N
N

N

HAL

open science

Lagrangian Based Approaches for Lexicalized Tree
Adjoining Grammar Parsing

Caio Corro

» To cite this version:

Caio Corro. Lagrangian Based Approaches for Lexicalized Tree Adjoining Grammar Parsing. Data
Structures and Algorithms [cs.DS]. Université Sorbonne Paris Cité, 2018. English. NNT: 2018US-

PCDO51 . tel-02511403

HAL Id: tel-02511403
https://theses.hal.science/tel-02511403
Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02511403
https://hal.archives-ouvertes.fr

UNIVERSITE PARIS 13

ECOLE DOCTORALE GALILEE

Lagrangian Based Approaches for
Lexicalized Tree Adjoining
Grammar Parsing

Présentée par Caio Filippo Corro
et soutenue publiquement le 9 mars 2018

Adeline Nazarenko Professeure, Université Paris 13 Directrice
Joseph Le Roux Maitre de conférences, Université Paris 13 Encadrant

Alexis Nasr Professeur, Aix-Marseille Université Rapporteur

Leo Liberti Directeur de recherche, CNRS Rapporteur
Isabelle Tellier Professeure, Université Paris 3 Présidente du jury
André Martins Research scientist, Unbabel Examinateur
Roberto Wolfler Calvo Professeur, Université Paris 13 Examinateur
Benoit Crabbé Maitre de conférences, Université Paris Diderot Invité du jury
Mathieu Lacroix Maitre de conférences, Université Paris 13 Invité du jury

LIPN — UMR CNRS 7030 / ID 0148
Université Paris 13
99, avenue J.B. Clément
93430 Villetaneuse

Abstract

In linguistics and Natural Language Processing (NLP), syntax is the study
of the structure of sentences in a given language. Two approaches have mainly
been considered to describe them: dependency structures and phrase-structures.
A dependency links a pair of words together with its relation type whereas a
phrase-structure describe a sentence by means of a hierarchy of word sets called
constituents. In this thesis, we focus on phrase-structure parsing, that is the
computation of the constituency structure of a given sentence. Context-Free
Grammars (CFGs) have been widely adopted by the NLP community due to
their simplicity and the low complexity of their parsing algorithms. However,
CFGs are too limited in order to describe all phenomena observed in natural
language structures. Therefore, Lexicalized Tree Adjoining Grammars (LTAGs)
have been widely studied as a plausible alternative, among others. They are
more expressive than CFGs but can also be parsed in polynomial time. Un-
fortunately, the best known algorithm has a O(n”) time complexity with n the
length of the input sentence. Thus, in practice most algorithms are based on
greedy methods which require fairly strong independence assumptions. The
main approach in the literature, called supertagging, filters the search space in
a pre-processing step while ignoring long distance relationships, one of the main
motivation for LTAGs.

In the past years, combinatorial optimization techniques have been success-
fully applied to computationally challenging NLP tasks. We follow this line of
work in the case of LTAG parsing. More precisely, in our setting, a given NLP
problem is reduced to a subgraph selection problem. As such, it has a generic
form which may interest other research communities. Then we formulate the
generic graph problem as an Integer Linear Program. Integer Linear Program-
ing has been widely studied and many optimization methods exist. We focus on
Lagrangian relaxation which previously received much attention from the NLP
community. Interestingly, the proposed algorithms can be parametrized to fit a
range of different data without impacting efficiency.

Our first contribution is a novel pipeline for LTAG parsing. Contrary to
the supertagging approach, we propose a pre-processing step which takes into
account relationships between words: well-nested dependency parsing with 2-
bounded block degree. An algorithm with a O(n”) time complexity has been
proposed for this problem in the literature, which is similar to the standard
LTAG parser complexity. In order to tackle the complexity challenge, we show
that it can be reduced to a subgraph selection problem which can be expressed

via a generic ILP. With our algorithm, the well-nested constraint can easily be
toggled off and the block degree bound can be changed. Thus, as an example,
it can be used for parsing problems related to other lexicalized grammars. We
experiment on several problems showing the efficiency and usefulness of our
method.

Our second contribution is a novel approach for discontinuous constituent
parsing. We introduce a variant of LTAG for this task. Parsing is then equiv-
alent to the joint tagging and non-projective dependency parsing problem. We
show that it can be reduced to the Generalized Maximum Spanning Arbores-
cence problem which has been previously studied in the combinatorial optimiza-
tion literature. A novel resolution algorithm based on Lagrangian relaxation is
proposed. We experiment on two standard discontinuous constituent datasets
and obtain state-of-the-art results alongside competitive decoding speed.

Key words: Parsing, Tree Adjoining Grammars, Lagrangian relaxation, Gen-
eralized Maximum Spanning Arborescence

Francais

Titre: Approches fondées sur la relaxation Lagrangienne pour 'analyse syn-
taxique avec grammaires d’arbres adjoints

Résumé: Ces dernieres années, des méthodes issues de l'optimisation com-
binatoire ont été appliquées avec succes pour résoudre des problemes algorith-
miques difficiles en Traitement Automatique des Langues (TAL). Nous suivons
cette méthodologie dans le cadre de I'analyse syntaxique avec des Grammaires
d’Arbres Adjoints Lexicalisées. Plus précisément, un probléeme d’analyse est
d’abord réduit a un probléeme de sélection de sous-graphe. Ensuite, nous formu-
lons ce dernier sous forme de Programme Linéaire en Nombres Entiers. Beau-
coup d’algorithmes ont été proposés pour ces formulations. Nous nous concen-
trons sur la relaxation Lagrangienne qui a regu beaucoup d’attention de la part
de la communauté du TAL. La particularité de notre méthode réside dans le
fait que nos algorithmes résolvent des problemes généraux et peuvent donc étre
testés sur différentes données.

Mots clés: Analyse Syntaxique, Grammaires d’Arbres Adjoints, Relaxation
Lagrangienne, Arborescence généralisée de poids maximum

Acknowledgments

First of all, T would like to thank my supervisor, Joseph Le Roux, for his
invaluable mentorship and support during these 3 years. One of the strong
point of this thesis is its interdisciplinary nature which would have not been
possible without the great help of Mathieu Lacroix. I would also like to thank
Adeline Nazarenko for her trust with this Ph.D. work. The LIPN and especially
the RCLN team has been a pleasant work environment. In particular, I would
like to thank Emmanuel Cartier for the opportunity to teach and Jorge Garcia
Flores for the development of the sound mapping website. Also, I would like
to thank Thomas Rubiano, Nadi Tomeh and Yann Chevaleyre for the endless
discussions we shared. Finally, I would like to thank Antoine Rozenknop and
Roberto Wolfler Calvo for their help at the beginning of this work.

I thank Laura Kallmeyer and Kilian Evang for providing us with the script
for the discontinuous PTB. I also thank Xavier Carreras for providing us his
script for extracting a spinal TAG from the Penn Treebank.

On a personal note, these 3 years have been a difficult time but I have been
lucky enough to have a lot of encouragement from my friends and family. I
would never have started a Ph.D. without the support (and almost obligation!)
of Mathilde: thank you very much. I give a special thank to my mother and my
sister who always believed in me. Thanks to my ex-roomates David, Lysanne,
Mariecke, Joanna and Thomas who brightened my stay in Paris. Thanks to my
friends Angele, Anne, Benjamine, Baptiste, Corel, David, Fabrice, Gaél, Gino,
Maxime and Simon (sorry for ones I have forgotten) for all the 8.6 and Picon
drinks we shared through the years. Let’s hope there will be many more.

My Ph.D. studies were supported by a public grant overseen by the French
National Research Agency (ANR) as part of the Investissements d’Avenir pro-
gram (ANR-10-LABX-0083).

Contents

I Introduction

1

Introduction

1.1 Lexicalized Tree Adjoining Grammars
1.1.1 Motivation
1.1.2 Parsing
1.1.3 Previouswork.

1.2 Contributions
1.2.1 Derivation tree parsing
1.2.2 Efficient parsing via Lagrangian Relaxation

Publications

II Background

3

Lexicalized Tree Adjoining Grammar

3.1
3.2

3.3

3.4

Phrase-structure
Definitions
3.2.1 Lexicalized Tree Substitution Grammar
3.2.2 The adjunction operation
Parsing
3.3.1 Parsing as deduction
3.3.2 CYK-like algorithm for LTAGs
3.3.3 Complexity
Derivation tree

Efficient structure decoding

4.1
4.2

4.3

4.4

Graph-based structure decoding
Integer Linear Programming
4.2.1 Imtroductiono
4.2.2 Properties
Lagrangian relaxation
4.3.1 Definitions
4.3.2 Properties
4.3.3 Equalities and dual decomposition
Subgradient descent Lo
4.4.1 Theory e
4.4.2 Algorithm

10
11
11
13
13
15
16
18

20

22

23
23
27
27
30
34
35
38
41
43

CONTENTS

4.5 Problem reduction
4.6 Branch-and-bound,
4.7 Conclusion

ITIT Contributions

5 Derivation tree parsing via the YRMSA

5.1 Motivations Lo
5.2 Parsing well-nested arborescences with 2-bounded block degree .
5.2.1 Definitions L o o
5.2.2 A polynomial ILP formulation
5.2.3 An exponential ILP formulation
5.3 Reduction to the YRMSA problem
5.3.1 Definitiono oo
5.3.2 ILP formulation
5.3.3 Lagrangian Relaxation
5.4 Efficient decoding via Non Delayed Relax-and-Cut
5.4.1 Motivations
5.4.2 Algorithm L oL
5.4.3 Problem Reduction
5.5 Experimental results oL
5.5.1 Datasets
5.5.2 Decoding o
5.5.3 Training Lo
5.5.4 Parsing Results
5.6 Parse tree labeling oL
5.6.1 Notation.
5.6.2 Item definition
5.6.3 Axioms and goal
5.6.4 Traversalrules
5.6.5 Combination rules L.
5.6.6 Example.
5.6.7 Correctness
5.6.8 Complexity
5.7 Conclusion

6 Discontinuous phrase-structure Parsing via the GMSA

6.1 Motivations Lo
6.2 Reduction to the GMSA problem
6.2.1 Spinal Tree Adjoining Grammar
6.2.2 Generalized Spanning Arborescence
6.2.3 Reduction Lo
6.3 Integer Linear Programming formulation
6.4 Dual decomposition
6.5 Efficient decoding oL
6.5.1 Combinatorial algorithms for subproblems
6.5.2 Lagrangian enhancement
6.5.3 Problem reduction L.

6.6 Experimental results

8 CONTENTS
6.6.1 Neural parameterization 124
6.6.2 Datasets Lo 124
6.6.3 Results 125
6.7 Conclusion and future work 125
IV Conclusion 128
7 Conclusion 129
7.1 Summary of contributionso 129
7.2 Futurework 130
7.2.1 Lexicalized Tree Adjoining Grammar parsing 130
7.2.2 Parsing other lexicalized grammars 130
7.2.3 Natural Language Processing applications of the Gener-

alized Maximum Spanning Arborescence 131
7.2.4 Simple and accurate derivation tree parsing 131
Bibliography 132
Appendices 145
A Penn Treebank tag set 145
B Maximum Spanning Arborescence 148

C Subproblems for the well-nested arborescence with k-bounded

block degree 150
C.1 Gap degree of an arborescence 150
C.2 Well-nestedness of an arborescence 151
Subproblems for the GMSA 153
D.1 Subproblem 1 153
D.2 Subproblem 2 153
Probabilistic model 155

Part 1

Introduction

Chapter 1

Introduction

A formal language is a possibly infinite set of strings specified via rules
defining how symbols can be combined. In general, formal languages are de-
scribed thanks to either rule-rewriting or tree-based systems. The most popular
rule-rewriting formalism is Context-Free Grammar (CFG), which is expres-
sive enough to describe programming languages, among others. In this thesis,
though, we focus on natural languages where symbols are words and strings
are sentences. Joshi [1985] argued that CFGs are not well suited to natural
languages, leading to the development of mildly context-sensitive gram-
mars, including Tree Adjoining Grammars (TAGs). Following research in
linguistics confirmed the ability of TAGs to model composition rules observed in
natural language sentences [Abeillé, 1988, Abeillé et al., 1990]. In other words,
grammars are generators of well-formed sentences. A concrete example of TAGs
attractiveness over CFGs is their ability to model cross-serial dependencies. In
Dutch, relative clauses like “dat Jan de kinderen zag zwemmen”, meaning
“that Jan saw the children swim”, are composed by first enumerating all the
subjects and then all the verbs. This phenomenon, certifying that the number
of verbs is equal to the number of subjects alongside dependencies from the k"
verb to the &*" subject, is roughly equivalent to the copy language problem, that
is building a grammar which models the set of strings {ww| € £*}, where X is
a set of symbols. It is well-known that the latter problem cannot be modelled
with CFGs.

The other way around, the grammatical analysis of a given sentence, called
the parse, exposes relationships between phrases that may not be directly rep-
resented in the word sequence. Both analogies are useful in Natural Language
Processing (NLP): encoding and decoding messages are obviously critical prob-
lems for the development of human language interfaces. Usually, grammatical
analysis rely on data that have been annotated by experts. Because these lin-
guistic structures often look like trees, they are called treebanks. However, pars-
ing with TAGs automatically extracted from annotated treebanks has received
little attention from the community even though Chiang [2000] experimentally
demonstrated their accuracy. Importantly, an alternative line of work is based
on splittable TAGs [Schabes and C. Waters, 1995, Carreras et al., 2008, Kasai
et al., 2017] which have efficient parsing algorithms but cannot directly encode
properties that make TAGs linguistically plausible, including cross-serial depen-

10

1.1. LEXICALIZED TREE ADJOINING GRAMMARS 11

dencies. We believe the unattractiveness of mildly context-sensitive formalisms
is due to their long decoding time. The aim of this thesis is to propose an effi-
cient parsing framework for Lexicalized Tree Adjoining Grammars (LTAGs), a
variant of TAGs where each tree must have exactly one lexical anchor, that is
a leaf with a word [Schabes et al., 1988].

1.1 Lexicalized Tree Adjoining Grammars

1.1.1 Motivation

A grammar is a finite set of rules which constrain the combination of symbols
(words) in order to generate the possibly infinite set of valid strings (sentences)
in a given language. As an example, the informal simple rule a subject followed
by a verb is a valid clause validates the English sentence “She walks”. Tradition-
ally, coherent subsets of words, called constituents,® are grouped with respect to
their hierarchical relationships resulting in a tree called phrase-structure [Chom-
sky, 1957]. The sentence “She walks the dog” contains 7 constituents : She,
walks, the, dog, the dog, walks the dog, She walks the dog.2 Relationships
include the noun phrase “the dog” with determinant “the” and noun “dog”.
Figure 1.1 exposes the full phrase-structure of the sentence alongside two plau-
sible constructions from fragments called elementary trees.®> Thus, a sentence
can be generated by combining fragments representing local syntactic units via
combination operations. As of now, we only introduce the substitution
operation which merges the root node of a tree fragment with the leaf of an-
other if the labels are equal. Such generative grammars are qualified as shallow
because they only certify the grammatical correctness of a sentence without im-
posing any semantic coherence. As reported by Noam Chomsky, the sentence
“Colorless green ideas sleep furiously” is thus valid despite being meaningless.
This issue can be partially addressed thanks to lexicalization. A grammar is
lexicalized if and only if each one of its elementary trees contain exactly one
lexical anchor, that is a word. Figure 1.2 exhibits two elementary trees associ-
ated with the word “walks”, either used as an intransitive or transitive verb.
Moreover, note that the sentence “She walks the dog” is semantically correct
but “She walks the river” is not. Because elementary trees are lexicalized, we
can trivially add a substitution constraint: the object associated with a transi-
tive realization walks can only be in a subset of allowed words, including dog but
not river. As such, the substitution operation in a lexicalized grammar directly
encodes semantic information: we qualify this family of formalisms as deep.
Although beyond the scope of this work, note that unification grammars,
which combine surface and semantic structures, found a widespread intestest in
the linguistic community and rely upon TAGs, among others [Abeillé, 2007].

1We abuse definitions and ignore the difference between part of speech and constituent for
simplicity.

2Unless otherwise specified, all the examples follow the Penn Treebank annotation scheme
[Marcus et al., 1993].

3Note that, when the tree fragments are of depth 1, the formalism is equivalent to standard
CFGs. Moreover, readers familiar with the TAG formalism may be offended by the usage of
substitution for the determinant: our goal is to introduce the formalism, not to propose a
linguistically plausible grammar.

12 CHAPTER 1. INTRODUCTION

NP VP
A A
! I
I
I VP
I
|
S | VB T NP
| ! i §
I
VP NP : NP
\ | : |
PRP ! DET NN
NP NP A | A A
1

| 1
PRP VB DET NN PRP VB DET ' NN

I | I I | | | |
She walks the dog She ' walks 'the dog

(a) Phrase-structure (b) Tree fragments
S
.
, NP VP
7 [N
NP VB NP _
I | RN
PRP walks T NP
| !
She DET NN
A |
E dog
DET
I
the

(¢) Lexicalized tree fragments

Figure 1.1: (a) Phrase-structure of the sentence “She walks the dog” according
to the Penn Treebank annotation guide. (b) Example of a possible construction
using elementary trees of depth 1 only. Boxes delimit elementary trees and
dashed arcs substitution operations. (c¢) Alternative with a lexicalized grammar.
The number of elementary trees used is equal to the number of words.

S S
e e
NP VP NP VP NP NP
| [N - .
VB vB Np DET N|N DET NN
[I [
walks walks dog river
(a) Intransitive (b) Transitive (¢) Dog (d) River

Figure 1.2: Examples of lexicalized elementary trees. (a) In its intransitive
form, the verb “walks” only requires a subject (NP node). (b) When used as
a transitive verb, an object is required (right NP node). (c)-(d) Noun phrase
elementary trees.

1.1. LEXICALIZED TREE ADJOINING GRAMMARS 13

1.1.2 Parsing

Given a sentence, parsing is the computation of its syntactic structure ac-
cording to a grammar. Several properties of natural languages make this a
challenging task. First, a sentence may be ambiguous: in the sentence “She
bought a house on the hill”, the location may either refer to the transaction
place or to the building location. Disambiguation may rely on the context or the
most common usage. Note that if the location was a boat, both analyses would
be allowed only under a shallow formalism but not under a deep one. Secondly,
a grammar is always constructed with respect to a strict subset of the possible
infinite number of sentences. Several syntactic structures may not be observed
beforehand. As an example, a parser must be able to deduce the use of “walks”
as a transitive word even if it was an unknown phenomenon at the design step.
Even with extensive hand-engineering effort, one cannot take into account ev-
ery possible linguistic incongruity. Among other phenomena, we can point out
that dialects and figures of speech may abuse the standard morpho-syntactic
coherence of a sentence. Finally and obviously, spelling and grammatical errors
are commonly observed. The key solution resides in weighted parsing. Likeli-
hood scores are given to elementary trees and combination operations. In order
to account for unobserved constructions, it is common to construct elementary
trees from templates: each observed tree fragment can be modified by changing
its lexical anchor. Nowadays, likelihood scores are computed via machine learn-
ing. Given a grammar and a scoring model, the optimal syntactic structure is
the highest scoring analysis.

There are many challenges involved in the development of a parsing algo-
rithm, notably accuracy and speed. The first issue has led to the production
of hand-annotated data. Constituency parsers are often built with a gram-
mar automatically extracted from a subset of this data and evaluated against
held-out sentences. Moreover, real-world NLP applications often require fast
analysis. There are two schools of thought on this subject. First, parsers of-
ten rely on the context-free assumption [Carreras et al., 2008] because mildly
context-sensitive grammars have high space and time complexities. Second,
greedy and beam-search based algorithms have recently achieved state-of-the
art results in constituent parsing [Zhu et al., 2013, Coavoux and Crabbé, 2017].
These algorithms read the sentence from left to right, at each step taking a
(non-deterministic) decision on the structure to predict. This method is similar
to the (deterministic) left-to-right parsing algorithm used by compilers [Aho
et al., 1986].

1.1.3 Previous work

Mildly context-sensitive weighted grammars are attractive for concrete appli-
cations outside the research scope. However they suffer from high parsing com-
plexities: the standard LTAG algorithm has a O(n®) time and O(n®) space com-
plexities with n the length of the input sentence. This last dynamic program-
ming algorithm is based on a variant of the Cocke-Younger-Kasami (CYK) al-
gorithm [Kasami, 1965, Younger, 1967, Cocke, 1970] where the phrase-structure
is constructed bottom-up while ensuring feasibility according to the grammar.
The program must keep in memory all possible subtrees given a subset of words

14 CHAPTER 1. INTRODUCTION

and attempt every possible elementary tree inclusion and attachment, resulting
in those non-tractable complexities, see Section 3.3. Previous work on tractable
LTAG parsers mainly focused on three alternatives. First, an asymptotically
faster O(n7) algorithm has been proposed by Eisner and Satta [2000]. However,
it remains too slow for practical applications. Secondly, Left-to-Right parsers
have been proposed for TAGs [Nederhof, 1998, A. Prolo, 2002, Shen and Joshi,
2005]. A possible approach with this technique is to keep in memory only a
beam? of candidates at each step, similarly to transition-based parsers. Their
main drawback is their failure to guarantee the optimality of a returned phrase-
structure or even an assessment of its quality. Thirdly and finally, a popular
approach is to include a preliminary step called supertagging: only a subset
of elementary trees per word are retained as candidates [Joshi and Srinivas,
1994]. These subsets can be singletons. In practice, supertagging is efficient
for short sentences but fails on long ones as it does not impact the asymptotic
worst time complexity. Additionally, it often relies on strong independence as-
sumptions. Most supertagging models are uni-gram or bi-gram, that is every
elementary tree is predicted independently or only dependencies between two
consecutive trees are considered. However, in LTAGs, relationships may be of
long distance which will be hardly captured by these independence assumptions.
In the sentence “She walks, despite her hatred for quadruped mammals, the
dog”, capturing the transitive nature of the first verb is difficult without further
analysis.

To avoid these problems, recent work of Kasai et al. [2017] proposed a pipeline
system with a neural supertagger built upon dense vector representation of
elementary trees followed by a transition-based algorithm. They argue that
the recurrent neural architecture implicitly captures long distance relationships.
However, their transition based parser cannot generate mildly context-sensitive
structures. We propose an alternative approach by:

e Explicitly representing long distance relationships,
e Permitting the complete generative capacity of LTAGs.

Unlike most of the previous work, we do not rely on strong elementary tree filter-
ing or greedy approaches in order to ensure parsing speed but on combinatorial
optimization.

Even beyond the scope of mildly context-sensitive grammars, efficient con-
stituency parsing is often regarded as a more difficult task than another syntac-
tic formalism called dependency parsing [Tesniere, 1959, Melcuk, 1988]. In the
latter, relations between words are expressed via bi-lexical dependencies, with
each dependency defining the head and the modifier of the relation. As an
example, in the sentence “She walks the dog”, “She” is the modifier of the
word “walks” in the analysis given in Figure 1.3. Dependencies may be labeled
with the type of the relation, like subject of. Lexical Functional Grammars
incorporate both syntactic representations in a shared structure [Kaplan and
Bresnan, 1982]. However, in practice, many dependency parsers simply ignore

4 We call beam search any heuristic procedure where only the most promising candidates
are explored at a given step. This set of candidates is called beam.

1.2. CONTRIBUTIONS 15

She walks the dog

Figure 1.3: Example of a dependency parse. An arrow represents a labeled
head — modifier relation.

the constituency structure. As such, their major benefit is that they are not
built upon a grammar but only impose constraints on the structure.® Simply
speaking, the most common approach called projective dependency parsing
forbids crossing dependencies (Figure 1.4). Interestingly, even if both projective
dependency parsing and CFG parsing have the same asymptotic time complex-
ity with respect to the sentence length, the latter incorporate a non-negligible
multiplicative constant due to the grammar.® Thus, dependency parsing has
received a lot of attention from the research community. State-of-the-art results
are constantly improving, in regard of both accuracy and parsing time. Histor-
ically, several dependency treebanks were built by converting constituent trees
via hand-crafted transformation rules called head-percolation tables [Yamada
and Matsumoto, 2003, Johansson and Nugues, 2007, Seeker and Kuhn, 2012].
Because of this, several authors incorporated dependency-based filtering in con-
stituency parsers. Carreras et al. [2008] extracted a splittable LTAG grammar
according to a head-percolation table. Then, they filtered the constituent parser
search space using dependency marginal scores. Recently, Kong et al. [2015]
proposed an algorithm which transforms a dependency parse to a constituency
one. This task is not deterministic thus they relied on a weighted CFG grammar.
Their pipeline parser has a quadratic worst-time complexity but, surprisingly,
a linear observable running time in practice. Ferndndez-Gonzalez and Mar-
tins [2015] reduced the constituency parsing problem to a labelled dependency
parsing problem. Interestingly, LTAGs naturally encode bi-lexical dependencies
which represent combination operations between elementary trees. It seems
therefore appropriate to apply a similar methodology and examine the LTAG
parsing problem as a constraint dependency parsing task, which is precisely
what we propose in this thesis.

1.2 Contributions

The primary concern of this thesis is efficient LTAG parsing. Following the
line of work linking dependency and constituency parsing, we study LTAG pars-
ing as a dependency parsing task. Indeed, a LTAG derivation tree is a graph

5 There exists grammar based dependency formalisms. However, they have received little
attention from the NLP community.

6 Theoretically, algorithms with a lower complexity have been proposed for CFG parsing,
relying on fast matrix multiplication methods [Valiant, 1975]. However, they are rarely used
in practice.

16 CHAPTER 1. INTRODUCTION

|
I [}
| I
I 1
i | i
I ! ! | I
He claims she seems to like the dog

Figure 1.4: This example is a non-projective dependency parse because of the
two red arcs. This non-projective dependency structure is motivated by TAG
parsing [Kallmeyer and Kuhlmann, 2012].

where each word is represented by a vertex labeled with its elementary tree. A
combination operation is represented by an arc labeled with the address of the
operation site. The derivation tree is therefore a dependency structure: each
vertex has at most one predecessor, the graph is acyclic and has a unique root,
i.e. a unique vertex without predecessor. This structure and its labels are highly
constrained by the grammar. For example, the label on an arc must ensure that
it encodes a combination between similar syntactic units. An example is given
in Figure 1.5. However, we depart from previously cited work as we do not
consider projective syntactic dependencies obtained by head-percolation tables
but dependencies induced from LTAG combination operations. The latter are
known to be of a non-trivial type of structure [Bodirsky et al., 2005]. Unfortu-
nately, there are no annotated treebanks which exploit the expressive power of
LTAGs. To the best of our knowledge, previous experimental work only consid-
ered LTAGs restricted to context-free languages [Chiang, 2000, Carreras et al.,
2008, Kasai et al., 2017]. These grammars have a cubic parsing time [Schabes
and C. Waters, 1995]. The problem is challenging: we want to develop fast
decoding algorithms without any test data. Moreover, Satta [1994] showed that
developing an asymptotically faster algorithm for TAG parsing is as difficult
as boolean matrix multiplication, a well studied problem in the literature. To
overcome these difficulties, we formulate the critical parts of LTAG parsing as
subgraph selection problems that are generic enough to have other applications.
Then, we formulate these graph problems as Integer Linear Programs (ILPs).
We propose resolution algorithms for the ILPs and test their efficiency on ex-
isting benchmarks. Thus, we are able to show that our parsing algorithms are
practically efficient.

1.2.1 Derivation tree parsing

In order to tackle the complexity challenge of LTAG parsing, Joshi and Srini-
vas [1994] proposed to rely on a two step pipeline:

1. A tagger assigns one elementary tree to each word.
2. The standard LTAG algorithm is run using previous information as a filter.

They motivate their work by the fact that an elementary tree is a rich descrip-
tion of a lexical item (for example intransitive verb), i.e. a specialization of a

1.2. CONTRIBUTIONS 17

(S NP (VP (VB walks) NP)

(NP (PRP She)) (NP (NN dog))

I

|

. I
She walks the dog

Figure 1.5: Derivation tree representation of a parse. Labels on vertices (respec-
tively arcs) represent elementary trees (respectively operation site addresses).

part of speech tag (for example verb). However, taggers commonly rely on local
evidences only, which may not be sufficient for recursive structures and long
distance relationships that can be modeled with LTAGs. Moreover, supertag-
ging does not reduce the asymptotic complexity of LTAG parsing. Our first
contribution, in Chapter 5, is a novel pipeline system:

1. A constraint dependency parser assigns head-modifier relations.
2. A dynamic program assigns elementary trees and operation sites.

As such, we consider the derivation tree structure instead of the resulting phrase-
structure and follow the common pipeline practice of dependency structure
parsing. Elementary trees are assigned with respect to non local context as
their attachment sites are fixed. The first step is known to have a O(n") time
complexity [Gémez-Rodriguez et al., 2009] and we propose an algorithm with
linear time complexity for the second one (Section 5.6). Unfortunately, the
dependency parser of Gémez-Rodriguez et al. [2009] is not efficient enough on
sentences longer than ~ 20 words. Indeed, LTAG dependencies have an intri-
cate structure: they are well-nested arborescences with 2-bounded block degree
[Bodirsky et al., 2005]. In order to tackle this complexity challenge, we propose
to rely on combinatorial optimization. We introduce two novel Integer Linear
Programming (ILP) formulations of this problem. Interestingly, our ILPs allow
to easily toggle the well-nested property and change the block degree bound.
They can therefore model dependency structures induced by other lexicalized
grammars [Kuhlmann, 2007].

Although LTAGs are linguistically motivated, they can only be used in the
case of continuous phrase-structures, that is phrase-structures where every con-
stituent form a group of contiguous words. However, several treebanks have
been annoted with discontinuous constituents [Brants et al., 2004, Evang and
Kallmeyer, 2011]. Also, Bunt et al. [1987] argued that discontinuity is inevitable
in order to bridge the gap between syntax and semantics. In Chapter 6, we show
that the discontinuous phrase-structure parsing problem can be tackled through
a variant of LTAGs: we relax the intricate structure of the derivation tree. Then,
the construction of the phrase-structure can introduce discontinuity. We reduce
the joint problem of assigning head-modifier relations and elementary trees to a
graph problem called the Generalized Maximum Spanning Arborescence. The

18 CHAPTER 1. INTRODUCTION

latter is NP-complete and has already been studied by the optimization com-
munity [Myung et al., 1995, Pop, 2009]. Thus, once again, we can rely on ILP
optimization techniques in order to ensure practical efficiency.

1.2.2 Efficient parsing via Lagrangian Relaxation

Fast decoding of linguistic structures has been a major concern in the NLP
community. Unfortunately, some problems are known to have a high complex-
ity. Several authors proposed to formulate them as ILPs which are optimized
using appropriate techniques. Koo et al. [2010] applied dual decomposition to
high-order dependency parsing which is known to be a NP-hard problem. Riedel
and Clarke [2006] enforce the linguistic plausibility of a dependency parse by
lazily generating violated constraints.” We take a similar approach since the
CPLEX software, commonly used as a baseline method for solving ILPs, is in-
efficient with our programs. We rely on Lagrangian relaxation, a method that
was previously successfully applied to NLP® [Rush and Collins, 2012, Sontag
et al., 2010]. Simply speaking, in a given maximization problem, we identify
a set of complicating constraints: if they were absent, then the program could
have been solved using an efficient polynomial time algorithm. These difficult
constraints are removed and introduced as penalties in the objective. The re-
sulting program, called the Lagrangian dual, is a parametrizable upper-bound
on the original one. By minimizing on its parameters, called the Lagrangian
multipliers, we tighten this bound. We rely on subgradient descent for the dual
optimization, an iterative method: at each step, the relaxed problem is solved
with updated multipliers. The optimal solution of the original problem may be
obtained under certain conditions.

For our first problem, decoding the maximum well-nested arborescence with
2-bounded block degree, we observe that (1) we can relax the LTAG specific con-
straints to obtain a quadratic problem and (2) the number of relaxed constraints
is high. Moreover, given an arborescence, it is easy to check if it is well-nested
or if it has a 2-bounded block degree. Thus, we mix Lagrangian relaxation with
lazy constraint generation (Section 5.4). The dual optimization process starts
with an empty set of multipliers. Then, at each step of the subgradient descent,
we seek for violated relaxed constraints before updating the multipliers. This
technique is called Non Delayed Relax-and-Cut [Lucena, 2005]. As part of our
pipeline proposal, the decoded arborescence is used as a filter for elementary
trees and attachment sites assignment. So we have to return the best possible
structure that satisfies the constraints in order to limit error propagation and
ensure the feasibility of the second step. Unfortunately, the global optimum of
the Lagrangian dual cannot deliver such a certificate in the general case, even if
it often happens in practice. Thus, we propose to rely on the Branch-and-Bound
algorithm, an exhaustive search procedure. Variables are recursively fixed to 0
or 1 in a search tree. A portion of the search space, that is sub-parts of the
search tree, can be safely removed if the Lagrangian relaxation returns an upper
bound which is less than the best known solution.

"This technique is called the cutting-plane method in the optimization vocabulary.
8 In order to avoid confusion, we stress that, in this thesis, NLP always stands for Natural
Language Processing and never for Non-Linear Programming.

1.2. CONTRIBUTIONS 19

The second problem consists of the joint assignment of tags (elementary trees)
and dependencies. We show that this task is equivalent to the Maximum Gen-
eralized Spanning Arborescence problem. Unfortunately, it has received little
attention from the community and only in cases of graphs with symmetric arc
weights. Myung et al. [1995] proposed a dual ascent optimization method em-
bedded in a Branch-and-Bound procedure. We propose an alternative dual
optimization algorithm more in tune with the current trend in the NLP com-
munity and which is able to produce a certificate of optimality in 99% of cases
without relying on an exhaustive search procedure (Section 6.4). In the ILP we
propose, there are local and global constraints. Local constraints link depen-
dencies with tags. Global constraints ensure the arborescence structure. We
propose to reformulate the ILP in order to rely on dual decomposition, a spe-
cial flavor of Lagrangian relaxation where the dual is decomposed in a set of
independent subproblems. In our case, there are two subproblems which can
be run in quadratic time. The first one is a tagging problem with minimal de-
pendency interaction and the second one is an arborescence decoding problem.
The obtained Lagrangian dual can again be efficiently optimized thanks to the
subgradient descent algorithm.

Chapter 2

Publications!

Meéthode lagrangienne pour les arborescences couvrantes avec appli-
cation en traitement automatique des langues

Authors: Caio Corro, Joseph Le Roux, Mathieu Lacroix, Antoine Rozenknop,
Roberto Wolfler Calvo

Conference: 17eme congres annuel de la Société francaise de recherche opérationnelle
et d’aide a la décision

Publication data: February 2016

Abstract: Nous nous intéressons au calcul des arborescences couvrantes de
poids maximum avec deux contraintes structurelles : degré de bloc (block
degree) et bonne imbrication (well-nestedness). Ces contraintes sont mo-
tivées par des problemes d’analyse syntaxique en traitement automatique
des langues (TAL) dans lesquels une phrase est représentée sous forme
d’une arborescence couvrante dans un graphe orienté. Nous proposons une
formulation du probléeme en PLNE ainsi qu’une relaxation lagrangienne
de celle-ci. Le probleme relaché correspond & l’arborescence couvrante
de poids maximal pouvant étre efficacement calculée grace a I’algorithme
d’Edmonds.

Dependency Parsing with Bounded Block Degree and Well-nestedness
via Lagrangian Relaxation and Branch-and-Bound

Authors: Caio Corro, Joseph Le Roux, Mathieu Lacroix, Antoine Rozenknop,
Roberto Wolfler Calvo

Conference: 54th Annual Meeting of the Association for Computational Lin-
guistics

Publication date: August 2016

1Sorted by publication date.

20

21

Abstract: We present a novel dependency parsing method which enforces two
structural properties on dependency trees: bounded block degree and well-
nestedness. These properties are useful to better represent the set of
admissible dependency structures in treebanks and connect dependency
parsing to context-sensitive grammatical formalisms. We cast this prob-
lem as an Integer Linear Program that we solve with Lagrangian Relax-
ation from which we derive a heuristic and an exact method based on
a Branch-and-Bound search. Experimentally, we see that these methods
are efficient and competitive compared to a baseline unconstrained parser,
while enforcing structural properties in all cases.

Transforming Dependency Structures to LTAG Derivation Trees
Authors: Caio Corro, Joseph Le Roux

Workshop: 13th International Workshop on Tree Adjoining Grammars and
Related Formalisms

Publication date: September 2017

Abstract: We propose a new algorithm for parsing Lexicalized Tree Adjoin-
ing Grammars (LTAGs) which uses pre-assigned bilexical dependency re-
lations as a filter. That is, given a sentence and its corresponding well-
formed dependency structure, the parser assigns elementary trees to words
of the sentence and return attachment sites compatible with these elemen-
tary trees and predefined dependencies. Moreover, we prove that this al-
gorithm has a linear-time complexity in the input length. This algorithm
returns all compatible derivation trees as a packed forest. This result is of
practical interest to the development of efficient weighted LTAG parsers
based on derivation tree decoding.

Efficient Discontinuous Phrase-Structure Parsing via the Generalized
Maximum Spanning Arborescence

Authors: Caio Corro, Joseph Le Roux, Mathieu Lacroix

Conference: Conference on Empirical Methods in Natural Language Process-
ing 2017

Publication date: September 2017

Abstract: We present a new method for the joint task of tagging and non-
projective dependency parsing. We demonstrate its usefulness with an
application to discontinuous phrase-structure parsing where decoding lex-
icalized spines and syntactic derivations is performed jointly. The main
contributions of this paper are (1) a reduction from joint tagging and
non-projective dependency parsing to the Generalized Maximum Span-
ning Arborescence problem, and (2) a novel decoding algorithm for this
problem through Lagrangian relaxation. We evaluate this model and ob-
tain state-of-the-art results despite strong independence assumptions.

Part 11

Background

22

Chapter 3

Lexicalized Tree Adjoining
Grammar

A sentence in a natural language is not a sequence of words randomly gen-
erated one after the other. The linguistic research community investigates the
structure of natural languages which are described by the means of grammars.
Several theories have been proposed to describe a grammar. In this chapter,
we introduce the phrase-structure formalism which hierarchically decomposes a
sentence in coherent word subsets (Section 3.1). Then, we show how Lexical-
ized Tree Adjoining Grammars (LTAGs) can be used in order to describe the
well-formedness of sentences by imposing constraints on the phrase-structure
construction (Section 3.2). Although language generation is an interesting and
challenging task, we focus on a different one called parsing (Section 3.3): given a
sentence, what is its associated phrase-structure? Unfortunately, the algorithm
has an intractable complexity in practice. In order to rely on combinatorial
optimization, we seek a simple graph representation of the parsing problem.
Thus, we conclude by introducing the LTAG derivation tree structure, a depen-
dency structure describing the construction process of the phrase-structure via
a LTAG (Section 3.4).

3.1 Phrase-structure

In this section, we introduce the syntactic phrase-structure formalism, or,
more precisely, constituent analysis [Chomsky, 1957]. Syntactic analysis is an
active research area in linguistics. We do not claim to give a complete picture
of the field. Definitions related to syntax are borrowed form Brinton [2000].
Examples are in English and follow the annotation conventions of the Penn
Treebank [Marcus et al., 1993], a widely used corpus. We first introduce the
notion of constituency. Then, we describe how to generate well-formed natural
language sentences by imposing rules on the hierarchy of its constituents. The
resulting generation process gives a phrase-structure. In practice, this procedure
relies on formal grammars. We introduce Context-Free Grammars for these first
examples. Finally, we explain relations among constituents at the same level of
the hierarchy, which will lead to the concept of lexicalization and Lexicalized

23

24 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR
Tree Adjoining Grammars in Section 3.2.

Definition 3.1: Constituent

A constituent is a set of words defining a syntactic unit in a hierarchical
syntactic structure. As such, it is a part of a sentence that can be moved,
modified or deleted alongside agreement adjustments.

We distinguish two types of constituents. On the one hand, the grammatical
category of a single word which we refer to as the part of speech tag. Each
word is assigned a single tag representing its function in the phrase-structure,
for example determiner DET, verb VB, adjective JJ or noun NN, among others.
They constitute the bottom level of the hierarchy, i.e. nodes adjacent to leaves.
Note that a word can be ambiguous: it can have different part of speech tags
assigned in different contexts. As an example, the word “orange” can either be
an adjective or a noun. On the other hand, other constituents are non-lexical:
they identify a (possibly unary) set of words, and can be decomposed into a
sequence of lower-level constituents. As an example, a simple declarative clause
S can be decomposed into a nominal phrase NP (the subject) followed by a verbal
phrase VP (the predicate). In this thesis, examples rely on the part-of-speech
tags and constitutency labels that were used for the Penn Treebank [Marcus
et al., 1993|, which we report in Appendix A.

We define a simple set of rewriting rules using a Context-Free Grammar
(CFG) as follows:

e NP — DT NN
e NP — DT JJ NN
e NP — NP CC NP

The left-hand side of a rule is a unique constituent, called a non-terminal symbol:
the one being rewritten. The right-hand side is the sequence of symbols that
the former can be rewritten into: it is a sequence of non-terminal and terminal
(words) symbols. In the case of phrase-structures, only part of speech tags can
be rewritten into lexical items:

e DET — the
e NN — dog

We can generate sentences using these rules, see Figure 3.1. The generated
phrase-structure is called the derived tree.

Definition 3.2: Derivation

A derivation in a CFG is a sequence of rule applications which rewrites the
start symbol, usually S, into a string. A derivation ends when the resulting
string contains terminal symbols only.

3.1. PHRASE-STRUCTURE 25

e S — NP VP
e NP — NN S i

e VP > VB / | / ‘

e NN — PRP NP VP NP VP

e NP — DT NN | | / ’ ‘

e PRP — she PRP VB DET NN VB

e DET — the | | ‘ ‘ ’

e NN — woman She walks The woman walks

e VB — walks

Figure 3.1: Two examples of derived tree that can be built using the grammar
on the left of the figure.

Definition 3.3: Derived tree
The derived tree is a representation of a derivation process as a graph. Nodes
represent symbols and edges derivation steps.

CFGs are not powerful enough to describe every construction observed in
natural languages. First, derivation constraints are local to a constituent and
its direct children only. As such, they cannot forbid “the river” to be the object
of the verb “walk” without duplicating the number of non-terminals. As an
example, we could have defined a specialization of the rule VB — VB NP, meaning
a verb followed by a noun phrase: VB-walks — VB-walks NP-dog. However, the
resulting number of rules would lead to an impractical grammar. Second, some
linguistic structures cannot be constrained using CFGs. In Dutch, a relative
clause can be constructed by a sequence of subjects followed by a sequence
of verbs: there must be the same number of subject and verbs, the first verb
being associated with the first subject, and so on. This kind of structure is
called cross-serial dependencies and is roughly equivalent to the copy-language
problem, a well-known limitation of CFGs. Third and finally, CFGs can generate
continuous constituents only, or, in other words, constituents that are derived
into a contiguous sequence of words only.

Definition 3.4: Constituent yield
The yield of a constituent is the set of terminal symbols it has been rewritten
into during the derivation process.

The derivation process induces an ordering between words (leafs in the derived
tree). Indeed, in a CFG, the symbols on the right-hand side of a rule are ordered.
Given a rule S — NP VP, all the terminals in the yield of the NP symbol in a
derived tree will be preceding the ones in the yield of the VP symbol.

Definition 3.5: Continuity
A constituent is continuous if its yield is a contiguous sequence of terminals
in the string obtained via derivation. If not, the constituent is discontinuous.

26 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

SBARQ

|
sSQ
| \
NP
VP
WHNP

WP MD PRP VB

What does she walk ?

Figure 3.2: Example of a discontinuous phrase-structure in English due to wh-
movement. The yield of the VP constituent is not a contiguous set of words.

A phrase-structure or derived tree is continuous if each one of its constituents
is continuous. Similarly, a phrase-structure is discontinuous if at least one
of its constituents is discontinuous.

CFGs can only generate continuous derived trees. Several treebanks are an-
notated with discontinuous constituents, even in English [Evang and Kallmeyer,
2011] (see Figure 3.2). Linear Context-Free Rewriting Systems (LCFRS), which
generalize the CFG formalism, are capable of deriving discontinuous phrase-
structures. Unfortunately, the LCFRS parsing algorithm complexity is pro-
hibitive for NLP applications. As an example, the parsing algorithm of Gémez-
Rodriguez et al. [2010] has O(n®) complexity in the most restricted case.!

In CFGs and derived trees previously described, there is no hierarchical re-
lationship defined between the direct children of a constituent, which we call
siblings. We introduce two kinds of relationship that can exist between siblings.
This will lead us to the notion of lexicalization.

Definition 3.6: Head-modifier relationship

Given two words in the same constituent, their relationship is qualified as
head-modifier if the modifier word is optional and can thus be removed. For
example, in the sentence “She owns a red car”, red is a modifier of car.
Indeed, the sentence “She owns a car” is grammatically correct.

Definition 3.7: Governor-complement relationship

Given two words in the same constituent, their relationship is qualified as
governor-complement if both words are mutually dependent: one cannot oc-
cur without the other. This is the case for the predicate-subject relationship.

1 Note that this complexity is lower the LTAG parser one but it is for unlexicalized LCFRS
only. The unlexicalized TAG parser has also a O(n%) complexity.

3.2. DEFINITIONS 27

For example, in the simple sentence “She walks”, neither She nor walks can
be removed. The direction of the relation is given by their semantic rela-
tion: She is a semantic argument of walks, therefore She is the complement
of walks.

Definition 3.8: Lexicalized constituent
A constituent is lexicalized if it emphasizes which one of its children contains
the head or governor word in its yield.

Unless otherwise specified, we will not distinguish between the two kinds of
relationship and refer to both as head-modifier. We mark the head or governor
of a relation with the sign * in the right-hand side of a CFG rule. For example,
in the rule S — NP VP*, the verbal phrase VP is the head of the noun phrase
NP. The lexical head of a constituent can be retrieved by moving down to a
lexical leaf going through constituents marked as head only. Figure 3.3 shows
an example of a derived tree built using a CFG which marks heads. Lexicalized
rules are appealing as they can be used to enforce semantic constraints. In
the rule VP — VB* NP, if the lexical head of the VB constituent is walks, we
can restrict allowed lexical heads of the NP constituent to a subset of words
containing dog but not river. Thus, with the toy grammar in Figure 3.3, we
can avoid the generation of the grammatically correct but semantically incorrect
sentence “She walks the river”. However, imposing such restriction in a CFG
is not natural and impacts the size of the grammar and the parsing algorithm
complexity. In the next section, we introduce the Lexicalized Tree Adjoining
Grammar formalism which naturally encodes lexicalization. Moreover, we show
that it is more expressive than CFGs and thus is a better model for several
common linguistic constructions.

3.2 Definitions

Tree Adjoining Grammar (TAG) is a tree-based formalism where elementary
trees are combined together in order to build the derived tree [Joshi, 1985, 1987].
Specifically, Lexicalized TAGs (LTAGs) are TAGs where each elementary tree
contains exactly one lexical leaf [Schabes et al., 1988]. Contrary to a CFG, a
LTAG can naturally encode semantic constraints. We first describe a simpler
formalism called Lexicalized Tree Substitution Grammar (Subsection 3.2.1) and
then complete with the adjunction operation (Subsection 3.2.2).

3.2.1 Lexicalized Tree Substitution Grammar

The Lexicalized Tree Substitution Grammar (LTSG) formalism is a restricted
version of the LTAG one. It only has one type of elementary trees, initial trees,
and one combination operation, substitution.

28 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

S
(walks)

e S — NP VP* / |
e VP —s VB* NP NP VP

(she) (walks)
e NP — DET NN* ~
e PRP — She*

(dog)

e VB — walks® | \
e DET — the* PRP VB DET NN
e NN — dog* (she) (walks) (the) (dog)

She walks the dog

Figure 3.3: (Left) Lexicalized CFG. Each rule identifies its head with the star
symbol. (Right) Example of lexicalized constituency structure. The constituent
is the same color as its head word.

Definition 3.9: Lexicalized Tree Substitution Grammar
A Lexicalized Tree Substitution Grammar is a tuple (N, T, T, S, fs5) where:

e N is a set of non-terminal symbols;
e T is a set of terminal symbols disjoint from IV;

e T is a set of initial trees built with symbols in N U T}

S € N is the start symbol;

fss : T x Zt — P(T') is the function that represents combination
constraints.

Each elementary tree in I'/ must have exactly one node labeled with a ter-
minal which must be a leaf. This specific node is called the lexical anchor
of the tree. Moreover, the root node of a tree must be labeled with a non-

terminal.
In practice, non-terminals are constituent labels (VP, NP, ...) and terminals
are words (she, walks, ...). Without loss of generality, the derived tree is valid

only if its root node is the specific non-terminal S.2 An elementary tree assigns
a role to a word in a sentence. As an example, two different elementary trees
associated with the word walks define two different uses of this verb: either
as an intransitive or as a transitive verb (see Figure 3.4). In the intransitive
case, the verb only requires one argument on its left side, the NP leaf, which will
be its subject. In the transitive case, the verb also requires an argument (the
object) on its right side, hence the rightmost NP leaf. Therefore, an elementary

21t is trivial to extend this constraint to a subset of non-terminals instead of a single one.

3.2. DEFINITIONS 29

S S
e a
NP VP NP VP
| (AN
VB VB NP
| |
walks walks
(a) Intransitive (b) Transitive

Figure 3.4: Elementary trees can be understood as part of speech specialization.
This example illustrates the use of walks as an intransitive or a transitive verb.
In both cases, the same part of speech tag is used.

tree could be understood as a specialization of a part of speech tag. In order
to distinguish between initial trees and part of speech tags, the former are
often called supertags [Joshi and Srinivas, 1994]. Assigning supertags is called
supertagging instead of simply tagging.?

Definition 3.10: Substitution

Let G = (V, E) be an undirected graph (see Section 4.1 for a formal definition
of graph) with finite set of nodes V' labeled with elements of NUT and finite
set of edges E. Moreover, we suppose that G is connected and is a tree. Let
7 € T'! be an initial tree and v € V a node. Substituting 7 into v is defined
as:

e if v is not a leaf or if v and the root of 7 do not have the same label:
the operation is undefined;

e otherwise, a new graph is defined by merging the root of 7 with node
v.

Due to the structure of initial trees, substitution can only happen to nodes
labeled with non-terminals.

An example of substitution is given in Figure 3.5. This operation can be
constrained thanks to the fsg : TT xZ*+ — P(T'!) function, with P the powerset.
Given an initial tree 7 € T and a node address® i € Z*, fsg(7,i) is the set
of initial trees that can be substituted into this node. Thus, we can restrict
the set of object modifiers of the verb walks: we only include the subset of
elementary trees with valid lexical anchors, for example dog, in the image of
fss(7,i) where T is a tree representing a transitive use of walks and 4 is the
address of its object substitution site. A sentence generation is completed when
all leafs are labeled with non-terminals. The LTSG formalism we introduced
in this subsection is more appealing to describe phrase-structure constraints
than the CFG one. Moreover, elementary trees, which are also called supertags,
define the precise function of each word in the sentence. In the next section,

3The word supertag has also been used in other grammatical formalisms such as Combi-
natory Categorial Grammars.
4 We use Gorn addresses which will be introduced in Section 3.3.

30 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

S
e
NP VP S
7 N S
NP VB NP NP VP
[[I [N
PRP walks PRP VB NP
[I [
She She walks

Figure 3.5: (a) The dotted arc depicts a substitution from the root node of
the initial tree with lexical anchor She into another node. (b) The resulting
structure.

we extend the formalism with auxiliary trees combined through adjunctions,
leading to LTAGs.

3.2.2 The adjunction operation

In Dutch, relative clauses like “dat Jan de kinderen zag zwemmen”, mean-
ing “that Jan saw the children swim”, are composed by first enumerating all
the subjects and then all the verbs. Theoretically, the number of subject-verb
couples can be infinite: “dat Jan Piet de kinderen zag helpen zwemmen”,
and so on. A possible construction using a LTSG is given in Figure 3.6. Note
that the elementary tree anchored with subject Jan must then be substituted
into the elementary tree anchored with zwemmen. However, Jan is the subject
of zag. Thus, this construction breaks our motivation for lexicalized grammars
as the combination operation does not represent a head-modifier relationship
in this example. This phenomenon is called cross-serial dependencies: the first
(respectively second, ...) subject is a modifier of the first (respectively second,

..) verb. This is roughly equivalent to the copy language {ww|w € ¥£*}, where
¥ is a set of symbols, which is not a context-free language.® However, it is a
mildly context-sensitive language that can be described thanks to a Lexicalized
Tree Adjoining Grammar (LTAG).

Definition 3.11: Mildly Context-Sensitive Language
A set of languages is mildly context-sensitive [Joshi, 1985, Kallmeyer, 2010]
if:

e it contains all context-free languages,

e it can describe limited cross-serial dependencies,
e it can be parsed in polynomial time,

e it has the constant growth property.

The constant growth property imposes that for all strings longer than a fixed
constant in the language, there exists a string in the language which has the

5The copy language defined over symbols ¥ = {a, b} contains, among others, the following
strings: aa, bb, abab, abbaabba.

3.2. DEFINITIONS 31

S
VRN
g NP S VP
R '
NP VP V|B
VlB zwemimen
|
zag

Figure 3.6: Dutch relative clause construction using a TSG.

same length plus a positive constant value [Weir, 1988]. Limited cross-serial
dependencies means that the size of the dependent chains that interleave in
cross-serial dependencies is bounded by a constant. For example, in TAGs
this constant is two, meaning that the language {ww|w € £*} can be de-
scribed with a TAG but not {www|w € 3*}. The set of languages described
by TAGs is mildly context sensitive.

Definition 3.12: Lexicalized Tree Adjunction Grammar
A LTAG is a tuple (N, T,T1, T4, S, fss, fsa, foa) where:

e N is a set of non-terminal symbols;

e T is a set of terminal symbols disjoint from NV;

e T'l is a set of initial trees built with symbols in N U T}

e T4 is a set of auxiliary trees built with symbols in N U T
e S € N is the start symbol;

o fss : Il x Z+* — P(I'!) is the function that represents substitution
constraints;

o foua:T'xZt — P(I'4) and foa:T x ZT — P(I'4) are functions that
represent adjunction constraints.

The set T' £ T UT4 is the set of elementary trees. LTAGs share many
similarities with LTSGs (Definition 3.9). The root of an auxiliary tree must
be labeled with a non-terminal symbol. Moreover, each auxiliary tree in T'A
must have:

e exactly one node labeled with a terminal which must be a leaf (lexical
anchor);

e exactly one foot node.

The foot node must be a leaf and labeled with the same symbol as the root
node. It is identified with symbol *.

32 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

SQ
1\
VP WHNP SQ* NP VP
e I
RB VP* VB
| I
deliberately like

Figure 3.7: Examples of auxiliary trees. The adjective deliberately modifies a
verbal phrase. The auxiliary tree anchored with like can be used to construct a
question: the interrogative word must be substituted at the leftmost leaf of the
tree.

The specificity of LTAGs is that auxiliary trees can be combined through the
adjunction operation. Two examples of auxiliary trees are given in Figure 3.7.
Contrary to substitution, where a tree is merged at the frontier of another tree,
an adjunction breaks the destination tree in two.

Definition 3.13: Adjunction

Let G = (V, E) be an undirected graph with finite set of nodes V' labeled
with elements of N UT and finite set of edges E. Moreover, we suppose that
G is connected and is a tree. Let 7 € T4 be an auxiliary tree and v € V a
node. Adjoining 7 into v is defined as:

e if v and the root of 7 do not have the same label then the operation is
undefined;

e otherwise, a new graph is defined by replacing v with the root of 7 and
merging v with the foot node of 7.

Due to the structure of auxiliary trees, adjunction can only happen to nodes
labeled with non-terminals.

An example of adjunction is given in Figure 3.8. The example in Figure 3.9
shows a LTAG grammar that solves a simple cross-serial dependencies problem.
Similarly to substitution, this operation can be constrained thanks to the fg4 :
I' x Zt — P(I'4) function. Moreover, we can force adjunction to happen at
a given node with the function fo4 : I' x ZT — B set to true if adjunction is
obligatory. In the standard LTAG formalism, maximum one adjunction per node
is allowed. Multiple adjunctions have been proposed, but we do not consider
them as they bring additional issues regarding the order in which combination
operations are applied [Schabes and Shieber, 1992, Gardent and Narayan, 2015].

In this section, we introduced the LTAG formalism in order to generate nat-
ural language sentences. These grammars are able to encode some semantic
constraints. Moreover, LTAGs are more expressive than CFG and allow to cor-
rectly model some cross-serial dependencies. Finally, note that the adjunction
operation can be used to describe recursive or optional structures without in-
creasing the grammar size. It is customary to use substitution and obligatory

3.2. DEFINITIONS 33

S
e S
NP VP O
TN NP VP
-7 VB NP [
VP | / VP
a walks RN
RB VP* RB VB NP
[

| I
deliberately walks

(a) (b)

deliberately

Figure 3.8: (a) The dashed arc depicts an ajdunction operation. (b) The result-

ing structure. If necessary, the two VP nodes may be merged in a post-processing
step in order to reflect the treebank annotation style.

I\
S--eo___ N S VP
->S VP
é \VP] é ™~ VP le
1 | NP VlB e | |
NP S* VIB Zwemmen NP ? V|B zwemmen
zag

NP Zag
(a) (b)

Figure 3.9: (a) Simplified example of cross-serial dependencies via the adjunc-
tion operation [Kroch and Santorini, 1987]. (b) The resulting structure. After

following substitutions, the subject of zag will be before the subject of zwemmen
in the generated sentence.

34 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

adjunction to model governor-complement relationships and non-obligatory ad-
junction to model head-modifier ones [Abeillé, 1988, Abeillé et al., 1990, Gar-
dent and Kallmeyer, 2003] Finally, note that LTAGs can only induce continuous
phrase-structures.

3.3 Parsing

In the previous section, we introduced LTAGs for natural language sentence
generation. We now turn to the opposite problem: given a sentence and a
grammar, how was it generated? This problem is called parsing and is the
main focus of this thesis. The resulting constituency tree may be of interest
for a subsequent task as it exposes the underlying structure of the sequence of
words, see Nesson et al. [2006] and Li et al. [2017], among others. For example,
Li et al. [2017] recently showed how constituent analysis can be used in order to
improve an automatic translation system. Importantly, constituents can easily
be augmented with their function, as subject or object, when parsing with
LTAGs: an elementary tree defines the function of a word (supertag) and its
operation sites define types of relation of modifiers.

Note that the parsing term may typically refer to three different but strongly
related tasks via the notion of semi-ring parsing [Goodman, 1999]. First, recog-
nition: can this sentence be generated by a given grammar? Second, derivation
forest parsing: decoding the set of all possible derivation trees. This is due to
the fact that natural languages are ambiguous, so a given sentence can have
several meanings and thus several grammatical analyses. For example, this is
the case of the sentence “She bought a house on the hill”. Third, weighted
disambiguation: what is the best parse in the derivation forest? In this last
task, one must rely on a scoring function which evaluates the plausibility of a
given phrase-structure.

We first introduce a generic framework to describe parsing algorithms based
on logical deduction rules (Subsection 3.3.1). We show how it can be augmented
with weights in order to compute the highest scoring parse if the weight function
decomposes nicely with respect to the deduction rules. Then, we describe a
LTAG parser in Subsection 3.3.2 and discuss the LTAG parsing complexity in
Subsection 3.3.3. We focus on the bottom-up algorithm commonly called the
CYK-like parser in reference to the CFG parser [Kasami, 1965, Younger, 1967,
Cocke, 1970]. Other parsing algorithms have been proposed for non-lexicalized
TAGs including Earley-types [Schabes and Joshi, 1988, Joshi and Schabes, 1997]
and a LR-types [Nederhof, 1998, A. Prolo, 2002, Shen and Joshi, 2005] which
could be upgraded in a LTAG perspective.® Earley-type parsers build parse
trees in a left-to-right fashion using top-down predictions in order to reduce
the search space.” LR-type parsers build offline top-down predictions of the
Earley-type parsers that are not dependent of the input. Thus, the resulting
parser only needs to read the sentence from left to right. A LR parser combined
with beam-search results a so called transition-based parser where only a subset

6Worst-case complexities may not be preserved.
"However, the asymptotic complexity is equivalent to the bottom-up approach.

3.3. PARSING 35

(or beam) of the possible candidates are kept leading to incomplete® but fast
parsing.?

3.3.1 Parsing as deduction

Describing an algorithm via pseudo-code has several drawbacks. Many deci-
sions in the pseudo-code do not belong to the parsing strategy but to the actual
implementation: in which order are the intermediate results constructed? How
are they stored? Moreover, space and time complexities may be tedious to infer
because of data structures and their accessors, among others. Finally, proving
soundness and correctness is not straightforward. Pereira and Warren [1983]
followed by Shieber et al. [1995] proposed to rely on a deduction-based frame-
work: we start with a set of axioms and a goal item must be reached thanks to a
set of deduction rules. In this framework, the space complexity is readily avail-
able from item definitions and time complexity from deduction rules, regardless
of the actual implementation. We quickly introduce this formalism and show
how any deduction-based parser can be implemented using the agenda-based
framework [Kay, 1986].

We introduce the parsing formalism with CFGs in a slighlty variant form of
the Chomsky normal form [Chomsky, 1959]: each rewriting rule must have in its
right-hand side either exactly one symbol or exactly two non-terminal symbols.
Let s = s1...5s, be the input sentence and R the set of production rules of the
grammar. The item set is defined as triplets [A, 4, j] with:

e A a non-terminal symbol of the grammar;
e 1 <4< j<n two integers defining the yield span of the rule.

The semantics of a rule is simple: a constituent labeled A dominates the sub-
string from the word at index i to the word at index j in the input sentence.
Or, in other words, we successfully build a constituent A that yields the word
sequence S; ...5;. Let 8 be the start symbol, meaning the root constituent of a
parse tree must be S in order to be valid. Thus, the goal of a CFG parser is to
produce the following item:

Deduction rule: Goal

[S,1,n]

The axioms are defined as follows:

8 There is no guarantee to build the full parse forest neither to retrieve the highest scoring
parse, hence the use of the term incomplete.

9A practical transition-based parser should however also include a back-tracking technique
in order to ensure that at least one feasible parse is constructed.

36 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

Item Rule

[PRP,1,1] Lex scan (He)

[VB,2,2] Lex scan (walks)

[NP,1,1] Move unary with 1

[VP, 2,2 Move unary with 2
[S,1,2] Move binary with 3 and 4

Pk =

Figure 3.10: Parsing trace of the sentence “He walks” with the grammar given
in Figure 3.1. The last item is a goal item so the sentence has been correctly
parsed.

Deduction rule: Lex scan

fA%siGR
(A, 1]

The condition on the right-hand side of the bar defines constraints on axiom
creation. Basically, we create an item for each word s; of the input sentence
with each non-terminal A such that a A — s; exists in the grammar. We now
turn to rules that deduce new items from existing ones. First, we investigate
rules with a single non-terminal in the right-hand side (unary rules):

Deduction rule: Move unary

B, %,]

—— A-BER
(A4,]

The item at the top is called the antecedent and the item at the bottom the
consequent. Second, we need two antecedents with consecutive yields when
the right-hand side is composed of two non-terminals (binary rules):

Deduction rule: Move binary

B,i', '] [C,i?, j?]
[a,it, 5%

A—BCeERAjI4+1 =42

Given a rule A — B C € R, we can deduce an item with non-terminal A if and
only if we have two items with non-terminals B and C with consecutive yields.
Figure 3.10 gives an example of parsing with the grammar in Figure 3.1.

Let g = |R| be the size of the grammar, ¢ the number of non-terminal symbols
and n the input sentence length. The space complexity of a deduction-based

3.3. PARSING 37

move unary
[VB,2,2] —————— [VP, 2,2]

r.nove 5,1,2]
binary

move unary
[PRP,1,1] ——————— [NP, 1, 1]

Figure 3.11: Back-pointers are stored as a directed hyper-graph, that is a graph
where arcs can have multiple sources: vertices represent items and hyper-arcs
represent deduction rule applications.

algorithm is bounded by the maximum number of items. Our items are indexed
by a non-terminal and a yield span, thus the space complexity of CFG parsing is
O(n?t), that is asymptotically quadratic with respect to the input sentence size.
The time complexity is bounded by the rule which has the maximum number
of free variables in its antecedents. For CFG parsing, the move binary rule
has six free variables: A,B,C,i!, 5!, 2. Indeed, i? is constrained to be equal to
j1 4+ 1. Moreover, A, B, C are non-terminals but are constrained by the grammar
and ¢!, ' and j2 are indices in the input sentence. Thus, the time complexity
of this CFG parser is O(n®g) or asymptotically cubic with respect to the input
sentence length.

So, what do we do with the goal item? As such, the only information therein
is correctness of the input sentence with respect to the given grammar: this
sentence could have been generated with the grammar. But how? In order to
retrieve the set of all possible derivation trees for the input sentence, we have
to keep back-pointers in memory in order to retrieve the derivation process.
If we define the items as vertices in a directed hyper-graph, back-pointers will
be hyper-arcs from the set of antecedents to the consequent of deduction rule
applications. A single vertex can have several incoming hyper-arcs as it could
have been created using different rules and/or antecedent if the grammar is
ambiguous. Figure 3.11 gives the back-pointers graph for the parsing example
in Figure 3.10. Thus, given the goal item, we can follow back-pointers in the
reverse order in order to build one or several derived tree.

We now turn to weighted parsing. In this task, we wish to compute the
derivation tree in the parse forest which maximizes a weighting function. The
function must decompose nicely so this task is tractable. We assign weights
to axioms and deduction rules. Then, the weight of a parse is the sum of the
deduction rule weights it used. Maximizing over the parse forest is trivial with
the following construction in the back-pointer hyper-graph:

1. Add a root vertex.

2. Add arcs from the root vertex to each axiom vertex. The weights of these
arcs are the weights associated with axioms.

3. Assign weights to hyper-arcs corresponding to their deduction rules.

38 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

Then, the task reduces to computing the path with maximum weight from the
root vertex to the goal vertex. Note however that we do not need to realize
this computation as a post-processing step: when adding a vertex to the back-
pointer hyper-graph, add the incoming hyper-arc which maximizes the score
from the root vertex to the added vertex only. This change does not impact the
complexity of the parser.

Let us finally discuss a generic implementation of deduction-based parsers.
A common practice is to rely on dynamic programming in order to deduce
items: a chart is created and then items are added to it ordered by yield span
lengths, from shorter ones to longer ones. This is easy for CFG parsing but
is more challenging for more complex grammars. The agenda-based framework
is an alternative to dynamic programming [Kay, 1986]. Axioms are placed in
an agenda and an empty chart is created. While the agenda is not empty, an
item is randomly popped, added to the chart and tested as an antecedent of
each deduction rule. If the rule is binary, all possible compatible antecedents
available in the chart are used to build a consequent. A deduced item is added
to the agenda if it is not already present in the chart. The space and time
complexities of these algorithms are no worse than the ones induced by item
and rule structures.'C

3.3.2 CYK-like algorithm for LTAGs

In this subsection, we describe the deduction-based LTAG parser [Schabes
et al., 1988] using notations inspired by [Kallmeyer and Satta, 2009]. In the fol-
lowing, we suppose a LTAG (N, T, T, T4, S, fss, fsa, foa) (see Subsection 3.2.2)
and an input sentence s = s1...8,. Moreover, without loss of generality, we
suppose that every elementary tree is binary, i.e. every node must have at most
two children.

Item definition

We index nodes in an elementary tree 7 € I' using Gorn addresses. A Gorn
address is a sequence of integers from Z7% indicating a path beginning at the
root node of the tree, see Figure 3.12. Given a Gorn address p € Z* and an
elementary tree 7 € I, the predicate p € 7 is true if and only if a node exists in
7 at address p. Items are 8-tuples of the form [k, T,p, ¢, i, k, [, j] with:

1. Lexical anchor index 1 < h < n;
2. Elementary tree 7 €T
3. Gorn address p of a node in 7;

4. Combination flag ¢ € {T, L} indicating if we have already checked ad-
junction T or not 1 at the node at position p;

5. Yield span 1 <i<j <mn;

10 Note however that, in order to ensure the tightest possible upper bound on time com-
plexity, the algorithm must rely on efficient data containers. However, this problem is beyond
the scope of this thesis.

3.3. PARSING 39

S1
e
11NP VP12
[N
121VB NP 122
|

walks
1211

Figure 3.12: An elementary tree with Gorn address of nodes in red.

6. Gap span i < k <[< j if the sub-analysis represented by the item has a
gap, k =1 = — otherwise.

Axioms and goal

There are two families of axioms. First, the lex scan rule creates items with
position at the lexical anchor if the elementary tree lexical anchor is equal to
the word at this position in the sentence:

Deduction rule: Lex scan

[ha P, Ta h7 R h] T(p) o

Second, the foot predict rule predicts the span of the content that will be
added below the foot node after adjunction. Given the function foot : T4 — Z*
which returns the foot node position of an auxiliary tree, the creation of these
axioms is defined as:

Deduction rule: Foot predict

rer4 - HYANE<IA(h<kVI<h
[hy,p, T,k Kk, L] ETAAp= foot(r) Ak <IA(h<kVI<h)

Basically, these items predict the possible yield spans of the non-terminal where
the auxiliary tree 7 anchored at word position h will be adjoined into.'* We
now turn to deduction rules that combine items in order to create new ones.

Traversal rules

We start with traversal operations which move up inside an elementary tree.
The move unary rule can be applied to nodes which do not have any sibling;:

11 To reduce the search space, we could check here that the lexical anchor of the auxiliary
tree is equal to the word sy,.

40 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

Deduction rule: Move unary

[haTap' l,T,i,k,l,j]
[h7T7p7J—7ia kJa]]

p-2¢rT

Note that the combination operation must be T in the antecedent, meaning
we already checked for adjunction. Moving up to a node with two children is
trickier as we have to take into account that only one of them can contain a gap
in its yield span. First, we start with the case where none of them has a gap:

Deduction rule: Move binary no gap

[h77-ap'15—|—aila_a_aj1] [haTvp'27T7i2a_7_aj2]
[T7p7J-7i17) _7j2]

41 =42
The condition checks that both yield spans are contiguous. Then, suppose that

only the left child has a gap:

Deduction rule: Move binary left gap

[h77-7p'17—|—7i17k7l7j1] [h7Tap'27T77;27_7_7j2]
[Tap7J—ai17kalvj2]

JlH1=3® Ak #—

Finally, a similar rule takes care of a gap inherited from the right child:

Deduction rule: Move binary right gap

[h57_7p'17—|—5i17_7_5j1] [thvp'27T7i2ak7laj2]
[T,p7 J_, i17k’ l7j2]

1= ANk #—

Combination rules

Elementary trees can be combined via either substitution or adjunction oper-
ations. The former is used to attach initial trees and the latter auxiliary trees.
An initial tree can be substituted if the item is at the root node. Moreover, the
destination node must be a leaf and both node labels must match:

3.3. PARSING 41

Deduction rule: Substitute

[mlev 17T7i7) _7.7]
[h’a D, Taia) _5.7]

p-lgrnr(p) =7 ()AT el n fss(,p)

An adjunction can be realized if and only if the current yield span of the desti-
nation node can fill the gap span of the modifier.

Deduction rule: Adjoin

[m7 T/a 17 Ta 7:17 klvllvjl] [h7T7p7 L: k17 k2712a ll}
[h7T7p7 T77;17 k27127j1]

() =7 (W) AT €TAN fsa(r,p)

Finally, the last rules allow ajdunction to be skipped at nodes which do not
have the obligatory adjunction constraint:

Deduction rule: Null adjoin

[h7T’p7J—’Z‘7k’l7j]
(h,7,p, T, 1, k, 1, j]

—foa(r,p)

An example of LTAG parsing with these rules and the phrase-structure in
Figure 3.13 is given in Table 3.1.

3.3.3 Complexity

As explained previously, space and time complexities can be directly inferred
from item structures and deduction rules, respectively. The first and last four
elements of an item are word indices in the sentence, thus they can take at
most n® different values. Thus, the space complexity is O(n’gt) with g the
maximum ambiguity (second element) and ¢ the maximum number of nodes in
an elementary tree (third element).!? The maximum ambiguity is the maximum
number of elementary trees sharing the same lexical anchor. The Adjoin rule
is the one with the most free variables in its antecedents: 8 word positions,

two elementary trees and one Gorn address. Thus, the time complexity of this
LTAG parser is O(n®g?t).

12The combination flag can take two different values and thus is a constant that does not
appear in the big O notation.

42 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

Item Rule
1 | 1,75 111, T,1,—,—,1] Lex scan
2 | [,7h 1, 01—, -] Move unary
3| 1,711, T, 1, —, -, 1] Null adjoin
4 | 1,741,141, —, —,1] Move unary
5 | [1,74,1,T,1,—, —,1] Null adjoin
6 |[2,7%,111,T,2,—,—,2] Lex scan
712,721, 1,2, —,—,2] Move unary
8 | [2,72,11,T,2,—,—,2] Null adjoin
9 [2,72,121,T,3,3,3,3] Foot scan
10 | [2,7%,1,1,2,3,3,3] Move binary right gap with 8
11| [2,7%,1,7T,2,3,3,3] Null adjoin
12 | [3,73,1211,T,3,—,—,3] Lex scan
13 | [3,73,121, 1,3, —, —, 3] Move unary
14 | [3,73,121,T,3,—,—,3] Null adjoin
15| [3,7°,12, 1,3, —,—, 3] Move unary
16 | [3,73,12,T,2,—,—.3] Adjoin with 11
17 | [3,73,11,T,1,—,—,1] Substitute with 5
18 | [3,73,1, L,1,—,—,3] Move binary no gap with 16
19| [3,73,1,T,1,—,—,3] Null adjoin

Table 3.1: Parse trace of the sentence She deliberately walks. The antecedent
of an unary rule is its previous line. For rules with several antecedents, we refer
their line numbers. The phrase-structure generation process of this sentence
using a LTAG is given in Figure 3.13. We denote 7! the elementary tree selected
for the first word, 72 for the second and so on. We only display items necessary to
build the goal. With a more complicated grammar and an ambiguous sentence,
several derivations would have been possible.

3.4. DERIVATION TREE 43

S
e
NP------------ > NP _ VP
| -7
PRP T VB
I VP I
She [N walks
RB VP*
|
deliberately

(a) LTAG analysis, the OA in subscript
indicates an obligatory adjunction site

S
[
VP \
NP VP
[I
PRP RB VB

| | |
She deliberately walks

(b) Phrase-structure/derived tree

Figure 3.13: (a) Construction example with a LTAG. (b) Phrase-structure.

An asymptoticaly faster algorithm with a O(n% max(n, g)gt) time complexity
has been proposed by [Eisner and Satta, 2000]. They observed that the Adjoin
rule simultaneously carries out two independent tests: (1) that the modifier
can be adjoined into the head node and (2) that the modifier correctly wraps
around the current head node yield span. Thus, they break the operation in 3
different rules leading to a lower time complexity. However, it remains too high
for practical use cases where fast analysis is expected: a O(n”) factor is a major
bottleneck for long sentences.

3.4 Derivation tree

The deduction rule framework is a convenient tool to study parsing algo-
rithms. However, it is unclear if a lower upper bound on LTAG parsing time
complexity can be achieved. Satta [1994] reduced boolean matrix multiplication
to TAG parsing and argued that obtaining a lower complexity bound for the lat-
ter problem is thus likely to be as difficult as to the former one.'®* We propose to
rely on combinatorial optimization in order to develop an efficient LTAG parser.
Unfortunately, the bottom-up derived tree construction methodology does not
seem convenient for this task. Indeed, optimization techniques are often applied
to graph problems. It is well known that any dynamic programming algorithm
can be reduced to the shortest path problem on an acyclic hypergraph [Martin
et al., 1990] enabling the use of optimization in order to ensure efficient decod-
ing, see Clautiaux et al. [2016], among others. However, it happens that LTAG
parses have a convenient graph representation. Rambow and Joshi [1997] first

13 The LTAG and TAG parsing algorithms are slightly different but share many similarities.

44 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

I
I
I
:
1
She deliberately walks

Figure 3.14: Derivation tree of the sentence She deliberately walks with respect
to the construction in Figure 3.13.

noticed that they can be represented as labeled dependency structures called
derivation trees which we introduce in this section.

Definition 3.14: Derivation tree

Let G = (N,T,T'1,T4,S, fss, fsa, foa) be a LTAG grammar and s =
S1...8p, be a sentence. A LTAG derivation tree for sentence s is a directed
graph D = (V, A) with V' = {v;...v,} the set of vertices and A the set of
arcs where each node v; € V' corresponds to word s;. Each vertex v; € V is
labeled with a single elementary tree in I'/ U T4 which must have word s;
as lexical anchor. An arc (v, v,,) € A represents a combination operation,
either a substitution or an adjunction, from the elementary tree anchored
at s,, into the elementary tree anchored at s;. The Gorn address of the
operation site is labeled on the arc.

An example of a LTAG derivation tree is given in Figure 3.14. This structure
is an arborescence: each vertex has at most one incoming arc, it does not contain
a cycle and it is connected. This structure is highly constrained by the grammar:
it must describe a valid LTAG derived tree. Combination operations must be
correct. For example, only auxiliary trees may be adjoined and operation sites
must share the same non-terminal symbol. Besides these grammar constraints,
Bodirsky et al. [2005] demonstrated that the arborescence itself has a special
structure: it is well-nested and is of 2-bounded block degree. We defer the
formal definitions of these properties to Chapter 5.

Rambow [2010] argued that one must distinguish between the syntactic struc-
ture and the representation type. The problem we focus on is syntactic phrase-
structure parsing. This syntactic content is naturally expressed as a hierarchical
structure tree. However, a LTAG derivation tree contains exactly the same syn-
tactic content as a derived tree despite its structural difference. If attachment
operations are encoded in node labels of the derived tree, one representation can
be converted to the other without losing information. Thus, instead of pars-
ing a sentence by constructing the derived tree in a bottom-up fashion, like in
the CYK-type algorithm presented in the previous subsection, we propose to
parse the derivation tree explicitly. This task is a dependency parsing problem
which can be formalized as a graph decoding problem. As such, it is natural to
tackle the complexity challenge using the combinatorial optimization techniques
introduced in the next chapter.

Chapter 4

Efficient structure decoding

In the previous chapter, we introduced the linguistic motivation for mildly
context-sensitive parsing as well as practical algorithms. We argued that dealing
with these non context-free grammars directly is unfortunately not efficient
enough for practical applications because of the time complexity of the chart-
based parsing algorithm. There has been some attempt to develop more efficient
alternatives. Eisner and Satta [2000] proposed a O(n”) algorithm for Lexicalized
Tree-Adjoining Grammars (LTAGs). Unfortunately, it remains too inefficient
for practical use. Schabes and C. Waters [1995] proposed a LTAG inspired
formalism called Lexicalized Tree Insertion Grammar (LTIG) with a cubic time
parsing algorithm. However, LTIGs do not have the expressive power that
makes LTAGs interesting. Thus, it appears that in the current literature one
has to choose between fast decoding and expressiveness. We propose to study
LTAG parsing as a subgraph selection task, along the same line as the work of
Kuhlmann and Jonsson [2015] for semantic parsing. Through this approach, we
develop algorithms for derivation tree parsing using tools from combinatorial
optimization.

Combinatorial optimization techniques have been successfully applied in NLP.
As an example, before the rise of neural networks, dependency parsers achieved
state of the art results in terms of accuracy and speed by relying on Inte-
ger Linear Programming formulations and well-known optimization techniques
like linear relaxation [Martins et al., 2009a], Lagrangian relaxation [Koo et al.,
2010], column generation [Riedel et al., 2012] and branch-and-bound [Qian and
Liu, 2013]. Rush et al. [2010] combined a constituency parser and a part of
speech tagger. Similarly, Le Roux et al. [2013] combined different constituency
parsers which must reach an agreement. As the problems are not tractable,
they rely on heuristics based on Lagrangian relaxation. However, in the NLP
works listed above, optimization techniques are necessary because of the inclu-
sion of high-order likelihood weights or the combination of several systems. On
the contrary, the problems we study in this thesis have an intricate structure
even in the simplest case. This is closer to the work of Riedel and Clarke [2006]
who include linguistically motivated constraints in dependency parsing via lazy
constraint generation and the Combinatory Categorial Grammar parser based
on Lagrangian relaxation of Auli and Lopez [2011].

45

46 CHAPTER 4. EFFICIENT STRUCTURE DECODING

In this chapter, we describe a decoding framework relying on Integer Linear
Programming (ILP) and Lagrangian relaxation. First, in Section 4.1, we intro-
duce basic notions and notations from graph theory that we will use through
this work. As a running example, we will show how non-projective dependency
parsing can be naturally formulated as a constrained subgraph selection prob-
lem for which there exists a simple combinatorial algorithm. However, if we add
additional constraints on the structure, this may not be true anymore. Thus,
in Section 4.2, we introduce ILP. Many graph problems can be naturally formu-
lated with this framework. ILP is not tied to a solving method and, in general,
optimizing one is NP-hard. Lagrangian relaxation (Section 4.3) combined with
subgradient descent (Section 4.4) has been widely adopted by both NLP and
optimization communities in order to solve huge and intricate problems. In-
tuitively, we exploit the structure of our programs to identify a set of difficult
constraints. We remove them and introduce them as penalties in the score, lead-
ing to an efficient heuristic method. We emphasize that Lagrangian relaxation
may produce a certificate if an optimal solution is obtained. Finally, we describe
problem reduction in Section 4.5, a method to efficiently prune the search space,
and Branch-and-Bound in Section 4.6, a generic algorithm used to solve an ILP
exactly.

4.1 Graph-based structure decoding

Graph theory is an appealing tool as it is a lingua franca among computer
scientists: it is unlikely that a postgraduate student did not take at least one
class using graphs before obtaining his/her Master’s degree. Moreover, visual
representations are straightforward and many definitions, like path and cycle,
are intuitive and do not need an in-depth knowledge to be understood. Thus, re-
ducing an intricate parsing problem to a graph problem seems like a reasonable
choice. In this section, we explain the notion of structure decoding and its rela-
tion with subgraph selection. Important notations that will be used throughout
this thesis are introduced. We will use non-projective dependency parsing as an
example to illustrate the content.

Definition 4.1: Structure decoding

Given an input s, decoding aims at finding the best element inside a set
of output candidates O° with respect to a weight function f®: O® — R.
In other words, the goal is to find o € O° that maximizes f®. In this
work, s = s1...s, will always be a sentence in a natural language, i.e. a
sequence of tokens, with possibly accompanying features, like morphological
information. The decoding process is said to be structured because:

1. the set of output candidates is specific to a given input in contrast with
the simplest forms of regression or classification,

2. the set of output candidates can have an exponential size with respect
to the input,

3. an output is composed of a set of highly constrained components.

Other works in the literature have similar definition of structured output
spaces [Smith, 2011, Martins, 2012].

4.1. GRAPH-BASED STRUCTURE DECODING 47

Remember that natural languages are ambiguous (Section 3.1). Given a
sentence s, one can define Of as the set of all grammatically correct phrase-
structures of s. In this setting, components may be hierarchical dominance of
constituents. As an example, a noun-phrase with yield span [s;, s;] can contain
a determinant followed by a noun. Constituents are obviously constrained: in
English, the determinant will always be at the left of the noun. In the Lexical-
ized Tree-Adjoining Grammar formalism, O° can be the set of valid derivation
trees. That is, components are elementary trees assignments and attachments
operations. Finally, in dependency parsing, candidates are valid syntactic struc-
tures which are composed of bi-lexical relations between words. In Definition 4.1
above, the weight function f* may be estimated using machine learning. In that
case, structure decoding is also called structured prediction.

Two questions arise from Definition 4.1: given an input, what is the size of
the search space? and how is a weight function formalized? Contrary to what
one may think, these are related. Regarding the first question, the search space
may be very large. Indeed, in practice, grammars are automatically extracted
from treebanks. In order to ensure experimental robustness, they are often
highly ambiguous, thus allowing linguistically absurd analyses. For example, in
LTAG parsing, a common practice is to replace elementary trees with templates:
any elementary tree can anchor any word. In dependency parsing, state of the
art parsers allow every bi-lexical relation between every couple of words in a
sentence. Thus, the weight function must be carefully designed in order to
allow efficient maximization in the search space. In general, it is defined as a
sum of weights of subset of components of candidate 0. In dependency parsing,
the subsets may be singletons, each one containing a bi-lexical relation. It is
then obvious that in the sentence “She walks the dog”, the is unlikely to be
the head of dog: this single dependency must be associated with a low weight.
A more complicated parser may also introduce subsets of sibling relations, for
example subsets containing all relations sharing the same head. In order to
ensure computational tractability, the number of subsets of a candidate o is
often polynomially bounded by the size of the input s. However, given a search
space O° and a weight function f°, there may not exist a tractable maximization
algorithm. We now introduce the graph theory vocabulary that will allow us to
describe more formally O° and f® for a given problem.

Definition 4.2: Directed graph
A directed graph is a tuple G = (V, A) with V' = {vg ... vjy_q|} a finite set
of vertices and A C V xV a finite set of arcs. Arcs are couples where the first
element is the source and the second the destination. For convenience,
an arc (v;,v;) will mainly be written as v; — v;. In this document, unless
otherwise specified, we simply refer to graph for a directed graph.

An undirected graph is a graph where arcs are unordered couples, that is
sets of two vertices. Traditionally, the terminologies node and edge are used
to refer to vertex and arc, respectively, in undirected graphs.

Given a vertex subset W C V, we note §°“(W) and §*(W) its sets of out-
going and incoming arcs, respectively. The set §(W) = §6°“/(W) U 6" (W) is

48 CHAPTER 4. EFFICIENT STRUCTURE DECODING

O-ONO -0
o=0

Figure 4.1: Solid red and blue arcs are sets §"(v3) and §°%!(v3), respectively.
The cut-set of v3 contains these four arcs. Dashed red and blue arcs are sets
8 ({vg; v7}) and 6°U({vg; v7}), respectively. Similarly, 6({ve;v7}) contains the
four dashed arcs. Note that arcs between vg and v7 are not part of these sets.

the cut-set of W, see Figure 4.1. If W is a singleton, we drop the set-defining
braces. Given a subset of arcs T C A, we note V[T its cover, that is the
set of incident vertices, or in other words the set of vertices that are source or
destination of at least one arc in T: V[T = {v e V|§(v)NT # 0} U V[T =V,
then the structure defined by arcs 7' is a spanning structure.

Definition 4.3: Arborescence
Let G = (V,A) be a graph. An arborescence T' C A is a set of arcs
inducing a connected graph with no circuit and where the incident vertices
have at most one incoming arc in 7. The root of the arborescence T' is the
single vertex of V[T] with no incoming arc. It is easy to show that, in an
arborescence, each vertex is a descendant of the root one.

A spanning arborescence is an arborescence with V[T] = V. See
Figure 4.2 for an example.

Given an arborescence T and a vertex v € V[T, the sub-arborescence
T’ rooted at v is the maximum subset of arcs 7" € T forming a v-rooted
arborescence.

Given an input s, a structured output space O® and a scoring function f°, we
reduce the decoding to a subgraph selection task by defining how to build:

1. a graph G* = (V, A);

2. the set of subgraph candidates 7° C P(A), with P the powerset, so that
there is a bijection between O® and T*.

We assume that we can define the scoring function on the reduced problem
search space f® : 7° — R. Thus, under the graph formulation, components
of candidate T' € T* are arcs. The simplest weight function decomposes as
f(T) = > cr Wa, With w, the weight of arc a € A. This weighting model is
called arc-factored. More elaborated models are called higher-order models.!

Definition 4.4: Maximum Spanning Arborescence

Given a graph G = (V, A), the Maximum Spanning Arborescence (MSA)
problem aims at computing the spanning arborescence T' C A rooted at a
vertex v € V that maximizes an arc-factored weighting model.

INote that a weighting function could also take into account vertices in V[T].

4.1.

GRAPH-BASED STRUCTURE DECODING 49

Figure 4.2: Example of non-projective dependency parsing via graph formula-
tion with the sentence “She walks the dog”. Arcs are dependency candidates,
thick red arcs describe a vg-rooted arborescence.

Example 4.5: Non-projective dependency parsing

We illustrate the decoding process with the arc-factored model for non-
projective dependency parsing of McDonald et al. [2005]. In dependency
parsing, given a sentence of length n, an output candidate is a bi-lexical
analysis of a sentence defined as follows. An artificial root word is added.
Every word, except the root:

e is assigned exactly one head;
e must be a descendant of the root word.

As such, components are head-modifier relationships and an output candi-
date must satisfy the previous rules. Using the graph formalism, vertices
will represent words and arcs head-modifier relations.

Given an input sentence s = s1 ... s, , we build a graph G = (V, A) with
n + 1 vertices where v, is associated with the word s,,, plus an artificial
root vertex vg. A bi-lexical dependency candidate with head-word s; and
modifier-word s,,, is represented by an arc vy, — v,,,. Then, the set of valid
dependency parses 7T is the set of vp-rooted spanning arborescences of G.
See Figure 4.2 for an example. The arc-factored weight of a candidate is
defined as:

f(TET):Zwa

acT

where w,, is a likelihood weight of including the bi-lexical dependency rep-
resented by arc a € A. Note that, nowadays, this weight is learned with
machine learning.

Enumerating candidates T is intractable. Indeed, given a complete graph
with n vertices, there exists (n+1)"~! spanning arborescences on it [Cayley,
1889]. However, under an arc-factored model, maximization can be don<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>