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Abstract

The Problem Pancreas secretes two main hormones: insulin and glucagon, to regulate

the main source of energy "glucose" to body cells in blood stream. Insulin stimulates the

uptake of glucose in the blood stream to cells and muscles for energy. On the contrary,

glucagon stimulates the liver to break down stored glycogen to release glucose when blood

glucose (BG) levels are under 70 mg/dL during fasting or exercises and while insulin is

suppressed. Type 1 Diabetes Mellitus (T1DM), or insulin-dependent diabetes, is a chronic

disease that mainly results from the autoimmune destruction of the insulin-producing β cells

in the pancreas. The result is an absolute lack of endogenous insulin production. Without

insulin stimulating the uptake of glucose to cells and muscles, blood glucose remains in the

blood stream and grows into hyperglycemia (above 180 mg/dl). The disease was fatal before

the discovery of insulin in 1921.

Available (Open-loop) Solution To survive, daily exogenous insulin injections/infusions

is the only solution to regulate blood glucose. The patient injects the adequate amount of

insulin calculated according to the glucose amount in a meal. These doses known as boluses

are associated to a background steady insulin infusion rate called the basal level. The latter is

responsible for maintaining blood glucose constant during fasting conditions. The patient

must also consider, in this stressful daily self-treatment process, the perturbations like stress,

sickness and physical activities etc. Poor treatment causes long term complications like renal

failure and peripheral vascular complications.

Engineering (closed-loop) Solution From the sixties till today, the research objective, in

the engineering field, is to take the burden off T1DM patients by replacing the stressful

(open-loop) programmed basal/bolus insulin doses known as the Functional Insulin Therapy

or Treatment) (FIT) by the automatic infusion device. Therefore, an Artificial Pancreas

(AP) appeared to be the ultimate goal of glycemia regulation of T1DM. This long standing

project has the aim to close the loop between an automated insulin pump and a continuous

glucose measurement (CGM) sensor to approach natural regulation of glycemia. With the

rapid growth of technology this topic has received a worldwide interest and it witnesses a
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great ongoing development. Though it is a long standing problem, so far, there is no fully

automated viable device available for diabetic patients. As will be detailed in the literature

survey of Chapter 2, different control strategies have been tested in silico and in vivo for this

purpose.

Contributions To close the loop between an insulin pump and a blood glucose sensor,

two main types of control algorithms have been used: non-model-based and model based

controllers. These are Model-free Control (MFC), positive Sliding Mode Control (SMC)and

positive state feedback control. The controllers have been tested on T1DM simulators to

evaluate their performances. In addition, an important open-loop result is obtained that is,

hypoglycemia prediction under basal injection during fasting phase. The following points

summarize the work done in this thesis in a chronological order:

1. First application of MFC (intelligent Proportional (iP) and intelligent Proportional-

Integral-Derivative (iPID) controllers) for glycemia regulation of T1DM.

2. A Positive SMC is designed for the first time for glycemia regulation respecting the

positivity constraint of the insulin pump. The controller is positive everywhere inside

the largest invariant set of plasma insulin.

3. The theory of positively invariant sets of linear systems is employed for the first time on

a T1DM model. The major outcome is glycemia regulation, hypoglycemia prevention

and prediction.

4. The largest positively invariant set under constant basal insulin injection (open-loop)

in fasting phase is found. It is used to predict and prevent from future hypoglycemia.

5. The input/state positivity analyses are considered for the first time to design a pos-

itive state feedback controller to regulate glycemia. Inside the closed-loop largest

positively invariant set glycemia is regulated and hypoglycemia is prevented. Future

hypoglycemia is predicted when the system initial condition is outside the largest

Positively Invariant Set (PIS).
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6.13 Pump-off hypoglycemia Prediction ũ =−ub . . . . . . . . . . . . . . . . . 142

6.13.1 Critical time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.14 Fasting-Hypoglycemia Prediction: a General algorithm . . . . . . . . . . . 143

6.15 The Polyhedral PIS in R3
+: C = I3⇥3 . . . . . . . . . . . . . . . . . . . . . 144
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Chapter 1

General Introduction

1.1 Chapter Introduction in French

1.1.1 Le problème

Le pancréas sécrète deux hormones principales : l’insuline et le glucagon. Elles régulent la

source principale de l’énergie «le glucose» des cellules du corps dans la circulation sanguine.

L’insuline stimule l’absorption de glucose par les cellules et les muscles. Au contraire, le

glucagon stimule le foie pour décomposer le glycogène stocké et libérer du glucose lorsque

le taux de glucose sanguin (BG) est inférieur à 70 mg/dl pendant le jeûne ou lors des

efforts physiques et que l’insuline est supprimée. Le diabète de type 1 (DT1), ou diabète

insulinodépendant, est une maladie chronique qui résulte principalement de la destruction

auto-immune des cellules beta produisant de l’insuline dans le pancréas. Il en résulte un

manque absolu de production endogène d’insuline. Sans insuline stimulant l’absorption de

glucose aux cellules et aux muscles, la glycémie n’est pas visible et donc elle s’accumule

(au-dessus de 180 mg/dl) dans la circulation sanguine conduisant à des complications à long

terme. La maladie était fatale avant la découverte de l’insuline en 1921.

1.1.2 Solution disponible (boucle ouverte)

Pour survivre, les injections/infusions quotidiennes d’insuline exogène sont la seule solution

pour réguler la glycémie. Le patient injecte la quantité adéquate d’insuline calculée en

fonction de la quantité de glucose absorbée dans un repas. Ces doses, connues sous le nom

de bolus, sont associées à un taux de perfusion régulière d’insuline de fond appelé niveau

basal. Ce dernier est responsable de maintenir la glycémie constante pendant les conditions

de jeûne. Le patient doit également considérer, dans ce processus d’auto-traitement quotidien
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qui peut être une source de stress, les perturbations comme le stress, la maladie et les activités

physiques, etc.

1.1.3 Solution d’ingénierie (boucle fermée)

Depuis les années soixante jusqu’à nos jours, l’objectif de la recherche, dans le domaine de

l’ingénierie, est de prendre le fardeau des patients T1DM en remplaçant les doses stressantes

d’insuline basale / bolus (boucle ouverte) connues sous le nom d’insulinothérapie fonction-

nelle (ITF) par un dispositif automatique. Par conséquent, un pancréas artificiel (PA) est le but

ultime de la régulation de la glycémie DT1. Ce projet de longue date a pour but de fermer la

boucle entre une pompe à insuline automatisée et un capteur de mesure continue du glucose

(MCG) pour reproduire la régulation naturelle de la glycémie. Avec la croissance rapide de la

technologie ce sujet a reçu un intérêt mondial et il est l’objet d’un grand développement en

cours. Bien qu’il s’agisse d’un problème ancien, jusqu’à présent, il n’existe pas de dispositif

viable entièrement automatisé disponible pour les patients diabétiques. Comme on le verra

plus en détail dans la littérature du chapitre 2, différentes stratégies de contrôle ont été testées

in silico et in vivo dans ce but.

1.1.4 Notre contribution

Pour fermer la boucle entre une pompe à insuline et un capteur de glucose sanguin, deux

principaux types d’algorithmes de contrôle ont été utilisés : des commandes basées sur des

modèles et des commandes non basées sur des modèles. Il s’agit de la commande sans modèle

(CSM), de la commande positive par modes glissants (CMG) et d’une commande positive

par retour d’état. Les contrôleurs ont été testés sur des simulateurs T1DM pour évaluer leurs

performances. En outre, on obtient des résultats importants en boucle ouverte, c’est-à-dire

une prédiction d’hypoglycémie sous injection basale pendant la phase de jeûne. De manière

exhaustive, nous listons l’ensemble de nos contributions :

1. Première application de CSM (contrôleurs proportionnels et Proportionel-Intégral-

Dérivé intelligents) pour la régulation de glycémie de T1DM.

2. Une CMG positive est conçue pour la première fois pour la régulation de la glycémie en

respectant la contrainte de positivité de la pompe à insuline. La commande est positive

partout à l’intérieur du plus grand ensemble invariant d’insuline dans le plasma.

3. La théorie des ensembles invariants positifs de systèmes linéaires est employée pour

la première fois sur un modèle T1DM. Le principal résultat est la régulation de la

glycémie, la prévention et la prédiction de l’hypoglycémie.
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4. Le plus grand ensemble positivement invariant sous injection basale constante d’insu-

line (boucle ouverte) en phase de jeûne est trouvé. Il est utilisé pour prédire et prévenir

une future hypoglycémie.

5. Les analyses de positivité d’entrée / d’état sont considérées pour la première fois pour

concevoir un retour d’état positif pour réguler la glycémie. En boucle fermée, la glycé-

mie est réglée tout en restant positive et l’hypoglycémie est évitée. L’hypoglycémie

future est prédite lorsque la condition initiale du système est en dehors du plus grand

ensemble positivement invariant.

1.2 General Introduction

The problem of regulating glycemia of Type-1 Diabetes Mellitus (T1DM) is investigated

in this work. T1DM is a chronic autoimmune disease affecting approximately 25 million

individuals in the world. A T1DM patient suffers from an absolute lack of insulin due to

autoimmune destruction of pancreatic β -cells. Insulin stimulates the uptake of glucose in

the blood stream to cells and muscles for energy. Without insulin stimulating the uptake

of glucose to cells and muscles, blood glucose remains in the blood stream and grows into

hyperglycemia. To survive, exogenous insulin injections is the only solution to regulate

glycemia. The disease was fatal before the discovery of insulin in 1921.

Current treatment requires programmed injections. These are either multiple daily insulin

injections or continuous subcutaneous insulin infusion (CSII) delivered via a pump. While

calculating insulin doses, the patient must consider many factors like carbohydrates in every

meal and physical activities. Poor treatment causes long term complications like renal failure

and peripheral vascular complications. As a result, automatic control of these injections

has received a wide interest especially with the rapid development of sensing technologies

and insulin pumps. For more than 50 years, the idea of an Artificial Pancreas (AP) device

was envisioned. The core of the device is the control algorithm that closes the loop between

blood glucose measurements and insulin injections of T1DM patients. The objective is to

replace the manual injections and to enhance the stressful everyday life of T1DM patients.

The main challenge is hypoglycemia that is an acute complication in the life of a T1DM

subject especially in nocturnal time. It is a major open problem which stood against the

realization of AP device.

In general the focus of any research on AP is to design a control algorithm adaptable to

different patient insulin sensitivity and robust enough to deal with non modeled dynamics,

uncertainties and measurement noise. An important factor that affects controllers performance
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is to achieve the trade-off between reducing hyperglycemia and avoiding hypoglycemia.

Moreover, the positivity of the control input (insulin infusion) must be taken into account in

the design.

The mainstream of control algorithms, that was used previously in different clinical tests,

is the Proportional-Integral-Derivative (PID) controller and the Model Predictive Control

(MPC). MPC is popular in this field as it handles the system constraints in the design. Its

main drawback is the cumbersome optimization process. PID was also frequently tested as

it was observed that it mimics pancreatic β -cells behavior. Moreover, its design does not

require a precise model of the system.

In this work two main controller types are employed: model-based and non-model based

controllers. To asses their efficiency, both types are tested in silico on two T1DM simulators.

The first simulator is a long-term model that is derived from clinical data of T1DM subjects

and developed in LS2N laboratory in France. The second simulator is the Uva/Padova T1DM

simulator that is approved by the Food and Drugs Administration (FDA) for closed-loop

control validations. All controllers designed and tested hereafter are fully automatic without

meal announcements nor supplementary insulin doses.

In this work, Model-free control (MFC) is designed for glycemia regulation for the first

time. In its control, poorly known dynamics and perturbations are estimated on line via

the unique knowledge of the input/output measurements. The estimation is employed in

the control law to compensate for perturbations and the loop is closed via a simple PID

controller. MFC with PID in the feedback is called intelligent PID (iPID). It offers the

simple features of a PID control in the frame of a model free design. In opposition to

previous PID studies, the control algorithm developed hereafter is fully automated without

any feed-forward or supplementary insulin doses. Intelligent proportional (iP) is firstly tested

employing a variable reference trajectory to circumvent the poor postprandial behavior of

constant reference iP. Variable reference iP produced an impulsive control of fast reaction to

meals that yielded a reduced postprandial hyperglycemia. To further enhance postprandial

response, additional closed loop terms are added and an iPID is designed using a constant

glycemia reference. In silico results comparison showed a better postprandial glycemia

regulation with constant reference iPID over iP employing a variable reference. iPID is also

compared to a classic PID on the well known Uva/Padova T1DM simulator. The results

showed that the postprandial response was improved with iPID reducing hyperglycemic

excursions with minimal hypoglycemic events. Moreover, the results showed that iPID,

who has the classic PID structure with new adaptive feature, emulated insulin delivery of

pancreatic β -cell. MFC showed a good robustness level. The system is considered as a black

box and MFC parameters are tuned empirically based on the input/output measurements.
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Another robust controller is designed and tested in this thesis, that is Sliding Mode

Control (SMC). A positive SMC is designed for the first time for glycemia regulation. The

controller is positive everywhere in the largest closed-loop Positively Invariant Set (PIS) of

plasma insulin subsystem. Two-stage SMC is designed, the second stage SMC2 block uses

the glycemia error (with respect to the desired level) to design the desired insulin trajectory.

Then the plasma insulin state is forced to track the reference via first stage control SMC1.

The switching variable of SMC1 is the first order polynomial of the insulin error. Sliding

mode of SMC1 guarantees insulin reference tracking. The resulting desired insulin trajectory

is the required virtual control input of the glycemia system to eliminate glycemia error.

Glycemia error is the switching variable of SMC2. Glycemia is steered to the normal set

point during sliding mode of SMC2. In silico trial is performed to validate the theoretical

results on the nominal system during fasting phase. Robustness of SMC against parameter

change, meal perturbations and sensor noise is considered as a perspective.

Due to the discontinuity of the control law, designing a positive SMC everywhere in

the largest PIS such that glycemia remains invariant within the desired level is much more

complex. The positive SMC is a proof of concept and the design can be extended to include

hypoglycemia constraint. In other words, the future problem maybe to design a positive

SMC in the largest PIS where glycemia is above hypoglycemic threshold (70 mg/dL).

The problem of finding the largest PIS where glycemia remains invariant within or above

the desired threshold is addressed via a simple continuous control law. In other words, to

design a positive controller that takes hypoglycemia constraint into account and establishes

a tight control. The loop is closed via a positive state feedback controller. First of all, the

control law is simple and continuous. Thus, the design of a positive state feedback in the

largest PIS such all system states are positive, is less complex than that with SMC. Moreover,

the theory of invariant polyhedra for continuous linear systems is directly applied to find a

positive state feedback controller. The largest PIS of the open-loop system (where only a

basal insulin rate is infused) is firstly obtained. Secondly, the largest PIS of the closed-loop

system under a stabilizing positive state feedback control is found. Inside the PIS, glycemia

is regulated to its desired level without hypoglycemia risk. The main outcome of the largest

open and closed-loop PIS for glycemia system is the hypoglycemia prediction. A solution

to avoid the life-threatening barrier to the optimal diabetic treatment. Hypoglycemia is

predicted here based on the system initial conditions. The prediction is established when

the initial conditions are outside the largest closed-loop PIS (BG<70 mg/dL). In this case,

the loop is opened to either administrate basal insulin only, or to switch the pump off. If the

initial condition belongs to the open-loop (basal) PIS then the loop is opened to inject basal

insulin only. Otherwise, if future hypoglycemia is also predicted under basal injection, then
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the pump is switched off signaling severe hypoglycemia. In this manner, positivity analysis is

shown to be very useful for tight glycemia regulation and also for hypoglycemia prediction.

1.3 Thesis Overview

The next chapter is an introductory chapter that presents the problem of glycemia regulation

in humans from healthy to diabetic subjects. The disease is introduced in its two types

reviewing the available programmed insulin therapy. The state of the of AP studies and the

related clinical trials is reviewed in the end of Chapter 2.

In Chapter 3, a review of the main mathematical models and T1DM simulators that

describe glucose-insulin dynamics of T1DM is given. A new long-term glycemia-insulinemia

model that was derived from real T1DM clinical data is presented. The existence of an

equilibrium point of a T1DM model in fasting conditions is discussed from the physiological

point of view. On these bases, the presented mathematical models are assessed to find out

whether they give a good description of glycemia-insulinemia dynamics T1DM.

In Chapter 4, MFC design theory is recalled and a brief stability study of iP controller

is presented. A counter academic example of an unstable linear system is given showing that

it can not be stabilized by an iP. Thereafter, iP controller is tested for glycemia regulation

employing a constant reference and a variable reference trajectory. The iP behavior is

compared to a constant reference iPID. Model-free iPID performance is also compared to a

classic PID and the in silico results showed a better postprandial response with the iPID. The

overall MFC results are discussed and a general conclusion is given.

In Chapter 5, SMC is designed for glycemia regulation. The largest PIS of insulin

system is firstly found in open and closed-loop. Then, the parameters of SMC are designed

to yield a positive control everywhere in the closed-loop PIS. The desired insulin trajectory

is designed to steer glycemia error to its desired level via a second SMC. The design steps of

the second SMC control are detailed.

In Chapter 6, positivity and invariance of overall system in R3 is presented in open-loop

(under constant basal insulin injection) and under positive state feedback control. In the

first part of the chapter, the largest open-loop PIS is firstly found such that glycemia error is

nonnegative. At first the polyhedral PIS is characterized. This is followed by characterizing

the surface that bounds the largest PIS. The result is used to predict hypoglycemia under basal

injection. In the second part of Chapter 6, a positive state feedback controller is designed

such that glycemia state remains invariant above hypoglycemia threshold. The resulting

largest polyhedral PIS is presented. The limiting surfaces of the largest PIS are then found.

Open and closed-loop PIS results are used to implement a general hypoglycemia prediction
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algorithm. The resulting positive state feedback controller is tested in silico to validate the

theoretical results.

Finally, a general conclusion is given in Chapter 7 followed by the planned future work

of this thesis. Each chapter begins with a French introduction and the overall thesis resume

in French is presented directly after Chapter 7.





Chapter 2

Glycemia Regulation: from natural to

artificial

2.1 Chapter Introduction in French

Il s’agit d’un chapitre introductif sur la régulation de la glycémie pancréatique chez l’homme

sain et diabétique. Tout d’abord, la production de glucose sanguin endogène est brièvement

revue suivie de l’introduction des principaux organes qui consomment le glucose comme

une source d’énergie majeure. Les hormones pancréatiques principales sont l’insuline et le

glucagon. Leurs rôles principaux sont définis. Le diabète dans ses deux types est présenté ainsi

que le traitement quotidien de chacun mettant le focus sur DT1. La description commence par

le traitement manuel jusqu’à la solution artificielle, c’est-à-dire la régulation de la glycémie

en boucle fermée dans la cadre d’un PA. L’état de l’art des études de PA est revu et l’accent

est mis sur les courants principaux des algorithmes de commande utilisés. L’état de l’art des

études AP commence avec le régulateur PID dans les essais in silico et in vivo. Ceci est

suivi par la commande industrielle plus avancée, le CP et les réalisations principales de cette

commande à ce jour. Une étude de CMG conçue pour la régulation de la glycémie, en tant

que commande robuste, est ensuite présentée. Finalement, certaines études de la commande

par retour d’état sont revues. Une conclusion générale de ces algorithmes de commande et

leur contribution au projet AP global est présentée. Leurs principaux problèmes ouverts sont

également soulignés donnant les solutions de cette thèse pour chacun.
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2.2 Introduction

This is an introductory chapter for pancreatic glycemia regulation in humans from healthy

to diabetic. Firstly, endogenous blood glucose production is briefly reviewed followed by

introducing the main organs that consume blood glucose as a major energy source. the key

pancreatic hormones: insulin and glucagon and their principal roles are defined. Diabetes

mellitus in its two types is introduced presenting the daily treatment of each putting the focus

on T1DM. The passage turn from manual self treatment to artificial solution i.e. glycemia

regulation via closed-loop control under AP project. The state of the art of AP studies are

reviewed and the focus is on the mainstream of the employed control algorithms.

2.3 Blood glucose: The ubiquitous fuel in biology

Glucose: a name given to the grape sugar by the committee of the French Académie des

Sciences in its report on July 1838. The name is contrived from the Greek glukus, "sweet

to the taste" and the suffix -ose, derived from the Latin -osus, became biochemical suffix

indicating a carbohydrate [1]. Carbohydrates (CHO) are the body’s primary energy source

and glucose is their basic unit which is absorbed quickly as a single component.

2.3.1 Glucose Production

• The liver: it plays a central role to balance glucose uptake and storage. In absorptive

state it stocks the elevated postprandial glucose (around two-thirds of blood glucose

(BG)[2]) as glycogen. Conversely, in post-absorptive or fasting phase glucose release

is activated to maintain glucose homeostasis.

• The kidneys: during fasting state, kidneys participate to glucose production of about

20 ⇠ 25% of glucose release in this condition [3].

• Intestine: recently a novel function of intestinal endogenous glucose production was

described [4]. It contributes to 20 ⇠ 25% of total fasting endogenous glucose produc-

tion.

2.3.2 Glucose Consumption

A steady glucose supply, transported by the blood stream, is needed by most of tissues and

organs:
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• The brain is the major consumer of about 120g of glucose daily, which corresponds to

60% of the utilization of glucose by the whole body in the resting state [2]. Glucose is

the only fuel for the brain except for starvation where liver breaks down fatty acids

into ketone bodies to partly replace glucose.

• Muscles: In addition to glucose, they consume fatty acids and ketone bodies. In resting

state, fatty acids covers 85% of their energy needs [2].

• Kidneys: their glucose consumption, filtration, and re-absorption play an important

role in glucose homeostasis. They contribute to about 20% of the total glucose removed

from the circulation [3].

Blood glucose concentration or glycemia1 is measured in terms of either molar concentra-

tion (mmol/L) or mass concentration (mg/dL) and the over night or fasting normoglycemia,

is within 70-100 mg/dL for a non-diabetic. This tight control is mainly achieved through the

balance between glucose consumption and production. The process of preserving glucose in

its narrow normal limits is called Glucose homeostasis [5].

2.4 Glycemia Regulation: Glucose homeostasis

The property of a system to maintain its variables relatively constant (in their normal levels)

to keep a stable internal environment is called homeostasis. The term originally referred

to the processes within living organisms like the internal body temperature and glycemia

regulation. The principle is also found in automatic control such as the classic examples of

thermostat and autopilot. Glucose homeostasis is a natural control mechanism that regulates

glycemia based on the interaction and balance between two main pancreatic hormones:

insulin and glucagon. They have antagonistic effects to maintain normoglycemia, insulin

promotes glucose transport to cells to reduce elevated glycemia, while glucagon stimulates

endogenous glucose production to rise low glycemia (see Fig. 2.1 )2. From automatic control

point of view glucose homeostasis represents a negative feedback control.

It is maintained by a variety of cellular mechanisms. Important mechanisms are carried

out by hormones and the pancreas plays the fundamental role.

1first recognized by the French physiologist François Magendie in the early 19th century [1]
2 image taken from https://zhiyaobme.wordpress.com/2014/10/17/balance-mattars
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Figure 2.1 Glucose Homeostasis

2.5 Pancreatic secretion

The pancreas represents the control center of glucose homeostasis via its endocrine function of

secreting the glycemia regulating hormones into the blood stream. Its major glucoregulators

are:

1. Insulin: secreted by β Langerhans cells in response to glucose and nervous stimuli. It

is the key hormone in glucose metabolism. It promotes

• glucose transport to most cells: like in resting skeletal muscles and adipose tissue.

Some tissues do not rely on insulin for efficient glucose uptake like in the brain

who uses non insulin-sensitive transporters [6], [7].

• glucose storage by the liver and the muscles in the form of glycogen.

• inhibits endogenous glucose production.
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2. Glucagon: secreted by α Langerhans cells in response to low blood glucose concentra-

tions as in fasting state. It promotes the breakdown of glycogen in the liver to release

glucose and stimulates the conversion of fatty and amino acids into glucose.

Insulin is secreted in the following phases:

• Basal rate: a steady background rate secreted during post-absorptive state i.e. overnight

or during fasting, that balances the endogenous glucose production to maintain normo-

glycemia.

• Cephalic phase: is stimulated by the sight, smell and taste of food before any nutrient

intestinal absorption.

• First phase: the initial rapid acute pulse of insulin 5-10 min after β cells are signaled

that glycemia is abruptly elevated. It promotes peripheral utilization of the nutrient

and suppresses endogenous glucose production [8], [9].

• Second phase: prolonged insulin secretion following the first phase which is related to

the degree and stimulus duration and sustained until normoglycemia is attained.

In addition to the endocrine system, the pancreas function is also controlled by the

autonomic nervous system. For example, during stressful situations and physical exercise

alpha cells are stimulated to release glucagon into the blood stream to fulfill the energy needs

[10].

2.6 Defect of Glucose homeostasis: Diabetes

Any metabolic abnormality involving organs or hormones breaks the continuous balance

between glucose transport, storage and metabolism which causes impaired glucose home-

ostasis. Deficiency of insulin secretion and/or action leads to elevated glucose concentrations

or Hyperglycemia. Prolonged hyperglycemia cause serious long-term complications like

renal failure, blindness, cardiac diseases and peripheral vascular complications that represent

the main cause of mortality in diabetics [5]. Recurrent hyperglycemia condition indicates

diabetes if it is greater than 126 mg/dL 3 after 8-hours fasting or greater than 200 mg/dL

for a 2-hours postprandial measurement after 75g oral glucose load. Dawn hyperglycemia

or dawn phenomenon is observed in diabetics which is defined as the early morning abrupt

rise in glycemia above fasting levels without antecedent hypoglycemia. It occurs due to

increased nocturnal secretion of cortisol and the growth hormones that stimulates hepatic

3According to American Diabetes Association (ADA).
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glucose production.

The two main forms of Diabetes mellitus are the insulin-independent or Type II (T2DM)and

insulin-dependent Type I (T1DM) diabetes. In the early stage of T2DM, the impaired

first- phase insulin secretion contributes to postprandial hyperglycemia (as illustrated in Fig.

2.2). This is compensated by a prolonged second-phase secretion to restore normoglycemia

but for the price of eventual late-phase hyperinsulinemia. Over time, cells, and primarily

skeletal muscles, do not respond properly to insulin and thus glucose absorption is reduced

which develops insulin resistance condition. In addition, the vicious cycle of chronic hyper-

glycemia/insulinemia may lead to the exhaustion and damage of β cells [8] and thus develops

T2DM. Treatment is carried out by improving lifestyle like weight control, diets and regular

physical activities added to oral medication associated in some cases with insulin injection.

Major concern for T2DM is cardiovascular complications.

 

Figure 2.2 First phase insulin in response to intravenous glucose in normal and diabetic
subjects. Mean fasting glycemia in normal 83± 3mg/dL versus 160 ± 10 in T2DM and
325± 33 mg/dL in T1DM. Note the lack of first phase insulin in T2DM and a total lack of
insulin response to glucose load. (Data from [11]).

2.7 T1DM

T1DM is known as juvenile diabetes since it usually develops in children and adolescents.

It occurs due to the progressive autoimmune destruction of β cells until eventually insulin

(*): ImmunoReactive Insulin: insulin levels in blood measured using radioimmunoassay methods.
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is no more produced. By the time of diagnosis, more than 80-90% of the β cells have been

destroyed due to the large gap between the autoimmunity onset and diabetes onset. However,

recent studies showed that they never reach zero in some established T1D patients [12]. Main

symptoms of T1DM are increased thirst, fatigue and frequent urination. The only treatment

is the exogenous insulin therapy.

2.7.1 Complications

• Acute complications

1. Hypoglycemia: a fall of blood glucose below normal levels. Mainly frequent

hypoglycemia in T1DM is related to three reasons [13] : i) unregulated insulin

injection and sustained hyperinsulinemia. ii) impaired glucagon response to

hypoglycemia which begins within 5 years of disease diagnosis. iii) defect in the

autonomic counterregulatory response of nervous system and reduced awareness

of hypoglycemia. The latter impairment results from hypoglycemia per se (i.e.

the patient has a history of hypoglycemia) during intensive insulin therapy. The

average T1DM patient suffers from two episodes of common hypoglycemia per

weak and one severe (often with seizure and coma) per year. Severe hypoglycemia

leads to cerebral damage (at plasma glucose levels of 30-35 mg/dL) or even death

to 2-4% of patients. (see[5] and the references therein).

Overnight hypoglycemia is more frequent and attributes to nocturnal sudden death

"dead-in -bed" syndrome which is a more serious concern for young patients.

2. Ketoacidosis: It occurs during hyperglycemia due to a lack or reduce effec-

tive insulin against increased hepatic and renal glucose production. It is a life-

threatening complication that indicates increased level of ketone bodies and

acidity in the blood. It develops when the body starts to break down fats to

release energy to compensate for faulty glucose metabolism. This metabolic

state is sometimes the first sign of diabetes. Its treatment necessitates immediate

hospitalization, re-hydration and insulin replacement.

• Chronic complications

Management of diabetes during childhood have implications of the future development

of the long-term complications. These include micro-vascular and macro-vascular

complications. The latter cover circulatory and cardiovascular such as stroke and

myocardial infraction (heart attack). Whereas the micro-vascular complications include

nephropathy (kidney damage), neuropathy (usually starts with feet) and retinopathy

[14].
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2.8 The survival: insulin therapy

Before the discovery of insulin by Banting, Best Macloed and Collip in 1921, T1DM was

a fatal disease. To survive, the patients were under severe diets to limit glycemia growth

which did not much to their life span. According to International Diabetes Federation (IDF)

diabetes atlas - 7th edition, there are 415 million diabetics world wide and it estimates 642

million incidences in 2040 among people aged 20-79 4. It estimates 0.5 million of T1DM

among children only in 2015. For the no-cure disease, exogenous insulin therapy is the only

treatment for survival. According to the ADA, insulin can be found in the following types:

1. Rapid-acting: 15 min onset 5, peaks time of about one hour and a total duration of 2-4

hours.

2. Short-acting (regular): 30 min onset, peak time within 2-3 hours and total effective

duration 3-6 hours.

3. intermediate-acting: 2-4 hours, peaks within 4-12 hours and is effective in 12-18 hours.

4. long-acting: several hours onset, and regulates glycemia evenly (peakless) and effective

over 24-hour period.

5. inhaled insulin 6: 12-15 min onset peaks by 30 min and cleared out after 180 min.

2.8.1 Insulin delivery

Insulin is delivered mostly by subcutaneous (SC) injection using an insulin syringe. At

increased cost, an insulin pen is more accurate and more convenient. Continuous Subcu-

taneous Insulin Infusion (CSII) using a electromechanical pump administers insulin even

more accurately. However, it has a higher risk of ketoacidosis resulting from some pump

infusion-related issues as pipe clogs or insulin leak[16].

Two main forms of treatments: conventional and functional or intensive. Those regimens

are to control blood glucose in the normal bounds by mimicking the normal insulin secretion.

Dose size and frequency is based on the insulin type, meal (size, composition and timing)

and exercise throughout the day.

• Conventional: A standard fixed insulin administration that requires fixed daily meals

to be taken at set times corresponding to 1 to 3 injections per day. Short and regular

4includes diagnosed and non-diagnosed subjects
5the time taken by insulin to reach blood stream and starts acting.
6 recently approved by Food and Drugs Administration (FDA) [15].
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insulin accompanied with intermediate-acting are usually used. The dietary and activity

regimens are set to match the fixed insulin doses. The physician modifies and updates

the regimen based on major changes in life-style like illness. This regimen is more

affordable to diabetics than the intensive therapy.

• Functional (or Flexible) Insulin Therapy/Treatment (FIT): in this regimen insulin is

infused in two separate rates: continuous basal rate (long-acting insulin) and insulin

boluses7 to account for meals (short-acting). The dosing is adjusted according to

glycemia reading, meal size (carbohydrate intake) and physical activities. It is a self-

management therapy where BG is monitored 3-5 times a day and insulin doses are

calculated following a predefined program. FIT provides a good glycemic control in

a more flexible life-style but requires a higher financial budget and an experienced

assisting team. This basal-bolus regime can be given by either Multiple Subcutaneous

Insulin Injections (MSII) or by CSII [15].

• Intraperitoneal (IP) administration: Insulin delivery using Continuous Intraperitoneal

Insulin Infusion (CIPII) through implantable IP pumps (see Fig. 2.3). Insulin delivered

through the IP route is absorbed rapidly into the portal vein and thus is a more

physiologic mode of insulin as compared to SC delivery [17]. IP implanted pumps

last years and they are refilled with transcutaneous insulin which has 1 min onset,

20-25 min peak time, and 1-2 h as total duration [18]. CIPII is emerging as a valuable

treatment option for closed-loop BG control.

Figure 2.3 Illustration of IP implantable pump. Right image modified from [19] and left
image IP pump and its insulin delivery communicator: MIP 2007C, Medtronic/Minimed,
Northridge, CA, USA.

7from Latin which means the administration of discrete dose of a substance like drug to rapidly achieve an
effective therapeutic concentration in the blood stream. Insulin bolus is injected (or infused) intravenously or
subcutaneously in an amount to account for the upcoming meal load
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2.8.2 FIT: how to

A general common algorithm to calculate FIT for T1DM subject is described as follows [20]:

1. Total Daily Dose (TDD) is calculated roughly as: TDI=0.55* body weight [kg].

2. Daily basal injection is usually 40-50% of TDD.

3. Insulin to CHO ratio I:CHO is defined as how many grams of CHO are covered by one

unit of insulin. If the 500 rule8 is used then I:CHO=500 ÷ TDD.

4. Insulin Sensitivity (correction) Factor (ISF) estimates the point drop of glycemia in

mg/dL for every unit of insulin. If rapid or short-acting insulin is used then ISF is

obtained by 18009 rule ISF=1800÷TDD.

N.B. The subject sensitivity to insulin is not a fixed value and it potentially varies during the

day, due to sickness, physical activities or stress. Therefore, this calculation serves as basic

start-up value that may be adjusted by the individual during the day.

Before meal intake, the patient weighs its CHO and according to his I/CHO ratio he

deduces the necessary meal bolus to be injected. Then, he measures his BG and if the reading

is above the desired target the subject should inject a pre-meal correction dose:

Correction dose =
BG target - BG reading

ISF
(2.1)

Then the subject injects the prandial bolus of rapid-acting insulin 20 min prior to the

meal 10.

2.8.3 Insulin on Board (IOB)

Bolus calculation (BC) in CSII regimen can be found as a feature of modern insulin pumps.

Beside taking into account the right hand side of (2.1), bolus calculators take another

important aspect into consideration: the approximation of the insulin decay curve [23]. This

curve estimates the remaining amount of insulin in the body from previous insulin bolus

which is defined as the insulin on board (IOB). IOB must be taken into account correctly to

8The 500 CHO rule assumes that the subject consumption+endogenous production of glucose is about 500g
per day. This rule is applied when rapid or short-acting insulin is used otherwise, with regular type a 450g rule
is applied.

9 Dr. Paul Davidson proposed the first the insulin management system of 1500 formula for the ISF and 450
for I:CHO in the mid 1980s and it was later modified to 1800 for ISF and 500 for I: CHO [21]

10a 20 min bolus prior to a meal is shown to significantly lower BG better than 20 min post-meal bolus or
immediate pre-meal injection [22]
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reduce the size of future bolus to avoid insulin stacking that leads to later hypoglycemia [24].

The BC pump setting that critically affects IOB correct calculation is the Duration of Insulin

Action (DIA). As detailed in [24], the widespread confusion in accurate DIA setting has

lead to more common insulin stacking which has a direct impact on hypoglycemia. Among

the authors recommendations, insulin manufacturers verify actual DIA for their short-acting

insulins. Based on a generic insulin sensitivity variation curve, [23] developed a dynamic

IOB estimator to be used in CSII or closed-loop treatments that showed better simulation

results than the current static pump IOB approximations.

2.9 Artificial Pancreas

In diabetic patients the physiological closed-loop system of the glucose homeostasis is broken

due to the deficiency or lack of beta cells response to glycemia elevation. Therefore the patient

needs to self-monitor his blood glucose using a glucometer and inject insulin accordingly

taking into account the external perturbations like meals and exercise. Blood glucose sensing

technology has evolved rapidly providing a feedback tool for diabetic patients. The two main

sensors used by diabetic individuals are finger-stick glucose meters and Continuous Glucose

Monitor (CGM). The former reads blood glucose levels by taking blood samples obtained by

pricking the finger. CGM measures glucose levels in the interstitial fluid providing real time

readings. CGMs are mainly accompanied with insulin pumps in CSII of FIT as illustrated in

Fig. 2.4.

Figure 2.4 Insulin delivery system MiniMedr640G systemˆ, insulin pump in black and a
CGM in white.

In this manner, insulin administration is not automated as the subject himself closes the

loop between the CGM and the insulin pump and controls his BG following the algorithm of

FIT. FIT + CSII provide a more flexible life style since it adapts to external loads like variable
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meal amounts and timings. However, the self BG regulation is cumbersome and T1DM

subjects still have a stressful everyday life maintaining tight BG control while reducing

the frequency and severity of hypoglycemia. Mimicking normal pancreas through different

therapeutic strategies is surely not an easy task and thus the alternative solution is the

development of artificial pancreas. Different approaches have been evaluated:

1. Bio-artificial pancreas: β cells or islet encapsulation in an immunoisolating semi-

permeable membrane. The concept is to surgically implant the islet tissue to artificially

function as a pancreas. The membrane should allow nutrient, insulin, glucose and

waste exchange with surrounding environment. Islet encapsulating can avoid foreign

body response and thus avoiding immunosuppressive medications. The approach is

quite promising but the research field is still on development to address the current

challenges such as materials used to create the tissue with the required properties and

its lifetime and the sufficiency of donor islets[25].

2. Insulin gene therapy: the transfer of a foreign gene into body cells to produce insulin.

Insulin gene could be injected to no-β cells [26]. This approach is applied to the

treatment of T1DM either by preventing the autoimmune destruction of β cells for the

new diabetics, or by engineering a β cell replacement [27]. The research is ongoing

and advancing to develop a therapy with a more precisely regulated insulin production

and secretion.

3. Artificial pancreas (the device): a closed-loop system composed of a control algorithm

device that administers insulin delivery of the pump depending on the real time reading

of the CGM.

Artificial Pancreas (AP) studies and tests have been evolving rapidly in parallel with the

technological advances. Automation of BG regulation has received a world-wide attention

and clinical trials of different control algorithms have been conducted and showed satisfac-

tory results that meet their own objectives. Yet, challenges are facing the realization of a

commercialized AP. Those range from technical like CGM performance (calibration and

delay), insulin delays, safety and reliability and robust communication between components

[29]. Others are physiological like insulin sensitivity and the positive irreversible insulin

injection as it can not be removed from the body once it is injected. Those challenges give

rise to increased hypoglycemic events and thus less efficient BG control.



2.10 Literature Survey: Closing the loop 21

Figure 2.5 A smart-phone based portable artificial pancreas: Diabetes Assistant system
(Dias) as presented in [28] where it was used in clinical trials.

2.10 Literature Survey: Closing the loop

The early efforts to develop AP started more than 50 years ago by the work of [30] who

developed an on-off feedback controller to regulate BG between 50-150 mg/dL. In the study,

a pair of servo-operated syringe pumps (glucagon and insulin) assemblies and a continuous

BG sampler are used to intravenously inject glucose and insulin. This promising initiation

was followed by the development of another AP in early 1970 called a Biostator TM approved

by FDA for treating hospitalized T1DM patients [31]. It used a nonlinear Proportional-

Derivative controller implemented in a digital computer unit deriving dual infusion pumps

(insulin and glucose) based on sampled Intravenous (IV) BG . Although the device marked a

step toward a commercialized AP, it was never adopted as a clinical device due to its high

cost, large dimensions (about the size of a console television set), technological complexity

(e.g. unreliable BG sensor and the need for blood withdrawal) [31, 32].

In the following years Biostator studies continued with IV BG sensing which is considered

as a practical obstacle. The authors of [32] were motivated by the fact that this device has

been the most clinically validated algorithm, for hospitalized T1DM subjects, to develop a

recent version of the device Biostator II optimized to be used with subcutaneous BG sensor.

The device test on virtual T1DM subjects, using an emulated continuous glucose sensor, have

shown a good control of 93% of time in normoglycemia.

The core of the AP design is the control algorithm and the ongoing research in this applica-

tion tries to find the best controller that mimics glucose homeostasis control mechanism. The

widely applied controllers especially in closed-loop trials are Proportional-Derivative-Integral

(PID) and Model Predictive Control (MPC) [29].
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Figure 2.6 Photograph of overall equipment including BG autoanalyzer, control cabinet and
servo-syringes which connected to injection sites. Photo taken from [30]

2.10.1 PID

The well-known industrial PID control has a grand share in the literature of AP studies. BG

of intensive care unit patients is regulated using expert sliding-table-based PID [33]. The

gain scheduled Proportional and Integral terms are updated hourly. The expert method allows

insulin rate to be decreased if BG falls below (180 mg/dL) and integral part is activated if

BG> 180mg/dL to increase insulin rate. In this same condition the control by rate of change

D term contributes by giving a bolus when BG rate crosses certain barriers. The clinical

results are shown to be comparable to the manual routine treatment but the closed-loop

control was sensitive to sensor errors which required manual intervention.

Some studies modeled PID algorithm as an artificial β cell. Starting from the principal

idea that any closed-loop system should mimic β cells, G. Steil used PID to emulate the

multiphasic insulin response of β cells [34] in different clinical trials. The D term produces

the first phase insulin and the integral term produces the steady basal rate added to the

Proportional that increases the insulin delivery if BG is above target and vice versa. The

author applied it in a clinical trial [35] on 10 subjects and results showed a comparable closed-

loop performance to that of conventional CSII and a stable nocturnal response. Despite that,

the trial marked some elevated postprandial BG as compared to no-diabetics under the same

conditions with hypoglycemic events. In the following clinical study on adolescents, the

authors of [36] enhanced PID performance by incorporating a manual bolus of 25-50 % of

the insulin bolus. It was given 15 min. prior to the meal. The added bolus is to compensate

the delay of subcutaneous insulin absorption and to reduce postprandial BG excursions. The

P gain is set as a proportion of TDD and I and D gains are adjusted between two values

during the day. The algorithm was later modified to include the estimated plasma insulin
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concentration as a feedback term. The authors of [37] added estimated plasma Insulin in the

Feedback loop (IFB) of the PID control law. IFB works to attenuate insulin delivery from the

feedback loop over the increase in estimated plasma insulin levels to prevent overdosing.

The aim is to reduce postprandial hypoglycemia. The modified PID control was tested

on 8 adults and results revealed a good estimation of plasma insulin but with postprandial

hypoglycemia episodes. A similar approach was tested on human subjects [38] which

compared the two iterations of PID with and without IFB. The authors considered the

perspective of [37] and constructed IFB as a linear combination of subcutaneous, plasma

and the interstitial/effective insulin concentrations. The authors considered IFB as a "brake"

on the insulin infusion in the feedback loop to prevent postprandial hypoglycemia. Results

came up without postprandial hypoglycemia. A subsequent study conducted on diabetic

dogs [39] marked an improvement of postprandial BG without undershoot hypoglycemia. It

was shown that the addition of IFB is equivalent to the placement of the poles of the insulin

compartmental model to the desired locations by choosing the IFB gain. PID+ IFB has also

shown a reduced risk of nocturnal hypoglycemia regardless of the preceding afternoon level

of physical activity as compared to conventional CSII regimen [40] in an inpatient study. A

recent PID study [18] utilized IFB in a fully implantable AP system with intraperitoneal (IP)

insulin delivery and glucose sensors. Their AP incorporated an anti-reset windup 11 method

to limit the integral rate of change and prevent postprandial hypoglycemia. It was shown in

the in silico test that the IP route for AP is promising as it provided a faster behavior. Since

the insulin injection is a positive input, thus PID is followed by a saturation function to block

any negative input. Thus, PID designers usually incorporate some anti-windup protection for

the integrator, or even remove the integral and replace it by the patient specific basal rate in a

PD+Basal control [41]. The authors compared PID and PD+Basal on Uva/Padova simulator

and concluded that the latter reduced postprandial hyperglycemia, but and conversely to PID,

it failed to respond appropriately to changes in insulin sensitivity.

As an overall view, frequent PID employment for glycemia regulation shows its merits

as a simple and efficient control algorithm. In this thesis, model-free control is chosen as it

offers the simple features of a PID control in the frame of a model free design. In opposition

to previous PID studies, the control algorithm designed hereafter (in Chapter 4) is fully

automated without any feed-forward or IFB terms.

11Integral wind-up occurs when the integral term builds up (in response to the error signal) and accumulates
beyond the actuator saturation limit. It takes significantly long time to recover to get back to be within the
actuator operating range. It causes excessive overshoot, sustained oscillations and long settling time.
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2.10.2 MPC

Model Predictive Control (MPC) is the advanced industrial counterpart of PID. The main

idea of MPC is that a mathematical model of the plant is used to predict the future behavior

of the process output during a sliding time window or the prediction horizon. The prediction

is used to optimize the control signal during a control horizon. The prediction and then the

optimization are updated using feedback measurements of the controlled variable. MPC is

widely known in the industry as an advanced algorithm that can handle process constraints.

Its predictive nature and constraint handling pushed MPC to the top of the list of controllers

used in AP application. Numerous publications have shown its potentials in both in silico

and in vivo test studies.

Of the early in silico studies of MPC is that of a nonlinear auto regressive model identified

off-line using artificial neural network [42]. They showed the feasibility of SC route in closed-

loop AP when compared to Biostator II with IV route. The authors of [43] designed MPC

tested on a nineteen-order compartmental model. Two MPC of two internal models are

compared: a linear identified step response model of the original nonlinear system, and

a linearised model of the patient with Kalman state estimation with improved results. A

clinical proof of the concept is realized in a 15 clinical trials study of nonlinear MPC in

[44]. The experiments were performed during fasting conditions on 10 subjects using IV

BG sampling and SC insulin delivery . Hovorka’s nonlinear model [45] is employed as an

internal model with time-varying parameters that are estimated at each control step. Linear

MPC acknowledged by the meal announcement (meal information is given to the controller)

is tested in silico in[46] and compared to PID under same conditions. A linearised internal

model of a nonlinear system and its parameters are obtained from the average values of

the population. For both PID and MPC, one parameter is tuned per individual, Kp for the

former and the output prediction weighting parameter for MPC. Although both showed

deteriorated performance with imperfect meal knowledge amount, the effect on MPC was

marginal. To avoid postprandial hyperglycemia, [47] presented a meal detection algorithm to

notify MPC by an upcoming meal. It was shown that a meal is flagged 30 min before meal

onset to notify MPC to switch the desired BG level from constant to a variable trajectory

that mimics a generic BG absorption profile for different meal loads using a meal library.

Another comprehensive in silico study [48] used MPC associated with meal size estimation,

IOB and a pump shut-off procedure to avoid hypoglycemia. The meal estimation provided a

feed-forward tool to automatically give priming meal boluses. IOB is computed based on
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fitting Pharmacodynamics PDs 12 curves to two compartmental models. IOB is used as an

additional constraint to avoid hypoglycemia. The test is accomplished on the Uva/Padova

T1DM simulator [50]. MPC was also tested under dynamic IOB (dIOB) constraint in [23].

In this study dIOB took into account diurnal insulin sensitivity variation and used it to adjust

the static available IOB (sIOB) estimations. The authors used a technique to superimpose

diurnal insulin sensitivity (depending on the time of the day) on the sIOB to personalize it.

The purpose was similar to that of IFB, to avoid insulin stacking to prevent hypoglycemia.

Improved hypoglycemia prevention was noticed employing dIOB as a constraint in the study

that was conducted on 100 patients of Uva/Padova simulator.

An outpatient study was performed in [51] of a wearable AP(DiAs) device of a smart

phone core on 20 patients under 42 hours of 28h of AP. This proof of concept encouraged

future trials. A bihormonal (Glucagon and insulin) AP outpatient study was performed in

[52] using MPC control for insulin delivery and Proportional-Derivative control for glucagon

( the gains were chosen to be functions of BG level for better control). Meal size information

is forwarded to the controller to trigger a small automatic priming bolus. The bionic wearable

device consisted of a smart phone and SC pumps and a 5 min CGM. They performed two

studies: 5 days under open-loop control and another 5 days under AP for 20 adults and 38

adolescents. Under AP, the only given information to initialize the controller is the patient’s

weight. As compared with open-loop, the device showed improved mean BG with less

hypoglycemia.

2.10.3 Sliding Mode Control (SMC)

Sliding mode Control has been employed for glycemia regulation due to its known robustness

properties against model parameters uncertainties and external disturbances [53]. This can

be established by directing the state trajectory of the system toward a pre-designed surface

(during reaching phase) along which the trajectory slides to reach the desired reference

value. Classic SMC is a discontinuous controller that yields high frequency chattering in

the control action. In modern SMC theory, Higher Order SMC (HOSMC) is presented as

a solution to this problem, it provided a continuous controller when designed in [53] for

glycemia regulation of T1DM. The in silico test was performed on Bergman T1DM model

and robustness was checked testing the controller on three virtual subjects under meal intake

as an external disturbance. Finite time convergence was achieved for the switching variable

but asymptotic convergence for the glucose error was yielded. To reduce persistent error

12 Pharmacodynamics (PDs): is the relationship between the drug concentration in the body and its intended
and antagonistic effects achieved with time. Pharmacokinetics (PK): is defined as the relation between the drug
input (e.g. insulin) and its produced concentration in the body with time [49] (see Fig. 3.1 in Chapter 3).
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and improve SMC performance against meals, meal announcement scheme was used in

[54]. Moreover, to alleviate the system’s time delay problem, the authors designed SMC in a

Smith predictor 13 structure. SMC design was based on an internal model that was identified

on Hovorka’s T1DM model (see §3.5 for Hovorka model details). Sigmoid-like function

was used to avoid chattering. The design was tested in silico on six patients in nominal

conditions and also under modeling errors and parametric uncertainties like variation in

insulin sensitivity of the patient.

For glycemia regulation, SMC was usually used as a model-based control mainly em-

ploying Bergman minimal T1DM model (see §3.4.1 for details on the model) e.g. in [53],

[55] and [56]. The authors of [55] designed HOSMC to regulate glycemia based on Bergman

minimal model and on Sorensen complex model [57]. The controller was validated in silico

on six virtual patients of Hovorka T1DM simulator and in vivo on laboratory rats. During

the validation, the same controller with exactly the same parameters was tested that showed

a good robustness level. However, as far as the author knows, SMC studies, concerning

glycemia regulation, have never considered the positive input constraint. In other words,

insulin injection/infusion is a nonnegative input and thus the only admissible SMC is the

nonnegative SMC. For that reason, a positive SMC for BG regulation of T1DM will be

presented in Chapter 5. Moreover, for a model-based control design, like MPC or SMC,

the system model plays a capital role in the overall controller performance. Therefore, an

appropriate model that provides a good description of glycemia-insulinemia dynamics for a

T1DM must be chosen. Unfortunately, the historical models like Bergman have non-natural

equilibria that are not consistent with T1DM glycemic behavior in real life. As explained

in [58], those equilibria imply a set of basal insulin that keeps BG level constant. Whereas

a T1DM patient has a unique basal insulin level (independent from BG) that stabilizes BG

at any value, namely a critically stable system and not asymptotic as the historical models

present. For theses reasons, the employed model in this thesis is the recently developed long-

term T1DM model [58]. This model has shown a good description of glycemia-insulinema

dynamics of T1DM as compared to other models (see Chapter 3 for more details). It is used

to design a nonnegative SMC in Chapter 5 for glycemia regulation. The model parameters

were identified on T1DM clinical data supported by university hospital center of Nantes and

Rennes.

13The basic idea of Smith Predictor is to use the system model to predict the pure time delay for the controller
[54].
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2.10.4 Positivity and state feedback Control

As stated earlier and according to the literature of AP studies, input/output constraints of

T1DM closed-loop system is mainly taken into account by MPC. Recently, positivity of the

closed-loop controller is considered in the design by [59]. The authors treated glycemia-

insulinemia system as a class of internally positive systems where the input response is

slower than that of the disturbance. To achieve a trade-off between hyper and hypoglycemia

peaks under positive control, they used a model-based control design where the controller

is the result of a minimization of the output response of two time instants. State feedback

is also employed for glycemia regulation. However, positivity of the controller has not

been considered. Take for instance two recent state feedback design based on Bergman

model [60] and [61]. The feedback gains of the controller designed in [60] are the solution

of an optimization program that uses some uncertainty bounds on the model parameters.

Robustness and simplicity of the linear controller were the main achievements of this work.

Other researchers [61] used observer-based state feedback controller. The feedback gains are

designed using pole placement method based on Bergman linearized model. The controller

results are compared to an adaptive PID and the simulations showed comparable performance.

The authors considered the fixed design state feedback controller as simpler and less complex

to implement compared to the adaptation technique of th PID. Two important remarks are

highlighted from these two publications:

1. Bergman model for non-diabetic subject was used: both publications keep the internal

insulin regulatory function in the model. This function does not exist for T1DM

subjects (See § 3.4.1 and Remark 1). The result is that when the controller is off,

endogenous basal plasma insulin is yielded! see Fig. 2 in [60].

2. Positivity of the state feedback controller is not considered in the design.

2.11 Conclusions

Researchers are working for decades to find the optimal continuous insulin delivery to

regulate glycemia for a T1DM either via biological solutions or using engineering techniques

and closed-loop control. The ultimate goal for the latter solution is the realization of a reliable

AP device. A brief history of the main AP control algorithms is presented. As an overall

overview, the following points are worth noting:

PID benefits
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• It was shown that PID mimics the pancreatic β -cell insulin secretion. This behavior

was observed in response to a step change in BG [37]. The derivative term produces the

first phase insulin and compensates for the delay in Pharmacokinetic/Pharmacodynamic

(PK/PDs) curve. The integral term produces the steady basal rate added to the Propor-

tional term that increases the insulin delivery if BG is above target and vice versa.

• Tuning a PID controller does not require precise mathematical model in its design.

However, optimal tuning may not be a straightforward matter especially under external

disturbances like meals.

PID drawbacks

• It was shown that fully automatic PID is not sufficient to achieve the trade-off between

hyperglycemia reduction and hypoglycemia prevention. It was either supported by IFB

or by supplementary meal boluses.

• Another PID drawback is its degraded performance due to the actuator saturation

(nonnegative insulin infusion). The saturation to zero, whenever PID goes negative (to

compensate for negative error), means that the loop is broken. In this case, the system

is no more under control. Another consequence is the integral windup which forced

many researchers to replace the integral term by the insulin basal rate.

MPC features and drawbacks

• MPC is an advanced industrial counterpart of the PID. MPC main advantage is its

capability in handling system constraints: hypoglycemia for the output and positivity

constraint for the input.

• The main drawback of MPC is its cumbersome optimization procedures.

• This model-based controller requires sometimes model linearization (if nonlinear mod-

els are used) and parameter identification to cope with changes in system parameters.

This complicates the parameter tuning process per individual.

• According to the meta-analysis provided by [62], MPC performance is not superior to

that of a PID, bearing in mind that the latter’s parameters are derived empirically or

are based on a model which may not be the optimal choice.
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This thesis solution In this thesis, Model-free PID or intelligent PID (iPID) is used for

the first time for glycemia regulation of T1DM. It has the nice properties of a simple PID

with some adaptive features. Model-free control has already been successfully applied in

many concrete and diverse situations (see [63] and the references therein). Fully automatic

iPID is tested and compared to the model-free intelligent Proportional or iP controller and

also to classic PID control. The test was conducted in silico on two simulators as detailed in

Chapter4.

SMC main features

• SMC is a variable structure controller which has its share in the literature of AP being

a robust controller.

• Robustness of SMC is exhibited from being a variable structure control. It uses a

discontinuous function to steer the state trajectory to a pre-specified path toward the

equilibrium.

• The sliding surface is reached in finite time.

• SMC robustness properties has been shown in several closed-loop studies via in silico

tests and an in vivo one on laboratory rats.

SMC drawback and open problem

• The major side effect of the discontinuity in the control law is the high frequency

chattering. Several solutions are available in the literature to alleviate this problem,

one of which is via HOSMC.

• None of SMC studies considered the nonnegative constraint on the control action.

Our solution Therefore, in Chapter 5, nonnegative SMC is designed for glycemia reg-

ulation for the first time. SMC is designed to be nonnegative everywhere in the largest

closed-loop positively invariant set of the insulin subsystem of the T1DM model in [58].

Two stage SMC is designed, the last stage SMC2 block uses the glycemia error to design

the desired insulin trajectory. Then the plasma insulin state is forced to track the reference

via SMC1. The switching variable of SMC1 is the first order polynomial of the insulin error.

Sliding mode of SMC1 guarantees insulin reference tracking. The resulting desired insulin

trajectory is the required virtual control input of the glycemia system to eliminate BG error.

BG error is the switching variable of SMC2. BG is steered to the normal set point during
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sliding mode of SMC2. In silico trial is performed to validate the theoretical results on the

nominal system.

Concerning the available T1DM models

• Model-based controllers, like SMC and MPC, require an internal model that provides

a good description of glycemia-insulinemia dynamics for a T1DM. Otherwise, a poor

closed-loop response is yielded.

• Historical T1DM models that are widely used in closed-loop studies, like Bergman,

have strange equilibria that are not consistent with T1DM glycemic behavior in real

life (more details are found in §3.8).

More details about mathematical modeling of this biological system, especially concerning

the widely employed models, are presented in Chapter 3. Equilibrium of these models and a

recently developed long-term model [58] are discussed in this chapter as well.

Positivity and positive state feedback in this thesis To the best of our knowledge, posi-

tivity analyses and invariance of glycemia-insulinemia system were not considered previously

for the control design purposes. This motivated open and closed-loop input/output positivity

analyses of the linear affine model in [58] in Chapter 6. It is shown that glycemia output does

not remain positive for any positive input. Therefore, the largest positively invariant set in

open-loop and under positive state feedback control are found.

The main issues of the previous state feedback designs in the literature (in subsection

2.10.4) are taken into account in the design of a positive state feedback controller in Chapter

6. The result is a stable closed-loop system under positive controller that regulates BG and

prevents hypoglycemia. Another important achievement is that hypoglycemia is predicted

in case the initial condition is outside the invariant set. Future hypoglycemia episodes are

predicted in both open-loop and closed-loop cases. It is the main result of the computation of

the largest positively invariant sets.



Chapter 3

Glucose-insulin Dynamics:

Mathematical modeling

3.1 Chapter Introduction in French

Dans ce chapitre, nous présentons une revue des modèles mathématiques qui décrivent la

dynamique glucose-insuline du DT1. La modélisation mathématique en biologie est utilisée

comme un outil utile pour décrire et simuler des systèmes physiologiques et leurs variables à

des fins différentes. Le système glucose-insuline a gagné beaucoup d’intérêt dans la littérature

de ce domaine. Il permet de simuler et de tester l’administration d’insuline pour le DT1 en

particulier des algorithmes de commande en boucle fermée pour préparer la voie à un AP

fiable.

Le focus, dans ce chapitre, est mis sur les modèles bien connus et largement utilisés dans

la littérature et plus spécifiquement dans les études de PA. Ils sont principalement utilisés

pour construire des simulateurs DT1 et des commandes basées sur des modèles pour des tests

en boucle fermée. Ils vont des modèles non linéaires minimaux aux modèles à ordre élevé et

certains modèles linéaires récemment présentés. Deux des modèles historiques largement

connus sont considérés et validés en tant que modèles à court terme et un nouveau modèle

linéaire à long terme est présenté dans ce chapitre qui sera utilisé dans le reste de la thèse.

L’existence du point d’équilibre d’un modèle DT1 dans des conditions de jeûne est discutée

du point de vue physiologique.
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3.2 Introduction

In this chapter a review of the mathematical models that describe glucose-insulin dynamics of

T1DM is presented. The focus will be on the well known widely used models in the literature

and more specifically in AP studies. They are mainly used to build up T1DM simulators

and model-based controllers for closed-loop tests. They range from minimal to high order

nonlinear models and some recently presented linear models. Two of the widely known

historical models are reviewed as short-term models and a new long-term linear model is

presented in this chapter which will be used in the rest of the thesis. The existence of an

equilibrium point of a T1DM model in fasting conditions is discussed from the physiological

point of view.

3.3 Compartmental Modeling of Biological Systems

Compartmental models are used to describe the transport process of materials between

interconnected volumes (e.g. drugs) in a biological system. They can be seen as systems

composed of interconnected chambers or stirred tanks of well mixed materials. The compart-

ments exchange materials which are concentrations or molar amounts of chemical species

which represent the system states variables [64]. For instance, for T1DM subject, injected

insulin enters first the subcutaneous tissue (first compartment) before its transfer to the

plasma compartment. The flow rate between compartments is described usually by ordi-

nary differential equations following mass conservation law. It states that the difference

between the flow in and flow out determines the amount of the material in the compartment

[65]. Compartmental models are widely used in pharmacokinetics (PK), for illustrating the

concentration-time curves of a drug after administration. PK describes thus the availability

duration of the drug in the body and defines the dosage and route of administration; whereas,

pharmacodynamics (PDs) is the physiological response of the drug and its effect on the

biological system with time [64]. The mathematical description between the drug delivery to

the response mechanisms comprise the combination PK/PDs. For instance, [66] presented a

three-differential equation insulin system: a two compartmental model for PK response for

subcutaneous to plasma insulin and a third for PDs response called the effective (or active)

insulin in compartments remote from plasma that interacts directly on glycemia level.
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Figure 3.1 Relationship between pharmacokinetics PK and pharmacodynamics PD [49].

3.4 Historical Models

Several Mathematical models are available in the literature to describe the glucose-insulin

dynamics. The modeling process usually starts with the interpretation of plasma glucose

and insulin concentrations during glucose tolerance tests. These are either intravenous

glucose tolerance test (IVGTT) or an Oral route (OGTT). Those models range from minimal

models starting by the 1961’s Bolie model [67], Bergman’s [68] to other more complex like

Sorensen’s model 19 equations model [57]. Here the three models that are widely used in

AP in silico tests will be reviewed.

3.4.1 Bergman minimal model

It is a well known classical model that is first developed in 1979 and then insulin sensitivity

is evaluated using a clinical study on 18 hospitalized healthy subjects [68]. The standard

formulation of the model is a system of three differential equations [69]:

Ġ(t) =−p1.(G(t)−Gb)−X(t).G(t) (3.1)

Ẋ(t) =−p2.X(t)+ p3.(I(t)− Ib) (3.2)

İ(t) = p4.(G(t)− p5)
+.t − p6(I(t)− Ib) (3.3)

Where G(t) [mg/dL]:plasma glucose concentration, I(t) [µU/mL] plasma insulin con-

centration, X(t) [min−1] interstitial/active insulin in remote compartment. The suffix b

refers to basal state. Parameters p5 [mg/dL] is a pancreatic "glycemia threshold" above

which the pancreas starts secreting insulin. p1, p2, p6 [min−1], p3 [min−2 /µU/mL] and p4

[µU/mL/(mg.min/dL)] are rate coefficients, for more details see [69] and [68]. The plus sign

in (3.3) means:

(G(t)− p5)
+ =

8
<
:

0 i f G  p5

(G− p5) i f G > p5

(3.4)
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This model was developed on healthy subjects and this fact can be seen from the term

p4.(G(t)− p5)
+ which represents pancreatic insulin secretion when BG exceeds certain

threshold.

Remark 1. It is good to mention that several T1DM closed-loop glycemia regulation studies

considered p4(G(t)− p5)
+ as an internal insulin regulatory function that does not exist for

T1DM cases. The parameter p1 has been also argued to be reduced to zero for a diabetic

patient (see [55] and the references therein). Thus p1 and p4 are set to zero in (3.1) and (3.3)

when Bergman model was employed for closed-loop glycemia regulation as in [53] and [55].

3.5 Hovorka’s model

This model, which was developed on healthy subjects [45], describes the input/output relation-

ship between subcutaneous insulin infusion as input and intravenous glucose concentration

as output. It has also meal ingestion and intravenous (IV) glucose infusion as exogenous

glucose inputs 1 [44].

The glucose kinetics parameters values are determined using glucose tracers on normal

subjects during overnight fasting phase and during IVGTT. This model consists of:

1. Glucose subsystem: absorption, distribution and disposal.

2. Insulin subsystem: absorption, distribution and disposal.

3. Insulin-action subsystem: its action on glucose transport, disposal and endogenous

production.

3.5.1 Glucose subsystem

8
>>><
>>>:

Q̇1(t) =−
h

Fc
01

VGG(t) + x1(t)
i
Q1(t)+ k12Q2(t)−FR +UG(t)+EGP0[1− x3(t)]

Q̇2(t) = x1(t).Q1(t)− [k12 + x2(t)]Q2(t)

G(t) = Q1(t)
VG

(3.5)

where Q1,Q2 [mmol] glucose masses in the accessible 2 (plasma) and non-accessible com-

partments (e.g. interstitial and intracellular distribution space [45]). k12 transfer-rate constant

from non-accessible to accessible compartment. VG [L] distribution volume of the accessible

1Glucose is infused intravenously during clinical studies when hypoglycemia is detected.
2represents plasma and tissues that equilibrate quickly with plasma [45]
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compartment. G [mmol/L] is the measurable glucose concentration. EGP0 [mmol/min]

Endogenous Glucose Production extrapolated at zero insulin concentration which is a con-

stant value [44]. UG(t) [mmol/L] is the is the gut absorption which is a function of digested

CHO. In general a two compartmental model (D1,D2 ) is used to simulate oral meal (CHO)

digestion for AP tests (e.g. see [70]). Fc
01 [mmol/min] is the total non-insulin-dependent

glucose flux corrected for the ambient glucose concentration.

Fc
01 =

8
<
:

F01 if G(t)≥ 4.5
F01.G(t)

4.5 otherwise
(3.6)

and FR [mmol/L] is the renal glucose clearance above 9 mmol/L (162 mg/dL)

FR =

8
<
:

0.003(G(t)−9)VG if G(t)≥ 9

0 otherwise
(3.7)

F01 is a constant [44].

Figure 3.2 Hovorka’s compartmental model with meal subsystem. d(t) [g/min] is the CHO
input rate [70].
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3.5.2 Insulin subsystem

• Absorption model [44]:

8
<
:

Ṡ1(t) = u(t)− S1(t)
tmax,I

Ṡ2(t) =
S1(t)−S2(t)

tmax,I

(3.8)

where S1(t),S2(t)[mmol] two-compartment chain representing absorption of subcuta-

neously administered short-acting insulin. u(t) [mmol/min] insulin infusion rate and tmax,I

[min] time-to-maximum insulin absorption.

• The plasma insulin concentration I(t)

İ(t) =
UI

VI
− keI(t) (3.9)

where ke[min−1] is the fractional elimination rate, UI [mU]= S2(t)
tmax,I

is the appearance of

insulin in plasma and VI [L] is the distribution volume.

3.5.3 Insulin action subsystem

It is of three actions on glucose kinetics

ẋi(t) =−kaixi(t)+ kbiI(t), i = 1,2,3. (3.10)

where xi(t) [min−1] the remote effects of insulin on glucose for i = 1 distribution/transport,

i = 2 disposal and i = 3 on endogenous glucose production. kai [min−1] are the deactivation

rate constants, and kbi [min−1] are the activation rate constants. SIT = kb1
ka1

represents insulin

sensitivity of distribution/transport, SID = kb2
ka2

insulin sensitivity of disposal and SIE = kb3
ka3

is insulin sensitivity of EGP. Model parameters and constants values can be found in [44].

A T1DM simulator is realized from this model known as APCam for (Artificial Pancreas

project at Cambridge) of 18 virtual patients. It is developed by the University of Cambridge

for closed-loop control test studies.

3.6 Dalla Man model: Uva/Padova Simulator

This model is developed based on OGTT rather than the intravenous perturbations to develop

a meal simulator [71]. Meal data set of 204 normal individuals is used to validate a model
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of glucose ingestion and absorption. The identification process is also realized on smaller

database of 14 T2DM subjects. This compartmental model is composed of two main

subsystems: glucose and insulin. It describes also the relationship between the plasma

measurements of glucose and glucose rate of appearance in plasma due to:

• the glucose rate of appearance in plasma (meal intake) Ra [mg/kg/min],

• the liver’s EGP(t) [mg/kg/min],

• dependent and independent utilization of glucose Uid(t) and Uii(t) [mg/kg/min]respectively,

• renal excretion E(t),

• insulin secretion and degradation.

3.6.1 Glucose subsystem

A two compartmental subsystem that is shown in the first panel of Fig. 3.3 consisting of

plasma glucose mass Gp(t) and tissues Gt(t) [mg/kg]

8
>>><
>>>:

Ġp(t) = EGP(t)+Ra(t)−Uii(t)−E(t)− k1.Gp(t)+ k2.Gt(t), Gp(0) = Gpb

Ġt(t) =−Uid(t)+ k1.Gp(t)− k2.Gt(t), Gt(0) = Gtb

G(t) =
Gp

VG
, G(0) = Gb

(3.11)

where VG [dL/kg] is the glucose distribution volume, G(t) [mg/dL] is the plasma glucose

concentration and k1,k2 [min−1] are the rate parameters, the suffix b refers to basal state.

Note that intestinal glucose absorption subsystem whose output is Ra(t) and insulin

dependent glucose utilization Uid(t) unit model are nonlinear models (see [71]for more

details). Description of these unit models and the rest like EGP(t) and E(t) are detailed in

[71].

3.6.2 Insulin subsystem

As illustrated in the second panel of Fig. 3.3, it is also a two compartmental model of insulin

mass in plasma Ip(t) [pmol/kg] and insulin mass in the liver Il(t) [pmol/kg]

8
>>><
>>>:

İl(t) =−(m1 +m3(t)).Il(t)+m2.Ip(t)+S(t), Il(0) = Ilb

İp(t) =−(m2 +m4).Ip(t)+m1.Il(t), Ip(0) = Ipb

I(t) =
Ip

VI
, I(0) = Ib

(3.12)
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where S(t) [pmol/kg/min] is insulin secretion, m1,m2 [min−1] are transport rates, m4,

[min−1] m5 [min.kg/pmol] are the degradation rate parameters and m6 [dimensionless] is

a constant. In summary this T1DM model consists of 13 differential equations and 35

parameters per subject. Despite the fact that the model is validated on non-diabetic and

T2DM subjects, it is realized to be a T1DM simulator that is known as Uva/Padova T1DM

Metabolic Simulator. To simulate a T1DM, the above insulin secretion model was replaced

by the exogenous insulin infusion model in [72]:

8
<
:

İsc1(t) =−(kd + ka1).Isc1(t)+u(t), Isc1(0) = Isc1b

İsc2(t) = kd.Isc1(t)− ka2.Isc2(t), Isc2(0) = Isc2b

(3.13)

Where Isc1, Isc2 [pmol/kg] are the insulin masses in the subcutaneous space, ka1,ka2 [min−1]

are their rate constants. kd [min−1] is the insulin rate constant of dissociation and u(t)

[pmol/kg/min] is the exogenous insulin infusion rate. In addition to this change, a higher

EGP (vs normal) is introduced in [72] to account for higher basal rates for T1DM subjects.

The remaining parameters are kept as they were for non-diabetic. Uva/Padova T1DM

simulator is approved by the FDA to test and validate any closed-loop control algorithms

for the artificial pancreas studies. It is considered now as a mandatory validation step that

precedes any clinical trials as detailed earlier in the bibliography of Chapter 2.

3.7 A long-term model of glucose-insulin dynamics of T1DM

This model is developed based on the clinical data of the University Hospital Centers of

Nantes and Rennes [58]. It has the following advantages over other existing models in the

literature:

1. The parameters are identified on standard clinical diary 3 (in- or outpatient data) for a

time span up to two days.

2. Unlike the existing models, its glycemic stability property is consistent with T1DM

glycemic behavior (see [58] for more details).

3. It permits calculating FIT tools such as ISF and basal rate of insulin.

3Mainly consists of CGM record, insulin injection history and estimated CHO intake.
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Figure 3.3 Dalla Man compartmental model of insulin-glucose system [71].

As the third point is useful in the usual self insulin administration for T1DM patients

(open-loop control), the other points are significant in the T1DM virtual simulation for any

control algorithm test (closed-loop control).

The model comprises the three main dynamics of glucose-insulin system: glucose, insulin

and digestion subsystem.

3.7.1 Glucose subsystem

Ġ(t) =−ksi.I(t)+ kl − kb +D(t) (3.14)

where G(t) [mg/dL] is glucose concentration, I(t) [U/dL] insulin in plasma. On one hand,

glycemia decrease is either related to insulin in a constant rate defined by the parameter ksi

[mg/(U.min)], or by the fixed brain consumption that is anti proportional to the body mass
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Figure 3.4 Principal component of Uva/Padova T1DM simulator [73].

M kb =
128
M

[mg/(dL.min)]. On the other hand, glycemia rate increases either endogenously

represented here by the liver constant production rate kl [mg/(dL.min)] or through an ex-

ogenous rate D(t) [mg/(dL.min)] which is the glucose appearance rate in the plasma due to

CHO digestion. The term kl − kb represents the net balance between the endogenous glucose

production and insulin-independent consumption. As explained in [58] for average hepatic

glucose production during fasting for M > 40 kg then kl − kb > 0. The PDs of insulin on

glycemia in is found in the term −ksiI(t) of (3.14).

3.7.2 Insulin subsystem

It is a second order model of a single time constant Tu [min] that describes insulin PK [58]:

Ï(t) =−
I(t)

T 2
u

−
2İ(t)

Tu
+

ku

VI.T 2
u

u(t) (3.15)

ku [min] is a static gain, VI [dL]= 2.5M is insulin distribution volume and u(t) [U/min] is the

exogenous insulin injection/infusion rate.

3.7.3 Digestion subsystem

A similar second order model of a single time lag Tr [min]

D̈(t) =−
D(t)

T 2
r

−
2Ḋ(t)

Tr
+

kr

VB.T 2
r

r(t) (3.16)
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kr [unitless] is a static gain, VB [dL]= 0.65M is the blood volume and r(t) [mg/min] is the

CHO amount rate. As detailed in [58], five clinical diaries of T1DM subjects are used to

identify the model parameters. The same injection/meal scenario is applied i.e. u(t),r(t) are

taken from the diary of the patient to create a glycemia output to be fitted on the CGM curve

from the diary using data fitting and least square method.

3.7.4 Overall model

The state space representation of the overall T1DM system is written as follows considering

the glucose rise due meals D(t) as a perturbation:

0
B@

Ġ(t)

İ(t)

Ï(t)

1
CA=

0
B@

0 −ksi 0

0 0 1

0 − 1
T 2

u
− 2

Tu

1
CA

0
B@

G(t)

I(t)

İ(t)

1
CA+

0
B@

0

0
ku

VI .T 2
u

1
CAu(t)+

0
B@

kl − kb

0

0

1
CA+

0
B@

1

0

0

1
CAD(t) (3.17)

The perturbation D(t) will be considered as external unknown input which is zero during

Insulinemia 
Model 

Digestion 
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   Insulin PK     Insulin PD 

Glycemia 
Dynamics 

Figure 3.5 Magdelaine’s T1DM simulator.

fasting times. In addition, it is not affected by the change of variables in the following section.

3.7.5 A more physiological representation of Magdelaine’s model

The model (3.17) has one state as the derivative of plasma insulin. Since this variable does

not have a physiological meaning, and based on [66], a new state variable is introduced the

subcutaneous insulin Isc = Tuİ + I [U/min]. In this manner, PK/PDs insulin model includes

subcutaneous and plasma insulin compartments. To simplify the change of variables let

x1 = I,x2 = İ and:

xsc = θ3x2 − x1 (3.18)
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This leads to:

0
B@

Ġ

ẋ1

ẋsc

1
CA=

0
B@

0 −ksi 0

0 − 1
Tu

1
Tu

0 0 − 1
Tu

1
CA

0
B@

G

x1

xsc

1
CA+

0
B@

0

0
ku

VI .Tu

1
CAu+

0
B@

kl − kb

0

0

1
CA+

0
B@

1

0

0

1
CAD(t) (3.19)

The state variables in this representation of the system are concentration variables. Moreover,

it will be shown in Chapter 5 and 6 that insulin subsystem of (3.19) is an internally positive

system i.e. if x1(0),xsc(0)≥ 0 then x1(t)[U/dL], xsc(t)[U/dL]≥ 0 8t 2 R+.

A new version of the model is currently developed where the parameters are reduced to 5

instead of 6:

θ1 = kl − kb, θ2 =
ksiku

VI
, θ3 = Tu, θ4 = Tr, θ5 =

kr

VB
(3.20)

Consider the following change of variables:

xn1 =
VI

ku
x1 (3.21)

xn2 =
VI

ku
xsc (3.22)

where xn1 [U/min] plasma insulin rate and xn2 [U/min] is the subcutaneous insulin rate. In

this case the system model (3.19) becomes as follows:

0
B@

Ġ

ẋn1

ẋn2

1
CA=

0
B@

0 −θ2 0

0 − 1
θ3

1
θ3

0 0 − 1
θ3

1
CA

0
B@

G

xn1

xn2

1
CA+

0
B@

0

0
1
θ3

1
CAu+

0
B@

θ1

0

0

1
CA+

0
B@

1

0

0

1
CAD(t) (3.23)

3.8 Stability and equilibrium of T1DM models

It is worth noting that historical T1DM models has an equilibrium point of glycemia even

though insulin injection is zero. This observation contradicts the physiological fact that for

a T1DM subject in fasting conditions (zero CHO intake) and if insulin is not injected at

all, glycemia diverges (becomes huge). As stated earlier in Chapter 1, this occurs as the

zero insulin concentration stimulates hepatic endogenous glucose production and the lack of

insulin secretion leads to hyperglycemia. This stability property is remarked in [58] and the

authors took, as an example, a T1DM model presented in [69] and studied its equilibrium

state. It was shown that, for that model, glycemia reaches the equilibrium for different insulin

concentrations even for I(t) = 0.
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Here, the equilibrium state of Hovorka’s and Magdelaine’s models are further investigated.

These analyses are followed by a simulation example of Uva/Padova simulator that shows

the non-natural set of equilibria during fasting phase.

3.8.1 Hovorka’s model: equilibrium

3.8.2 Autonomous system

The equilibrium point is analyzed first for the autonomous system i.e. in fasting conditions:

UG(t) = 0, and zero insulin injection: u(t) = 0. Starting with the insulin absorption subsystem

(3.8) Ṡ1,2 = 0 yields :

S1 = 0,S2 = 0 (3.24)

and from (3.9) plasma insulin concentration in its equilibrium (İ = 0) yields Ieq = 0 and thus

from (3.10) ẋi = 0 implies xieq
= 0. Applying this result in the glucose model (3.5) leads to:

−Fc
01 + k12Q2(t)−FR +EGP0 = 0 (3.25)

Q2(t) = 0 (3.26)

In the region where G < 4.5mmol/L where Fc
01 = F01

G
4.5 ,FR = 0:

Geq = 4.5
EGP0

F01
(3.27)

Geq = 7.4 mmol/L higher than the given operating threshold 4.5 mmol/L, i.e. there is no

equilibrium in this region. Similarly, in the region 4.5  G < 9 mmol/L one has Fc
01 = F01

and FR = 0 substituting in (3.5) leads to:

Q̇1(t) = EGP0 −F01 6= 0 (3.28)

As EGP0 −F01 > 0 [44], and as G = Q1
VG

, this results in a diverging glycemia and thus there

is no equilibrium in the region 4.5  G < 9 for the autonomous system. Conversely, when

G(t) ≥ 9 mmol/L, according to (3.6) and (3.7) this leads to Fc
01 = F01 mmol which is a

constant, and FR = 0.003(G(t)−9)VG and from (3.26) yields:

Geq = 9+
EGP0 −F01

0.003(VG)
(3.29)
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which is according to the parameters of [44] Geq = 22.333 mmol/L (⇡ 399 mg/dL). This

result Ieq = 0 and Geq = constant is not consistent with the physiological fact that if a T1DM

subject did not inject insulin at all then his glycemia diverges.

3.8.3 Fasting phase

This time equilibrium state for a constant basal insulin injection is considered during the

fasting phase with UG(t) = 0 and u(t) = ub a steady injection rate. The objective is to find,

Ib the value under which glycemia is stabilized at an equilibrium state. It is expected, as the

physiological fact implies, that there exists a unique basal rate Ib for this purpose. Starting

again from the equilibrium of (3.8):

S1eq
= uc.tmax,I (3.30)

S2eq
= S1eq

(3.31)

equation (3.9) yields

Ieq =
S1eq

tmax,I.VI.ke
(3.32)

substituting (3.31) in (3.32):

Ieq =
uc

VI.ke
(3.33)

and thus

xieq
=

kbi.Ieq

kai
, i = 1,2,3. (3.34)

Take for instance 4.5  Geq < 9 mmol/L and according to (3.6) and (3.7) this leads to Fc
01 =

F01,FR = 0 and substituting (3.34) in (3.5) and sensitivity parametrization (SIT ,SID,SIE) in

section 3.5.3 yields:

Geq =
(EGP0.(1−SIE)−F01).(k12 +SID.Ieq)

I2
eq.SIT .SID

(3.35)

First, notice that from (3.33) the basal insulin concentration Ieq depends on the injection rate

uc and does not have a unique value as expected. Moreover, there are infinite number of

equilibrium points depending on an infinite constant input points ub.
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3.8.4 Magdelaine’s Model: equilibrium

3.8.5 Autonomous system: D(t),u(t) = 0

As stated in section 3.7, in fasting phase equation(3.17) reveals that when u = 0 then I = 0

and thus glycemia diverges (Ġ > 0). This is due to the continuous liver glucose production,

i.e. kl − kb > 0. In other words, for a T1DM during fasting phase, a zero insulin injection

leads to fasting hyperglycemia and thus there is no equilibrium for glycemia in this case.

3.8.6 Fasting phase

The equilibrium point in this case for fasting conditions D(t) = 0 and constant delivery rate

u(t) = ub according to (3.17) this leads to:

G = Geq, Ieq =
kl − kb

ksi
⌘

θ1

Ksi
(3.36)

The basal constant basal rate Ieq is thus unique and does not depend on the delivery rate

uc. Moreover, this implies a unique constant basal infusion rate ub:

ub =
VI

ku
.
kl − kb

ksi
⌘

θ1

θ2
(3.37)

3.8.7 Uva/Padova Equilibria: A fasting test

Like the main historical models, Uva/Padova simulator exhibits also non-natural equilibria.

An illustrative simulation test is performed to demonstrate this fact. An open-loop fasting test

scenario is performed (no meal intake) under three different constant insulin injection rates:

u(t)= 2 U/h, 0 U/h (no insulin) and u(t) = ub the subject’s specific basal rate as provided by

the simulator. The resulting glycemia of Adult5 is depicted in Fig. 3.6. Three different BG

equilibria are yielded in response to the three different insulin rates. This is inconsistent with

real life basal-bolus therapy where steady-state glycemia can only be obtained under a unique

basal injection value ub[58]. Another important observation is that although the scenario

starts with hyperglycemia, BG=350 mg/dL, and no boluses are injected, BG settles to some

constant value. Take for instance the lower panel of Fig. 3.6, when the basal is injected,

BG is steered to 120 mg/dL. In other words, the simulator’s open-loop BG can be regulated

from hyperglycemia without the need of a bolus! This contradicts the well known T1DM

basal-bolus therapy as stated in [74] that confirms the fact that the role of basal insulin is not

to normalize BG, but to stabilize it during 24 hours within a tolerance of ±30 mg/dL.
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Figure 3.6 Glycemia behavior during fasting scenario for adult5 of Uva/Padova simulator.
upper panel for u(t)=2U/h and middle panel for u=0 U/h and lower panel for u(t)= the basal

rate provided by the simulator.

3.9 Conclusion

Mathematical modeling in biology is used as a useful tool to describe and simulate physiolog-

ical systems and their variables for different purposes. Glucose-insulin system has gained lot

of interest in the literature of this field. It permits to simulate and test insulin administration of

T1DM therapies especially closed-loop control algorithms to pave the way for a reliable AP.

Most existing models introduce some apparent equilibria which are not consistent with real

life. Equation (3.17), though it is linear, or, more exactly, affine, appears to be a significant

scientific alternative as it displays a long-term fit with clinical data. A good mathematical

representation of the system is crucial for any control algorithm of AP, not only to test its

performance in silico, it is also essential in the design process of model-based controllers.
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Thus, the simulation results based on poor models are misleading and may lead to a poor

closed-loop behavior during a real clinical trial. In this thesis, model-based controllers, SMC

and state feedback, are designed employing the long-term model (3.17). Our early work of

positivity analyses, presented in Chapter 5, for sliding mode control was established on the

standard model (3.17). After observing the new model representation of insulin dynamics

in Section 3.7.5, it is employed in the positive invariance analyses in Chapter 6. Insulin

subsystem in this case represents an internally positive system as will be shown later.





Chapter 4

Fully automatic Model-free Control for

Glycemia Regulation

4.1 Chapter Introduction in French

Dans ce chapitre, la théorie et la conception de la commande sans modèle (CSM) sont

présentées. Il est présenté ici comme un algorithme de commande du PA pour la première

fois. La commande CSM est choisie car elle offre les fonctions simples d’une commande PID

en s’affranchissant de tout modèle mathématique. Contrairement aux études PID précédentes,

l’algorithme de commande développé ci-après est entièrement automatique sans aucune dose

d’insuline complémentaire. La commande proportionnelle sans modèle où les résultats de

la commande proportionnelle intelligente iP sont d’abord présentés et analysés avec des

systèmes linéaires stables et instables. Le focus est mis sur la stabilisation du régulateur iP via

ses paramètres de réglage, en particulier pour le cas instable. Ensuite, on présente les résultats

préliminaires du régulateur iP avec une trajectoire de référence constante, puis une trajectoire

de référence variable pour la régulation de la glycémie. Le correcteur iP est testé en utilisant

une trajectoire de référence variable pour contrecarrer le mauvais comportement postprandial

avec la référence constante. Le iP avec référence variable produit une commande impulsive

et une réaction rapide aux repas engendrant une hyperglycémie postprandiale réduite. Pour

améliorer encore la réponse postprandiale, des termes de boucle fermée supplémentaires sont

ajoutés et un PID intelligent (iPID) est conçu en utilisant une référence de glycémie constante.

De plus, la boucle de CSM est fermée via un PID car on a observé que le PID classique

émulait le comportement des cellules beta déficientes du pancréas chez un patient DT1 (voir

l’étude de la littérature sur le PID au Chapitre 2). La comparaison des résultats in silico

montre une meilleure régulation de la glycémie postprandiale avec le iPID et une référence
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constante par rapport au iP en utilisant une référence variable. iPID est également comparé

à un PID classique sur le simulateur Uva / Padova. Les résultats ont montré que la réponse

postprandiale était améliorée avec l’iPID réduisant les excursions hyperglycémiques avec

des événements hypoglycémiques minimes. En outre, iPID imite mieux le comportement

postprandial des cellules beta du pancréas qu’un PID avec une réponse plus rapide.

4.2 Introduction

In this chapter, the theory and design of Model-free Control (MFC) are presented. It is

presented here as an AP control algorithm for the first time. MFC is chosen as it offers the

simple features of a PID control in the frame of a model free design. In opposition to previous

PID studies, the control algorithm developed hereafter is fully automated without any feed-

forward or supplementary insulin doses. Model-free proportional control or intelligent

Proportional iP control results are first presented and analyzed with stable and unstable linear

systems. The focus is on the stabilizability of iP controller via its design parameters especially

for the unstable case. Thereafter, the preliminary results of constant and variable reference

trajectory iP controller for glycemia regulation are presented. iP is tested employing a variable

reference trajectory to circumvent the poor postprandial behavior of constant reference iP.

Variable reference iP produced an impulsive control of fast reaction to meals that yielded a

reduced postprandial hyperglycemia. To further enhance postprandial response, additional

closed loop terms are added and an intelligent PID (iPID) is designed using a constant

glycemia reference. Moreover, MFC loop is closed via PID as classic PID was observed to

emulate the behavior of the missing pancreatic β -cell in T1DM (see the literature survey

of PID in Chapter2). In silico results comparison showed a better postprandial glycemia

regulation with constant reference iPID over iP employing a variable reference. iPID is

also compared to a classic PID on the well known Uva/Padova T1DM simulator. iPID is

compared to a standard PID controller in two cases: i) each controller parameters were tuned

independently on a case study and then the design is applied on other subjects adapting

one weighting parameter to avoid hypoglycemia and results are compared. ii) A reference

PD+basal control previously designed to reduce BG risk index is compared to iPD+basal

blocking the integral term to the basal rate of the patient. The superiority of the intelligent part

of iPD over the classic is shown in this case by setting the same feedback gains. The results

showed that the postprandial response was improved with iPID reducing hyperglycemic

excursions with minimal hypoglycemic events. Moreover, the results showed that iPID,

who has the classic PID structure with new adaptive feature, emulated insulin delivery of

pancreatic β -cell.
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4.3 Model-free control: Recalls

Model-free control consists in controlling a given unknown plant as a first order, second

or eventually higher order 1 linear system, the so-called ultra-local model. The latter is

estimated online.

4.3.1 Ultra-local Model

Model-free control is designed based on an ultra-local model of order ν [63], for a Single

Input Single Output (SISO) system:

y(ν) = F +αu (4.1)

where:

• u,y are the input and output signals respectively. These are the only signals required to

be known for the design.

• α 2 R is a non-physical design parameter, which is chosen so that αu and y(ν) have

the same magnitude.

• The order of differentiation ν may in general be chosen 1 or 2 and has no connection

with the order of the system which is unknown [63].

• F stands for unknown system dynamics and perturbations. It is estimated and approxi-

mated by a piece-wise constant function during a quite short time lapse. It is estimated

based on the knowledge of the input u and the estimate of the derivative of output

measurement y
(ν)
e [76]:

Fe = y
(ν)
e −αu(t −h) (4.2)

where u(t −h) is a delayed version of the control, taken as a crude a crude approximation of

u(t) and h is a non-zero small delay (might be one sampling instant) to avoid any algebraic

loop [77, 75]. The role of h will be further discussed in the sequel. The computation of Fe

necessitates a good estimation of the ν th-order derivative of the output signal y
(ν)
e that may

be noisy.

Remark 2. In (4.2), a numerical differentiator is required to estimate y(ν). This is a major

feature for the performance of Model Free Control. At this stage, a trade off exists between the

value of ν and the accuracy of Fe: the higher the integer ν is, the richer is the controller in the

1In the literature of MFC it was never taken higher than two [75, 63].
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sense that is involves a large number of tuning parameters, and control actions. Unfortunately,

in practice this is challenged by the increasing difficulty to achieve an accurate estimate of

the higher order derivative y(ν).

4.4 Intelligent Proportional iP

Let y⇤(t) denote a reference trajectory to be tracked, considering a first order ultra-local

model ν = 1, closing the loop with a proportional control yields the following intelligent

proportional iP controller [63]:

u =
−Fe + ẏ⇤+Kpe

α
(4.3)

where y⇤ is the reference input, e = y⇤− y and Kp is the proportional gain. Combining

Equations (4.2) with ν = 1 and (4.3) yields:

ė+KPe = 0 (4.4)

F does not appear anymore with the assumption that Fe ⇡ F . However, as a simple counter

example, and as will be shown in section 4.5.2, the following linear second order system can

not be stabilized using iP controller

ÿ(t)− ẏ(t) = u(t) (4.5)

Ideally the closed-loop system always leads to the error polynomial equation (4.4) and it

is stable for any KP > 0. However, in practice, even if the derivative in (4.2) was perfectly

estimated it remains a small delay h in u(t −h)

Fe(t) = ẏ(t)−αu(t −h) (4.6)

thus the latter influences on the stability of closed-loop iP as will be discussed in the following

section.

4.5 Effect of u(t −h)

The goal in this section is to show that some non obvious necessary conditions have to

be completed for the doability of an iP controller. Those conditions are shown to be just

independent form the quality of the estimation of ẏe(t). So, assume at this stage that ideally
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the derivative of the output is perfectly estimated, that is ẏe(t) = ẏ(t). Substituting (4.2) in

(4.3) with ν = 1 yields

u(t) = u(t −h)+
ė(t)+Kpe(t)

α
(4.7)

The effect of the delay h on the stability of the closed-loop system will be investigated next.

Stability is studied in the light of neutral delay system in a brief review.

4.5.1 Neutral Delay Systems

Whenever the delay h introduced in eq. (4.2) is not small enough, then the above approxima-

tion of the time derivative of the control input is no more valid. Still it is possible to analyze

the closed-loop system, under the assumption that ẏ(t) is perfectly estimated/known, to arrive

at the same conclusion. So, in this section, it is shown that the iP control (4.7) yields a neutral

closed-loop system. The byproduct is again that a necessary condition for the stability of the

MFC closed-loop system is the stability of this neutral system. Consider the special case of a

linear SISO system:

ẋ(t) = An⇥nx(t)+Bn⇥1u(t) (4.8)

y(t) =Cx(t) (4.9)

A copy of the delayed dynamics (4.9) reads:

ẋ(t −h) = Ax(t −h)+Bu(t −h) (4.10)

For simplicity assume C1⇥n = [1 0 ...0] and Bn⇥1 = [0 0 ...1]T and let y⇤ = 0 . Subtracting

(4.10) from (4.9) and substituting (4.7) yields:

ẋ(t)− ẋ(t −h) = A[x(t)− x(t −h)]−B[
Cẋ(t)+KpCx(t)

α
] (4.11)

the latter leads to:

[In⇥n +
1
α

BC]ẋ(t)− ẋ(t −h) = [A−
Kp

α
BC]x(t)−Ax(t −h) (4.12)

Denote A0 = [In⇥n +
1
α BC], A1 = [A−

Kp

α BC] and the characteristic equation of (4.12) in

Laplace domain:

qo(s,e
−hs) = det

⇣
s[A0 − In⇥ne−hs]−A1 +Ae−hs

⌘
, s 2 C (4.13)
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where det(.) denotes the determinant of a matrix. The stability of (4.13) is necessary for a

stable closed-loop system under iP controller. Thus, iP controller is not a universal controller

and its stability is not simply defined by (4.4) as presented in the literature of MFC.

A sufficient stability condition for (4.12) is that the system is asymptotically stable if its

characteristic equation satisfies[78]:

sup{Re(s) : det
⇣

s[A0 − In⇥ne−hs]−A1 +Ae−hs
⌘
= 0}< 0 (4.14)

The stability of system (4.11) for any delay h can be studied using the literature of

neutral-delay systems. If the latter polynomial is of the form qo(s,e
hs) = p(s)+ q(s)e−hs

then the sufficient stability conditions of Theorem 2.1 of [79] can be applied as will be shown

in the following example in 4.5.2.

The purpose, so far, was just to show the possibility of examining stability of iP controller

via neutral delay systems. To go further, it is suggested to seek the necessary stability

conditions of neutral systems (if any) for the iP controlled system (4.12) to give a hint on the

choice h,Kp and α .

4.5.2 Academic example: iP control

In this section a counter example is presented to show that stability can not be always

guaranteed with iP controller. Consider the following linear system:

8
>>><
>>>:

ẋ1(t) = x2(t)

ẋ2(t) =−ax2(t)+u(t)

y(t) = x1(t)

(4.15)

In the unstable case a < 0. The stability of the closed-loop system under iP control with a

zero reference y⇤ = 0 is investigated. The following computations are obtained from [80].

Suppose ẏe = ẏ. For this system F =− ÿ
a

and α = 1
a
. Combining (4.6) and (4.7) yields the

following controller:

u(t) =−
ẏ(t)+Kpy(t)

α(1−δh)
(4.16)

where δh is the delay operator of amplitude h: f (t)− f (t−h) = (1−δh) f (t). The closed-loop

system is thus:

ÿ(t) =−aẏ(t)−
ẏ(t)+Kpy(t)

α(1−δh)
(4.17)
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Rearranging the above equation yields

h d
dt
(

d
dt

+a)(1−δh)+a(
d
dt

+Kp)
i
y(t) = 0 (4.18)

Taking Laplace transform to the above equation yields2

s(s+a)(1− e−hs)+a(s+Kp) (4.19)

rearranging yields the following characteristic polynomial of the form:

s2 +2as+aKp − e−hs(s2 +as) = 0 (4.20)

the stability of the above polynomial is studied via its roots. Use Theorem 2.1 of [79] on

the system whose transfer function G(s) = r(s)
p(s)+q(s)e−hs . Note that deg p(s) = deg q(s) as

required in [81]. The characteristic polynomial (4.20) is of the form p(s)+q(s)e−hs with

p(s)

q(s)
=−

⇣
1+a

s+Kp

(s2 +as)

⌘
(4.21)

or
p(s)

q(s)
=−1−

1
αs

−a
Kp −a

s2 +O(
1
s3 ) (4.22)

According to [79], the roots sn of p(s)+q(s)e−hs satisfy

sn =
λn

h
−

1
αλn

+
h

α2
n

⇣a2

2
−a(Kp −a)

⌘
+o(

1
n2 ) (4.23)

for sufficiently large integer n. Equation (4.22) leads to λn = 2πni. For stability, we have the

following situations:

if a(Kp −
3a

2
)> 0, then (4.15) has infinite number of unstable poles (4.24)

if a(Kp −
3a

2
)< 0, then (4.15) has infinite number of stable poles (4.25)

Obviously, the following two conditions must be satisfied for the stability of (4.15) and

(4.16):

1. Satisfying (4.25).

2. There is no further unstable root of (4.20).

2note that L { f (t −h)}= F(s)e−hs.
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The second condition is verified numerically using Quasi-Polynomial Mapping Based

Rootfinder [82] as suggested in [81]. For the special case a = −1 with Kp satisfying

condition 1 above, the quasi characteristic polynomial (4.20) has always an unstable root for

different values of h (e.g. h = 0.001,0.01 and 1) according to the numerical application of

qpmr function of [82]. Thus, even though condition 1 is satisfied, no stabilizing h is found

to yield zero number of unstable roots of (4.20). It is good to notice that these analyses are

valid under the assumption that ẏe = ẏ which is never the case in practice. If the estimate

includes approximations for ẏe and u(t) (other than u(t −h)), and if these have regulatory

effect, then a stabilizing controller may well be obtained.

In the following section the estimator of F in (4.1) with ν = 1 for iP controller will be

derived according to [63].

4.6 Estimation of F

Equation (4.1) for an iP controller becomes:

ẏ = F +αu (4.26)

F may be assumed to be approximated by a piecewise constant function Fe. Rewrite then

Equation (4.26) in the operational domain [63]:

sY (s) =
Fe

s
+αU(s)+ y(0) (4.27)

where Fe is a constant. Differentiate both sides w.r.t. s to eliminate the initial condition

y(0):

Y (s)+
dY (s)

ds
s =−

Fe

s2 +α
dU(s)

ds
(4.28)

To filter the output multiply both sides by s−2

Y (s)

s2 +
dY (s)

ds
.
1
s
=−

Fe

s4 +
α

s2 .
dU(s)

ds
(4.29)

Take the inverse of Laplace transform of (4.29) and using the following properties:

L
−1{G1(s)G2(s)}=

Z t

0
g1(t − τ)g2(τ)dτ (4.30)

L
−1{

diG(s)

dsi
}= (−t)ig(t) (4.31)
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then we have the estimation Fe in the time interval t 2 [0, T ]

Fe(0) =−
6

T 3

Z T

0

⇣
(T −2τ)y(τ)+ατ(T − τ)u(τ)

⌘
dτ (4.32)

where T is a small estimation time window which depends on sampling period and the noise

intensity [63].

To obtain Fe(t) at any time instant t, shift the functions y(τ) and u(τ) into y(t + τ) and

u(t + τ) (if y(T ) by y(t +T )) respectively keeping the interval width τ 2 [0,T ], i.e. sliding

the time window for the functions y, u and Fe without changing the variables.

Fe(t) =−
6

T 3

Z T

0

⇣
(T −2τ)y(t + τ)+ατ(T − τ)u(t + τ)

⌘
dτ (4.33)

The above equation allows to estimate the Fe(t) in the interval [t, t +T ] as τ 2 [0, T ].

To make the estimation causal in time, invert the time intervals i.e. T to −T and τ to −τ .

First change T to −T in (4.33):

Fe(t) =
6

T 3

Z −T

0

⇣
(−T −2τ)y(t + τ)+ατ(−T − τ)u(t + τ)

⌘
dτ (4.34)

or

Fe(t) =
6

T 3

Z 0

−T

⇣
(T +2τ)y(t + τ)+ατ(T + τ)u(t + τ)

⌘
dτ (4.35)

Then change the variable τ to τ 0,τ 0 =−τ , dτ =−dτ 0, τ 2 [−T,0] implies τ 0 2 [T,0]:

Fe(t) =−
6

T 3

Z 0

T

⇣
(T −2τ 0)y(t − τ 0)−ατ 0(T − τ 0)u(t − τ 0)

⌘
dτ 0 (4.36)

Now to simplify the writing of the above equation change the integral limits into (t −T, t)

using the following change of variables σ = t − τ 0, dτ 0 = −dσ and τ 0 2 [T, 0] leads to

σ 2 [t −T, t]:

Fe(t) =
6

T 3

Z t

t−T

⇣
(T −2t +2σ)y(σ)−α(t −σ)(T − t +σ)u(σ)

⌘
dσ (4.37)

For numerical implementation, the following Fe is preferred:

Fe(t) =−
6

T 3

Z T

0

⇣
(T −2σ 0)y(σ 0+ t −T )+ασ 0(T −σ 0)u(σ 0+ t −T )

⌘
dσ 0 (4.38)

where σ 0 = T − τ 0
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Remark 3. The estimator equation as appeared in section 3.4.1 of [63] (first estimator

formula) seems to be valid only when the integral limits are [0, T ] and thus it estimates only

in the first time window Fe(0). To support this claim, suppose that u(t) = 0 in (4.26) thus

Fe(t) = ẏ(t) (see Appendix A.1 for demonstration) i.e. the first term of Fe in (4.37) represents

an estimation of the first derivative of y(t) (as stated in the first MFC publications as in

[83]). An illustrative example to compute Fe = ẏ(t) for some function y(t) in Appendix A.1

is presented to compare (4.37) (u(t) = 0) to the estimator equation in section 3.4.1 of [63]

with u(t) = 0.

Remark 4. The second term of Fe in (4.37) buffers the input signal u(t) and adds a delay of

h = T
2 to the buffered signal u(t −h) as demonstrated by some illustrative examples in A.2.

Remark 5. There are two forms of the estimators of Fe: the standard (4.6) and the one in

(4.37). The latter assumes Fe is constant whereas this is not the case in the standard form.

The methods are numerically quite different which led to quite different results. Thus, the

following question arises: what is the best form of estimation of Fe? Another question is

that does the choice of the estimation window T has an infleunce on the stability of the

closed-loop system?

For some applications more control actions may be needed in the control law for stability,

like the case in Section 4.5.2 when a =−1, or for faster convergence of the error signal. This

motivates to close the loop via a PID to yield an intelligent PID, or iPID.

4.7 iPID

iPID is designed by setting ν = 2 in (4.1). The local model becomes:

ÿ = F +αu (4.39)

The iPID control law is:

u =
−Fe + ÿ⇤+Kp(e+Ki

R
edt +Kd ė)

α
(4.40)

where y⇤ is the reference input, e = y⇤− y and the usual feedback gains are Kp,Ki,Kd .

The estimation equation (4.2) of F becomes:

Fe = ÿe −αu(t −h) (4.41)
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As stated earlier u(t−h) is a delayed version of u(t). Assuming a perfect estimation in (4.41),

applying the control law in (4.40) into (4.39), F will be canceled out and the following error

dynamics is obtained:

ë++Kp(Kd ė+ e+Ki

Z
edt) = 0 (4.42)

The system in Section 4.5.2 can now be stabilized for both a =±1 using iPID as more

control parameters: Kd,Ki are available.

Concerning glycemia regulation, two MFC designs will be presented next:

• iP control: even though the system (3.17) is stable (critically), employing a constant

reference, iP performance is poor. Thus, a variable reference iP is presented as a

solution to enhance the closed-loop performance.

• iPID: constant reference is employed with iPID which is compared to iP and standard

PID controllers.

The statistical parameters showed that iPID outperforms its classic PID counterpart and its

performance also dominates iP controller.

4.8 Variable reference iP for Glycemia regulation

The control design of an artificial pancreas, is tackled via the newly introduced model-free

control and its corresponding iP. The purpose is to show the efficiency of this non-model

based controller, which has already been successfully applied in many concrete and diverse

situations (see [63] and the references therein), as an artificial pancreas control algorithm. It

results in an insulin injection for T1DM which displays via constant references an acceptable

nocturnal/fasting response, but unfortunately a poor postprandial behavior due to long

hyperglycemia. When a variable reference is introduced, that switches between a constant

one, when glycemia is more or less normal or moderate, and an exponential decay reference

path, when a high glycemia rate indicates a meal intake, the in silico postprandial response is

enhanced.

In the following section the main constraints and limitations of the system to be controlled

are presented which hold for any control algorithm.

4.9 Constraints and limitations

As detailed in Section 3.8.5, during fasting/nocturnal conditions if a very low constant insulin

rate (u < ueq) is injected to a T1DM then glycemia diverges. Whereas, the case u > ueq leads
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to hypoglycemia. The objective is to inject the adequate amount of insulin to compensate

for meal disturbance without late hypoglycemia. Therefore, the challenge is to maintain the

trade-off between hyper and hypoglycemia in both postprandial and fasting phases.

Thus, for an insulin-dependent diabetic, the control objective is to steer G from hyper-

glycemia into the normal interval [70,120] mg/dL relatively fast. Two main constraints are

emphasized:

• hypoglycemic limit of 70 mg/dL,

• the input is nonnegative (u ≥ 0).

The latter point means that insulin infusion rate cannot be reversed once it is spread out in

the blood stream. If BG drops into hypoglycemia, the only possible control is to shut off the

insulin pump temporarily and to have some carbohydrates to raise BG back to normal level.

4.10 iP Control implementation

4.10.1 Constant Reference

The iP control law as presented in (4.3) is applied where Fe is estimated according to (4.38).

The parameters are specified as follows:

• T = nTs, where Ts is the sampling time, and n ≥ 1 is an integer,

• Ts = 1 min, n = 3, T = 3 min,

• since BG responds inversely to the control variable, α is negative and adjusted per

patient.

• KP = 0.01.

• The constant set point is Gr = 120 mg/dL.

iP design in [84] is modified and corrected here where T is reduced to be as small as T = 3

min. (as recommended in the MFC literature) and α is the only parameter adjusted per

patient (instead of Kp) for an optimal performance. This constant reference iP is tested

in silico on five virtual patients of the T1DM simulator presented in (3.17). It has a poor

postprandial performance with persisting hyperglycemia as shown in Fig. 4.1. To enhance its

performance during postprandial phase and to circumvent the lack of a standard insulin bolus

a more aggressive action is required. For this purpose, a meal detection scheme is introduced

to obtain faster controlled infusion rate via a variable reference iP control designed in the

next subsection.



4.10 iP Control implementation 61

4.10.2 Variable Reference iP

The iP designed in the previous section is applied here with the same design parameters.

The remaining step in this design is to define the variable reference input to the controller.

The time-varying reference trajectory which was introduced in [85] for the purpose of PID

switching control, is modified in order to be utilized here:

Gref(t) =

8
>><
>>:

(G(ts)−Gr)exp
− t−ts

τref + Gr if G(t)≥ Gs

Gr if G(t)< Gs

(4.43)

• ts is the switching time,

• τref = 3min. is a design parameter,

• Gr = 120 is the previous constant set point, Gs is the switching threshold.

The following properties hold:

1. The time-varying trajectory starts decaying directly at G(ts).

2. The switching threshold Gs is set to 140 mg/dL while Gr = 120 mg/dL to avoid

hypoglycemia.

3. ts is the switching/reset time: to re-start the trajectory if (t − ts)> 45 min and Ġ > 0

(if BG is still increasing). In other words, a meal is detected if the rate of BG change is

non negative and BG is growing above 140 mg/dL.

When G is above the postprandial hyperglycemia level (G ≥ 140mg/dL)3, the controller

switches from a constant reference Gr = 120 mg/dL to an exponential-decay trajectory

initiated at Gref(t) = G(ts). It settles eventually at Gr. The resulting discontinuity produces

an impulsive control due to ė that appears in the iP control law. This bolus-shaped insulin

rate permits to have a fast response in order to regulate G towards the normal level and to

avoid extended postprandial hyperglycemia.

iP test results on patients IF9 and LR which were not included in [84] are included here as

well. Once they are designed, the parameters T , τref, Kp are kept constant. The closed-loop

design, with constant or variable reference, will be compared to the open-loop therapy with

the same meal protocol. The control will first be designed and tested on IF2 subject, variable

reference iP will be denoted as iPvref in the sequel.

3140 mg/dL is defined as the 2 hours postprandial hyperglycemia, [86].
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4.11 Simulation results

4.11.1 Simulator 1: clinical data

Five patient profiles are considered, based on Magdelaine T1DM model in Section 3.7. The

model has been identified on the clinical data of five patients by data fitting (see for more

details [58]). In what follows, the same meal scenario logged in the clinical diary of those

subjects is used. Each clinical diary includes:

• A time window during which the diary is registered.

• Meal intake: amount of carbohydrates taken by the patient at time t,

• Open-loop insulin dosing at time t: basal and meal boluses,

• CGM data.

Among the five considered patients, one is an outpatient and four are hospitalized. They are

tagged as IF2, IF3 IF9, BE and LR. Two of the hospitalized patients start with a one-day

fasting.

The in silico trial is based on the following facts:

• Open and closed-loop simulations have the same time window.

• The meal protocol is fixed from each patient’s clinical diary .

• Open-loop insulin administration, closed-loop MFC algorithms are tested and com-

pared.

4.11.2 In silico Test

A mathematical model of the system is not required in the model-free design process, it

is used to test the design in silico. Fe in (4.38) is employed in the iP control law. The

T1DM simulator given in (3.17) is employed to test iP and iPvref performances for T1DM

glycemia regulation. Figure 4.1 displays the difference between iP and iPvref strategies in

the postprandial phase. IF2 has a one-day fasting phase during which both iP controllers

have a much better performance than the open-loop control with a fasting hyperglycemia

time lapse greater than 11 hours (see Fig. 4.1-a). The maximum postprandial glycemia

peak with iP is reduced by 46 mg/dL applying iPvref according to Table 4-1. This design is

tested on the two other virtual patients IF3, BE, IF9 and LR as shown in Figures 4.2, 4.3,
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Figure 4.1 IF2 response for open-loop, iP with α =−139 and iPvref α−1 =−198. (a): Meal intake. (b): BG
behavior. (c): iP and iPvref insulin infusion rates.

4.4 and 4.5. The simulator is considered as a black box where the model parameters and

meals are all unknown and only α is adapted per patient to obtain minimum hypoglycemic

episodes during the simulated period. −α = 174,101,483 and 675 for IF3, BE, IF9 and

LR respectively for variable-reference control while −α = 129,101,340 and 540 for IF3,

BE, IF9 and LR respectively using iP control. Some statistical parameters are calculated for

each patient under open and closed-loop control and illustrated in Table 4-1. The frequent

initialization of the exponential decay reference path appeared as a series of consecutive

impulsive insulin rates (e.g. see Fig. 4.3-c). These bolus-shaped rapid pulses are infused

only when a postprandial phase is detected i.e. BG ≥ 140 mg/dL in a positive rate of change.

These pulses enhanced the iPvref over the poor iP performance. They added the needed

postprandial impact that reduced glycemic excursions in time and amplitude as illustrated in

Table 4-1. In Appendix A.3 results of iP and iPvref under some output noise are illustrated.

The postprandial peaks under closed-loop insulin administration are higher than that of

open-loop control. This is actually due to the fact that the manual boluses are injected before

meals (see open-loop injections [58] for more details). For the fully automatic control, meals
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Table 4-1: Time performance indicators for open and closed-loop iP controllers. 

Patient 

%Time in target 

[70-180]  -  [70-140] 

%Time in hypo. 

[<70] 

%Time in hyper. 

[180-250]|[>250] 

 

Mean ± std 

 

Min:Max(BG) 

Open-

loop 
iP iPvref 

Open

-loop 
iP iPvref 

Open-

loop 
iP iPvref 

Open-

loop 
iP iPvref 

Open-

loop 
iP iPvref 

IF2 55|30 56|29 59|30 0 0 0 45|0 31|13 40|2 169±47 176±63 168±49 74|230 80|297 88|251 

IF3 78|77 68|17 80|36 22 5 0 0|0 17|10 13|8 91±23 168±55 155±50 46|142 56|317 72 | 298 

BE 82|48 73|44 70|83 0 0 0 14|4 21|6 17|0 155±39 153±52 128±44 84|260 73|269 73 | 230 

IF9 70|65 69|26 72|27 37 0 0 8|6 4|19 4|18 108±62 180±108 174±104 49|320 85|499 80 | 495 

LR 57|32 35|17 50|22 2 3 6 33|8 33|30 21|23 171±54 209±82 185± 80 63|300 60|408 59 | 409 
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Figure 4.2 IF3 response for open-loop, iP with α =−129 and iPvref α−1 =−174. (a): Meal intake. (b): BG
behavior. (c): iP and iPvref insulin infusion rates.
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Figure 4.3 BE response for open-loop, iP and iPvref (a): Meal intake. (b): BG behavior. (c): iP and iPvref
insulin infusion rates.

are unknown disturbances. In addition, the insulin absorption rate is slow (see Table 1 in [58]

for insulin dynamics parameters). According to the ADA, the minimum insulin onset4 is 15

minutes. It takes about 60 minutes to reach its peak with a minimum overall duration of 2-4

hours.

Results showed that certain cases, like IF9 and LR, have severe hyperglycemia with a rapid

BG drop rate which is a result of its high insulin sensitivity (see Table 1 in [58]). These

cases have a noticeable high glycemic variability that necessitated a further investigation

and whether the type of control therapy can affect their diabetic stability. To have a better

understanding of this issue, an important diabetic statistical parameter is calculated in

Appendix A.5.

4It is the time lapse before insulin reaches the bloodstream and begins lowering blood glucose.
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Figure 4.4 LR response for open-loop, iP and iPvref (a): Meal intake. (b): BG behavior. (c): iP and iPvref
insulin infusion rates.
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As an overall overview, iP performance was enhanced when a variable reference was

used to create the auto-bolus that reduced postprandial hypoglycemia. However, it was

noticed that for both iP and iPvref, to reduce or eliminate the static error during fasting

phase for instance, it is required to increase the overall gain (reduce α), a value that might

be too high in postprandial phase that leads to higher hypoglycemia risk. Therefore, even

though iP performance was enhanced to some extent, via creating auto-boluses when a meal

is detected, still, the steady-state error elimination, especially during fasting phase (if same

gain is used), is not ensured (see Fig. 4.5). This is mainly related to the system constraints

(as seen in Section 4.9) i.e. the input is positive and iP can only be saturated to zero whenever

BG<120. One solution is to use multiple gain iP i.e. a fasting α value and another value

for postprandial phase for each patient. Another alternative is to incorporate derivative and

integral terms i.e. to employ an iPID control instead as will be shown in the next section.

iPvref numerical results are compared to classic PID and also to iPID and the comparison

are illustrated in Tables 4-3 and 4-4.
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4.12 iPID Control

In this section the feasibility of iPID for glycemia regulation is tested in silico. This section

and the following sections results are extracted from and based on the publication [87].

Firstly, iPID is compared to iPvref performance. Secondly, iPID is compared to a standard

PID on two T1DM simulators with and without measurement noise. The first simulator

is the long-term linear time-invariant model (3.17). The controller is also validated on the

UVa/Padova metabolic simulator on 10 adults under 25 runs/subject for noise robustness test.

iPID previously designed and tested for fasting conditions [88] is corrected and tested in

[87] including postprandial phase on a larger cohort of T1DM patients from the Uva/Padova

simulator. The parameter α is tuned here such that ÿ and αu f have the same order of

magnitude as suggested in [63], for a better estimation of F . This is an advantageous

robustness property of the intelligent controller as α can be used to individualize the controller

for each subject. Moreover, the tuning of α is based on the output and previously applied

input that are already available for the controller. As BG responds inversely to the control

variable, α is negative. The PID parameters of (4.40) are Kp = 3⇥ 10−5,Ki = 0.001 and

Kd = 250 tuned and tested on patient tagged as IF2.

Remark 6. In silico tests of iPID are obtained with and without CGM measurement noise. To

test the feasibility of the iPID control, it is tested on Simulator 1 in a noise-free environment

in order to have a perfect estimation of Fe and thus to test the performance of an ideal iPID.

Using Simulator 2 or the Uva/Padova simulator, the robustness of iPID against CGM noise

was tested.

A Luenberger observer is used to estimate ẏ(t) (see Appendix A.4 for the design). The

input to the observer is the pure blood glucose output of the model in Simulator 1. For

simulator 2, the noisy sensor signal of the simulator is differentiated to obtain ẏ(t) using the

algebraic derivative estimator in Appendix A.1 that has a filtering properties (see [83] and

the references therein).

To estimate ÿ(t) for both simulators, a two-stage differentiation is done: a Dormand-

Prince ode45 numerical differentiator method is utilized followed by Luenberger first order

derivative estimator for Simulator 1 and the algebraic differentiator for Simulator 2 respec-

tively.

Fe is estimated according to (4.41), with ÿe(t) is estimated as explained previously. The

delay buffer in (A.22) of Appendix A.2 is useful to obtain a delayed signal like u(t −h), thus

eq. (4.41) becomes:

Fe(t) = ÿe(t)−
6

T 3

Z t

t−T
α(t −σ)(T − t +σ)u(σ)dσ (4.44)
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For simulator 1, the controller is sent every 5 minutes and the integration time window is

T = 20 min. (recall that h = T/2). For the Uva/Padova simulator, the built-in sampling time

is one minute and T = 5 min.

4.13 Standard PID

A standard PID controller is designed and compared to the iPID performance [87]. The classic

PID parameters are tuned on IF2 subject to yield a tight BG control, with a performance

comparable to that of iPID, with maximum time percentage in euoglycemia and minimum

hypoglycemic episodes. For this purpose, the two-day meal scenario is used as logged in the

clinical diary. The controller parameters are Kpc = 0.0005,Kdc = 250 and Kic = 0.001.

For comparison, this standard PID will be also scaled by a constant parameter p when

applied on different patients. It will be tuned per individual to minimize hypoglycemic

events during the simulation period. Individualizing only one control parameter per subject

is employed previously by [46] in an in silico trial for both PID and MPC, Kpc for the former

and the output prediction weighting parameter for MPC.

Remark 7. The integral term is limited to limit the integral windup due to control saturation

resulting from the inherent large and slow error dynamics especially during postprandial

phase. As time grows, the integral action excessively builds up to cope with postprandial

hyperglycemia yielding severe BG oscillations. For this system there is no negative action to

compensate for negative error excursions. Insulin injection is a positive input, i.e. insulin can

not be removed in case of over dosing, thus the input is saturated to zero. The result is input

saturation, on one hand, and oscillatory behavior and hypoglycemia in the output channel on

the other hand. For this reason, PID users usually incorporate some anti-windup protection

for the integrator, or even replace the integral by the patient optimal basal rate in PD+Basal

control [41]. The authors compared PID and PD+Basal on Uva/Padova simulator. They

concluded that the latter outperformed in reducing postprandial hyperglycemia, but and

conversely to PID, it failed to respond appropriately to changes in insulin sensitivity.

In this work and as will be shown in the next section, iPID is tested in two cases:

i) an anti wind-up scheme is employed for the integral action, for both PID and iPID, to

avoid the long-term accumulation. It discharges when hyperglycemia is attained (BG ≥ 180

mg/dL).

ii) The integral action is turned off and replaced by the subject’s specific basal rate, i.e.

iPD+basal.
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4.14 Methods

iPID controller is tested in silico on two different simulators. The first is the long-term model

identified on clinical data of five T1DM subjects (see § 3.7). The same meal scenario logged

in the clinical diary of those subjects is used. The second trial is performed on the well

known Uva/Padova metabolic simulator that is approved by FDA (see §3.6). The second trial

is performed on ten adults using a meal scenario of other published results of PID and MPC

controllers. For both tests, all simulator parameters are unknown to the controller and meals

are unannounced disturbances.

4.14.1 Simulator 1

The in silico tests will be performed on simulator 1 on five T1DM subjects using the clinical

diary as explained in Section 4.11.1. The open-loop basal-bolus injections of each diary will

be compared here to the closed-loop algorithms PID and iPID. The details of the simulation

results are presented in Section 4.15.

4.14.2 Simulator 2: UVa/Padova T1DM simulator

The PID designed in [89] that was compared to MPC performance, will be re-simulated here

under the same meal scenario and compared to iPID performance. The PID was actually a

(PD+basal rate) where the integral term is replaced by the subject’s specific basal rate. The

authors optimized PD weights to minimize average BG risk. This design is employed here

for the iPID i.e. turning the integral term off and replace it by the subject’s specific basal.

The purpose is to study the effect of the intelligent part of the iPID over a classic PID. The

PID as appeared in [89], sampled every 5 minutes is described as follows changing only the

set point to 120 mg/dL :

un = 6.375⇥10−5Pn +basal +0.0046Dn, (4.45)

Pn = yn −120 (4.46)

Dn = yn − yn−1 (4.47)

Where Pn,Dn are the proportional and derivative gains respectively. yn is BG at instant n.

The Uva/Padova built in basal rate will be used for each subject in the current study. The

desired set point for both controllers is set to 120 instead of the previously chosen 140 mg/dL

in [89]. The meal scenario is a 36 hours of six unannounced 20 min. duration meals. The

meal amount and timing are given in Table 4-2.
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Table 4-2: Meal Scenario for Simulator 2. 

 

Time 09:00h 13:00h 17:30h 20:00h 09:00h 13:00h 

Meal 50g 70g 90g 25g 50g 70g 

iPID will be tested in three different tests each start with a closed-loop fasting day:

1. IV sensor test (noise-free measurement): iPID performance will be compared to

standard PID designed in (4.45) applying the same meal scenario on five adults. The

subject’s specific basal rate is injected in both cases i.e. the integral term of iPID is

turned off. The same proportional and derivative gains in (4.45) are used for both

controllers. The remaining MFC structure in Section 4.12 is kept unchanged (like

derivative estimators and sampling time). The comparison is thus between iPD+basal

versus PD+basal. The objective is to perform a noise-free measurement test equivalent

to what is done in Simulator 1 and show the prandial adaptive feature of iPD+basal

over PD+basal controller.

2. CGM (noisy measurements):

I) iPD+basal versus PD+basal test: this comparison is performed now employing

CGM sensor on ten adults and the test is repeated 25 times for each subject to check

robustness against measurement noise.

II) iPID in a heavy meal test: it is performed on three subjects (5 runs for each) to show

the iPID performance in such challenge. The previous iPID designed for Simulator 1

is tested in this case adding the integral term back initialized at the basal level and with

α =−7,T = 15min. A scenario of meals=[20 120 90 100]g at time=[18:00h 20:00h

09:00h 13:00h].

The authors of [89] found that one of the patients (adult 9) was an outlier and not repre-

sentative of a normal T1D. They studied his behavior and it was shown that even with an

optimal bolus correction this patient suffers from hypoglycemia due to the powerful and slow

suppression of endogenous glucose production. Thus, this patient was excluded from the

averaged results of [89] and also in [90]. In this study all 10 virtual adults are considered

including adult 9. Details on the simulation results are presented in 4.15.3.
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Figure 4.6 IF2 response for open-loop, PID and iPID (p = −0.14,α = −0.16) (a): Meal intake. (b): BG
behavior. (c): Insulinemia. (d): PID and iPID insulin infusion rates.

4.15 In silico results and statistics

4.15.1 Simulator 1, without measurement noise

Applied on IF2 of 2-day clinical data of both fasting and postprandial phases, classic and

intelligent PID controlled BG behavior compared to FIT therapy are shown in Fig. 4.6-(b).

Each control signal is applied every 5 min.

Fig. 4.6-(a) displays meal intakes. iPID and PID yielded euglycemia during fasting day

while open-loop control persisted in hyperglycemia for over eleven hours. As Tables 4-3 and

4-4 read, mean values and time in target are improved for both controllers as compared to

open-loop therapy. The major difference between iPID and PID performance is that iPID has

a nice continuous smooth basal rate in the first fasting day and high rate during postprandial

phase as illustrated in Fig. 4.6-(d). Conversely, PID was off (saturated) most of the fasting

day and during 25 % of the overall time. Insulinemia behavior for the three therapies is

illustrated in Fig. 4.6-(c).
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iPID: a three-phase control

Both controllers are tested on the four other subjects tagged as IF3, IF9, BE and LR changing

−α = 0.32,0.43,0.18,1.6 and −p = 0.65,1.3,0.45,3.5 for iPID and PID respectively as

designed in Section 4.13. α may have a range of acceptable values per individual that verify

the order of magnitude of the estimators terms. This is an interesting feature of iPID as it

permits to detect and respond to the varying insulin sensitivity. The in silico test is conducted

applying meal scenarios as logged in the clinical diary (see [58] for more details).

As illustrated in Table 4-3 and 4-4, satisfactory BG behavior is achieved under both

controls with high percentage of time in target and mean values without severe hypoglycemic

events. The first three subjects are assessed in [87] as stable diabetics according to the Mean

Amplitude of Glycemic Excursion (MAGE) index while IF9 and LR are brittle diabetics (see

Appendix A.3).

Although meals are unannouned for both controls, iPID produced a faster bolus-shaped

infusion and thus a reduced postprandial BG excursion without the risk of late hypoglycemia

(see Fig. 4.8-(b)and 4.7 (b)). This improvement of iPID over its classic counterpart can be

observed also by the time percentage in hyperglycemia and the maximum peak as shown in

Table 4-4. The overall average percentage of BG in [180, 250] is 12.6% versus 14.6% and

BG >250 is 1.6% versus 4.8% for iPID and PID respectively. iPID control has a better mean

and time-in-target values with less hyperglycemia in amplitude and duration as compared

to PID control. The average over all percentage of BG in [70, 180] is 85.6% versus 80.4%

with overall mean 141± 37 versus 147 ± 42 for iPID and PID respectively. As illustrated in

Tables 4-3 and 4-4, PID and iPID control performances dominated those of iPvref control.

4.15.2 Simulator 2, with measurement noise: Uva/Padova

4.15.3 IV sensor

In this test a scenario of 33 hours of fasting followed by the meal scenario mentioned earlier

in Section 4.14.2 tested on five patients ( adults 1, 3, 7, 8, 10). The objective is to test the

superiority of the intelligent part of iPD+basal over standard PD+basal performance in (4.45)

employing the same feedback gains with α =−7. As detailed in Section 4.14.2, the integral

term is turned off and the subjects specific basal rate is injected in both algorithms. As

illustrated in Fig. 4.9, although both controllers reacted fast to meal perturbations, iPD+basal

was more aggressive which had a higher impact on postprandial hyperglycemia without a

risk of late hypoglycemia. As a result, iPD+basal achieved a better trade-off between hyper

and hypoglycemia with average overall mean of 138 versus 155 mg/dL for PD+basal.
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Table 4-3: Time performance indicators for open and closed-loop controls. 

Patient %Time in target 

[70-180]  -  [70-140] 

%Time in hypo. 

[<70] 

%Time in hyper. 

[180-250]|[>250] 

Open-

loop 

iPvref PID iPID Open-

loop 

iPvref PID iPID Open-

loop 

iPvref PID iPID 

IF2 55|30 59|30 95|85 91|69 0 0 0 0 45|0 40|02 5|0 09|0 

IF3 78|77 80|36 90|46 91|59 22 0 0 0 0 | 0 13|08 10|0 10|0 

BE 82|48 70|83 92|75 100|80 0 0 0 0 14|4 17|0 8|0 0|0 

IF9 70|65 72|27 82|46 86|65 37 0 0 0 08|06 04|18 8|09 12|0 

LR 57|32 50|22 43|26 60|31 2 6 0 0 33|08 21|23 42|15 32|8 

4.15.4 CGM sensor

In this test, α =−5,−5,−10 for subjects 6, 8 and 7 and α =−9 for 4,5 and 9 and α =−7

for all other patients. Table 4-5 and 4-6 provide a performance comparison between iPID

and PID algorithms. HBGI and LBGI refer to high and low BG index respectively. They

are measures of the frequency and extent of high and low BG readings and are calculated

according to the formula is given in [91]. As indicated in the user guide of the Uva/Padova

Simulator, HBGI is considered Minimal if HBGI< 5.0, Low if 5.0  HBGI < 10.0, while

LBGI<1.1 is considered Minimal and Low when 1.1LBGI <2.5. According to Table 4-6,

LBGI is minimal for PID and iPID while HBGI is minimal for iPID and low for PID.

A reduced mean of time percent in hyperglycemia BG 2 [180,250] for iPID of 21.2%

versus 30.32% for PID. The average mean and standard deviation curves are depicted in Fig.

4.10.

The heavy meal scenario is depicted in Fig. 4.11 using iPID designed in Section 4.12.

The test is repeated five times for each of the three subjects 5, 7 and 9 taking a set point of

140 mg/dL. This test includes patient 7 that had the highest hyper/ hypoglycemic events and

highest HBGI as illustrated in Tables 4-5 and 4-6. The resulting overall mean is 151±21

mg/dL, the average time percent of BG in [70, 180] is 71% , the average time percent of

BG< 50 is 0.53% and time percent in hyperglycemia BG> 250 is 11.83%. HBGI and LBGI

are found to be 6.77 and 1.49 respectively. Despite the elevated glycemia excursions, late

hypoglycemia events and risk remained low.
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Table 4-4: Performance indicators for open and closed-loop controls. 

Patient Mean ± std Min:Max(BG) % Time Off  control 

 

Open-loop iPvref PID iPID Open-

loop 

iPvref PID iPID iPvref PID iPID 

IF2 169±47 168±49 130±22 136±29 74|230 88|251 103|230 110|230 20 25 0 

IF3 91±23 155±50 145±33 140±31 46|142 72 | 298 74|244 74|237 24 22 18 

BE 155±39 128±44 128±31 123±27 84|260 73 | 230 76|195 75|177 57 44 44 

IF9 108±62 174± 104 145±56 133±39 49|320 80 | 495 74|317 75|245 23 23 22 

LR 171±54 185± 80 188±67 171±52 63|300 59 | 409 69|363 82|312 36 43 36 

4.16 Discussion

iPID control was shown to be appealing for glycemia regulation with the preferred PID

features. It was tested in silico on 15 T1DM adults on two different T1DM simulators. iPID

is compared to a standard PID controller in two cases:

i) each controller parameters were tuned independently on a case study and then the design

is applied on other subjects adapting one weighting parameter to avoid hypoglycemia and

results are compared.

ii) A PD+basal control previously designed to reduce the average BG risk index was compared

to iPD+basal blocking the integral term to the basal rate of the patient. The superiority of

the intelligent part of iPD over the classic is shown in this case by setting the same feedback

gains. The results showed that the postprandial response was improved with iPID reducing

hyperglycemic excursions with minimal hypoglycemic events. Moreover, the results showed

that iPID, who has the classic PID structure with new adaptive feature, emulated insulin

delivery of pancreatic β -cell. The major problem open for further research is about a

numerical differentiator which is able to cope with the typical glycemia measurement noise,

as any improvement will impact the performance of iPID. A perspective of this work is to

consider variation in insulin sensitivity, due to physical activities or sickness, in the in silico

test.
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Table 4-5: Main Objective Performance Measures. 

* 
Standard deviation. 

**
 n is the number of tests (over 25) where min(BG)<50. 

ID Mean ± SD
* %BG 70-180 %BG < 50 (n)

** 
%BG >250 %BG  

50-70 

PID iPID PID iPID PID iPID PID iPID PID iPID 

Adult 1 167±06 136±10 68 84 0 0 04.38 0.02 0 1.13 
Adult 2 153±07 131±09 81 90 0 0 01.64 0 0.08 0.21 
Adult 3 183±05 153±07 46 73 0 0 07.00 0 0 0.16 
Adult 4 169±05 147±07 63 75 0 0 03.48 0 0 0.29 
Adult 5 197±06 164±07 42 57 0 0 19.25 8.21 0 1.15 
Adult 6 180±04 145±07 58 78 0 0 13.36 2.97 0 0.09 
Adult 7 177±11 156±14 66 69 0 0.57(4) 14.79 9.75 0 1.02 
Adult 8 208±04 151±10 36 65 0 0.46(3) 24.19 1.15 0 2.16 
Adult 9 159±07 139±09 72 79 0 0 05.97 0.54 0 0.36 

Adult 10 161±04 140±06 70 87 0 0 01.14 0 0 0 
Average 175±06 146±09 60.2 75.7 0 0.10 09.50 2.26 0.008 0.66 

Table 4-6: Performance Measures (Quality Indicators). 

ID LBGI HBGI
 

Premeal Mean Postmeal 

Mean 

PID iPID PID iPID PID iPID PID iPID 

Adult 1 0.0002 0.4053 06.64 02.88 159 133 225 188 

Adult 2 0.0100 0.1551 04.33 01.95 142 126 202 170 

Adult 3 0.0005 0.1528 09.37 05.06 177 154 226 200 

Adult 4 0.0005 0.3836 06.89 04.51 164 149 216 200 

Adult 5 0.0010 0.5511 12.28 07.77 187 165 254 228 

Adult 6 0.0003 0.1514 09.43 04.31 173 139 254 215 

Adult 7 0.0115 0.7806 09.32 06.75 159 152 275 245 

Adult 8 0.0000 0.8261 14.42 05.59 201 152 268 213 

Adult 9 0.0112 0.3946 05.85 03.80 149 136 224 203 

Adult 10 0.0007 0.2469 05.75 03.18 158 141 208 185 

Average 0.0036 0.4047 08.43 04.58 166.9 144.7 235.2 204.7 

4.17 Conclusions

Model-free control is employed for the first time as a control algorithm to close the loop of

the artificial pancreas. The feasibility of iP and iPID to regulate glycemia for T1DM is tested

and the conclusions are summarized as follows:
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1. iP

• Constant reference iP has shown a poor postprandial response. Under a small

estimation time window, the proportional gains α and Kp were not sufficient to

reduce hyperglycemia peaks without late hypoglycemia.

• iP postprandial performance was enhanced by introducing a variable reference

trajectory for the controller. Whenever meals were detected, the controller

switched between a constant set point, to an exponential decay reference path.

This variable reference yielded a postprandial bolus-shaped injection rate which

was more effective in handling hyperglycemia peaks.

• In silico tests: the fully automatic model-free iPvref has shown a better postpran-

dial performance with respect to conventional iP.

• A good fasting-postprandial compromise can not be yielded using fixed design.

• To further improve the fully automatic controller, a two-phases gain scheduling

is proposed: α for fasting phase, and another for postprandial phase. Another

possibility, that was realized here, is to increase the degree of control complexity

to close the loop with iPID.

2. iPID

• Constant reference iPID performance indicators dominated those of iPvref in

silico control.

• iPID was compared to classic PID behavior that were optimally designed for a

T1DM subject of Simulator 1. iPID showed a better glycemia response according

to some statistical parameters. It was shown that iPID better emulated β cells

behavior than PID control by infusing a faster postprandial (first phase) insulin

pulse.

• iPID was tested on Uva/Padova T1DM simulator on three adults under CGM sen-

sor noise. The fully automatic iPID response to a relatively heavy meal scenario

was satisfactory avoiding late hypoglycemia. The same design parameters were

used for the three subjects.

• iPD+basal was compared to an existing PD+basal control from a previous study.

For a clear comparison, both controllers are compared employing the same gain

parameters.

• in silico Uva/Padova test results, under CGM noise, on 10 adults ⇥25 runs have

shown the superiority of the intelligent controller over its classic counterpart. The
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intelligent controller detected meals and reacted faster to meal perturbations as

compared to a classic PD without neglecting safety.

Diabetic stability is studied through the MAGE index (in Appendix A.5) to explain the

excessive glycemic variability in some subjects. They are found to be brittle patients, rare

cases that usually need extensive care and of BG fluctuations that are difficult to predict

and regulate. For the MAGE-stable patients, the new design yielded a satisfactory glycemic

response under the fully automatic MFC.

As a general overview, a better postprandial BG response was obtained with iPID as

compared to classic PID and to iPvref. A good robustness level was shown tuning only one

parameter from one patient to another. It was tuned empirically to reduce hyperglycemia with

least hypoglycemic episodes during the simulation time. The controller was fully automatic

without any meal announcement nor supplementary boluses. iPID combines the classic PID

nice properties with new adaptive features. However, the following remarks are worth noting:

1. System constraints are not taken into account in the design, namely, hypoglycemia

threshold and the positivity of the controller. The controller was saturated to zero

which is the lower admissible bound.

2. When the controller saturates to zero, the loop is broken and glycemia is not under

iPID control.

3. Integral windup is another known defect for PID-like controllers.

4. Hypoglycemia avoidance is not ensured.

Thus, maintaining a tight BG control, especially during postprandial phase is also not an easy

task for this fully automatic iPID.

Regarding MFC in general, some questions were raised concerning the stability of the

controller and iP was taken as a case study. It was shown that closed-loop stability, for iP

controller, is not simply related to the first order error dynamics resulting form the ultra-local

model. Via a second-order academic example, it was shown that closing the loop with iP does

not guarantee stability. Stability analyses related to the delay on the control law probably

worth further investigation. Other questions regarding the choice of the estimation function

of the ultra-local model are underlined. During the design of iPID, for instance, it was found

that a problem open for further research is about a numerical second order differentiator

which is able to cope with the typical glycemia measurement noise, as any improvement will

impact the performance of iPID.
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Figure 4.7 IF9 response for open-loop, PID and iPID. (a): CHO amount in meals. (b) BG behavior. (c): PID
versus iPID insulin infusion rates.
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Figure 4.9 BG behavior of Uva/Padova simulator under iPID and PID control employing
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Chapter 5

Positive Sliding Mode Control for

Glycemia Regulation

5.1 Chapter Introduction in French

Dans les études de PA, deux catégories principales d’algorithmes de commande ont été

employées : les commandes basées sur des modèles et les commandes non basées sur des

modèles (sans modèle). Chaque catégorie a ses propres avantages et inconvénients. Au

chapitre 4, le réglateur iPID (sans modèle) fut conçu et testé. La conception était basée sur

l’historique de l’entrée de commande et les mesures de sortie. Le régulateur révèle un bon

niveau de robustesse lorsqu’il est appliqué sur différents patients virtuels. Dans ce chapitre,

on utilise la commande par modes glissants (CMG), connue pour sa robustesse vis à vis des

perturbations et la dynamique non modélisée. Dans le chapitre 4, une saturation a été ajoutée

pour contraindre le contrôleur à être non négatif. La commande CMG est conçue ici pour

être positive sans la nécessité d’une saturation. Selon la littérature du PA au chapitre 2, la

positivité de la commande n’a pas été prise en compte. Alors, l’existence d’une commande

CMG positive est obtenue ici pour la régulation de la glycémie pour la première fois. Les

propriétés des ensembles positivement invariants sont utilisées à cette fin. On trouve le plus

grand ensemble positivement invariant en boucle fermée pour le sous système d’insuline sous

CMG. L’insuline contrôlée est l’entrée (variable de commande) du compartiment glycémique

pour réguler sa concentration. La trajectoire de référence d’insuline est conçue pour être

l’insuline plasmatique nécessaire pour réguler la glycémie. L’erreur de glycémie (par rapport

à la normoglycémie) est utilisée pour concevoir la trajectoire de référence de l’insuline pour

éliminer cette erreur. La trajectoire de référence de l’insuline est conçue via une seconde

commande par modes glissants et est renvoyée, en tant qu’entrée de référence, à la commande
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par modes glissants de la première étape. Ainsi, une fois que l’état d’insuline est piloté vers

sa référence souhaitée, la glycémie est elle-même pilotée vers son niveau normal.

5.2 Introduction

In AP studies, two main categories of control algorithms were employed: model-based

and non-model based (model-free) controllers. Each category had its own advantages and

drawbacks. In Chapter 4, model-free PID controller was designed and tested. The design

was based on the history of the control input and the output measurements. The controller

showed a good level of robustness when applied on different virtual patients. In this chapter

sliding model control, that is known for its robustness against perturbations and non-modeled

dynamics, is employed. In Chapter 4, a saturation was added to constrain the controller to be

nonnegative. The model-based SMC is designed herein to be positive without the need of a

saturation. According to the AP literature in Chapter 2, positive SMC has not been considered.

Thus, the existence of a positive SMC for glycemia regulation is shown here for the first

time. The properties of positively invariant sets are utilized for this purpose. The largest

closed-loop positively invariant set of insulin system under sliding mode control is found.

SMC is designed to be positive everywhere in the largest closed-loop positively invariant

set. The controlled insulin is the input (control variable) to the glycemia compartment to

regulate its concentration. The desired insulin trajectory is designed to be the required plasma

insulin to regulate glycemia. The error of glycemia (from its desired level) is used to design

the insulin reference trajectory to eliminate this error (see Fig. 5.9). The insulin reference

trajectory is designed via a second sliding mode control and it is fed back, as a reference

input, to the first stage sliding mode control. Thus, once the insulin state is steered toward

its desired reference, glycemia is directed toward its normal level. Lyapunov stability and

reachability conditions are verified for both controllers.

The work in this chapter is submitted to be published and under revision [92].

5.3 Positivity and Positive Invariance for Linear Systems

In the next subsection, the main motivations behind studying positivity and positive invariance

properties of system (3.17), in this chapter and the following chapter, are presented.
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5.3.1 Motivation

The glucose-insulin interaction as a physiological process relates positive variables like

concentrations or molar amounts. Thus, the input/output positive constraints of the long-term

T1DM model in § 3.7 is taken into account in the controller design in the current and the

following chapter. In addition, the realization of the mentioned T1DM model is not positive.

In other words, not all the positive initial conditions lead to a positive state trajectories for

any t ≥ 0 for insulin and glycemia state variables. Therefore, the largest open-loop Positive

Invariant Set (PIS) for the insulin dynamics is identified. It is the set where the plasma insulin

variable remains positive. Thereafter, the largest closed-loop PIS under SMC is found. The

result is a positive control everywhere in the largest closed-loop PIS of insulin system. The

theory of linear positive systems and positively invariant sets is employed for this purpose.

The PIS theory is involved in different control problems like: constrained control, robustness

analysis and optimization [93]. Moreover, to the best of our knowledge, the existence and

characterization of PIS to design a positive control of glycemia-insulinemia models have

not been considered previously. A part from MPC which takes constraints inherently in the

optimization process, saturation (to zero) is the basic solution to stop the negative control.

For these reasons, closed-loop PIS is found and employed to design a positive SMC (in this

chapter) and positive state feedback controller later in Chapter 6.

The following subsection gives a brief introduction of positive systems and positively

invariant sets. It will be used and applied on the T1DM model (3.17) to study the positivity

of its state variables: insulin, in this chapter and glycemia in the next chapter.

5.3.2 Preliminaries

Some useful definitions and theorems of positive systems and positively invariant sets are

now recalled from [94, 95]. They will be used throughout this chapter and the following

chapters.

In the following, any matrix E 2 Rn⇥m is said to be nonnegative, denoted by E ≥ 0 or

E 2 Rn⇥m
+ , if its entries ei j > 0 8(i, j).

5.3.3 Externally Positive Systems

Definition 1. [94] The following linear system:

8
<
:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
(5.1)
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where x 2 Rn,A 2 Rn⇥n,B 2 Rn⇥m,C 2 Rp⇥n, is said to be an externally positive system if

for any nonnegative input u(t) ≥ 0 and zero initial conditions, the output is nonnegative

y(t)≥ 0 for any t ≥ 0.

External positivity is characterized as follows.

Theorem 1. [94] System (5.1) is externally positive if and only if its impulse response h(t)

is nonnegative:

h(t) =CeAtB 2 R
p⇥m
+ , t ≥ 0 (5.2)

Obviously, the property of external positivity is inherent to the system and does not

depend on the special state coordinates used to describe the dynamics (5.1).

The stronger notion of internal positivity is recalled next, and shown to be useful to

analyze the insulinemia subsystem in Section 6.3.2.

5.3.4 Internally Positive Systems

Definition 2. [94] System (5.1) is positive or internally positive if for any x(0) 2 Rn
+ and

u(t) 2 Rm
+ the state trajectory x(t) 2 Rn

+ and the output y(t) 2 R
p
+.

Internal positivity is easily characterized thanks to the so-called Metzler matrices whose

off-diagonal elements have to be nonnegative.

Definition 3. A matrix H = [hi j] 2 Rn⇥m is Metzler if hi j > 0 for i 6= j.

Theorem 2. [94] The system (5.1) is internally positive if and only if

i) A is a Metzler matrix,

ii) B 2 Rn⇥m
+ ,C 2 R

p⇥n
+

Surprisingly, in opposition to external positivity, the property of internal positivity is state

coordinates dependent. It is not invariant under a change of state coordinates as it is easily

shown by the following example.

Example 1. The system

8
>>>>>><
>>>>>>:

ż(t) =

0
BBB@

0 0 −1

0 0 1

0 −1 −2

1
CCCAz+

0
BBB@

0

0

1

1
CCCAu

y(t) = z2

(5.3)
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is not internally positive in the z coordinates since the A matrix is not Metzler.

However, the following change of state variables:

8
>>><
>>>:

z̃1 =−z1

z̃2 = z2

z̃3 = z2 + z3

(5.4)

yields

8
>>>>>><
>>>>>>:

˙̃z =

0
BBB@

0 0 1

0 −1 1

0 0 −1

1
CCCA z̃+

0
BBB@

0

0

1

1
CCCAu

y(t) = z̃2

(5.5)

which fulfills the conditions of Theorem 2 and is thus internally positive.

Remark 8. Internal positivity implies external positivity and this can be shown using the

output time response of system (5.1) in the light of the impulse response:

y(t) =CeAtx(0)+
Z t

0
h(t − τ)u(τ)dτ (5.6)

To yield y(t)≥ 0, Theorem 1 requires only h(t)≥ 0 for x(0) = 0, while Theorem 2 requires

also x(0) ≥ 0,C ≥ 0 and B > 0 for internal positivity. The converse is not true, i.e. an

externally positive system is not necessarily internally positive e.g. system (5.3). Despite

the fact that this system is not positive according to Theorem 2, it is externally positive with

h(t) = te−t > 0.

The following definitions and theorems are useful to study positivity and set invariance

especially for the systems that are neither internally nor externally positive.

Definition 4. A nonempty set M ✓ Rn is a Positively Invariant Set (PIS) of (5.1) if 8xo 2

M =) x(t,xo) 2 M 8t ≥ 0.

Definition 5. For any G 2 Rr⇥n , ρ 2 Rr, Ω(G) denotes the polyhedron

Ω(G) = {x 2 Rn|Gx ≥ ρ} . (5.7)

In what follows, the vector ρ = [0]r⇥1if not specified otherwise.
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Proposition 1. [95] The polyhedral set Ω(G) is a positively invariant set for system (5.1) if

and only if there exists a Metzler matrix H such that:

GA−HG = 0. (5.8)

Hρ > 0 (5.9)

Corollary 1. The positive orthant Ω(I) = Rn
+ is PIS, if and only if A is Metzler.

Proof. It follows from Proposition 1 where H = A.

Corollary 2. The positive orthant Rn
+ of an internally positive system is a PIS.

Proof. It follows from Theorem 2 and Corollary 1.

As will be discussed in more details in Chapter 6, the T1DM model (3.17) is not positive

neither internally nor externally according to Theorems 2 and 1. This is true for both the

original realization in (3.17) and transformed one (3.23). This fact triggered the search to

find the largest set where the state variables remain positive at all times i.e. the largest PIS.

Invariance analyses were initially discussed for the original state representation (3.17) and

specifically on the second order insulin subsystem as a start. Those analyses, as will be

presented in this chapter, were undertaken in open and closed-loop control.

The next section investigates invariance properties of the open-loop insulin subsystem.

5.4 PIS of Insulin Subsystem: Open-loop

Consider the insulin subsystem (3.15) which is equivalent to:

(
ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
(5.10)

x(t) = [x1(t) x2(t)]
T

where y(t) is the output and x1 = I,x2 = İ are the system states with: A =

0
B@

0 1

−λ 2
m −2λm

1
CA,

B =

 
0

b

!
, C =

h
1 0

i

λm = 1
Tu
, b =

Kuλ 2
m

Vi
, b > 0. The plasma insulin is nonnegative in the following set Ω(C),

however, this set is not a PIS according to Proposition 1. In the following theorem the largest

PIS in Ω(C) for the open-loop insulin subsystem is presented.
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Theorem 3. The largest PIS in Ω(C)of the open loop system (5.10) is Ω(G), with G = 
1 0

λm 1

!
.

Proof. Firstly, it will be shown that Ω(G) is the largest polyhedral PIS. Secondly, it will be

shown that Ω(G) is the largest PIS in Ω(C). As Ω(C) is not PIS according to Proposition 1,

consider G =

 
C

a b

!
and Ω(G) is just a generic polyhedron contained in Ω(C). Find

a,b such that Ω(G) is PIS or H = GAG−1 is Metzler according to Proposition 1. The unique

H is

H =

 
−a

b
1
b

− (a−bλm)
2

b

(a−2bλm)
b

!
(5.11)

and the definition of a Metzler matrix implies b > 0 and a = bλm and hence G =

 
1 0

λm 1

!
.

As H is unique that satisfies Proposition1 then Ω(G) is the largest PIS in Ω(C) as illustrated

in Fig. 5.1. Note, that for any x(0) 2 Ω(C)\Ω(G), there exists t > 0 such that x(t) 62 Ω(C).

Therefore, Ω(G) is the largest PIS in Ω(C).

Figure 5.1 The blue region represents Ω(G) the largest PIS for the insulinemia autonomous
subsystem. The arrows represent the vector fields.

In the next section a standard SMC is designed for system (5.10) to obtain the largest

closed-loop PIS in Ω(C) under this control. Positivity constraints of the controller is also

considered thereafter.
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5.5 Introduction to Sliding Mode Control

Sliding mode control is a particular type of Variable Structure Control (VSC) systems which

evolved in Russia. It appeared outside of Russia in the mid of 1970’s when a survey paper

by Utkin (1977) was published in English. SMC has now a solid position in the field of

linear and non-linear control theory [96]. VSC system utilizes a set of continuous subsystems

(structures) and a switching function. The switching among different functions is determined

by the plant states. The discontinuous manner goes on so that the desired performance is

achieved. SMC uses the high-frequency discontinuous control action to derive the state

trajectories into a specified and user-defined surface in state space (called sliding or switching

surface) and to maintain them on this surface or within its neighborhood while moving

toward the equilibrium. During sliding mode the desired performance is maintained even in

the presence of disturbances/uncertainties.

5.6 SMC Design of insulinemia subsystem

Since the overall glucose-insulin system is a cascade of the second order insulinemia subsys-

tem and the first order glycemia subsystem, the glycemia regulation problem may be split

into the stabilization of the two subsystems. The objective of the first control problem is to

stabilize the error e(t) between the insulinemia and its desired value xd:

e(t) = x1 − xd

xd ≥ 0 is assumed to be a constant reference value for the insulinemia at this stage.

The sliding surface is defined by :

s(x) = ė+λe (5.12)

where λ is a positive real parameter so that e(t)! 0 when s = 0.

5.6.1 Reachability Condition

The aim is to achieve asymptotic convergence of the error e to zero using the control u that

drives the sliding variable s to zero in finite time. This task is achieved by using the following

Lyapunov function:

V =
1
2

s2 (5.13)
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The adequate control is computed as a solution to V̇  0, or equivalently sṡ < 0 with

s 6= 0 which is termed as the the reachability condition.

sṡ = s(−λ 2
mx1 +(λ −2λm)x2 +bu) (5.14)

The standard sliding mode control law consists of the sum of a continuous equivalent control

ueq(t) and a discontinuous control udis(t):

u = ueq +udis (5.15)

where the continuous part ueq is the solution of ṡ = 0 :

ueq(t) =
1
b
[λ 2

mx1 +(2λm −λ )x2] (5.16)

while

udis(t) =−k sign(s) (5.17)

and V̇ is then:

sṡ =−kb|s|< 0 (5.18)

thus, sṡ < 0 is guaranteed whenever k > 0.

5.6.2 Reaching Time

Definition 6. Denote tr the time instant when the sliding manifold is reached s(tr) = 0.

tr can be calculated using

ṡ(t) =−bk sign(s(t)) (5.19)

with u = ueq − k sign(s), integrating both sides of (5.19) in the interval [0, t] yields

Z t

0

ds(t)

sign(s(t))
=−bk

Z t

0
dt (5.20)

yields

|s(t)|− |s(0)|=−bkt (5.21)

and at t = tr sliding occurs and s(tr) = 0 thus:

tr =
|s(0)|

bk
(5.22)
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where s(0) = s(x(0)).

In the next sections, output/control positivity and invariance conditions will be investi-

gated. In order to find the largest closed-loop PIS in Ω(C), and later under nonnegative SMC,

the set Ω(C) will be divided into three regions:

i) on the surface s = 0: S = {x 2 Ω(C)|s(x) = 0} (5.23)

ii) in the region s  0: S− = {x 2 Ω(C)|x2 −λ (x1 − xd)} (5.24)

iii) in the region s ≥ 0: S+ = {x 2 Ω(C)|x2 ≥−λ (x1 − xd)}. (5.25)

5.7 Invariance of the Surface S

In ideal sliding mode, the sliding surface represents an invariant manifold of the system [97].

Once this manifold is reached, the state trajectories remain on it for all future times. The

invariance condition of s = 0 is thus

8
<
:

s = 0

ṡ = 0
(5.26)

Since the sliding manifold is shown to be PIS, the invariance of the following subsets

will be investigated during the reaching phase when t < tr.

Using Lyapunov attractivity condition (5.18) the following sets are PIS:

S+R = {x 2 R2|s ≥ 0} (5.27)

S−R = {x 2 R2|s  0} (5.28)

Thus S+ ⇢ S+R , S− ⇢ S−R . In words, if x(0) 2 S+R (2 S−R respectively) then x(t) 2 S+R (S−R
respectively) 8t 2 R+ thanks to Lyapunov condition (5.18). This can be shown using ṡ(t) in

(5.19) and its solution in (5.21) as follows:

(
∣∣s(t)

∣∣−
∣∣s(0)

∣∣) 0, 8t > 0 (5.29)
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or equivalently

8
<
:

0 ≥ s(t)> s(0) if s < 0

0  s(t)< s(0) if s > 0
(5.30)

and this implies that if s(0) 2 S+R (S−R respectively) then s(t) 2 S+R (S−R respectively) for any

t > 0. As a result, any state trajectory initiated in S+R (S−R respectively) will remain there for all

future times. However, our interest in the following sections is to find the largest closed-loop

PIS in S+ and S− and then the largest overall PIS in Ω(C).

Remark 9. As stated earlier S+R ,S
−
R are PIS, however since S+⌘Ω(C)\S+R ,S−⌘Ω(C)\S−R

and Ω(C) is not PIS then S−,S+ are not necessarily PIS. Therefore the largest PIS in

S+(S−respectively) is found such that x1(t)≥ 0 for any t > 0 and positive invariance of each

set is ensured via the Lyapunov reachability condition. As S ⇢ S+(S−respectivlely) is a PIS

as shown earlier, therefore, the invariance of S+(S− respectively) is analyzed during the

reaching phase s(x) 6= 0 in S+ and S− respectively.

5.8 Positive invariance in S−

In the reaching phase of S− i.e. s(x)< 0, the closed-loop system is

8
<
:

ẋ1 = x2

ẋ2 =−λx2 +bk
(5.31)

with state variables time solution
8
<
:

x1(t) = x10 +
x20−x2(t)+bkt

λ

x2(t) =
bk
λ
+(x20 −

bk
λ
)e−λ t

(5.32)

Theorem 4. Assuming ideal sliding mode, the largest PIS in S− is

Ms− := M⇤[{x0 2 S−|x20 > 0} (5.33)

as illustrated in Fig. 5.2, where

M⇤ :=
n

x0 2 S−|x10 ≥ x̄10, x20  0
o

(5.34)
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x̄10 =−
⇣ bk

λ 2 ln
⇣bk−λx20

bk

⌘
+

x20

λ

⌘
(5.35)

Proof. • Case 1: x20 > 0. According to the second equation of (5.32) and (5.24):

x1(t) = x10 +
x20

λ
(1− e−λ t)+

bk

λ 2

⇣
λ t − (1− e−λ t)

⌘
(5.36)

x10 ≥ 0,x20 > 0, the first and second terms are nonnegative, hence, it suffices to verify

that:
bk

λ 2

⇣
λ t − (1− e−λ t)

⌘
> 0 (5.37)

or

λ t ≥ (1− e−λ t) (5.38)

which is true for any λ > 0 and t ≥ 0. Thus, the set {x(0) 2 S−|x20 > 0} is a PIS.

• Case 2: x20  0

In this case, x1(t)2 S− is not guaranteed for any t as it decreases until ẋ1(t
⇤) = x2(t

⇤) =

0. Thus, define the critical time t⇤ < tr which is the solution of ẋ1(t
⇤) = 0:

t⇤ =
1
λ

ln
⇣bk−λx20

bk

⌘
(5.39)

Note that (5.39) is well defined in Case 2. The test of the critical point x(t⇤) reveals a

minimum since ẍ1(t
⇤)> 0. For a given x(0) substituting t = t⇤ in (5.32) yields a point

of the trajectory in the phase plane (x1(t
⇤),0) where x1(t

⇤) = min(x1(t)). To find the

largest PIS in S− such that x1(t) > 0, it is required that min(x1) = 0 i.e. the global

minimum at x1(t
⇤) = 0 such that x1(t) 2 S− for any t. The largest PIS in S− must have

the global minimum of its state trajectories at the origin. Thus, the substitution of

(5.39) into (5.32), to have x1(t
⇤) = 0 yields

x10 =−
⇣ bk

λ 2 ln
⇣bk−λx20

bk

⌘
+

x20

λ

⌘
(5.40)

and hence (5.35) and the set M⇤ characterizes the set of points whose trajectories have

a nonnegative minimum. To verify that x̄10 > 0 in (5.40), taking into account that the

current case x20 =−|x20|, the right-hand side of (5.35) is nonnegative or:

λ

bk
|x20|> ln

⇣
1+

λ |x20|

bk

⌘
(5.41)

which is true as it as (5.41) is equivalent to t ≥ ln(1+ t).

If x(0) 2 M⇤ and {s(x) = 0} ⇢ M⇤ ( tr ≥ t⇤ ) then x 2 M⇤8t > 0. However, M⇤ is not
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Figure 5.2 Largest PIS in S− for bk = 1,λ = 0.5,x(0) = (x̄10,−1), x̄10 = 0.378. S− is in
light violet area, M⇤ is in blue and Ms is bounded by the solid violet line.

entirely a PIS as only x1(t)> 0 is ensured in it. This is due to the fact that s = 0 is not

entirely included in M⇤. For instance, x(t⇤) 2 M⇤ and tr < t⇤ then the trajectory leaves

M⇤ (when the coordinate x2(t)> 0, t > t⇤) to reach S ⇢ S− of Case 1.

The largest PIS in S− is thus the union of the set in Case 1 and M⇤ in Case 2 or (5.33) as

demonstrated in Fig. 5.2.

5.9 Positive Invariance in S+

In this region the closed-loop system during the reaching phase s(x)> 0 is

8
<
:

ẋ1 = x2

ẋ2 =−λx2 −bk
(5.42)

with state variables time solution
8
<
:

x1(t) = x10 +
x20−x2(t)−bkt

λ

x2(t) =
−bk

λ
+(x20 +

bk
λ
)e−λ t

(5.43)

Theorem 5. Assuming an ideal sliding mode, the largest PIS in S+ is S+



96 Positive Sliding Mode Control for Glycemia Regulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1

x
2

s=0

Figure 5.3 Invariance of S+.

Proof. Following a similar procedure as in Theorem 4, from (5.43) equation ẋ1(t
⇤⇤) = 0 is

solved at t⇤⇤:

t⇤⇤ =
1
λ

ln
⇣bk+λx20

bk

⌘
(5.44)

The condition for this time to be nonnegative is x20 ≥ 0. This test of the point reveals

a maximum i.e. ẍ1(t
⇤⇤) < 0. Here, from (5.42) and (5.43) we have two scenarios in the

reaching phase following the initial condition x20:

1. Case1: x20 > 0 then x1 will be increasing till x hits the sliding surface to converge

to (xd,0) at t ≥ tr ; or the trajectory reaches the maximum before the surface i.e.

ẋ1(t
⇤⇤) = 0 with t⇤⇤ < tr then the trajectory follows the scenario of case 2.

2. Case2: x20  0: this implies that x2(t) 0 according to (5.43). From (5.25) one has

x1 = 0 at x2 = λxd > 0, hence x1 6= 0 in the region where x2 < 0. As a result, x1

will decrease (according to (5.42)) but to some strictly positive value and not to zero.

Hence, x1(t)> 0 8t < tr and at t = tr sliding mode occurs.

Therefore x1(t)≥ 0 everywhere in S+ thus, and according to the reachability condition

(5.18), the entire S+ is a PIS (see Fig. 5.3).

Using the reachability condition and the fact that S that separates S+ and S− is a PIS, the

largest closed-loop PIS in Ω(C) is thus

M+ = Ms− [S+ (5.45)

as illustrated in Fig. 5.4. In the following section, λ ,k will be designed to yield the largest

PIS such that u ≥ 0 in M+.
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Figure 5.4 The largest PIS: M+.

5.10 Positive Invariance Under Positive SMC

5.10.1 On the surface S

Firstly, the applied control on S is the equivalent control, that is

ṡ = 0 =) u = ueq (5.46)

where

ueq =
x2(2λm −λ )+λ 2

mx1

b
(5.47)

Knowing that during sliding mode u = ueq and thus substituting s = 0 in (5.47) yields:

ueq =
x1(λm −λ )2 + xdλ (2λm −λ )

b
(5.48)

From the above equation it is clear that in the interval 0 < λ  2λm is a sufficient condition

such that the control action is nonnegative u = ueq ≥ 0 during sliding mode in the subset S.

Remark 10. In what follows the sliding surface is designed such that 0 < λ  2λm to

guarantee a positive control in S independently of the point x 2 M+. This choice leads to the

slope (−λ ) of the line s = 0 is larger than the slope (−
λ 2

m

(2λm−λ )) of the line u = ueq = 0.

So far, the output/control are nonnegative during sliding mode, next is to investigate the

design conditions to ensure the positivity of the control in the reaching phase of the PIS of



98 Positive Sliding Mode Control for Glycemia Regulation

S+ and S−. Define the following sets where u ≥ 0 in S− and S+ respectively:

• In S− \S u = ueq + k:

M+k =
{

x 2 {S− \S}|x2 ≥
−bk−λ 2

mx1

2λm −λ

 
(5.49)

• In S+ \S u = ueq − k:

M−k =
{

x 2 {S+ \S}|x2 ≥
bk−λ 2

mx1

2λm −λ

 
(5.50)

With the choice of λ according to Remark 10, SMC is nonnegative on the sliding surface,

in M+k and in M−k.

However, whether M+k ⇢ S+, M−k ⇢ Ms− or in other words u ≥ 0 everywhere in the PIS

of S+,S− respectively is not ensured. Therefore, in the following subsections, the design

conditions of the pair (λ ,k) are found to yield the largest PIS in S+,Ms− respectively such

that u ≥ 0.

5.10.2 In the subset S+

As stated earlier in Theorem 5, the subset S+ is a PIS. The control is non-negative in the set

M−k , but not everywhere in S+. The following theorem will give necessary conditions such

that u ≥ 0 everywhere in S+ \S or to have {S+ \S} ⇢ M−k.

Theorem 6. Assuming (0  λ  2λm), the following statements are equivalent:

1. {S+ \S} ⇢ M−k.

2. u ≥ 0 everywhere in S+.

3.

λm −

s
λ 2

m −
bk

xd

 λ  λm +

s
λ 2

m −
bk

xd

, 0 < k 
λ 2

mxd

b
. (5.51)

Proof. According to Remark 10, during sliding mode u = ueq > 0 in S and hence it remains

to show that u = (ueq − k)≥ 0 in {S+ \S}. From Remark 10 the slope (-λ ) of the line s = 0

is larger than the slope −
λ 2

m

(2λm−λ ) of the line u = 0 i.e. λ <
λ 2

m

(2λm−λ ) . Thus, if the following

holds

(ueq − k)
∣∣∣
x1=0

 s

∣∣∣
x1=0

(5.52)



5.10 Positive Invariance Under Positive SMC 99

then {S+ \S} ⇢ M−k or u ≥ 0 everywhere in S+ as illustrated in Fig. 5.5.

(5.52) means that the point of intersection of the line s = 0 with the x2-axis is higher than

the point of intersection of ueq − k = 0 with x2-axis i.e.:

bk

2λm −λ
 λxd (5.53)

this yields the quadratic polynomial

P(λ ) = λ 2 −2λλm +
bk

xd

 0 (5.54)

for real λ then the discriminant is nonnegative: ∆ = λ 2
m − bk

xd
≥ 0 or

k 
λ 2

mxd

b
(5.55)

also P(λ ) has the following roots

λ1,2 = λm ±

s
λ 2

m −
bk

xd

(5.56)

and as P(λ ) = 0 at λ = λ1 or λ = λ2, then P(λ ) 0 or (5.53) holds if and only if

λm −

s
λ 2

m −
bk

xd

 λ  λm +

s
λ 2

m −
bk

xd

(5.57)

therefore, the pair (k,λ ) satisfying (5.51) leads to a nonegative control everywhere in S+.

For graphical illustration, see Fig. 5.7. The set M−k is everywhere above the line

ueq − k = 0.

5.10.3 In the subset S−

The largest PIS in Ms− such that u ≥ 0 will be found here using the results of (5.51). It will

be shown that the previous design constraints on λ in (5.51) do provide a nonnegative control

everywhere in Ms− with additional constraint on the gain k.
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Figure 5.5 The lines ueq − k = 0 (u=0 in S+) with respect to the line s = 0 for a nonnegative
control in S+, with λm = 1,λ = 1.2785 and k = 0.91.

Theorem 7. Assuming (5.51) then u ≥ 0 everywhere in Ms− if and only if

1.2785λm < λ  λm +

s
λ 2

m −
bk

xd

, 0 < k  0.9224
xdλ 2

m

b
(5.58)

Proof. As stated earlier u = ueq > 0 in S. Thus, in what follows the positivity of the control

during the reaching phase is considered i.e.when u = ueq + k.

• Case 1: x 2 Ms− ,x2 > 0

In this case ueq ≥ 0 hence, u = (ueq + k)≥ 0.

• Case 2: x 2 Ms− ,x2  0

Here, to yield u ≥ 0 everywhere in Ms− i.e. M+k ⇢ Ms− , design k and λ , satisfying

(5.51), such that the line u = ueq+k = 0 and the trajectory limiting the set M⇤ in (5.34)

do not intersect. For this purpose, from (5.34) define f1(x2) =−
⇣

bk
λ 2 ln(bk−λx2

bk
)+ x2

λ

⌘

and using (5.49) define f2(x2) =
λ−2λm

λ 2
m

x2 −
bk
λ 2

m
and then F(x2), f1(x2)− f2(x2) = 0.

F(x2) =−
bk

λ 2 ln(
bk−λx2

bk
)− x2

⇣ 1
λ
+

λ −2λm

λ 2
m

⌘
+

bk

λ 2
m

(5.59)

If an intersection exists then F(x2) = 0 has a solution, thus find x2  0 solving

F(x2) = 0. To simplify the search of the solution (if any), note that F(0) = bk
λ 2

m
> 0,



5.10 Positive Invariance Under Positive SMC 101

lim
x2!−∞

F(x2) = +∞ and also note that

dF(x2)

dx2
=

bk

λ (bk−λx2)
−

1
λ
+

2λm −λ

λ 2
m

(5.60)

dF(x2)
dx2

|x2=0 =
2λm−λ

λ 2
m

> 0, lim
x2!−∞

dF(x2)
dx2

= − (λ−λm)
2

λλ 2
m

< 0. This reads that F(x2) has a

minimum point and as the initial and final values of F(x2) are both positive, then if

min
x20

(F(x2)) > 0 the intersection between f1, f2 does not exist. This means that as

u ≥ 0 everywhere in Ms− , thus the aim now is not to find a solution x2  0 such that

F(x2) = 0, but rather to ensure min
x20

(F(x2)) > 0. At the minimum point dF(x2)
dx2

= 0,

one has:

x2 = bk
λ −2λm

(λ −λm)2 (5.61)

which is a unique solution i.e. the minimum point is global. In order to verify whether

min(F(x2))> 0 substitute (5.61) in (5.59) which yields:

min(F(x2)) =−
bk

λ 2 ln
⇣

1−
λ 2 −2λλm

(λ −λm)2

⌘
−bk

(λ −2λm)

λλ 2
m

+
bk

λ 2
m

(5.62)

min(F(x2))> 0 () −
(λ −2λm)

λλ 2
m

+
1

λ 2
m

>
1

λ 2 ln
⇣ λ 2

m

(λ −λm)2

⌘
(5.63)

using the property ln(a
b
)n = n ln(a

b
):

λ

λm
> ln

∣∣∣ λm

λ −λm

∣∣∣ (5.64)

which can be rewritten as
λ

λm
> ln

∣∣∣ 1
λ
λm

−1

∣∣∣ (5.65)

or ∣∣∣ λ

λm
−1

∣∣∣e
λ

λm > 1 (5.66)

As illustrated in Fig. 5.6, equation (5.66) is satisfied only when λ
λm

> 1.2785 and

comparing this new constraint with (5.51):

λ

λm
> 1.2785 and 1−

q
λ 2

m − bk
xd

λm


λ

λm
 1+

q
λ 2

m − bk
xd

λm
(5.67)
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and as 1−

q
λ 2

m−
bk
xd

λm
< 1.2785 then

1.2785 <
λ

λm
 1+

q
λ 2

m − bk
xd

λm
(5.68)

which implies 1.2785  1+

q
λ 2

m−
bk
xd

λm
and hence k  0.9224 xdλ 2

m

b
yielding (5.58).

Using the results of Theorems 6 and 7, SMC designed in (5.58) is nonnegative everywhere

in M+.

See Fig. 5.8 for a graphical illustrative example. The region above the lines ueq + k = 0

and ueq − k = 0 represents M+k and M−k respectively. The trajectory in orange passing

through the subset S− is the one that characterizes the PIS Ms−. As shown, λ satisfies (5.58)

ensures a positive control everywhere in M+. Whereas, as shown in Fig. 5.7, the value of λ

satisfies only (5.51) thus ensures a nonnegtaive control everywhere in S+ but not in Ms− as

the red region represents x 2 Ms−and u < 0. The parameters λm,b,xd in the figures are taken

to simplify the example and its illustrations.

Remark 11. The admissible λ that satisfies the positivity constraints in (5.58) is within the

interval 1.2785λm < λ  λm +
q

λ 2
m − bk

xd
< 2λm. As a result, the closed-loop eigenvalue is

larger than that of the open-loop yielding a relatively faster time response.
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Figure 5.7 Phase plane plot: with λ = 0.8 satisfying (5.51) i.e. 0.7 < λ < 1.3 but not
satisfying (5.58), with k = 0.91, x(0) = (x̄10,−6), x̄10 = 4.8887 for the (bounding) trajectory
in S−. x(0) = (4.8887,2) for the trajectory in S+.
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Figure 5.8 Phase plane plot: with λ = 1.2785 satisfying (5.58), with k = 0.91, x(0) =
(x̄10,−6), x̄10 = 3.4438 for the (bounding) trajectory in S− , and x(0) = (3.4438,2) for the
trajectory in S+.

Remark 12. SMC is a discontinuous controller with high frequency switching frequency

in the neighborhood of s = 0 known as the chattering phenomenon. To reduce the high

frequency chattering, the sharp discontinuous sign function will be replaced by the following

smoother sigmoid-like function as suggested often in the literature of SMC (see for instance

[98])

σ(s) =
s

ε + |s|
(5.69)

where ε is a small positive scalar and lim
ε!0

σ(s) = sign(s).

5.11 Glycemia System

The overall system glycemia-insulinemia system (3.17) is a cascade of the second order

insulinemia subsystem and the first order glycemia subsystem (see Fig. 3.5). In this manner,

the glycemia regulation problem may be split into the decoupled stabilization problems of

the two subsystems. As detailed in the previous sections, the first control problem was to

stabilize the error e(t) between the insulinemia x1 and its desired value xd via positive SMC

under positive insulin constraint. The controlled plasma insulin is applied to regulate blood
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glucose G(t). In fasting phase glycemia dynamics is described in (3.17) as:

Ġ(t) =−ksix1(t)+θ1 (5.70)

θ1 as defined in (3.20). In this section a second sliding mode control (SMC2) is designed to

choose the insulin level x1(t) = xd such that

s1(t), G(t)−Gr = 0 (5.71)

where s1 is the new sliding variable and Gr is the desired glycemia level which is often taken

to be Gr =120 mg/dL. In other words, the objective of SMC2 is to design xd as the new

sliding mode virtual controller such that s1 = 0 i.e.

ṡ1 =−ksixd +θ1 (5.72)

Hence, following the classic SMC design procedure and using a Lyapunov function V1 =
1
2s1ṡ1, design a suitable positive xd > 0 such that s1ṡ1 < 0. xd is then the reference input for

SMC1 to control insulin subsystem as illustrated in Fig. 5.9.

Figure 5.9 A block diagram of the overall SMC controlled system.

From (5.70) and (5.71) yields

s1ṡ1 = s1(−ksixd +θ1)< 0 (5.73)

using the basal plasma insulin defined in (3.36): Ieq =
θ1
Ksi

, xd is designed to verify (5.73) as

follows

xd = Ieq + k1sign(s1) (5.74)
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where k1 > 0. Therefore, the objective of the SMC1 control u(t), as explained earlier, is to

reach s = 0 and then asymptotically direct x1(t) to xd given in (5.74). As xd is designed via

SMC2 above to ensure that (5.73) holds and then to achieve s1 = 0

5.11.1 Positivity of xd and Choice of k1

• s1 = 0 i.e. at the equilibrium then xd = Ieq > 0

• s1 > 0 or hyperglycemia region then xd = (Ieq + k1)> 0 for any k1 > 0.

• s1 < 0 or hypoglycemia region, to have xd > 0 then k1 < Ieq.

As a result, k1 < Ieq is the lower bound to ensure that the desired plasma insulin value is

positive. Moreover, the constraint on the gain k given in (5.58) will take this lower bound

into account setting xd = Ieq − k1 i.e.

0 < k  0.9224
(Ieq − k1)λ

2
m

b
(5.75)

Remark 13. Taking k1 < Ieq is sufficient to have xd > 0 for any s1. However, this gain value

in times of hyperglycemia (s1 >> 0) yields xd = (Ieq + k1) < 2Ieq which yield a relatively

slow convergence of BG to its normal level (see the insulin injections of T1D patients in

[58]). Therefore, the switching gain k1 needs to be adapted according to the switching region

to yield a sufficiently high insulin reference value when G > Gr and thus a faster response.

5.12 Variable Discontinuity Gain k1

To obtain a sufficiently fast glycemic response, the gain k1 is chosen to be proportional to the

offset G−Gr when s1 > 0 i.e. the switching function is adapted as follows

8
<
:

If s1 > 0 then xd = Ieq + kos1

If s1  0 then xd = Ieq + k1sign(s1), k1 < Ieq

(5.76)

where ko[U/mg]> 0 is a proportional gain. The gain k1 is constant and xd > 0 when s1  0

as explained in section 5.11.1. In this manner s1 > 0 leads to a variable reference value:

xd(s1) = Ieq+ko(G−Gr) and the insulin sliding surface in this case s= x2+λ (x1−xd(s1)) is

not a line but rather a trajectory as will be shown in the simulation results section. Therefore,

if glycemia level is below the desired level s1 < 0 then the desired insulin is less than the basal

xd = (Ieq − k1)< Ieq which permits the glycemia to grow due to the endogenous production
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(for details see [58]). Moreover, in case G = Gr then the insulin is steered to the basal

xd = Ieq to maintain glycemia at that value.

In the following section, the gain ko is designed such that the reachability condition of

the surface s is verified when the new variable reference xd(s1) is applied i.e. when s1 > 0.

5.12.1 Reachability of s for xd = Ieq + kos1

In the region s1  0 the desired insulin value xd is a constant and the previous design analyses

of s and k,λ of the first SMC hold. In the case where s1 > 0 then the sliding surface s

becomes

s = x2 +λ (x1 − (Ieq + kos1)) (5.77)

and the reachability condition sṡ < 0 with u as described in (5.15) and (5.16) is thus

s(−ksign(s)−λkoṡ1) =−(k|s|+λko s ṡ1)< 0 (5.78)

with ko > 0 the surface s is reachable if (k|s|+λko s ṡ1) > 0, and the case where sṡ1 ≥ 0

directly verifies the reachability condition as k,ko and λ are positive scalars. Otherwise, the

case when sṡ1 < 0 is studied for given λ and k as follows:

• Case1: ṡ1 > 0, s < 0: hence from (5.78) sṡ < 0 implies

k|s|−λk0|s|ṡ1 > 0 (5.79)

and hence

ko <
k

λ max |ṡ1|
(5.80)

and from (5.70) and Ieq = θ1
Ksi

then ṡ1 > 0 or Ġ > 0 means that x1 < Ieq and thus

max(ṡ1) = lim
x1!0

Ġ = θ1.

• Case2: ṡ1 < 0, s > 0: setting |ṡ1| = −ṡ1 in (5.78) leads also to (5.80). However,

ṡ1 < 0 and (5.70) imply x1 > Ieq and thus max |ṡ1| depends on the maximum registered

plasma insulin level. For instance as presented in [58], the highest plasma insulin

among the five clinical data, as interpreted by the model, is max(x1) = 0.01 U/dL. For

this example, (5.70) leads to max |ṡ1|= |−0.01ksi +θ1|.

Therefore, max(max |ṡ1|) is obtained from case 2 when ṡ1 < 0 due to

(max |ṡ1|)
∣∣∣
(x1>Ieq)

> θ1 ≥ (max |ṡ1|)
∣∣∣
(x1<Ieq)

(5.81)
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In this manner, denoting x̄1 = max(x1 > Ieq) then max |ṡ1(x̄1)| is used in (5.80) to obtain the

lower bound of ko .

5.12.2 The set M+

Bearing in mind that the state solution (5.43) and (5.32) are not affected by the choice of

xd and consequently Theorems 5 and 4 hold and the largest PIS M+ is not affected by the

choice of xd > 0.

5.12.3 Is u > 0 in The set M+

In the case s1 > 0 where the desired insulin is variable xd(s1), it can be shown that the

previous design of k,λ such that u(t) ≥ 0 for a constant xd holds also for xd = Ieq + kos1.

First of all, the control law in (5.15) has not changed and it is still positive during sliding

mode i.e. s = 0 implies that u = ueq in (5.48) which is positive in M+ by simply taking

λ < 2λm. Secondly, the design conditions in the region s > 0 when xd was a constant (e.g.

xd = (Ieq + kos1)
∣∣∣
s1=0

) are re-verified. As shown in section 5.10.2 the parameters k,λ are

designed such that u ≥ 0 everywhere in S+ \S or

s > u > 0 ⌘−λ (x1 − xd)>
bk−λ 2

mx1

2λm −λ
(5.82)

When xd = (Ieq + kos1)
∣∣∣
s1>0

then s > 0 is equivalent to x2 >−λ (x1 − Ieq)+λkos1 , thus,

s

∣∣∣
s1>0

> s

∣∣∣
s1=0

> u > 0 (5.83)

As a result, the design conditions on k and λ in (5.51) yielding a nonnegative control when

xd = Ieq hold also for xd = Ieq + kos1. These design conditions ensure λ < 2λm and hence a

positive control during sliding in the subset S. The final design conditions given by (5.58),

which yielded starting from (5.51) to ensure a positive control in Ms− , hold also since they

do not depend on xd but rather on k and λ . Consequently, u ≥ 0 everywhere in M+ with

xd = Ieq + kos1.

5.13 Numerical Simulation Results

In this section, SMC is designed and applied on five virtual patients whose parameters are

given in [58]. The control parameters are designed to fulfill the conditions (5.58) and (5.75)
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and (5.80):

k = 0.88kmax, k1 = 0.3Ieq (5.84)

λ = 0.9λmax > 1.2785λm, ko = 0.014Ieq < komax
(5.85)

kmax = (0.9224 xdλ 2
m

b
), λmax = λm +

q
λ 2

m − bk
xd

with xd = Ieq − k1 according to (5.75), komax
=

k
λ max |ṡ1(x̄1)|

, x̄1 = 0.025 U/dL. As stated in Remark 12, to avoid the chattering phenomenon

in the control signal, the signum function for the insulin subsystem is replaced by the

sigmoid-like function in (5.69) with ε = (1⇥10−4)Ieq.

The first simulation starts with hyperglycemia initial condition G(0) = 250 mg/dL and

x1(0) = 9.7⇥10−4U/dL x2(0) = 0.1⇥10−4 U/(dL.min). The benefit of taking xd = Ieq+kos1

is that it is supposed to be larger than if one would take a fixed gain xd = Ieq + k1,k1 < Ieq as

explained in Remark 13. This advantage appears when s1 >> 0, for instance, as illustrated

in Fig. 5.10 (a)-(b), at t = 0 glycemia offset is s1 = 130 mg/dL and xd = 23⇥10−4 > 2Ieq

U/dL knowing that Ieq = 8.04⇥10−4 U/dL. The control u(t) is positive the entire time as

illustrated in panel (c) of Fig. 5.10. Fig. 5.10 (d) illustrates the phase portrait in the x1 − x2

plane and how the trajectory slides on the new surface s(x,xd(s1)). It is good to notice that

increasing the gain ko leads to a faster glycemia response but the resulting trajectory xd will

be faster for the state x1 to follow as depicted in Fig. 5.11 (a)-(b). As a matter of fact, it is a

compromise between glycemia behavior/response time and insulinemia reference tracking.

The second test is performed on patient BE with G(0) = 70 mg/dL and x2(0) =−0.1⇥

10−4U/(dL.min) and x1(0) = 1.75⇥10−4U/dL satisfying (5.40) i.e. on the edge of the the

set Ms− . In this case where s1 < 0 a constant desired insulinemia xd = Ieq + k1sign(s1) is

applied according to (5.76) and as shown in Fig. 5.12 (a)-(c). As a result the sliding surface

is composed of two straight lines depending on xd as illustrated in Fig. 5.12-(d).

For IF3 patient, the test starts with hypoglycemia G(0)= 50 mg/dL and x1(0)= 20⇥10−4

U/dL, x2(0) = 0 U/(dL.min). In this case the controller administers two different insulin

rates based on xd(s1), the first is less than the basal injection rate u = 0.014 < ub U/min.

(recall (3.37)) which permits glycemia to augment as a consequence of the endogenous liver

production (see (5.70)). Finally, when G = 120 mg/dL the injected insulin is the rate that

maintains the equilibrium u = ub = 0.012 U/min.

5.14 Conclusion

Positivity analyses of the insulin model presented in [58] was studied in this chapter for

the open and closed-loop system. Plasma insulin state is nonnegative in nature, but math-
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ematically the second-order model is not positive. For that purpose, the set of points of

the second-order model where the plasma insulin is nonnegative was firstly found. It is

the largest open-loop PIS that can be defined as the feasible set of initial conditions where

the model correctly describes the input-free response of the biological system. Secondly,

sliding mode control with constraints of positivity is designed for insulinemia system to

regulate the plasma insulin to some desired value. The largest PIS where the plasma insulin

variable is nonnegative under SMC was found. Thereafter, the positivity of SMC was ensured

everywhere in this set via the design of k and λ . The additional positive input constraint does

not reduce the largest closed-loop PIS.

As the plasma insulin is the input state variable to the glycemia subsystem, it was

considered as a virtual control variable to regulate glycemia. Thus, the error between blood

glucose measurement and its desired constant value was regulated by a second sliding mode

controller (SMC2) which is a virtual insulin variable. The virtual controller was designed to

be the adequate reference insulin xd > 0 to eliminate glycemia error s1 = 0. The designed

virtual controller xd was used as a desired reference input for SMC1 block. The control effort

of SMC1 or u(t) is directed to reach s = 0 and then to force x1(t) = xd . It was shown also that

a variable reference trajectory xd(s1, t)> 0 during hyperglycemia is also a viable solution to

yield a relatively faster glycemia response compared to a constant set point. The simulation

is made on virtual patients derived from real life clinical data. The simulation results

demonstrated the validity and the efficiency of the proposed theoretical results. Positive

SMC to regulate glycemia has shown a satisfactory results in terms of following the insulin

designed target and regulating glycemia to normal levels without hypoglycemic episodes.

The gain of SMC2 is chosen to achieve the trade off between a relatively fast glycemic

behavior and avoiding hypoglycemic events. It was noticed that the overall system response

was rather slow even though the design parameters of SMC1 were set to their maximum

admissible limit to maintain a positive control. This is an expected consequence of designing

a positive control instead of applying an unconstrained controller and arbitrarily saturating

it to zero or to turning it off whenever it goes negative. Moreover, for this class of systems

where a nonnegative control is the only admissible input, even if the output response was

rather slow to attain the target, the situation remains under control. In other words, it is

always possible to inject a supplementary dose (e.g. a small bolus) to solve the problem. This

is actually an important factor as it means that the system is under the admissible control and

the risk of hypoglycemia due to overdosing is reduced.
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5.15 Perspectives

The following points are worth considering as future work to the presented positive SMC for

glycemia regulation of T1D patients:

1. Meal perturbations or the postprandial phase and its influence on the largest closed-loop

PIS is to be studied.

2. Positivity analyses for glycemia state variable is to be investigated to find the largest

PIS under nonnegative SMC control. In other words, to find by which means the region

where s1 < 0 can be reduced for the purpose of lowering the risk of hypoglycemia.

3. Model uncertainties and measurement noise and how they affect the largest PIS and

the positivity of the controller.
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insulinemia versus its desired trajectory x1 and xd . (c): SMC control.
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Chapter 6

Description of Positively Invariant Sets

in R3

6.1 Chapter Introduction in French

Dans ce chapitre, les propriétés d’invariance du modèle glycémique global, telles que la

positivité de l’erreur entre la glycémie est son niveau normal est non négative (pour éviter

l’hypoglycémie). Dans le chapitre 5, l’analyse de la positivité du sous-système insuline

dans les cas boucles ouverte et fermée a été étudiée. Une commande CMG positive dans le

plus grand ensemble positivement invariant (EPI) du sous-système d’insuline a été conçue

pour réguler la glycémie. Cependant, la positivité de l’erreur de la glycémie (par rapport à

l’hypoglycémie) n’a pas été prise en compte dans cette synthèse. En raison de la discontinuité

de la loi de commande, concevoir une CMG positive partout dans le plus grand EPI de R3

tel que l’erreur de la glycémie est non négative est beaucoup plus complexe. Néanmoins,

la robustesse de la CMG est encourageante pour mettre le problème en perspective. Dans

ce chapitre, la boucle est fermée par une loi de commande continue : un régulateur par

retour d’état. La théorie des polyèdres invariants pour les systèmes linéaires continus peut

être directement appliquée pour trouver une commande positive par retour d’état. De plus,

le régulateur est continu et la structure en boucle fermée qui en résulte est unique. Par

conséquent, trouver le plus grand EPI en boucle fermée dans R3 (pour le système global),

sous commande positive, est moins complexe.

Tout d’abord, le plus grand EPI du système en boucle ouverte (où seul un débit basal

d’insuline est infusé) est obtenu. Deuxièmement, le plus grand EPI du système en boucle

fermée sous la commande positive stabilisante par retour d’état est trouvé. À l’intérieur

de cet EPI, la glycémie est régulée sans risque d’hypoglycémie. Le résultat principal du
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plus grand EPI en boucles ouverte et fermée est la prédiction d’hypoglycémie. Comme

montré dans le Chapitre 2, l’hypoglycémie est une complication commune grave pour un

DT1. Il s’agit donc d’un problème majeur à résoudre pour la conception du pancréas artificiel.

L’hypoglycémie est prédite ici en fonction des conditions initiales du système. La prédiction

est établie lorsque les conditions initiales sont en dehors du plus grand EPI en boucle fermée

(glycémie <70 mg / dL). Dans ce cas, on vérifie si la condition initiale appartient au EPI

de boucle ouverte (sous l’injection basale). Si oui, la boucle est ouverte et le débit basal est

injecté. Sinon, une hypoglycémie future est également prévue avec l’injection basale, alors la

pompe est arrêtée signalant un épisode hypoglycémique sévère. De cette manière, l’analyse

de positivité s’avère très utile pour la régulation de la glycémie et aussi pour la prédiction de

l’hypoglycémie et éventuellement la nécessité d’un resucrage.

6.2 Introduction

The problem of finding the largest PIS where glycemia remains invariant within or above the

desired threshold, is addressed in this chapter. In Chapter 5, positivity analysis of the insulin

subsystem in open and closed-loop cases was studied. A positive SMC everywhere in the

largest PIS of the insulin subsystem was designed to regulate glycemia. However, positivity

of BG error (with respect to hypoglycemia) was not taken into account in the design. Due to

the discontinuity of the control law, designing a positive SMC everywhere in the largest PIS

in R3 such that BG error is nonnegative is much more complex. This problem is addressed

in this chapter via a simple continuous control law. The loop is closed via a state feedback

controller. First of all, the control law is simple and continuous and the resulting closed-loop

structure is unique. Therefore, finding the largest closed-loop PIS in R3 (for the overall

system), under positive control, is less complex than that with SMC1. Moreover, the theory

of invariant polyhedra for continuous linear systems is directly applied to find a positive state

feedback controller.

Firstly, the largest PIS of the open-loop system (where only a basal insulin rate is infused)

is obtained. Secondly, the largest PIS of the closed-loop system is found under a stabilizing

positive state feedback control. Inside the PIS, glycemia is regulated without hypoglycemia

risk. The main outcome of the largest open and closed-loop PIS for glycemia system is

the hypoglycemia prediction. As shown in Chapter 2, hypoglycemia is a serious common

complication in T1DM. It is, thus, a major open problem to be solved for the artificial

pancreas design. Hypoglycemia is predicted here based on the system initial conditions. The

prediction is established when the initial conditions are outside the largest closed-loop PIS

1 Nevertheless, the robustness of SMC is encouraging to put the problem as a future work.
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(BG<70 mg/dL). In this case, the loop is opened to either administrate basal insulin only,

or to switch the pump off. If the initial condition belongs to the open-loop (basal) PIS then

the loop is opened to inject basal insulin only. Otherwise, if future hypoglycemia is also

predicted under basal injection, then the pump is switched off signaling severe hypoglycemia.

In this manner, positivity analysis is shown to be very useful for tight glycemia regulation

and also for hypoglycemia prediction.

Preliminary results of this chapter are presented in [99]. Open-loop results of this chapter

are accepted to be published in [100]. The closed-loop results of this chapter is submitted to

be published in Automatica [101].

The theoretical preliminaries given in subsection 5.3.2 will be used in this chapter.

6.3 Positivity Analyses of T1DM Models

In this section internal/external positivity is checked for Magdelaine’s linear model, Hovorka’s

and Dalla Man insulin linear models according to Theorems 1 and 2.

6.3.1 Hovorka and Dalla Man Models

As seen earlier in Sections 3.5.1 and 3.6.1, those models are nonlinear, specifically for

glucose subsystems. Thus, the positivity definitions and theorems for linear systems in the

preliminary section of Chapter 5 can not be applied on glucose subsystems. Therefore, the

positivity of the linear insulin subsystems of both models has been investigated (see Sections

3.5.2, 3.5.3 for Hovorka’s model and 3.6.2 for Dalla Man). Both subsystems are positive

according to Definition 2 and Theorem 2. For illustration, take Hovorka’s insulin model in

(3.8) (3.9) and (3.10), that is rewritten as follows:

ẋh = Ahxh +Bhu(t) (6.1)

xh =Chxv (6.2)

where xh =
h
S1 S2 I x1 x2 x3

iT

,

Ah =

0
BBBBBBBBB@

− 1
tmax,I

0 0 0 0 0
1

tmax,I
− 1

tmax,I
0 0 0 0

0 1
VI .tmax,I

−ke 0 0 0

0 0 kb1 −ka1 0 0

0 0 kb2 0 −ka2 0

0 0 kb3 0 0 −ka3

1
CCCCCCCCCA
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Bh =
h
1 0 0 0 0 0

iT

, taking the plasma insulin as output then Ch =
h
0 0 1 0 0 0

i
.

According to Definition 3 Ah is Metzler and Bh 2 R6⇥1
+ ,Ch 2 R1⇥6

+ , thus Hovorka’s insulin

subsystem is positive. Similar demonstration can be done to show the positivity of Dalla

Man insulin subsystem.

6.3.2 Magdelaine’s Model

In this chapter, Magdelaine’s model is employed in its second representation (3.23) which

seems to be more appropriate due to its compartmental variables as explained in Chapter 3

which has stronger positivity properties as will be explained in the sequel. Another simplified

representation is deduced from (3.23), assuming a basal insulin u(t) = ub is injected:

8
>>>>>>>>><
>>>>>>>>>:

0
BBB@

˙̃x1

˙̃x2

˙̃x3

1
CCCA=

0
BBB@

0 −θ2 0

0 − 1
θ3

1
θ3

0 0 − 1
θ3

1
CCCA

0
BBB@

x̃1

x̃2

x̃3

1
CCCA+

0
BBB@

0

0
1
θ3

1
CCCA ũ

ỹ =Cx̃, x̃o , x̃(0).

(6.3)

via the following change of variables:

x̃1 = G−Gr, (6.4)

x̃2 = xn1 −ub, (6.5)

x̃3 = xn2 −ub, (6.6)

ũ = u−ub (6.7)

where C =
⇣

1 0 0
⌘

, Gr is the glucose desired reference (e.g. 120 mg/dL), ub [U/min] is

the basal infusion rate in (3.37). Recall that xn1 ,xn2 are the plasma and subcutaneous insulin

rates respectively.

Remark 14. The positivity of the new variables x̃ is in the strict sense with respect to their

positive reference values and this permits to study the invariance against hypoglycemia for

x̃1. In addition, the conditions for positivity and invariance of the control u is with respect to

the basal infusion rate.

When u = ub or ũ = 0 the system states are steered to the equilibrium i.e. x̃eq =(x̃1,0,0)

and x̃1 can settle anywhere. This is biologically true for a T1DM as the basal insulin does

not regulate glycemia but it maintains glycemia constant at some value.
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Remark 15. According to Theorem 2, neither the system in its original coordinates nor

system (6.3) are internally positive as their system matrices are not Metzler. Moreover,

according to Theorem 1 they are not externally positive. To show that via Theorem 1,

compute the impulse response h(t) of (6.3):

h(t) =
(
θ2 +

θ2t

θ3

)
e
− t

θ3 −θ2 (6.8)

Thus, the impulse response of the output lim
t!∞

h(t) = −θ2 and the system is not externally

positive either.

Remark 16. Although the overall system (6.3) is not positive, its insulin subsystem (x̃2, x̃3)

is internally positive according to Theorem 2 as the insulin subsystem presented by 2⇥2

lower right block of matrix A is Metzler, B > 0 and C > 0. According to Corollary 2, R2
+ for

this subsystem is a PIS. Note that although the insulin subsystem is internally positive in the

new coordinates (6.3), it is not in the coordinates (3.17). This is just very similar to what is

described in Example 1 in subsection 5.3.2.

Remark 17. It is good to mention that the insulin subsystem in (3.23), with u(t)> 0, is also

positive according to Definition 2 and Theorem 2. This means that insulin subsystem in

x̃−coordinates in (6.3) is not only positive but also for any x̃2(0)>−ub and x̃3(0)>−ub then

x̃2(t)>−ub, x̃3(t)>−ub for any ũ(t)>−ub and t > 0. In other words, for any ũ(t)>−ub,

the set {x̃ 2 R3|x̃2,3 >−ub} is a PIS.

Remark 18. Internal positivity property is not invariant under the change of state coordinates

and this is evident in the change from (3.17) to (6.3) where the insulin subsystem in (3.17) is

not positive whereas in (6.3) it is positive.

Remark 16 is interpreted as follows: the set Ω(C) is not PIS and this motivates the search

for the largest PIS of (6.3)in open and closed-loop cases. This is useful to

1. Find the PIS where the system behaves as an externally positive system 2.

2. Ensure that the positivity constraint on glycemia is respected i.e. x̃1(t) > 0. In the

PIS in Ω(C) glycemia is restricted to be above or at the desired level Gr in (6.4), thus

hypoglycemia is avoided as Gr > 70 mg/dL.

Concerning insulin positivity constraints, as stated in Remark 17, they remain invariant

x̃2,3 >−ub for any ũ >−ub.

2or even internally if C = I3⇥3
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6.4 PIS in Ω(C)

In this section, the largest PIS Ωm := {x̃o 2 Ω(C)|Cx̃(t)> 08t > 0} is found, i.e. the largest

set of initial conditions such that state trajectories never cross the plane Cx̃ = 0. Since each

trajectory is unique (does not cross others), the subset of those which are tangent to the plane

Cx̃ = 0 defines a boundary of Ωm. These trajectories tangent to the plane Cx̃ = 0 are such

that there exists t⇤ > 0 solution of Cx̃(t⇤) = 0 and C ˙̃x(t⇤) = 0 for some initial conditions.

These trajectories pass by the line

L ,

8
<
:

Cx̃ = 0

C ˙̃x = 0
(6.9)

L is actually a set of extrema. L is a set of minima for the passing trajectories whose initial

condition x̃o 2Ω(C) (or Cx̃o > 0). The concavity of the trajectory Cx̃ is decided by C ¨̃x(t⇤) and

from (6.3) C ¨̃x1(t
⇤) =−θ2

θ3
x̃3(t

⇤), hence a minimum occurs if x̃3(t
⇤)< 0. Thus, a boundary is

given by the set of trajectories whose minimum is zero i.e. the set

S̃ , {x̃o 2 Ω(C)|min
t>0

(Cx̃(t)) = 0} (6.10)

Theorem 8. The largest PIS Ωm ⇢ Ω(C) consists of all points x̃o 2 Ω(C) such that:

1. lim
t!∞

Cx̃(x̃o, t) 2 Ω(C).

2. min
t>0

Cx̃(x̃o, t) 2 Ω(C) whenever such a minimum exists.

Proof. Point 1 follows directly from the definition of a PIS. Point 2 follows also from the

definition of a PIS that is, the trajectory x̃(t) 2 Ω(C) for any t > 0.

6.4.1 Open-loop

The state solution of system (6.3) during the fasting phase with ũ = 0 is:

x̃1(t) = x̃10 +θ2θ3 (x̃20 + x̃30)(e
− t

θ3 −1)+θ2x̃30te
− t

θ3 , (6.11)

x̃2(t) =

✓
x̃20 +

x̃30t

θ3

◆
e
− t

θ3 , (6.12)

x̃3(t) = x̃30e
− t

θ3 . (6.13)
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The final value of the output BG is lim
t!∞

Cx̃(x̃o, t) = lx̃o where l =
⇣

1 −θ2θ3 −θ2θ3

⌘
and

the set of points that satisfies the final value condition of Theorem 8 is simply the polyhedron3

Ω(G) with

G :=

 
C

l

!
(6.14)

Note that since only the first condition of Theorem 8 is satisfied then Ωm ⇢ Ω(G). In the

next section, it is demonstrated that Ω(G) is not a PIS and the largest polyhedral PIS in Ω(G)

is found. Thereafter, the largest PIS Ωm is found [100, 101].

6.5 Polyhedral PIS

According to Proposition 1 neither the set Ω(C) nor the set Ω(G) are PIS, therefore the

largest polyhedral PIS in Ω(G) is found. It will be useful later in finding Ωm. The largest

polyhedral PIS is sought in a smaller polyhedron Ω(Go)⇢ Ω(G) where

Go :=

 
G

w

!
(6.15)

and w = (a b c) where a,b and c are unknown constants. The next Theorem states that the

largest polyhedral PIS is Ω(G⇤) := Ω(Go|w=w⇤) with w⇤ := (1 −θ2θ3 0).

Theorem 9. The largest polyhedral PIS in Ω(G) for system (6.3) with ũ = 0 is Ω(G⇤).

Proof. The set Ω(Go) is a PIS according to Proposition1 if the constants a,b,c, are chosen

such that H = GoAG−1
o is Metzler. Thus, choose a,b,c such that H verifies Definition 3:

h13 =−
θ2

(b− c)
> 0 () b− c < 0 (6.16)

h12 =−
c

θ3(b− c)
> 0 and(6.16) () c > 0 (6.17)

h31 =
(b+aθ2θ3)

2

θ2θ 2
3 (b− c)

> 0 and(6.16) () b =−aθ2θ3 (6.18)

h32 =−
b2 +acθ2θ3

θ2θ 2
3 (b− c)

, (6.18) () b 6 0 (6.19)

and the remaining off diagonal terms are h21 = h12 = 0. From (6.19) and (6.16) the term h32

is nonnegative in either of the following cases:

3Recall Definition 5 of a polyhedron
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Case 1: a = 0,b = 0,c > 0 (6.20)

Case 2: a > 0,b =−aθ2θ3,c > 0 (6.21)

w satisfying (6.20) or (6.21) renders Ω(Go) a PIS and next is to find the largest polyhedral

PIS. Denote Go satisfying case 1 in (6.20) as G1 =

0
B@

C

l

w1

1
CA where w1 = (0 0 c),c > 0. For

Case 2 denote G2 =

0
B@

C

l

w2

1
CA where w2 = (a −aθ2θ3 c) satisfying (6.21).

Firstly, it will be shown that x̃ 2 Ω(G1) implies x̃ 2 Ω(G2) or equivalently Ω(G1) ⇢

Ω(G2) for c> 0. Secondly, it will be shown that Ω(G2|c=0)⌘Ω(G⇤) is the largest polyhedral

PIS.

1. Ω(G1)⇢ Ω(G2) is shown as follows:

x̃ 2 Ω(G1) is equivalent to satisfying all of the following inequalities

x̃1 > 0 (6.22)

x̃1 −θ2θ3x̃2 −θ2θ3x̃3 > 0 (6.23)

cx̃3 > 0 (6.24)

(6.23) yields x̃1 −θ2θ3x̃2 > θ2θ3x̃3 and (6.24) implies x̃1 −θ2θ3x̃2 > 0 which in turn

implies that a(x̃1 − θ2θ3x̃2)+ cx̃3 > 0 for any a > 0,c > 0 or equivalently w2x̃ > 0.

Therefore Ω(G1)⇢ Ω(G2). See Fig. 6.1 for graphical illustration.

2. Ω(G2)⇢ Ω(G⇤) follows from

If x̃3 > 0 then (6.23) implies x̃1 −θ2θ3x̃2 > 0. (6.25)

If x̃3 < 0 then w2x̃ > 0,c > 0 implies x̃1 −θ2θ3x̃2 > 0. (6.26)

or equivalently a(x̃1 −θ2θ3x̃2)> 0 for a > 0, therefore x̃ 2 Ω(G2) implies x̃ 2 Ω(G⇤).

Thus, Ω(G⇤) is the largest polyhedral PIS as depicted in Fig. 6.2.
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Figure 6.1 The largest polyheral PIS in open-loop using IF2 patient parameters. The largest
Polyhedral PIS Ω(G⇤) is with w = w⇤. The plane w2x̃ = 0 is with c = 1000 to characterize
Ω(G2).

6.6 Non-Polyhedral PIS [99, 100]

Theorem 10. The largest PIS Ωm ⇢ Ω(C) following Theorem 8 has a boundary formed by:

1. lx̃o = 0 where l =
⇣

1 −θ2θ3 −θ2θ3

⌘
.

2. S̃ = {x̃o 2 Ω(C)|x̃30 < 0, x̃20 > 0, lx̃o +θ2θ3 x̃30 e
x̃20
x̃30 = 0}.

Proof. The set S̃ as defined in (6.10) is found. The minimum point x̃1(t
⇤) (if any) of (6.11)

is found at some critical time t⇤ such that x̃1(t
⇤) > 0 and ˙̃x1(t

⇤) = 0. This is achieved by

differentiating (6.11) w.r.t. time:

˙̃x1 =−θ2e
− t

θ3 (x̃20 +
x̃30t

θ3
) = 0 (6.27)

The unique time t⇤ solution of (6.27) is:

t⇤ =−
θ3x̃20

x̃30
(6.28)

Note that t⇤ > 0 in either of the following cases:

• Case 1: x̃20 > 0 and x̃30 < 0 or,
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Figure 6.2 Ω(G⇤) the largest open-loop polyhedral PIS, θ2 = 11.6,θ3 = 122 of IF2 patient.

• Case 2: x̃20  0 and x̃30 > 0.

Recall that the point x̃1(t
⇤) is a minimum point if ¨̃x1(t

⇤) > 0. Computing ¨̃x1(t) and

substituting t = t⇤ from (6.28):

¨̃x1(t
⇤) =−x̃30

θ2

θ3
e

x̃20
x̃30 (6.29)

If x̃30 > 0 (Case 2 above) then x̃1(t
⇤) is a maximum and this case is not of interest as a

max(x̃1) = 0 implies that x̃o 62 Ω(C). Case 1, the region where x̃1 admits a minimum, is thus

the only case compatible with the positivity of the output.

Substitute (6.28) in (6.11) to get x̃1(t
⇤). Therefore, x̃1(t

⇤) = 0 yields x̃o 2 S̃:

S̃ = {x̃o 2 Ω(C)|x̃30 < 0, x̃20 > 0, lx̃o +θ2θ3 x̃30 e
x̃20
x̃30 = 0} (6.30)

The largest PIS Ωm ⇢ Ω(C) according to Theorem 8 has a boundary formed by

1. lx̃o = 0 (fromlim
t!∞

Cx̃(xo, t) = 0).

2. S̃.

Corollary 3. From Theorem 8, Ωm ⇢ Ω(C) is the largest PIS, thus it includes:
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• all nonnegative final values lx̃o > 0 or Ωm ⇢ Ω(l),

• all nonnegative minima x̃1(t
⇤)> 0 ( assuming lx̃o > 0 is fulfilled) i.e.

S̃+ := {x̃ 2 Ω(G)|min
t>0

(Cx̃(t))> 0} (6.31)

It is good to mention that Ω(l) is a PIS according to Proposition 1, consequently x̃(t) 2 S̃+

implies x(t) 2 Ω(l)8 t > 0 .

As will be shown next, the set Ωm is actually the union of the largest polyhedral PIS and

S̃+ as illustrated in Fig.6.3.

~

Figure 6.3 Ωm the open-loop PIS for the glycemia state x̃1(t), θ2 = 11.6,θ3 = 122 of IF2
patient.

6.7 The Largest PIS in Ω(C)

Remark 19. The region outside the largest polyhedral PIS is W− := Ω(G) \Ω(G⇤) or

equivalently

W− := {x̃o 2 Ω(G)|w⇤x̃o < 0}. (6.32)
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Aiming to find the largest PIS in Ω(G), it is required to find a subset (if any) in W− such

that x̃(t) 2 Ω(G) for any t > 0.

Theorem 11. The largest PIS in Ω(G) is Ωm = Ω(G⇤)[ S̃+.

Proof. According to Theorem 9, the largest polyhedral PIS in Ω(G) is Ω(G⇤), otherwise if

x̃(t) 2 Ω(G)\Ω(G⇤) then necessarily x̃(t) 2W− according to Remark 19.

x̃(t) 2W− is equivalent to satisfying simultaneously the following inequalities

x̃1(t)> 0, (6.33)

x̃1(t)−θ2θ3(x̃2(t)+ x̃3(t))> 0, (6.34)

x̃1(t)−θ2θ3x̃2(t)< 0. (6.35)

(6.33) and (6.35) imply that x̃2(t)> 0, while (6.34) and (6.35) implies that x̃3(t)< 0. The

subset W− is thus located in the region x̃2(t)> 0, x̃3(t)< 0 of Ω(G). W− is not a PIS because

there exists t⇤ > 0 such that x̃2(t
⇤) = 0 hence x̃(t) 62W− for t > t⇤. Therefore, x̃(t) 2W−

only during 0  t < t⇤, t⇤ is the instant where x̃2(t
⇤) = 0 and at which the trajectory leaves

W−. 4

Thus find the set of trajectories initiated in W− that remain in Ω(G) for all time.

As explained before, x̃(t) 2 W− implies x̃3(t) < 0 at any t 2 [0, t⇤). At t = t⇤ there

are two possibilities either x̃3(t
⇤) < 0 or x̃3(t

⇤) = 0. The case x̃3(t
⇤) = x̃2(t

⇤) = 0 or

x̃(t⇤) = (x̃1(t
⇤),0,0) 2 Ω(G⇤) is in fact an equilibrium point. As for the case x̃3(t

⇤) < 0,

recall from (6.3) that ˙̃x1(t) =−θ2x̃2(t) and ¨̃x1(t) =−θ2
θ3
(x̃2(t)+ x̃3(t)), then

x̃2(t
⇤) = 0, x̃3(t

⇤)< 0 () Cx̃(t⇤) = min
t>0

(Cx̃(t)) (6.36)

Thus, to maintain x̃(t) 2 Ω(G) it is required that min
t>0

Cx̃(t)> 0 and hence the set S̃+. Hence,

the only admissible set in W− is W−\ S̃+
5.

x̃o 2 S̃+ implies x̃(t) 2W− for any 0  t < t⇤, thereafter x̃(t) 2 Ω(G)\W− for any t > t⇤

or equivalently

x̃(t) 2 S̃+ 0  t  t⇤, x̃(t) 2 Ω(G⇤) t > t⇤ (6.37)

4As inequality (6.34) represent the PIS Ω(l), thus, the trajectory leaving W− means that one or both of the
inequalities (6.33) and (6.35) no more hold. Satisfying (6.33) for any t > 0 is the objective, thus, the focus is
put on the time t⇤ at which (6.35) no more holds.

5note that S̃+ 6⇢W− due to x̃(t⇤) 2 S̃+ but x̃(t⇤) 62W−.
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In words, the trajectory initiated in S̃+ enters the PIS Ω(G⇤) at t = t⇤ to remain there6.

Thus, x̃o 2 S̃+[Ω(G⇤) implies x̃(t) 2 S̃+[Ω(G⇤) for any t > 0, hence S̃+[Ω(G⇤) is a PIS.

As shown, S̃+ is the largest admissible set outside the largest polyhedral PIS. Thus, from

(6.37) the union S̃+[Ω(G⇤) = Ωm is the largest PIS in Ω(G).

S̃+ as defined in (6.31) for system (6.11)-(6.13) is

S̃+ = {x̃o 2 Ω(G)|x̃30 < 0, x̃20 > 0, lx̃o +θ2θ3 x̃30 e
x̃20
x̃30 > 0} (6.38)

Recall from Remark 17 that the feasible set of initial conditions in Ωm is x̃o 2 Ωm such

that x̃20 >−ub, x̃30 >−ub.

The set of points where hypoglycemia occurs is

S̃− :=W− \ (W−\ S̃+) (6.39)

Remark 20. The fact that x̃o 2 Ω(G) implies that lim
t!∞

Cx̃(xo, t)> 0 according to Corollary

3. Therefore, due to the nonnegative initial and final values of Cx̃(t), hypoglycemia events

Cx̃(t) < 0 are temporary (if any) i.e. the trajectory Cx̃(t) pass by a negative minimum.

According to (6.28), the minimum time instant is unique, thus it is a global minimum. Thus,

the set of points (initial conditions) which has hypoglycemia nadirs is S̃−. It is a negative

minimum set that will be useful in the following section to predict hypoglycemia.

The largest PIS of the open-loop case is where glycemia is maintained above or on a pre-

specified level (see (6.4)) e.g. a point in the normal range Gr 2 [70,120] mg/dL. In addition,

Gr = 70 is the least admissible reference value beyond which hypoglycemia (G < 70) zone

starts. Checking the offset with hypoglycemia threshold is very useful as it ensures that once

glycemia initiated in Ωm then hypoglycemic risk is avoided. Moreover, the largest PIS of the

T1DM model is useful for determining the region where hypoglycemia occurs. As will be

shown in the next section, given the initial condition and checking its inclusion in the PIS:

x̃o 2 Ω(C)\Ωm helps predicting that there exists t > 0 such that G(t)< 70 mg/dL.

6As stated earlier, inequality (6.34) is equivalent to Ω(l) which is a PIS, thus, according to (6.31), x̃o 2
S̃+ ⇢ Ω(l) implies that (6.34) holds 8t > 0.
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6.8 Fasting-Hypoglycemia Prediction: Open-loop [100]

Proposition 2. In the fasting phase and with ũ = 0 and setting Gr = 70 mg/dL, hypoglycemia

is predicted whenever

1. x̃o 2 S̃−, or

2. x̃o 2 Ω(C) but x̃o 62 Ω(G) i.e. lx̃ < 0.

Proof. Follows immediately from:

1. x̃o 2 S̃− is the negative minimum region i.e. using (6.28) in (6.11), yields x̃1(t
⇤, x̃o)< 0.

2. x̃o 2 Ω(C)|lx̃o < 0: negative final value i.e. lim
t!∞

x̃1(t, x̃o) = lx̃o < 0.

x̃1(t)< 0 is equivalent to the fact that x̃o 62 Ωm and the future hypoglycemic events (in

time and value) can be predicted:

• The temporary episodes (point 1 above): the time t⇤ of event is computed in (6.28) and

hypoglycemia value x̃1(t
⇤) is obtained from (6.11).

• Persisting hypoglycemia solving (6.11): hypoglycemia level is predicted from lim
t!∞

x̃1(t, x̃o)=

lx̃o < 0. The time at which hypoglycemia starts can be found numerically solving

(6.11).

In either of the above cases, the solution is to stop the insulin injection and turn the

pump off i.e. ũ(t) = −ub. The off case is maintained until some finite time t = t1 > 0

after which the trajectory enters the PIS again x̃(t1) 2 Ωm due to the endogenous glucose

production. This is explained as follows: when ũ(t) = −ub (or u = 0) then according

to (6.3): lim
t!t1

(x̃2(t), x̃3(t)) = −ub, as a result x̃1(t) > 0 8t > t1. In the case of a severe

predicted hypoglycemic event x̃1(t)<< 0 where turning the pump off is not sufficient then a

hypoglycemic alert is signaled and the patient is strongly advised to take some exogenous

glucose (CHO).

Assuming that x̃o 2 Ωm, the set of equilibrium points of (6.3) is

lim
t!∞

x̃(t) = (lx̃o,0,0) (6.40)

and the glycemia state can settle anywhere: lim
t!∞

x̃1 = lx̃o > 0. Therefore, in the next sec-

tion glycemia regulation to normal level such that x̃1 = 0 is established via a stabilizing

nonnegative state feedback.
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6.9 Closed-loop PIS under a Nonnegative State Feedback

In what follows, the largest closed-loop PIS is found under the following full state feedback

control [101]:

ũ = Fx̃ , F =
⇣

K1 K2 K3

⌘
(6.41)

The closed-loop system is:

˙̃x = (A+BF)x̃, with A+BF =

0
B@

0 −θ2 0

0 − 1
θ3

1
θ3

K1
θ3

K2
θ3

K3−1
θ3

1
CA (6.42)

First of all, Ω(C) for the closed-loop system is not a PIS for any F according to Proposi-

tion 1.Secondly, the next theorem states that a PIS can not be constructed by adding a second

constraint i.e. Ω(C)\Ω(w) is not a PIS where w = (a b c) for any real constants a,b,c .

Theorem 12. Ω(C)\Ω(w) is not a PIS for any a,b,c and any F.

Proof. Let H =

 
h1 h2

h3 h4

!
, Ω(C)\Ω(w) is PIS according to Proposition1 if H, solution of

 
C

w

!
(A+BF) = H

 
C

w

!
, is Metzler or equivalently h2 > 0,h3 > 0 s.t.

 
0 −θ2 0

K1c
θ3

− (b−K2c+aθ2θ3)
θ3

(b−c+K3c)
θ3

!
=

 
h1 +ah2 bh2 ch2

h3 +ah4 bh4 ch4

!
(6.43)

From the first row it results b < 0 and c = 0 and first entry reads h2 =−h1
a

yielding a < 0.

Taking the last entry of the second row and using the result c = 0 it leads immediately to

b = 0 which contradicts the previous result of b < 0 thus a Metzler H does not exist for any

a,b,c and any F .

In practice it is required that Fx̃ > 0, therefore the closed-loop PIS for system (6.42) will

be found in the following section with stabilizing K1,K2,K3 such that x̃ 2 Ω(C)\Ω(F) for

any t 2 R+. The conditions for stability are derived with standard tools in the following

subsection.
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6.9.1 Stability

Stability conditions of the closed-loop system are investigated via the characteristic equation

of A+BF :

θ 2
3 λ 3 +θ3(2−K3)λ

2 +(1−K2 −K3)λ +K1θ2 = 0 (6.44)

According to Routh-Hurwitz stability criterion the coefficients for a cubic polynomial must

satisfy:

1. an > 0

K1 > 0, K3 < 2, K3 +K2 < 1 (6.45)

2. a2a1 > a3a0 or:

θ2θ3K1 < (2−K3)(1−K2 −K3) (6.46)

In what follows, these conditions are used to design F for a stable closed-loop system.

6.10 Positivity and Invariance [101]

In this section, the largest closed-loop PIS ΩmF
⇢ {Ω(C)\Ω(F)} is found for a stabilizing

F . The largest closed-loop polyhedral PIS is found which is used to find the largest non-

polyhedral PIS.

6.10.1 Polyhedral PIS

The set Ω(Gk) with Gk =

 
1 0 0

K1 K2 K3

!
is not a PIS according to Proposition 1 for any

given F . Therefore, a polyhedral PIS is sought in a smaller polyhedron adding a third face to

Ω(Gk) to yield Ω(Ge) where Ge =

 
Gk

w

!
,w is as defined earlier after (6.15). According

to Proposition 1 He = Ge(A+BF)G−1
e has the following off-diagonal terms:
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H12 =
cθ2

∆
(6.47)

H13 =−
K3θ2

∆
(6.48)

H21 =
K2

2 a−K1K2(b+ c)+K1K3(b+aθ2θ3)−K2
1 cθ2θ3

θ3∆
(6.49)

H23 =−
K2

2 +K1K3θ2θ3

θ3∆
(6.50)

H31 =−
K1b2 −ab(K2 +K3)−K3a2θ2θ3 +ac(K2 +K1θ2θ3)

θ3∆
(6.51)

H32 =
b2 + c∆+aθ2θ3c

θ3∆
(6.52)

where ∆ = K3b−K2c. The off-diagonal entries of the matrix He are made nonnegative

via a family of stabilizing feedback gain ranges depending on the different choices of the

constants a,b and c of w. One of those choices is w = w⇤ =
⇣

1 −θ2θ3 0
⌘

leading to

Ge =
⇣

Gk w⇤
⌘T

, then the following range of stabilizing gain matrix F is obtained such that

He is Metzler and thus Ω(Ge) is a PIS:

0 < K1 −
K2

θ2θ3
, K2 < 0, K3 −

K2
2

K1θ2θ3
(6.53)

6.10.2 Stability of F

Stability conditions of K2,K3 in (6.45) and are compatible with invariance conditions of

(6.53). For K1 in (6.53), this range falls in the stable range of (6.46) if

−K2 < (2−K3)(1−K2 −K3) (6.54)

0 < 2(1−K3)−K2 −K3(1−K2 −K3) (6.55)

from (6.53) K2 < 0,K3 < 0 thus the above inequality holds and thus (6.53) is compatible

with stability conditions in (6.45) and (6.46).

It is good to notice that the limit case where K2 = −K,K1 = − K2
θ2θ3

, K3 = −
K2

2
K1θ2θ3

or

F = F⇤ with

F⇤ , K(1 −θ2θ3 −θ2θ3),K > 0 (6.56)
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leads to Ge ⌘ G⇤. The following theorem presents the largest polyhedral PIS for any F

satisfying (6.53).

Theorem 13. For any F satisfying (6.53), the largest PIS Ω(Ge) setting w = w⇤ is obtained

with F = F⇤.

Proof. The hypothesis is that for any x̃ 2R3 such that the following inequalities are satisfied:

x̃1 > 0, (6.57)

K1x̃1 +K2x̃2 +K3x̃3 > 0, (6.58)

x̃1 −θ2θ3x̃2 > 0. (6.59)

implies

F⇤x̃ > 0 ⌘ x̃1 −θ2θ3(x̃2 + x̃3)> 0 (6.60)

this statement is demonstrated region by region as follows:

• If (x̃3 + x̃2) 0 then (6.60) is yielded immediately satisfying (6.57) only.

• If (x̃2 + x̃3)> 0 and x̃3  0.

In this region the inequality (6.60) holds directly from (6.57) and (6.59).

• If (x̃2 + x̃3)> 0 and x̃3 > 0.

From (6.53) one has K3x̃3  −
K2

2
K1θ2θ3

x̃3, K1 > 0, thus form (6.58) the following in-

equality holds

0  x̃1 +
K2

K1
x̃2 +

K3

K1
x̃3  x̃1 +

K2

K1
(x̃2 −

K2

K1θ2θ3
x̃3) (6.61)

also from (6.53) one has K2 < 0, K1 − K2
θ2θ3

, multiplying the latter inequality by K2x̃3
K2

1

yields K2
K1
(− K2

K1θ2θ3
)x̃3 

K2
K1

x̃3, hence (6.61) becomes:

x̃1 +
K2

K1
(x̃2 −

K2

K1θ2θ3
x̃3) x̃1 +

K2

K1
(x̃2 + x̃3) (6.62)

also from (6.53) one has K2
K1

−θ2θ3, thus (x̃2 + x̃3)
K2
K1

−θ2θ3(x̃2 + x̃3), hence:

0  x̃1 +
K2

K1
x̃2 +

K2

K1
x̃3  x̃1 −θ2θ3(x̃2 + x̃3). (6.63)
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Therefore, for any F satisfying (6.53) then x̃ 2 Ω(Ge) implies x̃ 2 Ω(G⇤) or the largest PIS is

obtained with F = F⇤. Moreover, as F⇤ ⌘ Kl, then this result holds also for any K > 0.

In the next section, the procedure followed to find the non-polyhedral PIS of the open-loop

is applied to find the surface that characterizes the closed-loop non-polyhedral PIS.

Remark 21. The first condition of Theorem 8 is guaranteed for the closed-loop system as

glycemia error is driven asymptotically to zero and the origin is the new stable equilibrium.

Remark 22. Note that Ω(F⇤) ⌘ Ω(l) with l as defined earlier, moreover, this set is a PIS

according to Proposition 1. The set denoted as Ω(G) defined in (6.14) will be used to label

the closed-loop positive input/output set as:

Ω(C)\Ω(F⇤)⌘ Ω(G) (6.64)

The remaining non- investigated region is x̃ 2 Ω(G) \Ω(G⇤) which implies x̃ 2 W−,

where W− is as defined in (6.32).

Similarly to what has been done for the open-loop system, the largest closed-loop PIS

in Ω(G) is the union between the largest polyhedral PIS and the largest set in W− whose

trajectories remain in Ω(G). Firstly, the non-polyhedral set S̃ ⇢ Ω(G) will be computed.

Later, it will be shown that, the largest closed-loop PIS is again Ω(G⇤)[ S̃+, where S̃+ is as

defined in (6.31) but for the closed-loop system.

Remark 23. Recall that the feasible set of insulin states is such that x̃2,3(t)>−ub. Thus the

admissible set of initial conditions x̃o 2 Ω(G⇤) (respectively in any set in Ω(G)) is such that

x̃20 > −ub, x̃30 > −ub. According to Remark 17, x̃2,3(t) > −ub for any ũ(t) > −ub, t > 0.

according to Remark 22 the set Ω(F⇤) is a PIS and thus ũ(t) > 0 for any t > 0. Thus, if

x̃20 >−ub ,x̃30 >−ub then x̃2,3(t)>−ub for any t > 0.

In what follows consider x̃o 2 Ω(G) such that x̃20 >−ub and x̃30 >−ub.

6.11 Non-Polyhedral PIS

In this Section, it is shown that the largest PIS in Ω(G) is bounded by S̃. The set S̃ is
characterized for the closed-loop system such that S̃ ⇢ Ω(G). Consider the stable positive

state feedback control found in Theorem 13, F⇤ = K
⇣

1
θ2

−θ3 −θ3

⌘
with K > 0 for the

system (6.3) yielding closed-loop eigenvalues λ1,2 =− 1
θ3

and λ3 =−K. The resulting state
solution with x̃o = (x̃10 x̃20 x̃30)

T is:

x̃1(t) =
1

K̃2

⇣
x̃10

h
(K2θ3t+K2θ 2

3 −2Kθ3−Kt)e
− t

θ3 +e−Kt
i
+θ2θ3x̃20

h
(1+Kt−K2θ3t)e

− t
θ3 −e−Kt

i
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+ x̃30

h
(tθ2 +θ2θ3 −Kθ2θ3t)e

− t
θ3 −θ2θ3e−Kt

i⌘
(6.65)

x̃2(t)=
1

K̃2

⇣Kx̃10

θ2θ3

h
(Kθ3t−t−θ3)e

− t
θ3 +θ3e−Kt

i
+ x̃20

h
(1+Kt−K2θ3t−Kθ3+K2θ 2

3 )e
− t

θ3 −Kθ3e−Kt
i

+
x̃30

θ3

h
(t −Kθ3t +Kθ 2

3 )e
− t

θ3 −Kθ 2
3 e−Kt

i⌘
(6.66)

x̃3(t) =
1

K̃

⇣
K[e−Kt − e

− t
θ3 ][−

x̃10

θ2
+θ3x̃20]+ x̃30[Kθ3e−Kt − e

− t
θ3 ]
⌘

(6.67)

where

K̃ = Kθ3 −1 (6.68)

6.11.1 Critical time t⇤

The critical time t⇤ such that x̃1(t
⇤) = 0 is found by solving ˙̃x1(t

⇤) =−θ2x̃2(t
⇤) = 0. Multi-

plying x̃2(t
⇤) = 0 by (e

t
θ3 K̃2θ2θ3) and using (6.68) yields:

Kx̃10

h⇣
t⇤K̃ −θ3

⌘
+θ3e

− K̃t⇤

θ3

i
+θ2θ3x̃20

h⇣
1+Kt⇤(−K̃)−Kθ3 +K2θ 2

3

⌘
−Kθ3e

− K̃t⇤

θ3

i

+θ2x̃30

h⇣
t⇤(−K̃)+Kθ 2

3

⌘
−Kθ 2

3 e
− K̃t⇤

θ3

i
= 0 (6.69)

rearranging

− t⇤K̃
h
−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30

i
= Kθ3e

− K̃t⇤

θ3

h
− x10 +θ2θ3(x̃20 + x̃30)

i

+Kθ3x̃10 −θ2θ3x̃20

⇣
1+K2θ 2

3 −Kθ3

⌘
−θ2θ 2

3 Kx̃30 (6.70)

and thus

t⇤=
Kθ3e

(−K̃)t⇤

θ3

h
− x10 +θ2θ3(x̃20 + x̃30)

i
+Kθ3

h
x̃10 +θ2θ3(x̃20 − x̃30)

i
−θ2θ3(1+K2θ 2

3 )x̃20

(−K̃)
h
−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30

i

(6.71)

using Kθ3(θ2θ3x̃20) =−Kθ3(θ2θ3x̃20)+2Kθ3(θ2θ3x̃20) and rearranging

t⇤ =
Kθ3e

(−K̃)t⇤

θ3

h
− x10 +θ2θ3(x̃20 + x̃30)

i
+Kθ3

h
x̃10 −θ2θ3(x̃20 + x̃30)

i
−θ2θ3(1+K2θ 2

3 )x̃20 +2Kθ3(θ2θ3x̃20)

(−K̃)
h
−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30

i

(6.72)

simplifying
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t⇤ =
Kθ3e

(−K̃)t⇤

θ3

h
− x10 +θ2θ3(x̃20 + x̃30)

i
+Kθ3

h
x̃10 −θ2θ3(x̃20 + x̃30)

i
−θ2θ3K̃2x̃20

(−K̃)
h
−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30

i (6.73)

Let

q1(x̃o) :=−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30 (6.74)

and recall that

lx̃o = x̃10 −θ2θ3(x̃20 + x̃30). (6.75)

Substituting q1(x̃o) and lx̃o in (6.73) and rearranging terms yields

t⇤ =
Kθ3lx̃o(1− e

− K̃t⇤

θ3 )− K̃2x̃20θ2θ3

(−K̃)q1(x̃o)
(6.76)

To solve for t⇤ > 0, use also min
t>0

(Cx̃(t)) = x̃1(t
⇤) = 0. Thus, equating (6.65) to zero,

rearranging, multiplying by e
t

θ3 and using (6.68) results in:

−t⇤K̃[−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30]+ x̃10(K
2θ 2

3 −2Kθ3)+θ2θ3(x̃20 + x̃30) = e
− K̃

θ3
t⇤
[−x̃10 +θ2θ3(x̃20 + x̃30)].

(6.77)

Adding and subtracting x̃10 to the left hand side of the above equation and using (6.74) and

(6.75) yields:

− t⇤K̃q1(x̃o)+ x̃10K̃2 = lx̃o(1− e
− K̃

θ3
t⇤

). (6.78)

The above equation yields:

t⇤ =
lx̃o(1− e

− K̃
θ3

t⇤

)− x̃10K̃2

(−K̃)q1(x̃o)
(6.79)

Now to solve for t⇤ > 0, first equate (6.76) and (6.79):

lx̃o(1− e
− K̃

θ3
t⇤

)− x̃10K̃2 = Kθ3lx̃o(1− e
(−K̃)t⇤

θ3 )− K̃2x̃20θ2θ3 (6.80)

which is simplified to

− K̃lx̃o(1− e
− K̃

θ3
t⇤

) = K̃2[x̃10 − x̃20θ2θ3]. (6.81)
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Recall that w⇤x̃o = x̃10 − x̃20θ2θ3, thus

e
− K̃

θ3
t⇤

= 1+
K̃w⇤x̃o

lx̃o
. (6.82)

Take the natural logarithm for both sides:

−
K̃

θ3
t⇤ = ln(1+

K̃w⇤x̃o

lx̃o
) (6.83)

which is solved in t⇤ as

t⇤ =−
θ3

K̃
ln(1+

K̃w⇤x̃o

lx̃o
) (6.84)

For a defined natural logarithm solution the argument must satisfy (1+ K̃w⇤x̃o

lx̃o
)> 0, and

according to Remark22 lx̃o > 0 , thus

K̃w⇤x̃o >−lx̃o (6.85)

For t⇤ to be positive in (6.84), two cases are considered:

• K̃ > 0⌘K > 1
θ3

implies ln(1+ K̃w⇤x̃o

lx̃o
) 0 or the argument of natural logarithm satisfies

(0 < (1+ K̃w⇤x̃o

lx̃o
) 1) yielding

− lx̃o < K̃w⇤x̃o  0, (6.86)

and

K̃w⇤x̃o  0 () w⇤x̃o  0 (6.87)

• K̃ < 0 ⌘ K < 1
θ3

implies ln(1+ K̃w⇤x̃o

lx̃o
)> 0 or (1+ K̃w⇤x̃o

lx̃o
)> 1 that is

K̃w⇤x̃o > 0 () w⇤x̃o  0 (6.88)

The minimum condition C ¨̃x(t⇤)> 0 is presented in the next section to find the surface

S̃ ⇢ Ω(G) and to identify the closed-loop set of nonnegative minimum S̃+ defined earlier.

6.11.2 Minimum Condition ¨̃x1 > 0

Assuming that the time t⇤ > 0 exists, then, as stated earlier the point x̃1(t
⇤) = 0, ˙̃x1(t

⇤) = 0 is

a minimum if ¨̃x1(t
⇤)> 0 or equivalently:

x̃3(t
⇤)< 0 (6.89)
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from (6.67)

⇣
K(e−Kt⇤ − e

− t⇤

θ3 )[−
x̃10

θ2
+θ3x̃20]+ x̃30(Kθ3e−Kt⇤ − e

− t⇤

θ3 )
⌘
< 0 (6.90)

multiplying by θ2e
t⇤

θ3 and rearranging

Ke
− K̃t⇤

θ3

h
− x̃10 +θ2θ3(x̃20 + x̃30)

i
−
h
−Kx̃10 +θ2θ3Kx̃20 +θ2x̃30

i
< 0 (6.91)

and substituting (6.74) and (6.75) in the above inequality yields

−Klx̃oe
− K̃t⇤

θ3 −q1(x̃o)< 0 (6.92)

substituting (6.82) in the above equation yields the condition for a minimum point as follows

q1(x̃o)>−Klx̃o(1+
K̃w⇤x̃o

lx̃o
) (6.93)

The region of minimum is thus defined as the set that verifies (6.86) (or (6.88) depending

on the choice of K) and (6.93):

• From (6.86) where K̃ > 0 ⌘ K > 1
θ3

yields the following minimum region

Q1 :=
n

x̃o 2 Ω(G)

∣∣∣ 0 > K̃w⇤x̃o >−lx̃o, q1(x̃o)>−Klx̃o(1+
K̃w⇤x̃o

lx̃o

)
o
, K̃ > 0 (6.94)

• From (6.88) the following minimum region is obtained

Q2 :=
n

x̃o 2 Ω(G)

∣∣∣ K̃w⇤x̃o > 0, q1(x̃o)>−Klx̃o(1+
K̃w⇤x̃o

lx̃o

)
o
, K̃ < 0 (6.95)

6.11.3 The Closed-loop Surface S̃

The set S̃ as defined (6.10) for the closed-loop system is found in this subsection. Substitute

(6.84) in (6.65) to get x̃1(t
⇤) = 0 which yields x̃o 2 S̃ in the regions Q1 (or in Q2 respectively

depending on the choice of K̃):

S̃ =
n

x̃o 2Q1

∣∣∣ K̃
⇣

Kx̃10 −θ2x̃20

⌘
=−q1(x̃o) ln

⇣
1+

K̃w⇤x̃o

lx̃o

⌘o
, if K̃ > 0 (6.96)
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6.12 Largest Closed-loop PIS [101]

The largest closed-loop PIS is characterized in the following theorem.

Theorem 14. The largest closed-loop PIS in Ω(G) is ΩmF
= Ω(G⇤)[ S̃+.

Proof. The final value of x̃(t) is in Ω(G), bearing in mind that the closed-loop system

equilibrium is the origin. The additional constraint or Ω(F⇤) already represents a PIS as

stated earlier in Remark 22 i.e. x̃o 2Ω(G) implies x̃(t)2Ω(l). What remains is thus to ensure

Cx̃(t)> 0 for any t > 0 in the set Ω(G). According to Theorem13 the largest polyhedral PIS

is Ω(G⇤) and if x̃ 2 Ω(G)\Ω(G⇤) then necessarily x̃(t) 2W−. From this point, the reader is

referred to the proof of Theorem 11 to show that S̃+[Ω(G⇤) is the largest closed-loop PIS7.

The Surface S̃ in (6.96), together with the planes Cx̃ = 0 and lx̃ = 0, they form the boundary

of the largest closed-loop PIS.

As S̃ is found for the limit case x̃1(t
⇤) = 0, to find the set S̃+, given the initial condition

(x̃o 2W−) solve (6.84) to find x̃1(t
⇤)> 0 and not only x̃1(t

⇤) = 0. In this case, a solution of

(6.84) can be found numerically as presented in the following section.

6.12.1 Finding S̃+ using Lambert Function

A way to solve (6.84) is using Lambert W -function which characterizes the solutions y=W (z)

for yey = z , for any complex number z. Real solutions W (z) are only obtained in the real

range z > −e−1 [102]. Equation (6.84) is rewritten to look like yey = z. Rearrange and

multiply both sides of (6.76) by e
k̃t⇤

θ3

θ3
:

e
K̃t⇤

θ3

⇣K̃t⇤

θ3
+

Klx̃o − K̃2θ2x̃20

q1(x̃o)

⌘
=

Klx̃o

q1(x̃o)
(6.97)

denote q2(x̃o) =
Klx̃o−K̃2θ2x̃20

q1(x̃o)
multiply both sides by eq2(x̃o) yields

e
K̃t⇤

θ3
+q2(x̃o)

⇣K̃t⇤

θ3
+q2(x̃o)

⌘
= eq2(x̃o)

Klx̃o

q1(x̃o)
(6.98)

the above equation matches the form yey = z , thus the solution y =W (z)

K̃t⇤

θ3
+q2(x̃o) =W

⇣
eq2(x̃o)

Klx̃o

q1(x̃o)

⌘
(6.99)

7S̃+ is as defined in (6.31)
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6.13 Pump-off hypoglycemia Prediction ũ =−ub

In this section, pump off state ũ =−ub ( u = 0) for system (6.3) is studied to predict off-state

hypoglycemia episodes. High hypoglycemia risk is signaled in this case and the patient must

take exogenous glucose to avoid the future hypoglycemic episode. This important step will

complete the general hypoglycemia prediction algorithm in § 6.14.

Setting ũ =−ub (u = 0 pump-off condition) in (6.3) yields the following solution with

the set of initial conditions (x̃10, x̃20, x̃30):

x̃1(t) = x̃10 +θ2θ3(x̃20 + x̃30 +2ub)(e
− t

θ3 −1)+θ2(x̃30 +ub)te
− t

θ3 +θ2ubt (6.101)

x̃2(t) =

✓
x̃20 +ub +

(x̃30 +ub)t

θ3

◆
e
− t

θ3 −ub, (6.102)

x̃3(t) = (x̃30 +ub)e
− t

θ3 −ub. (6.103)

To predict pump-off hypoglycemia, the decreasing rate of change condition ( ˙̃x1(t)< 0) is

studied to find the time instant t⇤ at which ˙̃x1(t
⇤) = 0.

Note that glycemia will diverge if zero insulin injection is maintained (see (6.101)) due to

endogenous glucose production. Thus any pump-off hypoglycemia event will be temporary

having hypoglycemic nadir x̃1(t
⇤)< 0. Therefore, the focus will be again on the minimum

conditions of glycemia min
t>0

(Cx̃(t)).

6.13.1 Critical time

As explained earlier, the time instant t⇤ such that Cx̃(t⇤) = min
t>0

(Cx̃(t)) is the solution of

˙̃x1(t
⇤) = 0:

t⇤ =
θ3

x̃30 +ub

[ube
t⇤

θ3 − (x̃20 +ub)] (6.104)

The point ˙̃x1(t
⇤) = 0 is a minimum if ¨̃x1(t

⇤)> 0 and thus x̃3(t
⇤)< 0 equivalently:

x̃30 <−ub(1− e
t⇤

θ3 ) =) x̃30 < 0 (6.105)

The time instant t⇤ can be calculated using Lambert W -function, thus rearranging (6.104) to

become

t⇤ =−θ3

⇣ x̃20 +ub

x̃30 +ub

+W
(
−

ube
−

x̃20+ub
x̃30+ub

x̃30 +ub

)⌘
(6.106)
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In this manner, hypoglycemia episodes can be predicted given the initial conditions and

using (6.104) in (6.101). It is good to mention that the system, in this case, does not have any

equilibrium due to the divergence of glycemia (continuous endogenous glucose production

versus zero insulin injection see (6.101)).

In the following section, a general algorithm of hypoglycemia prediction for open and

closed-loop system is presented.

6.14 Fasting-Hypoglycemia Prediction: a General algorithm

The PIS of open and closed-loop systems can be used to detect and predict future hypo-

glycemic episodes given the initial condition x̃o apply the following procedure:

1. If x̃o 62 Ωm f
(x̃o 2 S̃−), then check whether x̃o 2 Ωm if yes then set K = 0 and apply

the basal control to stabilize glycemia to some equilibrium according to (6.11)-(6.13).

Once the system is at rest at some t = t1, then x̃(t1) 2 Ωm f
then turn on the state

feedback control ũ = F⇤x̃ to steer glycemia to its reference.

2. Otherwise

Proposition 3. If x̃o 62 Ωm then the following Hypoglycemia alert algorithm is applied:

(a) Solve (6.104) in t⇤ (if any).

(b) Check for a minimum by evaluating t⇤ in (6.103).

(c) If x̃3(t
⇤)< 0 then check whether x̃1(t

⇤)< 0.

During hypoglycemia alert (ũ = −ub) the patient is strongly advised to take some

carbohydrates.

ũ = −ub (pump is off) is maintained until the state trajectory enters one of the PIS

Ωm,Ωm f
.

In the next section, the largest polyhedral PIS of the overall system including the plasma

and the subcutaneous insulin rates x̃2 and x̃3 respectively is found. In this case the output

matrix becomes C = I3⇥3. The PIS is firstly characterized in open-loop case ũ(t) = 0 and

then for the closed-loop system such that ũ(t) = F⇤x̃(t)> 0.
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6.15 The Polyhedral PIS in R3
+: C = I3⇥3

So far, the feasible invariant set is formed considering a single output: glycemia concentration

Cx̃ > 0, C = (100). In this section, the problem is to find the positivity and invariance of

all states: glycemia and insulin considering C = I3⇥3. The largest PIS is found in Ω(C)

or in R3
+. According to (6.5) and (6.6), insulin states are constrained to the basal level i.e.

x̃2(t) > 0, x̃3(t) > 0. For this purpose, define Q =

0
B@

0 1 0

0 0 1

l

1
CA. It will be shown in the

following subsections that Ω(Q) is the largest polyhedral PIS in Ω(C) (or in R3
+). According

to Definition 5, Ω(Q) implies lx̃ > 0. The latter inequality, in open-loop case, ensures a

nonnegative final values for x̃1(t) as show in § 6.4.1. In closed-loop ũ = F⇤x̃, recall that

F⇤ = K l, K > 0, thus Ω(Q) guarantees the positivity of the control.

6.15.1 Open-loop ũ = 0

The following proposition is applied for system (6.3) with C = I3⇥3 and ũ = 0.

Proposition 4. The set Ω(Q) is the largest polyhedral PIS in Ω(C) (or in R3
+).

Proof. According to Proposition 1, Ω(Q) is PIS with a unique Metzler matrix H:

H =

0
B@
− 1

θ3

1
θ3

0

0 − 1
θ3

0

0 0 0

1
CA (6.107)

Thus, x̃ 2 Ω(Q) implies x̃2(t)> 0, x̃3(t)> 0 and x̃1 > θ2θ3(x̃2+ x̃3) for any t > 0. Satisfying

these inequalities simultaneously implies x̃1(t)> 0 for any t > 0.

6.15.2 Closed-loop ũ(t) = F⇤x̃(t)> 0

The following proposition is applied for system (6.3) with C = I3⇥3 and ũ = F⇤x̃.

Proposition 5. The set Ω(Q) is the largest closed-loop polyhedral PIS in Ω(C) (or in R3
+).

Proof. The proof follows from applying Proposition 1 on system (6.3) with ũ(t) = F⇤x̃(t)

with the following unique Metzler matrix H
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H =

0
B@
− 1

θ3

1
θ3

0

0 − 1
θ3

1
θ3

0 0 −Kθ2

1
CA (6.108)

Thus, x̃ 2 Ω(Q) implies x̃2(t)> 0, x̃3(t)> 0 and x̃1 > θ2θ3(x̃2 + x̃3) for any t > 0. Satis-

fying these inequalities simultaneously implies x̃1(t)> 0 for any t > 0.

The state/input positivity is ensured in the largest polyhedral PIS Ω(G) of the closed-loop

system.

In the following section, some numerical simulation results are presented to demonstrate

the performance of the positive state feedback controller.

6.16 Numerical Results

Firstly, the positive controller performance is tested on the nominal system during fasting

phase and then under meal perturbations on Magdelaine’s Simulator or Simulator 1. Secondly,

non-nominal test is conducted testing the controller on Uva/Padova simulator on 10 adults

under measurement noise. Thereafter, a second non-nominal case study is performed on

Simulator 1 to see the influence of the uncertainty of the intra patient parameters on the

positivity constraints of the controller and BG error.

6.16.1 Fasting phase

The state feedback gain is designed as K = 0.05 in (6.56) setting BG reference in (6.4) at

Gr = 110 mg/dL. The design is tested during fasting phase on five T1DM virtual subjects

labeled as IF2, IF3, IF9, LR and BE. The virtual patient parameters are as given [58]. The

state variables are considered available for the controller. BG behavior is as illustrated in Fig.

6.5. The state trajectory of IF2 case is shown in Fig. 6.7 in x̃ coordinates. ũ(0) = 0.611U/min.

and the trajectory remains above the blue plane in Fig. 6.7 and then it slides on it i.e. ũ(t)> 0.



146 Description of Positively Invariant Sets in R3

0 5 10 15 20

70

110

140

250

G
(m

g/
d
L
)

Time (h)

 

 

IF2

IF3

IF9

BE

LR

Figure 6.5 Closed-loop response of glycemia for five virtual patients with x̃o = (140,0,0).
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Figure 6.6 The control ũ(t) for IF2 patient.

In the following subsection, in silico trials under meal perturbations are considered.

6.16.2 Including meals

A Luenberger observer is firstly designed to estimate the insulin states x̃2, x̃3 for the state

feedback controller:
˙̃̂x = Ax̂+Bũ(t)+LC(x̃− ˆ̃x) (6.109)
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Figure 6.7 A trajectory plot in phase portrait for IF2 with x̃(0) = (140,0,0), the blue plane
represents F⇤x̃ = 0 with K = 0.05.

based on the BG output measurement i.e. C = (100). L is the observer gain matrix designed

using pole placement method with the following poles λL = −(10K 1
θ3

1
θ3
) that yielded a

relatively fast convergence as shown in Fig. 6.8.

Nominal test The test is conducted on two patients tagged as BE and LR applying the

meal scenario of the clinical diary in [58]. The reference value is set to Gr = 120 mg/dL and

the results are compared to the patient manual open-loop injections. The BG behavior and

the closed-loop injections are illustrated in Fig. 6.9 and 6.10. As shown, hypoglycemia is

completely prevented throughout the simulation. In BE case, the estimation error illustrated

in Fig. 6.8 at the beginning of the simulation led the controller to slightly cross the basal rate

for a while i.e. −ub < ũ < 0, i.e. min(ũ) =−0.0083 >−ub. Other than that, the controller

remains positive for the remaining simulation time. In LR case (Fig. 6.10), no estimation

error is considered here where ˆ̃x2,3(0) = x̃2,3(0).

Although parameters uncertainties are not taken into account in the design of the positive

control and its largest PIS, a robustness test is also conducted in the following trials.

Non-nominal test

1. Uva/Padova trial This in silico trial comprises a fasting period of around 30 hours

followed by normal 36 hours meal scenario of subsection 4.14.2. The controller is

tested on ten virtual T1DM adults in noisy environment using Dexcom 70 CGM sensor

and a generic insulin pump. For robustness against measurement noise, the trial is
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Figure 6.8 Observer behavior: insulin states and their estimation in closed-loop K = 0.03.

repeated 5 times per subject with different simulated sensor noises. Gr = 120 mg/dL

and the controller is tuned setting K = 0.005. The control parameters θi, i = 1,2,3

are identified here on Uva/Padova simulator by the developer of Simulator 1. He

used data fitting to identify the parameters of the linear model of Simulator 1 on the

open-loop BG profile of each adult of Uva/Padova under some meal scenario. For

instance, open-loop data fitting for adult 7 yielded θi = 0.8,40,80,ub =
θ1
θ2

. The mean

BG of the 10 adults ⇥ 5 runs is illustrated in Fig. 6.11.

The Control Variability Grid Analysis (CVGA) points is depicted in Fig. 6.12. CVGA

results represent per-subject glucose extremes as computed by the Uva/Padova simula-

tor. In this plot, each point is plotted with an x-coordinate and y-coordinate equal to

the per-subject minimum and maximum BG values over the observation period, respec-

tively. As illustrated in Fig. 6.12, hypoglycemia is avoided during the 50 simulations

and a satisfactory postprandial behavior is achieved. Moreover, a good robustness level

is achieved applying the same design on different patients. The positivity of the control

ũ is not guarantied as illustrated in Fig. 6.13. This is not surprising as the the positive

controller is designed for the nominal system and the parameters uncertainty and

measurement noise were not taken into account in the design. However, it was noticed

that the overall control remained positive i.e. u(t) = ũ+ub,u(t)> 0 as illustrated in

the case of Fig. 6.13. 8

8The minimum estimated basal rate of the ten adults of Uva/Padova simulator ub = 0.0158 U/min for adult9.
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2. Simulator 1 Another robustness test is performed on Simulator 1 to explore the

controller performance under an intra-patient parameters uncertainty9. Assume that

the insulin sensitivity factor θ2 and insulin time constant θ3 are underestimated by

30% i.e. θ̂2,3 = 0.7θ2,3. The controller (and the observer respectively) are based on

the uncertain parameters: F⇤ = ( 1
θ̂2

− θ̂3 − θ̂3). The resulting BG behavior of patient

BE is illustrated in Fig. 6.14. As shown, the positivity of controller in the uncertain

case is no more guaranteed and it hits the negative lower limit10 ũ(t) =−ub several

times. Moreover, hypoglycemia threshold is slightly crossed.

From these results, it is shown that a good robustness level is achieved. Yet, positivity and

invariance properties of the input/output of the closed-loop system are affected by parameters

uncertainties and also by measurement noise. For these reasons, positivity and invariance of

the closed-loop system considering parameters uncertainty is envisioned as a perspective of

this work.

6.17 Conclusion

The main results of this chapter are summarized in the following points:

• The first characterization of the largest PIS of glycemia dynamical system under fixed

basal insulin input.

• The major outcome of this PIS is that any initial condition outside this set signals

future hypoglycemia episode.

• This basal PIS outcome is general: basal injection is essential for glycemia regulation

in both open and closed-loop. Glycemia dynamics under basal control is found in

nocturnal time, pre-prandial and follows the postprandial bolus.

• This hypoglycemia prediction holds from any initial condition independently from the

previous control that was applied to the system.

The system in open-loop is critically stable of one pole at the origin and two repeated negative

poles. In other words, under basal injection (ũ = 0) glycemia state can settle anywhere. To

regulate glycemia to normal level, state feedback control is designed.

9without any observer estimation error ˆ̃x2,3(0) = x̃2,3(0).
10Recall that the lower negative bound for ũ(t) is −ub which corresponds to the zero limit of the overall

insulin injection: u(t) = (ũ(t)+ub)> 0.
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• First positive state feedback control is designed to regulate glycemia. This is due to

the fact that glycemia regulation is a positive control problem, namely, once insulin is

injected it can not be taken back.

• The controller is designed such that glycemia remains invariant above or within the

desired set point.

• In the resulting largest PIS, tight glycemia regulation is achieved and thus hypo-

glycemia is prevented.

• A general hypoglycemia prediction algorithm is implemented benefiting from the

largest open and closed-loop PIS.

• Hypoglycemia prediction permits to decide in advance whether to keep the current

control strategy, to turn to basal or to switch the pump off completely.

• The numerical simulations demonstrated the invariance properties of the state/input

solutions.

• Hypoglycemia, the major challenge and open problem for AP studies, is avoided.

• Uncertainty of system parameters affects the observer and the overall control especially

in respecting positivity constraints.

6.18 Perspectives

Input/output positivity constraints have been treated in this chapter for the nominal system.

Parameters uncertainties and measurement noise were not taken into account in the design of

positive controller and the resulting largest PIS. Positivity analysis under these circumstances

is considered as a perspective. The future work of this chapter results are summarized as

follows:

• To consider the bounds of the parameter uncertainties in the design of the positive

controller and the characterization of the largest PIS.

• To take the worst case scenario of the parameters uncertainties in the hypoglycemia

prediction algorithm.

• To implement and realize the positive closed-loop control algorithm incorporating the

hypoglycemia prediction algorithm and test the resulting artificial pancreas in silico.
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Figure 6.9 BG behavior of BE patient under state feedback control with K = 0.03.
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Chapter 7

Conclusions and Perspectives

7.1 General Conclusion and Perspectives in French

Avant de passer à l’évaluation des algorithmes de commande, un facteur important est

discuté, qui est la modélisation mathématique du système de DT1. D’après le bref aperçu des

principaux modèles de la littérature PA, les points suivants sont conclus :

• Les modèles historiques largement utilisés comme Bergman ont des points d’équilibre

non naturels qui ne sont pas compatibles avec le comportement glycémique de DT1

dans la vie réelle.

• Ces équilibres non naturels impliquent un ensemble d’insuline basale qui mantient la

glycémie constante. Alors qu’un patient DT1 a un niveau d’insuline basale unique qui

stabilise glycemié à n’importe quelle valeur.

• Une bonne description mathématique de la dynamique glycémie-insulinémie d’un DT1

est requise pour tout algorithme de commande pour la validation in silico et parfois

dans sa conception comme modèle interne.

• Une mauvaise réponse en boucle fermée est donc attendue lorsque toute conception

d’algorithme de commande (ou simulation) est basée sur un mauvais modèle mathé-

matique.

Pour ces raisons, le modèle employé dans cette thèse est le modèle de DT1 à long

terme récemment développé. Ce modèle a montré une bonne description de la dynamique

glycémie-insulinémie de DT1.

La commande sans modèle (CSM) est conçu pour la régulation de la glycémie pour la

première fois.
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Résumé des résultats de CSM et conclusions principales

• iP est d’abord testée en utilisant une trajectoire de référence variable.

• L’hyperglycémie est réduite par la commande impulsive en forme de bolus résultant

d’une réaction rapide aux repas. Cependant, un bon compromis de performance basal-

postprandial par sujet ne peut être cédé en utilisant une conception fixe.

• Les résultats in silico ont montré une meilleure régulation de la glycémie postprandiale

avec une iPID de référence constante par rapport au iP avec référence variable et par

rapport au PID classique.

• Une solution, utilisée dans la littérature de PA, pour éviter le "windup" du term intégra,l

consiste à remplacer le terme intégral par le débit basal spécifique du sujet, c’est-à-dire

PD + débit basal.

• iPD + débit basal a été comparé à PD + débit basal. Le régulateur intelligent a détecté

les repas et a réagi plus rapidement à ces perturbations par rapport à un PD classique.

CSM a montré un bon niveau de robustesse. Le système est considéré comme une boîte noire

et les paramètres du CSM sont réglés empiriquement sur la base des mesures d’entrée/sortie.

En ce qui concerne la performance, les questions suivantes ont été soulevées :

1. Les contraintes du système ne sont pas prises en compte dans la conception, à savoir le

seuil d’hypoglycémie et la positivité du contrôleur. Le régulateur a été saturé à zéro

qui est la limite inférieure admissible.

2. Lorsque le régulateur est saturé à zéro, la boucle est cassée et la glycémie n’est plus

sous contrôle iPID.

3. Pour les systèmes sous contraintes d’actionneur, le problème de saturation du term

intégral est un défaut connu pour les régulateurs de type PID.

4. L’évitement de l’hypoglycémie n’est pas assurée.

Ainsi, le maintien d’une contrôle glycémique "serrée", en particulier pendant la phase

post-prandiale, n’est pas une tâche facile pour cet iPID entièrement automatique.

En dehors de l’application spécifique de la glycémie, la stabilité en boucle fermée, en

particulier pour le régulateur iP, est non seulement liée à la première dynamique d’erreur

résultant de la commande constituent le modèle ultra-locale. Il a été montré, par un exemple,

qu’un système ne peut pas être stabilisé inconditionnellement par une commande iP.
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Les résultats principaux de la conception du CMG dans ce travail sont :

• L’existence d’un CMG positif pour la régulation de la glycémie a été montrée ici pour

la première fois.

• Au meilleur de la connaissance de l’auteur, CMG positif n’a pas été considéré précé-

demment dans l’histoire des études du PA.

• Le plus grand EPI où la variable d’insuline plasmatique est non négative sous CMG a

été trouvé.

• La positivité du GMC a été assurée partout dans cet ensemble via les paramètres de

conception. Ainsi, les contraintes d’entrée / d’état, du système d’insuline du second

ordre, sont respectées.

• La contrainte CMG positive supplémentaire ne réduisait pas le plus grand EPI en

boucle fermée.

Le futur CMG positif

• Le CMG positif conçu est une preuve de concept et la conception peut être étendue

pour inclure la contrainte d’hypoglycémie.

• Les incertitudes des paramètres et les perturbations des repas seront prises en compte

dans la conception du CMG positif.

Le problème de trouver le plus grand EPI où la glycémie reste invariant, dans ou au-

dessus du seuil souhaité, a également été considéré dans ce travail. La boucle est fermée par

l’intermédiaire d’un régulateur par retour d’état positif.

Prestations de la conception de la commande par retour d’état positive contre le CMG

positif

• La loi de commande est simple et continue et la structure en boucle fermée qui en

résulte est unique.

• Donc, trouver le plus grand PIS en boucle fermée (pour le système global), sous

commande positive, est moins complexe que celui avec CMG.
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Les mérites de cette commande par retour d’état positive sont :

• La contrainte des injections d’insuline (comme entrée positive) dans la conception de

la commande par retour d’etat n’a pas été considérée précédemment dans les études du

PA.

• En comparaison avec le courant dominant des algorithmes de commande de PA,

le retour d’état positif conçu rassemble la simplicité de conception en prenant des

contraintes du système en compte.

• Dans le plus grand EPI en boucle fermée, un contrôle "serré" de la glycémie est atteint

et l’hypoglycémie est totalement évitée.

• Un autre résultat important du plus grand EPI de la glycémie du système en boucle

ouverte et fermée est la prédiction de l’hypoglycémie. Une solution pour éviter la

barrière potentiellement mortelle au traitement diabétique optimal.

L’analyse de positivité s’avère très utile pour la régulation étroite de la glycémie et aussi

pour la prédiction de l’hypoglycémie.

Perspectives de la commande positive par retour de l’état

• Considérer les incertitudes des paramètres intra-patient dans la conception de la com-

mande.

• Prendre le pire scénario des incertitudes des paramètres dans l’algorithme de prédiction

de l’hypoglycémie.

• Implémenter et réaliser l’algorithme de commande en boucle fermée incorporant

l’algorithme de prédiction d’hypoglycémie et tester le pancréas artificiel résultant in

silico.

7.2 General Conclusion and Perspectives

Before going through closed-loop control assessment, an important factor is highlighted, that

is mathematical modeling of T1DM system. From the the brief overview of the main models

in the AP literature, the following points are concluded:

• The widely used historical models like Bergman have non-natural equilibria that are

not consistent with T1DM glycemic behavior in real life.
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• Those non-natural equilibria imply a set of basal insulin that maintains BG constant.

Whereas a T1DM patient has a unique basal insulin level that stabilizes BG at any

value.

• A good mathematical description of glycemia-insulinemia dynamics for a T1DM is

required for any controller for the in silico validation and sometimes in its design as

internal model.

• A poor closed-loop response is thus expected when any control algorithm design (or

simulation) is based on a poor mathematical model.

For theses reasons, the employed model in this thesis is the recently developed long-term

T1DM model. This model has shown a good description of glycemia-insulinema dynamics

of T1DM.

MFC is designed for glycemia regulation for the first time. In opposition to previous PID

studies, the control algorithm developed here is fully automated without any feed-forward or

supplementary insulin doses.

MFC results summary and main conclusions

• iP is firstly tested employing a variable reference trajectory.

• Hyperglycemia is reduced via the resulting bolus-shaped impulsive control of fast

reaction to meals. However, a good, per-subject, fasting-postprandial performance

compromise can not be yielded using fixed design.

• In silico results showed a better postprandial glycemia regulation with constant refer-

ence iPID and over iP with variable reference and over classic PID.

• One solution, used in the literature of AP, to avoid the integral windup is to replace the

integral term by the subject’s specific basal rate, i.e. PD+basal.

• iPD+basal was compared to PD+basal. The intelligent controller detected meals and

reacted faster to theses perturbations as compared to a classic PD without neglecting

safety.

iPID combines the classic PID nice properties with new adaptive features. MFC showed a

good robustness level. The system is considered as a black box and MFC parameters are

tuned empirically based on the input/output measurements. Regarding the performance, the

following issues were raised:
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1. System constraints are not taken into account in the design, namely, hypoglycemia

threshold and the positivity of the controller. The controller was saturated to zero

which is the lower admissible bound.

2. When the controller saturates to zero, the loop is broken and glycemia is not under

iPID control.

3. For systems under actuator constraints, the integral windup is known defect for PID-like

controllers.

4. Hypoglycemia avoidance is not ensured.

Thus, maintaining a tight BG control, especially during postprandial phase, is not an easy

task for this fully automatic iPID. Aside from the specific glycemia application, closed-loop

stability, specifically for iP controller, is not simply related to the first order error dynamics

resulting form the ultra-local model. It was shown, via an example, that a system can not be

unconditionally stabilized by an iP control.

The main outcomes of SMC design in this work

• The existence of a positive SMC for glycemia regulation was shown without the need

of a saturation.

• To the best of the author knowledge, positive SMC has not been considered previously

in the history of AP studies.

• The largest PIS where the plasma insulin variable is nonnegative under SMC was

found.

• The positivity of SMC was ensured everywhere in this set via the design parameters.

Thus, input/state constraints, of the second order insulin system, are respected.

• The additional positive SMC constraint does not reduce the largest closed-loop PIS.

The future positive SMC

• The designed positive SMC is a proof of concept and the design can be extended to

include hypoglycemia constraint.

• Parameter uncertainties and meal perturbations are to be considered in the design of

positive SMC.
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The problem of finding the largest PIS where glycemia remains invariant within or above

the desired threshold was also considered in this work. The loop is closed via a positive state

feedback controller.

Positive state feedback design benefits over positive SMC design

• The control law is simple and continuous and the resulting closed-loop structure is

unique.

• Therefore, finding the largest closed-loop PIS in R3 (for the overall system), under

positive control, is less complex than that with SMC.

The merits of this state feedback are:

• The constraint of insulin injections (as positive input) in the design of state feedback

controller has not been considered previously in AP studies.

• In comparison to the mainstream of AP controllers, the designed positive state feedback

gathers the simplicity of the design taking system constraints into account.

• In the largest closed-loop PIS, tight glycemia control is achieved where hypoglycemia

is prevented.

• Another important outcome of the largest open and closed-loop PIS for glycemia

system is the hypoglycemia prediction. A solution to avoid the life-threatening barrier

to the optimal diabetic treatment.

Positivity analysis is shown to be very useful for tight glycemia regulation and also for

hypoglycemia prediction.

Perspectives of the positive state feedback

• To consider the the intra-patient parameter uncertainties in the design of the positive

controller.

• To take the worst case scenario of the parameters uncertainties in the hypoglycemia

prediction algorithm.

• To implement and realize the positive closed-loop control algorithm incorporating the

hypoglycemia prediction algorithm and test the resulting artificial pancreas in silico.





Résumé de la thèse

Le problème de la régulation de la glycémie du diabète de type 1 (DT1) est étudié dans ce

travail. Le DT1 est une maladie auto-immune et chronique qui touche environ 25 millions

d’individus dans le monde. Un patient diabétique souffre d’un manque absolu d’insuline due

à la destruction auto-immune des cellules beta du pancréas. L’insuline stimule l’absorption

de glucose dans le sang par les cellules et les muscles. Sans insuline stimulant l’absorption

du glucose, la glycémie reste dans la circulation sanguine et conduit à l’hyperglycémie, état

défini par une glycémie supérieure à 180 mg/dL. Pour survivre, l’injection exogène d’insuline

est la seule solution pour réguler la glycémie. La maladie était fatale avant la découverte de

l’insuline en 1921.

Le traitement actuel nécessite des injections programmées. Il s’agit, soit de multiples

injections quotidiennes d’insuline, soit d’une perfusion d’insuline sous-cutanée continue

(PCSI) délivrée par une pompe. Tout en calculant les doses d’insuline, le patient doit consi-

dérer beaucoup de facteurs comme la quantité de glucide dans chaque repas et les activités

physiques. Un mauvais traitement cause des complications à long terme comme l’insuf-

fisance rénale et les complications vasculaires périphériques. En conséquence, l’injection

automatique d’insuline a reçu un grand intérêt notamment avec le développement rapide de

la technologie des capteurs de glycémie et des pompes à insuline. Depuis plus de 50 ans,

l’idée de développer un dispositif de Pancréatique Artificiel (PA) a été envisagée. Le cœur du

dispositif est l’algorithme de commande qui ferme la boucle entre les mesures de glucose

sanguin et les injections d’insuline d’un patient diabétique.

En général, le but de toute recherche sur le PA est de concevoir un algorithme de

commande adaptable à la sensibilité à l’insuline du patient et suffisamment robuste pour

traiter les dynamiques non modélisées, les incertitudes et le bruit de mesure. Un facteur

important qui affecte la performance des algorithmes de commande est de parvenir à un

compromis entre la réduction de l’hyperglycémie et l’évitement de l’hypoglycémie. De

plus, la positivité de l’infusion d’insuline doit être prise en compte dans la conception du

réglateur. De même, toutes les concentrations d’insuline ou de glucose sont des variables

d’état positives.
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Le courant dominant des algorithmes de commande utilisés précédemment dans différents

tests cliniques est le régulateur Proportionel-Intégral-Dérivativé (PID) et la commande

prédictive (CP). CP est populaire dans ce domaine car il gère les contraintes du système dans

sa conception. L’inconvénient principal de la CP est son lourd processus d’optimisation. Le

PID a également été fréquemment testé car il a été observé qu’il imitait le comportement

des cellules beta déficientes dans le pancréas. En outre, sa conception ne nécessite pas un

modèle précis du système.

Dans ce travail, deux types de commandes sont utilisés : les commandes basées sur des

modèles et les commandes non-basées sur des modèles. Pour évaluer leur efficacité, les

deux types sont testés in silico sur deux simulateurs de DT1. Le premier simulateur est un

modèle à long terme développé au LS2N et qui est déduit à partir des données cliniques de

sujets DT1. Le deuxième est le simulateur Uva / Padova qui est approuvé par le Food and

Drugs Administration (FDA). Tous les régulateurs conçus et testés ci-après sont entièrement

automatiques sans annonces de repas ni des doses supplémentaires d’insuline.

Dans ce travail, la commande sans modèle (CSM) est utilisée pour la première fois pour

la régulation de la glycémie. Les dynamiques et les perturbations inconnues sont estimées en

ligne grâce à la connaissance unique des mesures d’entrée / sortie. L’estimation est utilisée

dans la loi de commande pour compenser les perturbations et la boucle est fermée via un

régulateur PID simple. La CSM avec un PID dans la boucle est appelé PID intelligent (iPID).

Elle offre les fonctions simples d’un contrôle PID dans le cadre d’une conception sans

modèle. Contrairement aux études PID précédentes, le iPID est entièrement automatique sans

aucune dose d’insuline supplémentaire. On montre tout d’abord qu’un système du second

ordre ne peut pas être stabilisé de manière inconditionnelle par un régulateur iP. On teste

d’abord le régulateur proportionnel intelligent (iP) en utilisant une trajectoire de référence

variable pour contourner le mauvais comportement postprandial de la référence constante

iP. La référence variable produit un débit impulsif en réaction rapide aux repas qui réduit

l’hyperglycémie postprandiale dans le cas du régulateur iP. Pour améliorer encore la réponse

postprandiale, des termes supplémentaires de boucle fermée sont ajoutés et un PID intelligent

(iPID) est conçu en utilisant une référence de glycémie constante. Les résultats in silico de la

comparaison ont montré une meilleure régulation de la glycémie postprandiale pour le iPID

avec une référence constante contre le iP avec une référence variable. Le régulateur iPID est

également comparé à un PID classique. Les résultats ont montré que la réponse postprandiale

a été améliorée avec le régulateur iPID réduisant les excursions hyperglycémiques avec des

événements hypoglycémiques minimes. De plus, le iPID imitait mieux le comportement

postprandial naturel des cellules beta du pancréas qu’un PID avec une réponse plus rapide.

La CSM a montré un bon niveau de robustesse. Le système est considéré comme une boîte
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noire, et les paramètres de la commande CSM sont réglés de manière empirique en se fondant

sur les mesures d’entrée / sortie.

Un autre algorithme de commande robuste est conçu et testé dans cette thèse : la com-

mande par modes glissants (CMG). Notre contribution essentielle est la démonstration de

l’existence d’un régulateur rigoureusement positif apte à assurer la positivité des variables

d’état, en particulier l’insuline de plasma. Un régulateur CMG positif est conçu pour la

première fois pour la régulation de la glycémie. La commande est positive partout dans

le plus grand ensemble positivement invariant (EPI) du sous-système d’insuline dans le

plasma. Deux CMG sont calculées ; le deuxième bloc CGM2 utilise l’erreur de glycémie

(par rapport au niveau souhaité) pour concevoir la trajectoire d’insuline souhaitée. Ensuite,

l’état d’insuline dans le plasma est forcé de suivre la référence via la commande CMG1. La

variable de commutation de CMG1 est un polynôme de premier ordre de l’erreur d’insuline.

La commande par modes glissants CMG1 garantit le suivi des références d’insuline. La

trajectoire d’insuline souhaitée résultante est l’entrée de commande virtuelle requise du

système glycémique pour éliminer l’erreur de glycémie. L’erreur de glycémie est la variable

de commutation de CMG2. La glycémie est pilotée vers le point de consigne normal pendant

le mode de glissement de CMG2. L’essai in silico est effectué pour valider les résultats

théoriques sur le système nominal pendant la phase de jeûne. La robustesse de la commande

CMG par rapport aux changements de paramètres, aux perturbations des repas et au bruit

des capteurs est considérée comme une perspective. En raison de la discontinuité de la loi de

commande, la conception d’une commande CMG positive partout dans le plus grand EPI

dans R3 telle que la glycémie reste dans le niveau souhaité est beaucoup plus complexe. La

commande CMG positive est une preuve de concept et la conception peut être étendue pour

inclure la contrainte d’hypoglycémie. En d’autres termes, le futur problème peut être de

concevoir une commande CMG positive dans le plus grand EPI où la glycémie est supérieure

au seuil hypoglycémique (Glycémie >70 mg/dL).

Le problème de trouver le plus grand EPI où la glycémie reste invariant dans ou au-

dessus du seuil souhaité, est adressé via une loi de commande simple et continue. Il s’agit

de concevoir une commande positive qui prend la contrainte d’hypoglycémie en compte et

établit un contrôle "serré" de la glycémie. La boucle est fermée via un régulateur positif par

retour d’état. Tout d’abord, la loi de commande est simple et continue. Le retour d’état qui en

résulte est unique. Par conséquent, trouver le plus grand EPI en boucle fermée en R3 (pour

le système global), sous commande positive, est moins complexe que celui avec CMG. De

plus, la théorie des polyèdres invariants pour les systèmes linéaires continus est appliquée

directement pour trouver un régulateur positif par retour d’état. Le plus grand EPI du système

en boucle ouverte (où seul un débit basal d’insuline est infusé) est d’abord calculé. En second
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lieu, on détermine le plus grand EPI du système en boucle fermée sous une commande par

retour d’état positif et stabilisant. À l’intérieur de cet EPI, la glycémie est régulée au niveau

désiré sans risque d’hypoglycémie puisque les variables d’état sont garanties positives.

Le résultat principal des plus grands EPI en boucle ouverte et fermée est la prédiction

de l’hypoglycemie. Une solution alternative de resucrage permettra d’éviter la barrière de

l’hypoglycémie dans le traitement diabétique optimal. L’hypoglycémie est prédite ici en

fonction des conditions initiales du système. La prédiction est établie lorsque les conditions

initiales sont en dehors du plus grand EPI en boucle fermée (Glycémie <70 mg / dL). Dans

ce cas, la boucle est ouverte soit pour administrer l’insuline basale seulement, soit pour

arrêter totalement la pompe. Si la condition initiale appartient au EPI en boucle ouverte

(seulement sous injection du débit basal), la boucle est ouverte pour injecter l’insuline basale

uniquement. Sinon, si une hypoglycémie future est également prédite sous injection basale,

alors la pompe est arrêtée signalant une hypoglycémie sévère. De cette manière, l’analyse

de positivité s’avère très utile pour une régulation stricte de la glycémie et aussi pour la

prédiction de l’hypoglycémie.
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Appendix A

A.1 On the estimated derivative ẏe(t)

A.1.1 Algebraic Derivative Estimator

To estimate the derivative of a signal y(t) using the algebraic derivative estimator (see[83]

and the references therein), start from Taylor series:

y(t) = Σ
N
i=0

y(0)(i)t i

i!
(A.1)

To estimate the first derivative set N = 1:

y(t) = y(0)+ ẏ(0)t (A.2)

Take Laplace for above knowing that y(0), ẏ(0) are constants yields:

sY (s) = y(0)+
ẏ(0)

s
(A.3)

Remark 24. Note that at this stage, (A.3) is also obtained if Fe = ẏ(t) in(4.26) (setting

u(t) = 0) and taking Laplace to the result. In this case, Fe in (4.27) is equivalent to ẏ(0) in

(A.3) Fe = ẏ(0), thus Fe will estimate ẏ(t).

Differentiate both sides of (A.3) w.r.t. s:

Y (s)+
sdY (s)

ds
=−

ẏ(0)
s2 (A.4)

To filter out, multiply both sides by s−2:

Y (s)

s2 +
dY (s)

sds
=−

ẏ(0)
s4 (A.5)
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To take Laplace inverse using the following:

L
−1{F(s)G(s)}=

Z t

0
f (t − τ)g(τ)dτ (A.6)

L
−1{

diF(s)

dsi
}= (−t)i f (t) (A.7)

then we have the derivative in the time interval τ 2 [0, T ]:

ẏ(0) =−
6

T 3

Z T

0
(T −2τ)y(τ)dτ (A.8)

To estimate the derivative at the instant t, shift the argument of the function y(τ) by y(t + τ)

(if y(T ) by y(t +T )) for a sliding time window estimation of ẏ(t)

ẏe(t) =−
6

T 3

Z T

0
(T −2τ)y(t + τ)dτ (A.9)

The above equation allows to estimate the derivative in the interval [t t +T ] as τ 2 [0 T ]. To

make the estimation causal, invert the time intervals i.e. T to −T and τ to −τ . First change

T to −T in (A.9):

ẏe(t) =−
6

(−T )3

Z −T

0
(−T −2τ)y(t + τ)dτ (A.10)

or

ẏe(t) =−
6

T 3

Z 0

−T
(−T −2τ)y(t + τ)dτ (A.11)

now, change of variable τ to −τ denote σ =−τ , dτ =−dσ , τ = 0,−T implies σ = 0,T :

ẏe(t) =
6

T 3

Z 0

T
(−T +2σ)y(t −σ)dσ (A.12)

or

ẏe(t) =
6

T 3

Z T

0
(T −2σ)y(t −σ)dσ (A.13)

To change the integration limits from [0 T ] to [t−T t] using the following change of variables

σ = t − τ , dσ =−dτ and τ = 0, T =) σ = t, t −T and hence:

ẏe(t) =
6

T 3

Z t

t−T
(T −2t +2σ)y(σ)dσ (A.14)
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ẏe(t) is equivalent to Fe in (4.37) with u(t) = 0, thus this result is used to compare the

two estimators equations: eq. (A.14) and the estimator equation in section 3.4.1 in [63] with

u(t) = 0.

Example

(A.14) is used to estimate the derivative of the following function:

y(t) = t (A.15)

ẏe(t) =
6

T 3

Z t

t−T
(T −2t +2σ) σ dσ (A.16)

Fe = ẏe(t) = ẏ(t) = 1 (A.17)

whereas the first formula of the estimator equation in section 3.4.1 of [63] (Fe is denoted

φ in the reference) is as follows (with u(t) = 0) :

Fe = ẏe(t) =−
6

T 3

Z t

t−T
(T −2τ)y(τ)dτ (A.18)

with y(t) = t yields

ẏe =
(7T 2 −18Tt +12t2)

T 2 6= ẏ(t) (A.19)

Consequently Fe in (4.37) gives the correct expected estimation.

Remark 25. It is suggested to take a small estimation time window T in [63] for a better

estimation in (4.37), this can be seen assuming again that Fe = ẏe and take for instance

y1(t) = t2, y2(t) = t3 (A.20)

then (4.37) (u(t) = 0) yields:

ẏ1e
= 2

(
t −

T

2

)
, ẏ2e

= 3
(
t −

T

2

)2
+

3T 2

20
(A.21)

thus the smaller the T the closer the result to ẏ(t).

A.2 The delay on u(t)

It was shown in Remark24 of A.1 that the first term of the integral of (4.37) is equivalent

to ẏ(t), and according to (4.6) Fe = ẏ(t)−αu(t − h), thus the second part of the integral

of (4.37) is equivalent to u(t −h). Hence, the following buffer extracted from (4.37) (with
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y(t) = 0) is supposed to maintain the signal f (t) unchanged like a buffer:

f̃ (t) =
6

T 3

Z t

t−T
(t −σ)(T − t +σ) f (σ)dσ (A.22)

This buffer outputs the same input signal but delayed by T
2 , i.e. f̃ (t) = f (t − T

2 ). This

function is used and compared to the ordinary transport delay function of delay h on numerical

examples below. If T is small enough, both passes the signal delayed by h = T
2 . Initial

conditions for the following examples are set to zero: f (t) = 0 8t < 0 with h = 0.5.

A.2.1 example 1

A unit step function:

f (t) = 1 8t ≥ 0 (A.23)
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0
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f(t−h):buffer

f(t)

f(t−h):trans. delay

Figure A.1 Unit step function f (t) in dotted red curve and its delay using the integral buffer
in red solid curve versus the transport delay f (t −h) in dotted blue curve.

A.2.2 example 2

A sinusoidal function

f (t) = sin(3t) (A.24)

A.2.3 Influence of the integration horizon T

It is noticed in the latter example that the time window of this buffer should respect Nyquist

rate condition:

fb ≥ 2 fm
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Figure A.2 Sinusoid function in dotted red and its delay using the integral buffer in solid red
versus the transport delay in dotted blue.

i.e. in order to capture all signal information, the buffering rate fb should be at least as twice

as faster as the highest frequency of the transmitted signal fm.

In (A.24) fm = 3 while fb = 1
T
= 1 which resulted in difference of amplitude in the

transmitted signal as illustrated in Fig. A.2.

For instance, the following signal whose highest frequency is fm = 3 Hz or Tm = 0.33sec.

is illustrated in Fig. A.3 with its two delayed versions taking Tb = T = 2 > Tm.

f (t) = tanh(t)+ e−0.5tsin(3t) (A.25)
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Figure A.3 f (t) and f (t −h) using the integral buffer versus the transport delay T = 2sec.

While for T = 0.3sec. the buffer produces a nice approximation of f (t −h) as illustrated

in Fig. A.4.

Therefore, the estimation frequency should be at least as high as twice the highest

frequency component of the input signal.
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Figure A.4 f (t) and f (t − h) using the integral buffer versus the transport delay setting
T = 0.3sec.

A.3 iP Results with noise

The modeling error (e.g. unmodeled dynamics, CGM measurement noise) due to the

identification process is considered as noise and added to the mathematical model output as

illustrated in Fig. A.5 and see, for instant, Fig. A.6 for IF2 noise. IF2, IF3 and BE results are

illustrated in Figures A.7, A.8 and A.9 respectively.

 

Figure A.5 A block diagram of a T1D glucose-insulin dynamics. with modeling error on the
output

.
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Figure A.6 IF2 BG response. (a) Open-loop CGM data and BG model output as in (3.17)
(b) modeling error [58] (0.0056±0.18).
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Figure A.7 IF2 BG response with noise under iP with −α = 180 and iPvref −α = 198. (a)
Meal intake (b) BG response (c) iP and iPvref control rates

.
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Figure A.8 IF3 BG response with noise under iP with −α = 176 and iPvref −α = 223. (a)
Meal intake (b) BG response (c) iP and iPvref control rates
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A.4 Luenberger Observer Design

The observer model to estimate ẏ(t) of a signal y(t) is designed as follows:

ḃx = Abx+L(y−Cbx) (A.26)

by =Cbx (A.27)

Where bx =
"
bx1

bx2

#
, A =

"
0 1

0 0

#
, C =

h
1 0

i
with the estimated derivative bx2 = ẏ. Pole place-

ment is used to design L such that the characteristic polynomial of the observer A−LC is

(s+ 1
To
)2 and hence: L =

"
2
To
1

T 2
o

#
. with To = 0.15 for a fast convergence and to obtain a high

gain observer.
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Figure A.9 IF3 BG response with noise under iP with −α = 175 and iPvref −α = 175. (a)
Meal intake (b) BG response (c) iP and iPvref control rates

.

A.5 MAGE and Diabetic Stability

Glycemic variability is an important parameter to solve potential clinical problems in diabetic

patients [103]. It generates oxidative stress and potentially contributes to long term compli-

cations like the development of macro- and microvascular complications [103, 104]. Mean

Amplitude of Glycemic Excursion (MAGE) is a well-known index characterizing glycemic

variability proposed by [105]. Three ranges of MAGE divide subjects into normal between

(22 to 60 mg/dL), stable diabetes (67 to 82 mg/dL) and unstable diabetes with the largest

MAGE range (119 to 200 mg/dL) [105]. In unstable or brittle diabetes BG fluctuates widely

with unpredictable rapid oscillations from hypoglycemia to hyperglycemia [106]. Brittle

diabetes are difficult to treat and have a poor quality of life due to frequent acute events

leading to hospital admissions [107].

24-hours MAGE values calculated for each of the five subjects for the basal-bolus FIT

therapy are as follows: MAGE=[82, 55, 97, 207, 161] for IF2, IF3, BE, IF9 and LR subjects

respectively. IF2, IF3 and BE respond smoothly to insulin infusion producing a stable

behavior. Whereas, IF9 and LR are unstable with different instability degrees. MAGE index

provides a criterion with which brittle patients can be classified before any control design

tests due to their particular unpredictable BG behavior.
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La Régulation Automatique de la Glycémie du Diabète de Type I 

Automatic Glycemia Regulation of Type I Diabetes 

 

Résumé 
 

Cette thèse étudie le contrôle en boucle fermée pour la 
régulation de la glycémie du diabète de type 1 (DT1). Deux 
catégories principales de commande sont conçues: l'une est 
basée sur un modèle et l'autre non. Pour tester leur 
efficacité, les deux types sont testés in silico sur deux 
simulateurs de DT1. Le premier est un modèle à long terme 
qui est dérivé des données cliniques des sujets de DT1 et le 
second est le simulateur Uva/Padova. Tout d'abord, la 
commande sans modèle (CSM) est conçue. Après avoir 
montré qu'un régulateur proportionnel intelligent (iP) à 
référence constante peut être mis en défaut sur un simple 
second ordre, nous avons conçu un régulateur iP à 
référence variable. Une solution alternative est un régulateur  
proportionnel-intégral-dérivé intelligent (iPID) à référence 
constante. Une meilleure performance globale est obtenue 
avec iPID par rapport à iP et par rapport à un PID classique. 
Deuxièmement, une commande  par modes glissants (CMG) 
garantie positive est conçue pour la première fois pour la 
régulation de la glycémie. La conception de cette commande 
est basée sur un modèle. La commande CMG est choisie 
pour la régulation de la glycémie en raison de ses propriétés 
de robustesse bien connues. Cependant, notre contribution 
majeure est l'assurance d'une commande rigoureusement 
positive. La commande CMG est conçue pour être positive 
partout dans un ensemble invariant du sous-système 
d'insulinémie du plasma. Enfin, un régulateur positif par 
retour d'état est calculé pour la première fois pour la 
régulation de la glycémie. Le plus grand ensemble positif 
invariant (EPI) est trouvé. Non seulement la positivité de la 
commande est révisée, mais plutôt un contrôle glycémique 
serré est atteint. Lorsque l'état initial du système appartient à 
l’EPI, l'hypoglycémie est évitée. Dans le cas contraire, 
l'hypoglycémie future est prédite pour tout état initial en 
dehors de l'EPI. 
 
Mots clés 
Diabète de type I, régulation de la glycémie, Commande 

positive, prédiction de l'hypoglycémie, Ensemble 

invariant, Insulin on board, Commande par modes 

glissants, Commande sans modèle. 

Abstract 
 

This thesis investigates closed-loop control for glycemia 

regulation of Type1 Diabetes Mellitus (T1DM). Two main 

controller categories are designed: non-model-based and 

model-based. To test their efficiency, both types are 

tested in silico on two T1DM simulators.  

The first is a long-term model that is derived from clinical 

data of T1DM subjects and the second is the 

Uva/Padova simulator. Firstly, Model-free Control (MFC) 

is designed: a variable reference intelligent Proportional 

(iP) control and a constant reference intelligent 

Proportional-Integral-Derivative (iPID). Better overall 

performance is yielded with iPID over iP and over a 

classic PID. Secondly, a positive Sliding Mode Control 

SMC is designed for the first time for glycemia regulation. 

The model-based controller is chosen for glycemia 

regulation due to its well-known robustness properties. 

More importantly, our main contribution is that SMC is 

designed to be positive everywhere in the positively 

invariant set for the plasma insulin subsystem.  

Finally, a positive state feedback controller is designed 

for the first time to regulate glycemia. The largest 

Positively Invariant Set (PIS) is found. Not only control 

positivity is respected but rather a tight glycemic control 

is achieved. When the system initial condition belongs to 

the PIS, hypoglycemia is prevented, otherwise future 

hypoglycemia is predicted for any initial condition outside 

the PIS. 

 
 
 
 

 
Key Words 
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Control, Hypoglycemia prediction, Positively 

invariant set, Insulin on board, Sliding mode control, 

Model-free control. 
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