
HAL Id: tel-02513236
https://theses.hal.science/tel-02513236

Submitted on 20 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning routines for sequential decision-making
Sandra Castellanos-Paez

To cite this version:
Sandra Castellanos-Paez. Learning routines for sequential decision-making. Automatic Control Engi-
neering. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM043�. �tel-02513236�

https://theses.hal.science/tel-02513236
https://hal.archives-ouvertes.fr


 

THÈSE 
Pour obtenir le grade de 

DOCTEUR DE LA 
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES 
Spécialité : Informatique 

Arrêté ministériel : 25 mai 2016 
 
 
Présentée par 

Sandra Milena CASTELLANOS-PAEZ 
 
Thèse dirigée par Sylvie PESTY, Professeur, UGA  
et Damien PELLIER, MCF, UGA 
préparée au sein du Laboratoire d’Informatique de Grenoble  
dans l'École Doctorale Mathématiques, Sciences et Technologies 
de l’Information, Informatique 
 

Apprentissage de routines pour la prise 
de décision séquentielle 
 

Learning routines for sequential 
decision-making 
 
Thèse soutenue publiquement le 24 octobre 2019, 
devant le jury composé de :  

Madame Sylvie PESTY 
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directrice de thèse 
Monsieur René MANDIAU 
PROFESSEUR, UNIV. POLYTECHNIQUE DES HAUTS-DE-FRANCE, 
Rapporteur 
Monsieur François CHARPILLET 
DIRECTEUR DE RECHERCHE, INRIA CENTRE NANCY GRAND EST, 
Rapporteur 
Monsieur Damien PELLIER 
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES, Co-
directeur de thèse 
Monsieur Philippe MATHIEU 
PROFESSEUR, UNIVERSITE DE LILLE, Président 





Acknowledgements
I would like to thank the many people who have been involved in this adventure.

First of all, I would like to thank my supervisors for giving me the opportunity to do
this thesis. More particularly, to Sylvie, for having given me back the motivation by
reminding me that a thesis must not change the world but must above all contribute to
advancing the understanding of a subject. To Damien, for introducing me to the tor-
tuous world of automated planning and for sharing his knowledge that allowed me to
find ways to do this work. I would also like to thank Humbert who shared his ideas at
meetings.

I would also like to thank the members of the jury: René Mandiau and François Charpil-
let, for agreeing to be rapporteurs for this work by making relevant remarks that allowed
me to better orient my oral presentation. Thanks also to Philippe Mathieu who chaired
this jury with great attention.

I would like to warmly thank the past and present members of the MAGMA team, now
HAWAI, who have listened to me and provided both human and scientific support dur-
ing these years: Yves, Julie, Carole, Julius, Djalil, Ankuj, Ying, Manon, Luba, Omar,
Galateia, Rémi and for the newcomers: Rouba and Thibauld, good luck, you’ll see it’s
worth it!

It is with great nostalgia that I thank the members of the GETALP team, the first team
that welcomed me during my master’s studies. And in particular, I would like to thank
Christian Boitet and Carlos Ramish who have passed on their passion for research and
the academic world to me. I still have a pinch in my heart that I couldn’t follow you,
but I hope our paths will cross again.

Speaking of the academic world, I would like to thank the educational teams of Greno-
ble IAE and IM2AG who welcomed me for the realisation of my ATERs. I would also
like to thank the administrative staff of the laboratory and the doctoral school.

I have met many people during these years of thesis that it is difficult to thank them
all. However, I would like to thank Pier who has accompanied me well through the ups
and downs and whose support has always been of great importance; Marc, Françoise,
Gérard and Suzanne for having welcomed me with humour and love into your fam-
ily; my colombian friends for your unfailing support: Sergio V. (amigazo!), Karen and
Paola; my friends met at the Rabot and with whom I shared and still share many laughs
and wild game Sundays: Eymeric, Pipo, Zoggy, Claire, Cassandra, Priss,...; my friends
PPGA for the shared evenings that allowed me to decompress between two writing ses-
sions of my thesis; thanks also to Raquel, Nicolas H., Emmanuel, Camilo M., Monsieur
Caillat, Monique, Kenza and her family, Ali F. and to everyone who has marked this
stage of my life.

I would like to express my love and gratitude to my parents who, even on another con-
tinent, have always encouraged and pushed me to move forward with tender messages
every day and without fail and for whom my admiration has no limits. Finally, I would
like to thank my brother for his unconditional support and for always having the right

i



words to say even if they are not the ones I want to hear (and which sometimes even
sound like bullying).

I couldn’t forget my faithful four-legged companion. Thank you Nask for waking me
up in the morning and forcing me out of bed even when the motivation was not there.
For all the moments of frustration that were overshadowed by your tender gaze and your
multiple licks. To get me moving in the long days of writing by running behind you to
get my slipper. Thanks also to Ada for accompanying me during the first years of my
thesis and for finding a way to make me relax by asking for hugs.

My last and greatest thanks go to my love who I had the joy of meeting while I was
still struggling with my endless experiments. Our scientific discussions have given me
stars in the eyes, showing me that a passion for research can move mountains. Your
enthusiasm has been key in motivating me to continue to pursue my dreams. Thank you
for always being at my side during the nights of writing, the weekends of experimenta-
tion and even during the holidays never taken. Thank you for all the love you have for
me and for always taking care of me when I need it most. For you, I’ll keep spinning
counterclockwise1...

1https://xkcd.com/162/

ii

https://xkcd.com/162/


Contents

1 Introduction 1

Introduction 1
1.1 Context of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Automated Planning . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Learning Macros . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Background and Literature Review 13
2 Automated Planning 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 PDDL representation language . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Development of Automated Planning . . . . . . . . . . . . . . . . . . . 24

2.5.1 Translation into another problems . . . . . . . . . . . . . . . 26
2.5.2 Search for planning . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Techniques to improve planning search . . . . . . . . . . . . . 29

2.6 Macro learning methods in Automated Planning . . . . . . . . . . . . . 33
2.6.1 Off-line approaches . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.2 On-line approaches . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Pattern Mining 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Pattern Mining: Basic concepts . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Simple types of data . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Types of patterns . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Mining frequent patterns . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 Pattern sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Apriori algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Mining sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Sequential pattern mining . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

II Contributions 55
4 Extraction of macros via Sequential Pattern Mining 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



4.2 Plan encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Macro-actions learning framework . . . . . . . . . . . . . . . . . . . . 62
4.4 Mining and filtering candidates . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Macro-action construction . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Enhancing planning domain with macro-actions . . . . . . . . . 65
4.6 Evaluation of the support parameter . . . . . . . . . . . . . . . . . . . 66

4.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Classical pattern mining applied to planning 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Macro-actions generality . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Macro-operators construction . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Validity of the generated macro-operators . . . . . . . . . . . . . . . . 87
5.5 Problematic macro-operators: Definition . . . . . . . . . . . . . . . . . 88
5.6 Problematic macro-operators: Detection . . . . . . . . . . . . . . . . . 92

5.6.1 Incompatibility graph implementation . . . . . . . . . . . . . . 97
5.6.2 Results for the removing method . . . . . . . . . . . . . . . . . 103

5.7 Selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 The METEOR framework 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Limitations of classical pattern mining algorithms in planning . . . . . 109
6.3 Description of the METEOR framework . . . . . . . . . . . . . . . . . 114
6.4 ERA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Encoding formalism . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.2 Description of the main algorithm . . . . . . . . . . . . . . . . 117
6.4.3 The mining procedure . . . . . . . . . . . . . . . . . . . . . . 118
6.4.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Selection of the optimal macro-operator set . . . . . . . . . . . . . . . 123
6.6 Evaluation of the METEOR framework . . . . . . . . . . . . . . . . . 128

6.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.6.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Conclusion and Perspectives 143

Conclusions 143
7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.1 Exploration of the link between macro-action frequency and
macro-action utility . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.2 Removing problematic macro-operators . . . . . . . . . . . . . 145
7.1.3 METEOR framework . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.1 Incompatibilities for inertia predicates . . . . . . . . . . . . . . 149

iv



7.2.2 Slight modification of the planner . . . . . . . . . . . . . . . . 149
7.2.3 Set of non overlapping macro-operators . . . . . . . . . . . . . 149

7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Benchmark domains 153
A.1 Barman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2 Blocksworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.3 Depots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.4 Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B Understanding results: operators translation and full report 161
B.1 Barman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.1.1 Operators translation . . . . . . . . . . . . . . . . . . . . . . . 161
B.1.2 Mining Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.1.3 Macro analyser log . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.4 Recommended Optimal Macro Set . . . . . . . . . . . . . . . . 165

B.2 Blocksworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2.1 Operators translation . . . . . . . . . . . . . . . . . . . . . . . 165
B.2.2 Mining Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2.3 Macro analyser log . . . . . . . . . . . . . . . . . . . . . . . . 166
B.2.4 Recommended Optimal Macro Set . . . . . . . . . . . . . . . . 166

B.3 Depots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3.1 Operators translation . . . . . . . . . . . . . . . . . . . . . . . 166
B.3.2 Mining Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3.3 Macro analyser log . . . . . . . . . . . . . . . . . . . . . . . . 167
B.3.4 Recommended Optimal Macro Set . . . . . . . . . . . . . . . . 167

B.4 Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.4.1 Operators translation . . . . . . . . . . . . . . . . . . . . . . . 167
B.4.2 Mining Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.4.3 Macro analyser log . . . . . . . . . . . . . . . . . . . . . . . . 168
B.4.4 Recommended Optimal Macro Set . . . . . . . . . . . . . . . . 169

C Results on removing problematic macro-operators 171
C.1 Barman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.1.1 Predicate incompatibilities . . . . . . . . . . . . . . . . . . . . 171
C.1.2 Understanding the found macro-operators . . . . . . . . . . . . 176

C.2 Blocksworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C.2.1 Predicate incompatibilities . . . . . . . . . . . . . . . . . . . . 179
C.2.2 Understanding the found macro-operators . . . . . . . . . . . . 181

C.3 Depots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.3.1 Predicate incompatibilities . . . . . . . . . . . . . . . . . . . . 181
C.3.2 Understanding the found macro-operators . . . . . . . . . . . . 196

C.4 Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.4.1 Predicate incompatibilities . . . . . . . . . . . . . . . . . . . . 217
C.4.2 Understanding the found macro-operators . . . . . . . . . . . . 218

Bibliography 219

v





List of Figures

1.1 blocksworld actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 blocksworld domain with only primitive actions. Filled squares rep-

resent the sequence of actions to achieve the goal from the initial state. . 5
1.3 blocksworld enhanced domain with the macro pick up and stack. Filled

squares represent the sequence of actions to achieve the goal from the
initial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 A macro-action pick up and stack for specific objects blockB and blockA. 9
1.5 A macro-operator pick up and stack for variable block objects. . . . . . 9
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Representation of Code 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Pickup action applied to a state s . . . . . . . . . . . . . . . . . . . . . 24

3.1 Employees database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Apriori algorithm steps for mining frequent itemsets from Table 3.1

with a minsup = 0.25. "Supp." stands for absolute support. . . . . . . . 50
3.3 Frequent itemsets obtained by using the Apriori algorithm on Table 3.1

with a minsup = 0.25 . "Supp." stands for absolute support. . . . . . . . 51

4.1 A blocksworld problem. . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Macro-actions learning framework. . . . . . . . . . . . . . . . . . . . . 62
4.3 Sequences candidates. "Number of candidates" plotted in Log scale.

"Minsup" plotted as percentages, e.g. a minsup of 0.1 corresponds to 10% 70
4.4 Maximal length candidates."Minsup" plotted as percentages, e.g. a min-

sup of 0.1 corresponds to 10%. . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Number of macros added to the enhanced domain. . . . . . . . . . . . . 71
4.6 Search time performance per domain. In red, the problems not solved

with the original domain but solved with at least one enhanced domain. 73
4.7 GT per domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 IPC score per domain. In red, the domain with the highest score. . . . . 74
4.9 GN per domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.10 GQ per domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Average fraction of macros added from the enhanced domain as prob-
lem operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Mean percentage of macros used in solution plans for each domain.
"Minsup" plotted as percentages, e.g. a minsup of 0.1 corresponds to
10%. The minimum and maximum percentage of macros are also dis-
played. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Size comparison: Extracted candidates vs macro-actions set vs macro-
operators set. minsup = 5% . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Invalid macro-operator Unstack_Put-down . . . . . . . . . . . . . . . 88
5.5 Examples of useless macro-operators. Highlighted predicates should

not be taken into account. . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Redundant macro-operator Unstack_Stack_Unstack_Put-down. High-

lighted predicates should not be taken into account. . . . . . . . . . . . 92

vii



5.7 Explanation scheme for detecting and eliminating problematic macro-
operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 depots object types . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.9 Objects inventory example . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10 Example of the transitivity property of incompatibilities. . . . . . . . . 97
5.11 Incompatibility graph for predicate lifting hoist0 crate0. Green

(resp. red) lines indicate the positive (resp. negative) effects. Yellow
(resp. blue) circles are the actions (resp. predicates) and filled blue
circles are predicates that will be removed from the layer. . . . . . . . . 99

5.12 Exploiting the incompatibility graph for predicate p=lifting hoist0
crate0. Filled blue circle indicate the bud node. Yellow circles are the
actions. Gray elements will not considered in the exploitation of the
graph for predicate p. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Macro-operators from different set of object relationships . . . . . . . . 114
6.2 METEOR framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Search time performance for barman and blocksworld domains. In

blue (resp. in green), the time performance for problems solved with
the original domain (resp. enhanced domain). In red, the problems not
solved with the original domain but solved with the enhanced domain. . 132

6.4 Search time performance for depots and satellite domains. In blue
(resp. in green), the time performance for problems solved with the
original domain (resp. enhanced domain). In red, the problems not
solved with the original domain but solved with the enhanced domain. . 133

6.5 Time gain for barman and blocksworld domains. In blue, the gain
for problems solved with the original domain and with the enhanced
domain. In red, the gain for problems that were not solved with the
original domain but solved with the enhanced domain. Thus, the gain is
underestimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Time gain for depots and satellite domains. In blue, the gain for
problems solved with the original domain and with the enhanced do-
main. In red, the gain for problems that were not solved with the orig-
inal domain but solved with the enhanced domain. Thus, the gain is
underestimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.7 Number of explored nodes for barman and blocksworld domains. In
blue (resp. in green), the nodes for problems solved with the original
domain (resp. the enhanced domain). In red, the nodes for problems
that were not solved with the original domain. . . . . . . . . . . . . . . 137

6.8 Number of explored nodes for depots and satellite domains. In
blue (resp. in green), the nodes for problems solved with the original
domain (resp. the enhanced domain). In red, the nodes for problems
that were not solved with the original domain. . . . . . . . . . . . . . . 138

6.9 Plan length for each problem in barman and blocksworld domains.
In blue (resp. in green), the plan length for problems solved with the
original domain (resp. the enhanced domain). . . . . . . . . . . . . . . 139

6.10 Plan length for each problem in depots and satellite domains. In
blue (resp. in green), the plan length for problems solved with the orig-
inal domain (resp. the enhanced domain). . . . . . . . . . . . . . . . . 140

A.1 Barman objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2 Barman object types . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



A.3 Barman operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.4 Blocksworld operators . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.5 Depots objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.6 Depots objects types . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.7 Depots operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.8 Satellite operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

ix





List of Tables

2.1 Definition of predicates and actions for blocksworld domain . . . . . . 18
2.2 Timeline of classical planning approaches. . . . . . . . . . . . . . . . . 25
2.3 Timeline of macro learning methods. . . . . . . . . . . . . . . . . . . . 36

3.1 Transactional database for consulted sections on a company’s intranet. . 43
3.2 All frequent itemsets from Table 3.1 (minsup = 0.01). . . . . . . . . . . 47
3.3 Closed frequent itemsets from Table 3.1 (minsup = 0.01). . . . . . . . . 48
3.4 Maximal frequent itemsets from Table 3.1 (minsup = 0.01). . . . . . . . 48
3.5 Sequence database for consulted sections on a company’s intranet . . . 52
3.6 Sequential patterns from Table3.5 (minsup=0.25). . . . . . . . . . . . . 53

4.1 Dictionary of actions from a set of plans in the current example. . . . . 61
4.2 Sequence database from a set of plans in the current example. . . . . . . 61
4.3 Parameters for the generation of problems . . . . . . . . . . . . . . . . 67

5.1 Input sample for Algorithm 4, blocksworld domain. . . . . . . . . . . 85
5.2 Output sample for Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Results of the validity of created macro-operators per domain. . . . . . 87
5.4 Results from the graph-based approach to detect problematic macro-

operators. "M" stands for number of macros, "I" number of incompati-
ble macros found, "U" number of useless macros found and "R" number
of redundant macros found. . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Percentage of removed problematic macro-operators per domain. . . . . 103

6.1 Sequence database using the encoding from Chapter 4 . . . . . . . . . . 111
6.2 Result of mining all frequent patterns on the sequence database in Table

6.1 with a minsup of 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Sequence database using the encoding an item by word . . . . . . . . . 112
6.4 Sequence database using the encoding from Chapter 4 on a previously

translated set of plans. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Example of plans for blocksworld domain. . . . . . . . . . . . . . . . 116
6.6 Dictionary of instantiated operators for Table 6.5. . . . . . . . . . . . . 116
6.7 Sequence database from dictionary in Table 6.6 and plans in Table 6.5. . 116
6.8 Dictionary of elements for Table 6.6. . . . . . . . . . . . . . . . . . . . 117
6.9 Sequence database from dictionary in Table 6.8 and plans in Table 6.5. . 117
6.10 Parameters for the generation of problems . . . . . . . . . . . . . . . . 129
6.11 Number of mined macro-operators, the length of the longest macro-

operator found and the selected optimal set for each domain. † The
translation of the operators and the full report given by the approach
can be found in Appendix B. . . . . . . . . . . . . . . . . . . . . . . . 130

6.12 Results represented as IPC Score and average time gain for each domain. 131
6.13 Results represented as the average impact in the final space size GN and

the average impact in the length of the plans GQ for each domain. . . . 136

7.1 Comparative table between METEOR and other macro learning methods 147
7.2 Overview of the approaches presented in comparative Table 7.1. . . . . 148

xi



C.1 Detail of the found macro-operators for barman domain. . . . . . . . . 179
C.2 Detail of the found macro-operators for blocksworld domain. . . . . . 180
C.3 Detail of the found macro-operators for depots domain. . . . . . . . . 216
C.4 Detail of the found macro-operators for satellite domain. . . . . . . 218

xii



List of Algorithms
1 Mining and filtering candidates . . . . . . . . . . . . . . . . . . . . . . 63
2 Macro-action construction . . . . . . . . . . . . . . . . . . . . . . . . 65
3 The merge procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Macro-operators construction . . . . . . . . . . . . . . . . . . . . . . . 84
5 createMacroOperator procedure . . . . . . . . . . . . . . . . . . . . . 86
6 Remove problematic macro-operators - Main algorithm . . . . . . . . . 93
7 Extraction of Incompatibilities . . . . . . . . . . . . . . . . . . . . . . 94
8 Domain instantiation relative to a macro-operator . . . . . . . . . . . . 95
9 ERA algorithm - Main algorithm . . . . . . . . . . . . . . . . . . . . . 120
10 Mining macro-operators of length l . . . . . . . . . . . . . . . . . . . . 121
11 Selection of the optimal macro-operator set . . . . . . . . . . . . . . . 127

xiii





List of PDDL-Codes
2.1 Definition of a blocksworld problem . . . . . . . . . . . . . . . . . . . 19
2.2 Definition of the blocksworld domain . . . . . . . . . . . . . . . . . 20
2.3 Initial blocksworld state represented in Figure 2.1(a) . . . . . . . . . . 22
2.4 PDDL definition for pick-up blocksworld operator . . . . . . . . . . . . 22
2.5 Instantiation of pick-up blocksworld operator . . . . . . . . . . . . . . 23
2.6 PDDL definition for pick-up_stack blocksworld macro-operator . . . . 34
2.7 Instantiation of pick-up_stack blocksworld macro-operator . . . . . . . 35
4.1 Macro-action for the blocksworld domain . . . . . . . . . . . . . . . 66
5.1 Macro-action for the blocksworld domain . . . . . . . . . . . . . . . 100

xv





List of Symbols and Acronyms
Hereafter is the list of symbols and notations introduced in the specified chapters.

Chapter 2

Symbol Meaning
s0 initial state
sg goal state
Σ planning domain
P planning problem
s state
S subset of the set of all states
L representation language
a action
A set of all actions
γ state-transition function
g goal
o operator
name(o) name of operator o
name(x1, . . . ,xn) operator name with object variables x1, . . . ,xn
pre(o) set of preconditions of operator o
effects(o) set of predicates of operator o to be applied to a state
pre(a) set of preconditions of action a
add(a) set of positive effects of action a
del(a) set of negative effects of action a
π sequences of actions or plan
〈a1, . . . ,an〉 sequences of actions a1 through an
A∪B union of sets A and B
A−B set of elements in A but not in B
h(s) heuristic function
h∗(s) true distance between s and the goal state

xvii



Chapter 3

Symbol Meaning
minsup minimum support threshold
P set of patterns
sid sequence identifier
σ absolute support
sup(x) relative support

Chapter 4

Symbol Meaning
pi problem i
πid plan identifier
πi solution plan for a problem pi
D sequence database
m macro-action
name(m) name of macro-action m
name(c1, . . . ,cn) macro-action name with object constants c1, . . . ,cn
pre(m) set of preconditions of macro-action m
effects(m) set of predicates of macro-action m to be applied to a state
GT Planning time metric
GN Space size metric
GQ Plan Quality metric

xviii



Chapter 5

Symbol Meaning
m macro-operator
S sequence of actions
add(m) set of positive effects of macro-operator m
del(m) set of negative effects of macro-operator m
p1 | p2 predicate p1 is incompatible with predicate p2
d planning domain
M set of macro-operators
p predicate
Ln nth layer of the incompatibility graph
A set of instantiated operators or set of actions
x _ y node x is linked to node y
Ln\p equivalent to Ln−{p}
C set of compatible predicates
I set of potential incompatible predicates
|C| number of elements in set C

Chapter 6

Symbol Meaning
< a,b > pair a,b
ei ith element in set of solution plans
minsup minimum support threshold
maxLength maximal extraction length
M set of macro-operators
C set of solution plans
G(M;C) estimated mean node gain by adding M and with respect to C
Mopt optimal macro-operator set with respect to G

xix



Hereafter the list of acronyms used in this thesis. They are listed using the order of their
first apparition in the manuscript.

Acronym Meaning
AI Artificial Intelligence
NP Nondeterministic Polynomial time

METEOR
Macro-operator Extraction, Trade-off Estimation and
Optimisation from plan Recycling

AP Automated Planning
PDDL Planning Domain Definition Language
IPC International Planning Competition
STRIPS Stanford Research Institute Problem Solver
GPS General Problem Solver
PSPACE Polynomial space
SAT Planning as satisfiability
CP Constraint Programming
IP Integer Programming
CSP Constraint Satisfaction Problem
HSP Heuristic Search Planner
FF planner Fast Forward planner
NOAH Nets of Actions Hierarchies

UCPOP
Universal quantification, Conditional effects
Partial Order Planner

SHOP Simple Hierarchical Ordered Planner
LM Landmark
SAS Simplified Action Structures
HTN Hierarchical Task Network
ID Identifier
FP Frequent Pattern
CP Closed frequent pattern
SDB Sequence Database
FSP Frequent Sequential patterns
FAST Fast sequence mining Algorithm based on Sparse id-lisTs
GSP Generalized Sequential Patterns
LAPIN LAst Position INduction sequential pattern mining algorithm

xx



Acronym Meaning
SPADE Sequential PAttern Discovery using Equivalence classes
SPAM Sequential PAttern Mining algorithm
BIDE BI-Directional Extension algorithm
CloFAST Closed FAST sequence mining algorithm
ClaSP Closed Sequential Patterns algorithm
VMSP Vertical mining of Maximal Sequential Patterns
MaxSP Maximal Sequential Pattern miner
ERA Extraction of Rich patterns with Attribute structures

xxi





1
Introduction

Efforts and courage are not enough without purpose and
direction.

John F. Kennedy

1.1 Context of research . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . 10

1.1 Context of research

This thesis presents results achieved during my PhD at Grenoble Alps University and
Grenoble Informatics Laboratory. It is part of the Artificial Intelligence field.

The field of artificial intelligence (AI) intends to build intelligent agents. The intelli-
gence of these agents is concerned with rational action. Given a situation, they can act
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to achieve the best outcome. Thus, as stated by Russell and Norvig (2010), an intelligent
agent is a system that can decide what to do and then do it.

An intelligent system perceives its environment, reasons about the best possible action
corresponding to the current situation, and performs it. Therefore, the primary concern
of AI has been the design of intelligent systems to perform complex tasks without any
human intervention. As an example of a domain that benefits from applying intelligent
systems, we have the automotive industry with the autonomous vehicles (Urmson et al.,
2008). One of its potential benefits concerns safety. They are expected to significantly
reduce accidents since the human error factor will be no longer exists (Fagnant and
Kockelman, 2015).

From this application, one expects that intelligent systems make decisions as fast as
possible in a reliable way. Thus, developing intelligent systems should include decision-
making autonomy and capacity to learn from past experiences. Indeed, they can use
their experiences to improve their performance. For example, faced with a situation
already encountered, they will use the previously acquired knowledge to decide better
and more effectively.

Because the applications tend to be complex, the decision-making component is essen-
tial, and it could not work without continuous advances in effective algorithms. They
are still many techniques to explore in this way. We focus this thesis on routine learning
for sequential decision making.

1.1.1 Automated Planning

Intelligent systems to be genuinely efficient need to organise their actions as fast as
possible in a reliable way. Planning is then essential since it is a careful consideration
process by which actions are chosen to achieve a specific goal. It is needed to understand
the problem and to adapt the resources to attain an objective as best as possible.

Automated planning (AI planning) is a sub-field of AI that aims to study and design
domain-independent general approaches to planning (Ghallab et al., 2004). In AI plan-
ning, a planning task consists of a planning domain and a planning problem. The for-
mer consist of a description of the world and a set of actions. The latter consist of an
initial world situation and some objective to achieve. Thus, the automated planning
community devises effective algorithms that produce action sequences (namely, a plan)
to reach a planning task goal, from an initial state, for a potential execution by one or
several agents.

Solving planning problems is a time-consuming and challenging process because algo-
rithms must understand planning tasks without the use of domain-specific knowledge.
To this must also be added the NP-hard complexity of planning. Namely, the time re-
quired to solve a planning problem increases very quickly as the size of the problem
grows.
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Therefore, it is essential to develop robust algorithms. These algorithms must efficiently
explore the search space that grows exponentially with the plan length, which is un-
known. Various approaches have been studied to enhance the efficiency of planning
(Kautz et al., 1992; Van Den Briel and Kambhampati, 2005; Lopez and Bacchus, 2003;
Blum and Furst, 1997; Geffner and Haslum, 2000). These are a result of the cross-
fertilisation of ideas from different AI areas.

In planning, search algorithms usually explore a graph trying to find a sequence of
actions from a given initial node n0 to a goal node ng (Bonet and Geffner, 2001; Nguyen
and Kambhampati, 2001). To counter the exponential growth, search algorithms can
use knowledge about the problem. This thesis focus on the study of learning macros, i.e.
frequently encountered routines.

1.1.2 Learning Macros

Few planning approaches take advantage of previous problems solved to accelerate the
search for a new problem. However, intuitively, a system capable of exploiting its expe-
rience, should be able to achieve better performance. Then, the main idea of learning
macros is to capture specific knowledge from analysing learning examples.

A macro consist of a sequence of actions that occur frequently in solution plans. Take
for example the blocksworld planning domain, it consists of a set of blocks settled on
a table. The goal is to build one or more vertical stacks of blocks. We can move only
one block at a time to perform one of the following actions (see Figure 1.1):

• Pick it up from the table.

• Put it down on the table.

• Unstack it from another block.

• Stack it on another block.

Intuitively, we can suggest that once we pick up a block from the table, the next most
probable action will be to stack it on another block or to put it down. If we are trying
to change the state of the world, putting down a block that we just picked up may be
useless. After solving many times different blocksworld problems, we may observe
more occurrences for the pick up action followed by the stack action than followed by
the put down action. From this experience, we can deduce that pick up and stack actions
build a potential macro. Thus, the next time we solve a problem, we can apply the pick
up and stack macro directly, avoiding the analysis of what action comes after the pick
up action.

From this example, we can observe that macros can model system routines. Once
learned, they can be re-injected directly into the planning domain. Thus, the domain
will benefit from the knowledge extracted from previous problems. The system applies
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:action    PICK-UP

:action    PUT-DOWN

:action    UNSTACK

:action    STACK

Figure 1.1: blocksworld actions

a macro in the same way that a primitive action. However, macros allow jumping into
the search space by building deep and promising states to reach a goal state.

On the one hand, Figure 1.2 presents the search space in a blocksworld domain, for
a set of actions, an initial state and a goal. On the other hand, Figure 1.3 presents the
search space for an enhanced domain. Now, the set of actions also includes the macro
pick up and stack. This example clearly shows that the shortcuts provided by the macro
allow going deep quickly into the search space.

Macros has been widely studied among the different approaches to speed-up planning
processes (Botea et al., 2005a; Coles and Smith, 2007; Newton and Levine, 2010; Dulac
et al., 2013; Chrpa et al., 2014; Asai and Fukunaga, 2015). Macros literature presents
various techniques to build them, ranging from a simple matter of combining primitive
actions and the use of chunks of plans to the use of genetic learning algorithms or
statistical analyses based on n-grams.

In these approaches, there are two main phases: extraction and selection. The extraction
consists in identifying sequences of actions that could be potential candidates to enhance
the domain. However, the main disadvantage of macros is to increase the branching
factor of the search space. Indeed, by adding macros, the system must consider primitive
actions as well as new macros (See Figure 1.3).

Therefore, the use of macros raises a utility issue. The selection phase must found
a trade-off between the benefit expected from adding macros and the additional cost
induced by the branching factor increase. The selection phase plays a vital role because
carefully selected macros can significantly improve performance by reducing the depth
of the search space.

For approaches extracting macros from past experiences, an assumption often used is
that frequent sequences of actions are potentially good candidates to enhance the do-
main. Botea et al. (2004) use in their work this assumption when filtering the macros to
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Figure 1.2: blocksworld domain with only primitive actions. Filled squares
represent the sequence of actions to achieve the goal from the initial state.

be added to the domain. For them, the more often a macro is present in the solutions of
past problems, the higher its weight will be. Only the two best macros will be part of
the domain. Dulac et al. (2013) create a macros library from the most frequent action
sequences derived from an n-gram analysis on successful plans previously computed by
the planner.

We could, therefore, consider an approach that exploits this hypothesis — for exam-
ple, the pattern mining technique from the field of data mining which aims to discover
frequent patterns in data.

1.1.3 Pattern mining

The purpose of data mining is to look for patterns by searching automatically in data
stored electronically. The descriptive task of data mining is called Pattern mining. Pat-
tern mining intends to discover interesting and useful patterns in data.

Pattern mining has become popular because of its applications in multiple domains. Al-
though the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-
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Figure 1.3: blocksworld enhanced domain with the macro pick up and stack.
Filled squares represent the sequence of actions to achieve the goal from the
initial state.

tial ordering of events. Therefore, there exists a technique for mining sequence data
called sequential pattern mining.

Sequential pattern mining consists in analyse sequential data to discover frequent se-
quential patterns. We can distinguish two filter structures provided by sequential pat-
tern mining. On the one hand, there is a parameter called support, which filters patterns
based on the frequency of apparition. On the other hand, from following some restric-
tions, the resulting pattern set can be reduced.

1.2 Problem

Routines are present in real-life applications or closely related systems. These routines
can be used to improve the performance of the solving process of new problems. One
way to build on past experiences is to learn macros.

In automated planning, the challenge remains on developing powerful planning tech-
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niques capable of effectively explore the search space that grows exponentially. Learn-
ing macros from previously acquired knowledge has proven to be beneficial for improv-
ing a planner’s performance (Botea et al., 2004; Chrpa et al., 2014).

In this work, we address the two stages of learning routines:

1. The extraction via the exploration of pattern mining techniques. This approach
should be domain-independent and particularly adapted to the extraction of re-
current patterns (i.e. the routines). Besides, we want to exploit the extraction
of sequences of non-adjacent actions. Only a few works have explored this path
(Botea et al., 2004; Chrpa et al., 2014). However, they have shown that this al-
lows more routines to be extracted and therefore, would be more profitable for
the system.

2. The selection via a priori macro utility. Among studied approaches, they select
macros, either based on a frequency-based ranking (Botea et al., 2005b; Chrpa,
2010) or based on a posteriori evaluation (Botea et al., 2004; Newton and Levine,
2010; Hofmann et al., 2017). However, the benefits of a macro depend also on
several other factors such as its length, i.e. the number of search nodes that a
macro would save (Botea et al., 2005a); its impact on the branching factor; the
other macros used (the purposes of two macros may overlap).

This thesis studies the following research questions:

Research question #1
Is there a monotonic relationship between the frequency of apparition of a macro

and its utility? i.e. can the frequency alone be used as an estimator for macro
ranking by utility?

Research question #2
Can we learn routines from past experiences that are not only frequent but above

all useful?

1.3 Contributions

This thesis contributes mainly to the field of automated planning, and it is more specif-
ically related to learning macros for classical planning. We focused on developing a
domain-independent learning framework that identifies sequences of actions (even non-
adjacent) from past solution plans and selects the most useful routines (i.e. macros),
based on a priori evaluation, to enhance the planning domain.
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Below, we highlight the advantages of our work:

• Planner independent, we do not need to modify the planner’ structure.

• Domain-independent, the framework does not need a priori knowledge on the
domain.

• Non-adjacent actions, we can identify routines from a sequence of adjacent and
non-adjacent actions.

• A priori evaluation, there is no need to re-solve past problems to select the most
useful routines.

• An optimal set of routines, we can identify not only useful routines but the optimal
set to enhance a domain.

First, we studied the possibility of using sequential pattern mining for extracting fre-
quent sequences of actions from past solution plans, and the link between the frequency
of a macro and its utility. For that, we proposed a framework to extract macro-actions
(i.e. sequences of actions with constant objects, see Figure 1.4) via sequential pat-
tern mining algorithms and to select useful macro-actions based on their frequency
(Castellanos-Paez et al., 2016). We found out that the frequency alone may not pro-
vide a consistent selection of useful macro-actions.

Additionally, we found some discrepancies in the results of the precedent study. To
explore them, we transposed the study to macro-operators (i.e. sequences of actions
with variable objects, see Figure 1.5) and we proposed a new approach to validate the
generated macros. This approach proved to be successful in eliminating problematic
macro-operators.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. We concluded in the
need for a novel approach allowing to extract macro-operators and assess in their utility.

Finally, we provided a novel approach called METEOR, which ensures to find the fre-
quent sequences of operators from a set of plans without a loss of information about
their characteristics. This framework was conceived for mining macro-operators from
past solution plans, and for selecting the optimal set of macro-operators that maximises
the node gain. It has proven to successfully mine macro-operators of different lengths
for different domains and thanks to the selection phase, be able to deliver a positive
impact on the search time without drastically decreasing the quality of the plans.

8



Figure 1.4: A macro-action pick up and stack for specific objects blockB and
blockA.

Figure 1.5: A macro-operator pick up and stack for variable block objects.
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1.3.1 Publications

Some of the work presented in this thesis has been subject to related publications:

Sandra Castellanos-Paez, Damien Pellier, Humbert Fiorino, Sylvie Pesty. "Learning
Macro-actions for State-Space Planning". In: Journées Francophones sur la Planifica-
tion, la Décision et l’Apprentissage, Jul 2016, Grenoble, France.

Sandra Castellanos-Paez, Damien Pellier, Humbert Fiorino, Sylvie Pesty. "Mining use-
ful Macro-actions in Planning". In: The third International Conference on Artificial
Intelligence and Pattern Recognition (AIPR), IEEE, 2016. p. 1-6.

1.4 Outline of the dissertation

This thesis is structured in two parts (see Figure 1.6). The first part consists of theoretical
background on topics covered in this work, followed by a context presentation of our
main results, to finally, put them in perspective by reviewing the associated relevant
literature. We organised this part into two chapters.

In Chapter 2, we introduce the background planning concepts used in the development
of this work and the literature related to these concepts. First, we intend to establish the
scope of work through the definition of classical planning concepts. Next, we present
an overview of the approaches to speed-up planning processes and its corresponding
literature. Finally, we review and analyse the relevant literature around macro learning
methods in planning.

In Chapter 3, we provide some theoretical building blocks of pattern mining, and we
put these concepts in the context of this work. First, we introduce the basic concepts
of pattern mining. Next, we focus on the concepts of mining frequent patterns, and
we describe the most popular algorithm for pattern mining. Finally, we focus on the
sequential pattern mining approach since it is the most related to our data types.

The second part of this thesis presents our contribution, taking into account the research
questions previously presented. We structured this part in three chapters.

In Chapter 4, we explore (1) the use of sequential pattern mining for learning useful
macro-actions from past solution plans and (2) the link between the frequency of a
macro and its utility (see the research question #1). With this goal, we propose a frame-
work to learn useful sequences of actions (not necessarily adjacent) as macro-actions
and use them to speed-up planning search. We based this learning framework on the
filter structures provided by sequential pattern mining.
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In Chapter 5, we detail two shortcomings found in the last chapter, namely the lack of
(1) macro-actions generality and (2) verification of the validity of the generated macro-
operators. For each shortcoming, we first discuss its implications and then, we detail a
remedial measure to address it. At the end of the chapter, we discuss the difficulty of
the selection process, even after using shortcoming remedial measures.

In Chapter 6, we discuss the encoding limitations of traditional pattern mining algo-
rithms in the extraction of macro-operators. To answer the research question #2, we
then present our METEOR framework, which (1) mine macro-operators from past solu-
tion plans and (2) select the optimal macro-operator set to enhance the planning domain.
We validate the proposed framework in known planning benchmarks.

Finally, in Chapter 7, we review the contributions of the thesis, we give concluding
remarks and we propose possible directions for future work.

Introduction (Chapter 1)

Part I - Background and Literature Review

Pattern mining (Chapter 3)

Automated Planning (Chapter 2)

Part II - Contributions on Learning Routines

Extraction of macros via

Pattern mining applied to planning:

The METEOR framework (Chapter 6)

R
Q

#1
R

Q
#2

Sequential Pattern Mining(Chapter 4)

Shortcomings and solutions (Chapter 5)

Conclusions and Perspectives (Chapter 7)

Figure 1.6: Thesis outline
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2.1 Introduction

In this work, we are interested in plan synthesis. It is a particular form of planning
which takes a description of the world state, all its known actions and a goal. As a
result, we get an organised set of actions whose execution makes it possible to solve the
planning task.

Some systems are renown worldwide for their exceptional ability to solve very specific
problems. Among many others, Deepblue (Campbell et al., 2002) and Alpha Go (Silver
et al., 2016) show that a very efficient approach to deal with planning problems is to
create predictive models adapted to the specific representations of a problem.

However, this is not suitable to build autonomous intelligent systems since their delib-
erative capabilities will be limited to the areas enclosed in their domain-specific plan-
ners. Thus, a better strategy consists in building a planning engine based on a domain-
independent general approach.

Therefore, Automated Planning purpose is to develop a general approach that solves
any problem described in a representation language, using a general algorithm. AP
approaches rely on the model of state-transition systems since it describes a general
model for a dynamic system.

2.2 Classical Planning

In an effort to develop well-founded approaches, a more practical model introducing
several assumptions was defined. Classical planning stands for planning for restricted
state-transition systems. Classical planning problems are well-formalised and well-
characterised considering that their model obeys to the following assumptions :

• Finite: The state-transition system has a finite set of states.

• Fully observable: There exists a complete knowledge about the system.

• Deterministic: From a state, the application of an action brings to a single other
state.

• Static: The system stays in the same state until an action is applied.

• Restricted Goals: The objective of the system is to find a sequence of states that
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ends in a state satisfying all goals.

• Sequential plans: The solution plan consists in an ordered sequence of actions.

• Implicit time: Actions do not have any duration.

In order to provide a better understanding of the planning concepts through this chapter,
we will use, as a basis for the examples, a well-known classical planning domain: the
blocksworld domain.

Blocksworld domain

Blocksworld in Figure 2.1 is a toy problem that consists of a set of blocks settled on a
table and a mechanical hand. The hand can move one block at a time to perform one of
the following actions: place it on another block, place it on the table, pick it from the
table or removes it from another block. The goal is to build one or more vertical stacks
of blocks.

From this description, in Table 2.1 we define a series of non-independent predicates and
four possible actions.

Predicates

• on(b,b’): Block b is on some block b’.
• ontable(b): Block b is on the table.
• clear(b): No block sits on top of block b.
• handempty: Hand is not holding a block.
• holding(b): Hand is holding block b.

Actions

• Pick-up a block b from the table.
• Put-down a block b on the table.
• Stack, to put a block b on top of a block b’.
• Unstack, to remove a block b from a block b’.

Table 2.1: Definition of predicates and actions for blocksworld domain
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2.3 PDDL representation language

The representation language used in this work, and one of the languages used in auto-
mated planning, is called PDDL. PDDL stands for Planning Domain Definition Lan-
guage (McDermott et al., 1998; McDermott, 2000). It was introduced in 1998 for the
International Planning Competition with the aim of standardising the planning represen-
tation language. On top of that PDDL allowed a meaningful comparison of planners on
different problems.

� �
1 (define (problem blocksworld3)
2 (: domain blocksworld)
3 (: objects blockA blockB blockC -block)
4 (:init (handempty)
5 (on blockA blockB)
6 (ontable blockB)
7 (ontable blockC)
8 (clear blockC)
9 (clear blockA))

10 (:goal (on blockB blockA)))� �
PDDL-Code 2.1: Definition of a blocksworld problem

As an example, we define the blocksworld domain in PDDL-Code 2.2 and the blocksworld
problem of Figure 2.1 in PDDL-Code 2.1 by using PDDL. The former is composed of
predicates which characterize the properties of the objects and a set of non-instantiated
actions (later called operators) which establish the ways to move from one state to an-
other. The latter is composed of objects which define the task relevant things in the
world; an initial state s0 which represents the starting configuration of the world; and a
goal state sg which describes the desired predicates that we want to be true.

(a) Initial state (b) Goal state

Figure 2.1: Representation of Code 2.1
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� �
1 (define (domain BLOCKS)
2 (: requirements :strips :typing)
3 (:types block)
4 (: predicates (on ?x - block ?y - block)
5 (ontable ?x - block)
6 (clear ?x - block)
7 (handempty)
8 (holding ?x - block)
9 )
10

11 (: action pick -up
12 :parameters (?x - block)
13 :precondition (and (clear ?x) (ontable ?x) (

handempty))
14 :effect
15 (and (not (ontable ?x))
16 (not (clear ?x))
17 (not (handempty))
18 (holding ?x)))
19 (: action put -down
20 :parameters (?x - block)
21 :precondition (holding ?x)
22 :effect
23 (and (not (holding ?x))
24 (clear ?x)
25 (handempty)
26 (ontable ?x)))
27 (: action stack
28 :parameters (?x - block ?y - block)
29 :precondition (and (holding ?x) (clear ?y))
30 :effect
31 (and (not (holding ?x))
32 (not (clear ?y))
33 (clear ?x)
34 (handempty)
35 (on ?x ?y)))
36 (: action unstack
37 :parameters (?x - block ?y - block)
38 :precondition (and (on ?x ?y) (clear ?x) (

handempty))
39 :effect
40 (and (holding ?x)
41 (clear ?y)
42 (not (clear ?x))
43 (not (handempty))
44 (not (on ?x ?y)))))� �

PDDL-Code 2.2: Definition of the blocksworld domain
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2.4 Key concepts

In this section, we intend to present the formal definition of the planning key concepts
used in this work.

Because the interest of planning lies in choosing actions to transform the system state,
the transitions between states are represented with a state-transition system model. Ad-
ditionally, we address sequential planning in the STRIPS framework (Fikes and Nilsson,
1971).

Definition 2.1.
A planning task consists of a planning domain Σ and a planning problem P .

Example The planning task composed by the blocksworld domain in PDDL-Code 2.2
and the blocksworld problem of Figure 2.1 in PDDL-Code 2.1. �

Definition 2.2.
A classical planning domain is a restricted state-transition system Σ = (S,A,γ) such
that:

• S is included in the set of all states that can be described with the representation
language L .

• A is the set of all actions a.

• γ(s,a) is the state-transition function that defines the transition from a state s to
an state s′ using an action a.

Definition 2.3.
A classical planning problem P = (Σ,s0,g) is composed of:

• s0 an initial state where s0 ∈ S.

• g a goal, namely a set of instantiated predicates. A goal is satisfied if the system
attains a state sg such that all predicates in g are in sg.

Definition 2.4.
A state s is a set of logical propositions.

Example Let us consider the initial state from the blocksworld problem in PDDL-Code
2.3. Here, every predicate represents a proposition that can take a true or a false value.

�
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� �
1 (:init (handempty)
2 (on blockA blockB)
3 (ontable blockB)
4 (ontable blockC)
5 (clear blockC)
6 (clear blockA))� �

PDDL-Code 2.3: Initial blocksworld state represented in Figure 2.1(a)

Definition 2.5.
A planning operator is a triple o = (name(o), pre(o), effects(o)) where its elements are
defined as follows:

• name(o) is in the form name(x1, ...,xn) where x1, ...,xn are the object variable
symbols that appear in o.

• pre(o) is the set of precondition formula that must be hold before exploiting the
action.

• effects(o) is the set of predicates to be applied to a state.

Example In the pick-up operator in Code 2.4, the object variable symbols are defined
in the :parameters clause and the preconditions (resp. effects) are defined in its
:precondition (resp. :effect) clause. �� �

1 (: action pick -up
2 :parameters (?x - block)
3 :precondition (and (clear ?x) (ontable ?x) (

handempty))
4 :effect
5 (and
6 // negative effects
7 (not (ontable ?x))
8 (not (clear ?x))
9 (not (handempty))
10 // positive effects
11 (holding ?x)))� �

PDDL-Code 2.4: PDDL definition for pick-up blocksworld operator

Definition 2.6.
An action a is an instantiation of a planning operator. Thus, a is a triple a=(pre(a),add(a),del(a)).
If an action can be applied, a new state is generated. First it deletes all instantiated pred-
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icates given in the delete list del(a), also known as the negative effects. Then, it adds all
instantiated predicates given in the add-list add(a), also known as the positive effects.

Example In Code 2.5, we have instantiated the pick-up operator with a blockC. �

� �
1 (: action pick -up
2 :parameters (blockC)
3 :precondition (and (clear blockC) (ontable

blockC) (handempty))
4 :effect
5 (and
6 // negative effects
7 (not (ontable blockC))
8 (not (clear blockC))
9 (not (handempty))

10 // positive effects
11 (holding blockC)))� �

PDDL-Code 2.5: Instantiation of pick-up blocksworld operator

Definition 2.7.
A state s′ is reached from s by applying an action a according to the transition function
in formula 2.1.

s′ = γ(s,a) = (s−del(a))∪add(a). (2.1)

The application of a sequence of actions π = 〈a1, . . . ,an〉 to a state s is recursively
defined in Formula 2.2.

γ(s,〈a1, . . . ,an〉) = γ(γ(s,a1),〈a2, . . . ,an〉). (2.2)

Example In Figure 2.2, we represented the application of the pick-up action shown in
Code2.5 to a state s in order to obtain a state s′. �

Definition 2.8.
A plan is an ordered sequence of actions π = 〈a1, . . . ,an〉 such that sg = γ(si,π) satisfies
the goal g and the latter is reachable if such a plan exists.

Example From the initial state in Figure 2.1(a), the plan satisfying the goal state in
Figure 2.1(b) is π = 〈 pick-up blockA, put-down blockA, pick-up blockB,
stack blockB blockA〉. �
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Figure 2.2: Pickup action applied to a state s

2.5 Development of Automated Planning

Under this section, we gather methods and concepts related to AP problems. We present
their chronological apparition in Table 2.2. Although, some methods presented here are
quite old, they are still not outdated. Also, some of these concepts may be partially or
integrally combined with each other .

General Paradigms

Early works in AI for problem solving and search introduced the weak methods. Namely,
basic search methods that have a high generality. These methods do not need neither a
defined domain nor a precisely determined initial point. Paradoxical though it may seem,
they can use highly specific knowledge of the domain but only for specific functions.
Take the case of an evaluation function where that knowledge is used only to compare
states and select the best.

Among these methods, we found the means-ends analysis (Newell et al., 1959) that uses
knowledge about how operators reduce the difference between states and goals. The
first AI system to implement this method to solve multiple problems was the General
Problem Solver (Newell, 1963). GPS organises the information about the difference
between objects into goals. If the goal is to transform an object into another object, the
objects are compared and a subgoal is set up to reduce the difference (if any). If the
goal is to reduce the difference between two objects, the program looks for an operator
reducing this difference and a subgoal is set up to apply the operator to the object.
Finally, if the goal is to apply an operator, the program validates if the conditions of
the operator are satisfied and then it generates the new object. Otherwise a subgoal is
created to reduce this difference.

24



Table 2.2: Timeline of classical planning approaches.

1963 · · · · · ·• General Problem Solver.

1971 · · · · · ·• Stanford Research
Institute Problem Solver.

1972 · · · · · ·•
MACROP generation

UCPOP partial order
planning algorithm.

1975 · · · · · ·• Nets Of Actions
Hierarchies.

1977 · · · · · ·• Hierarchic Non-linear
Planner.

1984 · · · · · ·• O-PLAN: Open planning
architecture.

1985 · · · · · ·• PRODIGY.

1992 · · · · · ·• SATPLAN
PRIAR.

1994 · · · · · ·• UMCP
IxTeT.

1995 · · · · · ·• Graphplan.

1996 · · · · · ·• UNPOP.

1999 · · · · · ·•
Heuristic search

planner
SHOP.

2000 · · · · · ·• GP-CSP
CSP-PLAN.

2001 · · · · · ·• Fast-Forward Planner
RePOP.

2005 · · · · · ·• MacroFF
Optiplan.

2007 · · · · · ·• Marvin.

2014 · · · · · ·• MUM.

2017 · · · · · ·• BFWS.
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We also found, the generate-and-test method. A generator is a process that takes infor-
mation specifying a set and from it produces possible candidates for solution. Then,
these elements pass one by one to the test process. It determines whether some condi-
tion holds for that candidate and decides its behaviour based on the needs of the rest of
the processing.

A variation of this method is hill-climbing. Here, the generation of the next state de-
pends on a feedback from the test process. It includes a heuristic function that provides
a way to move only to states that are better than the current state, throwing out old states
as it moves uphill.

Approaches to solve classical planning problems

Planning problems have been shown PSPACE-complete. To tackle this challenge, plan-
ning systems try to reduce the size of the search space they have to explore. Various
approaches have been studied to enhance the efficiency of planning. These are a result
of the cross-fertilisation of ideas from different AI areas.

2.5.1 Translation into another problems

A well-known approach is to translate the planning problem into another kind of com-
binatorial problem such as SAT, CP or IP. Then, solve this translated problem using an
already existing efficient solver and finally, take the solution and translate it into a plan.

Planning problem as satisfiability problem

A SAT problem is a satisfiability problem, i.e., determining whether a Boolean formula
can be true for some assignments of its variables. This formula is created from simple
propositions or propositional variables which are associated using OR, NOT or AND
connectors.

SAT planning approach defines the planning problem as a set of postulates where any
model of the postulates corresponds to a valid plan. The initial state and the goal state
are described as a set of propositions holding respectively at time 0 and at time N, where
N is an horizon length. And, the possible transitions are represented one-to-one with
the models of a propositional formula. The combination of these elements represents
the formula to be satisfied. And any assignment of truth values achieving it, is a valid
plan for the planning problem.

In SATPLAN (Kautz et al., 1992),the planning problem comes from a constructed
planning-graph of some length N. SATPLAN encode all constraints of it into a formula
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which is built as a conjunction of one or more clauses, where a clause is a disjunction
of literals. It solves that formula using an efficient SAT solver. The planner increases N
and starts again if no solution was found at that length. Considering that N increases in a
step-wise manner, in terms of solution length, the output of this planner will necessarily
be an optimal plan.

Planning problem as integer programming

An IP problem is defined as an optimisation problem, i.e., finding an assignment of
values that maximises (or minimises) a cost function. In this kind of problem, some or
all the variables are restricted to be integers.

IP planning approach consists in casting the planning problem as the minimisation or
maximisation of a linear function. This function is created with integer-valued variables
and is conditioned to linear equality and inequality constraints in the variables.

In Optiplan (Van Den Briel and Kambhampati, 2005), a planning graph is built and
transformed into an IP problem. This planner only considers the actions and proposi-
tions instantiated in the planning graph. The IP problem is solved using a IP solver
such as ILOG CPLEX (ILOG, 2002). If no plan is found, the process starts again by
extending the planning graph by one step.

Planning problem as constraint programming

CP approach models the problem as a constraint satisfaction problem (CSP). A CSP
consists of a set of variables X = {x1, ...,xn}, a set of domains D = {D1, ...,Dn} and a
set of constraints C = {c1, ...,ck}. For each variable xi ∈ X there is a domain Di and the
scope of each constraint is a subset of X .

Constraint satisfaction searches for a compatible assignment of values to the variables
that doesn’t violate the constraints. This approach encodes the potential solution plans
of length K as a CSP problem.

GP-CSP (Do and Kambhampati, 2000) and CSP-Plan (Lopez and Bacchus, 2003) were
based on translation of the planning graph to a CSP. More recently, Barták proposed a
novel view of contraint-based planning that used parallel plans and multi-valued state
variables (Barták, 2011).

2.5.2 Search for planning

A planning problem can be solved by searching a solution in a search space. To ac-
complish that, the problem model must be translated into a search space and a search
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algorithm must be chosen. In the last twenty years heuristic based approach to guide
the search became popular.

Search algorithms explore a graph trying to find a sequence of actions from a given
initial node n0 to a goal node ng. They are described by the search space that they
explore, its search direction and if they have additional information to guide the search.

Search in the space of states

Each node corresponds to a state of the dynamic system, each arc corresponds to a state
transition which is a result of an executed action on a state, and the plan correspond to
the found path in the search space.

Based on this search space several planners were developed such as STRIPS (Fikes
and Nilsson, 1971), HSP (Bonet and Geffner, 2001), FF Planner (Hoffmann and Nebel,
2001) and MacroFF (Botea et al., 2005a).

Search in the space of plans

In this search space, the state-transition system is not considered anymore. Nodes are
partially specified plans and arcs are plan operations intended to complete a partial plan.
The initial node corresponds to an empty plan and the goal node contains a solution
plan that satisfies the required goals. A solution plan is a set of planning operators with
ordering constraints and binding constraints.

Planners such as NOAH (Sacerdoti, 1975), UCPOP (Penberthy et al., 1992), IxTET
(Laborie and Ghallab, 1995) and RePOP (Nguyen and Kambhampati, 2001) exploit this
search space.

Search in the space of task networks

The input to the planning system consists in a set of operators and a set of methods. A
method describes how to decompose some task into some set of subtasks. Searching
in the space of task networks aims to perform some set of tasks instead of achieving a
goal. To do that, the compounded tasks are decomposed recursively into smaller tasks,
until primitive tasks are reached that can be performed using the operators. Then, the
solution is an executable sequence of primitive tasks.

Planners in such search space provide a more available way to write problems for hu-
man domain experts. Among these planners, we have NONLIN (Tate, 1977), O-PLAN
(Currie and Tate, 1991), UMCP (Erol et al., 1994), SHOP (Nau et al., 1999) and SHOP2
(Nau et al., 2003).
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Planning graph search

The output is a sequence of set of actions being more general than a sequence of actions
from the state-space planners but less general than a partial order from the plan-space
planners. Planning graph provides a way to estimate the set of propositions reachable
from the initial state s0 and the actions leading to them.

It is a directed layered graph composed of two kinds of layers, action layers Ai+1 and
proposition layers Pi where 0≤ i≤ n. Layer at level 0 of the graph consists in the set P0
of propositions describing the initial state s0 of the planning problem.

• Ai+1 is the set of actions whose preconditions are nodes in Pi

• Pi+1 is the union of P0 and the set of positive effects of actions in Ai+1

Graphplan planner (Blum and Furst, 1997) introduced this approach to reduce the amount
of search needed to find the solution, improving considerably the performance over
state-of-the-art planners of its time.

2.5.3 Techniques to improve planning search

Searching the path from a start node to a goal node is an important aspect of solving
planning problems because this technique allows to find the most viable path to reach
the goal and make the process efficient. Thus looking for ways to improve this technique
is crucial to improve planner performance.

Basic search, also called blind search is an uninformed search. The search does not
have additional information about states except from that provided in the definition
of the problem. As a result, the total search space can potentially be explored and
its exploration is exhaustive using brute-force algorithms. Based on this approach we
found algorithms such as Breadth-First search and Depth-First search, they represent
the state space in form of a tree where the initial state, the intermediate states and the
goal states are nodes of the tree.

• Breadth-First search, the root node is expanded first, then all its successors are
expanded and for each next step all successors of every node are expanded suc-
cessively until a goal state is reached.

• Dept-First search, one branch of the tree is explored until the solution is found.
The searches ends when a dead end is met or when the process becomes longer
than the time limit. In that case, the process starts again with another branch of
the tree to be explored.
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A way to improve the search is adding additional information about the problem to
guide the search in a specific direction.

2.5.3.1 Heuristic search

Using a heuristic function to estimate better choices during search has been shown to be
a major progress in planning and the most common form to impart additional knowledge
to the search algorithm.

Definition 2.9.
A heuristic function h(s) is an evaluation expression that defines some criteria to rate
the cost of an intermediate state s to a goal state.

Definition 2.10.
A heuristic h(s) is admissible if it never overestimates the cost of reach the goal. Given
that h∗(s) is the true cost to reach the goal from a state s, we have h(s)≤ h∗(s)

Definition 2.11.
For every state s and every successor s′ of s obtained by applying an action a, a heuristic
is consistent if the estimated cost of reaching the goal from s is less than the sum of the
cost of getting s′ plus the cost of reaching the goal from s′ h(s)≤ c(s,a,s′)+h(s′)

We will use the classification proposed by Torralba Arias de Reyna (2015) that groups
heuristics into five families: Critical-paths, relaxation, abstraction, landmark and flow-
based heuristics.

Critical paths
hm heuristics introduced by Geffner and Haslum (2000) estimate the cost from a state
to a goal by computing the maximal cost from that state to any sub-goals of length at
most m. Thus the path from that state to the goal is at least as costly as the path leading
to the most costly sub-goal. As m grows the computational complexity to calculate hm

grows exponentially because the number of sub-goals of length at most m increases as
∑

k≤m

(|G|
k

)
. Haslum et al. (2005) extended these heuristics to the additive hm heuristics.

Additive hm computes partial hm
Ai

where {Ai} is a partition of A, the set of the actions in
a planning problem P. hm

Ai
is calculated in the same fashion as hm except that the cost

of every action not in Ai is relaxed. Finally, the hm
Ai

are summed for all Ai to obtain the
heuristic value.

Relaxation

h+ heuristics (Hoffmann and Nebel, 2001) estimate the cost from a state to the goal as
the cost of an explicit plan π calculated without considering the negative effects of ac-
tions. As the computation of h+ is NP-hard, other approximations such as hadd and hmax
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were introduced by Bonet and Geffner (2001), to calculate heuristics in polynomial-time.
Respectively, one heuristic approximates h+ by assuming that every fact in a conjunctive
sub-goal must be achieved separately while the other heuristic assumes that achieving a
single fact from a conjunctive sub-goal is sufficient. Unlike, h+, hadd and hmax heuristics,
hFF (Hoffmann and Nebel, 2001) solves the relaxed problem by finding some relaxed
plan whose is not necessarily optimal. hFF(s) is calculated as the length of that relaxed
plan. Other approximations of h+ take into account some negative effects (Helmert,
2006; Helmert and Geffner, 2008). Moreover, only h+, max, landmark-cut (Helmert
and Domshlak, 2009) and improved LM-Cut (Bonet and Helmert, 2010) heuristics are
admissible.

Abstractions
hα heuristics simplify the planning task by mapping to an abstract state space S α the
original state space S by the means of an abstraction function α . This function α de-
fines the states that should be characterised. Then hα(s) for state s is the cost estimation
of the cheapest path from the abstract state α(s) to the goal state in S α .

There exists different abstractions classes to do different mappings of the search space.
In pattern databases heuristic (Culberson and Schaeffer, 1998; Edelkamp, 2001; Haslum
et al., 2007), the abstraction function α is a projection. It maps two states s1 and s2 to
the same abstract state if and only if they agree on all variables in the pattern. A pattern
P is the set of state variables. Merge-and-shrink heuristic (Helmert et al., 2007; Dräger
et al., 2009) adds new variables to the abstraction using a merging strategy and then, it
reduces the abstract space by fusing some abstract states following a shrinking strategy.

Landmarks

hLM heuristics introduced by Porteous et al. (2014), are based on the definition of a
landmark, namely a property (a fact or an action) that every plan must satisfy for the
planning task. Obtaining landmarks is usually done prior to planning. Then hLM(s)
is the minimal cost of the landmark actions for s meaning the set of actions that were
found to happen in every plan. In other words, since all landmark actions are bound to
happen at some point in the plan the heuristic ensures its admissibility by defining the
distance to the goal as the minimal cost from those that can be applied for s and zero
if no such action can be applied. The main difficulty is to find those landmarks. This
technique was then improved by the introduction of the landmark cut heuristic (Helmert
and Domshlak, 2009) and later the improved LM-cut (Bonet and Helmert, 2010).

Network Flows

h flow heuristics (Van Den Briel et al., 2007) estimate the cost from a state s to the goal
by using the flow constraint equation in a SAS+ formalism. This equation ensures the
balance between the number of times that a given atom (or proposition) is produced
versus the number of times that it is consumed to satisfy the goal state, and that for
every atom. Linear programming is used to solve the flow equation for the number of
times that each operator is used with the minimal cost. The idea is to produce a group
of actions that, if they all could be applied to s would yield the goal state.
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2.5.3.2 Learning strategy

Instead of trying to estimate the distance to the goal with a general function, one can
use previously solved problems to increase the performance of planning systems. For
instance, it is possible to learn commonly used actions or groups of actions or even
adapt a heuristic function to a specific domain.

Practical planning systems require domain knowledge and control knowledge. The for-
mer describes the world and the available actions whereas the latter prescribes how the
planner must to behave to attain its goals.

It cannot be denied that adding knowledge results in better planning system perfor-
mance. Injecting knowledge can be time-consuming if done by human experts. A
solution is that the planner automatically learns it.

Learning domain knowledge

• Learning action preconditions and effects: In classical planning, the basic
idea (Wang, 1995) is to learn action preconditions by raising the propositions
from a set of pre-states si−1. These pre-states are the states before action ai is
applied. On the other hand, learn action effects can be done by raising the differ-
ence between the propositions in the pre-states si−1 and the post-states si, namely
the state obtained after action ai is applied. Also, each object is replaced with a
variable. A more recent work (McCluskey et al., 2009) produces actions repre-
sentations from training sequences without requiring large numbers of examples.
These sequences are composed of an initial and a goal state, as well as the solu-
tion sequence written in terms of action names and affected objects. Moreover,
the intermediate states are obtained without trainer intervention.

• Learning hierarchical schema : It is possible to learn preconditions of Hierar-
chical Task Network methods (see 2.5.2) by examining plan traces (Ilghami et al.,
2002). These traces include a correct solution for the problem. Likewise, they
include at each given point, a list of methods applicable to decompose the current
task. This approach requires all methods’ information to be given in advance. In-
stead, Ilghami et al. (2006), proposed an algorithm to learn domain description
from traces in HTN planning with no prior information about the methods. The
algorithm verifies for each decomposition point if the method implied exists. If
not, the algorithm creates it as a new method and try to capture its preconditions
by using the version space algorithm (Mitchell, 1981).

Learning control knowledge

The main idea is to capture specific knowledge, using one of the methods below, to
guide the planning system when selecting operators and goals. This knowledge usually
comes from analysing learning examples or, failing that, from analysing the relations
between actions’ preconditions and effects.
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• Control rules (Borrajo and Veloso, 1997; Etzioni, 1993; Aler et al., 2002; Her-
rera et al., 1998): It consists of an IF-THEN rule for proposing node pruning
or proposing node ordering during the search exploration. They introduce extra
predicates enriching the planning model.

• Cases (Hammond, 1990; Carrick et al., 1999; De Mantaras et al., 2005; Craw
et al., 2006): A case is defined as a trace of past solved planning problem.
They are stored in a plan library and indexed for a later easy recovery. They are
used when a new problem match a previously similar problem in the plan library.
Thus they can be applied without changes or they can be modified to solve the
new problem.

• Heuristics (Yoon et al., 2006; Xu et al., 2007): The purpose of learning heuris-
tics (Definition 2.9) is to tackle domains where they are less accurate. The learned
heuristic captures domain specific regularities through regression process that in-
volves observations of the true distance to the goal from diverse states. A more
recent work (Garrett et al., 2016) came up with a different approach, to consider
learning heuristics as a "learning to rank" problem.

• General Policies (Khardon, 1999; Yoon et al., 2007; de la Rosa et al., 2008): A
policy maps world states to preferred actions to execute. Accordingly, a general
policy maps all combinations between initial and goal states to preferred actions
to be executed. Recently, the learned policies are applied but combined with
heuristic planning algorithms.

• Macros (Botea et al., 2005a; Newton and Levine, 2010): A macro is a se-
quence of actions that occurs frequently in solution plans. Learning macros
is relevant since the use of macro-actions reduces the depth of the search tree.
Their handling should be defined to ensure a good balance between performance
improvement and search space enlargement.

2.6 Macro learning methods in Automated Planning

From the literature, we need to distinguish two related but different terms: macro-
actions and macro-operators. A macro-action is related to a macro-operator as an ac-
tion is related to an operator. They are based on the idea of composing a sequence of
primitive operators and viewing the sequence as a single operator (Amarel, 1968).

Definition 2.12.
A macro-operator is a triple mo = (name(mo), pre(mo), effects(mo)) where its elements
are defined as follows:

• name(mo) is in the form name(x1, ...,xn) where x1, ...,xn are the object variable
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symbols that appear in mo.

• pre(mo) is the set of precondition formula that must be hold before exploiting
the macro-operator.

• effects(mo) is the set of predicates to be applied to a state.

Example Let us consider the pick-up_stack macro-operator in Code 2.6 composed of
the sequence of primitive operators pick-up->stack. Object variable symbols are de-
fined in the :parameters clause and the preconditions (resp. effects) are defined in its
:precondition (resp. :effect) clause. �

� �
1 (: action pick -up_stack
2 :parameters (?x - block ?y - block)
3 :precondition (and (clear ?x) (ontable ?x)
4 (handempty) (clear ?y))
5 :effect
6 (and
7 // negative effects
8 (not (ontable ?x))
9 (not (holding ?x))
10 (not (clear ?y))
11 // positive effects
12 (clear ?x) (handempty) (on ?x ?y)))� �

PDDL-Code 2.6: PDDL definition for pick-up_stack blocksworld macro-operator

Definition 2.13.
A macro-action ma is an instantiation of a macro-operator. Thus, ma is a triple ma =
(pre(ma),add(ma),del(ma)). If an action can be applied, a new state is generated. First
it deletes all instantiated predicates given in the delete list del(ma), also known as the
negative effects. Then, it adds all instantiated predicates given in the add-list add(ma),
also known as the positive effects.

Example In Code 2.7, we have instantiated the pick-up_stack macro-operator with
blockB and blockA. �
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� �
1 (: action pick -up_stack
2 :parameters (blockB blockA)
3 :precondition (and (clear ?B) (ontable ?B)
4 (handempty) (clear ?A))
5 :effect
6 (and
7 // negative effects
8 (not (ontable ?B))
9 (not (holding ?B))

10 (not (clear ?A))
11 // positive effects
12 (clear ?B) (handempty) (on ?B ?A)))� �

PDDL-Code 2.7: Instantiation of pick-up_stack blocksworld macro-operator

Although, there are some misuse of the terms macro-action and macro-operators in the
literature (where one is substituted for the other), we use these terms according to the
definitions presented above.

Learning macro-operators (aka macros) from previously acquired knowledge (plans)
allows to go deep quickly into the search space by triggering them during the search
(see example in Figure 1.2 and Figure 1.3).

In macro learning methods, we distinguish two main phases: generation and selection.
The generation consists of identifying sequences of actions that could be potential candi-
dates to enhance the domain. Macros literature presents various techniques to generate
macros, ranging from a simple matter of combining primitive actions and the use of
chunks of plans to the use of genetic learning algorithms or statistical analyses based on
n-grams.

However, the main disadvantage of macros is to increase the branching factor of the
search space. Indeed, by adding macros, the system must consider primitive operators
as well as new macros.

Therefore, the use of macros raises a utility issue. The selection phase must found
a trade-off between the benefit expected from adding macros and the additional cost
induced by the branching factor increase. The selection phase plays a vital role because
carefully selected macros can significantly improve performance by reducing the depth
of the search space.

In the following, we present a chronological overview on macro learning literature in
Table 2.3. Also, we present the most recent works.

35



Table 2.3: Timeline of macro learning methods.

1968 · · · · · ·• 1st apparition of macro
idea (Amarel, 1968).

1971 · · · · · ·•
Use of MACROPs by
STRIPS (Fikes et al.,
1972).

1977 · · · · · ·•
REFLECT system and its
BIGOPS (Dawson and
Siklossy, 1977).

1985 · · · · · ·• Macro problem solver
(Korf, 1985).

1989 · · · · · ·• MCLEARN (Iba, 1989).

2005 · · · · · ·•
CA-ED and SOL-EP
methods (Botea et al.,
2005a).

2007 · · · · · ·•

MARVIN (Coles et al.,
2007)
WIZARD (Newton et al.,
2007).

2013 · · · · · ·•
Learning macros with
n-grams (Dulac et al.,
2013).

2014 · · · · · ·• MUM (Chrpa et al.,
2014).

2015 · · · · · ·•
Online generation of
macros (Chrpa et al.,
2015).

2017 · · · · · ·•
Generation of macros
from a plan database
(Hofmann et al., 2017).
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We group macros related work into two main categories: off-line and on-line techniques.

2.6.1 Off-line approaches

An off-line approach offers as an advantage an ease view over the macro-actions use,
but also over the impact in the search time.

Macro-FF (Botea et al., 2005a) extracts macro-actions from solutions of training prob-
lems by identifying statically connected abstract components. Only the macro-actions
showing effective performances in solving training problems are kept for future searches.
Newton et al. (2007) proposed another offline method which uses a genetic algorithm as
a learning technique and plans as the macro generation source. The algorithm generates
the macros from plans of simple problems to seed the population and evaluates them
through a ranking method based on the weighted average of time differences in solving
more difficult problems with the original domain augmented with macros.

Dulac et al. (2013) introduced a domain-independent approach for learning macros
from before computed solutions. It extracts statistical information from successful plans
based on a n-gram analysis. Then it builds a macro library based on earlier information,
a generalisation and a specialisation process. Finally, it adds selected macros into the
planning domain after a filtering phase based on statistical information and heuristics.
Later, Chrpa et al. (2014) proposed a technique to maximise the utility of macros. It
first learns the causal relations between planning operators and initial or goal predicates
(also known as outer entanglements) by using an approximation algorithm in several
training plans. Then, exploiting this knowledge it generates macros and uses them to
reformulate the original domain model.

In a more recent work, Hofmann et al. (2017) identifies operator sequences from a
database of recorded plans by using the MapReduce database query paradigm. From
these sequences, macros are generated with proper preconditions and effects. After
adding one or multiple macros to a domain and solving problems with the augmented
domain, the result is assessed with evaluation metrics. Finally, these metrics guide the
selection of the best macro configuration.

2.6.2 On-line approaches

An on-line approach remove the need of extra training problems and off-line filtering.

Coles and Smith (2007) described Marvin planner. It identifies regions in the search
space where the heuristic values of all successors is greater than or equal to the best
seen so far. Then, it learns the escaping macro-actions to use them in similar regions
during the search. This work was improved in (Coles et al., 2007) by keeping libraries
of macro-actions for use on future problems. Chrpa et al. (2015) extended their early
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technique by generating useful macros from outer entanglements in the search without
an offline learning phase.

The presented works have some limitations. In the generation phase, for example, some
works limit the length of the analysed sequences of operators (Botea et al., 2005a) or
the number of generated macros (Chrpa et al., 2014). Also, in the selection phase, there
exist limitations such as the maximum number of macros to add to the domain and
usually, the performance of the augmented macro domain is tested before deciding on
the utility of a macro, i.e. the evaluation on the utility of a macro is done experimentally.

Finally, for approaches extracting macros from past experiences, an assumption often
used is that frequent sequences of actions are potentially good candidates to enhance
the domain. We could, therefore, consider an approach that exploits this hypothesis —
for example, the pattern mining technique from the field of data mining which aims to
discover frequent patterns in data.

2.7 Conclusion

Planning is a careful consideration process by which actions are chosen to achieve a
specific goal. It is needed to understand the problem and to adapt the resources to attain
an objective as best as possible.

Automated planning aims to study and design effective algorithms that produce action
sequences to reach a planning task goal, for a potential execution by one or several
agents.

Solving planning problems is a difficult and time-consuming process because the plan-
ning task must be understood without the use of domain-specific knowledge. To this
must also be added the NP-hard complexity of planning. Namely, the time required to
solve a planning problem increases very quickly as the size of the problem grows.

Therefore, it is essential to develop powerful algorithms. They must efficiently explore
the search space that grows exponentially. One way to do this is by exploiting knowl-
edge about the structure of the planning tasks (Long and Fox, 2003) and thus, increase
planner performance.

Given that, we decided to develop algorithms based on the study of macro learning
methods which has been widely studied among the different approaches to speed-up
planning processes.
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3
Pattern Mining

You can have data without information, but you cannot have
information without data.

Daniel Keys Moran
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3.1 Introduction

Extracting useful information and most importantly, making the data intelligible from
large volumes of data, is not possible with traditional data analysis tools and techniques.
Therefore, an alternative method integrating traditional methods and new algorithms
capable to process huge amounts of data is needed.

This extraction task is part of the process of knowledge discovery which also includes
steps such as data preprocessing, pattern evaluation and knowledge presentation. The
whole process is often called data mining. Data mining techniques are widely used
in many fields including, among others, market, to identify customer profile, customer
requirements, customer purchasing patterns; enterprise, to analyse and predict cash flow,
to improve resource planning; security, to detect frauds by analysing the unexpected
patterns; finances, to classify customers, to detect money laundering.

Hence, the purpose of data mining is look for patterns by searching automatically in data
stored electronically. There are two major categories of data mining tasks : Predictive
tasks and descriptive tasks. The aim of the former is to predict the value of an attribute
(target) based on the values of other attributes while the aim of the latter is to explore
patterns that compile general properties in data.

In this chapter, we introduce the descriptive task of data mining called Pattern mining.
In addition, we focus on the concepts around mining a complex data type: the sequence
data.

3.2 Pattern Mining: Basic concepts

Pattern mining intends to discover interesting and useful patterns in data. In this section,
we present first the elementary forms of data for mining, followed by the patterns that
can be mined.

3.2.1 Simple types of data

Basic data for mining include database data, warehouse data and transactional data.
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Database data

These are part of a collection of interrelated data, known as a database. This one, in
turn, is part of a database system which also includes software to manage and access the
data. Most of the time, these data are modelled using an entity-relationship data model
and they are stored as a collection of tables, each of which consists of a set of attributes
and stores a large set of tuples.

Figure 3.1 shows a sample database representing entities and relationships of Employees
(Crews and Maxia, 2015). It provides a large amount of data (4 millions records in total)
distributed over six tables.
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Figure 3.1: Employees database
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Warehouse data

These are part of a repository of information collected from multiple sources. This
repository is known as data warehouse and it usually exists in a single site. The data
is stored to provide a historical overview and to summarize a set of attributes from the
original data.

Example Let us consider an international company with several branches all over the
world. Each branch has a employees database like the one in Figure 3.1. The data
warehouse may store a summary of the employees evolution in time for each branch or
for a region. �

Transactional data

These data include a unique transaction identity number and a list of items belonging
to this transaction. Each record is stored as a transaction in a transactional database,
usually a flat file. In a transactional database, an item is not allowed to appear twice
in the same transaction. Additionally, for each transaction, the items are assumed to be
sorted by lexicographical order.

Example Let us consider the transactional database in Table 3.1 where each transaction
corresponds to the sections consulted by an employee on the company’s intranet during
his session. However, the order in which the sections were consulted and the page
consultation recurrence cannot be deduced. �

Transaction_ID items_IDs

T001 s1, s5, s11, s13, s16
T002 s8, s11, s12, s13
T003 s4, s5, s11, s13
T004 s8, s13, s16
T005 s1, s6, s8

Table 3.1: Transactional database for consulted sections on a company’s intranet.

3.2.2 Types of patterns

There are many kind of patterns like frequent patterns, association rules and periodic
patterns, among others.
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Frequent patterns

These are patterns that appear frequently in data. In this group of patterns are included:

• The frequent itemsets: It consists of a set of items that appear together with
a given frequency in transactional data. For example, the analysis of "which
sections of a company’s intranet are often consulted by its employees ?" give as
a result a set of frequent itemsets.

• The frequent subsequences: It consists of a frequently occurring subsequence
in complex data types. For example, the pattern that consists of an employee
visiting the meeting room reservation page, followed by a visit of the meeting
scheduling page.

In the following, we introduce some definitions to provide a better understanding of
frequent itemsets concepts.

Definition 3.1.
An itemset X = {x1, ...,xk} is a set of one or more items.

Definition 3.2.
The absolute support of an itemset X is the number of occurrences of an itemset X .

Example From Table 3.1, the absolute support of the itemset {s5,s11} is two since it
appears in T001 and in T003. �

Definition 3.3.
The relative support of an itemset X is the fraction of transactions containing an itemset
X .

Example From Table 3.1, the relative support of the itemset {s5,s11} is 2
5 . �

From these definitions, we can establish that an itemset is frequent if the support of X is
greater or equal than a given threshold. This threshold, also known as minsup, is usually
given by the user analyst.

We will present the concepts around the frequent subsequences in the next section since
they are part of the focus of this work.

Association rules

They indicate if an item or a set of unordered items are likely to occur after another item
or set of unordered items with a given probability.
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Definition 3.4.
An association rule X 7→Y (s,c) represents the association of an itemset X to an itemset
Y having a support s and a confidence c.

Definition 3.5.
The support s of an association rule is the probability that a transaction contains both
itemsets X and Y .

Example Let us assume the association rule s11 7→ s13. The support is s(s11∪ s13) =
3
5 = 60%. They are both contained in transactions with ids: T001, T002 and T003. �

Definition 3.6.
The confidence c of an association rule is the conditional probability that a transaction
containing X also contains Y .

Example Let us continue with the association rule s11 7→ s13. The confidence is
c(s11 7→ s13) = s(s11∪ s13)

s(s11) = 100%. Every time that s11 appears, so does s13. �

Indeed, the association rule mining consists of finding all the rules, in transactional data,
having a support greater or equal than a minsup threshold and a confidence no less than
a minconf threshold.

Periodic patterns

They consist of a set items that occur frequently in data within a given period.

Definition 3.7.
The period p of an itemset X is the number of transactions between two occurrences of
X .

Example Let us consider the pattern X = {s8,s13} in Table 3.1. This pattern has two
periods, p(X) = {2,2}.

The first period has a length of two, from the first transaction until the first occurrence
of the pattern (T002). The second period has a length of two, from the last occurrence
(T002) until the next occurrence of the pattern (T004).

Thus, periodic pattern mining consists of finding the patterns, in transactional data, hav-
ing a support no less than a minsup threshold and a maximum period no greater than
a maxper threshold. A recent algorithm (Fournier-Viger et al., 2017a), makes this def-
inition more flexible. The novelty includes the use of an average periodicity and a
minimum periodicity.

45



3.3 Mining frequent patterns

In this section, we present the set of patterns that we can obtain when mining frequent
patterns, followed by the basic algorithm for finding frequent itemsets.

3.3.1 Pattern sets

A long itemset contains a combinatorial number of frequent sub-itemsets.

Example Let us consider from Table 3.1, a frequent itemset X = {s5,s11,s13}. It
contains seven frequent sub-itemsets:

• 1-itemsets: {s5},{s11},{s13}.

• 2-itemsets: {s5,s11},{s5,s13},{s11,s13}.

• 3-itemsets: {s5,s11,s13}. �

Now, let us suppose a frequent itemset of length k. It will contain
(k

1

)
+
(k

2

)
+ · · ·+

(k
k

)
=

2k − 1 itemsets. For high k values, this becomes a very large number of itemsets to
compute.

All frequent patterns

Indeed, a vast number of itemsets satisfying the minimum support threshold can be
generated when mining all frequent patterns, particularly, if this threshold is set low.

Definition 3.8.
A frequent pattern set FP contains all the patterns P such that the relative support of
P is no less than the minsup parameter provided by an user, denoted FP = {P| s(P) ≥
minsup}

Example The result of mining all frequent patterns from the transactional data in Table
3.1 is shown in Table 3.2. �

Therefore, there exist other pattern sets that can reduce the number of generated frequent
itemsets: the set of closed frequent itemset and the set of maximal frequent itemset.
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Itemset Support Itemset Support
{s16} 2 {s12,s13} 1
{s1} 2 {s13,s16} 2
{s4} 1 {s1,s5,s11} 1
{s5} 2 {s1,s5,s13} 1
{s6} 1 {s1,s5,s16} 1
{s8} 3 {s1,s6,s8} 1
{s11} 3 {s1,s11,s13} 1
{s12} 1 {s1,s11,s16} 1
{s13} 4 {s1,s13,s16} 1

{s1,s5} 1 {s4,s5,s11} 1
{s1,s6} 1 {s4,s5,s13} 1
{s1,s8} 1 {s4,s11,s13} 1
{s1,s11} 1 {s5,s11,s13} 2
{s1,s13} 1 {s5,s11,s16} 1
{s1,s16} 1 {s5,s13,s16} 1
{s4,s5} 1 {s8,s11,s12} 1
{s4,s11} 1 {s8,s11,s13} 1
{s4,s13} 1 {s8,s12,s13} 1
{s5,s11} 2 {s8,s13,s16} 1
{s5,s13} 2 {s11,s12,s13} 1
{s5,s16} 1 {s11,s13,s16} 1
{s6,s8} 1 {s1,s5,s11,s13} 1
{s8,s11} 1 {s1,s5,s11,s16} 1
{s8,s12} 1 {s1,s5,s13,s16} 1
{s8,s13} 2 {s1,s11,s13,s16} 1
{s8,s16} 1 {s4,s5,s11,s13} 1

{s11,s12} 1 {s5,s11,s13,s16} 1
{s11,s13} 3 {s8,s11,s12,s13} 1
{s11,s16} 1 {s1,s5,s11,s13,s16} 1

Table 3.2: All frequent itemsets from Table 3.1 (minsup = 0.01).

Closed frequent patterns

Because of the computing and the storage resources, sometimes it is useless to keep
patterns included into another pattern having the same support. The closed frequent
pattern set is a subset of the frequent pattern set.

Definition 3.9.
A closed frequent pattern is a pattern that is not included in another pattern having the
same support.

Example The result of mining the closed frequent patterns from the transactional data
in Table 3.1 is shown in Table 3.3. To summarize, if two itemsets have the same support,
only the longest one will be kept. �
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Maximal frequent patterns

This pattern set is a subset of the closed sequential pattern set.

Definition 3.10.
A maximal frequent pattern is a pattern that it is not strictly included in another pattern.

Example To illustrate that, let us consider two closed patterns cp1 and cp2. They have
a support of i and j, respectively. Also, cp1 is included into cp2 (cp1 ⊂ cp2) and the
support of cp2 is smaller than the support of cp1 (s(cp2) < s(cp1)). Therefore, cp2
will belong to the maximal pattern set, but not cp1. The result of mining the maximal
frequent patterns from the transactional data in Table 3.1 is shown in Table 3.4. �

This set implies a loss of information because the kept itemsets no longer assure the
notion of support but they are chosen based on the notion of inclusion into another
itemset.

Itemset Support
{s1} 2
{s8} 3

{s13} 4
{s8,s13} 2

{s11,s13} 3
{s13,s16} 2
{s1,s6,s8} 1

{s5,s11,s13} 2
{s8,s13,s16} 1

{s4,s5,s11,s13} 1
{s8,s11,s12,s13} 1

{s1,s5,s11,s13,s16} 1

Table 3.3: Closed frequent itemsets
from Table 3.1 (minsup = 0.01).

Itemset Support
{s8,s1,s6} 1

{s13,s8,s16} 1
{s13,s8,s11,s12} 1
{s13,s11,s5,s4} 1

{s13,s11,s1,s5,s16} 1

Table 3.4: Maximal frequent item-
sets from Table 3.1 (minsup = 0.01).

To sum up, there exist different pattern sets that can be obtained from mining frequent
itemsets. Each set is obtained from following some restrictions. These sets respect the
property 3.1.

Property 3.1.
f requent pattern set ⊃ closed pattern set ⊃ maximal pattern set
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3.3.2 Apriori algorithm

The Apriori algorithm is a basic algorithm for mining frequent itemsets introduced by
Agrawal and Srikant (1994). It consists of iterations of a candidate generation step
followed by a pruning step. In the former, the frequent subsets are extended one item at
a time while in the latter, these extended subsets are tested against the data to keep only
the frequent members. The main idea behind this algorithm is that all nonempty subsets
of a frequent itemset must also be frequent. Based on this assumption, it concludes using
prior knowledge that some combinations cannot have minimum support and it does not
process them.

Example Let us consider a minsup = 0.5 and an itemset X = {s5} having a sup-
port s(X) of 0.4. Because the itemset X has a support less than the minimum sup-
port threshold s(X) < minsup then this itemset is not frequent. Now, if an item I is
added to this itemset, the obtained itemset cannot appear more times than X . Indeed,
s(X ∪ I)< minsup �

As stated before, Apriori algorithm follows an iterative approach. It starts by extracting
from the transactional database the set of frequent 1-itemsets and its support. From
these itemsets, it keeps only the ones satisfying the minsup threshold. Then, those are
used to find the frequent 2-itemsets, and the transactional database is used to assign
them their respective support. The kept itemsets are used to find the next k-itemsets and
those are compared against the transactional database to find their respective support.
The algorithm repeats this process until there are no more frequent k-itemsets.

Example Let us find, using the Apriori algorithm with a minimum threshold of 0.25,
the frequent itemsets from Table 3.1.

Figure 3.2 shows the different steps carried out by the apriori algorithm. First, it scans
the database to accumulate the count for each item. Then, it keeps the items having a
relative support greater than 0.25. In our case, it means that the items must have an
absolute support of 1.25.

From this resulting set, the algorithm generates a new set of candidates (2-itemsets) by
joining it with itself. Then, it proceeds to scan the database to accumulate the count
for each candidate. Afterwards, it compares the candidate support with the minimum
support count and it removes candidates that do not satisfy the support condition. From
here, it repeats the process to generate the 3-itemsets candidates and to prune them.
Finally, the result of this process is presented in 3.3.
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(a) 1-itemsets

(b) 2-itemsets

(c) 3-itemsets

Figure 3.2: Apriori algorithm steps for mining frequent itemsets from Table 3.1
with a minsup = 0.25. "Supp." stands for absolute support.
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Figure 3.3: Frequent itemsets obtained by using the Apriori algorithm on Table
3.1 with a minsup = 0.25 . "Supp." stands for absolute support.

3.4 Mining sequence data

Nowadays, a wide range of applications that use data mining continue to appear. This
leads to new developments and research efforts in mining complex data types (Han et al.,
2012). For the purposes of this work, we will focus in mining a complex type of data
called sequence data.

Definition 3.11.
A sequence is an ordered list of itemsets, denoted s =< I1, I2, . . . , In >

These data include a unique sequence identifier sid and a sequence s. Each record is
stored as a sequence in a sequence database, usually a flat file. For each sequence,
the order of the data matters, the entire sequence is known and there is no notion of
future and past. Additionally, for each itemset, the items are assumed to be sorted by
lexicographical order and they are not allowed to appear twice in the same itemset.

Definition 3.12.
A sequence database SDB is a set of pairs < sid,s >, where sid is a sequence identifier
and s is a sequence.

Example Let us consider the sequence database in Table 3.5 where each sequence rep-
resents, for a given employee, the consulted sections on the company’s intranet during
different authentications over the curse of a day.

For example, the sequence S004 represents an employee who did two authentications
on the same day: In his first authentication, he visited a section identified as s8 (e.g.
the company’s directory); and, in his second authentication, he visited two sections
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Sequence_ID Sequence

S001 {s1,s5,s11},{s4},{s8}
S002 {s8,s11,s12},{s5},{s1,s2}
S003 {s4},{s5,s11},{s13}
S004 {s8},{s13,s16}
S005 {s1,s2},{s8}

Table 3.5: Sequence database for consulted sections on a company’s intranet

identified as s13 (e.g. the page for booking meeting rooms) and s16 (e.g. the page to
schedule meetings). �

3.4.1 Sequential pattern mining

It is a data mining task that consists of mining sequential patterns from a sequence
database.

Definition 3.13.
A sequential pattern is a frequent subsequence existing in a sequence or a set of se-
quences.

Definition 3.14.
A sequence SA =X1,X2, . . .Xk, where X1,X2 . . .Xk are events, is a subsequence of another
sequence SB = Y1,Y2, . . .Ym, where Y1,Y2 . . .Ym are events, if and only if there exists
integers 1≤ e1 < e2 · · ·< ek ≤ m such that X1 ⊆ Ye1 ,X2 ⊆ Ye2 , . . .Xk ⊆ Yek .

As shown in definitions 3.13 and 3.14, a sequential pattern is a sequence occurring in
another sequence but not necessarily in a contiguous fashion.

Example From table 3.5, the sequence SA = {s1},{s8} is contained in sequence S001
and S005. �

This kind of analysis can be done by hand. However, this is time-consuming and it is
not realistic to do it on a large dataset. Thus, the purpose of sequential pattern mining
is tackle this problem by designing automatic techniques to analyse data and extract
interesting patterns from data.

The problem of mining sequential patterns was introduced by Agrawal and Srikant
(1995). It consists of finding all sequential patterns in a sequence database. To formally
define this problem, we need the following definitions .
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Definition 3.15.
The absolute support of a sequential pattern is the number of sequences where the pat-
tern occurs, denoted σ(x).

Definition 3.16.
The relative support of a sequential pattern is the number of sequences where the pattern
occurs divided by the total number of sequences in the sequence database, denoted
sup(x).

Definition 3.17.
The parameter minsup is a user-specified threshold (a value in [0,1] representing a per-
centage) allowing to discover a sequential pattern.

Therefore, discovering all sequential patterns comes to finding the set FSP of all se-
quences sk such that sup(sk)≥ minsup.

Example The result of mining all sequential patterns from the sequence database in
Table 3.5 is shown in Table 3.6. �

Sequential
Pattern σ sup

{s1} 3 0.6
{s1 s2} 2 0.4
{s1}, {s8} 2 0.4
{s2} 2 0.4
{s4} 2 0.4
{s5} 3 0.6
{s5 s11 } 2 0.4
{s8} 4 0.8
{s11} 3 0.6
{s13} 2 0.4

Table 3.6: Sequential patterns from Table3.5 (minsup=0.25).

In the literature, we can find several algorithms performing frequent sequential pattern
mining such as FAST (Salvemini et al., 2011), FreeSpan (Han et al., 2000), GSP(Srikant
and Agrawal, 1996), LAPIN(Yang and Kitsuregawa, 2005), PrefixSpan(Pei et al., 2004),
SPADE(Zaki, 2001; Fournier-Viger et al., 2014a), SPAM (Ayres et al., 2002; Fournier-
Viger et al., 2014a), among others.

Analogous to itemset mining, in sequential pattern mining we can also define subsets
with properties similar to closed pattern set and maximal pattern set.
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Definition 3.18.
A closed sequential pattern is a pattern that is not included in another pattern having the
same support.

Some of the closed sequential pattern algorithms found in the literature are: CloSpan
(Yan et al., 2003), BIDE (Wang and Han, 2004), ClaSP (Gomariz et al., 2013; Fournier-
Viger et al., 2014a) and CloFAST(Fumarola et al., 2016).

Definition 3.19.
A maximal sequential pattern is a pattern that it is not strictly included in another se-
quential pattern.

Maximal sequential pattern algorithms in the literature are: AprioriAdjust (Lu and
Li, 2004), MFSPAN (Guan et al., 2005), MaxSP (Fournier-Viger et al., 2013), VMSP
(Fournier-Viger et al., 2014c), among others.

For a given sequential pattern set (frequent, closed, maximal), the efficiency of the
algorithms differs by their candidate generation strategy, the search strategy and their
accompanying data structure (Mabroukeh and Ezeife, 2010). However, the resulting set
is always the same for a given input (a sequence database SDB and a minsup threshold).
The efficiency of sequential pattern algorithms is not part of the scope of this work. A
detailed survey in sequential pattern algorithms is presented in Mabroukeh and Ezeife
(2010); Fournier-Viger et al. (2017b).

3.5 Conclusion

The purpose of data mining is to look for patterns by searching automatically in data
stored electronically. Pattern mining, the descriptive task of data mining, intends to
discover interesting and useful patterns in data.

Pattern mining has become popular because of its applications in multiple domains. Al-
though the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-
tial ordering of events. Therefore, there exists a technique for mining sequence data
called sequential pattern mining.

Sequential pattern mining consists in analyse sequential data to discover frequent se-
quential patterns. We can distinguish two filter structures provided by sequential pat-
tern mining. On the one hand, there is a parameter called support, which filters patterns
based on the frequency of apparition. On the other hand, from following some restric-
tions, the resulting pattern set can be reduced.

In this perspective, we aim to explore in the next section the use of sequential pattern
mining for extracting useful sequences of actions (not necessarily adjacent) as macro-
actions.
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Part II

Contributions on learning routines
for sequential decision-making
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4
Extraction of macros via Sequential

Pattern Mining

In short, no pattern is an isolated entity. Each pattern can exist
in the world only to the extent that is supported by other
patterns: the larger patterns in which it is embedded, the
patterns of the same size that surround it, and the smaller
patterns which are embedded in it.

Christopher Alexander
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4.1 Introduction

Among the various approaches to scale up plan synthesis, macro learning methods have
been widely explored (see Section 2.6). The whole idea behind this approach is to im-
prove planning systems performance by exploiting the structure knowledge of planning
tasks. This allows to properly define search control knowledge. In this chapter, we ex-
plore the use of sequential pattern mining for learning macro-actions from a set of plans.
Indeed, sequential pattern mining is a sub-field of data mining that consist in analyse
sequential data to detect sequential patterns. This kind of analysis can be done by hand.
However, this is time-consuming and it is not realistic to do it on a large dataset. Thus,
the purpose of sequential pattern mining is tackle this problem by designing automatic
techniques to analyse data and extract interesting patterns from data.

We have several motivations behind the idea of using pattern mining algorithms to ex-
tract sequences candidates for becoming macro-actions. If a sequence of actions has
a higher frequency of apparition on different plans, it will be mined and we can con-
sider it as a useful macro-action for a given domain. Let us have an example, consider
the blocksworld planning problem in Figure 4.1. The goal is to stack a set of blocks
in a specific order. This domain has five operators: pick-up, picks a block x from the
table; put-down, puts a block x on the table; stack, puts a block x on a block y; and
unstack, removes a block x from a block y. It is logical to suggest that once we pick
a block from the table the next most probably action will be stack it on another block
or put it down. Moreover, if we observed from a representative data set, of previous
acquired knowledge, a higher frequency of apparition for one of these sequences e.g.
pick-up_stack_BA, we can use it as a candidate for the creation of a macro-action. Then,
this macro-action can provide a way to go deep quickly into the search space in future
blocksworld problems.

Nevertheless, the set of mined candidates can still be quite large for our purposes. In
this context, we are interested in the filter structures provided by sequential pattern

Figure 4.1: A blocksworld problem.
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mining. On the one hand, the support parameter filters the possible candidates based on
the frequency of apparition. On the other hand, depending on the used mining strategy
(closed set, maximal set) the resulting pattern set can be reduced (see Section 3.3.1 in
Chapter 3).

Our assumptions for carrying out this work are:

• Our data set of previous acquired knowledge is representative enough to focus on
macro-actions;

• Highly recurrent sequences of actions (not necessarily adjacent) are more likely
constrained to appear in that order to solve a given problem. As a consequence,
these sequences are good candidates to build macro-actions;

• The frequency of apparition measure provided by sequential pattern mining algo-
rithms is a good estimator to decide on the utility of macro-actions.

In this perspective, we aim to propose in the next section a framework to learn useful se-
quences of actions (not necessarily adjacent) as macro-actions and use them to speed-up
planning search. This learning framework will be based on the filter structures provided
by sequential pattern mining.

4.2 Plan encoding

Pattern mining has become popular because of its applications in multiple domains. De-
spite the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-
tial ordering of events. Therefore, we will focus on working with sequential pattern
mining.

To consider the extraction of macro-actions from sequential pattern mining algorithms,
we present an intuitive formalism to represent a set of solution plans as a sequence
database.

From the definitions in Chapter 3.4, we decide to represent each solution plan as an
entry in the sequence database in the form < πid ,πi > where πid is the plan identifier
and πi is a solution plan for a problem pi. Then, a sequence s is equivalent to a plan
solution πi where the ordered list of events < e1e2 . . .en > are replaced by an ordered
list of actions denoted < a1a2 . . .an >.

We also give the definition 4.1 to represent the actions for a set of plans. We obtain a
dictionary and by using it and the set of plans, we obtain a sequence database. In our
proposed encoding, each plan is considered as a sequence, and each action, as an item
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in this sequence.

Definition 4.1.
A dictionary of actions is a set of pairs < k,ak >, where ak is the kth distinct encountered
action in a set of plans and k is an integer referencing to ak.

Example Let us consider the following set of plans where each πi corresponds to a plan
solution for a given problem pi in the blocksworld domain:

π1 = pick-up(b);stack(b,a); pick-up(c);stack(c,b); pick-up(d);stack(d,c)
π2 =unstack(b,c); put-down(b);unstack(c,a); put-down(c);unstack(a,d);

stack(a,b); pick-up(c);stack(c,a); pick-up(d);stack(d,c)
π3 =unstack(c,b);stack(c,d); pick-up(b);stack(b,c); pick-up(a);stack(a,b)
π4 =unstack(b,a);stack(b,c);unstack(a,d);stack(a,e);unstack(b,c);

stack(b,a); pick-up(c);stack(c,b); pick-up(d);stack(d,c)

By following the definition 4.1, we obtain the dictionary shown in Table 4.1. Finally,
we use this dictionary and the set of plans to obtain the sequence database in Table 4.2.
Each sequence corresponds to a plan solution and each number to an action.

k ai

1 pick-up b
2 stack b a
3 pick-up c
4 stack c b
5 pick-up d
6 stack d c
7 unstack b c
8 put-down b
9 unstack c a
10 put-down c
11 unstack a d
12 stack a b
13 stack c a
14 unstack c b
15 stack c d
16 stack b c
17 pick-up a
18 unstack b a
19 stack a e

Table 4.1: Dictionary of actions from
a set of plans in the current example.

πid πi

π1 1,2,3,4,5,6
π2 7,8,9,10,11,12,3,13,5,6
π3 14,15,1,16,17,12
π4 18,16,11,19,7,2,3,4,5,6

Table 4.2: Sequence database from a
set of plans in the current example. �
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4.3 Macro-actions learning framework

Let us recall the assumptions of our framework. First, our data set of previous acquired
knowledge is representative enough to focus on macro-actions. Second, highly recurrent
sequences of actions (not necessarily adjacent) are more likely constrained to appear
in that order to solve a given problem. As a consequence, these sequences are good
candidates to build macro-actions. Third, the frequency of apparition measure provided
by sequential pattern mining algorithms is a good estimator to decide on the utility of
macro-actions.

Thus, we aim to mine and filter frequent sequences of actions from a set of plans by
using sequential pattern mining algorithms and its provided support measure. Useful
extracted candidates will then build macro-actions which will be used to speed-up the
planning search.

From this perspective, given a classic planning system, we propose the framework in
Figure 4.2. It performs the following steps :

1. Mining candidates: Use of a sequential pattern mining algorithm on a sequence
database (specific to a domain) to identify candidates.

2. Filtering of candidates: Perform an analysis on the identified candidates by using
its frequency of apparition (provided by the pattern mining algorithm), in order
to choose useful sequences candidates.

3. Macro-action construction: For each chosen candidate, concatenate all of its ac-
tions into a single, macro-action.

4. Enhancing planning domain: Add macro-actions to the original domain.

Figure 4.2: Macro-actions learning framework.
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4.4 Mining and filtering candidates

For mining sequences of actions, we decided to use a strategy that reduces the number
of resulting patterns, namely the extraction of closed sequential patterns (see Definition
3.18). Remember that sometimes it is useless to keep patterns included into another
pattern having the same support. Indeed, we opted to avoid duplicate candidates. In
other words, if a sequence s1 of actions {a1,a2} appeared twice and a sequence s2 of
actions {a1,a2,a3} appeared also twice, we kept the latter since every time that it is
used the former is used.

The pseudo code is described in Algorithm 1. As input, it takes a sequence database
D containing solution plans for a given domain and a minsup parameter specifying the
minimum support that a candidate must satisfy. By using a closed sequential pattern
mining algorithm, it extracts candidates (not necessarily adjacent) from D having a
support greater or equal than minsup (line 2).

A first filtering is already done based on the minsup parameter because it keeps the
set of patterns satisfying a minimum frequency threshold. For instance, on a sequence
database using a minsup value of 0.2, it will keep closed sequential patterns appearing
in at least 20% of the sequences; as a result, we obtain macro-actions candidates with a
frequency of apparition of at least 20%.

Because sequential pattern mining algorithms consider sequential patterns of a single
action but the choice of the minimum candidate length should be consistent with the
macro-actions definition, a second filtering takes place. It is based on the candidate
length (line 4). It keeps candidates with at least two actions and in order not to discard
all long candidates, it limits the maximum length to 10. This choice allows to alleviate
the processing of candidates when using low values for the minsup parameter. Moreover,
we observed that the higher the value of the minsup parameter, the shorter the maximum
length of the obtained candidates.

Algorithm 1 Mining and filtering candidates
Input A sequence database D of non-empty solution plans, an user-specified

threshold minsup.
Output A list R of candidates (sequences of actions).

1: function PROCESSINGCANDIDATES(D,minsup)
2: R← closedSPM(D,minsup)
3: for each sequence s in R do
4: if length(s) = 1 or length(s)>10 then
5: R← R\ {s}

6: return R
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4.5 Macro-action construction

For each candidate obtained in the previous step, we built a new macro-action (see Defi-
nition 4.2). The pseudo code is described in Algorithm 2. It takes as input a sequence of
at least two actions. It merges its two first actions into a single by using the merge proce-
dure (see Algorithm 3 which will be described later) (line 2). After that, if the sequence
of actions has more than two actions (line4), it turns again the merge procedure taking
as parameters the last merged action and the next action in the input sequence (line 5).
It repeats this process until all actions are merged. Finally, it removes all predicates
appearing at the same time in the set of preconditions and in the set of positive effects
of the obtained macro-action (line 8). Indeed, it is useless to have the same predicates
appearing in both sets.

Definition 4.2.
A macro-action is a triple m = (name(m), pre(m), effects(m)). Its elements are defined
as follows:

• name(m) is in the form name(c1, ...,cn) where c1, ...,cn are the object constant
symbols that appear in m.

• pre(m) is the set of precondition formula that must be hold before exploiting the
action.

• effects(m)= {add(m),del(m)} is the set of positive and negative effects to be
applied to a state.

The pseudo code of the merge procedure is described in Algorithm 3. It is based on
the algorithm presented in Botea et al. (2004) whose formalism first appeared in Daw-
son and Siklossy (1977). It takes as input two actions and it validates the accuracy of
predicates merge by using a series of conditions. First, predicates from the precondi-
tion set of the second action appearing in the delete effects of the first action, give as
a result, an inability to continue with the merge procedure (line 7). Clearly, if the first
action removes a predicate that is a precondition of the second action, the construction
no longer makes sense. On the other hand, predicates from the precondition set of the
second action are added to the precondition set of the first action, if they are no already
included in this set or in the set of positive effects of the first action (line 8). Second,
predicates from the delete effects sets are merged (line 11), and if needed, delete effects
predicates of the second action are removed from the positive effects of the first action
(line 10). Finally, predicates from the positive effects sets are merged(line 14), and if
needed, positive effects predicates of the second action are removed from the delete ef-
fects of the first action (line 13). The output of the merge procedure is a single, merged
action.
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Algorithm 2 Macro-action construction

Input A sequence of actions S = {a1,a2, . . . ,an} where n≥ 2
Output A ground macro-operator gm

1: function CONSTRUCTMACRO(S)
2: gm = merge(S[0],S[1])
3: i← 2
4: while i < length(S) and gm 6= null do
5: gm = merge(gm,S[i])
6: i← i+1
7: if gm 6= null then simplify(gm)
8: return gm

Algorithm 3 The merge procedure

Input Two actions α and β

Output A merged action µ

1: function MERGE(α ,β )
2: Pγ , Aγ , Dγ where γ = {α,β}
3: Pγ ← getPreconditions(γ)
4: Aγ ← getPositiveEffects(γ)
5: Dγ ← getNegativeEffects(γ)
6: for each p in Pβ do
7: if p ∈ Dα then return null
8: if p /∈ Aα and p /∈ Pα then add(p,Pα )
9: for each d in Dβ do

10: if d ∈ Aα then remove(d,Aα )
11: if d /∈ Dα then add(d,Dα )
12: for each a in Aβ do
13: if a ∈ Dα then remove(a,Dα )
14: if a /∈ Aα then add(a,Aα )
15: µ = α

16: return µ

4.5.1 Enhancing planning domain with macro-actions

Each obtained macro-action is added to the original domain. Thus, the original domain
is enhanced since the goal of macro-actions is to provide a way to go deep quickly into
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the search space while solving future problems. Also, the enhanced domain can be used
for any planner using as input a domain defined in PDDL language. As an example
of the actual step, we have the original Blocksworld domain in PDDL-Code 2.2 and a
Blocksworld macro-action in PDDL-Code 4.1.� �

1 (: action unstack_put -down
2 :parameters (?x - block ?y - block)
3 :precondition
4 (and (on ?x ?y)(clear ?x)(handempty))
5 :effect
6 (and (clear ?y)(clear ?x)(handempty)
7 (ontable ?x)(not(on ?x ?y))(not(holding ?x))))� �

PDDL-Code 4.1: Macro-action for the blocksworld domain

4.6 Evaluation of the support parameter

In the following, an evaluation of the pattern mining support parameter is proposed,
based on the hypothesis that this parameter is a good estimator for a priori macro-
action utility (Castellanos-Paez et al., 2016). We present the methodology to conduct
the evaluation, and we show and discuss some interesting results obtained by doing this
evaluation.

4.6.1 Methodology

The evaluation was based on four benchmarks: barman, blocksworld, depots and
satellite. They are described in more detail in Appendix A. These benchmarks prob-
lems were taken from past International Planning Competitions1.

For each benchmark, a training set of problems of 1000 problems and a test set of 30
problems were generated. The problem generation stage uses the generators2 from the
International Planning Competition. In addition, it ensures that the generated problems
can be different even using the same parameters. In Table 4.3, we show the parameters
used for the generation of problems for each benchmark domain.

We used a heuristic search planner based on A* search strategy, from the PDDL4J
library (Pellier and Fiorino, 2018), to obtain a set of solution plans from the training

1http://icaps-conference.org/index.php/Main/Competitions
2https://bitbucket.org/planning-tools/pddl-generators
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Domain Parameters Range

Barman
cocktails 1-30
ingredients 1-13
shots 1-30

Blocksworld blocks 5-30

Depots

depots 1-5
distributors 1-3
trucks 1-4
pallets 1-8
hoists 1-8
crates 1-20

Satellite

satellites 1-6
instruments 1-2
modes 1-8
targets 1-2
observation 1-20

Table 4.3: Parameters for the generation of problems

set of problems. Then, we followed the Macro-action learning framework described
in Section 4.3 for each benchmark. For the mining step, we first created a series of
scripts, based on the presented plan encoding, to obtain a sequence database from a set
of solution plans. After, we used the SPMF (Fournier-Viger et al., 2014b) data mining
library, which implements CloFAST (Fumarola et al., 2016), a closed sequential pattern
mining algorithm. It is important to note that for this algorithm each event of a pattern
must appear in the same order in a sequence but it does not matter if it is in a consecutive
way or not. During the mining step, we varied the minsup parameter in steps of 0.1 from
0.1 until no sequences were founded. By following the mentioned framework, at the end,
we got an enhanced domain for each different minsup value used.

For the evaluation, we solved the set of test problems using the original domain, and
then, using the enhanced domain. The relevant results, among others, such as the total
run times of the different minsup values were assembled by using additional scripts.

Experimental setup

The macro-action learning steps and the evaluation of the support parameter were done
on a notebook with an Intel Core i7-4980HQ quad-core CPU clocked at 2.8GHz and
with 16GB of RAM, running OS X El Capitan v10.11.6. In the evaluation of the support
parameter, to solve each problem from the test set, a maximum of 8GB of memory was
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allocated and a time limit of 600 seconds was set in the planner. The experiments have
been done in a non-graphical terminal session.

4.6.2 Evaluation criteria

Unlike other works, we did not base our evaluation only on the classical IPC score. IPC
score3 is intended, as the name implies, to give a score to rank different strategies. In
other words, by using IPC score we can decide which strategy is better than another, but
it does not quantify the gain.

Here, on top of the IPC ranking, we wanted to quantify the impact of enhancing planning
domains by adding macro-actions constructed from different minsup values. Hence,
different criteria were established in the evaluation of the support parameter as a good
estimator to decide whether a macro is useful or not. In this perspective, we defined the
planning time metric, the space size metric and the plan quality metric.

4.6.2.1 Planning Time metric

For a given problem p, let To(p) be the time required by any planner to solve the problem
p using the original domain. And, let Te(p) be the time required by any planner to solve
the problem p using the enhanced domain. If the problem is not solved either using
the original domain or the enhanced domain, we ignored it for evaluation. Also, if
the problem was solved using the original (resp. enhanced) domain but not using the
enhanced (resp.original) domain, To (resp. Te) got the maximum time (600s). Thus,
the planning time metric GT , in Equation 4.1, is the sum of the quotient To(p)

Te(p) for all
problems p in the test set divided by P, where P is the number of non-ignored problems.

GT =
1
P ∑

p∈test problems

To(p)
Te(p)

(4.1)

4.6.2.2 Space size metric

For a given problem p, let No(p) be the total of nodes opened by the planner when
solving the problem p using the original domain. And, let Ne(p) be the total of nodes
opened by the planner when solving the problem p using the enhanced domain. If the
problem is not solved either by using the original domain or the enhanced domain, we
ignored it for evaluation. We also ignored the problem, if it was only solved by using

3As defined in the Learning track of the 7th International Planning Competition
(Jiménez Celorrio et al., 2011)
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one of the domains. Thus, the space size metric GN in Equation 4.2, is the sum of the
quotient No(p)

Ne(p) for all problems p in the test set divided by P, where P is the number of
non-ignored problems.

GN =
1
P ∑

p∈test problems

No(p)
Ne(p)

(4.2)

4.6.2.3 Plan Quality metric

For a given problem p, let Qo(p) be the plan length (number of actions) returned by
the planner when solving the problem p using the original domain. And, let Qe(p) be
the plan length (number of actions) returned by the planner when solving the problem
p using the enhanced domain. If the problem is not solved either by using the original
domain or the enhanced domain, we ignored it for evaluation. We also ignored the
problem, if it was only solved by using one of the domains. Thus, the plan quality
metric GQ in Equation 4.3, is the sum of the quotient Qo(p)

Qe(p) for all problems p in the test
set divided by P, where P is the number of non-ignored problems.

GQ =
1
P ∑

p∈test problems

Qo(p)
Qe(p)

(4.3)

4.7 Results

In this section, we present the results of the evaluation of the support parameter follow-
ing the steps of the macro-action learning framework in Section 4.3.

The useful sequences candidates, obtained after the two first steps, are presented in
Figure 4.3. The number of candidates decreases with increasing values of the min-
sup parameter. In domains such as depots and satellite, the number of candidates
decreases and reaches zero much faster than for barman and blocksworld domains.
Among the four domains used, only in the barman domain, there are still an important
number of sequences candidates beyond a minsup value of 0.5. In other words, in this
domain, there exist sequences of actions appearing in more than 50% of the plan so-
lutions. Also, the order of magnitude of the number of candidates is variable for each
value of the minsup parameter in each domain. For example, for a same minsup value of
0.1, the number of candidates covers all orders of magnitude ranging from units (100)
for the satellite domain up to the tens of thousands (104) for the barman domain.
Clearly, these results suggest that the number of mined candidates is related to the char-
acteristics of the domain.
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The maximal length of mined candidates is given in Figure 4.4. The maximal candidate
length decreases with increasing values of the minsup parameter. It is not surprising to
find longer candidates in lower values of the minsup parameter since it is more likely
to have long sequences appearing a few times than to have them appearing frequently.
Once again, it seems that the behaviour of sequences candidates is generally related to
the domain.

Figure 4.5: Number of macros added to the enhanced domain.

After the mining and filtering step, the macro-actions were constructed and added to the
original domain as shown in Figure 4.5. For each domain, the x-axis is related to the
enhanced domain containing the macro-actions that were constructed from the mined
and filtered candidates by using the corresponding percentage of the minsup. The y-
axis represents the number of macro-actions added to the original domain. For example,
for the depots domain with a minsup of 0.1 (10%), its corresponding enhanced domain
contains about ten macro-actions. These results do not always fit results from Figure 4.3.
This is consistent with the macro-actions construction step, as not all mined and filtered
candidates are valid macro-actions then not all candidates produce a macro-action.

The time performance for each domain and for each problem in the test set solved by
using the original domain is shown in Figure 4.6. Here, problems are ordered in the
x-axis with respect to their difficulty, i.e. the time required to solve it with the original
domain, and the search time is showed in seconds in the y-axis using a log10 scale. If
the problem was not solved either using the original domain or the enhanced domain, it
was ignored. Also, in red, the problems not solved with the original domain but solved
with at least one enhanced domain.

Now, we present the results obtained by solving the problem test set with the original
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domain and with the enhanced domains. These results are represented in an easily
understandable way by using the planning time metric, the space size metric and the
plan quality metric. Each minsup value from the x-axis represents the enhanced domain
obtained by using this value, and the corresponding point in the y-axis represents the
gain obtained by using the enhanced domain.

First, Figure 4.7 displays the planning time impact GT of the enhanced domains com-
pared to the original domain. To facilitate the visualisation, the results of barman en-
hanced domains above a minsup of 0.5 have not been displayed since they slightly differ
from the results of the enhanced domain at 0.5. We observed that the barman domain
exhibits a gain using the enhanced domains constructed from candidates mined with
a minsup between 0.1 and 0.2. blocksworld domain also exhibits a gain but its be-
haviour is unpredictable. Finally, depots and satellite domains do not show a gain but a
loss compared to the original domain. In general, the gain was the lowest when using
the lowest minsup. This may be due to the large amount of macro-actions added to the
domain when using low minsup values.

For readers used to analysing the IPC score, we also represented it in Figure 4.8. Each
minsup value from the x-axis represents the enhanced domain obtained by using this
value, and the zero value represents the original domain. The corresponding point in
the y-axis represents the score obtained by using the enhanced domain. We displayed
in red, the domain with the highest score.

Second, the average impact in the final space size GN of each enhanced domain com-
pared with the original domain is given in Figure 4.9. This impact is displayed using a
log scale. The final space size was generally well impacted. As the use of macro-actions
is supposed to provide a way to go deep quickly into the search space, this behaviour
was expected. On the other hand, the negative impact in the satellite domain can be
attributed to the lack of utility of the macro-actions added in that domain despite their
support.

Third, Figure 4.10 shows GQ, the average impact in the length of the found plans by
using the enhanced domain, in comparison to the length of the found plans by using
the original domain. Globally, plan length slightly increased when using the enhanced
domains. The difference between the barman domain and the other domains is probably
a consequence of the number of macro-actions used and their length.

To sum up, these results do not exhibit any clear link between the support and the gain,
in this perspective, the support parameter may not be descriptive enough to decide on
the utility of a macro-action.
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(a) Barman (b) Blocksworld

(c) Depots (d) Satellite

Figure 4.6: Search time performance per domain. In red, the problems not solved
with the original domain but solved with at least one enhanced domain.
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Figure 4.7: GT per domain.

(a) Barman (b) Blocksworld

(c) Depots (d) Satellite

Figure 4.8: IPC score per domain. In red, the domain with the highest score.
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Figure 4.9: GN per domain.

Figure 4.10: GQ per domain.
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4.8 Discussion

Our goal is the use of pattern mining techniques to mine in an easy way useful sequences
of actions. Indeed, planning theory knowledge, common sense and previous works
(Botea et al., 2004, 2005a; Newton and Levine, 2010) led us to infer that the most fre-
quently encountered action sequences might be the most useful. Thus, we adopted the
hypothesis of the support parameter as a good estimator to decide whether a sequence
of actions is useful or not.

From this perspective, we sought to describe the behaviour of the support parameter
in the mining of frequent action sequences. For that, we analysed the evolution, when
increasing the support value, of elements such as the number of extracted candidates
(Figure 4.3), the length of these candidates (Figure 4.4) and the order of magnitude of
the macro-actions constructed from these candidates (Figure 4.5). The complexity (in
terms of the length) and the number of macro-actions decrease when increasing values
of minsup.

With that in mind, we originally expected that the gain in relation to the minsup param-
eter would have a shape close to a Gaussian bell curve. First of all, we presumed a
negative gain when using low values of minsup. Indeed, a poor restriction regarding the
frequency of the action sequences causes a large amount of useless candidates. Next,
we looked for a positive gain as the value of minsup increases. That is because the num-
ber of candidates decreases but the action sequences appear more frequently (i.e. the
candidates become more useful). Finally, we speculated about an interval guaranteeing
useful candidates and a drop in the gain outside this interval.

Following this, we wanted to develop a method to learn the best support (i.e. where we
could able to find useful candidates) by varying incrementally minsup values. However,
even if the expected behaviour was observed for the barman domain (Figure 4.7 and
Figure 4.9), for the other domains our results showed discrepancies. To conclude, the
results showed that the support parameter may not provide a consistent selection of
useful macro-actions.

4.9 Conclusion

We have shown that the use of pattern mining tools and concepts in the extraction of
macro-actions is a promising lead. Indeed, the use of pattern mining algorithms has al-
lowed us to extract, in an easy way, a huge number of sequences of actions (candidates).

We presented a macro-actions learning framework to learn useful sequences of actions
as macro-actions to enhance a given domain. Also, in order to continue with our initial
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hypothesis (See Section 4.1), we evaluated the support parameter concept as a good
estimator for apriori macro-action utility. The results showed that the support parameter
may not provide a consistent selection of useful macro-actions.

Additionally, some discrepancies were found in the results. This may be explained
by the lack of: (1) macro-actions generality and (2) verification of the validity of the
generated macros-actions. These leads will be explored in the next chapter.
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Research is to see what everybody else has seen, and to think
what nobody else has thought.
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5.1 Introduction

In the last chapter, we showed that the extraction of relevant macro-actions by using
filter structures provided by pattern mining are not enough to provide satisfactory results
by themselves. Indeed, the proposed macro-actions learning framework has various
shortcomings restricting its practical use.

The purpose of this chapter is to explore these shortcomings, namely the lack of : (1)
macro-actions generality and (2) verification of the validity of the generated macro-
operators. We will also discuss the selection process. For each shortcoming, we first
discuss its implications and then, we detail a remedial measure to address it. At the end
of the chapter, we discuss what the support based selection process will become after
using shortcoming remedial measures.

5.2 Macro-actions generality

To recapitulate, we encoded a set of plans as a sequence database to be able to use pat-
tern mining algorithms to extract sequences actions candidates. This implies that every
action in a plan represents an unique element in the sequence database. In other words,
a same action in a plan, instantiated twice but with different objects, will represent two
different elements in the sequence database.

This encoding results from an effort to mine frequent patterns in planning with existing
pattern mining algorithms. In this respect, it should be noted that these algorithms are
not planning-oriented. Thus, the resulting patterns correspond to sequences of actions.

We aimed to take advantage of the filter structures provided by pattern mining algo-
rithms to extract frequent patterns. Therefore, after extraction, the only additional
steps were to create macro-actions from extracted candidates and add them to the do-
main. This resulted in the creation of a large number of macro-actions (See Figure
4.5). As they represent only an instance and they have a limited applicability, these
macro-actions do not increase significantly the branching factor.

However, the macro-actions added to each domain, still caused a negative impact in
the planner performance since they were adding more processing time (to know if they
are applicable or not) but they were not helping to solve the problem. To illustrate
that, on the one hand, Figure 5.1 shows the average fraction of macro-actions added to
the planner from the enhanced domain as instantiated operators for the problem. On
the other hand, Figure 5.2 shows for each domain, the mean percentage of macros that
have been used in solution plans. We can observe for the barman domain that almost
(>90%) all the created macro-actions were added as operators for the problems, but a
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low percentage (<2.8%) of them were used in the solution plan. The blocksworld and
the depots domains showed a similar behaviour.

Although, the behaviour of the satellite domain seems completely different, it is
important to note that very few macro-actions were extracted. On top of that, less than
half of them were added as operators for the problems. Finally, very few macro-actions
were used in the solution plan. All of this, led to no significant difference between the
enhanced domain and the original domain for supports above 5%. And for very low
supports (≤ 5%), the behaviour is similar to other domains i.e. lots of macro-actions
added but very few used.

All of these observations suggest that the created macro-actions may not be general
enough to be used repeatedly through different problems. We will therefore present the
other approach used: the generalisation of the extracted sequences of actions to macro-
operators.

Figure 5.1: Average fraction of macros added from the enhanced domain as
problem operators.
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5.3 Macro-operators construction

From a set of sequence of actions, extracted by using pattern mining algorithms on a
sequence database of plans (see Section 4.4), we built a set of macro-operators and we
compute their respective support.

The pseudo code for the macro-operators construction is described in Algorithm 4. The
algorithm is quite straightforward. It takes as input a set of sequences of actions for
a given domain and the list of sequence identifiers, from the sequence database, where
each sequence appears (see Table 5.1). For each sequence of actions S= {a1,a2, . . . ,an},
it attempts to construct a macro-operator m (line 4, procedure in Algorithm 5 described
later). For each constructed macro-operator m, the algorithm adds the pair < m,S >
to the set of macro-operators only if it is a new macro-operator i.e. there is no macro-
operator in the set of macros having the same parameters, preconditions and effects (line
6). Otherwise, it adds S as new sequence where the macro-operator m appears (line 7-
10). Finally, for each macro-operator m in the set of macro-operators, the algorithm
computes its support s by merging all the identifiers that correspond to the appearance
of the sequences that created this macro-operator m (line 12-17). It gives as output a set
of macro-operators with their respective supports (see Table 5.2).

Algorithm 4 Macro-operators construction

Input A set C of pairs < S,L >, S is a sequence of actions S = {a1,a2, . . . ,an}
where n≥ 2 and L is the list of the sequences ids where S appears.

Output A set M of pairs < m,s >, m is a macro-operator and s its respective
support.

1: function CONSTRUCTMACROOPERATORS(C)
2: D← empty dictionary
3: for each sequence S in C do
4: m← createMacroOperator(S)
5: if m 6= null then . if the creation of m succeeded
6: if m /∈ D then D(key,value)← (m,{S}) . † explanation below
7: else
8: newValue← D(m) . from D get value for key m
9: newValue← newValue∪{S}

10: update(D(m,value),D(m,newValue)) . upgrade value for key m

11: T← empty set
12: for each key-value pairs (k,v) in D do
13: for each sequence in v do
14: nIds← L from the pair < S,L > in C such that S == sequence
15: T← T ∪

⋃
id∈nIds

id
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16: s← number of elements in T
17: M←M∪{< k,s >}
18: return M

† : m ∈ D ⇐⇒ ∃n ∈ D | pre(m) = pre(n), eff+(m) =eff+(n),
eff−(m) =eff−(n)

Sequence Identifiers
unstack b3 b2 ; put-down b3 π0 π1 π6 π7 π15 π22 π27 π34 π35 π44 π56 π71 . . .
unstack b3 b2 ; put-down b2 π7 π35 π44 π116 π126 π141 π158 π162 π163 . . .
unstack b13 b12 ; put-down b13 π386 π401 π404 π433 π454 π462 π486 π487 . . .
unstack b1 b13 ; put-down b1 π388 π438 π446 π462 π480 π482 π493 π508 . . .
pick-up b2 ; stack b2 b3 π1 π5 π6 π11 π12 π27 π29 π30 π43 π48 π57 . . .
pick-up b3 ; stack b3 b1 π5 π10 π33 π46 π47 π48 π67 π79 π105 π113 . . .
pick-up b3 ; stack b4 b3 π35 π44 π67 π95 π101 π129 π141 π167 π168 . . .
put-down b4 ; stack b2 b4 π32 π46 π49 π67 π79 π87 π90 π91 π103 π116 . . .

Table 5.1: Input sample for Algorithm 4, blocksworld domain.
Macro-operator σ

macro-2-actions-3-1–1-1 174
macro-2-actions-3-1–2-1 55
macro-2-actions-0-2–3-1 132
macro-2-actions-1-2–1-1 52

Table 5.2: Output sample for Algorithm 4 from input Table 5.1, blocksworld
domain. The macro-operator name is represented by macro-(number of actions)-
actions-(id_a1)-(. . . )-(id_an)-(id_commonObjects)-(id_commonParameters).

The pseudo code of the createMacroOperator procedure is described in Algorithm 5.
It takes as input a sequence of two or more actions. It first verifies if there exist com-
mon objects between each pair of actions (line 2). After, it generalises each action to
its respective operator (line 4-6). Then, it merges its two first operators into a single
by using an oriented-operator version of the merge procedure presented in Chapter 4 in
Algorithm 3. If S has more than two operators (line 9), it turns again the merge proce-
dure taking as parameters the last merged operator and the next operator (line 10). It
repeats this process until all operators are merged. Finally, it removes all predicates
appearing at the same time in the set of preconditions and in the set of positive effects
of the obtained macro-operator (line 12). It gives as output a macro-operator m.

The generalisation to macro-operators of the extracted sequences is intended to give
the planner a way to have more opportunities to use shortcuts (aka macro-actions i.e.
instantiated macro-operators) through different problems. In Figure 5.3, we observe
the different size of each set obtained from the extracted candidates, either by creating
macro-actions or by creating macro-operators.
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Algorithm 5 createMacroOperator procedure

Input A sequence of actions S = {a1,a2, . . . ,an} where n≥ 2.
Output A macro-operator m.

1: function CREATEMACROOPERATOR(S)
2: if not commonVariable(S) then return null
3: . if there is no common objects between each pair of actions
4: for each action a in S do
5: O← operator o from the domain such that a is an instantiation of o
6: replace(a,O)
7: m← merge(o1,o2)

8: i← 2
9: for each i < length(S) and m 6= null do

10: m← merge(m,oi)

11: i← i+1
12: if m 6= null then simplifyMacro(m)
13: return m

Figure 5.3: Size comparison: Extracted candidates vs macro-actions set vs macro-
operators set. minsup = 5%

The size of the macro-operators set is considerably smaller. However, we should not
forget that each macro-action adds only one instance when solving the problem while
each macro-operator adds several instances. To sum up, we give more opportunities
to the planner to use a shortcut when solving a problem by adding macro-operators to
enhance the domains but we could also increase the branching factor. For this reason, a
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selection process is mandatory to add only the most useful macro-operators.

Before addressing this problem, we will introduce a more important issue: the validity
of the generated macro-operators.

5.4 Validity of the generated macro-operators

After analysing the obtained macro-operators, we identified that some created macro-
operators were invalid. As a reminder, the Algorithm 4 allows the construction of macro
operators, from the extracted candidates1, only if some conditions are met, namely:

• The size of the sequence of actions (candidate) is greater than or equal to two i.e.
S = {a1,a2, . . . ,an} where n≥ 2.

• There exist common objects between each pair of actions of the candidate e.g.
pick-up B stack B C

• The merge procedure is not null. In other terms, a candidate can be merged ⇐⇒
∀k ∈ J1,n−1K,negativeEf fects(merge({a1, . . . ,ak}))∩ preconditions(ak+1) = /0
where merge({a1, . . . ,an}) = merge(merge({a1, . . . ,an−1}),an).

Despite these conditions, we noticed that some of the created macro-operators were
invalid because of the incompatibility of some predicates. Table 5.3 shows the results of
the macro-operators analysis. For blocksworld and satellite domains, all created
macro-operators were studied. For barman and depots domains, an estimation was
done from a sample of the created macro-operators.

Domain # Macro-operators Invalid macros ± p

barman 173 25% 10%
blocksworld 14 21% 0
depots 1273 22% 10%
satellite 13 15% 0

Table 5.3: Results of the validity of created macro-operators per domain.

Additionally, Figure 5.4 shows an example of the identified problem. At the beginning,
we have the extracted candidate unstack b3 b2, put-down b2. How can we ensure,

1These are obtained by using pattern mining algorithms and more specifically, closed frequent
patterns algorithms with allowed gaps.
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without the help of a human expert, that this sequence create an interesting macro-
operator?.

First, the algorithm checks if the sequence has two or more actions, and in this case, it
does. After, the algorithm validate that there exists a common object between each pair
of actions i.e. b2. Then, it translates every action of the sequence with its respective
operator from the domain and it merges both operators. However, the resulting macro-
operator has two conflicting predicates, namely handempty and holding ?X1.

Figure 5.4: Macro-operator Unstack_Put-down with incompatible predicates
handempty and holding ?X1

This kind of incompatibility is easily understandable to a human being but how can we
make the machine understand that these two operators are incompatible?

5.5 Problematic macro-operators: Definition

In the following, we define the three types of problematic macro-operators: the in-
compatible predicates’ macro-operators, the useless macro-operators and the redundant
macro-operators.

88



Incompatible predicates’ macro-operators

These are macro operators that cannot be applied during planning search. The main
reason is the incompatibility of their predicates. From now on, we refer to them as
incompatible macro-operators.

Definition 5.1.
Let pre(m) = {p1, . . . , pn} be the set of predicates belonging to the set of preconditions
pre of the macro-operator m. A predicate p1 is incompatible with predicate p2, denoted
as p1 | p2

2, if and only if they cannot coexist in the same state s.

From this point forward, for an operator (resp. macro-operator) we denote the set of its
preconditions as pre(o) (resp. pre(m)), the set of its positive effects as add(o) (resp.
add(m)) and the set of its negative effects as del(o) (resp. del(m)).

Definition 5.2.
An incompatible macro-operator has an unattainable precondition, i.e. there is at least
one pair of predicates that cannot coexist in the same state, ∃(p1, p2)∈ pre(m)× pre(m), p1 |
p2.

Example Let us consider the macro-operator unstack_put-down in Figure 5.4. This
macro-operator is an incompatible macro-operator since two of its predicates in the
precondition set are incompatible, namely handempty and holding ?X1. �

Useless macro-operators

These macro-operators can be applied during planning search but their application is
equivalent either to do nothing or to use a primitive operator.

Definition 5.3.
A macro-operator m is useless in the two following cases:

1. If the application of a macro-operator m to a state s is equivalent to the same state
s, i.e. γ(s,m) = s. In terms of predicates, it translates to the Equation (5.1)

(add(m)⊆ pre(m))∧ (∀p1 ∈ del(m),∃p2 ∈ pre(m) : p1 | p2) (5.1)

meaning that all the positive effects of the macro-operator m were already present
in the current state since they are equivalent to the set of preconditions. Addi-
tionally, for all the predicates p1 in the set of negative effects there exists an
incompatible predicate p2 in the set of preconditions, and as a consequence, p1
is useless because it could not have been true.

2The Sheffer’s stroke symbol was chosen because its representation in propositional logic
(Smullyan, 1995). Indeed, it represents that two propositions can not be true at the same time.
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2. If the macro-operator m is equivalent to a primitive operator o. In terms of predi-
cates, it translates to the Equation (5.2).

∃o,(add(m)−add(o)⊆ pre(m))∧
(pre(o)⊆ pre(m))∧
(∀p1 ∈ del(m)−del(o),∃p2 ∈ pre(m) : p1 | p2) (5.2)

meaning that the macro-operator m and the operator o are equivalent, if and only
if, any additional predicate in the set of positive effects of m, compared to the
set of positive effects of o, is useless because it already appears in pre(m). Also,
when m can be applied, o can as well. Finally, for any additional predicate p1 in
the set of negative effects of m, compared to the set of negative effects of o, there
exists an incompatible predicate p2 in the set of preconditions and p1 is useless
since it could not have been true.

Example Let us consider the macro-operators pick-up_put-down and put-down_
pick-up_stack in Figure 5.5. The former is equivalent to do nothing in a state s,
we have add(m)∩ pre(m) = /0 and del(m) = /0 since the highlighted negative effect
holding ?X0 is useless (it is incompatible with the handempty predicate in the set of
preconditions). The later is equivalent to the primitive operator stack, and because
the highlighted negative effect is useless (it is incompatible with the holding ?X0
predicate in pre(m)), we have that pre(m)∩ pre(stack) = /0∧ add(m)∩ add(stack) =
/0∧del(m)∩del(stack) = /0. For all these reasons, the two macro-operators are useless
macro-operators. �

Redundant macro-operators

These macro-operators can be applied during planning search but their application is
equivalent to use a simpler macro-operator i.e. a macro-operator with less actions.

Definition 5.4.
A macro-operator m1 is redundant if

∃m2,(add(m1)−add(m2)⊆ pre(m1))∧
(pre(m2)⊆ pre(m1))∧
(∀p1 ∈ del(m1)−del(m2),∃p2 : p1 | p2)∧
(nbActions(m2)≤ nbActions(m1)) (5.3)

meaning that the macro-operator m1 is redundant compared to the macro-operator m2,
if and only if, any additional predicate in the set of positive effects of m1, compared to
the set of positive effects of m2, is useless because it already appears in pre(m1). Also,
when m1 can be applied, m2 can as well. Likewise, for any additional predicate p1 in the
set of negative effects of m1, compared to the set of negative effects of m2, there exists
an incompatible predicate p2 in the set of preconditions and p1 is useless since it could
not have been true. Finally, the number of operators of m1 is greater or equal than the
number of operators of m2.
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(a) Macro-operator pick-up_put-down does not change the state s.

(b) Macro-operator put-down_pick-up_stack is equivalent to the primitive operator
stack.

Figure 5.5: Examples of useless macro-operators. Highlighted predicates should
not be taken into account.
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Example Let us consider the macro-operator m1 in Figure 5.6. This macro-operator
is a redundant macro-operator since there exists a macro-operator m2 which is simpler
than m1. Indeed, both macro-operators have the same preconditions and effects but m2
is composed of less operators. The impact of both macro-operators during the search is
the same but m1 would degrade the plan quality if it appears in the solution plan. �

Figure 5.6: Redundant macro-operator Unstack_Stack_Unstack_Put-down.
Highlighted predicates should not be taken into account.

5.6 Problematic macro-operators: Detection

To detect problematic macro-operators addressed in last section, we should be able to
find the incompatible predicates. The idea behind finding incompatibilities for a predi-
cate p1 is:

• Simulate all the ways to obtain this predicate.

• Any predicate p2 that was true at a given step, while p1 was also true, is compat-
ible with p1.

• Any predicate p2 that has been true at a given step, and that is not compatible
with p1 (i.e. there is no step where p1 and p2 were true at once), is incompatible
with p1.
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In this regard, we present in Figure 5.7 a fully automatic method for detecting and
eliminating problematic macro-operators. The pseudo code of this method is described
in Algorithm 6. It takes as input a domain d and a set of macro-operators M and it
passes them to the extractIncompatibilities procedure (pseudo code, in Algorithm 7,
described later) to found incompatibilities based on a layered graph (line 2). After this
extraction, it computes each problematic set (incompatible, useless, redundant) using
the found incompatibilities, the domain and the set of macro-operators (line 3). Finally,
it removes from the set of macro-operators, the detected problematic macro-operators
(line 4).

removeProblematicMacros: Algorithm 6 on page 93

extractIncompatibilities: Algorithm 7 on page 94

instantiateDomainWithMacro: Algorithm 8 on page 95

objectsInventory: Box procedure on page 95

incompatibilityGraph: Section 5.6.1 on page 97

updateIncompatibilities: By using Property 5.1 on page 95

Figure 5.7: Explanation scheme for detecting and eliminating problematic macro-
operators

Algorithm 6 Remove problematic macro-operators - Main algorithm
Input A domain d and a set M of macro-operators.
Output A set Mo of non problematic macro-operators.

1: function REMOVEPROBLEMATICMACROS(d,M)
2: I← extractIncompatibilities(d,M) . see Algorithm 7
3: Mo←

⋃
f∈X

f (d,M, I) . † explanation below

4: Mo←M \Mo . set difference
5: return Mo

† : X = {incompatibleMacro,uselessMacro,redundantMacro}

The pseudo code of the extractIncompatibilities procedure is described in Algorithm 7.
It takes as input a domain and a set of macro-operators. For each macro-operator m, it in-
stantiates the operators domain with respect to m and it instantiates m (line 3, procedure
described later in Algorithm 8). Then, it creates a set of predicates from the precon-
ditions of all instantiations of m (line 6). And, for each predicate p1, it constructs a
layered graph aimed to simulate all the ways to obtain p1 by using the domain primitive
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operators (especially their preconditions and their effects) (line 8). After the construc-
tion of this graph, it is used as a guideline to know which sequences of actions to test
and on which states, and by analysing the output of this process, it extracts some incom-
patibilities. Then, it uses the transitivity property of incompatibilities (Property 5.1) to
find more incompatible predicates (line 9). Finally, it returns to the main algorithm a
list of predicates, and for each predicate, a list of its incompatible predicates.

Algorithm 7 Extraction of Incompatibilities
Input A domain d and a set M of macro-operators.
Output A dictionary I of pairs < p, i>, p is a predicate and i is a set of predicates

i where ∀k ∈ i, p | k.
1: function EXTRACTINCOMPATIBILITIES(d,M)
2: for each macro-operator m in M do
3: (A,Ma)← instantiateDomainWithMacro(d,m)

4: predicatesToDo = { /0}
5: for each instance k in Ma do
6: predicatesToDo← predicatesToDo ∪

⋃
p∈pre(k)

p

7: for each predicate p in predicatesToDo do
8: update I with incompatibilityGraph(p,A) . see Section 5.6.1

9: updateIncompatibilities(I) . By using the Property 5.1

10: return I

The predicates analysed by the incompatibility graph (line 8 in Algorithm 7) come from
a series of possible parameter configurations of the analysed macro-operator. This is
especially useful when there are inclusion relationships between the object types in a
domain. Our method requires, in order to obtain these predicates, to instantiate the
primitive operators and the macro-operator taking into account the parameters of the
latter. The pseudo code of the instantiateDomainWithMacro procedure is described in
Algorithm 8.

It takes as input a domain d and a macro-operator m. It computes the objects inventory
(see description in the box below) for each primitive operator in d. It also does this
computation for m and it merges both results (line 3-6). After that, it instantiates each
primitive operator (line 7-9) and the macro-operator (line 10) by using the computed
objects inventory. It gives as result, a set of instantiated operators from d and a set of
instances of the macro-operator m.
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Algorithm 8 Domain instantiation relative to a macro-operator
Input A domain d and a macro-operator m.
Output A set A of instantiated operators from domain d and a set Ma of instances

of the macro-operator m.
1: function INSTANTIATEDOMAINWITHMACRO(d,m)
2: D← empty dictionary
3: for each operator o in d do
4: update D with ob jectsInventory(o)

5: Dm← ob jectsInventory(m)

6: update D with Dm . † explanation below
7: for each operator o in d do
8: listA← list of actions from instantiating o by using D
9: add listA to A

10: Ma← list of macro-actions from instantiating m by using D
11: return (A,Ma)

† : ∀k ∈ (D∩Dm),D(k) = max(D(k),Dm(k))

This procedure aims to define for each type of object, how many of them are
necessary to make the operators’ instances sufficiently representative and espe-
cially to do not prevent some states from existing. First, it lists all object types
and the inclusion relationships of the domain. It creates an objects inventory
and it assigns zero to all. Second, it updates the number of objects per type
with the maximal value from the list of objects for each operator. Third, each
meta-type is set to zero in the inventory and its value is added to each one of its
sub-types because the operators’ instances will not contain meta-types. Finally,
it adds a level of freedom to each object in the inventory whose value is greater
than zero. As we cannot have an infinite number of objects, having free objects
allows us not to restrict the instantiation.
Example Let us consider the depots domain, its object types in Figure 5.8
and its following primitive operators:

lift(?x-hoist ?y-crate ?z-surface ?p-place)
drive(?x-truck ?y-place ?z-place)
drop(?x-hoist ?y-crate ?z-surface ?p-place)
load(?x-hoist ?y-crate ?z-truck ?p-place)
unload(?x-hoist ?y-crate ?z-truck ?p-place)

The objects inventory process is shown in Figure 5.9. �

Procedure (objectsInventory: Objects inventory computation)
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Place Locatable

Depot Distributor Truck Hoist Surface

Pallet Crate

Figure 5.8: depots object types

Figure 5.9: Objects inventory example

Property 5.1.
The transitivity property of incompatibilities defined in Equation (5.4) says that having
a pair of predicates (p1, p2) and knowing its incompatibilities I, if p1 (resp. p2) is true,
there is no action giving p2 (resp. p1) and if the pair (p1, p2) does not belong to the
positive effects of any action, this implies that p1 and p2 are incompatible predicates.

∃(p1, p2),∀a ∈ A : p1 ∈ add(a),∀b ∈ A : p2 ∈ add(b),
I(p2)∩ pre(a) 6= /0∧ I(p1)∩ pre(b) 6= /0∧
@c ∈ A : {p1, p2} ⊆ add(c) =⇒ p1 | p2 (5.4)

where A denotes the set of all possible actions and I(p) denotes the set of all incompati-
bilities known for predicate p.

Example Let us consider the predicates p1 et p2 in Figure 5.10. They are incompatible
predicates if knowing part of their respective incompatibilities, we are not able to find an
action a (resp. b) that adds p1 (resp.p2) when p2 (resp. p1) is true. In this example, if a
(resp. b) is the only action giving p1 (resp. p2), we can conclude that p1 | p2. Otherwise,
we would have to check for all a (resp. b) giving p1 (resp. p2). �
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Figure 5.10: Example of the transitivity property of incompatibilities.

5.6.1 Incompatibility graph implementation

The implementation of the incompatibility graph aims to find for a predicate p, the
predicates that are incompatible with p. The implementation follows two main steps:
the graph construction and the graph exploitation.

Graph construction

It consists in the construction of a layered graph. Note that a relaxed behaviour is
allowed. The root of this graph is the predicate for which we are looking for incompati-
bilities.

We start with the root and we alternate between the expansion and the link rules until
the stop condition is reached. Expansion rules allow to deduce the nodes in the layer
n+1 from the layer n. While, link rules dictate which nodes will be connected between
layer n and layer n+1.

By following the expansion rules, we alternate the graph layers between predicate lay-
ers and action layers, beginning with a predicate layer (root). We therefore have the
following rules:

• If we consider that the layer Ln is a predicate layer, the layer Ln+1 is an action
layer and A is a set of instantiated operators. We expand the graph from a predi-
cate layer Ln to an action layer Ln+1 by adding as nodes in the layer Ln+1 all the
actions a that create the predicates in layer Ln (see Equation (5.5)).

Ln+1 = {a ∈ A : ∃p ∈ Ln, p ∈ add(a)} (5.5)

• If we consider that the layer Ln is an action layer, the layer Ln+1 is a predicate
layer and A is a set of instantiated operators. We expand the graph from an
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action layer Ln to a predicate layer Ln+1 by adding as nodes in the layer Ln+1
all the predicates p belonging to the preconditions of the actions in layer Ln (see
Equation (5.6).

Ln+1 = {p : ∃a ∈ Ln, p ∈ pre(a)} (5.6)

Additionally, if the root predicate is found in a layer other than layer 0, this predicate no
longer generates any node.

In order to link the layers with each other, the following rules are followed:

• If we consider that the layer Ln is a predicate layer and the layer Ln+1 is an action
layer. We linked every node in the predicate layer Ln to a node in the action
layer Ln+1, if and only if, the predicate node belongs to the positive effects of the
action node (see Equation (5.7). From now, we denoted an element x linked to
an element y as x _ y.
In addition, if a predicate node does not belong to the positive effects of any
action node, this node predicate is removed from Ln (see Equation (5.8)).

p ∈ Ln _ a ∈ Ln+1 ⇐⇒ p ∈ add(a) (5.7)

p ∈ Ln : @a ∈ Ln+1, p _ a =⇒ Ln \ p (5.8)

• If we consider that the layer Ln is an action layer and the layer Ln+1 is a predicate
layer. We linked every node in the action layer Ln to a node in the predicate layer
Ln+1, if and only if, the action node has in its negative effects the predicate node
(see Equation (5.9).

a ∈ Ln _ p ∈ Ln+1 ⇐⇒ p ∈ del(a) (5.9)

The stop condition for the graph construction is reached when, after expanding the
graph, we find a predicate layer such that the entire layer (with all its predicate nodes)
has already been seen (see Equation (5.10)). When the stop condition is reached, we
construct the next action layer Ln+1 and we stop.

if Ln : ∃k < n,Lk = Ln∧mod(n,2) = 0 =⇒ stop (5.10)

Example Let us consider the depots domain, its primitive operators and the predicate
lifting hoist0 crate0 for which the graph aims to find the incompatible predi-
cates. An example of the incompatibility graph is shown in Figure 5.11. �

Graph exploitation

Instead of considering taking all actions at random, concatenating them in a random
order and testing everything until found any incompatibilities, the idea behind the graph
exploitation is to have a reduced research space.
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Figure 5.11: Incompatibility graph for predicate lifting hoist0 crate0.
Green (resp. red) lines indicate the positive (resp. negative) effects. Yellow
(resp. blue) circles are the actions (resp. predicates) and filled blue circles are
predicates that will be removed from the layer.
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Thus, after the construction of the layered graph, it is used as a guideline to know which
sequences of actions to test and on which states. By analysing the output of this process,
we extract some incompatibilities.

It is important to mention that in the construction step, when a new layer of predicates
is created, if the root predicate p is found in the created layer, then this predicate is
labelled as a bud node.

For each bud node, in a layer Ln, we define a set of initial states S0. It consists of a
set of predicates representing the minimum state that is required by each action, in the
layer Ln+1, connected to the bud node, i.e. pre(action)− del(action)∪ add(action).
Then, we define a set of states S1. Each state in S1 will consist of a set of predicates that
results from combining each state s of S0 and each action of the next layer of actions,
i.e. s−del(action)∪add(action) where s ∈ S0. If the action cannot be applied, no new
state is created. Also, if we found a state that already exists in the current set, it is not
kept. We continue to define a set of states Sn by following the same idea, until we reach
the last layer of actions. While doing this, we keep a record C of all the predicates found
in the same state as the root predicate. We also keep a record I of all the predicates that
were true in some state.

We repeat this process for each bud node by updating records C and I. In the end,
we conclude on some incompatibilities by doing I−C. In other words, we keep the
predicates that were true in some state but never coexisted with the root predicate.

Example Let us consider the layered graph for the depots domain, the predicate
p =lifting hoist0 crate0 and the bud node b (found in layer L4) in Figure 5.12.
We define S0 in Equation 5.11 and Equation 5.12, where each state sn in the set consist
of the minimum state required by each action in layer L5 connected to b. Notice that
operatorN denotes an operator instantiated with a configuration of objects identified by
N (See PDDL-Code 5.1).� �

1 (: action Lift1
2 :parameters (hoist0 crate0 pallet0 depot0)
3 :precondition (and(at hoist0 depot0)
4 (available hoist0)(at crate0 depot0)
5 (on crate0 pallet0)(clear crate0))
6 :effect (and(not(at crate0 depot0))
7 (lifting hoist0 crate0)(not(clear crate0))
8 (not(available hoist0))(clear pallet0)
9 (not(on crate0 pallet0))))� �

PDDL-Code 5.1: Macro-action for the blocksworld domain

We have that s0 =(at hoist0 depot0)(lifting hoist0 crate0)(clear pallet0). Then, (at
hoist0 depot0) and (clear pallet0) will be added to C record since they appear in the
same state as lifting hoist0 crate0. They will be also added to I since they were true
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in this state. Updating records C and I is fairly self-explanatory and will be left to the
reader for exploration.

Then, we define S1 in Equation 5.13 and Equation 5.14, where each state in consist of a
set of predicates that results from combining each state sn of S0 and each action of the
layer L3. Finally, we define S2 in Equation 5.15 and Equation 5.16, where each state jn
consist of a set of predicates that results from combining each state in of S1 and each
action of the layer L1.

S0 = {{pre(Li f t1)−del(Li f t1)∪add(Li f t1)},
{pre(Unload1)−del(Unload1)∪add(Unload1)}} (5.11)

S0 = {{s0},{s1}} (5.12)

S1 = {{s0−del(Drop1)∪add(Drop1)},
{s0−del(Drop2)∪add(Drop2)},
. . . ,

{s1−del(Load4)∪add(Load4)}} (5.13)

S1 = {{i0},{i1}, . . . ,{in}} (5.14)

S2 = {{i0−del(Li f t1)∪add(Li f t1)},
{i0−del(Li f t2)∪add(Li f t2)},
. . . ,

{in−del(Unload4)∪add(Unload4)}} (5.15)

S2 = {{ j0},{ j1}, . . . ,{ jn}} (5.16)

�
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Figure 5.12: Exploiting the incompatibility graph for predicate p =lifting
hoist0 crate0. Filled blue circle indicate the bud node. Yellow circles are the
actions. Gray elements will not considered in the exploitation of the graph for
predicate p.
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5.6.2 Results for the removing method

We present in Table 5.4 a summary of the results for detecting problematic macro-
operators from the graph-based approach. A more detailed report is presented in Ap-
pendix C.

Domain M I U R

Barman 152 24 7 18
Blocksworld 10 3 5 0

Depots 1175 565 157 308
Satellite 13 2 1 2

Table 5.4: Results from the graph-based approach to detect problematic macro-
operators. "M" stands for number of macros, "I" number of incompatible macros
found, "U" number of useless macros found and "R" number of redundant macros
found.

Also, we show in Table 5.5 the results, in terms of percentages, for eliminating prob-
lematic macro-operators. Depending on the domain, we remove between 30% and 80%
problematic macro-operators.

Domain % Removed

Barman 32.2%
Blocksworld 80%

Depots 87.6%
Satellite 38.5%

Table 5.5: Percentage of removed problematic macro-operators per domain.

Our graph-based approach is proved to be successful in detecting and eliminating prob-
lematic macro-operators. Now, we need a measure allowing us to select from the re-
maining macro-operators those that will be added to the domain. In the next section, we
will discuss about that selection process.

5.7 Selection process

After using the remedial measures such as the generalisation of the extracted candidates
in macro-operators, and the graph-based approach to remove problematic operators, the
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resulting macro-operators were numerous. Thus, we looked for a measure to decide
which macro-operators will be added to the original domain.

First of all, we observed that the constructed set of macro-operators were neither repre-
sentative nor significant enough in relation to the goals of each domain. For example,
the goal of the satellite domain is to acquire desired images by diving the obser-
vation tasks between satellites. Although, we observe an instantiation of the opera-
tor take-image in every sequence (plan) of our sequence database (corpus of plans),
not a single macro-operator contains this operator. Unless the satellite problems start
with instruments already calibrated and turned towards the image to be taken, at least
the turn-to,take-image candidate should be extracted by using pattern mining algo-
rithms. However, it is not the case, for pattern mining algorithms there are not enough
samples of this candidate having exactly the same objects to consider it as a frequent
pattern.

Additionally, this observation raises another major flaw. If there are not enough samples
of a sequence of operators instantiated with a set of objects A but there are enough sam-
ples of the same sequence of operators instantiated with a set of objects B, only the later
will be extracted as a candidate. Then, when we will generalise candidates as macro-
operators, the lack of all instances of the macro-operator will distort the computation of
the support. Thus, the support obtained with this method is unreliable. Hence, in order
to have an undistort computation of the support, one should use the pattern mining algo-
rithms with a minsup equal to one appearance i.e. minsup = 1

|C| where |C| is the size of
the sequence database.

By following the last approach, we extracted all candidates with a minsup of one appear-
ance but a new problem arised. Because we use closed sequential pattern mining algo-
rithms, more interesting candidates e.g.turn-to, take-image have been consumed
by longer candidates e.g. switch-on, calibrate, turn-to, take-image. In-
deed, the later will be used less frequently than the former since the optimal strategy
to solve satellite observation tasks consists of calibrating each satellite with a specific
mode e.g. infrared and then, repeatedly, turn to each target to take its image. To avoid
this problem, one should use pattern mining algorithms that allow us to extract all the
frequent patterns.

Hence, to prevent the presented problems, one should use pattern mining algorithms
with a minsup equivalent to one appearance that extract all frequent patterns. Though,
that is equivalent to do not use pattern mining algorithms and to compute all combi-
nations of actions for each plan in the sequence database. We can deduce that this
approach is not suitable since it leads to a computational bottleneck. To conclude, we
need an approach allowing to extract macro-operators from the sequence database and
a measure deciding on their utility. Such an approach will be introduced in the next
chapter.
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5.8 Conclusion

In this chapter, we intended to explore the shortcomings of the macro-actions learn-
ing framework from the last chapter. We have shown that the generalisation in macro-
operators of extracted candidates (obtained by using pattern mining algorithms on a
sequence database) is essential. To do that, we presented a method that construct macro-
operators from these candidates and compute its support value.

We have also presented a graph-based approach aiming to validate the created macro-
operators. In this approach, we introduced the concept of incompatible predicates and
we used it as a key to find problematic macro-operators (incompatible, useless and re-
dundant). The graph-based approach proved to be successful in eliminating problematic
macro-operators.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. However, the presented
approaches, namely the construction of macro-operators and the detection of incompat-
ibilities, work well and could be used in other planning applications.

Finally, we concluded in the need for a novel approach allowing to extract macro-
operators and assess in their utility. This approach will be presented in the next chapter.
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6
Planning-oriented pattern mining:

The METEOR framework

If you want something you have never had you must be willing
to do something you have never done.

Thomas Jefferson
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6.1 Introduction

Most existing work on macros are focused on macro-operators instead of macro-actions
since they increase the probability of being used at planning time. In contrast, their
number of parameters also increases the branching factor. To avoid this problem only
useful macro-operators should be added to the domain.

In the last chapter, we explored an approach to generalise extracted candidates (obtained
by using pattern mining algorithms on a sequence database of plans) in macro-operators.
From a set of sequence of actions, extracted by using pattern mining algorithms on a
sequence database of plans, we built a set of macro-operators and we compute their
respective supports (i.e. the number of plans containing at least once the given macro-
operator). Nonetheless, the information extracted from this approach did not allow for a
reliable selection process. Indeed, as we have shown in Chapter 5 the computed support
from this generalisation process was incorrect.

Thus, mining macro-operators from a set of plans requires an approach which ensures to
find the frequent sequences of operators without a loss of information about their char-
acteristics. Then, neither an operator can be dissociated from its objects nor a sequence
of operators can disregard the relationship between operators’ objects. Unfortunately,
a central restriction in traditional pattern mining concerning its expressiveness is that
each item is assumed to be a whole entity without any additional characteristics.

Also, a selection measure is essential to avoid undesirable side-effects of the use of
macro-operators, namely the overload caused by increasing the branching factor in the
search space when adding macro-operators.

In this chapter, we will first present the encoding limitations of traditional pattern mining
algorithms in the extraction of macro-operators. After, we will present our METEOR
framework to mine macro-operators from a set of plans and to select the optimal macro-
operator set. Finally, the results obtained with this new approach will be shown and
discussed.

6.2 Limitations of classical pattern mining algorithms
in planning

Let us briefly summarise some key elements for this section. First, as the most popular
algorithm for pattern mining1, traditional pattern mining algorithms aim to answer to

1Apriori (Agrawal and Srikant, 1994).
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the question: how to identify the sets of items that occur more frequently in the analysed
data? Thus, these algorithms are designed to be applied on data containing entities that
are part of a group e.g. transactions of items bought by costumers, transactions of user
click-stream in a website, transactions of user logs in a set of communication services,
etc. Moreover, if an order property exists between the elements of the analysed data,
classical pattern mining provides algorithms for mining sequential data.

Second, in planning, each plan is composed of an ordered sequence of instantiated op-
erators (aka actions) which in turn are composed of parameters (objects), e.g. π = 〈
pick-up blockA, put-down blockA, pick-up blockB, stack blockB blockA〉.
We can improve the planning performance by learning sequences of operators that occur
frequently in solution plans. Indeed, they reduce the depth of the search space. Thus, a
question arises: how to identify the sequences of operators that occur more frequently
in plan solutions?

In Chapter 4, we have proposed a framework which partially answers this last question.
In other words, by using this framework, we were able to build macro-actions from
the extracted sequences of actions that occur frequently in solution plans. To that end,
we proposed an intuitive formalism to represent a set of solution plans as a sequence
database (more details on the formalism in Chapter 4) and therefore, be able to apply
sequential pattern mining algorithms. However, we observed that the created macro-
actions were not general enough to be used repeatedly through different problems.

Most existing work on macros are focused on macro-operators instead of macro-actions
since they increase the probability of being used at planning time. In contrast, their
number of parameters also increases the branching factor, to avoid this problem only
useful macro-operators should be added to the domain. With that in mind, we came up
with two approaches to address the problem of generalisation.

We presented our first approach in Chapter 5.2. From a set of sequence of actions,
extracted by using pattern mining algorithms on a sequence database of plans, we built
a set of macro-operators and we compute their respective supports (i.e. the number of
plans containing at least once the given macro-operator). Nonetheless, the information
extracted from this approach did not allow for a reliable selection process. Indeed, as
we have shown in Chapter 5 the computed support from this generalisation process is
incorrect.

In this section, we aim to discuss the second approach2, namely, to mine macro-operators
directly from a set of solution plans. Because sequential pattern mining is applied on a
set of sequences (i.e. a sequence database), we were looking for an encoding allowing
to represent the set of plan solutions as a sequence database.

To show the complexity of the task, we will further discuss the encoding used on the
first approach and we will present two others seemingly correct encodings.

2This approach is in line with our original question.
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Let us consider as an example the following set of plan solutions:

π1 = op3(ob j1,ob j2);op1(ob j1,ob j3);op2(ob j1,ob j4)
π2 = op1(ob j5,ob j6);op2(ob j5,ob j7);op4(ob j7,ob j1)
π3 = op1(ob j1,ob j8);op5(ob j10,ob j3);op2(ob j1,ob j11)

π4 = op6(ob j2,ob j9);op1(ob j5,ob j3);op2(ob j5,ob j7)

Here, each πi corresponds to a plan solution for a given problem pi and a planning
domain D. It consists of an ordered set of operators {op j} which are instantiated with
the objects {ob jk}.

Let us briefly recall the encoding used in the first approach: Each plan is considered
as a sequence, and each instantiated operator, as an item in this sequence. It should
be noted that the same identifier is assigned to two different items only if the operators
and objects are exactly the same. By applying this encoding, we obtain the sequence
database in Table 6.1.

Sequence_ID Sequence

S001 {1},{2},{3}
S002 {4},{5},{6}
S003 {7},{8},{9}
S004 {10},{11},{5}

Table 6.1: Sequence database using the encoding from Chapter 4

We can observe that there is no sub-sequence appearing more than once. Although, we
can easily detect four apparitions of the sub-sequence op1({ob jk});op2({ob jk}), one
for each plan in the original set of plan solutions. This discrepancy appears to be the
result of the objects variability. In other words, there are not enough samples of this
sub-sequence having exactly the same objects to consider it as a frequent pattern.

Hereafter, we will focus on the macro-operator op1({ob jk});op2({ob jk}) having a sup-
port of 1. To get around the problem mentioned before, we can mine all frequent pat-
terns with a minsup equal to one appearance i.e. minsup = 1

4 = 0.25. The result is
presented in Table 6.2. By using these patterns to build macro-operators, we are able to
find our macro-operator of interest and to compute the right value for its support. Even
though it worked here, it is worth noting that:

• mining all frequent patterns with such a small minsup, is equivalent to compute
all combinations of instantiated operators for each sequence.

• our sequence database is a small-scale example.

• the number of sub-sequences to analyse is a O(2lmax) where lmax is the maximum
sequence length in the analysed sequence database.
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In a practical case we would expect a maximum plan length of 50 to 80 actions which
would induce, considering that we can analyse one billion sub-sequences per second
(based on an optimistic assumption), a computing time ranging from several weeks to
several million years to analyse the longest plan only.

Sequential
Pattern σ sup

Sequential
Pattern σ sup

{1} 1 0.25 {7} 1 0.25
{1}, {2} 1 0.25 {7}, {8} 1 0.25
{1}, {2}, {3} 1 0.25 {7}, {8}, {9} 1 0.25
{1}, {3} 1 0.25 {7}, {9} 1 0.25
{2} 1 0.25 {8} 1 0.25
{2}, {3} 1 0.25 {8}, {9} 1 0.25
{3} 1 0.25 {9} 1 0.25
{4} 1 0.25 {10} 1 0.25
{4}, {5} 1 0.25 {10}, {5} 1 0.25
{4}, {5}, {6} 1 0.25 {10}, {11} 1 0.25
{4}, {6} 1 0.25 {10}, {11}, {5} 1 0.25
{5} 1 0.25 {11} 1 0.25
{5}, {6} 1 0.25 {11}, {5} 1 0.25
{6} 1 0.25

Table 6.2: Result of mining all frequent patterns on the sequence database in
Table 6.1 with a minsup of 0.25

Now, let us consider another encoding. Once again each plan is considered as a se-
quence, but from now, each word will become an item in this sequence. An item
identifier is assigned to each different word. By applying this encoding, we obtain
the sequence database in Table 6.3. We can easily discard this encoding because the
sequential patterns obtained by mining this sequence database are mostly inconsistent.
Indeed, this encoding does not take into account any delimitation between operators.

Sequence_ID Sequence

S001 {1}, {2}, {3}, {4}, {2}, {5}, {6}, {2}, {7}
S002 {4}, {8}, {9}, {6}, {8}, {10}, {11}, {10}, {2}
S003 {4}, {2}, {12}, {13}, {14}, {5}, {6}, {2}, {15}
S004 {16}, {3}, {17}, {4}, {8}, {5}, {6}, {8}, {10}

Table 6.3: Sequence database using the encoding an item by word

Finally, one could imagine a translation (prior to the encoding) of the set of plans where
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for each plan, each action is generalised to its respective operator and the relations
between the actions are guaranteed. We obtain the following translated set of plans:

π1 = op3(?X0,?X1);op1(?X0,?X2);op2(?X0,?X3)
π2 = op1(?X0,?X1);op2(?X0,?X2);op4(?X2,?X3)
π3 = op1(?X0,?X1);op5(?X2,?X3);op2(?X0,?X4)
π4 = op6(?X0,?X1);op1(?X2,?X3);op2(?X2,?X4)

By using again the first encoding, we consider each plan as a sequence and each operator
as an item. We obtain the sequence database in Table 6.4. We observe the same situation
that has been discussed before, namely, a variability in the parameters leads to a loss in
the observed support.

Sequence_ID Sequence

S001 {1},{2},{3}
S002 {4},{5},{6}
S003 {4},{7},{8}
S004 {9},{10},{11}

Table 6.4: Sequence database using the encoding from Chapter 4 on a previously
translated set of plans.

Mining macro-operators from a set of plans requires an approach which ensures to find
the frequent sequences of operators without a loss of information about their character-
istics. Then, neither an operator can be dissociated from its objects nor a sequence of
operators can disregard the relationship between operators’ objects. In other words, we
are looking for the most frequent sequences of operators with a specific set of object
relationships. Thus, it should be noted that for a same sequence of operators different
set of object relationships lead to the construction of different macro-operators (see Fig-
ure 6.1). Unfortunately, a central restriction in traditional pattern mining concerning its
expressiveness is that each item is assumed to be a whole entity without any additional
characteristics.

Therefore, we are looking for mining macro-operators using an approach with an ex-
pressiveness that allows us to properly describe and process the mentioned planning
requirements. This would allow us to learn as much as we can from past experiences.

Before concluding, let us now turn to another important issue of this work. If we have
two macro-operators with two equal supports but one macro-operator has twice as many
appearances as the other, then at equivalent impacts on the branching factor and at equal
lengths, the first one will be more useful. We therefore also need a reliable measure to
reflect these properties.

This measure should also be able to predict whether a macro-operator does not solve
problems more quickly. It should also represent a return on investment linked to its
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Figure 6.1: Macro-operators from different set of object relationships

length but also linked to the branching factor. Finally, we should be able to aggregate
these measures to have a utility measure not only for a macro-operator but for a set of
macro-operators.

In the next section, we will present our framework to mine macro-operators from a set
of plans and the selection process in order to choose the optimal macro-operator set.

6.3 Description of the METEOR framework

This section presents METEOR, our framework for mining and selecting macro-operators
from previous acquired knowledge. METEOR stands for Macro-operator Extraction,
Trade-off Estimation and Optimisation from plan Recycling.

Indeed, this framework includes two major steps (see Figure 6.2):

1. The extraction of macro-operators from plan recycling by using a pattern mining
inspired algorithm which extracts rich patterns with attribute structures.

2. The estimation of the trade-off between the branching factor increase and the
search depth reduction in order to choose the optimal macro-operator set.

Additionally, the METEOR framework can be used on past plans from the same domain
regardless of the domain characteristics or the planner used to obtain them. The details
of each step will be presented in the following sections.
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Figure 6.2: METEOR framework.

6.4 ERA Algorithm

In the following, we will present ERA, our pattern mining inspired algorithm for mining
macro-operators and its characteristics from past plans. ERA stands for Extraction of
Rich patterns with Attribute structures.

6.4.1 Encoding formalism

For processing purposes, we use the definition 6.1 to represent instantiated operators for
the plans in Table 6.5. As a result, we obtain a dictionary as shown in Table 6.6. Finally,
we use this dictionary and the original plans to obtain the sequence database in Table 6.7
where each sequence corresponds to a plan solution and each number to an instantiated
operator.

Definition 6.1.
A dictionary of instantiated operators is a set of pairs < k,ak >, where ak is the kth

distinct encountered action (aka instantiated operator) in a corpus of plans and k is an
integer referencing to ak.
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ID Plan

pb1 {pick-up b}, {stack b a}, {pick-up c}, {stack c b}, {pick-up d}, {stack d c}

pb2
{unstack b c}, {put-down b}, {unstack c a},{put-down c}, {unstack a d},
{stack a b},{pick-up c}, {stack c a}, {pick-up d}, {stack d c}

pb3
{unstack c b}, {stack c d}, {pick-up b},{stack b c}, {pick-up a},
{stack a b}

pb4
{unstack b a}, {stack b c}, {unstack a d},{stack a e}, {unstack b c},
{stack b a},{pick-up c}, {stack c b}, {pick-up d}, {stack d c}

Table 6.5: Example of plans for blocksworld domain.

k ei

1 pick-up b
2 stack b a
3 pick-up c
4 stack c b
5 pick-up d
6 stack d c
7 unstack b c
8 put-down b
9 unstack c a
10 put-down c
11 unstack a d
12 stack a b
13 stack c a
14 unstack c b
15 stack c d
16 stack b c
17 pick-up a
18 unstack b a
19 stack a e

Table 6.6: Dictionary of instantiated op-
erators for Table 6.5.

πid πi

π1 1,2,3,4,5,6
π2 7,8,9,10,11,12,3,13,5,6
π3 14,15,1,16,17,12
π4 18,16,11,19,7,2,3,4,5,6

Table 6.7: Sequence database from dic-
tionary in Table 6.6 and plans in Table
6.5.

Then, we use the definition 6.2 to represent the elements for the plans in Table 6.5. As
a result, we obtain a dictionary as shown in Table 6.8. Finally, we use this dictionary
and the original plans to obtain the sequence database in Table 6.9 where each sequence
corresponds to an instantiated operator and each number to an element of this operator,
i.e. operator name or parameter.

Definition 6.2.
A dictionary of elements is a set of pairs < k,ek >, where ek is the kth distinct encoun-
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tered element in a set of solution plans and k is an integer referencing to ek.

k ei

1 pick-up
2 b
3 stack
4 a
5 c
6 d
7 unstack
8 put-down
9 e

Table 6.8: Dictionary of elements for
Table 6.6.

oid oi

o1 1 2
o2 3 2 4
o3 1 5
o4 3 5 2
o5 1 6
o6 3 6 5
o7 7 2 5
o8 8 2
o9 7 5 4
o10 8 5
o11 7 4 6
o12 3 4 2
o13 3 5 4
o14 7 5 2
o15 3 5 6
o16 3 2 5
o17 1 4
o18 7 2 4
o19 3 4 9

Table 6.9: Sequence database from
dictionary in Table 6.8 and plans in
Table 6.5.

Thus, we use this encoding formalism to obtain from a corpus of past plans for a given
domain: a sequence database of instantiated operators and a sequence database of action
elements.

6.4.2 Description of the main algorithm

ERA pseudo code is described in Algorithm 9. The objective of this algorithm is
to extract all macro-operators (regardless of their length or up to a maximal length
maxLength ) satisfying a frequency threshold minsup from a set of solution plans. ERA
can detect the apparition of a macro-operator even if the actions composing it are not
adjacent. For each macro-operator, this algorithm also yields the following characteris-
tics:

• support [integer]: the number of plans containing at least one apparition.

• sequences ids [list]: the plan identifiers where the macro-operator appears.

• number of apparitions [list]: the number of apparitions of the macro-operator
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in each plan.

It takes as an input a sequence database C of instantiated operators, a sequence database
of action elements A, a minsup threshold that extracted sequences should ensure, and
the maximal length of sequences to extract.

First, it searches the set of macro-operators of length two in C by using the procedure
MINE (line 7, described in Algorithm 10). Second, for each macro-operator of this set,
if it does not satisfies the minsup threshold we remove it, otherwise we keep the macro-
operator and its characteristics (line 12,13,14). Finally, if no macro-operator has been
found for the current length, it stops. Otherwise, it increases the length by one (line 15)
and it continues to loop until it reaches the maximal length (line 6). It gives as a result
a set of frequent macro-operators of different lengths with its respective characteristics.

6.4.3 The mining procedure

The objective of the mining procedure is to obtain the set of macro-operators of length l
and its characteristics from the set of solution plans. To do so, it analyses for each plan
all sub-sequences of length l and determines if the sub-sequence is a valid apparition3

of a macro-operator. If the algorithm finds a valid macro-operator apparition, it records
this apparition and updates the characteristics related to this macro-operator. To speed
up its computation, it uses previous information obtained when mining length l−1.

The pseudo code of this procedure, called MINE, is described by algorithm 10. It takes
as input both sequence databases C and A from the main algorithm, the length l to be
evaluated and a dictionary M of all found macro-operators (of different lengths less than
l) and their support. The first loop purpose (line 3) is to do all combinations of ordered
sub-patterns for each sequence in C (line 7) and for each sub-pattern, determine if it is a
valid macro-operator and if it is valid in a number of sequences greater than the minsup
parameter. To accomplish this, the following steps are performed:

• It moves on to the next sub-pattern,

– if the sub-pattern of length l−1 does not satisfy the minsup. For that, the
current sub-pattern length should be greater than two in order to be able to
build its identifier4 of length l−1. Then, it checks if this identifier is found
in the general dictionary of pairs <macro-operator,support> (line 10).

– if there are not enough plans left to ensure that the sub-pattern is valid in a
number of sequences greater than the minsup (line 12).

3The actions of the macro-operator can be moved contiguously in the plan without an impact
on the final state or without impeding its execution

4See description in the box computeId
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• Otherwise,

– it removes from the current plan δ the individual actions of the sub-pattern
sp, it builds a macro-action from sp (line 14) and puts it, each time, at a
different position in the plan (line 19). It tries δ (line 20) from the calcu-
lated initial state Si for the original plan ρ (line 6). If the result state ε is
a superset (line 21) of the calculated final state Sg from the original plan
ρ (line 6), then it stops trying positions for this sub-pattern. If it founds
at least one valid position for the built macro-action, it stores the modified
plan with the macro-operator identifier µ as the key access (line 24) and
the macro-operator identifier µ in the list of the macro-operators found in
the plan (line 25). To analyse new apparitions of an already found macro-
action, the algorithm uses the corresponding modified plan (line 16).

The identifier construction procedure takes as input a sub-pattern of instanti-
ated operators sp and a length l. Only the first l elements of sp are kept in
this procedure. A string identifier is built as follows. First, each element e is
translated by using A. Next, the first sub-element of each e is used together
with a character representing the actions. After, we use another character and a
incremental number for each other sub-element of e because they represent the
parameters. Notice that, the incremental number is reset to zero with each new
identifier construction and a same parameter will have the same incremental
number.
Example Let us consider the length l = 2 and the sub-pattern {1,2,3} from the
sequence database of Table 6.7, this sub-pattern represents the actions {pick-up
b, stack b a, pick-up c} and we can observe it, in the first plan from Table 6.5.
We only kept the elements {1,2} and by using the Table 6.9, we translate them
into {1 2, 3 2 4}. We choose the character "a" to represent actions and we
have then {a1 2, a3 2 4}. Finally, we choose the character "p" to represent its
parameters and we obtain the identifier {a1p0a3p0p1}. �

Procedure (computeId: Identifier construction)

Once it has analysed all combinations of sub-patterns of length l from ρ , it moves to
the second loop (line 26). The purpose here is to compute and save or update, the
characteristics of each found macro-operator. Thus, it updates the set of plans where
the macro-operator with identifier µ appeared Appo by adding the index of the current
plan indexPlan (line 27). Also, it computes and stores the number of apparitions in the
plan for the analysed macro-operator (line 28,29). Finally, if the current macro-operator
appears in the plan at least once, the support value is updated by one (line 30) or added
with value of 1 if it did not appear before (line 32).

It gives as a result a set of frequent macro-operators of length l with its respective char-
acteristics. They will be filtered, by using the minsup parameter in the main algorithm,
before to be added to the final set of mined macro-operators.
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Algorithm 9 ERA algorithm - Main algorithm
Input A sequence database C of instantiated operators, a sequence database A of

elements of an action, a minsup parameter and a maximal length maxLength.
Output A dictionary M of pairs < m,s >, m is a macro-operator and s is its

support; a dictionary App of pairs <m,app> app is the id of the sequence
where m appears; a dictionary nbApp of pairs <m,nbApp>, nbApp is the
number of occurrences of the macro-operator m for each sequence.

1: function MININGMACROS(C,A,minsup,maxLength)
2: Mo, App_o, nbApp_o← empty dictionaries
3: M, App, nbApp← empty dictionaries
4: stop← False, l← 2
5: while (l ≤ maxLength)∧ (stop is False) do
6: Mo, App_o, nbApp_o← MINE(C,A,M,l)
7: stop← True
8: for each macro-operator m in Mo do
9: if support(m) ≥ minsup then

10: stop← False
11: add the key m with value s to M
12: add the pair <m,app> to App from App_o
13: add the pair <m,nbApp> to nbApp from nbApp_o
14: increase l by one
15: return M,App,nbApp
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Algorithm 10 Mining macro-operators of length l
Input The sequence database C, the sequence database A, a dictionary M of

pairs < m,s >, m is a macro-operator and s is its support and a length l.
Output A dictionary Mo of pairs < m,s >, m is a macro-operator of length l

and s is its support; a dictionary App_o of pairs <m,app>, app is the id of the
sequence where m appears; and a dictionary nbApp_o of key <m,iP>, iP is
the index of the sequence where m appears, and value nbApp, the number of
occurrences of the macro-operator m in each sequence.

1: function MINE(C,A,M, l)
2: Mo, App_o, nbApp_o← empty dictionaries
3: for each plan ρ in C do
4: D,macroPlan← empty dictionaries
5: idsPlan←{ /0}
6: Si,Sg← calculate initial and final state from ρ

7: P← all combinations of sub-patterns of length l from ρ . †
8: for each ordered subpattern sp in P do
9: if l > 2 then

10: if computeId(sp, l−1) /∈M then skip sp

11: else µ ← computeId(sp, l)
12: if len(C)-indexPlan < minsup−supp(µ) then skip sp
13: else
14: add the key-value < k,{actions(sp)}> to D . k ∈ Z∗−
15: i← 0
16: if µ ∈ macroPlan then δ ← macroPlan[µ]
17: else δ ← ρ

18: while (not ok)∧(i < len(δ )− len(sp)+1) do
19: δ ← remove sp from δ and insert k in δ in position i
20: ε ← execute(Si,δ )

21: if Sg ⊂ ε then ok← True

22: reset δ

23: if ok then
24: add the pair key-value < µ,δ > to macroPlan
25: add µ to idsPlan
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26: for each identifier µ in idsPlans do
27: add the key µ with value indexPlan to App_o
28: nbA← (len(ρ)−len(macroPlan[µ]))

(l−1)
29: add the key < µ, indexPlan > with value nbA to nbApp_o
30: if (nbA > 0)∧ (µ in Mo) then increase support of µ by one
31: else
32: if nbA > 0 then add the key µ with value nbA to Mo

33: return Mo,App_o,nbApp_o

† : the combinations keep the order of apparition in the original plan.

6.4.4 Complexity analysis

The main task of the ERA algorithm is the analysis of a sub-pattern. This task is repeated
for each sub-pattern in a plan, for each plan in the set of solution plans and for each sub-
pattern length. Let us first compute the number of sub-patterns nsp of length k in a plan
ρ of length l(ρ).

nsp is then, the number of ways to choose k elements in l(ρ) elements:

nsp =

(
l(ρ)

k

)
(6.1)

Then, if nMINE is the number of sub-patterns analysed in a execution of the MINE
procedure at length k, we have:

nMINE = ∑
ρi∈C

(
l(ρi)

k

)
(6.2)

In the worst case, the ERA algorithm will mine up to the pattern length L where L is the
maximal plan length in a set of solution plans C. Considering that all plan lengths are
equal to the maximal plan length, we have N, the total number of sub-patterns analysed:

N = ∑
ρi∈C

l(ρi)

∑
k=2

(
l(ρi)

k

)
(6.3)

N = ∑
ρi∈C

2l(ρi)− l(ρi)−1 (6.4)

N = O
(
|C|2L) (6.5)

We show in Equation (6.5) that in the worst case, where the algorithm mines up to the
maximal plan length L, the complexity is exponential in L and linear in the size of the
solution plan set C.
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In practice, we observed that with a high enough minsup parameter, the maximal sub-
pattern length is much lower than the maximal plan length. For example, in our case
we never mined macro-operators longer than eight (for a maximal plan length about 70).
Let D be the maximal sub-pattern length (either forced by the maxLength parameter or
induced by the minsup parameter). The total number of sub-patterns analysed N then
becomes:

N = ∑
ρi∈C

D

∑
k=2

(
l(ρi)

k

)
(6.6)

N = O

(
|C|

D

∑
k=1

O
(

Lk
))

(6.7)

N = O
(
|C|LD) (6.8)

We show in Equation (6.8) that usually we can expect a polynomial complexity in L and
linear in the size of the solution plan set C.

6.5 Selection of the optimal macro-operator set

In the following, we will present the second major step of the METEOR framework,
namely the estimation of the trade-off between the branching factor increase and the
search depth reduction in order to choose the optimal set of macro-operators.

Despite its intuitive correlation with the utility, the support fell short as a reliable a
priori descriptor for macro utility. A good and reliable utility descriptor for planning
performance should be able to answer the following question :

Given a macro set M, is the addition of M to the domain going to improve the perfor-
mance of my planner ?

Under the assumption that most of the planning time is spent computing heuristic values,
a good indicator of planning performance is the number of node opened during the
search process. The gain of a macro m on a plan p (solution of a problem P), G(m; p)5

can then be defined as :

G(m; p) =
N(p)

N(m; p)
(6.9)

where N(p) is the total number of open nodes when solving P with no macros and
N(m; p) the total number of opened nodes when solving P with m added to the domain.

5All notations refer to p since P is unknown.
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Provided the number of opened nodes when solving the training plans (N(p), hereafter
noted N), we propose a new a priori utility estimation for macro-operators :

G(M;C) =
1
|C| ∑p∈C

N(p)
N̂(M; p)

(6.10)

where M is the set of macro-operators to be evaluated, C is the set of solution plans
and N̂(M; p) is the estimated number of opened nodes when solving P with a domain
augmented with all macro-operators in M.

To see how we can derive that value, let us focus on computing the gain of a single
macro m in a plan p (presented in Equation (6.9)).

First, we need to estimate the mean branching factor b of the problem, hereafter called
the initial branching factor, where we consider that :

• there is no heuristic (every possible instance is opened)

• there is no macro added to the domain

• the objects present in the plan are the only objects present in the problem.

To do that, we recover the initial state of the plan (minimal set of predicates so that the
plan can be executed) and compute each state of the plan from that initial state. We then
count the total number of applicable operator instances ni(s) on each state s. The initial
branching factor was estimated as :

b =
1
ns

∑
s∈plan

ni(s) (6.11)

with ns the number of states.

We then estimate the impact of the addition of a macro-operator m on the branching
factor. Let bm be the branching resulting from the addition of m and ∆b be the additional
branching brought by m so that :

bm = b+∆b (6.12)
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Then, if ni(s ;m) denotes the number of applicable instances of the macro m to a state s,
∆b can be computed as :

∆b =
1
ns

∑
s∈plan

ni(s ;m) (6.13)

Let bh be the observed branching factor when the problem P was solved to find p, so
that :

bh
l = N (6.14)

where l is the plan length. Then bh represents the mean branching factor with no macros
when we consider the heuristic. From this we can derive the heuristic factor, i.e., the
performance of the heuristic in the current plan. We chose to model it as a multiplicative
factor to the initial branching factor :

bh = fhb (6.15)

and thus :

fh =
N

1
l

b
(6.16)

By considering the heuristic efficacy constant when macros are added to the domain (i.e.
macros are not considered in the heuristic computation), we have :

N̂(m; p) = ( fh (b+∆b))l−∆l (6.17)

With ∆l the number of actions saved in p by adding m :
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∆l = (|m|−1)napp(m; p) (6.18)

And napp(m; p) the number of valid apparitions of m in p.

This estimation can be extended to sets of non overlapping macro-operators, i.e. a set
where each operator never appears more than once (see Equation 6.19).

M is non overlapping ⇐⇒ ∀m ∈M,o ∈ m =⇒ ∀n ∈M,n 6= m,o /∈ n (6.19)

Example Let us consider macro-operators m1 =pick-up_stack ?X0 ?X1 and m2 =
pick-up_put-down ?X0 from blocksworld domain. These macro-operators are over-
lapping since both have the pick-up operator. If we consider a third macro-operator
m3 =unstack_put-down ?X0 ?X1, we can observe that macro-operators m1 and m3
are not overlapping since they have no common operator. �

For a non overlapping set of macro-operators M = {m1,m2, . . .}, if ∆b(mk; p) and ∆l(mk; p)
denote the respective values of ∆b and ∆l for the macro mk in a plan p then :

N̂(M; p) =

(
fh(p)

(
b(p)+ ∑

m∈M
∆b(m; p)

))l(p)− ∑
m∈M

∆l(m;p)

(6.20)

Finally, the optimal macro set verifies, for the training corpus C :

Mopt = argmax
M

(
G(M;C)

)
(6.21)

The pseudo code of the selection of the optimal macro-operator set procedure, called
computeOptimalMacroSet is described in algorithm 11. It takes as input a set of macro-
operators M and it tries to find the set of macro-operators that maximises the gain.

To accomplish that, it takes each macro-operator in M as a initial optimal set (line 4) and
it tries to find the best gain by adding other macro-operators from M to this temporal
optimal set (line 11). For that, if it founds a macro that increases the current gain, it
adds this macro to the temporal set and continues to loop (always from the initial macro
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in the first loop) until no more macros can be added (line 12-21). For each found set if
its gain is greater than the maximal gain, then it becomes the new optimal set and the
maximal gain is updated with its gain (line 22-24). Finally, it continues to loop until all
macro-operators have been tried as a initial optimal set.

It gives as a result an optimal set of macro-operators according to the Equation 6.21.

Algorithm 11 Selection of the optimal macro-operator set
Input A set of macro-operators M.
Output An optimal set of macro-operators oS according to the Equation 6.21.

1: function COMPUTEOPTIMALMACROSET(M)
2: maxGain← 0
3: sortedMacros← sort M by decreasing order of macro gain
4: for each macro in sortedMacros do
5: currentOptimalSet←{ /0}
6: add macro to currentOptimalSet
7: currentGain← gain(macro)
8: done← False
9: while not done do

10: macroAdded← False
11: for each macro m in sortedMacros do
12: if m /∈ currentOptimalSet then
13: if m non-overlapping currentOptimalSet then
14: newGain← gain(currentOptimalSet) . †
15: if newGain > currentGain then
16: macroToAdd← m
17: macroAdded← True
18: currentGain← newGain
19: if macroAdded then
20: add macroToAdd to currentOptimalSet
21: else done← True
22: if currentGain > maxGain then
23: update oS with currentOptimalSet
24: maxGain← currentGain
25: return oS

† : Gain computed according to Equations 6.10 and 6.20.
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This algorithm performs in polynomial time. In the worst case, it would perform in
O(|M|3). As we will see in Section 6.7, |M|3 is very low against the complexity of the
ERA algorithm and it is negligible when considering the global execution time.

6.6 Evaluation of the METEOR framework

In the following, an evaluation of the METEOR framework is proposed. We present the
methodology to conduct the evaluation and our evaluation criteria. In the next section,
we show and discuss some interesting results obtained by doing this evaluation.

6.6.1 Methodology

The evaluationwas based on the same four benchmarks of the evaluation of Chapter 4:
barman, blocksworld, depots and satellite. They are described in more detail in
Appendix A. These benchmarks problems were taken from past International Planning
Competitions6.

For each benchmark, a training set of problems of 1000 problems and a test set of 30
problems were generated. The problem generation stage uses the generators7 from the
International Planning Competition. In addition, it ensures that the generated problems
can be different even using the same parameters. In Table 6.10, we show the parameters
used for the generation of problems for each benchmark domain.

We used a heuristic search planner based on A* search strategy, from the PDDL4J 8

library, to obtain a set of solution plans from the training set of problems. We followed,
for each benchmark, the METEOR framework described before with a minsup of 0.85
and an infinite maximum length for the ERA algorithm. Then, we used each obtained
optimal set of macro-operators to enhance each original domain. Finally, we evaluated
METEOR as a good framework to learn macro-operators from past plans and decide
on the utility of them. For that, we solved the set of test problems using the original
domain, and then, using the enhanced domain. We compared the obtained results by
using our evaluation criteria which will be described in the next section.

Experimental setup
The macro-operator learning steps (see Figure 6.2) were done on a notebook with an
Intel Core i7-4710MQ quad-core CPU clocked at 2.5GHz and with 8GB of RAM, run-
ning MS Windows v8.1. The evaluation of the framework was conducted on a notebook

6http://icaps-conference.org/index.php/Main/Competitions
7https://bitbucket.org/planning-tools/pddl-generators
8https://github.com/pellierd/pddl4j

128



Domain Parameters Range

Barman
cocktails 1-30
ingredients 1-13
shots 1-30

Blocksworld blocks 5-30

Depots

depots 1-5
distributors 1-3
trucks 1-4
pallets 1-8
hoists 1-8
crates 1-20

Satellite

satellites 1-6
instruments 1-2
modes 1-8
targets 1-2
observation 1-20

Table 6.10: Parameters for the generation of problems

with an Intel Core i7-4980HQ quad-core CPU clocked at 2.8GHz and with 16GB of
RAM, running OS X Mojave v10.14.1.

In the evaluation, to solve each problem from the test set, a maximum of 8GB of memory
was allocated and a time limit of 600 seconds was set in the planner. The experiments
have been done in a non-graphical terminal session.

6.6.2 Evaluation criteria

Unlike other works, we did not base our evaluation only on the classical IPC score. IPC
score9 is intended, as the name implies, to give a score to rank different strategies. In
other words, by using IPC score we can decide which strategy is better than another, but
it does not quantify the gain.

Here, on top of the IPC ranking, we wanted to quantify the impact of enhancing plan-
ning domains by adding the found optimal set of macro-operators obtained with the
METEOR framework. In this perspective, we used for this evaluation the same differ-
ent criteria established in Chapter 4: the planning time metric GT , the space size metric

9As defined in the Learning track of the 7th International Planning Competition
(Jiménez Celorrio et al., 2011)
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GN and the plan quality metric GQ, according to Equations 4.1, 4.2 and 4.3. In addi-
tion, in order to prevent inaccuracies in the actual evaluation, we only kept the problems
solved in a time greater than 0.1 seconds.

6.7 Results

In this section, we present the results of the evaluation following the steps of the METEOR
framework.

For each domain, the number of mined macro-operators, the length of the longest
macro-operator found and its optimal set of macro-operators are presented in Table
6.11. Among the four domains, barman domain present the most significant number
of mined macro-operators but these results, clearly, suggest that the number of mined
macro-operators is related to the characteristics of the domain. Also, notice that each op-
timal set is composed of two macro-operators, however, there was no restriction about
the number of macro-operators in the optimal set.

Domain # macro-operators l Optimal set†

Barman 52 8
macro-6-actions-0-10-11-8-9-0
macro-5-actions-6-5-2-7-3

Blocksworld 6 3
macro-2-actions-3-1
macro-2-actions-0-2

Depots 10 4
macro-4-actions-1-3-1-3
macro-2-actions-4-2

Satellite 13 5
macro-2-actions-1-3
macro-2-actions-0-4

Table 6.11: Number of mined macro-operators, the length of the longest macro-
operator found and the selected optimal set for each domain.
† The translation of the operators and the full report given by the approach can
be found in Appendix B.

After the extraction and optimisation step, the optimal set of macro-operators was added
to the original domain. Now, we present the results obtained by solving the problem test
set with the original domain and with the enhanced domain.

The time performance for each domain and for each problem is presented in Figure 6.3
and Figure 6.4. Here, problems are ordered in the x-axis with respect to their difficulty,
i.e. the time required to solve it with the original domain, and the search time is showed
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in seconds in the y-axis using a log10 scale. If the problem was not solved either using
the original domain or the enhanced domain, it was ignored. The enhanced domain
was found to solve more problems and faster than the original domain for all evaluated
domains.

In order to quantify the behaviour observed in previous graphs, Figure 6.5 and Figure
6.6 display the planning time impact of the enhanced domains compared to the original
domain. This impact is showed in terms of the log10 value of GT in the y-axis for
each problem in the x-axis. Remember that, for problems coloured in red, the gain is
underestimated since the original domain did not solve them. Also, we only analysed
problems solved in a time greater than 0.1s. Thus, we observed that the gain ranges are
very significant. The domains present a similar behaviour, and even when the barman
domain presents the lowest gains, they are still important.

Table 6.12 summarises the time performance results for each domain by presenting the
well-known IPC score but also our planning time metric GT . As stated before, the
former allow us to decide which strategy is better than another, but the later quantifies
the average time gain.

IPC ScoreDomain
Original domain Enhanced domain

GT

Barman 7.6 23 34.95
Blocksworld 11.3 22 182.91
Depots 2.2 26 163.9
Satellite 15 30 201.16

Table 6.12: Results represented as IPC Score and average time gain for each
domain.

The impact in the size of the final search space is given in Figure 6.7 and Figure 6.8.
Indeed, they present the number of nodes explored in the y-axis for each problem in the
x-axis. This number is presented in terms of the log10 value of N. The final space size
was best impacted when using the enhanced domain. As the use of macro-operators is
supposed to provide a way to go deep quickly into the search space, this behaviour was
expected.

The length of the found plans, for each domain, when using the original domain, in
comparison to the length of the found plans when using the enhanced domain are shown
in Figure 6.9 and Figure 6.10 show. For each problem in the x-axis, the plan length of
the found plan is plotted in the y-axis. We observe a slightly difference between length
of plans, often it is within 5.

Finally, Table 6.13 summarises these last observations by showing the average impact
in the final space size GN and the average impact in the length of the plans GQ for each
domain. Thus, we observed that the enhanced domain provides a positive impact in the
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(a) Barman

(b) Blocksworld

Figure 6.3: Search time performance for barman and blocksworld domains.
In blue (resp. in green), the time performance for problems solved with the
original domain (resp. enhanced domain). In red, the problems not solved with
the original domain but solved with the enhanced domain.
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(a) Depots

(b) Satellite

Figure 6.4: Search time performance for depots and satellite domains. In
blue (resp. in green), the time performance for problems solved with the original
domain (resp. enhanced domain). In red, the problems not solved with the
original domain but solved with the enhanced domain.
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(a) Barman

(b) Blocksworld

Figure 6.5: Time gain for barman and blocksworld domains. In blue, the gain
for problems solved with the original domain and with the enhanced domain.
In red, the gain for problems that were not solved with the original domain but
solved with the enhanced domain. Thus, the gain is underestimated.
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(a) Depots

(b) Satellite

Figure 6.6: Time gain for depots and satellite domains. In blue, the gain for
problems solved with the original domain and with the enhanced domain. In red,
the gain for problems that were not solved with the original domain but solved
with the enhanced domain. Thus, the gain is underestimated.
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final search space without drastically decreasing the quality of the plans.

Domain GN GQ

Barman 49.30 0.89
Blocksworld 437.05 0.94
Depots 227.88 0.89
Satellite 54.62 0.98

Table 6.13: Results represented as the average impact in the final space size GN
and the average impact in the length of the plans GQ for each domain.
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(a) Barman

(b) Blocksworld

Figure 6.7: Number of explored nodes for barman and blocksworld domains.
In blue (resp. in green), the nodes for problems solved with the original domain
(resp. the enhanced domain). In red, the nodes for problems that were not solved
with the original domain.
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(a) Depots

(b) Satellite

Figure 6.8: Number of explored nodes for depots and satellite domains. In
blue (resp. in green), the nodes for problems solved with the original domain
(resp. the enhanced domain). In red, the nodes for problems that were not solved
with the original domain.
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(a) Barman

(b) Blocksworld

Figure 6.9: Plan length for each problem in barman and blocksworld domains.
In blue (resp. in green), the plan length for problems solved with the original
domain (resp. the enhanced domain).
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(a) Depots

(b) Satellite

Figure 6.10: Plan length for each problem in depots and satellite domains.
In blue (resp. in green), the plan length for problems solved with the original
domain (resp. the enhanced domain).
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6.8 Discussion

This chapter present and assess the METEOR framework. We assumed that the prob-
lem solving task would show better performances when using a domain enhanced with
macro-operators learned through our framework from previous experiences. Indeed, our
framework was conceived for mining macro-operators from previous acquired knowl-
edge, and for selecting the optimal set of macro-operators that maximises the node gain.
Our approach has the advantage that it can be used on past plans from a given domain
regardless any domain characteristic or the planner used to obtain those plans.

The mining phase was done by using the presented ERA algorithm on past plans. The
filter step in our algorithm was inspired from the Apriori (Agrawal and Srikant, 1994)
pattern mining algorithm, i.e. for mining a pattern of length l, we consider if its sub-
patterns of length l− 1 satisfying the minsup. In addition, as an answer to the present
work, our algorithm has the particular feature of being able to mine patterns with at-
tribute structures, as is the case with macro-operators. Results in this phase were con-
sistent (Table 6.11) since our algorithm successfully mined valid macro-operators of
different lengths for different domains. It is possible that domains having longest task
sequences (e.g. barman with twelve primitive operators) with a high support causes
a big number of macro-operators because all its sub-sequences will also have a high
support.

The selection phase was essential to avoid unwelcome side-effects of the use of macro-
operators, namely the overload caused by increasing the branching factor in the search
space when adding macro-operators. Thus, for a set of macro-operators, we have cho-
sen to optimise this trade-off between the branching factor increase and the search depth
reduction. It resulted in an optimal set of macro-operators for each domain (Table 6.11).
Although there was no limitation about the number of macro-operators in the optimal
set, each one was composed of two macro-operators. These findings led us to believe
that the gain is often maximised with two macro-operators. These results are in agree-
ment with those of Botea et al. (2005b). They allow only the two best macro-operators
resulting from a training step and in their used domains (depots, satellite and rover),
their experiments showed that using only one or two macros was helpful for reducing
the search. Besides, resulting optimal sets show that our selection phase can success-
fully find as an optimal set, macro-operators of different lengths. However, the selected
optimal set can only be composed of non-overlapping macro-operators.

We used the resulting optimal set of macro-operators to enhance the original domain
and we evaluated our framework by analysing elements such as the improvement in
the runtime, the number of explored nodes and the plan length. Problem solving was
more efficient by using the enhanced domain compared to the original domain. The
gain ranges were very significant and the domains presented a similar behaviour. Even
when the barman domain presents the lowest gains, they are still important (34 times
faster). It is possible that the non-overlapping restriction, when finding the optimal set,
has an impact in this domain. Regarding the impact in the final size of the search space,
results showed an impressive improvement in blocksworld domain when using the
enhanced domain (Table 6.13). By looking more closely at its individual data, we found
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that the enhanced domain has done exceptionally well for two complex problems. If
we remove them from the computations, GN is in the same order of magnitude as for
the other domains. As the use of macro-operators is supposed to provide a way to go
deep quickly into the search space, this behaviour was expected. Globally, plan length
slightly increased when using the enhanced domain but the difference was not more
than 5 actions.

In summary, our framework has proven to successfully mine macro-operators of differ-
ent lengths for different domains and thanks to the selection phase, be able to deliver a
positive impact in the search time without drastically decreasing the quality of the plans.

6.9 Conclusion

Our objectives in this chapter were twofold: (1) to provide a way out of the limitations of
sequential pattern mining in planning; (2) to came up with a selection measure allowing
us to avoid undesirable side-effects of the use of macro-operators. We then presented
a novel approach called METEOR which ensures to find the frequent sequences of
operators from a set of plans without a loss of information about their characteristics.

Our METEOR framework was conceived for mining macro-operators from previous ac-
quired knowledge, and for selecting the optimal set of macro-operators that maximises
the node gain. The mining phase was done by using the presented ERA algorithm on
past plans. For the selection phase, we have chosen to optimise the trade-off between
the branching factor increase and the search depth reduction. Our approach has the ad-
vantage that it can be used on past plans from a given domain regardless any domain
characteristic or the planner used to obtain those plans.

Our framework has proven to successfully mine macro-operators of different lengths for
different domains and thanks to the selection phase, be able to deliver a positive impact
in the search time without drastically decreasing the quality of the plans.
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7
Conclusion and Perspectives

A great accomplishment shouldn’t be the end of the road, just
the starting point for the next leap forward.

Harvey Mackay

7.1 Summary of contributions . . . . . . . . . . . . . . . . . 144

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 150

This thesis contributes mainly to the field of automated planning, and it is more specifi-
cally related to learning macros for classical planning.

We studied the following research questions:
Research question #1

Is there a monotonic relationship between the frequency of apparition of a macro
and its utility? i.e. can the frequency alone be used as an estimator for macro

ranking by utility?

Research question #2
Can we learn routines from past experiences that are not only frequent but above

all useful?
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For approaches extracting macros from past experiences, an assumption often used is
that frequent sequences of actions are potentially good candidates to enhance the do-
main. This assumption is then related to the first research question. We, therefore, chose
the sequential pattern mining technique to exploit this hypothesis. This technique from
the field of data mining aims to analyse sequential data to discover frequent sequential
patterns.

To answer the first research question, we studied the possibility of extracting macro-
actions (i.e. sequences of actions with known objects) via sequential pattern mining
algorithms and selecting useful macro-actions based on their frequency (Chapter 4). As
we found some discrepancies in the results of the precedent study, we wanted to explore
them. We then transposed the study to macro-operators (i.e. sequences of actions with
variable objects), and we proposed a new approach to validate the generated macros
(Chapter 5). This approach proved to be successful in eliminating problematic macro-
operators. However, we found out that the frequency alone may not provide a consistent
selection of useful macro-actions.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. Then, to answer the sec-
ond research question, we proposed a novel approach which ensures to find the frequent
sequences of operators from a set of plans without a loss of information about their
characteristics (Chapter 6). It proved to successfully mine macro-operators of different
lengths for four different domains and thanks to the selection phase, be able to deliver a
positive impact on the search time (underestimated gain between 7 times and 200 times
faster) with little influence on the quality of the plans (plan length difference was not
more than 5 actions).

In the following, we first provide a reminder of our contributions. Then, we present
the limitations of this work and finally, we introduce perspectives for future research
directions.

7.1 Summary of contributions

7.1.1 Exploration of the link between macro-action frequency
and macro-action utility

We proposed a framework to extract macro-actions (i.e. sequences of actions with
known objects) via sequential pattern mining algorithms. We based the selection phase
on filter structures provided by sequential pattern mining. On the one hand, the sup-
port, which filters patterns based on the frequency of apparition. On the other hand, the
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closed frequent pattern set, which includes only patterns that are not included in another
pattern having the same support.

Under this framework, i.e. the construction of macro-actions from extracted sequences
of actions (not necessarily adjacent), we found out that regardless of the domain, the
frequency alone may not provide a consistent selection of useful macro-actions. If there
was a link between macro-actions frequency and macro-actions utility, from our study,
we can conclude that the effect of this link is very weak compared to the negative effect
caused by the lack of macro-actions generality and the use of non-adjacent actions.

7.1.2 Removing problematic macro-operators

In an attempt to diminish the influence of confounding factors (i.e. the lack of macro-
actions generality and the use of non-adjacent actions) from the precedent study, we
generalised macro-actions into macro-operators (i.e. sequences of actions with variable
objects). We noticed that some of the created macro-operators were invalid (i.e. they
cannot be applied to solve a problem) because of the extraction of sequences of not
adjacent actions leading to the incompatibility of some predicates.

We proposed a formalism to identify three types of problematic macro-operators: the
incompatible macro-operators, the useless macro-operators and the redundant macro-
operators. The incompatible macro-operators cannot be applied during planning search
because of the incompatibility of their predicates (e.g. handempty incompatible with
put-down blockA). The useless macro-operators can be applied during planning search,
but their application is equivalent either to do nothing (i.e. no changes in the state) or
to use a primitive operator. The redundant macro-operators can be applied during plan-
ning search, but their application is equivalent to use a simpler macro-operator (i.e. a
macro-operator with fewer actions).

The first type results from macro-operators created from sequences of actions whose
actions do not appear contiguously in the solution plans. The second and the third type
result from macro-operators created either from sequences of actions extracted from
non-optimal solution plans or from sequences of actions whose actions do not appear
contiguously in the solution plans.

From the definition of our formalism, we developed an algorithm to reduce problematic
macro-operators by using a method which automatically detects predicates incompati-
bility. This approach proved to be successful in reducing problematic macro-operators.
Because of its generality, it could be used in other planning applications.

However, we noticed that the use of sequential pattern mining led to a lack in the detec-
tion of all instances of a macro-operator. This conducted to an unreliable computation
of the support. Despite the efforts, we find ourselves in a dead-end with the selection
process because the pattern mining filtering structures are not adapted to planning.
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7.1.3 METEOR framework

We provided a domain-independent learning framework that identifies sequences of ac-
tions (even non-adjacent) from past solution plans and selects the most useful macro-
operators, based on a priori evaluation, to enhance the planning domain. It consist of
two phases:

1. Extraction phase: We developed ERA, a pattern mining inspired algorithm
which extracts rich patterns with attribute structures. It allows then to extract
macro-operators from plan recycling and their characteristics (support, sequences
ids where the macro appears and number of apparitions by sequence). We believe
that this algorithm without the planning module can be a contribution to the pat-
tern mining community.

2. Selection phase: We presented a formalism for the estimation of the trade-off
between the branching factor increase and the search depth reduction not only
for a single macro (as usually presented in the literature) but for a set of macros.
By following this formalism, we developed an algorithm to choose an optimal
macro-operator set that maximises our metric based on the a priori node gain.

Below, we highlight the advantages of our work:

• Planner independent, we do not need to modify the planner’ structure.

• Domain-independent, the framework does not need a priori knowledge on the
domain.

• Non-adjacent actions, we can identify routines from a sequence of adjacent and
non-adjacent actions.

• A priori evaluation, there is no need to re-solve past problems to select the most
useful routines.

• An optimal set of routines, we can identify not only useful routines but the optimal
set to enhance a domain.

Our framework has proven to successfully mine macro-operators of different lengths
for four different domains (barman, blocksworld, depots, satellite) and thanks to the
selection phase, be able to deliver a positive impact on the search time (underestimated
gain between 7 times and 200 times faster) with little influence on the quality of the
plans (plan length difference was not more than 5 actions).

We present a comparative table between METEOR and other macro learning methods in
Table 7.1 and Table 7.2. We observe that METEOR framework provides the most advan-
tageous in the presented features. However, our framework presents some limitations
that will be discussed in the next section.
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7.2 Limitations

7.2.1 Incompatibilities for inertia predicates

As defined by Koehler and Hoffmann (1999), inertia predicates represent propositions
that are never produced or consumed by any operator. In the implementation of the
incompatibility graph (see Chapter 5 Section 5.6), these predicates can be added to a
predicate layer Ln+1 during an expansion phase since they can be preconditions of some
actions of the action layer Ln. During the link phase, however, inertia predicates can be
linked neither to the top action layer because they do not appear as positive effects of
any action, nor to the bottom action layer because they do not appear as negative effects
of any action. Therefore, we cannot infer any incompatibilities for inertia predicates.

Besides, the transitivity property cannot infer any incompatibilities for inertia predicates
either. In order to apply this property to two predicates, we must know part of their
incompatibilities. We extract initial incompatibilities from the incompatibility graph,
but as stated before this method cannot infer any incompatibilities for inertia predicates.

However, our main goal is to remove problematic macro operators. We eliminate them
after detecting some incompatible predicates and the specific characteristics for each
kind of problematic macro operator. In other words, to decide on whether or not a
macro operator is problematic, we need to have at least two predicates mutually in-
compatible in its preconditions. Experimentally, we observed that most problematic
macro-operators were captured.

7.2.2 Slight modification of the planner

The formalism proposed in Chapter 6 supposes that the heuristic has the same behaviour
with or without macro-operators. Then, to have this assumption as accurate as possible,
we ignore macro-operators during the heuristic computation. Besides that, we do not
need to change any other structure of the planner or the way the planner behaves, i.e.
apart from the heuristic computation, macro-operators and operators are indistinguish-
able. For a relaxation-based heuristic, we believe that not using macro-operators in the
heuristic is an advantage rather than a limitation since they may cause more plateaus
and thus, loose part of their guiding power for the search.

7.2.3 Set of non overlapping macro-operators

The selection phase of our METEOR framework is based on a formalism for the es-
timation of the trade-off between the branching factor increase and the search depth
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reduction not only for a single macro (as usually presented in the literature) but for a set
of macros. The algorithm of this selection phase chooses an optimal macro-operator set
that maximises our metric based on the a priori node gain.

We, therefore, propose a new method to choose macro-operators that will enhance the
planning domain. Although our method can only be applied to find a set composed
of non overlapping macro-operators (see Chapter 6 Section 6.5), i.e. a set where each
operator never appears more than once, it is the only limitation. Indeed, we have no
limitations on the length of macro-operators (Dawson and Siklossy, 1977; Botea et al.,
2005a; Dulac et al., 2013), or on the number of preconditions of the operators that
compose a macro-operator (Jonsson, 2009) or on the number of macros to add to the
planning domain (Dulac et al., 2013; Chrpa et al., 2014). We believe that this limitation
is not too restrictive. Intuitively, macros sharing operators will probably have the same
or a similar objective.

7.3 Perspectives

We have identified several research perspectives to extend this work.

Extend the study of the link between the frequency of a macro and its utility.

In this work, we explored the link between macro-action frequency and macro-action
utility, for macro-actions built from sequences of actions (not necessarily adjacent) ex-
tracted using pattern mining algorithms on a set of solution plans.

More studies are required to investigate the link between frequency and utility under this
framework, i.e. the construction of macro-actions from extracted sequences of actions
(not necessarily adjacent), without the influence of confounding factors such that the
lack of macro-actions generality and the presence of invalid macro-actions.

The study can be extended in different ways:

• the link between the utility of valid macro-actions built from sequences of actions
not necessarily adjacent and their frequency.

• the link between the utility of valid macro-operators built from sequences of
actions not necessarily adjacent and the reliable computation of their frequency.
Notice that we do not recommend the use of pattern mining algorithms since
they lead to an unreliable computation of the frequency via the macro-action
generalisation method.

Study of different metrics for the total gain of a set of macro-operators.
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In the selection phase of our METEOR framework, we first compute the macro set gain
for each plan in the set of solution plans and then, we aggregate these gains to obtain
the macro set gain over the set of solution plans. This lead us to a metric based on the
arithmetic mean. However, outliers could influence this metric. For example, it could
favour a macro with an exceptional utility on some solution plans but very limited utility
on the rest of the set of solution plans.

Some metrics may be more appropriate to the great difference in the gains found in
a set of solution plans. For example, the average log (geometric mean) of the gains
could respond better to low gains. Another metric could be a weighted arithmetic (or
geometric) mean which takes into account the complexity of each planning task. For
example, a gain on a very difficult plan may be more valuable than a similar gain on a
trivial plan. Finally, we could prefer a macro with more consistent performances than a
macro with very erratic utility (i.e. sometimes very high but sometimes very low utility).
This would lead to a metric based on the weighted difference between the average gain
and the gain standard deviation.

Incremental learning

Intuitively, the macro-operators extracted and selected are dependent on our learning set
of solution plans. Therefore, the effectiveness of macro-operators used on a planning
domain is dependent on how well the problems in the training set represent the problems
encountered during the application.

In addition, it is conceivable that in real learning, the objectives to be met could change
periodically. Let us consider as example, a change in the products to be manufactured
in a production line. A production line is in charge of three tasks: A, B and C. A change
occurs: task A is removed and a new task D is added. The system must therefore forget
the macro-operator that achieves task A and learn the macro-operator that achieves task
D.

To overcome this problem, an incremental learning system could be implemented. First,
the learning set of solution plans would consist of a sliding window of n past plans.
Second, every m solved plans the system would forget its experiences and start a new
learning process from scratch. Obviously, n and m would be very important parameters
and they will be one of the main concerns of this study.

For small values of n, the computation time would be low as well as the reaction time,
but learning would not be robust against small variations in the objectives. For large
values of n, there would be some delay between an actual changing objective and the
adaption of the system. Finally, we would like m as small as possible depending on the
computation time constraint on n.
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A
Benchmark domains

These benchmarks problems were taken from past International Planning Competitions1.

For each benchmark domain, we present:

• A description.

• The generator parameters.

• The domain objects and their respective types.

• A graphical description of the operators domain.

A.1 Barman

A.1.1 Description

A robot barman manipulates drink dispensers, glasses and a shaker. The goal is to find
a plan of the robot’s actions that serves a desired set of drinks. In this domain deletes of
actions encode relevant knowledge given that robot hands can only grasp one object at
a time and given that glasses need to be empty and clean to be filled.

1http://icaps-conference.org/index.php/Main/Competitions
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Parameters

• number of cocktails

• number of ingredients

Objects

Robot Barman

Dispensers

Glasses

Shaker
Container

Left hand

Right hand

Figure A.1: Barman objects

Figure A.2: Barman object types

Operators
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:action    GRASP

:action    LEAVE

:action    GRASP

:action    POUR-SHOT-TO-CLEAN-SHAKER

:action    POUR-SHOT-TO-USED-SHAKER

hand
container

hands

h1

h2
dispenser

level 1

level 2

level 1

level 0

level 2

level 1

:action    PREFILL-SHOT

:action    EMPTY-SHOT

:action    CLEAN-SHOT

:action    SHAKE

:action    POURTSHAKED-TO-SHOT

:action    EMPTY-SHAKER :action    CLEAN-SHAKER

h1

h2

h1

h2

level P

level P

level P1 level P1

h1

h2

h1

h2

level P1

Figure A.3: Barman operators
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A.2 Blocksworld

A.2.1 Description

It consists of a set of blocks settled on a table and a mechanical hand. The hand can
move one block at a time to perform one of the following actions: place it on another
block, place it on the table, pick it from the table or removes it from another block. The
goal is to build one or more vertical stacks of blocks.

Parameters
• number of blocks

Objects
• Block

Operators

:action    PICK-UP

:action    PUT-DOWN

:action    UNSTACK

:action    STACK

Figure A.4: Blocksworld operators

A.3 Depots

A.3.1 Description
This domain is a combination of a transportation domain and the Blocksworld domain.
The transportation element of the task is to move crates from one depot to another using
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trucks. The blocksworld element arises due to the need to stack and unstack crates,
with the amount of space on the ’table’ being limited by the number of pallets at each
location. Hoists server the function of the robot arm, doubling as the mechanism by
which crates are loaded/unloaded onto/from trucks. The goal is to find a plan where
crates are stacked appropriately at their destinations.

Parameters
• number of depots

• number of distributors

• number of trucks

• number of pallets

• number of hoists

• number of crates

• number of ingredients

Objects

Truck

Hoist

Pallet

Crate

Depot

Distributor

Surface

Place

Figure A.5: Depots objects

Place Locatable

Depot Distributor Truck Hoist Surface

Pallet Crate

Figure A.6: Depots objects types
Operators
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:action    LIFT

:action    DROP

:action    LOAD

:action    UNLOAD

place

pallet

place truck truckplace

:action    DRIVE

place X

truck

place Y

truck

Figure A.7: Depots operators
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A.4 Satellite

A.4.1 Description

In this domain there is a set of satellites equipped with different instruments, which
can operate in different modes. The goal is to acquire desired images, dividing the
observation tasks between the satellites, based on the capabilities of their instruments.

Parameters

• number of satellites

• number of instruments

• number of modes

• number of targets

• number of observations

Objects

• satellite

• instrument

• direction

• mode

Operators
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:action    SWITCH_ON

:action    SWITCH_OFF

:action    TURN_TO

d
ir

e
ct

io
n

 Y

dire
ct

io
n X

instru
ment 

ON
instru

ment 

OFF

power_availa
ble

no power_availa
ble

:action    CALIBRATE

:action    TAKE _IMAGE

dire
ctio

n

d
ir

ec
ti

o
n

dire
ctio

n

(mode)

infrared, etc

in
st

ru
m

ent 
O

N

in
st

ru
m

ent 

CA
LI

BRATE
D

calibration 

target

Figure A.8: Satellite operators
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B
Understanding results: operators

translation and full report

B.1 Barman

B.1.1 Operators translation

0: grasp
1: leave
2: fill-shot
3: refill-shot
4: empty-shot
5: clean-shot
6: pour-shot-to-clean-shaker
7: pour-shot-to-used-shaker
8: empty-shaker
9: clean-shaker

10: shake
11: pour-shaker-to-shot
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B.1.3 Macro analyser log

macro-2-actions-3-1--1000 : total Gain = 0.09577121805998921
macro-2-actions-2-7--1001 : total Gain = 0.011679458833872667
macro-2-actions-10-11--1002 : total Gain = 0.8413896113524574
macro-2-actions-0-2--1003 : total Gain = 0.07146436302150379
macro-2-actions-6-5--1004 : total Gain = 1.306082546379102
macro-2-actions-0-10--1005 : total Gain = 0.9260495081948406
macro-2-actions-9-1--1006 : total Gain = 0.40335631667120797
macro-2-actions-7-3--1007 : total Gain = 0.06398043137259492
macro-2-actions-9-0--1008 : total Gain = 1.6838690121344482
macro-2-actions-5-2--1009 : total Gain = 3.311917328034674
macro-2-actions-11-8--1010 : total Gain = 0.8413896113524574
macro-2-actions-0-6--1011 : total Gain = 0.6765093034230286
macro-2-actions-8-9--1012 : total Gain = 0.40335631667120797
macro-2-actions-2-6--1013 : total Gain = 0.3289867762519236
macro-3-actions-2-7-3--1014 : total Gain = 0.06091256610049259
macro-3-actions-6-5-2--1015 : total Gain = 4.058107415362549
macro-3-actions-0-6-5--1016 : total Gain = 2.38894238784685
macro-3-actions-8-9-1--1017 : total Gain = 0.7985696613288876
macro-3-actions-8-9-0--1018 : total Gain = 2.9465929819029277
macro-3-actions-0-10-11--1019 : total Gain = 2.032888067461868
macro-3-actions-7-3-1--1020 : total Gain = 0.0028072000981503795
macro-3-actions-2-6-5--1021 : total Gain = 0.6562502368423868
macro-3-actions-0-2-6--1022 : total Gain = 0.15401426663115156
macro-3-actions-5-2-7--1023 : total Gain = 11.349024474245716
macro-3-actions-10-11-8--1024 : total Gain = 1.602105675220187
macro-3-actions-11-8-9--1025 : total Gain = 1.602105675220187
macro-4-actions-0-6-5-2--1026 : total Gain = 4.312695368579807
macro-4-actions-2-6-5-2--1027 : total Gain = 0.2127831090586036
macro-4-actions-5-2-7-3--1028 : total Gain = 30.757761367764267
macro-4-actions-10-11-8-9--1029 : total Gain = 3.076830260901096
macro-4-actions-6-5-2-7--1030 : total Gain = 16.077352064581554
macro-4-actions-0-10-11-8--1031 : total Gain = 3.8379972491745047
macro-4-actions-0-2-6-5--1032 : total Gain = 0.33483362387540466
macro-4-actions-2-7-3-1--1033 : total Gain = 0.028242245072074637
macro-4-actions-11-8-9-0--1034 : total Gain = 5.294994215979314
macro-4-actions-11-8-9-1--1035 : total Gain = 3.076830260901096
macro-5-actions-0-10-11-8-9--1036 : total Gain = 7.305970576066381
macro-5-actions-6-5-2-7-3--1037 : total Gain = 55.223603705058615
macro-5-actions-0-6-5-2-7--1038 : total Gain = 7.99108758229327
macro-5-actions-10-11-8-9-1--1039 : total Gain = 5.957312015759768
macro-5-actions-0-2-6-5-2--1040 : total Gain = 0.4340652545671022
macro-5-actions-2-6-5-2-7--1041 : total Gain = 0.47017127308198825
macro-5-actions-10-11-8-9-0--1042 : total Gain = 9.692475087497211
macro-5-actions-5-2-7-3-1--1043 : total Gain = 10.057982944920033
macro-6-actions-0-2-6-5-2-7--1044 : total Gain = 0.9672359175489974
macro-6-actions-0-10-11-8-9-1--1045 : total Gain = 14.016530032193836
macro-6-actions-2-6-5-2-7-3--1046 : total Gain = 1.0449423879929363
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macro-6-actions-6-5-2-7-3-1--1047 : total Gain = 7.7249235709277855
macro-6-actions-0-10-11-8-9-0--1048 : total Gain = 17.980106909866578
macro-7-actions-0-2-6-5-2-7-3--1049 : total Gain = 2.167779240066138
macro-7-actions-2-6-5-2-7-3-1--1050 : total Gain = 2.3355802641005123
macro-8-actions-0-2-6-5-2-7-3-1--1051 : total Gain = 4.859857286152655

B.1.4 Recommended Optimal Macro Set

macro-6-actions-0-10-11-8-9-0--1048 with gain : 17.980106909866578
macro-5-actions-6-5-2-7-3--1037 with gain : 55.223603705058615
for total optimal gain : 96937.14826813425

B.2 Blocksworld

B.2.1 Operators translation

0: pick-up
1: put-down
2: stack
3: unstack

B.2.2 Mining Log

6 macros extracted
Macro : macro-2-actions-3-1--1000 with support 50 and 149 total apparitions
(mean of 2.98/plan)
Macro : macro-2-actions-0-2--1001 with support 47 and 114 total apparitions
(mean of 2.425531914893617/plan)
Macro : macro-2-actions-3-2--1002 with support 50 and 215 total apparitions
(mean of 4.3/plan)
Macro : macro-3-actions-0-2-3--1003 with support 42 and 60 total apparitions
(mean of 1.4285714285714286/plan)
Macro : macro-3-actions-3-2-3--1004 with support 43 and 74 total apparitions
(mean of 1.7209302325581395/plan)
Macro : macro-3-actions-3-1-3--1005 with support 43 and 76 total apparitions
(mean of 1.7674418604651163/plan)
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B.2.3 Macro analyser log

macro-2-actions-3-1--1000 : total Gain = 0.15271442029409768
macro-2-actions-0-2--1001 : total Gain = 0.014905674155709975
macro-2-actions-3-2--1002 : total Gain = 0.006369325185660316
macro-3-actions-0-2-3--1003 : total Gain = 0.0004495624534990441
macro-3-actions-3-2-3--1004 : total Gain = 4.585863731632646e-05
macro-3-actions-3-1-3--1005 : total Gain = 0.0028053793719730632

B.2.4 Recommended Optimal Macro Set

macro-2-actions-3-1--1000 with gain : 0.15271442029409768
macro-2-actions-0-2--1001 with gain : 0.014905674155709975
for total optimal gain : 0.3813509128794204

B.3 Depots

B.3.1 Operators translation

0: drive
1: lift
2: drop
3: load
4: unload

B.3.2 Mining Log

10 macros extracted
Macro : macro-2-actions-3-0--1000 with support 48 and 86 total apparitions
(mean of 1.7916666666666667/plan)
Macro : macro-2-actions-3-1--1001 with support 47 and 117 total apparitions
(mean of 2.4893617021276597/plan)
Macro : macro-2-actions-1-3--1002 with support 50 and 256 total apparitions
(mean of 5.12/plan)
Macro : macro-2-actions-4-2--1003 with support 50 and 116 total apparitions
(mean of 2.32/plan)
Macro : macro-2-actions-0-3--1004 with support 46 and 100 total apparitions
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(mean of 2.1739130434782608/plan)
Macro : macro-3-actions-1-3-1--1005 with support 46 and 87 total apparitions
(mean of 1.891304347826087/plan)
Macro : macro-3-actions-3-1-3--1006 with support 44 and 77 total apparitions
(mean of 1.75/plan)
Macro : macro-3-actions-1-3-0--1007 with support 48 and 86 total apparitions
(mean of 1.7916666666666667/plan)
Macro : macro-3-actions-1-3-1--1008 with support 48 and 84 total apparitions
(mean of 1.75/plan)
Macro : macro-4-actions-1-3-1-3--1009 with support 43 and 76 total apparitions
(mean of 1.7674418604651163/plan)

B.3.3 Macro analyser log

macro-2-actions-3-0--1000 : total Gain = 0.17963054581634705
macro-2-actions-3-1--1001 : total Gain = 3.2698550109114723
macro-2-actions-1-3--1002 : total Gain = 14.107121929491381
macro-2-actions-4-2--1003 : total Gain = 1.606629581472632
macro-2-actions-0-3--1004 : total Gain = 1.059255162057205
macro-3-actions-1-3-1--1005 : total Gain = 6.51992081245396
macro-3-actions-3-1-3--1006 : total Gain = 5.633222610787586
macro-3-actions-1-3-0--1007 : total Gain = 0.8685936682235017
macro-3-actions-1-3-1--1008 : total Gain = 4.88311731220142
macro-4-actions-1-3-1-3--1009 : total Gain = 19.524723021667302

B.3.4 Recommended Optimal Macro Set

macro-4-actions-1-3-1-3--1009 with gain : 19.524723021667302
macro-2-actions-4-2--1003 with gain : 1.606629581472632
for total optimal gain : 1602.106171520573

B.4 Satellite

B.4.1 Operators translation

0: turn_to
1: switch_on
2: switch_off
3: calibrate
4: take_image
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B.4.2 Mining Log

13 macros extracted
Macro : macro-2-actions-0-3--1000 with support 43 and 64 total apparitions
(mean of 1.4883720930232558/plan)
Macro : macro-2-actions-4-0--1001 with support 50 and 287 total apparitions
(mean of 5.74/plan)
Macro : macro-2-actions-1-3--1002 with support 50 and 80 total apparitions
(mean of 1.6/plan)
Macro : macro-2-actions-3-0--1003 with support 50 and 79 total apparitions
(mean of 1.58/plan)
Macro : macro-2-actions-0-4--1004 with support 50 and 331 total apparitions
(mean of 6.62/plan)
Macro : macro-3-actions-1-3-0--1005 with support 50 and 79 total apparitions
(mean of 1.58/plan)
Macro : macro-3-actions-3-0-4--1006 with support 50 and 76 total apparitions
(mean of 1.52/plan)
Macro : macro-3-actions-4-0-4--1007 with support 44 and 100 total apparitions
(mean of 2.272727272727273/plan)
Macro : macro-3-actions-0-4-0--1008 with support 50 and 155 total apparitions
(mean of 3.1/plan)
Macro : macro-4-actions-0-4-0-4--1009 with support 43 and 96 total apparitions
(mean of 2.2325581395348837/plan)
Macro : macro-4-actions-3-0-4-0--1010 with support 48 and 63 total apparitions
(mean of 1.3125/plan)
Macro : macro-4-actions-1-3-0-4--1011 with support 50 and 76 total apparitions
(mean of 1.52/plan)
Macro : macro-5-actions-1-3-0-4-0--1012 with support 48 and 63 total apparitions
(mean of 1.3125/plan)

B.4.3 Macro analyser log

macro-2-actions-0-3--1000 : total Gain = 0.9372774673267826
macro-2-actions-4-0--1001 : total Gain = 0.07481345300457362
macro-2-actions-1-3--1002 : total Gain = 2.735464323973243
macro-2-actions-3-0--1003 : total Gain = 0.6999653507639872
macro-2-actions-0-4--1004 : total Gain = 0.18351028000047603
macro-3-actions-1-3-0--1005 : total Gain = 7.836104007771476
macro-3-actions-3-0-4--1006 : total Gain = 1.302056574593954
macro-3-actions-4-0-4--1007 : total Gain = 0.13488815352205202
macro-3-actions-0-4-0--1008 : total Gain = 7.6151103258830905e-06
macro-4-actions-0-4-0-4--1009 : total Gain = 0.0027120438914648346
macro-4-actions-3-0-4-0--1010 : total Gain = 0.013685838564669378
macro-4-actions-1-3-0-4--1011 : total Gain = 23.358343546987943
macro-5-actions-1-3-0-4-0--1012 : total Gain = 29.82248891732685
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B.4.4 Recommended Optimal Macro Set

macro-2-actions-1-3--1002 with gain : 2.735464323973243
macro-2-actions-0-4--1004 with gain : 0.18351028000047603
for total optimal gain : 34.00268187509237
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C
Results from the graph-based

approach to remove problematic
macro-operators

C.1 Barman

C.1.1 Predicate incompatibilities

empty ?shot0 | contains ?shot0 ?ingredient0, contains ?shot0 ?ingredient3, contains
?shot0 ?ingredient1, contains ?shot0 ?ingredient2
dispenses ?dispenser1 ?ingredient2 |
dispenses ?dispenser1 ?ingredient1 |

empty ?shot1 | contains ?shot1 ?ingredient3, contains ?shot1 ?ingredient0, contains
?shot1 ?ingredient2, contains ?shot1 ?ingredient1
ontable ?shot0 | holding ?hand0 ?shot0, holding ?hand2 ?shot0, holding ?hand1 ?shot0
clean ?shot1 | used ?shot1 ?ingredient0, used ?shot1 ?ingredient2, used ?shot1 ?ingredi-
ent1, used ?shot1 ?ingredient3
next ?level1 ?level0 |
shaker-level ?shaker1 ?level1 | shaker-level ?shaker1 ?level3, shaker-level ?shaker1 ?level2,
shaker-level ?shaker1 ?level0
dispenses ?dispenser0 ?ingredient0 |
shaker-level ?shaker0 ?level2 | shaker-level ?shaker0 ?level3, shaker-level ?shaker0
?level1, shaker-level ?shaker0 ?level0
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empty ?shaker1 |
next ?level2 ?level1 |
dispenses ?dispenser1 ?ingredient0 |
next ?level1 ?level2 |
shaker-level ?shaker0 ?level1 | shaker-level ?shaker0 ?level3, shaker-level ?shaker0
?level2, shaker-level ?shaker0 ?level0
dispenses ?dispenser0 ?ingredient1 |
shaker-level ?shaker1 ?level0 | shaker-level ?shaker1 ?level3, shaker-level ?shaker1 ?level2,
shaker-level ?shaker1 ?level1
next ?level0 ?level2 |
handempty ?hand0 | holding ?hand0 ?shaker1, holding ?hand0 ?shaker2, holding ?hand0
?shaker0, holding ?hand0 ?shot0, holding ?hand0 ?shaker3, holding ?hand0 ?shot1,
holding ?hand0 ?shot2
next ?level0 ?level1 |
clean ?shot0 | used ?shot0 ?ingredient0, used ?shot0 ?ingredient2, used ?shot0 ?ingredi-
ent1, used ?shot0 ?ingredient3
shaker-level ?shaker0 ?level0 | shaker-level ?shaker0 ?level3, shaker-level ?shaker0
?level2, shaker-level ?shaker0 ?level1
handempty ?hand1 | holding ?hand1 ?shaker0, holding ?hand1 ?shaker3, holding ?hand1
?shot1, holding ?hand1 ?shaker2, holding ?hand1 ?shot2, holding ?hand1 ?shaker1,
holding ?hand1 ?shot0
clean ?shaker0 |
handempty ?hand2 | holding ?hand2 ?shaker3, holding ?hand2 ?shot2, holding ?hand2
?shaker1, holding ?hand2 ?shot1, holding ?hand2 ?shaker2, holding ?hand2 ?shot0,
holding ?hand2 ?shaker0
empty ?shaker0 |
dispenses ?dispenser0 ?ingredient2 |
ontable ?shot1 | holding ?hand2 ?shot1, holding ?hand0 ?shot1, holding ?hand1 ?shot1
next ?level2 ?level0 |
shaker-level ?shaker1 ?level2 | shaker-level ?shaker1 ?level3, shaker-level ?shaker1 ?level0,
shaker-level ?shaker1 ?level1
clean ?shaker1 |
ontable ?shaker1 | holding ?hand2 ?shaker1, holding ?hand1 ?shaker1, holding ?hand0
?shaker1
contains ?shot1 ?ingredient0 | empty ?shot1, contains ?shot1 ?ingredient2, contains
?shot1 ?ingredient1
contains ?shot1 ?ingredient1 | contains ?shot1 ?ingredient0, empty ?shot1, contains
?shot1 ?ingredient2
unshaked ?shaker0 |
contains ?shot1 ?ingredient2 | contains ?shot1 ?ingredient0, empty ?shot1, contains
?shot1 ?ingredient1
unshaked ?shaker1 |
contains ?shot0 ?ingredient2 | contains ?shot0 ?ingredient0, empty ?shot0, contains
?shot0 ?ingredient1
ontable ?shaker0 | holding ?hand1 ?shaker0, holding ?hand2 ?shaker0, holding ?hand0
?shaker0
contains ?shot0 ?ingredient0 | empty ?shot0, contains ?shot0 ?ingredient1, contains
?shot0 ?ingredient2
contains ?shot0 ?ingredient1 | contains ?shot0 ?ingredient0, empty ?shot0, contains
?shot0 ?ingredient2
shaker-empty-level ?shaker0 ?level2 |

172



shaker-empty-level ?shaker0 ?level0 |
shaker-empty-level ?shaker0 ?level1 |
contains ?shaker1 ?cocktail1 |
contains ?shaker0 ?cocktail1 |
shaked ?shaker1 |
shaker-empty-level ?shaker1 ?level0 |
contains ?shaker1 ?cocktail0 |
shaker-empty-level ?shaker1 ?level2 |
shaked ?shaker0 |
contains ?shaker0 ?cocktail0 |
shaker-empty-level ?shaker1 ?level1 |
ontable ?shot2 | holding ?hand1 ?shot2, holding ?hand0 ?shot2, holding ?hand2 ?shot2
empty ?shot2 | contains ?shot2 ?ingredient1, contains ?shot2 ?ingredient0, contains
?shot2 ?ingredient2
clean ?shot2 | used ?shot2 ?ingredient0, used ?shot2 ?ingredient2, used ?shot2 ?ingredi-
ent1
contains ?shaker0 ?ingredient0 |
contains ?shaker1 ?ingredient1 |
contains ?shaker1 ?ingredient2 |
contains ?shaker0 ?ingredient1 |
contains ?shaker0 ?ingredient2 |
contains ?shaker1 ?ingredient0 |
contains ?shot2 ?ingredient0 | contains ?shot2 ?ingredient1, empty ?shot2, contains
?shot2 ?ingredient2
holding ?hand2 ?shot1 | holding ?hand1 ?shot1, handempty ?hand2, holding ?hand2
?shot2, ontable ?shot1, holding ?hand2 ?shot0, holding ?hand0 ?shot1
contains ?shot2 ?ingredient1 | contains ?shot2 ?ingredient0, empty ?shot2, contains
?shot2 ?ingredient2
holding ?hand1 ?shot1 | handempty ?hand1, holding ?hand1 ?shot2, holding ?hand2
?shot1, ontable ?shot1, holding ?hand0 ?shot1, holding ?hand1 ?shot0
holding ?hand1 ?shot2 | handempty ?hand1, ontable ?shot2, holding ?hand1 ?shot1,
holding ?hand2 ?shot2, holding ?hand1 ?shot0, holding ?hand0 ?shot2
holding ?hand2 ?shot2 | ontable ?shot2, handempty ?hand2, holding ?hand1 ?shot2,
holding ?hand2 ?shot1, holding ?hand2 ?shot0, holding ?hand0 ?shot2
holding ?hand0 ?shot1 | holding ?hand1 ?shot1, holding ?hand0 ?shot0, handempty
?hand0, ontable ?shot1, holding ?hand2 ?shot1, holding ?hand0 ?shot2
holding ?hand0 ?shot2 | ontable ?shot2, holding ?hand2 ?shot2, holding ?hand1 ?shot2,
holding ?hand0 ?shot0, handempty ?hand0, holding ?hand0 ?shot1
contains ?shot2 ?ingredient2 | contains ?shot2 ?ingredient1, contains ?shot2 ?ingredi-
ent0, empty ?shot2
holding ?hand0 ?shot0 | handempty ?hand0, holding ?hand2 ?shot0, holding ?hand0
?shot1, holding ?hand1 ?shot0, holding ?hand0 ?shot2, ontable ?shot0
holding ?hand2 ?shot0 | handempty ?hand2, holding ?hand2 ?shot2, holding ?hand0
?shot0, holding ?hand2 ?shot1, holding ?hand1 ?shot0, ontable ?shot0
holding ?hand1 ?shot0 | handempty ?hand1, holding ?hand1 ?shot1, holding ?hand1
?shot2, holding ?hand0 ?shot0, holding ?hand2 ?shot0, ontable ?shot0
holding ?hand1 ?shaker0 | handempty ?hand1, holding ?hand1 ?shaker3, holding ?hand1
?shaker2, holding ?hand0 ?shaker0, holding ?hand1 ?shaker1, ontable ?shaker0, hold-
ing ?hand2 ?shaker0
holding ?hand0 ?shaker1 | ontable ?shaker1, holding ?hand0 ?shaker2, holding ?hand0
?shaker0, holding ?hand2 ?shaker1, handempty ?hand0, holding ?hand1 ?shaker1, hold-
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ing ?hand0 ?shaker3
cocktail-part2 ?cocktail0 ?ingredient1 |
cocktail-part1 ?cocktail0 ?ingredient1 |
holding ?hand1 ?shaker1 | ontable ?shaker1, handempty ?hand1, holding ?hand1 ?shaker0,
holding ?hand0 ?shaker1, holding ?hand1 ?shaker2, holding ?hand2 ?shaker1, holding
?hand1 ?shaker3
cocktail-part2 ?cocktail1 ?ingredient2 |
cocktail-part1 ?cocktail0 ?ingredient0 |
cocktail-part1 ?cocktail0 ?ingredient2 |
cocktail-part1 ?cocktail1 ?ingredient0 |
cocktail-part2 ?cocktail0 ?ingredient0 |
cocktail-part2 ?cocktail1 ?ingredient0 |
holding ?hand2 ?shaker1 | ontable ?shaker1, holding ?hand0 ?shaker1, holding ?hand2
?shaker3, handempty ?hand2, holding ?hand1 ?shaker1, holding ?hand2 ?shaker2, hold-
ing ?hand2 ?shaker0
cocktail-part1 ?cocktail1 ?ingredient1 |
holding ?hand2 ?shaker0 | holding ?hand1 ?shaker0, holding ?hand2 ?shaker3, hold-
ing ?hand0 ?shaker0, handempty ?hand2, holding ?hand2 ?shaker1, holding ?hand2
?shaker2, ontable ?shaker0
cocktail-part2 ?cocktail0 ?ingredient2 |
cocktail-part2 ?cocktail1 ?ingredient1 |
holding ?hand0 ?shaker0 | holding ?hand1 ?shaker0, holding ?hand0 ?shaker1, hold-
ing ?hand0 ?shaker2, holding ?hand2 ?shaker0, handempty ?hand0, holding ?hand0
?shaker3, ontable ?shaker0
cocktail-part1 ?cocktail1 ?ingredient2 |
used ?shot0 ?cocktail0 |
used ?shot1 ?ingredient1 |
used ?shot1 ?cocktail0 |
used ?shot0 ?ingredient2 |
used ?shot1 ?ingredient2 |
used ?shot0 ?ingredient0 |
used ?shot0 ?ingredient1 |
used ?shot1 ?ingredient0 |
used ?shot0 ?cocktail1 |
used ?shot1 ?cocktail1 |
used ?shot2 ?cocktail0 |
used ?shot2 ?ingredient1 |
used ?shot2 ?ingredient0 |
used ?shot2 ?cocktail1 |
used ?shot2 ?ingredient2 |
contains ?shaker2 ?ingredient2 |
holding ?hand1 ?shaker2 | holding ?hand1 ?shaker0, handempty ?hand1, holding ?hand0
?shaker2, ontable ?shaker2, holding ?hand1 ?shaker1, holding ?hand2 ?shaker2, hold-
ing ?hand1 ?shaker3
shaker-level ?shaker2 ?level0 | shaker-level ?shaker2 ?level1, shaker-level ?shaker2
?level2
ontable ?shaker2 | holding ?hand2 ?shaker2, holding ?hand0 ?shaker2, holding ?hand1
?shaker2
unshaked ?shaker2 |
shaker-level ?shaker2 ?level1 | shaker-level ?shaker2 ?level0, shaker-level ?shaker2
?level2
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holding ?hand0 ?shaker2 | holding ?hand0 ?shaker1, ontable ?shaker2, holding ?hand1
?shaker2, holding ?hand0 ?shaker0, handempty ?hand0, holding ?hand2 ?shaker2, hold-
ing ?hand0 ?shaker3
shaker-level ?shaker2 ?level2 | shaker-level ?shaker2 ?level1, shaker-level ?shaker2
?level0
holding ?hand2 ?shaker2 | holding ?hand2 ?shaker3, holding ?hand0 ?shaker2, ontable
?shaker2, holding ?hand1 ?shaker2, handempty ?hand2, holding ?hand2 ?shaker1, hold-
ing ?hand2 ?shaker0
contains ?shaker2 ?ingredient0 |
contains ?shaker2 ?ingredient1 |
shaker-empty-level ?shaker2 ?level1 |
shaker-empty-level ?shaker2 ?level2 |
shaker-empty-level ?shaker2 ?level0 |
shaker-level ?shaker0 ?level3 | shaker-level ?shaker0 ?level2, shaker-level ?shaker0
?level1, shaker-level ?shaker0 ?level0
next ?level3 ?level2 |
shaker-empty-level ?shaker0 ?level3 |
next ?level0 ?level3 |
next ?level1 ?level3 |
next ?level3 ?level1 |
shaker-level ?shaker1 ?level3 | shaker-level ?shaker1 ?level2, shaker-level ?shaker1 ?level0,
shaker-level ?shaker1 ?level1
next ?level3 ?level0 |
shaker-empty-level ?shaker1 ?level3 |
next ?level2 ?level3 |
holding ?hand2 ?shaker3 | holding ?hand1 ?shaker3, handempty ?hand2, ontable ?shaker3,
holding ?hand2 ?shaker1, holding ?hand2 ?shaker2, holding ?hand0 ?shaker3, holding
?hand2 ?shaker0
empty ?shaker3 |
holding ?hand0 ?shaker3 | holding ?hand0 ?shaker1, holding ?hand2 ?shaker3, holding
?hand0 ?shaker2, holding ?hand0 ?shaker0, ontable ?shaker3, handempty ?hand0, hold-
ing ?hand1 ?shaker3
empty ?shaker2 |
ontable ?shaker3 | holding ?hand1 ?shaker3, holding ?hand2 ?shaker3, holding ?hand0
?shaker3
holding ?hand1 ?shaker3 | holding ?hand1 ?shaker0, handempty ?hand1, holding ?hand2
?shaker3, holding ?hand1 ?shaker2, ontable ?shaker3, holding ?hand1 ?shaker1, hold-
ing ?hand0 ?shaker3
contains ?shaker2 ?cocktail1 |
contains ?shaker2 ?cocktail0 |
shaked ?shaker2 |
clean ?shaker2 |
contains ?shaker0 ?cocktail2 |
used ?shot1 ?cocktail2 |
used ?shot0 ?cocktail2 |
contains ?shaker1 ?cocktail2 |
used ?shot2 ?cocktail2 |
cocktail-part2 ?cocktail2 ?ingredient2 |
cocktail-part1 ?cocktail2 ?ingredient2 |
cocktail-part1 ?cocktail2 ?ingredient0 |
cocktail-part2 ?cocktail2 ?ingredient1 |
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cocktail-part1 ?cocktail2 ?ingredient1 |
cocktail-part2 ?cocktail2 ?ingredient0 |
dispenses ?dispenser0 ?ingredient3 |
dispenses ?dispenser1 ?ingredient3 |
cocktail-part1 ?cocktail0 ?ingredient3 |
cocktail-part2 ?cocktail0 ?ingredient3 |
contains ?shaker0 ?ingredient3 |
cocktail-part2 ?cocktail1 ?ingredient3 |
contains ?shaker1 ?ingredient3 |
cocktail-part1 ?cocktail1 ?ingredient3 |
dispenses ?dispenser2 ?ingredient1 |
dispenses ?dispenser2 ?ingredient0 |
dispenses ?dispenser2 ?ingredient2 |

C.1.2 Understanding the found macro-operators

macro I U R
action macro-4-actions-0-2-0-7–6-2 1 0 0
action macro-4-actions-0-2-0-7–6-6 1 0 0
action macro-4-actions-0-2-1-10–14-7 1 0 0
action macro-4-actions-0-2-1-9–16-8 1 0 0
action macro-4-actions-0-2-0-7–6-13 1 0 0
action macro-3-actions-0-1-10–28-15 0 1 0
action macro-4-actions-0-1-0-1–30-17 0 1 0
action macro-3-actions-0-1-11–35-20 0 1 0
action macro-2-actions-0-1–44-30 0 1 0
action macro-4-actions-0-5-1-10–51-34 1 0 0
action macro-4-actions-0-5-1-11–52-35 1 0 0
action macro-4-actions-0-10-1-5–59-42 1 0 0
action macro-4-actions-0-10-1-2–71-48 1 0 0
action macro-4-actions-0-9-1-2–85-58 1 0 0
action macro-4-actions-0-9-1-5–86-59 1 0 0
action macro-4-actions-0-9-1-6–87-57 1 0 0
action macro-4-actions-0-9-1-3–85-58 1 0 0
action macro-4-actions-0-9-1-7–87-57 1 0 0
action macro-4-actions-0-1-0-1–100-65 0 1 0
action macro-4-actions-0-1-0-7–121-57 1 0 0
action macro-3-actions-0-1-0–122-65 0 1 0
action macro-4-actions-0-6-0-11–132-77 1 0 0
action macro-4-actions-0-5-0-7–138-82 1 0 0
action macro-4-actions-0-2-1-10–14-84 1 0 0
action macro-4-actions-0-2-7-1–144-85 1 0 0
action macro-4-actions-0-2-7-3–145-86 1 0 0
action macro-3-actions-0-1-0–147-17 0 1 0
action macro-4-actions-0-3-0-7–6-2 1 0 0
action macro-4-actions-0-6-0-7–153-90 1 0 0
action macro-4-actions-0-5-0-7–138-92 1 0 0
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Table C.1 continued from previous page
macro I U R

action macro-4-actions-0-5-1-9–159-93 1 0 0
action macro-4-actions-0-2-6-5–1-1 0 0 0
action macro-4-actions-0-2-0-8–9-3 0 0 0
action macro-4-actions-0-2-0-1–11-4 0 0 1
action macro-4-actions-0-2-0-11–8-5 0 0 0
action macro-3-actions-0-2-0–12-4 0 0 0
action macro-4-actions-0-2-1-0–13-4 0 0 0
action macro-3-actions-0-2-1–17-9 0 0 0
action macro-4-actions-0-2-7-5–1-1 0 0 0
action macro-4-actions-0-2-7-1–18-1 0 0 0
action macro-4-actions-0-5-2-1–19-10 0 0 0
action macro-4-actions-0-5-1-0–20-11 0 0 0
action macro-3-actions-0-5-1–21-12 0 0 0
action macro-4-actions-0-2-0-7–6-1 0 0 1
action macro-4-actions-0-2-7-0–23-1 0 0 0
action macro-4-actions-0-2-7-3–24-1 0 0 0
action macro-4-actions-0-1-10-11–27-14 0 0 0
action macro-4-actions-0-1-0-2–29-16 0 0 1
action macro-4-actions-0-1-10-8–31-18 0 0 0
action macro-4-actions-0-1-10-1–32-15 0 0 0
action macro-4-actions-0-1-11-8–33-19 0 0 0
action macro-4-actions-0-1-11-1–34-20 0 0 0
action macro-4-actions-0-1-9-0–36-21 0 0 0
action macro-4-actions-0-1-9-1–37-22 0 0 0
action macro-4-actions-0-1-0-5–38-23 0 0 0
action macro-4-actions-0-1-0-10–39-24 0 0 1
action macro-4-actions-0-1-0-11–40-25 0 0 1
action macro-4-actions-0-1-0-8–41-26 0 0 0
action macro-4-actions-0-1-0-9–42-27 0 0 1
action macro-4-actions-0-1-0-11–40-28 0 0 1
action macro-4-actions-0-1-0-6–43-29 0 0 0
action macro-4-actions-0-1-0-7–43-29 0 0 0
action macro-4-actions-0-5-2-0–45-31 0 0 0
action macro-4-actions-0-5-2-7–46-32 0 0 0
action macro-4-actions-0-5-0-11–49-33 0 0 0
action macro-3-actions-0-5-0–50-11 0 0 0
action macro-4-actions-0-7-1-10–53-36 0 0 0
action macro-3-actions-0-7-1–54-37 0 0 0
action macro-4-actions-0-10-11-8–55-38 0 0 0
action macro-3-actions-0-10-11–56-39 0 0 0
action macro-4-actions-0-10-8-9–57-40 0 0 0
action macro-4-actions-0-10-1-0–58-41 0 0 1
action macro-3-actions-0-10-1–60-41 0 0 0
action macro-4-actions-0-10-11-1–61-39 0 0 0
action macro-2-actions-0-10–63-41 0 0 0
action macro-4-actions-0-11-8-9–64-43 0 0 0
action macro-4-actions-0-11-8-1–65-44 0 0 0
action macro-4-actions-0-11-1-2–66-45 0 0 0
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Table C.1 continued from previous page
macro I U R

action macro-2-actions-0-11–67-46 0 0 0
action macro-4-actions-0-10-0-1–69-47 0 0 1
action macro-4-actions-0-10-8-1–70-40 0 0 0
action macro-4-actions-0-11-1-5–72-49 0 0 0
action macro-4-actions-0-11-1-0–73-50 0 0 1
action macro-3-actions-0-11-1–74-46 0 0 0
action macro-4-actions-0-8-9-0–75-51 0 0 0
action macro-4-actions-0-8-9-1–76-52 0 0 0
action macro-4-actions-0-8-1-2–77-53 0 0 0
action macro-4-actions-0-8-1-5–78-54 0 0 0
action macro-4-actions-0-8-1-0–79-52 0 0 1
action macro-3-actions-0-8-1–80-55 0 0 0
action macro-4-actions-0-9-0-1–83-56 0 0 1
action macro-4-actions-0-9-0-6–84-57 0 0 0
action macro-4-actions-0-9-1-0–88-60 0 0 1
action macro-4-actions-0-9-1-0–89-56 0 0 0
action macro-3-actions-0-9-1–90-60 0 0 0
action macro-4-actions-0-9-0-7–84-57 0 0 0
action macro-4-actions-0-1-2-1–92-16 0 0 0
action macro-4-actions-0-1-2-7–93-61 0 0 0
action macro-4-actions-0-1-5-2–94-62 0 0 0
action macro-4-actions-0-1-5-1–95-23 0 0 0
action macro-4-actions-0-1-5-5–97-63 0 0 0
action macro-4-actions-0-1-0-8–98-64 0 0 0
action macro-4-actions-0-1-0-9–99-60 0 0 0
action macro-4-actions-0-1-0-11–101-66 0 0 1
action macro-4-actions-0-1-0-10–102-67 0 0 1
action macro-4-actions-0-1-2-6–93-61 0 0 0
action macro-4-actions-0-7-1-9–103-37 0 0 0
action macro-4-actions-0-7-1-0–104-37 0 0 0
action macro-4-actions-0-8-1-0–107-68 0 0 0
action macro-4-actions-0-7-1-0–108-69 0 0 0
action macro-4-actions-0-6-1-0–111-70 0 0 0
action macro-4-actions-0-6-1-0–111-71 0 0 0
action macro-3-actions-0-6-1–112-70 0 0 0
action macro-4-actions-0-2-6-1–18-1 0 0 0
action macro-4-actions-0-8-9-10–118-72 0 0 0
action macro-4-actions-0-9-10-11–119-73 0 0 1
action macro-4-actions-0-9-10-1–120-67 0 0 1
action macro-4-actions-0-1-0-7–43-74 0 0 0
action macro-4-actions-0-1-0-6–43-74 0 0 0
action macro-4-actions-0-1-0-3–29-16 0 0 0
action macro-4-actions-0-11-9-1–123-50 0 0 0
action macro-4-actions-0-11-9-0–124-75 0 0 0
action macro-4-actions-0-10-9-1–125-41 0 0 0
action macro-4-actions-0-10-9-0–126-47 0 0 0
action macro-4-actions-0-10-1-0–127-47 0 0 0
action macro-4-actions-0-10-11-9–128-39 0 0 0
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Table C.1 continued from previous page
macro I U R

action macro-4-actions-0-11-1-0–129-76 0 0 0
action macro-4-actions-0-2-6-0–23-1 0 0 0
action macro-4-actions-0-2-6-3–24-1 0 0 0
action macro-3-actions-0-6-0–133-78 0 0 0
action macro-4-actions-0-6-5-0–134-78 0 0 0
action macro-4-actions-0-6-5-1–135-78 0 0 0
action macro-4-actions-0-6-5-2–136-79 0 0 0
action macro-3-actions-0-3-0–12-4 0 0 0
action macro-3-actions-0-3-1–17-9 0 0 0
action macro-4-actions-0-1-10-11–27-80 0 0 0
action macro-4-actions-0-5-0-11–49-81 0 0 0
action macro-4-actions-0-7-3-0–139-83 0 0 0
action macro-4-actions-0-2-1-0–142-9 0 0 0
action macro-4-actions-0-7-1-0–149-78 0 0 0
action macro-4-actions-0-7-3-1–150-83 0 0 0
action macro-4-actions-0-7-5-1–135-78 0 0 0
action macro-4-actions-0-7-5-0–134-78 0 0 0
action macro-4-actions-0-2-6-5–151-87 0 0 1
action macro-4-actions-0-6-0-8–148-88 0 0 0
action macro-4-actions-0-6-1-10–154-89 0 0 0
action macro-4-actions-0-3-0-8–9-3 0 0 0
action macro-4-actions-0-3-7-0–23-1 0 0 0
action macro-4-actions-0-3-7-5–1-1 0 0 0
action macro-4-actions-0-5-0-8–157-91 0 0 0
action macro-4-actions-0-5-2-6–46-32 0 0 0
action macro-4-actions-0-5-2-6–160-1 0 0 0

Table C.1: Detail of the found macro-operators for barman domain.

C.2 Blocksworld

C.2.1 Predicate incompatibilities

clear ?block1 | on ?block0 ?block1, on ?block2 ?block1, holding ?block1
on ?block1 ?block2 | on ?block0 ?block2, clear ?block2, on ?block1 ?block0, holding
?block1, ontable ?block1
clear ?block0 | on ?block2 ?block0, on ?block1 ?block0, holding ?block0
on ?block0 ?block2 | on ?block1 ?block2, ontable ?block0, clear ?block2, holding
?block0, on ?block0 ?block1
on ?block2 ?block1 | holding ?block2, clear ?block1, on ?block2 ?block0, ontable
?block2, on ?block0 ?block1
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macro I U R

action macro-3-actions-3-1-0–1-1 0 1 0
action macro-2-actions-3-1–3-1 1 0 0
action macro-2-actions-1-2–4-1 1 0 0
action macro-2-actions-1-0–2-2 0 1 0
action macro-2-actions-2-3–5-1 0 1 0
action macro-3-actions-1-0-2–6-1 0 1 0
action macro-2-actions-0-1–2-2 0 1 0
action macro-3-actions-3-1-0–8-1 1 0 0
action macro-2-actions-3-1–2-1 0 0 0
action macro-2-actions-0-2–7-1 0 0 0

Table C.2: Detail of the found macro-operators for blocksworld domain.

clear ?block2 | holding ?block2, on ?block1 ?block2, on ?block0 ?block2
on ?block2 ?block0 | holding ?block2, clear ?block0, on ?block2 ?block1, ontable
?block2, on ?block1 ?block0
on ?block1 ?block0 | on ?block1 ?block2, clear ?block0, on ?block2 ?block0, holding
?block1, ontable ?block1
handempty | holding ?block2, holding ?block0, holding ?block1
on ?block0 ?block1 | clear ?block1, on ?block0 ?block2, on ?block2 ?block1, ontable
?block0, holding ?block0
holding ?block2 | on ?block2 ?block1, clear ?block2, on ?block2 ?block0, ontable
?block2, holding ?block0, holding ?block1, handempty
holding ?block0 | holding ?block2, clear ?block0, on ?block0 ?block2, ontable ?block0,
holding ?block1, handempty, on ?block0 ?block1
holding ?block1 | clear ?block1, on ?block1 ?block2, holding ?block2, holding ?block0,
on ?block1 ?block0, ontable ?block1, handempty
ontable ?block0 | holding ?block0
ontable ?block2 | holding ?block2
ontable ?block1 | holding ?block1
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C.2.2 Understanding the found macro-operators

C.3 Depots

C.3.1 Predicate incompatibilities

at ?hoist2 ?distributor0 |
on ?crate0 ?crate2 | on ?crate2 ?pallet1, on ?crate0 ?pallet1, on ?crate0 ?crate1, lifting
?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, on ?crate2
?pallet0, on ?crate2 ?crate1, clear ?crate2, on ?crate1 ?crate2, on ?crate2 ?crate3, on
?crate3 ?crate2, lifting ?hoist0 ?crate2, on ?crate0 ?crate4, in ?crate2 ?truck0, lifting
?hoist1 ?crate2, lifting ?hoist1 ?crate0, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on
?crate1 ?crate0, on ?crate4 ?crate2, on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0
?truck1, in ?crate2 ?truck1, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3
at ?truck0 ?distributor2 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?depot2,
at ?truck0 ?distributor0, at ?truck0 ?depot0, at ?truck0 ?depot1, at ?truck0 ?distributor4,
at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?crate2 ?distributor2 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor0, at ?crate2 ?de-
pot0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2 ?crate2, in ?crate2
?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
at ?crate1 ?depot2 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot3, lifting
?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lifting ?hoist2 ?crate1, at
?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at
?crate1 ?distributor0, at ?crate1 ?distributor1
at ?crate2 ?distributor0 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?de-
pot0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2 ?crate2, in ?crate2
?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
on ?crate2 ?pallet1 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?pallet1, on ?crate2
?crate0, on ?crate2 ?pallet0, on ?crate2 ?crate1, on ?crate1 ?crate2, on ?crate2 ?crate3,
on ?crate3 ?crate2, on ?crate1 ?pallet1, lifting ?hoist0 ?crate2, on ?crate4 ?pallet1, in
?crate2 ?truck0, lifting ?hoist1 ?crate2, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on
?crate2 ?pallet2, on ?crate4 ?crate2, in ?crate2 ?truck2, in ?crate2 ?truck1, on ?crate3
?pallet1
on ?crate0 ?pallet1 | on ?crate0 ?crate2, on ?crate2 ?pallet1, clear ?pallet1, on ?crate0
?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0,
on ?crate1 ?pallet1, on ?crate0 ?crate4, on ?crate4 ?pallet1, lifting ?hoist1 ?crate0, on
?crate1 ?crate0, on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0 ?truck1, lifting
?hoist0 ?crate0, on ?crate3 ?pallet1, on ?crate3 ?crate0, on ?crate4 ?crate0, on ?crate0
?crate3
available ?hoist1 | lifting ?hoist1 ?crate2, lifting ?hoist1 ?crate0, lifting ?hoist1 ?crate4,
lifting ?hoist1 ?crate1, lifting ?hoist1 ?crate3
at ?hoist2 ?depot0 |
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at ?crate2 ?depot1 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor0, at ?crate2 ?depot0, at ?crate2 ?distributor1, lifting ?hoist2 ?crate2, in ?crate2
?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
clear ?crate0 | lifting ?hoist1 ?crate0, clear ?pallet1, clear ?crate3, lifting ?hoist2 ?crate0,
in ?crate0 ?truck2, on ?crate2 ?crate0, clear ?crate4, in ?crate0 ?truck0, on ?crate1
?crate0, clear ?crate2, in ?crate0 ?truck1, clear ?pallet0, clear ?crate1, lifting ?hoist0
?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0, clear ?pallet2
on ?crate0 ?crate1 | on ?crate0 ?crate2, on ?crate0 ?pallet1, lifting ?hoist0 ?crate1,
lifting ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, on
?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, clear ?crate1,
in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, on ?crate0 ?crate4, on
?crate1 ?pallet0, in ?crate1 ?truck1, lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate1, on
?crate1 ?crate0, on ?crate4 ?crate1, on ?crate1 ?crate3, on ?crate0 ?pallet0, on ?crate0
?pallet2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3
available ?hoist0 | lifting ?hoist0 ?crate3, lifting ?hoist0 ?crate0, lifting ?hoist0 ?crate1,
lifting ?hoist0 ?crate2, lifting ?hoist0 ?crate4
on ?crate2 ?crate0 | on ?crate0 ?crate2, on ?crate2 ?pallet1, on ?crate0 ?pallet1, clear
?crate0, on ?crate0 ?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck0, on ?crate2 ?pal-
let0, on ?crate2 ?crate1, on ?crate1 ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2, lift-
ing ?hoist0 ?crate2, on ?crate0 ?crate4, in ?crate2 ?truck0, lifting ?hoist1 ?crate2, lift-
ing ?hoist1 ?crate0, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate2 ?pallet2, on
?crate1 ?crate0, on ?crate4 ?crate2, in ?crate2 ?truck2, on ?crate0 ?pallet0, in ?crate0
?truck1, in ?crate2 ?truck1, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3
at ?truck1 ?depot0 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at ?truck1 ?depot3, at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distrib-
utor2, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?crate0 ?depot0 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot2, in
?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crate0 ?distributor1
at ?truck1 ?depot1 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at ?truck1 ?depot3, at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distrib-
utor2, at ?truck1 ?depot0, at ?truck1 ?depot4
on ?crate2 ?pallet0 | on ?crate0 ?crate2, on ?crate2 ?pallet1, on ?crate2 ?crate0, on
?crate3 ?pallet0, on ?crate2 ?crate1, on ?crate1 ?crate2, clear ?pallet0, on ?crate2 ?crate3,
on ?crate3 ?crate2, lifting ?hoist0 ?crate2, in ?crate2 ?truck0, on ?crate1 ?pallet0, lift-
ing ?hoist1 ?crate2, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate2 ?pallet2, on
?crate4 ?crate2, in ?crate2 ?truck2, on ?crate0 ?pallet0, in ?crate2 ?truck1, on ?crate4
?pallet0
at ?hoist0 ?distributor1 |
on ?crate2 ?crate1 | on ?crate0 ?crate2, on ?crate2 ?pallet1, lifting ?hoist0 ?crate1, on
?crate0 ?crate1, on ?crate2 ?crate0, on ?crate1 ?crate4, on ?crate2 ?pallet0, on ?crate3
?crate1, on ?crate1 ?crate2, clear ?crate1, on ?crate2 ?crate3, in ?crate1 ?truck0, on
?crate3 ?crate2, on ?crate1 ?pallet1, lifting ?hoist0 ?crate2, lifting ?hoist1 ?crate1, in
?crate2 ?truck0, on ?crate1 ?pallet0, lifting ?hoist1 ?crate2, in ?crate1 ?truck1, on
?crate2 ?crate4, lifting ?hoist2 ?crate2, lifting ?hoist2 ?crate1, on ?crate2 ?pallet2, on
?crate1 ?crate0, on ?crate4 ?crate1, on ?crate4 ?crate2, in ?crate2 ?truck2, on ?crate1
?crate3, in ?crate2 ?truck1
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at ?truck0 ?distributor1 | at ?truck0 ?depot4, at ?truck0 ?distributor2, at ?truck0 ?depot2,
at ?truck0 ?distributor0, at ?truck0 ?depot0, at ?truck0 ?depot1, at ?truck0 ?distributor4,
at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?truck0 ?depot2 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?distributor2,
at ?truck0 ?depot0, at ?truck0 ?distributor0, at ?truck0 ?depot1, at ?truck0 ?distributor4,
at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?truck0 ?distributor0 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?distrib-
utor2, at ?truck0 ?depot2, at ?truck0 ?depot0, at ?truck0 ?depot1, at ?truck0 ?distribu-
tor4, at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?crate0 ?depot2 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot0, in
?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crate0 ?distributor1
at ?crate1 ?distributor1 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, at
?crate1 ?depot3, lifting ?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lift-
ing ?hoist2 ?crate1, at ?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lift-
ing ?hoist1 ?crate1, at ?crate1 ?distributor0
at ?hoist0 ?distributor0 |
clear ?crate1 | in ?crate1 ?truck1, clear ?pallet1, clear ?crate0, on ?crate0 ?crate1, lifting
?hoist0 ?crate1, clear ?crate3, clear ?crate4, in ?crate1 ?truck2, lifting ?hoist2 ?crate1,
on ?crate4 ?crate1, on ?crate2 ?crate1, on ?crate3 ?crate1, clear ?crate2, clear ?pallet0,
clear ?pallet2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1
on ?crate1 ?crate2 | on ?crate0 ?crate2, on ?crate2 ?pallet1, lifting ?hoist0 ?crate1, on
?crate0 ?crate1, on ?crate2 ?crate0, in ?crate1 ?truck2, on ?crate1 ?crate4, on ?crate2
?pallet0, on ?crate2 ?crate1, on ?crate3 ?crate1, clear ?crate2, on ?crate1 ?pallet2, on
?crate2 ?crate3, in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, lift-
ing ?hoist0 ?crate2, on ?crate3 ?crate2, in ?crate2 ?truck0, on ?crate1 ?pallet0, lifting
?hoist1 ?crate2, in ?crate1 ?truck1, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, lifting
?hoist2 ?crate1, on ?crate1 ?crate0, on ?crate4 ?crate1, on ?crate4 ?crate2, on ?crate1
?crate3, in ?crate2 ?truck1
clear ?crate2 | lifting ?hoist1 ?crate2, on ?crate0 ?crate2, clear ?pallet1, clear ?crate0,
clear ?crate3, lifting ?hoist2 ?crate2, clear ?crate4, on ?crate4 ?crate2, in ?crate2 ?truck2,
on ?crate1 ?crate2, in ?crate2 ?truck1, clear ?pallet0, clear ?crate1, clear ?pallet2, on
?crate3 ?crate2, lifting ?hoist0 ?crate2, in ?crate2 ?truck0
at ?crate0 ?depot1 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot0, at
?crate0 ?depot2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crate0 ?distributor1
at ?truck1 ?distributor2 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1
?depot2, at ?truck1 ?depot3, at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1
?depot0, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?hoist0 ?depot0 |
on ?crate1 ?pallet1 | on ?crate2 ?pallet1, on ?crate0 ?pallet1, clear ?pallet1, lifting
?hoist0 ?crate1, on ?crate0 ?crate1, in ?crate1 ?truck2, on ?crate1 ?crate4, on ?crate2
?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, on ?crate1 ?pallet2, in ?crate1 ?truck0,
lifting ?hoist1 ?crate1, on ?crate4 ?pallet1, on ?crate1 ?pallet0, in ?crate1 ?truck1, lifting
?hoist2 ?crate1, on ?crate1 ?crate0, on ?crate4 ?crate1, on ?crate1 ?crate3, on ?crate3
?pallet1
at ?hoist0 ?depot2 |
at ?hoist2 ?distributor2 |
at ?hoist1 ?depot0 |
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at ?crate0 ?distributor1 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2,
in ?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot0,
at ?crate0 ?depot2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at
?crate0 ?depot3, at ?crate0 ?distributor2
on ?crate1 ?pallet0 | lifting ?hoist0 ?crate1, on ?crate0 ?crate1, in ?crate1 ?truck2, on
?crate3 ?pallet0, on ?crate1 ?crate4, on ?crate2 ?pallet0, on ?crate2 ?crate1, on ?crate3
?crate1, on ?crate1 ?crate2, clear ?pallet0, on ?crate1 ?pallet2, in ?crate1 ?truck0, on
?crate1 ?pallet1, lifting ?hoist1 ?crate1, in ?crate1 ?truck1, lifting ?hoist2 ?crate1, on
?crate1 ?crate0, on ?crate4 ?crate1, on ?crate1 ?crate3, on ?crate0 ?pallet0, on ?crate4
?pallet0
at ?truck1 ?distributor0 | at ?truck1 ?distributor3, at ?truck1 ?depot2, at ?truck1 ?depot3,
at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?crate1 ?depot1 | in ?crate1 ?truck1, at ?crate1 ?depot2, at ?crate1 ?depot3, lifting
?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lifting ?hoist2 ?crate1, at
?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at
?crate1 ?distributor0, at ?crate1 ?distributor1
at ?truck0 ?depot0 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?depot2, at
?truck0 ?distributor2, at ?truck0 ?distributor0, at ?truck0 ?depot1, at ?truck0 ?distribu-
tor4, at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?hoist0 ?depot1 |
at ?crate2 ?depot0 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2 ?crate2, in ?crate2
?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
at ?truck0 ?depot1 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?depot2, at
?truck0 ?depot0, at ?truck0 ?distributor2, at ?truck0 ?distributor0, at ?truck0 ?distribu-
tor4, at ?truck0 ?depot3, at ?truck0 ?distributor3
at ?crate2 ?distributor1 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2
?distributor0, at ?crate2 ?depot0, at ?crate2 ?depot1, lifting ?hoist2 ?crate2, in ?crate2
?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
at ?hoist1 ?distributor0 |
at ?truck1 ?depot2 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot3,
at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truck1 ?depot1
available ?hoist2 | lifting ?hoist2 ?crate0, lifting ?hoist2 ?crate2, lifting ?hoist2 ?crate1,
lifting ?hoist2 ?crate3, lifting ?hoist2 ?crate4
at ?hoist1 ?depot2 |
at ?crate0 ?distributor0 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2,
in ?crate0 ?truck0, at ?crate0 ?distributor3, at ?crate0 ?depot0, at ?crate0 ?depot2, in
?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crate0 ?distributor1
on ?crate1 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, lifting ?hoist0 ?crate1,
clear ?crate0, on ?crate0 ?crate1, lifting ?hoist2 ?crate0, on ?crate2 ?crate0, in ?crate1
?truck2, in ?crate0 ?truck0, on ?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1,
on ?crate1 ?crate2, on ?crate1 ?pallet2, in ?crate1 ?truck0, on ?crate1 ?pallet1, lift-
ing ?hoist1 ?crate1, on ?crate0 ?crate4, on ?crate1 ?pallet0, in ?crate1 ?truck1, lifting
?hoist1 ?crate0, lifting ?hoist2 ?crate1, on ?crate4 ?crate1, on ?crate1 ?crate3, on ?crate0
?pallet0, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3
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at ?hoist2 ?distributor1 |
on ?crate0 ?pallet0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, on ?crate0 ?crate1, lifting
?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, on ?crate3
?pallet0, on ?crate2 ?pallet0, clear ?pallet0, on ?crate0 ?crate4, on ?crate1 ?pallet0,
lifting ?hoist1 ?crate0, on ?crate1 ?crate0, on ?crate0 ?pallet2, in ?crate0 ?truck1, on
?crate4 ?pallet0, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0, on
?crate0 ?crate3
at ?hoist2 ?depot1 |
at ?hoist1 ?distributor1 |
at ?hoist1 ?distributor2 |
at ?crate1 ?depot0 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, at ?crate1
?depot3, lifting ?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lifting ?hoist2
?crate1, at ?crate1 ?distributor2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at ?crate1
?distributor0, at ?crate1 ?distributor1
at ?crate1 ?distributor2 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, at
?crate1 ?depot3, lifting ?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lift-
ing ?hoist2 ?crate1, at ?crate1 ?depot0, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at
?crate1 ?distributor0, at ?crate1 ?distributor1
at ?truck1 ?distributor1 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1
?depot2, at ?truck1 ?depot3, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1
?depot0, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?crate2 ?depot2 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor0, at ?crate2 ?depot0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2
?crate2, in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
at ?crate0 ?distributor2 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2,
in ?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot0,
at ?crate0 ?depot2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at
?crate0 ?depot3, at ?crate0 ?distributor1
at ?hoist0 ?distributor2 |
at ?hoist1 ?depot1 |
at ?crate1 ?distributor0 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, at
?crate1 ?depot3, lifting ?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lift-
ing ?hoist2 ?crate1, at ?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lift-
ing ?hoist1 ?crate1, at ?crate1 ?distributor1
at ?hoist2 ?depot2 |
at ?truck2 ?depot1 | at ?truck2 ?distributor4, at ?truck2 ?distributor3, at ?truck2 ?depot0,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?truck2 ?distributor0 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?dis-
tributor3, at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2
?depot3, at ?truck2 ?distributor1, at ?truck2 ?depot2
at ?truck2 ?depot0 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?distributor3,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?truck2 ?distributor1 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?dis-
tributor3, at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2
?depot3, at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?truck2 ?distributor2 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?distrib-
utor3, at ?truck2 ?depot0, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distribu-
tor1, at ?truck2 ?distributor0, at ?truck2 ?depot2
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at ?truck2 ?depot2 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?distributor3,
at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at
?truck2 ?distributor1, at ?truck2 ?distributor0
in ?crate3 ?truck1 | lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, lifting ?hoist2 ?crate3,
on ?crate3 ?crate1, at ?crate3 ?distributor0, at ?crate3 ?depot1, on ?crate2 ?crate3, on
?crate3 ?crate2, at ?crate3 ?distributor1, on ?crate4 ?crate3, in ?crate3 ?truck0, clear
?crate3, on ?crate3 ?crate4, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?crate1
?crate3, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3 ?crate0, at ?crate3 ?de-
pot0, on ?crate0 ?crate3
at ?crate3 ?depot2 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at ?crate3
?distributor2, lifting ?hoist1 ?crate3, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, at ?crate3
?distributor0, at ?crate3 ?distributor3, at ?crate3 ?depot1, lifting ?hoist0 ?crate3, at
?crate3 ?depot0, at ?crate3 ?distributor1
on ?crate2 ?crate3 | on ?crate0 ?crate2, on ?crate2 ?pallet1, on ?crate2 ?crate0, lift-
ing ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on
?crate2 ?pallet0, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, on ?crate3
?crate2, lifting ?hoist0 ?crate2, in ?crate2 ?truck0, lifting ?hoist1 ?crate2, on ?crate4
?crate3, in ?crate3 ?truck0, on ?crate2 ?crate4, clear ?crate3, lifting ?hoist2 ?crate2, on
?crate3 ?crate4, on ?crate2 ?pallet2, on ?crate4 ?crate2, on ?crate1 ?crate3, in ?crate2
?truck2, in ?crate2 ?truck1, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3
?crate0, on ?crate0 ?crate3
in ?crate1 ?truck0 | at ?crate1 ?depot2, lifting ?hoist0 ?crate1, on ?crate0 ?crate1, in
?crate1 ?truck2, on ?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1
?crate2, clear ?crate1, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, at ?crate1 ?depot1,
on ?crate1 ?pallet0, in ?crate1 ?truck1, lifting ?hoist2 ?crate1, on ?crate1 ?crate0, on
?crate4 ?crate1, on ?crate1 ?crate3, in ?crate1 ?truck3, at ?crate1 ?depot0, at ?crate1
?distributor2, at ?crate1 ?distributor0, at ?crate1 ?distributor1
on ?crate3 ?crate2 | on ?crate0 ?crate2, on ?crate2 ?pallet1, on ?crate2 ?crate0, on
?crate3 ?pallet2, in ?crate3 ?truck2, lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3
?truck1, lifting ?hoist2 ?crate3, on ?crate2 ?pallet0, on ?crate3 ?crate1, on ?crate2
?crate1, clear ?crate2, on ?crate1 ?crate2, on ?crate2 ?crate3, lifting ?hoist0 ?crate2,
in ?crate2 ?truck0, lifting ?hoist1 ?crate2, on ?crate4 ?crate3, in ?crate3 ?truck0, on
?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate3 ?crate4, on ?crate4 ?crate2, on ?crate1
?crate3, lifting ?hoist0 ?crate3, in ?crate2 ?truck1, on ?crate3 ?pallet1, on ?crate3 ?crate0,
on ?crate0 ?crate3
at ?crate3 ?distributor1 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at
?crate3 ?distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lift-
ing ?hoist2 ?crate3, at ?crate3 ?distributor0, at ?crate3 ?distributor3, at ?crate3 ?depot1,
lifting ?hoist0 ?crate3, at ?crate3 ?depot0
in ?crate1 ?truck1 | at ?crate1 ?depot2, lifting ?hoist0 ?crate1, on ?crate0 ?crate1, in
?crate1 ?truck2, on ?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1
?crate2, clear ?crate1, in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1,
at ?crate1 ?depot1, on ?crate1 ?pallet0, lifting ?hoist2 ?crate1, on ?crate1 ?crate0, on
?crate4 ?crate1, on ?crate1 ?crate3, in ?crate1 ?truck3, at ?crate1 ?depot0, at ?crate1
?distributor2, at ?crate1 ?distributor0, at ?crate1 ?distributor1
clear ?crate3 | on ?crate4 ?crate3, in ?crate3 ?truck0, clear ?pallet1, clear ?crate0, clear
?crate4, in ?crate3 ?truck2, lifting ?hoist1 ?crate3, in ?crate3 ?truck1, lifting ?hoist2
?crate3, on ?crate1 ?crate3, clear ?crate2, lifting ?hoist0 ?crate3, clear ?pallet0, clear
?crate1, clear ?pallet2, on ?crate2 ?crate3, on ?crate0 ?crate3
on ?crate3 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, lifting ?hoist2 ?crate0, on ?crate2 ?crate0, in ?crate0 ?truck0, on ?crate3 ?pal-
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let2, in ?crate3 ?truck2, lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1,
lifting ?hoist2 ?crate3, on ?crate3 ?crate1, on ?crate2 ?crate3, on ?crate3 ?crate2, on
?crate0 ?crate4, on ?crate4 ?crate3, in ?crate3 ?truck0, lifting ?hoist1 ?crate0, on ?crate3
?crate4, on ?crate1 ?crate0, on ?crate1 ?crate3, on ?crate0 ?pallet0, in ?crate0 ?truck1,
lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, lifting ?hoist0 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3
at ?crate3 ?depot0 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at ?crate3
?distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lifting ?hoist2
?crate3, at ?crate3 ?distributor0, at ?crate3 ?distributor3, at ?crate3 ?depot1, lifting
?hoist0 ?crate3, at ?crate3 ?distributor1
on ?crate3 ?pallet0 | on ?crate3 ?pallet2, in ?crate3 ?truck2, lifting ?hoist1 ?crate3, in
?crate3 ?truck1, lifting ?hoist2 ?crate3, on ?crate2 ?pallet0, on ?crate3 ?crate1, clear
?pallet0, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crate1 ?pallet0, on ?crate4 ?crate3,
in ?crate3 ?truck0, on ?crate3 ?crate4, on ?crate1 ?crate3, on ?crate0 ?pallet0, lifting
?hoist0 ?crate3, on ?crate4 ?pallet0, on ?crate3 ?pallet1, on ?crate3 ?crate0, on ?crate0
?crate3
at ?crate3 ?distributor0 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at
?crate3 ?distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lift-
ing ?hoist2 ?crate3, at ?crate3 ?distributor3, at ?crate3 ?depot1, lifting ?hoist0 ?crate3,
at ?crate3 ?depot0, at ?crate3 ?distributor1
in ?crate2 ?truck0 | at ?crate2 ?distributor2, on ?crate0 ?crate2, at ?crate2 ?distribu-
tor0, on ?crate2 ?pallet1, at ?crate2 ?depot1, on ?crate2 ?crate0, on ?crate2 ?pallet0, on
?crate2 ?crate1, clear ?crate2, on ?crate1 ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2,
lifting ?hoist0 ?crate2, lifting ?hoist1 ?crate2, at ?crate2 ?depot0, at ?crate2 ?distribu-
tor1, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate4 ?crate2,
in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot2
at ?crate3 ?distributor2 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, lift-
ing ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, at
?crate3 ?distributor0, at ?crate3 ?distributor3, at ?crate3 ?depot1, lifting ?hoist0 ?crate3,
at ?crate3 ?depot0, at ?crate3 ?distributor1
in ?crate2 ?truck1 | at ?crate2 ?distributor2, on ?crate0 ?crate2, at ?crate2 ?distribu-
tor0, on ?crate2 ?pallet1, at ?crate2 ?depot1, on ?crate2 ?crate0, on ?crate2 ?pallet0, on
?crate2 ?crate1, clear ?crate2, on ?crate1 ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2,
lifting ?hoist0 ?crate2, in ?crate2 ?truck0, lifting ?hoist1 ?crate2, at ?crate2 ?depot0, at
?crate2 ?distributor1, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on
?crate4 ?crate2, in ?crate2 ?truck2, at ?crate2 ?depot2
in ?crate0 ?truck0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, at ?crate0 ?de-
pot0, at ?crate0 ?depot2, at ?crate0 ?depot1, on ?crate0 ?crate4, at ?crate0 ?distributor1,
in ?crate0 ?truck3, lifting ?hoist1 ?crate0, at ?crate0 ?distributor0, on ?crate1 ?crate0,
on ?crate0 ?pallet0, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on
?crate4 ?crate0, at ?crate0 ?distributor2, on ?crate0 ?crate3
on ?crate3 ?crate1 | lifting ?hoist0 ?crate1, on ?crate0 ?crate1, on ?crate3 ?pallet2, in
?crate3 ?truck2, lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lift-
ing ?hoist2 ?crate3, on ?crate1 ?crate4, on ?crate2 ?crate1, on ?crate1 ?crate2, clear
?crate1, on ?crate2 ?crate3, on ?crate3 ?crate2, in ?crate1 ?truck0, on ?crate1 ?pal-
let1, lifting ?hoist1 ?crate1, on ?crate1 ?pallet0, in ?crate1 ?truck1, on ?crate4 ?crate3,
in ?crate3 ?truck0, on ?crate3 ?crate4, lifting ?hoist2 ?crate1, on ?crate1 ?crate0, on
?crate4 ?crate1, on ?crate1 ?crate3, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on
?crate3 ?crate0, on ?crate0 ?crate3
at ?crate3 ?depot1 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at ?crate3
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?distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lifting ?hoist2
?crate3, at ?crate3 ?distributor0, at ?crate3 ?distributor3, lifting ?hoist0 ?crate3, at ?crate3
?depot0, at ?crate3 ?distributor1
in ?crate3 ?truck0 | lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lift-
ing ?hoist2 ?crate3, on ?crate3 ?crate1, at ?crate3 ?distributor0, at ?crate3 ?depot1, on
?crate2 ?crate3, on ?crate3 ?crate2, at ?crate3 ?distributor1, on ?crate4 ?crate3, clear
?crate3, on ?crate3 ?crate4, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?crate1
?crate3, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3 ?crate0, at ?crate3 ?de-
pot0, on ?crate0 ?crate3
on ?crate1 ?crate3 | lifting ?hoist0 ?crate1, on ?crate0 ?crate1, in ?crate1 ?truck2, lift-
ing ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on
?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, on ?crate1
?pallet2, on ?crate2 ?crate3, in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1
?crate1, on ?crate3 ?crate2, on ?crate1 ?pallet0, in ?crate1 ?truck1, on ?crate4 ?crate3,
in ?crate3 ?truck0, clear ?crate3, on ?crate3 ?crate4, lifting ?hoist2 ?crate1, on ?crate1
?crate0, on ?crate4 ?crate1, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3
?crate0, on ?crate0 ?crate3
in ?crate0 ?truck1 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0,
at ?crate0 ?depot0, at ?crate0 ?depot2, at ?crate0 ?depot1, on ?crate0 ?crate4, at ?crate0
?distributor1, in ?crate0 ?truck3, lifting ?hoist1 ?crate0, at ?crate0 ?distributor0, on
?crate1 ?crate0, on ?crate0 ?pallet0, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on
?crate4 ?crate0, at ?crate0 ?distributor2, on ?crate0 ?crate3
on ?crate3 ?pallet1 | on ?crate2 ?pallet1, on ?crate0 ?pallet1, clear ?pallet1, on ?crate3
?pallet2, in ?crate3 ?truck2, lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1,
lifting ?hoist2 ?crate3, on ?crate3 ?crate1, on ?crate2 ?crate3, on ?crate3 ?crate2, on
?crate1 ?pallet1, on ?crate4 ?pallet1, on ?crate4 ?crate3, in ?crate3 ?truck0, on ?crate3
?crate4, on ?crate1 ?crate3, lifting ?hoist0 ?crate3, on ?crate3 ?crate0, on ?crate0 ?crate3
on ?crate0 ?crate3 | on ?crate0 ?crate2, on ?crate0 ?pallet1, on ?crate0 ?crate1, lift-
ing ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, lift-
ing ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on
?crate3 ?crate1, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crate0 ?crate4, on ?crate4
?crate3, in ?crate3 ?truck0, lifting ?hoist1 ?crate0, clear ?crate3, on ?crate3 ?crate4, on
?crate1 ?crate0, on ?crate1 ?crate3, on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0
?truck1, lifting ?hoist0 ?crate3, lifting ?hoist0 ?crate0, on ?crate3 ?pallet1, on ?crate3
?crate0, on ?crate4 ?crate0
at ?hoist1 ?distributor3 |
at ?crate1 ?depot3 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, lifting
?hoist0 ?crate1, at ?crate1 ?distributor3, in ?crate1 ?truck2, lifting ?hoist2 ?crate1, at
?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at
?crate1 ?distributor0, at ?crate1 ?distributor1
at ?crate0 ?distributor3 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2,
in ?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?depot0, at ?crate0 ?depot2, in
?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crate0 ?distributor1
at ?hoist1 ?depot3 |
at ?crate2 ?depot3 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor0, at ?crate2 ?depot0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2
?crate2, in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0
at ?truck1 ?depot3 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
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at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?crate0 ?depot3 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?distributor3, at ?crate0 ?depot0, at
?crate0 ?depot2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, at ?crate0 ?depot1, at ?crate0
?distributor2, at ?crate0 ?distributor1
at ?crate2 ?distributor3 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?dis-
tributor0, at ?crate2 ?depot0, at ?crate2 ?depot1, at ?crate2 ?distributor1, lifting ?hoist2
?crate2, in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot3, at ?crate2 ?depot2,
lifting ?hoist0 ?crate2, in ?crate2 ?truck0
at ?hoist0 ?distributor3 |
at ?truck1 ?distributor3 | at ?truck1 ?distributor0, at ?truck1 ?depot3, at ?truck1 ?depot2,
at ?truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truck1 ?depot1
at ?hoist0 ?depot3 |
at ?crate1 ?distributor3 | at ?crate1 ?depot1, in ?crate1 ?truck1, at ?crate1 ?depot2, at
?crate1 ?depot3, lifting ?hoist0 ?crate1, in ?crate1 ?truck2, lifting ?hoist2 ?crate1, at
?crate1 ?depot0, at ?crate1 ?distributor2, in ?crate1 ?truck0, lifting ?hoist1 ?crate1, at
?crate1 ?distributor0, at ?crate1 ?distributor1
at ?truck0 ?depot3 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?distributor2,
at ?truck0 ?distributor0, at ?truck0 ?depot2, at ?truck0 ?depot0, at ?truck0 ?depot1, at
?truck0 ?distributor4, at ?truck0 ?distributor3
at ?truck0 ?distributor3 | at ?truck0 ?depot4, at ?truck0 ?distributor1, at ?truck0 ?dis-
tributor2, at ?truck0 ?depot0, at ?truck0 ?depot2, at ?truck0 ?distributor0, at ?truck0
?depot1, at ?truck0 ?distributor4, at ?truck0 ?depot3
lifting ?hoist1 ?crate3 | available ?hoist1, on ?crate3 ?pallet2, in ?crate3 ?truck2, on
?crate3 ?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on ?crate3 ?crate1, at ?crate3
?distributor0, at ?crate3 ?depot1, on ?crate2 ?crate3, on ?crate3 ?crate2, lifting ?hoist1
?crate1, at ?crate3 ?distributor1, lifting ?hoist1 ?crate2, at ?crate3 ?depot3, on ?crate4
?crate3, in ?crate3 ?truck0, lifting ?hoist1 ?crate0, lifting ?hoist1 ?crate4, clear ?crate3,
on ?crate3 ?crate4, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?crate1 ?crate3, at
?crate3 ?distributor3, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3 ?crate0, at
?crate3 ?depot0, on ?crate0 ?crate3
at ?pallet0 ?depot0 |
lifting ?hoist1 ?crate1 | at ?crate1 ?depot2, at ?crate1 ?depot3, available ?hoist1, lift-
ing ?hoist0 ?crate1, on ?crate0 ?crate1, in ?crate1 ?truck2, lifting ?hoist1 ?crate3, at
?crate1 ?depot4, on ?crate1 ?crate4, on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1
?crate2, clear ?crate1, on ?crate1 ?pallet2, in ?crate1 ?truck0, on ?crate1 ?pallet1, at
?crate1 ?depot1, on ?crate1 ?pallet0, lifting ?hoist1 ?crate2, in ?crate1 ?truck1, lifting
?hoist1 ?crate0, lifting ?hoist1 ?crate4, at ?crate1 ?distributor3, lifting ?hoist2 ?crate1,
on ?crate1 ?crate0, on ?crate4 ?crate1, on ?crate1 ?crate3, in ?crate1 ?truck3, at ?crate1
?depot0, at ?crate1 ?distributor2, at ?crate1 ?distributor4, at ?crate1 ?distributor0, at
?crate1 ?distributor1
at ?pallet1 ?distributor2 |
at ?pallet1 ?depot1 |
at ?pallet0 ?distributor0 |
at ?pallet1 ?distributor1 |
at ?pallet0 ?depot2 |
at ?pallet0 ?distributor2 |
at ?pallet0 ?depot1 |
lifting ?hoist0 ?crate3 | lifting ?hoist0 ?crate1, available ?hoist0, on ?crate3 ?pallet2,
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in ?crate3 ?truck2, lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lift-
ing ?hoist2 ?crate3, on ?crate3 ?crate1, at ?crate3 ?distributor0, at ?crate3 ?depot1, on
?crate2 ?crate3, on ?crate3 ?crate2, lifting ?hoist0 ?crate2, lifting ?hoist0 ?crate4, at
?crate3 ?distributor1, at ?crate3 ?depot3, on ?crate4 ?crate3, in ?crate3 ?truck0, clear
?crate3, on ?crate3 ?crate4, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?crate1
?crate3, at ?crate3 ?distributor3, on ?crate3 ?pallet1, lifting ?hoist0 ?crate0, on ?crate3
?crate0, at ?crate3 ?depot0, on ?crate0 ?crate3
at ?pallet1 ?depot0 |
lifting ?hoist0 ?crate1 | at ?crate1 ?depot2, at ?crate1 ?depot3, on ?crate0 ?crate1, avail-
able ?hoist0, in ?crate1 ?truck2, at ?crate1 ?depot4, on ?crate1 ?crate4, on ?crate3
?crate1, on ?crate2 ?crate1, on ?crate1 ?crate2, clear ?crate1, on ?crate1 ?pallet2, in
?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, lifting ?hoist0 ?crate2, lift-
ing ?hoist0 ?crate4, at ?crate1 ?depot1, on ?crate1 ?pallet0, in ?crate1 ?truck1, at ?crate1
?distributor3, lifting ?hoist2 ?crate1, on ?crate1 ?crate0, on ?crate4 ?crate1, on ?crate1
?crate3, in ?crate1 ?truck3, lifting ?hoist0 ?crate3, lifting ?hoist0 ?crate0, at ?crate1 ?de-
pot0, at ?crate1 ?distributor2, at ?crate1 ?distributor4, at ?crate1 ?distributor0, at ?crate1
?distributor1
lifting ?hoist0 ?crate2 | at ?crate2 ?distributor2, on ?crate0 ?crate2, on ?crate2 ?pallet1,
at ?crate2 ?distributor0, at ?crate2 ?depot1, lifting ?hoist0 ?crate1, available ?hoist0, on
?crate2 ?crate0, at ?crate2 ?distributor4, on ?crate2 ?pallet0, on ?crate2 ?crate1, clear
?crate2, on ?crate1 ?crate2, at ?crate2 ?depot3, on ?crate2 ?crate3, on ?crate3 ?crate2, at
?crate2 ?distributor3, in ?crate2 ?truck0, lifting ?hoist0 ?crate4, lifting ?hoist1 ?crate2,
at ?crate2 ?depot0, at ?crate2 ?distributor1, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting
?hoist2 ?crate2, on ?crate2 ?pallet2, on ?crate4 ?crate2, in ?crate2 ?truck2, in ?crate2
?truck1, lifting ?hoist0 ?crate3, lifting ?hoist0 ?crate0, at ?crate2 ?depot4, at ?crate2
?depot2
at ?pallet0 ?distributor1 |
lifting ?hoist1 ?crate2 | at ?crate2 ?distributor2, on ?crate0 ?crate2, at ?crate2 ?distrib-
utor0, on ?crate2 ?pallet1, available ?hoist1, at ?crate2 ?depot1, on ?crate2 ?crate0, at
?crate2 ?distributor4, lifting ?hoist1 ?crate3, on ?crate2 ?pallet0, on ?crate2 ?crate1,
clear ?crate2, on ?crate1 ?crate2, at ?crate2 ?depot3, on ?crate2 ?crate3, on ?crate3
?crate2, lifting ?hoist1 ?crate1, lifting ?hoist0 ?crate2, at ?crate2 ?distributor3, in ?crate2
?truck0, at ?crate2 ?depot0, lifting ?hoist1 ?crate0, lifting ?hoist1 ?crate4, at ?crate2
?distributor1, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate2
?pallet2, on ?crate4 ?crate2, in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot4,
at ?crate2 ?depot2
lifting ?hoist1 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, available ?hoist1, clear
?crate0, on ?crate0 ?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate0,
in ?crate0 ?truck0, lifting ?hoist1 ?crate3, at ?crate0 ?distributor3, at ?crate0 ?depot0,
at ?crate0 ?depot2, at ?crate0 ?depot1, at ?crate0 ?depot3, lifting ?hoist1 ?crate1, on
?crate0 ?crate4, at ?crate0 ?distributor1, lifting ?hoist1 ?crate2, in ?crate0 ?truck3, at
?crate0 ?distributor4, lifting ?hoist1 ?crate4, at ?crate0 ?distributor0, on ?crate1 ?crate0,
on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on
?crate3 ?crate0, on ?crate4 ?crate0, at ?crate0 ?depot4, at ?crate0 ?distributor2, on
?crate0 ?crate3
at ?pallet1 ?depot2 |
at ?pallet1 ?distributor0 |
lifting ?hoist0 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, lifting ?hoist0 ?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, available
?hoist0, on ?crate2 ?crate0, in ?crate0 ?truck0, at ?crate0 ?distributor3, at ?crate0 ?de-
pot0, at ?crate0 ?depot2, at ?crate0 ?depot1, at ?crate0 ?depot3, lifting ?hoist0 ?crate2,
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on ?crate0 ?crate4, lifting ?hoist0 ?crate4, at ?crate0 ?distributor1, in ?crate0 ?truck3,
lifting ?hoist1 ?crate0, at ?crate0 ?distributor4, at ?crate0 ?distributor0, on ?crate1 ?crate0,
on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0 ?truck1, lifting ?hoist0 ?crate3, on
?crate3 ?crate0, on ?crate4 ?crate0, at ?crate0 ?depot4, at ?crate0 ?distributor2, on
?crate0 ?crate3
lifting ?hoist2 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, at ?crate0 ?distribu-
tor3, lifting ?hoist2 ?crate3, at ?crate0 ?depot0, at ?crate0 ?depot2, at ?crate0 ?depot1, at
?crate0 ?depot3, at ?crate0 ?distributor1, lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate2,
available ?hoist2, lifting ?hoist2 ?crate1, at ?crate0 ?distributor0, on ?crate1 ?crate0,
on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on
?crate3 ?crate0, at ?crate0 ?distributor2, on ?crate0 ?crate3
lifting ?hoist2 ?crate3 | lifting ?hoist2 ?crate0, on ?crate3 ?pallet2, lifting ?hoist1 ?crate3,
on ?crate3 ?pallet0, in ?crate3 ?truck1, on ?crate3 ?crate1, at ?crate3 ?distributor0,
at ?crate3 ?depot1, on ?crate2 ?crate3, on ?crate3 ?crate2, at ?crate3 ?distributor1,
at ?crate3 ?depot3, in ?crate3 ?truck0, clear ?crate3, lifting ?hoist2 ?crate2, available
?hoist2, lifting ?hoist2 ?crate1, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?crate1
?crate3, at ?crate3 ?distributor3, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on ?crate3
?crate0, at ?crate3 ?depot0, on ?crate0 ?crate3
lifting ?hoist2 ?crate2 | on ?crate0 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?dis-
tributor0, on ?crate2 ?pallet1, at ?crate2 ?depot1, lifting ?hoist2 ?crate0, on ?crate2
?crate0, lifting ?hoist2 ?crate3, on ?crate2 ?pallet0, on ?crate2 ?crate1, clear ?crate2,
on ?crate1 ?crate2, at ?crate2 ?depot3, on ?crate2 ?crate3, on ?crate3 ?crate2, lifting
?hoist0 ?crate2, at ?crate2 ?distributor3, in ?crate2 ?truck0, lifting ?hoist1 ?crate2, at
?crate2 ?depot0, at ?crate2 ?distributor1, available ?hoist2, lifting ?hoist2 ?crate1, on
?crate2 ?pallet2, in ?crate2 ?truck2, in ?crate2 ?truck1, at ?crate2 ?depot2
lifting ?hoist2 ?crate1 | at ?crate1 ?depot2, at ?crate1 ?depot3, lifting ?hoist0 ?crate1,
on ?crate0 ?crate1, lifting ?hoist2 ?crate0, in ?crate1 ?truck2, lifting ?hoist2 ?crate3,
on ?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, clear ?crate1, on ?crate1
?pallet2, in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, at ?crate1 ?de-
pot1, on ?crate1 ?pallet0, in ?crate1 ?truck1, lifting ?hoist2 ?crate2, available ?hoist2,
at ?crate1 ?distributor3, on ?crate1 ?crate0, on ?crate1 ?crate3, at ?crate1 ?depot0, at
?crate1 ?distributor2, at ?crate1 ?distributor0, at ?crate1 ?distributor1
at ?pallet2 ?depot1 |
at ?pallet2 ?distributor1 |
on ?crate3 ?pallet2 | in ?crate3 ?truck0, on ?crate3 ?crate4, on ?crate2 ?pallet2, lift-
ing ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on
?crate3 ?crate1, on ?crate0 ?pallet2, lifting ?hoist0 ?crate3, on ?crate3 ?pallet1, on
?crate3 ?crate0, on ?crate1 ?pallet2, clear ?pallet2, on ?crate3 ?crate2, on ?crate4 ?pal-
let2
clear ?pallet1 | on ?crate2 ?pallet1, on ?crate0 ?pallet1, clear ?crate0, clear ?crate3, clear
?crate4, clear ?crate2, clear ?crate1, on ?crate3 ?pallet1, clear ?pallet0, clear ?pallet2,
on ?crate1 ?pallet1, on ?crate4 ?pallet1
on ?crate0 ?pallet2 | on ?crate0 ?crate2, lifting ?hoist1 ?crate0, on ?crate0 ?pallet1,
on ?crate0 ?crate1, lifting ?hoist2 ?crate0, in ?crate0 ?truck0, on ?crate3 ?pallet2, on
?crate2 ?pallet2, on ?crate0 ?pallet0, in ?crate0 ?truck1, lifting ?hoist0 ?crate0, on
?crate1 ?pallet2, clear ?pallet2, on ?crate0 ?crate4, on ?crate4 ?pallet2, on ?crate0
?crate3
at ?pallet2 ?depot0 |
at ?pallet2 ?depot2 |
clear ?pallet0 | on ?crate1 ?pallet0, clear ?pallet1, clear ?crate0, clear ?crate3, clear
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?crate4, on ?crate3 ?pallet0, on ?crate2 ?pallet0, on ?crate0 ?pallet0, clear ?crate2, on
?crate4 ?pallet0, clear ?crate1, clear ?pallet2
on ?crate1 ?pallet2 | on ?crate1 ?pallet0, in ?crate1 ?truck1, lifting ?hoist0 ?crate1,
on ?crate3 ?pallet2, lifting ?hoist2 ?crate1, on ?crate2 ?pallet2, on ?crate1 ?crate0, on
?crate1 ?crate4, on ?crate1 ?crate3, on ?crate0 ?pallet2, on ?crate1 ?crate2, clear ?pal-
let2, in ?crate1 ?truck0, on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, on ?crate4 ?pallet2
at ?pallet2 ?distributor0 |
at ?pallet2 ?distributor2 |
on ?crate2 ?pallet2 | lifting ?hoist1 ?crate2, on ?crate2 ?pallet1, on ?crate2 ?crate4,
lifting ?hoist2 ?crate2, on ?crate2 ?crate0, on ?crate3 ?pallet2, on ?crate2 ?pallet0, on
?crate2 ?crate1, on ?crate0 ?pallet2, in ?crate2 ?truck1, on ?crate1 ?pallet2, clear ?pal-
let2, on ?crate2 ?crate3, lifting ?hoist0 ?crate2, on ?crate4 ?pallet2, in ?crate2 ?truck0
clear ?pallet2 | clear ?pallet1, clear ?crate0, clear ?crate3, clear ?crate4, on ?crate3 ?pal-
let2, on ?crate2 ?pallet2, on ?crate0 ?pallet2, clear ?crate2, clear ?crate1, clear ?pallet0,
on ?crate1 ?pallet2, on ?crate4 ?pallet2
in ?crate0 ?truck2 | in ?crate0 ?truck1, in ?crate0 ?truck3, lifting ?hoist1 ?crate0, lifting
?hoist0 ?crate0, in ?crate0 ?truck0
in ?crate1 ?truck2 | in ?crate1 ?truck1, in ?crate1 ?truck3, lifting ?hoist0 ?crate1, in
?crate1 ?truck0, lifting ?hoist1 ?crate1
in ?crate2 ?truck2 | lifting ?hoist1 ?crate2, in ?crate2 ?truck1, in ?crate2 ?truck3, lifting
?hoist0 ?crate2, in ?crate2 ?truck0
at ?truck3 ?distributor2 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
tor1
at ?truck3 ?depot0 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distributor2,
at ?truck3 ?distributor3, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distributor1
at ?truck3 ?distributor0 | at ?truck3 ?depot1, at ?truck3 ?distributor2, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
tor1
at ?truck3 ?depot1 | at ?truck3 ?distributor0, at ?truck3 ?distributor2, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
tor1
at ?truck3 ?depot2 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distributor2,
at ?truck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot3, at ?truck3 ?distributor1
at ?truck3 ?distributor1 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?dis-
tributor2, at ?truck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3
?depot3
at ?truck2 ?distributor3 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?depot0,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?truck2 ?depot3 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?distributor3,
at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?hoist2 ?depot3 |
at ?hoist2 ?distributor3 |
at ?pallet0 ?distributor3 |
at ?pallet1 ?depot3 |
at ?pallet0 ?depot3 |
at ?pallet1 ?distributor3 |
at ?truck1 ?depot4 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at ?truck1 ?depot0, at ?truck1 ?depot1, at ?truck1 ?depot3, at ?truck1 ?distributor1, at
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?truck1 ?distributor4, at ?truck1 ?distributor2
at ?truck0 ?depot4 | at ?truck0 ?distributor2, at ?truck0 ?depot0, at ?truck0 ?depot1, at
?truck0 ?depot3, at ?truck0 ?distributor1, at ?truck0 ?depot2, at ?truck0 ?distributor0,
at ?truck0 ?distributor4, at ?truck0 ?distributor3
at ?truck1 ?distributor4 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1
?depot2, at ?truck1 ?depot0, at ?truck1 ?depot4, at ?truck1 ?depot1, at ?truck1 ?depot3,
at ?truck1 ?distributor1, at ?truck1 ?distributor2
at ?truck0 ?distributor4 | at ?truck0 ?depot4, at ?truck0 ?distributor2, at ?truck0 ?depot0,
at ?truck0 ?depot1, at ?truck0 ?depot3, at ?truck0 ?distributor1, at ?truck0 ?depot2, at
?truck0 ?distributor0, at ?truck0 ?distributor3
at ?hoist0 ?depot4 |
at ?hoist0 ?distributor4 |
at ?hoist1 ?depot4 |
at ?hoist1 ?distributor4 |
at ?crate3 ?depot3 | in ?crate3 ?truck0, at ?crate3 ?distributor2, lifting ?hoist1 ?crate3,
at ?crate3 ?depot2, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, at ?crate3 ?distributor3, at
?crate3 ?distributor0, at ?crate3 ?depot1, lifting ?hoist0 ?crate3, at ?crate3 ?depot0, at
?crate3 ?distributor1
at ?crate3 ?distributor3 | at ?crate3 ?depot3, in ?crate3 ?truck0, at ?crate3 ?distributor2,
lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, at
?crate3 ?distributor0, at ?crate3 ?depot1, lifting ?hoist0 ?crate3, at ?crate3 ?depot0, at
?crate3 ?distributor1
at ?crate4 ?distributor2 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truck1,
at ?crate4 ?depot1, at ?crate4 ?distributor1, at ?crate4 ?distributor0, in ?crate4 ?truck0,
at ?crate4 ?depot0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
at ?crate4 ?depot2 | lifting ?hoist1 ?crate4, in ?crate4 ?truck1, at ?crate4 ?distributor2,
at ?crate4 ?depot1, at ?crate4 ?distributor1, at ?crate4 ?distributor0, in ?crate4 ?truck0,
at ?crate4 ?depot0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
at ?crate4 ?distributor0 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truck1,
at ?crate4 ?distributor2, at ?crate4 ?depot1, at ?crate4 ?distributor1, in ?crate4 ?truck0,
at ?crate4 ?depot0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
on ?crate1 ?crate4 | lifting ?hoist0 ?crate1, on ?crate0 ?crate1, clear ?crate4, on ?crate2
?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, on ?crate1 ?pallet2, in ?crate1 ?truck0,
on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, on ?crate0 ?crate4, on ?crate4 ?pallet1, lift-
ing ?hoist0 ?crate4, on ?crate1 ?pallet0, in ?crate1 ?truck1, on ?crate4 ?crate3, lifting
?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, lifting ?hoist2 ?crate1, on ?crate1
?crate0, on ?crate4 ?crate1, on ?crate4 ?crate2, on ?crate1 ?crate3, in ?crate4 ?truck1,
on ?crate4 ?pallet0, on ?crate4 ?crate0, in ?crate4 ?truck0
on ?crate4 ?pallet1 | on ?crate2 ?pallet1, on ?crate0 ?pallet1, clear ?pallet1, on ?crate1
?crate4, on ?crate1 ?pallet1, on ?crate0 ?crate4, lifting ?hoist0 ?crate4, on ?crate4
?crate3, lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate4 ?crate1,
on ?crate4 ?crate2, in ?crate4 ?truck1, on ?crate4 ?pallet0, on ?crate3 ?pallet1, on
?crate4 ?crate0, in ?crate4 ?truck0, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4
on ?crate4 ?crate3 | lifting ?hoist1 ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truck1, on
?crate1 ?crate4, on ?crate3 ?crate1, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crate0
?crate4, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, in ?crate3 ?truck0, lifting ?hoist1
?crate4, on ?crate2 ?crate4, clear ?crate3, on ?crate3 ?crate4, on ?crate4 ?crate1, on
?crate4 ?crate2, on ?crate1 ?crate3, in ?crate4 ?truck1, on ?crate4 ?pallet0, lifting ?hoist0
?crate3, on ?crate3 ?pallet1, on ?crate4 ?crate0, on ?crate3 ?crate0, in ?crate4 ?truck0,
on ?crate4 ?pallet2, on ?crate0 ?crate3, lifting ?hoist2 ?crate4
on ?crate3 ?crate4 | clear ?crate4, on ?crate3 ?pallet2, lifting ?hoist1 ?crate3, on ?crate3
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?pallet0, in ?crate3 ?truck1, lifting ?hoist2 ?crate3, on ?crate1 ?crate4, on ?crate3 ?crate1,
on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crate0 ?crate4, on ?crate4 ?pallet1, lifting
?hoist0 ?crate4, on ?crate4 ?crate3, in ?crate3 ?truck0, lifting ?hoist1 ?crate4, on ?crate2
?crate4, on ?crate4 ?crate1, on ?crate4 ?crate2, on ?crate1 ?crate3, in ?crate4 ?truck1,
lifting ?hoist0 ?crate3, on ?crate4 ?pallet0, on ?crate3 ?pallet1, on ?crate3 ?crate0, on
?crate4 ?crate0, in ?crate4 ?truck0, on ?crate0 ?crate3
on ?crate4 ?crate1 | lifting ?hoist0 ?crate1, on ?crate0 ?crate1, on ?crate1 ?crate4, on
?crate2 ?crate1, on ?crate3 ?crate1, on ?crate1 ?crate2, clear ?crate1, in ?crate1 ?truck0,
on ?crate1 ?pallet1, lifting ?hoist1 ?crate1, on ?crate0 ?crate4, on ?crate4 ?pallet1, lift-
ing ?hoist0 ?crate4, on ?crate1 ?pallet0, in ?crate1 ?truck1, on ?crate4 ?crate3, lifting
?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate1 ?crate0, on ?crate4
?crate2, on ?crate1 ?crate3, in ?crate4 ?truck1, on ?crate4 ?pallet0, on ?crate4 ?crate0,
in ?crate4 ?truck0, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4
at ?crate4 ?depot1 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truck1, at
?crate4 ?distributor2, at ?crate4 ?distributor1, at ?crate4 ?distributor0, in ?crate4 ?truck0,
at ?crate4 ?depot0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
at ?crate4 ?distributor1 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truck1,
at ?crate4 ?distributor2, at ?crate4 ?depot1, at ?crate4 ?distributor0, in ?crate4 ?truck0,
at ?crate4 ?depot0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
on ?crate0 ?crate4 | on ?crate0 ?crate2, on ?crate0 ?pallet1, on ?crate0 ?crate1, lifting
?hoist2 ?crate0, clear ?crate4, on ?crate2 ?crate0, in ?crate0 ?truck0, on ?crate1 ?crate4,
on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, on ?crate4 ?crate3, lifting ?hoist1 ?crate0,
lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate1 ?crate0, on
?crate4 ?crate1, on ?crate4 ?crate2, on ?crate0 ?pallet0, on ?crate0 ?pallet2, in ?crate4
?truck1, in ?crate0 ?truck1, on ?crate4 ?pallet0, lifting ?hoist0 ?crate0, on ?crate3
?crate0, on ?crate4 ?crate0, in ?crate4 ?truck0, on ?crate0 ?crate3
on ?crate4 ?crate2 | on ?crate0 ?crate2, on ?crate2 ?pallet1, on ?crate2 ?crate0, on
?crate1 ?crate4, on ?crate2 ?pallet0, on ?crate2 ?crate1, clear ?crate2, on ?crate1 ?crate2,
on ?crate2 ?crate3, on ?crate3 ?crate2, lifting ?hoist0 ?crate2, on ?crate0 ?crate4, on
?crate4 ?pallet1, in ?crate2 ?truck0, lifting ?hoist0 ?crate4, lifting ?hoist1 ?crate2, on
?crate4 ?crate3, lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate4
?crate1, in ?crate4 ?truck1, on ?crate4 ?pallet0, in ?crate2 ?truck1, on ?crate4 ?crate0,
in ?crate4 ?truck0, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4
at ?crate4 ?depot0 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truck1, at
?crate4 ?distributor2, at ?crate4 ?depot1, at ?crate4 ?distributor1, at ?crate4 ?distribu-
tor0, in ?crate4 ?truck0, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
on ?crate4 ?pallet2 | on ?crate4 ?crate3, lifting ?hoist1 ?crate4, on ?crate3 ?pallet2, on
?crate2 ?pallet2, on ?crate4 ?crate1, on ?crate4 ?crate2, in ?crate4 ?truck1, on ?crate0
?pallet2, on ?crate4 ?pallet0, on ?crate4 ?crate0, on ?crate1 ?pallet2, in ?crate4 ?truck0,
clear ?pallet2, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, lifting ?hoist2 ?crate4
clear ?crate4 | lifting ?hoist1 ?crate4, clear ?pallet1, clear ?crate0, on ?crate2 ?crate4,
clear ?crate3, on ?crate3 ?crate4, on ?crate1 ?crate4, in ?crate4 ?truck1, clear ?crate2,
clear ?pallet0, clear ?crate1, clear ?pallet2, in ?crate4 ?truck0, on ?crate0 ?crate4, lifting
?hoist0 ?crate4, lifting ?hoist2 ?crate4
on ?crate2 ?crate4 | on ?crate0 ?crate2, on ?crate2 ?pallet1, clear ?crate4, on ?crate2
?crate0, on ?crate1 ?crate4, on ?crate2 ?pallet0, on ?crate2 ?crate1, on ?crate1 ?crate2,
on ?crate2 ?crate3, on ?crate3 ?crate2, lifting ?hoist0 ?crate2, on ?crate0 ?crate4, on
?crate4 ?pallet1, in ?crate2 ?truck0, lifting ?hoist0 ?crate4, lifting ?hoist1 ?crate2, on
?crate4 ?crate3, lifting ?hoist1 ?crate4, lifting ?hoist2 ?crate2, on ?crate3 ?crate4, on
?crate2 ?pallet2, on ?crate4 ?crate1, on ?crate4 ?crate2, in ?crate4 ?truck1, in ?crate2
?truck1, on ?crate4 ?pallet0, on ?crate4 ?crate0, in ?crate4 ?truck0
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on ?crate4 ?pallet0 | on ?crate3 ?pallet0, on ?crate1 ?crate4, on ?crate2 ?pallet0, clear
?pallet0, on ?crate0 ?crate4, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, on ?crate1 ?pal-
let0, on ?crate4 ?crate3, lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4,
on ?crate4 ?crate1, on ?crate4 ?crate2, on ?crate0 ?pallet0, in ?crate4 ?truck1, on ?crate4
?crate0, in ?crate4 ?truck0, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4
on ?crate4 ?crate0 | on ?crate0 ?crate2, on ?crate0 ?pallet1, clear ?crate0, on ?crate0
?crate1, on ?crate2 ?crate0, in ?crate0 ?truck0, on ?crate1 ?crate4, on ?crate0 ?crate4, on
?crate4 ?pallet1, lifting ?hoist0 ?crate4, on ?crate4 ?crate3, lifting ?hoist1 ?crate4, lift-
ing ?hoist1 ?crate0, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate1 ?crate0, on ?crate4
?crate1, on ?crate4 ?crate2, on ?crate0 ?pallet0, in ?crate4 ?truck1, in ?crate0 ?truck1,
on ?crate4 ?pallet0, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, in ?crate4 ?truck0, on
?crate4 ?pallet2, on ?crate0 ?crate3, lifting ?hoist2 ?crate4
in ?crate0 ?truck3 | in ?crate0 ?truck1, lifting ?hoist1 ?crate0, lifting ?hoist0 ?crate0, in
?crate0 ?truck2, in ?crate0 ?truck0
in ?crate2 ?truck3 | in ?crate2 ?truck2, lifting ?hoist1 ?crate2, in ?crate2 ?truck1, lifting
?hoist0 ?crate2, in ?crate2 ?truck0
in ?crate1 ?truck3 | in ?crate1 ?truck1, lifting ?hoist0 ?crate1, in ?crate1 ?truck0, in
?crate1 ?truck2, lifting ?hoist1 ?crate1
at ?truck3 ?depot3 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distributor2,
at ?truck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?distributor1
at ?truck3 ?distributor3 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distrib-
utor2, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
tor1
in ?crate4 ?truck1 | clear ?crate4, on ?crate1 ?crate4, at ?crate4 ?distributor2, at ?crate4
?distributor1, on ?crate0 ?crate4, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, on ?crate4
?crate3, lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, at ?crate4 ?de-
pot2, on ?crate4 ?crate1, on ?crate4 ?crate2, at ?crate4 ?depot1, on ?crate4 ?pallet0, on
?crate4 ?crate0, at ?crate4 ?distributor0, in ?crate4 ?truck0, at ?crate4 ?depot0
in ?crate4 ?truck0 | clear ?crate4, on ?crate1 ?crate4, at ?crate4 ?distributor2, at ?crate4
?distributor1, on ?crate0 ?crate4, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, on ?crate4
?crate3, lifting ?hoist1 ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, at ?crate4 ?de-
pot2, on ?crate4 ?crate1, on ?crate4 ?crate2, in ?crate4 ?truck1, at ?crate4 ?depot1, on
?crate4 ?pallet0, on ?crate4 ?crate0, at ?crate4 ?distributor0, at ?crate4 ?depot0
lifting ?hoist0 ?crate4 | lifting ?hoist0 ?crate1, clear ?crate4, available ?hoist0, on ?crate1
?crate4, at ?crate4 ?distributor2, at ?crate4 ?distributor1, lifting ?hoist0 ?crate2, on
?crate0 ?crate4, on ?crate4 ?pallet1, on ?crate4 ?crate3, lifting ?hoist1 ?crate4, on
?crate2 ?crate4, on ?crate3 ?crate4, at ?crate4 ?depot2, on ?crate4 ?crate1, on ?crate4
?crate2, in ?crate4 ?truck1, at ?crate4 ?depot1, on ?crate4 ?pallet0, lifting ?hoist0 ?crate3,
lifting ?hoist0 ?crate0, on ?crate4 ?crate0, at ?crate4 ?distributor0, in ?crate4 ?truck0, at
?crate4 ?depot0, on ?crate4 ?pallet2
lifting ?hoist1 ?crate4 | available ?hoist1, clear ?crate4, lifting ?hoist1 ?crate3, on ?crate1
?crate4, at ?crate4 ?distributor2, at ?crate4 ?distributor1, lifting ?hoist1 ?crate1, on
?crate0 ?crate4, on ?crate4 ?pallet1, lifting ?hoist0 ?crate4, lifting ?hoist1 ?crate2, on
?crate4 ?crate3, lifting ?hoist1 ?crate0, on ?crate2 ?crate4, on ?crate3 ?crate4, at ?crate4
?depot2, on ?crate4 ?crate1, on ?crate4 ?crate2, in ?crate4 ?truck1, at ?crate4 ?depot1,
on ?crate4 ?pallet0, on ?crate4 ?crate0, at ?crate4 ?distributor0, in ?crate4 ?truck0, at
?crate4 ?depot0, on ?crate4 ?pallet2
at ?truck2 ?distributor4 | at ?truck2 ?depot1, at ?truck2 ?distributor3, at ?truck2 ?depot0,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2
at ?truck2 ?depot4 | at ?truck2 ?distributor4, at ?truck2 ?depot1, at ?truck2 ?distributor3,
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at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot3, at ?truck2 ?distributor1,
at ?truck2 ?distributor0, at ?truck2 ?depot2

C.3.2 Understanding the found macro-operators

macro I U R
action macro-3-actions-1-3-4–4-3 1 0 0
action macro-3-actions-1-3-0–6-2 1 0 0
action macro-3-actions-1-3-4–7-5 0 1 0
action macro-3-actions-1-3-0–9-7 1 0 0
action macro-3-actions-1-3-2–12-6 1 0 0
action macro-3-actions-1-3-3–13-8 1 0 0
action macro-4-actions-1-3-4-2–14-9 1 0 0
action macro-3-actions-1-0-0–17-2 0 1 0
action macro-3-actions-1-4-2–23-12 1 0 0
action macro-2-actions-1-4–24-13 1 0 0
action macro-2-actions-1-2–24-14 1 0 0
action macro-3-actions-1-0-0–25-2 0 1 0
action macro-4-actions-1-0-0-4–29-1 1 0 0
action macro-2-actions-1-2–31-15 1 0 0
action macro-3-actions-3-0-0–36-19 0 1 0
action macro-2-actions-3-4–40-20 1 0 0
action macro-2-actions-3-0–41-19 1 0 0
action macro-2-actions-3-4–42-22 0 1 0
action macro-2-actions-3-2–30-24 1 0 0
action macro-2-actions-3-3–43-25 1 0 0
action macro-3-actions-0-1-4–49-26 1 0 0
action macro-3-actions-0-1-0–50-27 0 1 0
action macro-4-actions-0-4-3-0–56-29 0 1 0
action macro-3-actions-0-4-3–57-29 0 1 0
action macro-3-actions-0-4-3–58-31 1 0 0
action macro-4-actions-0-1-3-2–65-32 1 0 0
action macro-3-actions-0-1-0–70-27 0 1 0
action macro-3-actions-0-1-2–71-32 1 0 0
action macro-2-actions-0-3–73-30 1 0 0
action macro-4-actions-0-0-0-0–77-35 0 1 0
action macro-3-actions-0-0-0–78-35 0 1 0
action macro-3-actions-0-0-0–79-37 1 0 0
action macro-3-actions-0-0-0–80-37 1 0 0
action macro-4-actions-0-0-0-0–84-35 0 1 0
action macro-3-actions-0-0-0–87-35 0 1 0
action macro-3-actions-0-0-0–92-37 1 0 0
action macro-4-actions-0-3-4-0–56-29 0 1 0
action macro-3-actions-0-3-4–57-29 0 1 0
action macro-3-actions-0-3-2–99-39 1 0 0
action macro-3-actions-0-3-0–101-30 1 0 0
action macro-3-actions-0-3-4–100-41 1 0 0
action macro-3-actions-0-3-3–58-31 1 0 0
action macro-3-actions-0-4-0–101-30 1 0 0

196



Table C.3 continued from previous page
macro I U R

action macro-3-actions-0-4-0–107-30 1 0 0
action macro-3-actions-0-4-2–110-31 1 0 0
action macro-4-actions-0-4-3-0–95-31 1 0 0
action macro-3-actions-0-4-4–112-43 1 0 0
action macro-3-actions-0-0-1–115-27 0 1 0
action macro-3-actions-0-0-3–118-29 0 1 0
action macro-3-actions-0-0-1–122-27 0 1 0
action macro-4-actions-0-0-0-0–125-35 0 1 0
action macro-3-actions-0-0-0–128-35 0 1 0
action macro-3-actions-0-0-2–122-27 0 1 0
action macro-3-actions-0-0-4–118-29 0 1 0
action macro-4-actions-0-0-0-0–134-44 1 0 0
action macro-3-actions-0-0-0–135-44 1 0 0
action macro-4-actions-0-0-0-0–136-44 1 0 0
action macro-3-actions-0-0-0–137-44 1 0 0
action macro-4-actions-0-0-0-0–138-44 0 1 0
action macro-4-actions-0-0-0-0–139-44 0 1 0
action macro-3-actions-0-0-0–142-44 0 1 0
action macro-3-actions-0-0-4–143-30 1 0 0
action macro-3-actions-0-0-0–144-37 0 1 0
action macro-4-actions-0-0-3-0–145-30 1 0 0
action macro-4-actions-0-0-0-0–147-35 0 1 0
action macro-3-actions-0-0-0–152-35 0 1 0
action macro-3-actions-0-0-3–122-38 0 1 0
action macro-3-actions-0-0-0–154-37 0 1 0
action macro-3-actions-0-0-4–122-38 0 1 0
action macro-3-actions-0-0-2–115-27 0 1 0
action macro-4-actions-0-0-4-3–155-29 0 1 0
action macro-4-actions-0-0-3-3–117-31 1 0 0
action macro-4-actions-0-0-3-4–155-29 0 1 0
action macro-3-actions-0-0-0–157-37 0 1 0
action macro-3-actions-0-0-3–143-30 1 0 0
action macro-3-actions-0-0-0–158-37 0 1 0
action macro-2-actions-0-0–163-46 0 1 0
action macro-3-actions-0-2-2–164-32 1 0 0
action macro-3-actions-0-0-4–165-45 1 0 0
action macro-3-actions-0-0-0–166-47 1 0 0
action macro-3-actions-0-0-3–165-45 1 0 0
action macro-4-actions-0-0-4-0–167-45 1 0 0
action macro-3-actions-0-0-0–168-44 1 0 0
action macro-3-actions-0-0-2–169-48 1 0 0
action macro-4-actions-0-0-3-0–167-45 1 0 0
action macro-3-actions-0-0-1–179-48 1 0 0
action macro-4-actions-0-0-0-0–181-44 1 0 0
action macro-4-actions-0-0-0-1–183-48 1 0 0
action macro-4-actions-0-0-0-3–184-45 1 0 0
action macro-4-actions-0-0-0-4–184-45 1 0 0
action macro-3-actions-0-0-0–185-44 1 0 0
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Table C.3 continued from previous page
macro I U R

action macro-3-actions-0-0-0–186-47 1 0 0
action macro-3-actions-0-0-0–187-47 1 0 0
action macro-3-actions-0-0-0–168-49 1 0 0
action macro-3-actions-0-0-0–188-47 1 0 0
action macro-3-actions-0-0-0–189-47 1 0 0
action macro-3-actions-0-0-2–179-48 1 0 0
action macro-2-actions-0-0–191-44 1 0 0
action macro-4-actions-0-0-0-0–195-44 1 0 0
action macro-4-actions-0-0-0-4–196-45 1 0 0
action macro-3-actions-0-0-0–197-47 1 0 0
action macro-3-actions-0-0-0–199-44 1 0 0
action macro-3-actions-0-0-4–202-45 1 0 0
action macro-3-actions-0-0-3–202-45 1 0 0
action macro-4-actions-0-0-0-0–203-44 1 0 0
action macro-4-actions-0-0-0-0–204-44 1 0 0
action macro-4-actions-0-0-0-3–206-45 1 0 0
action macro-4-actions-0-0-0-0–207-47 1 0 0
action macro-4-actions-0-0-0-0–208-47 1 0 0
action macro-4-actions-0-0-0-4–206-45 1 0 0
action macro-4-actions-0-0-0-4–209-45 1 0 0
action macro-4-actions-0-0-0-0–210-47 1 0 0
action macro-4-actions-0-0-0-0–211-47 1 0 0
action macro-3-actions-0-0-0–212-44 1 0 0
action macro-3-actions-0-0-0–214-47 1 0 0
action macro-3-actions-0-0-1–215-48 1 0 0
action macro-4-actions-0-0-0-0–216-44 1 0 0
action macro-4-actions-0-0-0-4–217-45 1 0 0
action macro-3-actions-0-0-0–218-44 1 0 0
action macro-3-actions-0-0-0–219-47 1 0 0
action macro-3-actions-0-0-0–220-47 1 0 0
action macro-3-actions-0-0-4–221-45 1 0 0
action macro-4-actions-0-0-4-0–222-45 1 0 0
action macro-4-actions-0-0-0-0–223-47 1 0 0
action macro-3-actions-0-0-0–224-47 1 0 0
action macro-4-actions-0-0-0-0–225-47 1 0 0
action macro-4-actions-0-0-0-0–226-47 1 0 0
action macro-3-actions-0-0-0–227-47 1 0 0
action macro-3-actions-0-0-2–215-48 1 0 0
action macro-2-actions-0-0–229-44 1 0 0
action macro-3-actions-0-4-2–259-50 1 0 0
action macro-2-actions-0-4–73-30 1 0 0
action macro-3-actions-0-0-0–260-37 0 1 0
action macro-4-actions-0-0-0-0–265-35 0 1 0
action macro-3-actions-0-0-0–268-35 0 1 0
action macro-4-actions-0-0-0-0–271-35 0 1 0
action macro-3-actions-0-0-0–274-35 0 1 0
action macro-3-actions-0-0-0–275-37 1 0 0
action macro-3-actions-0-0-0–276-37 1 0 0
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Table C.3 continued from previous page
macro I U R

action macro-3-actions-0-0-0–284-37 1 0 0
action macro-4-actions-0-0-0-0–285-37 0 1 0
action macro-4-actions-0-1-3-0–288-31 1 0 0
action macro-3-actions-0-1-3–289-31 1 0 0
action macro-4-actions-0-1-3-1–65-39 1 0 0
action macro-4-actions-0-1-3-3–63-31 1 0 0
action macro-4-actions-0-3-3-0–95-31 1 0 0
action macro-4-actions-0-3-0-0–293-30 1 0 0
action macro-3-actions-0-3-0–107-30 1 0 0
action macro-3-actions-0-3-0–295-30 1 0 0
action macro-3-actions-0-3-0–296-30 1 0 0
action macro-3-actions-0-3-4–297-54 1 0 0
action macro-3-actions-0-0-0–298-49 1 0 0
action macro-2-actions-0-0–299-49 1 0 0
action macro-3-actions-0-0-4–300-55 1 0 0
action macro-3-actions-0-0-0–301-49 1 0 0
action macro-3-actions-0-0-0–302-49 1 0 0
action macro-3-actions-0-0-3–300-55 1 0 0
action macro-4-actions-0-0-0-0–312-44 0 1 0
action macro-4-actions-0-0-0-0–312-49 0 1 0
action macro-3-actions-0-0-0–319-44 0 1 0
action macro-4-actions-0-0-0-0–320-47 0 1 0
action macro-4-actions-0-0-0-4–323-45 0 1 0
action macro-4-actions-0-0-0-0–324-44 0 1 0
action macro-4-actions-0-0-0-3–323-45 0 1 0
action macro-4-actions-0-0-0-1–327-48 0 1 0
action macro-4-actions-0-0-0-0–328-47 0 1 0
action macro-4-actions-0-0-0-0–329-47 0 1 0
action macro-4-actions-0-0-0-0–330-47 0 1 0
action macro-4-actions-0-0-0-0–331-47 0 1 0
action macro-3-actions-0-0-0–332-44 0 1 0
action macro-4-actions-0-0-1-0–342-48 0 1 0
action macro-3-actions-0-0-0–338-49 1 0 0
action macro-4-actions-0-0-0-0–324-49 0 1 0
action macro-3-actions-0-0-0–332-49 0 1 0
action macro-3-actions-0-0-4–303-56 1 0 0
action macro-4-actions-0-0-0-0–348-47 0 1 0
action macro-3-actions-0-0-3–303-56 1 0 0
action macro-3-actions-0-0-0–352-49 1 0 0
action macro-4-actions-0-0-0-0–356-47 0 1 0
action macro-3-actions-0-0-0–358-49 1 0 0
action macro-4-actions-0-0-0-0–359-47 0 1 0
action macro-4-actions-0-0-3-4–364-45 0 1 0
action macro-4-actions-0-0-4-3–364-45 0 1 0
action macro-2-actions-0-0–366-44 0 1 0
action macro-3-actions-0-3-4–367-53 1 0 0
action macro-3-actions-0-3-0–368-30 1 0 0
action macro-4-actions-0-3-0-4–369-53 1 0 0
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Table C.3 continued from previous page
macro I U R

action macro-3-actions-0-3-3–370-59 1 0 0
action macro-3-actions-0-0-0–372-37 0 1 0
action macro-3-actions-0-0-0–373-37 1 0 0
action macro-3-actions-0-0-0–378-37 0 1 0
action macro-3-actions-0-0-0–379-37 1 0 0
action macro-3-actions-0-0-0–380-37 1 0 0
action macro-3-actions-0-0-0–382-37 1 0 0
action macro-4-actions-0-0-0-0–385-37 0 1 0
action macro-3-actions-0-0-0–386-37 0 1 0
action macro-3-actions-0-1-3–69-32 1 0 0
action macro-4-actions-0-3-3-3–104-60 1 0 0
action macro-4-actions-0-3-3-4–104-31 1 0 0
action macro-3-actions-0-3-4–112-43 1 0 0
action macro-4-actions-0-3-3-4–392-31 1 0 0
action macro-3-actions-0-2-0–70-27 0 1 0
action macro-3-actions-0-4-0–295-30 1 0 0
action macro-3-actions-0-4-0–296-30 1 0 0
action macro-3-actions-0-4-3–398-30 1 0 0
action macro-3-actions-0-4-4–370-59 1 0 0
action macro-4-actions-0-1-3-4–66-61 1 0 0
action macro-4-actions-0-3-3-4–104-60 1 0 0
action macro-3-actions-0-4-3–112-43 1 0 0
action macro-3-actions-0-0-0–403-37 1 0 0
action macro-3-actions-0-0-0–407-37 0 1 0
action macro-3-actions-0-3-4–408-38 0 1 0
action macro-3-actions-0-0-0–411-37 1 0 0
action macro-3-actions-0-0-0–412-37 1 0 0
action macro-4-actions-0-0-0-0–414-37 0 1 0
action macro-3-actions-0-0-0–415-37 0 1 0
action macro-3-actions-0-2-0–50-27 0 1 0
action macro-3-actions-0-3-0–70-38 0 1 0
action macro-3-actions-0-4-0–417-38 1 0 0
action macro-4-actions-0-4-0-0–420-30 1 0 0
action macro-3-actions-0-3-4–370-59 1 0 0
action macro-4-actions-0-3-0-0–420-30 1 0 0
action macro-4-actions-0-3-0-0–421-30 1 0 0
action macro-4-actions-0-3-0-0–423-30 1 0 0
action macro-4-actions-0-3-0-0–424-30 1 0 0
action macro-3-actions-0-3-4–398-30 1 0 0
action macro-4-actions-0-3-0-0–425-30 1 0 0
action macro-3-actions-0-4-3–370-59 1 0 0
action macro-4-actions-0-4-0-0–423-30 1 0 0
action macro-4-actions-0-4-3-0–426-30 1 0 0
action macro-4-actions-0-3-0-0–427-30 1 0 0
action macro-3-actions-0-3-3–297-54 1 0 0
action macro-3-actions-0-3-1–430-62 1 0 0
action macro-3-actions-4-0-3–431-19 1 0 0
action macro-2-actions-4-0–41-19 1 0 0
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Table C.3 continued from previous page
macro I U R

action macro-3-actions-4-3-4–432-23 0 1 0
action macro-3-actions-4-3-0–433-19 0 1 0
action macro-2-actions-4-3–42-22 0 1 0
action macro-4-actions-4-0-0-3–434-19 0 1 0
action macro-3-actions-4-0-0–36-19 0 1 0
action macro-2-actions-4-3–31-23 1 0 0
action macro-2-actions-4-0–435-66 1 0 0
action macro-2-actions-4-4–43-25 1 0 0
action macro-2-actions-4-2–436-23 1 0 0
action macro-3-actions-1-0-2–437-68 1 0 0
action macro-3-actions-1-0-0–438-7 1 0 0
action macro-4-actions-1-3-0-4–441-2 1 0 0
action macro-4-actions-1-3-0-4–441-68 1 0 0
action macro-4-actions-1-3-0-0–442-7 1 0 0
action macro-4-actions-1-3-4-0–444-69 1 0 0
action macro-4-actions-1-3-0-0–448-7 1 0 0
action macro-4-actions-1-3-0-0–449-7 1 0 0
action macro-4-actions-1-3-0-2–451-68 1 0 0
action macro-4-actions-1-3-0-0–452-7 1 0 0
action macro-4-actions-1-3-0-0–453-2 1 0 0
action macro-3-actions-1-3-2–454-70 1 0 0
action macro-4-actions-1-3-0-0–455-7 1 0 0
action macro-4-actions-1-3-0-0–456-7 1 0 0
action macro-4-actions-1-3-0-0–457-7 1 0 0
action macro-4-actions-1-3-0-0–459-7 1 0 0
action macro-4-actions-1-3-0-3–460-71 1 0 0
action macro-4-actions-1-3-4-0–461-72 1 0 0
action macro-3-actions-1-3-4–13-8 1 0 0
action macro-3-actions-1-3-3–4-3 1 0 0
action macro-3-actions-1-3-3–8-6 1 0 0
action macro-4-actions-1-3-3-0–463-73 1 0 0
action macro-3-actions-1-0-2–468-68 1 0 0
action macro-3-actions-1-0-0–469-7 1 0 0
action macro-3-actions-1-0-1–471-74 1 0 0
action macro-3-actions-1-0-2–471-75 1 0 0
action macro-2-actions-1-3–30-67 1 0 0
action macro-3-actions-1-0-4–19-1 1 0 0
action macro-3-actions-0-0-0–482-37 1 0 0
action macro-3-actions-0-4-0–491-38 1 0 0
action macro-3-actions-0-4-0–50-38 0 1 0
action macro-3-actions-0-4-3–493-38 0 1 0
action macro-3-actions-0-0-0–499-37 1 0 0
action macro-3-actions-0-0-0–501-37 0 1 0
action macro-3-actions-0-0-0–502-37 1 0 0
action macro-4-actions-0-0-0-0–503-37 0 1 0
action macro-4-actions-0-0-0-0–505-37 1 0 0
action macro-4-actions-0-0-0-0–506-37 1 0 0
action macro-4-actions-0-0-0-0–508-37 0 1 0
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macro I U R

action macro-3-actions-0-0-0–509-37 1 0 0
action macro-4-actions-0-0-0-0–510-37 1 0 0
action macro-3-actions-0-0-0–513-37 1 0 0
action macro-4-actions-0-0-0-0–516-37 0 1 0
action macro-3-actions-0-0-4–115-38 0 1 0
action macro-3-actions-0-0-3–115-38 0 1 0
action macro-4-actions-0-0-0-0–518-37 0 1 0
action macro-4-actions-0-0-0-0–519-37 0 1 0
action macro-4-actions-0-0-0-0–520-37 0 1 0
action macro-4-actions-0-0-3-0–521-38 1 0 0
action macro-3-actions-0-3-4–493-38 0 1 0
action macro-4-actions-0-0-0-0–524-37 0 1 0
action macro-4-actions-0-0-0-0–525-37 1 0 0
action macro-3-actions-0-0-0–528-37 1 0 0
action macro-3-actions-0-3-0–491-38 1 0 0
action macro-4-actions-0-0-0-0–529-47 1 0 0
action macro-4-actions-0-0-0-0–530-47 1 0 0
action macro-3-actions-0-4-0–70-38 0 1 0
action macro-3-actions-0-3-3–71-77 1 0 0
action macro-3-actions-0-3-0–417-38 1 0 0
action macro-3-actions-1-4-0–532-13 1 0 0
action macro-3-actions-3-3-0–534-84 1 0 0
action macro-2-actions-3-3–31-23 1 0 0
action macro-3-actions-3-4-0–540-20 1 0 0
action macro-3-actions-3-0-4–431-86 1 0 0
action macro-2-actions-3-4–43-25 1 0 0
action macro-3-actions-3-0-4–431-19 1 0 0
action macro-3-actions-3-4-2–541-65 0 1 0
action macro-4-actions-3-4-0-0–542-19 0 1 0
action macro-3-actions-3-4-0–433-19 0 1 0
action macro-3-actions-3-0-0–16-21 1 0 0
action macro-3-actions-3-0-0–17-21 0 1 0
action macro-3-actions-3-4-0–543-84 1 0 0
action macro-4-actions-3-0-0-4–434-19 0 1 0
action macro-3-actions-3-0-0–546-66 1 0 0
action macro-3-actions-3-0-2–548-87 1 0 0
action macro-3-actions-3-0-0–549-66 1 0 0
action macro-3-actions-3-4-2–550-88 1 0 0
action macro-2-actions-3-2–24-89 1 0 0
action macro-3-actions-3-0-0–551-66 1 0 0
action macro-4-actions-3-0-0-0–553-66 1 0 0
action macro-3-actions-3-0-0–554-66 1 0 0
action macro-2-actions-3-0–435-66 1 0 0
action macro-4-actions-3-0-0-0–556-66 0 1 0
action macro-3-actions-3-4-3–558-23 0 1 0
action macro-3-actions-3-3-4–559-25 1 0 0
action macro-3-actions-4-0-3–431-86 1 0 0
action macro-3-actions-4-0-0–560-19 1 0 0
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macro I U R

action macro-4-actions-4-0-3-0–561-19 1 0 0
action macro-3-actions-4-0-0–16-21 1 0 0
action macro-3-actions-4-0-0–17-21 0 1 0
action macro-4-actions-4-0-0-3–434-86 1 0 0
action macro-3-actions-4-2-2–563-63 1 0 0
action macro-3-actions-4-0-0–551-66 1 0 0
action macro-3-actions-4-0-0–554-66 1 0 0
action macro-3-actions-4-0-0–439-21 1 0 0
action macro-3-actions-4-0-0–25-21 0 1 0
action macro-3-actions-4-3-0–565-19 1 0 0
action macro-3-actions-4-3-3–432-23 1 0 0
action macro-2-actions-4-3–43-25 1 0 0
action macro-4-actions-0-0-1-4–568-26 1 0 0
action macro-4-actions-0-0-4-3–117-31 1 0 0
action macro-4-actions-0-0-0-3–571-45 1 0 0
action macro-4-actions-0-0-0-4–571-45 1 0 0
action macro-4-actions-0-0-0-0–574-47 1 0 0
action macro-4-actions-0-0-0-0–575-47 1 0 0
action macro-3-actions-0-0-0–579-49 1 0 0
action macro-4-actions-0-0-0-0–138-49 0 1 0
action macro-4-actions-0-0-3-0–584-30 1 0 0
action macro-4-actions-0-0-4-0–145-30 1 0 0
action macro-4-actions-0-0-4-0–584-30 1 0 0
action macro-4-actions-0-0-4-0–586-30 1 0 0
action macro-4-actions-0-0-0-0–587-37 0 1 0
action macro-4-actions-0-0-3-0–585-30 1 0 0
action macro-4-actions-0-0-4-0–585-30 1 0 0
action macro-4-actions-0-0-4-2–588-50 1 0 0
action macro-4-actions-0-0-3-4–589-54 1 0 0
action macro-3-actions-0-1-2–489-32 1 0 0
action macro-4-actions-0-0-0-0–595-37 1 0 0
action macro-3-actions-0-0-0–599-37 1 0 0
action macro-4-actions-0-0-0-0–602-44 1 0 0
action macro-4-actions-0-0-4-0–603-45 1 0 0
action macro-4-actions-0-0-0-0–607-44 1 0 0
action macro-4-actions-0-0-3-0–603-45 1 0 0
action macro-4-actions-0-0-0-0–608-44 1 0 0
action macro-4-actions-0-0-0-1–609-48 1 0 0
action macro-3-actions-0-0-2–610-48 1 0 0
action macro-3-actions-0-0-0–611-49 1 0 0
action macro-4-actions-0-0-4-0–612-45 1 0 0
action macro-3-actions-0-0-3–221-45 1 0 0
action macro-3-actions-0-0-0–616-47 1 0 0
action macro-4-actions-0-0-0-0–618-47 1 0 0
action macro-4-actions-0-0-0-0–619-47 1 0 0
action macro-4-actions-0-0-0-0–620-47 1 0 0
action macro-4-actions-0-0-0-0–621-47 1 0 0
action macro-4-actions-0-0-0-0–622-47 1 0 0
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action macro-4-actions-0-0-0-0–637-37 1 0 0
action macro-4-actions-0-0-0-0–638-37 1 0 0
action macro-4-actions-0-3-0-0–657-30 1 0 0
action macro-3-actions-0-0-0–659-37 0 1 0
action macro-3-actions-0-0-3–662-81 1 0 0
action macro-3-actions-0-4-0–368-30 1 0 0
action macro-4-actions-0-4-0-0–657-30 1 0 0
action macro-4-actions-0-0-0-0–670-37 1 0 0
action macro-4-actions-0-0-0-0–671-37 0 1 0
action macro-3-actions-0-0-0–672-37 1 0 0
action macro-4-actions-0-0-0-0–673-37 0 1 0
action macro-4-actions-0-3-0-0–675-30 1 0 0
action macro-2-actions-2-2–436-15 1 0 0
action macro-2-actions-2-1–42-93 0 1 0
action macro-4-actions-0-0-4-2–677-48 1 0 0
action macro-4-actions-0-0-0-3–196-45 1 0 0
action macro-4-actions-0-0-3-4–682-45 1 0 0
action macro-3-actions-0-0-1–169-48 1 0 0
action macro-4-actions-0-0-4-3–682-45 1 0 0
action macro-3-actions-0-1-0–684-33 1 0 0
action macro-4-actions-0-1-3-0–685-33 1 0 0
action macro-4-actions-0-1-3-0–686-33 1 0 0
action macro-4-actions-0-0-0-0–689-37 1 0 0
action macro-4-actions-0-0-0-0–690-37 1 0 0
action macro-3-actions-0-0-0–694-37 1 0 0
action macro-4-actions-0-4-0-0–425-30 1 0 0
action macro-4-actions-0-0-0-0–705-47 0 1 0
action macro-4-actions-0-0-0-0–707-47 0 1 0
action macro-4-actions-0-0-0-0–731-47 1 0 0
action macro-4-actions-0-0-1-0–732-48 1 0 0
action macro-4-actions-0-0-1-3–733-48 1 0 0
action macro-4-actions-0-0-1-0–734-48 1 0 0
action macro-3-actions-0-0-1–610-48 1 0 0
action macro-4-actions-0-0-0-4–737-45 1 0 0
action macro-4-actions-0-0-0-0–739-47 1 0 0
action macro-4-actions-0-0-0-0–740-47 1 0 0
action macro-4-actions-0-0-0-0–741-47 1 0 0
action macro-4-actions-0-0-0-0–742-47 1 0 0
action macro-4-actions-0-0-3-0–612-45 1 0 0
action macro-4-actions-0-0-3-4–743-58 1 0 0
action macro-4-actions-0-0-0-0–746-37 1 0 0
action macro-4-actions-0-3-3-0–95-94 1 0 0
action macro-4-actions-0-3-0-0–749-30 1 0 0
action macro-3-actions-0-1-0–50-33 1 0 0
action macro-4-actions-0-0-0-4–751-45 1 0 0
action macro-4-actions-0-0-0-3–751-45 1 0 0
action macro-4-actions-0-0-0-1–756-48 1 0 0
action macro-4-actions-0-0-3-0–586-30 1 0 0
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action macro-4-actions-0-0-0-0–761-37 0 1 0
action macro-4-actions-0-0-0-0–765-37 1 0 0
action macro-4-actions-0-0-0-0–766-37 0 1 0
action macro-4-actions-0-0-0-0–767-37 1 0 0
action macro-3-actions-0-0-0–771-37 1 0 0
action macro-4-actions-0-0-0-0–773-37 1 0 0
action macro-4-actions-0-0-0-0–774-37 1 0 0
action macro-4-actions-0-0-0-0–776-37 1 0 0
action macro-4-actions-0-0-0-0–777-37 1 0 0
action macro-4-actions-0-0-0-0–779-37 0 1 0
action macro-4-actions-0-0-0-0–781-37 1 0 0
action macro-4-actions-0-0-0-0–782-37 1 0 0
action macro-4-actions-0-3-0-2–391-39 1 0 0
action macro-4-actions-0-4-0-0–293-30 1 0 0
action macro-4-actions-0-4-0-0–749-30 1 0 0
action macro-4-actions-0-0-0-0–788-37 1 0 0
action macro-4-actions-0-0-0-0–791-37 1 0 0
action macro-4-actions-0-0-0-0–792-37 1 0 0
action macro-3-actions-0-0-0–796-37 1 0 0
action macro-4-actions-0-4-0-0–797-30 1 0 0
action macro-4-actions-0-4-0-3–798-30 1 0 0
action macro-4-actions-0-4-3-0–56-30 0 1 0
action macro-4-actions-0-0-0-0–803-37 1 0 0
action macro-4-actions-0-0-0-0–804-37 1 0 0
action macro-4-actions-0-0-0-0–807-37 1 0 0
action macro-4-actions-0-4-0-0–812-30 1 0 0
action macro-4-actions-0-4-0-4–813-43 1 0 0
action macro-3-actions-0-3-0–815-98 1 0 0
action macro-4-actions-1-3-1-3–562-99 1 0 0
action macro-4-actions-0-0-1-3–820-48 1 0 0
action macro-4-actions-0-0-0-0–823-47 0 1 0
action macro-4-actions-0-0-0-0–824-47 0 1 0
action macro-4-actions-0-0-0-1–825-48 0 1 0
action macro-4-actions-0-0-0-2–327-48 0 1 0
action macro-4-actions-0-0-0-0–826-47 0 1 0
action macro-4-actions-0-0-0-0–827-47 0 1 0
action macro-4-actions-0-0-0-0–828-47 0 1 0
action macro-4-actions-0-0-0-0–829-47 0 1 0
action macro-4-actions-0-0-0-0–832-37 0 1 0
action macro-4-actions-0-0-4-3–836-30 1 0 0
action macro-4-actions-0-0-0-0–837-44 1 0 0
action macro-4-actions-0-0-0-4–839-45 1 0 0
action macro-4-actions-0-0-0-3–839-45 1 0 0
action macro-4-actions-0-0-0-0–840-37 0 1 0
action macro-4-actions-0-0-1-0–841-33 1 0 0
action macro-4-actions-0-0-3-4–836-30 1 0 0
action macro-4-actions-0-0-0-0–846-37 1 0 0
action macro-4-actions-0-0-0-0–848-37 0 1 0
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action macro-4-actions-0-0-0-0–849-37 0 1 0
action macro-4-actions-0-0-0-0–850-37 0 1 0
action macro-4-actions-0-0-0-0–851-37 0 1 0
action macro-4-actions-0-0-0-3–737-45 1 0 0
action macro-4-actions-0-0-4-2–852-48 1 0 0
action macro-4-actions-0-0-3-4–853-45 1 0 0
action macro-4-actions-0-0-0-0–854-37 0 1 0
action macro-4-actions-0-0-0-0–855-37 1 0 0
action macro-4-actions-0-0-0-0–856-37 0 1 0
action macro-4-actions-0-0-0-0–857-37 1 0 0
action macro-4-actions-0-0-0-0–860-37 0 1 0
action macro-4-actions-0-0-0-0–861-37 1 0 0
action macro-4-actions-0-3-4-0–863-30 1 0 0
action macro-4-actions-0-4-0-2–865-50 1 0 0
action macro-4-actions-0-0-0-0–866-37 0 1 0
action macro-4-actions-0-0-0-0–867-37 0 1 0
action macro-4-actions-0-0-0-0–868-37 1 0 0
action macro-4-actions-0-3-0-4–798-30 1 0 0
action macro-4-actions-0-3-3-4–871-54 1 0 0
action macro-4-actions-0-0-0-0–874-37 0 1 0
action macro-4-actions-0-0-0-0–887-47 1 0 0
action macro-4-actions-0-0-0-0–894-37 1 0 0
action macro-4-actions-0-0-1-0–895-33 1 0 0
action macro-3-actions-0-0-4–169-57 1 0 0
action macro-3-actions-0-3-3–100-41 1 0 0
action macro-4-actions-0-3-4-0–56-30 0 1 0
action macro-4-actions-0-0-0-0–903-37 1 0 0
action macro-3-actions-0-0-4–662-81 1 0 0
action macro-4-actions-0-0-0-0–904-37 1 0 0
action macro-4-actions-0-0-0-0–906-37 1 0 0
action macro-4-actions-0-0-0-0–909-37 0 1 0
action macro-4-actions-0-3-0-0–797-30 1 0 0
action macro-4-actions-0-3-0-0–812-30 1 0 0
action macro-4-actions-0-4-3-0–911-30 1 0 0
action macro-3-actions-3-0-0–560-19 1 0 0
action macro-3-actions-3-0-0–914-66 1 0 0
action macro-4-actions-0-0-0-0–915-37 1 0 0
action macro-3-actions-0-4-3–408-38 0 1 0
action macro-4-actions-0-0-0-0–919-37 1 0 0
action macro-4-actions-0-0-0-0–922-37 0 1 0
action macro-4-actions-0-0-0-0–928-37 0 1 0
action macro-4-actions-0-0-0-0–929-37 1 0 0
action macro-4-actions-0-0-0-0–930-37 1 0 0
action macro-3-actions-0-3-3–489-77 1 0 0
action macro-3-actions-0-3-0–50-38 0 1 0
action macro-3-actions-0-3-4–932-76 1 0 0
action macro-2-actions-1-3–819-100 1 0 0
action macro-3-actions-1-3-0–939-101 1 0 0
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action macro-4-actions-1-3-1-0–940-102 1 0 0
action macro-4-actions-1-3-1-0–942-102 1 0 0
action macro-3-actions-1-3-1–12-99 1 0 0
action macro-4-actions-1-3-3-0–446-101 1 0 0
action macro-3-actions-1-3-3–8-100 1 0 0
action macro-3-actions-3-0-3–431-86 1 0 0
action macro-3-actions-3-1-0–943-83 1 0 0
action macro-3-actions-3-3-4–558-23 1 0 0
action macro-4-actions-3-3-0-0–947-84 1 0 0
action macro-4-actions-3-0-0-3–434-86 1 0 0
action macro-3-actions-3-0-1–948-104 1 0 0
action macro-3-actions-3-0-0–949-66 1 0 0
action macro-3-actions-3-0-1–950-104 1 0 0
action macro-3-actions-3-0-0–951-66 1 0 0
action macro-3-actions-3-0-0–952-66 1 0 0
action macro-3-actions-3-0-2–953-16 1 0 0
action macro-3-actions-3-4-0–540-107 1 0 0
action macro-3-actions-1-4-0–532-108 1 0 0
action macro-4-actions-1-0-0-0–954-7 0 1 0
action macro-3-actions-1-0-2–955-75 1 0 0
action macro-4-actions-0-0-4-3–853-45 1 0 0
action macro-4-actions-0-0-3-0–222-45 1 0 0
action macro-4-actions-0-0-3-4–956-45 1 0 0
action macro-4-actions-0-0-0-0–959-37 1 0 0
action macro-4-actions-0-0-3-2–156-39 1 0 0
action macro-4-actions-0-0-4-4–162-43 1 0 0
action macro-4-actions-0-0-0-2–825-48 0 1 0
action macro-4-actions-0-0-0-0–969-47 1 0 0
action macro-3-actions-0-0-4–170-56 1 0 0
action macro-4-actions-0-0-0-0–972-47 1 0 0
action macro-4-actions-0-0-0-0–974-47 1 0 0
action macro-4-actions-0-0-0-0–976-37 1 0 0
action macro-3-actions-0-1-4–567-61 1 0 0
action macro-4-actions-0-1-0-4–977-109 1 0 0
action macro-4-actions-0-0-0-0–983-37 1 0 0
action macro-3-actions-0-0-0–218-49 1 0 0
action macro-4-actions-0-0-0-0–985-37 0 1 0
action macro-4-actions-0-0-0-0–988-37 1 0 0
action macro-4-actions-0-0-0-0–989-37 0 1 0
action macro-3-actions-0-3-0–295-111 1 0 0
action macro-4-actions-0-4-0-4–910-59 1 0 0
action macro-4-actions-0-4-0-3–910-59 1 0 0
action macro-4-actions-0-4-3-4–991-41 1 0 0
action macro-4-actions-0-3-0-4–910-59 1 0 0
action macro-4-actions-0-3-4-0–990-41 1 0 0
action macro-4-actions-3-0-0-0–992-66 1 0 0
action macro-3-actions-3-0-3–993-112 1 0 0
action macro-3-actions-3-4-2–994-113 1 0 0
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action macro-3-actions-3-4-0–995-20 1 0 0
action macro-3-actions-3-4-3–996-20 1 0 0
action macro-3-actions-3-0-3–34-17 1 0 0
action macro-3-actions-3-4-0–997-114 1 0 0
action macro-4-actions-3-0-0-0–1001-66 1 0 0
action macro-4-actions-3-0-0-0–1002-66 1 0 0
action macro-3-actions-3-0-0–1005-66 1 0 0
action macro-2-actions-3-3–40-20 1 0 0
action macro-3-actions-3-1-4–1007-116 1 0 0
action macro-4-actions-3-0-4-0–561-19 1 0 0
action macro-3-actions-3-0-0–1008-117 1 0 0
action macro-3-actions-3-0-0–25-21 0 1 0
action macro-4-actions-0-0-0-0–1009-37 0 1 0
action macro-3-actions-1-3-0–465-118 1 0 0
action macro-4-actions-1-3-1-0–942-119 1 0 0
action macro-3-actions-1-3-1–12-120 1 0 0
action macro-4-actions-1-3-3-0–446-69 1 0 0
action macro-4-actions-1-3-3-3–445-121 1 0 0
action macro-4-actions-1-3-3-4–1010-122 1 0 0
action macro-4-actions-1-3-3-4–445-100 1 0 0
action macro-4-actions-1-3-1-3–1011-121 1 0 0
action macro-4-actions-1-3-1-0–1013-123 1 0 0
action macro-3-actions-1-3-1–936-124 1 0 0
action macro-3-actions-1-3-4–938-121 1 0 0
action macro-4-actions-1-3-0-0–1014-101 1 0 0
action macro-4-actions-1-3-0-4–1015-125 1 0 0
action macro-4-actions-1-3-3-0–1016-126 1 0 0
action macro-3-actions-1-3-3–938-121 1 0 0
action macro-3-actions-1-3-4–1017-122 1 0 0
action macro-2-actions-1-2–15-127 1 0 0
action macro-3-actions-3-0-0–1018-18 1 0 0
action macro-3-actions-3-3-4–544-23 1 0 0
action macro-4-actions-3-0-0-0–1021-66 1 0 0
action macro-3-actions-3-0-4–993-112 1 0 0
action macro-3-actions-3-3-3–544-128 1 0 0
action macro-3-actions-3-3-4–544-128 1 0 0
action macro-4-actions-3-3-1-3–1023-129 1 0 0
action macro-4-actions-3-3-1-0–1024-130 1 0 0
action macro-3-actions-3-3-1–1025-129 1 0 0
action macro-4-actions-3-3-0-4–1026-131 1 0 0
action macro-3-actions-3-3-4–1027-132 1 0 0
action macro-4-actions-3-3-4-0–1028-84 1 0 0
action macro-3-actions-3-1-3–1022-128 1 0 0
action macro-4-actions-3-1-3-3–944-128 1 0 0
action macro-3-actions-3-0-0–1031-18 1 0 0
action macro-4-actions-3-0-0-0–1032-66 1 0 0
action macro-4-actions-3-0-4-0–561-86 1 0 0
action macro-3-actions-3-0-0–439-21 1 0 0

208



Table C.3 continued from previous page
macro I U R

action macro-4-actions-3-1-3-1–1042-129 1 0 0
action macro-4-actions-3-3-3-0–1028-136 1 0 0
action macro-3-actions-3-4-0–565-19 1 0 0
action macro-3-actions-3-4-3–432-23 1 0 0
action macro-3-actions-1-0-4–19-125 1 0 0
action macro-3-actions-1-3-4–1044-100 1 0 0
action macro-4-actions-1-3-3-4–462-100 1 0 0
action macro-4-actions-1-3-3-4–445-121 1 0 0
action macro-2-actions-1-2–30-137 1 0 0
action macro-4-actions-4-0-0-0–556-66 0 1 0
action macro-3-actions-4-0-0–914-66 1 0 0
action macro-4-actions-4-3-0-0–542-19 0 1 0
action macro-3-actions-4-4-0–997-25 1 0 0
action macro-3-actions-4-0-0–1018-18 1 0 0
action macro-3-actions-4-0-0–1031-18 1 0 0
action macro-3-actions-4-0-0–546-66 1 0 0
action macro-3-actions-4-3-0–534-84 1 0 0
action macro-3-actions-4-3-3–544-23 1 0 0
action macro-3-actions-4-3-1–1046-24 0 1 0
action macro-3-actions-4-4-2–994-113 1 0 0
action macro-3-actions-4-2-0–5-64 1 0 0
action macro-3-actions-1-0-0–1047-7 1 0 0
action macro-3-actions-4-0-0–952-66 1 0 0
action macro-4-actions-3-0-0-4–1049-17 1 0 0
action macro-3-actions-3-1-2–475-103 1 0 0
action macro-4-actions-3-0-0-0–1050-21 1 0 0
action macro-4-actions-3-0-0-0–1051-21 1 0 0
action macro-4-actions-3-0-0-0–1053-21 1 0 0
action macro-4-actions-3-3-0-0–1058-84 1 0 0
action macro-3-actions-3-3-0–543-84 1 0 0
action macro-3-actions-3-3-0–1036-135 1 0 0
action macro-4-actions-3-3-4-0–1060-84 1 0 0
action macro-2-actions-3-3–30-139 1 0 0
action macro-3-actions-4-0-0–951-66 1 0 0
action macro-3-actions-4-0-0–949-66 1 0 0
action macro-4-actions-4-0-0-0–1021-66 1 0 0
action macro-3-actions-4-3-0–997-114 1 0 0
action macro-3-actions-2-0-0–17-2 0 1 0
action macro-4-actions-0-0-0-0–1067-37 1 0 0
action macro-3-actions-0-3-0–50-79 1 0 0
action macro-4-actions-0-0-0-0–1068-47 1 0 0
action macro-3-actions-0-0-0–1071-49 1 0 0
action macro-4-actions-0-0-0-4–1073-55 1 0 0
action macro-3-actions-4-3-4–544-128 1 0 0
action macro-4-actions-4-3-0-0–947-84 1 0 0
action macro-3-actions-4-3-4–558-23 1 0 0
action macro-4-actions-0-0-0-0–1076-37 0 1 0
action macro-4-actions-0-0-0-0–1079-37 0 1 0
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action macro-4-actions-1-3-3-0–444-101 1 0 0
action macro-3-actions-3-4-0–995-107 1 0 0
action macro-3-actions-3-4-0–1081-107 1 0 0
action macro-4-actions-3-4-0-0–1082-20 1 0 0
action macro-3-actions-3-0-4–1083-141 1 0 0
action macro-3-actions-3-0-1–1048-87 1 0 0
action macro-4-actions-3-0-0-0–1085-66 1 0 0
action macro-3-actions-3-3-0–997-25 1 0 0
action macro-4-actions-3-0-3-0–561-86 1 0 0
action macro-4-actions-3-3-0-4–1086-84 1 0 0
action macro-3-actions-3-4-0–1087-21 0 1 0
action macro-3-actions-3-4-0–1088-21 0 1 0
action macro-3-actions-2-0-0–25-2 0 1 0
action macro-4-actions-3-0-0-0–1090-18 1 0 0
action macro-4-actions-3-0-0-0–1091-18 1 0 0
action macro-4-actions-3-0-0-0–1092-18 1 0 0
action macro-4-actions-3-0-0-0–1093-18 1 0 0
action macro-4-actions-3-0-0-4–1049-90 1 0 0
action macro-4-actions-3-0-0-0–1094-18 1 0 0
action macro-4-actions-3-0-0-0–1095-18 1 0 0
action macro-4-actions-3-0-0-0–1097-21 1 0 0
action macro-4-actions-3-0-0-0–1098-21 1 0 0
action macro-4-actions-3-0-0-0–1099-21 1 0 0
action macro-4-actions-3-1-3-3–1103-142 1 0 0
action macro-4-actions-3-3-3-4–1104-128 1 0 0
action macro-3-actions-4-0-4–993-112 1 0 0
action macro-4-actions-4-0-3-0–1105-141 1 0 0
action macro-4-actions-4-3-0-0–1106-19 1 0 0
action macro-3-actions-4-3-4–1107-20 1 0 0
action macro-3-actions-1-0-3–28-68 1 0 0
action macro-4-actions-1-0-0-3–466-68 1 0 0
action macro-4-actions-1-3-0-3–441-68 1 0 0
action macro-4-actions-1-3-0-3–1108-143 1 0 0
action macro-3-actions-1-3-0–1109-101 1 0 0
action macro-3-actions-1-3-4–938-100 1 0 0
action macro-4-actions-4-0-0-0–992-66 1 0 0
action macro-3-actions-4-0-3–1110-66 1 0 0
action macro-3-actions-4-4-3–559-25 1 0 0
action macro-3-actions-4-3-0–997-25 1 0 0
action macro-3-actions-4-3-0–543-84 1 0 0
action macro-3-actions-4-0-0–1005-66 1 0 0
action macro-3-actions-4-0-0–549-66 1 0 0
action macro-4-actions-4-3-0-0–1111-66 1 0 0
action macro-4-actions-4-3-0-0–1112-66 1 0 0
action macro-3-actions-4-3-3–1113-25 1 0 0
action macro-4-actions-4-0-0-0–1002-66 1 0 0
action macro-4-actions-3-0-0-0–1114-66 1 0 0
action macro-4-actions-3-0-0-0–1115-66 1 0 0
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Table C.3 continued from previous page
macro I U R

action macro-3-actions-3-0-4–1116-141 1 0 0
action macro-3-actions-3-4-0–997-25 1 0 0
action macro-4-actions-3-0-0-0–1117-66 1 0 0
action macro-4-actions-3-0-0-3–1049-17 1 0 0
action macro-3-actions-3-4-0–1119-25 1 0 0
action macro-3-actions-3-4-3–559-25 1 0 0
action macro-3-actions-3-3-0–1120-144 1 0 0
action macro-4-actions-1-3-0-4–1-1 0 0 0
action macro-4-actions-1-3-0-0–2-2 0 0 1
action macro-3-actions-1-3-0–3-2 0 0 0
action macro-3-actions-1-3-0–5-4 0 0 1
action macro-3-actions-1-3-4–8-6 0 0 0
action macro-3-actions-1-3-0–10-4 0 0 1
action macro-4-actions-1-3-0-0–11-7 0 0 1
action macro-2-actions-1-3–15-5 0 0 0
action macro-3-actions-1-0-0–16-10 0 0 1
action macro-3-actions-1-0-0–18-10 0 0 1
action macro-3-actions-1-0-3–19-11 0 0 0
action macro-3-actions-1-0-0–20-7 0 0 1
action macro-2-actions-1-0–22-2 0 0 1
action macro-2-actions-1-0–26-2 0 0 1
action macro-4-actions-1-0-3-0–27-2 0 0 1
action macro-3-actions-1-0-3–28-2 0 0 1
action macro-4-actions-3-0-4-2–32-16 0 0 0
action macro-4-actions-3-0-4-0–33-17 0 0 0
action macro-3-actions-3-0-4–34-17 0 0 0
action macro-3-actions-3-0-0–35-18 0 0 1
action macro-3-actions-3-0-0–37-18 0 0 1
action macro-2-actions-3-0–39-19 0 0 0
action macro-2-actions-3-0–26-21 0 0 1
action macro-2-actions-3-0–22-21 0 0 1
action macro-2-actions-3-4–31-23 0 0 0
action macro-3-actions-0-1-0–51-28 0 0 1
action macro-2-actions-0-1–52-27 0 0 0
action macro-3-actions-0-4-2–55-27 0 0 0
action macro-3-actions-0-4-0–59-29 0 0 0
action macro-3-actions-0-4-0–59-30 0 0 0
action macro-2-actions-0-4–60-29 0 0 0
action macro-2-actions-0-2–61-27 0 0 1
action macro-4-actions-0-1-3-4–62-27 0 0 1
action macro-4-actions-0-1-3-4–63-32 0 0 0
action macro-4-actions-0-1-3-0–64-27 0 0 0
action macro-4-actions-0-1-3-0–64-33 0 0 1
action macro-3-actions-0-1-3–67-27 0 0 0
action macro-3-actions-0-1-0–70-33 0 0 1
action macro-2-actions-0-1–61-27 0 0 0
action macro-3-actions-0-0-4–75-34 0 0 1
action macro-4-actions-0-0-0-4–76-34 0 0 1
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Table C.3 continued from previous page
macro I U R

action macro-4-actions-0-0-0-0–77-36 0 0 1
action macro-4-actions-0-0-0-0–81-37 0 0 1
action macro-3-actions-0-0-0–82-37 0 0 1
action macro-4-actions-0-0-0-4–83-34 0 0 1
action macro-4-actions-0-0-0-0–85-36 0 0 1
action macro-4-actions-0-0-0-0–88-36 0 0 1
action macro-3-actions-0-0-0–78-36 0 0 1
action macro-3-actions-0-0-3–75-34 0 0 1
action macro-3-actions-0-0-0–89-37 0 0 1
action macro-4-actions-0-0-0-0–90-36 0 0 1
action macro-3-actions-0-0-0–91-36 0 0 1
action macro-2-actions-0-0–93-35 0 0 0
action macro-3-actions-0-3-0–94-38 0 0 1
action macro-4-actions-0-3-4-0–95-31 0 0 0
action macro-4-actions-0-3-4-2–96-39 0 0 0
action macro-3-actions-0-3-4–58-31 0 0 0
action macro-4-actions-0-3-0-4–98-40 0 0 0
action macro-3-actions-0-3-0–59-29 0 0 0
action macro-3-actions-0-3-0–102-38 0 0 1
action macro-4-actions-0-3-0-0–103-30 0 0 1
action macro-3-actions-0-3-0–59-30 0 0 0
action macro-2-actions-0-3–60-29 0 0 0
action macro-3-actions-0-4-0–94-38 0 0 1
action macro-4-actions-0-4-0-0–105-38 0 0 1
action macro-4-actions-0-4-0-4–98-42 0 0 0
action macro-4-actions-0-4-0-0–106-38 0 0 1
action macro-4-actions-0-4-0-0–108-38 0 0 1
action macro-4-actions-0-4-0-0–109-38 0 0 1
action macro-3-actions-0-4-0–102-38 0 0 1
action macro-4-actions-0-4-2-0–111-27 0 0 1
action macro-3-actions-0-4-3–55-38 0 0 0
action macro-4-actions-0-0-1-3–113-27 0 0 1
action macro-4-actions-0-0-3-4–117-31 0 0 1
action macro-4-actions-0-0-0-3–123-34 0 0 1
action macro-4-actions-0-0-0-0–126-36 0 0 1
action macro-4-actions-0-0-0-4–123-34 0 0 1
action macro-4-actions-0-0-0-0–127-36 0 0 1
action macro-4-actions-0-0-0-4–141-45 0 0 1
action macro-4-actions-0-0-0-3–141-45 0 0 1
action macro-4-actions-0-0-0-3–146-34 0 0 1
action macro-4-actions-0-0-0-0–149-36 0 0 1
action macro-4-actions-0-0-0-0–150-36 0 0 1
action macro-4-actions-0-0-0-3–151-34 0 0 1
action macro-4-actions-0-0-0-4–146-34 0 0 1
action macro-4-actions-0-0-3-1–156-39 0 0 1
action macro-4-actions-0-0-4-0–160-38 0 0 1
action macro-4-actions-0-0-4-2–161-27 0 0 1
action macro-3-actions-0-2-4–69-32 0 0 0
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Table C.3 continued from previous page
macro I U R

action macro-2-actions-0-2–52-27 0 0 1
action macro-2-actions-0-0–261-37 0 0 0
action macro-3-actions-0-0-1–262-51 0 0 0
action macro-3-actions-0-0-4–263-34 0 0 1
action macro-3-actions-0-0-1–263-51 0 0 1
action macro-4-actions-0-0-0-4–264-34 0 0 1
action macro-4-actions-0-0-0-0–265-36 0 0 1
action macro-4-actions-0-0-0-3–264-34 0 0 1
action macro-4-actions-0-0-0-0–267-36 0 0 1
action macro-3-actions-0-0-3–263-34 0 0 1
action macro-4-actions-0-0-4-0–269-34 0 0 1
action macro-4-actions-0-0-4-0–270-34 0 0 1
action macro-4-actions-0-0-0-4–272-34 0 0 1
action macro-4-actions-0-0-0-0–273-36 0 0 1
action macro-4-actions-0-0-0-0–277-36 0 0 1
action macro-3-actions-0-0-0–274-36 0 0 0
action macro-3-actions-0-0-0–278-37 0 0 1
action macro-3-actions-0-0-4–279-34 0 0 0
action macro-4-actions-0-0-3-0–269-34 0 0 1
action macro-3-actions-0-0-0–280-37 0 0 1
action macro-4-actions-0-0-3-0–270-34 0 0 1
action macro-4-actions-0-0-0-0–281-36 0 0 1
action macro-4-actions-0-0-0-0–282-36 0 0 1
action macro-3-actions-0-0-0–283-36 0 0 0
action macro-3-actions-0-0-2–263-51 0 0 0
action macro-3-actions-0-0-3–279-34 0 0 0
action macro-3-actions-0-0-3–263-52 0 0 0
action macro-2-actions-0-0–286-35 0 0 0
action macro-2-actions-0-3–61-38 0 0 0
action macro-4-actions-0-3-1-3–290-39 0 0 0
action macro-4-actions-0-3-1-0–291-39 0 0 1
action macro-3-actions-0-3-1–99-39 0 0 0
action macro-4-actions-0-3-4-2–292-27 0 0 1
action macro-4-actions-0-3-0-0–105-38 0 0 1
action macro-4-actions-0-3-0-4–98-42 0 0 1
action macro-4-actions-0-3-0-0–294-30 0 0 1
action macro-4-actions-0-3-0-4–98-53 0 0 0
action macro-3-actions-0-0-1–305-48 0 0 1
action macro-3-actions-0-0-0–306-47 0 0 1
action macro-3-actions-0-0-2–305-48 0 0 1
action macro-4-actions-0-0-0-4–311-45 0 0 1
action macro-4-actions-0-0-0-3–311-45 0 0 1
action macro-4-actions-0-0-0-1–316-48 0 0 1
action macro-4-actions-0-0-0-0–318-47 0 0 1
action macro-3-actions-0-0-4–339-45 0 0 1
action macro-3-actions-0-0-2–340-48 0 0 1
action macro-3-actions-0-0-0–341-47 0 0 1
action macro-4-actions-0-0-1-3–343-48 0 0 1
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macro I U R

action macro-3-actions-0-0-1–340-48 0 0 1
action macro-4-actions-0-0-3-0–344-45 0 0 1
action macro-3-actions-0-0-3–339-45 0 0 1
action macro-3-actions-0-0-0–346-47 0 0 1
action macro-4-actions-0-0-0-0–347-47 0 0 1
action macro-3-actions-0-0-0–349-47 0 0 1
action macro-4-actions-0-0-4-0–344-45 0 0 1
action macro-4-actions-0-0-4-2–350-48 0 0 1
action macro-3-actions-0-0-0–357-47 0 0 1
action macro-4-actions-0-0-0-0–360-47 0 0 1
action macro-3-actions-0-0-0–361-47 0 0 1
action macro-3-actions-0-0-4–340-57 0 0 1
action macro-4-actions-0-0-3-4–363-58 0 0 1
action macro-3-actions-0-0-0–375-37 0 0 1
action macro-3-actions-0-0-0–376-37 0 0 1
action macro-3-actions-0-0-0–377-37 0 0 1
action macro-3-actions-0-0-0–383-37 0 0 1
action macro-2-actions-0-0–387-37 0 0 0
action macro-3-actions-0-4-0–388-38 0 0 1
action macro-2-actions-0-4–61-38 0 0 1
action macro-4-actions-0-3-0-1–391-39 0 0 0
action macro-4-actions-0-3-0-0–106-38 0 0 1
action macro-4-actions-0-3-0-0–108-38 0 0 1
action macro-3-actions-0-0-0–396-37 0 0 1
action macro-2-actions-0-0–397-37 0 0 1
action macro-3-actions-0-1-0–70-28 0 0 1
action macro-4-actions-0-4-0-0–400-38 0 0 1
action macro-4-actions-0-4-0-0–103-30 0 0 1
action macro-4-actions-0-4-0-0–294-30 0 0 1
action macro-4-actions-0-4-0-4–98-59 0 0 0
action macro-4-actions-0-4-2-4–401-32 0 0 0
action macro-4-actions-0-3-0-0–402-38 0 0 1
action macro-4-actions-0-3-0-0–400-38 0 0 1
action macro-4-actions-0-4-0-2–391-50 0 0 0
action macro-4-actions-0-0-0-0–271-36 0 0 1
action macro-3-actions-0-0-0–405-37 0 0 1
action macro-3-actions-0-0-0–406-37 0 0 1
action macro-2-actions-0-0–24-37 0 0 0
action macro-3-actions-0-3-0–388-38 0 0 1
action macro-4-actions-0-0-0-0–409-47 0 0 1
action macro-4-actions-0-4-3-4–394-31 0 0 1
action macro-3-actions-0-0-0–413-37 0 0 1
action macro-3-actions-4-2-4–12-63 0 0 0
action macro-3-actions-4-2-0–10-64 0 0 1
action macro-2-actions-4-2–15-65 0 0 0
action macro-2-actions-4-0–22-21 0 0 1
action macro-2-actions-4-0–39-19 0 0 0
action macro-2-actions-4-0–26-21 0 0 0

214



Table C.3 continued from previous page
macro I U R

action macro-2-actions-2-4–30-67 0 0 0
action macro-2-actions-2-0–22-2 0 0 0
action macro-3-actions-1-0-0–439-10 0 0 1
action macro-3-actions-1-0-0–440-7 0 0 0
action macro-4-actions-1-3-4-0–443-2 0 0 1
action macro-4-actions-1-3-4-0–446-69 0 0 0
action macro-4-actions-1-3-4-2–447-6 0 0 0
action macro-4-actions-1-3-0-3–1-11 0 0 0
action macro-4-actions-1-3-4-3–462-6 0 0 1
action macro-4-actions-1-0-0-0–467-10 0 0 1
action macro-4-actions-1-0-0-0–470-7 0 0 1
action macro-4-actions-1-0-3-0–27-7 0 0 0
action macro-4-actions-1-0-0-0–472-7 0 0 1
action macro-3-actions-0-1-3–67-28 0 0 0
action macro-3-actions-0-0-4–477-34 0 0 0
action macro-3-actions-0-0-1–74-51 0 0 1
action macro-4-actions-0-0-3-0–478-34 0 0 1
action macro-3-actions-0-0-3–477-34 0 0 0
action macro-4-actions-0-0-4-0–478-34 0 0 0
action macro-4-actions-0-0-4-0–479-34 0 0 1
action macro-4-actions-0-0-0-3–480-34 0 0 1
action macro-4-actions-0-0-0-0–84-36 0 0 1
action macro-3-actions-0-0-2–74-51 0 0 1
action macro-4-actions-0-0-0-4–483-34 0 0 1
action macro-4-actions-0-0-0-3–483-34 0 0 1
action macro-4-actions-0-0-0-0–484-36 0 0 1
action macro-2-actions-0-4–52-38 0 0 0
action macro-3-actions-0-1-3–48-28 0 0 0
action macro-4-actions-0-3-0-4–486-76 0 0 1
action macro-4-actions-0-3-0-0–487-38 0 0 1
action macro-4-actions-0-3-0-0–488-38 0 0 1
action macro-3-actions-0-3-4–489-77 0 0 1
action macro-3-actions-0-3-0–490-38 0 0 1
action macro-2-actions-0-3–52-38 0 0 0
action macro-4-actions-0-4-0-0–492-38 0 0 1
action macro-3-actions-0-4-0–490-38 0 0 1
action macro-3-actions-0-4-2–48-78 0 0 0
action macro-4-actions-0-0-0-4–494-34 0 0 1
action macro-4-actions-0-0-0-3–494-34 0 0 1
action macro-4-actions-0-0-3-0–495-34 0 0 0
action macro-4-actions-0-0-0-4–497-34 0 0 1
action macro-3-actions-0-0-2–262-51 0 0 0
action macro-4-actions-0-0-0-0–504-37 0 0 1
action macro-4-actions-0-0-0-0–512-37 0 0 1
action macro-4-actions-0-0-0-3–515-34 0 0 1
action macro-4-actions-0-0-0-4–515-34 0 0 1
action macro-4-actions-0-0-4-0–517-38 0 0 1
action macro-4-actions-0-0-0-4–151-34 0 0 1
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macro I U R

action macro-4-actions-0-0-3-0–517-38 0 0 1
action macro-4-actions-0-0-3-0–522-38 0 0 1
action macro-4-actions-0-0-4-0–523-38 0 0 1
action macro-3-actions-0-0-4–262-52 0 0 0
action macro-3-actions-0-3-0–490-79 0 0 0
action macro-3-actions-0-0-1–526-80 0 0 0
action macro-3-actions-0-0-4–527-81 0 0 0
action macro-3-actions-0-3-1–485-82 0 0 1
action macro-4-actions-0-3-0-0–492-38 0 0 1
action macro-3-actions-0-0-4–74-52 0 0 0
action macro-4-actions-0-4-0-0–487-38 0 0 1
action macro-4-actions-3-1-3-0–533-83 0 0 0
action macro-3-actions-3-1-3–464-24 0 0 0
action macro-4-actions-3-0-4-0–535-85 0 0 0
action macro-4-actions-3-0-4-0–536-85 0 0 0
action macro-4-actions-3-0-0-0–537-18 0 0 1
action macro-4-actions-3-0-0-0–538-18 0 0 1
action macro-4-actions-3-0-0-0–539-18 0 0 1
action macro-3-actions-3-4-0–534-84 0 0 0
action macro-3-actions-3-4-2–545-24 0 0 0
action macro-4-actions-3-0-0-4–434-86 0 0 1
action macro-3-actions-3-0-0–547-66 0 0 1
action macro-4-actions-3-0-0-0–557-66 0 0 1
action macro-3-actions-3-0-4–34-90 0 0 0
action macro-3-actions-3-0-3–34-90 0 0 0
action macro-3-actions-4-0-0–18-21 0 0 1
action macro-3-actions-4-0-2–548-91 0 0 0
action macro-3-actions-4-0-4–34-90 0 0 0
action macro-4-actions-4-2-4-2–562-63 0 0 0
action macro-3-actions-4-0-0–564-21 0 0 1
action macro-4-actions-4-3-0-4–566-17 0 0 1
action macro-4-actions-4-0-0-0–557-66 0 0 1
action macro-3-actions-4-0-0–547-66 0 0 1
action macro-3-actions-4-0-3–34-90 0 0 0
action macro-2-actions-4-3–15-92 0 0 0
action macro-4-actions-0-0-4-0–570-30 0 0 1
action macro-4-actions-0-0-0-1–124-51 0 0 1
action macro-4-actions-0-0-3-0–570-30 0 0 1
action macro-4-actions-0-0-0-1–582-48 0 0 1
action macro-4-actions-0-0-0-0–583-47 0 0 1
action macro-4-actions-0-0-0-2–582-48 0 0 1
action macro-4-actions-0-0-3-0–160-38 0 0 1
action macro-4-actions-0-1-0-3–590-27 0 0 1
action macro-4-actions-0-0-0-3–272-34 0 0 1
action macro-4-actions-0-0-0-0–596-37 0 0 1

Table C.3: Detail of the found macro-operators for depots domain.
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C.4 Satellite

C.4.1 Predicate incompatibilities

pointing ?satellite1 ?direction0 | pointing ?satellite1 ?direction2, pointing ?satellite1
?direction3, pointing ?satellite1 ?direction1
power_avail ?satellite0 |
pointing ?satellite0 ?direction1 | pointing ?satellite0 ?direction3, pointing ?satellite0
?direction0, pointing ?satellite0 ?direction2
on_board ?instrument0 ?satellite1 |
pointing ?satellite1 ?direction1 | pointing ?satellite1 ?direction2, pointing ?satellite1
?direction0, pointing ?satellite1 ?direction3
pointing ?satellite1 ?direction2 | pointing ?satellite1 ?direction0, pointing ?satellite1
?direction3, pointing ?satellite1 ?direction1
on_board ?instrument1 ?satellite1 |
on_board ?instrument0 ?satellite0 |
power_avail ?satellite1 |
pointing ?satellite0 ?direction0 | pointing ?satellite0 ?direction1, pointing ?satellite0
?direction3, pointing ?satellite0 ?direction2
on_board ?instrument1 ?satellite0 |
pointing ?satellite0 ?direction2 | pointing ?satellite0 ?direction1, pointing ?satellite0
?direction3, pointing ?satellite0 ?direction0
calibration_target ?instrument1 ?direction0 |
calibration_target ?instrument1 ?direction1 |
calibration_target ?instrument0 ?direction3 |
pointing ?satellite0 ?direction3 | pointing ?satellite0 ?direction1, pointing ?satellite0
?direction0, pointing ?satellite0 ?direction2
calibration_target ?instrument1 ?direction2 |
pointing ?satellite1 ?direction3 | pointing ?satellite1 ?direction2, pointing ?satellite1
?direction1, pointing ?satellite1 ?direction0
calibration_target ?instrument0 ?direction0 |
calibration_target ?instrument1 ?direction3 |
calibration_target ?instrument0 ?direction2 |
calibration_target ?instrument0 ?direction1 |
supports ?instrument0 ?mode1 |
supports ?instrument0 ?mode0 |
supports ?instrument1 ?mode1 |
supports ?instrument1 ?mode0 |
power_on ?instrument1 |
calibration_target ?instrument2 ?direction0 |
on_board ?instrument1 ?satellite2 |
pointing ?satellite2 ?direction2 | pointing ?satellite2 ?direction1, pointing ?satellite2
?direction0
on_board ?instrument0 ?satellite2 |
power_on ?instrument0 |
calibration_target ?instrument2 ?direction2 |
pointing ?satellite2 ?direction0 | pointing ?satellite2 ?direction1, pointing ?satellite2
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?direction2
power_avail ?satellite2 |
power_on ?instrument2 |
calibration_target ?instrument2 ?direction1 |
on_board ?instrument2 ?satellite1 |
pointing ?satellite2 ?direction1 | pointing ?satellite2 ?direction0, pointing ?satellite2
?direction2
on_board ?instrument2 ?satellite2 |
on_board ?instrument2 ?satellite0 |

C.4.2 Understanding the found macro-operators

macro I U R

action macro-3-actions-1-3-0–4-2 1 0 0
action macro-3-actions-1-3-4–5-3 1 0 0
action macro-2-actions-0-0–13-8 0 1 0
action macro-2-actions-1-0–1-1 0 0 0
action macro-4-actions-1-3-0-0–2-2 0 0 1
action macro-3-actions-1-3-0–3-1 0 0 0
action macro-3-actions-1-3-3–6-4 0 0 0
action macro-2-actions-1-3–7-5 0 0 0
action macro-3-actions-1-0-0–9-2 0 0 1
action macro-4-actions-1-0-3-0–10-1 0 0 0
action macro-3-actions-1-2-1–11-6 0 0 0
action macro-2-actions-1-2–12-7 0 0 0
action macro-2-actions-0-3–13-9 0 0 0

Table C.4: Detail of the found macro-operators for satellite domain.
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Abstract

Intuitively, a system capable of exploiting its past experiences should be able to
achieve better performance. One way to build on past experiences is to learn macros (i.e.
routines). They can then be used to improve the performance of the solving process of
new problems. In automated planning, the challenge remains on developing powerful
planning techniques capable of effectively explore the search space that grows exponen-
tially. Learning macros from previously acquired knowledge has proven to be beneficial
for improving a planner’s performance.

This thesis contributes mainly to the field of automated planning, and it is more
specifically related to learning macros for classical planning. We focused on develop-
ing a domain-independent learning framework that identifies sequences of actions (even
non-adjacent) from past solution plans and selects the most useful routines (i.e. macros),
based on a priori evaluation, to enhance the planning domain.

First, we studied the possibility of using sequential pattern mining for extract-
ing frequent sequences of actions from past solution plans, and the link between the
frequency of a macro and its utility. We found out that the frequency alone may not
provide a consistent selection of useful macro-actions (i.e. sequences of actions with
constant objects).

Second, we discussed the problem of learning macro-operators (i.e. sequences of
actions with variable objects) by using classic pattern mining algorithms in planning.
Despite the efforts, we find ourselves in a dead-end with the selection process because
the pattern mining filtering structures are not adapted to planning.

Finally, we provided a novel approach called METEOR, which ensures to find the
frequent sequences of operators from a set of plans without a loss of information about
their characteristics. This framework was conceived for mining macro-operators from
past solution plans, and for selecting the optimal set of macro-operators that maximises
the node gain. It has proven to successfully mine macro-operators of different lengths
for four different benchmarks domains and thanks to the selection phase, be able to de-
liver a positive impact on the search time without drastically decreasing the quality of
the plans.

Keywords: Automated Planning, Artificial Intelligence, Macro-operators, Macro-
actions, Data Mining, Learning.



Résumé

Intuitivement, un système capable d’exploiter son expérience devrait être capable
d’atteindre de meilleures performances. Une façon de tirer parti des expériences passées
est d’apprendre des macros (c.-à-d. des routines), elle peuvent être ensuite utilisés pour
améliorer la performance du processus de résolution de nouveaux problèmes. Le défi de
la planification automatique est de développer des techniques de planification capables
d’explorer efficacement l’espace de recherche qui croît exponentiellement. L’appren-
tissage de macros à partir de connaissances précédemment acquises s’avère bénéfique
pour l’amélioration de la performance d’un planificateur.

Cette thèse contribue principalement au domaine de la planification automatique,
et plus spécifiquement à l’apprentissage de macros pour la planification classique. Nous
nous sommes concentrés sur le développement d’un modèle d’apprentissage indépen-
dant du domaine qui identifie des séquences d’actions (même non adjacentes) à partir
de plans solutions connus. Ce dernier sélectionne les routines les plus utiles (c’est-à-dire
les macros), grâce à une évaluation a priori, pour améliorer le domaine de planification.

Tout d’abord, nous avons étudié la possibilité d’utiliser la fouille de motifs sé-
quentiels pour extraire des séquences fréquentes d’actions à partir de plans de solutions
connus, et le lien entre la fréquence d’une macro et son utilité. Nous avons découvert
que la fréquence seule peut ne pas fournir une sélection cohérente de macro-actions
utiles (c.-à-d. des séquences d’actions avec des objets constants).

Ensuite, nous avons discuté du problème de l’apprentissage des macro-opérateurs
(c’est-à-dire des séquences d’actions avec des objets variables) en utilisant des algo-
rithmes classiques de fouille de motifs dans la planification. Malgré les efforts, nous
nous sommes trouvés dans une impasse dans le processus de sélection car les structures
de filtrage de la fouille de motifs ne sont pas adaptées à la planification.

Finalement, nous avons proposé une nouvelle approche appelée METEOR, qui
permet de trouver les séquences fréquentes d’opérateurs d’un ensemble de plans sans
perte d’information sur leurs caractéristiques. Cette approche a été conçue pour l’ex-
traction des macro-opérateurs à partir de plans solutions connus, et pour la sélection
d’un ensemble optimal de macro-opérateurs maximisant le gain en nœuds. Il s’est avéré
efficace pour extraire avec succès des macro-opérateurs de différentes longueurs pour
quatre domaines de référence différents. De plus, grâce à la phase de sélection l’ap-
proche a montré un impact positif sur le temps de recherche sans réduire drastiquement
la qualité des plans.

Mots clés : Planification Automatique, Intelligence Artificielle, Macro-opérateurs,
Macro-actions, Fouille de données, Apprentissage.
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