Williams A. 1998. Two Centuries of Railway Signalling. Oxford Publishing.

Kindler E. 2006. The petri net markup language and iso/iec 15909-2: Concepts, status, and
future directions. Entwurf komplexer Autom. 9(May):35–55.

Kindler E. 2012. The ePNK: A generic PNML tool - Users’ and Developers’ Guide for Version
1.0.0. Kongens Lyngby, Denmark.

Kissell TE. 2002. Industrial Electronics: Applications for Programmable Controllers,
Instrumentation and Process Control, and Electrical Machines and Motor Controls (3rd
Edition). 3rd ed. Prentice Hall.

Klai K. 2003. Réseaux de Petri : Vérification Modulaire et Symbolique. Paris 6.

Kordon F, Paviot-Adet E. 1999. Using CPN-AMI to Validate a Safe Channel Protocol. In:
Proceedings of the International Conference on Theory and Applications of Petri Nets - Tool
presentation part. Williamsburg, USA.

Kristensen LM, Petrucci L. 2004. An Approach to Distributed State Space Exploration for
Coloured Petri Nets. In: Cortadella J, Reisig W, editors. ICATPN 2004: Applications and Theory
of Petri Nets 2004. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 474–483.

Kristensen LM, Westergaard M. 2010. Automatic Structure-Based Code Generation from
Coloured Petri Nets: A Proof of Concept. In: Kowalewski S, Roveri M, editors. FMICS 2010:

REFERENCES

237

Formal Methods for Industrial Critical Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg. p. 215–230.

Kuehlmann A, Eijk CAJ. 2002. Combinational and Sequential Equivalence Checking. In:
Hassoun S, Sasao T, editors. Logic Synthesis and Verification. Boston, MA: Springer US. p.
343–372.

Kwiatkowska M, Norman G, Parker D. 2002. PRISM: Probabilistic Symbolic Model Checker.
In: Field T, Harrison PG, Bradley J, Harder U, editors. TOOLS 2002: International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 200–204.

Lakos C, Petrucci L. 2004. Modular analysis of systems composed of semiautonomous
subsystems. Appl Concurr to Syst Des 2004 ACSD 2004 Proceedings Fourth Int Conf.:185–
194. doi:10.1109/CSD.2004.1309131.

Lakos C, Petrucci L. 2007a. Modular state space exploration for timed petri nets. Int J Softw
Tools Technol Transf. 9(3–4):393–411. doi:10.1007/s10009-007-0033-2.

Lakos C, Petrucci L. 2007b. Modular State Spaces and Place Fusion. In: International
Workshop on Petri Nets and Software Engineering (PNSE’07, associated with Petri Nets’07).
p. 175–190.

Latvala T, Mäkelä M. 2004. LTL Model Checking for Modular Petri Nets. In: Cortadella J, Reisig
W, editors. ICATPN 2004: Applications and Theory of Petri Nets 2004. Berlin, Heidelberg:
Springer Berlin Heidelberg. p. 298–311.

Lautenbach K. 1986. Linear Algebraic Techniques for Place/Transition Nets. In: Brauer W,
Reisig W, Rozenberg G, editors. Petri Nets: Central Models and Their Properties (ACPN 1986).
Berlin/Heidelberg: Springer Berlin Heidelberg. p. 142–167.

Lee-Kwang H, Favrel J, Baptiste P. 1987. Generalized Petri Net Reduction Method. IEEE Trans
Syst Man Cybern. 17(2):297–303. doi:10.1109/TSMC.1987.4309041.

Lee YK, In HP, Kazman R. 2014. Customer Requirements Validation Method Based on Mental
Models. In: 2014 the 21st Asia-Pacific Software Engineering Conference. Vol. 1. IEEE. p. 199–
206.

Legay A, Sedwards S, Traonouez L-M. 2016. Plasma Lab: A Modular Statistical Model Checking
Platform. In: Margaria T, Steffen B, editors. ISoLA 2016: International Symposium on
Leveraging Applications of Formal Methods. Cham: Springer International Publishing. p. 77–
93.

Leroy X. 2009. Formal verification of a realistic compiler. Commun ACM. 52(7):107.
doi:10.1145/1538788.1538814.

Lewis G, Lakos C. 2001. Incremental State Space Construction for Coloured Petri Nets. In:
Colom J-M, Koutny M, editors. ICATPN 2001: Applications and Theory of Petri Nets 2001.
Berlin, Heidelberg: Springer Berlin Heidelberg. p. 263–282.

Lewis GA. 2002. Incremental specification and analysis in the context of coloured Petri nets.
University of Tasmania.

Li B, Khlif-Bouassida M, Toguyeni A. 2016. Diagnosis and diagnosability analysis of labeled
Petri nets using reduction rules. In: 2016 13th International Workshop on Discrete Event

REFERENCES

238

Systems (WODES). IEEE. p. 171–176.

Li C, Zhang L. 2015. Train control system modeling and design based on AADL. In: ICSESS
2015: 6th IEEE International Conference on Software Engineering and Service Science. IEEE.
p. 474–477.

Lime D, Roux OH, Seidner C, Traonouez L-M. 2009. Romeo: A Parametric Model-Checker for
Petri Nets with Stopwatches. In: Kowalewski S, Philippou A, editors. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 5505 LNCS. Springer Berlin Heidelberg. p. 54–57.

Liu C, Tang T. 2011. Epsilon-based model transformation and verification of train control
system specification. In: 30th Chinese Control Conference (CCC2011). p. 5562–5567.

Liu F. 2012. Colored Petri Nets for Systems Biology.

Long DE. 1993. Model checking, abstraction, and compositional verification. Carnegie Mellon
University.

Madsen MS, Bæk MM. 2005. Modelling a Distributed Railway Control System. [Richard
Petersens Plads, Building 321, {DK-}2800 Kgs. Lyngby]: Technical University of Denmark
(DTU).

Mäkelä M. 2003. Model Checking Safety Properties in Modular High-Level Nets. In: ICATPN
2003: Applications and Theory of Petri Nets 2003. p. 201–220.

Manna Z, Pnueli A. 1992. The Temporal Logic of Reactive and Concurrent Systems. New York,
NY: Springer New York.

Marsan MA. 1988. Stochastic Petri nets: An elementary introduction. In: Rozenberg G, editor.
APN 1989: Advances in Petri Nets 1989. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1–
29.

Mascheroni M. 2010. Hypernets : a Class of Hierarchical Petri Nets. University of Milano-
Bicocca.

Matsumoto M, Hosokawa A, Kitamura S, Watanabe D, Kawabata A. 2001. The new ATC
system with an autonomous speed control with on-board equipment. In: Proceedings 5th
International Symposium on Autonomous Decentralized Systems. Dallas, TX, USA: IEEE
Comput. Soc. p. 235–238.

McMillan KL. 1993. Symbolic Model Checking. Boston, MA: Springer US.

McMillan KL, Probst DK. 1995. A technique of state space search based on unfolding. Form
Methods Syst Des. 6(1):45–65. doi:10.1007/BF01384314.

Memmi G, Finkel A. 1985. An introduction to FIFO nets— monogeneous nets: A subclass of
FIFO nets. Theor Comput Sci. 35(C):191–214. doi:10.1016/0304-3975(85)90014-3.

Meyer zu Hörste M. 1999. Modelling and Simulation of Train Control Systems Using Petri
Nets. In: FMRail Workshop. Vol. 3.

Milner R. 1980. A Calculus of Communicating Systems. Milner Robin, editor. Berlin,
Heidelberg: Springer Berlin Heidelberg (Lecture Notes in Computer Science).

Milner R, Tofte M, Macqueen D. 1997. The Definition of Standard ML (Revised). Cambridge,

REFERENCES

239

MA, USA: MIT Press.

Monin J-F. 1996. Proving a real time algorithm for ATM in Coq. In: Giménez E, Paulin-Mohring
C, editors. TYPES 1996: Types for Proofs and Programs. Berlin, Heidelberg: Springer Berlin
Heidelberg. p. 277–293.

Mortensen KH. 2000. Automatic Code Generation Method Based on Coloured Petri Net
Models Applied on an Access Control System. In: Nielsen M, Simpson D, editors. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 367–386.

Murata T. 1989. Petri Nets: Properties, Analysis and Applications. Proc IEEE. 77(4):541–580.
doi:10.1109/5.24143.

Nakamura H. 2016. How to Deal with Revolutions in Train Control Systems. Engineering.
2(3):380–386. doi:10.1016/J.ENG.2016.03.015.

Narahari Y, Viswanadham N. 1986. On the invariants of coloured Petri nets. Adv Petri Nets
1985.:330–345.

Ndiaye MAA, Petin J-F, Camerini J, Georges JP. 2016. Performance assessment of industrial
control system during pre-sales uncertain context using automatic Colored Petri Nets model
generation. In: 2016 International Conference on Control, Decision and Information
Technologies (CoDIT). IEEE. p. 671–676.

Nielsen M, Plotkin G, Winskel G. 1981. Petri nets, event structures and domains, part I. Theor
Comput Sci. 13(1):85–108. doi:10.1016/0304-3975(81)90112-2.

Odersky M. 2000a. Functional Nets. In: Smolka G, editor. ESOP 2000: Programming
Languages and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1–25.

Odersky M. 2000b. An Overview of Functional Nets. Lect Notes APPSEM Summer Sch.

Odersky M, Rompf T. 2014. Unifying functional and object-oriented programming with Scala.
Commun ACM. 57(4):76–86. doi:10.1145/2591013.

Olderog E-R. 2012. Automatic Verification of Real-Time Systems with Rich Data: An Overview.
In: Agrawal M, Cooper SB, Li A, editors. TAMC 2012: Theory and Applications of Models of
Computation: 9th Annual Conference. Beijing, China: Springer Berlin Heidelberg. p. 84–93.

Peled D. 1996. Combining partial order reductions with on-the-fly model-checking. Form
Methods Syst Des. 8(1):39–64. doi:10.1007/BF00121262.

Peres F, Yang J, Ghazel M. 2012. A Formal Framework for the Formalization of Informal
Requirements. Int J Soft Comput Softw Eng. 2(8):14–27. doi:10.7321/jscse.v2.n8.2.

Petri CA. 1962. Kommunikation mit Automaten (Communication with automata). University
of Bonn.

Petri CA. 1980. Introduction to General Net Theory. In: Proceedings of the Advanced Course
on General Net Theory of Processes and Systems: Net Theory and Applications. London, UK,
UK: Springer-Verlag. p. 1–19.

Petrucci L. 2005. Cover Picture Story: Experiments with Modular State Spaces. Petri Net
Newsl. 68:pp.cover and 5-10.

Pinna B, Babykina G, Brînzei N, Pétin J-F. 2013a. Deterministic and stochastic dependability

REFERENCES

240

analysis of industrial systems using Coloured Petri Nets approach. In: Steenbergen RDJM, van
Gelder PHAJM, Miraglia S, Vrouwenvelder ACWM, editors. Annual Conference of the
European Safety and Reliability Association, ESREL 2013. Amsterdam, Netherlands: CRC
Press. p. 2969–2977.

Pinna B, Babykina G, Brînzei N, Pétin J-F. 2013b. Using coloured petri nets for integrated
reliability and safety evaluations. IFAC Proc Vol. 4(PART 1):19–24. doi:10.3182/20130904-3-
UK-4041.00016.

Platzer A, Quesel J-D. 2009. European Train Control System: A Case Study in Formal
Verification. In: Breitman K, Cavalcanti A, editors. ICFEM 2009: Formal Methods and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 246–265.

Pnueli A. 1977. The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science (SFCS 1977). IEEE. p. 46–57.

Pnueli A. 1985. In Transition From Global to Modular Temporal Reasoning about Programs.
In: Apt KR, editor. Logics and Models of Concurrent Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg. p. 123–144.

Prat S, Cavron J, Kesraoui D, Rauffet P, Berruet P, Bignon A. 2017. An Automated Generation
Approach of Simulation Models for Checking Control/Monitoring System. IFAC-
PapersOnLine. 50(1):6202–6207. doi:10.1016/j.ifacol.2017.08.1014.

Ras J. 2016. The Dining Philosophers Problem. USA: CreateSpace Independent Publishing
Platform.

Ratzer AV, Wells L, Lassen HM, Laursen M, Qvortrup JF, Stissing MS, Westergaard M,
Christensen S, Jensen K. 2003. CPN Tools for Editing, Simulating, and Analysing Coloured Petri
Nets. In: Proceedings of the 24th international conference on Applications and theory of Petri
nets (ICATPN’03). Vol. 2679. p. 450–462.

Reichl K, Fischer T, Tummeltshammer P. 2016. Using Formal Methods for Verification and
Validation in Railway. In: Aichernig BK, Furia CA, editors. TAP 2016: 10th International
Conference on Tests & Proofs. Cham: Springer International Publishing. p. 3–13.

Reinaldo J, del Foyo PMG. 2012. Timed Petri Nets. In: Pawlewski P, editor. Petri Nets -
Manufacturing and Computer Science. InTech. p. 359–378.

Reisig W. 1986. Place/Transition Systems. In: Brauer W, Reisig W., Rozenberg G, editors. Petri
Nets: Central Models and Their Properties (ACPN 1986). Berlin/Heidelberg: Springer Berlin
Heidelberg. p. 117–141.

Robinson W. 1872. Improvement in Electric-Signaling Apparatus for Railroad.

Rojas D, Phillips E. 2011. Communications-Based Train Control (CBTC) Before/After Cost
Effectiveness Study.

Romanovsky A, Thomas M, editors. 2013. Industrial Deployment of System Engineering
Methods. Berlin, Heidelberg: Springer Berlin Heidelberg.

Rozenberg G. 1987. Behaviour of Elementary Net Systems. In: Brauer W, Reisig W, Rozenberg
G, editors. Petri Nets: Central Models and Their Properties. ACPN 1986. Lecture Notes in
Computer Science, vol 254. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 60–94.

REFERENCES

241

Rozenberg G, Engelfriet J. 1998. Elementary net systems. In: Reisig W, Rozenberg G, editors.
Lectures on Petri Nets I: Basic Models—Advances in Petri Nets. Springer-Verlag Berlin
Heidelberg. p. 12–121.

Rozenberg G, Thiagarajan PS. 1986. Petri nets: Basic notions, structure, behaviour. In: de
Bakker JW, de Roever W-P, Rozenberg G, editors. Current Trends in Concurrency: Overviews
and Tutorials. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 585–668.

Sacha K. 2008. Verification and Implementation of Dependable Controllers. In: 2008 Third
International Conference on Dependability of Computer Systems DepCoS-RELCOMEX. IEEE.
p. 143–151.

SAE. 2004. AS5506： Architecture Analysis & Design Language (AADL).

Sakarovitch J. 2009. Elements of automata theory. Cambridge University Press.

Schiffers M. 1977. Behandlung eines Synchronisationproblems mit gefärbten Petri Netzen (in
German). University of Bonn.

Schiffers M, Wedde H. 1978. Analyzing program solutions of coordination problems by CP-
nets. In: Winkowski J, editor. Mathematical Foundations of Computer Science (MFCS) 1978.
Berlin/Heidelberg: Springer. p. 462–473.

Schmidt K. 2000. How to calculate symmetries of Petri nets. Acta Inform. 36(7):545–590.
doi:10.1007/s002360050002.

Sgroi M, Lavagno L, Sangiovanni-Vincentelli A. 2000. Formal models for embedded system
design. IEEE Des Test Comput. 17(2):14–27. doi:10.1109/54.844330.

She X, Zhao J, Yang J. 2014. Functional safety verification on railway signaling system with
Colored Petri Nets. In: 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC). p. 2713–2717.

Shi X, Monin J-F, Tuong F, Blanqui F. 2011. First Steps towards the Certification of an ARM
Simulator Using Compcert. In: Jouannaud J-P, Shao Z, editors. CPP 2011: Certified Programs
and Proofs. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 346–361.

Silva M. 2012. 50 years after the PhD thesis of Carl Adam Petri: A perspective. IFAC Proc Vol.
45(29):13–20. doi:10.3182/20121003-3-MX-4033.00006.

Da Silveira M, Combacau M, Subias A. 2002. From centralized to distributed models: A
systematic procedure based on Petri nets. Proc IEEE Int Conf Syst Man Cybern. 1.

Simonsen KIF, Kristensen LM. 2014. Implementing the WebSocket Protocol Based on Formal
Modelling and Automated Code Generation. In: Magoutis K, Pietzuch P, editors. Berlin,
Heidelberg: Springer Berlin Heidelberg. p. 104–118.

Smith E. 1996. Principles of high-level net theory. In: Reisig W, Rozenberg G, editors. Lectures
on Petri Nets I: Basic Models (ACPN 1996). Berlin/Heidelberg: Springer Berlin Heidelberg. p.
174–210.

SNCF. 2017. LE TRAIN AUTONOME : DE QUOI PARLE-T-ON ? [accessed 2017 Sep 1].
http://www.sncf.com/fr/presse/article/train-autonome/160617.

Song H, Liu J, Schnieder E. 2017. Validation, verification and evaluation of a Train to Train
Distance Measurement System by means of Colored Petri Nets. Reliab Eng Syst Saf. 164:10–

REFERENCES

242

23. doi:10.1016/J.RESS.2017.03.001.

Störrle H. 1998. An evaluation of high-end tools for Petri-nets.

The SEI AADL Team. 2005. An Extensible Open Source AADL Tool Environment (OSATE) —
Release 1.0.

Thiagarajan PS. 1987. Elementary Net Systems. In: Brauer W, Reisig W, Rozenberg G, editors.
Petri Nets: Central Models and Their Properties. ACPN 1986. Lecture Notes in Computer
Science, vol 254. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 26–59.

TIOBE. 2018. TIOBE Index. [accessed 2018 Aug 1]. https://www.tiobe.com/tiobe-index/.

Tjell S. 2007. Distinguishing Environment and System in Coloured Petri Net Models of
Reactive Systems. In: 2007 International Symposium on Industrial Embedded Systems. p.
242–249.

UNISIG. 2008. ERTMS/ETCS System Requirements Specification (SUBSET-026) V3.0.0
(outdated).

University of Aarhus. 2006. CPN Tools State Space Manual (Last updated: January 2006).
(January):1–49.

Valmari A. 1998. The state explosion problem. In: Reisig W, Rozenberg G, editors. ACPN 1996:
Lectures on Petri Nets I: Basic Models. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 429–
528.

Vanit-Anunchai S. 2009. Verification of Railway Interlocking Tables using Coloured Petri Nets.
In: The 10th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools. DAIMI PB 590, Department of Computer Science, University of Aarhus. p. 139–158.

Vanit-Anunchai S. 2010. Modelling Railway Interlocking Tables Using Coloured Petri Nets. In:
Clarke D, Agha G, editors. Coordination Models and Languages: 12th International
Conference (COORDINATION’2010). Amsterdam, The Netherlands: Springer Berlin
Heidelberg. p. 137–151.

Vanit-Anunchai S. 2014. Experience using Coloured Petri Nets to Model Railway Interlocking
Tables. In: 2nd French Singaporean Workshop on Formal Methods and Applications
(FSFMA’2014). Vol. EPTCS 156. Singapore. p. 17–28.

Vanit-Anunchai S. 2018. Modelling and simulating a Thai railway signalling system using
Coloured Petri Nets. Int J Softw Tools Technol Transf. doi:10.1007/s10009-018-0482-9.

Vincze B, Tarnai G. 2006. Evolution of train control systems. In: 14th International Symposium
EURNEX-ZEL. Zilina.

Wang H, Yu FR, Jiang H. 2016. Modeling of Radio Channels With Leaky Coaxial Cable for LTE-
M Based CBTC Systems. IEEE Commun Lett. 20(5):1038–1041.
doi:10.1109/LCOMM.2016.2536599.

WANG S, HU W, XU Z. 2008. Research on Simulation Model of Petri Net with Priority by CPN
Tools (in Chinese). J Syst Simul. 20(3):814–816.

Westergaard M, Evangelista S, Kristensen LM. 2009. ASAP: An Extensible Platform for State
Space Analysis. In: PETRI NETS 2009: Applications and Theory of Petri Nets. p. 303–312.

REFERENCES

243

Westergaard M, Kristensen LM. 2009. The Access/CPN Framework: A Tool for Interacting
with the CPN Tools Simulator. In: PETRI NETS 2009: Applications and Theory of Petri Nets. p.
313–322.

Westergaard M, Kristensen LM, Brodal GS, Arge L. 2007. The ComBack Method – Extending
Hash Compaction with Backtracking. In: Kleijn J, Yakovlev A, editors. ICATPN 2007: Petri Nets
and Other Models of Concurrency. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 445–
464.

Westergaard M, Kristensen LM, Kuusela M. 2009. A Prototype for Cosimulating SystemC and
Coloured Petri Net Models.

Westergaard M, Verbeek HMWE. 2011. Efficient Implementation of Prioritized Transitions
for High-level Petri Nets. In: PNSE’11 – Petri Nets and Software Engineering. p. 27–41.

Wieringa RJ. 2003. Design Methods for Reactive Systems. Elsevier.

Wikarski D. 1996. An introduction to modular process nets.

Xie F, Browne JC. 2006. Verification of Component-Based Software Application Families. In:
CBSE 2006: Component-Based Software Engineering. p. 50–66.

Xie Y, Khlif-bouassida M, Toguyeni A. 2016. Modeling of Automatic Train Operation Control
using Colored Petri Nets. In: 11th International Conference on Modeling, Optimization and
Simulation （MOSIM’16）. Montréal, Québec, Canada.

Xie Y, Khlif-bouassida M, Toguyeni A. 2017a. Well-formed Petri Net Based Patterns for
Modeling Logic Controllers for Autonomous Trains. In: Bruzzone, Dauphin-Tanguy, Junco,
editors. Proc. of the 14th Int. Conf. on Integrated Modeling and Analysis in Applied Control
and Automation (IMAACA2017). Barcelona, Spain. p. 25–34.

Xie Y, Khlif-bouassida M, Toguyeni A. 2017b. Modèles Génériques en Réseaux de Petri Bien
Formés pour le Contrôle Discret des Trains Autonomes. In: 11ème Colloque sur la
Modélisation des Systèmes Réactifs (MSR2017). Marseille, France.

Xu T, Tang T, Gao C, Cai B. 2009. Dependability analysis of the data communication system in
train control system. Sci China Ser E Technol Sci. 52(9):2605–2618. doi:10.1007/s11431-009-
0183-4.

Yang CS, Lim JS, Um JK, Han JM, Bang Y, Kim HH, Yun YH, Kim CJ, Cho YG. 2008. Developing
CBTC Software Using Model-Driven Development Approach. In: WCRR 2008: 8th World
Congress on Railway Research. COEX, Seoul, Korea.

Yang X, Chen Y, Eide E, Regehr J. 2011. Finding and understanding bugs in C compilers. In: the
32nd ACM SIGPLAN conference on Programming language design and implementation - PLDI
’11. New York, USA: ACM Press. (PLDI ’11). p. 283.

Yuan L, Tang T, Li K. 2011. Modelling and Verification of the System Requirement
Specification of Train Control System Using SDL. In: 2011 Tenth International Symposium on
Autonomous Decentralized Systems. p. 81–85.

Zafar NA. 2006. Formal model for moving block railway interlocking system based on un-
directed topology. In: 2006 International Conference on Emerging Technologies. IEEE. p.
217–223.

REFERENCES

244

Zafar NA. 2009. Formal specification and validation of railway network components using Z
notation. IET Softw. 3(4):312. doi:10.1049/iet-sen.2008.0082.

Zafar NA, Khan SA, Araki K. 2012. Towards the safety properties of moving block railway
interlocking system. Int J Innov Comput Inf Control. 8(8):5677–5690.

Žarnay M. 2004. Use of Petri Net for Modelling of Traffic in Railway Stations. In: Proceedings
of international conference Infotrans 2004. Pardubice.

Van Zelst S (Technische UE, Van Dongen BF, Van Der Aalst WMP (RWTH AU. 2015. Know
What you stream: Generating event streams from CPN models in ProM 6. In: CEUR Workshop
Proceedings. Vol. 1418. p. 85–89.

Zhang Y, Xie Y, Zhang X. 2014. Study on the Method for Automatic Generation of Test
Sequence for Train Control System Based on State Matching. In: International Conference on
Computer Science and Artificial Intelligence (ICCSAI 2014). Wuhan, China: Destech
Publications, Inc. p. 92–95.

Zhao L, Xu T, Zheng W. 2012. Requirements analysis via property-based approach. In:
ICCCT2012: 7th International Conference on Computing and Convergence Technology. p.
1153–1156.

Zhou G, Zhao H. 2015. Modeling and Quantitative Safety Analysis of Chinese Train Control
System of Systems. In: 2015 IEEE 18th International Conference on Intelligent Transportation
Systems. p. 381–386.

Zhou X, Zhang Y. 2015. Security Analysis about a Train Control Center Based on a Bayesian
Network. In: ICTE 2015. Reston, VA: American Society of Civil Engineers. p. 2525–2532.

Zhu L, Zhang Y, Ning B, Jiang H. 2009. Train-Ground Communication in CBTC Based on
802.11b: Design and Performance Research. In: 2009 WRI International Conference on
Communications and Mobile Computing. Vol. 2. p. 368–372.

Zimmermann A. 2017. Modelling and Performance Evaluation with TimeNET 4.4. In: Bertrand
N, Bortolussi L, editors. QEST 2017: 14th International Conference on Quantitative Evaluation
of Systems. Cham: Springer International Publishing. p. 300–303.

Zimmermann A, Hommel G. 2003. A train control system case study in model-based real time
system design. In: Proceedings International Parallel and Distributed Processing Symposium.
Nice, France: IEEE Comput. Soc. p. 8.

Zou L, Lv J, Wang S, Zhan N, Tang T, Yuan L, Liu Y. 2013. Verifying Chinese Train Control System
under a Combined Scenario by Theorem Proving. In: VSTTE 2013: Verified Software: Theories,
Tools, Experiments. p. 262–280.

245

RESUME SUBSTANTIEL (EN FRANÇAIS)
L’automatisation est une évolution qui permettra d’augmenter la capacité de systèmes
ferroviaires (nombre de voyageurs transportés par kilomètre de voies), d’économiser de
l’énergie et d’accroitre la sécurité des circulations ferroviaires (trains).

Le train autonome est une automatisation partielle d’un système ferroviaire. Il consiste à
remplacer les mécaniciens (conducteurs de trains) par des calculateurs. Cela nécessite
l’automatisation des fonctions de conduite du train et de surveillance de son fonctionnement.
Des entreprises ferroviaires, par exemple, la Société nationale des chemins de fer français
(SNCF) et la Deutsche Bahn AG (DB, Société par actions du chemin de fer allemand), ont
annoncé la mise en service de trains autonomes d’ici 2023.

Le développement de trains autonomes est un défi majeur du transport ferroviaire. En effet,
il accroit le besoin de garantir la sécurité et la fiabilité des systèmes concernés, notamment des
systèmes de contrôle des trains, car la panne de systèmes aussi critiques peut avoir des
conséquences dramatiques.

Dans le contexte de circulations ferroviaires transeuropéennes et à grandes vitesses de surcroît,
l’interopérabilité et la sécurité font parties des principales exigences d’ERTMS/ETCS
(European Rail Traffic Management System / European Train Control System), le standard
Européen pour le contrôle et la signalisation ferroviaire. Il définit notamment la réglementation
et les spécifications techniques d’interopérabilité et de sécurité. ERTMS/ETCS distingue trois
niveaux de contrôle et signalisation ferroviaire. Le niveau 1 est basé sur de la communication
ponctuelle mise en œuvre aujourd’hui par de nombreux systèmes nationaux en Europe. Le
niveau 2 et le niveau 3 sont basés sur des communications continues par ondes hertziennes.
Ils utilisent le système radio GSM-R (Railway GSM). Le travail présenté dans cette thèse est
basé sur le niveau 2 qui d’un point de vue sécuritaire exploite le cantonnement fixe. Le niveau
3 est basé sur le concept de cantons mobiles.

Cette étude s’inscrit dans le domaine de la modélisation et de la vérification de systèmes
critiques et plus particulièrement de systèmes ferroviaires. Notre travail est une contribution à
une méthodologie permettant le développement de contrôleurs logiques discrets, pour faciliter
la mise en œuvre du concept de train autonome et plus généralement l’automatisation de
systèmes ferroviaires. Ce travail concerne, plus particulièrement, les étapes de modélisation et
de vérification de ces contrôleurs, en se basant sur les Réseaux de Petri Colorés (en utilisant
l’outil de modélisation CPN Tools) et les Réseaux de Petri Bien Formés (Well-formed Petri
Nets, WFN).

La modélisation consiste à transformer des exigences textuelles d’ERTMS/ETCS en des
modèles Réseaux de Petri Colorés (RdPC). Les RdPC étant des outils formels, ces modèles

RESUME SUBSTANTIEL (EN FRANÇAIS)

246

peuvent faire l’objet de vérification et de validation. Lors de la vérification, on vérifie que les
exigences sont correctes et lors de la validation, on vérifie que les modèles construits
correspondent au besoin.

La méthodologie développée est basée sur la construction de modèles génériques de
composants d’un système ferroviaire afin d’offrir aux concepteurs des briques de
modélisation. Ces modèles génériques doivent être vérifiés afin de garantir qu’ils ont les
bonnes propriétés pour construire des systèmes sûrs. En effet, il est très difficile de vérifier le
modèle d’un système ferroviaire en raison des risques d’explosion combinatoire lors de la
construction de leur espace état. Cette explosion combinatoire résulte en générale de la
complexité du modèle global du système qui se caractérise par de très nombreux états. Garantir
que les composants ont les bonnes propriétés permet de garantir l’extension de ces propriétés
au système sous réserve d’utiliser des règles de construction permettant de préserver les
propriétés des composants.

Dans le second chapitre du mémoire de thèse, nous proposons un état de l’art des systèmes
ferroviaires. La terminologie principale et les différents éléments d’un système ferroviaire sont
d’abord précisés. Les différents systèmes de contrôle des trains sont ensuite présentés, y
compris le CBTC (Communication-based train control), un système de contrôle et de
signalisation développé ces dernières années pour l’automatisation des métros. Le projet
ERTMS/ETCS est finalement introduit avec ses différents niveaux. La structure et les
différents composants de l’ETCS sont présentés notamment ceux utilisés par le niveau 2. Nous
considérons le système de contrôle des trains comme un bon exemple pour comprendre la
complexité de l’analyse de systèmes à événements discrets très complexes. Leur modélisation
et leur vérification ont besoins des méthodes appropriées qui font l’objet de cette thèse.

Un état de l’art sur les différentes méthodes de développement des systèmes de contrôle de
trains est étudié et sert à la base de notre travail. Des normes et standards pour garantir la sûreté
de fonctionnement pendant le développement des systèmes sont également introduits.
Différentes méthodes sont ensuite présentées en fonction des étapes du cycle de vie
(spécification d’exigences, modélisation, vérification, etc.). Le choix de Réseaux de Petri
comme outil de modélisation est ensuite justifié après une analyse comparative de différents
formalismes.

Une fois choisi, les Réseaux de Petri sont introduits avec leurs différentes variantes, dont les
Réseaux de Petri Colorés (RdPC) et les Réseaux de Petri bien formés (WFN) qui sont exploités
dans le reste du mémoire. Le mémoire de thèse inclus également l’Annexe A qui propose une
présentation plus large des Réseaux de Petri pour les lecteurs non-avertis.

Des travaux de recherche relatifs à la modélisation et utilisant RdPC ou WFN sont ensuite
présentés. Ils sont suivis d’une étude comparative des différentes méthodes de vérification
envisageables à partir de modèles RdPC et de modèles WFN. Enfin une discussion de ces deux
formalismes est réalisée afin de les comparer en matière d’expressivité de modèles et

RESUME SUBSTANTIEL (EN FRANÇAIS)

247

vérification notamment par des approches analytiques. RdPC permet ainsi de modéliser plus
facilement des systèmes complexes mais au détriment des capacités de vérification analytique.
WFN offre des meilleures capacités de vérification mais n’intègre pas toutes les facilités de
modélisation de RdPC.

Les outils permettant de modéliser en RdPC ou WFN sont également présentés, dont CPN
Tools qui est principalement utilisé dans les phases de modélisation et de vérification.

Les deux contributions principales de ce travail sont la modélisation et la vérification d’un
système complexe. La méthode proposée est appliquée au contrôle de système ferroviaire.

La méthode de modélisation proposée est basée sur le formalisme des Réseaux de Petri. Face
à un système de contrôle de trains complexe et de grande taille, notre méthode propose d’abord
une décomposition structurelle et une décomposition fonctionnelle d’un système ferroviaire
afin de réduire la complexité générale en travaillant sur des entités atomiques. Un mapping
entre ces deux décompositions est ensuite proposé pour identifier les composants en question
et leurs interactions qui seront modélisée compte tenu d’un ensemble de fonctions cibles. La
méthodologie proposée permet ainsi d’abstraire le fonctionnement d’un système ferroviaire
afin de le modéliser par rapport aux points de vue structurel, fonctionnel et comportemental.

D’un point de vue structurel, un système est modélisé par l’association de ses composants au
travers d’interfaces. La modélisation des composants d’un système complexe s’appuie sur la
définition des briques génériques ou patrons de modélisation qui sont ensuite « instanciées ».
Chaque brique générique représentant un type de composant est modélisée par un modèle de
Réseaux de Petri Coloré. Notre travail compare deux solutions d’instanciation : une solution
par module paramétrique et une autre s’appuyant sur les jetons structurés.

A l’aide de l’outil CPN Tools, la solution de module paramétrique modélise chaque instance
de composant par une transition de substitution (substitution transition en Anglais) associée
au corps du composant. De places de paramètres permettent de mémoriser les données
dépendantes de chaque instance. D’autre part, des places d’interfaces permettent la
modélisation de communications asynchrones avec d’autres composants. Cette approche peut
s’appuyer sur une modélisation hiérarchique naturellement supportée par CPN Tools avec son
mécanisme de transitions de substitution, le résultat étant un modèle du niveau global qui
présente la structure et les interactions entre instances et, des modèles des composants détaillés
qui réalisent le fonctionnement de chaque composant.

Dans le second cas (jetons structurés), ce sont les jetons qui portent toutes les informations
nécessaires à l’instanciation. Le modèle présente une meilleure flexibilité qui permet de
faciliter la modification des composants (l’ajout, l’enlèvement d’un composant). Pourtant la
hiérarchie du modèle disparait, ce qui le rend moins lisible. Dans ce second cas, le modèle
complet reflète moins bien la structuration réelle du système. Pour ces raisons la première
solution par module paramétrique a été choisie pour la suite des travaux de thèse.

RESUME SUBSTANTIEL (EN FRANÇAIS)

248

Nous proposons également plusieurs solutions pour modéliser les interfaces afin de réaliser la
communication entre les instances des composants constituant le système. Les trois solutions
s’appuient, respectivement, sur : la hiérarchisation de CPN Tools (ports/sockets), la place de
fusion (fusion places), et le partage de fichiers. Les trois solutions sont comparées et sont
toutes utilisées dans la modélisation d’un système de contrôle de trains selon leurs
adaptabilités. La dernière solution est proposée dans l’objectif d’appréhender des modèles
complexes potentiellement développés de façon distribuée.

Ce travail se consacre également à une modélisation détaillée du système ETCS intégrant les
contraintes imposées par les normes et standards ERTMS/ETCS-2. Nous proposons la
modélisation du système ETCS en trois niveaux fonctionnels :

- Modélisation des modes (de marches) et des transitions entre modes ;

- Modélisation de procédures ;

- Modélisation de fonctions.

Lors de la modélisation des modes, nous avons exploité la possibilité offerte par les RdPC de
CPN Tool, afin d’associer des priorités aux transitions. Cela permet de rendre l’exécution du
model déterministe en privilégiant le franchissement de certaines transitions en cas de conflit.
Ces priorités entre transitions nous permettent de modéliser les priorités en matière de
changement de modes telles que spécifiées par les exigences du standard ERTMS/ETCS.
L’étape de vérification du modèle des modes de marche devra permettre de vérifier que les
transitions entre modes sont déterministes et qu’à tout instant, il ne peut y avoir qu’un seul
mode d’activé.

La modélisation de procédures s’appuie sur trois étapes : une étape de transformation
syntaxique d’un diagramme d’opérations (flowchart en Anglais) en Réseau de Petri Coloré,
une étape de raffinement (structurel et comportemental) dans l’objectif d’intégrer les
opérations demandées par le flowchart dans le modèle et, une étape de réduction dans l’objectif
de supprimer d’éventuels états redondants du modèle.

La modélisation de fonctions propose des solutions pour modéliser en Réseau de Petri Coloré
les fonctions synchrones et asynchrones, ainsi que des techniques pour modéliser et manipuler
des structures de données applicables aux systèmes de contrôle des trains.

D’un point de vue structurel, la méthode développée propose des modèles pour trois
composants majeurs d’un système ferroviaire : les trains, les Radio Bloc Centre (RBC) qui
permet de contrôler les lignes ferroviaires et les contrôleurs de nœuds ferroviaires. A ces
composants nous devons associer des fonctions. La complexité du système est due au fait que
certaines fonctions sont distribuées entre plusieurs composants. C’est par exemple le cas de la
fonction d’autorisation de mouvement (ou Movement Authority en anglais, MA en abrégé) qui
est distribué entre les trains et un RBC contrôlant une ligne ferroviaire. De même, nous
proposons la modélisation de la fonction de routage des trains dans un nœud ferroviaire. Cette

RESUME SUBSTANTIEL (EN FRANÇAIS)

249

fonction est distribuée entre les trains et un contrôleur du nœud ferroviaire. Afin d’évaluer les
capacités de modélisation des deux formalismes en RdP que nous avons retenus, notons que
les fonctions du RBC ont été modélisées en WFN (au lieu de CPN Tools). Cela nous a permis
d’illustrer des avantages et des inconvénients des différents formalismes de modélisation.
Ainsi, malgré une meilleure capacité à permettre de faire de la vérification formelle, WFN ne
parait adapté pour modéliser la complexité de systèmes comme un système ferroviaire. Nous
faisons ce constat, malgré les nombreux patrons que nous avons proposé dans ce travail de
thèse pour enrichir les capacités de modélisation de WFN tout en conservant ses capacités
d’analyse qui sont plus riches que celles offertes par les RdPC. Les trois patrons de
modélisation proposés sont :

- L’arc conditionnel ;

- La fonction prédécesseur (qui est basée sur la fonction successeur existante) ;

- La structure de liste ainsi que ses opérations associées modélisées en WFN (insertion
d’un élément en tête de liste, suppression d’un élément de la fin de liste, modification
d’un élément, consultation des valeurs d’un élément).

L’utilisation de ces patrons est ensuite illustrée au travers de la modélisation des fonctions du
RBC.

Pour garantir la sûreté, les propriétés d’un système critique doivent être vérifiées avant sa mise
en œuvre. Il est fortement recommandé d’utiliser des méthodes formelles pendant le cycle de
développement du système critique. La dernière partie de cette thèse s’intéresse aux méthodes
de vérification formelle de systèmes complexes modélisés en Réseaux de Petri de haut niveau.
A partir d’un modèle en Réseaux de Petri, les méthodes traditionnelles permettant l’analyse
du système incluent les méthodes par model-checking et les méthodes basées sur le calcul des
invariants. Nous nous sommes notamment intéressés aux méthodes par model-checking pour
profiter de la possibilité de vérifier automatiquement des propriétés.

Cette thèse introduit plusieurs types de propriétés à vérifier (les propriétés standards des
modèles RdPs comme la finitude ou la vivacité, les propriétés définies par les utilisateurs, et
les propriétés liées aux performances). Il existe différents formalismes pour modéliser des
propriétés d’un système. Nous avons retenu l’exploitation de logiques temporelles comme
CTL. En effet CPN Tools intègre un model-checker basé sur ASK-CTL, un variant de CTL.

La vérification par model-checking nécessite d’avoir construit au préalable le graphe des
marquages du modèle. Dans ce cadre le problème majeur est l’explosion combinatoire liée à
la construction de cet espace d’états pour des systèmes complexes comme un système
ferroviaire. Certaines techniques permettent d’alléger l’explosion combinatoire : la
construction d’un espace d’état plus compact ; la réduction de l’espace d’état ; la construction
à la volée ou encore optimisation spatiale et/ou temporelle des algorithmes de construction et
d’exploration … Mais la vérification par model-checking de certaines propriétés sur un

RESUME SUBSTANTIEL (EN FRANÇAIS)

250

modèle global du system de contrôle de trains proposé par le chapitre 4 de ce mémoire reste
difficile ou même infaisable.

Afin de réduire la complexité de la vérification des systèmes visés par cette thèse, on aborde
plusieurs méthodes de vérification d’une façon modulaire, y compris : l’analyse basée sur les
modèles de Réseaux de Petri modulaires (construction d’espace d'états modulaires), la
vérification compositionnelle, le raisonnement à hypothèses-garanties, et la vérification
incrémentale. A noter que ces méthodes modulaires peuvent être exploitées en même temps
avec les approches introduites dans le paragraphe ci-dessus.

Cette thèse propose une méthode originale de réduction de l’espace d’états d’un modèle
modulaire en se basant sur une sémantique réactive des RdP. La sémantique réactive permet
de franchir rapidement plusieurs transitions d’un module. Combinée à la sémantique
traditionnelle du Token Player, elle permet de réduire l’entrelacement entre le franchissement
des transitions du module basé sur la sémantique Token Player et celles basées sur la
sémantique réactive. Tout se passe comme si entre deux tirs de transitions d’un module en
sémantique Token Player, on recherche un état stable dans le franchissement des transitions
des modules en sémantique réactive. Cette approche permet de vérifier un composant d’un
système en lui associant une sémantique Token Player alors que les autres composants
considérés comme appartenant à son environnement sont interprétés en sémantique réactive.

Plusieurs cas d’études de vérification sont présentés à la fin de cette thèse pour justifier que
les méthodes introduites s’appliquent sur les modèles en Réseaux de Petri de hauts niveaux
d’un système complexe de contrôle des trains, pour vérifier de diverses propriétés, que ce soit
au niveau d’un composant ou au niveau d’une fonction du système global.

Pour conclure, cette thèse aborde la problématique du développement formel des systèmes
d'événement discret (DES) complexes, notamment la réduction du problème de l’explosion
combinatoire existant dans les phases de modélisation et de vérification. Des solutions sont
détaillées à trois niveaux :

- Niveau technique

- Niveau méthodologique

- Niveau du domaine d’application (système de contrôle ferroviaire)

En synthétisant ces solutions, ce travail propose une méthodologie qui permet de modéliser et
vérifier formellement un système de contrôle des trains d’une façon modulaire, dans l’objet
de réduire la complexité.

Bien que certaines techniques (e.g., les patterns de modélisation en WFN, la réduction
d’espace d’états s’appuyant sur les réseaux réactifs) soient proposées et illustrées avec un
système de contrôle des trains, leur application pourrait être bien plus générale pour faciliter

RESUME SUBSTANTIEL (EN FRANÇAIS)

251

la modélisation et la vérification de systèmes à événements discrets complexes, appartenant à
d’autres domaines que le ferroviaire.

Au niveau des perspectives, il est nécessaire de poursuivre le travail sur l’amélioration des
méthodes de vérification. Pour l’instant, même une technique comme la vérification modulaire
par un mixe entre sémantique Token Player et sémantique réactive, n’est applicable que dans
le cadre de la vérification des propriétés spécifiques à un composant générique. Il n’est pas
par exemple possible d’utiliser cette technique pour vérifier, sur le modèle global d’un système,
l’existence des erreurs de spécification ou de modélisation qui pourraient conduire à des
collisions de train sur une ligne ou un nœud ferroviaire.

Titre : Modélisation et Vérification Formelles de Systèmes de Contrôle de Trains
Résumé : Le degré d'automatisation des systèmes de contrôle ferroviaire est en constante
augmentation. Les industriels ferroviaires ont besoin d'un niveau accru de sûreté pour
remplacer les conducteurs par des systèmes de contrôle automatique des trains (ATC).
Cependant, la complexité du système est également fortement accrue par l'intégration des
fonctions automatiques, ce qui rend difficile l'analyse de ces systèmes.
Différentes méthodes de modélisation peuvent être utilisées pour construire les modèles du
système au niveau d'abstraction approprié. Les méthodes de modélisation formelles et les
méthodes de vérification formelles fournissent un cadre crucial pour assurer les propriétés de
sûreté. Les Réseaux de Petri constituent un outil formel approprié à la modélisation de
systèmes critiques car ils permettent de construire des modèles dynamiques pouvant être
simulé et ils offrent également la possibilité de faire des vérifications analytiques.
Dans cette thèse, nous utilisons les Réseaux de Petri Colorés (CPN) et les Réseaux de Petri
bien formés (WFN) pour modéliser et vérifier des systèmes complexes comme les systèmes
ferroviaires. Une méthodologie basée sur la modularité et la hiérarchisation est proposée. Elle
propose également des méthodes permettant de faire de la vérification modulaire basée sur le
model-checking tout en réduisant l’explosion combinatoire. Les résultats obtenus sont
appliqués aux systèmes de contrôle et signalisation ferroviaire mais ils peuvent être généralisés
à d’autres systèmes à événements discrets complexes.
Mots clés : Systèmes à Evénements Discrets ; Réseaux de Petri Colorés ; Réseaux de Petri
bien formés ; Modélisation formelle ; Vérification formelle ; Systèmes ferroviaires ; Système
de contrôle automatique des trains

Title: Formal Modeling and Verification of Train Control Systems
Abstract: The automation degree of railway control systems is constantly increasing. Railway
industry needs the enhanced level of safety and reliability guarantee to replace the drivers by
Automatic Train Control (ATC) systems. However, the system complexity is also heavily
increased by the integration of automatic functions, which has caused the difficulty to analyze
these systems.
Different modeling methods can be used to build the system models at the appropriate level
of abstraction. Formal modeling methods and formal verification methods can provide crucial
support to ensure safety and reliability properties. Petri Nets are a suitable tool for modeling
critical systems such as automatic train control systems. The Petri nets models can also be
formally verified as they are, on the one hand, executable and thus suitable for a simulation
and, on the other hand, possible to be verified via analysis.
In this thesis, we use Colored Petri Nets (CPNs) and Well-formed nets (WFN) to model and
verify the large-scale and complex system such as railway control systems. A methodology
based on modularity and hierarchization is proposed. Some modular verification methods are
also proposed based on model-checking to reduce the combinatorial explosion. The
methodology can be applied to railway control systems but can also be generalized to be used
with others complex discrete event systems.
Keywords: Discrete event systems (DES), Colored Petri nets (CPN); Well-formed nets
(WFN); Formal modeling; Formal verification; Railway systems; Automatic train control.

	Formal Modeling and Verification of Train Control Systems
	Contents
	List of Figures
	List of Tables
	List of Terminologies
	Chapter 1 Introduction
	1.1 Application Framework and Motivation
	1.1.1 Safety-critical Systems
	1.1.2 Autonomous Trains
	1.1.3 Difficulties and Current Situation of Applying Autonomous Trains

	1.2 Theoretical Framework
	1.2.1 Modeling of Discrete Event System (DES)
	1.2.2 Verification of Discrete Event System (DES)

	1.3 Problem Statement
	1.4 Contribution of the Dissertation
	1.4.1 Methodological Contributions
	1.4.2 Technical Contributions
	1.4.3 Railway Control Applications

	1.5 Organization of the Dissertation

	Chapter 2 Railway System and Train Control
	2.1 Introduction to Chapter 2
	2.2 Terminology of Railway Systems
	2.2.1 Railway network structure
	2.2.1.1 Railway line
	2.2.1.2 Railway station and railway node

	2.2.2 Basic Railway Elements and Equipment
	2.2.3 Train Detection, Blocks and Balise
	2.2.3.1 Train Detection and Track Circuit
	2.2.3.2 Railway Blocks
	2.2.3.3 Balise

	2.3 Train Control Systems
	2.3.1 Terminology of Train Control
	2.3.2 History of Train Control System Development

	2.4 Automatic Train Control (ATC) of Metro Systems and CBTC
	2.4.1 Metro Systems and Grades of Automation (GoA)
	2.4.2 Automatic Train Control (ATC) System
	2.4.3 Communications-Based Train Control (CBTC)

	2.5 Development Tendency of Train Control Systems
	2.5.1 Information transmission
	2.5.2 Onboard and trackside equipment
	2.5.3 Moving blocks
	2.5.4 Interoperability and fusion of different train control systems

	2.6 ERTMS / ETCS
	2.6.1 Necessity of Developing and implementing ERTMS
	2.6.2 ERTMS Specifications and Legislation
	2.6.3 ERTMS System Composition
	2.6.4 ETCS Levels and their Train Control Methods

	2.7 Conclusion of Chapter 2

	Chapter 3 State-of-the-Art for the Train Control System Development
	3.1 Introduction to Chapter 3
	3.2 Review of Methods for Train Control Systems Development
	3.2.1 Railway Safety Standards and Formal Methods
	3.2.1.1 Railway safety standards
	3.2.1.2 Formal methods application in the railway industry

	3.2.2 Requirements Specification Methods
	3.2.2.1 Requirement Modeling Methods and Tools
	3.2.2.2 Requirements Verification and Validation

	3.2.3 System Design Modeling
	3.2.3.1 System Structural Modeling
	3.2.3.2 System Behavior Modeling

	3.2.4 Implementation Methods
	3.2.5 Verification Methods and Tools
	3.2.5.1 Testing
	3.2.5.2 Simulation
	3.2.5.3 Model checking
	3.2.5.4 Theorem proving
	3.2.5.5 Equivalence checking
	3.2.5.6 Abstract Interpretation and Invariant Method
	3.2.5.7 Quantitative Analysis
	3.2.5.8 Comparison of Verification and Validation Methods

	3.2.6 Whole lifecycle tools
	3.2.6.1 Rodin Based on Event-B
	3.2.6.2 SCADE Suite
	3.2.6.3 CPN Tools based on Petri nets
	3.2.6.4 RAISE development method
	3.2.6.5 Comparison of whole lifecycle tools

	3.3 Petri Nets
	3.3.1 Classification of Petri Net Variants
	3.3.1.1 Vertical dimension: Abstraction and hierarchy of Petri nets
	3.3.1.2 Horizontal dimension: Extensions of Petri net
	3.3.1.3 Ease of theoretical analysis

	3.3.2 Colored Petri Net (CPN)
	3.3.2.1 Multiset
	3.3.2.2 Syntax of CPN
	3.3.2.3 Semantics of CPN
	3.3.2.4 CPN Tools and CPN Extensions

	3.3.3 Well-Formed Petri Nets and Symbolic Reachability Graph
	3.3.3.1 The Trade-off between Expressiveness and Analysis Capability
	3.3.3.2 Informal introduction to well-formed Petri nets
	3.3.3.3 Symbolic Reachability Graph (SRG)
	3.3.3.4 Tools supporting WFN

	3.4 Petri Nets Based Modeling Methods for Train Control Systems
	3.4.1 CPN-Based Modeling Methods for Train Control
	3.4.2 WFN based modeling formalism and comparison with CPN

	3.5 Conclusion of Chapter 3

	Chapter 4 Modular Modeling for Train Control Systems
	4.1 Introduction to Chapter 4
	4.2 Modular Modeling Methodology of Train Control Systems
	4.2.1 Structural Decomposition
	4.2.2 Functional Decomposition
	4.2.3 Mapping the Structural and Functional Decompositions
	4.2.4 Specification of Abstracted System Model
	4.2.4.1 Example of an abstracted system model
	4.2.4.2 Modeling assumptions of the abstract system model

	4.3 Structural Modeling of Train Control System
	4.3.1 Introduction to Structural Modeling
	4.3.2 Component Modeling
	4.3.2.1 Parametric module representation
	4.3.2.2 Structured token representation

	4.3.3 Interface Modeling and Communication Techniques
	4.3.3.1 Introduction to the modeling of communication
	4.3.3.2 Modeling of Interface by CPN Tools hierarchy
	4.3.3.3 Modeling of Interface by fusion places
	4.3.3.4 Modeling of Interface via the file system

	4.4 Functional Modeling for ETCS Onboard System
	4.4.1 Functional Analysis of ETCS Onboard System
	4.4.2 Modeling of Modes and Mode Transitions
	4.4.2.1 Introduction to ETCS Modes
	4.4.2.2 Introduction to Mode Transitions
	4.4.2.3 Modeling of Mode and Mode Transitions in CPN Tools

	4.4.3 Modeling of Procedures
	4.4.3.1 Introduction to the Modeling of Procedures
	4.4.3.2 Stage 1: Syntactic Transformation
	4.4.3.3 Stage 2: Semantic refinement with operations and conditions
	4.4.3.4 Stage 3: Semantic Reduction with Aggregation Rules

	4.4.4 Modeling of Onboard Functions
	4.4.4.1 ETCS Onboard Function Introduction
	4.4.4.2 Modeling of Onboard Functions

	4.4.5 Modeling of Onboard Data
	4.4.5.1 Introduction to onboard data
	4.4.5.2 Modeling method of onboard data using CPN Tools

	4.5 Modeling of Railway Node with Automated Routing Function
	4.5.1 Routing Function in a Railway Node
	4.5.2 Modeling of railway node component using CPN Tools
	4.5.3 Perspectives of modeling a railway node

	4.6 General WFN Modeling Patterns: Application for RBC Modeling
	4.6.1 Modeling of RBC Component using WFN
	4.6.2 General WFN Modeling Patterns for Complex DES
	4.6.2.1 Conditional arc modeling in WFN
	4.6.2.2 Predecessor function and its WFN implementation
	4.6.2.3 Modeling of the list structure in high-level Petri nets

	4.6.3 Modeling of RBC Component using WFN Modeling Patterns
	4.6.3.1 Introduction to RBC and MA
	4.6.3.2 Modeling of RBC model in WFN

	4.7 Conclusion of Chapter 4

	Chapter 5 Verification Methods of Train Control System
	5.1 Introduction to Chapter 5
	5.2 Formal Verification and Analysis Techniques of Petri Nets Models
	5.2.1 Formal Verification Based on State Space Methods
	5.2.1.1 Model Checking
	5.2.1.2 State space construction and exploration
	5.2.1.3 Challenges and solutions to the state space analysis techniques

	5.2.2 Formal Verification based on Invariant Calculation
	5.2.3 Formal Description of Properties
	5.2.3.1 Related works of the property description
	5.2.3.2 Property description of Petri nets
	5.2.3.3 Formalisms of property specification and temporal logic

	5.2.4 Verification for CPN Tools Models
	5.2.4.1 ASK-CTL
	5.2.4.2 Verification within CPN Tools
	5.2.4.3 ASAP

	5.3 Modular Verification and Analysis Methods for Petri Nets Models
	5.3.1 Introduction to Modular Verification Methods of Petri Nets Models
	5.3.2 Analysis Methods for Modular Petri Nets
	5.3.3 Compositional Verification
	5.3.4 Assume-Guarantee Reasoning
	5.3.5 Incremental Analysis Approach

	5.4 State Reduction based on Reactive Semantics and Transition Priority
	5.4.1 Reactive Nets
	5.4.1.1 Related definition
	5.4.1.2 An informal introduction to Reactive Nets

	5.4.2 Global System Composed of Multiple Reactive Components
	5.4.3 State Reduction using Transition Priority

	5.5 Case Study: Verification of Mode Transitions
	5.5.1 Verification of Mode Transitions in an Isolated Way
	5.5.2 Verification of Safety Property in a Global Way with a Scenario

	5.6 Case Study: Verification of MA Function using Assume-Guarantee
	5.6.1 Background of the Case Study and the desired Property
	5.6.2 Environment Abstraction using Assume-Guarantee
	5.6.2.1 Abstraction of Balise
	5.6.2.2 Abstraction of RBC and the predecessor train

	5.6.3 Verification of Train Model using Assume-Guarantee
	5.6.4 Discussion of the Verification Result and Improvement

	5.7 Conclusion of Chapter 5

	Chapter 6 Conclusions of the Thesis and Perspectives
	6.1 Conclusions
	6.2 Perspectives

	Appendix A Introduction to Petri Nets
	A.1 Place/Transition-nets
	A.2 Predicate/Transition-nets
	A.3 First CP-nets
	A.4 High-level Petri Nets
	A.4.1 Introduction to high-level Petri nets
	A.4.2 High-level Petri Nets Standardization and PNML

	A.5 Historical Development of CPN and Terminology
	A.6 Petri Nets Software and Programming Languages
	A.6.1 Petri Nets Software
	A.6.2 Petri nets and programming languages

	Appendix B Modeling Details of ETCS Onboard System
	B.1 ETCS Mode Transitions
	B.1.1 Transitions Table in System Requirements Specification
	B.1.2 ETCS Mode Transitions Model

	B.2 Procedure “Start of the Mission” (SoM)
	B.2.1 Flowchart of Procedure “Start of the Mission” (SoM)

	B.3 Literal Model of Procedure “Start of the Mission” (SoM)
	B.3.1 Refined CPN Model of Procedure “Start of the Mission” (SoM)

	Appendix C Improvement to the Case Study in §5.6
	References
	Résumé substantiel (en français)
	Titre : Modélisation et Vérification Formelles de Systèmes de Contrôle de Trains
	Title: Formal Modeling and Verification of Train Control Systems

