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Résumé étendu

Contexte

Le béton bitumineux (AC) a été largement utilisé sur les couches supérieures des chaussées en raison de ses bonnes performances en termes de durabilité, de confort et de facilité de maintenance. D'après les études précédentes, le béton bitumineux est un matériau macroscopiquement isotrope et homogène, avec beaucoup de micro-vides, de micro-fissures et d'autres défauts. Ces éléments structurels sont soumis à la fatigue causée par des charges de trafic répétées, des variations de température (journalières et saisonnières), des tassements de fondation, etc., entraînant de l'endommagement et de la fatigue, et ses performances sont sérieusement affaiblies. L'augmentation du trafic associée aux coûts et aux problèmes environnementaux accroît la demande pour des chaussées à haute performance.

Les méthodes de renforcement ont été largement proposées par les chercheurs. Au cours de la dernière décennie, le renforcement par des grilles en fibre de verre a été appliqué pour améliorer la réponse mécanique des matériaux de structure de chaussée, ce qui a montrée son efficacité à réduire la fissuration et à prolonger la durée de vie des chaussée en béton bitumineux. Certaines propriétés de la fibre de verre, telles que sa haute résistance, sa rigidité et son endurance, ainsi que sa faible sensibilité à la température, en font une solution intéressante et rentable. Les recherches in-situ et en laboratoire mettent en évidence certaines preuves expérimentales qui nécessitent encore une compréhension plus approfondie avant de déboucher sur des principes de conception. Une série de tests a été réalisée pour révéler le mécanisme du renforcement de grille en fibre de verre. L'étude de la performance du béton bitumineux ainsi que de l'effet du renforcement repose sur deux aspects du comportement mécanique: l'endommagement sous charge monotone et sous charge de fatigue cyclique, qui seront examinés respectivement dans cette thèse.

Une analyse de la performance des grilles en fibre de verre sur la flexion des poutres en béton bitumineux a été réalisée par Arsenie et. al, basé sur des tests de flexion alternée à 4 points (4PB). Ses résultats ont ouvert la voie au projet SolDuGri, financé par l'Agence nationale de la recherche (ANR), où des tests à l'échelle réelle et de laboratoire ont été effectués. Parmi ces différentes iii expériences, une attention particulière est accordée aux tests de fractionnement en coin d'échantillons de chaussée avec des interfaces contenant des grillees de fibres de verre. L'interprétation des résultats des tests 4PB était basée sur une approche de mécanique des milieux continus: mécanique de l'endommagement, en fatigue. Cela a montré la complexité d'associer un comportement local fiable à des résultats d'échantillon en raison de la localisation de contrainte et de limite liés à l'existence de grilles de fibres de verre intégrés dans le béton bitumineux. Les essais de fendage par coin ont été analysés par la mécanique de la rupture, ce qui a donné de bonnes tendances initiales concernant les propriétés des matériaux et les résultats des tests. Le fait que le béton bitumineux soit composé d'agrégats liés par une matrice bitumineuse induit une structure irrégulière pour le matériau composite. Cette propriété peut avoir des conséquences sur le comportement mécanique, en particulier la rupture. La modélisation par éléments discrets (DEM) est un outil très utile pour étudier l'effet de ce désordre naturel et ses conséquences sur la réponse mécanique du matériau.

Généralement, la théorie du comportement à la rupture d'un matériau consiste en un critère de résistance à la rupture et la mécanique de la rupture élastique linéaire (LEFM). La LEFM devrait toujours venir en premier, afin d'étudier la mécanique des matériaux béton bitumineux en termes d'initiation et de propagation de fissures. Il s'applique à la rupture des matériaux fragiles. Cependant, pour d'autres matériaux, la description théorique devrait être déterminée sur la base des résultats expérimentaux, et la zone de traitement des fissures (FPZ) peut expliquer certains phénomènes qui ne sont pas résolus par la LEFM en termes de zone de micro-fissure et de vitesse de restitution d'énergie. La fatigue des matériaux est un autre comportement mécanique. Dans cette thèse, la durée de vie en fatigue est caractérisée par la dégradation de la rigidité, et la théorie concernant l'endommagement par fatigue et la durée de vie en fatigue sera revue.

Les défauts du béton bitumineux peuvent affecter le comportement mécanique, ainsi dans l'étude numérique, leur représentation devrait être bien prise en compte. En attendant, les propriétés physiques macroscopiques doivent être reproduites. De ce point de vue, la méthode des éléments discrets (DEM) est une méthode numérique idéale sur laquelle l'accent sera mis lors de la révision de la méthode numérique. Le modèle de zone cohésive (CZM) est examiné en particulier pour l'incorporation à DEM, ce qui résout la propagation de fissure avec la FPZ sous charge monotone. La simulation numérique de l'endommagement de Résumé étendu v fatigue nécessite également un modèle de fatigue, qui devrait bien reproduire la durée de vie en fatigue et l'évolution de l'endommagement lors d'un chargement de fatigue en DEM.

Plan de Mémoire

Objectif de la recherche Le présent travail explorera les capacités d'un environnement DEM, notamment une description plus fine du matériau concernant son hétérogénéité interne pour simuler des échantillons de béton bitumineux et l'effet des grilles en fibres de verre sur la réponse mécanique des structures. Afin de mieux comprendre les résultats des tests de laboratoire (WST et 4PB), les objectifs principaux de cette thèse sont décrits ci-dessous: 1) Simulation en DEM du comportement cohérent du béton bitumineux en termes d'élasticité, de résistance et de ténacité. 2) Développement d'un modèle d'éléments discrets qui reproduit le comportement à la rupture du béton bitumineux sous charge monotone et l'extension à la description de la rupture de l'interface entre les grilles en fibres de verre et le béton bitumineux en mode ouverture.

Organisation de la thèse

La présente étude est composée des parties suivantes: Le premier chapitre concerne l'introduction et le contexte de mon étude. Le deuxième chapitre présente une revue de la littérature. Le comportement mécanique du béton bitumineux et des grilles en fibre de verre est présenté. Les méthodes les plus utilisées pour la modélisation théorique de la rupture sont introduites, notamment la mécanique de la rupture linéaire élastique, les notions de la FPZ. Ainsi, les méthodes numériques d'analyse de l'endommagement par fissuration et par fatigue sont passées en revue, notamment l'application de la méthode des éléments discrets (DEM). Le chapitre 3 aborde les conception de base de l'analyse par éléments discrets: génération de matériau, étalonnage de paramètres et identification de la ténacité à l'aide d'un contact linéaire collé.

Le chapitre 4 concerne la rupture monotone des matériaux en béton bitumineux comprenant l'interface avec les grilles en fibre de verre. L'application d'un modèle de contact cohésif adapté à ce type de matériau est présentée. L'essai de fendage par coin (WST) avec l'interface sont décrits (configuration expérimentale et simulations). L'analyse des expériences de WST associée à une étude paramétrique vi Résumé étendu du modèle à éléments discrets permet d'identifier le mécanisme de rupture, un modèle simplifié pour l'interface est ensuite proposé.

Au chapitre 5, la rupture par un chargement de fatigue alternatif est discutée. Une loi d'endommagement local est appliquée au niveau des contacts et adoptée pour décrire le comportement en fatigue du béton bitumineux. Le test de flexion à 4 points (4PB) adopté pour identifier l'effet des grilles de fibres de verre en fatigue est présenté. La configuration de la simulation et la représentation 2D des grilles sont détaillées. Une étude paramétrique du modèle d'éléments discrets associée à la comparaison avec les résultats expérimentaux permet d'identifier l'effet des grilles de fibres de verre sur la durée de vie en fatigue des échantillons.

Enfin, le chapitre 6 résume les résultats et conclusions de la présente étude, suivies des perspectives pour les travaux futurs.

Le comportement d'élasticité et de rupture dans le DEM

Les matériaux sont modélisés par un ensemble de particules assemblées de manière aléatoire. Une méthode une méthode dynamique de mettre à l'échelle le rayon des particules pour libération de contraintes internes a été utilisée pour induire une structure interne presque isotrope et homogène avec des vides internes réduits. Une étude paramétrique permet de relier les paramètres de contact (module de contact E cmod et rapport de rigidité k ratio = k n /k s ) aux paramètres du matériau (module de Young E et coefficient de Poisson ν en élasticité, exprimés comme suit:

ν = 0.1645 × ln k n k s + 0.0913, (1) 
E = -0.1793 × ln k n k s + 0.8070 E cmod , (2) 
où 0.1 < ν < 0.34 et 0.5GP a < E < 65GP a contiennent la plage habituelle du coefficient de Poisson et du module de Young du béton bitumineux.

Le comportement quasi-fragile est limité par deux mécanismes de rupture: l'un lié au niveau de contrainte et l'autre au facteur d'intensité de contrainte. Ces deux mécanismes sont généralement associés à deux propriétés du matériau, la résistance à la traction et la ténacité, respectivement. Une procédure de calibration basée sur l'analyse de la résistance nominale d'échantillons pré-fissurés a permis d'identifier la relation entre ces paramètres de matériau et les paramètres Résumé étendu vii de contact: résistance normales et tangentielles (f n et f s ) et le rayon moyen R de la particule.

Les relations normales dues à l'étalonnage sont exprimées comme suit, Le contrôle des paramètres de rupture (quasi-fragile) a été vérifié en comparant les résultats de simulations de fractionnement en coin avec la prédiction de la mécanique de la rupture élastique linéaire. Sur la figure 2, le bon accord entre la Les limites d'une approche quasi fragile sur la description du béton bitumineux sont discutées. Le taux de restitution d'énergie lors de la rupture (monotone) d'échantillons de béton bitumineux (WST) est beaucoup plus élevée que la prédiction de la mécanique de la rupture élastique linéaire, qui est basée sur la valeur de la ténacité. Cette non-linéarité associée à la rupture peut être expliquée par la notion de la zone de traitement des fissures (FPZ) présentée à la figure 3a, où nombreuses micro-fissures existent à la pointe de la macro-fissure. Le modèle de zone cohésive est généralement adopté pour étudier numériquement la FPZ, comme le montre la Figure 3b.

Σ t = f max n Rt × α, (3) 
K IC = f max n t √ R × β, (4) 
En termes de modélisation par éléments discrets, une loi de contact cohésif bilinéaire a été mise en oeuvre, dans laquelle le contrôle de l'énergie de rupture est clairement introduit en tant que paramètre. En conséquence, des résultats de simulation réalistes du béton bitumineux sont obtenus à la figure 4.

L'analyse subséquente des essais de fractionnement en coin avec des interfaces entre le béton bitumineux et les grilles de fibres de verre a montré que le processus Comportement à la fatigue du béton bitumineux (non) renforcé avec essai de flexion en 4 points

Un modèle de fatigue alternée pour le béton bitumineux a été mis en oeuvre dans la méthode des éléments discrets. Il est démontré qu'un modèle de contact d'endommagement décrivant les phases I et II, associé au désordre naturel de la structure interne du matériau dans le DEM, est capable de décrire l'ensemble du comportement en fatigue (phases I, II et III ) à l'échelle d'échantillons. Sur la figure 6, les essais de perte de rigidité réalisées par Arsenie sont bien reproduites par le modèle de fatigue imposée dans les simulations DEM. La phase III apparaît comme un effet de structure se manifestant même dans des conditions aux limites uniformes, caractérisée par une perte d'homogénéité induite par la concentration de défauts et une localisation de la déformation, comme illustré à la figure 7.

Des simulations d'essais de flexion en 4 points ont ensuite été effectuées pour analyser l'influence des grilles en fibres de verre sur la réponse en fatigue de poutres composites.

Les incréments d'endommagement par cycle ont été définis par l'amplitude de déformation. Les cycles alternatifs ont été numériquement remplacés par une flexion statique des échantillons, ce qui a accéléré le calcul et a permis d'étudier le comportement en fatigue sous un nombre élevé et réaliste (10 5 à 10 6 ) de cycles. Une étude paramétrique et l'étalonnage des 3 paramètres de fatigue du modèle discret pour les essais 4PB ont montré les capacités du modèle à reproduire les L'avantage de cette approche bidimensionnelle est de permettre une propagation libre de défauts à travers la grille de fibres de verre (comme cela se produit en réalité). Les vérifications de la modélisation des fibres sont effectuées sous charge monotone et charge cyclique avec des simulations 4PB, les résultats étant présentés à la figure 9. Les résultats de la simulation indiquent que les ren- Cependant, le glissement induit par l'interface peut entraîner une redistribution de la contrainte normale avec une réduction des valeurs maximales, ce qui allonge la durée de vie en fatigue de l'ensemble de la poutre malgré sa rigidité initiale.

Compte tenu de l'effet couplé des renforts et de l'interface, la redistribution de la contrainte a pour conséquence d'augmenter l'endommagement près de la position des renforts, ce qui améliore l'efficacité des renforts. Enfin, la comparaison entre simulations et expériences a montré la cohérence du modèle et les tendances indiquées par les simulations comme présenté à la figure 11. 

Conclusions et perspectives

Conclusions

Dans cette thèse, la réponse mécanique du béton bitumineux (AC) sous des chargements monotones et en fatigue a été modélisée par la méthode des éléments discrets. Sur la base de ce comportement des matériaux, l'effet des grilles en fibres de verre associées au béton bitumineux est pris en compte et son apport mécanique a été analysé. Premièrement, la modélisation en DEM a été étudiée de manière paramétrique. La comportement des matériaux quasi-fragiles a été vérifiée par des essais de traction et des essais de fractionnement. Ensuite, la simulation de WST a mis en évidence l'effet décisif de l'interface qui a dominé la rupture des assemblages, de sorte que le modèle d'interface a été simplifié et utilisé pour identifier les propriétés de rupture du béton bitumineux renforcé par des grilles en fibres de verre.

Les essais de fatigue 4PB ont été étudiés avec du béton bitumineux (non) renforcé. Un modèle de fatigue identifiant les phases I et II a été adopté avec DEM, lequel a présenté la phase III naturellement dans DEM. L'effet de la grille est devenu distinct lorsque les fissures traversent la grille et les échantillons renforcés présentent une durée de vie en fatigue insuffisante en comparaison avec les expériences de AC renforcé. L'effet collectif de l'interface et de la grille présente une bonne cohérence avec les expériences.

Perspectives

Les modèles numériques développés et discutés dans cette thèse ont indiqué certaines tendances, clarifié certains résultats expérimentaux et suscité des questions. Pour tous les calculs, la granularité des matériaux simulés est restée la même.

Au chapitre 3, l'effet de la taille moyenne des particules a été augmenté dans la relation entre la résistance à la traction et la ténacité d'un matériau quasi-fragile. Comme indiqué à l'annexe B, le comportement quasi-fragile peut également dépendre de la transition entre les mécanismes de rupture fondés sur la résistance et la ténacité, caractérisée par le paramètre r. Une analyse physique de l'effet de la granularité sur la rupture des échantillons pré-fissurés peut donner une explication physique aux effets de taille en cas de rupture quasi-fragile.

Les modèles d'endommagement ont été orientés de manière à simuler le comportement du béton bitumineux et ses interactions avec les grilles en fibres de verre. Cependant, les approches en charges monotones et répétées peuvent être étendues à d'autres (géo) matériaux et à d'autres (géo) grilles.

Certains effets importants liés au comportement mécanique du béton bitumineux n'étaient pas explicitement isolés. Un aspect important à inclure dans la modélisation est l'identification des contributions élastiques et visqueuses sur la réponse du matériau. Les essais de fatigue sont généralement effectués à des fréquences relativement élevées, ce qui affecte la réponse du matériau. La xv température est également un paramètre à prendre en compte à l'avenir, qui affecte la viscosité de l'asphalte en laboratoire et dans les structures réelles.

Les essais de fatigue associés aux échantillons de béton bitumineux sont généralement pilotés en déformation. Le comportement de renforcement de la grille de fibres de verre semble être activé à des niveaux d'endommagement élevés et, par conséquent, à de faibles niveaux de rigidité de l'échantillon. Les essais controlé par le stress pourraient éventuellement permettre de mieux montrer la contribution de la grille de fibres aux niveaux de rigidité résiduels.

Les propriétés des grilles en fibres de verre ont été considérées comme parfaitement élastiques dans tous les calculs. La grille elle-même présente une rigidité à peu près constante lors des essais de fatigue avec des niveaux de déformation comparables à ceux de l'essai de flexion. Cependant, le comportement de la liaison entre la fibre de verre et le béton bitumineux n'est pas forcément indépendant du nombre de cycles. Des tests d'arrachement répétés peuvent donner des informations importantes sur le comportement en fatigue de cette connexion. Le comportement normal et, en particulier, tangentiel du l'interface béton bitumineux / grilles soumis à la fatigue constitue également un apport important pour la modélisation des poutres composites. Une interface qui présente une perte de rigidité considérable lors des tests peut contribuer de manière très différente de celle proposée par les résultats numériques de ce travail. Malgré toutes les incertitudes actuelles quant à la caractérisation des interfaces, le contrôle des propriétés de ces couches minces semble être un moyen de caractériser les performances en fatigue des éléments structuraux dans le béton bitumineux. This introduction includes the general background, research objectives and the outline of the thesis.
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General background

Asphalt concrete is widely used on the upper layers of road pavements. These structural elements are subjected to fatigue by repeated traffic loads, (daily and seasonal) temperature variations, foundation settlement, etc. The increasing traffic associated to costs and environmental issues raises the demand for high performance pavements.

In the last decade, the reinforcement by fiber glass grids has been applied to improve the mechanical response of pavement structure materials. Some properties of the fiber glass like high strength, stiffness and endurance, and low sensitivity to temperature makes it an interesting and cost-effective solution. Field and laboratory research points out some experimental evidences which still request a deeper understanding before leading to design principles.

An analysis of the perfomance of fiber glass grids on the deflection of asphalt concrete beams was performed by Arsenie et. al [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], based on 4-point alternate bending (4PB) tests. Her results opened the path for the project SolDuGri, funded by the French National Research Agency (ANR), where tests in real and laboratory scales have been performed. Among these different experiences, a special attention is given to wedge-splitting tests (WST) of pavement samples with interfaces containing fiber glass grids.

The interpretation of the results of 4PB tests was based on a continuum mechanics approach: damage mechanics, in fatigue. It has shown the complexity on associating reliable local behaviour to sample results due to the localization of strain and boundary effects related to the existence of fiber grids embedded in the asphalt concrete. The WST was analysed through fracture mechanics, which presented good initial trends relating material properties and test results.

The fact that asphalt concrete is composed by aggregates binded by a bituminous matrix induces an irregular structure to the composite material. That property may have consequences on the mechanical behaviour, specially the rupture. Discrete element modelling (DEM) is a very useful tool to investigate the effect of this natural disorder and its consequences on the mechanical response of the material.

Research objectives

The present work will explore the capabilities of a DEM environment, notably a finer description of the material concerning its inner heterogeneity to simulate asphalt concrete samples and the effect of the fiber glass grids on the mechanical response of the systems. In order to build a better understanding on the results of the laboratory tests (WST and 4PB), the main objectives of this thesis are described below:

1) Simulation in DEM of physically consistent behaviour of the asphalt concrete in terms of elasticity, strength and toughness.

2) Development of a discrete element model which reproduces the rupture behaviour of asphalt concrete under monotonic load and the extension to the description of the rupture of the interface between glass fiber grids and the asphalt concrete in opening mode.

3) Development of an alternate fatigue model in a discrete element approach adapted to asphalt concrete behaviour and numerically efficient to analyse the material behaviour during a very large number (10 5 -10 6 ) of loading cycles. 

Organization of the thesis

The present study is composed by the following parts:

The first chapter presents a literature review. The mechanical behaviour of the asphalt concrete and the fiber glass grids are presented. The most used methods for theoretical modelling of rupture are introduced, including linear elastic fracture mechanics, notions of fracture process zone and fatigue. Thus, the numerical methods for fracture and fatigue damage analysis are reviewed, where the application of discrete element method is emphasized.

Chapter 3 discusses the basic elements of the discrete element analysis: material generation, calibration of parameters, and identification of the fracture toughness with a bonded linear contact.

Chapter 4 concerns the monotonic rupture of asphalt concrete materials, which includes the interface with fiber glass grids. The application of a cohesive contact model adapted to this type of material is presented. The wedge-splitting tests of the interface are described (experimental and simulations setup). The analysis of wedge-splitting experiences associated to a parametric study of the discrete element model allows the identification of the mechanism of rupture and a simplified model for the interface is then proposed.

In Chapter 5, the failure by alternate fatigue loading is discussed. A local damage law is implemented at the contact level and adopted to describe the asphalt concrete fatigue behaviour. The 4-point bending (4PB) test adopted to identify the effect of the glass fiber grids in fatigue is presented. The simulation setup and the 2D representation of the grids are detailed. A parametric study of the discrete element model associated to the comparison with experimental results allows the identification of the role of the fiber grids on the fatigue life of the samples.

Finally, Chapter 6 summarizes the conclusions and findings of the present study, which are followed by the perspectives for future work. 

Introduction

Asphalt concrete (AC) has been widely used in pavement due to its good performance in terms of durability, comfort and an easy maintainability. From previous studies, the asphalt concrete is macroscopically isotropic and homogeneous material, with plenty of micro voids, micro cracks and other defects. However, different types of load are applied to the pavement materials, resulting in the damage and fatigue, and its performance is seriously weakened. The reinforcement methods have been widely proposed by the researchers. Of these methods, the fiberglass grid has been verified to be effective in reducing the fracture and prolonging the service life of AC pavement. A series of tests have been done to reveal the mechanism of fiber glass grid reinforcement. The study of AC performance as well as the effect of reinforcement lies on two aspects of the mechanical behaviour: the damage under the monotonic load and cyclic fatigue load, which will be reviewed respectively in this chapter. The wedge-splitting test and 4-point bending test are emphasised since they are studied in the following chapters.

Generally, the theory of material fracture behaviour consists of a strength failure criterion and the linear elastic fracture mechanics (LEFM). LEFM should still come firstly, in order to study the AC material mechanics in terms of the crack initiation and propagation. It applies for the fracture of brittle materials. However, for other materials, the theoretical description should be determined based on the experimental results, and the fracture process zone (FPZ) may explain some phenomena that can not be solved by LEFM in term of the micro crack zone and energy release rate. The material fatigue is another mechanical behaviour. In this chapter, the fatigue life is characterized by the stiffness degradation, and the theory with respect to the fatigue damage and fatigue life will be reviewed.

The defects in AC material may affect the mechanical behaviour, thus in the numerical study, their representation should be well considered somehow. Meanwhile, the macroscopic physical properties should be reproduced. From this point of view, the discrete element method (DEM) seems to be an ideal numerical method which will be emphasised during the review of the numerical method. The cohesive zone model (CZM) is reviewed especially for the incorporation with DEM, which solved the fracture propagation with FPZ under monotonic load. The numerical simulation in fatigue damage also requires the fatigue model, which should well reproduce the fatigue life and the damage evolution during fatigue load in DEM.

Asphaltic pavement materials 2.2.1 Asphalt concrete

The asphalt concrete (AC) is mainly a mixture of aggregates and bitumen as binder. It is characterized by good toughness, good compression resistance, good tension resistance and bad thermostability, and it is convenient for installation and maintenance. The AC pavement also contributes to the comfortable and quiet driving experience, thus widely adopted in the road pavement, especially for the high-type pavement.

The performance of asphalt concrete is the collective effect of aggregate and bitumen. The aggregate usually have high stiffness and strength and they interlock each other by internal friction and locking force. The aggregates are the principal load-supporting components of an AC pavement. Different types of aggregates have been adopted such as sand, gravel, crushed stone or rock dust. The aggregate size, grade, shape, toughness, soundness, surface cleanliness and surface texture are important for the AC performance.

The overall asphalt binder includes bitumen (the petroleum-based asphalt, coal tar, and natural tar) as well as any material (mineral powder, fiber glass) added to modify the original asphalt properties. It helps to provide good elasticity, resilience, high plasticity under the temperature variation, which contributes to comfort and safety of driving and durability of pavement.

There are two types of asphalt mixes: hot-mix and cold-mix. Hot-mix asphalt (HMA) is more commonly used, while cold-mix asphalt (generally mixes made with emulsified or cut-back asphalts) is usually used for light to medium traffic secondary roads, or for remote locations or maintenance use. During fabrication process, the void content and compaction level of asphalt concrete influences the performance, based on the study by [START_REF] Masad | Internal structure characterization of asphalt concrete using image analysis[END_REF].

Although the AC pavement presents several advantages in the performance comparing to the cement concrete, it still needs some improvements due to particular service conditions. There are several causes which lead to the pavement distress and may produce movements at discontinuously and inhomogeneously. These causes are: (a) low temperature contraction, (b) daily temperature cycles, (c) traffic loads and (d) high temperature deformation, which results in cracking and deformation.

Low temperature leads to the contraction in asphalt concrete. And it also results in lower plasticity and increases the stiffness of asphalt concrete. Consequently, the AC pavement layer is easier to crack. High temperature increases the flexibility of the asphalt concrete, thus leading to rutting problem in AC pavement layer. The heavy and cyclic traffic loads and the temperature loads directly act on the pavement, which leads to the deformation and damage of the AC pavement layer.

Reinforcement of asphalt concrete

AC pavement encounters a great danger of fatigue and crack propagation resulting from the repeated traffic load and climatic factors as mentioned above. When the service life is approached, the pavement suffers from an increasingly serious damage and becomes unusable for service. Thus it is an important issue to study the methodology to prolong the service life and load resistance performance of asphalt concrete. The researches cover the following aspects: 1) the type, size and volumetric content of aggregate, the type of asphalt;

2) asphalt mixed with special materials, fiber glass [START_REF] Guo | Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture[END_REF], polyester fiber [4] for example;

3) imposing grid layer for reinforcement between two AC layers. For these points, the second and the third items can deal with the reinforcement.

Wu [5] performed a series of laboratory tests on asphalt concrete with fiber glass, the results suggested that fiber glass increased the bending failure strain but had no effect on the bending failure strength. In Guo's study [START_REF] Guo | Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture[END_REF], the fiber glass could decrease the rutting of traffic load. And under indirect tensile fatigue tests, the fatigue life had a clear improved, but less than 1.5 times. In Ge's research [START_REF] Ge | Glass fiber reinforced asphalt membrane for interlayer bonding between asphalt overlay and concrete pavement[END_REF], different materials (i.e. modified asphalt, modified emulsified asphalt, fiber glass reinforced modified emulsified asphalt and modified fiber glass reinforced asphalt) were adopted for the interface between asphalt concrete and cement concrete. The result showed that all the specimens with fiber glass reinforcement presented a longer fatigue life. The problem is that it is difficult to compact even for short fibers.

Fiber glass grid is an ideal material placed between 2 layers of asphalt concrete, which has been used for decades of years, see Figure 2.1. From the literature, it is indicated that fiber glass grid helps to distribute the stress and prevent crack propagation from top to bottom and the opposite direction [START_REF] Hu | Modelling tensile strain response in asphalt pavements: Bottom-up and/or top-down fatigue crack initiation[END_REF], to dissipate the stress concentration due to the reflect crack and fatigue crack, and to function as moisture barriers [START_REF] Nguyen | Review of glass fibre grid use for pavement reinforcement and apt experiments at ifsttar[END_REF], which significantly reduces the damage and improves the service life. However, up to now, the choice of the appropriate grid (mesh size, tensile strength) and its optimal location in the pavement system are mainly based on experience from lab experiments and in-situ observations [START_REF] Nguyen | Review of glass fibre grid use for pavement reinforcement and apt experiments at ifsttar[END_REF].

fiber grid Asphalt concrete layer 

Fiber glass grid

The present fibers are of different types: fiber glass, boron fiber, carbon fiber, organic fiber, oxidized fiber and silicon carbide fiber. The fiber glass is widely used for reinforcement with the caoutchouc reinforcement. The industrial manufacture of fiber glass began at 1930s [START_REF] Bathias | Matériaux composites[END_REF] and the association of Owens Corning was built in the same period. The fiber glass possesses a good strength due to the shape and it is of high productive efficiency.

The synthetic resin is employed as the matrix of the composite due to the advantages and properties listed below: (a) the temperature of utilisation is lower than that of metals, (b) good resistance in the corrosive media, (c) the low mechanical modulus that facilitates the transfer of charge in the fibers. It is categorised by thermoplastic and thermosetting resin, and the former one is mostly used in the fiber glass.

The fiber glass grid is the material composed by the filament of fiber glass of diameter from 10 ∼ 30 mm, glued by a kind of synthetic resin. It has been used as the reinforcement in the road engineering since 1960s, experiences an increasing utilization in 1990s and nowadays it is used systematically and effectively [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. Up to now, there is not the optimised position for the application of fiber glass grid in the pavement structure [START_REF] Nguyen | Review of glass fibre grid use for pavement reinforcement and apt experiments at ifsttar[END_REF]. Since the fiber glass grid is used to stop the fracture propagation, it should be placed at the depth where the pavement was affected by the distresses seriously. However, some researchers stated that the crack may initiate at either the bottom or the top of the pavement layer, and propagates to the opposite. In practice, the fiber glass grid is usually placed in the bottom of the AC layer, between the AC layers and base course pavement layers, with a bitumen emulsion layed on the top of the base course layer. The interface plays the significant effect on the expected performance, thus the fiber glass grid should be well glued [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF].

Reinforcement mechanism by fiber glass grid for asphalt concrete

Button and Lytton [START_REF] Button | Evaluation of fabrics, fibers and grids in overlays[END_REF] summarized this reinforcement mechanism as follows:

1) The crack starts to propagate from its original position upward until it reaches the reinforcement layer due to thermal and traffic loading or uneven soil movements;

2) If the interlayer is stiff enough (stiffer than the surrounding materials), the crack will turn laterally and move along the interface until its energy is exhausted.

3) Based on this mechanism, a reinforcement interlayer may contribute to the structural resistance capacity of the pavement.

Evaluation of fatigue resistance is mostly based on bending tests on grid reinforced beams under cyclic loading. There are 2 aspects that influence the effect of reinforcement: interaction between the reinforcing product and surrounding materials (e.g. bonding interface, interlocking with the aggregates), and properties of reinforcing material (e.g. tensile strength).

The fiber glass grid has regular apertures which allows the interlocking effect. The interlocking phenomena restrains lateral movement of the aggregates, and thus greatly decreases shear potential. If the aperture size is excessive large, the stress dissipating capability is weakened, while a fine grid with quite small apertures reduces the interlocking and also has bad reinforcement effect [START_REF] Vanelstraete | Prevention of reflective cracking in pavements[END_REF][START_REF] Jaecklin | Asphalt reinforcing using glass fibre grid" glasphalt[END_REF].

When it comes to the test method, the adhesion test is normally conducted with regard to the stiffness and strength issues, with monotonic load [START_REF] Piber | Rilem interlaboratory test on interlayer bonding of asphalt pavements[END_REF][START_REF] Leutner | Untersuchung des schichtenverbundes beim bituminösen oberbau[END_REF][START_REF] Vismara | Characterizing the effects of geosynthetics in asphalt pavements[END_REF]. The fatigue resistance test is used to investigate the damage process (crack initiation, propagation) under repeated traffic loading and thermal load [START_REF] Arsenie | Modelling of the fatigue damage of a geogrid-reinforced asphalt concrete[END_REF][START_REF] Arsenie | Laboratory characterisation of the fatigue behaviour of a glass fibre grid-reinforced asphalt concrete using 4pb tests[END_REF][START_REF] Lytton | Reinforcing fiberglass grids for asphalt overlays[END_REF]. The three point bending test by [START_REF] Lee | Mechanical performance and crack retardation study of a fiberglass-grid-reinforced asphalt concrete system[END_REF] proved that the application of the fiber glass grid increased 45% of the bending strength.

In the early studies, researchers found the poor performance of grid resulting from de-bonding (or de-lamination) for the glass fiber grid composite forming interface between two AC layers [START_REF] Scullion | Performance report on jointed concrete pavement repair strategies in texas[END_REF][START_REF] De Bondt | 20 years of research on asphalt reinforcement-achievements and future needs[END_REF], although it can be improved by the compaction from the traffic load during service [START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF]. To mitigate the debonding for the interface, fiber glass grids are generally used with a tack coat, which can improve the initial tensile performance [START_REF] Aldea | Effect of coating on fiberglass geogrid performance[END_REF][START_REF] Hakimzadeh | Development of fracture-energy based interface bond test for asphalt concrete[END_REF]. In the study of [START_REF] Hakimzadeh | Development of fracture-energy based interface bond test for asphalt concrete[END_REF], adhesion tests were performed with different types of tack coats, different fracture energies were obtained correspondingly. To strengthen this improvement, a light polyester nonwoven was applied working together with tack coat, meanwhile permitting the aggregate pass thorough easily and thus ensuring interlocking. Recently, a new material has been developed to replace the traditional tack film, which is partially melted at the typical asphalt melting temperatures during the application, so that it significantly simplifies the installation of grids [START_REF] Nguyen | Review of glass fibre grid use for pavement reinforcement and apt experiments at ifsttar[END_REF]. Although some encouraging results have been drawn, there are still some points to be noticed. Their main disadvantages may be the bonding with the asphalt material and difficulties to recycle the reinforced asphalt materials [START_REF] Nguyen | Review of glass fibre grid use for pavement reinforcement and apt experiments at ifsttar[END_REF]. The cost of fiber glass should be comparable with the regular maintenance cost without reinforcement, since costperformance should be carefully considered.

Material mechanical behaviour

Material mechanical properties consist of elasticity, plasticity, strength, toughness, fracture toughness, fatigue damage. Generally, for different materials and different applications, one or multi properties need to be considered and studied. Some properties are sensitive to the load pattern and the temperature. For example, the strength of the materials may depends on the loading rate. The material plasticity and toughness are affected by the temperature. In this thesis, the asphalt concrete mechanical properties such as the fracture and the fatigue damage are the main research objectives. Thus they are introduced as follows.

Fracture behaviour

The material failure occurs when the load is large enough so that the material (nominal) strength is reached. The material fracture behaviour including the initiation and propagation has been studied widely by researchers. It has turned out different materials (metal, engineering plastics, ceramic or ceramic composite, concrete and rock) present strongly different fracture behaviours. Normally, the study of fracture behaviour on the (quasi-)brittle material assumes that an artificial macro crack already exists in the material. For the brittle and quasibrittle materials, the stress concentrations exist at the crack tips and the critical strengths (also called nominal strength) exist, above which the cracks begin to propagate. It has been widely demonstrated that the determination of nominal strength is highly dependent on the crack length, which will be reviewed in detail in the Section 2.4. To study the fracture behaviour, the double cantilever beam (DCB) specimen (see Figure 2.2) is suitable for both mode I and II, or the mix-mode [START_REF] Anderson | Fracture mechanics: fundamentals and applications[END_REF].

Though the DCB test is the most direct method to investigate the fracture properties, it still presents the difficulties in loading device in practice. The single-edge 

(a) (b) (c)

Wedge-splitting test of the interface between fiber glass grid and asphalt concrete

The wedge-splitting test (WST) has been widely used for the determination of fracture energy and fracture toughness on concrete-like materials, with the measurement of load and displacement. The specimen for WST can either be a cube or a cylinder [START_REF] Brühwiler | The wedge splitting test, a new method of performing stable fracture mechanics tests[END_REF]. WST is used especially for the study of crack of opening mode along the interface.

Tschegg [START_REF] Tschegg | Fracture behavior of geosynthetic interlayers in road pavements[END_REF] performed the WST with cylinder samples. The fracture behaviour of interface between asphalt overlay and interlayer with different geosynthetics reinforcement was investigated. The study indicated that good bonding between the interlayer and the asphalt layer is important for high resistance against the reflective crack propagation.

A series of WSTs were conducted by Kim and Buttlar [START_REF] Kim | Multi-scale fracture modeling of asphalt composite structures[END_REF][START_REF] Kim | Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model[END_REF][START_REF] Kim | Discrete fracture modeling of asphalt concrete[END_REF][START_REF] Kim | Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test[END_REF]. The effects of specimen size, aggregate size (9.5 mm and 19 mm), aggregate type and environment temperature (-10 • C and 0 • C) on the resistance of crack propagation were studied with cylinder samples. For his result, Kim argued that a larger specimen has more significant viscoelastic behaviour. The larger aggregate size leaded to slightly smaller peak load and more compliance for the softening curves. The higher temperature leaded to larger fracture energy and smaller peak load.

In order to study the crack propagation behaviour of asphalt concrete, the experiments were performed on the (non-)reinforced AC specimens, in which the interface existed between two AC layers for both reinforced and non-reinforced AC [START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF][START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF]. For her results, the reinforced specimen, regardless of their fiber grid type, leaded to about 30% reduction of the peak load. The fracture energy was also reduced due to the application of the fiber grid.

Fatigue behaviour

Repeated load induces an apparent stiffness degradation of the material related to complex physical phenomena such as self-heating, thixotropy (which are reversible) and damage (not reversible) [START_REF] Moreno-Navarro | A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective[END_REF][START_REF] Mangiafico | Quantification of biasing effects during fatigue tests on asphalt mixes: non-linearity, self-heating and thixotropy[END_REF]. Related to the latter phenomenon, the propagation of defects may lead to the coalescence of cracks and the consequent failure of the structure. In the present thesis, all this processes are simply referred as fatigue damage due to the relative simplicity of its mathematical description. The fatigue failure criterion is different from the static and quasi-static strength since: 1) Enough load cycles are required before fatigue crack initializes and during the fatigue crack propagation.

2) The static strength is not reached during the repeated load.

Generally, the material fatigue is initialized because of the evolution of existing micro cracks and the generation of new micro cracks. With cumulated effort of the cyclic load, the cracks become larger and coalesce, and finally the material breaks or fails. Fatigue life is of great importance for the structure design, which can be defined as the number of load cycles before the fatigue failure. Based on the traditional fatigue failure criterion, fatigue failure is defined as the point at which the material modulus reduces to 50% of its initial value, since for most materials, the rapid damage of materials begins at around this value and the materials present bad performance of load resistance [START_REF] Sabouri | Development of a failure criterion for asphalt mixtures under different modes of fatigue loading[END_REF], while other researchers argued that the phase angle should be chosen to determine the fatigue life in fatigue test [START_REF] Reese | Properties of aged asphalt binder related to asphalt concrete fatigue life[END_REF][START_REF] Luo | Fatigue behavior of epoxy asphalt concrete and its moisture susceptibility from flexural stiffness and phase angle[END_REF]. The fatigue life was also characterised by the yield point at Weibull plot [START_REF] Tsai | Application of weibull theory in prediction of asphalt concrete fatigue performance[END_REF].

Fatigue behaviour for asphalt concrete

Asphalt concrete is located on the first layer of the road, and suffers the distresses such as the traffic loads and climatological events during its service life [START_REF] Dattoma | Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model[END_REF][START_REF] Fathima | A thermodynamic framework for fatigue crack growth in concrete[END_REF]. The fatigue behaviour in asphalt concrete were widely studied in recent years.

In Moreno-Navarro's study [START_REF] Moreno-Navarro | A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective[END_REF], the global process involves three main phenomena: 1)accumulation of permanent deformations; 2) reversible degradation and initiation of irreversible damage (micro cracks); 3) crack propagation (the coalescence of micro cracks produces the localization and propagation of macro cracks). The results obtained in a typical cyclic loading test can be divided into three stages, as described in Figure 2.4 . Moreno-Navarro argued that the initial sharp decrease is ascribed to the permanent deformation, and this permanent deformation has an effect on the material viscoelastic properties (i.e. strain hardening phenomenon, material becomes more rigid and elastic.), resulting in the sharp decrease in fatigue process, which has also been verified by [START_REF] Weichert | Inelastic behaviour of structures under variable repeated loads: direct analysis methods[END_REF][START_REF] Zhang | Shakedown of porous materials[END_REF]. Part of the stiffness loss is revisable, considering the presence of a thixotropic process in the asphalt co-existing during the damage process. 

Effect of the fiber glass grid in fatigue behaviour

The AC pavement is directly exposed to the traffic load, which is the typical cyclic bending load. The bending test is very popular to study the fatigue especially for the simplification of the cyclic traffic load.

Lee [START_REF] Lee | Mechanical performance and crack retardation study of a fiberglass-grid-reinforced asphalt concrete system[END_REF] performed the 3PB uni-directional fatigue tests shown in Figure 2.5a. The flexural strain was measured, and results showed that about 5 ∼ 7 times of fatigue life increment was obtained (See Figure 2.5 (b)). However, the stress controlled load leads to uncontrolled dramatic crack propagation in the last phase of the fatigue damage.

In Arsenie's thesis [START_REF] Arsenie | Modelling of the fatigue damage of a geogrid-reinforced asphalt concrete[END_REF], the strain-controlled 4PB fatigue tests were performed (See 

Material theoretical modelling 2.4.1 Material stiffness and strength

In the following sections, the material stress and strain distribution will be discussed in 3 different cases as follows:

1)For the homogeneous (quasi-)brittle material under homogeneous monotonic load, the stress is proportional to the deformation or strain, described by the elastic modulus. In this case, The breakage occurs as soon as the material strength is reached. This material failure criteria is called strength criterion.

2)However, as the crack exists in the material, the material failure criteria transfers from strength criteria to LEFM [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF], due to the stress singularity at the crack tip, in which case the stress and strain will be discussed in Section 2.4.2.

3)Another case is the material stress and strain under the fatigue model. The local strain softening occurs under low and cyclic load, which will be discussed in Section 2.7.

Linear elastic fracture mechanics (LEFM)

In 1920, Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london[END_REF] studied crack propagation problem from the point of view of energy, and he explained that the crack propagation is attributed to the energy that overcomes the material resistance. Griffith's original concept of fracture was based on the energy released during crack extension. This method was further developed by Irwin [START_REF] Irwin | Fracturing of metals[END_REF]. For linear elastic materials, the energy and the stress field approaches can be considered equivalent.

In energy balance criterion, the critical stress σ c is given as follows:

σ c = 2Eγ πa (2.1)
where E is elastic modulus, γ is the surface energy (energy per unit area), a is half length of the crack. When the stress is larger than σ c , the crack instability propagation is assumed to occur.

In 1947, Irwin [START_REF] Irwin | Fracturing of metals[END_REF] proposed a stress intensity factor K to quantitatively describe the crack tip stress field. He also found the relation between stress intensity factor and energy balance criterion, which established the foundation of fracture mechanics.

In the following part of this section, for better understanding, the near-tip crack stress field is firstly introduced and then the energy release rate.

The crack mode and elastic stress field

Among various mathematical methods in plane elasticity, the Westergaard function method [START_REF] Westergaard | Bearing pressures and cracks[END_REF][START_REF] Sun | Fracture Mechanics[END_REF] is more convenient than the other methods to describe the basic crack problems, which is used to find the elasticity solutions for an infinite plane with a center crack under uniform tension (mode I), in-plane shear (mode II), and anti-plane shear loading (mode III), respectively. The Westergaard solutions are given below for each of the three modes in relation to the coordinate system shown in Figure 2.7. The origins of the polar coordinate system (r, θ) and rectangular coordinate system (X, Y ) are located at the crack tip, K terms are the stress intensity factor for each mode, E is the Young's modulus, ν is Poisson ratio, shear modulus µ = E/[2(1 + ν)], κ = 3 -4ν for plane strain and κ = (3 -ν)/(1 + ν) for plane stress. Opening Mode, I : The two crack surfaces are pulled apart in the Y direction, that is, they move away symmetrically with respect to the undeformed crack plane (xz-plane). For the pure Mode I, the stress far from the crack tip can be described in polar coordinate in Figure 2.8.

The stress and displacement fields given by Westergaard Function Method in polar coordinate system are given by: )

σ rr = K I √ 2πr cos θ 2 1 + sin 2 θ 2 (2.2)
σ θθ = K I √ 2πr cos θ 2 1 -sin 2 θ 2 (2.
3)

σ rθ = K I √ 2πr sin θ 2 cos 2 θ 2 (2.4) u r = K I 8µπ √ 2πr (2κ -1) cos θ 2 -cos 3θ 2 (2.5) u θ = K I 8µπ √ 2πr -(2κ + 1) sin θ 2 + sin 3θ 2 (2.6)
Based on the Equation 2.2, the stress distribution at the crack tip is presented in Figure 2.9. The stress will be infinite (stress singularity) when it approaches the crack tip, which means that the strength criteria for the homogeneous material doesn't apply when crack exists. Thus the critical stress intensity (also called fracture toughness) is proposed as the crack propagation and the material failure criterion. Herein, the critical stress intensity factor under maximum stress with crack length 2a is expressed by Equation 2.7.

K IC = σ max √ πa (2.7) 𝑥𝑥 𝜎𝜎 𝑦𝑦𝑦𝑦 crack Figure 2.9:
The stress distribution at the crack tip.

Shearing Mode, II : The two crack surfaces slide over each other in the xdirection, that is, they slide against each other along directions perpendicular to the crack front but in the same undeformed plane. For the pure Mode II, the stress near the crack tip can be described in polar coordinate in The stress and displacement fields given by Westergaard Function Method in polar coordinate system are given by:

σ rr = K II √ 2πr sin θ 2 1 -3 sin 2 θ 2 (2.8) σ θθ = K II √ 2πr sin θ 2 3 sin 2 θ 2 - 1 
(2.9)

σ rθ = K II √ 2πr cos θ 2 1 -3 sin 2 θ 2 (2.10) u r = K II 8µπ √ 2πr -(2κ -1) sin θ 2 + 3 sin 3θ 2 (2.11) u θ = K II 8µπ √ 2πr -(2κ + 1) cos θ 2 + 3 cos 3θ 2 (2.12)
Tearing Mode, III : The crack surfaces slide over each other in the z-direction, that is, they tear over each other in the directions parallel to the crack front but in the same undeformed plane. Mode III is a tearing mode (see Figure 2.11).

The stress and displacement fields given be Westergaard Function Method in polar coordinate system are given by:

σ rz = K III √ 2πr sin θ 2 (2.13) σ θz = K III √ 2πr cos θ 2 (2.14) u z = K II µπ √ 2πr sin θ 2 (2.15)
Equation 2.2 to 2.14 present the stress and displacement fields of the three basic modes, solved by Westergaard Function Method. Any fracture mode in a cracked body may be viewed as a superposition of these basic modes. 

Energy release rate

Concept of energy release rate

The stress distribution at the near-tip stress field is described above in stress field method. In the near-tip stress field method, crack growth is dominated by the local stress field around the crack tip, which is characterized by the stress intensity factor K. Fracture occurs when the stress intensity factor reaches its critical value K c (fracture toughness). Alternatively, energy method is also a basic method of LEFM. In the energy method, the fracture behaviour of a material is characterized by the energy release rate G, which is defined as the energy dissipated during fracture per unit of newly created fracture surface area, as expressed by Equation 2.16,

G = - ∂(U -V ) ∂Q , (2.16) 
where U is the potential energy available for crack growth, V is the work associated with any external forces acting, and Q is the extended crack area for 3D problems and crack length for 2D problems.

According to Griffith's original concept [START_REF] Griffith | The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london[END_REF], the work done during a crack ex-tension must be equal to the surface energy stored in the newly created surfaces.

Fracture occurs when the energy release rate reaches its critical value G c (fracture energy, J/m 2 ).

Loading path independence [START_REF] Sun | Fracture Mechanics[END_REF] Based on the Griffith theory for fracture of perfectly brittle elastic solids, during crack extension of da, the work done dW e by external forces the increment of surface energy dW s , and the increment of elastic strain energy dU must satisfy the following equation:

dW s + dU = dW e (2.

17)

Figure 2.12: A single edge cracked specimen (Modified from [START_REF] Sun | Fracture Mechanics[END_REF]).

Consider a single-edge-cracked elastic specimen subjected to a tensile load P or displacement δ as shown in Figure 2.12. The relationship between the applied tensile force P and the elastic extension, or displacement, δ is

δ = SP, (2.18) 
where S denotes the elastic compliance of the specimen containing the crack. The strain energy stored in this specimen is

U = δ=SP δ=0 P dδ = δ=SP δ=0 δ S dδ = 1 2 SP 2 . (2.19)
The compliance S is a function of the crack length. The incremental strain energy under the condition of varying a and P is

dU = 1 2 P 2 dS + SP dP. (2.20)
Then two cases during the crack are discussed, respectively the fixed displacement (δ) case and fixed loading force (P ) case.

Case 1, the fixed displacement:

The fixed boundary during the extension of the crack lead to dδ = SdP +P ds = 0, thus we have SdP = -P dS. Substitution of the preceding equation in 2.20 yields

dU | δ = - 1 2 P 2 dS. (2.21) 
Furthermore, dW e = 0 in this case because dδ = 0 and, thus, the external load does no work. Substituting Equation 2.21 and using dW e = 0, we have

dW S = -dU | δ = 1 2 P 2 dS. (2.22)
Thus, a decrease in strain energy U is compensated by an increase of the same amount in the surface energy. In other words, the energy consumed during crack propagation is entirely supplied by the strain energy stored in the cracked body.

Case 2, the fixed loading force:

The constant applied force P during the crack propagation leads to dP = 0, thus we have

dU | P = 1 2 P 2 dS. (2.23)
There is a gain in strain energy during crack propagation in this case. Moreover, we note that dW e = P dδ = P 2 dS.

(2.24) Substituting Equation 2.23 and 2.24, we again obtain

dW S = dU | δ = 1 2 P 2 dS, (2.25) 
which is half of the work done by the external force. It is interesting to note that the work done by the external force is split equally into the surface energy and an increase in strain energy. Taking case 1 and case 2 to compare, we have, FOR both boundary conditions discussed before, the energy released during crack propagation is

dW = dW e -dU = 1 2 P 2 dS. (2.26)
The corresponding energy release rate G is

G = dW da = 1 2 P 2 dS da . (2.27) 
Hence, the energy release rate is independent of the type of loading. And the released energy due to crack propagation can always be obtained by the area in Figure 2.13. Thus, the energy release rate can be calculated by 

G = - dU da = - 1 2 
P i δ j + P j δ i da . ( 2 

The relation between G and K

For the linear elastic material, the energy method and the stress field method can be considered equivalent. There exists a unique relation between the energy release rate G and the stress intensity factor K. This relationship can be established by the crack closure method (CCM). CCM takes two states (i.e. crack before propagation and crack after propagation as shown in Figure 2.14) into account.

Before extension: a x y x' y'

After extension: a+da The energy release rate and crack intensity factor are related by the same consumed energy during the crack propagation. The normal stress σ yy ahead of the crack tip (θ = 0)/ (before propagation) is

σ yy = K I (a) √ 2πx , (2.29) 
where K I (a) is the stress intensity factor and the origin of the coordinate system x-y is at the crack tip.

After the assumed crack extension of da, new crack surfaces are created in 0 x da and the displacement of the upper face is given by [START_REF] Sun | Fracture Mechanics[END_REF], which can be written in x'-y' coordinates (with the origin at the grown crack tip) as

u y = κ + 1 4µπ K I 2π(-x ) (2.30)
For plain strain, κ = 3 -4ν, and for plain stress, κ = (3 -ν)/(1 + ν). Noting that x = x -da, we rewrite this expression as

u y = κ + 1 4µπ K I 2π(da -x), (2.31) 
where

K I = K I (a + da).
Because da is vanishingly small, K I in Eq. 2.31 can be taken to be equal to K I (a).

The energy release rate can be calculated by the integration of stress and displacement at the crack tip. That is, the released energy is equal to the work done by σ yy in equation 2.30 traversing u yy in equation 2.31. Thus we have

G I da = 2 da 0 1 2 σ yy u y dx, (2.32) 
where the factor 2 on the right side accounts for the two (upper and lower) crack surfaces. Substitution of Eqs. 2.30 and 2.31 into the expression 2.32 yields

G I = κ + 1 8µ K 2 I . (2.33) 
For plain strain, we have

G I = 1 -ν 2µ K 2 I = 1 -ν 2 E K 2 I . (2.34)
For plain stress, we have

G I = K 2 I 2µ(1 + ν) = K 2 I E . (2.35)
For Mode II and Mode III problems, if the crack is assumed to grow in its original direction of the main crack, we can obtain similar relations between G and K as follows:
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G II = κ + 1 8µ K 2 II , (2.36) 
G III = 1 2µ K 2 III .
(2.37)

Fatigue crack growth -Paris' law

Paris's law relates the stress intensity factor to sub-critical crack growth under a fatigue stress regime [START_REF] Paris | A critical analysis of crack propagation laws[END_REF]. It is the most popular fatigue crack growth model used in fracture mechanics. The basic formula reads in Equation 2.38,

da dN = C (∆K) m (2.38)
where a is half of the fatigue crack length; N is the number of load cycles. C and m is a variable related to material fatigue behaviour, of which C is a scaler of number of load cycles N c and it is independent on crack length 2a and remote stress σ; ∆K is the stress intensity factor variation in a load cycle, as shown Equation 2.39.

∆K = K max -K min (2.39)
At a certain crack tip, ∆K is a function of increase of global tensile stress σ and crack length a, expressed in Equation 2.40, and ∆σ is the range of cyclic stress amplitude, Y is dimensionless variable related to specimen geometry [START_REF] Sun | Fracture Mechanics[END_REF] which equals 1 for an infinite plane.

∆K = ∆σY √ πa (2.40)
When we substitute 2.40 into Equation 2.38 and then integrate, the remaining number of cycles N r for the crack propagation from a 0 to a t is derived as Equation 2.41.

N r = Nr 0 dN = at a 0 da ∆σY √ π = 2 a 2-m 2 t -a 2-m 2 0 (2 -m) C (∆σY √ π) m (2.41)
Paris' law can be used to quantify the residual life of a specimen with a given crack size. However, the damage of asphalt concrete is generally initialized with micro cracks, followed with coalescent macro cracks, thus demanding for a special consideration when it is utilized as local fatigue model.

Fracture process zone (FPZ)

Glucklich [START_REF] Glucklich | Fracture of plain concrete[END_REF] examined the fracture of concrete using fracture mechanics approach and revealed that the strain energy is converted mainly to surface energy but the surface involved is much larger than the surface of the effective crack. Later, it was found that during load, a large size of damage zone exists ahead of the macro crack [START_REF] Kumar | Fracture mechanics of concrete-state-of-the-art review[END_REF], which is later called fracture process zone (FPZ). The FPZ has a capability to still transfer the closing stress across the micro crack faces, which consumes energy during the crack propagation. The stress in FPZ decreases with increasing deformation.

Many different techniques have been adopted to measure the shape and size of the FPZ, including optical microscopy [START_REF] Derucher | Application of the scanning electron microscope to fracture studies of concrete[END_REF], scanning electron microscopy [START_REF] Mindess | A preliminary sem study of crack propagation in mortar[END_REF][START_REF] Mindess | A device for direct observation of cracking of cement paste or mortar under compressive loading within a scanning electron microscope[END_REF]. high-speed photography [START_REF] Bhargava | High-speed photography for fracture studies of concrete[END_REF], laser speckle interferometry [START_REF] Ansari | Mechanism of microcrack formation in concrete[END_REF], compliance and multicutting techniques [START_REF] Hu | Experimental method to determine extension of fracture-process zone[END_REF], ultrasonic measurement [START_REF] Sakata | Crack evaluation in concrete members based on ultrasonic spectroscopy[END_REF], and acoustic emission (AE) technique [START_REF] Maji | Process zone and acoustic-emission measurements in concrete[END_REF].

To study FPZ in concrete, splitting tests were conducted by Otsuka [START_REF] Otsuka | Fracture process zone in concrete tension specimen[END_REF], and the micro cracks were inspected by X-rays and three-dimensional Acoustic Emission (AE) techniques. In his study, the micro crack zone is defined with 2 categories namely fracture core zone (FCZ) and fracture process zone (FPZ), corresponding to 70% and 95% of the total energy of all AE events as shown in schematic map of Figure 2.15. In FCZ, more densely distributed AE events are observed, which implies more micro cracks presence in this area.

For different materials, the size and shape of FPZ can be totally different. A fine-grained silicon oxide ceramic has FPZ size of 0.1 mm, while it is 3 m for concrete dam with extra large aggregate. The materials are categorized based on the different FPZ properties (e.g. size and stress resistance). The difference in regard of the traction separation law is shown in Figure 2.16. When FPZ is large enough to significantly influence the fracture behaviour of material, LEFM fails to describe crack growth due to the large amount of energy released in this zone. 

Damage mechanics 2.7.1 Principles

Damage mechanics is concerned on the representation, or modelling, of material damage, which is intended for engineering predictions about the initiation, propagation of material fracture. The damage may be caused by any kind of load, such as thermodynamic load, mechanical load and ageing. The damage mechanics should include both the damage initiation criterion and damage evolution model. In damage mechanics, a state factor is adopted to describe the effect of damage on the stiffness, strength or the remaining life of the material, and it possesses the similar formula:

A = (1 -D) × A o (2.42)
where D is the damage factor, A o is the initial stiffness or strength, A is the remaining of the corresponding variables.

For example, the stiffness of the concrete with damage is usually described as follows:

E = (1 -D) × E o (2.43)
where E and E o are respectively the current and original modulus of concrete.

Fatigue damage

Considering the duration of fatigue life, the fatigue can also be categorized into high-cycle fatigue (HCF) (also called stress fatigue) and low-cycle fatigue (LCF)(also called strain fatigue). For HCF, the load is larger than yield stress, so that the loading cycles are quite low (generally smaller than 10 4 ), while for LCF, the load is low, so that the strain is a control parameter to determine the fatigue level.

From the laboratory test on asphalt concrete specimen, a typical fatigue process is normally divided into 3 phases, as shown in Figure 2.4. In phase I, the stiffness undergoes a steep decline. The phase II exhibits a stable and slow decrease of the global stiffness (due to the effect of the reversible phenomena and the initiation of the fatigue damage in the form of micro cracks [START_REF] Moreno-Navarro | A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective[END_REF]), which takes up the longest time of fatigue life. In the phase III, sharp decline of stiffness occurs because of the damage accumulation and the propagation of the resultant macro cracks.

Asphalt concrete fatigue life

Fatigue in AC mixtures is defined as the phenomenon causing cracking (consisting of a crack initiation and propagation) due to the tensile strains generated in pavements when subjected to load repetition, temperature variation, and inadequate construction practices collectively [START_REF] Wu | Assessment of residual life of bituminous layers for the design of pavement strengthening[END_REF]. The fatigue models and fatigue life prediction are usually obtained from experiments.

Gul [START_REF] Gul | Modelling and characterising the fatigue behaviour of asphaltic concrete mixtures[END_REF] conducted the indirect tensile fatigue test with asphalt concrete. The repeated load was applied with constant force amplitude. A non-linear model to relate fatigue life to initial strain was concluded from a series of test of different initial strain, taking into account the viscosity, the optimum bitumen content and the resilient modulus, expressed in Equation 2. [START_REF] Zhang | Shakedown of porous materials[END_REF].

N f = 1.367 × 10 -8 × ε -2.556 × η 9.154 × ν 9.154 B × E 2.655 (2.44)
where N f = is the number of cycles to the failure ; ε is initial strain; η is bitumen viscosity; ν B is optimum bitumen content, percentage; E (unit : M P a) is resilient modulus.

Other researches also attempted to discover the functions to relate the fatigue life to one or a set of parameters, which are presented in Table 2.1.

2.8 Numerical methods adapted to asphalt concrete modelling

Particularity of the asphalt concrete

Asphalt concrete is a multiphase granular material, which consists of aggregates and the asphalt binder, with a lot of micro cracks or defects in it. The AC structure induces heterogeneous stress and strain distribution in micro view meanwhile presents a globally isotropic elastic behaviour. The aggregates could interlock each other, meanwhile the asphalt binder provides strong cohesion. The failure of the asphalt concrete, no matter under monotonic or cyclic fatigue load, can always be initialized from the micro cracks and defects, followed with the coalescence of the micro cracks and result in the total breaking.

DEM is suitable for the simulation of non-continuous phenomena like the crack propagation, and the local strain softening, instead of continuum mechanics approach. It consists of particles, walls and contacts. The particle can be arranged artificially, while contacts describe interaction between particles and could be elastic or follow a defined constitutive model, and the contact can break locally with different criterion. All these features naturally promise a suitable numerical [START_REF] Luo | Fatigue behavior of epoxy asphalt concrete and its moisture susceptibility from flexural stiffness and phase angle[END_REF] epoxy asphalt contcrete, moisture condition

No model was developed method for the simulation of AC, especially when the material failure is imperative. The DEM model allows up to look inside the material and understand the fundamental interaction with the insight view underlying the complex, macro scale response, and develop a reliable, visual understanding of material behaviour with the improvements in our ability to predict the response in the asphalt concrete.

Cohesive zone model (CZM)

A series of numerical model describing non-linear fracture mechanics are proposed aiming at analysis of material fracture process, including the cohesive zone model (CZM) [START_REF] Barenblatt | The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. axially-symmetric cracks[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] (also called fictitious crack model (FCM)), the crack band model (CBM) [START_REF] Bažant | Crack band theory for fracture of concrete[END_REF], two-parameter fracture model (TPFM) [START_REF] Jenq | Two parameter fracture model for concrete[END_REF][START_REF] Jenq | A fracture toughness criterion for concrete[END_REF], size-effect model (SEM) [START_REF] Bažant | Size effect in blunt fracture: concrete, rock, metal[END_REF], effective crack model (ECM) [START_REF] Nallathambi | Determination of specimen-size independent fracture toughness of plain concrete[END_REF], double-K fracture model (DKFM) [START_REF] Xu | Determination of parameters in the bilinear, reinhardt's non-linear and exponentially non-linear softening curves and their physical meanings. werkstoffe und werkstoffprüfung im bauwesen, hamburg[END_REF], and double-G fracture model (DGFM) [START_REF] Xu | Determination of fracture parameters for crack propagation in concrete using an energy approach[END_REF]. Of these numerical models, CZM, FCM and CBM have been applied for FEM, while the rest ones are modified LEFM for mathematical analysis.

CZM has become a popular tool to model fracture in quasi-brittle and plastic material. It is considered as a more realistic form of fracture mechanics to assume that the stress distribution after the crack tip instead of singular stress which results from LEFM. The cohesive zone is idealized as two cohesive surfaces after the nominal crack tip, where there is cohesive traction to hold the two cohesive surfaces together. The cohesive traction varies based on the distance between the 2 cohesive surfaces, which follows a cohesive law [START_REF] Otsuka | Fracture process zone in concrete tension specimen[END_REF]. Hence, a physical crack extension (i.e. no load bearing capacity) occurs when the separation displacement at the tail of the cohesive zone (physical crack tip) reaches a critical value. CZM can control the rupture energy artificially, thus allowing to model a large span of materials.

Development of CZM

Cohesive zone model have been widely utilized to mitigate stress singularities in linear elastic fracture mechanics and to approximate nonlinear material separation phenomena [START_REF] Anderson | Fracture mechanics: fundamentals and applications[END_REF][START_REF] Kanninen | Advanced fracture mechanics[END_REF][START_REF] Baz Ïant | Stability of structures[END_REF][START_REF] Suresh | Fatigue of materials[END_REF][START_REF] Broberg | Cracks and fracture[END_REF][START_REF] Park | Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[END_REF]. Towards this end, Elliott [START_REF] Elliott | An analysis of the conditions for rupture due to griffith cracks[END_REF] introduced an interatomic attracting force per unit area to investigate fracture of a crystalline substance along a cleavage plane. Dugdale [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] and Barenblatt [65] firstly proposed cohesive models to investigate ductile and brittle material fracture behaviour, respectively.

In order to consider a relatively large nonlinear FPZ in quasi-brittle materials such as concrete, rocks and fiber-reinforced concrete, the cohesive zone model has been employed [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF][START_REF] Boone | Simulation of the fracture process in rock with application to hydrofracturing[END_REF][START_REF] Elices | The cohesive zone model: advantages, limitations and challenges[END_REF][START_REF] Bažant | Statistical prediction of fracture parameters of concrete and implications for choice of testing standard[END_REF][START_REF] Roesler | Concrete fracture prediction using bilinear softening[END_REF]. The linear soften CZM was successfully extended by Hillerborg et al. [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] to study non-linear fracture processes in Portland cement concrete. Furthermore, cohesive zone models have recently been used to simulate the fracture process in a number of material systems under a variety of loading conditions.

Rupture energy control in CZM

There are many different types of cohesive laws due to different material or different research purposes. One of the key advantages offered by CZM is that it has an intrinsic fracture energy dissipation mechanism in contrast to the classical continuum based fracture mechanics for which such a mechanism is absent. Figure 2.17 depicts a cohesive zone ahead of a crack where σ is the cohesive traction and δ is the separation displacement between two cohesive surfaces.

𝛿𝛿

Physical crack tip

Cohesive traction 𝜎𝜎 Figure 2.17: A cohesive zone ahead of crack tip (Modified from [START_REF] Sun | Fracture Mechanics[END_REF]).

Figure 2.18 shows a typical scheme of the bilinear cohesive law, which is characterized by linear elastic harden curve and linear soften curve. In this figure, σ c is the peak cohesive traction, and δ c is the characteristic displacement.

There are various traction separation laws carried out in previous researches, representing different failure mechanism operative either at the microscopic or macroscopic level, and they are used for different material mechanical behaviours at the crack tip. Generally, they share the common form of expression as shown in equation 2.45, in which σ c is critical stress, δ e is a characterization for the transition of the stress, and δ c is critical strain or displacement. In some potentialbased model [START_REF] Park | Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[END_REF], δ e and δ c are not given directly, and the traction is controlled by the potential instead. 

σ = σ c f (δ, δ e , δ c ) (2.45)
Generally, the effective displacement and traction easily define various cohesive relations such as linear softening [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Geubelle | Impact-induced delamination of composites: a 2d simulation[END_REF][START_REF] Espinosa | A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. part i: Theory and numerical implementation[END_REF], bilinear softening [START_REF] Petersson | Crack growth and development of fracture zones in plain concrete and similar materials[END_REF][START_REF] Wittmann | Fracture energy and strain softening of concrete as determined by means of compact tension specimens[END_REF], trapezoidal [START_REF] Tvergaard | Theoretical investigation of the effect of plasticity on crack growth along a functionally graded region between dissimilar elastic-plastic solids[END_REF], smoothed trapezoidal [START_REF] Scheider | Simulation of cup-cone fracture using the cohesive model[END_REF], cubic polynomial [START_REF] Tvergaard | Effect of fibre debonding in a whisker-reinforced metal[END_REF], and exponential [START_REF] Ortiz | Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis[END_REF] functions, as shown in Figure 2.19.

CZM applied in DEM

To study the fracture behaviour of asphalt concrete, Kim and Buttlar [31-33, 94, 95] have successfully implemented CZM into discrete element method (DEM) framework. A bilinear CZM (i.e. linear elasticity, linear softening) was adopted.

The specimen size dependency of asphalt concrete was captured by the developed experimental fracture test and the multiphase DEM model with CZM was able to accurately predict the size-dependent fracture behaviour when considering viscoelasticity and heterogeneity. The traction separation law is illustrated as shown in Figure 2.20. The contact strength F max is calculated from two strength components (normal force F n C and shear force F s C ) as well as the contact angle α,

F max = (1 - 2α π ) × F n C + 2α π × F s C (2.46)
where α is the angle between the direction of the contact force and the line segment connecting particle centre.

The contact force between two particles is calculated by Eq. 2.47. Figure 2.20: Bilinear traction separation law in DEM adopted by Kim [START_REF] Kim | Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model[END_REF].

F = (F n ) 2 + (F s ) 2 (2.47)
When the contact force exceeds the contact strength, the contact will begin to yield or soften as shown in Figure 2.20.

∆U k = ∆U k e + ∆U k p (2.48)
The force increment ∆F k is a function of the increment of the elastic displacement as follows:

∆F k = K k ∆U k e (2.49) where ∆U k e = ∆U k -∆U k p (2.50)
The elastic (or plastic) displacement can be determined using the consistency condition (i.e.F -F max = 0). The contact strength is a function of the accumulated plastic deformation, as described by

F k C (U P /U P max ) = F k C 1 - U P U P max , (2.51) 
where U P = Σ(∆U P ).

Figure 2.21: The multi-phase AC material and the constitutive models [START_REF] Kim | Discrete fracture modeling of asphalt concrete[END_REF].

With the proposed CZM model, Kim built the multiphase DEM geometries to simulate the AC material (See Figure 2.21). The aggregate, asphalt binder, interface between aggregate and asphalt were represented differently, and a good agreement was obtained in Figure 2.22 after the parameter calibration. The existence of micro cracks demonstrated that CZM in DEM can naturally develop FPZ.

Fatigue damage modelling

In general, fatigue damage model is obtained using two approaches: the strain (or stress)-based models [START_REF] Monismith | Fatigue of asphalt paving mixtures[END_REF], and the dissipated energy method which is defined as a damage indicator of a material [START_REF] Gul | Modelling and characterising the fatigue behaviour of asphaltic concrete mixtures[END_REF].

At the microstructural scale, fatigue damage in cemented materials is considered as a progressive process of microstructural changes with increasing the number of load cycles [START_REF] Fathima | A thermodynamic framework for fatigue crack growth in concrete[END_REF][START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF][START_REF] Liang | Prediction of fatigue life of asphalt concrete beams[END_REF]. The fatigue damage model requires the appropriate characterisations of different stages of crack growth (i.e. stable crack growth and unstable crack growth) [START_REF] Gao | Fatigue of concrete under uniaxial compression cyclic loading[END_REF]. Bodin [START_REF] Bodin | Modèle d'endommagement cyclique: Application à la fatigue des enrobés bitumineux[END_REF] proposed a fatigue damage model for asphalt concrete based on experimental evidences for strain controlled tests which is discussed in the next sections.

Bodin's model

The damage model proposed by Bodin, describes the stiffness decrease of the material due to cyclic loading. The mathematical model utilized to describe the mechanical damage is shown in Equation 2.52, in which G (ε, D) is a function of positive strain level ε and number of loading cycles

N C . ∆D = G (ε, D) ∆N (2.52)
In case of cyclic load, Equation 2.53 can well represent the rate of damage increment with the condition of the cumulation of damage evolution and the function of positive strain, 

Ḋ = f (D) ε β ε (2.

Law with 2 Regimes (L2R)

The function of damage f (D) given by Paas [START_REF] Paas | Continuum damage mechanics with an application to fatigue[END_REF] can reproduce the first two regimes in finite element method [START_REF] Bodin | A continuum damage approach of asphalt concrete fatigue tests[END_REF] shown in Figure 2.4. Bodin conducted some simulations in FEM. In Figure 2.23 (a), the prediction of numerical result didn't cover the transition from phase II to phase III.

f (D) = CD α (2.54)
Law with 3 Regimes (L3R)

In homogeneous conditions, continuum mechanics in FEM cannot describe any loss of homogeneity of the sample, even very close to rupture. In order to reproduce the damage evolution for all the three phases, the formulation in Equation 2.55 is proposed by Bodin,

f (D) = α 2 α 1 α 3 { D α 2 } 1-α 3 exp{ D α 2 } α 3 , (2.55) 
with 2 additional parameters. Arsenie [START_REF] Arsenie | Modelling of the fatigue damage of a geogrid-reinforced asphalt concrete[END_REF][START_REF] Arsenie | Laboratory characterisation of the fatigue behaviour of a glass fibre grid-reinforced asphalt concrete using 4pb tests[END_REF] simulated 4PB fatigue tests of asphalt concrete beams with and without fiber glass grid reinforcement. The finite element analysis was performed Figure 2.24: 4PB test results and fit by 'L3R' in FEM [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF].

with the software CAST3M for three different strain levels (defined at the bottom and the top of the central section of the beam) ε = 115 µm, 135 µm and 150 µm.

The stiffness degradation was well described by L3R model as shown in Figure 2.23b and 2.24, specially for the two higher values of ε.

A single set of parameters for the asphalt concrete, associated to elastic reinforcements was not directly able to fit experimental results. Then, a different strategy was adopted and the beams were divided in 2 parts: the middle layer is the composite of the AC and fiber glass grid inter-layers; the edge layers are top and bottom AC layers. The parameters of each part were attributed differently. Finally, with proper calibrations, the experimental results could be well described.

Originally based on continuum mechanics, the effect of concentration of strain and stress inducing unrealistic cumulation of damage was reduced with the addition of a non-local definition of strain. Hence a length scale was introduced, where an average of strain was calculated eliminating mesh dependence. However, this procedure made it very difficult for the realistic analysis of the effect of localized imperfections or even a reinforcement, like shown in Figure 2.25 (b). In this figure, a unrealistic discontinuity of the damage is produced by a non adapted averaging calculation near the grid reinforcement. Furthermore, the extension of the strongly damaged areas (red zones with D = 1) differs from the real rupture patterns, where the macro cracks result from localized degradation. In order to correct the crack propagation (fatigue phase III), the damage model was coupled to a fatigue crack growth model (based on Paris law, presented in Section 2.5). The proposed solution was verified by tension/compression tests for a plate with initial central pre-cracks (Figure 2.28 (a)) and was finally consistent to theoretical solutions (Figure 2.28 (b)).

Summary of the chapter

In this literature review, the sections are organized from the material physical behaviour to the theoretical model, and finally the numerical method. The material physical behaviour is about the AC material and the fiber glass grid as well as its reinforcement effect, where the wedge-splitting test and the 4-point bending test are highlighted since they are the main tests in this thesis. It is stated that the interface between the fiber glass grid and the AC material is of great importance for the effect of reinforcement, which should be paid great attention to.

Concerning the fatigue modelling, Bodin's model 'L2R' was conceived to describe only phases I and II, while 'L3R' has been proposed to describe all three phases. Instead of adopting the more complex model 'L3R', it will be demonstrated that a combination of 'L2R' as a contact law in discrete element simulations is adapted to capture the whole fatigue behaviour.

The review of the numerical method consists of the cohesive zone model, which has turned out to reproduce FPZ. The Bodin's model 'L2R' failed to describe the transition from the phase II to phase III, while the 'L3R' has been demonstrated to be available for the reproduction of three phases in material fatigue life. The reproduction of the 3 phases of the fatigue life will be attempted by the combination of 'L2R' and DEM.

It should be noted the basic knowledge on DEM will be introduced in next chapter, considering that it is intensively related to the study of the material behaviour in DEM in Chapter 3. 

Introduction

As discussed in Chapter 2, discrete element method (DEM) presents a more realistic physical description of rupture process. In this thesis, the method proposed by Cundall [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF] giving rise to the commercial software PFC (Particle Flow Code) is adopted. The materials are composed by ensembles of cemented particles interacting by direct contacts. More detailed introduction about the numerical scheme is available in Appendix A.

A brief introduction on the force displacement law and contact failure criterion in DEM is carried out in Section 3.2. The random packing assembly is utilized to model the homogeneous material, since there are some drawbacks in terms of isotropy for the regular packing model such as square and regular triangular packing assembly. In FEM, the material mechanical properties such as Young's modulus E and Poisson's ratio ν can be input directly as the properties of the mesh. However, in DEM, the micro parameters such as contact stiffness and contact strength are applied for all the contacts, so the calibration procedure is necessary to obtain the relation between contact parameters and material mechanical properties before its further application in simulating realistic materials, which is done in Section 3.4. The micro parameters of elasticity, including contact stiffness (k n , k s ) and contact stiffness ratio k ratio (k ratio = k n /k s ), are related to material macro mechanical properties including the Young's modulus and Poisson's ratio.

It has been revealed that the fracture toughness can be reproduced and it can be influenced by the particle size and contact strength based on LEFM as presented in Section 3.5.1. A further step is taken in this thesis by identifying the fracture toughness with the random packing assembly and the bonded-particle model (BPM), which is a built-in contact model in PFC and used for the modelling of brittle and quasi-brittle materials.

Force displacement law in DEM

In DEM, materials are regarded as assemblies of particles interacted by contacts, as shown in Figure 3.1a. The basic contact law adopted in this work is presented in Figure 3.1b. The relative motion between the particles induces the contact displacement which may be decomposed in normal and tangential components, respectively δ n and δ s in Figure 3.1c (with time derivatives δn and δs ). Based on the normal displacement δ n , the normal component of the contact force is defined at each time t as

f n (t) = k n δ n (t) + c n δn (t), (3.1) 
where k n is the normal stiffness and c n is the normal viscous damping coefficient.

x is the variable x in vector form.

Based on the tangential displacement δ s , the tangential component of the contact force is defined at each time t as:

     f s (t) = f e s (t) + c s δs (t), f s e (t) = f e s (t -∆t) + ∆f e s (t), ∆f e s (t) = k s ∆ δ s (t). (3.2)
where k s is the tangential stiffness and c s is the tangential viscous damping coefficient. The critical damping ratio β (see Appendix A) adopted quite a small value (0.3%) due to the quasi-brittle loading pattern in this thesis. The force on each particle is the resultant force of all the contact of this particle and an extra particle damping force ( f d ) (see Appendix A), expressed as follows,

f p = n 1 f n, i + n 1 f s, i + f d , (3.3) 
where n is the number of active contacts around the particle and i is from 1 to n.

The particle motion is determined by f p as follows,

δ(t) = δ(t -∆t) + δ∆t = δ(t -∆t) + f p m ∆t, (3.4) 
where ∆t is the magnitude of timestep (see Appendix A), m is the mass of the particle.

The global damping and viscous damping are determined from the loading condition and material physical properties (see Appendix A).

In Equation 3.1, the normal force is computed in a cumulative pattern, while the shear force is computed in an incremental pattern in Equation 3.2. In this first phase of the study, the built-in bonded contact model (BPM) is adopted for the calculations. A contact is physically represented as a bond associated to a bar on the normal direction which connects the center of two particles i and j (see Figure 3.1d). Its cross section is defined by the thickness of the system t and the minimum value between the radius of two particles R i and R j . The length l ij = R i + R j corresponds to the initial distance between the centres of the two particles i and j.

(𝑎𝑎) (𝑏𝑏) The contact stiffnesses k n and k s are directly related to the contact elastic modulus E cmod by the expressions associated to the behaviour of a bar:

       k n = E cmod × t × 2min(R i , R j ) l ij = E cmod × t × 2min(R i , R j ) (R i + R j ) , k s = k n /k ratio , (3.5) 
where k ratio is the ratio between the normal and shear stiffness.

The rupture of a contact occurs when the normal or the shear force reaches its limit in tension, respectively defined as f max ).

The definition of the particle distribution is presented in Section 3.3, the elastic behaviour is discussed in Section 3.4 and the quasi-brittle rupture is analysed in Section 3.5. modelling

Model generation

There are many methods to generate the random packing assembly in DEM, which can be categorized into dynamic methods (e.g., boundary compaction method, particle drop method, particle size scaling method) and constructive method [START_REF] Bagi | An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies[END_REF][START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF]. In this chapter, the dynamic generation of model is based on the procedure adopted by Potyondy [START_REF] Potyondy | A bonded-particle model for rock[END_REF], which is mainly the size scaling method. The assembly is generated with three procedures, namely particle generation, internal stress control and floater elimination. During all the model generation, the particles are frictionless (f s = 0, see Equation 3.2), which avoids any internal shear contact force.

Particle generation and internal stress control

In the first phase, a highly compacted assembly is generated within the domain of rectangular walls with relatively big overlaps between the particles [START_REF] Potyondy | A bonded-particle model for rock[END_REF]. Normally, when the contact model is applied, the tremendous lock-in force exists among the assembly. Addressing to this issue, a stress control procedure is imposed to reduce the stress of the initial assembly by shrinking all the particle sizes with the same factor step by step. In Potyondy's study [START_REF] Potyondy | A bonded-particle model for rock[END_REF], a specified isotropic stress is set as the target stress, whose value is 1% of the initial stress. The target stress is naturally dependent on the initial particle distribution and should be adapted to the contact stiffness. In order to avoid any misunderstanding, the internal stress level is expressed by the overlap ratio h r relative to the mean particle radius R,

h r = δ n R , (3.6) 
where δ n is the average overlap of all contacts of the assembly.

A scale factor for the particle shrinking X R is then defined based on the existing overlap ratio h r and its target h T r ,

X R = η × (h T r -h r ) + 1, (3.7) 
where η is a hysteresis factor working on the numerical stability of the procedure. Its value is set as η = 0.1 in this work, which promises the gradual decrease of the particle radius. If h r is bigger than its target value h T r all particles may be decreased by the scale factor X R < 1, otherwise, their radius may increase. The tolerance of the stress control procedure is defined as:

(h r -h T r )/h T r ) < 0.2. (3.8)
After the rescaling, the system is no longer in balance. A particle natural rearrangement occurs during a stabilization phase (described in Appendix A).

Floater elimination procedure

Floaters are defined as the particles with less than 3 contacts. These particles are not in stable state because only normal forces exist for all contacts, and thus forming unintended voids inside the material. To eliminate these potential voids, the radius of all particles identified as floaters, are firstly enlarged until they are in contact with more than 2 particles around. Then their radius are decreased step by step until the average overlap of each floater reaches the average overlap of the assembly. During this process, the rest of the particles do not move.

Interactive procedure and adopted parameters

In practice, after the generation of the particles, a loop containing the Equations 3.6 and 3.7, followed by the rescaling of radius by the X R factor is calculated until the relative error between the overlap and the target overlap becomes smaller than 20% as expressed in Equation 3.8.

In the following, all numerical samples are generated with a uniform distribution of radius between the minimum to maximum particle radius (respectively R min and R max ). If R max /R min is close to 1, the assembly will be seriously crystalline arrangement [START_REF] Potyondy | A bonded-particle model for rock[END_REF], while if R max /R min is too big, the demanded number of particles forming the assembly is too large to have acceptable computational time. The size ratio is set as R max /R min = 1.6, which is in the range of the size ratio adopted by other researchers [START_REF] Bagi | An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies[END_REF][START_REF] Potyondy | A bonded-particle model for rock[END_REF][START_REF] Yoon | Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation[END_REF], and is available to produce isotropic macro properties.

An example of generation of a square sample with dimension L = 40 mm is presented in Figure 3.3. The difference after model generation is presented in Figure 3.3b, where a significant reduction of the contact overlap ratio has been obtained, and there is no floater in the assembly. The system presents 429 particles with modelling an average radius R = 1 mm and L = 40R. A target overlap ratio h T r = 10 -9 is adopted. One may observe the relatively homogeneous overlap distribution at the end of the process, associated to a neglectful internal stress state obtained with the generation procedure. 

Elastic behaviour

In DEM, the elastic properties of the material are directly related to the geometrical properties of the particle assembly and physical properties.

As geometric properties: the particle distribution, average radius R, size ratio R max /R min and the assembly resolution are considered here. The resolution is quantified as the ratio of a characteristic length of the specimen L to average particle diameter 2R namely ϕ = L/(2R) [START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF][START_REF] Ergenzinger | A discrete element model to describe failure of strong rock in uniaxial compression[END_REF][START_REF] Coetzee | Calibration of the discrete element method[END_REF].

As shown by different authors [START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF][START_REF] Potyondy | A bonded-particle model for rock[END_REF][START_REF] Yoon | Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation[END_REF][START_REF] Coetzee | Calibration of the discrete element method[END_REF], the contact modulus E cmod is directly related to the Young's Modulus of the material E, whilst the ratio between normal to tangential stiffness k ratio = k n /k s is related to the Poisson's ratio ν.

A consistent calibration is necessary for further simulations. The trends presented in the following sections are obtained by averaging 5 different samples with identical properties and different generator random seeds (see Appendix A).

Identification of material properties

On the following calibrations, the constrained tensile test (CTT) simulations are performed, and the geometry is presented in Figure 3.4a. Neglecteful boundary effects were observed by [START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF] for a resolution ϕ = L/(2R) > 80 on the same conditions.

For a homogeneous and isotropic medium under uniform stress as presented in Figure 3.4b, the strains ε xx and ε yy and stresses σ xx and σ yy are related by the expressions:

         ε xx = σ xx E * - σ yy ν * E * , ε yy = σ yy E * - σ xx ν * E * , (3.9) 
where E * = E and ν * = ν in plane stress, or

E * = E/(1-ν 2 ) and ν * = ν/(1-ν 2 ) in plane strain.
The lateral boundary condition (see Figure 3.4a) imposes ε xx = 0. Hence, from Equation 3.9, the Young's Modulus E and the Poisson's ratio ν can be obtained:

         ν * = σ xx σ yy , E * = σ yy ε yy (1 -ν * 2 ).
(3.10)

The value of E and ν can be easily identified from the simulation results. The vertical stress σ yy is imposed, while the horizontal stress σ xx is obtained by the summation of the horizontal forces at one of the lateral boundaries divided by the length L. The vertical strain is calculated based on the elongation of the sample ε yy = ∆L/L.

Effect of normal stiffness

The normal stiffness of the contacts is driven by the contact modulus E cmod . In order to avoid boundary effects a resolution ϕ = L/(2 R) = 80 is adopted. Five square samples with a dimension L = 320 mm, 6964 particles by average and presenting maximum and minimum radius, respectively, R max = 2.46 mm and R min = 1.54 mm are tested. No effect of the contact modulus E cmod is observed on the Poisson's ratio of the material ν, which is consistent with the results of other authors [START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF][START_REF] Yoon | Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation[END_REF].

Effect of stiffness ratio (k ratio )

The effects of k ratio on the Young's modulus E and Poisson's ratio ν of the material are studied by varying the value of k n /k s from 1.5 to 4.5. The average of the results of the five samples are presented in Figure 3.6, where the relation between the Young's modulus E and the stiffness ratio (k n /k s ) seems to take a logarithmic shape as presented in Figure 3.6. A low standard deviation of approximately 0.5% of the average results of E are observed. 

Calibration of elastic parameters

For a given size distribution of particles, the effects of the particle size (scale effect) are neglectable on the elastic parameters E and ν [START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF][START_REF] Yoon | Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation[END_REF].

Considering the results of containing the usual range of asphalt concrete (0.1 ≤ ν ≤ 0.34) [START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF].

The results of Figure 3.6 with respect to the effect of k ratio on the Young's modulus of the material E for the given contact modulus E cmod = 10 GP a can be generalized based on the linear dependence between E and E cmod as shown in Figure 3.5. For any value of E cmod and k ratio = k n /k s , one can have for the Young's modulus:

E = -0.1793 × ln k n k s + 0.807 E cmod , (3.12) 
containing the usual range of asphalt concrete (0.5 GP a ≤ E ≤ 65 GP a) [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF].

Quasi-brittle rupture

In linear elastic fracture mechanics (LEFM), the rupture of the material is strictly due to crack propagation. A structure without cracks may present an infinity resistence. This inconsistency is one of the limits of this theoretical approach, where the strength of the material is not taken into account. The limited strength of a material can be interprated as the effect of micro defects (cracks, interfaces, voids, etc.) under loading. A cracked structure composed by a real material may naturally present different scale lengths: one is the relative size of the crack with respect to the structure dimension and, the other one, the relative size of the crack with respect to the inner defects of the material. These different length scales lead to well known scale effects in quasi-brittle rupture [START_REF] Bazant | Probabilistic modeling of quasibrittle fracture and size effect[END_REF][START_REF] Gao | Energetical formulation of size effect law for quasi-brittle fracture[END_REF].

In the following sections, these scale effects are discussed from the point of view of discrete element simulations. Some general relations are derived from the theoretical analysis of a structured assembly of particle and their consequences on the calibration of model parameters are presented.

Strength and toughness in structured granular packing

The rupture of a square packing in PFC was studied by [START_REF] Potyondy | A bonded-particle model for rock[END_REF]. A square packing assembly of particles is partly presented in Figure 3.8, where the contacts, the remote stress and the crack tip stress distribution of continuum mechanics are schematically shown.

Let us suppose the effect of a far field vertical stress Σ over this assembly of particles. In absence or distant enough of any crack, the distribution of the stress is uniform, the maximum contact force are vertically oriented and may present a value

f intact n = 2ΣRt, (3.13) 
where R is the particle radius.

Let us suppose a very big plate with a crack (of length 2a) in the middle. Near a crack tip the theoretical prediction of the vertical stress can be obtained from Equation 2.3 with θ = 0 :

σ yy (r) = K I √ 2πr , (3.14) 
where r is the distance from the crack tip and K I = Σ √ πa is the stress intensity for this geometry [START_REF] Sun | Fracture Mechanics[END_REF].

The maximum contact force, at the closest contact from the crack tip, can be obtained by the integration of the stress field (Equation 3.14) over a distance of particle diameter 2R (0 ≤ r ≤ 2R): where K I is the stress intensity factor, σ n is tensile strength for the first contact before the crack tip, and R is the particle radius. It is indicated that the fracture toughness is dependent on the particle size, so that particle size should be carefully determined in terms of the reproduction of fracture behaviour. The study also stated that, as long as the first contact reaches its strength and thus breaks immediately, the required remote stress for the next contact is smaller than that for the previous broken contact, while the actual tensile force acting on the next contact is larger based on Equation 3.15. Consequently, under the same remote stress, crack will propagate unstably.

f crack n = t 2R 0 K I √ 2πr dr = 2K I t R π = 2Σt √ aR, ( 3 

Tensile strength in a square packing

The relation between the tensile strength of the material Σ t and the contact strength f max n can be simply obtained from Equation 3.13. The contact force f contact n for an assembly without cracks must be limited by f max n , while it automatically limits the maximum far field stress Σ by Σ t :

Σ t = f max n 2Rt .
(3.16)

Fracture toughness in a square packing

The relation between the toughness of the material K IC and the contact strength f max n can be obtained from Equation 3.15. The contact force f crack n for an assembly with a crack must be limited by f max n , while it automatically limits the maximum stress intensity factor K I by K IC :

K IC = f max n 2t π R .
(3.17)

Strength and toughness in a random packing structure

In more complex particle structures, the relations between the material properties (strength Σ t and toughness K IC ) and the contact properties (normal strength f max n and tangential strength f max s ) are similar to the relations presented in the previous section for a square structure [START_REF] Potyondy | A bonded-particle model for rock[END_REF].

For a given ratio between normal to tangential strength S r = f max n /f max s , the strength of the material can be expressed by

Σ t = f max n Rt × α, (3.18) 
where α is a positive value which depends on the particle structure (i.e. α = 1/2 and the average radius R = R for a square structure, as shown in Equation 3.16).

The toughness can be assessed by

K IC = f max n t √ R × β, (3.19) 
where β is a positive value which depend on the particle structure (i.e. β = √ π/2 for a square structure, as shown in Equation 3.17) [START_REF] Potyondy | A bonded-particle model for rock[END_REF].

Calibration of the rupture parameters

The tensile strength Σ t and the toughness K IC of the material are proportional to the contact strength f max n (for a given S r = f max n /f max s ), as shown by Equations 3.18 and 3.19. However, the particle dimension R affects strength Σ t and toughness K IC in a non proportional way (K IC /Σ t ∝ √ R). It means that the Taking into account the difference on the particle radius on the result of Equation 3.18, the ratio between the tensile strength of the initial assembly Σ t 1 and the scaled one Σ t 2 is Σ t 1 /Σ t 2 = λ. The same procedure applied to Equation 3.19 conducts to the ratio between the toughness of the initial assembly K IC, 1 and the scaled one

K IC, 2 , K IC, 1 /K IC, 2 = √ λ.
Hence, technically, any different set of value of tensile strength Σ t and toughness K IC can be obtained (for a given particle distribution) with adapted values of contact strength f max n (and f max s

) and particle mean radius R. ear elastic fracture mechanics (LEFM) by limiting the maximum stress intensity (K I,max = Σ max √ πaF (a/b)), with F(a/b) given by Tada [START_REF] Tada | The stress analysis of cracks. Handbook[END_REF]) by the toughness value K IC . It implies that Σ max = K IC / ( √ πaF (a/b)) and associating the results of Figure 3.11 KIC is identified as equal to 0.4 M P a • m 0.5 . The intersection of the two predictions (dashed lines in Figure 3.11) is defined as the transition crack length [START_REF] Gao | Energetical formulation of size effect law for quasi-brittle fracture[END_REF] 

a t = K 2

IC

(1.12 × Σ t ) 2 π = 7 mm. The transition between these two mechanisms is shown to be well described by the energetic model proposed in [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF][START_REF] Gao | Energetical formulation of size effect law for quasi-brittle fracture[END_REF] (rapidly presented in Appendix B). A good fit is obtained for the mentioned values of Σ t and K IC , and the dimensionless parameter r = 2.5,(see Appendix B for more information about this parameter). The smooth transition between the two rupture mechanisms following the energetic model predictions is an indication of the consistency of the DEM approach for quasi-brittle materials.

Then the dimensionless parameters α = 0.20 and β = 1.36 are identified scaling Equations 3.18 and 3.19 with Σ t = 2.4 M P a and K IC = 0.4 M P a • m 0.5 respectively. This same equations can now be employed to predict the effect of the contact strength and particle radius R over the strength and toughness of the material for identical micro structure and properties like stiffness ratio k ratio = 3.5 and strength ratio S r = 1. The continuous line is the prediction given by the energetic formulation of [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] for tensile strength Σ t = 2.4 M P a, toughness K IC = 0.4 M P a • m -0.5 and the parameter r = 2.5.

3.6. Wedge-splitting test of the brittle material 65

Wedge-splitting test of the brittle material

In this section, the brittle analysis of wedge-splitting tests are presented, in order to further verify the fracture toughness with the bonded-particle model (BPM) in DEM. First, the geometry and the model calibration for the brittle material are described. Finally, the results are compared to the prediction of linear elastic fracture mechanics (LEFM).

Model preparation and material calibration

The DEM specimens are built according to the ASTM (American Society for Testing Material) standard for wedge-splitting test (WST) (see Figure 3.12). The loading is conducted by two circle walls. The loading rate v h = 1 × 10 -4 m/s promises a quasi-static system (see Appendix A). 

Simulation results and verification by LEFM

The average result of WST for 5 specimens is the response curve: horizontal force as function of the opening displacements F h × δ h . As shown in Figure 3.13, for increasing δ h , one may observe an initial elastic increase of F h followed by a transition phase and a force decrease after a peak. The post-peak decrease may be associated to the clear propagation of the initial pre-crack (mode I -opening).

A prediction from linear elastic fracture mechanics (LEFM) of this behaviour can be obtained by relating the material stress intensity factor K I (a) and the horizontal force F h, theo as follows [START_REF] Srawley | Wide range stress intensity factor expressions for astm e 399 standard fracture toughness specimens[END_REF], modelling 

               K I = F h, theo b √ af (a/b), f (a/b) = 2(2 + a/b) (1 -a/b) 3/2
where f (a/b) is the geometry correction factor, which has 0.5% accuracy for a/b > 0.2 [START_REF] Srawley | Wide range stress intensity factor expressions for astm e 399 standard fracture toughness specimens[END_REF].

The crack opening displacement δ h along the load line is expressed as follows, which has 0.5% accuracy for 0.2 < a/b < 0.95 [START_REF] Srawley | Wide range stress intensity factor expressions for astm e 399 standard fracture toughness specimens[END_REF].

               δ h, theo = F h, theo E V (a/b), V (a/b) = ( 1 + a/b 1 -a/b ) 2 (2.

Summary of this chapter

With fracture toughness K IC = 2.1 M P a•m 0.5 obtained by Equation 3.19 and the crack length ratio a/b ranging from 0.3 to 0.8, the theoretical maximum horizontal load F h, theo and crack opening displacement δ h, theo are computed by Equation 3.20 and 3.21. In Figure 3.13, the comparison between the simulations and the prediction from LEFM with deviation of ±20% presents an acceptable agreement, which indicates that the strength of the contacts are directly correlated to the toughness of the material K IC which governs the peak value of the force F max h and the dissipated energy during the rupture process (area under the curve F h (δ h ).

Prediction by equation 3.20 and 3.21, with percentage error ±10% 

Summary of this chapter

In this chapter, the basic elements of the discrete element approach used in the following chapters were presented. The sample generation allowing very low inner stresses is an example. The connection between the material properties and the model parameters was also discussed in elasticity and in rupture (for quasi-brittle materials). The parameter calibration also gives better understanding on the parameter determination for the following chapters.

Concerning the quasi-brittle rupture, the contact strength and the particle average radius (associated to the texture of the material) were directly related to the strength and toughness of the assembly, following a realistic prediction of an energetic model for size effects in cracked structures.

Introduction

The fiber glass grids are usually placed between two layers of asphalt concrete (AC). The opening behaviour of this interface is studied by wedge-splitting tests (WST) in SolDuGri project. The aim of this chapter is to analyse the interface behaviour under monotonic transversal loading and propose a simple model which identifies the main parameters involved in its rupture process.

The first element to be discussed is the limitation of brittle assumption to characterize asphalt concrete like materials. Thus, a cohesive model implemented in a discrete element environment is proposed to characterize more realistically the sample materials. Based on physical evidences from experiments and simulations, an interfacial mechanism is identified and adopted in a simplified model. Finally, after the comparison of the different models, experimental results of WST [START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF] are analysed and the consistency of the theoretical approaches is verified.

Limitations of a brittle analysis of asphalt concrete

As observed in Chapter 3, the material toughness defines the peak force and the dissipated energy during WST with long initial crack. Discrete element simulation of brittle material has shown a very good agreement with linear elastic fracture mechanics (LEFM) [START_REF] Sun | Fracture Mechanics[END_REF]. A comparison between the prediction of LEFM and an experiment with asphalt concrete may clarify some characteristics of this type of materials.

The geometry of wedge-splitting specimens of Kim's experiments [START_REF] Kim | Micromechanical fracture modeling of asphalt mixture using the discrete element method[END_REF] is presented on Figure 4.1a. On Figure 4.1b, the opening force F h as a function of the opening displacement δ h is shown. The value of toughness K IC = 0.82 M P a • m 0.5 can be identified from the peak force F max h = 2.8 kN due to the Equation as follows, If this value of toughness is adopted to define the energy release rate G I = K 2 I /E (Equation 2.35) and to predict the diagram F h × δ h an unrealistic displacement level is obtained, where δ h is obtained from the energy method as expressed by Equation 2.28.

           K I = F h t √ b f (a/b), f ( 
If a higher value of energy release rate (instead of the usual relation from LEFM) may be allowed for the same toughness K IC , a much better trend may be obtained for

G I = Γ K 2 I E , (4.2) 
where Γ is a scalar factor. On Figure 4.1b, Γ = 6 indicates a higher dissipation of energy during the rupture than one may get from a brittle material. This may offer a qualitative explain on the fracture behaviour of the asphalt concrete. 

Energy dissipated by a fracture process zone (FPZ)

In LEFM, the crack tip is supposed perfectly defined in one single point. However, for heterogeneous materials, the crack tip presents usually a multi-cracked zone. This fracture process zone (FPZ) propagates with the crack tip (see Figure 2.15). One may represent schematically the crack tip with a FPZ by a series of parallel micro cracks of length l and width w (Figure 4.2a).

Considering the dimensions of Figure 4.2b, the stress intensity factor at each (micro) tip is K Ii = σ √ h [START_REF] Tada | The stress analysis of cracks. Handbook[END_REF], which represents an energy release rate (in plane stress)

G Ii = σ 2 h E . (4.3) 
The average stress σ can be determined by an average of the expression given in Equation 2.2 in mode I over the distance l:

σ = 1 l l 0 σ(r)dr = 1 l l 0 K I √ 2πr dr = K I 2 πl . (4.4) 
The total energy release G I , would be the summation of the contribution of n = w/(2h) micro cracks by Equation: .

G I = nG Ii = w πl K 2 I E , (4.5) 
where the definition of Γ = w/(πl) emerges to complete the proposition in Equation 4.2.

In terms of discrete element modelling, a value of Γ > 1 indicates that the rupture process must be controlled beyond the contact strength, that is to say, to manage directly the energy release of a contact.

Cohesive model in DEM

The simplest way of controlling strength and energy release of a contact is by a cohesive contact model. The generally required characteristics for cohesive constitutive relationships are summarized as follows [START_REF] Park | Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[END_REF]:

• The traction separation relationship is independent of any superposed rigid body motion.

• The work to create a new surface is finite, and its value (i.e. area under a traction separation curve) corresponds to the fracture energy.

• The mode I fracture energy is usually different from the mode II fracture energy.

• A finite characteristic length scale exists, which leads to a complete failure condition, i. e. no load-bearing capacity.

• The cohesive traction across the fracture surface generally decreases to zero while the separation increases under the softening condition.

• A potential for the cohesive constitutive relationship may exist, and thus the energy dissipation associated with unloading/ reloading is independent of a potential.

Traction separation law

A bilinear (linear elasticity and linear softening) traction separation law is used on the following to describe the fracture behaviour, which has been employed for different materials [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Geubelle | Impact-induced delamination of composites: a 2d simulation[END_REF][START_REF] Espinosa | A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. part i: Theory and numerical implementation[END_REF].

Force and displacement

The relation between force and displacement takes the same shape of the contact law presented in Chapter 3. Normal and tangential components of the forces and displacements are defined in Figure 4.3. Thus, normal and tangential forces, respectively, f n and f s are defined as

     f n = k n (1 -D)δ n , f s = k s (1 -D)δ s , (4.6) 
where k n and k s represent the normal and shear stiffness, δ n and δ s represent normal and shear displacement. A damage state variable D is associated to describe and to control the contact rupture behaviour. A contact completely intact is denoted by D = 0, whilst a contact completely damaged is described by

D = 1 (otherwise 0 ≤ D ≤ 1).
The same damage quantity is associated to both components of the force, since they represent a single resultant force

f = f 2 n + f 2 s . (4.7)
The displacement associated to the direction of f is

δ = δ n sinθ + δ s cosθ, (4.8) 
where θ = arctan(f n /f s ). 

Effective stiffness and strength

The stiffness of the contact depends on the direction, if k n = k s . The effective stiffness k e is defined to relate f and δ, that is to say, following the direction described by the angle θ. The combination of Equations 4.7 and 4.8 leads to

k e = f /δ = f 2 n + f 2 s δ n sinθ + δ s cosθ = k n k s k n cos 2 θ + k s sin 2 θ . (4.9) 
In the same way, the strength of the contact may depend on the direction. Keeping for simplicity a similar shape as Equation 4.9, the peak force f max is defined as

f max = f max n f max s f max n cos 2 θ + f max s sin 2 θ (4.10)
where f max n and f max s are respectively the normal and shear peak forces of the contact.

The contact normal and tangential strengths can be simply defined as

σ n = f max n 2t × min(R i , R j ) , σ s = f max s 2t × min(R i , R j ) , (4.11) 
respectively. R i and R j are the radius of the two particles in contact.

Fracture energy and energy release rate

The energy released during the contact rupture, the fracture energy U c , is the area under the f × δ curve (see Figure 4.4)

U c = f max δ max 2 , (4.12)
where δ max is the maximum value of the displacement δ.

The energy release rate is the energy per unity of propagated area and can be defined for a contact as

G c = U c t × min(R i , R j ) , (4.13) 
where R i and R j are the radius of the two particles in contact.

Damage law

In Figure 4.4, the variable of damage D can be expressed through the displacement δ as

D = δ max δ δ e -δ δ e -δ max , (4.14) 
where δ e = f max /k e is the elastic limit. The damage theory allows a very simple description of unloading and reloading paths, imposing that damage value cannot decrease. If the calculated value of D (through Equation 4.14) is eventually lower than the present value of D, its value keeps unaltered. It means that unloading/reloading paths follow a slope (1 -D)k e until damage value increases and softening behaviour is then observed again.

The total rupture of the contact is obtained for δ = δ max (which corresponds to D = 1). At this point, the contact forces f n and f s are set to zero. Only the elasticity in compression remains to work and the normal and shear stiffness are inherited from k n and k s . 

𝛿𝛿 𝑒𝑒 = 𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 /𝑘𝑘 𝑒𝑒 𝑓𝑓 𝛿𝛿 𝑘𝑘 𝑒𝑒 1 (1 -𝐷𝐷)𝑘𝑘 𝑒𝑒 1 𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 𝛿𝛿 𝑚𝑚𝑚𝑚𝑚𝑚 𝑈𝑈 𝑐𝑐

Loading rate effect

Loading rate calibration is conducted to obtain quasi-static condition. The horizontal rate of loading plates should be low enough to avoid dynamic effects, and it should be high enough for an acceptable computational time.

In this chapter, specimens under different conditions are required, thus loading rate calibrations are carried out a certain number of times. Herein, one set of calibration is presented as an example.

WSTs of a specimen with average radius R = 1 mm are repeated under different loading rates δh = 10 mm/s, 5 mm/s, 1 mm/s and 0.5 mm/s. The force response F h as a function of the imposed displacements δ h are presented in Figure 4.6 for each loading rate.

Only the post-peak behaviour is affected by the loading rate δh . Before any contact rupture, the relative velocities between particles in contact are very small which may induce neglectful viscous forces. During rupture, the propagation of the crack is associated to the displacement of the tip. It causes a growth of the relative (opening) velocity between the particles near this point. An increase on the loading rate δh is naturally reflected over the the viscous contact forces which may also increase. On the example which is analysed on Figure 4.6, for δh ≤ 0.5 mm/s this effect becomes neglectful, with curves of an almost identical shape.

Particle size effect

The effect of average particle size R in DEM on the material rupture has been proved as K IC /Σ t ∝ √ R in Chapter 3. In this chapter, the effect of particle size on the material rupture is studied by WST with specimens of different R.

A total of 12 tests are considered: four different particle radius R = 1 mm, 2 mm, 3 mm and 4 mm (with 3 specimens per radius). Rupture results are roughly related to elastic behaviour, strength and energy release. Discrete element simulations of WST are performed to verify if any size effect related to the particle radius R may be observed. The average force response F h as a function of the imposed displacements δ h are presented on Figure 4.7 for each particle size.

The results are, as expected, independent on the particle size. The force F h increases following an elastic path, which is shown in Section 3.4.1 to be independent on particle size. An identical energy release (surface under the curve F h × δ h ) indicates that the energy release rate of the contact G c effectively defines the energy release rate of the material G IC . 

Modelling wedge-splitting tests (WST) with interface

In this section, the experimental behaviour is associated to simulations and, considering some physical evidences, a theoretical mechanism for the interface behaviour is proposed. A parametric study comparing the parameters defined by the interface mechanism and DEM parameters is then conducted. The proposed mechanism is then adopted on the analysis of WST performed by [START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF]. Finally, some perspectives on the identification of interface parameters are addressed.

Context and description of the geometry

The fiber glass grids are usually placed between two asphalt concrete layers.

The grid contributes as a reinforcement in the direction inside the plane xy (see Figure 4.8). However, in z direction, the grid and the resin used to stick it to the asphalt layers, form an interface.

In SolDuGri project, the opening behaviour of the interface in monotonic loading was performed by wedge-splitting tests (WST) during the thesis work of Gharbi [START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF]. The different samples were obtained from a section of pavement specially constructed for the project. The samples ( 

Simulation setup

The interface is treated as a single material representing the homogenized behaviour of the multilayer composite composed by resin and fiber grid. Thus, the model presents two different regions, with distinct mechanical properties: asphalt concrete (AC) and interface as shown in Figure 4.10.

On the first simulation of a WST interface, the average radius of the particles R = 1 mm is adopted, the interface presents a thickness of 4 mm (4 × R).

The traction separation law presented in Section 4. The parameters of AC correspond to the material of the samples in [START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF].

Boundary conditions

The loading is entirely controlled by imposed velocities in WST simulations. The particles ranging in 8 mm in the bottom center of the sample are set only movable horizontally acting as vertical support, blocking the vertical displacement (see Figure 4.11). On the top, the opening motion of the two loading plates (horizontal velocity v h = 1 mm/s and vertical velocity v v ) mimic the effect of the vertical quasi-static displacement of a triangular wedge. The acting forces F h and F v are measured on the plates. To get the same force ratio (F v /F h = tan(14 • /2)) as experiments, the vertical velocity v v is imposed as follows,

v v (t) = η F v -F h × tan 14 • 2 k n ∆t , (4.15)
where ∆t is the time step, k n is the stiffness between the loading plates and the AC particles, η is a damping parameter used to control the acceleration of the plate. A value of η = 0.5 has been used on the simulations. The effect of controlling F h /F v is presented in Figure 4.12. F h /F v has been successfully restrained ranging from 0.11 to 0.13. 

Results analysis

The characterisation of the heterogeneous interface is more complex. The homogenized properties are obtained by approximation of the experimental curve opening force F h versus displacement δ h (see Figure 4.13. The initial part of the curve allows a precise identification of the average elastic properties. The post-peak behaviour enables the identification of strength and energy parameters.

𝑭𝑭 𝒉𝒉 (𝒌𝒌𝒌𝒌) 

Interface model (IM)

Based on the physical elements presented in Section 4.4.2, a model which focuses on the interface response is presented. The small thickness of the interface, associated to much stiffer asphalt concrete strongly suggests that this layer is fundamentally subjected to tension stresses during WST.

Considering only half of the wedge-splitting sample 

Elastic behaviour of the interface

The stress σ j i and the strain ε j i acting on an interface unit j may be simply related to the spring force f j i and elongation δ j i by the expressions: 

σ j i = f j i b i × t , ε j i = δ j i w i . (4.16)
Isolating the force f j i from Equation 4.16, the elastic behaviour of the spring can be expressed by

       f j i = k i δ j i , k i = E i w i b i t = E i w i (H -a) n t, (4.17) 
where E i is the homogenized Young's modulus of the interface. The peak force f max can be related to the strength of the homogenized material of the interface Σ t i by the simple relation

f max = Σ t i × (b i × t) = Σ t i (H -a)t n . ( 4 

.18)

Similarly to the discrete element contact model (see Equations 4.12 and 4.13, the energy release rate of the interface can be written as

G i = U i t × b i = f max δ max n 2t(H -a) , (4.19) 
where U i is the fracture energy of the interface unit j and δ max is the maximum value of the elongation δ j .

Figure 4.17 summarizes the force-displacement behaviour of the equivalent springs characterizing the interface local response. If δ j > δ max , the force f j is automatically set to zero, which characterizes the rupture of the spring.

Force and moment balance

Since all the deformation is assumed to take place in the interface, the springs are attached to a rigid body which represents the asphalt concrete layer. As shown in Figure 4.15, all elongations can be determined based on the imposed displacement δ h and the interface opening angle θ by the expression:

δ j = δ h -(H -y j ) tan θ, (4.20) 
where y j is the position of each spring j. The value of each force f j is determined by the bi-linear diagram of force-displacement (see Figure 4.17) according to δ j value.

By a balance of horizontal forces, the total force F h is determined by the summation of the forces of all springs:

F h = n j=1 f j , (4.21)
where n is the number of springs. The vertical force is directly calculated by

F v = F h tan(7 o ).
By a moment balance, the total force F h can also be determined as

F h = 1 y f n j=1 f j y j -F v x f , (4.22) 
where x f and y f are respectively the horizontal and vertical positions of the measured forces F h (and F v ), equivalent to the positions of experiments and simulations.

The displacement increases monotonically and the corresponding F h is calculated based on the force and moment balance. The corresponding crack opening displacement is obtained by the calculation of the similar triangles.

Model parameters

The interface is defined by its geometry, and material properties like elasticity, strength, fracture energy and the resolution of the model.

Geometry: height H, width w i and initial crack size a.

Stiffness: defined by the ratio between the Young's modulus and the interface thickness E i /w i .

Strength: homogenized tensile strength of the interface Σ t i .

Energy: energy release rate of the interface G i .

Resolution: number of springs n.

Solution of the system and convergence

The value of the opening angle θ evolves at each given δ h . These values are non linearly related due to the non-linearity induced by the force-displacement law of the springs. In practice, the value of θ is obtained by minimization of the difference between the results of Equations 4.21 and 4.22. The solution of the interface model allows the identification of the force F h for each given δ h .

An adequate resolution level, depending on the number of springs n of the system, is obtained for relatively low n as shown in 

Parametric study -Discrete element and interface model results

The two models adopted on the analysis of the interface wedge-splitting test discussed in this chapter, discrete element and interface models present a comparable set of parameters. A parallel parametric study is presented in this section concerning the interface material properties (stiffness, strength and energy) and the thickness of the interface.

Wedge-splitting tests with dimensions width W = 200 mm, height H = 220 mm, thickness t = 1000 mm and initial crack size a = 56 mm and an approximative interface thickness 2 × w i = 4 mm are adopted in the following examples. In discrete element model (DEM), the simulations are performed with an average radius R = 1 mm, size ratio R max /R min = 1.6. An average of 3 samples is presented. For the interface model (IM), a number of springs n = 72 is adopted. 

Stiffness

The effect of stiffness is obtained for different sets of Young's modulus in DEM 8 × 10 5 P a ≤ E int ≤ 8 × 10 7 P a. In Table 4.1, we present the the parameters of the IM parameters fitting the curves force F h versus displacements δ h in Figure 4.19a. In Figure 4.19b, one may observe the perfect linearity between DEM and IM elastic parameters, respectively E int and E i . The main effect of the stiffness is observed on the elastic increase of the force before the peak force. However, the peak force is also affected by the elasticity, where higher stiffness tends to induce higher peak forces F h .

Strength

The effect of the strength is obtained for a different set of interface tensile strength in DEM 0.6 × 10 4 P a ≤ Σ t int ≤ 2.2 × 10 4 P a. In Table 4.2, we present the parameters of the IM parameters fitting the curves force F h versus displacements δ h Table 4.1: Different modulus used in DEM simulations and the associated IM parameters. on Figure 4.20a. On Figure 4.20b, one may observe the perfect linearity between DEM and IM strength parameters, respectively Σ t int and Σ t i . The main effect of the strength is observed on peak value of the force F h , roughly proportionally. Since the fracture energy is kept constant, the area under the curve F h × δ h tends naturally to be always the same. Table 4.2: Different strength used in DEM simulations and the associated IM parameters. 

DEM IM E int (P a) Σ int ((P a)) G int E i (P a) Σ i (P a) G i (N/m) a 8 ×
DEM IM E int (P a) Σ int ((P a)) G int E i (P a) Σ i (P a) G i (N/m) a 8 ×

Energy release rate

The effect of the energy release rate is obtained for a different sets of interface parameters in DEM 1 N/m ≤ G int ≤ 20 N/m. In Table 4.3 the parameters of the IM parameters fitting the curves force F h versus displacements δ h in Figure 4.21a. In Figure 4.21b, one may observe the perfect linearity between DEM and IM energy parameters, respectively G int and G i . The main effect of the energy release rate is observed on the area under the curve F h × δ h which grows proportionally with G IC, int (the area is equal to G IC, int × (H -a)t). The shape or the whole curve depends on this parameter since it also affects the peak value of F h . Table 4.3: Different energy release rate used in DEM simulations and the associated IM parameters. between each component of the interface is not well defined as shown in [START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF]. In DEM, this dificulty is also present as shown in Figure 4.22 for 4 different approximative thicknesses w i : 4R, 8R, 12R and 16R. For an average particle radius R = 1 mm, one may get 4 mm ≤ 2 × w i ≤ 12 mm.

DEM IM E int (P a) Σ int ((P a)) G int E i (P a) Σ i (P a) G i (N/m) a 8 ×
By combination of Table 4.4 and Figure 4.23 and considering the effect of elasticity, one may observe that an increase on the thickness causes an inversely proportional decrease on the stiffness of the interface (see Section 4.4.3.1). The shape of the whole curve depends on this parameter since the energy release rate is kept constant (visible through an approximately constant area under the curve

F h × δ h ).
From Table 4.4, it can be seen that the energy release rate in IM decrease by 14% as the interface thickness increases from 2 layers to 8 layers, this also reflect the limitation of IM to identify the mechanical properties due to the increase of interface thickness.

Interface behaviour under homogeneous conditions

The results of Section 4.4 suggest that the behaviour of relatively thin and flexible interfaces are governed by only 3 parameters: stiffness E i /w i , tensile strength Σ t i and energy release rate G i . These parameters allows an interpretation of the interface at material scale, which may go beyond the wedge-splitting geometry. Theoretically, interface wedge-splitting tests (WST) may be related to more simple direct tension test (DTT). In DDT, the geometry may present a similar geometry, but the application of the displacement δ h and force F h is modified and placed in the middle of the sample illustrated in Figure 4.24. Two possible kinematic for rupture are analysed: with and without an initial crack. Without a crack, the whole interface is loaded uniformly, which may induce in terms of modelling, the rupture of all springs in the same time. On the other hand, the existence of an initial crack a may induce an asymmetry on the distribution of efforts, which may be associated by the propagation of the crack during rupture.

DEM is able to reproduce a realistic kinematic of the rupture [START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF]. A test with 3 samples presenting identical properties and dimensions of the samples in Section 4.4.4 is adopted :

H = 220 mm, a = 0 mm, 2 × w i = 4R = 4 mm, R = 1 mm, E ac = 11 GP a, E int = 1 × 10 6 P a, Σ t ac = 2 × 10 6 P a, Σ t int = 14000 P a, G IC, ac = 120 N/m, G int = 5 N/m. The tensile stress F h /H as a function of the imposed displacement δ h is presented on Figure 4.25.
Parallelly, the expected result for a perfectly homogeneous situation (no initial crack), where all the interface behaves uniformly, follows exactly the triangular shape of the spring force-displacement law as shown in Figure 4.25. One may observe that such interpretation overestimates the tensile strength and induces an unrealistic sharp rupture shape.

The material rupture under tension is usually triggered by the propagation of cracks at the boundaries of the geometry. The DTT with an infinitely small initial crack a → 0 produces a more realistic rupture shape, less sharp, but keep overestimating the tensile strength Σ t . An ideal fit is observed with an initial crack a = 14 mm, which is about 7 times of the particle dimension 2 × R = 2 mm.

Application of the interface model on wedge-splitting experiments

In Section 4.4, the interface model (IM) is shown to be able to capture the main elements of the interfacial rupture behaviour identified from discrete element simulations. The next step is to apply the formulation of IM and analyse the experiments performed by M. Gharbi during her Ph.D. thesis [START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF].

Interface characteristics

The geometry of Gharbi's experiments are presented in Section 4.4.1. In her experiments, there are 3 sets of 6 -10 specimens: P 6, P 7, P 8, corresponding to 3 different conditions. In all cases, the asphalt concrete and the fiber glass grids are glued with a type of classical, cationic rapid-setting bitumen emulsion. Two types of fiber glass grids are used 100SB and R100, which are different in the production method and coating resin. The average results were taken from [START_REF] Gharbi | Caractérisation du collage des interfaces de chaussées par essais de rupture en mode I[END_REF]. Table 4.5 summarizes the characteristics of the analysed results: height H, width W , initial crack size a, thickness t and grid type. 

Analysis of the experiments

In Table 4.6, the parameters of the interface model (IM): stiffness E i /w i , strength Σ t i and Energy release rate G i , identified from the fit of experiment curves of force F h as a function of the displacement δ h shown in Figure 4.26. The grid used in P7 is less stiff, has a lower strength with asphalt materials than P6. The grid of P6 presents a larger strength and energy release rate, which provides a guide on the construction with fiber grid. The fiber grid globally decreases the opening model strength and energy release rate, thus the glue material and glue method should be well considered in further application. 

Summary of the chapter

The mechanical properties of the interface between two asphalt concrete layers is studied by wedge-splitting tests (WST), in order to characterize the interface effect of the fiber glass and resin. A cohesive discrete element model is proposed to simulate materials with high energy release rate, like asphalt concrete, where monotonic rupture is associated to relatively large displacements. The fiberglass grid and the resin are assumed to act together mechanically which allowed interfacial WST to be simulated with a bi-material model.

Considering the lower stiffness and strength of the interface, the strain and the rupture appeared to be restricted to the interlayer interface as suggested by the experimental results. These elements were integrated in a simplified model where only 3 parameters of the interface were taken into account: stiffness, tensile strength and energy release rate. The interface model has shown to be totally compatible with the discrete element approach for ruptures caused by crack propagation. A comparison in direct tensile test between discrete element simulations and the interface model suggests that a length scale depending on the energy release rate, elasticity and strength must be considered to describe crack initiation.

A verification of the robustness of the interface model is presented in Appendix D where experimental WST of samples without any interface are analysed. The good agreement on the sample response and the corroboration of material parameters previously identified show the capacity of the approach on describing localized crack propagation.

The confrontation of the models to experimental WST results has shown a very good agreement on the shape of the force response as function of imposed displacements. It allows a very simple quantitative analysis of the interface response. It has shown, for example, how much the strength and the fracture energy of the interface are weakened by the fiber glass grid. These values may be related furtherly to a design procedure for this type of reinforcement.

Introduction

Traffic induces fatigue sollicitation of the pavement structure. Accurate prediction of the effect of a very large number of loading cycles (10 5 -10 6 ) over the components of the pavements is a major requirement for the optimization of transport infrastructures. At laboratory scale, cyclic bending tests are intended to quantify deflection effects.

The main focus of this chapter is the analysis of the 4-point bending 4PB experiments performed by Arsenie during her PhD thesis [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], which are prequel of the ANR project. She was interested in quantifying the contribution of fibre glass grids to the fatigue life of asphalt concrete samples (described in Section 5.

2).

A damage model based on the PhD work of Didier Bodin [START_REF] Bodin | Modèle d'endommagement cyclique: Application à la fatigue des enrobés bitumineux[END_REF] is implemented at the contact scale in a discrete element environment in Section 5.3.1. The first discrete simulations concern tension-compression tests and identify important features of the model (Section 5.4). In Section 5.5, the simulations of 4PB tests are entirely described (geometry, boundary conditions, material behaviour and numerical strategy). A parametric study of the main elements of the numerical model is presented in Section 5.6, which is the basis for the calibration of the material parameters (Section 5.7). The effects of the glass fibre grids are introduced in Section 5.8, where two fundamental mechanisms are discussed: as reinforcements and as interfaces. After the investigation of the individual contributions of each of these two aspects, the combination of them is explored to analyze the experimental results. Finally, in Section 5.9, the conclusions of the chapter are summarized.

Experimental setup

During her thesis, Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] performed 4-point bending (4PB) fatigue tests intending to quantify the contribution of the fiber glass grids on the fatigue life of asphalt concrete samples. This study was a prequel of the ANR project.

The geometry of the specimen is presented in Figure 5.1. The standard beam dimensions have been adapted in order to have three warp yarns in the width of the beam. Therefore, the standard beam dimensions have been increased in width, length and thickness. Each beam has a length L = 630 mm, and a square cross section with height h = 100 mm and width w = 100 mm. The beam is composed of 3 different layers by construction. The heights of the bottom, middle and upper layers are respectively h/4, h/2 and h/4. The layers are bonded with a bitumen emulsion. The specimens of experiments are separated into two categories: reinforced asphalt concrete and non-reinforced asphalt concrete. The fiber grids lay between the AC layers in the reinforced beams. A controlled strain condition is applied by the sinusoidal motion of the central supports as described in Figure 5.3, which is the typical loading setup in fatigue of asphalt concrete [START_REF] Benedetto | Fatigue of bituminous mixtures: Different approaches and rilem interlaboratory tests[END_REF][START_REF] Partl | Current research projects of the new rilem tc peb" performance testing and evaluation of bituminous materials[END_REF]. The reaction force on the supports F v also presents a sinusoidal response. The decrease of the amplitude of F v as a function of the number of cycles N C is the main information of a fatigue test. 

(𝑎𝑎) (𝑏𝑏) 𝑡𝑡 1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿 𝑣𝑣 𝛿𝛿 𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐 ℎ 𝛿𝛿 𝑣𝑣 𝛿𝛿 𝑣𝑣 𝐹𝐹 𝑣𝑣 𝐹𝐹 𝑣𝑣

Fatigue model and discrete element implementation

As discussed in Section 2.7.2, the fatigue of asphalt concrete presents usually 3 phases. In the first cycles, a relatively fast and intense decrease on the macroscopic stiffness of the sample characterizes the phase I. A stable decrease is associated to phase II. In the last phase, a loss of the homogeneity of the strain in tension/compression fatigue test is observed in Bodin's thesis [START_REF] Bodin | Modèle d'endommagement cyclique: Application à la fatigue des enrobés bitumineux[END_REF] followed by a very intense decrease of stiffness again.

In his thesis, Bodin [START_REF] Bodin | Modèle d'endommagement cyclique: Application à la fatigue des enrobés bitumineux[END_REF][START_REF] Bodin | Continuum damage approach to asphalt concrete fatigue modeling[END_REF] proposed many damage laws, one of them is L3R with 4 parameters capable of capturing the whole trend of the stiffness evolution. Finite element damage calculations are usually sensitive to stress/strain concentration and are mesh dependent [START_REF] Le | Calibration of nonlocal damage model from size effect tests[END_REF]. Bodin implemented a non-local version with finite element method to avoid these effects. Despite the satisfactory sample response obtained by his formulation, at the local level, excessively wide damaged regions are obtained.

In order to improve the local description of the damage phenomenon, and simplify the number of free parameters of the model, a law describing only the first two phases of the damage behaviour, called L2R [START_REF] Bodin | A continuum damage approach of asphalt concrete fatigue tests[END_REF][START_REF] Bodin | Continuum damage approach to asphalt concrete fatigue modeling[END_REF] (based on the Paas law [START_REF] Paas | Continuum damage mechanics with an application to fatigue[END_REF]) is then adapted to a discrete element environment. The physical advantages of this approach are further discussed.

Local fatigue model -L2R

As defined in Section 2.7 and applied in Section 4.3.1, the damage D is a state variable which characterizes the material mechanical condition. Its value ranges from 0 to 1 (D = 0 indicates an intact material, whilst D = 1 defines its complete failure).

Equivalent strain ε

In fatigue, the evolution of damage is originally controlled by the strain state of the material by a scalar equivalent strain ε ε =

3 i=1 σ i + (1 -D)E 2 , (5.1) 
where σ i + is the positive principle stress, and E is the Young's modulus of the material. In Equation 5.1, only tensile stress is considered to damage the material.

Rate of damage growth Ḋ

The rate of damage growth Ḋ is defined as

Ḋ = f (D) ε β ˙ ε + , (5.2) 
where ˙ ε + is the positive value of the rate of increment of the local strain ε and β is a variable related to the fatigue slope (-1 -β) in log-log scale. f (D) is a function of the damage factor, which was proposed by Paas [START_REF] Paas | Continuum damage mechanics with an application to fatigue[END_REF] as

f (D) = CD α , (5.3) 
where α is a scalar parameter. According to Equation 5.2, only a positive increment of strain may induce damage.

Increment of damage δD per cycle

According to Equations 5.1 and 5.2, the damage is considered to be incremented only in tension and for positive strain rates. For a cyclic loading centred at zero, it represents the segments in Figure 5.4 for

N C × T ≤ t ≤ N C × T + T /4
, where N C is the number of cycles and T is the period of the loading cycles. (5.4)

The evolution of the damage as a function of the number of cycles N C can be obtained by integration of Equation 5.4 over the range of time 0 ≤ t ≤ N C × T . The local strain ε induces damage increment only on the first quarter of the cycle.

For constant strain cycles, the contribution of the strain integral is constant per cycle which allows the following simplification:

N C ×T 0 Ḋ D α dt = N C ×T 0 C ε β ˙ ε + dt = N C T /4 0 C ε β ˙ εdt, (5.5) 
where ˙ ε + = ˙ ε for 0 ≤ t ≤ T /4. The integration of Equation 5.5 leads to

D(N C ) 1-α 1 -α = N C C 1 + β ε(T /4) 1+β = N C C 1 + β ε 1+β a , (5.6) 
where D(N C ) is the damage at t = N C × T and ε(T /4) corresponds to the amplitude ε a of the local strain for a sinusoidal cycle.

For the particular case where the amplitude of the strain remains constant during all the number of cycles N C , the damage value can be isolated from Equation 5.6

D(N C ) = C (1 -α) 1 + β ε 1+β a N C 1 1 -α .
(5.7)

A more general incremental calculation of the damage can be obtained by derivation of Equation 5.6 with respect to the number of cycles

N C δD δN C = D α C 1 + β ε 1+β a (5.8)
The main advantage of Equation 5.8 is to take into account the evolution of the amplitude ε a during the fatigue test automatically. However, the value of damage D must be initialized (D = 0). This initial value D(1) can be easily obtained from Equation 5.7 for N C = 1 in the first cycle.

D(1) = C (1 -α) 1 + β ε 1+β a 1 1 -α .
(5.9) The behaviour for one contact can be reduced to a unidimensional problem. As defined in Section 3.2, the displacements in the direction of the contact resultant force δ (Equation 4.8) may give rise to the definition of the strain ε if associated to the length separating two particles i and j in contact R i + R j :

ε = ε = δ n sinθ + δ s cosθ R i + R j .
(5.10)

where δ n and δ s are the normal and tangential relative displacements at the contact, as previously defined. The angle θ indicates the direction of the contact force with respect to the tangential direction. The strain defined for a contact in Equation 5.10 represents the local equivalent strain defined in Equation 5.1 for a continuum material.

The amplitude of the local strain is consequently the maximum value of the local strain under cyclic loading ε a = max(ε).

Damage and force calculation

In the first cycle, the damage factor D is initialized, being calculated for each contact by Equation 5.9. At each new cycle, D is modified incrementaly, based on a first order solution of Equation 5.8 as

D(N c + ∆N C ) = D(N c ) + ∆N C D α C 1 + β ε 1+β a , (5.11) 
where ∆N C is the cycle increment parameter. Any value of ∆N C > 1 allows a gain of calculation time, but it must be carefully chosen not to induce cumulative errors.

After the damage identification, the forces can be updated following the same procedure of Chapter 4 (see Equation 4.6)

f n = k n (1 -D) δ n f s = k s (1 -D) δ s , (5.12) 
where k n and k s are the normal and tangential stiffness of the intact contacts, respectively.

Structures under centred loading -static loading hypothesis

The laboratory fatigue tests [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] are usually driven by imposed displacements, which helps to capture the last phase of fatigue when the sample stiffness tends to be very low. The displacements are sinusoidal like, with controlled amplitude and frequency. The samples are symmetric, which associated to the loading setup guarantees that strains (and stresses) are also sinusoidal centred at zero, avoiding creep contributions. In these conditions, positive and negative strain values with the same intensity are separated in time of half period T (ε(t) = -ε(t + T /2)) in the whole samples, as shown in Figure 5.5.

The damage induced by fatigue is defined by the amplitude of the local strain ε a at each contact. Due to the symmetry of the loading it can be obtained equally for one cycle as

ε a = max(ε(t)) = -min(ε(t)). (5.13) 
In the present formulation, the viscosity of the material is not being taken into account, which means that stress and strain are in phase. In other words, the extreme values of stress (or forces) coincide with extreme values of strain (or displacements). On these conditions, all necessary elements to calculate the increment of damage per cycle can be obtained with static boundary conditions, representing the maximum amplitude of the cyclic load. The intensity of the measured forces represents naturally the amplitude of the cyclic forces which may be obtained during cyclic global load.

Under static global loading, the amplitude of the local strain ε a for each contact is calculated by the absolute value of the local strain ε ε a = |ε|. (5.14) In this way, even the contacts under compression, in case of bending tests, inform the value of ε a which may damage the material under tension. The static loading hypothesis allows a considerable gain in time calculation without any loss of generality.

Strain distribution along the cross section 

Numerical scheme

The scheme of the contact law algorithm adopted in DEM simulations for each timestep is presented in Figure 5.6. The damage factor D is initially set as zero for all the contacts, which represents the intact state of the material. In the first cycle (N C = 1), after the calculation of the local strain ε (Equation 5.10) for each contact, the value of D is initialized, being calculated by Equation 5.9. For all other cycles (N C > 1), the damage is calculated by Equation 5.11.

An extra variable is added to each contact to switch (on or off) the damage calculation. If by any reason, the damage calculation should be deactivated, then switch = 1 and D remains unchanged. That is the case when the damage reaches its maximum value D = 1, for example. While switch = 0, the damage is incremented following the described procedure.

After the determination of D, the contact forces are simply calculated by Equation 5.12.

The fatigue model, as part of the contact constitutive model, is written and compiled in C++ language using 'visual studio 2010'. For more detailed description on the software refer to [120]. The generated file is then called by PFC as the contact law at each timestep during simulations.

Cyclic tension-compression simulations

The response of fatigue law L2R implemented as a contact law in discrete element simulations is verified under homogeneous boundary condition.

Obtain basic parameters of one contact: 𝜃𝜃, 𝛿𝛿 𝑛𝑛 , 𝛿𝛿 𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐷𝐷 𝑁𝑁 𝑐𝑐 -1 (=0 , for the initiation) Calculate Mechanic force: Three rectangular samples are generated as shown in Figure 5.7a. The discrete element parameters for the 3 assembles are: average particle radius R = 2 mm, particle size ratio R max /R min = 1.6, contact modulus E cmod = 2.0 × 10 10 P a and stiffness ratio k ratio = 4.5. These choices correspond to the following material properties: Young's modulus E = 11 GP a and Poisson's ratio ν = 0.34.

𝑓𝑓 𝑟𝑟 = 1 -𝐷𝐷 𝑁𝑁 𝑐𝑐 𝑘𝑘 𝑟𝑟 𝛿𝛿 𝑟𝑟 𝑟𝑟 = 𝑛𝑛,
A uniform relative displacement δ h, max = 0.048 mm is applied at the boundaries in order to reproduce the effect of the cyclic loading δ h (t) presented in Figure 5.7b. The imposed displacements induce a macroscopic strain with amplitude δ h max /L = 150 µm/m, which corresponds to the maximum strain level in standards. The imposed displacements induce a total force F h, max which is measured at each new cycle.

The contact parameters adopted in the simulations are α = -2.0, β = 3.0 and C = 1 × 10 9 . In Figure 5.8a, one may observe the stiffness factor of a contact submitted to a strain ε a = 150 µm/m, F/F 0 = 1 -D associated to the contact law L2R (Equation 5.7). In parallel, the response F h /F h0 of the 3 samples as functions of the number of cycles N C is shown in Figure 5.8b. One may observe that L2R is individually adapted to describe only 2 regimes (phases I and II from fatigue regime, see Section 2.8.3.1). However, the sample response, which depends on the contribution of multiple contacts, describe clearly the 3 phases. The real supports of the beam work only in compression, which means that different positions of the beam are solicited depending on the signal of the imposed displacements. To avoid this asymmetry of the load, the supports are modelled by a vertical range of particles with length 10 mm in the horizontal axis of the beam. The range of particles is long enough to distribute the effort and short enough to avoid bending moment over the supports. The reduced dimension of the supports induces a concentration of efforts which may lead to an accelerated damage of the structure. This inappropriate behaviour is avoided by the deactivation of the damage calculation inside a rectangular zone (10 mm × 15 mm) around the supports and symmetric around the neutral axis, which is large enough to prevent the damage around the supports and small enough to have no influence on the damage evolution of other parts of the sample. This unrealistic (but theoretically ideal) choice has the advantage of keeping the symmetry of the structure during cyclic loading. Furthermore, concerning the material behaviour, L2R is a fatigue law adapted to centred tension/compression. Only compressive loading may be outside the bounds of the theoretical approach. The deactivation of the damage in the center of the beam does not lead to discontinuities of the damage field since this region is weakly solicited and naturally presents a very low damage.

Experimentally, supports 1 and 2 do not move, whilst supports 3 and 4 are driven by a cyclic centred displacement with a given amplitude δ v, max . As discussed in Section 5.3.2.3, these loading conditions are modelled by a static imposed displacement δ v, max of the central supports. The maximum normal strain level ε max is observed in the middle section of the beam in upper and bottom positions and can be calculated by the expression [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] δ v,max = 5 3

A 2 h ε max , (5.15) 
where A = 200 mm is the distance between two adjacent supports.

A vertical force F v is measured as support reaction and evolves during the fatigue tests.

Verification of damage process under symmetric loading

In Section 5.3.2.3, the damage process of structures under centred loading can be simulated by static loading, with the assumption that contacts no matter in compression or tension reach the amplitude at the same time as the global cyclic load. Thus in this section, the damage process under static load is verified by 4PB fatigue simulations with positive and negative displacements, respectively +δ v, max and -δ v, max .

The sample presents 8282 particles with average radius R = 2.9 mm and particle size ratio R max /R min = 1.6. The parameters of fatigue model are C = 10 9 , α = -2.0 and β = 3.0.

The applied displacements (δ v, max = ±0.1 mm) correspond to the strain level ε max = 150 µm/m (Equation 5.15) in Arsenie's experiments.

The responses of the sample in terms of stiffness factor F v /F v0 as function of the number of cycles N C for each loading case are presented in Figure 5.11. Precisely the same curves are obtained even for very high level of damage.

The same local effective strain ε (Equation 5.10), shown in Figure 5.12, is observed in absolute value ignoring the signal of δ v, max . This result is expected due to the identical behaviour of the contacts in tension and compression, even after the total damage of the contacts. The localized damage zones behave as cracks which cannot be closed and present a compressive response. 

Parametric study of the fatigue model

A complete understanding of the effect of each parameter of the fatigue law (C, α, β and the cycle increment ∆N C ) is fundamental to further analyse the experimental results. The study focuses on the stiffness factor F v /F v0 during the fatigue test.

In the discrete element model, the following parameters are adopted: an average radius R = 2.9 mm, size ratio R max /R min = 1.6, contact modulus E cmod = 2.0 × 10 10 P a, stiffness ratio k r = 4.5. They correspond to a Young's modulus E = 11 GP a and Poisson's ratio ν = 0.34.

When not indicated differently, the following parameters are taken for the fatigue contact law: C = 1 × 10 9 , α = -2 and β = 3.0; a vertical displacement δ v = 100 µm, which is associated to a maximum normal strain ε max = 150 µm/m, and a cycle increment ∆N C = 100 is adopted. 

Effect of ∆N

Effect of parameter C

As it can be seen in Equation 5.7, under constant strain, the parameter C has an effect of multiplying the number of cycles N C . In F v /F v0 as a function of the product between the number of cycles and parameter C (N C × C) in Figure 5.14a. This collapse is not absolute, because of the accumulation of truncation errors which is intrinsic to the step by step integration of the damage variable in Equation 5.11. A biggest deviation can be observed at the end of the fatigue life, where locally the damage variable presents its highest evolution and consequently more integration errors.

The propagation of errors depends on the value C which scales the damage increment and also the cycle increment ∆N C . As it can be seen in Figure 5.14b, the scaled fatigue curves (F v /F v0 versus N C × C) are identical for equal values of the factor N C × C. It means globally that a faster damage evolution (associated, for example, to a higher value of C) demands a smaller value of ∆N C for an equal level of precision. On the other hand, a structure composed by a material which presents a slow damage increase per cycle could be calculated with higher values of ∆N C , which may represent a computational gain of time.

Effect of the parameter α

As shown by Bodin [START_REF] Bodin | Modèle d'endommagement cyclique: Application à la fatigue des enrobés bitumineux[END_REF], under constant strain, α has a stronger effect in the beginning of the damage process, as shown in Figure 5.15a for different values of α = -1.0, -1.5, -2.0 and -2.5. An indicative frontier between phase I and II can be represented, where the effect of α is concentrated in phase I. An approximative proportionality between the curves can be visualized with a normalization of the number of cycles by the corresponding value for a given value of 1 -D. For example, the normalized number of cycles can be defined as

N c,norm = N c N c, 0.4 , (5.16) 
where N c, 0.4 is the number of cycles associated to a stiffness fraction of 1-D = 0.4.

In DEM, the heterogeneous strain conditions affects the damage evolution, which consequently is reflected on the stiffness fraction evolution, as shown in Figure 5.16a for 4PB simulations. The same results as a function of the number of cycles N c,norm normalized by Equation 5.16 show the absence of proportionality, revealing a global effect of α during the whole damage process, but more concentrated in the first phase.

Effect of the parameter β

Under constant strain ε a , the parameter β is linked to the slope (equals to -1-β) of the S-N curve in log-log diagram, and it is directly deduced from the experimental tests of fatigue. Therefore, it has a strong effect on the stiffness fraction 1 -D as function of the number of cycles N C as shown in Figure 5.17a for For the same values of the parameter β, the results of the stiffness fraction F v /F v0 as function of the number of cycles N C for 4PB tests (see Figure 5.18) show a similar trend as previously observed concerning the effect of β under constant strain ε a : higher values of β induce a bigger fatigue life. The non proportionality between the curves of F v /F v0 versus N c,norm reveals the complex effect of the parameter β, which compared to the effect of α, affects more the phase II of the fatigue behaviour. A similar effect of the strain level is observed for 4PB tests in Figure 5.20a. Different values of the maximum strain ε max are adopted: ε max = 150 µm/m, which correspond to the following amplitudes of the support displacements δ v = 100 µm. Despite the heterogeneity of the stress/strain fields, the normalization of the num- 

ε 1+β max 1 N C 1 = ε 1+β max 2 N C 2 .

Summary of parametric study

The parameter study is conducted in terms of the parameters of Bodin's damage model in Equation 5.7 and 5.8. Parameter C acts as a scaler of the whole fatigue curve F v /F v0 versus N C . Parameters α and β affects the shape of the fatigue curve. The parameter α has a stronger influence on the first phase of the fatigue curve. The accumulation of errors on the damage calculation depends on the evolution of the damage variable during the time integration. A faster evolution of the system should be associated to smaller values of the cycle jumping parameter ∆N C to avoid larger numerical errors.

Calibration of the material parameters and comparison with 4PB experiments

In the 4PB tests of Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], the strain level is driven by the value of maximum amplitude of the normal strain ε max (obtained on the top and the bottom of the middle section). The values adopted in her experimental study were ε max = 115 µm/m, 135 µm/m, 150 µm/m. ε max is theoretically related to the vertical displacement of the central supports δ v by Equation 5.15. Respectively, on the simulations the values δ v = 76.7 µm, 90 µm, 100 µm are adopted. For the discrete element material description, as in previous simulations, the radius of particles follows a uniform distribution. The average value is R = 2.9 mm and the size ratio is R max /R min = 1.6. The contact stiffness is k n = 2.0 × 10 10 N/m, k r = 4.5, corresponding to a Young's modulus E = 11 GP a and a Poisson's ratio ν = 0.34.

The experimental results are based on the analysis of 3 samples per strain amplitude ε max . For the simulations, three different ensembles are generated with a similar internal structure and slightly different number of particles (8288, 8282 and 8317).

The value of the number of cycles N C is averaged for equal levels of stiffness fraction F v /F v0 . The fatigue life is defined as the necessary number of cycles N C to reach a stiffness fraction F v /F v0 = 0.4 in order to analyse the same ranges of values than Arsenie.

In The average results of the simulations are in very good agreement with the experimental results, which points out the capabilities of the DEM model. The 

Effect of the glass fiber grids in 4PB tests

The fiber grids present different mechanical effects in 4PB tests. Two main roles of the fibers are treated in this section: as reinforcements and as interfaces. Firstly, the simulation of the reinforcements and their individual effects in monotonic and cyclic loading are discussed. Then, the effect of interfaces is analyzed separately on fatigue process. After the integration of the both mechanical behaviours, a comparison with experimental results of Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] is presented.

Simulation of the reinforcements

The cross section of the bending samples is presented in Figure 5.25a. Fatigue tests of the yarns indicate a neglectful modulus factor in the strain amplitude associated to the 4PB test performed usually in pavement design [START_REF] Dinh | Etude de la fatigue de grilles en fibre de verre[END_REF]. Considering the lack of precise information about the fatigue behaviour of the contact between asphalt concrete and fiber glass, a perfect adhesion hypothesis is adopted. Consequently, the contribution of the yarns in 2D is taken as elastic axial reinforcements working under tension and compression (bars). The elastic stiffness k f of one segment i of a fiber glass reinforcement is determined by the expression:

k f i = E f A f l i , (5.17) 
where E f is the elastic modulus of the fiber grid and A f is the total cross section of fiber grid per layer and l i is the length of the segment. The effect of the bars are then taken into account on the discrete element model as additional contacts (Figure 5.25b) connecting particles located at the vertical position of each layer, as shown in Figure 5.25c. The contact properties are simply E f and A f , whilst the length l i are automatically calculated based on the distance between the conected particles.

An advantage of the 2D approach presented here is that cracks and any defects may cross the fiber grid as in real experiments.

4PB monotonic test

A simple monotonic bending test is performed here to verify the fiber grid contribution. Considering a perfect adhesion between the reinforcements and the asphalt concrete matrix, and the small amplitude of the strain, the expected behaviour may be similar to the predictions of beam theory.

The addition of the fiber reinforcement has an effect on the flexural stiffness EI of the composite beam which writes

EI = EI + E f I f , (5.18) 
where EI = E × wh 3 /12 is the flexural stiffness of the asphalt concrete section (without the reinforcements), E f and I f are, respectively, the Young's modulus of the fibers and the moment of inertia of the fibers with respect to the center of gravity (which coincides with the flexural center) of the section. The moment of inertia of the 2 layers of reinforcements can be calculated by the Huygens-Steiner theorem of parallel axis as

I f = 2 × A f (d f /2) 2 , (5.19) 
where d f /2 is the distance between the center of gravity of the beam and the position of the reinforcements.

The reaction force F v can be related to a central support displacement δ v (4PB configuration) by the expression [START_REF] Beer | Mechanics of materials[END_REF]:

F v = 384EIδ v,mid 6.81L 3 , (5.20) 
where L is the length of the beam, δ v,mid is the displacement in the middle of the beam.

For the 4PB beam, δ v,mid = 1.15δ v , where δ v is displacement at two load supports. Simulations with 3 different imposed displacements are considered δ v = 76.7 µm, 90 µm, 100 µm. In order to precisely quantify the contribution of the fiber grid reinforcement, the first step is the identification of the flexural stiffness EI of the asphalt concrete beam. Based on the same elastic properties of Section 5. 

Effect of the fiber reinforcements on the fatigue behaviour of 4PB tests

In Section 5.8.1.1, a usual quantity of fiber reinforcements are adopted on the monotonic verification of the model. One may easily observe (in Figure 5.26) the relatively small increment on the stiffness of the composite beam due to the fibers. This results are not specially surprising, since this type of reinforcements is developed to improve the fatigue life of asphalt concrete components. The acceptable errors of simulations are from 10% to 12%, comparing to the theoretical predictions by Equation 5.20.

The contribution of the reinforcements are then analyzed in fatigue with the same three DEM specimens used for 4PB simulation in Section 5.7. The average evolution of the stiffness factor F v /F v0 as a function of the number of cycles N C is shown in Figure 5.27 for a strain amplitude of ε max = 150 µm/m. The comparison between experiments [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] and simulations indicates an improvement of the fatigue life induced by the reinforcements, however the total effect of the grids seems underestimated by the simulations. 

Simulation of interfaces

As shown in Chapter 4, the fiber grid associates an interface between the asphalt layers with a lower normal stiffness. The tangential behaviour of this interface was not experimentally characterized in SolduGri project, however, a parametric study may show the effect of this mechanism in 4PB tests.

The interfacial behaviour is modelled by the introduction of different elastic prop-erties in a thin layer of particles. The interface is represented by the contacts which cross the fictitious straight lines where the fiber glass grids may be located (see Figure 5.29a). When submitted to relative tangential displacements δ s the interfaces may present a tangential stress response τ = F s /(2L × t), where L is the length of the beam and t its width. The setup in Figure 5.29b is adopted to identify the interface tangential stiffness 10 (5.22) The interface is supposed to present an elastic behaviour (no damage is associated during the fatigue tests). A strain amplitude ε max = 150 µm/m is applied in the following simulations. The effect of the shear stiffness of the interface K t is presented in Figure 5.31 for 0.47 GP a ≤ K t ≤ 1.63 GP a. As it can be seen in Figure 5.31a, the decrease of K t induces an increase of the fatigue life.

K t = τ δ s = F s 2L × tδ s . ( 5 
K t = f (k n ) = 2×10 7 ×(log 10 k n ) 3 -5×10 8 ×(log 10 k n ) 2 +5×10 9 ×log 10 k n -2×10
Parallelly, a general decrease on the stiffness of the beams is associated to the decrease of K t , visible by the reduction of the reaction force F v in Figure 5.31b. The reduction of stiffness for intact beams (D = 0) visible on the beginning of the fatigue test is simply associated to the reduction of the moment of inertia of the beams when K t is reduced. For K t → K t max , the moment of inertia of the beams is I max = bh 3 /12. For K t → 0, the three layers works separately in bending, which conducts to a moment of inertia I min = 2 × b(h/4) 3 /12 + b(h/2) 3 /12 = (5/32)bh 3 /12. The ratio I min /I max = 5/32 ≈ 0.156 corresponds to the maximum reduction of nearly 84% on initial force F v , while the observed reduction at K t = 0.47 GP a/m is approximately 0.3. The shear stiffness K t has a considerable effect on the distribution of damage inside a beam under 4PB test. In Figure 5.32, a comparison between 3 different values of K t = 1.63 GP a/m, 1.14 GP a/m, 0.47 GP a/m, respectively, stiff, intermediary and smooth interfaces is made. Different values of the shear stiffness induces consequently different distribution of the normal stress and strain for an intact structure before the fatigue loading (see the details in Figures 5.32a and 5.32c. For stiffer interfaces, the continuity of the strain distribution between each layer leads to higher values of strain on the top and the bottom of the beam, which causes faster damage evolution at this points, specially in middle section.

On the other hand, for very smooth interfaces, each beam presents a roughly independent strain distribution, associated only to the imposed displacements and moment of inertia. It gives rise to faster damage evolution on the top and bottom of each layer, with higher values of damage in the middle layer compared to the other layers, due to its higher height and bending stiffness. The intermediary interface in Figure 5.32b shows the continuous transition between the two extreme conditions with distributed damage over the middle span of the beam.

Coupled effect of reinforcements and interface on 4PB fatigue simulations

The glass fiber grids play a dual role in 4PB tests: as normal reinforcements and as tangential interfaces. Each of these aspects are analysed independently in Sections 5.8.1 and 5.8.2. In this section the interaction between these two mechanical contributions are analysed by DEM simulations. The reinforcements A comparison between the effect of the reinforcements for a stiff interface (K t = 1.63 GP a/m) and a smooth interfaces (K t = 0.47 GP a/m) is presented in Figure 5.34 for an amplitude of ε max = 150 µm/m. The stiffness of the interface effectively dominates the effect over the bending stiffness of the beams, as visible in Figure 5.28a. The quantity of reinforcements is relatively small to affect the elastic behaviour of the samples, however, it can affect considerably the fatigue response under certain conditions. As shown in Figure 5.28, the damage takes a certain number of cycles N C to reach the reinforcements and activate their (relatively small) contribution, as presented again in 

Model for the contribution of fiber grids on the fatigue behaviour of 4PB tests

The contribution of each mechanism (reinforcement/interface) is inferred based on the comparison with experimental results [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. The precise information about the cross section of the fiberflass grids simplifies the quantification of their reinforcement behaviour. As in Section 5.8.1, a cross section of fiberglass per meter and per layer A f = 30 × 4 × 10 -6 m 2 is adopted on the following simulations. The interface effect is more uncertain; for this reason 2 different values of interface stiffness are analysed on the simulations K t = 1.48 GP a/m, and 1.38 GP a/m, which induces respectively an initial loss of stiffness with respect of the results without fiberglass grids of 9% and 17% as shown in Table 5.1, which is in the range of about 10% identified by Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. The comparison of the simulation results and experiments is presented for two different strain levels ε max = 135 µm/m (Figure 5. Comparison between simulations for different K t = 1.48 GP a and 1.38 GP a and experimental results [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF].

Despite the absence of more precise information about the values of interface stiffness K t the simulations capture the main trends of the experimental results. One may observe that experimental average behaviour remains roughly close to the simulation results with the proposed values of interface stiffness 1.48 GP a < K t < 1.38 GP a. Considering the variation of the experimental results, the simulations remain globally inside the maximum to minimum envelopes. The deviation from the experimental results may result from the limitations of 2D structure of the simulations, the position of the interface (assume to be beside the fiber grid) and the undamageable nature of the interface in simulations.

The combination of the fiber grid and the resultant interface between them can roughly reproduce the experimental results, which inspires to the further study of the interface behaviour.

Summary of the chapter

A fatigue damage model for asphalt concrete is adapted and implemented in a discrete element environment. A simple model describing material bulk fatigue behaviour (phases I and II) associated to the natural disordered micro structure of the discrete model is shown to be able to describe the entire fatigue behaviour (phases I, II and III) in a sample scale. Phase III appears as a structure effect manifested even under uniform boundary conditions, which is characterized by a loss of homogeneity induced by the concentration of defects and a localization of the strain.

After a parametric study and the calibration of the discrete model for 4PB tests, the effect of glass fiber grids is analysed. Two main contributions are evoked for the effect of fiber grids: as normal reinforcements and as tangential interface.

The results indicate that reinforcements are activated near very damaged points. The low quantity of fiber is not apparently enough to explain individually the improvement of the fatigue life observed on the experiments [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. However, the fatigue life can be highly extended in spite of the initial stiffness of the sample.

The damage distribution seems to be considerably affected by the interface mechanism. It seems to be related to its effects on the distribution of the strain, which allows a better mobilisation of the middle asphalt layer and consequently improves the reinforcement behaviour.

Finally, a comparison between simulations and experiments [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] shows the quantitative consistency of the model on describing the main trends and the corresponding mechanisms affecting 4PB fatigue tests of asphalt concrete with fiber glass grids.

Chapter 6 

Conclusions and perspectives

Conclusions

In this thesis, the mechanical response of the asphalt concrete (AC) under monotonic and fatigue loadings was modelled by discrete element method. Based on this material behaviour, the effect of fiber glass grids associated to asphalt concrete was taken into account and its mechanical contribution was analysed.

As discussed in Chapter 3, the materials were modelled by random packed ensemble of particles. An inner stress release method was used to induce a nearly isotropic and homogeneous internal structure with reduced inner voids. A parametric study allowed to relate the contact parameters (contact modulus E cmod and stiffness ratio k ratio ) to the material parameters (Young's modulus E and Poisson's ratio ν) in elasticity.

Quasi-brittle behaviour is limited by two rupture mechanisms: one related to the stress level and the other by the stress intensity factor. These two mechanisms are usually associated to two material properties, respectively, tensile strength and toughness. A calibration procedure based on the analysis of the nominal strength of pre-cracked samples allowed the identification of relation between these material parameters and the contact parameters: normal and tangential strengths, and the particle average radius. The control of the parameters of (quasi-brittle) rupture was verified by the comparison of the results of wedgesplitting simulations with the prediction of linear elastic fracture mechanics.

In Chapter 4, the limits of a quasi-brittle approach on the description of asphalt 139 concrete are discussed. The energy released during the (monotonic) rupture of asphalt concrete (wedge-splitting) samples is much higher than the prediction of linear elastic fracture mechanics, which is based on the value of the toughness. This non-linearity associated to the rupture can be explained by the notion of fracture process zone. In terms of discrete element modelling, a bilinear cohesive contact law was implemented, where the control of the rupture energy was clearly introduced as a parameter. As a consequence, realistic simulation results of asphalt concrete were obtained. The subsequent analysis of wedge-splitting tests with interfaces between asphalt concrete and fiber glass grids has shown that rupture process is almost integrally dominated by the interface mechanical properties. The asphalt concrete behaving as a rigid body leads to a simplified modelling of WST based only on the three parameters: stiffness, strength and energy release rate of the interface. The comparison of this interface model has shown good agreement with experimental results.

In Chapter 5, an alternate fatigue model for asphalt concrete was implemented in discrete element method. A damage contact model describing phases I and II, associated with the natural disorder of the inner structure of the material in DEM is shown to be able to describe the whole fatigue behaviour (phases I, II and III) in a sample scale. Phase III appears as a structure effect manifested even under uniform boundary conditions, which is characterized by a loss of homogeneity induced by the concentration of defects and a localization of the strain. Simulations of 4 point bending tests were then performed to analyse the influence of the fiber glass grids on the fatigue response of the composite beams.

The damage increments per cycle were defined by the strain amplitude. Alternate cycles were numerically replaced by a static imposed deflection of the samples, which accelerated the calculation and allowed the study of the fatigue behaviour under a realistic high number (10 5 -10 6 ) of cycles.

A parametric study and the calibration of the 3 fatigue parameters of the discrete model for 4PB tests has shown the capabilities of the model on reproducing experimental results of asphalt concrete samples. Thus the effects of the fiber grids were analysed from two points of views: as normal reinforcements and as interfaces. The normal reinforcements were represented by complementary elastic contacts at the same position of the fiber grids and presenting the same stiffness. The advantage of this bidimensional approach is to allow a free propagation of defects through the fiber grid (as it happens in reality). The interface was characterized by a thin layer of particles with lower elastic stiffness to induce relative sliding between two adjacent layers. The normal contribution of this layer was neglectful considering the low cross section of the interface layer. The effect of each of the mechanisms was first separately quantified. The simulation results indicate that reinforcements are activated near very damaged points, where the strain is localized. The low quantity of fiber is not apparently enough to explain individually the improvement of the fatigue life observed in the experiments [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. However, the sliding induced by the interface may cause a redistribution of the normal strain with a reduction of maximum values, which extends the fatigue life of the whole beam in spite of its initial stiffness. Considering the coupled effect of the reinforcements and the interface, the redistribution of the strain has the consequence of increasing the damage near the position of the reinforcements, which improves the efficiency of the effect of the reinforcements. Finally, the comparison between simulations and experiments has shown the consistency of the model and the trends indicated by the simulations.

Perspectives

The numerical models developed and discussed in this thesis have indicated some trends, clarified some experimental results and instigate some questions.

For all calculations, the granularity of the simulated materials was kept the same. In Chapter 3, the effect of the average particle size was raised in the relation between the tensile strength and the toughness of a quasi-brittle material. As shown in Appendix B the quasi-brittle behaviour may also depend on the transition between the rupture mechanisms based on strength and toughness, characterized by the parameter r. A physical explanation for the size effects in quasi-brittle rupture may emerge from the analysis of the effect of the granularity on the rupture of pre-cracked samples.

The damage models were oriented to simulate asphalt concrete behaviour and its interactions with glass fiber grids. However, the approaches in monotonic and repeated loads can be extended to other (geo)materials and other (geo)grids.

Some important effects related to the mechanical behaviour of asphalt concrete were not explicitly isolated. An important aspect to be included on the modelization is the identification of the elastic and viscous contributions on the material response. The fatigue tests are usually conducted at relatively high frequencies which affects the material response. The temperature is also a parameter to be considered in future, which affects the viscosity of the asphalt in laboratory and in real structures.

The fatigue tests associated to asphalt concrete samples are usually strain controlled. The reinforcement behaviour of the fiber grid seems to be activated at elevated levels of damage and consequently low levels of sample stiffness. Stress controlled tests may eventually be able to show more clearly the contribution of the fiber grid at residual levels of stiffness.

The fiber grid properties were considered to be perfectly elastic in all calculations. The grid itself presents a roughly constant stiffness in fatigue tests with strain levels comparable to the ones of the bending test that were presented [START_REF] Dinh | Etude de la fatigue de grilles en fibre de verre[END_REF]. However, the behaviour of the connection between the fiber glass and the asphalt concrete is not forcedly independent on the number of cycles. Repeated cycles pull out tests may give important information about the fatigue behaviour of this connection. The normal and, specially, the tangential behaviour of the interface asphalt concrete/grids under fatigue is also an important future input for the modelizations of composite beams. An interface which presents a considerable loss of stiffness during the tests may contribute very differently than proposed by the numerical results of this work. Despite all the present uncertainty with respect to the characterization of the interfaces, the control of the properties of these thin layers seems to be a possible path for the optimization of the fatigue performance of structural elements in asphalt concrete.

required, the local damping coefficient should be set to a low value appropriate to energy dissipation of dynamic waves. Alternatively, viscous damping should be used. For problems involving free flight of particles and/or impacts between particles, global damping is inappropriate, and viscous contact damping should be used.

It should be noticeable that, due to the quasi-static process in this thesis, all the simulations performed in this thesis adopted the global damping (α = 0.7) as presented by [120], so that the particles' acceleration is heavily damped.

A.3 Time-step determination

The DEM solution requires a valid, finite time-step, which should be small enough to keep stability of the model, and large enough for the acceptable computing time. For one contact, the critical time-step is calculated by t crit = m ktrans or t crit = I krot , where m is the mass, I is the inertia of the particle, k trans and k rot are respectively the translational and rotational stiffness. The critical timestep for the whole DEM assembly is determined to by the smallest t crit of all the contacts.

A.4 Stabilisation

For a simulation under (quasi-)static condition, the model requires the stable state of force distribution or particle equilibrium, which means that enough time or time-steps are required in order to reach such a balance state or equilibrium. For a quasi-static load, the method of stabilisation is low loading rate or small time-step. It should be noted the critical time-step is in fact the maximum timestep to keep a stable state of model, but may not small enough for the quasi-static load.

In the simulation with requirement of extreme equilibrium, the stabilisation within a certain tolerance should be worked out with all boundary condition fixed unmovable, taking the stress control in model generation (See Section 3.3.1) as an example.

where H α is material geometry factor, σ N is the nominal failure stress, f t is the tensile strength of material, G is the energy release rate, G c is the critical energy release rate. After the reasonable derivation, Equation B.1 can be expressed as follows, dG/da max dG/da 

  où α et β sont deux variables sans dimension liées à la configuration de l'assemblage des particules dans DEM. L'identification de α et β pour les assemblages aléatoires est présentée à l'aide d'une méthode énergétique à la figure 1, dans laquelle une transmission évidente du critère de contrainte à la LEFM est observée pour les résultats de la simulation DEM. traction prédit par la méthode 'r' deux critères d'échec
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 1 Figure 1: Résistance nominale Σ max en fonction de la taille initiale de la fissure a. La ligne continue est la prédiction donnée par la formulation énergétique pour la résistance à la traction Σ t = 2.4 M P a, la ténacité K IC = 0.4 M P a × m 0.5 et le paramètre r = 2.5.
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 2 Figure 2: (a) Géométrie de la WST. (b) Le résultat de la simulation et l'ajustement par LEFM
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 34 Figure 3: (a) FPZ à la macro fissure. (b) La zone de cohésion en avant du fond de fissure.
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 5 Figure 5: (a) Géométrie du modèle d'interface. (b) Comparaison des expériences et ajustement du modèle d'interface.
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 67 Figure 6: Comparaison d'expériences et de simulations sous différents niveaux de contrainte.
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 8 Figure 8: (a) Coupe transversale des échantillons renforcés. Représentation des barres de la grille de fibres en tant que (b) contacts élastiques supplémentaires et (c) connexion de particules dans la même couche.
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 9 Figure 9: (a) Vérification de la modélisation de la fibre sous charge monotone de 4PB. (b) Comparaison des simulations (non) renforcées et des expériences d'Arsenie
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 10 Figure 10: Modélisation d'interface en simulation avec une couche de contacts en verres.
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 11 Figure 11: Comparaison de expériences et simulations d'effet collectif de grille de fibres et interface.
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 34 Organization of the thesis 3 Evaluate the contribution of the fiber glass grids under fatigue loading (4PB geometry) and identify the mechanisms inducing the observed improvement on the fatigue performance of the composite beams.
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 21 Figure 2.1: Fiber glass reinforcement in asphalt concrete.
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 2223 Figure 2.2: Mode I, Mode II and mix-mode loading of DCB specimens: (a) Mode I (b) Mode II and (c) Mix-mode[START_REF] Anderson | Fracture mechanics: fundamentals and applications[END_REF] 
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 24 Figure 2.4: Typical evolution of stiffness during fatigue test.(Modified from [45])
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 225 Figure 2.5: (a) Stress controlled 3-point bending cyclic test, (b) The fatigue life increment from Lee [19].
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 26 Figure 2.6: (a)Geometry of 4-point bending fatigue test, (b) the strain controlled sinusoidal loading, (c) the stiffness and fatigue life by Arsenie [16].
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 27 Figure 2.7: The rectangular and polar coordinate components of stress field around the crack tip (Modified from [50]).
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 28 Figure 2.8: A center cracked infinite plate subjected to mode I loading (uniform tension). (Modified from [49])
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 22 Figure 2.10: A center cracked infinite plate subjected to mode II loading (in-plane shear). (Modified from [49])
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 2 Figure 2.11: A center cracked infinite plate subjected to mode III loading (antiplane shear). (Modified from [49])
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 213 Figure 2.13: The released energy calculation by the force displacement curve.
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 214 Figure 2.14: Stress distribution before extension and surface opening after extension. (Modified from [49])
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 215216 Figure 2.15: The shemetic map of FPZ by Otsuka (Modified from [62]).
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 2 Figure 2.18: A general traction separation laws for CZM.
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 219 Figure 2.19: Various traction separation law. (Modified from [78])
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 222 Figure 2.22: The curve of force versus displacement and FPZ (Modified from [32]).

Figure 2 . 23 :

 223 Figure 2.23: Experiment result of cantilever fatigue test and (a) fit by 'L2R', (b) fit by 'L3R' [100].
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 2 Figure 2.23 (b) presents the numerical prediction by 'L3R', which verified the availability in the representation of three phases of fatigue life.
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 225 Figure 2.25: Modelling results of damage map at failure for (a) non-reinforced and (b) reinforced speicimens [1, 16, 17].

Figure 2 . 26 :

 226 Figure 2.26: The setup of regular packing assembly in DEM and the damage map. [45]
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 227 Figure 2.27: Fatigue damage curve for simulation by Gao [45], experiments FEM simulation by Arsenie [1, 16, 17].
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 22834824935231523253335345441585159511605126152615361531483657 Figure 2.28: Fatigue damage curve for tensile simulation with coupled model by Gao [45].
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 31 Figure 3.1: (a) Material description in DEM, (b) the contact model, (c) particle displacements, (d) its physical description and (e) corresponding forces.

n and f max s as shown in Fig- ure 3 . 2 . 1 Figure 3 . 2 :

 32132 Figure 3.2: (a) Normal and (b) tangential contact forces. Definition of the tension rupture of the contact.

Figure 3 . 3 :

 33 Figure 3.3: Square sample generation. (a) Initial particle distribution, h r ≈ 1.37 × 10 -2 , and 2 floater particles are indicated in black. (b) At the end of the generation process, h r ≈ 1.04 × 10 -9 , and no floaters are observed.

2 𝐿𝐿Figure 3 . 4 :

 234 Figure 3.4: (a) Applied stress and displacement boundary conditions applied to the numerical sample. (b) Stresses in a continuum medium.
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 3 Figure 3.5 presents a linear relation between the Young's modulus of the material E and the granular contact modulus E cmod (for a given k n /k s = 1). A low standard deviation of approximately 0.5% of the average results of E are observed.
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 35 Figure 3.5: Material Young's modulus E versus contact modulus E cmod for k n /k s = 1.
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 36 Figure 3.6: Material Young's modulus E versus contact stiffness ratio k n /k s for E cmod = 10 GP a.
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 3737 Figure 3.7: Material Poisson's ratio ν versus contact stiffness ratio k n /k s for E cmod = 10 GP a.
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 38 Figure 3.8: The square packing particles and the stress distribution near a crack based on continuum fracture mechanics.
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 62339 Figure 3.9: Contact forces of (a) particle assembly and (b) the same assembly scaled by a factor λ.
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 5313 Figure 3.10: (a) Geometry of the cracked plates,(b) DEM specimen and (c) zoom on the crack tip.

Figure 3 . 11 :

 311 Figure 3.11: Nominal strength Σ max as a function of the initial crack size a.The continuous line is the prediction given by the energetic formulation of[START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] for tensile strength Σ t = 2.4 M P a, toughness K IC = 0.4 M P a • m -0.5 and the parameter r = 2.5.

  5 samples are generated in DEM with different generator random seeds (see Appendix A), and applied with the same initial crack length a. The average radius of the particles R is 1.5 mm, with R max = 1.85 mm and R min = 1.15 mm. The average particle number is 6603, and the average contact number is 13025. The micro parameters for the DEM specimens are E cmod = 20 GP a, k ratio = 3.5, f n,max = 6000 N and S r = 1, which produces the material Young's modulus E = 11.6 GP a and Poisson's ratio ν = 0.3 due to the calibration in Section 3.4. The fracture toughness is K IC = 2.0 M P a • m -0.5 theoretically by Equation 3.19 with β = 1.29.
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 3 Figure 3.12: (a) The geometry of ASTM standard WST, (b) DEM simulation of WST in contact view.

  443 + 2.32(a/b) -6.66(a/b) 2 + 7.36(a/b) 3 -2.8(a/b) 4 ),

  1630 + 12.129(a/b) -20.065(a/b) 2 -0.9925(a/b) 3 + 20.609(a/b) 4 -9.9314(a/b) 5 ), (3.21)
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 313 Figure 3.13: The results of simulation and theoretical prediction of WST.

  a/b) = 2 + a/b (1 -a/b) 3/2 (0.76 + 4.8(a/b) -11.58(a/b) 2 + 11.43(a/b) 3 -4.08(a/b) 4 ), (4.1) where b = 110 mm and t (= 50 mm) is the specimen thickness.
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 41 Figure 4.1: (a) Dimension (unit: mm) of wedge-splitting geometry of the tests performed by [95]. (b) Opening force F h as a function of the displacement δ h .

Figure 4 . 2 :

 42 Figure 4.2: (a) Schematic view of a crack presenting a fracture process zone (FPZ) and the approximative tensile stress field associated. (b) Zoom at the crack tip [114].
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 43 Figure 4.3: Contact displacements and forces.
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 4445 Figure 4.4: Bilinear traction separation law for cohesive contact model.
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 32 WST simulations with cohesive contact model -preliminary testsInitial verifications related to the model (particle size and loading rate effects) are first discussed. The geometry of numerical sample is presented in Figure4.5.Each sample has the same shape and dimensions (200 mm × 200 mm). The traction separation law presented in the previous section 4.3.1 is adopted. The elasticity parameters are E cmod = 10 GP a, k ratio = 4.5 (see the definition in Section 3.2), which correspond the material properties in[START_REF] Gharbi | Characterization of the bond between asphalt layers and glass grid layer with help of a wedge splitting test[END_REF]: Young's modulus E = 5.4 GP a and Poisson's ratio ν = 0.34. The strength of the contact σ n = σ s = 5 × 10 4 P a,

Figure 4 . 6 :

 46 Figure 4.6: Force F h as function of the displacement δ h for different loading rate δh in DEM simulations.

Figure 4 . 7 :

 47 Figure 4.7: Force F h as function of the displacement δ h for different particle radius.

Figure 4 . 8 :

 48 Figure 4.8: (a) Pavement cross section. (b) Zoom in the top layer of pavement and the grid between asphalt concrete (AC) layers.

Figure 4 .

 4 9a) were sawed following the dimensions H × 200mm × 150mm indicated in Figure4.9b. Some samples present fiberglass grids inside the interfacial layer and other samples have only emulsion. A semi-circular groove with a diameter of 56 mm (instead of the usual rectangular one) is made by coring to simplify the preparation of the sample. A pre-crack of 30 mm of length and 5 mm of width is created by sawing the bottom of the semicircular groove.

Figure 4 . 9 :

 49 Figure 4.9: (a) Sample used in the WST and (b) detailed geometry of the tests performed by [22] and (c) sample and the crack after test.
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 31410 Figure 4.10: Characterization of the interface geometry on discrete element simulations.
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 411 Figure 4.11: Wedge-splitting geometry and boundary conditions.
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 412 Figure 4.12: Characterization of the interface geometry on discrete element simulations.
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 4 Figure 4.13: Force F h as a function of the displacement δ h . Comparison between simulations and experiments [34].
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 4 Figure 4.14: (a) Experimental [34] and (b) numerical samples after WST.
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 44 Scheme of the interface

Figure 4 . 16 :

 416 Figure 4.16: Elongation of the springs imposed by the rigid motion of the asphalt concrete element. Resulting forces and application points.
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 432 Strength and energy release rate of the interfaceConsidering the good results of the discrete element model, the springs are supposed to have the same bi-linear force-displacement law.

Figure 4 .

 4 Figure 4.17: Force-displacement behaviour of the equivalent springs.
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 418 The dimensions of interface model are height H = 200 mm, 2 × w i = 4 mm, a = 56 mm. The mechanical parameters are E i = 2 × 10 6 P a, Σ t i = 14000 P a, G i = 15 N/m. The results are substantially the same for n equal to 10 to 25 springs. An convergent result is obtained for more than 20 springs.
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 4 Figure 4.18: Force F h as function of the displacement δ h . Effect of the number of springs n over the interface model results.
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 4 Figure 4.19: (a)Force F h as a function of the displacement δ h and (b) relation between the elastic parameters E int and E i .
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 644 Figure 4.20: (a) Force F h as a function of the displacement δ h for different interface strength 0.6 × 10 4 P a ≤ Σ t int ≤ 2.2 × 10 4 P a. (b) Relation between the strength parameters Σ t int and Σ t i .
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 4421 Figure 4.21: Force F h as a function of the displacement δ h for different energy release rates of the interface 1 N/m ≤ G int ≤ 20 N/m. (b) Relation between the energy parameters G int and G ic .
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 422 Figure 4.22: Definition of interface thickness in discrete element modelling.
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 944423 Figure 4.23: Force F h as a function of the displacement δ h for different interface thickness: a, 4 R = 4 mm; b, 8 R = 8 mm; a, 12 R = 12 mm; a, 16 R = 16 mm.
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 4 Figure 4.24: (a) Scheme of a direct interfacial tensile test. Kinematic of rupture (b) without and (c) with an initial crack.
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 425 Figure 4.25: Tensile stress F h /H as a funtion of the displacement δ h . Effect of the initial crack a.
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 426 Figure 4.26: results of Experiments [34] and IM fitting.
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 51 Figure 5.1: Geometry of specimen for 4PB test performed by Arsenie.
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 52 Figure 5.2: (a) 4-point bending (4PB) samples and (b) loading equipment [1].

Figure 5 . 3 :

 53 Figure 5.3: Loading setup of the 4-point bending (4PB) tests performed by Arsenie [1].
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 54 Figure 5.4: Loading cycle contribution on damage increment.
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 325321 Local equivalent strain
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 55 Figure 5.5: (a) Cycles of strain in tension/compression and bending tests, and (b) corresponding strain distribution.
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 56 Figure 5.6: Algorithm for damage calculation in DEM.
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 575859 Figure 5.7: (a) Sample dimensions and imposed displacements. (b) Analysed cyclic loading.
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 5 Cyclic 4-point bending (4PB) tests 5.5.1 Geometry and boundary conditions 4-point bending (4PB) tests are simulated by discrete element method (DEM).The geometry follows the dimensions of the experiments perfomed by[START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] (see Section 5.2) as indicated in Figure5.10a with length L = 630 mm, height h = 100 mm and an equal spacing between supports l = 200 mm.

15 𝑚𝑚𝑚𝑚Figure 5 . 10 :

 15510 Figure 5.10: Geometry of the 4-point bending (4PB) samples in DEM. (a) Indication of the dimensions over the particle packing and (b) contact properties by zones.

  v, max = 0.1 mm displacement: δ v,max = -0.1 mm
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 511 Figure 5.11: Stiffness factor F v /F v0 as a function of the number of cycles N C for δ v, max = 0.1 mm and δ v, max = -0.1 mm.

Figure 5 . 12 :

 512 Figure 5.12: The effective strain distribution for δ v, max = 0.1 mm and δ v, max = -0.1 mm for a number of cycles (a) F v /F v0 = 1.0 and (b) F v /F v0 = 0.4.
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 5611 Effect of ∆N CThe damage D is calculated incrementally with a cycle increment ∆N C . The evolution of D with the number of cycles N C is generally very slow, which opens the possibility of numerically 'jump' cycles (instead of performing one by one). The stiffness factor F v /F v0 as a function of the number of cycles N C for different increments of cycles ∆N C = 100, 1000, 2000, 4000 is presented in Figure5.13a. Higher values of ∆N C increases the propagation of errors during calculations of D, which explain the deviation of the results. A stable result is however observed for ∆N C < 1000.

Figure 5 .

 5 13b, the results of simulations with different C are presented (C 1 = 1 × 10 9 , C 2 = 1 × 10 10 , C 3 = 2 × 10 10 and C 4 = 4 × 10 10 ).
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 613 Relation between the parameters ∆N C and CAccording to Equation5.11, the parameter C has a linear scaling effect on the increase of the damage. It can be observed by the collapse of the stiffness factor

Figure 5 . 13 :

 513 Figure 5.13: Stiffness factor F v /F v0 as a function of the number of cycles N C for (a) different increment of cycles ∆N C and (b) different value of parameter C.

14 𝐶𝐶Figure 5 . 14 :

 14514 Figure 5.14: Stiffness factor F v /F v0 as a function of the C × N C for (a) different values of C, ∆N C = 100 and (b) different values of C × ∆N C .

Figure 5 . 15 :

 515 Figure 5.15: Stiffness factor 1 -D for constant strain ε a = 1 × 10 -4 and different values of α (a) as a function of the number of cycles N C and (b) as a function of the normalized number of cycles N C,norm .
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 516 Figure 5.16: Stiffness fraction F v /F v0 (a) as function of the number of cycles N C and (b) as a function of the normalized number of cycles N c,norm for different values of α.

Figure 5 . 17 :

 517 Figure 5.17: Stiffness factor 1 -D for constant strain ε a = 1 × 10 -4 and different values of β (a) as a function of the number of cycles N C and (b) as a function of the N c,norm .

Figure 5 . 18 :

 518 Figure 5.18: Stiffness factor F v /F v0 (a) as a function of the number of cycles N C and (b) as a function of the N c,norm for different values of β.
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 12256109519 Figure 5.19: Stiffness factor 1 -D for constant strain amplitude ε a . The different curves indicate different values of ε a = 110 µm/m, 130 µm/m, 150 µm/m. (a) as a function of the number of cycles N C and (b) as a function of the ε 1+β a N C .
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 520 Figure 5.20: Stiffness fraction F v /F v0 (a) as a function of the number of cycles N C and (b) as a function of the ε 1+β max N C for different values of ε max .
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 7521 Figure 5.21: Damage maps obtained for a damage fraction F v /F v0 = 0.4 with different strain levels (a)ε max = 115 µm/m at N C = 739703 and (b) ε max = 150 µm/m at N C = 256523.

Figure 5 .

 5 22, the experimental results of the stiffness fraction F v /F v0 as a function of the number of cycles N C for ε max = 135 µm/m and 150 µm/m are presented. The envelope curves with minimum and maximum values show the relatively large variation of the results. The average curves are the reference for the calibration of the parameters of the fatigue model C = 8.7 × 10 8 , α = -2.0 and β = 3.0.

Figure 5 . 22 :

 522 Figure 5.22: Stiffness fraction F v /F v0 as a function of the number of cycles N C for (a) ε max = 135 µm/m and (b) ε max = 150 µm/m. Comparison between DEM simulations of 4PB tests and experiments of Arsenie [1].
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 7523524 Figure 5.23: Damage map for all the three samples for a stiffness fraction F v /F v0 = 0.4.

Figure 5 .

 5 Figure 5.25: (a) Cross section of the 4PB samples. Representation of the reinforcement bars (b) as additional contacts (c) connecting particles in the same layer.

  7 and no reinforcement (A f = 0), one obtain EI from measured F v and Equation 5.20 for EI = EI. In 2D simulations, the beam has a unit width b = 1 m. The total quantity of fiber per meter in one layer of reinforcement A f = 30 × 4 × 10 -6 m 2 . The Young's modulus of AC takes the value of 11 GP a, which is measured experimentally for a strain lever ε max = 40 µm/m, frequency 10 Hz and temperature 10 • C [1]. In Figure 5.26a, the reaction F v is related to the different values of δ v for the beam with and without reinforcements. The results with fibers follow the predictions of Equation5.20 as can be seen in more detail in Figure5.26 with less than 0.5% of relative error.

Figure 5 .

 5 Figure 5.26: (a) Reaction force F v as a function of the displacement of the central support δ v . R: with reinforcement, NR: without reinforcement.

Figure 5 . 27 :Figure 5 .

 5275 Figure 5.27: Stiffness fraction F v /F v0 as a function of the number of cycle N C in 4PB tests (ε max = 150 µm/m). Comparison between DEM simulations and the experiements of [1].

Figure 5 .

 5 Figure 5.29: (a) Interface representation in DEM 4PB simulations. (b) Geometry of the shear test adopted in the characterisation of the interface.

Figure 5 . 30 :

 530 Figure 5.30: Relation between interface shear stiffness K t and interface contact stiffness k n in logarithm for the shear test presented in Figure 5.29

Figure 5 . 31 :

 531 Figure 5.31: Results of 4PB fatigue tests: (a)Force ratio F v /F v0 and (b) force F v as a function of the number of cycles N C for different interface shear stiffness K t .

Figure 5 . 32 :

 532 Figure 5.32: Map of contact damage D for a stiffness fraction F v /F v0 = 0.4 after 4PB fatigue tests for (a) a stiff interface K t = 1.63 GP a/m, (b) an intermediary interface K t = 1.14 GP a/m and (c) a smooth interface K t = 0.47 GP a/m. In detail, the scheme of the distribution of normal stress (and strain) for stiff and smooth interfaces with static load before damage.

Figure 5 . 33 :

 533 Figure 5.33: Interface and the position of the reinforcements in DEM 4PB simulations.

Figure 5 .Figure 5 . 34 :

 5534 Figure 5.34: Reinforcement effect with stiff and smooth interfaces on the stiffness factor F v /F v0 as a function of N C : (a) 0 ≤ N C ≤ 3×10 5 and (b) 0 ≤ N C ≤ 2×10 7 for ε max = 150 µm/m.

  35a) and ε max = 150 µm/m (Figure5.35b). The simulations results represent the average behaviour of 3 samples, whilst experiments average, maximum and minimum envelopes are the results of the analysis of 6 samples.

Figure 5 . 35 :

 535 Figure 5.35: Stiffness factor F v /F v0 as a function of the number of cycles N C for 2 different strain levels (a) ε max = 150 µm/m and (b) ε max = 135 µm/m. Comparison between simulations for different K t = 1.48 GP a and 1.38 GP a and experimental results [1].
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Figure B. 2

 2 Figure B.2 presents the results of the energetic method in successfully description of the transition from the material strength to the LEFM criterion as crack length increases.

Figure B. 2 :

 2 Figure B.2: Nominal strength σ N as a function of crack length a for different r (Modified from [45]).
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Table 2 .

 2 1: Evaluation of fatigue life in literature (Modified from[START_REF] Gul | Modelling and characterising the fatigue behaviour of asphaltic concrete mixtures[END_REF].)

	Research by	Explanatory variables	Model
			function
	Lytton et al.	Bitumen content, stiffness, air voids,	Linear
		aggregate type, gradation and	
		angularity	
	Harvey and Tsai	Initial stiffness and mix volumetric	linear
		Intrinsically	
	Kim et al.	Stress level	Power
	Lee and Kim	Pseudo stiffness	Linear
	Rodrigues	Traffic speed and the shape of the	Quadratic
		stress pulse	
	Hartman	Type of compaction	Linear
	Kim et al.	Strain rates and damage growth	Linear
	Kim et al.	Initial pseudo-stiffness, damage	Exponential
		parameter fatigue failure, material	
		parameter	
	Zhou et al.	Initial stiffness	Power
	Yeo et al.	Tensile strain	Power
	Xiao et al.	Initial flexural strain, VFA, AV,initial	Artificial neural
		dissipated energy, initial mix stiffness	network
	Al-Rub et al.	Fundamental material properties	Finite element
			model
	Salama and	Axle load and truck configuration	Power
	Chatti		
	Al-Khateeb and	Temperature, stress, and loading	Exponential
	Ghuzlan	frequency	
	Ali et al.	Dynamic modulus and phase angle	No model was
			developed
	Mannan et al.	Strain	Power
	Underwood	Strain amplitude	Power
	Luo and		
	Qian		

Table 4 .

 4 5: Parameters of the wedge-splitting samples of Gharbi's experiments.

	Samples grid type H (mm) a (mm) W (mm) t (mm)
	P6	100SB	242	54.6	198	151
	P7	R100	233	54.6	186	151
	P8	no grid	232	54.6	186	125

Table 4 .

 4 6: Mechanical parameters of the interface model (IM) identified from Gharbi's experiments.

		E i /w i (P a/m)	Σ t (P a)	G i (N/m)
	P6	0.75 × 10 9	0.85 × 10 5	155
	P7	1.5 × 10 9	0.70 × 10 5	105
	P8	0.75 × 10 9	1.20 × 10 5	220

Table 5 .

 5 1: F v0 comparison of (non-)reinforced numerical samples with different interface K t . NR: without reinforcement, R: with Reinforcement and interface.

	strain level (µm/m)	150		135	
	F v0 N R (N )	13658	11985
	K t (GP a/m)	1.48	1.38	1.48	1.38
	F v0 R (N )	12241 11228 10945 10106
	Reduction (%)	10	17	9	16

(a) (b)
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modelling

In the last part, an application of the DEM approach for wedge-splitting tests showed very consistent results according to linear elastic fracture mechanics LEFM. The limitations of LEFM on asphalt concrete modelling will be discussed in the next chapter.

Chapter 4

Wedge-splitting tests of asphalt concrete interfaces 

Discrete element method

DEM was originally developed to model granular systems [START_REF] Morgan | Numerical simulations of granular shear zones using the distinct element method: 1. shear zone kinematics and the micromechanics of localization[END_REF][START_REF] Cleary | Modelling comminution devices using dem[END_REF][START_REF] Koval | Annular shear of cohesionless granular materials: From the inertial to quasistatic regime[END_REF]. Afterwards, it is used to study the fracture of quasi-brittle materials such as concrete and rocks [START_REF] Le | Discrete element approach in brittle fracture mechanics[END_REF][START_REF] Meguro | Fracture analyses of concrete structures by the modified distinct element method[END_REF][START_REF] Matsuda | Numerical simulation of rock fracture using three-dimensional extended discrete element method[END_REF]. Materials are regarded as assemblies of particles and contacts, as shown in Figure 3.1 (a) for a two-dimension assembly. Particles are interacted by contact forces and their motion follow Newton's laws. Particle motion and contact force update in each time-step, which makes the numerical calculation.

A.1 Contact detection and activation

The contacts are detected automatically in each time-step. PFC imposes a kinematic constraint on the time-step in order to guarantee that contacts are created between particles (or walls) prior to the cycle that forces develop [120]. The contact activation is operated in two steps. Firstly, the particle proximity (the geometry distance) is detected and compared with the reference critical proximity δ rp , beyond which value the generation of contact is impossible, i.e. the contact is potential to be created within this particle distance of critical proximity δ rp . Secondly, the contact activation is done within the defined contact gap agap. For the linear contact without bond, the agap value equals to the reference gap, for the bonded contact, the agap value can be defined, which is larger than reference gap (rgap) and smaller than the critical proximity δ rp .

A.2 Energy dissipation and Damping

Energy dissipation may occur due to three different mechanisms: friction at contacts, dissipation at contacts (e.g., viscous damping, inelastic contact laws, etc.) or dissipation introduced in the equations of motion of balls and/or clumps. The latter item is called local damping. Local damping acts on each ball, while viscous damping acts at each contact.

A.2.0.1 Global damping

Global damping applies a damping force, with magnitude proportional to unbalanced force, to each ball, as expressed in Equation A.1.

where α is the local damping factor, | f i | is the norm of the vector, and

Global damping is usually set to a large value (0.7 as indicated and used in [START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF][START_REF] Potyondy | A bonded-particle model for rock[END_REF]) to accelerate convergence toward a stable configuration for quasi-static simulations. This value should be tuned down for dynamic analyses, or even set to zero. Refer to the manual [120] for more information.

A.2.0.2 Viscous damping

Viscous damping adds normal and shear dashpots at each contact, which is given by the following equation:

where c i is the critical damping constant, which is given by:

where β is the critical damping ratio and it can be directly set in PFC by user, and c i,crit is the critical damping constant.

A.2.0.3 Usage

For compact assemblies, global damping, using the default parameter setting, is the most appropriate form to establish equilibrium and to conduct quasi-static deformation simulations. When a dynamic simulation of compact assemblies is

A.5 Generator random seed

In the randomly generated model, the graded particles are randomly created within the assigned domain. Therefore, their locations and sizes are affected by the state of the random-number generator. The random-number generator itself is affected by the random seeds. The previous literatures [120] used a default random seed of 10,000 and the value specified should be of the same magnitude as the default value.

Appendix B

Energetic model of size effects in quasi-brittle rupture

For an intact structure, the criterion of material strength can indicate the crack propagation. On the other hand, the fracture toughness criterion can work on the prediction of large crack propagation. When the crack size is between these two situations, the prediction of rupture behaviour is an important research issue. In Gao's study, the size effect [START_REF] Bažant | Size effect in blunt fracture: concrete, rock, metal[END_REF][START_REF] Bazant | Probabilistic modeling of quasibrittle fracture and size effect[END_REF] and boundary effect [START_REF] Hu | Size effect on toughness induced by crack close to free surface[END_REF][START_REF] Hu | An asymptotic approach to size effect on fracture toughness and fracture energy of composites[END_REF][START_REF] Duan | Scaling of quasi-brittle fracture: Boundary and size effect[END_REF], were combined and a general formula to predict the crack propagation for different crack sizes was presented as follows, 

Interface model applied in a wedge-splitting test without interface

The capacity of the interface model to capture the rupture mechanism in wedgesplitting geometry might go beyond the initial assumptions.

As an exemple, the WST results of [START_REF] Kim | Micromechanical fracture modeling of asphalt mixture using the discrete element method[END_REF] presented in Section 4.2.1 are analyzed by means of the interface model (IM), despite the fact the samples do not present any interface. In Figure D.1 the experimental results are compared to IM and to a complex bi-phasic DEM (MDEM) proposed by [START_REF] Kim | Micromechanical fracture modeling of asphalt mixture using the discrete element method[END_REF].

The IM geometry has been adjusted in terms of the height H = 110 mm, width w i = 4 mm, thickness t = 50 mm and initial crack a = 27.5 mm to approximate the experiment's geometry shown in Figure 4.1a. The IM parameters: stiffness E i /w i = 3.4 × 10 11 P a/m, tensile strength Σ t i = 2.48M P a and energy release rate G i = 238N/m are adopted on the approximations. These values are very close to the parameters identified by the authors (Σ t = 2.81M P a and G IC = 272N/m).

Despite the simplicity of the assumptions of IM, the shape of the curve F h × δ h follows apparently better the experimental results than the complex MDEM proposed by the authors [START_REF] Kim | Micromechanical fracture modeling of asphalt mixture using the discrete element method[END_REF]. 
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Abstract

The effect of fiberglass grid reinforcement in asphalt concrete is studied numerically by discrete element method in this work. Firstly, concerning on the quasi-brittle material, the elasticity of modelling are calibrated, and the rupture behaviour is verified with linear elastic fracture mechanics.

Then the simulations of wedge splitting tests are performed under monotonic load. The interface elasticity and failure dominate in the fracture propagation of samples, which gives rise to a simplified interface model. The parameter calibration on Young's modulus and Poisson's ratio is conducted between interface model and discrete element method. Through the fitting with experimental results, the interface strength and energy release rate are also identified by discrete element method and simplified interface model. Comparing with linear elastic fracture mechanics, the interface rupture presents more released energy. The strength and energy release rate are reduced because of the application of the fiber glass grid. The fatigue behaviour is studied by simulations of 4-point bending fatigue tests. Bodin's fatigue model 'L2R' is adapted with discrete element method. The effect of each parameter on the damage evolution is studied respectively. The fiber glass grid helps to extent the fatigue life mainly after the fatigue cracks cross the grid. The interface effect is observed on prolonging the fatigue life of all the phases. From both monotonic and fatigue tests, it indicates that good bonding between two asphalt concrete layers is important to the resistance of rupture.

Keywords: asphalt concrete; fiber glass grid reinforcement; rupture; fatigue life; discrete element modelling