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Abstract – The design of efficient algorithms is closely linked to
the evaluation of their performances. My work focuses on the
use of stochastic models for the performance evaluation of large
distributed systems. I am interested in developing tools that
can characterize the emergent behavior of such systems and
improve their performance. This leads me to solve stochastic
control and optimization problems, notably through operations
research methods. These problems suffer from combinatorial
explosion: the complexity of a problem grows exponentially
with the number of objects that compose it. It is therefore nec-
essary to design models but also algorithmic processes whose
complexity does not increase too rapidly with the size of the
system. This document summarizes a few of my contributions
on the use and the refinement of mean field approximation to
study the performance of distributed systems and algorithms.

Résumé La conception d’algorithmes efficaces est étroitement
liés à l’évaluation de leurs performances. Mon travail se concen-
tre sur l’utilisation de modèles stochastiques pour l’évaluation
des performances des grands systèmes distribués. Je développe
des outils permettant de caractériser le comportement émer-
gent de ces systèmes et d’améliorer leur performance. Cela me
conduit à résoudre des problème d’optimisation et de contrôle
stochastique. Ces problèmes générallement souffrent d’un prob-
lème d’explosion combinatoire: la complexité d’un problème
croît de façon exponentielle avec le nombre des objets qui le
composent. Il faut donc concevoir des modèles mais aussi des
processus algorithmiques dont la complexité n’augmente pas
ou peu avec la taille du système. Ce document résume quelques
unes de mes contributions sur l’utilisation et le raffinement des
méthodes de type champ moyen pour étudier la performances
d’algorithmes de contrôle pour des systèmes distribués.
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1
I N T R O D U C T I O N

1.1 context and motivation

The objective of my research is to develop new approximation tech-
niques in order to solve optimization problems that arise in large
systems such as computer networks. My contributions ranges from
theoretical work on stochastic models and optimization to applications
in communication networks or electricity networks. This document
summarizes only a part of my research. It is focused on mean field
approximation, its understanding and its application.

Good system design needs good performance evaluation, which in
turns needs good modelization tools. Many distributed systems can be
effectively described by stochastic population models. These systems
are composed of a set of objects, agents, or entities interacting with
each other. Each individual agent is typically described in a simple
way, as a finite state machine with few states. An agent changes state
spontaneously or by interacting with other agents in the system. All
transitions happen probabilistically and take a random time to be
completed. By choosing exponentially distributed times, the resulting
stochastic process is a continuous-time Markov chain with a finite
state space. The construction of a Markov chain is therefore quite
simple. Markov chains, however, suffer from the state-space explosion:
the state-space needed to represent a system with N agents grows
exponentially with the number of agents. This results in the need for
approximation techniques.

One general idea is to try to characterize the emerging behavior
of a system by studying the effect that the local interactions between
agents have on the global dynamics – similarly to what is done in
statistical physics to characterize behavior of interacting particles. To
do so, mean field approximation is a very effective technique that
can be used to study transient probability distribution or steady-state
properties of such systems when the number of entities N is very large.
The idea of mean field approximation is to replace a complex stochastic
system, that we denote by X(N), by a simpler deterministic dynamical
system, that we denote by x. This dynamical system is constructed
by assuming that the objects are asymptotically independent. Each
object is viewed as interacting with an average of the other objects (the
mean field). When each object has a finite or countable state-space,
this dynamical system is usually a non-linear ordinary differential
equation (ODE).
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2 introduction

Mean field approximation has become a common tool to study
systems of interacting agents. It is used in many domains such as
game theory [60], performance analysis and design of distributed sys-
tems [67], multi-agent reinforcement learning [93] or neural networks
[4]. The rationale behind mean field approximation is that when the
number of agents N is large, each individual has a minor influence
on the mass. Mean field models are specified by a simple set of or-
dinary differential equations (or partial differential equation). This
approximation is known to be exact as N goes to infinity for certain
models, see e.g., [57], [62], [8] but it can very poor for other models
(N = 10 to N = 100). The accuracy of the estimates provided by mean
field approximation varies greatly depending on the systems and a
full understanding of when it can be applied remains to be done. This
document summarizes some of the research that I did in this context
and that can be summarized in two main objectives:

1. Understand when mean field approximation can be applied and
what is its accuracy;

2. Use this understanding to propose more accurate approximation
methods.

In particular in this document, we will study refinements of the
classical mean field approximation that work for: systems with a low
to moderate number of objects (Chapter 3), hetetrogeneous systems
(Chapter 4), and systems with spatial interactions (Chapter 5). Each
time, the proposed approximations are validated by using interesting
case studies.

1.2 organization of the manuscript

This manuscript synthesizes my research contributions to the ap-
plication, development and refinement of new approximation tech-
niques in the context of performance evaluation of large systems. The
manuscript is organized in several chapters that reflects the objectives
mentioned above.

1. Chapter 2 covers the basic material on mean field approxima-
tion. Starting with an example, we review a few classical mod-
els that are used in the literature. We will present the basic
convergence results associated with mean field approximation
by making the link with stochastic approximation algorithms.
While this chapter mostly covers related work, we also present
an extension that concerns discontinuous drift and that is based
on [P1], [P11], [P12], [P2].

2. Chapter 3 contains the main technical contribution of the manuscript.
We first study the accuracy of the classical mean field approx-
imation for a general class of population models, called the
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density dependent population processes. We then use this char-
acterization to present two refined mean field approximation
methods. These methods refine the classical approximation by
adding a O(1/N) and a O(1/N2) expansion terms. We prove
that these methods are much more accurate than the classical
mean field approximation when the population size N is small
to moderate. This chapter is based on [P16], [P23], [P22], [P20],
[P24], [P17].

3. Chapter 4 discusses a model of cache replacement algorithms.
These policies aim at adapting the content of a cache to the
popularities of requested objects seen by the cache. This model
is an example of a heterogeneous mean field models. We use
it to illustrate how it is possible to construct a (refined) mean
field approximation whose accuracy can be proven. This chapter
collects contributions from [P28], [P27], [P15], [P25], [P26].

4. Chapter 5 presents a model of bike-sharing systems. We de-
scribe such a system by a closed queuing network for which
we use mean field approximation to derive key performance
indicator and to study the performance of natural re-balancing
heuristics. In this chapter, we also illustrate how mean field can
be modified to model spatial interactions. This spatially refined
approximation uses pair approximation. This chapter is based
on [P7], [P14], [P6], [P19].

Finally, Chapter 6 concludes the manuscript by presenting future
research directions, in particular in the context of optimization and
game theory.





2
M E A N F I E L D M E T H O D S

This chapter reviews some basic material on mean field approximation.
We start in Section 2.1 with an example of cache replacement policies
that serves as an illustration of what is mean field approximation and
how it can be constructed. This example will be further studied in
Chapter 4. This example is an element of a broader class of model
called density dependent population process whose definition is re-
called in Section 2.2. We then discuss in Section 2.3 how stochastic
approximation can be used to study the convergence of such mod-
els to their mean field approximation. We present an extension of
these results to discontinuous drifts in Section 2.4 and to synchronous
population processes in Section 2.5.

While most of the chapter is composed of related work, Section 2.4
is based on [P1], [P11], [P12], [P2].

2.1 construction of the approximation : an example

Caches form a key component of many computer networks and sys-
tems. A large variety of cache replacement algorithms has been
introduced and analyzed over the last few decades. In this section, we
illustrate the construction of a mean field approximation for one of
the simplest cache replacement policy called RANDOM [35], [3], [28].

The main purpose of this example is to illustrate two ways to
construct mean field approximation: by assuming that objects are
independent or by looking a population process. Later in Chapter 4,
we will discuss more complicated cache replacement policies, based
essentially on our papers [P26], [P25]. In particular, we will relate
this approximation with the TTL approximation that was originally
introduced in [28] and that has become popular since it has been
rediscovered independently in [23].

2.1.1 The RANDOM policy

The RANDOM policies works has follows. We consider a single cache
that can contains up to m items. When an item, say k, is requested,
two events can occur:

• If the item is not in the cache, it is inserted in the cache by
replacing a randomly chosen item. We call this a miss.

• If the item is in the cache, it is served directly from the cache
and the state of the cache is unmodified. We call this a hit.

5



6 mean field methods

To construct our model, we assume the well-known Independent
Reference Model (IRM): there is a collection of N items that can be
requested. All items have the same size and the cache can store up to
m items. An item k has a popularity λk and the requests for item k
arrive at the cache according to a Poisson process of intensity λk. The
request processes are assumed to be independent (hence the name
IRM).

The IRM model is
often described as a
discrete-time model

where item k is
requested with

probability pk at
each time step

(independently of the
previous requests).

The two models are
essentially

equivalent by setting
pk = λk/(∑` λ`).

The state of the cache can naturally be represented by a Markov
process by tracking the content of the cache. By using reversibility,
one can show that the stationary measure has a product form [53],
[35] and performance metric quantities like miss probabilities can be
computed by using dynamic programming techniques [29].

In what follows, we show how to construct a mean field approxima-
tion of this policy. When applied to steady-state analysis, this mean
field approximation allows us to retrieve the classical approximation
presented in [29]. More interestingly, it allows a fast an easy character-
ization of the transient dynamics that can be easily extended to more
complex replacement policies, see Chapter 4.

2.1.2 Construction via Object Independence

Let us write Xk(t) a binary variable that equals 1 if Item k is in
the cache and 0 otherwise. An item, say k, that is not in the cache
is requested at rate λk. In which case it will replace a randomly
chosen item that is in the cache. Hence, Item ` will be the randomly
chosen item with probability `X`(t)/m. This shows that the process
X = (X1, . . . , XN) is a Markov chain whose transitions are, for all
k, ` ∈ {1 . . . N}:

X 7→ X + ek − e` at rate λk(1− Xk)
X`

m
,

where ek is a vector whose kth component equals 1, all other being
equal to 0.

Let us now zoom on Item k. The variable Xk evolves as in Fig-
ure 2.1(a): if the item is not in the cache (Xk = 0), it is requested at
rate λk and enters the cache. This explains the transition from Xk = 0
to Xk = 1 at rate λk. If Item k is already in the cache, it is ejected when
another item that is not in the cache is requested (this occurs at rate
∑` λ`(1− X`)) and Item k is the one chosen to be replaced (this occurs
with probability 1/m).

It should be clear that Xk is not a Markov chain in general because
the evolution of Xk depends on the state of the other objects X`. If we
make the approximation that all objects are independent, we obtain a
new stochastic process X̄ that is described in Figure 2.1(b). Here, the
evolution of each object is a Markov chain: the states of two objects
are independent and objects are only coupled through their mean
behavior. Such an approximation is what is a mean field approximation.
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0 1

λk

1
m ∑` λ`(1− X`)

0 1

λk

1
m ∑` λ`(1−E[X̄`])

(a) Original model for RANDOM (b) Mean field approximation

Figure 2.1: RANDOM policy: evolution of the state of Item k.

The quantities xk = E[X̄k] satisfy the following system of differential
equation:

ẋk = −λk(1− xk) +
1
m ∑

`

λ`(1− x`)xk. (2.1)

Note that Equation (2.1) has a unique fixed point π that satisfies the

More generally,
Equation (2.1) is an
equation of the form
ẋ = xQ(x), where
Q(x) is the general
of a Markov chain.
Such an equation
describes the
evolution of an object
that interacts with
its probability
distribution. This
equation is similar to
a McKean-Vlasov
equation that we
found in system of
interacting particles
[65] and that is now
widely used in mean
field games [47].

following equation:

πk =
λk

λk + z
, where z is such that ∑

`

π` = m. (2.2)

The solution of the above equation is unique and corresponds to the
approximation proposed in [26].

For now, we did not justify mathematically why Equation (2.1)
should be a good approximation of the true value of E[Xk]. This will
be the subject of the following sections. Before that, let us just illustrate
how accurate this approximation is. For that, we consider a system
with N = 10 items that have a Zipf popularity with exponent 1/2:
Item k has a popularity λk ∝ k1/2 for k ∈ {1 . . . 10}. The cache size is
m = N/2 = 5. In Figure 2.2, we compare the expected hit probability
∑k pkE[Xk(t)] of the original model (obtained by simulation) with the
approximation ∑k pkE[X̄k(t)]. We observe a very good match between
the two quantities. Note that the value for ∑k pkE[X̄k(t)] can be easily
computed by numerically integrating the ODE (2.1), the value for
∑k pkE[Xk(t)] has been computed by averaging over 104 independent
simulations. The fixed point of the mean field approximation, given
by (2.2), is also a very good approximation of the steady-state hit
probability: the exact value is 0.536 while the fixed point gives 0.533.

It should be clear that the method described above can be extended
to interacting objects that have more than two states. This is for
example what we did in [P26], [P27], [P25] to analyze variants of the
RANDOM policy. This will be further discussed in Chapter 4.

2.1.3 Population Processes

We now describe a mathematical framework that can be used, and
for example has been used in [45], [83], [48] to study RANDOM or
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Figure 2.2: Cache: Evolution of the expected hit probability ∑k pkE[Xk(t)] as
a function of time. We compare with the mean field approxima-
tion ∑k pkE[X̄k(t)]. The system has N = 10 objects.

LRU caches. Instead of having N different items, we now assume to
have K classes of items and N/K items per class, where all items of
Class k have the same popularity λk. Let us now write Xk(t) ∈ [0, 1]
the fraction of class k items that are in the cache and assume that the
cache can store up to mN/K items. The transitions of this model can
be written as:

X 7→ X +
K
N
(ek − e`) at rate

N
K

λk(1− Xk)
X`

m
,

Note that when N = K, this model coincides with the model described
in the previous section. In the above equation, increasing N reduces
the impact of each transition and accelerates the rate of the transitions.
As we show in the next section, this is an example of what is called a
density dependent population process.

2.2 density dependent population processes

Density-dependent population processes are a popular model of pop-
ulation processes that have been introduced in [56], [57]. We recall the
definition here. Such a population process is a sequence of continuous-
time Markov chains (X(N)). For each N, X(N) evolves on a subset
of some Banach space (E , ‖.‖). We assume that there exists a set of

Typically, we will
use E = Rd or

E = RN (the set of
infinite sequences)

with an appropriate
norm.

vectors L ∈ E and a set of functions β` : E → R+ such that X(N)

jumps from X to X + `/N at rate Nβ`(X) for each ` ∈ L. Our caching
model of §2.1.3 is a density dependent population processes. The next
chapters will contain many other examples.

We will refer to the chain X(N) as the system of size N, although N
does not a priori correspond to the system’s size. For such a system, we
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define the drift f as the function that associates to x ∈ E the quantity
f (x) that is defined by

f (x) = ∑
`∈L

`β`(x)

The drift does not depend on N. This definition means that f (x)dt
is the expected variation of X(N) that would start in state x during a
small time interval dt:

E [X(t + dt)− X(t) | X(t) = x] = f (x)dt + o(dt).

The mean field approximation of such a population process corre-
sponds to the solution of the ODE ẋ = f (x). In our caching example,
this would correspond to Equation (2.1).

This model or close variants has been widely used to study the
performance of computer-based systems such as dissemination algo-
rithms [22], SSDs [84], and most importantly the analysis of resource
allocation strategies in server farms or data centers: such a system
is composed of a large number of servers that interact because of
scheduling or routing strategies [P10], [63], [67], [82], [90], [66].

It can be shown that under mild conditions (essentially if the drift f
is Lipschitz-continuous) then, the stochastic process X(N) converges
almost surely to x as N goes to infinity [P2, Theorem 1]. More precisely,
if x denotes the solution starting in x(0) and if the initial conditions
X(N)(0) converges to x(0) as N (in probability), then for all T:

lim
N→∞

sup
t≤T

∥∥∥X(N)(t)− x(t)
∥∥∥ = 0 (in probability). (2.3)

When one wants to compute values for a finite time-horizon T, the
necessary conditions to apply this result can be done by a syntactic
analysis of the model. This is more complicated for steady-state
analysis [24], in which case special Lyapunov functions have to be
found (see for example [P15]).

This is illustrated in Figure 2.3 in which we consider the same
caching model as in Section 2.1.3 with different scaling parameters N ∈
{10, 100, 1000} (recall that this corresponds to N items). We observe
that, as predicted by the theory, the trajectories of the stochastic system
converge to the mean field approximation.

Note that the data reported in Figure 2.2 corresponds to the case
N = 10 of Figure 2.3. At first sight, it might seem strange that the
agreement between the simulation and the mean field approximation
seems better on the former than on the later. This discrepancy is
explained by the fact that Figure 2.2 depicts the expected hit probability
∑k λkE[Xk] whereas Figure 2.3 depicts the a stochastic trajectory of
∑k λkXk. We will comment more on this in the next chapter.
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Figure 2.3: Scaled caching model: hit probability ∑k λkXk as a function of
time compared to the mean field approximation ∑k pkE[X̄k]. We
plot the trajectory of one simulation for systems with N objects
and N ∈ {10, 100, 1000}.

2.3 proof of accuracy via stochastic approximation

There are essentially two classes of methods to prove that mean field
approximation is accurate. The most classical way is to reason in
terms of trajectory and to show that, when some scaling parameter
tends to infinity, the behavior of the stochastic converges (almost
surely or in probability) to the mean field approximation. This often
relies on martingale concentration argument and lead to results like
Equation (2.3). It can be used for transient [8], [56] or stationary regime
[13]. This can be done by using stochastic approximation. We recall
the main principle in Section 2.3.1 and its extension to steady-state
behavior in Section 2.3.2.

The bound obtained by this trajectorial analysis are often quite loose
compared to what is observed in practice. A second kind of methods
is to use ideas inspired by Stein’s method and [54], [80], [95] to relate
the accuracy of the mean field approximation and the gap between
the generators of the Markov chain and of the mean field ODE. This
method will be the main tool that we will use in Chapter 3.

2.3.1 Stochastic Approximation

Let us consider a density dependent population process X. The contin-
uous time Markov chain X can be viewed as a discrete time Markov
chain that we denote Y such that X(t) = YP(t), where P(t) is a Poisson
process of intensity Nτ, with τ = supx∈E ∑` β`(x). For a vector ` ∈ L,
the discrete time Markov chain has the following transition:

P
[

Yn+1 = Yn +
1
N
`
∣∣∣ Yn

]
=

1
τ

β`(Yn).
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Let us define a sequence of random variables M by Mn+1 = Yn+1 −
Yn − 1

τN f (Yn). By definition of the drift, M is a martingale difference
sequence, i.e., E[Mn+1 | Fn] = 0. This allows us to write the process
Yn as a stochastic approximation algorithm with constant step size:

Yn+1 = Yn +
1

τN
( f (Yn) + Mn+1) . (2.4)

Since its introduction in the 50s, the theory of stochastic approxi-
mation algorithms has been thoroughly developed, with a particular
emphasis on the relation between the stochastic process defined by the
recurrence equation (2.4) and the solution of the dynamical system
defined by the ODE ẋ = f (x) [5], [12], [58]. To make the connection
more explicit, let us denote εNτt =

1
Nτ ∑Nτt

k=1 Mk+1. This allows us to
write the value of Y at time Nτt as

YNτt = Y0 +
1

Nτ

Nτt−1

∑
k=1

f (Yk) + εNτt. (2.5)

Under quite general conditions on M, it can be shown for any time
T, supt<T ‖εNτt‖ converges almost surely to 0 as N goes to infinity.
This shows that εNτt is a “small” noise.

A sufficient
condition for
example is if the
condition second
moment of Mn is
bounded:
var [Mn+1|Fn] ≤
σ2. In this case the
convergence is a
direct consequence of
Kolmogorov’s
inequality for
martingales.

A great advantage of studying the almost sure convergence of YNt

by using the stochastic approximation method Equation (2.4) is that it
requires very few assumptions. Equation (2.5) is essentially a Euler
discretization of the ordinary differential equation ẋ = f (x) with a
noise εNτt that vanishes as N becomes large. Proving that YNτt is close
to x(t) can therefore be done by studying the Euler discretization and
proving that it is numerically stable with respect to small error. This is
immediate for example when f is a Lipschitz-continuous function, see
for example the classical paper of [8]. This method can also be easily
generalized when the function f is not continuous. This is for instance
what we have done in [P11] when we showed that when f is not
continuous, it suffices to replace the ODE by a differential inclusion
ẋ ∈ F(x), see also Section 2.4. Another important generalization
of the method is when the system exhibits multiple time-scales, for
instance, if the population process X(t) evolves in an environment
Z(t) that changes state at a much faster rate. In this case, one can
again construct an ODE by using a time averaging over the possible
values of Z [6].

2.3.2 Steady-State Dynamics

A point π is called
an attractor of the
ODE if all
trajectories of the
ODE converge to π.
When f is
continuous, such a
point is of course a
fixed point, i.e., such
that f (π) = 0.

The previous results establish that, under mild condition, the trajec-
tories of a system of interacting objects converges to a deterministic
dynamical system ẋ = f (x) over any finite time interval. This result
can be extended in the stationary regime but this extension has to
be handled with care. More precisely, let us consider that, for each
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system size N, the Markov chain XN has a unique stationary measure
πN . A classical convergence result on the steady-state convergence of
mean field models (see for instance [8], [7]) shows that, if the ODE
has a unique attractor π, then the sequence of stationary measures πN

concentrate on π as N goes to infinity.
However, characterizing the asymptotic behavior of a differential

equation is often a difficult task. In particular, showing that the
differential equation has a unique fixed point does not guarantee this
fixed point to be an attractor: the situation is more complicated as
there might be limit cycles or chaotic behaviors. The only generic
results that can be shown in this case is that the sequence of stationary
πN measure concentrate on the Birkhoff center of the ODE. We refer

The Birkhoff center
of a dynamical

system is defined as
the closure of the set

of recurrent points.
A point x is said to

be recurrent if
lim inf

t→∞
‖Φt(x)− x‖

= 0, where Φt(x)
denotes the value at

time t of the solution
of the ODE that

starts in x at time 0.

the reader to [8], [24] for a more thorough discussion of the validity
of the fixed point method and its application to a model of the 802.11

MAC protocol.
When one tries to study the performance of a system, the case with

a unique attractor is often more convenient because if the ODE has
multiple attractors, it is often quite difficult to estimate what is the
proportion of the time that the system will spend near one or the other
point. A large proportion of the mean field models studied in the
performance evaluation community seem to have a unique fixed point
that is also an attractor. Yet, while the uniqueness of the fixed point is
often proven, the proof of its attractiveness is often missing and left
as future work or as a conjecture. While there is no general theory
to show that a fixed point is an attractor, there exists a few classical
methods that may or may apply depending on the particular model:

• One of the most commonly used method is to find a Lyapunov
function. There is no generic method to find a Lyapunov func-
tion. Yet, for systems of interacting Markov chains, like the ones
we study, it is often possible to use relative entropy to build a
Lyapunov function. A (relatively) generic approach is presented
in [27], [19]. We have used a variant of this approach in [P7],
[P15].

• Many systems can be proven to be monotone. Monotonocity can
be sometimes be used to prove the convergence to a fixed point.
This has been used for example in the context of load balancing
systems in [67], [82], [85].

• A interesting last case is when the original stochastic system is
reversible for all system sizes N. It is shown in [14] that under
this condition, showing the uniqueness of the fixed point is a
sufficient condition. This has been for instance used in [83].
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2.4 discontinuous drifts and differential inclusions

Most of the result on stochastic approximation assume that the drift
f is Lipschitz-continuous in which case the ODE ẋ = f (x) is well
defined: it has a unique solution and the trajectories of X(N) converge
to this unique solution. The condition of Lipschitz-continuity limits the
applicability of these results in many practical cases, in particular, for
systems exhibiting threshold dynamics or with boundary conditions.

In [P11], we study the limiting behavior of population processes
that have a discontinuous drift f . As a simple example, consider a
simple queuing system with one buffer and a processors that serve
packet at rate 2N. If packets arrive at rate N, and if X(N) denotes the
number of packets in the queue rescaled by N−1, then one obtain a
density dependent population process whose drift is f (x) = −1 if
x > 0 and f (0) = +1. f is not continuous and the ODE ẋ = f (x) has
no solution.

A proper way to define solutions of an ODE ẋ = f (x) with non-
continuous right-hand side f is to use differential inclusions (DI) instead.
The ODE is replaced by the following equation

ẋ ∈ F(x), (2.6)

where F is a set-valued mapping, defined as the convex hull of the
accumulation points of the drift. In the above example, one would
have F(x) = {−1} if x > 0 and F(0) = [−1, 1].

A differential inclusion may have multiple solutions. The main
result of [P11] is that over any finite time interval, the trajectories of
X(N) converges to the set of the solutions of the differential inclusion.
We also provide a rate of convergence when the set of solution is
one-sided Lipschitz-continuous.

A function is
one-sided Lipschitz-
continuous with
respect to a scalar
product 〈·〉 if
〈 f (x)− f (y), x−
y〉 ≤ L‖x− y‖2. A
function is Lipschitz-
continuous if in
addition
〈 f (x)− f (y), x−
y〉 ≥ −L‖x− y‖2.

2.5 extension to synchronous population models

So far, we have only presented what we call asynchronous mean field
models. By asynchronous, we mean that each transition that occurs
in the systems only affects a limited number of objects, i.e., objects
evolves asynchronously. In this case the mean field approximation
is given by a continuous time dynamical system (often a system of
ordinary differential equations). This document focuses on this model
as it is the most studied case e.g. [P2], [8], [56]. A second type of
model arises when objects are synchronous. In this case the mean field
approximation is a discrete time dynamical system [62], [P8], [81]. In
this part, we briefly describe this model, based on a simplified version
of the model [62].

The synchronous mean field model of [62] models composed N
interacting objects in which each object evolves in a finite state space.
Time is discrete and X(t) denotes the empirical measure at time t, i.e.,
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Xi(t) fraction of objects in state i at time t. The behaviour of the system
X is characterized by a (time homogeneous) discrete time Markov
chain. At each time step t, each object performs a transition, that,
conditionally on X(t), is independent of the other states. Denoting
Sn(t) the state of object n at time t, we have:

P [Sn(t + 1) = j | Sn(t) = i ∧ X(t)] = Kij(X(t)).

It can be shown that for such a system, as the number of objects N
goes to infinity, the stochastic process X converges almost surely to a
deterministic dynamical system x that satisfies x(t + 1) = x(t)K(x(t)).

A great advantage of this model is that the numerical evaluation of
the dynamical system x(t + 1) = x(t)K(x(t)) can be computed very
efficiently. This model has thus been widely applied, for instance
to fasten some model checking algorithms [61] or to model opinion
dynamics [71]. It can be extended to more coupled dynamics with
non-mean field dynamics, see for instance the interesting model of
probabilistic automata in [46].



3
S M A L L S Y S T E M S A N D R E F I N E D M E A N F I E L D

In this chapter, we describe a new approximation, called the refined
mean field approximation that we developed in a series of recent papers
[P20], [P16], [P23], [P22]. Compared to the classical mean field approx-
imation, this refined approximation depends on the system size N. It
converges to the classical mean field approximation when N goes to
infinity but is much more accurate for small system size (say N = 10
to N = 100).

In the remainder of the chapter, we first present the methodology
that we use to characterize how accurate is the classical mean field
approximation in Section 3.1. We then explain how we use this
characterization to propose a refined mean field approximation in
Section 3.2. We explain its relation to moment closure approximation
in Section 3.3. As an illustration, we discuss the application of these
methods to study load balancing strategies in Section 3.4. Finally,
we present an extension of these methods to synchronous mean field
models in Section 3.5.

3.1 accuracy of the classical mean field approximation

As argued in Section 2.3, mean field approximation is known to
be asymptotically exact for many systems. For these systems, the
fraction of objects in a given state i at time t, X(N)

i (t), converges to
a deterministic quantity xi(t), as the number of objects N goes to
infinity. The rate of convergence of X(N)

i to xi has been studied by
several papers, e.g. [8], [56], [95], that show that the expected distance
between the stochastic process X(N) and x is of the order of 1/

√
N:

E
[∥∥∥X(N) − x

∥∥∥] ≈ C√
N

. (3.1)

This result is a like a central-limit-theorem for mean field systems:
X(N)(t) is equal to x(t) plus 1/

√
N times a Gaussian noise [56]. It was

originally proven for finite time-horizon and more recently extended
to stationary distributions in [95].

Yet, we believe that Equation (3.1) does not fully explain the accuracy
of mean field approximation. As an example, we provide in Table 3.1
results obtained by simulation on how the mean field approximation
is accurate for the power of two-choice model (sometimes also called
shortest queue-2 or SQ(2)). We report the average queue length in

The two-choice
model is composed of
N identical servers.
Each server
maintains a separate
queue. When a job
arrives, two servers
are sampled at
random and the job
is allocated to a the
server that has the
shortest queue
among those two.
See also Section 3.4.

steady-state as a function of the number of servers N for ρ = 0.9,
denoted by mN , and its mean field approximation, denoted by m∞. We

15
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observe two facts: first, the mean field approximation is already very
accurate for N = 100, and second, the error made by the mean field
approximation is approximately 4/N which decreases much faster
than the 1/

√
N suggested by Equation (3.1).

Number of servers (N) 10 100 1000 +∞

Average queue length (mN) 2.81 2.39 2.36 2.35

Error (mN −m∞) 0.45 0.039 0.004 0

Table 3.1: Average queue length in the two-choice model. The values for a
finite number of servers N are obtained by simulation. The value
for N = +∞ is the mean field approximation.

This discrepancy comes from the fact that the error term mN is a
function of the expected value of X(N): mN = ∑∞

i=1 iE[X(N)
i ]. This fact

is quite general in the performance evaluation community where mean
field approximation is often used to estimate expected performance
metrics, that are often function of E[X(N)]. We therefore argue that
the metric used Equation (3.1) is not tight enough to measure how
accurate mean field approximation will be.

This leads us to focus on a different metric. Instead of studying the
distance between X(N)(t) and x(t) as in Equation (3.1), we study the
distance between the expectation of a function of X(N)(t) and its mean
field approximation. As a norm is a convex function, we expect the
latter to be smaller than the former. We show in fact that there is an
order of magnitude of difference: under mild conditions (essentially
the twice-differentiability of the drift function f ), this distance is of
order 1/N:

O
( 1

N

)
=
∥∥∥E
[
X(N)

]
− x
∥∥∥� E

[∥∥∥X(N) − x
∥∥∥] = O

( 1√
N

)
. (3.2)

This result holds for the transient regime and can be extended to the
stationary regime under the same conditions as [95].

This result shows that an expectation estimated via mean field
approximation is 1/N-accurate. This is what is observed in Ta-
ble 3.1, where the average queue length mN is approximately equal
to m∞ + 4/N. Equation (3.2) also explains the discrepancy between

We will describe
later Section 3.2 how

this “4” can be
computed by

numerical methods.

Figure 2.1 and Figure 2.2: the good agreement between the mean field
approximation and the simulation in Figure 2.1 is explained because
‖E[X(N)]− x‖ is small. On the other hand, Figure 2.2 shows that
E[‖X(N) − x‖] is still relatively large for N = 10.

Note that the metric Equation (3.2) has also been studied in [9]. In
this paper, the authors also obtain a O(1/N) rate of convergence for
another kind of mean field models. They call this metric the bias of
the approximation.
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3.1.1 Main Results

We now describe in more details the precise model under which the
above result holds. We consider population processes described by
the classical model of density-dependent population process that was
described in Section 2.2, that is, for each N, X(N) defines the evolution
of the stochastic process of size N and there exists a set of vectors
L ∈ E and a set of functions β` : E → R+ such that X(N) jumps from
x to x + `/N at rate NβN

` (x) for each ` ∈ L. The drift of the system
of size N is f N , defined by f N(x) = ∑`∈L `βN

` (x). We will denote by
f (x) = limN→∞ f N(x) the limit if it exists.

The 1/N-accuracy of the mean field approximation holds under
essentially two main assumptions:

(A0) X(N) is a density dependent population process on a Banach1

space E such that supx∈E ∑`∈L βN
` (x)‖l‖

2 < ∞.

(A1) The drift f is C2 (i.e., differentiable twice with a continuous
second derivative).

Note that (A0) is essentially a technical assumption that ensures that
the models that we study are well-defined. Assumption (A1) deserves
more discussion. Assuming that the drift is differentiable once is quite
classical to obtain mean field convergence (recall Section 2.3) even if
some results can be obtained for discontinuous drifts [P11]. Assuming

In particular (A1)
implies that the
ODE ẋ = f (x) is
well-defined and has
a unique solution
starting from any
initial condition. In
what follows we will
denote by Φtx the
value of this solution
at time t.

that the drift is twice differentiable is a more restrictive condition. It is
often verified by interaction models in which independent tuples of
agents can interact. It is often not verified when a centralized controller
is involved, as for example in the bandit optimal model of [88]. Yet,
this condition is almost necessary as we discuss in Section 3.1.3.

Using this result we obtain the following theorem:

Theorem 1 (Based of Theorems 3.1 and 3.3 of [P16]). Assume that X(N)

satisfies (A0) and (A1) and that there exists a constant c > 0 such that
‖E[X(N)(0)]− x‖ ≤ c/N and supx∈E ‖ f N(x)− f (x)‖ ≤ c/N. Then, for
each t, there exists a constant C(t) < ∞ such that∣∣∣E [X(N)(t)

]
−Φtx

∣∣∣ ≤ C(t)
N

. (3.3)

This theorem can be extended to the stationary regime under two
additional assumptions:

(A2) For each N, the stochastic process has a unique stationary distri-
bution.

1 In practice, the state spaces E that we use are mostly subsets of Rd for d < ∞. Yet, it
is sometimes convenient to consider infinite dimensional spaces, for instance when
considering a mean field limit of a queuing network in which queues are unbounded
(see for instance §3.4.1).
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(A3) The ODE ẋ = f (x) has a unique attractor π and this attractor
is exponentially stable, i.e. there exists a, b > 0 such that for all
x ∈ E and t > 0: ‖Φtx− π‖ ≤ ae−bt.

Again, Assumption (A2) is a very natural assumption that is needed
for our theorem to be stated. Assumption (A3) contains two sub-
assumptions: the existence of a unique attractor and its exponential
stability. As pointed out in Section 2.3.2, the existence of a unique
attractor is necessary to apply the classical concentration results of
for instance [8]. The exponential stability is slightly more restrictive
but is generally verified in practice. Moreover, as opposed to the
global stability, the exponential stability is in general easy to verify
numerically (for a finite dimensional space, it only depends on the
eigenvalues of the Jacobian at π). This means that our conditions are
not more difficult to verify than the ones of [8].

Theorem 2. In addition to the assumptions of Theorem 1, assume (A2) and
(A3). Then the constant C(t) in Theorem 1 is uniformly bounded in time. In
particular, there exists a constant C < ∞, such that:∣∣∣E(N)

[
X(N)

]
− π

∣∣∣ ≤ C
N

(3.4)

where E(N)[.] denotes the expectation with respect to the stationary distribu-
tion of the system of size N.

3.1.2 The Generator Method

We will not give a full proof of the above theorem but rather present
the theory behind and give the main ingredient of the proof. The
starting point of our result is to use a generator method similar to
the one developed in [54], [95] in a similar mean field context. There
are two main ingredients in the proof: The first is to show that the
generators of the stochastic system and the ODE are close; The second
is to translate this into a bound on the gap between E[h(X(N)(t))] and
h(Φtx). While the first one is relatively straightforward, the second
comes from a careful analysis how the solution of an ODE varies as a
function of its initial condition. This is where we use the assumption
(A1) of twice-differentiability. For the transient regime, this method is
close to the one used in [54]. For stationary regime, this method can be
related to the use of Stein’s method [80] whose use has been recently
popularized in [43], [17], [18]. This methodology has for instance then
been used in [95], [96] to establish the rate of convergence of stochastic
processes to their mean field approximation, in light or heavy traffic.

Let us denote by L(N) the generator of the system of size N and
by Λ the generator of the ODE. To a function h that is differentiable,
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these generators associates respectively the functions L(N)h and Λh
that are defined as

(L(N)h)(x) = ∑
`∈L

Nβ`(x)(h(x +
`

N
)− h(x))

(Λh)(x) = ∑
`∈L

β`(x)Dh(x) · ` = Dh(x) · f (x),

where Dh(x) is the derivative of the function h, evaluated in x.
The first idea of the proof is to remark that if the generator Λ is a

first-order Taylor expansion of the generator L(N). More precisely, if a
function g is twice-differentiable, then L(N)g converges to Λg at rate
N−1. Indeed:

(L(N) −Λ)gx = ∑
`∈L

β`(x)
(

N(g(x− `

N
)− g(x))− Dg(x) · `

)
=

1
2N ∑

`∈L
β`(x)D2g.(`⊗ `) + O(1/N2). (3.5)

The second step of the proof is to use the following equality (referred

Recall that Φtx is
the solution of the
equation at time t
that starts in x. The
twice-
differentiability of
Φt means that the
solution of an ODE
is twice-differentiable
function of its initial
condition.

as a “standard trick” in [54]) to obtain:

E
[
X(N)(t)−Φtx

]
= −E

[∫ t

0
(Λ−L(N))Φs(X(N)(t−s))ds

]
. (3.6)

Theorem 1 follows from applying Equations (3.5) with g = Φt to

Equation (3.6) is
obtained by studying
the function r(s) =
E[Φs(X(N)(t− s))]:
the right hand side of
Equation (3.6) is
r(0)− r(t) while the
left hand side is∫ t

0 r′(s)ds.

(3.6). To show that, one needs to show that Φs is twice-differentiable
function which is a classical result in analysis.

The proof of Theorem 2 consists in looking at the limit of Equa-
tion 3.6 as t goes to infinity. This equation is replaced by

E
[
X(N) − π

]
= −E

[
(Λ− L(N))

∫ ∞

0
Φs(X(N))ds

]
, (3.7)

where the above expectation represents the expectation with respect
to the stationary measure of X(N).

Theorem 2 then follows by using Equations (3.5) with g =
∫ ∞

0 Φtdt.
Again, a careful analysis of the dynamical system shows that this
function is twice differentiable when this ODE has an exponentially
stable attractor, see for example [P16], [95].

3.1.3 Necessity of Twice-Differentiability

The main assumption that is used to obtain the rate of convergence of
1/
√

N of Equation (3.1) is to have a Lipschitz-continuous drift. On the
other hand, our results Theorem 1 and Theorem 2 require the drift to
be twice differentiable. It is quite natural to wonder about the necessity
of this assumption.

The rate of 1/
√

N is
also true with a
one-sided
Lipschitz-continuity,
see e.g. [P11].

In [P16], we relax slightly the assumption of twice-differentiability
and show that when the derivative of the drift is α-Hölder continuous,
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then the convergence occurs at rate O(1/
√

N
1+α

). We also provide a

Recall that a
function is α-Hölder

continuous if there
exists a constant L

such that for all x, y:
‖ f (x)− f (y)‖ ≤

L‖x− y‖α. The case
α = 1 corresponds to
Lipschitz-continuity.

numerical example that shows that in general this exponent is tight
and that having a Lipschitz-continuous drift is not sufficient to obtain
Equation (3.2). This implies that only Lipschitz-continuity is not
sufficient to guarantee a 1/N-accuracy of the mean field estimates.

3.2 system-size expansions

Theorem 1 and 2 provides bounds that guarantees that an expected
value is at most from a distance of order 1/N of its mean field approx-
imation. In [P23], [P20], we show that this rate of convergence is exact.
More precisely, we show that under assumptions (A0) and (A1), for
any t > 0, there exists a constant V(t) such that

lim
N→∞

N(E
[
X(N)(t)

]
−Φtx) = V(t). (3.8)

Under assumptions (A2) and (A3) the result also holds for the station-
ary regime (t = +∞).

While replacing the inequalities of the Theorems 1 and 2 is not
difficult, the major contributions of [P23], [P20] is to show that V(t)
can be easily computed numerically: when t > 0 this constant satisfies
a (time-varying) linear differential equation. For t = +∞, this constant
is the solution of a linear system. The refined approximation that
we propose consists in approximating E[X(N)(t)] by its mean field
approximation plus the 1/N term:

E
[
X(N)(t)

]
≈ Φtx +

1
N

V(t). (3.9)

By using several examples, we show in that this refined approximation
is remarkably accurate, even for small system sizes such as N = 10.
We will provide numerical examples illustrating this in Section 3.4.

Note that Equation (3.9) can be viewed as a first order Taylor expan-
sion of the classical mean field approximation. We also show in [P20]
that it is possible to obtain a second order expansion E[X(N)(t)] ≈
Φtx + 1

N V(t) + 1
N2 A(t), and characterize a differential equation satis-

fied by A(t). To ease the presentation, in the part below, we describe
briefly how the first term V(t) can be derived, by using the moment
method that we developed in [P20].

3.2.1 Derivation of the Refined Mean Field Approximation

Before stating the main theorem and giving an idea of the proof,
let us introduce some important notations. In the proof bellow, the
quantities V(t), W(t) . . . denote time-varying tensors but we will drop
the dependence on t and simply write V, W, F, Q in order to simplify
notation. For i, j, k, the quantities Fi

j and Fi
jk denote the first and second
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derivative of the ith component of the drift f evaluated at Φtx (recall
that Φtx is value at time t of the solution of the ODE ẋ = f (x)):

Fi
j =

∂ fi

∂xj
(Φtx) and Fi

jk =
∂2 fi

(∂xj)(∂xk)
(Φtx)

Similarly, Hj and Hjk denote the first and second derivatives of a
function h evaluated at Φtx. Last we define the time varying tensor Q
as

Qij = ∑
`∈L

β`(Φtx)`i`j.

Using this notation, the constant expressed by Equation (3.8) can
be restated in the following theorem, that also shows the equations
satisfied by the constants V and W.

Theorem 3 (Theorem 1 of [P20]). Assume that the model satisfies (A0)
and (A1) and that X(N)(0) = x. Then there exists time-varying tensors V(t)
and W(t) such that for any differentiable function h:

lim
N→∞

N(E
[

h(X(N)(t))
]
− h(Φtx)) = ∑

j
HjV j(t) +

1
2 ∑

jk
HjkW jk(t).

(3.10)

Moreover, V and W satisfy the following set of linear differential equations:

V̇i = ∑
j

Fi
j V

j +
1
2 ∑

jk
Fi

jkW jk (3.11)

Ẇ ij = ∑
k
(Fi

kWkj + Fj
kWkj) + Qij. (3.12)

If the model also satisfies (A2) and (A3), then the above differential equations
(3.11-3.12) have a unique fixed point and Equation (3.10) holds uniformly
for all time t ∈ R+ ∪ {∞}.

Note that in [P20], we also derive a second order expansion in 1/N2.
The theorem below states the existence of the constants corresponding
to the second order expansion. To compute the 1/N expansion of
Theorem 3, the above differential equation depends on the first and
second derivatives of the drift. In the theorem below, we do not
present the exact form of the differential equation but it is to be noted
that in order to compute the second order expansion in 1/N2, one
need to consider up to the fourth derivative.

Theorem 4 (Theorem 1 of [P20]). In addition of the assumptions of Theo-
rem 3, assume that the drift and the function h are four times differentiable.
Then there exists time-varying tensors A(t), B(t), C(t) and D(t) of respec-
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tive sizes d, d × d, d × d × d and d × d × d × d such that for any time
t > 0:

lim
N→∞

N2

(
E
[

h(X(N)(t))
]
−Φtx−

1
N

(
∑

j
HjV j(t) +

1
2 ∑

jk
HijW jk(t)

))

= ∑
j

Hj Aj(t) +
1
2 ∑

jk
HjkBjk(t) +

1
6 ∑

jk`
Hjk`Cjk`(t) +

1
24 ∑

jk`m
Hjk`mDjk`m(t)

These tensors satisfy time-dependent ordinary differential equation similar
to that of V and W of Theorem 3. Moreover, if the model also satisfies (A2)
and (A3), then these differential equations have a unique fixed point and the
above equation holds uniformly for all time t ∈ R+ ∪ {∞}.

The proof of Theorem 3 and Theorem 4 that we provide in [P20] is
decomposed in two parts. First, we establish the existence of the above
constants. This is similar to what we presented in Section 3.1.2 and
we will not recall here. In a second part, we show that the constant
satisfies the above equation. This second part is more original and
we present it here. For the sake of conciseness, the only present the
derivation of the first order equation Theorem 3. We refer to [P20] for
a full derivation of the second order expansion.

The main idea of the proof of [P20] is to compute the derivatives of
the moments of X(N) −Φtx with respect to time. For the first moment,

d
dt

E
[

X(N)
i (t)− (Φt(x))i

]
= E

[
fi(X(N)(t))− fi(x)

]
(3.13)

Applying Equation 3.10 to the above equation shows that

Recall that X(N)

jumps from X to
X + `/N at rate

Nβ`(x) that that
f (x) = ∑` `β`(x).

lim
N→∞

NE
[

fi(X(N)(t))− fi(x)
]
= ∑

j
Fi

j V
j +

1
2 ∑

jk
Fi

jkW jk.

This gives Equation (3.11).
For the second moment, let us simplify the notation by denot-

ing x = Φtx. The evolution of the stochastic process (X(N)
i (t) −

(Φt(x))i)(X(N)
j (t)− (Φt(x))j) can be decomposed in two parts. On

the one hand, it jumps from (Xi− xi)(Xj− xj) to (Xi + `i/N− xi)(Xj +

`j/N − x) at rate βN(X). This translates into a change of

(Xi +
`i

N
− xi)(Xj +

`j

N
− xj)− (Xi − xi)(Xj − xj)

=
1
N
(Xi − xi)`j +

1
N
(Xj − xj)`i +

1
N2 `i`j.

Summing over all possible transitions leads to an average variation of

(Xi − xi) f j(X) + (Xj − xj) fi(X) +
1
N

β`(X)`i`j

On the other hand, Φtx satisfies a differential equation with drift f ,
that leads to a variation of

− fi(x)(Xj − xj)− (Xi − xi) f j(x)
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Summing the above two terms shows that

d
dt

E
[
(X(N)

i (t)− (Φt(x))i)(X(N)
j (t)− (Φt(x))j)

]
= E

[
(Xi − xi)( f j(X)− f j(x)) + (Xj − xj)( fi(X)− fi(x)) +

1
N

β`(X)`i`j

]
.

As for Equation (3.11), applying Equation 3.10 leads to the above
equation leads after some computation to Equation (3.12).

From this point, it should be clear that an extension of the above
method to higher order moments is possible but will lead to much
more complicated derivations. In [P20], we derive the expressions
for the third and fourth moments which are necessary to obtain the
1/N2 term of the expansion. This derivation was made possible by
using compact tensor notations and Einstein summation convention
(summation over a set of repeated indices). Thanks to this method,
we obtain a characterization of the 1/N2 constant that, despite being
hard to interpret (see the equations for A, B, C, D in [P20, Theorem 1]),
can be easily solved numerically.

3.2.2 Numerical Implementation

In order to ease the applicability of the above method, we implemented
a numerical library in Python that constructs and solves the above
equation. The library is available at https://github.com/ngast/rmf_
tool/ [P18]. It takes as an input a description of the model and uses
symbolic differentiation to construct the derivatives of the drift and of
the functions Q and R.

For the transient analysis, the computation of V(t), W(t), . . . re-
quires a numerical integration of an ordinary differential equation.
To do so, we use the function tensor manipulation routines of the
library numpy (like tensordot or reshape) to transform our com-
plex tensor equation into numpy arrays. We then use the function
integrate.solve_ivp of the library scipy [50] to numerically inte-
grate the ODEs for computing V(t) and W(t) of Theorem 1. For the
steady-state analysis, the tool uses the python library scipy.sparse

to construct a sparse system of linear equations and the function
scipy.sparse.linalg.lgmres to solve the sparse linear system.

A detail analysis of the computation time taken by the method is
performed in [P20, §4.3.4 and Figure 1]. In brief, it shows that the
computation of the 1/N-terms V(t) and W(t) can be done for models
with hundreds of dimensions in less than 10 seconds. With the same
constraints of 10 seconds, the 1/N2-terms can be computed for models
with a few tens of dimensions. Moreover, computing the time-varying
constants for the transient regime is more costly than solving the
fixed point equations: For a given computation-time budget, one can
compute the steady-state constants for a system of doubled size.

https://github.com/ngast/rmf_tool/
https://github.com/ngast/rmf_tool/
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3.3 relation with moment-closure approximation

An alternative way to derive the refined mean field approximation is
to reason in terms of moment closure approximation. Moment closure
techniques are used in numerous papers in the theoretical biology
literature, e.g. [76], [2], [38], [78], [74], [42]. We refer to [55] for a recent
review on the subject. In [39], it is argued that the moment closure
of order 2 provides the same O(1/N) term as the refined mean field.
This relates to a previous result of the same authors [40] where the
authors develop an approximation similar to the one of [P23].

Let us consider a density dependent population process X. As
written in Equation (3.13), the derivation of the expectation of X(N)

satisfies:
d
dt

E [X(t)] = ∑
`∈L

`E [β`(X(t))] = E [ f (X(t))]. (3.14)

The above equation is exact but if f is not a linear function, the above
differential equation is not closed, because it is impossible to express
E[ f (X(t))] as a function of E[X(t)]. For example if f is a polynomial
of degree 2, f (X) = Ax + xTBx, the expectation E[ f (X(t))] involves
the second moment of X.

Note that f (x) is a
polynomial of degree
2 in all the examples

of the manuscript
except for the power

of d choices with
d ≥ 3 where f is a

polynomial of degree
d.

There are two solutions to close the ODE (3.14). The first leads to the
mean field approximation and consists in approximating E[ f (X(t))]
by f (E[X(t)]). The second solution is to consider higher moments of
X(t). For instance, the second moment evolves as:

d
dt

E
[
X(t)X(t)T

]
= ∑

`∈L
E

[(
X(t)`T + `X(t)T +

1
N
``T
)

β`(X(t))
]

= E

[
X(t) f (X(t))T + f (X(t))X(t)T +

1
N

Q(X(t))
]

, (3.15)

where Q(x) is defined as Q(x) := ∑` ``
T β`(x).

Again, the above equations is exact but is not closed if f is not a
linear function. For instance, if f is a polynomial of order 2, the right
hand side of this equation involves the third moment of X(t). This
process can be continued: the derivative with respect to time of the
kth moment will depend on the (k + 1)th moment.

The idea of moment closure approximation is to artificially close the
equation by approximating a moment of order k + 1 by lower order
moments. A natural way to do this is to assume that the (k + 1)th
central moment is equal to 0. For instance, the moment closure of
order 2 consists in approximating the third central moment by 0: for
any i, j, k:

E
[
(Xi −E [Xi])(Xj −E

[
Xj
]
)(Xk −E [Xk])

]
≈ 0.

Said otherwise, we obtain a moment closure of order 2 by replacing in
Equation (3.15) the terms E[XiXjXk] by

E
[
XiXj

]
E [Xk] + E [XiXk]E

[
Xj
]
+ E

[
XjXk

]
E [Xi]− 2E [Xi]E

[
Xj
]
E [Xk]
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The relation between moment closure and our refined mean field
approximation is not a priori straightforward. In fact, our approach
can be used to justify that moment closure provides estimates that are
more accurate than the classical mean field approximation. To see that,
let us compute what we loose by neglecting the third central moment
E[(X−E[X])] ≈ 0. The third central moment is equal to:

E
[
(X−E [X])3] = E

[
(X− x)3]+ 3E

[
(X− x)2](x−E [X])

+ 3E [(X− x)](x−E [X])2 + (x−E [X])3

Denoting by x the mean field approximation, Theorem 3 shows that
E[X] − x = O(1/N), E[(X− x)2] = O(1/N) and E[(X− x)3] =

O(1/N2). This shows that the third central moment is of order 1/N2

which implies that neglecting the third central moment provides an
approximation that is 1/N2-accurate (approximation 2MA of [39]).

Similarly, it can be shown that the fourth central moments is of
order O(1/N2) and that the fifth central moment is of order O(1/N3).
Hence, to obtain an approximation that is an order of magnitude better
(1/N3-accurate), one should not neglect the fourth moment but only
the fifth moment. Neglecting the fourth moment (approximation 3MA
of [39]) leads to a approximation that is O(1/N2)-accurate, similarly
to the approximation 2MA.

3.4 application to load balancing

In this section, we show how this refined mean field approximation
can be applied to study load balancing strategies. In particular, we
show that it is much more accurate than the classical mean field
approximation, especially for small system sizes and that it allows to
distinguish models that could not be distinguished before, such as the
impact of choosing with or without replacement (see Section 3.4.4).

The analysis of load balancing strategies in server farms is an impor-
tant area of application of mean field approximation. Such a system
is composed of a large number of servers that interact because of
scheduling or routing strategies [P10], [63], [67], [82], [90], [66]. A
typical example is the power of two-choice: Mean field approximation
has been used in [67], [90] to show that, with an infinite number of
servers N, routing a task to the least loaded of two randomly sampled
servers significantly reduces the response time compared to a purely
random allocation. In this part, we revisit this problem by looking at
what happens when the number of servers N is not infinite.

3.4.1 Load Balancing Strategies

We consider a system composed of N identical servers. Jobs arrive at
the system according to a Poisson process of rate ρN. The service time
of each job is exponentially distributed of mean 1. In this part, we will
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compare different strategies to allocate jobs to servers. These policies
are often called load balancing strategies as their goal is to balance the
load among servers. In the remaining of this section, we will compare
two resource allocation strategies:

• d-choice policy of [67], [90] – For each incoming job, two servers
are picked at random. The jobs is allocated to the server with
the smallest queue size and are then processed in a “first come
first served” order.

• Pull-push model of [66] – Jobs are allocated purely at random to
servers. When a server is idle, it asks an other server at random
and pull one job for this queue if this server has 2 or more jobs.
This takes a random time that is exponentially distributed of
parameter r.

Our goal is particularly to understand, for a given system size N and
load ρ, what is quantitatively the impact of choosing one or the other
strategy. The classical mean field approximation does not allow one
to distinguish between different system size. We will show that our
refined approximation does.

3.4.2 Model and Mean Field Approximation

We first describe in more details the model and its classical mean field
approximation. Let X(N)

i (t) denote the fraction of servers with queue
size at least i at time t. As the role of each server is symmetrical, X(N)(t)
is a Markov chain whose transitions are as follows. A departure from
a server with i ≥ 1 jobs modifies X into X − N−1ei and occurs at
rate N(Xi − Xi+1). A pull from a queue with i jobs modifies X into
X+ N−1(−ei + e1) and occurs at rate r(1−X0)(Xi−Xi+1). An arrival
at a queue with i jobs modifies X into X + N−1ei and occurs at a rate
depending on the allocation strategy. If the arrival are routed purely
at random, this occurs at rate Nρ(Xi+1 − Xi). If an arrival is routed to
the least loaded of d servers, then it depends whether the servers are
picked with or without replacement. With replacement, this occurs at
rate Nρ(Xd

i+1 − Xd
i ).

The mean field approximation are the solution of the ODE ẋ = f (x)
where the drifts are: for the d-choice model:

fi(x) = ρ(xd
i−1 − xd

i ) + (xi+1 − xi). (3.16)

For the push-pull models:

fi(x) =

{
ρ(xi−1 − xi) + (xi+1 − xi)− r(xi−1 − xi)(1− x1) if i ≥ 2

ρ(1− x1) + (x2 − x1) + rx1(1− x1) if i = 1.

Note that for ρ < 1 and r > 0, these two models have a unique
stationary fixed to which all trajectories converge. This can be shown
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by monotonocity arguments as in [67], [66] or also by using a Lyapunov
function as in [67].

3.4.3 Accuracy of the Refined Mean Field

As said earlier, the mean field approximation is asymptotically exact
as the number of servers N goes to infinity. This has been used in the
literature to predict what will be the average queue length of such a
system, which for these models is ∑i≥1 E[Xi]. As an illustration, we
show in Table 3.2 the expected queue length predicted by the mean
field approximation, i.e., the value of ∑i≥1 πi where π is the fixed
point of the corresponding policy.

Load ρ = 0.8 ρ = 0.9 ρ = 0.95

Expected queue length (push-pull) 1.3333 1.6364 1.8095

Expected queue length (two-choice) 1.5579 2.3527 3.2139

Table 3.2: Expected Queue Length Predicted by the Mean Field Approxima-
tion for the two load balancing policies. For the push pull policy,
we choose a pooling rate of r = 1/(1− ρ).

The values presented in Table 3.2 represent the theoretical that one
would observe in such a system if the number of servers was infinite.
For small system size, these numbers can be quite far from the reality.
For instance, a simulation of the push-pull model for N = 10 and
ρ = 0.9 suggests that the expected queue length is closer to 2.30 which
is 45% larger than the 1.64 predicted by the mean field approximation.
This discrepancy is simply due to the fact that N = 10 is far from
infinity. Yet, as we show below, the refined mean field allows one to
obtain an approximation that is much more accurate.

To that, we replace the mean field expected queue length ∑i≥1 πi
by its refined version ∑i≥1 πi +

1
N ∑i≥1 Vi where Vi is the constant of

Theorem 3. We report the values in Table 3.3 where we compare the
refined mean field approximation with expected queue length that
have been computed by simulation.

N 10 20 50 100 +∞

Simulation (two-choice) 2.8040 2.5665 2.4344 2.3931 –

Refined mean field 2.7513 2.5520 2.4324 2.3925 2.3527

Simulation (pull-push) 2.3043 1.9700 1.7681 1.7023 –

Refined mean field 2.2945 1.9654 1.7680 1.7022 1.6364

Table 3.3: Expected queue length as a function of the system size N. We
compare the refined mean field with the values that having com-
puted by simulation. We choose ρ = 0.90 and r = 1/(1− ρ) for
the pull-push.
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This table illustrates that the refined approximation is much more
accurate that the classical mean field approximation. While this table
illustrates the accuracy with only two examples and one load ρ, we
have shown that the good accuracy of the refined mean field by using
other load balancing or coupon replication model in [P23] or simple
epidemic examples in [P20].

3.4.4 Impact of Choosing With or Without Replacement

In addition to being more accurate, the refined approximation allows
us to quantify the impact of phenomena that are indistinguishable by
the classical mean field approximation. As an illustration, let us zoom
on the two-choice model. When an incoming job arrives, two servers
are sampled. In the literature, authors rarely distinguish if the two
servers must be distinct or not, or said otherwise: if the two servers
are sampled with or without replacement.

The reason for doing the distinction is that the two models coincide
as N goes to infinity and are therefore indistinguishable by a mean
field approximation. Indeed, the probability that least loaded of two
randomly chosen servers has i− 1 jobs is X2

i−1 − X2
i if the two servers

are picked with replacement but is equal to (Xi−1
NXi−1−1

N−1 − Xi
NXi−1

N−1 )

if the two servers must be distinct. As N goes to infinity, the two cases
differ by a 1/N-term.

As shown in [P23], Theorem 3 can be refined to show that the
expected queue length is equal to

∑
i≥1

E
[

X(N)
i

]
= ∑

i≥1
πi +

1
N ∑

i≥1
Vi −

1
N ∑

i≥1
Ei + O

(
1

N2

)
, (3.17)

where Vi is the refined constant of the classical two-choice (with
replacement) and E is equal to :

Ei =
∞

∑
i=1

i−1

∑
j=1

(1− πj)2i−j−1ρ2i−2j
=

∞

∑
j=1

∞

∑
i=1

(ρ2i+j−2j − ρ2i+j−1)2i−1

N = 10 N = 20 N = 50

with replac. 2.820 (rmf=2.751) 2.574 (rmf=2.552) 2.431 (rmf=2.432)

without replac. 2.705 (rmf=2.630) 2.502 (rmf=2.491) 2.406 (rmf=2.408)

with-without 0.115 (rmf=0.121) 0.073 (rmf=0.061) 0.026 (rmf=0.024)

Table 3.4: Two-choice : comparison with and without replacement. The val-
ues in parenthesis (rmf=·) correspond to the refined mean field
approximation, the others to the values obtained by simulation.
The rows “with-without” are the difference between “with replace-
ment” and “without replacement”.
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d ρ Mean field 1/N-expansion 1/N2-expansion Simulation

2 0.9 2.3527 2.7513 2.8045 2.8003

2 0.95 3.2139 4.1017 4.3265 4.2993

3 0.9 1.8251 2.2364 2.3322 2.3143

3 0.95 2.4084 3.3090 3.7604 3.5996

Table 3.5: d-choice model. Steady-state average queue length : comparison of
the value computed by simulation with the three approximations
(mean field and refined mean field of order 1/N and 1/N2). The
system is composed of N = 10 servers.

As an illustration, we compare in Table 3.4 the refined approxima-
tion and values obtained by simulation for various values of ρ = 0.90
and different values of N. We observe that in most cases, the error
E/N is a good predictor of the impact of choosing with or without
replacement. We also observe that the value E/N tends to be smaller
than the error term of the refined approximation V/N. This also
explains why the impact of choosing with or without replacement has
been overlooked in the literature: its impact is smaller than the error
made by considering a mean field approximation.

3.4.5 Second Order Expansion

Theorem 3 can be extended to derive a second order expansion term
(Theorem 4). For the steady-state estimation, this shows that

E
[

X(N)
i

]
= πi +

1
N

Vi +
1

N2 Ai + O
(

1
N3

)
.

Our conclusion from [P20] is that while adding the 1/N2 tends to
improve the accuracy for many models, it is not always the case. In
general, most of the gain in terms of accuracy are brought by the
1/N-term. As the 1/N2-term is much more expensive to compute
than the 1/N term, we believe that when the 1/N2-expansion is too
hard to compute, staying with the 1/N-expansion is already sufficient
for many models.

As an illustration we compare in Table 3.5 the accuracy of three
approximation (mean field, refined mean field with a 1/N term and
refined mean field with also the 1/N2 term). In the case of the two-
choice model (d = 2), adding a third order expansion seems to be
beneficial and provides a more accurate estimate. On the contrary, for
d = 3 and ρ = 0.95, the 1/N2 term seems to over-correct and provides
an estimate that is not clearly better than the classical 1/N expansion.
Note that this table only report values for N = 10. For larger values
of N, the 1/N and 1/N2 expansion quickly coincide.

It can be shown that the fixed point of the two-choice model satisfies
πi = ρ2i−1

and that therefore the mean field expected queue length
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∑i≥1 πi is of order − log2(1− ρ). Based on our extensive simulations,
we conjecture that the first order correction term of the refined mean
field approximation is approximately equal to ∑i≥1 Vi ≈ ρ2/(2(1− ρ))

and that the second order approximation is ∑i≥1 Ai ≈ 1/(20(1− ρ)2).
This suggests that the average queue length of the two choice model
is approximately equal to a(N, ρ):

a(N, ρ) =
∞

∑
i=1

2ρi−1
+

ρ2

2N(1− ρ)
+

1
20N2(1− ρ)2 (3.18)

While the first term is of order log 1
1−ρ , the second term is of order

1/(1− ρ) when N is not too large. Hence, the above formula suggests
that for a fixed N, the mean field approximation becomes less and less
accurate as ρ approaches 1. This is what is observed in practice.

3.4.6 Transient Analysis

Theorem 3 shows that the refined mean field can be also be applied
to study the transient regime of such a system. To illustrate this,
we study how the expected queue length evolves with time in the
two-choice model. The expected queue length can be expressed as

∑i≥1 E[X(N)
i (t)]. We choose the load ρ = 0.9 or ρ = 0.95. We choose

an initial condition that depends on the load: for ρ = 0.90, out of the
N queues, 0.2N queues start with 2 jobs and 0.8N queues start with 3
jobs; For ρ = 0.95, 0.5N queues start with 3 jobs and 0.5N queues start
with 4 jobs. We choose this value as it is close to refined steady-state
values (2.75 for ρ = 0.9 and 4.1 for ρ = 0.95).
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N = 10, ρ = 0.9, d = 2. N = 10, ρ = 0.95, d = 2

X(0) = (1, 1, 0.8, 0, . . . ) X(0) = (1, 1, 1, 0.5, 0, . . . )

Figure 3.1: Two-choice model and transient regime: Comparison of the clas-
sical mean field approximation and the two expansions with data
from simulations.

In Figure 3.1, we report how the expected queue length evolve
with time compared to the three approximation (mean field, 1/N-
approximation and 1/N2-approximation). The blue region indicate
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a 95% confidence interval. We observe in this figure, the expansions
provide an estimation of the evolution of the expected queue length
that is much more accurate than the one provided by the classical
mean field approximation. The 1/N2-expansion provides a better
approximation than the 1/N-expansion. For larger values like N ≥ 20,
the expansion 1/N and 1/N2 are almost indistinguishable.

For the simulation of the transient regime, the running time of obtain
one trajectory of simulation by using an optimize C++ simulator is
approximately 0.05sec for N = 10 (and it grows linearly with N). The
results represented in Figure 3.1 are averages over 105 simulations
which represents roughly 1h of computation for each of the two panels.
As a comparison, the total time to compute the expansion of order
1/N2 is about 10 seconds (and does not depend on N), and the time
to compute the expansion of order 1/N is less than 1 second (using
our python’s implementation).

3.5 extensions and open question

In this chapter, we present our results on two refinements of the mean
field approximation. These approximations consists in adding a term
in 1/N and potentially a second term 1/N2 where N is the size of the
system. This result can be applied to a large class of models and are
valid for the transient and stationary regime. Our examples show that
the refined mean field approximation is much more accurate than the
classical mean field approximation, especially for moderate system
sizes (say N = 10 to N = 100).

The accuracy of the refined approximation leads to think that this
refined approximation has potential applications in many domains.
For some models, our results can be readily applied, especially by
using our numerical implementation in [P18]. For some others, there
remains a number challenges to solve and in particular regarding the
extension to other population models.

• Synchronous population model – The extension of our results
to the model that we described in Section 2.5 is quite natural. In
[P22], we have developed a refined mean field approximation
for such a model. The refined constant V(t) is described by a
linear recurrence equation instead of an ordinary differential
equation. Our method to obtain this result is similar and also
uses the computation of moments.

• Multi-scale systems – Multiple time-scale typically arise when
a resource shared by everyone changes state at a faster evolution
than each agent. This occurs for instance when a centralized
controller interacts with a mass of agents by sending distributed
control signals. The classical model of [8] can model such sys-
tems by considering a time-averaging method. Given the impor-
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tance of such models in communication protocols, extending is
an important open question.

• Heterogeneous systems – Many systems are non-uniform. This
is the case for the example of caching example that we described
in Section 2.1. For now, we do not have theoretical ground to
explain why a refined mean field approximation would work in
such a system. Yet, we will show in Chapter 4 that it is possible
to derive such an approximation for this system that improves
the accuracy compared to the classical mean field model.

• Non-Markovian dynamics – A typical application is the study
of load balancing systems with non-exponential service time.
Such systems have been for instance studied in [16], [1] by using
a PDE approach for the transient regime or a method called the
queue at the cavity for the stationary regime. We believe that the
moment closure approach could be used to propose a refined
cavity method.

Finally, one could ask whether it is worth looking at higher order
expansion terms in 1/N3 or more. From a theoretical point of view, our
method of moments could be directly extended to high moments, at
the price of probably extremely complex derivations. From a practical
point of view, when we compare the accuracy of the classical mean
field approximation to the one of the expansions of order 1/N and
1/N2, most of the gain in terms of accuracy are brought by the 1/N-
term. Hence, we doubt that higher order expansions can have a real
practical interest.
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H E T E R O G E N E O U S M O D E L S A N D C A C H E
A L G O R I T H M S

In this chapter, we study a class of cache replacement policies, called
RAND(m), LRU(m). This algorithms are adapt dynamically the con-
tent of the cache to the observed popularity of items without the need
of learning it. One originality of this model is that it is a heterogeneous
population model.

Most of the results on mean field approximation assume an homo-
geneous population of agents. A natural extension of such a model
is to consider that the population of agents can be clustered into a
finite of number of classes with a large number of agents per class.
This is what we did in Section 2.1. Yet, this model of a finite number
of classes is often unrealistic and this is especially true for caching
models where items are often assumed to have a Zipf popularity. In
this chapter, we develop results on heterogeneous mean field that
show that it is not necessary to use clustering to apply mean field
approximation.

roadmap The chapter is organized as follows. After presenting
the model in Section 4.1, we present an exact steady-state analysis
in Section 4.2. This exact analysis allows us to disprove conjectures
that date from the 80s. We then present a heterogeneous mean field
approximation in Section 4.3 as well as a (partial) proof of its accuracy
based on stochastic approximation. We then show how to compute
a refined approximation in Section 4.4. Finally, we present some
extensions and future work in Section 4.5.

The results contained in this chapter come from [P26] for the first
analysis, from the recently submitted paper [P3] for the refined ap-
proximation and for [P25] for the extensions to LRU. It also covers
some of the materials of [P15], [P28], [P27].

4.1 the rand(m) policies and variants

In this section we introduce a family of replacement algorithms,
called RAND(m). The RAND(m) policy is a generalization of the
RANDOM policy introduced in Section 2.1. It makes use of h lists.
m = (m1, m2, . . . , mh) is a tuple of integers where and mi ≥ 1 denotes
the size of the ith list. Items enter the set of lists via List 1 and when-
ever requested while being part of List i they move up one list. More
specifically, one of the following three events occurs when an item,
say item k, is requested at some point in time:

33
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1. If Item k is not in any of the lists (miss) – in this case item k is
inserted in List 1 by replacing a random item from this list.

2. If Item k is in List i < h (hit) – it this case, it is exchanged with
an item from List i + 1 (picked at random).

3. If Item k is in List h (hit) – no changes are made.

Note: the behavior described above implicitly assume that the cache is
always full. When the cache contains fewer elements that its capacity,
we consider that the remaining capacity is filled with “dummy” items
that will progressively leave the cache as they are replaced by “real”
items.

As in Section 2.1, we assume the IRM model: the requests of Item k
arrive according to a Poisson process of intensity λk. Without loss of
generality, we assume that ∑n

k=1 λk = 1 so that λk is also the probability
that a given request is for item k. All items have the same size and
the cache has size m = ∑h

i=1 mi. Note that two classical policies can be
represented by this model:

• RANDOM – The case with a single list m = (m) corresponds to
the RANDOM policy.

• CLIMB – The case where all lists have size 1, m = (1, . . . , 1), is
called the CLIMB algorithm or the TRANSPOSITION rule in the
literature [79], [44].

The RAND(m) policy can be obtained by slightly modifying a family
of replacement algorithms introduced in [3]. We also studied variants
of this policy where the RANDOM exchanges are replaced by FIFO or
LRU. This leads to the policies FIFO(m) in [P26] or LRU(m) in [P25].

4.2 exact steady-state analysis

4.2.1 The Product-form Stationary Measure

Let Yi(t) be the set of items that are in the ith list at time t (with
1 ≤ i ≤ h). It should be clear that, under the RAND(m) policy, Y is
a continuous time Markov chain that evolves in a state space Y(m).An element of Y(m)

is a tuple
y = (y1 . . . yh) such
that yi is a subset of

{1 . . . N} that
contains exactly mi

element where all the
subsets yi are

disjoint.

Our first result [P26, Theorem 1] is an exact characterization of the
steady-state distribution of Y. We show that it satisfies a product-form:

π(y) =
1

Z(m)

h

∏
i=1

∑
k∈yi

(λk)
i, (4.1)

where Z(m) is a normalization constant: Z(m) = ∑y∈Y(m) ∏h
i=1 ∑k∈yi

λi
k.

The proof of this result is quite direct and uses the reversibility of
the process Y. The above formula notably generalizes the formula of
CLIMB and RANDOM of [35], [53].
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4.2.2 Hit Probability and Numerical Algorithms

In Equation (4.2),
∑h

i=1 ∑k∈yi
λk is the

probability that a
request item is in the
cache when the cache
state is y.

The steady-state hit probability is the probability than when an item
is requested, this item is found in the cache. By using Equation (4.1),
it can be written

Hit(m) = ∑
y∈Y(m)

π(y)
h

∑
i=1

∑
k∈yi

λk. (4.2)

While plugging Equation (4.1) into this formula could be called a
closed form expression, a direct computation of the hit probability
using this formula is prohibitive because the number of configuration
Y(m) is extremely large.

We show in [P26, Section 4.2] this computation is possible by using
dynamic programming. The idea is that the hit probability of a popu-
lation of N items and lists sizes m lists can be expressed recursively
as a function of the hit probabilities of the systems with N − 1 items
and list sizes m− ei. The derivation of the recursive formula is rather
easy once the good notations are chosen. The main difficult for imple-
menting it is to avoid underflow. More details can be found in [P26,
Section 4.2].

4.2.3 CLIMB is not Optimal

By using Equation (4.2) and a variant of the FKG inequality [32] that
can be found in [10], we show that among all RAND(m) variants that
use a cache of size m, having a single list m = (m) always leads to the
lowest hit probability. Said otherwise, RAND(m) always outperform
RANDOM. It is tempting to conjecture that separating a list into two
smaller lists always improves the performance and that the CLIMB
algorithm, that is, having m lists of size 1, achieves the lowest miss
rate within this class. In [3, p135] an even stronger conjecture is
presented that states that CLIMB is optimal under the IRM model for
all finite-memory demand replacement algorithms.

policy m Miss probability

Optimal RAND(1,1,4) 0.005284

RAND(1,1,3,1) 0.005299

RAND(1,1,1,3) 0.005338

CLIMB RAND(1,1,1,1,1,1) 0.005348

LRU LRU(6) 0.005880

RANDOM RAND(6) 0.015350

Table 4.1: Counter-example that shows that CLIMB is not optimal for the
IRM model: p = (49, 49, 49, 49, 7, 1, 1)/205 and m = 6.
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We show in [P26] that this conjecture is false by exhibiting a probabil-
ity distribution for which there are seven configurations for RAND(m)
that outperform CLIMB. We show some of the best performing distri-
bution in Table 4.1. For comparison, we also show the performance of
RANDOM and LRU. This shows that CLIMB is not optimal. It further
indicates that when fixing the number of lists h, the optimal choice for
the length of each list is not necessarily setting m1 = . . . = mh−1 = 1:
for instance, m = (1, 1, 3, 1) is better than m = (1, 1, 1, 3). This demon-
strates that another of the natural conjectures formulated in [3, p135]
is also false.

4.3 transient analysis via mean field

The previous section shows that it is possible to use an exact analysis
to characterize the steady-state performance of a RAND(m) policy.
Yet, an exact analysis suffers from two main drawbacks: First it is only
applicable to steady-state performance and provides no clue on the
transient regime and in particular how the parameter m affects the
rate at which the replacement policies adapt to changing popularities.
Second, our recursive formula to compute Equation (4.2) is polynomial
in the number of items but exponential in the number of lists.

In this section we show how to derive a mean field approximation
for the RAND(m) policy. The originality of this mean field approx-
imation is that the system is heterogeneous because all items have
different popularity. This approximation becomes exact as the number
of items and the cache size tends to infinity and allows for a fast and
accurate study the transient behavior of the algorithm. We illustrate
how this approximation can be used to compute the time to fill an
empty cache or obtain a fast approximation of the steady-state miss
probability.

4.3.1 Derivation of the Equations and Intuition

At a given time step t, Item k is either part of some list i ∈ {1, . . . , h}
or is not in the cache. If an item is not in the cache, we say that it is
part of List 0. For an item k ∈ {1 . . . n} and a List i ∈ {0 . . . h}, we
define the random variables Xk,i(t), where Xk,i(t) equals 1 if the Item
k is part of List i at time t and 0 otherwise. The probability that Item k
is in List i at time t is E[Xk,i(t)].

Item k is requested at rate λk and thus moves from list i to List i + 1
at rate λk. The transitions for this model are (for i ∈ {0 . . . h− 1} and

In [P3], we consider
a slightly more
general variant

where λk can also
depends on the List i.

any items k, `):

X 7→ X− ek,i + ek,i+1 + e`,i − e`,i+1 at rate λkXk,i
X`,i+1

mi+1
(4.3)
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As in Section 2.1, we construct an approximation of E[Xk,i(t)] by a
deterministic quantity xk,i(t). The initial conditions of the ODE are
xk,i(0) = 1 if the Item k is in the ith list of the cache at time t = 0 and
0 otherwise. Let (xk,i(t))k,i be the unique solution of the following set

It should be clear
that this ODE is
Lipschitz-
continuous and
hence has a unique
solution. Moreover,
with the initial
conditions indicated,
the solution of the
ODE satisfies that,
for all time t:
∑n

k=1 xk,i(t) = mi
and
∑h

i=0 xk,i(t) = 1.

of ODEs, for k ∈ {1 . . . n}, i ∈ {1 . . . h}:

ẋk,i(t) = λkxk,i−1(t)−∑
`

λ`x`,i−1(t)
xk,i(t)

mi

+ 1{i<h}

(
∑
`

λ`x`,i(t)
xk,i+1(t)

mi+1
− λkxk,i(t)

)
, (4.4)

where 1{i<h} is equal to 1 if i < h and 0 otherwise.

0 1 2 h. . . . . .

λk

H0(t)
m1

λk

H1(t)
m2

λk

H2(t)
m3

λk

Hh−1(t)
mh

Figure 4.1: Evolution of the list in which Item k is. When λk is small and
the mis are large, the state of one item becomes independent of
the hit rate in each box. Its behavior can be approximated by a
time-inhomogeneous continuous-time Markov chain. This is the
mean field approximation.

This equation can be understood as follows. Assume that Item k is
in List i ∈ {0 . . . h− 1} at time t. At rate λk, Item k is requested and
moves to List i + 1. At rate Hi−1(t) = ∑` λ`X`,i−1(t), an item from List
i− 1 is requested and is exchanged with an item from list i chosen
at random. This item is Item k with probability 1/mi. Hence, with
probability Hi−1(t)/mi, Item k moves to List i− 1. If the list in which
Item k is and the variables Hi(t) were independent, the behavior of
Item k would be described by a Markov chain whose transition matrix
is represented in Figure 4.1.

If the quantities Hi(t) were deterministic, the Markov chain repre-
sented in Figure 4.1 is a birth-death process. Hence, the stationary
measure of this chain can be easily computed: the probability that
this chain is in state i in steady-state is πk,i ∝ (λk)

i ∏i−1
j=0

mj
Hj

. Denoting

zi = ∏i−1
j=0

mj
Hj

, this shows that a fixed point of the ODE satisfies:

πk,i =
pi

kzi

1 + ∑h
j=1 pj

kzj
.

We show in [P26, Theorem 7] that the ODE (4.4) has a unique fixed
point that satisfies the above equation and the cache size constraint
∑n

i=1 πk,i = mi. By using a Lyapunov function based on relative
entropy, we also show in [P15] that this fixed point is an attractor. This
fixed generalizes the Equation (2.2) and can be computed efficiently
by an iterative scheme.
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α n m1 m2 exact mean field

0.8 300 2 98 0.3466 0.3470

98 2 0.4239 0.4245

0.8 3000 20 980 0.3034 0.3035

980 20 0.3723 0.3724

Table 4.2: Mean field model validation for h = 2 with Zipf-like popularity
distributions.

4.3.2 Accuracy of the Mean Field Approximation

In [P26], we give two arguments to justify the accuracy of the ap-
proximation. The first is a theoretical result [P26, Theorem 6] that
shows that, when the number of items goes to infinity and cache size
is large, the popularity of the different lists are in the cache converge
to their mean field approximation. More precisely, by denoting by
Hi(t) the popularity of the items that in List i: Hi(t) = ∑k λkXk,i(t)
and hi(t) = ∑k λKxk,i(t) its mean field approximation, we show that
for any time horizon T, one has

E

 sup
t< T

maxk λk+maxi 1/mi

|Hi(t)− hi(t)|

 ≤ C

√
max

k

λk

∑i λi
+ max

i
1/mi.

(4.5)

This result is a sample path result similar that we obtained by stochas-
tic approximation argument as in Section 2.3. This result is quite
strong and (to the best of our knowledge), it is one of the few results
that look at completely heterogeneous models and that does not clus-
ter the objects into a finite number of classes with a high number of
objects per class. We have extended this results to LRU-based caching
policies in [P25] by essentially showing that the time that an object
spends in the cache becomes deterministic. Note that our approach
differs from the one [33], [49] that heavily rely on a precise charac-
terization of the stationary measure of the LRU policy in terms of
TTL.

Our second argument to justify the accuracy of the approximation
is based on a numerical study. As an illustration, we compare in
Table 4.2 the steady-state miss probability given by the mean field
approximation with the exact values. The popularity of the item
follows a Zipf-like distribution and we vary m. We observe that the
mean field approximation is within 1% for all cases and seems smaller
for larger cache sizes. As an other illustration, we depict in Figure 4.2
how the popularity of the cache evolves with time. The system is
composed of 1000 items that follows a Zipf popularity. The cache can
contain up to 200 items and is initially empty. We compare a case with
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Figure 4.2: Cache and transient regime

only one list (pure RANDOM policy or RAND(200)) and a case with
four lists of equal size (i.e. RAND(50,50,50,50)). In order to illustrate
how the two policies adapt to changing popularities, we randomly
swap the popularities of the various items in the cache every 2000
requests by picking a new parameter α between uniformly between
0.50 and 1 and randomly permuting the popularities of all item so
that item 1 is not always the most popular. This figure shows an
excellent agreement between the mean field (ODE) approximation
and the simulation: the mean field approximation is essentially a
denoised version of the simulation. This figure shows that, as expected,
RAND(50,50,50,50) has a higher steady-state hit rate than RANDOM
but takes more time to adapt to changing popularities.

These results make us believe that neither our accuracy results nor
the ones of [33], [49] really explain why the mean field approximation
ODE (4.4) or the TTL approximation studied in [33], [49] perform that
well. The reason for that is that our method to obtain the bound of
Equation (4.5) is based on stochastic approximation and almost sure
convergence. We believe that using a generator approach such as the
one we developed in Chapter 3 would lead to much tighter bound. In
the next section, we show in fact that the refined framework can be
used to construct a more accurate approximation, even if we do not
have a proof of its accuracy for now.

4.4 a heterogeneous refined approximation

4.4.1 Construction of the Refined Approximation

It is possible to transform the model described in Equations (4.3) into
a density dependent population process by scaling the size of the
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transitions by a factor 1/N and accelerating the time by a factor N.
For a given scaling factor N, the transitions of the model are:

X(N) 7→ X(N) +
1
N
(−ek,i + ek,i+1 + e`,i − e`,i+1) at rate NλkXk,i

X`,i+1

mi+1
(4.6)

The case N = 1 corresponds to the original model.
This allows us to use the result of Theorem 3 in order define and

compute a refined mean field approximation of E[X(N)
k,` (t)] as follows:

E
[
X(N)

k,i (t)
]
= xk,i(t) +

1
N

Vk,i(t) + O
(

1
N2

)
,

where xk,i(t) is the classical mean field approximation and V is the
solution of an linear ODE.

In order to obtain a refined approximation for the original model,
we propose to apply the above formula with N = 1. This leads us to
defined a refined quantity yk,i(t) as follows:

yk,i(t) = xk,i(t) + Vk,i(t) (4.7)

Note that Theorem 3 guarantees that the refined mean field in theory
accurate as N goes to infinity. Here, we apply this formula with N = 1
that can hardly be considered as close to infinity. Yet, as will see below,
this refined approximation is remarkably accurate.

4.4.2 Empirical Validation

To assess how accurate is the refined approximation Equation (4.7)
compared to the classical mean field, we used our tool [P18] to perform
a numerical study. We consider two cases (n = 10 and n = 100
items). The popularity of the items follows a pareto-distribution
of parameter α ∈ {0.6, 1, 1.4}: λi ∝ i−α. we vary the cache size
m ∈ {0.1n, 0.25n, 0.5n} and number of lists between h ∈ {1, 2, 5}. The
list have all equal sizes: dmn/he.

To compare the two approximation, we estimated the miss probabil-
ity by using the two approximations and compare this to data obtained
by simulations. For each of the two approximations, compare two
metrics:

(a) The total miss probability error (TMPE);

TMPE =

∣∣∣∣1− total miss proba (computed by approximation)
total miss proba (computed by simulation)

∣∣∣∣
(b) The average per-item miss probability error (IMPE):

IMPE =

∣∣∣∣1− miss proba of Item k (by approximation)
miss proba of Item k (by simulation)

∣∣∣∣



4.4 a heterogeneous refined approximation 41

In Figure 4.3, we report the total miss error probability as a function
of the experiment ID. We compare a case with n = 10 (left panel)
items and a case with n = 100 items (right panel). There are various
observations than can be made. First, the two approximations are an
order of magnitude more accurate for n = 100 compared to n = 10.
Second, the refined approximation is significantly more accurate than
the classical mean field approximation, especially for n = 100 items.
Last, the error of the mean field approximation seem to decrease with
the exponent α. This last fact can be explained by the fact that the
total miss probability is small in such a case which in turn means that
the denominator in the definition of the TMPE is smaller for larger α.

There are 27
experiments first 9.
The parameters as a
function of the
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Figure 4.3: Total miss probability error (TMPE) as a function of the experi-
ment ID.

Note that when averaging over all experiments, we obtain the av-
erage errors reported in Table 4.3. Note that the error of the refined
mean field is approximately 10 times smaller than the one of the classi-
cal mean field for n = 10 items and and 300 times smaller for n = 100
items.

N Mean field TMPE Refined mean field TMPE

10 0.032759 0.002797

100 0.006081 0.000019

Table 4.3: Average TMPE of both approximation

In Figure 4.4, we report the per item miss error probability (IMPE) as
a function of the experiment ID. As for the TMPE the refined approxi-
mation is more accurate than the classical mean field approximation,
although the improvement is less impressive. Moreover, measured in
terms of IMPE, the accuracy of both approximations seems to diminish
with the number of lists h and the exponent α. In fact, when both h
and α are large, some items have a miss probability close to 0, which
lead the average IMPE to be large if these items are not perfectly
estimated. This is also related to what we observed in [P23]: while the
refined mean field approximation estimate very accurately the shape
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Figure 4.4: Item miss probability error (IMPE) as a function of the experiment
ID.

of the distribution, it does not estimate very accurately the tail of the
distributions.

In [21], another approximation has been proposed that works by
using an asymptotic expansion of the normalization constant Z(m)

defined in Equation 4.1. Measured in terms of TMPE, this approxi-
mation performs similarly than our refined approximation: it is more
accurate on some examples and less on others. Measured in terms
of IMPE, this approximation is significantly more accurate because it
estimates more precisely the miss probability of the items that have a
very small miss probability. Note that the technique used to obtain
this other approximation relies on having a product form stationary
measure and is quite specific to this example.

4.5 extensions and open questions

In this chapter, we studied a model of cache replacement policies.
One of our most original contribution to this subject is to manage to
define a heterogeneous mean field approximation and to prove that it
is asymptotically accurate. Note that after this work, we also extended
the results to the LRU-based policies LRU(m) and h-LRU in [P25],
[P28] in which we study a TTL-approximation of those policies. In
these papers, we also derive a proof of the accuracy of those TTL-
approximation by using a similar stochastic approximation technique.

A second contribution of our work is to have shown that it is
possible to use our refined mean field approximation for a completely
heterogeneous system, by using this approximation with a scaling
parameter N = 1. Yet, the application of this refined approximation
raises two main challenges. First, we have for now no theoretical
justification of the approach. For future work it seems fundamental to
understand to which heterogeneous models this approximations can
be applied. Second, the numerical complexity is problematic. By using
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our current framework, computing a refined mean field for a model
of cache with n items and h lists requires solving a linear system with
(nh)2 variables which makes the computation of this approximation
impossible for more than 100 or 200 items.





5
S PAT I A L I N T E R A C T I O N S A N D B I K E - S H A R I N G
S Y S T E M S

Bike-sharing systems are becoming important for urban transportation.
In such systems, users arrive at a station, take a bike and use it for a
while, then return it to another station of their choice. In this chapter,
we study a model of bike-sharing systems. We use this model to study
dimensioning problems, rebalancing algorithms and forecasting.

One particularity of bike-sharing system is that the geometry takes
an important role. For instance, when a user arrives at a station that
is full, it will most probably look at neighboring station. This makes
the mean field approximation inapplicable in theory. We show that
in practice, mean field approximation can still be applied as is and
gives very reasonable result. We also show how the original mean
field model can be refined to take into account spatial interactions by
using a method called pair approximation.

roadmap This chapter is organized as follows. We first describe
how a bike-sharing model can be viewed as a close queuing network
in Section 5.1. We develop a mean field approximation for such a
system (§5.1.1) which allows us to study simple incentives (§5.1.2).
While this mean field approximation does not take into account ge-
ometry, we show by simulation that this mean model is close to a
model that would take into account geometry (§5.1.3). The mean field
models allows us to approximate the behavior of each station by a
time-dependent M/M/1 queue. We then propose a model than is
a refinement of the mean field approximation to take into account
spatial interactions in Section 5.2. We show how the mean field ap-
proximation can be used to build a forecasting tool in Section 5.3.
Finally, we conclude by some open questions in Section 5.4.

This chapter is mostly based on [P7] for the original bike-sharing
model, on [P14] for the work on forecasting and on [P19] for the work
about pair approximation.

5.1 the bike sharing model

We consider a Markovian model of a bike-sharing system with N
stations and a fleet of bsNc bikes (i.e., s bikes per stations). A bike
can be either locked at a station or in transit between two stations.
In this section, as in [P7], we mainly focus on the homogeneous
bike-sharing model. This model enables us to obtain a closed-form
expression for the optimal performance and to investigate incentives

45
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and redistribution by trucks in this framework. This study is extended
to an inhomogeneous model by [P6]. We also use the inhomogeneous
model to study the forecasting problem in Section 5.3.

We assume that a station i can host Ki bikes. At a given station
i, users arrive at rate λi(t). If the station has one or more bikes,
the user picks up a bike at this station and chooses a destination j
with probability pj(t), otherwise she leaves the system. When the user
arrives at a station j, if the destination has fewer than Kj bikes, the user
returns her bike to this station. Otherwise, the user visits randomly
other stations until she finds a station with fewer than Kj bikes. The
trip time between the two stations is exponentially distributed with
mean 1/µij.

5.1.1 Homogeneous Mean Field Model

The homogeneous model is the simplest bike-sharing model. No
quantity depends on time or on the station: λi(t) = λ, pj(t) = 1/n,
µij = µ and Ki = K. The advantage of such a model is that it can be
thoroughly analyzed and leads to closed-form results. This model
does not incorporate any geographical information.

Let us denote by X(N)
k (t) the proportion of stations that have k bikes

available at time t. X(N) is a Markov chain. There are two types of
transitions. The first corresponds to a bike that is picked up. The
second corresponds to a bike that arrives at a station. The number
of bikes in transit is equal to sN (the total number of bikes) minus
N ∑K

k=1 kyk (the number of bikes locked at the stations). Hence, the
rate of arrival of bikes at a given station is µ(N − ∑K

k=1 kyk). This
shows that the transitions of the Markov chain are:

X(N) 7→ X(N) +
1
N
(ek−1 − ek)at rate λNxk1k>0

X(N) 7→ X(N) +
1
N
(ek+1 − ek)at rate Nxkµ(s−

K

∑
n=0

nxn)1k<K

where the k-th unit vector of RK+1 is denoted by ek and 1k<K is equal
to 1 when k < K and 0 otherwise.

This defines a density dependent population process as defined in
Section 2.2. This shows that, as N goes to infinity, X(N) converges to
the solution of a deterministic ODE. We show in [P7, Section 3.1] that
this ODE has a unique fixed point to which all trajectories converge.
The proof of this attractiveness uses a Lyapunov function constructed
by using relative entropy.

This fixed point is of the form xi ∝ ρi where ρ depends on the fleet
size with ρ < 1 if s < K/2 + λ/µ and ρ > 1 if s > K/2 + λ/µ. We say
that a station is problematic if is has either 0 or K bikes. By using the
mean field approximation, we show that the proportion of problematic
stations depends on the fleet size s. It is minimal when ρ = 1, which
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occurs when the number of bike per station s is slightly more than half
of the number of places in the system: s = K/2 + λ/µ. In this case
the proportion of problematic stations is 2/(K + 1). This amounts to
about 6.5% of problematic stations when the capacity of one station is
K = 30 bikes.
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Figure 5.1: Illustration of the steady-state occupancy of station when the
capacity of stations is K = 10. The system is balanced when the
number of bikes is equal to K/2 + λ/µ.

In practice, most of the existing bike-sharing systems satisfy this
rule of 50% of bikes compared to the number of slots. Note that we
had the opportunity to discuss with the responsible of bike-sharing
system installed in the city of Pisa that reduced their fleet size from
70% to 50% of bikes after our discussion. This reduced the congestion
in their system.

5.1.2 Incentives and Regulation

In [P7], we consider two ways for improving the performance. The
first is by what we call incentives. We model this by assuming that
when a user wants to return her bike, she indicates two stations and
the bike-sharing system indicates to her which one of the two has
the least number of bikes available. We show that, when the two
stations are picked at random, the proportion of problematic stations
can be as low as

√
K2−K/2 (instead of 2/(K + 1) in the original model

without incentives). The performance is thus improved dramatically,
and even if only a small percentage of users obey this rule. The proof
of this result is again based on studying the fixed point of a density
dependent population process.

Such incentives are
meant to encourage
users to return a bike
to a station that has
few bikes. This is
implemented
successfully in New
York city via the
“bike angel” program
[25].

We also study the problem of rebalancing the number of bikes
by moving them by using trucks that move bikes from saturated
stations to empty ones at rate γ. We show that if the bikes are moved
one by one, the minimal redistribution rate needed to suppress any
problematic station is equal to λ/K where K is the capacity of stations.
Note that our simulations suggest that having larger truck size does
not affect qualitatively the performance. This model can again be cast
as a density dependent population process but with an additional
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difficulty: the drift is not continuous. This lead us to apply the results
on discontinuous drift and differential inclusions that we developed
in [P11]. This result is illustrated in Figure 5.2 in which we show that
a large redistribution rate removes all problematic stations.
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(a) s = 7, γ = 0
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(b) s = 7, γ = 1/9
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(c) s = 7, γ = γ∗7 = 1/5

Figure 5.2: Illustration of the impact of redistribution. The station capacity
is K = 10 and λ = µ = 1. The fleet size is s = 7 and the
redistribution rates varies from γ = 0 (no redistribution) to γ =
1/5.

5.1.3 Validation by Simulation

In [P7, Section 6], we validate the various hypothesis of the model
by comparing our theoretical result with simulations of a model that
violates one or the other hypothesis. Our simulations indicates that

Note that the
variants that we

discuss here focus on
a time-homogeneous
uniform model. The

performance of an
inhomogeneous

model are of quite
different nature and
are studied in [P6].

our results are quite robust with respect to this small changes of
hypothesis. For instance, the trip time distribution seems to have
very little effect on the performance (only the mean matters). We
do not think that the model with N stations is insensitive to the trip
time distribution. Yet, our result suggest that the system might be
asymptotically insensitive when the number of station grows. This
asymptotic insensitivity has been observed in other cases and we
believe that similar proofs could be applied [86]: essentially, the arrival
process at a station is asymptotically a Poisson process.

Among the other variants of the model, one of the most interesting is
the influence of geometry on the performance metrics. Our theoretical
results are based on a mean field model and therefore ignore the
geometry of the system. In real system, a user that aims at a particular
destination might accept to go to a neighboring station but will not go
to the other side of city. Studying such a system analytically is out of
reach of our method. In [P7, §6.3], we present simulation results that
show that the influence of geometry on the proportion of problematic
stations is quite limited, both for the basic model and the two-choice
model. We show, however, that geometry has a much larger effect
when other metrics are considered, such as the time needed to return
a bike.

In the following section, we show how geometry can be better taken
into account by using a technique called pair approximation.
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5.2 spatial refinement and pair approximation

Motivated by our application to bike-sharing systems, we study an
abstract queuing model with geometry in [P19]. The model that we
consider is a variant of the two-choice model that we described in
Section 3.4. In the original model of [90], [67], when a task arrives, it is
allocated to the least loaded of two servers picked at random among
a collection of n servers. Here we study what appends when servers
form a graph and that a task is routed on the least loaded among
two neighbors. While the bike-sharing model was a closed queuing
network, we study what happen to the more classical open queuing
network in which jobs leave after having been served.

To the best of our knowledge (ans as argued in [11]) there are
very few studies of load balancing system where geometry is taken
into account. An exception is the recent work in [69] in which the
authors consider a join-the-shortest queue policy in a graph with a
large number of neighbors. The authors show that for such a system a
mean field approximation is accurate, even if showing the accuracy
is much harder than in the non-geometric model. Our focus here is
different as we study the case where each server has few neighbors
(typically 2 to 4).

As we will see, the mean field approximation of such a system
is not very accurate. To obtain a more accurate approximation, we
use a technique called pair-approximation, see for instance [72]. This
technique shares some similarity with the moment closure technique
that we used in Section 3.3 to develop our refined approximation.

5.2.1 Geometric Two-choice model

Our system is composed of N identical servers that are connected
by an undirected graph (V, E), where the set of vertexes is the set of
servers V = {1 . . . N}. Each server serves jobs at rate 1 and uses a first-
come first-serve discipline (jobs sizes are exponentially distributed).
Jobs arrive at each server at rate ρ < 1. When a job arrives at a server,
say s1, another server s2 is sampled uniformly at random among all
neighbors of s1. The job is then allocated to the server s1 or s2 that has
the least number of jobs (ties are broken at random). This allocation
scheme is similar to the one of [52].

When the graph is complete, this model corresponds to the classical
two-choice model. In this section, we will consider other variants:

• Ring – This model is illustrated in Figure 5.3a. Two servers s1

and s2 are neighbors if s1 = s2 ± 1 (modulo N).

• 2D torus – This corresponds to a 2D grid of size
√

N ×
√

N.
A server in position (x, y) has four neighbors: (x ± 1, y) and
(x, y± 1) (modulo

√
n). This case is shown on Figure 5.3b.
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Figure 5.3: Geometric two-choice models.

• Fixed degree – We also simulate random graphs with fixed degree
k. For each server, k neighbors are picked at random (for simplic-
ity of generation, we allow self loop, like Node 5 of Figure 5.3c).
The interaction graph remains constant during the simulation.

5.2.2 Mean Field Approximation

Note that the
notation Xi used in

Section 3.4 was
different: in

Section 3.4 Xi
represents the

proportion of servers
having at least i jobs

whereas here Xi is
the proportion of

servers having
exactly i jobs.

When the interaction graph is complete, all servers are exchangeable.
For i ∈ {0, 1, 2, . . . }, let Xi(t) be the proportion of servers that have i
jobs at time t. X = (X0, X1 . . . ) is a Markov chain whose transitions
are as follows: there is a departure from a server with i jobs at rate
NXi(t). When there is an arrival, the two chosen servers have i and j
jobs with probability Xi(t)Xj(t). If i = j or i < j, the job is allocated
on a server with i jobs. If j < i, the job is allocated on a server
with j jobs. As a result, there is an arrival in a server with i jobs
at rate ρ(Xi(t))2 + 2ρ ∑∞

j=i+1 Xi(t)Xj(t) = 2ρXi(t)Pi(t), where Pi(t) =
Xi(t)/2 + ∑∞

j=i+1 Xj(t) is the probability that an arrival on a server
with i jobs is allocated to this server. This shows that X is a density
dependent population process whose mean field approximation is

ẋi = (xi+1−xi1{i>0}) + 2ρ(1{i>0}pi−1(x)xi−1−pi(x)xi), (5.1)

where pi(x) = xi/2 + ∑∞
j=i+1 xj.

5.2.3 The Pair Approximation Equations

We now consider a general interaction graph in which all nodes
have the same degree k. Let Yi,j(t) the proportion of connected pairs
of servers that have (i, j) jobs and Xi(t) = ∑j Yij(t) the proportion
of servers that have i jobs. When the graph is complete, Yij(t) =

Xi(t)Xj(t), and X is a Markov chain. This does not hold when the
graph is not complete. A randomly chosen neighbor of a randomly
chosen server having i jobs has j jobs with probability Yij(t)/Xi(t).
Hence, an arrival on a server that has i jobs is allocated to this server
with probability Qi(t) = (Yii(t)/2 + ∑∞

j=i+1 Yij(t))/Xi(t).
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We now look at the evolution of Yij(t). Let (i, j) be the state of a pair
of servers connected by an edge. This state becomes (i− 1, j) when
there is a departure on i, which occurs at rate 1 if i ≥ 1. It becomes
(i + 1, j) when there is an arrival on i. This can be caused by two types
of events:

(a) arrival on the edge (i, j) – if each node has k neighbors, an edge
(i, j) is chosen at rate 2ρ/k and the packet is allocated to the
first server with probability a(i, j) = 1 if i < j, a(i, i) = 1/2 and
a(i, j) = 0 if i > j

(b) arrival on another neighbor of the first server – each other neigh-
bor of i that has state ` induces an arrival on i at rate 2ρa(i, `)/k.
Let Z`,i,j(t) be the proportion of connected triplets of stations
having state (`, i, j). The arrivals on the first server of a pair
(i, j) from one of the k− 1 other neighbors occur at rate 2ρ(k−
1)Rij(t)/k, where Rij(t) = (Zi,i,j(t)/2 + ∑∞

`=i+1 Z`,i,j(t))/Yij(t).

This shows that, as X(t), the process Y(t) is not a density dependent
process because the rates of its transitions involve quantities that
depend on triplets. In what follows, we consider a density dependent
population process that is an approximation of the original process
and has the same transitions but with different rates: We approximate
Z`,i,j by Yi,`(t)Yi,j(t)/Xi(t), which amounts at replacing Rij(t) by Qi(t).
This approximation is called the pair-approximation and leads to the
following differential equation for yij:

ẏij =
(

yi+1,j − yi,j1{i>0} + yi,j+1 − yi,j1{j>0}

)
(5.2)

+
2ρ

k
(
yi−1,ja(i− 1, j) + yi,j−1a(j− 1, i)− yij

)
+

2ρ(k−1)
k

(
qi−1yi−1,j1{i>0} + qj−1yi,j−11{j>0} − (qi+qj)yi,j

)
The first line of this equation corresponds to the rate of changes of the
proportion of pairs (i, j) induced by the departures; the second line
is for the arrival on the pair (i, j) and the last line on the arrival on
the neighbors or i and j. The first two lines are exact while the last
involves the approximation z`,i,j ≈ yi,`yi,j/xi.

5.2.4 Numerical Evaluation

The computation of
the steady-state
distribution is
obtained by running
a discrete-event
simulator that
follows strictly the
model. In all cases,
we simulate a system
with N = 1000
servers for a total
T = 1011 events.
Comparisons with
smaller values of T
indicate that
T = 1011 is enough
to reach the
steady-state. The
fixed point of the
pair-approximation
equations is
computed by
integrating
numerically the
system of differential
equations (5.2).

We now compare numerically the steady state distribution (computed
by simulation) with the mean field approximation and the fixed-point
of the pair-approximation ODE (5.2). Note that we did the comparison
for values from ρ = 0.5 to ρ = 0.99 and only a subset of the results
are reported here. All tested values show that the pair-approximation
provides an excellent approximation of the shape of the stationary
distribution.
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Figure 5.4: Steady-state probability for a server to have i jobs as a function
of i. We compare values obtained by simulations and two fluid
approximations (mean field and pair-approximation). Second line
is in log-scale.

In Figure 5.4, we report the steady-state probability xi that a given
server has i jobs as a function of i. Each plot compares five curves:
two are obtained by simulation – (ring/random graph with fixed
degree k = 2) for the first two plots and (2D torus/random graph
with k = 4) for the last one –, and two are the fluid approximations of
the model (mean field and pair approximation with k = 2 or k = 4).
The last curve corresponds to a model without choices (each server
is an independent M/M/1 queue) and is here for comparison. These
results show that the pair-approximation predicts very accurately the
general shape of the distribution of the simulated model, which are
far from both the one-choice and the mean field approximation. The

Recall that the mean
field approximation
is very accurate for
the complete graph

but not here because
the graph that we
consider are very

sparse.

tail of the distribution, however, does not seem to be correct, even if
it is much closer for the pair-approximation than for the mean field
model.

This figure shows that pair approximation provides a very good
estimate of the shape of the distribution but does not predict well the
tail. Note that this is similar to what happens for the refined mean
field approximation.

5.3 forecasting via mean field approximation

In [P14], we study the problem of making forecasts about the future
availability of bicycles in stations of a bike-sharing system (BSS). This
is relevant in order to make recommendations guaranteeing that the
probability that a user will be able to make a journey is sufficiently
high. To do this we use probabilistic predictions obtained from a
queuing theoretical time-inhomogeneous model of a BSS. The use of a
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model of independent queue is similar to the mean field approxima-
tion that we studied in Section 5.1. One of the main contribution of
[P14] is to develop a critique of the standard root-mean-square-error
(RMSE) – commonly adopted in the bike-sharing research as an index
of the prediction accuracy. We believe that RMSE is not appropriate
to estimate the quality of forecasts in bike-sharing systems because
RMSE is too sensitive to the stochasticity inherent in the real system.
Instead we show that using metrics based perfect scoring rules is more
appropriate. The model is parametrized and successfully validated
using historical data from the Velib BSS of the city of Paris.

5.3.1 Model and Validation

We consider a model in which each station is considered to be indepen-
dent of its neighbors. We assume that users arrive at a station i (to pick
up a bike) according to a Poisson process of time-dependent intensity
λi(t). Similarly, user returns bike at the station i at rate µi(t). This
model makes two main approximations. First, this model assumes
that arrival of bikes and user can be represented by Poisson processes. The use of Poisson

processes to model
arrivals in
bike-sharing systems
has been widely used
in the literature (see
for instance [36],
[P7] and the paper
that cite them). Also,
it model is partially
supported by some
statistical tests, see
[P14, §3.2].

Second, this model neglects that neighboring stations have an effect
on the bikes returned in station i. The model could be modified to
better take this into account but this leads to little improvement in
forecasting quality [30].

In all numerical evaluation, we estimate the values of λi(t) and
µi(t) by using historical data from the Vélib’ system in Paris collected
between 1 October 2013 and 31 December 2014 and provided by the
operator. We use this information to compute a historical predictor
and estimate the (bike) departure and arrival rates, for each minute
of a typical working day or weekend day (see the details in the next
section). During the day, λi(t) and µi(t) seem to be of the order of 5
bikes per hour, although there are huge disparities between stations.

5.3.2 Deterministic Forecasts are not Sufficient

Most of the papers dealing with prediction for bike-sharing systems,
e.g., [34], [41], [51], [97], [94], focus on deterministic forecasts: for
a given time horizon h, the challenge is to predict at time t + h a
single value for xt(t + h) that is as close as possible to the “real” value
x(t + h). The performance is generally evaluated using the root-mean-
square-error (RMSE):

RMSE =

√
E
[
‖xt(t + h)− x(t + h)‖2

]
This metric is the most commonly used in prediction challenges [68].

We argue in [P14] that this metric is non well-suited for bike-sharing
systems because the system has too much randomness. More specif-
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ically, we show that regardless of their quality, the RMSE of such
predictors will always be large due to the stochastic nature of bike-
sharing systems. In particular, our results suggest that, for a prediction
horizon of h = 1hour, there exist no predictor that has a RMSE smaller
than 3.5 bikes. In fact, the authors of [97] compare various determinis-
tic forecast that all attain a performance that equals our bounds plus a
few percents. Our result suggest that these forecasts are all very close
to optimal.

5.3.3 Probabilistic Forecasts

As an alternative to deterministic forecast, we propose to use proba-
bilistic forecasts: for a given time horizon h, the challenge is to predict
a probability distribution Pt(t + h) for X(t + h) given the information
available at time t. We illustrate the difference between deterministic
and probabilistic forecasts in Figure 5.5. All forecasts are issued at
7am. The solid green curve corresponds to the number of bikes in the
station up to 7am. Figure 5.5a shows three examples of deterministic
forecasts that are classically used in the literature: a first that only
used the historical data and ignore the green curve (history), a second
that only observe the station state at 7am (persistent forecast) and a
third that combined the two notion (best deterministic). Figure 5.5b
shows an example of probabilistic forecast where all the potential
future distribution of occupancy is predicted at 7am.

0:00 6:00 12:00 18:00 24:00
0

5

10

15

20

25

30

# 
bi

ke
s

Observed
Best derter
PF
History

(a) Deterministic Forecasts

0:00 6:00 12:00 18:00 24:00
0

5

10

15

20

25

30

# 
bi

ke
s

Average

(b) Probabilistic Forecasts

Figure 5.5: Illustration of the two types of forecasts.

One of the main difficulties when dealing with probabilistic forecasts
is to evaluate their quality: for each prediction of Pt(t + h), only one
realization of X(t + h) will be available. The most natural way to
evaluate a forecast is to use proper scoring rules. One of the most well
known proper scoring rule is the log-likelihood: the score received
is the log of the likelihood of the prediction. A proper scoring rule
encourages honesty and will encourage the forecaster to reveal the
confidence that she has in her forecast. A very confident forecaster
will issue a probability distribution that is very concentrated near a
single value x. In this case, the score will be high when the observation
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X ≈ x but very low when X is far from x. On the other hand, if the
forecaster has a low confidence, she will issue a forecast that spans
many value. The received score will neither be very high or very low.

There exist many variants of proper scoring rule. We refer to [37] for
a complete and clear exposition on the subject. In [P14] we compare
different proper scoring rules that are more appropriate to bike sharing
systems than the log-likelihood. We also show that the forecast based
on our queuing model performs well.

5.4 extension and open questions

Vehicle sharing systems are now widely developed around the world
and similar means of transportation are rapidly growing (see for
instance the recent deployment of electric scooters in France). These
systems induce complex saturation dynamics (unavailable vehicles or
parking space). There is nowadays an active field of research on how
to design efficient redistribution or pricing policies to improve the
performance of such systems [15], [25], [59], [70], [77]. These papers
often focus on a single system (for instance, New York in [25]) and it
is not clear whether the good performance of the proposed heuristics
comes from a particular feature of this case study or it performs well
in general.

This calls for a sound and reproducible methodology to develop and
evaluate control heuristics that are widely applicable. Our research
agenda aims at obtaining a better understanding of vehicle sharing
systems by proposing clean theoretical models, new optimization al-
gorithms and a reproducible simulation environment that can validate
the performance of the proposed heuristics. This leads to a number of
research challenges.

• Geometric mean field models – Mean field approximation pro-
vide an accurate description of systems composed of objects in
which an individual can interact with many other agents. This
approximation also works when the graph of interaction is not
complete but just dense as in [69]. When the graph has a small
degree, pair approximation seems to provide a refined geometric
approximation but for now a justification of this approximation
is missing. Such a justification could be done by using tools from
probabilistic stochastic automata [64] or the recent advances of
[46].

• Optimization algorithms for vehicle sharing systems – The
performance of vehicle sharing systems rely on good control
heuristics (for instance concerning vehicle relocation and/or
demand segregation). The development of those classically rely
on tools from deterministic operations research problems (e.g.,
vehicle routing problems) but do not always perform well in
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a system as random as a bike-sharing system. To tackle this
issue, we plan to use several recent theoretical development
in distributed stochastic optimization such as decomposition
methods [20], mean field control [31] or refined mean field
optimization [P23].

• Reproducible simulation environment – We believe that the
literature on bike-sharing systems lacks of benchmarks. In order
to validate (or invalidate) that our proposed heuristics perform
well in real systems, we plan to develop an open source simu-
lator in which it will be easy to program and assess new and
existing control strategies. Our aim is to be able to evaluate
these strategies on realistic dataset. For that, we will use existing
traces of usage of existing systems (e.g. [89]) and combine this
with traces analysis and data-mining expertise to create realistic
scenarios.

We believe that, given the growing importance of this mode of trans-
portation, these challenges are not only challenging research problems
but can also have a societal impact. In addition to the most techni-
cal aspects, tackling them will require an integration of tools from
data analysis, demand modeling, infrastructure description, and geo-
graphic visualization to identify bottlenecks that limit the performance
of control strategies of vehicle sharing systems.



6
C O N C L U S I O N A N D P E R S P E C T I V E S

This document summarizes a few of the main contributions of my
research. The central theme of this line of research has been to obtain a
better understanding of what is mean field approximation. Motivated
by applications, a particular emphasis has been to increase the range
of application of mean field approximation methods, by showing for
instance that:

• There exists a generic ways to deal with non-continuous drifts
by using a differential inclusion approach (Chapter 2);

• Mean field approximation can be refined for small system size
by using expansion (Chapter 3);

• Mean field (and refined mean field) can deal with heterogeneous
models (Chapter 4).

• Pair approximation, a variant of mean field approximation, can
be used to study the impact of spatial interactions (Chapter 5).

The strategy to obtain these results varied in time and reflects my
understanding of the subject: The first results that I developed where
obtained by using sample-path arguments and stochastic approxima-
tion methods; The more recent papers are based on Stein’s method
and the convergence of generators. The later approach provides much
tighter bounds that, I believe, are a better justification of the success
of mean field approximation.

In order to obtain a concise and uniform manuscript, this document
does not covers all my contributions to the development of mean field
approximation. The following chapter could have been integrated:

• Mean field games: In [P5], [P4], we develop a generic framework
for discrete-space mean field games. We show in particular
that mean field games are not always a good approximation of
symmetric games with a large number of players: mean field
equilibria describe a subset of the original stochastic games.

• Hitting times. In [P21], we show how to use mean field approxi-
mation to compute hitting time of a stochastic process. We show
that the hitting time of the stochastic system with N objects is
close to time for its mean field approximation to be at distance
1/N of its fixed point.

• Centralized optimization. In [P8], [P13], [P9], we show that the
control of a system with N objects converges to the solution of
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a mean field optimal control. More importantly, we show the
mean field optimal policy is also asymptotically optimal for the
system of size N. This simplifies the computation of an optimal
policy.

Several open research questions have already been listed at the end
of each chapter and we will not recall them here. In fact, most of this
questions are related to a bigger research agenda which is to develop
efficient heuristics for the control of stochastic distributed agents.
Restless bandit allocation is one particular example where the control
that can be sent to each arm is restricted to an on/off signal. We believe
that our results on the refined mean field will allow the development
of control heuristics that are asymptotically optimal as the number
of arms goes to infinity and that also have a better performance
than existing heuristics for a moderate number of arms. A typical
application of this approach would be in the context of smart grids,
to develop control policies for distributed electric appliances. Beyond
this application, the notion of refined mean field games will help
to design efficient allocation, for example in the context of wireless
networks where mean field games are already used.

One of the classical approaches to build such heuristics is to use
Lagrangian relaxations of the problems to decompose a large-scale
optimization problem into smaller independent sub-problems. De-
pending on the relaxation used, one obtain radically different methods:
Whittle index for resltess bandits [91], [92], stochastic decomposition
methods [20] and SDDP [75]; progressive hedging [73],. . . Similar to
mean field approximation, these methods have been shown to work
well in practice and in some cases can be shown to be asymptotically
optimal [91], [87].

We believe that, by using our expertise on mean field approximation
and control, it will be possible to make connection between bandit
optimal control, stochastic decomposition methods and mean field
approximation.
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