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Abstract

The Electric Field Integral Equation (EFIE) is widely used to solve wave scattering
problems in electromagnetics using the Boundary Element Method (BEM). In the
frequency domain, the linear systems stemming from the BEM sufer, amongst others,
from two ill-conditioning problems: the low frequency breakdown and the dense mesh
breakdown. Consequently, the iterative solvers require more iterations to converge to
the solution, or they do not converge at all in the worst cases. These breakdowns are
also present in the time domain, in addition to the DC instability which causes the
solution to be completely wrong in the late time steps of the simulations. The time
discretization is achieved using a convolution quadrature based on Implicit Runge-
Kutta (IRK) methods, which yields a system that is solved by Marching-On-in-Time
(MOT).

In this thesis, several integral equations formulations, involving Impedance Bound-
ary Conditions (IBC) for most of them, are derived and subsequently preconditioned.
In a irst part dedicated to the frequency domain, the IBC-EFIE is stabilized for the
low frequency and dense meshes by leveraging the quasi-Helmholtz projectors and a
Calderón-like preconditioning. Then, a new IBC is introduced to enable the develop-
ment of a multiplicative preconditioner for the new IBC-EFIE. In the second part on
the time domain, the EFIE is regularized for the Perfect Electric Conductor (PEC)
case, to make it stable in the large time step regime and immune to the DC instabil-
ity. Finally, the solution of the time domain IBC-EFIE is investigated by developing
an eicient solution scheme and by stabilizing the equation for large time steps and
dense meshes.
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Résumé

L’équation intégrale du champ électrique (EFIE) est très utilisée pour résoudre des
problèmes de difusion d’ondes électromagnétiques grâce à la méthode aux éléments
de frontière (BEM). En domaine fréquentiel, les systèmes matriciels émergeant de
la BEM soufrent, entre autres, de deux problèmes de mauvais conditionnement :
l’augmentation du nombre d’inconnues et la diminution de la fréquence entrainent
l’accroissement du nombre de conditionnement. En conséquence, les solveurs itératifs
requièrent plus d’itérations pour converger vers la solution, voire ne convergent pas du
tout. En domaine temporel, ces problèmes sont également présents, en plus de l’in-
stabilité DC qui entraine une solution erronée en in de simulation. La discrétisation
en temps est obtenue grâce à une quadrature de convolution basée sur les méthodes
de Runge-Kutta implicites.

Dans cette thèse, diverses formulations d’équations intégrales utilisant notamment
des conditions d’impédance aux frontières (IBC) sont étudiées et préconditionnées.
Dans une première partie en domaine fréquentiel, l’IBC-EFIE est stabilisée pour
les basses fréquences et les maillages denses grâce aux projecteurs quasi-Helmholtz
et à un préconditionnement de type Calderón. Puis une nouvelle forme d’IBC est
introduite, ce qui permet la construction d’un préconditionneur multiplicatif. Dans
la seconde partie en domaine temporel, l’EFIE est d’abord régularisée pour le cas
d’un conducteur électrique parfait (PEC), la rendant stable pour les pas de temps
larges et immunisée à l’instabilité DC. Enin, une résolution eicace de l’IBC-EFIE est
recherchée, avant de stabiliser l’équation pour les pas de temps larges et les maillages
denses.
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Preface

The Electric Field Integral Equation (EFIE) is commonly used to solve scattering
problems in electromagnetics using the Boundary Element Method (BEM). Unfortu-
nately, in the frequency domain (time harmonics), the linear system emanating from
the BEM discretization sufers from the dense mesh and the low frequency break-
downs. In other words, when the frequency is decreased or when the number of
unknowns is increased, the condition number of the system increases accordingly.
This ill-conditioning increases the number of iterations required by iterative solvers
to converge to the solution, and in the most extreme cases it prevents them from
converging.

The irst part of this thesis focuses on frequency domain integral equations. The
irst introductory chapter presents the state-of-the-art of computational electromag-
netics that is necessary to understand the work done. In particular, the surface
integral equations are derived from the Maxwell’s equations, the BEM as well as the
basis functions are detailed. Also, the ill-conditioning problems that are encountered
and the preconditioning techniques that are used in this work are reviewed.

In the second chapter, the Leontovich Impedance Boundary Condition (IBC) is
used in conjunction to the EFIE. It results in the IBC-EFIE which sufers from
the breakdowns described above. Using recent preconditioning techniques, a stable
IBC-EFIE is constructed: the new formulation is well-conditioned and yields the
correct solution for arbitrary low frequency and arbitrary dense meshes, both on
simply connected and multiply connected geometries. In particular, to solve the low
frequency breakdown, the quasi-Helmholtz projectors are used to separate and rescale
independently the two Helmholtz components of the ields in the equation. Then, the
unbounded part of the spectrum of the equation, that is responsible of the dense mesh
breakdown, is regularized by leveraging a Calderón-like preconditioning. To obtain
a conforming scheme, the magnetic currents sources are discretized using dual basis
functions.

Then in the third chapter, a new IBC is introduced to build an IBC-EFIE that
can be preconditioned in a multiplicative manner. In the limit of a Perfect Electric
Conductor (PEC), the new formulation tends to the classical Calderón multiplicative
preconditioner. To contrast with the irst one developed in the precedent chapter, this
second IBC-EFIE formulation does not use quasi-Helmholtz projectors which makes
it relatively easy to implement.

In the second part of this thesis, time domain integral equations are investigated.
The fourth chapter is an introduction that is speciic to the time domain. The spacial

ix



Preface

and temporal discretizations yield a system that can be solved with a Marching-On-
in-Time (MOT) algorithm. In addition to the dense mesh breakdown and the large
time step breakdowns (time domain analogue of the low frequency breakdown), the
formulations are plagued by the DC instability. It corresponds to the existence of a
non physical static current in the solution of the equation which produces a wrong
result in the late time steps. Instead of the classical testing with time basis functions,
the temporal discretization can be achieved using a convolution quadrature based on
Implicit Runge-Kutta (IRK) methods.

In the ifth chapter, in the context of a time discretization with an IRK convolu-
tion quadrature, it is explained how the quasi-Helmholtz projectors can be used to
regularize the PEC-EFIE. The new formulation is made stable for large time steps
and immune to the DC instability, while maintaining the compatibility with existing
fast solvers.

Finally in the sixth chapter, the solution of the IBC-EFIE is investigated in the
time domain. Even though a naive discretization of the equation results in a subopti-
mal quadratic complexity of the MOT scheme, an eicient MOT is obtained by taking
advantage of the particular form of the IBC-EFIE operator. Then, using the quasi-
Helmholtz projectors those efectiveness has been established on the PEC-EFIE in
the precedent chapter, a stabilization strategy is developed for the new MOT scheme
by making use of the preconditioners built for the frequency domain IBC-EFIE. It re-
sults in a large time step and dense mesh stable solver for the time domain IBC-EFIE
that is computationally eicient.
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Résumé long

L’équation intégrale du champ électrique (EFIE) est couramment utilisée pour ré-
soudre des problèmes de difusion d’ondes électromagnétiques grâce à la méthode aux
éléments de frontière (BEM). Cette méthode consiste à reformuler le problème de
difusion dans tout l’espace en terme d’une équation intégrale sur la surface de l’objet
difusant les ondes. Puis, le problème est discretisé en approximant la surface par un
maillage triangulaire sur lequel sont déinies les fonctions de bases Rao-Wilton-Glisson
(RWG) et Bufa-Christiansen (BC). En domaine fréquentiel, le système d’équations
linéaires qui émerge de la discrétisation de la BEM soufre, entre autres, de deux
problèmes de mauvais conditionnement. D’une part lorsque la fréquence de simula-
tion diminue, et d’autre part lorsque le nombre d’inconnues augmente, le nombre de
conditionnement du système augmente en conséquence. Ainsi, les solveurs itératifs
ont besoin de plus d’itérations pour converger vers la solution ce qui ralonge le temps
de résolution, ou ils peuvent ne pas converger du tout dans des cas plus extrêmes.
Le but de cette thèse est d’étudier ces problèmes de mauvais conditionnement dans
plusieurs cas dans les domaines fréquentiel et temporel ain de les résoudre grâce à
diférentes stratégies de préconditionnement. La première partie traite du domaine
fréquentiel et la seconde partie le domaine temporel. Chaque partie comporte trois
chapitres dont une introduction et les développements de deux formulations.

Le premier chapitre de cette thèse est introductif. Les équations intégrales sont
d’abord dérivées à partir des équations de Maxwell. Ensuite, les fonctions de bases
mises en jeu sont présentées. Enin, les problèmes de préconditionnement ainsi que
certaines de leurs solutions sont expliqués dans le cas d’un conducteur électrique idéal
(PEC).

Les conditions d’impédance aux limites (IBC) sont très utilisées pour modéliser les
matériaux impénétrables avec pertes. En notant J s la densité de courant électrique
de surface, M s la densité de courant magnétique de surface, zimp l’impédance et n̂

la normale à la surface, l’IBC classique de Leontovich se note

M s = −zimpn̂× J s. (1)

Lorsque les IBC sont combinées à l’EFIE, il en résulte l’IBC-EFIE qui peut s’écrire
de façon pratique

SJ s = −n̂×Einc (2)
où Einc est le champ électrique incident et S est l’operateur de l’IBC-EFIE. Ain de
discrétiser conformément l’équation, les densités de courants électriques de surface
sont représentés par les fonctions de base RWG, tandis que les courants magnétiques
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sont représentés par des fonctions de base BC. Une fois l’équation discrétisée, le
système linéaire à résoudre est

SJ = E. (3)
Ce système soufre des problèmes de conditionnement décris plus haut. Dans le deux-
ième chapitre, ce problème est étudié analytiquement sur une sphère en utilisant les
harmoniques sphériques vectorielles (VSH). Il est montré que contrairement au con-
ducteur électrique idéal pour lequel la PEC-EFIE a un nombre de conditionnement qui
croît quadratiquement avec l’inverse de la fréquence et l’inverse de la taille moyenne
des arêtes du maillage, dans le cas le l’IBC-EFIE l’accroissement est seulement linéaire
en général mais il depend également de l’impédance. Ensuite une IBC-EFIE stable
est développée. Cette nouvelle formulation est bien conditionnée et délivre la bonne
solution pour des fréquences arbitrairement basses et des maillages arbitrairement
denses, à la fois sur des géométries à connexité simple ou multiple. Plus précisement,
l’utilisation des projecteurs quasi-Helmholtz pour séparer et redimensionner indépen-
damment les deux composantes de la décomposition de Helmholtz des champs, permet
d’obtenir une formulation stable à basse fréquence. Celle-ci s’écrit

LSRY = LE, (4)

où L est le préconditionneur à gauche qui a pour but d’empêcher l’annulation de
la partie solénoïdale de l’excitation, R est le préconditionneur à droite qui a pour
but d’empêcher les annulations numériques dans le courant et Y est une inconnue
auxiliaire pour laquelle le système préconditionné est résolu (J = RY). Puis, un
préconditionnement de type Calderón utilisant les propriétés spectrales des opérateurs
permet de régulariser la partie non bornée du spectre. Ainsi, la formulation stable à
basse fréquence et pour les maillages denses est

T̃G
−1
m LSRY = T̃G

−1
m LE, (5)

où T̃ est le préconditionneur discrétisé avec les fonctions BC et G
−1
m est l’inverse de

la matrice de Gram mixte permettant le passage entre les discrétisations avec des
fonctions RWG et BC.

Dans le troisième chapitre, une nouvelle forme d’IBC est introduite dans le but
de construire une IBC-EFIE qui peut être préconditionnée multiplicativement. La
nouvelle IBC se note

M s = −zimpNδJ s (6)
où Nδ est un opérateur déini à partir de la partie singulière Ts de l’opérateur de la
PEC-EFIE avec un nombre d’onde complexe:

Nδ = 2ikTs|ik= 1+i

δ
. (7)

L’idée est de remplacer l’IBC de Leontovich par une IBC diférente ain que, d’une
part, la solution du problème reste inchangée dans une marge de tolérance contrôlable
grâce au paramètre δ s’apparentant à la distance caractéristique de l’efet de peau,
et d’autre part, la nouvelle IBC modiie qualitativement les propriétés spectrales de
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l’opérateur de l’IBC-EFIE, ce qui le rend plus simple et plus naturel à précondition-
ner. Une étude du nouvel opérateur basées sur les VSH permet d’obtenir la solution
analytique sur une sphère d’une part, et le comportement de la nouvelle IBC-EFIE à
basse fréquence et pour les maillages denses d’autre part. Ainsi le système précondi-
tionné s’écrit

T̃G
−1
m SJ = T̃G

−1
m E (8)

où le préconditionneur discrétisé avec les fonctions BC est

T̃ = −ikTs +
1

ik + 1+i
δ

zimp

η

Th. (9)

Dans la limite du conducteur électrique idéal (PEC) i.e. lorsque zimp → 0, la nouvelle
formulation se réduit à la PEC-EFIE munie de son preconditionneur multiplicatif
classique. Cette seconde formulation se diférentie aussi de la première par la non-
utilisation des projecteurs quasi-Helmholtz, ce qui la rend plus simple à implémenter.

La seconde partie de cette thèse s’intéresse à la résolution d’équations intégrales en
domaine temporel. Les discrétisations en espace et en temps produisent un système
qui peut être résolu par une procédure de marche dans le temps (MOT). En plus
des problèmes de maillages denses et de pas de temps larges (l’analogue des basses
fréquences en domaine temporel), les formulations soufrent aussi d’instabilités DC.
Elles correspondent à l’existence d’un courant statique non-physique dans la solution
de l’équation ce qui donne un résultat complètement erroné dans les derniers temps
de la simulation. Au lieu de tester l’équation avec les fonctions de base temporelles
comme il est fait classiquement, la discrétisation en temps peut aussi être obtenue
par le biais d’une quadrature de convolution basée sur les méthodes de Runge-Kutta
implicites. Un avantage pratique de cette technique est qu’il est relativement simple
d’obtenir un solveur en domaine temporel à partir d’un solveur en domaine fréquentiel.
Tout ceci est présenté dans le quatrième chapitre qui est un chapitre introductif dédié
uniquement au domaine temporel.

Dans le cadre d’une discrétisation en temps basée sur les méthodes de Runge-
Kutta implicites, le cinquième chapitre explique comment les projecteurs quasi-Helmholtz
peuvent être utilisés pour régulariser la PEC-EFIE. La stabilisation est en fait réalisée
dans le domaine de Laplace où la matrice d’intéractions Z(s) est préconditionnée à
gauche par L(s) et à droite par R(s). La matrice préconditionnée est notée

Z
reg(s) = L(s)Z(s)R(s). (10)

En suivant la procédure de discrétisation temporelle utilisant la quadrature de con-
volution basée sur les méthodes de Runge-Kutta, la MOT obtenue est donnée par la
formule

Z
reg
0 Yi = Vi −

Nconv∑

j=1

Z
reg
j Yi−j (11)

où (Zreg
j )j est la séquence de matrices d’intéractions dont le premier élément Z

reg
0 a

un nombre de conditionnement stable lorsque le pas de temps ∆t → +∞, (Yi)i est
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une séquence de vecteurs obtenue par la MOT étant utilisée pour récupérer la densité
de courant du problème original, et (Vi)i est la séquence de vecteurs d’excitation
conforme à la stabilisation efectuée sur la formulation. Ainsi, l’équation est rendue
stable pour des pas de temps larges et immunisée à l’instabilité DC. Ceci est fait tout
en maintenant la compatibilité avec les solveurs rapides existants.

Enin, la résolution de l’IBC-EFIE en domaine temporel est étudiée dans le sixième
chapitre. Une discrétisation naïve de l’équation résulte en une procédure de MOT
sous-optimale dont la complexité algorithmique est quadratique. Ceci est dû aux
pertes introduites par l’impédance qui se retrouvent dans les matrices d’intéractions
et par conséquent, leur nombre n’est pas borné. Il est montré qu’une MOT eicace
peut être obtenue en tirant avantage de la forme particulière de l’opérateur de l’IBC-
EFIE. En efet, au lieu d’avoir l’impédance dans les matrices d’intéractions, il est
possible de la déplacer dans une séquence de vecteurs auxiliaires

M′
i = −G̃

−1
m G̃

i∑

j=1

z̃
imp
j Ji−j (12)

qui sont calculés rapidement à chaque pas de temps grâce à un algorithme basé sur la
transformée de Fourier rapide (FFT). Ceci permet alors d’obtenir une MOT eicace
n’utilisant que les matrices d’intéractions du conducteur électrique idéal:

S
der
0 Ji = Eder

i −η

i∑

j=1

T
der
j Ji−j−

i∑

j=1

(
1

2
G̃ms̃j −K

der
j

)
Mi−j−

(
1

2
G̃ms̃0 −K

der
0

)
M′

i. (13)

Puis, en utilisant les projecteurs quasi-Helmholtz dont l’eicacité à été prouvée sur la
PEC-EFIE dans le chapitre précédent, une stratégie de stabilisation est développée
pour la nouvelle MOT en réutilisant les préconditionneurs construits pour l’IBC-
EFIE en domaine fréquentiel. Il en résulte un solveur pour l’IBC-EFIE en domaine
temporel ayant une complexité asymptotique eicace, et étant stable pour les pas de
temps larges et les maillages denses.
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Chapter 1

Background and notations

This chapter introduces the basic concepts of computational electromagnetics that are
necessary to comprehend the work presented in this thesis. First, the surface integral
equations to be solved are derived from the Maxwell’s equations in the frequency
domain. Then, the Boundary Element Method (BEM) and the basis functions used
for the spacial discretization of the integral equations are detailed. A section is
dedicated to the presentation of the Impedance Boundary Conditions (IBC) that have
a prevalent presence in this work. The last section is an overview of the problems
of ill-conditioning that can arise in the linear systems originating from the Boundary
Element Method (BEM), and a presentation of the techniques of preconditioning used
to treat these problems.

1.1 Introduction to computational electromagne-
tics

Computational electromagnetics is the science of solving the Maxwell’s equations
numerically. It is a vast topic of active research that aims to improve the existing
solving algorithms and formulations on one or several features including:

• The computational complexity in time and memory. The Boundary Element
Method (BEM) that is used in this work yields a linear system of N equations
and N unknowns that would have a quadratic (O(N2)) complexity in space
(memory) and a cubic (O(N3)) complexity in execution time, if it was solved
naively. Since computers have a limited processing power and a limited mem-
ory, an algorithm is usually considered to be fast or scalable if its asymptotic
complexity is linear, up to a logarithmic factor (O(N log(N)k)). In this work,
formulations compatible with this latter range of complexity are looked for.

• The parallelization. With the increasing number of cores in processors and the
increasing number of nodes in supercomputers, the scalability of the paralleliza-
tion is a topic that is becoming more and more ubiquitous.
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1.1. Introduction to computational electromagnetics

• The precision. Computers work with loating point numbers that have a inite
precision. Therefore, the solvers need to ensure that a small error of approx-
imation at the beginning of an algorithm does not yield a large error in the
result at the end.

• The accuracy. Somehow linked to the precision, it refers to the accurate com-
putation of a quantity with the maximum or a given number of correct digits.

• The stability. It is related to the behaviour of a scheme when a given pa-
rameter (frequency, number of time steps, mesh density, physical parameters
such as the impedance, etc.) is changed. Stable formulations tend to have the
same computational cost and precision, independently of the parameters of the
simulation.

These features are linked to each other and usually trade-ofs have to be done to
privilege one over the others. The most obvious trade-of is with the computational
cost, but estimating the accuracy, the precision or the stability of an algorithm is
also an important topic of research that requires advanced mathematical tools in
numerical error analysis.

The focus of this work is on preconditioning. The starting point of preconditioning
is an original formulation that gives rise to an ill-conditioned linear system. For
example, the condition number of the system increases when the mesh corresponding
to the geometry of the scatterer is reined (dense mesh breakdown) or when the
frequency decreases (low frequency breakdown). As iterative solvers are used to solve
the linear system, in general the larger is the condition number, the more iterations
are needed to converge to the solution. The goal of preconditioning is to multiply the
original matrix by another one such that the condition number of the product is lower
than the condition number of the original matrix, and as consequence it reduces the
number of iterations required to solve the problem.

By involving additional quantities to be computed compared to the original for-
mulations, the preconditioned formulations seem more complicated. But overall, the
preconditioning improves the time complexity by reducing the number of iterations
required for the convergence to the solution. It also improves the precision because a
low condition number means that a small error in the input will not result in a large
error in the solution. In this work, the preconditioning aims to stabilize the diferent
formulations such that the condition numbers of the systems remain bounded, for
example in the low frequency and dense mesh limits.
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1. Background and notations

1.2 Surface integral equations
1.2.1 Maxwell’s equations
The starting point of the electromagnetic theory is the set of Maxwell’s equations.
The local equations at a position r and time t read

∇ ·D (r, t) = ρ (r, t) Maxwell-Gauss (1.1a)

∇ ·B (r, t) = 0 Maxwell-Thomson (1.1b)

∇×E (r, t) = −∂B (r, t)

∂t
Maxwell-Faraday (1.1c)

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t) Maxwell-Ampère (1.1d)

where

• E (V/m) is the electric ield intensity,

• H (A/m) is the magnetic ield intensity,

• D (C/m2) is the electric displacement ield,

• B (Wb/m2 or T) is the magnetic lux density,

• ρ (C/m3) is the electric charge density,

• J (A/m2) is the electric current density.

The Maxwell’s equations are completed with the constitutive equations

D = εE (1.2a)
B = µH (1.2b)

where

• ε (F/m) is the permittivity of the medium,

• µ (H/m) is the permeability of the medium.

A priori, ε and µ depend on the position (inhomogeous medium), on the ields (non-
linear medium), on time (non-stationary medium) or frequency (dispersive medium),
and may be tensors (anisotropic medium). However, in this work it is assumed that
the medium has none of these complicating properties so that the permittivity and
the permeability are constant scalars, which is a common practical assumption for
wave propagation in a wide range of media including air and vacuum.
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1.2. Surface integral equations

The permeability and permittivity of vacuum are deined exactly to be

µ0 = 4π10−7 H/m ≈ 1.26× 10−6H/m (1.3a)

ε0 =
1

µ0c20
≈ 8.85× 10−12 F/m (1.3b)

where c0 is the speed of light in vacuum, also deined exactly as

c0 = 299792458 m/s. (1.4)

Finally, the characteristic impedance of vacuum is exactly

η0 =

√
µ0

ε0
= µ0c0 = 119.9169832π Ω ≈ 376.73 Ω. (1.5)

1.2.2 Time harmonic Maxwell’s equations
Deine F(X) the Fourier transform of an R integrable function X that may be scalar
or vector. Here f is the frequency and ω = 2πf is the angular frequency.

F(X)(ω) =

ˆ

t∈R

X(t)e−iωtdt. (1.6)

To simplify the notations the same symbol is used for a function and its Fourier
transform, the distinction being clear from their arguments, so that F(X)(ω) is noted
X(ω) when there is no possible confusion. Using the property of the Fourier transform

F
(
∂X

∂t

)
(ω) = iωF(X)(ω) (1.7)

the Maxwell’s equations are rewritten in the frequency domain (Fourier domain)

∇ ·D (r, ω) = ρ (r, ω) Maxwell-Gauss (1.8a)
∇ ·B (r, ω) = 0 Maxwell-Thomson (1.8b)
∇×E (r, ω) = −iωB (r, ω) Maxwell-Faraday (1.8c)
∇×H (r, ω) = iωD (r, ω) + J (r, ω) Maxwell-Ampère. (1.8d)

Here the time-dependent quantities are real valued and the frequency-dependent
quantities are complex valued. It is very practical to express the Maxwell’s equa-
tions and solve them in the frequency domain, because it usually simpliies many
operations such as the time derivative, the time integration or the time delay.

Usually, a single frequency is used so that any time dependent quantity is sinu-
soidal. At an angular frequency ω, any sinusoidal signal can be written in the form

X(t) = |X(ω)| cos(ωt+ φ(ω)) (1.9a)
= ℜ

(
|X(ω)| eiφ(ω)eiωt

)
(1.9b)

= ℜ
(
X(ω)eiωt

)
(1.9c)
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1. Background and notations

where |X(ω)| is the amplitude and φ(ω) is the phase of the phasor X(ω) = |X(ω)| eiφ(ω).
For example, this scheme is applied on the Maxwell-Faraday equation (1.1c)

ℜ
(
∇×E (r, ω) eiωt

)
= − ∂

∂t

(
ℜ
(
B (r, ω) eiωt

))
(1.10a)

= ℜ
(
−iωB (r, ω) eiωt

)
. (1.10b)

By knowing that only the real part matters, ℜ can be ignored in the computations.
Then, also the time harmonic factor eiωt can be simpliied which results in

∇×E (r, ω) = −iωB (r, ω) (1.11)

which is exactly the equation (1.8c) obtained with the Fourier transform. The main
advantage is that it simpliies many computations with the ields by avoiding the
cumbersome trigonometric functions. However, care must be taken in general as
quantities that are the product of two ields in the time domain (e.g. energy or
power related quantities such as the Poynting vector) do not it in this scheme (since
ℜ(a)ℜ(b) 6= ℜ(ab) in general for a, b ∈ C).

Note that in the literature, numerous authors use the other convention by assum-
ing a e−iωt factor, in which case, most results are converted into the other convention
by lipping the sign in front of the imaginary unit (+i ↔ −i). In this work, the eiωt

convention is used exclusively as described in this section.

1.2.3 Potentials in free space
In this section, the scalar and vector potentials are derived in the frequency domain
at a given angular frequency ω. Assume that the sources in the Maxwell’s equations,
i.e. the charge density ρ (r) and the current density J (r), are known. The goal is to
express the scattered ields in terms of potentials that depends on the sources.

The Maxwell-Thomson equation (1.8b) is ∇ ·B (r) = 0, so it exists a vector ield
A such that

B (r) = ∇×A (r) . (1.12)

A is the vector potential (in V.s/m). It is not unique: its curl ∇ ×A has been set
but its divergence ∇ ·A can still be freely chosen, which is done later with the choice
of gauge. Inserting (1.12) in the Maxwell-Faraday equation (1.8c) results in

∇× (E (r) + iωA (r)) = 0. (1.13)

So it exist a scalar ield φ such that

E (r) + iωA (r) = −∇φ (r) . (1.14)

φ is the scalar potential (in V). It is also non-unique, all the possible choices difering
by a constant ield.
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1.2. Surface integral equations

Then, the equations veriied by the potentials are looked for. The equation for A,
is obtained by expressing µ∇×H in two diferent ways. On one hand using (1.8d),
(1.2a) and (1.14),

µ∇×H (r) = iωµD (r) + µJ (r) (1.15a)
= iωµεE (r) + µJ (r) (1.15b)
= iωµε (−iωA (r)−∇φ (r)) + µJ (r) (1.15c)
= ω2µεA (r)− iωµε∇φ (r) + µJ (r) . (1.15d)

On the other hand using (1.2b) and (1.12),

µ∇×H (r) = ∇×B (r) (1.16a)
= ∇× (∇×A (r)) (1.16b)
= ∇ (∇ ·A (r))−∇

2A (r) . (1.16c)

Equating (1.15d) to (1.16c) and rearranging the terms results in

∇
2A (r) + k2A (r) = −µJ (r) +∇ (iωµεφ (r) +∇ ·A (r)) (1.17)

where the wave number k (in m−1) is introduced as

k = ω
√
µε. (1.18)

Then, for the equation of φ, the quantity 1

ε
∇ ·D is expressed in two diferent ways.

On one hand using (1.8a),

1

ε
∇ ·D (r) =

ρ (r)

ε
. (1.19)

On the other hand using (1.2a) and (1.14),

1

ε
∇ ·D (r) = ∇ ·E (r) (1.20a)

= ∇ · (−iωA (r)−∇φ (r)) (1.20b)
= −iω∇ ·A (r)−∇2φ (r) . (1.20c)

Equaling (1.19) to (1.20c), rearranging the terms, and adding k2φ (r) = −iω (iωµεφ (r))
on both sides results in

∇2φ (r) + k2φ (r) = −ρ (r)

ε
− iω (iωµεφ (r) +∇ ·A (r)) . (1.21)

From (1.12), ∇ × A has been set but the choice of ∇ · A is remaining. Regarding
(1.17) and (1.21), it is clear that the natural choice for ∇ ·A is the Lorenz gauge

∇ ·A (r) = −iωµεφ (r) . (1.22)
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1. Background and notations

With this gauge choice, (1.17) and (1.21) become

∇
2A (r) + k2A (r) = −µJ (r) (1.23a)

∇2φ (r) + k2φ (r) = −ρ (r)

ε
. (1.23b)

The potentials A and φ are solutions of the vector and scalar inhomogeneous Helmholtz
equations. These equations can be solved by inding the Green’s function G(r) that
is the solution of the scalar Helmholtz equation when the right hand side is a point
source represented by a Dirac delta δ(r). Then, the superposition principle is used
to get the solutions for A and φ

∇2G (r) + k2G (r) = −δ(r) (1.24a)

A (r) = µ

˚

r′∈R3

G (r − r′)J (r′) dV ′ (1.24b)

φ (r) =
1

ε

˚

r′∈R3

G (r − r′) ρ (r′) dV ′. (1.24c)

To be solved uniquely, a boundary condition must be added to (1.24a). In free space,
the boundary condition is imposed at ininity to allow outgoing waves only, so that in
R

3 with the eiωt harmonic convention, the Green’s function G veriies the Sommerfeld’s
radiation condition

lim
|r|→+∞

|r|
(
∂G (r)

∂ |r| + ikG (r)

)
= 0. (1.25)

Then, the unique solution for the Green’s function is [1]

G (r) =
e−ik|r|

4π |r| . (1.26)

So, the potentials are

A (r) = µ

˚

r′∈R3

e−ik|r−r′|

4π |r − r′|J (r′) dV ′ (1.27a)

φ (r) =
1

ε

˚

r′∈R3

e−ik|r−r′|

4π |r − r′|ρ (r
′) dV ′ (1.27b)

and the corresponding ields are

E (r) = −iωA (r)−∇φ (r) (1.28a)

H (r) =
1

µ
∇×A (r) . (1.28b)

1.2.4 Potentials for the magnetic sources
While the magnetic sources are not actually physical, it is useful to generalize (or
symmetrize) the Maxwell’s equations by introducing
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1.2. Surface integral equations

• ρm (Wb/m3) the magnetic charge density,

• M (V/m2) the magnetic current density.
The generalized Maxwell’s equations read

∇ ·D (r) = ρ (r) Maxwell-Gauss (1.29a)
∇ ·B (r) = ρm (r) Maxwell-Thomson (1.29b)
∇×E (r) = −iωB (r)−M (r) Maxwell-Faraday (1.29c)
∇×H (r) = iωD (r) + J (r) Maxwell-Ampère. (1.29d)

Assuming that there are no electric sources (i.e. ρ = 0 and J = 0), it is possible
to derive the potentials and the ields scattered by the magnetic sources ρm and M .
The results of the previous section are reused by taking advantage of the symmetry
in Maxwell’s equations and performing the adequate substitutions

E ↔ H (1.30a)
B ↔ −D (1.30b)
ρ ↔ −ρm (1.30c)
J ↔ −M (1.30d)
ε ↔ −µ. (1.30e)

It results in the following vector potential F (in C/m) and scalar potential φm (in A)

F (r) = ε

˚

r′∈R3

e−ik|r−r′|

4π |r − r′|M (r′) dV ′ (1.31a)

φm (r) =
1

µ

˚

r′∈R3

e−ik|r−r′|

4π |r − r′|ρm (r′) dV ′. (1.31b)

The corresponding Lorenz gauge is

∇ · F (r) = −iωµεφm (r) (1.32)

and the corresponding ields are

E (r) = −1

ε
∇× F (r) (1.33a)

H (r) = −iωF (r)−∇φm (r) . (1.33b)

The equations (1.28) are the ields scattered by electric sources in the absence of
magnetic sources. In contrast, (1.33) are the ields scattered by magnetic sources in
the absence of electric sources. Using the superposition principle, the ields scattered
by electric sources and magnetic sources are simply the sum of the ields in (1.28)
and (1.33). Thus the ields scattered by ρ, ρm, J and M are

Esca (r) = −iωA (r)−∇φ (r)− 1

ε
∇× F (r) (1.34a)

Hsca (r) = −iωF (r)−∇φm (r) +
1

µ
∇×A (r) . (1.34b)

9



1. Background and notations

The Lorenz gauges (1.22) and (1.32) are used to substitute φ and φm, so that the
scattered ields are expressed only in terms of the currents J and M via the vector
potentials A and F

Esca (r) = −iωA (r) +
1

iωµε
∇∇ ·A (r)− 1

ε
∇× F (r) (1.35a)

Hsca (r) = −iωF (r) +
1

iωµε
∇∇ · F (r) +

1

µ
∇×A (r) . (1.35b)

1.2.5 Far ield
1.2.5.1 Far ield approximation

The equations for the scattered ields (1.34) are valid everywhere. However, it is
usually useful to compute the ields far away from the sources, in which case some
approximations can be done. Assume that the sources are located at r′ near the
origin, and that the ields are computed at r far from the origin. Thus |r′| ≪ |r|.
With this assumption it holds

|r − r′| ≈ |r| − r̂ · r′ (1.36)

where r̂ denotes the direction of r i.e.

r̂ =
r

|r| . (1.37)

Then, the Green’s function (1.26) can be approximated as

G (r − r′) =
e−ik|r−r′|

4π |r − r′| ≈
e−ik|r|

4π |r|e
ikr̂·r′ (1.38)

so that in the far ield, the potentials (1.27a) and (1.31a) simplify to

A (r) = µ
e−ik|r|

4π |r|

˚

r′∈R3

eikr̂·r
′

J (r′) dV ′ (1.39a)

F (r) = ε
e−ik|r|

4π |r|

˚

r′∈R3

eikr̂·r
′

M (r′) dV ′. (1.39b)

1.2.5.2 Expression of the far ields

When |r| → +∞, the radial parts of iωA (r) and ∇φ (r) cancel each other and the
non-radial part of the gradient of the scalar potential is negligible compared to the
vector potential. Quantitatively, the potentials that are present in the expression of
the electric ield Esca (1.34a) have the following asymptotic behaviours when |r| →

10



1.2. Surface integral equations

+∞

|A (r)| = O

(
1

|r|

)
(1.40a)

|r̂ ×∇φ (r)| = O

(
1

|r|2
)

(1.40b)

r̂ · (−iωA (r)−∇φ (r)) = O

(
1

|r|2
)

(1.40c)

|∇× F (r)| = O

(
1

|r|

)
. (1.40d)

The potentials involved in the scattered magnetic ield have analogous asymptotic
behaviours. In practice, the scattered ields are still computed at a inite distance from
the origin so that the radial components of the scattered ields must be removed from
the vector potentials. Therefore, in the far ield r̂ ·Esca

FF (r) = 0 and r̂ ·Hsca
FF (r) = 0

are enforced by removing the radial components of the vector potentials

Esca
FF (r) = −iω (A (r)− (A (r) · r̂) r̂)− 1

ε
∇× F (r) (1.41a)

Hsca
FF (r) = −iω (F (r)− (F (r) · r̂) r̂) + 1

µ
∇×A (r) . (1.41b)

In addition to that, the scattered ields behave locally like a plane wave in the far
ield region. The ields of a plane wave have the form

Epw (r) = E0e
−ik·rp̂ (1.42a)

Hpw (r) = H0e
−ik·rk̂ × p̂ (1.42b)

=
1

η
k̂ ×Epw (r) (1.42c)

where

• E0 and H0 =
E0

η
are the peak amplitudes of the ields,

• k is the wave vector such that k = |k| is the wave number and k̂ is the direction
of propagation. Note that in the far ield k̂ = r̂,

• p̂ and k̂ × p̂ are the polarization of the electric ield and the magnetic ield,

• η =

√
µ

ε
is the characteristic impedance of the medium.

The polarizations of the ields p̂ and k̂ × p̂ are orthogonal to the direction of propa-
gation (p̂ · k̂ = 0). In other words, the ields have no component along the direction
of propagation, so k̂ ·Epw (r) = 0 and k̂ ·Hpw (r) = 0.

Using the relation between E and H in a plane wave (1.42c), the curl of the vector
potentials are simpliied by considering two plane waves (Esca

FF1,H
sca
FF1) scattered only

11



1. Background and notations

by M (i.e. for which A = 0 in (1.41)) and (Esca
FF2,H

sca
FF2) scattered only by J (i.e.

for which F = 0 in (1.41))

−1

ε
∇× F (r) = Esca

FF1 (r) = −ηr̂ ×Hsca
FF1 (r) = iωηr̂ × F (r) (1.43a)

1

µ
∇×A (r) = Hsca

FF2 (r) =
1

η
r̂ ×Esca

FF2 (r) = − iω

η
r̂ ×A (r) . (1.43b)

The expressions for the far ields inally read

Esca
FF (r) = −iω (A (r)− (A (r) · r̂) r̂) + iωηr̂ × F (r) (1.44a)

Hsca
FF (r) = −iω (F (r)− (F (r) · r̂) r̂)− iω

η
r̂ ×A (r) (1.44b)

or equivalently using the wave number k,

Esca
FF (r) = −ikη

1

µ
(A (r)− (A (r) · r̂) r̂) + ikr̂ × 1

ε
F (r) (1.45a)

Hsca
FF (r) = − ik

η

1

ε
(F (r)− (F (r) · r̂) r̂)− ikr̂ × 1

µ
A (r) . (1.45b)

1.2.5.3 Radar cross section

Let Einc be an incident electric ield that induces some currents on a scatterer. These
currents radiate the scattered electric ield Esca. The Radar Cross Section (RCS)
corresponds to the efective area (in m2) of a scatterer that radiates back the electro-
magnetic ields in a given direction. It is deined as

RCS(r̂) = lim
|r|→+∞

4π |r|2 |E
sca (r)|2
∣∣Einc∣∣2 = 4π |r|2 |E

sca
FF (r)|2
∣∣Einc∣∣2 . (1.46)

It must be noted that the far ields (1.44) vary in O

(
1

|r|

)
with the distance. Also,

|r| |Esca
FF (r)| and |r| |Hsca

FF (r)| depend only on the direction r̂. So the computation
of the RCS with the far ield is actually valid at any distance |r|.

It is very convenient to display the RCS in logarithmic units, so that the RCS in
dBsm (decibel relative to 1 m2) is

RCSdBsm(r̂) = 10log10 (RCS(r̂)) . (1.47)

1.2.6 Boundary conditions on discontinuous interfaces
1.2.6.1 Integral forms of Maxwell’s equations

When the medium of propagation is continuous in space, the ields are also continuous
so the local Maxwell’s equations (1.29) are valid. However, if there is an obstacle that
introduces a discontinuity in the medium, the ields are also discontinuous across the
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1.2. Surface integral equations

n̂

∆n ∆S

Medium 1
Medium 2

Figure 1.1: Cylinder across a discontinuous interface

interface. The local equations are not valid at discontinuities, so that the integral
forms of Maxwell’s equations are needed to ind the relations between the ields in
the two media. The integral forms of Maxwell’s equations are always valid. In the
frequency domain, for any volume V and surface S they read

‹

r∈∂V

D (r) · dS =

˚

r∈V

ρ (r) dV (1.48a)
‹

r∈∂V

B (r) · dS =

˚

r∈V

ρm (r) dV (1.48b)
˛

r∈∂S

E (r) · dl = −iω

¨

r∈S

B (r) · dS −
¨

r∈S

M (r) · dS (1.48c)
˛

r∈∂S

H (r) · dl = iω

¨

r∈S

D (r) · dS +

¨

r∈S

J (r) · dS. (1.48d)

In the following, the normal to the interface between the media 1 and 2 is noted n̂

and is pointing outside of the medium 2.

1.2.6.2 Boundary condition on the electric charges

The Maxwell-Gauss equation (1.48a) is used on a cylinder across the boundary as
illustrated in the igure 1.1. The cylinder is assumed to be suiciently small to
consider locally that the interface is planar and that the ields are constant (D1 in
medium 1 and D2 in medium 2). By letting the height of the cylinder ∆n → 0, the
lateral contribution is vanishing so that

‹

r∈∂V

D (r) · dS = D1 · n̂∆S −D2 · n̂∆S (1.49a)

= (D1 −D2) · n̂∆S. (1.49b)

In the limit of a very thin cylinder (∆n → 0), all the charges lie on the boundary
which results in a surface electric charge density ρs (in C/m2) that veriies

˚

r∈V

ρ (r) dV =

¨

r∈S

ρs (r) dS (1.50a)

= ρs∆S. (1.50b)
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n̂

l̂

∆n

∆l

Medium 1
Medium 2

⊙ dS

Figure 1.2: Rectangle across a discontinuous interface

Equaling (1.49b) and (1.50b) results in the boundary condition

n̂ · (D1 −D2) = ρs. (1.51)

1.2.6.3 Boundary condition on the electric currents

The Maxwell-Ampère equation (1.48d) is used on a rectangle across the boundary
as illustrated in the igure 1.2. The rectangle is assumed to be suiciently small to
consider locally that the interface is planar and that the ields are constant (H1 in
medium 1 and H2 in medium 2). By letting the height of the rectangle ∆n → 0, the
lateral contribution is vanishing, so

˛

r∈∂S

H (r) · dl = − (H1 −H2) · l̂∆l (1.52a)

= (n̂× (H1 −H2)) ·
(
l̂× n̂

)
∆l. (1.52b)

The second term cancels when ∆n → 0,

lim
∆n→0

¨

r∈S

D (r) · dS = 0. (1.53)

In the limit of a very thin rectangle (∆n → 0), all the currents lie on the boundary
which results in a surface electric current density J s (in A/m) that veriies

¨

r∈S

J (r) · dS =

¨

r∈S

J (r) ·
(
l̂× n̂

)
dS (1.54a)

= J s ·
(
l̂× n̂

)
∆l. (1.54b)

Combining (1.52b) and (1.54b) results in

(n̂× (H1 −H2)) ·
(
l̂× n̂

)
= J s ·

(
l̂× n̂

)
. (1.55)

As l̂× n̂ is arbitrary, the above equation simpliies to

n̂× (H1 −H2) = J s. (1.56)
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1.2. Surface integral equations

1.2.6.4 Boundary conditions for the magnetic quantities

Thanks to the symmetry of the Maxwell’s equations, it is possible to obtain the two
remaining boundary conditions using the substitutions (1.30) in (1.51) and (1.56).
The four boundary conditions are

n̂ · (D1 −D2) = ρs (1.57a)
n̂ · (B1 −B2) = ρms (1.57b)
n̂× (E1 −E2) = −M s (1.57c)
n̂× (H1 −H2) = J s (1.57d)

where notations similar to the previous ones have been used for the ields in the
medium 1 (B1 and E1), the ields in the medium 2 (B2 and E2), the surface magnetic
charge density ρms (in Wb/m2) and the surface magnetic current density M s (in
V/m). It should be noted that these boundary conditions were derived only from the
Maxwell’s equations so they don’t depend on the material parameters of the media.

1.2.7 Surface integral equations
1.2.7.1 Surface equivalence principle

In a simple scattering problem, the background medium contains a scatterer whose
surface is denoted Γ. Γ is the boundary between the background (medium 1) and
the interior of the scatterer (medium 2). Given an electromagnetic excitation on the
scatterer, the goal is to ind the scattered ields Esca and Hsca. This excitation can
take various forms such as a voltage imposed on an antenna feed or electromagnetic
ields impinging on a target. In this work, only this latter case is considered. The
incident ields are noted Einc and H inc. They induce some currents J and M in the
medium 2. These currents J and M induced by the incident ields act as sources
for the scattered ields Esca and Hsca as described in the sections 1.2.3 and 1.2.4.
Therefore, the scattering problem is considered to be solved when the currents are
found since Esca and Hsca can be computed from J and M using (1.35).

However, care must be taken because the derivations done in 1.2.3 and 1.2.4
assume a free space, which is not true in the presence of a scatterer. In particular,
the free space assumption is relevant in the determination of the Green’s function
(1.26). The Green’s function can be determined for numerous canonical scenarios,
but for a general geometry of Γ the Green’s function is not accessible. Instead, the
surface equivalence principle is needed.

The surface equivalence principle transforms the scattering problem into an equiv-
alent one that can be solved in free space. The initial coniguration is illustrated in
the igure 1.3a which corresponds to the original scattering problem where there are
the true ields E and H everywhere in space. The key is to replace the ields E and
H and the sources J and M in the medium 2 (inside Γ) by some other ields E2 and
H2, and by placing new source currents J s and M s on the surface Γ as illustrated
in the igure 1.3b. These surface currents J s and M s are virtual but they are chosen
to verify the boundary conditions derived in the section 1.2.6, so that the total ields
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E,H

Medium 2

E,H

Medium 1

Γ

n̂

J M

(a) Original problem

E2,H2

Medium 2

E,H

Medium 1

Γ

n̂

J s = n̂× (H −H2)

M s = (E −E2)× n̂

(b) Equivalent exterior problem

E2 = 0,H2 = 0

Medium 1

E,H

Medium 1

Γ

n̂

J s = n̂×H

M s = E × n̂

(c) Equivalent exterior problem with zero ields inside, so that the medium 2 can be replaced
by the medium 1

Figure 1.3: Surface equivalence principle
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1.2. Surface integral equations

E and H in the medium 1 (outside Γ) are left unchanged. In other words, outside
Γ the ields scattered by J and M are the same as the ields scattered by J s and
M s. In particular, the ields E2 and H2 inside Γ are chosen to be 0. In this case,
the parameters of the medium 2 inside Γ can be replaced by the parameters of the
medium 1 without afecting the ields inside that are 0 as illustrated in the igure
1.3c. By noting n̂ (r) the normal to Γ in r, the currents are actually the tangential
traces of the ields

J s (r) = n̂ (r)×H (r) (1.58a)
M s (r) = E (r)× n̂ (r) . (1.58b)

The problem has been transformed into a problem in free space as the medium 1 is
the same everywhere in space. There is no obstacle but ictitious currents that radiate
the same ields outside Γ. Henceforth, the potentials (1.27a) and (1.31a) can be used
for the computation of the scattered ields (1.35). Again, these surface currents (1.58)
are ictitious. The only situation where they match with the actual physical current
is for Perfect Electric Conductors (PEC), in which case there is no magnetic current
(M s = E × n̂ = 0 on Γ).

The equivalent currents J s and M s are surfacic instead of volumic so the poten-
tials (1.27a) and (1.31a) become

A (r) = µ

¨

r′∈Γ

G (r − r′)J s (r
′) dS ′ (1.59a)

F (r) = ε

¨

r′∈Γ

G (r − r′)M s (r
′) dS ′. (1.59b)

In the far ield, the analogue of (1.39) using surface currents is

A (r) = µ
e−ik|r|

4π |r|

¨

r′∈Γ

eikr̂·r
′

J s (r
′) dS ′ (1.60a)

F (r) = ε
e−ik|r|

4π |r|

¨

r′∈Γ

eikr̂·r
′

M s (r
′) dS ′. (1.60b)

1.2.7.2 Surface integral equations

The total ields are written as a sum of the incident ields and the scattered ields

E (r) = Einc (r) +Esca (r) (1.61a)
H (r) = H inc (r) +Hsca (r) (1.61b)

and inserted into the expression of the currents (1.58)

J s (r) = n̂ (r)×
(
H inc (r) +Hsca (r)

)
(1.62a)

M s (r) = −n̂ (r)×
(
Einc (r) +Esca (r)

)
. (1.62b)

However, the expression of the scattered ield that depends on the potentials (1.35)
cannot be inserted directly in this previous expression (1.62) because the potentials
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contain a singularity when they are evaluated on Γ. Let r0 ∈ Γ, the various quantity
intervening in the scattered ield (1.35) are investigated when r → r0 from the outside
of Γ. The conclusions are directly given here but rigorous proofs can be found in [2].
For lim

r→r0

Esca (r), the quantities lim
r→r0

A (r) and lim
r→r0

∇∇ ·A (r) behave well so they
are simply written

lim
r→r0

A (r) = A (r0) (1.63a)

lim
r→r0

∇∇ ·A (r) = ∇∇ ·A (r0) (1.63b)

but lim
r→r0

∇ × F (r) contains a singularity so that in r0 the integral is evaluated in
terms of its principal value

lim
r→r0

1

ε
∇× F (r) = lim

r→r0

¨

r′∈Γ

∇G (r − r′)×M s (r
′) dS ′ (1.64a)

= −Ω (r0)

4π
n̂ (r0)×M s (r0) (1.64b)

+ p.v.
¨

r′∈Γ

∇G (r0 − r′)×M s (r
′) dS ′ (1.64c)

where Ω (r0) denotes the solid angle made by the exterior of Γ in r0, which is 2π if

Γ is smooth in r0. So in all practical cases Ω (r0)

4π
=

1

2
, and in the following only

this case is considered. Also, with some vector calculus manipulations and using the
properties of the gradient of the Green’s function, the following identity is obtained
on Γ

∇ ·
¨

r′∈Γ

G (r − r′)J s (r
′) dS ′ =

¨

r′∈Γ

G (r − r′)∇′ · J s (r
′) dS ′ (1.65)

where ∇
′ · J s (r

′) denotes the divergence relative to r′. In summary, on Γ,

n̂ (r)×Esca (r) = −ikηn̂ (r)×
¨

r′∈Γ

G (r − r′)J s (r
′) dS ′ (1.66a)

+
η

ik
n̂ (r)×∇

¨

r′∈Γ

G (r − r′)∇′ · J s (r
′) dS ′ (1.66b)

− 1

2
M s (r) (1.66c)

− n̂ (r)× p.v.
¨

r′∈Γ

∇G (r − r′)×M s (r
′) dS ′ (1.66d)
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Similar results also hold for lim
r→r0

Hsca (r). So on Γ,

n̂ (r)×Hsca (r) = − ik

η
n̂ (r)×

¨

r′∈Γ

G (r − r′)M s (r
′) dS ′ (1.67a)

+
1

ikη
n̂ (r)×∇

¨

r′∈Γ

G (r − r′)∇′ ·M s (r
′) dS ′ (1.67b)

+
1

2
J s (r) (1.67c)

+ n̂ (r)× p.v.
¨

r′∈Γ

∇G (r − r′)× J s (r
′) dS ′. (1.67d)

1.2.7.3 Surface integral operators

At this point, it is useful to introduce surface integral operators to conveniently rewrite
these equations. These operators depend on the wave number k (1.18), they act on a
surface current (noted f in the following) and they are evaluated on Γ. The operator
T has a singular part Ts and an hypersingular part Th

T = −ikTs +
1

ik
Th (1.68a)

(Tsf) (r) = n̂ (r)×
¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|f (r′) dS ′ (1.68b)

(Thf) (r) = n̂ (r)×∇

¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|∇
′ · f (r′) dS ′. (1.68c)

The operator K is

(Kf) (r) = n̂ (r)× p.v.
¨

r′∈Γ

∇

(
e−ik|r−r′|

4π |r − r′|

)
× f (r′) dS ′. (1.69)

The identity operator I is

(If) (r) = f (r) . (1.70)

All these operators are linear in f . Using these operators, the tangential traces of
the scattered ields on Γ are

n̂×Esca = ηT J s −
(I
2
+K

)
M s (1.71a)

n̂×Hsca =
1

η
T M s +

(I
2
+K

)
J s. (1.71b)

Inserting these expressions in (1.62) results in

M s = −n̂×Einc − ηT J s +

(I
2
+K

)
M s (1.72a)

J s = n̂×H inc +
1

η
T M s +

(I
2
+K

)
J s (1.72b)
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or equivalently

ηT J s +

(I
2
−K

)
M s = −n̂×Einc (1.73a)

−1

η
T M s +

(I
2
−K

)
J s = n̂×H inc. (1.73b)

This irst equation (1.73a) is the Electric Field Integral Equation (EFIE) and the sec-
ond equation (1.73b) is the Magnetic Field Integral Equation (MFIE) for the exterior
domain. These integral equations are conveniently written in a matrix form

(
ηT I

2
−K

I
2
−K − 1

η
T

)(
J s
M s

)
=

(
−n̂×Einc

n̂×H inc

)
. (1.74)

1.2.7.4 Surface integral equations for the interior domain

Using a similar approach, it is possible to derive the EFIE and MFIE for the interior
domain, by using the surface equivalence principle to set the zero ields outside of
Γ. In this case, there are no incident ields. Let k′ be the wave number and η′

the characteristic impedance of the medium 2 (inside Γ), and let T ′ and K′ be the
corresponding operators (1.68a) and (1.69) with the wave number k′ (note that the
normal n̂ in the deinition of T ′ and K′ is still the same as T and K i.e. pointing
outside Γ). Then, the EFIE and MFIE for the interior domain are

−η′T ′J s +

(I
2
+K′

)
M s = 0 (1.75a)

1

η′
T ′M s +

(I
2
+K′

)
J s = 0. (1.75b)

In a matrix form they read
( −η′T ′ I

2
+K′

I
2
+K′ 1

η′
T ′

)(
J s
M s

)
=

(
0

0

)
. (1.76)

1.3 Boundary element method
1.3.1 Method of moments
The Boundary Element Method (BEM) is the technique that applies the Method of
Moments (MoM) on a boundary value problem formulated as an integral equation.
In the case of the surface integral equations derived in the section 1.2.7, the values
at the boundary are the tangential traces of the electric and magnetic ields i.e. the
ictitious surface currents J s and M s (1.58).

Let L : X → Y be a linear operator acting on an unknown function x ∈ X, and
let y ∈ Y be a known excitation function. In general x and y are not necessarily
in the same space of functions. For example, X, Y ⊂ {f : Γ → C

3} in the case of
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the surface integral equations derived in the section 1.2.7. The MoM transforms the
problem

Lx = y (1.77)
into a linear system that can be solved

Lx = y (1.78)

where L is a matrix that corresponds to the discretization of the operator L, whereas
x and y are vectors that correspond the discretizations of x and y.

The unknown x is approximated as a linear combination of Ns source basis func-
tions (sn)Ns

n=1 (sn : Γ → R
3). The coeicients (xn)Ns

n=1 associated to each basis function
are stored in a vector x ∈ C

Ns , so that for all r ∈ Γ

x (r) ≈
Ns∑

n=1

xnsn (r) . (1.79)

By linearity (1.77) becomes
Ns∑

n=1

xnLsn ≈ y. (1.80)

The error of approximation y −
Ns∑

n=1

xnLsn is the so-called residual that is to be

minimized. This residual is tested by a set of Ns testing basis functions (tm)
Ns
m=1

(tm : Γ → R
3). The testing procedure consists in computing the inner product

between tm and the residual for each m ∈ [1, Ns]. The inner product between two
functions a and b : Γ → C

3 is deined as

〈a, b〉 =
¨

r∈Γ

a (r) · b (r) dS. (1.81)

The overline denotes a complex conjugation. For all m ∈ [1, Ns], imposing that the
testing of the residual is 0 results in

〈
tm,y −

Ns∑

n=1

xnLsn
〉

= 0 ⇐⇒
Ns∑

n=1

xn 〈tm,Lsn〉 = 〈tm,y〉 (1.82a)

⇐⇒
Ns∑

n=1

Lmnxn = ym (1.82b)

⇐⇒ Lx = y (1.82c)

where

Lmn = 〈tm,Lsn〉 (1.83a)
ym = 〈tm,y〉 . (1.83b)

This linear system Lx = y is then solved for x. Finally, when the array of coeicients
x is known, the unknown x is retrieved using the linear combination of source basis
functions (1.79).
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1.3.2 Discretization of the composition of operators
Let L : A → B and M : C → D be two operators (B ⊂ C), and for all n ∈ [1, Ns]
an ∈ A and cn ∈ C are sources basis functions and bn ∈ B∗ and dn ∈ D∗ are testing
basis functions (where ∗ denotes the dual space). The MoM discretizations (1.83a) of
L and M are the matrices L and M whose elements are

Lmn = 〈bm,Lan〉 (1.84a)
Mmn = 〈dm,Mcn〉 . (1.84b)

The discretization of ML can be obtained from L and M by considering the functions
x ∈ A, y ∈ B and z ∈ D and their respective discretizations x, y and z such that

x =
Ns∑

n=1

xnan (1.85a)

y = Lx =
Ns∑

n=1

yncn (1.85b)

z = My (1.85c)
z = My. (1.85d)

Rewriting (1.85b) as Iy = Lx and testing it with bm for all m ∈ [1, Ns] results in

Gmy = Lx (1.86)

where Gm is the so-called mix-Gram Matrix which is the discretization of the identity
operator

[Gm]mn = 〈bm, Icn〉 = 〈bm, cn〉 . (1.87)

If the source and testing are the same i.e. bm = cm for all m ∈ [1, Ns] then it is a
so-called Gram matrix noted G

[G]mn = 〈bm, bn〉 . (1.88)

Assuming that the matrix Gm is invertible, combining (1.85d) with (1.86) results in

z = MG
−1
m Lx (1.89)

which is the discretization of the equation z = MLx. In other words, ML is dis-
cretized by MG

−1
m L.

This composition of operators is particularly relevant in the Calderón precondi-
tioning (see section 1.5.3.1).
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1.3. Boundary element method

(a) Continuous surface Γ (b) Discrete mesh of Γ

Figure 1.4: Discretization of a surface by a triangular mesh

1.3.3 Basis functions
In order to build a set of basis functions on a surface Γ, this surface must be dis-
cretized. As illustrated in the igure 1.4, the surface is approximated by a triangular
mesh containing Nv vertices, Nf lat triangular faces, and Ns edges. In addition,
the surface Γ has Nh handles. If Nh = 0 the geometry is simply connected (e.g. a
sphere), otherwise it is multiply connected (e.g. Nh = 1 on a torus). The surface Γ
is the boundary between the interior and the exterior domain such that it is oriented
with its normal n̂ pointing toward the exterior domain. Furthermore, Γ does not
contain holes and has no boundary i.e. ∂Γ = ∅. In other words, sheet scatterers,
open structures and junctions are not considered in this work.

Each vertex is given an index n ∈ [1, Nv] and noted vn. Each triangle face is
given an index n ∈ [1, Nf] and noted Tn. Each edge is given an index n ∈ [1, Ns],
noted en, and is given an arbitrary orientation from a vertex noted e−

n to a vertex e+
n

(e−
n , e

+
n ∈ {vm with m ∈ [1, Nv]}). The average edge length is noted h.

While they are technically diferent, no distinction is made between the surface Γ
and its triangular mesh approximation that is also called Γ in the following.

Local basis functions have their supports (i.e. where they are diferent than 0) that
does not span on the entire mesh. The local basis functions deined in the following
are based either on a single vertex, on a single edge, or on a single face. As opposed
to the local basis functions there are also basis functions that are based on the entire
geometry of the mesh (e.g. the global loops that are based on handles).

1.3.3.1 Rao-Wilton-Glisson basis functions

The Rao-Wilton-Glisson (RWG) [3] basis functions fn are based on the edges (n ∈
[1, Ns]). The support of the RWG basis function fn is made of the two faces T−

n and
T+
n that share the edge en. Using the notations of the igure 1.5, for each n ∈ [1, Ns]

23



1. Background and notations

e+
ne−

n

v+
n

v−
n

T+
n

T−
n

en

Figure 1.5: Rao-Wilton-Glisson (RWG) basis function fn

the RWG basis function fn is deined as

fn (r) =





r − v+
n

2A+
n

if r ∈ T+
n

v−
n − r

2A−
n

if r ∈ T−
n

0 otherwise

(1.90)

where A±
n is the area of T±

n .
In the literature, they are sometimes called Raviart-Thomas basis functions. Also,

they are often scaled by the length of the edge they are based on (including in the
original paper [3]). The reason why they are not scaled by the edge length in (1.90)
is that it simpliies the expression of the BC, loop and star basis functions that are
introduced later.

When the RWG basis functions discretize a current, it lows across the edge from
v+
n to v−

n . The value of the function at various positions on the support as been
represented in the igure 1.5. The divergence of the RWG basis functions ∇ · fn

discretizes the charges. It is actually piece-wise constant patches

∇ · fn (r) =





1

A+
n

if r ∈ T+
n

− 1

A−
n

if r ∈ T−
n

0 otherwise.

(1.91)
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e+
ne−

n

v+
n

v−
n

T+
n

T−
n

en

Figure 1.6: Bufa-Christiansen (BC) basis function gn

1.3.3.2 Bufa-Christiansen basis functions

The Bufa-Christiansen (BC) [4] basis functions gn are also based on edges (n ∈
[1, Ns]). However, their deinition requires the construction of a barycentric reinement
of the mesh. To build the barycentric reinement of a mesh, a new vertex is spawned
at the center of each edge and each face, so that each face in the primal mesh is
subdivided into 6 faces in the barycentric reinement. In the illustration of the BC
basis function (igure 1.6), the primal mesh is in solid line and the barycentric mesh
is in dotted line.

The BC basis functions are actually linear combinations of RWG basis functions
built on the barycentric mesh. Let N+ be the number of edges that share the vertex
e+
n , and N− be the number of edges that share the vertex e−

n in the primal mesh
(N+ = N− = 6 in the igure 1.6). So in the barycentric mesh there are respectively
2N+ and 2N− edges sharing e+

n and e−
n . Let f b+

k (k ∈ [0, 2N+−1]) be the RWG basis
functions of the barycentric mesh whose edges share the central vertex e+

n , ordered
counterclockwise around the central vertex, starting from f b+

0 on the reference edge
en. Similarly, f b−

ℓ (ℓ ∈ [0, 2N− − 1]) are the RWG basis functions of the barycentric
mesh sharing the central vertex e−

n , ordered counterclockwise starting from f b−
0 on

the reference edge en. Also, in the center of the BC function there are two barycentric
RWG functions whose respective v+ and v− coincide with e+

n and e−
n : the one on T−

n

is noted f b0
− and the one on T+

n is noted f b0
+ . Then the BC basis function gn is

gn =
1

2

(
sb0−f

b0
− − sb0+f

b0
+

)
+

2N+−1∑

k=1

N+ − k

2N+

sb+k f b+
k −

2N−−1∑

ℓ=1

N− − ℓ

2N−

sb−ℓ f b−
ℓ (1.92)
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Tn

Figure 1.7: Star basis function σn

The sign coeicient sby
x are +1 or −1 depending on the orientation of the correspond-

ing fby
x function (x,y ∈ {−,+, 0, 1, 2, . . . }). sby

x = +1 if the barycentric RWG function
fby

x is oriented such that its vertex e− is on the reference edge en of the BC function
and its vertex e+ is on the boundary of the support of the BC function. Otherwise,
sby

x = −1. When the BC basis functions discretize a current, it lows along the edge
en from e+

n to e−
n as it is illustrated in the igure 1.6.

1.3.3.3 Star basis functions

The star basis functions σn [5] are based on the faces of the mesh (n ∈ [1, Nf]). σn

is a linear combination of the 3 RWG basis functions whose reference edges are on
the boundary of the reference face Tn of the star function. Or equivalently, the star
function σn is the combination of the 3 RWG functions whose supports contain the
reference faces Tn. For each n ∈ [1, Nf], the star function σn is

σn =
Ns∑

m=1

Σmnfm (1.93)

where Σmn are the coeicients of the Star-to-RWG basis transformation matrix Σ ∈
R

Ns×Nf . As explained above, there are only 3 non-zero terms in the sum (1.93) so Σ

is sparse, and for m ∈ [1, Ns], n ∈ [1, Nf] its coeicients are

Σmn =





+1 if the edge em is on the boundary of the face Tn clockwise
−1 if the edge em is on the boundary of the face Tn counterclockwise
0 otherwise,

(1.94)
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vn

Figure 1.8: Local loop basis function λn

or equivalently

Σmn =





+1 if T+
m = Tn

−1 if T−
m = Tn

0 otherwise.
(1.95)

For the discretization of the current using the star functions, the current lows from
the inside of the reference face to the outside as it is illustrated in the igure 1.7.

1.3.3.4 Loop basis functions

The local loop basis functions λn [5] are based on the vertices of the mesh (n ∈ [1, Nv]).
They are a linear combination of the RWG functions whose reference edges contain
the reference vertex vn of the loop functions. For each n ∈ [1, Nv], the loop function
λn is

λn =
Ns∑

m=1

Λmnfm (1.96)

where Λmn are the coeicients of the Loop-to-RWG basis transformation matrix Λ ∈
R

Ns×Nv . As explained above, the number of non-zero terms in the sum (1.96) is equal
to the number of vertices adjacent to vn so Λ is sparse, and for m ∈ [1, Ns], n ∈ [1, Nv]
its coeicients are

Λmn =





+1 if the edge em leaves the vertex vn

−1 if the edge em arrives at the vertex vn

0 otherwise,
(1.97)
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Figure 1.9: Global loops on a torus, toroidal (red) and poloidal (green)

or equivalently

Λmn =





+1 if e−
m = vn

−1 if e+
m = vn

0 otherwise.
(1.98)

For the discretization of the current using the local loop functions, the current lows
around the reference vertex counterclockwise as it is illustrated in the igure 1.8.

It is clear from the construction of the local loops that the divergences of two
RWG functions (1.91) cancel each other on each triangle of their supports. So for all
n ∈ [1, Nv] and r ∈ Γ

∇ · λn (r) = 0. (1.99)
So the loop functions are solenoidal. In particular, there are scalar functions noted
Pn : Γ → R (n ∈ [1, Nv]) such that

λn (r) = n̂ (r)×∇Pn (r) . (1.100)

These functions Pn are the so-called pyramids, they have the same supports as the
local loop functions and they are deined as

Pn (r) =





1 if r = vn

0 if r is on the boundary of the support or not on the support
linear elsewhere on the support.

(1.101)

1.3.3.5 Global loops

As opposed to the local loops there are also the global loops ηn that exist only on
multiply connected geometries (n ∈ [1, 2Nh]). For each handle there are 2 global
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loops that are associated to it. These two global loops have been represented on the
igure 1.9 for a torus. For each n ∈ [1, 2Nh], the global loop function ηn is

ηn =
Ns∑

m=1

Hmnfn (1.102)

where Hmn are the coeicients of the global loop-to-RWG basis transformation matrix
H ∈ R

Ns×2Nh . Similarly to the local loops, they are also solenoidal (∇ · ηn = 0).
Finding these global loops is computationally expensive in general so H is not explicit.

1.3.4 Discretization of the surface integral operators
In the context of the Method of Moments (MoM), the Galerkin method refers to
the case where the testing functions are the same as the source basis functions. The
Petrov-Galerkin theory provides the mathematical foundations to ensure that the
MoM converge to the analytic solution under certain conditions. In other words, the
choice of source and testing basis functions should not be done thoughtlessly. The
conforming discretizations of the operators introduced in the section 1.2.7.3 are given
in the following.

The operator T deined in (1.68a), is discretized conformingly using the RWG
basis functions fn as sources, and the rotated RWG basis functions n̂×fm as testing
(m,n ∈ [1, Ns]), so that the MoM matrix T ∈ C

Ns×Ns that discretizes T with RWG
basis functions is

T = −ikTs +
1

ik
Th (1.103)

where Ts and Th discretize Ts and Th, and are deined as

[Ts]mn = 〈n̂× fm, Tsfn〉 (1.104a)
[Th]mn = 〈n̂× fm, Thfn〉 . (1.104b)

For example, the Perfect Electric Conductor (PEC)-EFIE that reads

ηT J s (r) = −n̂ (r)×Einc (r) (1.105)

is discretized as
ηTJ = E (1.106)

where the RWG basis functions fn are used as sources for the electric current (see
(1.79))

J s (r) ≈
Ns∑

n=1

Jnfn (r) (1.107)

and the Right Hand Side (RHS) is tested with n̂× fm (m ∈ [1, Ns]) as

Em =
〈
n̂× fm,−n̂×Einc〉 = −

〈
fm,E

inc〉 . (1.108)
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Similarly, the operator T is also discretized with BC basis functions where gn are
sources and n̂× gm are testing basis functions (m,n ∈ [1, Ns])

T = −ikTs +
1

ik
Th (1.109a)

[T]mn = 〈n̂× gm, T gn〉 (1.109b)
[Ts]mn = 〈n̂× gm, Tsgn〉 (1.109c)
[Th]mn = 〈n̂× gm, Thgn〉 . (1.109d)

The operator K is discretized conformingly using a mixed discretization. If the
source are BC functions gn then the testing functions should be rotated RWG func-
tions n̂×fm. Then, the MoM discretization of the operator K is the matrix K deined
by

[K]mn = 〈n̂× fm,Kgn〉 . (1.110)

The Galerkin testing of the operator K with RWG basis functions (fn) as it has
been done classically (〈n̂× fn,Kfm〉) is not conforming and results in an inaccurate
discretization [6].

The identity operator I can be discretized with the same source and testing basis
functions, in which case it is a so-called Gram matrix (1.88). The Gram matrix for
RWG basis functions (fn) is noted G ∈ R

Ns×Ns

Gmn = 〈fm,fn〉 . (1.111)

The identity operator can also be discretized with testing basis functions diferent
than the sources, in this case it is the so-called mix-Gram matrix (1.87). It was
already introduced in the section 1.3.2 as its inverse is used to compose operators.
The mix-Gram matrix with rotated RWG functions (n̂ × fm) in testing and BC
functions (gn) in sources is noted Gm ∈ R

Ns×Ns

[Gm]mn = 〈n̂× fm, gn〉 . (1.112)

Note that the mix-Gram matrix with RWG (fn) and rotated RWG (n̂ × fm) basis
functions (whose elements are 〈n̂× fm,fn〉) is singular, but Gm is not. This is why
the discretization of T 2 uses a mixed discretization TG

−1
m T [7].

Details on the computation of these matrice elements can be found in the appendix
A.

1.4 Impedance boundary conditions
In the section 1.2.7, the surface integral equations have been derived for a dielectric
scatterer. It is not trivial that the EFIE (1.73a) and the MFIE (1.73b) in the exterior
domain are actually linearly dependent, so a system that discretizes only the exterior
domain cannot obtain the correct solution. Therefore, the interior domain EFIE
(1.75a) and MFIE (1.75b) also need to be included in the discretization. Classical
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1.4. Impedance boundary conditions

formulations such as the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) [8–
10] formulation or the Müller formulation [11] linearly combine the discretizations of
the exterior (1.74) and interior (1.76) problems to obtain a solution.

The fact that the discretization of the interior domain is required for scattering or
far ield problems is not convenient since the interior ields are not the quantities of
interest. A way to get rid of the interior problem is to impose a boundary condition
on the tangential traces of the ields that is assumed to hold on the boundary of
the scatterer Γ. One of the most used boundary conditions is the Perfect Electric
Conductor (PEC) boundary condition that imposes the tangential trace of the electric
ield n̂ × E to vanish on the boundary Γ. Using the surface currents (1.58), the
following relation holds for all r on the boundary of a PEC

M s (r) = E (r)× n̂ (r) = 0. (1.113)

The PEC is an ideal model as it implies that the material of the scatterer is lossless,
impenetrable, has an ininite conductivity, and has a surface impedance that is zero.
Therefore, it is widely used to model good conductors. But there are cases where
a non-zero impedance or a inite conductivity are more appropriate assumptions, in
addition to the fact that a scatterer may be non-penetrable and lossy, so that another
model is required in these cases.

In particular, a model that suits well is the Impedance Boundary Condition (IBC)
[12] that enforces a proportionality relation between the tangential traces of the elec-
tric ield n̂×E and magnetic ield n̂×H , the proportionality factor being the surface
impedance zimp (in Ω), so that for all r ∈ Γ

n̂ (r)×E (r) = zimp (r) n̂ (r)× (n̂ (r)×H (r)) (1.114)

or equivalently, using the surface currents (1.58), the IBC reads

M s (r) = −zimp (r) n̂ (r)× J s (r) (1.115)

These IBCs (1.114) and (1.115) are usually referred as the Leontovich IBC [13]. The
IBC can model a wide range of non-penetrable scatterers. In electromagnetics, there
are two notable cases of such non-penetrable objects:

• A PEC coated by a dielectric layer (igure 1.10a): if the thickness of the di-
electric layer δdl is small enough (compared to the radius of curvature of the
scatterer), the currents low in a thick layer between boundary of the scatterer
(Γ) and the PEC.

• A conductor (igure 1.10b): in a conductor the physical current density de-
creases exponentially with the depth so that most of the current lows in a
thick layer (the ”skin”) under the surface Γ which is the so-called skin efect.
The characteristic length or skin depth δsd is deined as the depth where the
current density is equal to 1/e ≈ 36.8% of the current density on the surface.
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PEC

Dielectric

E,H

Background
Medium

Γ

n̂

J s = n̂×H

M s = −zimpn̂× J s

δdl

(a) PEC coated by a dielectric layer

Conductor
E,H

Background
Medium

Γ

n̂

J s = n̂×H

M s = −zimpn̂× J s

δsd

(b) Skin efect on a conductor

Figure 1.10: Impedance Boundary Conditions on non-penetrable objects

32



1.5. Preconditioning

In both cases, the currents low in a thick layer right under the surface Γ. In the
following, the skin depth δ is used indiferently to denote the thickness of the dielectric
layer δdl or the characteristic length of the skin efect δsd.

The validity of the IBC has been vastly studied [14–18] and there are essentially
two criteria to satisfy:

• The radius of curvature a of the scatterer should be large compared to the skin
depth δ (i.e. a ≫ δ). Locally, a smooth surface can be considered as planar.
This requirement on the smoothness of the surface of the scatterer is related
to the fact that the derivations of the models for the impedance are usually
done by studying the wave transmission when the geometry is an ininite plane.
Therefore, the validity of the IBC on geometries that contain sharp corners or
sharp edges is not guaranteed.

• The refraction index n′ of the scatterer (n′ = c/v where c and v are the speeds
of light in the background medium and in the scatterer) should be large enough
(i.e. n′ ≫ 1) to consider that the transmitted waves are normal to the surface.
It is related to the fact that the IBC does not take into account the incidence
angle of the incident waves, so the derivations of the impedance models can be
done with a normal incidence, and as a consequence the transmitted waves are
also normal to the surface.

There are some generalizations of the IBC, most notably:
• Anisotropic impedance [19–21]. In this case the surface impedance is a tensor

Z
imp, or equivalently there are two surface impedances zimp and zimp′ so that

the IBC can be written as

M s (r) = −Z
imp (r) · J s (r) (1.116a)

= −zimp (r) n̂ (r)× J s (r)− zimp′ (r)J s (r) (1.116b)

Setting zimp′ = 0 results in the Leontovich IBC (1.115).

• Higher order IBC [22–24]. These IBCs add additional degrees of freedom in the
characterization of the material by taking into account higher order terms such
as the derivatives of the ields. Regarding to this, the Leontovich IBC (1.114)
is the order 0, by using only the ields without higher derivatives.

It is not the concern of this work to determine whether a given model for the
impedance is faithful or not in a given simulation. Instead, the surface impedance
zimp is used as an arbitrary input parameter in the formulations, the same way as the
frequency, the permitivity, etc.

1.5 Preconditioning
The preconditioning of matrices stemming from the the MoM discretization of the
surface integral operators derived in section 1.2.7 is an important part of this work.
This section is split in three parts:

33



1. Background and notations

• The irst part introduces the condition number and explains the importance of
preconditioning in iterative solvers.

• The second part introduces the spectrum of the operators on a sphere. The
PEC-EFIE is used as a reference example to illustrate the problems that arise
from the MoM discretization.

• The third part introduces diferent tools that are used to solve the problems
highlighted in the second part.

1.5.1 Condition number and preconditioning
1.5.1.1 Condition number

The condition number (CN) of an invertible matrix M is deined as

cond (M) = ‖M‖.‖M−1‖. (1.117)

The minimum condition number is 1. In general, the condition number depends on
the norm chosen. In the following, the Euclidean norm ‖·‖2 is assumed for ‖·‖ so that
the norm of a matrix ‖M‖ is equal to its largest singular value σmax(M). Similarly,
the norm of its inverse ‖M−1‖ is equal to the inverse of the minimum singular value
σmin(M). So, the condition number is equal to the ratio between the maximum and
the minimum singular values of M

cond (M) =
σmax(M)

σmin(M)
. (1.118)

These singular values can be obtained with a Singular Value Decomposition (SVD).
Assume that M is the matrix representing a linear system to be solved

Mx = y. (1.119)

If there is an error e in the right hand side yerr = y+ e, the erroneous solution of the
system is noted xerr = x+M

−1e as

Mxerr = yerr. (1.120)

The condition number is the maximum of the ratio between the relative error on x

and the relative error on y:

‖xerr − x‖
‖x‖

‖yerr − y‖
‖y‖

=

‖M−1e‖
‖x‖
‖e‖
‖Mx‖

=
‖Mx‖
‖x‖

‖M−1e‖
‖e‖ (1.121a)

max
(‖Mx‖

‖x‖
‖M−1e‖
‖e‖

)
= ‖M‖.‖M−1‖ = cond (M) . (1.121b)
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In other words, the relative error on x can be as high as the relative error on y times
the condition number. So, if the relative error on y is in the order of the machine
precision and the condition number is 10N , it means that N digits of accuracy are lost
on the solution x. This loss of accuracy in the solution is independent of the method
used to solve the system: the solver itself potentially introduces its own numerical
issues and possibly won’t converge at all if the condition number is too high. When
the condition number of the system is too high (there is no sharp limit) the matrix
is said ill-conditioned. It also implies that if the condition number of the matrix
depends on a parameter (e.g. the frequency of the simulation) and is not bounded,
then the matrix is also considered as ill-conditioned. On the contrary, if the condition
number is low and stable when the simulation parameters vary, then the matrix is
well-conditioned.

1.5.1.2 Preconditioning and iterative solvers

The goal of preconditioning is to ind an invertible matrix L such that

cond (LM) < cond (M) (1.122)

in which case L is a left preconditioner. Similarly, it is possible to look for an invertible
matrix R such that

cond (MR) < cond (M) (1.123)
in which case R is a right preconditioner. Additionally, it can be convenient to ind
both left and right preconditioners such that

cond (LMR) < cond (M) . (1.124)

For the left preconditioner case (1.122), the system solved is actually

LMx = Ly. (1.125)

For the right preconditioner case (1.123), the system solved is

MRz = y (1.126)

where the original unknown x = Rz is retrieved when the auxiliary unknown z has
been found. Finally, using a left and right preconditioner (1.124)

LMRz = Ly (1.127)

is solved and as before x = Rz is computed at the end when the system has been
solved for z.

Solving a linear system directly (e.g. by computing the inverse of the matrix)
works when the number of unknowns Ns is low (e.g. Ns ≤ 104, though it’s not a
sharp limit), but for much larger problems (e.g. Ns ≥ 105), not only the classical
cubic complexity (O(N3

s )) in time of the matrix inversion is prohibitive, but also the

35



1. Background and notations

quadratic complexity (O(N2
s )) in space needed for the storage of a dense matrix is a

problem regarding the scalability of the solver.
In practice the solvers used are iterative. There are many existing iterative solvers,

amongst the most known: GMRES (Generalized Minimal Residual), CG (Conjugate
Gradient) and BiCG (Biconjugate Gradient). At each iteration n, an iterative solver
computes an estimate of the solution x̃n based on the previous estimate x̃n−1. The
solver ends when the relative norm of the residual ‖Mx̃n − y‖/‖y‖ is below a given
threshold that depends on the accuracy wanted or when a certain number of iter-
ations Niter is reached. These solvers are all diferent in the way they work (some
involve matrix-vector products with M, some with M

T), on the required properties
of M (some requires it to be symmetric positive deinite, others work with general
non-symmetric matrices), on their stability or on the condition that ensure the con-
vergence (in some speciic cases the norm of the residual can be bounded by function
exponentially decreasing with the number of iterations). GMRES is usually a good
choice for non-symmetric matrices that have a low condition number. Note that the
cost of GMRES increases at each iteration so it is usually restarted after a ixed num-
ber of iterations Nres with the last solution estimate x̃Nres used as irst guess x̃0 for the
restarted solver.

In practice, for a large number of unknowns Ns, a time complexity O(N2
s ) for a

matrix-vector product as well as a space complexity O(N2
s ) for the storage of the

matrix is not considered as scalable. A fortiori, the direct matrix-matrix products
are banned, so the preconditioned matrix LMR is never computer explicitly. Instead
the product of LMR by a vector x is computed from right to left as

LMRx = L (M (Rx)) . (1.128)

By noting Niter the number of iterations, and by noting respectively CLv, CMv, CRv the
complexity of a matrix-vector product with L, M, R, the time complexity of solving
the system (1.127) is O(Niter(CLv + CMv + CRv)).

Fortunately, there are fast algorithms to compute matrix-vector products involving
the MoM matrices deined in the section 1.3.4. The most notable algorithms are the
Fast Multipole Method (FMM) [25] that reduces the space and time complexity to
CMv = O(N1.5

s ) and the Multi-level FMM (MLFMM) [26, 27] that further reduces
the complexity to CMv = O(Nslog(Ns)).

Similarly, the asymptotic complexity of the preconditioner-vector multiplications
as well as their memory storage complexity should not be more than the complexity
of the original MoM (M) matrix-vector multiplication and storage. In particular,
as it is explained later, the Calderón preconditioning involves the discretization of
the operator T , in which case using the MLFMM results in CLv = O(Nslog(Ns)).
Similarly, for the right preconditioner, the aims should be a complexity such that
CRv = O(Nslog(Ns)).

Finally, regarding the number of iterations Niter, the objective is to have a constant
number of iterations for a given target accuracy so that the overall complexity of the
solver is O(Nslog(Ns)). However, unless the preconditioned system has some speciic
properties, in general there is no explicit bound on the number of iterations. If a
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relation between the condition number and Niter is not available, the best is to keep
the condition number stable and as low as possible, and demonstrate experimentally
that the number of iterations is stable when the simulation input parameters are
changed.

The main concern of this work is the reduction of the condition number of the
matrices stemming from the MoM discretization in diferent formulations by using
the appropriate preconditioners.

1.5.2 Analysis of the operators on a sphere
1.5.2.1 Spectrum of operators

In order to precondition the linear systems arising from the MoM discretization of the
operators, it is important to understand the spectral properties of these operators.
These operators can be studied only for few canonical geometries where an analytic
expression is available.

In the following, the boundary of the scatterer Γ is a sphere of radius a. The
spherical coordinate system (r, θ, ϕ) is used. To study a scalar ield on the surface of
a sphere, it is convenient to work with the Spherical Harmonics (SH)

Ylm(θ, ϕ) = Ylm(r̂) =

√
(2l + 1) (l −m)!

4π (l +m)!
Plm (cos θ) eimϕ (1.129)

where l and m are integers such that −l ≤ m ≤ l and Plm are the associated Legendre
polynomials.

Similarly, the analysis of a vector ield on a sphere is done with the Vector Spherical
Harmonics (VSH) basis. The VSH are deined as

Y lm(r̂) = r̂Ylm(r̂) (1.130a)

X lm(r̂) =
a

i
√
l(l + 1)

r̂ ×∇Ylm(r̂) (1.130b)

U lm(r̂) = − a

i
√

l(l + 1)
∇Ylm(r̂). (1.130c)

The three VSH (1.130) form an orthonormal basis of the vectors ields on Γ with the
inner product (1.81). As the surface integral operators T (1.68a) and K (1.69) work
with the tangential traces of the ields on Γ, only the VSH X lm and U lm that are
purely tangential are used. The VSH Y lm that is normal to Γ won’t be used (r̂ = n̂).
Also, the order l = 0 is ignored as X00 = U 00 = 0.

The X lm are solenoidal (∇ · X lm = 0), so the study of the behaviour of the
operators applied on X lm infers their behaviours on the loop functions (1.96) and
(1.102). Similarly, studying the operators applied on U lm infers their behaviours on
the star functions (1.93).

The Riccati-Bessel and second kind Riccati-Hankel functions are noted Jl and
H

(2)
l , and ′ denotes a derivative. At a given wave number k, applying T and K to the
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VSH results in the following analytic expression [28, 29]

T X lm = −Jl(ka)H
(2)
l (ka)U lm (1.131a)

T U lm = J ′
l (ka)H

(2)
l

′(ka)X lm (1.131b)

KX lm =
i

2

(
Jl(ka)H

(2)
l

′(ka) + J ′
l (ka)H

(2)
l (ka)

)
X lm (1.131c)

KU lm = − i

2

(
Jl(ka)H

(2)
l

′(ka) + J ′
l (ka)H

(2)
l (ka)

)
U lm. (1.131d)

Additional useful operators are
(I
2
−K

)
U lm = iJl(ka)H

(2)
l

′(ka)U lm (1.132a)
(I
2
−K

)
X lm = −iJ ′

l (ka)H
(2)
l (ka)X lm (1.132b)

(I
2
+K

)
U lm = −iJ ′

l (ka)H
(2)
l (ka)U lm (1.132c)

(I
2
+K

)
X lm = iJl(ka)H

(2)
l

′(ka)X lm (1.132d)

n̂×X lm = U lm (1.132e)
n̂×U lm = −X lm. (1.132f)

Note that X lm and U lm are eigenfunctions of K but not T , in addition, the corre-
sponding eigenvalues are not singular values either. In general, the singular values of
a linear operator L, are the square roots of the eigenvalues of the operator L∗L where
L∗ denotes the adjoint of L. With some vector calculus manipulations, the following
adjoints are obtained

T ∗f = n̂× T
(
n̂× f

)
(1.133a)

K∗f = n̂×K
(
n̂× f

)
(1.133b)

(n̂× I)∗f = −n̂× f . (1.133c)

Then, these adjoints are used to get the singular values of the operators. For example,
for the operator T (PEC-EFIE),

T ∗T X lm =
∣∣∣Jl(ka)H(2)

l (ka)
∣∣∣
2

X lm (1.134a)

T ∗T U lm =
∣∣∣J ′

l (ka)H
(2)
l

′(ka)
∣∣∣
2

U lm. (1.134b)

So, the singular values of the operator T are

σX,l,m =
∣∣∣Jl(ka)H(2)

l (ka)
∣∣∣ (1.135a)

σU ,l,m =
∣∣∣J ′

l (ka)H
(2)
l

′(ka)
∣∣∣ (1.135b)
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Figure 1.11: Singular values of the continuous operator T and its MoM discretization
matrix T

for all l ≥ 1 and m ∈ [−l, l]. As m does not appear in the expression of the singular
values it actually means that the singular values for a given l have a 2l+1 multiplicity.

The operator T that has an ininite number of singular values is discretized by
the MoM matrix T ∈ C

Ns×Ns that has a inite number of singular values. In other
words, the discretization truncates the spectrum of T to a inite number of singular
values equals to Ns. The spherical harmonics become more oscillatory the higher is
the order l, so increasing the mesh density adds harmonics.

The singular values of the MoM matrix T for a unit sphere (Ns = 1920, a = 1 m,
f = 10 MHz) have been computed (with an SVD) and plotted on the igure 1.11. In
addition to that, the singular values of T have been plotted as given before. To it
with the singular values of T , the singular values of G− 1

2TG
− 1

2 (G is the Gram matrix
(1.111)) are actually plotted instead of T in order to remove the scaling introduced
by the testing and source basis functions. Also, the singular values of T were selected
such that Nv − 1 of them correspond to singular values associated to X lm and Nf − 1
of them correspond to U lm. It is related to the Euler’s formula (Nv+Nf = Ns+2 on a
simply connected geometry) and the fact that X lm are solenoidal like the vertex based
loop functions (1.96) and U lm are non-solenoidal like the face based star functions
(1.93). It can be seen on the igure 1.11 that for lower l, the singular values match
almost perfectly, but on higher l (l ≥ 5), there are some discrepancies, because the
discretization is not dense enough to discretize accurately the VSH at these orders.
However, the asymptotic behaviour remains present.
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There is no guarantee that the behaviour of the operators on a sphere is the same
on a general geometry. However, it provides a valuable insight on the properties of
the operators that is useful in understanding the problems of ill-conditioning.

1.5.2.2 Low frequency breakdown

The behaviour of the operators at low frequency is studied by looking at the asymp-
totic behaviour of the singular values when k → 0. The Bessel family functions
appearing in (1.135) have the following asymptotic behaviours [30]

Jl(ka) ∼
k→0

(ka)l+1

(2l + 1)!!
(1.136a)

J ′
l (ka) ∼

k→0

(l + 1) (ka)l

(2l + 1)!!
(1.136b)

H
(2)
l (ka) ∼

k→0

i (2l − 1)!!

(ka)l
(1.136c)

H
(2)
l

′(ka) ∼
k→0

− il (2l − 1)!!

(ka)l+1
. (1.136d)

So, the asymptotic behaviour of the singular values of T associated to X lm and U lm

are

σX,l,m =
∣∣∣Jl(ka)H(2)

l (ka)
∣∣∣ ∼
k→0

ka

2l + 1
∝ k (1.137a)

σU ,l,m =
∣∣∣J ′

l (ka)H
(2)
l

′(ka)
∣∣∣ ∼
k→0

(l + 1) l

(2l + 1) ka
∝ 1

k
. (1.137b)

The proportionality symbol ∝ is used asymptotically in the sense that when k → 0,
f(k) ∝ g(k) ⇐⇒ f(k) = O(g(k)) and g(k) = O(f(k)).

Since the singular values of T have the same trend as (1.137) i.e. scale as k for
solenoidal functions and 1/k for non-solenoidal functions, the condition number of T
scales proportionally to 1/k2 when k → 0 i.e.

cond (T) ∝
k→0

1

k2
. (1.138)

This is the so-called low frequency breakdown of the PEC-EFIE.
To illustrate the low frequency breakdown, the singular values of T (Ns = 1920,

a = 1 m) have been plotted for decreasing frequencies on the igure 1.12. It can be
observed that the 2 branches efectively scale as 1/k and k. Dividing the frequency
by 100 multiplies the condition number by 1002. In addition to that, the condition
number has been plotted for several frequencies on the igure 1.13 where the quadratic
growth of the condition number with the inverse of the frequency is clear. The number
of iterations Niter to reach a relative error of 10−8 on the residual with GMRES
(restarted every 20 iterations) is also plotted. When there is a convergence Niter < Ns,
otherwise the solver has been stopped at Niter = Ns = 1920 which indicates a non-
convergence.
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Figure 1.12: Singular values of T for decreasing frequency f
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Figure 1.13: Condition number of T and iteration count as functions of the frequency
f
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The low frequency breakdown is usually solved using a Calderón preconditioning
(see section 1.5.3.1) or by separating the solenoidal and non-solenoidal contributions
of the operator and rescale them independently to cancel the scaling in frequency (see
section 1.5.3.3).

1.5.2.3 Dense mesh breakdown

As it has been explained in the section 1.5.2.1, increasing the mesh density (by in-
creasing the number of edge Ns or decreasing the average edge length h) corresponds
to adding harmonics (by increasing the order l).

As it has been done for the low frequency breakdown by letting k → 0 in the
previous section, the Bessel family functions appearing in (1.135) are studied for the
dense mesh regime by letting the order l → +∞ (the following equivalents can be
found using [30])

Jl(ka) ∼
l→+∞

1√
2e

(
eka

2l + 1

)l+1

(1.139a)

J ′
l (ka) ∼

l→+∞

l + 1

2l + 1

√
e

2

(
eka

2l + 1

)l

(1.139b)

H
(2)
l (ka) ∼

l→+∞
i

√
2

e

(
2l + 1

eka

)l

(1.139c)

H
(2)
l

′(ka) ∼
l→+∞

−i
l

2l + 1

√
2e

(
2l + 1

eka

)l+1

. (1.139d)

So, the asymptotic behaviour of the singular values of T associated to X lm and U lm

are

σX,l,m =
∣∣∣Jl(ka)H(2)

l (ka)
∣∣∣ ∼
l→+∞

ka

2l + 1
∝ 1

l
(1.140a)

σU ,l,m =
∣∣∣J ′

l (ka)H
(2)
l

′(ka)
∣∣∣ ∼
l→+∞

(l + 1) l

(2l + 1) ka
∝ l. (1.140b)

Assume that the discretization truncates the order of harmonics to some lmax, so
that there are

∑lmax
l=1 (2l + 1) = l2max + 2lmax harmonics. This number of harmonics

corresponds to the number of edges Ns (up to some factor inferior to 1 as there are
both X lm and U lm) so that

Ns ∝
h→0

l2max. (1.141)

Consider that the sphere is discretized such that the average edge length is h and that
the faces are triangles almost equilateral. Then, the number of faces (Nf) is equal to
the area of the sphere (≈ 4πa2) divided by the area of a face (≈ h2

√
3/4). So

Nf ∝
h→0

a2

h2
. (1.142)
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Figure 1.14: Singular values of T for decreasing edge length h

Finally, as the mesh of the sphere is not open, there is exactly 2 faces for each edge,
or equivalently if the 3 edges of each faces are summed then each edge is counted
exactly twice, so

3Nf = 2Ns. (1.143)
It results from (1.141), (1.142) and (1.143) that

lmax ∝
h→0

a

h
. (1.144)

Regarding the asymptotic behaviour (1.140) of the singular values of T , the singular
values of T scale as h on the solenoidal functions and as 1/h on the non-solenoidal
functions so

cond (T) ∝
h→0

1

h2
. (1.145)

This is the so-called dense mesh (or dense grid) breakdown of the PEC-EFIE.
This dense mesh breakdown is illustrated on the igure 1.14 where the singular

values of T have been plotted for decreasing edge length. It can be observed that
increasing the mesh density adds singular values on both branches scaling as 1/h
and h. Dividing the edge length by 2 multiplies the condition number by roughly
4 (= 22). Again, the quadratic growth of the condition number with the inverse of
the edge length is clear on the igure 1.15 where the condition number of T has been
plotted for decreasing edge length (f = 100 MHz, a = 1 m).

The dense mesh breakdown is usually solved using a preconditioning of type
Calderón (see section 1.5.3.1), i.e. using a composition of operators to latten the
spectrum as opposed to a simple rescaling as it is done for the low frequency stabi-
lization.
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Figure 1.15: Condition number of T and iteration count as functions of the average
edge length h

1.5.2.4 Spurious resonances (high frequency)

At the opposite of low frequency (when ka ≪ 1), there are also problems at high
frequency (when ka ≫ 1) but they are very diferent in their manifestations and in
the way they are solved. Again, the Bessel family functions that appear in (1.135)
are studied at high frequency by letting k → +∞

Jl(ka) = sin
(
ka− l

π

2

)
+ O

k→+∞

(
1

ka

)
(1.146a)

J ′
l (ka) = cos

(
ka− l

π

2

)
+ O

k→+∞

(
1

ka

)
(1.146b)

H
(2)
l (ka) ∼

k→+∞
il+1e−ika (1.146c)

H
(2)
l

′(ka) ∼
k→+∞

ile−ika. (1.146d)

It is clear from these asymptotic behaviours that the Riccati-Bessel functions Jl and
their derivatives J ′

l have zeros. These zeros are more frequent the higher is the
frequency. It means that at some speciic frequencies that correspond to the zeros
of Jl(ka) and J ′

l (ka), some singular values of T are 0. As a result, around these
frequencies the condition number of T is unbounded.

On the igure 1.16, the condition number of T (Ns = 4320, a = 1 m, h ≈ 0.1 m)
has been computed for the range of frequencies where the irst resonances occur. The
absolute value of the irst orders of Jl(ka) and J ′

l (ka) are superimposed to illustrate
the correspondence of their zeros with the high condition numbers. It is clear that
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Figure 1.16: Condition number of T as a function of the frequency f showing the
irst resonances that match with the zeros of the Riccati-Bessel functions and their
derivatives

this behaviour worsens when the frequency increases as there are more and more zeros
in the Riccati-Bessel functions and their derivatives.

These spurious resonances occur for the PEC-EFIE (T ) but they also occur for
the PEC-MFIE (I/2 − K) at the same frequencies because the singular values of
its operator are also proportional to Jl(ka) and J ′

l (ka). In practice, this problem is
solved by combining the EFIE and the MFIE, resulting in a CFIE (Combined Field
Integral Equation). For example in the PEC case, the EFIE is

ηT J s = −n̂×Einc (1.147)

and the MFIE is (I
2
−K

)
J s = n̂×H inc. (1.148)

Let α be a dimensionless factor. (1 − α)n̂× is applied on the MFIE and summed
with the EFIE scaled by α/η, such that the PEC-CFIE is
(
αT + (1− α) n̂×

(I
2
−K

))
J s = −α

η
n̂×Einc+(1− α) n̂×

(
n̂×H inc) . (1.149)
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Using (1.131) and (1.132), the VSH expansion of the PEC-CFIE operator is
(
αT + (1− α) n̂×

(I
2
−K

))
X lm = − (αJl(ka) + i (1− α) J ′

l (ka))H
(2)
l (ka)U lm

(1.150a)
(
αT + (1− α) n̂×

(I
2
−K

))
U lm = (αJ ′

l (ka)− i (1− α) Jl(ka))H
(2)
l

′(ka)X lm

(1.150b)
and the singular values of the operator are

σX,l,m = |αJl(ka) + i (1− α) J ′
l (ka)||H(2)

l (ka)| (1.151a)
σU ,l,m = |αJ ′

l (ka)− i (1− α) Jl(ka)||H(2)
l

′(ka)| (1.151b)
for each l ≥ 1, with a multiplicity 2l+1. If the factor α that combines the EFIE and
the MFIE is chosen correctly (α = 1/2 is a common choice), the singular values of
the CFIE cannot be zero for any frequency which removes the spurious resonances.
In this work however one of the main concerns is the low frequency, so these spurious
resonances are not considered.

1.5.2.5 Numerical cancellations (low frequency)

Unfortunately, the ill-conditioning of the linear system is not the only problem that
is present at low frequency (when k → 0). Another problem is the numerical cancel-
lation that occurs between the solenoidal and the non-solenoidal parts of the ields
because they scale diferently with the frequency.

Consider a solenoidal function f sol on Γ such that it exists a scalar function g that
veriies f sol = n̂×∇g (e.g. λj (1.96) or X lm (1.130)). Then, because of ∂Γ = ∅,

¨

r∈Γ

f sol (r) dS =

¨

r∈Γ

n̂ (r)×∇g (r) dS =

˛

r∈∂Γ

g (r) dl = 0. (1.152)

In particular, for any constant ield C ∈ R
3

〈f sol,C〉 = 0, (1.153)
where the inner product 〈·, ·〉 is deined in (1.81). Note that some functions are
solenoidal, i.e. ∇ · f sol = 0, but do not verify f sol = n̂×∇g, in particular the global
loops ηj (1.102). In this case, (1.153) still holds true. It can be obtained by rewriting
the constant ield C as the gradient of a scalar ield and by using the duality between
the gradient and the divergence on Γ

〈f sol,C〉 =
¨

r∈Γ

f sol (r) ·CdS (1.154a)

=

¨

r∈Γ

f sol (r) ·∇ (r ·C) dS (1.154b)

= −
¨

r∈Γ

∇ · f sol (r) (r ·C) dS (1.154c)

= 0. (1.154d)
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Using this result, the asymptotic behaviour of the testing of a plane wave (1.42) by
solenoidal functions is

〈f sol,Epw〉 =
〈
f sol, E0e

−ik·rp̂
〉

(1.155a)

= E0〈f sol, p̂〉︸ ︷︷ ︸
= 0

− E0ik
〈
f sol,

(
k̂ · r

)
p̂
〉

︸ ︷︷ ︸
= O

k→0
(k)

+ E0

〈
f sol, p̂

+∞∑

n=2

(−ik · r)n
n!

〉

︸ ︷︷ ︸
= O

k→0
(k2)

(1.155b)
= O

k→0
(k). (1.155c)

In particular,

〈X lm,Epw〉 = O
k→0

(k) (1.156a)

〈U lm, n̂×Epw〉 = O
k→0

(k) (1.156b)

〈X lm, n̂×Epw〉 = O
k→0

(1) (1.156c)

〈U lm,Epw〉 = O
k→0

(1). (1.156d)

Therefore, in the testing of the RHS, when a plane wave is tested by a set of basis
functions such as the RWG functions fn (1.90), each coeicient of the RHS vector
contains the information for both the solenoidal and the non-solenoidal part of the
ield. When the frequency is lowered, at irst the solenoidal part loses digits of accu-
racy until the frequency is low enough to get the solenoidal part completely cancelled
by the non-solenoidal part. As the solenoidal and the non-solenoidal part contribute
equally to the solution, the solution cannot be retrieved in such cases (independently
of the conditioning of the system), unless a proper treatment is applied on the equa-
tion.

Similarly, it is common that the solenoidal and non-solenoidal parts of the currents
scale diferently. For example, it is shown in the section 1.5.3.2 that in the PEC-EFIE,
with a plane wave excitation, the solenoidal part of the electric current scales as O(1)
and its non-solenoidal part scales as O(k). Therefore, if they are summed together
without precautions, the non-solenoidal part starts to lose digits of accuracy until it
is completely cancelled at very low frequency. Again, this is a problem because the
two parts contribute equally to the solution: in the far ield the two contributions
retrieve the same scaling. So the far ield is completely wrong if a contribution has
been cancelled.

The usual technique to avoid the cancellation is to separate the solenoidal and
non-solenoidal components and rescale them independently with a loop-star/loop-
tree decomposition (see section 1.5.3.2) or with the quasi-Helmholtz projectors (see
section 1.5.3.3).
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1.5.3 Solutions to the ill-conditioning
1.5.3.1 Calderón preconditioning

Consider the matrix form for the exterior problem (1.74) and rewrite it as
(

I
2
−K −T
T I

2
−K

)(
ηJ s
M s

)
=

(
ηn̂×H inc

−n̂×Einc

)
. (1.157)

In the section 1.2.7, the surface Γ is the boundary of the scatterer. But in free space,
the surface can be chosen anywhere and the medium is the same inside and outside
(η′ = η, k′ = k). So in free space, the interior problem (1.76) can be rewritten
similarly (

I
2
+K T
−T I

2
+K

)(
ηJ s
M s

)
=

(
0

0

)
. (1.158)

These two operators in matrix form
(

I
2
−K −T
T I

2
−K

)
and

(
I
2
+K T
−T I

2
+K

)
(1.159)

are the so-called Calderón projectors. They are complementary (their sum is the
identity), so by using the properties of the projectors, their product is identically zero

(
I
2
−K −T
T I

2
−K

)(
I
2
+K T
−T I

2
+K

)
=

(
0 0
0 0

)
. (1.160)

The expansion of this product results in the Calderón identities

T 2 = −I
4
+K2 (1.161a)

T K = −KT . (1.161b)

Note that these identities can be veriied on a sphere using the VSH expansion of the
operators (1.131) and (1.132). The irst identity (1.161a) can be used to precondition
eiciently T because the operator T applied on itself is a scaled identity (−I/4) plus
a compact operator (K2).

Another way to write T 2 is simply by expanding it from its deinition (1.68a)

T 2 = −k2T 2
s − TsTh − ThTs (1.162)

where

T 2
h = 0 (1.163)

has been used. T 2 is not available in closed form but it can be discretized by combining
two conforming discretizations of T as described in the section 1.3.2. A conforming
discretization of T 2 is [7]

TG
−1
m T (1.164)
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m T that discretizes T 2 (cond (T) = 1.65 × 104,

cond (T) = 2.76× 104, cond (Gm) = 2.98, cond
(
TG

−1
m T

)
= 2.37)

that is tested with rotated BC functions n̂ × gn and that uses the RWG functions
fn as sources. It would not be possible to use T twice because the mix-Gram matrix
whose elements are

〈
n̂× f i,f j

〉
is not invertible.

In practice, the presence of the inverse of mix-Gram matrix G
−1
m in the formulation

is not a problem. Indeed, it is never computed explicitly: in an iterative solver only
its product by a vector y = G

−1
m x is required which is actually computed by solving

the system Gmy = x iteratively (so there is an iterative solver in the iterative solver).
Because Gm is sparse and well-conditioned for uniform discretizations, this system is
solved iteratively in O(Ns) operations. For non-uniform discretizations, a diagonal
preconditioning is used i.e. Gm is preconditioned (on the left) by the diagonal matrix
D deined by

Dmn =





1

[Gm]mn

if m = n

0 otherwise.
(1.165)

To illustrate the Calderón preconditioning, the spectra of T, G
−1
m , T and their

product TG
−1
m T have been plotted on the igure 1.17 for a unit sphere (a = 1 m,

Ns = 1920, f = 10 MHz). It can be seen from the two branches of their spectra that
T and T are both ill-conditioned, but the spectrum of TG−1

m T is lat so this matrix is
well-conditioned.
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1.5.3.2 Loop-star decomposition

It is mentioned in the sections (1.5.2.2) and (1.5.2.5) that a way to solve the low fre-
quency breakdown and the numerical cancellations is to separate the solenoidal and
non-solenoidal contributions and rescale them independently. This separation can
done with a loop-star decomposition [5] using the Star-to-RWG basis Σ ∈ R

Ns×Nf

(1.94) and the Loop-to-RWG basis Λ ∈ R
Ns×Nv (1.97) transformation matrices. Ac-

cording to the Euler’s formula for planar graphs,

Nv +Nf = Ns + 2 (1.166)

for simply connected geometries, so that all the Nv local loops and all the Nf stars
basis functions cannot be linearly independent. For example, the all-one vectors
1Nf ∈ R

Nf and 1Nv ∈ R
Nv are respectively in the null spaces of Σ and Λ

Σ1Nf = 0 (1.167a)
Λ1Nv = 0. (1.167b)

In addition,

Σ
T
Λ = 0 (1.168a)

Λ
T
Σ = 0. (1.168b)

To have a basis, 1 arbitrary local loop and 1 arbitrary star must be removed.
The multiply connected geometry are also considered in this work. Note Nh the

number of handles (e.g. Nh = 1 on a torus). Then, the Euler’s formula reads

Nv +Nf = Ns + 2− 2Nh. (1.169)

In that case, 1 local loop and 1 star basis must be removed and 2 global loops must
be added for each handle. For example, these 2 global loops have been represented
on a torus in the igure 1.9.

Let Λ̃ ∈ R
Ns×(Nv−Nh−1) and Σ̃ ∈ R

Ns×(Nf−Nh−1) be the local loop-to-RWG and
star-to-RWG matrices where the adequate number of columns have been removed,
and H̃ ∈ R

Ns×2Nh be the global loop-to-RWG matrix (H̃ is used for consistency in
the notations but it the same as H in (1.102)). The loop-star decomposition matrix
M ∈ R

Ns×Ns is then deined as the block matrix

M =
(

Λ̃ H̃ Σ̃

)
. (1.170)

Consider the PEC-EFIE
ηT J s = −n̂×Einc (1.171)

discretized with RWG basis functions as

ηTJ = E (1.172)
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where T = −ikTs +
1
ik
Th (see (1.103)) and

J s ≈
Ns∑

n=1

Jnfn (1.173a)

Em =
〈
n̂× fm,−n̂×Einc〉 . (1.173b)

By introducing the coeicient vector Y representing the current J in a loop-star de-
composed basis such that J = MY, (1.172) is equivalently rewritten in an loop-star
decomposed form as

ηMT
TMY = M

TE. (1.174)
Using the fact that the loop functions are solenoidal results in (0 is the all-zero matrix
but has a diferent dimension in each equation)

ThΛ̃ = 0 ∈ R
Ns×(Nv−Nh−1) (1.175a)

ThH̃ = 0 ∈ R
Ns×2Nh (1.175b)

Λ̃
T
Th = 0 ∈ R

(Nv−Nh−1)×Ns (1.175c)
H̃

T
Th = 0 ∈ R

2Nh×Ns . (1.175d)

So, (1.174) is written in a block form as

η




−ikΛ̃TTsΛ̃ −ikΛ̃TTsH̃ −ikΛ̃TTsΣ̃

−ikH̃TTsΛ̃ −ikH̃TTsH̃ −ikH̃TTsΣ̃

−ikΣ̃TTsΛ̃ −ikΣ̃TTsH̃ Σ̃T
(
−ikTs +

1
ik
Th
)
Σ̃


Y =




Λ̃TE

H̃TE

Σ̃TE


 . (1.176)

Using the asymptotic behaviour of the plane wave tested by solenoidal functions
(1.155) results in the following scalings for the RHS

M
TE =




Λ̃TE

H̃TE

Σ̃TE


 =




O(k)
O(k)
O(1)


 . (1.177)

Here the notation O(x) denotes a vector such that ‖O(x)‖ ∝
k→0

x. The sizes of the
vectors is not indicated but it is clear that they are respectively the numbers of
columns of Λ̃, H̃ and Σ̃. Similarly, in the following O(x) denotes a matrix such that
‖O(x)‖ ∝

k→0
x. The matrix on the LHS has the following asymptotic scaling of its

blocks

M
T
TM =




O(k) O(k) O(k)
O(k) O(k) O(k)
O(k) O(k) O(k−1)


 . (1.178)

This can be inverted, e.g. using the Schur complement, resulting in

(
M

T
TM

)−1
=




O(k−1) O(k−1) O(k)
O(k−1) O(k−1) O(k)
O(k) O(k) O(k)


 . (1.179)
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So, the scaling of the current in a loop-star decomposed basis is

Y =
1

η

(
M

T
TM

)−1
M

TE =




O(1)
O(1)
O(k)


 (1.180)

or equivalently,
J = MY = Λ̃ O

k→0
(1) + H̃ O

k→0
(1) + Σ̃ O

k→0
(k). (1.181)

From this study, three problems can be noted:

• The solenoidal and non-solenoidal parts of the RHS E scale diferently which
results in numerical cancellations (see section 1.5.2.5).

• Similarly, there are also numerical cancellations in the current J.

• The matrix T is ill-conditioned because one block scales as O(k−1) and the oth-
ers scale as O(k), which results in a condition number that scales proportionally
to k−2.

By deining a left preconditioner in the form

L
T =




(−ika)−1Λ̃T

(−ika)−1H̃T

Σ̃T


 (1.182)

where a is in the order of the diameter of the scatterer, the numerical cancellation on
the RHS is removed

L
TE =




(−ika)−1Λ̃TE

(−ika)−1H̃TE

Σ̃TE


 =




O(1)
O(1)
O(1)


 . (1.183)

Then, with a right preconditioner in the form

R =
(

Λ̃ H̃ −ikaΣ̃
)

(1.184)

the LHS matrix is

ηLT
TR = η




1
a
Λ̃TTsΛ̃

1
a
Λ̃TTsH̃ −ikΛ̃TTsΣ̃

1
a
H̃TTsΛ̃

1
a
H̃TTsH̃ −ikH̃TTsΣ̃

−ikΣ̃TTsΛ̃ −ikΣ̃TTsH̃ Σ̃T (−ak2Ts − aTh) Σ̃


 (1.185a)

= η




1
a
Λ̃TTsΛ̃

1
a
Λ̃TTsH̃ 0

1
a
H̃TTsΛ̃

1
a
H̃TTsH̃ 0

0 0 −aΣ̃TThΣ̃


+ O

k→0
(k). (1.185b)

The matrix has a limit in static whose non-zero blocks scale as O(1). In other words,
the condition number of the system is stable and actually tends to the condition
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number of the static limit matrix as k → 0. So this preconditioning solves the low
frequency breakdown. Then with this preconditioned system, the auxiliary current
unknown does not have numerical cancellations

Y =
1

η

(
L
T
TR
)−1

L
TE =




O(1)
O(1)
O(1)


 . (1.186)

To avoid the numerical cancellations on the RHS, the plane wave should be com-
puted with the constant term removed manually on the solenoidal part i.e. the kernel
e−ik·r should be replaced by the extracted kernel e−ik·r − 1. Using an incident plane
wave in the form Einc(r) = E0e

−ik·r, the following equalities hold according to (1.155)

Λ̃
TE = Λ̃

TEext (1.187a)
H̃

TE = H̃
TEext (1.187b)

[E]m = −
〈
fm,E0e

−ik·r
〉

(1.187c)
[Eext]m = −

〈
fm,E0

(
e−ik·r − 1

)〉
. (1.187d)

However, only Λ̃TEext and H̃TEext provide the correct numerical results at very low
frequency. Λ̃TE and H̃TE are plagued by a numerical cancellation.

Similarly, one should not attempt to compute J = RY as it would reintroduce
the cancellation. Instead, the solenoidal part JΛH = Λ̃O(1) + H̃O(1) and the non-
solenoidal part JΣ = −ikaΣ̃O(1) should remain separate. For example, the far ield
is computed by summing the ield radiated by JΛH with the ield radiated by JΣ,
instead of computing the ield radiated by J = JΛH + JΣ that contains a cancellation
of JΣ. Similarly to the extraction performed on the RHS that enforces numerically
the testing of a constant ield by a solenoidal function to be 0 (see (1.153)), the same
kind of extraction should be used for the scattering. In the case of the far ield, the
vector potential (1.60) is computed with an extracted kernel to radiate the solenoidal
part of the current JΛH

A (r) = µ
e−ik|r|

4π |r|

¨

r′∈Γ

(
eikr̂·r

′ − 1
)
JΛH (r′) dS ′. (1.188)

Despite its advantages, there are two notable issues with the loop-star decompo-
sition:

• It requires the detection of global loops which is computationally expensive in
general. Therefore the use of a loop-star decomposition on multiply connected
geometries is usually avoided.

• The loop-star decomposition enables the low-frequency stabilization and the
removal of the numerical cancellations on the RHS and the current, but it
introduces an ill-conditioning similar to the dense mesh breakdown. The ill-
conditioning introduced by the loop-star basis results in a condition number
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Figure 1.18: Condition number of T and L
T
TR as functions of the frequency f

proportional to h−2 (h is the mesh edge length). This is on top of the dense
mesh breakdown that also causes a condition number proportional to h−2 (see
section 1.5.2.3), so in total it results in a condition number proportional to h−4.

The igure 1.18 shows the condition numbers of T and L
T
TR for decreasing fre-

quencies (h ≈ 0.15 m). It is clear that cond (T) ∝ k−2 while cond
(
L
T
TR
)

tends to a
constant. In fact, this constant behaviour holds till arbitrary low frequency.

The igure 1.19 (f = 106 Hz) shows the degradation of the condition number in h
introduced by the loop-star decomposition on which the scaling cond

(
L
T
TR
)
∝ h−4

is clear. So the system still sufers from the dense mesh breakdown that is actually
worsened by the loop-star decomposition. At a ixed frequency, it can be seen that
there is actually a point where cond

(
L
T
TR
)
> cond (T) if h is small enough.

Finally, the loop-star decomposition has been applied on vectors in a RWG basis,
but it must be noted that the loop-star decomposition can also be applied on vectors
in a BC basis. However, the loop-star decomposition has not the same interpretation
when it is applied on a vector in a BC basis. Contrary to the decomposition in a
RWG basis

JRWG = Λ̃JRWG
Λ

+ H̃JRWG
H

+ Σ̃JRWG
Σ

(1.189)

where Λ̃JRWG
Λ

+H̃JRWG
H

corresponds to the solenoidal part and Σ̃JRWG
Σ

is non-solenoidal,
in a BC basis

JBC = Λ̃JBC
Λ

+ H̃JBC
H

+ Σ̃JBC
Σ

(1.190)

the non-solenoidal part is Λ̃JBC
Λ

and the solenoidal part is H̃JBC
H

+ Σ̃JBC
Σ

.

54



1.5. Preconditioning

10−1 100

102

103

104

105

106

107

Edge length h (m)

C
on

di
tio

n
nu

m
be

r

T

L
T
TR

Figure 1.19: Condition number of T and L
T
TR as functions of the average edge length
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1.5.3.3 Quasi-Helmholtz projectors

It is shown in the previous section that the loop-star decomposition enables a low fre-
quency stabilization with some downsides. The quasi-Helmholtz projectors provide
the same preconditioning beneits without the downsides. In particular, they enable
the separation of the solenoidal and non-solenoidal parts without introducing a de-
terioration in the condition number and they do not require the detection of global
loops.

Instead of using the matrix Σ directly, a projector PΣ ∈ R
Ns×Ns orthogonal to its

nullspace (the solenoidal functions) is built. Then, the projector PΛH ∈ R
Ns×Ns on the

solenoidal subspace (that include both local and global loops) is its complementary

P
Σ = Σ

(
Σ

T
Σ
)+

Σ
T (1.191a)

P
ΛH = I− P

Σ (1.191b)

where + denotes the Moore-Penrose pseudo inverse.
As the projectors are dense, they are not computed or stored explicitly in practice.

Instead, in iterative solvers their products with vectors are actually performed. By
leveraging an algebraic multigrid, these products are computed in linear time as
explained in [31].

As before, the PEC-EFIE (1.172)

ηTJ = E (1.192)
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is used as a reference. Similarly to the loop-star decomposition matrix M (1.170),
the projectors can be used to visualize the diferent blocks of the operators and their
scalings when the solenoidal (ΛH) or non-solenoidal (Σ) functions are used as source
or testing. In the case of projectors, it is simply done by multiplying the identity
I = P

ΛH + P
Σ on the left and the right of T = −ikTs +

1
ik
Th (1.103) and rewriting

the resulting sum as a block matrix-vector products

T =
(
P

ΛH + P
Σ
)
T
(
P

ΛH + P
Σ
)

(1.193a)

= −ikPΛH
TsP

ΛH − ikPΛH
TsP

Σ − ikPΣ
TsP

ΛH + P
Σ

(
−ikTs +

1

ik
Th

)
P

Σ

(1.193b)

=
(
P

ΛH
P

Σ
)( −ikTs −ikTs

−ikTs −ikTs +
1
ik
Th

)(
P

ΛH

P
Σ

)
(1.193c)

where similarly to (1.175), the following equalities have been used

ThP
ΛH = P

ΛH
Th = 0. (1.194)

Note that the following equality holds as a consequence

P
Σ
ThP

Σ = Th. (1.195)

The igure 1.20 shows the efects of the projectors on the spectrum of T (f = 108

Hz, h ≈ 0.15 m). It can be seen that the projectors are used to select a branch. The
preconditioners can take advantage of this to rescale a branch independently from the
other. Then, using an approach similar to the preconditioning done with the loop-star
decomposition in the section 1.5.3.2, the following left and right preconditioner (that
are analogous to (1.182) and (1.184)) are constructed to precondition the PEC-EFIE

L = − 1

ika
P

ΛH + P
Σ (1.196a)

R = P
ΛH − ikaPΣ. (1.196b)

Thus, the low frequency stable PEC-EFIE that is free from numerical cancellations
on the RHS (plane wave) and the current is

ηLTRY = LE (1.197a)
RY = J. (1.197b)

Again, the preconditioned system is written as a block matrix-vector product to
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highlight the diferent contributions

LTR =

(
− 1

ika
P

ΛH + P
Σ

)
T
(
P

ΛH − ikaPΣ
)

(1.198a)

=
1

a
P

ΛH
TsP

ΛH − ikPΛH
TsP

Σ − ikPΣ
TsP

ΛH + P
Σ
(
−k2aTs − aTh

)
P

Σ

(1.198b)

=
1

a
P

ΛH
TsP

ΛH − aTh + O
k→0

(k) (1.198c)

=
(
P

ΛH
P

Σ
)( 1

a
Ts −ikTs

−ikTs −k2aTs − aTh

)(
P

ΛH

P
Σ

)
(1.198d)

=
(
P

ΛH
P

Σ
)( 1

a
Ts 0

0 −aTh

)(
P

ΛH

P
Σ

)
+ O

k→0
(k). (1.198e)

However, the system is still sufering from the dense mesh breakdown. The idea to
solve this breakdown is to use a Calderón-like preconditioning in the sense that oper-
ators spectral properties are used to precondition the system. As it can be observed
on the igure 1.14, when the edge length h of the mesh decreases, the dense mesh
breakdown is the result of a growing of the maximum singular value proportional to
h−1 on the non-solenoidal part of the spectrum (dominated by Th) and a diminution
of the minimum singular proportional to h on the solenoidal part of the spectrum
(only Ts). In fact, applying Th on Ts, and conversely applying Ts on Th, removes
the ill-conditioning in h. Regarding the Calderón identity (1.161a) and the expan-
sion of T 2 (1.162), it is in some measure what takes place in the classical Calderón
preconditioning.

Similarly to the procedure done in the section 1.5.3.1 for the classical Calderón
preconditioning, the inverse of the mix-Gram matrix is used to combine the primary
system discretized with RWG basis functions to the preconditioner discretized with
BC basis functions. The action of the quasi-Helmholtz projectors on a vector in the
BC basis is diferent than their action on a vector in the RWG basis. In fact, regarding
the loop-star decompositions (1.189) and (1.190), the columns of Σ are non-solenoidal
and the columns of Λ and H are solenoidal in RWG basis, as opposed to the BC basis
in which the columns of Σ and H are solenoidal and the columns of and Λ are non-
solenoidal. This suggest the introduction of the dual projectors PΛ and P

ΣH that are
constructed the same way as P

Σ and P
ΛH . The dual projectors are

P
Λ = Λ

(
Λ

T
Λ
)+

Λ
T (1.199a)

P
ΣH = I− P

Λ. (1.199b)

Note that on simply connected geometry there are no global loops so P
Σ = P

ΣH and
P

Λ = P
ΛH . Useful identities coming from the properties of Th that are analogous to

(1.194) and (1.195) are

ThP
ΣH = P

ΣH
Th = 0 (1.200a)

P
Λ
ThP

Λ = Th. (1.200b)
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1.5. Preconditioning

In addition, the properties of the mix-Gram matrix Gm imply the following identities
that are analogous to (1.168b) and (1.163)

P
Λ
G

−1
m P

Σ = 0 (1.201a)
ThG

−1
m Th = 0. (1.201b)

The dense mesh preconditioner T̃ is

T̃ =
1

a
P

ΣH
TsP

ΣH − aTh. (1.202)

This preconditioner can be seen as the low frequency approximation of
(
− 1

ika
P

ΣH + P
Λ

)
T
(
P

ΣH − ikaPΛ
)
= T̃+ O

k→0
(k), (1.203)

so it is efectively achieving a Calderón preconditioning at arbitrary low frequency.
The low frequency and dense mesh stable PEC-EFIE that is free of numerical can-
cellations reads

ηT̃G−1
m LTRY = T̃G

−1
m LE (1.204a)

RY = J. (1.204b)

This formulation is capable of computing the solution current for an arbitrary low
frequency and an arbitrary dense mesh. But in practice, some precautions must
be taken to avoid numerical cancellations. The matrix products that yield 0 in
(1.200) and (1.201) must be enforced by expanding the matrix products in (1.204)
and actually removing the zero terms from the computation. The LHS matrix is
computed as

T̃G
−1
m LTR = − ik

a
P

ΣH
TsP

ΣH
G

−1
m LTsR (1.205a)

− P
ΣH

TsG
−1
m Th (1.205b)

− ThG
−1
m TsR. (1.205c)

The RHS is computed using the extracted kernel Eext as in the loop-star decomposition
(1.187). With the projectors, PΛHEext = P

ΛHE holds true, but at low frequency only
P

ΛHEext provides the correct result because P
ΛHE has cancellations. The RHS is

computed as

T̃G
−1
m LE =

1

a
P

ΣH
TsG

−1
m P

ΣE (1.206a)

− 1

ika2
P

ΣH
TsP

ΣH
G

−1
m P

ΛHEext (1.206b)

+
1

ik
ThG

−1
m P

ΛHEext. (1.206c)
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Figure 1.21: Singular values of the non-preconditioned T, the low frequency precon-
ditioned LTR, and the fully preconditioned T̃G

−1
m LTR

Finally, the solution is retrieved as

J = RY = JΛH + JΣ (1.207a)
JΛH = P

ΛHY (1.207b)
JΣ = −ikaPΣY. (1.207c)

Again, if the quantity of interest is the scattered ield, then it should be computed
as the sum of the ields scattered by JΛH and JΣ rather than the ield scattered by
JΛH + JΣ to avoid numerical cancellations. Similarly to the loop-star decomposition,
the solenoidal part of the current JΛH should be radiated using the extracted kernel
in the vector potential (1.188).

The igure 1.21 (unit sphere, f = 107 Hz, h ≈ 0.15 m) shows the efects of the low
frequency preconditioner and the dense mesh preconditioner on the spectrum of the
system. Roughly speaking, the efect of the low frequency preconditioner is to bring
closer the two branches with a rescaling in frequency while the efect of the dense
mesh preconditioner is to latten the spectrum with a Calderón preconditioning.

The igure 1.22 (unit sphere, f = 10−20 Hz, h ≈ 0.15 m, Einc(r) = eikẑ·rx̂ V/m)
shows the RCS (ϕ = 0o, θ ∈ [0, 180]o) computed with and without extracted kernels.
It demonstrates the importance of using the extracted kernel in the computation of
the solenoidal part of the RHS (PΛHEext) and in the radiation of the solenoidal part of
the current JΛH. It is clear that both are mandatory at very low frequency to match
with the analytic solution (Mie series).
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Chapter 2

Low frequency and dense mesh
stable IBC-EFIE

In this chapter, a formulation for the Impedance Boundary Condition - Electric Field
Integral Equation (IBC-EFIE) is presented. It does not sufer from the dense mesh
breakdown nor the low frequency breakdown. The stabilization of the formulation
leverages the quasi-Helmholtz projectors.

2.1 Introduction
The Perfect Electric Conductor - Electric Field Integral Equation (PEC-EFIE) is
often used to model accurately the scattering of time harmonic electromagnetic ields
by a highly conducting scatterer. It is particularly eicient to simulate metals, but it
exists a wide range of non-penetrable objects or materials that cannot it in the PEC
model. The Impedance Boundary Conditions (IBCs) can describe a wider range of
non-penetrable objects. In fact, the PEC boundary condition is a particular case of
IBC with an impedance that is equal to zero. The PEC boundary condition states
that the only unknown is the tangential trace of the magnetic ield or equivalently the
surface electric current density J s = n̂×H (see (1.58)), and that the tangential trace
of the electric ield is zero on the boundary, or in terms of surface magnetic current
density M s = E × n̂ = 0. On the contrary, the IBC has both traces of the electric
and magnetic ields as unknowns. At each point r on the surface of the scatterer,
they are coupled by a proportionality relation whose factor is the surface impedance
zimp (r). The most simple IBC is the Leontovich IBC [13]

n̂ (r)×E (r) = zimp (r) n̂ (r)× (n̂ (r)×H (r)) (2.1)

or equivalently, in terms of the surface currents

M s (r) = −zimp (r) n̂ (r)× J s (r) . (2.2)

A common point between the PEC condition and the IBC is that they do not require
the description of the domain in the interior of the scatterer (1.75) to model the
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2.2. Impedance Boundary Condition - Electric Field Integral Equation

exterior domain. This is done by enforcing the condition between the surface currents
instead. IBCs in electromagnetics have been the topic of several contributions [32],
including generalized IBC [33], Combined Field Integral Equation (CFIE) [34], and
self-dual formulations [35, 36].

The combination of the IBC together with the EFIE is the so-called IBC-EFIE
[37]. Compared to the PEC-EFIE, the IBC-EFIE includes an additional term that
is similar to the operator of the Magnetic Field Integral Equation (MFIE). And
similarly to the PEC-EFIE, the IBC-EFIE is also plagued by several breakdowns
including the low frequency breakdown and the dense mesh breakdown. So far, all
the IBC formulations in electromagnetics sufer from at least one of these two ill-
conditionings. The goal of this chapter is to present a formulation for the IBC-EFIE
that is both stable at low frequency and for dense meshes.

The quasi-Helmholtz projectors have been recently introduced in the stabilization
of the PEC-EFIE [38] to make it stable and accurate until arbitrary low frequency.
Combined with a Calderón preconditioning, it results in a formulation whose resulting
MoM system has a conditioning independent of the mesh size. However, the strategy
used in the preconditioning of the PEC-EFIE cannot be straightforwardly applied to
the IBC-EFIE due to the presence of the impedance and the MFIE operator.

The standard discretization of the IBC-EFIE is described in the irst section.
Then, an analysis of the IBC-EFIE operator is done using Vector Spherical Harmonics,
on one hand at low frequency and on the other hand for dense discretizations. From
the analysis, a preconditioner is built to stabilize the formulation. Numerical results
are presented in the last section.

The content of this chapter has been published in a journal [39] and presented in
a conference [40].

2.2 Impedance Boundary Condition - Electric Field
Integral Equation

2.2.1 Integral equation of the IBC-EFIE
A scatterer with a boundary Γ is placed in the background medium whose charac-
teristic impedance is η and the wave number is k. When the scatterer is illuminated
by an incident electric ield Einc, the surface currents J s and M s verify the EFIE
(1.73a)

ηT J s +

(I
2
−K

)
M s = −n̂×Einc (2.3)

where the operators T and K are deined in (1.68a) and (1.69). The EFIE is completed
with the Impedance Boundary Condition that is assumed to hold on the surface at
every point r ∈ Γ

M s (r) = −zimpn̂ (r)× J s (r) . (2.4)
The impedance zimp is a complex scalar that is assumed to be the uniformly the
same on Γ. Depending on the model chosen for the impedance, zimp can depend on
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2. Low frequency and dense mesh stable IBC-EFIE

the frequency. The EFIE (2.3) together with the IBC (2.4) uniquely determine the
solution currents J s and M s. Inserting (2.4) into (2.3) yields the IBC-EFIE

ηT J s − zimp
(I
2
−K

)
(n̂× J s) = −n̂×Einc (2.5)

that is to be solved in J s. In the following, the IBC-EFIE operator is deined as

S = ηT − zimp
(I
2
−K

)
(n̂× I) (2.6)

such that the IBC-EFIE is conveniently rewritten as

SJ s = −n̂×Einc (2.7a)
M s = −zimpn̂× J s. (2.7b)

2.2.2 Discretization of the IBC-EFIE
The surface Γ is approximated by a triangular mesh on which Ns RWG basis functions
(fn)

Ns
n=1 and BC basis functions (gn)

Ns
n=1 are constructed as deined in (1.90) and (1.92).

The RWG basis functions discretize the electric current density J s and the BC
basis functions discretize the magnetic current density M s. These choices for the
basis functions enable the construction of a conforming discretization as pointed out
in [34]. Explicitly, the currents are expanded as

J s ≈
Ns∑

n=1

[J]nfn (2.8a)

M s ≈
Ns∑

n=1

[M]ngn (2.8b)

where J and M ∈ C
Ns are the vectors that contain the coeicients of the expansions.

Both the EFIE (2.3) and the IBC (2.4) are tested with the rotated RWG functions
n̂× fn (n ∈ [1, Ns]) which results in the following system of equations

ηTJ+

(
1

2
Gm −K

)
M = E (2.9a)

GmM = −zimp
GJ (2.9b)

where

[T]mn = 〈n̂× fm, T fn〉 (2.10a)
[K]mn = 〈n̂× fm,Kgn〉 (2.10b)

[Gm]mn = 〈n̂× fm, gn〉 (2.10c)
[G]mn = 〈fm,fn〉 (2.10d)
[E]m = −

〈
fm,E

inc〉 . (2.10e)
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2.3. Analysis of the IBC-EFIE operator

In (2.9), the magnetic current M can be substituted in the EFIE using the IBC to
obtain the discrete counterpart of (2.5)

ηTJ− zimp
(
1

2
Gm −K

)
G

−1
m GJ = E (2.11a)

M = −zimp
G

−1
m GJ. (2.11b)

Regarding the previous equation, the discretization of the IBC-EFIE operator S (2.6)
is

S = ηT− zimp
(
1

2
Gm −K

)
G

−1
m G. (2.12)

The linear system corresponding to the MoM discretization of the IBC-EFIE is

SJ = E. (2.13)

Unfortunately, this system is ill-conditioned. In particular, it sufers from the low-
frequency breakdown and the dense mesh breakdown.

2.3 Analysis of the IBC-EFIE operator
2.3.1 Spectrum of the IBC-EFIE operator
In this section, the behaviour of the IBC-EFIE operator is studied using Vector Spher-
ical Harmonics (VSH) on a sphere of radius a. The VSH X lm and U lm are deined in
(1.130). It is reminded that X lm is solenoidal and that U lm is non-solenoidal. Using
(1.131) and (1.132), the VSH expansion of the operator S (2.6) is

SX lm =
(
−ηH

(2)
l (ka)− zimpiH

(2)
l

′(ka)
)
Jl(ka)U lm (2.14a)

SU lm =
(

ηH
(2)
l

′(ka)− zimpiH
(2)
l (ka)

)
J ′
l (ka)X lm. (2.14b)

The singular values of the operator S are the square roots of the eigenvalues of the
operator S∗S. Using (1.133), the adjoint of S is

S∗ = ηT ∗ + zimpn̂×
(I
2
−K∗

)
. (2.15)

Then, the eigenvalues of S∗S are given by the following expressions

S∗SX lm = | − ηH
(2)
l (ka)− zimpiH

(2)
l

′(ka)|2Jl(ka)2X lm (2.16a)
S∗SU lm = | ηH

(2)
l

′(ka)− zimpiH
(2)
l (ka)|2J ′

l (ka)
2U lm (2.16b)

and consequently, the singular values of S are

σX,l = | − ηH
(2)
l (ka)− zimpiH

(2)
l

′(ka)||Jl(ka)| (2.17a)
σU ,l = | ηH

(2)
l

′(ka)− zimpiH
(2)
l (ka)||J ′

l (ka)| (2.17b)
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2. Low frequency and dense mesh stable IBC-EFIE

for all l ≥ 1 and with a multiplicity 2l + 1 because m ∈ [−l, l]. It must be noted
that there are particular impedances for which the IBC-EFIE is resonant i.e. it exists
impedances zimp such that the singular values σX,l and σU ,l are 0. As a result, the
condition number of S is unbounded for these impedances

σX,l = 0 if zimp = ηi
H

(2)
l (ka)

H
(2)
l

′(ka)
(2.18a)

σU ,l = 0 if zimp = −ηi
H

(2)
l

′(ka)

H
(2)
l (ka)

. (2.18b)

Also, the IBC-EFIE has resonances for particular wave numbers k at high frequency
due to the zeros of the Riccati-Bessel functions Jl and their derivatives Jl

′. They are
actually the same as the PEC-EFIE (see section 1.5.2.4).

2.3.2 Analytic solution of the IBC-EFIE on a sphere
In this section, the analytic solution of the IBC-EFIE is computed. The impedance
zimp and the frequency f are assumed to be diferent than their values that cancel
〈X lm,SU lm〉 or 〈U lm,SX lm〉. Using the orthonormality of the VSH, the currents
can be expanded as

J s =
+∞∑

l=1

l∑

m=−l

〈X lm,J s〉X lm +
+∞∑

l=1

l∑

m=−l

〈U lm,J s〉U lm (2.19a)

M s =
+∞∑

l=1

l∑

m=−l

〈X lm,M s〉X lm +
+∞∑

l=1

l∑

m=−l

〈U lm,M s〉U lm. (2.19b)

The analytic solution is found by computing each inner product in the above equation.
The solution for the electric current J s can be found by testing the IBC-EFIE (2.7a)
with the VSH

〈
X lm,−n̂×Einc〉 = 〈X lm,SJ s〉 = 〈X lm,SU lm〉 〈U lm,J s〉 (2.20a)
〈
U lm,−n̂×Einc〉 = 〈U lm,SJ s〉 = 〈U lm,SX lm〉 〈X lm,J s〉 . (2.20b)

So,

〈X lm,J s〉 =
〈
U lm,−n̂×Einc〉

〈U lm,SX lm〉
(2.21a)

〈U lm,J s〉 =
〈
X lm,−n̂×Einc〉

〈X lm,SU lm〉
. (2.21b)

Then using the IBC (2.4), the inner products for the magnetic current are computed

〈X lm,M s〉 = zimp 〈U lm,J s〉 (2.22a)
〈U lm,M s〉 = −zimp 〈X lm,J s〉 . (2.22b)
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2.3. Analysis of the IBC-EFIE operator

In practice, Einc is chosen to be a plane wave (1.42) whose polarization p̂ and wave
vector k are aligned on coordinates axis so that the computation is more convenient.
In the following, the analytic solutions are computed for the plane wave whose polar-
ization is p̂ = x̂ and whose wave vector is k = −kẑ. It corresponds to an excitation
in the form (see [41])

Einc (r) = E0e
ikẑ·rx̂ (2.23a)

= 2πE0

∞∑

l=1

il
√

2l + 1

4π

(
jl(ka) (X l,−1 +X l,1) (2.23b)

− 1

k
∇× (jl(ka) (X l,−1 −X l,1))

)

= 2πE0

∞∑

l=1

il
√

2l + 1

4π

(
jl(ka) (X l,−1 +X l,1) (2.23c)

− i
√

l(l + 1)
jl(ka)

ka
(Y l,−1 − Y l,1)

− J ′
l (ka)

ka
(U l,−1 −U l,1)

)

where jl are the spherical Bessel functions. The RHS is actually the tangential trace
of the ield. Taking the tangential trace of Einc eliminates the radial VSH components
(Y lm)

−n̂×Einc (r) = −2πE0

∞∑

l=1

il
√

2l + 1

4π

(
jl(ka) (U l,−1 +U l,1) (2.24a)

+
J ′
l (ka)

ka
(X l,−1 −X l,1)

)

=
∞∑

l=1

∑

m=±1

〈
X lm,−n̂×Einc〉X lm (2.24b)

+
∞∑

l=1

∑

m=±1

〈
U lm,−n̂×Einc〉U lm

with
〈
X l,±1,−n̂×Einc〉 = ±2πE0i

l

√
2l + 1

4π

J ′
l (ka)

ka
(2.25a)

〈
U l,±1,−n̂×Einc〉 = −2πE0i

l

√
2l + 1

4π
jl(ka). (2.25b)

The VSH expansion of the plane wave (2.25) together with the VSH expansion of the
operator S (2.14)

〈U lm,SX lm〉 =
(
−ηH

(2)
l (ka)− zimpiH

(2)
l

′(ka)
)
Jl(ka) (2.26a)

〈X lm,SU lm〉 =
(

ηH
(2)
l

′(ka)− zimpiH
(2)
l (ka)

)
J ′
l (ka) (2.26b)
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2. Low frequency and dense mesh stable IBC-EFIE

enable the computation of the VSH expansion of the current (2.21)

〈X l,±1,J s〉 =
E0i

l
√

π (2l + 1)(
ηH

(2)
l (ka) + zimpiH

(2)
l

′(ka)
)
ka

(2.27a)

〈U l,±1,J s〉 =
±E0i

l
√
π (2l + 1)(

ηH
(2)
l

′(ka)− zimpiH
(2)
l (ka)

)
ka

. (2.27b)

Finally, the VSH expansion for the magnetic current is computed using (2.22).
Usually, the quantity of interest are the scattered ields. The Mie theory describes

a systematic method to obtain the series of coeicients (Mie series) of the VSH ex-
pansion of the ields from the boundary conditions. The Mie series for IBCs can be
found in [19].

2.3.3 Low frequency behaviour
2.3.3.1 Low frequency breakdown

The asymptotic behaviour of the singular values of S (2.17) is studied at low frequency
by letting k → 0. Also, it is assumed that zimp is not near one of the resonant
impedances (2.18), so that the equivalents below cannot be 0. Using the asymptotic
behaviour of the Bessel family functions (1.136),

σX,l ∼
k→0

∣∣∣∣
ika

l
η + zimp

∣∣∣∣
l

2l + 1
(2.28a)

σU ,l ∼
k→0

∣∣∣∣
l

ika
η + zimp

∣∣∣∣
l + 1

2l + 1
. (2.28b)

It is assumed that zimp/η = o(1/(ka)) when k → 0 in the following which holds in
all practical cases, so that zimp can be neglected in σU ,l at low frequency. After the
discretization, the order l of the harmonics is assumed to be truncated at lmax. So at
low frequency the singular values of S scale proportionality to

σX,lmax ∝
k→0

∣∣∣∣
ika

lmax
η + zimp

∣∣∣∣ (2.29a)

σU ,lmax ∝
k→0

ηlmax

ka
(2.29b)

and its condition number scales as

cond (S) ∝
k→0

σU ,lmax

σX,lmax

∝
k→0

ηlmax

ka
∣∣∣ ika
lmax

η + zimp
∣∣∣
. (2.30)

It must be noted that when zimp = 0, the quadratic growing 1/k2 of the condition
number of the PEC-EFIE (1.138) is retrieved. However if |zimp| ≫ ηka, the growing
of the condition number is proportional to 1/(|zimp| k).

68



2.3. Analysis of the IBC-EFIE operator

2.3.3.2 Numerical cancellations

In addition to the ill-conditioning of the system at low frequency, there are also
numerical cancellations on the RHS. For a plane wave Einc with a peak amplitude
E0, the following scalings hold (2.25)

〈
X lm, n̂×Einc〉 ∝

k→0
E0 (2.31a)

〈
U lm, n̂×Einc〉 ∝

k→0
ikaE0. (2.31b)

In fact, the diference of scaling results in a loss of accuracy in the solenoidal part of
the excitation ield until the frequency is low enough to completely cancel it. These
cancellations on the RHS are exactly the same as the PEC-EFIE (the RHS is inde-
pendent of the boundary condition).

The scaling of the operator S (2.26) at low frequency is

〈U lm,SX lm〉 ∝
k→0

− ika

l
η − zimp (2.32a)

〈X lm,SU lm〉 ∝
k→0

l

ika
η. (2.32b)

Then, using the scaling of the RHS (2.31) and the LHS (2.32) in the expression for
the currents (2.21) and (2.22) results in the following scalings

〈X lm,J s〉 ∝
k→0

ika
ika
l
η + zimpE0 (2.33a)

〈U lm,J s〉 ∝
k→0

ika

ηl
E0 (2.33b)

〈X lm,M s〉 ∝
k→0

zimp

η

ika

l
E0 (2.33c)

〈U lm,M s〉 ∝
k→0

ika
η

zimp
ika
l
+ 1

E0. (2.33d)

When |zimp| ≪ ηka and in particular if zimp = 0, there is a cancellation of the non-
solenoidal part of the electric current and the solenoidal part of the magnetic current
in the IBC-EFIE. There is a factor in the order of magnitude of k between the two
parts of the currents. That is the same magnitude for the cancellation that occurs
in the current of the PEC-EFIE. However, when |zimp| ≫ ηka, the factor between
the two parts of the currents is in the order of zimp/η. It can still lead to numerical
cancellations depending on how the impedance zimp varies with the frequency but the
problem is less severe compared to the PEC-EFIE. Nevertheless it is still a potential
problem that needs to be addressed.

2.3.4 Analysis of the dense mesh breakdown
The behaviour of the operator is again studied on a sphere of radius a with the VSH.
As it is explained in the section 1.5.2.3, the dense mesh breakdown can be studied by
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2. Low frequency and dense mesh stable IBC-EFIE

letting the order of the VSH l go to ininity. After the discretization, the average edge
length of the discrete mesh Γ is h, and the spectrum of the operators are truncated to
lmax ∝ a/h (1.144). So the behaviour of the singular values of S (2.17) when l → +∞
can be used to get an estimate of the condition number of S when h → 0. Using the
asymptotic behaviour of the Bessel family functions (1.139) in (2.17) results in

σX,l ∼
l→+∞





|zimp|
2

if zimp 6= 0

η

2

ka

l
if zimp = 0

(2.34a)

σU ,l ∼
l→+∞

η

2

l

ka
. (2.34b)

It can be read from (2.34a) that σX,l behaves diferently depending on whether zimp 6=
0 or zimp = 0. As the case zimp = 0 corresponds to the PEC-EFIE, it won’t be
considered here because it is explained in the section 1.5.2.3 and the problem was
solved in [38]. So in the following, zimp 6= 0 is assumed and thus σX,l ∼ |zimp| /2 when
l → +∞. Using the estimate lmax ∝ a/h, the condition number scales as

cond (S) ∝
h→0

σU ,lmax

σX,lmax

∝
h→0

η

kh |zimp| . (2.35)

Contrary to the PEC-EFIE for which the condition number grows quadratically with
the inverse of the edge length h, in the IBC-EFIE it grows linearly. Indeed, the branch
of the spectrum associated to the operator Ts (whose singular values goes to 0 in the
PEC-EFIE) is dominated by the identity (that is absent in the PEC-EFIE).

2.4 Solution of the low frequency problems
In this section, the low frequency breakdown and the numerical cancellations are
addressed by leveraging the quasi-Helmholtz projectors (see section 1.5.3.3 for their
introduction). In the RWG basis, P

ΛH projects on the solenoidal subspace while
P

Σ projects on the non-solenoidal subspace. In the following, a left and a right
preconditioners for the IBC-EFIE are built based on the analysis of the previous
sections.

In the PEC-EFIE the left preconditioner (1.196) is designed to ix the numerical
cancellation on the RHS by rescaling only the solenoidal part. The fact that this
problem is exactly the same on the RHS of the IBC-EFIE (2.31) suggests the use of
the same left preconditioner

L = − 1

ika
P

ΛH + P
Σ. (2.36)

Here the scalar a is no longer the radius of the sphere but a length parameter (ka has
no unit) that should be in the order of magnitude of the diameter of the scatterer. By
keeping a proportional to the diameter of the object, a global rescaling of the problem
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2.4. Solution of the low frequency problems

(i.e. that rescales both of the geometry and the wavelength) lets ka invariant so it
does not change the condition number of the preconditioned system.

The right preconditioner is designed to act on the electric current. The scaling
of its non-solenoidal part (U lm) is roughly the same as in the PEC-EFIE, because
the action of the impedance zimp on this part was neglected by assuming zimp/η =
o(1/(ka)). Regarding the solenoidal part (X lm), it can be read from (2.33) that
it scales like in the PEC-EFIE as E0/η when |zimp| ≪ ηka, however it scales as
kaE0/z

imp when |zimp| ≫ ηka. Consequently, these two regimes are also present in
the deinition of the right preconditioner

R =
ika

ika+ zimp

η

P
ΛH − ikaPΣ. (2.37)

The use of a right preconditioner introduces a new current-like unknown Y that veriies

J = RY. (2.38)

Using the above preconditioners in the IBC-EFIE (2.13) results in a low frequency
stable IBC-EFIE

LSRY = LE. (2.39)
Once this auxiliary unknown Y has been found by solving (2.39), the original current
is retrieved using (2.38).

The preconditioned system can be analyzed using the quasi-Helmholtz decomposi-
tion of the system. The discretization of T is split into its singular and hypersingular
contributions as in (1.103)

T = −ikTs +
1

ik
Th. (2.40)

Also, the discretization of
(
I
2
−K

)
(n̂× I) is noted K+ such that

K+ =

(
1

2
Gm −K

)
G

−1
m G. (2.41)

Then, using the properties of Th (see (1.194)) to do some simpliications, the precon-
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ditioned system is

LSR =

(
− 1

ika
P

ΛH + P
Σ

)(
−ikηTs +

η

ik
Th − zimp

K+

)( ika

ika+ zimp

η

P
ΛH − ikaPΣ

)

(2.42a)

= P
ΛH

(
ikη

ika+ zimp

η

Ts +
zimp

ika+ zimp

η

K+

)
P

ΛH

+ P
Σ

(
k2aη

ika+ zimp

η

Ts −
ikazimp

ika+ zimp

η

K+

)
P

ΛH (2.42b)

+ P
ΛH
(
−ikηTs − zimp

K+

)
P

Σ

+ P
Σ
(
−k2aηTs − aηTh + ikazimp

K+

)
P

Σ

= P
ΛH

(
ikη

ika+ zimp

η

Ts +
zimp

ika+ zimp

η

K+

)
P

ΛH (2.42c)

− aηPΣ
ThP

Σ − zimp
P

ΛH
K+P

Σ + O
k→0

(k).

If lim
k→0

zimp is inite, which is the case in all relevant models for the impedance, then
LSR has a static limit (noted lim

k→0
LSR). Thus the condition number of the precondi-

tioned system is bounded and tends to cond(lim
k→0

LSR). In other words, the precondi-
tioned system is immune to the low frequency breakdown. In the case |zimp| ≪ ηka,
the preconditioned IBC-EFIE (2.42) reduces to the preconditioned PEC-EFIE (1.198)
with the following asymptotic behaviour

LSR =
η

a
P

ΛH
TsP

ΛH − aηPΣ
ThP

Σ + O
k→0

(k). (2.43)

On the contrary, if |zimp| ≫ ηka, then (2.42) behaves as
LSR = ηPΛH

K+P
ΛH − aηPΣ

ThP
Σ − zimp

P
ΛH

K+P
Σ + O

k→0
(k). (2.44)

Note that a part of the spectrum (zimpPΛH
K+P

Σ) still depends on zimp at low fre-
quency. It is a problem if |zimp| ≫ η because the condition number is proportional to
|zimp| in this case. However, the case |zimp| ≫ η can still be managed by considering
the IBC-MFIE (1.73b)

− 1

η
T M s +

1

zimp

(I
2
−K

)
n̂×M s = n̂×H inc (2.45a)

J s =
1

zimp n̂×M s (2.45b)

that has been rewritten such that the roles of M s and J s are exchanged compared
to the IBC-EFIE. Also, the impedances are replaced by their respective admittances.
By preconditioning the IBC-MFIE in an analogous fashion as the IBC-EFIE, the case
|zimp| ≫ η or equivalently 1/ |zimp| ≪ 1/η is in fact not problematic because the part
of the spectrum (1/zimp)PΛH

K+P
Σ is dominated by the rest of the spectrum that

scales as 1/η.
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2.5. Solution of the dense mesh breakdown

2.5 Solution of the dense mesh breakdown
The dense mesh breakdown is addressed with a Calderón-like preconditioning (i.e.
preconditioning by a composition of operators). As it is shown in the previous section,
in the IBC-EFIE only one part of the spectrum needs a regularization. The idea is
to apply the operator Ts only on the part of the spectrum (2.34b) that is unbounded.
Again, the selection of this part of the spectrum is achieved by leveraging the quasi-
Helmholtz projectors (see section 1.5.3.3). To combine the operators conformingly,
the dual discretization of Ts with BC basis functions gn is used. It corresponds to
the matrix Ts (1.109) whose entries are [Ts]mn = 〈n̂× gm, Tsgn〉. Similarly, the dual
projectors P

Λ and P
ΣH (1.199) are used. In the BC basis, PΛ projects on the non-

solenoidal subspace while P
ΣH projects on the solenoidal subspace. Based on the

previous considerations, the dense mesh preconditioner is deined as

T̃ =
1

a
P

ΣH
TsP

ΣH + P
Λ. (2.46)

The link between the preconditioner that is discretized with BC functions and the
IBC-EFIE that is discretized with RWG functions is ensured by the inverse of the
mix-Gram matrix G

−1
m . The IBC-EFIE that is low frequency stable and dense mesh

stable is
T̃G

−1
m LSRY = T̃G

−1
m LE. (2.47)

2.6 Implementation details
To avoid the numerical cancellations in the computation of the RHS, the zeros in the
computations must be enforced manually. In particular, for an incident plane wave
Einc(r) = E0e

−ik·r, the extracted kernel e−ik·r − 1 must be used instead of e−ik·r in
the computation of the solenoidal part of the RHS. The vectors E and Eext are deined
as

[E]m = −
〈
fm,E0e

−ik·r
〉

(2.48a)
[Eext]m = −

〈
fm,E0

(
e−ik·r − 1

)〉
. (2.48b)

Mathematically, PΛHE = P
ΛHEext holds, but numerically, only P

ΛHEext provides the
correct result at low frequency because P

ΛHE has numerical cancellations. The RHS
is computed as

T̃G
−1
m LE =

1

a
P

ΣH
TsG

−1
m P

ΣE (2.49a)

− 1

ika2
P

ΣH
TsP

ΣH
G

−1
m P

ΛHEext (2.49b)

− 1

ika
P

Λ
G

−1
m P

ΛHEext. (2.49c)
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The LHS is also rewritten to remove explicitly the products that are 0

T̃G
−1
m LSR =

η

a
P

Λ
G

−1
m TsR (2.50a)

− ikη

a
P

ΣH
TsP

ΣH
G

−1
m LTsR (2.50b)

− ηPΣH
TsG

−1
m Th (2.50c)

− zimp
T̃G

−1
m L

(
1

2
Gm −K

)
G

−1
m GR. (2.50d)

Finally, when the unknown Y is found, the currents J and M are retrieved using (2.38)
and (2.11b). The solenoidal parts (JΛH and MΣH) and non-solenoidal parts (JΣ and
MΛ) of the current are

JΛH =
ika

ika+ zimp

η

P
ΛHY (2.51a)

JΣ = −ikaPΣY (2.51b)
MJ,ΛH = −zimp

G
−1
m GJΛH (2.51c)

MJ,Σ = −zimp
G

−1
m GJΣ (2.51d)

MΣH = P
ΣHMJ,ΛH + P

ΣHMJ,Σ (2.51e)
MΛ = P

ΛMJ,ΛH + P
ΛMJ,Σ. (2.51f)

Note the use of the intermediate quantities noted MJ,ΛH and MJ,Σ to get the two parts
of the magnetic current. They verify (mathematically but not numerically) J = JΛH+
JΣ and M = MΣH +MΛ, but in order to avoid reintroducing numerical cancellations
in the current, these components of the currents should be kept separately. The
extracted kernel should be used instead of the usual kernel for the ields scattered by
the solenoidal parts of the currents. In particular, the scattering of JΛH and MΣH in
the far ield is computed using the extracted kernel eikr̂·r′ − 1 instead of the regular
kernel eikr̂·r′ as in (1.188).

2.7 Numerical results
The formulation has been compared against several other formulations:

• ”This work” is the low frequency and dense mesh stable IBC-EFIE that corre-
sponds to (2.47),

• ”IBC-EFIE” is the non-stabilized system in (2.13),

• ”IBC-CFIE” corresponds to [34],

• ”IBC self-dual” corresponds to [35],
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Figure 2.1: RCS of an IBC unit sphere (f = 107 Hz, zimp = (0.7 + 0.7i)η, h ≈ 0.10
m)

• ”Loop-Star” is the low frequency stable system (2.39) that uses a Loop-Star de-
composition [5] (see section 1.5.3.2) instead of a quasi-Helmholtz decomposition
in L and R,

• ”Mie series” is the analytic solution on a sphere [19].

The length parameter a that is present in the preconditioners is set to 1 meter. Note
that additional numerical results related to this work are also presented in the next
chapter and in [39, 40].

2.7.1 Correctness of the formulation
The correctness of the formulation is irst tested on a sphere that has an analytic
solution available. The sphere radius is 1 meter. The excitation is a plane wave
(1.42) with a direction of propagation k̂ = −ẑ, a polarization p̂ = x̂ and a peak
amplitude E0 = 1 V/m. The RCS (1.47) is computed in the xz plane (ϕ = 0o

and θ ∈ [0, 180]o) which corresponds to a so-called VV-polarization. The igure 2.1
(f = 107 Hz, h ≈ 0.1 m) shows the solution for the impedance zimp = (0.7 + 0.7i)η.
It is clear that the solution that is obtained with this formulation converges to the
analytic solution.

An issue where there is major discrepancy is when the back-scattered ield van-
ishes. The igure 2.2 (f = 107 Hz) shows the solution for the particular impedance
zimp = η. In this case, the back-scattered ield (at θ = 0o) is exactly 0 since the
ield scattered by J s is the opposite of the ield scattered by M s. Unfortunately in
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Figure 2.2: RCS of an IBC unit sphere (f = 107 Hz, zimp = η)

this formulation, the exact zero cannot be achieved numerically. Though, further
increasing the discretization density of the mesh (as h decreases) shows that there
is a convergence. This is likely to be due to the presence of numerical errors in the
computation of the far ield with the BC basis functions whose representation of the
current is based on the barycentric reinement of the mesh, whereas the RWG func-
tions are based on the primal mesh. Since the domains of numerical integration (and
therefore the integration rules) of the currents are diferent, some discrepancies are
expected. In fact, the IBC-CFIE in [34] that has been implemented as a reference
also sufers from this problem since it has the same discretization for the currents
(RWG basis functions for J s and BC basis functions for M s), however, the self-dual
formulation [35] uses RWG functions for both J s and M s and has not this issue.

The solution found with this formulation has been compared to the solution ob-
tained with the IBC-CFIE in [34] and the self-dual formulation in [35] on a unit sphere
with f = 107 Hz, zimp = (0.7 + 0.7i)η and h ≈ 0.15 m. The same integration rules
have been used. The relative error on the solution J of a formulation relative to the
solution J′ of another formulation is computed as

‖J− J′‖
‖J‖ . (2.52)

Compared to the IBC-CFIE in [34], the relative error is 17 × 10−4 on both J and
M. Compared to the self-dual IBC formulation in [35], the relative error is 11× 10−4

on J (the error on M is meaningless since it is a RWG expansion vector in [35] and
a BC expansion vector in this work). As a comparison, the error on J between the
IBC-CFIE and the self-dual IBC is 8 × 10−4. So it can be concluded that the 3
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formulations converge to the same solution.
To ensure that the formulation is low frequency stable and that all the possible

numerical cancellations have been properly addressed, the RCS is computed at a quasi
static frequency (f = 10−40 Hz, zimp = (0.1 + 2i)× 10−47η, h ≈ 0.15 m) in the igure
2.3. Again, even though the IBC is not valid at this frequency it pushes all the possible
numerical problems to their limits to make sure they are all correctly addressed. The
solution is recovered and the condition number of the preconditioned system is 6.61
which shows that the formulation does not sufers from the low frequency breakdown
nor numerical cancellations.

2.7.2 Stability of the formulation
The igure 2.4 shows the condition numbers of the linear systems as functions of
the frequency for several formulations. The impedance (zimp = (0.8 + 0.8i)η) and
the mesh parameter (h ≈ 0.15 m) are kept constant. The growing of the condition
number of the non-preconditioned IBC-EFIE is proportional to the inverse of the
frequency. This matches with the predicted asymptotic behaviour (2.30). Also, it is
clear that the formulation in this work is immune to the low frequency breakdown.

The formulation is also stable when the impedance is a function of the frequency.
For conductors whose conductivity is σ′ and whose permeability is µ′, most of the
current lows in a thin layer on the boundary (the so-called skin, see section 1.4).
In such a medium, the permittivity is approximately ε′ ≈ σ′/(iω). The associated
impedance is zimp =

√
µ′/ǫ′ ≈

√
µ′ω
2σ′

(1 + i) i.e. the impedance varies proportionally
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Figure 2.4: Condition number as a function of the frequency f
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Figure 2.6: Condition number as a function of the average edge length h

to the square root of the frequency. In the igure 2.5, such a model for the impedance
is used with the copper parameters (σ′ = 5.69× 107 S/m, µ′ = µ0). The frequency is
pushed beyond the validity of the IBC to study the behaviour of the formulations. As
it can be observed, this work is immune to the low frequency breakdown even when
zimp is a function of the frequency f .

The behaviour of the formulation in the dense mesh regime is illustrated in the
igure 2.6 where the condition number is a function of the average edge length h
(zimp = (0.8 + 0.8i)η and f = 10 MHz are ixed). The condition number is stable
for this work which demonstrates that it is immune from the dense mesh breakdown,
contrary to the non-preconditioned formulations that have a growing of the condition
number proportional to 1/h.

2.7.3 Realistic case scenario
The formulation is used on a realistic example where the scatterer is a F-117 Nighthawk
aircraft. The mesh is pictured in the igure 2.7. The surface electric current density
is represented in the igure 2.8a and the magnetic current density is in the igure
2.8b when zimp = η. The incident plane wave is vertically polarized and its angle of
incidence is θ = 90o (horizon plane) and ϕ = 20o at f = 10 MHz. The norms of the
real parts of the currents have been evaluated in the center of each faces and then
interpolated to obtain a smooth visualization. Regarding the efect of the precondi-
tioners
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Figure 2.7: Aircraft mesh (Ns = 11199, h ≈ 0.29 m)

2.8 Conclusion and future work
In this work, an IBC-EFIE that is stable for arbitrarily low frequency and dense
meshes has been presented. On one hand, the low frequency stabilization involves
quasi-Helmholtz projectors to independently rescale in frequency the Helmholtz com-
ponents of the incident ield and the current. On the other hand, the dense mesh
stabilization involves a kind of Calderón preconditioning that regularizes only the
unbounded branch of the spectrum, while letting unchanged the other part that is
already dominated by the identity present in the IBC-EFIE.

There is a lot of room for future investigations. Here is a non-exhaustive list of
known issues or possible axes of research:

• Non-uniform impedance zimp. In this work zimp is the same everywhere on
the mesh, and an obvious generalization is to have an impedance that is not
constant in space.

• Anisotropic impedance. Investigations can be done where the impedance is a
tensor. In this case the IBC is (1.116a).

• Spurious resonance in frequency. In this work, the formulation is not free from
high frequency resonances. This should be solved with an IBC-CFIE.

• Zero impedance. In the limit zimp → 0, this formulation difers from the classical
PEC-EFIE for the dense mesh preconditioning. As a result, a dense mesh
breakdown is efectively present. A simple but inelegant solution is to use the
preconditioner of the PEC-EFIE (1.202) instead of (2.46) in these cases.

• Back scattering at zimp = η. The igure 2.2 shows that on a sphere at zimp = η
there is no back scattering, but the numerical results show a discrepancy with
the analytic solution.

• High impedance. It can be read from (2.44) that a part of the spectrum of
the preconditioned system depends on zimp and efectively results in an ill-
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Figure 2.8: Surface current densities on the aircraft at f = 10 MHz with zimp = η
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conditioned system if |zimp| ≫ η. As mentioned in (2.45), this issue can be
alleviated using the IBC-MFIE.
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Chapter 3

Multiplicative preconditioner for a
new IBC-EFIE

In this chapter, a new Impedance Boundary Condition is introduced. It enables
the construction of a multiplicative preconditioner for the IBC-EFIE that reduces to
the classical multiplicative Calderón preconditioner of the PEC-EFIE [7] in the limit
zimp → 0. This results in an IBC-EFIE formulation that is low frequency and dense
mesh stable.

3.1 Introduction
In the previous chapter, a low frequency and dense mesh stable IBC-EFIE has been
developed by leveraging a quasi-Helmholtz decomposition with a rescaling in fre-
quency and a Calderón-like preconditioning. There are several considerations on the
formulation of the previous chapter that have motivated the work presented in this
chapter.

• When the impedance zimp is equal to 0, the previous formulation does not
reduce to the classical well-conditioned PEC-EFIE [7]. In particular, it still
sufers from the dense mesh breakdown.

• The quasi-Helmholtz projectors are useful to obtain the low frequency stability
but they make the formulation more complicated. More practically, they are
not trivial to implement.

• The previous formulation enables an accurate computation of the currents down
to arbitrary low frequencies that are far beyond the range of validity of IBC
models.

These considerations are not really problematic, but they are enough to think about
an alternative formulation that could take advantage of these. In particular, this
chapter is dedicated to the development of an IBC-EFIE that is dense mesh stable
even when zimp = 0, that does not use quasi-Helmholtz projectors, and that is stable
in the range of frequency where the IBC are relevant, but not arbitrary low frequency
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as numerical cancellations would still occur. To obtain a complete low frequency
stability (i.e. free of numerical cancellations and with a stable condition number till
arbitrary low frequency), the quasi-Helmholtz projectors would still be required.

The most widespread IBC is the Leontovich IBC that reads

M s = −zimpn̂× J s. (3.1)

This relation between the tangential traces of the electric and magnetic ield actually
comes from the study of the transmission of the ields at an ininite planar interface.
This IBC is a valid model for suiciently smooth and conducting scatterers for which
the ields interactions are concentrated on the boundary. In this work, a new IBC is
introduced

M s = −zimpNδJ s. (3.2)

where Nδ is an operator that depends on a length δ. δ doesn’t necessarily correspond
to the skin depth. Instead, it should be chosen to leave the solution of the boundary
problem unchanged, and at the same time to improve on the computational properties
of the IBC-EFIE which enables the preconditioning. In particular, it enables the
construction of a multiplicative preconditioner that reduces to the classical Calderón
preconditioner for the PEC-EFIE [7] when zimp = 0.

The new IBC is irst introduced. It is used to build an IBC-EFIE. Then, the
properties of the new IBC are studied in a Vector Spherical Harmonics (VSH) basis.
This enables building an analytic solution for this new IBC-EFIE. Then, the asymp-
totic behaviour of the formulation is analyzed at low frequency and for dense meshes.
Based on this analysis, a Calderón multiplicative preconditioner can be constructed
to stabilize the formulation. Finally, numerical results are presented.

Preliminary work on this new IBC has been presented at a conference [42].

3.2 Background and notations
3.2.1 Construction of the IBC-EFIE
The background medium has a permitivity ε, a permeability µ and a characteristic
impedance η =

√
µ/ε. The angular frequency is ω and the wave number is k = ω

√
µε.

The scatterer with a boundary noted Γ is placed in the background medium and is
illuminated by an incident electric ield Einc. This excitation induces the surface
currents J s and M s that verify the EFIE (1.73a)

ηT J s +

(I
2
−K

)
M s = −n̂×Einc. (3.3)

The current J s and M s are assumed to verify the Impedance Boundary Condition

M s = −zimpNJ s (3.4)

84



3.2. Background and notations

where N is an operator that can be either n̂×I for the Leontovich IBC or Nδ that is
introduced later in this chapter. Substituting (3.4) into (3.3) results in the IBC-EFIE

ηT J s − zimp
(I
2
−K

)
NJ s = −n̂×Einc. (3.5)

The IBC-EFIE operator is noted S and deined as

S = ηT − zimp
(I
2
−K

)
N . (3.6)

Then, the IBC-EFIE reads
SJ s = −n̂×Einc. (3.7)

3.2.2 Discretization of the IBC-EFIE
The boundary Γ is discretized by a triangular mesh on which Ns RWG basis functions
(fn)

Ns
n=1 (1.90) and Ns BC basis functions (gn)

Ns
n=1 (1.92) are constructed.

As it is done in the previous chapter, a mixed discretization is used for the currents.
So, the surface electric current density J s is discretized by RWG basis functions fn

and the surface magnetic current density M s is discretized by BC basis functions
gn. The coeicients of the expansion are J and M ∈ C

Ns such that J s and M s are
approximated by

J s ≈
Ns∑

n=1

[J]nfn (3.8a)

M s ≈
Ns∑

n=1

[M]ngn. (3.8b)

The EFIE (3.3) and the IBC (3.4) are tested with rotated RWG basis functions n̂×fn

which efectively results in a linear system of 2Ns equations and 2Ns unknowns

ηTJ+

(
1

2
Gm −K

)
M = E (3.9a)

GmM = −zimp
NJ (3.9b)

where

[T]mn = 〈n̂× fm, T fn〉 (3.10a)
[K]mn = 〈n̂× fm,Kgn〉 (3.10b)

[Gm]mn = 〈n̂× fm, gn〉 (3.10c)
[N]mn = 〈n̂× fm,Nfn〉 (3.10d)
[E]m = −

〈
fm,E

inc〉 . (3.10e)
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Note that if N = n̂×I, then N is equal to the Gram matrix G as 〈n̂× fm, n̂× fn〉 =
〈fm,fn〉. Again, the IBC-EFIE is solved in practice by substituting M in (3.9)

SJ = E (3.11a)
M = −zimp

G
−1
m NJ (3.11b)

where
S = ηT− zimp

(
1

2
Gm −K

)
G

−1
m N. (3.12)

The main observation here is that it is possible to modify the spectral properties
of the IBC-EFIE by properly choosing the operator N in the IBC, such that the
solution of the IBC problem does not change signiicantly but the system is easier to
precondition overall.

3.3 New Impedance Boundary Condition
3.3.1 Deinition of the new IBC
The following IBC linking the surface electric and magnetic currents densities is as-
sumed to hold on Γ

M s (r) = −zimpNδJ s (r) (3.13)
where zimp is a scalar complex impedance and where Nδ is deined as

NδJ s (r) =
2(1 + i)

δ
n̂ (r)×

¨

r′∈Γ

e−
1+i

δ
|r−r′|

4π |r − r′|J s (r
′) dS ′. (3.14)

Nδ is equal to Ts (1.68b) rescaled and evaluated at a complex wave number such that
ik = (1 + i)/δ,

Nδ = 2ikTs|ik= 1+i

δ
. (3.15)

The function
r 7→ 2(1 + i)

δ

e−
1+i

δ
|r|

4π |r| (3.16)

is a nascent Dirac distribution on Γ when δ → 0. In other words,

Nδ → n̂× I when δ → 0. (3.17)

So, if δ is suiciently small, the new IBC (3.13) is in fact an approximation of the
Leontovich IBC (3.1).
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3.3.2 Validity of the new IBC
The starting point to derive the new IBC is the EFIE in the interior domain (1.75a)

− η′T ′J s +

(I
2
+K′

)
M s = 0. (3.18)

The interior medium is characterized by a permitivity ε′, a permeability µ′, an
impedance η′ =

√
µ′/ε′ and a wave number k′ = ω

√
µ′ε′. Assume that the inte-

rior medium has a high conductivity σ′ and that the frequency is low enough to
neglect the real part of the permittivity

ε′ = ε0 +
σ′

iω
≈ σ′

iω
. (3.19)

Also, Γ is assumed to be smooth. The frequency should be high enough such that
the skin depth

δsd =

√
2

ωµ′σ′
(3.20)

is much smaller than the radius of curvature of Γ. In this regime, the surface integral
operators verify

I
2
+K′ ≈ I

2
(3.21a)

T ′ ≈ −ik′T ′
s |ik′= 1+i

δsd
. (3.21b)

The irst approximation (3.21a) is valid because Γ is assumed to be smooth. Actually,
the equality holds only if Γ is perfectly planar i.e. an ininite plane for which K′ = 0.
The second approximation (3.21b) uses the assumption (3.19) to rewrite the wave
number as a function of the skin depth

ik′ = iω
√

µ′ε′ ≈ 1 + i

δsd
. (3.22)

If the skin depth is small enough then ik′T ′
s becomes dominant compared to 1

ik′
T ′

h in
(1.68a) so that the hypersingular part is neglected in (3.21b). Then, using (3.21) in
(3.18) results in the new boundary condition

M s = η′
(I
2
+K′

)−1

T ′J s (3.23a)

≈ −η′NδsdJ s. (3.23b)

To compare with the Leontovich IBC, M s = −zimpn̂×J s corresponds to the stronger
assumption that δsd = 0. Note that in practice, in the new operator Nδ, δ is not always
chosen to be equal to the skin depth δsd because

• the smaller δ is, the more oscillating is the integration kernel of Nδ, so δ should
be in the order of the average edge length h or larger to compute N accurately,
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• δ should be large enough to beneit from the spectral properties of Nδ in the
preconditioning,

• the scale of the variations in the solution is not in order of the skin depth but
in the order of magnitude of the wavelength or the radius of curvature of the
geometry.

3.3.3 Accuracy of the new IBC
The deinition of the new operator Nδ results from an approximation of the surface
integral operators K′ and T ′ in the interior domain. In this chapter, the deinition

Nδ = 2ikTs|ik= 1+i

δ
(3.24)

is used, but two other forms for Nδ have also been considered. The irst one is

Nδ = −2T |ik= 1+i
δ

(3.25)

that keeps the entire operator T . Regarding the derivation of Nδ in the previous
section, it is the form that does as few approximations as possible. For example, with
this form in the IBC-EFIE it is possible to approximate a PMCHWT formulation
where the scatterer is highly conducting (ε′ ≈ σ′/(iω)) and for which the operator K′

is neglected in the interior domain. The other form considered is

Nδ = 2ikTs|ik= 1

δ
(3.26)

which is a cruder approximation as it keeps only the real part of 1+i
δ

as a wave
number, but has the computational beneit of being purely real. Note that these
two alternatives for Nδ are also valid regarding the preconditioning of the IBC-EFIE
because they both have the spectral properties of the operator Ts that are leveraged
in this chapter. Practically, the new operator Nδ is based on the operator T so it is
easy to compute from an existing code.

Like the Leontovich IBC, this new IBC is valid on smooth boundaries on which the
solution varies at a much larger scale than the skin depth. Regarding the accuracy
in presence of sharp edges, wedges or corners, it is known that the classic M s =
−zimpn̂ × J s is not an accurate model [14–16], so the new IBC is not expected to
behave well in these cases either.

3.4 Vector Spherical Harmonics analysis
In this section, the VSH X lm and U lm (deined in section 1.5.2.1) are used to study
the new IBC and the properties of the IBC-EFIE. The surface Γ is a sphere of radius
a. First, the new boundary operator Nδ is expanded in terms of VSH. Then, an
analytic solution can be constructed for the new IBC-EFIE. Finally, the asymptotic
behaviour of the IBC-EFIE is studied at low frequency and for dense meshes.
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3.4.1 Vector Spherical Harmonics expansion of the new IBC
operator

The VSH expansion of Nδ can be obtained from the VSH expansion of Ts thanks to
(3.15). While the expansion of T is well known and readily available in the literature
because it is the PEC-EFIE operator [28], the studies on Ts or Th are scarce. Therefore,
in the following ThX lm and ThU lm are irst computed. Then, once the expansion of
Th is known, TsX lm and TsU lm are computed using (1.68a)

ikTs = −T +
1

ik
Th (3.27)

and the expansion of T (1.131)

T X lm = −Jl(ka)H
(2)
l (ka)U lm (3.28a)

T U lm = J ′
l (ka)H

(2)
l

′(ka)X lm. (3.28b)

X lm is solenoidal so from ∇ ·X lm = 0 it follows that ThX lm = 0 and

ikTsX lm = −T X lm = Jl(ka)H
(2)
l (ka)U lm. (3.29)

The computation of ThU lm has some prerequisites related to spherical harmonics.
First, the spherical harmonics are eigenfunctions of the scalar laplacian on the sphere

∇ ·∇Ylm = ∇2Ylm = − l(l + 1)

a2
Ylm. (3.30)

And second, the spherical harmonics expansion of the Green’s function is given for
all r, r′ ∈ R

3 such that |r′| < |r| by [41]

e−ik|r−r′|

4π |r − r′| = −ik
+∞∑

l=0

jl (k |r′|)h(2)
l (k |r|)

l∑

m=−l

Ylm

(
r̂′
)
Ylm (r̂) (3.31)

where jl are the spherical Bessel functions and h
(2)
l are the spherical Hankel functions

of second kind. Then, using the orthonormality of the spherical harmonics
¨

r′∈Γ

Ylm

(
r̂′
)
Yl′m′

(
r̂′
)dS ′

a2
= δl,l′δm,m′ (3.32)

results in
¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|Ylm

(
r̂′
) dS ′

a2
= −ikjl (ka)h

(2)
l (k |r|)Ylm (r̂) . (3.33)

The limit of the above expression when r approaches Γ (i.e. when |r| → a with
|r| > a) is

¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|Ylm

(
r̂′
) dS ′

a2
= −ikjl (ka)h

(2)
l (ka)Ylm (r̂) . (3.34)
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With (3.30) and (3.34), the computation of ThU lm is pretty straightforward

ThU lm = Th

(
− a

i
√

l(l + 1)
∇Ylm

)
(3.35a)

= − a

i
√
l(l + 1)

n̂×∇

¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|∇ ·∇Ylm

(
r̂′
)
dS ′ (3.35b)

=
a

i
√
l(l + 1)

l(l + 1)n̂×∇

¨

r′∈Γ

e−ik|r−r′|

4π |r − r′|Ylm

(
r̂′
) dS ′

a2
(3.35c)

= − a

i
√
l(l + 1)

ikl(l + 1)jl (ka)h
(2)
l (ka) n̂×∇Ylm (r̂) (3.35d)

= −ikl(l + 1)jl (ka)h
(2)
l (ka)X lm. (3.35e)

This results in the expression for TsU lm

ikTsU lm = −T U lm +
1

ik
ThU lm (3.36a)

= −
(
J ′
l (ka)H

(2)
l

′(ka) + l(l + 1)jl (ka)h
(2)
l (ka)

)
X lm. (3.36b)

In fact, these results are also valid for a complex wave number such that the VSH
expansion of Nδ is simply obtained with the substitution ik = (1 + i)/δ as in (3.15)

〈U lm,NδX lm〉 = 2Jl(u)H
(2)
l (u) (3.37a)

〈X lm,NδU lm〉 = −2
(
J ′
l (u)H

(2)
l

′(u) + l(l + 1)jl (u)h
(2)
l (u)

)
(3.37b)

where
u = (1− i)

a

δ
. (3.38)

3.4.2 Analytic solution for the currents
Similarly to the previous chapter (see section 2.3.2), an analytic solution in terms of
VSH is built for the currents. Using (3.37), (1.131) and (1.132), the VSH expansion
of the operator S (3.6) is

〈U lm,SX lm〉 = −
(
ηH

(2)
l (ka) + zimpiH

(2)
l

′(ka) 〈U lm,NδX lm〉
)
Jl(ka) (3.39a)

〈X lm,SU lm〉 =
(
ηH

(2)
l

′(ka) + zimpiH
(2)
l (ka) 〈X lm,NδU lm〉

)
J ′
l (ka). (3.39b)

Similarly to the assumption done in the previous chapter analysis, the impedance
zimp and the frequency f are assumed to be diferent than the resonant impedances
or frequencies that cancel 〈U lm,SX lm〉 and 〈X lm,SU lm〉. The currents are expanded
in VSH as

J s =
+∞∑

l=1

l∑

m=−l

〈X lm,J s〉X lm +
+∞∑

l=1

l∑

m=−l

〈U lm,J s〉U lm (3.40a)

M s =
+∞∑

l=1

l∑

m=−l

〈X lm,M s〉X lm +
+∞∑

l=1

l∑

m=−l

〈U lm,M s〉U lm (3.40b)
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where the coeicients are given by (see (2.21))

〈X lm,J s〉 =
〈
U lm,−n̂×Einc〉

〈U lm,SX lm〉
(3.41a)

〈U lm,J s〉 =
〈
X lm,−n̂×Einc〉

〈X lm,SU lm〉
(3.41b)

〈X lm,M s〉 = −zimp 〈X lm,NδU lm〉 〈U lm,J s〉 (3.41c)
〈U lm,M s〉 = −zimp 〈U lm,NδX lm〉 〈X lm,J s〉 . (3.41d)

The values for the coeicients of the excitation have been computed in the previous
chapter (see (2.25)) for the plane wave Einc (r) = E0e

ikẑ·rx̂

〈
X l,±1,−n̂×Einc〉 = ±2πE0i

l

√
2l + 1

4π

J ′
l (ka)

ka
(3.42a)

〈
U l,±1,−n̂×Einc〉 = −2πE0i

l

√
2l + 1

4π
jl(ka). (3.42b)

3.4.3 Low frequency behaviour
Regarding the physics of the skin efect, if δ is set to be equal to the skin depth,
then it should also vary with the frequency. Thus the coeicients 〈U lm,NδX lm〉 and
〈X lm,NδU lm〉 should also vary with the frequency. But this is true as long as δ
remains much smaller than the radius of curvature of the scatterer (the radius a in
the case of a sphere). So it can be assumed that a/δ ≫ 1. Regarding (3.17), it is not
surprising that the limits of (3.37) when a/δ → +∞ are 〈U lm, n̂×X lm〉 = 1 and
〈X lm, n̂×U lm〉 = −1. Therefore, in the following low frequency study, it is assumed
that

〈U lm,NδX lm〉 ≈ 1 (3.43a)
〈X lm,NδU lm〉 ≈ −1 (3.43b)

as one would obtain with the classic n̂× in the Leontovich IBC. In other words, the
new IBC does not modify the low frequency behaviour compared to the Leontovich
IBC. In fact, the approximations in (3.43) only hold for small orders l whereas for
higher l these coeicients vary proportionally to 1/l as it is explained in the next
section.

The impedance zimp is assumed to be far from the resonant impedances that cancel
〈U lm,SX lm〉 and 〈X lm,SU lm〉 in (3.39). Then, using the asymptotic behaviour of
the Bessel family functions for small arguments, the low frequency scaling of the
IBC-EFIE operator is

〈U lm,SX lm〉 ∼
k→0

−
(
ika

l
η + zimp

)
l

2l + 1
(3.44a)

〈X lm,SU lm〉 ∼
k→0

(
l

ika
η − zimp

)
l + 1

2l + 1
. (3.44b)

In all practical models for the impedance, zimp is negligible compared to η/(ka), so
in (3.44b), zimp can be neglected as is done in the previous chapter.
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3.4.4 Dense mesh behaviour
Using the asymptotic behaviour of the Bessel family functions for large order, the
new operator Nδ (3.37) scales as

〈U lm,NδX lm〉 ∼
l→+∞

iu

l
(3.45a)

〈X lm,NδU lm〉 ∼
l→+∞

− iu

l
. (3.45b)

This 1/l behaviour of Nδ is in fact inherited from the operator Ts. In particular, it
can be computed from (3.29) that

〈U lm, TsX lm〉 ∼
l→+∞

a

2l
. (3.46)

Also, note that from (3.35e),

〈X lm, ThU lm〉 ∼
l→+∞

l

2a
. (3.47)

Before computing the asymptotic behaviour of the IBC-EFIE operator S, it should
be noted that the resonant impedances associated to 〈U lm,SX lm〉 in (3.39) tend to
a inite limit when l → +∞. In fact, 〈U lm,SX lm〉 = 0 if

zimp = − ηH
(2)
l (ka)

iH
(2)
l

′(ka) 〈U lm,NδX lm〉
(3.48a)

→
l→+∞

−ka

u
η = −1 + i

2
kδη. (3.48b)

So in the following asymptotic behaviour of the IBC-EFIE operator S, the impedance
zimp = −ka

u
η is excluded

〈U lm,SX lm〉 ∼
l→+∞

−1

2

(
ika

l
η +

iu

l
zimp

)
(3.49a)

〈X lm,SU lm〉 ∼
l→+∞

1

2

(
l

ika
η − iu

l
zimp

)
∼

l→+∞

l

2ika
η. (3.49b)

Note that 〈U lm,SX lm〉 scales proportionally to 1/l, contrary to the Leontovich IBC-
EFIE where it tends to a constant when zimp 6= 0 (see (2.34a)). So it is clear
that this part of the spectrum (non-solenoidal) can always be preconditioned with
a Calderón preconditioning by applying the operator Th that scales proportionally
to l (see (3.47)). This is opposed to the Leontovich IBC-EFIE that does not need a
regularization on the non-solenoidal part of the spectrum (see its dense mesh precon-
ditioner (2.46)).

Regarding the solenoidal part of the spectrum, it can be regularized by applying
on it the operator Ts that scales proportionally to 1/l (see (3.46)). This operator Ts
also applies on the non-solenoidal part for an overall 1/l2 scaling, but it is dominated
by the constant scaling due to the Calderón preconditioning with Th on this part, as
explained above.
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3.5 Construction of a Calderón multiplicative pre-
conditioner

Based on the analysis in the previous section, a Calderón multiplicative preconditioner
can be constructed for the new IBC-EFIE to solve both the low frequency breakdown
and the dense mesh breakdown. Contrary to the previous chapter where the quasi-
Helmholtz projectors are used to precondition the Leontovich IBC-EFIE, they are
not used here. Consequently, at very low frequency the numerical cancellations occur
in this new formulation. However, in the frequency regime where the IBC holds, this
should manifest as a lost in digits of precision so it does not prevent from retrieving
the solution.

In the previous section, it is explained that the preconditioner should contain
the operator Ts to act on the solenoidal part of the spectrum (〈X lm,SU lm〉), and
the operator Th to act on the non-solenoidal part of the spectrum (〈U lm,SX lm〉).
Therefore, a preconditioner that is a linear combination of Ts and Th is investigated

T̃ = αTs + βTh (3.50)

where α and β are unknown coeicients that are computed in the following. Applying
Ts (3.46) on SU lm (3.49b) results in the following scaling for dense mesh and low
frequency

〈U lm, TsSU lm〉 ∼
l→+∞
k→0

a

2l

l

2ika
(3.51a)

∼
l→+∞
k→0

(
1

−ik

)(−η

4

)
. (3.51b)

To compensate the 1/(−ik) scaling, α = −ik is chosen. In fact, it is the same
scaling as the Calderón multiplicative preconditioner of the PEC-EFIE [7]. The −η/4
scaling that was taken away in the choice of α should be factorized away also in the
determination of β. Applying the operator Th (3.47) on SX lm (3.49a) results in

〈X lm, ThSX lm〉 ∼
l→+∞
k→0

− l

2a

1

2

(
ika

l
η +

iu

l
zimp

)
(3.52a)

∼
l→+∞
k→0

(
ik +

iu

a

zimp

η

)(−η

4

)
(3.52b)

∼
l→+∞
k→0

(
ik +

1 + i

δ

zimp

η

)(−η

4

)
. (3.52c)

Thus β = (ik + (1 + i)zimp/(δη))−1 is chosen. To sum up, the operator that precon-
ditions the new IBC-EFIE is

T̃ = −ikTs +
1

ik + 1+i
δ

zimp

η

Th. (3.53)
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In fact, this is the operator T but with a diferent scaling on the hypersingular part.
In addition, it is clear that T̃ → T when zimp → 0 i.e. the new preconditioned
IBC-EFIE reduces to the standard Calderón preconditioned PEC-EFIE [7].

A conforming discretization of (3.53) is obtained using the BC basis functions gn

(n ∈ [1, Ns]) and reads
T̃ = −ikTs +

1

ik + 1+i
δ

zimp

η

Th (3.54)

where [Ts]mn = 〈n̂× gm, Tsgn〉 and [Th]mn = 〈n̂× gm, Thgn〉. As usual, the precon-
ditioner (3.54) discretized with the BC basis functions gn is not directly multiplied to
the IBC-EFIE system (3.11a) that is tested with rotated RWG basis functions n̂×fn.
Indeed, the inverse of the mix-Gram matrix Gm ([Gm]mn = 〈n̂× fm, gn〉) must be
inserted between the two discretizations. Therefore, the preconditioned system is

T̃G
−1
m SJ = T̃G

−1
m E. (3.55)

As before, once the electric current coeicients J have been found, the magnetic
current coeicients M are computed using

M = −zimp
G

−1
m NJ. (3.56)

3.6 Numerical results
The numerical results are divided in 3 parts. The irst part is related to the new IBC
and its accuracy. The second part is related to the stability of the new preconditioned
formulation. And the third part shows some realistic scenarios.

3.6.1 Results related to the new IBC accuracy
In this section, the RCS are computed in the xz plane. The excitation is a plane wave
that is polarized on x̂ and the direction of propagation is k̂ = −ẑ as

Einc (r) = E0e
ikẑ·rx̂ (3.57)

where the peak amplitude is E0 = 1 V/m. It corresponds to a so-called VV-
polarization.

The irst example compares the RCS obtained with the classical Leontovich IBC
M s = −zimpn̂×J s (using the formulation in the chapter 2) and the new IBC M s =
−zimpNδJ s. In the igure 3.1, the IBC-EFIEs and the analytic solutions for the two
IBCs have been plotted for a unit sphere at f = 100 MHz with h ≈ δ = 0.15 m and
zimp = (0.8 + 0.8i)η. In this case, δ is suiciently small for the two formulations to
yield comparable results.

As it has been shown in (3.17), the new IBC operator Nδ tends to n̂×I (Leontovich
IBC) when δ → 0. On the igure 3.2, the analytic RCSs for the new IBC have been
plotted for decreasing δ (f = 200 MHz, zimp = (0.4 + 0.4i)η). It can been seen
that the solution obtained with the new IBC efectively converges to the classical
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3. Multiplicative preconditioner for a new IBC-EFIE

Leontovich IBC. Note that these RCSs are analytic solutions. In practice, δ cannot
be chosen arbitrary low because it makes the integration kernel of Nδ very oscillatory
(it is essentially Ts with a wave number ik′ = (1+ i)/δ) and thus diicult to integrate
accurately.

3.6.2 Results related to the stability of the formulation
In this section, the condition number and iteration count required to solve the systems
are plotted as functions of the frequency f and the average edge length h. It is
the number of iterations required to reach a residual of 10−8 with a GMRES solver
(restarted every 20 iterations, limited to Ns iterations). There are 4 formulations on
each graphs:

• ”This work”, is the formulation (3.55) developed in this chapter, which is the
new IBC-EFIE that is preconditioned with a Calderón-like multiplicative pre-
conditioner.

• ”New IBC-EFIE” is the formulation (3.11a) developed in this chapter without
the preconditioning.

• ”Leontovich IBC-EFIE, QH”, is the formulation (2.47) developed in the chapter
2, which is the low frequency and dense mesh stable Leontovich IBC-EFIE
stabilized with quasi-Helmholtz projectors.

• ”Leontovich IBC-EFIE”, is the non-stabilized Leontovich IBC-EFIE (2.13).

The igure 3.3 shows the variations of the condition number and the number of
iterations as functions of the frequency when the impedance is constant (unit sphere,
Ns = 1920, h ≈ δ = 0.15 m, zimp = (0.8 + 0.8i)η). It is clear from these graphs
that the formulation is low frequency stable as the condition number and the number
of iterations are relatively low. Note that the low frequency breakdown in the non-
preconditioned formulation (3.11a) manifests as a growing of the condition number
proportional to the inverse of the frequency, which is similar to the Leontovich IBC-
EFIE (2.13).

Similarly, the igure 3.4 shows the variations of the condition number and the
number of iterations as functions of the frequency but the impedance is varying with
the frequency (unit sphere, Ns = 1920, h ≈ δ = 0.15 m). In this igure 3.4, the
impedance is proportional to the square root of the frequency f such that

zimp =

√
µ0ω

2σ′
(1 + i) (3.58)

where the angular frequency is ω = 2πf and the conductivity is set to σ′ = 1
S/m. Note that in this case, since |zimp| ≫ ηka, the condition numbers of the non-
preconditioned formulations grow proportionally to 1/(|zimp| k) ∝ k−1.5 according to
(2.30).
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when the impedance zimp is constant
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3. Multiplicative preconditioner for a new IBC-EFIE

Formulation Condition number Iteration count
This work 3.3 ×102 802

New IBC-EFIE 4.7× 103 > 11199
Leontovich IBC-EFIE, QH 9.8× 102 540

Leontovich IBC-EFIE 1.8× 103 5989

Figure 3.6: Condition number and iteration count to solve the aircraft problem

Finally, the igure 3.5 shows the condition number and the number of iterations
as functions of the average edge length h (unit sphere, Ns = 1920, δ = 0.15 m, zimp =
(0.9 + 0.9i)η, f = 50 MHz). As it can be observed, the condition number and the
number of iterations are stable as h → 0. Note that the condition number of the non-
preconditioned IBC-EFIE grows diferently for the new IBC and the Leontovich IBC.
In the case of the Leontovich IBC, the solenoidal part of the spectrum is dominated by
an identity and therefore the singular values tend to a non-zero constant (see (2.34a)).
However, in the case of the new IBC, there is a contribution from Ts that scales as
h and a contribution from Nδ that also scales as h, and therefore this part of the
spectrum scales proportionally to h. With the non-solenoidal part of the spectrum
that scales as 1/h, it results in a condition number that scales proportionally to 1/h2

for the new IBC-EFIE as opposed to a 1/h scaling for the Leontovich IBC-EFIE.

3.6.3 Realistic application
A comparison of the Leontovich IBC and the new IBC is done on an stealth aircraft
model (Ns = 11199, h ≈ 0.29 m). The excitation is a vertically polarized plane wave
that is coming from the front of the aircraft (p̂ = ẑ, k̂ = −x̂ and E0 = 1 V/m in
(1.42)), zimp = η, f = 30 MHz and δ = 0.4 m. The condition numbers and iteration
counts have been reported in the table 3.6. In the igure 3.7, the RCS has been
computed on the xy plane. As expected, there are notable diferences in the RCS
because the IBCs are diferent, even though the overall trend is similar. Decreasing δ
makes the RCS computed with the new IBC to converge to the RCS computed with
the Leontovich IBC. In the igure 3.8 and 3.9, the surface current densities have been
represented by computing the norm of the real part of the currents |ℜ (J s)| in the
center of each face and then interpolated. Note that the aircraft is a few wavelengths
long, so at f = 30 MHz the low frequency preconditioning is not used to its full
potential (and it might even be harmful in some cases).

3.7 Conclusion and future work
In this work, a new impedance boundary condition M s = −zimpNδJ s has been
introduced. It is used in the context of the EFIE instead of the classical Leontovich
IBC M s = −zimpn̂ × J s. The new IBC is designed to leave the solution of the
problem unchanged up to a level of accuracy controllable with the length δ, and at
the same time improve on the computational properties of the IBC-EFIE. Indeed, it
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Figure 3.7: RCS (in dBsm) of an aircraft at f = 30 MHz with zimp = η

has been established through an analytic analysis on a sphere and through numerical
results that this new IBC enables the IBC-EFIE to be stabilized at low frequency
and for dense mesh using a multiplicative preconditioner of type Calderón. This new
formulation actually reduces to the standard Calderón preconditioned PEC-EFIE in
the limit zimp = 0. This distinguishes from the Leontovich IBC-EFIE presented in
the previous chapter where the dense mesh preconditioner is not compatible with
the PEC-EFIE. Furthermore, the fact that this formulation does not leverage the
quasi-Helmholtz decomposition to stabilize the system makes it arguably easier to
comprehend and to implement.

Future work on this new IBC include the following topics:

• Spurious resonances in frequency. In the high frequency regime, the resonances
can be solved by combining the IBC-EFIE with the IBC-MFIE. Preliminary
results suggest that the IBC-MFIE is automatically preconditioned for the dense
mesh regime using this new IBC because the unbounded part of the spectrum
dominated by Th (that scales proportionally to l) is regularized by the operator
Nδ (that scales proportionally to 1/l).

• Error analysis. A quantiication of the diference between the classical Leon-
tovich IBC and the new IBC depending on δ, as well as a quantiication of the
efect of δ on the preconditioning can be done to have a better understanding
on the ine tuning of the parameter δ.
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Figure 3.8: Norm of the real part of the surface electric current density |ℜ (J s)| (A/m)
on an aircraft
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Figure 3.9: Norm of the real part of the surface magnetic current density |ℜ (M s)|
(V/m) on an aircraft
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Part II

Time domain
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Chapter 4

Introduction to the time domain

As opposed to the previous sections that cover the frequency domain, this section is
dedicated exclusively to the time domain. Some results from the frequency domain
are reused, either to avoid redoing the derivations, or to compare as analogy. The
Marching-On-in-Time (MOT) scheme is introduced through the classical testing pro-
cedure with temporal basis functions to discretize the equations in time but without
extensive details. Rather in this work, the time discretization and the MOT scheme
are obtained with a convolution quadrature using implicit Runge-Kutta methods.
Finally, the DC instability that has no counterpart in the frequency domain is also
presented.

4.1 Surface integral equations in the time domain
The integral equations can be derived from the Maxwell’s equations in the time
domain (1.1), with derivations that are analogue to the frequency domain. However,
to take advantage of the previous chapters, an inverse Fourier transform is used in
the following to retrieve the main results. Note that in general, the inverse Fourier
transform of frequency domain quantities is not suicient for all intents and purposes
in the time domain. The inverse Fourier transform F−1 is deined by

F−1(X)(t) =
1

2π

ˆ

ω∈R

X(ω)eiωtdω. (4.1)

In particular, the following identities can be used to transform the results from the
frequency domain to the time domain

F−1(iωX)(t) =
∂

∂t

(
F−1(X)(t)

)
(4.2a)

F−1

(
1

iω
X

)
(t) =

ˆ t

t′=−∞

F−1(X)(t′)dt′ (4.2b)

F−1(e−iωτX)(t) = F−1(X)(t− τ), (4.2c)
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or equivalently using the wave number k =
ω

c
where c is the speed of light in the

medium

F−1(ikX)(t) =
1

c

∂

∂t

(
F−1(X)(t)

)
(4.3a)

F−1

(
1

ik
X

)
(t) = c

ˆ t

t′=−∞

F−1(X)(t′)dt′ (4.3b)

F−1(e−ikRX)(t) = F−1(X)

(
t− R

c

)
. (4.3c)

Given the source currents J (r, t) and M (r, t), and the source charges ρ (r, t) and
ρm (r, t), the generalized (in the sense that they include the non-physical magnetic
charge ρm and current M densities) Maxwell’s equations that are the counterparts
of (1.29) read

∇ ·D (r, t) = ρ (r, t) (4.4a)
∇ ·B (r, t) = ρm (r, t) (4.4b)

∇×E (r, t) = −∂B (r, t)

∂t
−M (r, t) (4.4c)

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t) . (4.4d)

In the time domain, the retarded potentials that correspond to the frequency domain
potentials (1.27) and (1.31) are

A (r, t) = µ

˚

r′∈R3

1

4π |r − r′|J
(
r′, t− |r − r′|

c

)
dV ′ (4.5a)

φ (r, t) =
1

ε

˚

r′∈R3

1

4π |r − r′|ρ
(
r′, t− |r − r′|

c

)
dV ′ (4.5b)

F (r, t) = ε

˚

r′∈R3

1

4π |r − r′|M
(
r′, t− |r − r′|

c

)
dV ′ (4.5c)

φm (r, t) =
1

µ

˚

r′∈R3

1

4π |r − r′|ρm
(
r′, t− |r − r′|

c

)
dV ′ (4.5d)

with the Lorenz gauge (see (1.22) and (1.32))

∇ ·A (r, t) = −1

c

∂

∂t
φ (r, t) (4.6)

∇ · F (r, t) = −1

c

∂

∂t
φm (r, t) . (4.7)

The potentials verify the wave equation which is the time dependent counterpart of
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the Helmholtz equation

∇
2A (r, t)− 1

c2
∂2

∂t2
A (r, t) = −µJ (r, t) (4.8a)

∇2φ (r, t)− 1

c2
∂2

∂t2
φ (r, t) = −ρ (r, t)

ε
(4.8b)

∇
2F (r, t)− 1

c2
∂2

∂t2
F (r, t) = −εM (r, t) (4.8c)

∇2φm (r, t)− 1

c2
∂2

∂t2
φm (r, t) = −ρm (r, t)

µ
. (4.8d)

The scattered ields are (see (1.34))

Esca (r, t) = −1

c

∂

∂t
A (r, t)−∇φ (r, t)− 1

ε
∇× F (r, t) (4.9a)

Hsca (r, t) = −1

c

∂

∂t
F (r, t)−∇φm (r, t) +

1

µ
∇×A (r, t) , (4.9b)

or in terms of currents (see (1.35))

Esca (r, t) = −1

c

∂

∂t
A (r, t) + c

ˆ t

t′=−∞

∇∇ ·A (r, t′) dt′ − 1

ε
∇× F (r, t) (4.10a)

Hsca (r, t) = −1

c

∂

∂t
F (r, t) + c

ˆ t

t′=−∞

∇∇ · F (r, t′) dt′ +
1

µ
∇×A (r, t) . (4.10b)

Now, considering a scatterer whose boundary is Γ, the boundary conditions at a
discontinuous interface derived in section 1.2.6 are also valid in the time domain. So,
there are surface equivalent currents J s (r, t) and M s (r, t) that verify the boundary
conditions (1.57). In particular, in the exterior domain the vector potentials are

A (r, t) = µ

¨

r′∈Γ

1

4π |r − r′|J s

(
r′, t− |r − r′|

c

)
dS ′ (4.11a)

F (r, t) = ε

¨

r′∈Γ

1

4π |r − r′|M s

(
r′, t− |r − r′|

c

)
dS ′. (4.11b)

Using the surface equivalence principle to set the ields in the interior domain to 0 as
is done in section 1.2.7.1, the boundary conditions (1.58) become for all r ∈ Γ and
t ∈ R,

J s (r, t) = n̂ (r)×H (r, t) (4.12a)
M s (r, t) = E (r, t)× n̂ (r) . (4.12b)

Then, writing the total ields as sums of the incident ields and the scattered ields

E (r, t) = Einc (r, t) +Esca (r, t) (4.13a)
H (r, t) = H inc (r, t) +Hsca (r, t) (4.13b)
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and taking the limit when r approaches Γ results in the time domain Electric Field
Integral Equation (EFIE) and the time domain Magnetic Field Integral Equation
(MFIE)

ηT J s (r, t) +

(I
2
−K

)
M s (r, t) = −n̂ (r)×Einc (r, t) (4.14a)

−1

η
T M s (r, t) +

(I
2
−K

)
J s (r, t) = n̂ (r)×H inc (r, t) (4.14b)

where the time domain surface integral operators are deined as (see their frequency
domain counterparts (1.68a), (1.69) and (1.70))

(T f) (r, t) = −1

c

∂ (Tsf) (r, t)

∂t
+ c

ˆ t

t′=−∞

(Thf) (r, t
′) dt′ (4.15a)

(Tsf) (r, t) = n̂ (r)×
¨

r′∈Γ

1

4π |r − r′|f
(
r′, t− |r − r′|

c

)
dS ′ (4.15b)

(Thf) (r, t) = n̂ (r)×∇

¨

r′∈Γ

1

4π |r − r′|∇
′ · f

(
r′, t− |r − r′|

c

)
dS ′ (4.15c)

(Kf) (r, t) = n̂ (r)× p.v.
¨

r′∈Γ

∇

(
1

4π |r − r′|

)
× f

(
r′, t− |r − r′|

c

)
dS ′

(4.15d)
(If) (r, t) = f (r, t) . (4.15e)

It is worth noting that the EFIE and MFIE are usually time diferentiated, mainly
to get rid of the time integration in the deinition of T in (4.15a).

4.2 Time domain discretization and marching-on-
in-time

The diferentiated PEC-EFIE is considered in the following

η
∂

∂t
T J s (r, t) = −n̂ (r)× ∂

∂t
Einc (r, t) . (4.16)

As in the frequency domain, the RWG basis functions fn (1.90) are a common choice
for the spacial discretization. So, the current is approximated as

J s (r, t) ≈
Ns∑

n=1

[J(t)]nfn (r) . (4.17)

Compared to the frequency domain, a notable diference is the time dependency of
the coeicients vector J(t). With a Galerkin scheme (i.e. using the same functions
for the sources and testings), the space discretized system has the form

(Z ∗ J) (t) = E (t) (4.18)
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Figure 4.1: Pulse basis function p

where for all m ∈ [1, Ns],

[(Z ∗ J) (t)]m = η

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T J s (r, t) dS (4.19a)

[E (t)]m = −
¨

r∈Γ

fm(r) ·
∂

∂t
Einc (r, t) dS. (4.19b)

The expression of Z(t) is not needed in this section, but it can be found in (4.72a) in
section 4.3.4.

It is usually assumed that there exists a time t0 such that all the ields in the
neighbourhood of Γ and the currents vanish for all t < t0. Similarly, there is a time
tNt for which the ields vanish for all t > tNt (transient scattering), or if this time
is too long, tNt is chosen such that the solution is not of interest after that time.
Then, the solution is computed for t ∈ [t0, tNt ]. This range is subdivided into Nt time
steps that have a duration ∆t > 0. In other words, the solution is computed for all
t ∈ [t0, t0 +Nt∆t]. The time stamps are deined as

ti = t0 + i∆t. (4.20)

Then, the temporal basis functions are introduced. A common choice for the sources
are the pulses (pi)

Nt
i=1. The same pulse function p is translated to build each function

pi (t) = p(t− ti) (4.21)

where p is illustrated in the igure 4.1 and deined as

p(t) =

{
1 if t ∈ [−∆t, 0]
0 otherwise. (4.22)
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Figure 4.2: Dirac delta distribution δ

The current coeicients [J(t)]n (n ∈ [1, Ns]) can be approximated by

[J(t)]n ≈
Nt∑

j=1

[Jj]np(t− tj) (4.23)

and the current is

J s (r, t) ≈
Ns∑

n=1

Nt∑

j=1

[Jj]nfn (r) p(t− tj). (4.24)

The discretization of the current can be interpreted as a sequence of Nt arrays of Ns
coeicients (Jj)

Nt
j=1 ∈ (RNs)Nt .

The inner product between two integrable real functions f and g is deined as

〈f, g〉 =
ˆ

t∈R

f(t)g(t)dt. (4.25)

In the following x denotes a function that is used to build the temporal testing
functions (xi)

Nt
i=1 where xi(t) = x(t − ti). A common choice is the point testing,

which corresponds to choosing x = δ. The Dirac delta distribution δ (illustrated in
the igure 4.2) veriies 〈δ, f〉 = f(0) for any integrable function f . Another common
choice for the temporal testing is to use a Galerkin scheme. In this case it corresponds
to choosing the pulses (x = p) for the testing basis functions. When it is combined
with a Galerkin scheme in space it is called space-time Galerkin. Testing the RHS
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of (4.18) in time for all i ∈ [1, Nt] results in a sequence of vectors (Ei)
Nt
i=1 whose

coeicients are (m ∈ [1, Ns])

[Ei]m = 〈xi, [E(t)]m〉 (4.26a)

= −
ˆ

t∈R

xi(t)

¨

r∈Γ

fm(r) ·
∂

∂t
Einc (r, t) dSdt (4.26b)

= −
ˆ

t∈R

x(t)

¨

r∈Γ

fm(r) ·
∂

∂t
Einc (r, t+ i∆t) dSdt. (4.26c)

Testing the LHS of (4.18) in time results in

〈xi, [(Z ∗ J) (t)]m〉 = η

ˆ

t∈R

xi(t)

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T J s (r, t) dSdt (4.27a)

= η

Ns∑

n=1

Nt∑

j=1

[Jj]n

ˆ

t∈R

xi(t)

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T (fnpj) (r, t) dSdt (4.27b)

= η

Ns∑

n=1

Nt∑

j=1

[Jj]n

ˆ

t∈R

x(t)

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T (fnp) (r, t+ (i− j)∆t) dSdt.

(4.27c)

By introducing the sequence of matrices (Zj)j deined by

[Zj]mn = η

ˆ

t∈R

x(t)

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T (fnp) (r, t+ j∆t) dSdt, (4.28)

the fully discretized system is (for all i ∈ [1, Nt])

Nt∑

j=1

Zi−jJj = Ei. (4.29)

In general, the temporal testing function x must be chosen to ensure causality such
that Zj = 0 for all j < 0. With this assumption, (4.29) becomes

i∑

j=1

Zi−jJj = Ei (4.30)

or equivalently,
i−1∑

j=0

ZjJi−j = Ei. (4.31)

This expression (4.31) can be rewritten for each i ∈ [1, Nt] as

Z0Ji = Ei −
i−1∑

j=1

ZjJi−j. (4.32)

111



4. Introduction to the time domain

This equation (4.32) corresponds to the so-called Marching-On-in-Time (MOT) that
solves the unknown vectors Ji sequentially for each time step i. This is done by irst
computing the RHS of (4.32) using the vectors Jj known for each j < i and then by
solving the linear system involving Z0. In the case of the EFIE, it can be seen from
(4.15) and (4.28) that Zj = 0 when j > max

r,r′∈Γ

|r − r′|
c∆t

(up to an additional constant
term that depends on the support of the temporal basis functions). So there is a
constant Nconv such that

Z0Ji = Ei −
Nconv∑

j=1

ZjJi−j. (4.33)

In the above expression, it is assumed that Ji−j = 0 if i ≤ j in the sum.
The computational complexity of computing (4.32) is O(NtN

2
s ). Fortunately there

are algorithms to speed up the computation such as the Time Domain Adaptive Inte-
gral Method (TD-AIM) [43] whose computational complexity is O(NtN

1.5
s log(Ns)

2),
the Plane Wave Time Domain (PWTD) algorithm [44] that computes the RHS with
O(NtN

1.5
s log(Ns)) operations, and the multi-level PWTD algorithm [45] that reduces

it to O(NtNslog(Ns)
2).

4.3 Implicit Runge-Kutta convolution quadrature
Time testing with temporal basis functions is not the only way to discretize a time
domain integral equation. Another technique is the convolution quadrature that
basically consists in irst transforming the equation to Laplace domain. Then, the
Laplace domain equation is transformed into an equation in Z-domain using Implicit
Runge-Kutta methods. And inally, an inverse Z-transform yields a fully discretized
system in time. As in the previous section, this procedure results in a MOT scheme.
Again, the diferentiated PEC-EFIE is used to introduce the technique.

4.3.1 Laplace transform and Z-transform
4.3.1.1 Laplace transform

The Laplace transform transforms a function X in time domain to a function L(X)
in Laplace domain. It is deined for s ∈ C in the region of convergence as

L(X)(s) =

ˆ +∞

t=0

X(t)e−stdt. (4.34)

To simplify the notations, the Laplace transform of X is also noted X, such that
X(s) = L(X)(s) and the distinction from the time domain function can be done by
looking at the argument. The inverse Laplace transform is

X(t) = L−1(X)(t) =
1

2πi

ˆ σ+i∞

s=σ−i∞

X(s)estds (4.35)

where the integration is done in the region of convergence on the line ℜ(s) = σ with
all the singularities of X(s) on the left of it.
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4.3. Implicit Runge-Kutta convolution quadrature

4.3.1.2 Z-transform

The Z-transform transforms a sequence (Xn)n∈N in discrete time domain to a function
Z (X) in Z-domain deined for z ∈ C in the region of convergence as

Z(X)(z) =
+∞∑

n=0

Xnz
−n. (4.36)

Again, if there is no possible confusion, Z(X)(z) is simply noted X(z). The inverse
Z-transform of X is a sequence (Z−1(X)n)n∈N deined as

Xn = Z−1(X)n =
1

2πi

˛

z∈C

X(z)zn−1dz (4.37)

where C is a counterclockwise contour in the region of convergence of X and around
the origin. By choosing C to be a circle of radius ρ, an approximation of the in-
verse Z-transform is obtained with the used a trapezoidal rule on Q subintervals that
subdivide [−π, π],

Xn = Z−1(X)n =
ρn

2π

ˆ π

θ=−π

X(ρeiθ)eiθndθ (4.38a)

≈ ρn

Q

Q−1∑

q=0

X(ρe2πi
q

Q )e2πi
q

Q
n. (4.38b)

Notable properties of the Z-transform are

Z((Xn−m)n)(z) = z−mZ(X)(z) (4.39a)
Z((Xn+1)n)(z) = zZ(X)(z)− zX0 (4.39b)
Z((δn,0)n)(z) = 1 (4.39c)

Z(X ∗ Y ) = Z
((

n∑

m=0

XmYn−m

)

n

)
= Z(X)Z(Y ). (4.39d)

The Z-transform can be thought as the discrete counterpart of the Laplace transform
by considering the following relation where x is a function of time, X is the function
x sampled with Dirac deltas and Y is a sequence of samples of x

X(t) = x(t)
+∞∑

n=0

δ (t− n∆t) (4.40a)

Yn = x(n∆t) (4.40b)
L(X)(s) = Z(Y )(es∆t). (4.40c)
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4. Introduction to the time domain

4.3.2 Runge-Kutta methods
The Runge-Kutta methods are a class of techniques to solve diferential equations in
the form

dy(t)

dt
= F (t, y) (4.41a)

y(t0) = y0. (4.41b)

where the unknown y is a function of time t whose initial value y0 at t0 is known and
whose derivative is a function of t and y. The solution is computed consecutively at
each time ti = t0 + i∆t and is noted yi = y(ti). At the time step i, the Runge-Kutta
methods compute the solution for the next time step yi+1 by adding to the current
solution yi a weighted sum of p interpolants [Fi]k of the slope

yi+1 = yi +∆t

p∑

k=1

bk[Fi]k, (4.42)

where p is the number of stages, [Fi]k (k ∈ [1, p]) are the interpolants of the slope and
b ∈ R

p is an array of weights. The [Fi]k are evaluated at an intermediate time ti+ck∆t
that is determined by the coeicients in the array c ∈ R

p. They are evaluated as

[Fi]k = F (ti + ck∆t, [Yi]k) (4.43a)

[Yi]k = yi +∆t

p∑

l=1

Akl[Fi]l (4.43b)

where A ∈ R
p×p. If Akl = 0 for all l ≥ k i.e. if each [Fi]k only depends on the

previous [Fi]l, then the method is said to be explicit and the interpolants [Fi]k can be
computed sequentially. Otherwise, the method is implicit. In this work, only Implicit
Runge-Kutta (IRK) methods are considered.

The Runge-Kutta methods are therefore speciied by the matrix A ∈ R
p×p and

the vectors b, c ∈ R
p that are commonly displayed in a Butcher tableau [46]

c A

bT
(4.44)

An example of such an IRK method is the 3 stages Radau IIA whose Butcher tableau
is

4−
√
6

10

88− 7
√
6

360

296− 169
√
6

1800

−2 + 3
√
6

225

4 +
√
6

10

296 + 169
√
6

1800

88 + 7
√
6

360

−2− 3
√
6

225

1
16−

√
6

36

16 +
√
6

36

1

9

16−
√
6

36

16 +
√
6

36

1

9

(4.45)

114



4.3. Implicit Runge-Kutta convolution quadrature

Rewriting (4.42) and (4.43b) in vector form results in

yi+1 = yi +∆tbTFi (4.46a)
Yi = yi1+∆tAFi (4.46b)

where 1 ∈ R
p is the all-one vector. From (4.46b),

Fi =
1

∆t
A

−1(Yi − yi1). (4.47)

Inserting it in (4.46a) results in

yi+1 = bTA−1Yi + (1− bTA−11)yi. (4.48)

Some Runge-Kutta methods are called L-stable [47] or strongly A-stable [48]. They
have the property bTA−1 = (0, ..., 0, 1), in particular

bTA−11 = 1 (4.49)

and thus, (4.48) simpliies to

yi+1 = bTA−1Yi = [Yi]p. (4.50)

A particular example that is used in the next section is the diferential equation

dy(t)

dt
= sy(t) + g(t) (4.51a)

y(0) = 0 (4.51b)

where g is a known function and s is a complex parameter. Note [gi]k = g(ti+ ck∆t).
With these notations, F (t, y) = sy(t) + g(t) and Fi = sYi + gi. Z-transforming (4.46)
results in

(z − 1)Z(y)(z) = ∆tbTZ(F)(z) + zy0 = ∆tbTZ(F)(z) (4.52a)
Z(Y)(z) = Z(y)(z)1+∆tAZ(F)(z) (4.52b)

where y(0) = y0 = 0 was used to cancel the term zy0 in (4.52a). In the following z is
diferent than 1. Eventually, it implies that the contour C in the inverse Z-transform
(4.37) is circle with a radius ρ 6= 1. Thus,

Z(Y)(z) = ∆t

(
A+

1bT

z − 1

)
Z(k)(z) (4.53a)

= ∆t

(
A+

1bT

z − 1

)
(sZ(Y)(z) + Z(g)(z)) . (4.53b)

So
Z(Y)(z) = (s(z)− sIp)

−1Z(g)(z) (4.54)
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where Ip is the p× p identity matrix and

s(z) =
1

∆t

(
A+

1bT

z − 1

)−1

. (4.55)

Note that with (4.49), using the Sherman-Morrison formula results in

s(z) =
1

∆t

(
A

−1 − A
−11bTA−1z−1

)
. (4.56)

which makes the inverse Z-transforms easy to compute because a multiplication by
the powers of z−1 corresponds to taking the previous element in the time domain
sequence (see (4.39a)).

4.3.3 Convolution quadrature using IRK methods
The convolution quadrature aims to approximate the following convolution

x(t) = (f ∗ g)(t) =
ˆ t

u=0

f(t− u)g(u)du (4.57)

by

x(j∆t) ≈ xj =

j∑

i=0

wj−igi = (w ∗ g)j (4.58)

where f and g are functions of time, gi = g(i∆t), and wj−i are weights that are
functions of the time step ∆t and L(f). Here, the Laplace transform of f (i.e. L(f))
is known, but not necessarily f .
f is replaced by the inverse Laplace transform (deined in (4.35)) of L(f) in (4.57)

x(t) =
1

2πi

ˆ σ+i∞

s=σ−i∞

L(f)(s)
ˆ t

u=0

es(t−u)g(u)duds. (4.59)

Note that the inner integral

y(t) =

ˆ t

u=0

es(t−u)g(u)du (4.60)

is solution of the diferential equation (4.51). Using the solution of the IRK (4.50) in
(4.57) results in

xj+1 ≈
1

2πi

ˆ σ+i∞

s=σ−i∞

L(f)(s)bTA−1Yjds. (4.61)

Then using (4.54), its Z-transform is

Z((xj+1)j)(z) ≈
1

2πi

ˆ σ+i∞

s=σ−i∞

L(f)(s)bTA−1Z(Y)(z)ds (4.62a)

≈ bTA−1

(
1

2πi

ˆ σ+i∞

s=σ−i∞

L(f)(s).(s(z)− sIp)
−1ds

)
Z(g)(z). (4.62b)
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4.3. Implicit Runge-Kutta convolution quadrature

The next step is to simplify this integral. Assuming that a function X(s) has a power
series expansion

X(s) =
+∞∑

n=0

X(n)(0)

n!
sn, (4.63)

then, this function applied on a matrix s is noted X(s) and deined as

X(s) =
+∞∑

n=0

X(n)(0)

n!
s
n. (4.64)

With this notation the integral simpliies to [49]

1

2πi

ˆ σ+i∞

s=σ−i∞

L(f)(s).(s(z)− sIp)
−1ds = L(f)(s(z)) (4.65)

which can be obtained by rewriting the matrix inverse as a power series, then building
a closed contour for the integral by adding an half circle at ininity that enclose
the right hand plane, and inally using the Cauchy integral formula for derivatives.
Therefore,

Z((xi+1)i)(z) ≈ bTA−1L(f)(s(z)).Z(g)(z). (4.66)
Inverse Z-transforming (see (4.37)) the previous equation results in the convolution
quadrature

xi+1 ≈ (w ∗ g)i =
i∑

j=0

wi−jgj (4.67)

where [gj]k = g(tj+ck∆t) and the weights (wj)j are a sequence of row vectors in R
1×p

wj = bTA−1Z−1 (z 7→ L(f)(s(z)))j (4.68)

It can be read from (4.68) that the weights are actually the inverse Z-transform of
the kernel in the Laplace domain evaluated at matrix valued frequencies. Also, the
weights are vectors that contain the interpolants for the p stages of the IRK method.
Note that if the IRK method is L-stable i.e. bTA−1 = (0, ..., 0, 1), then wj is actually
the last row of the matrix Z−1 (L(f)(s(z)))j.

4.3.4 Discretization of time domain integral equations
In this section, the diferentiated PEC-EFIE (4.16) is used as an example to dis-
cretize a time domain integral equation using the convolution quadrature. Again, the
equation to discretize is

η
∂

∂t
T J s (r, t) = −n̂ (r)× ∂

∂t
Einc (r, t) . (4.69)

The spacial discretization is achieved using a Galerkin strategy with RWG basis
functions (fn), similarly to the time testing scheme. The current is discretized as

J s (r, t) ≈
Ns∑

n=1

[J(t)]nfn (r) , (4.70)
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4. Introduction to the time domain

and the system is
(Z ∗ J) (t) = E (t) (4.71)

where for all m,n ∈ [1, Ns],

[Z (t)]mn =

〈
n̂× fm, η

∂

∂t
T (fnδ) (t)

〉
(4.72a)

= η

¨

r∈Γ

n̂(r)× fm(r) ·
∂

∂t
T (fnδ) (r, t) dS (4.72b)

[E (t)]m =

〈
fm,

∂Einc

∂t
(t)

〉
(4.72c)

= −
¨

r∈Γ

fm(r) ·
∂Einc

∂t
(r, t) dS (4.72d)

where the Dirac delta δ(t) is represented in the igure 4.2. Applying the convolution
quadrature (4.67) on (4.71) results in

[E(ti+1)]m =
Ns∑

n=1

([Z]mn ∗ [J]n) (ti+1) (4.73a)

= bTA−1
i∑

j=0

Ns∑

n=1

Z−1 (z 7→ L([Z]mn)(s(z)))i−j gn,j (4.73b)

for each m ∈ [1, Ns] and where the elements of gn,j ∈ R
p are [gn,j]k = [J(tj + ck∆t)]n

(k ∈ [1, p]). The Laplace domain MoM matrix L(Z)(s) ∈ C
Ns×Ns evaluated at a

matrix valued frequency s(z) ∈ C
p×p should be interpreted as a block matrix in

C
pNs×pNs such that for all k, l ∈ [1, p] and m,n ∈ [1, Ns]

[L(Z)(s(z))]k+(m−1)p,l+(n−1)p = [L(Zmn)(s(z))]k,l. (4.74)

According to this, the gn,j ∈ R
p in (4.73b) are stored in a sequence of vectors (Jj)j∈N

in R
pNs and for all k ∈ [1, p], m ∈ [1, Ns] and j ∈ N

[Jj]k+(n−1)p = [J(tj + ck∆t)]n = [gn,j]k (4.75a)

J s (r, tj + ck∆t) ≈
Ns∑

n=1

[Jj]k+(n−1)pfn (r) . (4.75b)

To convert (4.73b) into a Marching-On-in-Time (MOT) scheme, a sequence of exci-
tation vectors in R

pNs , noted (Ei)i∈N, is built as

[Ei]k+(m−1)p = [E(ti + ck∆t)]m (4.76a)

= −
¨

r∈Γ

fm(r) ·
∂Einc

∂t
(r, ti + ck∆t) dS. (4.76b)

118



4.3. Implicit Runge-Kutta convolution quadrature

Then, assuming the L-stability of the Runge-Kutta method, (4.73b) becomes for all
i ∈ N

i∑

j=0

Zi−jJj = Ei (4.77)

or equivalently
i∑

j=0

ZjJi−j = Ei (4.78)

where the sequence of interaction matrices (Zj)j is deined as

Zj = Z−1
(
z 7→ L(t 7→ Z(t))(s(z))

)
j
. (4.79)

The sequence (Zj)j must not be confused with Z(t) (4.72a). The sequence (Zj)j is
the inverse Z-transform of L(t 7→ Z(t)) evaluated at the matrix valued frequency s(z).
(4.78) is rewritten to have a MOT scheme as

Z0Ji = Ei −
i∑

j=1

ZjJi−j (4.80)

Note that there is a minor diference with the MOT (4.32) obtained from the time
testing in section 4.2 as a result of the indexing convention:

• With the time testing, J0 scales the current for the pulse p(t− t0) (4.23) which
is non-zero between t−1 and t0. Therefore J0 = 0 from the assumption that
J s(r, t) = 0 for all t < t0. So J0 is not used in the MOT (4.32).

• With the convolution quadrature, J0 samples the current for t between t0 and t1
(4.75a). Therefore, J0 is non zero and it is used in the MOT (4.80) (and Ji = 0

for all i < 0).

In the section 4.2, the time testing procedure resulted in a sequence of matrices (Zj)j
that are identically zero after some rank (roughly max

r,r′∈Γ

|r−r′|
c∆t

). But, this is not the
case for the sequence (Zj)j stemming from the convolution quadrature. However,

‖Zj‖ →
j→+∞

0 (4.81)

exponentially. So in practice, there is a rank after which the norms of all the matrix
in the sequence go below the machine precision, thus the convolution in the MOT
(4.80) can be truncated to Nconv (not necessarily the same as in (4.33)). So,

Z0Ji = Ei −
Nconv∑

j=1

ZjJi−j. (4.82)
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4.3.5 Computation of the matrix elements
4.3.5.1 Operators in the Laplace domain

This section details the computation of L(t 7→ Z(t))(s(z)) in (4.74). The analogues
of the operators (4.15) in the Laplace domain are

T f (r, s) = −s

c
Tsf (r, s) +

c

s
Thf (r, s) (4.83a)

Tsf (r, s) = n̂ (r)×
¨

r′∈Γ

e−
s
c
|r−r′|

4π |r − r′|f (r′, s) dS ′ (4.83b)

Thf (r, s) = n̂ (r)×∇

¨

r′∈Γ

e−
s
c
|r−r′|

4π |r − r′|∇
′ · f (r′, s) dS ′ (4.83c)

Kf (r, s) = n̂ (r)× p.v.
¨

r′∈Γ

∇

(
e−

s
c
|r−r′|

4π |r − r′|

)
× f (r′, s) dS ′. (4.83d)

In fact, these operators can be simply obtained from the expression of the operators
in the frequency domain with the substitution of ik by s/c in (1.68a) and (1.69).

In the Laplace domain, the PEC-EFIE reads

ηT J s (r, s) = −n̂ (r)×Einc (r, s) . (4.84)

In fact, the EFIE is usually time diferentiated to be solved. It enables getting rid
of the 1/s factor in front of Th in (4.83a) that corresponds to a time integration.
Eventually, this allows the convolution kernel on the RHS of the MOT (4.82) to be
truncated to Nconv terms as the norms of the matrices ‖Zj‖ decay exponentially, which
is not the case for the non-diferentiated EFIE. Note that in the case of testing with
temporal basis functions, it enables to get interaction matrices that are exactly 0 as
explained before the equation (4.33). The diferentiated PEC-EFIE in the Laplace
domain is

sηT J s (r, s) = −sn̂ (r)×Einc (r, s) . (4.85)
A Galerkin discretization in space with RWG basis functions (1.90) results in the
linear system

Z(s)J(s) = E(s) (4.86)
where for all m,n ∈ [1, Ns]

J s (r, s) ≈
Ns∑

n=1

[J(s)]nfn (r) (4.87a)

[Z(s)]mn = 〈n̂× fm, sηT fn(s)〉 (4.87b)
[E(s)]m =

〈
n̂× fm,−sn̂×Einc (s)

〉
. (4.87c)

The relation between the Laplace domain Z(s) in (4.87b) and the time domain Z(t)
in (4.72a) is Z(s) = L(t 7→ Z(t))(s) as expected.
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4.3.5.2 Computation of the matrix elements in the Z-domain

Z(s) is evaluated in a matrix valued argument s(z). In practice, the matrix s(z) is
diagonalized as

s(z) = M(z)D(z)M(z)−1 (4.88)
where D is a diagonal matrix made of the p eigenvalues of s (so the eigenvalues
are Dkk for k ∈ [1, p]), and M is the matrix that contains the p eigenvectors in
each column. For m,n ∈ [1, Ns], note the matrix entry X(s) = [Z(s)]mn. Then,
X(s) = MX(D)M−1 where X(D) is a diagonal matrix whose k-th entry is X(Dkk).
Applying this process on each element of Z(s) results in

Z(s) = M̃Z(D)M̃−1 (4.89)

where for m,n ∈ [1, Ns] and k ∈ [1, p]

[Z(D)]k+p(m−1),k+p(n−1) = [Z(Dkk)]mn (4.90)

and M̃ is a block diagonal matrix with Ns blocks equal to M

M̃ =




M

M (0)
. . .

(0) M


 . (4.91)

From (4.89) and (4.90) it is clear that the matrix valued frequency dependent Z(s(z))
can be obtained from p computations of the scalar valued frequency dependent
Z(Dkk(z)). The computation of these matrices in the Laplace domain is actually
the same as the matrices in the Fourier domain that is described in the section 1.3.4
and where ik has been replaced by s/c.

4.3.5.3 Kronecker product

For all X ∈ C
Ns×Ns and Y ∈ C

p×p, the Kronecker product X⊗ Y is deined as

[X⊗ Y]k+p(m−1),l+p(n−1) = [X]mn[Y]kl (m,n ∈ [1, Ns] and k, l ∈ [1, p]). (4.92)

For example using this notation, M̃ in (4.91) can be conveniently rewritten as M̃ =
I⊗M where I is the Ns ×Ns identity matrix.

In fact, in the next chapters on the time domain, an extensive use of the Kronecker
product ⊗ is done. This product is used in two cases:

• With the identity matrix I ∈ R
Ns×Ns and another matrix Y ∈ C

p×p. The result
is noted Ỹ = I⊗ Y.

• With a matrix X ∈ C
Ns×Ns and the identity matrix Ip ∈ R

p×p. The result is
noted X̃ = X⊗ Ip.
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4. Introduction to the time domain

The tilde is used to mark the augmented matrix. Similarly to what has been done
in the previous section with M̃, the Kronecker product with an identity enables to
perform a block-wise multiplication. This is convenient in the case of IRK methods
that yield quantities with p stages after the substitution of the scalar s by a matrix
s.

For example, consider a constant (relative to s) matrix X ∈ C
Ns×Ns . Then, Z(s) =

XT(s) becomes Z(s) = X̃T(s) after substitution, where X̃ = X⊗ Ip. Intuitively, each
entry of X is independent of s so they can be thought as being multiplied by s0.
Therefore, substituting s by s transforms the factor s0 by s0 = Ip.

The second example is the multiplication by a scalar function Y (s). Then, Z(s) =
Y (s)T(s) becomes Z(s) = Ỹ(s)T(s) after the substitution, where Ỹ(s) = I ⊗ Y (s).
The matrix Y (s) ∈ C

p×p is deined from the scalar Y (s) ∈ C using (4.64). Again, the
multiplication of Y (s) by a matrix (or vector) can be thought as a multiplication with
the diagonal matrix with Y (s) on all the diagonal. After the substitution of s by s,
it transforms into a block diagonal matrix with Y (s) on all the diagonal i.e. I⊗Y (s).

In addition, note that s = MDM
−1 is transformed block-wise into s̃ = M̃D̃M̃−1

where s̃ = I ⊗ s, M̃ = I ⊗ M, D̃ = I ⊗ D and M̃−1 = I ⊗ (M−1) (note that the
inverse is block-wise). This is applied to Z(s) = ηsT(s) in (4.87b) which results in
Z(s) = ηs̃T(s) = ηM̃D̃T(D)M̃−1.

4.4 DC instability
Similarly to the frequency domain integral equations, the time domain integral equa-
tions also have problems similar to the low frequency breakdown, dense mesh break-
down and numerical cancellations. In the time domain, the low frequency breakdown
is the so-called large time step breakdown. However, there is also the so-called DC
instability that is speciic to the time domain. In this section, the origin of the DC
instability is explained. In fact, both the testing with temporal basis functions (sec-
tion 4.2) and the convolution quadrature (section 4.3) time discretizations have these
problems.

Consider the PEC-EFIE

ηT J s (r, t) = −n̂ (r)×Einc (r, t) . (4.93)

Let J cs
s be a constant (in time) solenoidal current i.e. ∂J cs

s
∂t

= 0 and ∇ · J cs
s = 0.

Then, it is clear from the deinition of T (4.15a) that T J cs
s = 0. In other words, if J s

is solution of the PEC-EFIE, then J s+J cs
s is also solution. To enforce the uniqueness

and the causality of the solution, the current J s is assumed to be zero when t < t0
so that the only possible value for J cs

s is zero.
Note that in the case of the diferentiated PEC-EFIE, also the linear (in time)

solenoidal currents are in the null space of the integral equation operator i.e. if
∂2J ls

s
∂t2

= 0 and ∇ · J ls
s = 0 then ∂

∂t
T J ls

s = 0.
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Figure 4.3: Surface current density on the unit sphere showing the DC instability at
r0 =(0 m, 0.93 m, 0.36 m)

Unfortunately, even if these constant or linear in time solenoidal currents are
enforced to be zero in the continuous integral equation by imposing J s(r, t) = 0 for
all t < t0, they still plague the discrete solution because they are in the null space
of the integral equation operator. Because of numerical errors (approximations and
loating point truncation errors), these static currents appear in the late time steps as
a slowly (yet exponentially) growing non-physical solution of the discrete equation.
This current has been plotted in the igure 4.3 for a unit sphere with the parameters
Ns = 120, Nt = 500, Nconv = 17, ∆t = 7.16 ns, IRK method (4.45) and an incident
modulated Gaussian plane wave

Einc(r, t) = p̂ exp
(
−τd(r, t)

2

2τ 2ch

)
cos (2πf0τd(r, t))E0 (4.94)

where k̂ = −ẑ, τd(r, t) = t− 1

c
k̂ ·r, p̂ = x̂, E0 = 1 V/m, f0 = 10 MHz and τch = 79.6

ns.
The DC instability can be illustrated by studying the MOT for the homogeneous

system i.e. without excitation (Ei = 0 for all i)

Z0Ji = −
Nconv∑

j=1

ZjJi−j. (4.95)
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Figure 4.4: Polynomial eigenvalues in the complex plane
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4.4. DC instability

Deine the block vector Ji containing Nconv successive discrete solutions

Ji =




Ji
Ji−1

...
Ji+1−Nconv


 (4.96)

and the block matrix ZC called companion matrix [50]

ZC =




−Z
−1
0 Z1 −Z

−1
0 Z2 . . . −Z

−1
0 ZNconv−1 −Z

−1
0 ZNconv

I

I (0)
. . .

(0) I




. (4.97)

They verify the recurrence relation

Ji = ZCJi−1. (4.98)

So by studying the eigenvalues of ZC, also called polynomial eigenvalues, it is possible
to understand the behaviour of the solution Ji when i → +∞. If all the eigenvalues
(noted λn) of ZC, are in the interior of the unit circle (i.e. |λn| < 1 for all n),
then the system is stable, since any numerical perturbation in the solution vanishes
exponentially. However, if an eigenvalue is outside of the unit circle (i.e. there is a
n such that |λn| > 1), then the system is unstable and any numerical error in the
solution grows exponentially.

This is illustrated in the igure 4.4 where the polynomial eigenvalues for the dif-
ferentiated PEC-EFIE have been plotted in the complex plane (with the same pa-
rameters as before). The eigenvalues associated to the constant and linear in time
solenoidal current are clustered around 1 which results in the DC instability. They
are not exactly on 1 because of numerical errors and approximations in the discretized
system and some of them lie outside of the unit circle.
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Chapter 5

Large time step and DC stable
time domain PEC-EFIE discretized
with implicit Runge-Kutta
methods

To simulate the transient scattering of a Perfect Electric Conductor (PEC) in the
time domain, the PEC-EFIE and its diferentiated version are widely used. In this
chapter, the discretization of the PEC-EFIE is obtained with a Galerkin strategy
using RWG basis functions in space, and a convolution quadrature using Implicit
Runge-Kutta (IRK) methods in time. Unfortunately, the resulting system has two
problems. First, the linear system sufers from a large time step breakdown i.e.
it becomes ill-conditioned when the time step increases. And second, there is a
DC instability i.e. the formulation allows the existence of spurious static solenoidal
currents in the solution. In this chapter, these two problems are solved by leveraging
the quasi-Helmholtz projectors. Besides, it is shown how the projectors can be used
with the IRK based convolution quadrature.

5.1 Introduction
The Perfect Electric Conductor - Electric Field Integral Equation (PEC-EFIE) and
more particularly the diferentiated PEC-EFIE are widely used to simulate a PEC
scatterer in the time domain [51]. The numerical solution of time domain integral
equations has received many research contributions to reduce the computational cost
with the Plane Wave Time Domain (PWTD) [44, 45] algorithm or the Hierarchical-
FFT (HIL-FFT) [52]. The stability of the equations has been addressed using loop-
tree decompositions [53, 54], Calderón preconditioning [55], quasi-Helmholtz projec-
tors [56] and Combined Field Integral Equations (CFIE) [57, 58]. Finally, the accuracy
of the equations can be improved using higher order spacial basis functions [59, 60],
better temporal basis functions [61–63] and exact evaluations [64, 65].

A vast majority of formulations discretizes the equation in space and time which
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5.1. Introduction

results in a fully discretized system that can be solved by Marching-On-in-Time
(MOT), although it exists other approaches such as marching-on-in-order [66]. The
space discretization is commonly achieved using a space Galerkin testing with the set
of basis functions that spans the space of surface current densities. The system is
then discretized in time, amongst others, with point testing [51], space-time Galerkin
[67] or Runge-Kutta convolution quadrature [47, 48]. Implicit Runge-Kutta (IRK)
methods are known to have a good stability in solving ordinary diferential equation.
These good properties are inherited when the IRK methods are used to discretize
convolution quadratures with matrices stemming from a Boundary Element Method
(BEM) discretization. Also, it only requires the Laplace domain expression of the
convolution kernel, which has the practical advantage of getting a time domain solver
from a frequency domain code. This opposes to the space-time Galerkin that requires
more complicated quadrature schemes for the computation of the interaction matrices
elements.

The diferentiated PEC-CFIE [68] and the diferentiated PEC-EFIE [69] can be
solved using an IRK convolution quadrature. In particular, the PEC-EFIE has two
problems:

• It sufers from the large time step breakdown. It causes the condition number
of the matrix in the MOT system to grow quadratically with time step [55].
This is in fact the time domain counterpart of the low frequency breakdown.

• It sufers from the DC instability. The equation allows the existence of static
solenoidal currents in the solution [50]. In practice it yields a wrong current in
the late time steps.

In [56], these two problems were solved for the space-time Galerkin discretization
using quasi-Helmholtz projectors. By diferentiating or integrating the appropriate
Helmholtz components, the resulting system is free from both the large time step
breakdown and the DC instability. Furthermore, the projectors do not require the
expensive detection of the global loops in case of multiply connected geometry.

In this chapter, it is shown how the quasi-Helmholtz projectors can be used in
the context of IRK convolution quadrature discretizations. Using the convolution
quadrature on the MoM system preconditioned in the Laplace domain results in a
regularized MOT scheme that does not sufer from the large time step breakdown nor
the DC instability.

The chapter is subdivided in ive sections. First, the groundwork of this chapter
that is the PEC-EFIE discretized with IRK convolution quadrature is briely recalled.
Then the two problems, i.e. the large time step breakdown and the DC instability,
are analyzed in the context of a time discretization based on an IRK convolution
quadrature. In the next section, the quasi-Helmholtz projectors are used to regularize
the PEC-EFIE. Then, an analysis of the computational complexity of the solver
is done to show that the quasi-Helmholtz projectors are compatible with the IRK
convolution quadrature. And inally, some numerical results are presented to illustrate
the work.

Preliminary results on this work were presented at a conference [70].
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Runge-Kutta methods

5.2 Background and notations
5.2.1 Perfect Electric Conductor - Electric Field Integral Equa-

tion
5.2.1.1 PEC-EFIE in the time domain

A Perfect Electric Conducting (PEC) scatterer whose boundary is Γ is placed in
a background medium that has a permitivity ε, a permeability µ and characteristic
impedance η =

√
µ/ε. An incident electric ield Einc induces a surface electric current

density J s on Γ. The current J s is solution of the time domain PEC-EFIE (4.14a)

ηT J s (r, t) = −n̂ (r)×Einc (r, t) (5.1)

where the operator T is deined in (4.15a) and n̂ is the vector normal to Γ. The
time diferentiated PEC-EFIE is also considered as it is often used to avoid the time
integration of the hypersingular part of T

η
∂

∂t
T J s (r, t) = −n̂ (r)× ∂Einc

∂t
(r, t) . (5.2)

In order to enforce the causality and the uniqueness of the solution, all the ields are
assumed to vanish in the neighbourhood of Γ when t < t0 (see section 4.4).

5.2.1.2 PEC-EFIE in the Laplace domain

The PEC-EFIE in the Laplace domain reads

ηT J s (r, s) = −n̂ (r)×Einc (r, s) (5.3)

where the Laplace domain operator T (4.83a) is

T J s (r, s) = −s

c
TsJ s (r, s) +

c

s
ThJ s (r, s) (5.4a)

TsJ s (r, s) = n̂ (r)×
¨

r′∈Γ

e−
s
c
|r−r′|

4π |r − r′|J s (r
′, s) dS ′ (5.4b)

ThJ s (r, s) = n̂ (r)×∇

¨

r′∈Γ

e−
s
c
|r−r′|

4π |r − r′|∇
′ · J s (r

′, s) dS ′ (5.4c)

with c = 1/
√
µε that denotes the speed of light in the background medium. The time

derivative is transformed to a factor s in the Laplace domain, so the time diferentiated
PEC-EFIE transformed to the Laplace domain reads

ηsT J s (r, s) = −sn̂ (r)×Einc (r, s) . (5.5)
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5.2. Background and notations

5.2.2 Space Galerkin discretization
Γ is approximated by a mesh containing Ns edges, Nv vertices and Nf triangular faces.
A set of Ns Rao-Wilton-Glisson [3] (RWG) basis functions (fn)

Ns

n=1 (1.90) is built on
Γ. In the Laplace domain, the current is expanded in the RWG basis as

J s(r, s) ≈
Ns∑

m=1

[J(s)]mfm(r) (5.6)

where J(s) ∈ C
Ns is the array of coeicients of the expansion. A Galerkin testing

procedure on (5.3) results in the following system in the Laplace domain

Z(s)J(s) = E(s) (5.7)

with

Z(s) = η
(
−s

c
Ts(s) +

c

s
Th(s)

)
(5.8)

[Ts(s)]mn = 〈n̂× fm, Tsfn(s)〉 (5.9)
[Th(s)]mn = 〈n̂× fm, Thfn(s)〉 (5.10)

[E(s)]m = −
〈
fm,E

inc(s)
〉
. (5.11)

The computation of the above elements is detailed in the appendix A.
The system corresponding to the time diferentiated PEC-EFIE transformed to

the Laplace domain is
sZ(s)J(s) = sE(s). (5.12)

5.2.3 Time discretization with IRK convolution quadrature
The time discretization is achieved with a convolution quadrature using IRK methods.
As explained in the section 4.3, the time domain system is transformed to the Laplace
domain, then discretized to the Z-domain using IRK methods, and inally transformed
to the discrete time domain with an inverse Z-transform.

The solution is assumed to be 0 for all t < t0. Then, it is computed for each
ti = t0 + i∆t where ∆t is the time step and i ≤ Nt. The system in the Laplace
domain (5.7) is discretized by expressing the Laplace variable s as a function of z
(the Z-domain variable). This is achieved using Implicit Runge-Kutta methods. It
formally corresponds to the substitution of the Laplace variable s by a matrix valued
s(z) (4.55)

s(z) =
1

∆t

(
A+

1bT

z − 1

)−1

(5.13)

where A ∈ R
p×p and b ∈ R

p (p is the number of stages in the IRK method) are given
by the Butcher tableau [46] of the Runge-Kutta method (4.44)

c A

bT
(5.14)
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Substituting s by s(z) in Z(s) ∈ C
Ns×Ns results in the matrix Z(s(z)) ∈ C

pNs×pNs

whose computation is described in (4.89). Finally, as explained in the section 4.3.4,
the product Z(s)J(s) in the Laplace domain is transformed into a convolution be-
tween the sequences of interaction matrices (Zi)i∈N and the current coeicients vectors
(Ji)i∈N in the discrete time domain. The sequence of interaction matrices is obtained
by computing the inverse Z-transform of Z(s(z)). The current and excitation vec-
tors are evaluated for each time step i and each stage k (k ∈ [1, p]) at the times
t = ti + ck∆t. In the discrete time domain the system is

i∑

j=0

ZjJi−j = Ei (5.15)

where (see (4.79),(4.75a) and (4.76))

Zj = Z−1 (Z(s))j (5.16a)

J s (r, ti + ck∆t) ≈
Ns∑

n=1

[Ji]k+(n−1)pfn (r) (5.16b)

[Ei]k+(m−1)p = −
〈
fm,E

inc(ti + ck∆t)
〉
. (5.16c)

The MOT scheme is explicitly written as

Z0Ji = Ei −
i∑

j=1

ZjJi−j. (5.17)

Note that in practice the diferentiated PEC-EFIE should be used instead because the
non-diferentiated PEC-EFIE results in a sequence of matrices that do not decay, and
thus it renders the MOT unpractical. In the diferentiated PEC-EFIE, the convolution
on the RHS can be truncated to a inite number of terms Nconv. So, the MOT reads

Z
der
0 Ji = Eder

i −
Nconv∑

j=1

Z
der
j Ji−j (5.18)

where the sequences of interaction matrices and excitation vectors for the diferenti-
ated PEC-EFIE are deined by

Z
der
j = Z−1

(
Z

der(s)
)
j
= Z−1 (̃sZ(s))j (5.19a)

[Eder
i ]k+(m−1)p = −

〈
fm,

∂Einc

∂t
(ti + ck∆t)

〉
(5.19b)

with

Z
der(s) = sZ(s) = η

(
−s2

c
Ts(s) + cTh(s)

)
(5.20a)

s̃ = I⊗ s. (5.20b)
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5.3. Analysis of the large time step breakdown and the DC instability

5.3 Analysis of the large time step breakdown and
the DC instability

Both the PEC-EFIE and the diferentiated PEC-EFIE sufer from the large time step
breakdown and the DC instability. In fact, these two problems are linked to the time
discretization of the equation but they are also present in other time discretization
schemes such as the point testing or the space-time Galerkin. In this section, these
two problems are studied for the IRK convolution quadrature.

5.3.1 Large time step breakdown
The large time step breakdown is in fact the time domain counterpart of the low
frequency breakdown. In the frequency domain, it occurs because the part of the
spectrum associated to the solenoidal functions scales proportionally to the frequency
whereas the other part of the spectrum, associated to the non-solenoidal functions,
scales proportionally to the inverse of the frequency. Overall, the relative ratio be-
tween the maximal and minimal singular values of the discrete operator is inversely
proportional to the square of the frequency and so is the condition number. The
scalings of the diferent parts of the spectrum of the discrete operator can be ob-
tained with an Helmholtz decomposition. This decomposition is achieved using the
quasi-Helmholtz projectors P

ΛH and P
Σ ∈ R

Ns×Ns . These projectors are introduced
in the section 1.5.3.3.

In the Laplace domain, the MoM matrix Z(s) is rewritten in an Helmholtz de-
composed form. This is achieved by inserting the identity matrix I = P

ΛH + P
Σ on

the two sides of Z(s) and rewriting the product as a block matrix form that exposes
the scalings

Z(s) = η
(
P

ΛH + P
Σ
) (

−s

c
Ts(s) +

c

s
Th(s)

) (
P

ΛH + P
Σ
)

(5.21a)

= η

(
P

ΛH
P

Σ

)



−s

c
Ts(s) −s

c
Ts(s)

−s

c
Ts(s) −s

c
Ts(s) +

c

s
Th(s)







P
ΛH

P
Σ


 (5.21b)

=
(

P
ΛH

P
Σ
)(

O(s) O(s)

O(s) O(s−1)

)(
P

ΛH

P
Σ

)
(5.21c)

where O(x) denotes a matrix whose norm scales proportionally to x when s → 0. In
the low frequency regime, Ts(s) and Th(s) have a static limit when s → 0. Therefore,
the block associated to the non-solenoidal (PΣ) testings and sources scales propor-
tionally to 1/s while the other blocks scale proportionally to s.

Then, following the IRK convolution quadrature procedure to discretize in time,
s is substituted by s(z) that is proportional to ∆t−1 (5.13), and similarly 1/s scales
proportionally to ∆t after the substitution. So, the scaling of Z(s(z)) is

Z(s(z)) =
(

P̃ΛH P̃Σ
)(

O(∆t−1) O(∆t−1)

O(∆t−1) O(∆t)

)(
P̃ΛH

P̃Σ

)
. (5.22)
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where P̃ΛH = P
ΛH ⊗ Ip and P̃Σ = P

Σ ⊗ Ip are the projectors that have been modiied
to be made compatible with the matrices in C

pNs×pNs (see section 4.3.5.3). Finally,
the inverse Z-transform does not afect the scalings, so Z0 also scales as

Z0 =
(

P̃ΛH P̃Σ
)(

O(∆t−1) O(∆t−1)

O(∆t−1) O(∆t)

)(
P̃ΛH

P̃Σ

)
. (5.23)

Therefore, the condition number of Z0 scales proportionally to ∆t2 when ∆t → +∞.

5.3.2 DC instability
5.3.2.1 DC instability in the PEC-EFIE

As explained in the section 4.4, the DC instability is caused by a constant solenoidal
current that creeps into the solution. By deinition a constant solenoidal current
J cs

s veriies ∂J cs
s

∂t
= 0 and ∇ · J cs

s = 0. Therefore, it is in the nullspace of T (i.e.
T J cs

s (r, t) = 0 for all r and t). With the initial condition J cs
s (r, t = 0) = 0 (which is

assumed implicitly by imposing that the solution of the PEC-EFIE veriies J s(r, t) =
0 for all t < 0), the equation

∂

∂t
J cs

s (r, t) = 0 (5.24)

is transformed into the Laplace domain equation

sJ cs
s (r, s) = 0. (5.25)

Following the IRK convolution quadrature procedure for the time discretization, the
factor s is substituted by s̃ = I⊗ s (see section 4.3.5.3). Also, the spurious current is
discretized similarly to (5.16b) by the sequence (Jcs

i )i such that

J cs
s (r, ti + ck∆t) ≈

Ns∑

n=1

[Jcs
i ]k+(n−1)pfn (r) . (5.26)

Then, in the discrete time domain, the sequence (Jcs
i )i veriies for all i > 0

i∑

j=0

Z−1(̃s)jJ
cs
i−j = 0. (5.27)

Initializing the sequence with Jcs
0 = 0 should result in Jcs

i = 0 for all i. But in
practice, there are numerical errors that produce a non-zero constant solenoidal part
in the solution. Using the L-stability [47] of the IRK method, s(z) is rewritten as in
(4.56) to involve a inite number of power of z−1.

s(z) =
1

∆t

(
A

−1 − A
−11bTA−1z−1

)
. (5.28)

132



5.3. Analysis of the large time step breakdown and the DC instability

As it can be read in (4.39a), z−1 in the Z-domain actually corresponds to taking the
previous element in the time domain sequence. Therefore, the inverse Z-transform of
s(z) is deined by

Z−1(s)i =
1

∆t

(
A

−1δi,0 − A
−11bTA−1δi−1,0

)
(5.29)

where δ denotes the Kronecker delta. This expression is inserted in (5.27) which
results in the following recurrence relation

Jcs
i = 1̃b̃TÃ−1Jcs

i−1 (5.30)

where Ã = I ⊗ A and 1̃b̃T = I ⊗ (1bT). But in practice, the non-diferentiated PEC-
EFIE is not used. Instead the time diferentiated PEC-EFIE is solved, and it has a
diferent characterization of the DC current.

5.3.2.2 DC instability in the diferentiated PEC-EFIE

In the diferentiated PEC-EFIE, the DC instability is worse because in addition to
the constant solenoidal currents, also the linear in time solenoidal currents are in the
nullspace of the operator ∂

∂t
T . Let J ls

s be such a linear in time solenoidal current.

It veriies ∂2J ls
s

∂t2
= 0 and ∇ · J ls

s = 0. Therefore, ∂

∂t
T J ls

s = 0. With the initial

conditions J ls
s (r, t = 0) = 0 and ∂

∂t
J ls

s (r, t = 0) = 0, the equation

∂2

∂t2
J ls

s (r, t) = 0 (5.31)

is transformed into the Laplace domain equation

s2J ls
s (r, s) = 0. (5.32)

Similarly to the previous section, after the time discretization, the time domain se-
quence of the spurious currents (Jls

i )i veriies for all i > 1

i∑

j=0

Z−1(̃s2)jJ
ls
i−j = 0. (5.33)

Again, with the simpliied expression of s(z) (5.28), the recurrence equation (5.33)
becomes

Jls
i = Ã

(
Ã

−11̃b̃T + 1̃b̃TÃ−1
)
Ã

−1Jls
i−1 − Ã

2
(
Ã

−11̃b̃TÃ−1
)2

Jls
i−2 (5.34)

Note that these characterizations of the DC currents (5.30) and (5.34) do not depend
on the time step ∆t.
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5.4 Regularized PEC-EFIE
In this section the regularized PEC-EFIE (without DC instability and stable for large
time steps) is constructed using the quasi-Helmholtz projectors.

5.4.1 Regularization in the Laplace domain
The DC instability is due to the presence of constant (or linear in time for the difer-
entiated PEC-EFIE) solenoidal currents in the nullspace of the operator. Therefore,
by integrating in time the solenoidal part (ΛH) of the operator, the time derivative
is efectively removed and the only constant current allowed in the nullspace is 0.
Then, to remove the time integration in the non-solenoidal (Σ) part of the operator,
the non-solenoidal part is diferentiated. In the Laplace domain, a time derivative
corresponds to a multiplication by s and an integration in time corresponds to a mul-
tiplication by 1/s. Therefore, the system (5.7) is regularized in the Laplace domain
as

L(s)Z(s)R(s)Y(s) = L(s)E(s) (5.35)
where Y(s) is an auxiliary unknown such that

J(s) = R(s)Y(s) (5.36)

and where L(s) and R(s) are the preconditioners

L(s) =
c

sa
P

ΛH + P
Σ (5.37a)

R(s) = P
ΛH +

sa

c
P

Σ. (5.37b)

Here, the speed of light c was also used in the preconditioner to further lower the ill-
scaling between the two parts of the spectrum. In addition, a is a length parameter
that ensures a consistent dimensionality. a should be chosen proportional to the
diameter of Γ so that a spacial rescaling of the simulation (i.e. that rescales equally
the geometry and the wavelength) does not modify the conditioning of the system.
Note that the deinitions of the Laplace domain L(s) and R(s) in (5.37) are consistent
with the preconditioners of the Fourier domain PEC-EFIE in (1.196). The asymptotic
behaviour of the regularized system noted Z

reg(s) can be visualized in a block matrix
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form similar to (5.21b)

Z
reg(s) = L(s)Z(s)R(s) (5.38a)

= η
(
− 1

a
P

ΛH
Ts(s)P

ΛH + aTh(s)−
s2a

c2
P

Σ
Ts(s)P

Σ

− s

c
P

ΛH
Ts(s)P

Σ − s

c
P

Σ
Ts(s)P

ΛH
)

(5.38b)

= η
(

P
ΛH

P
Σ
)



−1

a
Ts(s) −s

c
Ts(s)

−s

c
Ts(s) −s2a

c2
Ts(s) + aTh(s)





 P

ΛH

P
Σ


 (5.38c)

= η
(

P
ΛH

P
Σ
)

 −1

a
Ts(s) 0

0 aTh(s)




 P

ΛH

P
Σ


+ O

s→0
(s) (5.38d)

where O
s→0

(s) is a matrix whose norm scales proportionally to s when s → 0. So,
Z

reg(s) has a limit when s → 0 which is Z
reg(0) = −ηPΛH

Ts(0)P
ΛH/a+ aTh(0).

The regularized system in the Laplace domain is rewritten as

Z
reg(s)Y(s) = V(s) (5.39)

where the RHS is
V(s) =

( c

sa
P

ΛH + P
Σ
)
E(s) (5.40)

and the original unknown is retrieved as

J(s) =
(
P

ΛH +
sa

c
P

Σ
)
Y(s). (5.41)

5.4.2 Time discretization of the regularized system
5.4.2.1 Interaction matrices

Following the procedure for the IRK convolution quadrature discretization, the scalar
s is substituted by the matrix s(z) in Z

reg(s). The matrix s is diagonalized as s =
MDM

−1. The Ns × Ns identity is noted I and the p × p identity is noted Ip. Then,
using the expanded expression of Zreg(s) in (5.38b), Zreg(s(z)) is

Z
reg(s) = η

(
− 1

a
P̃

ΛH
M̃Ts(D)M̃−1

P̃
ΛH (5.42a)

+ aM̃Th(D)M̃−1 (5.42b)

− a

c2
P̃

Σ
M̃D̃

2
Ts(D)M̃−1

P̃
Σ (5.42c)

− 1

c
P̃

ΛH
M̃D̃Ts(D)M̃−1

P̃
Σ (5.42d)

− 1

c
P̃

Σ
M̃D̃Ts(D)M̃−1

P̃
ΛH
)

(5.42e)
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where s̃ = I⊗ s, M̃ = I⊗M, D̃ = I⊗D, P̃ΛH = P
ΛH ⊗ Ip and P̃Σ = P

Σ ⊗ Ip. Details
on this transformation can be found in the section 4.3.5.3. This expression of Zreg(s)
(5.42) represents how it is computed in practice. Finally, the sequence of interaction
matrices (Zreg

j )j is obtained with an inverse Z-transform (4.37) of Zreg(s)

Z
reg
j = Z−1(Zreg(s))j. (5.43)

Similarly to (4.81), the norm of the stabilized interaction matrices decreases expo-
nentially i.e. ∥∥Zreg

j

∥∥ →
j→+∞

0 exponentially. (5.44)

5.4.2.2 Excitation vector (analytic evaluation)

The solenoidal part of the RHS V(s) in (5.40) contains a 1/s factor. 1/s in the Laplace
domain corresponds to an integration in the time domain. Therefore, a primitive of
Einc noted Eprim must be computed

∂Eprim

∂t
(r, t) = Einc (r, t) . (5.45)

In the context of the IRK convolution quadrature, the analogue of the Laplace domain
RHS V(s) (5.40) is a sequence (Vi)i in the discrete time domain

Vi =
c

a
P̃

ΛHE
prim
i + P̃

ΣEi (5.46)

where (Eprim
i )i is a sequence deined similarly to (Ei)i in (5.16c) but using a primitive

of Einc (noted Eprim) as a source

[Eprim
i ]k+(m−1)p = −

〈
fm,E

prim(ti + ck∆t)
〉
. (5.47)

Note that the choice of the primitive constant for Eprim does not modify the value
of Vi because it is cancelled by the multiplication with P̃ΛH . Indeed, from (1.153),
the testing of a constant ield by solenoidal functions is 0. Though, this primitive
constant must be chosen such that lim

t→±∞
Eprim(r, t) = 0 to compute Vi accurately in

the early and the late time steps. This is done to avoid numerical cancellations in Vi.
In fact, unless Einc is an odd function, there is no guarantee that lim

t→−∞
Eprim(r, t) =

lim
t→+∞

Eprim(r, t). In this case diferent primitives are used for the computation of the

sequence (Eprim
i )i in the early time steps and the late time steps.

5.4.2.3 Excitation vector (numerical evaluation)

If no analytic expression for a primitive of Einc(r, t) is available, then the sequence
of excitation vectors (Eprim

i )i should be computed numerically from the sequence (Ei)i
using the IRK scheme. The Laplace domain equation corresponding to (5.45) is

sEprim (r, s) = Einc (r, s) . (5.48)
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After the discretization in space and the substitution of s by s(z), the following
equation in the Z-domain holds

s̃(z)Z(Eprim)(z) = Z(E)(z). (5.49)

Expanding s(z) (5.13) and rearranging the terms yields

(z − 1)Z(Eprim)(z) = ∆t
(
(z − 1)Ã+ 1̃b̃T

)
Z(E)(z). (5.50)

Using (4.39) results in

E
prim
i+1 + δi+1,0E

prim
0 − E

prim
i = ∆t

(
Ã (Ei+1 + δi+i,0E0 − Ei) + 1̃b̃TEi

)
(5.51)

which gives the initial condition for i = −1 and the recurrence relation for all i ∈ N

E
prim
0 = ∆tÃE0 (5.52a)

E
prim
i+1 = E

prim
i +∆t

(
Ã (Ei+1 − Ei) + 1̃b̃TEi

)
. (5.52b)

This is the forward computation of the excitation vector. It is used in the early
time steps, but similarly to the analytic computation, there is not guarantee that
the primitive goes to 0 for t → +∞. Actually, due to the iterative nature of the
computation, there would still be a saturation in the order of the machine precision
due to numerical errors even if the primitive goes to 0.

To get a primitive that cancels in late time steps, a backward computation also
has to be performed. Assuming that the simulation has to be computed for Nt time
steps, the backward computation is given by the following recurrence relation for all
i ≤ Nt

E
prim
Nt = ∆tÃENt (5.53a)

E
prim
i−1 = E

prim
i +∆t

(
Ã (Ei−1 − Ei)− 1̃b̃TEi−1

)
. (5.53b)

5.4.2.4 Solution

Applying the IRK convolution quadrature procedure to (5.39) results in the following
convolution

i∑

j=0

Z
reg
j Yi−j = Vi (5.54)

where (Yi)i is the sequence of vectors in R
pNs that corresponds to the auxiliary un-

known whose relation to the original unknown (Ji)i is given in the Laplace domain in
(5.41). The convolution is rewritten to make apparent the regularized MOT scheme

Z
reg
0 Yi = Vi −

Nconv∑

j=1

Z
reg
j Yi−j (5.55)
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where Nconv has been introduced to truncate the convolution to a inite number of
terms at each time step because the norm of the interaction matrices Z

reg
j decreases

exponentially fast with increasing indices j (5.44).
After the completion of the MOT, the auxiliary current (Yi)

Nt
i=0 is known and it

must be used to reconstruct the original unknown (Ji)
Nt
i=0. Substituting s by s(z) in

(5.41) and inverse Z-transforming it results in the following relation for all i ∈ [0, Nt]

Ji = P̃
ΛHYi +

a

c
P̃

Σ

i∑

j=0

Z−1(̃s)Yi−j. (5.56)

Using the expression of Z−1(s) in (5.29), the above equation simpliies to

Ji = P̃
ΛHYi +

a

c∆t
P̃

Σ
Ã

−1
(
Yi − 1̃b̃TÃ−1Yi−1

)
. (5.57)

This sequence of vectors is used to evaluate the current J s (r, t) using (5.16b).

5.5 Implementation details
This section describes how the formulation presented in this chapter can be solved in
practice. In particular, it is explained why this formulation is compatible with the
existing fast techniques to solve integral equations.

5.5.1 Quasi-Helmholtz projectors
As it is mentioned in the section 1.5.3.3, the quasi-Helmholtz projectors P

ΛH and
P

Σ can be multiplied by a vector in a linear complexity O(Ns) [38]. But in this
formulation the projectors are used in a Kronecker product with the p × p identity
matrix as P̃ΛH = P

ΛH ⊗ Ip and P̃Σ = P
Σ ⊗ Ip.

Consider a vector X ∈ C
pNs . The elements of this vector are stored in p subvectors

xk in C
Ns such that for all k ∈ [1, p] and m ∈ [1, Ns],

[xk]m = Xp(m−1)+k. (5.58)

Then, the product of an augmented projector by X is computed as

[P̃ΣX]p(m−1)+k = [PΣxk]m. (5.59)

In other words, the multiplication of a vector by P̃Σ can be computed with p multi-
plications of PΣ i.e. the cost is O(Ns).

5.5.2 Excitation vectors
The vectors Ei and E

prim
i are computed for each time step i ∈ [0, Nt]. With the

analytic evaluation, each vector contains pNs elements, and each element is computed
in a constant time, so the total cost is O(NsNt).
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Instead, if the vectors Eprim
i are computed sequentially with the numerical evalua-

tion as described in the section 5.4.2.3, then they require the products of the matrices
Ã or 1̃b̃T by a vector. Since these matrices are block diagonal, they are sparse and
their products by a vector are computed in a linear complexity, so the complexity is
still O(NsNt).

Note that in this case of the numerical evaluation of the excitation vectors, the
fact the computation of the vectors in the late time steps is performed backward
requires their storage which costs O(NsNt) in memory, as opposed to the analytic
evaluation where the vectors can be computed independently.

5.5.3 Retrieving the original current from the auxiliary cur-
rent

Once the sequence of auxiliary unknowns (Yi)i are found after the completion of the
MOT, the original current sequence (Ji)i is computed using (5.57). At each time step
i ∈ [0, Nt], two multiplications of vectors with the augmented projectors P̃ΛH and P̃Σ

are needed. These multiplications are O(Ns) in complexity as explain above. Three
multiplications with the block diagonal matrices Ã−1 and 1̃b̃T are needed and they
are also linear in complexity. So, the total cost of retrieving the original current is
O(NsNt).

5.5.4 Marching-on-in-time
At each time step i ∈ [0, Nt], the linear system in (5.55) is solved for Yi. This system
is solved iteratively and it can be assumed that it requires a ixed number of iterations
Niter to converge. Each iteration involves the multiplication of Zreg

0 by a vector. Also,
the convolution requires Nconv multiplications of Zreg

j by a vector. So overall, there
are O((Niter +Nconv)Nt) multiplications of the interaction matrices Z

reg
j by a vector.

5.5.5 Interaction matrix multiplication by a vector
Inserting the product of Zreg

j by a vector X in (5.43) and using the trapezoidal rules
(4.38b) to compute the inverse Z-transform yields

Z
reg
j X =

ρn

Q

Q−1∑

q=0

e2πi
q

Q
j
Z

reg
(
s

(
ρe2πi

q

Q

))
X. (5.60)

So the computation of Zreg
j X requires Q multiplications of Zreg (s) by X. In fact, since

the temporal sequence is real, half of the multiplications in the inverse-Z transform
are actually required by taking advantage of the complex conjugation of the terms in
the sum

2ℜ
(
e2πi

q

Q
j
Z

reg
(
s

(
ρe2πi

q

Q

))
X
)
= e2πi

q

Q
j
Z

reg
(
s

(
ρe2πi

q

Q

))
X (5.61)

+ e2πi
Q−q

Q
j
Z

reg
(
s

(
ρe2πi

Q−q

Q

))
X.
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It can be read from (5.42) that the computation of Zreg (s)X involves multiplications
with the augmented projectors P̃Σ and P̃ΛH (these can actually be factorized out of the
Z-transform since they do not depend on z), and with the block diagonal matrices M̃,
M̃−1 and D̃. These multiplications all have a linear complexity O(Ns) as explained
before. Finally, there are also ive multiplications of Ts(D) or Th(D) by a vector.
Similarly to the multiplication with the projectors, a product in the form Ts(D)X
can be computed from p products in the form Ts(Dkk)x

k where Ts(Dkk) ∈ C
pNs×pNs

is the interaction matrix in the Laplace domain evaluated at the frequency Dkk, and
xk ∈ C

Ns (k ∈ [1, p]) are p vectors built from the elements of X ∈ C
pNs . From (5.58)

and (4.90), it results for all k ∈ [1, p] and m ∈ [1, Ns]

[Ts(D)X]p(m−1)+k = [Ts(Dkk)x
k]m. (5.62)

In other words, Ts(D)X can be computed with p multiplications of Ts(s) by a vector.
The Multi-Level Fast Multipole Method (MLFMM) [26, 27] is a fast algorithm for
these multiplications that has a complexity O(Nslog(Ns)). The same result holds for
Th.

To summarize, there are O((Niter+Nconv)Nt) computations in the form Z
reg
j X and

each costs O(QNslog(Ns)). So overall, the complexity of the solver is O(Q(Niter +
Nconv)NtNslog(Ns)) which is the dominant complexity.

Note that if the system is well-conditioned, the number of iterations Niter is likely
to be a low constant. Also, the number of interaction matrices Nconv required in the
convolution on the RHS of the MOT, as well as the number of terms Q required in
the computation of the inverse Z-transform in (4.38b) decrease with the frequency.

5.6 Numerical results
In these numerical results, the excitation ield Einc(r, t) is a modulated Gaussian
plane wave whose expression is

Einc(r, t) = p̂ exp
(
−τd(r, t)

2

2τ 2ch

)
cos (2πf0τd(r, t))E0 (5.63)

where

• k̂ is the direction of propagation,

• τd(r, t) = t− 1

c
k̂ · r is the delayed time (in s),

• p̂ is the polarization,

• E0 is the peak amplitude (in V/m),

• f0 is the central frequency (in Hz),

• τch is the characteristic time (in s) that depends on the frequency bandwidth
fbw as τch =

6

2πfbw
.
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k̂

r0

(a) Sphere mesh

r0

(b) Torus mesh

Figure 5.1: Meshes and positions of the current probe r0

As explained in the section 5.2.1, this incident ield is assumed to be 0 in the neigh-
bourhood of Γ for all t < t0. Note that this is equivalent to assume that the ield is
0 for all t < 0 with τd(r, t) = t− t0 −

1

c
k̂ · r.

For the computation of the RHS in the regularized formulation, two primitives of
Einc are needed (see section 5.4.2.2). They are given by the following expressions

E
prim
− (r, t) = p̂αℜ(erfc(−β(r, t))) (5.64a)

E
prim
+ (r, t) = −p̂αℜ(erfc(β(r, t))) (5.64b)

α =

√
π

2
τchexp

(
−2π2f 2

0 τ
2
ch
)
E0 (5.64c)

β(r, t) =
τd(r, t) + 2πif0τ

2
ch√

2τch
(5.64d)

where ℜ(erfc(·)) is the real part of the complementary error function. They verify

lim
t→−∞

E
prim
− (r, t) = 0 (5.65a)

lim
t→+∞

E
prim
+ (r, t) = 0. (5.65b)

Finally, a set of parameters have been kept constant in these simulations. The
excitation plane wave in (5.63) has an amplitude E0 = 1 V/m, a direction of propaga-
tion k̂ = −ẑ and a polarization p̂ = x̂. The IRK method used is the 3 stages Radau
IIA method whose Butcher tableau is in (4.45). For the computation of the inverse
Z-transform, Q = 32 and ρ = 1.1 have been used in the trapezoidal rules (4.38b).
The length parameter a that appears in the preconditioners (5.37) is set to 1 meter.

5.6.1 Results related to the DC instability
The igure 5.2 shows the current density on a unit sphere discretized with Ns = 1080
edges whose average length is h ≈ 0.20 m. The simulation is done on Nt = 500
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Figure 5.2: Surface current density on the unit sphere

time steps between t0 = −15τch and tNt = 30τch where τch = 79.6 ns (∆t = 7.16
ns). The central frequency is f0 = 10 MHz. The surface current density is computed
at the position r0 =(0.30 m, 0.95 m, 0.06 m) (see igure 5.1a). It is clear that the
regularized formulation yields the same result as the diferentiated PEC-EFIE but
it does not sufer from the DC instability. The DC instability is visible as a quasi
constant current in the late time steps. In fact, the DC current veriies the recurrence
relation in (5.34). Note that at some point, there is a saturation in the preconditioned
formulation. In fact, it can be explained the same way as the DC instability by
considering the eigenvalues of the companion matrix ZC (4.97). By noting |λmax| the
maximum absolute value of the eigenvalues of ZC, the current at the time step j is
roughly proportional to |λmax|j in the late time steps where the excitation ield has
vanished. For the diferentiated PEC-EFIE, |λmax| ≈ 1 so it results in an almost
constant current, and in the regularized formulation |λmax| < 1 so the current decays
exponentially.

To demonstrate the applicability of the technique to multiply connected geome-
tries, the second example in the igure 5.3 shows similar results for a torus whose
inner radius is 0.6 m, outer radius is 1 m, Ns = 1200 and the current probe is in
r0 =(0.89 m, 0.39 m, 0.04 m) (see igure 5.1b).

The DC instability can also be observed by plotting in the complex plane the
eigenvalues of the companion matrix ZC (4.97) (i.e. the polynomial eigenvalues). In
the igure 5.4, the polynomial eigenvalues associated to the matrices Z

der
i and Z

reg
i

(i ∈ [0, 17]) have been plotted for a unit sphere with the parameters Ns = 120,
Nconv = 17, ∆t = 7.16 ns (it is the same set of parameters used in the section 4.4). It
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Figure 5.3: Surface current density on a torus

is clear that there is a cluster of eigenvalues in 1 for the diferentiated PEC-EFIE (a
zoom of it is in the section 4.4 in the igure 4.4b) which results in the DC instability.
However, this cluster is removed in the regularized PEC-EFIE so it does not sufer
from the DC instability. The number of matrices used in the computation of the
polynomial eigenvalues is equal to Nconv +1 (Nconv matrices in the convolution of the
RHS plus the matrix on the LHS). In the igure 5.5, the norms of the matrices Zder

i and
Z

reg
i have been computed for i ∈ [1, Q]. It can be seen that

∥∥Zder
i

∥∥ and ‖Zreg
i ‖ decrease

exponentially with the index i in the sequence. In fact, after a certain index, the
matrices computed in the sequences are essentially wrong since their norms no longer
decrease. In the example of the igure 5.5, it corresponds to the index i = Nconv = 17.

5.6.2 Results related to the large time step breakdown
The large time step stabilization is veriied by showing that the condition number of
the system on the LHS of the MOT is stable when the time step ∆t increases. This is
represented in the igure 5.6, for the unit sphere (Ns = 1920, h ≈ 0.15 m). As it can
be observed, the condition number of the regularized system cond (Zreg

i ) tends to a
constant as ∆t → +∞ whereas the condition number of the diferentiated PEC-EFIE
system cond

(
Z

der
i

)
scales proportionally to ∆t2 as explained in the section 5.3.1.

143



5. Large time step and DC stable time domain PEC-EFIE discretized with implicit
Runge-Kutta methods

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Polynomial eigenvalues associated to (Zder
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Figure 5.4: Polynomial eigenvalues associated to the sequence of interaction matrices
in the diferentiated PEC-EFIE and the regularized PEC-EFIE
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Figure 5.5: Norm of the interaction matrices of the diferentiated PEC-EFIE and
regularized PEC-EFIE
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Runge-Kutta methods

5.7 Conclusion and future work
This chapter introduced a time domain PEC-EFIE that is stable for large time steps
and does not sufer from the DC instability. The quasi-Helmholtz projectors are
leveraged to obtain the regularized formulation. The projectors enables the solenoidal
and non-solenoidal components to be separated and rescaled independently in the
Laplace domain, which yields a stable system. Then, it has been shown that the
use of the projectors is fully compatible with the IRK convolution quadrature and
existing fast solvers.

Future works related to this formulation include the following topics

• Dense mesh breakdown. The formulation can be further regularized for the
dense mesh breakdown by applying a Calderón preconditioning on top of the
regularized MOT scheme (5.54). In fact, it was deliberately not included in
this chapter to make it more concise. Essentially the goal of this chapter was
to introduce the quasi-Helmholtz projectors in the IRK convolution quadrature
scheme. The dense mesh stabilization is in fact simpler than the large time step
stabilization because it is only a left preconditioner while the regularization
presented in this chapter also requires a right preconditioner.

• Small time steps (high frequency). It must be noted that the procedure de-
scribed in this chapter is efective because, the number of interaction matrices
in the convolution Nconv on the RHS of the MOT and the number of subintervals
Q required in the computation of the inverse Z-transform (4.38b) actually de-
crease as the time step ∆t increases. Conversely, Nconv and Q efectively increase
when the time step ∆t decreases, and therefore at high frequency a strategy
compatible with e.g. the Plane Wave Time Domain (PWTD) algorithm [44,
45] should be investigated.

• PEC-CFIE. A combination of the proposed PEC-EFIE formulation with its
PEC-MFIE anologue results in a PEC-CFIE whose properties will be inves-
tigated. It is expected to improve the stability of the formulation at high
frequency by removing the spurious resonances.

• IBC-EFIE. Since the quasi-Helmholtz projectors have been proven compatible
with the PEC-EFIE, a time domain analogue of the IBC-EFIE presented in
the chapter 2 is accessible. In the next chapter, a large time step and dense
mesh stable IBC-EFIE is presented. The fact that the projectors with the IRK
convolution quadrature have been introduced in this chapter will enable to focus
on issues more speciic to the IBC-EFIE.
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Chapter 6

Large time step and dense mesh
stable time domain IBC-EFIE

In this chapter, a formulation for the Impedance Boundary Condition - Electric Field
Integral Equation (IBC-EFIE) is constructed in the time domain. The spacial dis-
cretization of the currents is achieved with a mixed discretization using Rao-Wilton-
Glisson (RWG) functions for the electric current and Bufa-Christiansen (BC) func-
tions for the magnetic current. The temporal discretization is achieved with a con-
volution quadrature based on Implicit Runge-Kutta (IRK) methods. First, contrary
to the PEC-EFIE, the IBC-EFIE operator is lossy so the norm of the interaction
matrices in the MOT does not decay exponentially fast, and therefore all the terms
in the convolution on the RHS of the MOT should be computed to keep track of the
losses. It is shown in this chapter how to take advantage of the lossless PEC-EFIE
and PEC-MFIE operators that appear in the IBC-EFIE to eiciently compute the
RHS of the MOT. And second, at each time step, the system to solve in the MOT is
ill-conditioned as it sufers from the large time step and the dense mesh breakdowns.
By taking advantage of the preconditioners developed in the chapter 2 in addition to
the introduction of the quasi-Helmholtz projectors in the IRK convolution quadrature
in the chapter 5, a stable MOT is constructed for the time domain IBC-EFIE.

6.1 Introduction
The time domain PEC-EFIE enables the analysis of a transient scattering by an ob-
ject when there are no losses. As it as been explained in the sections 1.4 and 2.1,
the Impedance Boundary Conditions (IBC) are widespread in the frequency domain
to simulate a wide range of lossy scatterers. Indeed, in the frequency domain the
impedance zimp is usually a simple multiplicative factor, even when the impedance
depends on the frequency. However, it is more complicated in the time domain. In
general, the product with a frequency dependent impedance becomes a convolution
with the impedance that is a time dependent operator when the problem is trans-
formed into the time domain. Therefore, the impedance in the time domain usually
involves several orders of higher derivatives of the ields [71]. In fact, the model for
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6. Large time step and dense mesh stable time domain IBC-EFIE

the impedances in the time domain are usually obtained by inverse transforming the
frequency or Laplace domain representation of the impedance into the time domain.
If a diferent model for the impedance is chosen in the frequency domain, the corre-
sponding time domain formulation is likely to change signiicantly. As it has been
explained in the section 4.3 and illustrated in the previous chapter, the convolution
quadrature do not require the expression of the convolution kernel in the time domain
but its expression in the Laplace domain. In particular, this feature is used in this
chapter to build a formulation for the IBC in the time domain by avoiding the need
of an explicit expression for the time dependent impedance.

There exist various formulations that solve the IBC in the time domain in the
context of the Boundary Element Method (BEM) [72–74]. A time discretization
using convolution quadrature has been applied recently to IBC in acoustics [75, 76],
but so far it seems that it has not been applied to IBC in electromagnetics. In this
chapter, a formulation for the time domain IBC-EFIE is presented.

Furthermore, since the IBC introduces losses, it will be shown that a straightfor-
ward time discretization of the IBC-EFIE operator results in a MOT that involves a
sequence of interaction matrices whose norms do not decay exponentially. Therefore,
it requires the computation of all the terms in the convolution on the RHS of the
MOT, which is prohibitively expensive computationally (O (N2

t )) if the number of
time steps is large. Consequently, the irst objective in this chapter is to reformulate
the MOT of the IBC-EFIE to take advantage of the PEC-EFIE and PEC-MFIE op-
erators that are present in the IBC-EFIE and whose sequences of interaction matrices
in the time domain decay exponentially.

In addition, it is shown that the system to solve in the MOT is ill-conditioned
for large time step and dense meshes. In fact, they are the analogous low frequency
breakdown and dense mesh breakdown of the IBC-EFIE in the frequency domain
that were addressed in the chapter 2. Thus, it is investigated how the preconditioner
introduced in the chapter 2 can be used in the time domain. In particular, it makes
use of quasi-Helmholtz projectors, whose compatibility with the IRK convolution
quadrature has been demonstrated in the previous chapter.

This chapter is subdivided in four sections. First, the background and notations
are introduced, in particular the mixed discretization in space and the IRK convolu-
tion quadrature for the discretization in time are recalled. Then, the construction of
an eicient MOT is explained. Next, a preconditioner is built for the time domain
IBC-EFIE based on the work of the chapters 2 (frequency domain IBC-EFIE) and 5
(time domain PEC-EFIE). Finally, numerical results are presented.

6.2 Background and notations
6.2.1 Integral equations in the time and Laplace domains
The goal is to solve the following boundary problem. An object with a boundary
Γ is placed in a background medium whose permittivity is ε, permeability is µ and
characteristic impedance is η =

√
µ/ε. An incident ield Einc (r, t) induces the equiv-
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6.2. Background and notations

alent surface electric current density J s (r, t) and surface magnetic current density
M s (r, t) on Γ that verify the Electric Field Integral Equation (EFIE) (see (4.14a))

ηT J s (r, t) +

(I
2
−K

)
M s (r, t) = −n̂ (r)×Einc (r, t) (6.1)

where the time domain surface integral operators T , K and I are deined in (4.15),
and n̂ is the normal to Γ. For all t < t0, the ields are assumed to vanish in the
neighbourhood of Γ.

In the Laplace domain, it is assumed that the currents J s(r, s) and M s(r, s)
verify the following Leontovich Impedance Boundary Condition (IBC)

M s(r, s) = −zimp(s)n̂ (r)× J s(r, s) (6.2)

where zimp(s) is the impedance in the Laplace domain. The corresponding relation
in the time domain is a convolution in the form

M s(r, t) = −
ˆ t

u=0

L−1(zimp)(u)n̂ (r)× J s(r, t− u)du. (6.3)

The time domain equation is discretized with the IRK convolution quadrature follow-
ing the procedure described in section 4.3. So the equation must be expressed in the
Laplace domain and discretized in space, then the Laplace variable s is substituted
by a matrix valued s(z) to represent the Z-transform of the discrete time domain
equation, and inally an inverse Z-transform yields a fully discretized system.

In the Laplace domain, the EFIE has an operatorial form that is similar to the
one in the time domain

ηT J s (r, s) +

(I
2
−K

)
M s (r, s) = −n̂ (r)×Einc (r, s) (6.4)

where the Laplace domain integral operators T and K are deined in (4.83).

6.2.2 Spacial discretization
The boundary Γ is discretized into a mesh that contains Nf triangular faces, Nv
vertices and Ns edges. The electric current density is discretized with the RWG basis
functions (fn)

Ns
n=1 (deined in section 1.3.3.1), so

J s (r, s) ≈
Ns∑

n=1

[J(s)]nfn (r) (6.5)

where J(s) ∈ C
Ns is a vector of coeicients that represents the electric current density

in the RWG basis. The magnetic current density is discretized with the BC basis
functions (gn)

Ns
n=1 (deined in section 1.3.3.2), so

M s (r, s) ≈
Ns∑

n=1

[M(s)]ngn (r) (6.6)
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6. Large time step and dense mesh stable time domain IBC-EFIE

where M(s) ∈ C
Ns is a vector of coeicients that represents the magnetic current

density in the BC basis.
Both the EFIE (6.4) and the IBC (6.2) are tested with rotated RWG basis func-

tions n̂× fm for each m ∈ [1, Ns]. This efectively results in a conforming system of
2Ns equations

ηT(s)J(s) +

(
1

2
Gm −K(s)

)
M(s) = E(s) (6.7a)

GmM(s) = −zimp(s)GJ(s) (6.7b)

whose 2Ns unknowns are the coeicients of J(s) and M(s). The MoM matrices and
vectors elements are deined by the inner products

[T(s)]mn = 〈n̂× fm, T fn (s)〉 (6.8a)
[K(s)]mn = 〈n̂× fm,Kgn (s)〉 (6.8b)
[Gm]mn = 〈n̂× fm, gn〉 (6.8c)
[G]mn = 〈fm,fn〉 (6.8d)
[E]m = −

〈
fm,E

inc (s)
〉

(6.8e)

that can be computed as described in the appendix A. Finally, the IBC-EFIE system
matrix in the Laplace domain, which is obtained by substituting M(s) in (6.7a), is
noted S(s) and deined as

S(s) = ηT(s)− zimp(s)

(
1

2
Gm −K(s)

)
G

−1
m G. (6.9)

6.2.3 Time discretization
The time discretization is achieved with a convolution quadrature based on Implicit
Runge-Kutta (IRK) methods as described in the section 4.3. Hence, the Laplace
variable s is irst substituted by a matrix valued s(z) using an IRK method which
yields a system in the Z-domain. Then, an inverse Z-transform is used to obtain a
system in the discrete time domain. The Butcher Tableau [46]

c A

bT
(6.10)

describes the p stages IRK method to be used in the discretization. The simulation
is divided into Nt time steps, each with a duration ∆t, starting from t0. The time
step i starts at the time ti = t0 + i∆t.

6.2.3.1 Discretization of the vectors

The discretizations of the vectors E, J and M are given in the time domain as they
are evaluated at each time step i ∈ [0, Nt] and each stage k ∈ [1, p] at the time
t = ti + ck∆t.
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6.2. Background and notations

According to (4.75a), the currents J s and M s are discretized in time by (Ji)
Nt
i=0

and (Mi)
Nt
i=0 that are the sequences of vectors in R

pNs that verify

J s (r, ti + ck∆t) ≈
Ns∑

n=1

[Ji]k+(n−1)pfn (r) (6.11a)

M s (r, ti + ck∆t) ≈
Ns∑

n=1

[Mi]k+(n−1)pgn (r) . (6.11b)

These sequences (Ji)i and (Mi)i are the unknowns of the problem that need to be
found.

Similarly, according to (4.76), the excitation vector is discretized as a sequence
(Ei)

Nt
i=0 computed as

[Ei]k+(m−1)p = −
〈
fm,E

inc(ti + ck∆t)
〉

(6.12a)

= −
¨

r∈Γ

fm(r) ·Einc (r, ti + ck∆t) dS. (6.12b)

6.2.3.2 Discretization of the operators

The discretization of the operators in (6.7) is achieved with the substitution of the
Laplace variable s by the matrix valued s(z) (4.55) that is function of the Z-domain
variable z and that reads

s(z) =
1

∆t

(
A+

1bT

z − 1

)−1

. (6.13)

There are three types of quantities in (6.7) that transform diferently with the sub-
stitution of s by s:

• The constant matrices Gm and G. As explained in the section 4.3.5.3, they are
augmented using a Kronecker product with the p× p identity matrix Ip. They
are noted

G̃m = Gm ⊗ Ip (6.14a)
G̃ = G⊗ Ip. (6.14b)

• The s dependent scalar impedance zimp(s). It transforms into zimp(s(z)) ∈ C
p×p.

In fact, as explained in the section 4.3.5.3, the product of a scalar zimp(s)
by a vector or a matrix is element-wise, so the product of a matrix valued
zimp(s(z)) must be made block-wise. The block-wise multiplication by zimp(s(z))
is obtained with a block diagonal matrix z̃imp(s(z)) deined as

z̃
imp(s(z)) = I⊗ zimp(s(z)). (6.15)

• The interaction matrices T(s) and K(s). They transform into the matrices
T(s(z)) and K(s(z)) as explained in the section 4.3.5.2.
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6. Large time step and dense mesh stable time domain IBC-EFIE

The z dependent quantities are transformed into sequences in the discrete time domain
using the inverse Z-transform. The sequence of interaction matrices (Ti)i and (Ki)i
are deined as

Ti = Z−1(T(s))i (6.16a)
Ki = Z−1(K(s))i. (6.16b)

The impedance z̃imp(s(z)) is also transformed into a sequence (z̃imp
i )i deined as

z̃
imp
i = Z−1(z̃imp(s))i (6.17a)

= I⊗Z−1(zimp(s))i (6.17b)
= I⊗ z

imp
i (6.17c)

z
imp
i = Z−1(zimp(s))i. (6.17d)

Similarly, to the impedance, s is a scalar so the same kind of transformation applies.
Using identical notations, the following sequence is deined

s̃i = Z−1(̃s)i (6.18a)
= I⊗Z−1(s)i (6.18b)

=
1

∆t

(
Ã

−1δi,0 − Ã
−11̃b̃TÃ−1δi−1,0

)
(6.18c)

where Ã−1 = I ⊗ A
−1 and 1̃b̃T = I ⊗ 1bT. Note that (6.18c) is obtained with the

L-stability of the IRK methods that implies (5.29). Therefore,

s̃0 =
1

∆t
Ã

−1 (6.19a)

s̃1 = − 1

∆t
Ã

−11̃b̃TÃ−1. (6.19b)

6.2.3.3 Discretization of the equations

Each product in the Laplace domain is transformed into a convolution in the time
domain that is discretized with the IRK convolution quadrature as explained in the
section 4.3.4. Using the previous deinitions and notations, the fully discretized time
domain equations that correspond to the space discretized Laplace domain equations
in (6.7) are for each time step i

η

i∑

j=0

TjJi−j +
1

2
G̃mMi −

i∑

j=0

KjMi−j = Ei (6.20a)

G̃mMi = −G̃

i∑

j=0

z̃
imp
j Ji−j. (6.20b)

As it is explained in the previous chapters, the time domain EFIE is usually time
diferentiated to be solved eiciently. This enables the norms of the interaction ma-
trices that discretize the operator ∂

∂t
T to decay exponentially. Otherwise, the norms

152
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of the matrices Tj do not decay because of the time integration of the hypersingular
part of the operator T . A time derivative corresponds to a multiplication by s in the
Laplace domain, so the sequences of interaction matrices that discretize the operators
∂
∂t
T and ∂

∂t
K are

T
der
i = Z−1(̃sT(s))i (6.21a)

K
der
i = Z−1(̃sK(s))i. (6.21b)

Also, the sequence of excitation vectors in the diferentiated EFIE, noted (Eder
i )i, is

computed similarly to (Ei)i (6.12) but using the time derivative of the incident ield,
such that

[Eder
i ]k+(m−1)p = −

〈
fm,

∂Einc

∂t
(ti + ck∆t)

〉
. (6.22)

Then, the discretization of the diferentiated IBC-EFIE is

η

i∑

j=0

T
der
j Ji−j +

i∑

j=0

(
1

2
G̃ms̃j −K

der
j

)
Mi−j = Eder

i (6.23a)

G̃mMi = −G̃

i∑

j=0

z̃
imp
j Ji−j. (6.23b)

6.3 Solution of the time diferentiated IBC-EFIE
In this section the solution of the (non-preconditioned) time diferentiated IBC-EFIE
is explained. In a irst part it is explained why an eicient Marching-On-in-Time
(MOT) scheme cannot be obtained straightforwardly from (6.20) or (6.23) as it leads
to lossy interaction matrices. Consequently, that results in convolutions on the RHS
that require the computation of all of their terms. In a second part, a method is
proposed to modify the MOT by taking advantage of the lossless PEC-EFIE and
PEC-MFIE convolution kernels that are decaying exponentially fast. Therefore, they
only require the computation of a ixed number of terms in the convolutions on the
RHS. The third part details the computation of the auxiliary variable current that
is introduced in the second part. In fact, this technique using an auxiliary variable
to compute the MOT eiciently is important to understand in the case of the non-
preconditioned IBC-EFIE because itis further used in the preconditioned version of
the equation.

6.3.1 Overview of the problems
To obtain a MOT scheme from (6.20) or (6.23), two approaches can be immediately
thought of. The irst approach is to use both Ji and Mi as unknowns at the time
step i. And the second approach is to use the IBC to substitute Mi in the EFIE and
solve for Ji. Once Ji is known, Mi is computed using the IBC. This is actually similar
to what is done in the frequency domain (see chapter 2). Unfortunately, these two
approaches result in solvers that have a quadratic complexity in space or time as it
is explained in the following sections.
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6.3.1.1 Solving for the two currents simultaneously

In this section the MOT is built to be solved for a sequence of vectors containing
both Ji and Mi at the time step i. So the two currents are solved simultaneously. The
system (6.23) is rewritten in a block form as
(
ηTder

0
1
2
G̃ms̃0 −K

der
0

G̃z̃
imp
0 G̃m

)(
Ji
Mi

)
=

(
Eder
i

0

)
−

i∑

j=1

(
ηTder

j
1
2
G̃ms̃j −K

der
j

G̃z̃
imp
j 0

)(
Ji−j

Mi−j

)

(6.24)
In general, the norm of the matrices z̃

imp
j do not decay fast enough because of the

losses due to the impedance. So at the time step i, there are i terms in the convolution
on the RHS that must be computed. So with Nt times steps in total, it requires O(N2

t )
matrix-vector products, which is unsatisfactory. There are MOT algorithms for lossy
medium to reduce the number of products to O(Ntlog(Nt)

2) using a Fast Fourier
Transform (FFT) based convolution, for example [77], but in general it also prevents
from using fast matrix-vector multiplications so the complexity remains proportional
to N2

s which is also unwanted.

6.3.1.2 Substitution of the magnetic current

Similarly to what is done in the frequency domain in the chapters 2 and 3, the
magnetic current can be substituted in the EFIE by inserting the IBC (6.23b) into
(6.23a). Doing so results in

Mi = −G̃
−1
m G̃

i∑

j=0

z̃
imp
j Ji−j (6.25a)

Eder
i = η

i∑

j=0

T
der
j Ji−j −

i∑

j=0

(
1

2
G̃ms̃j −K

der
j

)
G̃

−1
m G̃

i−j∑

k=0

z̃
imp
k Ji−j−k (6.25b)

=
i∑

j=0

(
ηTder

j −
j∑

k=0

(
1

2
G̃ms̃k −K

der
k

)
z̃

imp
j−kG̃

−1
m G̃

)
Ji−j. (6.25c)

Therefore, the MOT scheme is

S
der
0 Ji = Eder

i −
i∑

j=1

(
ηTder

j −
j∑

k=0

(
1

2
G̃ms̃k −K

der
k

)
z̃

imp
j−kG̃

−1
m G̃

)
Ji−j (6.26)

where

S
der
0 = ηTder

0 −
(
1

2
G̃ms̃0 −K

der
0

)
z̃

imp
0 G̃

−1
m G̃ (6.27a)

= Z−1( s̃S(s))0. (6.27b)

Again, the convolution on the RHS involves a sequence of matrices whose norms decay
slowly in general due to the impedance. Therefore, all the terms must be computed.
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6.3.2 Marching-on-in-time
It has been explained in the previous sections that the MOT schemes in which the
impedance appears in the convolutions cannot take advantage of the exponentially
decaying sequences (Tder

j )j and (Kder
j )j. The goal in this section is to rewrite the

MOT scheme without the impedance in the convolution on the RHS. This is done
by keeping the magnetic current for the computation of the RHS. Therefore, at the
time step i, it is assumed that the unknowns Jj and Mj are known for all j < i. In
addition, an auxiliary variable is needed, it is noted M′

i and deined as

M′
i = −G̃

−1
m G̃

i∑

j=1

z̃
imp
j Ji−j (6.28a)

= Mi + G̃
−1
m G̃z̃

imp
0 Ji. (6.28b)

It is clear from its deinition (6.28a) that M′
i depends on all the Jj for j < i. Therefore,

it can be computed at the time step i. Then, (6.23a) is rewritten as

Eder
i = η

i∑

j=0

T
der
j Ji−j +

i∑

j=0

(
1

2
G̃ms̃j −K

der
j

)
Mi−j (6.29a)

= η
i∑

j=0

T
der
j Ji−j +

i∑

j=1

(
1

2
G̃ms̃j −K

der
j

)
Mi−j +

(
1

2
G̃ms̃0 −K

der
0

)
Mi (6.29b)

= η
i∑

j=1

T
der
j Ji−j +

i∑

j=1

(
1

2
G̃ms̃j −K

der
j

)
Mi−j +

(
1

2
G̃ms̃0 −K

der
0

)
M′

i + S
der
0 Ji.

(6.29c)

So the process of solving the MOT at the time step i is the following:

1. M′
i is irst computed using (6.28a).

2. Then, Ji is computed by solving the system

S
der
0 Ji = Eder

i − η
i∑

j=1

T
der
j Ji−j −

i∑

j=1

(
1

2
G̃ms̃j −K

der
j

)
Mi−j −

(
1

2
G̃ms̃0 −K

der
0

)
M′

i.

(6.30)

3. Finally, when Ji is known, Mi is computed using

Mi = M′
i − G̃

−1
m G̃z̃

imp
0 Ji. (6.31)

It is clear from (6.30) that the interaction matrices in the convolutions are the same
as the diferentiated PEC-EFIE and PEC-MFIE (they are present in the PEC-CFIE
[68]). Therefore, they can be computed eiciently (the number of terms in the con-
volution can be truncated to a constant Nconv). It only remains to explain how M′

i is
computed at each time step.
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6.3.3 Computation of the auxiliary current
To make the notations simpler, the following matrix is used

Zi = −G̃
−1
m G̃z̃

imp
i (6.32)

such that

M′
i =

i∑

j=1

ZjJi−j (6.33a)

= Mi − Z0Ji. (6.33b)

Naively, the computation of M′
i requires i products for each i ∈ [1, Nt] and each prod-

uct has a complexity O(Ns). So overall the computational complexity is O(NsN
2
t ).

Fortunately, there is a fast way of computing M′
i that avoids the quadratic cost.

The goal is to ind a fast algorithm to compute (6.33a) when Jj is known for
each j < i (Ji is not known) and Zi is known for all i. In fact, since the matrix Zi

corresponds to a lossy interaction, the algorithm described in [77] can be applied as
described in the following. The convolution is irst rewritten as a block matrix-vector
product 



0

Z1 0

Z2 Z1 0 (0)
Z3 Z2 Z1 0

Z4 Z3 Z2 Z1 0

Z5 Z4 Z3 Z2 Z1 0

Z6 Z5 Z4 Z3 Z2 Z1 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 0

... . . .







J0
J1
J2
J3
J4
J5
J6
J7
...




=




M′
0

M′
1

M′
2

M′
3

M′
4

M′
5

M′
6

M′
7

...




(6.34)

The blocks in this matrix are Toeplitz matrices. Any, N ×N Toeplitz matrix can be
multiplied by a vector in O(N log(N)) operations using an FFT instead of the usual
O(N2) cost of a matrix-vector product. The N ×N Toeplitz blocks are stored as the
2N eigenvalues of the corresponding circulant matrix of size 2N × 2N .

Because of their particular forms, the matrices Zi can be factored as a constant
matrix part G̃−1

m G̃ and a time dependent impedance z
imp
i ∈ C

p×p so that only the
impedances should be computed and stored as eigenvalues. The constant matrix part
that is G̃−1

m G̃ is not stored directly. Instead, the sparse matrices G and Gm are stored
and their product by a vector is computed in a O(Ns) complexity.

In one Toeplitz block, there are at O(Nt) impedances that are transformed into
(and stored as) the eigenvalues of the corresponding circulant matrix in O(Ntlog(Nt))
operations using an FFT. Since there are O(log(Nt)) diferent blocks, the overall setup
costs O(Ntlog(Nt)

2).
There are overall O(Ntlog(Nt)) element-wise multiplications between the eigenval-

ues and the Fourier-transformed vectors and each cost O(Ns), so overall the elements
multiplications cost O(NsNtlog(Nt)).
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Finally, at each time step i, the block that contains the element Z1 is multi-
plied by the corresponding block vector and added to the result. This operation
completes the computation of M′

i needed at the time step i, and it also partially com-
putes the sums for the next elements. Overall, the FFTs and inverse FFTs require
O(NsNtlog(NsNt)log(Nt)) operations, which is the dominant cost.

6.4 Preconditioning of the time domain IBC-EFIE
6.4.1 Overview of the problems
The matrix S

der
0 on the LHS of (6.30) is ill-conditioned. Using the results from

the low frequency breakdown analysis of the IBC-EFIE that is done in the section
2.3.3, an analysis similar to the one done in the section 5.3.1 for the large time step
breakdown of the PEC-EFIE can be done for the IBC-EFIE. The condition number
of the system in (6.30) increases proportionally to the time step ∆t (assuming a non-
zero impedance) which is the large time step breakdown. The condition number is
also proportional to the inverse of the mesh edge length h (see section 2.3.4) which
is the dense mesh breakdown.

In the chapter 2, a low frequency and dense mesh stable preconditioner is con-
structed for the IBC-EFIE. Using the same preconditioning strategy, it suggests the
use of the following left and right preconditioners in the Laplace domain to solve the
low frequency breakdown (see (2.36) and (2.37))

L(s) =
c

sa
P

ΛH + P
Σ (6.35a)

R(s) =
sa
c

sa
c
+ zimp(s)

η

P
ΛH +

sa

c
P

Σ (6.35b)

where a is a length that is chosen to be the diameter of Γ. On top of it, a Calderón-
like preconditioning is used to solve the dense mesh breakdown (see (2.46)). So, in
the Laplace domain a similar preconditioner is used,

T̃(s) =
1

a
P

ΣH
Ts(s)P

ΣH + P
Λ (6.36)

where Ts(s) is the discretization of the operator T with BC basis functions i.e. its
elements are [Ts(s)]mn = 〈n̂× gm, T gn(s)〉.

Inserting the IBC (6.7b) in the EFIE (6.7a) results in the following IBC-EFIE
system

S(s)J(s) = E(s) (6.37)
where S(s) is deined in (6.9). This system is preconditioned as

T̃(s)G−1
m L(s)S(s)R(s)Y(s) = T̃(s)G−1

m V(s) (6.38)

157



6. Large time step and dense mesh stable time domain IBC-EFIE

where the original unknown current J(s) was replaced by the auxiliary unknown Y(s)
and the RHS E(s) was replaced by V(s) that are deined by the relations

R(s)Y(s) = J(s) (6.39a)
V(s) = L(s)E(s). (6.39b)

The challenging part is due to the preconditioner that solves the large time step (low
frequency) breakdown. Especially, the right preconditioner (R) and the change of
unknown (Y instead of J) complicate the MOT:

• The preconditioning in the frequency or Laplace domains only takes the electric
current J into account since the magnetic current M is substituted into the EFIE
(the IBC-EFIE operator S acts only on J). However, as it is explained in the
previous section, in the case of IBC in the time domain, the magnetic current
must be kept in order to avoid the impedance on the RHS. The corresponding
variables were Mi and M′

i.

• The preconditioner R also has an impedance appearing in its expression. So
this impedance must also be taken away from the RHS using new auxiliary
variables that have roles similar to Mi and M′

i. These new auxiliary variables
are introduced later as Wi and its corresponding W′

i.

• The preconditioning involves a change of unknown as the system is now solved
for Y instead of J. So, the electric current Ji also has an auxiliary variable J′i.

The preconditioner for the dense mesh breakdown is purely multiplicative so it does
not introduce complications in the formulation.

6.4.2 Large time step stabilization
6.4.2.1 Left hand side

The low frequency stable matrix in the Laplace domain is named S
stab such that

S
stab(s) = L(s)S(s)R(s). In addition, two scalar variables (no units) are introduced

to simplify the expressions in the following

α(s) =
sa
c

sa
c
+ zimp(s)

η

(6.40a)

β(s) =

zimp(s)
η

sa
c
+ zimp(s)

η

. (6.40b)

Finally, T(s) is rewritten as the sum of its two parts

T(s) = −s

c
Ts(s) +

c

s
Th(s) (6.41a)

[Ts(s)]mn = 〈n̂× fm, Tsfn(s)〉 (6.41b)
[Th(s)]mn = 〈n̂× fm, Thfn(s)〉 . (6.41c)
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Then, the expansion of the product that deines S
stab(s) is

S
stab(s) = L(s)S(s)R(s) (6.42a)

= ηPΛH

(
−α(s)

1

a
Ts(s)− β(s)

(
1

2
Gm −K(s)

)
G

−1
m G

)
P

ΛH

+ ηPΛH

(
−s

c
Ts(s)−

zimp(s)

η

(
1

2
Gm −K(s)

)
G

−1
m G

)
P

Σ (6.42b)

+ ηPΣ

(
−α(s)

s

c
Ts(s)− β(s)

sa

c

(
1

2
Gm −K(s)

)
G

−1
m G

)
P

ΛH

+ ηPΣ

(
−s2a

c2
Ts(s) + aTh(s)−

zimp(s)

η

sa

c

(
1

2
Gm −K(s)

)
G

−1
m G

)
P

Σ.

This expansion of S
stab(s) is useful for the computation of the LHS in an iterative

solver. As it is done for zimp(s) in (6.17), the s dependent scalars α(s), β(s) and s
are transformed into the discrete time domain, resulting in the sequences of block
diagonal matrices

z̃
imp
i = I⊗Z−1(zimp(s))i (6.43a)
α̃i = I⊗Z−1(α(s))i (6.43b)
β̃i = I⊗Z−1(β(s))i (6.43c)
s̃i = I⊗Z−1(s)i. (6.43d)

Similarly to the sequences (Ti)i and (Ki)i deined in (6.16), the sequences associated
to the operators Ts and Th are

Tsi = Z−1(Ts(s))i (6.44a)
Thi = Z−1(Th(s))i. (6.44b)

And inally, the projectors are independent of s so they are transformed like Gm or G
in (6.14), using a Kronecker product with the p × p identity Ip to take into account
the p stages

P̃
ΛH = P

ΛH ⊗ Ip (6.45a)
P̃

Σ = P
Σ ⊗ Ip. (6.45b)
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With the above notations, the matrix S
stab
0 that appears on the LHS of the stable

MOT is

S
stab
0 = Z−1(Sstab(s))0 (6.46a)

= ηP̃ΛH

(
−α̃0

1

a
Ts0 − β̃0

(
1

2
G̃m −K0

)
G̃

−1
m G̃

)
P̃

ΛH

+ ηP̃ΛH

(
− s̃0

c
Ts0 −

z̃
imp
0

η

(
1

2
G̃m −K0

)
G̃

−1
m G̃

)
P̃

Σ (6.46b)

+ ηP̃Σ

(
−α̃0

s̃0

c
Ts0 − β̃0

s̃0a

c

(
1

2
G̃m −K0

)
G̃

−1
m G̃

)
P̃

ΛH

+ ηP̃Σ

(
− s̃20a

c2
Ts0 + aTh0 −

z̃
imp
0

η

s̃0a

c

(
1

2
G̃m −K0

)
G̃

−1
m G̃

)
P̃

Σ.

By taking into account the remarks done in the previous chapter in the section 5.5,
each matrix with a tilde in this expression can be multiplied by a vector in a O(Ns)
complexity, and the matrices without tilde are computed with a O(QNslog(Ns)) com-
plexity if a fast solver is used. Therefore, the multiplication of Sstab

0 by a vector can
be done in a O(QNslog(Ns)) complexity.

6.4.2.2 Right hand side

The preconditioned excitation vector (6.39b) is discretized the same way as in the
previous chapter as

Vi =
c

a
P̃

ΛHE
prim
i + P̃

ΣEi (6.47)

where (Eprim
i )i is a sequence that discretize a primitive of the incident plane wave

Eprim such that ∂Eprim

∂t
= Einc. It can be computed analytically as explained in the

section 5.4.2.2 or numerically as explained in the section 5.4.2.3.
To build an eicient MOT, the product Sstab(s)Y(s) is rewritten such that zimp(s)

and 1/s do not appear in the expression. Indeed, the presence of these terms in the
time domain results in non-exponentially decaying sequences in the convolutions on
the RHS, which in turn implies an number of terms to compute that is not bounded in
these convolutions. To achieve the removal of zimp(s) and 1/s, the following variable
is introduced

W(s) =
c

sa
M(s) (6.48a)

= − c

sa
zimp(s)G−1

m GJ(s) (6.48b)

= −ηβ(s)G−1
m GP

ΛHY(s)− zimp(s)G−1
m GP

ΣY(s). (6.48c)
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Then, Sstab(s)Y(s) is rewritten as

S
stab(s)Y(s) = L(s)S(s)R(s)Y(s) (6.49a)

=
( c

sa
P

ΛH + P
Σ
)(

−η
s

c
Ts(s)

)
J(s) + ηaTh(s)Y(s) (6.49b)

+
( c

sa
P

ΛH + P
Σ
)(1

2
Gm −K(s)

)
M(s)

= −η
1

a
P

ΛH
Ts(s)J(s)− η

s

c
P

Σ
Ts(s)J(s) + ηaTh(s)Y(s) (6.49c)

+ P
ΛH

(
1

2
Gm −K(s)

)
W(s) + P

Σ

(
1

2
Gm −K(s)

)
M(s).

At this point, the strategy to write the MOT is similar to what is done in the section
(6.3.2), in the sense that without preconditioning, the unknown is Ji and the auxiliary
variable is the magnetic current Mi and its corresponding M′

i. With the precondition-
ing, the unknown is Yi and there are 3 auxiliary variables Ji, Mi, Wi each with their
corresponding J′i, M′

i, W′
i that are updated using the method described in the section

6.3.3. This is summarized in the table 6.1. There are the following equations to
update the auxiliary variables Ji, Mi, Wi when Yi has been solved at the time step i

Ji = J′i +

(
α̃0P̃

ΛH +
s̃0a

c
P̃

Σ

)
Yi (6.50a)

Mi = M′
i − G̃

−1
m G̃z̃

imp
0 Ji (6.50b)

Wi = W′
i −
(
ηβ̃0G̃

−1
m G̃P̃

ΛH + z̃
imp
0 G̃

−1
m G̃P̃

Σ
)
Yi (6.50c)

where the primed quantities are

J′i = P̃
ΛH

i∑

j=1

α̃jYi−j + P̃
Σ

i∑

j=1

s̃ja

c
Yi−j (6.51a)

M′
i = −G̃

−1
m G̃

i∑

j=1

z̃
imp
j Ji−j (6.51b)

W′
i = −ηG̃−1

m G̃P̃
ΛH

i∑

j=1

β̃jYi−j − G̃
−1
m G̃P̃

Σ

i∑

j=1

z̃
imp
j Yi−j. (6.51c)

Again, each of the above convolutions involving α̃j, β̃j or z̃imp
j is computed using the

technique described in 6.3.3. The convolution involving s̃j is in fact a single term
according to (6.18c).

Also, the sequence of matrices (Ts
der
i )i is deined similarly to (6.21) as

Ts
der
i = Z−1(̃sTs(s))i. (6.52)

The equation S
stab(s)Y(s) = V(s) is discretized using the expression (6.49c). The

MOT scheme is obtained by isolating Yi on the LHS of the equation that is S
stab
0 Yi.
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Formulation Unknown Auxiliary variables
Diferentiated IBC-EFIE Ji Mi, M′

i

Preconditioned IBC-EFIE Yi Ji, J′i, Mi, M′
i, Wi, W′

i

Figure 6.1: Unknowns solved by the MOT and auxiliary variables used for the compu-
tation of the RHS of the diferentiated (non-preconditioned) and the preconditioned
IBC-EFIEs

The RHS noted Vstab
i is written such that all the convolutions have products involving

exponentially decaying sequences of matrices. The MOT reads for each time step i

S
stab
0 Yi = Vstab

i (6.53)

where S
stab
0 is deined in (6.46), and the RHS is

Vstab
i = Vi +

η

a
P̃

ΛH

i∑

j=1

TsjJi−j +
η

c
P̃

Σ

i∑

j=1

Ts
der
j Ji−j − ηa

i∑

j=1

ThjYi−j (6.54a)

+ P̃
ΛH

i∑

j=1

KjWi−j + P̃
Σ

i∑

j=1

KjMi−j (6.54b)

+ η

(
1

a
P̃

ΛH +
s̃0

c
P̃

Σ

)
Ts0J

′
i (6.54c)

− P̃
ΛH

(
1

2
G̃m −K0

)
W′

i − P̃
Σ

(
1

2
G̃m −K0

)(
M′

i − G̃
−1
m G̃z̃

imp
0 J′i

)
. (6.54d)

It must be noted that each convolution can be truncated to a ixed number of terms
Nconv. Also, as explained in the previous chapter in the section 5.5, each quantity
on this RHS can be computed eiciently using fast algorithms in a O(QNslog(Ns))
complexity.

6.4.3 Dense mesh stabilization
The condition number of S

stab
0 is stable for large time steps but it remains unsta-

ble when the density of the discretization increases. Fortunately, compared to the
large time step preconditioning, the dense mesh preconditioning is simpler as it only
involves a left preconditioning. There is no need to modify the MOT and the precon-
ditioner can be simply applied on top of (6.53).

Regarding the dense mesh preconditioner in the Laplace domain T̃(s) (6.36), the
matrix that preconditions S

stab
0 is

T̃0 = Z−1(T̃(s))0 (6.55a)

=
1

a
P̃

ΣH
Ts0P̃

ΣH + P̃
Λ (6.55b)
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where

P̃
ΣH = P

ΣH ⊗ Ip (6.56a)
P̃

Λ = P̃
Λ ⊗ Ip (6.56b)

Ts0 = Z−1(Ts(s))0. (6.56c)

Since this preconditioner is discretized with BC basis functions, the inverse of the
mix-Gram matrix G̃−1

m is used to apply it conformingly on the system discretized
with RWG basis functions. Therefore, the MOT that is large time step and dense
mesh stable reads

T̃0G̃
−1
m S

stab
0 Yi = T̃0G̃

−1
m Vstab

i . (6.57)

6.5 Numerical results
In the following results, the impedance is chosen to be proportional to the square root
of the frequency as

zimp(s) =
(µ0s

σ′

) 1

2 (6.58)

with µ0 = 4π10−7 H/m and σ′ = 1 S/m.
Also, the IRK method is the 3 stages Radau IIA method (4.45). In the com-

putation of the inverse Z-transform, Q = 32 and ρ = 1.0001 have been used in the
trapezoidal rules (4.38b). In the preconditioners, the length parameter a is kept to 1
m.

6.5.1 Correctness of the formulation
To verify the correctness of the formulation, the frequency domain IBC-EFIE (see
chapter 2) can be used. The frequency domain impedance that corresponds to (6.58)
is obtained with the substitution s = iω, and is

zimp(ω) =

√
µ0ω

2σ′
(1 + i) . (6.59)

Assuming that the simulation is done between t0 and tNt , the amplitude of the exci-
tation ield is sampled every ∆t so that there are Nt +1 samples in the time domain.
Computing the FFT of the amplitude of the excitation ield samples results in Nt +1
samples in the frequency domain that correspond to the complex valued amplitude
of plane waves (1.42). The step between each frequency sample is ∆f = 1/(Nt∆t)
between −fs/2 and fs/2 where fs = 1/∆t is the sampling frequency. The IBC prob-
lem is then solved to obtain the solution currents for each positive frequency, and
the solution current in negative frequency is obtained by taking the conjugate of the
corresponding current in positive frequency. Finally, computing the inverse FFT of
the sequence of frequency domain solution currents yields the time domain sequence
of currents. Even though the reference solution computed this way is limited by the
machine precision, it is enough to ensure the correctness of the formulation.
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Figure 6.2: Surface current density on the unit sphere

The excitation is a modulated Gaussian plane wave as deined in (5.63)

Einc(r, t) = p̂ exp
(
−τd(r, t)

2

2τ 2ch

)
cos (2πf0τd(r, t))E0 (6.60)

where k̂ = −ẑ, τd(r, t) = t− 1

c
k̂ ·r, p̂ = x̂, E0 = 1 V/m, f0 = 10 MHz and τch = 86.8

ns. In the igure 6.2, the solution obtained with the diferentiated IBC-EFIE (6.26)
and the large time step and dense mesh stable IBC-EFIE (6.57) is compared to the
reference solution obtained with the inverse FFT of the frequency domain currents.
The norm of the current density current is computed in r0 = (0.39 m, 0.91 m, 0.11 m)
for t ∈ [−15τch, 25τch] (Nt = 512, ∆t = 6.8 ns. Although, the formulations yield the
correct result in the early time time, it seems that they sufers from a DC instability
as there is a saturation in the current due to the inite machine precision. The removal
of this DC instability will be investigated in the future research.

6.5.2 Stability of the formulation
In this subsection, the condition numbers of the linear systems to solve in the MOTs
are studied. The condition number of 3 matrices are computed:

• S
der
0 deined in (6.27a) which is the matrix of the MOT for the diferentiated

(non-stabilized) IBC-EFIE (6.30),

• S
stab
0 deined in (6.46) which is the matrix of the MOT for the large time step

stable IBC-EFIE (6.53),
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• T̃0G̃
−1
m S

stab
0 which is the matrix of the MOT for the large time step and dense

mesh stable IBC-EFIE (6.57).

In the igure 6.3, the condition numbers of the systems and the average number
of iterations to solve them (GMRES restarted after every 20 iterations to reach a
residual norm of 10−8) have been computed as functions of the time step ∆t for a
unit sphere (h ≈ 0.2 m, Ns = 1080). As one can expect, the condition number grows
proportionally to ∆t1.5 for the non-preconditioned formulation. This is analogous to
the growing proportional to k−1.5 in the frequency domain when the impedance is
proportional to the square root of the frequency and large enough (see (2.30) and
igure 3.4). The condition numbers of the stabilized formulations remain bounded
as ∆t → +∞. Similarly, the iteration counts keep increasing when the time step
increases in the non-stabilized IBC-EFIE when the time step increases while it remains
bounded for the stabilized formulations.

In the igure 6.4, the condition numbers and the iteration counts have been com-
puted as functions of the average edge length h on the unit sphere with a ixed time
step ∆t = 7.16 ns. The efectiveness of the preconditioner is evident. In fact, with the
given set of parameters, the diferentiated (non-preconditioned) IBC-EFIE requires
more iterations than Ns to converge. Though, it seems that the condition number
and the number of iterations for the dense mesh stabilized formulation is not con-
stant as h → 0 and slowly increases. Future research topics include an analysis of the
preconditioned formulation to have a better understanding of this behaviour.

6.6 Conclusion and future work
In this chapter, a new formulation for the time domain IBC-EFIE has been presented.
In a irst part, it has been shown that the solver must keep track of the losses intro-
duced by the IBC. In a naive formulation this is achieved with an unlimited sequence
of interaction matrices, which does not scale well computationally when the number
of time steps increases. With the use of an auxiliary current-like variable to compute
the RHS of the MOT, the new formulation can take advantage of the lossless oper-
ators of the PEC-EFIE and PEC-MFIE that appear in the IBC-EFIE operator, to
have a inite number of interaction matrices. This efectively reduces the complexity
of the solvers. In a second part, the formulation is stabilized for large time step and
for dense meshes. This is achieved with the use of the quasi-Helmholtz projectors and
a Calderón-like preconditioning.

Future research on this time domain IBC-EFIE could include the following topics

• DC instability. As it is now, the formulation still sufers from a numerical
instability that seems to be a kind of DC instability as it can be seen in the
igure 6.2. Further investigations of this instability may reveal how it can be
solved.

• Dense mesh stabilization. Even though the dense mesh preconditioner is ef-
fective to signiicantly reduce the condition number, it seems that it remains
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(a) Condition number of the system solved in the MOT
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Figure 6.3: Condition number and iteration count required to solve the MOT system
of the IBC-EFIE as functions of the time step ∆t
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6.6. Conclusion and future work
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Figure 6.4: Condition number and iteration count required to solve the MOT system
of the IBC-EFIE as functions of the edge length h
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6. Large time step and dense mesh stable time domain IBC-EFIE

a slower growth of the condition number when the average edge length h is
decreased as it can be observed in the igure 6.4.

• Small time steps (high frequency). As explained in the previous chapter, the
compatibility of this technique with the Plane Wave Time Domain (PWTD)
algorithm [44, 45] should be investigated. It should be done in addition to the
CFIE to remove the resonances.

• Accuracy and numerical stability. Given the large number of terms on the RHS
of the MOT (6.54), it should be investigated how to properly reorganize and
compute the terms to avoid numerical cancellations and potentially improve
the accuracy of the formulation. It might also help to solve the DC instability
mentioned before.

• Other formulations in the time domain. Future investigations will focus on using
the techniques introduced in this chapter to solve eiciently other problems with
losses, and to stabilize them for large time steps and dense mesh.
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Conclusions and future work

In this thesis, several computational strategies have been presented to obtain stable
and eicient solvers of scattering problems in electromagnetics, both in the frequency
domain and in the time domain. The Impedance Boundary Conditions (IBC) and
the Electric Field Integral Equation (EFIE) have been the main threads to develop
these new techniques.

In the frequency domain part, two low frequency and dense mesh stable IBC-EFIE
formulations have been obtained using diferent approaches. The irst Leontovich
IBC-EFIE formulation leverages the quasi-Helmholtz projectors to obtain a solver
that is stable and free of numerical cancellations. A Calderón-like preconditioning is
used to accomplish the dense mesh stabilization. The resulting formulation delivers
the correct result for arbitrarily low frequency and dense meshes. The second IBC-
EFIE formulation is based on a new IBC that is speciically designed to enable the
construction of a multiplicative preconditioner. In the Perfect Electric Conductor
(PEC) limit, the formulation remains well-conditioned since it reduces to the classical
Calderón preconditioned PEC-EFIE.

In the time domain part, the temporal discretization is achieved using a convo-
lution quadrature based on implicit Runge-Kutta methods. The irst time domain
formulation is a PEC-EFIE that is stable for large time steps and that is free of the
DC instability. The quasi-Helmholtz projectors are used to separate the Helmholtz
components of the equation which enables applying the adequate integration or dif-
ferentiation independently. Finally, the second time domain formulation is an IBC-
EFIE. By ensuring that the lossy impedance does not appear in the convolutions of
the marching-on-in-time scheme, a computationally eicient algorithm is obtained.
Then, a preconditioner based on the one obtained for frequency domain IBC-EFIE is
used to stabilize the formulation in the large time step and dense mesh regimes.

Among the potential topics of investigations discussed in the conclusions of each
chapter, the future research will be more particularly focused on:

• the investigation on the slow growth of the condition number with the mesh
reinement and on the DC instability that is still present in the time domain
IBC-EFIE presented in the chapter 6,

• the extension of the preconditioning techniques to non-uniform and anisotropic
IBC.
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Appendix A

Computation of the MoM matrix
elements

A.1 Expression of the matrix elements
In order to be computed, the elements of the matrix Ts (1.104a) are rewritten as

[Ts]mn = 〈n̂× fm, Tsfn〉 (A.1a)

=

¨

r∈Γ

n̂ (r)× fm (r) · n̂ (r)×
¨

r′∈Γ

G (r − r′)fn (r
′) dS ′dS (A.1b)

=

¨

r∈Γ

fm (r) ·
¨

r′∈Γ

G (r − r′)fn (r
′) dS ′dS (A.1c)

where the simpliication of n̂ between (A.1b) and (A.1c) is valid because f i is tangent
to Γ.
The elements of Th (1.104b) are

[Th]mn = 〈n̂× fm, Thfn〉 (A.2a)

=

¨

r∈Γ

n̂ (r)× fm (r) · n̂ (r)×∇

¨

r′∈Γ

G (r − r′)∇′ · fn (r
′) dS ′dS

(A.2b)

=

¨

r∈Γ

fm (r) ·∇
¨

r′∈Γ

G (r − r′)∇′ · fn (r
′) dS ′dS (A.2c)

= −
¨

r∈Γ

∇ · fm (r)

¨

r′∈Γ

G (r − r′)∇′ · fn (r
′) dS ′dS (A.2d)

where the passage from (A.2c) to (A.2d) uses the duality between the gradient and
the divergence on Γ.
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A. Computation of the MoM matrix elements

Finally, the elements of K are
Kmn = 〈n̂× fm,Kgn〉 (A.3a)

=

¨

r∈Γ

n̂ (r)× fm (r) · n̂ (r)× p.v.
¨

r′∈Γ

∇G (r − r′)× gn (r
′) dS ′dS

(A.3b)

=

¨

r∈Γ

fm (r) · p.v.
¨

r′∈Γ

∇G (r − r′)× gn (r
′) dS ′dS (A.3c)

where the gradient of the Green’s function relative to r is

∇G (r − r′) = ∇

(
e−ik|r−r′|

4π |r − r′|

)
(A.4a)

=
(1 + ik |r − r′|) e−ik|r−r′|

4π |r − r′|3
(r′ − r) . (A.4b)

As it has been shown in the section 1.3.3, the BC basis functions are a linear combi-
nation of RWG basis functions in the barycentric reined mesh. Also, an RWG basis
function and its divergence are linear combinations of two functions in the form (see
(1.90))

f (r) =
r − v

2A
(A.5a)

∇ · f (r) =
1

A
(A.5b)

on each triangle of their support. So, each element of the above matrices in the form
〈t,Ls〉 where t and s are the testing and source basis functions and L is the operator,
can be computed with the appropriate linear combination of inner products in the
form 〈f ,Lf ′〉 (or 〈n̂× f ,Lf ′〉) for each pair of triangle (T, T ′). Here, T is in the
support of t, T ′ is in the support of s, and f and f ′ are functions in the form (A.5a)
deined respectively on T and T ′. In the following, the vertex and the triangle area
in (A.5a) are primed for f ′, so they are noted v′ and A′.

A.2 Integration rules
There are several ways to compute the integral I of a function x on a triangle T

I =

¨

r∈T

x (r) dS. (A.6)

The irst way is to compute it analytically. This is usually possible for simple integrals
such as the one involved in the computation of the Gram or mix-Gram matrices.

The second way is to use a Gaussian quadrature on the triangle T [78]. A Gaussian
quadrature rule (wi, ri)

N
i=1 is deined by N points (ri)

N
i=1 in the integration domain T

and N weights (wi)
N
i=1. Then, the integral is approximated as

I ≈
N∑

i=1

x (ri)wi. (A.7)
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A.2. Integration rules

The equality is strict for all polynomials x up to a certain degree that depends on the
order of the rule. When x is not a polynomial, the Gaussian quadrature usually works
well when the integrand x is not singular. This is the case for far interacting testing
and source basis functions. For example the element of Ts and Ts can be approximated
by a combination of inner products in the form 〈n̂× f , T f ′〉 as explained above, then
using two Gaussian rules (wi, ri)

N
i=1 on T and (w′

j, r
′
j)

N ′

j=1 on T ′,

〈n̂× f , Tsf
′〉 =
¨

r∈T

f (r) ·
¨

r′∈T ′

G (r − r′)f ′ (r′) dS ′dS (A.8a)

≈
N∑

i=1

f (ri) ·
N ′∑

j=1

G
(
ri − r′

j

)
f ′
(
r′
j

)
w′

jwi. (A.8b)

Similarly, for Th and Th,

〈n̂× f , Thf
′〉 = −

¨

r∈T

∇ · f (r)

¨

r′∈T ′

G (r − r′)∇′ · f ′ (r′) dS ′dS (A.9a)

= − 1

AA′

¨

r∈T

¨

r′∈T ′

G (r − r′) dS ′dS (A.9b)

≈ − 1

AA′

N∑

i=1

N ′∑

j=1

G
(
ri − r′

j

)
w′

jwi. (A.9c)

For K,

〈n̂× f ,Kf ′〉 =
¨

r∈T

f (r) ·
¨

r′∈T ′

∇G (r − r′)× f ′ (r′) dS ′dS (A.10a)

≈
N∑

i=1

f (ri) ·
N ′∑

j=1

∇G
(
ri − r′

j

)
× f ′

(
r′
j

)
w′

jwi. (A.10b)

For G,
if T 6= T ′, 〈f ,f ′〉 = 0 (A.11a)

if T = T ′, 〈f ,f ′〉 =
¨

r∈T

f (r) · f ′ (r) dS (A.11b)

≈
N∑

i=1

f (ri) · f ′ (ri)wi. (A.11c)

For Gm,
if T 6= T ′, 〈n̂× f ,f ′〉 = 0 (A.12a)

if T = T ′, 〈n̂× f ,f ′〉 =
¨

r∈T

(n̂× f (r)) · f ′ (r) dS (A.12b)

≈
N∑

i=1

(n̂× f (ri)) · f ′ (ri)wi. (A.12c)

Finally, when the supports T and T ′ are close to each other or coincide, the elements
of T, T and K cannot be computed directly with Gaussian quadrature rules because
the integration kernel is singular.
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A. Computation of the MoM matrix elements

A.3 Singularity extraction
Several techniques exist to deal with these singular kernels [27, 79–82]. The singularity
extraction technique described in the following is standard. It consists in rewriting the
integral kernels as a regular part and a singular part. The regular part is integrated
using the double Gaussian rules, and the singular part is integrated analytically for
the inner integral and uses the Gaussian quadrature for the outer integral. The kernel
for T is

G (r − r′) =
e−ik|r−r′|

4π |r − r′| =
e−ik|r−r′| − 1

4π |r − r′|︸ ︷︷ ︸
Greg (r − r′)

+
1

4π |r − r′| . (A.13)

A Taylor expansion of the irst term Greg (r − r′) conirms that it is not singular

Greg (r − r′) = G (r − r′)− 1

4π |r − r′| (A.14a)

=
1− ik |r − r′|+O

(
|r − r′|2

)

4π |r − r′| − 1

4π |r − r′| (A.14b)

= − ik

4π
+O(|r − r′|). (A.14c)

Then, the following integrals are computed analytically for any r ∈ R
3 using the

method described in [83, 84]

I1/R (r) =

¨

r′∈T ′

1

|r − r′|dS
′ (A.15a)

Ir′/R (r) =

¨

r′∈T ′

r′

|r − r′|dS
′. (A.15b)

Using these notations, the singular part of the elements for Ts is
¨

r′∈T ′

1

4π |r − r′|f
′ (r′) dS ′ =

¨

r′∈T ′

1

4π |r − r′|
r′ − v′

2A′
dS ′ (A.16a)

=
1

8πA′

(
Ir′/R (r)− I1/R (r)v′

)
(A.16b)

and the singular part of the elements for Th is
¨

r′∈T ′

1

4π |r − r′|∇
′ · f ′ (r′) dS ′ =

1

4πA′
I1/R (r) . (A.17)
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A.3. Singularity extraction

So (A.8a) becomes

〈n̂× f , Tsf
′〉 =
¨

r∈T

f (r) ·
¨

r′∈T ′

G (r − r′)f ′ (r′) dS ′dS (A.18a)

=

¨

r∈T

f (r) ·
¨

r′∈T ′

Greg (r − r′)f ′ (r′) dS ′dS (A.18b)

+

¨

r∈T

f (r) · 1

8πA′

(
Ir′/R (r)− I1/R (r)v′

)
dS

≈
N∑

i=1

f (ri) ·
N ′∑

j=1

Greg
(
ri − r′

j

)
f ′
(
r′
j

)
w′

jwi (A.18c)

+
1

8πA′

N∑

i=1

f (ri) ·
(
Ir′/R (ri)− I1/R (ri)v

′
)
wi

and (A.9a) becomes

〈n̂× f , Thf
′〉 = −

¨

r∈T

∇ · f (r)

¨

r′∈T ′

G (r − r′)∇′ · f ′ (r′) dS ′dS (A.19a)

= − 1

AA′

¨

r∈T

¨

r′∈T ′

Greg (r − r′) dS ′dS (A.19b)

− 1

4πAA′

¨

r∈T

I1/R (r) dS

≈ − 1

AA′

N∑

i=1

N ′∑

j=1

Greg
(
ri − r′

j

)
w′

jwi (A.19c)

− 1

4πAA′

N∑

i=1

I1/R (ri)wi.

Similarly, the kernel for K is the gradient of the Green’s function (A.4). In the
following R = |r − r′|,

∇G (r − r′) =
(1 + ikR) e−ikR

4πR3
(r′ − r) (A.20a)

=
(1 + ikR) e−ikR − 1− 1

2
k2R2

4πR3
(r′ − r)

︸ ︷︷ ︸
(∇G)reg (r − r′)

+

(
1

4πR3
+

k2

8πR

)
(r′ − r) .

(A.20b)
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A. Computation of the MoM matrix elements

Again, a Taylor expansion of the regular part of the gradient of the Green’s function
(∇G)reg (r − r′) shows that it has no singular contributions

(∇G)reg (r − r′) = ∇G (r − r′)−
(

1

4πR3
+

k2

8πR

)
(r′ − r) (A.21a)

=

(
1 + 1

2
k2R2 − 1

3
ik3R3 +O (R4)

4πR3
− 1

4πR3
− k2

8πR

)
(r′ − r)

(A.21b)

=

(
− ik3

12π
+O (R)

)
(r′ − r) . (A.21c)

Similarly to (A.15), the following integrals are computed analytically for any r ∈ R
3

using the method described in [83, 84]

I1/R3 (r) =

¨

r′∈T ′

1

|r − r′|3
dS ′ (A.22a)

Ir′/R3 (r) =

¨

r′∈T ′

r′

|r − r′|3
dS ′. (A.22b)

The singular part of the elements for K that is computed analytically is

Kan (r) =

¨

r′∈T ′

(
1

4πR3
+

k2

8πR

)
(r′ − r)× f ′ (r′) dS ′ (A.23a)

=
1

8πA′

¨

r′∈T ′

(
1

R3
+

k2

2R

)
(r′ − r)× (r′ − v′) dS ′ (A.23b)

=
1

8πA′

¨

r′∈T ′

(
1

R3
+

k2

2R

)
(r × v′ + (v′ − r)× r′) dS ′ (A.23c)

=
1

8πA′

(
I1/R3 (r) +

k2

2
I1/R (r)

)
r × v′ (A.23d)

+
1

8πA′
(v′ − r)×

(
Ir′/R3 (r) +

k2

2
Ir′/R (r)

)
.

So (A.10a) becomes

〈n̂× f ,Kf ′〉 =
¨

r∈T

f (r) ·
¨

r′∈T ′

∇G (r − r′)× f ′ (r′) dS ′dS (A.24a)

=

¨

r∈T

f (r) ·
¨

r′∈T ′

(∇G)reg (r − r′)× f ′ (r′) dS ′dS (A.24b)

+

¨

r∈T

f (r) ·Kan (r) dS

≈
N∑

i=1

f (ri) ·
N ′∑

j=1

(∇G)reg
(
ri − r′

j

)
× f ′

(
r′
j

)
w′

jwi (A.24c)

+
N∑

i=1

f (ri) ·Kan (ri)wi.
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Acronyms and notations

Acronym Meaning
BC Bufa-Christiansen
BEM Boundary Element Method
CFIE Combined Field Integral Equation
CN Condition Number
DC Direct Current
DM Dense Mesh
EFIE Electric Field Integral Equation
e.g. for example
FD Frequency Domain
FFT Fast Fourier Transform
FMM Fast Multipole Method
GMRES General Minimal Residual
IBC Impedance Boundary Condition
i.e. in other words
IRK Implicit Runge-Kutta
LF Low Frequency
LHS Left Hand Side
LTS Large Time Step
MFIE Magnetic Field Integral Equation
MLFMM Multi-Level Fast Multipole Method
MoM Method of Moments
MOT Marching-On-in-Time
PEC Perfect Electric Conductor
PW Plane Wave
RCS Radar Cross Section
RHS Right Hand Side
RWG Rao-Wilton-Glisson
SVD Singular Value Decomposition
TD Time Domain
VSH Vector Spherical Harmonics

Table A.1: Common acronyms
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Acronyms and notations

Notations Description
r, s Scalar
r, E Geometric vector in R

3 or C
3

r̂, û Unit vector in R
3

A, v 1-dimensional array, column vector in R
n or C

n

A, s 2-dimensional array, matrix in R
m×n or C

m×n

L, T Linear operator
e Euler’s number (e ≈ 2.718)
i Imaginary unit (i2 = −1)

ℜ(z), ℑ(z) Real part, imaginary part
|z|, |r| Absolute value, Norm 2 (Euclidean) for geometric vectors

‖M‖, ‖E‖ Norm 2 for matrices and column vectors
vT, MT Transpose
M, f Conjugate
T ∗ Adjoint operator

vn, [Mv]n n-th element of a vector
xi i-th element of a sequence

Mmn, Mm,n, [MN]mn Element (m,n) of a matrix
〈f , g〉 Inner product
f × g Cross product
f · g Dot product

M⊗N Kronecker product
(f ∗ g)(t), (x ∗ y)n Temporal convolution, Sequence convolution

d
dx

, f ′(x) Derivative
∂
∂t

Partial derivative
∇f , ∇′f Gradient (relative to r), Gradient relative to r′

∇ · f , ∇′ · f Divergence (relative to r), Divergence relative to r′

∇× f Curl
∇2f , ∇2f Laplacian, Vector Laplacian
∂V , ∂Γ Boundary of a domain

Table A.2: Common notations
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Titre : Stratégies Computationelles pour des Equations Intégrales avec Conditions d'Impédance aux 
Frontières en Domaines Fréquentiel et Temporel. 

Mots clés : Equation Intégrale du Champ Electrique (EFIE),  Conditions d'Impédance aux Frontières 
(IBC), Préconditionnement, Domaine Fréquentiel, Domaine Temporel 

Résumé : L'équation intégrale du champ électrique (EFIE) est très utilisée pour résoudre des problèmes 
de diffusion d'ondes électromagnétiques grâce à la méthode aux éléments de frontière (BEM). En 

domaine fréquentiel, les systèmes matriciels émergeant de la BEM souffrent, entre autres, de deux 
problèmes de mauvais conditionnement : l'augmentation du nombre d'inconnues et la diminution de la 
fréquence entrainent l'accroissement du nombre de conditionnement. En conséquence, les solveurs 
itératifs requièrent plus d'itérations pour converger vers la solution , voire ne convergent pas du tout. En 
domaine temporel, ces problèmes sont également présents, en plus de l'instabilité DC qui entraine une 
solution erronée en fin de simulation. La discrétisation en temps est obtenue grâce à une quadrature de 
convolution basée sur les méthodes de Runge-Kutta implicites. 
Dans cette thèse, diverses formulations d'équations intégrales utilisant notamment des conditions 
d'impédance aux frontières (IBC) sont étudiées et préconditionnées. Dans une première partie en 
domaine fréquentiel, l'IBC-EFIE est stabilisée pour les basses fréquences et les maillages denses grâce 

aux projecteurs quasi-Helmholtz et à un préconditionnement de type Calderón. Puis une nouvelle forme 
d'IBC est introduite, ce qui permet la construction d'un préconditionneur multiplicatif. Dans la seconde 
partie en domaine temporel, l'EFIE est d'abord régularisée pour le cas d'un conducteur électrique parfait 
(PEC), la rendant stable pour les pas de temps larges et immunisée à l'instabilité DC. Enfin, une 
résolution efficace de l'IBC-EFIE est recherchée, avant de stabiliser l'équation pour les pas de temps 
larges et les maillages denses. 

 

Title: Computational Strategies for Impedance Boundary Condition Integral Equations in Frequency and 
Time Domains 

Keywords: Electric Field Integral Equation (EFIE), Impedance Boundary Condition (IBC), Preconditioning, 
Frequency Domain, Time Domain 

Abstract: The Electric Field Integral Equation (EFIE) is widely used to solve wave scattering problems  in 
 electromagnetics  using  the  Boundary  Element  Method  (BEM).  In  frequency domain, the linear 
systems stemming from the BEM suffer, amongst others, from two ill-conditioning problems: the low 
frequency breakdown and the dense mesh breakdown.  Consequently,  the iterative solvers require more 
iterations to converge to the solution, or they do not converge at all in the worst cases.  These 
breakdowns are also present in time domain, in addition to the DC instability which causes the solution to 

be completely wrong in the late time steps of the simulations.  The time discretization is achieved using a 
convolution quadrature based on Implicit Runge-Kutta (IRK) methods, which yields a system that is 
solved by Marching-On-in-Time (MOT). 
In this thesis, several integral equations formulations, involving Impedance Boundary Conditions (IBC) for 
most of them, are derived and subsequently preconditioned. In a first part dedicated to the frequency 
domain, the IBC-EFIE is stabilized for the low frequency and dense meshes by leveraging the quasi-
Helmholtz projectors and a Calderón-like preconditioning.  Then, a new IBC is introduced to enable the 
development of a multiplicative preconditioner for the new IBC-EFIE. In the second part on time domain, 
the EFIE is regularized for the Perfect Electric Conductor (PEC) case, to make it stable in the large time 
step regime and immune to the DC instability. Finally, the solution of the time domain IBC-EFIE is 

investigated by developing an efficient solution scheme and by stabilizing the equation for lar ge time 
steps and dense meshes. 
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