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Contexte

La recherche scienti�que traitant de l'analyse et de l'exploitation de séries temporelles est très
active, notamment en raison de nombreuses applications telles que la surveillance des électrocar-
diogrammes, la reconnaissance vocale ou la modélisation environnementale. Cette thèse s'inscrit
dans cette veine et propose une nouvelle approche pour l'identi�cation de séries temporelles
similaires à une requête. Cette tâche est di�cile pour plusieurs raisons.

D'abord, la fouille de données temporelles soulève de nombreux dé�s en raison de la spéci�cité
des données manipulées. Les séries temporelles proviennent de mesures réelles et des séries
temporelles ne di�érant que par des distorsions sur l'axe du temps ou par l'amplitude des
valeurs enregistrées doivent être jugées similaires.

Ce résumé introduit les di�érentes problématiques abordées dans cette thèse. Dans un pre-
mier temps, nous développons un court argumentaire a�n de montrer l'intérêt de la recherche
de séries temporelles. Puis nous développons les travaux réalisés dans le cadre du doctorat. Et
en�n, nous présentons les résultats et les contributions obtenues.

Recherche en données temporelles

Une série temporelle, ou série chronologique, est une suite �nie de valeurs numériques re-
présentant l'évolution d'une quantité spéci�que au cours du temps. Les données de séries chro-
nologiques sont produites massivement24 � 7 par des millions d'utilisateurs, dans le monde
entier, dans des domaines tels que la �nance, l'agronomie, la santé, la surveillance de la terre,
les prévisions météorologiques, le multimédia, etc. En raison des progrès de la technologie des
capteurs et de leur prolifération, les applications peuvent produire des millions à des milliards
de séries chronologiques par jour, ce qui rend encore plus di�cile l'extraction des données des
séries chronologiques.

La fouille de données temporelles soulève de nombreux dé�s en raison de la spéci�cité des
données des séries chronologiques. Les séries temporelles proviennent de mesures réelles et des
séries temporelles ne di�érant que par des distorsions sur l'axe du temps ou par l'amplitude
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des valeurs enregistrées doivent être jugées similaires. De nombreux facteurs peuvent produire
ces distorsions, comme un capteur mal calibré ou imprécis, l'utilisation de di�érentes unités de
mesure, ou le bruit, par exemple [EA12].

Cette thèse se concentre sur l'étude des mécanismes permettant de réaliser très e�cacement
des recherches de séries temporelles par similarité. Le scénario pour cette tâche est le suivant :
soit � une série temporelle de test (requête), la recherche consiste à identi�er la série temporelle
T � parmi un ensemble de sériesT appartenant à une base de données qui se trouve être l'élément
plus proche de� selon une mesure de la similarité D. En d'autres termes, il s'agit de trouverT � ,
de telle sorte que :

T � = arg min
Ti 2T

D¹� ;Ti º (1)

Une méthode traditionnelle d'identi�cation de T � repose sur le calcul par force brute de
D entre � et toutes les séries deT . Cette approche ne passe pas à l'échelle lorsqu'il s'agit de
séries temporelles longues ou de bases de données énormes car calculer D est trop coûteux. Par
conséquent, des méthodes doivent être employées pour réduire le coût de l'établissement de la
similarité, comme s'appuyer sur l'indexation ou sur une approximation heuristique.

Initialement, comme dans d'autres domaines, la fonction D choisie pour mesurer la similarité
des séries temporelles était une norme Lp , comme la distance euclidienne (Euclidean distance
(ED)). La mesure ED, en plus d'être rapide, est métrique, donc propice à l'indexation1. Toutefois,
malgré ces avantages, la distance euclidienne ne donne pas de bons résultats avec les séries
chronologiques car elle n'est pas robuste face aux distorsions sur l'axe du temps. Aussi, il est
préférable de l'utiliser avec des données transformées ou d'utiliser une autre mesure plus robuste
aux distorsions temporelles. Par conséquent, de nombreuses mesures de similarité et di�érents
types de transformations de données ont été proposés pour les séries chronologiques, souvent
destinés à résoudre des problèmes spéci�ques à un domaine.

Parmi ces fonctions de distance proposées, une se distingue : l'alignement dynamique tem-
porel, ou Dynamic Time Warping (DTW) [SC78]. La mesure DTW a la capacité de traiter les
distorsions locales dans l'axe du temps, permettant un meilleur alignement entre les points des
deux séquences, comme illustré par la Figure 1.

0 5 10 15 20 25 30 35 40
time

(a) DED ¹Q; Rº = 19:3907

0 5 10 15 20 25 30 35 40
time

(b) DDTW ¹Q; Rº = 0:0

Figure 1 � (a) En utilisant l'ED, les deux séries temporelles ont une grande
valeur de dissimilitude, contrairement à notre perception. (b) Un résultat plus
intuitif est obtenu en utilisant DTW comme métrique pour la fonction de dis-
tance D, en raison de sa capacité à gérer les distorsions locales de l'axe des

temps.

Cependant, la �exibilité de la DTW s'accompagne d'un coût de calcul quadratique [DTS+08].

Réduire la complexité de la DTW constitue l'objectif de nombreux chercheurs mettant au
point de nombreuses optimisations élégantes, inventant des bornes inférieures de diverses nature
ou concevant d'autres mécanismes [EA12]. Mais la quête de la meilleure performance dans le
traitement de collections de séries temporelles extrêmement volumineuses est toujours active.

1Les distances métriques permettent d'utiliser l'inégalité triangulaire pour réduire le nombre de calculs dans
les systèmes d'indexation.
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D'autre part, une autre façon d'explorer le problème consiste à transformer l'ensemble de
données et de lui donner une nouvelle représentation, en se concentrant uniquement sur les
caractéristiques spéci�ques de l'ensemble de données, réduisant ainsi sa complexité. Cette sim-
pli�cation permet l'utilisation de fonctions de distance plus simples et donc plus rapides.

La grande majorité de ces transformations exploite les caractéristiques globales de la série,
telles que la transformation de Fourier discrète, ouDiscrete Fourier Transformation (DFT) [FRM94 ;
AFS93], pour citer un exemple. Cependant, la similitude basée sur la forme n'est pas toujours
globale. Par exemple, considérons un électrocardiogramme (ECG) pour un patient dont l'aryth-
mie à un seul battement est indicative d'un problème cardiaque. Si ceci était capturé comme
une série temporelle et comparé à une série de comportements normaux, il serait di�cile de
détecter une di�érence en raison de la présence de nombreux battements cardiaques réguliers.
La caractéristique discriminatoire, dans ce cas, serait décrite par la présence d'une petite forme
locale dans la série indiquant un battement irrégulier, qui serait probablement manquée dans les
domaines de la fréquence et du temps car la structure et la forme globale des données seraient
encore très similaires.

Nous envisageons plutôt d'extraire de petites sous-séquences représentatives des séries chro-
nologiques pour détecter les similitudes locales basées sur la forme entre les séries. Ces petites
sous-séquences représentatives, connues sous le nom deshapelets, constituent un domaine im-
portant de la recherche en fouille de données dans les séries chronologiques depuis sa proposition
dans [YK09], et de nombreuses approches visent à étendre son application, pour accélérer son
extraction ou même de redé�nir comment l'obtenir.

Parmi ces approches, une se distingue : la transformation à base deshapelets (Shapelets
transform (ST) [BDHL12]). La ST utilise des shapeletspour créer une représentation vectorielle
des séries temporelles, ce qui permet leur utilisation dans des algorithmes traditionnellement
utilisés pour les données vectorielles. Toutefois, en général, les transformations à base deshapelets
proposées dans la littérature sont des méthodes supervisées. Elles sont donc peu pratiques pour
la tâche de recherche de séries chronologiques similaires, par nature non supervisée. La seule
exception est l'approche d'apprentissage des shapelets préservant de la DTW (Learning DTW-
preserving shapelets (LDPS)) [LMTA17].

La LDPS est la première approche de transformation deshapeletbasée sur un apprentissage
non supervisé. L'objectif n'est pas d'essayer d'apprendre desshapelets pour classes les plus
discriminantes, mais plutôt d'apprendre des shapelets qui préservent au mieux la vraie mesure
DTW dans le nouveau espace de plongement.

Dans cette thèse, nous proposons d'utiliser la LDPS comme base d'une système de recherche
par similarité de séries temporelles (Time Series Retrieval (TSR)).

Objectif et vue d'ensemble de la thèse

C'est l'identi�cation rapide de la ou ses séries les plus similaires à une série requête qui est
sans aucun doute l'un des plus grands, sinon le plus grand, dé� dans la recherche par similarité
des séries chronologiques.

Dans cette thèse, nous essayons d'élucider une question : est-il possible de combiner la ro-
bustesse aux distorsions selon l'axe temporel de la mesure DTW avec la vitesse de calcul de la
mesure ED ? C'est pourquoi nous proposons une transformation qui réunit le meilleur des deux
univers : la robustesse aux distorsions locales selon l'axe des temps, o�ert par la DTW, et la
vitesse découlant de l'utilisation de la mesure Euclidienne.

Nous proposons ici une approche approximative pour la recherche de séries temporelles si-
milaires fondée sur un changement de représentation au travers d'un processus de plongement.
L'idée est de proposer une façon de transformer les séries chronologiques en représentations
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vectorielles. Cette transformation est produite de manière à permettre qu'une recherche eucli-
dienne puisse ensuite être appliquée e�cacement entre les séries transformées a�n de trouver
le voisin le plus proche de la requête transformée que l'on veut identique à celui qui aurait pu
être déterminé si l'on avait utilisé la mesure DTW. Naturellement, la transformation doit être
soigneusement conçue pour que la recherche approximative soit précise. Un autre point crucial
est lié au coût de calcul de la transformation. Au moment du test, la requête doit d'abord être
transformée avant d'être comparée aux séries temporelles transformées de l'ensemble de données.
La transformation ne doit donc pas être trop coûteuse.

Nous commençons par proposer l'utilisation de la LDPS pour la tâche de recherche par
similarité, proposition nouvelle. Cette transformation est basée sur un apprentissage non super-
visé telle que la distance euclidienne relative dans l'espace transformé re�ète bien les mesures
originales obtenues en utilisant la DTW.

Hors ligne, l'ensembleS avec d shapeletsest appris de T , comme décrit dans [LMTA17].
Toutes les séries temporelles dansT sont ensuite transformées et formentT , qui est stocké dans
une base de données.

En ligne, une série temporelle requêteTq est transformée enTq en utilisant S. Les k voisins
les plus proches deTq sont ensuite recherchés dansT et conservés dans une liste temporaire de
séries temporelles classées en fonction de leur proximité avecTq .

Le résultat �nal peut ensuite être construit selon deux options : (a) la série temporelle brute
associée au plus proche voisin trouvé dans l'espace transformé est considérée comme le plus
proche voisin de la requête brute, ou (b) la vraie DTW est ensuite calculée entre la requête
brute et les versions brutes desk séries temporelles transformées et identi�ée, puis la série la
plus proche selon la DTW est retournée.

Ce plongement préservant la DTW est tel que le classement dans l'espace transformé est
une approximation du classement qui serait produit dans l'espace d'origine conformément à la
mesure DTW. Cependant, ce classement basé surL2 est obtenu beaucoup plus rapidement car
les distances euclidiennes sont moins coûteuses à calculer que les mesures DTW.

Nous savons qu'une transformation d'une série chronologique a un coût, c'est pour cela que
dans la tâche de la recherche de séries similaires un compromis entre la qualité de la réponse et
le temps de transformation doit être atteint. Dans le cas de la LDPS, le coût de transformation
est lié au nombre deshapeletsutilisées lors de la transformation. Par conséquent, notre objectif
est d'obtenir une transformation qui utilise le moins deshapeletspossible tout en préservant au
maximum l'acuité de la réponse.

Ainsi, au lieu d'utiliser S comme spéci�é par [LMTA17], il peut être préférable de conserver et
d'utiliser pour la transformation uniquement un sous-ensemble deshapeletsconstitué d'éléments
soigneusement sélectionnés.

Pour appliquer l'esprit des algorithmes de sélection de caractéristiques au cas d'une trans-
formation de shapelets, il est nécessaire de dé�nir : (a) une métrique a�n d'évaluer la qualité
respective de chaque sous-ensemble deshapelets, (b) une stratégie pour construire des sous-en-
sembles deshapeletsde plus en plus importants, (c) un critère d'arrêt interrompant la recherche
de sous-ensembles plus grands.

Nous détaillons maintenant ces trois points.

Métrique d'évaluation pour comparer les sous-ensembles de shapelet et
pour le choix des sous-ensembles

Nous commençons par construireS comme spéci�é dans [LMTA17]. Il n'est pas utilisé pour
transformer des séries temporelles dansT mais plutôt comme un réservoir dans lequel seront
ensuite piochées lesshapeletsles plus utiles.
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Pour comparer les performances de di�érents sous-ensembles deshapelet, nous avons besoin
d'une vérité terrain basée sur la vraie distance DTW entre les séries chronologiques. Pour la
construire, la DTW entre toutes les paires de séries temporelles dans l'ensemble d'apprentissage
de T est calculée et nous enregistrons pour chaque série temporelle l'identi�ant de son plus
proche voisin. Cet ensemble d'entraînement est ensuite divisé en 10 parties, dont 9 sont utilisées
pour les tâches d'entraînement détaillées ci-dessous, l'une étant utilisée pour la validation, dans
un contexte classique de validation croisée.

Ensuite, nous sélectionnonsd0 shapeletsdansS et utilisons cesd0 shapeletspour transformer
toutes les séries temporelles appartenant à ensemble d'apprentissage courant. En utilisant les
mêmesd0 shapelets, nous transformons également chaque série temporelle de l'échantillon de
validation et nous les utilisons en tant que requêtes.

Les séries temporelles transformées à partir de l'échantillon d'entraînement sont ensuite
classées avec leur distanceL2 à chaque requête. Il est donc possible de déterminer à quel rang
correspond la série chronologique vraie la plus proche pour cette requête. Nous répétons cette
opération pour toutes les séries temporelles de validation et pour tous les échantillons. Cela
revient à construire un histogramme des rangs où le vrai voisin le plus proche basé sur DTW
apparaît.

Nous utilisons cet histogramme pour construire une fonction de distribution cumulative, puis
nous calculons l'aire associée sous la courbe de cette fonction (area under the curve (AUC)). Nous
considérons cette valeur de l'AUC comme la mesure de la performance permettant d'évaluer la
qualité d'un sous-ensemble deshapelet. Plus cette AUC est élevée, meilleur est le sous-ensemble
de shapelet. Cette métrique est bien adaptée à la tâche d'extraction du plus proche voisin car
elle favorise le classement élevé du voisin le plus proche vrai dans la liste approchée.

La métrique étant dé�nie, nous utilisons ensuite un algorithme glouton pour choisir les
shapelets, en commençant par une liste vide. Nous y ajoutons la meilleureshapelet, puis la
meilleure paire étant donné le choix fait plus tôt, etc.

Nous dé�nissons quatre critères d'arrêt di�érents, qui déterminent quand arrêter d'ajou-
ter des shapelets à l'ensemble actuel des shapelets sélectionnées, allant d'un choix minimal de
shapelets à l'utilisation de toutes :

ˆ DPSRg : Les shapeletssont ajoutées une à une jusqu'à ce qu'il ne reste plus deshapelets.
À la �n, le sous-ensemble qui conduit à la meilleure AUC globale est sélectionné.

ˆ DPSRt : Nous calculons le gradient normalisé entre l'AUC du sous-ensemble actuellement
sélectionné et celle obtenue en ajoutant lashapeletqui améliore le mieux l'AUC. Si cette
gradient est inférieure à 1, la sélection deshapeletest arrêtée.

ˆ DPSRl : La sélection de shapelet est arrêtée dès que l'ajout d'uneshapeletn'améliore pas
la valeur de l'AUC.

ˆ DPSRf : utilise toutes les shapelets.

La Figure 2 a�che les valeurs de l'AUC à chaque itération de l'algorithme de sélection de
shapeletsur l'ensemble de donnéesHam(à partir de l'archive UCR-UEA [CKH+15]).

Dans la littérature sur la sélection des caractéristiques, la méthode de sélection décrite ci-
dessus peut être classée dans la classewrapper, où un algorithme d'apprentissage est appliqué
pour évaluer la qualité respective de di�érents sous-ensembles de caractéristiques, de manière
itérative. Cette approche est la plus courante et, malgré son amélioration par rapport à la
recherche exhaustive, elle reste un processus très coûteux pour l'analyse de nombreuses caracté-
ristiques. Par conséquent, le �ltrage précoce des caractéristiques non pertinentes ou redondantes
améliorerait la vitesse de l'algorithme de sélection de caractéristiques puisqu'il y en aurait moins
à analyser. Ceci est illustré par la Figure 3.

Les �ltres sont généralement peu coûteux et rapides, et appliquent souvent une analyse statis-
tique de base sur l'ensemble des caractéristiques. Le �ltre proposé ici repose sur la construction
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Figure 2 � (a) : Comparaison des valeurs de l'AUC pour la sélection des
caractéristiques basée sur le DPSR et le score laplacien.(b) : Zoom sur (a)sur

les 35 premiers éléments du dictionnaire.
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Figure 3 � (a) La procédure du modèle wrapper. (b) La procédure du modèle
�lter.

d'un graphe de shapeletsbasé sur la corrélation de Pearson, puis trouve des cliques dans ce
graphe. Une seuleshapeletpar clique est conservée, les autres étant �ltrées, comme indiqué dans
la Figure 4.
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Figure 4 � Nous commençons par un graphe fragmenté et �nissons par un
graphe totalement déconnecté.

Les algorithmes DPSR et de �ltrage décrit ci-dessus peuvent être étendus pour fonctionner
avec des séries chronologiques à plusieurs variables. Pour étendre le DPSR (et le LDPS) aux
séries multidimensionnelles, trois approches ont été proposées :
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(i) M-DPSR i : independent multivariate DPSR : La première variante consiste à appliquer
M fois l'algorithme de [LMTA17] pour apprendre M dictionnaires indépendants, un par
dimension de la série chronologique multivariée à transformer.

(ii) M-DPRS d : dependent multivariate DPSR : La seconde variante apprend un ensemble de
shapelets multidimensionnels.

(iii) M-DPSR s : slack multivariate DPSR : La troisième variante apprend un ensemble de
shapelets multidimensionnels, comme avec M-DPSRd . Mais c'est la transformation qui
di�ère : La fenêtre coulissante du shapeletn'est pas rigide entre les dimensions.

Des expérimentations démontrent les bonnes performances de nos propositions, des tests
statistiques ont montré que DPSR est signi�cativement meilleur que PAA et LB_Keogh.

Résumé des principales contributions

Dans ce manuscrit, nous avons fait quatre contributions importantes :

(i) il explique comment les shapeletspréservant de la DTW peuvent être utilisées dans le
contexte spéci�que de la récupération des séries temporelles

(ii) il propose quelques stratégies de sélection deshapeletspour faire face à l'échelle, c'est-à-dire
pour faire face à une collection massive de séries temporelles ;

(iii) il présente un nouveau �ltre multidimensionnel pour la sélection non supervisée de carac-
téristiques ;

(iv) il explique en détail comment traiter les séries chronologiques univariées et multivariées,
couvrant ainsi tout le spectre des problèmes de recherche de séries chronologiques.

Le coeur de la contribution présentée dans ce manuscrit nous permet d'arbitrer facilement
entre la complexité de la transformation et la précision de l'extraction.

Des expérimentations à grande échelle ont été menées à l'aide des archives de classi�cation
des séries chronologiques UCR [CKH+15] et des plus récentes archives de classi�cation des
séries chronologiques multivariées UEA [BDL+18], pour appuyer cette thèse et démontrer les
importantes améliorations de performance par rapport aux techniques de pointe.

Pistes pour des travaux futurs

Dans cette thèse, nous avons montré que lesshapeletspourraient aider à représenter des don-
nées pour la recherche, en particulier après le choix d'un sous-ensemble approprié. La prochaine
étape directe consiste à s'intégrer à un système d'indexation, à explorer l'inégalité triangulaire,
évitant ainsi les calculs exhaustifs de la distance euclidienne et à améliorer davantage les perfor-
mances. Une telle approche peut être avantageusement utilisée pour l'indexation à tout moment
de séries temporelles.

Notre approche impliquant desshapeletspréservant de la DTW montre des résultats très pro-
metteurs, tant pour les tâches univariées que multivariées. Cependant, une question ouverte est
d'améliorer l'apprentissage desshapeletsoriginellement décrit par Lods et al. dans [LMTA17].
Cette approche privilégie la prise en compte de distances moyennes, sans s'attacher à préserver
plutôt les distances aux k premiers éléments, ce qui est plus pertinent pour la recherche des
séries temporelles similaires à une requête. Nous entrevoyons deux adaptations de l'algorithme
LDPS. L'une consisterait à ajouter un mécanisme permettant de choisir les top-kshapeletsau
cours de la phase d'apprentissage. L'autre consisterait à modi�er la fonction de perte a�n qu'elle
soit minimisée pour ne pas conserver les distances moyennes DTW mais plutôt lesk premiers
rangs.
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Chapter 1

Introduction

Begin at the beginning, the King said
gravely, �and go on till you come to the

end: then stop.�

Lewis Carroll, Alice in Wonderland

Contents
Doing Data Mining with �Time� . . . . . . . . . . . . . . . . . . . . . . . . 21
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

From the earliest days, even before the development of the writing, the humans had already
started to store knowledge (and data) by painting or sculpting in rocks and caves1. Now, after
centuries of innovations, improvements in technology and gains in knowledge, humanity has
reached a point where we can create 2.5 Quintilian bytes of data every day [Clo17], and there is
nothing to indicate that this production will slow down.

(a) (b)

Figure 1.1 � Examples of human storing data: (a) The oldest known human
preserved data: A �gurative painting dated as over 40,000 years old, �stored�
into the Lubang Jeriji Saléh cave. It is believed to be the representation of
decapitation of a 1.5-meter-banteng bull [ASO+18]. (b) One of the dozens of
Facebook's data-centers, this in Sweden. On those servers, even the tracking

of the Facebook users' mouse movement is stored.

Storing large amounts of data brings some challenges concerning hardware boundaries, where
limitations are mainly encountered in issues such as cost, capacity, and bandwidth limits. How-
ever, our biggest challenge lies in how to handle automatically and extract knowledge from this
large volume of data. If for many years the manual extraction of patterns from collections of

1Parietal art.
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the dataset was su�cient, since the Information Age 2, due to the growth of dataset's size and
complexity, this process needs to be performed by computers.

The process of discovering patterns in large data sets is named Data mining (DM), and it
involves methods at the intersection of statistics, Machine learning (ML), and database sys-
tems [KDD06]. Algorithms for Data mining can be classi�ed into three main groups:

Supervised algorithms: in this approach, the algorithm learns on a labeled (training) dataset.
The supervised algorithm, using this provided training dataset, tries to model relationships
and dependencies between the input data and the target prediction output (ground truth).
Such that we can predict the output values for new data based on those relationships
which it learned from the training dataset. The mass of practical machine learning uses
supervised learning.

Unsupervised algorithms: The goal is to model the underlying structure or the distribution
in the data, concerning to learn more about the data. The dataset is provided without
explicit instructions on what to do with it. As there is no ground truth element to the
data, unsupervised learning is a task more di�cult than supervised learning. Once, it is
hard to measure the accuracy of an algorithm trained without the aid of labels. However,
for many situations, acquiring labeled data is prohibitive, or even we do not knowa priori
what kind of pattern we are looking for on the data.

Semi-supervised algorithms: It is a hybrid approach between supervised and unsupervised
approaches. It uses a training dataset with both labeled and unlabeled data. This kind of
method is particularly useful when extracting relevant features from the dataset is di�cult,
and the labeling task is costly and time-intensive for experts.

Approaches designed for data mining, need not only to be e�ective but also e�cient, as
we need to deal between an acceptable time response and an adequate quality of the returned
answer. Besides that, in data mining tasks, we are exposed to scale-related issues. Algorithms
for data mining need to present excellent performance with minimal impact according to the
size of the dataset or the complexity of the analyzed data, i. e. the data's dimensionality. The
complexity of the data imposes a new question: how to compare these complex data? The typical
approach is to use distance functions to measure how similar (or dissimilar) are two objects.
Nevertheless, the algorithms' performance is directly in�uenced by the dimensionality of the
data and the number of objects to compare. The problem is when increasing the dimensionality
of the data (its complexity), the volume of the space where this data is represented increases
so fast that the available data becomes sparse and the measure distance becomes meaningless.
In high-dimensional data, there is little di�erence in the distances between di�erent pairs of
objects. Those phenomena are called thecurse of dimensionality [Bel03].

Some possible ways to handle thecurse of dimensionality and the scale of the dataset are:
(i) the use of dimensionality reduction techniques; (ii) the use of data transformation; (iii) and
the acceleration of massive distance computation when comparing sets of objects by the use of
lower-bounding functions and data structures.

Conventional approaches for dimensionality reduction are based in feature selection or ex-
traction, where, instead of working the raw data (all of its dimensions), only the relevant ones
are preserved or extracted. Data transformation consists of using some transformation function,
create a new representation for the raw data. Whereas, a lower-bounding function is about
replacing a costly function by another less costly, which produces a good approximation of the
real distance.

Data analyzed in data-mining-related tasks vary from long texts to video, passing trough
audio, sequences, images, among others. Our interest is in a particular class of sequences, the
time series (TS).

2The historical period in the 21st century characterized by the rapid shift from traditional industry that the
Industrial Revolution brought through industrialization, to an economy based on information technology.
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Doing Data Mining with �Time�

In a straightforward de�nition, time series is a special kind of data that represents a col-
lection of values obtained from successive equally spaced measurements over time. However,
this de�nition can be relaxed in such a way as to shelter in the �temporal-axis� other kind of
measured sequences, like DNA or contours, among others. Figure 1.2 draws some examples of
data represented as time series.

(a)

(i) (ii) (iii)

(b)

(c)

Figure 1.2 � Examples of time series: (a) The evolution and trend of the
monthly air passengers. (b) A human skull is represented as a time series by
�rstly �nding its outline (i). Then the distance from the center of the skull to
each point on the skull's outline is measured (ii). Finally, those distances are
represented as a time series (iii). Lines are used to representing the relationship
between the skull contours and the time series shape. In this case, we started
at the skull's mouth and went clockwise [KWX+06]. In (c), an ECG measured

by an Apple Watch.

Time series are massively produced 24�7 by millions of users, worldwide, in domains such
as �nance, weather forecasting, health, earth monitoring, agronomy, among others [EA12]. For
example, in Figure 1.2, we can observe the monthly air passengers for a given time interval
(�g. 1.2a), this is a common expected scenario for time series. In �g. 1.2b, we observe a time
series where thetime represents the position in the contours sequence. Moreover, �nally, in
�g. 1.2c, Electrocardiography (ECG) data captured using a personal device. Now, due to the
proliferation of the Internet of Things (IoT), time-series data generation can grow exponentially.

Time series can not only have a sizeable linear dimension (on the sense of its length along the
time axis) but can also have more than one value varying over time. We call this case of time
series as multivariate (or multichannel, or even multidimensional) time series. The adjective
varies from the domain of study.

Therefore, algorithms need to be not only e�ective and e�cient in dealing with temporal
distortion but also when are vectors varying along the time.

Time Series Data Mining (TSDM) is a comprehensive research domain dedicated to the de-
velopment of tools and techniques that allow the automatic discovery of meaningful knowledge
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from time-series data. It provides techniques and algorithms to perform machine learning tasks
on time series for assignments as diverse as classi�cation, segmentation, clustering, retrieval,
prediction, forecasting, motif detection, subsequences matching, anomaly detection, among oth-
ers.

Time-series mining exists as a speci�c �eld because time series has its speci�cs properties
and challenges. In particular, the meaningful information in the time series is encoded across
the time-axis with trends, shapes, or subsequences usually with distortions. Also, thistime-
basedfactor not only makes it di�cult but sometimes impossible to use data mining methods
traditionally applied with massive success in other domains.

An interesting feature of time series analysis is that humans have an extraordinary capacity
to visualize the shapeof data, detecting similarities between patterns instantly [EA12]. Our ex-
ceptional ability, delivered by the human neural cortex, allows us to ignore temporal distortions,
noises, and enable us to deal with what is imperative, avoiding local �uctuations and noise in
order to focus globally, and so, developing this overall notion of shape. Hence, time-series data
mining emerges from the desire to materialize our natural ability.

For example, by giving an observed ECG from some patient, a medical doctor can make use
of a time series retrieval system to look for some similar pattern in a time series ECG dataset.
This retrieved information can help to provide the correct diagnoses.

Nevertheless, programming a computer to reproduce our natural capability is a hard prob-
lem, and the di�culty arises in capturing the ability to match patterns with some notion of
fuzziness [BC94]. According to Esling and Agón, these constraints show us that three major
issues are involved:

(i) Data representation: How can the fundamental shape characteristics of a time series be
represented?

(ii) Similarity measurement: How can any pair of time series be distinguished or matched?

(iii) Indexing method: How should a massive set of time series be organized to enable fast
querying?

These implementation components represent the core aspects of the vast majority of time
series data mining algorithms. Note that, due to their peculiarities, not all TSDM tasks require
these three characteristics. For example, in forecasting, the notion of similarity is not necessary.
Time series forecasting is more related to statistical analysis. If a few years ago, the omnipresent
approaches were based in someway in �avours of Auto-regressive (AR) models, or Singular Spec-
tral Analysis (SSA) [GAD+02], now deep neural networks, as Convolutional Neural Networks
(CNN) or Long Short-Term Memory Networks (LSTM) models are dividing the attention.

On the other hand, tasks like classi�cation, clustering, or retrieval are directly a�ected by
how to assess similarity or how the data are represented. While in classi�cation, the most
common supervised task, for a given time series input, the classi�er tries to identify what is the
category of the input, based on learned data. In the clustering task, a traditional unsupervised
approach, we want to identify groups of related time series without any previous knowledge
about the data. In its turn, the retrieval task is based on the idea of given a query time series,
search on a time-series dataset for the (group of) most similar time series to the query.

In common, for the three approaches previously cited, metrics to establish similarities be-
tween time series are speci�c in the sense that they must be able to take into account the
di�erences in the values making the series as well as distortions along the timeline. However,
the retrieval task faces distinct challenges. Firstly, querying needs to be fast; thus, even the
choice of the data transformation function is crucial. Second, it is common to handle the scale
problem, which forces the use of optimized distance function, the choice of some data structur-
ing. The comparison between pairs of time series can be dealt with by a more sophisticated
measuring function; however, when the number of comparisons increases, we need to restrict
the use of those complex functions.
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Without any doubt, we can say that the most popular similarity measure is DTW. Nonethe-
less, despite its ability in handling the notion of shape similarity, as we will see in Section 2.3.1.2,
it is costly to compute, and using it against numerous or very long time series is di�cult in prac-
tice. Consequently, numerous attempts to accelerate the DTW were proposed; however, scaling
the DTW remains a signi�cant di�culty.

Working with raw time series is an arduous task, not only because of the dimensionality of
its data but also due to the noise and temporal distortions. The presence of distortions makes
unfeasible the use of less robust (and faster) similarity functions.

Therefore it is necessary to develop robust (and consequently computationally expensive)
distance functions to deal with distortions or to de�ne a new representation for the raw series,
trying to preserve only the relevant information.

Luckily, one characteristic of the time series is that its consecutive values are usually not
independent but highly correlated, thus with much redundancy. Such redundancy allows us
to develop representation models that exploit these characteristics, such as correlation-based
models or representations based on mean values.

A good representation is useful not only due to the data reduction, but it can also help
in creating some transformation which allows the substitution of the costly DTW by a less
expensive distance function with a minimal impact on the result's quality.

Naturally, the quality of this representation largely depends on the embedding process. More-
over, doing the right transformation, DM algorithms will not only be speed-up but can also
produce better results than on the original data. Once the new representation will focus only
on the relevant information, removing the noise and undesired parts of the data.

In this aspect, the family of contributions relying on the new concept of shapelets has proved
to work particularly well. Originally proposed as a primitive for Time Series Classi�cation
(TSC), time series shapelets are phase-independent subsequences extracted or learned from
time series to form discriminatory features. An evolution of the concept is to use shapelets to
transform the raw time series in high-dimensional vectors and then use those vectors to feed a
traditional machine learning classi�er.

More recently, Lods et al. in [LMTA17] present the Learning DTW-preserving shapelets
(LDPS), where they propose to embed the time series into a Euclidean space such that the
distances in this embedded space well approximates the true measured by DTW. This work,
focusing on the time series clustering, uses learned DTW-preserving shapelets to conduces the
transformation.

In this manuscript, we propose the use of DTW-preserving shapelets for the speci�c context
of large scale time-series retrieval.

We mainly focus �rstly on developing the framework that can handle univariate and mul-
tivariate time series. Then, we evaluate di�erent approaches to handle multivariate data-
transformation. Thus, we propose how to evaluate the quality of a single shapelet and a set-of
them. The challenge here is to de�ne how good is a shapelet without any provided information.

We have elaborated and developed a new method for feature selection based on clique-
elimination, our method presented excellent results in our experiments, proving able to eliminate
redundant information. All the proposed methods are evaluated with traditional benchmark
datasets.

Contributions

This manuscript emphasized the representation of the information contained in the time
series to support the retrieval task.
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In this manuscript, we have made four signi�cant contributions:

(i) it explains how DTW-preserving shapelets can be used in the speci�c context of time series
retrieval;

(ii) it proposes some shapelet selection strategies in order to cope with scale, that is, in order
to deal with a massive collection of time series;

(iii) it presents a new multidimensional �lter for unsupervised feature selection;

(iv) it details how to handle both univariate and multivariate time series, hence covering the
whole spectrum of time series retrieval problems.

The contribution's core presented in this manuscript allows us to easily trade-o� the trans-
formation's complexity against the retrieval's accuracy.

Large scale experimentation was conducted using the UCR [CKH+15] time series classi�-
cation archive and the newest UEA multivariate time series classi�cation archive [BDL+18],
providing support for this thesis and demonstrating the vast performance improvements com-
pared to state-of-the-art techniques.

Organization

As mentioned early, the purpose of this thesis is to bring new solutions for the time series
retrieval problem. We have organized this manuscript in �ve chapters in order to ful�ll this goal.

Chapter 2 gives an overview of the notation and the concepts used in the manuscript and
a thorough review of the state-the-art, from basic concepts to advanced algorithms for the
time series retrieval is carried out. As we are proposing a new greedy-warping-like algorithm
for selecting the best shapelets and also a clique-elimination-based �lter approach for shapelet
selection, a short revision in the feature selection domain is also necessary and done.

Next, in Chapter 3, we present our approach for TSR based on shapelet transformation,
the DTW-Preserving Shapelet Retrieval (DPSR). This chapter also introduces our contribution
to the work of Lods et al. We have generalized the LDPS to handle multivariate time series
by proposing three new multivariate transformations. Besides, we will present our analysis of
how to evaluate the quality of the learned shapelets in the original LDPS approach concerning
the retrieval task. Based upon that analysis, we have proposed two new methods for feature
selection: a greedy-based warp algorithm and a clique-elimination-based �lter.

In turn, in Chapter 4, we use the proposed approach for DPSR on UCR time series classi�-
cation archive and UEA multivariate time series archive, comparing the obtained results against
two main competitors: the LB_Keogh lower bound (LB_Keogh) [Keo02] and the Piecewise
Aggregate Approximation (PAA) [YF00; KCPM01]. The experimental result shows that DPSR
can achieve a better retrieval performance on most datasets.

Finally, we conclude this thesis and present our perspectives in Chapter 5.



25

Chapter 2

Technical Background and Related
Work

We can only see a short distance ahead, but
we can see plenty there that needs to be

done.

Alan Turing, Computing machinery and
intelligence
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This chapter gives an overview of the state-of-the-art Time Series Retrieval (TSR) algorithms,
from basic concepts to advanced algorithms. First, we introduce notations and de�nitions related
to TSR, and then we present the common distortions viewed in time-series data. TSR depends
on how the implemented algorithms handle the distortions e�ciently. Many algorithms use raw
time series whereas others change the time series representation before the retrieval step. We
thus categorize the di�erent time series retrieval models that exist and review some of them
with their most relevant characteristics. We start with the shape-based time series retrieval
models, then we review the structure-based, �nally we introduce the based on features. In this
chapter, we only aim at categorizing the di�erent types of time series retrieval algorithms as
well as detailing the most famous and most competitive ones; and refer the curious reader to
the numerous existing papers on this problem [YJF98; Fu11; RCM+12; EA12]. We conclude
this chapter by brie�y reviewing other Time Series Data Mining (TSDM) related to the retrieval
task.

2.1 Basic De�nitions and Notations

In the following, we provide de�nitions 1 as well as useful notations in order to characterize
the time series retrieval problem.

A time series is an ordered sequence of real values, resulting from the observation of an un-
derlying process from measurements usually made at uniformly (time) spaced instants according
to a given sampling rate [EA12].

In time-series data, the dependence between theN positions is induced by their relative
closeness in the time-axis, that is, considering two possible positionsnh and ni , they will often

1Although expressed primarily for the univariate case, such de�nitions are straightforwardly extended to the
multivariate case; we will make throughout the text, the distinction when necessary.
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be highly dependent if jh � i j is small, with decreasing dependency asjh � i j increases [Jol02,
p. 296]. A time series can gather all the observations of a process, which can result in a very
long sequence. Also, a time series can result in a stream and be semi-in�nite.

We can de�ne a time seriesT as2

De�nition 2.1 Time series. In a nutshell, a univariate time series (or only time series)T of
length jT j = N is a sequence of real-ordered values typically collected in equally spaced intervals
and formalized as:

T = f t1; t2; : : : ;tN g (2.1)

wheret i denotes thei th element of the time seriesT.

When the collected values are in a spaceRM such that M > 1, these time series are known
as multivariate time series, sometimes called multidimensional or even multichannel.

De�nition 2.2 Multivariate time series. A multivariate time series T is a set of M instances
of T 2 RN univariate time series, expressed as:

T = fT1; : : : ;TM g 2RN � M (2.2)

wheret i ; j is the j th element of thei th channel of T.

For some application, it is more interesting to focus on the local shape properties of a time
series rather than the global statistical properties, such as (global) mean, standard derivation,
skewness, among others. These contiguous pieces of a long time series are called subsequences.

De�nition 2.3 Time series subsequence. Given a time seriesT of length N, a subsequenceS
of T is a continuous sampling ofT, with length jSj = l � N, and starting at the position p of T,
expressed as:

S = f tp; tp+1 ; : : : ;tp+l �1 g (2.3)

where the valuep is an arbitrary position in T such that 1 � p � N � l + 1.

Figure 2.1 draws an example of subsequence.

0 10 20 30 40 50 60 70 80 90 100
time

T
S

Figure 2.1 � Illustration of subsequence S (in red) of a time series T.

Time series data mining related tasks su�er from thecurse of dimensionality due to the high
dimensionality of the data. Hence, it is common to work with a simpli�ed representation of the
series, de�ned as:

De�nition 2.4 Time series representation. Given a time seriesT, with jT j = N, a represen-
tation of T is a model T = f t 1; : : : ;tcg where c � N, obtained by applying a transformation
function z such thatT = z¹Tº.

2For ease of notation, we will use the letters Q and R to represent a time series when necessary.
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In general, besides the signi�cant reduction of the data dimensionality, those transformations
aims to emphasize fundamental shape characteristics or features, handling with noise and time-
shifting.

For easier storage, massive time series-sets are usually organized in a datasetT .

De�nition 2.5 Time series dataset. A time series dataset is a set ofjT j = K unsorted time
series, formalized as:

T = fT1; : : : ;TK g (2.4)

We will discuss some aspects of time series distortions in the following section, and after in
the subsequent sections, we will present the methods for Time Series Retrieval (TSR).

2.1.1 Time Series Distortions

TSDM brings up many challenges due to the speci�city of time series data. Time series
comes from real-world measurements: even similar time series will present distortions on its
time-axis or in the amplitude of its recorded values.

Many factors can produce those distortions, like a miscalibrated or inaccurate sensor, the
use of di�erent measurements units, or noise, for example [EA12]. In this section, we propose a
brief overview of the commonly encountered in time series.

Distortion on Amplitude and Trend

One common problem when dealing with time-series data is that they can present similar
shapes while their values are on di�erent scales. Many factors may in�uence the amplitude,
for example, di�erences in the recorded volume (in the case of sound), illumination (image),
data measured with di�erent units like temperature measured in Fahrenheit or Celsius. Those
factors can change the amplitude of the measured data while the intrinsic shape is comparable,
therefore, if our interest is in looking for similarity on the shape, scaling the time series by
removing the amplitude factor is a sine qua noncondition.

Similarly, even if both time series have identical amplitudes, they may have di�erent trends
(or o�set), in other words, it presents varying mean over time, and for some scenarios, the
o�set in the values (resulting from the trend) breaks the distance function. Similarly, even if
both time series have identical amplitudes, they may have di�erent trends (or o�set); in other
words, it presents varying mean over time. For some scenarios, the o�set in the values (resulting
from the trend) breaks the distance function. Some distance measures, such as the Euclidean
distance, are sensitive to this family of distortion and fails to recognize the similarity of time
series exclusively due to di�erences in the amplitude.

In this way, a usual pre-processing stage consists in applying az-normalization to the data
before evaluating the similarity, as illustrated in Figure 2.2a, or by scaling and removing the
trend factor, as showed in Figure 2.2b.
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(a)

(b)

Figure 2.2 � (a) Amplitude scaling: If compared before amplitude scal-
ing (left), these time series appear very di�erent. After applying the z-
normalization, it appears more similar. (b) Applying the amplitude scaling
plus o�set translation and linear trend removal, allow to observe the similarity

between the series.
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Local Distortion on the Time-axis

As common as the previous case, however, more complex to be handled, we can visualize the
local distortions on the time-axis as acceleration or deceleration in the phenomenon registered
by the data points on the time series. Local distortion on the time-axis is the most common
phenomenon handled in TSR and is showed in Figure 2.3.

Conventional approaches to handle this type of distortion are based on using a similarity
function able to match non-aligned points between the sequences, i. e. , an elastic measure.
Alternatively, creating a new representation focusing on the relevant features of the time series,
and then doing the similarity evaluation on the transformed space.

Figure 2.3 � Local distortion on the time-axis: The lines represent the com-
parison point-to-point. While in the traditional non-elastic measures (left)
points are matched one-to-one, in the elastic measure, it allowed matching

one-to-many (right).

Distortion on Phase

In some scenarios, the phenomenon of interest may be randomly positioned on the time
series. For example, when using time series to represent a contour of a two-dimensional object,
the starting point of the time series may not be adequately positioned causing a phase mismatch,
as observed in Figure 2.4.

There are two solutions for this issue: either the whole time series are comparable and all
the possible alignments must be tested [BKTdS14], or by using some representation based on
feature extraction, and then doing the comparison on the transformed space.

Landmark Best rotating

Figure 2.4 � Phase distortion: Two primate skulls (A and B) represented
as a time series of its contour. In the Landmark matching, the major axis is
de�ned as the starting point (red line), phase distortion is observed and can
conduce to incorrect similarity measure (left). Considering the best rotation,

the measured similarity increases (right). Adapted from [KWX+09].
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Occlusion-based Distortion

This distortion occurs when small subsequence(s) of a time series may be missing or pre-
senting an abnormal pattern. For example, some information can be lost while collecting or
transmitting by a sensor, or it may be disturbed by some phenomena.

One way to handle occlusion-based distortion is allowing the elastic measure function to
ignore sections (with the possibility of some penalty) that are di�cult to match. Figure 2.5a
shows a more visually intuitive example, where, probably, mutations throughout evolution have
led to disturbances between the observed shapes.

Uniform Distortion on the Time-axis

Uniform distortion on the time-axis, in contrast to the localized distortion, can be seen as a
case where the whole time series is uniformly warped in time. In other words, the time series is
compressed or stretched, as showed in Figure 2.5b.

Methods proposed to handle local distortion does not perform well on a uniform distortion
case. It is therefore preferable to re-scale one (or both) series before comparing them. However,
the challenge in handling uniform scaling is that there is not an easy way to know the scale-factor
before ahead.

(a) Occlusion. (b) Uniform scaling.

Figure 2.5 � Occlusion and uniform scaling distortions: (a) Occlusion distor-
tion: The nose region of the ancient skull (bottom) has no correspondence and
is missing on the modem skull (top). A way to out-pass this issue is ignoring
the non-matching segment (blue arrow). (b) Distortion on uniform scaling: (I)
Without any pre-processing, a full gene expression, CDC28, matches poorly to
the pre�x of a related gene, CDC15. (II) If it is re-scaled by a factor of 1.41, it
matches CDC15 much more closely (III). Adapted from [BWK11; BKTdS14].

2.2 Time Series Retrieval

The retrieval task (or query by content) is the most active area of research in time series
analysis [EA12]. It aims to locate objects in a dataset that are most similar to a query object
Q provided by the user.

According if it handles or not the raw time series, retrieval can be classi�ed in shape-based,
structure-based or feature-based. Also, the queries can be called on complete time series (whole
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matching) or to �nd every subsequence of the series matching the query (subsequence matching).
In this thesis, we focus on feature-based whole-matching retrieval.

For the TSR task, the notion of similarity is a crucial concept, and the measurement of
similarity between time series is a paramount subroutine not only for the TSR but also almost
every TSDM task requires at least an indirect notion of similarity between pairs of time series.

Its purpose is to compare two instances by computing a single value evaluating their similar-
ity. A similarity (dissimilarity) measure is a real-valued function that measures how close (far)
two instances are to each other. The closer the instances are, the larger the similarity is. There
exists many (dis)similarity measures and de�nitions of it, amongst them we indicate a special
case: distance metrics.

In the case of two time seriesQ and T with, respectively, length of NQ and NT , the distance
function D is de�ned as:

De�nition 2.6 Distance between time series.D¹Q;Tº is a distance function that takes time
seriesT and Q as inputs and returns a non-negative valued, which is said to be the distance or
(dis)similarity between Q and T.

The distance function D can also be used to measure the distance between two subsequences
of the same length since the subsequences, in this case, can be viewed as an entire series. How-
ever, we will also need to measure the similarity between a short subsequence and a (potentially
much) more extended time series. We therefore de�ne the distance between two time seriesT
and S, with jSj � j T j as:

De�nition 2.7 Distance from a time series to the subsequence.subD¹T;Sº is a distance function
that takes time seriesT and subsequenceS as inputs and returns a non-negative valued, which
is said to be the distance or (dis)similarity betweenT and S.

subD¹T;Sº = min ¹D¹S;S
0
ºº 8 S

0
2 S jSj

T ; (2.5)

where S jSj
T is the set of all possible subsequences inT with length jSj.

Based on the concept of similarity distance, we can de�ne the time series retrieval task as
follows:

De�nition 2.8 Time series retrieval. Given a time seriesQ, the time series retrieval problem
is to �nd T � 2 T that is the most similar to Q according to the similarity measureD:

T � = argmin
Ti 2T

D¹Q;Ti º (2.6)

We can generalize the previously de�nition to retrieval not only the closest elementT � , but
also all elements inside an area de�ned by a threshold-range' (Figure 2.6b) � ' -range retrieval,
de�ned as:

De�nition 2.9 Time series range search. Given a query time seriesQ, a time series dataset
T , and a range threshold' , the range search will return a subsetR � T such that: R = fTi 2
T j D¹Q;Ti º < ' g, for a given similarity measure D.

Or even the k-nearest neighbors (Figure 2.6c) �k-NN retrieval, de�ned as:

De�nition 2.10 Time series k-nearest neighbors search. Given a query time seriesQ, a time
series datasetT , and a integer k, the k-NN search will return a subsetR � T , where the time
seriesTk 2 R are the k most similar to Q, according to the similarity measure D.



32 Chapter 2. Technical Background and Related Work

(a)

'

(b) (c)

Figure 2.6 � Diagram of a typical query by content task represented in a
2-dimensional search space. Each point in this space represents a object whose
coordinates are associated with its features. (a) A query object (orange point)
is �rst transformed into the same representation as that used for other data
points. Two types of queries can then be computed. (b) A ' -range query will
return the set of series that are within distance ' of the query. (c) A k-nearest
neighbors query will return the k points closest to the query, the yellow line

represents closest.

Figure 2.6 illustrates a typical query by content task in a 2-dimensional search space.

In turn, subsequence retrieval requires searching all subsequences in the dataset, therefore,
to compare a subsequence queryC, jCj = l and a time seriesT, jT j = N, wherel � N, we need to
extract all subsequencesS � T with length l . We can obtain all subsequences by using a sliding
window of the appropriate size.

De�nition 2.11 Sliding Window. Given a time seriesT, jT j = N and a subsequence of length
l , all possible subsequences ofT can be extracted by sliding a window of sizel across T and
considering each subsequenceSl

p . Here, the superscript l indicates the length of the subsequence
and the subscriptp is the starting position of the sliding window overT.

The set of all subsequences of lengthl extracted from T can be de�ned as:

De�nition 2.12 Set of all subsequences of lengthl in T. Given a time seriesT, jT j = N and a
subsequence of lengthl . The set of all subsequences of lengthl extracted from T is expressed by:

Sl
T = fSl

p of T; for 1 � p � N � l + 1g: (2.7)

We useSl
T to represent the set of all subsequences of lengthL in the dataset T .

Although it seems trivial, the retrieval task faces numerous challenges, and due to many
reasons depending on the data, this task is far from easy. The main challenges stem from:

(i) Even a time series considered short has dozens of positions on the time-axis. That is, time
series is high-dimensional data.

(ii) Usually, on TSR tasks, the dataset is massive and needs to support adding and removing
objects. Therefore, approaches for TSR need to work at scale in open datasets.

(iii) Surely the time series data in the dataset will present some distortion on the time-axis.
Consequently, the similarity measurement function needs to be able to handle distortions.

(iv) The query response time needs to be fast. Thus, the similarity function needs to be
e�ective in handling distortions but also e�cient in doing it faster.

Three main ways were found out to handle those previously listed challenges. The �rst is
de�ning similarity measure functions that are robust to time-axis distortions. The second is
proposing data-transformation functions able to extract features expressing what �really means�
in the time series data, and consequently mitigating the temporal distortions. Finally, the
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combination of both, i. e. a transformation is applied to simplify the data together with a
similarity function able to handle distortions.

In the following sections, we will present the most representative and used similarity measures
and data transformations applied to time series retrieval.

2.3 Data Representation and Distance Functions

Data representation formats and distance functions are closely related to each other. There-
fore, we are reviewing together current techniques on these two issues. Generally, we can classify
these techniques into two main categories: distance functions on raw representations, or distance
functions on data-transformed representations.

Following, we will discuss the characteristics of the main types of distance functions applied
to time series. Our objective in this section is not to be exhaustive on time series distance
measures but rather to give some instances of the preeminent families of distance measures: we
encourage the reader to refer to dedicated surveys such as [DTS+08; WMD+13; KK03].

2.3.1 Distance Functions on Raw Representation

As previously de�ned in the De�nition 2.1, a time series data can be represented as a sequence
of real-ordered values,T = f t1; : : : ;tN g. T is called raw representation of the time series data.
Many distance functions have been proposed based on raw representation.

The de�nitions of distance functions presented in this section use univariate time series data
(M = 1) as an example, but they can be easily extended to multi-dimensional data.

2.3.1.1 Euclidean Distances and L p Norms

The Lp distance family contains the most straightforward similarity measures for time series.
Also known as Minkowski distance, the Lp distance corresponds to a family of functions, where
p 2 R�

+ , and can be considered as a generalization of Manhattan¹p = 1º, Euclidean ¹p = 2º, and
Chebyshev¹p = 1º distances.

Given two time seriesT and Q of the same lengthN, the Lp -norm (or Minkowski) distance
betweenT and Q is:

Lp¹T;Qº = kT � Qkp =
p

vut NÕ

i =1

jt i � qi jp (2.8)

Undoubtedly, the most known and most used distance measure is the Euclidean distance
(ED) due to its simplicity to understand and e�ortlessness to compute. To compare the time
seriesT and Q with the same length using the Euclidean distance, we compare each-other point-
to-point, where the similarity is de�ned by:

D¹T;Qº = L2¹T;Qº =

vut NÕ

i =1

¹t i � qi º2: (2.9)

Figure 2.7 shows a visual intuition of the Euclidean distance metric.

As in other data domains, the traditional L p -norm have been the �rst choice to measure the
similarity in time series data [YF00; EA12]. It has the advantage of being easy to compute,
parameter-free, and the computation cost is linear in terms of time series length. However,
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Figure 2.7 � Viewing the Euclidean distance: The Euclidean distance between
two time series can be visualized as the square root of the sum of the squared

length of the vertical hatch lines. Adapted from [BWK11].

unlike other data types where it achieves good similarity measure, on time series data Lp -norm
tends to lead results that do not re�ect the human perception [DTS+08; EA12].

Humans have an extraordinary capability to observe similar patterns. The evolution brought
us an ability to �lter noise, phase shift, time distortions, scaling, amplitude, outliers allowing to
focus essentially on the shape of the time series.

Therefore, it is evident that the simplicity of the L p -norm fails to reach such level of abstrac-
tion, may causing then a totally unexpected similarity behavior.

We can resort a toy example to exhibit this phenomenon. Considering a time series dataset
T = fQ;R;Tg with jQj = jRj = jT j = N, from Figure 2.8.
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Figure 2.8 � Toy example of a time series dataset T with three time series.

Based on the behavior of our natural perception of shape, we believe that the pair¹Q;Rº is
the most similar pair in T . However, the opposite is observed when we are using theL2-norm,
and this pair of sequences is considered the most dissimilar, as observed in Figure 2.9.
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time

(a) D¹Q; Rº = 19:3907

0 5 10 15 20 25 30 35 40
time

(b) D¹Q; Tº = 18:72357

0 5 10 15 20 25 30 35 40
time

(c) D¹T; Rº = 18:6957

Figure 2.9 � The use of L2-norm as distance function D conduces to an
unexpected measure of similarity. In this context, the pair ¹Q;Rº (in (a)) is

evaluated as the least similar pair, contradicting the human perception.

Below we will show how other metrics can be used to mitigate this issue of the Euclidean
distance.
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2.3.1.2 Dynamic Time Warping

The DTW is a well-known algorithm in many �elds, with application in speech and gesture
recognition, handwriting and online signature matching, music and signal processing, protein
sequence alignment and chemical engineering, time series data mining, among others [Mül07b,
p. 80].

DTW algorithm has become extremely popular due to its e�ciency as time series similarity
measure [KL83; BC94; Mül07a]. The great advantage of the DTW-based similarity over tra-
ditional L p -norm is its ability to e�ectively handle the e�ects of local shifting, and time series
with di�erent lengths. In some sense, DTW preserves the human sense of shape-similarity by
allowing elastic transformation of time series in order to detect similar shapes across di�erent
phases [EA12].

The objective of DTW is to �nd an optimal alignment between two time series Q and T that
achieves minimum global cost while ensuring time continuity.

Before going to discuss how it works, we will observe the results of the DTW measure applied
to the same previous toy example from Figure 2.8. In Figure 2.10 we can see how DTW handles
time distortions and delivery an expected similarity based on the human perception of shape
similarity.
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(a) D¹Q; Rº = 0:0
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(b) D¹Q; Tº = 12:3681
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time

(c) D¹T; Rº = 12:4016

Figure 2.10 � A more intuitive result is obtained when using DTW as a
metric for distance function D. Due to its ability to handle time shifts and
distortions, DTW de�nes the pair ¹Q;Rº the most similar, which is the intuitive

similarity expected.

The DTW distance between two time seriesR and Q of lengths NR and NQ , respectively, is
de�ned as:

DTW ¹R:i ;Q: j º = � ¹r i ;qj º + min

8>>><

>>>
:

DTW ¹R:i ;Q: j �1 º;
DTW ¹R:i �1 ;Q: j �1 º;
DTW ¹R:i �1 ;Q: j º

(2.10)

where Q:i represents the subsequencefq1;q2; : : :qi g, and � ¹r i ;qj º is the local cost function that
measures the distance between two elements. Traditionally, Euclidean distance (L2-norm) or
squared Euclidean distance is used as the local cost function� , although nothing prevents the
use of some other exotic metric.

DTW works by �nding an optimal alignment between two time series Q and R that achieves
minimum global cost while ensuring time continuity. The global cost is the summation of the
cost between each pair of points in the alignment. Intuitively, such an optimal alignment runs
along a �valley� of low cost within the local cost matrix, see Figure 2.11b for an illustration.

DTW allows some elements to be replicated (i. e. the one to many links observed in Fig-
ure 2.10) to accommodate the cases where elements are similar but out of phrase (time-wise).
Comparing Figure 2.9 and Figure 2.10 reveals how DTW can handle local time shifting whereas
Euclidean distance cannot.
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(a) (b)

Figure 2.11 � (a) Local cost matrix of the time series Q and R using the L2-
norm as local cost � . (b) Accumulated cost matrix with the optimal warping
path. In both (a) and (b), regions of low cost are indicated by light colors, and

regions of high cost are indicated by dark colors.

However, this approach for the DTW, sometimes called as naïve or classical, presents three
main issues:

(i) in the best case, the computation cost of DTW is quadratic, O¹NQ � NT º, � where NQ and
NT are the lengths of two compared time series, respectively �, with dynamic program-
ming; therefore, when the time series length or the database size increases, enormous time
requires to be spent on computing DTW to answer a query unless some indexing methods
can be used to save the number of computations.

(ii) Unfortunately, DTW does not follow the triangle inequality, which precludes its use with
many indexing structures, such as M-Tree family [CPZ97], Slim-Tree [JTSF00; SJdPG15]
or D-index [DGSZ03], among others.

(iii) Finally, it may not give the best mapping according to our need because it will try to
�nd the minimal distance, which in some situations it can result in unwanted path. For
example, in Figure 2.12, without any path limitation, DTW will �nds the optimal path
between the two time series, but this minimal cost path, may is not the best choice
according to our perspectives.

0 5 10 15 20 25 30 35 40
time

T
Q

Figure 2.12 � An unwanted warping between time series Q and T.
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Consequently, innumerable approaches have been proposed to mitigate the quadratic time
complexity of the naïve DTW.

Variations of DTW

In order to mitigate the previous listed issues of the naïve DTW algorithm various modi�ca-
tion were proposed. This section outlines the major modi�cations to suite the DTW to a speci�c
domain such as step size condition, step weighting, global path constraints, and invariance of
pre�x and su�x.

As mentioned before, one of the main drawbacks of the naïve DTW is its tendency to generate
unwanted paths, by assigning a single element of one sequence to many consecutive elements of
the other sequence, or vice versa. These phenomena can be observed in Figure 2.12, and its lead
to vertical and horizontal long segments in the optimal warping path, and we can interpreter
this vertical (or horizontal) segments on the optimal warping path as a local acceleration (or
deceleration) by a large factor. Therefore, in scenarios where we have similar velocity between
the series evaluated this optimal path can be considered invalid.

To avoid such degeneration, many modi�cations of the step size condition constraint were
proposed to try to restrict paths quite away from the diagonal. One can modify the pattern of
the step size condition to restrict the slope of the admissible warping path.

Sakoe and Chiba in [SC78] de�ne a factorp = kd
kl

in the cost matrix, where kd is the number
of stepping in its diagonal andkl is the number of stepping in the direction of i (or j )-axis.

The factor p de�nes how strict is the allowed path. When p = 0 there are no restrictions,
as in the naïve implementation. At the other extreme, when p = 1 (that is kl = 0) the path
is restricted to diagonal line j = i , therefore, becoming equivalent to the traditional Euclidean
distance.

Another way of a�ecting the optimal warping path is varying the weight for each possible
direction. Previously we de�ned the measure of distance between time series as the accumulated
cost function of the optimal warping path, which is a summation of pairwise distances between
corresponding points at time-seriesQ andT. By construction, the original implementation based
on the recursive has a preference of the diagonal alignment direction, since one diagonal step
(cost of one cell) corresponds to the combination of one horizontal and one vertical step (cost of
two cells). However, we can favor the vertical, horizontal, or diagonal direction in the alignment,
by introducing an additional weight vector hwd ;wv ;wh i to the DTW function.

Another widely used modi�cation is the global path constraint also referenced as windowing
functions or bands. As well as local constraints, are used to impose conditions to the admissible
warping paths.

The global constraints de�ne the region of cells in the accumulated cost matrix that are
search for the optimal path. Cells outside this region are not searched [BC94]. Essentially, the
global constraint de�ne the overall stretching or compression allowed for the matching procedure.
Therefore, it is clear that such windowing functions do not only prevent unwanted alignments
but also speed up DTW computation by limiting the number of local cost computations.

Sakoe-Shiba band (SC-band) [SC78] is one of the simplest and most commonly used bands
to limit calculation of cells in the cost matrix. SC-band runs along the main diagonal allowing
only values inside the band¹2r + 1º. Where r is a user-de�ned parameter which speci�es the
length of the window. Obviously, when comparing time series with di�erent length, the upper
limit r must be correctly de�ned.

Another traditional approach is the Itakura parallelogram [Ita75]. Contrary to the SC-Band,
where r is independent ofi (and of j ) and constant along the diagonal of the cost matrix, in the
Itakura parallelogram the bound limit of the window is a function of i (and j).
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Mostly, the Itakura parallelogram describes a restriction that constraints the slopep of a
warping path. An interesting characteristic of the Itakura parallelogram is that horizontal tran-
sitions are allowed, but not successively. Thus, Itakura constraints do not allow long horizontal
paths, corresponding to thep = 1 slope [TPKC10, p. 334].

However, the Itakura parallelogram it was designed to limit warping at the start and end
of the naïve DTW warping path, where the �rst and last warping points are exactly known,
limiting its use for purpose of searching subsequences and other DTW modi�cations.

In order to introduce more �exibility than a �xed authorized shape, some researchers prefer
to learn an adaptive window shape from the data as presented in [KRGI11; Mar18; RK04b;
KSM16].

It should be noted that, despite the positive impact in the execution time for long time
series, the problem stills in a quadratic time complexity O¹¹r � ¹NQ + NT ºº, and as the optimal
warping path can traverse cells outside the window, it may lead to undesirable alignment results.
Furthermore, they heavily restrict the number of candidates for the optimal path which may
cause undesired alignment results as seen in Figure 2.13.

(a) (b) (c)

Figure 2.13 � (a) Optimal warping path without global constraint. (b) Re-
stricted optimal warping path (in red) using the Sakoe-Shiba band with r = 4,
in blue the optimal warping path. (c) Restricted optimal warping path (in
red) using the Itakura paralelogram. Regions of low cost are indicated by light

colors, and regions of high cost are indicated by dark colors.

On the other hand, other smart optimizations were proposed to speed-up the DTW compu-
tation in huge datasets. One way to address it is the early abandoning of DTW, where during
the computation of the optimal accumulated distance, if we note that the current value exceeds
the best-so-far, then we can stop the calculation. Another well-known strategy is to use a fast
lower bounding function to avoid the need to apply the DTW on time series that are impossible
to be the best match [KR05].

Basically, a lower bounding measure for DTW has two desirable properties:

ˆ It must be really faster then the DTW ;

ˆ It must tightly approximate the true DTW distance.

In general, the challenge to de�ne a lower-bound function is to handle the trade-o� between
the tightness of the lower bound and how fast it is to compute.

Once the lower bounding function is de�ned, an algorithm to speed-up the sequential scan
search can be easily de�ned as in Algorithm 2.1.

Yi, Jagadish, and Faloutsos in [YJF98] introduced the �rst approach to lower bound DTW.
In this function, referred LB_Yi, the authors take advantage of the observation that the �nal
DTW distance is directly dependent to all the points in one sequence that are larger (smaller)
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Algorithm 2.1 A lower-bounding based algorithm to perform sequential scan.

1: input: Q, T {Time series query and dataset}
2: output: C {True 1-NN}
3: C  �1
4: best_ dist  1
5: true_ dist  1
6: for all Ti 2 T do
7: lb_ dist  LB¹Ti ;Qº
8: if lb_ dist < best_ dist then
9: true_ dist  DTW ¹Ti ;Qº

10: if true_ dist < best_ dist then
11: best_ dist  true_ dist
12: C  Ti
13: end if
14: end if
15: end for
16: return C

than the maximum (minimum) of the other sequence, as we can see in the Figure 2.14a. After

(a) (b) (c)

Figure 2.14 � Lower bounding for DTW applied in two time series from the
TwoLeadECG dataset [CKH+15]. (a) in LB_Yi the sum of the squared length
of gray lines represents the minimum of the corresponding points contribution
to the overall DTW distance, and thus can be returned as the lower bounding
measure. (b) LB_Kim looks at speci�c points to evaluate the lower-bounding.
Finally, (c) LB_Keogh explores the ideia of local and global constraints to

create an envelopeU and L to evaluate the lower-bounding.

this �rst work of Yi, Jagadish, and Faloutsos, more than 18 new approaches for lower bound
DTW were proposed [RCM+12]. Two of the most used are the LB_Kim and LB_Keogh,
described below.

Kim, Park, and Chu in [KPC01] introduced the LB_Kim, a lower-bound function which
works by extracting a four-tuple feature vector from each sequence. The features are the �rst
and last elements of the sequence, together with the maximum and minimum values, as we can
observe in the Figure 2.14b. The maximum squared di�erences of corresponding features are
reported as the lower bound. Such a representation of the series by this four-tuple mitigates
the curse of dimensionality and, consequently allows e�cient use of spatial indexing methods.
We can observe that, like LB_Yi, this function has complexity O¹Nº. An O¹1º extension of
LB_Kim, called LB_KimLF, consists of using only the �rst (F ) and last point ( L), however,
sacri�cing the tightness.

Inspired by the work of Yi, Jagadish, and Faloutsos, Keogh introduced the LB_Keogh [Keo02].
They have assumed that global and local constraints are naturally desirable over the naïve DTW,
thus LB_Keogh may be seen as an enhancement of LB_Yi for this scenario.
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As discussed earlier, local constraints or windowing restrict the indices on warping path
inside a range de�ned by the windowing function or the user de�ned parameter, as the radius
of the window, the step weighting, among others.

Therefore, given a time seriesT, LB_Keogh uses the restriction R to create two new time
seriesL = »l1; : : : ;l jL j¼and U = »u1; : : : ;u jU j¼de�ned as:

8i 2 »1; : : :NT ¼ r̂ i 2 R;ui = max¹t i � r i ; : : : ;t i +r i º (2.11)

8i 2 »1; : : :NT ¼ r̂ i 2 R;l i = min¹t i � r i ; : : : ;t i +r i º (2.12)

Those time series corresponds to theLower andUpper limits of an envelope that represents the
in�uence of each point in the warping path as we can see in Figure 2.14c.

To be able to compare the sequenceQ, L and U, these time series must be of the same size,
so whenQ and T have a distinct length it is necessary to, for example, re-sample the sequence
Q. The lower-bounding distance is given by the Equation (2.13).

LB_Keogh¹ Q;Tº =

vuuuuut NQÕ

i =1

8>>><

>>>
:

¹t i � ui º2 if t i > ui

¹t i � l i º2 if t i < l i
0; otherwise

(2.13)

The lower-bounding function, despite being a big step in improving the performance of
DTW-based retrieval does not reduce the complexity of the original DTW, and depending on
its tightness a considerable execution number of DTW meadures will be necessary.

Other proposed methods tries to speed-up the DTW based on the idea to perform the
alignment on low resolution versionsQ and T of the sequencesQ and T and then scale up to full
resolution cost matrix, in order to �nd the optimal warping path.

Keogh and Pazzani in [KP00] presented the algorithm, Piecewise Dynamic Time Warping
(PDTW), a modi�cation of DTW that operates on the PAA reduced dimensionality represen-
tation. They show that the resulting alignments are very similar to those produced by naïve
DTW, with no signi�cant loss of accuracy for classi�cation and clustering tasks, although, it
e�ectively generates a speedup of one to three orders of magnitude as ilustrated in Figure 2.15.

time
(a) DTW ¹Q; Tº

time
(b) PDTW ¹Q; Tº

Figure 2.15 � (a) Two time series Q and T and the alignment between them,
as discovered by naïve DTW. (b) The same time series in their PAA represen-

tation, and the alignment discovered by PDTW.

Salvador and Chan in [SC07] propose a method of multi-scale analysis, called Fast DTW for
dynamic alignment. The FastDTW [SC07] algorithm uses ideas from both the constraints and
abstraction approaches and provides optimal or near-optimal alignments with anO¹jQj + jT jº
time and memory complexity, in contrast to the O¹NQ � NT º requirement for the naïve DTW
algorithm.

It �rst searching for the optimal path for sub-sampled versions of theQ andT, and recursively
projects a solution from a coarser resolution and re�nes the projected solution.
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FastDTW algorithm solely comprises of following three main phases:

Coarsening: reduces the length of a time series by averaging adjacent pairs of points. The
resulting time series is a factor of two smaller than the original time series. It is called
successively times until the base condition (the lowest dimension given by a user parameter)
is met, producing di�erent low-level resolutions for time series. Figure 2.16 shows four
resolutions that are created when running the FastDTW algorithm.

Projection: DTW is run to �nd an optimal warp path for the lowest resolution (Figure 2.16a)
and determines what cells it passes through in a higher resolution. Since the resolution is
increasing by a factor of two, a single point in the low-resolution warp path will map to at
least four points at the higher resolution (Figure 2.16b). This projected path is then used
as a heuristic during re�nement to �nd a warp path at the higher resolution.

Re�nement: �nds an optimal warp path in the neighborhood of the projected path. To re�ne
the projected path, a constrained DTW algorithm is run with the very speci�c constraint
that only cells in the projected warp path plus additional neighborhood cells on each side
are evaluated (Figure 2.16d). The size of the neighborhood is controlled by the radius
parameter.

(a) 1/8 (b) 1/4 (c) 1/2 (d) 1/1

Figure 2.16 � The four di�erent resolutions evaluated during the execution of
FastDTW algorithm. Dark gray cells correspond to cells that need to be eval-
uated, according to the path discovered on the previous scale. The light gray
cells are neighborhoods add by the radius parameter to mitigate the possibility

of missing an optimal path. Adapted from [SC07]

We can note that FastDTW gradually shrinks the warping band by repeating the projection and
re�nement steps. That is, FastDTW dynamically reduces the warping band while the traditional
bands, like Sakoe-Chiba, are not changed.

As previously discussed, naïve DTW is anO¹N2º algorithm, once it is necessary to �ll all
cells in the cost matrix to ensure an optimal answer is found, and the size of the matrix grows
quadratically with the size of the time series. On the other hand, in multilevel approaches, like
FastDTW, the cost matrix is only �lled in the neighborhood of the path projected from the
previous resolution. In this way, the multilevel approach is anO¹Nº algorithm, since the length
of the warp path grows linearly with the size of the input time series.

It should be noted that due to its recursive construction, the FastDTW algorithm presents a
big constant value, which degrades the execution time. For example, in some scenarios (small-
length time series, high ratio between radius parameter and the time series length), its perfor-
mance is lower than that obtained by naïve DTW [SC07; GSZ11].

In addition to those previously listed, the DTW-based metric presents another big issue:
unlike in Euclidean space where an average method is easily de�ned, in the DTW-based space
de�ning a average method is harder.

The lack of a well-de�ned method for averaging impacts in a wide variety of distance-based
learning algorithms, once they require at their core an averaging method, and highly depend
on the quality of this averaging. For example, the well-knowk-means algorithm [Mac67] needs
to average a set of objects, by �nding a mean of the set, repeating this kind of operation until
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converging. However, in the DTW-based space it fails, as the arithmetic mean does not take
time warping into account, as observed in Figure 2.17a.

Most of averaging methods proposed in the literature are based on pairwise averaging al-
gorithms. Such strategies are really dependent of the order in which the series are taken into
account with no guarantee to obtain the same results with a di�erent order [NR07]. Because
of such a limitation, recently two kinds of global approaches have been proposed: The DTW
Barycenter averaging (DBA) and the Soft-DTW. The fundamental advantage of those methods
is that the time series are averaged all together, and therefore there is no impact on the order
of consideration of the time series.

The DTW Barycenter Averaging (DBA), presented in [PKG11], was the �rst successful algo-
rithm able to handle an averaging method for DTW. It consists of a heuristic strategy (�nding
the optimal multiple alignment is a NP-Complete problem), designed as a global averaging
method and can be summarized as: given an (potentially arbitrary) initial sequence, re�ne it,
iteratively, in order to minimize its squared distance (DTW) to averaged sequences. This re-
�nement if done coordinate by coordinate, therefore, each coordinate of the averaged sequence
is the barycenter of the associated coordinates of the set of series.

The Soft-DTW [CB17] is de�ned by the authors as a �Di�erentiable Loss Function for Time-
Series�. DTW de�nes the similarity between two time series as their minimal alignment cost.
Soft-DTW proposes to replace this minimum by a soft minimum. In other words, Soft-DTW
will consider all possible alignments and retrieve the soft-minimum of the distribution of all
costs spanned by all alignments.

Just like naïve DTW, Soft-DTW is quadratic in time and space complexity (it is necessary to
rea�rm that when there is no need to preserve the optimal warping path, the DTW algorithm
becomes linear in space). However, the main advantage of Soft-DTW arises from the fact that
it is a di�erentiable loss function, and its gradient can also be computed in quadratic time.

The algorithm depends on a smoothing parameter. When this smoothing parameter is set
to 0, the original DTW distance is recovered. At the opposite, when this smoothing parameter
tends to in�nity, soft-DTW converges to the sum of all costs.

Some drawbacks of the Soft-DTW is unlike other distances, it can return negative values,
there is no guarantee that softDTW ¹T;Qº = 0 and it does not ful�ll the triangle inequality,
however, it is always symmetric.

(a) (b) (c)

Figure 2.17 � Considering the CBF dataset from [CKH+15]. (a) The
barycenter de�ned by the traditional arithmetic mean produces a spurious
relation. (b) The average sequence of the cluster using the DBA approach. (c)
In Soft-DTW, we can observe the e�ect of the smoothing parameter. Without
it, which corresponds to the DBA case, the obtained curve is very granular
(red) and it becomes smoother as the smoothing parameter increases (blue).
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Multivariate Approaches for DTW

For a long time, most time series studies were focused on one-dimensional ones, sometimes
neglecting generalization for multivariate series. However, thanks to the widespread of a�ord-
able motion sensor devices, data-mining-related tasks on multivariate time series have become
increasingly popular.

The generalization of the DTW distance (Equation (2.10)) for the multivariate case falls in
one of two ways, dependent or independent warping path [SHJ+17], and the choice of the best
approach is not trivial and depends of the nature on the data.

Both extensions are simple and involves minimal changing in the original algorithm. In inde-
pendent path DTW (DTW i ), the DTW distance is the cumulative distance of all independently
measured DTW for all dimensions. Considering twoM-dimensional multivariate time series Q
and T, and assuming that Tm is the m-channel ofT, we can de�ne DTW i as:

DTW i ¹Q;Tº =
MÕ

m=1

DTW ¹Qm ; Tm º (2.14)

In the other hand, the dependent path DTW (DTW d ) is a direct modi�cation of the local
cost function � .While in univariate case the distance function� is related to single data points,
in DTW d it is, instead, the distance ofM data points.

As demonstrated by Shokoohi-Yekta, Wang, and Keogh in [SWK15], the choice between
DTW d and DTW i not only produce di�erent values for the measured distance, but also it
impacts on data-mining-related tasks, especially on classi�cation and clustering.

(a) DTW d (b) DTW i

Figure 2.18 � For two multidimensional time series T and Q. (a) The
DTW d ¹Q;Tº = 0:559. (b) The DTW i ¹Q;Tº = DTW ¹Q1; T 1º + DTW ¹Q2; T 2º =
0:214+ 0:0 = 0:214. In both (a) and (b), regions of low cost are indicated by

light colors, and regions of high cost are indicated by dark colors.

Finally, both versions of multivariate DTW have a O¹M � NQ � NT º computational complexity,
where jQj = NQ and jT j = NT , respectively. The space complexity ofDTW d is O¹NQ � NT º
when we want to retain the optimal warping path or O

�
min¹NQ; NT º

�
otherwise. In its turn,

for DTW i we haveM warping path computations, consequently, the space complexity becomes
O¹M � NQ � NT º when preserving all optimal warping paths orO

�
M � min¹NT ; NQº

�
otherwise.

2.3.1.3 Summary on DTW

DTW is a kind of Swiss Army knife used to measure the (dis)similarity between time series,
it is a simple and elegant algorithm able to deal with temporal shifts and distortions.
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However, as increasing the dimensionality of the time series in the temporal or spatial axis,
the performance degrades due to itsO¹N2º time complexity. In addition, the naïve DTW can
produces unexpected unwanted matches.

Thus, many speed-up techniques have been proposed to reduce, or at least, mitigate the
quadratic complexity of DTW.

If on the one hand, global constraints or can mitigate the time complexity by reducing from
O¹N2º to ¹O¹N � r º, it remains quadratic, sincer determines only a region proportional toN. On
the other hand, it does not make DTW less sensitive to noise, outliers, nor make it a metric.

Lower bound functions are also helpful to deal with the time complexity, yet it can introduce
an overhead, specially due to thetightness � complexity factor.

Other approaches are designed for speci�c scenarios, introducing extra parameters that need
to be well tuned in training data.

However, even though all research, the quest for processing extremely large collections of
time series is still active.

2.3.1.4 Longest Common SubSequences

The Longest Common SubSequence (LCSS) is proposed to handle time series data that may
contain possible noise [EA12]. This noise could be introduced by hardware failures, disturbance
signals, and transmission errors. The intuition of LCSS is to remove the noise e�ects by only
counting the number of matched elements between two time sequences.

The LCSS score between two time seriesR and Q of lengths NR and NQ , respectively, is
de�ned as:

LCSS¹R:i ;Q: j º =

8>>><

>>>
:

0; i f NR = 0or NQ = 0:
LCSS¹R:i �1 ;Q: j �1 º + 1 i f � ¹r1;q1º � �
max

�
LCSS¹R:i �1 ;Q: j º; LCSS¹R:i ;Q: j �1 º

�
;oterwise:

(2.15)

In the de�nition of LCSS, instead of using distance,score is used. Thus, the higher the score,
the more similar are two time series. The LCSS score can be converted into distance using the
following formula:

DLCSS = 1 �
LCSS¹R;Qº
min¹NR; NQº

(2.16)

The matching threshold � is a hyper-parameter which needs to be set up by the user to
determine whether two elements match. LCSS is an alignment method that can handle outliers
and temporal shifts, because the matching threshold quantizes the distance between two elements
to two values, 0 and 1, which removes the larger distance e�ects caused by noise. However, LCSS
does not di�erentiate time series with similar subsequences but variousgap di�erences between
its similar subsequences, which leads to inaccuracies. Also, like DTW it is not a metric and has
a quadratic complexity.

2.3.1.5 Summary on Distance Functions on Raw Representation

Numerous similarity measures for raw time series exist, we detailed in this manuscript a
small selection of them. Each one of them can be used for the retrieval task. A comparison of
their characteristics can be found in Table 2.1.
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Although robust enough to handle distortions in the time-axis, the choosing DTW or LCSS
over Lp -norm is not an easy choice. The speed of the Lp -norm is often a su�cient condition to
accept it losses in accuracy, especially when dealing with huge databases.

Despite being robust to handle outliers, the LCSS does not di�erentiate time series with
similar subsequences, restricting its use to scenarios where there is a paramount need to deal
speci�cally with outliers. In its turn, the DTW has as a signi�cant setback its computational
cost, and complexity of execution and numerous variations have been proposed to mitigate
this issue. These modi�cations do not wholly solve DTW issues, and often need to be adjusted
according to dataset-dependent parameters. Finally, the Lp -norm, and speci�cally, the Euclidean
distance often requires speci�c preprocessing for the dataset, rising costs, but without achieving
the same robustness as other functions.

Table 2.1 � Comparison among three distance functions on raw representa-
tions of timeseries data.

Distance
Function

Handle
jQj , jT j

Local
Time
Shifting

Noise
User-de�ned
matching
threshold

Computational
complexity

Metric

Lp -nom No No No No O¹Nº Yes
DTW Yes Yes No No O¹N2º No
LCSS Yes Yes Yes Yes O¹N2º No

Besides raw format representation, there are several other representations, together with
distance functions, to measure the similarity between time series. These representations are
proposed either for particular applications or dimensionality reduction. Next, we will discuss
the most commonly used representations.

2.3.2 Distance Functions on Other Representations

The similarity measure can be performed on both raw and transformed time series. The
most natural representation of time series is the raw representation, i. e. the ordered list of
valued data points. However, there are many tasks for which a representation that highlights
some speci�es of time series is the most suitable one, e. g. frequency for speech recognition.
Figure 2.19 shows some of the most common representations for time series data.

Due to the wide range of possible applications for time series data, numerous representations
have been proposed by the time series community from Fourier and Wavelet Transformations to
Shapelet-based Representation, through Piecewise Approximations. In the following, we focus
on the most well-known time series representations.

2.3.2.1 Frequency Transformation Representation and Distance Functions

Numerous Frequency domain transformation methods have been proposed in order to reduce
the dimensionality of time series, we detail here the most relevant ones.

The frequency domain transformations aim to move from the time-based domain to the
frequency-based domain [EA12]. The two most used are the Fourier Transformation and the
Discrete Wavelet Transformation. While Fourier transformation represents a time series as
a sum of sinusoidal functions, wavelet transformation approximates a time series by a set of
orthonormal representations. Both, Discrete Fourier Transformation (DFT) [FRM94; AFS93]
and Discrete Wavelet Transformation (DWT) [CF99] reduce the dimensionality of the time series
and have the property to be a lower-bounding function to the ED on the original space.
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Figure 2.19 � Example of techniques that can signi�cantly reduce the di-
mensionality of time series. For each transformation approach is represented
the raw time series T (red), its representation T (blue) and the transformation

components (bottom). Adapted from [RLG+10].

ˆ Discrete Fourier Transformation : The �rst technique suggested for dimensionality
reduction of time series was the DFT. The DFT is based on the idea of spectral decom-
position, where a time series (or signal)Tc of length N, no matter how complex, can be
represented as a linear combination ofN2 cosines and sines waves, and these ones, repre-
sented by a single complex number know as a Fourier coe�cient, can be recombined into
the original signal.

Nonetheless, many of the Fourier coe�cients have very low amplitude and thus have a small
contribution to reconstructed signal. These low amplitude coe�cients can be discarded
without signi�cant loss of information thereby reducing the dimensionality of the data
and saving storage space. The Figure 2.20 shows the DFT approximation of the IBM
stock price time series. It is evident that increasing the number of coe�cients the DFT
approximation gets better.

Figure 2.20 � Approximation of IBM stock price time series with a DFT.
From top to bottom, the time series is approximated by 10, 20, 40 and 80 DFT

coe�cients, respectively. Extracted from [SZ04].

ˆ Discrete Wavelet Transform : Wavelet bases are able to represent both frequency and
location information inside a time series. It represents the data in terms of the sum and
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di�erence of a prototype function, so called the �analyzing� or �mother� wavelet. The main
di�erence to the DFT is while Fourier coe�cients always represent the contribution of the
all data points in the time series, in the wavelets they are localized in time, i. e. some
wavelet coe�cients represent small, local subsections of the data being studied [RLG+10].

The �rst proposed DWT is the Haar wavelet, which mother wavelet corresponds to a
sequence of continuous square-shaped functions that approximates the time series. DWT
supports the multi-resolution analysis of the data, while �rst few coe�cients contain an
overall, coarse approximation of the data, the extra additional coe�cients can be imagined
as �zooming-in� to areas of high detail.

2.3.2.2 Piecewise Aproximative Representations and Distance Functions

Numerous Piecewise Aproximations methods have been proposed in order to reduce the
dimensionality of time series, we detail here the most relevant ones.

ˆ Piecewise Linear Approximation: The main idea of Piecewise Linear Approximation
(PLA) [PH74] is to split the series into most representative segments, and then �t a
polynomial model for each segment. Three basic approaches are distinguished [EA12]:

i) Sliding windows: a segment is grown until it exceeds some error threshold;

ii) Top-down approach: it consists in recursively partitioning a time series until some
stopping criterion is met;

iii) Bottom-up approach: it consists in starting from the �nest approximation, sucessively
new segments are iteratively merged.

In [PH74], they introduced an algorithm which allows for a viable number of segments.
However, an open question is how to best choosek, the �optimal� number of segments
used to represent a particular time series [RLG+10].

ˆ Piecewise Aggregate Approximation : Yi and Faloutsos and Keogh et al. indepen-
dently introduced the Piecewise Aggregate Approximation (PAA) [YF00; KCPM01] as a
dimensionality reduction technique for time series indexing.

The idea is to approximate a time series by dividing it into equal-length segments and
recording the mean value of the data points that fall within each segment. This represen-
tation reduces the data from N dimensions tow dimensions,1 � w � N by dividing the
time series intow �frames�. The time series is represented by a vectorT 2 Rw , where the
i th element ofT is calculated by the following equation:

t i =
w
N

N
w iÕ

j = N
w ¹i �1 º+1

t j (2.17)

The average value of the data included in a frame is calculated, and a vector of these
values becomes the reduced representation of the data. Whenw = N, the transformed
representation is identical to the original representation. Whenw = 1, the transformed
representation is simply the mean of the original sequence. The main advantages of PAA
are the interpretability and the simplicity of the method, PAA is a compression-based
technique.

ˆ Adaptive Piecewise Constant Approximation : Chakrabarti et al. introduced an
extension to the PAA representation, the Adaptive Piecewise Constant Approximation
(APCA) [CKMP02]. The di�erence to the original PAA is that this representation allows
the segments to have arbitrary lengths. APCA has two parameters for each segment: its
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value (the mean of the segment) and its length. APCA is thus more �exible than PAA
leading to a better approximation of time series.

2.3.2.3 ARIMA Model and LPC Cepstral Coe�cient Representation and Distance
Function

In statistical analysis of time series data, a time series is considered to be a sequence of
observations of a particular variable. In this way, a time series is compound of four compo-
nents: a trend, a cycle, a stochastic persistence component, and a random element. The four
components can be captured by some Auto-regressive (AR) model, like the Auto-Regressive
Integrated Moving Average (ARIMA) model. Therefore, the similarity between time series data
can be modeled by the similarity between two corresponding ARIMA models. The advantage
of using this model is that it requires a few �xed number of parameters compare regardless of
the lengths of time series.

Autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs) are usually
used to determine models to which time series data belong. Thus, time series with similar ACFs
or PACFs are likely to belong to the same statistical model., and therefore similar. Wang and
Wang in [WW00] propose to use ACFs and PACFs to represent time series data and measure
similarity between two ACFs or PACFs using Euclidean distance. If the distance is smaller than
a prede�ned threshold, two ACFs or PACFs will have the similar shapes or movement patterns,
and the two time series represented by ACFs or PACFs are similar.

Kalpakis, Gada, and Puttagunta in [KGP01] propose using Euclidean distance between Lin-
ear Predictive Coding (LPC) centrums of two ARIMA models to measure the similarity between
two time series data. They prove experimentally that using LPC centrum is more e�ective and
e�cient than applying DFT, DWT, and PCA on ARIMA models in tasks that involve clustering
of time series data.

2.3.2.4 Symbolic Representation and Distance Function

The symbolic representations aim to further reduce the dimensionality of the time series by
discretization of the time series into a sequence of symbols. Linet al. introduced the Symbolic
Aggregate approXimation (SAX) [LKWL07; SK08] method that converts a time series into a
symbolic form representation. The SAX representation has been shown to preserve meaningful
information from the original data and produce competitive results for classifying and clustering
time series [EA12; RLG+10]. It relies on the PAA to produce the symbolic sequence. In order
to transform a time series, SAX proceeds in three steps:

i) The time series is normalized to zero mean and unit standard deviation;

ii) The time series is segmented using a PAA representation;

iii) The PAA representation is �nally quantized: a discretization step maps each real value into
a symbol. Over the whole series, each symbol is given the same probability of appearance.
This step is based on the hypothesis of a normal distribution of the values over along the
time series.

SAX converts a time series into a sequence of symbols of lengthW, Figure 2.21 illustrates the
SAX representation. The alphabet of symbols has a length� > 2, � 2 »1; : : : ;W¼. The number
of symbols is to be determined by the user.

2.3.2.5 Shapelet-based Representation and Distance Function

All previously listed approaches are designed for transforming time series into a new domain
for uncovering global similarity in shape. However, the shape-based similarity is not always
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Figure 2.21 � An example of a time series being converted �rst to its PAA
representation then to the string baabccbc. Adapted from [RLG+10].

global. For example, consider an Electrocardiography (ECG) heartbeat for a patient where a
single beat arrhythmia is indicative of a heart condition. If this were captured as a time series
and compared to a series of normal ECG behavior, it would be challenging to detect a di�erence
because of the presence of many regular heartbeats.

The discriminatory feature, in this case, would be described by the presence of a small
local shape within the series indicating an irregular beat, which would likely be missed in the
frequency and time domains as the structure and global shape of the data would still be very
similar. We consider extracting time series small representative subsections for detecting local
shape-based similarity between series.

This small representative subsections, know as shapelets, have been a prominent area of
time series data-mining research since its proposition in [YK09], and numerous approaches are
proposed to expand its application, to speed up its extraction or even to rede�ne how to obtain
it.

In the following subsections, we will present an overview of the state-of-art in time series
shapelets, from its original de�nition to the DTW-preserving shapelet transformation.

2.3.2.6 Shapelets Tree

Shapelets Tree is the original approach for Time Series Shapelet [YK09; YK11]. In this
�rst work, shapelets are used to build a decision tree classi�er by recursively searching for a
discriminatory subsequence on the entire data set. This subsequence is used to split the data
into branches.

Basically, all subsequencesS �
T in T are potential candidates to be elected a shapelet. How-

ever, to reduce the number of possible candidates it is convenient to de�ne two limits: MINLEN
and MAXLEN, respectively the minimum and maximum length of the candidates. In this way,
considering jTi j = Ni , the number of candidates can be de�ned as:

MAXLENÕ

l =MINLEN

Õ

Ti 2T

¹Ni � l + 1º: (2.18)

In the brute-force approach, for each candidate, the algorithm calculates the subsequence
distance to all time series in T , measured by the normalized Euclidean distance. Then, a
histogram H ordered by the values ofsubD is created, as de�ned by Equation (2.19).

H»Si ¼= sort
�
subD

�
Si ;Tj

�
8Tj 2 T

�
8Si 2 S (2.19)

The idea with this distance-ordered histogram is that for a �good� subsequence, most of the
time series in one class of the dataset are close to the subsequence undersubD, while most of
the time series objects from the other class are far away from it, as drawn in Figure 2.22.
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0

0
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Ûpi ÛpjÛpo

Figure 2.22 � A �good� subsequence allows discriminating between classes.
The optimal splitting point Ûpo and two other possible splitting points are rep-

resented.

Therefore, some metric is necessary to evaluate how well the selected shapelet can divide
the entire combined dataset into two classes. The authors proposed to use the Information gain
(IG) [Qui86]. Thus, a shapelet is the subsequence which for a given optimal split point produces
the highest IG, so, building a decision three using shapelets needs two factors: a shapelet and
the corresponding optimal split point as showed in Figure 2.23.

(a) (b)

Figure 2.23 � Two examples of shapelet-based decision tree:(a) the dictio-
nary of shapelets, with the thresholds is used to build a decision tree for the
Gun_point dataset [CKH+15]. In (b) a multilevel tree need to classify the Wheat

dataset [CKH+15]. Adapted from [YK11].

This naïve brute force algorithm is extremely space ine�cient, requiring the storage of all
subsequences candidates. Besides that, the algorithm su�ers from high time complexity. Consid-
ering jT j = K, and the average length of each time seriesTi 2 T as �N, the size of the candidate set
is O¹K �N2º. Evaluating one candidate requires its comparison withO¹K �Nº subsequences, as each
comparison is based on the ED, it takesO¹ �Nº on average. Hence, the overall time complexity
of the algorithm is O¹K2 �N4º, which makes its usage for real-world problems intractable.

Thus, the majority of shapelet research has focused on mitigate the performance drawback
of shapelet discovery. Staying in Ye and Keogh [YK09] approach's, some smart optimizations
were proposed. One is to reduce the cost of the subsequence distance computation using early
abandon in the brute force approach, and the other is the early entropy pruning.

The re-usage of computations and pruning of the search space was proposed by Mueen,
Keogh, and Young [MKY11] in the work �Logical-shapelets: an expressive primitive for time
series classi�cation�.

This work de�nes Logical-shapelets as an adaptation to the shapelet tree algorithm aiming to
combine shapelets to form more complex rules to better handle challenging separating problems.
It uses a statistics caching optimization to speedup search for shapelets, and extends the original
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work by introducing an augmented, more expressive shapelet representation where a combination
of shapelets is used in conjunction with each other for determining the class separation.

Figure 2.24 reproduces one of the original motivating examples which was presented in the
original work. In the diagram it is represented a two-class problem where each class has two time
series. The red circle class, contains two sinusoidal patterns with both positive and negative
peaks, while the blue square class has only one positive or one negative peak. The classical
shapelet de�nition is not powerful to discriminate these classes, and there is no way to do so,
due to its absence of expressiveness to represent this concept.

On the other hand, combining those two sequences allow discriminating between the classes,
and this is one relevant contribution of this work, it was the �rst to propose to combine shapelets.

T1

T2

T3

T4

(a)

S1

S2

S3

S1 ^ S2

(b) (c)

Figure 2.24 � (a) Two classes of synthetic time series. (b) The shapelet
dictionary with three single shapelets and one pair connected using an and
operation. (c) A good separation is done only using the combination of two

shapelets. Adapted from [MKY11]
.

Keogh and Rakthanmanon, in [KR13], propose theFast Shapelet, improving the e�ciency
of the original shapelets algorithm by exploiting the projections into a SAX-based symbolic
representation [LKWL07]. The algorithm employs a number of techniques to speed up the
�nding and pruning of shapelet candidates. Using the SAX representation, the algorithm aims
to reduce the length of the time series as well smoothing the data. The use of SAX words
allows a discretization of the data, and support the use of a collision table metric to speed-up
the pruning of shapelet candidates. This collision table metric is highly correlated with the IG,
reducing the amount of work performed in the quality measure stage.

Other speed-ups have also been attempted by using hardware-based implementations, such
as the usage of the processing power of Graphics processing unit (GPU) for boosting the search
time [CDHR12]. Furthermore, the training time has been reduced by mining infrequent shapelet
candidates [HDZ+12].

Another way to speed-up the shapelet discovery is based on alternative approaches for the
quality measure. Instead of the IG, Lines et al., in [LDHB12], propose the F-stats quality
criterion, and Lines and Bagnall, in [LB12], propose to use either the Kruskal-Wallis test or the
Mood's Median test. They allege that while the classi�cation performances are not signi�cantly
di�erent, the time required for the shapelet discovery can be reduced by� 18%, in average,
in comparison with the IG, due to the lower number of computations required by these tests.
Nevertheless, scalability remains the bottleneck.

The use of shapelets for other tasks than classi�cation, started with the Unsupervised
Shapelets � u-shapelets work in [ZMK12; UBK15; ZMKY16]. Designed for time series clus-
tering, the algorithm extracts the u-shapelets, which are subsequences that can divide the time
series dataset into well separated groups.
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Considering TA and TB two subsets forT , such that TA \ T B = ; , basically, an u-shapeletS0 is
a subsequence of a time seriesT 2 T for which the subD¹S0; Taº � subD¹S0; Tbº for all Ta 2 TA
and Tb 2 TB.

Inspirited in the idea of increasing the Information Gain from the shapelet tree approach,
here the goal is to maximize the separation gab between two subsets ofT . In essence, this
algorithm can be seen as a greed search algorithm.

The separation measure is formally de�ned as:

gap = � TB � � TB �
�
� TA � � TA

�
(2.20)

where, � Tx and � Tx represents, respectively, the mean value and the standard deviation for
subD¹S0;Tx º 8Tx 2 Tx .

Clustering time series with u-shapelets has several advantages. Firstly, u-shapelets clustering
is de�ned for datasets in which time series have di�erent lengths, which cannot be handled by
most techniques described in the literature. Indeed, in many cases, the equal length assump-
tion is a requirement, and the trimming to equal length is done by exploiting expensive human
skills [UBK15]. Secondly, u-shapelets clustering is much more expressive regarding represen-
tational power. Indeed, it allows clustering only time series that can be clustered and do not
cluster those that do not belong to any cluster [FNV18].

2.3.2.7 Shapelet Transform

One major drawback of the previous approaches is the lack of �exibility in learning and
classi�cation due to its integration in just one task. Whilst decision trees are highly interpretable,
they are often outperformed by other classi�ers and have a tendency to over-�t unless post-
pruned or used with a conservative stopping condition. Additionally, the recursive nature of the
decision tree algorithm means that the relatively time-consuming shapelet detection method
is called repeatedly. Hence, the number of papers proposing the optimization of the shapelet
extraction task.

Moreover, Bagnall et al. in [BDHL12] demonstrate the importance of separating the transfor-
mation from the classi�cation algorithm with an ensemble approach, where each member of the
ensemble is constructed on a di�erent transformation of the original data. Thus, a separation
between the shapelet extraction, which can be understood as feature discovery, and the learning
decision can allow the use of speci�c learner designed to perform the classi�cation.

Proposed by Lineset al. in [LDHB12] and further expanded upon in [HLB+14], the Shapelet
Transform (ST) algorithm disconnect the process of �nding the shapelets from the step of
building the decision tree from original shapelet tree algorithm.

As seen previously, the original shapelet tree approach embeds the shapelet discovery algo-
rithm in a decision tree, and use Information gain (IG) to evaluate the quality of candidates.
For each node of the tree a shapelet is found by a exhaustive enumerative search, recursively
subdividing the data. This results in the brute force search being performed a number of times,
which makes it intractable on large problems.

Shapelet Transform (ST) is a �rst step towards the generalization of the shapelet principle.
Instead of discovering iteratively the shapelets at each node of a shapelet-tree, it uses a single
scan algorithm to �nds the top- k shapelets in terms of quality measure (i. e. IG) inT .

The transformation shapelet process is divided in three main stages:

1. The algorithm perform a single scan inT , to extract the best k shapelets, wherek is
a cut-o� value for determining the maximum number of shapelets to store, without any
e�ect on the quality of the individual shapelets candidates.
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2. The set of the top-k shapelets can be reduced, either by clustering thek shapelets or
ignoring the elements below a cut-o� point.

3. Using the top-k extracted shapelets, the algorithm creates a dictionary withk entries and
use them to transform the original raw time seriesT, with jT j = N into a vector T, with
jT j = k, whose components represent thesubD between the time series and the shapelets,
as illustrated in Figure 2.25.
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Figure 2.25 � Example of windowing for shapelet transform with jSj = 2. (a)
Starting with the shapelet S1 and the time series T1, the algorithm build the
�rst component of the vector T1. S1 slides overT1 from begin (b) to the end
(c). The subD is then used to build T1;S1 (d). The same is done for S2, starting
from begin of T1 (e) and going to the end. Finally, the subD is used to build

T1;S2 .

Transforming a time series into its vectorial representation requires to slide each shapelet
against that time series in order to compute and �nd the best matching location. The cost of
the shapelet transform is, therefore, highly dependent on the number of shapelets used to create
vectorial representation.

Another observed problem stems from the fact that each shapelet must be highly discriminant
independently of the others. However, many of the shapelets generated by the transformation
are similar to one another. That similarity reduces the interpretability of the data and can put
down the accuracy of the classi�er if it is not robust to handle correlated attributes.

To mitigate this phenomenon, Hills et al. propose a post-transform clustering procedure to
group similar shapelets, without substantially reducing the accuracy of the classi�er [HLB+14].

The transformation process is de�ned in the Algorithm 2.2.

Algorithm 2.2 The Shapelet Transform algorithm.
1: input: S {Set of shapelets}, T {Time series dataset}
2: output: T {Transformed dataset}
3: T  ;
4: for Ti 2 T do
5: T  ;
6: for Sk 2 S do
7: M  subD¹Ti ;Sk º
8: T  T

Ð
f Mg

9: end for
10: T  T

Ð
fTg

11: end for
12: return T
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It is carried out using the subsequence distance calculation, and the resultant Euclidean
shapelet match between a shapeletSk 2 S and a time seriesTi 2 T is de�ned as:

Mi ;k = subD¹Ti ;Sk º (2.21)

Then, each time seriesTi 2 T is represented by a vectorT i 2 R jS j, where eachk th component
of T i corresponds to the value ofMi ;k , formalized by:

T i = »Mi ;1; : : : ;Mi ; jS j¼ (2.22)

2.3.2.8 Learning Time-Series Shapelets

Grabocka et al. propose a new look to the shapelet approach, the Learning time-series
shapelets (LTS) [GSWS14]. Instead of performing an enumerative search, as all previous pro-
posed approaches, the LTS algorithm learns the bestk shapelets using the minimization of a
classi�cation objective function. This function is de�ned as a linear combination of the minimal
distance between the shapelets and the time series ofT .

Initially, a set of random shapelets is clustered usingk-means. Then the centroids from these
clusters are repeatedly re�ned using a stochastic gradient descent algorithm which is used to
perform the minimization. Since the minimal distance between the shapelets and the time series
is not derivable, they propose to estimate it using a soft minimum. Each iteration allows �tting
the shapelet.

One advantage of the approach is that the shapelets are �tted, taking into account their in-
teraction. However, the approach has some drawbacks: the shapelets found are not guaranteed
to exist within the training data., and often do not. Contrary to Shapelets tree or Shape-
let transform-based approaches where shapelets not only exist in the dataset but also provide
interpretable features.

Another issue is related to the number of hyper-parameters, which is much larger than a
classical shapelet discovery based on shapelet candidates extracted fromT . Apart from speci�c
parameters for the minimization (learning rate, number of iterations, regularization parameter,
soft-minimum precision), the number of desired shapelets and their lengths have to be precised.
Finally, the convergence of the minimization also impacts the computational complexity through
the number of iterations, while this parameter does not exist in conventional shapelet discovery.

The LTS algorithm begins by �nding a number of subsequences in the original training
data which require two hyper-parameters,R and L, where L alters the length of subsequences
considered andR determines the coverage of the shapelets, and widen the search space.

These hyper-parameters are of paramount importance and directly a�ect the quality of the
resulting shapelets. For example, if we de�neR = 3 and L = 0:2 (the typical values de�ned in
the original experiments) we would �nd shapelets whose length are 20%, 40% and 60% of the
raw time series. Then, these initial subsequences are clustered usingk-means. Finally, the set
of k centroids is used with a gradient descent model. Each shapelet is re�ned through a de�ned
derivative function, minimizing the entropy loss. This process continues for a max number of
iterations, or until the model converges.

Among all shapelet-based algorithms, LTS is one of the two most accurate and advanced one
(with the Shapelet Transform algorithm).

This approach o�ers a signi�cant improvement in term of accuracy compared to approaches
searching shapelets. It is also the �rst shapelet-based method which actually learns the shapelets
instead of searching them.
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2.3.2.9 Learning DTW-preserving Shapelets

Virtually all previously discussed approaches are designed to supervised tasks, therefore
unfeasible on retrieval tasks. The exception is the u-shapelets, which reveal the use of shapelets
in the unsupervised context. However, its construction is, in some way, similar to the shapelet-
tree algorithm, therefore, impractical to be used for transforming a time series into a new
representation.

Inspired by the LTSalgorithm [GSWS14], Lodset al. propose a di�erent approach for learning
time series shapelets, the �Learning DTW-Preserving Shapelets� [LMTA17].

LDPS was the �rst approach for shapelet transformation based on unsupervised learning,
the goal is not trying to learn shapelets to best discriminating classes, but instead, they aim to
learn shapelets that best preserve the true DTW measure in the embedded space. Therefore,
although they proposed this transformation for the clustering task, there is no restriction to
using the forged shapelets in other tasks. In this thesis, we propose the use of LDPS as a basis
for Time Series Retrieval (TSR) framework. A signi�cant di�erential of the retrieval task is the
need for the transformation to be as fast as possible while preserving accuracy, ergo, part of our
work will be to evaluate the quality of the learned shapelets trying to �nd the best compromise
between the number os shapelets used in the transformation and the accuracy.

Before we discuss the use of LDPS in the retrieval task, we will present a review of it.

LDPS is an algorithm that embeds time series into a metric space such that the Euclidean
distance in the transformed space approximates the DTW in the original time series space. An
illustration of the LDPS algorithm is schematically given in Figure 2.26.

Figure 2.26 � Illustration of LDPS. The learned shapelets S1 and S2 are
used to embed all TS from T into a 2-dimensional space T , in which the ED
is a good approximation of the true DTW measure between the pairs in the
original space. In real settings, more than two shapelets are learned to obtain
higher-dimensional embedding and hence richer representations. Extracted

from [LMTA17].

To learn a set S = fS1; : : : ;SK g shapelets, the algorithm depends on the Euclidean score and
Euclidean match, respectively, de�ned as:

De�nition 2.13 Euclidean score. The Euclidean score between a shapeletSk with jSj = l and
Ti ;p:l , a subsequence of a time seriesTi started at the position p, with length l is de�ned as:

Di ;k;p =
1
l

lÕ

x=1

¹Ti ;p+x �1 � Sk;x º2 (2.23)
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De�nition 2.14 Euclidean shapelet match. The Euclidean shapelet match betweenSk and Ti is
de�ned as:

Mi ;k = min
p2f 1:N � l +1 g

Di ;k;p (2.24)

Considering the learned dictionary S, the representationT of T can be represented as:

T i = ST¹Ti ;Sº = f Mi ;1; : : : ;Mi ; jS jg (2.25)

Loss Function to be Minimized

The authors aim at learning a set of shapelets such that the ST preserves as well as possible
the DTW measure. In other words, shapelets are forged such that the ED between transformed
time series best approximates the DTW between raw time series. Hence, the objective function
used to learn the shapelets is di�erent from the ones of traditional works based on shapelets
learning.

Thus, the problem is now the minimization of a loss function de�ned as:

L¹Ti ;Tj º =
1
2

�
DTW ¹Ti ;Tj º � �






T i � T j








2

� 2
; (2.26)

where � is a scale parameter, learned andTi represents the shapelet transform ofTi . The overall
loss for a datasetT of K time series is given by:

L¹T º =
2

K¹K � 1º

KÕ

i =1

K�1Õ

j =i +1

L¹Ti ;Tj º: (2.27)

The minimization of this loss is done via a stochastic gradient descent with respect to� and
S. Once the shapelets and the parameter� are learned, they can be used to transform every
time series into a Euclidean vector.

Stochastic Gradient Descent

The LDPS method aims at learning, for a training set T of K time series, a setS of Q
shapelets and a scale parameter� that minimize the overall loss de�ned in Equation (2.27).

A stochastic gradient descent framework is adopted to learn theQ�L+ 1 coe�cients that lead
to minimize L¹T º. In this framework, the gradients of L¹Ti ;Tj º with respect to these coe�cients

need to be computed. ConsideringŶi ; j =





T i � T j








2
and � i ; j ;q = Mi ;q � Mj ;q , the framework is

de�ned as:

@L¹Ti ;Tj º
@�

= Ŷi ; j

�
� Ŷi ; j � DTW ¹Ti ;Tj º

�
(2.28)

@L¹Ti ;Tj º
@Sq;l

=
@L¹Ti ;Tj º

@̂Yi ; j

@̂Yi ; j

@� i ; j ;a

 
@T i ;q

@Sq;l
�

@T j ;q

@Sq;l

!

8q; l (2.29)
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Straight-forward derivations give:

@L¹Ti ;Tj º

@̂Yi ; j
= �

�
� Ŷi ; j � DTW ¹Ti ;Tj º

�
(2.30)

@̂Yi ; j

@� i ; j ;q
=

( � i ; j ;q

kT i � T j k2

; if T i , T j

0; if T i = T j

(2.31)

@Mi ;q

@Sq;l
=

Õ

o

@Mi ;q

@Di ;q;o

@Di ;q;o

@Sq;l
; where :

@Di ;q;o

@Sq;l
=

2
L

�
Sq;l � Ti ;o+l �1

�
(2.32)

These gradients are used to update the coe�cients at each iteration of the algorithm with a
learning rate of � , like for any gradient descent algorithm.

As the loss function Equation (2.27) is not convex, the model initialize by a set ofQ shapelets
generated by applying thek-means algorithm. Once the initial shapelets �xed, an initial value
� ini is selected for� by randomly sampling a set P of 100 time series pairs and computing the
corresponding optimal least square solution to the mono-dimensional regression problem that
relates distances between ST and DTW between original time series.

Lods et al. observed a strong negative correlation between the loss associated to a model
and clustering quality obtained with this model. This seems to indicate that the value of the
loss can be used as a model selection criterion without using any ground truth information. For
a given data set, several models can be learned (di�erent initialization and variants of LDPS).
The one leading to the smallest loss will be selected. This model selection criterion was applied
in the clustering task by the authors.

2.3.2.10 Summary on Shapelet-based Transformation

Shapelet transformation emerged as an extension to the initial Shapelet-tree approach. While
on the one hand the idea of shapelet being a representative subsequence to determine a class
was lost, on the other hand the way was opened for its use with traditional classi�ers, breaking
the decision tree barrier.

In turn, LTS made possible for shapelets not to be extracted from the dataset anymore, but
forged, thus breaking completely with the original idea that they were descriptive subsequences.
However, the results obtained in the classi�cation task using LTS are excellent, surpassing the
original Shapelet-tree algorithm.

The LDPS s a very interesting approach for dealing with time series. By using DTW and
not labels for the shapelet evaluation, the LDPS allows its use for tasks other than clustering
or classi�cation. The authors themselves suggested using them in clustering tasks, where, using
the traditional k-Means clustering algorithm, they achieved results superior to those obtained
using approaches speci�cally designed to manipulate time series.

In addition, by de�nition, LDPS allows to apply the learned transformation to new time
series, therefore applicable for open datasets. Hence our interest in using LDPS as the basis for
an applied framework for the retrieval task.

2.3.3 Summary on Data Representation and Distance Functions

Many algorithms have been described, and some remarks can be summarized. The Euclidean
distance is the faster approach for the retrieval task, and several transformations aim to convert
the time series into a new representation for later application of the Euclidean distance. Besides
that, the Euclidean distance is metric; however, it can bene�t from triangular inequality in
indexing systems.
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On the other hand, DTW is arguably one of the best functions for dealing with local distor-
tions on the time-axis. As a result, several approaches have been proposed to enhance DTW's
performance; however, often restricting its virtue of dealing with distortions or reducing the
quality of the response.

Finally, the Learning DTW-preserving shapelets (LDPS) is a good bet to try to unify DTW's
rugged with Euclidean distance performance. Since it was initially designed for the clustering
task, the cost of the transformation was not considered. Therefore, its use in retrieval should
be studied in order to enable a good relationship between preserving DTW accuracy and ED
performance.
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Chapter 3

Time Series Retrieval Using
DTW-preserving Shapelets

It's always good to take an orthogonal view
of something. It develops ideas.

Ken Thompson, C, Unix and beyond an
interview with:
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As discussed previously, similarity-based time series retrieval should be fast and also robust
to handle distortions and noise. Lp -norms are easy to compute, but they cannot handle local
time shifting, in its turn, DTW can deal with local time shifting, but it is a non-metric distance
function and has quadratic time-cost complexity. Besides that, the e�ciency of similarity search
using the DTW, is a particular problem since it is a non-metric distance function, and violates
the triangle inequality that renders most indexing structures inapplicable. To this end, studies
on this topic propose various smart optimizations, like global constraints or lower bounds on
the actual distance to guarantee no false dismissals and others [YJF98; KPC01; Keo02; BC94;
TWP17]. However, those lower bounds can admit a high percentage of false positives, and much
of the optimizations are based on statistical characteristics of the dataset. Therefore, the quest
for processing extremely large collections of time series is still active.

On the other hand many approaches go in another direction making use of features to repre-
sent the raw time series data. Those features, are then used with traditional Lp -norms [FRM94;
CKMP02; SK08]. Therefore, these new representations allow the reduction of the amount of
data to handle and also enabling the use of traditional data index structures. However, those
representations fail in preserving the time-axis related data.

In this chapter, with the consideration of above issues, the following questions are explored:

ˆ Is there a way to combine the metric properties of the Lp-norms and some data transforma-
tion emulating the elastic property of the DTW, so that one can get the best of both worlds
� namely being able to support local time shifting and being a metric distance function?

ˆ We can make this representation able to work in open data tasks, and fast enough for the
retrieval task?

Proposed for the time series clustering, the Learning DTW-preserving shapelets (LDPS) [LMTA17]
focus on learning, without class label information, shapelets such that Euclidean distances in
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the shapelet-transformed-space approximate well the true DTW. As opposed to the most part
of the shapaet transform approach, the DTW-preserving shapelet transformation method is an
unsupervised method, making it adaptable to the retrieval task.

In this thesis, we propose to extend the use of DTW-preserving shapelets transforma-
tion [LMTA17] from clustering to the retrieval. As in other data transformation approaches,
the LDPS has a cost and, when applying with the retrieval task, two issues raise and must be
carefully addressed e�cient in terms of speed and quality:

(i) The complexity of the transformation should be small to reduce the overhead induced by
transforming the query;

(ii) The true nearest neighbor has to be as close as possible to the �rst element in the list of
approximate nearest neighbors � in other words, the transformation should preserve the
ranking.

In our work, we propose a trade-o� between accuracy of the retrieval and its cost by selecting
a varying number of shapelets for computing the vectorial representations. Three shapelet
selection strategies are proposed in order to identify and rank shapelets that are more suited to
the retrieval task (via a dedicated measure). This step has two purposes: reducing the number
of shapelet for the transformation of the query (to save computing time), while keeping a good
trade-o� with accuracy of the retrieval.

The rest of the chapter is organized as follows: Section 3.1 presents the overview of the
dtw-preserving shapelet-based time series retrieval framework. Strategies to evaluate, rank and
select subsets of shapelets are discussed in Section 3.2. In Section 3.3, a novel graph-based
method for unsupervised multidimensional feature selection is presented, this method can be
used to remove irrelevant shapelets prior to the evaluating task, with gains in the o�ine phase.
Finally, Section 3.4 presents the extention to the multivariate case.

3.1 Overview

O�-line, the dictionary S of d shapelets is learned from train datasetTtrain , as described by
Lods et al. in [LMTA17].

Lods et al., based on [GSWS14], de�ne the shapelet lengthsl to 15%, 30% and 45% of time
series lengthN. Also, the dictionary size d is de�ned as a function of the time series lengthN
and the shapelets lengthl :

d = 10 �
Õ

l 2 f 0:15N; 0:3N; 0:45N g

log ¹N � l º (3.1)

All time series in T are then transformed and form T , which is stored in a database. This
process is revealed in Figure 3.1.

On-line, a query time seriesQ is transformed into Q using the dictionary of shapeletsS
previously learned. Thek nearest neighbors ofQ are then searched inT and kept in a transient
list of time series ranked according to their proximity to Q.

The �nal result can typically be built according to two options:

Directly: The raw time series associated with the nearest neighbor found in the transformed
space is considered to be the nearest neighbor of the raw query, or

Re�ned: The true DTW is subsequently computed between the raw query and the raw versions
of the k transformed time series that have been identi�ed, and the nearest is returned.



3.1. Overview 61

Ttrain

T T

ST¹T ;Sº

S

S1

S2

:::

Sd

(i)

(ii)

Figure 3.1 � Diagram: (i) The shapelet dictionary S is learned using the
training-set Ttrain . (ii) Using S, the dataset T is transformed in T by the

shapelet transform ST. All steps are done o�-line.
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Figure 3.2 � Diagram illustrating the di�erence between methods directly (a)
and re�ned (b). In (a), the retrieval start by transforming the query Q to Q
using the dictionary S; then using Q, we search for the closest entry in T (ii);
�nally the closest element T1nn is returned (iii). In (b), after transforming Q
in Q (i), the search initially return the set R of the closest elements (ii); then,
a re�nement is done by comparing Q and the entries in T appointed by the
entries in R using the DTW (iii); �nally, the closest element is returned (iv).

This DTW-preserving embedding is such that the ranking in the transformed space is an
approximation of the ranking that would be produced in the original space according to the
DTW measure. However, this L2-based ranking is obtained much faster, as Euclidean distances
are cheaper to compute compared to DTW measurements.

With respect to the �nal result returned to the users:

Directly: It puts a lot of pressure on the quality of the shapelet transform because the nearest
time series under DTW has also to be the nearest in the Euclidean space, and this for
any time series in the dataset and any query. Odds of degrading quality in comparison to
what the true DTW would determine are high, but this method is extremely fast.

Re�ned: It is more demanding because extra DTW are computed, but it also returns better
quality results as k > 1 time series are analyzed. In this case, it matters that the nearest
time series under DTW belongs to these �rst k (embedded) elements, instead of being
ranked �rst, strictly.
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Transforming Q into Q has a cost, which cannot be neglected because it is part of the on-
line phase. This cost is essentially due to sliding thed shapelets fromS against Q in order to
determine thed minimal distances which are kept and formQ. This cost is particularly high for
long time series and when the number of learned shapelets is high.

3.2 Ranking and Selecting Shapelets

General considerations about high-dimensional representations suggest that components of
vectors might not all be equally useful. This is well-known and led to designing dimensional
reduction methods doing feature selection.

Such algorithms are perfectly relevant when considering the embedding of time series into
high-dimensional vectors: thed dimensions of time series inT might as well not be all equally
useful. Eliminating poorly informative dimensions, and in turn considering a reduced number
of shapelets, speeds up the transform, hopefully without losing too much quality, result wise.
Therefore, instead of usingS as speci�ed by [LMTA17], it might be better to keep and use for
the transform only a subset of it, made of carefully selected shapelets.

To apply the spirit of feature selection algorithms to the case of shapelet transform, it is
necessary to de�ne:

(i) a metric in order to evaluate the respective quality of each subset of shapelets,

(ii) a strategy for building increasingly large subsets of shapelets until,

(iii) it becomes appropriate to stop considering anymore shapelet.

This metric, building strategy and stop criterion establish the essence of most existing feature
selection approaches such as the ones detailed in [SIL07; LCW+18; BL97; MR15].

In the next section, we will detail how they instantiate in the case of time series retrieval.

3.2.1 Evaluation Metric to Compare Shapelet Subsets

The framework starts by constructing a dictionary S from Ttrain as proposed by Lodset al.
in [LMTA17]. We do not use S to transform the time series, but instead as a reservoir from which
the most useful shapelets will then be picked. The following motivates and presents strategies
for building Ss from S, where Ss contains the shapelets eventually retained for transformingT
into T , as well as transformingQ into Q.

To compare the performance of di�erent shapelet subsets, we need a rank ground-truth based
on the true DTW distances between all time series inTtrain . We compute the distances once
only1, o�-line.

We start by splitting the training set Ttrain into 10 parts, 9 being used for the subsequent
training tasks detailed below, one used for validation, in a traditional 10-fold cross-validation
context.

The ground-truth is build using the previously computed DTW distances. We record on each
fold for each time series the identi�er of its 1-nearest-neighbour, Figure 3.3 depicts an example
of 1-NN-DTW ground-truth.

Then, we pick a dictionary Ss � S , and use theseSs shapelets to transform all the time
series that belong to the current training fold. Using the sameSs shapelets, we also transform
each time series from the validation fold and use them as queries. The transformed time series

1During the execution of the LDPS, a (sparse) matrix of the DTW distances between some pairs is made.
We use this matrix as base, to reduce the computational time.
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Figure 3.3 � A toy example of the ground-truth construction: for a time series
dataset T = fT1; : : : ;T12g, we build the ground-truth of its true 1-nn based on
the DTW measure, each row represents the query element, for example, the

true 1-nn of T1 is T11. In this example, we are using a 3-fold setup.

from the training fold are then ranked w. r. t. their L2 distance to each query. It is therefore
possible to determine at which rank the true nearest time series is (w. r. t. DTW) for that
query, as observed in Figure 3.4. Repeating this operation for all the validation time series and
for all the folds amounts to building an histogram of the ranks at which the true DTW-based
nearest-neighbour appear.

This histogram can also be interpreted as the empirical probability of observing the true
1-nearest-neighbor time series at any particular rank after the transform. And, after a proper
normalization, it can therefore be considered to be a Probability Density Function (PDF).

The PDF is de�ned as follows:

De�nition 3.1 PDF The Probability Density Function (PDF) of a discrete random variable
X is a function that satis�es the following properties:

1. P¹X = xº = f ¹xº > 0 if x 2 S;

2.
Í

x 2S f ¹xº = 1

3. P¹X 2 Aº =
Í

x 2A f ¹xº

From this PDF, it is straightforward to construct its natural counterpart which is the Cu-
mulative Distribution Function (CDF), and to compute the Area Under Curve (AUC).

De�nition 3.2 Cumulative Distribution Function (CDF) The Cumulative Distribution Func-
tion (CDF) of discrete random variable X is de�ned as

FX ¹t º = P¹X � t º (3.2)

The notation FX ¹t º means thatF is the CDF for the random variableX, however, it is a function
of t . And, it has the following properties:
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Figure 3.4 � To evaluate a shapelet dictionary S
0

� S , we start by transform-
ing the dataset T in T using as dictionary S

0
. Then, we build the ranking of

the pairs according to the L2 distance, and �nally we use it to determine the
rank position of the true 1-NN.

1. FX ¹t º is a non-decreasing function oft 2 ¼�1 ;1»;

2. FX ¹t º 2 »0;1¼;

3. If X is a discrete random variable whose minimum value isa, then
FX ¹aº = P¹X � aº = P¹X = aº = fX ¹aº. If c is less thana, FX ¹cº = 0;

4. If the maximum values ofX is b, then FX ¹bº = 1.

We consider this AUC value as the performance measure to evaluate the quality of a shapelet
subset. The higher that Area Under Curve (AUC), the better the shapelet subset. This metric
is well adapted to the task of nearest-neighbour retrieval as it favors high ranking of the true
nearest-neighbor in the approximated list.

3.2.2 Shapelet Subset Selection

To select the best subset of shapelets, an exhaustive selection method can be applied to form
all possible subsetsSs 2 S with jSj 2 »1; jSj¼. However, in this case, the computational cost is
prohibitively high, as the set o� all combination can be expressed as:

jS jÕ

k=1

�
S
k

�
= 2jS j ) O

�
2jS j

�
: (3.3)

Therefore, some heuristic method is necessary. We have based our approach in a wrap-
per greedy-based forward selection method, which is classically used in the feature selection
domain [KJ97]. Like all greedy-based algorithms, our algorithm, presented in Algorithm 3.1,
follows the problem solving heuristic of making the locally optimal choice at each step with
the intent of �nding the global optimum. Of course, as the subset shapelets selection does
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Figure 3.5 � Construction the PDF and CDF of an arbitrary dictionary
S

0
� S .

not present an optimal substructure, the algorithm is used to approximate the globally optimal
solution in a reasonable amount of time.

The procedure selecting the best shapelet subset begins with an empty list. After, it evaluates
all shapelets once, and the best, according to the evaluation metric described in Section 3.2.1,
is selected and added to the list. Then, it iteratively adds to the list, one-by-one, the shapelet
that best improve the quality of the subset by measuring the resulting AUC. This process is
repeated until a stopping criterion is met. In this scenario, the worst-case occurs when alljSj
interactions are necessary, resulting in:

¹1 + jSjº � jSj
2

) O
�
jSj2

�
(3.4)

operations, and it depends on the stooping criterion used.

It is important to realize this procedure is greedyand that it identi�es �rst the best shapelet,
then the best pair given the choice made earlier, and successively.

3.2.2.1 Stopping Criterion

As previously discussed, one of the steps of a wrapper-based method for feature selection
resides in the criterion used to determine when it needs to stop looking for a new element
(feature) for the �nal set. In our work, four di�erent stopping criteria is de�ned, determining
when to stop adding shapelets to the current set of selected shapelets:

DPSR g : Shapelets are added one by one until no more shapelets are available. At the end, the
subset that leads to the best overall AUC is selected. This �nds the number of shapelets
giving global maximumof the AUC-based performance.

DPSR t : We compute the normalized slope between the AUC value of the current selected
subset and the one obtained by adding the shapelet that best improves the AUC. If this
slope is less than 1, then the shapelet selection is stopped.

DPSR l : The shapelet selection is stopped as soon as adding a shapelet does not improve the
AUC value. This �nds the �rst local maximum of the AUC-based performance.
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Algorithm 3.1 The DPSR algorithm � Creating the dictionary of shapelets used for the
DTW-preserving transform

1: input: S {Dictionary of shapelets}, T {Time series train set}
2: output: Ss {Ranked list of selected shapelets}
3: Sa  S {Shapelets available, initially all}
4: Ss  ; {Dictionary of selected shapelets, initially empty}
5: stop FALSE
6: repeat
7: scoreb  �1
8: for all S 2 Sa do
9: S

0
 S s [ S

10: score AUC value of the set S
0

11: if score> scoreb then
12: scoreb  score
13: Sb  S
14: end if
15: end for
16: Ss  S s [ Sb
17: Sa  S a nSb
18: if Stopping criterion is met then
19: stop TRUE
20: end if
21: until stop= TRUE
22: return Ss

DPSR f : All shapelets are used, none is excluded.

Figure 3.6 clari�es the four stopping criteria on the AUC curve. It is important to note
during each evaluation step, it is necessary, for each shapelet, to transform, compute and rank
the distances for all time in the validation set. Hence, in the worst case, when all shapelets are
evaluated the computational complexity is given by:

1
z                           }|                            {
O ¹jT jº � O¹jSj2º � O ¹jT jº �

2
z                       }|                        {
O ¹jSj � jT j � log ¹jT jºº , O

�
jT j � jSj3 � jT j2 log jT j

�
(3.5)

where 1 is the computational complexity to transform all time-series from the training dataset,

for all shapelets in the remained list, and 2 is the computational complexity to compute and
ranking the distances in the Ss-based embedded space.

Although it does not directly impact query time, as it is an o�ine operation, this cost impacts
directly on the database construction time. With that in mind, a way to reduce this database
build time can be achieved by a previously elimination of redundant or irrelevant shapelets,
before applying the proposed evaluation method.

In the next section, we present a solution to �ltering irrelevant and redundant shapelets
based on graph representation and clique elimination.

3.3 Filtering Out Irrelevant Shapelets

From the feature selection literature, the selection method described previously can be cate-
gorized into the wrapper class, where a learning algorithm is applied to evaluate the respective
quality of di�erent feature subsets, interactively. This is the most common approach, and de-
spite its improvement over the exhaustive search, it remains a very costly process when analyzing
many features. Consequently, early �ltering out irrelevant or redundant features would typically
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Figure 3.6 � An illustration of the four proposed stopping criteria. The
algorithm starts with an empty set, then it identi�es �rst the best shapelet,
and, successively, identify the best in the remained list. In DPSR t and DPSRl ,
the evaluation stops immediately after the condition is met. DPSR g needs to

run until there is no more shapelet, then, the best value can be selected.

improve the speed of the subsequent feature wrapper algorithm as it would have fewer features
to analyze.

Filters are usually cheap and fast, and often apply a basic statistical analysis over the feature
set. Whereas supervised feature �ltering methods can not be used here, unsupervised �lter-
based methods typically rely on term variance [Fis19], Laplacian score [HCN05] or Spectral
selection [ZL07]. In its turn, [dSRdE+11] takes into account the possible dependencies between
features.

In this section, we will present a novel graph-based method for unsupervised multidimensional
feature �ltering, which can e�ciently and e�ectively deal with both irrelevant and redundant
features. Recently, the use of graph-based methods for �ltering features has played an essential
role in machine learning because of their ability to encode similarity relationships among pieces
of data.

Representing the feature space in a graph can provide a universal and �exible framework
that re�ects the underlying manifold structure and relationships between the features. Two
well-known graph-based methods are the Fisher Score (FS) and Laplacian Score (LS).

The proposed method consists of three main steps:

(i) Graph representation of the problem space;

(ii) Enumeration of all cliques in the graph;

(iii) Search for the best representative shapelet from each clique, by looking at some relevance
criterion.

In the �rst step, the shapelet (feature) set, is represented as a weighted-undirected graph in
which each node in the graph denotes the shapelet and each edge weight indicates the similarity
value between its corresponding shapelets. The second step looks for all cliques in the graph,and
we consider that cliques represent sets of well-similar shapelets. Finally, in the third step, using
some relevance criterion, the most representative node of each clique is preserved, and the others
are removed from the graph.

The additional details are described in the following sections.
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3.3.1 Graph Representation of the Transformed Space

To recap, when we use a shapelet dictionaryS to transform a time seriesT into a high-
dimensional vectorT = f t 1; : : : ;t jS jg each dimensiont i is a feature which corresponds to the
match distance between the time seriesT and the shapeletSi 2 S. Thus, we can compare, in
the transformed dataset, if some shapelet is redundant or not, based on the resultant values
associated with its transformation.

In this way, we can discover, in the transformed dataset, if some shapelet is redundant or
not, based on the resultant values associated with its transformation. For example, a shapelet
which produces transformation with a minimal variance indicates that the measured distances
tend to be very close to the mean; consequently, this speci�c shapelet probably does not present
a good discriminating power, thus irrelevant. Also, if two shapelets produce very close measures
or very close distance-based ranks, one of them is redundant. Thus, we can infer the quality of
the shapelet based only on the statistical analysis of its resultant transformation.

For this purpose, we construct a graphG = ¹V;E;wº where V = f 1; : : : ;jSjg represents
the index of each shapeletSi 2 S, E = f¹Vi ;Vj º8Vi ;Vj 2 V;i , j g represents that there is an
observed similarity betweenVi and Vj , and wi ; j denotes the measured similarity between the
transformation delivered by the pair of shapeletsSi and Sj , connected by the edge¹Vi ;Vj º.

In our method, we start by computing the variance in the distances to transformed time
series when using each shapelet in isolation. It is then easy to rank shapelets by increasing
variance of their term. Shapelets ranked below the� -�rst percentile are immediately �ltered
out and are not considered anymore. Thep ones that remain form S+ . The similarity between
the shapelets inS

0
are then computed using the absolute value of the Pearson's product-moment

correlation coe�cient [HCBV10]:

wi ; j =

�
�
�
�
�
�
�

Í
p

�
Mi � �M i

�
�

�
M j � �M j

�

q Í
p

�
M i � �M i

� 2 �
q Í

p
�
M j � �M j

� 2

�
�
�
�
�
�
�
; (3.6)

where M i and M j refer to the i th and j th dimension of the transformed space induced by the
shapeletsSi ;Sj 2 S

0
. Other correlation methods can be used, in our experiments, we have tried

with the more expensive Spearman correlation and Kendall-tau measures and could not see any
major gain.

The shapeletsSi and Sj in the graph are connected if and only if the value ofwi ; j � � .
Where � and � are threshold values determined by the user. For example, considering a learned
dictionary S, with jSj = 21, after computing the variance and the correlation in the distances
per shapelet, and considering� = 0:8 and � = 0:05, we obtain for a toy example datasetT , the
values represented in Table 3.1, and the graph-based representation showed in Figure 3.7.

3.3.2 Enumeration of all Cliques

In a straightforward way, in graph theory, we can de�ne a clique as:

De�nition 3.3 Clique. Clique is a subset of vertices of an undirected graph such that every two
distinct vertices in the clique are adjacent; that is, its induced subgraph is complete.

We are interested in a special kind of clique, the maximal clique, de�ned as:

De�nition 3.4 Maximal clique. In a graph G = ¹V;Eº, for each nodeV � , a maximal clique for
V � is a largest completed subgraph containingV � .

In our approach, we use the set of all maximal cliques as a surrogate for clusters, once
all elements into the clique are strongly related due to its high correlation. The maximal
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Table 3.1 � Statistics of the dictionary S for a toy example T .

Shapelet/Node Variance

1 0.00225
2 0.00285
3 0.00231
4 0.00241
5 0.00278
6 0.00321
7 0.00281
8 0.00151
9 0.00214
10 0.00200
11 0.00215
12 0.00281
13 0.00314
14 0.00301
15 0.00281
16 0.00300
17 0.00325
18 0.00324
19 0.00299
20 0.00210
21 0.00002

Edge Correlation

1 2 0.854
1 3 0.831
1 4 -0.912
1 5 0.935
2 3 0.801
2 4 0.932
2 5 0.995
3 4 0.953
3 5 0.803
4 5 0.875
3 6 0.865
4 6 0.866
5 6 0.932
5 7 0.911
6 7 0.913
3 9 0.991
7 9 0.941
12 13 0.843
13 14 0.885
15 16 0.809
15 17 -0.921
16 17 0.851
15 18 0.903
17 18 0.811
17 19 0.888
18 19 0.876
16 20 0.809
1 20 0.909

clique enumeration is a well-known problem in graph theory, and despite being classi�ed as NP-
complete2, it has well-performing algorithms on sparse graphs [MU04], as the Bron�Kerbosch
algorithm [BK73].

Due to the choice of the � threshold parameter, the resulting graph G, build upon the
output of the previous step, is typically sparse (as observed in the example of Figure 3.7), and
consequently computationally feasible.

Our method works by doing node elimination, as a clique is detected we look for the most
relevant node into the clique, preserving it and removing the others, in this way, this elected
node is �quali�ed� to represent its adjacent set (inside the clique). However, before looking
directly at the set C = fC1; : : : ;Cn g of all cliques in G, we look for the set I = f I1; : : : ;Im g of all
maximal-clique-like intersections in G.

De�nition 3.5 Maximal-clique-like intersections. A maximal-clique-like intersection I between
two cliquesC1 and C2 is the set of the all common vertices ofC1 and C2, such that jI j � 2.

I =

(
; ; if jC1 \ C2 j < 2
C1 \ C2; otherwise

(3.7)

2For comparison, the traditional and ubiquitous clustering-method k-means is classi�ed as NP-Hard.
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Figure 3.7 � Our initial graph-based representation of the feature space. For
a dictionary S, jSj = 21, due to the pruning parameters � and � , the graph G

is disconnected, with 20 nodes and 28 edges.

We focus initially on the maximal-clique-like intersections based on the idea that those nodes
are common to more than one clique. Consequently, they have some �inter-clique� redundancy.
Thus, by eliminating the intersection, we can do a better distinguish between the cliques.

We use the algorithm Cliques [BK73; TTT06; CK08] to �nd all maximal cliques in the
graph-based representation. The pseudo-code for the maximal clique enumeration method is
given by Algorithm 3.2.

For example, when applied to the graphG given by Figure 3.7, we obtain the list C of cliques
enumerated by the Table 3.2a and the list of intersectionI determined by the De�nition 3.5.
Those lists, showed in Table 3.2, are used to select and preserve relevant features.

Table 3.2 � Enumeration of all cliques (a), intersections of cliques (b), and
singleton nodes (c) in the graph G from Figure 3.7.

(a)

Ci 2 C List of nodes jCj

C1 {1, 2, 3, 4, 5} 5
C2 {3, 4, 5, 6} 4
C3 {5, 6, 7} 3
C4 {3, 9} 2
C5 {7, 8} 2
C6 {12, 13} 2
C7 {13, 14} 2
C8 {15, 16, 17} 3
C9 {17, 18, 19} 3
C10 {16, 20} 2
C11 {1, 20} 2
C12 {15, 17, 18} 3

(b)

Ii 2 I List of nodes jI j

I1 {3, 4, 5} 3
I2 {5, 6} 2
I3 {15, 17} 2
I4 {17, 18} 2

(c)
n

10 ; 11
o
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Algorithm 3.2 Output all maximal complete subgraphs.
1: input: G {Graph}
2: output: C {Set of all maximal cliques in G.}
3: adj  list all adjacent pairs in G
4: Q  ; {Queue of candidates}
5: subg  list of all nodes in G
6: cand  list of all nodes in G {Candidates to be evaluated}
7: u  node in subg with highest cardinality
8: ext_u  list of nodes in cand except the set of adjacent of u
9: stack  ; {Execution stack}

10: while true do
11: if ext_u , ; then
12: q  POP(ext_u) {next node in the ext_u list.}
13: cand  cand q {remove q node from cand.}
14: Q  PUSH(Q,q) {Push q in the list Q.}
15: adj_q  list of adjacent of q
16: subg_q  subgraph with all adjacents of q
17: if subg_q = ; then
18: C  Q
19: else
20: cand_q  set of nodes in cand adjacent to q
21: if cand_q , ; then
22: stack  stack [ {(subg, cand, ext_u)}
23: Q  Q [ { }
24: subg  subg_q
25: cand  cand_q
26: u  node in subg with highest cardinality
27: ext_u  list of nodes in cand except the set of adjacent of u
28: end if
29: end if
30: else
31: POP(Q)
32: subg, cand, ext_u  POP(stack)
33: end if
34: end while
35: return C

3.3.3 Search for the Best Shapelets

Once the list of maximal cliquesC is obtained, and after enumerating all maximal-clique-like
intersections I in C, we rank the entries in I by its cardinality, then we search for the largest
entry, i. e. the element I � such that:

I � = max
Ik 2I

¹jIk jº (3.8)

When I become empty, we look directly on the cliques enumerated inC, also ranked ac-
cording to its cardinality, choosing the largest entry C� :

C� = max
Ck 2C

¹jCk jº (3.9)

All the vertices found in a maximal-clique-like intersection (clique) are �ltered, and the node
with the highest term variance3 is preserved. Then, the listsC and I , and, indirectly, the graph

3As the dimensions of the vectors T 2 T are de�ned by the subD method, he values of variances are by
construction normalized.
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G are updated. The �ltering algorithm �nishes when the graph G is fully disconnected, i. e. the
list C is empty, and, consequently,G contains only singletons vertices.

The pseudo-code for the proposed multivariate-unsupervised �lter selection method is given
in Algorithm 3.3.

Algorithm 3.3 Filtering out shapelets before building the dictionary.

1: input: T {Shapelet-based-transformed training data set,}
S {Set of learned shapelets}
� {Minimal correlation between shapelets}
� {Minimal term variance.}

2: output: Sf {Set of preserved shapelets.}
3: Compute variance for each shapelet. Rank shapelets on variance.
4: S+  S n shapelets ranked< � -percentile
5: Compute Pearson's correlation matrix M for all shapelets in S+

6: Build an oriented graph G connectingSi and Sj if jM»i ; j¼j � �
7: repeat
8: if There is intersection between the cliques inG with cardinality � 2 then
9: C  the largest clique intersection inG

10: else
11: C  the largest clique in G
12: end if
13: N  node in C with highest variance
14: G  G n ¹C nNº
15: until There is no more cliques inG
16: return S

0
list of all singletons nodes inG.

The output of the Algorithm 3.3 can be directly used or passed to the wrapper method
described in Section 3.2.2 building a hybrid approach.

Continuing with the example graph G from Figure 3.7, we start by the state showed in
Table 3.2, as the setI , ; , the algorithm looks into the entry with the greatest cardinality
I1 = f 3;4;5g and preserves the node with the highest term variance i. e. the node 5, discarding
the others. This process is repeated, until the setI is empty, as showed in Figure 3.8 from
iteration 1 to 3. When I = ; , the algorithm looks directly for the remaining cliques, as showed
in Figure 3.8 from iteration 4 to 8. Table 3.3 describes the selected intersection/clique and the
preserved node in each interaction.

Table 3.3 � Iterations of the clique-removal �lter.

Iteration Clique Node Selected

1 {3, 4, 5} 5
2 {5, 6, 7} 6
3 {15, 16, 17} 17
4 {17, 18, 19} 17
5 {13, 14} 13
6 {1, 2} 2
7 {12, 13} 13

Finally, at the end we have as output a disconnected graphG
0

= fS
0
; ;g, where the vertices

are the entries of the subsetS
0

� S of selected features (shapelets).
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Figure 3.8 � Iterations of the clique-removal �lter.
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3.4 Extending to Multivariate Time Series

In this section, we extend the DPSR and the �ltering algorithms that were described in
the preceding sections to work with multivariate time series (MTS). In this way, the original
approach for LDPS [LMTA17] needs also to be generalized. Hence, we are further describing
three variations of the LDPS adding MTS support.

3.4.1 Multivariate Time Series: from DTW to Shapelets

As de�ned in De�nition 2.2, multivariate time series (MTS), also know as multichannel
or even multidimensional time series is a generalization of univariate time series, where each
observation is not a scalar anymore but a vector in aM-dimensional space.

Basically, there are two ways to deal with MTS and DTW. One is reducing theM-dimensional
multivariate time series into a univariate time series, by concatenating allM dimensions into a
new N � M long univariate time series, or by applying some dimensionality reduction technique,
like Principal Component Analysis (PCA) [JC16] [YS04]. The other is by generalizing the DTW
algorithm to handle multivariate time series.

We have previously discussed in Section 2.3.1.2 two approaches for multivariate DTW: the
DTW i and the DTW d . As formerly explained, DTW d handle all dimensions together in a
single dependent warping path. In its turn, DTW i has M-independent warping paths, one per
dimension. Therefore,M DTW are computed, and the �nal similarity between the two time
series amounts to summing theM obtained values.

These two solutions to use DTW to measure the similarity between pairs of time series,
conduce us to propose three possible approaches for multivariate-LDPS, and consequently to
DPSR.

3.4.2 DPSR and Filtering for Multivariate Time Series

The DPSR approach has so far been detailed in a setting where it copes with univariate time
series, also the LDPS were detailed in Section 2.3.2.9 for the univariate context. This section
describes how they can be extended to cope with multivariate time series.

We now detail three variants that di�er in the way they treat the multiple dimensions of
the time series to embed. The �rst variant captures the spirit of the approach followed by the
DTW i , that is, M sets of univariate shapelets are learned and subsequently used. The second
variant captures the spirit of the DTW d , in the sense that a set of multivariate shapelets is
learned. The third variant blends the two others.

3.4.2.1 M-DPSR i : Independent Multivariate DPSR

This is the most straightforward modi�cation. It consists of learning independently a set of
shapelets per channel in the multivariate time series. At the end of learning step, we will have
a hyper-dictionary � with M independently dictionaries, one per dimension.

� = fS 1; : : : ;SM g (3.10)

Thus, the representation T i of T i is given by:

T i =
Ø

m 2M

¹ST¹Tm
i ;Sm ºº =

MØ

m=1

�
Mi ;1; : : :Mi ; jSm j

	
(3.11)
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The selection of the top-shapelets is also done individually dimension-by-dimension, and the
hyper-dictionary �

0
is de�ned as:

�
0
= fS

0

1; : : : ;S
0

M g (3.12)

Once the �ltering is done independently, it can result in di�erent number of shapelets in the
dictionary for each dimension.

With this variant, the embedding is fully �exible in the sense that it is the best representation
that is picked independentlydimension per dimension. This variant is referred to being M-DPSRi

in the following, as it is in some way, similar to the idea of DTWi .

0 10 20 30 40 50
time

T1

T2

T3

Figure 3.9 � The independent multivariate DPSR: each dimension is han-
dled independently by its own sliding window and its associated learned Sm

dictionary.

3.4.2.2 M-DPSR d : Dependent Multivariate DPSR

The second variant learns a setS of K multivariate shapelets:

S = f S1; : : : ;SK g (3.13)

It requires to generalize the approach by Lodset al. [LMTA17]: the loss function as well as
the procedure to identify the best match have to take all dimensions into account. We need to
generalize the de�nition Equation (2.23) by:

De�nition 3.6 Multivariate Euclidean score. The multivariate Euclidean score between a mul-
tivariate shapelet with M channelsSk , jSj = l and T i ;p:l , a multivariate subsequence with length
l starting at the position p, of a multivariate time series T i with M channels de�ned as:

Di ;k;p =
1
l

lÕ

x=1

MÕ

m=1

�
Tm

i ;p+x �1 � Sm
k;x

� 2
(3.14)

Then, we can use the Equation (2.24) to obtainT i 2 R jS j

T i = ST¹T i ;Sº = f Mi ;1; : : : ;Mi ; jS jg (3.15)

Finally, we can apply the greedy selection and the �ltering procedure described above directly
on S to obtain S

0
.
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Since all the dimensions are involved at once in this distance computation, this variant is
referred to being the dependent M-DPSRd in the following, once it is similar to the idea of
warping dependency in DTWd . Figure 3.10 draws the multivariate sliding window over the
time setiesT i .
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time

T1

T2

T3

Figure 3.10 � The dependent multivariate DPSR: all dimension are handled
together, consequently, we have just one (M-dimensional) sliding window.

3.4.2.3 M-DPSR s: Slack Multivariate DPSR

The third variant learns a set S of multidimensional shapelets, just as with M-DPSRd .
However, here the subsequence distance matching method emulates the behavior of the DTWi ,
i. e. the window slides independently per dimension, as in M-DPSRi .

It requires to generalize the approach by Lodset al. [LMTA17]: the loss function as well as
the procedure to add support to multivariate shapelets. We need to generalize the de�nition
Equation (2.23) by:

De�nition 3.7 Multivariate slack Euclidean score. The multivariate slack Euclidean score be-
tween a multivariate shapelet withM channelsSk , jSj = l and T i ;p:l , a multivariate subsequence
with length l starting at the position p, of a multivariate time series T i with M channels de�ned
as:

Dm
i ;k;p =

1
l

lÕ

x=1

�
Tm

i ;p+x �1 � Sm
k;x

� 2
(3.16)

In this hybrid approach, embedding the multivariate time series means determining the
sum of all M-minimal distances (one per dimension), therefore, the Euclidean shapelet match
(Equation (2.24)) needs to be rede�ned as:

De�nition 3.8 Multivariate slack Euclidean shapelet match. The multivariate slack Euclidean
shapelet match betweenSk , with M channels, andT i , with M channels, is de�ned as:

Mi ;k =
MÕ

m=1

min
p2f 1:N � l +1 g

Dm
i ;k;p (3.17)

In this way, the representation T lies in R jS j, like in M-DPSR d . Figure 3.11 shows the
independence of the sliding window in the M-DPSRs approach.
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Figure 3.11 � The slack multivariate DPSR: the dimension are handled in-
dividually, however in the transformation step, the transformation is done by

the accumulated sum per dimensions.

The motivation for this method is that we believe whilst the shapelet learned is dependent
on the features being in phase, the places where they occur in other series could be independent
of one another.
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Chapter 4

Experiments

The best and safest method of
philosophizing seems to be �rst to inquire

diligently into the properties of things, and
establishing those properties by

experiments, and then to proceed more
slowly to hypotheses for the explanation of

them.

Isaac Newton, The Life of

Contents
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Dictionary Size vs. Accuracy: Reaching a Plateau . . . . . . . . . . 82
4.4 Shapelet Selection Strategies for DPSR . . . . . . . . . . . . . . . . 83
4.5 Filtering out Before Selecting . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Feature Selection vs. Instructed Feature Learning . . . . . . . . . . 85
4.7 Multivariate Transformation versus Accuracy . . . . . . . . . . . . . 87
4.8 Selection, Filtering for M-DPSR . . . . . . . . . . . . . . . . . . . . . 87
4.9 Comparing Methods at Their Best for Multivariate Data . . . . . 88
4.10 Search Costs on Multivariate Data . . . . . . . . . . . . . . . . . . . 89
4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

In this chapter we present the experiments and results of our proposed method for time series
retrieval based on DTW-preserving shapelets.

The objective of the experiments it to evaluate the relevance of advanced feature (shapelet)
selection in the DTW-preserving shapelet transformation on Time Series Retrieval (TSR) task.
Firstly, we describe the datasets used, them the experimental setup and �nally the obtained
results.

4.1 Datasets

In this section we present both, the univariate and the multivariate datasets used to experi-
mentally compare (M-)DPSR against the proposed competitors.

For the univariate case, we use the 85 datasets from the well-known UCR Time Series
Archive [CKH+15]. Queries used for retrieval are the test sets series from the archive.

Before running any experiment, we built a full DTW-based groundtruth. The true DTW
measurements between all time series pairs in each of the 85 families are determined. It is then
straightforward to identify the nearest-neighbour of each time series.
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In its turn, for the multivariate case, we use a subset with 20 datasets from the new UEA
Multivariate Dataset Archive [BDL+18]. Again, the test set series are used as queries.

Once at least two multivariate approaches for DTW are commonly used, the DTWi and the
DTW d , we have built for each dataset two grandtruths, one based on DTWi and another based
on DTW d .

4.1.1 The UCR Time Series Classi�cation Archive

The UCR Time Series Classi�cation Archive [CKH+15] was built in order to improve the
quality of papers using time series data. First arising in 2003 with 20 datasets, the UCR
repository has grown to include 85 problems, each split into training and testing sets.

In spite of does not aim at representing all real-life problems, the UCR database provides,
however, a large panel of problems, from very small datasets to larger ones. In Table 4.1 we can
observe resumed details while the description per dataset is given by Table A.1.

Table 4.1 � UCR database in numbers.

From Up to Average

Time Series Length (N) 25 2710 423.2
Training Set Size (jT j) 16 8926 432.9
Testing Set Size 20 8236 1164.7
Ratio Train/Test Size 0.48 62.6 7.1

The datasets can be broadly separated into seven categories. These are image outline; sen-
sor reading; motion capture; spectrographs; ECG measurements; electric devices and simulated
datasets. In Table 4.2 we detail the number of problems in each type, these datasets have di�er-
ent characteristics and its elements (time series) can be subjected to temporal shifts, temporal
distortions, noise, outliers, among others distortions in the data.

Table 4.2 � Number of datasets in UCR by problem type.

Type of problem No of datasets

Image Outline 29
Sensor Reading 16
Motion Capture 14
Spectographs 7
ECG Meassurements 7
Electric Devices 6
Simulated 6

Total 85

4.1.2 The UEA Multivariate Time Series Classi�cation Archive

The UEA multivariate time series classi�cation archive [BDL+18] was introduced in 2018 and
provides 30 multivariate time series datasets with a wide range of cases, dimensions (channels)
and series lengths.

The most part of the dataset can be classi�ed into �ve groups whereas three of them are not
easily labeled in some group. Table 4.3 shows the number of datasets per class of problem.
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Tables 4.4 and 4.5 give the sizes of training and test sets as well as the number of dimensions,
length and the �total dimensionality� which is the amount of data per multivariate time series,
i. e. the number of dimensions times the time series length.

Table 4.3 � Number of datasets in UEA by problem type.

Type of problem No datasets available No of datasets evaluated

Human Activity Recognition 9 8
Motion Classi�cation 4 2
ECG Classi�cation 2 2
EEG/MEG Classi�cation 6 4
Audio Spectra Classi�cation 6 2
Other Problems 3 2

Total 30 20

Table 4.4 � The full UEA database in numbers.

From Up to Average

Time Series Length (N) 8 17984 1073.4
Training Set Size (jT j) 12 30000 2038.3
Testing Set Size 15 20000 1359.0
Time Series Dims (M) 2 1345 98.5
Total Dim 16 363150 30130.2

The Learning-DTW preserving algorithm has a run-time complexity of O
�
maxI � M¹N2 + l � Kº

�
,

wheremaxI is the number of iterations on the algorithm, l is the length of the shapelet andK
is the number of shapelets learned. Thus, its many of the multivariate datasets in the full UEA
database are infeasible to learn with at least 100 iterations of the algorithm. For example, on
the DuckDuckGeese dataset, where the �total dimensionality� is 363150, the algorithm needs�
300 days to complete 100 iterations steps.

On the other hand, the wrapper algorithm has a time complexity of
O

�
M � N � K3 � jT j2 log jT j

�
, and even using the proposed �lter approach, the algorithm stills

unfeasible, for example, for theInsectWingbeat dataset, which jT j is 30000.

Thereafter, to complete our experiments we have used a subset with 20 (of 30) datasets of
the UCE multivariate dataset, described in Table 4.5. The full description per dataset is done
in Table A.2.

Table 4.5 � The subset of 20 datasets from the UEA database in numbers.

From Up to Average

Time Series Length 29 2500 457.5
Training Set Size 12 2459 350.5
Testing Set Size 15 2466 384.0
Time Series Dims 2 61 10.1
Total Dims 90 24705 3342.9

4.2 Experimental Setup

Our experiments are performed on a 24-core 2.8 CHz Intel Xeon ES-2630 with 64 GB of
memory. All algorithms and structures are implemented inPython3,Cythonand NumPy. Although
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(a) (b)

Figure 4.1 � Comparing DPSR and PAA for two speci�c time series. Ob-
served AUC as the dictionary size increases.

the machine has 24 cores, the only operations using parallelism are the distance computations
handled by NumPyduring the course of each experiment. No other parallelism is enforced. The
TSLearn[Tav17] toolkit was used for the computation of PAA and LB_Keogh.

For the PAA and LB_Keogh, the parameters w (word size) and r (window length) are
learned by 10-fold cross-validation.

In its turn, for the LDPS algorithm, a set of DTW-preserving shapelets is learned using
the algorithm proposed in [LMTA17], with default parameters. To learn high-quality shapelets,
500,000 iterations of the gradient descent algorithm are performed. In addition, two sets of
shapelets are learned for each family of time series, and the set with the smallest overall loss is
selected.

4.3 Dictionary Size vs. Accuracy: Reaching a Plateau

This �rst experiment compares the performance of PAA and DPSR for univariate time series
retrieval by recording the observed AUC as the size of the dictionary of shapelets increases.

Here, all shapelets are kept, none are �ltered out, it is thus DPSRf that is used. Trans-
formations range from very rough approximations when using very few shapelets to �ner grain
representations when using a larger number of shapelets. For consistency, we compared PAA
and DPSR for the same sizes, that is, the number of shapelets used to create the dictionary is
equal to the number of pieces for PAA.

Figure 4.1 illustrates the behavior for two selected datasets,50words, andCoffee. Those two
dataset are well representative of the scenarios observed in the 85 datasets analyzed.

With Gun_Point, DPSR outperforms PAA for all dictionary sizes. The results forCoffee are
more contrasted: when the time series is split into more than 7 pieces, PAA outperforms the
shapelet based approach. Please note that these �gures show quality measures for the �rst 30
elements of the dictionary only, larger dictionaries providing no improvements.

Table 4.6 compares PAA and DPSR for all 85 time series by counting the number of times
each method performs better than the other, along with the observed average AUC values for
dictionaries made of 5, 10, 20 and 30 shapelets (or pieces in the case of PAA). Overall, this table
shows that DPSR consistently outperforms PAA for all dictionary sizes. We can also observe
that both methods seem to reach an AUC plateau, sooner for PAA than it is for DPSR.
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For DPSR, this plateau highlights the importance of selecting a subset of all learned shapelets.
It indicates that Lods et al. learn too many shapelets, and that a lot of them do not contribute
signi�cantly to enhancing the resulting vectorial representation when considering retrieval. Slid-
ing them at transform time is therefore a waste of resources. This is important especially because
reducing the cost of transforming the query time series is paramount.

Table 4.6 � Comparing DPSR and PAA for the full UCR Archive, varying
dictionary sizes. Number of times each method outperforms the other in terms

of AUC. Average AUC values over the 85 datasets.

Dictionary Size 5 10 20 30

# DPSR wins 70 69 73 72
# PAA wins 15 16 12 13

Average AUC for PAA 0.838 0.847 0.844 0.841
Average AUC for DPSR 0.906 0.921 0.929 0.932

For the multivariate case, as presented in Section 3.4 we have three possible approaches for the
M-DPSR: M-DPSR i , M-DPSRd , and M-DPSRs. Considering the three proposed approaches
and the multivariate implementation of PAA we have observed a similar behavior, that is, a
plateau is observed. Figure 4.2 shows the behavior for four selected datasets,AtrialFibrilation,
SelfRegulationSCP1, CharacterTrajectories, and ERing. Here we need to highlight that while
for the M-DPSR each entry S in the dictionary is in R, for (M)PAA, each piece W is in RM ,
where M is the number of dimensions (channels) in the raw time series.

4.4 Shapelet Selection Strategies for DPSR

In Section 3.2.2, strategies for stopping aggregating selected features were presented. We
now evaluate their e�ectiveness, which is a trade-o� between their accuracy in terms of AUC
and the transformation cost they cause.

Typically, small subsets allow for very fast transforms (just a few shapelets need to be slid
at test time) but quality is typically low, whereas in contrast larger subsets improve AUC but
cause more expensive transform operations. Here, no irrelevant shapelets are �ltered out.

To observe this trade-o�, we selected by cross-validation on the training sets of each dataset
the best shapelet subset for the di�erent stopping criterion. We then used these subsets to
transform test series for retrieval. The corresponding AUC that are observed for the 85 datasets
from the archive with each stopping strategy are recorded and averaged. The resulting AUC
value is given in Table 4.7, left, together with the average number of selected shapelets. The
last line of Table 4.7 (DPSRf ) corresponds, in the column �No �ltering�, to the case where no
shapelet selection is performed (i. e. the whole shapelet set learned beforehand is used).

Table 4.7 � Average AUC and dictionary sizes for feature subset selection
strategies. With and without �ltering out irrelevant shapelets.

No �ltering Filtering

AUC Dict. size AUC Dict. size

DPSRt 0.906 4.4 0.899 3.8
DPSRl 0.928 27.4 0.929 25.2
DPSRg 0.935 54.0 0.935 41.5
DPSRf 0.934 156.1 0.931 95.9

We can observe a trade o� between the accuracy of the retrieval (AUC) and the computa-
tional time of the transform (linear with the number of shapelets). DPSRt , the most aggressive
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(a) (b)

(c) (d)

Figure 4.2 � Comparing the three approaches for M-DPSR and (M)PAA for
four speci�c multivariate time series. Observed AUC as the dictionary size
increases. Note that we have more than one entry for the M-DPSR i (green),
as in this approach we apply the DPSR per dimension of the raw time series.

strategy, selects very few shapelets (a little bit more than four, on average) for an average AUC
of 0:906. DPSRg, more conservative, uses on average 54 shapelets, but the corresponding quality
improvement is quite small: it goes from 0.906 to 0.935. This is a clear illustration of the trade
o�, also exempli�ed by the DPSR l strategy, which is in between these two other strategies.

We can also observe the importance of the feature selection itself: when no selection is made
(DPSRf ), the average AUC is slightly lower than for DPSRg whereas the corresponding average
number of shapelets is almost tripled.

4.5 Filtering out Before Selecting

We now test the impact on the accuracy when �ltering out irrelevant shapelets before se-
lecting them. Here, the correlation threshold is set to� = 0:8 and the term variance percentile
is set to � = 0:5. We again involve the full UCR archive.

The right-hand side of Table 4.7 gives the resulting observed AUC and dictionary sizes. It
is to contrast with the left part of the same table where no �lter is applied. For DPSR t , it is
observed a reduction of 15.6% in the average size of the dictionary with a decrease of 0.01% in
the accuracy. For DPSRl and DPSRg the size of the dictionary compared to the non �ltered
case shrinks by 23.8% while preserving the average accuracy. Filtering and keeping all remaining
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shapelets with DPSRf reduces the dictionary size by 38.8% and decreases the accuracy by 0.03%.
Filtering is very e�ective.

The severity of the �lter mainly depends on � , the threshold which determines if an edge
will be present or not in the initial graph G. A smaller value for � increases the number of edges
in G, which in turn creates more cliques resulting in more aggressively �ltering out shapelets.
A higher value for � gives fewer options when reducing cliques. Overall, we experienced with
values for � ranging between0:3 and 0:9. The value 0:8 provide the best results.

4.6 Feature Selection vs. Instructed Feature Learning

The previous experiment demonstrated that only a small fraction of the learned shapelets
are truly useful because they signi�cantly contribute to the quality of the retrieval. We show
here that it is the combination of the learning stage and the feature selection strategy that leads
to such behavior. For that purpose, we compare the AUC performance of non-�ltered DPSRt
and DPSRl with a method where [LMTA17] is instructed to learn the same number of shapelets.

We know from the previous experiments that the average AUC for DPSRt over all the
datasets is0:906, with using 4.4 shapelets on average. When directly learning that same number
of shapelets, then the average AUC over all datasets is0:866. More precisely, DPSRt performs
better in 74 cases (out of 85). Same conclusions can be drawn with DPSRl . The average AUC of
DPSRl is 0.928, whereas the AUC obtained when directly learning the same number of shapelets
is equal to 0:905. DPSRl wins 71 times out of 85.

These results indicate that it is worth spending more time o�ine to learn a large set of
shapelets and then selecting the more appropriate. This is better than trying to save computa-
tional time by learning fewer shapelets. Also, our feature selection strategy allows deciding on
the number of shapelets in a data driven fashion, and not just heuristically.

4.6.1 Comparing Methods at Their Best

Table 4.8 � Comparing DPSR, PAA and LB_Keogh with their best param-
eters. Number of times each method outperforms the other in terms of AUC.

DPSR vs. PAA DPSR vs. LB_Keogh

# wins for DPSR # wins for PAA # wins for DPSR # wins for LB_Keogh

DPSRt 58 (0.910, 4.5) 27 (0.866, 38.8) 34 (0.910, 4.5) 51 (0.908, �)
DPSRl 69 (0.933, 29.8) 16 (0.866, 38.8) 64 (0.933, 29.8) 21 (0.908, �)
DPSRg 75 (0.938, 54.6) 10 (0.866, 38.8) 67 (0.938, 54.6) 18 (0.908, �)
DPSRf 79 (0.935, 140.9) 6 (0.866, 38.8) 67 (0.935, 140.9) 18 (0.908, �)

In this experiment, we compare the respective performance of DPSR, PAA and LB_Keogh
when their parameters (number of segments for PAA, subset of shapelets for DPSR and window
length for LB_Keogh) are cross-validated on the train set. The results comparing the perfor-
mance of (i) DPSR and PAA methods and (ii) DPSR and LB_Keogh are given in Table 4.8.
This table gives the number of times each method wins over the other, with the corresponding
AUC and dictionary size between parentheses. Overall, DPSR outperforms PAA even for the
aggressive DPSRt strategy.

Comparing the representation sizes when DPSR or PAA are winning is insightful. Consider
for example DPSRt , winning over PAA 58 times. Among these 58 wins, in 48 cases, the dic-
tionary needed for DPSRt contains fewer items than the number of pieces for PAA. The dual
point of view is also insightful: PAA outperforms DPSRt in 27 cases, but all PAA transforma-
tions need more pieces than DPSRt has elements in its dictionary. Not only DPSR wins more
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frequently than PAA, but when it wins, it is with shorter representations. This is also true for
DPSRl and DPSRg. The average AUC value for PAA is equal to 0.866 which is worse than the
average AUC value of the three DPSR approaches. Against LB_Keogh, only DPSRt looses.
DPSRl and DPSRg win over LB_Keogh by a large margin. Note also that, unlike LB_Keogh
and PAA, DPSR allows comparing time series of di�erent lengths. Overall, we observed that
DPSR more often wins over its competitors when features are not �ltered. Using more features
maintains quality.

4.6.2 Search Costs

(a) Gun_Point (b) Beef

(c) UCR

Figure 4.3 � Average Search Times for two speci�c time series and for the
full UCR Archive. Varying dictionary size.

So far, only quality comparisons have been done. We observe now the computational costs of
the approaches discussed here. We focus on the case where shapelets are not �ltered out, which
is the worst case in terms of performance. Experiments were performed for recording search
times when the numbers of elements in the dictionary for DPSR and the number of pieces for
PAA gradually increase. Search times forGun_Pointand Beef are plotted on Figure 4.3 (limited
to size � 60), and the average search times for the full UCR archive is on Figure 4.3c.

These �gures also show the time it takes to only compute the envelopes of time series for
LB_Keogh. That process, if then computing DTWs, is guaranteed to identify the correct nearest
time series. The quality of any approximate search scheme can only be equal or lower. The
time for solely computing the LB_Keogh value on all time series is the absolute minimal cost
the real LB_Keogh+DTW could have.
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Table 4.9 � Comparing M-DPSR d , M-DPSR s and M-DPSR i ran against 20
datasets from UEA archive. Average AUC, dictionary size. Average ranked

performance w.r.t. AUC. Number of Wins.

Method AUC Dict. Size Avg. Rank # Wins

M-DPSRd 0.843 62.1 1.8 7
M-DPSRs 0.819 62.1 2.0 6
M-DPSRi 0.773 587.5 2.2 8

These �gures show that the time for computing envelopes with LB_Keogh is �xed, which is
normal. They also show that PAA is the fastest approach. Its underlying principles are simple
and cause light computations, the search times increasing slightly with the number of pieces.
The time taken per search for DPSR is also increasing with the dictionary size: there are more
and more shapelets to slide, and distance computations are more demanding. Three remarkable
signs are placed on the search time plot for the DPSR approach. They refer to the search times
observed when the number of shapelets in use correspond to what DPSRt , DPSRl and DPSRg

determined.

4.7 Multivariate Transformation versus Accuracy

This �rst experiment observes the performance of the three variants for M-DPSR, in terms of
AUC versus the size of the shapelet dictionary. To fairly compare M-DPSRi with M-DPSR s and
M-DPSRd , a comment is needed. M-DPSRs and M-DPSRd use multivariate shapelets whereas
M-DPSRi usesM sets of univariate shapelets. Hence, by construction, the size of the dictionary
for M-DPSR i is high compared to the two other variants.

Table 4.9 shows how accuracy and the size of the dictionary to transform time series relate.
This table shows that M-DPSRd , despite having the best average AUC, is the method with
fewer wins. M-DPSRi , however, wins more often but has the lowest average AUC. These results
are re�ected in the average rank, which is approximately 2.0 for all three variants. M-DPSRi

needs approximately seven times more shapelets, as expected. The variants better di�erentiate
once shapelets are selected and �ltered, as shown next.

4.8 Selection, Filtering for M-DPSR

Overall, an AUC quality plateau is observed with multivariate time series, as it was observed
with univariate series. Figure 4.4 shows how the AUC varies as the size of the dictionary increases
for the speci�c Handwriting dataset. Figure 4.4a shows the cases where M-DPSRd and M-DPSRs

are used, and when no irrelevant shapelet is �ltered. Figure 4.4b shows the performance fot the
M-DPSRi strategy. In this case, theHandwriting dataset is a 3-dimensional time series. For that
reason, the Figure 4.4b shows three curves, one for each of the three dimensions. On all curves,
the dictionary sizes corresponding to applying the stopping criterion for aggregating shapelets
are indicated. Note that in the case of M-DPSRi , the size on the x-axis corresponds to the
dictionary for one dimension. The total number of shapelets used to transform one multivariate
time series with M-DPSRi is the sum of the size of each per-dimension dictionary. For example,
M-DPSRi applying the 't' stopping criterion result in picking 9 shapelets, 4 for dimension 1,
3 for dimension 2 and 2 for dimension 3. When the 'l' stopping criterion is used then it results
in 106 dimensions split in ¹35;30;41º. With ' g', it is 130 with ¹35;45;50º.

The average AUC values and average dictionary sizes over all multivariate datasets are given
in Table 4.10. The columns `t', `l', `g' and 'f ' correspond respectively to the aggregation stopping
criteria de�ned in Section 3.2.2.1. Here again, we observe a similar trade-o� between accuracy
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(a) M-DPSR d and M-DPSR s (b) M-DPSR i

(c) M-DPSR d and M-DPSR s, with �lter (d) M-DPSR i , with �lter

Figure 4.4 � Quality when number of shapelets varies for the Handwriting
dataset. 4.4c and 4.4d: irrelevant shapelets are �ltered out.

for retrieval time: few shapelets cause fast transforms but quality is lower compared to using
more shapelets at a higher transform cost.

That same table shows also the quality and the dictionary sizes when �ltering out irrelevant
features. The number of preserved features is often very much reduced without observing any
dramatic loss in quality. Figures 4.4c and 4.4d illustrate the e�ects of this �ltering on the
Handwriting time series. Figure 4.4c shows the e�ect of �ltering for the M-DPSRd and M-
DPSRs cases. Figure 4.4d shows the e�ect of �ltering on each of the three dimensions for the
M-DPSRi case.

4.9 Comparing Methods at Their Best for Multivariate Data

It is also insightful to compare the performance of the multivariate methods at their best, i. e.
when their parameters have been cross-validated on the training set. Here, the variants of M-
DPSR are compared to the multivariate version of PAA and multivariate version of LB_Keogh.
For each dataset, we record the performance when the best number of segments is used for PAA,
the best window length for LB_Keogh. This performance is then compared to the best variant
of M-DPSR when the global stopping criterion is used, and also to the best variant of M-DPSR
using the best stopping criterion, denoted by M-DPSRbest .

Figure 4.5a shows the results of comparing M-DPSR against PAA. M-DPSRd outperforms
PAA for 64.3% of the datasets. M-DPSRi and M-DPSRs are more on par with PAA. Yet,
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Table 4.10 � Average AUC and dictionary sizes for multivariate feature se-
lection strategies, with and without �ltering irrelevant shapelets.

t l g f

AUC Dim. AUC Dim. AUC Dim. AUC Dim.

M-DPSRd
w. Filter 0.737 2.7 0.866 20.6 0.869 23.4 0.839 39.2
w/o. Filter 0.787 3.4 0.866 24.2 0.871 29.2 0.843 62.1

M-DPSRs
w. Filter 0.748 2.7 0.846 16.4 0.852 20.2 0.822 34.9
w/o. Filter 0.767 3.3 0.836 20.0 0.848 26.1 0.819 62.1

M-DPSRi
w. Filter 0.666 23.6 0.733 175.0 0.743 201.8 0.731 332.0
w/o. Filter 0.728 31.2 0.774 226.9 0.748 303.4 0.773 586.5

PAA needs an average of 336.2 segments while M-DPSRd , M-DPSRs and M-DPSRi need a
dictionary of size 30, 27.9, and 243.6 respectively. Figure 4.5c is making the same comparison,
using LB_Keogh, however.

Figures 4.5b and 4.5d show the cases where the best possible behavior for M-DPSR is com-
pared to the best behaviors for both PAA and LB_Keogh. These �gures clearly show that
M-DPSR very often outperforms its competitors.

Table 4.11 summarizes the results presented using the best parameters for each method.

Table 4.11 � Comparing M-DPSR best , PAA and LB_Keogh with their best
parameter. Number of times each method outperforms the other, average rank-

ing from AUC.

Method # Wins Avg. AUC Avg Dims Avg. Rank

M-DPRSbest 13 0.9019 105.1 1.65
PAA 6 0.8307 1668.7 2.30
LB_Keogh 3 0.8829 3342.9 2.05

4.10 Search Costs on Multivariate Data

Several experiments are performed in order to compare the execution time of aforementioned
methods. In these experiments, the execution times (in seconds) for each strategy against each
dataset are reported in Table 4.12. Figure 4.6 shows the performance for three speci�c time
series. It should be emphasized again that we are measuring the time for solely computing the
LB_Keogh, which is the absolute minimum cost that real LB_Keogh+DTW could have.

4.11 Discussion

Since the �rst paper on shapelets from Ye and Keogh, many approaches using time series
shapelets were proposed. With this work we have extended the use of shapelets to cover the
retrieval task, and few lessons can be drawn from our experiments.

(i) It is extremely pro�table to rank and then select a few of the shapelets learned by the state-
of-the-art DTW-preserving Shapelet Transform by Lods et al. Even the most aggressive
subset creation strategy that typically select very few shapelets (4.4 on average when
considering the full UCR Time Series archive) provides very good approximations of the
true DTW between time series, at a very low computational cost.
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(a) M-DPSR (global) � PAA (b) M-DPSR best � PAA

(c) M-DPSR (global)� LBK (d) M-DPSR best � LBK

Figure 4.5 � Accuracy comparison (AUC) of M-DPSR variants using the
global stopping criterion against the multivariate PAA (4.5a) and against the
multivariate LB_Keogh (4.5c) for all datasets described in Table A.2. In 4.5b

and 4.5b we choose the best approach for M-DPSR.

(ii) In the multivariate tasks, there is not clear a winner between M-DPSRd , M-DPSRs, and
M-DPSRi , highlighting the need of an adaptive approach.

Considering the growing interest in time series data mining and specially in shapelets, this
work could serve as a basis for future work on time series retrieval.
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Table 4.12 � Average execution time (in seconds) of search over independent
runs for each method.

Dataset M-DPRSt M-DPRSl M-DPRSg M-DPRSf PAA LB_Keogh

ArticularyW ordRecognition 0.0009 0.0208 0.0208 0.0210 0.0080 0.0220
AtrialFibrilation 0.0058 0.0116 0.0260 0.1910 0.0009 0.0120
BasicMotions 0.0008 0.0032 0.0042 0.0112 0.0005 0.0029
CharacterTrajectories 0.0009 0.0089 0.0089 0.0207 0.0151 0.0613
Epilepsy 0.0013 0.0091 0.0091 0.0242 0.0015 0.0083
EthanolConcentration 0.0843 0.2925 0.4117 2.0122 0.0098 0.0617
ERing 0.0006 0.0023 0.0032 0.0074 0.0004 0.0020
FingerMovements 0.0005 0.0038 0.0038 0.0086 0.0069 0.0073
HandMovementDirection 0.0109 0.0338 0.0338 0.1409 0.0120 0.0094
Handwriting 0.0007 0.0039 0.0082 0.0157 0.0043 0.0129
Heartbeat 0.0346 0.0806 0.1037 1.0997 0.0483 0.0457
JapaneseVowels 0.0004 0.0028 0.0034 0.0047 0.0058 0.0128
Libras 0.0004 0.0024 0.0027 0.0050 0.0015 0.0066
LSST 0.0004 0.0048 0.0048 0.0050 0.0210 0.0880
NATOPS 0.0005 0.0026 0.0042 0.0080 0.0080 0.0092
RacketSports 0.0004 0.0029 0.0029 0.0046 0.0013 0.0057
SelfRegulationSCP1 0.0227 0.0733 0.0733 0.5766 0.0087 0.0352
SelfRegulationSCP2 0.0320 0.7016 1.0267 1.4266 0.0106 0.0380
StandWalkJump 0.0860 0.3780 0.7593 6.1917 0.0394 0.0940
UWaveGestureLibrary 0.0021 0.0146 0.0288 0.0478 0.0073 0.0142

(a) Character_Trajectories (b) NATOPS

(c) UWaveGestureLibrary

Figure 4.6 � Average Search Times for three speci�c multivariate time series.
Varying dictionary size.
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Chapter 5

Conclusions and Perspectives

�Stories don't end�, he says.
�They just turn into new beginnings.�

Lindsay Eagar, Hour of the Bees
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Time series data can be found in many domains resulting in an explosion of interest in
mining time series data in the last two decades. A wide number of algorithms have already been
proposed to help with the time series retrieval task

The work in this thesis was initially aimed at using DTW-preserving Shapelets as a data
transformation for the Time Series Retrieval (TSR). As presented in Section 2.3.2, in time
series classi�cation, shapelet based methods have been shown to be a very e�ective model for
classi�cation. Here, we are proposing, for the �rst time in the literature, the use of shapelets in
other tasks than classi�cation or clustering.

We initially wanted to answer two question: can we make the learning DTW-preservin
shapelet transform e�cient to the retrieval task? And, can we make the DTW-preserving
shapelet transform faster without reducing accuracy?

The third aim of this thesis was, can we deal with multivariate time series? It is possible to
be e�cient in this context?

5.1 Results Summary

The �rst contribution of this thesis was improving the DTW-preserving shapelet transform
to the retrieval task (DPSR). In our framework, DTW-preserving shapelets are learned, and
then a subset is used to create a vectorial representation of the raw time series. The idea is that
the ranked euclidean distances in the embedded space re�ect the ranked distances measured by
the DTW on the original space. In this way, we aim to preserve the quality of the retrieval,

We strive to maintain the quality of time series retrieval while the retrieval cost is reduced,
therefore facilitating time series retrieval at scale. To this end, we propose a method to analyze
the quality of shapelets subset, and how that subset can be chosen. These proposed improve-
ments were designed to reduce the run-time while the accuracy of the retrieval task is preserved.

In our experiments, we observed that the original LDPS approach produces an excessive
number of shapelets. If on the one hand, the high number of learned shapelets helps the
transformation in approaching the value of the DTW, on the other hand, it makes indexing
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di�cult by increasing dimensionality and slowing down the transformation, as more sliding
window steps become necessary.

Considering that the goal of Lods et al. in [LMTA17] is, in short, to minimize the loss
given by the average di�erenceL2¹T i ;T j º � DTW ¹Ti ;Tj º, increasing the number of shapelts can
be opportune to minimize the average transformation loss. However, in this original work, by
construction, the authors do not do any distinction between the contributions from the pairs

Ti ;Tj

�
and hTi ;Tk i , whereasDTW ¹Ti ;Tj º n DTW ¹Ti ;Tk º, i. e. there is no contrast between the

input from the closest or farthest pairs.

Hence, our hypothesis is the transformation based on the set of learned shapeletsS tends to
preserve, in the transformed space, the average rank of the DTW-based distances, whereas, for
retrieval, the ideal is to emphasize, in the embedded space, a useful distinction of the realk-�rst
elements for the original space, and consequently, it does not matter if the furthest elements
have their ranking positions preserved.

Furthermore, the LDPS approach does not have any criteria to evaluate the redundancy
or the quality of a speci�c shapelet (or groups of them); consequently, the learned model may
lead to problems such as redundancy, or over-�tting, among others. Whereas, on the one hand,
transformation based on too many shapelets can be accepted for o�ine tasks, for online tasks
such as retrieval, this number needs to be small, reducing the transformation cost at query time.
Therefore, a study of a shapelets' optima-subset is obviously of paramount importance.

We then propose a metric based on the ranking of the DTW measure to evaluate the trans-
formation quality. This metric is applied to (groups of) shapelets and allow us to select the
optimal subset. A forward wrapper method for feature selection made upon the greedy strategy
was presented, and three stop criteria were de�ned.

Our experiments in the 85 UCR univariate datasets comparing the proposed DPSR against
two solid competitors, the PAA and LB_Keogh demonstrated the substantial gains in the
retrieval quality, preserving a good response time. Our results demonstrated that the retrieval
based on the most aggressive strategy (DPSRt ), won over PAA 58 times (on 85 datasets), and,
among these wins, in 48 cases the dictionary needed for DPSRt contains fewer items than the
number of pieces for PAA. This result highlights the quality of representation.

One drawback of the proposed method is the computational cost of the o�ine method used
to evaluate the shapelets. However, our second contribution is a �lter based on clique-removal,
presented to reduce the time need on the o�ine step. This �lter uses a graph representation of
the transformed space, and we can look at the relations between the features and use the cliques
as a surrogate for clusters. All elements into the clique are high-correlated each other, therefore,
probably redundant. Consequently, we can remove the redundant and irrelevant ones.

A third contribution consists of the generalization of the LDPS method to handle multivariate
time series. In this way, three transformation approach was proposed, trying to emulate the two
most common approaches for multivariate DTW, the independent and the dependent warping
methods. The �rst transformation is a straightforward use of the univariate LDPS on each m-
channel of the multivariate time series. This approach produces the highest number of shapelets,
asM independently dictionaries are learned. One advantage of this transformation is easy to take
advantages of paralleled computation. We are planning to reduce the inter-channel redundancy
by modifying the clique-removal to handle the inter-channel data.

We then propose an enhancement of an already existing algorithm LDPS to learn multivariate
shapelets. Two multivariate transformations were proposed, the dependent and the slack. On the
�rst, the window slides synchronous over all channels, while in the second it slides asynchronous.
The motivation for the slack method is that we believe whilst the shapelet learned is dependent
on the features being in phase, the places where they occur in other series could be independent
of one another. One planed modi�cation is to limit the o�set of the phase between the channels.

The results on the UEA multivariate dataset showed that multivariate shapelet transfor-
mation could bet even in the retrieval time the (M-)PAA, well-known as one of the fastest
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methods for transformation in retrieval tasks. This is due to both multivariate transformation
return a single vector in R jS j, while in (M-)PAA or (M-)LB_Keogh the transformed data (or
the envelope) sill multivariate.

However, one of the signi�cant issues noticed during the large scale experimental work was
that the DTW-preserving shapelet transform together with the wrapper method was intractable
on the most massive multivariate problems even with the use of specialist HPC equipment. With
the �nal goal of this thesis to design e�cient univariate and multivariate shapelet-based retrieval,
it became apparent that more drastic time and space reductions would be required as we were
still struggling on univariate problems. We believe this could be overcome by modifying the
learning procedure, eliminating the need to select the best shapelets later.

The �nal contribution in this thesis is one of the �rst large scale experiments on univariate
and multivariate Time Series Retrieval (TSR) task using shapelet transform.

5.2 Future Work and Extensions

The massi�cation of sensors and collected data brings new challenges for the e�cient recovery
of time series data, and our work can be seen as a step towards bringing closer shapelets and
time series retrieval. Shapelets are recognized for their excellent results in classi�cation and
clustering tasks. However, nothing more natural than extending them to the retrieval task.

In this thesis, we showed shapelets could help represent data for retrieval, especially, after a
proper subset is chosen. A next straightforward step is inputting this data in an indexing system,
exploring the triangular inequality, so, avoiding the exhaustive Euclidean distance calculations,
further improving performance. Such an approach can be advantageously used foranytime
indexing of time series.

Our framework based on DTW-preserving Shapelets algorithm shows very promising re-
trieval results, in both univariate and multivariate tasks. However, an open issue is to improve
the learning of shapelets as the process described by Lodset al. in [LMTA17]. s previously men-
tioned, in the original approach, it works by minimizing the loss between the Euclidean distance
in the transformed space and the DTW distance in the raw data, which leads to missing a trans-
formation helpful to preserve the top-k DTW-ranking prioritizing the overall DTW-ranking.
The choice of subset besides providing a speed-up in the transformation and consequently in the
query time has the side e�ect of allowing the transformation to prioritize shapelets that allow an
improvisation in the top-k retrieved ranking. Nevertheless, the cost of the shapelets evaluation
algorithm makes it di�cult to use in large databases.

In this way, two possible modi�cations can be applied to the LDPS algorithm. One is by
adding a mechanism for choosing top-k shapelets during the learning phase, and another is
modifying the loss function to be minimized. In this case, choosing not to maintain the average
DTW distances, but preserving the top-k ranked list.

Besides that, another open way to explore is addressing the similarity between LDPS and
Convolutional Neural Networks (CNN). Where we can see a correspondence between the Shape-
let Transform and the output of a CNN's single-layer. Therefore, an equivalency between the
convolution �lters and the shapelets. This equivalency paves the way for using optimized li-
braries, allowing for performance gains.

Finally, we show that DTW-preserving shapelets can handle both univariate and multivariate
data in the retrieval task, showing promising retrieval results. However, further investigation
is required, especially in order to better understand how to determine shapelets' length and
number to deal with the retrieval task, also, how to learn those shapelets better, avoiding over-
�tting, and redundancy in the generated representation. Moreover, a fast implementation of
both LDPS and DPSR exploiting state-of-art libraries must be implemented in the future to
promote these methods.
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Appendix A

Speci�cations per Datasets

Table A.1 � The 85 datasets in the UCR time series archive.

Dataset Length Train Test

ElectricDevices 97 8926 7711
StarLightCurves 1025 1000 8236
wafer 153 1000 6164
FordA 501 1320 3601
Two_Patterns 129 1000 4000
NonInvasiveFatalECG_Thorax1 751 1800 1965
NonInvasiveFatalECG_Thorax2 751 1800 1965
uWaveGestureLibrary_X 316 896 3582
uWaveGestureLibrary_Y 316 896 3582
uWaveGestureLibrary_Z 316 896 3582
UWaveGestureLibraryAll 946 896 3582
FordB 501 810 3636
ECG5000 141 500 4500
ChlorineConcentration 167 467 3840
PhalangesOutlinesCorrect 81 1800 858
FaceAll 132 560 1690
yoga 427 300 3000
InsectWingbeatSound 257 220 1980
FacesUCR 132 200 2050
Phoneme 1025 214 1896
HandOutlines 2710 370 1000
ShapesAll 513 600 600
SwedishLeaf 129 500 625
MedicalImages 100 381 760
Strawberry 236 370 613
50words 271 450 455
ProximalPhalanxOutlineCorrect 81 600 291
MiddlePhalanxOutlineCorrect 81 291 600
WordsSynonyms 271 267 638
DistalPhalanxOutlineCorrect 81 276 600
Adiac 177 390 391
Cricket_X 301 390 390
Cricket_Y 301 390 390
Cricket_Z 301 390 390
LargeKitchenAppliances 721 375 375
RefrigerationDevices 721 375 375
ScreenType 721 375 375
SmallKitchenAppliances 721 375 375
MALLAT 1025 55 2345
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Table A.1 continued from previous page

Dataset Length Train Test

synthetic_control 61 300 300
ProximalPhalanxOutlineAgeGroup 81 400 205
ProximalPhalanxTW 81 205 400
ItalyPowerDemand 25 67 1029
Computers 721 250 250
MiddlePhalanxOutlineAgeGroup 81 154 400
MiddlePhalanxTW 81 154 399
DistalPhalanxOutlineAgeGroup 81 139 400
DistalPhalanxTW 81 139 400
CinC_ECG_torso 1640 40 1380
InlineSkate 1883 100 550
OSULeaf 428 200 242
Haptics 1093 155 308
Earthquakes 513 139 322
FISH 464 175 175
CBF 129 30 900
TwoLeadECG 83 23 1139
SonyAIBORobotSurfaceII 66 27 953
MoteStrain 85 20 1252
Symbols 399 25 995
ECGFiveDays 137 23 861
Worms 901 77 181
WormsTwoClass 901 77 181
SonyAIBORobotSurface 71 20 601
Ham 432 109 105
Plane 145 105 105
ECG200 97 100 100
Trace 276 100 100
ToeSegmentation1 278 40 228
Gun_Point 151 50 150
ArrowHead 252 36 175
Lighting7 320 70 73
DiatomSizeReduction 346 16 306
ToeSegmentation2 344 36 130
Herring 513 64 64
Lighting2 638 60 61
Car 578 60 60
Meat 449 60 60
ShapeletSim 501 20 180
Wine 235 57 54
FaceFour 351 24 88
Beef 471 30 30
OliveOil 571 30 30
Co�ee 287 28 28
BeetleFly 513 20 20
BirdChicken 513 20 20
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Table A.2 � The 30 datasets from UEA multivariate time series archive.

Dataset Train Test Dims Length Total Skip

ArticularyWordRecognition 275 300 9 144 1296 N
AtrialFibrillation 15 15 2 640 1280 N
BasicMotions 40 40 6 100 600 N
CharacterTrajectories 1422 1436 3 182 546 N
Cricket 108 72 6 1197 7182 Y
DuckDuckGeese 60 40 1345 270 363150 Y
EigenWorms 128 131 6 17984 107904 Y
Epilepsy 137 138 3 206 618 N
EthanolConcentration 261 263 3 1751 5253 N
ERing 30 30 4 65 260 N
FaceDetection 5890 3524 144 62 8928 Y
FingerMovements 316 100 28 50 1400 N
HandMovementDirection 320 147 10 400 4000 N
Handwriting 150 850 3 152 456 N
Heartbeat 204 205 61 405 24705 N
JapaneseVowels 270 370 12 29 348 N
Libras 180 180 2 45 90 N
LSST 2459 2466 6 36 216 N
InsectWingbeat 30000 20000 200 78 15600 Y
MotorImagery 278 100 64 3000 192000 Y
NATOPS 180 180 24 51 1224 N
PenDigits 7494 3498 2 8 16 Y
PEMS-SF 267 173 963 144 138672 Y
Phoneme 3315 3353 11 217 2387 Y
RacketSports 151 152 6 30 180 N
SelfRegulationSCP1 268 293 6 896 5376 N
SelfRegulationSCP2 200 180 7 1152 8064 N
SpokenArabicDigits 6599 2199 13 93 1209 Y
StandWalkJump 12 15 4 2500 10000 N
UWaveGestureLibrary 120 320 3 315 945 N
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Appendix B

Results on Univariate Dataset

Table B.1 � AUC for the PAA and LB_Keogh methods.

PAA LB_Keogh
DATASET DIMS AUC % WINDOW AUC %

BeetleFly 16 0.9100 0.1 0.8775
BirdChicken 173 0.8325 0.05 0.9275
Co�ee 111 0.9643 0.01 0.9745
OliveOil 276 0.9911 0.01 0.9056
Beef 170 0.9844 0.01 0.9900
Wine 116 0.9971 0.01 0.9620
Car 193 0.8383 0.1 0.8933
Meat 101 0.9944 0.01 0.9669
Lighting2 127 0.5760 0.05 0.6730
Herring 25 0.8613 0.05 0.9600
Lighting7 108 0.7755 0.05 0.7955
FaceFour 117 0.8120 0.05 0.8409
Trace 5 0.9128 0.1 0.9585
ECG200 16 0.9024 0.1 0.9311
Ham 214 0.9471 0.01 0.9299
Plane 7 0.9741 0.01 0.9714
ToeSegmentation2 7 0.8404 0.05 0.8207
Gun_Point 7 0.9213 0.1 0.9772
FISH 154 0.8299 0.05 0.9036
ArrowHead 89 0.9135 0.01 0.9254
ShapeletSim 15 0.6167 0.05 0.5997
Worms 3 0.7611 0.2 0.8068
WormsTwoClass 3 0.7611 0.2 0.8068
ProximalPhalanxOutlineAgeGroup 5 0.9388 0.01 0.9419
ToeSegmentation1 7 0.7762 0.1 0.8575
OSULeaf 13 0.8967 0.1 0.9415
Computers 3 0.6575 0.2 0.7118
ProximalPhalanxOutlineCorrect 5 0.9423 0.01 0.9508
synthetic_control 15 0.9571 0.05 0.9335
DiatomSizeReduction 142 0.9269 0.01 0.9575
Haptics 4 0.7864 0.1 0.8596
Earthquakes 7 0.5433 0.1 0.8893
LargeKitchenAppliances 3 0.6119 0.2 0.5990
RefrigerationDevices 7 0.6292 0.2 0.8416
ScreenType 3 0.7215 0.2 0.7952
SmallKitchenAppliances 2 0.5945 0.2 0.6502
Cricket_X 8 0.9197 0.1 0.9591
Cricket_Y 7 0.9178 0.1 0.9586
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Table B.2 � Dimensionality per stopping criteria per dataset.

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

BeetleFly 4 6 6 174 4 5 8 160
BirdChicken 4 7 16 174 5 7 15 100
Co�ee 5 11 17 157 4 13 50 88
OliveOil 5 9 12 177 3 6 53 87
Beef 3 6 55 171 2 4 34 43
Wine 2 7 9 150 1 5 25 30
Car 4 20 68 178 4 18 37 96
Meat 3 7 71 171 3 17 29 59
Lighting2 5 14 59 181 5 16 33 129
Herring 4 25 70 174 4 16 56 91
Lighting7 5 25 46 161 6 15 48 120
FaceFour 5 13 52 163 6 11 55 115
Trace 2 11 27 156 1 5 5 11
ECG200 5 15 86 125 3 24 43 76
Ham 7 27 103 170 4 29 48 98
Plane 3 17 39 137 2 14 25 56
ToeSegmentation2 7 17 56 162 5 13 71 127
Gun_Point 2 10 23 138 1 6 6 26
FISH 6 26 41 171 6 29 74 119
ArrowHead 3 8 35 153 2 11 23 64
ShapeletSim 3 11 174 174 8 9 55 170
Worms 10 30 66 192 9 26 54 187
WormsTwoClass 8 37 54 192 9 39 47 182
ProximalPhalanxOutlineAgeGroup 4 29 47 119 3 18 37 75
ToeSegmentation1 7 23 61 156 9 19 47 144
OSULeaf 9 48 70 169 9 39 64 164
Computers 3 31 52 185 3 9 20 103
ProximalPhalanxOutlineCorrect 3 32 38 119 2 25 25 69
synthetic_control 4 33 36 110 3 22 44 88
DiatomSizeReduction 2 2 2 162 1 7 9 32
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Table B.2 continued from previous page

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

Haptics 5 18 32 197 4 23 31 124
Earthquakes 3 11 14 174 1 15 15 112
LargeKitchenAppliances 6 22 30 185 1 15 24 101
RefrigerationDevices 5 23 40 185 4 27 41 108
ScreenType 2 44 46 185 1 32 35 110
SmallKitchenAppliances 1 1 20 185 3 14 14 84
Cricket_X 5 59 93 159 5 65 97 141
Cricket_Y 5 45 50 159 5 71 83 134
Cricket_Z 6 68 102 159 5 70 96 139
Adiac 3 27 43 143 2 21 25 45
MiddlePhalanxTW 4 25 59 119 3 23 25 73
DistalPhalanxOutlineAgeGroup 3 26 84 119 2 26 33 48
DistalPhalanxTW 3 21 38 119 3 18 25 65
MiddlePhalanxOutlineAgeGroup 4 25 58 119 4 30 32 96
ProximalPhalanxTW 5 26 40 119 4 22 28 76
50words 5 47 78 156 4 46 81 135
InlineSkate 6 23 52 213 4 13 30 83
ShapesAll 6 41 46 174 5 46 51 148
DistalPhalanxOutlineCorrect 4 27 53 119 3 23 36 63
MiddlePhalanxOutlineCorrect 4 31 50 119 4 27 32 81
SonyAIBORobotSurface 5 9 31 114 6 15 32 96
Strawberry 3 26 84 151 2 16 36 44
SwedishLeaf 4 34 62 132 4 34 58 105
WordsSynonyms 4 57 78 156 4 52 65 126
MedicalImages 4 41 55 126 3 36 57 82
PhalangesOutlinesCorrect 2 37 53 119 2 27 27 57
ECGFiveDays 5 8 25 135 4 9 31 59
CBF 3 8 47 132 4 6 34 106
SonyAIBORobotSurfaceII 4 10 43 113 5 8 38 94
Symbols 3 5 7 167 2 10 21 39
HandOutlines 6 22 125 225 3 30 46 56
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Table B.2 continued from previous page

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

ItalyP owerDemand 3 17 35 84 2 13 28 48
TwoLeadECG 3 4 53 120 3 6 13 52
MoteStrain 4 8 38 120 2 7 17 66
CinC_ECG_torso 5 9 51 210 4 12 35 105
FaceAll 5 49 90 134 6 63 68 131
Phoneme 6 14 33 195 4 21 26 113
NonInvasiveFatalECG_Thorax1 4 68 86 186 2 49 49 66
NonInvasiveFatalECG_Thorax2 3 42 72 186 2 34 39 57
InsectWingbeatSound 6 42 46 153 5 44 54 119
FacesUCR 7 37 64 134 6 27 52 123
MALLAT 4 15 31 195 3 14 20 70
yoga 4 29 67 169 3 28 55 117
UWaveGestureLibraryAll 7 86 109 192 7 69 96 185
uWaveGestureLibrary_X 5 71 96 159 5 70 75 118
uWaveGestureLibrary_Y 5 60 69 159 5 44 57 113
uWaveGestureLibrary_Z 5 57 57 159 5 50 64 125
FordA 8 33 58 174 6 33 47 166
FordB 8 38 53 174 5 42 42 163
ChlorineConcentration 2 28 50 141 2 20 38 77
Two_Patterns 6 63 65 132 5 49 62 99
ECG5000 4 55 96 135 3 38 72 85
wafer 2 25 25 138 2 21 21 56
ElectricDevices 3 23 61 125 3 23 58 110
StarLightCurves 4 28 55 195 2 19 22 45

AVERAGE 4.4 27.4 54.0 156.1 3.8 25.2 41.5 95.9
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Table B.3 � AUC per stooping criteria per dataset.

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

BeetleFly 0.635 0.593 0.593 0.823 0.623 0.648 0.648 0.828
BirdChicken 0.790 0.810 0.845 0.883 0.805 0.815 0.830 0.890
Co�ee 0.911 0.944 0.944 0.967 0.894 0.929 0.945 0.967
OliveOil 0.944 0.943 0.954 0.991 0.931 0.954 0.988 0.993
Beef 0.943 0.961 0.971 0.984 0.972 0.981 0.983 0.986
Wine 0.959 0.974 0.980 0.988 0.889 0.955 0.988 0.987
Car 0.941 0.956 0.964 0.963 0.935 0.963 0.970 0.956
Meat 0.963 0.972 0.980 0.980 0.947 0.981 0.982 0.966
Lighting2 0.874 0.898 0.932 0.930 0.917 0.917 0.921 0.925
Herring 0.934 0.970 0.977 0.975 0.930 0.959 0.974 0.979
Lighting7 0.923 0.947 0.945 0.957 0.934 0.944 0.948 0.953
FaceFour 0.760 0.760 0.833 0.818 0.781 0.779 0.819 0.814
Trace 0.980 0.985 0.985 0.958 0.970 0.982 0.982 0.964
ECG200 0.920 0.942 0.959 0.961 0.895 0.950 0.951 0.958
Ham 0.903 0.946 0.965 0.963 0.891 0.956 0.962 0.966
Plane 0.966 0.980 0.983 0.983 0.964 0.983 0.983 0.982
ToeSegmentation2 0.816 0.833 0.865 0.863 0.763 0.795 0.858 0.857
Gun_Point 0.961 0.981 0.985 0.983 0.953 0.977 0.977 0.970
FISH 0.927 0.964 0.967 0.973 0.925 0.962 0.972 0.973
ArrowHead 0.891 0.904 0.935 0.956 0.875 0.899 0.907 0.943
ShapeletSim 0.575 0.576 0.586 0.586 0.633 0.638 0.608 0.584
Worms 0.840 0.867 0.875 0.879 0.836 0.857 0.875 0.879
WormsTwoClass 0.840 0.883 0.888 0.885 0.828 0.882 0.881 0.884
ProximalPhalanxOutlineAgeGroup 0.943 0.986 0.987 0.975 0.932 0.977 0.983 0.969
ToeSegmentation1 0.789 0.825 0.832 0.843 0.803 0.815 0.834 0.844
OSULeaf 0.862 0.918 0.921 0.933 0.872 0.910 0.918 0.933
Computers 0.911 0.937 0.934 0.910 0.911 0.913 0.934 0.898
ProximalPhalanxOutlineCorrect 0.950 0.986 0.987 0.975 0.939 0.983 0.983 0.969
synthetic_control 0.940 0.952 0.952 0.956 0.911 0.945 0.952 0.955
DiatomSizeReduction 0.910 0.910 0.910 0.964 0.880 0.957 0.957 0.960
Haptics 0.932 0.946 0.949 0.889 0.925 0.948 0.947 0.896
Earthquakes 0.825 0.831 0.830 0.663 0.823 0.831 0.831 0.656
LargeKitchenAppliances 0.870 0.880 0.876 0.841 0.843 0.882 0.876 0.828
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Table B.3 continued from previous page

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

RefrigerationDevices 0.880 0.910 0.906 0.900 0.869 0.899 0.902 0.899
ScreenType 0.947 0.955 0.955 0.934 0.943 0.951 0.950 0.923
SmallKitchenAppliances 0.883 0.883 0.877 0.837 0.842 0.868 0.868 0.835
Cricket_X 0.930 0.968 0.970 0.974 0.940 0.970 0.975 0.976
Cricket_Y 0.922 0.966 0.966 0.975 0.935 0.972 0.972 0.975
Cricket_Z 0.935 0.971 0.974 0.972 0.934 0.971 0.973 0.974
Adiac 0.969 0.983 0.983 0.982 0.955 0.981 0.981 0.982
MiddlePhalanxTW 0.926 0.965 0.972 0.966 0.922 0.962 0.961 0.962
DistalPhalanxOutlineAgeGroup 0.930 0.962 0.955 0.952 0.897 0.936 0.937 0.932
DistalPhalanxTW 0.925 0.955 0.960 0.956 0.917 0.949 0.954 0.947
MiddlePhalanxOutlineAgeGroup 0.952 0.971 0.973 0.973 0.944 0.968 0.968 0.971
ProximalPhalanxTW 0.942 0.976 0.978 0.967 0.932 0.974 0.973 0.956
50words 0.940 0.965 0.972 0.968 0.914 0.960 0.968 0.964
InlineSkate 0.963 0.970 0.976 0.971 0.935 0.956 0.964 0.972
ShapesAll 0.961 0.975 0.975 0.974 0.948 0.977 0.978 0.973
DistalPhalanxOutlineCorrect 0.946 0.971 0.975 0.972 0.938 0.970 0.970 0.965
MiddlePhalanxOutlineCorrect 0.966 0.982 0.982 0.980 0.966 0.980 0.980 0.979
SonyAIBORobotSurface 0.810 0.811 0.865 0.897 0.765 0.853 0.855 0.894
Strawberry 0.988 0.995 0.996 0.997 0.977 0.996 0.997 0.997
SwedishLeaf 0.950 0.975 0.980 0.975 0.954 0.977 0.979 0.975
WordsSynonyms 0.927 0.967 0.966 0.957 0.919 0.964 0.965 0.956
MedicalImages 0.975 0.988 0.989 0.987 0.965 0.989 0.987 0.986
PhalangesOutlinesCorrect 0.963 0.991 0.991 0.988 0.954 0.989 0.989 0.985
ECGFiveDays 0.937 0.939 0.939 0.955 0.920 0.926 0.943 0.944
CBF 0.914 0.936 0.952 0.955 0.915 0.925 0.949 0.952
SonyAIBORobotSurfaceII 0.785 0.808 0.838 0.866 0.771 0.801 0.844 0.859
Symbols 0.882 0.883 0.887 0.944 0.916 0.921 0.927 0.935
HandOutlines 0.946 0.976 0.983 0.979 0.937 0.975 0.976 0.975
ItalyPowerDemand 0.936 0.965 0.968 0.976 0.906 0.967 0.974 0.976
TwoLeadECG 0.812 0.810 0.892 0.910 0.858 0.880 0.882 0.907
MoteStrain 0.888 0.902 0.910 0.919 0.822 0.898 0.897 0.914
CinC_ECG_torso 0.935 0.950 0.968 0.968 0.924 0.949 0.964 0.968
FaceAll 0.871 0.914 0.915 0.900 0.875 0.916 0.914 0.899
Phoneme 0.824 0.853 0.856 0.847 0.832 0.858 0.859 0.843
NonInvasiveFatalECG_Thorax1 0.981 0.994 0.994 0.993 0.971 0.994 0.994 0.991
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Table B.3 continued from previous page

Dataset DPRS_t DPRS_l DPRS_g DPRS_f F+DPRS_t F+DPRS_l F+DPRS_g F+DPRS_f

NonInvasiveFatalECG_Thorax2 0.980 0.995 0.996 0.995 0.976 0.995 0.995 0.994
InsectWingbeatSound 0.928 0.957 0.957 0.937 0.913 0.956 0.957 0.930
FacesUCR 0.921 0.952 0.959 0.964 0.919 0.944 0.950 0.963
MALLAT 0.947 0.955 0.958 0.970 0.944 0.962 0.962 0.967
yoga 0.961 0.984 0.987 0.985 0.954 0.984 0.986 0.985
UWaveGestureLibraryAll 0.915 0.957 0.958 0.957 0.917 0.954 0.958 0.957
uWaveGestureLibrary_X 0.927 0.961 0.963 0.962 0.927 0.963 0.963 0.961
uWaveGestureLibrary_Y 0.939 0.969 0.970 0.963 0.943 0.969 0.969 0.966
uWaveGestureLibrary_Z 0.934 0.966 0.966 0.964 0.932 0.964 0.966 0.963
FordA 0.746 0.773 0.776 0.715 0.734 0.774 0.778 0.715
FordB 0.723 0.737 0.739 0.666 0.707 0.740 0.740 0.662
ChlorineConcentration 0.987 0.998 0.998 0.998 0.987 0.998 0.998 0.998
Two_Patterns 0.935 0.976 0.976 0.975 0.929 0.975 0.976 0.973
ECG5000 0.971 0.987 0.987 0.986 0.963 0.985 0.986 0.985
wafer 0.981 0.994 0.994 0.988 0.984 0.993 0.993 0.987
ElectricDevices 0.929 0.969 0.970 0.941 0.929 0.969 0.970 0.941
StarLightCurves 0.960 0.973 0.974 0.961 0.938 0.964 0.964 0.955

AVERAGE 0.907 0.928 0.935 0.934 0.899 0.929 0.935 0.931
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Table C.1 � AUC comparison between (M-)PAA, (M-)LB_Keogh, and M-
DPSRbest .

AUC

Dataset PAA LB_keogh M-DPRS best,t M-DPRSbest,l M-DPRSbest,g M-DPRSbest,f

ArticularyW ordRecognition 0.9958 0.9941 0.9388 0.9842 0.9845 0.9871
AtrialFibrilation 0.6178 0.8889 0.8844 0.8489 0.7911 0.9111
BasicMotions 0.7688 0.7869 0.8500 0.8831 0.8862 0.8869
CharacterTrajectories 0.9616 0.9881 0.9163 0.9971 0.9971 0.9955
Epilepsy 0.6181 0.7482 0.8166 0.8784 0.8784 0.8332
EthanolConcentration 0.9360 0.7144 0.9276 0.9732 0.9728 0.9629
ERing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FingerMovements 0.9959 0.9125 0.7951 0.8814 0.8814 0.8289
HandMovementDirection 0.7413 0.8259 0.6329 0.7123 0.7123 0.6800
Handwriting 0.7060 0.8331 0.8164 0.9485 0.9502 0.8686
Heartbeat 0.5092 0.5940 0.5705 0.6077 0.6152 0.6123
JapaneseVowels 0.9777 0.9887 0.9701 0.9905 0.9909 0.9711
Libras 0.9909 0.9574 0.9279 0.9858 0.9871 0.9822
LSST 0.8326 0.8987 0.9370 0.9820 0.9820 0.9804
NATOPS 0.8806 0.9685 0.9343 0.9686 0.9722 0.9552
RacketSports 0.7752 0.9028 0.8709 0.9480 0.9503 0.9407
SelfRegulationSCP1 0.9451 0.9157 0.7318 0.7702 0.7702 0.7614
SelfRegulationSCP2 0.9482 0.8437 0.7430 0.7919 0.7919 0.7583
StandWalkJump 0.4333 0.9278 0.6889 0.8056 0.7833 0.8167
UWaveGestureLibrary 0.9798 0.9690 0.9455 0.9786 0.9815 0.9837

AVERAGE 0.8307 0.8829 0.8449 0.8968 0.8939 0.8858
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Table C.2 � The measured AUC per dataset considering the M-DPSR transformation and the stopping criterion.

Tangent Local Global Full

Dataset MDPSRs MDPSRi MDPSRd MDPSRs MDPSRi MDPSRd MDPSRs MDPSRi MDPSRd MDPSRs MDPSRi MDPSRd

ArticularyWordRecognition 0.9388 0.5986 0.8959 0.9842 0.6435 0.9620 0.9845 0.6604 0.9620 0.9871 0.6056 0.9616
AtrialFibrilation 0.4667 0.8844 0.5556 0.4667 0.8489 0.6400 0.5822 0.7911 0.7422 0.8178 0.7378 0.9111
BasicMotions 0.8056 0.4931 0.8500 0.8712 0.5637 0.8831 0.8656 0.5413 0.8862 0.8775 0.5125 0.8869
CharacterTrajectories 0.9163 0.6946 0.9042 0.9879 0.8939 0.9971 0.9879 0.8987 0.9971 0.9783 0.8831 0.9955
Epilepsy 0.8166 0.6959 0.8088 0.8438 0.7469 0.8784 0.8507 0.7539 0.8784 0.8332 0.8330 0.8040
EthanolConcentration 0.8843 0.8539 0.9276 0.9286 0.9011 0.9732 0.9314 0.9149 0.9728 0.9169 0.9172 0.9629
ERing 1.0000 0.5822 1.0000 1.0000 0.6278 1.0000 1.0000 0.6711 1.0000 1.0000 0.7567 1.0000
FingerMovements 0.7951 0.4973 0.7534 0.8403 0.5512 0.8814 0.8403 0.5391 0.8814 0.8289 0.4228 0.7078
HandMovementDirection 0.5694 0.5499 0.6329 0.6443 0.5204 0.7123 0.6487 0.5489 0.7123 0.5064 0.5286 0.6800
Handwriting 0.7794 0.7394 0.8164 0.8679 0.8000 0.9485 0.8735 0.8243 0.9502 0.8686 0.8084 0.7835
Heartbeat 0.5423 0.5705 0.5699 0.5691 0.5363 0.6077 0.5691 0.5696 0.6152 0.5486 0.6123 0.5757
JapaneseVowels 0.8393 0.9701 0.8614 0.9306 0.9905 0.9599 0.9306 0.9909 0.9565 0.7817 0.9711 0.9226
Libras 0.8870 0.9279 0.8760 0.9727 0.9806 0.9858 0.9737 0.9807 0.9871 0.9773 0.9822 0.9783
LSST 0.7872 0.9370 0.7698 0.8858 0.9820 0.8808 0.8858 0.9820 0.8808 0.8782 0.9804 0.8811
NATOPS 0.7619 0.9343 0.8539 0.8792 0.9686 0.9485 0.8812 0.9722 0.9522 0.6806 0.9552 0.8856
RacketSports 0.7110 0.8709 0.7757 0.8974 0.9480 0.8652 0.9015 0.9503 0.8652 0.9017 0.9407 0.7703
SelfRegulationSCP1 0.7318 0.5713 0.6412 0.7702 0.7028 0.6812 0.7702 0.7474 0.6812 0.5788 0.7614 0.6791
SelfRegulationSCP2 0.7430 0.6209 0.6631 0.7919 0.6848 0.7310 0.7919 0.6718 0.7316 0.7583 0.6649 0.6836
StandWalkJump 0.4778 0.6278 0.6889 0.6611 0.6167 0.8056 0.7444 0.6944 0.7833 0.7222 0.6056 0.8167
UWaveGestureLibrary 0.8776 0.9455 0.8873 0.9324 0.9786 0.9712 0.9377 0.9815 0.9793 0.9316 0.9837 0.9832

AVERAGE 0.7666 0.7283 0.7866 0.8363 0.7743 0.8656 0.8475 0.7842 0.8708 0.8187 0.7732 0.8435
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Résumé/Abstract
Titre : Recherche de Séries Temporelles à l'aide de DTW-Preserving Shapelets

Mots clés : séries temporelles, apprentissage automatique, représentation, sous-séquences

Résumé : L'établissement de la similarité entre sé-
ries temporelles est au cœur de nombreuses tâches
d'analyse de données. Les mesures permettant d'établir
des similitudes entre les séries temporelles sont spé-
ci�ques en ce sens qu'elles doivent pouvoir prendre
en compte les différences entre les valeurs consti-
tuant la série, ainsi que les distorsions selon l'axe du
temps. La mesure de similarité la plus répandue est
la mesure Dynamic Time Warping (DTW). Cependant,
son calcul est coûteux et son application à des séries
temporelles nombreuses et/ou très longues est dif�-
cile en pratique. Malgré de nombreuses contributions
visant l'accélération de la DTW, réussir son passage
à l'échelle de la DTW reste une dif�culté majeure. Le
travail présenté dans cette thèse s'appuie sur l'idée de
transformer les séries temporelles à l'aide de shape-
lets. Il montre comment des shapelets préservant les
mesures DTW peuvent être utilisées dans le contexte
spéci�que de la recherches de séries temporelles simi-
laires à une série utilisée comme requête, et cela dans

un contexte grande échelle. Il s'agit de plonger les sé-
ries temporelles dans un espace euclidien construit de
telle manière que les distances entre les séries selon
la métrique DTW s'y trouvent préservées. Ce manus-
crit apporte des contributions majeures : (1) il explique
comment les shapelets préservant la DTW peuvent être
utilisées dans le contexte spéci�que de la recherche de
séries temporelles similaires ; (2) il propose des stra-
tégies de sélection de ces shapelets pour faire face à
l'échelle, c'est-à-dire pour traiter une collection extrê-
mement vaste de séries temporelles ; (3) il explique
en détail comment gérer les séries temporelles univa-
riées et multivariées, couvrant ainsi tout le spectre des
problèmes de recherches et facilitant la moise au point
d'applications très diverses. Le cœur de la contribution
présentée dans ce manuscrit permet de compenser fa-
cilement la complexité du processus de plongement par
un jeu sur la précision de la recherche. Des expérimen-
tations utilisant les jeux de données UCR et UEA dé-
montrent l'amélioration considérable des performances
par rapport aux techniques de pointe.

Title: Time Series Retrieval Using DTW-Preserving Shapelets

Keywords: time-series, shapelets, machine-learning, paa, lower-bounding, retrieval

Abstract: Establishing the similarity of time series is
at the core of many data mining tasks such as time
series classi�cation, time series clustering, time series
retrieval, among others. Metrics to establish similarities
between time series are speci�c in the sense that they
must be able to take into account the differences in the
values making the series as well as distortions along
the timelines. The most popular similarity metric is the
Dynamic Time Warping (DTW) measure. However, it is
costly to compute, and using it against numerous and/or
very long time series is dif�cult in practice. There has
been numerous attempts to accelerate the DTW, yet,
scaling DTW remains a major dif�culty. An elegant re-
search direction proposes to change the representation
of time series such that it is much cheaper to estab-
lish similarities. This typically relies on an embedding
process where vectorial representations of time series
are constructed, allowing then to estimate their similarity
using e.g. L2 distances, much faster to compute than
DTW. Naturally, the quality of this representation largely
depends on the embedding process, and the family of
contributions relying on the concept of shapelets prove
to work particularly well. Shapelets, and the trans-
form operation materializing the embedding process,
were originally proposed for time series classi�cation.
Shapelets are independent subsequences extracted or

learned from time series to form discriminatory features.
Shapelets are used to transform time series in high di-
mensional (Euclidean) vectors. Recently, it was pro-
posed to embed time series into an Euclidean space
such that the distance in this embedded space well
approximates the true DTW. This contribution targets
time series clustering. The work presented in this Ph.D.
manuscript builds on the idea of transforming time se-
ries using shapelets. It shows how shapelets that pre-
serve DTW measures can be used in the speci�c con-
text of large scale time series retrieval. This manuscript
is making major contributions: (1) it explains how DTW-
preserving shapelets can be used in the speci�c con-
text of time series retrieval; (2) it proposes some shape-
let selection strategies in order to cope with scale, that
is, in order to deal with extremely large collection of
time series; (3) it details how to handle both univariate
and multivariate time series, hence covering the whole
spectrum of time series retrieval problems. The core
of the contribution presented in this manuscript allows
to easily trade-off the complexity of the transformation
against the accuracy of the retrieval. Experiments using
the UCR and the UEA datasets demonstrate the vast
performance improvements compared to state of the art
techniques.
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