Discovery and analysis of silencers in Drosophila acting as enhancers in other cellular contexts

Alexandre Palagi

- To cite this version:

Alexandre Palagi. Discovery and analysis of silencers in Drosophila acting as enhancers in other cellular contexts. Molecular biology. Université Côte d'Azur, 2018. English. NNT : 2018AZUR4006 . tel-02509608v2

HAL Id: tel-02509608 https://theses.hal.science/tel-02509608v2

Submitted on 15 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HARVARD
MEDICAL SCHOOL

THESE DE DOGTORAT

Découverte et analyse d'inactivateurs de transcription chez la Drosophile agissant comme amplificateurs dans différents contextes cellulaires

Alexandre PALAGI

Laboratoire du Pr. Martha L. Bulyk, Brigham and Women’s Hospital, Harvard Medical School Laboratoire du Dr. Frédéric Luton, Institut de Pharmacologie Moléculaire et Cellulaire

[^0][^1]
Découverte et analyse d'inactivateurs de transcription chez la Drosophile agissant comme amplificateurs dans différents contextes cellulaires

Discovery and analysis of silencers in Drosophila acting as enhancers in other cellular contexts

Jury :
Président du jury
Anny Cupo, Directeur de recherche, Université Côte d'Azur
\section*{Directeurs de thèse}
Martha L. Bulyk, Professeur, Harvard Medical School
Frédéric Luton, Directeur de recherche, Université Côte d'Azur
\section*{Rapporteurs}
Juan Fuxman-Bass, Directeur de recherche, Boston University
Mo Motamedi, Directeur de recherche, Harvard Medical School
\section*{Examinateur}
Suzanne Gaudet, Directeur de recherche, Harvard Medical School

Résumé

Un des enjeux majeurs de la biologie moderne est de comprendre les mécanismes complexes régissant l'expression de gènes d'un organisme en développement. Le modèle actuel du contrôle précis et spatio-temporel de cette transcription repose sur deux types de modules de régulation en cis (cis regulatory modules, CRMs), connus sous la dénomination d'amplificateurs de transcription ou «enhancers » et d'inactivateurs de transcription ou «silencers». Alors que ces enhancers ont été abondamment étudiés et analysés, seul un relatif petit nombre de silencers a été identifié à ce jour et ces derniers restent jusqu'à présent assez mal compris. Aussi, il s'avère qu'un nombre non négligeable de CRMs jouent par ailleurs un double rôle à la fois d'amplificateurs et d'inactivateurs de transcription en fonction de l'état ou du type cellulaire dans lequel ils se trouvent, rajoutant un niveau supplémentaire de complexité à toute tentative de compréhension de la régulation génique dans différents types cellulaires et tissus. Etant donné que ces éléments à double fonction, que l'on peut appeler «bifonctionnels», sont très mal compris et que la fréquence de ces derniers dans un génome métazoaire typique est totalement inconnue, l'enjeu de mon travail de thèse a été de développer une nouvelle approche permettant d'analyser des centaines de séquences dans le but de détecter une activité de répression spécifique à un tissu, au sein d'embryons de Drosophila melanogaster. De façon surprenante, nous avons découvert que tous les éléments ayant une activité de répression transcriptionnelle que nous avons identifiés, s'avèrent aussi avoir une activité d'activation transcriptionnelle dans d'autres contextes cellulaires et présentent certaines caractéristiques que je développerai dans ce manuscrit de thèse. Nos résultats remettent donc en question le paradigme de deux catégories distinctes de CRMs et suggèrent que des milliers, ou plus, d'éléments bifonctionnels restent à être découverts chez la Drosophile et potentiellement $10^{4}-10^{5}$ chez l'humain. Le référencement et la caractérisation de ces éléments devraient s'avérer utiles, si ce n'est cruciaux, afin de comprendre la façon par laquelle ces motifs d'expression sont encodés au sein des génomes d'organismes métazoaires et donc éventuellement chez l'Homme.

Abstract

One of the major challenges of modern biology is to understand the complex mechanisms governing the expression of genes in a developing organism. The current model of precise and spatio-temporal control of this transcription is based on two types of cis regulatory modules (CRMs), known as enhancers and silencers. While these enhancers have been extensively studied and analyzed, only a relatively small number of silencers have been identified so far and these remain so far poorly understood. Also, it appears that a significant number of CRMs also play a dual role of both enhancer and silencer depending on the state or the cell type in which they are, adding an additional level of complexity to any attempt to understand gene regulation in different cell types and tissues. Given that these dual function CRMs, which we can call "bifunctional" CRMs, are very poorly understood and that the frequency of these in a typical metazoan genome is totally unknown, the goal of my thesis work was to develop a novel approach to analyze hundreds of sequences for the purpose of detecting tissue-specific repression activity in Drosophila melanogaster embryos. Surprisingly, we have found that all the elements with transcriptional repression activity that we have identified, also prove to have transcriptional activation activity in other cellular contexts and have certain characteristics that I will develop in this dissertation. Our results therefore challenge the paradigm of two distinct categories of CRMs and suggest that thousands, or more, of bifunctional elements remain to be discovered in Drosophila with potentially $10^{4}-10^{5}$ in humans. The referencing and characterization of these elements should prove useful, if not crucial, to understand the way in which expression regulation ise encoded within the genomes of metazoan organisms and therefore in humans.

Key words: transcription, silencers.

Table of Contents

Acknowledgements 1
Introduction 2
Regulation of Transcription 2
Transcription factors and cis regulatory modules 3
Enhancers 4
Silencers 5
Predictions of CRMs 8
Predictions using motifs and conservation 8
Predictions from ChIP-seq 9
Histone marks and chromatin accessibility 9
Spatial proximity between genomic regions 10
Experimental identification of enhancers 11
Current challenges 15
Goals of the dissertation 18
References 19
Chapter 1: bifunctionality of CRMs 31
Author contributions 33
Abstract 33
Acknowledgments 33
Introduction 34
Initial library and first experiment 35
Screening a library of elements for silencer activity in whole Drosophila embryos 35
Selection of elements to test for silencer activity in Drosophila embryos 35
Promoter competition in sFS-positive elements 37
Characterization of silencing activity in the context of distinct enhancers 37
All validated silencers act as transcriptional enhancers in other cellular contexts 37
Transcription factor compositional complexity at silencers 41
Chromatin features of active silencers 41
Second library and ongoing analyses 43
Second library 43
Results and validations 43
TF compositional complexity and chromatin features of active silencers 43
Current and future experiments and analyses 47
Genome editing: CRM knock-out 47
Hi-C: mesoderm specific interactions 51
Spatiotemporal activity of silencers 53
Discussion 58
Methods 59
Generation of reporter vector pSFSdist 59
Design of the candidate silencer libraries 59
Performing silencer-FACS-Seq experiments 62
Statistical analysis of sFS sequencing reads 63
Validation of sFS results 64
Assessing CRM bifunctionality 65
Downstream analysis of the validated silencers 65
Cell sorting and fixation with formaldehyde 67
Guide-RNA and primer design 67
Cas9 and gRNA preparation and microinjection 67
In situ hybridization: probes primer design 68
References 69
Supplementary figures 73
Supplementary References: 81
Chapter 2: rare cell purification 85
Introduction 86
Cell panning approach 87
Preliminary results 88
pCD8 vector 88
Cell panning 88
Future directions 89
Methods 94
Generation of vector pCD8 94
Creation of dpp_VRR:CD8 vector and fly lines 94
Cell purification protocol - a work in progress 95
Supplementary figure 96
References 97
Conclusion and Future directions 99
Summary 99
Limitations 100
Future directions 101
Concluding remarks 102
References 103
Annexes and supplementary tables 105
Annex 1: full sequence of the pCD8 plasmid 105
Annex 2: Protocol for positive panning from Drosophila embryos 109
Annex 3 : gRNA list for bifunctional element knockout 111
Supplementary table 1 112
Supplementary table 2 132
Supplementary table 3 137
Supplementary table 4 148
Supplementary table 5 154
Supplementary table 6 158
Supplementary table 7 159
Supplementary table 8 161
Supplementary table 9 182
Supplementary table 10 187

Acknowledgements

First of all, I want to thank my PhD advisor, Martha Bulyk, for the great opportunity she offered me to realize my thesis research in her laboratory at Harvard. Martha has been a caring, involved and helpful mentor throughout these three years I spent in Boston. I learned a lot from her and I believe there is still a lot she could teach me, to become a successful scientist.

Then, I want to thank Stephen Gisselbrecht, who prefers to go by "Steve", my unofficial PhD supervisor and mentor with whom I worked on a daily basis on all these complex and often tedious projects I described in this dissertation. Our discussions have always been enjoyable, and ranged from the subject of French pastries to being able to identify the gender of a fly zooming by with the naked eye, and I will miss our daily discussions and coffee break(s). C'est la vie.

I would like to thank Juan Fuxxman-Bass, Mo Motamedi and Suzanne Gaudet for accepting to be on my defense committee, and for their advice and enthusiasm in my work and this dissertation. Moreover, I want to thank Anny Cupo, Frédéric Luton and Eric Macia, without whom I would not have been able to organize my defense.

The Bulyk lab members, past and present, played a major yet discrete role in these three years by all the conversations we shared, on a very large variety of subjects. More specifically, I want to thank Julia Rogers, Sachi Iiyama, Kian Hong Kock and Katy Weinand for their help during my last weeks in the laboratory as I was writing this dissertation; they provided me with comments, advice and support, without which this thesis would have been much harder to write. I am moreover grateful for the compassion they showed me when my aunt passed away.

My friends have been a source of support through these years spent in graduate school, and I want to specifically thank Laura and Sylvaine for visiting me in Boston before my defense. Hadrien, my oldest and best friend, with whom I learned to walk as a child, never stopped supporting me and kept telling me to be strong.

Moreover, I want to deeply thank Mae, who had to indirectly endure the harsh life of graduate school because of me. She has been there every single day to provide me with support, listened to me and cheered me up when I was feeling down. We are lucky to have found each other.

Last but not least, my family has been instrumental to my scientific success. My grandparents always pushed me and encouraged me to go as far as I could in whichever career path I were to choose and to work hard to get to the top. My parents have invariably supported me, despite the fact that I had to move from Cannes, France to Boston, Massachusetts for many years, and encouraged me every single day though thousands of miles away. Finally, my sister, who also currently is in graduate school and with whom I shared the ups and downs of every PhD student, has always been there to remind me that I was not alone, and that the weather is always better in Provence.

$$
\begin{gathered}
\text { "Ses difficultés commencent : c'est le signe de la réussite. " } \\
\text { - Marcel Pagnol }
\end{gathered}
$$

Introduction

Regulation of Transcription

At any given time, cells, whether they are prokaryotic or eukaryotic, protozoans or part of a metazoan organism, have to adapt to their environment, maintain their metabolism, divide, react properly to a variety of stresses, and progress through their cellular cycle. In metazoans, these basic functions are followed by the even more complex series of proper cell differentiation necessary for organ creation, function, and maintenance and repair. As every single cell in a metazoan organism contains an essentially identical copy of the same genome, it is within this code that information can be found on how to make RNAs and proteins that the organism need prior to its eventual death. But, as cells drastically differentiate into a large diversity of cell types during development, different sections of their genome are required to perform their specific functions and develop into their specific cell type.

This highly complex process of the regulation of RNA and protein expression is called gene regulation. It allows for all cell types and cellular processes observable in organisms and specifies when and where a given gene should be expressed and is referred to as a spatio-temporal program for gene expression (Lockhart and Winzeler, 2000). The expression of a gene product, essentially a protein, has that include initiation and elongation of transcription (the synthesis of messenger RNA or mRNA), mRNA processing, export and finally protein translation.

For transcription to occur, an important class of proteins is the "General Transcription Factors" category (GTFs), also known as the basal transcriptional factors, which do not actually bind DNA for the most part, but are components of the transcription preinitiation complex that interacts with the RNA polymerase at the promoters of genes (Weinzierl, 1999). These GTFs are a prerequisite for any transcription to occur. A very well-known GTF is the TATA-binding protein (TBP), binding the DNA sequence called the TATA box, about 30 base pairs upstream of the transcription start site (TSS) in about some eukaryotic gene promoters (estimated at $10-20 \%$ in humans); its role is to help position the RNA polymerase II over the TSS, with the help of a variety of TBP-associated factors (Kornberg, 2007). Other proteins called Transcription Factors (TFs), one responsible for the finer mechanisms of modulation of gene regulation (Dillon, 2006). Since each step of transcription is tightly controlled, it is therefore crucial to develop an understanding of the regulators involved. The regulation of transcription initiation, which is the main subject of focus of my thesis work, is in an important part controlled by the precise binding of TFs, activating or repressing the gene transcription, to specific stretches of the genome, called cis-regulatory elements.

Transcription factors and cis regulatory modules

According to a common definition, a transcription factor, also called a "Sequence Specific DNA Binding Factor", is a protein able to bind specific DNA sequences, also called motifs or TF binding sites (TFBSs), and thereby control the transcription of often neighboring genes (Karin, 1990; Latchman, 1997). The regulation of transcription is in large part controlled by the binding of transcriptional activators and repressors (both termed as trans-factors) to specific DNA sequences referred to as cis-regulatory modules (CRMs). A current model of the regulation of transcription is that the main function of a motif is recruiting a given TF to the DNA, which will attract cofactors and initiate transcription (Latchman, 1997).

A TF can perform this function alone or within a protein complex, by promoting or blocking the gene transcription (Lee and Young, 2000; Nikolov and Burley, 1997; Roeder, 1996). As part of the definition of what a TF is, these proteins must contain one or more DNA binding domains (DBDs) which interact and attach to specific sequences of DNA, generally nearby the genes that they regulate (Mitchell and Tjian, 1989; Ptashne and Gann, 1997); thus, proteins that are playing important roles in gene regulation but lack DBDs, such as chromatin remodelers, coactivators, deacetylases, histone acetylases, methylases or even protein kinases, are often not considered as TFs (Brivanlou and Darnell, 2002). This is the definition I will be using in this thesis. Despite their importance, the sequence specificities of most TFs remain unknown, making it difficult to decipher the complex CRM regulatory codes as the CRM identification relies on a priori knowledge of TF motifs.

This highlights the need for universal methods to discover the cis-element sequences bound by specific TFs. To remedy this, many methods exist such as DNA microarray-based readout of Chromatin Immune-Precipitation, also known as "ChIP" (discussed later in this thesis), the Systematic Evolution of Ligands by Exponential Enrichment (SELEX-seq) or systems such the Bacterial one-hybrid system (B1H) (Bulyk, 2005) or Yeast one-hybrid (Y1H) (Li and Herskowitz, 1993). These techniques are sometime not sufficient and reliable enough to cover all the TFs (Lee et al., 2002), and therefore other methods were created. For instance, the Bulyk lab created a technology that provides a rapid and high-throughput identification and characterization of the DNA binding sites of many TFs, based on microarray in vitro technology and called "Protein Binding Microarrays" (PBMs) (Bulyk, 2007; Mukherjee et al., 2004). In an attempt to bypass the need for known TF binding motifs, the Fuxman-Bass laboratory recently developed a "enhanced Yeast 1-Hybrid" (eY1H) approach that allows for the test of hundreds or thousands of TFs to different regulatory regions, to map genome-scale TF-DNA networks (Fuxman Bass et al., 2016).

In metazoans, DNA regulatory motifs tend to occur within CRMs and regulate the expression of the nearby gene or genes. Moreover, these CRMs can be located far away from the transcription start site: in mammalian genomes for example, clusters of binding sites that regulate expression are usually scattered among dozens of thousands of bases to mega-bases, and can be located upstream or downstream of another gene, or even within intronic regions. Their lengths are also variable, from hundreds up to a couple thousands of base pairs (Davidson and Peter, 2015). CRMs are commonly classified into two distinct groups called transcriptional enhancers and transcriptional silencers (Kolovos et al., 2012), or simply enhancers and silencers.

Enhancers

Enhancers play crucial roles in gene regulation by activating gene expression in a tissue-specific manner in development, and in adult cells in response to cellular or environmental stimuli. However, it is also important that gene expression not be turned on or up-regulated inappropriately. Silencers, on the other hand, are negative regulatory elements (Ogbourne and Antalis, 1998) that play crucial roles in contributing to the specification of precise gene expression patterns, such as sharp expression domains in a developing organism, by preventing ectopic expression.

A characteristic of enhancers that has been repeatedly shown is that they seem to function independently of the distance and orientation to their target genes, and can function at large distances of several hundred kilobases or even megabases by looping (Amano et al., 2009). In addition, they seem to maintain their functions independently of the sequence context, when placed into heterologous reporter constructs for instance (Arnone and Davidson, 1997). Finally, enhancers are modular and contribute additively and sometimes redundantly to the overall expression pattern of their target genes. This can be recapitulated in reporter assays, as combining multiple sequences in an in vivo assay often results in patterns of expression that reflect their combined activity (Arnone and Davidson, 1997). Nucleosomes in proximity to active enhancers generally are identified by post-translational modifications on their histones (Bell et al., 2011; Kouzarides, 2007): the main marks known for active enhancers are the histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac). These modifications have been mapped and now used for the prediction of enhancers and it appears that the annotation of elements, in whole genomes, seem to correlate rather well with experimental enhancer experiments (Arnold et al., 2013; Bonn et al., 2012; Heintzman et al., 2007). Despite the spreading use of histone marks for predicting enhancers, there is no current consensus about which marks should be used, but it appears that enhancers are often associated with H3K4mel and H3K27ac, low levels of H3K4me3 and lack of H3K27me3 (Heintzman et al., 2007; RadaIglesias et al., 2011). On the other hand, it has been shown that, in Drosophila melanogaster, H3K27ac and H3K79me3 are a combination that seems to predict enhancers (Bonn et al., 2012).

Silencers, as their name implies, suppress gene expression (Maeda and Karch, 2011) and prevent therefore gene expression during differentiation and progression through the cell cycle (Li and Arnosti, 2011). Relative to enhancers, less is known about their underlying mechanisms, but they are commonly categorized according to whether they mediate long-range or short-range repression (Gray and Levine, 1996). In the case of long-range repression, a repressor makes a promoter resistant to the influence of any enhancer, even if those enhancers are located thousands of base pairs from the repressor binding site. Short-range repressors function in a less general manner: they do not interfere with all transcription at a locus but rather block the function of nearby DNA-bound activators, while not acting on more distantly bound activators.

A well-studied example of long-range repression is the Groucho-mediated repression (Chen and Courey, 2000; Mannervik et al., 1999; Parkhurst, 1998). The Groucho protein was first identified in Drosophila melanogaster and orthologs have been found in all metazoan organisms as mediators for embryonic segmentation, dorsal-ventral patterning, neurogenesis, and Notch and Wnt signaling (Chen and Courey, 2000). In Humans, the Groucho proteins are called transducing-like eancer-of-split (TLE) proteins and, in yeast, Tup1 appears to be a Groucho homolog (Chen and Courey, 2000).

Groucho acts as a corepressor and does not bind to DNA directly, but is rather recruited by a variety of TFs. It has been suggested that Groucho family proteins are long-range corepressors that silence transcription of linked promoters in a relatively indiscriminate fashion (Barolo and Levine, 1997): for instance, binding Groucho-dependent repressors have been found to block expression regardless of their orientation and distance. Groucho-mediated repression seems to involve large nucleoprotein complexes, called repressosomes, which are defined as clusters of TFs interacting with co-repressors and histone-modifying enzymes that represses transcription (M Gowri et al., 2003) by which long-range repression may take place. Indeed, it has been shown that the Groucho proteins may repress transcription in a long-range fashion, by interacting with histone deacetylases (Chen et al., 1999; Choi et al., 1999; D. Watson et al., 2000; Wu et al., 2001). This correlates with the fact that numerous coactivators have been found to function as histone acetyl transferases (HATs), whereas corepressors have been identified as histone deacetylases (HDACs) (Struhl, 1998), yet, so far, no set of histone modification have been strictly associated with silencers.

Another way by which Grouch proteins repress transcription is by inhibitory interaction between silencer-bound repressors and the basal transcriptional machinery. For instance, the histone deacetylase inhibitor TSA only partially blocks Gal4-Groucho-mediated repression (Chen et al., 1999) and that additional regions of Groucho outside of the HDAC1-interacting GP domain function as repression domains (Fisher et al., 1996). Long-range repression is therefore thought to require the formation of a DNA loop that brings a silencer and its associated repressors and corepressors, in close spatial proximity with a core promoter of a target gene, blocking transcription (Gromöller and Lehming, 2000; Papamichos-Chronakis et al., 2000; Yu et al., 2001; Zaman et al., 2001). Moreover, it is thought that the Groucho repressosome may spread a silent chromosomal state. Studies show that the Groucho/Tup1 superfamily proteins can bind hypoacetylated histone tails (D. Flores-Saaib and J. Courey, 2000; Edmondson et al., 1996), potentially allowing them to spread along the chromatin fiber. By recruiting HDAC1 and, or, other kinds of histone deacetylases, they could create large deacetylated and silenced chromosomal domains.

Long-range repression was initially characterized in yeast while studying the $H M R$ and $H M L$ loci which are responsible for the yeast silent mating type (Loo and Rine, 1995). Each HM locus is maintained in a silent state in the heterochromatin by pairs of silencers that can function, in a long-range fashion in an orientation-independent manner, and involve many different proteins suchas as ORC, Abf1, Rap1 and the silent information regulators (Sir) Sir1, Sir2, Sir3 and Sir4. These later proteins do not interact directly with these silencers by are rather recruited by sequence-specific factors. Once recruited, the Sir proteins form a repressosome that remodel the chromatin to a silenced state to repress gene expression (Loo and Rine, 1995). Within the Sir repressosome, Sir2 appears to be a histone deacetylase while Sir3 and Sir4 are proteins able to bind hypoacetylated N-terminal tails of histones 3 and 4 (H3 and H4) (Grunstein, 1998). Combined, these two mechanisms provide a probable explanation for the spread of the repressosome from the silencer on the chromatin and, therefore, of the deacetylated region.

Another well studied mechanism for long-range silencing involves the Polycomb complexes PRC1 and PRC2 which rely on noncoding transcripts from silencing elements for being recruited to their target sites, and silencing gene expression via epigenetic silencing. These proteins have been well known for silencing Hox genes via changes in chromatin marks in Drosophila melanogaster developing embryos (Portoso and Cavalli, 2008).

Short-range repression may be a more flexible way to achieve this kind of control when compared to long-range repression. For example, the distance over which a short-range repressor is able to work appears to be dependent on repressor concentration. The repressors associated with shortrange silencing may therefore respond to a transcription factor concentration gradient (Hewitt et al., 1999). A perfect example of short-range repression are the repressors that regulate the expression of the pair-rule genes such as eve and hairy in Drosophila melanogaster, which are generally expressed in seven transverse stripes in the early embryo, along the anteroposterior axis (Ingham, 1988). The crucial control of pair-rule gene expression depends on the TFs encoded by the gap genes (for instance giant, hunchback, Krüppel, knirps) and by the maternal polarity genes (for instance bicoid). These factors work via multiple autonomous enhancers in the pair-rule genes and an individual enhancer often controls a single stripe, independently of the other enhancers involved in the characteristic seven-stripes pattern, which has been generated by an appropriate combination of enhancers within a single locus (Akam, 1989).

The critical ability of repressors to allow multiple enhancers to function autonomously is linked to short-range repression: for instance Giant and Krüppel are able to silence the activation by Hunchback and Bicoid, given that the activator and repressor binding sites in the stripe 2 enhancer are spaced by less than a hundred base-pairs, which seems to be the lower limit for this kind of repression (Gray and Levine, 1996; Strunk et al., 2001). CtBPs, or C-terminal Binding Proteins, are a common family of corepressors of many short-range repressors (Turner and Crossley, 2001). First found in early Drosophila embryos, CtBP is a corepressor of repressors such as Giant, Krüppel, Knirps, and Snail, which are at least partially dependent for their function (Mannervik et al., 1999). It has been suggested that CtBP may function, in part, by recruiting histone deacetylases (Criqui-Filipe et al., 1999; Sundqvist et al., 1998). The differences between long-range and short-range deacetylation may be found in the fact that long-range corepressors can spread along their target sites and recruit histone deacetylases to a large domain, but shortrange repressors could lack this ability to spread on the chromatin. Another theory is that longrange and short-range corepressors could interact with different histone deacetylases. For instance, Groucho has been found to bind class I histone deacetylases, whereas CtBP appears to bind both class I and class II histone deacetylases (Bertos et al., 2001).

Another possible mechanism for short-range repression is referred to as "quenching": this mechanism involves interactions of repressors and their corepressors, with activators bound to nearby sites (Gray and Levine, 1996). By this mechanism, a short-range corepressor may be directed to a specific target by a repressor and then interact with an activator protein which already bound DNA and thus block activation by preventing interaction between the activator and the transcriptional machinery. In Drosophila, it has been suggested that, for instance, Krüppel might work through a local quenching mechanism when bound to the eve stripe 2 enhancer (Gray and Levine, 1996).

Other general silencing hypotheses exist. For instance, it has been shown that long and short RNA molecules seem to be involved in the inhibition of transcription. Antigene RNAs (agRNAS) for instance are small RNAs targeting promoters and their downstream regions (Janowski and Corey, 2010) that silence gene expression (Janowski and Corey, 2010; Janowski et al., 2005). Finally and though largely contested by the community as little evidence is supporting this model, it has been proposed that miRNAs (for micro RNAs, composed of 20 to 22 nucleotides), initially known for regulating gene expression post-transcriptionally, might actually act at the transcriptional level (initiation and, or, elongation) (Bartel, 2009).

Despite the major role that CRMs play in all the biological functions of any organism and the current methods elaborated to study them, there is still a large discrepancy between the number of motifs occurrences in a genome and the actual in vivo detected active sites, which can be context dependent, (Yáñez-Cuna et al., 2013). Therefore, their role in development, evolution and disease still remains an important question to answer. Being able to identify, characterize and predict the function of CRMs and being able to distinguish between enhancers and silencers is therefore of great interest.

Predictions of CRMs

Predictions using motifs and conservation
The seemingly simple model of TFs binding to their preferred binding sequences to regulate gene expression lead to initial attempts to predict enhancers in whole genomes via the computational screening and matching of transcription factor binding motifs (TFBDs). These methods either identify genomic regions that are enriched for TF motif matches (Berman et al., 2002) or look for single matches that are conserved across species and evolutionary preserved (Del Bene et al., 2007; Kheradpour et al., 2007). Other methods use both enrichment and conservation, and some of them try to identify only regions in which TFBSs occur in specific combinations or in a particular order or arrangement (Hallikas et al., 2006; Herrmann et al., 2012; Sinha et al., 2003; Warner et al., 2008).

The relationships between TFs, TFBSs and enhancer activity is however far from simple and is not fully understood as short motifs often appear in the genome, and only a very small proportion of all matches in a genome are bound by the corresponding TF in vivo (Wang et al., 2012; YáñezCuna et al., 2012). Also, TFs can bind in a context specific fashion and depend on other proteins (Slattery et al., 2011; Yáñez-Cuna et al., 2012) to do so: for instance, in the early Drosophila melanogaster embryos, TFs such as Twist (a master mesoderm regulator) depend on the early zygotic TFs Zelda (also called Vielfaltig) while others depend on Tramtrack. In addition to this, the use of sequence conservation does not actually systematically help as conserved motif matches are not always bound by a TF in a particular cell type or tissue, or even acting as active enhancers (Kheradpour et al., 2007; Yáñez-Cuna et al., 2012). Some recent methods use different machine-learning approaches to try to identify characteristic DNA sequence features in enhancers found experimentally and use these features to predict unidentified enhancers (Burzynski et al., 2012; Kantorovitz et al., 2009; Narlikar et al., 2010). Such methods sometime make use of additional data, such as conservation or the expression of flanking genes and can be rather successful.

A good example such approaches are the is the "PhylCRM" and "Lever" algorithms developed by the Bulyk lab (Warner et al., 2008). The PhylCRM algorithm is able to scan very long genomic sequences for candidate CRMs, by quantifiying motif clustering and sequence conservation across many given genomes, using an evolutionary model consistent with the phylogeny of the genomes. Lever systematically identifies the target gene sets that are likely to be regulated by a collection of candidate regulatory motifs (Warner et al., 2008) which can come from various sources such as the literature, online databases or experiments (PBMs, ChIP-seq, SELEX-seq, etc.). This software allows the screening of many gene sets with many motifs, motif combinations and helps with the identification of co-regulated gene sets. While not performing de novo motif discovery, it instead evaluates an input collection of motifs for enrichment within PhylCRMpredicted candidate CRMs in the noncoding sequences flanking various input gene sets. When these gene sets correspond to Gene Ontology (GO) categories, the results of Lever analysis allow the unbiased assignment of functional annotations to the regulatory motifs and also to the candidate CRMs that comprise the genomic motif occurrences.

The main function of DNA motifs is to be bound by TFs and recruit them to the DNA and then initiate, or not, transcription by the recruitment of co-factors. Nonetheless, not all the DNA motifs may not be bound or even simply accessible at a given time or cell state (for instance in close chromatin), and therefore other methods were developed to directly find in vivo CRMs by looking at the binding of these TFs and cofactors in a genome.

Predictions from ChIP-seq
Given that functional CRMs are bound by TFs, there has been a rise in the use of genome-wide methods that determine in vivo transcription factor binding sites for the prediction of active CRMs, such as ChIP-seq. The ChIP-seq strategy aiming at TFs identifies numerous in vivo TFBSs in a given genome, such as in promoters, introns and non-coding intergenic DNA (Spitz and Furlong, 2012). These experiments revealed that TFs show dynamic patterns of binding throughout development, implying clues for spatiotemporal specific regulatory targets (YáñezCuna et al., 2012; Zeitlinger et al., 2007). The caveat in these predictions is that whereas TFBSs detected by ChIP-seq are most of the time validated by other experiments and studies, a large number of them are not functional enhancers (Fisher et al., 2012; Kvon et al., 2012; Li et al., 2008), suggesting that the binding of TFs to DNA does not necessarily imply a role in the regulation of transcription. Another approach is to identify CRMs of transcriptional cofactors, which do not bind to DNA directly but are rather recruited by TFs and play a role in the activation or repression of transcription. Combining cofactor ChIP peaks lead to the mapping of regions of different chromatin/histone modifications, providing some insights on actual regulatory regions (van Bemmel et al., 2013; Filion et al., 2010; Ram et al., 2011).

It is unclear why a major proportion of binding sites are non-functional, but there are a few possible explanations. First of all, TFs have a general affinity for DNA (Hammar et al., 2012), such that they bind to accessible DNA that does not perfectly match their motifs, inside or outside functional contexts, creating "false positive" (from a functional point of view) peaks in ChIP data. Then, it is well established that enhancers are activated by combinations of TFs, implying that the binding of only one or a few TFs is possibly insufficient to activate transcription (Spitz and Furlong, 2012). Finally, it is also possible that some TFs bind indirectly to CRMs by interacting with other TFs, making it difficult to assess any tissue-specific CRM activity or sequence-specific TF binding (Kvon et al., 2012; Moorman et al., 2006).

Histone marks and chromatin accessibility
Experiments in the 1970s showed that genomic regions containing expressed genes and silent regions were linked to the degree of compaction of eukaryotic DNA (Axel et al., 1973; Weintraub and Groudine, 1976), as chromatin allows or restricts the access of DNA to TFs. In fact, enhancers are "open" DNA regions by being depleted in nucleosomes and therefore sensitive to endonucleases such as DNase I or micrococcal nuclease (MNase). Many laboratories has made use of these nucleases to map regulatory regions by coupling them with deep sequencing, such as DNase-seq (Boyle et al., 2008) and MNase-seq (Yuan et al., 2005). It has been shown that some of the open DNA regions do not only correspond to active enhancers, but also insulators, silencers and other with yet unknown functions (Arnold et al., 2013; Gray and Levine, 1996; Xi et al., 2007), which would not have been found directly given that the factor involved in their regulation remain uncharacterized. Other methods have been developed recently to study chromatin accessibility, as alternatives or complementary methods to these nucleasedependent approaches. The Assay for Transposase Accessible Chromatin using sequencing or ATAC-seq (Buenrostro et al., 2013, 2015), for instance, make use of the ability of transposons to incorporate preferentially into nucleosome-free regions of genomes (Buenrostro et al., 2013), to insert sequencing adapters into accessible regions of chromatin and then, using the transposase Tn5. This transposase is mutated and highly efficiently cuts exposed DNA while simultaneously ligating adapters. The adapter-ligated fragments are then isolated, amplified and used for sequencing. This method presents the advantages of being relatively short and requiring 1,000 fold less material than MNase or DNase based methods (Buenrostro et al., 2015).

When playing their role, it has been shown that enhancers move into close spatial proximity of the promoter they regulate via a looping mechanism (Dekker et al., 2002; Petrascheck et al., 2005; Sanyal et al., 2012; Zhang et al., 2013). To capture this information, recent techniques were developed to assess directly any physical contact via the polymerase machinery. This way, interchromosomal and intrachromosomal contacts can be detected by methods such as chromosome conformation capture (3C) (Dekker et al., 2002; Miele et al., 2001; Splinter et al., 2004), circular chromosome conformation capture (4C) (Zhao et al., 2006), chromosome conformation capture carbon copy (5C) (Dostie and Dekker, 2007; Dostie et al., 2006) and Hi-C (Lieberman-Aiden et al., 2009).

With these methods, formaldehyde is used to fix physical contacts within the genome. The genomic DNA is sheared by different means and fragments in close proximity are then ligated. The products of these ligations are chimeric DNA molecules that contain fragment that should, in theory, after sequencing, reflect short to long-range contacts. A similar method to these is the chromatin interaction analysis with paired-end tag (ChIA-PET) (Fullwood et al., 2009), that is a combination of one of the methods above and ChIP, therefore looking for interactions involving a given or a set of TFs or cofactors. Enhancers and their target genes can be found by ChIA-PET by targeting RNA polymerase II (Li et al., 2012).

Although promising, the methods attempt to detect spatial proximity but this does not always reflect functional regulatory relationships (Gibcus and Dekker, 2013; de Laat and Duboule, 2013). Moreover, these methods provide data with low resolution, in the order of several kilobases to megabases (Lieberman-Aiden et al., 2009) even though the resolution improves with greater, but more material consuming, depth of sequencing (Jin et al., 2013; Sexton et al., 2012). Also, it has to be noted that these methods have a high background noise at close distances, a caveat of the approach, and that contacts between regions that are adjacent such as where many enhancers are found relative to promoters, are difficult to detect significantly, in one part due to formaldehyde crosslinking (Poorey et al., 2013; Teytelman et al., 2013) as open genomic regions are more likely to be crosslinked (Lieberman-Aiden et al., 2009).

Experimental identification of enhancers

The first enhancer was identified more than three decades ago as a short 72-bp sequence of the SV40 virus genome that could enhance the transcription of a reporter gene, in HeLa cells, by several hundred fold (Banerji et al., 1981). Shortly, cellular enhancers were found in animal genomes (Banerji et al., 1983) and since then, many CRMs, in a vast majority (if not all of them) enhancers, have been described, and their biochemical and functional properties have been extensively studied. Different experimental approaches managed to identify enhancers successfully, from old enhancer-trap methods, to image based enhancer testing to more advanced high-throughput methods (Arnold et al., 2013; modENCODE Consortium et al., 2010; Nègre et al., 2011; Schaffner, 2015), but these were not designed to attempt a prediction of functions or expression patterns of genes that are regulated by given CRMs, nor were they trying to identify silencers. Image-based methods rely on the creation of reporter constructs by placing a candidate DNA sequence upstream of a minimal promoter and a reporter gene such as GFP, luciferase or lacZ, and using microscopy for detecting the expression accordingly by staining for the protein or more directly by in-situ hybridization (Rada-Iglesias et al., 2011; Visel et al., 2009a; Zinzen et al., 2009). These methods provide interesting results about activity patterns in different model organisms such as Drosophila melanogaster (Kvon et al., 2012; Manning et al., 2012) or C.elegans (Dupuy et al., 2004) but, being tedious, are not suited for large screens.

Drosophila melanogaster, also known as "fruit fly" serves as a powerful model organism for investigations of spatiotemporal gene regulation in a developing animal (Davidson, 2001). As a matter of facts, since its introduction into the field of genetic experiments by Thomas Hunt Morgan in 1909, D. melanogaster is one the most studied organisms for biological research and more importantly in genetics and developmental biology, and its genome was fully sequenced in 2000 (Adams et al., 2000), containing about 140 million base pairs on 4 chromosomes. This genome has been continuously annotated since 1992 (Gramates et al., 2017), and contains around 14 thousands genes. Moreover, it has been shown that a large number of proteins and pathways are conserved between flies and high order vertebrates and humans, with approximately 75% of known human disease genes having fly homologues (Reiter et al., 2001), including cancer, immune system, neurological disorders, heart diseases, but also visual and auditory systems (Bier, 2005).

The development D. melanogaster has been studied and documented for decades, from embryogenesis to adult individuals. The transparency of embryos facilitating the study of their development, tissues such as the mesoderm or brain have been extensively analyzed and mapped. For instance and in regard of transcriptional networks, a core regulatory network has been described for the early mesoderm (Sandmann et al., 2007), identifying TFs such as Twist as orchestrating its development. It has been estimated that there are about 50,000 enhancers in the D. melanogaster genome (Pfeiffer et al., 2008) but that only $\sim 1,800$ are known so far (Halfon et al., 2008).

Furthermore, in vivo genomic occupancies of numerous TFs and chromatin marks have been profiled by chromatin immunoprecipitation (ChIP)-chip or ChIP-seq (modENCODE Consortium et al., 2010), and the activities of thousands of enhancers have been assayed (Gallo et al., 2011), in D. melanogaster embryos. The numerous and advanced ways of manipulating D. melanogaster genome, its rapid life cycle, its few needs and the large number of progeny that can easily be generated, along with all the elements discussed before, have made this specie one of, if not the most used and cost effective biological models to this day.

Pursuing the idea of high-throughput and genome-wide screens, different methods have been created, called massively parallel reporter assays (MPRAs), that allow to screen hundreds (Nam and Davidson, 2012) to thousands (Kwasnieski et al., 2012; Melnikov et al., 2012; Patwardhan et al., 2012; Sharon et al., 2012) of candidate CRMs for enhancer activity at once. These MPRAs use deep sequencing and DNA barcoding in experiments where a candidate element is located upstream of a minimal promoter and a reporter gene bearing a heterologous barcode. The cell lines are transformed using these plasmids and expression (RNA levels) of the reporter genes quantified using deep sequencing, allowing to assess the activity of the candidate elements as each candidate is associated to a given barcode by various means. Another similar method, called STARR-seq for Self-transcribing active regulatory region sequencing place the candidate enhancers downstream of a minimal promoter and within the report gene (Arnold et al., 2013), as it was accepted that CRMs and mostly enhancer could work regardless of their position and distance to promoters. In this method, reporter plasmids are transformed into cell lines and deep sequencing is then used, as previously, to detect the RNA levels of the reporter genes and here, therefore, the enhancers themselves.

Nonetheless, it has recently been shown that enhancers are not fully modular and that, in fact, the activity of an enhancer actually depends on its position relatively to the promoter and enhancers within the same locus (Lydiard-Martin et al., 2014), which forces the field into developing methods the role of locus architecture in gene expression and, therefore, stepping away from episomal assays in which a construct works independently from the genome. Moreover, these high-throughput methods do not provide much information about tissue or real cell specificity, in contrast to image based experiments, and are not realized in a genomic context as they are all plasmid based methods. To give a better insight on how gene regulation works in a live tissue and cell specific context, the Bulyk lab developed the enhancer-FACS-seq (eFS) method to address these issues (Gisselbrecht et al., 2013), in Drosophila melanogaster.

Similarly to the previous approaches, each candidate CRM (cCRM) is cloned upstream of a reporter gene but, here, integrated into the genome at a single landing site via phiC31-mediated integration. Compared to traditional reporter assays, the main innovation is the use of fluorescence activated cell sorting (FACS) of dissociated cells, instead of microscopy, to screen for tissue-specific enhancers. This approach utilizes a two-marker system: in each embryo, one marker (here, the rat CD2 cell surface protein) is used to label cells of a specific tissue for being sorted by FACS, and the other marker (here, green fluorescent protein GFP) is used as a reporter of CRM activity. Cells are sorted according to their tissue type and then by GFP fluorescence, and the cCRMs are recovered by PCR from double-positive sorted cells, and from total input cells. High-throughput sequencing of both populations then allows measuring the relative abundance of each cCRM in input and sorted populations; one can then assess the enrichment or depletion of each cCRM in double-positive cells versus input as a measure of activity in the CD2positive cell type being tested. The overview of these process is shown in the figure below.

In the initial report on the enhancer-FACS-seq method, a library of ~ 500 cCRMs was drawn from a variety of genomic data sources (e.g., TF-bound regions, coactivator-bound regions, DNase I hypersensitive sites, and predictions from the PhylCRM algorithm, by PCR from genomic DNA, and then screened for activity in embryonic mesoderm and in specific mesodermal cell types. The results were validated by traditional reporter gene assay in Drosophila melanogaster embryos for 68 cCRMs tested by eFS. The specificity of eFS was excellent among significantly enriched cCRMs, while sensitivity was good where the majority of the CD2-positive cells express GFP. It was found that the known enhancer-associated chromatin marks H3K27ac, H3K4me1, and Pol II are significantly enriched among the enhancers found to be active in mesoderm.

Overview of the enhancer-FACS-seq method

Although some algorithms have been developed for evaluating the regulatory significance of the DNA motif composition of CRMs, proximal promoter regions have frequently been used as surrogates for regulatory regions in yeast, where most TF binding sites are found (Roth et al., 1998). Also, attempts at creating synthetic enhancer and silencers, or even simply "tuning" CRMs (Barolo, 2016), have always proven a very difficult task, emphasizing our current lack of understanding for the combinatorial complexity of CRMs motif composition. Trying to understand the resulting code that governs expression from regulatory elements remains a major unanswered question in the field.

Current challenges

Understanding CRMs is currently a major scientific endeavor, as there is an increasing appreciation of their importance not only in development but also in evolution and disease (Carroll, 2008; Dawson and Kouzarides, 2012; Visel et al., 2009b), but unfortunately our knowledge of these elements still remains rather incomplete.

The vast majority of CRMs in any metazoan genome and their spatiotemporal roles are unknown (Yáñez-Cuna et al., 2013) as it is suggested by the number of gene expression patterns that have been linked to specific enhancers for instance (Richardson et al., 2010; Tomancak et al., 2002), the numerous single-nucleotide polymorphisms associated with diseases in non-coding regions of unknown function (International HapMap 3 Consortium et al., 2010) and the large number of genomic regions with enhancer-like chromatin features (ENCODE Project Consortium, 2012; modENCODE Consortium et al., 2010). Despite the fact that tools such as ChromHMM (Ernst and Kellis, 2012) or Spectacle (Song and Chen, 2015) have been created to annotate chromatin states, it still remains a challenge to predict CRMs and their activity from their DNA sequences or from histone marks, and to predict the important parts of an enhancer's sequence.

While enhancers have been extensively studied, silencers happened to be difficult to identify and still remain uncharacterized and relatively poorly understood (Schaffner, 2015). Despite this common treatment of enhancers and silencers as two distinct groups of regulatory elements, a few elements in a variety of eukaryotic systems, as it can be seen in Table 1 below (Bessis et al., 1997; Jiang et al., 1993; Kallunki et al., 1998; Kehayova et al., 2011; Koike et al., 1995; Prasad and Paulson, 2011; Schaeffer et al., 1995; Simpson et al., 1986; Stathopoulos and Levine, 2005; Stroebele and Erives, 2016) have been found to exhibit both activities; i.e., bifunctional elements that can act as either an enhancer or a silencer, depending on the tissue type or cellular conditions, and there has been some evidence suggesting that enhancers and silencers share more properties than initially thought (Raab and Kamakaka, 2010).

The silencer activities of a few known D. melanogaster bifunctional CRMs have been described in the D. melanogaster embryonic mesoderm (Jiang et al., 1993; Stathopoulos and Levine, 2005; Stroebele and Erives, 2016). The first one is the zen ventral repressor element (VRE) which contributes to specifying the zen expression pattern by repressing its expression ventrally and driving it dorsally, in early stage embryos. When tested in a reporter element upstream of a known enhancer, the eve minimal stripe 2 enhancer (or MSE), the VRE repressed the ventral expression induced by the MSE while extending it dorsally, reproducing the zen expression pattern (Jiang et al., 1993). The other example in Drosophila of precise control of expression, but also of the potential bifunctionality of CRMs, is the model proposed of a bifunctional element, a 1.4 kb enhancer downstream of the ind gene, by Stathopoulos and Levine (Stathopoulos and Levine, 2005). This enhancer was dissected into three modules and two were found to repress gene activity by delimiting patterns of expression. The ventral limits of gene expression in a developing embryo were found to be defined by the Snail and Vnd repressors in one module that can be seen as a silencer, while the dorsal border was defined by another new silencer element. Finally, for nab intronic enhancers have been found to also function as mutual silencers (Stroebele and Erives, 2016) where the distinct nab enhancer fragment analyzed possessed endogenous nab-related enhancer activities and ectopic enhancer activities while also function as interenhancer silencers of ectopic activites and modulators for their nonectopic activities.

Title	Citation	Evidence	Organism
Light-inducible and tissue-specific pea lhcp gene expression invovles an upstream element combining enhancer- and silencer-like properties	J. Simpson et al., Nature 323, 551-554 (1986).	Reporter assay	Tobacco
Conversion of a dorsal dependent silencer into an enhancer: evidence for dorsal corepressors	J. Jiang et al., EMBO J 12, 32013209 (1993).	Reporter assay	Drosophila
Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum	H. J. Schaeffer et al., Plant Mol Biol 28, 205-218 (1995).	Reporter assay	Fungus
Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor deltasubunit gene	S. Koike, L. Schaeffer, J.-P. Changeux, Proc Natl Acad Sci U S A 92, 10624-10628 (1995).	Reporter assay	Mouse
The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain	A. Bessis et al., Proc Natl Acad Sci U S A 94, 5906-5911 (1997).	Deletion	Mouse
The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during post-natal development	P. Kallunki, G. M. Edelman, F. S. Jones, Proc Natl Acad Sci U S A 95, 3233-3238 (1998).	Deletion	Mouse
Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo.	A. Stathopoulos, M. Levine, Dev Biol 280, 482-493 (2005).	Reporter assay	Drosophila
A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium	M. S. Prasad, A. F. Paulson, Dev Dyn 240, 1756-1768 (2011).	Reporter assay	Chicken
Regulatory elements required for the activation and repression of the protocadherin- α gene cluster	P. Kehayova et al., Proc Natl Acad Sci U S A 108, 1719517200 (2011).	Deletion	Mouse
Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila	Stroebele, E., and Erives, A., Genetics 203, 219-240 (2016).	Reporter assay	Drosophila

Table of all known bifunctional elements in the literature

To be included in this list, a study must have demonstrated evidence that a naturally occurring genomic sequence acts as an enhancer and as a silencer in alternate cellular contexts. This includes different tissues, cell types, cultured cell lines, conditions, or developmental ages.

We currently do not understand the mechanisms that allow the same element to have two opposite functions. Many TFs can act as either activators or repressors, depending on the context of the cis-element (Ogbourne and Antalis, 1998); however, bifunctionality of a cis-element may not require such TFs, since different activators or repressors could bind the same element in different tissues. Understanding how a given gene regulation network functions is still difficult but necessary to reach a complete understanding of any cellular activity, from embryogenesis and complex development to regular metabolism, but also to understand how a disruption in a given network can, or not, lead to a dysfunctional network. Many TFs can act as either as transcriptional activators or repressors, depending on the context of their binding, but the potential bifunctionality of CRMs complicates the prediction of gene expression from sequence and the interpretation of the effects of cis-regulatory variation across populations or in evolution, since we can theorize that no such TF is involved in bifunctional elements.

These bifunctional elements complicate the prediction of gene expression from sequence and the interpretation of the effects of cis-regulatory variation across population, in evolution, but also our global understand of genotype to phenotype relationships. For instance, being able to predict the functional consequences of mutations in CRMs, which means having a precise understanding of their potential bifunctionality, could be a drastic help in the fight against diseases involving perturbations of gene regulation networks, and potentially cancer.

As I write this dissertation, it remains unknown how general this property might be and how many such bifunctional elements a typical metazoan genome might contain. Screening for bifunctional CRMs requires the ability to assay a cis-element for both enhancer activity in one cell type and silencer activity in a different cell type, in a controlled spatiotemporal manner, i.e. at a known position within the genome, in a known cell type, at the proper time. However, unlike enhancer assays, no scalable screening technology is currently available to assay silencer activity in a metazoan.

Goals of the dissertation

The main goal of this dissertation was the discovery and study of silencers and potential bifunctional elements by adapting our previously developed method, enhancer-FACS-seq or "eFS" (Gisselbrecht et al., 2013), into "silencer-FACS-seq" that aimed for the discovery of tissue specific enhancers in developing Drosophila melanogaster embryos and more specifically their mesoderm, but also an attempt at creating a method of cellular purification or "panning method", which aims to reach these small population of cells in a eFS and sFS fashion.

In the first chapter, I will discuss how the eFS method was adapted for the purpose of silencers. In this chapter, I will discuss what candidate elements were chosen for our experiment, the reasoning associated with their selection, and analyze the results from the experiments and validations. I will go over our attempts to try to characterize our newly found silencers, present with the main findings of this work, along with areas of ongoing projects and future studies.

In the second chapter, I will go over the ongoing "cell panning" project by discussing the goals, trials and methods used to purify small or rare population of cells, from dissociated Drosophila melanogaster. embryos, for analysis.

Finally, I will end this dissertation with a global discussion on the results of my thesis and present potential future directions for these projects.

References

Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.

Akam, M. (1989). Drosophila development: making stripes inelegantly. Nature 341, 282-283.
Altschuler, S.J., and Wu, L.F. (2010). Cellular Heterogeneity: Do Differences Make a Difference? Cell 141, 559-563.

Amano, T., Sagai, T., Tanabe, H., Mizushina, Y., Nakazawa, H., and Shiroishi, T. (2009). Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47-57.

Arnold, C.D., Gerlach, D., Stelzer, C., Boryń, Ł.M., Rath, M., and Stark, A. (2013). Genomewide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074-1077.

Arnone, M.I., and Davidson, E.H. (1997). The hardwiring of development: organization and function of genomic regulatory systems. Dev. Camb. Engl. 124, 1851-1864.

Axel, R., Cedar, H., and Felsenfeld, G. (1973). Synthesis of globin ribonucleic acid from duckreticulocyte chromatin in vitro. Proc. Natl. Acad. Sci. U. S. A. 70, 2029-2032.

Banerji, J., Rusconi, S., and Schaffner, W. (1981). Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299-308.

Banerji, J., Olson, L., and Schaffner, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729740.

Barolo, S. (2016). How to tune an enhancer. Proc. Natl. Acad. Sci. 113, 6330-6331.
Barolo, S., and Levine, M. (1997). hairy mediates dominant repression in the Drosophila embryo. EMBO J. 16, 2883-2891.

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.

Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215233.

Bell, O., Tiwari, V.K., Thomä, N.H., and Schübeler, D. (2011). Determinants and dynamics of genome accessibility. Nat. Rev. Genet. 12, 554.
van Bemmel, J.G., Filion, G.J., Rosado, A., Talhout, W., de Haas, M., van Welsem, T., van Leeuwen, F., and van Steensel, B. (2013). A network model of the molecular organization of chromatin in Drosophila. Mol. Cell 49, 759-771.

Berman, B.P., Nibu, Y., Pfeiffer, B.D., Tomancak, P., Celniker, S.E., Levine, M., Rubin, G.M., and Eisen, M.B. (2002). Exploiting transcription factor binding site clustering to identify cis-
regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. U. S. A. 99, 757-762.

Bertos, N.R., Wang, A.H., and Yang, X.J. (2001). Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. Biochim. Biol. Cell. 79, 243-252.

Bessis, A., Champtiaux, N., Chatelin, L., and Changeux, J.-P. (1997). The neuron-restrictive silencer element: A dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl. Acad. Sci. U. S. A. 94, 5906-5911.

Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9.

Bonn, S., Zinzen, R.P., Girardot, C., Gustafson, E.H., Perez-Gonzalez, A., Delhomme, N., Ghavi-Helm, Y., Wilczyński, B., Riddell, A., and Furlong, E.E.M. (2012). Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44, 148-156.

Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z., Furey, T.S., and Crawford, G.E. (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311-322.

Brivanlou, A.H., and Darnell, J.E. (2002). Signal transduction and the control of gene expression. Science 295, 813-818.

Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics. Nat. Methods $10,1213-1218$.

Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-9.

Bulyk, M.L. (2005). Discovering DNA regulatory elements with bacteria. Nat. Biotechnol. 23, 942-944.

Bulyk, M.L. (2007). Protein binding microarrays for the characterization of DNA-protein interactions. Adv. Biochem. Eng. Biotechnol. 104, 65-85.

Burzynski, G.M., Reed, X., Taher, L., Stine, Z.E., Matsui, T., Ovcharenko, I., and McCallion, A.S. (2012). Systematic elucidation and in vivo validation of sequences enriched in hindbrain transcriptional control. Genome Res. 22, 2278-2289.

Campbell, L.L., and Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle Georget. Tex 6, 2332-2338.

Carroll, S.B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25-36.

Chen, G., and Courey, A.J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene 249, 1-16.

Chen, G., Fernandez, J., Mische, S., and Courey, A.J. (1999). A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev. 13, 2218-2230.

Choi, C., Kwon, H.J., and Kim, Y. (1999). Choi CY, Kim YH, Kwon HJ, Kim Y.. The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription. J Biol Chem 274: 33194-33197. J. Biol. Chem. 274, 33194-33197.

Criqui-Filipe, P., Ducret, C., Maira, S.-M., and Wasylyk, B. (1999). Net, a negative Rasswitchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J. 18, 3392-3403.
D. Flores-Saaib, R., and J. Courey, A. (2000). Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho- and Tup1-mediated repression. Nucleic Acids Res. 28, 4189-4196.
D. Watson, A., Edmondson, D., Bone, J., Mukai, Y., Yu, Y., Du, W., J. Stillman, D., and Dent, S. (2000). Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev. 14.

Davidson, E.H. (2001). Chapter 2 - Inside the cis-Regulatory Module: Control Logic, and How Regulatory Environment is Transduced into Spatial Patterns of Gene Expression. In Genomic Regulatory Systems, (San Diego: Academic Press), pp. 25-62.

Davidson, E.H., and Peter, I.S. (2015). Chapter 1 - The Genome in Development. In Genomic Control Process, (Oxford: Academic Press), pp. 1-40.

Dawson, M.A., and Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell 150, 12-27.

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing Chromosome Conformation. Science 295, 1306-1311.

Del Bene, F., Ettwiller, L., Skowronska-Krawczyk, D., Baier, H., Matter, J.-M., Birney, E., and Wittbrodt, J. (2007). In vivo validation of a computationally predicted conserved Ath5 target gene set. PLoS Genet. 3, 1661-1671.

Dillon, N. (2006). Gene regulation and large-scale chromatin organization in the nucleus. Chromosome Res. 14, 117-126.

Dostie, J., and Dekker, J. (2007). Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988-1002.

Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299-1309.

Dupuy, D., Li, Q.-R., Deplancke, B., Boxem, M., Hao, T., Lamesch, P., Sequerra, R., Bosak, S., Doucette-Stamm, L., Hope, I.A., et al. (2004). A first version of the Caenorhabditis elegans Promoterome. Genome Res. 14, 2169-2175.

Edmondson, D., Smith, M.M., and Dent, S. (1996). Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10, 1247-1259.

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.

Ernst, J., and Kellis, M. (2012). ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215-216.

Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J., et al. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212-224.

Fisher, A., Ohsako, S., and Caudy, M. (1996). The WRPW Motif of the Hairy-Related Basic Helix-Loop-Helix Repressor Proteins Acts as a 4AminoAcid Transcription Repression and Protein-Protein Interaction Domain. Mol. Cell. Biol. 16, 2670-2677.

Fisher, W.W., Li, J.J., Hammonds, A.S., Brown, J.B., Pfeiffer, B.D., Weiszmann, R., MacArthur, S., Thomas, S., Stamatoyannopoulos, J.A., Eisen, M.B., et al. (2012). DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 109, 21330-21335.

Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor- α-bound human chromatin interactome. Nature 462, 58.

Fuxman Bass, J.I., Reece-Hoyes, J.S., and Walhout, A.J.M. (2016). Gene-Centered Yeast OneHybrid Assays. Cold Spring Harb. Protoc. 2016, pdb.top077669.

Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Des Soye, B., Bergman, C.M., and Halfon, M.S. (2011). REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 39, D118-123.

Gibcus, J.H., and Dekker, J. (2013). The hierarchy of the 3D genome. Mol. Cell 49, 773-782.
Gisselbrecht, S.S., Barrera, L.A., Porsch, M., Aboukhalil, A., Estep, P.W., Vedenko, A., Palagi, A., Kim, Y., Zhu, X., Busser, B.W., et al. (2013). Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat. Methods 10, 774-780.

Gramates, L.S., Marygold, S.J., Santos, G. dos, Urbano, J.-M., Antonazzo, G., Matthews, B.B., Rey, A.J., Tabone, C.J., Crosby, M.A., Emmert, D.B., et al. (2017). FlyBase at 25: looking to the future. Nucleic Acids Res. 45, D663-D671.

Gray, S., and Levine, M. (1996). Transcriptional repression in development. Curr. Opin. Cell Biol. 8, 358-364.

Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172.

Gromöller, A., and Lehming, N. (2000). Srb7p is a physical and physiological target of Tup1p. EMBO J. 19, 6845-6852.

Grün, D., Kester, L., and Oudenaarden, A. van (2014). Validation of noise models for singlecell transcriptomics. Nat. Methods 11, 637.

Grunstein, M. (1998). Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325-328.

Halfon, M.S., Gallo, S.M., and Bergman, C.M. (2008). REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila. Nucleic Acids Res. 36, D594-598.

Hallikas, O., Palin, K., Sinjushina, N., Rautiainen, R., Partanen, J., Ukkonen, E., and Taipale, J. (2006). Genome-wide prediction of mammalian enhancers based on analysis of transcriptionfactor binding affinity. Cell 124, 47-59.

Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E.G., Berg, O.G., and Elf, J. (2012). The lac repressor displays facilitated diffusion in living cells. Science 336, 1595-1598.

Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, L.O., Van Calcar, S., Qu, C., Ching, K.A., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311-318.

Heppner, G.H. (1984). Tumor heterogeneity. Cancer Res. 44, 2259-2265.
Herrmann, C., Van de Sande, B., Potier, D., and Aerts, S. (2012). i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res. 40, e114.

Hewitt, G.F., Strunk, B.S., Margulies, C., Priputin, T., Wang, X.D., Amey, R., Pabst, B.A., Kosman, D., Reinitz, J., and Arnosti, D.N. (1999). Transcriptional repression by the Drosophila giant protein: cis element positioning provides an alternative means of interpreting an effector gradient. Dev. Camb. Engl. 126, 1201-1210.

Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell $157,1262-1278$.

Huang, L., Ma, F., Chapman, A., Lu, S., and Xie, X.S. (2015). Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu. Rev. Genomics Hum. Genet. 16, 79-102.

Ingham, P.W. (1988). The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25-34.

International HapMap 3 Consortium, Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M., Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu, F., et al. (2010). Integrating common and rare genetic variation in diverse human populations. Nature 467, 5258.

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.

Janowski, B.A., and Corey, D.R. (2010). Minireview: Switching on progesterone receptor expression with duplex RNA. Mol. Endocrinol. Baltim. Md 24, 2243-2252.

Janowski, B.A., Huffman, K.E., Schwartz, J.C., Ram, R., Hardy, D., Shames, D.S., Minna, J.D., and Corey, D.R. (2005). Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat. Chem. Biol. 1, 216-222.

Jiang, J., Cai, H., Zhou, Q., and Levine, M. (1993). Conversion of a dorsal-dependent silencer into an enhancer: evidence for dorsal corepressors. EMBO J. 12, 3201-3209.

Jin, F., Li, Y., Dixon, J.R., Selvaraj, S., Ye, Z., Lee, A.Y., Yen, C.-A., Schmitt, A.D., Espinoza, C.A., and Ren, B. (2013). A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290-294.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.

Kallunki, P., Edelman, G.M., and Jones, F.S. (1998). The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl. Acad. Sci. U. S. A. 95, 3233-3238.

Kantorovitz, M.R., Kazemian, M., Kinston, S., Miranda-Saavedra, D., Zhu, Q., Robinson, G.E., Göttgens, B., Halfon, M.S., and Sinha, S. (2009). Motif-blind, genome-wide discovery of cisregulatory modules in Drosophila and mouse. Dev. Cell 17, 568-579.

Karin, M. (1990). Too many transcription factors: positive and negative interactions. New Biol. 2, 126-131.

Kehayova, P., Monahan, K., Chen, W., and Maniatis, T. (2011). Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc. Natl. Acad. Sci. U. S. A. 108, 17195-17200.

Kheradpour, P., Stark, A., Roy, S., and Kellis, M. (2007). Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res. 17, 1919-1931.

Koike, S., Schaeffer, L., and Changeux, J.P. (1995). Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor delta-subunit gene. Proc. Natl. Acad. Sci. U. S. A. 92, 10624-10628.

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., and Teichmann, S.A. (2015). The Technology and Biology of Single-Cell RNA Sequencing. Mol. Cell 58, 610-620.

Kolovos, P., Knoch, T.A., Grosveld, F.G., Cook, P.R., and Papantonis, A. (2012). Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5, 1.

Kornberg, R.D. (2007). The molecular basis of eukaryotic transcription. Proc. Natl. Acad. Sci. U. S. A. 104, 12955-12961.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.
Kvon, E.Z., Stampfel, G., Yáñez-Cuna, J.O., Dickson, B.J., and Stark, A. (2012). HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev. 26, 908-913.

Kwasnieski, J.C., Mogno, I., Myers, C.A., Corbo, J.C., and Cohen, B.A. (2012). Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc. Natl. Acad. Sci. U. S. A. 109, 19498-19503.
de Laat, W., and Duboule, D. (2013). Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499-506.

Latchman, D.S. (1997). Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29, 1305-1312.

Lee, T.I., and Young, R.A. (2000). Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77-137.

Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799-804.

Li, J.J., and Herskowitz, I. (1993). Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870-1874.

Li, L.M., and Arnosti, D.N. (2011). Long- and short-range transcriptional repressors induce distinct chromatin states on repressed genes. Curr. Biol. CB 21, 406-412.

Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Goh, Y., Lim, J., Zhang, J., et al. (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84-98.

Li, X., MacArthur, S., Bourgon, R., Nix, D., Pollard, D.A., Iyer, V.N., Hechmer, A., Simirenko, L., Stapleton, M., Luengo Hendriks, C.L., et al. (2008). Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6, e27.

Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.

Lockhart, D.J., and Winzeler, E.A. (2000). Genomics, gene expression and DNA arrays. Nature 405, 827-836.

Loo, S., and Rine, J. (1995). Silencing and heritable domains of gene expression. Annu. Rev. Cell Dev. Biol. 11, 519-548.

Lydiard-Martin, T., Bragdon, M., Eckenrode, K.B., Wunderlich, Z., and DePace, A.H. (2014). Locus architecture affects mRNA expression levels in Drosophila embryos. BioRxiv 005173.

M Gowri, P., H Yu, J., Shaufl, A., Sperling, M., and K Menon, R. (2003). Recruitment of a Repressosome Complex at the Growth Hormone Receptor Promoter and Its Potential Role in Diabetic Nephropathy. Mol. Cell. Biol. 23, 815-825.

Maeda, R.K., and Karch, F. (2011). Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions. Curr. Opin. Genet. Dev. 21, 187-193.

Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., and Koonin, E.V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 .

Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999). Transcriptional Coregulators in Development. Science 284, 606-609.

Manning, L., Heckscher, E.S., Purice, M.D., Roberts, J., Bennett, A.L., Kroll, J.R., Pollard, J.L., Strader, M.E., Lupton, J.R., Dyukareva, A.V., et al. (2012). A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep. 2, 1002-1013.

Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan, C.G., Kinney, J.B., et al. (2012). Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271-277.

Miele, A., Gheldof, N., Tabuchi, T.M., Dostie, J., and Dekker, J. (2001). Mapping Chromatin Interactions by Chromosome Conformation Capture. In Current Protocols in Molecular Biology, (John Wiley \& Sons, Inc.), p.

Mitchell, P.J., and Tjian, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., Ma, L., et al. (2010). Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787-1797.

Moorman, C., Sun, L.V., Wang, J., de Wit, E., Talhout, W., Ward, L.D., Greil, F., Lu, X.-J., White, K.P., Bussemaker, H.J., et al. (2006). Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 103, 12027-12032.

Mukherjee, S., Berger, M.F., Jona, G., Wang, X.S., Muzzey, D., Snyder, M., Young, R.A., and Bulyk, M.L. (2004). Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36, 1331-1339.

Nam, J., and Davidson, E.H. (2012). Barcoded DNA-tag reporters for multiplex cis-regulatory analysis. PloS One 7, e35934.

Narlikar, L., Sakabe, N.J., Blanski, A.A., Arimura, F.E., Westlund, J.M., Nobrega, M.A., and Ovcharenko, I. (2010). Genome-wide discovery of human heart enhancers. Genome Res. 20, 381-392.

Nègre, N., Brown, C.D., Ma, L., Bristow, C.A., Miller, S.W., Wagner, U., Kheradpour, P., Eaton, M.L., Loriaux, P., Sealfon, R., et al. (2011). A cis-regulatory map of the Drosophila genome. Nature 471, 527-531.

Nikolov, D.B., and Burley, S.K. (1997). RNA polymerase II transcription initiation: a structural view. Proc. Natl. Acad. Sci. U. S. A. 94, 15-22.

Ogbourne, S., and Antalis, T.M. (1998). Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem. J. 331, 1-14.

Papamichos-Chronakis, M., Conlan, R.S., Gounalaki, N., Copf, T., and Tzamarias, D. (2000). Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J. Biol. Chem. 275, 8397-8403.

Parkhurst, S.M. (1998). Groucho: making its Marx as a transcriptional co-repressor. Trends Genet. TIG 14, 130-132.

Patwardhan, R.P., Hiatt, J.B., Witten, D.M., Kim, M.J., Smith, R.P., May, D., Lee, C., Andrie, J.M., Lee, S.-I., Cooper, G.M., et al. (2012). Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265-270.

Petrascheck, M., Escher, D., Mahmoudi, T., Peter Verrijzer, C., Schaffner, W., and Barberis, A. (2005). DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Res. 33, 3743-3750.

Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., Scully, A., Carlson, J.W., Wan, K.H., Laverty, T.R., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 105, 9715-9720.

Poorey, K., Viswanathan, R., Carver, M.N., Karpova, T.S., Cirimotich, S.M., McNally, J.G., Bekiranov, S., and Auble, D.T. (2013). Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342, 369-372.

Portoso, M., and Cavalli, G. (2008). The Role of RNAi and Noncoding RNAs in Polycomb Mediated Control of Gene Expression and Genomic Programming. pp. 29-44.

Pott, S., and Lieb, J.D. (2015). Single-cell ATAC-seq: strength in numbers. Genome Biol. 16.
Prasad, M.S., and Paulson, A.F. (2011). A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 240, 1756-1768.

Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569577.

Raab, J.R., and Kamakaka, R.T. (2010). Insulators and promoters: closer than we think. Nat. Rev. Genet. 11, 439-446.

Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., and Wysocka, J. (2011). A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283.

Ram, O., Goren, A., Amit, I., Shoresh, N., Yosef, N., Ernst, J., Kellis, M., Gymrek, M., Issner, R., Coyne, M., et al. (2011). Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147, 1628-1639.

Reiter, L., Potocki, L., Chien, S., Gribskov, M., and Bier, E. (2001). A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster.

Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Burton, N., Rao, J., Fisher, M., Baldock, R.A., Davidson, D.R., and Christiansen, J.H. (2010). EMAGE mouse embryo spatial gene expression database: 2010 update. Nucleic Acids Res. 38, D703-709.

Roeder, R.G. (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327-335.

Roth, F.P., Hughes, J.D., Estep, P.W., and Church, G.M. (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939-945.

Rubin, H. (1990). The significance of biological heterogeneity. Cancer Metastasis Rev. 9, 120.

Saliba, A.-E., Westermann, A.J., Gorski, S.A., and Vogel, J. (2014). Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860.

Sandmann, T., Girardot, C., Brehme, M., Tongprasit, W., Stolc, V., and Furlong, E.E.M. (2007). A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev. 21, 436-449.

Sanyal, A., Lajoie, B., Jain, G., and Dekker, J. (2012). The long-range interaction landscape of gene promoters. Nature 489, 109-113.

Schaeffer, H.J., Forstheoefel, N.R., and Cushman, J.C. (1995). Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol. Biol. 28, 205-218.

Schaffner, W. (2015). Enhancers, enhancers - from their discovery to today's universe of transcription enhancers. Biol. Chem. 396, 311-327.

Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472.

Sharon, E., Kalma, Y., Sharp, A., Raveh-Sadka, T., Levo, M., Zeevi, D., Keren, L., Yakhini, Z., Weinberger, A., and Segal, E. (2012). Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521530.

Simpson, J., Schell, J., Montagu, M.V., and Herrera-Estrella, L. (1986). Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancerand silencer-like properties. Nature 323, 551-554.

Sinha, S., van Nimwegen, E., and Siggia, E.D. (2003). A probabilistic method to detect regulatory modules. Bioinforma. Oxf. Engl. 19 Suppl 1, i292-301.

Slattery, M., Riley, T., Liu, P., Abe, N., Gomez-Alcala, P., Dror, I., Zhou, T., Rohs, R., Honig, B., Bussemaker, H.J., et al. (2011). Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270-1282.

Song, J., and Chen, K.C. (2015). Spectacle: fast chromatin state annotation using spectral learning. Genome Biol. 16, 33.

Spitz, F., and Furlong, E.E.M. (2012). Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613-626.

Splinter, E., Grosveld, F., and de Laat, W. (2004). 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493-507.

Stathopoulos, A., and Levine, M. (2005). Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev. Biol. 280, 482-493.

Stroebele, E., and Erives, A. (2016). Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila. Genetics 203, 219-240.

Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599-606.

Strunk, B., Struffi, P., Wright, K., Pabst, B., Thomas, J., Qin, L., and Arnosti, D.N. (2001). Role of CtBP in Transcriptional Repression by the Drosophila giant Protein. Dev. Biol. 239, 229-240.

Sundqvist, A., Sollerbrant, K., and Svensson, C. (1998). The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding proteinhistone deacetylase complex. FEBS Lett. 429, 183-188.

Teytelman, L., Thurtle, D.M., Rine, J., and van Oudenaarden, A. (2013). Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. U. S. A. 110, 18602-18607.

Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E., Richards, S., Ashburner, M., Hartenstein, V., Celniker, S.E., et al. (2002). Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 3, research0088.

Tsioris, K., Torres, A.J., Douce, T.B., and Love, J.C. (2014). A New Toolbox for Assessing Single Cells. Annu. Rev. Chem. Biomol. Eng. 5, 455-477.

Turner, J., and Crossley, M. (2001). The CtBP family: Enigmatic and enzymatic transcriptional co-repressors.

Visel, A., Blow, M.J., Li, Z., Zhang, T., Akiyama, J.A., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., et al. (2009a). ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854-858.

Visel, A., Rubin, E.M., and Pennacchio, L.A. (2009b). Genomic views of distant-acting enhancers. Nature 461, 199-205.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering. Cell 153, 910-918.

Wang, J., Zhuang, J., Iyer, S., Lin, X., Whitfield, T.W., Greven, M.C., Pierce, B.G., Dong, X., Kundaje, A., Cheng, Y., et al. (2012). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798-1812.

Warner, J.B., Philippakis, A.A., Jaeger, S.A., He, F.S., Lin, J., and Bulyk, M.L. (2008). Systematic identification of mammalian regulatory motifs' target genes and functions. Nat. Methods 5, 347-353.

Weintraub, H., and Groudine, M. (1976). Chromosomal subunits in active genes have an altered conformation. Science 193, 848-856.

Weinzierl, R. (1999). Mechanisms of gene expression : structure, function and evolution of the basal transcriptional machinery (London : Imperial College Press).

Wu, A.R., Wang, J., Streets, A.M., and Huang, Y. (2017). Single-Cell Transcriptional Analysis. Annu. Rev. Anal. Chem. 10, 439-462.

Wu, J., Suka, N., Carlson, M., and Grunstein, M. (2001). TUP1 utilizes histone H3/H2Bspecific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7, 117-126.

Xi, H., Shulha, H.P., Lin, J.M., Vales, T.R., Fu, Y., Bodine, D.M., McKay, R.D.G., Chenoweth, J.G., Tesar, P.J., Furey, T.S., et al. (2007). Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136.

Xie, F., Ye, L., Chang, J.C., Beyer, A.I., Wang, J., Muench, M.O., and Kan, Y.W. (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24, 1526-1533.

Yáñez-Cuna, J.O., Dinh, H.Q., Kvon, E.Z., Shlyueva, D., and Stark, A. (2012). Uncovering cisregulatory sequence requirements for context-specific transcription factor binding. Genome Res. 22, 2018-2030.

Yáñez-Cuna, J.O., Kvon, E.Z., and Stark, A. (2013). Deciphering the transcriptional cisregulatory code. Trends Genet. TIG 29, 11-22.

Yu, X., Li, P., Roeder, R.G., and Wang, Z. (2001). Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split., Inhibition of Androgen Receptor-Mediated Transcription by Amino-Terminal Enhancer of split. Mol. Cell. Biol. Mol. Cell. Biol. 21, 21, 4614, 4614-4625.

Yuan, G.-C., Liu, Y.-J., Dion, M.F., Slack, M.D., Wu, L.F., Altschuler, S.J., and Rando, O.J. (2005). Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626-630.

Zaman, Z., Ansari, A.Z., Koh, S.S., Young, R., and Ptashne, M. (2001). Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc. Natl. Acad. Sci. 98, 2550-2554.

Zeitlinger, J., Zinzen, R.P., Stark, A., Kellis, M., Zhang, H., Young, R.A., and Levine, M. (2007). Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev. 21, 385-390.

Zhang, Y., Wong, C.-H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic promoterenhancer long-range associations. Nature 504, 306.

Zhao, Z., Tavoosidana, G., Sjölinder, M., Göndör, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K.S., Singh, U., et al. (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341-1347.

Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M., and Furlong, E.E.M. (2009). Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462, 65-70.

Chapter 1: bifunctionality of CRMs

This chapter presents the major project of my PhD thesis and will be divided into four parts. The first subchapter will present the results of our initial library and first experiment. The second subchapter will present the work realized for a new library and the associated experiments, and their still ongoing analysis at the time of the writing of this thesis. I will then present current and future experiments and analyses necessary to submit this work for publication. Finally, I will conclude this chapter with a brief discussion about our current results.

Article in preparation

Transcriptional silencers in Drosophila serve a dual role as transcriptional enhancers

*Stephen S. Gisselbrecht ${ }^{1}, ~ *$ Alexandre Palagi 1,2, Julia M. Rogers ${ }^{1,3,}$ Jesse V. Kurland ${ }^{1}$, Martha L. Bulyk ${ }^{1,4 \dagger}$
${ }^{1}$ Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
${ }^{2}$ Doctoral School of Life and Health Sciences, University of Nice Sophia Antipolis, 06560 Valbonne, France.
${ }^{3}$ Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA.
${ }^{4}$ Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

* Co-first authors
\dagger Corresponding author. E-mail: mlbulyk@genetics.med.harvard.edu

Author contributions

This work was supported by the National Institutes of Health (grant R01 HG005287 and R01 HG009723 to Martha Bulyk). Stephen Gisselbrecht, Alexandre Palagi, and Jesse Kurland performed experiments, Stephen Gisselbrecht and Alexandre Palagi performed data analysis and validations, Martha Bulyk supervised research, Stephen Gisselbrecht, Julia Rogers, Alexandre Palagi, and Martha Bulyk designed the study, and Stephen Gisselbrecht, Alexandre Palagi and Martha Bulyk are working on this manuscript.

Abstract

A major challenge in biology is to understand how complex gene expression patterns in organismal development are encoded in the genome. While transcriptional enhancers have been studied extensively, few transcriptional silencers have been identified and they remain poorly understood. Here we used a novel strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos. Strikingly, 100% of the tested elements that we found to act as transcriptional silencers were also active enhancers in other cellular contexts. These elements were enriched in highly occupied target (HOT) region overlap (Roy et al., 2010) and specific transcription factor (TF) motif combinations. CRM bifunctionality complicates the understanding of how gene regulation is specified in the genome and how it is read out differently in different cell types. Our results challenge the common practice of treating elements with enhancer activity identified in one cell type as serving exclusively activating roles in the organism and suggest that thousands or more bifunctional CRMs remain to be discovered in Drosophila and perhaps $10^{4}-10^{5}$ in human (Heintzman et al., 2009). Characterization of bifunctional elements should aid in investigations of how precise gene expression patterns are encoded in the genome.

Acknowledgments

We thank Anastasia Vedenko and James Anderson for technical assistance, Luis Barrera for helpful discussions, and Marc Vidal, Suzanne Gaudet, Shamil Sunyaev, Richard Maas, Alan Michelson, Kevin Struhl, and Trevor Siggers for critical feedback on the manuscript. This work was supported by a grant from the National Institutes of Health (R01 HG005287 and R01 HG009723) to Martha Bulyk.

Introduction

Precise spatiotemporal control of gene expression is mediated by two types of cis-regulatory modules (CRMs): transcriptional enhancers and silencers (Ogbourne and Antalis, 1998). Investigations of transcriptional regulation in metazoans have focused primarily on cisregulatory elements that activate gene expression. Transcriptional enhancers play crucial roles in gene regulation by activating gene expression in a tissue-specific manner in development, and in adult cells in response to cellular or environmental stimuli. However, it is also important that gene expression not be turned on or up regulated inappropriately. Transcriptional silencers are active negative regulatory elements (Ogbourne and Antalis, 1998) that play crucial roles in contributing to the specification of precise gene expression patterns, such as sharp expression domains in a developing organism, by preventing ectopic expression. Whereas enhancers have been characterized extensively, silencers are poorly understood and few have been identified across Metazoa.

Unlike for enhancer assays, no scalable screening technology is currently available to assay silencer activity in a metazoan. Drosophila melanogaster serves as a powerful model organism for investigations of spatiotemporal gene regulation in a developing animal. The silencer activities of two Drosophila CRMs have been described in the embryonic mesoderm (Jiang et al., 1993; Stathopoulos and Levine, 2005). Interestingly while being silencers in the mesoderm, these elements acted as enhancers in other tissues and can be described as bifunctional CRMs (Jiang et al., 1993; Stathopoulos and Levine, 2005). Furthermore, in vivo genomic occupancies of numerous TFs and chromatin marks have been profiled by chromatin immunoprecipitation (ChIP) -chip or ChIP-seq (Roy et al., 2010), and the activities of thousands of enhancers (Gallo et al., 2011) have been assayed, in Drosophila embryos. Thus, we reasoned that the developing Drosophila embryonic mesoderm would serve as a valuable model system in which to develop an approach to screen for silencers and then to inspect those silencers for enhancer activity in other tissues. We therefore applied a two-step strategy to identify silencers in the developing embryonic mesoderm in whole Drosophila embryos (Supplementary Fig. 1).

First, we have adapted our previously published technology for highly parallel screening of candidate enhancer sequences in Drosophila (Gisselbrecht et al., 2013) to enrich for sequences displaying dominant silencing activity in the embryonic mesoderm. We then individually tested non-promoter sequences that scored positive in this initial screen, to assemble a high-confidence list of validated mesodermal silencers. We found that, although we included several different types of genomic sequence in our candidate silencer library, all of the sequences in which we detected mesodermal silencing activity were enhancers in alternate cellular contexts.

Several genetic and epigenetic features are enriched in the set of validated silencers we have identified, but no combination of these gives enough predictive power to confidently identify silencers in the absence of experimental testing. Indeed, mutating instances of a transcription factor binding site motif significantly enriched in silencers had effects primarily on their activity as enhancers. We suggest that the widely observed distinction between enhancers and silencers may be an oversimplification, and that dual readout of regulatory information from bifunctional CRMs may be a common feature of transcriptional regulation.

Initial library and first experiment

Screening a library of elements for silencer activity in whole Drosophila embryos

We adapted our previously published enhancer-FACS-Seq technology, for highly parallel screening of elements for enhancer activity in Drosophila embryos (Gisselbrecht et al., 2013), into 'silencer-FACS-Seq' (sFS) technology, which enriches for elements that tissue-specifically silence reporter gene expression (see Methods). We generated a reporter vector, pSFSdist, which drives GFP expression under the control of a strong, ubiquitous enhancer and an element from a library of candidate silencers, in a genomically integrated context (Fig. 1a,b, Supplementary Fig. 5). The reporter construct is integrated in a single location in the haploid genome via phiC31 integrase (Gisselbrecht et al., 2013). Flies carrying single insertions from the reporter library are crossed to a strain in which expression of the exogenous marker protein CD2 is driven in a tissue or cell type of interest, and the resulting informative embryos dissociated to produce a single cell suspension. By sorting $\mathrm{CD} 2^{+}$cells in which GFP expression is reduced from the level driven by the strong ubiquitous enhancer in the absence of silencing activity, we enrich for cells containing silencers active in the cell type of interest, which can be recovered and identified by highthroughput sequencing.

Selection of elements to test for silencer activity in Drosophila embryos

We designed a first library of 576 genomic elements (Supplementary Table 1), chosen to represent a variety of chromatin states or enhancer activities, to test for silencer activity. Since the general features of silencers are unknown, we pursued a few different strategies to identify elements that might correspond to repressive elements. The availability of genome-wide chromatin immunoprecipitation data for well-characterized transcriptional corepressors (Celniker, 2009) provided one source of candidate silencers to test. Next, we reasoned that some CRMs might function as enhancers in one context and as silencers in other contexts, as two such bifunctional CRMs had been identified previously in Drosophila (Jiang et al., 1993; Stathopoulos and Levine, 2005). Therefore, since we were designing a library to screen for silencing activity in the mesoderm, we selected CRMs from the REDfly and CAD2 databases (Gallo et al., 2011; Bonn et al., 2012) that exhibited no or highly restricted mesodermal expression at embryonic stage 11. We furthermore filtered out elements associated with genes that show widespread mesodermal expression at this stage. Another potential source of such bifunctional elements that we selected was genomic regions associated with markers of both active and repressed chromatin structure in whole-mesoderm or whole-embryo experiments (Bonn et al., 2012; Rosenbloom et al., 2015; Thomas et al., 2011). All sequences identified from genome-wide ChIP methods were associated with nearby genes (see Methods) and filtered for absence of widespread mesodermal expression. Finally, we included three positive control sequences previously shown to have mesodermal silencing activity, and two types of negative controls: broadly active mesodermal enhancers, and length-matched regions of E. coli genomic sequence. Using sFS, we screened our library of genomic elements for silencer activity in embryonic mesoderm. Testing of this library yielded a readily detectable population of mesodermal cells in which green fluorescent protein (GFP) expression is reduced (Fig. 1b,c). Of the 576 sequence elements chosen for inclusion in this library, we detected 372 in cells derived from transgenic flies. We found 79 elements significantly enriched (see Methods) in the reduced-GFP cell population in either of two biological replicate screens (Fig. 2a, Supplementary Fig. 2, Supplementary Table 3).
a

Candidate	Ubiquitous enhancer	HSP70 silencer	TATA

Figure 1. Detection of silencer activity in a library of candidate sequence elements.
(a) Design of the reporter construct, in which a candidate silencer is placed distal to a ubiquitous enhancer driving GFP expression and integrated into the Drosophila genome (see Methods). (b) A stage 11 embryo stained with α-GFP (green) and α-CD2 (magenta) antibodies shows GFP expression within the mesoderm (marked by twi:CD2) and elsewhere. (c-e) FACS of cells prepared from reporter embryos; GFP-expressing cells are characterized by a higher green:yellow fluorescence ratio. Embryos heterozygous for a negative control (non-silencercontaining: c) reporter show a mixture of GFP^{+}(red) and GFP ${ }^{-}$(green) mesodermal cells. A known silencer (the zen VRE: d) increases the intermediate population of GFP ${ }^{\text {reduced }}$ (blue) cells, as does the introduction of a library of candidate silencer elements (e).

Promoter competition in sFS-positive elements

The most enriched feature among elements that were identified as 'hits' in our silencer screen is overlap with regions surrounding the transcriptional start sites of genes, which likely reveals the presence of promoter competition. Promoter competition previously has been observed to restrict the enhancer-driven activity of reporter gene promoters (Ohtsuki et al., 1998). Consistent with this interpretation, three of the sequences that caused reduced GFP expression were broadly active mesodermal enhancers that we included in our library as negative controls; all three of these sequences contain promoters. Overall, the set of 41 'hits' that overlapped promoter regions was significantly enriched for mapped instances of the TATA box (Zhu et al., 2009). While these are technical positives in our silencer screen, since our goal was to analyze CRMs that silence gene expression by other means, we omitted any identified 'hits' that overlapped promoter regions from further analysis, resulting in a filtered set of 262 detected library elements, of which 38 are genomic regions showing silencer activity in our assay. In the second step of our silencer identification strategy, we then generated pure reporter lines and individually tested each of the 38 non-promoter sFS 'hits' for silencer activity by fluorescence-activated cell sorting (FACS) (see Methods). This resulted in a final, high-confidence set of 15 validated, mesodermal silencers (Fig. 2b,c, supplementary figure 5), which we considered a rather low validation rate.

Characterization of silencing activity in the context of distinct enhancers

To confirm that the observed silencing activity does not represent an artifact of the FACS-based assay, we tested the ability of one of the newly discovered silencer elements to suppress activation by two different mesodermally restricted enhancers and visualized reporter gene expression in the resulting embryos. Both constructs showed silencing by the tested element relative to a negative control sequence (Fig. 2d-g). Interestingly, we observed different patterns of silencing in the context of these two mesodermal enhancers, which are active at different times in development; silencing activity was much weaker in the posterior germband at embryonic stage 12 (Fig. 2f,g), a pattern not observed in the earlier embryo (Fig. 2d,e). Thus, the repressive activity of silencers may exhibit complex spatiotemporal regulation similar to that of many enhancers.

All validated silencers act as transcriptional enhancers in other cellular contexts

We analyzed these 15 validated mesodermal silencers to determine which genomic features that we explicitly sampled in the design of our element library were predictive of silencer activity. Despite the inclusion in our library of ChIP peaks for two well-known transcriptional corepressors (Groucho, CtBP) (Mani-Telang and Arnosti, 2007; Orian et al., 2007) and for the repressive chromatin mark trimethylated Lys27 of histone H3 (H3K27me3) (Kharchenko et al., 2011), the only screened element type significantly enriched among active mesodermal silencers was non-mesodermal enhancers (Fig. 3a; $P=0.0147$, Fisher's exact test). In fact, all but two of the 15 high-confidence mesodermal silencers were previously reported to have enhancer activity. Testing of the remaining two silencers for enhancer activity revealed that they both also function as non-mesodermal enhancers in the embryo (Fig. 3b,c). Thus, our results suggest that most if not all mesodermal silencers are also enhancers in other cellular contexts.

Figure 2. Detection and validation of active mesodermal silencers.
(a) Enrichment ratios for library elements in $t w i: \mathrm{CD} 2^{+} \mathrm{GFP}^{\text {reduced }}$ cells as compared to input cells. Large points: $\mathrm{P}_{\mathrm{adj}}<0.1$ (significantly enriched). (b,c) Examples of results from silencer validation assays. "Bivalent chromatin" element 214 (b) is not significantly enriched in $t w i: \mathrm{CD}^{+} \mathrm{GFP}^{\text {reduced }}$ cells and shows no expansion of the GFPreduced population, while the $l z$ Crystal Cell Enhancer (c) shows significant enrichment and validates positive. (d,e) Embryos carrying a negative control (d) or validated silencer (oc otd186: e) (grey text) modifying the activity of the mesodermal enhancer ChIPCRM2613 (green text) were stained with α-GFP
antibody and photographed with identical exposure times at embryonic stage 7. Silencing of GFP expression is stronger in the posterior germ band (pgb) than in the anterior germ band (agb). (f,g) Embryos carrying a negative control (f) or validated silencer (g) (grey text) modifying the activity of the later-acting mesoderm-specific enhancer Mef2 I-ED5 (green text) were stained and photographed at embryonic stage 12 . At this stage, silencing is stronger in the anterior germ band than in the posterior germ band. Comparable regions of pairs of embryos were sampled (magenta boxes) and fluorescence intensity quantified. Arrowheads in \mathbf{e} and \mathbf{g} show the previously described pattern of activity in head segments associated with the oc otd186 enhancer (Gao and Finkelstein, 1998), in which we detected mesodermal silencer activity.
a

Library 1: all tested elements

- Nonmeso CRMs (REDfly)
- CtBP ChIP
- specific meso CRMs
- positive controls
- Groucho ChIP
- repressive DHS
- negative controls
- "bivalent" chromatin
- insulators
- repressive DHS + CtBP ChIP

Library 1: validated silencers

Figure 3. Silencer activity is detected only in enhancers.
(a) Contribution of different sequence types to the library of elements tested for silencer activity (left) and to the population of validated silencers (right). Area is proportional to number of library elements in each class. (b,c) Embryo images showing that newly discovered mesodermal silencers not previously known to be enhancers drive reporter gene expression (GFP, green) outside the mesoderm (marked by twi:CD2, magenta). CtBP3049 (b) drives expression primarily in the ventral nerve cord (vnc) and hindgut (hg); CtBP3084 (c) drives expression in epidermal stripes (epi) and hindgut.

Transcription factor compositional complexity at silencers

We hypothesized that, as these elements are more functionally complex than CRMs that act only as enhancers, they may exhibit a more complex suite of TF interactions across various tissues. Indeed, we observed that validated silencers are strongly enriched for overlap with highly occupied target (HOT) regions, defined by Roy et al. as exceeding a TF complexity score threshold of ~ 10 overlapping, bound factors (Roy et al., 2010) ($P=0.00026$, Fisher's exact test).

To investigate DNA sequence features that might be important for silencer activity, we inspected the enrichment of combinations of DNA binding site motifs for annotated repressors (Supplementary Table 8) among the validated silencers (see Methods). A motif or motif combination was considered significantly enriched if it targets $\geq 50 \%$ of the foreground sequences and has an aera under the receiver operating characteristic curve [AUROC] ≥ 0.65 and an q-value ≤ 0.1 (see methods). Five motif combinations were significantly enriched among mesodermal silencers (Fig. 4a); all shared a core combination of motifs for Snail (sna) and Defective proventriculus (dve). Sna is a well-known repressor of non-mesodermal genes in the developing mesoderm (Nieto, 2002). The dve motif is characteristic of the Bicoid group of homeodomain proteins (Noyes et al., 2008), which are not known to be involved specifically in mesodermal repression. Mutation of the dve motif sequence 5^{\prime}-TAATCC-3' in four validated silencers did not detectably impair their silencer activity (Supplementary Fig. 4); however, three of these four mutated elements exhibited consistent alterations of their enhancer activity (Fig. 4b-d, Supplementary Fig. 4), further emphasizing the bifunctional nature of this class of cis-regulatory elements.

Chromatin features of active silencers

Various post-translational modifications of histones have been associated with different functional elements in the genome (Ernst and Kellis, 2010; Filion et al., 2010; Heintzman et al., 2007; Roy et al., 2010); however, little is currently known about the chromatin features of active silencers (Riel, 2014). We found that mean H3K27me3 ChIP signal is mildly enriched (area under the receiver operating characteristic curve [AUROC] $\sim 0.60, P<0.03$, two-tailed Wilcoxon test) (see Methods) among validated mesodermal silencers. Considering additional marks beyond H3K27me3, analysis of a broad panel of whole-embryo ChIP-chip and ChIP-seq data for histone modifications, TFs, coactivators, and corepressors (see Methods) suggested a variety of other marks enriched or depleted among silencers, but none - including H3K27me3 - was statistically significant in this broader analysis after correction for multiple hypothesis testing (Supplementary Table 9). Thus, these results suggest that H3K27me3 may be a potential feature of active, tissue-specific silencers, but it alone is not sufficient to distinguish silencers from other genomic elements.
a

motif combination	AUROC	q-value
sna + dve + B-H2	0.767	0.027
sna + dve + D	0.766	0.026
sna + dve + al	0.762	0.041
sna + dve + Vsx1	0.760	0.027
sna + dve + ind	0.734	0.02
sna + dve	0.757	0.115
dve motif TAATC		

Figure 4. Motif composition of validated silencers.
(a) Combinations of TF binding site motifs significantly enriched in validated silencers share a common core of sna + dve motifs. Enrichment of the pairwise combination (not significant) is shown in italics for reference. (b-d) Mutation of the dve motif in the $d p p$ 85.8MX enhancer (c) causes reduced activity in the posterior expression domain (arrowhead) and ectopic activity anteriorly (arrow) compared to the wild type enhancer (b).

Second library and ongoing analyses

Second library

Given the limited number of silencers identified, we decided to test more element for silencing activity and designed a second library based on the same criteria used for the first library, but automatically filtering for elements that overlapped promoter regions to avoid promoter competition, as previously explained. This second library was composed of a total of 173 elements, including 26 repeats from the first library (supplementary table 2): 14 elements found as acting as silencers in our previous experiments and 12 E.coli genomic DNA negative controls. In designing this second library, we were limited by the datasets available to us, from which we designed our initial library of candidate silencers.

Results and validations

Of the 173 elements that were included in this second library, we detected 147 elements in cells derived from transgenic flies. We found 15 new elements significantly enriched in the reducedGFP cell population in either of the two biological replicate screens, excluding cells with no GFP expression as we hypothesized that this could increase the sensitivity of our assay. Indeed, many of the GFP- cells are in fact not carrying any reporter from our library within their genome, as they are the result of the cross between the transformant males, carrying only one copy of our library in their genome, with our homozygous twi:CD2 virgin females. We hypothesize that processing the GFP- cells with the GFPreduced population added a significant amount noise to the data and was the reason for the poor validation rate our method was suffering from. Therefore, we decided to sort and process only the GFP ${ }^{\text {reduced }}$ cell population (see Methods).

The repeats from the first library validated relatively nicely, with only a few exceptions: we detected 20 out the 26 repeats. 85% of these 20 elements showed the same activity as in the initial screen, as we did not detect 3 of these elements as silencers. To validate these results, we generated pure reporter lines and individually tested 8 elements by FACS, as previously described (see Methods). In the interest of time, we decided to validate 4 elements found as significantly enriched by our assay and 4 that were not (see Methods). All 8 elements validated and therefore we assumed that all 15 elements were bona fide silencers, and concluded that the modification to cell sorting fixed the low sensitivity our method was suffering from (Supplementary table 6).

These two libraries, once combined, gave a total of 30 newly identified silencers (Fig. 5, supplementary table 7), with a significant majority of them being already characterized as enhancers in other tissues ($P=0.0004393$, Fisher's exact test).

TF compositional complexity and chromatin features of active silencers

Combining both libraries, we found out that the validated silencers were still somewhat enriched for overlap with HOT regions (as previously defined), with a complexity score in validated silencers very close to the previously set threshold of 8 (see methods), with a score of ~ 7.75 (AUROC $=0.732, P=2.815 \mathrm{e}-05$) compared to $\sim 4.09 \mathrm{in} \mathrm{sFS}$ negative elements. We therefore ran a motif finding on these new elements (see Methods) as we previously did on our first set of validated elements, but no combination of motif was significantly detected. As this thesis is being written, an analysis (see Methods) on all validated silencers pooled together is running, and therefore could not be included here

Regarding histone marks, the mild enrichment of the H3K27me3 mark that we observed previously appears to hold up. We found that whole embryo H3K27me3 ChIP signal is mildly enriched (area under the receiver operating characteristic curve [AUROC] $\sim 0.61, P<0.04$, twotailed Wilcoxon test (see Methods)) among validated mesodermal silencers, yet not significantly after correction for multiple hypothesis testing (adjusted $\mathrm{P} \sim 0.16$) (see supplementary figure 10). Looking at other additional marks beyond H3K27me3, analysis and biclustering (see mMethods and Fig. 6) of whole-embryo and sorted-mesoderm ChIP-chip and ChIP-seq data for histone modifications (see Methods) revealed that our validated silencers were significantly depleted for the H3K36me1 mark, which is commonly associated with elongating Polymerase II (Ernst and Kellis, 2010), and that a subset of our silencers showed statistically significant enrichment for moderate levels of repressive histone marks (see Fig. 6).

Once again, these results suggest that H3K27me3 may be a potential feature of active, tissuespecific silencers, but it is not sufficient to distinguish silencers from other genomic elements. Therefore, it is obvious to say that further studies, including larger sets of active silencers, are needed to discover significant silencer-associated chromatin marks which together might enable accurate prediction of silencers and offer mechanistic insights on silencer activity.

All tested elements

- Nonmeso CRMs (REDfly)
- CtBP ChIP
- specific meso CRMs
- positive controls
- Groucho ChIP
- repressive DHS
- negative controls

■ "bivalent" chromatin

- insulators
- repressive DHS + CtBP ChIP

High confidence silencers

Figure 5. Combined libraries and validated silencers
Contribution of different sequence types to the combined libraries of elements tested for silencer activity (left) and to the population of total high confidence silencers (right). Area is proportional to number of library elements in each class.

Figure 6. Repressive chromatin marks are associated with silencer activity but are insufficient to identify silencers.
Mean ChIP-seq signal over each tested library element was calculated for a range of published datasets using chromatin from whole embryos ("emb") or sorted mesodermal cells ("meso") and antibodies to the indicated histone H3 modifications, then Z-transformed and truncated. Biclustering reveals 5 major clusters of elements with broadly similar score profiles (colored bars at right). Aside from cluster 4 (highly enriched for trimethylated H3K36 in the mesoderm, which characterizes regions associated with elongating PolII), all clusters contain a mixture of mesodermal silencers (red in the bar at the top) and nonsilencers (grey). However, clusters 1 and 3 , the elements of which show enrichment for histone marks associated with transcriptional repression, are enriched for silencer activity. Interestingly, only cluster 3, with more moderate levels of repressive histone mark enrichment, shows statistically significant enrichment for mesodermal silencers.

Current and future experiments and analyses

Genome editing: CRM knock-out

To further assess the role and function of the identified bifunctional elements, we initiated a project, which aims to investigate the effect of the knock-out (KO) of validated bifunctional elements by genome editing. This project is based on the use of the CRISPR/Cas9 technology (Jinek et al., 2012), consisting of the use of an endonuclease, Cas9, and a guide RNA (gRNA). This technology has been adapted from a prokaryotic form of acquired immunity, providing the cell with a resistance to foreign genetic elements carried by bacteriophages (Barrangou et al., 2007).

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repeats were first identified when the iap gene was cloned into E.coli (Ishino et al., 1987), and are found in $\sim 40 \%$ of sequenced bacterial genomes and 90% of sequenced archaea genomes (Grissa et al., 2007). These sequences contain snippets of DNA, the "spacers" in between the repeats, from viruses that previously challenged the bacterium, and it has been shown that bacteria integrated new spacers derived from phage genomic sequences after viral challenge (Barrangou et al., 2007). Briefly, an RNA molecule harboring a spacer sequence helps CRISPR-associated (Cas) proteins to recognize, in a complex also called ribonucleoprotein (RNP), bind and cut exogenous DNA, rendering it inert (Barrangou et al., 2007). This mechanism is based on RNA interference (Makarova et al., 2006) and acts as an acquired immune defense system against such viral encounters for prokaryotes. In 2012, the CRISPR/Cas9 mechanism was detailed and proposed as a programmable tool for genome-engineering and editing (Jinek et al., 2012). Indeed Cas9 can site-specifically cleave double-stranded DNA which results in the activation of the double-strand break (DSB) repair machinery. DSBs can be repaired by the Non-Homologous End Joining (NHEJ) pathway (Overballe-Petersen et al., 2013), an "emergency" response to DSBs, which results in insertions and/or deletions (indels) which disrupt the targeted locus. If a donor template with homology arms to the targeted locus is supplied, the DSB may be repaired by the homologydirected repair (HDR) pathway, which allows for precise replacement and therefore precise genome editing (Overballe-Petersen et al., 2013).

It has then been demonstrated that the CRISPR-Cas9 system is able to specifically target and mutate certain genes in mice using designed guide-RNAs against specific genomic targets on the mouse genome (Wang et al., 2013); shortly after this, the CRISPR/Cas9 system was utilized successfully in humans to correct B-thalassemia in afflicted patients (Xie et al., 2014). The CRISPR/Cas9 system is now seen as a powerful and versatile genome editing tool, with many applications in the fields of biotechnologies, research and medicine (Hsu et al., 2014), and its component are readily accessible from the industry (e.g IDT, NEB, etc.).

For our project, guide RNAs (gRNAs) have been designed to remove a whole CRM (see Methods), or each (one at a time) of its specific sub-sections based on genome conservation profiles across the Drosophila species. The Cas 9 and gRNAs pairs were ordered from IDT (annex 3) and assembled into ribonucleoprotein (RNP) complexes and injected (see Methods) in appropriate fertilized Drosophila melanogaster embryos. The effects of the KOs will be assessed by survival rates, microcopy of developing embryos and muscle structures, along with in-situ hybridization and RT-qPCR for assessing the expression genes surrounding the previously present CRM.

As a proof of concept for the CRISPR-Cas9 system, we designed and ordered a gRNA from IDT targeting the white gene which is responsible for red pigmentation of the adult Drosophila melanogaster. This gRNA was incubated with the Cas9-3NLS protein from IDT (see methods) and the resulting RNPs were microinjected posteriorly into wild type fertilized eggs, to edit the nuclei giving rise to the germ band. To our surprise, all of the injected eggs that hatched (21%) and gave viable adults showed mosaic or completely white eyes (white- or w-) (see figure 7).

These mutant flies, crossed to $y w$ flies, were unsurprisingly carrying at least one mutated and therefore inactive version of the white gene: out of the 21 flies crossed individually to yw males or females (depending on their respective gender), the F1 progeny (797 flies), from which on average 85% were w - (total of 84%, the maximum of 100% per cross, and the minimum of 33% per cross). Such a result, though encouraging, suggest that the RNP mix solution needed to be titrated down, to edit only the nuclei from which originates the germ band and prevent genome editing in other cells as much as possible. Indeed, if knocking out a given bifunctional element is lethal, it is necessary to make sure that the cause of the lethality is linked to the genome editing and knock out, and not to the potential toxicity of the microinjections, or the manner by which the microinjections were realized. We encountered issues we believe are linked to the viscosity of the RNP solution due to the glycerol it contains (see Methods), which sometimes seemed to clog the microinjection needle, and therefore appears as another reason to titrate down this solution in the future.

Nonetheless, we went forward with an initial trial and successfully knocked out the hkb_0.6kbRIRV bifunctional element we previously identified by sFS (see Fig. 8), and established a viable line carrying the knockout over balancer chromosome (TM3). The knockout appears to have taken place precisely where we intended and this line awaits further analyses. An example of analysis is in situ hybridization of transcripts from genes located in the vicinity of the knocked-out bifunctional CRM which it was likely to regulate. Probes have already been designed for such genes and, given time constraints, Stephen Gisselbrecht will continue these experiments. Overall, we have identified a method that allows precise sequence knockout in Drosophila melanogaster. Though this method needs to be perfected, it has proven effective for our initial proof of concept. Therefore, the Bulyk lab should continue improving this method and use it to reliably dissect the potential complex regulatory networks within which the bifunctional elements we identify may belong.

Figure 7. Mosaic eyes in Cas9/gRNA injected flies
Mosaic eyes were observed in flies that were previously microinjected, at the stage of fertilized eggs and posteriorly, with a combination of Cas 9 and gRNA directed against white. All the flies from this microinjection showed either mosaic (white and red) or totally white eyes.

Figure 8. Bifunctional CRM knockout by CRISPR/Cas9
We successfully managed to knock out the hkb_0.6kbRIRV bifunctional element from Drosophila melanogaster using the CRISPR/Cas9 system. This figure shows the results of several sequencing experiments from PCR reactions from adult flies from the line we established, that carries the knockout induced by the gRNAs 1 and 2 (red squares), which surround the observed conserved region across all Drosophila species.

Hi-C: mesoderm specific interactions

In an attempt to reach a potential mechanism that could explain how silencers and bifunctional CRMs function, we initiated a collaboration with the Dekker lab (http://my5c.umassmed.edu) from the University of Massachusetts. This collaboration consisted on obtaining Hi-C data from the mesodermal versus non-mesodermal cells from D. melanogaster embryos, at the same embryonic stage we did our sFS experiments (\sim stage 11), and try to observe differential spatial organization of chromosomes between both cell populations. The idea behind this project is to look for overall differential contacts between the developing mesoderm and non-mesodermal tissues, therefore tissue-specific contacts, but more precisely to analyze the behavior of our validated silencers and bifunctional CRMs.

To do so, we used once again our twi:CD2 line (see Methods), and sorted by FACS mesodermal cells (CD2+) and non-mesodermal cells (CD2-) from homozygous embryos at stage ~ 11. We proceeded with the fixation of these cells with formaldehyde (see Methods). After several weeks of embryo collection and cell sorting, we managed to accumulate and fix ~ 22 million CD2+ cells and ~ 25 million CD2- cells. All these cells were sent, on dry ice, to the Dekker lab for their processing. These cells were processed by the Dekker lab as two biological replicates, each replicate experiment consisting of ~ 11 million CD2+ and ~ 12.5 million CD2- cells. At the time this dissertation is being written, these samples were processed by the Dekker lab. The 4bprestriction enzyme DpnII (GATC cut site) was used for processing our samples, which in theory is appropriate for looking into specific interaction of a small genomic region such as CRM interactions and enhancer-promoter looping, while 6-bp restrictions enzymes are more appropriate for large scale structures, as 4-bp restriction enzyme have a higher probability of finding their target restriction site over 6-bp restriction enzyme which allows for more frequent cuts and therefore a higher resolution (Lajoie et al., 2015). Indeed, DpnII in theory provide 16 times as many ligation opportunity when compared to other 6-bp restriction enzymes such as Ecor1 or HindIII for instance. We have ~ 80 million reads for one of the CD2+ and CD2replicate, and ~ 100 million reads for the other replicate. It is still unclear whether the resolution of the data will be high enough to precisely study the $\sim 1 \mathrm{~kb}$ elements we tested by sFS and distinguish them from background noise, as there is currently no standard way to assess the resolution of $\mathrm{Hi}-\mathrm{C}$ data.
$\mathrm{Hi}-\mathrm{C}$ data processing must go through several steps before analysis. First, sequencing reads must be mapped onto a genome of interest and each mapped read is therefore assigned to one of the restriction fragment. Secondly, basic filtering is applied to remove from further analyses unligated fragments or ligated circularized fragments (self-circling fragment). Then, identical PCR artifacts are removed, such as undigested restriction sites or same paired-end sequence. After filtering, the data is binned into a fixed (or sometimes various) genomic interval size since $\mathrm{Hi}-\mathrm{C}$ datasets normally cannot be sequenced deep enough to support the maximal data resolution determined by the restriction enzyme used. Once the data is binned, it is then filtered out for low or very noisy signal. Finally, the data must be corrected for mapability, GC content, or fragment length for instance (Yaffe and Tanay, 2011; Hu et al., 2012; Cournac et al., 2012).The resulting product is a genome-wide, binned, interaction matrix from which it is, in theory, possible to identify interaction frequencies between genomic loci with some limitations. Indeed, the measurements are realized on a population of cell, which may lead to an interaction matrix with little position-specific interactions, as such structures may vary due to cell-to-cell heterogeneity and thus may not be identifiable. Moreover, patterns of interaction are not formally defined, and different patterns of interaction can overlap each other, adding another layer of complexity to the analyses. Also, we do not know the impact of the disruption of the cell-cell interactions, prior to FACS, on transcription. Finally, the frequency of interactions measured by Hi-C are not
indicative of the physical distances between the interacting pairs, nor can they be interpreted as frequencies in time.

As stated before, the goal of this study is to try and observe potential differential interactions from the bifunctional CRMs we identified by looking at interactions they make in mesodermal cells to interactions in non-mesodermal cells, as these elements appear to be silencers in the mesoderm while acting as enhancers in other tissues. It is possible that a bifunctional CRM does not interact differently when acting as a silencer or enhancer, but that its activity depends on tissue-specific cofactors, in which case we would not observe any differences between our two datasets. It is also possible that the frequencies of interaction will differ, or that some interactions may be present in one set and absent in the other.

Currently, the reads are being processed and analyzed by Julia Rogers and Stephen Gisselbrecht (Bulyk lab) and no usable data is yet available. Our approach might be limited by its resolution, or the potential heterogeneity within the populations of cells, as the mesodermal cells in a developing embryo lead to several different tissues and cell types, which is even more problematic with all the non-mesodermal cells. Nonetheless, we hope this Hi-C data may help in the characterization of bifunctional elements, by providing tissue specific contacts and more importantly, differential spatial contacts regarding the bifunctional CRMs we identified by sFS , provided that its resolution would be of $\sim 1 \mathrm{~kb}$. We are hoping that a mechanism (or several), or clues of a mechanism, governing these elements will arise from this project.

Spatiotemporal activity of silencers

The activity of the silencers we identified needs to be further assessed in different conditions and in a spatiotemporal manner. Indeed, it is necessary to know whether the silencing effect observed by the sFS method is specific to the enhancer we used and, or, specific to the embryonic stage at which the experiment was realized.

To further address this question, it will be necessary to test the activity of different bifunctional CRMs when placed in front of different mesodermal specific enhancers. We currently have a total of 4 different gateway compatible plasmids derived from the pSFSdist vector, each of them bearing a different enhancer replacing the ubiquitous ChIPCRM2078 enhancer: ChIPCRM2613 drives widespread mesodermal expression (Gisselbrecht et al., 2013), Mef2 I-E ${ }_{D 5}$ which drives expression specifically in the fusion competent myoblasts (FCMs) of the developing mesoderm (Duan et al., 2001), ChIPCRM7759 drives expression in the early gastrulating mesoderm (stage ~7/8) (Gisselbrecht et al., 2013), and finally ChIPCRM2497 which drives expression in the late mesoderm (stage $\sim 11 / 12$) (Gisselbrecht et al., 2013). The resulting plasmids are respectively p2613d, pIED5, p7759d and p2497d.

Elements to be tested, i.e. one each of a positive control, a negative control, and a newly discovered silencer, will be cloned into all 4 of these vectors. From these, homozygous fly lines will be created and embryos will be analyzed by microscopy. These embryos will need to be collected, fixed, and stained in parallel, and imaged with the same settings (same exposure time, no gamma or contrast correction, see Methods).

Moreover, we will try to make use of other picture analyzing software such as ImageJ (Schneider et al., 2012), to measure pixel intensity along the mesoderm, following the shape of the mesoderm in a given embryo. As a proof of concept, an example of the intensity diagram provided by ImageJ can be seen in Figure 9 where the intensity represented is the mean intensity measured on a line perpendicular to the tangent of the curve following the mesoderm, in the green channel only. A comparison between 3 embryos for a negative control (line 324) and the brk_NEE-long bifunctional element (line 375) in the p2497d plasmid can be found in Figure 10, where silencing is clearly observable, and in the p7759d plasmid in Figure 11, where no silencing activity is observable. In these examples, the mesoderm was selected from the base of the developing head to the end of the tail of the embryo as shown in Figure 9.

While this approach is promising for measuring the differences in GFP expression between embryos, significance of observations and measurements will need to be addressed. At this stage of this project, several homozygous lines have been created for several bifunctional elements but embryos still need to be collected, processed and analyzed. From what we seem to observe so far, the tested silencers from our high confidence indeed acted as silencers, but some only acted as such with certain enhancers. For instance, the brk_NEE-long element tested in Figure 10 and 11 has an obvious observable silencing activity on the ChIPCRM2497 enhancer (late mesoderm enhancer, stage $\sim 11 / 12$), while no silencing is observable on the ChIPCRM7759 enhancer (gastrulating mesoderm, stage ~ 8).

These preliminary results seem open the door to a very complex set of interactions and relationships between CRMs, in a spatiotemporal manner, within a large network of gene regulation where CRMs play various roles as enhancer and silencer in tissues and cell types, and at different times, or embryonic stages here.

Silencers have been thought to play a key role in the specification of precise gene expression patterns, by enabling, for instance, sharp expression domains in a developing organism by insuring against ectopic expression. For instance, it has been shown that the ventral repression element (VRE) from the zerknullt (zen) gene in Drosophila melanogaster is required to repress ventral expression of zen in the developing embryo (Doyle et al., 1989) and that the deletion of this VRE results in a strong ventral misexpression of zen, confirming the idea of the importance of silencers for precise control of expression (Busturia et al., 1997).

Although the significance of our observations needs to be assessed and these silencers tested in different configurations (with different enhancers at different embryonic stages), our preliminary results are interesting, as they seem to show that our high confidence set of silencers did not represent an artifact of the FACS-based assay. These silencers, which appear to be enhancers in other tissues, may act as silencers on other specific enhancers, in a cell-type and embryonic stage specific manner, as key components of the precise spatiotemporal control mechanism(s) of gene expression.

Figure 9. Example of ImageJ intensity measurement
This figure presents the pixel intensity diagram provided by ImageJ when selecting the mesoderm from the base of the developing head (blue dot) to the end of the tail of the embryo (red dot). The distance between these two positions is shown on the diagram as pixel values in the X axis. In this example, the embryo analyzed carries the e_coreAbdominalCRE bifunctional CRM upstream of the ChIPCRM2613 enhancer, and the picture was taken at stage ~ 8.

Figure 10. Example of pixel intensity measurements for brk_NEE-long in p2497d Here, the X axis is converted from pixel number to percentage of the measured section of the mesoderm, for a better comparison between embryos. This plot shows the difference of expression induced along the mesoderm for E.coli negative control (ecoli_ctrl15, line 324, shades of green) and the brk_NEE-long (line 375, shades of red) element upstream of the ChIPCRM2497 enhancer. In this example, the pictures where analyzed for embryos at stage $\sim 11 / 12$.

Figure 11. Example of pixel intensity measurements for brk_NEE-long in p7759d
Here, as in Figure 10, the X axis is converted from pixel number to percentage of the measured section of the mesoderm. This plot shows the difference of expression induced along the mesoderm for E.coli negative control (ecoli_ctrl15, line 326, shades of green) and the brk_NEElong (line 377, shades of purple) element upstream of the ChIPCRM7759 enhancer. In this example, the pictures where analyzed for embryos at stage $\sim 8 / 9$.

Discussion

A major challenge in biology is to understand how complex gene expression patterns in organismal development are encoded in the genome. Precise spatiotemporal control of gene expression is mediated by two types of cis-regulatory modules (CRMs): transcriptional enhancers and silencers. While enhancers have been studied extensively, few silencers have been identified and they remain poorly understood. CRM bifunctionality complicates the understanding of how gene regulation is specified in the genome and how it is read out differently in different cell types. It is unknown how common such dual encoding of regulatory information may be in a typical metazoan genome.

In this chapter, I described our sFS strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos, which enriches for elements that tissuespecifically silence a strong, ubiquitous enhancer that drives GFP reporter expression.

Strikingly, the elements that we found to act as transcriptional silencers were also active enhancers in other cellular contexts. These bifunctional CRMs were enriched in highly occupied target (HOT) region overlap but, so far, did not seem enriched for any particular transcription factor (TF) motif combinations. These results challenge the common practice of treating elements with enhancer activity identified in one cell type as serving exclusively activating roles in the organism and suggest that thousands or more bifunctional CRMs remain to be discovered in Drosophila and perhaps $10^{4}-10^{5}$ in human (Heintzman et al., 2009).

The characterization of bifunctional elements should help in investigations on how precise gene expression patterns are encoded in the genome. Nevertheless, this discovery is currently based on a small set of newly discovered bifunctional elements and no underlying mechanism or signature has been identified yet. Our approach is moreover not exempt of limitations: if an element acts as a silencer in only a small fraction of mesodermal or non-mesodermal cells, it might not be detected as significant in our screen. Future screens using other driver lines specific for various mesodermal, or non-mesodermal, subsets might identify additional silencers with more restricted cell-type-specific silencing activity. Our approach is moreover time sensitive and mostly limited by the necessary cell sorting step, which de facto limits the size of the library we can screen to be able to detect any significant signal.

Looking at the current analyses and experiments, we hope that the statistical and computational analyses on all our datasets, sFS and potential $\mathrm{Hi}-\mathrm{C}$ datasets, along with experimental validations such as the CRM knockout project will soon unveil a way to characterize and identify these bifunctional elements.

Methods

Generation of reporter vector pSFSdist
Previously (Gisselbrecht et al., 2013) we had blunt-end cloned the 1.8-kb HindIII-SpeI fragment of pPelican (Barolo et al., 2000) (containing a nuclear-localized GFP reporter construct with a gypsy insulator element upstream of the MCS and minimal promoter) into our Drosophila transformation vector pWattB to create the cloning intermediate $\mathrm{pWBG1i}$. Here, we amplified the near-ubiquitous enhancer ChIPCRM2078 identified in that study (dm3 coordinates chr3R:7177448-7178447) from OreR genomic DNA with the primers GGGGGAATTCATTTTTTGCATGTCCTGCCG and GGGGGTACCGCCGATGACTCAGTGGTTAAG, cloned this into the EcoRI and KpnI sites of pWBG1i, and Gateway-converted the resulting pWBG1i-2078 plasmid by blunt-end cloning the Gateway Reading Frame A cassette into the SphI site (distal to ChIPCRM2078, relative to the Hsp70 promoter driving GFP expression) to create pSFSdist (Supplementary Fig. 5).

```
Design of the candidate silencer libraries
```

Nine categories of elements were included in the candidate silencer libraries:

1. Nonmesodermal enhancers - All annotated cis-regulatory modules (CRMs) were downloaded from the REDfly database (Gallo et al., 2011) on January 17, 2014. These were filtered for length $\leq 1,100 \mathrm{bp}$, expression shown in a tissue (i.e., not assayed only in cell culture), lack of mesodermal CRM activity terms, and association with genes that show either no mesodermal expression or sharply restricted mesodermal expression at embryonic stage 11 (when silencing would be assayed). Three additional elements with names containing "NEE" or with the expression term "neurectoderm" were manually added to this set. We removed CRMs entirely contained within other CRMs in our set, and combined overlapping CRMs where this was possible without exceeding $1,100 \mathrm{bp}$.
2. Restricted mesodermal enhancers - We downloaded all CRMs from REDfly with expression terms "muscle founder cell," "somatic muscle," or "cardioblast," filtered them for length, assessed each CRM and associated gene for restricted expression (on the theory that CRMs associated with genes with widespread mesodermal expression could not have widespread mesodermal silencing activity), and then collapsed redundant and overlapping CRMs as above. We downloaded the CAD2 database (Bonn et al., 2012) and removed anything with source term "REDfly" (as redundant), anything with expression terms M (mesoderm) or S (somatic mesoderm) at stages 9-12 (as unlikely to show widespread mesodermal silencing), and anything with no evidence of expression. For gene-assigned CRMs, we removed anything assigned to a gene with widespread mesodermal expression at stages 10-12. For unassigned CRMs, we associated each window with nearby genes, where "nearby" is defined as any gene overlapping the window, proximal to an intergenic portion of the window, or overlapping a gene which matches one of the first two criteria; we then removed CRMs associated with genes with widespread or ubiquitous expression, or where the only associated genes had no evidence for an expression pattern.
3. Groucho ChIP-chip windows - We downloaded two modENCODE Groucho ChIP-chip datasets (modENCODE_597 and modENCODE_623) as binding site .csv files. We filtered the smaller dataset for windows of sequence which overlapped windows in the larger dataset by $>100 \mathrm{bp}$, then length-filtered the resulting common set. We associated each window with
nearby genes as above, then downloaded polypeptide and transcript expression terms from FlyBase for the complete list of 520 genes associated with any GRO window by these metrics. We removed any sequence window associated with a gene that has no associated expression terms (to minimize the chance of including genes with unannotated widespread mesodermal expression) or expression terms containing "ubiquitous," "mesoderm," or "muscle."
4. Positive controls - We included three regions previously shown to have dominant silencing activity in the Drosophila embryonic mesoderm: the zen VRE (Jiang et al., 1993) and ind modules A and BC (Stathopoulos and Levine, 2005).
5. Negative controls - We included two classes of negative control sequence in our library: CRMs associated with genes with widespread mesodermal expression at stage 11, and $\sim 1-\mathrm{kb}$ regions of E. coli genomic DNA. For the former, we filtered the CAD2 database (Bonn et al., 2012) for CRMs ($\leq 1,100 \mathrm{bp}$) with well-documented widespread mesodermal expression at st. 11 (expression terms M; S,V,C [meaning somatic, visceral, and cardiac mesoderm]; or S,V, in which case we examined the referenced studies to determine if expression appears widespread) and selected additional elements with widespread mesodermal expression from our own prior studies. For the latter, we randomly selected regions of the E. coli genome between 900 and $1,100 \mathrm{bp}$ with G+C content similar to Drosophila noncoding sequence (between 39% and $43 \% \mathrm{G}+\mathrm{C}$).
6. "Bivalent" chromatin — We downloaded mapped BiTS-ChIP data (Bonn et al., 2012) showing sequencing reads from isolated mesodermal chromatin immunoprecipitated with total histone H3, H3K4me1, H3K27me3, and H3K27ac. We used MACS (Zhang et al., 2008) separately on each replicate with the --nomodel parameter to identify extended peaks of histone modification enrichment relative to total H3. Using bedtools, we intersected replicates to create high-confidence peak sets, then found the intersection of H3K4me1, H3K27me3, and H3K27ac. After filtering for length ≥ 200 and $\leq 1,100 \mathrm{bp}$, we associated windows with nearby genes as above and removed those that have an associated gene with no expression terms or with an expression term including "ubiquitous." We manually assessed expression patterns of genes associated with the remaining sequence windows and removed those with ubiquitous or widespread mesodermal expression.
7. DNase I Hypersensitive Sites (DHSs) with repressive marks - We downloaded DNase Accessibility Regions for st. 11 (bdtnpDnaseAccS11) from UCSC Table Browser (in dm3 coords, Apr. 2006) (Rosenbloom et al., 2015; Thomas et al., 2011) and intersected them with BiTS-ChIP H3K27me3 enriched peaks defined above. We filtered for length and expression of associated genes as above, adding a requirement for an expression term including "embryonic." As there remained an unmanageably large number of candidate sequences, we used three criteria to prioritize. We counted candidate sequences associated with each gene associated with any candidate sequence, and chose those that represent unique hits for genes of potential interest. These were highly enriched for intragenic windows, so we also prioritized intergenic windows from the broader list. Finally, we included windows of sequence overlapping CtBP ChIP-chip peaks (see below).
8. CtBP ChIP-chip windows - We downloaded the modENCODE dCtBP ChIP-chip dataset (modENCODE_607) as a binding site .csv file and filtered for length and expression of associated genes as above. We again identified sequence windows representing unique hits to genes of potential interest; these were also highly enriched for intragenic windows, so we chose all intergenic windows on the filtered list for inclusion, then sorted the unique hits by occupancy score and included the highest-scoring ones.
9. Insulator elements - By changing the configuration of a reporter plasmid (i.e., moving the tested element proximal or distal to the driving enhancer, relative to the promoter), it is possible to distinguish silencer activity from enhancer-blocking insulator activity (Petrykowska et al., 2008). Therefore, for forward-compatibility of our experiments, we included a set of candidate insulator elements in our library. We therefore downloaded BEAF32 ChIP-chip data (Jiang et al., 2009) and modENCODE_21] and intersected all five datasets to identify the highest-confidence peaks. We similarly downloaded and intersected CTCF ChIP-chip data (modENCODE_769 and modENCODE_770), then intersected both of these high-confidence peak sets with each other and with CP190 peaks (modENCODE_22) to generate a list of "Class I insulators" as defined by Nègre et al. (Negre et al., 2010). We then filtered for length (as above) and for non-overlap with H3K4me3 peaks in the BiTS-ChIP data. We also selected 6 insulator elements curated from the literature by Nègre et al. for inclusion (see Supplementary Table 1 and 2 for all tested elements).

To ease the identification of tested elements, we appended a 12 -nucleotide barcode to each. These were designed by selecting 12 -base sequences that each differ from all others by at least three mismatches, then filtering against a large collection of metazoan TF protein-binding microarray data (Hume et al., 2015) (Mariani et al., submitted) for no 8mers with E-scores >0.35 (Berger et al., 2006) and against a library of Drosophila TF PWMs for no PWM scores >0.8 (Lenhard and Wasserman, 2002). Barcodes passing all of these filters and not containing BmtI restriction enzyme sites were randomly assigned to library elements.

PCR primer design was with MacVector 11.1.2 (MacVector, Apex, NC) for most library elements, starting from the default parameters and then loosening them until a pair was found. Pairs are prioritized by primer quality (GC content, low repetitive content, pair similarity) and by position (attempting to center the target window within the amplified region, except in cases of densely packed or overlapping targets). For dCtBP ChIP peaks, a Primer3-based computational approach was used initially, again starting with very strict parameters and progressively loosening them until a pair was found. This was run on all 92 dCtBP -derived windows, and succeeded on 78; the remaining 14 were designed with MacVector (MacVector, Apex, NC) as above. Forward primers were prepended with the common SEQ1 primer (Gisselbrecht et al., 2013) followed by the barcode for the corresponding window and a BmtI site; reverse primers were prepended with the common SEQ2 primer and the corresponding barcode. The entire library was then amplified in a two-step PCR amplification process and cloned into pDONR and then into pSFSdist, as in (Gisselbrecht et al., 2013).

Performing silencer-FACS-Seq experiments
The resulting library of pSFSdist reporter constructs was injected into y w nos:phiC31int; attP40 embryos by Rainbow Transgenic Flies, Inc. (Camarillo, CA). Transgenic male progeny of injected flies were recovered and crossed to twi:CD2 virgin females to generate populations of informative embryos, exactly as previously described (Gisselbrecht et al., 2013). Since the transgenic males carry the library in their germline at only one construct per haploid genome, half of the embryos resulting from crossing these males with females homozygous for twi:CD2 are expected to lack GFP.

We previously described a method for isolation of single cells from Drosophila embryos, at stage 11, that we modified by including an additional incubation step for staining the cells with commercially available Alexa647-conjugated anti(rat CD2) antibody (AbDSerotec, cat. \#MCA154A647) (Gisselbrecht et al., 2013). Briefly, we used the same technique in which the cells are stained on ice with a solution composed of 1:400 dilution of the antibody in Schneider medium $+8 \%$ FBS and $2 \mu \mathrm{~g} / \mathrm{mL}$ DAPI. The samples are then washed, filtered with Nytex mesh and the cells processed by FACS. We used the same standard gates as in our previously described method (Gisselbrecht et al., 2013) to isolate viable single cells. The P1 gate (side scatter [SSCA] vs. forward scatter [FSC-A]) selects cells over debris and yolk granules, the P2 gate (forward scatter amplitude [FSC-A] vs. height [FSC-H]) selects single cells, while the P3 gate (DAPI signal vs. forward scatter plot [FSC-A]) selects live cells. Selection of CD2+ cells is achieved as previously described (far red [APC-A] signal vs. forward scatter [FSC-A]). In addition to using the preexisting " $\mathrm{CD} 2^{+} \mathrm{GFP}^{+}$" gate, we designed two other yellow [PE-A] vs. green [FITC-A] fluorescence gates for the capture of mesodermal cells in which GFP expression is either completely repressed ("CD2 ${ }^{+} \mathrm{GFP}^{-1 "}$) (yellow [PE-A] vs. green [FITC-A] fluorescence) or reduced ("CD2 ${ }^{+}$GFP ${ }^{\text {reduced" }), ~ t o ~ d i s t i n g u i s h ~ G F P-l a c k i n g ~ c e l l s ~ f r o m ~ t h o s e ~ i n ~ w h i c h ~ G F P ~}$ expression is reduced. As the bulk of GFP cells carrying no GFP transgene will not have the vector sequences used for PCR recovery of library elements (see below), we sorted both lowGFP populations together to capture all cells in which GFP expression is silenced completely or partially.

However, for the second set of experiment implying our second library, we sorted only the cells baring a reduced GFP expression ("CD2 ${ }^{+} \mathrm{GFP}^{\text {reduced"), omitting the cells without any GFP levels, }}$ as we hypothesized that the relative higher number of GFP- cells in comparison to the GFPreduced might induce higher background noise. Indeed we assumed that a significant fraction of the GFPcells were not carrying any of the elements of the library and that, therefore, processing them with the GFP ${ }^{\text {reduced }}$ cells would decrease the sensitivity of our method. Therefore, we sorted and processed the GFP ${ }^{\text {reduced }}$ cell population, as defined in the paragraph above.

Figure 1 shows GFP expression profiling (green vs. yellow fluorescence) for $11,031 \mathrm{CD} 2^{+}$cells from negative control embryos (c), 13,501 cells from positive control embryos (d), and 16,654 cells from embryos containing the candidate silencer library (e). Figure 2 shows such results for $12,878 \mathrm{CD} 2^{+}$cells from validated negative silencer embryos (b) and $17,891 \mathrm{CD} 2^{+}$cells from validated positive silencer embryos (c).

Supplementary Fig. 6 shows FACS output for cells isolated from embryos transgenic for a negative control library element in pSFSdist ("MB158" 1-kb E. coli genomic sequence), for the absence of inhibition of GFP expression in $t w i$:CD2+ (mesodermal) cells; Supplementary Fig. 7 shows identical output for cells obtained from our library of candidate silencers inhibiting GFP expression in embryos that express CD2 under the twi promoter.

Library elements present in each analyzed population were recovered and sequenced exactly as previously described (Gisselbrecht et al., 2013). Briefly, a crude extract of sorted cell genomic DNA serves as template for nested PCR amplification, including 17 cycles with outside primers derived from vector sequence followed by 28 cycles with the SEQ1 and SEQ2 primers present on all library elements. Size-selected PCR products were sonicated and prepared for Illumina sequencing by standard protocols. All finished sequencing libraries were assessed by Agilent 2200 TapeStation and submitted to the Partners Center for Personalized Genetic Medicine for concentration measurement by PicoGreen fluorescence and qPCR, followed by equimolar index pooling and sequencing (50-base paired-end reads) on the Illumina HiSeq 2000.

Statistical analysis of $s F S$ sequencing reads.
Illumina sequencing reads were filtered by pattern matching (in Perl) for beginning with the SEQ1 or SEQ2 primer sequences, representing reads from one end of a PCR-amplified library element. 15.29% of reads (averaged across all libraries) passed this filter. The next 12 nucleotides of each of these reads were extracted and compared to the list of library barcodes; 98.25% matched. Counts for each library element were pooled from both (paired-end) reads of each library to achieve the final measure of abundance ("insert count") for that element in that library. The second library we designed showed similar numbers: 17.90% of the reads passed the first filter (averaged across all libraries) and 97.86% of these matched our list of library barcodes.

In our previous work (Gisselbrecht et al., 2013) and using the data therein we tested various analysis methods and found that the original DESeq R package (Anders and Huber, 2010) best predicted the results of individual validation of tested windows. We therefore used that package to compare insert counts for inserts recovered from CD2 ${ }^{+}$cells in which GFP is reduced or absent to those from "input" cells (sorted CD2 ${ }^{+}$or CD2- cells without regard for GFP expression status). Each week's sorting was treated as a separate experiment; the CD2 ${ }^{+} \mathrm{GFP}^{\text {reduced }}$ samples from three days of sorting were treated as biological replicates and compared to six input samples (CD2 ${ }^{+}$ and CD2 each from three days of sorting). As extremely low-abundance regions can give anomalously high enrichment/depletion signals, we filtered for "reliably detected" windows by including only those detected in at least one input sample from every day of sorting. A sample of the enrichment analysis result is shown in Fig. 2a. As a control, we compared recovered insert counts from CD^{+}and $\mathrm{CD} 2^{-}$cells. As these are sorted from the same population of embryos without regard to reporter activity, they should show no difference except due to experimental noise; Supplementary Fig. 8 shows an example of the distribution of values seen in such a comparison for the first library.

As a further test of the reliability of this method, we compared for both experiments the results of two independent weeks of sorting, for the subset of library elements reliably detected in both weeks, by displaying the results of one analysis colored by the results of the independent experiment (Supplementary Figures 2 and 3). This shows that, while significant depletion calls are highly variable between experiments, significantly enriched library elements are highly concordant. We therefore considered any library element to score positive by sFS if it was significantly enriched (adjusted p-value <0.1) in the $\mathrm{CD}^{+} \mathrm{GFP}^{\text {reduced }}$ cell population in either or both of the independent weeks of experiments.

Validation of sFS results
We recovered a random sample of library element transgenic fly strains for initial validation by crossing individual transgenic male flies, removed from the population cages used to collect embryos after the end of cell sorting experiments, to virgin females of the second chromosome balancer line $y w ; d p p^{14} \mathrm{Bl} / \mathrm{CyO}$. After several days, transgenic males were removed and their inserts recovered and identified by PCR and Sanger sequencing; potentially informative lines were recovered and made homozygous by collecting balanced transgene insertions and selfcrossing. We selected 20 of these lines to cover a range of possible outcomes from the described analysis: significantly enriched in the $\mathrm{CD} 2^{+}$GFP ${ }^{\text {reduced }}$ population, significantly depleted, or neither. We prepared population cages as for library sorting, using twi:CD2 virgin females and males of one informative homozygous line for each cage; we also prepared cages in parallel with positive and negative control silencers. (Positive control: zen VRE (Jiang et al., 1993); negative control: Ecoli_control15, 1 kb of E. coli genomic DNA.) We then prepared CD2-stained cells as above, and performed analytical flow cytometry using the same equipment we used for preparative FACS. Our key readout of silencer activity was the fraction of $\mathrm{CD} 2^{+}$cells that fell within a GFPreduced gate designed to exclude the majority of both GFP ${ }^{+}$(unsilenced) and GFP cells (non-expressing or non-transgenic cells, as from the rare non-virgin twi:CD2 female). We measured this fraction for at least two collections of each genotype, typically counting 10^{5} events ($>10^{4}$ viable cells). A library element was considered validated positive if the range of GFP ${ }^{\text {reduced }}$ fractions did not overlap that observed for the negative control. Out of the 20 randomly recovered windows tested, 9 scored positive in one or both of the two sFS experiments. Of the 11 sFS negatives, all 11 were negative on individual validation. Nonetheless, only $5 / 9$ positives validated positive by FACS (see Supplementary Table 5).

We therefore decided to individually validate all sFS-positive elements to assemble a highconfidence set of validated mesodermal silencers. However, in our initial exploration of the sFSpositive library elements, we noticed that several sequences included as negative controls scored positive, that these largely overlapped the transcriptional start sites (TSSs) of mesodermally expressed genes, and that there was overall a large and significant enrichment for TSS overlap in the set of sequences scoring positive.

We suspect that this reflects promoter competition (Ohtsuki et al., 1998), an unavoidable artifact of this experimental design. We therefore filtered the 79 sFS -positive windows to remove those likely to contain core promoter elements. Briefly, we compiled a set of TSS positions by extracting them from several transcript annotation files downloaded from FlyBase (Attrill et al., 2016) version 5.57: all start positions from the all-transcript, all-miscRNA, and all-ncRNA files, plus pre_miRNA start positions from all-miRNA. We assembled coordinates comprising a region of $+/-40$ nucleotides around each TSS, and removed those library elements that overlap any of these regions by 10 or more nucleotides. This left 38 sFS -positive non-promoter sequences to validate, 6 of which had already been tested as randomly recovered lines. The second library, however, was filtered prior to the experiment to remove elements overlapping TSSs.

For each of the remaining library elements to validate, PCR product from the original library preparation multiwell plates was purified by agarose gel electrophoresis or AMPure bead purification, BP-cloned into pDONR, sequence-verified, and LR-cloned into pSFSdist. Each resulting plasmid was injected into y w nos:phiC31int; attP40 embryos (Gisselbrecht et al., 2013), and white ${ }^{+}$heterozygous progeny were recovered and crossed to $t w i$:CD2 virgin females for production of cells for FACS validation as above. See Supplementary Table 5 and 6 for results of all validation FACS experiments.

For the second library however, we tested a total of 8 recovered elements, 4 scored positive in one or both of the two experiments and 4 scored negative: all 8 elements validated by FACS. We therefore assumed that sorting only CD2+ cells with reduced GFP expression significantly increase the reliability of our method, as stated previously, and assumed that all other elements validated as well.

To verify that an expanded $\mathrm{CD} 2^{+} \mathrm{GFP}^{\text {reduced }}$ cell population indeed represents mesodermal silencing activity of the tested library element, we generated variants of pSFSdist in which the ubiquitously active ChIPCRM2078 is replaced with one of two more specific mesodermal enhancers: ChIPCRM2613 (which drives widespread mesodermal expression (Gisselbrecht et al., 2013)), or Mef2 I-E ${ }_{D 5}$, which drives expression specifically in the fusion competent myoblasts of the developing mesoderm (Duan et al., 2001). Elements to be tested (one each of a positive control, a negative control, and a newly discovered silencer) were Gateway LR-cloned into these vectors and introduced into flies as above; transgenic embryos from homozygous lines were collected, fixed, and stained for GFP expression as previously described (Gisselbrecht et al., 2013). For imaging of fluorescence intensity, embryos were collected, fixed, and stained in parallel, imaged with identical exposure times, and processed for presentation without adjustment of brightness, contrast, or gamma. Distribution of pixel values for the indicated regions (magenta boxes, Fig. 2d-g) were measured in Photoshop and are expressed as Mean \pm SD.

Assessing CRM bifunctionality

A large majority of the high-confidence validated silencers ($\sim 85 \%$) reported herein were originally included in our libraries of elements to test on the basis of previously characterized enhancer activity (see Fig. 5). From the first set of validated silencers from the first library, the two silencers not previously known to be enhancers were assayed by sFS based on their containing ChIP-chip peaks for the corepressor CtBP. To test the potential enhancer activity of these elements, they were LR-cloned into our pEFS vector (Gisselbrecht et al., 2013). Homozygous lines containing these reporter constructs were generated as above, and embryos were fixed, stained, and imaged as previously described (Gisselbrecht et al., 2013). From the second library, the 5 validated silencers which were not known to be enhancers, were cloned into our pEFS vector as previously stated and these plasmids were sent for microinjection into embryos to Rainbow Transgenic Flies, Inc. (Camarillo, CA). At the time of the writing of this dissertation, the injected flies were pupae and in quarantine, and no pattern of expression for these elements has yet been observed.

Downstream analysis of the validated silencers

1. Enrichment of input data types. Each tested element belonged to one of nine categories, as described above ("Design of the candidate silencer library"). We compared the prevalence of each category among high-confidence validated silencers to its prevalence among non-TSSoverlapping windows confidently detected in either or both of the two experimental repetitions. Statistical significance of enrichment or depletion was calculated using the fisher.test function in R.
2. Enrichment of histone marks and TF ChIP signal. Mesoderm-specific histone modification ChIP-seq datasets were downloaded from the European Nucleotide Archive (Bonn et al., 2012) or from GEO (Gaertner et al., 2012). Reads mapping to each tested library element (i.e., each non-TSS-overlapping element confidently detected in either or both of the two experiments, each comprising three biological replicates) were counted and, where available,
normalized by dividing by total H3 ChIP read count. Whole embryo histone modification ChIPseq and ChIP-chip datasets were downloaded from modENCODE as bedfiles. ChIP-chip or ChIP-seq data for individual TFs, coactivators, and corepressors were assembled from modENCODE and other sources (see Supplementary Table 9 and 10). Mean signal over all tested library elements was calculated using bedtools. Enrichment or depletion was measured by calculating the area under the receiver-operator characteristic curve (AUROC), considering highconfidence validated silencers to be "true positives," using the auROC function of the limma package in R. Statistical significance was assessed using the wilcox.test function. Where independent replicates were available, p-values were calculated separately and combined using Fisher's method (Mosteller and Fisher, 1948). P-values were corrected for multiple hypothesis testing using the p.adjust function in R with the "fdr" method. TF complexity scores and HOT regions were downloaded from (Roy et al., 2010). Using the previously defined TF complexity score of 8.0 as the cutoff to define a HOT region, tested elements that overlap HOT regions were defined and the enrichment of high-confidence validated silencers in this population was calculated with the fisher.test function in R. To generate the heatmap, all histone mark data were Z-transformed, subtracting from each element in each column (i.e. each histone mark dataset) the mean of that column over all library elements and dividing that deviation by the standard deviation over the column; the $<0.5 \%$ of all Z-scores over 5 were truncated to 5 . Truncated Zscores were biclustered, using 1-Pearson's R as a distance metric and Ward's minimum variance method for clustering.
3. Motif enrichment. We curated a list of 93 repressive TF binding site motifs (see Supplementary Table 4). Gene lists were downloaded from FlyBase (download date: February 3, 2015) with the Molecular Function Gene Ontology term GO:0043565 (sequence-specific DNA binding) and either the Biological Process term GO:0000122 (negative regulation of transcription from RNA polymerase II promoter) or the Biological Process term GO:0045892 (negative regulation of transcription, DNA-templated). These were combined and intersected with the list of Drosophila TFs with experimentally determined DNA binding site motifs from CisBP (Weirauch et al., 2014), UniPROBE (Hume et al., 2015), and FlyFactorSurvey (Zhu et al., 2011). For TFs with multiple similar PWMs available, a single representative (learned from ChIP data, where available) was chosen; where a single TF (or its isoforms or heterodimers) gave two unalignable motifs, both were included. We then used the Lever algorithm (Warner et al., 2008) to search for combinations of 1,2 , or 3 motifs enriched among high-confidence validated silencers relative to matched random genomic background sets, as previously described (Gisselbrecht et al., 2013). We consider a motif or motif combination significantly enriched if it targets $\geq 50 \%$ of the foreground sequences and has AUROC ≥ 0.65 and FDR ≤ 0.1; all such combinations are shown in Fig. 4, for the validated elements from the first library we tested.
4. Testing effects of binding site mutations on silencer/enhancer activity. High-quality instances of the dve motif were chosen for site-directed mutagenesis in pDONR clones of example high-confidence validated silencers. Mutations were designed to avoid altering or introducing overlapping binding sites for known or suspected regulators; introduced mutations are shown in Supplementary Fig. 4. To assess effects on silencer activity, sequence-validated mutant silencers were LR-cloned into pSFSdist and introduced into flies; silencer activity of the resulting constructs was tested in parallel with their wild type counterparts as described above. To assess effects on enhancer activity, mutant silencers were LR-cloned into pEFS and introduced into flies. Wild type versions of the same elements were LR-cloned into pWattBnlacZ (Busser et al., 2012) and introduced into flies; crossing of the resulting CRM:LacZ and CRM $^{\text {mutt:GF }}$ GF lines together produces embryos in which the wild type- and mutant-driven expression patterns can be compared directly, which were fixed, stained, and imaged as above.

Cell sorting and fixation with formaldehyde
We once again used the previously described protocol for isolation of single cells from Drosophila embryos, at stage 11, that we modified by including an additional incubation step for staining the cells with commercially available Alexa647-conjugated anti(rat CD2) antibody (AbDSerotec, cat. \#MCA154A647) (Gisselbrecht et al., 2013) for the homozygous twi:CD2 line.

We used the same technique as previously explained in this Methods section and sorted the cells accordingly. Then, we proceeded with the crosslinking o the cells by adding a final concentration of 1% of formaldehyde, incubating 10 minutes at room temperature and gently inverting the tube every minute. The reaction was quenched by adding an excess of glycine (final concentration $\sim 125 \mathrm{mM}$) and incubated for 5 minutes at room temperature, then 15 min on ice to stop all remaining crosslinking. The fixed cells were then washed and resuspended into culture medium (8% FBS in Schneider Medium), and stored at $4^{\circ} \mathrm{C}$, protected from light.

Guide-RNA and primer design
We used the online tool "flyCRISPR" (Gratz et al., 2014) to find CRISPR target sites with the highest stringency settings available, to select 20-nucleotide long sites with no predicted offtarget sites. The Protospacer adjacent motif (PAM) was set to be NGG only and the "maximum strigency" was selected to be the maximum available which uses a strict algorithm based on offtarget cleavage effects observed in cell lines (Gratz et al., 2014). The gRNA against white (GGCGATACTTGGATGCCCTGCGG) was selected upon these criteria. For our bifunctional CRMs, the DNA sequences provided to "flyCRISPR" were selected after inspection on the UCSC genome browser: for each element, the two gRNAs necessary for a knock-out were tried to be found near the extremities of the tested windows by sFS , in approximate concordance with regions that seemed conserved in the Drosophila genre. If two distinct conserved regions seemed visible, a third gRNA was designed to independently knock-out each region. The list of gRNA designed can be found in annex 3 , along with primer sets surrounding the window, for quick PCR validation of knock-outs (by obvious change in the size of the PCR product).

Cas9 and gRNA preparation and microinjection

The Cas9 protein was ordered from IDT (Alt-R S.p. Cas9 Nuclease 3NLS, \#1074181) along with the necessary CRISPR RNA (crRNA) (IDT, \#1072534) and transactivating (tracrRNA) (IDT \#1075928) which respectfully specify the DNA target sequence and activate the Cas9 endonuclease. It has to be noted that the Cas9-3NLS endonuclease is delivered in a solution at 50% glycerol. The RNP complexes were assembled according to IDT protocols and to follow the necessary 2:2:1 molar ratios of crRNA:tracrRNA:Cas9. We prepared RNP solutions to have a final concentration of $2 \mathrm{ug} / \mathrm{ul}$ of Cas9 (final concentration of 10% glycerol), given that it was previously found to be the optimal concentration for microinjection in Drosophila (Lee et al., 2014). The microinjection of the RNP complexes was in the same manner as regular microinjection, as previously explained in this Methods section. If the injected eggs led to adult flies, males from those flies should then be crossed to virgin females from an appropriate balancer line, in order for the knock-out to be transmitted to the progeny without concern if it were to be lethal.

The primers for probes for future in situ hybridization experiments were designed for genes surrounding the validated bifunctional CRMs we previously identified, 10kb upstream and downstream of the element. A set of primers was designed for each gene, and every set included the T7 promoter sequence on the reverse primer (TAATACGACTCACTATAGGGAGA).

References

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.

Bessis, A., Champtiaux, N., Chatelin, L. \& Changeux, J.P. (1997). The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci U S A 94, 5906-110

Busturia, A., Wightman, C. D., and Sakonju, S. (1997) . A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 124:4343-4350.

Celniker, S., Dillon, L., Gerstein, M., Gunsalus, K., Henikoff, S., Karpen, G., Kellis, M., Lai, E., Lieb, J., MacAlpine, D., Micklem, G., Piano, F., Snyder, M., Stein, L., White, K. \& Waterston, R. (2009). Unlocking the secrets of the genome. Nature 459, 927-930.

Cournac, A., Marie-Nelly, H., Marbouty, M., Koszul, R. \& Mozziconacci, J. (2012). Normalization of a chromosomal contact map. BMC Genomics 13, 436.

Doyle, H. J., Kraut, R., and Levine, M. (1989). Spatial regulation of zerknullt: a dorsal-ventral patterning gene in Drosophila. Genes Dev 3:1518-1533.

Ernst, J. \& Kellis, M. (2010). Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28, 817-25.

Filion, G., van Bemmel, J., Braunschweig, U., Talhout, W., Kind, J., Ward, L., Brugman, W., de Castro, I., Kerkhoven, R., Bussemaker, H. \& van Steensel, B. (2010). Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells. Cell 143, 212224.

Gallo, S., Gerrard, D., Miner, D., Simich, M., Des Soye, B., Bergman, C. \& Halfon, M. (2010). REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Research 39, D118-D123.

Gisselbrecht, S., Barrera, L., Porsch, M., Aboukhalil, A., Estep, P., Vedenko, A., Palagi, A., Kim, Y., Zhu, X., Busser, B., Gamble, C., Iagovitina, A., Singhania, A., Michelson, A. \& Bulyk, M. (2013). Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nature Methods 10, 774-780.

Gratz, S., Ukken, F., Rubinstein, C., Thiede, G., Donohue, L., Cummings, A. \& O’Connor-Giles, K. (2014). Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila. Genetics 196, 961-971.

Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172.

Hartwell S., Goldberg M., Fischer J., Hood L., Aquadro C. (2015). Genetics: From Genes to Genomes, 5th Edition, McGraw-Hill.

Heintzman, N., Stuart, R., Hon, G., Fu, Y., Ching, C., Hawkins, R., Barrera, L., Van Calcar, S., Qu, C., Ching, K., Wang, W., Weng, Z., Green, R., Crawford, G. \& Ren, B. (2007). Distinct and
predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genetics 39, 311-318.

Heintzman, N., Hon, G., Hawkins, R., Kheradpour, P., Stark, A., Harp, L., Ye, Z., Lee, L., Stuart, R., Ching, C., Ching, K., Antosiewicz-Bourget, J., Liu, H., Zhang, X., Green, R., Lobanenkov, V., Stewart, R., Thomson, J., Crawford, G., Kellis, M. \& Ren, B. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108-112.

Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.

Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B. \& Liu, J. (2012). HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics 28, 3131-3133.

Huang JD, Dubnicoff T, Liaw GJ, Bai Y, Valentine SA, Shirokawa JM, Lengyel JA, Courey AJ. (1995) Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes \& development 9.24: 3177-89

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.

Jiang, J., Cai, H., Zhou, Q. \& Levine, M. Conversion of a dorsal-dependent silencer into an enhancer: evidence for dorsal corepressors. EMBO J 12, 3201-9 (1993).

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.

Kallunki, P., Edelman, G.M. \& Jones, F.S. (1998). The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci U S A 95, 3233-8.

Kehayova, P., Monahan, K., Chen, W. \& Maniatis, T. (2011). Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 108, 17195-200.

Kharchenko, P., Alekseyenko, A., Schwartz, Y., Minoda, A., Riddle, N., Ernst, J., Sabo, P., Larschan, E., Gorchakov, A., Gu, T., Linder-Basso, D., Plachetka, A., Shanower, G., Tolstorukov, M., Luquette, L., Xi, R., Jung, Y., Park, R., Bishop, E., Canfield, T., Sandstrom, R., Thurman, R., MacAlpine, D., Stamatoyannopoulos, J., Kellis, M., Elgin, S., Kuroda, M., Pirrotta, V., Karpen, G. \& Park, P. (2010). Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480-485.

Lajoie, B., Dekker, J. \& Kaplan, N. (2015). The Hitchhiker's guide to Hi-C analysis: Practical guidelines. Methods 72, 65-75.

Lee, J., Kwak, S., Kim, J., Kim, A., Noh, H., Kim, J. \& Yu, K. (2014). RNA-Guided Genome Editing in Drosophila with the Purified Cas9 Protein. G3\&\#58; Genes|Genomes|Genetics 4, 1291-1295.

Koike, S., Schaeffer, L. \& Changeux, J.P. (1995). Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor delta-subunit gene. Proc Natl Acad Sci U S A 92, 10624-8.

Pfeiffer, B., Jenett, A., Hammonds, A., Ngo, T., Misra, S., Murphy, C., Scully, A., Carlson, J., Wan, K., Laverty, T., Mungall, C., Svirskas, R., Kadonaga, J., Doe, C., Eisen, M., Celniker, S. \& Rubin, G. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences 105, 9715-9720.

Maurano, M., Humbert, R., Rynes, E., Thurman, R., Haugen, E., Wang, H., Reynolds, A., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun, S., Johnson, A., Canfield, T., Giste, E., Diegel, M., Bates, D., Hansen, R., Neph, S., Sabo, P., Heimfeld, S., Raubitschek, A., Ziegler, S., Cotsapas, C., Sotoodehnia, N., Glass, I., Sunyaev, S., Kaul, R. \& Stamatoyannopoulos, J. (2012). Systematic localization of common diseaseassociated variation in regulatory DNA. Science 337, 1190-5.

Mani-Telang, P. \& Arnosti, D.N. (2007). Developmental expression and phylogenetic conservation of alternatively spliced forms of the C-terminal binding protein corepressor. Dev Genes Evol 217, 127-35.

Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3, 155-66.

Noyes, M., Christensen, R., Wakabayashi, A., Stormo, G., Brodsky, M. \& Wolfe, S. (2008). Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites. Cell 133, 1277-1289.

Ogbourne, S. \& Antalis, T.M. (1998). Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 331 (Pt 1), 1-14.

Ohtsuki, S., Levine, M., and Cai, H.N. (1998). Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev 12, 547-556.

Orian, A., Delrow, J., Rosales Nieves, A., Abed, M., Metzger, D., Paroush, Z., Eisenman, R. \& Parkhurst, S. (2007). A Myc Groucho complex integrates EGF and Notch signaling to regulate neural development. Proceedings of the National Academy of Sciences 104, 15771-15776.

Overballe-Petersen, S., Harms, K., Orlando, L., Mayar, J., Rasmussen, S., Dahl, T., Rosing, M., Poole, A., Sicheritz-Ponten, T., Brunak, S., Inselmann, S., de Vries, J., Wackernagel, W., Pybus, O., Nielsen, R., Johnsen, P., Nielsen, K. \& Willerslev, E. (2013). Bacterial natural transformation by highly fragmented and damaged DNA. Proceedings of the National Academy of Sciences 110, 19860-19865.

Prasad, M.S. \& Paulson, A.F. (2011). A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev Dyn 240, 1756-68.

Riel, J.J.G.v. (2014). Identification of epigenomic patterns to annotate regulatory elements in the human genome. Masters thesis, Utrecht University.
modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., Ma, L., et al. (2010). Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787-1797.

Schaeffer, H.J., Forstheoefel, N.R., Cushman, J.C. (1995). Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28, 205-18.

Schneider, C., Rasband, W. \& Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675.

Simpson, J., Schell, J., Montagu, M.V., Herrera-Estrella, L. (1986). Light-inducible and tissuespecific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323, 551-554.

Stathopoulos, A. \& Levine, M. (2005). Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev Biol 280, 482-93.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering. Cell 153, 910-918.

Xie, F., Ye, L., Chang, J.C., Beyer, A.I., Wang, J., Muench, M.O., and Kan, Y.W. (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24, 1526-1533.

Yaffe, E. \& Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics 43, 1059-1065.

Zhu, Q. and Halfon, M. (2009). Complex organizational structure of the genome revealed by genome-wide analysis of single and alternative promoters in Drosophila melanogaster. BMC Genomics, 10(1), p. 9 .

Supplementary figures

Supplementary Fig. 1.
Schema of silencer-FACS-seq study design.

Supplementary Fig. 2.

Concordance between sFS replicates for the first library.
Enrichment ratios for confidently detected library elements in the CD2+GFPreduced cell population, as compared to input cells, are plotted vs. input abundance, here for our first library. Positive y-values reflect enrichment in the silencer cell population. Library elements represented by large points were called significantly differntially detected (adjusted p-value <0.1 according to DESeq; see Methods section) in this experiment; red points were called significantly enriched in an independent reptition of the experiment. Each repetition comprised three biological replicates collected on separate days.

Supplementary Fig. 3.

Concordance between sFS replicates for the second library.
As in Supplementary Fig. 2, enrichment ratios for confidently detected library elements in the CD2+GFPreduced cell population, as compared to input cells, are plotted vs. input abundance, here for our second library. Positive y-values reflect enrichment in the silencer cell population. Library elements represented by large points were called significantly differntially detected (adjusted p-value < 0.1 according to DESeq; see Methods section) in this experiment; red points were called significantly enriched. Once again, each repetition comprised three biological replicates collected on separate days.

A
dpp 85.8MX - chr2L:2456796-2456843 (dm3)
CGTATTTCGC ATTATTTTCC GCAGGATTAT AGGGTCGAAC AATAAAGC
hkb 0.6kbRIRV - chr3R:173955-174000 (dm3)
TAGAACAAAA GGGAAATCAT TGGGATTACG TCCAACTGCA TTGTTC
AA

- chr3R:174555-174606 (dm3)

AGAACACGAC GTAATATTCA TATTTGGATT AATTAGGAAA TTTCACATGC GC AA
e Core Abdominal CRE - chr3R:17067160-17067219 (dm3)
TATGTTAATT TACTAATTGA AAAGATCGGA TTATTAAGAT ATACTCGCTA TCAACTTTCC
AA
ind module A - chr3L:15032437-15032485 (dm3)
AACGTTTTGT TATAATCCAA ACTTAATAAC CTGAAAAAGT TAAATGTGG

tested construct	\% GFPreduced mean \pm SD	adjusted p-value
dpp 85.8MX	8.2 ± 2.5	1.0
dpp 85.8MX ${ }^{\text {dve_mut }}$	7.4 ± 1.7	
$h k b 0.6 \mathrm{kbRIRV}$	10.3 ± 3.7	1.0
$h k b 0.6 \mathrm{kbRIRV}{ }^{\text {dve }}$ _mut	10.5 ± 4.2	
e Core Abdominal CRE	2.3 ± 0.8	1.0
e Core Abdominal CRE ${ }^{\text {dve_mut }}$	2.1 ± 1.1	
ind module A	34.1 ± 2.9	0.01
ind module ${ }^{\text {dve_mut }}$	40.4 ± 1.7	

Supplementary Fig. 4.

Dve site mutation compromises enhancer but not silencer activity in bifunctional CRMs. (A) Mutations to knock out dve motif instances in selected CRMs. Reference nucleotides are shown in red and are replaced with nucleotides shown below them in bold. Nucleotide shown in blue is a polymorphism in our wild type strain relative to the dm3 sequence. (B) Results of silencer FACS assays on wild type and mutant constructs. (C-H) Mutated CRMs (D,G) drive reduced expression in posterior domains (arrowheads) and sometimes ectopic anterior expression (arrow) compaed to wild type CRMs (C,F).

Supplementary Fig. 5.
Map of the pSFSdist plasmid used in this study.

Tube: MB158-2 Population	\#Events	\%Parent	\%Total
All Events	100,000	\#\#\#\#\#	100.0
$\square \mathrm{P} 1$	50,437	50.4	50.4
P2	41,152	81.6	41.2
\square P3	37,647	91.5	37.6
CD2+	17,562	46.6	17.6
GFP+CD2+	2,853	16.2	2.9
\square GFP-CD2+	11,224	63.9	11.2
$\square \mathrm{CD} 2+$ GFPrec	133	1.2	0.1
CD2-	10,386	27.6	10.4
$\square \mathrm{GFP}+\mathrm{CD} 2-$	1,762	17.0	1.8
\square GFP-CD2-	6,996	67.4	7.0
\square CD2-GFPred	205	2.9	0.2

Supplementary Fig. 6.
FACS output showing the distribution of GFP expression (detected as the ratio of green [FITCA] vs yellow [PE-A] fluorescence) in CD2+ and therefore mesodermal cells isolated from embryos made transgenic for a negative control library element in our pSFSdist ("MB158" 1-kb E.coli genomic sequence)

FACSDiva Version 6.1.2

Tube: Library pool-2 Population	\#Events	\%Parent	\%Total
All Events	100,000	\#\#\#\#	100.0
$\square \mathrm{P} 1$	35,576	35.6	35.6
P 2	28,087	78.9	28.1
$\square \mathrm{P} 3$	24,187	86.1	24.2
$\square \mathrm{CD} 2+$	12,038	49.8	12.0
$\square \mathrm{GFP}+\mathrm{CD} 2+$	5,187	43.1	5.2
\square GFP-CD2+	5,304	44.1	5.3
$\square \mathrm{CD} 2+\mathrm{GFPrec}$	323	6.1	0.3
$\square \mathrm{CD} 2-$	5,583	23.1	5.6
$\square \mathrm{GFP}+\mathrm{CD} 2-$	2,499	44.8	2.5
\square GFP-CD2-	2,568	46.0	2.6
\square CD2-GFPred	165	6.4	0.2

Supplementary Fig. 7.

FACS output showing the distribution of GFP expression (detected as the ratio of green [FITCA] versus yellow [PE-A] fluorescence) in CD2+ (mesodermal) cells isolated from embryos transgenic for our library of candidate silencers inhibiting GFP expression.
experiment 1 CD2- vs. CD2+
large dots have p.adj < 0.1

Supplementary Fig. 8. : Repeatability of control experiments.

Enrichment ratios or confidently detected library elements in the cD2+ cell population, as compared to CD2- cells, are plotted versus input abundance. Positive y-values reflect enrichment in the CD2+ cell population. Library elements represented by large points were called significantly differentially detected (adjusted p-value < 0.1 according to DESeq; see Methods section) in this experiment.

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol 11, R106.

Attrill, H., Falls, K., Goodman, J.L., Millburn, G.H., Antonazzo, G., Rey, A.J., Marygold, S.J., and FlyBase, C. (2016). FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 44, D786-792.

Barolo, S., Carver, L.A., and Posakony, J.W. (2000). GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29, 726, 728, 730, 732.

Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep, P.W., 3rd, and Bulyk, M.L. (2006). Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24, 1429-1435.

Bessis, A., Champtiaux, N., Chatelin, L., and Changeux, J.P. (1997). The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci U S A 94, 5906-5911.

Bonn, S., Zinzen, R.P., Girardot, C., Gustafson, E.H., Perez-Gonzalez, A., Delhomme, N., Ghavi-Helm, Y., Wilczynski, B., Riddell, A., and Furlong, E.E. (2012). Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44, 148-156.

Busser, B.W., Taher, L., Kim, Y., Tansey, T., Bloom, M.J., Ovcharenko, I., and Michelson, A.M. (2012). A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis. PLoS Genet 8, e1002531.

Duan, H., Skeath, J.B., and Nguyen, H.T. (2001). Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development 128, 4489-4500.

Ernst, J., and Kellis, M. (2010). Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28, 817-825.

Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J., et al. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212-224.

Gaertner, B., Johnston, J., Chen, K., Wallaschek, N., Paulson, A., Garruss, A.S., Gaudenz, K., De Kumar, B., Krumlauf, R., and Zeitlinger, J. (2012). Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep 2, 1670-1683.

Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Des Soye, B., Bergman, C.M., and Halfon, M.S. (2011). REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res 39, D118-123.

Gao, Q., and Finkelstein, R. (1998). Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development 125, 4185-4193.

Gisselbrecht, S.S., Barrera, L.A., Porsch, M., Aboukhalil, A., Estep, P.W., 3rd, Vedenko, A., Palagi, A., Kim, Y., Zhu, X., Busser, B.W., et al. (2013). Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat Methods 10, 774-780.

Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., Lee, L.K., Stuart, R.K., Ching, C.W., et al. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108-112.

Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, L.O., Van Calcar, S., Qu, C., Ching, K.A., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39, 311-318.

Hume, M.A., Barrera, L.A., Gisselbrecht, S.S., and Bulyk, M.L. (2015). UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 43, D117-122.

Jiang, J., Cai, H., Zhou, Q., and Levine, M. (1993). Conversion of a dorsal-dependent silencer into an enhancer: evidence for dorsal corepressors. Embo J 12, 3201-3209.

Jiang, N., Emberly, E., Cuvier, O., and Hart, C.M. (2009). Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription. Mol Cell Biol 29, 3556-3568.

Kallunki, P., Edelman, G.M., and Jones, F.S. (1998). The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci U S A 95, 3233-3238.

Kehayova, P., Monahan, K., Chen, W., and Maniatis, T. (2011). Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 108, 17195-17200.

Kharchenko, P.V., Alekseyenko, A.A., Schwartz, Y.B., Minoda, A., Riddle, N.C., Ernst, J., Sabo, P.J., Larschan, E., Gorchakov, A.A., Gu, T., et al. (2011). Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480-485.

Koike, S., Schaeffer, L., and Changeux, J.P. (1995). Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor delta-subunit gene. Proc Natl Acad Sci U S A 92, 10624-10628.

Lenhard, B., and Wasserman, W. (2002). TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics 18, 1135-1136.

Mani-Telang, P., and Arnosti, D.N. (2007). Developmental expression and phylogenetic conservation of alternatively spliced forms of the C-terminal binding protein corepressor. Dev Genes Evol 217, 127-135.

Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization of common diseaseassociated variation in regulatory DNA. Science 337, 1190-1195.

Mosteller, F., and Fisher, R. (1948). Questions and Answers, Answer number 14. The American Statistician 2, 30-31.

Negre, N., Brown, C.D., Shah, P.K., Kheradpour, P., Morrison, C.A., Henikoff, J.G., Feng, X., Ahmad, K., Russell, S., White, R.A., et al. (2010). A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6, e1000814.

Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3, 155-166.

Noyes, M.B., Christensen, R.G., Wakabayashi, A., Stormo, G.D., Brodsky, M.H., and Wolfe, S.A. (2008). Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133, 1277-1289.

Ogbourne, S., and Antalis, T.M. (1998). Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 331 (Pt 1), 1-14.

Ohtsuki, S., Levine, M., and Cai, H.N. (1998). Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev 12, 547-556.

Orian, A., Delrow, J.J., Rosales Nieves, A.E., Abed, M., Metzger, D., Paroush, Z., Eisenman, R.N., and Parkhurst, S.M. (2007). A Myc-Groucho complex integrates EGF and Notch signaling to regulate neural development. Proc Natl Acad Sci U S A 104, 15771-15776.

Petrykowska, H.M., Vockley, C.M., and Elnitski, L. (2008). Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res 18, 1238-1246.

Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.T., Misra, S., Murphy, C., Scully, A., Carlson, J.W., Wan, K.H., Laverty, T.R., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 105, 9715-9720.

Prasad, M.S., and Paulson, A.F. (2011). A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev Dyn 240, 1756-1768.

Riel, J.J.G.v. (2014). Identification of epigenomic patterns to annotate regulatory elements in the human genome. Masters thesis, Utrecht University.

Rosenbloom, K.R., Armstrong, J., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., et al. (2015). The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 43, D670-681.

Roy, S., Ernst, J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., Ma, L., Lin, M.F., et al. (2010). Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787-1797.

Schaeffer, H.J., Forstheoefel, N.R., and Cushman, J.C. (1995). Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28, 205218.

Simpson, J., Schell, J., Montagu, M.V., and Herrera-Estrella, L. (1986). Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323, 551-554.

Stathopoulos, A., and Levine, M. (2005). Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev Biol 280, 482-493.

Thomas, S., Li, X.Y., Sabo, P.J., Sandstrom, R., Thurman, R.E., Canfield, T.K., Giste, E., Fisher, W., Hammonds, A., Celniker, S.E., et al. (2011). Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol 12, R43.

Warner, J., Philippakis, A., Jaeger, S., He, F., Lin, J., and Bulyk, M. (2008). Systematic identification of mammalian regulatory motifs' target genes and functions. Nature Methods 5, 347-353.

Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

Zhu, L.J., Christensen, R.G., Kazemian, M., Hull, C.J., Enuameh, M.S., Basciotta, M.D., Brasefield, J.A., Zhu, C., Asriyan, Y., Lapointe, D.S., et al. (2011). FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res 39, D111-117.

Chapter 2: rare cell purification

This chapter presents a minor and parallel project of my PhD. In the first subchapter, I will present the needs and reason for the development of a reliable method of cell purification or cell panning. Then, I will describe the method that was adapted for use in Drosophila melanogaster embryos and will continue with presenting the preliminary results that were obtained so far. I will finally conclude this chapter with a section regarding the future directions of this project.

Introduction

Metazoans are composed of millions to billions of cells of very different types, creating tissues with various roles. These tissues are used in combination to create organs with very different functions, and allow the organism to live, survive and reproduce. All these functions are the result of very intricate and complex interactions of the building and functioning "units" that are the cells. To understand biology, the field has never ceased to try and reach a deeper understanding of organs, tissues, cell populations and cell types. A relative easy approach that has been used until recently is to analyze the function of cells as a tissue or large population of cells, playing a relative common role in the organ being studied, such as in the experiment I previously described in the first chapter of this dissertation. Nonetheless, cell population assays mask the presence of rare or small subpopulations of cells, by averaging the behavior of the population being analyzed. This can be problematic: for instance, when a population is composed of cells in different cell states, ignoring cell heterogeneity allows models that seem accurate when looking at population trends, but does not reflect any precise individual cell (Altschuler and Wu, 2010). Therefore, cell to cell heterogeneity poses practical challenges for building accurate clinical models, particularly those based on population-averaged measurements, to guide diagnosis and treatment of diseases (Campbell and Polyak, 2007), such as cancer for instance, known for the heterogeneity of the cancerous cells (Heppner, 1984; Rubin, 1990). This is, de facto, an issue that needs to be addressed as well for the study of transcription regulation.

Cell type or tissue specific information is a challenge to obtain, and the two main methods currently used are FACS and tissue dissection. Tissue dissection has been successful for studying tissue-specific activity of enhancers (Visel et al, 2009; Blow et al., 2010) and chromatin signatures during mouse development for instance (Soshnikova and Duboule, 2009; Xu et al., 2010), but has not proven to provide cell type-specific signature, since accurate dissection of cells from a heterogeneous tissue is either not possible (e.g. cell of a very small size and, or, interconnected with other cellular or tissue structures) or extremely time consuming. FACS has been used on cells or nuclei from tissues, blood, or even dissociated embryos, to investigate cell type-specific ChIP (Boon et al., 2012) and RNA expression and their related signatures (Christiaen et al., 2008). Nonetheless, cell sorting a sufficient number of cells for subsequent experiments can remain a challenge when dealing with rare populations of cells, and the results do not account for cellular heterogeneity.

This lead the birth of single cell based methods to analyze single cell genome and transcriptome, but also proteome and metabolome (Huang et al., 2015; Tsioris et al., 2014; Wu et al., 2017). These methods, such as single cell ATAC-seq methods (Pott and Lieb, 2015) or single-cell RNAseq methods (Kolodziejczyk et al., 2015) are promising as they should allow to look into cell-tocell heterogeneity in cancer or in a developing organism, the dynamic of transcription and the regulatory relationships between genes. Nonetheless, these methods suffer inherent limitations: current single cell ATAC-seq approaches, for instance, capture only a small subset of the open chromatin sites in single cells (Pott and Lieb, 2015) and single cell RNA-seq methods have limited sensitivity making it difficult, for instance, to distinguish between technical noise and transcript present in low abundances (about 10 copies per cell) (Grün et al., 2014), leading to an important loss of information. While these methods are improving at a rapid pace and should eventually allow to better understand cellular heterogeneity and create 3D models of tissues, organs or even organisms (Saliba et al., 2014) with information based on gene regulatory networks, no method really exists so far for the discovery of CRMs, enhancers and silencers. In fact, developing such a method remains a challenge, as a single-cell reporter assay would be facing the same issues of cell-type purification and sorting, sensitivity, and cellular heterogeneity.

Thus, studying and identifying CRMs and their roles in rare populations of cells with methods such as eFS or sFS, in which the transcription of reporter gene is regulated by a specific CRM for instance, is strongly limited by the time spent sorting the appropriate rare cell population by FACS, and therefore not realistically feasible. In our previous eFS and sFS experiments, the activities of candidate CRMs were analyzed by looking at the developing mesoderm, a tissue composed of very different cell types that all develop into specific muscles with very different shapes and functions for instance. To investigate the precise activity of a CRM to understand its role, it is therefore necessary to be able to identify in which specific cells this CRM is regulating transcription.

Cell panning approach

Magnetic nanoparticules or breads coated with antibodies have been developed and used for the separation of cell suspensions from tissues, organ samples or blood. This method was first developed by Miltenyi Biotech (http://www.miltenyibiotec.com) and branded as "MagneticActivated Cell Sorting" (MACS), but similar methods are available from other companies, such as the 'DynaBeads" from ThermoFisher Scientific. In such methods, the antibodies used are specific for certain cell surface markers, either expressed on a population of interest for positive selection, or expressed on undesired cell types for negative selection. After incubation with the antibody-coated beads, the cell suspension is separated by the use of a magnet, attracting the cells that bound to the beads via the specific antibody or antibodies, while unlabeled cells remain undisturbed.

If performing a negative selection, the unbound cells are kept while the bound cells are discarded. On the contrary, if performing a positive selection, only the cells that bound to the beads are kept for further experiments and analyses. The negative selection method requires the use of a cell surface marker, or a set of markers, present on most of the cells but absent on the surface of the population of interest. This can be challenging, especially in the case of rare populations of cells, but has the advantage of leaving the cells of interest untouched and unperturbed. Biding to an antibody might stress the cells and change their transcription profiles, especially in immune cells, since the cell markers used (CD4 or CD8 for instance) are endogenous and may trigger an immune response from the bound cell, or activate signaling pathways and modify their behavior which would result in modified transcription profiles for instance. The positive selection is therefore easier to perform, but does not address this last potential issue.

To purify rare populations of cells from Drosophila melanogaster embryos and investigate the regulation of transcription in small or even are cell populations, we decided to adapt a commercially available kit, from FisherScientific (see Methods), designed for magnetic isolation (positive panning) of CD8+ from human blood, for use in lines that would express the human CD8 cell membrane protein under the control of a specific enhancer, which would drive expression in specific cells from dissociated embryos. This kit has proven effective, for instance, for the positive isolation of CD8 T cells from spleen, for immunotransplantation in mouse, which showed success in curing large lymphoma tumors (Brody et al., 2008).

By doing so, we hypothesized that this method should allow us to discard, prior to FACS sorting, cells of non-interest, i.e. cells that do no express the specific cell marker (CD8-cells), while potentially not disturbing their transcriptional profiles, given that this cell marker is exogenous and should not be involved in any signaling pathway. The FACS sorting is nonetheless necessary to ensure the purity of the CD8+ cells (cell type or rare population of interest). This way, we thought it should be possible to work from very large pools of cells from dissociated embryos,
purify in large batches our cells of interest and discard the large number of CD8- cells without having to actually sort them.

Preliminary results

pCD8 vector

To collect cells from developing ectoderm for our initial proof of concept, we used our gateway compatible pCD8 vector (see Methods) to create a new homozygous fly line (dpp_VRR:CD8) that would express the human CD8 cell membrane protein in the ectoderm, under the control of the dpp_VRR enhancer (see Methods). This element was previously reported for inducing expression in the embryonic blastoderm (Huang JD, 1995). We validated the expression of the CD8 protein by microscopy and compared the CD8 expression pattern to our preexisting twi:CD2 line (see Fig. 1. a). We then measured the percentage of cells this construct would be expressed in an embryo and found that about a third of cells carried the CD8 protein on their membrane (see Fig.1. b). The mesoderm, based on our experiments, represents $\sim 15 \%$ of the total cells in an embryo at stage 11 or 12 (supplementary figures 6 and 7 from Chapter 1).

Cell panning

Using the homozygous dpp_VRR:CD8 line, we attempted to pull down the CD8+ cells, by adapting the "Dynabeads FlowComp Human CD8" kit from ThermoFisher Scientific (Catalog number 11362D), initially designed for isolation of flow-compatible human CD8+ T-cells from peripheral blood mononuclear cells or whole blood. This kit presented the advantages of allowing the dissociation of the beads from the cells prior to cell sorting (and therefore staining), and to be relatively gentle on the samples: the CD8+ cells are incubated with an antibody that is directed against CD8, and conjugated with a modified biotin with decreased affinity to streptavidin. Once the cells are bound to the antibody, magnetic beads coated with streptavidin (Dynabeads) are used to pull down CD8+ using a magnet, which attracts the cell-antibody-bead complex and allows the user to discard CD8- cells. Then, the CD8+ are washed and eluted from the beads, by using a release buffer that containts regular biotin. It is by simple competition between the regular biotin and the modified biotin (with lower affinity to streptavidin) that the CD8+ cells are eluted from the beads. We attempted to adapt the protocol provided by ThermoFisher Scientific to dissociated Drosophila melanogaster embryos. This protocol is scalable from 1×10^{7} to 5×10^{8} cells and described to work for fewer cells, in which case the volumes of reagents used are the same as for 1×10^{7} available cells. Moreover, in this protocol, it is supposed that $\sim 20 \%$ of the cells are expressing CD8.

A few adjustments needed to be made to use this kit and protocol for transgenic D. melanogaster cells, since this kit is designed for sorting human CD8+ cells from blood. First, capturing all CD8+ cells required increasing three-fold the amount of antibody directed against CD8+, when comparing to the manufacturer's recommendations. Then, the elution of the CD8+ cells from the beads proved ineffective with the provided elution buffer, despite trying several different incubation times and increasing the amount of buffer used by many folds. We hypothesized that the concentration of regular biotin needed to be increased as compensation of the increased amount of antibody used in our modified protocol, and therefore tried to elute the cells with a solution saturated in biotin (see Methods).

Although the cytometer was out-of-order at the time of this experiment, pictures were taken under microscope to observe whether cells were present in the elution, and in theory be CD8+. The pictures in figure 3 show that putative CD8+ cells are present in the solution that resulted from the elution with the solution saturated in biotin, which is encouraging, as no cells were observable in the negative control for elution (i.e. elution step without biotin, data not shown).

At this stage, this project has proven that it is possible to have the CD8+ cells bind to the provided conjugated antibody with a yield of $\sim 90 \%$, in the dpp_VRR:CD8 line (Fig. 2) that expresses CD8 in a large fraction of the embryo, $\sim 30 \%$ (see Fig. 1.b). This percentage is close to what the manufacturer designed their kit for in human blood and we believe that targeting smaller populations of cells, in other CD8 lines, can be done by adjusting the amount of antibody used.

Future directions

In order to develop a reliable protocol of cell purification from this project, it is necessary to realize further tests by FACS to know whether the CD8+ are effectively eluted from the magnetic beads by the solution of biotin. The eluted putative CD8+ cells will be stained for the CD8 marker and sorted by FACS and compared to the cells that were not positively selected and eluted, including the potential cells that would remain bound the beads as they can also be sorted. These putative CD8- cells will also be stained for CD8, to assess yield and specificity of the method. The purity of the method will be assessed by this same approach, by specifically looking for unlabeled cells in the eluted fraction.

Once this is validated, new drosophila lines will have to be created, to express the CD8 gene under the control of other enhancers, targeting rare cell types, or use endogenous markers. The fusion competent myoblast (FCM) specific enhancer, Mef2 I-ED5, which drives expression specifically in the fusion competent myoblasts (FCMs) of the developing mesoderm (Duan et al., 2001), has already been used and cloned into the pCD8 vector and a homozygous line has been established (Fig. 4). This line would be a great line to start with, as this enhancer drives expression in $\sim 1 \%$ of the total cells on an embryo (Duan et al., 2001).

Once a final and reliable protocol is reached, this method of positive cell panning could be used for several approaches. First of all, experiments such as eFS or sFS could be realized on small populations of cells, to identify cell-type specific CRM activity (enhancer, silencer or bifunctional elements). This method could be used for other experiments, such as ATAC-seq, Hi-C, etc, to obtain cell-type specific data, which could then be compared to single cell data available for these same rare populations of cells. It would be indeed interesting to see how data from a "population" based approach such as this method of cell panning compare to single cell data. Nonetheless, it will be necessary to address the question of whether this positive selection method might perturb downstream measurements. This could be done, for instance, by comparing the profiles from a rather small population of cells that remains sortable only by FACS, to cells purified by this method, such as the FCMs (Fig. 4).

Figure 1. Analysis of the dpp_VRR:CD8 line
(a) dpp_VRR drives CD8 expression (aqua) in the blastoderm, distinctly outside the mesoderm (marked by twi:CD2, red) at stage ~ 11. (b) FACS output showing cells from the blastoderm (CD8+) cells (here, red) from dpp_VRR:CD8 embryos (right), as compared to background levels obtained from wildtype (yw) embryos (left), at stage ~ 11.

Figure 2. CD8+ cell retention on beads
This figure presents the FACS outputs from dpp_VRR:CD8 cells from dissociated embryos at stage ~ 11, in two conditions. On the left panel, the cells are not treated and the CD8+ population covers about 30% of the total cells, as expected. On the right, the cells have been incubated with the antibody directed against CD8, conjugated with modified-biotin; the cells presented here are the cells that were not retained by the magnetic beads, after incubation with said beads. The percentage of CD8+ cells retained by the beads is important, $\sim 90 \%$.

Figure 3. Elution with biotin and microscope observation (x200)
This figure presents a quick observation of the supposed success of elution of cells from the magnetic beads (top two pictures) with a solution saturated in biotin. The cells were not counted here in this experiment.

Figure 4. Mef2 I-Eds:CD8 line
The Mef2 I-E E_{D} enhancer drives expression the fusion competent myoblasts within the developing embryonic mesoderm, which represents $\sim 1 \%$ of the total cells in an embryo. Here, the expression of CD8 (cyan color) is shown in an embryo at stage 13.

Methods

Generation of vector pCD8
To create the pCD8 vector, we PCR amplified the Hsp70 promoter from our pSFS vector and the human CD8 cDNA. These amplicons were used for PCR assembly and then cloned into the pETWN plasmid (Halfon MS, 2008), replacing its LacZ cassette. Then, this plasmid was made gateway compatible and turned into our final pCD8 plasmid. The full sequence of this plasmid is available as annex 1 of this dissertation. The detailed map of this plasmid can be below. This plasmid can be inserted randomly into a genome as it contains a P element transposon, with the help of a helper plasmid (Hartwell et al., 2015).

Creation of dpp_VRR:CD8 vector and fly lines
The dpp_VRR element (coordinates chr2L:2456345-2456884 in dm6) was amplified from wild type Drosophila melanogaster genome and cloned via Gateway BP Clonase II (Invitrogen) into pDONR221 (Invitrogen) (forward primer GGGGACAAGTTTGTACAAAAAAGCAGGCT CTTCCTATACCTGAATTTTCCACCT, reverse primer GGGGACCACTTTGTACAAGAAAGCTGGGTTAGACACTTGGTTTGTGCGG). Cloning reactions were transformed into E. coli Top10 cells (Invitrogen), and plated on LB agar with kanamycin. Plasmids were purified from the resulting colonies, from which the dpp_VRR element was cloned using Gateway LR Clonase II (Invitrogen) into pCD8. Transformed cells were plated on LB agar with ampicillin, yielding colonies from which the final dpp_VRR:CD8 plasmid was sequenced and, once the sequence was validated, prepared for embryo injection. Similarly, the Mef2 I-ED5 was amplified by PCR and cloned as previously explained (forward primer GGGGACCACTTTGTACAAGAAAGCTGGGTTGCTGGGTATCTGCAAGATGG, reverse primer GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTTTCTTCAGGGGGATCTTT).

This plasmid was injected into posteriorly into syncytial $y w$ embryos, along with the helper plasmid $\mathrm{p} 13 \mathrm{t} / \mathrm{wc}$ carrying the necessary transposase. Surviving males were crossed to excess yw virgin femalws. Transformant male progeny were selected by eye color. These males were then crossed to virgin females from balancer lines to identify within which chromosome the construct was inserted. The lines used for this experiment have the dpp_VRR:CD8 construct inserted into the $2^{\text {nd }}$ chromosome, or the Mef2 I-ED5:CD8 construct inserted into the $3^{\text {rd }}$ chromosome. Both lines were made homozygous.

Expression of CD8 was validated by crossing males from the CD8 line dpp_VRR:CD8 to virgin females from the twi:CD2 line. Embryos were collected, fixed and stain for both CD2 and CD8 cell membrane proteins and observed under fluorescent microscope (see Fig. 1.a.). For FACS, we used the same method for isolation of single cells from Drosophila embryos, described in Chapter 1. We here used the Alexa Fluor 488 conjugated anti(human CD8) (Biolegend, cat. \#344716, 1:20 final dilution) for the dpp_VRR:CD8 line. The cell sorting gates were designed based on the same gates as previously explained for the twi:CD2 line, but selecting the CD8+ cells by sorting by designing a special gate to capture these cells described (far red [APC-A] signal vs. forward scatter [FSC-A], see figure 1.b and figure 2 for examples). The Mef2 I$E_{D 5}: C D 8$ was stained only for CD8 and observed under microscope (figure 4).

Cell purification protocol - a work in progress

We adapted the previously described method for isolation of single cells from Drosophila embryos, at stage 11 (see above and Methods section of Chapter 1 of this dissertation) to include cell purification steps. These steps are adapted from the protocol from ThermoFisher Scientific "Dynabeads FlowComp Human CD8 isolated from PBMC" (available at this address: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/dynaflow_hu_CD8_pbmc_man.pdf).

To adapt it, it was first necessary to evaluate the amount of CD8+ cells present in a solution of dissociated cells from whole embryos. On average, we found that $\sim 10 \%$ cells survived the dissociation process. Appropriate dilutions of the modified-biotin conjugated anti-CD8 antibody were therefore necessary. I appeared that a 3-fold concentration of this antibody was necessary to pull down the CD8+ cells after dissociation, when compared to the recommendations of the manufacturer's protocol (considering the same number of cells).

The isolation buffer used was adapted to match S 2 cell culture medium ($\mathrm{Na}_{2} \mathrm{HPO}_{4}: 0.850 \mathrm{~g} / \mathrm{L}$, $\mathrm{NaCl}: 6.2 \mathrm{~g} / \mathrm{L}, \mathrm{KCl}: 2 \mathrm{~g} / \mathrm{L}, \mathrm{KH} 2 \mathrm{PO} 4: 0.5 \mathrm{~g} / \mathrm{L}$, EDTA 2 mM , FBS $2 \%, \mathrm{pH} 7.4$) and the elution buffer was prepared from this isolation buffer and saturated with D-biotin $(0.2 \mathrm{mg} / \mathrm{ml})$. The elution buffer was used at a 1:2 final dilution in the solution that contained the CD8+ cells and the magnetic beads.

Regarding the protocol itself, we only adapted the temperatures and length of incubation: all necessary incubations were done on ice or at $4^{\circ} \mathrm{C}$, for 20 min . An example of the protocol can be found as annex 2 of this dissertation.

Supplementary figure

Supplementary Fig. 1.

Map of the gateway compatible pCD8 plasmid.

References

Altschuler, S.J., and Wu, L.F. (2010). Cellular Heterogeneity: Do Differences Make a Difference? Cell 141, 559-563.

Blow, M., McCulley, D., Li, Z., Zhang, T., Akiyama, J., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., Afzal, V., Bristow, J., Ren, B., Black, B., Rubin, E., Visel, A. \& Pennacchio, L. (2010). ChIP-Seq identification of weakly conserved heart enhancers. Nature Genetics 42, 806-810.

Bonn, S., Zinzen, R., Perez-Gonzalez, A., Riddell, A., Gavin, A. \& Furlong, E. (2012).Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTSChIP. Nature Protocols 7, 978-994.

Brody, J., Goldstein, M., Czerwinski, D. \& Levy, R. (2008). Immunotransplantation preferentially expands T-effector cells over T-regulatory cells and cures large lymphoma tumors. Blood 113, 85-94.

Campbell, L.L., and Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle Georget. Tex 6, 2332-2338.

Christiaen, L., Davidson, B., Kawashima, T., Powell, W., Nolla, H., Vranizan, K. \& Levine, M. (2008). The Transcription/Migration Interface in Heart Precursors of Ciona intestinalis. Science 320, 1349-1352.

Duan, H., Skeath, J.B., and Nguyen, H.T. (2001). Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Dev. Camb. Engl. 128, 4489-4500.

Grün, D., Kester, L., and Oudenaarden, A. van (2014). Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637.

Halfon, M.S., Gallo, S.M., and Bergman, C.M. (2008). REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila. Nucleic Acids Res. 36, D594-598.

Hartwell S., Goldberg M., Fischer J., Hood L., Aquadro C. (2015). Genetics: From Genes to Genomes, 5th Edition, McGraw-Hill.

Heppner, G.H. (1984). Tumor heterogeneity. Cancer Res. 44, 2259-2265.
Huang, L., Ma, F., Chapman, A., Lu, S., and Xie, X.S. (2015). Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu. Rev. Genomics Hum. Genet. 16, 79-102.

Pott, S., and Lieb, J.D. (2015). Single-cell ATAC-seq: strength in numbers. Genome Biol. 16.
Rubin, H. (1990). The significance of biological heterogeneity. Cancer Metastasis Rev. 9, 1-20.
Saliba, A.-E., Westermann, A.J., Gorski, S.A., and Vogel, J. (2014). Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860.

Soshnikova, N. \& Duboule, D. (2009). Epigenetic Temporal Control of Mouse Hox Genes in Vivo. Science 324, 1320-1323.

Tsioris, K., Torres, A.J., Douce, T.B., and Love, J.C. (2014). A New Toolbox for Assessing Single Cells. Annu. Rev. Chem. Biomol. Eng. 5, 455-477.

Visel, A., Blow, M., Li, Z., Zhang, T., Akiyama, J., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., Afzal, V., Ren, B., Rubin, E. \& Pennacchio, L. (2009). ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854-858.

Wu, A.R., Wang, J., Streets, A.M., and Huang, Y. (2017). Single-Cell Transcriptional Analysis. Annu. Rev. Anal. Chem. 10, 439-462.

Xu, C., Cole, P., Meyers, D., Kormish, J., Dent, S. \& Zaret, K. (2011). Chromatin "Prepattern" and Histone Modifiers in a Fate Choice for Liver and Pancreas. Science 332, 963-966.

Conclusion and Future directions

Summary

Despite the common treatment of enhancers and silencers as two distinct groups of regulatory elements, a few elements in a variety of eukaryotic systems (Bessis et al., 1997; Jiang et al., 1993; Kallunki et al., 1998; Kehayova et al., 2011; Koike et al., 1995; Prasad and Paulson, 2011; Schaeffer et al., 1995; Simpson et al., 1986; Stathopoulos and Levine, 2005; Stroebele and Erives, 2016) have been found to exhibit both activities; i.e., bifunctional elements that can act as either an enhancer or a silencer, depending on the tissue type or cellular conditions. Bifunctionality of cis-regulatory modules (CRMs) complicates the prediction of gene expression from sequence and the interpretation of the effects of cis-regulatory variation across populations or in evolution. Moreover, it has remained unknown how general this property might be and how many such bifunctional elements a typical metazoan genome might contain.

Screening for bifunctional CRMs requires the ability to assay a cis-element for both enhancer activity in one cell type and silencer activity in a different cell type. To perform such experiments in vitro, it is necessary to have a candidate cell type for silencer activity; unfortunately, our current state of knowledge does not allow us to predict silencer activity with the information currently available for specific cell lines (Riel, 2014). We have therefore chosen to assay silencer activity in vivo, using cells isolated from whole Drosophila melanogaster embryos, in an attempt to discover silencers across a range of candidate cell types.

The results of the work presented in this dissertation suggest the possibility that many silencers may also be enhancers in a different cell type. Indeed, many transcription factors (TFs) can act as either activators or repressors, depending on the context of the cis-element they bind (Ogbourne and Antalis, 1998). However, bifunctionality of a cis-element does not require such TFs, since different activators or repressors could bind the same element in different tissues and therefore cell type-specific silencer activity could be an important contributor to enhancer specificity by preventing inappropriate activation and proper and precise patterns of gene expression.

Pfeiffer et al. estimated that there may be over 50,000 enhancers in the D. melanogaster genome (Pfeiffer et al., 2008), and Heintzman et al. estimated there may be on the order of $10^{5}-10^{6}$ enhancers in the human genome (Heintzman et al., 2009). The observation that the vast majority of complex trait- and disease-associated variants identified from genome-wide association studies (GWAS) map to noncoding sequences, most of which occur within DNase hypersensitive sites (Maurano et al., 2012), emphasizes the importance of understanding these elements. Our detection of mesodermal silencer activity in more than 10% of tested non-mesodermal enhancers suggests that there may be thousands of such bifunctional elements across a range of tissues in Drosophila, and perhaps $10^{4}-10^{5}$ in human (Heintzman et al., 2009); since many of the elements we tested could be silencers in a cell type we did not examine or at a later developmental stage, it is possible that these number might be even higher.

Limitations

Although successful at identifying silencers, the sFS experiment was not able to provide any significant silencer or bifunctional CRM signature. Current available ChIP-seq and ChIP-chip data is limited and we had only access to data from sorted mesoderm or whole embryo. This is a limitation several reasons. First, looking at chromatin marks from whole embryos for the elements we identified may not actually represent the tissue specific histone modifications responsible for an element to be enhancer in a tissue while being a silencer in another.

Indeed, whole embryo data represents an average profile for a specific element across all tissues at a certain time point. In our case, looking at mesoderm specific data seems more appropriate, but not sufficient: to be able to characterize our bifunctional elements, we not only need the mesoderm specific data that was available to us, but also data from all tissues but the mesoderm (non-mesoderm data), so as to be able to actually detect significant differences in chromatin profiles. By doing so, it could be possible to find a signature for the elements we identified.

Moreover, the mesoderm itself is a broad tissue that is composed of several cell types, and it is possible that a given bifunctional element acts as a repressor only a fraction of the mesoderm, i.e. in specific sub-mesodermal cell types. Looking for a chromatin mark signature by averaging the profiles within the mesoderm could also be a limitation of the approach we used. Unfortunately, we available data on chromatin marks is rather limited and obtaining such data ourselves would be a very time consuming and extensive project.

Another limitation in the understanding of the manner in which these bifunctional elements function is that only a relatively small number of TF motifs are known sor far in Drosophila melanogaster. Our database comprised about a hundred motifs, which is very little in comparison of the Drosophila genome. As it appears that these bifunctional elements are enriched for overlap with HOT regions where more than 10 TF should bind (see results in Chapter 1), it is obvious that we need to increase our knowledge of TF binding motifs if we want to understand the transcriptional code responsible for the dual function with our elements. Nonetheless, obtaining such data is significant endeavor that could not be undertaken during this PhD .

Future directions

The sFS approach could be adapted in future studies to screen for bifunctional elements in mammalian embryonic development or differentiation of adult cells. Moreover, the work presented in this dissertation shows that despite the extensive genome-scale ChIP profiling studies by numerous investigators and consortia, the available data are not sufficient to distinguish the subset of enhancers that are bifunctional and that no signature was found for these bifunctional elements.

Extended efforts in profiling larger sets of tissue-specific chromatin marks might reveal a signature of bifunctional CRMs and the characterization of bifunctional elements should help in elucidating how precise gene expression patterns are encoded in the genome and aid in the interpretation of cis-regulatory variation. Spatial chromosomal interaction mapping with techniques such as Hi-C are moreover necessary to try and understand the relationships between CRMs and their target genes, and the mechanisms that control precise spatio-temporal gene expression.

We are currently looking forward to the results of the analysis of the Hi-C data we generated in collaboration with the Dekker laboratory, as we believe that such a potential high-resolution dataset of mesoderm specific interaction mapping will unveil very interesting and crucial information and mechanisms and will lead to new theories about gene expression regulation. Although we were not able to provide any hints of a mechanism for the elements we identified by the sFS method so far, we hope that the HiC data, once analyze will help us understand how the bifunctional elements we identified work and silence their target genes. As shown in figure 1 below, there are three main models that could explain their mechanisms. It is possible that a bifunctional CRM acts as a silencer in the mesoderm and as an enhancer in other tissues, at the same TSS (model 1). It is also possible for a bifunctional CRM to silence expression at a given TSS in the mesoderm and to act as an enhancer in other tissues at other TSSs (model 2). Finally, it is possible that a bifunctional elements indirectly represses transcription in the mesoderm by acting on enhancers in this tissue and not in others (model 3). All these models seem viable and do not exclude one another.

Figure 1: models of potential function of bifunctional elements

Here are three different models for the function of bifunctional elements in which transcriptional silencers act directly on transcriptional start sites (TSS) by chromatin contacts (models 1 and 2) or act at distal enhancers (model iii).

By analyzing the HiC data, it should be possible to identify the target regions of our bifunctional CRMs outside the mesoderm (where they seem to act as enhancers) and identify any diference in these contacts in the mesoderm. Combined to the analysis of the HiC data, the CRM knockout project may provide an additional layer of information and, potentially, of validation. Indeed, knocking-out these bifunctional CRMs and in situ RNA hybridization should provide us with information about which genes these bifunctional CRMs regulate and in which tissues the target genes are expressed or silenced. As the HiC data should provide us with genome-wide chromosomal contact data, if should be possible to see whether the bifunctional CRMs behave as silencers by directly acting at TSSs (Fig. 1, model 1 and 2), or indirectly at other enhancers (Fig. 1, model 3).

We are moreover expecting additional results from combinatorial motif finding analyses, which may identify a set or sets of motif combinations specific to our validated bifunctional CRMs, despite our limited motif library. Also, and once finalized, the cell-panning approach presented in the second chapter of this dissertation should allow a more precise study of small population of cells, potentially providing us with more detailed data on regulation of transcription. This approach should help us address the question of cell to cell heterogenetity within tissues and obtain more precise transcription profiles and data for expereiments such as eFS and sFS , which would, hopefully, lead to actual silencer or bifunctional CRM histone profiles for instance.

Concluding remarks

Although not yet published and still at the stage of preparation, the work I presented in this dissertation presents an additional level of complexity for transcription regulation, as we now move away from the current binary categorization of CRMs. This seems somehow similar to the evolution of how genetic information was encoded, since the assumption of "One gene, one function" that Beadle and Tatum stated in 1941 is now clearly outdated (Beadle and Tatum, 1941). In the same manner as one gene leads to several different transcripts and thus proteins with sometimes radical different functions, and given the findings presented previously, it seems reasonable to state that they may not be enhancers and silencers, but simply CRMs playing different roles, at different times, in different places of an organism.

References

Beadle, G. \& Tatum, E. (1941). Genetic Control of Biochemical Reactions in Neurospora. Proceedings of the National Academy of Sciences 27, 499-506.

Bessis, A., Champtiaux, N., Chatelin, L. \& Changeux, J.P. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci U S A 94, 5906-11 (1997).

Duan, H., Skeath, J.B., and Nguyen, H.T. (2001). Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Dev. Camb. Engl. 128, 4489-4500.

Ernst, J. \& Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28, 817-25 (2010).

Filion, G.J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212-24 (2010).

Gallo, S.M. et al. REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Research 39, D118-23 (2011).

Gisselbrecht, S.S. et al. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat Methods 10, 774-80 (2013).

Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39, 311-8 (2007).

Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-typespecific gene expression. Nature 459, 108-12 (2009).

Jiang, J., Cai, H., Zhou, Q. \& Levine, M. Conversion of a dorsal-dependent silencer into an enhancer: evidence for dorsal corepressors. EMBO J 12, 3201-9 (1993).

Kallunki, P., Edelman, G.M. \& Jones, F.S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci U S A 95, 3233-8 (1998).

Kharchenko, P.V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480-5 (2011).

Kehayova, P., Monahan, K., Chen, W. \& Maniatis, T. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 108, 17195-200 (2011).

Koike, S., Schaeffer, L. \& Changeux, J.P. Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor delta-subunit gene. Proc Natl Acad Sci U S A 92, 10624-8 (1995).

Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105, 9715-20 (2008).

Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-5 (2012).

Mani-Telang, P. \& Arnosti, D.N. Developmental expression and phylogenetic conservation of alternatively spliced forms of the C-terminal binding protein corepressor. Dev Genes Evol 217, 127-35 (2007).

Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3, 155-66 (2002).

Noyes, M.B. et al. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133, 1277-89 (2008).

Ogbourne, S. \& Antalis, T.M. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 331 (Pt 1), 1-14 (1998).

Orian, A. et al. A Myc-Groucho complex integrates EGF and Notch signaling to regulate neural development. Proc Natl Acad Sci U S A 104, 15771-6 (2007).

Prasad, M.S. \& Paulson, A.F. A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev Dyn 240, 1756-68 (2011).

Riel, J.J.G.v. Identification of epigenomic patterns to annotate regulatory elements in the human genome. Masters thesis, Utrecht University (2014).

Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787-97 (2010).

Schaeffer, H.J., Forstheoefel, N.R. \& Cushman, J.C. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28, 205-18 (1995).

Simpson, J., Schell, J., Montagu, M.V. \& Herrera-Estrella, L. Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323, 551-554 (1986).

Stathopoulos, A. \& Levine, M. Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev Biol 280, 482-93 (2005).

Stroebele, E., and Erives, A. (2016). Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila. Genetics 203, 219-240.

Zhu, Q. and Halfon, M. (2009). Complex organizational structure of the genome revealed by genome-wide analysis of single and alternative promoters in Drosophila melanogaster. BMC Genomics, 10(1), p.9.

Annexes and supplementary tables

Annex 1: full sequence of the pCD8 plasmid

Abstract

>pCD8_plasmid_full_sequence ($11,393 \mathrm{bp}$) ctcgcgcgttcggtgatgacggtgaaaacctctgacacatgcagctcccggAGACGGTCACAGCTTGTCTGTAAGCGGA TGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTG GCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA CCGCACCGAATCGCGCGGAACTAACGACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAA TGTGTTGCGGAGAGCGGGTGGGAGACAGCGAAAGAGCAACTACGAAACGTGGTGTGGTGG AGGTGAATTATGAAGAGGGCGCGCGATTTGAAAAGTATGTATATAAAAAAATATATCCCGG TGTTTTATGTAGCGATAAACGAGTTTTTGATGTAAGGTATGCAGGTGTGTAAGTCTTTTGGT TAGAAGACAAATCCAAAGTCTACTTGTGGGGATGTTCGAAGGGGAAATACTTGTATTCTAT AGGTCATATCTTGTTTTTATTGGCACAAATATAATTACATTAGCTTTTTGAGGGGGCAATAA ACAGTAAACACGATGGTAATAATGGTAAAAAAAAAAAACAAGCAGTTATTTCGGATATAT GTCGGCTACTCCTTGCGTCGGGCCCGAAGTCTTAGAGCCAGATATGCGAGCACCCGGAAGC TCACGATGAGAATGGCCAGACCCACGTAGTCCAGCGGCAGATCGGCGGCGGAGAAGTTAA GCGTCTCCAGGATGACCTTGCCCGAACTGGGGCACGTGGTGTTCGACGATGTGCAGCTAAT TTCGCCCGGCTCCACGTCCGCCCATTGGTTAATCAGCAGACCCTCGTTGGCGTAACGGAAC CATGAGAGGTACGACAACCATTTGAGGTATACTGGCACCGAGCCCGAGTTCAAGAAGAAG CCGCCAAAGAGCAGGAATGGTATGATAACCGGCGGACCCACAGACAGCGCCATCGAGGTC GAGGAGCTGGCGCAGGATATTAGATATCCGAAGGACGTTGACACATTGGCCACCAGAGTG ACCAGCGCCAGGCAGTTGAAGAAGTGCAGCACTCCGGCCCGCAGTCCGATCATCGGATAG GCAATCGCCGTGAAGACCAGTGGCACTGTGAGAAAAAGCGGCAATTCGGCAATCGTTTTG CCCAGAAAGTATGTGTCACAGCGATAAAGTCGACTTCGGGCCTCCCTCATAAAAACTGGCA GCTCTGAGGTGAACACCTAAATCGAATCGATTCATTAGAAAGTTAGTAAATTATTGAAATG CAAATGTATTCTAAACATGACTTACATTTATCGTGGCAAAGACGTTTTGAAAGGTCATGTT GGTCAGGAAGAGGAAGATGGCTCCGTTGATATTCATCACACCCACTTGCGTGAGTTGTTGG CCCAAAAAGATGAGGCCAATCAAGATGGCAACCATCTGCAAATTAAAATGTTACTCGCAT CTCATTAATATTCGCGAGTTAAATGAAATTTATTTATCTTCTGCAAAACTATAAACTATACA TCTCATTGAAAAAAACTAAGAAGGGTGTGGAATCAGGCAATTCTATCTAAAATCTAGCGA ATTTGTTTCCAAGAATTGTAAGCGTTATATCATTTGTTTCCACTGGAACCACTCACCGTTGT CTGAATAAGTCGCACTTTTACGAGGAGTGGTTCCTTGAGCACCGACAGCCAGGATCGCCAC AGGACCGCCCGGAACTGCATGAACCAGGTGGCCTTGTAGGTGTACCCATTCTCCGGCTGCT CCAGTGGCTTCTCCAGATTTTTGGTGGCCAACAACTGCTCCATATCCCGGGCTACTTTGCTA ATGGCAAAATTGTCGCATATCTTGGCGATCCGATCACGGGACTCGATCTCCCGTCCGGGCA CAACGGCCAACACCTGTACGTAAAAGTCCGCCGGATTGTAGTTGGTAGGACACTGGGCAC CCACGCTGGATAGGAGTTGAGATGTTATGTAATACTAGATACCCTTAATAAACACATCGAA CTCACTAGGAAAAGAAGTCGACGGCTTCGCTGGGAGTGCCCAAGAAAGCTACCCTGCCCT CGGCCATCAGAAGGATCTTGTCAAAGAGCTCAAACAGCTCGGAAGACGGCTGATGAATGG TCAGGATGACGGTCTTGCCCTTCTGCGACAGCTTCTTCAGCACCTGGACGACGCTGTGGGC GGTAAAGGAGTCCAGTCCGGAGGTGGGCTCATCGCAGATCAGAAGCGGCGGATCGGTTAG AGCCTCGGAGGCGAATGCCAGACGCTTCCTTTCTCCGCCGGACAGACCTTTCACCCTGCCG GGCACACCGATGATCGTGTGCTGACATTTGCTGAGCGAAAGCTCCTGGATCACCTGATCCA CGCGGGCCACTCGCTGCCGATAGGTCAGATGTCGTGGCATCCGCACCATGGCTTGGAAAAT CAGGTGTTCCCTGGCCGTTAGGGAGCCGATAAAGAGGTCATCCTGCTGGACATAGGCGCAC CTGGCCTGCATCTCCTTGGCGTCCACAGGTTGGCCATTGAGCAGTCGCATCCCGGATGGCG ATACTTGGATGCCCTGCGGCGATCGAAAGGCAAGGGCATTCAGCAGGGTCGTCTTTCCGGC ACCGGAACTGCCCATCACGGCCAAAAGTTCGCCCGGATAGGCCACGCCGCAAACTGAGTT TCAAATTGGTAATTGGACCCTTTATTAAGATTTCACACAGATCAGCCGACTGCGAATAGAA ACTCACCGTTCTTGAGCAAATGTTTCCTGGGCGCCGGTATGTGTCGCTCGTTGCAGAATAGT CCGCGTGTCCGGTTGACCAGCTGCCGCCATCCGGAGCCCGGCTGATTGACCGCCCCAAAGA TGTCCATATTGTGCCAGGCATAGGTGAGGTTCTCGGCTAGTTGGCCGCTCCCTGAACCGGA GTCCTCCGGCGGACTGGGTGGCCGGAGCGTGCCGTAGTTTTTGGCCTGCCCGAAGCCCTGG TTAATGCAGCTCTGCGAAGCCGCTCCGCTGTCACCCTGCAATGATAGGGGATCTCAAATAT

CAACTACAAGCGTTATGCTCATCTAACCCCGAACAAAAAGTACCCCGAAGTATCCTACGAA GTAGGTTTATACTTTTATTTATTTTTTGTGCATCTAGGATCAGCTTAAAATATCTGGTTGTTA TATTTTTTGTAAAAAAGAATATAGTCGAAAATGAATGCCTTTAGATGTCTTGATCATGATAT GATCTCAAAAATTGTCTTATATAGCGAGAACAGCTACCAGAATAATCTGTTTCGTGTCACT ATTTGTTTGTGCAATTGCGGTTTGGGATTTTTGTGGGTCGCAGTTCTCACGCCGCAGACAAT TTGATGTTGCAATCGCAGTTCCTATAGATCAAGTGAACTTAAGATGTATGCACATGTACTA CTCACATTGTTCAGATGCTCGGCAGATGGGTGTTTGCTGCCTCCGCGAATTAATAGCTCCTG ATCСТСTTGGCCCATTGCCGGGATTTTTCACACTTTCCCCTGCTTACCCACCCAAAACCAAT CACCACCCCAATCACTCAAAAAACAAACAAAAATAAGAAGCGAGAGGAGTTTTGGCACAG CACTTTGTGTTTAATTGATGGCGTAAACCGCTTGGAGCTTCGTCACGAAACCGCTGACAAA ATGCAACTGAAGGCGGACATTGACGCTACGTAACGCTACAAACGGTGGCGAAAGAGATAG CGGACGCAGCGGCGAAAGAGACGGCGATATTTCTGTGGACAGAGAAGGAGGCAAACAGC GCTGACTTTGAGTGGAATGTCATTTTGAGTGAGAGGTAATCGAAAGAACCTGGTACATCAA ATACCCTTGGATCGAAGTAAATTTAAAACTGATCAGATAAGTTCAATGATATCCAGTGCAG TAAAAAAAAAAAATGTTTTTTTTATCTACTTTCCGCAAAAATGGGTTTTATTAACTTACATA CATACTAGAATTATCACAAGTTTGTACAAAAAAGCTGAACGAGAAACGTAAAATGATATA AATATCAATATATTAAATTAGATTTTGCATAAAAAACAGACTACATAATACTGTAAAACAC AACATATCCAGTCACTATGGCGGCCGCATTAGGCACCCCAGGCTTTACACTTTATGCTTCC GGCTCGTATAATGTGTGGATTTTGAGTTAGGATCCGTCGAGATTTTCAGGAGCTAAGGAAG CTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAA AGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTG GATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTA TTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGG TGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAA ACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTC GCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAAT ATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAA TATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAG GTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAG AATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGG ATCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATA AGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGC GTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAAT ATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCT GGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCT CTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACACCTATAAAAGAG AGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACG GATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTAC CCGGTGGTGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTG CCGGTCTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAA AACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGT CTGCAGGTCGACCATAGTGACTGGATATGTTGTGTTTTACAGTATTATGTAGTCTGTTTTTT ATGCAAAATCTAATTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTCAGCTTTCTT GTACAAAGTGGTGATAATTCGAGCTCGGTACCCGGGGATCCGCGGCCGCTACGTATCTAGC GAGCGCCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATTCAATTCAAACAAG CAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGCGCAGCTGAACAAGCT AAACAATCTGCAGTAAAGTGCAAGTTAAAGTGAATCAATTAAAAGTAACCAGCAACCAAG TAAATCAACTGCAACTACTGAAATCTGCCAAGAAGTAATTATTGAATACAAGAAGAGAAC TCTGAATAGGGAATTGGGAATTGACACCATGGCCTTACCAGTGACCGCCTTGCTCCTGCCG CTGGCCTTGCTGCTCCACGCCGCCAGGCCGAGCCAGTTCCGGGTGTCGCCGCTGGATCGGA CCTGGAACCTGGGCGAGACAGTGGAGCTGAAGTGCCAGGTGCTGCTGTCCAACCCGACGT CGGGCTGCTCGTGGCTCTTCCAGCCGCGCGGCGCCGCCGCCAGTCCCACCTTCCTCCTATAC СТСТСССАAAACAAGCCCAAGGCGGCCGAGGGGCTGGACACCCAGCGGTTCTCGGGCAAG AGGTTGGGGGACACCTTCGTCCTCACCCTGAGCGACTTCCGCCGAGAGAACGAGGGCTGCT ATTTCTGCTCGGCCCTGAGCAACTCCATCATGTACTTCAGCCACTTCGTGCCGGTCTTCCTG CCAGCGAAGCCCACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCG TCGCAGCCCCTGTCCCTGCGCCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCAC

ACGAGGGGGCTGGACTTCGCCTGTGATATCTACATCTGGGCGCCCTTGGCCGGGACTTGTG GGGTCCTTCTCCTGTCACTGGTTATCACCCTTTACTGCAACCACAGGAACCGAAGACGTGTT TGCAAATGTCCCCGGCCTGTGGTCAAATCGGGAGACAAGCCCAGCCTTTCGGCGAGATACG TCTAGGCTAGAGGATCTTTGTGAAGGAACCTTACTTCTGTGGTGTGACATAATTGGACAAA CTACCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTA AACTACTGATTCTAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAG CAGTGGTGGAATGCCTTTAATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTG ATGATGAGGCTACTGCTGACTCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAG AAGACCCCAAGGACTTTCCTTCAGAATTGCTAAGTTTTTTGAGTCATGCTGTGTTTAGTAAT AGAACTCTTGCTTGCTTTGCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGA AAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACAT ACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAAT TGTGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCC TTGACTAGAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAAC СТСССАСАССТСССССТGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTT TATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCA TTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGG ATCGGGCGAGCTCGAATTGGTCGACCTGCAGCCAAGCTTTGCGTACTCGCAAATTATTAAA AATAAAACTTTAAAAATAATTTCGTCTAATTAATATTATGAGTTAATTCAAACCCCACGGA CATGCTAAGGGTTAATCAACAATCATATCGCTGTCTCACTCAGACTCAATACGACACTCAG AATACTATTCCTTTCACTCGCACTTATTGCAAGCATACGTTAAGTGGATGTCTCTTGCCGAC GGGACCACCTTATGTTATTTCATCATGGTCTGGCCATTCTCATCGTGAGCTTCCGGGTGCTC GCATATCTGGCTCTAAGACTTCGGGCCCGACGCAAGGAGTAGCCGACATATATCCGAAATA ACTGCTTGTTTTTTTTTTTTACCATTATTACCATCGTGTTTACTGTTTATTGCCCCCTCAAAA AGCTAATGTAATTATATTTGTGCCAATAAAAACAAGATATGACCTATAGAATACAAGTATT TCCCCTTCGAACATCCCCACAAGTAGACTTTGGATTTGTCTTCTAACCAAAAGACTTACACA CCTGCATACCTTACATCAAAAACTCGTTTATCGCTACATAAAACACCGGGATATATTTTTTA TATACATACTTTTCAAATCGCGCGCCCTCTTCATAATTCACCTCCACCACACCACGTTTCGT AGTTGCTCTTTCGCTGTCTCCCACCCGCTCTCCGCAACACATTCACCTTTTGTTCGACGACC TTGGAGCGACTGTCGTTAGTTCCGCGCGATTCGGTTCGCTCAAATGGTTCCGAGTGGTTCAT TTCGTCTCAATAGAAATTAGTAATAAATATTTGTATGTACAATTTATTTGCTCCAATATATT TGTATATATTTCCCTCACAGCTATATTTATTCTAATTTAATATTATGACTTTTTAAGGTAATT TTTTGTGACCTGTTCGGAGTGATTAGCGTTACAATTTGAACTGAAAGTGACATCCAGTGTTT GTTCCTTGTGTAGATGCATCTCAAAAAAATGGTGGGCATAATAGTGTTGTTTATATATATCA AAAATAACAACTATAATAATAAGAATACATTTAATTTAGAAAATGCTTGGATTTCACTGGA ACTAGAATTAATTCGGCTGCTGCTCTAAACGACGCATTTCGTACTCCAAAGTACGAATTTTT TCCCTCAAGCTCTTATTTTCATTAAACAATGAACAGGACCTAACGCACAGTCACGTTATTGT TTACATAAATGATTTTTTTTACTATTCAAACTTACTCTGTTTGTGTACTCCCACTGGTATAGC CTTCTTTTATCTTTTCTGGTTCAGGCTCTATCACTTTACTAGGTACGGCATCTGCGTTGAGTC GCCTCCTTTTAAATGTCTGACCTTTTGCAGGTGCAGCCTTCCACTGCGAATCATTAAAGTGG GTATCACAAATTTGGGAGTTTTCACCAAGGCTGCACCCAAGGCTCTGCTCCCACAATTTTCT CTTAATAGCACACTTCGGCACGTGAATTAATTTTACTCCAGTCACAGCTTTGCAGCAAAATT TGCAATATTTCATTTTTTTTTTATTCCACGTAAGGGTTAATGTTTTCAAAAAAAAATTCGTCC GCACACAACCTTTCCTCTCAACAAGCAAACGTGCACTGAATTTAAGTGTATACTTCGGTAA GCTTCGGCTATCGACGGGACCACCTTATGTTATTTCATCATGGGCCAGACCCACGTAGTCC AGCGGCAGATCGGCGGCGGAGAAGTTAAGCGTCTCCAGGATGACCTTGCCCGAACTGGGG CACGTGGTGTTCGACGATGTGCAGCTAATTTCGCCCGGCTCCACGTCCGCCCATTGGTTAAT CAGCAGACCCTCGTTGGCGTAACGGAACCATGAGAGGTACGACAACCATTTGAGGTATAC TGGCACCGAGCCCGAGTTCAAGAAGAAGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAG CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGG ATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGAC TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGT GCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTA TCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAA

ACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAA AAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAA ACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTA AATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTT ACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTT GCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTG CTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCC AGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATT AATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTG CCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGT TCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCT TCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGC AGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGT ACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTC AATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACG TTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCC ACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAA AACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC TCATAСТСТТССТТTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGA TACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAA AAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCG TATCACGAGGCCCTTTCGTctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccgg

Annex 2: Protocol for positive panning from Drosophila embryos

This protocol is an example of cell purification for CD8+ cells from the dpp_VRR:CD8 line. In this example, 2.30.E+07 cells are viable, and $6.90 \mathrm{E}+06$ cells are estimated to be CD8+.

Overnight embryo collection:

1) Maintain flies in population cages at $25^{\circ} \mathrm{C}$, feeding them using yeast paste streaked molasses plates.
2) Change molasses plates ($\mathrm{w} /$ yeast) one time a day for 2-3 days.
3) Change plate, allow flies to prelay for 2 hour on fresh food.
4) After 2 hours prelay, change with the new plate with yeast paste, allow flies to lay for 2hours.
5) Remove laying plate and allow it to age for 5.5 hour at $25^{\circ} \mathrm{C}$ or 10 hours at $18^{\circ} \mathrm{C}$.

Cell preparation:
6) Wash eggs and yeast from plates using water from a squeeze bottle, loosen eggs with camel hair brush and pour the eggs to the 70um stainer (weight measured), and rinse the materials in the strainer.
7) Fill the strainer again with 50% (v/v)bleach to cover the eggs and dechorionate the eggs for 5 minutes.
8) During the dechorionation, fill the dounce (VWR 62400-620) with 3.5 mL Schneider medium and and 3.5 mL Isolation buffer (see recipe at the end of protocol), and keep on ice.
9) After the dechorionation, wash the bleach completely from the eggs in the strainer with water.
10) Use a Kimwipe to blot dry the strainer from outside and measure the weight to obtain the wet weight of eggs.
11) Brush the eggs into the dounce. Use loose pestle (clearance $0.0035-0.005$ inch), gently but firmly dounce to the bottom; give 7 strokes.
12) Transfer dounced materials into a 15 mL conical centrifuge tube. Spin 40 g (500 rpm in our desktop centrifuge at 4°) for 5 min to bring down the tissue cell debris, clumps and vitelline membranes. Single cells and yolk are in the supernatant.
13) Transfer supernatant to a clean tube, add 7 mL of Isolation Buffer and spin 380 g (1500 rpm in our desktop centrifuge) for 10 minutes to bring down single cells and discard supernatant. Repeat once to clean the cells.

Meanwhile, wash beads:

- Resuspend the beads in the vial (vortex $>30 \mathrm{sec}$)
- Transfer the desired volume of beads in 15 mL or 50 mL tube for all experiments
- Add the same volume of Isolation Buffer or at least 1 mL vortex briefly to resuspend the beads
- Place the tube in the magnet for 1 min and discard supernatant
- Remove tube from magnet and resuspend the washed beads in the same volume of Isolation Buffer as the initial volume of beads.

14) Resuspend the cells in 0.230 mL Isolation Buffer to have a concentration in the tube of 10^{6} CD8+ cells per mL in each tube.
15) Isolate Cells:
1. Add $34.5 \mu \mathrm{~L}$ FlowComp ${ }^{\text {TM }}$ Human CD8 Antibody.
2. Mix well and incubate for 10 min on ice.
3. Fill tube up to 15 mL with Isolation buffer and centrifuge for 10 min at 380 g (1500 rpm)
4. remove supernatant that contains excess of anti-CD8 antibody.
5. Add $34.5 \mu \mathrm{~L}$ resuspended FlowComp ${ }^{\mathrm{TM}}$ Dynabeads ${ }^{\circledR}$ and mix well by vortexing.
6. Incubate for 20 min on ice.
7. Place tube in magnet for 3 min , carefully remove supernatant containing the CD8- cells.
8. Add 0.9 mL Isolation Buffer, mix well (or vortex $2-3 \mathrm{sec}$) and place the tube in the magnet for minimum 3 min .
9. While the tube is still in the magnet, carefully remove the supernatant.
10. Repeat steps 8-9 twice to wash the bead-bound CD8+ cells. These steps are critical to obtain a high purity of isolated cells.
16) Release cells:
1. Resuspend in 0.46 mL Elution buffer and pipette $3-4$ times
2. Incubate for 10 min at RT or for 20 min at $4^{\circ} \mathrm{C}$ under rolling and tilting
3. Pipet 10 times to release the cells and place in a magnet for 1 min . Avoid foaming.
4. Transfer supernatant containing the bead-free cells to a new tube and again place on the magnet for 1 min to remove any residual beads.
5. Transfer once again the supernatant containing the bead free cells to a new tube.
6. Add 1.8 mL of Isolation Buffer and centrifuge for 10 min at 380 g (1500 rpm).
7. Discard supernatant and resuspend pellet in appropriate staining solution.
17) Shake in a covered ice bucket at 100 rpm for 10 minutes.
18) Add 1 mL (or more to have equal volumes) of primary cell culture medium ($8 \% \mathrm{FBS}$ in Schneider Medium) to each tube. Spin 380 g (1500 rpm in our desktop centrifuge) for 10 minutes to bring down single cells and discard supernatant.

Wash once: resuspend in 1 mL culture medium, spin down again and discard supernatant.
Resuspend in 200ul-1 mL culture medium and filter twice through Nytex into 2063 tubes
18) IF SORTING: Prepare tubes (2063) for receiving sorted cells by marking each tube 1 cm from the bottom and filling with 4 mL of culture medium.

Annex 3 : gRNA list for bifunctional element knockout

List of gRNAs designed for bifunctional element knockout, along with the PCR primers for PCR validation of said knockout.
Name
E_0_12h_dCtBP7667.region_3084

oligo type	sequence (5'-3')	PAM
gRNA1	ATTAATTTGAGTCGAAATAT	TGG
gRNA2	GCGGTGGTCTGGTGGTTAGG	TGG
gRNA3	GAAAGAATCGGTGGAGAAAA	TGG
PCRfwd PCRrev	GTGAAAAAGCAAATTTGGGGGT	
	ATGGTTGCTCACAGGCTCAA	

e_coreAbdominalCRE

gRNA1	AATCAAATCACAGGGACTTT	TGG
gRNA2	TACTTTTACCCCTCAAGTAA	CGG
PCRfwd	TAATGGATAGGCGTGGTGGC	
PCRrev	CCAAGCCAAATTCACGGAGG	

$\left.\begin{array}{llll}\text { gsb_fragIV } & \text { gRNA1 } & \text { CTCAGCCTTTGGACCCTAAG } & \text { CGG } \\ & \text { gRNA2 } & \text { ATGCGTATCTTCCGGACTGA } & \text { CGG } \\ & \text { PCRfwd } & \text { CCCACACTATGGCTAGAATAGCA }\end{array}\right]$

Supplementary table 1

Genomic coordinates of the first library elements screened by silencer-FACS-Seq. The primers for the negative controls from the E.coli genome are shown bottom of this table.

```
library element name
18w_1625
ac_0.8
Acp65Aa_172
amosB
amosC
amosD
Ance_race_533
ase_CRM19
ato_RE
ATP7_5DAG4
bab1_dimorphic_element
bcd 49bg-Z
btd_R-Ss
btd_Ss-Bg
btl_P[B23]
btl_P[B4]
C15_350-2
cas_csc-1
cas_csc-2
cas_csc-3
cas_csc-5a
cas_csc-5c
cas_csc-6
cas_csc-7a
```

coordinates (dm3)
chr2R:15990424-15991391
chrX:263085-264110
chr3L:6145206-6146175
chr2L:18597902-18598899
chr2L:18597063-18597969
chr2L:18595204-18596246
chr2L:13904341-13905301
chrX:354220-355242
chr3R:4099748-4100734
chrX:11748537-11749464
chr3L:1084698-1085668
chr3R:2584166-2585243
chrX:9583710-9584690
chrX:9584428-9585527
chr3L:14069010-14069998
chr3L:14069500-14070582
chr3R:17331233-17332270
chr3R:1554785-1555690
chr3R:1553104-1554153
chr3R:1552157-1553136
chr3R:1548621-1549584
chr3R:1546450-1547427
chr3R:1545675-1546770
chr3R:1544440-1545364
coordinates (dm6)
chr2R:20102919-20103886
chrX:369052-370077
chr3L:6152106-6153075
chr2L:18597902-18598899
chr2L:18597063-18597969
chr2L:18595204-18596246
chr2L:13904341-13905301
chrX:460187-461209
chr3R:8274026-8275012
chrX:11854504-11855431
chr3L:1084698-1085668
chr3R:6758444-6759521
chrX:9689677-9690657
chrX:9690395-9691494
chr3L:14075910-14076898
chr3L:14076400-14077482
chr3R:21505511-21506548
chr3R:5729063-5729968
chr3R:5727382-5728431
chr3R:5726435-5727414
chr3R:5722899-5723862
chr3R:5720728-5721705
chr3R:5719953-5721048
chr3R:5718718-5719642
coordinates (dm6)
chr2R:20102919-20103886
chrX:369052-370077
chr3L:6152106-6153075
chr2L:18597902-18598899
chr21•18597063-18597969
chr2L.18595204-18596246
chrX:460187-461209
chr3R:8274026-8275012
chrX•11854504-11855431
hr3L:1084698-1085668
chrX:9689677-9690657
chrX:9690395-9691494
chr3L:14075910-14076898
chr31.14076400-14077482
chr3R:21505511-21506548
chr3R:5727382-5728431
chr3R:5726435-5727414
chr3R•5722899-5723862
chr3R:5719953-5721048
chr3R:5718718-5719642
cas_csc-8
CG12374_CRM41
CG13196_1kb_5'
CG13333_link_5'
CG16778_tkr-15
CG17230_CRM4
CG34347_CG11339_EVIII
CG3492_CRM17
CG42342_3436
CG7229_CG7229
CG7229_CRM15
CG7458_upstreamCRM
CG7722_CRM28
CG8193_proPO45crystal_cell
CG9363_CG9363CRM1
CG9571_O-E
cpo_cpoCRM6
Cpr47Ee_CG13222-edge
crb_Lac-Z
CrebA_CrebA-770
Crz_380gal4
ct_340
ct_ct-3
ct_cutA2
ct_wingmargin_Guss
Cyp6g1_construct5
dac_3EE-390
dac_RE
dap_dap-BB
dap_dap-del
chr3R:1541898-1542918 chr2R:8655932-8656979 chr2R:7573891-7574944 chr2R:9442853-9443775 chr2R:20988969-20990063 chr3R:7297085-7298176 chr3R:27134344-27135381 chr2R:20351984-20353074 chr3R:12377681-12378775 chr3L:6778896-6779980 chr2R:15150758-15151840 chr3L:21947443-21948420 chr2R:6824079-6825095 chr2R:4932059-4932992 chr3R:5284681-5285769 chrX:19986450-19987538 chr3R:13777548-13778572 chr2R:7151764-7152722 chr3R:20122950-20123916 chr3L:15523344-15524372 chr3R:10139892-10140852 chrX:7484874-7485847 chrX:7478189-7479230 chrX:7468216-7469313 chrX:7424146-7425126 chr2R:8072880-8073942 chr2L:16461056-16462067 chr2L:16465126-16466148 chr2R:5600855-5601828 chr2R:5601755-5602723
chr3R:5716176-5717196 chr2R:12768427-12769474 chr2R:11686386-11687439 chr2R:13555348-13556270 chr2R:25101446-25102540 chr3R:11471363-11472454 chr3R:31308622-31309659 chr2R:24464461-24465551 chr3R:16551959-16553053 chr3L:6785796-6786880 chr2R:19263253-19264335 chr3L:21954343-21955320 chr2R:10936574-10937590 chr2R:9044554-9045487 chr3R:9458959-9460047 chrX:20092417-20093505 chr3R:17951826-17952850 chr2R:11264259-11265217 chr3R:24297228-24298194 chr3L:15530244-15531272 chr3R:14314170-14315130 chrX:7590841-7591814 chrX:7584156-7585197 chrX:7574183-7575280 chrX:7530113-7531093 chr2R:12185375-12186437 chr2L:16461056-16462067 chr2L:16465126-16466148 chr2R:9713350-9714323 chr2R:9714250-9715218
dap_dap3'2'
Ddc_-0.47
Ddc_distal_enhancer
Ddc_ET
Ddc_silencing_element
Def_prom
dj_dj-promoter
djl_-555-+43
DII_215
DII_304
dpn_dl
dpp_85.8MX
dpp_980-6
dpp_BS3.1
dpp_construct10
dpp_dppho
dpp_P1delta4
dpp_VRR
dys_M269+dys_V345
dys_N283
e_A. 1
e_A. 2
e_A. 3
e_A. 5
e_coreAbdominalCRE
E(spl)_m8-0.46
Eip71CD_188
elav_construct_L
ems_elementIV
ems_ems_ARFE-subA
chr2R:5596925-5597954 chr2L:19119819-19120797 chr2L:19120966-19122021 chr2L:19119448-19120508 chr2L:19121524-19122424 chr2R:5942027-5943010 chr3R:2884201-2885169 chr3R:2885745-2886647 chr2R:20689355-20690348 chr2R:20690263-20691248 chr2R:4123455-4124497 chr2L:2456545-2457501 chr2L:2453724-2454821 chr2L:2480501-2481487 chr2L:2481008-2482099 chr2L:2482818-2483809 chr2L:2453866-2454937 chr2L:2455833-2456926 chr3R:21925380-21926363 chr3R:21926337-21927256 chr3R:17067508-17068463 chr3R:17067205-17068139 chr3R:17066757-17067698 chr3R:17066147-17067114 chr3R:17066418-17067406 chr3R:21865269-21866269 chr3L:15503755-15504823 chrX:416654-417626 chr3R:9720474-9721431 chr3R:9723441-9724427
chr2R:9709420-9710449 chr2L:19119819-19120797 chr2L:19120966-19122021 chr2L:19119448-19120508 chr2L:19121524-19122424 chr2R:10054522-10055505 chr3R:7058479-7059447 chr3R:7060023-7060925 chr2R:24801832-24802825 chr2R:24802740-24803725 chr2R:8235950-8236992 chr2L:2456545-2457501 chr2L:2453724-2454821 chr2L:2480501-2481487 chr2L:2481008-2482099 chr2L:2482818-2483809 chr2L:2453866-2454937 chr2L:2455833-2456926 chr3R:26099658-26100641 chr3R:26100615-26101534 chr3R:21241786-21242741 chr3R:21241483-21242417 chr3R:21241035-21241976 chr3R:21240425-21241392 chr3R:21240696-21241684 chr3R:26039547-26040547 chr3L:15510655-15511723 chrX:522621-523593 chr3R:13894752-13895709 chr3R:13897719-13898705

Est-6_D-511
ey_5D11
ey_UEO. 8
ey_UEO.9
Fad2_oe1
Fas2_540bp_CRM
fkh_salivary_gland_enhancer
ftz_-669_-386
ftz_5'delta276
ftz_Rev413
$\mathrm{gcm}+3.8++4.5$
gsb_fragiV
gsb_GLE
gt_CE8001
gt_gt1
h_302
h_h7AF
h_HHRE
h_stripe_6+2
h_stripe0
h_stripe1
h_stripe3_ET38
hb_0.7
hb_distal_minimal
hb_HG4-5
hb_HG4-6
hb_HG4-7
hb_lateDm1.0-lacz
hb_matDm0.5-lacZ
hh_4075
chr3L:12181127-12182109 chr4:730601-731670 chr4:721768-722862 chr4:724459-725477 chr3L:11015797-11016807 chrX:4086884-4087943 chr3R:24418581-24419666 chr3R:2688785-2689687 chr3R:2689711-2690794 chr3R:2683243-2684295 chr2L:9577190-9578170 chr2R:20944064-20945045 chr2R:20946182-20947206 chrX:2324615-2325714 chrX:2327867-2328788 chr3L:8662863-8663834 chr3L:8658167-8659238 chr3L:8700624-8701673 chr3L:8659410-8660502 chr3L:8680028-8681110 chr3L:8663979-8664926 chr3L:8657181-8658199 chr3R:4519759-4520743 chr3R:4524698-4525688 chr3R:4530675-4531772 chr3R:4529043-4530092 chr3R:4527834-4528862 chr3R:4526286-4527384 chr3R:4522881-4523877 chr3R:18968885-18969838
chr3L:12188027-12189009 chr4:709975-711044
chr4:701142-702236
chr4:703833-704851 chr3L:11022697-11023707 chrX:4192851-4193910 chr3R:28592859-28593944 chr3R:6863063-6863965 chr3R:6863989-6865072 chr3R:6857521-6858573 chr2L:9577190-9578170 chr2R:25056541-25057522 chr2R:25058659-25059683 chrX:2430582-2431681 chrX:2433834-2434755 chr3L:8669763-8670734 chr3L:8665067-8666138 chr3L:8707524-8708573 chr3L:8666310-8667402 chr3L:8686928-8688010 chr3L:8670879-8671826 chr3L:8664081-8665099 chr3R:8694037-8695021 chr3R:8698976-8699966 chr3R:8704953-8706050 chr3R:8703321-8704370 chr3R:8702112-8703140 chr3R:8700564-8701662 chr3R:8697159-8698155 chr3R:23143163-23144116
hh_alpha_fragment_(ic-CRE)
hh_bar3L2
hh_hhf4F
hkb_0.6kbRIRV
HLHm5_m5-0.13
Hs6st_3748
Hsp26_nurse_cell_enhancer
kni_223
kni_AE20
kni_KD
kni_proximal_minimal
kni_reporter_fragment_EC
Kr_{-}delBNc0.8HZ
Kr_KrMT
lab_1.0
lab_HZ550
Lip1_prom
Iz_CrystalCellEnhancer1236-737
Iz_LMEE
Mst84Db_-286_+154
nab_nab-1
nAcRbeta-64B_P-171
nerfin-1_fragment14
nerfin-1_fragment2
nerfin-1_fragment3
nerfin-1_fragment4
nerfin-1_fragment5
ninaE_proximal_promoter_region
nkd_8756
nkd_IntE_255
chr3R:18970625-18971703 chr3R:18961205-18962168 chr3R:18963250-18964276 chr3R:173849-174821 chr3R:21854885-21855903 chr3R:15820869-15821869 chr3L:9370261-9371323 chr3L:20690490-20691542 chr3L:20694209-20695217 chr3L:20689674-20690594 chr3L:20687475-20688458 chr3L:20699549-20700619 chr2R:21110473-21111509 chr2R:21098808-21099895 chr3R:2491709-2492721 chr3R:2506791-2507856 chr2L:10701299-10702327 chrX:9177203-9178176 chrX:9180643-9181594 chr3R:3190986-3192054 chr3L:4152493-4153571 chr3L:4428570-4429577 chr3L:908248-909263 chr3L:903575-904640 chr3L:904458-905370 chr3L:904964-905875 chr3L:906392-907315 chr3R:15713418-15714371 chr3L:19036341-19037409 chr3L:19032720-19033620
chr3R:23144903-23145981 chr3R:23135483-23136446 chr3R:23137528-23138554 chr3R:4348127-4349099 chr3R:26029163-26030181 chr3R:19995147-19996147 chr3L:9377161-9378223 chr3L:20697390-20698442 chr3L:20701109-20702117 chr3L:20696574-20697494 chr3L:20694375-20695358 chr3L:20706449-20707519 chr2R:25222950-25223986 chr2R:25211285-25212372 chr3R:6665987-6666999 chr3R:6681069-6682134 chr2L:10701299-10702327 chrX:9283170-9284143 chrX:9286610-9287561 chr3R:7365264-7366332 chr3L:4152493-4153571 chr3L:4428570-4429577 chr3L:908248-909263 chr3L:903575-904640 chr3L:904458-905370 chr3L:904964-905875 chr3L:906392-907315 chr3R:19887696-19888649 chr3L:19043241-19044309 chr3L:19039620-19040520
nkd_UpE2
nos_-708_+20
nvy_CRM100
nvy_CRM29
oc_intronic_distal
oc_oc7
oc_otd_EHE
oc_otd-186
oc_SBg
otp_C
otp_P
ovo_del-ap-del-5
ovo_E2
ovo_E3
ovo_E6A
ovo_lacZdel-ap-del-6
pdm2_CRM6
per_-603_-449
PH4alphaSG2_SG2-885
ple_995bp_wound_response_element
ple_WE1
pnr_P3
pnr_P4
Poxn_2
Poxn_9
prd_cc_repressor
prd_deltaQ
prd_P1_enhancer
prd_PMFE
prd_Pstripe_enhancer
chr3L:19047510-19048605 chr3R:14982247-14983189 chr2R:20162432-20163459 chr2R:20163780-20164851 chrX:8536858-8537949 chrX:8511921-8512824 chrX:8548837-8549929 chrX:8548281-8549211 chrX:8547554-8548562 chr2R:16786416-16787494 chr2R:16785528-16786561 chrX:4958967-4959932 chrX:4914146-4915245 chrX:4914971-4916045 chrX:4917122-4918140 chrX:4957750-4958748 chr2L:12682595-12683690 chrX:2578569-2579555 chr3R:26315025-26315977 chr3L:6712587-6713662 chr3L:6715951-6716856 chr3R:11853793-11854843 chr3R:11854355-11855347 chr2R:11717859-11718948 chr2R:11722264-11723254 chr2L:12086931-12087941 chr2L:12085023-12086072 chr2L:12087791-12088820 chr2L:12077955-12078886 chr2L:12088649-12089604
chr3L:19054410-19055505 chr3R:19156525-19157467 chr2R:24274909-24275936 chr2R:24276257-24277328 chrX:8642825-8643916 chrX:8617888-8618791 chrX:8654804-8655896 chrX:8654248-8655178 chrX:8653521-8654529 chr2R:20898911-20899989 chr2R:20898023-20899056 chrX:5064934-5065899 chrX:5020113-5021212 chrX:5020938-5022012 chrX:5023089-5024107 chrX:5063717-5064715 chr2L:12682595-12683690 chrX:2684536-2685522 chr3R:30489303-30490255 chr3L:6719487-6720562 chr3L:6722851-6723756 chr3R:16028071-16029121 chr3R:16028633-16029625 chr2R:15830354-15831443 chr2R:15834759-15835749 chr2L:12086931-12087941 chr2L:12085023-12086072 chr2L:12087791-12088820 chr2L:12077955-12078886 chr2L:12088649-12089604
prd_stripe1_enhancer
proPO-A1_crystal_cell
proPO-A1_F6
Rbp4_pPa104_69
repo_-1.1
repo_pBJ-111
repo_pBJ-145
Rh2_-443_+32
Rh3_promoter
Rh5_promoter
Rh6_-555_+121
run_neural_6GB
sc_1.1
sc_CRM39
sens_sensCRM3
sev_minimal_enhancer
sev_sev_prom
Sgs4_OPSL
sim_mesectoderm
sim_st10
slp2_i4753
sna_0.25
sog_broad_lateral_neurogenic_ectoderm sog_shadow
Sox15_regionA
Sox15_regionB Sox15_regionC SoxN_565
SoxN_5830
sphinx_1067bp_5'_fragment
chr2L:12089685-12090630 chr2R:13776907-13777945 chr2R:13774263-13775214 chr3R:14080684-14081665 chr3R:14060749-14061844 chr3R:14058681-14059589 chr3R:14059539-14060516 chr3R:14724289-14725308 chr3R:15907857-15908889 chr2L:12007559-12008510 chr3R:11308239-11309249 chrX:20559288-20560378 chrX:289125-290204 chrX:286648-287747 chr3L:13395412-13396397 chrX:10973249-10974269 chrX:10980221-10981320 chrX:3143420-3144347 chr3R:8895383-8896466 chr3R:8885647-8886704 chr2L:3830134-3831049 chr2L:15478141-15479224 chrX:15518390-15519344 chrX:15540621-15541615 chr2R:10098445-10099413 chr2R:10097816-10098825 chr2R:10097224-10098222 chr2L:8811551-8812587 chr2L:8841052-8842145 chr4:994776-995867
chr2L:12089685-12090630 chr2R:17889402-17890440 chr2R:17886758-17887709 chr3R:18254962-18255943 chr3R:18235027-18236122 chr3R:18232959-18233867 chr3R:18233817-18234794 chr3R:18898567-18899586 chr3R:20082135-20083167 chr2L:12007559-12008510 chr3R:15482517-15483527 chrX:20688261-20689351 chrX:395092-396171
chrX:392615-393714
chr3L:13402312-13403297 chrX:11079216-11080236 chrX:11086188-11087287 chrX:3249387-3250314 chr3R:13069661-13070744 chr3R:13059925-13060982 chr2L:3830134-3831049 chr2L:15478141-15479224 chrX:15624357-15625311 chrX:15646588-15647582 chr2R:14210940-14211908 chr2R:14210311-14211320 chr2R:14209719-14210717 chr2L:8811551-8812587 chr2L:8841052-8842145 chr4:974150-975241
sqz_sqz-11
Sry-alpha_CAHBG
ss_E2.0_522
ss_E2.0_531
ss_P732
sv_paxD
sv_SME
ths_Neu4_early_embryonic_enhancer
tll_D3
tll_K11
tll_K7
tII_O-E
toy_EEP
trh_trh24
trh_trh45
tup_dorsalectoderm
vas_96bpEnhancer
vas_construct16
vg_minimal_boundary_enhancer
vg_quadrant_enhancer
Vm26Aa_C2
Vm32E_-348_-39
vnd_743
vnd_NEE
vvl_484-5prime
vvl_587dfr
vvl_vvl0.9
vvl_vvl1+2
vvl_vvids1.0
y_BE1-2
chr3R:15000126-15001211 chr3R:25866256-25867179 chr3R:12242388-12243423 chr3R:12243575-12244533 chr3R:12218328-12219379 chr4:1106414-1107513 chr4:1116254-1117156 chr2R:7681709-7682675 chr3R:26677526-26678474 chr3R:26674823-26675766 chr3R:26672825-26673797 chr3R:26681267-26682305 chr4:1001378-1002361 chr3L:374147-375060 chr3L:394619-395621 chr2L:18874963-18875896 chr2L:15061100-15062127 chr2L:15073693-15074684 chr2R:8776000-8777037 chr2R:8783523-8784538 chr2L:5960319-5961345 chr2L:11171600-11172500 chrX:486746-487752 chrX:486301-487394 chr3L:6782745-6783769 chr3L:6777942-6779032 chr3L:6758464-6759483 chr3L:6757667-6758693 chr3L:6816974-6818073 chrX:248439-249451
chr3R:19174404-19175489 chr3R:30040534-30041457 chr3R:16416666-16417701 chr3R:16417853-16418811 chr3R:16392606-16393657 chr4:1085788-1086887 chr4:1095628-1096530 chr2R:11794204-11795170 chr3R:30851804-30852752 chr3R:30849101-30850044 chr3R:30847103-30848075 chr3R:30855545-30856583 chr4:980752-981735 chr3L:374147-375060 chr3L:394619-395621 chr2L:18874963-18875896 chr2L:15061100-15062127 chr2L:15073693-15074684 chr2R:12888495-12889532 chr2R:12896018-12897033 chr2L:5960319-5961345 chr2L:11171600-11172500 chrX:592713-593719 chrX:592268-593361 chr3L:6789645-6790669 chr3L:6784842-6785932 chr3L:6765364-6766383 chr3L:6764567-6765593 chr3L:6823874-6824973 chrX:354406-355418
y_BE3
y_wing
Yp1_oe2
Yp1_structure_8E
Z600_z600-lacZ
Sur_dSurEN3-SS
CAD2_hand_1
Hand_HCH
CAD2_Meso-CRM-6028
CAD2_sna_2
CAD2_Meso-CRM-6225
CadN_Lac-Z
mib2_FCenhancer
Acon_Lac-Z
slp1_5303
Tg_cardiac_enhancer
numb_5870
CG4364_upstreamCRM
bib_5924
CAD2_Meso-CRM-965
CG9416_GFP
Atet_5338
Kr_HBgO.6HZ
Kr_H_I
eve_MHE
Ndg_FCenhancer
CAD2_pyr
CAD2_Mdr49
CG32111_8084
CAD2_Meso-CRM-4726
chrX:249145-250233
chrX:247798-248732
chrX:9945625-9946666
chrX:9946630-9947672
chr3L:15501282-15502351
chr2L:10197218-10198280 chr2L:10292609-10293692 chr2L:10293308-10294379 chr2L:14266991-14267912 chr2L:15481938-15482856 chr2L:17221775-17222718 chr2L:17662868-17663886 chr2L:19036808-19037782 chr2L:21168779-21169764 chr2L:3827700-3828650 chr2L:8023372-8024455 chr2L:9447742-9448771 chr2L:9710879-9711857 chr2L:9988389-9989430 chr2R:13644082-13645146 chr2R:15258605-15259535 chr2R:20932312-20933348 chr2R:21110723-21111783 chr2R:21113526-21114590 chr2R:5872394-5873407 chr2R:6203047-6203992 chr2R:7620398-7621302 chr2R:8833522-8834532 chr3L:12641801-12642834 chr3L:16760731-16761829
chrX:355112-356200
chrX:353765-354699
chrX:10051592-10052633
chrX:10052597-10053639
chr3L:15508182-15509251
chr2L:10197218-10198280 chr2L:10292609-10293692 chr2L:10293308-10294379 chr2L:14266991-14267912 chr2L:15481938-15482856 chr2L:17221775-17222718 chr2L:17662868-17663886 chr2L:19036808-19037782 chr2L:21168779-21169764 chr2L:3827700-3828650 chr2L:8023372-8024455 chr2L:9447742-9448771 chr2L:9710879-9711857 chr2L:9988389-9989430 chr2R:17756577-17757641 chr2R:19371100-19372030 chr2R:25044789-25045825 chr2R:25223200-25224260 chr2R:25226003-25227067 chr2R:9984889-9985902 chr2R:10315542-10316487 chr2R:11732893-11733797 chr2R:12946017-12947027 chr3L:12648701-12649734 chr3L:16767631-16768729
fz2_Lac-Z
CAD2_Meso-CRM-4906
CAD2_Ket-1
CAD2_Ket-2
sls_Ket-3_Lac-Z
sfl_Lac-Z
Doc3_7731
CAD2_pnr
Ubx_BXD-C
tin_tin103A
tin_tin103C
tin_tinD
CAD2_Meso-CRM-2819
lbl_SBMs
slou_SK16
slou_SK19
Tl_Tl287
CAD2_Meso-CRM-3418
svp_sce
CAD2_desat1
meso18E_Lac-Z
kirre_-4.6-3.8
kirre_-1.0
org-1_HN39
E0_12_GROAviva_ChIP_chip.region_9
E0_12_GROAviva_ChIP_chip.region_25
E0_12_GROAviva_ChIP_chip.region_26
E0_12_GROAviva_ChIP_chip.region_43
EO_12_GROAviva_ChIP_chip.region_46
E0_12_GROAviva_ChIP_chip.region_88
chr3L:19139406-19140383 chr3L:19184809-19185753 chr3L:2089382-2090424 chr3L:2114510-2115516 chr3L:2118030-2119024 chr3L:6515183-6516181 chr3L:8996415-8997429 chr3R:11850973-11851909 chr3R:12575688-12576663 chr3R:17207742-17208652 chr3R:17208241-17209272 chr3R:17209280-17210258 chr3R:17222290-17223251 chr3R:17252278-17253281 chr3R:17390942-17391879 chr3R:17392337-17393354 chr3R:22615901-22616933 chr3R:26607382-26608392 chr3R:8092260-8093272 chr3R:8269721-8270707 chrX:19607248-19608272 chrX:2989425-2990505 chrX:2993145-2994229 chrX:8337345-8338317 chr2L:3005385-3006375 chr2L:4364826-4365916 chr2L:4367771-4368738 chr2L:6530888-6531887 chr2L:6829880-6830953 chr2L:14403235-14404316
chr3L:19146306-19147283 chr3L:19191709-19192653 chr3L:2089382-2090424 chr3L:2114510-2115516 chr3L:2118030-2119024 chr3L:6522083-6523081 chr3L:9003315-9004329 chr3R:16025251-16026187 chr3R:16749966-16750941 chr3R:21382020-21382930 chr3R:21382519-21383550 chr3R:21383558-21384536 chr3R:21396568-21397529 chr3R:21426556-21427559 chr3R:21565220-21566157 chr3R:21566615-21567632 chr3R:26790179-26791211 chr3R:30781660-30782670 chr3R:12266538-12267550 chr3R:12443999-12444985 chrX:19713215-19714239 chrX:3095392-3096472 chrX:3099112-3100196 chrX:8443312-8444284 chr2L:3005385-3006375 chr2L:4364826-4365916 chr2L:4367771-4368738 chr2L:6530888-6531887 chr2L:6829880-6830953 chr2L:14403235-14404316

EO_12_GROAviva_ChIP_chip.region_124 EO_12_GROAviva_ChIP_chip.region_125 EO_12_GROAviva_ChIP_chip.region_131 EO_12_GROAviva_ChIP_chip.region_166 E0_12_GROAviva_ChIP_chip.region_179 EO_12_GROAviva_ChIP_chip.region_199 EO_12_GROAviva_ChIP_chip.region_217 E0_12_GROAviva_ChIP_chip.region_233 EO_12_GROAviva_ChIP_chip.region_236 EO_12_GROAviva_ChIP_chip.region_243 EO_12_GROAviva_ChIP_chip.region_247 EO_12_GROAviva_ChIP_chip.region_258 EO_12_GROAviva_ChIP_chip.region_263 EO_12_GROAviva_ChIP_chip.region_278 EO_12_GROAviva_ChIP_chip.region_279 EO_12_GROAviva_ChIP_chip.region_286 EO_12_GROAviva_ChIP_chip.region_287 E0_12_GROAviva_ChIP_chip.region_311 EO_12_GROAviva_ChIP_chip.region_361 E0_12_GROAviva_ChIP_chip.region_376 E0_12_GROAviva_ChIP_chip.region_377 EO_12_GROAviva_ChIP_chip.region_397 E0_12_GROAviva_ChIP_chip.region_408 E0_12_GROAviva_ChIP_chip.region_415 EO_12_GROAviva_ChIP_chip.region_416 EO_12_GROAviva_ChIP_chip.region_422 EO_12_GROAviva_ChIP_chip.region_439 EO_12_GROAviva_ChIP_chip.region_440 EO_12_GROAviva_ChIP_chip.region_441 E0_12_GROAviva_ChIP_chip.region_444
chr2L:17381817-17382775 chr2L:17495387-17496416 chr2L:18598871-18599941 chr2R:5294110-5295135 chr2R:7381681-7382766 chr2R:10852253-10853173 chr2R:14558959-14559942 chr2R:18393902-18394889 chr2R:18402283-18403340 chr2R:19769936-19770987 chr3L:380511-381517 chr3L:2590366-2591379 chr3L:3854811-3855897 chr3L:7843738-7844664 chr3L:7854680-7855732 chr3L:9415454-9416486 chr3L:9454831-9455827 chr3L:12594129-12595075 chr3L:17356992-17358033 chr3L:18341169-18342254 chr3L:18347618-18348595 chr3L:22451387-22452388 chr3R:2492654-2493749 chr3R:3978032-3979065 chr3R:4005880-4006966 chr3R:5244352-5245319 chr3R:9735607-9736591 chr3R:9755437-9756466 chr3R:9772801-9773843 chr3R:10500128-10501223
chr2L:17381817-17382775 chr2L:17495387-17496416 chr2L:18598871-18599941 chr2R:9406605-9407630 chr2R:11494176-11495261 chr2R:14964748-14965668 chr2R:18671454-18672437 chr2R:22506397-22507384 chr2R:22514778-22515835 chr2R:23882413-23883464 chr3L:380511-381517 chr3L:2590366-2591379 chr3L:3854811-3855897 chr3L:7850638-7851564 chr3L:7861580-7862632 chr3L:9422354-9423386 chr3L:9461731-9462727 chr3L:12601029-12601975 chr3L:17363892-17364933 chr3L:18348069-18349154 chr3L:18354518-18355495 chr3L:22458287-22459288 chr3R:6666932-6668027 chr3R:8152310-8153343 chr3R:8180158-8181244 chr3R:9418630-9419597 chr3R:13909885-13910869 chr3R:13929715-13930744 chr3R:13947079-13948121 chr3R:14674406-14675501

EO_12_GROAviva_ChIP_chip.region_445 EO_12_GROAviva_ChIP_chip.region_463 EO_12_GROAviva_ChIP_chip.region_467 E0_12_GROAviva_ChIP_chip.region_468 E0_12_GROAviva_ChIP_chip.region_470 EO_12_GROAviva_ChIP_chip.region_471 EO_12_GROAviva_ChIP_chip.region_473 EO_12_GROAviva_ChIP_chip.region_481 E0_12_GROAviva_ChIP_chip.region_482 EO_12_GROAviva_ChIP_chip.region_489 E0_12_GROAviva_ChIP_chip.region_499 EO_12_GROAviva_ChIP_chip.region_506 EO_12_GROAviva_ChIP_chip.region_513 E0_12_GROAviva_ChIP_chip.region_531 EO_12_GROAviva_ChIP_chip.region_562 E0_12_GROAviva_ChIP_chip.region_565 EO_12_GROAviva_ChIP_chip.region_587 E0_12_GROAviva_ChIP_chip.region_590 E0_12_GROAviva_ChIP_chip.region_594 E0_12_GROAviva_ChIP_chip.region_606 EO_12_GROAviva_ChIP_chip.region_620 ind_moduleA
ind_moduleBC
zen_dorsal_ectoderm
CAD2_ttk_early
CAD2_blow
CAD2_bTub60D
CAD2_actin57B
CAD2_sns
CAD2_htl
chr3R:10501268-10502267 chr3R:12654664-12655640 chr3R:13409319-13410336 chr3R:13414253-13415255 chr3R:13639701-13640639 chr3R:13651536-13652525 chr3R:14821126-14822102 chr3R:16088320-16089304 chr3R:16102202-16103229 chr3R:17326689-17327778 chr3R:17695531-17696528 chr3R:19140180-19141180 chr3R:20421334-20422346 chr3R:22961493-22962480 chrX:3570736-3571779 chrX:4083934-4085011 chrX:8109215-8110162 chrX:8671542-8672579 chrX:9643392-9644491 chrX:15512939-15514007 chrX:19265759-19266850 chr3L:15031943-15032964 chr3L:15032738-15033835 chr3R:2580829-2581762 chr3R:27538548-27539644 chr2R:3472425-3473427 chr2R:20196763-20197766 chr2R:16830753-16831785 chr2R:4685108-4686113 chr3R:13875610-13876701
chr3R:14675546-14676545 chr3R:16828942-16829918 chr3R:17583597-17584614 chr3R:17588531-17589533 chr3R:17813979-17814917 chr3R:17825814-17826803 chr3R:18995404-18996380 chr3R:20262598-20263582 chr3R:20276480-20277507 chr3R:21500967-21502056 chr3R:21869809-21870806 chr3R:23314458-23315458 chr3R:24595612-24596624 chr3R:27135771-27136758 chrX:3676703-3677746 chrX:4189901-4190978 chrX:8215182-8216129 chrX:8777509-8778546 chrX:9749359-9750458 chrX:15618906-15619974 chrX:19371726-19372817 chr3L:15038843-15039864 chr3L:15039638-15040735 chr3R:6755107-6756040 chr3R:31712826-31713922 chr2R:7584920-7585922 chr2R:24309240-24310243 chr2R:20943248-20944280 chr2R:8797603-8798608 chr3R:18049888-18050979

CAD2_twist
CAD2_ttk_late
CAD2_RhoL
CAD2_Meso-CRM-3775
ChIPCRM5405
ChIPCRM5432
ChIPCRM5792
CG7759_33
CBP2862
hth_3
ChIPCRM2497
ChIPCRM3152
ChIPCRM2078
rho_NEE_long
vn_NEE-Iong
brk_NEE-long
BiTs-ChIP_K4me1+K27me3+K27ac_13
BiTS-ChIP_K4me1+K27me3+K27ac_65
BiTS-ChIP_K4me1+K27me3+K27ac_73
BiTS-ChIP_K4me1+K27me3+K27ac_80
BiTS-ChIP_K4me1+K27me3+K27ac_96
BiTS-ChIP_K4me1+K27me3+K27ac_106
BiTS-ChIP_K4me1+K27me3+K27ac_107
BiTS-ChIP_K4me1+K27me3+K27ac_115
BiTS-ChIP_K4me1+K27me3+K27ac_134
BiTS-ChIP_K4me1+K27me3+K27ac_153
BiTS-ChIP_K4me1+K27me3+K27ac_155
BiTS-ChIP_K4me1+K27me3+K27ac_162
BiTS-ChIP_K4me1+K27me3+K27ac_172
BiTS-ChIP_K4me1+K27me3+K27ac_190
chr2R:18936942-18937936 chr3R:27529652-27530685 chr3R:5328991-5330037 chr3L:3058767-3059825 chr2L:3823411-3824343 chr2L:4363360-4364283 chr2L:9454132-9455154 chr2R:7287136-7288167 chr3L:320026-321098 chr3R:6427784-6428745 chr3R:12569639-12570593 chr3R:21835656-21836646 chr3R:7177448-7178448 chr3L:1461675-1462661 chr3L:5828505-5829485 chrX:7190855-7191822 chr2L:5877252-5878345 chr2L:22430901-22431882 chr2R:1598304-1599401 chr2R:3993666-3994721 chr2R:7245344-7246372 chr2R:10142814-10143888 chr2R:10318978-10319971 chr2R:11818473-11819483 chr2R:14559686-14560762 chr2R:20856932-20857931 chr3L:184534-185555 chr3L:1176234-1177274 chr3L:5892566-5893662 chr3L:12116996-12117997
chr2R:23049419-23050413 chr3R:31703930-31704963 chr3R:9503269-9504315 chr3L:3058767-3059825 chr2L:3823411-3824343 chr2L:4363360-4364283 chr2L:9454132-9455154 chr2R:11399631-11400662 chr3L:320026-321098 chr3R:10602062-10603023 chr3R:16743917-16744871 chr3R:26009934-26010924 chr3R:11351726-11352726 chr3L:1461675-1462661 chr3L:5835405-5836385 chrX:7296822-7297789 chr2L:5877252-5878345 chr2L:22538169-22539150 chr2R:5710799-5711896 chr2R:8106161-8107216 chr2R:11357839-11358867 chr2R:14255309-14256383 chr2R:14431473-14432466 chr2R:15930968-15931978 chr2R:18672181-18673257 chr2R:24969409-24970408 chr3L:184534-185555 chr3L:1176234-1177274 chr3L:5899466-5900562 chr3L:12123896-12124897

BiTS-ChIP_K4me1+K27me3+K27ac_201
BiTS-ChIP_K4me1+K27me3+K27ac_205
BiTS-ChIP_K4me1+K27me3+K27ac_212
BiTS-ChIP_K4me1+K27me3+K27ac_214
BiTS-ChIP_K4me1+K27me3+K27ac_215
BiTS-ChIP_K4me1+K27me3+K27ac_219
BiTS-ChIP_K4me1+K27me3+K27ac_220
BiTS-ChIP_K4me1+K27me3+K27ac_231
BiTS-ChIP_K4me1+K27me3+K27ac_236
BiTS-ChIP_K4me1+K27me3+K27ac_246
BiTS-ChIP_K4me1+K27me3+K27ac_252
BiTS-ChIP_K4me1+K27me3+K27ac_262
BiTS-ChIP_K4me1+K27me3+K27ac_320
BiTS-ChIP_K4me1+K27me3+K27ac_322
BiTS-ChIP_K4me1+K27me3+K27ac_343
BiTS-ChIP_K4me1+K27me3+K27ac_365
BiTS-ChIP_K4me1+K27me3+K27ac_389
Classl_ins_17
Classl_ins_29
Classl_ins_34
Classl_ins_36
Classl_ins_61
Classl_ins_77
Classl_ins_87
ClassI_ins_94
Classl_ins_103
Classl_ins_114
ClassI_ins_132
Classl_ins_133
Classl_ins_157
chr3L:14962409-14963507 chr3L:15718690-15719643 chr3L:16106832-16107763 chr3L:16403556-16404528 chr3L:16722949-16723954 chr3L:18308482-18309414 chr3L:18340769-18341697 chr3L:20784718-20785661 chr3L:21720852-21721947 chr3R:224803-225744 chr3R:1145198-1146137 chr3R:4094804-4095867 chr3R:15150586-15151685 chr3R:16774066-16775162 chr3R:21836549-21837613 chr4:854225-855246 chrX:17520833-17521855 chr2L:7204179-7205202 chr2L:16719303-16720312 chr2L:19426381-19427369 chr2L:20120424-20121485 chr2R:16554832-16555765 chr3L:2553597-2554557 chr3L:6543350-6544404 chr3L:11782712-11783704 chr3L:16948111-16949205 chr3L:21834048-21835060 chr3R:6500441-6501522 chr3R:7647743-7648797 chr3R:16981256-16982186
chr3L:14969309-14970407 chr3L:15725590-15726543 chr3L:16113732-16114663 chr3L:16410456-16411428 chr3L:16729849-16730854 chr3L:18315382-18316314 chr3L:18347669-18348597 chr3L:20791618-20792561 chr3L:21727752-21728847 chr3R:4399081-4400022 chr3R:5319476-5320415 chr3R:8269082-8270145 chr3R:19324864-19325963 chr3R:20948344-20949440 chr3R:26010827-26011891 chr4:833599-834620 chrX:17626800-17627822 chr2L:7204179-7205202 chr2L:16719303-16720312 chr2L:19426381-19427369 chr2L:20120424-20121485 chr2R:20667327-20668260 chr3L:2553597-2554557 chr3L:6550250-6551304 chr3L:11789612-11790604 chr3L:16955011-16956105 chr3L:21840948-21841960 chr3R:10674719-10675800 chr3R:11822021-11823075 chr3R:21155534-21156464

Classl_ins_182
ClassI_ins_196
Classl_ins_198
Classl_ins_202
Classl_ins_207
Classl_ins_209
Classl_ins_210
Classl_ins_212
Classl_ins_215
Classl_ins_229
ClassI_ins_244
ins_scs
ins_scs-prime
ins_1A2_assoc_peak
ins_SF1_assoc_peak_center ins_Fab-8
ins_Fab-7_minimal_overlap DHS+K27me3_CtBPoverlap_762
DHS+K27me3_CtBPoverlap_1612
DHS+K27me3_CtBPoverlap_1813
DHS+K27me3_CtBPoverlap_2206
DHS+K27me3_CtBPoverlap_2215
DHS+K27me3_CtBPoverlap_2267
DHS+K27me3_CtBPoverlap_2418
DHS+K27me3_CtBPoverlap_2598
DHS+K27me3_intergenic_16
DHS+K27me3_intergenic_71
DHS+K27me3_intergenic_412
DHS+K27me3_intergenic_1490a
DHS+K27me3_intergenic_1490b
chr3R:26427150-26428063 chrX:3999494-4000444 chrX:4850001-4851012 chrX:9494482-9495522 chrX:11001902-11002920 chrX:11515472-11516391 chrX:13223518-13224484 chrX:14848851-14849839 chrX:15692861-15693858 chrX:18031759-18032839 chrX:20987635-20988713 chr3R:7774471-7775540 chr3R:7788350-7789392 chrX:255243-256339 chr3R:2679760-2680827 chr3R:12744521-12745503 chr3R:12724486-12725543 chr2R:11732837-11733877 chr3R:186111-187132 chr3R:8837370-8838452 chr4:729184-730270 chr4:853288-854320 chrX:482837-483821 chrX:8665718-8666727 chrX:18206161-18207162 chr2L:368364-369325 chr2L:4807981-4808897 chr2L:18814986-18815972 chr3L:18393140-18394184 chr3L:18394914-18396011
chr3R:30601428-30602341 chrX:4105461-4106411
chrX:4955968-4956979
chrX:9600449-9601489
chrX:11107869-11108887
chrX:11621439-11622358 chrX:13329485-13330451 chrX:14954818-14955806 chrX:15798828-15799825 chrX:18137726-18138806 chrX:21116608-21117686 chr3R:11948749-11949818 chr3R:11962628-11963670 chrX:361210-362306 chr3R:6854038-6855105 chr3R:16918799-16919781 chr3R:16898764-16899821 chr2R:15845332-15846372 chr3R:4360389-4361410 chr3R:13011648-13012730 chr4:708558-709644 chr4:832662-833694 chrX:588804-589788 chrX:8771685-8772694 chrX:18312128-18313129 chr2L:368364-369325 chr2L:4807981-4808897 chr2L:18814986-18815972 chr3L:18400040-18401084 chr3L:18401814-18402911

DHS+K27me3_intergenic_1610
DHS+K27me3_intergenic_1932
DHS+K27me3_intergenic_2074a
DHS+K27me3_intergenic_2074b
DHS+K27me3_intergenic_2153
DHS+K27me3_one-hit_20
DHS+K27me3_one-hit_24
DHS+K27me3_one-hit_75
DHS+K27me3_one-hit_103
DHS+K27me3_one-hit_202
DHS+K27me3_one-hit_348
DHS+K27me3_one-hit_372
DHS+K27me3_one-hit_402
DHS+K27me3_one-hit_877
DHS+K27me3_one-hit_1084
DHS+K27me3_one-hit_1265
DHS+K27me3_one-hit_1324
DHS+K27me3_one-hit_1338
DHS+K27me3_one-hit_1883
DHS+K27me3_one-hit_1994
DHS+K27me3_one-hit_2116
DHS+K27me3_one-hit_2147
DHS+K27me3_one-hit_2225
DHS+K27me3_one-hit_2281
Ecoli_control3
Ecoli_control4
Ecoli_control5
Ecoli_control7
Ecoli_control11
Ecoli_control12
chr3R:169435-170404 chr3R:13381473-13382383 chr3R:20913934-20914991 chr3R:20917026-20918028 chr3R:26911747-26912841 chr2L:419629-420658 chr2L:589607-590595 chr2L:5055795-5056753 chr2L:6088117-6089150 chr2L:9792224-9793199 chr2L:15334541-15335597 chr2L:16483697-16484642 chr2L:18601807-18602751 chr2R:16845185-16846266 chr3L:5874606-5875632 chr3L:12602226-12603228 chr3L:14182120-14183122 chr3L:14592451-14593527 chr3R:12214480-12215427 chr3R:16672486-16673386 chr3R:25517492-25518523 chr3R:26632727-26633769 chr4:1009740-1010779 chrX:2036829-2037748 N/A
N/A
N/A
N/A
N/A
N/A
chr3R:4343713-4344682 chr3R:17555751-17556661 chr3R:25088212-25089269 chr3R:25091304-25092306 chr3R:31086025-31087119 chr2L:419629-420658 chr2L:589607-590595 chr2L:5055795-5056753 chr2L:6088117-6089150 chr2L:9792224-9793199 chr2L:15334541-15335597 chr2L:16483697-16484642 chr2L:18601807-18602751 chr2R:20957680-20958761 chr3L:5881506-5882532 chr3L:12609126-12610128 chr3L:14189020-14190022 chr3L:14599351-14600427 chr3R:16388758-16389705 chr3R:20846764-20847664 chr3R:29691770-29692801 chr3R:30807005-30808047 chr4:989114-990153 chrX:2142796-2143715 N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
chrX:17207836-17208913 chrX:18135231-18136260 chrX:19429583-19430513 chrX:21244727-21245748 chr3L:5548950-5550048 chr3L:14604450-14605479 chr2L:22437120-22438207 chr2L:15074407-15075441 chr3L:3804155-3805254 chrX:15790373-15791443 chr2L:9690333-9691430 chr3R:20120318-20121414 chr2L:4277263-4278353 chr3L:15950232-15951330 chr3L:9376374-9377373 chr3L:18101233-18102321 chr3R:7412623-7413722 chr2R:16473538-16474572 chr2L:4810330-4811384 chr2L:10525546-10526620 chr2R:3890223-3891187 chr2R:7788986-7790016 chr2R:12944683-12945617 chr3L:16660796-16661735

N/A N/A
N/A
N/A
N/A

N/A
chrX:17313803-17314880 chrX:18241198-18242227 chrX:19535550-19536480 chrX:21373700-21374721 chr3L:5555850-5556948 chr3L:14611350-14612379 chr2L:22544388-22545475 chr2L:15074407-15075441 chr3L:3804155-3805254 chrX:15896340-15897410 chr2L:9690333-9691430 chr3R:24294596-24295692 chr2L:4277263-4278353 chr3L:15957132-15958230 chr3L:9383274-9384273 chr3L:18108133-18109221 chr3R:11586901-11588000 chr2R:20586033-20587067 chr2L:4810330-4811384 chr2L:10525546-10526620 chr2R:8002718-8003682 chr2R:11901481-11902511 chr2R:17057178-17058112 chr3L:16667696-16668635

E_0_12h_dCtBP7667.region_3104
E_0_12h_dCtBP7667.region_3445
E_0_12h_dCtBP7667.region_3446
E_0_12h_dCtBP7667.region_3938
E_0_12h_dCtBP7667.region_4196
E_0_12h_dCtBP7667.region_4427
E_0_12h_dCtBP7667.region_4530
E_0_12h_dCtBP7667.region_3402
E_0_12h_dCtBP7667.region_3606
E_0_12h_dCtBP7667.region_3031
E_0_12h_dCtBP7667.region_4944
E_0_12h_dCtBP7667.region_3202
E_0_12h_dCtBP7667.region_4844
E_0_12h_dCtBP7667.region_3049
E_0_12h_dCtBP7667.region_1981
E_0_12h_dCtBP7667.region_1692
E_0_12h_dCtBP7667.region_3799
E_0_12h_dCtBP7667.region_4154
E_0_12h_dCtBP7667.region_2344
E_0_12h_dCtBP7667.region_3138
E_0_12h_dCtBP7667.region_234
E_0_12h_dCtBP7667.region_3785
E_0_12h_dCtBP7667.region_4738
E_0_12h_dCtBP7667.region_2057
E_0_12h_dCtBP7667.region_3325
E_0_12h_dCtBP7667.region_3509
E_0_12h_dCtBP7667.region_3602
E_0_12h_dCtBP7667.region_864
E_0_12h_dCtBP7667.region_2824
E_0_12h_dCtBP7667.region_3249
chr3R:2022792-2023841 chr3R:9746846-9747838 chr3R:9750854-9751776 chr3R:20592612-20593661 chr3R:26689219-26690188 chrX:5479798-5480878 chrX:8727320-8728324 chr3R:8681541-8682546 chr3R:12894974-12896064 chr3R:561158-562190 chrX:22015098-22016116 chr3R:4553174-4554259 chrX:18704252-18705253 chr3R:907088-908163 chr2R:20822326-20823378 chr2R:15090938-15092004 chr3R:17600358-17601412 chr3R:25655952-25657008 chr3L:7339019-7340114 chr3R:2961101-2962189 chr2L:3708029-3709016 chr3R:17162159-17163217 chrX:15467073-15468098 chr3L:988005-989088 chr3R:7032200-7033286 chr3R:11149309-11150347 chr3R:12835410-12836498 chr2L:19063547-19064615 chr3L:19025236-19026300 chr3R:5388236-5389306
chr3R:6197070-6198119 chr3R:13921124-13922116 chr3R:13925132-13926054 chr3R:24766890-24767939 chr3R:30863497-30864466 chrX:5585765-5586845 chrX:8833287-8834291 chr3R:12855819-12856824 chr3R:17069252-17070342 chr3R:4735436-4736468 chrX:22613262-22614280 chr3R:8727452-8728537 chrX:18810219-18811220 chr3R:5081366-5082441 chr2R:24934803-24935855 chr2R:19203433-19204499 chr3R:21774636-21775690 chr3R:29830230-29831286 chr3L:7345919-7347014 chr3R:7135379-7136467 chr2L:3708029-3709016 chr3R:21336437-21337495 chrX:15573040-15574065 chr3L:988005-989088 chr3R:11206478-11207564 chr3R:15323587-15324625 chr3R:17009688-17010776 chr2L:19063547-19064615 chr3L:19032136-19033200 chr3R:9562514-9563584

E_0_12h_dCtBP7667.region_909
E_0_12h_dCtBP7667.region_63
E_0_12h_dCtBP7667.region_1790
E_0_12h_dCtBP7667.region_2744
E_0_12h_dCtBP7667.region_55
E_0_12h_dCtBP7667.region_2243
E_0_12h_dCtBP7667.region_788
E_0_12h_dCtBP7667.region_3439
E_0_12h_dCtBP7667.region_2827
E_0_12h_dCtBP7667.region_1855
E_0_12h_dCtBP7667.region_4460
E_0_12h_dCtBP7667.region_2991
E_0_12h_dCtBP7667.region_3696
E_0_12h_dCtBP7667.region_1555
E_0_12h_dCtBP7667.region_1107
E_0_12h_dCtBP7667.region_3770
E_0_12h_dCtBP7667.region_3553
E_0_12h_dCtBP7667.region_1767
E_0_12h_dCtBP7667.region_1028
E_0_12h_dCtBP7667.region_3484
E_0_12h_dCtBP7667.region_3849
E_0_12h_dCtBP7667.region_3937
E_0_12h_dCtBP7667.region_3852
E_0_12h_dCtBP7667.region_4503
E_0_12h_dCtBP7667.region_3708
E_0_12h_dCtBP7667.region_3540
E_0_12h_dCtBP7667.region_2952
E_0_12h_dCtBP7667.region_3547
E_0_12h_dCtBP7667.region_1533
E_0_12h_dCtBP7667.region_3084
chr2L:20029457-20030428 chr4:1102343-1103437 chr2R:17084978-17086067 chr3L:16633761-16634825 chr4:963630-964664 chr3L:5146157-5147235 chr2L:17487597-17488678 chr3R:9609748-9610746 chr3L:19054256-19055254 chr2R:18465378-18466346 chrX:6717063-6718123 chr3L:23312459-23313549 chr3R:14933397-14934459 chr2R:12448036-12449035 chr2R:3960033-3961115 chr3R:16899442-16900447 chr3R:11836039-11837105 chr2R:16764285-16765340 chr2R:1786069-1787118 chr3R:10498621-10499660 chr3R:18883661-18884717 chr3R:20541751-20542778 chr3R:18955501-18956527 chrX:8002538-8003524 chr3R:15213520-15214591 chr3R:11679911-11681008 chr3L:21964840-21965825 chr3R:11787738-11788835 chr2R:12058557-12059556 chr3R:1508921-1509997
chr2L:20029457-20030428 chr4:1081717-1082811
chr2R:21197473-21198562
chr3L:16640661-16641725
chr4:943004-944038
chr3L:5153057-5154135 chr2L:17487597-17488678 chr3R:13784026-13785024 chr3L:19061156-19062154 chr2R:22577873-22578841 chrX:6823030-6824090 chr3L:23319359-23320449 chr3R:19107675-19108737 chr2R:16560531-16561530 chr2R:8072528-8073610 chr3R:21073720-21074725 chr3R:16010317-16011383 chr2R:20876780-20877835 chr2R:5898564-5899613 chr3R:14672899-14673938 chr3R:23057939-23058995 chr3R:24716029-24717056 chr3R:23129779-23130805 chrX:8108505-8109491 chr3R:19387798-19388869 chr3R:15854189-15855286 chr3L:21971740-21972725 chr3R:15962016-15963113 chr2R:16171052-16172051 chr3R:5683199-5684275

E_0_12h_dCtBP7667.region_772
E_0_12h_dCtBP7667.region_2926
E_0_12h_dCtBP7667.region_1246
E_0_12h_dCtBP7667.region_3954
E_0_12h_dCtBP7667.region_2772
E_0_12h_dCtBP7667.region_3525
E_0_12h_dCtBP7667.region_3137
E_0_12h_dCtBP7667.region_3629
E_0_12h_dCtBP7667.region_4575
E_0_12h_dCtBP7667.region_3623
E_0_12h_dCtBP7667.region_3006
E_0_12h_dCtBP7667.region_2635

Negative control

Ecoli_control3
Ecoli_control4
Ecoli_control5
Ecoli_control7
Ecoli_control11
Ecoli_control12
Ecoli_control15
Ecoli_control16
Ecoli_control21
Ecoli_control22
Ecoli_control23
Ecoli_control24
chr2L:16853759-16854754 chr3L:21504512-21505558 chr2R:6507041-6508091
chr3R:20896811-20897745 chr3L:17363459-17364446 chr3R:11318064-11319157 chr3R:2949451-2950400 chr3R:13385900-13386906 chrX:9892224-9893283 chr3R:13271943-13273006 chr3R:74837-75870
chr3L:14099332-14100315

Forward primer

TGATGATGTTGCCGCTGGTC
CATCAACCAGACCAAAGAAGTCG CCAGGCGAAAAAGTTCAGCG AGGATGGAGATTATCGTAAAGGGC ATTGTCTTTGTCGGATTGACGG CTTGCTCAGAAACGATGATGGATG TGACAGGATTAGCCAAAACCAGC CCCAAACAGTGTATGAATGGTGTG GTAGAGTGGCAGGCTTTCGTTG GCAAGTATCCCAAAGAAGCCG GGGGCAACAGGTGATGTATGTG CTGTTGTTGATTACGCCGTCG
chr2L:16853759-16854754 chr3L:21511412-21512458 chr2R:10619536-10620586 chr3R:25071089-25072023 chr3L:17370359-17371346 chr3R:15492342-15493435 chr3R:7123729-7124678 chr3R:17560178-17561184 chrX:9998191-9999250 chr3R:17446221-17447284 chr3R:4249115-4250148 chr3L:14106232-14107215

Reverse primer

CTGTGGAAATCCCGTGACAAATAG
AAAATGGAAAAACCCGCTCG
AGCGATGGGTATTCCGTCTTCC ATCGCTAACCTGTTGCTGGCTC CAACTCTTCACTATGGCATTTCCC CGTCAGTGGCACAAAAAGGAAG TCCGTATTTATGACACCGCCC AACCCGTGAAAATCTGCCAAC TCTGAAGGAAGATGATAAGTGGCG AAAGCGAAGCGTTGATGTGG GTGGTCGCAATAGTTATCGTTCG CTCCCAGATTTTTTTCCGCAC

Supplementary table 2

Genomic coordinates of the second library elements screened by silencer-FACS-Seq.

```
Library element
amosD
bab1_dimorphic_element
BiTS-ChIP_K4me1+K27me3+K27ac_13
BiTS-ChIP_K4me1+K27me3+K27ac_134
BiTS-ChIP_K4me1+K27me3+K27ac_73
brk_NEE-long
btd_R-Ss
btd_Ss-Bg
CAD2_htl
CAD2_Ket-1
CAD2_Meso-CRM-4726
CAD2_Meso-CRM-6028
CAD2_Meso-CRM-6225
cas_csc-3
cas_csc-5a
cas_csc-7a
CG42342_3436
CG7722_CRM28
ChIPCRM2078
ChIPCRM5792
Classl_ins_198
cpo_cpoCRM6
crb_Lac-Z
dac_RE
DHS+K27me3_CtBPoverlap_2215
```


coordinates (dm3)

chr2L:18595204-18596246
chr3L:1084698-1085668
chr2L:5877252-5878345
chr2R:14559686-14560762
chr2R:1598304-1599401
chrX:7190855-7191822
chrX:9583710-9584690
chrX:9584428-9585527
chr3R:13875610-13876701
chr3L:2089382-2090424
chr3L:16760731-16761829
chr2L:14266991-14267912
chr2L:17221775-17222718
chr3R:1552157-1553136
chr3R:1548621-1549584
chr3R:1544440-1545364
chr3R:12377681-12378775
chr2R:6824079-6825095
chr3R:7177448-7178448
chr2L:9454132-9455154
chrX:4850001-4851012
chr3R:13777548-13778572
chr3R:20122950-20123916 chr2L:16465126-16466148 chr4:853288-854320

DHS+K27me3_CtBPoverlap_762
DHS+K27me3_intergenic_1932
DHS+K27me3_intergenic_2074b
DHS+K27me3_intergenic_412
DHS+K27me3_intergenic_71
DHS+K27me3_one-hit_103
DHS+K27me3_one-hit_2281
DHS+K27me3_one-hit_348
DHS+K27me3_one-hit_402
DII_304
dpp_85.8MX
dpp_BS3.1
dpp_construct10
dpp_VRR
E_0_12h_dCtBP7667.region_1107
E_0_12h_dCtBP7667.region_1246
E_0_12h_dCtBP7667.region_1790
E_0_12h_dCtBP7667.region_2635
E_0_12h_dCtBP7667.region_2744
E_0_12h_dCtBP7667.region_3049
E_0_12h_dCtBP7667.region_3346
E_0_12h_dCtBP7667.region_3602
E_0_12h_dCtBP7667.region_3623
E_0_12h_dCtBP7667.region_3785
E_0_12h_dCtBP7667.region_3799
E_0_12h_dCtBP7667.region_3852
E_0_12h_dCtBP7667.region_4427
E_0_12h_dCtBP7667.region_4575
E_0_12h_dCtBP7667.region_4755
E_0_12h_dCtBP7667.region_486
chr2R:11732837-11733877 chr3R:13381473-13382383 chr3R:20917026-20918028 chr2L:18814986-18815972 chr2L:4807981-4808897 chr2L:6088117-6089150 chrX:2036829-2037748 chr2L:15334541-15335597 chr2L:18601807-18602751 chr2R:20690263-20691248 chr2L:2456545-2457501 chr2L:2480501-2481487 chr2L:2481008-2482099 chr2L:2455833-2456926 chr2R:3960033-3961115 chr2R:6507041-6508091 chr2R:17084978-17086067 chr3L:14099332-14100315 chr3L:16633761-16634825 chr3R:907088-908163 chr3R:7412623-7413722 chr3R:12835410-12836498 chr3R:13271943-13273006 chr3R:17162159-17163217 chr3R:17600358-17601412 chr3R:18955501-18956527 chrX:5479798-5480878 chrX:9892224-9893283 chrX:15790373-15791443 chr2L:9690333-9691430

E_0_12h_dCtBP7667.region_4944
E_0_12h_dCtBP7667.region_55
E_0_12h_dCtBP7667.region_63
E_0_12h_dCtBP7667.region_772
E_0_12h_dCtBP7667.region_788
E_0_12h_dCtBP7667.region_909
e_coreAbdominalCRE
EO_12_GROAviva_ChIP_chip.region_124
EO_12_GROAviva_ChIP_chip.region_258
E0_12_GROAviva_ChIP_chip.region_26
EO_12_GROAviva_ChIP_chip.region_278
E0_12_GROAviva_ChIP_chip.region_397
EO_12_GROAviva_ChIP_chip.region_408
EO_12_GROAviva_ChIP_chip.region_416
E0_12_GROAviva_ChIP_chip.region_439
EO_12_GROAviva_ChIP_chip.region_440
EO_12_GROAviva_ChIP_chip.region_46
E0_12_GROAviva_ChIP_chip.region_470
EO_12_GROAviva_ChIP_chip.region_471
E0_12_GROAviva_ChIP_chip.region_473
E0_12_GROAviva_ChIP_chip.region_482
EO_12_GROAviva_ChIP_chip.region_562
EO_12_GROAviva_ChIP_chip.region_565
E0_12_GROAviva_ChIP_chip.region_590
E0_12_GROAviva_ChIP_chip.region_594
E0_12_GROAviva_ChIP_chip.region_606
EO_12_GROAviva_ChIP_chip.region_620
gsb_fraglV
gt_CE8001
h_h7AF
chrX:22015098-22016116 chr4:963630-964664
chr4:1102343-1103437
chr2L:16853759-16854754 chr2L:17487597-17488678 chr2L:20029457-20030428 chr3R:17066418-17067406 chr2L:17381817-17382775
chr3L:2590366-2591379
chr2L:4367771-4368738
chr3L:7843738-7844664
chr3L:22451387-22452388
chr3R:2492654-2493749
chr3R:4005880-4006966
chr3R:9735607-9736591
chr3R:9755437-9756466
chr2L:6829880-6830953
chr3R:13639701-13640639
chr3R:13651536-13652525
chr3R:14821126-14822102
chr3R:16102202-16103229
chrX:3570736-3571779
chrX:4083934-4085011
chrX:8671542-8672579
chrX:9643392-9644491
chrX:15512939-15514007
chrX:19265759-19266850
chr2R:20944064-20945045 chrX:2324615-2325714
chr3L:8658167-8659238

Hand_HCH	chr2L:10293308-10294379
hb_distal_minimal	chr3R:4524698-4525688
hb_HG4-6	chr3R:4529043-4530092
hb_HG4-7	chr3R:4527834-4528862
hb_lateDm1.0-lacZ	chr3R:4526286-4527384
hh_hhf4F	chr3R:18963250-18964276
hkb_0.6kbRIRV	chr3R:173849-174821
hth_3	chr3R:6427784-6428745
ind_moduleA	chr3L:15031943-15032964
ind_moduleBC	chr3L:15032738-15033835
ins_Fab-7_minimal_overlap	chr3R:12724486-12725543
ins_SF1_assoc_peak_center	chr3R:2679760-2680827
kirre_--4.6-3.8	chrX:2989425-2990505
kni_223	chr3L:20690490-20691542
Kr_KrMT	chr2R:21098808-21099895
Ibl_SBMs	chr3R:17252278-17253281
Iz_CrystalCellEnhancer1236-737	chrX:9177203-9178176
Iz_LMEE	chrX:9180643-9181594
Ndg_FCenhancer	chr2R:6203047-6203992
nerfin-1_fragment3	chr3L:904458-905370
nkd_UpE2	chr3L:19047510-19048605
oc_otd-186	chrX:8548281-8549211
ovo_E3	chrX:4914971-4916045
pdm2_CRM6	chr2L:12682595-12683690
per_-603_-449	chrX:2578569-2579555
pnr_P3	chr3R:11853793-11854843
pnr_P4	chr3R:11854355-11855347
prd_P1_enhancer	chr2L:12087791-12088820
repo_-1.1	chr3R:14060749-14061844
rho_NEE_long	chr3L:1461675-1462661

```
sc_CRM39
slp1_5303
sog_broad_lateral_neurogenic_ectoderm
sog_shadow
Sox15_regionC
SoxN_565
SoxN_5830
sphinx_1067bp_5'_fragment
sqz_sqz-11
sv_paxD
ths_Neu4_early_embryonic_enhancer
tin_tinD
tup_dorsalectoderm
Ubx_BXD-C
vnd_743
vnd_NEE
vvl_vvl1+2
y_BE1-2
y_BE3
y_wing
chrX:286648-287747
chr2L:3827700-3828650
chrX:15518390-15519344
chrX:15540621-15541615
chr2R:10097224-10098222
chr2L:8811551-8812587
chr2L:8841052-8842145
chr4:994776-995867
chr3R:15000126-15001211
chr4:1106414-1107513
chr2R:7681709-7682675
chr3R:17209280-17210258
chr2L:18874963-18875896
chr3R:12575688-12576663
chrX:486746-487752
chrX:486301-487394
chr3L:6757667-6758693
chrX:248439-249451
chrX:249145-250233
chrX:247798-248732
```


Supplementary table 3

Results of silencer-FACS-Seq experiments for the first library.
For each element confidently detected in either complete repetition of the sFS experiment (see Materials and Methods for a precise description of confident detection), the source (type of sequence chosen for testing) is shown; mean abundance in input cells across three biological replicates, $\log _{2}$ of the fold change (enrichment) in $\mathrm{CD}^{+} \mathrm{GFP}^{\text {reduced }}$ cells, and adjusted p -value for enrichment/depletion are shown for two complete experimental repetitions (nd: not detected); whether the element was subsequently annotated as overlapping a transcriptional start site (TSS) is indicated; and the results of validation experiments are shown (nd: not done)
element
18 w _1625
Acon_Lac-Z
Acp65Aa_172
Atet_5338
BiTs-ChIP_K4me1+K27me3+K27ac_106
BiTS-ChIP_K4me1+K27me3+K27ac_107
BiTS-ChIP_K4me1+K27me3+K27ac_153
BiTS-ChIP_K4me1+K27me3+K27ac_155
BiTs-ChIP_K4me1+K27me3+K27ac_201
BiTS-ChIP_K4me1+K27me3+K27ac_205
BiTS-ChIP_K4me1+K27me3+K27ac_214
BiTS-ChIP_K4me1+K27me3+K27ac_219
BiTS-ChIP_K4me1+K27me3+K27ac_220
BiTS-ChIP_K4me1+K27me3+K27ac_231
BiTS-ChIP_K4me1+K27me3+K27ac_236
BiTS-ChIP_K4me1+K27me3+K27ac_246
BiTS-ChIP_K4me1+K27me3+K27ac_252
BiTS-ChIP_K4me1+K27me3+K27ac_262
BiTS-ChIP_K4me1+K27me3+K27ac_343
BiTS-ChIP_K4me1+K27me3+K27ac_389
BiTS-ChIP_K4me1+K27me3+K27ac_65
BiTS-ChIP_K4me1+K27me3+K27ac_96
C15_350-2
CAD2_Ket-2

source	inputAbundance
Nonmeso CRMs	50732.13456
Specific meso CRMs	11776.15951
Nonmeso CRMs	36939.82811
Specific meso CRMs	33748.8704
"Bivalent" chromatin	6260.669278
"Bivalent" chromatin	18474.11973
"Bivalent" chromatin	6075.849464
"Bivalent" chromatin	23314.28543
"Bivalent" chromatin	8142.328604
"Bivalent" chromatin	20309.65208
"Bivalent" chromatin	5998.105506
"Bivalent" chromatin	13247.17625
"Bivalent" chromatin	15104.19855
"Bivalent" chromatin	6144.781497
"Bivalent" chromatin	2956.284208
"Bivalent" chromatin	76623.06936
"Bivalent" chromatin	21836.90734
"Bivalent" chromatin	22373.67419
"Bivalent" chromatin	1827.312606
"Bivalent" chromatin	13405.52939
"Bivalent" chromatin	9528.182621
"Bivalent" chromatin	50314.70006
Nonmeso CRMs	2772.385731
Specific meso CRMs	52674.68793

| Experiment 1
 log2FoldChange | padj |
| ---: | ---: | :--- |
| -0.297378764 | 0.871800354 |
| -0.534398806 | 0.881141655 |
| -0.886695317 | 0.56709847 |
| 0.3565045 | 0.638448696 |
| -2.220898397 | 0.273643866 |
| 0.776711833 | 0.297461012 |
| 2.536234281 | 0.001985609 |
| -1.345061907 | 0.404360251 |
| -1.898205806 | 0.330192441 |
| -0.93036895 | 0.588898233 |
| -1.837685226 | 0.254756591 |
| -2.330666471 | 0.103480603 |
| -1.707420728 | 0.170364813 |
| -2.240933693 | 0.22229563 |
| -0.210196487 | 0.927984944 |
| -1.250090213 | 0.317990535 |
| -1.346998916 | 0.3180585 |
| -0.247725147 | 0.909831723 |
| -1.161346283 | 0.813778042 |
| -1.990846817 | 0.105389871 |
| -1.894526628 | 0.166339625 |
| -2.70824115 | 0.029606039 |
| -1.268999979 | 0.773085189 |
| -1.954184698 | 0.150596149 |

| inputAbundance | Experiment 2
 log2FoldChange | padj |
| ---: | ---: | ---: | :--- |
| 31276.68956 | -0.160700528 | 0.995277602 |
| 8526.809419 | -1.479843321 | 0.784727605 |
| 46204.72616 | 1.569744892 | 0.136197399 |
| 41103.37978 | -0.079105246 | 0.993889052 |
| 1883.818527 | -1.14610608 | 0.874339989 |
| 3077.895276 | -0.08679011 | 0.807961721 |
| 1839.478142 | 4.495744871 | 0.000540628 |
| 62090.80287 | -0.487343896 | 0.917027471 |
| 6678.396756 | -0.893113285 | 0.77842477 |
| 26621.86071 | -0.742965693 | 0.96722015 |
| 1907.255366 | -2.32453355 | 0.917027471 |
| 5592.562703 | 0.010495797 | 0.967071039 |
| 1974.453621 | 1.7805079 | 0.594936531 |
| 494.5920823 | -0.758702309 | 0.789366919 |
| 6206.794683 | -0.876272375 | 0.96722015 |
| 70880.20331 | -0.932773553 | 0.865316701 |
| 25267.98062 | -0.00994452 | 0.995277602 |
| 25897.42388 | 0.184072187 | 0.77253156 |
| 5319.489904 | -1.9096882 | 0.840794673 |
| 15928.48423 | -1.240053556 | 0.77253156 |
| 8302.960798 | -2.040383298 | 0.44265801 |
| 78295.67674 | -2.474028649 | 0.217753773 |
| 13498.07654 | -2.526340754 | 0.3438437 |
| 28821.59749 | -2.224882004 | 0.348404591 |

TSS overlap	validation result
0	nd
0	nd
1	nd
0	nd
1	nd
0	nd
0	-
0	nd
0	nd
1	nd
1	nd
1	nd
0	nd
1	nd
1	nd
0	nd
1	nd
0	-
0	nd
0	nd

CAD2_Meso-CRM-2819 CAD2_Meso-CRM-3775 CAD2_Meso-CRM-4906 CAD2_Meso-CRM-965 CAD2_actin57B CAD2_bTub60D
CAD2_hand_1
CAD2_pnr
CAD2_pyr
CAD2_sna_2
CAD2_sns
CAD2_ttk_early
CAD2_ttk_late
CAD2_twist
CBP2862
CG12374_CRM41
CG13333_link_5'
CG16778_tkr-15
CG17230_CRM4
CG34347_CG11339_EVIII
CG4364_upstreamCRM
CG7229_CG7229
CG7229_CRM15
CG7458_upstreamCRM
CG7759_33
CG9416_GFP
CG9571_O-E
CadN_Lac-Z
ChIPCRM2497
ChIPCRM3152
ChIPCRM5405
ChIPCRM5432
ClassI_ins_157
ClassI_ins_17
Classi_ins_182
ClassI_ins_196
ClassI_ins_210
ClassI_ins_212

Specific meso CRMs	10860.21205	-1.459005211	0.368914552
Negative controls	1067.530376	-0.360769954	0.946775187
Specific meso CRMs	2112.770221	-3.749982564	0.201266734
Specific meso CRMs	36632.25984	1.825778319	0.005583975
Negative controls	1156.47524	2.65542879	0.041791735
Negative controls	3517.347364	-0.921227591	0.925377813
Specific meso CRMs	45.61165587	3.046865938	0.122791048
Specific meso CRMs	25719.28954	1.222560461	0.116106607
Specific meso CRMs	5798.271531	-3.075584012	0.145969007
Specific meso CRMs	10875.69842	-2.039907403	0.22229563
Negative controls	937.1756677	6.109425274	$1.09 \mathrm{E}-11$
Negative controls	34766.09931	-0.163630025	0.971635655
Negative controls	489.0420081	1.252479407	0.372327237
Negative controls	2246.654605	1.014156884	0.359121812
Negative controls	5713.016246	-2.106057965	0.359121812
Nonmeso CRMs	18770.47668	-0.78352942	0.669754446
Nonmeso CRMs	12933.39533	3.592425843	$2.82 \mathrm{E}-07$
Nonmeso CRMs	4842.665925	-0.777506014	0.854676427
Nonmeso CRMs	11700.44469	-0.62265638	0.708439789
Nonmeso CRMs	2094.626808	-0.071628445	0.833415143
Specific meso CRMs	54.30860103	6.807936733	0.000613487
Nonmeso CRMs	2953.173845	-3.550567234	0.103480603
Nonmeso CRMs	4558.284191	-2.257629205	0.239263706
Nonmeso CRMs	8401.440218	-0.357480036	0.838428709
Negative controls	6313.544127	-4.841339124	0.006363306
Specific meso CRMs	7019.52141	-2.0751848	0.377826386
Nonmeso CRMs	215.4880792	1.646690325	0.331116597
Specific meso CRMs	1987.457325	-0.474884411	0.96828369
Negative controls	20699.31968	-3.119047388	0.017108023
Insulators	7213.931135	3.382111461	$7.35 \mathrm{E}-05$
Insulators	14154.4692	-0.853126915	0.67166971
Insulators	143864.3852	-1.918459275	0.084226404
Negative controls controls	1730.656065	2.973147739	0.02539335
Negative controls	7035.455573	-1.300062771	0.532812406
Insulators	22452.15801	-0.396265884	0.844783761
Insulators	3160.433084	4.06804298	$4.14 \mathrm{E}-06$
Ins	3017.093553	3.457664747	$1.48 \mathrm{E}-05$
-0.209407776	0.968957928		

1.146891281	9.181466875	0.005254219
124.0891439	-1.074591105	0.77253156
3416.130767	0.428374223	0.51777849
14671.31008	3.332489023	0.000515588
975.9402164	3.510361713	0.011269571
11297.2041	-1.605406174	0.824843969
93.0272564	0.32722615	0.514431368
19841.68558	1.360440637	0.286329637
8455.537942	-0.100392578	0.769738145
4791.229748	-7.558959333	0.008725821
751.1486054	6.976864498	$3.38 \mathrm{E}-14$
22456.42781	-1.499116987	0.660781638
1706.36855	-0.314075527	0.769738145
13980.65549	1.178507404	0.281060219
1269.453354	0.663026319	0.441976808
33733.85742	-0.963413173	0.662951478
6585.622766	4.290958562	$2.71 \mathrm{E}-06$
127590.4448	-2.395178247	0.117002613
19181.10106	-1.969130587	0.441976808
3484.342227	0.630734441	0.663112564
30.99419437	7.48956339	0.000135623
239.6423996	-5.882459745	0.993889052
2412.846016	-1.630301674	0.874339989
15205.04054	2.147670884	0.074687828
1887.211304	-1.64863644	0.96722015
6663.388203	-1.899317294	0.629000298
177.4283521	2.97807546	0.281060219
1509.978929	-2.061305883	0.998012994
26148.59592	-2.131234204	0.325889835
3582.20821	4.063968269	0.001978837
2.183799999	0.921066814	0.441976808
138040.4758	-1.9782794	0.252981049
3059.555955	2.172861025	0.033629666
14680.17837	-2.559358541	0.382398502
32053.42924	-1.570653525	0.518954685
16774.72813	4.936583123	$1.58 \mathrm{E}-25$
24569.56283	3.589781734	$1.96 \mathrm{E}-11$
14401.71686	-0.816572985	0.917027471

+

Classi_ins_244	Insulators	1653.265586	-2.809920825	0.289723773
Classi_ins_29	Insulators	28416.88166	2.804928687	$2.58 \mathrm{E}-05$
ClassI_ins_34	Insulators	1097.091697	0.566064812	0.569351323
Classi_ins_36	Insulators	578.9702644	-1.563537457	0.968957928
ClassI_ins_61	Insulators	98908.30018	0.050905873	0.902866476
ClassI_ins_77	Insulators	4140.897366	1.325793558	0.228595776
ClassI_ins_87	Insulators	3323.155898	3.293518572	0.001805404
Classi_ins_94	Insulators	3759.804889	-2.259588127	0.41614141
Cpr47Ee_CG13222-edge	Nonmeso CRMs	125368.2669	-0.217871157	0.983249707
Cyp6g1_construct5	Nonmeso CRMs	14333.11265	-2.162598536	0.146850629
DHS+K27me3_CtBPoverlap_1612	DHS + CtBP	14548.86574	-1.991623854	0.154958419
DHS+K27me3_CtBPoverlap_1813	DHS + CtBP	3039.227757	0.661803411	0.398311539
DHS+K27me3_CtBPoverlap_2206	DHS + CtBP	9161.230063	-1.504942187	0.392583715
DHS+K27me3_CtBPoverlap_2267	DHS + CtBP	15.91357201	6.94187924	0.006067118
DHS+K27me3_CtBPoverlap_2418	DHS + CtBP	20211.04077	-2.352813172	0.048600125
DHS+K27me3_CtBPoverlap_2598	DHS + CtBP	32361.27674	0.853969903	0.300861563
DHS+K27me3_intergenic_1490a	Repressive DHSs	7012.862053	2.886217177	0.000608145
DHS+K27me3_intergenic_1490b	Repressive DHSs	2.346113532	7.433487833	0.00204646
DHS+K27me3_intergenic_16	Repressive DHSs	18619.96305	-1.262153072	0.437856863
DHS+K27me3_intergenic_1610	Repressive DHSs	13190.09199	-0.827155731	0.595106972
DHS+K27me3_intergenic_2153	Repressive DHSs	21543.63183	-2.319606505	0.103480603
DHS+K27me3_one-hit_1265	Repressive DHSs	10581.08908	3.356480837	6.19E-05
DHS+K27me3_one-hit_1324	Repressive DHSs	322.8400588	1.739920389	0.308018661
DHS+K27me3_one-hit_1883	Repressive DHSs	4574.809876	0.237782167	0.833415143
DHS+K27me3_one-hit_1994	Repressive DHSs	8.947333812	-2.374746256	0.76048503
DHS+K27me3_one-hit_202	Repressive DHSs	7616.10566	-1.872096925	0.359121812
DHS+K27me3_one-hit_24	Repressive DHSs	24081.98853	-1.318234546	0.359745989
DHS+K27me3_one-hit_2588	Repressive DHSs	2578.092117	-1.756730172	0.602981694
DHS+K27me3_one-hit_2606	Repressive DHSs	9898.310788	0.410016782	0.62773821
DHS+K27me3_one-hit_2645	Repressive DHSs	51375.71942	-2.1266589	0.076493709
DHS+K27me3_one-hit_75	Repressive DHSs	30457.29109	-2.337286247	0.065445535
Ddc_-0.47	Nonmeso CRMs	66.53178284	6.403962678	0.001977457
Ddc_ET	Nonmeso CRMs	17807.39041	0.562146303	0.518186799
Ddc_distal_enhancer	Nonmeso CRMs	4904.627506	-1.661241393	0.527870385
Ddc_silencing_element	Nonmeso CRMs	25428.40705	-0.772065057	0.616726707
Def_prom	Nonmeso CRMs	125.4318806	2.267715544	0.320321939
DII_215	Nonmeso CRMs	112474.7463	-1.537143205	0.240461029
Doc3_7731	Specific meso CRMs	177.927909	3.213164028	0.150596149

3584.094523	-4.147359153	0.375602819
13958.41286	4.01328142	$3.60 \mathrm{E}-09$
3832.182546	-0.672007228	0.899856604
2106.334751	0.690739829	0.840794673
110337.927	0.167242604	0.763372053
16803.63727	1.221004981	0.545137287
3994.493566	4.378210072	$2.59 \mathrm{E}-05$
984.2935752	0.259939086	0.663112564
81213.74974	0.236650796	0.818617115
2747.539735	-1.532604373	0.930975503
12990.06613	-3.227088302	0.275927085
4938.300924	1.560179259	0.222330426
7907.276491	-2.171662229	0.5226798
1.281679754	10.8211586	0.000306658
13240.19223	-1.549061926	0.8294821
35016.67192	1.339418913	0.348404591
6973.821383	2.411735182	0.018488596
1.014887402	7.243699904	0.002556024
26867.73989	-1.476649667	0.68895687
12402.44452	-0.439768984	0.911086129
45383.09396	-3.373494557	0.060216784
40725.52059	3.24484261	$6.39 \mathrm{E}-10$
224.938829	2.844722609	0.325355254
5151.971741	-1.858994551	0.702172921
7.805049583	-5.106028696	0.993889052
10637.75455	-1.466827374	0.874339989
23858.60008	-0.209523736	0.993889052
5353.663695	1.915117896	0.462411999
1471.109039	1.948373211	0.136197399
49075.23181	-1.774034738	0.28297218
28119.51681	-2.058547103	0.424193668
73.27061894	6.555277525	0.000595416
12020.67842	0.09063792	0.917027471
23314.56739	-1.336778825	0.842975364
9432.336632	1.471816988	0.52889471
8306.227446	-0.890692663	0.701935751
61272.7139	-1.020211518	0.660781638
282.1090362	1.553524208	0.433354104

E(spl)_m8-0.46
EO_12_GROAviva_ChIP_chip.region_125 E0_12_GROAviva_ChIP_chip.region_166 E0_12_GROAviva_ChIP_chip.region_179 E0_12_GROAviva_ChIP_chip.region_217 E0_12_GROAviva_ChIP_chip.region_243 E0_12_GROAviva_ChIP_chip.region_247 EO_12_GROAviva_ChIP_chip.region_263 E0_12_GROAviva_ChIP_chip.region_279 E0_12_GROAviva_ChIP_chip.region_286 E0_12_GROAviva_ChIP_chip.region_311 E0_12_GROAviva_ChIP_chip.region_377 E0_12_GROAviva_ChIP_chip.region_415 E0_12_GROAviva_ChIP_chip.region_422 E0_12_GROAviva_ChIP_chip.region_43 E0_12_GROAviva_ChIP_chip.region_441 E0_12_GROAviva_ChIP_chip.region_444 E0_12_GROAviva_ChIP_chip.region_445 E0_12_GROAviva_ChIP_chip.region_467 E0_12_GROAviva_ChIP_chip.region_468 E0_12_GROAviva_ChIP_chip.region_489 E0_12_GROAviva_ChIP_chip.region_499 E0_12_GROAviva_ChIP_chip.region_506 E0_12_GROAviva_ChIP_chip.region_513 E0_12_GROAviva_ChIP_chip.region_587 E0_12_GROAviva_ChIP_chip.region_88 E_0_12h_dCtBP7667.region_1028 E_0_12h_dCtBP7667.region_1104 E_0_12h_dCtBP7667.region_1302 E_0_12h_dCtBP7667.region_1533 E_0_12h_dCtBP7667.region_1555 E_0_12h_dCtBP7667.region_1582 E_0_12h_dCtBP7667.region_1692 E_0_12h_dCtBP7667.region_1855 E_0_12h_dCtBP7667.region_1981 E_0_12h_dCtBP7667.region_2057 E_0_12h_dCtBP7667.region_2243 E_0_12h_dCtBP7667.region_2256

Nonmeso CRMs Groucho ChIP CtBP ChIP

4357.419233	4.575393551	$1.78 \mathrm{E}-09$
584.074524	-0.657648874	0.773085189
2724.756207	-1.046898928	0.858729782
15853.23628	3.148509084	$1.01 \mathrm{E}-05$
13745.57067	-2.430889395	0.081681307
225.759454	2.528637296	0.191817188
22016.97795	-1.541329595	0.320321939
7395.950513	-1.914688341	0.229129415
12244.82662	-1.145343504	0.534987927
5814.218377	4.455482081	$1.27 \mathrm{E}-09$
2769.918196	1.120764116	0.477765466
33139.49672	-2.266469397	0.097586157
239.8864503	-1.980666373	0.902866476
33000.06457	-0.402414002	0.986205568
16954.04777	-3.847465519	0.003840571
15717.85987	-2.07943724	0.133177096
11867.86679	-2.984304585	0.041791735
5410.481397	-2.044690712	0.281475579
5886.472818	-1.469214877	0.433802778
3155.678364	-0.152379101	0.986205568
15375.73573	-1.527961433	0.337262811
23166.72003	-1.116508698	0.47380203
17701.87213	-0.532977432	0.833415143
20101.21823	-2.397566069	0.089601128
2600.465079	-0.350969678	0.966513888
7706.827114	-2.036132562	0.397457387
3665.69473	-1.1599317	0.824621392
14926.08481	-1.105235541	0.427331701
12075.76981	-0.278118224	0.971635655
26223.40904	-3.649957116	0.003333133
15239.60054	-1.796805122	0.18600653
12162.48126	-0.565388961	0.585896003
23.32071129	5.822380597	0.019393132
36236.45745	-1.465185079	0.3052858
5691.697392	0.688943099	0.5461777
3254.614927	-0.834990279	0.968957928
1474.768428	0.087861831	0.748194692

1967.881727 5057.518236 3947.395267 12419.23447 9488.30916 280.8403341 2472.669172 4391.905668 18140.85621 5441.015127 57279.36523 33479.83002 1433.417612 24419.77718 17602.02818 17293.59792 2319.416493 992.0644174 13435.58008 17459.15332
8598.2111 47619.07532 21621.33189 9749.012982 5795.158338 315.7968819
13402.8223 6941.999726 18299.39016 6697.508296 48102.43221 13946.71145 218.4568727 18444.12058 6103.184083 4330.351597 13647.36769 4762.294613

7.091365097	$8.97 \mathrm{E}-25$
-4.148540337	0.20113555
-0.626314161	0.769738145
2.648257605	0.002902853
-0.472557343	0.993889052
3.518805352	0.247793177
0.31795834	0.647768377
-2.56059446	0.459194941
-0.853061522	0.948832036
5.692584775	$2.34 \mathrm{E}-19$
-1.727074145	0.505974937
-0.458254546	0.787029697
-11.32923139	0.51777849
0.501954413	0.856401969
-3.692344124	0.11616671
-1.862112961	0.521096851
-2.192610923	0.87433989
-2.234058407	0.926424235
-2.535839755	0.348404591
0.134904335	0.769738145
0.18920169	0.969055253
-0.193799956	0.998012994
-0.411266526	0.917027471
-3.143920565	0.275927085
0.373496849	0.971792972
1.227978461	0.738808046
-2.180099651	0.5288971
-4.056685358	0.12063842
-0.641043026	0.96722015
-0.644801539	0.93973403
-1.87817872	0.368525791
-4.651277592	0.034450608
4.150364062	0.082105857
0.161575124	0.874339989
-0.278656261	0.867737568
-0.432422952	0.969825082
-0.304360201	0.96722015
-2.379099674	0.615957348

E_0_12h_dCtBP7667.region_234 E_0_12h_dCtBP7667.region_2344 E_0_12h_dCtBP7667.region_258 E_0_12h_dCtBP7667.region_2713 E_0_12h_dCtBP7667.region_2748 E_0_12h_dCtBP7667.region_275
E_0_12h_dCtBP7667.region_2772
E_0_12h_dCtBP7667.region_2793
E_0_12h_dCtBP7667.region_2827
E_0_12h_dCtBP7667.region_2926
E_0_12h_dCtBP7667.region_2952
E_0_12h_dCtBP7667.region_2991
E_0_12h_dCtBP7667.region_3031
E_0_12h_dCtBP7667.region_3049
E_0_12h_dCtBP7667.region_3084
E_0_12h_dCtBP7667.region_3137
E_0_12h_dCtBP7667.region_3202
E_0_12h_dCtBP7667.region_3249
E_0_12h_dCtBP7667.region_3325
E_0_12h_dCtBP7667.region_3402
E_0_12h_dCtBP7667.region_3439
E_0_12h_dCtBP7667.region_3445
E_0_12h_dCtBP7667.region_3446
E_0_12h_dCtBP7667.region_3484
E_0_12h_dCtBP7667.region_3509
E_0_12h_dCtBP7667.region_3525
E_0_12h_dCtBP7667.region_3540
E_0_12h_dCtBP7667.region_3547
E_0_12h_dCtBP7667.region_3553
E_0_12h_dCtBP7667.region_3606
E_0_12h_dCtBP7667.region_3696
E_0_12h_dCtBP7667.region_3770
E_0_12h_dCtBP7667.region_3937
E_0_12h_dCtBP7667.region_3938
E_0_12h_dCtBP7667.region_4196
E_0_12h_dCtBP7667.region_4460
E_0_12h_dCtBP7667.region_4503
E_0_12h_dCtBP7667.region_4530

CtBP ChIP CtBP ChIP

1.263832638	9.57337351	0.001791134
9799.771335	0.659752911	0.587477854
1749.039033	-2.082189354	0.5522441
6814.143246	-2.247035053	0.191558436
46580.56521	-2.392518971	0.065445535
11501.96151	-1.715885773	0.264587738
33024.59593	1.118319362	0.218732079
7334.81777	-1.69775518	0.526503357
308.4536358	0.038117818	0.731070839
1285.326762	-0.583079469	0.968957928
45837.68414	-1.632694757	0.228595776
8196.464047	-0.98307614	0.602981694
6819.140989	-2.162397673	0.281475579
23253.96432	2.052502724	0.006785427
432.6940861	3.023173145	0.105389871
2793.778306	0.023041779	0.731070839
17664.47194	-2.81377876	0.020397884
1310.822206	2.246406732	0.155865332
2981.892789	0.964635813	0.66684265
18218.79533	-1.25857831	0.361366116
4022.24969	-4.362383953	0.023163058
6335.436035	-0.531758044	0.865949609
8432.551507	-0.791562222	0.747982496
7889.383254	-3.51486757	0.037985388
16339.44668	-2.120973483	0.099386597
11158.3886	-0.56962788	0.833415143
6029.084629	-0.185926687	0.823281392
1552.569112	-1.937964533	0.532812406
7425.425013	-4.122868117	0.020176094
2028.156804	-1.546151485	0.615300876
28399.60366	-1.693809354	0.239263706
5910.56937	-2.894770753	0.150596149
485.2823979	1.383402618	0.477765466
5114.42411	-1.910873827	0.398956288
31530.08739	1.795583915	0.056198937
1516.16226	0.611668745	0.589787163
4590.213581	-1.014377772	0.754081699
11.63930866	7.399246972	0.004548461

8872.030137	-2.566915097	0.459194941	0
6168.178033	-1.002912878	0.971792972	0
1999.001385	-1.816948276	0.96722015	0
16172.62881	-2.256856937	0.263393647	0
36440.30871	-2.78839065	0.312577017	1
19203.74194	-0.927435112	0.77842477	0
59890.88534	0.271238751	0.77253156	0
2884.878633	2.031213595	0.625473899	0
9541.535929	-2.097402119	0.763372053	0
28253.94327	-2.656577219	0.379154116	0
34464.31083	-1.362786761	0.585652031	1
7073.58385	-1.12961641	0.77842477	0
9331.652415	-1.631870148	0.769738145	0
22492.50077	2.180959035	0.029031879	0
628.9351238	3.706209461	0.02170128	0
4850.443796	0.569518802	0.51777849	1
12730.4464	-2.824566275	0.333937164	0
5452.4453	-1.873573896	0.702172921	0
0.769969193	2.622661602	0.154234039	0
13970.90873	-2.079963493	0.590395623	0
358.1559049	-2.141725649	0.911086129	0
17226.48749	-0.515758737	0.911086129	0
20868.26958	-1.181059375	0.977932362	0
16448.70464	-2.471829445	0.186881073	0
10937.43492	-2.474219812	0.57121765	0
1331.344092	-0.852064336	0.851205172	0
7030.483561	-1.788792321	0.691660514	0
2047.550272	-2.922261848	0.917027471	0
13268.23402	-3.483177035	0.071878785	0
3139.951795	-3.166460601	0.56464406	0
6456.063286	-0.288142909	0.977932362	0
1474.11988	-4.070008169	0.917027471	1
713.0247369	1.066684841	0.777760833	0
3936.40353	0.895388799	0.524693706	0
44980.72199	2.536180781	0.000569748	0
526.4567209	2.469923433	0.510535262	1
11289.33931	0.484060614	0.985470876	0
4.321229093	8.756115529	0.002824248	0

E_0_12h_dCtBP7667.region_4738	CtBP ChIP			
E_0_12h_dCtBP7667.region_4844	CtBP ChIP	3003.645203	0.804336589	0.616726707
E_0_12h_dCtBP7667.region_518	CtBP ChIP	10464.85721	0.371993274	0.84037128
E_0_12h_dCtBP7667.region_707	CtBP ChIP	632.35223	-3.183421481	0.80733185
E_0_12h_dCtBP7667.region_864	CtBP ChIP	25424.54796	3.933654247	$2.36 \mathrm{E}-10$
E_0_12h_dCtBP7667.region_991	CtBP ChIP	7616.105832	0.646769084	0.49699173
Ecoli_control11	Negative controls	150.7938126	2.171932813	0.283502942
Ecoli_control22	Negative controls	54373.79168	-1.159130743	0.526503357
Ecoli_control23	Negative controls	6725.859428	-2.454104789	0.230586299
Ecoli_control24	Negative controls	5512.009519	-1.014624274	0.569351323
Ecoli_control3	Negative controls	6679.155545	-2.162946824	0.25462274
Ecoli_control5	Negative controls	11583.42715	-2.593263078	0.099250218
Eip71CD_188	Nonmeso CRMs	28960.00162	-2.378634952	0.064111401
Est-6_D-511	Nonmeso CRMs	52.81601644	6.407677112	0.001977457
Fad2_oe1	Nonmeso CRMs	5.552181013	6.695211496	0.006067118
Fas2_540bp_CRM	Nonmeso CRMs	5781.189334	-1.060399205	0.747982496
HLHm5_m5-0.13	Nonmeso CRMs	10802.84122	1.627213916	0.103480603
Hs6st_3748	Nonmeso CRMs	11676.42272	-2.151221673	0.229129415
Hsp26_nurse_cell_enhancer	Nonmeso CRMs	2765.491889	-2.210793647	0.40679447
Kr_HBg0.6HZ	Nonmeso CRMs	25466.24188	-0.024535731	0.902866476
Kr_delBNc0.8HZ	Nonmeso CRMs	28961.16784	-0.914372282	0.604032255
Lip1_prom	2321.96393	-1.34697621	0.778549435	

7035.780176	-0.383916216	0.874339989	0
9650.847663	0.399088269	0.865316701	0
851.0091085	-1.799735404	0.874339989	0
9218.973228	5.554831893	8.97E-25	1
9765.947994	-0.588058515	0.866769125	0
15.14425283	3.081987202	0.173799421	0
31546.76078	-1.520368592	0.723016534	0
7302.432087	3.070410103	0.000553431	0
10829.31977	-1.82488754	0.49976949	0
1442.016961	-7.158755206	0.677274607	0
7224.767626	-1.621917409	0.867737568	0
5518.903293	0.348097141	0.979402418	0
4411.639305	-0.216160375	0.978966087	1
21.63429936	6.839074967	0.007671457	1
4.847109452	6.370298668	0.024001862	1
7189.610811	-1.243545741	0.723016534	0
11979.99979	2.349588613	0.034450608	1
3311.938426	-2.954559099	0.656402009	0
3250.975308	-6.12830869	0.163844378	1
8392.745448	-0.978654084	0.807961721	0
13819.13255	-0.424022722	0.993889052	0
660.5463572	-0.098842537	0.702172921	1
8175.865323	-1.245345853	0.947390077	1
41226.46837	-0.899858659	0.967071039	1
1205.5862	-1.873294348	0.93973403	0
3065.050705	1.653425814	0.521096851	1
850.6592113	1.314680848	0.647768377	1
2.312040337	6.578634576	0.011269571	1
49.5511772	5.72870109	0.017534837	1
1948.203801	-0.708388185	0.874339989	1
49.71651548	2.929712818	0.286329637	1
4492.775039	0.2379679	0.76750583	0
2.49290484	9.093544009	0.006858884	0
9.072445656	10.74382656	2.13E-17	1
115.8580661	6.269126678	0.000515588	1
55665.92221	-0.496481852	0.983843193	0
19431.68015	-1.010292436	0.674358049	0
1231.215612	-2.734506766	0.995277602	1

bib_5924
brk_NEE-long
btI_P[B4]
cas_csc-1
cas_csc-2
cas_csc-5c
cas_csc-6
cas_csc-8
ct_340
ct_ct-3
ct_wingmargin_Guss
dap_dap-BB
dap_dap-del
dap_dap3'2'
dj_dj-promoter
dpn_dI
dpp_85.8MX
dpp_dppho
dys_N283
e_A. 1
e_A. 2
e_A. 3
e_A. 5
e_coreAbdominalCRE
elav_construct_L
ems_elementIV
ems_ems_ARFE-subA
eve_MHE
ey_5D11
ey_UE0.8
ey_UE0.9
fkh_salivary_gland_enhancer
ftz_-669_-386
ftz_5'delta276
fz2_Lac-Z
gcm_+3.8_+4.5
gsb_GLE
gsb_fragIV

Specific meso CRMs	12192.52373	-3.453087297	0.015140124
Nonmeso CRMs	12699.51764	1.197649651	0.082033809
Nonmeso CRMs	4.914825216	-1.553053493	0.688670921
Nonmeso CRMs	32032.05479	0.693882568	0.56709847
Nonmeso CRMs	0.64432281	-0.961667628	0.590922838
Nonmeso CRMs	0.370343616	1.041154465	0.531469603
Nonmeso CRMs	1948.935017	1.059446582	0.426214533
Nonmeso CRMs	88337.32151	0.037187899	0.889698896
Nonmeso CRMs	4252.617198	-10.68246119	$4.11 \mathrm{E}-08$
Nonmeso CRMs	7.28794074	5.897079201	0.011750425
Nonmeso CRMs	11865.54784	-1.070208137	0.599919282
Nonmeso CRMs	52861.49895	-1.411482034	0.293599947
Nonmeso CRMs	5969.984667	1.931678043	0.109626008
Nonmeso CRMs	3018.472501	-2.08795146	0.398956288
Nonmeso CRMs	16423.28144	-1.682632525	0.289723773
Nonmeso CRMs	1833.363198	-1.496719099	0.714429159
Nonmeso CRMs	1215.869731	3.038617295	0.036393898
Nonmeso CRMs	3329.978193	0.713949352	0.621961058
Nonmeso CRMs	12184.39204	-2.442314297	0.096748963
Nonmeso CRMs	18363.1154	-1.778613093	0.155865332
Nonmeso CRMs	55238.97007	-2.055111293	0.102772266
Nonmeso CRMs	11368.4505	-1.539113815	0.337262811
Nonmeso CRMs	20602.94431	-1.969028472	0.191817188
Nonmeso CRMs	18507.7074	0.62746079	0.320321939
Nonmeso CRMs	60544.30739	0.146944508	0.731643891
Nonmeso CRMs	3297.075037	-3.55562423	0.121582954
Nonmeso CRMs	49733.51846	-2.959427201	0.023848198
Specific meso CRMs	7773.333574	-0.608745505	0.891580716
Nonmeso CRMs	18189.6025	-2.843559679	0.029606039
Nonmeso CRMs	884.5262636	-0.520883173	0.833415143
Nonmeso CRMs	12378.6668	2.823141237	0.000194139
Nonmeso CRMs	1334.756458	-0.952338311	0.976073054
Nonmeso CRMs	28957.59169	-1.626821143	0.22229563
Nonmeso CRMs	3924.956148	4.145359317	$2.43 \mathrm{E}-07$
Nonmeso CRMs	18585.99822	-1.382855101	0.354680589
Nonmeso CRMs	6599.304528	1.131700974	0.161936956
1.08466	1.008724452	0.396382279	
Nosms	0.922357629	0.239263706	

13383.55382	-2.862955184	0.3438437
11507.35938	2.86574562	0.002824248
4.792029288	8.905689472	0.000859688
20826.956	0.94658891	0.487069312
4509.506816	2.249781289	0.163844378
5563.696365	1.369637455	0.382398502
13735.93416	-1.031149831	0.842975364
67032.11111	0.102878784	0.830296122
933.0845835	-1.829412855	0.948832036
4.791725361	4.244609265	0.048650774
2793.744222	-1.356776656	0.977932362
48944.49721	-0.891572371	0.690101954
9636.866414	0.817270327	0.521096851
1218.118004	-0.106253378	0.93973403
196.3296553	0.87488978	0.515024261
1645.422271	-0.782699633	0.80502285
18144.75682	1.712861229	0.173799421
14347.9946	-1.79570191	0.659117203
8801.032328	-1.136738375	0.913476966
39172.1944	-0.946153724	0.769738145
42193.99862	-2.066563988	0.433391685
2589.966883	-0.893994672	0.855260792
3945.537345	-0.384820522	0.911086129
7911.883493	2.684606651	0.002513616
81708.21279	1.153779256	0.135156663
3098.801023	-0.676573145	0.856401969
23115.03669	-1.813689721	0.441976808
3987.147854	1.418567774	0.459194941
12596.64314	-1.631052058	0.8294821
893.3226758	-1.544493274	0.874339989
9938.437692	3.68034313	$2.59 \mathrm{E}-05$
1254.393331	-3.121362509	0.993889052
69240.90139	-2.772699112	0.163844378
2948.347489	5.404606423	$2.11 \mathrm{E}-10$
22761.51275	-1.083257426	0.917027471
5046.094883	2.131420573	0.088032379
37064.77607	0.176949295	0.993889052
73526.36767	2.371336542	$2.17 \mathrm{E}-05$

gt_gt1	Nonmeso CRMs	30500.40707	0.802089526	0.317990535	26301.34626	-1.397039955	0.639058468	0 nd
h_302	Nonmeso CRMs	6175.413502	-2.700162056	0.116106607	4275.49603	-0.318074559	0.993889052	0 nd
h_HHRE	Nonmeso CRMs	31.12257508	6.861019926	0.002152548	26.27221072	7.658352754	0.000196374	0
h_stripe0	Nonmeso CRMs	452.5558073	2.599898334	0.21391744	16006.91853	-2.227293152	0.415492467	0 nd
h_stripe1	Nonmeso CRMs	34507.3169	1.261659137	0.116106607	16788.79525	1.485042634	0.275927085	0 nd
h_stripe3_ET38	Nonmeso CRMs	3431.055451	-0.155273501	0.925377813	3281.881408	-0.627362253	0.76750583	0 nd
h_stripe_6+2	Nonmeso CRMs	2451.352213	0.695881563	0.56709847	13570.12135	-1.092156826	0.77253156	0 nd
hb_matDm0.5-lacZ	Nonmeso CRMs	1.197318925	11.14138061	0.000178031	4825.84231	2.580114126	0.198350306	1 nd
hh_4075	Nonmeso CRMs	3380.057339	3.523875454	0.00015333	7088.645785	2.759801841	0.003025094	0
hh_alpha_fragment_(ic-CRE)	Nonmeso CRMs	23683.95767	-1.582593383	0.259685072	35372.65907	-1.208386167	0.50202832	0 nd
hh_bar3L2	Nonmeso CRMs	565.8427631	-0.523381376	0.757721334	7383.565268	-0.994291421	0.865316701	0 nd
hkb_0.6kbRIRV	Nonmeso CRMs	16382.93799	3.027348524	$7.35 \mathrm{E}-05$	68334.50987	2.378064304	6.59E-06	0 +
ind_moduleA	Positive controls	1570.138746	2.356180669	0.105389871	11879.76291	2.241737044	0.071878785	0 +
ins_Fab-8	Insulators	8854.737161	0.88334988	0.337964059	30255.22263	-3.005709431	0.157325461	0 nd
kni_AE20	Nonmeso CRMs	35797.04679	-1.301059642	0.3052858	37965.94883	-0.617889203	0.769738145	0 nd
kni_KD	Nonmeso CRMs	12955.50663	0.451338328	0.62773821	4217.877076	1.263238981	0.433391685	0 nd
kni_proximal_minimal	Nonmeso CRMs	2.416890956	1.24558214	0.226064135	16039.57246	-2.546484266	0.433391685	1 nd
kni_reporter_fragment_EC	Nonmeso CRMs	9002.761628	-3.320953946	0.034057607	1732.960163	-2.254314507	1	0
lab_1.0	Nonmeso CRMs	5445.637416	-0.725284747	0.795915842	6221.121646	-1.72859767	0.702172921	0 nd
lab_HZ550	Nonmeso CRMs	8.895836807	4.033465645	0.046782335	3.760501477	5.733723666	0.019924591	0
Iz_CrystalCellEnhancer1236-737	Nonmeso CRMs	3438.932847	2.776287718	0.0072776	5439.011195	-0.263533017	0.855260792	0 +
mib2_FCenhancer	Specific meso CRMs	57422.50823	-1.334438225	0.387390921	34221.77954	-1.661844858	0.590395623	0 nd
nAcRbeta-64B_P-171	Nonmeso CRMs	22061.1381	-2.676615507	0.033308583	44568.5796	-1.76140491	0.408648122	1 nd
nab_nab-1	Nonmeso CRMs	9148.212823	-0.057856846	0.973588568	4858.49372	-0.542633088	0.977932362	0 nd
nerfin-1_fragment14	Nonmeso CRMs	7083.448643	3.891890961	$1.21 \mathrm{E}-07$	11420.50945	5.608993009	5.93E-34	1 nd
nerfin-1_fragment4	Nonmeso CRMs	24717.97142	0.504325952	0.616726707	44506.33363	0.169712241	0.673405229	0 nd
nerfin-1_fragment5	Nonmeso CRMs	44622.98015	0.135891054	0.795915842	77630.29185	-1.096623466	0.818617115	0 nd
ninaE_proximal_promoter_region	Nonmeso CRMs	6483.140569	3.66382695	$5.40 \mathrm{E}-07$	825.1565772	6.132064447	7.97E-06	1 nd
nkd_8756	Nonmeso CRMs	14156.96012	-2.745335516	0.060950418	27731.91757	-2.195281572	0.51777849	0 nd
nkd_IntE_255	Nonmeso CRMs	13867.06658	-3.392446677	0.019393132	58618.95209	-2.448247442	0.198350306	0 nd
nos_-708_+20	Nonmeso CRMs	40662.11177	-1.299252084	0.274471334	62825.96927	-0.765810959	0.856401969	1 nd
numb_5870	Specific meso CRMs	27061.36296	-1.718656909	0.200857089	39547.57138	-1.869478831	0.44265801	0 nd
nvy_CRM100	Nonmeso CRMs	33487.88524	5.128244563	$3.47 \mathrm{E}-19$	33771.2252	5.977835795	3.62E-159	1 nd
oc_SBg	Nonmeso CRMs	1829.390396	2.830619701	0.036263957	4771.734715	3.263186085	0.002195469	0 +
oc_oc7	Nonmeso CRMs	12013.97543	-2.533120551	0.094799994	3214.84676	-0.419177137	0.977932362	0 nd
oc_otd-186	Nonmeso CRMs	51498.14225	1.53633552	0.031026102	50704.26132	2.309756895	0.000429076	0 +
org-1_HN39	Specific meso CRMs	1398.644023	-1.081889619	0.734089966	1619.457165	-7.663170067	0.51777849	0 nd
otp_P	Nonmeso CRMs	143.2257283	-3.297529271	0.881141655	5185.637653	-0.560606514	0.870386951	0 nd

ovo_E2	Nonmeso CRMs	140.7100904	4.454867535	0.032890684
ple_995bp_wound_response_element	Nonmeso CRMs	6355.948503	4.203459915	$6.85 \mathrm{E}-09$
ple_WE1	Nonmeso CRMs	60306.90853	-1.610667785	0.188608539
prd_Pstripe_enhancer	Nonmeso CRMs	7184.793696	-0.852839611	0.795915842
prd_deltaQ	Nonmeso CRMs	1120.346396	4.485501075	0.000358087
prd_stripe1_enhancer	Nonmeso CRMs	15555.93366	-2.125404186	0.151856821
repo_-1.1	Nonmeso CRMs	794.6892587	2.606494931	0.048672947
repo_pBJ-111	Nonmeso CRMs	3105.443539	-1.881989975	0.457180374
repo_pBJ-145	Nonmeso CRMs	2323.247224	-0.583551446	0.955630731
run_neural_6GB	Nonmeso CRMs	1045.407858	-1.606766627	0.96828369
sev_minimal_enhancer	Nonmeso CRMs	2277.574181	-0.049946454	0.795915842
sim_mesectoderm	Nonmeso CRMs	3050.452275	0.075806515	0.833415143
sim_st10	Nonmeso CRMs	9315.057727	-1.176622091	0.518186799
slou_SK16	Specific meso CRMs	6842.647123	-4.649715141	0.005959655
slou_SK19	Specific meso CRMs	2893.117854	-1.366635117	0.821520598
slp2_i4753	Nonmeso CRMs	3536.04246	1.731278999	0.112938498
sls_Ket-3_Lac-Z	Specific meso CRMs	628.6392803	0.172898295	0.695210371
ss_E2.0_522	Nonmeso CRMs	788.7103325	-0.719939077	0.821520598
ss_E2.0_531	Nonmeso CRMs	4007.259011	-2.676112752	0.234304632
ss_P732	Nonmeso CRMs	19120.55915	-2.640966095	0.054150253
ths_Neu4_early_embryonic_enhancer	Nonmeso CRMs	2906.447007	2.558655846	0.019393132
tin_tin103A	Specific meso CRMs	28841.2942	-1.639598265	0.238499057
tin_tin103C	Nonmeso CRMs	7005.514263	0.483395307	0.723728155
tll_K11	Npecific meso CRMs	6159.325534	1.844548346	0.048076369
tll_K7	Nonmeso CRMs	28435.74111	0.203995362	0.763141791
tll_O-E	Nonmeso CRMs	3671.540875	0.208827288	0.8689282
toy_EEP	Nonmeso CRMs	1.326687722	0.638634821	0.466054805
trh_trh24	Nonmeso CRMs	15964.19878	-2.372795826	0.105389871
trh_trh45	Nonmeso CRMs	52982.34031	-1.473387631	0.155865332
vas_construct16	Nonmeso CRMs	21264.08341	-1.388898235	0.303607209
vg_minimal_boundary_enhancer	Nonmeso CRMs	8.998271679	7.058603194	0.006067118
vg_quadrant_enhancer	Nonmeso CRMs	62042.33719	-0.752454403	0.569351323
vn_NEE-long	18315.84053	-2.113338374	0.120038907	
vnd_NEE	13717.40521	1.415152957	0.205684707	
vvl_484-5prime	431.4183494	4.157019162	0.018732787	
vvl_587dfr	2013.730387	4.265929335	$1.01 \mathrm{E}-05$	
vvl_vvI0.9	3940.626477	-2.042145532	0.445456502	
vvl_vvlds1.0	Nonmeso CRMs	5.565393301	0.001985609	

175.2490961	4.618356615	0.024025987	0	-
11818.62921	4.333162312	8.99E-11	1	nd
87112.21408	-1.661994327	0.348404591	0	nd
6223.909808	-0.963818068	0.818959784	0	nd
1962.907077	2.964137413	0.058148278	1	nd
17945.56128	-1.155556872	0.855260792	0	nd
21978.03525	1.565969144	0.09515724	0	$+$
35592.18167	-0.695141711	0.985470876	0	nd
1217.464814	0.417191076	0.505974937	0	nd
0.376977184	2.762964531	0.021927995	0	-
4394.77233	-1.601509744	0.985470876	1	nd
2433.321475	1.470907898	0.522883573	0	nd
3031.525599	-0.306297165	0.911086129	0	nd
694.1740599	-2.414753858	0.917027471	0	nd
946.3357681	0.641265695	0.593003198	0	nd
8264.418528	0.568341638	0.867737568	0	nd
324.5169595	2.590409079	0.154885936	0	nd
7041.228142	-4.099597287	0.186388978	0	nd
33295.28576	-1.677718419	0.590395623	0	nd
9849.998072	-2.547583094	0.453238208	0	nd
1.201950137	4.793794491	0.023415449	0	+
8330.777369	-1.532331616	0.769738145	0	nd
4988.316565	1.246504364	0.647768377	0	-
47313.56742	-0.665588814	0.874339989	0	nd
70329.69963	-1.490639084	0.594936531	0	nd
5584.806669	1.640635993	0.163844378	0	nd
24254.32481	-1.987527344	0.372915884	0	nd
72301.05278	-2.097855808	0.348404591	0	nd
83402.48782	-2.11721191	0.298783415	0	nd
7.271525318	7.85660734	0.010594154	0	-
121717.2079	-1.010151678	0.639058468	0	nd
9919.426621	-2.24965962	0.379154116	0	nd
8935.156406	1.804105082	0.465739559	0	nd
1120.250985	4.126656471	0.026534654	0	$+$
7820.662951	5.18179902	1.54E-16	1	nd
6732.046897	-0.967778126	0.782475204	0	nd
2272.769085	-4.846360698	0.518954685	0	nd
3.013210483	6.466748971	0.018349621	0	-

zen_dorsal_ectoderm
BiTs-ChIP_K4me1+K27me3+K27ac_365 CG13196_1kb_5'
CG3492_CRM17
ClassI_ins_103
Classi_ins_132
Crz_380gal4
DHS+K27me3_one-hit_372
E0_12_GROAviva_ChIP_chip.region_287
E0_12_GROAviva_ChIP_chip.region_376
E0_12_GROAviva_ChIP_chip.region_9
E_0_12h_dCtBP7667.region_1752
E_0_12h_dCtBP7667.region_2659
E_0_12h_dCtBP7667.region_3629
Ecoli_control21
dpp_P1delta4
dys_M269+dys_V345
kirre_-1.0
nerfin-1_fragment2
proPO-A1_F6
tII_D3
CAD2_desat1
CG32111_8084
ClassI_ins_114
DHS+K27me3_one-hit_2147
DHS+K27me3_one-hit_877
E0_12_GROAviva_ChIP_chip.region_131
E0_12_GROAviva_ChIP_chip.region_233
E0_12_GROAviva_ChIP_chip.region_481
E_0_12h_dCtBP7667.region_1767
E_0_12h_dCtBP7667.region_2824
E_0_12h_dCtBP7667.region_3104
Ecoli_control15
Sry-alpha_CAHBG
TI_T1287
bti_P[B23]
dpp_980-6
otp_C

Positive controls		3654.140805		0.649316525	0.5522441
"Bivalent" chromatin		965.7215042		0.808284919	0.635813946
Nonmeso CRMs		10817.83753		-1.038153699	0.62773821
Nonmeso CRMs		2991.023346		-1.922266095	0.308018661
Insulators		1.4257136		7.026133648	0.001309368
Insulators		132.5317229		1.98159494	0.228595776
Nonmeso CRMs		2.61399287		6.777765335	0.001985609
Repressive DHSs		231.0397621		1.533671374	0.359121812
Groucho ChIP		4039.687268		2.514639669	0.01367479
Groucho ChIP		7744.23032		-1.407343542	0.433802778
Groucho ChIP		2004.601438		-0.456180339	0.867841148
CtBP ChIP		1539.145129		-3.698317613	0.266168314
CtBP ChIP		10.08412558		7.364909395	0.003867997
CtBP ChIP		1743.452529		-1.151955619	0.881141655
Negative controls		2520.701781		-2.106165709	0.526503357
Nonmeso CRMs		1887.023556		1.232665225	0.188608539
Nonmeso CRMs		7533.339676		-1.530422218	0.457378479
Specific meso CRMs		1.753309523		-1.280070417	0.788553316
Nonmeso CRMs		1799.165257		-4.331673	0.151856821
Nonmeso CRMs		2328.655457		-0.14681	0.96828369
Nonmeso CRMs		1074.501927		6.30327236	$9.84 \mathrm{E}-15$
Specific meso CRMs	nd		nd		nd
Specific meso CRMs	nd		nd		nd
Insulators	nd		nd		nd
Repressive DHSs	nd		nd		nd
Repressive DHSs	nd		nd		nd
Groucho ChIP	nd		nd		nd
Groucho ChIP	nd		nd		nd
Groucho ChIP	nd		nd		nd
CtBP ChIP	nd		nd		nd
CtBP ChIP	nd		nd		nd
CtBP ChIP	nd		nd		nd
Negative controls	nd		nd		nd
Nonmeso CRMs	nd		nd		nd
Specific meso CRMs	nd		nd		nd
Nonmeso CRMs	nd		nd		nd
Nonmeso CRMs	nd		nd		nd
Nonmeso CRMs	nd		nd		nd

	1489.384011		2.020471457	0.281060219
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
nd		nd		nd
	1996.978851		-10.97602174	0.154885936
	3482.152814		-0.139859143	0.930975503
	1.058340411		8.922731002	0.004494333
	266.1365226		3.752527773	0.368554858
	261.6115		-8.203336662	0.995277602
	5159.539014		-1.340957182	0.77842477
	1019.02529		1.878401057	0.244495927
	5.620061535		8.704796472	0.002513616
	1975.573307		-2.461709439	0.874339989
	2852.144176		-2.558802746	0.631210449
	3380.476824		-1.535284181	0.995277602
	2942.184853		-2.985152006	0.685452904
	4693.021192		2.372311998	0.041712211
	1680.346258		-3.148013398	0.818617115
	1650.535144		-1.282216929	0.890585268
	1093.499714		3.211571273	0.199533149
	1835.745654		-3.136265898	0.870386951

ovo_del-ap-del-5
prd_cc_repressor sens_sensCRM3
sfl_Lac-Z
svp_sce
vas_96bpEnhancer

Nonmeso CRMs nd
Nonmeso CRMs nd Nonmeso CRMs nd
Specific meso CRMs nd Specific meso CRMs nd
Nonmeso CRMs nd
172.2141091 2525.350952 0.551054835 0.559931735 2813.838472 2794.33553

4.104571661	0.041712211
-2.50565619	0.807961721
1.299462144	0.298783415
nf	0.77253156
-11.28235168	0.010473714
1.248810409	0.167522481

0

Supplementary table 4

Results of silencer-FACS-Seq experiments for the second library.
For each element confidently detected in either complete repetition of the sFS experiment (see Materials and Methods for a precise description of confident detection), the source (type of sequence chosen for testing) is shown; mean abundance in input cells across three biological replicates, $\log _{2}$ of the fold change (enrichment) in $\mathrm{CD}^{+} \mathrm{GFP}^{\text {reduced }}$ cells, and adjusted p-value for enrichment/depletion are shown for two complete experimental repetitions (nd: not detected)

element	repeat	sig.enr
BiTS-ChIP_K4me1+K27me3+K27ac_13	0	0
BiTS-ChIP_K4me1+K27me3+K27ac_134	0	0
BiTS-ChIP_K4me1+K27me3+K27ac_73	0	0
CAD2_Ket-1	0	0
CAD2_Meso-CRM-4726	0	0
CAD2_Meso-CRM-6028	0	0
CAD2_Meso-CRM-6225	0	0
CAD2_htl	0	0
CG42342_3436	0	0
CG7722_CRM28	0	0
ChIPCRM2078	0	0
ChIPCRM5792	0	0
ClassI_ins_198	0	0
DHS+K27me3_CtBPoverlap_2215	0	0
DHS+K27me3_CtBPoverlap_762	0	0
DHS+K27me3_intergenic_1932	0	0
DHS+K27me3_intergenic_2074b	0	0
DHS+K27me3_intergenic_412	0	0
DHS+K27me3_intergenic_71	0	0

| Input abundance log2FoldChange padj | | Input abundance log2FoldChange padj | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5553.18709 | 0.5898193 | 0.82436539 | 6166.52588 | 0.99807734 | 0.64790826 |
| 17066.1707 | -1.913157 | 0.25833936 | 30565.1129 | -0.7698429 | 0.8300674 |
| 8633.32878 | 0.37143904 | 0.83882888 | 4293.27731 | -0.2806488 | 0.9113662 |
| 5701.73899 | -2.6594431 | 0.18642569 | 778.169043 | -8.8033801 | 1 |
| 5456.01196 | -1.6654306 | 0.46338733 | 4559.82008 | 0.19041621 | 0.9113662 |
| 13279.1935 | -1.9172449 | 0.25833936 | 13233.3073 | -2.0974548 | 0.67702347 |
| 2868.65085 | 0.99946831 | 0.53548527 | 9761.50444 | 0.36144404 | 0.89219364 |
| 16909.5134 | -0.3048985 | 0.99414843 | 35351.0736 | -0.4840614 | 0.91542276 |
| 777.824144 | 0.35839738 | 0.85825274 | 5049.79443 | 0.6371247 | 0.85665548 |
| 36230.1739 | 0.98548956 | 0.30391872 | 24479.7498 | 1.01198255 | 0.31014309 |
| 7583.74579 | -11.200406 | $5.14 \mathrm{E}-10$ | 7310.50048 | -4.4736032 | 0.85356213 |
| 22354.9182 | -1.2541242 | 0.29091979 | nd | nd | nd |
| 3514.19476 | 1.51997179 | 0.29031158 | 2062.93214 | 0.46635989 | 0.8300674 |
| 15715.6736 | -0.1315526 | 0.93102677 | 39454.9094 | -0.5736355 | 0.91542276 |
| 7526.08195 | -0.9438075 | 0.58340858 | 3236.49964 | -0.0327949 | 0.91542276 |
| 51366.5408 | -0.2478255 | 0.85223445 | 53874.4128 | -0.6746693 | 0.9113662 |
| 12262.1442 | -2.5121973 | 0.12802238 | 14312.2885 | 0.0785103 | 1 |
| 3641.44134 | 1.16769163 | 0.53548527 | 7108.06441 | -1.055274 | 0.99724635 |
| 11489.3817 | -0.1775573 | 0.93102677 | 15363.268 | -2.7618743 | 0.46101841 |

DHS+K27me3_one-hit_103	0	0
DHS+K27me3_one-hit_2281	0	0
DHS+K27me3_one-hit_348	0	0
DHS+K27me3_one-hit_402	0	0
DII_304	0	1
E0_12_GROAviva_ChIP_chip.region_124	0	0
E0_12_GROAviva_ChIP_chip.region_258	0	0
EO_12_GROAviva_ChIP_chip.region_26	0	0
EO_12_GROAviva_ChIP_chip.region_397	0	0
EO_12_GROAviva_ChIP_chip.region_408	0	0
EO_12_GROAviva_ChIP_chip.region_439	0	1
EO_12_GROAviva_ChIP_chip.region_440	0	0
EO_12_GROAviva_ChIP_chip.region_46	0	0
EO_12_GROAviva_ChIP_chip.region_470	0	0
EO_12_GROAviva_ChIP_chip.region_473	0	0
E0_12_GROAviva_ChIP_chip.region_482	0	0
E0_12_GROAviva_ChIP_chip.region_562	0	0
EO_12_GROAviva_ChIP_chip.region_565	0	0
EO_12_GROAviva_ChIP_chip.region_590	0	0
EO_12_GROAviva_ChIP_chip.region_594	0	0
EO_12_GROAviva_ChIP_chip.region_606	0	0
EO_12_GROAviva_ChIP_chip.region_620	0	0
E_0_12h_dCtBP7667.region_1107	0	0
E_0_12h_dCtBP7667.region_1246	0	1
E_0_12h_dCtBP7667.region_2635	0	0
E_0_12h_dCtBP7667.region_2744	0	0
E_0_12h_dCtBP7667.region_3346	0	0
E_0_12h_dCtBP7667.region_3602	0	0
E_0_12h_dCtBP7667.region_3785	0	0

48601.7115	0.92670262
128075.536	-0.0749699
19433.0745	-0.7505474
110145.629	0.15513259
22583.5302	1.62971575
23543.3641	-0.7744512
4060.62605	-2.2005703
3.03168937	0.45912031
27219.2668	-0.9366836
90.8051081	0.93025518
6343.46142	2.25998922
943.891556	0.59568484
1065.19748	1.24739792
441.669936	2.34866325
16177.4765	-1.0825038
730.745084	-0.6051425
27815.62	-1.0992763
1905.42727	1.90386103
6418.20209	-0.0435306
3663.98869	1.13311722
428.18951	-3.1479539
17844.1001	-1.4162062
25601.9519	1.04980328
24761.6355	1.23766156
17791.1981	-2.2958588
2395.68819	1.3399362
35304.3037	-0.7523648
15660.6528	-0.7996322
20394.7963	0.10658041

0.25833936	46690.0427	0.9325274	0.43634827
0.99782889	235980.167	0.00442292	1
0.82436539	42352.2573	-1.0763755	0.67204598
0.83882888	139588.057	0.34545007	0.77262387
0.02574846	18908.5111	1.9953844	0.0053995
0.59256434	11454.6123	0.37434413	0.9113662
0.32728132	5745.8285	-0.155953	0.92027789
0.83882888	6657.24807	-3.0531832	0.94727902
0.53548527	37351.461	-0.2053201	0.98259655
0.2147916	2094.05414	-1.0588674	0.93774939
0.07599902	7628.4959	3.29851986	8.2998E-06
0.85223445	0.4740934	-0.2120508	1
0.51107426	1802.01764	0.48249554	0.8300674
0.29031158	22301.8724	-0.1193766	1
0.57941859	31362.6746	-0.920564	0.85730645
0.93871272	13501.3439	-0.1271852	1
0.51107426	30039.709	-0.5552558	0.9636705
0.12802238	1023.3311	3.01308486	0.17895003
0.97753196	2995.26562	-0.2921913	0.89219364
0.4927834	7593.75403	1.54915081	0.17895003
0.88472176	nd	nd	nd
0.25833936	nd	nd	nd
0.26657423	24000.9924	0.70799112	0.64790826
0.22876016	34469.8522	1.6951344	0.01285374
0.0741017	21290.0625	-0.0131205	1
0.30953547	6991.66335	-0.3464203	0.98047826
0.63830894	48638.6535	-0.6424179	0.9113662
0.74923758	11390.558	-1.1147929	0.94727902
0.83882888	20308.6546	-0.2318348	1

E_0_12h_dCtBP7667.region_3799	0
E_0_12h_dCtBP7667.region_3852	0
E_0_12h_dCtBP7667.region_4427	0
E_0_12h_dCtBP7667.region_4575	0
E_0_12h_dCtBP7667.region_4755	0
E_0_12h_dCtBP7667.region_486	0
E_0_12h_dCtBP7667.region_4944	0
E_0_12h_dCtBP7667.region_55	0
E_0_12h_dCtBP7667.region_63	0
E_0_12h_dCtBP7667.region_772	0
E_0_12h_dCtBP7667.region_788	0
E_0_12h_dCtBP7667.region_909	0
Ecoli_control11	1
Ecoli_control12	0
Ecoli_control15	1
Ecoli_control16	0
Ecoli_control21	1
Ecoli_control22	1
Ecoli_control23	1
Ecoli_control24	1
Ecoli_control3	1
Ecoli_control4	0
Ecoli_control5	1
Ecoli_control7	0
Hand_HCH	0
Kr_KrMT	0
Ndg_FCenhancer	0
Sox15_regionC	0
SoxN_565	0

SoxN_5830	0	0	4917.97983	-1.5652484	0.48913942	4770.98437	0.19165029	0.91542276
Ubx_BXD-C	0	0	10682.9884	-6.5657724	$1.32 \mathrm{E}-06$	25696.5299	-5.1869732	0.01151925
amosD	0	0	2451.87361	-0.7179024	0.83882888	15812.6166	-1.6332659	0.77262387
bab1_dimorphic_element	0	0	20558.0326	-0.9078809	0.59256434	19021.7869	0.09206049	0.98259655
brk_NEE-long	1	1	447.536383	5.418255	3.19E-06	10643.8053	3.37921825	$2.9141 \mathrm{E}-06$
btd_R-Ss	0	0	7203.70017	-2.419553	0.18642569	20274.2849	-0.9633086	0.82108452
btd_Ss-Bg	0	0	786.521101	1.98133855	0.25833936	2380.66984	0.8568495	0.82108452
cas_csc-3	0	0	3870.99919	-1.3294431	0.53960702	7658.46892	-2.6478827	0.94727902
cas_csc-5a	0	0	11611.4825	0.2995822	0.83882888	18953.7404	-0.6111587	0.98259655
cas_csc-7a	0	0	84584.4353	-0.1349536	0.93102677	87049.4055	-0.5925327	0.89219364
cpo_cpoCRM6	0	0	4671.42055	0.95291882	0.59256434	39112.451	-0.5647426	0.9113662
crb_Lac-Z	0	1	5271.40758	1.67362769	0.20826761	4562.04442	2.62928302	0.00490148
dac_RE	0	0	1323.04115	-1.2043966	0.82436539	nd	nd	nd
dpp_85.8MX	1	1	39437.9564	1.08907067	0.27336708	54943.3111	2.20799388	2.8702E-10
dpp_BS3.1	0	0	28565.2263	-0.4521698	0.83882888	18635.3897	-2.6888487	0.27730893
dpp_VRR	0	0	1994.78292	2.13000839	0.13093387	2969.71486	2.06715809	0.21297785
dpp_construct10	0	0	7779.7781	-1.9420728	0.31341971	9632.90249	-0.897554	0.98259655
e_coreAbdominalCRE	1	1	2130.12436	0.36951991	0.83882888	3811.45184	2.59455652	0.01029836
gsb_fragiV	1	1	60969.1537	1.69881373	0.00149751	86028.0335	2.00364215	$3.6425 \mathrm{E}-18$
gt_CE8001	0	0	1062.64478	0.18897389	0.86038246	2313.03963	0.30368768	0.85356213
h_h7AF	0	0	2453.6326	-2.0503783	0.32728132	1359.55501	-0.4233885	0.9113662
hb_HG4-6	0	0	1562.0818	0.11799599	0.86038246	12229.3131	-0.0565444	1
hb_HG4-7	0	0	37611.0221	-0.8034646	0.53548527	26537.4147	-0.3785016	0.93774939
hb_distal_minimal	0	0	6131.99837	0.85777415	0.3393797	62968.9912	0.81157593	0.43634827
hb_lateDm1.0-lacz	0	1	7498.32142	1.48286367	0.20826761	4008.53209	2.68267242	0.00471382
hh_hhf4F	0	0	17956.4461	-0.7559391	0.76465641	9168.10873	-0.5685835	1
hkb_0.6kbRIRV	1	1	1416.78801	3.10030476	0.00457588	7360.08373	2.81655884	0.00022694
hth_3	0	0	12521.3939	-1.6317807	0.3393797	18564.1946	-0.8979293	0.89219364
ind_moduleA	1	1	2354.79858	3.78441531	5.25E-05	1449.75668	5.31228843	7.0733E-11

4399.63633	3.46903508
4435.22908	0.44535508
8541.90892	-1.6624975
1809.33676	-0.9775094
9884.40651	-0.0511796
11163.3141	0.41769828
33094.1821	-1.3551476
32821.5217	-0.1913071
14658.5856	0.45265719
53426.1362	2.73107345
5046.23636	-1.165776
363.22373	0.95164896
5189.9125	0.32872897
21554.1589	3.02528494
11389.6734	3.37981321
365.704053	0.9195016
14359.8402	0.08180605
36791.6068	1.45523919
423.784254	-1.633322
3010.76342	0.46315847
13759.8675	1.40337124
30933.7773	1.86622747
9323.22989	-0.267641
4683.55145	-0.6470979
777.669254	-0.5492737
11133.3086	3.01299236
369.179038	-1.3807279
70036	

$2.08 \mathrm{E}-05$	2179.56647	3.02448989	0.01440073
0.83882888	6153.47233	0.96402486	0.64790826
0.36022063	2235.83223	0.82343559	0.84325086
0.82436539	6508.83478	0.69521166	0.8050209
0.93163123	20825.3992	0.06072803	0.98259655
0.7885808	35964.6786	0.96518807	0.50316876
0.32728132	18022.4202	-0.4355868	0.98259655
0.8709211	52070.3555	1.2100981	0.08783068
0.83882888	nd	nd	nd
$6.05 \mathrm{E}-08$	50367.324	2.6712196	$8.3632 \mathrm{E}-22$
0.62839416	5620.30797	-0.5549806	0.98259655
0.60827011	531.921121	-2.3957255	0.98047826
0.85825274	16496.4945	0.78156047	0.60270871
$4.52 \mathrm{E}-08$	18808.1444	3.6089497	$2.6433 \mathrm{E}-18$
9.60E-08	6063.38812	3.28464161	4.0626E-05
0.821507	nd	nd	nd
0.93102677	7921.95892	1.64336854	0.17462038
0.02609037	19738.2441	1.57541044	0.07728697
0.82436539	nd	nd	nd
0.83882888	24044.6186	0.15753437	1
0.25833936	21014.3608	2.5598644	$1.546 \mathrm{E}-05$
0.00205099	38446.6735	2.08998279	4.0626E-05
0.93871272	8154.7798	-1.0065251	1
0.82436539	6061.39434	0.28075656	0.91542276
0.88267888	nd	nd	nd
$3.25 \mathrm{E}-05$	55423.1108	2.35099842	4.4907E-14
0.83019067	nd	nd	nd
0.00076569	1351.0371	5.50656152	3.1749E-11
0.00205099	501.02327	2.85918525	0.44307581

vnd_NEE	1	1	600.062042	4.46262929	0.00101304	1526.33339	4.09344898	4.0626E-05
y_BE1-2	0	0	4525.97615	1.57569391	0.31341971	7667.65242	0.77841741	0.75741851
y_BE3	0	0	1675.5719	-0.242862	0.9284889	0.8071724	-1.4569829	0.91542276
y_wing	0	0	12900.7008	-1.4255168	0.55166804	25229.2684	0.88480684	0.43634827
E0_12_GROAviva_ChIP_chip.region_278	0	0	nd	nd	nd	9626.98633	-0.9880647	1
E0_12_GROAviva_ChIP_chip.region_416	0	0	nd	nd	nd	1337.64355	-2.6059644	0.98259655
E0_12_GROAviva_ChIP_chip.region_471	0	0	nd	nd	nd	4173.57367	1.04922058	0.56201023
E_0_12h_dCtBP7667.region_1790	0	0	nd	nd	nd	1305.07142	2.63128042	0.14363933
E_0_12h_dCtBP7667.region_3049	1	0	nd	nd	nd	1.97585386	1.29974453	0.77262387
E_0_12h_dCtBP7667.region_3623	0	0	nd	nd	nd	775.516748	-2.9906667	0.98259655
Iz_CrystalCellEnhancer1236-737	1	0	nd	nd	nd	1.67213974	0.68180579	0.8300674
vvl_vvl1+2	0	0	nd	nd	nd	58.5323199	4.15672789	0.91542276

Supplementary table 5

Results of FACS silencer validation experiments for the first library
Percentage of $\mathrm{CD} 2^{+}$cells falling in the $\mathrm{GFP}^{\text {reduced }}$ gate is shown for all replicates of all validation experiments, as described in the Methods section.

Key

random.validation: Percentage of CD2+ cells falling in the GFPreduced gate in embryos from homozygous silencer reporter lines randomly recovered from the tested library.
sFS.positive.validation: Percentage of $\mathrm{CD} 2^{+}$cells falling in the GFPreduced gate in embryos from heterozygous silencer reporter lines generated to test non-TSS-overlapping sFS-positive library elements. (Elements were tested in groups and compared to a negative control tested in parallel.)
random.validation

| library element | repl.1 | repl.2 | repl.3 | repl.4 | repl.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | repl.6

sFS.positive.validation

group	library element	repl. 1	repl. 2	repl. 3	repl. 4
1	Ecoli_control15	0.7	0.8		
1	E_0_12h_dCtBP7667.region_1692	0.7	0.7		
1	E_0_12h_dCtBP7667.region_234	1.2	0.6		
1	E_0_12h_dCtBP7667.region_4530	0.7	0.6		
1	E_0_12h_dCtBP7667.region_4196	1.6	0.7		
1	dpp_85.8MX	8.7	4.2		
1	gcm_+3.8_+4.5	1.9	1		
2	Ecoli_control15	0.3	0.5	0.6	
2	h_HHRE	0.4	0.4		
2	DHS+K27me3_CtBPoverlap_2267	0.5	0.9		
2	repo_-1.1	0.6	0.7	1.3	1.1
2	ct_ct-3	0.3	0.4		
2	e_coreAbdominalCRE	1	1.7		
2	hh_4075	0.3	0.3		
3	Ecoli_control15	1.2	1	0.8	0.7
3	lab_HZ550	1.1	1	0.9	1.1
3	oc_SBg	11.5	10.8	9.3	9
3	Sox15_regionB	0.5	0.5	0.7	0.8
3	ths_Neu4_early_embryonic_enhancer	8.4	8.2	5.8	5.5
3	vas_construct16	0.7	0.6	0.4	0.7
3	E_0_12h_dCtBP7667.region_3084	3.7	3.6	1.9	2.1
4	Ecoli_control15	1	0.9	1.6	1.4
4	ovo_del-ap-del-5	0.5	0.6	1.4	1.3
4	CAD2_Meso-CRM-2819	1	1.3	3.2	2.9
4	Iz_CrystalCellEnhancer1236-737	1.5	1.9	4.8	5.1
4	E0_12_GROAviva_ChIP_chip.region_481	1	1.1	1.5	2.1
4	DHS+K27me3_intergenic_1490a	0.8	0.8	1.3	1.4
4	ind_moduleA	13.1	13.8	18.2	18.3

5	Ecoli_control15	1.9	1.6	1.4	1.1
5	hkb_0.6kbRIRV	11.1	10.8	12	10.2
5	vvl_vvlds1.0	1.2	1.4	0.8	1
5	tin_tin103C	1.2	1.3	1.1	0.9
5	brk_NEE-long	9.7	9.8	10.1	9.9
5	EO_12_GROAviva_ChIP_chip.region_179	0.7	0.7	0.7	0.6
5	Ecoli_control22	1.6	1.8	1.4	1.3
6	Ecoli_control15	1	1	1	1
6	E_0_12h_dCtBP7667.region_3049	1.6	1.5	1.5	1.8
6	DHS+K27me3_intergenic_1490b	0.6	0.8	0.8	0.9
6	ovo_E2	0.8	0.8	0.8	0.9
6	run_neural_6GB	1	1.3	0.6	0.7
6	vnd_NEE	14.6	15	15.7	16.1
6	E_0_12h_dCtBP7667.region_2659	1.3	1.6	1.5	1.4

Supplementary table 6

Results of FACS silencer validation experiments for the second library.

element	call	sFS call	repl.1	repl.2	repl.3	repl.4
Ecoli_control4			1.80%	1.20%	1.90%	1.50%
DHS+K27me3_one-hit_2281	$(-)$	-	2.10%	2%	2.50%	
crb_Lac-Z	+	+	6.20%	5%	5.80%	
CRM_1807	+	+	5.20%	6.60%	5.30%	
hb_lateDm1.0-lacZ	+	+	7.40%	5.80%	4.70%	
slp1_5303	$(-)$	-	2.30%	2.20%	1.80%	
CAD2_htl	-	-	1.40%	1.60%	1.60%	
rho_NEE_long	+	+	6.60%	5.70%	5.50%	
E_0_12h_dCtBP7667.region_4755	-	-	1.60%	1.90%	1.40%	

Supplementary table 7

All validated silencers and their coordinates, along with the category they are associated with.

```
id
dpp_85.8MX
tup_dorsalectoderm
Ndg_FCenhancer
ths_Neu4_early_embryonic_enhancer
DII_304
gsb_fragIV
E_0_12h_dCtBP7667.region_1246
ind_moduleA
ind_moduleBC
nerfin-1_fragment3
rho_NEE_long
CAD2_Meso-CRM-2819
hkb_0.6kbRIRV
hb_lateDm1.0-lacZ
pnr_P3
pnr_P4
repo_-1.1
e_coreAbdominalCRE
crb_Lac-Z
EO_12_GROAviva_ChIP_chip.region_439
E_0_12h_dCtBP7667.region_3049
E_0_12h_dCtBP7667.region_3084
vnd_NEE
vnd_743
oc_SBg
```

coordinates (dm3)	source
chr2L:2456545-2457501	Nonmeso CRMs (REDfly)
chr2L:18874963-18875896	Nonmeso CRMs (REDfly)
chr2R:6203047-6203992	specific meso CRMs
chr2R:7681709-7682675	Nonmeso CRMs (REDfly)
chr2R:20690263-20691248	Nonmeso CRMs (REDfly)
chr2R:20944064-20945045	Nonmeso CRMs (REDfly)
chr2R:6507041-6508091	CtBP ChIP
chr3L:15031943-15032964	positive controls
chr3L:15032738-15033835	positive controls
chr3L:904458-905370	Nonmeso CRMs (REDfly)
chr3L:1461675-1462661	additional NEEs
chr3R:17222290-17223251	specific meso CRMs
chr3R:173849-174821	Nonmeso CRMs (REDfly)
chr3R:4526286-4527384	Nonmeso CRMs (REDfly)
chr3R:11853793-11854843	Nonmeso CRMs (REDfly)
chr3R:11854355-11855347	Nonmeso CRMs (REDfly)
chr3R:14060749-14061844	Nonmeso CRMs (REDfly)
chr3R:17066418-17067406	Nonmeso CRMs (REDfly)
chr3R:20122950-20123916	Nonmeso CRMs (REDfly)
chr3R:9735607-9736591	Groucho ChIP
chr3R:907088-908163	CtBP ChIP
chr3R:1508921-1509997	CtBP ChIP
chrX:486301-487394	Nonmeso CRMs (REDfly)
chrX:486746-487752	Nonmeso CRMs (REDfly)
chrX:8547554-8548562	Nonmeso CRMs (REDfly)

oc_otd-186
Iz_CrystalCellEnhancer1236-737
sog_broad_lateral_neurogenic_ectoderm
sog_shadow
brk_NEE-long
chrX:8548281-8549211 chrX:9177203-9178176 chrX:15518390-15519344 chrX:15540621-15541615 chrX:7190855-7191822

Nonmeso CRMs (REDfly) Nonmeso CRMs (REDfly) Nonmeso CRMs (REDfly) Nonmeso CRMs (REDfly) additional NEEs

Supplementary table 8

PWMs for repressive TFs used in motif enrichment analysis.

MOTIF 0:
>ab_M4542_1.01 sd 1.5

MOTIF 1:
>cwo M4719 1.01 sd 1.5

0.5	0.1	0	0.9	0	0	0	0	1	0	0	0.7
0	0	1	0	1	0	0	0.1	0	1	0.8	0.1
0.5	0	0	0	0	0.9	0	0.9	0	0	0.1	0.2
0	0.9	0	0.1	0	0.1	1	0	0	0	0.1	0

$\mathrm{mu}=19.413216 \quad$ sigma $=2.527889 \quad$ threshold $=15.621382$
MOTIF 2:

46_M1361						
0.22138278	0.00005916	0.00005375	0.99446356	0.00542894	0.00005375	0.00007690 .20214802
0.22138278	0.10062707	0.00542894	0.00005375	0.99446356	0.99983874	0.40764380 .36165462

0.29006410 .00005916	0.99446356	0.00542894	0.00005375	0.00005375	0.0000769	0.24468311

Supplementary table 9

Enrichment of published ChIP signals at validated silencers for the first library. ChIP-chip and/or ChIP-seq signal for various chromatin proteins was mapped onto the coordinates of the tested library elements, and enrichment/depletion (area under the receiver-operator characteristic curve [AUROC]) at validated silencers and its significance (two-tailed Wilcoxon test p-value corrected for multiple hypothesis testing) are shown.

Keys
sorted.mesoderm.histone:
whole.embryo.histone:

TF.coact.corepr:

Area under the receiver-operator characteristic curve (AUC), and p-value of enrichment/depletion of histone post-translational modifications, as measured by ChIP-seq in sorted mesodermal cells, at validated silencers. Adjusted.p-value shows p-values after correction for multiple hypothesis testing. See Methods for sources of data.

Area under the receiver-operator characteristic curve (AUC), and p-value of enrichment/depletion of histone post-translational modifications, as measured by ChIP-chip or ChIP-seq in whole embryos, at validated silencers. Adjusted.p-value shows p-values after correction for multiple hypothesis testing.

Area under the receiver-operator characteristic curve (AUC), and p-value of enrichment/depletion of TF, coactivator, or corepressor localization, as measured by ChIPchip or ChIP-seq in whole embryos, at validated silencers. Adjusted.p-value shows p-values after correction for multiple hypothesis testing.

sorted.mesoderm.histone

test

H3K27me3 rep1
H3K27me3 rep2
JZ H3K27me3 H3K27me3.combined.p
H3K4me1 rep1
H3K4me1 rep2
H3K4me1.combined.p
H3K4me3 rep1
H3K4me3 rep2
H3K4me3.combined.p
H3K27ac rep1
H3K27ac rep2
H3K27ac.combined.p
H3K36me3 rep1
H3K36me3 rep2
H3K36me3.combined.p
H3K79me3 rep1
H3K79me3 rep2
H3K79me3.combined.p

AUC

0.66298
0.5784946
0.6368664
0.6150538
0.6086022
0.5360983
0.4835637
0.4061444
0.3465438
0.6064516
0.5339478
0.5259601
0.5453149

p-value	adjusted.p-value
0.03501	
0.3104	
0.07671	
0.02769432	0.181474
0.1368	
0.1603	0.38548208
0.1056967	
0.6416	1
0.833	

0.225	0.28314923
0.04693	
0.05861179	
0.1693	
0.6617	0.90249664
0.3572532	
0.7368	
0.5601	
0.7779375	

whole.embryo.histone

test	embryo ages	data source	AUC	p-value	adjusted.p-value
H3K4me1	$4-8$	modENCODE_778	0.6952381	0.01154	0.17887
H3K4me3	$0-12$	modENCODE_622	0.7210445	0.004236	
H3K4me3	$4-8$	modENCODE_790	0.5929339	0.2296	
H3K4me3.combined.p				0.007718	0.159505416
H3K9ac	$4-8$	modENCODE_822	0.5963134	0.2131	0.600554545
H3K9me3	$0-12$	modENCODE_621	0.6436252	0.06322	
H3K9me3	$4-8$	modENCODE_802	0.6411674	0.06788	
H3K9me3.combined.p				0.02768429	0.181474
H3K27ac	$4-8$	modENCODE_835	0.5023041	0.9778	1
H3K27me3	$0-12$	modENCODE_919	0.6571429	0.04209	
H3K27me3	$4-8$	modENCODE_811	0.6442396	0.0621	
H3K27me3.combined.p			0.01815787	0.181474	

TF.coact.corepr

test	embryo ages	data source
Kr	$0-8$	modENCODE_898
Sin3A	$0-12$	GSM569791
Su(var)3-9	$0-12$	GSM636838
Pcl	$0-8$	GSM569800
D	$0-8$	GSM628262
D	$0-8$	GSM621330
D.combined.p		
BEAF-32	$0-12$	modENCODE_21
CP190	$0-12$	modENCODE_22
CTCF	$0-12$	modENCODE_769
CTCF	$0-12$	modENCODE_770
CTCF.combined.p		
CtBP	$0-12$	modENCODE_607
en	$0-12$	modENCODE_3184
en	$0-12$	modENCODE_625
en.combined.p	$0-12$	
Trl	$0-12$	modENCODE_23
Gro	$0-8$	modENCODE_623
hairy	$0-8$	modENCODE_2574
hkb	$0-8$	modENCODE_2575
jumu	$0-12$	modENCODE_2576
mod(mdg4)	$0-12$	modENCODE_24
run	$0-12$	modENCODE_609
sbb	$4-8$	modENCODE_2577
sens	$4-8$	modENCODE_978
sens	$4-8$	modENCODE_979
sens		
sens.combined.p	$0-12$	modENCODE_27
Su(Hw)	$0-12$	modENCODE_901
Su(Hw)	$0-12$	modENCODE_615
Su(Hw).combined.p	$3-8$	modENCODE_612
ttk	$3-8$	
Ubx		
Ubx		
Ubx.combined.p		

AUC	p-value	adjusted.p-value
0.5751152	0.3318	0.702253333
0.4764977	0.7624	0.956501961
0.4562212	0.5722	0.840945455
0.4958525	0.9588	1
0.6436252	0.06322	
0.7176651	0.004859	
	0.00279172	0.11292463
0.4215054	0.3104	0.702253333
0.4261137	0.3398	0.702253333
0.4371736	0.4171	
0.5010753	0.9905	
	1	1
0.503533	0.9651	1
0.564977	0.4013	
0.5050691	0.9493	
	0.7486039	0.956501961
0.4583717	0.5913	0.840945455
0.6457757	0.05937	0.283149231
0.6525346	0.0485	0.273363636
0.6353303	0.08008	0.330997333
0.6801843	0.01976	0.181474
0.5490015	0.5271	0.840945455
0.5447005	0.5641	0.840945455
0.5751152	0.3318	0.702253333
0.6466974	0.05778	
0.6064516	0.1687	
0.6362519	0.07805	
	0.02584075	0.181474
0.5400922	0.6051	
0.5437788	0.5722	0.956501961
	0.7134683	0.956501961
0.4749616	0.7473	
0.6070661	0.1663	0.0754

zfh1	0-12	modENCODE_604	0.5447005	0.5641	0.840945455
pan.ave	0-8	modENCODE_4074	0.6196621	0.1218	0.411484211
$\mathrm{Su}(\mathrm{H})$ repl 1	0-8	modENCODE_5017	0.3050691	0.01167	
Su(H) repl 3	0-8	modENCODE_5017	0.6980031	0.01042	
$\mathrm{Su}(\mathrm{H}) . \mathrm{combined.p}$				1	1
hairy.ave	0-8	modENCODE_4982	0.569278	0.3708	0.702496636
Pc.rep1	5-13	GSE55257	0.6138249	0.1411	
Pc.rep2	5-13	GSE55257	0.5889401	0.2503	
Pc.combined.p	5-13	GSE55257		0.1533966	0.47552946
ph.rep1	5-13	GSE55257	0.5763441	0.3239	
ph.rep2	5-13	GSE55257	0.5087558	0.9113	
ph.combined.p	5-13	GSE55257		0.6553376	0.902909582
Su(z)12.rep1	5-13	GSE55257	0.5081413	0.9176	
Su(z)12.rep2	5-13	GSE55257	0.5145929	0.8517	
Su(z)12.combined.p	5-13	GSE55257		0.974176	1
HP1a	6-20	GSE56101	0.66851	0.02927	0.181474
pho (PhoN ab)	6-12	E-TABM-525 (ArrayExpress)	0.5072115	0.9298	
pho (PhoZ ab)	6-12	E-TABM-525 (ArrayExpress)	0.4041896	0.2312	
pho.combined.p	6-12	E-TABM-525 (ArrayExpress)		1	1
bab1	0-12	modENCODE_628	0.4589862	0.5968	0.840945455
chinmo	0-12	modENCODE_608	0.4211982	0.3085	0.702253333
disco	0-8	modENCODE_2572	0.5797235	0.3029	0.702253333
DII	0-12	modENCODE_606	0.5529954	0.4939	0.840945455
exd	0-8	modENCODE_3183	0.4362519	0.4103	0.748194118
ftz-f1	0-12	modENCODE_624	0.5754224	0.3298	0.702253333
GATAe	0-8	modENCODE_2573	0.506298	0.9366	1
inv	0-12	modENCODE_605	0.5066052	0.9334	
inv	0-12	modENCODE_619	0.5554531	0.474	
inv.combined.p				0.803221	0.957686577
kn	0-12	modENCODE_618	0.5210445	0.7868	0.956501961
nej	4-8	modENCODE_855	0.4528418	0.5428	0.840945455
Stat92E	1-12	modENCODE_616	0.506298	0.9366	1
all.pub.HDAC	0-12	GSE20000 doi: 10.1101/gad. 1509607 (Young lab data	0.3683564	0.08867	0.34359625
sna	2-4	download page) doi: 10.1101/gad. 1509607 (Young lab data	0.5852982	0.2868	0.702253333
twi	2-4	download page) doi: 10.1101/gad. 1509607 (Young lab data	0.6057559	0.1864	0.55032381
dl	2-4	download page)	0.6223994	0.1261	0.411484211

[^2]
Supplementary table 10

Enrichment of published ChIP signals at validated silencers for the first and second library combined. ChIP-chip and/or ChIP-seq signal for various chromatin proteins was mapped onto the coordinates of the tested library elements, and enrichment/depletion (area under the receiver-operator characteristic curve [AUROC]) at validated silencers and its significance (two-tailed Wilcoxon test p-value corrected for multiple hypothesis testing) are shown.

Keys

Area under the receiver-operator characteristic curve (AUC), and p-value of enrichment/depletion of histone post-translational modifications, as measured by ChIP-seq in sorted mesodermal cells, at validated silencers. Adjusted.p-value shows p-values after correction for multiple hypothesis testing. See Methods for sources of data.

Area under the receiver-operator characteristic curve (AUC), and p-value of enrichment/depletion of histone post-translational modifications, as measured by ChIP-chip or ChIP-seq in whole embryos, at validated silencers. Adjusted.p-value shows p-values after correction for multiple hypothesis testing.

sorted.mesoderm.histone

histone.mark	AUC	p.value	adj.p
meso.K27ac	0.3765346	0.02765	0.15932
meso.K27me3	0.5891961	0.1117	0.26808
meso.K36me3	0.4982385	0.9757	0.9939
meso.K4me1	0.546493	0.4073	0.69822857
meso.K4me3	0.5004804	0.9939	0.9939
meso.K79me3	0.5361375	0.5196	0.75853333

whole.embryo.histone

histone.mark	AUC	p.value	adj.p
emb.K27ac	0.468026	0.5689	0.75853333
emb.K27me3	0.615245	0.03983	0.15932
emb.K4me1	0.615245	0.03983	0.15932
emb.K4me3	0.5056048	0.9211	0.9939
emb.K9ac	0.5575958	0.3045	0.609
emb.K9me3	0.594534	0.0918	0.26808

[^0]: Présentée en vue de l'obtention du grade de docteur en Interactions moléculaires et cellulaires
 d'Université Côte d'Azur
 Dirigée par : Martha L. Bulyk / Frédéric Luton
 Co-encadrée par : Eric Macia
 Soutenue le : 16 Mars 2018

[^1]: Devant le jury, composé de :
 Martha Bulyk, Professeur, Harvard Medical School
 Suzanne Gaudet, Directeur de recherche, Harvard Medical School
 Mo Motamedi, Directeur de recherche, Harvard Medical School
 Juan Fuxman-Bass, Directeur de recherche, Boston University
 Anny Cupo, Directeur de recherche, Université Côte d'Azur
 Frédéric Luton, Directeur de recherche, Université Côte d'Azur

[^2]: 186 |Page

