
HAL Id: tel-02513065
https://theses.hal.science/tel-02513065

Submitted on 20 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sizing of a short term wind forecasting system
Aurore Dupré

To cite this version:
Aurore Dupré. Sizing of a short term wind forecasting system. Geophysics [physics.geo-ph]. Institut
Polytechnique de Paris, 2020. English. �NNT : 2020IPPAX002�. �tel-02513065�

https://theses.hal.science/tel-02513065
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
0I

P
PA

X
00

2

Sizing of a short term wind forecasting
system
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Thèse présentée et soutenue à Palaiseau, le 22 janvier 2020, par

AURORE DUPRÉ
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Dimensionnement d’un système de prévision éolienne à court terme

Résumé – Dans un contexte de réchauffement climatique et de transition énergétique, le
développement des énergies renouvelables est indispensable afin de garantir une production d’énergie
qui réponde à une demande en croissance constante. Cependant, l’intermittence de ces ressources
reste un frein quant à leur pénétration. Avoir accès à des prévisions court terme fiables est essentiel
et c’est d’autant plus le cas pour l’éolien qui dépend d’une ressource extrêmement variable.

Les producteurs éoliens Français bénéficient d’une période de rachat obligatoire de leur produc-
tion de la part d’EDF durant 15 ans. Après cela, ils doivent vendre leur production sur le marché
concurrentiel. Pour ce faire ils doivent annoncer à l’avance la quantité d’énergie qu’ils injecteront
sur le réseau. En cas de déséquilibre, des pénalités leurs sont imputées. Ainsi, anticiper de manière
précise la quantité d’énergie produite permet de maximiser le revenu. En France, l’échéance limite
pour vendre son énergie est de 30 minutes. Ainsi, dans cette thèse, plusieurs approches de ré-
duction d’échelle, paramétriques (régression linéaire) et non paramétriques (forêts aléatoires) sont
développées, calibrées et évaluées. Les échéances considérées vont donc de 30 min à 3 h. En effet,
il est possibe de vendre l’énergie jusqu’à plusieurs heures en avance. Ainsi le modèle de prévision
doit être performant de quelques dizaines de minutes jusqu’à quelques heures en avance.

Les méthodes de réduction d’échelle considérées sont très rarement utilisées pour des échéances
inférieures à l’heure puisque les modèles numériques sont généralement exécutés toutes les 6 à 12 h.
Cependant lorsqu’il s’agit de la prévision du vent, le numérique devient très vite nécessaire. En
effet, contrairement à la prévision de l’énergie photovoltaïque, pour laquelle l’utilisation d’images
satellites est très courante afin de suivre et d’anticiper le déplacement des nuages, la prévision de
l’énergie éolienne et donc du vent se passe difficilement de modélisation. Par ailleurs, l’utilisation
de mesures in-situ dans les méthodes de réduction d’échelle, afin de corriger la prévision numérique
à l’initialisation, permet un gain de performance significatif. Une comparaison des performances de
cette méthode hybride avec les performances des méthodes statistiques classiques pour la prévision
de la vitesse du vent à la hauteur du moyeu est réalisée. Le modèle développé surpasse toutes les
autres méthodes testées dans cette étude. En particulier l’amélioration par rapport à la méthode
de persistance va de 1.5% à 10 min à plus de 30% à 3 h.

Afin de limiter l’accumulation d’erreurs lors du passage de la prévision du vent à la prévision de
l’énergie éolienne, une analyse de l’erreur induite par différentes variables météorologiques, comme
la direction du vent ou la densité de l’air, est présentée. Dans un premier temps, la prévision
ferme par ferme est explorée puis la dimension spatiale est introduite. Tout d’abord, l’information
de petite échelle est évaluée au moyen de fermes situées à quelques kilomètres l’une de l’autre.
Ensuite l’information grande échelle est étudiée grâce à des fermes situées à environ 200km de
distance. Alors que l’utilisation de données d’une ferme proche permet des améliorations dans les
prévisions à 10 et 20min, ce n’est pas le cas pour les données des fermes fortement éloignées. En
effet, les échéances considérees sont trop courtes pour que les données de parcs si lointains soient
pertinentes.

Pour finir, la valeur économique d’un tel système de prévision court terme est explorée. Les
différentes étapes du marché de l’électricité sont étudiées et les différentes sources d’incertitude
et de variabilité, comme les erreurs de prévision et la volatilité des prix, sont mises en évidence
et évaluées. Pour les deux fermes considérées dans cette étude, les résultats montrent que les
prévisions court terme permettent une augmentation du revenu annuel entre 4 et 5%.
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Sizing of a short term wind forecasting system

Abstract – In a context of global warming and energy transition, the development of renewable
energies is essential in order to ensure energy production that meets a constantly growing demand.
However, the intermittency of these resources remains a barrier to their penetration. Having access
to accurate short term forecasts is essential and especially for wind power, which depends on an
extremely variable resource.

French wind power producers benefit from a “obligation to purchase” from EDF for 15 years.
After that, they have to sell their production in the competitive market. To do so, they must
announce in advance the amount of energy they will inject into the grid. In case of imbalance,
they are charged penalties. Thus, accurately anticipating the amount of energy produced helps
to maximize the income. In France, the deadline for selling energy is 30 minutes. Thus, in this
thesis, several downscaling approaches, parametric (linear regression) and non-parametric (random
forests) are developed, calibrated and evaluated. The considered lead times range from 30 min to
3 h. Indeed, it is possible to sell the energy up to several hours in advance. Thus, the forecast
model must be efficient from a few tens of minutes to a few hours ahead.

The downscaling methods considered are rarely used for lead times lower than 1 h since nu-
merical models are generally run every 6 to 12 hours. However, when it comes to wind forecasting,
numerical modeling becomes necessary. Indeed, unlike photovoltaic energy forecasting, for which
the use of satellite images is very common to track and anticipate cloud movement, the forecast
of wind energy and speed is difficult to do without modelling. Furthermore, the use of in-situ
measurements in downscaling methods to correct the numerical prediction at initialization, allows
a significant performance gain. A comparison of the performance of this hybrid method with the
performance of traditional statistical methods for wind speed forecasting at hub height is achieved.
The developed model overperforms all other methods tested in this study. In particular, the im-
provement compared to the persistence approach ranges from 1.5% 10 min ahead to more than
30% 3 h ahead.

In order to limit the accumulation of errors in the conversion from wind speed forecast to
wind energy forecast, an analysis of the error induced by different meteorological variables, such
as wind direction or air density, is presented. First, the forecast at the farm scale is explored
and then the spatial dimension is introduced. First, small scale information is assessed using data
from wind farms located a few kilometres apart. Then the large scale information is studied using
data from wind farms located about 200 km away. While the use of data from a close farm allows
improvements for the 10 and 20 min forecasts, this is not the case for data from distant wind farms.
Indeed, the considered time scale is too short for data from such distant farms to be relevant.

Finally, the economic value of such a short term forecasting model is explored. The different
steps of the electricity market are studied and the different sources of uncertainty and variability,
such as forecast errors and price volatility, are identified and assessed. For the two wind farms
considered in this study, the results show that the short term forecasts allow an increase in annual
income between 4 and 5%.
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16 CHAPTER 1. INTRODUCTION

1.1 General context

Humanity is facing a growing challenge: that of energy demand. So far, the majority of our energy
is produced from fossil fuels: coal, oil, gas. Early or later on, these reserves will disappear. It is,
therefore, necessary to use non-fossil energy sources.

1.1.1 Renewable energies in the global energy mix

Over time, our energy consumption has continued to increase and it exploded over the last century.
In 2000, according to the IEA (International Energy Agency), the total annual electricity con-

sumption per-capita was 2.32 MWh on average worldwide. In 2017, it was up to 3.15 MWh [1]. This
value is only an average and does not reflect the wide variations between fossil energy producing
countries, industrialized countries, and emerging countries.

Based on a global average consumption, the total energy consumed on earth in one year is
around 6.8 billion individuals × 3.15 MWh = 23695 TWh. This is 67% more than in 2000 and
more than twice as much as in 1990. In the coming years, demand will continue to increase.
Figure 1.1 shows that if the trend in the coming years remains the same as that observed from
1990 to today, the energy consumption per capita will be around 4.62 MWh in 2050.

Then, if we consider the current trend and add the fact that according to the UN, the world
population estimated for 2050 is around 9 billion people, a quick calculation made us assume that
the total power consumed on earth will be around 9 billion × 4.62 MWh = 41580 TWh, which is
almost twice the current consumption.

Figure 1.1 | Electricity consumption per-capita worldwide from 1990 to 2017. A linear regres-
sion is performed in order to exhibit the trend (solid orange line). Then, using the regression,
the trend is estimated up to 2050 (orange dashed line) to retrieve an approximation of the
electricity consumption per-capita in 2050.

Then, which resources will be used to provide this energy?
Currently, as shown in figure 1.2, more than 65% of the energy comes from fossil fuels (oil, gas,

and coal).
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Figure 1.2 | Total world gross electricity production in 2017 [2].

These fossil fuels will remain predominant in the coming decades, particularly for emerging
countries. However, in the context of global warming and energy transition, it is essential to
find an alternative in our forms of energy production. Indeed in 2018, global energy-related CO2

emissions increased by 1.7% to a historical record of 33.1 Gt CO2. While emissions from all fossil
fuels increased, the energy sector is responsible for nearly two-thirds of this growth. Figure 1.3
shows the global energy-related CO2 emissions (in Gt) from 1990 to 2018. Last year’s growth rate
was the highest since 2013 and 70% higher than the average increase since 2010. This 560 Mt
growth is equivalent to the total emissions from international aviation. It is therefore urgent to
react if we want to remain below the 1.5◦C increase of the Paris Agreement.
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Figure 1.3 | Global energy-related CO2 emissions (in Gt) from 1990 to 2018. Three sources
are distinguished: the coal-fired power generation, the other use of coal, and the other fossil
fuels. Data extracted from IEA website.

Then, the emergence of renewable energies is a way to reduce the impact of these fossil fuels.
Indeed, as shown in figure 1.2, renewable energies accounted for nearly a quarter of global energy
production in 2017 [2].
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Moreover, in terms of investments, the financing of new renewable energy installations world-
wide amounted to $271.8 billion in 2017, with China, Europe, and the United States accounting
for nearly 75% of global renewable energy investments. According to [3], the world has invested
more than $3000 billion in renewable energy since 2004.

In France, the share of fossil fuels is well below the world average, around 7.2% in 2018.
However, it is replaced by nuclear energy, which represents 71.7% of total electricity production in
metropolitan France in 2018. Thus, about 21.2% of the production comes from renewable resources,
which is slightly less than the share of renewable energy in the world global production [4].

However, it should be specified that the share of renewable energies in the French electricity
production mix is rising sharply: it was only 16.4% in 2012. The energy production law sets the
objective of increasing this share to 40% by 2030. Among these renewable resources, the first
source is hydraulic. Next comes wind energy followed by solar energy, as shown in figure 1.4.

15.1 GW

8.5 GW

2.0 GW

25.5 GW

Wind

Solar

Bioenergy

Hydroelectric

Figure 1.4 | Renewable power capacity as of December 31 2018 in France [4].

1.1.2 The wind energy sector

Apart from hydroelectric, wind energy is the world’s leading renewable electricity source far ahead
of solar and bioenergy.

Worldwide Figure 1.5 shows that in 2018, 51.3 GW of wind electricity energy was installed. This
is slightly lower than in 2017 from about 4%. Since 2014, new installations have reached 50 GW
each year despite fluctuations in some markets [5]. Those new installations bring a cumulative total
of installations to nearly 591 GW. For the onshore wind energy market, 46.8 GW was installed,
down 4.3% compared to 2017. China and the United States remained the largest onshore markets.

The global offshore market remained stable in 2018 with 4.5 GW of new installations, as in
2017. The total cumulative installations have now reached 23 GW, which represents 4% of the
total cumulative installations.

For the past twenty years, there has been a slowdown in this increase, as shown in figure 1.5.
Indeed, the Compound Annual Growth Rate (CAGR) (defined in equation (1.1)) goes from +23%
for the period 2001-2010 to only +11% over the last six years.
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CAGR =

(
A2

A1

)1/Ny

− 1 (1.1)

where A2 is the final value, A1 is the initial one, and Ny is the number of year in the period.
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Figure 1.5 | Historic development of total installation in GW for the wind energy sector.
Extracted from GWEC Report 2018, p27. [5]

Europe has been a leader in the development of wind energy. For instance, Denmark is produc-
ing via wind power, the equivalent of 43.4% of its total electricity consumption in 2017. As shown
in figure 1.6, this is the only country with the share of wind power in demand higher than 40 %.
Moreover, Europe is also known for its dynamism in the development of this energy. This is the
second largest region in the world in terms of growth, and there have been 11.7 GW of installations
(10.1 GW in the EU) of gross electricity capacity in 2018. Figure 1.6 displays the share of wind
power in demand for most European countries. It also shows the new installations (in GW) as well
as cumulative installed capacity (in GW) for the five largest wind energy producing countries. We
can see that Germany is the first country in terms of cumulative installed capacity with 59 GW
installed and with more than 20% of wind power in demand. France is the fourth with 15 GW but
with less than 10% of wind power in demand.

In any case, with a total net installed capacity of 189 GW, wind energy remains the second
largest form of electricity generation capacity in Europe, even exceeding gas installations by 2019.
2018 was a record year for new wind capacity financed, and 16.7 GW of future projects are under
development [5].

In France As shown in figure 1.4 wind power is the second largest renewable energy source in
France (after hydroelectric). However, today, electricity production in France still relies heavily
on nuclear energy. In 2018, this resource accounted for 71.7% of the electricity produced. As for
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Figure 1.6 | Share of wind power in total electricity demand in 2018 in Europe. The total
installed capacity as well as the new installations for 2018 are shown, for the five countries with
the largest installed capacity.

fossil fuels (coal, oil or gas), there has been a real drop in production. In 2018 they accounted
for 7% of electricity production in France. Faced with this decline, renewable energies are devel-
oping considerably, in particular hydroelectric, which produced 12.4% of electricity in 2018. This
corresponds to an increase of 25% compared to the previous year, according to RTE (Réseau de
Transport d’Électricité), the manager of the public electricity transmission network in France [4].
Wind and solar energies are not to be outdone. They now represent 5.1% and 1.9% of the mix
with increases of 15.3% and 11.3%, respectively. Finally, bioenergy is gradually gaining ground.
They accounted for 1.8% of production in 2018 [4].

The size and the geographical position of its territory give France the second largest wind
energy potential in Europe after Great Britain. The Environment and Energy Control Agency
(ADEME for Agence De l’Environnement et de la Maîtrise de l’Énergie) provides a map of the
French wind farms: the regularly and strongly windy land areas are located on the western side of
the country; it also gives an estimate of the French offshore wind potential: 30000 MWA [6].

Also, France has set ambitious renewable energy development targets in the Energy Transition
Law for Green Growth, adopted in August 2015 with 15000 MW in 2018 (15117 MW recorded at
the end of 2018) and between 21800 MW and 26000 MW in 2023. Moreover, this law sets France’s
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production of renewable energy at 40% by 2030. Thus wind energy will see its share in the French
electricity mix increase each year.

To ensure that this development takes place in a favorable context, the French government
introduced an incentive measure in 2000 and until 2015: the purchase obligation.

In the context of these contracts, EDF or local distribution companies purchase the wind
electricity from operators who request it, at a feed-in tariff set by decree.

Under 2008 conditions, contracts for onshore wind power were signed for 15 years. The rate
was set in 2008 at 8.2 cts¤/kWh for 10 years, then between 2.8 and 8.2 cts¤/kWh for 5 years
depending on the sites. This tariff is updated each year.

From January 1, 2016, the support for onshore wind power has evolved towards the new re-
muneration system set up by the Law on Energy Transition for Green Growth. They state that
the electricity produced should be sold directly by the producer on the electricity market. The
difference between a reference tariff fixed by order and the average market price recorded each
month is paid to the producer by EDF. The additional cost incurred by EDF is offset against a
contribution called Contribution au Service Public de l’Électricité (CSPE).

In both cases, this period during which the wind producer can sell its electricity at a preferential
price lasts only 15 years. At the end of this period, the producer has to sell its electricity on the
competitive market. In several ways, this change can cause a significant loss of income.

On this market, electricity is sold the day before at midday for each time slot of the next day
(requiring a forecast from +12 h to +35 h). A second market opens at 3 PM the day before.
This market is a balancing market. Thus, having access to a more reliable forecast (because
shorter term), the producer can correct his sale by buying or selling on this balancing market up
to 30 minutes before the delivery date.

However, at any time, the amount of electricity fed into the grid must be equal to the quantity
of electricity withdrawn. The balance between production and consumption is ensured in real time
by RTE. Thus if the difference contributed to the French total deviation, it will result in a financial
penalty for the producer. On the other hand, if the difference has decrease the total French
deviation, the producer will receive financial compensation from RTE. However, this financial
compensation is, on average, less than what the producer would have received if he could have sold
this electricity on the balancing market.

Thus, having access to a reliable short term forecast to limit these gap compensations is essential
for the producer. It allows to limit the loss of income due to the end of the feed-in tariffs.

1.2 State of the art in short term forecasting

Many methods are available for wind energy forecasting. They can be classified according to time
scales or methodology. The time scale classification of wind energy forecasting methods is quite
arbitrary, and differs according to the different descriptions found in the literature. However, in
general, four categories can be identified: the very short term, the short term, the medium term,
and the long term. For the classification according to methodology, the different studies agree and
each of this methodology is generally associated with a specific time scale. Figure 1.7 illustrates
this classification.

It shows the performance of the different wind speed forecasting methods depending on the
targeted lead time. We can see that persistence approach and statistical methods are preferred
for the very short term and short term forecasting while weather models can be used for longer
lead times. Finally, climatology remains the best approach for studies ranging from decades to
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Figure 1.7 | Diagram of the performance of the different wind speed forecasting methods
according to time.

centuries. Tables 1.1 sum up and describe these classifications with the approximate range and
associated examples. Table 1.1a displays the time classification. For each category, it includes
the associated range and the application of the corresponding forecasting methods. Table 1.1b
displays the classification according to the methodology. Again, it shows few examples and the
typical range for each category. Of course, each category remains indicative, and some models
classified as short term, can be used for medium or long term forecasting.

Long term and medium term forecasts Most of the time, long term and medium term
forecasts use the same techniques, which are physical models. Physical models are based on the
mathematical equations that govern the physics law of the atmosphere. They are generally run on
a global or regional space scale and provide, on a coarse grid, forecasts of several physical variables
such as temperature, pressure, wind speed, or humidity for example. Usually, models are run once
or twice a day due to the difficulty of obtaining information in a short period of time and the
high cost involved. That is why they are preferred for long term or medium term forecast. For
instance, in [7], Hong evaluates the NCAR (National Center for Atmospheric Research) Mesoscale
Model (MM5) on a horizontal grid at a 5 km resolution. The model was run twice a day, and the
study focuses on the Taïwan area within a period of two months. He focuses on surface variables
and shows that the model tends to overestimate the surface wind speed. In [8], Taylor et al. use
Weather Ensemble Prediction to predict the wind speed at five wind farms located across UK up
to ten days ahead. Instead of producing a single forecast of the most likely weather, a whole set
of forecasts is produced. This ensemble is then intended to provide an indication of the range of
possible future states of the atmosphere. If statistical models are traditionally categorized for short
term forecasts, they can be combined with physical methods. These hybrid methods are then used
for all horizons. For instance, in [9], Salcedo-Sanz et al. hybridize the MM5 model mentioned
above, with an Artificial Neural Network (ANN) to forecast the wind speed two days ahead at a
wind farm located in the Southeast of Spain. The outputs of the NWP model are processed by
the ANN.
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(a) Classification based on time scale

Category Range Example of applications

Very short term Few seconds to - Electricity market clearing
few tens of minutes - Real time grid operations

Short term Few tens of minutes - Economic load dispatch planningto few hours

Medium term Several hours to - Generator online/offline decisions
to few days - Unit commitment decisions

Long term Few days to - Maintenance planning
one year (or more) - Feasibility study for design of the wind farm

(b) Classification based on methodology

Methodology Examples Range

Persistence method / Very short and
short term

Statistical approaches - Artificial Neural Network (ANN) Short term- Time series based models

Physical approach - Numerical Weather Prediction (NWP) models Medium and
long term

Hybrid methods
- NWP + ANN

All ranges- Spatial correlation + ANN
- NWP + time serie based model

Table 1.1 | Classification based on time scale (table 1.1a) and on methodology (table 1.1b)
for the wind energy forecasting. In table (a), an approximate range and two examples of
applications are shown for each category. In table (b), for each methodology, the associated
typical range and few examples are shown.

Very short term forecasts Very short term forecasting is the least represented category in
the literature. Typically these forecasts range from few seconds to several minutes and are almost
exclusively provided by statistical methods such as time series based model or ANN. For such lead
times, they are never combined with NWP models and only use historical in-situ data as input.
In [10], Riahy et al. use a time series based method to predict the wind speed 1 sec to 5 sec
ahead for control system of wind turbines such as changing the pitch angle of the blades. In [11],
Potter et al. use a model based on neural networks to forecast wind vectors up to 2.5 min ahead
in Tasmania, Australia.

Short term forecasts Short term forecasting is the main objective of this thesis. As shown in
table 1.1a, short term forecasts usually range from tens of minutes to a few hours. Short term
forecasts 1 h ahead are the most studied forecasts in the literature. In this thesis, we will focus on
forecasts from 10 min to 3 h ahead.

As shown in table 1.1b, for these time scales statistical methods are the most used. They may
or may not be combined with physical methods as in [9]. Statistical approaches aim at finding the
relationship between past and future observations. Historical data are used as input, and in the
case of hybrid methods, NWP model outputs are also added.

Statistical methods can be divided into two sub-categories: those based on linear time series
that are easy to model and inexpensive to implement, and those based on artificial intelligence
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methods. These can treat non-linearity but are more complicated to set up and are known to be
black-box models. Most of the time, these models are tested against the persistence model, which
is the benchmark approach for this time scale. Persistence assumes that wind speed or wind energy
at time t = t0 + ∆t will be the same as at time t0.

In [12], Chang uses a back propagation neural network, which consists of feeding the network
backward during the training period to tune the parameter more accurately. His goal is the wind
power forecasting 10 min ahead. For the best NN, he finds a maximum absolute error of 2.0%
and an average absolute error of 0.3%. In [13], Kariniotakis et al. develop a NN for wind power
time series forecasting up to 2 h ahead. They compare 3 differents NN. Among the 3 models, the
one that performs best for the first lead times is also the one that performs worst for the longer
lead times and vice versa. For the third model, they find an improvement over persistence around
10%, for the whole period. In [14], Zhao et al. investigate a hybrid wind forecasting method.
It consists of a NN fed with NWP model outputs. Their goal is the wind power forecasting 1 h
ahead at a specific wind farm in China. They find that the Normalized Root Mean Square Error
(NRMSE) has a monthly average value of 16.47% which they give as an acceptable value to guide
the penetration of wind energy in China.

In [15], Palomares-Salas et al. develop a time series based model (ARIMA) used to predict
the wind speed. The results are compared with the performance of a back propagation NN. They
show that the ARIMA model overperforms the NN model for the short term lead times (10 min,
1 h, 2 h, and 4 h). In [16], Panteri et al. also compare NN and time series based model for wind
power forecasting at three different wind farms for look-ahead times between 1 h and 12 h. They
use a simple configuration for the time series based method (ARX), and they find that this model
cannot overperform persistence for the whole period. However, NN is better than the persistence
model. In [17], Firat et al. develop a model to forecast the hourly wind speed. Their starting point
is the time series based model AR. Their implementation of this model leads to an improvement
over persistence for the whole period. Moreover, the traditional AR is the model that shows the
best improvement for the first lead time (1 h).

While neural network and time series based methods remain the most commonly used and
the most studied models for wind speed and wind energy short term forecasting, many other
methods have been investigated. For instance, in [18], Alexiadis et al. implements a NN based
on spatial correlation to forecast the wind speed at six different sites, on islands of the South
and Central Aegean Sea in Greece, distant from 52 km to 105 km. Their goal is the wind speed
forecasting for the next 1 h, 2 h, and 3 h. The model is tested using data collected over seven years,
and its performance are considered satisfactory. In [19], Pinto et al. propose a Support Vector
Machines (SVM) model for short term wind speed forecasting. Its performance is evaluated and
compared with ANN based approaches. SVM models are non-parametric models for classification
and regression problems, such as pattern recognition or regression analysis. A case study for
predicting wind speed at 5 min intervals is presented. Results show that the best parametrization
for the proposed SVM achieves better forecasting results than the ANN based approaches. In [20],
Lahouar et al. propose a random forest method to build a 1 h ahead wind power forecasting system.
Like SVM, random forests are non-parametric models designed for classification and regression
problems. The algorithm builds decision trees and performs learning on multiple trees trained
on slightly different subsets of data. Results show an improvement of forecast accuracy using
the proposed model, as well as an important reduction of the different error criteria compared to
classical NN prediction. Finally, in [21], Castellanos et al. use a ANFIS model to forecast the hourly
wind speed. The Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a hybrid model between
ANN and Fuzzy Inference Systems (FIS). If the ANN part can search for patterns, which gives the
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advantage of learning about systems, the FIS part is based on fuzzy logic. It corresponds to a set
of fuzzy IF–THEN rules that learns capability to approximate nonlinear functions. Generally, this
type of model shows more promising results than a single ANN. In [21], they obtain errors between
25.5% and 32.5% depending on the configuration.

1.3 Thesis objectives and context

The general issue raised in this work is to know if an accurate short term forecasting model can
ensure the penetration of wind energy in the electricity grid and if it can compensate for the
decrease in income due to the end of the feed-in tariffs period. Only few studies have been done for
30-min ahead, which is the deadline for balancing on the electricity market. In addition, the model
must be efficient for these short lead times but also for longer lead times since the balancing market
opens several hours before the delivery date. In this context, several questions can be raised:

1. How can the state of the art on wind energy forecasting can be improved for time horizons
from few tens of minutes to few hours?

2. What is gained by including available ancillary measurements as input, such as wind direction,
wind variability, or temperature?

3. Can wind energy production data from multiple wind farms improve the forecast at a given
wind farm?

4. What is the economic value of short term forecasts for a wind energy producer?

This study will be carried out based on the case of a French wind energy producer. Indeed,
this work is supported by a private company called Zephyr ENR1. The company, created in 2002,
is the result of a partnership between an agricultural advisory office in France and a wind power
development office in Germany. More precisely, Zephyr ENR is a wind farm development and
operation office whose objective is the emergence of participatory projects in which farmers, local
residents, and rural people are partners in the development and ownership of wind turbines. Since
2002, six wind farms have been built in France, including 31 wind turbines representing 77 MW
and 130000 MWh/year. These wind farms are distributed in the northwest quarter of France and
grouped by two, as shown in figure 1.8. Parc de Bonneval (A), Parc de la Renardière (B), and
Parc de Beaumont (C) are composed of six 2 MW turbines. Moulin de Pierre (E) is composed of
six 3 MW turbines. Parc de la Haute Chèvre (D) is composed of three 2.3 MW turbines and Parc
de la Vènerie is composed of four 2.3 MW turbines. For each wind turbine, a substantial amount
of data is recorded and transmitted at a frequency of 10 min. We can mention the wind speed, the
wind direction, the production, the temperature, and the pitch angle, for example. The first farm
has been in service since 2006.

Consequently, in 2021, the feed-in tariffs period will end for this farm, and the company will
have to sell its energy on the competitive market.

1.4 Thesis outline

First of all, in chapter 2, a short term wind speed forecasting model is proposed. This model
is a hybrid model based on the statistical parametric downscaling of NWP model outputs and

1http://www.zephyr-enr.fr
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Figure 1.8 | Location of the wind farms owned by Zephyr ENR. There are Parc de Bonneval
(A), Parc de la Renardière (B), Parc de Beaumont (C), Parc de la Haute Chèvre (D), Moulin
de Pierre (E), and Parc de la Vènerie (F) .

on time series based model. Its performance is compared with the benchmark model, such as
the persistence approach, ARMA method, and NN. A non-parametric approach is also used for
comparison with a random forest method. The proposed model is evaluated for hourly forecasts
from 1 h to 11 h ahead and forecasts at 10 min frequency from 10 min to 3 h ahead.

Then, in chapter 3, the conversion from wind speed forecasts to wind power forecasts is op-
timized. Using the data collected at the wind turbines, the influence of wind direction and air
density on the power output is quantified. Methods to take into account these features are de-
scribed and evaluated. A sensitivity study on the impact of atmospheric conditions such as wind
shear, turbulence, or atmospheric stability is also conducted.

In chapter 4, the fact that the wind farms are grouped by two is tapped. Models based on
spatial correlation are explored. The added value of small scale information is first evaluated
using two adjacent farms. A few kilometers away, this configuration is adapted for the first lead
times that we are interested in, typically from 10 min to 30 min. Then, the impact of large scale
information is investigated using data from distant farms. This time, the configuration is more
likely to perform well for the longest lead times (>1 h). In both cases, regimes based on the wind
direction are distinguished.

Finally, the goal of chapter 5 is to quantify the economic value of a short term forecasting model
for a producer. Simulations are performed using in-situ data and data from the actual electricity
market. The case where no short term forecasts are available, and the case where a short term
forecasting model is used are analyzed, and the different sources of variability are highlighted.
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2.1 Introduction

The intermittency of wind is the main barrier to the development of wind energy. For this resource
to establish itself as one of the primary renewable resources on a sustainable basis, it is necessary
to allow its penetration on a large scale. However, many difficulties must be overcome to ensure
the stability of the system, such as grid operation management, maintenance scheduling, electricity
market clearing, for example. Improving wind forecasting is one way to achieve higher penetration
of wind power in the electricity system. In the context of climate change and energy transition,
this issue is becoming a priority, and over the past two decades, the global energy market is turning
increasingly to green energies.

Fortunately, Numerical Weather Prediction (NWP) models have improved significantly over
the last 30 years. The forecast skill of the 3-days forecasts for the northern hemisphere rose from
85% to 98.5% between 1981 and 2013 and from 70% to 98.5% for the southern hemisphere [22].
The poor performances in the southern hemisphere was due to a lack of measurement in the region.
Even though NWP models perform well for predicting large scale meteorological variables at short
term, like mid-tropospheric pressure, they do not perform the same for variables having high
variability at small scales, like surface winds. Large scale variables are well understood physically
and efficiently modeled numerically, but the variables tied to phenomena occurring on a smaller
scale depend more on processes that are not resolved and so parametrized. This leads to significant
model errors for variables like surface wind.

The model error has several components: part comes from the inadequate representation of
physical processes, e.g., uncertainties in the parametrizations used for boundary layer turbulence.
Improving parametrizations should reduce this error. Part of the error is numerical error, coming
from the discrete representation of a continuous process. Also tied to the limited resolution is
the representativity error, which occurs because of the difference of the value over a grid box and
the value at a specific point. Downscaling methods such as Model Output Statistics (MOS) are
usually used to reduce representativity error [23]. Those models have been developed in the weather
forecast for several decades based on NWP model outputs. A statistical relationship is determined
between observations and forecasts using past forecasts and corresponding observations and then
serves to improve predictions at that observation site.

Downscaling models can be very interesting to get accurate forecasts at a specific location of
a wind farm [24]. To do so, different downscaling models and different outputs of NWP models,
climate data, or, if relevant, recent surface observations can be used as explanatory variables for the
near surface wind speed [25]. Amongst them, markers of large-scale systems (geopotential, pressure
fields) and boundary layer stability drivers (surface temperature, boundary layer height, wind, and
temperature gradient) can be used [26]. In terms of methodology, several models have already
been studied, including linear regression, Support Vector Machine (SVM), or random forests.

However, for hourly and sub-hourly forecasts, downscaling methods are not commonly used
because NWP models are only run once or twice a day due to the difficulty of gaining information
in a short time and the associated high costs. This usually limits its usefulness to forecasts with
lead times longer than 6 hours, at least. Persistence is the reference method for short term and
very short term forecasts. It supposes that the wind speed at a particular future time will be the
same as it is when the forecast is made. It is extremely accurate for a very short lead time, but
its performance degrades rapidly with time. Statistical approaches are also used as a benchmark
for short and very short term generally. We can split this category into two sub-categories, which
are artificial intelligence methods such as Artificial Neural Network (ANN) using past measure-
ments as explanatory variables and time series models such as Auto-Regressive Moving Average
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(ARMA) [27]. ANN models can represent a complex non-linear relationship and extract the depen-
dences between variables through the training process. Statistical methods are based on training
with measurements and use differences between the predicted and the actual wind speed to up-
grade the model. Both approaches constitute the reference methods for short term forecasts [28].
Usually, ANN models outperform time series models [29] even if some very good time series models
can supersede ANN methods [30, 31].

In this chapter, we compare two configurations of downscaling models tested on several wind
farms. The first configuration uses explanatory variables available from NWP models, and the
second one adds explanatory variables derived from observations. In both cases, we compare the
results of linear regression and random forests with persistence methods and with the benchmark
methods. The chapter is organized into five sections. The next section describes the data and the
different models. In section 2.3, results are analyzed. As there is little literature on sub-hourly
time scales, we first (2.3.1) test our methods on hourly time scales, from 1 h to 11 h, which are
much more documented. Results of persistence, ARMA, and ANN methods are also shown for
comparison with the classical results found in the literature. Then, all methods are applied for
sub-hourly forecasts from 10 min to 170 min at a frequency of 10 min (2.3.2). In section 2.4, the
best model is analyzed in more detail. In the last section, we discuss the results and conclude.

2.2 Methodology

2.2.1 Parametric downscaling approaches

Downscaling statistical methods have been widely investigated since several decades in order to
forecast the wind speed, usually from few to several hours [32, 33, 34]. In this thesis we consider
linear regression, a very easy to implement method and numerically low cost [35]. The parametric
approach supposes a relation between the target at time t, ŷt and the m explanatory variables at
time t, X1,t, ..., Xm,t:

ŷt = ω0 +
m∑
k=1

ωkXk,t + ε (2.1)

where ωi, i ∈ {0, ...,m}, are the model parameters to be estimated by a classical Ordinary Least
Squares (OLS) method and ε is the residual following a centered normal distribution N (0, σ2). The
explanatory variables are chosen among ECMWF (European Centre for Medium-Range Weather
Forecasts) outputs. It provides global forecasts, climate reanalyses, and specific datasets.In our
case, we retrieve the day-ahead hourly forecasts, starting from analysis twice a day, at 00:00 UTC
and 12:00 UTC. UTC is the Universal Time Coordinate. However, we would like the downscaling
models to be able to start at any time and not only twice a day. In these conditions, we need
to dissociate the lead times from ECMWF and the lead times from the downscaling models. For
instance, the first lead time t0 + 1 h for the dowscaling models may not be the first lead time for
ECMWF. If a forecast from the downscaling models is launched at 05:00 UTC, the first lead time
is 06:00 UTC. However, this is the sixth lead time t0 + 6 h for ECMWF as the forecast started
at 00:00 UTC. To be sure that this mixing of lead times does not introduce significant errors into
the downscaling model, we investigate whether the ECMWF error over the first 12 hours increases
significantly or not. Figure 2.1 displays the forecasted error of ECMWF in % (defined later in
equation (2.8)) along with persistence (described in 2.2.3). It shows that for the first 12 hours,
whether the forecasts start at 00:00 UTC or at 12:00 UTC (’ECMWF sorted’) or if the forecast
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starts at any time (’ECMWF unsorted’) the errors are close. Then hereafter, t0 does not refer to
00:00 UTC or 12:00 UTC, but it refers to the time when the downscaling models are launched.
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Figure 2.1 | Comparison of ECMWF performances when t0 refers to 00:00 UTC or 12:00 UTC
(’ECMWF sorted’) and when t0 refers to the starting time of the downscaling models fore-
casts (’ECMWF unsorted’). In the first case, there are two forecasts a day (00:00 UTC or
12:00 UTC), in the second cases these are hourly forecasts. The performance of persistence
(described in 2.2.3) is added as reference.

The downscaling model is trained using 47 variables aiming at describing the boundary layer,
winds and temperature in the lower troposphere. Tables 2.1, 2.2 and 2.3 show the considered
variables. The large scale circulation brings the flow to the given location. The wind speed in
altitude, the geopotential height, the vorticity, the flow divergence, or the temperature can be
markers of large systems like depressions, fronts, storms, or high pressure systems (table 2.2). At
a finer scale, what is happening in the boundary layer is very important to explain the intra-
day variations of the wind speed. The state and stability of the boundary layer can be derived
from surface variables describing the exchanges inside the layer. Exchanges are driven mostly by
temperature gradient and wind shear that develop turbulent flow (table 2.3). Thermodynamical
variables like surface, skin, and dew point temperatures and surface heat fluxes can also inform
on the stability of the boundary layer, as well as its height and dissipation on its state (table 2.1).
The spatial resolution of ECMWF forecasts is of about 16 km (0.125◦ in latitude and longitude).

Among the explanatory variables, X1,t, ..., Xm,t, some provide more important information, and
some may be correlated. Thus, a stepwise regression (forward selection) is performed to only keep
the most important uncorrelated variables [35]. This is an iterative regression, which consists of
adding variables from the set of explanatory variables based on the Bayesian Inference Criterion
(BIC) [36]. The BIC is based on the likelihood function, and it reduces overfitting by introducing
a penalty term for the number of parameter in the model. The model with the lowest BIC is
preferred. At each step, a model is built by adding one variable among the remaining ones. The
added variable which minimizes the BIC of the model is chosen. The procedure is repeated as long
as the BIC decreases.

The linear regression considering all the explanatory variables given in tables 2.1, 2.2 and 2.3
is denoted LRA and the linear regression considering a sample of explanatory variables (selected
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Altitude (m) Variable Unit Name

10 m / 100 m Zonal wind speed m s−1 u
Meridional wind speed m s−1 v

2 m Temperature K t
Dew point temperature K dp

Surface

Skin temperature K skt
Mean sea level pressure Pa msl

Surface pressure Pa sp
Surface latent heat flux J m−2 slhf
Surface sensible heat flux J m−2 sshf

- Boundary layer dissipation J m−2 bld
Boundary layer height m blh

Table 2.1 | Surface variables

Pressure level (hPa) Variable Unit Name

1000 hPa / 925 hPa /
850 hPa / 700 hPa /

500 hPa

Zonal wind speed m s−1 u
Meridional wind speed m s−1 v

Geopotential m2 s−2 z
Divergence s−1 d
Vorticity s−1 vo

Temperature K t

Table 2.2 | Altitude variables

Altitude Variable Unit Name
10 m / 100 m Norm of the wind speed m s−1 F

10 m to 925 hPa Wind shear m s−1 DF
2 m to 925 hPa Temperature gradient K DT

Table 2.3 | Computed variables

by the stepwise regression) is denoted LRSW.

2.2.2 Non parametric downscaling approaches

Non-parametric models do not suppose to advance a specific relation between the variables. In-
stead, they try to learn this complex link directly from the data itself. As such, they are very
flexible. The family of non parametric is quite large. Among others, one may cite the nearest
neighbor’s rule, the neural network, support vector machines, regression trees, random forests,
for example. Regression trees which have the advantage of being easily interpretable, show to be
particularly effective when associated with a procedure allowing to reduce their variance as for
Random Forest Algorithm. Regression trees are binary trees built by choosing at each step the cut
minimizing the intra-node variance, over all explanatory variables X1,t, ..., Xm,t, and all possible
thresholds Sj . More specifically, the intra-node variance is defined by:
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D(Xk, Sk) =
∑

Xk<Sk

(ys − ȳ−)2 +
∑

Xk≥Sk
(ys − ȳ+)2 (2.2)

where ȳ− (respectively ȳ+) denotes the averaged of the target in the area {Xk < Sk} (re-
spectively {Xk ≥ Sk}). Then, the selected k0 variable and associated threshold is given by
(Xk0 , Sk0) = arg min

(k,Sk)
D(Xk, Sk). The prediction is provided by the value associated to the leaf in

which the observations falls.
To reduce variance and avoid over-fitting, it is interesting to generate several bootstrap samples,

then fit a tree on every sample and average the predictions, which leads to the so-called Bagging
procedure [37]. More precisely, for B bootstrap samples, the predicted value is given by:

ŷ =
1

B

B∑
b=1

ŷb (2.3)

where ŷb is the value predicted by the regression tree associated with the b−th bootstrap sample.
To produce more diversity in the trees to be averaged, an additional random step is introduced
in the previous procedure leading to Random Forests. In this case, the best cut is chosen among

a smaller subset (corresponding to
1

3
m variables, where m is the total number of explanatory

variable) of randomly chosen variables. The predicted value is the mean of the predictions of the
trees, as in equation (2.3). Hereafter, this model is denoted RF. Again, the explanatory variables
are retrieved from ECMWF forecasts and given in tables 2.1, 2.2 and 2.3.

Each model introduced above: LRA, LRSW, and RF has been tested using in-situ measurements
collected at three wind farms called Parc de Bonneval, Moulin de Pierre and Parc de la Vènerie.
For the three models, two configurations are tested. The first one consists of a classical downscaling
using the explanatory variables available from ECMWF outputs only. The second one consists of
adding the error between the observed wind speed at time t0, i.e., when the forecast is launched,
and the forecasted wind by ECMWF at time t as an explanatory variable. Hereafter, when the
models are trained according to the first configuration, they are denoted LRno-obs

A , LRno-obs
SW , and

RFno-obs. When the models are trained according to the second configuration, they are denoted
LRobs

A , LRobs
SW, and RFobs.

In the first case, only one model is fitted. In the second case, a model is fitted at each hour
in order to precisely take into account the error between the forecasted wind at time t and the
observations at time t0. For the second configuration, after the variable selection step, between 14
and 21 variables remain, depending on the horizon. In [35], Alonzo et al. compare this low cost
assimilation to the downscaling without in-situ information. For a 3 h lead-time, they can improve
the forecast up to 18% by considering the initial error.

2.2.3 Benchmark methods

For short term predictions, statistical methods are the most used and are always compared to
persistence [27]. Persistence assumes that the wind speed at time t will be the same as it was at
time t0. Although this model is very simple, it is, in fact, difficult to beat for look-ahead times
from 0 to 4-6 hours. This is due to the fact that changes in the atmosphere take place rather
slowly [17]. The statistical approach aims at finding the relationship between past and future
observations using measurements (and possibly exogenous variables). They can be split into two
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sub-categories: time series based models which are easy to model and cheap to develop an artificial
neural network which can deal with non-linearity but which is known as black box model.

Time series models are mainly based on Auto-Regressive Moving Averaged (ARMA) models
[38]. An ARMA(p, q) model aims at predicting the wind speed at time t, using a linear combination
of the p previous wind speed values, the q previous residuals and potentially m exogenous variables
(in that case we define the model as ARMAX). The most sophisticated models are ARIMAX(p, d, q)
for Auto-Regressive Integrated Moving Averaged EXogenous. They aim at removing the non-
stationarity of the data by applying an initial d-order differencing step as follow:

ŷt =

p∑
i=1

Φi∆
dyt−i +

q∑
j=1

θjεt−j +

m∑
k=1

βkXk,t (2.4)

∆dyt = (yt − yt−1)−
d−1∑
i=1

(yt−i − yt−(i+1)), d = 1, ..., n (2.5)

where yt−i is the observed wind speed at time t− i, Φi, θj , βk are the model parameters, ∆d is
the d-order lag operator defined in equation (2.5), εt−j is the residual at time t− j, and Xk,t is the
kth explanatory variable at time t, which can be an output from NWP.

Artificial neural networks (ANN) are models inspired by biological neural networks. They are
based on interconnected groups of nodes, divided into layers. Each connection can transmit a
signal from one artificial neuron to another. An artificial neuron that receives a signal can process
it and transmit it to another neuron. Usually, this signal is a set of real number, and the output
of each artificial neuron is computed by some non-linear function, called activation function, of
a weighted sum of its input. The weights and the activation function are updated through the
training process [39, 40]. Those models are very useful in the modeling of complex non-linear
relationships and extract dependences between variables.

Choice of the parameters

The choice of the benchmark model parameters is a crucial step. For both hourly and sub-hourly
forecasts, we fit several models, and we choose the most efficient one. For the ARMA models,
we use the BIC to select the models. For several values of the p and q parameters, we fit the
corresponding models, and the model that minimizes the criterion is preferred. Figure 2.2 displays
the results for hourly forecasts (a) and sub-hourly forecasts (b) at Parc de Bonneval. For the first
one, an ARMA(6,3) appears to be the best model, and for sub-hourly forecasts, it is an ARMA(4,2).
The same procedure is applied for Parc de la Vènerie and Moulin de Pierre. At Moulin de Pierre
(resp. Parc de la Vènerie), an ARMA(5,3) (resp. ARMA(2,1)) gives the best results for the hourly
forecasts. For the sub-hourly forecasts, the selected model is at Moulin de Pierre (resp. Parc de la
Vènerie) is an ARMA (3,3) (resp. ARMA(5,4)).

For the ANN, we compute the RMSE, defined in equation (2.6), as a function of the number
of layers and the number of neurons per hidden layer. Results are shown for the first lead time.
We fix the seed in order to better compare the model’s performance and remove the noise due to
the stochastic nature of ANN.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (2.6)
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Figure 2.2 | Bayesian Inference Criterion (BIC) of different ARMA(p,q) models depending on
the AR order p and the MA order q for the hourly forecasts (a) and the sub-hourly forecasts
(b) at Parc de Bonneval.

In equation (2.6), ŷi is the i-th wind forecast and yi is the corresponding observation. N refers
to the number of forecasts that have been done to compute the RMSE.

According to figure 2.3, at Parc de Bonneval, the best ANN for the hourly forecasts is a model
with 2 layers (one hidden layer and one output layer) with 10 neurons in the hidden layer and the
best model for sub-hourly forecasts is an ANN with 4 layers and 10 neurons in the hidden layers.
Again, the same procedure is applied for Parc de la Vènerie and Moulin de Pierre. At Moulin
de Pierre the same configuration than at Parc de Bonneval is used for the hourly forecasts, and
at Parc de la Vènerie, an ANN with 2 layers and 40 neurons in the hidden layer is chosen. For
sub-hourly forecasts an ANN with 4 layers and 30 neurons in the hidden layers is chosen at Moulin
de Pierre and an ANN with 4 layers and 10 neurons in the hidden layers is chosen at Parc de la
Vènerie.
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Figure 2.3 | RMSE for the first lead time of different ANN model depending on the number
of hidden layers and the number of neurons per hidden layer. The results for hourly forecasts
(a) and sub-hourly forecasts (b) are shown.
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Use of exogenous variables

Both ARMA and ANN can be used as pure time-series based models or with exogenous variables.
Figure 2.4 displays the comparison of the error distributions at Parc de Bonneval for the forecasts
at t0 + 1 h and t0 + 3 h between ARMA and ARMAX and between ANN and ANNX. We use
only the 100 m wind speed (F =

√
u2 + v2) forecasted by ECMWF as exogenous variable. For a

lead time of 1 h, the distributions between the pure time-series based models and the models with
exogenous variable do not differ significantly. For both ARMA and ANN, the interquartile range
(IQR) is slightly reduced by the use of exogenous variables. From 1.63 m s−1 to 1.42 m s−1 for
ARMA and from 1.10 m s−1 to 1.07 m s−1 for ANN. However, it slightly degrades the bias as it goes
from -0.02 for ARMA to -0.03 for ARMAX and from -0.16 for ANN to -0.22 for ANNX. For a lead
time of 3 h, the results are the same with a more significant gain. The IQR is reduced from 2.25 for
ARMA to 1.71 for ARMAX and from 2.09 for ANN to 1.43 for ANNX. The scope, defined as the
difference between the highest and lowest value, is also significantly reduced compared to the lead
time of 1 h. At t0 +1 h, the differences start to be visible. However, our goal is sub-hourly forecasts
with lead times starting from 10 min. At those time scales, the hourly exogenous variables carry
less information than in-situ measurements. Under these conditions, we keep a pure time-series
based approach for ARMA and ANN.

Figure 2.4 | Comparison for Parc de Bonneval between the pure time-series based ARMA
(resp. ANN) and a model with the 100 m wind speed forecasted by ECMWF as exogenous
variable ARMAX (resp. ANNX). The distribution of the error between the forecasted wind
speed (using ARMA, ARMAX, ANN and ANNX) and the measurements are shown at t0 + 1 h
and t0 + 3 h.

Data standardization

For both ARMA and ANN, the dataset has to be standardized so as to tend a distribution, close to
a Weibull distribution (see 2.5), towards a standardized Gaussian distribution. This transformation
allows ARMA and ANN to give optimal results. The standardized dataset is easily obtained by
centering and reducing the data, as shown in equation (2.7).

35



YN (0,1) =
y − ȳ
σY

(2.7)

where ȳ is the mean and σY is the standard deviation. Figure 2.5 shows the comparison between
the two dataset.
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Figure 2.5 | Comparison between the distribution of the original dataset (Weibull distribution)
and the standardized dataset (Gaussian distribution)

This transformation is not necessary for the models presented in sections 2.2.1 and 2.2.2. The
models are able to learn the statistical relationship using the original dataset.

2.3 Application at two wind farms

To quantify the performance of the models, we used two indicators. The Normalized Root Mean
Square Error (NRMSE) defined in equation (2.8), which is often used and facilitates comparisons
with classical scores. The second indicator is the improvement over persistence, defined in equa-
tion (2.9), that is to say the decrease of the RMSE of the considered model compared to the
persistence method. This skill score is referred to as ∆RMSE .

NRMSE =

√
1
N

N∑
i=1

(ŷi − yi)2

Ȳ
(2.8)

∆RMSE = −RMSEmodel −RMSEpersistence
RMSEpersistence

(2.9)

where, ŷi is the i-th wind forecast and yi is the corresponding observation. N refers to the
number of forecasts that have been done to compute the NRMSE, and Ȳ is the mean of the observed
wind speed over the same sample. By removing the normalization, we obtained the RMSE. When
ŷi is forecasted using persistence, it refers to RMSEpersistence. When it is forecasted by any other
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model, it refers to RMSEmodel, where the model is clearly identified (among ECMWF, LRno-obs
A ,

LRno-obs
SW , RFno-obs, LRobs

A , LRobs
SW, RFobs, ARMA and ANN).

In the following, we present the results of the models applied to three different wind farms
operated by Zephyr ENR. The first wind farm is located in Bonneval, a small town 100 km South-
west of Paris, France (48.20◦N and 1.42◦E). It is called Parc de Bonneval and it was implemented
in 2006. This wind farm is composed by 6 Vestas V80-2 MW turbines of 100 m hub height. The
second one, called Moulin de Pierre, is located 5 km from Parc de Bonneval. It is also composed
by 6 Vestas of nominal power of 3.3 MW. The second wind farm is located in Normandie, France
(49.01◦N and -1.16◦E). It is called “Parc de la Vènerie” and it was implemented in 2014. This wind
farm is composed of 4 Enercon E82-2.3 MW turbines and a hub height of 85 m.

Parc de Bonneval and Moulin de Pierre are located in the middle of the fields with a very
flat topography, as shown in figure 2.6a, while Parc de la Vènerie is surrounded by forests with a
more rugged topography as shown in figure 2.6b. It makes the environment more complex and,
therefore, the forecast more uncertain.

For both wind farms, the explanatory variables are interpolated linearly from the four nearest
grid points at the farm location.

(a) Parc de Bonneval (b) Parc de la Vènerie

Figure 2.6 | Pictures of Parc de Bonneval (a) and Parc de la Vènerie (b). Moulin de Pierre is
similar to Parc de Bonneval.

2.3.1 Performances for hourly forecasts

In this section, the downscaling methods are used for hourly forecasts and tested against the
commonly used ANN and ARMA methods. The targeted wind speed is computed by averaging
the 10-minutes measurements of the considered wind farms. For each wind farm, spatial averaging
is performed by averaging the data of all turbines. Hourly forecasts have been largely studied in the
literature, and the results are compared to published reference skill scores. At Parc de Bonneval
and Parc de la Vènerie, all the models are trained using hourly averaged of the past observations
of years 2015 and 2016. At Moulin de Pierre, a k-fold cross validation is performed using data of
2017.

Figures 2.7, 2.8, and 2.9 display the NRMSE at Parc de Bonneval, Parc de la Vènerie, and
Moulin de Pierre depending on the forecast lead times (1 h to 11 h) for persistence, ECMWF
forecasts, ARMA and ANN models and for our downscaling methods LRno-obs

A , LRno-obs
SW , RFno-obs,

LRobs
A , LRobs

SW and RFobs.
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Figure 2.7 | Performances of downscaling statistical models for hourly forecasts from 1 h to
11 h in two configurations against the performances of ECMWF and the benchmark method.
LRno-obs

A , LRno-obs
SW , and RFno-obs display the downscaling of explanatory variables from ECWMF

outputs only. LRobs
A , LRobs

SW, and RFobs show the results when the error between the measure-
ments at t0 and the 100-m wind speed forecasted by ECMWF at t is adding as explanatory
variable. Results of persistence, ANN, and ARMA are added.
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Figure 2.8 | Same than figure 2.7 for Parc de la Vènerie.

Results at Parc de Bonneval and Moulin de Pierre are very similar due to the proximity of
the two farms. Consequently, only the results at Parc de Bonneval will be discussed. The main
difference with Parc de la Vènerie is the performances of ECMWF. At Parc de Bonneval, the
NRMSE is around 20% for all lead times while it is around 25% for Parc de la Vènerie. The
flat topography at Parc de Bonneval enables ECMWF to perform well. In this condition, the
downscaling leads to minor improvements. However, at Parc de la Vènerie, the improvement over
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Figure 2.9 | Same than figures 2.7 and 2.8 for Moulin de Pierre.

ECMWF is more significant as its performances are worse. In both cases, ARMA and ANN are
close to persistence for the whole period, and as for the downscaling models, the models with
observations converge towards the models without observation after few hours.
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Figure 2.10 | Comparison of the improvements over persistence in percentage for ECMWF
forecasts and the best downscaling models from 1 h to 11 h in the two configurations. LRno-obs

SW
corresponds to the downscaling of explanatory variables from ECWMF outputs only with a
variable selection algorithm. LRobs

SW shows the results when the error between the measure-
ments at t0, the time when the forecast is launched, and the 100-m wind speed forecasted by
ECMWF at t is added as an explanatory variable. Again with a variable selection algorithm.
Improvements of ECMWF, ARMA, and ANN methods are also included. For ECMWF and the
downscaling models, the value of the improvement corresponds to the extremity of each bar,
while for ARMA and ANN, it corresponds to the center of the circle and triangle, respectively.
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Figure 2.11 | Same that figure 2.10 for Parc de la Vènerie.
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Figure 2.12 | Same that figures 2.10 and 2.11 for Moulin de Pierre.

The improvements over persistence of the benchmark methods ARMA and ANN, ECMWF
and of the best downscaling models for each configuration LRno-obs

SW and LRobs
SW are displayed in

figure 2.10 for Parc de Bonneval, figure 2.11 for Parc de la Vènerie, and figure 2.12 for Moulin de
Pierre. One can see that reference methods, ARMA and ANN, perform very similarly for all wind
farms. At Parc de la Vènerie, ARMA overperforms persistence from 4 h, and ANN overperforms
persistence from 3 h. The maximal improvement is found for the last lead time at t0 + 11 h and is
7.5% for ARMA and 6.5% for ANN. At Parc de Bonneval, the two models overperform persistence
at every horizon, and the improvement slightly increases with time from 2.7% for the first hour
to 15.3% for the eleventh. The difference between the two wind farms can be explained by the
persistence performance, which is better at Parc de la Vènerie. Then, the improvement is lower.
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The results at Moulin de Pierre are again very similar to those at Parc de Bonneval, so they will
not be further discussed.

Those results are consistent with those found in the literature. For instance, in [41], Torres et
al., use ARMA model to predict hourly averaged wind speed 1 h to 10 h lead time for five sites
in Spain. They find NRMSE improvement over persistence ranging between 2% and 5% for 1 h
ahead and between 12% and 20% for 10 h ahead. In [42], Sfetsos compares the performances of
an ARIMA(2,1,2) and an ANN using measurements collected in Crete, Greece. Hourly averaged
wind speed forecasts with ANN model overperform persistence by 4.7% while ARIMA overperforms
persistence by 2.3%.

Compared to these reference results, LRno-obs
SW and LRobs

SW are significantly better. After the fifth
hour, ECMWF, LRno-obs

SW , and LRobs
SW are better than persistence by more than 40% for both wind

farms. For the first lead time, corresponding to t0+1 h, LRobs
SW performs better than persistence

by 8.6% at Parc de Bonneval which is better than ARMA (∆RMSE = 2.7%) and ANN (∆RMSE =
0.1%). At Parc de la Vènerie LRobs

SW performs better than persistence by 10.6% while ∆RMSE =
-4.0% for ARMA and ∆RMSE = -1.1% for ANN. At Parc de Bonneval, the improvements remain
significantly better than ECMWF and LRno-obs

SW until the third hour. However, at Parc de la Vènerie
ECMWF performances remain significantly worse for all lead times, and the differences between
LRno-obs

SW and LRobs
SW are bigger.

The performance shift at t0+2 h/3 h for Parc de Bonneval and t0+4 h/5 h for Parc de la Vènerie
between the observations based methods and the downscaling methods can easily be explained.
For short lead times, an accurate initial state provided by the observations is essential. For the
last lead times, the observations no longer constrain the forecast. Thus NWP forecasts, provide
the needed information. Moreover, for these lead times, ARMA and ANN models are no longer
based on the latest measurements but on previous forecasts. It explains why LRobs

SW outperforms
all other methods at all lead times.

2.3.2 Performances for sub-hourly forecasts

In this section, we focus on very short term forecasts, which is the principal objective of this thesis.
We apply the same methods as in section 2.3.1 to forecast 10 min average winds up to 3 h ahead.
In order to retrieve 10-min forecasts, the explanatory variables are linearly interpolated every 10
min. Then, to retrieve the prediction for all hours h at minutes 0, 10, and 20, we apply the model
calibrated at hour h. To retrieve the prediction for all hours h at minutes 30, 40, and 50, we apply
the model calibrated at hour h + 1. However, the calibration leads to an issue with LRobs. For
10 min and 20 min, LRobs is doing exactly the same as persistence. Indeed, the model fitted at
time t0 puts all the weight on the forecasted wind speed by ECMWF and on the initial error. As
this model is used at 10 min and 20 min, the results are exactly the results of persistence. To
let the model outperforms persistence, one solution is to do a linear regression using only past
observations for the first two horizons. Hereafter, LRobs denotes a linear regression over past
measurements for time 10 min and 20 min and a linear regression over ECMWF outputs and the
error at time t0 for the remaining time as shown in figure 2.13. Same thing for RFobs, where the
explanatory variables for the lead times of 10 min and 20 min are only past measurements. For
the reference methods ANN and ARMA, the training is performed directly using the 10-minutes
measurements. The procedure applied to choose the models is the same as in section 2.3.1. For
the ARMA models, as explained in section 2.2.3, an ARMA(4,2) is used for Parc de Bonneval, an
ARMA(3,3) for Moulin de Pierre, and an ARMA(5,4) for Parc de la Vènerie. For the ANN, we
fit several models depending on the number of layers and the number of neurons per layer. The
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best model is an ANN with 4 layers and 10 neurons per layers for Parc de Bonneval and Parc de
la Vènerie and 4 layers with 30 neurons per layers for Moulin de Pierre.

t0

10 20 30 40 50

t0+1h

70 80 90 100 110

t0+2h

130 140 150 160 170

t0+3h

LR over the last hour

Model fitted at t0 + 1 h

Model fitted at t0 + 2 h

Model fitted at t0 + 3 h

Figure 2.13 | Diagram of downscaling models. Each model is fitted using data at peak hour
and then used from -30 min to +20 min.

Figure 2.14 (resp. figure 2.15 and figure 2.16) displays the NRMSE as a function of the time
horizon, from 10 min to 170 min, for persistence, ECMWF forecasts, LRno-obs

SW , and LRobs
SW forecasts

and reference methods ARMA and ANN at Parc de Bonneval (resp. Parc de la Vènerie and Moulin
de Pierre).
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Figure 2.14 | Performances of downscaling statistical models for hourly forecasts from 1 h to
11 h in two configurations against the performances of ECMWF and the benchmark method.
LRno-obs

A , LRno-obs
SW , and RFno-obs display the downscaling of explanatory variables from ECWMF

outputs only. LRobs
A , LRobs

SW, and RFobs show the results when the error between the measure-
ments at t0 and the 100-m wind speed forecasted by ECMWF at t is adding as explanatory
variable. Results of persistence, ANN, and ARMA are added.

At this time scale, the differences between the models are smaller than for longer lead times,
especially at Parc de Bonneval and Moulin de Pierre, but the hierarchy between them remains
the same. In all cases, it is hard to distinguish the best model at 10 min and 20 min, but after
30 min, LRobs

SW is significantly better. For times between 30 min and 2 h, it provides clearly the
best forecasts, with NRMSE less than 20%. For lead times of 2 to 3 h, its performance gradually
converges to that of LRno-obs

SW .
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Figure 2.15 | Same than figure 2.14 for Parc de la Vènerie.
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Figure 2.16 | Same than figures 2.14 and 2.15 for Moulin de Pierre.

Figures 2.17, 2.18, and 2.19 are similar to figures 2.10, 2.11, and 2.12 for lead times ranging
between 10 min and 170 min. Only LRobs

SW overperforms persistence at every horizon. Again it is the
model giving the best improvements. The differences with ARMA are not extremely significant for
the first lead times, especially at 20 min (1.5% for LRobs

SW and 1.3% for ARMA at Parc de Bonneval
and 1.2% for LRobs

SW and 1.0% for ARMA at Parc de la Vènerie). After 20 min, LRobs
SW is by far the

best model. The improvement over persistence is 6.9% at 30 min and 33.3% at 170 min at Parc de
Bonneval and 5.2% at 30 min and 25.4% at 170 min at Parc de la Vènerie. At Parc de Bonneval
ECMWF, LRno-obs

SW and LRobs
SW converge with each other with time. ECMWF and LRno-obs

SW start
to outperform persistence only from 80 min and 70 min, respectively. However, at Parc de la
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Figure 2.17 | Comparison of the improvements over persistence in percentage for ECMWF
forecasts and the best downscaling models from 1 h to 11 h in the two configurations. LRno-obs

SW
corresponds to the downscaling of explanatory variables from ECWMF outputs only with a
variable selection algorithm. LRobs

SW shows the results when the error between the measure-
ments at t0, the time when the forecast is launched, and the 100-m wind speed forecasted by
ECMWF at t is added as an explanatory variable. Again with a variable selection algorithm.
Improvements of ECMWF, ARMA, and ANN methods are also included. For ECMWF and the
downscaling models, the value of the improvement corresponds to the extremity of each bar,
while for ARMA and ANN, it corresponds to the center of the circle and triangle, respectively.
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Figure 2.18 | Same than figure 2.17 for Parc de la Vènerie.

Vènerie, ECMWF never improves persistence during the 3 h, and the differences between LRno-obs
SW

and LRobs
SW remain significant for the whole period. Again, the results for Moulin de Pierre are not
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Figure 2.19 | Same than figures 2.17 and 2.18 for Moulin de Pierre.

further discussed due to the similarity with Parc de Bonneval.

2.4 Analysis of the best model

In this section, we analyze more deeply the models for Parc de Bonneval and Parc de la Vènerie.
For both wind farms and for hourly and sub-hourly forecasts, LRobs

SW is the best model. Figures 2.20
and 2.21 displays the chosen explanatory variables for each models. The name of the explanatory
variables are given in tables 2.1, 2.2 and 2.3. For better readability differents colors are used for
each models. Figure 2.20 displays the results for Parc de Bonneval and figure 2.21 displays the
results for Parc de la Vènerie.

If we focus on the models used for sub-hourly forecasts, that is to say the models at t0 + 1 h,
t0 + 2 h and t0 + 3 h, one can see that the number of explanatory variables used at Parc de
Bonneval is larger than at Parc de la Vènerie. At Parc de Bonneval, 20 variables are used, while
there are 12 different explanatory variables used at Parc de la Vènerie. F100 and the error at t0
are the main variables, i.e., used by all the models for both farms and with more weight. Then,
the three models select indicators of the atmospheric stability and of turbulence such as the wind
shear (DF), the surface sensible (sshf) and latent (slhf) heat fluxes. The latter is the transfer of
latent heat (the thermal energy released or absorbed by a body during a phase transition without
temperature change) with the surface through turbulent dissipation while the surface sensible heat
flux is the transfer of heat between the Earth’s surface and the atmosphere through the effect of
turbulent air motion (this process results in a temperature change) [43]. At Parc de Bonneval
F10 and the boundary layer dissipation (bld) are selected by the three models as well as the
temperature gradient (DT) and the geopotential at 925 hPa (z925) at Parc de la Vènerie. In
general, indicators of the state of the atmosphere, such as wind components at different altitudes
and also temperature at different altitudes for Parc de Bonneval, are selected. More occasionally,
variables such as vorticity (a measure of the rotation of air in the horizontal [43]), skin temperature
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Figure 2.21 | Same as figure 2.20 for Parc de la Vènerie.

(temperature of the surface of the Earth) or dew point temperature (temperature to which the air
at 2 m above the surface would have to be cooled for saturation to occur [43]) are selected.

For each model, the process is very similar. The 100 m wind speed forecasted by ECMWF
is corrected using the error at t0. The weight of the error decrease with time. Then, the other
explanatory variables are used to update the forecasted values but to a lesser extent as their
respective weight is reduced by a factor 10.
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Figure 2.22 displays the evolution of the error weight |ωerror| with time for the two wind farms.
ωerror refers to the parameter associated to the error in equation (2.1). The error is the explanatory
variable computed as follows:

F
obst0
hub_height − FECMWFt

100 (2.10)

where F obst0
hub_height is the wind speed measured at the hub height at the wind farm at t0 that is to

say, when the forecast is launched and FECMWFt
100 is the 100 m wind speed forecasted by ECMWF

at time t. The magnitude of the weight |ωerror| associated to this explanatory variable reflects the
importance of in-situ information in the forecasting model. In both cases, the weight decreases
with time. From 3 h, it is lower than 0.2 for Parc de Bonneval and lower than 0.3 for Parc de la
Vènerie. For Parc de Bonneval the error is not selected by the last three models and |ωerror| = 0
after t0 + 9 h. At Parc de la Vènerie, this variable carries information for all lead times, and it is
higher than 0.1 for the last model at t0 + 11 h. These results are consistent with the results shown
on figures 2.10 and 2.11. The difference between LRno-obs

SW and LRobs
SW remains significant for the

whole period at Parc de la Vènerie, while at Parc de Bonneval, the two approaches converge to
each other after 4 h.
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Figure 2.22 | Evolution of the error weight |ωerror| with time. For each model from t0 to
t0 + 11 h the weight assigned to the error calculated by the linear regression LRobs

SW is plotted
for Parc de Bonneval and Parc de la Vènerie.

2.5 Conclusion

In this chapter, we have developed and tested approaches that combine statistical models and out-
puts from Numerical Weather Prediction (NWP) model in order to forecast the 100 m wind speed
at sub-hourly time scales. All the models are tested on three different wind farms. Traditionally,
the main methods used for those time scales are time series based methods using only local ob-
servations, while Numerical Weather Prediction (NWP) models are preferred for lead times longer
than 6 h at least [44]. However, for the case of the considered wind farms, we have used several
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years of data to show that the European Centre for Medium-Range Weather Forecasts (ECMWF)
performs well even for short lead times when the topography is smoothed. When it is not the case,
a more sophisticated approach is required to obtain acceptable results.

After 80 min, the direct output of ECMWF forecasts gives better results than the classical
time series based methods and improves persistence from 5.0% to 28.9% for one of the wind farms.
Taking into account those good performances, we have considered parametric and non-parametric
approaches to downscale the model outputs at the farm scale. With these downscaling models, we
obtain improvements over persistence from 100 min and up to 25.4% at 170 min for Parc de la
Vènerie.

In order to have better results for shorter lead times, we have corrected ECMWF forecasts
by providing as explanatory variable the error between the forecasted wind speed and the initial
measurement. This low cost assimilation lets the linear regression to overperform all other methods.
The improvements over the traditional time series based models become significant with time, from
5.3% at 30 min to 30.1% at 170 min at Parc de Bonneval.

Under these conditions, the downscaling model LRobs
SW provides more accurate short term fore-

casts from 10 min to 3 h than the conventional models found in the literature. This is our starting
point for the next step, which is the wind energy forecasts at the turbine scale. To do so, several
effects have to be taken into account. These crucial steps are described in chapter 3.
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3.1 Introduction

In recent years, the wind energy sector has soared all over the world. Wind farms are located in
more than 90 countries around the world. Nine of these countries have an installed capacity of more
than 10 GW, and 30 with more than 1 GW across Europe, Asia, North America, Latin America,
and Africa. In 2017, 52.5 GW of new wind power was installed across the globe, bringing total
installed capacity up to 539 GW. In France, wind power installation increased by 14.04% in 2017
[45], mainly thanks to the feed-in tariffs. The French leading electricity utility company, Électricité
de France (EDF), is under an obligation to purchase green electricity from wind producers for a
period of 15 years. After this period, the producers have to sell their electricity on the competitive
market. Every day a contract is established between the market and the producer about the
quantity of electricity they will inject on the grid. This contract can be updated up to 30 min
in advance. Any difference between the contract and the production will be compensated via
penalties. This framework prompts the producers to have accurate short term forecasts.

3.1.1 Direct approach versus indirect approach

Concerning wind power forecasting, there are two ways to approach this problem. The direct
approach and the indirect approach. The first one is to develop a forecasting model using historical
wind power generation and then forecast the wind power directly.

The indirect approach is made in two steps. First, a model is developed to forecast the wind
speed, and then this wind speed forecast is converted into wind power forecast by using different
methods. This approach introduces an additional step by performing this conversion. Theoretically,
the relationship between the wind speed v (in m s −1), through swept area A of wind turbine (in
m2), and the wind power p (in W) is:

p =
1

2
ρAv3 (3.1)

where ρ is the air density (in kg m−3). From equation (3.1), it can be seen that the relationship
between wind speed and wind power is cubic. Consequently, small errors in wind speed forecasts
can generate significant errors in wind power forecasts. However, the indirect approach is usually
less numerically costly, especially for large wind farms. Indeed, it can provide average wind speed
forecasts at a specific site, and then these forecasts are converted into individual wind energy
forecasts at the turbine scale. With this approach, it is easy to account for situations where
turbines are off-line. It is also straightforward to develop the wind farm by adding new turbines.
This is less the case with the direct approach. Either one model is required for each turbine, and
it is numerically costly, or only one model is fitted to forecast the wind power output at the farm
scale, and then the model cannot take into account the cases where one or several turbines are
off-line.

In [46], Shi et al. compare the performance between direct and indirect ARIMA-based ap-
proaches for the wind energy forecasting of a 2 MW turbine 1 h ahead. They find that the direct
approach provides more accurate forecasts compared with the indirect one. The NRMSE ranges
from 12.6% (in percentage of the nominal power) for the indirect approach to 11.1% for the direct
approach. The main reason is related to the power curve, which they use to convert the wind
speed into wind energy in the indirect approach. Power curves are functions that give the power
output depending on the wind speed only. They are provided by the turbine manufacturer but
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give better results if computed using historical data. Power curves only consider the average deter-
ministic relationship between wind speed and power generation, while in reality, the relationship is
stochastic and depends on other variables such as air density. This neglected variability may lead
to a lower accuracy in predicting wind power generation using the indirect approach. In [47], Hong
et al. develop an indirect short term wind power forecast approach. They decompose the wind
speed into a mean component, and a stochastic component. The mean component is forecasted
using polynomial regression, and the stochastic part is forecasted using the SVM-based method.
Then, they convert the wind speed forecast into a wind energy forecast using a computed power
curve. For the proposed model, they show that indirect forecast performs better than direct power
forecast. The NMAE is reduced from 4.1% to 3.8% (in percentage of the installed capacity). New
methods are also developed to optimize forecasting by combining the two approaches. For instance,
in [48], Bokde et al. present a new approach to eliminate the disadvantages of direct and indirect
forecasting methods. Their method behaves like a direct-indirect hybrid that does not directly or
indirectly predict power. It is based on clustering, and it uses both wind power and wind speed
datasets as input to improve accuracy in wind power forecasting. Results reveal that the proposed
methodology shows the best performance compared to both direct and indirect approaches.

The direct and indirect approaches have been tested at Parc de Bonneval to forecasts the average
power output of the farm. For the indirect approach, we use a computed power curve. That is to
say, a power curve fitted using historical wind speed measurements and power outputs. Figure 3.1
compares the performances of a direct LRobs

SW and an indirect LRobs
SW (defined in chapter 2). From

30 min, the indirect LRobs
SW overperforms the direct LRobs

SW. Further improvements are expected
with better modeling of the power curve.
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Figure 3.1 | Comparison between a direct LRobs
SW and an indirect LRobs

SW for the wind energy
forecasting at Parc de Bonneval. This model is described in chapter 2. NRMSE in % of the
nominal power is shown from t0 + 10 min to t0 + 170 min.

3.1.2 Power curve modeling for wind turbines

Power curve modeling is still a very active research field [49, 50]. Some studies aim at modeling
power curves with non-parametric approaches such as smoothing splines [51], which consists of
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modeling the power curve with functions defined piecewise by polynomials. Some other studies use
neural networks [52]. For instance, in [53], Li et al. develop neural networks for each turbine to
estimate the wind power output. They use as input, the wind speed and the wind direction. They
find that the relative error is considerably reduced by the use of ANN, compared to an estimation
using power curves. Monthly results are shown, and for one of the turbines, the error is decreased
from 28.8% to 0.8%. Nevertheless, most of the studies focus on parametric approaches, numer-
ically less expensive, such as polynomial, exponential, or cubic power curve approximation [54].
Studies have shown large sensitivity to the empirical estimation method of the wind power, with
errors reaching 50% [55], and varying by about 20% between parametric and non-parametric ap-
proaches [56]. In this thesis, we model the power curve according to the standard methodology
of The Standard International IEC 61400-12-1 [57]. The methodology consists in modeling the
power curve by dividing the wind speed dataset into 0.5 m s−1 intervals, then the power curve
is retrieved by fitting the means of each interval. To illustrate this methodology, we consider the
wind speed measured at hub height by anemometers, and averaged over the turbines of the farm.
The computed power curve is shown in figure 3.2.

0.0 4.0 8.0 12.0 16.0 20.0

Wind speed (in m/s)

0

500

1000

1500

2000

P
ow

er
ou

tp
u

t
(i

n
k
W

)

Sizing of a Short-Term Wind Energy Forecasting System – Manuscript – Chapter. 3

Theoretical power curve

Computed power curve

Figure 3.2 | Computed power curve for the turbines at Parc de Bonneval. For each 0.5 m s−1

interval, the boxplots of the distribution are shown in orange. The whiskers correspond to the
first and the ninth deciles. The means of each interval are fitted in order to retrieve the power
curve. The theoretical power curve provided by the turbine manufacturer is also shown by the
dashed line.

Again, this power curve only takes into account the relationship between wind speed and power,
while several variables impact the power output, such as, for instance, air density. Consequently, for
a constant wind speed, the variability of the power output distribution is not negligible. Figure 3.3
illustrates the distribution of the wind energy modeling error. More precisely, it shows the relative
error δαr given by:

δαr =
ŷi − yi
|yi|

(3.2)

where, ŷi is the i-th estimated power output and yi is the corresponding measurements. De-
pending on the wind speed, the first and third quartiles are shown along with the median. First
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of all, we can see that there is a tendency to underestimate the power, as more than 75% of the
distribution is negative for wind speed around 5 m s−1, and the median remains negative below
11 m s−1. Moreover, the error decreases when the wind speed increases. With stronger wind speed,
the power output increases, and as the error is normalized by the power output, δαr decreases.
The real challenge is about wind speeds between 6 m s−1 and 11 m s−1, which correspond to the
increasing part of the power curve and where the uncertainty on the power output is the highest.
Indeed, for weaker wind speeds, the turbines will barely produce, and for stronger wind speeds,
the turbines will reach their nominal power. Consequently, for those extremes, the uncertainty is
very low. However, between them, the uncertainty is high. This relative error is inherent to the
wind energy modeling. This is the minimum error that can be expected, and it can be referred
as to εincompressible. To this εincompressible, will be added the forecasting error. Consequently, the
lower this εincompressible, the better the forecast performance can be. In order to decrease it, other
variables than wind speed must be taken into account
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Figure 3.3 | Distribution of the relative error δαr
defined in equation (3.2). The median and

the first and third quartiles (Q1 and Q3) are shown depending on the wind speed.

In this chapter, we focus only on Parc de Bonneval. The chapter is organized into five sections.
The next section highlights the impact of the wind direction and, more specifically, the wake effect
on the power output, and we propose a way to deal with it. Section 3.3 deals with air density, and
its impact on wind energy estimation and section 3.4 is dedicated more broadly to atmospheric
conditions such as wind shear, turbulence, and atmospheric stability. Finally, in section 3.5, the
main steps of the implementation of an operational forecasting system are described. We conclude
in section 3.6.

3.2 Consideration of wake effect on power output

3.2.1 Impact on wind power output

After the wind speed, wind direction is one of the most important variables that affects the wind
power output. Figure 3.4 displays the characteristics of the wind direction at Parc de Bonneval.
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Panel (a) displays the wind direction frequencies, and panel (b) displays the average wind speed
depending on wind direction. The wind speed is measured by anemometers located behind the
hub. Most of the time, the wind comes from the southwest, which corresponds to the prevailing
winds. Moreover, inside this sector, we find the highest winds (around 7 m s−1). More precisely,
the sector with the highest frequency is [230◦; 235◦], and it corresponds to the sector with the
highest average wind speed of 7.8 m s−1.

N

NE

E

SE

S

SW

W

NW

0.002

0.004

0.006

(a)
Frequency

N

NE

E

SE

S

SW

W

NW

2

4

6

8

(b)
Wind speed

Figure 3.4 | Characteristic of the wind direction at Parc de Bonneval. Panel (a) displays the
wind direction frequency and panel (b) displays the average wind speed depending on wind
direction. In both cases, sectors of five degrees are considered.

Unfortunately, at Parc de Bonneval, the southwest sector is the most sensitive to the wake
effect. As shown in figure 3.5, Parc de Bonneval is composed of six turbines arranged in two lines.

One line is composed of two turbines denoted E1 and E2, at almost 400 m away, and the second
line is composed of four turbines denoted E3, E4, E5, and E6 with a distance between 510 m and
525 m between each of them. In the direction of prevailing winds, it is ideal to space the wind
turbines between three and nine times the rotor diameter. Because the rotor of the wind turbines
is 80 m, the wind turbines must be at least 240 m away and up to 720 m away. They are, therefore,
in the right interval but may still be subject to the wake effect. We can see that both lines are
lined up under northeast winds and southwest winds. More precisely, the angle formed between the
first line (resp. the second line) and the south-north direction is denoted θ1 (resp. θ2). θ1 = 72◦,
consequently when the wind direction is around 72◦ or 252◦, turbines E1 and E2 are lined up.
θ2 = 51◦, so E3, E4, E5, and E6 are lined up for wind directions around 51◦ and 231◦. Prevailing
winds are southwest, and they are twice as frequent as other winds (see figure 3.4).

In these conditions, the upstream turbines decrease the flow for the downstream turbines, and
consequently, these downstream turbines produce less energy than the upstream turbines for the
same wind speed. This is the wake effect. Figure 3.6 illustrates this phenomena. It shows time
series of wind direction (a), average wind speed measured at the wind farm (b), and power output
from the six turbines at Parc de Bonneval (c) for December 22nd 2016 from 05:30 to 10:00 UTC.
The red rectangles highlight a period when E3, E4, E5, and E6 are lined up. Between 06:30 and
09:10, the wind direction is around 230◦. First of all, we can see that the power output of E1 and
E2 is the same. Those two turbines are not lined up. The power output is lower than E3 because
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Figure 3.5 | Satellite image of Parc de Bonneval extracted from Google Earth. The white
crosses display the turbine location with their respective number. Two lines are visible. One
between E1 and E2 (the angle formed between E1-E2 and the south-north direction is denoted
θ1. The second line is formed by the turbines 3, 4, 5 and 6 (the angle between these turbines
and the south-north direction is denoted θ2). The distance between the turbines is added.

E1 and E2 are affected by Bonneval for the prevailing winds. The power output for the second line
is proportional to their position. The upstream turbine, E3, is the turbine with the highest power
output. Come after E4, E5, and finally E6, which is the most downstream turbine. During this
event, around 08:10, E6 produces 48% less than E3 as the power output for E3 is 548 kW while
the power output for E6 is 283 kW. This decrease is even more important when E1 and E2 are
lined up as the two turbines are closer to each other.

In these conditions, the wake effect can not be neglected as it would lead to a significant
overestimation of the wind power output.

3.2.2 Consideration of the wake effect for wind energy modeling

It is crucial to take wind direction into account when estimating and forecasting wind energy. It
allows to avoid the overestimation due to the wake effect. To do so, we define Si, where i ∈ [[1; 6]]
is the turbine index as:

• S1 = {θ1 ± 15◦} = [57◦; 87◦]

• S2 = {(θ1 + 180◦)± 15◦} = [237◦; 257◦]

• S3 = {θ2 ± 15◦} = [36◦; 66◦]

• S4 = {θ2 ± 15◦} ∪ {(θ2 + 180◦)± 15◦} = [36◦; 66◦] ∪ [216◦; 246◦]

• S5 = S4 = [36◦; 66◦] ∪ [216◦; 246◦]

• S6 = {(θ2 + 180◦)± 15◦} = [216◦; 246◦]

Those sectors are the wake sectors. For each turbine, we compute a power curve using datasets
split according to the wake sectors. That is to say, one power curve for wind directions inside the

55



5

7

m
s−

1 (b)

225

245

d
eg

(a)

2016-12-22 05:30:00 2016-12-22 07:40:00 2016-12-22 10:00:00

200

500

k
W

(c)

E1 E2 E3 E4 E5 E6

Figure 3.6 | Time series for December 22nd 2016 from 05:30 to 10:00. It displays wind direction
at Parc de Bonneval location (a), average wind speed at the farm location (b) and the power
output for the six turbines of the farm. The red rectangles highlight the period when the
turbines are lined up.

wake sector and one power curve for wind directions outside the wake sector. Figure 3.7 displays
the two power curves for each turbine. The difference between the two curves is significant for E1
and E2 only. Indeed, those two turbines are closer to each other than the turbine E3, E4, E5, and
E6. Consequently, the wake effect is stronger for E1 and E2. Even if the difference between the
two curves seems negligible for E3, E4, E5, and E6. Figure 3.6 shows that the impact on wind
energy is not.

Table 3.1 shows the MAE and NRMSE on the wind energy modeling when the wind direc-
tion ∈ Si. The case where only one power curve is used is compared with the case where two
power curves are used (that is to say, the case where the power curve is computed using dataset
where direction ∈ Si). The results are shown for the six turbines. For each turbine, the use of
a power curve fitted using data in the wake sector only, improves the wind energy modeling in
terms of both MAE and NRMSE. The greatest improvements are found for E1 and E2 as these
two turbines are the closest to each other. The improvements for E2 are around 41.7% for the
MAE and around 39.0% for the NRMSE. It is above 45% for E1 for both MAE and NRMSE. Even
for E3, E4, E5, and E6, the improvements are not negligible as they are around 38% for the MAE
and 36% for the NRMSE.

3.2.3 Application to wind energy forecasts

With regard to forecasts, the difficulty lies in estimating the wind direction θ over time in order
to determine if θ is inside or outside the wake sector. Most of the time, the wind direction is
forecasted in the same way as the wind speed. For instance, in [58], Erdem et al. use ARMA
based method to forecast the tuple of wind speed, and direction 1 h ahead. In [59], Khosravi et al.
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Figure 3.7 | For each turbine of Parc de Bonneval, two power curves are computed. When
inside the wake sector (direction ∈ Si) and one outside (direction /∈ Si). The theoretical curve
is also added. This is the same for each turbine.

Number of power MAE (in %) NRMSE (in %)curve used

E1 1 7.1 10.9
2 3.7 6.0

E2 1 7.4 10.7
2 4.3 6.5

E3 1 6.2 9.5
2 3.8 5.9

E4 1 5.2 8.1
2 3.2 5.2

E5 1 4.8 7.5
2 3.1 4.9

E6 1 4.9 7.6
2 3.1 4.9

Table 3.1 | Comparison between the case where only one power curve is used for all situation
(Number of used power curve = 1) and when two power curves are fitted (Number of used
power curve = 2: one for direction ∈ Si and one for direction /∈ Si). The MAE and NRMSE
(in % of the nominal power) between the modeled power and the measured power are shown
for the six turbines of Parc de Bonneval.

investigate several non-parametric approaches, such as ANN, SVM, ANFIS, to forecast the wind
direction.

In our case, in addition to ARMA and ANN, we also test to forecast the wind direction using

57



the persistence model and ECMWF forecasts. As shown in the chapter 2, section 2.4, the wind
components at 100 m height (u100 and v100) are forecasted by ECMWF. We can use the com-
ponents to compute the wind direction according to equation (3.3), or we can consider the last
measurement at Parc de Bonneval.{

u = V cos(θ)

v = V sin(θ)
⇐⇒ tan(θ) =

v

u
⇐⇒ θ = arctan

(v
u

)
, θ ∈

]
− π

2
,
π

2

[
(3.3)

where V is the wind speed: V =
√
u2 + v2.

Figure 3.8 displays the mean absolute error (MAE, defined in the next section, in equationa-
tion (3.5)b) on the wind direction forecasting depending on the lead time. ECMWF are hourly
forecasts, and then the minimum errors are found every full hour and a slight increase due to the
interpolation of the components are notice between full hours. In practice, no interpolation should
be done, but the closest forecast should be used. On average, the MAE for ECMWF is constant
with time, and it is around 20◦. When the persistence method is used, the error starts from 8◦

at 10 min to 30◦ at 170 min. For ARMA and ANN, the shape is the same as for persistence (in-
creasing with time) but with larger error. Thus, it is better to take, as estimator, the persistence
for the first hour and then use the wind components forecasted by ECMWF to estimate the wind
direction after the first hour.
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Figure 3.8 | MAE for the wind direction estimation from 10 min to 170 min. Results for
ECMWF, persistence, ARMA and ANN are shown.

Figure 3.9 shows the NRMSE in % of the nominal power for each turbine at Parc de Bonneval
between forecasted power and measured power. The wind power forecast is provided by LRobs

SW,
defined in chapter 2. To compute the NRMSE, only the situations where the wind direction is
inside the wake sector are considered. For E1, it occurs 5.4% of the time. For E2, it occurs 12.4%
of the time. It occurs 6.0% of the time for E3, 13.7% for E4 and E5, and 7% of the time for E6.
Consequently, the size of the dataset used to compute the NRMSE is different for each turbine
(except for E3 and E4). For each turbine, the use of a specific power curve fitted using data inside
the wake sector improves the results compared to the case where only one power curve is fitted.
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Again, the differences are more significant for E1 and E2, and few improvements are visible for the
turbines of the second line.
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Figure 3.9 | NRMSE (in % of the nominal power) for each turbine of Parc de Bonneval
between the forecasted power (provided by LRobs

SW) and the measured power from 10 min to
170 min. Results when only one power curve and when two power curves are fitted (one for
directions ∈ Si and one for direction /∈ Si) are shown.

Figure 3.10 displays the improvements from 10 min to 170 min between the case where only
one power curve is fitted and the case where two power curves are fitted (one for directions ∈ Si
and one for direction /∈ Si). In other words, it displays the relative difference between the blue
curves and the orange curves in figure 3.9. Clearly, the largest improvements are found for E1 and
E2 for the whole period with E1 clearly in the lead with an improvement of 52.3% at 10 min and
of 11.5% at 170 min. Even for the less affected turbine, E3, the improvements are between 9.7%
and 4.9% during the whole period. Generally, improvements decrease with lead time mainly due
to the error in the wind direction estimation. At 10 min, the errors in the wind direction leading
to the use of the wrong power curve (power curve inside the wake sector while the real direction
is outside and inversely) occurs around 4% of the time. It is around 11% of the time for the last
lead time. If we could avoid these errors in the wind direction forecasting, the improvements due
to the use of two power curve would be around 14% at 170 min.

In any case, even with this uncertainty in the wind direction forecasting, taking into account
the wind direction leads to significant improvements for all lead times and for all turbines.

3.3 Air density induced error on wind energy estimation

As seen in the previous section, most of the time, wind energy is computed from the wind speed
through a power curve. The theoretical power curve is provided by the wind turbine manufacturer
for standard temperature (T0 = 15◦C) and pressure (P0 = 1013.25 hPa). Deriving empirical power
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Figure 3.10 | Improvements from 10 min to 170 min between the case where only one power
curve is fitted and the case where two power curves are fitted (one for directions ∈ Si and one
for direction /∈ Si). For each lead time, results for the six turbines of Parc de Bonneval are
shown.

curve for a given turbine is a key for more accurate wind power estimate and as seen in 3.1.2 there
is no lack of method.

However, the power performance of a wind turbine also depends on air density. But most
studies neglect it [60]. Its impact is not negligible with an error on wind power estimate, which
can be reduced by 20% when temperature correction for air density is accounted for [61]. However,
as for the power curve, the sensitivity to the methods used to correct for air density is extremely
large, with errors varying by more than 100% depending on the method [62].

An accurate estimate of air density is, therefore, a key to reduce the uncertainty of the wind
power forecast. In an operational configuration, various strategies can be adopted to achieve this.
Considering default values is clearly the worst strategy, and it is equivalent to ignoring air density
variations. The best strategy requires real time temperature and pressure measurements for an a
priori empirical derivation of the power curves and an a posteriori method for debiasing locally
wind power forecasts. However, wind farms equipped with both sensors are rare. In that case,
values from Numerical Weather Prediction models may be a suitable alternative.

This study aims at underscoring the temperature and pressure contributions of the air density
computation in order to better take into account the lack of wind farm instrumentation. Sec-
tion 3.3.1 details the methodology to compute the error budget of the air density with an in-depth
analysis of the temperature and pressure contributions. The error budget analysis is performed
at a densely instrumented site, and its spatial pattern and sensitivity to the terrain complexity is
further investigated using meteorological analysis. Application to wind power estimation is shown
at an actual wind farm in section 3.3.2.
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3.3.1 Air density error budget

At the SIRTA observatory

To quantify the contributions of temperature and pressure in the air density error budget, we
use the large observation dataset from the SIRTA observatory (Site Instrumental de Recherche
par Télédétection Atmosphérique), located 20 km South of Paris (France) (48.7◦N, 2.2◦E, 150 m
altitude) [63]. We retrieve surface pressure and temperature at 2 m at 10-minutes frequency from
2015 to 2017 to compute the air density and the different contributions. We compute the air

density ρ from the temperature T and pressure P based on the ideal gas law P = ρ
R

M
T as:

ρ =
MP

RT
=
M

R

(P0 + P ′)
(T0 + T ′)

=
MP0

RT0︸ ︷︷ ︸
ρ0

(
1 +

P ′

P0

)( 1

1 + T ′/T0

)
(3.4)

where P0 = 1013.25 hPa and T0 = 288.15 K are reference values of the standard atmosphere
at the Earth’s surface. The quantitites P ′ and T ′ are the deviations to the reference values,
M = 0.02898 kg mol−1 is the dry air molar mass and R = 8.31 J K−1 mol−1 is the ideal gas
constant. To quantify the contributions of the temperature and pressure to the air density error
budget, we compute the normalized bias (BIAS), the normalized mean absolute error (MAE) and
the normalized root mean square error (NRMSE) as:

BIAS :=
1

ȳ

(
1

n

n∑
i=1

(
yi − ŷi

))
(3.5a)

MAE :=
1

ȳ

(
1

n

n∑
i=1

|yi − ŷi|
)

(3.5b)

NRMSE :=
1

ȳ

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.5c)

where, yi is a measured variable (air density), ŷi is the computed variable, n is the sample size and
ȳ is the mean value over the period ranging between 2015 and 2017.

Table 3.2 displays the values of BIAS, MAE, and NRMSE between the measured and computed
air density. Two ways of computing it are assessed. The first row corresponds to the values when
the pressure is set to its reference value (P = P0). Only temperature deviation is considered
(hereafter referred to as "temperature contribution"). The second row corresponds to the values
when the temperature is set to its reference value (T = T0). Only pressure deviation is considered
(hereafter referred to as "pressure contribution"). The two contributions are evaluated separately
because a wind farm may only have access to pressure or temperature measurements. When
P = P0 (temperature contribution, upper row), the BIAS and MAE have very similar absolute
value (1.34% and 1.37% with respect to the reference density), suggesting a significant negative
bias. The NRMSE is of the same order of magnitude. When T = T0 (pressure contribution, lower
row), the bias is positive (+1.22% with respect to the reference density). The MAE and NRMSE
are more than 1.5 times larger than when P = P0, suggesting that the temperature contribution has
a larger weight in the air density error budget. Indeed, despite the averaged relative fluctuations
P ′OBS

P0
and

T ′OBS

T0
have the same order of magnitude (around 10 hPa over 1000 hPa for the pressure
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and 3 K over 300 K for the temperature), the relative standard deviation
σP
P0

and
σT
T0

is around

8.66×10−3 and 2.42×10−2 respectively. The larger temperature variability causes a larger impact
of temperature on the air density error budget.

BIAS MAE NRMSE
(in %) (in %) (in %)

ρ̃ = ρ0

( 1

1 + T ′OBS/T0

)
-1.34 1.37 1.61

ρ̃ = ρ0

(
1 +

P ′OBS

P0

)
1.22 2.22 2.72

Table 3.2 | Bias (BIAS), mean absolute error (MAE) and normalized root mean square error
(NRMSE) for air density when the pressure is set to a reference value (P = P0 = 1013.25 hPa)
(temperature contribution, upper row) and when the temperature is set to a reference value
(T = T0 = 288.15 K) (pressure contribution, lower row). The data used to compute the error
indicators are measurements collected at SIRTA observatory, located 20 km South of Paris
(France) (48.7◦N, 2.2◦E, 150 m altitude).

However, wind farm operators often lack simultaneous real time temperature and/or pressure
measurements at hub height, to compute air density and correct the wind power output accordingly.
Meteorological reanalysis, analyses, or even short term forecasts are supposed to be the best 3 D
representation of the state of the atmosphere at a given time. We use here the temperature and
pressure at 2 m from ERA5 reanalysis to test the added value of the NWP model output when
local measurements are missing. ERA5 are reanalysis dataset provided by the European Center for
Medium-Range Weather Forecasts (ECMWF). ERA5 provides hourly estimates of a large number
of atmospheric, land, and oceanic climate variables. The data cover the Earth on a 30 km grid and
resolve the atmosphere using 137 levels from the surface up to a height of 80 km. The grid point
nearest to SIRTA (48.75◦N, 2.25◦E) is located less than 7 km away. In order to have the same time
resolution, we compute hourly averaged of the 10-minutes measurements. Table 3.3 displays the
error indicators BIAS, MAE, and NRMSE computed by comparing the air density measured at the
SIRTA observatory, with that estimated from the temperature and pressure from ERA5 reanalysis.
The results are very comparable to those of table 3.2 (see middle and lower rows). Surprisingly, the
errors with ERA5 are slightly lower than the errors with the measurements. This can be explained
by the chosen reference values, which minimize the deviations in the case of the reanalysis. Indeed,
reanalysis generally have less amplitude because they have more difficulty capturing the extremes.

In case only one variable is measured (temperature or pressure), table 3.4 displays the BIAS,
MAE and NRMSE using ERA5 for the missing variable. For instance, if the temperature is
measured (TOBS) and not the pressure, then the pressure from the model output (PNWP) is used.
Conversely, if the pressure is measured (POBS) and not the temperature, then the temperature
from the model output (TNWP) is used. All error indicators (BIAS, MAE and NRMSE) are lower
compared to those computed by discarding the missing variable, should it be measured (table 3.2)
or obtained from model output (table 3.3).

Spatial pattern

In this section, the impact of both contributions is investigated across France. In both cases, the
reference air density is computed from model outputs. Figure 3.11 displays the NRMSE of pressure
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BIAS MAE NRMSE
(in %) (in %) (in %)

ρ̃ = ρ0

( 1

1 + T ′NWP/T0

)(
1 +

P ′NWP

P0

)
-0.44 0.47 0.58

ρ̃ = ρ0

( 1

1 + T ′NWP/T0

)
-1.29 1.33 1.57

ρ̃ = ρ0

(
1 +

P ′NWP

P0

)
0.74 2.06 2.53

Table 3.3 | Same as table 3.2 with data from ERA5 reanalysis at the grid point nearest to
SIRTA observatory. The additional upper row compares the air density computed from ERA5
data with the measured air density.

BIAS MAE NRMSE
(in %) (in %) (in %)

ρ̃ = ρ0

( 1

1 + T ′OBS/T0

)(
1 +

P ′NWP

P0

)
-0.49 0.49 0.50

ρ̃ = ρ0

( 1

1 + T ′NWP/T0

)(
1 +

P ′OBS

P0

)
0.05 0.27 0.36

Table 3.4 | Same as table 3.2 when measurements at SIRTA observatory and data from ERA5
reanalysis at the grid point nearest to SIRTA observatory are combined to compute the air
density.

contribution (left column) and temperature contribution (right column) over France. All data are
retrieved from ERA5 reanalysis. The errors are low for most parts of France (< 4% when T = T0

and < 5% when P = P0) except in the mountains (up to 6% when T = T0 and up to 30% when
P = P0). This is due to the reference values P0 = 1013.25 hPa and T0 = 288.15 K. These are
approximations that are not valid anymore at high altitudes.

To overcome this problem, we compute the reference temperature and the pressure, corrected
with the altitude according to the International Standard Atmosphere (ISA) as [64] :

P̃0 = P0

(
1− 0.0065

T0
z

)5.255

(3.6a)

T̃0 = T0 −
6.5

1000
z (3.6b)

with z, the altitude in meters.
After correction, the errors do not exceed 1% in most of France (1.2% in the Alps) when

P = P0. When T = T0, the NRMSE is lower than 2.5% except in the Alps where it is around 3.0%
as shown in figure 3.12, while it was around 6.0% when T = T0 and around 30% when P = P0 (see
figure 3.11). Considering a constant value of temperature introduces larger errors than considering
a constant value of pressure. Again, this is due to the higher variability of the temperature.
Two different patterns can be distinguished on figure 3.12 depending on the contribution. When
the temperature variations are neglected (panel (a)), the errors above sea are very low, around
1%, while the errors above land are around 2.5%. On land, the temperature variations are more
important than above the sea. Neglected, it can introduce higher error. When we neglect the
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Figure 3.11 | The left column displays the error when T = T0 and the right column displays
the error when P = P0. Both figures display the NRMSE in %. The data are retrieved from
ERA5 reanalysis.

pressure variations (panel (b)), there is no difference between land and sea, but the errors are
proportional to the latitude. Higher errors are found in the north than in the south. This is due
to the more frequent storms and the passage of depressions in the north of France.

Figure 3.12 | Same as figure 3.11 but in this case the temperature and pressure are corrected
according to equation (3.6).

3.3.2 Application to Parc de Bonneval

We consider the data of the Parc de Bonneval (48.20◦N, 1.42◦E, 135 m altitude). For a reminder,
the data are 10-minutes averaged. For consistency, the dataset analyzed here has been collected
between 2015 and 2017. The power curve is retrieved by averaging the wind speed and power
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measurements at the six turbines, as shown in figure 3.2. The wind speed measurements are
binned into 0.5 m s−1 intervals. The wind power is averaged in each bin, and the power curve is
retrieved by fitting the mean wind power as a function of the mean wind speed.

According to [57], to take into account the air density, the wind speed must be normalized as
follows:

Un = Ut

(
ρt
ρ0

)1/3

(3.7)

where ρ0 = 1.225 kg m−3 is the standard density for which the power curve is given by the wind
turbine manufacturer. Applying equation 3.7 is an efficient way to account for the air density. It
is less costly than training a dedicated model, and it has already been used for energy potential
evaluation [65]. As the power curve is given as a function of the wind speed only, and a reference
density, it is necessary to incorporate the density variations in the value of the wind. Figure 3.13
displays different power curves fitted for several temperature intervals. In figure 3.13a, the wind
speed is directly taken from the measurements: Un = Ut. For a wind speed of 6.5 m s−1, the power
output varies from 356 kW for a temperature between 0◦C and 5◦C to 298 kW for a temperature
between 30◦C and 35◦C (i.e., 19.5% difference). Figure 3.13b shows how the normalization, given
by equation (3.7), corrects the effect of the air density variations. The temperature is retrieved from
measurements (at hub height) and the pressure (surface pressure) from ERA5 reanalysis nearest
grid point (48.25◦N, 1.5◦E) around 8 km from Parc de Bonneval. For a wind speed of 6.5 m s−1,
the power output varies after air density correction from 346 kW, for a temperature between 0◦C
and 5◦C, to 320 kW for a temperature between 30◦C and 35◦C (i.e., 8.1% difference). The spread
between the power curves is, therefore, highly reduced.

Figure 3.13 | Power curves averaged over the six wind turbines of Parc de Bonneval as a
function of temperature ranges, when the wind speed is not corrected for air density variation
(Un = Ut) (a) and when it is corrected following equation (3.7) (b). The theoretical power curve
provided by the manufacturer is shown in dashed red.

Table 3.5 displays BIAS, MAE and NRMSE between the measured and modeled wind power
for the measured wind speed (Un = Ut) and normalized wind speed using equation (3.7). The
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normalization is here applied with respect to the nominal power, equal to 2 MW. One can first
note that the bias is close to 0. The negligible bias can be explained by the fact that, on average,
at this location, the temperature and pressure conditions are close to the reference values. Cor-
recting for air density variation, reduces MAE and NRMSE, as they are indicators quantifying the
spread, which is reduced (figure 3.13). However, the improvement is significant but remains low
as MAE goes from 0.96% (no normalization) to 0.77% (normalization), and NRMSE from 1.58%
(no normalization) to 1.32% (normalization). As explained earlier, the temperature and pressure
conditions are close to the reference values (i.e., the mean temperature for this period is around
13◦C, and the mean pressure is around 1000 hPa) so the averaged improvement is weak [66].

BIAS MAE NRMSE
(in %) (in %) (in %)

No normalization : Un = Ut 0.03 0.96 1.58

Un = Ut

((
1 +

P ′

P0

)( 1

1 + T ′/T0

))1/3

0.02 0.77 1.32

Table 3.5 | BIAS, MAE and NRMSE between the measured and modeled wind power for the
measured wind speed (Un = Ut) and normalized wind speed using equation (3.7).

Focusing on more extreme conditions such as temperatures below 5◦C or higher than 25◦C,
improves significantly the impact of the air density correction. Table 3.6 summarizes these results.
Compared to table 3.5, the differences between the normalized and measured wind speeds are
larger. For instance, the MAE improves by about 20% for all cases (table 3.5) to about 33% for
extreme cases only (table 3.6, T ≥ 25◦C). Similarly, NRMSE improves by about 17% in all cases
(table 3.5) to about 37% for extreme cases only (table 3.6, T ≥ 25◦C). Those extreme events are
not so rare because cold temperatures lower than 5◦C (mainly winter months) occur 10.7% of the
time and hot temperatures higher than 25◦C occur (mainly summer months) 5.5% of the time.

BIAS MAE NRMSE
(in %) (in %) (in %)

T ≤ 5◦C

Un = Ut 1.03 1.38 2.12

Un = Ut

((
1 +

P ′

P0

)( 1

1 + T ′/T0

))1/3

0.31 0.92 1.55

T ≥ 25◦C

Un = Ut -0.98 1.20 1.89

Un = Ut

((
1 +

P ′

P0

)( 1

1 + T ′/T0

))1/3

-0.26 0.73 1.19

Table 3.6 | BIAS, MAE and NRMSE between the measured and modeled wind power for
temperatures lower than 5◦C and higher than 25◦C. Comparison between measured wind speed
(Un = Ut) and normalized wind speed (normalization using equation (3.7)) is shown.
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3.4 Impact of atmospheric conditions on power output

Besides air density and wind direction, which are known for significantly impacting wind turbines
performances, some other meteorological variables affect the wind energy output. Among them,
we can mention the wind shear, the atmospheric stability, or the turbulence [67].

3.4.1 Wind shear

The wind shear is the variation of wind speed over vertical distance. The more the diameter of the
turbines increases, the more important it is to take into account the wind shear [68]. A classical
method for determining the wind shear is the wind profile power law. The wind speed at height z
can be extrapolated thanks to wind speed measured at height z0 as in equation (3.8).

Uz = Uz0

( z
z0

)α
(3.8)

where Uz is the wind speed that must be extrapolated at height z, Uz0 is the measured wind
speed at height z0 and α is the Hellman’s exponent or the shear exponent which depend on the
surface roughness. However, the shear exponent can be estimated to quantify the wind shear
between the height of z1 and z2. From equation (3.8) the shear exponent can be estimated as
follow:

Uz1 = Uz2

(z1

z2

)α
⇐⇒ log

(
Uz1
Uz2

)
= log

((z1

z2

)α)
⇐⇒ α =

log

(
Uz1
Uz2

)

log

(
z1

z2

) (3.9)

Then, to estimate the impact of wind shear on power output, we compute the shear exponent
using ECMWF output between 10 m height and 100 m height. The optimal solution would be to
compute it between the bottom and top of the rotor using a lidar. Then the wind shear dataset
is split into several intervals. First, we considere the low wind shear (α < 0.1), then the medium
wind shear (0.1 ≤ α < 0.2) and finally the high wind shear (0.2 ≤ α). For each bin, the power
curve is computed as well as the standard deviation σα of the power output in the percentage of
the nominal power.

Figure 3.14 displays the different power curve (a) and the evolution of σα with the wind speed
(b). In both cases, they are computed for each wind shear interval.

The variability among the power curves is not significant. They are computed by fitting the
means of each 0.5 m s−1 bins, which indicates that the distribution of each bin is symmetric. If we
focus on the variability using the standard deviation σα, we can see that the maximum deviation
is found for wind speed around 10 m s−1, at least for wind shear above 0.1. For low wind shear,
only few data were available as it occurs 7.3% of the time. For medium and high wind shear,
the standard deviations are close. It is a little bit higher for high wind shear than for medium
wind shear, and we can notice small peaks for high wind shear for wind speeds above 12 m s−1.
For low wind shear, the standard deviation is weaker than for medium and high wind shears, but
there is no data for wind speed above 8 m s−1, and even for wind speeds below, there is very few
data. This can be explained by the fact that the wind shear is computed between 10 m height and
100 m height. According to equation (3.8), the wind speed increases very quickly in the first few
meters, that is why the wind shear between 10 m and 100 m is most of the time medium or high.
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Figure 3.14 | Power curves as a function of shear exponent (3.9) ranges (a). Panel (b) displays
the standard deviation σα (in % of the nominal power) depending on wind speed, as a function
of shear exponent ranges.

Computing the wind shear, from the bottom to the top of the rotor using lidar data, would be
a good solution to better estimate the impact of the wind shear on the wind power output. The
latter is known to have a significant impact [69].

To take the wind shear into account in the wind power modeling, a simple solution is to compute
the average wind speed over the rotor instead of using the measurements at the hub height.

3.4.2 Turbulence

Turbulence is also an important variable that not negligibly influences the power output, as see
in [70]. To estimate this influence, the methodology is the same as for the wind shear in the
previous section. We compute the turbulence intensity defined in equation (3.10), to split the wind
speed and power output sample.

TI =
σU
U

(3.10)

where U is the 10-minutes average wind speed measurements, and σU is the standard deviation
of the high-frequency measurements inside the 10 min interval. The turbulence intensity is split
in three intervals. Low turbulence (TI < 5%), medium turbulence (5% ≤ TI < 10%) and high
turbulence (TI ≤ 10%). Figure 3.15 displays the power curves and the standard deviations σTI
computed for each interval of turbulence intensity, and as a function of the wind speed.

More variability should be noted than in figure 3.14. There are again few data for low turbu-
lences. First of all, the measurements are collected at 100 m, and second of all, the anemometer is
located on the nacelle behind the rotor. Then, even if an algorithm is provided by the manufacturer
to correct the wind speed, there are probably some parts of the rotor induced turbulence which is
not smoothed. With regard to the standard deviation, the variations between medium and high
turbulence are visible. For wind speed above 13 m s−1, the standard deviation is almost zero for
medium turbulence while it is around 1.26% for high turbulence.

68



Figure 3.15 | Same as figure 3.14 for the turbulence. The power curve (a) and the standard
deviation (b) are computed as a function of the turbulence intensity ranges (3.10).

3.4.3 Atmospheric stability

The atmospheric stability can be estimated through the lapse rate −dT
dh

, where dT is the temper-
ature variation with altitude and dh is the altitude variation. Depending on the value of the lapse
rate, the stability of the atmosphere can be deduced as follow:


−dT
dh

< 6 K km−1 =⇒ stable atmospheric conditions

6 K km−1 ≤ −dT
dh

< 10 K km−1 =⇒ conditionally unstable atmospheric conditions

10 K km−1 ≤ −dT
dh

=⇒ unstable atmospheric conditions
(3.11)

The lapse rate is computed between the temperature at 2 m and the temperature measured on
the nacelle at 100 m. Figure 3.16 displays the power curves (panel (a)) and the standard deviation
σ−dT/dh (panel (b)) according to the atmospheric stability.

Again, there is no significant difference between the power curves. However, the standard devi-
ation of the power output depends much more on the atmospheric stability. For stable conditions,
the standard deviation is smooth, with a maximum for wind speed around 10 m s−1. For con-
ditionally unstable atmospheric conditions, the standard deviation is less smooth, especially for
wind speed above 12 m s−1. Finally, for unstable atmospheric conditions, the standard deviation
is significantly higher than for stable and conditionally stable conditions, at least for wind speed
above 10 m s−1.

To take into account turbulence and atmospheric stability, a wind normalization can be ap-
plied [71] as follow:

Un = Ut

(
1 + 3

(σU
U

)2
)1/3

(3.12)

where Un is the corrected wind, Ut is the measured wind,
σU
U

is the turbulence intensity TI
defined in equation (3.10). In [60], Wagenaar et al. found a difference up to 7% between corrected
and uncorrected wind.
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Figure 3.16 | Same as figures 3.14 and 3.15 for atmospheric stability. The power curve
(a) and the standard deviation (b) are computed as a function of the atmospheric conidtions
stability (3.11).

3.5 Performances of wind power forecast

We used LRobs
SW, the best model shown in chapter 2, to predict the wind speed from 10 min to 170

min, and then we use the computed power curves that take into account the wind direction and
the air density, as shown in sections 3.2 and 3.3.

3.5.1 Statistical results

Figure 3.17 shows the performances of LRobs
SW with persistence, LRno-obs

SW , ECMWF, ARMA, and
ANN. Each model forecasts the wind speed, and then the power output is retrieved through the
power curve. In these conditions, the hierarchy between the models is respected. LRobs

SW is the best
model for each lead time, and it is the only model that beats persistence from the first lead time.

Figure 3.18 displays the improvements over persistence for the models cited before. As said
previously, only LRobs

SW improves persistence from around 1.2% at 10 min to 32.44% at 170 min.

Taking into account the wind direction and the air density allows significant improvements over
the year. Figure 3.19 displays those improvements for each turbine depending on the lead times.
These improvements are computed over the entire year, that is to say, even when the air density
is very close to its standard value and when the wind direction is outside the wake sectors.

Even when not only favorable cases are considered, we found improvements up to 7.1% at
10 min and up to 1.3% at 170 min. The smallest improvements are found for E3, which is very
rarely impacted by the wake effect. The highest improvements are found for E1, E2, and E6. The
last two are downstream for the prevailing winds, and E1 is also significantly impacted due to the
short distance with E2. With regard to air density correction, the improvements are the same
for each turbine. In general, the improvements decrease with time due to the errors in the wind
direction, temperature, and pressure estimation.
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Figure 3.17 | Performances of the different models for sub-hourly forecasting of wind power
output from 10 min to 170 min in two configurations (section 2.2.1) against the performances
of ECMWF and the benchmark methods (section 2.2.3). The models are exactly the same than
chapter 2. The power curve is computed according to the methodology described in section 3.1.2
and it is used to retrieve the power output. The NRMSE is normalized by the nominal power
(2000 kW).

10 30 50 70 90 110 130 150 170

Lead time (in minutes)

−137.0

−102.8

−68.5

−34.2

0.0

32.0

Im
p

ro
ve

m
en

ts
ov

er
p

er
is

te
n

ce
(i

n
%

)Sizing of a Short-Term Wind Energy Forecasting System – Manuscript – Chapter. 3

ARMA

ANN

ECMWF

LRno-obs
SW

LRobs
SW

10 20

0

2

Figure 3.18 | Comparison of the improvements over persistence in percentage for ECMWF
forecasts and the best downscaling models: LRobs

SW and LRno-obs
SW from 10 min to 170 min.

Improvements of ECMWF, ARMA, and ANN methods are also included. In every case, the
downscaling model is used to forecast the wind speed, and the wind power is retrieved using
the power curve.

3.5.2 Forecasts post treatment

Uncertainty and decision making process

Such a nowcasting method should be used for the decision-making process. Therefore, a statistical
quantification of the performances is not enough to evaluate the usefulness of the method. Fig-
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Figure 3.19 | Improvements from 10 min to 170 min for each turbine, between the case when
air density and wind direction are taking into account and the case when they are neglected.
For each lead time, results for the six turbines of Parc de Bonneval are shown.

ure 3.20 displays forecasted time series, starting from the 10th of December 2019 at 21:00 UTC.
A wind power prediction is shown using LRobs

SW and a computed power curve. The measurements
and confidence intervals are also included.

Three confidence intervals are shown. Each of them is defined depending on the lead time
and on the predicted wind speed. For each lead time, we consider wind speed bins of 1 m s−1.
For each prediction we compute the difference : ŷt − yt, where ŷt is the forecasted wind speed
by LRobs

SW, at time t and yt is the measured wind speed at time t. Those differences are stored
in the corresponding bin, depending on ŷt and t. Using the data of the years 2015 and 2016, we
compute for each couple of lead time/wind speed bin, distributions of the error. We compute, for
each couple, three intervals: the 10% confidence interval, the 25% confidence interval, and the 50%
confidence interval. Then the power output intervals are computed through the power curve.

Smoothing

In order to smooth the forecast due to models changes described in figure 2.13, in chapter 2, a
relaxation is set up. For two consecutive lead times, provided by two different models, a correction
is done. These lead times are a linear combination of the forecasts provided by the two different
models. A higher weight is given to the original model. It allows to reduce the gap due to the
change of models as shown in figure 3.21. This leads to an improvement up to 3% for the relevant
lead times.

3.6 Conclusion

This chapter highlights the difficulty of converting wind speed forecasts into wind power forecasts.
Several external effects without negligible impact on the wind power estimation have to be taken
into account. In this chapter, we underscore some of them.
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Figure 3.20 | Forecasted time series of wind power starting from the 10th of December 2019
at 21:00 UTC. LRobs

SW forecasts are compared with the measurements. First, the wind speed is
forecasted by LRobs

SW, and then the forecasted power is retrieved using the power curve. The
10%, 25%, and 50% confidence intervals are added.
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Figure 3.21 | Zoom on a wind power forecasted time serie with and without relaxation to
smooth the models change.

First of all, we quantify the impact of wind direction on the power output, and we propose a
way to take it into account in the wind power modeling. With turbines between 400 m and 500 m
apart from each other, Parc de Bonneval is affected by the wake effect. For the same wind speed,
under the southwest or northeast winds, the downstream turbines may produce up to 50% less than
the upstream turbines. To deal with this issue, we compute two different power curves for each
turbine. One using data for which the turbine is affected by the wake effect, and one with data for
which the turbine is not. By doing so, the wind power modeling of the downstream turbines has
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been improved up to 48% in terms of MAE and up to 45% in terms of NRMSE. Regarding the
forecasts, the main difficulty is to estimate the wind direction over time. For the first lead time,
a significant error in this estimation occurs around 4% of the time, while it occurs up to 11% of
the time after 170 min. Despite these misestimations, the use of a specific power curve when the
turbines are lined up leads to significant improvements in the wind power forecast for every lead
times. The highest improvements are found for E1 from 45% at 10 min to 11% at 170 min. Even
for E3, which is the least affected turbine, the improvements are between 4% and 9%.

Secondly, we assessed the adding value of the wind normalization to take into account the air
density in the wind power modeling using in-situ measurements and meteorological analysis. In
state of the art, most of the papers that take into account the air density use non-parametric
methods. Those methods are numerically costly. Our parametric method overcomes this issue
with also significantly improved results with respect to results that do not account for air density
correction. Indeed, this study shows that a correction for air density improves the wind power
estimation by more than 15% over the three investigated years (2015 to 2017). In most of the
papers that deal with this normalization, there are no skill scores of the improvements due to the
normalization but for instance, visual comparison between power curves. Moreover, when skill
scores are given, they are given without distinction of the atmospheric conditions and without
comparison with the case for which the air density is not considered. The lack of interest in this
issue lies in the fact that the overall improvement remains limited, especially in mid-latitudes, where
atmospheric conditions are close to the standards. In this study, the usefulness of the air density
correction is highlighted by enhancing the situations where atmospheric conditions are far from
the standard conditions, and the improvement reaches nearly 40% in those cases (temperatures
below 5◦C or above 25◦C). This study also shows that the temperature is the key variable to
account for when correcting for air density as its impact is the largest on the uncertainty of the air
density estimation (twice larger than the pressure term). Meteorological analysis (i.e., model-based
observations) also have a beneficial impact when one of the key variable (temperature or pressure)
or even both variables are not measured. Correction for altitude using a standard atmosphere is
the simplest and most efficient way to correct for air density when finer information is not available.

Taking into account the density and the direction decreases the uncertainty and the variability
of power output modeling and then of power output forecast. Figure 3.22 shows the reduction of the
εincompressible which corresponds of the relative error δαr defined in equation (3.2) in section 3.1.2. In
blue the δαr shown in figure 3.3 which correspond to the relative error before accounting for external
effects. Orange curves correspond to the relative error after direction and density correction. Taking
into account air density and wind direction reduces the median, which is closer to 0. Moreover it
reduces the interquartile range (IQR = Q3 − Q1). For the critical wind speeds between 5 m s−1

and 11 m s−1 the IQR is reduced between 6% and 34%
In addition to wind direction and air density, some other variables affect wind power output.

In future works, it would be worth investigating more deeply their impact on wind power output
and solutions to take them into account effectively. Among them, we can mention the wind shear,
turbulence, or atmospheric stability.

In order to illustrate the model performances, a case study for a specific time is shown. The wind
power forecasted time series is presented. The associated confidence intervals are also displayed.
We choose to add the 50%, 25%, and 10% confidence intervals because their range, from 0.20 m s−1

to 1.5 m s−1, correspond to the appropriate accuracy for wind energy producers. For instance, a
90% confidence would have been statistically better but too large to be useful.
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Figure 3.22 | Distribution of the relative error δαr defined in equation (3.2) after density and
direction correction (orange curves). The median and the first and third quartiles (Q1 and
Q3) are shown depending on the wind speed. The results of δαr

before density and direction
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75



76



4

Added value of
networking wind farms

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Added value of small scale information . . . . . . . . . . . . . . . . . . 79

4.2.1 Wind farms location and specificity . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Improvement of the average wind speed forecast . . . . . . . . . . . . . . 80
4.2.3 Improvements of the wind turbine downscaling . . . . . . . . . . . . . . . 83

4.3 Added value of large scale information . . . . . . . . . . . . . . . . . . . 88
4.3.1 Wind farms location and correlation . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Application to forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

77



4.1 Introduction

In the attempt to implement the best possible forecasting model, having different wind farms at
disposal at varying distances can be an advantage.

Indeed the value of spatial information in wind speed and wind energy forecasting has been
thoroughly investigated. Mainly because it is known that changes in the wind might propagate
with the wind, and it is possible to use upwind observations to detect the precursors to changes
in wind speed at the site of interest. To do so, some simple method might be used. For instance,
methods based on spatial correlation have been developed for some time now. In [72], Alexiadis
et al. build a forecasting model based on cross correlation at neighboring site. They use artificial
neural networks to forecast the wind speed from few minutes to several hours ahead. For the
shortest lead times, they considered as input of the ANN, measurements at the site of interest,
and also at three neighboring sites, from 800 m to 2.7 km. For longer lead times, they considered
two distant sites, one at 12 km and one at 39 km. In both cases, the models lead to average errors
around 20-40% better than the persistence approach. Another method is introduced in [73]. This
is the regime-switching space–time (RST). It consists of identifying atmospheric regimes at the site
of interest and fitting conditional predictive models for each regime. For instance, in [73], Gneiting
et al. distinguish a westerly and an easterly forecast regime based on the wind direction. They
use wind speed measurements from meteorological towers located at 39 km and at 146 km from
their site of interest. For the 2 h ahead forecast, they find an improvement of the RMSE, for the
RST method over persistence, up to 28% for July 2003. In [74], Hering et al. improve the RST
method introduced in [73] by treating wind direction as a circular variable and including it in the
model. Doing that, they improve the forecasts up to 3% in terms of RMSE and up to 4% in terms
of MAE, compared to the classical RST method. Based on the previous examples, the addition
of spatial information clearly seems to be valuable to forecast the wind speed. However, in [75],
Kretzschmar et al. refute the use of off-site observations for forecasts of wind speed in Switzerland.
In their paper, they evaluate the quality of artificial neural networks for wind speed prediction from
1 h ahead to 24 h ahead. They point out that upwind may refer to distinct geographic locations
depending on the atmospheric regime. This last remark highlights one of the difficulties of wind
farm networking: global models (statistical or not) that must manage non-systematic situations.
Indeed, with respect to statistical models, they are trained over a reasonably long period of time.
During this period, many situations occur depending on different atmospheric conditions, and the
model must exhibit a general way to express the link between these atmospheric conditions and
the targeted variable. If building too many models is counterproductive, a balance must be struck
between performance and efficiency.

With regard to Zephyr, they own six wind farms in the northwest quarter of France. The
prevailing winds are southwestern, consequently for this chapter, we focus on the forecasting at
the two most easterly farms, which are Parc de Bonneval and Moulin de Pierre. They are both
located 100 km Southwest of Paris and 5 km from each other. The performance of short term
forecasting models for both Parc de Bonneval ans Moulin de Pierre are shown in chapter 2. Given
the distance between the farms, it seems to be the optimal configuration for the short term forecast
and especially for our first lead times of interest (10 min and 20 min). Two other wind farms, called
Parc de la Vènerie and Parc de la Renardière, are around 200 km west of Parc de Bonneval and
Moulin de Pierre. Those two farms can be useful for longer lead times (> 2-3 h).

Consequently, in this chapter, we first explore in section 4.2 the added value of small scale
information using data from Parc de Bonneval and Moulin de Pierre. We distinguished two regimes
based on the wind direction. When the wind comes from Parc de Bonneval to Moulin de Pierre
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(wind direction is in [183◦,253◦]) and when it does not (wind direction is not in [183◦,253◦]). This
small scale information is first used in order to improve the average wind speed forecasts and then
in order to improve the downscaling of the wind speed forecast at the turbine scale. In both cases,
we focus only on the 10 min lead time and on the 20 min lead time. Each model used has been fully
described in chapter 2. In section 4.3, the added value of the large scale information is investigated
using data collected at Parc de la Vènerie and Parc de la Renardière. In this section, we explore the
large scale information impact on the whole period, from 10 min to 170 min. Finally, we conclude
in section 4.4.

4.2 Added value of small scale information

4.2.1 Wind farms location and specificity

Parc de Bonneval and Moulin de Pierre are built around 5 km away from each other. Figure 4.1
shows the location of the two farms and the typical distances between them. The distance between
the two nearest wind turbines is around 3.8 km, and the distance between the two most distant
is around 6.6 km. Moreover, the average wind speed at Parc de Bonneval is around 6.3 m s−1,
and the average wind speed at Moulin de Pierre is around 6.2 m s−1. At this speed, it takes
between 10 min, 30 sec, and 18 min, 20 sec to travel the distance between the two farms. In these
conditions, one farm can carry information about the other for the first two lead times. Moreover,
the angle formed between the two farms and the south-north direction θ is θ = 38◦, so Moulin de
Pierre may carry information for Parc de Bonneval when the wind direction is around 38◦, and
conversely, Parc de Bonneval may carry information for Moulin de Pierre when the wind direction
is around 218◦.

Moulin de Pierre was commissioned at the end of 2016. In this study, we used the data of 2017
as a training period and the data of 2018 as a testing period. In both cases, wind speed and wind
direction are collected using anemometers located at the top of the nacelle of each turbine.

There is a bias between Parc de Bonneval and Moulin de Pierre in the wind direction measure-
ments of about 14◦ and the correlation is around 0.70. However, with regard to the wind speed,
the two datasets are very similar. The correlation is up to 0.97, and the bias is only 0.15 m s−1.
Figure 4.2 shows an example of a time series collected at the two farms. Panel (a) shows the wind
speed measured at the two farms from 19th January 2017 to 20th January 2017 inclusive. Panel
(b) shows the wind direction measurements for the same period.

The purpose of this work is to determine if it is possible to improve the short term forecast
using spatial information. Regarding the space scale, we focus on the 10 min and 20 min forecasts.
As the prevailing winds are southwestern, we investigate the added value of Parc de Bonneval
measurements to forecast the wind speed at Moulin de Pierre.

As a reminder, the 10 min and 20 min forecasts are computed using linear regression over the last
hour measurements, as explained in chapter 2. From that point, the measurements from another
farm can be useful at two different points in the forecasting process. It may carry information
to predict the average wind speed more accurately by anticipating rapid changes, for instance. It
may also carry information to downscale the average forecast to the turbine scale to improve the
consideration of the wake effect, for example.
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Figure 4.1 | Satellite image of Parc de Bonneval and Moulin de Pierre extracted from Google
Earth. The white crosses display the turbine location at Parc de Bonneval and the white circle
at Moulin de Pierre location. Typical distances and angle between the two farms are also shown.

Figure 4.2 | Time series of wind speed (a) and wind direction (b) collected at Parc de Bonneval
and Moulin de Pierre. The time series range from the 17th January 2018 at 00:00 UTC to the
20th January 2018 at 23:50 UTC.

4.2.2 Improvement of the average wind speed forecast

First of all, we focus on the improvement of the average wind speed forecast at Moulin de Pierre.
Then, two cases are distinguished: the case where the wind direction lines up the two farms (we
consider a 70◦ sector), i.e. the wind direction is in [183◦,253◦] and the case where the wind direction
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is not in [183◦,253◦]. Figure 4.3 displays the distribution of the reference errors. In this case, only
the measurements at Moulin de Pierre are used to forecast the wind speed at 10 min and 20 min.
Panel (a) only considers data when the wind direction is in [183◦,253◦] and panel (b) considers
the remaining cases, when the wind direction is not in [183◦,253◦]. The BIAS and the RMSE are
also added. These boxplots display the reference errors, that is to say the errors from the original
model LRobs

SW described in chapter 2.
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Figure 4.3 | Boxplot of the forecasting errors at 10 min and 20 min when only the measure-
ments collected at Moulin de Pierre are used as explanatory variables. Panel (a) only considers
forecasts of the average wind speed when wind direction is in [183◦,253◦] and panel (b) considers
the remaining data, that is to say when the wind direcion is not in [183◦,253◦].

In each case, the BIAS is very close to zero, and the distribution is symmetric with errors
ranging from -5 m s−1 to 5 m s−1 (there is one exception in panel (b) for the 20 min forecast).
The distribution in panel (a) is less widespread. One can note that there is less data in panel (a).
Indeed, wind direction in [183◦,253◦] occurs around 30% of the time.

Figure 4.4 shows the results when the measurements of the previous hour at Parc de Bonneval
are also added as explanatory variables. Again, those measurements are obtained by averaging the
measurements at the six turbines and the distinction between wind direction being in [183◦,253◦]
(panel (a)) and not being in [183◦,253◦] (panel (b)) is made. Several differences can be noted but
a statistical analysis is necessary in order to better quantify the improvement.

As shown in figure 4.2, the data at the two farms are highly correlated. In these conditions, very
few informations can be brought by the data at Parc de Bonneval. This information is all the more
difficult to catch since the model used is a parametric one, as it is a linear regression. In chapter 2,
we present two types of non-parametric models: the random forest and the artificial neural network.
These two approaches can model complex non-linear relationships between datasets. Thus, they
may catch more information from correlated data than a linear regression. Figures 4.5 and 4.6
show the distribution of the error between the real wind speed and the forecasted wind speed at
10 min and 20 min ahead when the forecast is provided by a non-parametric model. Figure 4.5
displays the results when random forests are used and figure 4.6 displays the results when neural
networks are used.

No significant differences can be found between random forest and linear regression. However,
it seems that the neural network degrades the forecasts. In figure 4.6a, there is a positive bias. The
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Figure 4.4 | Boxplot of the forecasting errors at 10 min and 20 min when the average wind
speed measurements of the previous hour collected at Parc de Bonneval are also added as
explanatory variable in the linear regression.
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Figure 4.5 | Same as Fig 4.4 but the forecasting model used is a random forest.

distribution is no longer symmetric. Moreover, in both panels, we can see that the distribution is
more widespread, at least for the extreme values (1st and 9th decils).

In order to evaluate the performance of the different models more precisely, tables 4.1a and 4.1b
group together the characteristics of the different distributions shown in figures 4.3, 4.4, 4.5, and 4.6.
The tables compare the means (MEAN), the standard deviations (STD), the interquartile ranges
(IQR = Q3−Q1) and the scopes (SCOPE = max - min) of the distribution of the error when only
the data at Moulin de Pierre are used as explanatory variables (MP) and when the measurements
at Parc de Bonneval are added (MP + BO). The linear regression (LR), random forest (RF) and
neural network (NN) are considered. Table 4.1a considers the situations where wind direction is in
[183◦,253◦] and table 4.1b considers the situations where the wind direction is not in [183◦,253◦].

First of all, we can see that the use of Parc de Bonneval measurements leads to some improve-
ments. Most of the maximum improvements are achieved when a linear regression is performed.
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Figure 4.6 | Same as Fig 4.5 but the forecasting model used is a neural network.

Two exceptions can be found: the smallest MEAN for the 20 min forecasts when the wind direction
is in [183◦,253◦] and the smallest SCOPE for the 20 min forecasts when the wind direction is not
in [183◦,253◦] are both found when a random forest is performed. Neural network tends to degrade
the forecast, especially when looking at the SCOPE and the MEAN. In terms of STD and IQR, the
results are satisfying. In any case, the improvements due to the use of explanatory variable from
an upstream wind farm remains limited for the wind speed forecast 10 min and 20 min ahead, but
all the models provide accurate forecasts. In general, greater improvements are found when the
wind direction is not in [183◦,253◦], but it can be due to the fact that the dataset is bigger than
when the wind direction is in [183◦,253◦]. The fact that the farms are very close and the data is
very correlated limits the amount of new information that can be used by the models, even the
non-parametric ones. Moreover, it also limits the time scale. Here, only the 10 and 20 min are
considered.

Furthermore, the distinction of cases is based only on the wind direction. Yet it is obvious
that when the wind direction is in [183◦,253◦], it does not necessarily mean that the wind comes
from Parc de Bonneval to Moulin de Pierre since the movement of air masses is governed by much
more complex phenomena than simple transport. Then, it might be relevant to refine the cases
distinction.

4.2.3 Improvements of the wind turbine downscaling

The use of spatial information can also be useful in order to downscale the forecast at the scale
of the turbine. In this context, the impact on the forecast of two turbines is investigated. We
choose to focus on the two closest turbines in Moulin de Pierre as they are the most sensitive to
the wake effect. When the wind direction is in [183◦,253◦], that is to say when the wind comes from
Parc de Bonneval, one of the turbines is the downstream turbine and the other is the upstream
turbine. The two cases are discussed in the following. First, the average wind speed is forecasted
using average measurements at Moulin de Pierre only. Then, this forecast is used as explanatory
variable by a second model as well as the last measurement at 1. the six turbines from Moulin
de Pierre; 2. the twelve turbines from Moulin de Pierre and Parc de Bonneval. This workflow is
shown in figure 4.7.
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(a) Direction ∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN -0.01 -0.01 0.04 0.42 -0.03 -0.04 0.02 0.49
STD 0.43 0.41 0.47 0.49 0.69 0.63 0.65 0.67
IQR 0.50 0.45 0.53 0.54 0.79 0.71 0.76 0.74

SCOPE 5.72 5.39 5.57 11.27 7.84 7.79 7.87 17.66

(b) Direction 6∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN 0.01 -0.00 0.05 -0.01 0.01 -0.00 0.05 -0.10
STD 0.43 0.40 0.45 0.45 0.66 0.61 0.64 0.68
IQR 0.44 0.42 0.50 0.47 0.71 0.65 0.70 0.74

SCOPE 8.91 6.73 6.93 13.29 17.02 14.74 14.15 18.17

Table 4.1 | Features of the distribution of the forecasting errors on the average wind speed.
The tables show the characteristics of the boxplots in the figures 4.3, 4.4, 4.5, and 4.6. The
means (MEAN), the standard deviations (STD), the interquartile ranges (IQR) and the scopes
(SCOPE) are shown. Four cases are considered, when a linear regression is performed using
only the measurements at Moulin de Pierre and when the measurements at Parc de Bonneval
are added. We also consider the cases where random forest and neural network are performed
using as explanatory variables the measurements at Moulin de Pierre and Parc de Bonneval.
Table (a) corresponds to the left panels in the figures, that is to say when the wind direction
is in [183◦,253◦], and table (b) corresponds to the right panels in the figures, that is to say
when the wind direction is not in [183◦,253◦]. For each row, the model that shows the best
performances is bolded.

Y Ei
MP , i ∈ [[1, 6]] is the measurements at t0 of turbine Ei at Moulin de Pierre and Y Ei

BO, i ∈ [[1, 6]]
is the measurements at t0 of Ei at Parc de Bonneval. Ỹ t0+10

MP (resp. Ỹ t0+20
MP ) is the average wind

speed forecasted at t0 + 10 min (resp. t0 + 20 min) using only the past measurements at Moulin de
Pierre as explanatory variables. One model is fitted to forecast the wind speed at Ei, i ∈ {1, 2} at
10 min with the explanatory variable framed in green and one model is fitted to forecast the wind
speed at Ei, i ∈ {1, 2} at 20 min with the explanatory variable framed in red.

Downstream turbine

First of all, the impact on the downstream turbine is examined. Table 4.2 shows the characteristics
of the distribution of the reference errors for the downstream turbine. The reference errors are
computed as the difference between the measured wind speed and the wind speed forecasted by a
direct linear regression. The target is then the wind speed measured at the turbine and no longer
the average wind speed. Again, the case where the wind direction is in [183◦,253◦] and the case
where the wind direction is not in [183◦,253◦] do not have the same frequency. The wind direction
is not in [183◦,253◦] 70% of the time (this means it is in [183◦,253◦] 30% of the time).

The errors used for table 4.2 are computed using one model. The explanatory variables are the
six last measurements at the turbine, and the target is the wind speed 10 min and 20 min ahead.
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Figure 4.7 | Methodology to construct the models to quantify the added value of small scale
information to improve the wind turbine downscaling. For the turbine forecast 10 min ahead,
the explanatory variables are: the average wind speed measurements at the two farms for the
previous hour and the average forecast provided by LRobs

SW at Moulin de Pierre 10 min ahead.
For the turbine forecast 20 min ahead, the explanatory variables are: the average wind speed
measurements at the two farms for the previous hour and the average forecast provided by
LRobs

SW at Moulin de Pierre 20 min ahead

Direction ∈ [183◦, 253◦] Direction 6∈ [183◦, 253◦]
10 min 20 min 10 min 20 min

MEAN -0.01 -0.04 -0.01 -0.01
STD 0.66 0.94 0.62 0.86
IQR 0.72 1.04 0.66 0.94

SCOPE 7.42 9.51 10.78 17.81

Table 4.2 | Features of the distribution of the forecasting errors for the forecast of the wind
speed at an upstream turbine. In this case the target of the linear regression is no longer the
average wind speed but the wind speed measured at the turbine. The mean (MEAN), the
standard deviation (STD), the interquartile range (IQR) and the scope (SCOPE) are shown.
Forecasts for wind direction in [183◦,253◦] (left) and for wind direction not in [183◦,253◦] (right)
are shown.

The features in table 4.2 are the references to be compared with those from the errors distribution
obtained by applying the workflow shown in figure 4.7. For this workflow, the characteristics of the
distribution of the errors are shown in tables 4.3a and 4.3b. They group together the characteristics
of the error distributions depending on the model. In each case, the applied workflow corresponds
to the one shown in figure 4.7.

For both 10 min and 20 min ahead, the first columns (MP - LR) correspond to the case where
the second model is a linear regression using only the measurements at Moulin de Pierre. The
columns corresponding to MP + BO refer to the models where the measurements at Moulin de
Pierre and Parc de Bonneval are used as explanatory variables in the second model. Then, as
in section 4.2.2, three different approaches are tested for this second model: linear regression
(LR), random forest (RF), and neural network (NN). The tables compare the means (MEAN), the
standard deviations (STD), the interquartile ranges (IQR), and the scopes (SCOPE). Table 4.3a
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considers the situations where the wind direction is in [183◦,253◦] and table 4.3b considers the
situations where the wind direction is not in [183◦,253◦].

(a) Direction 6∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN 0.04 0.04 0.03 1.27 0.04 0.03 0.03 1.27
STD 0.50 0.50 0.54 0.79 0.53 0.53 0.55 0.83
IQR 0.64 0.63 0.64 2.11 0.56 0.55 0.59 1.11

SCOPE 5.28 5.28 5.59 6.33 5.79 5.97 6.40 6.59

(b) Direction 6∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN -0.02 -0.02 -0.03 1.03 -0.00 0.00 -0.00 1.01
STD 0.48 0.48 0.50 0.70 0.46 0.46 0.48 0.72
IQR 0.51 0.50 0.55 0.90 0.49 0.49 0.53 0.91

SCOPE 7.04 6.91 6.21 7.74 7.52 7.58 6.93 9.21

Table 4.3 | Features of the distribution of the forecasting errors on the wind speed at the
downstream turbine. The tables show the mean (MEAN), the standard deviation (STD), the
interquartile range (IQR) and the scope (SCOPE). Table (a) is when the wind direction is in
[183◦,253◦] and table (b) is when the wind direction is not in [183◦,253◦]. For both 10 min and
20 min ahead, the first columns (MP - LR) correspond to the case where the second model is a
linear regression using only the measurements at Moulin de Pierre. The columns corresponding
to MP + BO refer to the models where the measurements at Moulin de Pierre and Parc de
Bonneval are used as explanatory variables in the second model. Then, as in section 4.2.2, three
different approaches are tested for this second model: linear regression (LR), random forest
(RF) and neural network (NN). For each time, the model that show the highest improvement
compared to table 4.2 is bolded.

These tables lead to the same conclusion as in section 4.2.2. Most of the time, the linear
regression that uses data from both farms overperforms the other model. Again, the neural network
shows the worst performances. The two linear regressions (with Moulin de Pierre measurements
only and when measurements at Parc de Bonneval are added) and the random forest that uses
data from the two farms provide very accurate forecasts.

If we now compare the results with those in table 4.2, we can see that the use of a second
model to downscale the wind speed forecast at the turbine scale gives better results than the direct
forecast. For 10 min ahead, the standard deviation is reduced by 25%, the IQR is reduced by 10%,
and the scope is reduced up to 35%. At 20 min, the standard deviation, the IQR, and the SCOPE
are reduced by 75%. We can assume that using a second model, filters part of the turbulence.

Upstream turbine

After the downstream turbine, in this section we focused on the possible improvement for the
upstream turbine. As in the previous section, table 4.4 shows the features of the distribution of the
forecasting errors for the forecast of the wind speed at the upstream turbine. Again, the MEAN,
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the STD, the IQR, and the SCOPE are shown. Forecasts when wind direction is in [183◦,253◦] (left)
and when wind direction is not in [183◦,253◦] (right) are shown. These features will be compared
with those computed from the models obtained by applying the workflow shown in figure 4.7.

Direction ∈ [183◦, 253◦] Direction 6∈ [183◦, 253◦]
10 min 20 min 10 min 20 min

MEAN -0.02 -0.05 0.01 0.00
STD 0.58 0.81 0.59 0.82
IQR 0.65 0.95 0.65 0.91

SCOPE 6.42 9.18 9.16 16.62

Table 4.4 | Same as table 4.2 for the upstream turbine.

As for the downstream turbines, several configurations are tested: linear regressions with mea-
surements at Moulin de Pierre only and when measurements at Parc de Bonneval are added,
random forest, and neural network using data at the two farms.

Tables 4.5a and 4.5b sum up the features of the error distribution for each configuration. Again,
we can see that the neural network provides the worst forecast. It introduces significant BIAS.
For the other configurations, the results are very similar. Linear regressions present slightly better
results than random forest, with an advantage for the one using data from the two farms. If we
compare with table 4.4, again, the forecasts are significantly improved by the use of a second model.
For both the downstream and the upstream turbines, part of the turbulence and so part of the
uncertainty is filtered by the first linear regression, and it allows the second model to performs
better.

(a) Direction 6∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN 0.01 0.01 0.01 1.79 0.03 0.02 0.01 1.45
STD 0.47 0.47 0.49 0.88 0.46 0.45 0.46 0.85
IQR 0.65 0.65 0.66 2.72 0.51 0.50 0.52 1.14

SCOPE 4.91 4.95 4.14 7.12 5.45 5.51 5.11 7.75

(b) Direction 6∈ [183◦, 253◦]

10 min 20 min
MP MP + BO MP MP + BO
LR LR RF NN LR LR RF NN

MEAN -0.00 -0.00 0.02 1.49 -0.01 -0.01 0.00 1.14
STD 0.46 0.46 0.50 0.78 0.43 0.43 0.46 0.74
IQR 0.51 0.51 0.55 1.04 0.46 0.46 0.50 0.94

SCOPE 7.40 7.13 7.65 8.45 6.28 6.47 6.35 9.17

Table 4.5 | Same as tables 4.3 for the upstream turbine.

As in section 4.2.2, we can see that networking wind farm at small scales allows for some
improvements for the wind turbines downscaling whether it is a downstream, or an upstream
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turbine. In the next part, we test if two distant wind farms can carry some large scale information
and lead to further improvements for the wind energy forecasts.

4.3 Added value of large scale information

4.3.1 Wind farms location and correlation

As said previously, Zephyr ENR is the owner of six wind farms spread over the northwest part of
France. In these conditions, we can use the data of the distant wind farms in order to improve
the forecasts of Parc de Bonneval. In this section, we assess the interest of using the data of two
wind farms several hundred kilometers away. The wind farm called Parc de la Vènerie is located
210 km northwest of Parc de Bonneval, and 220 km southwest of Parc de Bonneval is the Parc de
la Renardière, as shown in figure 4.8. For reminder, Parc de la Vènerie is composed of 4 Enercon
E82-2.3 MW turbines and a hub height of 85 m. Parc de la Renardière is composed of 6 Senvion
MM92-2 MW turbines and a hub height of 100 m. Parc de la Vènerie was implemented in 2014,
and Parc de la Renardière was implemented in 2009. For each farms, the 10 min data of 2015 are
used as training period and the data of 2016 are used as a testing period.

•
Parc de Bonneval

•
Parc de la Renardière

•
Parc de la Vènerie

210 km

220 km

Figure 4.8 | Satelite image of the north of France which shows the location of Parc de Bonneval,
Parc de la Renardière and Parc de la Vènerie. The map is extracted from Google Earth.

Both Parc de la Vènerie and Parc de la Renardière are distant by more than 200 km from Parc
de Bonneval, and at a wind speed of 6 m s−1, it would take around 9 h to travel from one farm to
another. However, in this part, the information we want to include in the model is not the same as
in section 4.2. More than wind propagation, here the information is based on general atmospheric
conditions. Typically, on the pressure variations that induce a circulation. That is why, in this
section, we also retrieved the forecasts from ECMWF at Parc de la Renardière and Parc de la
Vènerie, as done in chapter 2. But first of all, we want to know if a significant correlation between
the farms according to a systematic lag can be found. Figure 4.9 displays an example of cross
correlation between Parc de Bonneval and Parc de la Vènerie (panel (a)) and between Parc de
Bonneval and Parc de la Renardière (panel (b)). The cross correlation is computed as follow:
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r =

N∑
n=1

(Y 1
n − Ȳ 1)(Y 2

n+k − Ȳ 2)√
N∑
n=1

(Y 1
n − Ȳ 1)2

√
N∑
n=1

(Y 2
n+k − Ȳ 2)2

(4.1)

where N is the sample size, Y 1
n is the n-th measurement at Parc de Bonneval and Ȳ 1 is the

sample averaged. k is the lag which goes from -25 h to 25 h. Then, Y 2
n+k is the (n + k)-th

measurement at Parc de la Vènerie or at Parc de la Renardière and Ȳ 2) is the sample averaged at
Parc de la Renardière or Parc de la Vènerie.

Figure 4.9 shows an illustration of the cross correlation. For both Parc de la Vènerie and Parc
de la Renardière k = 0 corresponds to the 28th of July 2015 at 13:00 UTC. For Parc de la Vènerie
(panel (a)), the optimal lag is k = 0 with a correlation around 0.8. A strong anticorrelation is
also found (around -0.8) for k=14. For Parc de la Renardière, the strongest correlation is found
for k = −3, and it is around 0.7. A negative lag would suggest that Parc de Bonneval carries
information for Parc de la Renardière and not the other way. No significant anticorrelation is
found in this case.
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Figure 4.9 | Cross correlation between Parc de Bonneval and Parc de la Vènerie (panel (a))
and between Parc de Bonneval and Parc de la Renardière (panel (b)). The lag k goes from
-25 h to 25 h and k = 0 corresponds to the 28th of July 2015 at 13:00 UTC.

From that point, we compute the frequency of occurrence of the maximal lag over the years
2015 and 2016. For the data of those years, for a value of k ∈ [[−25, 25]], we compute the cross
correlation between Parc de Bonneval and Parc de la Renardière and between Parc de Bonneval
and Parc de la Vènerie. For each case, we keep the lag corresponding to the maximum correlation.
Then, figure 4.10 displays for each hour, the number of times it is the optimal lag. That is to say,
the number of times it corresponds to a maximum correlation. The results are shown in figure 4.10a
for Parc de la Vènerie, and in figure 4.10b for Parc de la Renardière. If we could expect an optimal
lag between 5 h and 10 h, the most frequent lag is actually -3 h for Parc de la Vènerie and 1 h
for Parc de la Renardière. This positive optimal lag implies that predictability would be in the
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direction from Parc de Bonneval to Parc de la Renardière instead of from Parc de la Renardière to
Parc de Bonneval. This is counter-intuitive since easterly winds only represent 24% of cases while
westerly winds represent more than 40% of cases.

(a) Parc de la Vènerie

(b) Parc de la Renardière

Figure 4.10 | For each lag k ∈ [[−25, 25]], in hour, the number of times it has been the optimal
lag is shown in percentage. In other words, it displays the number of time each lag has been
the maximum correlation between the sample at Parc de Bonneval and the sample at Parc de
la Vènerie (panel (a)) and between Parc de Bonneval and Parc de la Renardière (panel (b)).
The data at Parc de Bonneval are fixed and the data at Parc de la Vènerie and Parc de la
Renardière are lagged by k h. In both cases, for more visibility the optimal lag is framed and
hatched in grey.

This clearly suggests that Parc de la Renardière and Parc de la Vènerie do not have a predictive
value on Parc de Bonneval. Indeed, between Parc de Bonneval and Parc de la Renardière, even if
the optimal lag is positive, it is only 1 h while the two farms are more than 200 km apart. In these
conditions, it is clear that the use of the data at Parc de la Renardière or at Parc de la Vènerie to
correct the forecasts at Parc de Bonneval is unlikely to be relevant. At least, in a systematic way.
There are some specific meteorological conditions, as the passage of a front, for instance, that can
be anticipated using this large scale informations.

90



4.3.2 Application to forecasts

To conclude this part, the addition of large scale information in the forecasts is briefly investigated.
We use data from Parc de la Renardière and Parc de la Vènerie. Figure 4.11 shows the results.
As for the previous parts, random forest, neural network, and linear regression are investigated
(dashed lines). For comparison, we add the results, shown in chapter 2, for the LRobs

SW model, where
only data from Parc de Bonneval are used as explanatory variables. The NRMSE (in %) is shown
depending on lead times ranging from 10 min to 170 min.
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Figure 4.11 | Performances of linear regression (LR), random forest (RF), and neural network
(NN) for wind speed forecasting when the data from Parc de la Renardière and Parc de la Vènerie
are added as explanatory variables. For comparison, we add the results, shown in chapter 2,
for the LRobs

SW model, where only data from Parc de Bonneval are used as explanatory variables.
The NRMSE (in %) is shown depending on lead times ranging from 10 min to 170 min.

In this simplified configuration, the addition of Parc de la Renardière and Parc de la Vènerie
data (measurements and ECMWF forecasts) leads to a degradation (except for the neural network
for the last lead times). The performances of the neural network are quite different from those
shown in chapter 2 because, in this case, explanatory variables from ECMWF outputs are used as
exogenous variables. It explains the poor performances for the first lead time. However, it seems
to performs well after 2 h. For the linear regression and the random forest, the use of data from
Parc de la Vènerie and Parc de la Renardière, disrupts the model by introducing unnecessary data
to which the model assigns a low but not zero weight.

These data, used systematically as explanatory variables is not the right way to include large
scale information. Again, in this case, this large scale information is not significant enough, and
it cannot improve the forecasts in a systematic way. To go further, it would be interesting to
investigate more deeply some specific cases where the large scale information is relevant. The
identification of several regimes is a key step, which is probably more crucial than for the small
scale information. From these regimes, it would be necessary to determine how much information
could be brought to the model and how.
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4.4 Conclusion

In this chapter, we assess the added value of networking wind farms. More precisely, the added
value of small scale and large scale information are investigated in order to improve the short term
wind speed forecasts (from 10 min to 170 min).

First of all, regarding the small scales, we use the data of Parc de Bonneval located around
5 km away from Moulin de Pierre. For the 10 min and 20 min forecasts, it seems to be the right
distance to carry some information in advance. Especially when the wind comes from Parc de
Bonneval, which are the prevailing winds. In this part, we highlight two different issues for which
networking wind farms could be useful. On the one hand, we use data from Parc de Bonneval
in order to improve the average wind speed forecasts. We compared the performances of linear
regressions, random forest, and neural network. Two cases are distinguished: when the wind comes
from Parc de Bonneval (i.e., wind direction is in [183◦,253◦]) and when it does not. In both cases,
the use of Parc de Bonneval data improves the forecast at Moulin de Pierre. On the other hand,
we evaluate the impact of Parc de Bonneval data to downscale the forecast at the turbine scale.
To do so, we build several models such as linear regression, random forest, and neural network.
Each model takes as input the average forecast at the farm scale and the measurements at the
turbines (only Moulin de Pierre or Moulin de Pierre and Parc de Bonneval). Then, using these
models, we downscale the average forecast at the turbine scale. Again, some improvements can
be observed by the use of Parc de Bonneval data. Moreover, the use of a second model allows
significant improvements compared with the direct forecast at the turbine scale.

After the small scales, the impact of large scale information is investigated. For this purpose, we
use the data from two distant farms (more than 200 km away from Parc de Bonneval), called Parc
de la Renardière and Parc de la Vènerie. In this part, we try to identify an optimal lag, but without
success. The optimal lags that emerge do not show a strong potential for predictability from one
farm to another, at least for the method that is considered. This could be explained by the use of
an overly simplistic method, which takes into account only the wind direction. If the predictability
exists, it would surely be necessary to add other conditions or variables than direction, such as
the spatial distribution of the wind (e.g., to capture depressions, anticyclone). Despite this, we
add large scale data in the model to see the impact on the forecasts. As expected, it degrades
the forecasts for the whole period except for the neural network with exogenous variables, which
provide the best forecasts after 2 h.

In the first case, the two farms seem too close and are too correlated, but in the second case,
they are too distant. A farm located between 50 km and 20 km would probably be the best
solution to add relevant information for our lead times. Moreover, the main issue of this study
is that the farms would certainly not provide relevant information all the time. Therefore, their
systematic inclusion would not be the right approach. Then, it should not be included as an
explanatory variable, as done in this chapter. A thorough selection of regimes is a key for an
efficient networking of wind farms such as Zhu et al. in [76] who use a RST model to forecast the
wind speed that allows the regimes to vary with the wind direction and according to the diurnal
and seasonal patterns, hence avoiding a subjective choice of regimes.
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5.1 Introduction

Due to the variation in wind energy production caused by unpredictable changes in wind speed,
producers who are part of a liberalized electricity market are exposed to penalties related to the
costs of regulating the grid.

The central aspect of these liberalized markets is that participants must make offers in advance
on a spot market. On such market, electricity purchases and sales are notified for the next day.
Producers and consumers announce once every day, at 12:00, their offers regarding quantities and
prices for the next day from 00:00 to 23:00. Thus, offers are given 12 h to 35 h before the delivery.
Based on these offers, market prices are determined by demand and supply on an hourly basis
for the following 24 h. Then, producers are charged for any imbalance. Imbalance is defined as
the difference between real production and the previous day’s offer. These balancing penalties
are defined afterward, depending on the cost of the grid regulation [77]. Studies have shown that
medium term forecasts can be used to enhance the value of wind energy production. For instance,
in [78], Roulston et al. compare the use of ECMWF-based forecast and climatology forecast to
bid on the spot market in the UK. They found that with the ECMWF-based forecast, the daily
income is higher than with climatology on 60% of the days, and weekly income is higher on 80% of
the weeks. In [79], Pinson et al. show that providing medium term forecasts with information on
their uncertainty can be the basis for defining advanced strategies for participation in the Dutch
market. In [80], Barthelmie et al. show that for a wind farm of 12 MW (which correspond to Parc
de Bonneval) using a forecasting model, is profitable as long as the price of this model does not
exceed 500000£ or around 550000¤. As for [78], their study is based on the UK market.

From this point on, readers might question the usefulness of short term forecasts. However, in
the above market description, a crucial step has been omitted. Between the two steps previously
described, a stage during which the producer can adjust its original offer is possible via the intraday
market. In practice, the intraday market is not a market whose prices are governed by supply and
demand, but it is an order book. It gathers all sales and purchase orders in real time. The five best
offers and the five best demands are visible from the others in order to be able to position their
order being fully informed and avoid that it is not executed, or executed at a bad price. Thus, as
soon as two offers match, they can be executed. This order book opens the day before at 15:00
and closes 30 min before each hourly delivery date. A few hours to 30 min are the typical lead
times of the forecast model considered in this thesis. In order to minimize imbalance penalties, the
balancing via intraday is the target of this chapter. In [81], Fabbri et al. model the prediction errors
through a probability density function that represents the accuracy of the model. Production hourly
deviations and associated trading costs from the Spanish market are also calculated. Considering
three study cases, they show that the error prediction costs can reach as much as 10% of the total
generator energy incomes. In [82], Usaola et al. show that revenues can be increased with a short
term wind energy forecast model, even if the latter is of medium accuracy. They use a model
based on in-situ measurements and NWP outputs to forecast the wind energy on an hourly basis.
Using the rules of the Spanish electricity market, they show that with such a forecasting model,
the decrease in income due to forecasting errors is 7.5% compared with the case where the forecast
is perfect. However, the reduction is 9.5% if a persistence model is used and 10% if no model is
used. In [83], Matevosyan et al. present a method to minimize imbalance costs. They develop a
model based on imbalance price, to simulate the Nordic power market (Norway, Finland, Sweden,
and Denmark), and they combine it with wind energy forecasts to build a stochastic optimization
model to generate optimal wind power production bids for intraday. For January 2003, they show
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that the income from using this model is 700¤ higher than the income from the case where the
bid is based on a wind energy forecast only.

Such economic quantification of the value of the short term forecast is another way to evaluate
its performance. Indeed, although forecast accuracy is the main objective of forecasters, their users
are more interested in maximizing revenue from the use of predictions [84].

Then, the goal of this chapter is to quantify the economic value of a short term forecasting
model for a producer. All the tests are conducted using the data at two specific wind farms and are
based on the French electricity market rules. We again use data from Parc de Bonneval and Parc de
la Vènerie. First, we briefly describe the electricity market and present an example of a simplified
simulation of the French electricity market in section 5.2. In section 5.3, various scenarios are
compared: the case where no short term forecast is available, the case where a perfect short term
forecast is available, and the case where a realistic short term forecast is available. For the latter
scenario, the short term models presented in chapter 2 are used. Then, the impact of those three
scenarios is analyzed, and the different sources of variability are highlighted. Finally, in section 5.4,
the results are combined to exhibit the scenario that maximizes the income. The economic value
of having access to short term forecasts is also quantified.

It is essential to specify that in practice, it is not up to the producer himself to go to the market,
but the latter goes through an aggregator. That said, the methodology of this study remains valid,
it would be necessary to transpose it to the aggregator scale, and only the numbers presented
would vary.

5.2 Simplified market simulation

5.2.1 Electricity market

As of December 31, 2017, more than 32 million individual sites and more than 2 million professional
and industrial sites were connected to the electricity grid in France. In 2000, the French market
moved from a national monopoly market, owned by the French utility company EDF (Électricité
De France) to a competitive European market. Due to its number of customers (individuals and
companies), the electricity market is one of the largest in Europe. However, EDF still has 80% of
market share among individuals, some ten years after liberalization.

In France in 2018, 71.7% of the electricity produced came from nuclear power, 21.2% from re-
newable energy sources (mainly hydroelectric power generation: 12.4% and wind power: 5.1%) [4].
In terms of consumption, renewable energies cover 22.7% of needs in France [85]. To achieve the
objectives set by the Paris Agreement, France has set up a system called a purchase obligation.
This system allows renewable energy producers to sell their electricity at a regulated price to EDF
during a limited period. For wind energy producers, this period lasts 15 years. After this pe-
riod, they have to sell their electricity on the competitive market. This market is organized in
three steps. Figure 5.1 describes those 3 steps.

First of all, the producer has to sell his electricity on the day ahead market at 12:00 the day
before the delivery date for each slot of the next day. Then, the producer has the possibility to
balance his sale via the intraday market from the day before at 15:00 and until 30 min before the
delivery date. Finally, the differences between the electricity sold and the electricity produced are
balanced via imbalance settlement [77]. Those three steps are described below.
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Figure 5.1 | Electricity market organization for a delivery time at t0. The market is divided
in 3 steps. The sale on the day ahead market, at 12:00 the day before the delivery date, for
each slot of the next day. The balancing by the producer on the intraday market up to 30 min
before the delivery date and the balancing from RTE after the electricity delivery (imbalance).

Day ahead market

The first step in the short term electricity market is the sale on the day ahead market. Unlike the
other two, the day ahead market is a real market where prices are governed by supply and demand.
This market opened every day at 12:00 for the next day. At this moment, the producer has to sell
a medium term forecast of wind energy production for each hourly slot of the next day. At this
moment, he needs wind energy forecasts from +12 h to +35 h.

Intraday

The intraday market is a balancing market. It opens the day before at 15:00, and transactions are
possible up to 30 min before the delivery date. Using short term forecasts, the producer can update
the medium term forecast used to sell the energy on the day ahead market. If too much electricity
has been sold, the producer can buy the difference on intraday. On the contrary, if not enough
electricity has been sold on day ahead, he can sell the surplus on intraday. This market is actually
a book order that includes the demands and supplies of the market participants. Each participant
can assign one or more orders, depending on his forecasts. It is a priori more advantageous to
sell the production on the day ahead market if it can be well forecasted. It can be tempting to
balance the production on intraday at the last moment in order to have access to a forecast that
is as accurate as possible. However, price volatility increases significantly as the delivery date
approaches. Consequently, it is more risky to wait to balance.

Imbalance

Once the electricity is delivered, the differences between the sold production and the real production
is financially compensated. These prices are set by the French electricity transmission system
operator (RTE) according to the cost of the balancing actions to balance the French electricity
system. If too much electricity has been delivered by the producer, the difference is refunded at a
price generally lower than the price the producer would have had by selling on intraday. On the
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contrary, if not enough electricity has been delivered, the producer has to buy the difference at a
price generally higher than the price the producer would have had by buying on intraday.

5.2.2 Market simulation

From this point, only the price data are missing in order to make the first simulation of the market.
For the day ahead market, the hourly prices are available on the Epex Spot website1 from April
22nd, 2005 to now. Epex Spot is a European electricity exchange. It gathers and manages the
energy transactions of France, Germany, Austria, and Switzerland, as well as the intraday market.
In this continuous market, market members’ orders are entered in the order book continuously.
As soon as two orders are compatible, they are executed. On the Epex Spot website, for each
delivery date, the highest price, the lowest price and the last price of the transactions are available.
However, we have access to the entire book order for the year 2015. From here, we are able to
retrieve each transaction (demand or supply) and its associated price. Finally, the balancing prices
are computed by RTE, depending on the balancing cost. On the RTE website, the balancing prices
are available from 2003 to now. As we retrieve the intraday prices only for 2015, we focus on this
year in this chapter.

First of all, for sale on the day ahead market, we need wind energy forecasts from 12 h to 35 h.
ECMWF forecasts are hourly forecasts up to 4 days. However, for the preliminary study we only
have access to the first 24 h of the hourly forecasts. Consequently, for each day at 12:00, we use the
ECMWF forecast to retrieve the wind speed (with forecasts of more than 24 h, we should use the
ECMWF forecast at 00:00 because each forecast is available around 7 h after the lauching date).
Then, using the power curve, we retrieve the wind energy forecast from 12 h ahead to 24 h ahead.
For the last 11 h, we consider as a prediction the last value from ECMWF, i.e. the forecast 24 h
ahead. An intermediate step is necessary for the medium term forecasting at Parc de la Vènerie.
Indeed, unlike Parc de Bonneval where the turbines are at 100 m height as well as the ECMWF
forecasts, at Parc de la Vènerie, the turbines are at 85 m height. Those 15 m are essential and
will lead to an overestimation of the production. In these conditions, it will be necessary to buy
this excedent on intraday, which constitutes an avoidable loss of income. Since ECMWF forecasts
wind components at 10 m and 100 m, it is possible to interpolate the wind speed at 85 m. To do
so, we use a wind profile power law defined in equation (5.1):

Uz = czα (5.1)

where Uz is the wind speed at altitude z and where c and α are parameters that have to be
estimated. The law is fitted using the average wind profile. Here, the data from 2015 are used.
From equation 5.1, α can be easily calculated through the equation (5.2):

α =
log(U10)− log(U100)

log(10)− log(100)
(5.2)

where U10 (resp. U100) is the average wind speed at 10 m (resp. 100 m) forecasted by ECMWF
over the year 2015. From this point, it is easy to determine the wind speed at 85 m from ECMWF
wind speed forecast and the coefficient α:

Û85 = U100

(
85

100

)α
(5.3)

1https://www.epexspot.com/fr/donnees_de_marche/dayaheadfixing
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Figure 5.2 shows the NRMSE (panel (a)) and the BIAS (panel (b)), in % of the installed
capacity, between the real wind energy and the wind energy forcasted using ECMWF forecast.
Results for both Parc de Bonneval and Parc de la Vènerie for the year 2015 are shown, depending
on the lead time. For Parc de la Vènerie, we add in dashed line the performances of ECMWF
without the height correction. When the altitude correction is applied to the forecasts, the NRMSE
is slightly decreased, and the BIAS is significantly reduced.

If we now focus on the solid lines, we can see that they are noisy. This can be explained by
the lack of forecasts (one per day). For the NRMSE, the trend is clearly visible. From 12 h to
24 h, where the forecasted wind by ECMWF is used, the errors are constant, slightly below 15%.
However, from 24 h to 35 h, where a naïve estimate is used, the errors overgrow. For the BIAS, it
is positive, around 2% for the whole period at Parc de la Vènerie while it tends to be negative at
Parc de Bonneval, and it falls below 5% after 30 h.

Figure 5.2 | Errors between ECMWF forecasts and the real production from 12 h to 24 h.
Panel (a) shows the NRMSE in % of the installed capacity, and panel (b) shows the bias in %
of the installed capacity. For the forecasts, we retrieve the wind speed forecasted by ECMWF,
and using the power curve, we compute the wind energy forecasts. As ECMWF data are hourly
forecast up to 24 h, for the forecasts from 24 h to 35 h, we use the last value forecasted by
ECMWF as an estimator. Errors for Parc de Bonneval and Parc de la Vènerie are shown over
the year 2015 at a rate of one forecast per day.

Now, figure 5.3 shows the monthly BIAS for the first lead time (12 h ahead) and the last lead
time (35 h ahead). Panel (a) shows the results at Parc de Bonneval, and panel (b) shows the results
at Parc de la Vènerie. First of all, for both panels, there is no significant differences in the trend
between the first and the last lead time. However, in terms of amplitude, we can see that the BIAS
is significantly higher at Parc de Bonneval for the last lead time. Moreover, for this farm, there
is a clear seasonal cycle. The BIAS tends to be positive in winter while it is negative in summer.
In Parc de la Vènerie, there is no seasonal cycle or significant difference between the first and the
last lead time. In both cases, the BIAS tends to be positive.

In any case, the objective of this study is the economic value of the short term forecasts.
Consequently, the income from the day ahead market is used as an approximative estimator, but
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Figure 5.3 | Bias ECMWF forecasts and the real production 12 h ahead and 35 h ahead. The
bias is monthly averaged, and it is in % of the installed capacity. Panel (a) shows the monthly
bias at Parc de Bonneval, and panel (b) shows the monthly bias at Parc de la Vènerie.

its real value is not an important point. However, the second step is the crucial issue of this work.
Indeed, now we have to compute the income from the intraday and balancing markets. As said
previously, for each delivery date, we have access to every transaction made on intraday and to
their associated price. Then when balancing, a purchase or sale price corresponding to an offer
available at that time will be considered.

From this point, we consider 3 case studies:

1. The case where we do not have access to short term forecast. In this case, the difference
between the production sold on the day ahead market and the real production is directly
balanced a posteriori via imbalance.

2. The case where we have access to a perfect short term forecast. Here, we can anticipate the
difference between the sold production and the real one, thanks to the short term forecast.
This quantity is balanced on intraday. As the short term forecast is perfect, there is no
difference between the real production and the already sold production.

3. Finally, we consider the realistic case with a realistic short term forecast. As for case 2,
we balance the difference between the production sold on the day ahead market and the
production forecasted by a short term forecasting model on intraday. However, in this case, as
the short term forecast is no longer perfect, the quantity already sold and the real production
is not the same. Consequently, this difference is balanced a posteriori via imbalance. In this
case, we consider four sub-cases corresponding to four different short-term forecasting models.
Each model has been described in chapter 2. There are the best downscaling model LRobs

SW, its
equivalence without adding the error at t0 LRno-obs

SW , ECMWF forecast, and the persistence.
In each case, it is assumed that the balancing on intraday is made 30 min before the delivery
date.

The results of the different case studies for 2015 are shown in figure 5.4. Panel (a) shows the
results for Parc de Bonneval, and panel (b) shows the results for Parc de la Vènerie. In both
cases, the best scenario, i.e. when the income is the highest, is the second one (perfect short term
forecast). For the first test case, (no short term forecast), it is the case where the income is the
lowest at Parc de Bonneval. At Parc de la Vènerie, this scenario is extremely close to the realistic
forecast where the model is ECMWF. As shown in chapter 2, ECMWF performs very poorly at
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Parc de la Vènerie. The forecasts are provided at 100 m, and even with the correction shown
in equation 5.3, there is still a risk of overestimating production. With such a significant bias,
balancing via imbalance consists mainly of buying the lack of energy. This results in such a low
income.

For the other cases, the hierarchy between the models is consistent with chapter 2 in both sites.
The more efficient the model, the higher the income. The best being LRobs

SW and the worst being
ECMWF. The difference in the amounts between the two wind farms can be explained by their
respective production. Even if the turbines in Parc de la Vènerie have a nominal power of 2300 kW
while the turbines in Parc de Bonneval have a nominal power of 2000 kW, Parc de Bonneval is
composed of six turbines while Parc de la Vènerie is composed of four turbines. Consequently, the
total production from Parc de la Vènerie is weaker than that of Parc de Bonneval. The same is
also valid for the income.

Figure 5.4 | Global income for 2015 for Parc de Bonneval (panel (a)) and Parc de la Vènerie
(panel (b)). For both panels, the three cases described above are shown. In blue is the case
where no short term forecast is available (case 1). In orange is the case where the short term
forecast is perfect (case 2). The four last bars correspond to the third case, where the short
term forecast is a realistic one. The four subcases correspond to different short term forecasting
models all introduced in chapter 2. There are LRobs

SW, persistence, ECMWF, and LRno-obs
SW . The

scale is different from one figure to another.

What interests us is not the amount of income but rather the difference between each. If
we focus on the best forecasting model LRobs

SW, for Parc de Bonneval, the difference between the
realistic case and the no forecast case is higher than 30000¤, and the difference with the perfect
case is around -20000¤. For Parc de la Vènerie, the difference with the no forecast case is around
35000¤, and with the perfect case, it is less than -10000¤.

Each global income can be divided into three parts. Each of them corresponds to a market,
and the global income shown in figure 5.4 is the sum of the three. As said previously, the income
from the day ahead market corresponds to a medium term forecast, and that is not the purpose of
this work. However, the incomes from intraday and imbalance depend on the short term forecast.
If the income on intraday is mainly driven by the medium term forecasts since it is a correction of
this forecast, the time when we balance might be optimized.
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5.3 Impact of the short term balancing strategy

The objective of this section is to investigate the impact of the balancing time on intraday. Fig-
ure 5.5 shows the cumulative incomes at Parc de Bonneval in 2015 for four different balancing
times (30 min, 1 h, 2 h, and 3 h before the delivery date). Although it is possible to balance
from the previous day at 15:00 the objective here is to quantify the contribution of a short term
forecast model. Moreover, there is much less order available during the first opening hours. Since
the maximum lead time of LRobs

SW is 3 h, we do not consider any previous lead time.
Figure 5.5a shows the results at Parc de Bonneval when the short term forecast is provided

by LRobs
SW while figure 5.5b shows the results at Parc de Bonneval when the short term forecast is

perfect that is to say when it is equal to the real production. In both cases, the general trend is
an increase throughout the year. To be more precise, we can see that the income tends to decrease
during winter and then increase during summer. This can be explained by the sign of the BIAS
shown in figure 5.3a. The positive BIAS in summer implies that the balancing mainly consists of
buying a lack of energy while the negative BIAS in summer implies that the balancing consists of
selling a surplus of energy. In any case, the variability during the year is very high. Small increases
and decreases (gains and losses) occur over the year. So that, when the forecast is provided by
LRobs

SW, the maximum income is reached the 3rd of November between 03:00 and 11:00 depending
on the balancing time. For the perfect forecast, it is reached the same day at 03:00. In general,
the income trend in Parc de Bonneval is rather intuitive.

Figure 5.5 | Cumulative incomes at Parc de Bonneval in 2015 for four different balancing
times (30 min, 1 h, 2 h, and 3 h before the delivery date). Panel (a) displays the results when
the short term forecast is provided by LRobs

SW, and panel (b) displays the results when the short
term forecast is perfect that is to say when it is equal to the real production.

However, if we now look at Parc de la Vènerie, the behavior is totally different. As for figure 5.5,
figure 5.6 shows the cumulative incomes depending on the balancing time over the year 2015 at
Parc de la Vènerie. Again, panel (a) displays the incomes when the short term forecast is provided
by LRobs

SW, and panel (b) shows the incomes when the short term forecast is perfect. In this case,
we note a constant decrease over the year, both for LRobs

SW forecast and for the perfect forecast.
Again, the positive BIAS in figure 5.3b explains the trend.

If we put these two aspects aside for a moment, there are several remarks, similar to the two
farms, that emerge. If we first look at the two panels (a), in both cases, the best scenario is
when the balancing occurs 1 h before the delivery date. Then, the gaps between the other three
scenarios remain small. If we now look at the two panels (b), we can see that in both cases, when
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Figure 5.6 | Same than figure 5.5 for Parc de la Vènerie.

the balancing occurs 30 min before the delivery date, the income is minimized. For the other three
scenarios, the differences are barely noticeable. However, for these panels, (b) it is important to
remind that the forecast is the same for all scenarios (this is a perfect forecast corresponding to
the real production), then the differences are only due to price variability.

Thus, we understand here the difficulty of analyzing these cumulative incomes and the impact
of the balancing strategy. Indeed, the price volatility and the difference between the two forecasts
(medium and short term) can explain part of the incomes.

5.3.1 Impact of the forecasting errors

First of all, we focus on the forecasting errors. Here, this is not about the model’s performance,
obtained by comparing the forecasted and the real production. The amount of energy which is
sold or bought on intraday, is the difference between the amount already sold on day ahead the
day before (obtained from a medium term forecast), and the amount forecasted by the short term
forecast. Hereafter, this quantity will be noted ε? and it is defined in equation (5.4):

ε? = Pshort−term − Palready−sold (5.4)

where, Pshort−term is the production in MWh forecasted by the short term forecast model and
Palready−sold is the energy in MWh that has already been sold on the day ahead market. Then,
when ε? > 0, this means that it is necessary to sell the surplus and when ε? < 0 it is necessary to
buy the lack.

This ε? defines the general trend of the cumulative incomes shown in figures 5.5 and 5.6. If
it tends to be negative, it is therefore necessary to buy a lack of energy most of the time. This
case results in a cumulative income that tends to be negative. On the contrary, if it tends to be
positive, it means that, most of the time, it is necessary to sell a surplus of energy, and it results
in a cumulative income that tends to be positive. Table 5.1 displays the percentage value of ε?

exceeding several thresholds. Four thresholds are considered: ε? < −2 MWh (the highly negative
errors), ε? < 0 MWh (the negative errors), ε? > 0 MWh (the positive errors) and ε? > 2 MWh (the
highly positive errors). Results are shown for Parc de Bonneval in table 5.1a and for Parc de la
Vènerie in table 5.1b. In both cases, the first four rows displays the results for the four balancing
strategy (30 min, 1 h, 2 h, and 3 h before the delivery date) when the forecast is provided by
LRobs

SW. The last row displays the results when the forecast is provided by the perfect forecast.
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First of all, in Parc de Bonneval, we can see that there are about 20% more positive errors
than negative errors. In addition, highly positive errors are about 2% more frequent than highly
negative errors. This is the case for all balancing scenarios, and also for the perfect forecast. Thus,
in most cases, the balancing is done by selling an excess on intraday. We expect to have a positive
final income from intraday, and this is the case, as shown in figure 5.5.

If we now look at the results for Parc de la Vènerie in table 5.1b, we can see that the share
of negative errors and positive errors is more or less the same. However, the share of highly
negative errors is almost 5% higher than the share of highly positive errors. Here, in most cases,
the balancing consists of buying a lack of energy on intraday. In this condition, we expect to have
a negative income. Again we can see in figure 5.6 than this is confirmed.

In both cases, we can see that the balancing scenario barely impacts the percentage, and the
income trend is mainly driven by ε?.

(a) LRobs
SW for Parc de Bonneval

ε? < −2 MWh ε? < 0 MWh ε? > 0 MWh ε? > 2 MWh
occurrence rate occurrence rate occurrence rate occurrence rate

(in %) (in %) (in %) (in %)
30 min 8.1 40.2 54.0 11.3
1 h 8.1 39.6 54.7 11.1
2 h 7.5 39.9 54.4 9.3
3 h 7.2 40.7 53.7 9.2

Perfect forecast 9.7 40.8 53.6 13.2

(b) LRobs
SW for Parc de la Vènerie

ε? < −2 MWh ε? < 0 MWh ε? > 0 MWh ε? > 2 MWh
occurrence rate occurrence rate occurrence rate occurrence rate

(in %) (in %) (in %) (in %)
30 min 7.7 50.8 49.2 3.7
1 h 7.8 51.4 48.5 3.5
2 h 7.2 52.6 47.3 2.7
3 h 7.0 53.2 46.7 2.3

Perfect forecast 8.4 49.6 50.1 4.9

Table 5.1 | Occurrence rate of the medium term error ε?, defined in equation (5.4), above or
below several thresholds. ε? is defined as the difference between the production forecasted by
the short term model and the production already sold on the day ahead market. Percentage
for the highly negative errors (ε? < −2 MWh), the negative errors (ε? < 0 MWh), the positive
errors (ε? > 0 MWh) and the highly positive errors (ε? > 2 MWh) are shown. Table 5.1a shows
the results for Parc de Bonneval and table 5.1b shows the results for Parc de la Vènerie. In
both cases the results are shown for four balancing times (30 min, 1 h, 2 h and 3 h before the
delivery date) for the LRobs

SW forecasts. The last row corresponds to the perfect forecast (which
is the same regardless the lead time).

These results make sense regarding figure 5.2. Panel (b) of the figure shows that the bias
between the medium term forecast and the measurement, tends to be positive at Parc de la Vènerie
(meaning that the measurement is lower than the forecast and leading to an underestimation or a
lack). This is the opposite at Parc de Bonneval with a bias that tends to be negative, especially
after 30 h, where it is strongly negative (meaning that the measurement is higher than the forecast
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leading to a surplus). Even if ε? is defined as the difference between the medium term forecast and
the short term forecast and not the real production, the short term forecast is relatively close to
the measurements with a very low bias, then we could expect a similar trend.

One way to increase the income and more precisely to make the final income from intraday
at Parc de la Vènerie positive, would be to play on the quantity sold on the day ahead market.
Usually, too much energy is sold on the day ahead market, which results in buying a lack of energy
on intraday. This leads to a negative final income from intraday. For instance, if only 95% or 90%
of the medium term forecast is sold on the day ahead market, it can decrease the number of cases
where there is a lack, and increase the number of cases where there is a surplus. Then the intraday
final income would be positive. Table 5.2 sums up these results. According to figure 5.6, the best
balancing scenario for LRobs

SW forecast at Parc de la Vènerie is 1 h before the delivery date. We
then considered this scenario and compared both the income from intraday and from day ahead.

As a reference, the first row corresponds to the case where the entire quantity predicted is sold
on day ahead. Then, the results of the cases where 95%, 90%, 85%, and 80% of the prediction is
sold on day ahead, are shown. The final income from intraday (second column) and also the final
income from day ahead (third column) are displayed. We can see that even with only 95% of the
forecast sold on the day ahead market, the final intraday income starts to be positive. It is up
to more than 200000¤ when only 80% of the forecast is sold. However, this leads to a significant
decrease in the final income from day ahead as the sold quantity is smaller. Moreover, if we add
the two incomes, we see that despite the fact that the intraday income is negative, selling the entire
forecast on day ahead remains the scenario that maximizes the total income.

Quantity sold on day ahead Intraday income Day ahead income
(in % of the medium term forecast) (in ¤) (in ¤)

100 -62861 808557
95 9444 718850
90 79366 630703
85 146631 544636
80 210186 462035

Table 5.2 | Final incomes from day ahead and intraday depending on the quantity sold on the
day ahead market. Several cases are considered: when the entire forecast is sold on day ahead,
when 95% is sold, when 90% is sold, when 85% is sold and when 80% is sold. Results for Parc
de la Vènerie are shown.

5.3.2 Impact of the price volatility

In finance, the price volatility is just the degree of variation of the price. It is associated with the
risk. When volatility is low, prices fluctuate slightly around an average value. In this situation,
the most likely scenario is, therefore, to obtain an average price, and the associated risk is low. On
the other hand, when volatility is high, there is a strong variability around the mean. Here it is
possible to obtain very good prices (low purchase price and high sale price) just as it is possible
to obtain very bad prices (high purchase price and low sale price). In such situations, the risk
associated with high volatility is therefore high.

Generally speaking, the closer the delivery date is, the more the volatility increases. To illustrate
this, we pick a random day, and we consider a delivery date at 18:00 during peak hours. Then, the
balancing market is open, from the day before at 15:00, to this day at 17:30. If we now look at the
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standard deviation of sale prices from the opening of the market to midnight, it is 0.53¤/MWh.
But the standard deviation of prices between 14:00 and 17:30 is 3.55¤/MWh. There is a factor of
seven. This volatility is also explained by the number of transactions. The closer is the delivery
date, the more they are. For example, for the computation of the first standard deviation, there
are 63 transactions over a period of 9 hours, but for the second one, there are 1044 transactions
over a period of 3 hours and a half.

Another way to illustrate this volatility, is no longer to look at the standard deviation of
transactions for a given delivery date, but to look at the standard deviation of prices over the
year, depending on the balancing time. As said previously, for the intraday prices, we consider a
purchase or sale price available at the time we want to balance. Then for a given balancing time, we
can retrieve a time series of selling and buying prices over the year corresponding to transactions
available at this balancing time for each delivery date. Table 5.3 shows the standard deviations of
those time series for each considered balancing time. The left column is for selling prices, and the
right column is for buying prices.

What we can see is that again, the closer the delivery date is, the higher the standard deviation.
It goes from 12.2¤/MWh 3 h before the delivery date to 14.5¤/MWh 30 min before the delivery
for the selling prices, and from 12.4¤/MWh to 16.4¤/MWh for the buying prices. Moreover the
increase accelerates as the delivery date approaches. Between 3 h and 2 h, there is an increase of
0.30¤/MWh for the selling prices and of 0.40¤/MWh for the buying prices. But between 1 h and
30 min, there is an increase of 1.5¤/MWh for the selling prices and 2.70¤/MWh for the buying
prices.

The difference in magnitude with the standard deviations calculated on transactions for the
same delivery date, can be explained easily. For a given delivery date, the orders tend to be aligned
with each other. For example, if a seller proposes a much higher price than others, he has very
little chance of finding a buyer. Thus the standard deviation will be in the order of a few cents
to a few euros. On the other hand, if we look at the standard deviation of prices over the year,
we are now interested in something else. The inter-annual variability of prices is much larger since
it is affected by peak and off-peak hours on a daily basis or, on a seasonal basis, with significant
demand in winter due to heating, for instance. Thus, this standard deviation will be more in the
order of about ten euros.

Balancing time σSelling prices σBuying prices
(in ¤/MWh) (in ¤/MWh)

30 min 14.5 16.4
1 h 13.0 13.7
2 h 12.5 12.8
3 h 12.2 12.4

Table 5.3 | Standard deviation σ of intraday prices for each considered balancing times (30 min,
1 h, 2 h and 3 h before the delivery date). The standard deviations are computed using the prices
over 2015. The left column corresponds to the selling prices and the right column corresponds
to the buying prices.

Thus, the later the balancing is, the higher the associated risk. This can result in a higher gain
than what we would have had by balancing earlier, just as it can result in a much lower gain.

The effect of this volatility can be seen in panels (b) of figures 5.5 and 5.6. Indeed, they
illustrate the cumulative incomes at Parc de Bonneval and Parc de la Vènerie when the short term
forecast is provided by a perfect forecast. Then, the forecast is the same for all balancing scenarios.
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The amount of energy which is sold or bought is the same for each scenario. Then the differences
between the scenarios are only due to the price volatility. The impact of the significantly higher
volatility for a balancing 30 min before the delivery date is obvious. For both Parc de Bonneval and
Parc de la Vènerie, this scenario leads to a significant decrease in the final income from intraday. At
Parc de Bonneval, this difference is around 5100¤, and at Parc de la Vènerie, it is around 7700¤.
For the three other scenarios, the differences are very small, especially at Parc de la Vènerie, where
they are barely visible (few hundred euros). At Parc de Bonneval, we can distinguish the balancing
scenario corresponding to 1 h before the delivery date that stands out very slightly compared to
the other two. But nothing compared with the balancing 30 min before the delivery date.

To conclude this section, it is obvious that if we set aside the forecast errors that decrease as
the delivery date approaches, and focus only on the price volatility, a balancing 30 min before the
delivery date is the worst scenario. A balancing 2 or 3 hours before the delivery date, seems to be
a way to maximize the final income from intraday. However, the income from imbalance also plays
an important role in the balancing strategy.

5.4 Performance of the short term forecasting model

As seen above, the income from intraday reflects the performance of the medium term model more
than that of the short term model. In order to quantify the economic value of a short term model,
it is, therefore, preferable to focus on income from imbalance.

5.4.1 Balacing fees

Table 5.4 shows the mean bias between the short term forecast and real production depending
on the lead time. In other words, it is the average quantity that remains to be balanced via
imbalance depending on when the balancing has been done on intraday. Results are shown at Parc
de Bonneval (second column) and Parc de la Vènerie (third column) for the usual balancing times
(30 min, 1 h, 2 h, and 3 h). For both farms, the average amount of energy remaining when a short
term forecast is not available is also shown (last row).

The first thing we notice is that the bias is positive and very small for each balancing time at
both farms. It is slightly higher at Parc de la Vènerie than at Parc de Bonneval. Moreover, as
expected, the closer the delivery date, the lower the bias. Indeed, as shown in chapter 2, the shorter
the horizon, the more efficient the forecast model is. In every case, there is a slight tendency to
underestimate the production.

The last row shows the results for the scenario where no short term forecast is available. In this
case, the quantity that has to be balanced correspond to the medium term error, that is why the
magnitude is larger than for the other scenarios. It is positive at Parc de Bonneval and negative at
Parc de la Vènerie. Again, the fact that the wind turbines measure 85 m at Parc de la Vènerie while
the forecasts from ECMWF are provided at 100 m can explain this tendency of overestimation at
Parc de la Vènerie (even if a power law correction is applied to these forecasts).

With table 5.4, one might think that the income from imbalance would tend to be positive since
most often balancing consists of selling an excess of production. However, it is not that simple,
and two reasons can explain this.

First of all, if we look at the data, one can see that the difference between a sale penalty and a
purchase penalty is much larger on imbalance than the difference between the intraday sale price
and the intraday purchase price. If we consider the average annual intraday selling price for a 1 h
balancing, it is about 31.6¤/MWh. The average annual buying price is about 34.0¤/MWh. There
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Balancing time BIAS (in MWh)
Parc de Bonneval Parc de la Vènerie

30 min 0.004 0.04
1 h 0.01 0.05
2 h 0.07 0.09
3 h 0.08 0.11

No short term forecast 0.18 -0.13

Table 5.4 | Average energy to be balanced (in MWh) via imbalance depending on the balancing
time. Results for Parc de Bonneval and Parc de la Vènerie are shown.

is only a few euros difference. However, the average annual selling penalty on imbalance is about
32.4¤/MWh, and the average annual buying penalty on imbalance is about 44.8¤/MWh. In this
case, we have more than 10¤/MWh difference. Therefore, even with zero bias, we would have a
negative imbalance income trend because the purchase penalties have much more impact than the
selling penalties.

From that point, the second reason can be understood from table 5.5. This is the same as
table 5.1 but for the short term forecast. For the four balancing scenarios considered (30 min,
1 h, 2 h and 3 h before the delivery date), it shows the percentage of highly negative errors
(< −2 MWh), of negative errors (< 0 MWh), of positive errors (> 0 MWh) and of highly positve
errors (> 2 MWh). Table 5.5a shows the results for Parc de Bonneval while table 5.5b shows the
results for Parc de la Vènerie.

First, if we look at the results in table 5.5a at Parc de Bonneval, we can see that the share of
positive and negative errors is very similar for all balancing times. In these conditions, the positive
errors cannot compensate for the huge difference between selling and buying prices. Again, the
share of large errors increase when the balancing is done early. When it is done 30 min before the
delivery date, the share of highly negative errors is higher than that of highly positive errors, but
their share remains very low. When the balancing is done 1 h before the delivery date, the share of
highly negative and highly positive errors is very similar, but the share of negative error is higher
by almost 1% than those of positive error. That, combined with the difference between buying and
selling prices, suggests that this scenario will be one of the worst. Finally, when the balancing is
done 2 h or 3 h before the delivery date, the share of highly positive errors is significantly higher
than that of highly negative errors.

If we now look at the results in table 5.5b at Parc de la Vènerie, it would appear that the income
from imbalance is slightly positive. For this farm, the share of positive errors is significantly higher
than that of the negative errors. As expected, the proportion of large errors increases when the
balancing is done early. Moreover, the share of highly positive errors is higher than that of highly
negative errors when balancing is done 2 h or 3 h before the delivery date. We observe the
opposite when the balancing occurs 30 min or 1 h before the delivery date, but the difference is
less significant. However, the share of positive errors is sufficiently higher than that of negative
errors to compensate.

These results suppose that the income from imbalance is lower at Parc de Bonneval than at
Parc de la Vènerie. Figure 5.7 confirms it. It shows the cumulative income from imbalance for
Parc de Bonneval (figure 5.7a) and for Parc de la Vènerie (figure 5.7b) for 2015. Again, the four
balancing scenarios (3 h, 2 h, 1 h, and 30 min before the delivery date) are shown. As supposed,
the income at Parc de Bonneval is lower than at Parc de la Vènerie. At Parc de Bonneval, the
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(a) LRobs
SW for Parc de Bonneval

< −2 MWh < 0 MWh > 0 MWh > 2 MWh
occurrence rate occurrence rate occurrence rate occurrence rate

(in %) (in %) (in %) (in %)
30 min 1.0 46.2 46.3 0.4
1 h 2.2 46.8 46.1 2.1
2 h 3.7 47.6 47.0 5.5
3 h 4.2 47.4 47.5 6.5

No short term forecast 9.7 40.8 53.6 13.2

(b) LRobs
SW for Parc de la Vènerie

< −2 MWh < 0 MWh > 0 MWh > 2 MWh
occurrence rate occurrence rate occurrence rate occurrence rate

(in %) (in %) (in %) (in %)
30 min 0.3 43.3 56.5 0.0
1 h 0.4 45.6 54.2 0.3
2 h 0.8 45.7 54.2 1.5
3 h 1.1 45.7 54.3 2.0

No short term forecast 8.4 49.6 50.3 4.9

Table 5.5 | Occurrence rate of the short term error defined as the difference between the real
production and the production forecasted by LRobs

SW. Percentage for the highly negative errors
(< −2 MWh), the negative errors (< 0 MWh), the positive errors (> 0 MWh) and the highly
positive errors (> 2 MWh) are shown. Table 5.5a shows the results for Parc de Bonneval while
table 5.5b shows the results for Parc de la Vènerie. In both cases the results are shown for four
balancing times (30 min, 1 h, 2 h and 3 h before the delivery date). The last row correspond
to the case where no short term forecast is available.

worst scenario is when the balancing is done 1 h before the delivery date (around 5000¤ lower
than the other scenario). At Parc de la Vènerie, the four scenarios are close to each other.

Figure 5.7 | Cumulative incomes from imbalance at Parc de Bonneval (panel (a)) and at Parc
de la Vènerie (panel (b)) in 2015 for four different balancing times (30 min, 1 h, 2 h and 3 h
before the delivery date).

We can see that the sign of the short term model bias has a significant impact given the
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difference between the selling and the buying penalties. However, it is important to recall that the
goal here is not to maximize the income but to ensure that it tends towards 0. Indeed, even if it is
positive thanks to the sales penalty obtained by selling a surplus of energy, the sale of this energy
on the intraday market would certainly pay more. For instance, at Parc de la Vènerie, where the
income from imbalance is close to 0, the average income is -0.07¤ when the balancing is done
30 min before the delivery date. If this difference could have been balanced via intraday, it would
have brought in 0.56¤. At Parc de Bonneval, where the income from imbalance is negative, it cost
on average, -40.6¤ to balance. If the balancing could have been done on the intraday market, it
would have cost only -29.9¤ (which makes a difference of nearly 94000¤ over the year).

5.4.2 Added value of short term forecasting model

Total income

From this point on, it is clear that the balancing strategy is less important than having access to a
short term forecast. Table 5.6 shows the total income (day ahead + intraday + imbalance) for 2015
at Parc de Bonneval (second column) and at Parc de la Vènerie (third column) depending on the
balancing time. The case where no short term forecast is available is added (last row). Basically,
the difference between the scenarios is between 1000¤ and 5000¤. However, the difference between
having access and not having access to a short term forecast is around 35000¤.

Total income at Parc de Bonneval Total income at Parc de la Vènerie
(in ¤ rounded to the thousand) (in ¤ rounded to the thousand)

30 min 969000 739000
1 h 970000 744000
2 h 965000 740000
3 h 963000 738000

No forecast 935000 704000

Table 5.6 | Total income at Parc de Bonneval (second column) and at Parc de la Vènerie
(third column) for 2015 depending on the balancing strategy (3 h, 2 h, 1 h or 30 min before
the delivery date). For both farms, the total income of the case where no short term forecast is
available is added (last row). All the incomes are rounded to the thousand.

Monthly income

Another way to quantify the economic value of short term forecasting model is to look at the
monthly income. That is to say, the total income averaged over a month. Unlike the total income
over a year, with the monthly income, it is possible to catch the seasonal variability. This cycle
has two sources. First, the price cycle: more demand in winter because of the heating so higher
prices. There is also a peak in summer, for instance, because of the cooling, but the peak is less
significant. Secondly, the seasonal variability of wind and production. More wind in winter means
more production, and less wind in summer means less production.

Figure 5.8 displays monthly income at Parc de Bonneval (panel (a)) and Parc de la Vènerie
(panel (b)) depending on the balancing strategy (30 min, 1 h, 2 h or 3 h before the delivery date).
In both cases, seasonal variability is clearly visible. The income is significantly higher in winter for
both farms due to higher production. Indeed, the correlation between average monthly production
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and average monthly income is significant. It is 0.93 at both Parc de Bonneval and Parc de la
Vènerie. However, the difference between the balancing strategy is negligible. It is impossible to
distinguish the different curves.

Figure 5.8 | Monthly income depending on the balancing strategy (30 min, 1 h, 2 h or 3 h
before the delivery date). The monthly income is computed as the average income over each
month. Results are shown for Parc de Bonneval (panel (a)) and for Parc de la Vènerie (panel
(b)) for 2015.

To look at things in more detail, table 5.7 shows, for both farms and for each month, the
balancing strategy that maximizes the monthly average income.

Month Parc de Bonneval Parc de la Vènerie
January 1 h 1 h
February 2 h 1 h
March 1 h 3 h
April 3 h 30 min
May 1 h 1 h
June 1 h 30 min
July 1 h 2 h

August 1 h 30 min
September 1 h 30 min
October 1 h 1 h
November 1 h 1 h
December 1 h 1 h

Table 5.7 | Balancing strategy that maximizes the monthly average income. Results are shown
for each months and for both farms.

If the results at Parc de Bonneval are totally conclusive (balancing 1 h before the delivery date
maximizes the income ten months out of twelve), this is not as clear for Parc de la Vènerie. When
balancing is done 1 h before the delivery date, it leads to a maximization of the income for six
months out of twelve. The second scenario that emerges is the balancing 30 min before the delivery
date. Indeed it maximizes the income four months out of twelve, especially during the summer
off-peak period (April, June, August, and September). The next step would be to allow a dynamic
balancing strategy during the year, in particular for Parc de la Vènerie. In any case, even if we do
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not have an apparent emergence of a strategy to Parc de la Vènerie, it is essential to specify that
the differences between the two are of the order of 1¤ per month.

To conclude this section, figure 5.9 (resp. figure 5.10) shows the monthly average income at
Parc de Bonneval (resp. Parc de la Vènerie) framed by the first and the third quartiles of the
incomes over each month. Results are shown for the four considered balancing times (3 h, 2 h, 1 h,
and 30 min before the delivery date). First of all, for both farms, no difference can be seen between
the four balancing scenarios. However, what we can see is that for both farms, the distribution is
not symmetric, especially in summer, where the third quartile is closer to the mean, than the first
quartiles. Moreover, the seasonal variability visible in the monthly average income is also visible
with the variability. Again, for both farms, it is more important in winter than in summer.

Figure 5.9 | Monthly average income and quartiles (first and third) computed over each month
for the four balancing times: 3 h, 2 h, 1 h, and 30 min before the delivery date.

This can be explained by the highest variability in the production in winter than in summer.
Figure 5.11 shows the monthly production for Parc de Bonneval (panel (b)) and Parc de la Vènerie
(panel (c)). The monthly price from day ahead is also shown (panel (a)). For each case, the
means are framed by the first and the third quartiles. We can see that for the price from day
ahead (that represents almost 90% of the total income), there is no difference in the variability in
summer or winter. However, the shape of the variability in panel (b) and (c) are very close to the
those in figures 5.9, and 5.10. The variability of the production in winter is more important than
in summer (about 50%). Then, the seasonal variability in the monthly income is driven by the
seasonal variability in the production.

5.5 Conclusion

This chapter aims at quantifying the economic value of a short term forecasting model for a wind
energy producer. To do so, the electricity market is simulated using real price data and production
data from Parc de Bonneval and Parc de la Vènerie for 2015.

The three steps of the electricity market are studied. First of all, we use ECMWF forecasts from
12 h ahead to 35 h ahead to sell the wind energy production on the day ahead market. Then, short
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Figure 5.10 | Same than 5.9 for Parc de la Vènerie.
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Figure 5.11 | Monthly production for Parc de Bonneval (panel (b)) and Parc de la Vènerie
(panel (c)). The monthly price from day ahead is also shown (panel (a)). For each case, the
means are framed by the first and the third quartiles.

term forecasting models are used for balancing on the intraday market. This market is opened up
to 30 min before the delivery date. Then four balancing strategies are investigated: 3 h, 2 h, 1 h,
and 30 min before the delivery date. We compare the results with the case where a perfect short
term forecast is used. We show that the income from balancing via intraday is mainly driven by
ECMWF forecasts. At Parc de Bonneval, these forecasts tend to underestimate the real production.
This means that most of the time, the balancing consists of selling the surplus of energy. Thus,
regardless of when the balancing is done, the overall income from intraday is positive. However, at
Parc de la Vènerie ECMWF forecasts tend to overestimate the real production. In this case, the
balancing consists mainly of buying a lack of energy, and in these conditions, the total income from
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intraday is negative. In addition, price volatility is identified as a significant source of variability
in total income. Indeed, volatility increases as the delivery date approaches, then the later the
balancing is done, the bigger the risk taken. Typically, the results show that it is better to balance
1 h before the delivery date using an imperfect forecast model, rather than 30 min before, using a
perfect forecast.

Finally, the last step of the simulation of the electricity market highlights the impact of the
performance of a short term forecast model. After the delivery date, any imbalance is compensated
through balancing penalties. The case where no short term forecast is available, is used as com-
parison. Again, the sign of the bias drives the income trend. This is especially the case as there
is a significant gap between the price of the purchase penalties and the price of the sale penalties.
Thus even a zero bias induces a negative total income. This is the case, for example, at Parc de
Bonneval.

It is possible to estimate the economic added value of a short term forecast model. At Parc
de Bonneval, which with its six wind turbines of 2 MW produces about 27500 MWh annually, the
gain due to the use of a short term forecast model is about 35000¤ per year. This represents more
than 4% of the total annual income of the farm. At Parc de la Vènerie, the annual amount of
energy produced by the four turbines of 2.3 MW of the farm is up to 21000 MWh, and the gain
due to the use of the short term model is up to 40000¤. This is 5% of the annual income at the
farm.

To conclude, this chapter also shows the importance of the metric used in the evaluation of
a forecasting system. The NRMSE is very often used to evaluate a model, but in terms of the
economic impact, results show that the most important metric is the BIAS. Indeed, if positive
errors are compensated by negative errors, their amplitude does not matter. This is all the more
true since the gap between purchase prices and sales prices is small. Finally, it also shows the
importance of an unbiased day-ahead forecast.
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6.1 Synthesis and main results

This thesis aims at sizing a short term wind energy forecasting system. In the context of climate
change and energy transition, renewable energies are increasingly on the rise, and the need for
producers to have access to forecasts is becoming more and more important. In a liberal electricity
market, as in Europe, short term forecasts are essential for producers in order to balance the
amount of energy sold. Indeed, 24 h before the delivery date, the producer sells his energy on the
spot market. Then, thanks to accurate short term forecasts, they have the possibility to balance
the quantity sold, by buying or selling, up to 30 min before the delivery date. In this context, four
questions were raised, and this work aims to answer them.

How can the state of the art on wind energy forecasting can be improved for time
horizons from few tens of minutes to few hours? This question is answered in two steps. In
chapter 2, downscaling models for wind speed forecasting are developed, calibrated, and evaluated.
Parametric models such as linear regressions and non-parametric models such as random forests are
investigated. Numerical Weather Prediction model outputs from ECMWF are used as explanatory
variables. Moreover, forecast errors are taken into account as explanatory variables to tune the
model from the initialization. Models are tested on three different wind farms. The first two, called
Parc de Bonneval and Moulin de Pierre, are very close to each other, located 100 km Southwest
of Paris, and have very smooth topography. The third one, called Parc de la Vènerie, is located
more to the west and has a rough topography. For each case, the hybrid configuration allows our
models to overperform some of the state of the art models studied in this work such as persistence,
time serie based method (ARMA), and artificial neural network (ANN). More precisely, the linear
regression with variables selection algorithm provides the most accurate forecasts for the whole
period (from 10 min to 3 h). The improvement over the persistence method ranges from 1.5%,
10 min ahead, to 33%, 3 h ahead for Parc de Bonneval and Moulin de Pierre, and it ranges from
0.4%, 10 min ahead, to 25.4%, 3 h ahead for Parc de la Vènerie.

Once the wind speed forecasting model is well calibrated and gives better results than state
of the art, the second step is to convert these wind speed forecasts into wind energy forecasts.
This crucial step is studied in chapter 3. To do so, we use a computed power curve. The power
curve gives the wind power as a function of the wind speed. Although wind speed is the most
important variable for wind power estimation, other variables can be taken into account to reduce
the variability associated with this conversion. In this chapter, the impact of several variables, such
as wind direction, or air density, is quantified. Methods to take them into account are presented.
This leads to better estimations. For example, we show that the wind power forecast improvement
ranges between 7.1%, 10 min ahead, and 1.3%, 3 h ahead, thanks to the more accurate conversion
between wind speed and wind power forecasts.

What is gained by including available ancillary measurements as input, such as wind
direction, wind variability, or temperature? This question is answered in chapter 3. As
explained previously, this chapter deals with the conversion of wind speed forecasts to wind energy
forecasts. The impact of several meteorological variables is investigated using in-situ real time
data. This study focuses mainly on the wind direction and air density.

Regarding the wind direction, it is linked to the wake effect: when turbines are lined up, the
upstream turbines decrease the flow for the downstream turbines, which produce less energy. To
take it into account, several power curves are fitted to estimate the wind energy. One power curve
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using only data for which the wind direction causes the wind turbine to be exposed to the wake
effect, and one using the rest of the data. Taking this into account leads to an improvement in the
wind energy estimation up to 45% when the turbines are lined up.

For the air density, its impact may seem less crucial, especially at mid-latitudes, where the
pressure and temperature are close to the standards. Over the whole year, the improvement due
to the air density accounting is up to 16%. The density is taken into account by normalizing the
wind speed, before computing the wind energy through the power curve. It leads to improvement
up to 40% when the atmospheric conditions (pressure and temperature) are far from the standards
(temperature higher than 25◦C or lower than 5◦C). Such conditions occur more than 15% of the
time.

Thus, considering both the wind direction and the air density leads to a reduction of the error
inherent to the wind power estimation up to 30%.

Can wind energy production data from multiple wind farms improve the forecast at
a given wind farm? The third question raises the issue of spatial correlation. To answer this
question, a study on the impact of small scale and large scale information is conducted in chapter 4.
The use of data from upstream wind farms, when the wind direction is in the correct sector, is
studied for wind speed forecasting at the downstream farm.

To assess the added value of small scale information, we use data from Moulin de Pierre and
Parc de Bonneval. Parc de Bonneval is located 5 km Southwest from Moulin de Pierre. At those two
farms, the prevailing winds are southwest. Consequently, the data from Parc de Bonneval are used
in the forecasting model fitted using data from Moulin de Pierre. First of all, measurements of the
upstream farm (here Parc de Bonneval) are added as explanatory variables of a linear regression,
a neural network, and a random forest to improve the wind speed forecasts at Moulin de Pierre.
Second of all, these measurements are used to downscale the wind speed forecast from the farm scale
to the turbine scale thanks to a second model (again linear regression, neural network, or random
forest). In both cases, the use of data from Parc de Bonneval leads to significant improvement.
Moreover, the linear regression provides the best results. The forecasting errors 10 min and 20 min
ahead, are reduced up to 10% for the wind speed forecast at the farm scale and up to 45% for the
downscaling at the turbine scale.

After that, the added value of large scale information is investigated using data from two
distant wind farms called Parc de la Vènerie and Parc de la Renardière. These two farms are
located 200 km West of Parc de Bonneval and Moulin de Pierre. Numerical Weather Prediction
model outputs from ECMWF, and the last measurements at the location of Parc de la Renardière
and Parc de la Vènerie are added as explanatory variables of a linear regression, a random forest,
and a neural network. These models are compared with the best forecasting model at Parc de
Bonneval, presented in chapter 2, which is the linear regression. Given the distance, the data from
the two other farms do not provide relevant information, and the model that uses only data from
Parc de Bonneval remains the best forecasting model, at least for the two first hours. For the last
hour, the neural network gives better results.

What is the economic value of short term forecasts for a wind energy producer? An
economic quantification of the value of short term forecasts is another way to evaluate the model’s
performance. Although forecast accuracy is the main objective of forecasters, their users are more
interested in maximizing revenue from the use of predictions. The usefulness of short term forecasts
is then quantified in chapter 5.
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The electricity market can be split into three steps. The spot market where participants sell
their energy the day before. The intra-day market, where they have the possibility to balance
the sold energy by buying or selling. Finally, any imbalance between the sold energy and the real
production is balanced through fines. These three steps are simulated using real price data and
production data from the Parc de Bonneval and Parc de la Vènerie.

The study mainly deals with the balancing market that depends on the short term forecast.
The quantity traded on this market depends both on the forecasting errors and on the price
volatility. These two uncertainty sources are examined separately. To do so, we consider three test
cases: when no short term forecasts are available, when perfect short term forecasts are available,
and when realistic short term forecasts are available. Results show that price volatility plays a
significant role. For instance, at both farms, it is better to balance 1 h before the delivery date
using a realistic forecasting model than 30 min before the delivery date using a perfect forecast
model. Other than that, the shape of the income from the balancing market is driven by the
forecasting bias. When it is negative, the balancing consists mainly of selling a surplus of energy.
Consequently, the final income tends to be positive, like at Parc de Bonneval. However, when the
bias is positive, the balancing consists mainly of buying a lack of energy. In this case, the final
income tends to be negative, like at Parc de la Vènerie.

In terms of total income, the use of a short term forecasting model allows an increase between
3.7% and 5.4% depending on the wind farms. It can be expected that this increase, which is already
significant, will be more important for a larger wind farm. Moreover, monthly income varies widely
throughout the year. From 50000¤ in May, it can rise to more than 200000¤ in January for one of
the wind farms. This is related to the variability of production. More wind in winter means more
production, and therefore, higher income.

6.2 Perspectives

All these results raise interesting perspectives.

Use of other available data Although a large number of data were used throughout this thesis,
other available data remain to be used to improve the results further.

First, in the spatial correlation study, we see that data from two nearby wind farms improve
the forecasts at 10 and 20 min ahead. For longer lead times, up to three hours, the use of data from
very distant farms (200 km) is investigated, but no significant results are observed. Nevertheless,
we have now the possibility of using data from two farms about 20 km away. Given the considered
time scale, this distance appears to be a good intermediate for providing information from the
upstream to the downstream farm. The application of the methods, presented in chapter 4, to the
data from these two farms, would be a good way to complete the study.

Secondly, we have at our disposal very high frequency data. Those data are recorded directly at
the wind turbines every 1 sec since several months. Studies show the importance of wind variability
in energy estimation [86]. Therefore, it would be interesting to use those data to investigate other
approaches to forecast the wind variability. First, variance predictors could be identified. Once a
variance forecasting model is calibrated, the correlation between wind variance and the performance
of the wind energy forecasting model could be investigated.

Forecasting uncertainty As shown in chapter 3, an estimation of the uncertainty inherent to
the forecasts is calculated using confidence intervals. Thus, there are several intervals framing the
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forecast in which real production has a certain probability of being. These intervals are statistically
calculated over a training period of two years and depend only on the wind speed. Further work on
forecast uncertainty, by improving the error model, would be a way to complete the existing model.
To do so, it would be interesting to identify explanatory variables that could be good predictors of
the forecast error. Parameters, such as the atmospheric stability, and the wind shear (mentioned
in chapter 3), or the variability observed over the previous hour, could be considered.

More realistic simulation of the electricity market Chapter 5 presents a simulation of
the electricity market in which the wind energy producer sells its energy. In practice, access to
the electricity market is restricted to so-called Balance Responsible Entities. They are operators
who have contractually committed themselves to finance the cost of the differences observed a
posteriori between the electricity injected and the electricity consumed within a balanced perimeter.
At a producer level, the Balance Responsible Entities are aggregators. The aggregators are the
intermediary between electricity producers and the electricity market. It is the company that,
after buying the production from a partner installation, sells it, either directly to customers, or on
the market. In any case, the methodology applied in the chapter 5 remains valid. However, the
numbers mentioned are not realistic since they must be transposed to the aggregator level.

Now we have data on six wind farms over several years. Consequently, it would be interesting
to reproduce this study by aggregating the data from the six farms. First of all, this would make
the study more realistic, at least in terms of the amounts mentioned. In addition, it would allow
the impact of aggregation to be precisely quantified. In particular, to see if aggregating data from
several wind farms reduces the forecast errors (differences from one farm can be offset by another)
and thus, increases the final income.
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Abstract We present a stochastic Lagrangian approach for atmospheric boundary layer simu-
lation. Based on a turbulent-fluid-particle model, a stochastic Lagrangian particle approach could
be an advantageous alternative for some applications, in particular in the context of downscaling
simulation and wind farm simulation. This paper presents two recent advances in this direction,
first the analysis of an optimal rate of convergence result for the particle approximation method
that grounds the space discretisation of the Lagrangian model, and second a preliminary illustration
of our methodology based on the simulation of a Zephyr ENR wind farm of six turbines.
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A.1 Introduction

The stakes of the simulation of wind farm production are growing with the development of re-
newable energies. The various time scales involved (from wind potential evaluation, to short-term
production forecast), the mix of various constraints on existing sites or on new projects are all
issues where numerical simulations can bring quantified answers.

Although some computational fluid dynamics models, together with wind turbine models, and
software are already established in this sector of activity (see eg. Sørensen [87], Niayifar and
Porté-Agel [88], and the references cited therein), the question of how to enrich and refine a wind
simulation (from a meteorological forecast, or from a larger scale information, eventually combined
with measurements) remains largely open. This is particularly true at the scale of a wind farm,
regarding the production estimation of a given site, wind turbine by wind turbine. Among various
existing approaches for wind farm simulation we can distinguish

• wind extrapolation methods, and parametrization of wake effect for real-time simulation
response,

• fluid and structure interaction models for wake computations, with often laminar flow hy-
pothesis and rather simple terrain description,

• Large eddy simulation (LES) models for turbulent flows, including turbine contribution forces
related to actuator disc modeling.

The turbulent nature of the atmospheric boundary layer (ABL) contributes to the uncertainty
of the wind energy estimation. This has to be taken into account in the modeling approach
when assessing the wind power production. This paper is devoted to a downscaling approach that
typically aims to compute the wind at a refined scale in the ABL, from a coarse wind computation
obtained with a mesoscale meteorological solver. This is the purpose of the Stochastic Downscaling
Model (SDM) presented here.

The main features of SDM reside in the choice of a fully Lagrangian viewpoint for the turbulent
flow modeling. This is allowed by stochastic Lagrangian modeling (SLM) approaches that adopt the
viewpoint of a fluid-particle dynamics in a flow. Such methods are computationally inexpensive
when one need to refine the spatial scale. This is a main advantage of the SDM approach, as
particles methods are free of numerical constraints (such as the Courant Friedrichs Lewy condition
that imposes a limit to the size of the time step for the convergence of many explicit time-marching
numerical methods).

The developpment of SDM is a collaborative long term task (see [89, 90, 91] for detailed
presentation), that addresses jointly mathematical and modeling issues with the elaboration of a
numerical solver. It is an interdisciplinary work involving disciplines such as stochastic analysis and
numerical analysis for the design and the optimal use of the Lagrangian particle solver, physics
of the ABL for the calibration and validation of SDM equations and boundary conditions, and
engineering for the Lagrangian adaptation of actuator disk model for the turbine wake effect.

This paper presents two recent advances in these directions:

• Section A.2 is dedicated to the convergence rate analysis of the stochastic particle algorithm
used in SDM. We analyse the convergence rate with numericals experiments and check its
adequacy with the theoretical optimal rate of convergence result obtained in [92] for the
particle approximation method that grounds the SDM numerical algorithm.
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• Section A.3 presents some first SDM simulation, by computing the wind energy production of
an existing wind farm: the Parc de Bonneval operated by Zephyr ENR. With the initial and
boundary conditions generated from the MERRA reanalysis, we evaluate SDM result against
measurements collected at the wind farm. This numerical experiment is representative of the
SDM capabilities to refine the spatial scale of the wind computation up to the scale of the
wind farm: starting from the MERRA wind profile computed on a horizontal grid of 60 km
by 60 km, SDM is refining the wind computation on a spatial grid of 40 m by 60 m, during
a computational time interval of 24 hours.

A.2 Stochastic Lagrangian Models

Lagrangian approaches for turbulent flow are already well established for turbulent subgrid-scale
modeling. This refers to the representation of the small-scales of the flow that cannot be ade-
quately resolved solely on a computational mesh. In the context of atmospheric flow, the so-called
Lagrangian Particle Dispersion Models (LPDM) are widely used for the analysis of air pollutants
dispersion (see e.g. Stohl [93] and the references therein). Such method adopts perspective of a
’air parcel’ by tracking a number of fictitious particles (with position Xt) released into a flow field:

dXt = U(t,Xt)dt+ u(t)dt (A.1)

where u(t) is a random fluctuation of the mean velocity U , given for example by a LES compu-
tation. The velocity fluctuation is modeled with stochastic differential equation (SDE) of various
degrees of complexity according to the involved representations, but generally starting from the
simplest Langevin model:

du(t) = −u(t)

T
dt+

√
C0ε(t,Xt)dWt (A.2)

where the stochastic (or fast) part of the motion is described by the 3-dimensional Brownian
motion W , amplified with the turbulent pseudo dissipation of the flow ε. Stochastic description
of particles in turbulent flows are also well established in the case of disperse two-phase flows and
may concern many other applications (see e.g. Minier [94]).

The SDM methodology also makes use of the air parcel viewpoint. But now the mean velocity
(in the particle velocity dynamics (A.1)) is not given any more but has to be computed as a
statistical mean velocity 〈U〉 by solving locally a Lagrangian probability density function (PDF)
model. This approach relies on the so-called fluid particle approach developed in the seminal work
of S. Pope ([95], see also [96] and the references therein). In this approach, a fluid-particle, or
virtual fluid parcel with a position, an instantaneous velocity and a temperature state (Xt,Ut, θt)
is described as the solution of a stochastic differential equation (SDE), generically of the form:

dXt =Utdt,

dUt =− 1

%
∇x〈P〉(t,Xt)dt−G(t,Xt) (Ut − 〈U〉(t,Xt)) dt

+ Ftdt+
√
C(t,Xt)ε(t,Xt)dWt,

dθt =D1(t,Xt, θt)dt+D2(t,Xt, θt)dW̃t.

(A.3)

(W, W̃ ) is a (3d× 1d)-Brownian motion. From a SDE like (A.3), it is always possible to write
(at least formally) the partial differential equation (PDE) of its density function, and from that
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to recover the dynamics of the associated velocity field. (A.3) is in the just enough detailed form
that allows to recognize/intensify the corresponding coefficients in a given targeted Navier Stokes
equation combined with a chosen turbulence modeling (we refer the reader to [90] for details).
Except for the mean gradient pressure term −1

%∇x〈P〉, the choice of the coefficients in the right-
hand side of (A.3) corresponds to the choice of the turbulence closure. In particular, the chosen
coefficients and forces in (A.3) for SDM in the ABL are described in Section A.3.1.

All computational approaches in turbulence modeling are focused on the computation of the
Eulerian statistical average of the velocity and of other associated quantities. This averaging oper-
ator is classically represented by the 〈U〉 in Reynolds-averaged Navier-Stokes (RANS) approaches,
by Ũ or U in LES approaches. In SDM, the Eulerian average is recovered as the probabilistic
conditional expectation1 of the particle velocity Ut, knowing that its position Xt is at point x. De-
noting P the probability of the model (A.3), provided with expectation symbol E, the mathematical
definition of Eulerian average in SDM is:

〈U〉(t, x) := E [Ut|Xt = x] , (A.4)

More generally, for any integrable function f , we set:

〈f(U, θ)〉(t, x) := E [f(Ut, θt)|Xt = x] . (A.5)

Equivalently, in term of PDF approach (see [97] for further details), denoting γ(t, ·, ·, ·) the
probability density law of the random variable (Xt,Ut, θt), and ρ(t, x) =

∫
3×R γ(t, x, u, θ)dθdx the

renormalized mass, the statistical average also writes:

〈f(U, θ)〉(x, t) =

∫
R3×R f(u, θ)γ(t, x, u, θ)dudθ

ρ(t, x)
.

Thus, the coefficients of the stochastic equation (A.3) are (function of, or derivatives of) sta-
tistical averages 〈u(i)〉, 〈u(i)u(j)〉, defined as in (A.5). Here and in the sequel, we make use of the
notation Ut = (u

(1)
t , u

(2)
t , u

(3)
t ).

A.2.1 Numerical analysis of SLM: particle approximation

Solution of nonlinear SDE, with coefficients depending on expectations of the unknowns, can be
constructed (under some appropriated regularity hypotheses) as the mean field limit of a linear
system of N -interacting particles, as N tends to infinity. Such particle approximation principle is
at the basis of the SDM numerical method (see e.g. [98] for an introductory review). We detail
this principle in the simplified prototype equation

Xt = X0 +

∫ t

0
Usds

Ut = U0 +

∫ t

0
E[b(Us)|Xs]ds+ σWt,

(A.6)

preferably to the complex model (A.3). In this section, we adopt a formal mathematical
viewpoint to analyze numerical algorithms, and u 7→ b(u) in (A.6) is any generic function that can
play role of the mean velocity field (x 7→ E[b(Ut)|Xt = x] = 〈U〉(t, x)), or turbulent kinetic energy,

1We consider here only the case of constant mass density flow, for the sake of clarity.
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or more complex quantities appearing in the SDM model in (A.20), but the resulting algorithm
remains similar.

Particle approximation for the solution of (A.6) relies on a statistical estimator for the condi-
tional expectation function x 7→ E[b(Ut)|Xt = x]. Typically, an conditional estimator uses local
averaging estimates on the N -particle set (Xi

t , U
i
t , i = 1, . . . , N, t ∈ [0, T ]):

E[b(Ut)|Xt = x] is approximated by
N∑
i=1

WN,i(x)b(U it ). (A.7)

Propositions for the weights WN,i(x) are mainly of two kinds: the Nadaraya-Watson kernel
estimator relies on a choice of a kernel function Kε(x) = K(xε ):

WN,i(x) =
Kε(x−Xi)∑N
j=1Kε(x−Xj)

, (A.8)

while partitioning (or mesh) estimator relies on a givenM -partition PM = {BM,1, BM,2, . . . ,BM,M}
(or a mesh) of the space domain:

WN,i(x) =
1{Xi∈BM,j}∑N
k=1 1{Xk∈BM,j}

, for x ∈ BM,j . (A.9)

(a) Naive kernel:
K(x) = 1

2
1{‖x‖≤1}

(b) Triangular kernel:
K(x) = (1− ‖x‖)1{‖x‖≤1}

(c) Epanechnikov kernel:
K(x) = (1− ‖x‖2)1{‖x‖≤1}

Figure A.1 | Some examples of normalized kernel functions K.

It is worth noting that the algorithm complexity of a particle system based on kernel estimator
is up to O(N2) whereas the partitioning estimator version is up to O(N) (see also Section A.2.3).
We retained this last solution for SDM together with some refinement of Particle-in-cell (PIC)
technics (see further details in [90]).

The convergence and precision of a particle-based numerical algorithm for solving (A.6) is
driven by N the number of particles to simulate and ε the characteristic size of the partition or the
characteristic size of the support of the kernel K when it is applied on particles. In [92], Bossy and
Violeau prove the theoretical rate of convergence for the particle approximation of the solution of
(A.6). This result gives a relationship between the two parameters N and ε in order to achieve
the optimal reduction of the error (or bias). This is the first mathematical result of this kind
and to make the difficulty of the mathematical analysis more affordable, the boundary conditions
are assumed periodic for simplicity. In a periodic box or torus domain equal to D = [0, 1]d, the
Lagrangian model in (A.6) becomes:
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Xt =
[
X0 +

∫ t

0
Us ds

]
mod 1

Ut =U0 +

∫ t

0
B[Xs; ρs] ds+Wt, and ρt is the density law of (Xt,Ut),

(A.10)

where, we have written E[b(Ut)|Xt] with its equivalent mathematical form B[Xt; ρt], for (x, γ) 7→
B[x; γ] defined for all probability density function γ by:

B[x; γ] =

∫
Rd b(v)γ(x, v) dv∫

Rd γ(x, y)dv
1{

∫
Rd γ(x,y)dv>0}.

The associated particle approximation system ((Xi,N , U i,N ), N ≥ 1) is defined as the solution
of:

Xi,N
t =

[
Xi

0 +

∫ t

0
U i,Ns ds

]
mod 1,

U i,Nt = U i0 +

∫ t

0
Bε[X

i,N
s ; µ̄N,εs ] ds+W i

t ,

µ̄N,εt =
1

N

N∑
j=1

δ{(Xj,N
t ,Uj,Nt )} is the particles empirical measure

(A.11)

where the kernel regression version Bε of B, given by the approximation (A.7),(A.8), is defined
for all density γ by:

Bε[x; γ] :=

∫
[0,1]d×Rd b(v)Kε(x− y) γ(y, v)dy dv∫

[0,1]d×Rd Kε(x− y) γ(y, v)dy dv
1{

∫
Rd γ(x,y)dv>0}.

The (W i
t , t ≤ T, 1 ≤ i ≤ N) are independent Brownian motions valued in Rd, and independent

from the initial variables (Xi
0, U

i
0, 1 ≤ i ≤ N), independent, identically distributed with initial law

ρ0. The nonlinear model (A.10) is thus approximated with the linear system (A.11) (of dimension
2dN), easy to discretize in time with the help of a time-discretisation Euler scheme (see below
(A.16)). This algorithm is at the basis of the so-called Stochastic Lagrangian numerical algorithm
(see e.g. Pope [99] and for the SDM method [90]).

The theoretical convergence analysis

In the algorithm (A.11), conditional expectation E[f(Ut)|Xt = x], for f = b, and more generally
for any f measurable bounded on D, is approximated by

x 7→ Fε[x; µ̄ε,Nt ] :=

∑N
j=1 f(U j,Nt )Kε(x−Xj,N

t )∑N
j=1Kε(x−Xj,N

t )

the corresponding kernel approximation function, where µ̄ε,Nt is the empirical measure of par-
ticles as in (A.11). A pertinent criterion for the evaluation of the algorithm (A.11) is then the
measure of the mean error on the conditional expectation used all along the time loop:

E
∣∣∣E[f(Ut)|Xt = x]− Fε[x; µ̄ε,Nt ]

∣∣∣. (A.12)
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We reduce this error function by its L1-norm onD weighted by the particles position distribution
ρt), by considering:

ErrorL1
ρt

(D) :=

∫
D
E
∣∣∣E[f(Ut)|Xt = x]− Fε[x; µ̄ε,Nt ]

∣∣∣ρt(x)dx. (A.13)

Theorem A.2.1 (see Bossy Violeau [92]) Assume the following:

(i) f and b are smooth and bounded functions with bounded derivatives

(ii) the kernel K is positive and bounded, with compact support in {x; ‖x‖ ≤ 1}
(iii) the initial density law ρ0 is smooth and bounded below by a constant ζ > 0.

Then for any T > 0, 1 < p < 1 + 1
1+3d and c > 0, there exists a constant C such that for all ε > 0

and N > 1 satisfying (ε(d+2)N
1
p )−1 ≤ c, we have for all 1 ≤ i ≤ N,

ErrorL1
ρT

(D) ≤ C
(
ε+

1

ε(d+1)N
+

1

ε(d+1)pN
+

1

(εdN)
1
p

+
1

ε
dp
2

√
N

)
. (A.14)

The optimal rate of convergence is achieved for the choice N = ε−(d+2)p and

ErrorL1
ρT

(D) ≤ CN−
1

(d+2)p . (A.15)

Notice that p can be chosen almost equal to one. The global error given in (A.14) is a com-
bination of several sources of approximations. First, the O(ε) term corresponds to the smoothing
error for F . The O(ε−

dp
2

√
N
−1

) term is the Monte Carlo variance contribution to the error, next
O((εdN)

− 1
p ) is the error due to the replacement of the law ρt by the empirical measure µ̄N,εt .

There is also the approximation due to the replacement of the position of the exact process as the
location where the conditioned expectation is computed by the position of a numerical particle.
This is a part of the statistical error, (the use of the Nadaraya Watson estimator to compute the
expectation) in O(ε+ 1

εd+1N
+ 1

ε(d+1)pN
).

A.2.2 Empirical numerical analysis

In this section, we measure and analyse the effective convergence of the algorithm with numerical
experiments in order to verify and illustrate that the claimed convergence rate in Theorem A.2.1
is optimal. For both computational time reason and clarity of the presented graphs, we limit our
experiments to d = 2, (the wind farm simulation presented in Section A.3.1 is a fully 3 dimensional
case).

Numerical experiments proceed using an Euler scheme. We decompose the time interval [0, T ]
into M time steps of length ∆t := T

M and we introduce the time discretization of the interacting
particle process:

Xi,N,∆t
t =

[
Xi

0 +

∫ t

0
U i,N,∆tη(s) ds

]
mod 1

U i,N,∆tt = U i0 +

∫ t

0
Bε[X

i,N,∆t
η(s) ; µ̄N,ε,∆tη(s) ]ds+W i

t , µ̄N,ε,∆tt =
1

N

N∑
j=1

δ
(Xj,N,∆t

t ,Uj,N,∆tt )

(A.16)
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for all 1 ≤ i ≤ N and t ∈ [0, T ] where η(t) := ∆t
⌊
t

∆t

⌋
is the ∆t-step time function. For all

time step k∆t, 0 ≤ k ≤M , each random variable (Xi,N,∆t
(k+1)∆t, U

i,N,∆t
(k+1)∆t) is computed from the values

of all the variables (Xj,N,∆t
k∆t , U j,N,∆tk∆t ), 1 ≤ j ≤ N .

This algorithm has a total complexity of order O(M)O(N2). The major drawback of the kernel
estimator method used here lies on the computation of the drift at any point x that requires a loop
over all the N particles, even if they do not contribute to the final result. As we already mention,
for this reason, we preferably use the alternative particle-mesh algorithm for SDM.

The test case description

We introduce some nontrival behavior in the model (A.10) by adding a potential function P (x, y)
that models an external, but static in time, pressure force as

P (x, y) =
1

2π
cos(2πx) sin(2πy)− 1

2
x, for all (x, y) in D = [0, 1]2.

The drift (x, u, γ) 7→ B[x, u; γ] is a mean reverting term such as:

B[x, u; γ] =

∫
Rd(v − 2u)γ(x, v) dv∫

Rd γ(x, v) dv
for all (x, u) in D × R2 and all γ in P(D × R2)

with, for all (x, u) in D × Rd:

B[x, u; ρt] = E[Ut|Xt = x]− 2u, when ρt is the density of (Xt,Ut).

We solve for t ≤ T = 2,


Xt =

[
X0 +

∫ t

0
Usds

]
mod 1

Ut = U0 −
∫ t

0
∇P (Xs) ds+

∫ t

0
B[Xs,Us; ρs] ds+Wt, ρt is the density of (Xt,Ut)

The initial distribution ρ0 of (X0,U0) is such that X0 has a Gaussian distribution on Td with
variance σ2 (i.e. X0 = σZ mod 1, σ2 = 0.3) and U0 is a centered Gaussian random variable
independent from X0, with variance ν2 = 1. On Figure A.2, we represent the time evolution of
the particles mass density ρt(x) =

∫
R2 ρt(x, u)du of the process Xt distributed in the torus (plot

(a)), as well as the turbulent kinetic tke(t, x) = 1
2E[(Ut − E[Ut|Xt = x])2|Xt = x] (plot (b)). We

can observe that the density is clearly non uniform in space, and we expect this should put some
stress on the estimation of the mean fields in low density areas.

Moreover, although starting from a Gaussian distribution, the density quickly converges in
time to a stationary state and this allows to fix the final time to T = 2 for all the error analysis
simulations, with M = 128 time steps. The kernel regression is performed with the Epanechnikov
kernel (see Figure A.1-(c)) and ε = 1

16 .
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(a) Density
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(b) Turbulent kinetic energy
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Figure A.2 | Evolution of the density and TKE for (Xt, Ut), [N = 105, ε = 16−1].

Expected L1 error of the kernel method

We focus our attention on the expected L1 error defined in (A.13). In order to estimate this
quantity, we need to proceed with some approximations on the integral. In the following, we write
π∆x(g) for the spline-interpolated function g on a grid with mesh size ∆x. The reference numerical
solution for E[f(UT )|XT = x] is approximated by the splined mean fields defined by:

Fε
[
x; µ̄

ε,N̄
T ]

∆x

:= π∆x(Fε
[
·; µ̄ε,N̄T ])(x) (A.17)

for a large number of particles N̄ and a sufficiently small window parameter ε. The numerical
approximation is also splined to ease the integration step:

F∆x
ε [x; µ̄ε,NT ] := π∆x

(
Fε[·; µ̄ε,NT ](x)

)
(A.18)

The reference mass density ρT (x) is also estimated by using the Monte Carlo mean of kernel
density estimation:

ρ̄T (x) :=
1

Nmc

Nmc∑
k=1

1

N̄

N̄∑
j=1

Kε(x−Xj,ε,N̄
T (ωk)), and ρ̄∆x

T (x) := π∆x(ρ̄T ) (A.19)

where the ωk represent Nmc independent realizations of the simulation. The computation of
the integral of splined functions can be carried out very precisely over regular grids with the help
of numerical libraries. All that remains is to evaluate the expected splined L1 error by means of a
Monte Carlo simulation:

ErrorL1
ρT

(D) ∼
1

Nmc

Nmc∑
k=1

∫
D

∣∣Fε[x; µ̄
ε,N̄
T ]

∆x

− F∆x
ε [x; µ̄ε,NT (ωk)]

∣∣ρ̄∆x
T (x) dx

In Figure A.3, we plot the expected L1 error calculated as above as a function of the window
parameter ε for different total number of particles N : for each choice of N , we observe that the
error is first decreasing with the value of ε (from right to the left) toward a minimum value, but
next start to increase with two small values of ε : this is the effect of the competition between the
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Figure A.3 | L1 error as a function of ε for different number of particles N .

terms ε and 1
εα in the bias formula (A.14). This is effect is delayed by choosing larger values of N

who reduces the variance in the computation. We can also notice that the asymptotic slope of the
error when ε tends to zero is very close to −1 for a log-log scale (represented with a blue dashed
line). We expect the error to behave like O(ε+ C

ε3N
+ C

ε
√
N

).
Then, it seems reasonable to infer that the term of order O( 1

ε
√
N

) related to the variance of the
stochastic integral in the model dominates the L1 error.

Recall, however, that our theoretical analysis of the error is valid under the constraint 1
εd+2N1/p ≤

c, for some positive constant c, so we cannot rigorously extend the bound to an asymptotic analysis
when ε decreases to zero.

Finally, we can observe that the slope of L1 is bounded by one when N is sufficiently large and
ε becomes large. This is in complete agreement with the bounds in Theorem A.2.1 although this
figure does not explain the relative contribution of the smoothing error and the kernel estimation
error in the total L1 error.

We can also consider the expected L1 error as a function of N
εd
, as in Figure A.4.

102 103
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M
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M
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Np = 20000

Np = 29907
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Np = 66874

Np = 100000

N−0.5
pcN−0.5
pc

Figure A.4 | L1 error as a function of ε for different densities of particles N
εd
.

Note that N
εd

loosely represents the number of particles in interaction with a given particle
(for compact support kernel functions) and is often referred to as the number of particle “per cell”
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(denoted Npc), especially in the case of partitioning estimates. Np here denotes the total number
of particles. This figure A.4 illustrates the concept of bias-variance trade-off and its relation with
the number of particle per cell: for a given small number of particle per cell (compared to the
optimal number of particle per cell), we can observe that the L1 error is almost independent of
the absolute value of ε. This clearly shows that the variance is directly related to the number of
particles used in the computation of the estimator. On the contrary, when the number of particle
per cell becomes large and the bias dominates, the L1 error becomes smaller with ε.
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Figure A.5 | L1 error as a function of the total number of particles, for different value of ε.

The convergence of the error with respect to the number of particles N (= Np) can be observed
in Figure A.5. When ε is sufficiently small, we notice as expected a convergence of order O( 1√

N
),

related to the reduction of the variance component of the error. On the other hand, when ε is
large, increasing the number of particle does not reduce the error as the bias dominates.

Given this bias-variance trade-off, one may be interested in finding the optimal value of ε that
minimizes the expected L1 error for a given number of particles. From the simulations we ran for
different couples (ε,N) of parameters, we plot the surface of the error in Figure A.6 (left). We can
then plot the curve of optimal ε as a function of the number of particles which is very close to 1

ε3

(for d = 2). This result is in-line with what we expected from Theorem A.2.1 where the optimal
value of window size is given by N−

1
d+2 .

Moreover, if we plot the error associated with the optimal couple of parameters as a function
of ε, we can observe the optimal experimental rate of convergence of the algorithm.

The theoretical optimal error (A.15) in Theorem A.2.1, is of order O(N
− 1

4p ), with p close to 1,
while in Figure A.6 (right), we observe a rate of order close to −1

4 to −1
3 . Theoretical and observed

convergence rates are here in a very good adequacy.

A.2.3 Particle in mesh method

We end this section with some experiments on the particle-mesh version of the algorithm. The
principle of the Particle-Mesh methods is to aggregate the N scattered data points (Xi, f(U i)), for
1 ≤ i ≤ N onto a regular mesh covering the simulation domain D, thus reducing the size of the data
set to the number of nodes in the mesh. The mean field is evaluated from the mesh charges at each
particle position using standard regression techniques as in (A.7),(A.9). If we design the charge
assignment and the force interpolation operation such that they can be performed in constant
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Figure A.6 | L1 error as a function ε and N . and optimal rate of convergence for the L1 error.

time for each particle, the Particle-Mesh algorithm has a O(M)O(N) complexity, i.e. it has linear
complexity with respect to the total number of particles. This is a tremendous improvements over
the previous kernel regression method, and the speed-up is not only theoretical but is actually
achieved in practical simulations.

The drawback of this approach is that it introduces new sources of numerical errors, and
unlike classical particle computer simulations, increasing the number of nodes in the mesh does
not necessarily reduce the error if the total number of particles is left unchanged. Moreover,
refining the mesh increases the computational cost, so it is particularly important to be able to
reduce the errors for a given mesh size in order to achieve the best compromise between quality
and computational cost. In this regard, we will consider three charge assignment and interpolation
functions that are designed to be optimal according to smoothness and spatial localization of errors
criteria: the Nearest Grid Point (NGP), the Cloud in Cell (CIC), and the triangular Shaped Cloud
(TSC) (see Figure A.7 for details).

(a) Nearest Grid Point:
Kh(x) := 1{‖x‖≤h

2
}

(b) Cloud in Cell:
Kh(x) := (1− ‖x‖)1{‖x‖≤h}

(c) Triangular Shaped Cloud:
Kh(x) := ( 3

4
− x2

h2 )1{‖x‖≤h
2
}

+ 1
2
( 3

2
− |x|

h
)21{h

2
≤‖x‖≤ 3h

2
}

Figure A.7 | Charge assignment functions (from left to right: NGP, CIC, TSC).
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Charge assignment

Consider a mesh of cell size h (also called window size). Let xi be the position of the i-th node.
Then the charge ci and the charge density di assigned at node i are defined by:

ci :=
1

N

N∑
j=1

f(U j)Kh(xi −Xj), di :=
1

N

N∑
j=1

Kh(xi −Xj)

where K is a charge assignment function. By definition of ci and di the ratio ci
di

is simply the
kernel regression estimate at the node point xi as in (A.7):

E[b(Ut)|Xt = x] ∼ ci
di

=
1
N

∑N
j=1 f(U j)Kh(xi −Xj)

1
N

∑N
j=1Kh(xi −Xj)

The computation of the mesh charge values can be performed efficiently in O(N) with an outer
loop on the particles and the use of a mesh localization procedure that makes it possible to loop
only on the nodes charged by a given particle.

Of course, it is important that the localization of the particle in the mesh and the computation
of the list of nodes charged by the particle be performed in constant time. In practice, the lists of
neighbor cells are computed once and for all (in linear time) at the beginning of the procedure to
speed up the execution of the algorithm.

In Figure A.8, we measured the influence of the regularity order of the charge assignment
function Kh. Aside from the smoothing aspect of the obtained velocity field, we can observe a
gap between the error produced by the partitioning estimates (corresponding to NGP assignment
charge) and the higher order CIC or TSC functions, and CIC appears to be a good compromise
between the error level and the ease of implementation.

A.3 Wind farm simulation experiment with SDM

Our SDM model has been evaluated against measurements collected at a wind farm located in
Bonneval, a small town 100 km Southwest of Paris, France (at 48.20◦N and 1.42◦E). The wind
farm is operated by Zephyr ENR, a private company managing five other wind farms. The Bonneval
wind farm, called Parc de Bonneval, has been implemented in 2006 and is composed of six wind
turbines, each with a power rated of 2.0 MW. In order to evaluate the SDM simulations with the
data collected at Parc de Bonneval, wind turbines have been numerically integrated in SDM,based
on an actuator disk model. This model allows the simulation of the dynamical effect of the
presence of wind turbines, in the form of trailing wakes, as well as the computation of the wind
energy production.

A.3.1 SDM for atmospheric boundary layer simulation

We run SDM for the winter day of December 22th 2016, with the equation (A.3) configured for
the case of the neutral atmosphere hypothesis. Here and in the sequel we denote by

Ut = (u
(1)
t , u

(2)
t , u

(3)
t ) = (ut, vt, wt)

the velocity components (with numbering or with letters, depending on how it is convenient in
the equations), and for the components of the instantaneous turbulent velocity:
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(a) Velocity norm for the NGP scheme
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(b) Velocity error for the NGP scheme
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(c) Velocity norm for the CIC scheme
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(d) Velocity error for the CIC scheme
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(e) Velocity norm for the TSC scheme
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(f) Velocity error for the TSC scheme
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Figure A.8 | Velocity norm and average error for the NGP, CiC and TSC schemes
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Ut − 〈U〉(t,Xt) = (u
′(1)
t , u

′(2)
t , u

′(3)
t ) = (u′t, v

′
t, w
′
t)

In order to elaborate the SDM model, we start from the General Langenvin model introduced
by Pope [97]:


dXt = Utdt, withUt = (u(i)

t , i = 1, 2, 3) and u′i(t) = u(i)
t − 〈u

(i)
t 〉

du(i)
t = −∂xi〈P〉(t,Xt)dt+

∑
j

Gij

(
u(j)
t − 〈u(j)〉

) (t,Xt)dt+
√
C0ε(t,Xt)dB

(i)
t

(A.20)

As a stand-alone PDF method, all the Eulerian statistical means needed by the SDM model in
(A.20) are computed within the simulation. In the ABL, we pay great attention to the modeling
of the ground effects. We incorporate to SDM a model for the effect of the wall blocking of normal
velocity component (following [100], see also [91] for details). For the wind farm simulation, we
further incorporate a model for the effect of pressure reflection from the surface (by adapting the
Durbin elliptic relaxation method [101]). This model refinement mainly impacts the form of the
(Gij) relaxation tensor we use in (A.20). We shortly describe (Gij), decomposing the tensor in this
common basic diagonal relaxation term 1

2
ε

tke and the more complex γij part, decomposed itself in
its near wall part γwall

ij and its internal flow part γhomogeneous
ij :

Gij(t, x) = −γij(t, x)− 1

2

ε(t, x)

tke(t, x)
δij , with C0ε(t, x) =

2

3

∑
i,j

(γij)〈u′iu′j〉(t, x)

and γij(t, x) = (1− α(t, x)tke(t, x))γwall
ij (t, x) + α(t, x)tke(t, x) γhomogeneous

ij (t, x)

−γhomogeneous
ij = −1

2
(CR − 1)

ε

tke
δij + C2

∂〈u(i)〉
∂xj

, and − γwall
ij = −7.5

ε

tke
ninj

where n is the wall-normal unit vector. The coefficients C0 and C2 have to satisfy some
realizability constraints (see [102], [103]). The elliptic blending coefficient α (that balances γwall

ij

and γhomogeneous
ij ) solves near the ground the Poisson equation:

L2∇2α− α = − 1

tke

where L is a length scale defined as a maximum of the turbulent scale and the scale connected
with dissipative eddies.

Finally, we make use of the Lagrangian methodology to easily introduce complex terrain de-
scription in SDM: when a fluid-particle meets the ground during the simulation, according to the
wall-boundary condition, we perform a reflection of it velocity, according to the friction velocity
computed as:

u∗(t, x) = κ

√
〈u〉2(t, x) + 〈v〉2(t, x)

log(x(3)/z0(x))

where the roughness length z0 may vary with the surface terrain.
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Lagrangian actuator disk model

SDMmethod allows some fluid and structure interaction modeling, in particular when the structure
are porous objects like actuator disk models for turbine.

The SDM approach could be used with various actuator disk modelling options (see [91] and
the references therein). In the actuator disc approach, each mill is represented as an immersed
surface which concentrates all the forces exerted by the mill on the flow. In the SDM context,
the presence of wind mills is taken into account thanks to an additional force f that represents
the body forces that the blades exert on the flow. This force term is incorporated in the SDEs
that govern the movement of the particles. To this end, Equation (A.20), which governs the time
evolution of the velocity Ut = (ut, vt, wt) of a particle, is modified as follows:

dUt =− 1

ρ
∇x〈P〉(t,Xt)dt+ f (t,Xt,Ut) dt

−G(t,Xt)
(
Ut − 〈U〉(t,Xt)

)
dt+ C(t,Xt)dWt

(A.21)

where the term f(t, x, U) represents the body forces of the turbine seen by the particle at
point x with velocity U . We refer to [91] for a detailed discussion on the turbine force terms
implementation in the Lagrangian context (including nacelle and mast forces).

For the simulation of the Parc de Bonneval wind farm presented hereafter, we have chosen
a rather basic non rotating uniformly loaded actuator disc model. Such model can be easily
parametrized with the characteristic data of thrust coefficient CT and power coefficient Cp, provided
by the turbine manufacturer, and varying with the dynamics of the inflow wind at the turbine.

(a) Local coordinates (b)(b) The cylinder C

Figure A.9 | Non rotating uniformly loaded actuator disc model. (a) The local reference
frame at the actuator disc of the turbine, using cylindrical coordinates; (b) The cylinder C that
extends the actuator disc. Mill forces are applied to particles that lie inside.

We describe the force f , using the local reference frame of cylindrical coordinates centered at
the hub of the turbine, with basis vectors ex, er and eθ as shown in Figure A.9a. Assuming that
the flow moves along the positive direction of the x axis, and that the turbine’s main axis is aligned
with the x axis, so that it faces the wind directly, the total thrust force exerted by the turbine is
formally given by (see e.g. [87])

Fx = −1

2
ρACTU

2
∞ex
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where U∞ is the unperturbed velocity far upstream from the turbine’s location, A is the surface
area of the turbine’s disc, ρ is the density of air, and CT is a dimensionless, flow dependent
parameter called the thrust coefficient. As in Réthoré et al. [104], the local velocity magnitude UD
is used instead of U∞ and the thrust force expression in SDM becomes

Fx = −1

2
ρACTU

2
Dex with UD(t) = E[U2

t |Xt ∈ D] (A.22)

In order to adapt this thrust force model to particles, the disc is extended to a cylinder C of
length ∆x and mass ρA∆x (see Figure A.9b). The force per unit mass inside region C, and to
include in (A.21), is then given by:

f(t, x) = − 1

∆x
CTU

2
D(t)1{x∈C}ex (A.23)

The available power is computed following the same idea:

P (t) =
1

2
ρACpU

3
D(t).

A.3.2 Numerical simulation

Numerical setup

The modeled domain is a 3D box, with flat ground surface and a variable roughness length inferred
from Google-Earth and lookup tables of roughness lengths for typical types of land-use. Four
different roughness lengths have been used with respect to the land-use pattern shown in the
Figure A.10. The roughness length varies between 0.01 and 0.4 m. The characteristics of the
numerical domain of the simulation and of the turbines are summarized in Table A.1.

The initial and boundary conditions are generated from the MERRA reanalysis with a 3-
hourly time sampling [105]. All MERRA fields are provided on the same 5/8 degree longitude by
1/2 degree latitude grid. The data used to extract initial and boundary conditions are those of the
closest grid point located at 25 km Southwest of Parc de Bonneval (48◦N and 1.25◦E). The vertical
mesh has 72 pressure levels but only the first three levels from the surface up to 970 hPa (about
400 m) are used. The pressure level coordinates are converted into altitude coordinates using the
surface pressure from the MERRA reanalysis. The wind components are then interpolated onto
the refined grid of SDM. The time step of the SDM simulation is 5 s. The profiles extracted from
the MERRA reanalysis at the closest grid point are therefore interpolated linearly in time with a
5 s time sampling.

Case study description

Parc de Bonneval is composed of six turbines of type Vestas V80-2.0 MW, each named by its
number from 1 to 6 in Figure A.10a. The simulated study-case corresponds to the 22th December
2016, a winter day, allowing neutral atmosphere approximation, and chosen for its typical wind
events, producing wake effects. Figure A.11 displays the time evolution of the measured wind
direction, wind speed and wind energy production at the 6 turbines. The wind speed and direction
are measured directly at Parc de Bonneval by anemometers located on the hub of each turbine.
The wind energy production is also provided directly from the generator.

Those time series are used to evaluate SDM model performance, with a sampling period of 10
minutes.
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(a) (b)

Figure A.10 | (a) Aerial view of the Parc de Bonneval from Google-Earth; (b) Aerial view
of the simulated wind farm. The pattern define the roughness length. Blue part represents
farmland (0.04 m), red are small town (0.4 m), green are uncut grass (0.01 m), cyan are small
forest (0.15 m). Yellow stars represent the turbines.

(a) Configuration of the simulation

Simulation parameters
Domain size x 3000 m
Domain size y 4787 m
Domain size z 408 m
75 cells in x ∆x = 40 m
75 cells in y ∆y = 63.83 m
85 cells in z ∆z = 4.8 m
Particles per cell 80
Final time is 24 h Time step is 5 s

(b) Parameters of the mill

Mill configuration
Hub height 100 m
Radius 40 m
Nacelle radius 4 m
Rotational speed 1.75 rad s−1

Table A.1 | Main parameters of the simulation.

The chosen episode is characterized by a strong wind blowing until 5:00 local time (LT). Between
5:00 and 16:00 LT, the wind speed weakens from 10 m s−1 to 2 m s−1. It increases again up to
6 m s−1 and decreases down to less than 2 m s−1 in 2 hours. As a consequence, the turbines
production vary from 0 to almost the turbine nominal power of 2 MW during this day. Moreover,
the wind shifts progressively from the South to the North. According to the position of the turbines
(see Figure A.10), a wind direction around 230◦ lines up the turbines 3 to 6, and a direction around
250◦ lines up the turbines 1 and 2. We mainly chose this particular episode of December 22th, as
it contains such wind event, happening between 7:00 and 9:00 LT. Indeed we can observe the wake
effect in Figure A.11. The phenomenon decreases the production downstream by 50%.

Results

Figure A.12 displays the time evolution of the simulated wind direction, wind speed and wind
energy production at the 6 turbines. It can be directly compared to Figure A.11. The time
variability is well reproduced with a slightly increasing wind speed between 0:00 and 3:30 LT and
a constant wind direction. The wind speed increases between 8 and 9.2 m s−1. The simulated
wind speed is slightly weaker than the measured wind speed which remains constant and equal to
10 m s−1 over this period of time. Such underestimation is caused by the initial and boundary
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Figure A.11 | Time evolution of Parc de Bonneval measurments during the 22th December
2016

conditions from MERRA reanalysis which provide a weaker wind speed at the hub height. The
wind direction is also slightly biased by about 10◦. The simulated wind speed then decreases at
a similar rate than the observed wind speed. The short increase of the wind speed followed by a
fast decrease between 15:00 and 23:00 LT is underestimated in the simulation as the wind speed
peaks at about 3.4 m s−1 in the simulation versus 6 m s−1 in the measurements. The bias in
wind direction disappears after 8:00 LT. Finally, we observe that the high frequency variability
is much too smooth in the simulated mean velocity. We mainly impute this phenomenon to the
combination of low frequency data set for the initial and boundary conditions, with the small size
of the numerical domain, that induces a strong forcing by the lateral inflow boundary conditions.

However, as shown in Figure A.13, the intrinsic variability contains in the model is representa-
tive of the observations variability. Figure A.13 displays the evolution of the norm of the turbulent
part of the wind U ′ = U −〈U〉 between 6:30 and 9:30 LT, when turbines 3, 4, 5 and 6 are lined up.
During the wake alignment period, computed and measured turbulent velocity norms are displayed
at a forefront turbine (turbine 3), and at a downstream turbine (turbine 5). To this end, in SDM,
we have extracted a realization of the turbulent part of the velocity, by randomly picking-up every
10 minutes, one particle velocity at the neighborhood of the rotors. Hourly moving means are
computed and subtracted to its instantaneous velocity. We proceed similarly with the measured
velocity.

In both case, the variability around the downstream turbine is higher than the variability
around the forefront turbine. Moreover, the variability of the turbulent velocity computed in SDM
is higher than the one measured at Parc de Bonneval. This can be explained by the way the
instantaneous velocity is retrieved. For SDM we used an instantaneous velocity at 5 s frequency
picked every 10 min. For Parc de Bonneval, the velocity measured by anemometers is at a high
frequency, but then it as been averaged over 10 min. This time averaging decrease the variability
in the observations.
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Figure A.12 | Time evolution of SDM results for the 22th December 2016

Figure A.13 | Evolution of the wind turbulent velocity between 6:30 and 9:30 LT, when
turbines 3, 4, 5 and 6 are lined up. Blue curves display the velocity for turbine 3 (upstream)
and green curves display the velocity for turbine 5 (downstream). Dotted line with circles are
measured at Parc de Bonneval and solid line with triangles are computed in SDM.
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Wake effect. Going back to Figures A.12 and A.11, we observe that the wake effect is well
reproduced in the simulation between 7:00 and 12:00 LT. The magnitude is underestimated but the
sheltering effect by the forefront turbines is clearly visible. The difference of wind speed between
the forefront turbines and those located downstream is about 1-1.5 m s−1 in the simulation against
2 m s−1 in the measurements. Figure A.14 displays a zoom between 6:00 and 13:00 LT of the
measured and simulated wind direction, wind speed and wind energy production. In detail, the
measured wind speed and energy production displays a continuously decrease between the forefront
turbines and the most downstream turbines. At Parc de Bonneval, we can distinguish two groups
of wind turbines. The forefront turbine 3 with turbines 4, 5 and 6 downstream in the wake between
6:30 and 9:00 LT and forefront turbine 1 with turbine 2 downstream in the wake between 10:00 and
12:00 LT. The simulation displays a similar behavior with however significant differences. Between
6:30 and 9:00 LT, wind speed and energy production at turbines 1 and 2 are similar to wind speed
and energy production simulated at turbine 3, and turbines 4, 5 and 6 are in the wake of turbine 3
as observed. Between 10:00 and 12:00 LT, the simulated wind speed and energy production varies
as observed at the locations of the wind turbines with however a weaker difference between the
forefront and the trailing wind turbines.

Figure A.15 shows surface views of the simulated turbulent kinetic energy at the hub height
(100 m) at different times (0:20, 8:00 and 11:00 LT). At this altitude the main source of turbulence
is due to the interaction with the turbines. Figure A.15a displays the turbulent kinetic energy
pattern 20 minutes after the beginning of the simulation at 00:20 LT. At this time the turbines
are not lined up and they all produce the same energy. Figure A.15b is similar as Figure A.15a at
8:00 LT. At this time, the wind direction is around 220◦. Consequently, the turbines 3, 4, 5 and
6 are lined-up. Figure A.15b displays the sheltering effect by the forefront wind turbine and the
turbulence generated in its wake. At 11:00 LT (see Figure A.15c), the wind veers so that turbine
1 creates a wake which reaches turbine 2.

To summarize the performance of the simulation against the measurements, Table A.2 displays
skill scores: the Normalized Root Mean Square Error (NRMSE) and the MAE (Mean Absolute
Error) defined by

NRMSE =

√
1
N

N∑
i=1

(ŷi − yi)2

ymax − ymin
, MAE =

1

N

N∑
i=1

|ŷi − yi|. (A.24)

N is the number of measurements. It is equal to 145 (one measurement every 10 minutes from
the 22th December 2016 00:00 LT to the 23th December 2016 00:00 LT). We make use of the same
number of simulated data saved at the same time. y is the measured wind speed and ŷ is the
simulated wind speed.

Table A.2 shows a systematic bias of 1.5 m s−1 between the simulation and the measurements,
while the NRMSE range varies between about 14.5 to 17%. This is in part due to the initial and
lateral boundary conditions from MERRA reanalysis.

Figure A.16 shows vertical profiles of the wind at different times and locations. Both panels
display one profile forefront and one profile downstream, at 8:00 (left) and at 11:00 LT (right).
The profiles displaying a continuously increasing wind speed (blue curves) correspond to forefront
profiles. They are taken at the same location, in front of the turbines and far from their interaction
in the middle of the domain. As a consequence, it displays the upstream vertical wind. At 8:00 LT
(Figure A.16a), the profile displaying a strong wind speed decreased between 60 and 150 m height
(green curve) is extracting downstream turbine 6. This decrease is due to the forefront turbines
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(a) Observed wake effect
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(b) Simulated wake effect
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Figure A.14 | Zoom between 6:00 and 12:00 LT

which disrupt the flow and slowdown the wind in front of the downstream turbines. Indeed, at
8:00 LT, turbines 3, 4, 5 and 6 are lined up. At 11:00 LT (Figure A.16b) the green profile is
extracting downstream turbine 2. At this time, turbines 1 and 2 are lined up and this is why the
wind speed downstream the turbine 2 is slowed by turbine 1. In both case, the interaction with
the turbines decreases the wind speed from 2 m s−1 maximum at 80 m and 120 m height (just
under and above the hub). This figure well describes the wake effect.
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Figure A.15 | Surface view at hub height (100 m) at different times. The three panels show
the turbulent kinetic energy.

NRMSE (in %) MAE (in m/s)
Turbine 1 14.57 1.369
Turbine 2 14.56 1.334
Turbine 3 15.88 1.578
Turbine 4 16.83 1.681
Turbine 5 14.92 1.455
Turbine 6 14.71 1.425

Table A.2 | Indicator of the deviation between the simulated wind ŷ and the observed wind y
over the six turbines.

A.4 Conclusion

In this paper, we have presented some first numerical experiments obtained from the SDM numer-
ical approach, for a wind farm simulation in condition of use, and we have compared the obtained
result with the reality of measures at the turbines.

We have also presented some numerical analysis and experiments that evidence the way the
numerical algorithm for SDM is converging.

Some other experiments of wind farm simulation are in preparation, with improvements both in
the model and in the description of initial and boundary condition. The objectives are to perform
better and reduce the bias against measure, but also to illustrate the ability of SDM to compute
not only the mean velocity, but also the local distribution of the turbulent wind, who takes part
in the uncertainty of wind power production.
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Figure A.16 | Vertical profils taken at different time and place. (a) is taken when the turbines
3, 4, 5 and 6 are lined up; (b) is taken when the turbines 1 and 2 are lined up.
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Titre : Dimensionnement d’un système de prévision éolienne à court terme

Mots clés : Prévision court terme, Énergie éolienne, Réduction d’échelle, Valeur économique

Résumé : Dans un contexte de réchauffement clima-
tique et de transition énergétique, le développement
des énergies renouvelables est indispensable afin
de garantir une production d’énergie qui réponde
à une demande en croissance constante. Les pro-
ducteurs éoliens Français bénéficient d’une période
de rachat obligatoire de leur production de la part
d’EDF durant 15 ans. Après cela, ils doivent vendre
leur production sur le marché concurrentiel. Pour
ce faire ils doivent annoncer à l’avance la quantité
d’énergie qu’ils injecteront sur le réseau. En cas de
déséquilibre, des pénalités leurs sont imputées. En
France, l’échéance limite pour vendre son énergie
est de 30 minutes. Ainsi, dans cette thèse, plusieurs
approches de réduction d’échelle, paramétriques
(régression linéaire) et non paramétriques (forêts
aléatoires) sont développées, calibrées et évaluées.
Les échéances considérées vont de 30 min à 3 h.
Les méthodes de réduction d’échelle considérées
sont très rarement utilisées pour des échéances
inférieures à l’heure puisque les modèles numériques
sont généralement exécutés toutes les 6 à 12 h.
L’utilisation de mesures in-situ dans les méthodes

de réduction d’échelle, afin de corriger la prévision
numérique à l’initialisation, permet un gain de perfor-
mance significatif. Comparé avec les méthodes sta-
tistiques classiques pour la prévision court terme,
l’amélioration par rapport à la méthode de persis-
tance va de 1.5% à 10 min à plus de 30% à 3 h.
Afin de limiter l’accumulation d’erreurs lors du pas-
sage de la prévision du vent à la prévision de la puis-
sance éolienne, une analyse de l’erreur induite par
différentes variables météorologiques, comme la di-
rection du vent ou la densité de l’air, également est
présentée. Dans un premier temps, la prévision ferme
par ferme est explorée puis la dimension spatiale
est introduite. Pour finir, la valeur économique d’un
tel système de prévision court terme est explorée.
Les différentes étapes du marché de l’électricité sont
étudiées et les différentes sources d’incertitude et de
variabilité, comme les erreurs de prévision et la vo-
latilité des prix, sont mises en évidence et évaluées.
Pour les deux fermes considérées dans cette étude,
les résultats montrent que les prévisions court terme
permettent une augmentation du revenu annuel entre
4 et 5%.

Title : Sizing of a short term wind forecasting system

Keywords : Short term forecasting, Wind energy, Downscaling, Economic value

Abstract : In a context of global warming and energy
transition, the development of renewable energies is
essential in order to ensure energy production that
meets a constantly growing demand. French wind po-
wer producers benefit from a “obligation to purcha-
se” from EDF for 15 years. After that, they have to
sell their production in the competitive market. To do
so, they must announce in advance the amount of
energy they will inject into the grid. In case of im-
balance, they are charged penalties. In France, the
deadline for selling energy is 30 minutes. Thus, in
this thesis, several downscaling approaches, parame-
tric (linear regression) and non-parametric (random
forests) are developed, calibrated and evaluated. The
considered lead times range from 30 min to 3 h. The
downscaling methods considered are rarely used for
lead times lower than 1 h since numerical models are
generally run every 6 to 12 hours. The use of in-situ
measurements in downscaling methods to correct the
numerical prediction at initialization, allows a signifi-

cant performance gain. Compared to traditional sta-
tistical methods for short term forecasting, the impro-
vement compared to the persistence method ranges
from 1.5%, 10 min ahead, to more than 30%, 3 h
ahead. In order to limit the accumulation of errors in
the conversion from wind speed forecast to wind po-
wer forecast, an analysis of the error induced by dif-
ferent meteorological variables, such as wind direction
or air density, is presented. First, the forecast at the
farm scale is explored and then the spatial dimension
is introduced. Finally, the economic value of such a
short term forecasting model is explored. The different
steps of the electricity market are studied and the dif-
ferent sources of uncertainty and variability, such as
forecast errors and price volatility, are identified and
assessed. For the two wind farms considered in this
study, the results show that the short term forecasts
allow an increase in annual income between 4 and
5%.
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