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Agricultural land currently occupies more than a third of the world's land and is 

expected to feed more than 8.5 billion people by 2030. Faced with the constant increase in the 

world's population and in the context of global warming, one of the major challenges of this 

century lies in our ability to produce enough food in a sustainable manner, while preserving 

natural resources and limiting the pressures exerted by our societies on the environment. In 

this context, many scientific studies have shown the negative impacts of intensification and 

changes in land use (increase in monoculture, removal of hedgerows, development of the use 

of inputs such as nitrogen, pesticides and phosphorus, etc.) on the environment through the 

observation of degradation of water, soil, air quality and population health (Lambin and 

Meyfroidt, 2011; Newbold et al., 2015). This is particularly visible in regions such as Brittany 

where intensive agriculture dominates, and where changes in agricultural practices, landscape 

fragmentation, and land-use changes that have occurred over the past several decades have 

led to profound environmental disruptions. To mitigate these impacts, national and local 

European legislation and programs were developed from the 1990s onwards, leading to the 

implementation of spatial planning operations and actions to change agricultural practices. 

Thus, a new series of environmental measures was initiated in the early 2000s by the European 

authorities requiring the presence of vegetation cover and seeding of catch crops during the 

winter period, which is crucial for the transfer of pollutant flows (“Nitrates Directive,” 2019).   

Monitoring vegetation cover in winter is a major environmental and scientific challenge 

in agricultural areas. From an environmental perspective, the presence and type of vegetation 

cover in winter influences the transport of pollutants to watercourses by reducing the loss of 

nitrates, nutrients, pesticides or sediment from agricultural fields (Galloway et al., 2008; 

Withers et al., 2014). The lack of vegetation cover acts as an accelerator when soils are stripped 

after a main crop (maize, rapeseed, etc.), while catch crops act as an obstacle to flow and 

material transfers (Dabney, 1998). In this context, the identification and characterization of 

winter land-use is a major component of restoring water quality and sustainable management 

in agricultural landscapes (Corgne, 2004).  

However, knowledge of the spatio-temporal dynamics associated with winter land-use 

remains a challenge for the scientific community today. Indeed, from a methodological point 

of view, the characterization of the spatio-temporal dynamics of land use and land cover 

(LULC) at the scale of the agricultural plot is difficult because of the diversity of agricultural 

strategies and practices in winter. Identifying winter land-use remains a major scientific 

challenge for the remote sensing community.  
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In this context, spatial remote sensing has emerged as a key tool for setting up methods land-

for use monitoring on large areas. In the early 2000s, a number of scientific studies showed the 

value of optical remote sensing with medium spatial resolution (from 250 m to 1 km) to meet 

this challenge. The works of Clark et al., (2010) and Zhang et al., (2003) have thus made it 

possible to develop the first methods of discrimination of large crop units on large areas. 

Nevertheless, the limits of these medium-resolution optical sensors were quickly reached to 

study land use during the winter period, particularly in areas where the plots are small, with 

only patches dominated by bare soils being identified (Lecerf et al., 2005). Subsequently, very 

high resolution optical spatial remote sensing data were evaluated to perform annual land-use 

mapping integrating winter crops. However, the limitation of this type of data lies in the small 

number of images that can be used during the winter period during which cloud cover may 

be frequent (Guerschman et al., 2015; Lillesand et al., 2015; Xu and Guo, 2014).  In this context, 

active spatial remote sensing makes it possible to remove this constraint insofar as it makes it 

possible to avoid meteorological, atmospheric and lighting conditions. The development, over 

the past twenty years, of SAR sensors such as Radarsat-2, which allow the acquisition of denser 

time-series with high spatial resolution, has confirmed their interest in identifying and 

characterizing land use in the winter period. Jiao et al., (2010); McNairn et al., (2001) and 

Skriver, (2011) have thus highlighted the value of these data for land-use classification through 

the use of dielectric properties of soil, surface roughness, and land cover structure. The launch 

of the Sentinel-1 and -2 SAR and optical satellites from 2014-2015 onwards opens up new 

possibilities for studying winter land-use. Thus, Belgiu and Csillik, (2018) and Vuolo et al., 

(2018) demonstrated the potential of Sentinel-2 images to map land use during the vegetative 

period. Bargiel, (2017) and Veloso et al., (2017) illustrated the value of Sentinel-1 data for the 

study and classification of annual crops. However, to date, very little research has 

demonstrated the value of SAR imagery in identifying and characterizing winter land-use, the 

main work done being to determine vegetation cover rates (Minh et al., 2018).  

In this context, the main objective of this thesis was to evaluate high spatial resolution 

SAR and optical time-series to identify winter land use at local and regional scales. More 

precisely, it consists in developing methods using these time series to (1) determine the most 

suitable classification method to identify land use in winter, both at the level of the classifier 

itself and the classification approach (pixel or object-oriented); (2) compare Sentinel-1 SAR 

images and Sentinel-2 optics; and (3) define the most suitable SAR configuration by comparing 

three image time-series (Alos-2, Radarsat-2 and Sentinel-1). 
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To achieve this objective, a general approach divided into 5 parts has been implemented: 

 The first part of this manuscript presents the thematic and methodological framework 

of this thesis in analysing first the challenges of winter land-use in intensive 

agricultural areas and their study, and, second, material and methods used in this 

thesis in exposing in details the study site, the data including field and remote sensing 

data and the methodology implemented.  

 The second part of this thesis, based on the thematic and methodological framework 

carried out in the first part, is mainly focused on the determination of the most 

appropriate classification procedure for the identification and characterization of 

winter land-use. This approach includes the evaluation of several classification 

algorithms, the determination of an optimal nomenclature and the assessment of 

optical (Sentinel-2) and SAR (Sentinel-1) time-series potential for this study.  

 The third part focuses on the evaluation of SAR imagery for the identification and fine 

characterization of winter land-use. It aims to determine the most appropriate SAR 

configuration for this purpose.  

 Finally, the objective of the last part is to evaluate the reproducibility of the 

classification method selected for the identification and characterization of winter 

land-use. One of the objectives of this approach is to extend the classification method 

implemented at a local scale to a regional one. 
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Introduction of the first part  

 

 

The first part of this manuscript presents the thematic and methodological framework of 

this thesis through the formalization of the issues related to the study of winter land-use in an 

intensive agricultural area and the approach required for its identification and 

characterization. 

The objective of this part is to implement a reflection based on the scientific literature, to 

improve understanding of winter land-use concepts and associated practices but also to define 

the methodological decisions that will be implemented in order to identify and characterize 

this land use during the winter period. 

In the first chapter, we will define the winter land-use concept. We also describe the 

elements of winter land-use in an agricultural landscape through an overview of legal 

measures implemented to regulate land-use during winter at the European scale. Finally, we 

will conclude this chapter with a part presenting the functional role of land use and its 

components. 

In the second chapter, first, we will provide a review of the characteristics and benefits of 

optical and SAR spatial imagery. In a second step, we will present state-of-the-art of the data 

and methods used in the scientific literature to identify and characterize land-use during 

winter. In order to accomplish these objectives, we will concentrate more particularly on the 

identification and characterization of winter land-use classes using remote sensing data 

(optical, SAR and the fusion of both sources). 

In the third chapter, we will present the study sites selected for this thesis. First, the Zone 

Atelier Armorique (ZAA) which is referenced in the ecology research networks (LTER and 

ILTER) as a privileged area ranging from a hedged agricultural landscape to an open field 

landscape, and secondly the Brittany region as an intensive agricultural area. Then we will 

describe the satellite data used during this thesis, the field data collected during these 3 years 

and the pre-processing applied to them. 

Finally, in the fourth chapter, we will discuss about the general methodology developed 

for this thesis. We will discuss the implemented approaches, including optical and SAR remote 

sensing data, but also field data used in these methodological processes. 
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I.1. Introduction  

 In this chapter, we will first define the notions, concepts of land use and land cover in 

order to provide a framework for the thematic approach. Then we will focus on the winter 

land-use classes framed by European legal measures. Finally, we will present the functions 

and constraints of land use in biogeochemical and environmental processes globally and with 

a focus on the winter cover components.  

I.2. Thematic framework 

The agronomic function of soils was discovered less than 10,000 years ago by our 

prehistoric ancestors and was, until recently, with all plant and animal production, the only 

recognized function or service provided by the soil. Half a century ago, new definitions and 

functions of soil emerged. Its major involvement in the functioning of terrestrial 

biogeochemical cycles and ecosystems, the support of urbanization or land-use planning have 

made the soil, in collective imagery, essential and stable support for agronomic production, 

renewable resource production and the development of societies. 

To optimize the use of these services and limit negative effects, the definition, and 

understanding of hazards and risks of physical, chemical and biological degradation in order 

to suggest sustainable soil protection and management measures have been a longstanding 

and crucial issue. More recently, the management of environmental, economic and soil policy 

issues have become a subject of concern and questioning at an international level to ensure the 

food security of a growing world population and to alleviate the ever-increasing 

environmental problems. In this context, the understanding of the transversal functions and 

processes affecting soils and their use is still a major challenge for several communities: 

scientific, decision-making and others (Girard et al., 2011). To achieve this understanding, it is 

essential to identify the main concepts such as land use and land cover as support for processes 

influencing soil dynamics. However, even today, a precise and explicit definition of these 

concepts is still complicated by the ensuing interactions and are therefore still the subject of 

divergence. 

Land cover was frequently defined as the biophysical characteristics of a landscape or an 

environment (Meyer and Turner, 1992). However, new approaches have highlighted land 

cover as vegetation (natural or planted) or artificial constructions (buildings, etc.) on the 

ground surface. Water, ice, bare rock, sand, and other similar surfaces also count as land cover  

(“Michigan state university,” 2019; US Department of Commerce, 2019).  Conversely, land use 

has often been represented by several concepts defined according to a common denominator, 

the human factor's impact. For example, Brown and Duh, (2004) and Foley et al., (2005) define 

land use as human activity on land and their intention for land. Nevertheless, a new 

perspective has emerged from recent research that defines it as a set of land operations carried 

out by humans with the intention of obtaining products and/or benefits through the use of 

land resources (“Michigan state university,” 2019; US Department of Commerce, 2019).  

The diversity of definitions and concepts surrounding land use and land cover exists since 

several decades now bringing many confusions. In recent years, a significant number of 

studies have been carried out on this issue, highlighting the debates that have occurred 

regarding the designation and definition of these concepts, which remain inherently linked 

(Comber et al., 2005, 2003; Veldkamp and Verburg, 2004). Indeed, as Meyer and Turner (1992) 

have presented, the establishment of a relationship between both is an immediate cause of 
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change. Human activities (“land use”) modify directly the physical environment that is often 

described as “land cover”. These activities reflect human objectives shaped by underlying 

social drivers, which can change the land cover and lead to environmental consequences that 

can ultimately affect land use. In this context, it becomes difficult to consider only one narrow 

definition, as pointed out by Comber (2008), for whom the common approach to overcome 

this confusion is to transform land cover classes into land use, as shown in Figure I.1 (Hu et 

al., 2016). 

A method is then established in place to identify aspects of land use and land cover. For 

example, the economic and social value in urban contexts and food production in rural areas. 

Each class is scored in each dimension. The combination of scores determines the degree of 

land use or land cover. Thus, the approach separates the concepts of land cover and land use 

from the task at hand, and results show the degree of land use, land cover and the locations 

where the concepts of land use and land cover are confused (Comber, 2008).  In other words, 

the definition of these two concepts is related to each person's perception in a specific context, 

according to their own approach. This means that both concepts may be used as long as a 

framework is established in order to define the subject of the developed thematic approach. In 

this thesis, a thematic scoping defined winter "land use" as the object studied and as a sub-

segment of winter agriculture a land-cover class. Concept defined by legal measures 

establishing an institutional framework that we will present in the next section. 

 

Figure I.1: Mapping demonstrating the confusion between land use and land cover (Hu et al., 

2016). 
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I.3. Legal measures 

 Pressures related to land-use, whether environmental, economic or human, have 

always been major issues for the scientific community but also for decision-makers. From this 

perspectives, for decades many policies have been implemented to establish a legislative 

framework structuring land use. In this context, the policies relative to winter land-use are an 

important part of it. To meet these issues, since the early 1990s, national and international 

policies have been instituted to contextualize authorized land-use practices during the winter 

season. Two of these policies are now recognized as reference texts structuring winter land-

use practices.   

I.3.1. The European Directive 91/676/EEC 

The European Directive 91/676/EEC, also known as the "Nitrates Directive", was 

introduced in December 1991 in response to non-compliance with the environmental 

standards set by Directive 75/440/EEC of 1975 on the quality required for surface waters used 

for drinking water production (“Nitrates Directive,” 2019). This directive aims to supervise 

and organize the installation of winter land-use. In France, this directive is enshrined in 

legislation through two action programs. 

 A national action program (NAP) that establishes the framework for all French vulnerable 

areas. 
 

 Regional action programs (RAPs), which specify in a proportionate and adapted way for 

each territory, the additional measures and reinforcements necessary to achieve the 

objectives of improving water quality in relation to agricultural nitrate pollution. 

To prevent pollution, five action programs of the “Nitrates Directive” were successively 

implemented between 1996 and 2018. These programs have established a set of measures in 

order to restore and/or preserve the quality of surface and ground waters in areas where the 

quality has been degraded. Since August 2018, a 6th action plan has been implemented. It takes 

up and extends the measures introduced in the previous action programs. One of the most 

important measures and the subject of this thesis, is the obligation to establish land use during 

winter season (“Nitrates Directive,” 2019). This obligation has been intensified with the 

implementation of national and international policies "Areas of Ecological Interest (AIS)" 

resulting from the Common Agricultural Policy (CAP) and the nitrate directives, which 

require the establishment of vegetation covering during the critical period in order to prevent 

pollutant transfers to the environment. In an intensive agricultural region such as Brittany, it 

is reflected in the establishment of a four winter land-use categories: 

I.3.1.1. Winter Crops 

Considered as one of the winter land-use types, winter crops are main crops sown 

between October to November and harvested during the following summer (between June 

and July). This category includes winter wheat, winter barley, and rapeseed (Fig. I.2), which 

are the three predominant winter crops in the French agricultural system. These crops are 

harvested to provide grain and fodder for livestock.     
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Figure I.2: illustration of two types of winter crops. A) Winter wheat, B) Winter barley and C) 

Rapeseed. 

I.3.1.2. Grasslands 

Considered as a permanent cover with major importance in the preservation of the 

environment and biogeochemical processes, grasslands have been the subject of a large 

amount of research over the past decades. The term "grassland" is a concept with very 

contrasting realities (Fig. I.3), represented by a wide diversity of cover ranging according to 

the environments and human activities (Sanderson et al., 2009). To date, several categories 

have been used to describe grasslands in agricultural environments, the simplest of which was 

established in 1998 by the Central Service for Studies and Statistical Surveys of the Ministry of 

Agriculture, based on their botanical composition, their duration and their management 

method. This typology distinguishes three main categories of grasslands (Dusseux et al., 2014): 

 Surfaces always grassy or permanent grasslands. 

 Temporary grasslands that must be replaced every 5 years.  

 Artificial grasslands. 

 

Present on the field during a year without interruption, grasslands are considered to be 

the most suitable cover in order to reduce erosion and prevent pollutant transfers towards the 

environment. However, they remain an agricultural cover used for its forage quality with 

various management methods (such as grazing or mowing), with diverse impacts on the 

environment and biogeochemical cycles. Management variations and continuous presence all 

year round make grasslands a land-use class with a specific phenological profile that changes 

from each year and from each field (Gibson, 2009). 
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Figure I.3: Illustration of grassland types. 

I.3.1.3. Catch crops 

The concept of intercropping refers to several agricultural practices depending on the 

country. For most of them, intercropping is considered as the process of sow two or more crops 

at the same time in the same field. The most common purpose of intercropping is to achieve 

higher yield using resources that would not be used in a single crop (Ouma and Jeruto, 2010). 

In the French agricultural system, the concept of intercropping represents primarily the period 

between the harvest of the main crop and the sowing of the next. Its length depends on the 

harvest and sowing dates of the main crops, ranging from a few days to several months (up to 

9 months) in the case of a spring crop (“INRA - Catch crops,” 2012). During this period, an 

intermediate crop, also called "intercrop", was established, in order to provide ecosystem 

services (agronomic and ecological) through agro-ecological functions such as reducing 

runoff, erosion or leaching (transferring nitrates to the environment). 

In the scope of the thesis, this winter land-use class will be mentioned under the name 

"catch crops" in order to avoid any confusion with the concept of intercropping that is 

highlighted in the scientific literature. We distinguish 2 types of "Catch crops": 

 Catch crops no used (intermediate cultures nitrate trap, CIPAN in French, (Fig. I.4), 

present on the fields during the winter period only, they have for aim to stock nitrogen 

and to prevent leaching toward the environment. They are destroyed during the spring 

in order to sow the next main crop without specific valorization. However, they 

provide an agronomic value by facilitating tillage in particular. In the framework of the 

European Directive 91/676/CEE, a list of catch crops no used has been defined by 

European authorities to keep the most optimal varieties in order to prevent pollutant 

transfers (Table I.1). 
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Table I.1: Catch crops no use authorized during the winter season. 

Crops Frosty species 

Oat X 

Bromine  

Garden cress X 

Orchard grass  

Fescue  

Timothy grass  

Moha  

Mustard X 

Fodder turnips  

Nyger X 

Rough bluegrass  

Phacelia X 

Fodder radish X 

Rye-grass  

Sorghum X 

Buckwheat X 

Rye  

Sunflower X 

 

        

Figure I.4: Illustration of catch crops no used. A) Phacelia; B) Mustard. 

 Catch crops used (Dérobées in French, Fig. I.5), present on the fields during the winter 

period too, have for aim to prevent pollutant transfers and to provide a supplementary 

yield in a short time (forage). Contrary to the catch crops no used, they provide less 

effective protection against agricultural pollutant transfers due to the farming 

practices. In this land-use class, we find crops such as ryegrass or fodder cabbage. 
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Figure I.5: Illustration of catch crops used. A) Ryegrass; B) Fodder cabbage. 

The establishment of catch crops has been made mandatory with the European Directive 

91/676/CEE previously mentioned. It also determines the efficiency conditions of these covers, 

particularly in an intensive region such as Brittany, where nitrogen production per hectare 

between November 1st and March 1st is important. During this period, all sowing conditions 

must be performed in order to absorb nitrogen, to limit erosion and to prevent leaching 

towards water bodies (“Nitrates Directive,” 2019). To this end, it’s necessary to:  

 Sow early, by sowing directly after harvest, the catch crop can develop to her maximum 

extent.  

 Choose the crop species according to the previous main crop. 

 Sow the catch crop properly, with prior tillage and adapted seeding. 

 Adapt the destruction methods according to the crop species. 

I.3.1.4. Crop residues and temporary bare soil  

The two last winter land-use classes represent crop residues and temporary bare soils. The 

European Directive 91/676/CEE mentioned above, requires the establishment of winter land-

use to prevent pollutant transfers. However, under certain conditions, farmers can leave the 

residues of the main crop (globally maize, Fig. I.6) in the field without sowing a catch crop. 

This practice is however regulated by strict conditions. First of all, it applies only to fields 

where the harvest was realized after the November 1st, i.e. mainly for maize crops. Then, soil 

cover can be obtained by finely grinding and burying the maize residues within 15 days of the 

harvest (“Nitrates Directive,” 2019). 
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Figure I.6: Illustration of a crop residues parcel. 

Finally, to conclude the “legal measures” section, it is important to mention the bare soils, 

which is probably the most difficult class to determine. The definition of the term is still 

complicated, it refers to the soil without crops or vegetation cover. However, the main 

difficulty lies in determining the minimum length of time we can consider soil as a part bare 

soil class (i.e. long-term bare soil). During the winter period, there is still a moment when 

parcels can be categorized as bare soil from the end of the main crop harvest (Fig. I.7) until the 

emergence of a catch crop or a next main crop. However, the designation bare soil, as a class 

must be assigned when its presence persists over time and thus involves a risk to the 

environment. But today in an intensive agricultural region such as ZAA with high nitrate 

concentrations, the European Directive 91/676/EEC being restrictive, it remains difficult to find 

long-term bare soils except in some exceptions (“Nitrates Directive,” 2019). In this situation, 

European Directive 91/676/EEC requires these parcels to be declared before September 1st, 

through the elaboration of a document explaining the reasons for this non-coverage (Appendix 

1). In this thesis, we first attempted to identify temporary bare soils as a winter land-use class 

(Part 2). However, the results showed that this class could not be considered and thus would 

be excluded in Part 3 to 5. 

 

 

Figure I.7: Illustration of a temporary bare soil. 
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I.3.2. The rules of Good Agricultural and Environmental 

Conditions (GAEC) 

The second European measure corresponds to the Good Agricultural and Environmental 

Conditions (GAEC) rules. They are part of a wider framework relating to the conditionality of 

subsidies granted by the CAP to farmers. This concept was introduced in 2003 by the reform 

of Council Regulation No 1782/2003 of the CAP. Under the new CAP 2015-2020, the rules of 

conditionality have been simplified, but not significantly modified. In this context, France has 

chosen to rationalize the conditionality requirements, especially with the implementation of 

the new green payment. Conditionality involves requirements relating to compliance with 

regulatory provisions in the environment, animal protection, animal production health, crop 

production health, and Good Agricultural and Environmental Conditions ("GAEC"), that the 

farmer must respect on the areas, animals and elements over which he has control (“GAEC,” 

2019). These rules, divided into 7 norms, stipulate the establishment of ecological interest areas 

maintained by farmers up to 5% of their arable land surface. These areas are divided into two 

groups, agricultural covers, and landscape elements, their functions are to limit pollutant 

transfer and preserve biodiversity by promoting the implementation of green corridors 

(Appendix 2). In this thesis, we will focus on the fourth norm relating to the vegetative cover 

of soils in winter period whose primary objective is to promote carbon storage. 

I.4. Function and integration of winter land-use in the agricultural 

landscape 

Contemporary society needs appropriate information regarding many aspects of its 

activities to establish sustainable measures. Winter land-use is only one of these issues but has 

become more significant as States consider overcoming environmental degradation, loss of 

agricultural land quality, wetland destruction, and loss of fish and wildlife habitat (Anderson, 

1976). 

Knowledge of winter land-use is essential for analyzing the environmental processes and 

problems in order to improve or maintain living conditions. In this situation, actualize, precise 

and meaningful data on winter land-use are essential for public and private organizations in 

order to establish optimal scenarios for future actions. However, the acquisition of this 

information regarding winter land-use is based on the understanding of the primary functions 

of the agricultural landscape. To date, a large number of studies have demonstrated the 

significant contribution of winter land-use to biogeochemical and environmental processes, in 

particular on the water cycle, biodiversity, health and broader climate scales, which are 

considered as the primary functions of an agricultural area (Foley et al., 2005; Galloway et al., 

2004). The functional role of winter land-use is part of multidisciplinary approaches. 

During this thesis project, we focused on the agronomic and ecological functions of winter 

land-use. In other words, on its contribution to the water cycle processes, but also on the 

involvement in the preservation and conservation of biodiversity. 

I.4.1 Biogeochemical cycles 

As the main mechanism for transporting particles and sediments to drainage channels 

such as rivers, water is considered to be the most important element in biogeochemical cycles. 

Understanding integrated flows within the water cycle has become crucial to predict and 
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manage transfers of nutrients, sediments, and contaminants in agricultural watersheds 

(Haygarth and Jarvis, 2002). In this context, water plays an essential part as a major element of 

land-atmosphere exchanges, but especially biogeochemical exchanges that are increasing of 

interest. Nitrogen exchanges are one example among others, nitrogen is a fundamental 

element of any living being. Once in the soil, Nitrogen will undergo chemical transformations 

to form nitrates. Nitrate is a highly volatile chemical element that can cause nutritional 

disorders leading to eutrophication and environmental degradation. This issue is particularly 

true in an environment where the intensive agriculture has become a significant issue to satisfy 

a constantly growing population, which is recognized today as one of the main factors in the 

disruption of major biogeochemical cycles (water, carbon, nitrogen, phosphorus) for the 

degradation of terrestrial and aquatic ecosystems. 

In this context, the winter land-use has a special place. Indeed, numerous studies have 

demonstrated the importance of winter land-use elements as a limiter of agricultural flow 

transfers (pollutants, sediments, etc.). The works of Decau and Pujol, (1992) and Soussana and 

Lüscher, (2007) are consistent with this approach by emphasizing the significant contribution 

of winter crops (wheat, barley, etc.) and grasslands to regulate agricultural flows into the 

environment. Along these lines, many studies have also demonstrated the important function 

of catch crops in reducing agricultural pollutant transfers (nitrogen, pesticides, etc.) to the 

environment (Dabney et al., 2009; Wagger et al., 1998). Moreover, research has proven that 

inappropriate management of winter land-use represents a potential risk of agricultural 

pollutants being transferred to the environment. (Lacroix, 1995) thus demonstrated the 

incapacity of cereal crops (wheat, barley, oats, etc.) to catch the nitrogen excess, increasing the 

risk of transfer to the environment. 

From this perspective, the establishment of winter land-use has become essential for 

regulating the transfer of nutrients, sediments and agricultural pollutants to the environment. 

Furthermore, despite the potential of winter land-use, it is important to be aware of the 

diversity and inequality of land-use classes as regards their involvement and contribution to 

the optimal management of flow transfers into the environment. 

I.4.2. Biodiversity  

In recent decades, land-use changes related to climate change have led to a significant 

decrease in distribution areas and the extinction of hundreds of species. Even more dramatic 

changes are expected in this century. The acceleration of these changes and the destruction of 

natural habitats caused by land-use changes are recognized as the two greatest threats to 

biodiversity (Jetz et al., 2007). In this context, understanding the functional role of winter land-

use in biodiversity preservation is still a significant issue. For several years, numerous studies 

have shown that specific winter land-use classes, promote the preservation and development 

of biodiversity. Nicholls and Altieri, (2013) and Peeters, (2009) thus highlighted the major 

contribution of grasslands but also of catch crops such as phacelia or mustard as support for 

biodiversity. In France, a significant amount of research conducted by government 

departments and research institutes (e. g. the Institut National de Recherche Agronomique 

(INRA) has contributed to the understanding and demonstrating the importance of catch crops 

in the preservation of biodiversity. These researches conducted by INRA (“CIPAN,” 2008) 

have presented the ecological functions of catch crops, such as the attractiveness of the parcel 

for insects and small wildlife, as a key factor in the preservation of biodiversity in agricultural 

environments. 
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Thus, the understanding of biodiversity/winter land-use interactions has become a 

significant interdisciplinary issue. Defined as a set of interconnected elements that create a 

functional environment, the comprehension of these interactions has been the subject of 

several studies to date, enabling us to identify their interests and limits. However, despite the 

implementation of some research programs, few questions remain outstanding, in particular 

concerning the manner of monitoring the evolution of agricultural fields during the winter 

period in order to improve our understanding of land-use and biodiversity interaction 

dynamics. This is the context of this thesis, which aims to identify and characterize winter 

land-use elements required by European regulations relating to the vegetative cover of soils 

in winter period in order to protect the environment and limit agricultural pollutant 

transfers to populations. To this end, the methodological approach of this thesis aims to 

determine whether spatial remote sensing can be considered as an interesting instrument 

for the identification and characterization of winter land-use in order to realize an adapted 

monitoring of these areas. 
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II.1. Introduction  

Monitoring winter land-use has become a global environmental issue in recent decades, 

particularly in regions where intensive agriculture is prevalent. To overcome this issue, spatial 

remote sensing that is now considered as an essential tool for identifying and characterizing 

land use, could provide valuable information.  

Remote sensing is a concept that has evolved over the decades. It is currently recognized 

as a tool to derive information from land and water surfaces through the use of images 

acquired from an aerial perspective (without contact with the target), using electromagnetic 

radiation, from one or more regions of the electromagnetic spectrum, reflected or emitted by 

the land surface (Campbell and Wynne, 2011). One of the main benefits of remote sensing is 

the ability to conduct a land-use study at different scales of analysis. However, the quality of 

monitoring and its spatiotemporal accuracy inherently depend on the nature of the imagery 

and methods used to process it. 

The main purpose of this chapter is first to present the characteristics of remote sensing 

data that can be used to identify and characterize agricultural winter land-use. Secondly, to 

present a state of the art of works dealing with the study of winter land-use based on remote 

sensing data.  

II.2. Characteristics of remote sensing data 

Remote sensing provides information on the physical and biological characteristics of an 

object based on information derived from electromagnetic radiation (representing a 

disturbance of the electric and magnetic field), emitted or reflected by the Earth's surface. The 

decomposition of this radiation according to its components such as wavelength, energy or 

frequency represents the electromagnetic spectrum (Fig. I.8).  The decomposition of the 

spectrum wavelengths provided by airborne or spaceborne sensors provides a broader range 

of information. Nowadays, remote sensing offers an increasingly wide variety of data, 

allowing information to be collected from the optical (visible) to microwave and infrared 

wavelengths (Cracknell, 2007). 

 

Figure I.8: Electromagnetic spectrum (“Electromagnetic Spectrum,” 2016). 

However, it is essential to distinguish two types of acquisitions related to remote sensing 

data. The passive mode, which corresponds to the acquisition by a sensor of the 

electromagnetic radiation from a natural energy source (such as the sun) reflecting or emitting 
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from the Earth's surface. For this kind of acquisition, we find the optical and infrared data. 

Depending on the natural energy source, these sensors are sensitive to climatic conditions such 

as cloudiness or the lighting conditions, making it impossible the acquisition of night images 

due to the absence of a light source. 

Conversely, the active mode, which represents the acquisition of electromagnetic 

radiations from an artificial source that emits and acquires the backscattered signal from the 

Earth's surface, such as microwave sensors or SAR (Synthetic Aperture Radar). As a result, 

they are often unaffected by atmospheric climatic conditions (according to the frequency) 

(Lusch, 1999). 

As a consequence, active or passive sensors are privileged tools, for the observation of the 

Earth's surface. Passive sensors are characterized by their spatial, spectral and temporal 

resolution, which depends on the spectral domain (Caloz and Collet, 2001). SAR active sensors 

are characterized by their spatial and temporal resolution, but also by their frequency, 

polarization, and angle of incidence.    

II.2.1. Optical and infrared data 

Passive remote sensing has become an adapted instrument for monitoring global land 

surface conditions through the acquisition of land use and land cover information. In recent 

decades, the evolution of multispectral and hyperspectral satellites (optical and infrared) has 

led to new opportunities for land-use monitoring during winter season. Nevertheless, the 

achievement of these opportunities is related to the use of appropriate data to identify and 

characterize winter land-use. The determination of the suitable data to meet a thematic issue 

is based on the sensors' characteristics:  

The spatial resolution of a sensor designates the minimum size of an object that can be 

detected in an image. In remote sensing, the spatial resolution represents the pixel size, which 

is defined from the product of angular resolution and the distance between the sensor and the 

object to be discerned (Campbell and Wynne, 2011; Forshaw et al., 1983). It can range from one 

kilometer for sensors with low spatial resolution (such as MODIS, Proba-V,...); to one 

centimeter for very high spatial resolution (VHSR) sensors (such as Ikonos, 

Pléiades,...)(Duveiller and Defourny, 2010).  

The temporal resolution or revisit time corresponds to the time that the satellite will spend 

in order to achieve a complete orbital cycle, i.e. the time required to observe the same area. 

Temporal and spatial resolutions of sensors are intrinsically linked and depend directly on the 

sensor field of view. For a reduced field of view, a high spatial resolution and a low temporal 

resolution are obtained. Conversely, for an extended field of view, a low spatial resolution for 

a high temporal resolution (one to few days) are obtained (Canada, 2008). The time factor is 

consequently important in remote sensing, especially when:  

 Cloud cover is persistent (e. g. in the tropics), which limits the time of Earth's surface 

observation. 

 We want to monitor short-term phenomena (floods, oil spills, etc.). 

 Multi-temporal images are needed (for example, to study over several years the extent 

of crop diseases). 

 Temporal changes are used to distinguish two elements of the Earth's surface. 
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The spectral resolution is the ability of a sensor to distinguish two adjacent wavelengths. 

In other words, his ability to differentiate the spectral emissivity curves that characterize a 

target or surface for a set of wavelengths. This resolution is expressed as a function of the 

number of available spectral bands. It can consequently range from a few bands as for 

multispectral sensors to several tens in the case of hyperspectral sensors (Cracknell, 2007). 

These optical and infrared data are now widely used for land-use and land-cover 

observation at a given time (Immitzer et al., 2016). These observations are made possible 

through the development of descriptors, either by using empirical or semi-empirical methods. 

These descriptors can be presented as vegetation indices or biophysical variables by applying 

inverse modeling of radiative transfer (Jacquemoud et al., 2009). 

First, vegetation indices are arithmetic combinations of reflectances in the Visible and 

Near-Infrared (Fig. I.9). To date, a wide range of indices has been developed from simple ratios 

to more complex relationships. The most widely used remains the Normalized Difference 

Vegetation Index (NDVI), which corresponds to the ratio between the Near-infrared and Red 

spectral bands (Rouse Jr et al., 1974) (Eq. I.1). 

𝑵𝑫𝑽𝑰 =
𝑷𝑰𝑹−𝑹

𝑷𝑰𝑹+𝑹
   (Eq. I.1). 

In several publications, many of these vegetation indices were quickly considered 

unsuitable for the study of specific environments because of the lack of consideration of sensor 

spectral characteristics as well as soil and atmospheric effects. Therefore, some indices were 

developed taking these limits into account. The Soil Adjusted Vegetation Index (SAVI) 

developed in the 1980s is one of the indices developed following the limitations encountered 

by conventional vegetation indices. It also uses the ratio between Red and Near-infrared while 

applying a soil coefficient (Huete, 1988) (Eq. I.2). 

𝑺𝑨𝑽𝑰 = 
𝑷𝑰𝑹−𝑹

𝑷𝑰𝑹+𝑹+𝑳
∗ (𝟏 + 𝑳) (Eq. I.2). 

In this continuity, the development in the 1990s of indexes based on the Near and Mid-

infrared ratio, the normalized difference water index (NDWI) to highlight the water content 

of plants has become essential to study agriculture and forest areas (Gao, 1996) (Eq. I.3). 

𝑵𝑫𝑾𝑰 =
𝑷𝑰𝑹−𝑴𝑰𝑹

𝑷𝑰𝑹+𝑴𝑰𝑹
 (Eq. I.3). 
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Figure I.9: Illustration of vegetation indexes derived from a Sentinel-2 image from May 2017 

using a Red Green Blue (RGB) color composition. NDVI in Red (R); NDWI in Green (G); SAVI 

in Blue (B). 

Secondly, biophysical variables that use the optical properties of vegetation cover. For this 

thesis, 3 types were computed: 

 The Leaf Area Index (LAI), which is derived from leaf area density and canopy height, 

corresponding to the rate of land cover by the leaf area.  

 The FAPAR (Fraction of photosynthetically active radiation), which is the direct result of 

the canopy radiative transfer model. It is dependent on the canopy structure, the optical 

properties of the vegetation elements and the illumination conditions.  

 The FCover, which is the fraction of the soil covered by vegetation. It is mainly used to 

separate soil and vegetation in energy transfer processes, including temperature and 

evapotranspiration.  

These descriptors have already proved their potential to identify, characterize cultural 

practices, conduct inter-annual crop monitoring or to identify information on crop conditions 

and thus detect potential problems such as water stress, diseases... Nevertheless, its use is still 

restricted to periods when weather and atmospheric conditions remain favorable, which 

makes intra-annual monitoring and the identification and characterization of winter land-use 

difficult, particularly in temperate regions. In addition, despite the relevance of indexes and 

spectral variables derived from optical data, the information provided by these descriptors is 

confined to the canopy surface study. Thus, the characterization of the canopy internal 

structure remains quite limited (Betbeder, 2015). In this context, many scientists have 

considered the use active remote sensing (SAR) data for intra-annual monitoring to identify 

and characterize land use. 

  



Part 1. Winter land-use: concepts, data and methods 
 

31 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

II.2.2. SAR data 

Developed in the 1970s, the Synthetic Aperture Radar (SAR) system is a technology 

generating and receiving signals in the microwave wavelength. Microwave detection includes 

both the active and passive forms of remote sensing. They are located in a larger domain of 

the electromagnetic spectrum. According to the frequency, they are less impacted by 

atmospheric conditions, and can thus cross the cloud cover, while being less affected by 

weather conditions such as drizzle, dust and light rain. 

II.2.2.1. Principle of SAR systems in remote sensing 

A SAR is an active sensor operating in the microwave region of the electromagnetic 

spectrum (Fig. I.10). The first SAR sensor installed for Earth’s observation dates in the late 

1970s, SEASAT. Despite the rapid end to this sensor, its efficiency has made SAR imagery an 

essential source of information for observing the Earth's surface. Installed on a moving 

platform, a SAR system operates in 3 essential steps. i) A transmitter generates short 

microwave pulses at a regular interval that are concentrated into a beam by an antenna. ii) The 

beam illuminates laterally, with a defined incidence angle, the surface. iii) The signal is then 

backscattered by various illuminated objects to the receiver. Then, a SAR processes the signal 

to synthesize a high spatial resolution 2-D image (Lee and Pottier, 2009). 

 

Figure I.10: Atmospheric absorption bands in relation to radar wavelengths (“HUMBOLDT 

State university,” 2019). 

This system makes sensors independent of solar illumination (acquires days and nights), 

but also of cloud, fog or smoke conditions... The transmitted signal sent by SAR systems use 

wavelengths ranging from 0.75 cm to 1 m designated by letters (Table I.2), following:  

Table I.2: Microwave frequency of SAR sensors. 

Frequency (GHz (×𝟏𝟎𝟗)) Band name Wavelength (cm) 

40 - 26.5 Ka 0.75 – 1.1 

26.5 - 18 K 1.1 – 1.67 

18 - 12.5 Ku 1.67 – 2.4 

12.5 - 8 X 2.4 – 3.75 

8 - 4 C 3.75 – 7.5 

4 - 2 S 7.5 – 15 

2 - 1 L 15 – 30 

1 - 0.3 P 30 – 100 
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Subsequently, to provide information on a specific surface, measurements are performed 

by SAR systems comparing the received signal with the transmitted signal in terms of time 

and energy. Similar to optical sensors, the effectiveness of measurements performed by a SAR 

system depends on the specific characteristics and properties of the system, such as spatial 

resolution. This resolution is one of the most important criteria in SAR imagery. However, the 

pixel size should not be confused with the spatial resolution of an image. Spatial resolution is 

the minimum distance required between two targets to be discriminated. The pixel size is 

always smaller than the resolution. 

II.2.2.2. SAR Image Properties 

The synthesized SAR image is a 2-D, where an element (pixel) is associated to a small area 

of the Earth's surface whose size is determined by the SAR system's characteristics. Thus, each 

pixel provides complex information, represented by an amplitude and a phase, associated 

with the reflectivity of all the scattering contained in a SAR cell (Lee and Pottier, 2009). It is 

important to note that surface reflectivity, also called SAR backscatter, is dependent on SAR 

system parameters (frequency, polarization, incidence angle) and surface parameters 

(topography, local incidence angle, roughness, humidity, dielectric constant...) (Richards, 

2009). 

SAR images represent a specific acquisition geometry. SAR sensors are positioned on a 

moving platform (Fig. I.11) with a velocity (𝑉SAR) and a height (𝐻). During the displacement 

of the platform along the flight line also called "azimuth" (𝑦), the sensor with a fixed antenna 

transmits a signal to the ground with a defined angle of incidence (𝜃0). Then this signal 

illuminates the Earth's surface and the backscattered waves are received and recorded by the 

receptor. The surface 𝑥 and 𝑦 axis represent respectively "ground range" and "azimuth" 

directions (Lee and Pottier, 2009). 

The number of columns in the SAR image is determined by the sampling frequency 

acquisition of the backscattered wave. The higher the frequency, the more columns are and 

thus the greater the sharpness of the image. The first column corresponds to the illuminated 

surface closest to the sensor ("proximal range" or "near range"), the last to the furthest surface 

("distal range" or "far range"). In addition, it is important to note that the beam width is 

inversely proportional to the length of the antenna (also called aperture), so a long antenna 

will produce a thinner beam and a better resolution. 

 

Figure I.11: SAR image property (Lee and Pottier, 2009). 
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Through this specific geometric acquisition, targets located in the near range appear 

compressed compared to those in the far range, these distortions being related to the oblique 

scale. Thus, the pixel size in the azimuthal direction depends on the wavelength emitted, the 

size of the antenna and the ground-radar distance. Moreover, in the range direction a SAR 

image represents a measurement of the time required for the signal to interact with targets and 

be backscattered on the antenna. The complexity of image acquisition generates geometric 

distortions due to the difference between azimuth and ground distance. There are 3 types of 

distortions: 

 Layover occurs when the SAR signal reaches the top of a target before reaching its base, 

i.e. the difference (in distance) between the signal backscatter from the top and bottom 

of an object. It depends on the depression angle. To the greater the angle, the stronger 

the layover is and conversely the weaker it is the more limited the layover is (Lusch, 

1999). As a result, the order of the surface elements on the SAR image is the opposite 

of reality (Fig. I.12).  

 Foreshortening is undoubtedly the most significant distortion of SAR images. It is the 

dominant effect for images of mountainous areas, especially when the sensor has a 

high inclination. It occurs when the SAR signal reaches the base of a structure before 

reaching the top. This leads to cross-compression of backscattered radiometric 

information on slope areas (Lee and Pottier, 2009). In this case, as shown in Figure I.12, 

the slope of the object is shortened (smaller than reality). 

 The Radar shadow is dependent on the relationship between the angle of depression, the 

inclination and the orientation of the object's slope. It occurs when the beam is not able 

to illuminate the ground surface. Shadow areas appear as dark areas in the SAR image, 

corresponding to a zero signal (Fig. I.12).  

 

 

Figure I.12: SAR images geometric distortions (Lusch, 1999). 
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In addition to these geometric distortions, other specific effects occur for these SAR 

images. Speckle is one such example, it appears as a pepper and salt texture on the image and 

is a consequence of the principle of consistent acquisition of SAR data. A SAR image consists 

of several resolution cells. Within each resolution cell, several diffusers can coexist. Thus, the 

response of a resolution cell is the coherent sum of the scatterers present in the cell. The 

interference of these phase-shifted waves causes a pepper and salt effect on the image known 

as speckle. It causes a variation in pixel-by-pixel intensity that is manifested by this particular 

texture. It then complicates the interpretation and analysis of the image and reduces the 

effectiveness of the image segmentation and classification. There are 2 methods to limit these 

noise effects (Lee and Pottier, 2009; Mott, 2006) :  

 Multi-look processing which consists in acquiring several distinct images of the same 

scene, then by averaging all the images we obtain a final image where the effect of the 

speckle is reduced. 

 Spatial filtering consists in extracting a window of a few pixels, filtering is then 

performed by applying a calculation using the value of the window’s pixels and 

replacing the corresponding pixel of the resulting image with the result of the 

operation.  

In the specific context of SAR images, the development of an approach based on time 

series requires first of all the correction of the intrinsic effects of SAR images. To do this, a 

series of preprocessing is required to correct the distortions but also to reduce speckle effects. 

Then, the information provided by the SAR images can then be extracted from various 

methods based on the principles of SAR imaging. We find there (Lee and Pottier, 2009):  

 The use of SAR signal intensity.  

 The use of SAR polarimetry, to study the transformations of the polarization behavior 

of an electromagnetic wave in contact with a surface. 

 The use of SAR interferometry to exploit the difference in phase between SAR images. 

 The use of SAR tomography to obtain information on the physical properties of an 

environment. 

In this thesis, according to the scientific literature, the choice of using SAR signal intensity 

and SAR polarimetry has been established according to their aptitude to identify and 

characterize vegetation cover as demonstrated in several studies (Jackson and Schmugge, 

1991; McNairn and Brisco, 2004). 

II.2.2.3. SAR signal intensity 

SAR signal intensity is one of the most commonly used source of information in SAR 

imagery. The intensity often called "Sigma nought" or " backscattering coefficient " or 𝜎0 is 

proportional to the ratio between the received power and the power transmitted by the 

antenna (Lusch, 1999). As a function of the physical and electrical target properties, it also 

depends on the frequency and polarization of the SAR system, as well as the projected 

incidence angle (modified by the relief effect, Fig. I.13). 
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The intensity is expressed in natural values (m²/m²) (Eq. I.4) or on a logarithmic basis, in 

decibels (dB m²/m²) (Eq. I.5): 

𝝈𝟎 =
〈𝝈〉

𝑨𝑳
=

𝟒𝝅𝒓𝟐

𝑨𝑳

〈|𝑬⃗⃗ 𝑺|
𝟐
〉

|𝑬⃗⃗ 𝑰|
𝟐  (Eq. I.4). 

 

𝝈𝟎 = 𝟏𝟎. 𝐥𝐨𝐠𝟏𝟎(𝝈𝟎)  (Eq. I.5). 

With 𝐴𝐿, the illumination area, 𝐸⃗ 𝐼 the incident electromagnetic field and 𝐸⃗ 𝑆  the scattered 

electromagnetic field (corresponding respectively to the transmitted and received power). 

 

Figure I.13: Illustration of HV backscattering coefficient parameter derived from a Radarsat-2 

images using a RGB color composition. HV from 10 December 2016 in Red (R); HV from 20 

February 2017 in Green (G); HV from 03 May 2017 in Blue (B). 

II.2.2.4. SAR polarimetry 

SAR polarimetry consists in studying the transformations of the electromagnetic wave 

polarization behavior after an interaction with a surface (Lee and Pottier, 2009). These 

polarization changes are mainly related to the geometric, physical and biophysical structure 

of the illuminated target. The polarimetric information contained in a SAR image can, 

therefore, be used to characterize the observed object using the knowledge acquired on 

electromagnetic behavior (Betbeder, 2015). 

II.2.2.4.1. SAR polarization basics 

A polarized electromagnetic wave traveling through time and space can reach and interact 

with a particular target. This interaction can generate the absorption by the target of a portion 

of the incident wave while the rest is backscattered as a new electromagnetic wave. This 

interaction can, therefore, lead to a change in the polarimetric properties of the wave (Lee and 

Pottier, 2009). 
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The modification of polarimetric properties of a wave can be modeled as a complex 2 × 2 

matrix called coherent scattering matrix or "Scattering matrix" [𝑆]. It can be used to connect 

the incident wave and the backscattered wave.  In this context, Jones' formalism mentioned 

above is relevant. Based on the latter, the matrix [𝑆] links the Jones vector incident 𝐸𝑖 to the 

Jones vector broadcast  𝐸𝑠 and can be written as follows (Eq. I.6): 

[
𝑬𝒉

𝒔

𝑬𝒗
𝒔 ] =  [

𝑺𝒉𝒉 𝑺𝒉𝒗

𝑺𝒗𝒉 𝑺𝒗𝒗
] [

𝑬𝒉
𝒊

𝑬𝒗
𝒊
]  (Eq. I.6). 

The 4 components of the matrix are complex numbers (amplitude and phase). The 

diagonal elements of the Sinclair matrix  𝑆ℎℎ  𝑎𝑛𝑑 𝑆𝑣𝑣 are the co-polarized elements, 𝑆𝑣ℎ  and 

𝑆ℎ𝑣  are called cross-polarized elements. 

In a thematic approach, these co-polarized elements will be very sensitive to the physical 

characteristics of the soil. On the other hand, cross-polarized elements will be very sensitive 

to the volume of the objects (Baghdadi et al., 2008; Baghdadi and Zribi, 2016; Betbeder, 2015; 

Haldar et al., 2012; Lee et al., 2001; McNairn et al., 2009; McNairn and Brisco, 2004; Skriver, 

2011; Skriver et al., 1999) .  

In monostatic mode, the transmitter and receiver are positioned on the same antenna, so the 

𝑆ℎ𝑣  and 𝑆𝑣ℎ   elements are considered equal. This is the reciprocity hypothesis, commonly 

verified for artificial targets. So the matrix can be summarized into 5 independent parameters, 

representing 3 amplitudes {|𝑆𝑣𝑣|, |𝑆ℎ𝑣|, |𝑆ℎℎ|}  and the two related phases 𝜙𝑐  𝑎𝑛𝑑 𝜙𝑥  where 𝜙𝑐 =

(𝜑𝑣𝑣 −  𝜑ℎℎ) and  𝜙𝑥 = (𝜑ℎ𝑣 − 𝜑ℎℎ). The Sinclair matrix [𝑆] can then be represented by a 

complex target vector composed of 4 elements (Eq. I.7).  

𝒌⃗⃗ = [𝒌𝟎, 𝒌𝟏, 𝒌𝟐, 𝒌𝟑] 
𝑻     𝒌𝒊 =

𝟏

√𝟐
𝒕𝒓([𝑺]𝝓𝒊)  (Eq. I.7). 

With 𝑡𝑟(. ) which represents the sum of the diagonal elements of a matrix and  𝜙𝑖 is a set 

of matrices that define the projection base. The two most commonly used bases are the 

lexicographic base (𝛷𝐿 ) (Eq. I.8) and the Pauli base (𝛷𝑃 ) (Eq. I.9). Pauli base tends to value 

the scattering matrix according to a physical interpretation of the backscattering mechanisms 

of a target (Betbeder, 2015). 

{𝜱𝑳} =  {𝟐 [
𝟏 𝟎
𝟎 𝟎

] , 𝟐 [
𝟎 𝟏
𝟎 𝟎

] , 𝟐 [
𝟎 𝟎
𝟏 𝟎

] , 𝟐 [
𝟎 𝟎
𝟎 𝟏

]}  (Eq. I.8). 

 

{𝜱𝑷} =  {√𝟐 [
𝟏 𝟎
𝟎 𝟏

] , √𝟐 [
𝟏 𝟎
𝟎 −𝟏

] , √𝟐 [
𝟎 𝟏
𝟏 𝟎

] , √𝟐 [
𝟎 −𝒋
𝒋 𝟏

]}  (Eq. I.9). 

In a monostatic configuration, where the reciprocity hypothesis holds, the lexicographic 

target 𝑘𝐿 (Eq. I.10) and Pauli 𝑘𝑃 (Eq. I.11) vectors contain only three elements : 

𝒌𝑳 = [

𝑺𝒉𝒉

√𝟐𝑺𝒉𝒗

𝑺𝒗𝒗

] (Eq. I.10). 𝒌𝑷 = 
𝟏

√𝟐
[
𝑺𝒉𝒉 + 𝑺𝒗𝒗

𝑺𝒉𝒉 − 𝑺𝒗𝒗

𝟐𝑺𝒉𝒗

] (Eq. I.11). 

The two vectors are coherent representations of the scattering matrix. The vector norm is 

the SPAN of a target (Fig. I.14), which corresponds to the total power scattered by the target 

and is given by (Eq. I.12):  

𝑺𝑷𝑨𝑵 =  |𝑺𝒉𝒉|
𝟐 + 𝟐|𝑺𝒉𝒗|² + |𝑺𝒗𝒗|

𝟐 (Eq. I.12). 
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Figure I.14: Illustration of SPAN parameter derived from a Radarsat-2 images using a RGB 

color composition. SPAN from 10 December 2016 in Red (R); SPAN from 20 February 2017 in 

Green (G); SPAN from 03 May 2017 in Blue (B). 

II.2.2.4.1.1. Dominant vs. non-dominant scattering mechanisms  

A resolution cell in a SAR image is formed by the coherent addition of the responses of 

the elementary scattering. Two situations are then possible: i) if there is no dominant 

mechanism, the signal response is given by the Gaussian complex diffusion model, which is 

at the origin of speckle; ii) The resolution cell contains an identifiable target, which dominates 

the cell, then the backscatter is the result of a coherent combination of 2 components: The 

dominant scattering mechanism and the coherent combination due to congestion. The 

response is then dominated by a strong contribution from the dominant mechanism. 

However, in SAR remote sensing, the resolution cell is larger than the transmitted 

wavelength, it then contains a set of scattering mechanisms represented by the matrix [𝑆]. A 

coherent representation of the scattering matrix is then necessary in order to simplify and carry 

out a complete analysis of the connected effects of the scattering mechanisms. With the 

application of target vectors and more precisely of the Pauli base, the matrix [𝑆] can be used 

to study coherent targets. This representation expresses the terms of the Sinclair matrix for a 

target as a combination of simpler responses and thus establishes a physical interpretation of 

the interaction between the signal and the target (Betbeder, 2015) (Fig. I.15). 

 

Figure I.15: The dominant scattering mechanisms (a) single bounce, (b) double bounce and (c) 

diffuse scattering (Lee and Pottier, 2009). 
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From the target vectors, complex polarimetric coherence and covariance matrices can be 

defined according to:  

 The covariance matrix [𝐶3]  (Eq. I.13) is constructed from the target lexicographic vector 

𝑘𝐿
Τ∗.  

𝑪𝟑 =  〈𝒌𝑳𝒌𝑳
𝚻∗〉 =  [

〈|𝑺𝒉𝒉|²〉 √𝟐〈𝑺𝒉𝒉𝑺𝒉𝒗
∗ 〉 〈𝑺𝒉𝒉𝑺𝒗𝒗

∗ 〉

√𝟐〈𝑺𝒉𝒗𝑺𝒉𝒉
∗ 〉 𝟐〈|𝑺𝒉𝒗|²〉 √𝟐〈𝑺𝒉𝒗𝑺𝒗𝒗

∗ 〉

〈𝑺𝒗𝒗𝑺𝒉𝒉
∗ 〉 √𝟐〈𝑺𝒗𝒗𝑺𝒉𝒉

∗ 〉 〈|𝑺𝒗𝒗|²〉

] (Eq. I.13). 

 The coherency matrix [𝑇3] (Eq. I.14) constructed from the Pauli target vector 𝑘𝑝
Τ∗: 

𝑻𝟑 = 〈𝒌𝒑𝒌𝒑
𝚻∗〉 =  

𝟏

𝟐
[

〈|𝑺𝒉𝒉 + 𝑺𝒗𝒗|
𝟐〉 〈(𝑺𝒉𝒉 + 𝑺𝒗𝒗)(𝑺𝒉𝒉 + 𝑺𝒗𝒗)

∗〉 𝟐〈(𝑺𝒉𝒉 + 𝑺𝒗𝒗)𝑺𝒉𝒗
∗ 〉

〈(𝑺𝒉𝒉 − 𝑺𝒗𝒗)(𝑺𝒉𝒉 − 𝑺𝒗𝒗)
∗〉 〈|𝑺𝒉𝒉 − 𝑺𝒗𝒗|

𝟐〉 𝟐〈(𝑺𝒉𝒉 − 𝑺𝒗𝒗)𝑺𝒉𝒗
∗ 〉

𝟐〈𝑺𝒉𝒗(𝑺𝒉𝒉 + 𝑺𝒗𝒗)
∗〉 𝟐〈𝑺𝒉𝒗(𝑺𝒉𝒉 − 𝑺𝒗𝒗)

∗〉 𝟒〈|𝑺𝒉𝒗|
𝟐〉

] (Eq. I.14). 

 

They both have the same positive or null eigenvalues but have different eigenvectors. The 

trace of these 2 matrices is equal to the SPAN, while the off-diagonal terms represent the 

complex correlations between the polarizations channels.  

II.2.2.4.1.2. Polarimetric decompositions 

To retrieve information on a target from these complex matrices [𝐶3] and [𝑇3], the 

implementation of polarimetric decomposition models is necessary to extract the scattering 

mechanisms of a target. Resulting from Chandrasekhar's work, and first formalized by 

Huynen (Huynen, 1970), polarimetric decompositions search to express the global mean 

matrix to a sum of independent matrices representing the scattering mechanisms of a target, 

thus facilitating their interpretation. 

The scattering mechanisms are also translated into canonical targets (Table I.3) 

corresponding to simple geometric shapes whose physical interpretation is known. These 

targets differ according to the number of interactions of the backscattered signal with a target. 

An odd number of interactions will produce a zero phase difference (Betbeder, 2015). 
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Table I.3: Geometric and matrix representations of canonical targets adapted from (Lee and 

Pottier, 2009). 

Geometric representation Canonical target Matrix [𝑺] 

 

Sphere 𝑆 =  
1

√2
[
1 0
0 1

] 

 

trihedron 𝑆 =  
1

√2
[1 0
0 1

] 

 

vertical dipole 𝑆 =  [
0 0
0 1

] 

 

horizontal dipole 𝑆 =  [
1 0
0 0

] 

 

Dihedral oriented according to 

an angle Ѳ 
𝑆 =  

1

√2
[cos2θ sin2θ
sin2θ −cos2θ

] 

To further explore, Figure I.16 presents the main scattering mechanisms that can interact 

with an incoherent target. There are 3 mechanisms: (i) more or less simple surface diffusion 

(sphere, horizontal or vertical dipole); (ii) volume diffusion from the foliage of a tree, for 

example (collection of randomly oriented dipoles) and (iii) double-bounce diffusion 

(dihedral). 

 

Figure I.16: The three main scattering mechanisms. 

The decompositions are then classified into 2 types, coherent decompositions of the 

Sinclair matrix and incoherent decompositions of the covariance 𝐶3 or coherency 𝑇3 matrices. 

In this thesis, we will consider only two coherent decompositions: The Cloude and Pottier and 

the Freeman and Durden decompositions that have already proven their effectiveness in the 

scientific literature.  
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II.2.2.4.1.2.1. Cloude and Pottier decomposition 

Cloude and Pottier decomposition (Fig. I.17) is based on the eigenvalue decomposition of 

the coherency matrix [𝑇3] (Cloude and Pottier, 1996). The complex information retrieved from 

this decomposition is simplified by the expression of 3 secondary parameters which are 

defined as a function of the eigenvalues and eigenvectors of the matrix [𝑇3]. 

 Entropy 𝐻 (Eq. I.15) which corresponds to the degree of randomness of the target. H is 

computed from the target's eigenvalues according to the following formula: 

𝑯 = ∑ −𝑷𝒊 𝐥𝐨𝐠𝟑(𝑷𝒊)
𝟑
𝒊=𝟏   (Eq. I.15). 

𝑷𝒊 =
𝝀𝒊

∑ 𝝀𝒌
𝟑
𝒌=𝟏

  

Ranging between 0 and 1, 𝐻 defines the number of diffusion mechanism present on a target. 

When it is 0, only one scattering mechanism is present, which corresponds to a pure target. On 

the other hand, when it is 1, several mechanisms are present (Betbeder, 2015).  

 Anisotropy 𝐴, a complementary parameter of entropy, characterizes the importance of 

secondary mechanisms in relation to the main one. It is also derived from the 

eigenvalues of the coherency matrix and is interesting for high 𝐻 values. If its value is 

0 then the secondary mechanisms are mixed, whereas if it is 1, the 2nd mechanism 

dominates. 

 The alpha angle 𝛼, ranging from 0 to 90°, enables to retrieve information on the dominant 

scattering mechanism. If 𝛼 =  0°, then the dominant mechanism is surface scattering 

or simple bounce scattering mechanism. If 𝛼 =  45°, there is a multiple or volume 

scattering mechanism. And finally, if 𝛼 =  90°, there is a double bounce diffusion. 

 

Figure I.17: Illustration of Cloude and Pottier decomposition derived from a Radarsat-2 image 

of April 2017 using a RGB color composition. Alpha in Red (R); Anisotropy in Green (G); 

Entropy in Blue (B). 
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II.2.2.4.1.2.2. Freeman-Durden decomposition 

The Freeman-Durden decomposition (Fig. I.18) attempts to separate the dominant 

scattering mechanisms from a physical model based on the covariance matrix [𝐶3] (Freeman 

and Durden, 1998).  Three scattering mechanisms are highlighted by this model: 

 The surface scattering that refers to flat surfaces such as bare soils. 

 The double bounce scattering that represents the interaction of the incident signal between 

a flat object and a vertical object such as a building.  

 The volume scattering or canopy that represents multiple or random scattering 

mechanism.  

 

Figure I.18: Illustration of Freeman and Durden decomposition derived from a Radarsat-2 

image of April 2017 using a RGB color composition. Double-bounce in Red (R); Surface in 

Green (G); Volume in Blue (B). 

In addition to these parameters resulting from the decompositions, a number of polarimetric 

discriminators can be extracted in order to characterize the studied surface. 
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II.2.2.4.1.3. Polarimetric discriminators 

II.2.2.4.1.3.1. Shannon Entropy  

It corresponds to the sum of two contributions relating to intensity (𝑆𝐸𝐼) and degree of 

polarization  (𝑆𝐸𝑃) (Fig. I.19). Shannon Entropy (𝑆𝐸) can be calculated from the coherency 

matrix [𝑇3] or the covariance matrix [𝐶3] (Lee and Pottier, 2009) according to (Eq. I.16) :  

 𝑺𝑬 = 𝐥𝐨𝐠(𝝅𝟐𝒆𝟑|𝑪𝟑|) =  𝑺𝑬𝑰 + 𝑺𝑬𝑷  (Eq. I.16). 

 

where 

𝑺𝑬𝑰 = 𝟑 𝐥𝐨𝐠(
𝝅𝒆𝑻𝒓(𝑪𝟑)

𝟑
) 

𝑺𝑬𝑷 = 𝐥𝐨𝐠(𝟐𝟕
|𝑪𝟑|

𝑻𝒓(𝑪𝟑)
𝟑
) 

Where |. | represents the determination of a matrix, and 𝑇𝑟(. ), the trace of a matrix.  

 

Figure I.19: Illustration of Shannon Entropy (SE) parameter derived from a Radarsat-2 images 

using a RGB color composition. SE from 10 December 2016 in Red (R); SE from 20 February 

2017 in Green (G); SE from 03 May 2017 in Blue (B). 

II.2.2.4.1.3.2. Radar Vegetation Index (RVI)  

Computed from the coherency matrix 𝑇3, the radar vegetation index (RVI) is a function 

between the incidence angle and the path length of the SAR signal in a vegetation canopy (Kim 

et al., 2011). Represented by an index ranging from 0 to 1, the RVI corresponds to a measure 

of the randomness of the scattering (Fig. I.20) and is given by the following equation (Eq. I.17):  

𝑹𝑽𝑰 =
𝟖𝝈𝟎

𝑯𝑽

𝝈𝟎
𝑯𝑯 + 𝝈𝟎

𝑽𝑽+ 𝟐𝝈𝟎
𝑯𝑽  

 (Eq. I.17). 
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Figure I.20: Illustration of Radar Vegetation Index (RVI) parameter derived from a Radarsat-

2 images using a RGB color composition. RVI from 10 December 2016 in Red (R); RVI from 20 

February 2017 in Green (G); RVI from 03 May 2017 in Blue (B). 

II.2.2.4.1.3.3. Pedestal Height (Pedestal) 

The pedestal height also derived from the coherency matrix 𝑇3 represents the ratio 

between the maximum and minimum intensity received by a target (Fig. I.21). The pedestal 

height is an indicator of the presence of a not polarized scattering component, and therefore 

of the degree of polarization of a scattered wave (McNairn et al., 2004). 

 

Figure I.21: Illustration of Pedestal Height (PED) parameter derived from a Radarsat-2 images 

using a RGB color composition. PED from 10 December 2016 in Red (R); PED from 20 February 

2017 in Green (G); PED from 03 May 2017 in Blue (B). 
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The interpretation of the polarimetric parameters depends on several factors, including 

the roughness and humidity of the targets. Roughness is a function of wavelength and angle 

of incidence. Thus, a surface will be considered rough if the variations in height of the 

illuminated surface are greater than the wavelength used. Humidity directly influences the 

intensity of the backscattered signals. Thus, the more humid a surface is, the more reflectivity 

will increase (Ulaby and Elachi, 1990). 
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II.3. Identification and characterization of winter land-use using 

remote sensing data 

II.3.1. Introduction 

The identification and characterization of winter land-use is still a major environmental 

and scientific challenge. From an environmental perspective, the presence and type of 

vegetation is a decisive factor in biogeochemical and ecological processes (Section I.4). From 

a scientific viewpoint, the spatial and temporal characterization of winter land-use dynamics 

at field scale remains a considerable challenge for the scientific community. In this context, the 

contributions of remote sensing images have an important function in monitoring winter land-

use. While optical remote sensing data have already shown interest in studying land use, 

several questions arise about their effectiveness in winter when meteorological conditions may 

affect the acquisition of optical images. On the other hand, SAR remote sensing, which is 

known to overcome most meteorological conditions, has still faced very few problems in 

identifying and characterizing land-use in winter. The purpose of this section is to provide an 

overview of the research carried out using remote sensing data for the identification and 

characterization of winter land-use. 

II.3.2. Study of winter land-use based on optical data 

The development in the 1970s of the first optical Earth observation satellites opened the 

era of modern remote sensing. The constant development of sensors and methods for 

processing digital data has broadened the application scope of remote sensing, which has 

become, in the space of a few decades, an essential tool for the inter and intra-annual study 

and monitoring of land use at different scales. A scientific milestone was marked in particular 

by the improvement of sensors, who’s the spatial, temporal and spectral resolutions have 

continued to increase, allowing new opportunities to meet this issue. 

At the end of the 1990s, the emergence of new efficient optical sensors with medium 

spatial resolution such as MODIS or SPOT-Vegetation (250m and 1km respectively) quickly 

became valuable instruments to study the evolution of vegetation on a global scale. In this 

context, a large number of research works have been carried out on the interest of these new 

satellites for the identification and characterization of land use or land cover. Jakubauskas et 

al., (2002); Sakamoto et al., (2005); Tottrup and Rasmussen, (2004); Wardlow and Egbert, (2008) 

and Zhang et al., (2003) demonstrated the potential of the MODIS satellite to identify and 

characterize crop areas and their long-term evolution on large scales.  Similarly, Khan et al., 

(2010) were able to present the capacities of the SPOT-Vegetation satellite, in order to identify 

and map crops with an accuracy of around 90%. However, the spatial resolution of such 

sensors quickly became a constraint to a detailed study of land use and land cover. Despite the 

development of new methodologies using medium-resolution pixel unmixing to classify crop 

areas more accurately (Ozdogan, 2010; Verbeiren et al., 2008), the accuracy obtained by these 

methods is still insufficient to meet the expectations of scientists and decision-makers. For this 

reason, very few studies have so far focused on monitoring winter land-use using these data, 

whose spatial resolution remains insufficient, as highlighted in the work of (Lecerf et al., 2005),  

who consider that the low number of studies carried out is mainly due to an insufficient spatial 

resolution to observe only patches, thus limiting the identification of winter land-use classes. 
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With the evolution of spatial technologies, the deployment of high spatial resolution 

sensors with ever-increasing performance has allowed new opportunities for the identification 

and characterization of winter land-use. High-resolution data have quickly emerged as a 

reliable source of information for inter-annual land-use monitoring. The works of Guerschman 

et al., (2015) and Xu and Guo, (2014) in this way demonstrate the potential of Landsat-8 time 

series (30 meters of spatial resolution) for inter-annual monitoring of land use and land cover 

at the regional scale. From 2010, the launch by the European Space Agency (ESA) of a new 

series of sensors (Sentinel Constellation) with a high spatial resolution (10m) and very high 

temporal resolution (6 days), has allowed more accurate land-use monitoring to be carried out. 

The research of Immitzer et al., (2016) and Vuolo et al., (2018) are some examples. These studies 

show the potential of the Sentinel-2 optical time-series for annual crop mapping, with overall 

accuracies ranging from 76% to 96% depending on the land-use classes. However, despite 

numerous research studies on summer crop mapping and inter-annual evolution, only a few 

studies have highlighted the potential of high spatial resolution time series for intra-annual 

land-use monitoring (especially in winter). Martínez-Casasnovas et al., (2005) and Radoux et 

al., (2016) are among the first works to highlight the potential of optical data for studying intra-

annual changes in land use and land cover.  In their approaches, they present the advantages 

of the Landsat-8, Sentinel-2 and Spot-5 time-series for detecting changes in land use and land 

cover during the growing season with an overall accuracy of around 90%. However, to date, 

no work has been conducted to identify precisely winter land-use using optical time-series, 

particularly due to weather conditions during the winter period. 

On a fine scale, the use of very high spatial resolution optical data is currently employed 

by a large community to develop land-use maps. Gressin et al., (2014); Kuenzer et al., (2015) 

and Vaudour et al., (2015) have thus shown the potential of very high spatial resolution data 

Pleiades for 1) crop identification; 2) studying land-use changes at fixed dates; 3) identifying 

cultural practices in the summer season. Nevertheless, the characterization of surface 

variations such as soil surface condition and vegetation growth conditions are phenomena that 

evolve daily and whose mechanisms remain essential for the study of winter land-use but 

remain unexplored (Pacheco and McNairn, 2010). Indeed, the characteristics of very high 

spatial resolution sensors complicate the implementation of intra-annual land-use monitoring 

due to a low temporal resolution (with a revisit time of several tens of days). 

Thus, time-series obtained from optical satellites with medium, high or very high spatial 

resolution have already demonstrated their potential to identify and characterize the inter-

annual evolution of agricultural areas. However, they are still under-exploited in order to 

study intra-annual evolution and changes in land use in winter mainly due to weather and 

atmospheric conditions but also sensors characteristics. This absence of information represents 

the main issue for scientists and decision-makers in order to establish strategies to limit the 

negative impact of our societies on the environment. However, the development in the 1990s 

of SAR satellites allowed new possibilities in order to overcome the lack of information. 

  



Part 1. Winter land-use: concepts, data and methods 
 

47 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

II.3.3. Study of winter land-use based on SAR data 

The launch in the 1990s of improved SAR sensors has opened up new opportunities for 

monitoring, identifying and characterizing land use, particularly in winter. Opportunities 

enhanced by SAR sensors' insensitivity to illumination and weather conditions, and their 

ability to obtain information on the physical properties of a target (dielectric constant, size, 

shape or distribution) (Skriver, 2011) as mentioned in Section II.2.2. which may facilitate a 

more effective discrimination of land use (Hosseini et al., 2015; Ulaby et al., 1986).  

The potential of SAR imagery has been quickly demonstrated by several studies, which 

are highlighted the importance of SAR parameters (such as backscatter coefficients or 

polarimetric variables) for land-use classification. The works of Jiao et al., (2014); Larrañaga 

and Álvarez-Mozos, (2016) and Liu et al., (2012) are perfect examples. These studies have 

presented the potential of SAR parameters (backscatter coefficients, polarimetric indicators, 

etc.), extracts from Radarsat-2 C-Band images for mapping and monitoring land use, with an 

overall classification accuracy of over 85%.    

In addition, the physical characteristics of SAR sensors such as frequency or incidence 

angle have also been the subject of extensive investigations. This enthusiasm for the use of 

physical properties is related to their importance in the discrimination of vegetation cover by 

the SAR signal. For example, wavelength penetration into the vegetation canopy remains more 

important using the L-Band (~20 cm) than C-Band (~5.5 cm). Conversely, C-Band will interact 

more with the upper canopy, while L-Band will generate greater interaction with the ground 

below the canopy (Ulaby et al., 1986). Thus, these allow us to set up appropriate monitoring 

and discrimination according to the vegetation cover and the areas studied. In this context, 

numerous studies have been undertaken in order to determine the potential of frequency 

bands for the study of agricultural areas. Abdikan et al., (2016); Bargiel, (2017) and Hong et al., 

(2015) have thus presented the interest of the C-Band for the identification and classification 

of land cover and land use using Sentinel-1 or Radarsat-2 data with overall accuracies ranging 

from 78% to 93%. Wiseman et al., (2014) and Yang et al., (2017) have highlighted the value of 

C-Band SAR imaging for determining phenological stages and estimating crop biomass using 

RADARSAT-2 polarimetric images with accuracy better than 80%. Similarly, several studies 

have also demonstrated the interest of other frequency bands, such as the X or L-Band for 

monitoring, identifying and classifying land use. Haldar et al., (2012) and Zhang and Wu, 

(2011) have thus demonstrated the potential of L-Band for land-use classification based on 

supervised approaches (Deep learning and Maxlike) with overall accuracies above 90%. Kemp 

and Burns, (2016) presented new methods based on X-Band radar interferometry to detect 

plowing and crop planting periods in South Africa for agricultural monitoring purposes. 

In this context, highlighting the interest of the various frequency bands for the 

identification, characterization, and monitoring of agricultural practices, studies have focused 

on the complementarity of these frequency bands for these thematic approaches. Thus,  

McNairn et al., (2009); Paloscia et al., (2015) and Skriver, (2011) have shown the benefits of 

combining SAR data from X and C-Bands but also from C and L-Bands to monitor and map 

agricultural areas with overall accuracy ranging from 84 to 95%.   

Nevertheless, despite a demonstrated potential for land-use classification and monitoring, 

to date, only a few researches have highlighted the potential of SAR imagery for the fine 

identification and characterization of land use during the winter season. The works of 

Baghdadi et al., (2008) McNairn et al., (2004) and Wang et al., (2016), are the main 

demonstrators. Based on different wavelengths (L, C and X-Bands), they highlighted the 
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relevance of the SAR signal in order to characterize bare soils and crop residues. In a similar 

context, El Hajj et al., (2009) and Hong et al., (2015) also highlighted the interest of these data 

for monitoring and discriminating grasslands by using time-series or single date data with an 

overall accuracy of over 70%.  However, the monitoring, identification, or characterization of 

winter land-use remain mainly limited to these three classes. More recently, the works of 

(Minh et al., 2018) have demonstrated the ability of C-Band SAR sensors to map field coverage 

rates during the winter period, an essential factor to reduce environmental risks, but without 

defining land-use classes, which is also a key factor (Section I.4). Thus, to date, no information 

is available to finely identify and characterize winter land-use classes (mentioned in Section 

I.3), such as catch crops that play a key role in regulating agricultural pollutant transfers to the 

environment. 

Thus, SAR imagery has demonstrated its potential to implement monitoring and mapping 

of land-use at different scales. Nevertheless, in a current context where fine and detailed 

information on winter land-use is needed to help decision-makers, only a few studies using 

SAR imagery have put in place to obtain such information. However, the use of new Sentinel 

sensors (Constellation Sentinel) with similar physical characteristics (spatial and temporal 

resolution) in the optical and radar wavelengths has opened up opportunities for the detailed 

identification and characterization of winter land-use from data fusion methods. 

II.3.4. Study of winter land-use based on merged optical and SAR 

data 

Optical imagery is currently considered to be a robust and suitable tool to discriminate 

land-use patterns. SAR imagery, for its part, through the acquisition of information on the 

physical properties of a target (roughness, humidity, shape, size, etc.), allows a detailed 

characterization of land-use changes but remains limited regarding the fine discrimination of 

land-use types.  In this sense, the complementarity of these two types of data is assumed to 

provide optimal information for land-use identification and characterization (Joshi et al., 2016). 

In this context, the data fusion was the subject of a few studies. Inglada et al., (2016); 

Steinhausen et al., (2018) and Van Tricht et al., (2018) have highlighted the synergy of Sentinel 

sensors for inter-annual analysis and mapping of land cover and land use. These studies 

shown in particular that the combined use of optical ("Sentinel-2") and SAR ("Sentinel-1") 

sensors increase the overall accuracy of classifications from 5 to 10%.  Several studies have also 

shown the benefits of the Radarsat-2 and optical data synergy. For example, the works of 

Pereira et al., (2013) and Skakun et al., (2015) have demonstrated the potential of Radarsat-2 

imagery combined with optical data, such as Landsat-8 for crop classification and monitoring 

with an accuracy of over 80%.   

However, despite the proven complementarity of optical and SAR images for land-use 

identification and characterization, their effectiveness for studying winter land-use remains 

unexplored. Nevertheless, some studies have shown the value of combining this type of data 

in order to analyze and characterize specific land-use classes such as grasslands Dusseux et 

al., (2014) and Fieuzal et al., (2013). However, no scientific studies have so far highlighted the 

potential of optical and SAR data fusion for the detailed identification and characterization of 

winter land-use classes.  In this context, this thesis attempts to evaluate the potential of optical 

and SAR time series alone or in complementarity for the study of winter land-use at a local 

and regional scale. 
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III.1. Introduction  

sThe identification and characterization of winter land-use realized in this thesis and 

based on multi-scale approaches were carried out over two study areas: i) the Zone Atelier 

Armorique, (ZAA) (at the local scale); ii) Brittany (at the regional scale). This chapter presents, 

in a first step, the study sites selected to identify and characterize winter land-use. In a second 

step, it describes the data used during this thesis, remote sensing data but also field campaigns 

data.  

III.2. Study sites   

III.2.1. « Zone Atelier Armorique »  

A “Zone Atelier” represents a research system accredited by the National Center for 

Scientific Research (CNRS) whose the main objective is the implementation of 

interdisciplinary research on the environment and anthropo-systems in relation to societal 

issues (“ZAA,” 2019). Research carried out over the long term who’s a partnership with local 

actors, allowing collaborations in order to support the decisions and actions of decision-

makers. 

The French territory counts 14 “Zone Atelier” extending from Brittany to Antarctica 

representing a range of contrasting and complementary areas from the perspective of social 

environments and systems (“Zone Atelier,” 2019). These areas are structured through 

European (Long-Term Ecological Research, LTER-Europe) and global (International Long-

Term Ecological Research, ILTER networks) networks. These networks make it possible to 

study the complex relationships between human activities and ecosystem functioning over 

different territories. 

The “Armorique” zone, included in the department of Ille-et-Vilaine (Brittany, France), is 

divided in three territories representing distinct landscape entities in which interdisciplinary 

researches on the environment and anthropo-systems are carried out: i) The city; ii) the alluvial 

plain (part of the study area); iii) the hedgerow network landscape. 

The city is represented by Rennes Metropole (France), which has been regularly 

monitored since 2011. It refers mainly to an urban observatory set up on the Saint-Martin 

meadows site, to rehabilitate a former industrial site into an urban park. 

The alluvial plain represents a marsh zone located in the south of Mont-Saint-Michel 

(France), she uses as a grazing area for herds from spring to autumn. This area has been 

monitored since 2006 as a wetland of high heritage with fauna and flora interest. In this thesis, 

this area is referred to as grazed grassland in the land-use nomenclature. 

Finally, the hedgerow network landscape, the subject to this thesis, is represented by the 

Pleine-Fougères agricultural area located in the southern part of the Bay of Mont-Saint-Michel 

(N 48°31'0", W 1°31'30"), in France (Fig. I.22). This area, referenced within the LTER and ILTER 

networks, has been monitored since 1993, mainly for land-use studies. It is characterized by a 

landscape gradient ranging from a dense hedgerow network in the south, with small fields, to 

a loose hedgerow network in the north. With a temperate climate, an average annual 

temperature above 12°C (minimum average above 8°C, maximum average 16 ◦C) and average 

annual rainfall ranging from 600 to 700 mm, this site of 9,400 ha includes approximately 7,000 

agricultural parcels, who’s the size varies from 0.1 to 65 ha, with an average of 2.1 ha. The 
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agricultural landscape, dominated by "polyculture-livestock" production systems, is 

characterized by structural variability (plot size, hedge density) due to soil and subsoil 

characteristics. In summer, vegetable crops are grown on the northeastern part of the site, 

which is characterized by alluvial soil; in the northwest and south half of the site, many 

grasslands and field crops are cultivated because of granitic and schistous subsoils. 

 

Figure I.22: Location of the « Zone Atelier Armorique », sub-site of « Pleine Fougères ». 

In winter, the agricultural system is characterized by the establishment of winter land-use 

required and regulated by the "Nitrates directive" (Section I.3.1)  (“Nitrates Directive,” 2019), 

in order to reduce the agricultural pollutants transfers to the environment. This winter land-

use is represented through a 5-class classification: winter crops, catch crops, grasslands as a 

permanent crop, crop residues and temporary bare soils. Nevertheless, the research conducted 

in this thesis, have demonstrated that bare soil class referred (for the Brittany region) to a 

temporary surface state between the harvest and the growth of a main crop. As a result, it 

could not be defined as a winter land-use class (Table I.4).  

Table I.4: Winter land-use classification. 

Winter land-use types Main Crops 

Winter Crops 

Winter wheat 

Winter barley  

Rapeseed 

Grasslands 
Mown grasslands 

Grazed grasslands 

Catch crops 

Oat 

Fodder cabbage 

Ray-grass and clover 

Phacelia 

Phacelia and mustard 

Phacelia and oat 

Crop residues Maize stalks 

Temporary Bare soils None 

 



Part 1. Winter land-use: concepts, data and methods 
 

53 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

These winter land-use types are spread over the entire Utile Agricultural Area (UAA) of the 

"Zone Atelier Armorique" (ZAA) with fluctuating proportions:  

 Winter crops, which represent 44% of the UAA. They refer to winter wheat, winter 

barley, and rapeseed. Wheat and barley, sown from October onwards, are 

characterized by similar phenology and structures. The differentiation is made during 

the harvest period, in June for barley and in July for wheat. The rapeseed is sown in 

September to be harvested in July the following year. It is characterized by a vertical 

structure without a defined shape but a large height (up to 2m).  

 Grasslands, which can be grazed or mowed, represent about 30% of the UAA and play 

a main role in regulating agricultural pollutants transfers.  

 Catch crops, sown from August to October, they cover 25% of the UAA. They are quite 

diverse in terms of structure and phenology but also in terms of utility.  

 Crop residues, which represent 1% of the UAA. They correspond to the maize stalks 

left in the fields after a harvest. 

III.2.2. Brittany 

Brittany, located in the far west of France (Fig. I.23), is a 27,209 km² area characterize by 

an oceanic climate with an annual average temperature above 12°C, a minimum average for 

the coldest year above 8°C, a maximum average above 16°C and an average of annual rainfall 

between 600 and 700mm. With a UAA of 1,699,363 hectares divided into 4 departments, 

representing 53% of its territory, Brittany is the second agricultural region in France (“CCI 

Bretagne,” 2017). With 2% of its population (1% in France) working in the primary sector, and 

6% in the agri-food sector (2% in France), Brittany is the leading production region in several 

sectors such as tomatoes, pigs and poultry production (“Agreste,” 2017). In summary, with 

about 30,000 farms recorded, the wealth generated by agriculture and agri-food represent 

about 8% of regional GDP in 2015 (“Agreste,” 2017). 

In summer, Brittany's agricultural system is divided into four crop production sectors:  

 Cereal production, which represents in 2015 about 20% of the UAA, is dominated by 

the production of soft wheat, barley, and triticale.  

 Vegetable production, which represents approximatively 10% of the UAA, is mainly 

composed Tomatoes, cauliflower, and Artichokes and makes Brittany the leading 

French region in the vegetable sector. 

 Oilseeds-Protein crops production, which is mainly limited to the production of 

rapeseed (88% of the surface area associated with this production). It includes less than 

3% of the UAA.  

 Fodder production, the largest production sector in Brittany with nearly 63% of the 

regional UAA (against 49% at the French level). It is mainly composed of forage corn, 

temporary or permanent grassland but also fodder rapeseed or Ryegrass.  
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In winter, with 98% of its territory subject to a Nitrogen flow declaration, Brittany is one 

of the most affected French regions to environmental risks such as agricultural pollutants 

transfers (nitrates, phosphorus...). The establishment of winter land-use is therefore highly 

regulated and controlled by the European authorities (Section I.3). 

 

Figure I.23: Location of the regional study site, Brittany. 
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III.3. Remote sensing data 

III.3.1. Images  

A set of 6 optical and SAR time-series images was acquired in this thesis. These time-series 

include Sentinel-2 (S2) images for optical data, and Sentinel-1 (S1), Radarsat-2 (RST-2) and 

Alos-2 (AL-2) images for SAR data. They were acquired through collaborations with scientific 

programs and institutions (“Gis Bretel,” 2017; “Kalideos,” 2019; “VIGISAT,” 2019).  

III.3.1.1. Optical images  

III.3.1.1.1. Local-scale 

At the local scale, a time series of 9 Sentinel-2 optical images was acquired between August 

2016 and May 2017 by the European Space Agency (ESA) and provided by the Copernicus 

scientific hub (“Open Access Hub,” 2019). These images obtained at level 1C (i.e. corrected for 

geometric effects) were acquired with a spatial resolution ranging from 10 to 60 meters and a 

spectral resolution of 13 bands. Their characteristics are summarized in Table I.5 below. 

Table I.5: Sentinel-2 images. NIR: Near-infrared, SWIR: Shortwave-infrared. 

 SENTINEL-2 

 Spatial resolution 10 m to 60 m 

Spectral resolution-

central wavelength (µm) 

 

Band 1 (Coastal) – 0.443µm 

Band 2 (Blue) – 0.490µm 

Band 3 (Green) – 0.560µm 

Band 4 (Red) – 0.665µm 

Band 5 (Red Edge) – 0.705µm 

Band 6 (Red Edge) – 0.740µm 

Band 7 (Red Edge) – 0.783µm 

Band 8 (NIR) – 0.842µm 

Band 8A (NIR) – 0.865µm 

Band 9 (Water) – 0.940 µm 

Band 10 (SWIR) – 1.375 µm 

Band 11 (SWIR) – 1.610µm 

Band 12 (SWIR) – 2.190µm 

Coverage 290  km 

Dates (M-D-Y) 

08-22-2016 

10-31-2016 

11-30-2016 

12-20-2016 

01-19-2017 

02-18-2017 

04-09-2017 

05-09-2017 
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III.3.1.1.2. Regional-scale 

At the regional scale, a time series of 51 Sentinel-2 optical tiles was acquired between 

September 2016 and May 2017 by the European Space Agency (ESA) and provided by Theia 

continental surface and services cluster data hub (“Theia,” 2019). This hub has three objectives: 

 Build a common system capable of producing spatial data (from local to global scale) 

with added value for the scientific community and provide services in line with users' 

needs.  

 Encourage the sharing of experience and the capitalization of methods.  

 Make national achievements visible at European and international level. 

These images acquired at level-2A (i.e. corrected for geometric and atmospheric effects) 

were obtained with a spatial resolution ranging from 10 to 20 meters and a spectral resolution 

of 10 bands. The atmospheric corrections made in order to obtain the 2A-level were performed 

using the MACCS ATCOR Joint Algorithm (MAJA) preprocessing chain developed by the 

Centre d'Etudes Spatiales de la BIOsphère (CESBIO). MAJA is a chain for cloud detection, 

atmospheric correction and adapted for processing time-series of high-spatial-resolution 

images acquired from constant or almost constant angles of view (“MAJA,” 2019). 

III.3.1.2. SAR images 

At the local scale, three SAR time-series images have been acquired, with the 

corresponding characteristics are summarized in Table I.6: 

III.3.1.2.1. Sentinel-1 time-series 

A time series of 22 Sentinel-1 (S1) images was acquired from August 2016 to May 2017 by the 

European Space Agency (ESA) and provided by the data hub (“Open Access Hub,” 2019). S1 

images were obtained in Single Look Complex (SLC) mode (delivered in dual-polarization 

mode with VH and VV polarization channels) with an incidence angle ranging from 31° to 46°. 

The range and azimuth spatial resolutions are respectively equal to 2.3 and 13.9 m. 

III.3.1.2.2. Radarsat-2 time-series 

A time series of 10 Radarsat-2 images was acquired between October 2016 and May 2017 by 

MacDonald, Dettwiler, and Associates (MDA) and provided in the frame of the "Groupement 

Bretagne Télédétection" (GIS Bretel) by the VIGISAT ground station managed by CLS. These 

images were obtained in SLC mode (delivered in quad-polarization mode with HH, HV, VH 

and VV polarization channels) with an incidence angle of 35°, and range and azimuth 

resolution are 8.2 and 4.7 meters respectively. 

III.3.1.2.3. Alos-2 time-series  

A  time series of 6 Alos-2 (AL-2) images was acquired from January 2017 to June 2017 by the 

Japanese Space Agency (JAXA) and made available by the Kalidéos program (“Kalideos,” 

2019). The AL-2 images were obtained in SLC format (delivered in dual-polarization mode 

with HH and HV polarization channels) with an incidence angle of 40°, and range and azimuth 

resolution are 1.4 and 1.9 meters respectively. 
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Table I.6: Characteristics of the RADARSAT-2, Alos-2, and Sentinel-1 SAR images. 

III.3.2. Time-series pre-processing   

Pre-processing were then performed on the recovered optical and SAR time-series images. 

These pre-processing differ according to the thematic approaches studied. In this section, we 

present only the basic and common pre-processing for Optical and SAR time-series. 

III.3.2.1. Pre-processing of optical time-series 

III.3.2.1.1. Local-scale 

Sentinel-2 optical images obtained from the Copernicus Scientific Data Hub in level-1C 

were orthorectified and georeferenced based on the Universal Transverse Mercator (UTM, 

area 30N) reference system. The first step of pre-processing was to assess the accuracy of the 

corrected images. Then, Sentinel-2 images were corrected from atmospheric effects using 

Sen2Cor toolbox from the Sentinel Application Platform (SNAP) software v6.0. 

 Radarsat-2 Sentinel-1 Alos-2 

Dates (M-D-Y) 

10-23-2016 

11-16-2016 

12-10-2016 

01-03-2017 

01-27-2017 

02-20-2017 

03-16-2017 

04-09-2017 

05-03-2017 

05-27-2017 

08-25-2016 

09-18-2016 

09-30-2016 

10-12-2016 

10-24-2016 

11-05-2016 

11-17-2016 

11-29-2016 

12-11-2016 

12-23-2016 

01-04-2017 

01-16-2017 

01-28-2017 

02-09-2017 

02-21-2017 

03-05-2017 

03-17-2017 

03-29-2017 

04-10-2017 

04-22-2017 

05-04-2017 

05-16-2017 

01-04-2017 

02-04-2017 

03-06-2017 

04-15-2017 

05-13-2017 

06-10-2017 

Ground 

resolution 
8.2 m 2.3 m 1.4 m 

Azimuth 

resolution 
4.7 m 13.9 m 1.9 m 

Frequency C-Band C-Band L-Band 

Polarization Quad (HH-VV-HV-VH) Dual (VV-VH) Dual (HH-HV) 

Mode 
Fine Quad Polarization 

(SLC) 

Interferometric wide 

(SLC) 
Spotlight (SLC) 

Incidence angle 35° (right descending) 31°-46° (right descending) 
40° (Left 

ascending) 

Coverage 18 km x 25 km > 250 km x 100 km 25 km x 25 km 
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Sen2Cor is a Level-2A (L2A) processor that corrects single-date Level-1C Sentinel-2 

products from atmospheric effects to provide a L2A surface reflectance product (Louis et al., 

2016).  Afterward, Sentinel-2 images were resampled to 10 meters’ resolution based on the blue 

band (Band 2) in order to derived optical descriptors. Two vegetation indices were then 

derived from the Near-infrared (NIR) and Red (R) bands using SNAP v6.0 software: The NDVI 

and the SAVI. The NDWI was also calculated from the Near-infrared (NIR) and Mid-infrared 

(MIR) bands. These 3 indices were chosen due to their ability to highlight different processes 

related to vegetation such as water stress, growth peak, or phenological stage (Gu et al., 2008; 

Panda et al., 2010; Veloso et al., 2017). 

III.3.2.1.2. Regional-scale  

Sentinel-2 optical images retrieved from the Theia hub in L2A were orthorectified, geo-

referenced based on the UTM (area 30N) reference system but also atmospherically corrected 

from the MAJA chain. Similarly, to the local scale, an assessment of corrected images accuracy 

was performed. Then, a single vegetation index was calculated, the NDVI using SNAP v6.0 

software. Finally, the NDWI was derived from the Near-infrared (NIR) and Mid-infrared 

(MIR) bands. 

III.3.2.2. Pre-processing of SAR images 

III.3.2.2.1. Local-scale  

SAR images have been pre-processed using SNAP v6.0 or v5.0 and PolSARpro v5.1.3 or 

v6.0 software (Pottier et al., 2018) and according to the adopted thematic approaches. These 

approaches will be detailed in the next chapter. 

III.3.2.2.1.1. Backscattering coefficients  

i. The first step was to radiometrically calibrate SAR time-series from the appropriate 

equations for each time-series using SNAP v6.0 software: 

Sentinel-1 (Miranda and Meadows, 2015) : 

𝒗𝒂𝒍𝒖𝒆𝒔(𝒊) =
𝑫𝑵𝒊|²

𝑨𝒊²
   (Eq. I.18). 

where 𝐷𝑁 is the digital number of each pixel (i) (amplitude of backscattering signal) and 𝐴 is 

the information required to convert SAR reflectivity into physical units provided in the 

Calibration Annotation Data Set in the image metadata. The equation transforms the 𝐷𝑁 of 

each pixel into a backscattering coefficient on a linear scale (Eq. I.18). 

Radarsat-2 (“Radarsat Products,” 2019) : 

𝝈𝒋
𝒐 = 𝜷𝒋

𝒐 + 𝟏𝟎 ∗  𝐥𝐨𝐠𝟏𝟎(𝐬𝐢𝐧 𝑰𝒋) (Eq. I.19). 

Where β is the radar brightness and  𝐼𝑗  is the incidence angle at the 𝑗𝑡ℎ range pixel. The formula 

assumes that Earth is a smooth ellipsoid at sea level (Eq. I.19). 

Alos-2 (Lavalle and Wright, 2009) : 
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𝝈𝒊 𝒋 
𝟎 = 𝑲.𝑫𝑵𝒊 𝒋 

𝟐     (Eq. I.20). 

Where 𝐾 is an absolute calibration constant and 𝐷𝑁 is the intensity value of a pixel in the 𝑖 line 

and 𝑗 column (Eq. I.20).  

ii. The second step was to apply a spectral filter on the calibrated images in order to 

reduce speckle effects. Following the thematic approach, two filter types were applied: 

 A Lee refined 7 × 7 filter applied with SNAP v5.0 software (Lee, 1981).  

 A Lee Sigma 7 × 7 filter with a sigma value of 0.7 or 0.8 applied with SNAP v6.0 (Lee 

et al., 2008).  

The selection of a filter was first made based on the scientific literature. The Lee Refined 

filter was retained as a baseline filter in many studies using SAR data. In a second time, a set 

of tests was performed to improve the filter selection (Fig. I.24). The Lee Sigma filter was then 

selected for its ability to maintain target information and variability.  

 

Figure I.24: Test results performed on Radarsat-2 images with different filters and window 

sizes. 

Regarding the window sizes, a size of 7 × 7 was chosen in order to optimize the reduction of 

speckle noise while preserving an appropriate spatial scale necessary to ensure the 

identification and characterization of winter land-use.  

iii. The third step was to correct the images of the topographical deformations using a 

digital Terrain model "Shuttle Radar Topography Mission 3s (SRTM)". Image 

resolution was then modified to fit with the thematic approaches and will be detailed 

in the following chapters. These images were also geometrically corrected and geo-

referenced in a suitable projection system.  

iv. Finally, the last step consisted to perform ratios and/or differences (adapted to the 

studies) from the corrected backscatter coefficients and to convert all the indicators 

(backscatter coefficients, backscatter coefficients ratios, and backscatter coefficients 

differences) into decibels using the following equation (Eq. I.21):  

𝝈𝟎(𝒅𝒃) = 𝟏𝟎 × 𝒍𝒐𝒈𝟏𝟎(𝝈
𝟎)  (Eq. I.21). 
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III.3.2.2.1.2. Polarimetric parameters  

Similar to the backscatter coefficients, the polarimetric parameters were extracted 

according to the thematic requirements. We will introduce here only the pre-processing 

general framework carried out to extract the polarimetric indicators, the whole pre-processing 

will be detailed in the following chapters.  

Quad-polarization mode  

Pre-processing performed for full-polarization mode time-series can be summarized in 4 steps:  

 Extraction of a 3 × 3 coherency matrix 𝑇3 from the scattering matrix (𝑆) using 

PolSARpro v5.1.3 software. 

 Application of a Lee sigma filter with a window size of 7 × 7 and a sigma value of 0.8. 

 Correction of 𝑇3 matrix elements of topographic deformations and orthorectification 

using SNAP v6.0 software with a SRTM digital terrain model. 

 Extraction of polarimetric parameters, which are the following:  

i. Cloude-Pottier decomposition, computed from the matrix 𝑇3, is the eigen-

decomposition of the coherency matrix 𝑇3 into three independent coherent elements: 

(i) the entropy (𝐻), which expresses the randomness of the scatter; (ii) the alpha angle 

(𝛼), which describes the dominant scattering mechanism; and (iii) the anisotropy (𝐴), 

which represents the relative power of the second mechanism. In addition, 4 

parameters based on Cloude and Pottier decomposition entropy (𝐻) and anisotropy 

(𝐴) were calculated: 𝐻 ∗ 𝐴;  𝐻 ∗ (1 − 𝐴); (1 − 𝐻) ∗ 𝐴; (1 − 𝐻)(1 − 𝐴). 

ii. Freeman-Durden decomposition is used to modeling the covariance matrix 3 × 3 (𝐶3) 

into three scattering mechanisms: The volume diffusion (Freeman VOL), double 

bounce diffusion (Freeman DB) and surface or single bounce diffusion (Freeman SB). 

iii. The SPAN, which corresponds to the total scattered power. 

iv. The Shannon Entropy (𝑆𝐸), which corresponds to the sum of two contributions related 

to the intensity (𝑆𝐸𝑖) and the degree of polarization (𝑆𝐸𝑝), see (Eq. I.16). 

v. The Radar Vegetation Index (RVI), see (Eq. I.17). 

vi. The Pedestal height, a ratio of the maximum received intensity to the minimum 

received intensity. 
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Dual-polarization mode  

In dual-polarization the pre-processing also involves 4 steps:  

 Extraction of a 2 × 2 covariance matrix (𝐶2), computed using PolSARpro v5.1.3 

software. 

 Application of a Lee Refined or Lee sigma filter (according to the thematic studies) with 

a window size of 7 × 7 and a sigma value of 0.8. 

 Correction of 𝐶2, matrix elements from topographic deformations and 

orthorectification using SNAP v6.0 software with a SRTM digital terrain model.  

 Extraction of the following polarimetric parameters: SPAN, Shannon Entropy and its 

intensity and polarization derivatives. 

III.4. Field measurements  

III.4.1. Data 

As part of this thesis, a set of field campaigns framed by a predefined protocol was 

conducted in correlation with the optical and SAR time-series acquisition between October 

2016 and May 2017. These campaigns have been set up to obtain precise and spatialized 

information on the winter land-use and their practices in the ZAA of Pleine-Fougères. Two 

types of surveys were carried out during the field campaigns. Land-use records on the one 

hand and detailed surveys with farmers on the other hand. 

III.4.1.1. Measurement protocol   

To achieve the objectives mentioned in Section II.3, a field protocol was implemented to 

evaluate the optical and SAR time-series for the identification and characterization of winter 

land-use at the Pleine-Fougères site. This protocol consists of the development of 2 field 

campaigns in order to obtain precise and spatialized information on land use during winter 

2016-2017. It was developed in collaboration with “INRA UMR SAD paysages”, as an 

upstream part of the European project BIODIVERSA WOODNET, which aims to characterize 

the internal heterogeneity of landscape elements in an ecologically or agronomically relevant 

manner. 

III.4.1.2. 1st campaign: Land-use records 

In order to identify and finely characterize the winter land-use classes using time-series 

images, land-use records were conducted from October 2016 to November 2016 on a set of 415 

parcels heterogeneously distributed throughout the ZAA, shown in Figure I.25. For each 

parcel surveyed, a crop code and land use were defined. 
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Figure I.25: Localization and illustration of land-use records. 

III.4.1.3. 2nd campaign: Land-use surveys 

To obtain more detailed information about winter land-use and the associated practices 

during the October 2016 to May 2017 period, surveys were conducted with farmers. First, a 

farmers’ pre-selection was carried out using a database referencing all ZAA farmers provided 

by “INRA SAD paysages”. This pre-selection allowed us to keep 30 farmers who might be 

relevant according to their exploitation (hectares cultivated in particular) and their previous 

collaborations in research projects. Among these 30 farmers, 10 were retained to conduct field 

surveys due to their availability (lack of time, cessation of activity, closed farm) and denial of 

participation. 

These 10 surveys provided us accurate and spatialized information about 231 parcels 

spread over the entire ZAA (Fig. I.26). The information retrieved was as follows (An example 

is given in Appendix 3):  

 Farm data:  

 Name of the farm and personal information (name of the farmer, address, phone 

number). 

 Year of installation. 

 Total area exploited (hectares). 

 Part of the farm in UAA. 

 The surface of the spreadable UAA. 

 Livestock farming.  

 If so, what type of livestock? 

 Their opinion on the contribution of effluents and winter land-use.  

 Field data: 

 Crops 2015-2016  

 Harvest date 

 Crops 2016-2017 

 Sowing date 
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 Catch crops 

 Date and method of catch crops establishment 

 Date and method of catch crops destruction or harvest 

 Other practices 

 

Figure I.26: Localization and illustration of land-use surveys. 

III.4.1.4. Additional data: meteorological records 

A set of meteorological records was also retrieved between September 2016 and May 2017. 

Meteorological data and more precisely rainfall and temperature data are essential for a fine 

understanding of the SAR signal. These data were acquired from a network of 5 Campbell 

BWS 200 weather stations located in the ZAA (Fig. I.27). These stations are composed of 

different sensors including a CS215 hygrometer thermometer and an Arg100 Rain Gauge.  

 

Figure I.27: Localization of weather stations and illustration of weather records. 
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III.4.2. Field measurements Pre-processing  

III.4.2.1. Pre-processing of land-use records 

Spatialized records of winter land-use collected between October 2016 and November 

2016 underwent two levels of pre-processing. The first step was to integrate them into a 

database summarizing all land-use data (records and farmers' surveys). The second step 

consisted in cross-checking the information from these records with the land-use surveys 

results conducted with farmers in order to remove the parcels identified as inconsistent 

(misuse, problem identified with the farmer...). The corrected and preprocessed records were 

used as calibration and validation data in the classification models implemented in this thesis.  

III.4.2.2. Pre-processing of land-use surveys 

Information collected during the field surveys was spatialized, integrated and 

synchronized in the land-use database mentioned above. The spatialization of information 

concerned a set of information collected from the field’s surveys:  

 Crops 2015-2016  

 Harvest date 

 Crops 2016-2017 

 Sowing date 

 Catch crops 

 Date and method of catch crops establishment 

 Date and method of catch crops destruction or harvest 

 Other practices 

A cross-analysis of spatialized data integrated into the land-use database (land-use records 

and field surveys), allowed: (i) a better understanding of the agricultural context; (ii) the 

establishment of a crop successions calendar for the ZAA during Winter 2016-2017. The 

agricultural context was then summarized in three points in order to understand the 

agricultural situation during this period: 

 The analysis of the main crops established in summer 2016 and summer 2017 shows an 

agricultural system based on 4 main crops and a permanent culture (corn, winter 

wheat, winter barley, rapeseed and grasslands). However, a predominance is observed 

for corn (35% in 2016 and 30% in 2017), winter wheat (26% in 2016 and 27% in 2017) 

and grassland (24% in 2016 and 27% in 2017) in the years 2016 to 2017 (Fig. I.28). 
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Figure I.28: Main crops in A) summer 2016, B) summer 2017. 

 The second point sought to identify the winter land-use on the ZAA for winter 2016-

2017 (Fig. I.29). This approach showed a predominance of 3 winter land-use types, 

winter crops (~38% of the fields surveyed), catch crops (~30%) and grasslands (~26%). 

This highlights the necessity for farmers to produce a quantity of forage due to 

changing weather conditions. This result is supported by the last point. 

 

Figure I.29: Winter land-use established during winter 2016-2017. 

 The last point focused on determining the proportion of catch crops in the ZAA during 

winter 2016-2017. This analysis reflects farmers' willingness to produce more forage 

due to weather conditions and lower yields during summer 2016. Figure I.30 illustrates 

the dominance of catch crops used, particularly RGI, in order to provide additional 

forage.  



Chapter 3. Study sites and data 
 

66 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

 

Figure I.30: Catch crops established during winter 2016-2017, with catch crops no used in blue 

and catch crops used in grey. RGI: Italian Ryegrass. 

Finally, this spatialized information was used in the different thematic approaches presented 

in the thesis. 

III.4.2.3. Pre-processing of meteorological data 

Hourly meteorological data were acquired by the ZAA weather stations between 

September 2016 and July 2017 and synthesized in order to preserve the key periods to evaluate 

the SAR signal. Regarding the rainfall data, a summary of the 6 hours before the satellite 

passage was made by summing up the rainfall values. For temperature data, a 6-hour 

synthesis was implemented by retrieving the data 3 hours before and after the satellite's time. 

An average was then performed to obtain a single value. An ombrothermal diagram was 

drawn up to model the climatic situation for the period between September 2016 and July 2017 

(Fig. I.31). 

 

Figure I.31: Umbrothermal diagram over the period September 2016 - July 2017. 
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IV.1. Introduction  

The comprehension of inter-relationships between winter land-use and bio-geophysical 

processes is still a major environmental, decision-making and societal issue for scientific and 

decision-makers. In this context, spatial remote sensing has quickly emerged as a fundamental 

tool to identify and understand the concepts and processes resulting from these interactions 

(Joshi et al., 2016). The identification, characterization, and mapping of land use have therefore 

become a main objective for a large number of scientific studies (Verburg et al., 2011; Zaks and 

Kucharik, 2011). In general, these studies have sought to identify the most optimal methods 

for identifying land-use classes based on conventional or non-conventional classification 

procedures. In this context, several studies have highlighted the importance of methods such 

as the Maximum Likelihood Classification (Maxlike) or the Principal Component Analysis 

(PCA) in order to discriminate land-use classes and to carry out detailed mapping (Erb et al., 

2013; Joshi et al., 2015). For a few decades, a new trend has emerged with the extensive use of 

classification methods based on machine learning principles, such as Support Vector Machine 

(SVM) or Random Forest (RF). Methods that have already demonstrated their full potential 

for land-use identification and characterization (DeFries et al., 1999; Herrmann and Tappan, 

2013). Finally, more recently, a small number of studies have tried to highlight the value of 

time-series classification methods, initially developed for language-related functionalities but 

well known in remote sensing (Dynamic Time Wrapping (DTW)), for land-use discrimination 

and monitoring (Maus et al., 2016). Nevertheless, despite the development of a large number 

of methodological approaches for the identification, characterization or monitoring of land 

use, only a few studies as mentioned above (Section II.3.3) have been able to highlight an 

adapted approach for the identification and characterization of winter land-use.  

In this context, the general methodology developed for this thesis aims to identify and 

characterize winter land-use at a local and regional scale. To this end, this methodology will 

be based on the classification approaches mentioned above, while adapting them to meet the 

thematic expectations (Fig. I.32). The implementation of these approaches will be carried out 

in 3 steps: 

 Determination of the most efficient classification procedure for the identification and 

characterization of winter land-use. The approach will consist of (i) the evaluation of 

several classification approaches; ii) the establishment of an optimal winter land-use 

nomenclature and iii) Assessment of optical (S2) et SAR (S1) time-series potential for 

winter land-use classification at a local scale. 

 Assessment of SAR time-series potential for the identification of winter land-use at a 

local scale. The purpose of this approach will be to determine the most appropriate 

SAR configuration.  

 Evaluation of the best identified classification procedure for the identification of winter 

land-use at a regional scale. This approach will consist in extending the developed 

methodology to the Brittany region.
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Figure I.32: General methodology implemented in this thesis. 
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IV.2. First axis: Determination of an efficient classification 

procedure for the identification and characterization of winter 

land-use at a local scale  

The first axis of the thesis will aim to define the most efficient classification procedure 

(which methodology and data) in order to identify and characterize winter land-use. The 

development of three steps will be implemented in this framework. They will be carried out 

using the Sentinel-1 and Sentinel-2 time-series images acquired between September 2016 and 

May 2017 as presented in Section III.3.1. In addition, they will be implemented on a general 

and detailed nomenclature elaborated from the field data (Section III.4.1) summarizing the 

ZAA's winter land-use in 5 and 12 classes respectively. The procedure with the best results 

will be then preserved in order to carry out the next approaches conducted for this thesis. 

IV.2.1 Determination of the most efficient classification algorithm for 

the winter land-use study at a local scale 

The first step of this methodological approach aims to evaluate several classification 

procedures for the identification and characterization of winter land-use using optical and 

SAR time-series. In remote sensing, a classification process is performed to convert images into 

meaningful information, such as assigning a class to pixels or groups of pixels in an image. 

The implementation of classification processes based on remotely sensed time-series image 

has already been the subject of extensive studies in various application fields (Davranche et 

al., 2010; Gómez et al., 2016; Wardlow et al., 2007). However, as (Chi et al., 2008) point out, the 

classification of remote sensing images is not a trivial task. Indeed, the majority of the models 

developed to date require a sufficient number of samples to learn and validate. However, the 

definition and acquisition of reference data is often a critical issue (Mountrakis et al., 2011) for 

some areas of application, such as winter land-use. In addition, the particular phenologies and 

physiognomies of the crops during the winter period, increase the complexity of crops 

discrimination. It becomes logical that the success of any image classification depends on 

various factors, including the choice of an appropriate classification procedure (Lu and Weng, 

2007).   

In this context, the first step will focus on determining the most efficient algorithm for this 

issue. In this section, we will attempt to define the different models and approaches that will 

be used after in this thesis.  

IV.2.1.1. Maximum Likelihood (Maxlike) 

Maximum likelihood classification developed by (Yang, 1993), remains one of the most 

widely used classification techniques for a wide range of applications in remote sensing 

(Comber et al., 2012; Soria-Ruiz et al., 2010).  Based on the theory of multivariate normal 

distribution (Abkar, 1999), it aims to set up a statistical analysis of a spectral vector distribution 

of learning samples in order to define probability zones around class centers. A probability of 

belonging is then calculated for each of the undefined pixels and assigned an affection to the 

class for which the probability of belonging is highest (Fig. I.33).  
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Figure I.33: Maximum Likelihood conceptual example. 

This method offers several advantages such as providing for each pixel, as well as the 

allocation to a class, an index of certainty related to this allocation. This Bayesian feature of the 

classification algorithm separates the statistical weight of each class based on the data set. 

Classes with a low variance may be defined by a higher weight than other classes due to a 

higher probability of belonging of unaffected and spectrally close pixels. However, this 

classification technique is subject to certain limitations, particularly in cases where input data 

are multimodal due to the exclusive application of a normal distribution and when it concerns 

the classification of remote sensing time-series images (Liu et al., 2011). 

In this context, the continuous emergence of new classification algorithms opens up new 

possibilities. To date, the two most commonly used algorithms in remote sensing remain the 

Support Vector Machines and the Random Forest. 

IV.2.1.2. Support Vector Machines (SVM) 

Support vector machines (SVMs) is a supervised non-parametric statistical learning 

technique, therefore there is no assumption made on the underlying data distribution 

(Mountrakis et al., 2011). Developed by (Vapnik, 1979) and then expanded by (Cortes and 

Vapnik, 1995), it aims, based on a set of labeled data, to find a hyperplane that separates the 

dataset into a discrete predefined number of classes in a fashion consistent. 
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Figure I.34: Mechanism of Support Vectors Machines adapted of (Burges, 1998). 

The notion of the optimal separator (adapted hyperplane) represents the decision limit to 

minimize classification errors. During its learning process, the classifier tries to find an optimal 

partition to separate the simulation data according to the same configurations (dimensions) 

(Zhu and Blumberg, 2002). In its simplest form, an SVM is a linear classifier that assigns a 

defined class to a given sample. In remote sensing, a sample to be labeled is usually 

represented by a set of individuals’ pixels of an image. These pixels are then defined as a vector 

for each band of the image and consists of a set of digital measurements. Figure I.34 illustrates 

a simple classification scenario, where the classifier tries to separate two classes in two-

dimensional input space.  The subsets of points located on the margin (called support vectors) 

are the only ones defining the hyperplane of the maximum margin. The implementation of a 

linear SVM requires that remote sensing data be linearly separable. In practice, the class data 

points overlap, which makes linear separability difficult. The definition of an adapted nucleus 

(polynomial, Gaussian, etc.) is therefore essential and often has an impact on the results 

(Mountrakis et al., 2011). 

SVMs are therefore a very interesting algorithm in remote sensing because of their ability 

to successfully process small data sets, often generating more accurate results than more 

conventional methods such as Maxlike (Mantero et al., 2005). In addition, they minimize 

classification errors on "invisible" data without prior assumptions about the distribution of 

these data.  

IV.2.1.3. Random Forest (RF) 

A majority of classifiers do not make assumptions about frequency distribution and have thus 

become increasingly popular for remote sensing data classifications, which are rarely normally 

distributed (Belgiu and Drăguţ, 2016). Furthermore, such approaches are facilitated by the 

implicit assumption that reality has a coherent spectral response. However, the latter becomes 

inaccurate when factors. 

In this context, the RF algorithm has been developed. The RF is a classification method, 

consisting of a combination of classifier trees (Fig. I.35) where each classifier is generated using 
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a random vector sampled independently of the input vector and each tree gives a unit vote for 

the most popular class to classify the input vector (Breiman, 2001; Pal, 2005). Thus, it consists 

of using selected entities (pixels for example) at random or a combination of entities at each 

node to grow a tree. Based on the "Bagging" approach, this method allows the RF to generate 

a set of training data by drawing lots with N replacement examples, where N is the size of the 

original training set (Breiman, 1996).  

 

Figure I.35: Random forest algorithm example. 

The pixels of an image are thus classified into a class defined according to the number of 

votes they are assigned by all the predictor trees of the forest. One of the major advantages of 

RF is the use of the Gini index as an attribute selection measure, which measures the impurity 

of an attribute in relation to classes (Pal, 2005), thus allowing predictive variables to be ranked 

according to their importance in the classification performed. This function of RF has been of 

great interest in recent years in remote sensing (Corcoran et al., 2013; Pedergnana et al., 2013) 

in order to optimize the space of elements by measuring the correlation between them in a 

large dataset. 

Classifiers based on data mining approaches have demonstrated their potential to 

implement classification methods based on remote sensing data. However, (Petitjean et al., 

2012) have shown that the use of such classifiers for crop mapping based on time series can 

become very complicated due to 3 points: (i) The lack of samples used to form the supervised 

algorithm; (ii) lack of temporal data due to cloud cover; (iii) annual changes in phenological 

cycles due to weather or agricultural practices variations. To overcome this problem since the 

1970s, new types of classifiers have emerged.  

IV.2.1.4. Time-Weighted Dynamic Time Wrapping (TWDTW) 

Sakoe and Chiba, (1978) developed in the 1970s a time-series classification algorithm 

called Dynamic Time Warping (DTW). This algorithm is a well-known method for 

determining an optimal alignment between two given sequences (time-dependent) under 

certain restrictions (Müller, 2007). Originally developed to compare speech models in 

automatic speech recognition, it has proven to be useful in data mining and information 

retrieval, particularly for the automatic management of time-dependent data deformations 

such as time series. Despite this potential, some studies have shown its inadequacy in 

processing satellite image time series (Ratanamahatana and Keogh, 2004). In this context, 

(Maus et al., 2016) proposed a time-weighted version of the DTW (TWDTW) method capable 

of classifying crops with diverse plant dynamics using remote sensing time series. The 
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TWDTW method (Fig. I.36) introduces a time constraint, making the DTW more suitable for 

noisy and out of phase time series. 

 

Figure I.36: Time-Weighted Dynamic Time Wrapping conceptual example. 

These algorithms based on various statistical approaches have already demonstrated their 

potential for remote sensing data classification. For this reason, they have been selected to 

identify and characterize winter land use for this thesis.  

IV.2.2. Establishment of an optimal winter land-use nomenclature 

In a second step, we will evaluate the potential of the Sentinel-1 and 2 time-series to 

improve the classification level (nomenclature). Indeed, the classifications implemented in the 

first step of this methodological approach (Section IV.2.1.) were based on a general winter 

land-use nomenclature divided into 5 classes (winter crops, catch crops, grasslands, crop 

residues, and bare soils). However, the results obtained, have showed strong confusions 

between the "bare soil" class and the other winter land-use classes, suggesting approximations 

in the implemented nomenclature. Consequently, a readjustment of the nomenclature is 

required. 

In this context, the second step of the first axis will evaluate the potential of the Sentinel-1 and 

2 time-series to identify and characterize precisely winter land-use, in order to readjust winter 

land-use nomenclature. This process will be performed according two steps:  

 Understand and analyze the interactions between remote sensing signal and winter 

land-use. 

As mentioned previously, in remote sensing, a classification process is performed to 

convert images into meaningful information. However, this process does not remain a trivial 

task. In this context, the development of a detailed winter land-use classification for 

operational monitoring requires, among other things, an understanding of the temporal 

variations of the remote sensing signal according to the different types of crops in a given 

region (Veloso et al., 2017). From this perspective, the use optical and SAR remote sensing 

data, is an opportunity to study the temporal variations. However, up to now, the monitoring 

of crop dynamics has been hampered by the unavailability of satellite time-series with high 

temporal and spatial resolution. The launch in the mid-2010 of the first Sentinel satellites 

presented in Section III.3.1 provided a significant and unprecedented amount of free data to 

consider new opportunities for identifying and characterizing winter land-use. Based on these 

new Earth observation satellites, the first step will analyze the temporal trajectory of remote 



Chapter 4. methodological procedure 
 

76 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

sensing data for the different winter land-use classes summarized in the "main crop" column 

of Table I.4 in order to re-adjust the nomenclature implemented in the first step (Section 

IV.2.1.). 

 Readjustment of the winter land-use nomenclature  

The readjustment of the general nomenclature used in the first step will be based on the results 

of (i) the interactions analysis between remote sensing signals (optical and SAR) and winter 

land-use classes, and (ii) the classification results developed in the first step. These results 

highlighted, in particular, a significant confusion between the bare soil class and the other 

classes. Considering all this information, the land-use nomenclature will be readjusted, 

detailed and summarized in Table I.4. 

IV.2.3. Assessment of Sentinel-2 (optical) and Sentinel-1 (SAR) time-

series potential for the classification of winter land-use at a local 

scale 

The third step of this first axis will consist of setting up a global and detailed classification 

in order to determine the best Sentinel time-series to identify and characterize winter land-

use. The development of these classifications will be performed in 3 steps:  

 Elaboration of a global winter land-use classification  

The global winter land-use classification will be carried out using the procedure determined 

in the first step, based on Sentinel-1 and Sentinel-2 time-series acquired between September 

2016 and May 2017 on the ZAA (presented in Section III.3.1) and applied on the nomenclature 

presented in the Table I.4 and summarized in five global winter land-use classes.  

This global classification will be performed according two classification approaches, pixel-

based or object-based, in order to evaluate the best approach for the winter land-use study.  

Many studies have already shown the value of these two approaches for identifying and 

characterizing land use (Araya and Hergarten, 2008; Jianya et al., 2008). In particular, they 

highlighted some critical points to be considered for this thesis: 

 Pixel-based approach 

The pixel remains the basic unit for image analysis and techniques using remote sensing data. 

Indeed, in remote sensing in classification procedures, one pixel remains the atomic analysis 

unit of the procedures where spectral characteristics are used to detect and measure changes 

without considering the spatial context. In most cases, statistical operators are used to evaluate 

individual pixel. In this context, researchers have further investigated pixel-based approaches 

associated with classification methods such as SVM (Hussain et al., 2013) to demonstrate their 

potential for classifying remotely sensed images. These studies have highlighted that one of 

the advantages of the pixel approach lies in its ability to maintain the variability of a target. 

However, this advantage can also be a disadvantage and depends intrinsically on the 

relationship between the spatial resolution of the sensor and the size of the objects. For 

example, it is necessary to carry out a pixel approach from MODIS images because of its spatial 

resolution, unlike SPOT imaging, or the question may arise.  
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 Object-based approach 

Remote sensing communities have soon recognized the pixel to be not a real geographical 

object but rather a cellular representation of spectral values in a grid whose boundaries do not 

reflect the real world (Fisher, 1997). The work of Addink et al., (2012) supported the fact that 

one pixel is not the optimal spatial unit for landscape mapping.  This approach is now 

supported by the evolution of remote sensing and the launch of new sensors for which, the 

high variability of reflectance within individual characteristics and the number of classes 

present in high spatial resolution images have limited traditional pixel analysis (Johansen et 

al., 2010). However, the increase in spatial resolution accuracy has resulted in an increase in 

mixed pixels in objects, which are considered to be one of the main sources of error and 

uncertainty in land use and land cover studies (Boyd and Foody, 2011). In addition, the 

implementation of an object approach is known to generate image smoothing, reducing the 

variability of an object which is an important part of the classification process.  

 Elaboration of a detailed winter land-use classification  

This classification will be carried out using the procedure determined in the first step, based 

on Sentinel-1 and Sentinel-2 time-series acquired between September 2016 and May 2017 on 

the ZAA (presented in Section III.3.1) and applied for the new nomenclature of 12 winter land-

use classes determined in step 2 of this axis. 

 Comparison of Sentinel-1 and -2 time-series potential  

Finally, a comparative analysis will be carried out to determine the potential of the Sentinel-1 

and -2 time-series.  
  



Chapter 4. methodological procedure 
 

78 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

IV.3. Second axis: Polarimetric SAR time-series for winter land-use 

identification 

The second axis, based on the findings and prospects of the first axis, will attempt to 

evaluate the relevance of SAR time-series (Alos-2, Radarasat-2, and Sentinel-1) for the 

identification of winter land-use.  Indeed, although the potential of high spatial resolution SAR 

images has been developing steadily over, no studies have so far demonstrated its potential 

for the detailed identification, characterization of land use during the winter season. In this 

context, based on SAR time-series images acquired between August 2016 and May 2017 on the 

ZAA (presented in Section III.3.1), it will try to determine the most appropriate SAR 

configuration (polarization, frequency, time series density) for detailed winter land-use 

classification. The classification procedure determined in the first axis will be reused and 

applied to the detailed nomenclature (12 classes) defined in the second axis.  

IV.4. Third axis: Identification of winter land-use at a regional scale  

Finally, the last axis will aim to assess the reproducibility, at a regional scale, of the method 

considered as the most efficient for the identification and characterization of winter land-use 

at a local scale. To this end, based on the adaptation of the best classification procedure and 

remote sensing time-series (Sentinel-2) a 2-steps pre-processing methodology will be first 

implemented at Brittany scale:  

 Acquisition of a denser time-series where meteorological conditions will be restrictive. 

An appropriate method should be implemented: 

 For atmospheric corrections. 

 For the storage and computation, volumes to be devoted to the processing of these 

data. 

 Adjustment of calibration and validation data to perform classification models: 

 Acquisition of new learning database at Brittany scale, the “Registre Parcellaire 

Graphique” (RPG), which is a geographical database used as a reference for the 

appraisal of Common Agricultural Policy (CAP) aids. Nevertheless, as these data 

are provided by farmers to government services, pre-processing are required to 

avoid any errors. 

 Acquisition of validation data and Parcellaire Database developed by the “Institut 

national de l'information géographique et forestière” (IGN), which provides digital, 

geo-referenced and continuous cadastral information throughout France. The 

Cross-referencing of the RPG and Parcellaire Database will enable to obtain a 

database referencing parcels not declared to the CAP (for various reasons), which 

represents a major challenge for many communities (scientists, decision-makers, 

etc.). 

 Then, a processing methodology will be implemented in order to develop a 

classification model based on RPG data and a dense Sentinel-2 time-series. This 
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model will be then reproduced on the "BD Parcellaire" at Brittany regional scale in 

order to identify the winter land-use of the parcels not declared under the RPG and 

evaluate the reproducibility of the best classification procedure identified in this 

thesis. Thus, this axis will aim to provide a technical support to decision-makers in 

order to assist the implementation of environmental measures in a sustainable 

development context of agricultural areas.
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Conclusion of the first part 

 

 

The state of the art implemented in this first part has defined the concepts, functions and 

issues related to winter land-use in an intensive agricultural area but also how they can be 

identified and characterized. 

Globally, land use can be defined according to a plurality of concepts framed by a common 

denominator, the impact of the human factor. In this sense, many studies have attempted to 

establish a limited definition of land use, which has become a source of important confusions 

and disagreement, especially since land use is still intrinsically linked to the notion of land 

cover. In this context, the work of (Comber, 2008) have provided a new perspective for 

defining this concept. He considers that it is impossible to focus on a limited definition of the 

land-use concept, but rather that its definition can be contextualized by the people' perception 

in a specific thematic context. Following this approach, the subject of this thesis was therefore 

defined as "land-use" during the winter season (“winter land-use”), a sub-unit of the object 

"agriculture", a land-cover element. The perception of the land-use concept remains all the 

more important because it involves a wide range of interconnected processes and functions. 

In this context, understanding the pressures and interactions, including environmental, 

economic and human interactions, is a major challenge.  

To meet these challenges, international institutions have decided over several decades 

now to implement a legislative framework to regulate the practices and actions that might 

generate these pressures. Framework represented by two major European policies on land-use 

practices, particularly in winter, a crucial period for land use/environment interactions. 

I) The European Directive 91/676/EEC, also known as the "Nitrates Directives". 

Established in December 1991 in response to non-compliance with the environmental 

standards set by Directive 75/440/EEC of 1975 on the required quality of surface water used 

for drinking water production. The purpose of this directive is to provide a framework and 

structure for the establishment of agricultural covers during the winter period. Under French 

law, it is expressed in the implementation of action programs allowing the implementation of 

measures to restore and/or preserve a better quality of surface and groundwater in sectors 

where this quality has been degraded. Since August 2018, a 6th action plan has been in force, 

requiring the establishment of a ground cover in winter (“Nitrates Directive,” 2019) divided 

into 5 main land-use classes, (i) winter crops; (ii) grasslands; (iii) catch crops and (iv) crop 

residues and (v) bare soils.  

II)  The Rules on Good Agricultural and Environmental Conditions (GAEC). As part of a 

more general framework and integrated into the conditionality of CAP support to farmers, 

these rules include requirements for regulatory compliance in the environment, animal 

protection, animal production health, crop production health and in particular the 

conservation of areas known as " ecological interest " on at least 5% of the arable land surface 

(Tarn, 2015).  

In this context, the impact of winter land-use on the environment has emerged as a major 

issue for the scientific community. (Galloway et al., 2004; i Canals et al., 2007; Withers et al., 

2014) have thus demonstrated the essential role of winter land-use on biogeochemical and 

environmental processes, particularly on the water cycle, biodiversity, health or even on a 

broader scale on climate. The understanding of processes, and interactions resulting from 
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winter land-use have therefore become essential in order to address the environmental issues 

having a significant impact on our societies.  

From these perspectives, it has become essential to obtain updated and accurate data on 

winter land-use, its processes and interactions. To this end, remote sensing data have appeared 

to be a privileged tool for the spatiotemporal identification and characterization of the winter 

land-use dynamics. However, although optical remote sensing data have already shown their 

potential in studying land use, several questions arise as to their effectiveness during the 

winter period where meteorological conditions can affect the behavior of the optical signal.  

Similarly, although SAR remote sensing is well known to overcome a part of the 

meteorological conditions, its capacity to obtain information on the physical characteristics 

and structure of crop is still unknown for the identification and characterization in detail of 

winter land-use patterns.  

Thus, this thesis attempt to evaluate the potential of optical and SAR time-series images 

for the study of winter land-use. To this end, a 3-steps general methodology will be developed 

in order to identify and characterize winter land-use: (i) Define the most appropriate 

classification procedure and satellite time-series images for this issue at a local scale; (ii) 

Determine the most efficient SAR configuration for this issue at a local scale; (iii) Evaluate the 

reproducibly of the best classification procedure and remote sensing data for the identification 

of winter land-use at a regional scale.  
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2 
Classification procedure for the winter land-use study at 

a local scale  
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Introduction of the second part  

 

 

The second part of this manuscript presents the studies conducted to determine an 

adapted classification procedure and to evaluate the potential of Sentinel-1 and Sentinel-2 

time-series images for the identification and characterization of winter land-use. The general 

framework of this methodology has been developed in Section IV.1 and will be presented in 

details below.  

This part is divided according to three purposes: i) Determination of the most efficient 

algorithm for winter land-use classification; ii) Analysis of SAR and optical multi-temporal 

signal behavior to establish an optimal winter land-use nomenclature; iii) Assessment of 

optical (S2) et SAR (S1) time-series potential for the classification of winter land-use at a local 

scale.   

In the fifth chapter, winter land-use will be analyzed at the local level from optical 

(Sentinel-2) and SAR (Sentinel-1) time-series presented in Section III.3.1. An approach will be 

first conducted to determine the most appropriate classification algorithm (Section IV.1) to 

identify and characterize winter land-use. A comparative approach will be performed based 

on the classifications accuracies obtained using four classification algorithms. Then, using 

temporal profiles extracted from Sentinel time-series images, an analysis will be computed to 

interpret Sentinel-1 (SAR) and Sentinel-2 (optical) signal behavior in order to establish an 

adapted nomenclature and identify the best Sentinel parameters for the winter land-use study. 

Finally, using the best Sentinel dataset parameters and classification algorithm, a global and 

detailed winter land-use classification will be performed over the ZAA.  
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Determination of the most efficient classification 

procedure and Sentinel time-series for the study 
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V.1. Introduction  

The world population is predicted to reach 8.7 billion by 2030, which will increase and 

intensify pressure on the environment and increasingly require considering socio-economic 

conditions and environmental impacts of agricultural systems (Belgiu and Csillik, 2018). In 

addition, farmers will have to alter their farming practices according to climate change and 

given conditions (Veloso et al., 2017). Information about land use is essential for estimating 

effects of farming practices on the environment, not only for mapping annual crops and 

pastures, but also for identifying land-surface conditions during winter. Winter crop-

management practices such as intercropping and land-management practices, such as 

minimum tillage were developed to reduce runoff and the soil erosion it causes, increase 

nitrogen fixation, and increase carbon sequestration (Galloway et al., 2004). The great diversity 

in agricultural practices and variability in climatic conditions result in a wide variety of land-

use patterns in winter, each of which has specific environmental impacts (Dabney et al., 2009). 

Hence, it is of great importance to identify detailed land-use classes during the intercropping 

season.  

However, finely discriminating winter land-use classes over large areas remains 

challenging. While most studies that monitored land use in winter using remote sensing data 

focused on detecting vegetation cover on the surface (Minh et al., 2018), only a few identified 

land-use classes, and those classes have been broad. In contrast, it is important to describe land 

surfaces in detail and discriminate finely between land-use classes. High spatial resolution 

time-series from satellite images can help map land-use classes accurately during the 

intercropping season. The wide variety of land-use types in winter also complicates detection 

of individual crop patterns. Although they are widely used to identify annual crops (Fieuzal 

et al., 2013), optical images have several limitations for determining land use in winter due to 

meteorological conditions such as frost or rain (Su et al., 2011). The wide variety of land-use 

types in winter also complicates detection of individual crop patterns.  

However, several studies have demonstrated the ability of optical medium-resolution 

time-series to map crops that cover large areas and long-term changes in crop areas (Wardlow 

and Egbert, 2008) and to identify and characterize crop phenology over large areas 

(Jakubauskas et al., 2002). However, these data can only detect winter land-use in small field 

areas due to their broad spatial resolution (Lecerf et al., 2005). Optical very-high resolution 

time-series have also been used to map cropping patterns. For example, (Kuenzer et al., 2015) 

showed the potential of Pleiades images for identifying crops and land-surface dynamics, as 

well as farming practices in summer. However, identification of winter land-use types implies 

the detection of soil surface and vegetation growth dynamics that vary daily, seasonally, and 

from one field to another (Pacheco and McNairn, 2010) requires several satellite images in 

winter (Denize et al., 2019). However, high-resolution optical time-series are underused, 

because only few cloudless images are available in winter.  

Due to shorter revisiting intervals and acquisition abilities that are not influenced by 

weather, synthetic aperture radar (SAR) time-series data are well suited to characterize winter 

land-use dynamics when mapping crops (Bargiel, 2017). High-resolution SAR images have 

been widely used to identify bare soils and tillage practices during winter season (Ulaby et al., 

1986). Several studies have demonstrated the potential of radar data for mapping crop residues 

(McNairn and Brisco, 2004; Smith and Major, 1996) and crop types in summer (Bargiel, 2017). 

Despite this ability to overcome meteorological conditions, only a few studies have 

highlighted the capacity of SAR time-series data to identify winter land-use. (Haldar et al., 
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2016) presented the ability of polarimetric C-band SAR time-series data for mapping wheat 

and mustard. Similarly, while optical and SAR data should be complementary, few studies 

have evaluated their combined use for mapping land use in summer (Fieuzal et al., 2013; 

Skakun et al., 2015) and, to our knowledge, only one identified broad land-use classes in winter 

(Denize et al., 2019). The launch of the Sentinel-1 and Sentinel-2 sensors that provide optical 

and SAR data with high spatial and temporal resolution, offers interesting possibilities to 

study the temporal dynamics of winter land-use. Several studies have highlighted the 

Sentinel-1 and -2 potential to characterize and classify land use, either separately or combined 

(Inglada et al., 2016; Veloso et al., 2017). Among these studies, a few have demonstrated the 

potential of Sentinel-2 time-series data for identifying intra-annual land-use changes. (Forkuor 

et al., 2018) obtained better land-use maps with Sentinel-2 time-series than Landsat-8 time-

series. Similarly, (Belgiu and Csillik, 2018) and (Vuolo et al., 2018) presented the potential of 

Sentinel-2 data for land use mapping during the growing season with high accuracy (overall 

accuracy (OA) > 90%). A few studies have shown the potential of Sentinel-1 for identifying 

and characterizing land-cover and land-use dynamics (Minh et al., 2018; Torbick et al., 2017). 

(Bargiel, 2017) and (Veloso et al., 2017) illustrated the benefits of Sentinel-1 time-series for 

understanding crop behavior and dynamics to classify land use. Minh et al., (2018) produced 

a winter vegetation map in five quality classes (from “bare soil” to “high quality”) with a high 

overall accuracy (98%) using Sentinel-1 data and a deep-learning classification procedure. The 

potential of combined Sentinel SAR and optical data to map land cover have been highlighted 

by only few studies (Mercier et al., 2019; Sun et al., 2019). (Carrasco et al., 2019) have shown 

that use of combined Sentinel-1 and -2 images improved the accuracy of land use 

classifications by 5-10%. Nonetheless, the use of Sentinel-1 and -2 images to identify and 

characterize detailed winter land-use remains unexplored.  

In this context, this chapter try to evaluate the potential of free Sentinel-1 and Sentinel-2 

time-series for the identification and characterization of winter land-use. To this end, two 

datasets of optical (Sentinel-2) and SAR (Sentinel-1) time-series images acquired on the ZAA 

between September 2016 and May 2017. A three-steps procedure was then developed. i) A 

classification procedure was established to identify the most adapted algorithm; ii) Then, after 

analyzing temporal profiles of SAR and optical Sentinel parameters, we estimated the best 

nomenclature and parameters for winter land-use study; iii) Finally, the most important 

Sentinel-1 and 2 parameters were used to perform global and detailed winter land-use map 

with the best classification algorithm.  
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V.2. Study site and Data  

V.2.1. Study Site  

The study site on a ca. 130 km² agricultural area located to the south of the Bay of Mont-

Saint-Michel (48°31’0” N, 1°31’30” W), western France, the “ZAA of Pleine-Fougères” 

presented in Section III.3.2. This area, which is a Long-Term Ecological Research (LTER) site, 

has a temperate climate with a mean annual temperature > 12°C, a minimum mean annual 

temperature > 8°C, a maximum mean annual temperature of 16°C, and mean annual 

precipitation of 600-700 mm. It contains ca. 7000 agricultural plots ranging in size from 0.1-65 

ha (mean of 2.1 ha) and is surrounded by a hedgerow network. Farming systems are oriented 

mainly toward dairy cattle and some crop production. Grasslands and fodder crops cover a 

high percentage of the Utilized Agricultural Area (UAA). The crop system is characterized by 

sowing of secondary annual crops, hereafter “winter crops” (winter wheat, winter barley, and 

rapeseed), or intermediate crops, hereafter “catch crops”, in autumn, after harvest of the main 

annual crops (maize, wheat, rapeseed. and barley). 

The winter land-use types considered in this study are presented in Figure II.1. and Table 

II.1. Winter crops cover 40% of the UAA. Wheat and barley that are sown in October have a 

comparable plant morphology and growth stages (Denize et al., 2019). Wheat is harvested 

mainly in mid-July and barley in late June or early July. Rapeseed, sown mostly in September, 

is harvested in early July. At full development, rapeseed plants are taller than wheat and 

barley, and their stems are intertwined with no clear vertical structure (Veloso et al., 2017). 

Sowing of catch crops, which is required under the European Union Nitrates Directive, 

reduces nitrate leaching, application of mineral fertilizers, and the risk of erosion. Catch crops 

are destroyed at the end of winter and are sown after the main crops from August-October 

and cover 25% of the UAA. They are very varied (e.g. oat, phacelia, mustard), and have 

different plant structures and phenologies. In most areas where the main annual crops are 

harvested after November, crop residues (cereal stubble such as maize stalks) are left on the 

soil surface to prevent leaching (5% of the UAA). Grasslands that influence nitrogen cycle as 

well as soil water and carbone storage, cover ca. 30% of the UAA. Because they can be mown 

or grazed, grasslands have similar plant structure but different phenologies. Finally, although 

bare soils have been banned for several years to avoid soil erosion and water pollutant, some 

of them were identified during the first field measurement campaign. So, we decided to 

include a bare soil class that will be reconsidered during these works. 

 

Figure II.1. The five main winter land-use types in the study area. 
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Table II.1. Types and sub-types of winter land-use classified in the study. 

Land-use type Land-use sub-types  

Winter crops Winter wheat 

Rapeseed 

Winter barley 

Catch crops Ryegrass and clover 

Phacelia 

Oat 

Fodder cabbage 

Phacelia and mustard 

Phacelia and oat 

Crop residues Maize stalks 

Grasslands Grazed grasslands 

Mown grasslands 

Bare soil None  

V.2.2. Land-Use  

The land-use classification used for this methodological approach was realized from two field 

campaigns presented in Sections III.4.1.2 and III.4.1.3. It is divided into two levels of 

classification gathering the winter land-use classes observed during these campaigns and 

summarized in Table II.1.  

 V.2.3. Meteorological data  

As presented in section III.4.2.3, meteorological records were collected from five weather 

stations in the study area that record air temperature and rainfall each hour. Only the 

temperatures closest to the Sentinel-1 overpass time recorded from August 2016 to September 

2017 were used. Rainfall data were summed over 6-hour periods by retrieving the data three 

hours before and after the Sentinel-1 overpass time during the same period. These data were 

collected to analyze the scattering behavior of the SAR signal for each type of land use, since 

weather conditions influence it greatly.  

 

V.2.4. Satellite time-series images  

V.2.4.1. Sentinel-2 time-series  

A time-series of nine Sentinel-2 images presented in the Section III.3.1 was downloaded from 

the Copernicus Open Access Hub between August 2016 and May 2017 at the local scale of the 

ZAA. These Sentinel-2 Level-1C images (i.e., corrected for geometric and atmospheric effects) 

were acquired with a spatial resolution of 10-20 m and 10 spectral bands (bands with 60 m 

resolution were not considered) (Table II.2). 

V.2.4.2. Sentinel-1 time-series  

Two series of nine (sparse) and twenty (dense) S-1 SAR images presented in the Section III.3.1. 

were downloaded from the Copernicus Open Access Hub between August 2016 and May 2017 

at the local scale of the ZAA. S-1 images were obtained in Single Look Complex (SLC) mode 
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(delivered in dual-pol mode: VH and VV) with an incidence angle of 31°-46°. The range and 

azimuth spatial resolutions were 2.3 and 13.9 m, respectively (Table II.2). 

Table II.2. Characteristics of Sentinel-1 and Sentinel-2 images. Dates in bold text for Sentinel-

1 images indicate those with sparse time-series, while asterisks indicate those with dense time-

series. 

Characteristic Sentinel-1 Characteristic Sentinel-2 

Ground resolution 

(m) 
2.3 

Spatial 

resolution (m) 
10-20 

Azimuth resolution 

(m) 
13.9 

Polarization Dual (VV-VH) 

Spectral 

resolution-central 

wavelength (µm) 

Band 2 (Blue) – 0.490 

Band 3 (Green) – 0.560 

Band 4 (Red) – 0.665 

Band 5 (Red Edge) – 

0.705 

Band 6 (Red Edge) – 

0.740 

Band 7 (Red Edge) – 

0.783 

Band 8 (NIR) – 0.842 

Band 8A (NIR) – 0.865 

Band 11 (SWIR) – 1.610 

Band 12 (SWIR) – 2.190 

Frequency C-band 

Mode 
Interferometric wide 

(SLC) 

Incidence angle (°) 31°-46°(right descending) 

Coverage (km) > 250 × 100 Coverage (km) > 250 × 100  

Dates (m-d-y) 

08-25-2016 

09-18-2016* 

09-30-2016* 

10-12-2016* 

10-24-2016* 

11-05-2016* 

11-17-2016* 

11-29-2016* 

12-11-2016* 

12-23-2016* 

01-04-2017* 

01-16-2017* 

01-28-2017* 

02-09-2017* 

02-21-2017* 

03-05-2017* 

03-17-2017* 

03-29-2017* 

04-10-2017* 

04-22-2017* 

05-04-2017* 

05-16-2017 

Dates (m-d-y) 

08-25-2016 

11-05-2016 

11-29-2016 

12-29-2016 

01-16-2017 

02-21-2017 

03-29-2017 

04-10-2017 

05-10-2017 
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V.3. Methods 

Several parameters were derived from the Sentinel-1 and Sentinel-2 time-series. The 

method developed to analyze winter land-use from these parameters had two steps: (1) pre-

process the optical and SAR image time-series to generate parameter datasets (section V.3.1) 

and (2) process the optical and SAR parameters by identifying the best classification 

algorithms, extracting temporal profiles of winter land-use classes, and classifying Sentinel 

parameters (section V.3.2). 

V.3.1 Pre-processing of Sentinel time-series images 

V.3.1.1 Sentinel-1 SAR images 

V.3.1.1.1 SAR parameter selection 

Backscattering coefficients and polarimetric parameters were selected to monitor winter land-

use. Backscattering coefficients (VV and VH polarizations) are usually used to monitor 

vegetation because the vertically (V) and horizontally (H) polarized microwaves react 

differently to vegetation in the C-band (McNairn and Brisco, 2004). The predominant vertical 

structure of most agricultural crops creates destructive interference with V microwaves, which 

decreases their penetration through the canopy (i.e. attenuates the microwave signal). In 

contrast, H microwaves tend to penetrate the canopy more than V microwaves. Many studies 

have demonstrated the value of VV polarization for identifying changes in growth stages of 

vegetation (Jackson and Schmugge, 1991). VH polarization, which results from multiple 

scattering from rough surfaces and multiple volume scattering from within the vegetation–

soil volume, is sensitive to plant structure within the total canopy volume, and thus provides 

information that is complementary to VV polarization (McNairn and Brisco, 2004). However, 

some studies have shown that Sentinel-1 VH and VV polarizations can contain mixed 

interactions between vegetation and the ground due to the double-bounce effect and to 

attenuation of ground backscattering by the canopy in the C-band, which includes simple and 

multiple scattering (Ulaby et al., 1986). The VH:VV ratio is used to address this issue (Veloso 

et al., 2017) because it can reduce the double-bounce effect, as well as errors associated with 

the acquisition system or environmental factors. Thus, the VH:VV ratio is more stable than VV 

or VH polarization considered independently. Other parameters derived from SAR data are 

useful for studying cropping systems, such as Shannon Entropy (SE), which highlights the 

order and disorder of an object and can discriminate soil from specific crops, such as wheat 

and rapeseed (Betbeder et al., 2015). Another parameter is SPAN, which characterizes the total 

backscattering power that is reflected; it helps discriminate crops by highlighting the main 

backscattering mechanisms. 

V.3.1.1.2 Backscattering coefficients 

First, Sentinel-1 time-series were radiometrically calibrated with SNAP v6.0 software to 

transform radar signals into backscattering coefficients. To reduce the speckle noise inherent 

in SAR imaging, a Lee sigma filter (Lee et al., 2008) was applied with a window of 7×7 pixels 

and a sigma value of 0.7 using SNAP v6.0 software for dense Sentinel-1 time-series and a Lee 

Refined filter (Lee, 1981) was applied with a window of 7×7 pixels using SNAP v6.0 software 
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for sparse Sentinel-1 time-series. Shuttle Radar Topography Mission 3s data were then used to 

correct the topographic effects and geocoded SAR images. The geometric correction accuracy 

was 10 m for each pixel. A backscattering ratio, which highlights the scattering mechanisms of 

each target (McNairn and Brisco, 2004), was calculated by dividing backscattering coefficient 

𝜎0
𝑉𝐻 by 𝜎0

𝑉𝑉. This ratio, 𝜎0
𝑉𝐻 and 𝜎0

𝑉𝑉  were then converted into decibels (db) using the 

following equation (Eq.II.1): 

𝜎0(𝑑𝑏) = 10. 𝑙𝑜𝑔10(𝜎
0) (Eq. II.1) 

V.3.1.1.3. Polarimetric parameters 

First, a 2×2 covariance matrix (𝐶2) was computed from the scattering matrix S of each SLC 

image using PolSARpro v5.1.3 software (Pottier and Ferro-Famil, 2012). The geocoding process 

was performed to the elements of the (𝐶2) matrix (Lusch, 1999) , using SNAP v6.0 software. A 

Lee sigma filter with a window of 7×7 pixels and a sigma value of 0.7 or a Lee Refined with a 

window of 7×7 pixels were then applied to reduce speckle noise (For dense and sparse time-

series respectively). SPAN and SE, which equal the sum of the intensity (𝑆𝐸𝑖) and degree of 

polarization (𝑆𝐸𝑝) (Réfrégier, P., and Morio, J., 2006), were then calculated from the (𝐶2) matrix 

(Eq. II.2). SE measured the disorder in the polarimetric SAR images as follows:  

𝑆𝐸 = 𝑙𝑜𝑔(𝜋2𝑒2|𝐶2|) = 𝑆𝐸𝑖 + 𝑆𝐸𝑝 (Eq. II.2) 

V.3.1.2. Sentinel-2 optical images 

All Sentinel-2 spectral bands at 10 and 20 m resolution, as well as some indices, were 

chosen to monitor winter land-use. Three indices were selected based on their ability to 

highlight different processes related to vegetation, such as water stress, growth peak, and 

phenological stage (Gu et al., 2008; Veloso et al., 2017). The Normalized Difference Vegetation 

Index (NDVI) was selected because it is the vegetation index used most to study vegetation at 

multiple scales and environmental changes (Bannari et al., 1995). It leads to a reduction in 

spectral noise generated by environmental conditions. The Soil-Adjusted Vegetation Index 

(SAVI) was used for its ability to highlight vegetation growth peak and phenological stage (Gu 

et al., 2008). The Normalized Difference Water Index (NDWI) was selected for its ability to 

highlight water in plants and water stress. Sentinel-2 optical images retrieved from the 

Copernicus Open Access Hub in Level-1C were already orthorectified and georeferenced 

based on the UTM (area 30N) reference system. The first step of Sentinel-2 pre-processing was 

to assess the accuracy of the corrected images. Sentinel-2 images were then corrected for 

atmospheric effects to deliver a Level-2A surface-reflectance product using the Sen2Cor 

toolbox of SNAP v6.0 software. Sentinel-2 images were resampled at 10 m resolution. NDVI, 

NDWI, and SAVI were calculated using SNAP v6.0 software. Biophysical parameters (Leaf 

Area Index, fraction of photosynthetically active radiation and fractional vegetation cover) 

were finally calculated using the PROSAIL radiative transfer model (Weiss et al., 2004; 

Jacquemoud et al., 2009) implemented in SNAP v6.0 software. These parameters describe the 

state of the vegetation cover and provide information on the density of green vegetation 

(Dusseux et al.,2014). 

A total of 10 SAR parameters were derived from Sentinel-1 time-series (2 backscattering 

coefficients and 1 ratio based on the backscattering coefficients, 1 SPAN, 2 SE, 2 SEi and 2 SEp), 

and 16 optical parameters (10 bands, 3 vegetation indices, 3 Biophysical parameters) were 

calculated from Sentinel-2 time-series. Thus, 200 parameters for Sentinel-1 dense time-series 
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(10 parameters × 20 dates), 90 parameters for Sentinel-1 sparse time-series (10 parameters × 9 

dates) and 144 parameters for Sentinel-2 data (16 parameters × 9 dates) were extracted. 

V.3.2. Processing of Sentinel time-series images 

V.3.2.1 Feature extraction 

In this fifth chapter three parameters datasets (one Sentinel-2 dataset and two Sentinel-1 

datasets (dense and sparse)) derived from Sentinel time-series were used to process two 

classification approaches: an object-based and a pixel-based approach. Hedgerows, which are 

considered noisy features when mapping land use, were removed from the images by 

applying a 5 m negative buffer around the boundaries of the field boundaries observed on the 

study site. Then, two feature extraction sequences were performed: (i) for the object-based 

approach, the mean and median values of optical and SAR parameters were calculated at the 

field scale; (ii) for the pixel-based approach, 100 pixels were randomly selected from the 

ground surveys for each winter land-use class, yielding 500 pixels (5 classes X 100 pixels) for 

the global winter land-use classification, and 1 200 pixels (12 classes X 100 pixels) for the 

detailed winter land-use classification. 

V.3.2.2. Determination of the most efficient classification 

algorithm 

To determine the most efficient algorithm for the identification and characterization of 

winter land-use a set of classifications using four classifiers and based on the global pixel 

feature extraction (500 pixels (5 classes X 100 pixels)) was implemented. 

V.3.2.2.1. MAXLIKE  

First, the MAXLIKE supervised classification algorithm presented in Section IV.2 was 

performed using the classifyRasclass function integrated into the Rasclass package (v.0.2.2.2) 

implemented in the R software (v3.5 and above) (“R Core Team, 2019,” 2019). The package 

developed by Daniel Wiesmann (Wiseman et al., 2014) allows the implementation of a 

supervised pixel-oriented classification set from a single function (ClassifyRasclass). The 

classification results are then validated using the same package that provides information on 

the accuracy related to these classifications from a set of indices such as "overall accuracy". 

V.3.2.2.2. SVM 

A set of classification was realized using the Support Vectors Machine (SVM). This classifier, 

presented in Section IV.2, aims to define the most optimal margin (hyperplane) to separate 

two datasets. Initially developed to separate two datasets linearly, it currently allows by 

selecting an adapted kernel (Polynomial, Gaussian...) to separate optimally two datasets. SVM 

algorithm integrated into the e1071 package (v 1.7-0) developed by (Dimitriadou et al., 2008) 

and implemented in R (v3.5) software was used in this second part. First, four SVM parameters 

(gamma, cost, degree, and nu) were randomly adjusted using the "tune" function implemented 

in the package. Then, several tests were carried out to determine the most optimal kernel for 

the classification of winter land-use.  The "polynomial" kernel was then conserved. 
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V.3.2.2.3. Random Forest  

In a third time, the RF classifier presented in Section IV.2 was employed using the 

randomForest package (v 4.6) developed by (Liaw and Wiener, 2002) and implemented in R 

(v3.5) software. Two RF parameters were then determined for this approach. i) The number of 

trees (ntree), determined by a random selection of samples extracted from the Sentinel-1 and 

2 time-series images. This parameter has been set at 1,000, which is considered as the optimal 

number to minimize the classification errors (Lawrence et al., 2006); ii) The number of variables 

used for the tree node division (mtry) determined from the "tune" function integrated into the 

package. 

V.3.2.2.4. TWDTW algorithm 

Finally, a set of classifications was calculated using the TWDTW algorithm (Maus et al., 2016) 

presented in Section IV.2. The main function of this algorithm is to find an optimal alignment 

between two given sequences (time-series) by imposing a time constraint allowing better 

separation of the winter land-use classes time profiles. The dtwSat package (v.0.2.1) developed 

by (Maus et al., 2016) and implemented in R (v3.5) software was used for this approach. This 

package consists of applying the DTW algorithm to each time-series with a time constraint. 

The DTW algorithm matches each pattern to the input time-series independently of the others. 

Then, the land-use classification is created using the model with the shortest distance DTW. 

To implement this algorithm on the Sentinel-1 and -2 datasets, a three-step process was 

performed: 1) the creation of time models for each winter land use classes based on Sentinel-1 

and Sentinel-2 parameters datasets; 2) the application of TWDTW analysis using the 

dtwSat::twdtwApply function with α= -0.1 or-0.2 for Sentinel-2 and -1 and β=40 or 50 for 

Sentinel-2 and -1 respectively 3) the classification of raster time-series .    

The classifications assessments were carried out through a validation procedure, 100 

pixels were randomly selected by minimizing spatial autocorrelation among the fields 

contained in the land-use type database presented in Section III.4.1 and representing the 5 

main winter land-use classes (in total, 500 pixels). The four classifiers were then applied in 

turn from two-thirds of the 500 pixels randomly selected (i.e. 332 pixels). The One-third of the 

remaining samples (168 pixels) was used to validate the classifications. This process was then 

replicated 100 times by changing the training and validation subset samples. The accuracy of 

the classification was then assessed using the overall accuracy (OA). 

V.3.2.3. Analysis of SAR and optical multi-temporal signal 

behavior 

The evaluation of the potential of the Sentinel-1 and 2 time-series to improve the 

classification level (nomenclature) was performed according to the first observations obtained 

with classification algorithms based on a general winter land-use nomenclature composed of 

5 classes (winter crops, catch crops, grasslands, crop residues, and bare soils). The results 

showed strong confusion between the "bare soil" class and the other winter land-use classes, 

suggesting approximations in the implemented nomenclature. Consequently, a readjustment 

of the nomenclature is required. For that, Median and mean temporal profiles for Sentinel-1 

and Sentinel-2, respectively, were calculated for the 12 winter land-use classes (without bare 
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soils) from the best SAR and optical parameters generated from 10 m Sentinel-1 and -2 time-

series using R software v3.5.1. 

V.3.2.4. Assessment of optical (S2) et SAR (S1) time-series 

potential 

V.3.2.4.1 Evaluation of Sentinel parameters importance for 

winter land-use classification 

The importance of each Sentinel parameter was analysed to (1) identify the most 

important parameters for mapping winter land-use and (2) reduce the number of parameters 

to be classified in order to assess the influence of fewer parameters on classification accuracy. 

This process was performed according the two classification approaches (pixel-based or 

object-based) presented above and using the RF significance function. A measure of variable 

importance was provided for each candidate predictor using this heuristic method based on 

the Gini Index (Breiman, 2001; Kostelich and Schreiber, 1993; Pal, 2005). A break in each 

histogram was used as the threshold for selecting the most important parameters. 

V.3.2.4.2. Global winter land-use classification 

The RF and SVM algorithms, which are supervised classification methods, were used to 

classify land use during winter 2016–2017. These algorithms were chosen for their consistently 

strong performance and the accuracy with which they classify LULC (Belgui and Dragut, 2016; 

Mountrakis et al., 2011) and as identified previously (Section V.3.2.2.). The RF algorithm is an 

ensemble algorithm that uses a set of classification and regression trees to make a prediction 

(Breiman, 2001). The package randomForest developed by (Liaw and Weiner, 2002) and 

implemented in R (v.3.3.2) was used to perform winter land-use classifications. Two Random 

Forest parameters, namely the number of trees (ntree), which was created by randomly 

selecting samples from the training dataset (Belgui and Csillik,2017) and the number of 

variables used for tree nodes splitting (mtry) were tuned and randomly determined using the 

tune function implemented in the randomForest package. For this study, the ntree parameter 

was set at 1.000, as mentioned previously (section V.3.2.2.3). The SVM algorithm is based on 

statistical learning theory that aims to determine the location of decision boundaries that 

produce an optimal separation of classes (Cortes and Vapnik, 1995). In a two-class pattern-

recognition problem in which classes can be separated linearly, the SVM selects the linear 

decision boundary that creates the greatest margin between the two classes. The margin is the 

sum of distances to the hyperplane from the closest points of the two classes. Thus, it initially 

extracts the best linear boundary between two classes of the training set; however, it is not 

restricted to linear discrimination, since one of its main advantages is its extension to nonlinear 

discrimination via the kernel trick (Betbeder et al., 2015). The package e1071 (v 1.7-0) 

developed by (Dimitriadou et et al., 2008) and implemented in R (v.3.3.2) was used to perform 

SVM classifications. A set of four SVM parameters (gamma, cost, degree, nu) was randomly 

tuned using the tune function integrated in the e1071 package. Then, several tests were carried 

out to determine the optimal kernel for winter use classification. At the end of the selection 

process the polynomial kernel was selected. Results obtained with RF and SVM algorithm 

were compared to evaluate their suitability for classifying vegetation cover into land use 

classes. Classification performance was estimated using a cross-validation test. The 
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classification was applied to a varying subset of 257 fields (500 pixels): two-thirds (171 fields 

or 332 pixels) were used for training, one-third (86 fields or 168 pixels) for validation. This 

process was repeated by changing the training/validation subsamples. Classification accuracy 

was assessed using OA and the Kappa index, which expresses the proportional decrease in 

error generated by the classification compared to the error of a completely random 

classification (Congalton, 1991). Finally, the vegetation cover used to map land use was 

classified using the algorithm with the highest OA. The classification process was tested for 

the two approaches: object-based and pixel-based. Sentinel-1 and Sentinel-2 parameters were 

classified separately and by combining optical and SAR data in the same dataset, that is, we 

realized a fusion at the lowest processing level (pixels level) referring to the merging of 

measured physical parameters (Pohl and Van Genderen, 1998). The combination of Sentinel-1 

and -2 parameters were then classified. 

V.3.2.4.3.  Detailed winter land-use classification 

For this second classification process, only the best classification approach (pixel) and 

algorithm (Random Forest) was used. Thus, for the detailed winter land-use classification, half 

of the 1 200 samples (600 “in-bag” samples) were used to train the trees, while the other half 

(600 “out-of-bag” samples) were used in an internal cross-validation technique to estimate the 

accuracy of the RF model (Belgiu and Drăguţ, 2016). The randomForest package (v 4.6-14) (Liaw 

and Wiener, 2002) of R was used to perform classifications. Two RF parameters were also 

tuned using the “name” function of the package. The first one, the number of trees (ntree) 

randomly created from the training dataset, was set to 1 000. The second one, the number of 

variables used to split tree nodes (mtry), was set randomly. 

Similarly to the global winter land-use classification, a cross-validation procedure was used to 

assess the classification. The RF classifier was applied to a subset of 600 training samples 

chosen at random, and the remaining 600 samples were used for validation. This process was 

repeated 100 times by changing the training and validation subsamples. Classification 

accuracy was assessed using OA and the Kappa index. Sentinel-1 and Sentinel-2 parameter 

time-series were first classified separately using the RF classifiers. Finally, the Sentinel-1 and -

2 parameter time-series were combined into a single dataset using a simple integrated-stack 

approach (Joshi et al., 2016) and were classified using the RF classifiers. 
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V.4. Results and discussion 

V4.1. Determination of the most efficient classification algorithm 

The assessment of classification algorithm performance for the identification and 

characterization of winter land use is based on 100 classification models performed for each 

algorithm. These models were developed from 144 parameters (16 parameters X 9 dates) 

extracted from the Sentinel-2 time-series and 90 parameters (10 parameters X 9 dates) extracted 

from the Sentinel-1 sparse time-series presented in Section III.3.1. 

Results presented in Figure II.2 highlight significant variations between algorithms 

accuracies, with higher OA obtained using Sentinel-2 data than Sentinel-1 data (mean OA of 

71.6 and 59.4% respectively). For Sentinel-2 data, the RF algorithm achieves the best results 

(mean OA of 71.6%). Conversely, the lowest accuracies are obtained with the TWDTW with a 

mean OA that hardly reaching 40%. The SVM and MAXLIKE obtain slightly similar results 

but lower than the RF algorithm (OA of 64.9% and 64.4% respectively). Moreover, a high 

variability can be observed for the results performed using the MAXLIKE algorithm (standard 

deviation of 57%).  

For Sentinel-1 data, the lowest accuracy is obtained for the MAXLIKE algorithm (mean 

accuracy of 29%) with high variance (OA ranging from 17 to 38%). Conversely, the highest 

accuracies are obtained for the SVM algorithm with a mean accuracy of 59.4%. However, RF 

remains very similar with a mean accuracy of 57.7%. Finally, the TWDTW algorithm obtains 

a low accuracy with a mean accuracy of 43.5%. 

These results highlight the potential of RF classifier for winter land-use identification 

using both optical (Sentinel-2) or SAR (Sentinel-1) data. Nevertheless, it is important to note 

that SVM models remain very close to the RF classification and even slightly higher for the 

Sentinel-1 data. In addition, we can observe the ability of MAXLIKE algorithm for classifying 

winter land-use based using Sentinel-2 data. However, its instability and poor results using 

Sentinel-1 data require us to exclude this algorithm for further work. Finally, the TWDTW 

obtains very low results for the classification performed with both datasets, which also require 

us to exclude this algorithm. 

 

Figure II.2: Winter land-use classification accuracy according to classification algorithms. Box-

and-whisker plots represent the variation in classification accuracy based on 100 iterations. 
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V.4.2. Analysis of temporal profiles of winter land-use  

V.4.2.1. Winter crops  

Examining the two most important SAR (VH and VV backscattering coefficients) and optical 

parameters (NDWI and NDVI) for the three winter-crop sub-types (winter barley, winter 

wheat, and rapeseed) (Fig. II.3), a strong and abrupt decrease in VV and VH on 12 October 

2016 (observed in all fields regardless of sub-type) was caused by rainfall the previous day 

that increased humidity during the Sentinel-1 passage. Strong and abrupt decreases in VV and 

VH on 29 November 2016, 4 January 2017, and 9 February 2017 were caused by frost, as 

confirmed by the temperature records (mean temperature of -4°C, -2°C, and  2°C, respectively). 

Generally, the optical parameters (NDWI and NDVI) appeared more stable over time and 

more sensitive to winter-crop growth cycles than the SAR parameters (VV and VH), improving 

discrimination of the three winter crops. Although the VH and VV profiles appear complex, 

their variations have a physical explanation. The trends in VV and VH profiles for rapeseed 

(from -19 to -15 db) were similar to those for barley and wheat (from -21 to -16 db), despite 

having different ranges. The trends in NDWI and NDVI profiles were similar to those for the 

VV and VH profiles, except for April images, in which the SAR and optical profiles responded 

differently to crop activity. Specifically, a decrease in VV and VH from August-October for 

barley and wheat was due to backscatter from the soil (after harvest in July) attenuated by the 

growing grass and especially by progressive smoothing of the soil until 12 October 2016. This 

effect was confirmed by NDWI and NDVI, which decreased due to harvesting of main crops. 

A strong increase in VV and VH from 10-24 October 2016, which corresponded to the sowing 

period, was caused by strong soil backscatter due to tillage. From November-February, VV 

and VH remained stable or slightly decreased due to backscatter attenuated by growing grass. 

This growth was also identified by NDWI and NDVI, which were low in November (0.2 and 

0.4 respectively) and progressively increased until February. VV decreased strongly from early 

March to early May, probably due to interactions between the SAR signal and the canopy and 

vertical structures. For VH profiles, the backscatter of soil attenuated by wheat growth is 

related to the high incidence angles (> 45°), which are not adapted to crop monitoring (Satalino 

et al., 2009) and thus decrease the SAR signal. This is highlighted by the large increase in NDWI 

and NDVI generated by peak vegetation (in May). 
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Figure II.3. Temporal profiles of SAR parameters VH and VV, optical parameters NDWI and 

NDVI (the central line corresponds to the median of each class and the profile limits 

correspond to the interquartile, 1st (lower) and 3rd (upper)), rainfall, and temperature for 

winter crops at the study site from September 2016 to May 2017.  
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V.4.2.2. Catch crops  

Examining the same four parameters for the six catch-crop sub-types (fodder cabbage, oat, 

phacelia, phacelia and mustard, phacelia and oat, and ryegrass and clover) (Fig. II.4), the same 

sharp and abrupt decreases in VV and VH were observed (in all fields regardless of sub-type). 

The optical parameters (NDWI and NDVI) were also more stable over time than the SAR 

parameters (VV and VH) and were more sensitive to catch-crop growth cycles. The dynamics 

of VH and VV profiles can be explained by catch-crop characteristics. Catch crops, sown 

mainly after the main crops in August, have high diversity and different plant structures. From 

September 2016 to March 2017, catch crops grew continually, resulting in a slight increase in 

VV and VH. VH, which was dominated by volume-scattering mechanisms, increased due to 

interaction of the SAR signal with the vertical structure of the catch crops. VH was low (-15 to 

-21 db), however, due to the strong dominance of canopy backscatter during this period. In 

this context, VV, which was dominated by direct influence of the ground and canopy, also 

increased due to the dominance of canopy backscatter. From March to late April, which 

corresponded to the tilling period for catch crops, VV and VH decreased significantly due to 

the backscatter of vegetation blooms attenuated by soil. From April to late May, which 

corresponded to the sowing period for the main crops, VV and VH increased sharply due to 

strong soil backscatter after tillage.  

NDWI and NDVI profiles differed slightly. An increase from August 2016 to early January 

2017 corresponded to the catch-crop growth period, with vegetation peaks in December. 

NDWI and NDVI decreased gradually from January 2016 to April 2017, which corresponded 

to the progressive flowering of the catch crops, but increased afterwards, corresponding to the 

sowing and growth of the main crops. In contrast, due to continuous growth, NDWI and NDVI 

of the ryegrass and clover sub-type increased progressively from August 2016 to April 2017, 

when it was destroyed to sow the main crops. 
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Figure II.4. Temporal profiles of SAR parameters VH and VV, optical parameters NDWI and 

NDVI (the central line corresponds to the median of each class and the profile limits 

correspond to the interquartile, 1st (lower) and 3rd (upper)), rainfall, and temperature for 

catch crops at the study site from September 2016 to May 2017.  
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V.4.2.3. Crop residues  

Examining the same four parameters for crop residues (maize stalks) (Fig. II.5), the same 

strong and abrupt decreases in VV and VH were observed, while NDWI and NDVI profiles 

were more stable over time and more sensitive to the crop-residue cycle. VV and VH remained 

stable from September 2016 to March 2017 due to stabilization of soil surface conditions, after 

which they decreased until April, probably due to backscatter of soil resulting from growing 

grass. Finally, like for the other winter land-use types, VV and VH increased after April, which 

corresponded to sowing and growth of the main crops. The crop-residue pattern was more 

obvious from the optical profiles: from August-October, NDWI and NDVI decreased due to 

harvesting, while from November-May, they remained stable due to stabilization of soil 

surface conditions. 
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Figure II.5. Temporal profiles of SAR parameters VH and VV, optical parameters NDWI and 

NDVI (the central line corresponds to the median of each class and the profile limits 

correspond to the interquartile, 1st (lower) and 3rd (upper)), rainfall, and temperature for crop 

residue at the study site from September 2016 to May 2017.  
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V.4.2.4. Grasslands  

Examining the same four parameters for the two grassland sub-types (grazed and mown) (Fig. 

II.6), the same strong and abrupt decreases in VV and VH were observed. Both SAR and 

optical parameters provided information useful for discriminating these sub-types: SAR 

parameters had lower values for grazed grasslands than mown grasslands, while the opposite 

was observed for optical parameters. From August 2016 to February 2017, VH increased 

slightly, VV decreased slightly, and NDWI and NDVI remained stable due to gradual growth. 

From February-May, NDWI and NDVI increased due to increasing growth of grasslands in 

late winter, while VV decreased slightly and VH remained stable, probably due to interactions 

between the vertical structure of the grasslands and the high incidence angle (> 45°). 
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Figure II.6. Temporal profiles of SAR parameters VH and VV, optical parameters NDWI and 

NDVI (the central line corresponds to the median of each class and the profile limits 

correspond to the interquartile, 1st (lower) and 3rd (upper)), rainfall, and temperature for 

grasslands at the study site from September 2016 to May 2017. 
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V.4.3. Assessment of optical (S2) et SAR (S1) time-series potential 

Approaches performed in order to evaluate the potential of optical (S2) et SAR (S1) time-series 

were realized according to level of classification to validate the hypothesis mentioned 

previously (section V.4.2): A global classification with 5 winter land-use classes and a detailed 

classification with 12 winter land-use classes.  

V.4.3.1. Evaluation of Sentinel parameters importance for winter 

land-use classification 

V.4.3.1.1. Global winter land-use classification 

An analysis of the parameter relevance was performed using the RF significance function to 

further reduce the number of parameters to be classified. A measure of variable importance 

was provided for each candidate predictor using this heuristic method based on the Gini Index 

as mentioned in Section V.3.2.4.1. Thus, Figure II.7 shows the parameter contribution to land 

use classifications, ranked by importance for optical and Synthetic-Aperture Radar image 

time-series. The break in the histogram (after band 5 in May for Sentinel-2; after polarized 

Shannon Entropy in April for Sentinel-1) was used as the threshold for selecting the most 

relevant parameters, that is, 15 optical and 15 SAR parameters. These 30 parameters were used 

for winter land use classifications. 

 

Figure II.7. Parameters that contributed the most to land use classifications, ranked by 

importance for (a) optical and (b) Synthetic-Aperture Radar image time-series from August 

2016 to May 2017. See Table 3 for the definition of abbreviations. 

The most important SAR parameter was the ratio VH/VV in May, which highlights crop 

growth, especially of winter crops (Veloso et al., 2017). Similarly, the backscattering 

coefficients were also important. Results show the importance of parameters derived from the 

May and April images due to their sensitivity to variations in double-bounce and volume-
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scattering mechanisms (Wiseman et al.,2014). The backscattering coefficient VH calculated 

from the November image was also important due to its sensitivity to direct contributions 

from the ground and the canopy (Brown et al., 2003). These parameters highlight the difference 

between bare soils and crops.  

Concerning optical parameters, the two most important parameters were band 2 in December 

2016 and SAVI in May 2017 with a Gini index above 70. One can notice that the best NDVI 

parameter came in 14th position, which is not in accordance with the current literature 

(Yengoh eta al., 2014). Results also show the importance of parameters derived from the May 

image, 11 parameters out of the 15 most important parameters being derived from this image. 

This is due to the fact that this period is the main phase of highly dynamic plant growth: 

vegetation peaks in May (the end of spring), when grasslands are easily detected (Fig. II.7). 

The spectral distributions of two of the most pertinent parameters, that is, SAVI in May 2017 

and VH/VV ratio in May 2017, were computed for the five classes of winter land use (Fig. II.8). 

SAVI was selected over Band 2 based on the current literature, which demonstrated the 

potential of this vegetation index to discriminate and characterize crop dynamics (Belgiu and 

Csillik, 2017; Clay et al., 2006; Bargiel, 2017).  

The Figure II.8.a shows the potential of SAVI to discriminate winter crops and grasslands from 

catch crops and crop residues in May -when the phenological stages and land use changes are 

most pronounced. Conversely, results highlight the difficulty to discriminate bare soils from 

the other classes, due to a high intra-class variance. To a lesser extent, Figure II.8.b shows the 

potential of the VH/VV ratio to further separate winter crops and grasslands from catch crops 

and crop residues. However, like the SAVI parameter, the VH/VV ratio is not sufficient to 

separate bare soils from other classes due to a very high intra-class variance. These results are 

consistent with the existing literature, which demonstrated the importance of using 

backscattering coefficients alone (𝜎0
𝑉𝐻 or 𝜎0

𝑉𝑉) or in combination (VH/VV) to identify land 

use (Beck et al., 2006). 

 

Figure II.8. Distribution of (a) the Soil Adjusted Vegetation Index (SAVI) and (b) the ratio 

VH/VV parameters for winter land use classes calculated from May 2017 images. 

V.4.3.1.2. Detailed winter land-use classification 

For SAR parameters, based on an analysis of the parameter relevance was performed using 

the RF significance function, 43 of the 200 parameters were selected for classification (Fig. 

II.9.a). Of these 43 parameters, the most important (i.e. the most frequent with a normalized 

Gini index > 0.13) were the VH and VV backscattering coefficients, the VH:VV ratio, and SE 

(Fig. II.9.a). Results revealed the importance of parameters derived from the May and April 
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images, from which 16 of these 43 parameters were derived. The importance of VH:VV in May 

and VH in April (normalized Gini index > 0.35) highlights crop growth, especially for winter 

crops, due to these parameters’ ability to characterize plant structure and characteristics. 

Results also revealed the importance of October and November images, from which 8 of these 

43 parameters were derived, which highlights differences between ground and canopy 

contributions and thus the difference between temporarily bare soils and crops. 

For optical parameters, 39 of the 104 parameters were selected for classification. Of these 39 

parameters, the most important (i.e. the most frequent with a normalized Gini index > 0.12) 

were NDWI, NDVI, Band 5 (red edge), and Band 8 (near infrared) (Fig. II.9.b). Results again 

revealed the importance of parameters derived from the May and April images (25 of the 39 

parameters) due to their ability to identify the main phase of highly dynamic plant growth 

(vegetation peaks). The importance of Band 2 (blue) in May and NDWI in May (normalized 

Gini index > 0.5) enabled land-use sub-types to be discriminated.  

 

 

Figure II.9. Most contributing parameters to land-use classifications, ranked by importance 

for (a) SAR and (b) optical image time-series from August 2016 to May 2017. The most 

important parameters are in bold. The red lines indicate the break in each histogram used as 

the threshold for selecting the most important parameters. 

 

A) 

B) 
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V.4.3.2. Winter Land-Use classification 

V.4.3.2.1. Global winter land-use classification 

Accuracy of the winter land use classification obtained from optical and SAR parameters 

varied significantly depending on (i) the classification approach (i.e., pixel-based or object-

based), (ii) the classification algorithm (i.e., RF or SVM) and (iii) the time-series dataset (i.e., 

Sentinel-1, Sentinel-2 or a combination of both). 

Results of the pixel-based and object-based approaches to identifying winter land use had 

similar accuracy for the Sentinel-2 dataset and the combined Sentinel-1 and -2 dataset. The 

object-based approach had a slightly higher OA (68–83%, Kappa = 0.64–0.77) than the pixel-

based approach (55–81%, Kappa = 0.51–0.77) (Fig. II.10). Although this is consistent with other 

studies of LULC (Duro et al., 2012), few studies have presented advantages of using the object-

based approach instead of the pixel-based approach to identify and characterize LULC (Myint 

et al., 2011; Yan et al., 2006). In contrast, results obtained with the Sentinel-1 data showed the 

superiority of the object-based approach, due to the heterogeneity of SAR values within fields 

in winter. 

Concerning the classification techniques, the RF algorithm had higher OA than the SVM 

algorithm (median OA = 81% and 79%, respectively). The RF algorithm also had less variation 

in OA than SVM (72–83% (Kappa = 0.67–0.77) and 68–80% (Kappa = 0.64–0.76), respectively). 

The potential of SVM and RF algorithms for remote sensing studies has been widely 

demonstrated (Pal, 2005; Mountrakis et al., 2011. Belgiu and Dragut, 2016). Our results show 

that the RF algorithm is slightly more accurate effective than the SVM algorithm, which is 

consistent with results of other studies (Gislason et al., 2006). 

This study evaluated the respective advantages of Sentinel optical and SAR time-series to 

identify winter land use. Classification was better using a combination of Sentinel-1 and -2 

parameters (median OA = 81%, Kappa = 0.77) (Table II.3), with OA ranging from 75-82% 

(Kappa = 0.68–0.77). Conversely, classifications based on either Sentinel-1 or Sentinel-2 

parameters alone had OAs of 68–78% and 74–80%, respectively (Fig. II.10). While the results 

highlight the utility of Sentinel-1 and Sentinel-2 individually, they also emphasize that 

classification using the Sentinel-2 dataset always outperformed that using the Sentinel-1 

dataset. The classification results highlight the advantages of using the combined Sentinel-1 

and -2 datasets, with OA ranging from 68-83% (Kappa = 0.64–0.77). Therefore, our study 

confirms the effectiveness of Sentinel-1 and -2 time-series for identifying land use, as previous 

studies have demonstrated (Inglada et al., 2016; Veloso et al., 2017) and also shows the 

potential of using the combined Sentinel-1 and -2 datasets for this purpose. Additionally, the 

originality of this study is the identification of land use in winter. 
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Figure II.10. Overall accuracy of (a) object-based and (b) pixel-based image classifications of 

winter land use, for the best Sentinel-1, Sentinel-2 and combined Sentinel-1 and -2 parameters 

using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. 

Table II.3. Median accuracy of winter land use classifications obtained for the best Sentinel-1, 

Sentinel-2 and combined Sentinel-1 and -2 parameters using the Random Forest (RF) and 

Support Vector Machine (SVM) algorithms. OA: overall accuracy, Kappa: Kappa index. 

Algorithms Datasets 
Object-based Approach Pixel-based Approach 

OA Kappa OA Kappa 

RF 

Sentinel-1 72% 0.67 58% 0.52 

Sentinel-2 78% 0.75 72% 0.67 

Sentinel-1 & -2 81% 0.77 79% 0.76 

SVM 

Sentinel-1 73% 0.67 59% 0.53 

Sentinel-2 79% 0.76 65% 0.54 

Sentinel-1 & -2 78% 0.75 64% 0.54 

The best classification, with OA of 81% and Kappa of 0.77, used an object-based approach and 

30 parameters derived from a combination of Sentinel-1 and -2 parameters. Misclassification 

errors were observed between bare soils (under- and over-estimation rates of 64% and 94%, 

respectively) and the other classes (Table II.4). This agrees with the study’s difficulty in 

discriminating bare soils from the other classes (Fig. II.10).  
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Table II.4. Confusion matrix of the best winter land use classification obtained using a 

parameter dataset derived from a combination of Sentinel-1 and -2 time-series. Overall 

accuracy = 81%, Kappa index = 0.77. 

 
Catch 

Crops 

Winter 

Crops 
Grasslands 

Crop 

Residues 

Bare 

Soils 

Commission 

Errors 

Catch crops 310 42 19 0 83 68.3 % 

Winter crops 1 410 20 0 23 90.3 % 

Grasslands 20 56 310 0 68 68.3 % 

Crop residues 0 3 0 389 62 85.7 % 

Bare soils 16 7 5 0 426 93.8 % 

Omission 

errors 
89.3 % 79.2 % 87.6 % 100 % 64.4 % 81 % 

The spatial distribution of winter land uses mapped at the 1:100,000 scale from the best 

classification (Fig. II.11) shows that bare soils and crop residues covered less than 5% of the 

UAA, while a high percentage was covered with grasslands (30%) or winter crops (35%). In 

general, catch crops and winter crops were located on the largest fields, while bare soils and 

grasslands were located on the smallest fields.  

The distribution of membership probabilities associated with this classification indicates that 

accuracy decreased at the edges of the study site (Fig. II.12) Fields smaller than 1 ha had the 

lowest membership probability (0.47), while those larger than 10 ha had the highest (0.84), 

indicating that classification accuracy increased with field size. These results agree with the 

confusion matrix (Table II.4), in which misclassification was greatest for bare soils.  

 

Figure II.11. Distribution of winter land use obtained using a parameter dataset derived from 

a combination of Sentinel-1 and -2 time-series. Classification was performed using a Random 

Forest algorithm. 
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Figure II.12. Map of the distribution of winter land use membership probabilities obtained 

using the Random Forest algorithm. 

V.4.3.2.2.  Detailed winter land-use classification 

Accuracy of the winter land-use classification obtained from the 82 selected parameters (43 

SAR and 39 optical) using the RF algorithm varied significantly depending on the time-series 

dataset (i.e., Sentinel-1 dataset, Sentinel-2 dataset, or combination of both datasets). Optical 

data had higher classification accuracy (OA = 87%, Kappa index = 0.85) than SAR data (OA = 

73%, Kappa index = 0.70) (Table II.5). Combining Sentinel-1 and -2 data decreased 

classification accuracy slightly (OA = 83%, Kappa index = 0.82), which indicates the superiority 

of Sentinel-2 time-series alone for mapping crops in winter. This result is inconsistent with 

those of studies (Carrasco et al., 2019; Inglada et al., 2016; Veloso et al., 2017) that demonstrated 

the potential of combining Sentinel-1 and -2 data to classify land use. In our study, however, 

the physical properties of winter land-use classes and weather conditions produced noise in 

the Sentinel-1 data, resulting in confusion between classes and lower accuracy of classification 

when used alone or in combination with Sentinel-2 data. Nonetheless, the results obtained 

using the SAR time-series are considered satisfactory and particularly useful for 

discriminating winter land-use in areas with high cloud cover. In addition to the superiority 

of optical images over SAR images, our study also confirmed the effectiveness of the RF 

classifier for mapping cropland already reported in the literature (Bargiel, 2017). The results 

highlight the importance of using key dates to classify winter land-use instead of using a 

temporal profile approach (Denize et al., 2019). 

Table II.5. Mean accuracy (overall accuracy (OA) and Kappa index) of winter land-use 

classifications based on the most efficient Sentinel-1, Sentinel-2, and combined Sentinel-1 and 

-2 datasets using the Random Forest algorithm.  

Dataset OA (%) Kappa 

Sentinel-1 73 0.70 

Sentinel-2 87 0.85 

Sentinel-1 and -2 83 0.82 
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A confusion matrix derived from classification using the best Sentinel-2 parameters identified 

by the RF algorithm (Table II.6) showed that misclassification errors occurred mainly between 

winter barley and the other classes and between phacelia and winter wheat. The winter land-

use map at 1:100 000 scale obtained from the Sentinel-2 image time-series (Fig. II.13) contained 

a few artifacts resulting from pixel-level classification. Crop residues covered less than 5% of 

the UAA, compared to 30% and 35% for grasslands and winter crops, respectively. 

 

Figure II.13. Map of winter land-use obtained from the Sentinel-2 image time-series. A 

Random Forest algorithm classification was performed. 

Our study benefited from the spatial and temporal resolution of Sentinel imagery for mapping 

winter land-use. The spatial resolution of the Sentinel sensor (10 and 20 m) successfully 

classified crops in the study site, except in areas with small fields, where the agricultural 

landscape is highly fragmented, for which misclassification errors and artifacts occurred more 

frequently (Fig. II.13). Other studies have reported advantages of the Sentinel spatial 

resolution for mapping cropland (Belgiu and Csillik, 2018; Vuolo et al., 2018) and for 

identifying and characterizing crop phenology (Bargiel, 2017; Minh et al., 2018; Veloso et al., 

2017). The high temporal resolution of the freely available Sentinel imagery (5 days) increases 

the opportunity of finding cloud-free optical data, particularly when investigating land use in 

winter, when cloud cover is greater (Yan and Roy, 2015). Our results clearly demonstrate the 

value of Sentinel-2 time-series for mapping and monitoring land use in winter, and that 

Sentinel-1 data do not improve classification accuracy when the number of cloud-free optical 

images is sufficient. However, we suggest that SAR time-series can be especially useful in areas 

with high cloud cover. 
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Table II.6. Confusion matrix of the best winter land-use classification obtained using the Sentinel-2 time-series. Overall accuracy = 87%, Kappa index 

= 0.85.  

 1 2 3 4 5 6 7 8 9 10 11 12 Commission 

Errors (%) 

1: Winter wheat 45 5 2 0 0 0 8 0 0 0 0 0 75 

2: Winter barley 0 39 0 1 0 0 0 0 0 0 0 0 97.5 

3: Rapeseed 1 0 40 0 0 0 0 0 0 0 0 0 97.6 

4: Mown grasslands 3 4 0 35 0 0 0 0 0 0 0 0 83.3 

5: Grazed grasslands 2 3 0 1 37 0 0 1 0 0 5 0 75.5 

6: Oat 0 0 0 1 0 49 3 0 0 0 0 1 90.7 

7: Phacelia and oat 1 0 0 0 0 1 36 0 0 0 2 0 90 

8: Fodder cabbage 0 0 0 0 0 0 1 45 0 3 0 0 91.8 

9: Ryegrass and clover 1 0 0 0 0 0 0 3 38 2 0 0 86.4 

10: Phacelia 0 0 0 0 0 1 1 0 0 41 0 0 95.3 

11: Phacelia and mustard 0 0 0 2 0 2 3 0 0 0 36 0 83.7 

12: Crop residues 0 0 0 0 0 0 0 0 0 0 1 50 98 

Omission errors (%) 84.9 76.5 95.2 87.5 100 92.5 69.2 91.8 100 89.1 81.8 98 88.8 
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V.5. Conclusions  

In this chapter, we evaluated the potential of Sentinel-1 and -2 time-series images for 

global and detailed mapping of winter land-use. Based on a methodological approach, the 

results highlighted the potential RF and SVM classifiers for the winter land-use classification 

with slightly better results for RF. The temporal profiles of Sentinel-1 and -2 parameters 

extracted from the time-series images were interpreted with the support of meteorological 

data. We demonstrated the ability of NDWI and NDVI derived from Sentinel-2 data to 

discriminate winter land-use classes. We also demonstrated that Sentinel-2 data had higher 

classification accuracy (OA = 87%, Kappa index = 0.85) than Sentinel-1 data (OA = 73%, Kappa 

index = 0.70). Also, inconsistent with other studies, combining Sentinel-1 and -2 data decreased 

classification accuracy slightly (OA = 83%, Kappa index = 0.82), which indicated that there is 

no need to combine Sentinel-1 and -2 datasets to improve the accuracy of discriminating crops 

in winter. Our results also indicate that SAR time-series are especially useful for discriminating 

land-use in winter in areas with high cloud cover, where cloud-free optical data are less 

available. While the Sentinel-1 and -2 time-series provided high classification accuracy, most 

misclassification errors and artifacts were located in small fields due to the spatial resolution 

of the Sentinel sensor (10 and 20 m), which was not suitable. Future research could assess the 

use of very high spatial resolution time-series from satellite images, such as ALOS-2 or 

RADARSAT-2 data, to improve the accuracy of mapping land use in winter.  
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Conclusion of the second part  

 

 

In this second part, the approach implemented aimed to determine the most appropriate 

classification procedure to identify and characterize winter land-use as the main factor to 

prevent and reduce the agricultural pollutant transfers. In this context, three objectives have 

been set: i) Determine the most efficient classifiers to study winter land-use; ii) Identify an 

optimal winter land-use nomenclature iii) Assess the potential of optical (S2) et SAR (S1) time-

series for winter land-use classification at a local scale.  

Thus, at the local level, winter land-use was studied using time-series of optical Sentinel-

2 and SAR Sentinel-1 images. The first objective was to determine by a comparative approach 

the most efficient classification algorithm to identify winter land-use classes using remote 

sensing data. The results obtained first demonstrated high variability in the algorithms 

accuracies to classify a similar sample of winter land-use classes. Afterwards, we established 

that the Random Forest and SVM classifiers were the most adapted for the studied 

problematic, either from Sentinel-2 optical data or from Sentinel-1 SAR data.  

In a second step, we analyze and interpret the interactions that may occur between the 

optical or SAR signal and winter land-use classes. The results demonstrated the ability of 

remote sensing data to meet this objective. However, they also highlighted the limits of the 

Sentinel-1 data to discriminate some land-use classes such as catch crops. In contrast, the 

Sentinel-2 data proved their ability to discriminate finely land-use classes during winter. Thus, 

this first approach highlighted the potential of the Sentinel-2 data and in particular, the NDVI 

and NDWI ratios that obtain the best discrimination. In addition, the results allowed to 

readjust the land-use classification whose limits had been emphasized in the conclusion of the 

first step of this part.  

Afterwards, feedbacks from the first step have led to a better appreciation of the potential 

of Sentinel-1 and -2 images. Thus, a new classification procedure adapted to the different 

points highlighted so far was developed. The results obtained then demonstrated the full 

potential of the Sentinel data and in particular of Sentinel-2 for which the classification 

accuracies remain significantly higher than those obtained during the second part of the 

manuscript with a Kappa index of 0.85 for a 12 winter land-use classes classification. These 

results have also presented, in contrast to the studies conducted to date, the limits of the 

combined Sentinel-1 and -2 approach, for which classification accuracy remains lower than 

those obtained with only Sentinel-2 data. In addition, they pointed out the limits of Sentinel-1 

SAR data for the detailed identification and characterization of winter land-use. However, the 

Sentinel-1 time-series have shown some interest in discriminating between specific land-use 

classes, particularly when cloud cover becomes a limiting factor and prevents the acquisition 

of optical data. Thus, an extensive study on the potential of SAR satellite imagery will be 

presented in the fourth part in order to evaluate their potential to identify and characterize 

winter land-use.
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Introduction of part three  

 

 

The third part of the manuscript presents the work conducted in order to evaluate the 

potential of SAR time-series images (Sentinel-1, RADARSAT-2, and ALOS-2) for the 

identification of winter land-use. This part attempts to meet the limits and perspectives of SAR 

data presented in the third part conclusion, which pointed out the limits of Sentinel-1 SAR 

images to study winter land-use classes. In order to achieve this issue, an objective was 

implemented. This objective aims to determine the most appropriate SAR configuration 

(polarization, frequency, the density of time-series) for the identification of winter land-use. 

The methodological framework of this part was developed in Section IV.3. 

In chapter six, winter land-use classes will be studied at a local scale based on three SAR 

time-series of Sentinel-1, Radarsat-2 and Alos-2 acquired between August 2016 and May 2017 

over the ZAA and presented in Section III.3.1. First, a pre-processing methodology will be 

developed to extract SAR parameter datasets from the quad-pol C-band, dual-pol C-band, and 

dual-pol L-band time-series. Secondly, a comparative approach will be performed based on a 

classification procedure using RF classifier in order to determine the most efficient SAR 

configuration for land-use classification during the winter season. 
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Abstract: In the past decade, high spatial resolution Synthetic Aperture Radar (SAR) sensors 

have provided information that contributed significantly to cropland monitoring. However, 

the specific configurations of SAR sensors (e.g., band frequency, polarization mode) used to 

identify land-use types remains underexplored. This study investigates the contribution of 

C/L-Band frequency, dual/quad polarization and the density of image time-series to winter 

land-use identification in an agricultural area of approximately 130 km² located in 

northwestern France. First, SAR parameters were derived from RADARSAT-2, Sentinel-1 

and Advanced Land Observing Satellite 2 (ALOS-2) time-series, and one quad-pol and six 

dual-pol datasets with different spatial resolutions and densities were calculated. Then, land 

use was classified using the Random Forest algorithm with each of these seven SAR datasets 

to determine the most suitable SAR configuration for identifying winter land-use. Results 

highlighted that (i) the C-Band (F1-score 0.70) outperformed the L-Band (F1-score 0.57), (ii) 

quad polarization (F1-score 0.69) outperformed dual polarization (F1-score 0.59) and (iii) a 

dense Sentinel-1 time-series (F1-score 0.70) outperformed RADARSAT-2 and ALOS-2 time-

series (F1-score 0.69 and 0.29, respectively). In addition, Shannon Entropy and SPAN were 

the SAR parameters most important for discriminating winter land-use. Thus, the results of 

this study emphasize the interest of using Sentinel-1 time-series data for identifying winter 

land-use. 

Keywords: crops; RADARSAT-2; sentinel-1; ALOS-2; C-band frequency; L-band frequency; 

dual-polarization; quad polarization; random forest classification 
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VI.1. Introduction 

The importance of vegetation cover during winter to preserve soil quality and water 

resources is now well-recognized by scientists, decision makers and citizens, and land-use 

mapping is considered a relevant input into decision-making to implement appropriate policy 

responses (Fasona et Omojola, 2005). However, although identifying land use in agricultural 

areas is a major environmental and scientific issue (Corgne, 2004), it remains challenging due 

to its high spatio-temporal dynamics (Denize et al., 2019). In this context, remotely sensed 

time-series data are a valuable tool to identify land use by providing precise and timely 

information about the phenological status and development of vegetation at different scales, 

from local to global extents (Duchemin et al., 2015; Veloso et al., 2017). In the past few decades, 

progress has been made with the development of high and very high spatial and temporal 

resolution optical (e.g., Satellite pour l’observation de la Terre (SPOT-6/7), Sentinel-2) and 

Synthetic Aperture Radar (SAR) (e.g., TerraSAR-X, RADARSAT-2, Advanced Land Observing 

Satellite 2 (ALOS-2), Sentinel-1) sensors (Morena et al., 2004; Potin et al., 2012; Drusch et al., 

2012). However, using optical time-series to identify land use in winter is limited by cloud 

cover and/or low solar irradiance (Huang et al., 2017), and late winter is a critical period during 

which vegetation begins to grow (Denize et al., 2019). Conversely, SAR time-series provide a 

reliable solution to address the limitations of optical images because they are not sensitive to 

atmospheric conditions and can operate day and night (Smith, 1997). 

 

These advantages, along with a sensitivity of microwave scattering to soil and vegetation 

characteristics (Ulaby, 1986; Hosseini et al., 2015), have led scientists to evaluate the potential 

of using SAR sensors to monitor agriculture (McNairn and Brisco, 2004; Mascolo, 2015; Hütt 

et al., 2016; Haldar et al., 2016). The potential of using SAR data to identify land use is based 

on the sensitivity of the radar signal to the dielectric constant of the objects and to their 

structure (i.e., the distribution of size shape and orientation of the scatterers) (Ulaby, 1986; 

Skriver, 2011). Thus, some studies have demonstrated the ability of SAR backscattering-

coefficient and polarimetric data to classify land use using the dielectric properties of soil, 

surface roughness and vegetation canopy structure (Skriver et al., 1999; McNairn et al., 2001; 

Jiao et al., 2010; Nurtyawan et al., 1996). Most of these studies used the C-Band frequency 

rather than other frequencies (e.g., X- or L-Bands). Since microwave penetration depends on 

wavelength and incident angle, L-Band (~20 cm) wavelengths penetrate further into crop 

canopies than those of the C-Band (~5.5 cm). Consequently, C-Band wavelengths interact more 

with the upper canopy, while L-Band wavelength responses result from greater interaction 

with the soil/canopy and scattering directly from the soil (Ulaby, 1986; Hosseini et al., 2015). 

Thus, McNairn and Brisco (2004) demonstrated the potential of vertically (V) and horizontally 

(H) polarized C-Band microwaves to identify land use. Indeed, since V microwaves respond 

to predominantly vertical structure, they penetrate the canopy less. Conversely, H microwaves 

tend to penetrate the canopy more than V microwaves. Similarly, others (Skriver, 2012; Skriver 

et al., 1999) illustrated the ability of the L-Band and the combined use of C- and L-Bands to 

classify land use. Many studies have also shown the potential of radar data to map crop 

residues (McNairn and Brisco, 2004; Smith, 1996) or crop types during summer (Paris, 1983; 

Lee et al., 2001). 

However, only a few studies have demonstrated the potential of SAR time-series to 

identify land-use types in winter. Haldar et al. (2016) illustrated the potential of polarimetric 

C-Band SAR time-series data to derive useful information, such as biophysical parameters, 
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from mustard (Sinapis alba L.) and wheat (Triticum aestivum L.) crops. Similarly, few studies 

have shown Sentinel-1′s potential to identify and characterize land-cover and land-use 

dynamics. For example, some studies (Veloso et al., 2017; Abdikan et al., 2016; Dimov et al., 

2016; Bargiel, 2017) have shown benefits of using Sentinel-1 time-series to understand crop 

behavior and dynamics and classify land use. Likewise, Minh et al. (2018) used Sentinel-1 time-

series to produce a winter vegetation quality map with five classes (“bare soil” to “high 

quality”) based on a deep-learning method, with an overall accuracy (OA) >98%. However, 

the specific configurations of SAR sensors (e.g., band frequency, polarization mode) used to 

identify land-use types remain underexplored, and even unexplored for winter land-use. 

This study aimed to evaluate and compare the value of multi-temporal ALOS-2 (ALS-2), 

RADARSAT-2 (RST-2) and Sentinel-1 (S-1) data for monitoring winter land-use in agricultural 

areas. Specifically, we addressed the main question: What is the most appropriate SAR 

configuration (polarization, frequency, density of time-series) for characterizing winter land-

use? To this end, we first calculated SAR parameters from quad-polarization (pol) C-Band, 

dual-pol C-Band and dual-pol L-Band time-series to generate several parameter datasets. We 

then applied a classification procedure using the Random Forest (RF) algorithm to determine 

the most discriminating SAR configuration for land-use monitoring in winter. Finally, we 

identified advantages and disadvantages of the method and its results. 
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VI.2. Materials and Methods 

VI.2.1. Study Site 

The study site is a relatively flat area located to the south of the Bay of Mont-Saint-Michel 

(8° 31′ 0” N, 1° 31′ 30” W) in France and covers an area of ca. 130 km² (Fig. III.1). This site has 

been included in long-term ecological research (LTER) networks at the European (LTER-

Europe) and international (ILTER) levels since 1993 to assess relationships between changes 

in farming activities, landscape dynamics and ecological processes related to biodiversity, 

water quality and climate (“ZA Armorique”, 2019). This study site is also referenced in the 

“Kalidéos program”, which is coordinated and managed by the CNES (French Space Agency) 

to promote and demonstrate the use of spatial data by supporting research and development, 

prototyping and user demonstration activities. The site is composed of ca. 7 000 agricultural 

fields ranging from 0.1–65 ha and is characterized by a fragmented agricultural landscape 

(from a hedgerow network to open fields). This temperate climate area is exposed to mean 

annual precipitation of 600–700 mm and mean average temperature >12 °C. In summer, 

farming systems are based on one main crop per field: maize (Zea mays L.), wheat (Triticum 

aestivum L.), rapeseed (Brassica napus L.) or barley (Hordeum vulgare L.). In winter, in addition 

to grasslands, which play a major role in regulating water flows and nutrient cycling, catch 

crops are sown to decrease nitrogen leaching, as required by the European Union’s “Nitrates 

Directive” (2019). 

 

Figure III.1. Study site location, ground surveys (RGB composite image constructed from 

Shannon Entropy extracted from Advanced Land Observing Satellite 2 (ALOS-2) data for 

three dates: 03-09-2017, 04-15-2017 and 05-13-2017. ©Kalidéos data 2017 and JAXA data). 
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VI.2.2. Field Data 

The mainland-use types encountered and investigated in winter in the study area (Fig. 

III.2 and Table III.1) are the following: 

 Winter crops, which cover ca. 40% of the UAA (utilized agricultural area) and include three 

main annual crops: winter wheat, winter barley and rapeseed. 

 Grasslands, which cover ca. 30% of the UAA and can be mown or grazed. 

 Catch crops, which are sown after harvest of the main crop from August to October, cover 

ca. 25% of the UAA and include a wide variety of crops. 

 Crop residues, which cover ca. 5% of the UAA and correspond to maize stalks that are left 

in fields when the maize is harvested after 1 November (Denize et al., 2019).  

 

Figure III.2. The mainland-use types encountered in winter in the study area: (a) winter crops 

(winter barley), (b) catch crops (mustard), (c) grasslands and (d) crop residues (maize stalks). 

Table III.1. Land-use classification. 

Winter Land Use Type Main Crops 

Winter crops 

Winter wheat 

Winter barley 

Rapeseed 

Grasslands 
Mown grasslands 

Grazed grasslands 

Catch crops 

Oat 

Fodder cabbage 

Ryegrass and clover 

Phacelia 

Phacelia and mustard 

Phacelia and oat 

Crop residues Maize stalks 

 

Field observations were conducted in 231 crop fields monthly from November 2016 to 

February 2017 to calibrate and validate classification of remote sensing data (Fig. III.1). 

Samples were randomly distributed throughout the study site, with half of the fields (116) 

being used for training and the other half for validation. The fields inventoried ranged in size 

from 0.1–65 ha. The number of training samples of each winter land-use class inventoried was 

54 for winter crops, 14 for grasslands, 42 for catch crops and 6 for crop residues. 
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VI.2.3. Satellite Data 

VI.2.3.1. RADARSAT-2 Time-Series 

A series of 10 RST-2 SAR images from October 2016 to May 2017 were acquired by 

MacDonald, Dettwiler and Associates and provided by the VIGISAT project managed by 

Collecte Localisation Satellites in the framework of the GIS Bretel (“Groupement Bretagne 

Télédétection”, Bretagne, France) (Table III.2). RST-2 images were acquired in Single Look 

Complex (SLC) mode (delivered in quad-pol mode: HH, HV, VH and VV polarization states) 

with an incidence angle of 35°. The range and azimuth spatial resolutions were 8.2 and 4.7 m, 

respectively. 

VI.2.3.2. Sentinel-1 Time-Series 

Two series of eight and twenty S-1 SAR images, respectively, from August 2016 to May 

2017 were acquired by the European Space Agency and provided by its data hub (“Open Hub 

Access”, 2019) (Table III.2). S-1 images were acquired in SLC mode (delivered in dual-pol 

mode: VH and VV) with an incidence angle of 31° to 46° and an angle of 40° on the study area. 

The range and azimuth spatial resolutions were 2.3 and 13.9 m, respectively. 

VI.2.3.3. ALOS-2 Time-Series 

A series of six ALS-2 SAR images from January–June 2017 were acquired by the Japan 

Aerospace Exploration Agency and provided by the Kalidéos program (“Kalideos”, 2019) 

(Table III.2). ALS-2 images were acquired in SLC mode (delivered in dual-pol mode: HH and 

HV) with an incidence angle of 40° and range and azimuth spatial resolutions of 1.4 and 1.9 

m, respectively. 
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Table III.2. Characteristics of the RADARSAT-2, Sentinel-1 and Advanced Land Observing 

Satellite 2 (ALOS-2) images used in the study. Dates in bold text for Sentinel-1 images indicate 

those with sparse time-series, while asterisks indicate those with dense time-series. 

 RADARSAT-2 Sentinel-1 ALOS-2 

Dates 

(M-D-Y) 

10-23-2016 

11-16-2016 

12-10-2016 

01-03-2017 

01-27-2017 

02-20-2017 

03-16-2017 

04-09-2017 

05-03-2017 

05-27-2017 

08-25-2016 

09-18-2016* 

09-30-2016* 

10-12-2016* 

10-24-2016* 

11-05-2016* 

11-17-2016* 

11-29-2016* 

12-11-2016* 

12-23-2016* 

01-04-2017* 

01-16-2017* 

01-28-2017* 

02-09-2017* 

02-21-2017* 

03-05-2017* 

03-17-2017* 

03-29-2017* 

04-10-2017* 

04-22-2017* 

05-04-2017* 

05-16-2017 

01-04-2017 

02-04-2017 

03-06-2017 

04-15-2017 

05-13-2017 

06-10-2017 

Ground 

Resolution 
8.2 m 2.3 m 1.4 m 

Azimuth 

Resolution 
4.7 m 13.9 m 1.9 m 

Polarization Quad (HH-VV-HV-VH) Dual (VV – VH) Dual (HH-HV) 

Frequency C-Band C-Band L-Band 

Mode Fine Quad Polarization (SLC) Interferometric wide (SLC) Spotlight (SLC) 

Incidence Angle 35° (right descending) 
31° to 46° (right 

descending) 
40° (left ascending) 

Coverage 18 km × 25 km >250 km × 100 km 25 km × 25 km 
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VI.2.4. Extraction of SAR Parameters 

SAR quad-pol and dual-pol parameters from the three sensor datasets (RST-2, S-1 and 

ALS-2) were calculated using Sentinel Application Platform (SNAP) v6.0 (Develop by Esa, 

Paris, France) and PolSARpro v5.1.3 software (Pottier et al., 2018) (Develop by IETR, Rennes, 

France). 

VI.2.4.1. Quad-Pol Time-Series 

 Backscattering coefficients (𝜎0𝐻𝐻,𝜎0𝐻𝑉,𝜎0𝑉𝐻,𝜎0𝑉𝑉) were calculated from the 

radiometrically calibrated RST-2 time-series using SNAP according to Eq. III.1 

(“Radarsat-1 products”, 2017): 

𝜎𝑗
𝑜 = 𝛽𝑗

𝑜 + 10 × log10(sin 𝐼𝑗) (III.1) 

where β is the radar brightness and 𝐼𝑗  is the incidence angle at the 𝑗𝑡ℎ range pixel. 

 

Equation 1 assumes that the Earth is a smooth ellipsoid at sea level. A Lee Sigma filter 

(Lee et al., 2008) was applied with a window of 7 × 7 pixels and a sigma value of 0.8. 

RST-2 images were then geocoded at an 8-m resolution using Shuttle Radar 

Topography Mission 3s data to correct topographic deformations. The accuracy of 

geometric correction was less than 8 m per pixel. Next, two backscattering ratios were 

calculated (σ°HH:σ°VV, σ°HH:σ°HV) that highlight scattering mechanisms of each 

target. 

 Polarimetric parameters were calculated from SLC RST-2 time-series. First, a 3 × 3 

coherency matrix 𝑇3 was extracted from the scattering matrix (𝑆) of each image using 

PolSARpro. Next, a Lee Sigma filter was applied with a window of 7 × 7 pixels and a 

sigma value of 0.8. The elements of the matrix, which are independent of the 

polarimetric absolute phase (Lee and Pottier, 2009), were then geocoded directly using 

SNAP with an 8-m resolution. 

 

Second, Cloude–Pottier decomposition (Cloude and Pottier, 1996) was then calculated 

based on the 𝑇3 matrix. From the eigenvalues extracted, we calculated three independent 

parameters: (i) entropy (H), which expresses the randomness of the scatter; (ii) alpha angle (α), 

which describes the dominant scattering mechanism and (iii) anisotropy (A), which represents 

the relative power of the dominant mechanism. In addition, four parameters based on the 

Cloude–Pottier decomposition (𝐻 × 𝐴;  𝐻 × (1 − 𝐴); (1 − 𝐻) × 𝐴; (1 − 𝐻)(1 − 𝐴)) were 

calculated because they can provide the number of scattering mechanisms in each resolution 

cell. 

Third, Freeman–Durden decomposition (Freeman and Durden, 1998) was used to model 

the 3 × 3 covariance matrix (𝐶3) as the contribution of three scattering mechanisms for each 

pixel: volume, double-bounce and surface/single-bounce. Fourth, SPAN (total scattered 

power) and Shannon Entropy (SE), which equals the sum of two parameters related to the 

intensity (𝑆𝐸𝑖) and degree of polarization (𝑆𝐸𝑝) (Lee and Pottier, 2009),, were calculated from 

the 𝑇3 matrix. SE measures the disorder encountered in polarimetric SAR images. 

Finally, two polarimetric parameters were extracted from the 𝑇3 matrix: pedestal height 

and the Radar Vegetation Index (RVI). Pedestal height is the ratio of the maximum received 

intensity to the minimum received intensity; it indicates the presence of unpolarized scattering 
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and thus the degree of polarization of a scattered wave (Kim et al., 2012). RVI is a function of 

incidence angle, since the path length through the vegetation canopy will increase as the 

incidence angle increases (McNairn et al., 2004). Ranging from 0 to 1, RVI measures the 

randomness of the scatter according to Equation III.2: 

𝑅𝑉𝐼 =
8𝜎0𝐻𝑉

𝜎0𝐻𝐻 + 𝜎0VV +  2𝜎0𝐻𝑉
 (III.2) 

 

A total of 25 quad-pol parameters were calculated for each of the 10 quad-pol 8-m RST-2 

images, yielding a dataset with 250 variables. 

VI.2.4.2. Dual-Pol Time-Series 

The dual-polarization preprocessing step included (i) conversion of RST-2 time-series 

images from quad- to dual-polarization mode, (ii) resampling of RST-2 and ALS-2 time-series 

images at the spatial resolution of S-1 images and (iii) extraction of dual-pol C-Band and dual-

pol L-Band SAR parameters. 

 Converting the RST-2 time-series polarization mode: Each 3 × 3 coherency matrix 𝑇3 

extracted from RST-2 quad-polarization images was converted to a 2 × 2 covariance 

matrix 𝐶2 using PolSARpro. The converted RST-2 images had the same polarizations 

(HH and HV) as ALS-2 images. 

 

 Calculating S-1 and ALS-2 covariance matrices: A 2 × 2 covariance matrix (𝐶2) was 

extracted from the two polarizations of each ALS-2 2-m image and each S-1 image (for 

S-1 dense and sparse time-series). 

 

 Resampling RST-2 and ALS-2 time-series: A multi-looking function was applied using a 

2 × 1 pixel window for RST-2 images (i.e., 2 × 4.7 m and 1 × 8.2 m) and a 5 × 6 pixel 

window for ALS-2 images (i.e., 5 × 1.9 m and 6 × 1.4 m) using PolSARpro. Resampled 

RST-2 images had a resolution of 9.4 × 8.2 m, which was close to that of resampled 

ALS-2 images (9.5 × 8.4 m) and 10-m corrected S-1 images. 

 

 Calibrating backscattering coefficients: Backscattering coefficients σ°HH and σ°HV were 

simultaneously calibrated radiometrically from dual-pol converted and resampled 

RST-2 images and original and resampled ALS-2 images using SNAP. Backscattering 

coefficients σ°VV and σ°VH were simultaneously calibrated radiometrically from 

dual-pol S-1 images. Then, a Lee Sigma filter (Lee et al., 2008) with a window of 7 × 7 

pixels and a sigma value of 0.8 was applied to all images to attenuate speckle noise. 

Next, geometric correction was performed using the Shuttle radar topographic 

mission (SRTM) for each time-series dataset, with a 2-m resolution for original ALS-2 

images; 8-m resolution for original RST-2 images and 10-m resolution for resampled 

ALS-2, resampled RST-2 and the two S-1 images. Finally, the σ°HH:σ°HV ratio and 

σ°HH −σ°HV difference were calculated from ALS-2 and RST-2 backscattering 

coefficients, and the σ°VH: σ°VV ratio and σ°VH −σ°VV difference were calculated 

from S-1 backscattering coefficients. 
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 Extracting polarimetric parameters: Dual-polarimetric parameters were simultaneously 

extracted from dual-pol S-1 images, converted and resampled RST-2 images and 

original and resampled ALS-2 images. To this end, the same Lee Sigma filter was 

applied to the 𝐶2 matrices to filter out speckle noise. Then, geometric corrections were 

applied to all polarimetric parameters using the SRTM with the previously used 2-m, 

8-m and 10-m resolutions. SPAN, SE, SEi, SEp, normalized SE, normalized SEi and 

normalized SEp were also extracted. 

 

A total of 11 dual-pol parameters (2 backscattering coefficients, 1 ratio and 1 difference 

based on the backscattering coefficients, 1 SPAN, 2 SE, 2 SEi and 2 SEp) were calculated for 

each of the 10 RST-2, 6 ALS-2 and 8 or 20 S-1 images. Finally, six dual-pol datasets were 

created: 

1. original RST-2 8-m dataset with 110 variables (11 parameters × 10 dates) 

2. resampled RST-2 10-m dataset with 110 variables (11 parameters × 10 dates) 

3. original ALS-2 2-m dataset with 66 variables (11 parameters × 6 dates) 

4. resampled ALS-2 10-m dataset with 66 variables (11 parameters × 6 dates) 

5. sparse S-1 10-m dataset with 88 variables (11 parameters × 8 dates) 

6. dense S-1 10-m dataset with 220 variables (11 parameters × 20 dates) 

VI.2.5. Classification of SAR Parameter Datasets 

A two-step approach was performed to identify winter land-use using the seven SAR 

parameter datasets (one quad-pol and six dual-pol). First, parameter importance was analyzed 

for each SAR parameter dataset using the RF importance function, The RF importance function 

was performed to rank the features in order of importance based on the mean decrease in the 

Gini index (Breiman et al., 2001) repeated 100 times by changing the training sample, to 

identify the parameters most important for identifying winter land-use types. A measure of 

variable importance was provided for each candidate predictor and each classification using 

the heuristic method based on the Gini Index (Kostelich and Schreiber, 1993; Breiman et al., 

2001; Pal, 2005). 

Second, RF, as a supervised classification algorithm, was used to classify land-use during 

winter 2016–2017. The RF was chosen for its high performance and accurate classification of 

land use (Belgiu and Csillik, 2018). RF is an ensemble classifier that uses classification and 

regression trees to make predictions (Breiman et al., 2001). The trees are created by drawing a 

subset of training samples through replacement (a bagging approach). In this way, some 

samples may be selected several times, while other samples may not be selected at all. The 

“randomForest” package (v.4.6–14) developed by (Liaw and Wiener, 2002) and implemented 

in R software (v.3.5.1) (“R Project”, 2019) (Develop by Bell Laboratories, Murray Hill, New 

Jersey, United-Sates) was used to perform classifications. Two RF parameters were tuned 

using the “name” function in this package. The first, the number of trees randomly created 

using the training dataset, was set to 1000, since the number of errors decreases little with more 

than 1000 trees (Lawrence et al., 2006). The second parameter, the number of variables 

randomly sampled as candidates at each split node (mtry), was defined starting with a mtry 

equals the square root of the number of input variables, then searching for the optimal value 

to improve the quality of the model. 

From each image (one per date), 1200 samples (pixels) were randomly selected. Half (600 

“in-bag” samples) were used to train the trees, while the rest (600 “out-of-the-bag” samples) 
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were used to estimate the accuracy of the RF model (Belgiu and Drăgu, 2016). This process 

being repeated 100 times with replacement of samples, we can consider that bagging was used 

during the overall process (Denize et al., 2019). Classification accuracy was assessed using the 

F1-score and the Kappa index. The F1-score is a standard measure of classification accuracy 

defined as the weighted average of precision and recall (Audebert et al., 2018), while the Kappa 

index expresses the proportional decrease in error generated by the classification compared to 

the error of a completely random classification (Congalton, 1991). 

A four-step classification procedure was performed to evaluate the potential of SAR time-

series to identify winter land-use types: 

1. RST-2 quad-pol, S-1 dense and ALS-2 2-m time-series datasets were classified 

to demonstrate the full potential of these SAR sensors 

2. RST-2 10-m dual-pol, ALS-2 10-m and S-1 sparse time-series datasets were 

classified to identify the best band frequency 

3. RST-2 quad-pol and RST-2 8-m dual-pol time-series datasets were classified to 

identify the best polarization mode 

4. S-1 dense and sparse time-series datasets were classified to evaluate the 

influence of the number of images. 
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VI.3. Results 

VI.3.1. Importance of SAR Parameters for Discriminating Winter 

Land-Use 

The most important SAR parameters for discriminating winter land-use depended on the 

polarization mode and band frequency (Fig. III.3 and III.4). Concerning polarization mode, 

the most important parameters in the quad-pol data were SPAN (7.8%), SE (7.7%), normalized 

SE (7.5%) and, to a lesser extent, SEi (5.9%) and the normalized SEi (5.8%) (Fig. III.3). 

Conversely, the least important parameters were the Freeman–Durden double-bounce (2.1%) 

and anisotropy (2%). Parameters related to backscattering coefficients were less important 

(4.3% and 2.4% for VV backscattering and the HV:HH ratio, respectively). For the dual-pol 

data, the most important parameters were SE and normalized SE, with an importance of 11.5% 

for both for the ALS-2 L-Band; 13.1% and 12.5%, respectively, for RST-2 and 11.7% and 11.6%, 

respectively, for S-1. In addition, for the ALS-2 L-Band, SPAN was the most important 

parameter (11.7%). Conversely, the least important parameter was the HH:HV ratio for the 

ALS-2 L-Band and RST-2 C-Band (5.6% and 6.4%, respectively) and the difference VV – VH 

for the S-1 C-Band (6.7%). 

 

Figure III.3. Importance (in %) of quad-pol SAR parameters based on 100 random forest 

classifications. Parameters related to backscattering coefficients are in black, while 

polarimetric parameters are in gray. SE: Shannon Entropy. 

Concerning band frequency, in the dual-pol L-Band (Dual-L) configuration, parameters 

related to backscattering coefficients were less important than polarimetric parameters (mean 

importance of 6.6% and 10.5%, respectively) (Fig. III.4). In the dual-pol C-Band (Dual-C) 

configuration, the ranks of the parameters related to backscattering coefficients were similar 
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for RST-2 and S-1 classification models. For each of them, a backscattering coefficient was 

important: the HV coefficient for RST-2 and VV coefficient for S-1 (10.4% and 10.7%, 

respectively). Similarly, the HH:HV and VV:VH ratios were less important (6.4% and 6.7%, 

respectively). The importance of polarimetric parameters was similar for Dual-C and Dual-L 

configurations, with SE and SEi being the most important parameters. However, SPAN was 

the most important parameter for Dual-L but one of the least important for Dual-C. 

 

Figure III.4. Importance (in %) of dual-pol SAR parameters based on 100 random forest 

classifications using (A) ALOS-2 parameters, (B) RADARSAT-2 parameters and (C) Sentinel-

1 parameters. Parameters related to backscattering coefficients are in black, while polarimetric 

parameters are in gray. SE: Shannon Entropy. 
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VI.3.2. Contribution of Polarization Mode to Accuracy of Winter 

Land-Use Classification 

The F1-score of land-use classification was higher using the quad-pol dataset (median F1-

score 0.69, standard deviation (SD) 0.05; median Kappa 0.68, SD 0.02;) than the dual-pol 

datasets (median F1-score 0.59, SD 0.05; median Kappa 0.54, SD 0.02) (Fig. III.5). The 

superiority of quad-pol mode over dual-pol mode was observed for all winter land-use classes 

(Fig. III.5). The largest differences in median F1-score between quad-pol and dual-pol mode 

concerned the oat (0.64 and 0.50, respectively), ryegrass and clover (0.60 and 0.46, respectively) 

and phacelia (0.75 and 0.66, respectively) classes. Conversely, the rapeseed class was 

discriminated slightly better using the quad-pol rather than dual-pol dataset (median F1-score 

0.87 and 0.85, respectively). Moreover, Standard Deviation (SD) in F1-score accuracy was 

slightly lower using the quad-pol rather than dual-pol dataset for fodder cabbage (0.05 and 

0.06, respectively) and crop residue (0.03 and 0.04, respectively) classes, but the opposite is 

true for other classes such as ryegrass and clover (0.05 and 0.04, respectively) (Fig. III.5). 

 

Figure III.5. Comparison of classification accuracy of each land-use class between dual and 

quad polarization (pol) modes. Box-and-whisker plots represent the variation in random 

forest classification accuracy based on 100 iterations. Whiskers indicate 1.5 times the 

interquartile range. 
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VI.3.3. Contribution of Band Frequency to Accuracy of Winter 

Land-Use Classification 

The F1-score of land-use classification was slightly higher for the RST-2 C-Band frequency 

(median F1-score 0.64, SD 0.05; median Kappa 0.64, SD 0.02) than S-1 C-Band frequency 

(median F1-score 0.61, SD 0.05; median Kappa 0.59, SD 0.02) or the ALS-2 L-Band frequency 

(median F1-score 0.57, SD 0.05; median Kappa 0.60, SD 0.02) (Fig. III.6). More precisely, 

classification accuracy depended on the band frequency and land-use class (Fig. III.6). F1-

score was highest for the C-Band frequency, except for the crop residue, phacelia, fodder 

cabbage and mown grassland classes, for which the ALS-2 L-Band frequency had the highest 

accuracy (median F1-score 0.89, 0.80, 0.77 and 0.49, respectively). Classification accuracy using 

the S-1 parameter dataset was highest for grazed grassland, winter wheat and oat classes 

(median F1-score 0.83, 0.65 and 0.57, respectively). For the other classes (phacelia and mustard, 

ryegrass and clover, phacelia and oat, rapeseed and winter barley), F1-score was highest using 

the RSR-2 parameter dataset. Regardless of the band frequency, the F1-score of the rapeseed, 

grazed grassland and crop residue classes was higher than those of the other classes (Fig. III.6). 

The Standard Deviation in classification accuracy of land-use classes was similar among the 

ALS-2, RST-2 and S-1 models (0.05, 0.049 and 0.05, respectively). 

 

 

Figure III.6. Comparison of classification accuracy of each land-use class among band 

frequencies. Box-and-whisker plots represent the variation in random forest classification 

accuracy based on 100 iterations. Whiskers indicate 1.5 times the interquartile range. 
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VI.3.4. Contribution of Time-Series Density to Accuracy of Winter 

Land-Use Classification 

The F1-score of land-use classification was higher for the dense S-1 time-series (median 

F1-score 0.70, SD 0.05; median Kappa 0.69, SD 0.02) than for the sparse S-1 time-series (median 

F1-score 0.61, SD 0.05; median Kappa 0.60, SD 0.02) (Fig. III.7). The largest differences between 

dense and sparse time-series concerned the phacelia and mustard (median F1-score 0.59 and 

0.36, respectively), phacelia and oat (median F1-score 0.60 and 0.39, respectively) and phacelia 

(median F1-score 0.80 and 0.66, respectively) classes. Moreover, the variance in classification 

accuracy was slightly lower for the dense rather than sparse S-1 time-series of the phacelia and 

oat (SD 0.06 and 0.07, respectively) and grazed grassland (SD 0.03 and 0.04, respectively) 

classes (Fig. III.7). Conversely, the variance in classification accuracy in sparse and dense time-

series of some winter land-use classes, such as winter wheat (SD 0.04 and 0.05, respectively) 

and winter barley (SD 0.05 and 0.06, respectively), was higher using the dense time-series. 

 

Figure III.7. Comparison of classification accuracy of each land-use class between sparse and 

dense Sentinel-1 time-series. Box-and-whisker plots represent the variation in random forest 

classification accuracy based on 100 iterations. Whiskers indicate 1.5 times the interquartile 

range. 
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VI.3.5. Definition of the Best SAR Configuration 

The F1-score of land-use classification was slightly higher using the S-1 dense time-series 

(median F1-score 0.70, SD 0.00; median Kappa 0.69, SD 0.02) than using the RST-2 quad-pol 

(median F1-score 0.69, SD 0.05; median Kappa 0.68, SD 0.02) or ALS-2 original dual-pol 

(median F1-score 0.29, SD 0.05; median Kappa 0.32, SD 0.02) time-series (Fig. III.8). More 

precisely, classification accuracy depended on the sensor and land-use class (Fig. III.8). The 

F1-score was higher with the S-1 model, except for the winter wheat, winter barley, rapeseed, 

grazed grassland and crop residue classes, for which the RST-2 model had higher accuracy. 

The accuracy of the S-1 model was slightly higher (by 0.01 in the F1-score 1%) than that of RST-

2 for the phacelia and mustard and mown grassland classes, while that of the ALS-2 model 

was always lower than those of S-1 and RST-2. Finally, the variance in classification accuracy 

was similar among the S-1, RST-2 and ALS-2 models (SD 0.05, 0.05 and 0.05, respectively). 

 

Figure III.8. Comparison of classification accuracy of each land-use class among SAR sensors. 

Box-and-whisker plots represent the variation in RF classification accuracy based on 100 

iterations. Whiskers indicate 1.5 times the interquartile range. 
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VI.3.6. Spatial Distribution of Winter Land-Use Classes 

Winter land-use classes were mapped at the 1:100 000 scale using the best classification 

model: the RF classification using the SAR parameter dataset extracted from S-1 dense time-

series images. While grasslands were classified well (F1-score, 0.71), some misclassification 

errors and artifacts occurred, mainly between catch-crop classes, such as oat and phacelia and 

oat classes (Table III.3). In general, catch crops and winter crops were located on the largest 

fields, while grasslands were located on the smallest ones (Fig. III.9). 

 

 

Figure III.9. Map of winter land-use classes obtained using a parameter dataset derived from 

the Sentinel-1 dense time-series. Classification was performed using the random forest 

algorithm. 
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Table III.3. Confusion matrix of winter land-use obtained from RF classification using the SAR parameter dataset extracted from the S-1 dense time-

series dataset. 

Land Use 1 2 3 4 5 6 7 8 9 10 11 12 
Commission 

Error (%) 

1: Winter wheat 32 1 4 1 0 0 2 0 1 0 2 0 74.4 

2: Winter barley 11 22 0 6 2 2 4 0 1 0 5 0 41.5 

3: Rapeseed 1 3 49 2 1 3 2 2 1 1 0 1 74.2 

4: Mown grasslands 0 3 2 28 7 0 1 0 0 2 1 2 60.9 

5: Grazed grasslands 0 0 0 0 44 0 1 2 1 0 0 0 91.7 

6: Oat 0 2 0 5 0 33 8 0 1 4 2 1 58.9 

7: Phacelia and oat 0 1 0 2 0 4 26 0 5 3 3 0 59.1 

8: Fodder cabbage 1 0 1 3 0 1 1 41 2 0 2 1 77.4 

9: Ryegrass and 

clover 
1 1 1 1 2 2 0 4 36 0 1 0 73.5 

10: Phacelia 0 0 1 0 0 1 5 0 0 41 4 0 78.9 

11: Phacelia and 

mustard 
1 0 0 0 0 1 0 0 0 0 34 1 91.9 

12: Crop residues 0 0 0 0 0 3 0 0 2 0 4 44 83.0 

Omission error (%) 68.1 66.7 84.5 58.3 78.6 66.0 52.0 83.7 72.0 80.4 58.6 88.0 71.7 
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VI.4. Discussion 

This study aimed to evaluate and compare the value of multi-temporal ALS-2, RST-2 and 

S-1 data for monitoring winter land-use in agricultural areas. Winter land-use classes, which 

depend on vegetation characteristics and phenology, can be discriminated using the specific 

properties of SAR sensors to identify crops (Veloso et al., 2017; Jiao et al., 2014; Yusoff et al., 

2017). A two-step method was applied to the study site. First, SAR parameters were derived 

from RST-2, S-1, and ALS-2 time-series, and one quad-pol and six dual-pol parameter datasets 

with different spatial resolutions and densities were calculated from these time-series. Then, 

land use was classified using the RF algorithm with each of these seven SAR parameter 

datasets to determine the most suitable SAR configuration for identifying winter land-use. 

VI.4.1. Which SAR Configuration for Mapping Winter Land-Use? 

Our study took advantage of the potential of SAR sensor characteristics to identify winter 

land-use types. The physical properties and specific resolutions (spatial, temporal and 

frequency) of ALS-2, RST-2 and S-1 sensors allowed us to discriminate winter land-use classes 

in our study area, including areas where the agricultural landscape was fragmented. However, 

some SAR configurations appear to be more effective than others. 

Results highlight that the C-Band outperformed the L-Band, the quad-polarization mode 

outperformed the dual-polarization mode and S-1 dense time-series outperformed RST-2 and 

ALOS-2 time-series. Overall, the dense S-1 time-series was the most suitable SAR 

configuration data for winter land-use identification, with classification accuracy slightly 

higher than those of the others. This result is consistent with other studies that have reported 

the added value of S-1 data for mapping cropland (Belgiu and Csillik, 2018; Immitzer et al., 

2016) or identifying and characterizing crop phenology (Bargiel, 2017). Nevertheless, the quad-

pol C-Band RST-2 dataset also showed potential to identify winter land-use, with accuracies 

similar to those obtained using the dense dual-pol C-Band S-1 dataset. This result is consistent 

with the studies of (McNairn et al., 2009; Liu et al., 2012), which also showed the potential of 

polarimetric RST-2 data for monitoring and classifying crops. Conversely, the dual-pol L-Band 

ALS-2 dataset appeared to be of little use for identifying and mapping land-use in winter, 

except for certain classes such as crop residues or phacelia and mustard. These results add 

information to the research to date, which has demonstrated the ability of the L-Band to 

classify crops in summer (Skriver, 2011; Haldar et al., 2012). However, these results should be 

interpreted with caution because, as shown by the results obtained with S-1 images, time-

series density has a significant impact on the identification of winter land-use classes, as shown 

by Blaes et al. (2005). Thus, if the classification score obtained with the ALS-2 time-series is 

lower than that obtained with the RST-2 and S-1 sparse time-series (F1-score 0.57 vs 0.61 and 

0.64, respectively), it should be noted that the ALS-2 time-series had the least number of 

images (6 against 10 and 8 for RST-2 and S-1, respectively). In addition, the difference between 

the incidence angles of the images, although small (35° for RTS-2 and 40° for S-1 and ALS-2), 

can have an impact on the accuracy of the results, as noted by (Baghdadi et al., 2009; Inoue et 

al., 2012). 

Results indicate that SE and SPAN were the most important parameters, while difference 

and ratio parameters had low importance. These results are consistent with the research 

conducted to date. Loosvelt et al. (2012) demonstrated the importance of SE in studying land 

use and land cover. Some studies also demonstrated the ability of SE to characterize the canopy 
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of vegetated areas (Dufour et al., 2013). Likewise, many studies (e.g., Hong et al., 2015; Zhang 

and Wu, 2011) have described the ability of SPAN parameters to classify crops. 

The best accuracy, obtained using the dense dual-pol C-Band S-1 dataset (OA 72%), 

demonstrated the limits of using one SAR dataset alone to identify winter land-use accurately. 

Nevertheless, our results demonstrate the ability of other band frequencies to discriminate 

land-use classes. For example, ALS-2 data appear to be useful for classifying crop residue and 

phacelia and mustard classes. Similarly, RST-2 data appear to be useful for classifying 

rapeseed and grazed grassland classes. These results highlight the utility of combining SAR 

parameters. For example, Skriver et al. (2011) demonstrated the utility of combining C-Band 

and L-Band SAR data for classifying crops. Hence, use of combined ALS-2, RST-2 and S-1 SAR 

datasets should be considered to obtain a denser time-series to discriminate between land-use 

types better. 

VI.4.2. Advantages and Disadvantages of the Classification 

Approach 

Results demonstrated the potential of this classification approach based on the RF 

algorithm, although the highest F1-score achieved was 0.70. Some studies based on SAR data 

classified using the RF algorithm also highlighted this complexity in identifying winter crops, 

unlike for annual crops such as maize (Veloso et al., 2017; Bargiel, 2017). Moreover, the results 

also confirm the ability of SAR data to classify crop residues, as some previous studies have 

shown (McNairn et al., 2011; Adams et al., 2013). 

Several other approaches can be considered. In this study, the term time-series refers to a 

set of images acquired during a given period, and each acquisition was processed as an 

independent image without capturing properties of time-series data. New approaches that 

take time explicitly into account such as TWDTW (Time-Weighted Dynamic Time Warping) 

algorithm have proven to be very effective in solving complex classification problems. 

Although few studies of winter land-use classification have been performed, Minh et al. (2018) 

for example showed the utility of deep learning for classifying vegetation quality (cover 

density) in winter using S-1 data, with preliminary results achieving a Kappa index of 0.98. 

However, these approaches require high-performance calculations and need to run 

hyperparameter searches, adjustments and tests, which need further investigations that will 

be done in future work. Furthermore, as mentioned, the results highlighted the value of 

specific radar parameters in the L- and C-Bands for discriminating winter land-use classes. 

These results highlight the utility of approaches that combine data to classify crops, as 

demonstrated in certain studies (Skriver, 2011; Skriver et al., 1999). 
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VI.5. Conclusion 

This study evaluated advantages of using S-1, RST-2 and/or ALS-2 time-series to 

determine the best SAR configuration to identify winter land-use classes accurately using the 

RF algorithm. Several SAR configurations were tested to discriminate land-use types during 

winter using the RF algorithm; to our knowledge, this is the first time such a study has been 

undertaken. Results show that the best SAR configuration was the dense dual-pol C-Band S-1 

time-series, although RST-2 and ALS-2 time-series provided useful information about 

vegetation cover. Finally, our results demonstrated the limits of using one SAR dataset alone 

to identify winter land use accurately, the highest F1-score reaching only 0.70. Thus, future 

research could study the utility of combining SAR parameters or using new classification 

approaches based on deep learning to improve the accuracy of classifying land-use types in 

winter. Better understanding of SAR signal behaviors of agricultural practices and 

environmental conditions could also help to identify winter land use, which has important 

implications for developing sustainable agriculture. 
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Conclusion of the third part  

  

 

In this third part, we identified the most appropriate SAR configuration for the 

identification of winter land-use. SAR time-series data has shown since several years its ability 

for identifying, characterizing and monitoring land use. 

Thus, at the local scale of the "Pleine-fougères", a comparative methodology based on 

multi-temporal SAR Radarsat-2, Sentinel-1 and Alos-2 time-series images, has been developed 

to identify winter land-use classes. The first step of the methodology consisted of extracting 

SAR backscatter coefficients and polarimetric data. An analysis was then conducted using the 

RF algorithm to determine the importance of each SAR parameter for the identification of 

winter land-use classes. The results highlighted the main role of the Shannon Entropy for 

winter land-use classification in both quad and dual-polarization mode. Similarly, these 

results also presented the potential of the SPAN in a quad-pol configuration.  

The second step of the developed methodology tried to define the most efficient SAR 

configuration for identifying winter land-use. A comparative approach has been implemented 

based on 6 SAR images datasets using the RF algorithm. The results pointed out four main 

points. i) The prevalence of quad-polarization mode versus dual-polarization mode. ii) The 

ability of the C-band compared to the L-band for this issue. iii) The importance of the density 

of time-series SAR images. iv) And finally the potential of Sentinel-1 best configuration 

compared to Radarsat-2 and Alos-2 data for identifying winter land-use classes.  

The three successive approaches conducted in Parts 2 and 3 of this manuscript have 

demonstrated the interest of remote sensing data for the detailed identification and 

characterization of winter land-use at a local scale. In this context, the last part of this 

manuscript will attempt to define the potential of the best classification approach identified 

within these 2 parts for the identification and characterization of winter land-use on a regional 

scale (Brittany).
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Introduction of the fourth part  

 

 

The fourth part of the manuscript presents the researches carried out to evaluate the 

potential of time-series in order to identify winter land-use at a regional scale. The general 

framework of this approach has been developed in Section IV.4 and will be presented below. 

Chapter 7 is based on the synthesis of two previous parts in order to select both the best 

classification procedure and remote sensing data to identify winter land-use at a regional scale. 

To this end, a procedure using Sentinel-2 times-series with an RF algorithm was selected based 

on the results presented in the 2nd part of this document. From this perspective, Chapter 7 will 

aim to evaluate the ability of Sentinel-2 time-series to identify winter land-use classes in order 

to collect detailed information on UAA parcels (declared and not declared) to provide 

technical support to decision-makers. 

In this context, winter land-use will be analyzed over a large agricultural area (Brittany, 

France), using a time-series of Level-2A Sentinel-2 images presented in Section III.3.1. First, a 

classification and temporal analysis will be performed to identify crop residues parcels (not 

declared to the Common Agriculture Policy) using a NDVI time-series images. Then, a 

classification procedure using Sentinel-2 time-series is realized at a regional scale to identify; 

i) winter land-use of declared parcels using RPG samples; ii) winter land-use of not declared 

parcels using “BD parcellaire” samples and crop residues parcels previously identified in 

order to provide detailed land-use information for the implementation of environmental 

measures by decision-makers.  
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Highlights: 

 Sentinel-2 time-series were used to identify winter land-use at the regional scale 

 NDVI time-series were used to map crop-residue and surface-state changes 

 Sentinel-2 parameter dataset were classified using Random Forest 

 Parcel-based approach classified more accurately than pixel-based 

 Overall winter land-use on undeclared parcels was successfully identified  

Abstract:  

Increasing pressure on agricultural areas, on which intensification and pesticide use have 

become fundamental practices to support an increasing world population, requires 

implementing environmental policies to ensure sustainable development of these areas. 

Acquiring detailed and spatialized information about winter land-use, which is recognized as 

an important factor in environmental change, is a major issue for scientific communities and 

decision-makers. In this context, this study evaluated the potential of Sentinel-2 optical images 

to identify winter land-use at the regional scale to provide technical support for making 

sustainability-oriented decisions. To this end, a time-series of NDVI extracted from Sentinel-2 

data was first used to identify agricultural parcels vulnerable to pollutant transfers and the 

temporal dynamics of these parcels in the region of Brittany, France. Next, a set of Sentinel-2 

parameters was extracted and classified with the Random Forest algorithm using an approach 

based on objects (parcels) or pixels. Classification results highlighted that the parcel-based 

approach (overall accuracy (OA) = 84%, Kappa = 0.77, F1-score = 0.85) was more accurate than 

the pixel-based approach (OA= 82%, Kappa = 0.73, F1-score = 0.83). This study demonstrates 

the potential of Sentinel-2 data to identify winter land-use at the regional scale, providing 

technical support to public and private decision-makers. 

Keywords: Remote sensing, Sustainable agriculture, Optical time-series, NDVI, Random 

Forest algorithm, multi-temporal classification. 
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VII.1. Introduction 

Implementing measures that promote sustainable development of agricultural systems 

must consider pressures exerted on the environment by global climate change, societies and 

their activities to manage these systems optimally. Fine-scale knowledge about agricultural 

systems and their practices thus remains a major issue for scientific communities and decision-

makers. In this context, identifying and characterizing winter land-use, which is considered 

an important factor in environmental change, is required (Foley et al., 2005). In the European 

Union (EU) and particularly in France, this awareness of environmental issues, at small and 

large scales, has led authorities to establish legislation, such as the Nitrates Directive (Justes et 

al., 2012), enshrined in the Common Agricultural Policy (CAP), to maintain and improve the 

quality of environment, in particular for the quality of surface water impacted by transfer of 

agricultural pollutants (Buckley and Carney, 2013). These regulations mandate establishment 

of vegetative cover in winter to decrease transfer of agricultural pollutants to the environment 

and are supported by subsidies given to farmers by the CAP. In France, these subsidies are 

provided through an annual procedure of field declaration, which is summarized in the 

"Registre Parcellaire Graphique" (RPG) (“Graphical Field Register” in French), a geographical 

information system for agricultural parcels in France (“RPG IGN,” 2019). However, because 

farmers do not declare parcels not supported by the CAP, these parcels are ignored by 

decision-makers, which complicates implementation of sustainable measures. In this context, 

remotely sensed images have emerged in the past few decades as a valuable tool to identify 

and characterize land use and provide detailed and timely information about the phenological 

status and development of vegetation cover at different scales (Bégué et al., 2018; Zadbagher 

et al., 2018).  

Despite development in the late 1990s of optical sensors with medium spatial resolution 

such as MODIS or SPOT-Vegetation (250 m and 1 km, respectively), providing new 

opportunities for monitoring vegetation cover at the global scale, only a few studies have 

demonstrated the potential of these remotely sensed data for studying winter land-use. Most 

studies have investigated the potential of these optical data for identifying and characterizing 

land use. For example, (Jakubauskas et al., 2002) and (Sakamoto et al., 2005) demonstrated the 

ability of MODIS to characterize and monitor crop areas and their temporal dynamics. 

Similarly, (Kamthonkiat et al., 2005) and (Verbeiren et al., 2008) illustrated the ability of SPOT-

Vegetation data to discriminate and classify crop areas with accuracy (R²) greater than 85%. 

According to (Lecerf et al., 2005), few studies address winter land-use because the resolution 

of MODIS-like sensors is too low to identify and characterize winter land-use classes finely. 

The emergence of high and very-high spatial resolution optical sensors in the mid-1990s was 

unable to provide more detailed information because of the sensors’ low temporal resolution 

(several tens of days) and sensitivity to meteorological conditions, both of which limit land-

use monitoring during winter. The launch in 2015 and 2017 of a new generation of optical 

sensors with high spatial (10 m) and very high temporal resolution (every 6 days for the 

Sentinel constellation) has opened opportunities for identifying and characterizing winter 

land-use over large areas. In this context, (Denize et al., 2019) highlighted the potential of 

Sentinel-2 data to identify and characterize winter land-use at the local scale with an overall 

accuracy (OA) of 75%. Except for their study, studies performed to date have focused on land 

use during the vegetative-growth period (Delalay et al., 2019; Forkuor et al., 2018). In this 

context, no detailed information about winter land-use is available to date to support 

development of sustainable measures to manage these agricultural systems optimally over 
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large areas. Thus, this study aimed to evaluate the ability of Sentinel-2 time-series to identify 

and monitor winter land-use classes at the regional scale by collecting detailed information 

about the utilized agricultural area (UAA) of fields (declared and undeclared) to provide 

technical support to decision-makers. 

VII.2. Study site and data  

VII.2.1. Study site 

Brittany, an area of 27,209 km² located in western France (Fig. IV.1), is exposed to an 

oceanic temperate climate, with an annual mean temperature above 12°C, a minimum mean 

for the coldest year above 8°C, a maximum mean above 16°C and mean annual rainfall of 600-

700 mm. Brittany is the second-largest agricultural region in France, with 1.7 million ha of 

UAA, representing 53% of its area, in four administrative departments (“CCI Bretagne,” 2017). 

The UAA can be divided into two types of fields: “declared”, which can be declared and 

registered in the RPG to receive CAP subsidies, and “undeclared”, which are neither declared 

nor registered. The UAA of Brittany is covered by a variety of agricultural systems that in 

summer produce four main types of crops, most of which are used for livestock feed 

(“Agreste,” 2017): 

 Forages, mainly forage maize and temporary or permanent grasslands, which covered 

nearly 63% of the UAA in 2015 (ca. 1,827,000 ha) 

 Cereals, mainly wheat, barley, and triticale, which covered ca. 580,000 ha (ca. 20% of 

the UAA) in 2015 

 Vegetables, mainly tomatoes, cauliflower, and artichokes, which make Brittany the 

leading region of vegetable production in France and covered 406,000 ha (ca. 14% of 

the UAA) in 2015 

 Oilseed and protein crops, mainly (88%) rapeseed, which covered ca. 45,000 ha (< 3% 

of the UAA) in 2015 

In winter, the agricultural systems have a high cover of grasslands and of two types of 

secondary annual crops (Fig. IV.2): winter crops (winter wheat, winter barley, and rapeseed) 

or intermediate crops (i.e. “catch crops”). With 98% of Brittany’s area (“Agreste,” 2017) 

designated as nitrate vulnerable zones, establishing vegetation cover during winter has 

become mandatory and highly regulated and controlled by EU authorities within the 

framework of the Nitrates Directive to prevent transfer of agricultural pollutants (“Nitrates 

Directive,” 2019). In this context, establishment of winter soil cover is supported by subsidies 

granted by the CAP to farmers. However, some exemptions are possible for parcels harvested 

after 1 November, which may remain as crop residues without winter cover (Fig. IV.2). These 

parcels, as well as parcels not subsidized by the CAP, are not subject to an annual declaration. 

As a result, no information about these parcels is available for state services or decision-

makers, although they are considered areas potentially vulnerable to the transfer of 

agricultural pollutants. Thus, it is important to evaluate the potential of Sentinel-2 data to 

determine winter land-use in these fields. 
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Figure IV.1. Location of the study site, Brittany, in France (RGB composite image from 

Sentinel-2 data, 2017, ©Copernicus data 2017) and representation of the utilized agricultural 

area (UAA) of fields declared and undeclared under the Common Agricultural Policy.  

 

Figure IV.2. The main land-use types encountered in winter in the study area of Brittany, 

France: a) winter crops (winter barley), b) catch crops (phacelia), c) crop residues (maize stalks) 

and d) grasslands.  

VII.2.2. Field data  

VII.2.2.1. Land use data 

External data were retrieved from the following sources to calibrate and validate the 
classification models. 

 “Registre Parcellaire Graphique” 

The RPG is managed by the French Service and Payment Agency. It is created from farmers' 

annual declarations of parcels to the EU as part of the CAP. The data provide information 

about land use at the parcel scale. The parcels declared in year N indicate their situation as of 

1 January of year N+1 (“RPG IGN,” 2019). Several versions of the RPG are available, ranging 

from an "anonymized" RPG, with only land-use information, to an "un-anonymized" RPG that 

also includes information such as the name of the parcel’s farmer. We selected the latter for 

this study. Precautions should be taken with these data because they have some uncertainties: 

some farm areas are missing (e.g. farms not receiving subsidies), missing farm areas vary 

among years depending on how subsidies evolve, and farmers can change the boundaries of 

their parcels. The RPG for 2016 and 2017 were retrieved in the Lambert-93 projection system 

(RGF93, EPSG: 2154) from the National Institute for Geographic and Forest Information (IGN) 
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(“IGN,” 2019) to obtain complete information about vegetation cover during winter 2016-2017. 

The nomenclature of RPG crops was divided into two levels based on an approach developed 

by (Denize et al., 2019) (Table IV.1). 

Table IV.1. The land-use classes included in two classification levels. Asterisks indicate classes 

not included in the “Registre Parcellaire Graphique”. 

Level 1 Level 2 

Winter crops 

Winter wheat 

Winter barley 

Rapeseed 

Catch crops 

Oat 

Ryegrass and clover 

Phacelia 

Crop residues* Maize stalks* 

Grasslands Grasslands 

 
 « BD Parcellaire » 

The "BD Parcellaire" (“Field Database” in French) is a database of the IGN established in 

the context of the “Référentiel géographique à Grande Échelle”, mandated by French 

regulations in 2005 (“BD Parcellaire,” 2019). By compiling digital cadastral maps, it provides 

geo-referenced and continuous cadastral information for the whole of France. Its data are 

accurate and offer many advantages, especially information about all agricultural fields in the 

UAA of France (whether declared or not). For this study, the BD Parcellaire was retrieved for 

Brittany in vector format (Shapefile ESRI) with a Lambert-93 geographical projection (RGF93, 

EPSG: 2154) from the IGN website, which provides free access to these data for scientific 

research (“BD Parcellaire,” 2019).  

VII.2.3. Satellite data  

A series of 51 optical Sentinel-2 images, acquired by the European Space Agency (ESA) 

from September 2016 to May 2017, was obtained for the whole of Brittany from the Theia Data 

and Services Center (“Theia,” 2019). Sentinel-2 images were acquired in level 2A (i.e. corrected 

for geometric and atmospheric effects) with a spatial resolution ranging from 10-20 m and a 

spectral resolution of 10 bands. Atmospheric corrections made to reach level 2A were 

performed using the MACCS ATCOR Joint Algorithm (MAJA) pre-processing chain 

developed by the Centre d'Etudes Spatiales de la BIOsphère (CESBIO). MAJA is a chain for 

cloud detection and atmospheric correction that is suitable for processing time-series of high 

spatial resolution images acquired from constant or almost constant angles of view (“MAJA,” 

2019). Moreover, a set of Sentinel-2 mask images calculated with MAJA was retrieved to mask 

potential cloud cover. 
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VII.3. Methodology 

VII.3.1 Pre-processing of Sentinel-2 time-series 

The Sentinel-2 time-series images acquired from Theia had been orthorectified and 

georeferenced using MAJA based on the UTM (area 30N) reference system and corrected for 

atmospheric perturbations. First, the corrections calculated with MAJA were evaluated, and 

then the cloud masks were applied to the 51 images. Finally, 12 optical parameters were 

extracted from each image using SNAP software (v.6.0) (Table IV.2): (i) the 10 corrected 

Sentinel-2 bands, (ii) the Normalized Difference Vegetation Index (NDVI, (Rouse Jr et al., 

1974)), and (iii) the Normalized Difference Water Index (NDWI, (Gao, 1996)), the latter two 

derived for their ability to highlight processes related to vegetation, such as water stress, peak 

growth, and phenological stage (Mishra and Singh, 2010; Xue and Su, 2017). In total, 612 

parameters (12 parameters × 51 dates) were extracted from Sentinel-2 corrected time-series. 

Table IV.2. Parameters derived from Sentinel-2 image time-series  

Sentinel-2 optical parameters 

Band 2 – blue 

Band 3 – green 

Band 4 – red 

Band 5 – vegetation red edge 

Band 6 – vegetation red edge 

Band 7 – vegetation red edge 

Band 8 – near-infrared (NIR) 

Band 8a – narrow NIR 

Band 11 – shortwave infrared (SWIR) 

Band 12 – SWIR 

Normalized Difference Vegetation Index  

(NDVI = 
(Band 8 − Band 4)

(Band 8 + Band 4)
 ) 

Normalized Difference Water Index 

(NDWI = 
(Band 8 − Band 12)

(Band 8 + Band 12)
 ) 

VII.3.2 Sentinel-2 time-series processing  

VII.3.2.1. Extraction of crop residues parcels using NDVI Time-

series   

First, using the NDVI time-series previously extracted from corrected Sentinel-2 images, 

thresholds were defined to identify fields with or without vegetation cover from September 

2016 to May 2017. The NDVI images were then reclassified into 51 binary images (one per 

date) by assigning 0 to pixels with NDVI > 0.25 (i.e. vegetation cover) and 1 to pixels with 

NDVI < 0.25 (i.e. little or no coverage). The threshold of 0.25 was defined based on results of 

(Denize et al., 2019), who identified and characterized crop-residue fields in winter by 
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analyzing the optical signal and winter land-use. Then, threshold images and the BD 

Parcellaire were cross-checked and summarized to identify crop-residue fields from 1 

November 2016 to 1 February 2017. This period was defined based on Nitrates Directive 

legislation and temporal dynamics of crop residues identified by (Denize et al., 2019). A value 

of 1 was assigned to BD Parcellaire fields identified as uncovered at least twice from November 

2016-October 2017, while 0 was assigned to the others. Next, the crop-residue fields were 

analyzed temporally to determine the date when their surface state changed (i.e. when they 

became covered by crop residues). Finally, a map of crop-residue parcels and a map of the 

date when the state of the surface changed were created for Brittany at 1:300,000 scale.  

VII.3.2.2. Winter Land Use classification  

To classify winter land-use, the dataset of 612 optical parameters extracted previously was 

first divided into 10 km ×10 km tiles using the "Create a grid" function of QGIS software 

(v.3.4.6) (Madeira) to parallelize processing and reduce the size and processing time. Next, 

features were extracted using R software (v.3.5.1) (“R Core Team, 2019,” 2019) at the field and 

pixel level by overlaying RPG polygons on the Sentinel-2 parameter tiles. A set of 1,280 

samples (corresponding to 30% of the most underrepresented class) was randomly selected 

for a 3-class and 7-class model of winter land-use in Brittany (i.e. one model per classification 

level). In total, 3,840 samples (1,280 samples × 3 classes) or 8,960 samples (1,280 samples × 7 

classes) were extracted. 

The Random Forest (RF) classifier was then chosen for its consistently strong performance 

and classification accuracy of winter land-use, as demonstrated by (Denize et al., 2019). RF 

collects classification algorithms using classification and regression trees to predict (Breiman, 

2001). From a random selection of a training-sample subset, RF uses a series of trees for 

classification. For the 3- and 7-class classification model, 60% of the samples (2,304 and 5,376, 

respectively) were used to train the trees and the remaining 40% (1,536 and 3,584, respectively) 

were used in an internal cross-validation technique to estimate accuracy of the RF model 

(Belgiu and Drăguţ, 2016). The randomForest package (v 4.6-14) (Liaw and Wiener, 2002) of R 

software was used to classify land use. Two RF parameters were tuned using the package’s 

“tune” function. The number of trees (ntree) randomly created using samples from the training 

dataset was set to 1,000, which was identified as an optimal number to minimize the 

percentage of errors (Lawrence et al., 2006). The number of variables used to split tree nodes 

(mtry) was tuned and set randomly. Classification accuracy was assessed with the validation 

dataset by calculating OA, the Kappa index and F1-score, the last of which is a statistical 

measure of classification accuracy calculated as a weighted average of precision and recall 

(Audebert et al., 2018) (Eq.IV.1): 

𝐹1𝑖 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑟𝑒𝑐𝑎𝑙𝑙𝑖
 (Eq. IV.1) 

The classification procedure was repeated 100 times by changing the training and validation 

subsamples. A declared winter land-use map was then generated for Brittany at 1:300,000 scale 

using the RF model with the highest OA. Finally, the best classification model was applied to 

fields in BD Parcellaire to identify winter land-use of all undeclared fields in Brittany’s UAA. 

Classification accuracy was assessed by comparing results to RPG field samples.  
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VII.4. Results and Discussion 

VII.4.1. Identification of crop-residue parcels  

The process classified ca. 5,000 parcels as containing crop residues, which covered less 

than 1% of Brittany’s UAA, as demonstrated at the local scale by (Denize et al., 2019). When 

mapped, crop-residue parcels had a homogeneous distribution in Brittany (Fig. IV.3).   

 

Figure IV.3. Map of crop-residue parcels obtained from Sentinel-2 NDVI time-series using a 

threshold of 0.25.  

The map showing the dates when parcels became crop-residue parcels identified three areas 

in Brittany: (i) the east, where most changes occurred around 3 November 2016, (ii) the 

southwest, where most changes occurred around 6 November and (iii) the northwest, where 

changes occurred from 6-13 November (Fig. IV.4). These differences can be explained by 

differences in meteorological conditions (“Quand récolter,” 2018), with a milder oceanic 

climate in the west and a warmer combination of oceanic and continental climates in the east, 

which influenced differently crop growth and the optimal harvest date (i.e. when the ratio of 

dry matter to grain value is optimal) (Ferreira et al., 2006). 
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Figure IV.4. Map of the date when parcels became covered by crop residues, obtained from 

Sentinel-2 NDVI time-series images using a threshold of 0.25.  

VII.4.2. Overall winter land-use classification accuracy 

The accuracy of winter land-use classifications obtained from Sentinel-2 time-series 

parameters varied significantly depending on (i) the number of classes and (ii) the 

classification approach (i.e. parcel-based or pixel-based) used for the classification model. 

First, the 3-class model was more accurate (mean F1-score = 0.85, Kappa index = 0.77, OA = 

84%) than the 7-class model (mean F1-score = 0.64, Kappa index = 0.59, OA = 65%) (Table IV.3). 

These results highlight limits of Sentinel-2 data for detailed identification of winter land-use 

at a large scale, in contrast to a recent study that demonstrated the ability of Sentinel-2 images 

to classify winter land-use at the local scale (Denize et al., 2019). The difference in accuracy 

between these two approaches, performed at different scales, is probably due to specific 

characteristics of the region or the number of exploitable images, which has less influence at 

the local scale. Although Sentinel-2 data are more adapted for studying winter land-use at the 

local scale (Denize et al., 2019), combining them with Sentinel-1 SAR data could provide 

additional information at the regional scale and thus overcome image-acquisition problems, 

as shown in studies of land-use in summer (Bargiel, 2017; Belgiu and Csillik, 2018; Immitzer 

et al., 2016). 

Second, the parcel-based approach outperformed the pixel-based approach for both 

models (3 and 7 classes), with a mean F1-score of 0.84 and 0.83, respectively, for the 3-class 

model and 0.64 and 0.63, respectively, for the 7-class model (Table IV.3). These results are 

consistent with those in the literature, which have demonstrated the potential of the object-

based approach for identifying and classifying land use using Sentinel-2 data (Belgiu and 

Csillik, 2018; Denize et al., 2019). 
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Table IV.3. Mean classification accuracy of 3 or 7 classes of winter land-use obtained for the 

best Sentinel-2 parameters using the Random Forest algorithm and a pixel-based or parcel-

based approach. OA: overall accuracy. 

Metric 

Dataset 

3 classes 7 classes 

Pixel-

based 

parcel-

based 

Pixel-

based 

Parcel-

based 

OA (%) 82.3 84.4 64.1 65 

Kappa index 0.73 0.77 0.58 0.59 

F1-score 0.83 0.85 0.63 0.64 

VII.4.3. Classification accuracy of winter land-use classes 

For the 3-class model, accuracy of the catch crops class (mean F1-score = 0.86) was higher 

than those of the winter crops or grasslands classes (mean F1-score = 0.83 and 0.84, 

respectively) (Fig. IV.5A). For the 7-class model, the rapeseed class was the most accurate 

(mean F1-score = 0.87), while the oat, ryegrass, and clover and phacelia classes (which 

represent the catch crops class) were least accurate (mean F1-score = 0.45, 0.55 and 0.47 

respectively) (Fig. IV.5B). The other three classes (winter wheat, grasslands and winter barley) 

had a mean F1-score of 0.76, 0.70 and 0.67, respectively. These results suggest high confusion 

between catch-crop classes and the other winter land-use classes, which leads to 

misclassification errors due to similar vegetative cycles (e.g. winter barley and oat). Moreover, 

they are consistent with several studies that have demonstrated the limits of characterizing 

land use using remote sensing data due to complex conditions such as cloud cover (Khaldoune 

et al., 2011). 

 

Figure IV.5. Boxplots of classification accuracies of (A) three or (B) seven land-use classes 

based on 100 Random Forest iterations. Whiskers indicate 1.5 times the interquartile range. 
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VII.4.4. Declared winter land-use mapping 

The confusion matrix derived from the best classification model using Sentinel-2 time-

series parameters (Table IV.4) showed that misclassification errors occurred mainly between 

winter crops and the other classes. The associated map showed a high prevalence of the 

grasslands class throughout Brittany (ca. 56% of the declared UAA) (Fig. IV.6), which was 

consistent with the regional statistics. In contrast, the catch crops class was the least prevalent 

(ca. 14% of the declared UAA). The winter crops class covered 30% of the declared UAA.  

 

Figure IV.6. Map of declared winter land-use based on Sentinel-2 time-series images. The 

classification was performed using the Random Forest algorithm and the “Registre Parcellaire 

Graphique” (RPG) samples.  

Table IV.4. Confusion matrix of the best winter land-use classification of declared fields 

obtained using the Sentinel-2 time-series. Kappa index = 0.77. 

Land-use class Winter crops Catch crops Grasslands 
Commission 

errors (%) 

Winter crops 406 43 32 84.41 

Catch crops 40 448 26 87.16 

Grasslands 57 32 452 83.55 

Omission errors (%) 80.72 85.66 88.63 85.0 

VII.4.5. Undeclared winter land-use mapping 

The confusion matrix derived from the classification of undeclared parcels based on the best 
Sentinel-2 parameters with the 3-class model RF (Table IV.5) showed that misclassification 
errors occurred mainly for the catch crops class and between the winter crops and grasslands 
classes, as observed for the declared UAA. The associated map (ca. 345,000 fields covering 
40% of the UAA) highlighted a high prevalence of the grasslands class throughout Brittany 
(68% of the undeclared UAA) (Fig. IV.7). In contrast, the crop residues class was predicted the 
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least (1% of the undeclared UAA). The winter crops and catch crops classes covered 19% and 
12% of the undeclared UAA, respectively.  

 

Figure IV.7. Map of undeclared winter land-use fields based on Sentinel-2 image time-series. 

Fields were classified by applying a Random Forest algorithm to “BD Parcellaire” samples. 

Table IV.5. Confusion matrix of the best winter land-use classification of undeclared fields 

obtained using the Sentinel-2 time-series. 

Land-use class Winter crops Catch crops Grasslands 
Commission 

errors (%) 

Winter crops 130 309 24 520 81 073 55.2 

Catch crops 23 472 78 634 34 458 57.6 

Grasslands 88 173 39 200 270 963 68 

Omission errors (%) 53.9 55.2 70.1 62.3 

This study took advantage of the spatial and temporal resolution of Sentinel-2 images to 

identify winter land-use with good accuracy. Results were consistent with the literature, which 

highlights the potential of Sentinel-2 data for classifying land use over large areas (Forkuor et 

al., 2018; Immitzer et al., 2016) but with less accuracy than that obtained at the local scale 

(Denize et al., 2019). In addition, these results show the difficulty in monitoring winter land-

use over large areas using Sentinel-2 data, mainly due to meteorological conditions that limit 

acquisition of optical images, but also because of the variety of winter land-use. From this 

perspective, establishing an adapted and standardized nomenclature throughout France 

remains an important issue to decrease confusion and optimize winter land-use monitoring. 

Nonetheless, the research performed in this study remains innovative and provides new 

opportunities to monitor winter land-use accurately at a scale as large as that of Brittany, or 

even France.    
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VII.6. Conclusions 

This study evaluated the ability of Sentinel-2 time-series images to identify winter land-

use at the regional scale to provide technical support for environmental measures. In this 

context, a method using NDVI time-series was applied to identify crop-residue fields, 

considered vulnerable to pollutant transfers, and then to classify winter land-use in Brittany’s 

UAA to obtain information about the surface state of fields declared or undeclared to the CAP. 

Results demonstrated the ability of Sentinel-2 data to identify crop-residue fields and their 

temporal dynamics but also to classify winter land-use classes over large areas with a Kappa 

index of 0.77.  

However, the results also identified limits of this approach related to the precision of the 

classification nomenclature. Meteorological conditions, combined with specific characteristics 

of agricultural areas, decrease classification accuracy at the regional level. Thus, although SAR 

data have shown some limits for detailed identification and characterization of winter land-

use at the local scale, the contribution of accurate and detailed data could be an interesting 

alternative for future studies. Similarly, the use of new 3A-level Sentinel-2 corrected images 

could help obtain accurate and continuous information throughout a region. 

VII.7. Patents 
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Conclusion of the fourth part  

  

 

In this fourth part, we have attempted to highlight the potential of Sentinel-2 images for 

the identification of winter land-use classes at a regional scale.  

Considered as one of the main factors of environmental change, the acquisition of winter 

land-use detailed and spatialized information over large areas have emerged in recent years 

as a main issue for the scientific communities and decision-makers. From this perspective, 

remote sensing data has appeared to be an interesting instrument to address this issue. 

However, despite the development of increasingly efficient remote sensing sensors, to date, 

only a few studies have been able to identify and characterize winter land-use over large areas. 

In this context, the purpose of this fifth part was based on the evaluation of Sentinel-2 time-

series to identify winter land-use on all UAA parcels. 

Thus, at the Brittany scale (France), a methodology was established based on the best 

classification procedure and remote sensing data elaborated in the last three parts in order to 

identify winter land-use. In this context, Sentinel-2 data were selected to identify winter land-

use at a regional scale. The first step of this methodology aimed to identified not declared crop 

residues parcels. To this end, a time-series of NDVI images extracted from Sentinel-2 data is 

used. First results have identified crop residues parcels, but also highlighted a time shift in the 

surface state change of these parcels, which corresponds to the shift in the harvesting date. 

Afterwards, a classification procedure is performed using a re-adapted nomenclature at 3 or 7 

classes. On the one hand, this procedure emphasized the potential of Sentinel-2 data for a 

global classification of winter land-use (3 classes) with a kappa index of 0.77 and an overall 

accuracy of 84%. On the other hand, the results pointed out the limits of the procedure in order 

to perform a detailed winter land-use classification (with 7 classes), which presents a kappa 

index of 0.59 and an overall accuracy of 65%. Finally, the best classification procedure is 

selected and extended over the not declared parcels at the Brittany scale.  

Globally, the last part of this manuscript highlighted the potential of Sentinel-2 time-series 

for the identification of winter land-use at the regional scale. However, this part also pointed 

out the limits of Sentinel-2 optical data for a detailed winter land-use classification (7 classes) 

and leads us to re-examine the value of Sentinel-1 data for future works, which could provide 

reliable information at a regional scale when meteorological conditions limit the acquisition of 

optical images. 
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The winter land-use was studied in this manuscript at local and regional scales based on 

satellite time-series images from optical and SAR sensors. More specifically, it aimed to 

evaluate the potential of Sentinel data (optical and SAR) but also Radarsat-2 and Alos-2 SAR 

sensors.   

For that purpose, we were looking for (1) determining the most suitable classification 

method to identify land use in winter, both at the level of the classification itself and the 

classification approach (pixel or object-oriented); (2) comparing Sentinel-1 SAR images and 

Sentinel-2 optics; and (3) defining the most suitable SAR configuration by comparing three 

image time-series (Alos-2, Radarsat-2 and Sentinel-1)  

First, we evaluated the respective contribution of optical and SAR time-series by 

comparing classification algorithms to identify winter land use. To do this, Sentinel-1 and 2 

images acquired over the period August 2016-May 2017 were classified using the Support 

Vector Machine (SVM) and Random Forest (RF) algorithms applied with pixel and object-

oriented approaches in a 130 km² agricultural zone, whose plot sizes range from 0.1 to 65 ha, 

with an average of 2.1 ha. Overall, the results show that winter land-use can be accurately 

identified using the Sentinel-1 and Sentinel-2 time-series combined with a pixel-based 

approach using an RF algorithm. In detail, they highlighted the value of the RF classification 

algorithm compared to the SVM algorithm. The results show the superiority of Sentinel-2 over 

Sentinel-1, with the accuracy of the classification obtained with the first being greater than 5% 

compared to that obtained with the second. They also point out that classification accuracy 

improves when using a combination of the Sentinel-1 and 2 time-series, with winter land cover 

identified with an overall accuracy of 81% (kappa index 0.77) compared to 75% (Kappa index 

0.70) for the Sentinel-2 time-series used alone. In addition, the analysis of the Sentinel-1 and 

Sentinel-2 parameters used to identify winter land use led to recommendations for feature 

extraction when mapping winter land use, with the results revealing the advantage of using 

backscatter coefficients alone or combined with the NDVI index. Our results also showed the 

limitations of this approach to identifying winter land use: On the one hand, the nomenclature 

defined in this first study was not optimal for identifying and fine-tuning winter land use as 

it includes a "bare soil" class that only corresponds to a temporary soil surface condition during 

the winter period and includes crops with different spectral signatures in a single "winter crop" 

class, which leads to misclassification. On the other hand, classification errors are located in 

small plots due to the spatial resolution of the Sentinel sensors.  

We then sought to assess the potential of the Sentinel-1 and 2 data to identify winter land 

use, but with a more detailed nomenclature that takes into account the diversity of winter 

land-use types and without determining a specific class for bare soils.  To do this, the 

methodology that was implemented at the same study site consists of two steps: (1) A detailed 

analysis of winter signal/crop interactions based on optical or SAR parameters extracted from 

the Sentinel-1 and 2 time-series images; (2) A detailed classification of winter land use types 

using the RF algorithm. The results show that optical data classify winter land-use types with 

greater accuracy than SAR data (overall accuracy of 87% and Kappa index of 0.85 for Sentinel-

2 versus 73% and 0.70 for Sentinel-1). The results also indicate that the combination of Sentinel-

1 and Sentinel-2 data slightly reduces the accuracy of the classification (overall accuracy = 83%, 

Kappa index = 0.82). This study also shows the potential and parameters NDVI and NDWI 

derived from Sentinel-2 imagery to finely discriminate winter land use classes. While 
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highlighting the value of optical time-series, this study also highlights that SAR time-series 

can be useful in areas with high cloud cover. 

Then, we focused on the assessment of SAR imagery to identify winter land-use. 

Specifically, we studied the contribution of frequency (C/L bands), polarization (double/quad 

polarization) and image time-series density at the same study site. First, SAR parameters were 

derived from Radarsat-2, Sentinel-1 and Alos-2 time-series, and a set of quad-pol parameters 

and six bi-pol data sets were calculated with different spatial resolutions and density. Then, a 

Random Forest classification was performed for each of the 7 sets of SAR parameter data that 

had previously been generated to determine the most appropriate SAR configuration to 

identify winter land-use patterns. The results highlight that (1) the C-band (overall accuracy 

of 72%) is higher than the L-band (overall accuracy of 63%), (2) the quad-pol mode (overall 

accuracy of 70%) exceeds the double-pol mode (overall accuracy of 58%) and (3) the dense 

Sentinel-1 time -series (overall accuracy of 72%) is higher than the Radarsat-2 and Alos-2 time-

series (overall accuracy of 70% and 38% respectively). In addition, the results indicate that 

Shannon entropy and SPAN (total power of the coherence matrix) whether in full or dual-

polarization are the most discriminating parameters. This study selects the most appropriate 

SAR configurations for identifying winter land use, namely the Sentinel-1 (C-band) time-series 

in dual-polarization, and dense for this study.  

Based on the results obtained in the three previous studies, we then selected the most 

appropriate data and classification algorithm to identify winter land-use in a region. The 

objective of this study was to test the reproducibility of the approach initially developed at a 

local level. More precisely, the Sentinel-2 data were selected in order to determine, for the 

whole of Brittany, the winter land-use, knowing that this is only known for the parcels 

declared to the CAP system in the graphic parcel census (RPG), i.e. the parcels eligible for EU 

aid. First, Sentinel-2 time-series were classified on the parcels reported in the RPG using the 

RF algorithm, after having adapted the nomenclature used at the local level to the regional 

level into two nested levels. The results obtained at level 1, which includes 3 classes (winter 

crops, grassland intercrops), highlighted the value of this approach in discriminating land-use 

types, with an overall accuracy of 84% and a kappa index of 0.77. Conversely, these results 

highlighted the limitations of the approach for a more detailed classification, since the overall 

accuracy and kappa index reach 65% and 0.59 respectively with the level 2 classification which 

includes 7 classes. The classification model established at level 1 was then applied to 

undeclared plots covered by crop residues, which had previously been identified from an 

NDVI time-series derived from Sentinel-2 images. The map produced on winter land use at 

the parcel scale and over an entire region is new information.  

In general, this thesis has demonstrated the potential of high spatial resolution remote 

sensing time-series, both optical (Sentinel-2) and radar (Sentinel-1, Radarsat-2, and Alos-2) for 

identifying and characterizing winter land use. While this thesis has shown that Sentinel-2 

data are the most suitable for studying winter land use, SAR images are of great interest in 

regions where cloud cover is high, with the dense Sentinel-1 time-series defined as the most 

efficient.  

The originality of this thesis lies in the study of winter land-use using optical and radar 

remote sensing data. Although winter land-use is recognized as a significant issue for scientific 
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communities and public or private decision-makers, to date only a few studies have attempted 

to precisely identify and characterize winter land-use based on remote sensing data. In this 

context, this manuscript develops a methodological approach based on optical and SAR 

sensors to provide detailed information about winter land-use at a local and regional scale. 

This information is essential in order to provide technical support to public and private 

decision-makers for the implementation of environmental measures that promote the 

sustainable development of agricultural areas and limit the impacts on climate change. In 

addition, this thesis work allowed an evaluation of optical and SAR remote sensing data for a 

thematic study on land-use. Although many results have been presented in this manuscript, 

some perspectives have emerged, which are the following: 

The first perspective should be investigating the potential of the fusion process, between 

optical and SAR data but also between two SAR datasets. Indeed, the second part of the thesis 

showed interesting possibilities regarding the combined use of Sentinel-1 and -2 data, but 

these results were not concretized afterward. However, a higher-level of fusion such as the 

Dempster-Shafer method could exploit the ability to discriminate vegetation from optical data 

and the physical capacities of SAR data to characterize the plant structure. Similarly, the fusion 

of several frequency bands of SAR data could provide additional information to defined 

targets. 

 

The second perspective would rely on the implementation of new classification methods 

such as Deep-Learning techniques, which have demonstrated their potential in recent years to 

analyze and classify time-series of remote sensing data. Furthermore, an attempt to readjust 

the TWDTW algorithm used in the second part of this thesis would be interesting. This 

algorithm, which was originally developed to identify vegetation patterns over several years, 

was probably limited by the small temporal dimension proposed by the samples sampling set. 

So it might be interesting to extend the sampling over several years in order to test the current 

model or to readjust the classification algorithm currently in place to increase its robustness 

with a more limited time-series. 

 

The third perspective would be identifying a broader set of landscape elements. As we 

have mentioned several times in this thesis, winter land-use is based on two legislative 

instruments that define the authorized agricultural practices but also the types of coverage. 

For this thesis, we focused our study only on the landscape elements integrated within the 

agricultural fields. The point is to extend the classification approach to landscape elements 

included in the GAEC Rules, such as grassed strips, which play the same important role in 

regulating agricultural pollutant transfers and whose information remains limited. This 

information is needed not only by decision-makers but also by scientific communities such as 

ecologists in order to implement effective action programs. 

 

The identification and characterization of winter land-use were carried out for this thesis 

by considering only a limited range of land-use classes sampled at the scale of France. Indeed, 

we have focused our research on a diversified agricultural landscape, ranging from open fields 

to dense hedged farmland, allowing the reproduction of the main French landscape dynamics. 

In this context, we opted for a nomenclature representing the optimal number of winter land-

use classes, i. e. which is represented heterogeneously on the ZAA but which also represents 

a viable statistical sampling (with a minimum number of individuals). However, it is evident 
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that a large number of land-use classes existing in the French agricultural system were not 

included in the nomenclature implemented, such as bare soil class. Nevertheless, the methods 

developed during this thesis were developed using generic approaches allowing to consider 

potential extensions and readjustments to other areas of French territory. 

 

In this manuscript, we have demonstrated that satellite time-series images of optical and 

SAR sensors allowed the identification and characterization of winter land-use on a local and 

regional scale. To conclude this thesis, we would like to make some suggestions regarding the 

identification and characterization of winter land-use. Thus, a consistent Sentinel-2 time-series 

is recommended in order to finely identify and characterize winter land-use at fine-scale. On 

a larger scale, notwithstanding the potential of optical data, the persistent absence of data 

restricting the creation of a consistent time-series leads us to recommend a combined or even 

a merged approach of optical and SAR data in order to ensure optimal discrimination between 

winter land-use classes and those despite unfavorable meteorological conditions. 
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Directive n° 91/676/CEE du 12/12/91 concernant la 
protection des eaux contre la pollution par les nitrates à 
partir de sources agricoles 

 Type : Directive 

 Date de signature : 12/12/1991 

 Date de publication : 31/12/1991 

 Etat : en vigueur 

 
(JOCE n° L 375 du 31 décembre 1991) 

 
Texte modifié par : 

Règlement (CE) n° 1137/2008 du Parlement européen et du Conseil du 22 octobre 2008 (JOUE 

n° L 311 du 21 novembre 2008). 

Règlement (CE) n° 1882/2003 du Parlement européen et du Conseil du 29 septembre 2003 

(JOUE n° L 284 du 31 octobre 2003). 

Vus 

Vu le traité instituant la Communauté économique européenne, et notamment son article 130 

S, 

Vu la proposition de la Commission (1), 

Vu l'avis du Parlement européen (2), 

Vu l'avis du Comité économique et social (3), 

(1) JOCE n° C 54 du 3 mars 1989, p.4, JOCE n° C 51 du 2 mars 1990, p. 12. 

(2) JOCE n° C 158 du 26 juin 1989, p. 487. 

(3) JOCE n° C 159 du 26 juin 1989, p. 1. 

 

Considérants 

Considérant que le teneur en nitrates de l'eau dans certaines régions des Etats membres est en 

augmentation et atteint déjà un niveau élevé par rapport aux normes fixées par la directive 

75/440/CEE du Conseil, du 16 juin 1975, concernant la qualité requise des eaux superficielles 

destinées à la production d'eaux alimentaires dans les Etats membres (4), modifiée par la 

directive 79/869/CEE (5), et la directive 80/778/CEE du Conseil, du 15 juillet 1980, relative à la 

qualité des eaux destinées à la consommation humaine (6), modifiée par l'acte d'adhésion de 

1985; 

Considérant que le quatrième programme d'action des Communautés européennes en matière 

d'environnement (7) indique que la Commission a l'intention de présenter une proposition de 

directive concernant la lutte contre la pollution des eaux résultant de l'épandage ou des rejets 

de déjections animales et de l'utilisation excessive d'engrais, ainsi que la réduction de celle-ci; 



AIDA - 18/04/2019 

Seule la version publiée au journal officiel fait foi 

 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

Considérant qu'il est indiqué dans le "Livre vert" de la Commission intitulé "Perspectives de 

la politique agricole commune", définissant la réforme de la politique agricole commune que 

l'utilisation d'engrais et de fumiers contenant de l'azote est nécessaire à l'agriculture de la 

Communauté, mais que l'utilisation excessive d'engrais constitue un danger pour 

l'environnement ; qu'il est nécessaire de prendre des mesures communes pour résoudre les 

problèmes découlant de l'élevage intensif de bétail et que la politique agricole doit prendre 

davantage en considération la politique en matière d'environnement; 

Considérant que la résolution du Conseil, du 28 juin 1988, sur la protection de la mer du Nord 

et d'autres eaux de la Communauté (8) invite la Commission à présenter des propositions de 

mesures communautaires ; 

Considérant que les nitrates d'origine agricole sont la cause principale de la pollution 

provenant de sources diffuses, qui affecte les eaux de la Communauté ; 

Considérant qu'il est dès lors nécessaire, pour protéger la santé humaine, les ressources 

vivantes et les écosystèmes aquatiques et pour garantir d'autres usages légitimes des eaux, de 

réduire la pollution directe ou indirecte des eaux par les nitrates provenant de l'agriculture et 

d'en prévenir l’extension ; que, à cet effet, il importe de prendre des mesures concernant le 

stockage et l'épandage sur les sols de composés azotés et concernant certaines pratiques de 

gestion des terres ; 

Considérant que la pollution des eaux par les nitrates dans un Etat membre peut affecter les 

eaux d'autres Etats membres, et qu'une action est donc nécessaire au niveau communautaire 

conformément à l'article 130 R ; 

Considérant que les Etats membres, en encourageant de bonnes pratiques agricoles, peuvent 

assurer à l'avenir un certain niveau de protection de l'ensemble des eaux contre la pollution ; 

Considérant qu'il convient de prévoir une protection spéciale pour certaines zones dont les 

bassins versants alimentent des eaux susceptibles d'être polluées par des composés azotés ; 

Considérant qu'il convient que les Etats membres définissent les zones vulnérables, qu'ils 

élaborent et mettent en œuvre des programmes d'action visant à réduire la pollution des eaux 

par les composés azotés dans ces zones ; 

Considérant que de tels programmes doivent comporter des mesures visant à limiter 

l'épandage sur les sols de tout engrais contenant de l'azote et, en particulier, à fixer des limites 

spécifiques pour l'épandage d'effluents d’élevage ; 

Considérant qu'il convient, pour assurer l'efficacité des actions, de surveiller la qualité des 

eaux et d'appliquer des méthodes de référence pour les dosages des composés azotés ; 

Considérant qu'il est admis que les conditions hydrogéologiques dans certains Etats membres 

sont telles qu'il faudra peut-être de nombreuses années pour que les mesures de protection 

entraînent une amélioration de la qualité des eaux ; 

Considérant qu'il convient d'instituer un comité chargé d'assister la Commission dans 

l'application de la présente directive et son adaptation au progrès scientifique et technique ; 
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Considérant que les Etats membres doivent établir et présenter à la Commission des rapports 

sur l'application de la présente directive ; 

Considérant que la Commission doit régulièrement rendre compte de l'application de la 

présente directive par les Etats membres ; 

A arrêté la présente directive : 

(4) JOCE n° L 194 du 25 juillet 1975, p. 26., 

(5) JOCE n° L 271 du 29 octobre 1979, p. 44. 

(6) JOCE n° L 229 du 30 âout 1980, p. 11. 

(7) JOCE n° C 328 du 7 décembre 1987, p. 1. 

(8) JOCE n° C 209 du 9 âout 1988, p. 3. 

 
Article 1er de la directive du 12 décembre 1991 

La présente directive vise à : 

Réduire la pollution des eaux provoquée ou induite par les nitrates à partir de sources 

agricoles, prévenir toute nouvelle pollution de ce type. 

 

Article 2 de la directive du 12 décembre 1991 

Aux fins de la présente directive, on entend par : 

a) "eaux souterraines" : toutes les eaux se trouvant sous la surface du sol dans la zone de 

saturation et qui sont en contact avec le sol ou le sous-sol ; 

b) "eaux douces" : les eaux qui se présentent à l'Etat naturel avec une faible teneur en sels et 

généralement considérées comme pouvant être captées et traitées en vue de la production 

d'eau potable ; 

c) "composé azoté" : toute substance contenant de l'azote, à l'exception de l'azote moléculaire 

gazeux ; 

d)"animaux" : tous les animaux élevés à des fins d'exploitation ou à des fins lucratives ; 

e) "fertilisant" : toute substance contenant un ou des composés azotés épandue sur les sols afin 

d'améliorer la croissance de la végétation, y compris les effluents d'élevage, les résidus des 

élevages piscicoles et les boues d'épuration ; 

f) "engrais chimique" : tout fertilisant fabriqué selon un procédé industriel ; 

g) "effluent d'élevage" : les déjections d'animaux ou un mélange de litière et de déjections 

d'animaux, même s'ils ont subi une transformation ; 

h) "épandage" : l'apport au sol de matières par projection à la surface du sol injection, 

enfouissement ou brassage avec les couches superficielles du sol ; 
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i) "eutrophisation" : l'entrichissement de l'eau en composés azotés, provoquant un 

développement accéléré des algues et des végétaux d'espèces supérieures qui perturbe 

l'équilibre des organismes présents dans l'eau et entraîne une dégradation de la qualité de l'eau 

en question ; 

j) "pollution" : le rejet de composés azotés de sources agricoles dans le milieu aquatique, 

directement ou indirectement, ayant des conséquences de nature à mettre en danger la santé 

humaine, à nuire aux ressources vivantes et au système écologique aquatique, à porter atteinte 

aux agréments ou à gêner d'autres utilisations légitimes des eaux ; 

k) "zone vulnérable" : les terres désignées conformément à l’article 3 paragraphe 2. 

 

Article 3 de la directive du 12 décembre 1991 

1. Les eaux atteintes par la pollution et celles qui sont susceptibles de l'être si les mesures 

prévues à l'article 5 ne sont pas prises sont définies par les Etats membres en fonction des 

critères fixés à l'annexe I. 

2. Dans un délai de deux ans à compter de la notification de la présente directive, les Etats 

membres désignent comme zones vulnérables toutes les zones connues sur leur territoire qui 

alimentent les eaux définies conformément au paragraphe 1 et qui contribuent à la pollution. 

Ils notifient cette désignation initiale à la Commission dans un délai de six mois. 

3. Lorsque des eaux définies par un Etat membre conformément au paragraphe 1 sont touchées 

par la pollution des eaux d'un autre Etat membre qui y sont drainées directement ou 

indirectement, l'Etat membre dont les eaux sont touchées peut notifier les faits à l'autre Etat 

membre ainsi qu'à la Commission. Les Etats membres concernés procèdent, le cas échéant avec 

la Commission, à la concertation nécessaire pour identifier les sources concernées et les 

mesures à prendre en faveur des eaux touchées afin d'en assurer la conformité avec la présente 

directive. 

4. Les Etats membres réexaminent et, au besoin, révisent ou complètent en temps opportun, 

au moins tous les quatre ans, la liste des zones vulnérables désignées, afin de tenir compte des 

changements et des facteurs imprévisibles au moment de la désignation précédente. Ils 

notifient à la Commission, dans un délai de six mois, toute révision ou ajout apporté à la liste 

des désignations. 

5. Les Etats membres sont exemptés de l'obligation de désigner des zones vulnérables 

spécifiques lorsqu'ils établissent et appliquent à l'ensemble de leur territoire national les 

programmes d'action visés à l'article 5 conformément à la présente directive. 

 

Article 4 de la directive du 12 décembre 1991 

1.  En vue d'assurer, pour toutes les eaux, un niveau général de protection contre la pollution, 

les Etats membres, dans un délai de deux ans à compter de la notification de la présente 

directive : 
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a) établissement un ou des codes de bonne pratique agricole, qui seront mis en œuvre 

volontairement par les agriculteurs et qui devraient contenir au moins les éléments 

énumérés au point A de l'annexe II ; 

b) élaborent au besoin un programme prévoyant la formation et l'information des 

agriculteurs en vue de promouvoir l'application du ou des codes de bonne pratique 

agricole. 

2. Les Etats membres présentent à la Commission les modalités de leurs codes de bonne 

pratique agricole et celle-ci inclut des informations sur ces codes dans le rapport visé à l'article 

11. A la lumière des informations reçues, la Commission peut, si elle l'estime nécessaire, faire 

des propositions appropriées au Conseil. 

 

Article 5 de la directive du 12 décembre 1991 

1.  Pour les besoins des objectifs visés à l'article 1er et dans un délai de deux ans à compter de 

la désignation initiale visée à l'article 3 paragraphe 2 ou d'un an après chaque nouvelle 

désignation visée à l'article 3 paragraphe 4, les Etats membres établissent des programmes 

d'action portant sur les zones vulnérables désignées. 

 2. Un programme d'action peut porter sur toutes les zones vulnérables situées sur le territoire 

d'un Etat membre ou, si cet Etat l'estime approprié, des programmes différents peuvent être 

établis pour diverses zones ou parties de zones vulnérables. 

3. Les programmes d'action tiennent compte : 

a) des données scientifiques et techniques disponibles concernant essentiellement les 

quantités respectives d'azote d'origine agricole ou provenant d'autres sources ; 

b) des conditions de l'environnement dans les régions concernées de l'Etat membre en 

question. 

4. Les programmes d'action sont mis en œuvre dans un délai de quatre ans à compter de leur 

élaboration et ils contiennent les mesures obligatoires suivantes : 

a) les mesures visées à l'annexe III ; 

b) les mesures que les Etats membres ont arrêtées dans le(s) code(s) de bonne pratique 

agricole élaboré(s) conformément à l'article 4, à l'exception de celles qui ont été 

remplacées par les mesures énoncées à l'annexe III. 

5. En outre, les Etats membres prennent, dans le cadre des programmes d'action, toutes les 

mesures supplémentaires ou actions renforcées qu'ils estiment nécessaires, s'il s'avère, dès le 

début ou à la lumière de l'expérience acquise lors de la mise en oeuvre des programmes 

d'action, que les mesures visées au paragraphe 4 ne suffiront pas pour atteindre les objectifs 

définis à l'article 1er. Dans le choix de ces mesures ou actions, les Etats membres tiennent 

compte de leur efficacité et de leur coût par rapport à d'autres mesures préventives 

envisageables. 
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6. Les Etats membres élaborent et mettent en œuvre des programmes de surveillance adéquats 

pour évaluer l'efficacité des programmes d'action établis en vertu du présent article. 

Les Etats membres qui appliquent les dispositions de l'article 5 à l'ensemble de leur territoire 

national surveillent la teneur en nitrates des eaux (eaux de surface et eaux souterraines) à des 

points de mesure sélectionnés, qui permettent de déterminer l'étendue de la pollution des eaux 

par les nitrates à partir de sources agricoles. 

7. Les Etats membres réexaminent et, le cas échéant, révisent leurs programmes d'action, y 

compris toute mesure supplémentaire prise en vertu du paragraphe 5, tous les quatre ans au 

moins. Ils informent la Commission de toute modification apportée aux programmes d'action. 

 

Article 6 de la directive du 12 décembre 1991 

1.  Aux fins de désigner les zones vulnérables et de réviser la liste établie, les Etats membres : 

a) dans un délai de deux ans à compter de la notification de la présente directive, 

surveillent pendant une période d'un an la concentration de nitrates dans les eaux 

douces : 

i) au niveau des stations de prélèvement des eaux superficielles prévues à 

l'article 5 paragraphe 4 de la directive 75/440/CEE et /ou d'autres stations de 

prélèvement représentatives des eaux superficielles des Etats membres, au 

moins une fois par mois et plus fréquemment durant les périodes de crues ; 

ii) au niveau des stations de prélèvement représentatives des nappes 

phréatiques des Etats membres, à intervalles réguliers, compte tenu des 

dispositions de la directive 80/778/CEE ; 

b) reprennent le programme de surveillance décrit au point a) tous les quatre ans au 

moins, sauf dans le cas des stations de prélèvement où la concentration de nitrates de 

tous les échantillons précédents s'est révélée inférieure à 25 milligrammes par litre et 

où aucun facteur nouveau susceptible d'accroître la teneur en nitrates n'a été constaté ; 

en ce cas, le programme de surveillance ne doit être mis en œuvre que tous les huit ans 

; 

c) réexaminent tous les quatre ans l'état d'eutrophisation des eaux douces 

superficielles, des eaux côtières et d'estuaires. 

2. Les méthodes de mesure de référence définies à l'annexe IV sont utilisées. 

 

Article 7 de la directive du 12 décembre 1991 

(Règlement (CE) n° 1137/2008 du 22 octobre 2008) 

La Commission peut formuler des recommandations pour la surveillance visée aux articles 5 

et 6 conformément à la procédure de réglementation visée à l'article 9, paragraphe 2. 
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Article 8 de la directive du 12 décembre 1991 

Les annexes de la présente directive peuvent être adaptées au progrès scientifique et 

technique, conformément à la procédure prévue à l'article 9. 

Article 9 de la directive du 12 décembre 1991 

(Règlement (CE) n° 1882/2003 du 29 septembre 2003 et Règlement (CE) n° 1137/2008 du 22 

octobre 2008). 

1. La Commission est assistée par un comité. 

2. Dans le cas où il est fait référence au présent article, les articles 5 et 7 de la décision 

1999/468/CE (1) s'appliquent, dans le respect des dispositions de l'article 8 de celle-ci. 

La période prévue à l'article 5, paragraphe 6, de la décision 1999/468/CE est fixée à trois mois. 

3. Dans le cas où il est fait référence au présent paragraphe, l’article 5 bis, paragraphes 1 à 4, et 

l’article 7 de la décision 1999/468/CE s’appliquent, dans le respect des dispositions de l’article 

8 de celle-ci. 

(1) Décision 1999/468/CE du Conseil du 28 juin 1999 fixant les modalités de l'exercice des compétences 

d'exécution conférées à la Commission (JO L 184 du 17.7.1999, p. 23). 

 

Article 10 de la directive du 12 décembre 1991 

1. Les Etats membres soumettent à la Commission, pour la période de quatre ans qui suit la 

notification de la présente directive et pour chaque période ultérieure de quatre ans, un 

rapport contenant les informations visées à l'annexe V. 

2. Ils soumettent à la Commission un rapport, en vertu du présent article, dans un délai de six 

mois après l'expiration de la période sur laquelle il porte. 

  

Article 11 de la directive du 12 décembre 1991 

A partir des informations reçues en vertu de l'article 10, la Commission publie des rapports de 

synthèse dans un délai de six mois après la réception des rapports des Etats membres et elle 

les communique au Parlement européen et au Conseil. À la lumière de la mise en oeuvre de la 

présente directive, et notamment des dispositions de l'annexe III, la Commission soumet au 

Conseil, d'ici le 1er janvier 1998, un rapport assorti, le cas échéant, de propositions de révision 

de la présente directive. 

 

Article 12 de la directive du 12 décembre 1991 

1. Les Etats membres mettent en vigueur les dispositions législatives, réglementaires et 

administratives nécessaires pour se conformer à la présente directive dans un délai de deux 

ans à compter de sa notification (9). Ils en informent immédiatement la Commission. 
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2. Lorsque les Etats membres adoptent ces dispositions, celles-ci contiennent une référence à 

la présente directive ou sont accompagnées d'une telle référence lors de leur publication 

officielle. Les modalités de cette référence sont arrêtées par les Etats membres. 

3. Les Etats membres communiquent à la Commission le texte des dispositions essentielles de 

droit interne qu'ils adoptent dans le domaine régi par la présente directive. 

(9) La présente directive a été notifiée aux Etats membres le 19 décembre 1991. 

Annexe I : Critères de définition des eaux visés à l'article 3 paragraphe 1 

A. Les eaux visées à l'article 3 paragraphe 1 sont définies en fonction, entre autres, des critères 

suivants : 

1) si les eaux douces superficielles, notamment celles servant ou destinées au captage 

d'eau potable, contiennent ou risquent de contenir, si les mesures prévues à l'article 5 ne sont 

pas prises, une concentration de nitrates supérieure à celle prévue par la directive 75/440/CEE; 

2) si les eaux souterraines ont, ou risquent d'avoir, une teneur en nitrate supérieure à 

50 milligrammes par litre si les mesures prévues à l'article 5 ne sont pas prises ; 

3) si les lacs naturels d'eau douce, les autres masse d'eau douce, les estuaires, les eaux 

côtières et marines ont subi ou risquent dans un avenir proche de subir une eutrophisation si 

les mesures prévues à l'article 5 ne sont pas prises. 

B. Dans l'application de ces critères, les Etats membres tiennent également compte : 

1) des caractéristiques physiques et environnementales des eaux et des terres ; 

2) des connaissances actuelles concernant le comportement des composés azotés dans 

l'environnement (eaux et sols) ; 

3) des connaissances actuelles concernant l'incidence des mesures prises conformément 

à l'article 5. 

 Annexe II : Code(s) de bonne pratique agricole 

 A.  Un ou des codes de bonne pratique agricole visant à réduire la pollution par les nitrates et 

tenant compte des conditions prévalant dans les différentes régions de la Communauté 

devraient contenir des règles couvrant les éléments ci-après, pour autant qu'ils soient 

pertinents : 

1) les périodes pendant lesquelles l'épandage de fertilisants est inapproprié ; 

2) les conditions d'épandage des fertilisants sur les sols en forte pente ; 

3) les conditions d'épandage des fertilisants sur les sols détrempés, inondés, gelés ou 

couverts de neige ; 

4) les conditions d'épandage des fertilisants près des cours d'eau ; 
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5) la capacité et la construction des cuves destinées au stockage des effluents d'élevage, 

notamment les mesures visant à empêcher la pollution des eaux par ruissellement et 

infiltration dans le sol ou écoulement dans les eaux superficielles de liquides contenant 

des effluents d'élevage et des effluents de matières végétales telles que le fourrage 

ensilé ; 

6) les modes d'épandage des engrais chimiques et des effluents d'élevage, notamment 

son niveau et son uniformité, pour pouvoir maintenir à un niveau acceptable la fuite 

dans les eaux d'éléments nutritifs. 

B.  Les Etats membres peuvent également inclure les éléments ci-après dans leur(s) code(s) de 

bonne pratique agricole : 

7) la gestion des terres, notamment l'utilisation d'un système de rotation des cultures 

et la proportion des terres consacrées aux cultures permanentes par rapport aux 

cultures annuelles ; 

8) le maintien d'une quantité minimale de couverture végétale au cours des périodes 

(pluvieuses) destinée à absorber l'azote du sol qui, en l'absence d'une telle couverture 

végétale, provoquerait une pollution des eaux par les nitrates ; 

9) l'élaboration de plans de fertilisation en fonction de chaque exploitation et la tenue 

de registres d'utilisation des fertilisants ; 

10) la prévention de la pollution des eaux par ruissellement et percolation d'eau hors 

d'atteinte du système racinaire dans le cas des cultures irriguées. 

 

Annexe III : Mesures à inclure dans les programmes d'action conformément à 

l'article 5 paragraphe 4 point a) 

(Règlement (CE) n° 1137/2008 du 22 octobre 2008) 

1.  Les mesures comportent des règles concernant : 

1) les périodes durant lesquelles l'épandage de certains types de fertilisants est interdit 

; 

2) la capacité des cuves destinées au stockage des effluents d’élevage ; celle-ci doit 

dépasser la capacité nécessaire au stockage durant la plus longue des périodes d'interdiction 

d'épandage dans la zone vulnérable, sauf s'il peut être démontré à l'autorité compétente que 

le volume d'effluents d'élevage qui dépasse la capacité de stockage réelle sera évacué d'une 

manière inoffensive pour l'environnement ; 

3) la limitation de l'épandage des fertilisants, conformément aux bonnes pratiques 

agricoles et compte tenu des caractéristiques de la zone vulnérable concernée, notamment : 

a) de l'état des sols, de leur composition et de leur pente ; 

b) des conditions climatiques, des précipitations et de l'irrigation ; 
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c) de l'utilisation des sols et des pratiques agricoles, notamment des systèmes de 

rotation des cultures ; et fondée sur un équilibre entre : 

i) les besoins prévisibles en azote des cultures et 

ii) l'azote apporté aux cultures par le sol et les fertilisants correspondant à : 

 

 La quantité d’azote présente dans le sol au moment où les cultures commencent à 

l'utiliser dans des proportions importantes (quantités restant à la fin de l'hiver), 

 L'apport d'azote par la minéralisation nette des réserves d'azote organique dans le sol, 

les apports de composés azotés provenant des effluents d'élevage, 

 Les apports de composés azotés provenant des engrais chimiques et autres composés. 

 

2. Ces mesures assurent que, pour chaque exploitation ou élevage, la quantité d'effluents 

d'élevage épandue annuellement, y compris par les animaux eux-mêmes, ne dépasse pas une 

quantité donnée par hectare. 

Cette quantité donnée par hectare correspond à la quantité d'effluents contenant 170 

kilogrammes d'azote. Toutefois : 

a) pour le premier programme d'action quadriennal, les Etats membres peuvent autoriser une 

quantité d'effluents contenant jusqu'à 210 kilogrammes d'azote ; 

b) pendant le premier programme d'action quadriennal et à l'issue de ce programme, les Etats 

membres peuvent fixer des quantités différentes de celles indiquées ci-avant. Ces quantités 

doivent être déterminées de sorte à ne pas compromettre la réalisation des objectifs visés à 

l'article 1er et doivent se justifier par des critères objectifs, tels que : 

 Des périodes de végétation longues, 

 Des cultures à forte absorption d'azote, 

 Des précipitations nettes élevées dans la zone vulnérable, 

 Des sols présentant une capacité de dénitrification exceptionnellement élevée. 

Si un État membre autorise une quantité différente en vertu du deuxième alinéa, point b), il en 

informe la Commission qui examine sa justification conformément à la procédure de 

réglementation visée à l'article 9, paragraphe 2. 

3. Les Etats membres peuvent calculer les quantités visées au point 2 en fonction du nombre 

d'animaux. 

4. Les Etats membres informent la Commission de la manière dont ils appliquent le point 2. A 

la lumière des informations reçues, la Commission peut, si elle l'estime nécessaire, présenter 

au Conseil des propositions appropriées, conformément à l'article 11. 

Annexe IV : Méthodes de mesure de référence 
 

Engrais chimiques 

Les composés azotés sont mesurés selon la méthode décrite dans la directive 77/535/CEE de la 

Commission, du 22 juin 1977, concernant le rapprochement des législations des Etats membres 
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relatives aux méthodes d'échantillonnage et d'analyse des engrais (10), telle que modifiée par 

la directive 89/519/CEE (11). 

 

Eaux douces, eaux côtières et marines 

La concentration de nitrates est mesurée conformément à l'article 4 bis paragraphe 3 de la 

décision 77/795/CEE du Conseil, du 12 décembre 1977, instituant une procédure commune 

d'échange d'informations relative à la qualité des eaux douces superficielles dans la 

Communauté (12), telle que modifiée par la décision 86/574/CEE (13). 

 

(10) JOCE n° L. 213 du 22 âout 1977, p. 1. 

(11) JOCE n° L 265 du 12 septembre 1989, p. 30. 

(12) JOCE n° L. 334 du 24 décembre 1977, p. 29. 

(13) JOCE n° L. 335 du 28 novembre 1986, p. 44. 

 

Annexe V : Informations devant figurer dans les rapports visés à l'article 10 

1. Un compte rendu des actions de prévention menées en vertu de l'article 4. 

2. Une carte : 

a) des eaux identifiées conformément à l'article 3 paragraphe 1 et à l'annexe I indiquant, 

dans chaque cas, lequel de critères mentionnés à l'annexe I a été utilisé en vue de cette 

identification ; 

b) des zones identifiées désignées faisant apparaître de manière distincte les zones 

anciennes et les zones désignées depuis le dernier rapport. 

3. Un résumé des résultats de la surveillance exercée en vertu de l'article 6, comprenant un 

exposé des considérations qui ont conduit à la désignation de chaque zone vulnérable et à 

toute révision ou ajout apporté à la désignation. 

4. Un résumé des programmes d'action élaborés en vertu de l'article 5 et, en particulier : 

a) les mesures requises en vertu de l'article 5 paragraphe 4 points a) et b) ; 

b) les informations requises en vertu du point 4 de l'annexe III ; 

c) toute mesure supplémentaire ou action renforcée prise en vertu de l'article 5 

paragraphe 5 ; 

d) un résumé des résultats des programmes de surveillance mise en œuvre au titre de 

l'article 5 paragraphe 6; 

e) les estimations des Etats membres concernant les délais approximatifs dans lesquels 

on peut s'attendre à ce que les eaux définies conformément à l'article 3 paragraphe 1 

réagissent aux mesures prévues dans le programme d'action, ainsi qu'une indication 

du niveau d'incertitude que présentent ces estimations. 
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche I 

 
BANDE TAMPON LE LONG DES COURS 
D’EAU 
 
Quel est l’objectif ? 
 
Les bandes tampons localisées le long des cours d’eau protègent 
les sols des risques érosifs, améliorent leur structure et 
contribuent à la protection des eaux courantes en limitant les 
risques de pollutions diffuses. D’une façon générale, elles 
favorisent les auxiliaires de culture et la biodiversité. 
 
Qui est concerné ? 
 
Tous les exploitants agricoles demandeurs d’aides soumises à la 
conditionnalité 1 qui disposent de terres agricoles localisées à 
moins de 5 mètres de la bordure d’un cours d’eau défini par arrêté 
ministériel relatif aux règles BCAE. 
 
Que vérifie-t-on ? 

Il est vérifié que sur l’exploitation contrôlée, il existe une « bande 
tampon » de 5 mètres de large au minimum sans traitement 
phyto-pharmaceutique ni fertilisation implantée le long de tous les 
cours d'eau définis par arrêté ministériel relatif aux règles BCAE. 
Lorsque la réglementation s'appliquant aux parcelles en zones 
vulnérables aux pollutions par les nitrates fixe une largeur 
supérieure, c'est cette largeur supérieure qu'il convient de 
respecter. 
 
1 – La largeur de la bande tampon le long des cours 
d’eau Définition des cours d’eau à border 

Les cours d’eau à border 2 sont définis par l'arrêté ministériel 
relatif aux règles BCAE. Ils concernent notamment les cours d'eau 
représentés en trait bleu plein voire certains en trait bleu pointillé 
sur les cartes les plus récemment éditées au 1/25 000e par 
l’Institut national de l’information géographique et forestière. 
 
La largeur de la bande tampon  
Il est vérifié la largeur de la bande tampon. Elle doit être d’au 
moins 5 mètres (lorsque la réglementation s'appliquant aux 
parcelles en zones vulnérables aux pollutions par les nitrates fixe 
une largeur supérieure, c'est cette largeur supérieure qu'il 
convient de respecter) à partir du bord du cours d’eau, là où la 
berge est accessible à partir d’un semoir. Il n’y a pas de limite 
maximale à cette largeur. Il n’y a pas non plus de surface 
minimale. 
Cette largeur prend en compte, le cas échéant, la largeur des 
chemins ou des ripisylves longeant le cours d’eau. Ainsi un 
chemin ou des ripisylves d’une largeur inférieure à la largeur 
minimale depuis le bord du cours d’eau doit être complétés par 
une bande tampon afin d’atteindre la largeur minimale depuis le 
bord du cours d’eau. 

 
 
 
 
 
 
Les dispositifs tampons en sortie de réseau de drainage peuvent empiéter 
sur la bande tampon si ces dispositifs sont végétalisés, sont éloignés d'au 

moins un mètre de la berge et respectent le cas échéant les dispositions 
de l'article L. 214-1 du code de l'environnement. 
 
2 – La validité et la présence du couvert  
Il est vérifié que le couvert est : 
 

• Herbacé, arbustif ou arboré (les friches, les espèces 
invasives listées en annexe de l'arrêté ministériel relatif aux 
règles BCAE et le miscanthus ne sont pas retenus comme 
couverts autorisés) ; 
• couvrant ;  
• permanent. 

 
Les sols nus ne sont pas autorisés (sauf pour les chemins 
longeant le cours d’eau). 
Le couvert (herbacé, arbustif ou arboré) peut être implanté ou 
spontané. Dans tous les cas, l'objectif est d’arriver à un couvert 
répondant aux objectifs de permanence de la bande tampon, 
donc plurispécifique et semi-naturel. 

En cas d’implantation du couvert, de préférence à l’automne et au 
plus tard le 31 mai : 

• L’implantation d'espèces considérées comme invasives 
n’est pas autorisé ; 
• Le mélange d'espèces est conseillé mais l'implantation d'une 
seule espèce reste autorisée à l’exception de l'implantation de 
légumineuses « pures » qui est interdite mais les légumineuses 
en mélange avec des graminées sont autorisées. 

En cas de couverts spontanés ou implantés déjà existant, le 
maintien est recommandé (sauf le miscanthus qui devra être 
détruit) avec, le cas échéant, des modalités de gestion favorisant 
une évolution vers une couverture permanente et diversifiée : 

 
• Les cultures pérennes déjà implantées devront faire l’objet 
d’un enherbement complet sur 5 mètres de large au minimum; 
• Les implantations en légumineuses pures seront conservées 
pour éviter les émissions d'azote lors du retournement et 
gérées pour permettre une évolution vers un couvert 
autochtone diversifié ;  
• Les couverts comportant une espèce invasive autre que 
celles mentionnées en annexe de l’arrêté ministériel relatif aux 
règles BCAE seront maintenus (sauf le miscanthus qui devra 
être détruit) avec un entretien approprié pour limiter la diffusion 
et favoriser la diversité botanique. 
 
 

1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques). 
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3 – L’entretien du couvert 
 
Des obligations spécifiques s’imposent aux bandes tampons :  

 Le couvert de la bande tampon doit rester en place toute l’année, 
 L’utilisation de fertilisants minéraux ou organiques et de traitements phytopharmaceutiques est interdit sur les bandes tampon (sauf 

dans le cadre de la lutte contre les nuisibles prévue par un arrêté préfectoral pris en application de l’article L.251-8 du code rural et de 
la pêche maritime), 

 La surface consacrée à la bande tampon ne peut être utilisée pour l’entreposage de matériel agricole ou d’irrigation, pour le stockage 
des produits ou des sous-produits de récolte ou des déchets (fumier), 

 Le labour est interdit mais le travail superficiel du sol est autorisé, 
 Le pâturage est autorisé sous réserve du respect des règles d’usage pour l’accès des animaux au cours d’eau,  
 La fauche ou le broyage sont autorisés sur une largeur maximale de 20 mètres, 
 Les amendements alcalins (calciques et magnésiens) sont autorisés.  

 
GRILLE « BCAE » - « BANDE TAMPON LE LONG DES COURS D’EAU (MÉTROPOLE) »   
  Système d'avertissement précoce   

Points vérifiés Anomalies Applicable ? Délai de remise Réduction 
  en conformité   
     
      

Réalisation de la Absence totale de bande tampon : 
non 

   
bande tampon •  sur une portion de cours d'eau BCAE traversant  5%  

 l'exploitation 
non 

   
 •  le long de tous les cours d’eau BCAE traversant  intentionnelle 
 l’exploitation     
      

 Pratique d’entretien interdite sur la bande tampon le long du non  3%  
 ou des cours d’eau BCAE traversant l’exploitation.     
      

 Bande tampon de largeur insuffisante le long d'une partie du non  3%  
 ou des cours d’eau BCAE traversant l’exploitation.     
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche II 

 
 
PRÉLÈVEMENTS POUR L’IRRIGATION 
 
Quel est l’objectif ? 
 
La maîtrise de l'irrigation améliore la gestion de la ressource en 
eau. Elle permet également de conserver la structure des sols en 
évitant les effets de tassement et d'entraînement des couches 
supérieures.  
Qui est concerné ? 
 
Tous les exploitants agricoles demandeurs d’aides soumises à la 
conditionnalité 1 qui prélèvent de l'eau à usage non domestique 
dans les masses d'eaux superficielles ou souterraines par le biais 
d'installations ou d'ouvrages soumis à autorisation ou à 
déclaration au titre de la police de l'eau, sont concernés. Depuis 
2010, toute la sole irriguée est concernée par cette BCAE. 
Remarque : pour satisfaire aux deux exigences de la grille, les 
exploitants irriguant en structure collective ou s'approvisionnant 
auprès d'un fournisseur d'eau devront présenter un bulletin 
d’adhésion à jour ou un contrat de fourniture pour l’année en 
cours. 

 
 
 
 
 
 
En cas de pompage, le compteur volumétrique est obligatoire : 

 
• Le choix et les conditions de montage du compteur doivent 
permettre de garantir la précision des volumes mesurés ;  
• Les compteurs volumétriques équipés d'un système de 
remise à zéro sont interdits. Par ailleurs, le compteur doit 
permettre d'afficher le volume en permanence ou, en cas de 
pompage, pendant toute la période de prélèvement 4. 

 
Dans une retenue collinaire : soit un compteur est installé sur la 
pompe de reprise quand elle est nécessaire, soit il existe une 
échelle graduée sur la retenue et d'une courbe de 
correspondance entre le volume de la retenue et la hauteur du 
plan d'eau. 
 
En cas d'irrigation par submersion : un enregistrement 
volumétrique à la source de tout mètre cube par seconde est 
nécessaire. 

Que vérifie-t-on? 
 
1. La détention du récépissé de la déclaration ou de l'arrêté 
d'autorisation de prélèvements d'eau destinée à l'irrigation 2. 
 
2. L’existence d'un moyen d'évaluation approprié des volumes 
prélevés conforme aux arrêtés du 11 septembre 2003 3. 

  
GRILLE « BCAE » - « PRÉLÈVEMENTS POUR L’IRRIGATION »  
  

Système d'avertissement précoce 
  

    
Points vérifiés Anomalies Applicable ? Délai de remise Réduction 

  en conformité   
     
      

Détention du Non-détention du récépissé de la déclaration ou de l’arrêté non  5%  
récépissé de d’autorisation de prélèvement d’eau.     
déclaration ou de      

     

l’arrêté Absence de moyens appropriés de mesure des volumes d’eau  non  3%  
d’autorisation de prélevés.     
prélèvement et      
présence de moyen      
d’évaluation des      
volumes      

       
 
1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques).  

2 Articles L 214.1 à L. 214.6 du code de l’environnement  
3 Arrêtés du 11 septembre 2003 portant application du décret n° 96-102 du 2 février 1996 et fixant les prescriptions générales applicables aux prélèvements 
soumis à auto-risation ou à déclaration en application des articles L. 214-1 à L. 214-3 du code de l'environnement et relevant des rubriques 1.1.2.0, 1.2.1.0, 
1.2.2.0 ou 1.3.1.0 de la nomen-clature annexée au décret n° 93-743 du 29 mars 1993 modifié.  
4 En cas de non-utilisation de compteur, un autre dispositif de mesure en continu doit être présenté assurant la même garantie qu'un compteur 
volumétrique en termes de précision, de stabilité et de représentativité des volumes d'eau prélevés.  
 

Fiche Conditionnalité 2015 - Sous-domaine « BCAE » 
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche III 

 
 
PROTECTION DES EAUX 
SOUTERRAINES CONTRE LA 
POLLUTION CAUSÉE PAR DES 
SUBSTANCES DANGEREUSES  
Quel est l’objectif ? 
 
Les eaux souterraines fournissent 75 % de l'eau potable. Afin de 
préserver leur qualité, les rejets dans l'environnement de 
certaines substances visées à l'annexe de la directive 
européenne sur la protection des eaux souterraines 1 dans la 
version en vigueur le dernier jour de son application pour ce qui 
concerne l'activité agricole sont interdits ou réglementés. Cette 
directive ayant été abrogée, les exigences minimales qu'elle 
prévoyait concernant les listes de familles et groupes de 
substances ont été reprises en 2014 2 au titre d'une nouvelle 
BCAE, sans modification de contenu  
Qui est concerné ? 
 
Tous les exploitants agricoles, en particulier les exploitants 
demandeurs d’aides soumises à la conditionnalité 3, sont 
concernés dans la mesure où ils utilisent des produits comportant 
des substances visées par la directive, notamment les produits 
phytopharmaceutiques, carburants et lubrifiants, produits de 
désinfection et de santé animale, fertilisants. 

 
 
 
 
 
 
 
 
 
Point de contrôle 1. Absence de pollution des eaux souterraines 
Le contrôle porte sur l’existence d'un rejet dans les sols, imputable 
à l'agriculteur, d'une substance interdite.   
Il est vérifié visuellement le jour du contrôle sur l'exploitation 4 
l'absence de rejet dans les sols de substances présentant un 
risque de toxicité, de persistance et de bioaccumulation (par 
exemple : composés organophosphorés, huiles minérales et 
hydrocarbures, etc.). 
 
Point de contrôle 2. Stockage des effluents d'élevage dans le 
respect des distances d'éloignement par rapport aux points 
d’eaux souterraines. Le contrôle concerne les exploitations qui 
stockent des effluents d'élevage. 
 
La distance minimum d'éloignement à respecter par rapport aux 
points d’eau souterraine est de 35 mètres. 

 
Que vérifie-t-on ? 
 
Deux points de contrôle ont été définis et sont vérifiés.  
 
GRILLE « BCAE » - « PROTECTION DES EAUX SOUTERRAINES »   
   Système d'avertissement précoce   
 Points vérifiés Anomalies Applicable ? Délai de remise Réduction 
   en conformité   
      
       

 Absence de pollution Existence d'un rejet dans les sols (imputable à l'agriculteur)  non  5%  
 des eaux d'une substance interdite     
 souterraines      
       

 Stockage des Non-respect des distances de stockage des effluents d’élevage  non  3 %  
 effluents d'élevage      
 dans le respect des      
 distances      
 d'éloignement par      
 rapport aux points      
 d’eaux souterraines      
       
        
 
1 Directive 80/68/CEE du Conseil du 17 décembre 1979 concernant la protection des eaux souterraines contre la pollution causée par certaines substances 
dangereuses (JOCE L 20 du 26.1.1980, p. 43).  
2 Règlement (UE) n°1310/2013 du Parlement européen et du Conseil du 17/12/2013 
 
3 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(restructuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques).  
4 Cette obligation s’applique sur les terres agricoles et sur les terres boisées aidées (aide au boisement des terres agricoles , aide à la mise en place de systèmes agroforestiers).  
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche IV 

 
COUVERTURE MINIMALE DES SOLS 
 
Quel est l’objectif ? Que vérifie-t-on ? 
 
La couverture minimale des sols vise à favoriser le stockage du 
carbone. 

Qui est concerné ? 
 
Tous les exploitants agricoles demandeurs d’aides soumises à la 
conditionnalité1 qui disposent de terres agricoles sont concernés. 
Cependant, les points de contrôle sont sans objet pour les terres 
arables soumises à l’obligation de maintien en jachère noire ou 
les terres arables entièrement consacrées à des cultures sous 
eau (riz). 

 
Il est vérifié :  

 Sur les terres arables, l'existence d'un semis ou d'un 
couvert au 31 mai,  

 Sur les surfaces restées agricoles après arrachage de 
vignobles, de vergers ou de houblonnières, la présence 
d'un couvert végétal, implanté ou spontané au 31 mai.  

 
 
GRILLE « BCAE » - « COUVERTURE MINIMALE DES SOLS »   
  

Système d'avertissement précoce 
  

    
Points vérifiés Anomalies Applicable ? Délai de remise Réduction 

  en conformité   
     
      

Terres arables (en Absence de couvert sur les surfaces mises en culture (y non  5 %  
production ou en compris les surfaces en herbe) ou les surfaces en jachère     
jachère)      

Non-respect de la date limite de semis sur les surfaces mises non 
 

3% 
 

   
 en culture (y compris les surfaces en herbe) ou les surfaces en      
 jachère     
      

 Absence d’un couvert végétal entre les phases d'arrachage et  non  5%  
 de réimplantation des cultures fruitières, viticoles ou de     
 houblon     
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques).  
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche V 

 
LIMITATION DE L’ÉROSION 
 
Quel est l’objectif ? 
 
La limitation de l’érosion vise à favoriser le maintien de la 
structure des sols. 

 
 
 
Que vérifie-t-on ? 
 
Il est vérifié l’absence de travail des sols (labour, travail 
superficiel, semis direct...) sur une parcelle gorgée d’eau ou 
inondée. 

Qui est concerné ? 

Tous les exploitants agricoles demandeurs d’aides soumises à la  
conditionnalité1 qui disposent de terres agricoles sont concernés. 
Cependant, le point de contrôle est sans objet pour les terres  
arables entièrement consacrées à des cultures sous eau (riz). 
   
GRILLE « BCAE » - « LIMITATION DE L'ÉROSION »   
  

Système d'avertissement précoce 
 

   
Points vérifiés Anomalies Applicable ? Délai de remise Réduction 

  en conformité  
    
     

Limitation de Non-respect de l’interdiction de travail des sols gorgés d'eau non  3 % 
l’érosion ou inondés    

     
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques).  
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche VI 

 
 
NON-BRÛLAGE DES RÉSIDUS DE CULTURE 
 
Quel est l’objectif ? 
 
Le non-brûlage des résidus de culture permet de préserver la 
matière organique des sols et d'éviter leur appauvrissement. 
 
Qui est concerné ? 
 
Tous les exploitants agricoles demandeurs d’aides soumises à la 
conditionnalité 1 qui disposent de surfaces en céréales, 
oléagineux et protéagineux, sont concernés, à l’exception des 
exploitants bénéficiant d’une dérogation nationale (surfaces en 
riz) ou individuelle (par décision motivée du préfet pour des 
raisons agronomiques ou sanitaires). 

 
 
 
 
 
Que vérifie-t-on ? 
 
L'absence de traces de brûlage intentionnel des résidus de 
culture sur les sols de l’exploitation ou l’existence d'une 
dérogation qui permet de pratiquer le brûlage des résidus de 
culture. 
Aucune réduction n’est appliquée en cas de brûlage accidentel ne 
relevant pas de la responsabilité de l’exploitant. 
L’écobuage sur prairies est autorisé.  

 
GRILLE « BCAE » - « NON-BRÛLAGE DES RÉSIDUS DE CULTURE »  
  

Système d'avertissement précoce 
 

   
Points vérifiés Anomalies Applicable ? Délai de remise Réduction 

  en conformité  
    
     

Non-brûlage des Constat de brûlage en absence de dérogation à l’interdiction. non  3% 
résidus     
de cultures sauf     
dérogation     

     
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques).  
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DOMAINE « ENVIRONNEMENT, CHANGEMENT CLIMATIQUE 
ET BONNES CONDITIONS AGRICOLES DES TERRES » 
SOUS-DOMAINE « BCAE »  
Fiche VII 

 
MAINTIEN DES PARTICULARITÉS TOPOGRAPHIQUES 
 
Quel est l’objectif ? 
 
Les particularités topographiques sont des éléments pérennes du 
paysage (haies, bosquets, mares). Ces milieux semi-naturels, 
essentiels à la mise en œuvre d’une politique de développement 
durable, constituent des habitats, des zones de transition et des 
milieux de déplacement favorables à la diversité des espèces 
végétales et animales. 
 
Qui est concerné ? 
 
Tous les exploitants agricoles demandeurs d’aides soumises à la 

conditionnalité1 qui disposent de terres agricoles sont concernés.  
Que vérifie-t-on ? 
 
Point de contrôle n°1 – Le maintien des particularités topo - 
graphiques 
 
Le maintien des haies 
  
Une haie est une unité linéaire de végétation ligneuse, implantée 
à plat, sur talus ou sur creux, avec : 

• Présence d’arbustes, et, le cas échéant, présence d’arbres 
et/ou d’autres ligneux (ronces, genêts, ajoncs...) ; 
• Ou présence d'arbres et d'autres ligneux (ronces, genêts, 
ajoncs...). 

Ne sont pas inclus dans les haies :  
• Les alignements d’arbres caractérisés par la présence d’une 
unité linéaire de végétation ligneuse composée uniquement 
d’arbres (ni arbustes, ni autres ligneux) ;  
• Les bosquets : constitués d’un élément non linéaire d’arbres 
ou d’arbustes : si un élément n’est pas clairement linéaire, il ne 
sera pas classé comme haie (ou alignement d’arbres). 

 
Toutes les haies d’une largeur inférieure ou égale à 10 mètres et 
qui sont à la disposition de l'agriculteur (c'est à dire qu'il en a le « 
contrôle ») doivent être maintenues. 
Il n’est pas exigé de hauteur minimale ni maximale de la haie. 
 
NB : une haie ne peut pas présenter de discontinuité (« 
trou ») de plus de 5 mètres. 
 
Lors d’un contrôle, le maintien des haies est établi par la 
vérification de l’absence de suppression d’une haie, sur tout ou 
partie de son linéaire. Il faut noter que l’exploitation du bois et la 
coupe à blanc sont autorisées, ainsi que le recépage. Par ailleurs, 
la suppression est possible, suite à une déclaration préalable 
auprès de la DDT, dans les cas suivants.  

 
 
 
 
• Cas de suppression définitive d’une haie ou partie de haie sans 
replantation d’un linéaire équivalent sur l’exploitation (« 
destruction ») : 

- Création d’un nouveau chemin d’accès rendu nécessaire 
pour l’accès et l’exploitation de la parcelle, la largeur du chemin 
n’excédant pas 10 mètres, 
- Création ou agrandissement d’un bâtiment d’exploitation 
justifié par un permis de construire, 
- Gestion sanitaire de la haie décidée par l’autorité 
administrative (éradication d’une maladie de la haie) ; 
- Défense de la forêt contre les incendies (décision 
administrative), 
- Réhabilitation d’un fossé dans un objectif de rétablissement 
d’une circulation hydraulique, 
- Travaux déclarés d’utilité publique (DUP),  
- Opération d’aménagement foncier avec consultation du 
public, en lien avec des travaux déclarés d’utilité publique ; 
l’opération doit faire l’objet d’un conseil environnemental par un 
organisme reconnu dans l’arrêté ministériel relatif aux règles 
BCAE. 

 
• Cas de suppression définitive d’une haie ou partie de haie avec 
replantation d’u linéaire équivalent sur l‘exploitation (« 
déplacement »), sans exigence quant à la nature ou la 
composition de la haie : 

- Déplacement dans la limite de 2 % du linéaire de 
l'exploitation ou de 5 mètres par campagne ; dans ce cas 
uniquement, il n’est pas attendu de déclaration préalable 
auprès de la DDT, 
- Déplacement pour un meilleur emplacement 
environnemental de la haie, justifié sur la base d’une 
prescription dispensée par un organisme reconnu dans l’arrêté 
ministériel relatif aux règles BCAE, 
- déplacement de haies ou parties de haies présentes sur (ou 
en bordure de) parcelles ayant fait l’objet d’un transfert de 
parcelles entre l’exploitation concernée et une autre 
exploitation (par exemple : agrandissement de l'exploitation, 
installation d’un nouvel agriculteur reprenant partiellement ou 
totalement une exploitation existante, échanges 
parcellaires…), avec réimplantation sur (ou en bordure de) la 
(ou l’une des) parcelle(s) portant initialement la (ou les) haie(s), 
ou ailleurs sur l'exploitation s’il s’agit de déplacer une haie 
formant une séparation de deux parcelles contigües pour 
regrouper ces deux parcelles en une seule nouvelle parcelle. 

 
• Cas de destruction suivie d’une réimplantation d’une nouvelle 
haie au même endroit (« remplacement »), afin de remplacer des 
éléments morts ou de changer d’espèces. 
 
Le contrôle vise à vérifier que les haies sont présentes sur le 
terrain conformément à ce qui a été identifié sur le RPG : 

 
1 Les aides soumises à la conditionnalité couvrent les paiements directs au titre du règlement (UE) n° 1307/2013 (paiements de base, paiement redistributif, paiements 
au titre du verdissement, paiements pour les jeunes agriculteurs, soutiens couplés facultatifs), les paiements au titre des articles 46 et 47 du règlement (UE) n° 1308/2013 
(re-structuration et reconversion des vignobles, vendange en vert) et les primes annuelles en vertu de l’article 21, paragraphe 1, points a) et b), des articles 28 à 31, et 
des articles 33 et 34, du règlement (UE) n° 1305/2013 (aide au boisement et à la création de surfaces boisées, aide pour la mise en place de systèmes agroforestiers, 
mesures agroenvironnementales et climatiques, soutien à l’agriculture biologique, paiements au titre de Natura 2000 et de la directive-cadre sur l’eau, paiements en 
faveur des zones soumises à des contraintes naturelles ou à d’autres contraintes spécifiques, paiements en faveur du bien-être des animaux, aides correspondant à des 
engagements forestiers, environnementaux et climatiques). 
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- Si aucune destruction (y compris en vue d'un remplacement) 
n'est constatée, il n’y aura pas, sauf en cas de doute, de 
mesure sur place de la longueur de la haie,  
- Dans le cas où une partie de haies n’est pas présente sur le 
terrain alors qu’elle était identifiée sur le RPG, le contrôleur 
mesurera systématiquement la longueur de haie supprimée,  
- En cas de déplacement, il mesurera également la longueur 
de haie implantée en remplacement. 

 
Lorsqu’un cas de destruction, de déplacement ou de 
remplacement d’une haie nécessitant une déclaration préalable 
auprès de la DDT sera identifié lors d’un contrôle, la présence et 
la date de la déclaration seront vérifiées.  
Conditions et délai de remise en conformité des anomalies prises 
en compte dans le cadre du système d’avertissement précoce 
Rappel : aucune réduction n'est appliquée pour ces anomalies, 
sauf en cas de nouveau contrôle sur l'une des deux campagnes 
suivantes établissant l'absence de réalisation d'une action 
corrective dans les délais prescrits. 

 
Lorsque la non-conformité « Non-respect de l’obligation de 
maintien d’une haie, et ce pour un linéaire inférieur ou égal à 1 % 
du linéaire total » est constatée, les conditions de remise en 
conformité seront considérées remplies, dans le cadre d’une 
vérification lors d'un deuxième contrôle (non systématique) au 
cours de l'une des deux campagnes suivantes, lorsque 
l'exploitant aura déclaré dans sa déclaration PAC de la campagne 
suivant le contrôle initial, au plus tard avant le 15 mai, un linéaire 
de haies égal ou supérieur au linéaire initial. 

Le maintien des mares et bosquets 
  
Il est vérifié le maintien sur l’exploitation des mares d'une surface 
strictement supérieure à 10 ares et inférieure ou égale à 50 ares 
et des bosquets d'une surface strictement supérieure à 10 ares et 
inférieure ou égale à 50 ares. 
 
Conditions et délai de remise en conformité des anomalies prises 
en compte dans le cadre du système d’avertissement précoce 
Rappel : aucune réduction n'est appliquée pour ces anomalies, 
sauf en cas de nouveau contrôle sur l'une des deux campagnes 
suivantes établissant l'absence de réalisation d'une action 
corrective dans les délais prescrits 

 
Lorsque la non-conformité « Non-respect de l’obligation de 
maintien d’un élément surfacique (mare ou bosquet), et ce pour 
une surface inférieure ou égal à 1 % de la surface totale pour 
chaque catégorie » est constatée, les conditions de remise en 
conformité seront considérées remplies, dans le cadre d’une 
vérification lors d'un deuxième contrôle (non systématique) au 
cours de l'une des deux campagnes suivantes, lorsque l'exploitant 
aura déclaré dans sa déclaration PAC de la campagne suivant le 
contrôle initial, au plus tard avant le 15 mai de cette campagne, 
une surface de bosquet et de mares égale ou supérieure à la 
surface initiale pour chaque catégorie. 
 
Point de contrôle n° 2 – La taille des haies et des arbres  
Il est vérifié l’absence de taille des haies et des arbres entre le 1er 
avril et le 31 juillet inclus.  
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GRILLE « BCAE » - « MAINTIEN DES PARTICULARITÉS TOPOGRAPHIQUES »   
    

Système d'avertissement précoce 
  

      
 Points vérifiés  Anomalies Applicable ? Délai de remise Réduction  
    en conformité   
       
       

 Maintien des Non-respect de l’obligation de maintien d’une haie :     
 particularités • inférieur ou égal à 3 % du linéaire (ou inférieur ou égal à 2 oui, si non-respect campagne 1 %  
 topographiques mètres inférieur ou égal à 1 % suivante   
    du linéaire (15 mai N+1)   

  • plus de 3 % et inférieur ou égal à 10 % du linéaire (ou plus non  3 %  
   de 2 mètres et inférieur ou égal à 6 mètres)     
  • plus de 10 % et inférieur ou égal à 20 % du linéaire (ou plus  non  5 %  
   de 6 mètres et inférieur ou égal à 15 mètres)     
  • plus de 20 % du linéaire (et plus de 15 mètres) non  intentionnelle  

  NB :     
  - on entend par « linéaire » le linéaire total de l'exploitation     
  - le déplacement, le remplacement ou la destruction d’une     
   haie dans le cadre dérogatoire réglementaire ne sont pas     
   considérés comme des cas de non-respect     
       

  Non-respect de l’obligation de déclaration préalable pour non  1 %  
  effectuer un déplacement, un remplacement ou une     
  destruction de haie     
       

  Non-respect de l’obligation de maintien d’un élément     
  surfacique (mare ou bosquet) :     
  • inférieur ou égal à 3 % de la surface (ou inférieur ou égal à  oui, si non-respect campagne 1 %  
   1 are) pour chaque catégorie inférieur ou égal à 1 % suivante   
    de la surface pour (15 mai N+1)   
    chaque catégorie    
  • plus de 3 % et inférieur ou égal à 10 % de la surface non  3 %  
   (ou plus de 1 are et inférieur ou égal à 5 ares) pour au     
   moins une catégorie     
  • plus de 10 % et inférieur ou égal à 20 % de la surface non  5 %  
   (ou plus de 5 ares et inférieur ou égal à 10 ares) pour au     
   moins une catégorie     
  • plus de 20 % de la surface (et plus de 10 ares) pour au  non  intentionnelle  
   moins une catégorie     
       

 Taille des haies et Non-respect de l’interdiction de taille des haies et des arbres non  3 %  
 des arbres entre le 1er avril et le 31 juillet     
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Information on farmers 

Survey Number: 1 

Last name:     First name:    

Address: La Lande de Montomblay  

City: Sains 

Phone number: XX 

Information on the exploitation  

Installation date: 18/10/2011 (actual farmer); Creation dates of exploitation  1983-1984 

Total surface area exploited:  227 hectares 

% UAA in ownership:  223 hectares 

% of spreadable UAA: 209 hectares 

 Breeding:    YES      NO 

Type of breeding: Cattle             Pork            Chicken Other:  

Does effluent management have an impact on catch crops management? If yes, on which 

interventions (location, nature of the cover, destruction) and why? 

Yes, use of the Ryegrass and clover and rapeseed in September to empty the pits. 

Equally for cornfield but the date of spreading authorized on corn is increasingly far away 

(March 1 currently).



 

 
 

Denize, Julien, Evaluation of time-series images from SAR and optical sensors for the study of winter land-use, 2019. 

N°  

/Parcel 
Crops 2015-16 

Harvest 

date 
Crops 2016-17 

Sowing 

date 
Catch crops 

Date and sowing 

practice 

Date and destruction 

mode 
Other interventions 

1 - 1 Grass 
Grazing 

land 
Corn 

Mid-April 

2017 (20) 
Ryegrass 

Beginning 

September 2016 

Grazing and 

mechanics 

Catch crops: Cover 

crop + ploughing 

2 - 2 Winter Wheat 
End July 

(20) 
Winter barley 18/10/2016     

3 - 3 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

4 - 4 Winter Wheat 
End July 

(20) 
Winter barley 18/10/2016     

5 - 5 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

6 - 6 Rapeseed 
Beginning 

July 
Maize 

20-

25/10/2016 
    

7 - 7 Winter Wheat 
End July 

(20) 
Winter barley 18/10/2016     

8 - 8 Barley 

End June / 

Beginning 

July 

Corn 
Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

9 - 9 Fodder Maize 
Mid-

September 
Winter Wheat 

20-

25/10/2016 
    

10 - 10 Colza 
Beginning 

July 
Winter Wheat 

20-

25/10/2016 
    

11 - 11 Fodder Maize 
Mid-

September 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
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12 - 12 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

13 - 13 Rapeseed 
Beginning 

July 
Winter Wheat 

20-

25/10/2016 
    

14 - 14 Winter Wheat 
End July 

(20)) 
Rapeseed 8-9/09/2016     

15 - 15 Winter Wheat 
End July 

(20) 
Fodder Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

16 - 16 Corn 
Beginning 

October 
Winter Wheat 

20-

25/10/2016 
    

17 - 17 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

18 - 18 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 
Ryegrass 

Beginning 

September 2016 

Grazing/ Mechanical 

with plough 
 

19 - 19 Winter Wheat 
End July 

(20) 
Colza 8-9/09/2016     

20 - 20 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20)) 
Ryegrass 

Beginning 

September 2016 

Grazing/ Mechanical 

with plough 
 

21 - 21 Winter Wheat 
End July 

(20) 
Colza 8-9/09/2016     

22 - 22 Winter Wheat 
End July 

(20) 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

23 - 23 Fodder Maize 
Mid-

September 
Winter Wheat 

20-

25/10/2016 
    

24 - 24 Winter Wheat 
End July 

(20)) 
Rapeseed 8-9/09/2016     
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25 - 25 Winter Wheat 
End July 

(20) 
Winter barley 18/10/2016     

26 - 26 Winter Wheat 
End July 

(20) 
Winter barley 18/10/2016     

27 - 27 Winter barley 

End June/ 

Beginning 

July 

Linen 
Mid-March 

2017 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

28 - 28 Winter barley 

End June / 

Beginning 

July 

Rapeseed 8-9/09/2016     

29 - 29 Fodder Maize 
Mid-

September 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

30 - 30 Corn 
Beginning 

October 
Winter Wheat 

20-

25/10/2016 
    

31 - 31 Fodder corn 
Mid-

September 
Maize 

Mid-April 

2017 (20) 

Oat + 

Phacelia 

Beginning 

September 2016 

Mechanical with 

plough 
 

32 - 32 Winter barley 

End June / 

Beginning 

July 

Rapeseed 8-9/09/2016     

33 - 33 Grasslands  Grasslands      

34 - 34 Fodder Maize 
Mid-

September 
Winter Wheat 

20-

25/10/2016 
    

35 - 35 Corn 
Beginning 

October 
Winter Wheat 

20-

25/10/2016 
    

36 - 36 Fodder Maize 
Mid-

September 
Winter Wheat 

20-

25/10/2016 
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Additional information provided by the farmer: 

 Total cereal area: 35 hectares  

 The majority of his corn and cereals are destined to be sold (very little fodder)  

 He plans to plant his maize around April 20, or even earlier depending on the weather 

conditions 

 For linseed, he plans to sow it in mid-March and beat it around mid-September   

 Regarding the treatments   

 On wheat, for seeds, gaucho treatment   

 Nitrate + sulfur treatment with a first pass planned for mid-March 

 Weeding carried out so early in the sowing season, otherwise in February-March  
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Les surfaces agricoles occupent actuellement plus d’un tiers des terres émergées à l’échelle 

du globe et doivent permettre à l’horizon 2030 de nourrir plus de 8,5 milliards d’êtres humains. 

Face à l’augmentation constante de la population mondiale et dans le cadre du réchauffement 

climatique planétaire, un des enjeux majeurs de ce siècle réside dans notre capacité à produire 

suffisamment de nourriture et de manière durable, tout en préservant les ressources naturelles 

et en limitant les pressions exercées par nos sociétés sur l’environnement. Dans ce contexte, de 

nombreux travaux scientifiques ont montré les impacts négatifs de l’intensification et des 

changements de l’usage des sols (progression de la monoculture, suppression de haies 

bocagères, développement de l’usage d’intrants tels que l’azote, les pesticides et le 

phosphore…) sur l’environnement à travers l’observation de la dégradation de la qualité de 

l’eau, des sols, de l’air, et de la santé des populations (Lambin and Meyfroidt, 2011; Newbold 

et al., 2015). Ceci est particulièrement visible dans les régions telles que la Bretagne où 

l’agriculture intensive domine, et où les changements des pratiques agricoles, la fragmentation 

des paysages, les bouleversements de l’utilisation des sols qui se sont produits depuis 

plusieurs décennies ont entraîné des perturbations profondes de l’environnement. Pour pallier 

ces impacts, des législations et des programmes européens nationaux et locaux ont été élaborés 

à partir des années 90, entraînant la mise en place d’opérations d’aménagement du territoire 

et d’actions permettant de modifier les pratiques agricoles. Ainsi, une nouvelle série de 

mesures environnementales a été initiée au début des années 2000 par les instances 

européennes imposant l’implantation de couverts végétaux et d’éléments paysagers durant la 

période hivernale qui est déterminante dans le transfert de flux polluants (“Nitrates 

Directive,” 2019).   

Le suivi du couvert végétal en hiver est un enjeu environnemental et scientifique majeur 

en milieu agricole. D'un point de vue environnemental, la présence et le type de couverture 

végétale en hiver influencent le transport des polluants vers les cours d'eau en réduisant les 

pertes de nitrates, de nutriments, de pesticides ou de sédiments des champs agricoles 

(Galloway et al., 2008; Withers et al., 2014). L’absence de couverture végétale agit comme un 

accélérateur lorsque les sols sont dénudés après une culture principale (maïs, colza, etc.), 

tandis que les cultures dérobées agissent comme un obstacle aux transferts de flux et de 

matières (Dabney, 1998). Dans ce contexte, l'identification et la caractérisation de l'utilisation 

hivernale des terres est une composante majeure de la restauration de la qualité de l'eau et de 

la gestion durable dans les paysages agricoles (Corgne, 2004). Cependant la connaissance des 

dynamiques spatio-temporelles associées à l’utilisation du sol en période hivernale 

demeure aujourd’hui encore un défi pour la communauté scientifique. En effet, d'un point 

de vue méthodologique, la caractérisation de la dynamique spatio-temporelle de l'utilisation 

et de l'occupation du sol (UTCL) à l'échelle de la parcelle agricole est difficile en raison de la 

diversité des stratégies et pratiques agricoles en hiver. L'identification de l'utilisation des terres 

en hiver demeure un défi scientifique majeur pour la communauté de la télédétection.  

Dans ce contexte, la télédétection spatiale est apparue comme un outil privilégié afin de 

mettre en place des suivis et des méthodes d’identification de l’utilisation du sol à large 

échelle. Au début des années 2000, un certain nombre de travaux scientifiques ont montré 

l’intérêt de la télédétection optique à moyenne résolution spatiale (de 250 m à 1km) pour 

répondre à cet enjeu. Les travaux de Clark et al., (2010) et Zhang et al., (2003) ont ainsi permis 

d’élaborer les premières méthodes de discrimination de grands ensembles culturaux sur de 

grandes surfaces. Néanmoins, les limites de ces capteurs optiques à moyenne résolution ont 
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été rapidement atteintes pour étudier l’usage des sols au cours de la période hivernale, en 

particulier dans les régions où les parcelles sont de petite taille, seuls les îlots parcellaires à 

dominante de sols nus ayant pu être identifiés (Lecerf et al., 2005). Par la suite, des données de 

télédétection spatiale optique à très haute résolution ont été évaluées afin d’effectuer une 

cartographie annuelle de l’utilisation du sol intégrant les cultures hivernales. Toutefois, la 

limite de ce type de données réside dans le faible nombre d’images exploitables pendant la 

période hivernale au cours de laquelle le couvert nuageux peut être fréquent (Guerschman et 

al., 2015; Lillesand et al., 2015; Xu and Guo, 2014). Dans ce contexte, la télédétection spatiale 

active permet de lever cette contrainte dans la mesure où elle permet de s’affranchir des 

conditions météorologiques, atmosphériques et d’illumination. Le développement, depuis 

une vingtaine d’années, de capteurs RSO tels que Radarsat-2 permettant l’acquisition de série-

temporelles plus denses à haute résolution spatiale a conforté l’intérêt de ces derniers pour 

l’identification et la caractérisation de l’utilisation du sol en période hivernale. Jiao et al., 

(2010); McNairn et al., (2001) et Skriver, (2011) ont ainsi souligné l’intérêt de ces données pour 

la classification de l'utilisation du sol grâce à l’utilisation des propriétés diélectriques du sol, 

de la rugosité de surface et de la structure du couvert végétal. Le lancement à partir des années 

2014-2015 des satellites RSO et optique Sentinel-1 et -2 permet d’envisager de nouvelles 

possibilités quant à l’étude de l’utilisation hivernale du sol. Ainsi, Belgiu and Csillik, (2018) et 

Vuolo et al., (2018) ont démontré le potentiel des images Sentinel-2 afin de cartographier 

l’utilisation du sol durant la période végétative. De leur côté, Bargiel, (2017) et Veloso et al., 

(2017) ont illustré l’intérêt des données Sentinel-1 pour l’étude et la classification des cultures 

annuelles. Cependant, jusqu’à présent très peu recherches ont su démontrer l’intérêt de 

l’imagerie RSO pour l’identification et la caractérisation de l’utilisation hivernale des sols, les 

principaux travaux effectués portant sur la détermination du taux de couverture des sols 

(Minh et al., 2018).  

C’est dans ce contexte que s’inscrivent ces travaux de thèse dont l’objectif est d’évaluer le 

potentiel de séries temporelles d’images optiques et radar à synthèse d’ouverture (RSO) à 

haute résolution spatiale pour l’étude de l’utilisation des sols en période hivernale à une 

échelle locale et régionale. Plus précisément, elle consiste à développer, à partir de ces séries 

temporelles, des méthodes afin de (1) déterminer la méthode de classification la plus adaptée 

pour identifier l’usage des sols en hiver, tant au niveau du classifier lui-même que de 

l’approche de classification (pixel ou orientée-objet); (2) comparer des images  RSO Sentinel-1 

et optiques Sentinel-2 et (3) définir la configuration RSO la plus adaptée en comparant trois 

séries temporelles d’images (Alos-2, Radarsat-2 et Sentinel-1).  

Nous avons tout d’abord évalué la contribution respective des séries temporelles optiques 

et RSO en comparant des algorithmes de classification pour identifier l'utilisation des terres 

en hiver. Pour ce faire, des images Sentinel-1 et 2 acquises sur la période août 2016-mai 2017 

ont été classées à l'aide des algorithmes Séparateurs à Vastes Marges (SVM) et Random Forest 

(RF) appliqués avec des approches pixel et orientée objet dans une zone agricole de 130 km² 

localisée en France, au Sud-ouest de la baie du Mont-Saint-Michel, dont la taille des parcelles 

varie de 0,1 à 65 ha, avec une moyenne de 2,1 ha. Globalement, les résultats montrent que 

l'utilisation des terres en hiver peut être identifiée avec précision à l'aide des séries 

chronologiques Sentinel-1 et Sentinel-2 combinées avec une approche basée sur les pixels 

utilisant un algorithme RF. Dans le détail, ils ont mis en évidence l’intérêt de l’algorithme de 

classification RF comparativement à l’algorithme SVM. Les résultats montrent la supériorité 
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de Sentinel-2 sur Sentinel-1, la précision de la classification obtenue avec le premier étant 

supérieure à 5% par rapport à celle obtenue avec le second. Ils soulignent également que la 

précision de la classification s’améliore lorsqu'on utilise une combinaison des séries 

temporelles Sentinel-1 et 2, la couverture hivernale des sols étant identifiée avec une précision 

globale de 81 % (indice kappa de 0,77) contre 75 % (indice Kappa de 0,70) pour la série 

temporelle Sentinel-2 utilisée seule. En outre, l'analyse des paramètres Sentinel-1 et Sentinel-2 

utilisés pour identifier l'utilisation des terres en hiver a conduit à des recommandations pour 

l'extraction de caractéristiques lors de la cartographie de l'utilisation des terres en hiver, les 

résultats révélant l'avantage d'utiliser les coefficients de rétrodiffusion seuls ou combinés avec 

l’indice NDVI. Nos résultats ont également montré les limites de cette approche pour identifier 

l'utilisation des terres d'hiver : D’une part, la nomenclature définie lors de cette première étude 

n’était pas optimale pour identifier et caractériser finement l’utilisation hivernale du sol dans 

la mesure où elle comprend une classe « Sols nus » qui ne correspond qu’à un état de surface 

des sols temporaire au cours de la période hivernale et où elle inclue dans une seule classe 

« cultures d’hiver » des cultures aux signatures spectrales différentes, ce qui entraîne des 

erreurs de classification. D’autre part, des erreurs de classification sont localisées dans les 

petites parcelles, en raison de la résolution spatiale des capteurs Sentinel.  

Nous avons ensuite cherché à évaluer le potentiel des données Sentinel-1 et 2 pour 

identifier l’utilisation hivernale du sol, mais avec une nomenclature plus détaillée qui prend 

en compte la diversité des types d’utilisation des sols en hiver et sans déterminer une classe 

spécifique aux sols nus.  Pour se faire, la méthodologie qui a été mise en œuvre sur le même 

site d’étude comprend deux étapes : (1) Une analyse détaillée des interactions signaux/cultures 

hivernales à partir de paramètres optiques ou RSO extraits des séries temporelles d’images 

Sentinel-1 et 2 ; (2) Une classification fine des types d’utilisation hivernale des sols en utilisant 

l’algorithme RF. Les résultats montrent que les données optiques permettent de classer les 

types d’utilisation hivernale des sols avec une plus grande précision que les données RSO 

(précision globale de 87 % et indice Kappa de 0,85 pour Sentinel-2 contre 73 % et 0,70 pour 

Sentinel-1). Les résultats indiquent également que la combinaison des données Sentinel-1 et 

Sentinel-2 réduit légèrement la précision de la classification (précision globale = 83 %, indice 

Kappa = 0,82). Cette étude montre aussi le potentiel et des paramètres NDVI et NDWI dérivés 

de l’imagerie Sentinel-2 pour discriminer finement les classes d’utilisation hivernale du sol. 

Bien qu’elle souligne l’intérêt des séries temporelles optiques, cette étude met aussi en 

évidence que les séries chronologiques SAR peuvent être utiles dans les régions à forte 

couverture nuageuse. 

 

Ensuite, nous nous sommes focalisés sur l’évaluation de l’imagerie RSO pour identifier 

l’utilisation du sol en période hivernale. Plus précisément, nous avons étudié la contribution 

de la fréquence (bandes C/L), de la polarisation (double/quad polarisation) et de la densité des 

séries chronologiques d'images sur le même site d’étude. Tout d’abord, des paramètres RSO 

ont été dérivés de séries temporelles Radarsat-2, Sentinel-1 et Alos-2, et un ensemble de 

paramètres quad-pol et six ensembles de données bi-pol ont été calculés avec différentes 

résolutions spatiales et densités. Ensuite, une classification Random Forest a été effectuée pour 

chacun des 7 ensembles de données de paramètres SAR qui avaient été générés auparavant 

afin de déterminer la configuration RSO la plus appropriée pour identifier les modes d’usage 

des terres en hiver. Les résultats soulignent que (1) la bande C (précision globale de 72 %) est 

supérieure à la bande L (précision globale de 63 %), (2) le mode quad-pol (précision globale de 
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70 %) surpasse le mode double-pol (précision globale de 58 %) et (3) la série temporelle dense 

Sentinel-1 (précision globale de 72 %) est supérieure aux séries temporelles Radarsat-2 et Alos-

2 (précision globale de respectivement 70 et 38 %). De plus, les résultats indiquent que 

l'entropie de Shannon et le SPAN (puissance totale de la matrice de cohérence) que soit en 

pleine polarisation ou en double-polarisation sont les paramètres les plus discriminants. Cette 

étude permet de choisir les configurations RSO les plus appropriées pour l'identification de 

l'utilisation hivernale des terres, soit la série temporelle Sentinel-1 (bande C,) en polarisation 

double, et dense dans le cas de cette étude.  

Sur la base des résultats obtenus dans les trois études précédentes, nous avons alors retenu 

les données et l’algorithme de classification les plus adaptés pour identifier l’utilisation 

hivernale du sol à une régionale. L’objectif de cette étude était de tester la reproductibilité de 

l’approche développée initialement à une échelle locale. Plus précisément, les données 

Sentinel-2 ont été sélectionnées afin de déterminer, sur l’ensemble de la région Bretagne, 

l’utilisation hivernale du sol, sachant que celle-ci n’est connue que pour les parcelles déclarées 

au système PAC dans le recensement parcellaire graphique (RPG), à savoir les parcelles 

susceptibles de recevoir des aides de l’Union Européenne. Dans un premier temps, des séries 

temporelles Sentinel-2 ont été classées sur les parcelles déclarées dans le RPG en utilisant 

l’algorithme RF, après avoir adapté la nomenclature utilisée à l’échelle locale au niveau 

régional en deux niveaux emboîtés. Les résultats obtenus au niveau 1 qui comprend 3 classes 

(cultures d’hiver, intercultures prairies) ont souligné l’intérêt de cette approche pour 

discriminer les types d’utilisation des sols, avec une précision globale de 84% et un indice de 

kappa de 0,77. A l’inverse, ces résultats ont souligné les limites de l’approche pour une 

classification plus détaillée, puisque la précision globale et l’indice de kappa atteignent 

respectivement 65% et 0.59 avec la nomenclature de niveau 2 qui comprend 7 classes. Le 

modèle de classification établi au niveau 1 a alors été appliqué aux parcelles non déclarées et 

couvertes par des résidus de cultures, ces parcelles ayant été préalablement identifiées partir 

d’une série temporelle de NDVI dérivée des images Sentinel-2. La cartographie produite sur 

l’usage des sols en hiver à l’échelle parcellaire et sur toute une région constitue une 

information inédite.  

De manière générale, cette thèse a permis de montrer le potentiel des séries temporelles 

de données de télédétection à haute résolution spatiale, quelles soit optiques (Sentinel-2) ou 

radar (Sentinel-1, Radarsat-2 et Alos-2) pour l’identification et la caractérisation de l’utilisation 

du sol en hiver. Si cette thèse a permis de montrer que les données Sentinel-2 sont les plus 

adaptées pour étudier l’utilisation du sol en période hivernale, les images RSO ont tout leur 

intérêt dans les régions où le couvert nuageux est important, les séries temporelles denses 

Sentinel- 1 ayant été définies comme les plus performantes. Les résultats obtenus, tant à 

l’échelle locale qu’à l’échelle régionale, permettent d’ouvrir de nouvelles perspectives en 

termes de développements méthodologiques, telles que la fusion des données ou la 

classification basée sur le deep learning. En outre, l’information produite au sein de cette thèse 

pourra être utilisée pour effectuer des diagnostics environnementaux et mettre en place des 

actions permettant de limiter les risques liés aux transferts de flux polluants au sein des 

hydrosystèmes. 
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Résumé : L’étude de l’utilisation hivernale du sol 
représente un enjeu majeur afin de préserver et 
d’améliorer la qualité des sols et des eaux de 
surfaces. Cependant la connaissance des 
dynamiques spatio-temporelles associées à 
l’utilisation du sol en période hivernale demeure 
aujourd’hui encore un défi pour la communauté 
scientifique. C’est dans ce contexte que 
s’inscrivent ces travaux de thèse dont l’objectif 
est d’évaluer le potentiel de séries temporelles 
d’images optiques et RSO à haute résolution 
spatiale pour l’étude de l’utilisation des sols en 
période hivernale à une échelle locale et 
régionale. Pour se faire, une méthodologie a été 
établie afin : (i) de déterminer la méthode de 
classification la plus adaptée pour identifier 
l’usage des sols en hiver; (ii) de comparer des 
images  RSO Sentinel-1 et optiques Sentinel-2; 
(iii) de définir la configuration RSO la plus 
adaptée en comparant trois séries temporelles 
d’images (Alos-2, Radarsat-2 et Sentinel-1). 

Les résultats ont tout d’abord mis en évidence 
l’intérêt de l’algorithme de classification Random 
Forest pour discriminer à une échelle fine les 
types d’usage des sols en hiver qui sont très 
variés. Dans un second temps, ils ont souligné 
l’intérêt des données Sentinel-2 pour 
cartographier l’utilisation hivernale des sols à 
une échelle locale et régionale. Enfin, ils ont 
permis de déterminer qu’une série temporelle 
dense d’images Sentinel-1 était la configuration 
RSO la plus adaptée afin d’identifier l’utilisation 
hivernale du sol. De manière générale, si cette 
thèse a permis de montrer que les données 
Sentinel-2 sont les plus adaptées pour étudier 
l’utilisation du sol en période  hivernale, les 
images RSO ont tout leur intérêt dans les 
régions où le couvert nuageux est important, les  
séries temporelles  denses Sentinel- 1 ayant été 
définies comme les plus performantes. 

 
Title : Evaluation of  time-series SAR and optical images for the study of winter land-use. 
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Abstract :  The study of winter land-use is a 
major challenge in order to preserve and improve 
the quality of soils and surface water. However, 
knowledge of the spatio-temporal dynamics 
associated with winter land-use remains a 
challenge for the scientific community. In this 
context, the objective of this study is to evaluate 
the potential of  time series of high spatial 
resolution optical and SAR images for the study 
of winter land-use at a local and regional scale. 
For that purpose, a methodology has been 
established to: (i) determine the most suitable 
classification method for identifying winter land-
use; (ii) compare Sentinel-1 SAR and Sentinel-2 
optical images; (iii) define the most suitable SAR 
configuration by comparing three image time-
series (Alos-2, Radarsat-2 and Sentinel-1). 
 
 
 

The results first of all highlighted the interest of 
the Random Forest classification algorithm to 
discriminate at a fine scale the different types of 
land use in winter.  Secondly, they showed the 
value of Sentinel-2 data for mapping winter land-
use at a local and regional scale. Finally, they 
determined that a dense time series of Sentinel-
1 images was the most appropriate SAR 
configuration to identify winter land-use. In 
general, while this thesis has shown that 
Sentinel-2 data are best suited to studying land 
use in winter, SAR images are of great interest 
in regions with significant cloud cover, dense 
Sentinel-1 time-series having being defined as 
the most efficient. 
 
 

 


