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Abstract -The design of efficient algorithms is closely linked to the evaluation of their performances. My work focuses on the use of stochastic models for the performance evaluation of large distributed systems. I am interested in developing tools that can characterize the emergent behavior of such systems and improve their performance. This leads me to solve stochastic control and optimization problems, notably through operations research methods. These problems suffer from combinatorial explosion: the complexity of a problem grows exponentially with the number of objects that compose it. It is therefore necessary to design models but also algorithmic processes whose complexity does not increase too rapidly with the size of the system. This document summarizes a few of my contributions on the use and the refinement of mean field approximation to study the performance of distributed systems and algorithms.

Résumé La conception d'algorithmes efficaces est étroitement liés à l'évaluation de leurs performances. Mon travail se concentre sur l'utilisation de modèles stochastiques pour l'évaluation des performances des grands systèmes distribués. Je développe des outils permettant de caractériser le comportement émergent de ces systèmes et d'améliorer leur performance. Cela me conduit à résoudre des problème d'optimisation et de contrôle stochastique. Ces problèmes générallement souffrent d'un problème d'explosion combinatoire: la complexité d'un problème croît de façon exponentielle avec le nombre des objets qui le composent. Il faut donc concevoir des modèles mais aussi des processus algorithmiques dont la complexité n'augmente pas ou peu avec la taille du système. Ce document résume quelques unes de mes contributions sur l'utilisation et le raffinement des méthodes de type champ moyen pour étudier la performances d'algorithmes de contrôle pour des systèmes distribués.
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I N T R O D U C T I O N

context and motivation

The objective of my research is to develop new approximation techniques in order to solve optimization problems that arise in large systems such as computer networks. My contributions ranges from theoretical work on stochastic models and optimization to applications in communication networks or electricity networks. This document summarizes only a part of my research. It is focused on mean field approximation, its understanding and its application.

Good system design needs good performance evaluation, which in turns needs good modelization tools. Many distributed systems can be effectively described by stochastic population models. These systems are composed of a set of objects, agents, or entities interacting with each other. Each individual agent is typically described in a simple way, as a finite state machine with few states. An agent changes state spontaneously or by interacting with other agents in the system. All transitions happen probabilistically and take a random time to be completed. By choosing exponentially distributed times, the resulting stochastic process is a continuous-time Markov chain with a finite state space. The construction of a Markov chain is therefore quite simple. Markov chains, however, suffer from the state-space explosion: the state-space needed to represent a system with N agents grows exponentially with the number of agents. This results in the need for approximation techniques.

One general idea is to try to characterize the emerging behavior of a system by studying the effect that the local interactions between agents have on the global dynamics -similarly to what is done in statistical physics to characterize behavior of interacting particles. To do so, mean field approximation is a very effective technique that can be used to study transient probability distribution or steady-state properties of such systems when the number of entities N is very large. The idea of mean field approximation is to replace a complex stochastic system, that we denote by X (N) , by a simpler deterministic dynamical system, that we denote by x. This dynamical system is constructed by assuming that the objects are asymptotically independent. Each object is viewed as interacting with an average of the other objects (the mean field). When each object has a finite or countable state-space, this dynamical system is usually a non-linear ordinary differential equation (ODE).

Mean field approximation has become a common tool to study systems of interacting agents. It is used in many domains such as game theory [START_REF] Lasry | Mean field games[END_REF], performance analysis and design of distributed systems [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], multi-agent reinforcement learning [START_REF] Yang | Mean Field Multi-Agent Reinforcement Learning[END_REF] or neural networks [START_REF] Baccelli | Replica-mean-field limits for intensitybased neural networks[END_REF]. The rationale behind mean field approximation is that when the number of agents N is large, each individual has a minor influence on the mass. Mean field models are specified by a simple set of ordinary differential equations (or partial differential equation). This approximation is known to be exact as N goes to infinity for certain models, see e.g., [START_REF] Kurtz | Strong approximation theorems for density dependent Markov chains[END_REF], [START_REF] Boudec | A generic mean field convergence result for systems of interacting objects[END_REF], [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF] but it can very poor for other models (N = 10 to N = 100). The accuracy of the estimates provided by mean field approximation varies greatly depending on the systems and a full understanding of when it can be applied remains to be done. This document summarizes some of the research that I did in this context and that can be summarized in two main objectives:

1. Understand when mean field approximation can be applied and what is its accuracy;

2. Use this understanding to propose more accurate approximation methods.

In particular in this document, we will study refinements of the classical mean field approximation that work for: systems with a low to moderate number of objects (Chapter 3), hetetrogeneous systems (Chapter 4), and systems with spatial interactions (Chapter 5). Each time, the proposed approximations are validated by using interesting case studies.

organization of the manuscript

This manuscript synthesizes my research contributions to the application, development and refinement of new approximation techniques in the context of performance evaluation of large systems. The manuscript is organized in several chapters that reflects the objectives mentioned above.

1. Chapter 2 covers the basic material on mean field approximation. Starting with an example, we review a few classical models that are used in the literature. We will present the basic convergence results associated with mean field approximation by making the link with stochastic approximation algorithms. While this chapter mostly covers related work, we also present an extension that concerns discontinuous drift and that is based on [P1], [P11], [P12], [P2].

2. Chapter 3 contains the main technical contribution of the manuscript. We first study the accuracy of the classical mean field approximation for a general class of population models, called the density dependent population processes. We then use this characterization to present two refined mean field approximation methods. These methods refine the classical approximation by adding a O(1/N) and a O(1/N 2 ) expansion terms. We prove that these methods are much more accurate than the classical mean field approximation when the population size N is small to moderate. This chapter is based on [P16], [P23], [P22], [P20], [P24], [P17].

3.

Chapter 4 discusses a model of cache replacement algorithms.

These policies aim at adapting the content of a cache to the popularities of requested objects seen by the cache. This model is an example of a heterogeneous mean field models. We use it to illustrate how it is possible to construct a (refined) mean field approximation whose accuracy can be proven. This chapter collects contributions from [P28], [P27], [P15], [P25], [P26].

4.

Chapter 5 presents a model of bike-sharing systems. We describe such a system by a closed queuing network for which we use mean field approximation to derive key performance indicator and to study the performance of natural re-balancing heuristics. In this chapter, we also illustrate how mean field can be modified to model spatial interactions. This spatially refined approximation uses pair approximation. This chapter is based on [P7], [P14], [P6], [P19].

Finally, Chapter 6 concludes the manuscript by presenting future research directions, in particular in the context of optimization and game theory.

This chapter reviews some basic material on mean field approximation. We start in Section 2.1 with an example of cache replacement policies that serves as an illustration of what is mean field approximation and how it can be constructed. This example will be further studied in Chapter 4. This example is an element of a broader class of model called density dependent population process whose definition is recalled in Section 2.2. We then discuss in Section 2.3 how stochastic approximation can be used to study the convergence of such models to their mean field approximation. We present an extension of these results to discontinuous drifts in Section 2.4 and to synchronous population processes in Section 2.5.

While most of the chapter is composed of related work, Section 2.4

is based on [P1], [P11], [P12], [P2].

construction of the approximation : an example

Caches form a key component of many computer networks and systems. A large variety of cache replacement algorithms has been introduced and analyzed over the last few decades. In this section, we illustrate the construction of a mean field approximation for one of the simplest cache replacement policy called RANDOM [START_REF] Gelenbe | A Unified Approach to the Evaluation of a Class of Replacement Algorithms[END_REF], [START_REF] Aven | Stochastic Analysis of Computer Storage[END_REF], [START_REF] Fagin | Asymptotic miss ratios over independent references[END_REF].

The main purpose of this example is to illustrate two ways to construct mean field approximation: by assuming that objects are independent or by looking a population process. Later in Chapter 4, we will discuss more complicated cache replacement policies, based essentially on our papers [P26], [P25]. In particular, we will relate this approximation with the TTL approximation that was originally introduced in [START_REF] Fagin | Asymptotic miss ratios over independent references[END_REF] and that has become popular since it has been rediscovered independently in [START_REF] Che | Hierarchical Web caching systems: modeling, design and experimental results[END_REF].

The RANDOM policy

The RANDOM policies works has follows. We consider a single cache that can contains up to m items. When an item, say k, is requested, two events can occur:

• If the item is not in the cache, it is inserted in the cache by replacing a randomly chosen item. We call this a miss.

• If the item is in the cache, it is served directly from the cache and the state of the cache is unmodified. We call this a hit.

To construct our model, we assume the well-known Independent Reference Model (IRM): there is a collection of N items that can be requested. All items have the same size and the cache can store up to m items. An item k has a popularity λ k and the requests for item k arrive at the cache according to a Poisson process of intensity λ k . The request processes are assumed to be independent (hence the name IRM).

The IRM model is often described as a discrete-time model where item k is requested with probability p k at each time step (independently of the previous requests).

The two models are essentially equivalent by setting

p k = λ k /(∑ λ ).
The state of the cache can naturally be represented by a Markov process by tracking the content of the cache. By using reversibility, one can show that the stationary measure has a product form [START_REF] King | Analysis of Demand Paging Algorithms[END_REF], [START_REF] Gelenbe | A Unified Approach to the Evaluation of a Class of Replacement Algorithms[END_REF] and performance metric quantities like miss probabilities can be computed by using dynamic programming techniques [START_REF] Fagin | Efficient Calculation of Expected Miss Ratios in the Independent Reference Model[END_REF].

In what follows, we show how to construct a mean field approximation of this policy. When applied to steady-state analysis, this mean field approximation allows us to retrieve the classical approximation presented in [START_REF] Fagin | Efficient Calculation of Expected Miss Ratios in the Independent Reference Model[END_REF]. More interestingly, it allows a fast an easy characterization of the transient dynamics that can be easily extended to more complex replacement policies, see Chapter 4.

Construction via Object Independence

Let us write X k (t) a binary variable that equals 1 if Item k is in the cache and 0 otherwise. An item, say k, that is not in the cache is requested at rate λ k . In which case it will replace a randomly chosen item that is in the cache. Hence, Item will be the randomly chosen item with probability X (t)/m. This shows that the process X = (X 1 , . . . , X N ) is a Markov chain whose transitions are, for all k, ∈ {1 . . . N}:

X → X + e k -e at rate λ k (1 -X k ) X m ,
where e k is a vector whose kth component equals 1, all other being equal to 0.

Let us now zoom on Item k. The variable X k evolves as in Figure 2.1(a): if the item is not in the cache (X k = 0), it is requested at rate λ k and enters the cache. This explains the transition from X k = 0 to X k = 1 at rate λ k . If Item k is already in the cache, it is ejected when another item that is not in the cache is requested (this occurs at rate ∑ λ (1 -X )) and Item k is the one chosen to be replaced (this occurs with probability 1/m).

It should be clear that X k is not a Markov chain in general because the evolution of X k depends on the state of the other objects X . If we make the approximation that all objects are independent, we obtain a new stochastic process X that is described in Figure 2.1(b). Here, the evolution of each object is a Markov chain: the states of two objects are independent and objects are only coupled through their mean behavior. Such an approximation is what is a mean field approximation. The quantities x k = E[ Xk ] satisfy the following system of differential equation: [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF] and that is now widely used in mean field games [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF].

0 1 λ k 1 m ∑ λ (1 -X ) 0 1 λ k 1 m ∑ λ (1 -E[ X ]) ( 
ẋk = -λ k (1 -x k ) + 1 m ∑ λ (1 -x )x k . ( 2 
following equation:

π k = λ k λ k + z , where z is such that ∑ π = m. (2.2)
The solution of the above equation is unique and corresponds to the approximation proposed in [START_REF] Dan | An approximate analysis of the LRU and FIFO buffer replacement schemes[END_REF].

For now, we did not justify mathematically why Equation (2.1) should be a good approximation of the true value of E[X k ]. This will be the subject of the following sections. Before that, let us just illustrate how accurate this approximation is. For that, we consider a system with N = 10 items that have a Zipf popularity with exponent 1/2: Item k has a popularity λ k ∝ k 1/2 for k ∈ {1 . . . 10}. The cache size is m = N/2 = 5. In Figure 2.2, we compare the expected hit probability ∑ k p k E[X k (t)] of the original model (obtained by simulation) with the approximation ∑ k p k E[ Xk (t)]. We observe a very good match between the two quantities. Note that the value for ∑ k p k E[ Xk (t)] can be easily computed by numerically integrating the ODE (2.1), the value for ∑ k p k E[X k (t)] has been computed by averaging over 10 4 independent simulations. The fixed point of the mean field approximation, given by (2.2), is also a very good approximation of the steady-state hit probability: the exact value is 0.536 while the fixed point gives 0.533.

It should be clear that the method described above can be extended to interacting objects that have more than two states. This is for example what we did in [P26], [P27], [P25] to analyze variants of the RANDOM policy. This will be further discussed in Chapter 4.

Population Processes

We now describe a mathematical framework that can be used, and for example has been used in [START_REF] Hirade | Analysis of Page Replacement Policies in the Fluid Limit[END_REF], [START_REF] Tsukada | Fluid Limit Analysis of FIFO and RR Caching for Independent Reference Models[END_REF], [START_REF] Jelenkovic | Asymptotic approximation of the move-to-front search cost distribution and least-recently used caching fault probabilities[END_REF] to study RANDOM or LRU caches. Instead of having N different items, we now assume to have K classes of items and N/K items per class, where all items of Class k have the same popularity λ k . Let us now write X k (t) ∈ [0, 1] the fraction of class k items that are in the cache and assume that the cache can store up to mN/K items. The transitions of this model can be written as:

X → X + K N (e k -e ) at rate N K λ k (1 -X k ) X m ,
Note that when N = K, this model coincides with the model described in the previous section. In the above equation, increasing N reduces the impact of each transition and accelerates the rate of the transitions. As we show in the next section, this is an example of what is called a density dependent population process.

density dependent population processes

Density-dependent population processes are a popular model of population processes that have been introduced in [START_REF] Kurtz | Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes[END_REF], [START_REF] Kurtz | Strong approximation theorems for density dependent Markov chains[END_REF]. We recall the definition here. Such a population process is a sequence of continuoustime Markov chains (X (N) ). For each N, X (N) evolves on a subset of some Banach space (E , . ). We assume that there exists a set of Typically, we will use E = R d or E = R N (the set of infinite sequences) with an appropriate norm.

vectors L ∈ E and a set of functions β : E → R + such that X (N) jumps from X to X + /N at rate Nβ (X) for each ∈ L. Our caching model of §2.1.3 is a density dependent population processes. The next chapters will contain many other examples. We will refer to the chain X (N) as the system of size N, although N does not a priori correspond to the system's size. For such a system, we define the drift f as the function that associates to x ∈ E the quantity f (x) that is defined by

f (x) = ∑ ∈L β (x)
The drift does not depend on N. This definition means that f (x)dt is the expected variation of X (N) that would start in state x during a small time interval dt:

E [X(t + dt) -X(t) | X(t) = x] = f (x)dt + o(dt).
The mean field approximation of such a population process corresponds to the solution of the ODE ẋ = f (x). In our caching example, this would correspond to Equation (2.1).

This model or close variants has been widely used to study the performance of computer-based systems such as dissemination algorithms [START_REF] Chaintreau | The Age of Gossip: Spatial Mean Field Regime[END_REF], SSDs [START_REF] Van Houdt | A mean field model for a class of garbage collection algorithms in flash-based solid state drives[END_REF], and most importantly the analysis of resource allocation strategies in server farms or data centers: such a system is composed of a large number of servers that interact because of scheduling or routing strategies [P10], [START_REF] Lu | Join-Idle-Queue: A novel load balancing algorithm for dynamically scalable web services[END_REF], [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Tsitsiklis | On the power of (even a little) centralization in distributed processing[END_REF], [START_REF] Vvedenskaya | Queueing system with selection of the shortest of two queues: An asymptotic approach[END_REF], [START_REF] Minnebo | A fair comparison of pull and push strategies in large distributed networks[END_REF].

It can be shown that under mild conditions (essentially if the drift f is Lipschitz-continuous) then, the stochastic process X (N) converges almost surely to x as N goes to infinity [P2, Theorem 1]. More precisely, if x denotes the solution starting in x(0) and if the initial conditions X (N) (0) converges to x(0) as N (in probability), then for all T:

lim N→∞ sup t≤T X (N) (t) -x(t) = 0 (in probability). (2.3)
When one wants to compute values for a finite time-horizon T, the necessary conditions to apply this result can be done by a syntactic analysis of the model. This is more complicated for steady-state analysis [START_REF] Cho | On the validity of the fixed point equation and decoupling assumption for analyzing the 802.11 mac protocol[END_REF], in which case special Lyapunov functions have to be found (see for example [P15]). This is illustrated in Figure 2.3 in which we consider the same caching model as in Section 2.1.3 with different scaling parameters N ∈ {10, 100, 1000} (recall that this corresponds to N items). We observe that, as predicted by the theory, the trajectories of the stochastic system converge to the mean field approximation.

Note that the data reported in Figure 2.2 corresponds to the case N = 10 of Figure 2.3. At first sight, it might seem strange that the agreement between the simulation and the mean field approximation seems better on the former than on the later. This discrepancy is explained by the fact that Figure 2.2 depicts the expected hit probability ∑ k λ k E[X k ] whereas Figure 2.3 depicts the a stochastic trajectory of ∑ k λ k X k . We will comment more on this in the next chapter. 

proof of accuracy via stochastic approximation

There are essentially two classes of methods to prove that mean field approximation is accurate. The most classical way is to reason in terms of trajectory and to show that, when some scaling parameter tends to infinity, the behavior of the stochastic converges (almost surely or in probability) to the mean field approximation. This often relies on martingale concentration argument and lead to results like Equation (2.3). It can be used for transient [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF], [START_REF] Kurtz | Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes[END_REF] or stationary regime [START_REF] Bortolussi | Bounds on the deviation of discretetime Markov chains from their mean-field model[END_REF]. This can be done by using stochastic approximation. We recall the main principle in Section 2.3.1 and its extension to steady-state behavior in Section 2.3.2.

The bound obtained by this trajectorial analysis are often quite loose compared to what is observed in practice. A second kind of methods is to use ideas inspired by Stein's method and [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF], [START_REF] Stein | Approximate computation of expectations[END_REF], [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF] to relate the accuracy of the mean field approximation and the gap between the generators of the Markov chain and of the mean field ODE. This method will be the main tool that we will use in Chapter 3.

Stochastic Approximation

Let us consider a density dependent population process X. The continuous time Markov chain X can be viewed as a discrete time Markov chain that we denote Y such that X(t) = Y P(t) , where P(t) is a Poisson process of intensity Nτ, with τ = sup x∈E ∑ β (x). For a vector ∈ L, the discrete time Markov chain has the following transition:

P Y n+1 = Y n + 1 N Y n = 1 τ β (Y n ).
Let us define a sequence of random variables

M by M n+1 = Y n+1 - Y n -1 τN f (Y n ).
By definition of the drift, M is a martingale difference sequence, i.e., E[M n+1 | F n ] = 0. This allows us to write the process Y n as a stochastic approximation algorithm with constant step size:

Y n+1 = Y n + 1 τN ( f (Y n ) + M n+1 ) . (2.4)
Since its introduction in the 50s, the theory of stochastic approximation algorithms has been thoroughly developed, with a particular emphasis on the relation between the stochastic process defined by the recurrence equation (2.4) and the solution of the dynamical system defined by the ODE ẋ = f (x) [5], [12], [58]. To make the connection more explicit, let us denote Nτt = 1

Nτ ∑ Nτt k=1 M k+1 . This allows us to write the value of Y at time Nτt as A great advantage of studying the almost sure convergence of Y Nt by using the stochastic approximation method Equation (2.4) is that it requires very few assumptions. Equation (2.5) is essentially a Euler discretization of the ordinary differential equation ẋ = f (x) with a noise Nτt that vanishes as N becomes large. Proving that Y Nτt is close to x(t) can therefore be done by studying the Euler discretization and proving that it is numerically stable with respect to small error. This is immediate for example when f is a Lipschitz-continuous function, see for example the classical paper of [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF]. This method can also be easily generalized when the function f is not continuous. This is for instance what we have done in [P11] when we showed that when f is not continuous, it suffices to replace the ODE by a differential inclusion ẋ ∈ F(x), see also Section 2.4. Another important generalization of the method is when the system exhibits multiple time-scales, for instance, if the population process X(t) evolves in an environment Z(t) that changes state at a much faster rate. In this case, one can again construct an ODE by using a time averaging over the possible values of Z [START_REF] Benaim | Recursive algorithms, urn processes and chaining number of chain recurrent sets[END_REF].

Y Nτt = Y 0 + 1 Nτ Nτt-1 ∑ k=1 f (Y k ) + Nτt . ( 2 

Steady-State Dynamics

A point π is called an attractor of the ODE if all trajectories of the ODE converge to π. When f is continuous, such a point is of course a fixed point, i.e., such that f (π) = 0.

The previous results establish that, under mild condition, the trajectories of a system of interacting objects converges to a deterministic dynamical system ẋ = f (x) over any finite time interval. This result can be extended in the stationary regime but this extension has to be handled with care. More precisely, let us consider that, for each system size N, the Markov chain X N has a unique stationary measure π N . A classical convergence result on the steady-state convergence of mean field models (see for instance [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF], [START_REF] Benaim | On mean field convergence and stationary regime[END_REF]) shows that, if the ODE has a unique attractor π, then the sequence of stationary measures π N concentrate on π as N goes to infinity.

However, characterizing the asymptotic behavior of a differential equation is often a difficult task. In particular, showing that the differential equation has a unique fixed point does not guarantee this fixed point to be an attractor: the situation is more complicated as there might be limit cycles or chaotic behaviors. The only generic results that can be shown in this case is that the sequence of stationary π N measure concentrate on the Birkhoff center of the ODE. We refer

The Birkhoff center of a dynamical system is defined as the closure of the set of recurrent points. A point x is said to be recurrent if lim inf t→∞ Φ t (x)x = 0, where Φ t (x) denotes the value at time t of the solution of the ODE that starts in x at time 0. the reader to [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF], [START_REF] Cho | On the validity of the fixed point equation and decoupling assumption for analyzing the 802.11 mac protocol[END_REF] for a more thorough discussion of the validity of the fixed point method and its application to a model of the 802.11 MAC protocol.

When one tries to study the performance of a system, the case with a unique attractor is often more convenient because if the ODE has multiple attractors, it is often quite difficult to estimate what is the proportion of the time that the system will spend near one or the other point. A large proportion of the mean field models studied in the performance evaluation community seem to have a unique fixed point that is also an attractor. Yet, while the uniqueness of the fixed point is often proven, the proof of its attractiveness is often missing and left as future work or as a conjecture. While there is no general theory to show that a fixed point is an attractor, there exists a few classical methods that may or may apply depending on the particular model:

• One of the most commonly used method is to find a Lyapunov function. There is no generic method to find a Lyapunov function. Yet, for systems of interacting Markov chains, like the ones we study, it is often possible to use relative entropy to build a Lyapunov function. A (relatively) generic approach is presented in [START_REF] Dupuis | On the construction of lyapunov functions for nonlinear markov processes via relative entropy[END_REF], [START_REF] Budhiraja | Limits of relative entropies associated with weakly interacting particle systems[END_REF]. We have used a variant of this approach in [P7], [P15].

• Many systems can be proven to be monotone. Monotonocity can be sometimes be used to prove the convergence to a fixed point. This has been used for example in the context of load balancing systems in [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Tsitsiklis | On the power of (even a little) centralization in distributed processing[END_REF], [START_REF] Van Houdt | Global attraction of ODE-based mean field models with hyperexponential job sizes[END_REF].

• A interesting last case is when the original stochastic system is reversible for all system sizes N. It is shown in [START_REF] Boudec | The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points[END_REF] that under this condition, showing the uniqueness of the fixed point is a sufficient condition. This has been for instance used in [START_REF] Tsukada | Fluid Limit Analysis of FIFO and RR Caching for Independent Reference Models[END_REF].

discontinuous drifts and differential inclusions

Most of the result on stochastic approximation assume that the drift f is Lipschitz-continuous in which case the ODE ẋ = f (x) is well defined: it has a unique solution and the trajectories of X (N) converge to this unique solution. The condition of Lipschitz-continuity limits the applicability of these results in many practical cases, in particular, for systems exhibiting threshold dynamics or with boundary conditions. In [P11], we study the limiting behavior of population processes that have a discontinuous drift f . As a simple example, consider a simple queuing system with one buffer and a processors that serve packet at rate 2N. If packets arrive at rate N, and if X (N) denotes the number of packets in the queue rescaled by N -1 , then one obtain a density dependent population process whose drift is f (x) = -1 if x > 0 and f (0) = +1. f is not continuous and the ODE ẋ = f (x) has no solution.

A proper way to define solutions of an ODE ẋ = f (x) with noncontinuous right-hand side f is to use differential inclusions (DI) instead. The ODE is replaced by the following equation

ẋ ∈ F(x), (2.6) 
where F is a set-valued mapping, defined as the convex hull of the accumulation points of the drift. In the above example, one would have

F(x) = {-1} if x > 0 and F(0) = [-1, 1].
A differential inclusion may have multiple solutions. The main result of [P11] is that over any finite time interval, the trajectories of X (N) converges to the set of the solutions of the differential inclusion. We also provide a rate of convergence when the set of solution is one-sided Lipschitz-continuous.

A function is one-sided Lipschitzcontinuous with respect to a scalar product

• if f (x) -f (y), x - y ≤ L x -y 2 . A function is Lipschitz- continuous if in addition f (x) -f (y), x - y ≥ -L x -y 2 .

extension to synchronous population models

So far, we have only presented what we call asynchronous mean field models. By asynchronous, we mean that each transition that occurs in the systems only affects a limited number of objects, i.e., objects evolves asynchronously. In this case the mean field approximation is given by a continuous time dynamical system (often a system of ordinary differential equations). This document focuses on this model as it is the most studied case e.g. [P2], [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF], [START_REF] Kurtz | Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes[END_REF]. A second type of model arises when objects are synchronous. In this case the mean field approximation is a discrete time dynamical system [START_REF] Boudec | A generic mean field convergence result for systems of interacting objects[END_REF], [P8], [START_REF] Tinnakornsrisuphap | Limit Behavior of ECN/RED Gateways Under a Large Number of TCP Flows[END_REF]. In this part, we briefly describe this model, based on a simplified version of the model [START_REF] Boudec | A generic mean field convergence result for systems of interacting objects[END_REF].

The synchronous mean field model of [START_REF] Boudec | A generic mean field convergence result for systems of interacting objects[END_REF] models composed N interacting objects in which each object evolves in a finite state space. Time is discrete and X(t) denotes the empirical measure at time t, i.e., X i (t) fraction of objects in state i at time t. The behaviour of the system X is characterized by a (time homogeneous) discrete time Markov chain. At each time step t, each object performs a transition, that, conditionally on X(t), is independent of the other states. Denoting S n (t) the state of object n at time t, we have:

P [S n (t + 1) = j | S n (t) = i ∧ X(t)] = K ij (X(t)).
It can be shown that for such a system, as the number of objects N goes to infinity, the stochastic process X converges almost surely to a deterministic dynamical system x that satisfies x(t + 1) = x(t)K(x(t)).

A great advantage of this model is that the numerical evaluation of the dynamical system x(t + 1) = x(t)K(x(t)) can be computed very efficiently. This model has thus been widely applied, for instance to fasten some model checking algorithms [START_REF] Latella | On-the-fly PCTL fast meanfield approximated model-checking for self-organising coordination[END_REF] or to model opinion dynamics [START_REF] De Oca | Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making[END_REF]. It can be extended to more coupled dynamics with non-mean field dynamics, see for instance the interesting model of probabilistic automata in [START_REF] Hodgkinson | Normal approximations for discrete-time occupancy processes[END_REF].

In this chapter, we describe a new approximation, called the refined mean field approximation that we developed in a series of recent papers [P20], [P16], [P23], [P22]. Compared to the classical mean field approximation, this refined approximation depends on the system size N. It converges to the classical mean field approximation when N goes to infinity but is much more accurate for small system size (say N = 10 to N = 100).

In the remainder of the chapter, we first present the methodology that we use to characterize how accurate is the classical mean field approximation in Section 3.1. We then explain how we use this characterization to propose a refined mean field approximation in Section 3.2. We explain its relation to moment closure approximation in Section 3.3. As an illustration, we discuss the application of these methods to study load balancing strategies in Section 3.4. Finally, we present an extension of these methods to synchronous mean field models in Section 3.5.

accuracy of the classical mean field approximation

As argued in Section 2.3, mean field approximation is known to be asymptotically exact for many systems. For these systems, the fraction of objects in a given state i at time t, X (N) i (t), converges to a deterministic quantity x i (t), as the number of objects N goes to infinity. The rate of convergence of X (N) i to x i has been studied by several papers, e.g. [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF], [START_REF] Kurtz | Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes[END_REF], [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF], that show that the expected distance between the stochastic process X (N) and x is of the order of 1/ √ N:

E X (N) -x ≈ C √ N . (3.1)
This result is a like a central-limit-theorem for mean field systems: [START_REF] Kurtz | Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes[END_REF]. It was originally proven for finite time-horizon and more recently extended to stationary distributions in [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF].

X (N) (t) is equal to x(t) plus 1/ √ N times a Gaussian noise
Yet, we believe that Equation (3.1) does not fully explain the accuracy of mean field approximation. As an example, we provide in Table 3.1 results obtained by simulation on how the mean field approximation is accurate for the power of two-choice model (sometimes also called shortest queue-2 or SQ(2)). We report the average queue length in

The two-choice model is composed of N identical servers. Each server maintains a separate queue. When a job arrives, two servers are sampled at random and the job is allocated to a the server that has the shortest queue among those two. See also Section 3.4. steady-state as a function of the number of servers N for ρ = 0.9, denoted by m N , and its mean field approximation, denoted by m ∞ . We observe two facts: first, the mean field approximation is already very accurate for N = 100, and second, the error made by the mean field approximation is approximately 4/N which decreases much faster than the This discrepancy comes from the fact that the error term m N is a function of the expected value of X (N) 

: m N = ∑ ∞ i=1 iE[X (N) i
]. This fact is quite general in the performance evaluation community where mean field approximation is often used to estimate expected performance metrics, that are often function of E[X (N) ]. We therefore argue that the metric used Equation (3.1) is not tight enough to measure how accurate mean field approximation will be.

This leads us to focus on a different metric. Instead of studying the distance between X (N) (t) and x(t) as in Equation (3.1), we study the distance between the expectation of a function of X (N) (t) and its mean field approximation. As a norm is a convex function, we expect the latter to be smaller than the former. We show in fact that there is an order of magnitude of difference: under mild conditions (essentially the twice-differentiability of the drift function f ), this distance is of order 1/N:

O 1 N = E X (N) -x E X (N) -x = O 1 √ N . (3.2)
This result holds for the transient regime and can be extended to the stationary regime under the same conditions as [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF]. This result shows that an expectation estimated via mean field approximation is 1/N-accurate. This is what is observed in Table 3.1, where the average queue length m N is approximately equal to m ∞ + 4/N. Equation (3.2) also explains the discrepancy between

We will describe later Section 3.2 how this "4" can be computed by numerical methods. 

E[X (N) ] -x is small. On the other hand, Figure 2.2 shows that E[ X (N) -x ] is still relatively large for N = 10.
Note that the metric Equation (3.2) has also been studied in [START_REF] Bencheikh | Bias behaviour and antithetic sampling in mean-field particle approximations of SDEs nonlinear in the sense of McKean[END_REF]. In this paper, the authors also obtain a O(1/N) rate of convergence for another kind of mean field models. They call this metric the bias of the approximation.

Main Results

We now describe in more details the precise model under which the above result holds. We consider population processes described by the classical model of density-dependent population process that was described in Section 2.2, that is, for each N, X (N) defines the evolution of the stochastic process of size N and there exists a set of vectors L ∈ E and a set of functions β : E → R + such that X (N) jumps from x to x + /N at rate Nβ N (x) for each ∈ L. The drift of the system of size N is f N , defined by f N (x) = ∑ ∈L β N (x). We will denote by f (x) = lim N→∞ f N (x) the limit if it exists.

The 1/N-accuracy of the mean field approximation holds under essentially two main assumptions:

(A0) X (N) is a density dependent population process on a Banach 1 space E such that sup x∈E ∑ ∈L β N (x) l 2 < ∞.
(A1) The drift f is C 2 (i.e., differentiable twice with a continuous second derivative).

Note that (A0) is essentially a technical assumption that ensures that the models that we study are well-defined. Assumption (A1) deserves more discussion. Assuming that the drift is differentiable once is quite classical to obtain mean field convergence (recall Section 2.3) even if some results can be obtained for discontinuous drifts [P11]. Assuming

In particular (A1) implies that the ODE ẋ = f (x) is well-defined and has a unique solution starting from any initial condition. In what follows we will denote by Φ t x the value of this solution at time t.

that the drift is twice differentiable is a more restrictive condition. It is often verified by interaction models in which independent tuples of agents can interact. It is often not verified when a centralized controller is involved, as for example in the bandit optimal model of [START_REF] Verloop | Asymptotically optimal priority policies for indexable and nonindexable restless bandits[END_REF]. Yet, this condition is almost necessary as we discuss in Section 3.1.3.

Using this result we obtain the following theorem:

Theorem 1 (Based of Theorems 3.1 and 3.3 of [P16]). Assume that X (N) satisfies (A0) and (A1) and that there exists a constant c > 0 such that

E[X (N) (0)] -x ≤ c/N and sup x∈E f N (x) -f (x) ≤ c/N. Then, for each t, there exists a constant C(t) < ∞ such that E X (N) (t) -Φ t x ≤ C(t) N . ( 3.3) 
This theorem can be extended to the stationary regime under two additional assumptions:

(A2) For each N, the stochastic process has a unique stationary distribution.

(A3) The ODE ẋ = f (x) has a unique attractor π and this attractor is exponentially stable, i.e. there exists a, b > 0 such that for all x ∈ E and t > 0: Φ t xπ ≤ ae -bt .

Again, Assumption (A2) is a very natural assumption that is needed for our theorem to be stated. Assumption (A3) contains two subassumptions: the existence of a unique attractor and its exponential stability. As pointed out in Section 2.3.2, the existence of a unique attractor is necessary to apply the classical concentration results of for instance [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF]. The exponential stability is slightly more restrictive but is generally verified in practice. Moreover, as opposed to the global stability, the exponential stability is in general easy to verify numerically (for a finite dimensional space, it only depends on the eigenvalues of the Jacobian at π). This means that our conditions are not more difficult to verify than the ones of [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF].

Theorem 2. In addition to the assumptions of Theorem 1, assume (A2) and (A3). Then the constant C(t) in Theorem 1 is uniformly bounded in time. In particular, there exists a constant C < ∞, such that:

E (N) X (N) -π ≤ C N (3.4)
where E (N) [.] denotes the expectation with respect to the stationary distribution of the system of size N.

The Generator Method

We will not give a full proof of the above theorem but rather present the theory behind and give the main ingredient of the proof. The starting point of our result is to use a generator method similar to the one developed in [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF], [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF] in a similar mean field context. There are two main ingredients in the proof: The first is to show that the generators of the stochastic system and the ODE are close; The second is to translate this into a bound on the gap between E[h(X (N) (t))] and h(Φ t x). While the first one is relatively straightforward, the second comes from a careful analysis how the solution of an ODE varies as a function of its initial condition. This is where we use the assumption (A1) of twice-differentiability. For the transient regime, this method is close to the one used in [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF]. For stationary regime, this method can be related to the use of Stein's method [START_REF] Stein | Approximate computation of expectations[END_REF] whose use has been recently popularized in [START_REF] Gurvich | Diffusion models and steady-State approximations for exponentially ergodic Markovian queues[END_REF], [START_REF] Braverman | Stein's method for steady-state diffusion approximations of M/Ph/n+ M systems[END_REF], [START_REF] Braverman | Stein's method for steady-state diffusion approximations: an introduction through the Erlang-A and Erlang-C models[END_REF]. This methodology has for instance then been used in [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF], [START_REF] Ying | Stein's Method for Mean Field Approximations in Light and Heavy Traffic Regimes[END_REF] to establish the rate of convergence of stochastic processes to their mean field approximation, in light or heavy traffic.

Let us denote by L (N) the generator of the system of size N and by Λ the generator of the ODE. To a function h that is differentiable, these generators associates respectively the functions L (N) h and Λh that are defined as

(L (N) h)(x) = ∑ ∈L Nβ (x)(h(x + N ) -h(x)) (Λh)(x) = ∑ ∈L β (x)Dh(x) • = Dh(x) • f (x),
where Dh(x) is the derivative of the function h, evaluated in x.

The first idea of the proof is to remark that if the generator Λ is a first-order Taylor expansion of the generator L (N) . More precisely, if a function g is twice-differentiable, then L (N) g converges to Λg at rate N -1 . Indeed:

(L (N) -Λ)gx = ∑ ∈L β (x) N(g(x -N ) -g(x)) -Dg(x) • = 1 2N ∑ ∈L β (x)D 2 g.( ⊗ ) + O(1/N 2 ). (3.5)
The second step of the proof is to use the following equality (referred as a "standard trick" in [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF]) to obtain:

E X (N) (t) -Φ t x = -E t 0 (Λ-L (N) )Φ s (X (N) (t-s))ds . (3.6)
Theorem 1 follows from applying Equations (3.5) with g = Φ t to

Equation (3.6) is obtained by studying the function r(s) = E[Φ s (X (N) (t -s))]:
the right hand side of Equation (3.6) is r(0)r(t) while the left hand side is t 0 r (s)ds.

(3.6). To show that, one needs to show that Φ s is twice-differentiable function which is a classical result in analysis. The proof of Theorem 2 consists in looking at the limit of Equation 3.6 as t goes to infinity. This equation is replaced by

E X (N) -π = -E (Λ -L (N) ) ∞ 0 Φ s (X (N) )ds , (3.7) 
where the above expectation represents the expectation with respect to the stationary measure of X (N) . Theorem 2 then follows by using Equations (3.5) with g = ∞ 0 Φ t dt. Again, a careful analysis of the dynamical system shows that this function is twice differentiable when this ODE has an exponentially stable attractor, see for example [P16], [START_REF] Ying | On the Approximation Error of Mean-Field Models[END_REF].

Necessity of Twice-Differentiability

The main assumption that is used to obtain the rate of convergence of 1/ √ N of Equation (3.1) is to have a Lipschitz-continuous drift. On the other hand, our results Theorem 1 and Theorem 2 require the drift to be twice differentiable. It is quite natural to wonder about the necessity of this assumption.

The rate of 1/ √ N is also true with a one-sided Lipschitz-continuity, see e.g. [P11].

In [P16], we relax slightly the assumption of twice-differentiability and show that when the derivative of the drift is α-Hölder continuous, then the convergence occurs at rate O(1/ √ N 1+α ). We also provide a

Recall that a function is α-Hölder continuous if there exists a constant L such that for all x, y:

f (x) -f (y) ≤ L x -y α . The case α = 1 corresponds to Lipschitz-continuity.
numerical example that shows that in general this exponent is tight and that having a Lipschitz-continuous drift is not sufficient to obtain Equation (3.2). This implies that only Lipschitz-continuity is not sufficient to guarantee a 1/N-accuracy of the mean field estimates.

system-size expansions

Theorem 1 and 2 provides bounds that guarantees that an expected value is at most from a distance of order 1/N of its mean field approximation. In [P23], [P20], we show that this rate of convergence is exact. More precisely, we show that under assumptions (A0) and (A1), for any t > 0, there exists a constant

V(t) such that lim N→∞ N(E X (N) (t) -Φ t x) = V(t). (3.8) 
Under assumptions (A2) and (A3) the result also holds for the stationary regime (t = +∞).

While replacing the inequalities of the Theorems 1 and 2 is not difficult, the major contributions of [P23], [P20] is to show that V(t) can be easily computed numerically: when t > 0 this constant satisfies a (time-varying) linear differential equation. For t = +∞, this constant is the solution of a linear system. The refined approximation that we propose consists in approximating E[X (N) (t)] by its mean field approximation plus the 1/N term:

E X (N) (t) ≈ Φ t x + 1 N V(t). (3.9) 
By using several examples, we show in that this refined approximation is remarkably accurate, even for small system sizes such as N = 10. We will provide numerical examples illustrating this in Section 3.4. Note that Equation (3.9) can be viewed as a first order Taylor expansion of the classical mean field approximation. We also show in [P20] that it is possible to obtain a second order expansion E[X (N) 

(t)] ≈ Φ t x + 1 N V(t) + 1 N 2 A(t)
, and characterize a differential equation satisfied by A(t). To ease the presentation, in the part below, we describe briefly how the first term V(t) can be derived, by using the moment method that we developed in [P20].

Derivation of the Refined Mean Field Approximation

Before stating the main theorem and giving an idea of the proof, let us introduce some important notations. In the proof bellow, the quantities V(t), W(t) . . . denote time-varying tensors but we will drop the dependence on t and simply write V, W, F, Q in order to simplify notation. For i, j, k, the quantities F i j and F i jk denote the first and second derivative of the ith component of the drift f evaluated at Φ t x (recall that Φ t x is value at time t of the solution of the ODE ẋ = f (x)):

F i j = ∂ f i ∂x j (Φ t x) and F i jk = ∂ 2 f i (∂x j )(∂x k ) (Φ t x)
Similarly, H j and H jk denote the first and second derivatives of a function h evaluated at Φ t x. Last we define the time varying tensor Q as

Q ij = ∑ ∈L β (Φ t x) i j .
Using this notation, the constant expressed by Equation (3.8) can be restated in the following theorem, that also shows the equations satisfied by the constants V and W.

Theorem 3 (Theorem 1 of [P20]). Assume that the model satisfies (A0) and (A1) and that X (N) (0) = x. Then there exists time-varying tensors V(t) and W(t) such that for any differentiable function h:

lim N→∞ N(E h(X (N) (t)) -h(Φ t x)) = ∑ j H j V j (t) + 1 2 ∑ jk H jk W jk (t). (3.10) 
Moreover, V and W satisfy the following set of linear differential equations:

Vi = ∑ j F i j V j + 1 2 ∑ jk F i jk W jk (3.11) Ẇij = ∑ k (F i k W kj + F j k W kj ) + Q ij . (3.12)
If the model also satisfies (A2) and (A3), then the above differential equations (3.11-3.12) have a unique fixed point and Equation (3.10) holds uniformly for all time t ∈ R + ∪ {∞}.

Note that in [P20], we also derive a second order expansion in 1/N 2 . The theorem below states the existence of the constants corresponding to the second order expansion. To compute the 1/N expansion of Theorem 3, the above differential equation depends on the first and second derivatives of the drift. In the theorem below, we do not present the exact form of the differential equation but it is to be noted that in order to compute the second order expansion in 1/N 2 , one need to consider up to the fourth derivative.

Theorem 4 (Theorem 1 of [P20]

). In addition of the assumptions of Theorem 3, assume that the drift and the function h are four times differentiable. Then there exists time-varying tensors A(t), B(t), C(t) and D(t) of respec-

tive sizes d, d × d, d × d × d and d × d × d × d such that for any time t > 0: lim N→∞ N 2 E h(X (N) (t)) -Φ t x - 1 N ∑ j H j V j (t) + 1 2 ∑ jk H ij W jk (t) = ∑ j H j A j (t) + 1 2 ∑ jk H jk B jk (t) + 1 6 ∑ jk H jk C jk (t) + 1 24 ∑ jk m
H jk m D jk m (t)

These tensors satisfy time-dependent ordinary differential equation similar to that of V and W of Theorem 3. Moreover, if the model also satisfies (A2) and (A3), then these differential equations have a unique fixed point and the above equation holds uniformly for all time t ∈ R + ∪ {∞}.

The proof of Theorem 3 and Theorem 4 that we provide in [P20] is decomposed in two parts. First, we establish the existence of the above constants. This is similar to what we presented in Section 3.1.2 and we will not recall here. In a second part, we show that the constant satisfies the above equation. This second part is more original and we present it here. For the sake of conciseness, the only present the derivation of the first order equation Theorem 3. We refer to [P20] for a full derivation of the second order expansion.

The main idea of the proof of [P20] is to compute the derivatives of the moments of X (N) -Φ t x with respect to time. For the first moment,

d dt E X (N) i (t) -(Φ t (x)) i = E f i (X (N) (t)) -f i (x) (3.13) 
Applying Equation 3.10 to the above equation shows that

Recall that X (N) jumps from X to X + /N at rate Nβ (x) that that f (x) = ∑ β (x). lim N→∞ NE f i (X (N) (t)) -f i (x) = ∑ j F i j V j + 1 2 ∑ jk F i jk W jk .
This gives Equation (3.11).

For the second moment, let us simplify the notation by denoting x = Φ t x. The evolution of the stochastic process (X

(N) i (t) - (Φ t (x)) i )(X (N) j (t) -(Φ t (x)) j ) can be decomposed in two parts. On the one hand, it jumps from (X i -x i )(X j -x j ) to (X i + i /N -x i )(X j + j /N -x) at rate β N (X). This translates into a change of (X i + i N -x i )(X j + j N -x j ) -(X i -x i )(X j -x j ) = 1 N (X i -x i ) j + 1 N (X j -x j ) i + 1 N 2 i j .
Summing over all possible transitions leads to an average variation of

(X i -x i ) f j (X) + (X j -x j ) f i (X) + 1 N β (X) i j
On the other hand, Φ t x satisfies a differential equation with drift f , that leads to a variation of

-f i (x)(X j -x j ) -(X i -x i ) f j (x)
Summing the above two terms shows that

d dt E (X (N) i (t) -(Φ t (x)) i )(X (N) j (t) -(Φ t (x)) j ) = E (X i -x i )( f j (X) -f j (x)) + (X j -x j )( f i (X) -f i (x)) + 1 N β (X) i j .
As for Equation (3.11), applying Equation 3.10 leads to the above equation leads after some computation to Equation (3.12).

From this point, it should be clear that an extension of the above method to higher order moments is possible but will lead to much more complicated derivations. In [P20], we derive the expressions for the third and fourth moments which are necessary to obtain the 1/N 2 term of the expansion. This derivation was made possible by using compact tensor notations and Einstein summation convention (summation over a set of repeated indices). Thanks to this method, we obtain a characterization of the 1/N 2 constant that, despite being hard to interpret (see the equations for A, B, C, D in [P20, Theorem 1]), can be easily solved numerically.

Numerical Implementation

In order to ease the applicability of the above method, we implemented a numerical library in Python that constructs and solves the above equation. The library is available at https://github.com/ngast/rmf _ tool/ [P18]. It takes as an input a description of the model and uses symbolic differentiation to construct the derivatives of the drift and of the functions Q and R.

For the transient analysis, the computation of V(t), W(t), . . . requires a numerical integration of an ordinary differential equation. To do so, we use the function tensor manipulation routines of the library numpy (like tensordot or reshape) to transform our complex tensor equation into numpy arrays. We then use the function integrate.solve _ ivp of the library scipy [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF] to numerically integrate the ODEs for computing V(t) and W(t) of Theorem 1. For the steady-state analysis, the tool uses the python library scipy.sparse to construct a sparse system of linear equations and the function scipy.sparse.linalg.lgmres to solve the sparse linear system.

A detail analysis of the computation time taken by the method is performed in [P20, §4.3.4 and Figure 1]. In brief, it shows that the computation of the 1/N-terms V(t) and W(t) can be done for models with hundreds of dimensions in less than 10 seconds. With the same constraints of 10 seconds, the 1/N 2 -terms can be computed for models with a few tens of dimensions. Moreover, computing the time-varying constants for the transient regime is more costly than solving the fixed point equations: For a given computation-time budget, one can compute the steady-state constants for a system of doubled size.

relation with moment-closure approximation

An alternative way to derive the refined mean field approximation is to reason in terms of moment closure approximation. Moment closure techniques are used in numerous papers in the theoretical biology literature, e.g. [START_REF] Singh | Approximate moment dynamics for chemically reacting systems[END_REF], [START_REF] Ale | A general moment expansion method for stochastic kinetic models[END_REF], [START_REF] Goutsias | Markovian dynamics on complex reaction networks[END_REF], [START_REF] Smadbeck | A closure scheme for chemical master equations[END_REF], [START_REF] Schnoerr | Comparison of different moment-closure approximations for stochastic chemical kinetics[END_REF], [START_REF] Guenther | Moment closures for performance models with highly non-linear rates[END_REF]. We refer to [START_REF] Kuehn | Moment closure-a brief review[END_REF] for a recent review on the subject. In [START_REF] Grima | A study of the accuracy of moment-closure approximations for stochastic chemical kinetics[END_REF], it is argued that the moment closure of order 2 provides the same O(1/N) term as the refined mean field. This relates to a previous result of the same authors [START_REF] Grima | An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions[END_REF] where the authors develop an approximation similar to the one of [P23].

Let us consider a density dependent population process X. As written in Equation (3.13), the derivation of the expectation of X (N) satisfies:

d dt E [X(t)] = ∑ ∈L E [β (X(t))] = E [ f (X(t))]. (3.14)
The above equation is exact but if f is not a linear function, the above differential equation is not closed, because it is impossible to express

E[ f (X(t))] as a function of E[X(t)]. For example if f is a polynomial of degree 2, f (X) = Ax + x T Bx, the expectation E[ f (X(t))
] involves the second moment of X.

Note that f (x) is a polynomial of degree 2 in all the examples of the manuscript except for the power of d choices with d ≥ 3 where f is a polynomial of degree d.

There are two solutions to close the ODE (3.14). The first leads to the mean field approximation and consists in approximating E[ f (X(t))] by f (E[X(t)]). The second solution is to consider higher moments of X(t). For instance, the second moment evolves as:

d dt E X(t)X(t) T = ∑ ∈L E X(t) T + X(t) T + 1 N T β (X(t)) = E X(t) f (X(t)) T + f (X(t))X(t) T + 1 N Q(X(t)) , (3.15) 
where Q(x) is defined as Q(x) := ∑ T β (x). Again, the above equations is exact but is not closed if f is not a linear function. For instance, if f is a polynomial of order 2, the right hand side of this equation involves the third moment of X(t). This process can be continued: the derivative with respect to time of the kth moment will depend on the (k + 1)th moment.

The idea of moment closure approximation is to artificially close the equation by approximating a moment of order k + 1 by lower order moments. A natural way to do this is to assume that the (k + 1)th central moment is equal to 0. For instance, the moment closure of order 2 consists in approximating the third central moment by 0: for any i, j, k:

E (X i -E [X i ])(X j -E X j )(X k -E [X k ]) ≈ 0.
Said otherwise, we obtain a moment closure of order 2 by replacing in Equation (3.15) the terms E[X i X j X k ] by

E X i X j E [X k ] + E [X i X k ]E X j + E X j X k E [X i ] -2E [X i ]E X j E [X k ]
The relation between moment closure and our refined mean field approximation is not a priori straightforward. In fact, our approach can be used to justify that moment closure provides estimates that are more accurate than the classical mean field approximation. To see that, let us compute what we loose by neglecting the third central moment E[(X -E[X])] ≈ 0. The third central moment is equal to:

E (X -E [X]) 3 = E (X -x) 3 + 3E (X -x) 2 (x -E [X]) + 3E [(X -x)](x -E [X]) 2 + (x -E [X]) 3
Denoting by x the mean field approximation, Theorem 3 shows that

E[X] -x = O(1/N), E[(X -x) 2 ] = O(1/N) and E[(X -x) 3 ] = O(1/N 2 )
. This shows that the third central moment is of order 1/N 2 which implies that neglecting the third central moment provides an approximation that is 1/N 2 -accurate (approximation 2MA of [START_REF] Grima | A study of the accuracy of moment-closure approximations for stochastic chemical kinetics[END_REF]).

Similarly, it can be shown that the fourth central moments is of order O(1/N 2 ) and that the fifth central moment is of order O(1/N 3 ). Hence, to obtain an approximation that is an order of magnitude better (1/N 3 -accurate), one should not neglect the fourth moment but only the fifth moment. Neglecting the fourth moment (approximation 3MA of [START_REF] Grima | A study of the accuracy of moment-closure approximations for stochastic chemical kinetics[END_REF]) leads to a approximation that is O(1/N 2 )-accurate, similarly to the approximation 2MA.

application to load balancing

In this section, we show how this refined mean field approximation can be applied to study load balancing strategies. In particular, we show that it is much more accurate than the classical mean field approximation, especially for small system sizes and that it allows to distinguish models that could not be distinguished before, such as the impact of choosing with or without replacement (see Section 3.4.4).

The analysis of load balancing strategies in server farms is an important area of application of mean field approximation. Such a system is composed of a large number of servers that interact because of scheduling or routing strategies [P10], [START_REF] Lu | Join-Idle-Queue: A novel load balancing algorithm for dynamically scalable web services[END_REF], [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Tsitsiklis | On the power of (even a little) centralization in distributed processing[END_REF], [START_REF] Vvedenskaya | Queueing system with selection of the shortest of two queues: An asymptotic approach[END_REF], [START_REF] Minnebo | A fair comparison of pull and push strategies in large distributed networks[END_REF]. A typical example is the power of two-choice: Mean field approximation has been used in [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Vvedenskaya | Queueing system with selection of the shortest of two queues: An asymptotic approach[END_REF] to show that, with an infinite number of servers N, routing a task to the least loaded of two randomly sampled servers significantly reduces the response time compared to a purely random allocation. In this part, we revisit this problem by looking at what happens when the number of servers N is not infinite.

Load Balancing Strategies

We consider a system composed of N identical servers. Jobs arrive at the system according to a Poisson process of rate ρN. The service time of each job is exponentially distributed of mean 1. In this part, we will compare different strategies to allocate jobs to servers. These policies are often called load balancing strategies as their goal is to balance the load among servers. In the remaining of this section, we will compare two resource allocation strategies:

• d-choice policy of [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Vvedenskaya | Queueing system with selection of the shortest of two queues: An asymptotic approach[END_REF] -For each incoming job, two servers are picked at random. The jobs is allocated to the server with the smallest queue size and are then processed in a "first come first served" order.

• Pull-push model of [START_REF] Minnebo | A fair comparison of pull and push strategies in large distributed networks[END_REF] -Jobs are allocated purely at random to servers. When a server is idle, it asks an other server at random and pull one job for this queue if this server has 2 or more jobs. This takes a random time that is exponentially distributed of parameter r.

Our goal is particularly to understand, for a given system size N and load ρ, what is quantitatively the impact of choosing one or the other strategy. The classical mean field approximation does not allow one to distinguish between different system size. We will show that our refined approximation does.

Model and Mean Field Approximation

We first describe in more details the model and its classical mean field approximation. Let X (N) i (t) denote the fraction of servers with queue size at least i at time t. As the role of each server is symmetrical, X (N) (t) is a Markov chain whose transitions are as follows. A departure from a server with i ≥ 1 jobs modifies X into X -N -1 e i and occurs at rate N(X i -X i+1 ). A pull from a queue with i jobs modifies X into X + N -1 (-e i + e 1 ) and occurs at rate r(1 -X 0 )(X i -X i+1 ). An arrival at a queue with i jobs modifies X into X + N -1 e i and occurs at a rate depending on the allocation strategy. If the arrival are routed purely at random, this occurs at rate Nρ(X i+1 -X i ). If an arrival is routed to the least loaded of d servers, then it depends whether the servers are picked with or without replacement. With replacement, this occurs at rate Nρ(X d i+1 -X d i ). The mean field approximation are the solution of the ODE ẋ = f (x) where the drifts are: for the d-choice model:

f i (x) = ρ(x d i-1 -x d i ) + (x i+1 -x i ). (3.16)
For the push-pull models:

f i (x) = ρ(x i-1 -x i ) + (x i+1 -x i ) -r(x i-1 -xi)(1 -x 1 ) if i ≥ 2 ρ(1 -x 1 ) + (x 2 -x 1 ) + rx 1 (1 -x 1 ) if i = 1.
Note that for ρ < 1 and r > 0, these two models have a unique stationary fixed to which all trajectories converge. This can be shown by monotonocity arguments as in [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], [START_REF] Minnebo | A fair comparison of pull and push strategies in large distributed networks[END_REF] or also by using a Lyapunov function as in [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF].

Accuracy of the Refined Mean Field

As said earlier, the mean field approximation is asymptotically exact as the number of servers N goes to infinity. This has been used in the literature to predict what will be the average queue length of such a system, which for these models is

∑ i≥1 E[X i ].
As an illustration, we show in Table 3.2 the expected queue length predicted by the mean field approximation, i.e., the value of ∑ i≥1 π i where π is the fixed point of the corresponding policy.

Load ρ = 0.8 ρ = 0.9 ρ = 0.95 Expected queue length (push-pull) The values presented in Table 3.2 represent the theoretical that one would observe in such a system if the number of servers was infinite. For small system size, these numbers can be quite far from the reality. For instance, a simulation of the push-pull model for N = 10 and ρ = 0.9 suggests that the expected queue length is closer to 2.30 which is 45% larger than the 1.64 predicted by the mean field approximation. This discrepancy is simply due to the fact that N = 10 is far from infinity. Yet, as we show below, the refined mean field allows one to obtain an approximation that is much more accurate.

To that, we replace the mean field expected queue length ∑ i≥1 π i by its refined version ∑ i≥1 π i + 1 N ∑ i≥1 V i where V i is the constant of Theorem 3. We report the values in Table 3 This table illustrates that the refined approximation is much more accurate that the classical mean field approximation. While this table illustrates the accuracy with only two examples and one load ρ, we have shown that the good accuracy of the refined mean field by using other load balancing or coupon replication model in [P23] or simple epidemic examples in [P20].

Impact of Choosing With or Without Replacement

In addition to being more accurate, the refined approximation allows us to quantify the impact of phenomena that are indistinguishable by the classical mean field approximation. As an illustration, let us zoom on the two-choice model. When an incoming job arrives, two servers are sampled. In the literature, authors rarely distinguish if the two servers must be distinct or not, or said otherwise: if the two servers are sampled with or without replacement.

The reason for doing the distinction is that the two models coincide as N goes to infinity and are therefore indistinguishable by a mean field approximation. Indeed, the probability that least loaded of two randomly chosen servers has i -1 jobs is X 2 i-1 -X 2 i if the two servers are picked with replacement but is equal to (X i-1

NX i-1 -1 N-1 -X i NX i -1 N-1 )
if the two servers must be distinct. As N goes to infinity, the two cases differ by a 1/N-term.

As shown in [P23], Theorem 3 can be refined to show that the expected queue length is equal to

∑ i≥1 E X (N) i = ∑ i≥1 π i + 1 N ∑ i≥1 V i - 1 N ∑ i≥1 E i + O 1 N 2 , ( 3.17) 
where V i is the refined constant of the classical two-choice (with replacement) and E is equal to : As an illustration, we compare in Table 3.4 the refined approximation and values obtained by simulation for various values of ρ = 0.90 and different values of N. We observe that in most cases, the error E/N is a good predictor of the impact of choosing with or without replacement. We also observe that the value E/N tends to be smaller than the error term of the refined approximation V/N. This also explains why the impact of choosing with or without replacement has been overlooked in the literature: its impact is smaller than the error made by considering a mean field approximation.

E i = ∞ ∑ i=1 i-1 ∑ j=1 (1 -π j )2 i-j-1 ρ 2 i -2 j = ∞ ∑ j=1 ∞ ∑ i=1 (ρ 2 i+j -2 j -ρ 2 i+j -1 )2 i-1 N = 10 N = 20 N =

Second Order Expansion

Theorem 3 can be extended to derive a second order expansion term (Theorem 4). For the steady-state estimation, this shows that

E X (N) i = π i + 1 N V i + 1 N 2 A i + O 1 N 3 .
Our conclusion from [P20] is that while adding the 1/N 2 tends to improve the accuracy for many models, it is not always the case. In general, most of the gain in terms of accuracy are brought by the 1/N-term. As the 1/N 2 -term is much more expensive to compute than the 1/N term, we believe that when the 1/N 2 -expansion is too hard to compute, staying with the 1/N-expansion is already sufficient for many models.

As an illustration we compare in Table 3.5 the accuracy of three approximation (mean field, refined mean field with a 1/N term and refined mean field with also the 1/N 2 term). In the case of the twochoice model (d = 2), adding a third order expansion seems to be beneficial and provides a more accurate estimate. On the contrary, for d = 3 and ρ = 0.95, the 1/N 2 term seems to over-correct and provides an estimate that is not clearly better than the classical 1/N expansion. Note that this table only report values for N = 10. For larger values of N, the 1/N and 1/N 2 expansion quickly coincide.

It can be shown that the fixed point of the two-choice model satisfies

π i = ρ 2 i-1
and that therefore the mean field expected queue length ∑ i≥1 π i is of orderlog 2 (1ρ). Based on our extensive simulations, we conjecture that the first order correction term of the refined mean field approximation is approximately equal to

∑ i≥1 V i ≈ ρ 2 /(2(1 -ρ))
and that the second order approximation is ∑ i≥1 A i ≈ 1/(20(1ρ) 2 ). This suggests that the average queue length of the two choice model is approximately equal to a(N, ρ):

a(N, ρ) = ∞ ∑ i=1 2 ρ i-1 + ρ 2 2N(1 -ρ) + 1 20N 2 (1 -ρ) 2 (3.18)
While the first term is of order log 1 1-ρ , the second term is of order 1/(1ρ) when N is not too large. Hence, the above formula suggests that for a fixed N, the mean field approximation becomes less and less accurate as ρ approaches 1. This is what is observed in practice.

Transient Analysis

Theorem 3 shows that the refined mean field can be also be applied to study the transient regime of such a system. To illustrate this, we study how the expected queue length evolves with time in the two-choice model. The expected queue length can be expressed as

∑ i≥1 E[X (N) i (t)].
We choose the load ρ = 0.9 or ρ = 0.95. We choose an initial condition that depends on the load: for ρ = 0.90, out of the N queues, 0.2N queues start with 2 jobs and 0.8N queues start with 3 jobs; For ρ = 0.95, 0.5N queues start with 3 jobs and 0.5N queues start with 4 jobs. We choose this value as it is close to refined steady-state values (2.75 for ρ = 0.9 and 4.1 for ρ = 0.95). In Figure 3.1, we report how the expected queue length evolve with time compared to the three approximation (mean field, 1/Napproximation and 1/N 2 -approximation). The blue region indicate a 95% confidence interval. We observe in this figure, the expansions provide an estimation of the evolution of the expected queue length that is much more accurate than the one provided by the classical mean field approximation. The 1/N 2 -expansion provides a better approximation than the 1/N-expansion. For larger values like N ≥ 20, the expansion 1/N and 1/N 2 are almost indistinguishable.

For the simulation of the transient regime, the running time of obtain one trajectory of simulation by using an optimize C++ simulator is approximately 0.05sec for N = 10 (and it grows linearly with N). The results represented in Figure 3.1 are averages over 10 5 simulations which represents roughly 1h of computation for each of the two panels. As a comparison, the total time to compute the expansion of order 1/N 2 is about 10 seconds (and does not depend on N), and the time to compute the expansion of order 1/N is less than 1 second (using our python's implementation).

extensions and open question

In this chapter, we present our results on two refinements of the mean field approximation. These approximations consists in adding a term in 1/N and potentially a second term 1/N 2 where N is the size of the system. This result can be applied to a large class of models and are valid for the transient and stationary regime. Our examples show that the refined mean field approximation is much more accurate than the classical mean field approximation, especially for moderate system sizes (say N = 10 to N = 100).

The accuracy of the refined approximation leads to think that this refined approximation has potential applications in many domains. For some models, our results can be readily applied, especially by using our numerical implementation in [P18]. For some others, there remains a number challenges to solve and in particular regarding the extension to other population models.

• Synchronous population model -The extension of our results

to the model that we described in Section 2.5 is quite natural. In [P22], we have developed a refined mean field approximation for such a model. The refined constant V(t) is described by a linear recurrence equation instead of an ordinary differential equation. Our method to obtain this result is similar and also uses the computation of moments.

• Multi-scale systems -Multiple time-scale typically arise when a resource shared by everyone changes state at a faster evolution than each agent. This occurs for instance when a centralized controller interacts with a mass of agents by sending distributed control signals. The classical model of [START_REF] Benaim | A class of mean field interaction models for computer and communication systems[END_REF] can model such systems by considering a time-averaging method. Given the impor-tance of such models in communication protocols, extending is an important open question.

• Heterogeneous systems -Many systems are non-uniform. This is the case for the example of caching example that we described in Section 2.1. For now, we do not have theoretical ground to explain why a refined mean field approximation would work in such a system. Yet, we will show in Chapter 4 that it is possible to derive such an approximation for this system that improves the accuracy compared to the classical mean field model.

• Non-Markovian dynamics -A typical application is the study of load balancing systems with non-exponential service time. Such systems have been for instance studied in [START_REF] Bramson | Randomized load balancing with general service time distributions[END_REF], [START_REF] Aghajani | The hydrodynamic limit of a randomized load balancing network[END_REF] by using a PDE approach for the transient regime or a method called the queue at the cavity for the stationary regime. We believe that the moment closure approach could be used to propose a refined cavity method.

Finally, one could ask whether it is worth looking at higher order expansion terms in 1/N 3 or more. From a theoretical point of view, our method of moments could be directly extended to high moments, at the price of probably extremely complex derivations. From a practical point of view, when we compare the accuracy of the classical mean field approximation to the one of the expansions of order 1/N and 1/N 2 , most of the gain in terms of accuracy are brought by the 1/Nterm. Hence, we doubt that higher order expansions can have a real practical interest.

H E T E R O G E N E O U S M O D E L S A N D C A C H E A L G O R I T H M S

In this chapter, we study a class of cache replacement policies, called RAND(m), LRU(m). This algorithms are adapt dynamically the content of the cache to the observed popularity of items without the need of learning it. One originality of this model is that it is a heterogeneous population model.

Most of the results on mean field approximation assume an homogeneous population of agents. A natural extension of such a model is to consider that the population of agents can be clustered into a finite of number of classes with a large number of agents per class. This is what we did in Section 2.1. Yet, this model of a finite number of classes is often unrealistic and this is especially true for caching models where items are often assumed to have a Zipf popularity. In this chapter, we develop results on heterogeneous mean field that show that it is not necessary to use clustering to apply mean field approximation.

roadmap The chapter is organized as follows. After presenting the model in Section 4.1, we present an exact steady-state analysis in Section 4.2. This exact analysis allows us to disprove conjectures that date from the 80s. We then present a heterogeneous mean field approximation in Section 4.3 as well as a (partial) proof of its accuracy based on stochastic approximation. We then show how to compute a refined approximation in Section 4.4. Finally, we present some extensions and future work in Section 4.5.

The results contained in this chapter come from [P26] for the first analysis, from the recently submitted paper [P3] for the refined approximation and for [P25] for the extensions to LRU. It also covers some of the materials of [P15], [P28], [P27].

the rand(m) policies and variants

In this section we introduce a family of replacement algorithms, called RAND(m). The RAND(m) policy is a generalization of the RANDOM policy introduced in Section 2.1. It makes use of h lists. m = (m 1 , m 2 , . . . , m h ) is a tuple of integers where and m i ≥ 1 denotes the size of the ith list. Items enter the set of lists via List 1 and whenever requested while being part of List i they move up one list. More specifically, one of the following three events occurs when an item, say item k, is requested at some point in time:

1. If Item k is not in any of the lists (miss) -in this case item k is inserted in List 1 by replacing a random item from this list.

2. If Item k is in List i < h (hit) -it this case, it is exchanged with an item from List i + 1 (picked at random).

3. If Item k is in List h (hit) -no changes are made.

Note: the behavior described above implicitly assume that the cache is always full. When the cache contains fewer elements that its capacity, we consider that the remaining capacity is filled with "dummy" items that will progressively leave the cache as they are replaced by "real" items.

As in Section 2.1, we assume the IRM model: the requests of Item k arrive according to a Poisson process of intensity λ k . Without loss of generality, we assume that ∑ n k=1 λ k = 1 so that λ k is also the probability that a given request is for item k. All items have the same size and the cache has size m = ∑ h i=1 m i . Note that two classical policies can be represented by this model:

• RANDOM -The case with a single list m = (m) corresponds to the RANDOM policy.

• CLIMB -The case where all lists have size 1, m = (1, . . . , 1), is called the CLIMB algorithm or the TRANSPOSITION rule in the literature [START_REF] Starobinski | Probabilistic Methods for Web Caching[END_REF], [START_REF] Hester | Self-organizing Linear Search[END_REF].

The RAND(m) policy can be obtained by slightly modifying a family of replacement algorithms introduced in [START_REF] Aven | Stochastic Analysis of Computer Storage[END_REF]. We also studied variants of this policy where the RANDOM exchanges are replaced by FIFO or LRU. This leads to the policies FIFO(m) in [P26] or LRU(m) in [P25].

exact steady-state analysis

The Product-form Stationary Measure

Let Y i (t) be the set of items that are in the ith list at time t (with 1 ≤ i ≤ h). It should be clear that, under the RAND(m) policy, Y is a continuous time Markov chain that evolves in a state space Y (m).

An element of Y (m)

is a tuple y = (y 1 . . . y h ) such that y i is a subset of {1 . . . N} that contains exactly m i element where all the subsets y i are disjoint.

Our first result [P26, Theorem 1] is an exact characterization of the steady-state distribution of Y. We show that it satisfies a product-form:

π(y) = 1 Z(m) h ∏ i=1 ∑ k∈y i (λ k ) i , (4.1)
where Z(m) is a normalization constant:

Z(m) = ∑ y∈Y (m) ∏ h i=1 ∑ k∈y i λ i k .
The proof of this result is quite direct and uses the reversibility of the process Y. The above formula notably generalizes the formula of CLIMB and RANDOM of [START_REF] Gelenbe | A Unified Approach to the Evaluation of a Class of Replacement Algorithms[END_REF], [START_REF] King | Analysis of Demand Paging Algorithms[END_REF].

Hit Probability and Numerical Algorithms

In Equation (4.2), ∑ h i=1 ∑ k∈y i λ k is the probability that a request item is in the cache when the cache state is y.

The steady-state hit probability is the probability than when an item is requested, this item is found in the cache. By using Equation (4.1), it can be written

Hit(m) = ∑ y∈Y (m) π(y) h ∑ i=1 ∑ k∈y i λ k . (4.2)
While plugging Equation (4.1) into this formula could be called a closed form expression, a direct computation of the hit probability using this formula is prohibitive because the number of configuration Y (m) is extremely large. We show in [P26, Section 4.2] this computation is possible by using dynamic programming. The idea is that the hit probability of a population of N items and lists sizes m lists can be expressed recursively as a function of the hit probabilities of the systems with N -1 items and list sizes me i . The derivation of the recursive formula is rather easy once the good notations are chosen. The main difficult for implementing it is to avoid underflow. More details can be found in [P26, Section 4.2].

CLIMB is not Optimal

By using Equation (4.2) and a variant of the FKG inequality [START_REF] Fortuin | Correlation inequalities on some partially ordered sets[END_REF] that can be found in [START_REF] Van Den Berg | LRU Is Better than FIFO under the Independent Reference Model[END_REF], we show that among all RAND(m) variants that use a cache of size m, having a single list m = (m) always leads to the lowest hit probability. Said otherwise, RAND(m) always outperform RANDOM. It is tempting to conjecture that separating a list into two smaller lists always improves the performance and that the CLIMB algorithm, that is, having m lists of size 1, achieves the lowest miss rate within this class. In [3, p135] an even stronger conjecture is presented that states that CLIMB is optimal under the IRM model for all finite-memory demand replacement algorithms. We show in [P26] that this conjecture is false by exhibiting a probability distribution for which there are seven configurations for RAND(m) that outperform CLIMB. We show some of the best performing distribution in Table 4.1. For comparison, we also show the performance of RANDOM and LRU. This shows that CLIMB is not optimal. It further indicates that when fixing the number of lists h, the optimal choice for the length of each list is not necessarily setting m 1 = . . . = m h-1 = 1: for instance, m = (1, 1, 3, 1) is better than m = (1, 1, 1, 3). This demonstrates that another of the natural conjectures formulated in [3, p135] is also false.

transient analysis via mean field

The previous section shows that it is possible to use an exact analysis to characterize the steady-state performance of a RAND(m) policy. Yet, an exact analysis suffers from two main drawbacks: First it is only applicable to steady-state performance and provides no clue on the transient regime and in particular how the parameter m affects the rate at which the replacement policies adapt to changing popularities. Second, our recursive formula to compute Equation (4.2) is polynomial in the number of items but exponential in the number of lists.

In this section we show how to derive a mean field approximation for the RAND(m) policy. The originality of this mean field approximation is that the system is heterogeneous because all items have different popularity. This approximation becomes exact as the number of items and the cache size tends to infinity and allows for a fast and accurate study the transient behavior of the algorithm. We illustrate how this approximation can be used to compute the time to fill an empty cache or obtain a fast approximation of the steady-state miss probability.

Derivation of the Equations and Intuition

At a given time step t, Item k is either part of some list i ∈ {1, . . . , h} or is not in the cache. If an item is not in the cache, we say that it is part of List 0. For an item k ∈ {1 . . . n} and a List i ∈ {0 . . . h}, we define the random variables X k,i (t), where X k,i (t) equals 1 if the Item k is part of List i at time t and 0 otherwise. The probability that Item k

is in List i at time t is E[X k,i (t)].
Item k is requested at rate λ k and thus moves from list i to List i + 1 at rate λ k . The transitions for this model are (for i ∈ {0 . . . h -1} and

In [P3], we consider a slightly more general variant where λ k can also depends on the List i.

any items k, ):

X → X -e k,i + e k,i+1 + e ,i -e ,i+1 at rate λ k X k,i X ,i+1 m i+1 (4.3)
As in Section 2.1, we construct an approximation of E[X k,i (t)] by a deterministic quantity x k,i (t). The initial conditions of the ODE are x k,i (0) = 1 if the Item k is in the ith list of the cache at time t = 0 and 0 otherwise. Let (x k,i (t)) k,i be the unique solution of the following set

It should be clear that this ODE is Lipschitzcontinuous and hence has a unique solution. Moreover, with the initial conditions indicated, the solution of the ODE satisfies that, for all time t:

∑ n k=1 x k,i (t) = m i and ∑ h i=0 x k,i (t) = 1.
of ODEs, for k ∈ {1 . . . n}, i ∈ {1 . . . h}:

ẋk,i (t) = λ k x k,i-1 (t) -∑ λ x ,i-1 (t) x k,i (t) m i + 1 {i<h} ∑ λ x ,i (t) x k,i+1 (t) m i+1 -λ k x k,i (t) , (4.4)
where 1 {i<h} is equal to 1 if i < h and 0 otherwise. This equation can be understood as follows. Assume that Item k is in List i ∈ {0 . . . h -1} at time t. At rate λ k , Item k is requested and moves to List i + 1. At rate H i-1 (t) = ∑ λ X ,i-1 (t), an item from List i -1 is requested and is exchanged with an item from list i chosen at random. This item is Item k with probability 1/m i . Hence, with probability H i-1 (t)/m i , Item k moves to List i -1. If the list in which Item k is and the variables H i (t) were independent, the behavior of Item k would be described by a Markov chain whose transition matrix is represented in Figure 4.1.

0 1 2 h . . . . . . λ k H 0 (t) m 1 λ k H 1 (t) m 2 λ k H 2 (t) m 3 λ k H h-1 (t) m h
If the quantities H i (t) were deterministic, the Markov chain represented in Figure 4.1 is a birth-death process. Hence, the stationary measure of this chain can be easily computed: the probability that this chain is in state i in steady-state is

π k,i ∝ (λ k ) i ∏ i-1 j=0 m j H j . Denoting z i = ∏ i-1 j=0 m j
H j , this shows that a fixed point of the ODE satisfies:

π k,i = p i k z i 1 + ∑ h j=1 p j k z j .
We show in [P26, Theorem 7] that the ODE (4.4) has a unique fixed point that satisfies the above equation and the cache size constraint ∑ n i=1 π k,i = m i . By using a Lyapunov function based on relative entropy, we also show in [P15] that this fixed point is an attractor. This fixed generalizes the Equation (2.2) and can be computed efficiently by an iterative scheme. 

Accuracy of the Mean Field Approximation

In [P26], we give two arguments to justify the accuracy of the approximation. The first is a theoretical result [P26, Theorem 6] that shows that, when the number of items goes to infinity and cache size is large, the popularity of the different lists are in the cache converge to their mean field approximation. More precisely, by denoting by H i (t) the popularity of the items that in List i:

H i (t) = ∑ k λ k X k,i (t) and h i (t) = ∑ k λ K x k,i ( 
t) its mean field approximation, we show that for any time horizon T, one has

E   sup t< T max k λ k +max i 1/m i |H i (t) -h i (t)|   ≤ C max k λ k ∑ i λ i + max i 1/m i . (4.5) 
This result is a sample path result similar that we obtained by stochastic approximation argument as in Section 2.3. This result is quite strong and (to the best of our knowledge), it is one of the few results that look at completely heterogeneous models and that does not cluster the objects into a finite number of classes with a high number of objects per class. We have extended this results to LRU-based caching policies in [P25] by essentially showing that the time that an object spends in the cache becomes deterministic. Note that our approach differs from the one [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF], [START_REF] Jiang | On the Convergence of the TTL Approximation for an LRU Cache under Independent Stationary Request Processes[END_REF] that heavily rely on a precise characterization of the stationary measure of the LRU policy in terms of TTL.

Our second argument to justify the accuracy of the approximation is based on a numerical study. As an illustration, we compare in Table 4.2 the steady-state miss probability given by the mean field approximation with the exact values. The popularity of the item follows a Zipf-like distribution and we vary m. We observe that the mean field approximation is within 1% for all cases and seems smaller for larger cache sizes. As an other illustration, we depict in Figure 4.2 how the popularity of the cache evolves with time. The system is composed of 1000 items that follows a Zipf popularity. The cache can contain up to 200 items and is initially empty. We compare a case with 200)) and a case with four lists of equal size (i.e. RAND [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF][START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF][START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF][START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF]). In order to illustrate how the two policies adapt to changing popularities, we randomly swap the popularities of the various items in the cache every 2000 requests by picking a new parameter α between uniformly between 0.50 and 1 and randomly permuting the popularities of all item so that item 1 is not always the most popular. This figure shows an excellent agreement between the mean field (ODE) approximation and the simulation: the mean field approximation is essentially a denoised version of the simulation. This figure shows that, as expected, RAND(50,50,50,50) has a higher steady-state hit rate than RANDOM but takes more time to adapt to changing popularities.

These results make us believe that neither our accuracy results nor the ones of [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF], [START_REF] Jiang | On the Convergence of the TTL Approximation for an LRU Cache under Independent Stationary Request Processes[END_REF] really explain why the mean field approximation ODE (4.4) or the TTL approximation studied in [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF], [START_REF] Jiang | On the Convergence of the TTL Approximation for an LRU Cache under Independent Stationary Request Processes[END_REF] perform that well. The reason for that is that our method to obtain the bound of Equation (4.5) is based on stochastic approximation and almost sure convergence. We believe that using a generator approach such as the one we developed in Chapter 3 would lead to much tighter bound. In the next section, we show in fact that the refined framework can be used to construct a more accurate approximation, even if we do not have a proof of its accuracy for now.

a heterogeneous refined approximation 4.4.1 Construction of the Refined Approximation

It is possible to transform the model described in Equations (4.3) into a density dependent population process by scaling the size of the transitions by a factor 1/N and accelerating the time by a factor N. For a given scaling factor N, the transitions of the model are:

X (N) → X (N) + 1 N (-e k,i + e k,i+1 + e ,i -e ,i+1 ) at rate Nλ k X k,i X ,i+1 m i+1 (4.6)
The case N = 1 corresponds to the original model. This allows us to use the result of Theorem 3 in order define and compute a refined mean field approximation of E[X (N) k, (t)] as follows:

E X (N) k,i (t) = x k,i (t) + 1 N V k,i (t) + O 1 N 2 ,
where x k,i (t) is the classical mean field approximation and V is the solution of an linear ODE.

In order to obtain a refined approximation for the original model, we propose to apply the above formula with N = 1. This leads us to defined a refined quantity y k,i (t) as follows:

y k,i (t) = x k,i (t) + V k,i (t) (4.7) 
Note that Theorem 3 guarantees that the refined mean field in theory accurate as N goes to infinity. Here, we apply this formula with N = 1 that can hardly be considered as close to infinity. Yet, as will see below, this refined approximation is remarkably accurate.

Empirical Validation

To assess how accurate is the refined approximation Equation (4.7) compared to the classical mean field, we used our tool [P18] to perform a numerical study. We consider two cases (n = 10 and n = 100 items). The popularity of the items follows a pareto-distribution of parameter α ∈ {0.6, 1, 1.4}: λ i ∝ i -α . we vary the cache size m ∈ {0.1n, 0.25n, 0.5n} and number of lists between h ∈ {1, 2, 5}. The list have all equal sizes: mn/h . To compare the two approximation, we estimated the miss probability by using the two approximations and compare this to data obtained by simulations. For each of the two approximations, compare two metrics:

(a) The total miss probability error (TMPE); TMPE = 1 -total miss proba (computed by approximation) total miss proba (computed by simulation) (b) The average per-item miss probability error (IMPE):

I MPE = 1 -miss proba of Item k (by approximation) miss proba of Item k (by simulation)

In Figure 4.3, we report the total miss error probability as a function of the experiment ID. We compare a case with n = 10 (left panel) items and a case with n = 100 items (right panel). There are various observations than can be made. First, the two approximations are an order of magnitude more accurate for n = 100 compared to n = 10. Second, the refined approximation is significantly more accurate than the classical mean field approximation, especially for n = 100 items. Last, the error of the mean field approximation seem to decrease with the exponent α. This last fact can be explained by the fact that the total miss probability is small in such a case which in turn means that the denominator in the definition of the TMPE is smaller for larger α. Note that when averaging over all experiments, we obtain the average errors reported in Table 4.3. Note that the error of the refined mean field is approximately 10 times smaller than the one of the classical mean field for n = 10 items and and 300 times smaller for n = 100 items.

N Mean field TMPE Refined mean field TMPE 10 0.032759 0.002797 100 0.006081 0.000019 In Figure 4.4, we report the per item miss error probability (IMPE) as a function of the experiment ID. As for the TMPE the refined approximation is more accurate than the classical mean field approximation, although the improvement is less impressive. Moreover, measured in terms of IMPE, the accuracy of both approximations seems to diminish with the number of lists h and the exponent α. In fact, when both h and α are large, some items have a miss probability close to 0, which lead the average IMPE to be large if these items are not perfectly estimated. This is also related to what we observed in [P23]: while the refined mean field approximation estimate very accurately the shape of the distribution, it does not estimate very accurately the tail of the distributions.

In [START_REF] Casale | Analyzing replacement policies in list-based caches with non-uniform access costs[END_REF], another approximation has been proposed that works by using an asymptotic expansion of the normalization constant Z(m) defined in Equation 4.1. Measured in terms of TMPE, this approximation performs similarly than our refined approximation: it is more accurate on some examples and less on others. Measured in terms of IMPE, this approximation is significantly more accurate because it estimates more precisely the miss probability of the items that have a very small miss probability. Note that the technique used to obtain this other approximation relies on having a product form stationary measure and is quite specific to this example.

extensions and open questions

In this chapter, we studied a model of cache replacement policies. One of our most original contribution to this subject is to manage to define a heterogeneous mean field approximation and to prove that it is asymptotically accurate. Note that after this work, we also extended the results to the LRU-based policies LRU(m) and h-LRU in [P25], [P28] in which we study a TTL-approximation of those policies. In these papers, we also derive a proof of the accuracy of those TTLapproximation by using a similar stochastic approximation technique.

A second contribution of our work is to have shown that it is possible to use our refined mean field approximation for a completely heterogeneous system, by using this approximation with a scaling parameter N = 1. Yet, the application of this refined approximation raises two main challenges. First, we have for now no theoretical justification of the approach. For future work it seems fundamental to understand to which heterogeneous models this approximations can be applied. Second, the numerical complexity is problematic. By using our current framework, computing a refined mean field for a model of cache with n items and h lists requires solving a linear system with (nh) 2 variables which makes the computation of this approximation impossible for more than 100 or 200 items.

S PAT I A L I N T E R A C T I O N S A N D B I K E -S H A R I N G S Y S T E M S

Bike-sharing systems are becoming important for urban transportation. In such systems, users arrive at a station, take a bike and use it for a while, then return it to another station of their choice. In this chapter, we study a model of bike-sharing systems. We use this model to study dimensioning problems, rebalancing algorithms and forecasting.

One particularity of bike-sharing system is that the geometry takes an important role. For instance, when a user arrives at a station that is full, it will most probably look at neighboring station. This makes the mean field approximation inapplicable in theory. We show that in practice, mean field approximation can still be applied as is and gives very reasonable result. We also show how the original mean field model can be refined to take into account spatial interactions by using a method called pair approximation.

roadmap This chapter is organized as follows. We first describe how a bike-sharing model can be viewed as a close queuing network in Section 5.1. We develop a mean field approximation for such a system ( §5.1.1) which allows us to study simple incentives ( §5.1.2). While this mean field approximation does not take into account geometry, we show by simulation that this mean model is close to a model that would take into account geometry ( §5. 1.3). The mean field models allows us to approximate the behavior of each station by a time-dependent M/M/1 queue. We then propose a model than is a refinement of the mean field approximation to take into account spatial interactions in Section 5.2. We show how the mean field approximation can be used to build a forecasting tool in Section 5.3. Finally, we conclude by some open questions in Section 5.4.

This chapter is mostly based on [P7] for the original bike-sharing model, on [P14] for the work on forecasting and on [P19] for the work about pair approximation.

the bike sharing model

We consider a Markovian model of a bike-sharing system with N stations and a fleet of sN bikes (i.e., s bikes per stations). A bike can be either locked at a station or in transit between two stations. In this section, as in [P7], we mainly focus on the homogeneous bike-sharing model. This model enables us to obtain a closed-form expression for the optimal performance and to investigate incentives and redistribution by trucks in this framework. This study is extended to an inhomogeneous model by [P6]. We also use the inhomogeneous model to study the forecasting problem in Section 5.3.

We assume that a station i can host K i bikes. At a given station i, users arrive at rate λ i (t). If the station has one or more bikes, the user picks up a bike at this station and chooses a destination j with probability p j (t), otherwise she leaves the system. When the user arrives at a station j, if the destination has fewer than K j bikes, the user returns her bike to this station. Otherwise, the user visits randomly other stations until she finds a station with fewer than K j bikes. The trip time between the two stations is exponentially distributed with mean 1/µ ij .

Homogeneous Mean Field Model

The homogeneous model is the simplest bike-sharing model. No quantity depends on time or on the station: λ i (t) = λ, p j (t) = 1/n, µ ij = µ and K i = K. The advantage of such a model is that it can be thoroughly analyzed and leads to closed-form results. This model does not incorporate any geographical information.

Let us denote by X (N) k (t) the proportion of stations that have k bikes available at time t. X (N) is a Markov chain. There are two types of transitions. The first corresponds to a bike that is picked up. The second corresponds to a bike that arrives at a station. The number of bikes in transit is equal to sN (the total number of bikes) minus N ∑ K k=1 ky k (the number of bikes locked at the stations). Hence, the rate of arrival of bikes at a given station is µ(N -∑ K k=1 ky k ). This shows that the transitions of the Markov chain are:

X (N) → X (N) + 1 N (e k-1 -e k )at rate λNx k 1 k>0 X (N) → X (N) + 1 N (e k+1 -e k )at rate Nx k µ(s - K ∑ n=0 nx n )1 k<K
where the k-th unit vector of R K+1 is denoted by e k and 1 k<K is equal to 1 when k < K and 0 otherwise. This defines a density dependent population process as defined in Section 2.2. This shows that, as N goes to infinity, X (N) converges to the solution of a deterministic ODE. We show in [P7, Section 3.1] that this ODE has a unique fixed point to which all trajectories converge. The proof of this attractiveness uses a Lyapunov function constructed by using relative entropy.

This fixed point is of the form x i ∝ ρ i where ρ depends on the fleet size with ρ < 1 if s < K/2 + λ/µ and ρ > 1 if s > K/2 + λ/µ. We say that a station is problematic if is has either 0 or K bikes. By using the mean field approximation, we show that the proportion of problematic stations depends on the fleet size s. It is minimal when ρ = 1, which occurs when the number of bike per station s is slightly more than half of the number of places in the system: s = K/2 + λ/µ. In this case the proportion of problematic stations is 2/(K + 1). This amounts to about 6.5% of problematic stations when the capacity of one station is K = 30 bikes. In practice, most of the existing bike-sharing systems satisfy this rule of 50% of bikes compared to the number of slots. Note that we had the opportunity to discuss with the responsible of bike-sharing system installed in the city of Pisa that reduced their fleet size from 70% to 50% of bikes after our discussion. This reduced the congestion in their system.

Incentives and Regulation

In [P7], we consider two ways for improving the performance. The first is by what we call incentives. We model this by assuming that when a user wants to return her bike, she indicates two stations and the bike-sharing system indicates to her which one of the two has the least number of bikes available. We show that, when the two stations are picked at random, the proportion of problematic stations can be as low as √ K2 -K/2 (instead of 2/(K + 1) in the original model without incentives). The performance is thus improved dramatically, and even if only a small percentage of users obey this rule. The proof of this result is again based on studying the fixed point of a density dependent population process.

Such incentives are meant to encourage users to return a bike to a station that has few bikes. This is implemented successfully in New York city via the "bike angel" program [START_REF] Chung | Bike Angels: An Analysis of Citi Bike's Incentive Program[END_REF].

We also study the problem of rebalancing the number of bikes by moving them by using trucks that move bikes from saturated stations to empty ones at rate γ. We show that if the bikes are moved one by one, the minimal redistribution rate needed to suppress any problematic station is equal to λ/K where K is the capacity of stations. Note that our simulations suggest that having larger truck size does not affect qualitatively the performance. This model can again be cast as a density dependent population process but with an additional difficulty: the drift is not continuous. This lead us to apply the results on discontinuous drift and differential inclusions that we developed in [P11]. This result is illustrated in Figure 5.2 in which we show that a large redistribution rate removes all problematic stations. 

Validation by Simulation

In [P7, Section 6], we validate the various hypothesis of the model by comparing our theoretical result with simulations of a model that violates one or the other hypothesis. Our simulations indicates that

Note that the variants that we discuss here focus on a time-homogeneous uniform model. The performance of an inhomogeneous model are of quite different nature and are studied in [P6].

our results are quite robust with respect to this small changes of hypothesis. For instance, the trip time distribution seems to have very little effect on the performance (only the mean matters). We do not think that the model with N stations is insensitive to the trip time distribution. Yet, our result suggest that the system might be asymptotically insensitive when the number of station grows. This asymptotic insensitivity has been observed in other cases and we believe that similar proofs could be applied [START_REF] Vasantam | Insensitivity of the mean-field Limit of Loss Systems Under Power-of-d Routing[END_REF]: essentially, the arrival process at a station is asymptotically a Poisson process.

Among the other variants of the model, one of the most interesting is the influence of geometry on the performance metrics. Our theoretical results are based on a mean field model and therefore ignore the geometry of the system. In real system, a user that aims at a particular destination might accept to go to a neighboring station but will not go to the other side of city. Studying such a system analytically is out of reach of our method. In [P7, §6.3], we present simulation results that show that the influence of geometry on the proportion of problematic stations is quite limited, both for the basic model and the two-choice model. We show, however, that geometry has a much larger effect when other metrics are considered, such as the time needed to return a bike.

In the following section, we show how geometry can be better taken into account by using a technique called pair approximation.

spatial refinement and pair approximation

Motivated by our application to bike-sharing systems, we study an abstract queuing model with geometry in [P19]. The model that we consider is a variant of the two-choice model that we described in Section 3.4. In the original model of [START_REF] Vvedenskaya | Queueing system with selection of the shortest of two queues: An asymptotic approach[END_REF], [START_REF] Mitzenmacher | The Power of Two Random Choices in Randomized Load Balancing[END_REF], when a task arrives, it is allocated to the least loaded of two servers picked at random among a collection of n servers. Here we study what appends when servers form a graph and that a task is routed on the least loaded among two neighbors. While the bike-sharing model was a closed queuing network, we study what happen to the more classical open queuing network in which jobs leave after having been served.

To the best of our knowledge (ans as argued in [START_REF] Van Der Boor | Scalable load balancing in networked systems: A survey of recent advances[END_REF]) there are very few studies of load balancing system where geometry is taken into account. An exception is the recent work in [START_REF] Mukherjee | Universality of power-of-d load balancing in many-server systems[END_REF] in which the authors consider a join-the-shortest queue policy in a graph with a large number of neighbors. The authors show that for such a system a mean field approximation is accurate, even if showing the accuracy is much harder than in the non-geometric model. Our focus here is different as we study the case where each server has few neighbors (typically 2 to 4).

As we will see, the mean field approximation of such a system is not very accurate. To obtain a more accurate approximation, we use a technique called pair-approximation, see for instance [START_REF] Ohtsuki | A simple rule for the evolution of cooperation on graphs and social networks[END_REF]. This technique shares some similarity with the moment closure technique that we used in Section 3.3 to develop our refined approximation.

Geometric Two-choice model

Our system is composed of N identical servers that are connected by an undirected graph (V, E), where the set of vertexes is the set of servers V = {1 . . . N}. Each server serves jobs at rate 1 and uses a firstcome first-serve discipline (jobs sizes are exponentially distributed). Jobs arrive at each server at rate ρ < 1. When a job arrives at a server, say s 1 , another server s 2 is sampled uniformly at random among all neighbors of s 1 . The job is then allocated to the server s 1 or s 2 that has the least number of jobs (ties are broken at random). This allocation scheme is similar to the one of [START_REF] Kenthapadi | Balanced allocation on graphs[END_REF].

When the graph is complete, this model corresponds to the classical two-choice model. In this section, we will consider other variants:

• Ring -This model is illustrated in Figure 5.3a. Two servers s 1 and s 2 are neighbors if s 1 = s 2 ± 1 (modulo N).

• 2D torus -This corresponds to a 2D grid of size √ N × √ N. A server in position (x, y) has four neighbors: (x ± 1, y) and (x, y ± 1) (modulo √ n). This case is shown on Figure 5.3b. • Fixed degree -We also simulate random graphs with fixed degree k. For each server, k neighbors are picked at random (for simplicity of generation, we allow self loop, like Node 5 of Figure 5.3c).

The interaction graph remains constant during the simulation.

Mean Field Approximation

Note that the notation X i used in Section 3.4 was different: in Section 3.4 X i represents the proportion of servers having at least i jobs whereas here X i is the proportion of servers having exactly i jobs.

When the interaction graph is complete, all servers are exchangeable. For i ∈ {0, 1, 2, . . . }, let X i (t) be the proportion of servers that have i jobs at time t. X = (X 0 , X 1 . . . ) is a Markov chain whose transitions are as follows: there is a departure from a server with i jobs at rate NX i (t). When there is an arrival, the two chosen servers have i and j jobs with probability X i (t)X j (t). If i = j or i < j, the job is allocated on a server with i jobs. If j < i, the job is allocated on a server with j jobs. As a result, there is an arrival in a server with i jobs at rate ρ(X i (t)) 2 + 2ρ ∑ ∞ j=i+1 X i (t)X j (t) = 2ρX i (t)P i (t), where P i (t) = X i (t)/2 + ∑ ∞ j=i+1 X j (t) is the probability that an arrival on a server with i jobs is allocated to this server. This shows that X is a density dependent population process whose mean field approximation is ẋi

= (x i+1 -x i 1 {i>0} ) + 2ρ(1 {i>0} p i-1 (x)x i-1 -p i (x)x i ), (5.1) 
where p i (x) = x i /2 + ∑ ∞ j=i+1 x j .

The Pair Approximation Equations

We now consider a general interaction graph in which all nodes have the same degree k. Let Y i,j (t) the proportion of connected pairs of servers that have (i, j) jobs and X i (t) = ∑ j Y ij (t) the proportion of servers that have i jobs. When the graph is complete, Y ij (t) = X i (t)X j (t), and X is a Markov chain. This does not hold when the graph is not complete. A randomly chosen neighbor of a randomly chosen server having i jobs has j jobs with probability Y ij (t)/X i (t).

Hence, an arrival on a server that has i jobs is allocated to this server with probability In Figure 5.4, we report the steady-state probability x i that a given server has i jobs as a function of i. Each plot compares five curves: two are obtained by simulation -(ring/random graph with fixed degree k = 2) for the first two plots and (2D torus/random graph with k = 4) for the last one -, and two are the fluid approximations of the model (mean field and pair approximation with k = 2 or k = 4). The last curve corresponds to a model without choices (each server is an independent M/M/1 queue) and is here for comparison. These results show that the pair-approximation predicts very accurately the general shape of the distribution of the simulated model, which are far from both the one-choice and the mean field approximation. The Recall that the mean field approximation is very accurate for the complete graph but not here because the graph that we consider are very sparse.

Q i (t) = (Y ii (t)/2 + ∑ ∞ j=i+1 Y ij (t))/X i (t).
tail of the distribution, however, does not seem to be correct, even if it is much closer for the pair-approximation than for the mean field model. This figure shows that pair approximation provides a very good estimate of the shape of the distribution but does not predict well the tail. Note that this is similar to what happens for the refined mean field approximation.

forecasting via mean field approximation

In [P14], we study the problem of making forecasts about the future availability of bicycles in stations of a bike-sharing system (BSS). This is relevant in order to make recommendations guaranteeing that the probability that a user will be able to make a journey is sufficiently high. To do this we use probabilistic predictions obtained from a queuing theoretical time-inhomogeneous model of a BSS. The use of a model of independent queue is similar to the mean field approximation that we studied in Section 5.1. One of the main contribution of [P14] is to develop a critique of the standard root-mean-square-error (RMSE) -commonly adopted in the bike-sharing research as an index of the prediction accuracy. We believe that RMSE is not appropriate to estimate the quality of forecasts in bike-sharing systems because RMSE is too sensitive to the stochasticity inherent in the real system. Instead we show that using metrics based perfect scoring rules is more appropriate. The model is parametrized and successfully validated using historical data from the Velib BSS of the city of Paris.

Model and Validation

We consider a model in which each station is considered to be independent of its neighbors. We assume that users arrive at a station i (to pick up a bike) according to a Poisson process of time-dependent intensity λ i (t). Similarly, user returns bike at the station i at rate µ i (t). This model makes two main approximations. First, this model assumes that arrival of bikes and user can be represented by Poisson processes. Second, this model neglects that neighboring stations have an effect on the bikes returned in station i. The model could be modified to better take this into account but this leads to little improvement in forecasting quality [START_REF] Feng | Moment-based probabilistic prediction of bike availability for bike-sharing systems[END_REF].

In all numerical evaluation, we estimate the values of λ i (t) and µ i (t) by using historical data from the Vélib' system in Paris collected between 1 October 2013 and 31 December 2014 and provided by the operator. We use this information to compute a historical predictor and estimate the (bike) departure and arrival rates, for each minute of a typical working day or weekend day (see the details in the next section). During the day, λ i (t) and µ i (t) seem to be of the order of 5 bikes per hour, although there are huge disparities between stations.

Deterministic Forecasts are not Sufficient

Most of the papers dealing with prediction for bike-sharing systems, e.g., [START_REF] Froehlich | Sensing and Predicting the Pulse of the City through Shared Bicycling[END_REF], [START_REF] Guenther | Journey data based arrival forecasting for bicycle hire schemes[END_REF], [START_REF] Kaltenbrunner | Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system[END_REF], [START_REF] Yoon | Cityride: a predictive bike sharing journey advisor[END_REF], [START_REF] Yang | Mobility modeling and prediction in bike-sharing systems[END_REF], focus on deterministic forecasts: for a given time horizon h, the challenge is to predict at time t + h a single value for x t (t + h) that is as close as possible to the "real" value x(t + h). The performance is generally evaluated using the root-meansquare-error (RMSE):

RMSE = E x t (t + h) -x(t + h) 2
This metric is the most commonly used in prediction challenges [START_REF]MoReBikeS: Model Reuse with Bike rental Station data[END_REF].

We argue in [P14] that this metric is non well-suited for bike-sharing systems because the system has too much randomness. More specif-ically, we show that regardless of their quality, the RMSE of such predictors will always be large due to the stochastic nature of bikesharing systems. In particular, our results suggest that, for a prediction horizon of h = 1hour, there exist no predictor that has a RMSE smaller than 3.5 bikes. In fact, the authors of [START_REF] Yoon | Cityride: a predictive bike sharing journey advisor[END_REF] compare various deterministic forecast that all attain a performance that equals our bounds plus a few percents. Our result suggest that these forecasts are all very close to optimal.

Probabilistic Forecasts

As an alternative to deterministic forecast, we propose to use probabilistic forecasts: for a given time horizon h, the challenge is to predict a probability distribution P t (t + h) for X(t + h) given the information available at time t. We illustrate the difference between deterministic and probabilistic forecasts in Figure 5.5. All forecasts are issued at 7am. The solid green curve corresponds to the number of bikes in the station up to 7am. Figure 5.5a shows three examples of deterministic forecasts that are classically used in the literature: a first that only used the historical data and ignore the green curve (history), a second that only observe the station state at 7am (persistent forecast) and a third that combined the two notion (best deterministic). Figure 5.5b shows an example of probabilistic forecast where all the potential future distribution of occupancy is predicted at 7am. One of the main difficulties when dealing with probabilistic forecasts is to evaluate their quality: for each prediction of P t (t + h), only one realization of X(t + h) will be available. The most natural way to evaluate a forecast is to use proper scoring rules. One of the most well known proper scoring rule is the log-likelihood: the score received is the log of the likelihood of the prediction. A proper scoring rule encourages honesty and will encourage the forecaster to reveal the confidence that she has in her forecast. A very confident forecaster will issue a probability distribution that is very concentrated near a single value x. In this case, the score will be high when the observation X ≈ x but very low when X is far from x. On the other hand, if the forecaster has a low confidence, she will issue a forecast that spans many value. The received score will neither be very high or very low.

There exist many variants of proper scoring rule. We refer to [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF] for a complete and clear exposition on the subject. In [P14] we compare different proper scoring rules that are more appropriate to bike sharing systems than the log-likelihood. We also show that the forecast based on our queuing model performs well.

extension and open questions

Vehicle sharing systems are now widely developed around the world and similar means of transportation are rapidly growing (see for instance the recent deployment of electric scooters in France). These systems induce complex saturation dynamics (unavailable vehicles or parking space). There is nowadays an active field of research on how to design efficient redistribution or pricing policies to improve the performance of such systems [START_REF] Boyacı | An optimization framework for the development of efficient one-way car-sharing systems[END_REF], [START_REF] Chung | Bike Angels: An Analysis of Citi Bike's Incentive Program[END_REF], [START_REF] Laporte | Shared mobility systems[END_REF], [START_REF] O'mahony | Data analysis and optimization for (citi) bike sharing[END_REF], [START_REF] Singhvi | Predicting bike usage for new york city's bike sharing system[END_REF]. These papers often focus on a single system (for instance, New York in [START_REF] Chung | Bike Angels: An Analysis of Citi Bike's Incentive Program[END_REF]) and it is not clear whether the good performance of the proposed heuristics comes from a particular feature of this case study or it performs well in general.

This calls for a sound and reproducible methodology to develop and evaluate control heuristics that are widely applicable. Our research agenda aims at obtaining a better understanding of vehicle sharing systems by proposing clean theoretical models, new optimization algorithms and a reproducible simulation environment that can validate the performance of the proposed heuristics. This leads to a number of research challenges.

• Geometric mean field models -Mean field approximation provide an accurate description of systems composed of objects in which an individual can interact with many other agents. This approximation also works when the graph of interaction is not complete but just dense as in [START_REF] Mukherjee | Universality of power-of-d load balancing in many-server systems[END_REF]. When the graph has a small degree, pair approximation seems to provide a refined geometric approximation but for now a justification of this approximation is missing. Such a justification could be done by using tools from probabilistic stochastic automata [START_REF] Marcovici | Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliques[END_REF] or the recent advances of [START_REF] Hodgkinson | Normal approximations for discrete-time occupancy processes[END_REF].

• Optimization algorithms for vehicle sharing systems -The performance of vehicle sharing systems rely on good control heuristics (for instance concerning vehicle relocation and/or demand segregation). The development of those classically rely on tools from deterministic operations research problems (e.g., vehicle routing problems) but do not always perform well in a system as random as a bike-sharing system. To tackle this issue, we plan to use several recent theoretical development in distributed stochastic optimization such as decomposition methods [START_REF] Carpentier | Time Blocks Decomposition of Multistage Stochastic Optimization Problems[END_REF], mean field control [START_REF] Fornasier | Mean-field optimal control[END_REF] or refined mean field optimization [P23].

• Reproducible simulation environment -We believe that the literature on bike-sharing systems lacks of benchmarks. In order to validate (or invalidate) that our proposed heuristics perform well in real systems, we plan to develop an open source simulator in which it will be easy to program and assess new and existing control strategies. Our aim is to be able to evaluate these strategies on realistic dataset. For that, we will use existing traces of usage of existing systems (e.g. [START_REF]VLS & Stats[END_REF]) and combine this with traces analysis and data-mining expertise to create realistic scenarios.

We believe that, given the growing importance of this mode of transportation, these challenges are not only challenging research problems but can also have a societal impact. In addition to the most technical aspects, tackling them will require an integration of tools from data analysis, demand modeling, infrastructure description, and geographic visualization to identify bottlenecks that limit the performance of control strategies of vehicle sharing systems.

This document summarizes a few of the main contributions of my research. The central theme of this line of research has been to obtain a better understanding of what is mean field approximation. Motivated by applications, a particular emphasis has been to increase the range of application of mean field approximation methods, by showing for instance that:

• There exists a generic ways to deal with non-continuous drifts by using a differential inclusion approach (Chapter 2);

• Mean field approximation can be refined for small system size by using expansion (Chapter 3);

• Mean field (and refined mean field) can deal with heterogeneous models (Chapter 4).

• Pair approximation, a variant of mean field approximation, can be used to study the impact of spatial interactions (Chapter 5).

The strategy to obtain these results varied in time and reflects my understanding of the subject: The first results that I developed where obtained by using sample-path arguments and stochastic approximation methods; The more recent papers are based on Stein's method and the convergence of generators. The later approach provides much tighter bounds that, I believe, are a better justification of the success of mean field approximation.

In order to obtain a concise and uniform manuscript, this document does not covers all my contributions to the development of mean field approximation. The following chapter could have been integrated:

• Mean field games: In [P5], [P4], we develop a generic framework for discrete-space mean field games. We show in particular that mean field games are not always a good approximation of symmetric games with a large number of players: mean field equilibria describe a subset of the original stochastic games.

• Hitting times. In [P21], we show how to use mean field approximation to compute hitting time of a stochastic process. We show that the hitting time of the stochastic system with N objects is close to time for its mean field approximation to be at distance 1/N of its fixed point.

• Centralized optimization. In [P8], [P13], [P9], we show that the control of a system with N objects converges to the solution of a mean field optimal control. More importantly, we show the mean field optimal policy is also asymptotically optimal for the system of size N. This simplifies the computation of an optimal policy.

Several open research questions have already been listed at the end of each chapter and we will not recall them here. In fact, most of this questions are related to a bigger research agenda which is to develop efficient heuristics for the control of stochastic distributed agents. Restless bandit allocation is one particular example where the control that can be sent to each arm is restricted to an on/off signal. We believe that our results on the refined mean field will allow the development of control heuristics that are asymptotically optimal as the number of arms goes to infinity and that also have a better performance than existing heuristics for a moderate number of arms. A typical application of this approach would be in the context of smart grids, to develop control policies for distributed electric appliances. Beyond this application, the notion of refined mean field games will help to design efficient allocation, for example in the context of wireless networks where mean field games are already used.

One of the classical approaches to build such heuristics is to use Lagrangian relaxations of the problems to decompose a large-scale optimization problem into smaller independent sub-problems. Depending on the relaxation used, one obtain radically different methods: Whittle index for resltess bandits [START_REF] Weber | On an index policy for restless bandits[END_REF], [START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF], stochastic decomposition methods [START_REF] Carpentier | Time Blocks Decomposition of Multistage Stochastic Optimization Problems[END_REF] and SDDP [START_REF] Shapiro | Analysis of stochastic dual dynamic programming method[END_REF]; progressive hedging [START_REF] Rockafellar | Scenarios and policy aggregation in optimization under uncertainty[END_REF],. . . Similar to mean field approximation, these methods have been shown to work well in practice and in some cases can be shown to be asymptotically optimal [START_REF] Weber | On an index policy for restless bandits[END_REF], [START_REF] Verloop | Asymptotically optimal priority policies for indexable and nonindexable restless bandits[END_REF].

We believe that, by using our expertise on mean field approximation and control, it will be possible to make connection between bandit optimal control, stochastic decomposition methods and mean field approximation.
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 21 Figure 2.1: RANDOM policy: evolution of the state of Item k.
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 22 Figure 2.2: Cache: Evolution of the expected hit probability ∑ k p k E[X k (t)] as a function of time. We compare with the mean field approximation ∑ k p k E[ Xk (t)]. The system has N = 10 objects.
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 23 Figure 2.3: Scaled caching model: hit probability ∑ k λ k X k as a function of time compared to the mean field approximation ∑ k p k E[ Xk ]. We plot the trajectory of one simulation for systems with N objects and N ∈ {10, 100, 1000}.
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 21 Figure 2.1 and Figure 2.2: the good agreement between the mean field approximation and the simulation in Figure 2.1 is explained because E[X (N) ]x is small. On the other hand, Figure 2.2 shows that E[ X (N)x ] is still relatively large for N = 10.Note that the metric Equation (3.2) has also been studied in[START_REF] Bencheikh | Bias behaviour and antithetic sampling in mean-field particle approximations of SDEs nonlinear in the sense of McKean[END_REF]. In this paper, the authors also obtain a O(1/N) rate of convergence for another kind of mean field models. They call this metric the bias of the approximation.
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 231 Figure 3.1: Two-choice model and transient regime: Comparison of the classical mean field approximation and the two expansions with data from simulations.
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 41 Figure 4.1: Evolution of the list in which Item k is. When λ k is small and the m i s are large, the state of one item becomes independent of the hit rate in each box. Its behavior can be approximated by a time-inhomogeneous continuous-time Markov chain. This is the mean field approximation.
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 42 Figure 4.2: Cache and transient regime

  miss probability error TMPE of the mean field approximation TMPE of the refined approximation n = 10 items n = 100 items.

Figure 4 . 3 :

 43 Figure 4.3: Total miss probability error (TMPE) as a function of the experiment ID.

  miss probability error IMPE of the mean field approximation IMPE of the refined approximation n = 10 items n = 100 items.
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 44 Figure 4.4: Item miss probability error (IMPE) as a function of the experiment ID.
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 451 Figure 5.1: Illustration of the steady-state occupancy of station when the capacity of stations is K = 10. The system is balanced when the number of bikes is equal to K/2 + λ/µ.
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 971552 Figure 5.2: Illustration of the impact of redistribution. The station capacity is K = 10 and λ = µ = 1. The fleet size is s = 7 and the redistribution rates varies from γ = 0 (no redistribution) to γ = 1/5.
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 353 Figure 5.3: Geometric two-choice models.
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 55 Figure 5.5: Illustration of the two types of forecasts.

  .5)Under quite general conditions on M, it can be shown for any time T, sup t<T Nτt converges almost surely to 0 as N goes to infinity. This shows that Nτt is a "small" noise.

	A sufficient
	condition for
	example is if the
	condition second
	moment of M n is
	bounded:
	var [M n+1 |F n ] ≤ σ 2 . In this case the
	convergence is a
	direct consequence of
	Kolmogorov's
	inequality for
	martingales.

Table 3 . 1 :

 31 1/ √ N suggested by Equation (3.1). Average queue length in the two-choice model. The values for a finite number of servers N are obtained by simulation. The value for N = +∞ is the mean field approximation.

	Number of servers (N)	10	100	1000 +∞
	Average queue length (m N ) 2.81 2.39	2.36 2.35
	Error (m N -m ∞ )	0.45 0.039 0.004	0

Table 3 . 2 :

 32 Expected Queue Length Predicted by the Mean Field Approximation for the two load balancing policies. For the push pull policy, we choose a pooling rate of r = 1/(1ρ).

	1.3333	1.6364	1.8095

  .3 where we compare the refined mean field approximation with expected queue length that have been computed by simulation.

	N	10	20	50	100	+∞
	Simulation (two-choice) 2.8040 2.5665 2.4344 2.3931	-
	Refined mean field	2.7513 2.5520 2.4324 2.3925 2.3527
	Simulation (pull-push) 2.3043 1.9700 1.7681 1.7023	-
	Refined mean field	2.2945 1.9654 1.7680 1.7022 1.6364

Table 3 . 3 :

 33 Expected queue length as a function of the system size N. We compare the refined mean field with the values that having com-

puted by simulation. We choose ρ = 0.90 and r = 1/(1ρ) for the pull-push.

Table 3 .

 3 

	4: Two-choice : comparison with and without replacement. The val-
	ues in parenthesis (rmf=•) correspond to the refined mean field
	approximation, the others to the values obtained by simulation.
	The rows "with-without" are the difference between "with replace-
	ment" and "without replacement".

Table 4 .

 4 

	policy	m	Miss probability
	Optimal	RAND(1,1,4)	0.005284
		RAND(1,1,3,1)	0.005299
		RAND(1,1,1,3)	0.005338
	CLIMB	RAND(1,1,1,1,1,1)	0.005348
	LRU	LRU(6)	0.005880
	RANDOM RAND(6)	0.015350

1: Counter-example that shows that CLIMB is not optimal for the IRM model: p = (49, 49, 49, 49, 7, 1, 1)/205 and m = 6.

Table 4 . 2 :

 42 Mean field model validation for h = 2 with Zipf-like popularity distributions.

	α	n	m 1 m 2	exact mean field
	0.8 300	2	98 0.3466	0.3470
			98	2	0.4239	0.4245
	0.8 3000 20 980 0.3034	0.3035
			980 20 0.3723	0.3724

Table 4 . 3 :

 43 Average TMPE of both approximation

  Steady-state probability for a server to have i jobs as a function of i. We compare values obtained by simulations and two fluid approximations (mean field and pair-approximation). Second line is in log-scale.

			frequency (xi)	10 0	Simu., 2D torus Simu., FD(4) Pair Approx. One choice mean-field a.
	ρ=0.7, 2 neighbors	ρ=0.95, 2 neighbors	ρ = 0.95, 4 neighbors
	Figure 5.4:		

In practice, the state spaces E that we use are mostly subsets of R d for d < ∞. Yet, it is sometimes convenient to consider infinite dimensional spaces, for instance when considering a mean field limit of a queuing network in which queues are unbounded (see for instance §3.4.1).

We now look at the evolution of Y ij (t). Let (i, j) be the state of a pair of servers connected by an edge. This state becomes (i -1, j) when there is a departure on i, which occurs at rate 1 if i ≥ 1. It becomes (i + 1, j) when there is an arrival on i. This can be caused by two types of events: (a) arrival on the edge (i, j) -if each node has k neighbors, an edge (i, j) is chosen at rate 2ρ/k and the packet is allocated to the first server with probability a(i, j) = 1 if i < j, a(i, i) = 1/2 and a(i, j) = 0 if i > j (b) arrival on another neighbor of the first server -each other neighbor of i that has state induces an arrival on i at rate 2ρa(i, )/k. Let Z ,i,j (t) be the proportion of connected triplets of stations having state ( , i, j). The arrivals on the first server of a pair (i, j) from one of the k -1 other neighbors occur at rate 2ρ(k -

This shows that, as X(t), the process Y(t) is not a density dependent process because the rates of its transitions involve quantities that depend on triplets. In what follows, we consider a density dependent population process that is an approximation of the original process and has the same transitions but with different rates: We approximate Z ,i,j by Y i, (t)Y i,j (t)/X i (t), which amounts at replacing R ij (t) by Q i (t). This approximation is called the pair-approximation and leads to the following differential equation for y ij : ẏij = y i+1,jy i,j 1 {i>0} + y i,j+1y i,j 1 {j>0}

(5.2)

The first line of this equation corresponds to the rate of changes of the proportion of pairs (i, j) induced by the departures; the second line is for the arrival on the pair (i, j) and the last line on the arrival on the neighbors or i and j. The first two lines are exact while the last involves the approximation z ,i,j ≈ y i, y i,j /x i .

Numerical Evaluation

The computation of the steady-state distribution is obtained by running a discrete-event simulator that follows strictly the model. In all cases, we simulate a system with N = 1000 servers for a total T = We now compare numerically the steady state distribution (computed by simulation) with the mean field approximation and the fixed-point of the pair-approximation ODE (5.2). Note that we did the comparison for values from ρ = 0.5 to ρ = 0.99 and only a subset of the results are reported here. All tested values show that the pair-approximation provides an excellent approximation of the shape of the stationary distribution.