N

N
N

HAL

open science

Learning routines for sequential decision-making

Sandra Castellanos-Paez

» To cite this version:

Sandra Castellanos-Paez. Learning routines for sequential decision-making. Automatic Control Engi-

neering. Université Grenoble Alpes, 2019. English. NNT: 2019GREAMO043 . tel-02513236

HAL Id: tel-02513236
https://theses.hal.science/tel-02513236
Submitted on 20 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02513236
https://hal.archives-ouvertes.fr

| Communauté
& UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTE UNIVERSITE GRENOBLE ALPES

Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Sandra Milena CASTELLANOS-PAEZ

Theése dirigée par Sylvie PESTY, Professeur, UGA

et Damien PELLIER, MCF, UGA

préparée au sein du Laboratoire d’Informatique de Grenaoble

dans I'Ecole Doctorale Mathématiques, Sciences et Technologies
de I'lnformation, Informatique

Apprentissage de routines pour la prise
de décision séquentielle

Learning routines for sequential
decision-making

These soutenue publiquement le 24 octobre 2019,
devant le jury composé de :

Madame Sylvie PESTY
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directrice de thése
Monsieur René MANDIAU

PROFESSEUR, UNIV. POLYTECHNIQUE DES HAUTS-DE-FRANCE,
Rapporteur

Monsieur Francois CHARPILLET

DIRECTEUR DE RECHERCHE, INRIA CENTRE NANCY GRAND EST,
Rapporteur

Monsieur Damien PELLIER

MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES, Co-
directeur de thése

Monsieur Philippe MATHIEU
PROFESSEUR, UNIVERSITE DE LILLE, Président

Acknowledgements

I would like to thank the many people who have been involved in this adventure.

First of all, I would like to thank my supervisors for giving me the opportunity to do
this thesis. More particularly, to Sylvie, for having given me back the motivation by
reminding me that a thesis must not change the world but must above all contribute to
advancing the understanding of a subject. To Damien, for introducing me to the tor-
tuous world of automated planning and for sharing his knowledge that allowed me to
find ways to do this work. I would also like to thank Humbert who shared his ideas at
meetings.

I would also like to thank the members of the jury: René Mandiau and Francois Charpil-
let, for agreeing to be rapporteurs for this work by making relevant remarks that allowed
me to better orient my oral presentation. Thanks also to Philippe Mathieu who chaired
this jury with great attention.

I would like to warmly thank the past and present members of the MAGMA team, now
HAWALI, who have listened to me and provided both human and scientific support dur-
ing these years: Yves, Julie, Carole, Julius, Djalil, Ankuj, Ying, Manon, Luba, Omar,
Galateia, Rémi and for the newcomers: Rouba and Thibauld, good luck, you’ll see it’s
worth it!

It is with great nostalgia that I thank the members of the GETALP team, the first team
that welcomed me during my master’s studies. And in particular, I would like to thank
Christian Boitet and Carlos Ramish who have passed on their passion for research and
the academic world to me. I still have a pinch in my heart that I couldn’t follow you,
but I hope our paths will cross again.

Speaking of the academic world, I would like to thank the educational teams of Greno-
ble IAE and IM2AG who welcomed me for the realisation of my ATERs. I would also
like to thank the administrative staff of the laboratory and the doctoral school.

I have met many people during these years of thesis that it is difficult to thank them
all. However, I would like to thank Pier who has accompanied me well through the ups
and downs and whose support has always been of great importance; Marc, Francoise,
Gérard and Suzanne for having welcomed me with humour and love into your fam-
ily; my colombian friends for your unfailing support: Sergio V. (amigazo!), Karen and
Paola; my friends met at the Rabot and with whom I shared and still share many laughs
and wild game Sundays: Eymeric, Pipo, Zoggy, Claire, Cassandra, Priss,...; my friends
PPGA for the shared evenings that allowed me to decompress between two writing ses-
sions of my thesis; thanks also to Raquel, Nicolas H., Emmanuel, Camilo M., Monsieur
Caillat, Monique, Kenza and her family, Ali F. and to everyone who has marked this
stage of my life.

I would like to express my love and gratitude to my parents who, even on another con-
tinent, have always encouraged and pushed me to move forward with tender messages
every day and without fail and for whom my admiration has no limits. Finally, I would
like to thank my brother for his unconditional support and for always having the right

words to say even if they are not the ones I want to hear (and which sometimes even
sound like bullying).

I couldn’t forget my faithful four-legged companion. Thank you Nask for waking me
up in the morning and forcing me out of bed even when the motivation was not there.
For all the moments of frustration that were overshadowed by your tender gaze and your
multiple licks. To get me moving in the long days of writing by running behind you to
get my slipper. Thanks also to Ada for accompanying me during the first years of my
thesis and for finding a way to make me relax by asking for hugs.

My last and greatest thanks go to my love who I had the joy of meeting while I was
still struggling with my endless experiments. Our scientific discussions have given me
stars in the eyes, showing me that a passion for research can move mountains. Your
enthusiasm has been key in motivating me to continue to pursue my dreams. Thank you
for always being at my side during the nights of writing, the weekends of experimenta-
tion and even during the holidays never taken. Thank you for all the love you have for
me and for always taking care of me when I need it most. For you, I'll keep spinning

counterclockwise' ...

"https://xked.com/162/

il

https://xkcd.com/162/

Contents

1 Introduction 1
Introduction 1
1.1 Contextofresearch 1
1.1.1 Automated Planning 2

1.1.2 Learning Macros 3

1.1.3 Pattern mining 5

1.2 Problem 6

1.3 Contributions 7
1.3.1 Publications 10

1.4 Outline of the dissertation 10

I Background and Literature Review 13
2 Automated Planning 15
2.1 Introduction 17
2.2 Classical Planning, 17

2.3 PDDL representation language 19
24 Keyconcepts v it e e e e e 21

2.5 Development of Automated Planning 24
2.5.1 Translation into another problems 26

2.5.2 Searchforplanning 27

2.5.3 Techniques to improve planning search 29

2.6 Macro learning methods in Automated Planning 33
2.6.1 Off-lineapproaches 37

2.6.2 On-lineapproaches 37

2.7 Conclusion e 38

3 Pattern Mining 39
3.1 Introduction 41
3.2 Pattern Mining: Basicconcepts 41
3.2.1 Simpletypesofdata 41

3.2.2 Typesofpatterns i e 43

3.3 Mining frequent patterns 46
33.1 Patternsetso 46

3.3.2 Apriorialgorithm oL 49

34 Mining sequencedata L. 51
3.4.1 Sequential pattern mining 52

3.5 Conclusion L e 54

IT Contributions 55
4 Extraction of macros via Sequential Pattern Mining 57
4.1 Introduction 59

il

4.2

Planencoding

4.3 Macro-actions learning framework
4.4 Mining and filtering candidates
4.5 Macro-action construction oL
4.5.1 Enhancing planning domain with macro-actions
4.6 Evaluation of the support parameter
4.6.1 Methodology
4.6.2 Evaluationcriteria oo
47 Results. oL e
4.8 Discussiono
49 Conclusion
5 Classical pattern mining applied to planning
5.1 Introduction
5.2 Macro-actions generality
5.3 Macro-operators CoOnstruction
5.4 Validity of the generated macro-operators
5.5 Problematic macro-operators: Definition
5.6 Problematic macro-operators: Detection
5.6.1 Incompatibility graph implementation
5.6.2 Results for the removing method
5.7 Selection process o . i e e e e e e e e
5.8 Conclusion
6 The METEOR framework
6.1 Introduction
6.2 Limitations of classical pattern mining algorithms in planning
6.3 Description of the METEOR framework
6.4 ERA Algorithm
6.4.1 Encoding formalism
6.4.2 Description of the main algorithm
6.4.3 The mining procedure
6.44 Complexity analysis
6.5 Selection of the optimal macro-operatorset
6.6 Evaluation of the METEOR framework
6.6.1 Methodology
6.6.2 Evaluationcriteria
6.7 Results.
6.8 DiIscusSIOn
6.9 Conclusion e
7 Conclusion and Perspectives
Conclusions
7.1 Summary of contributions

7.2

7.1.1 Exploration of the link between macro-action frequency and
macro-actionutility
7.1.2 Removing problematic macro-operators
7.1.3 METEOR framework
Limitations e
7.2.1 Incompatibilities for inertia predicates

v

7.2.2 Slight modification of the planner
7.2.3 Set of non overlapping macro-operators
7.3 Perspectives e e
A Benchmark domains
Al Barman
A1l Description L.
A2 Blocksworldo
A.2.1 Description
A3 Depots e
A3.1 Description
A4 Satellite
A4.1 Description e
B Understanding results: operators translation and full report
B.1 Barman
B.1.1 Operators translation
B.1.2 MiningLog
B.1.3 Macroanalyserlog
B.1.4 Recommended Optimal MacroSet
B.2 Blocksworld
B.2.1 Operators translation
B.2.2 Mininglog
B.2.3 Macroanalyserlog
B.2.4 Recommended Optimal MacroSet
B3 Depots e e
B.3.1 Operators translation
B3.2 Mininglog
B.3.3 Macroanalyserlog
B.3.4 Recommended Optimal MacroSet
B4 Satellite e
B.4.1 Operators translation
B.42 Mininglog
B.43 Macroanalyserlog oL
B.44 Recommended Optimal MacroSet
C Results on removing problematic macro-operators
C.l Barman
C.1.1 Predicate incompatibilities
C.1.2 Understanding the found macro-operators
C2 Blocksworld
C.2.1 Predicate incompatibilities
C.2.2 Understanding the found macro-operators
C3 Depots o oo
C.3.1 Predicate incompatibilities
C.3.2 Understanding the found macro-operators
C4 Satellite e
C.4.1 Predicate incompatibilities
C.4.2 Understanding the found macro-operators
Bibliography

—
N —

—_—
N K~

W b
DN —

DO —

53

54
55

5.6

List of Figures

blocksworldactions 4
blocksworld domain with only primitive actions. Filled squares rep-
resent the sequence of actions to achieve the goal from the initial state. . 5

blocksworld enhanced domain with the macro pick up and stack. Filled
squares represent the sequence of actions to achieve the goal from the

initial state. oL 6
A macro-action pick up and stack for specific objects blockB and blockA. 9
A macro-operator pick up and stack for variable block objects. 9
Thesisoutline 11
Representationof Code 2.1 19
Pickup action appliedtoastate s 24
Employees database 42
Apriori algorithm steps for mining frequent itemsets from Table 3.1

with a minsup = 0.25. "Supp." stands for absolute support. 50
Frequent itemsets obtained by using the Apriori algorithm on Table 3.1

with a minsup = 0.25 . "Supp." stands for absolute support. 51
A blocksworld problem. 59
Macro-actions learning framework. oL 62

Sequences candidates. "Number of candidates" plotted in Log scale.
"Minsup" plotted as percentages, e.g. a minsup of 0.1 corresponds to 10% 70
Maximal length candidates."Minsup" plotted as percentages, €.g. a min-
sup of 0.1 corresponds to 10%. 70
Number of macros added to the enhanced domain. 71
Search time performance per domain. In red, the problems not solved
with the original domain but solved with at least one enhanced domain. 73

Grperdomain. 74
IPC score per domain. In red, the domain with the highest score. 74
Gyperdomain. 75
Goperdomain. 75

Average fraction of macros added from the enhanced domain as prob-
lemoperators. e e e e e 82
Mean percentage of macros used in solution plans for each domain.
"Minsup" plotted as percentages, e.g. a minsup of 0.1 corresponds to
10%. The minimum and maximum percentage of macros are also dis-

played. 83
Size comparison: Extracted candidates vs macro-actions set vs macro-
operators set. minsup =5% 86
Invalid macro-operator Unstack_Put-down 88
Examples of useless macro-operators. Highlighted predicates should

not be taken into account. Lo oL 91
Redundant macro-operator Unstack_Stack_Unstack_Put-down. High-
lighted predicates should not be taken into account. 92

vii

5.7 Explanation scheme for detecting and eliminating problematic macro-
OPEIALOLS . . . v v v v e e e e e e e e
8 depotsobjecttypes
.9 Objects inventory example
10 Example of the transitivity property of incompatibilities.
11 Incompatibility graph for predicate 1ifting hoistO crateO. Green
(resp. red) lines indicate the positive (resp. negative) effects. Yellow
(resp. blue) circles are the actions (resp. predicates) and filled blue
circles are predicates that will be removed from the layer.
5.12 Exploiting the incompatibility graph for predicate p =1ifting hoistO
crate0. Filled blue circle indicate the bud node. Yellow circles are the
actions. Gray elements will not considered in the exploitation of the
graph for predicate p.

Lo

6.1 Macro-operators from different set of object relationships
6.2 METEOR framework.
6.3 Search time performance for barman and blocksworld domains. In
blue (resp. in green), the time performance for problems solved with
the original domain (resp. enhanced domain). In red, the problems not
solved with the original domain but solved with the enhanced domain.
6.4 Search time performance for depots and satellite domains. In blue
(resp. in green), the time performance for problems solved with the
original domain (resp. enhanced domain). In red, the problems not
solved with the original domain but solved with the enhanced domain.
6.5 Time gain for barman and blocksworld domains. In blue, the gain
for problems solved with the original domain and with the enhanced
domain. In red, the gain for problems that were not solved with the
original domain but solved with the enhanced domain. Thus, the gain is
underestimated.o
6.6 Time gain for depots and satellite domains. In blue, the gain for
problems solved with the original domain and with the enhanced do-
main. In red, the gain for problems that were not solved with the orig-
inal domain but solved with the enhanced domain. Thus, the gain is
underestimated. L. oLl
6.7 Number of explored nodes for barman and blocksworld domains. In
blue (resp. in green), the nodes for problems solved with the original
domain (resp. the enhanced domain). In red, the nodes for problems
that were not solved with the original domain.
6.8 Number of explored nodes for depots and satellite domains. In
blue (resp. in green), the nodes for problems solved with the original
domain (resp. the enhanced domain). In red, the nodes for problems
that were not solved with the original domain.
6.9 Plan length for each problem in barman and blocksworld domains.
In blue (resp. in green), the plan length for problems solved with the
original domain (resp. the enhanced domain).
6.10 Plan length for each problem in depots and satellite domains. In
blue (resp. in green), the plan length for problems solved with the orig-
inal domain (resp. the enhanced domain).

A.l1 Barmanobjects
A.2 Barmanobjecttypes

99

. 132

. 133

139

A3
A4
AS
A6
A7
A8

Barman operators 155
Blocksworld operators 156
Depotsobjects 157
Depots objects types o 157
Depots operators 158
Satellite operators 160

X

7.1
7.2

List of Tables

Definition of predicates and actions for blocksworld domain 18
Timeline of classical planning approaches. 25
Timeline of macro learning methods. 36
Transactional database for consulted sections on a company’s intranet. . 43
All frequent itemsets from Table 3.1 (minsup=0.01). 47
Closed frequent itemsets from Table 3.1 (minsup=0.01). 48
Maximal frequent itemsets from Table 3.1 (minsup =0.01). 48
Sequence database for consulted sections on a company’s intranet . . . 52
Sequential patterns from Table3.5 (minsup=0.25). 53
Dictionary of actions from a set of plans in the current example. 61
Sequence database from a set of plans in the current example. 61
Parameters for the generation of problems 67
Input sample for Algorithm 4, blocksworld domain. 85
Output sample for Algorithm4 85
Results of the validity of created macro-operators per domain. 87

Results from the graph-based approach to detect problematic macro-
operators. "M" stands for number of macros, "I" number of incompati-
ble macros found, "U" number of useless macros found and "R" number

of redundant macrosfound. 103
Percentage of removed problematic macro-operators per domain. 103
Sequence database using the encoding from Chapter4 111
Result of mining all frequent patterns on the sequence database in Table

6.1 withaminsupof 0.25 L. 112
Sequence database using the encoding an item by word 112
Sequence database using the encoding from Chapter 4 on a previously

translated setof plans. L oL 113
Example of plans for blocksworld domain.. 116
Dictionary of instantiated operators for Table 6.5. 116
Sequence database from dictionary in Table 6.6 and plans in Table 6.5. . 116
Dictionary of elements for Table 6.6. 117
Sequence database from dictionary in Table 6.8 and plans in Table 6.5. . 117
Parameters for the generation of problems 129

Number of mined macro-operators, the length of the longest macro-
operator found and the selected optimal set for each domain. { The
translation of the operators and the full report given by the approach
can be found in AppendixB. oL 130
Results represented as IPC Score and average time gain for each domain. 131
Results represented as the average impact in the final space size Gy and
the average impact in the length of the plans G for each domain. . . . 136

Comparative table between METEOR and other macro learning methods 147
Overview of the approaches presented in comparative Table 7.1. 148

X1

C.1
C2
C3
C4

Detail of the found macro-operators for barman domain. 179
Detail of the found macro-operators for blocksworld domain. 180
Detail of the found macro-operators for depots domain. 216
Detail of the found macro-operators for satellite domain. 218

xii

— =001 W=~

—_ O

List of Algorithms

Mining and filtering candidates 63
Macro-action construction e . 65
The merge procedure, 65
Macro-operators construction 84
createMacroOperator procedure 86
Remove problematic macro-operators - Main algorithm 93
Extraction of Incompatibilities 94
Domain instantiation relative to a macro-operator 95
ERA algorithm - Main algorithm 120
Mining macro-operators of length /. 121

Selection of the optimal macro-operator set

Xiii

2.1
2.2
23
24
2.5
2.6
2.7
4.1
5.1

List of PDDL-Codes

Definition of a blocksworld problem 19
Definition of the blocksworld domain 20
Initial blocksworld state represented in Figure 2.1(a) 22
PDDL definition for pick-up blocksworld operator 22
Instantiation of pick-up blocksworld operator 23
PDDL definition for pick-up_stack blocksworld macro-operator 34
Instantiation of pick-up_stack blocksworld macro-operator 35
Macro-action for the blocksworld domain 66
Macro-action for the blocksworld domain 100

XV

List of Symbols and Acronyms

Hereafter is the list of symbols and notations introduced in the specified chapters.

Chapter 2

Symbol Meaning

50 initial state

Sg goal state

by planning domain

Z planning problem

s state

S subset of the set of all states

< representation language

a action

A set of all actions

Y state-transition function

g goal

0 operator

name(0) name of operator o

name(xy,...,x,) operator name with object variables xi,...,x,
pre(o) set of preconditions of operator o
effects(o) set of predicates of operator o to be applied to a state
pre(a) set of preconditions of action a

add(a) set of positive effects of action a

del(a) set of negative effects of action a

/4 sequences of actions or plan

(ay,...,an) sequences of actions a; through a,

AUB union of sets A and B

A—B set of elements in A but not in B

h(s) heuristic function

h*(s) true distance between s and the goal state

Xvii

Chapter 3

Symbol Meaning
minsup minimum support threshold

P set of patterns
sid sequence identifier
(o) absolute support

sup(x) relative support

Chapter 4

Symbol Meaning

Di problem i

iy plan identifier

T solution plan for a problem p;

D sequence database

m macro-action

name(m) name of macro-action m

name(cy,...,c,) macro-action name with object constants cy,...,c,
pre(m) set of preconditions of macro-action m

effects(m) set of predicates of macro-action m to be applied to a state
Gr Planning time metric

Gy Space size metric

Go Plan Quality metric

xXviii

Chapter 5

Symbol Meaning

m macro-operator

S sequence of actions

add(m) set of positive effects of macro-operator m
del(m) set of negative effects of macro-operator m
p1|p2 predicate p; is incompatible with predicate p;

d planning domain

M set of macro-operators

P predicate

L, n'" layer of the incompatibility graph

A set of instantiated operators or set of actions

x —~y node x is linked to node y
L,\p equivalent to L, — {p}

C set of compatible predicates
1 set of potential incompatible predicates
IC] number of elements in set C

Chapter 6

Symbol Meaning

<a,b> paira,b

e i'" element in set of solution plans

minsup minimum support threshold

maxLength maximal extraction length

M set of macro-operators

C set of solution plans

G(M;C) estimated mean node gain by adding M and with respect to C
M p optimal macro-operator set with respect to G

Xix

Hereafter the list of acronyms used in this thesis. They are listed using the order of their
first apparition in the manuscript.

Acronym Meaning

Al Artificial Intelligence

NP Nondeterministic Polynomial time

METEOR Mac‘ro‘—opc‘:rator Extraction, Tra‘de—off Estimation and
Optimisation from plan Recycling

AP Automated Planning

PDDL Planning Domain Definition Language

IPC International Planning Competition

STRIPS Stanford Research Institute Problem Solver

GPS General Problem Solver

PSPACE Polynomial space

SAT Planning as satisfiability

Cp Constraint Programming

IP Integer Programming

CSp Constraint Satisfaction Problem

HSP Heuristic Search Planner

FF planner Fast Forward planner

NOAH Nets of Actions Hierarchies
Universal quantification, Conditional effects

UCPOP Partial Order Planner

SHOP Simple Hierarchical Ordered Planner

LM Landmark

SAS Simplified Action Structures

HTN Hierarchical Task Network

ID Identifier

FP Frequent Pattern

Cp Closed frequent pattern

SDB Sequence Database

FSP Frequent Sequential patterns

FAST Fast sequence mining Algorithm based on Sparse id-lisTs

GSP Generalized Sequential Patterns

LAPIN LAst Position INduction sequential pattern mining algorithm

XX

Acronym

Meaning

SPADE
SPAM
BIDE
CIoFAST
ClaSP
VMSP
MaxSP
ERA

Sequential PAttern Discovery using Equivalence classes
Sequential PAttern Mining algorithm

BI-Directional Extension algorithm

Closed FAST sequence mining algorithm

Closed Sequential Patterns algorithm

Vertical mining of Maximal Sequential Patterns
Maximal Sequential Pattern miner

Extraction of Rich patterns with Attribute structures

xXxi

Introduction

Efforts and courage are not enough without purpose and

direction.
John F. Kennedy
1.1 Contextofresearch 1
1.2 Problem 6
1.3 Contributions oo 7
1.4 Outline of the dissertation 10

1.1 Context of research

This thesis presents results achieved during my PhD at Grenoble Alps University and
Grenoble Informatics Laboratory. It is part of the Artificial Intelligence field.

The field of artificial intelligence (Al) intends to build intelligent agents. The intelli-
gence of these agents is concerned with rational action. Given a situation, they can act

to achieve the best outcome. Thus, as stated by Russell and Norvig (2010), an intelligent
agent is a system that can decide what to do and then do it.

An intelligent system perceives its environment, reasons about the best possible action
corresponding to the current situation, and performs it. Therefore, the primary concern
of Al has been the design of intelligent systems to perform complex tasks without any
human intervention. As an example of a domain that benefits from applying intelligent
systems, we have the automotive industry with the autonomous vehicles (Urmson et al.,
2008). One of its potential benefits concerns safety. They are expected to significantly
reduce accidents since the human error factor will be no longer exists (Fagnant and
Kockelman, 2015).

From this application, one expects that intelligent systems make decisions as fast as
possible in a reliable way. Thus, developing intelligent systems should include decision-
making autonomy and capacity to learn from past experiences. Indeed, they can use
their experiences to improve their performance. For example, faced with a situation
already encountered, they will use the previously acquired knowledge to decide better
and more effectively.

Because the applications tend to be complex, the decision-making component is essen-
tial, and it could not work without continuous advances in effective algorithms. They
are still many techniques to explore in this way. We focus this thesis on routine learning
for sequential decision making.

1.1.1 Automated Planning

Intelligent systems to be genuinely efficient need to organise their actions as fast as
possible in a reliable way. Planning is then essential since it is a careful consideration
process by which actions are chosen to achieve a specific goal. It is needed to understand
the problem and to adapt the resources to attain an objective as best as possible.

Automated planning (Al planning) is a sub-field of Al that aims to study and design
domain-independent general approaches to planning (Ghallab et al., 2004). In Al plan-
ning, a planning task consists of a planning domain and a planning problem. The for-
mer consist of a description of the world and a set of actions. The latter consist of an
initial world situation and some objective to achieve. Thus, the automated planning
community devises effective algorithms that produce action sequences (namely, a plan)
to reach a planning task goal, from an initial state, for a potential execution by one or
several agents.

Solving planning problems is a time-consuming and challenging process because algo-
rithms must understand planning tasks without the use of domain-specific knowledge.
To this must also be added the NP-hard complexity of planning. Namely, the time re-
quired to solve a planning problem increases very quickly as the size of the problem
grows.

Therefore, it is essential to develop robust algorithms. These algorithms must efficiently
explore the search space that grows exponentially with the plan length, which is un-
known. Various approaches have been studied to enhance the efficiency of planning
(Kautz et al., 1992; Van Den Briel and Kambhampati, 2005; Lopez and Bacchus, 2003;
Blum and Furst, 1997; Geffner and Haslum, 2000). These are a result of the cross-
fertilisation of ideas from different Al areas.

In planning, search algorithms usually explore a graph trying to find a sequence of
actions from a given initial node ng to a goal node n, (Bonet and Geffner, 2001; Nguyen
and Kambhampati, 2001). To counter the exponential growth, search algorithms can
use knowledge about the problem. This thesis focus on the study of learning macros, i.e.
frequently encountered routines.

1.1.2 Learning Macros

Few planning approaches take advantage of previous problems solved to accelerate the
search for a new problem. However, intuitively, a system capable of exploiting its expe-
rience, should be able to achieve better performance. Then, the main idea of learning
macros is to capture specific knowledge from analysing learning examples.

A macro consist of a sequence of actions that occur frequently in solution plans. Take
for example the blocksworld planning domain, it consists of a set of blocks settled on
a table. The goal is to build one or more vertical stacks of blocks. We can move only
one block at a time to perform one of the following actions (see Figure 1.1):

e Pick it up from the table.
e Put it down on the table.
e Unstack it from another block.

e Stack it on another block.

Intuitively, we can suggest that once we pick up a block from the table, the next most
probable action will be to stack it on another block or to put it down. If we are trying
to change the state of the world, putting down a block that we just picked up may be
useless. After solving many times different blocksworld problems, we may observe
more occurrences for the pick up action followed by the stack action than followed by
the put down action. From this experience, we can deduce that pick up and stack actions
build a potential macro. Thus, the next time we solve a problem, we can apply the pick
up and stack macro directly, avoiding the analysis of what action comes after the pick
up action.

From this example, we can observe that macros can model system routines. Once
learned, they can be re-injected directly into the planning domain. Thus, the domain
will benefit from the knowledge extracted from previous problems. The system applies

:action PICK-UP

=G - 5, ==
:action PUT-DOWN
—_—
:action UNSTACK
E%’ =%
:action STACK
—_—

Figure 1.1: blocksworld actions

a macro in the same way that a primitive action. However, macros allow jumping into
the search space by building deep and promising states to reach a goal state.

On the one hand, Figure 1.2 presents the search space in a blocksworld domain, for
a set of actions, an initial state and a goal. On the other hand, Figure 1.3 presents the
search space for an enhanced domain. Now, the set of actions also includes the macro
pick up and stack. This example clearly shows that the shortcuts provided by the macro
allow going deep quickly into the search space.

Macros has been widely studied among the different approaches to speed-up planning
processes (Botea et al., 2005a; Coles and Smith, 2007; Newton and Levine, 2010; Dulac
et al., 2013; Chrpa et al., 2014; Asai and Fukunaga, 2015). Macros literature presents
various techniques to build them, ranging from a simple matter of combining primitive
actions and the use of chunks of plans to the use of genetic learning algorithms or
statistical analyses based on n-grams.

In these approaches, there are two main phases: extraction and selection. The extraction
consists in identifying sequences of actions that could be potential candidates to enhance
the domain. However, the main disadvantage of macros is to increase the branching
factor of the search space. Indeed, by adding macros, the system must consider primitive
actions as well as new macros (See Figure 1.3).

Therefore, the use of macros raises a utility issue. The selection phase must found
a trade-off between the benefit expected from adding macros and the additional cost
induced by the branching factor increase. The selection phase plays a vital role because
carefully selected macros can significantly improve performance by reducing the depth
of the search space.

For approaches extracting macros from past experiences, an assumption often used is
that frequent sequences of actions are potentially good candidates to enhance the do-
main. Botea et al. (2004) use in their work this assumption when filtering the macros to

@ Actions

Pu: Pick up

Pd: Put down é
S: Stack
U: Unstack

Initial
state

Sy

A4

Ug

Pu;

Sll)

v

v

Pd7 U 10

Py,

8

v

A4

vl

Pd,

Puy

rd
)

A4

F”F”T’M}E}F{#}
sl O o
P

S
S
e
S
s
\
7
Sz
S
$
N
[

Pd,

Figure 1.2: blocksworld domain with only primitive actions. Filled squares
represent the sequence of actions to achieve the goal from the initial state.

be added to the domain. For them, the more often a macro is present in the solutions of
past problems, the higher its weight will be. Only the two best macros will be part of
the domain. Dulac et al. (2013) create a macros library from the most frequent action
sequences derived from an n-gram analysis on successful plans previously computed by
the planner.

We could, therefore, consider an approach that exploits this hypothesis — for exam-
ple, the pattern mining technique from the field of data mining which aims to discover
frequent patterns in data.

1.1.3 Pattern mining

The purpose of data mining is to look for patterns by searching automatically in data
stored electronically. The descriptive task of data mining is called Pattern mining. Pat-
tern mining intends to discover interesting and useful patterns in data.

Pattern mining has become popular because of its applications in multiple domains. Al-
though the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-

@ Actions

Pu: Pick up
Pd: Put down
S: Stack

U: Unstack
Ps: Pick up
and Stack

N A
@ Initial e
state S, S
A
S -~
-]
Uy —
A
-

Figure 1.3: blocksworld enhanced domain with the macro pick up and stack.

Filled squares represent the sequence of actions to achieve the goal from the
initial state.

tial ordering of events. Therefore, there exists a technique for mining sequence data
called sequential pattern mining.

Sequential pattern mining consists in analyse sequential data to discover frequent se-
quential patterns. We can distinguish two filter structures provided by sequential pat-
tern mining. On the one hand, there is a parameter called support, which filters patterns
based on the frequency of apparition. On the other hand, from following some restric-
tions, the resulting pattern set can be reduced.

1.2 Problem

Routines are present in real-life applications or closely related systems. These routines
can be used to improve the performance of the solving process of new problems. One
way to build on past experiences is to learn macros.

In automated planning, the challenge remains on developing powerful planning tech-

6

niques capable of effectively explore the search space that grows exponentially. Learn-
ing macros from previously acquired knowledge has proven to be beneficial for improv-
ing a planner’s performance (Botea et al., 2004; Chrpa et al., 2014).

In this work, we address the two stages of learning routines:

1. The extraction via the exploration of pattern mining techniques. This approach
should be domain-independent and particularly adapted to the extraction of re-
current patterns (i.e. the routines). Besides, we want to exploit the extraction
of sequences of non-adjacent actions. Only a few works have explored this path
(Botea et al., 2004; Chrpa et al., 2014). However, they have shown that this al-
lows more routines to be extracted and therefore, would be more profitable for
the system.

2. The selection via a priori macro utility. Among studied approaches, they select
macros, either based on a frequency-based ranking (Botea et al., 2005b; Chrpa,
2010) or based on a posteriori evaluation (Botea et al., 2004; Newton and Levine,
2010; Hofmann et al., 2017). However, the benefits of a macro depend also on
several other factors such as its length, i.e. the number of search nodes that a
macro would save (Botea et al., 2005a); its impact on the branching factor; the
other macros used (the purposes of two macros may overlap).

This thesis studies the following research questions:

Research question #1

Is there a monotonic relationship between the frequency of apparition of a macro
and its utility? i.e. can the frequency alone be used as an estimator for macro
ranking by utility?

Research question #2

Can we learn routines from past experiences that are not only frequent but above
all useful?

1.3 Contributions

This thesis contributes mainly to the field of automated planning, and it is more specif-
ically related to learning macros for classical planning. We focused on developing a
domain-independent learning framework that identifies sequences of actions (even non-
adjacent) from past solution plans and selects the most useful routines (i.e. macros),
based on a priori evaluation, to enhance the planning domain.

Below, we highlight the advantages of our work:

e Planner independent, we do not need to modify the planner’ structure.

e Domain-independent, the framework does not need a priori knowledge on the
domain.

e Non-adjacent actions, we can identify routines from a sequence of adjacent and
non-adjacent actions.

e A priori evaluation, there is no need to re-solve past problems to select the most
useful routines.

e Anoptimal set of routines, we can identify not only useful routines but the optimal
set to enhance a domain.

First, we studied the possibility of using sequential pattern mining for extracting fre-
quent sequences of actions from past solution plans, and the link between the frequency
of a macro and its utility. For that, we proposed a framework to extract macro-actions
(i.e. sequences of actions with constant objects, see Figure 1.4) via sequential pat-
tern mining algorithms and to select useful macro-actions based on their frequency
(Castellanos-Paez et al., 2016). We found out that the frequency alone may not pro-
vide a consistent selection of useful macro-actions.

Additionally, we found some discrepancies in the results of the precedent study. To
explore them, we transposed the study to macro-operators (i.e. sequences of actions
with variable objects, see Figure 1.5) and we proposed a new approach to validate the
generated macros. This approach proved to be successful in eliminating problematic
macro-operators.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. We concluded in the
need for a novel approach allowing to extract macro-operators and assess in their utility.

Finally, we provided a novel approach called METEOR, which ensures to find the fre-
quent sequences of operators from a set of plans without a loss of information about
their characteristics. This framework was conceived for mining macro-operators from
past solution plans, and for selecting the optimal set of macro-operators that maximises
the node gain. It has proven to successfully mine macro-operators of different lengths
for different domains and thanks to the selection phase, be able to deliver a positive
impact on the search time without drastically decreasing the quality of the plans.

A
A 88

— Ps, = Pick up-Stack blockB blockA ——
nen R

Figure 1.4: A macro-action pick up and stack for specific objects blockB and
blockA.

X #?Y

A B-B-8 0«00,

Y Y
" Pick up and Stack block?X block?Y

:
R RN

Figure 1.5: A macro-operator pick up and stack for variable block objects.

1.3.1 Publications

Some of the work presented in this thesis has been subject to related publications:

Sandra Castellanos-Paez, Damien Pellier, Humbert Fiorino, Sylvie Pesty. "Learning
Macro-actions for State-Space Planning". In: Journées Francophones sur la Planifica-
tion, la Décision et I’Apprentissage, Jul 2016, Grenoble, France.

Sandra Castellanos-Paez, Damien Pellier, Humbert Fiorino, Sylvie Pesty. "Mining use-
ful Macro-actions in Planning". In: The third International Conference on Artificial
Intelligence and Pattern Recognition (AIPR), IEEE, 2016. p. 1-6.

1.4 QOutline of the dissertation

This thesis is structured in two parts (see Figure 1.6). The first part consists of theoretical
background on topics covered in this work, followed by a context presentation of our
main results, to finally, put them in perspective by reviewing the associated relevant
literature. We organised this part into two chapters.

In Chapter 2, we introduce the background planning concepts used in the development
of this work and the literature related to these concepts. First, we intend to establish the
scope of work through the definition of classical planning concepts. Next, we present
an overview of the approaches to speed-up planning processes and its corresponding
literature. Finally, we review and analyse the relevant literature around macro learning
methods in planning.

In Chapter 3, we provide some theoretical building blocks of pattern mining, and we
put these concepts in the context of this work. First, we introduce the basic concepts
of pattern mining. Next, we focus on the concepts of mining frequent patterns, and
we describe the most popular algorithm for pattern mining. Finally, we focus on the
sequential pattern mining approach since it is the most related to our data types.

The second part of this thesis presents our contribution, taking into account the research
questions previously presented. We structured this part in three chapters.

In Chapter 4, we explore (1) the use of sequential pattern mining for learning useful
macro-actions from past solution plans and (2) the link between the frequency of a
macro and its utility (see the research question #1). With this goal, we propose a frame-
work to learn useful sequences of actions (not necessarily adjacent) as macro-actions
and use them to speed-up planning search. We based this learning framework on the
filter structures provided by sequential pattern mining.

10

In Chapter 5, we detail two shortcomings found in the last chapter, namely the lack of
(1) macro-actions generality and (2) verification of the validity of the generated macro-
operators. For each shortcoming, we first discuss its implications and then, we detail a
remedial measure to address it. At the end of the chapter, we discuss the difficulty of
the selection process, even after using shortcoming remedial measures.

In Chapter 6, we discuss the encoding limitations of traditional pattern mining algo-
rithms in the extraction of macro-operators. To answer the research question #2, we
then present our METEOR framework, which (1) mine macro-operators from past solu-
tion plans and (2) select the optimal macro-operator set to enhance the planning domain.
We validate the proposed framework in known planning benchmarks.

Finally, in Chapter 7, we review the contributions of the thesis, we give concluding
remarks and we propose possible directions for future work.

Introduction (Chapter)

Part I - Background and Literature Review

Automated Planning (Chapter)

Pattern mining (Chapter)

Part II - Contributions on Learning Routines

Extraction of macros via
Sequential Pattern Mining(Chapter)

Pattern mining applied to planning:
Shortcomings and solutions (Chapter)

The METEOR framework (Chapter)

Conclusions and Perspectives (Chapter)

Figure 1.6: Thesis outline

11

Part 1

Background and Literature Review

13

Automated Planning

A goal without a plan is just a wish.

Antoine de Saint-Exupéry

2.1 Introduction, 17
22 Classical Planning 17
2.3 PDDL representation language 19
24 Keyconcepts e e 21
2.5 Development of Automated Planning 24
2.6 Macro learning methods in Automated Planning 33
27 Conclusion L o 38

15

2.1 Introduction

In this work, we are interested in plan synthesis. It is a particular form of planning
which takes a description of the world state, all its known actions and a goal. As a
result, we get an organised set of actions whose execution makes it possible to solve the
planning task.

Some systems are renown worldwide for their exceptional ability to solve very specific
problems. Among many others, Deepblue (Campbell et al., 2002) and Alpha Go (Silver
et al., 2016) show that a very efficient approach to deal with planning problems is to
create predictive models adapted to the specific representations of a problem.

However, this is not suitable to build autonomous intelligent systems since their delib-
erative capabilities will be limited to the areas enclosed in their domain-specific plan-
ners. Thus, a better strategy consists in building a planning engine based on a domain-
independent general approach.

Therefore, Automated Planning purpose is to develop a general approach that solves
any problem described in a representation language, using a general algorithm. AP
approaches rely on the model of state-transition systems since it describes a general
model for a dynamic system.

2.2 Classical Planning

In an effort to develop well-founded approaches, a more practical model introducing
several assumptions was defined. Classical planning stands for planning for restricted
state-transition systems. Classical planning problems are well-formalised and well-
characterised considering that their model obeys to the following assumptions :

o Finite: The state-transition system has a finite set of states.
o Fully observable: There exists a complete knowledge about the system.

e Deterministic: From a state, the application of an action brings to a single other
state.

o Static: The system stays in the same state until an action is applied.

o Restricted Goals: The objective of the system is to find a sequence of states that

17

ends in a state satisfying all goals.
e Sequential plans: The solution plan consists in an ordered sequence of actions.
e Implicit time: Actions do not have any duration.

In order to provide a better understanding of the planning concepts through this chapter,
we will use, as a basis for the examples, a well-known classical planning domain: the
blocksworld domain.

Blocksworld domain

Blocksworld in Figure 2.1 is a toy problem that consists of a set of blocks settled on a
table and a mechanical hand. The hand can move one block at a time to perform one of
the following actions: place it on another block, place it on the table, pick it from the
table or removes it from another block. The goal is to build one or more vertical stacks
of blocks.

From this description, in Table 2.1 we define a series of non-independent predicates and
four possible actions.

Predicates

e on(b,b’): Block b is on some block b’.

e ontable(b): Block b is on the table.

e clear(b): No block sits on top of block b.
e handempty: Hand is not holding a block.
¢ holding(b): Hand is holding block b.

Actions

e Pick-up a block b from the table.

e Put-down a block b on the table.

e Stack, to put a block b on top of a block b’.

e Unstack, to remove a block b from a block b’.

Table 2.1: Definition of predicates and actions for blocksworld domain

18

2.3 PDDL representation language

The representation language used in this work, and one of the languages used in auto-
mated planning, is called PDDL. PDDL stands for Planning Domain Definition Lan-
guage (McDermott et al., 1998; McDermott, 2000). It was introduced in 1998 for the
International Planning Competition with the aim of standardising the planning represen-
tation language. On top of that PDDL allowed a meaningful comparison of planners on
different problems.

(define (problem blocksworld3)
(:domain blocksworld)
(:objects blockA blockB blockC -block)
(:init (handempty)
(on blockA blockB)
(ontable blockB)
(ontable blockC)
(clear blockC)
(clear blockA))
(:goal (on blockB blockA)))

PDDL-Code 2.1: Definition of a blocksworld problem

As an example, we define the blocksworld domain in PDDL-Code 2.2 and the blocksworld
problem of Figure 2.1 in PDDL-Code 2.1 by using PDDL. The former is composed of
predicates which characterize the properties of the objects and a set of non-instantiated
actions (later called operators) which establish the ways to move from one state to an-
other. The latter is composed of objects which define the task relevant things in the
world; an initial state sy which represents the starting configuration of the world; and a
goal state s, which describes the desired predicates that we want to be true.

Wit

(a) Initial state (b) Goal state

Figure 2.1: Representation of Code 2.1

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

(define (domain BLOCKS)

(:requirements :strips :typing)

(:types block)

(:predicates (on 7x - block 7y - block)
(ontable ?x - block)
(clear 7x - block)
(handempty)
(holding 7?x - block)
)

(:action pick-up
:parameters (7x - block)
:precondition (and (clear ?7x) (ontable ?7x) (
handempty))
reffect
(and (not (ontable ?7x))
(not (clear 7x))
(not (handempty))
(holding ?x)))
(:action put-down
:parameters (7x - block)
:precondition (holding 7x)
effect
(and (not (holding ?7x))
(clear 7x)
(handempty)
(ontable ?7x)))
(:action stack
:parameters (?7x - block 7y - block)
:precondition (and (holding ?7x) (clear 7y))
reffect
(and (not (holding 7x))
(not (clear 7y))
(clear 7x)
(handempty)
(on 7x 7y)))
(:raction unstack
:parameters (?x - block ?y - block)
:precondition (and (on 7x ?7y) (clear 7x) (
handempty))
effect
(and (holding 7x)
(clear 7y) 20
(not (clear 7x))
(not (handempty))
(not (on 7x ?7y)))))

PDDL-Code 2.2: Definition of the blocksworld domain

2.4 Key concepts

In this section, we intend to present the formal definition of the planning key concepts
used in this work.

Because the interest of planning lies in choosing actions to transform the system state,
the transitions between states are represented with a state-transition system model. Ad-
ditionally, we address sequential planning in the STRIPS framework (Fikes and Nilsson,
1971).

Definition 2.1.
A planning task consists of a planning domain X and a planning problem &’.

Example The planning task composed by the blocksworld domain in PDDL-Code 2.2
and the blocksworld problem of Figure 2.1 in PDDL-Code 2.1. [|

Definition 2.2.
A classical planning domain is a restricted state-transition system X = (S,A,7) such
that:

e Sisincluded in the set of all states that can be described with the representation
language .Z.

e A is the set of all actions a.

e 7Y(s,a) is the state-transition function that defines the transition from a state s to
an state s’ using an action a.

Definition 2.3.
A classical planning problem & = (X,s¢,g) is composed of:

e 50 an initial state where sg € S.

e g a goal, namely a set of instantiated predicates. A goal is satisfied if the system
attains a state s, such that all predicates in g are in s,.

Definition 2.4.
A state s is a set of logical propositions.

Example Let us consider the initial state from the blocksworld problem in PDDL-Code
2.3. Here, every predicate represents a proposition that can take a true or a false value.
[|

21

1| (:init (handempty)
2 (on blockA blockB)
3 (ontable DblockB)
a (ontable blockC)
5 (clear blockC)
6 (clear blockA))
. J

PDDL-Code 2.3: Initial blocksworld state represented in Figure 2.1(a)

Definition 2.5.
A planning operator is a triple 0 = (name(o), pre(o), effects(o)) where its elements are
defined as follows:

e name(o) is in the form name(xy,...,x,) where xi,...,x, are the object variable
symbols that appear in o.

e pre(o) is the set of precondition formula that must be hold before exploiting the
action.

e c¢ffects(o) is the set of predicates to be applied to a state.

Example In the pick-up operator in Code 2.4, the object variable symbols are defined
in the :parameters clause and the preconditions (resp. effects) are defined in its

:precondition (resp. :effect) clause. |
1| (:action pick-up
2 :parameters (7x - block)
3 :precondition (and (clear ?7x) (ontable ?7x) (
handempty))
4 reffect
5 (and
6 //negative effects
7 (not (ontable ?7x))
8 (not (clear 7x))
0 (not (handempty))
10 //positive effects
11 (holding 7x)))
. J

PDDL-Code 2.4: PDDL definition for pick-up blocksworld operator

Definition 2.6.
An action a is an instantiation of a planning operator. Thus, a is a triple a = (pre(a),add(a),del(a)).
If an action can be applied, a new state is generated. First it deletes all instantiated pred-

22

10

11

icates given in the delete list del(a), also known as the negative effects. Then, it adds all
instantiated predicates given in the add-list add(a), also known as the positive effects.

Example In Code 2.5, we have instantiated the pick-up operator with a blockC. [|

(:raction pick-up
:parameters (blockC)
:precondition (and (clear blockC) (ontable
blockC) (handempty))

:effect
(and

//negative effects
(not (ontable blockC))
(not (clear blockC))
(not (handempty))
//positive effects
(holding blockC)))

PDDL-Code 2.5: Instantiation of pick-up blocksworld operator

Definition 2.7.
A state s’ is reached from s by applying an action a according to the transition function
in formula 2.1.

s' = y(s,a) = (s —del(a)) Uadd(a). (2.1)
The application of a sequence of actions @ = (aj,...,a,) to a state s is recursively
defined in Formula 2.2.
’}/(Sv <a1a te ,Cln>) = ?’(7(&“1)» <612, s 7an>)‘ (22)
Example In Figure 2.2, we represented the application of the pick-up action shown in
Code2.5 to a state s in order to obtain a state s’. |
Definition 2.8.
A plan is an ordered sequence of actions T = (aj, ..., a,) such that s, = y(s;,) satisfies

the goal g and the latter is reachable if such a plan exists.

Example From the initial state in Figure 2.1(a), the plan satisfying the goal state in
Figure 2.1(b) is w = (pick-up blockA, put-down blockA, pick-up blockB,
stack blockB blockA).]

23

7]

s —_— del (a) U add(a) =

(handempty)

(on blockA blockB) (on blockA blockB)
(ontable blockB) -not ((handempty)) i (ontable blockB)
-not ((ontable blockC))p 4 +(holding blockC) (clear blockA)
(holding blockC)

(ontable blockC)
-not((clear blockC))

(clear blockC)
(clear blockA)

pick-up(blockC)

Figure 2.2: Pickup action applied to a state s

2.5 Development of Automated Planning

Under this section, we gather methods and concepts related to AP problems. We present
their chronological apparition in Table 2.2. Although, some methods presented here are
quite old, they are still not outdated. Also, some of these concepts may be partially or
integrally combined with each other .

B General Paradigms

Early works in Al for problem solving and search introduced the weak methods. Namely,
basic search methods that have a high generality. These methods do not need neither a
defined domain nor a precisely determined initial point. Paradoxical though it may seem,
they can use highly specific knowledge of the domain but only for specific functions.
Take the case of an evaluation function where that knowledge is used only to compare
states and select the best.

Among these methods, we found the means-ends analysis (Newell et al., 1959) that uses
knowledge about how operators reduce the difference between states and goals. The
first Al system to implement this method to solve multiple problems was the General
Problem Solver (Newell, 1963). GPS organises the information about the difference
between objects into goals. If the goal is to transform an object into another object, the
objects are compared and a subgoal is set up to reduce the difference (if any). If the
goal is to reduce the difference between two objects, the program looks for an operator
reducing this difference and a subgoal is set up to apply the operator to the object.
Finally, if the goal is to apply an operator, the program validates if the conditions of
the operator are satisfied and then it generates the new object. Otherwise a subgoal is
created to reduce this difference.

24

Table 2.2: Timeline of classical planning approaches.

1963 ----- B General Problem Solver.

Stanford Research
Institute Problem Solver.

B MACROP generation
1972 ... B UCPOP partial order
planning algorithm.

B Nets Of Actions

1975 _ _
Hierarchies.
1977 B Hierarchic Non-linear
Planner.
1984 i O—_PLAN: Open planning
architecture.
1985 ----- H PRODIGY.
1992 SATPLAN
Il PRIAR.
B UMCP
1994
B (xTeT.
1995 .- ... B Graphplan.
1996 ----- UNPOP.
B Heuristic search
1999 .- planner
B SHOP.
GP-CSP
2000 - - - --
CSP-PLAN.
2001 - - -- B Fast-Forward Planner
Il RePOP.
B MacroFF
2005 B Optiplan.
2007 ----- B Marvin.
2014 ---- B MUM.
2017 - H BFWS.

25

We also found, the generate-and-test method. A generator is a process that takes infor-
mation specifying a set and from it produces possible candidates for solution. Then,
these elements pass one by one to the test process. It determines whether some condi-
tion holds for that candidate and decides its behaviour based on the needs of the rest of
the processing.

A variation of this method is hill-climbing. Here, the generation of the next state de-
pends on a feedback from the test process. It includes a heuristic function that provides
a way to move only to states that are better than the current state, throwing out old states
as it moves uphill.

Approaches to solve classical planning problems

Planning problems have been shown PSPACE-complete. To tackle this challenge, plan-
ning systems try to reduce the size of the search space they have to explore. Various
approaches have been studied to enhance the efficiency of planning. These are a result
of the cross-fertilisation of ideas from different Al areas.

2.5.1 Translation into another problems

A well-known approach is to translate the planning problem into another kind of com-
binatorial problem such as SAT, CP or IP. Then, solve this translated problem using an
already existing efficient solver and finally, take the solution and translate it into a plan.

Planning problem as satisfiability problem

A SAT problem is a satisfiability problem, i.e., determining whether a Boolean formula
can be true for some assignments of its variables. This formula is created from simple
propositions or propositional variables which are associated using OR, NOT or AND
connectors.

SAT planning approach defines the planning problem as a set of postulates where any
model of the postulates corresponds to a valid plan. The initial state and the goal state
are described as a set of propositions holding respectively at time 0 and at time N, where
N is an horizon length. And, the possible transitions are represented one-to-one with
the models of a propositional formula. The combination of these elements represents
the formula to be satisfied. And any assignment of truth values achieving it, is a valid
plan for the planning problem.

In SATPLAN (Kautz et al., 1992),the planning problem comes from a constructed
planning-graph of some length N. SATPLAN encode all constraints of it into a formula

26

which is built as a conjunction of one or more clauses, where a clause is a disjunction
of literals. It solves that formula using an efficient SAT solver. The planner increases N
and starts again if no solution was found at that length. Considering that N increases in a
step-wise manner, in terms of solution length, the output of this planner will necessarily
be an optimal plan.

Planning problem as integer programming

An IP problem is defined as an optimisation problem, i.e., finding an assignment of
values that maximises (or minimises) a cost function. In this kind of problem, some or
all the variables are restricted to be integers.

IP planning approach consists in casting the planning problem as the minimisation or
maximisation of a linear function. This function is created with integer-valued variables
and is conditioned to linear equality and inequality constraints in the variables.

In Optiplan (Van Den Briel and Kambhampati, 2005), a planning graph is built and
transformed into an IP problem. This planner only considers the actions and proposi-
tions instantiated in the planning graph. The IP problem is solved using a IP solver
such as ILOG CPLEX (ILOG, 2002). If no plan is found, the process starts again by
extending the planning graph by one step.

Planning problem as constraint programming

CP approach models the problem as a constraint satisfaction problem (CSP). A CSP
consists of a set of variables X = {xj,...,x, }, a set of domains D = {D;,...,D,} and a
set of constraints C = {cy,...,cx }. For each variable x; € X there is a domain D; and the
scope of each constraint is a subset of X.

Constraint satisfaction searches for a compatible assignment of values to the variables
that doesn’t violate the constraints. This approach encodes the potential solution plans
of length K as a CSP problem.

GP-CSP (Do and Kambhampati, 2000) and CSP-Plan (Lopez and Bacchus, 2003) were
based on translation of the planning graph to a CSP. More recently, Bartdk proposed a

novel view of contraint-based planning that used parallel plans and multi-valued state
variables (Bartak, 2011).

2.5.2 Search for planning

A planning problem can be solved by searching a solution in a search space. To ac-
complish that, the problem model must be translated into a search space and a search

27

algorithm must be chosen. In the last twenty years heuristic based approach to guide
the search became popular.

Search algorithms explore a graph trying to find a sequence of actions from a given
initial node ng to a goal node n,. They are described by the search space that they
explore, its search direction and if they have additional information to guide the search.

Search in the space of states

Each node corresponds to a state of the dynamic system, each arc corresponds to a state
transition which is a result of an executed action on a state, and the plan correspond to
the found path in the search space.

Based on this search space several planners were developed such as STRIPS (Fikes
and Nilsson, 1971), HSP (Bonet and Geffner, 2001), FF Planner (Hoffmann and Nebel,
2001) and MacroFF (Botea et al., 2005a).

B Search in the space of plans

In this search space, the state-transition system is not considered anymore. Nodes are
partially specified plans and arcs are plan operations intended to complete a partial plan.
The initial node corresponds to an empty plan and the goal node contains a solution
plan that satisfies the required goals. A solution plan is a set of planning operators with
ordering constraints and binding constraints.

Planners such as NOAH (Sacerdoti, 1975), UCPOP (Penberthy et al., 1992), IXTET
(Laborie and Ghallab, 1995) and RePOP (Nguyen and Kambhampati, 2001) exploit this
search space.

B Search in the space of task networks

The input to the planning system consists in a set of operators and a set of methods. A
method describes how to decompose some task into some set of subtasks. Searching
in the space of task networks aims to perform some set of tasks instead of achieving a
goal. To do that, the compounded tasks are decomposed recursively into smaller tasks,
until primitive tasks are reached that can be performed using the operators. Then, the
solution is an executable sequence of primitive tasks.

Planners in such search space provide a more available way to write problems for hu-
man domain experts. Among these planners, we have NONLIN (Tate, 1977), O-PLAN
(Currie and Tate, 1991), UMCP (Erol et al., 1994), SHOP (Nau et al., 1999) and SHOP2
(Nau et al., 2003).

28

B Planning graph search

The output is a sequence of set of actions being more general than a sequence of actions
from the state-space planners but less general than a partial order from the plan-space
planners. Planning graph provides a way to estimate the set of propositions reachable
from the initial state so and the actions leading to them.

It is a directed layered graph composed of two kinds of layers, action layers A;;; and
proposition layers P, where 0 < i < n. Layer at level 0 of the graph consists in the set P
of propositions describing the initial state so of the planning problem.

e A, is the set of actions whose preconditions are nodes in P;
e P is the union of Py and the set of positive effects of actions in A;4

Graphplan planner (Blum and Furst, 1997) introduced this approach to reduce the amount
of search needed to find the solution, improving considerably the performance over
state-of-the-art planners of its time.

2.5.3 Techniques to improve planning search

Searching the path from a start node to a goal node is an important aspect of solving
planning problems because this technique allows to find the most viable path to reach
the goal and make the process efficient. Thus looking for ways to improve this technique
is crucial to improve planner performance.

Basic search, also called blind search is an uninformed search. The search does not
have additional information about states except from that provided in the definition
of the problem. As a result, the total search space can potentially be explored and
its exploration is exhaustive using brute-force algorithms. Based on this approach we
found algorithms such as Breadth-First search and Depth-First search, they represent
the state space in form of a tree where the initial state, the intermediate states and the
goal states are nodes of the tree.

o Breadth-First search, the root node is expanded first, then all its successors are
expanded and for each next step all successors of every node are expanded suc-
cessively until a goal state is reached.

e Dept-First search, one branch of the tree is explored until the solution is found.
The searches ends when a dead end is met or when the process becomes longer
than the time limit. In that case, the process starts again with another branch of
the tree to be explored.

29

A way to improve the search is adding additional information about the problem to
guide the search in a specific direction.

2.5.3.1 Heuristic search

Using a heuristic function to estimate better choices during search has been shown to be
a major progress in planning and the most common form to impart additional knowledge
to the search algorithm.

Definition 2.9.
A heuristic function A(s) is an evaluation expression that defines some criteria to rate
the cost of an intermediate state s to a goal state.

Definition 2.10.
A heuristic A(s) is admissible if it never overestimates the cost of reach the goal. Given
that ~2*(s) is the true cost to reach the goal from a state s, we have h(s) < h*(s)

Definition 2.11.

For every state s and every successor s’ of s obtained by applying an action a, a heuristic
is consistent if the estimated cost of reaching the goal from s is less than the sum of the
cost of getting s" plus the cost of reaching the goal from s" h(s) < c(s,a,s") + h(s")

We will use the classification proposed by Torralba Arias de Reyna (2015) that groups
heuristics into five families: Critical-paths, relaxation, abstraction, landmark and flow-
based heuristics.

Critical paths

h™ heuristics introduced by Geftner and Haslum (2000) estimate the cost from a state
to a goal by computing the maximal cost from that state to any sub-goals of length at
most m. Thus the path from that state to the goal is at least as costly as the path leading
to the most costly sub-goal. As m grows the computational complexity to calculate 4™
grows exponentially because the number of sub-goals of length at most m increases as

Y (‘f'). Haslum et al. (2005) extended these heuristics to the additive A heuristics.
k<m

Additive 2™ computes partial h’" where {A;} is a partition of A, the set of the actions in
a planning problem P. R} is calculated in the same fashion as 4" except that the cost
of every action not in A; is relaxed. Finally, the A} are summed for all A; to obtain the
heuristic value.

Relaxation

h heuristics (Hoffmann and Nebel, 2001) estimate the cost from a state to the goal as
the cost of an explicit plan 7 calculated without considering the negative effects of ac-

tions. As the computation of #*+ is NP-hard, other approximations such as 4% and h"*

30

were introduced by Bonet and Geffner (2001), to calculate heuristics in polynomial-time.
Respectively, one heuristic approximates 4™ by assuming that every fact in a conjunctive
sub-goal must be achieved separately while the other heuristic assumes that achieving a
single fact from a conjunctive sub-goal is sufficient. Unlike, 4", 1% and k" heuristics,
hF (Hoffmann and Nebel, 2001) solves the relaxed problem by finding some relaxed
plan whose is not necessarily optimal. /7 (s) is calculated as the length of that relaxed
plan. Other approximations of 4" take into account some negative effects (Helmert,
2006; Helmert and Geffner, 2008). Moreover, only A", max, landmark-cut (Helmert
and Domshlak, 2009) and improved LM-Cut (Bonet and Helmert, 2010) heuristics are
admissible.

Abstractions

h* heuristics simplify the planning task by mapping to an abstract state space .’ the
original state space . by the means of an abstraction function . This function o de-
fines the states that should be characterised. Then 2% (s) for state s is the cost estimation
of the cheapest path from the abstract state c(s) to the goal state in .7%.

There exists different abstractions classes to do different mappings of the search space.
In pattern databases heuristic (Culberson and Schaeffer, 1998; Edelkamp, 2001; Haslum
et al., 2007), the abstraction function « is a projection. It maps two states s; and s, to
the same abstract state if and only if they agree on all variables in the pattern. A pattern
P is the set of state variables. Merge-and-shrink heuristic (Helmert et al., 2007; Driger
et al., 2009) adds new variables to the abstraction using a merging strategy and then, it
reduces the abstract space by fusing some abstract states following a shrinking strategy.

Landmarks

W™ heuristics introduced by Porteous et al. (2014), are based on the definition of a
landmark, namely a property (a fact or an action) that every plan must satisfy for the
planning task. Obtaining landmarks is usually done prior to planning. Then A (s)
is the minimal cost of the landmark actions for s meaning the set of actions that were
found to happen in every plan. In other words, since all landmark actions are bound to
happen at some point in the plan the heuristic ensures its admissibility by defining the
distance to the goal as the minimal cost from those that can be applied for s and zero
if no such action can be applied. The main difficulty is to find those landmarks. This
technique was then improved by the introduction of the landmark cut heuristic (Helmert
and Domshlak, 2009) and later the improved LM-cut (Bonet and Helmert, 2010).

Network Flows

h/'°" heuristics (Van Den Briel et al., 2007) estimate the cost from a state s to the goal
by using the flow constraint equation in a SAS+ formalism. This equation ensures the
balance between the number of times that a given atom (or proposition) is produced
versus the number of times that it is consumed to satisfy the goal state, and that for
every atom. Linear programming is used to solve the flow equation for the number of
times that each operator is used with the minimal cost. The idea is to produce a group
of actions that, if they all could be applied to s would yield the goal state.

31

2.5.3.2 N Learning strategy

Instead of trying to estimate the distance to the goal with a general function, one can
use previously solved problems to increase the performance of planning systems. For
instance, it is possible to learn commonly used actions or groups of actions or even
adapt a heuristic function to a specific domain.

Practical planning systems require domain knowledge and control knowledge. The for-
mer describes the world and the available actions whereas the latter prescribes how the
planner must to behave to attain its goals.

It cannot be denied that adding knowledge results in better planning system perfor-
mance. Injecting knowledge can be time-consuming if done by human experts. A
solution is that the planner automatically learns it.

Learning domain knowledge

e Learning action preconditions and effects: In classical planning, the basic
idea (Wang, 1995) is to learn action preconditions by raising the propositions
from a set of pre-states s;_. These pre-states are the states before action a; is
applied. On the other hand, learn action effects can be done by raising the differ-
ence between the propositions in the pre-states s;_; and the post-states s;, namely
the state obtained after action q; is applied. Also, each object is replaced with a
variable. A more recent work (McCluskey et al., 2009) produces actions repre-
sentations from training sequences without requiring large numbers of examples.
These sequences are composed of an initial and a goal state, as well as the solu-
tion sequence written in terms of action names and affected objects. Moreover,
the intermediate states are obtained without trainer intervention.

e Learning hierarchical schema: Itis possible to learn preconditions of Hierar-
chical Task Network methods (see 2.5.2) by examining plan traces (Ilghami et al.,
2002). These traces include a correct solution for the problem. Likewise, they
include at each given point, a list of methods applicable to decompose the current
task. This approach requires all methods’ information to be given in advance. In-
stead, Ilghami et al. (2006), proposed an algorithm to learn domain description
from traces in HTN planning with no prior information about the methods. The
algorithm verifies for each decomposition point if the method implied exists. If
not, the algorithm creates it as a new method and try to capture its preconditions
by using the version space algorithm (Mitchell, 1981).

Learning control knowledge

The main idea is to capture specific knowledge, using one of the methods below, to
guide the planning system when selecting operators and goals. This knowledge usually
comes from analysing learning examples or, failing that, from analysing the relations
between actions’ preconditions and effects.

32

Control rules (Borrajo and Veloso, 1997; Etzioni, 1993; Aler et al., 2002; Her-
rera et al., 1998): It consists of an IF-THEN rule for proposing node pruning
or proposing node ordering during the search exploration. They introduce extra
predicates enriching the planning model.

Cases (Hammond, 1990; Carrick et al., 1999; De Mantaras et al., 2005; Craw
et al., 2006): A case is defined as a trace of past solved planning problem.
They are stored in a plan library and indexed for a later easy recovery. They are
used when a new problem match a previously similar problem in the plan library.
Thus they can be applied without changes or they can be modified to solve the
new problem.

Heuristics (Yoon et al., 2006; Xu et al., 2007): The purpose of learning heuris-
tics (Definition 2.9) is to tackle domains where they are less accurate. The learned
heuristic captures domain specific regularities through regression process that in-
volves observations of the true distance to the goal from diverse states. A more
recent work (Garrett et al., 2016) came up with a different approach, to consider
learning heuristics as a "learning to rank" problem.

General Policies (Khardon, 1999; Yoon et al., 2007; de la Rosa et al., 2008): A
policy maps world states to preferred actions to execute. Accordingly, a general
policy maps all combinations between initial and goal states to preferred actions
to be executed. Recently, the learned policies are applied but combined with
heuristic planning algorithms.

Macros (Botea et al., 2005a; Newton and Levine, 2010): A macro is a se-
quence of actions that occurs frequently in solution plans. Learning macros
is relevant since the use of macro-actions reduces the depth of the search tree.
Their handling should be defined to ensure a good balance between performance
improvement and search space enlargement.

2.6 Macro learning methods in Automated Planning

From the literature, we need to distinguish two related but different terms: macro-
actions and macro-operators. A macro-action is related to a macro-operator as an ac-
tion is related to an operator. They are based on the idea of composing a sequence of
primitive operators and viewing the sequence as a single operator (Amarel, 1968).

Definition 2.12.
A macro-operator is a triple m, = (name(m,), pre(m,), effects(m,)) where its elements
are defined as follows:

e name(m,) is in the form name(xy,...,x,) where xi,...,x, are the object variable

33

10

11

12

symbols that appear in m,.

e pre(m,) is the set of precondition formula that must be hold before exploiting
the macro-operator.

e cffects(m,) is the set of predicates to be applied to a state.

Example Let us consider the pick-up_stack macro-operator in Code 2.6 composed of
the sequence of primitive operators pick-up->stack. Object variable symbols are de-
fined in the : parameters clause and the preconditions (resp. effects) are defined in its
:precondition (resp. :effect) clause. [|

(1
(:action pick-up_stack

:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (ontable 7x)
(handempty) (clear 7?7y))
:effect
(and
//negative effects
(not (ontable ?7x))
(not (holding 7x))
(not (clear 7?7y))
//positive effects
(clear ?7x) (handempty) (on 7x ?7y)))

- J

PDDL-Code 2.6: PDDL definition for pick-up_stack blocksworld macro-operator

Definition 2.13.

A macro-action m, is an instantiation of a macro-operator. Thus, m, is a triple m, =
(pre(mg),add(mg),del(m,)). If an action can be applied, a new state is generated. First
it deletes all instantiated predicates given in the delete list del(m,), also known as the
negative effects. Then, it adds all instantiated predicates given in the add-list add(m,),
also known as the positive effects.

Example In Code 2.7, we have instantiated the pick-up_stack macro-operator with
blockB and blockA. [|

34

10

11

12

(:raction pick-up_stack
:parameters (blockB blockA)
:precondition (and (clear ?B) (ontable 7B)
(handempty) (clear 7A))
:effect
(and
//negative effects
(not (ontable 7B))
(not (holding 7B))
(not (clear 74))
//positive effects
(clear 7B) (handempty) (on 7B 7A)))

PDDL-Code 2.7: Instantiation of pick-up_stack blocksworld macro-operator

Although, there are some misuse of the terms macro-action and macro-operators in the
literature (where one is substituted for the other), we use these terms according to the
definitions presented above.

Learning macro-operators (aka macros) from previously acquired knowledge (plans)
allows to go deep quickly into the search space by triggering them during the search
(see example in Figure 1.2 and Figure 1.3).

In macro learning methods, we distinguish two main phases: generation and selection.
The generation consists of identifying sequences of actions that could be potential candi-
dates to enhance the domain. Macros literature presents various techniques to generate
macros, ranging from a simple matter of combining primitive actions and the use of
chunks of plans to the use of genetic learning algorithms or statistical analyses based on
n-grams.

However, the main disadvantage of macros is to increase the branching factor of the
search space. Indeed, by adding macros, the system must consider primitive operators
as well as new macros.

Therefore, the use of macros raises a utility issue. The selection phase must found
a trade-off between the benefit expected from adding macros and the additional cost
induced by the branching factor increase. The selection phase plays a vital role because
carefully selected macros can significantly improve performance by reducing the depth
of the search space.

In the following, we present a chronological overview on macro learning literature in
Table 2.3. Also, we present the most recent works.

35

Table 2.3: Timeline of macro learning methods.

1st apparition of macro

1968 idea (Amarel, 1968).
Use of MACROPs by
1971 ----. STRIPS (Fikes et al.,

1972).

REFLECT system and its
1977 ----- BIGOPS (Dawson and
Siklossy, 1977).

Macro problem solver
(Korf, 1985).

1989 .- MCLEARN (lba, 1989).

CA-ED and SOL-EP
2005 ----- methods (Botea et al.,
2005a).

MARVIN (Coles et al.,
2007)

WIZARD (Newton et al.,
2007).

Learning macros with
2013 ----. n-grams (Dulac et al.,
2013).

MUM (Chrpa et al.,
2014).

Online generation of
2015 ----. macros (Chrpa et al.,
2015).

Generation of macros
2017 ----- from a plan database
(Hofmann et al., 2017).

36

We group macros related work into two main categories: off-line and on-line techniques.

2.6.1 Off-line approaches

An off-line approach offers as an advantage an ease view over the macro-actions use,
but also over the impact in the search time.

Macro-FF (Botea et al., 2005a) extracts macro-actions from solutions of training prob-
lems by identifying statically connected abstract components. Only the macro-actions
showing effective performances in solving training problems are kept for future searches.
Newton et al. (2007) proposed another offline method which uses a genetic algorithm as
a learning technique and plans as the macro generation source. The algorithm generates
the macros from plans of simple problems to seed the population and evaluates them
through a ranking method based on the weighted average of time differences in solving
more difficult problems with the original domain augmented with macros.

Dulac et al. (2013) introduced a domain-independent approach for learning macros
from before computed solutions. It extracts statistical information from successful plans
based on a n-gram analysis. Then it builds a macro library based on earlier information,
a generalisation and a specialisation process. Finally, it adds selected macros into the
planning domain after a filtering phase based on statistical information and heuristics.
Later, Chrpa et al. (2014) proposed a technique to maximise the utility of macros. It
first learns the causal relations between planning operators and initial or goal predicates
(also known as outer entanglements) by using an approximation algorithm in several
training plans. Then, exploiting this knowledge it generates macros and uses them to
reformulate the original domain model.

In a more recent work, Hofmann et al. (2017) identifies operator sequences from a
database of recorded plans by using the MapReduce database query paradigm. From
these sequences, macros are generated with proper preconditions and effects. After
adding one or multiple macros to a domain and solving problems with the augmented
domain, the result is assessed with evaluation metrics. Finally, these metrics guide the
selection of the best macro configuration.

2.6.2 On-line approaches

An on-line approach remove the need of extra training problems and off-line filtering.

Coles and Smith (2007) described Marvin planner. It identifies regions in the search
space where the heuristic values of all successors is greater than or equal to the best
seen so far. Then, it learns the escaping macro-actions to use them in similar regions
during the search. This work was improved in (Coles et al., 2007) by keeping libraries
of macro-actions for use on future problems. Chrpa et al. (2015) extended their early

37

technique by generating useful macros from outer entanglements in the search without
an offline learning phase.

The presented works have some limitations. In the generation phase, for example, some
works limit the length of the analysed sequences of operators (Botea et al., 2005a) or
the number of generated macros (Chrpa et al., 2014). Also, in the selection phase, there
exist limitations such as the maximum number of macros to add to the domain and
usually, the performance of the augmented macro domain is tested before deciding on
the utility of a macro, i.e. the evaluation on the utility of a macro is done experimentally.

Finally, for approaches extracting macros from past experiences, an assumption often
used is that frequent sequences of actions are potentially good candidates to enhance
the domain. We could, therefore, consider an approach that exploits this hypothesis —
for example, the pattern mining technique from the field of data mining which aims to
discover frequent patterns in data.

2.7 Conclusion

Planning is a careful consideration process by which actions are chosen to achieve a
specific goal. It is needed to understand the problem and to adapt the resources to attain
an objective as best as possible.

Automated planning aims to study and design effective algorithms that produce action
sequences to reach a planning task goal, for a potential execution by one or several
agents.

Solving planning problems is a difficult and time-consuming process because the plan-
ning task must be understood without the use of domain-specific knowledge. To this
must also be added the NP-hard complexity of planning. Namely, the time required to
solve a planning problem increases very quickly as the size of the problem grows.

Therefore, it is essential to develop powerful algorithms. They must efficiently explore
the search space that grows exponentially. One way to do this is by exploiting knowl-
edge about the structure of the planning tasks (Long and Fox, 2003) and thus, increase
planner performance.

Given that, we decided to develop algorithms based on the study of macro learning
methods which has been widely studied among the different approaches to speed-up
planning processes.

38

Pattern Mining

You can have data without information, but you cannot have
information without data.

Daniel Keys Moran
3.1 Introduction 41
3.2 Pattern Mining: Basicconcepts 41
3.3 Mining frequent patterns 46
34 Miningsequencedata 51
35 Conclusion 54

39

3.1 Introduction

Extracting useful information and most importantly, making the data intelligible from
large volumes of data, is not possible with traditional data analysis tools and techniques.
Therefore, an alternative method integrating traditional methods and new algorithms
capable to process huge amounts of data is needed.

This extraction task is part of the process of knowledge discovery which also includes
steps such as data preprocessing, pattern evaluation and knowledge presentation. The
whole process is often called data mining. Data mining techniques are widely used
in many fields including, among others, market, to identify customer profile, customer
requirements, customer purchasing patterns; enterprise, to analyse and predict cash flow,
to improve resource planning; security, to detect frauds by analysing the unexpected
patterns; finances, to classify customers, to detect money laundering.

Hence, the purpose of data mining is look for patterns by searching automatically in data
stored electronically. There are two major categories of data mining tasks : Predictive
tasks and descriptive tasks. The aim of the former is to predict the value of an attribute
(target) based on the values of other attributes while the aim of the latter is to explore
patterns that compile general properties in data.

In this chapter, we introduce the descriptive task of data mining called Pattern mining.
In addition, we focus on the concepts around mining a complex data type: the sequence
data.

3.2 Pattern Mining: Basic concepts

Pattern mining intends to discover interesting and useful patterns in data. In this section,
we present first the elementary forms of data for mining, followed by the patterns that
can be mined.

3.2.1 Simple types of data

Basic data for mining include database data, warehouse data and transactional data.

41

Database data

These are part of a collection of interrelated data, known as a database. This one, in
turn, is part of a database system which also includes software to manage and access the
data. Most of the time, these data are modelled using an entity-relationship data model
and they are stored as a collection of tables, each of which consists of a set of attributes
and stores a large set of tuples.

Figure 3.1 shows a sample database representing entities and relationships of Employees

(Crews and Maxia, 2015). It provides a large amount of data (4 millions records in total)
distributed over six tables.

| salaries v
j dept. emp Vv T emp_no INT(11)
¥ emp_no INT(11) > salary INT(11)
¥ dept_no CHAR(4) from_date DATE
» from_date DATE > to_date DATE
> to_date DATE v
v PRIMARY
| PRIMARY ‘ emp_no
emp_no
dept_no : employees v
emp_no INT(11)
| 2 birth_date DATE

2 first_name VARCHAR(14)
> last_name VARCHAR(16)
> gender ENUM('M','F')

» hire_date DATE

] departments v
dept_no CHAR(4)
» dept_name VARCHAR(40)

v v
PRIMARY e |
dept_name ﬁ
o
N
"] dept_manager ¥] titles ¥ o
X
¥ dept_no CHAR(4) ¥ emp_no INT(11) Eru
¥ emp_no INT(11) title VARCHAR(50) -
> from_date DATE from_date DATE S
> to_date DATE > 1o_date DATE g
v vy 2
O
PRIMARY PRIMARY
emp_no emp_no

dept_no

Figure 3.1: Employees database

42

Warehouse data

These are part of a repository of information collected from multiple sources. This
repository is known as data warehouse and it usually exists in a single site. The data
is stored to provide a historical overview and to summarize a set of attributes from the
original data.

Example Let us consider an international company with several branches all over the
world. Each branch has a employees database like the one in Figure 3.1. The data
warehouse may store a summary of the employees evolution in time for each branch or
for a region. [|

Transactional data

These data include a unique transaction identity number and a list of items belonging
to this transaction. Each record is stored as a transaction in a transactional database,
usually a flat file. In a transactional database, an item is not allowed to appear twice
in the same transaction. Additionally, for each transaction, the items are assumed to be
sorted by lexicographical order.

Example Let us consider the transactional database in Table 3.1 where each transaction
corresponds to the sections consulted by an employee on the company’s intranet during
his session. However, the order in which the sections were consulted and the page

consultation recurrence cannot be deduced. [|
Transaction_ID items_IDs
TO0O01 sl, s5, 811, s13, s16
T002 s8,s11,s12,s13
T003 s4, s5, s11, s13
TO04 s8, s13, s16
TO005 s1, s6, s8

Table 3.1: Transactional database for consulted sections on a company’s intranet.

3.2.2 Types of patterns

There are many kind of patterns like frequent patterns, association rules and periodic
patterns, among others.

43

Frequent patterns

These are patterns that appear frequently in data. In this group of patterns are included:

e The frequent itemsets: It consists of a set of items that appear together with
a given frequency in transactional data. For example, the analysis of "which
sections of a company’s intranet are often consulted by its employees ?" give as
a result a set of frequent itemsets.

e The frequent subsequences: It consists of a frequently occurring subsequence
in complex data types. For example, the pattern that consists of an employee
visiting the meeting room reservation page, followed by a visit of the meeting
scheduling page.

In the following, we introduce some definitions to provide a better understanding of
frequent itemsets concepts.

Definition 3.1.
An itemset X = {xj,...,x; } is a set of one or more items.

Definition 3.2.
The absolute support of an itemset X is the number of occurrences of an itemset X.

Example From Table 3.1, the absolute support of the itemset {s5,s11} is two since it
appears in TOO1 and in T0O3. [|

Definition 3.3.
The relative support of an itemset X is the fraction of transactions containing an itemset
X.

Example From Table 3.1, the relative support of the itemset {55,511} is 2. ||

From these definitions, we can establish that an itemset is frequent if the support of X is
greater or equal than a given threshold. This threshold, also known as minsup, is usually
given by the user analyst.

We will present the concepts around the frequent subsequences in the next section since
they are part of the focus of this work.

Association rules

They indicate if an item or a set of unordered items are likely to occur after another item
or set of unordered items with a given probability.

44

Definition 3.4.
An association rule X — Y (s,c) represents the association of an itemset X to an itemset
Y having a support s and a confidence c.

Definition 3.5.
The support s of an association rule is the probability that a transaction contains both
itemsets X and Y.

Example Let us assume the association rule s11 — s13. The support is s(s11Us13) =
% = 60%. They are both contained in transactions with ids: TOO1, TO02 and T003. H

Definition 3.6.
The confidence ¢ of an association rule is the conditional probability that a transaction
containing X also contains Y.

Example Let us continue with the association rule s11 +— s13. The confidence is

c(s1l+—s13) = S(S;(lsiff)m = 100%. Every time that s11 appears, so does s13. [|

Indeed, the association rule mining consists of finding all the rules, in transactional data,
having a support greater or equal than a minsup threshold and a confidence no less than
a minconf threshold.

Periodic patterns

They consist of a set items that occur frequently in data within a given period.

Definition 3.7.
The period p of an itemset X is the number of transactions between two occurrences of
X.

Example Let us consider the pattern X = {58,513} in Table 3.1. This pattern has two
periods, p(X) ={2,2}.

The first period has a length of two, from the first transaction until the first occurrence
of the pattern (T002). The second period has a length of two, from the last occurrence
(T002) until the next occurrence of the pattern (T004).

Thus, periodic pattern mining consists of finding the patterns, in transactional data, hav-
ing a support no less than a minsup threshold and a maximum period no greater than
a maxper threshold. A recent algorithm (Fournier-Viger et al., 2017a), makes this def-
inition more flexible. The novelty includes the use of an average periodicity and a
minimum periodicity.

45

3.3 Mining frequent patterns

In this section, we present the set of patterns that we can obtain when mining frequent
patterns, followed by the basic algorithm for finding frequent itemsets.

3.3.1 Pattern sets

A long itemset contains a combinatorial number of frequent sub-itemsets.

Example Let us consider from Table 3.1, a frequent itemset X = {s5,s11,s13}. It
contains seven frequent sub-itemsets:

o l-itemsets: {s5},{s11},{s13}.
o 2-itemsets: {s5,s11},{s5,s13},{s11,s13}.
e 3-itemsets: {s5,s11,s13}. |

Now, let us suppose a frequent itemset of length k. It will contain (’l‘) + (5) 4t (i) =

2% — 1 itemsets. For high k values, this becomes a very large number of itemsets to
compute.

All frequent patterns

Indeed, a vast number of itemsets satisfying the minimum support threshold can be
generated when mining all frequent patterns, particularly, if this threshold is set low.

Definition 3.8.

A frequent pattern set FP contains all the patterns P such that the relative support of
P is no less than the minsup parameter provided by an user, denoted FP = {P|s(P) >
minsup}

Example The result of mining all frequent patterns from the transactional data in Table
3.1 is shown in Table 3.2. |

Therefore, there exist other pattern sets that can reduce the number of generated frequent
itemsets: the set of closed frequent itemset and the set of maximal frequent itemset.

46

Itemset Support Itemset Support

{s16} 2 {s12,s13} 1
{s1} 2 {s13,s16} 2
{s4} 1 {s1,s5,511} 1
{s5} 2 {s1,s5,513} 1
{s6} 1 {s1,85,516} 1
{s8} 3 {s1,s6,s8} 1
{s11} 3 {s1,s11,s13} 1
{s12} 1 {s1,s11,s16} 1
{s13} 4 {s1,s13,s16} 1
{s1,s5} 1 {s4,s5,511} 1
{s1,s6} 1 {s4,s5,513} 1
{s1,s8} 1 {s4,s11,s13} 1
{sl,s11} 1 {s5,s11,s13} 2
{s1,s13} 1 {s5,s11,s16} 1
{sl,s16} 1 {s5,s13,s16} 1
{s4,s5} 1 {s8,s11,s12} 1
{s4,s11} 1 {s8,s11,s13} 1
{s4,513} 1 {s8,s12,s13} 1
{s5,s11} 2 {s8,s13,s16} 1
{s5,513} 2 {s11,s12,513} 1
{s5,516} 1 {s11,513,516} 1
{s6,s8} 1 {s1,s5,s11,s13} 1
{s8,s11} 1 {s1,s5,s11,516} 1
{s8,s12} 1 {s1,s5,s13,516} 1
{s8,s13} 2 {s1,s11,s13,516} 1
{s8,s16} 1 {s4,85,s11,s13} 1
{s11,s12} 1 {s5,s11,s13,s16} 1
{s11,s13} 3 {s8,s11,s12,513} 1
{s11,s16} 1 {s1,s5,s11,s13,516} 1

Table 3.2: All frequent itemsets from Table 3.1 (minsup = 0.01).

Closed frequent patterns

Because of the computing and the storage resources, sometimes it is useless to keep
patterns included into another pattern having the same support. The closed frequent
pattern set is a subset of the frequent pattern set.

Definition 3.9.
A closed frequent pattern is a pattern that is not included in another pattern having the
same support.

Example The result of mining the closed frequent patterns from the transactional data
in Table 3.1 is shown in Table 3.3. To summarize, if two itemsets have the same support,
only the longest one will be kept. [|

47

Maximal frequent patterns

This pattern set is a subset of the closed sequential pattern set.

Definition 3.10.
A maximal frequent pattern is a pattern that it is not strictly included in another pattern.

Example To illustrate that, let us consider two closed patterns cp; and cp,. They have
a support of i and j, respectively. Also, cp; is included into cpy (cp; C cpz) and the
support of c¢p; is smaller than the support of cp; (s(cpa) < s(cpi)). Therefore, cps
will belong to the maximal pattern set, but not cp;. The result of mining the maximal
frequent patterns from the transactional data in Table 3.1 is shown in Table 3.4. [|

This set implies a loss of information because the kept itemsets no longer assure the
notion of support but they are chosen based on the notion of inclusion into another
itemset.

Itemset Support

{s1} 2
{s8} 3
{s13} 4
{s8,513} 2
{s11,s13} 3
R f [Tomset___ Support |
{51.56.58) 1 Itemset Support
{s5,s11,s13} 2 {s8,s1,56} 1
(8,513,516} 1 {s13,58,516} 1
{s4,s5,s11,s13} 1 {s13,s8,s11,s12} 1
{s8,s11,512,513} 1 {s13,s11,s5,s4} 1
{s1,s5,s11,s13,516} 1 {s13,s11,s1,85,516} 1
Table 3.3: Closed frequent itemsets Table 3.4: Maximal frequent item-
from Table 3.1 (minsup = 0.01). sets from Table 3.1 (minsup = 0.01).

To sum up, there exist different pattern sets that can be obtained from mining frequent
itemsets. Each set is obtained from following some restrictions. These sets respect the
property 3.1.

Property 3.1.
frequent patternset D closed patternset O maximal pattern set

48

3.3.2 Apriori algorithm

The Apriori algorithm is a basic algorithm for mining frequent itemsets introduced by
Agrawal and Srikant (1994). It consists of iterations of a candidate generation step
followed by a pruning step. In the former, the frequent subsets are extended one item at
a time while in the latter, these extended subsets are tested against the data to keep only
the frequent members. The main idea behind this algorithm is that all nonempty subsets
of a frequent itemset must also be frequent. Based on this assumption, it concludes using
prior knowledge that some combinations cannot have minimum support and it does not
process them.

Example Let us consider a minsup = 0.5 and an itemset X = {s5} having a sup-
port s(X) of 0.4. Because the itemset X has a support less than the minimum sup-
port threshold s(X) < minsup then this itemset is not frequent. Now, if an item 7 is
added to this itemset, the obtained itemset cannot appear more times than X. Indeed,
s(XUI) < minsup |

As stated before, Apriori algorithm follows an iterative approach. It starts by extracting
from the transactional database the set of frequent 1-itemsets and its support. From
these itemsets, it keeps only the ones satisfying the minsup threshold. Then, those are
used to find the frequent 2-itemsets, and the transactional database is used to assign
them their respective support. The kept itemsets are used to find the next k-itemsets and
those are compared against the transactional database to find their respective support.
The algorithm repeats this process until there are no more frequent k-itemsets.

Example Let us find, using the Apriori algorithm with a minimum threshold of 0.25,
the frequent itemsets from Table 3.1.

Figure 3.2 shows the different steps carried out by the apriori algorithm. First, it scans
the database to accumulate the count for each item. Then, it keeps the items having a
relative support greater than 0.25. In our case, it means that the items must have an
absolute support of 1.25.

From this resulting set, the algorithm generates a new set of candidates (2-itemsets) by
joining it with itself. Then, it proceeds to scan the database to accumulate the count
for each candidate. Afterwards, it compares the candidate support with the minimum
support count and it removes candidates that do not satisfy the support condition. From
here, it repeats the process to generate the 3-itemsets candidates and to prune them.
Finally, the result of this process is presented in 3.3.

49

Candidate
Generation

1-Itemsets ‘ Supp. 1-Itemsets | Supp.
{s1} 2 {s1} 2
{s5} 2 {s5} 2
{s11} 3 {s11} 3
{s13} 4 {s13} 4
{s16} 2 {s16} 2
{s8} 3 {s8} 3
{s12} 1 {s12} 1
{s4} 1 {s4} 1
{s6} 1 {s6} 1

(a) 1-itemsets

Candidate

2-Itemsets 2-Itemsets 2-Itemsets ‘ Supp 2- Itemsets Supp.

{s1,s5} {s5,s8} {s1,s5} {s5,s8} 0
{s1,s8} {s11,513} {s1,58} 1 {s8,513} 2
{s1,s11} {s11,s16} {s1,511} 1 {s8,s11} 1
{51,513} (511,58} {s1,513} 1 {s8,516} 1
{s1,516} {s13,516} {s1,516} 1 {s11,513} 3
{s5,511} {s13,s8} {s5,511} 2 {s11,516} 2
{s5,513} {s16,s8} {85,513} 2 {513,516} 2
{s5,516} {s5,516} 1

(b) 2-itemsets

Candidate
Generation
3-Itemsets Supp

{sb,s11,513} {s5,s11,513}
{s8,513,516} {s8,513,516} 1

(c) 3-itemsets

Figure 3.2: Apriori algorithm steps for mining frequent itemsets from Table 3.1
with a minsup = 0.25. "Supp." stands for absolute support.

50

Tromsets ‘ suep- [l Teomeets |
{s1} 2 {sb,s13} 2
{sb} 2 {8,513} 2
{s11} 3 {s11,513} 3
{513} 4 {s11,516) 2
{516} 2 {513,516} 2
{s8} 3 {s5,511,513} 2

{sb,511} 2

Figure 3.3: Frequent itemsets obtained by using the Apriori algorithm on Table
3.1 with a minsup = 0.25 . "Supp." stands for absolute support.

3.4 Mining sequence data

Nowadays, a wide range of applications that use data mining continue to appear. This
leads to new developments and research efforts in mining complex data types (Han et al.,
2012). For the purposes of this work, we will focus in mining a complex type of data
called sequence data.

Definition 3.11.
A sequence is an ordered list of itemsets, denoted s =< I, I, ...,I, >

These data include a unique sequence identifier sid and a sequence s. Each record is
stored as a sequence in a sequence database, usually a flat file. For each sequence,
the order of the data matters, the entire sequence is known and there is no notion of
future and past. Additionally, for each itemset, the items are assumed to be sorted by
lexicographical order and they are not allowed to appear twice in the same itemset.

Definition 3.12.
A sequence database SDB is a set of pairs < sid,s >, where sid is a sequence identifier
and s is a sequence.

Example Let us consider the sequence database in Table 3.5 where each sequence rep-
resents, for a given employee, the consulted sections on the company’s intranet during
different authentications over the curse of a day.

For example, the sequence S004 represents an employee who did two authentications
on the same day: In his first authentication, he visited a section identified as s8 (e.g.
the company’s directory); and, in his second authentication, he visited two sections

51

Sequence_ID Sequence

S001 {s1,s5,s11},{s4},{s8}
S002 {s8,s11,s12},{s5},{s1,s2}
S003 {s4},{s5,s11},{s13}
S004 {s8},{s13,s16}

S005 {s1,52},{s8}

Table 3.5: Sequence database for consulted sections on a company’s intranet

identified as s13 (e.g. the page for booking meeting rooms) and 516 (e.g. the page to
schedule meetings). [|

3.4.1 Sequential pattern mining

It is a data mining task that consists of mining sequential patterns from a sequence
database.

Definition 3.13.
A sequential pattern is a frequent subsequence existing in a sequence or a set of se-
quences.

Definition 3.14.
A sequence S4 = X1,X>, ... Xy, where X1, X5 ... X} are events, is a subsequence of another
sequence Sg = Y1,Y»,...Y,,, where Y1,Y,...Y,, are events, if and only if there exists

integers 1 <ey <ey---<ek<msuchthatX; CY, ,X; CY,,,... X, CY,.

As shown in definitions 3.13 and 3.14, a sequential pattern is a sequence occurring in
another sequence but not necessarily in a contiguous fashion.

Example From table 3.5, the sequence Sy = {s1},{s8} is contained in sequence SO01
and S005. |

This kind of analysis can be done by hand. However, this is time-consuming and it is
not realistic to do it on a large dataset. Thus, the purpose of sequential pattern mining
is tackle this problem by designing automatic techniques to analyse data and extract
interesting patterns from data.

The problem of mining sequential patterns was introduced by Agrawal and Srikant
(1995). It consists of finding all sequential patterns in a sequence database. To formally
define this problem, we need the following definitions .

52

Definition 3.15.
The absolute support of a sequential pattern is the number of sequences where the pat-
tern occurs, denoted o (x).

Definition 3.16.
The relative support of a sequential pattern is the number of sequences where the pattern
occurs divided by the total number of sequences in the sequence database, denoted

sup(x).

Definition 3.17.
The parameter minsup is a user-specified threshold (a value in [0, 1] representing a per-
centage) allowing to discover a sequential pattern.

Therefore, discovering all sequential patterns comes to finding the set F'SP of all se-
quences sy such that sup(sy) > minsup.

Example The result of mining all sequential patterns from the sequence database in

Table 3.5 is shown in Table 3.6. [|

Sequential

Pattern Sup
{s1} 3 06
{s1s2} 2 04
{s1},{s8} 2 04
{s2} 2 04
{s4} 2 04
{s5} 3 06
{s5sll } 2 04
{s8} 4 0.8
{s11} 3 06
{s13} 2 04

Table 3.6: Sequential patterns from Table3.5 (minsup=0.25).

In the literature, we can find several algorithms performing frequent sequential pattern
mining such as FAST (Salvemini et al., 2011), FreeSpan (Han et al., 2000), GSP(Srikant
and Agrawal, 1996), LAPIN(Yang and Kitsuregawa, 2005), PrefixSpan(Pei et al., 2004),
SPADE(Zaki, 2001; Fournier-Viger et al., 2014a), SPAM (Ayres et al., 2002; Fournier-
Viger et al., 2014a), among others.

Analogous to itemset mining, in sequential pattern mining we can also define subsets
with properties similar to closed pattern set and maximal pattern set.

53

Definition 3.18.
A closed sequential pattern is a pattern that is not included in another pattern having the
same support.

Some of the closed sequential pattern algorithms found in the literature are: CloSpan
(Yan et al., 2003), BIDE (Wang and Han, 2004), ClaSP (Gomariz et al., 2013; Fournier-
Viger et al., 2014a) and CloFAST(Fumarola et al., 2016).

Definition 3.19.
A maximal sequential pattern is a pattern that it is not strictly included in another se-
quential pattern.

Maximal sequential pattern algorithms in the literature are: AprioriAdjust (Lu and
Li, 2004), MFSPAN (Guan et al., 2005), MaxSP (Fournier-Viger et al., 2013), VMSP
(Fournier-Viger et al., 2014c), among others.

For a given sequential pattern set (frequent, closed, maximal), the efficiency of the
algorithms differs by their candidate generation strategy, the search strategy and their
accompanying data structure (Mabroukeh and Ezeife, 2010). However, the resulting set
is always the same for a given input (a sequence database SDB and a minsup threshold).
The efficiency of sequential pattern algorithms is not part of the scope of this work. A
detailed survey in sequential pattern algorithms is presented in Mabroukeh and Ezeife
(2010); Fournier-Viger et al. (2017b).

3.5 Conclusion

The purpose of data mining is to look for patterns by searching automatically in data
stored electronically. Pattern mining, the descriptive task of data mining, intends to
discover interesting and useful patterns in data.

Pattern mining has become popular because of its applications in multiple domains. Al-
though the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-
tial ordering of events. Therefore, there exists a technique for mining sequence data
called sequential pattern mining.

Sequential pattern mining consists in analyse sequential data to discover frequent se-
quential patterns. We can distinguish two filter structures provided by sequential pat-
tern mining. On the one hand, there is a parameter called support, which filters patterns
based on the frequency of apparition. On the other hand, from following some restric-
tions, the resulting pattern set can be reduced.

In this perspective, we aim to explore in the next section the use of sequential pattern
mining for extracting useful sequences of actions (not necessarily adjacent) as macro-
actions.

54

Part 11

Contributions on learning routines
for sequential decision-making

55

Extraction of macros via Sequential

Pattern Mining

In short, no pattern is an isolated entity. Each pattern can exist
in the world only to the extent that is supported by other
patterns: the larger patterns in which it is embedded, the
patterns of the same size that surround it, and the smaller
patterns which are embedded in it.

Christopher Alexander
4.1 Introduction 59
42 Planencoding 60
4.3 Macro-actions learning framework 62
4.4 Mining and filtering candidates 63
4.5 Macro-action construction 64
4.6 Evaluation of the support parameter 66
47 Results. 69
4.8 Discussion e e e 76
49 Conclusion o 76

57

4.1 Introduction

Among the various approaches to scale up plan synthesis, macro learning methods have
been widely explored (see Section 2.6). The whole idea behind this approach is to im-
prove planning systems performance by exploiting the structure knowledge of planning
tasks. This allows to properly define search control knowledge. In this chapter, we ex-
plore the use of sequential pattern mining for learning macro-actions from a set of plans.
Indeed, sequential pattern mining is a sub-field of data mining that consist in analyse
sequential data to detect sequential patterns. This kind of analysis can be done by hand.
However, this is time-consuming and it is not realistic to do it on a large dataset. Thus,
the purpose of sequential pattern mining is tackle this problem by designing automatic
techniques to analyse data and extract interesting patterns from data.

We have several motivations behind the idea of using pattern mining algorithms to ex-
tract sequences candidates for becoming macro-actions. If a sequence of actions has
a higher frequency of apparition on different plans, it will be mined and we can con-
sider it as a useful macro-action for a given domain. Let us have an example, consider
the blocksworld planning problem in Figure 4.1. The goal is to stack a set of blocks
in a specific order. This domain has five operators: pick-up, picks a block x from the
table; put-down, puts a block x on the table; stack, puts a block x on a block y; and
unstack, removes a block x from a block y. It is logical to suggest that once we pick
a block from the table the next most probably action will be stack it on another block
or put it down. Moreover, if we observed from a representative data set, of previous
acquired knowledge, a higher frequency of apparition for one of these sequences e.g.
pick-up_stack_BA, we can use it as a candidate for the creation of a macro-action. Then,
this macro-action can provide a way to go deep quickly into the search space in future
blocksworld problems.

Nevertheless, the set of mined candidates can still be quite large for our purposes. In
this context, we are interested in the filter structures provided by sequential pattern

Initial state: Operators:
1. pick-up X
B~ 2. put-down X
o 3.stack X Y

(agEE
(4 C

Goal state: Plan output:
P=(
{pick-up b},
[Ny {stack b a},

[S n {pick-up c},
] {stack ¢ b},

K {pick-up d},
T : {stack d (}

)
Figure 4.1: A blocksworld problem.

59

mining. On the one hand, the support parameter filters the possible candidates based on
the frequency of apparition. On the other hand, depending on the used mining strategy
(closed set, maximal set) the resulting pattern set can be reduced (see Section 3.3.1 in
Chapter 3).

Our assumptions for carrying out this work are:

e Our data set of previous acquired knowledge is representative enough to focus on
macro-actions;

e Highly recurrent sequences of actions (not necessarily adjacent) are more likely
constrained to appear in that order to solve a given problem. As a consequence,
these sequences are good candidates to build macro-actions;

e The frequency of apparition measure provided by sequential pattern mining algo-
rithms is a good estimator to decide on the utility of macro-actions.

In this perspective, we aim to propose in the next section a framework to learn useful se-
quences of actions (not necessarily adjacent) as macro-actions and use them to speed-up
planning search. This learning framework will be based on the filter structures provided
by sequential pattern mining.

4.2 Plan encoding

Pattern mining has become popular because of its applications in multiple domains. De-
spite the different pattern mining techniques are aimed at analysing data, techniques
such as itemset mining and association rule mining do not take into account the sequen-
tial ordering of events. Therefore, we will focus on working with sequential pattern
mining.

To consider the extraction of macro-actions from sequential pattern mining algorithms,
we present an intuitive formalism to represent a set of solution plans as a sequence
database.

From the definitions in Chapter 3.4, we decide to represent each solution plan as an
entry in the sequence database in the form < m;;, m; > where m;; is the plan identifier
and 7; is a solution plan for a problem p;. Then, a sequence s is equivalent to a plan
solution m; where the ordered list of events < eje>...e, > are replaced by an ordered
list of actions denoted < aja...a, >.

We also give the definition 4.1 to represent the actions for a set of plans. We obtain a
dictionary and by using it and the set of plans, we obtain a sequence database. In our
proposed encoding, each plan is considered as a sequence, and each action, as an item

60

in this sequence.

Definition 4.1.
A dictionary of actions is a set of pairs < k,a; >, where ay, is the k™ distinct encountered
action in a set of plans and £ is an integer referencing to ay.

Example Let us consider the following set of plans where each 7; corresponds to a plan
solution for a given problem p; in the blocksworld domain:

my = pick-up(b);stack(b,a); pick-up(c); stack(c,b); pick-up(d);stack(d,c)
my = unstack(b,c); put-down(b);unstack(c,a); put-down(c);unstack(a,d);
stack(a,b); pick-up(c); stack(c,a); pick-up(d); stack(d,c)
73 =unstack(c,b);stack(c,d); pick-up(b);stack(b,c); pick-up(a); stack(a,b)
7y =unstack(b,a);stack(b,c);unstack(a,d);stack(a,e);unstack(b,c);
stack(b,a); pick-up(c); stack(c,b); pick-up(d); stack(d,c)
By following the definition 4.1, we obtain the dictionary shown in Table 4.1. Finally,

we use this dictionary and the set of plans to obtain the sequence database in Table 4.2.
Each sequence corresponds to a plan solution and each number to an action.

k a;

pick-up b
stack b a
pick-up ¢
stack c b
pick-up d
stack d ¢
unstack b ¢
put-down b
unstack ¢ a
10 put-down c
11 unstackad

O 01NNk W~

12 stackab

13 stackca

14 unstack cb

15 stackcd Tid T

16 stackbc T 1,2,3,4,5,6

17 pick-up a ™ 7,8,9,10,11,12,3,13,5,6
18 unstackba 3 14,15,1,16,17,12

19 stackae T 18,16,11,19,7,2,3,4,5,6

Table 4.1: Dictionary of actions from Table 4.2: Sequence database from a
a set of plans in the current example. set of plans in the current example. -

61

4.3 Macro-actions learning framework

Let us recall the assumptions of our framework. First, our data set of previous acquired
knowledge is representative enough to focus on macro-actions. Second, highly recurrent
sequences of actions (not necessarily adjacent) are more likely constrained to appear
in that order to solve a given problem. As a consequence, these sequences are good
candidates to build macro-actions. Third, the frequency of apparition measure provided

by sequential pattern mining algorithms is a good estimator to decide on the utility of
macro-actions.

Thus, we aim to mine and filter frequent sequences of actions from a set of plans by
using sequential pattern mining algorithms and its provided support measure. Useful
extracted candidates will then build macro-actions which will be used to speed-up the
planning search.

From this perspective, given a classic planning system, we propose the framework in
Figure 4.2. It performs the following steps :

1. Mining candidates: Use of a sequential pattern mining algorithm on a sequence
database (specific to a domain) to identify candidates.

2. Filtering of candidates: Perform an analysis on the identified candidates by using
its frequency of apparition (provided by the pattern mining algorithm), in order
to choose useful sequences candidates.

3. Macro-action construction: For each chosen candidate, concatenate all of its ac-
tions into a single, macro-action.

4. Enhancing planning domain: Add macro-actions to the original domain.

Problem
Plan

Dorxi" Planner l

Learning macro-actions

Corpus of plans

Enhance to speed-up
the search

Pattern mining
algorithms

Figure 4.2: Macro-actions learning framework.

62

4.4 Mining and filtering candidates

For mining sequences of actions, we decided to use a strategy that reduces the number
of resulting patterns, namely the extraction of closed sequential patterns (see Definition
3.18). Remember that sometimes it is useless to keep patterns included into another
pattern having the same support. Indeed, we opted to avoid duplicate candidates. In
other words, if a sequence s; of actions {a;,a;} appeared twice and a sequence s, of
actions {aj,az,as} appeared also twice, we kept the latter since every time that it is
used the former is used.

The pseudo code is described in Algorithm 1. As input, it takes a sequence database
D containing solution plans for a given domain and a minsup parameter specifying the
minimum support that a candidate must satisfy. By using a closed sequential pattern
mining algorithm, it extracts candidates (not necessarily adjacent) from D having a
support greater or equal than minsup (line 2).

A first filtering is already done based on the minsup parameter because it keeps the
set of patterns satisfying a minimum frequency threshold. For instance, on a sequence
database using a minsup value of 0.2, it will keep closed sequential patterns appearing
in at least 20% of the sequences; as a result, we obtain macro-actions candidates with a
frequency of apparition of at least 20%.

Because sequential pattern mining algorithms consider sequential patterns of a single
action but the choice of the minimum candidate length should be consistent with the
macro-actions definition, a second filtering takes place. It is based on the candidate
length (line 4). It keeps candidates with at least two actions and in order not to discard
all long candidates, it limits the maximum length to 10. This choice allows to alleviate
the processing of candidates when using low values for the minsup parameter. Moreover,
we observed that the higher the value of the minsup parameter, the shorter the maximum
length of the obtained candidates.

Algorithm 1 Mining and filtering candidates

Input A sequence database D of non-empty solution plans, an user-specified
threshold minsup.
Output A list R of candidates (sequences of actions).
1: function PROCESSINGCANDIDATES(D, minsup)
2: R < closedSPM (D, minsup)

3 for each sequence s in R do

4: if length(s) = 1 or length(s)>10 then
5 R < R\ {s}

6 return R

63

4.5 Macro-action construction

For each candidate obtained in the previous step, we built a new macro-action (see Defi-
nition 4.2). The pseudo code is described in Algorithm 2. It takes as input a sequence of
at least two actions. It merges its two first actions into a single by using the merge proce-
dure (see Algorithm 3 which will be described later) (line 2). After that, if the sequence
of actions has more than two actions (line4), it turns again the merge procedure taking
as parameters the last merged action and the next action in the input sequence (line 5).
It repeats this process until all actions are merged. Finally, it removes all predicates
appearing at the same time in the set of preconditions and in the set of positive effects
of the obtained macro-action (line 8). Indeed, it is useless to have the same predicates
appearing in both sets.

Definition 4.2.
A macro-action is a triple m = (name(m), pre(m), effects(m)). Its elements are defined
as follows:

e name(m) is in the form name(cy,...,c,) where cy,...,c, are the object constant
symbols that appear in m.

e pre(m) is the set of precondition formula that must be hold before exploiting the
action.

o cffects(m)= {add(m),del(m)} is the set of positive and negative effects to be
applied to a state.

The pseudo code of the merge procedure is described in Algorithm 3. It is based on
the algorithm presented in Botea et al. (2004) whose formalism first appeared in Daw-
son and Siklossy (1977). It takes as input two actions and it validates the accuracy of
predicates merge by using a series of conditions. First, predicates from the precondi-
tion set of the second action appearing in the delete effects of the first action, give as
a result, an inability to continue with the merge procedure (line 7). Clearly, if the first
action removes a predicate that is a precondition of the second action, the construction
no longer makes sense. On the other hand, predicates from the precondition set of the
second action are added to the precondition set of the first action, if they are no already
included in this set or in the set of positive effects of the first action (line 8). Second,
predicates from the delete effects sets are merged (line 11), and if needed, delete effects
predicates of the second action are removed from the positive effects of the first action
(line 10). Finally, predicates from the positive effects sets are merged(line 14), and if
needed, positive effects predicates of the second action are removed from the delete ef-
fects of the first action (line 13). The output of the merge procedure is a single, merged
action.

64

Algorithm 2 Macro-action construction

Input A sequence of actions S = {ay,as,...,a,} where n > 2
Output A ground macro-operator gm
1: function CONSTRUCTMACRO(S)
2: gm = merge(S[0],S[1])
12
while i < length(S) and gm # null do
gm = merge(gm,S[i])
1+ i+l
if gm =£ null then simplify(gm)
return gm

A A

Algorithm 3 The merge procedure

Input Two actions ¢ and 3
Output A merged action u

1: function MERGE(Q.,3)

2: Py, Ay, Dy where y = {o, B}

3: Py < getPreconditions(y)
4: Ay < getPositiveEffects(y)
5: Dy < getNegativeEffects(y)
6: for each p in Pg do
7: if p € Dy then return null
8: if p ¢ Ay and p ¢ P, then add(p,Py)
9: for each d in Dg do
10: if d € Ay then remove(d,Ay)
11: if d ¢ Dy then add(d,Dy)
12: for each ain Ag do
13: if a € D, then remove(a,Dy)
14: ifa ¢ Ay then add(a,Ay)
15: H=o
16: return U

4.5.1 Enhancing planning domain with macro-actions

Each obtained macro-action is added to the original domain. Thus, the original domain
is enhanced since the goal of macro-actions is to provide a way to go deep quickly into

65

the search space while solving future problems. Also, the enhanced domain can be used
for any planner using as input a domain defined in PDDL language. As an example
of the actual step, we have the original Blocksworld domain in PDDL-Code 2.2 and a
Blocksworld macro-action in PDDL-Code 4.1.

(1
(:action unstack_put-down

:parameters (7x - block 7y - block)
:precondition

(and (on 7x 7y)(clear ?7x) (handempty))

:effect

(and (clear 7y)(clear ?7x) (handempty)

(ontable 7x) (not(on ?x 7y)) (not(holding 7x))))

PDDL-Code 4.1: Macro-action for the blocksworld domain

4.6 Evaluation of the support parameter

In the following, an evaluation of the pattern mining support parameter is proposed,
based on the hypothesis that this parameter is a good estimator for a priori macro-
action utility (Castellanos-Paez et al., 2016). We present the methodology to conduct
the evaluation, and we show and discuss some interesting results obtained by doing this
evaluation.

4.6.1 Methodology

The evaluation was based on four benchmarks: barman, blocksworld, depots and
satellite. They are described in more detail in Appendix A. These benchmarks prob-

lems were taken from past International Planning Competitions'.

For each benchmark, a training set of problems of 1000 problems and a test set of 30
problems were generated. The problem generation stage uses the generators” from the
International Planning Competition. In addition, it ensures that the generated problems
can be different even using the same parameters. In Table 4.3, we show the parameters
used for the generation of problems for each benchmark domain.

We used a heuristic search planner based on A* search strategy, from the PDDL4J
library (Pellier and Fiorino, 2018), to obtain a set of solution plans from the training

Uhttp://icaps-conference.org/index.php/Main/Competitions
Zhttps://bitbucket.org/planning-tools/pddl-generators

66

Domain Parameters Range

cocktails 1-30

Barman ingredients 1-13
shots 1-30
Blocksworld blocks 5-30
depots 1-5
distributors 1-3
trucks 1-4
Depots pallets 1-8
hoists 1-8
crates 1-20
satellites 1-6
instruments 1-2
Satellite modes 1-8
targets 1-2

observation 1-20

Table 4.3: Parameters for the generation of problems

set of problems. Then, we followed the Macro-action learning framework described
in Section 4.3 for each benchmark. For the mining step, we first created a series of
scripts, based on the presented plan encoding, to obtain a sequence database from a set
of solution plans. After, we used the SPMF (Fournier-Viger et al., 2014b) data mining
library, which implements CloFAST (Fumarola et al., 2016), a closed sequential pattern
mining algorithm. It is important to note that for this algorithm each event of a pattern
must appear in the same order in a sequence but it does not matter if it is in a consecutive
way or not. During the mining step, we varied the minsup parameter in steps of 0.1 from
0.1 until no sequences were founded. By following the mentioned framework, at the end,
we got an enhanced domain for each different minsup value used.

For the evaluation, we solved the set of test problems using the original domain, and
then, using the enhanced domain. The relevant results, among others, such as the total
run times of the different minsup values were assembled by using additional scripts.

Experimental setup

The macro-action learning steps and the evaluation of the support parameter were done
on a notebook with an Intel Core i7-4980HQ quad-core CPU clocked at 2.8GHz and
with 16GB of RAM, running OS X El Capitan v10.11.6. In the evaluation of the support
parameter, to solve each problem from the test set, a maximum of 8 GB of memory was

67

allocated and a time limit of 600 seconds was set in the planner. The experiments have
been done in a non-graphical terminal session.

4.6.2 Evaluation criteria

Unlike other works, we did not base our evaluation only on the classical IPC score. IPC
score? is intended, as the name implies, to give a score to rank different strategies. In
other words, by using IPC score we can decide which strategy is better than another, but

it does not quantify the gain.

Here, on top of the IPC ranking, we wanted to quantify the impact of enhancing planning
domains by adding macro-actions constructed from different minsup values. Hence,
different criteria were established in the evaluation of the support parameter as a good
estimator to decide whether a macro is useful or not. In this perspective, we defined the
planning time metric, the space size metric and the plan quality metric.

4.6.2.1 Planning Time metric

For a given problem p, let T, (p) be the time required by any planner to solve the problem
p using the original domain. And, let 7,(p) be the time required by any planner to solve
the problem p using the enhanced domain. If the problem is not solved either using
the original domain or the enhanced domain, we ignored it for evaluation. Also, if
the problem was solved using the original (resp. enhanced) domain but not using the
enhanced (resp.original) domain, 7, (resp. 7,) got the maximum time (600s). Thus,

the planning time metric Gr, in Equation 4.1, is the sum of the quotient gg;’ ; for all

problems p in the test set divided by P, where P is the number of non-ignored problems.

o) X T

pEtest problems

4.6.2.2 Space size metric

For a given problem p, let N,(p) be the total of nodes opened by the planner when
solving the problem p using the original domain. And, let N,(p) be the total of nodes
opened by the planner when solving the problem p using the enhanced domain. If the
problem is not solved either by using the original domain or the enhanced domain, we
ignored it for evaluation. We also ignored the problem, if it was only solved by using

3As defined in the Learning track of the 7th International Planning Competition
(Jiménez Celorrio et al., 2011)

68

one of the domains. Thus, the space size metric Gy in Equation 4.2, is the sum of the

quotient x‘e’g ; for all problems p in the test set divided by P, where P is the number of
non-ignored problems.
1 N
Gy = Z olp) 4.2)
p Ne(p)
pEtest problems

4.6.2.3 Plan Quality metric

For a given problem p, let Q,(p) be the plan length (number of actions) returned by
the planner when solving the problem p using the original domain. And, let Q.(p) be
the plan length (number of actions) returned by the planner when solving the problem
p using the enhanced domain. If the problem is not solved either by using the original
domain or the enhanced domain, we ignored it for evaluation. We also ignored the
problem, if it was only solved by using one of the domains. Thus, the plan quality

metric Gg in Equation 4.3, is the sum of the quotient 0el()

set divided by P, where P is the number of non-ignored problems.

1
Go=1 Z Qo(p) 43)

e
pEtest problems Q (p)

for all problems p in the test

4.7 Results

In this section, we present the results of the evaluation of the support parameter follow-
ing the steps of the macro-action learning framework in Section 4.3.

The useful sequences candidates, obtained after the two first steps, are presented in
Figure 4.3. The number of candidates decreases with increasing values of the min-
sup parameter. In domains such as depots and satellite, the number of candidates
decreases and reaches zero much faster than for barman and blocksworld domains.
Among the four domains used, only in the barman domain, there are still an important
number of sequences candidates beyond a minsup value of 0.5. In other words, in this
domain, there exist sequences of actions appearing in more than 50% of the plan so-
lutions. Also, the order of magnitude of the number of candidates is variable for each
value of the minsup parameter in each domain. For example, for a same minsup value of
0.1, the number of candidates covers all orders of magnitude ranging from units (10°)
for the satellite domain up to the tens of thousands (10*) for the barman domain.
Clearly, these results suggest that the number of mined candidates is related to the char-
acteristics of the domain.

69

107 F T T T T T T T T T
. barman +
6 b blocksworld x]
10° ¥, depots E
o, satellite 1
g 105k §
< Lx +
=] +
3 FX 1
g 104 Eox T, 3
O - x ++ 4
Y +
o 3 i +++ 1
il:)‘ 10 i >SSSS$S<>< +++++ _:
'g Xx *++++
S 102 | A]
Z. i ><>< +++W*ﬂ 1
|)S()go(N+MM+++
I - e 4
10 : ’°‘><XX>«X - :
100 I | L | x.l, | | | 1 |
10 20 30 40 50 60 70 80 90 100
Minsup

Figure 4.3: Sequences candidates. "Number of candidates" plotted in Log scale.
"Minsup" plotted as percentages, e.g. a minsup of 0.1 corresponds to 10%

barman - depots
blocksworld x satellite

[a—
(=)

++ E

- B o o B B

++ B

OOOK bbb

Maximal length of candidates
NOwW A L N 9 o O
M
X

| L 1 1 1 1

10 20 30 40 50 60 70 80 90
Minsup

Figure 4.4: Maximal length candidates."Minsup" plotted as percentages, e.g. a
minsup of 0.1 corresponds to 10%.

70

The maximal length of mined candidates is given in Figure 4.4. The maximal candidate
length decreases with increasing values of the minsup parameter. It is not surprising to
find longer candidates in lower values of the minsup parameter since it is more likely
to have long sequences appearing a few times than to have them appearing frequently.
Once again, it seems that the behaviour of sequences candidates is generally related to
the domain.

—barman ~blocksworld —* depots satellite
1076
1075
8
5 1074
&
g
g 1073
3
g
A 1072
10"1

N

10~0 - T T T ¥ T T T T 1]
0 10 20 30 40 90 60 70 80 90 100

minsup(%)

Figure 4.5: Number of macros added to the enhanced domain.

After the mining and filtering step, the macro-actions were constructed and added to the
original domain as shown in Figure 4.5. For each domain, the x-axis is related to the
enhanced domain containing the macro-actions that were constructed from the mined
and filtered candidates by using the corresponding percentage of the minsup. The y-
axis represents the number of macro-actions added to the original domain. For example,
for the depots domain with a minsup of 0.1 (10%), its corresponding enhanced domain
contains about ten macro-actions. These results do not always fit results from Figure 4.3.
This is consistent with the macro-actions construction step, as not all mined and filtered
candidates are valid macro-actions then not all candidates produce a macro-action.

The time performance for each domain and for each problem in the test set solved by
using the original domain is shown in Figure 4.6. Here, problems are ordered in the
x-axis with respect to their difficulty, i.e. the time required to solve it with the original
domain, and the search time is showed in seconds in the y-axis using a log10 scale. If
the problem was not solved either using the original domain or the enhanced domain, it
was ignored. Also, in red, the problems not solved with the original domain but solved
with at least one enhanced domain.

Now, we present the results obtained by solving the problem test set with the original

71

domain and with the enhanced domains. These results are represented in an easily
understandable way by using the planning time metric, the space size metric and the
plan quality metric. Each minsup value from the x-axis represents the enhanced domain
obtained by using this value, and the corresponding point in the y-axis represents the
gain obtained by using the enhanced domain.

First, Figure 4.7 displays the planning time impact Gr of the enhanced domains com-
pared to the original domain. To facilitate the visualisation, the results of barman en-
hanced domains above a minsup of 0.5 have not been displayed since they slightly differ
from the results of the enhanced domain at 0.5. We observed that the barman domain
exhibits a gain using the enhanced domains constructed from candidates mined with
a minsup between 0.1 and 0.2. blocksworld domain also exhibits a gain but its be-
haviour is unpredictable. Finally, depots and satellite domains do not show a gain but a
loss compared to the original domain. In general, the gain was the lowest when using
the lowest minsup. This may be due to the large amount of macro-actions added to the
domain when using low minsup values.

For readers used to analysing the IPC score, we also represented it in Figure 4.8. Each
minsup value from the x-axis represents the enhanced domain obtained by using this
value, and the zero value represents the original domain. The corresponding point in
the y-axis represents the score obtained by using the enhanced domain. We displayed
in red, the domain with the highest score.

Second, the average impact in the final space size Gy of each enhanced domain com-
pared with the original domain is given in Figure 4.9. This impact is displayed using a
log scale. The final space size was generally well impacted. As the use of macro-actions
is supposed to provide a way to go deep quickly into the search space, this behaviour
was expected. On the other hand, the negative impact in the satellite domain can be
attributed to the lack of utility of the macro-actions added in that domain despite their
support.

Third, Figure 4.10 shows Gy, the average impact in the length of the found plans by
using the enhanced domain, in comparison to the length of the found plans by using
the original domain. Globally, plan length slightly increased when using the enhanced
domains. The difference between the barman domain and the other domains is probably
a consequence of the number of macro-actions used and their length.

To sum up, these results do not exhibit any clear link between the support and the gain,
in this perspective, the support parameter may not be descriptive enough to decide on
the utility of a macro-action.

72

1073

=
o

3
N

1071

Search time (s)
—
g
2
3

,_.
o
>

107-2

Search time (s)
—
2
3
2

1 -

1

2

3

4

5 6 7 8 9 10 11 12 13 14
Problem number

(a) Barman

1074
1073
_ 1072
: "
g 1071
5 " \
=
S 100 i I
o
o
u »

,"““"‘I‘ T

. e
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Problem number

(b) Blocksworld

2 I

Search time (s)

1074

12345678 9101112131415161718192021222324 25262728

Problem number

(c) Depots

1234567 8 910111213141516171819202122232425
Problem number

(d) Satellite

Figure 4.6: Search time performance per domain. In red, the problems not solved
with the original domain but solved with at least one enhanced domain.

73

IPC score

IPC score

3,5 ——barman
3 ~Dblocksworld
~depots
2,5 “satellite
2 -
=
&)
1,5
1 -
0,5
0 T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55
minsup (%)
Figure 4.7: Gt per domain.
14 16
12 14 -
10 121
S 210 -
8 2 8
g5l
6 g .
4 4-
2 2 -
0 - 0 T L e s e e s e s i e B
0 2 4 6 8 10 12 14 16 18 20 22 24 28 31 33 36 39
minsup minsup
(a) Barman (b) Blocksworld
30 25
25
20 | & o
s |8 §
10 -
o LB 8 i3 ‘ BEEEEEE
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21
minsup minsup
(c) Depots (d) Satellite

Figure 4.8: IPC score per domain. In red, the domain with the highest score.

74

1073

minsup(%)

Figure 4.10: G per domain.

75

—barman
~blocksworld
——depots
1072 P
satellite
% 1071
1070 T
#
10~-1
0 5 15 20 25 30 35 40 45 50 55
minsup(%)
Figure 4.9: Gy per domain.
—barman —~blocksworld —*depots = satellite
1,2
]- B-5-58-&"
0,8
S 06
0,4
0,2
0
0 5 10 15 20 25 30 35 40 45 50 55

4.8 Discussion

Our goal is the use of pattern mining techniques to mine in an easy way useful sequences
of actions. Indeed, planning theory knowledge, common sense and previous works
(Botea et al., 2004, 2005a; Newton and Levine, 2010) led us to infer that the most fre-
quently encountered action sequences might be the most useful. Thus, we adopted the
hypothesis of the support parameter as a good estimator to decide whether a sequence
of actions is useful or not.

From this perspective, we sought to describe the behaviour of the support parameter
in the mining of frequent action sequences. For that, we analysed the evolution, when
increasing the support value, of elements such as the number of extracted candidates
(Figure 4.3), the length of these candidates (Figure 4.4) and the order of magnitude of
the macro-actions constructed from these candidates (Figure 4.5). The complexity (in
terms of the length) and the number of macro-actions decrease when increasing values
of minsup.

With that in mind, we originally expected that the gain in relation to the minsup param-
eter would have a shape close to a Gaussian bell curve. First of all, we presumed a
negative gain when using low values of minsup. Indeed, a poor restriction regarding the
frequency of the action sequences causes a large amount of useless candidates. Next,
we looked for a positive gain as the value of minsup increases. That is because the num-
ber of candidates decreases but the action sequences appear more frequently (i.e. the
candidates become more useful). Finally, we speculated about an interval guaranteeing
useful candidates and a drop in the gain outside this interval.

Following this, we wanted to develop a method to learn the best support (i.e. where we
could able to find useful candidates) by varying incrementally minsup values. However,
even if the expected behaviour was observed for the barman domain (Figure 4.7 and
Figure 4.9), for the other domains our results showed discrepancies. To conclude, the
results showed that the support parameter may not provide a consistent selection of
useful macro-actions.

4.9 Conclusion

We have shown that the use of pattern mining tools and concepts in the extraction of
macro-actions is a promising lead. Indeed, the use of pattern mining algorithms has al-
lowed us to extract, in an easy way, a huge number of sequences of actions (candidates).

We presented a macro-actions learning framework to learn useful sequences of actions
as macro-actions to enhance a given domain. Also, in order to continue with our initial

76

hypothesis (See Section 4.1), we evaluated the support parameter concept as a good
estimator for apriori macro-action utility. The results showed that the support parameter
may not provide a consistent selection of useful macro-actions.

Additionally, some discrepancies were found in the results. This may be explained
by the lack of: (1) macro-actions generality and (2) verification of the validity of the
generated macros-actions. These leads will be explored in the next chapter.

77

Classical pattern mining applied to

planning: shortcomings and
solutions

Research is to see what everybody else has seen, and to think
what nobody else has thought.

Albert Szent-Gyorgyi

5.1
5.2
53
54
5.5
5.6
5.7
5.8

Introduction oo 81
Macro-actions generality 81
Macro-operators construction 84
Validity of the generated macro-operators 87
Problematic macro-operators: Definition 88
Problematic macro-operators: Detection 92
Selection processo 103
Conclusion 105

79

5.1 Introduction

In the last chapter, we showed that the extraction of relevant macro-actions by using
filter structures provided by pattern mining are not enough to provide satisfactory results
by themselves. Indeed, the proposed macro-actions learning framework has various
shortcomings restricting its practical use.

The purpose of this chapter is to explore these shortcomings, namely the lack of : (1)
macro-actions generality and (2) verification of the validity of the generated macro-
operators. We will also discuss the selection process. For each shortcoming, we first
discuss its implications and then, we detail a remedial measure to address it. At the end
of the chapter, we discuss what the support based selection process will become after
using shortcoming remedial measures.

5.2 Macro-actions generality

To recapitulate, we encoded a set of plans as a sequence database to be able to use pat-
tern mining algorithms to extract sequences actions candidates. This implies that every
action in a plan represents an unique element in the sequence database. In other words,
a same action in a plan, instantiated twice but with different objects, will represent two
different elements in the sequence database.

This encoding results from an effort to mine frequent patterns in planning with existing
pattern mining algorithms. In this respect, it should be noted that these algorithms are
not planning-oriented. Thus, the resulting patterns correspond to sequences of actions.

We aimed to take advantage of the filter structures provided by pattern mining algo-
rithms to extract frequent patterns. Therefore, after extraction, the only additional
steps were to create macro-actions from extracted candidates and add them to the do-
main. This resulted in the creation of a large number of macro-actions (See Figure
4.5). As they represent only an instance and they have a limited applicability, these
macro-actions do not increase significantly the branching factor.

However, the macro-actions added to each domain, still caused a negative impact in
the planner performance since they were adding more processing time (to know if they
are applicable or not) but they were not helping to solve the problem. To illustrate
that, on the one hand, Figure 5.1 shows the average fraction of macro-actions added to
the planner from the enhanced domain as instantiated operators for the problem. On
the other hand, Figure 5.2 shows for each domain, the mean percentage of macros that
have been used in solution plans. We can observe for the barman domain that almost
(>90%) all the created macro-actions were added as operators for the problems, but a

81

low percentage (<2.8%) of them were used in the solution plan. The blocksworld and
the depots domains showed a similar behaviour.

Although, the behaviour of the satellite domain seems completely different, it is
important to note that very few macro-actions were extracted. On top of that, less than
half of them were added as operators for the problems. Finally, very few macro-actions
were used in the solution plan. All of this, led to no significant difference between the
enhanced domain and the original domain for supports above 5%. And for very low
supports (< 5%), the behaviour is similar to other domains i.e. lots of macro-actions
added but very few used.

All of these observations suggest that the created macro-actions may not be general
enough to be used repeatedly through different problems. We will therefore present the
other approach used: the generalisation of the extracted sequences of actions to macro-
operators.

—barman —blocksworld —*depots satellite

100 /,‘L/\/—(

Added macros(%)
S (o)) (o]
o o o

[\
o

0 10 20 30 40 50 60 70 80 90 100
minsup(%)

Figure 5.1: Average fraction of macros added from the enhanced domain as
problem operators.

82

"paAeIdsIp OS[e I8 so1drW JO 93eIuadIad WNWIXeW pue WNWIUTW Y], “%(] 03 Spuodsariod [-() jo dnsuru
e 39 ‘sorjuaorad se panord ,dnsurpy, ‘urewop yoes 1oj sue[d uonnjos ur pasn soroew Jo 93ejuadiad uesyy :7'¢ 2In3L]

anqeNEs (p) siodo((9)
dnsurut
dnsurux :
" ez 1 g 9 G b ¢ z I ,Hm,o.ﬁ,mﬁ,ﬁ,mﬁ,ﬁ :,oﬁ,m,w,n, ,N,s._“;‘o
w0 wm | | | | N | oo
TR E REE
- o1 BB | | B Pt
B | | B
I E B B EEE o SR E iE
i EE (N K
IR A . 11
X L e
— — — — 0¥ wmm]
L v
| IR
2B ”
. 09 | -8
879 95'G
0L L9
plioms3oo[g (q) uewreg (v)
dnsuru dnsuru
Oy 8¢ g9 ¢€ 0¢ 92 €¢ 1¢ 61 AT 9T €T 1T 6 L § € 1 06 98 08 G4 0L 99 09 S5 09 SV OV 9€ 0¢ 9¢ 0T ST OT §
T S S S S E N N W W,m,mm,m,m,m,m,m u,nm,ﬁ.m,,ok 0 e S S P _ oy 0
L g0 - g0
T
-1
X - ETR
- g
4
e - 6T
81T
L g'T Le

83

5.3 Macro-operators construction

From a set of sequence of actions, extracted by using pattern mining algorithms on a
sequence database of plans (see Section 4.4), we built a set of macro-operators and we
compute their respective support.

The pseudo code for the macro-operators construction is described in Algorithm 4. The
algorithm is quite straightforward. It takes as input a set of sequences of actions for
a given domain and the list of sequence identifiers, from the sequence database, where
each sequence appears (see Table 5.1). For each sequence of actions S = {ay,as,...,a,},
it attempts to construct a macro-operator m (line 4, procedure in Algorithm 5 described
later). For each constructed macro-operator m, the algorithm adds the pair < m,S >
to the set of macro-operators only if it is a new macro-operator i.e. there is no macro-
operator in the set of macros having the same parameters, preconditions and effects (line
6). Otherwise, it adds S as new sequence where the macro-operator m appears (line 7-
10). Finally, for each macro-operator m in the set of macro-operators, the algorithm
computes its support s by merging all the identifiers that correspond to the appearance
of the sequences that created this macro-operator m (line 12-17). It gives as output a set
of macro-operators with their respective supports (see Table 5.2).

Algorithm 4 Macro-operators construction

Input A set C of pairs < S,L >, S is a sequence of actions S = {ay,ay,...,a,}
where n > 2 and L is the list of the sequences ids where S appears.

Output A set M of pairs < m,s >, m is a macro-operator and s its respective
support.

1: function CONSTRUCTMACROOPERATORS(C)
2 D < empty dictionary
3 for each sequence S'in C do
4 m <— createMacroOperator(S)
5: if m # null then > if the creation of m succeeded
6 if m ¢ D then D ey 1) < (m,{S}) >+ explanation below
7 else
8 newValue <— D(m) > from D get value for key m
9: newValue < newValue U {S}
10: update(D . vatue) D(mnewvaiue)) > upgrade value for key m
11: T < empty set
12: for each key-value pairs (k,v) in D do
13: for each sequence in v do
14: nlds < L from the pair < S,L > in C such that § == sequence
15: T«Tu U id
idenlds

84

16: s < number of elements in T
17: M+ MU{<k,s>}

18: return M

T:méeD <= dneD)| pre(m) = pre(n), eff * (m) =eff (n),
eff ~(m) =eff ~(n)

unstack b3 b2 ; put-down b3 Ty T T 77 T15 Moo M7 T34 T35 Tas Mse 071 .- .
unstack b3 b2 ; put-down b2 T07 T35 44 116 126 141 T158 162 Ti63 - - -
unstack b13bl12 ; put-down bl3 T3gg Ma01 Ta04 T433 Tas54 W46 486 7487 - - -
unstack bl b13 ; put-down bl T0388 438 446 T462 TT480 TT482 493 TT508 - - -
pick—up b2 ; stack b2 b3 T 5 g 011 1o Ty Mo T30 Tt43 748 57 - ..
pick-up b3 ; stack b3 bl T05 10 7033 Tue 47 T48 o7 79 o5 113 - - -
pick—up b3 ; stack b4 b3 T35 Tua g7 Tos5 101 TT129 141 M7 7168 - - -
put-down b4 ; stack b2 b4 32 46 Ta9 Tg7 79 77 T9o 91 103 116 - - -

Table 5.1: Input sample for Algorithm 4, blocksworld domain.

Macro-operator [

Table 5.2: Output sample for Algorithm 4 from input Table 5.1, blocksworld
domain. The macro-operator name is represented by macro-(number of actions)-
actions-(id_ay)-(. . .)-(1d_a,)-(1d_commonObjects)-(id_commonParameters).

The pseudo code of the createMacroOperator procedure is described in Algorithm 5.
It takes as input a sequence of two or more actions. It first verifies if there exist com-
mon objects between each pair of actions (line 2). After, it generalises each action to
its respective operator (line 4-6). Then, it merges its two first operators into a single
by using an oriented-operator version of the merge procedure presented in Chapter 4 in
Algorithm 3. If § has more than two operators (line 9), it turns again the merge proce-
dure taking as parameters the last merged operator and the next operator (line 10). It
repeats this process until all operators are merged. Finally, it removes all predicates
appearing at the same time in the set of preconditions and in the set of positive effects
of the obtained macro-operator (line 12). It gives as output a macro-operator 1.

The generalisation to macro-operators of the extracted sequences is intended to give
the planner a way to have more opportunities to use shortcuts (aka macro-actions i.e.
instantiated macro-operators) through different problems. In Figure 5.3, we observe
the different size of each set obtained from the extracted candidates, either by creating
macro-actions or by creating macro-operators.

85

Algorithm 5 createMacroOperator procedure

Input A sequence of actions S = {ay,a,...,a,} where n > 2.
Output A macro-operator .
1: function CREATEMACROOPERATOR(S)

2: if not commonVariable(S) then return null
3: > if there is no common objects between each pair of actions
4: for each actionain § do
5: O < operator o from the domain such that a is an instantiation of o
6: replace(a,O)
7: m < merge(01,02)
8: 12
9: for each i< length(S) and m # null do
10: m <— merge(m,o;)
11: 11+l
12: if m # null then simplifyMacro(m)
13: return m
B Extracted sequences Macro-actions ™ Macro-operators
satellite
depots
blocksworld
barman
e el R
1 10 100 1000 10000 100000 1000000

Figure 5.3: Size comparison: Extracted candidates vs macro-actions set vs macro-
operators set. minsup = 5%

The size of the macro-operators set is considerably smaller. However, we should not
forget that each macro-action adds only one instance when solving the problem while
each macro-operator adds several instances. To sum up, we give more opportunities
to the planner to use a shortcut when solving a problem by adding macro-operators to
enhance the domains but we could also increase the branching factor. For this reason, a

86

selection process is mandatory to add only the most useful macro-operators.

Before addressing this problem, we will introduce a more important issue: the validity
of the generated macro-operators.

5.4 Validity of the generated macro-operators

After analysing the obtained macro-operators, we identified that some created macro-
operators were invalid. As a reminder, the Algorithm 4 allows the construction of macro

operators, from the extracted candidates', only if some conditions are met, namely:

e The size of the sequence of actions (candidate) is greater than or equal to two i.e.
S={ai,ay,...,a,} where n > 2.

e There exist common objects between each pair of actions of the candidate e.g.
pick-up B stack B C

e The merge procedure is not null. In other terms, a candidate can be merged <=
Vk € [1,n— 1], negativeEffects(merge({ai,...,ax})) N preconditions(a;1) =0
where merge({ay,...,a,}) = merge(merge({ay,...,ay—1}),a,).

Despite these conditions, we noticed that some of the created macro-operators were
invalid because of the incompatibility of some predicates. Table 5.3 shows the results of
the macro-operators analysis. For blocksworld and satellite domains, all created
macro-operators were studied. For barman and depots domains, an estimation was
done from a sample of the created macro-operators.

Domain # Macro-operators Invalid macros =+ p

barman 173 25% 10%
blocksworld 14 21% 0
depots 1273 22% 10%
satellite 13 15% 0

Table 5.3: Results of the validity of created macro-operators per domain.

Additionally, Figure 5.4 shows an example of the identified problem. At the beginning,
we have the extracted candidate unstack b3 b2, put-down b2. How can we ensure,

I'These are obtained by using pattern mining algorithms and more specifically, closed frequent
patterns algorithms with allowed gaps.

87

without the help of a human expert, that this sequence create an interesting macro-
operator?.

First, the algorithm checks if the sequence has two or more actions, and in this case, it
does. After, the algorithm validate that there exists a common object between each pair
of actions i.e. b2. Then, it translates every action of the sequence with its respective
operator from the domain and it merges both operators. However, the resulting macro-
operator has two conflicting predicates, namely handempty and holding 7X1.

S={a;a} —) S={o050} k
_unstack b3 b2 put-down b2 \unstack 7X0 ?X1 put-down ?Xl/
v/ common variable a, and a,={b2} l
0, | Unstack (?X0 ?X1)
:parameters ?X0 — block merge (0, 0,)
? -
ondition o Dl Unstack_Put-down
:precondition. Oil ’ 7Xb :parameters ?XO0 - block
;ea; - ?7X1 - block
. andernpty :precondition on ?X0 ?X1
:effect hloldn'l?%('iXO clear 7X0
clear 1
hand t
not (clear ?X0) hzZii;};)‘? 7
not (han7dem§ty) effect holding 7X0 '
not (on ?X0 ?X1) E— clear 7X1 |
(handempty |
o, | Put-down (7X1) .
:parameters ?X1 - block + ontable 'X?l
precondition _(holding ?X1 +){not (clear 7X0) |
:effect ' clear ?X1 ! - not-(handempty)
handempty not (on 7X0 ?X1)
ontable 7X1 + »{not (holding ?X1) |
not (holding ?X1)

Figure 5.4: Macro-operator Unstack_Put-down with incompatible predicates
handempty and holding 7X1

This kind of incompatibility is easily understandable to a human being but how can we
make the machine understand that these two operators are incompatible?

5.5 Problematic macro-operators: Definition

In the following, we define the three types of problematic macro-operators: the in-
compatible predicates’ macro-operators, the useless macro-operators and the redundant
macro-operators.

88

Incompatible predicates’ macro-operators

These are macro operators that cannot be applied during planning search. The main
reason is the incompatibility of their predicates. From now on, we refer to them as
incompatible macro-operators.

Definition 5.1.

Let pre(m) = {pi,..., pa} be the set of predicates belonging to the set of preconditions
pre of the macro-operator m. A predicate p; is incompatible with predicate p,, denoted
as p1 | p22, if and only if they cannot coexist in the same state s.

From this point forward, for an operator (resp. macro-operator) we denote the set of its
preconditions as pre(o) (resp. pre(m)), the set of its positive effects as add(o) (resp.
add(m)) and the set of its negative effects as del(o) (resp. del(m)).

Definition 5.2.
An incompatible macro-operator has an unattainable precondition, i.e. there is at least
one pair of predicates that cannot coexist in the same state, 3(py, p2) € pre(m) x pre(m), p1 |

p2.

Example Let us consider the macro-operator unstack_put-down in Figure 5.4. This
macro-operator is an incompatible macro-operator since two of its predicates in the
precondition set are incompatible, namely handempty and holding 7X1. |

Useless macro-operators

These macro-operators can be applied during planning search but their application is
equivalent either to do nothing or to use a primitive operator.

Definition 5.3.
A macro-operator m is useless in the two following cases:

1. If the application of a macro-operator m to a state s is equivalent to the same state
s, i.e. Y(s,m) = s. In terms of predicates, it translates to the Equation (5.1)

(add(m) C pre(m)) A\ (Vp1 € del(m),3p,y € pre(m) : p1 | p2) (5.1)

meaning that all the positive effects of the macro-operator m were already present
in the current state since they are equivalent to the set of preconditions. Addi-
tionally, for all the predicates p; in the set of negative effects there exists an
incompatible predicate p, in the set of preconditions, and as a consequence, p
is useless because it could not have been true.

>The Sheffer’s stroke symbol was chosen because its representation in propositional logic
(Smullyan, 1995). Indeed, it represents that two propositions can not be true at the same time.

89

2. If the macro-operator m is equivalent to a primitive operator o. In terms of predi-
cates, it translates to the Equation (5.2).

Jo,(add(m) — add (o) C pre(m))A\

(pre(o) C pre(m))A
(Vp1 € del(m) —del(0),3ps € pre(m) : p1 | p2) (5.2)

meaning that the macro-operator m and the operator o are equivalent, if and only
if, any additional predicate in the set of positive effects of m, compared to the
set of positive effects of o, is useless because it already appears in pre(m). Also,
when m can be applied, o can as well. Finally, for any additional predicate p; in
the set of negative effects of m, compared to the set of negative effects of o, there
exists an incompatible predicate p, in the set of preconditions and p; is useless
since it could not have been true.

Example Let us consider the macro-operators pick-up_put-down and put-down_
pick-up_stack in Figure 5.5. The former is equivalent to do nothing in a state s,
we have add(m) N pre(m) = 0 and del(m) = 0 since the highlighted negative effect
holding 7XO is useless (it is incompatible with the handempty predicate in the set of
preconditions). The later is equivalent to the primitive operator stack, and because
the highlighted negative effect is useless (it is incompatible with the holding 7XO0
predicate in pre(m)), we have that pre(m) N pre(stack) = 0 A add(m) N add(stack) =
O Ndel(m)Ndel(stack) = 0. For all these reasons, the two macro-operators are useless
macro-operators. |

Redundant macro-operators

These macro-operators can be applied during planning search but their application is
equivalent to use a simpler macro-operator i.e. a macro-operator with less actions.

Definition 5.4.
A macro-operator m is redundant if

Imy,(add(my) — add(my) S pre(mi)) A
(pre(ma) S pre(mi))A
(Vp1 €del(my) —del(my),3p2 : p1| p2)A
(nbActions(my) < nbActions(my)) (5.3)

meaning that the macro-operator m; is redundant compared to the macro-operator m,,
if and only if, any additional predicate in the set of positive effects of m|, compared to
the set of positive effects of my, is useless because it already appears in pre(m;). Also,
when m can be applied, m; can as well. Likewise, for any additional predicate p; in the
set of negative effects of m;, compared to the set of negative effects of m;, there exists
an incompatible predicate p; in the set of preconditions and p; is useless since it could
not have been true. Finally, the number of operators of m is greater or equal than the
number of operators of m;.

90

S={a;a} \ — S={o0;0}
. pick-up B put-down B) . pick-up ?X0 put-down ?X0 |

v common vartable a, and a,={B} l

o, | Pick-up (?X0)
:parameters 7X0 - block
:precondition ontable ?7X0
clear 7X0
handempty
:effect holding 7X0
not (clear 7X0)
not (handempty)
not (ontable 7XO0)

merge (0, 0,)

Pick-up Put-down
:parameters 7X0 - block

:precondition ontable ?7X0
clear 7X0

handempty

T > clear 7X0
T > handempty J
o, | Put-down (?X0) P ontable ?X0

:parameters 7X0 - block P > not {clear 2X0))

‘effect (clear 7X0) || of ot fomtable 7%0)
[handempty | \

(ontable 7X0 | .~ *{not (holding 7X0) |
not (holding ?X0) | - e

(a) Macro-operator pick-up_put-down does not change the state s.

e N e N

S={31§32;33} ‘ S={o0;;0;;0:} ‘
put-down A pick-up A stack AB | L put-down ?7X0 pick-up ?X0 stack 7X0 7X1 |
/ common variable a, and a,={A} l

v/ common variable a, and a,={A}

o, | Put-down (?X0)

:parameters?X0 - block merge (04, 0,, 0,)
:precondition holding 7X0
effect clear 7X0 Pick-up Put-down Stack
handemgt}’ :parameters 7X0 — block
ontable 7X0 ?7X1 - block
not (holding 7X0) L. .
:precondition holding 7X0
o, | Pick-up (?X0) clear 7X1
:parameters ?7X0 — block -effect clear 7X0
:precondition ontable ?X0 *)
fllea(ri 7X0 handempty
andempty ?7X0 ?
:effect holding ?X0 on ?X0).(l 2
not (clear ?xoz not (holding 7X0)
not ha;ldglmg }gg) not (clear 7X1) i
1ot lombape ! | not (ontable 7X0)

o; | Stack (?X0 ?X1)
:parameters ?X0 — block

?7X1 - block
:precondition holding 7X0
clear 7X1
:effect clear 7X0
handempty
on ?X0 7X1

not (holding ?X0)
not (clear 7X1)

(b) Macro-operator put-down_pick-up_stack is equivalent to the primitive operator
stack. 91

Figure 5.5: Examples of useless macro-operators. Highlighted predicates should
not be taken into account.

Example Let us consider the macro-operator m; in Figure 5.6. This macro-operator
is a redundant macro-operator since there exists a macro-operator my which is simpler
than m1. Indeed, both macro-operators have the same preconditions and effects but m?2
is composed of less operators. The impact of both macro-operators during the search is

the same but m1 would degrade the plan quality if it appears in the solution plan. [|
m; = {a;; a,; 2; 2} ‘ m, ={a,;a,}
unstack B A stack B A unstack B A put-down B
put-down B h

v common variable a, and a,={A,B}
v common variable a, and ©. ={A,B}
/ common variable o and o, ={B}

/ common variable a, and a,={B}

m, = {0, 0,3 0 Os} ‘ m={o0 "o
unstack 7X0 ?X1 stack 7X0 ?7X1 K 7}2 7}{< L 23; 2%
put-down 7X0 unstack ?X0 ?X1 put-down ?X0

I]

m, my
Unstack Stack Unstack Put-down Unstack Put-down
:parameters 7X0 - block :parameters 7X0 - block
?X1 - block 7X1 - block
:precondition on ?X0 ?X1 :precondition on 7X0 7X1
clear 7X0 clear 7X0
handempty handempty
:effect clear 7X1 -effect clear 7X1
ontable 7X0 ontable ?X0
not (on ?X0 ?X1) not (on ?X0 ?X1)
not (holding ?X0) not (holding ?X0)

Figure 5.6: Redundant macro-operator Unstack_Stack_Unstack_Put-down.
Highlighted predicates should not be taken into account.

5.6 Problematic macro-operators: Detection

To detect problematic macro-operators addressed in last section, we should be able to
find the incompatible predicates. The idea behind finding incompatibilities for a predi-
cate pj is:

e Simulate all the ways to obtain this predicate.

e Any predicate p, that was true at a given step, while p; was also true, is compat-
ible with p;.

e Any predicate p, that has been true at a given step, and that is not compatible
with p; (i.e. there is no step where p; and p, were true at once), is incompatible
with p;.

92

In this regard, we present in Figure 5.7 a fully automatic method for detecting and
eliminating problematic macro-operators. The pseudo code of this method is described
in Algorithm 6. It takes as input a domain d and a set of macro-operators M and it
passes them to the extractlncompatibilities procedure (pseudo code, in Algorithm 7,
described later) to found incompatibilities based on a layered graph (line 2). After this
extraction, it computes each problematic set (incompatible, useless, redundant) using
the found incompatibilities, the domain and the set of macro-operators (line 3). Finally,
it removes from the set of macro-operators, the detected problematic macro-operators
(line 4).

[remaveProblematicMacros: Algorithm 6 on page 93}

L[extmctIncompatibilities: Algorithm 7 on page 94}

{instantiateDomainWithMacro: Algorithm 8 on page 95}

LLobjectslnventory: Box procedure on page 95}

{incompatibilityGraph: Section 5.6.1 on page 97}

{updatelncompatibilities: By using Property 5.1 on page 95}

Figure 5.7: Explanation scheme for detecting and eliminating problematic macro-
operators

Algorithm 6 Remove problematic macro-operators - Main algorithm

Input A domain d and a set M of macro-operators.
Output A set Mo of non problematic macro-operators.
1: function REMOVEPROBLEMATICMACROS(d, M)

2: I < extractIncompatibilities(d,M) > see Algorithm 7
3: Mo <+ U f(d,M,I) > T explanation below
fex
Mo + M\ Mo > set difference
5: return Mo

t: X = {incompatibleMacro,uselessMacro,redundantMacro}

The pseudo code of the extractIncompatibilities procedure is described in Algorithm 7.
It takes as input a domain and a set of macro-operators. For each macro-operator m, it in-
stantiates the operators domain with respect to m and it instantiates m (line 3, procedure
described later in Algorithm 8). Then, it creates a set of predicates from the precon-
ditions of all instantiations of m (line 6). And, for each predicate pp, it constructs a
layered graph aimed to simulate all the ways to obtain p; by using the domain primitive

93

operators (especially their preconditions and their effects) (line 8). After the construc-
tion of this graph, it is used as a guideline to know which sequences of actions to test
and on which states, and by analysing the output of this process, it extracts some incom-
patibilities. Then, it uses the transitivity property of incompatibilities (Property 5.1) to
find more incompatible predicates (line 9). Finally, it returns to the main algorithm a
list of predicates, and for each predicate, a list of its incompatible predicates.

Algorithm 7 Extraction of Incompatibilities

Input A domain d and a set M of macro-operators.
Output A dictionary / of pairs < p,i >, pis a predicate and i is a set of predicates
i where Vk € i,p | k.
1: function EXTRACTINCOMPATIBILITIES(d, M)
2 for each macro-operator min M do
3 (A,Ma) < instantiateDomainWithMacro(d,m)
4: predicatesToDo = {0}
5 for each instance k in Ma do
6 predicatesToDo < predicatesToDo U | p

pepre(k)
7: for each predicate p in predicatesToDo do
8 update I with incompatibilityGraph(p,A) > see Section 5.6.1
9: updatelncompatibilities(I) > By using the Property 5.1
10: return /

The predicates analysed by the incompatibility graph (line 8 in Algorithm 7) come from
a series of possible parameter configurations of the analysed macro-operator. This is
especially useful when there are inclusion relationships between the object types in a
domain. Our method requires, in order to obtain these predicates, to instantiate the
primitive operators and the macro-operator taking into account the parameters of the
latter. The pseudo code of the instantiateDomainWithMacro procedure is described in
Algorithm 8.

It takes as input a domain d and a macro-operator m. It computes the objects inventory
(see description in the box below) for each primitive operator in d. It also does this
computation for m and it merges both results (line 3-6). After that, it instantiates each
primitive operator (line 7-9) and the macro-operator (line 10) by using the computed
objects inventory. It gives as result, a set of instantiated operators from d and a set of
instances of the macro-operator m.

94

Algorithm 8 Domain instantiation relative to a macro-operator

Input A domain d and a macro-operator m.

Output A set A of instantiated operators from domain d and a set Ma of instances

1:
2
3
4
5:
6
7
8
9

10:
11:

of the macro-operator m.
function INSTANTIATEDOMAINWITHMACRO(d, m)
D <— empty dictionary
for each operator oind do
update D with ob jectsInventory(o)

Dy, < objectsInventory(m)

update D with Dy, > explanation below

for each operator 0 in d do
listA < list of actions from instantiating o by using D
add listA to A
Ma < list of macro-actions from instantiating m by using D
return (A, Ma)

$1 Yk € (DNDy),D(K) = max(D(k), Dy(k))

Procedure (objectsInventory: Objects inventory computation)

This procedure aims to define for each type of object, how many of them are
necessary to make the operators’ instances sufficiently representative and espe-
cially to do not prevent some states from existing. First, it lists all object types
and the inclusion relationships of the domain. It creates an objects inventory
and it assigns zero to all. Second, it updates the number of objects per type
with the maximal value from the list of objects for each operator. Third, each
meta-type is set to zero in the inventory and its value is added to each one of its
sub-types because the operators’ instances will not contain meta-types. Finally,
it adds a level of freedom to each object in the inventory whose value is greater
than zero. As we cannot have an infinite number of objects, having free objects
allows us not to restrict the instantiation.
Example Let us consider the depots domain, its object types in Figure 5.8
and its following primitive operators:

lift(?x-hoist 7y-crate 7z-surface 7p-place)

drive(?x-truck 7y-place 7z-place)

drop(7x-hoist ?y-crate 7z-surface 7p-place)

load(?x-hoist ?y-crate 7z-truck 7p-place)

unload(?x-hoist ?7y-crate 7z-truck 7p-place)

The objects inventory process is shown in Figure 5.9. [|

95

Object

Place Locatable
Depot Distributor Truck Hoist Surface

Pallet Crate

Figure 5.8: depots object types

W (2] (3 o O
Objects Inventory — Objects Inventory — Objects Inventory — Objects Inventory

hoist 0 hoist 1 hoist 1 hoist 2
crate 0 crate 1 crate 2 crate 3
surface 0 surface 1 surface 0 truck 2
place 0 place 2 place 0™ depot 3
truck 0 truck 1 truck 1 distributor 3
depot 0 depot 0 depot 2 pallet 2
distributor 0 distributor 0 distributor 2

pallet 0 pallet 0 pallet 1

locatable 0 locatable 0 locatable 0

object 0 object 0 object 0

Figure 5.9: Objects inventory example
Property 5.1.

The transitivity property of incompatibilities defined in Equation (5.4) says that having
a pair of predicates (pi, p2) and knowing its incompatibilities 7, if p; (resp. p2) is true,
there is no action giving p, (resp. p;) and if the pair (p;, p2) does not belong to the
positive effects of any action, this implies that p; and p, are incompatible predicates.

A(p1,p2),Va €A : p) €add(a),Vb € A : p; € add(D),
I(p2) N pre(a) #0OAI(p1) N pre(b) # ON
BeeA:{pi,p2} Cadd(c) = pi|p2 (54

where A denotes the set of all possible actions and I(p) denotes the set of all incompati-
bilities known for predicate p.

Example Let us consider the predicates p; et py in Figure 5.10. They are incompatible
predicates if knowing part of their respective incompatibilities, we are not able to find an
action a (resp. b) that adds p; (resp.p2) when p; (resp. p;) is true. In this example, if a
(resp. b) is the only action giving p; (resp. p2), we can conclude that p; | p2. Otherwise,
we would have to check for all a (resp. b) giving p; (resp. p2).

96

(0:ypy) |

I(p,) I(p,)
P | @‘ps Pu P | Pg,
if p, is true, - if p, is true,
action a: -action

pre{@p b pre {p) b}

add {p, p¢} add {p, pio}

Figure 5.10: Example of the transitivity property of incompatibilities.
5.6.1 Incompatibility graph implementation

The implementation of the incompatibility graph aims to find for a predicate p, the
predicates that are incompatible with p. The implementation follows two main steps:
the graph construction and the graph exploitation.

Graph construction

It consists in the construction of a layered graph. Note that a relaxed behaviour is
allowed. The root of this graph is the predicate for which we are looking for incompati-
bilities.

We start with the root and we alternate between the expansion and the link rules until
the stop condition is reached. Expansion rules allow to deduce the nodes in the layer
n—+ 1 from the layer n. While, link rules dictate which nodes will be connected between
layer n and layer n+ 1.

By following the expansion rules, we alternate the graph layers between predicate lay-
ers and action layers, beginning with a predicate layer (root). We therefore have the
following rules:

o If we consider that the layer L, is a predicate layer, the layer L, is an action
layer and A is a set of instantiated operators. We expand the graph from a predi-
cate layer L, to an action layer L, by adding as nodes in the layer L, all the
actions a that create the predicates in layer L, (see Equation (5.5)).

Lyyi={ac€A:3peL,,pcadd(a)} (5.5)

o If we consider that the layer L, is an action layer, the layer L, is a predicate
layer and A is a set of instantiated operators. We expand the graph from an

97

action layer L, to a predicate layer L, by adding as nodes in the layer L,
all the predicates p belonging to the preconditions of the actions in layer L, (see
Equation (5.6).

Lyri={p:3a€L,,pcprea)} (5.6)

Additionally, if the root predicate is found in a layer other than layer 0, this predicate no
longer generates any node.

In order to link the layers with each other, the following rules are followed:

o If we consider that the layer L, is a predicate layer and the layer L, is an action
layer. We linked every node in the predicate layer L, to a node in the action
layer L, 1, if and only if, the predicate node belongs to the positive effects of the
action node (see Equation (5.7). From now, we denoted an element x linked to
an element y as x — y.

In addition, if a predicate node does not belong to the positive effects of any
action node, this node predicate is removed from L, (see Equation (5.8)).

pEL, ~a€l,y < p€add(a) (5.7)

peELy:faclyi,p~a = L,\p (5.8)

o If we consider that the layer L, is an action layer and the layer L, is a predicate
layer. We linked every node in the action layer L, to a node in the predicate layer
L1, if and only if, the action node has in its negative effects the predicate node
(see Equation (5.9).

a€Ll, ~p€l,y < pecdella) (5.9)
The stop condition for the graph construction is reached when, after expanding the
graph, we find a predicate layer such that the entire layer (with all its predicate nodes)

has already been seen (see Equation (5.10)). When the stop condition is reached, we
construct the next action layer L, and we stop.

if L,:3k<n,Ly =L, Amod(n,2) =0 = stop (5.10)

Example Let us consider the depots domain, its primitive operators and the predicate
lifting hoistO crateO for which the graph aims to find the incompatible predi-
cates. An example of the incompatibility graph is shown in Figure 5.11.

Graph exploitation

Instead of considering taking all actions at random, concatenating them in a random
order and testing everything until found any incompatibilities, the idea behind the graph
exploitation is to have a reduced research space.

98

ST} ()9YeId UL

0o%eId (3st0Y Suryr

010dap
0Ny
(o%eId
038107

T90dop
03onay
(o%eId
09810y

T90dop
TyonIy
(o%erd
09810y

0j0dop
0%°1red
097eIo
03st0q

030dop
19917ed
(097eI0
03810y

0j0dep
T3onIy
09710
03s10q

190dep 190dep 0j0dep 0j0dop 170dop 190dep 0j0dep 0j0dep
T3onI} 03PNI} T3oNnIy o¥onI} T9o11ed 02orred 1901rRd 0%orred
09ye10 097810 093eId 09%eI10 093810 093810 093e10 093eI10

03810y 03stoy 03stoy

pooy

03stoy
pvoT

03stoq
pvoT

03sto 03stoy

douq

03stoy
douq

0]

]

el

G|

Figure 5.11: Incompatibility graph for predicate 1ifting hoistO crateO.

Green (resp. red) lines indicate the positive (resp. negative) effects. Yellow

(resp. blue) circles are the actions (resp. predicates) and filled blue circles are

predicates that will be removed from the layer.

99

Thus, after the construction of the layered graph, it is used as a guideline to know which
sequences of actions to test and on which states. By analysing the output of this process,
we extract some incompatibilities.

It is important to mention that in the construction step, when a new layer of predicates
is created, if the root predicate p is found in the created layer, then this predicate is
labelled as a bud node.

For each bud node, in a layer L,, we define a set of initial states Sy. It consists of a
set of predicates representing the minimum state that is required by each action, in the
layer L,1, connected to the bud node, i.e. pre(action) — del(action) U add(action).
Then, we define a set of states S;. Each state in S; will consist of a set of predicates that
results from combining each state s of Sy and each action of the next layer of actions,
i.e. s —del(action) Uadd(action) where s € Sp. If the action cannot be applied, no new
state is created. Also, if we found a state that already exists in the current set, it is not
kept. We continue to define a set of states S,, by following the same idea, until we reach
the last layer of actions. While doing this, we keep a record C of all the predicates found
in the same state as the root predicate. We also keep a record / of all the predicates that
were true in some state.

We repeat this process for each bud node by updating records C and /. In the end,
we conclude on some incompatibilities by doing I — C. In other words, we keep the
predicates that were true in some state but never coexisted with the root predicate.

Example Let us consider the layered graph for the depots domain, the predicate
p=1ifting hoistO crateO and the bud node b (found in layer L4) in Figure 5.12.
We define Sy in Equation 5.11 and Equation 5.12, where each state s, in the set consist
of the minimum state required by each action in layer Ls connected to b. Notice that
operatorN denotes an operator instantiated with a configuration of objects identified by
N (See PDDL-Code 5.1).

(raction Lift1l
:parameters (hoistO crate0 palletO depotO)
:precondition (and(at hoistO depotO)
(available hoist0) (at crate0 depotO)
(on crate0 palletO) (clear crate0))
:effect (and(not(at crate0 depot0))
(lifting hoistO crateO) (not(clear crate0))
(not (available hoistO0)) (clear palletO)
(not (on crate0 pallet0))))

PDDL-Code 5.1: Macro-action for the blocksworld domain

We have that sqg =(at hoistO depotO)(lifting hoistO crateQ)(clear pallet0). Then, (at
hoist0 depot0) and (clear palletO) will be added to C record since they appear in the
same state as lifting hoistO crate0. They will be also added to I since they were true

100

in this state. Updating records C and [is fairly self-explanatory and will be left to the

reader for exploration.

Then, we define S in Equation 5.13 and Equation 5.14, where each state i, consist of a
set of predicates that results from combining each state s, of Sp and each action of the
layer Ls. Finally, we define S> in Equation 5.15 and Equation 5.16, where each state j,
consist of a set of predicates that results from combining each state i, of §; and each

action of the layer L;.

So = {{pre(Lift1) —del(Lift1)Uadd(Lift1)},

{pre(Unload1) —del(Unload1) Uadd(Unload1)} }

So={{so},{s1}}

S1 ={{so—del(Dropl)Uadd(Dropl)},
{so —del(Drop2)Uadd(Drop2)},

{s1 7— del(Load4)Uadd(Load4)} }
St={{io}.{ir},....{in}}
S» = { {io — del(Lift1) Uadd(Lift1)},
{ip —del(Lift2)Uadd(Lift2)},

ey

{in —del(Unload4) Uadd(Unload4)} }

S = {{J0}7{J1}77{]n}}

101

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

()
]
]
~
O
o
=y
2
Q
~
o0
=]
o
&
-

ifting hoist0 crate0

Cate D Cuing DD " Qadond oot Lrdood?) Lalood)

at hoist0 depot0

0 < ™ — S

S 3 3 43 S TG R

Figure 5.12: Exploiting the incompatibility graph for predicate p =1ifting
hoist0O crateO. Filled blue circle indicate the bud node. Yellow circles are the
actions. Gray elements will not considered in the exploitation of the graph for
predicate p.

102

5.6.2 Results for the removing method

We present in Table 5.4 a summary of the results for detecting problematic macro-
operators from the graph-based approach. A more detailed report is presented in Ap-
pendix C.

Domain M | U R

Barman 152 24 7 18
Blocksworld 10 3 5 0

Depots 1175 565 157 308

Satellite 13 2 1 2

Table 5.4: Results from the graph-based approach to detect problematic macro-
operators. "M" stands for number of macros, "I"' number of incompatible macros
found, "U" number of useless macros found and "R" number of redundant macros
found.

Also, we show in Table 5.5 the results, in terms of percentages, for eliminating prob-
lematic macro-operators. Depending on the domain, we remove between 30% and 80%
problematic macro-operators.

Domain % Removed

Barman 32.2%
Blocksworld 80%

Depots 87.6%

Satellite 38.5%

Table 5.5: Percentage of removed problematic macro-operators per domain.

Our graph-based approach is proved to be successful in detecting and eliminating prob-
lematic macro-operators. Now, we need a measure allowing us to select from the re-
maining macro-operators those that will be added to the domain. In the next section, we
will discuss about that selection process.

5.7 Selection process

After using the remedial measures such as the generalisation of the extracted candidates
in macro-operators, and the graph-based approach to remove problematic operators, the

103

resulting macro-operators were numerous. Thus, we looked for a measure to decide
which macro-operators will be added to the original domain.

First of all, we observed that the constructed set of macro-operators were neither repre-
sentative nor significant enough in relation to the goals of each domain. For example,
the goal of the satellite domain is to acquire desired images by diving the obser-
vation tasks between satellites. Although, we observe an instantiation of the opera-
tor take-image in every sequence (plan) of our sequence database (corpus of plans),
not a single macro-operator contains this operator. Unless the satellite problems start
with instruments already calibrated and turned towards the image to be taken, at least
the turn-to, take-image candidate should be extracted by using pattern mining algo-
rithms. However, it is not the case, for pattern mining algorithms there are not enough
samples of this candidate having exactly the same objects to consider it as a frequent
pattern.

Additionally, this observation raises another major flaw. If there are not enough samples
of a sequence of operators instantiated with a set of objects A but there are enough sam-
ples of the same sequence of operators instantiated with a set of objects B, only the later
will be extracted as a candidate. Then, when we will generalise candidates as macro-
operators, the lack of all instances of the macro-operator will distort the computation of
the support. Thus, the support obtained with this method is unreliable. Hence, in order
to have an undistort computation of the support, one should use the pattern mining algo-
rithms with a minsup equal to one appearance i.e. minsup = ﬁ where |C]| is the size of

the sequence database.

By following the last approach, we extracted all candidates with a minsup of one appear-
ance but a new problem arised. Because we use closed sequential pattern mining algo-
rithms, more interesting candidates e.g.turn-to, take-image have been consumed
by longer candidates e.g. switch-on, calibrate, turn-to, take-image. In-
deed, the later will be used less frequently than the former since the optimal strategy
to solve satellite observation tasks consists of calibrating each satellite with a specific
mode e.g. infrared and then, repeatedly, turn to each target to take its image. To avoid
this problem, one should use pattern mining algorithms that allow us to extract all the
frequent patterns.

Hence, to prevent the presented problems, one should use pattern mining algorithms
with a minsup equivalent to one appearance that extract all frequent patterns. Though,
that is equivalent to do not use pattern mining algorithms and to compute all combi-
nations of actions for each plan in the sequence database. We can deduce that this
approach is not suitable since it leads to a computational bottleneck. To conclude, we
need an approach allowing to extract macro-operators from the sequence database and
a measure deciding on their utility. Such an approach will be introduced in the next
chapter.

104

5.8 Conclusion

In this chapter, we intended to explore the shortcomings of the macro-actions learn-
ing framework from the last chapter. We have shown that the generalisation in macro-
operators of extracted candidates (obtained by using pattern mining algorithms on a
sequence database) is essential. To do that, we presented a method that construct macro-
operators from these candidates and compute its support value.

We have also presented a graph-based approach aiming to validate the created macro-
operators. In this approach, we introduced the concept of incompatible predicates and
we used it as a key to find problematic macro-operators (incompatible, useless and re-
dundant). The graph-based approach proved to be successful in eliminating problematic
macro-operators.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. However, the presented
approaches, namely the construction of macro-operators and the detection of incompat-
ibilities, work well and could be used in other planning applications.

Finally, we concluded in the need for a novel approach allowing to extract macro-
operators and assess in their utility. This approach will be presented in the next chapter.

105

Planning-oriented pattern mining:
The METEOR framework

If you want something you have never had you must be willing
to do something you have never done.

Thomas Jefferson

6.1 Introduction 109

6.2 Limitations of classical pattern mining algorithms in planning 109

6.3 Description of the METEOR framework 114
6.4 ERA Algorithm 115
6.5 Selection of the optimal macro-operator set 123
6.6 Evaluation of the METEOR framework 128
6.7 Results. 130
6.8 Discussion.o 141
6.9 Conclusion 142

107

6.1 Introduction

Most existing work on macros are focused on macro-operators instead of macro-actions
since they increase the probability of being used at planning time. In contrast, their
number of parameters also increases the branching factor. To avoid this problem only
useful macro-operators should be added to the domain.

In the last chapter, we explored an approach to generalise extracted candidates (obtained
by using pattern mining algorithms on a sequence database of plans) in macro-operators.
From a set of sequence of actions, extracted by using pattern mining algorithms on a
sequence database of plans, we built a set of macro-operators and we compute their
respective supports (i.e. the number of plans containing at least once the given macro-
operator). Nonetheless, the information extracted from this approach did not allow for a
reliable selection process. Indeed, as we have shown in Chapter 5 the computed support
from this generalisation process was incorrect.

Thus, mining macro-operators from a set of plans requires an approach which ensures to
find the frequent sequences of operators without a loss of information about their char-
acteristics. Then, neither an operator can be dissociated from its objects nor a sequence
of operators can disregard the relationship between operators’ objects. Unfortunately,
a central restriction in traditional pattern mining concerning its expressiveness is that
each item is assumed to be a whole entity without any additional characteristics.

Also, a selection measure is essential to avoid undesirable side-effects of the use of
macro-operators, namely the overload caused by increasing the branching factor in the
search space when adding macro-operators.

In this chapter, we will first present the encoding limitations of traditional pattern mining
algorithms in the extraction of macro-operators. After, we will present our METEOR
framework to mine macro-operators from a set of plans and to select the optimal macro-
operator set. Finally, the results obtained with this new approach will be shown and
discussed.

6.2 Limitations of classical pattern mining algorithms
in planning

Let us briefly summarise some key elements for this section. First, as the most popular
algorithm for pattern mining!, traditional pattern mining algorithms aim to answer to

! Apriori (Agrawal and Srikant, 1994).

109

the question: how to identify the sets of items that occur more frequently in the analysed
data? Thus, these algorithms are designed to be applied on data containing entities that
are part of a group e.g. transactions of items bought by costumers, transactions of user
click-stream in a website, transactions of user logs in a set of communication services,
etc. Moreover, if an order property exists between the elements of the analysed data,
classical pattern mining provides algorithms for mining sequential data.

Second, in planning, each plan is composed of an ordered sequence of instantiated op-
erators (aka actions) which in turn are composed of parameters (objects), e.g. T = (
pick-up blockA, put-down blockA, pick-up blockB, stack blockB blockA).
We can improve the planning performance by learning sequences of operators that occur
frequently in solution plans. Indeed, they reduce the depth of the search space. Thus, a
question arises: how to identify the sequences of operators that occur more frequently

in plan solutions?

In Chapter 4, we have proposed a framework which partially answers this last question.
In other words, by using this framework, we were able to build macro-actions from
the extracted sequences of actions that occur frequently in solution plans. To that end,
we proposed an intuitive formalism to represent a set of solution plans as a sequence
database (more details on the formalism in Chapter 4) and therefore, be able to apply
sequential pattern mining algorithms. However, we observed that the created macro-
actions were not general enough to be used repeatedly through different problems.

Most existing work on macros are focused on macro-operators instead of macro-actions
since they increase the probability of being used at planning time. In contrast, their
number of parameters also increases the branching factor, to avoid this problem only
useful macro-operators should be added to the domain. With that in mind, we came up
with two approaches to address the problem of generalisation.

We presented our first approach in Chapter 5.2. From a set of sequence of actions,
extracted by using pattern mining algorithms on a sequence database of plans, we built
a set of macro-operators and we compute their respective supports (i.e. the number of
plans containing at least once the given macro-operator). Nonetheless, the information
extracted from this approach did not allow for a reliable selection process. Indeed, as
we have shown in Chapter 5 the computed support from this generalisation process is
incorrect.

In this section, we aim to discuss the second approach?, namely, to mine macro-operators
directly from a set of solution plans. Because sequential pattern mining is applied on a
set of sequences (i.e. a sequence database), we were looking for an encoding allowing
to represent the set of plan solutions as a sequence database.

To show the complexity of the task, we will further discuss the encoding used on the
first approach and we will present two others seemingly correct encodings.

2This approach is in line with our original question.

110

Let us consider as an example the following set of plan solutions:

mti = op3(obji,0bjr);0p1(obji,0bj3);0p2(0bji,0bjs)

T = opi(objs,obje);0p2(0bjs,obj7);0ps(obji,0bj1)

73 = op1(obji,0bjg);0ps(objio,0bj3);0p2(0bji,0bji1)
)sopi(

4 = ope(obja,0bjo);0p1(objs,0bj3);0pa(0objs,obj7)

Here, each m; corresponds to a plan solution for a given problem p; and a planning
domain D. It consists of an ordered set of operators {op;} which are instantiated with
the objects {ob i }.

Let us briefly recall the encoding used in the first approach: Each plan is considered
as a sequence, and each instantiated operator, as an item in this sequence. It should
be noted that the same identifier is assigned to two different items only if the operators
and objects are exactly the same. By applying this encoding, we obtain the sequence
database in Table 6.1.

Sequence_ID Sequence

S001 {1},{2}.,{3}
S002 {4},{5}.,{6}
S003 {7},{8}.{9}
S004 {10},{11},{5}

Table 6.1: Sequence database using the encoding from Chapter 4

We can observe that there is no sub-sequence appearing more than once. Although, we
can easily detect four apparitions of the sub-sequence op;({obji});op2({obji}), one
for each plan in the original set of plan solutions. This discrepancy appears to be the
result of the objects variability. In other words, there are not enough samples of this
sub-sequence having exactly the same objects to consider it as a frequent pattern.

Hereafter, we will focus on the macro-operator op| ({0bji});op2({obji}) having a sup-
port of 1. To get around the problem mentioned before, we can mine all frequent pat-
terns with a minsup equal to one appearance i.e. minsup = % = 0.25. The result is
presented in Table 6.2. By using these patterns to build macro-operators, we are able to
find our macro-operator of interest and to compute the right value for its support. Even
though it worked here, it is worth noting that:

e mining all frequent patterns with such a small minsup, is equivalent to compute
all combinations of instantiated operators for each sequence.

e our sequence database is a small-scale example.

e the number of sub-sequences to analyse is a 0(21'"”) where [, 1S the maximum
sequence length in the analysed sequence database.

111

In a practical case we would expect a maximum plan length of 50 to 80 actions which
would induce, considering that we can analyse one billion sub-sequences per second
(based on an optimistic assumption), a computing time ranging from several weeks to
several million years to analyse the longest plan only.

Sequential Sequential

Pattern o sup Pattern S
{1} 1 025 {7} I 025
{1}, {2} 1 025 {7}, {8} 1 025
{1}, {2}, {3} 1 0.25 {7}, {8}, {9} 1 025
{1}, {3} 1 025 {7}, {9} 1 025
{2} 1 025 {8} I 025
{2}, {3} 1 025 {8}, {9} I 025
{3} 1 025 {9} I 025
{4} 1 025 {10} 1 025
{4}, {5} 1 025 {10}, {5} 1 025
{4}, {5}, {6} 1 0.25 {10}, {11} 1 025
{4}, {6} 1 025 {10}, {11}, {5} 1 0.25
{5} I 025 {11} I 025
{5}, {6} 1 025 {11}, {5} 1 025
{6} 1 025

Table 6.2: Result of mining all frequent patterns on the sequence database in
Table 6.1 with a minsup of 0.25

Now, let us consider another encoding. Once again each plan is considered as a se-
quence, but from now, each word will become an item in this sequence. An item
identifier is assigned to each different word. By applying this encoding, we obtain
the sequence database in Table 6.3. We can easily discard this encoding because the
sequential patterns obtained by mining this sequence database are mostly inconsistent.
Indeed, this encoding does not take into account any delimitation between operators.

Sequence_ID Sequence

S001 {1}, {2}, {3}, {4}, {2}, {5}, {6}, {2}, {7}

S002 {4}, {8}, {9}, {6}, {8}, {10}, {11}, {10}, {2}
S003 {4}, {2}, {12}, {13}, {14}, {5}, {6}, {2}, {15}
S004 {16}, {3}, {17}, {4}, {8}, {5}, {6}, {8}, {10}

Table 6.3: Sequence database using the encoding an item by word

Finally, one could imagine a translation (prior to the encoding) of the set of plans where

112

for each plan, each action is generalised to its respective operator and the relations
between the actions are guaranteed. We obtain the following translated set of plans:

= op3(7X0,2X1);0p1(?2X0,?X2);0p2(7X0,2X3)
m =0p1(7X0,?2X1);0p2(?X0,7X2);0pa(?X2,7X3)
m =0p1(7X0,2X1);0ps(?X2,7X3);0p2(7X0,2X4)
s = 0pe(?X0,2X1);0p1(2X2,7X3);0p2(7X2,27X4)

By using again the first encoding, we consider each plan as a sequence and each operator
as an item. We obtain the sequence database in Table 6.4. We observe the same situation
that has been discussed before, namely, a variability in the parameters leads to a loss in
the observed support.

Sequence_ID Sequence

S001 {1},{2},{3}
S002 {4},{5}.{6}
S003 {4}.{7}.(8}
S004 {9},{10},{11}

Table 6.4: Sequence database using the encoding from Chapter 4 on a previously
translated set of plans.

Mining macro-operators from a set of plans requires an approach which ensures to find
the frequent sequences of operators without a loss of information about their character-
istics. Then, neither an operator can be dissociated from its objects nor a sequence of
operators can disregard the relationship between operators’ objects. In other words, we
are looking for the most frequent sequences of operators with a specific set of object
relationships. Thus, it should be noted that for a same sequence of operators different
set of object relationships lead to the construction of different macro-operators (see Fig-
ure 6.1). Unfortunately, a central restriction in traditional pattern mining concerning its
expressiveness is that each item is assumed to be a whole entity without any additional
characteristics.

Therefore, we are looking for mining macro-operators using an approach with an ex-
pressiveness that allows us to properly describe and process the mentioned planning
requirements. This would allow us to learn as much as we can from past experiences.

Before concluding, let us now turn to another important issue of this work. If we have
two macro-operators with two equal supports but one macro-operator has twice as many
appearances as the other, then at equivalent impacts on the branching factor and at equal
lengths, the first one will be more useful. We therefore also need a reliable measure to
reflect these properties.

This measure should also be able to predict whether a macro-operator does not solve
problems more quickly. It should also represent a return on investment linked to its

113

Mop, | HISEN op, ()
X — typel = > ?X — typel
7Y — type2 T 7Y — type2
?Z — type2)

)

Mop, (IS op, ()
77X — typel = > ?X — typel
7Y — type2 - 7 7Y — type2
?7Z — type2)

)

Operator sequence

> Object relationship

Figure 6.1: Macro-operators from different set of object relationships

length but also linked to the branching factor. Finally, we should be able to aggregate
these measures to have a utility measure not only for a macro-operator but for a set of
macro-operators.

In the next section, we will present our framework to mine macro-operators from a set
of plans and the selection process in order to choose the optimal macro-operator set.

6.3 Description of the METEOR framework

This section presents METEOR, our framework for mining and selecting macro-operators
from previous acquired knowledge. METEOR stands for Macro-operator Extraction,
Trade-off Estimation and Optimisation from plan Recycling.

Indeed, this framework includes two major steps (see Figure 6.2):

1. The extraction of macro-operators from plan recycling by using a pattern mining
inspired algorithm which extracts rich patterns with attribute structures.

2. The estimation of the trade-off between the branching factor increase and the
search depth reduction in order to choose the optimal macro-operator set.

Additionally, the METEOR framework can be used on past plans from the same domain
regardless of the domain characteristics or the planner used to obtain them. The details
of each step will be presented in the following sections.

114

Set of
solution plans

Step 1

ERA algorithm

<+ -,\ <«

Macro-operators

Step 2

Trade-off estimation
and optimisation

@

Optimal set of
macro-operators

Figure 6.2: METEOR framework.

6.4 ERA Algorithm

In the following, we will present ERA, our pattern mining inspired algorithm for mining
macro-operators and its characteristics from past plans. ERA stands for Extraction of
Rich patterns with Attribute structures.

6.4.1 Encoding formalism

For processing purposes, we use the definition 6.1 to represent instantiated operators for
the plans in Table 6.5. As a result, we obtain a dictionary as shown in Table 6.6. Finally,
we use this dictionary and the original plans to obtain the sequence database in Table 6.7
where each sequence corresponds to a plan solution and each number to an instantiated
operator.

Definition 6.1.

A dictionary of instantiated operators is a set of pairs < k,a; >, where ay is the k"
distinct encountered action (aka instantiated operator) in a corpus of plans and k is an
integer referencing to a.

115

ID

Plan

pbl
pb2

pb3

pb4

{pick-up b}, {stack b a}, {pick-up c}, {stack ¢ b}, {pick-up d}, {stack d c}
{unstack b ¢}, {put-down b}, {unstack c a},{put-down c}, {unstack a d},
{stack a b},{pick-up c}, {stack c a}, {pick-up d}, {stack d c}

{unstack c b}, {stack c d}, {pick-up b},{stack b c}, {pick-up a},
{stack a b}

{unstack b a}, {stack b c}, {unstack a d},{stack a e}, {unstack b c},
{stack b a},{pick-up c}, {stack c b}, {pick-up d}, {stack d c}

Table 6.5: Example of plans for blocksworld domain.

k e
1 pick-upb
2 stackba
3 pick-upc
4 stackcb
5 pick-upd
6 stack d ¢ T T
7 unstack b ¢
8 put-downb | 1,2,3,4,5,6
9 unstackca b5 7,89,10,11,12,3,13,5,6
10 put-down c 3 14,15,1,16,17,12
11 unstackad T 18,16,11,19,7,2,3,4,5,6
12 stackab
13 stackca Table 6.7: Sequence database from dic-
%451 lslgsctlicck dc b tionary in Table 6.6 and plans in Table
16 stackbec 6.5.
17 pick-up a
18 unstack b a
19 stackae

Table 6.6: Dictionary of instantiated op-
erators for Table 6.5.

Then, we use the definition 6.2 to represent the elements for the plans in Table 6.5. As
a result, we obtain a dictionary as shown in Table 6.8. Finally, we use this dictionary
and the original plans to obtain the sequence database in Table 6.9 where each sequence
corresponds to an instantiated operator and each number to an element of this operator,
i.e. operator name or parameter.

Definition 6.2.
A dictionary of elements is a set of pairs < k,e; >, where ¢y is the k™" distinct encoun-

116

tered element in a set of solution plans and k is an integer referencing to ey.

Oid Oj

01 12
02 324

03 15
04 352

05 16
o 365
07 725

0g 82
09 754

_— o0 85
k € 011 746
ol 012 342
% Elck up orr 354
3 stack o4 752
4 a 015 356
5 C 016 325

6 d 017 14
7 unstack oig 724
8 put-down o9 349

9 e
Table 6.9: Sequence database from
Table 6.8: Dictionary of elements for dictionary in Table 6.8 and plans in
Table 6.6. Table 6.5.

Thus, we use this encoding formalism to obtain from a corpus of past plans for a given
domain: a sequence database of instantiated operators and a sequence database of action
elements.

6.4.2 Description of the main algorithm

ERA pseudo code is described in Algorithm 9. The objective of this algorithm is
to extract all macro-operators (regardless of their length or up to a maximal length
maxLength) satisfying a frequency threshold minsup from a set of solution plans. ERA
can detect the apparition of a macro-operator even if the actions composing it are not
adjacent. For each macro-operator, this algorithm also yields the following characteris-
tics:

e support [integer]: the number of plans containing at least one apparition.
e sequences ids [List]: the plan identifiers where the macro-operator appears.

e number of apparitions [1ist]: the number of apparitions of the macro-operator

117

in each plan.

It takes as an input a sequence database C of instantiated operators, a sequence database
of action elements A, a minsup threshold that extracted sequences should ensure, and
the maximal length of sequences to extract.

First, it searches the set of macro-operators of length two in C by using the procedure
MINE (line 7, described in Algorithm 10). Second, for each macro-operator of this set,
if it does not satisfies the minsup threshold we remove it, otherwise we keep the macro-
operator and its characteristics (line 12,13,14). Finally, if no macro-operator has been
found for the current length, it stops. Otherwise, it increases the length by one (line 15)
and it continues to loop until it reaches the maximal length (line 6). It gives as a result
a set of frequent macro-operators of different lengths with its respective characteristics.

6.4.3 The mining procedure

The objective of the mining procedure is to obtain the set of macro-operators of length /
and its characteristics from the set of solution plans. To do so, it analyses for each plan
all sub-sequences of length / and determines if the sub-sequence is a valid apparition®
of a macro-operator. If the algorithm finds a valid macro-operator apparition, it records
this apparition and updates the characteristics related to this macro-operator. To speed
up its computation, it uses previous information obtained when mining length / — 1.

The pseudo code of this procedure, called MINE, is described by algorithm 10. It takes
as input both sequence databases C and A from the main algorithm, the length / to be
evaluated and a dictionary M of all found macro-operators (of different lengths less than
[) and their support. The first loop purpose (line 3) is to do all combinations of ordered
sub-patterns for each sequence in C (line 7) and for each sub-pattern, determine if it is a
valid macro-operator and if it is valid in a number of sequences greater than the minsup
parameter. To accomplish this, the following steps are performed:

e It moves on to the next sub-pattern,

— if the sub-pattern of length / — 1 does not satisfy the minsup. For that, the
current sub-pattern length should be greater than two in order to be able to
build its identifier* of length — 1. Then, it checks if this identifier is found
in the general dictionary of pairs <macro-operator,support> (line 10).

— if there are not enough plans left to ensure that the sub-pattern is valid in a
number of sequences greater than the minsup (line 12).

3The actions of the macro-operator can be moved contiguously in the plan without an impact
on the final state or without impeding its execution
4See description in the box computeld

118

e Otherwise,

— it removes from the current plan § the individual actions of the sub-pattern
sp, it builds a macro-action from sp (line 14) and puts it, each time, at a
different position in the plan (line 19). It tries § (line 20) from the calcu-
lated initial state S; for the original plan p (line 6). If the result state € is
a superset (line 21) of the calculated final state S, from the original plan
p (line 6), then it stops trying positions for this sub-pattern. If it founds
at least one valid position for the built macro-action, it stores the modified
plan with the macro-operator identifier u as the key access (line 24) and
the macro-operator identifier ¢ in the list of the macro-operators found in
the plan (line 25). To analyse new apparitions of an already found macro-

action, the algorithm uses the corresponding modified plan (line 16).

Procedure (computeld: Identifier construction)

The identifier construction procedure takes as input a sub-pattern of instanti-
ated operators sp and a length /. Only the first [elements of sp are kept in
this procedure. A string identifier is built as follows. First, each element e is
translated by using A. Next, the first sub-element of each e is used together
with a character representing the actions. After, we use another character and a
incremental number for each other sub-element of e because they represent the
parameters. Notice that, the incremental number is reset to zero with each new
identifier construction and a same parameter will have the same incremental
number.

Example Let us consider the length / = 2 and the sub-pattern {1,2,3} from the
sequence database of Table 6.7, this sub-pattern represents the actions {pick-up
b, stack b a, pick-up c} and we can observe it, in the first plan from Table 6.5.
We only kept the elements {1,2} and by using the Table 6.9, we translate them
into {1 2, 3 2 4}. We choose the character "a" to represent actions and we
have then {al 2, a3 2 4}. Finally, we choose the character "p" to represent its
parameters and we obtain the identifier {alpOa3pOpl}. |

Once it has analysed all combinations of sub-patterns of length / from p, it moves to
the second loop (line 26). The purpose here is to compute and save or update, the
characteristics of each found macro-operator. Thus, it updates the set of plans where
the macro-operator with identifier y appeared App, by adding the index of the current
plan indexPlan (line 27). Also, it computes and stores the number of apparitions in the
plan for the analysed macro-operator (line 28,29). Finally, if the current macro-operator
appears in the plan at least once, the support value is updated by one (line 30) or added

with value of 1 if it did not appear before (line 32).

It gives as a result a set of frequent macro-operators of length [with its respective char-
acteristics. They will be filtered, by using the minsup parameter in the main algorithm,

before to be added to the final set of mined macro-operators.

119

Algorithm 9 ERA algorithm - Main algorithm

Input A sequence database C of instantiated operators, a sequence database A of
elements of an action, a minsup parameter and a maximal length maxLength.
Output A dictionary M of pairs < m,s >, m is a macro-operator and s is its
support; a dictionary App of pairs <m,app> app is the id of the sequence
where m appears; a dictionary nbApp of pairs <m,nbApp>, nbApp is the
number of occurrences of the macro-operator m for each sequence.
1: function MININGMACROS(C, A, minsup, maxLength)
2 Mo, App_o, nbApp_o < empty dictionaries
3 M, App, nbApp < empty dictionaries
4: stop < False, [< 2
5: while (I < maxLength) A (stopisFalse) do
6 Mo, App_o, nbApp_o < MINE(C,A,M,l)
7 stop <— True
8 for each macro-operator m in Mo do
9 if support(m) > minsup then

10: stop < False

11: add the key m with value s to M

12: add the pair <m,app> to App from App_o

13: add the pair <m,nbApp> to nbApp from nbApp_o
14 increase / by one

15: return M,App,nbApp

120

Algorithm 10 Mining macro-operators of length /

Input The sequence database C, the sequence database A, a dictionary M of
pairs < m,s >, m is a macro-operator and s is its support and a length /.
Output A dictionary Mo of pairs < m,s >, m is a macro-operator of length /
and s is its support; a dictionary App_o of pairs <m,app>, app is the id of the
sequence where m appears; and a dictionary nbApp_o of key <m,iP>, iP is
the index of the sequence where m appears, and value nbApp, the number of

occurrences of the macro-operator m in each sequence.

1: function MINE(C,A, M, 1)
2: Mo, App_o, nbApp_o < empty dictionaries
3: for each plan p in C do
4: D,macroPlan < empty dictionaries
5: idsPlan + {0}
6: Si,Sg < calculate initial and final state from p
7: P + all combinations of sub-patterns of length / from p >
8: for each ordered subpattern sp in P do
9: if / > 2 then
10: if computeld(sp,l — 1) ¢ M then skip sp
11: else u < computeld(sp,l)
12: if len(C)-indexPlan < minsup—supp () then skip sp
13: else
14: add the key-value < k,{actions(sp)} >toD >keZ*
15: i+0
16: if u € macroPlan then 6 < macroPlan[u]
17: else 0 < p
18: while (not 0k)A(i <len(8) —len(sp)+ 1) do
19: 0 + remove sp from 0 and insert k in & in position i
20: € < execute(S;,0)
21: if S, C € then ok < True
22: reset 0
23: if ok then
24: add the pair key-value < u,d > to macroPlan
25: add u to idsPlan

121

26: for each identifier i in idsPlans do

27: add the key u with value indexPlan to App_o

73 nbA (len(p)flen((lnizic)‘roPlan[u]))

29: add the key < u,indexPlan > with value nbA to nbApp_o
30: if (nbA > 0) A (i in Mo) then increase support of L by one
31: else

32: if nbA > 0 then add the key u with value nbA to Mo

33: return Mo,App_o,nbApp_o

T : the combinations keep the order of apparition in the original plan.

6.4.4 Complexity analysis

The main task of the ERA algorithm is the analysis of a sub-pattern. This task is repeated
for each sub-pattern in a plan, for each plan in the set of solution plans and for each sub-
pattern length. Let us first compute the number of sub-patterns n, of length k in a plan

p of length /(p).

ngp is then, the number of ways to choose k elements in /(p) elements:

nyp = (“?) ©.1)

Then, if nyve is the number of sub-patterns analysed in a execution of the MINE
procedure at length &, we have:

1(p;
e = Y < (Z ’)> 6.2)
pieC
In the worst case, the ERA algorithm will mine up to the pattern length L where L is the

maximal plan length in a set of solution plans C. Considering that all plan lengths are
equal to the maximal plan length, we have N, the total number of sub-patterns analysed:

v Z l(zpi) (1(?)) 6.3)

pieC k=2

N=Y 2P —(p;)—1 (6.4)
pieC

N=o0(|c|]2") (6.5)

We show in Equation (6.5) that in the worst case, where the algorithm mines up to the
maximal plan length L, the complexity is exponential in L and linear in the size of the
solution plan set C.

122

In practice, we observed that with a high enough minsup parameter, the maximal sub-
pattern length is much lower than the maximal plan length. For example, in our case
we never mined macro-operators longer than eight (for a maximal plan length about 70).
Let D be the maximal sub-pattern length (either forced by the maxLength parameter or
induced by the minsup parameter). The total number of sub-patterns analysed N then
becomes:

v=1 3 (") ©0

picCk=2
D
N=0 <|C| Y 0 (Lk)> 6.7)
k=1
N =o0(|c|LP) (6.8)

We show in Equation (6.8) that usually we can expect a polynomial complexity in L and
linear in the size of the solution plan set C.

6.5 Selection of the optimal macro-operator set

In the following, we will present the second major step of the METEOR framework,
namely the estimation of the trade-off between the branching factor increase and the
search depth reduction in order to choose the optimal set of macro-operators.

Despite its intuitive correlation with the utility, the support fell short as a reliable a
priori descriptor for macro utility. A good and reliable utility descriptor for planning
performance should be able to answer the following question :

Given a macro set M, is the addition of M to the domain going to improve the perfor-
mance of my planner ?

Under the assumption that most of the planning time is spent computing heuristic values,
a good indicator of planning performance is the number of node opened during the
search process. The gain of a macro m on a plan p (solution of a problem P), G(m; p)°
can then be defined as :

(6.9)

where N(p) is the total number of open nodes when solving P with no macros and
N(m; p) the total number of opened nodes when solving P with m added to the domain.

3 All notations refer to p since P is unknown.

123

Provided the number of opened nodes when solving the training plans (N(p), hereafter
noted N), we propose a new a priori utility estimation for macro-operators :

o L N(p)
GMLC%_Kﬂ%%NMﬂm (6.10)

where M is the set of macro-operators to be evaluated, C is the set of solution plans

and N(M; p) is the estimated number of opened nodes when solving P with a domain
augmented with all macro-operators in M.

To see how we can derive that value, let us focus on computing the gain of a single
macro m in a plan p (presented in Equation (6.9)).

First, we need to estimate the mean branching factor b of the problem, hereafter called
the initial branching factor, where we consider that :

e there is no heuristic (every possible instance is opened)
e there is no macro added to the domain

o the objects present in the plan are the only objects present in the problem.

To do that, we recover the initial state of the plan (minimal set of predicates so that the
plan can be executed) and compute each state of the plan from that initial state. We then
count the total number of applicable operator instances 7;(s) on each state s. The initial
branching factor was estimated as :

b=— Y nis) (6.11)
with n, the number of states.
We then estimate the impact of the addition of a macro-operator m on the branching

factor. Let b, be the branching resulting from the addition of m and Ab be the additional
branching brought by m so that :

by = b+ Ab (6.12)

124

Then, if n;(s;m) denotes the number of applicable instances of the macro m to a state s,
Ab can be computed as :

Ab= L Y, ni(sim) (6.13)

1y seplan

Let b;, be the observed branching factor when the problem P was solved to find p, so
that :

byl =N (6.14)

where [is the plan length. Then b, represents the mean branching factor with no macros
when we consider the heuristic. From this we can derive the heuristic factor, i.e., the
performance of the heuristic in the current plan. We chose to model it as a multiplicative
factor to the initial branching factor :

by, = fub (6.15)
and thus :
NT
Jn= e (6.16)

By considering the heuristic efficacy constant when macros are added to the domain (i.e.
macros are not considered in the heuristic computation), we have :

N(ms;p) = (fu (b+Ab)) (6.17)

With Al the number of actions saved in p by adding m :

125

Al = (Im| = 1)ngpp(m; p) (6.18)

And ngpp(m; p) the number of valid apparitions of m in p.

This estimation can be extended to sets of non overlapping macro-operators, i.e. a set
where each operator never appears more than once (see Equation 6.19).

M is non overlapping <= YmeM,0 e m — YnE M,n#m,o0 ¢ n (6.19)

Example Let us consider macro-operators m; =pick-up_stack 7X0 7X1 and m; =
pick-up_put-down 7XO0 fromblocksworld domain. These macro-operators are over-
lapping since both have the pick-up operator. If we consider a third macro-operator
m3 =unstack_put-down 7X0 7X1, we can observe that macro-operators m; and ms3
are not overlapping since they have no common operator. [|

For a non overlapping set of macro-operators M = {m,my, ...}, if Ab(my; p) and Al (my; p)
denote the respective values of Ab and Al for the macro m; in a plan p then :

meM

l(p)—m)EZMAl(m;p)
N(M;p) = (fh(p) (b(p)+ Y Ab(mm))) (6.20)

Finally, the optimal macro set verifies, for the training corpus C :

Mo = argmax (G(M;C)) (6.21)
M

The pseudo code of the selection of the optimal macro-operator set procedure, called
computeOptimalMacroSet is described in algorithm 11. It takes as input a set of macro-
operators M and it tries to find the set of macro-operators that maximises the gain.

To accomplish that, it takes each macro-operator in M as a initial optimal set (line 4) and
it tries to find the best gain by adding other macro-operators from M to this temporal
optimal set (line 11). For that, if it founds a macro that increases the current gain, it
adds this macro to the temporal set and continues to loop (always from the initial macro

126

in the first loop) until no more macros can be added (line 12-21). For each found set if
its gain is greater than the maximal gain, then it becomes the new optimal set and the
maximal gain is updated with its gain (line 22-24). Finally, it continues to loop until all
macro-operators have been tried as a initial optimal set.

It gives as a result an optimal set of macro-operators according to the Equation 6.21.

Algorithm 11 Selection of the optimal macro-operator set

Input A set of macro-operators M.
Output An optimal set of macro-operators oS according to the Equation 6.21.
1: function COMPUTEOPTIMALMACROSET(M)

2:

R A A

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

maxGain < 0
sortedMacros < sort M by decreasing order of macro gain
for each macro in sortedMacros do
currentOptimalSet < {0}
add macro to currentOptimalSet
currentGain < gain(macro)
done < False
while not done do
macroAdded < False
for each macro m in sortedMacros do
if m ¢ currentOptimalSet then
if m non-overlapping current OptimalSet then
newGain < gain(currentOptimalSet) >
if newGain > currentGain then
macroToAdd < m
macroAdded < True
currentGain <— newGain
if macroAdded then
add macroToAdd to current OptimalSet
else done < True
if currentGain > maxGain then
update oS with current OptimalSet
maxGain <— currentGain
return oS

T : Gain computed according to Equations 6.10 and 6.20.

127

This algorithm performs in polynomial time. In the worst case, it would perform in

O(|M]3). As we will see in Section 6.7, |M|? is very low against the complexity of the
ERA algorithm and it is negligible when considering the global execution time.

6.6 Evaluation of the METEOR framework

In the following, an evaluation of the METEOR framework is proposed. We present the
methodology to conduct the evaluation and our evaluation criteria. In the next section,
we show and discuss some interesting results obtained by doing this evaluation.

6.6.1 Methodology

The evaluationwas based on the same four benchmarks of the evaluation of Chapter 4:
barman, blocksworld, depots and satellite. They are described in more detail in
Appendix A. These benchmarks problems were taken from past International Planning

Competitions®.

For each benchmark, a training set of problems of 1000 problems and a test set of 30
problems were generated. The problem generation stage uses the generators’ from the
International Planning Competition. In addition, it ensures that the generated problems
can be different even using the same parameters. In Table 6.10, we show the parameters
used for the generation of problems for each benchmark domain.

We used a heuristic search planner based on A* search strategy, from the PDDL4J 8
library, to obtain a set of solution plans from the training set of problems. We followed,
for each benchmark, the METEOR framework described before with a minsup of 0.85
and an infinite maximum length for the ERA algorithm. Then, we used each obtained
optimal set of macro-operators to enhance each original domain. Finally, we evaluated
METEOR as a good framework to learn macro-operators from past plans and decide
on the utility of them. For that, we solved the set of test problems using the original
domain, and then, using the enhanced domain. We compared the obtained results by
using our evaluation criteria which will be described in the next section.

Experimental setup

The macro-operator learning steps (see Figure 6.2) were done on a notebook with an
Intel Core 17-4710MQ quad-core CPU clocked at 2.5GHz and with 8GB of RAM, run-
ning MS Windows v8.1. The evaluation of the framework was conducted on a notebook

®http://icaps-conference.org/index.php/Main/Competitions
https://bitbucket.org/planning-tools/pddl-generators
8https://github.com/pellierd/pddl4;

128

Domain Parameters Range

cocktails 1-30

Barman ingredients 1-13
shots 1-30
Blocksworld blocks 5-30
depots 1-5
distributors 1-3
trucks 1-4
Depots pallets 1-8
hoists 1-8
crates 1-20
satellites 1-6
instruments 1-2
Satellite modes 1-8
targets 1-2

observation 1-20

Table 6.10: Parameters for the generation of problems

with an Intel Core i7-4980HQ quad-core CPU clocked at 2.8GHz and with 16GB of
RAM, running OS X Mojave v10.14.1.

In the evaluation, to solve each problem from the test set, a maximum of 8GB of memory
was allocated and a time limit of 600 seconds was set in the planner. The experiments
have been done in a non-graphical terminal session.

6.6.2 Evaluation criteria

Unlike other works, we did not base our evaluation only on the classical IPC score. IPC
score’ is intended, as the name implies, to give a score to rank different strategies. In
other words, by using IPC score we can decide which strategy is better than another, but

it does not quantify the gain.

Here, on top of the IPC ranking, we wanted to quantify the impact of enhancing plan-
ning domains by adding the found optimal set of macro-operators obtained with the
METEOR framework. In this perspective, we used for this evaluation the same differ-
ent criteria established in Chapter 4: the planning time metric Gr, the space size metric

°As defined in the Learning track of the 7th International Planning Competition
(Jiménez Celorrio et al., 2011)

129

Gy and the plan quality metric Gg, according to Equations 4.1, 4.2 and 4.3. In addi-
tion, in order to prevent inaccuracies in the actual evaluation, we only kept the problems
solved in a time greater than 0.1 seconds.

6.7 Results

In this section, we present the results of the evaluation following the steps of the METEOR
framework.

For each domain, the number of mined macro-operators, the length of the longest
macro-operator found and its optimal set of macro-operators are presented in Table
6.11. Among the four domains, barman domain present the most significant number
of mined macro-operators but these results, clearly, suggest that the number of mined
macro-operators is related to the characteristics of the domain. Also, notice that each op-
timal set is composed of two macro-operators, however, there was no restriction about
the number of macro-operators in the optimal set.

Domain # macro-operators /[Optimal set’
macro-6-actions-0-10-11-8-9-0
Barman > 8 macro-5-actions-6-5-2-7-3
Blocksworld 6 3 macr0—2—a0t¥ons_3_1
macro-2-actions-0-2
Depots 10 4 macro-4-actions-1-3-1-3

macro-2-actions-4-2
macro-2-actions-1-3

Satellite 13 > macro-2-actions-0-4

Table 6.11: Number of mined macro-operators, the length of the longest macro-
operator found and the selected optimal set for each domain.

T The translation of the operators and the full report given by the approach can
be found in Appendix B.

After the extraction and optimisation step, the optimal set of macro-operators was added
to the original domain. Now, we present the results obtained by solving the problem test
set with the original domain and with the enhanced domain.

The time performance for each domain and for each problem is presented in Figure 6.3
and Figure 6.4. Here, problems are ordered in the x-axis with respect to their difficulty,
i.e. the time required to solve it with the original domain, and the search time is showed

130

in seconds in the y-axis using a log10 scale. If the problem was not solved either using
the original domain or the enhanced domain, it was ignored. The enhanced domain
was found to solve more problems and faster than the original domain for all evaluated
domains.

In order to quantify the behaviour observed in previous graphs, Figure 6.5 and Figure
6.6 display the planning time impact of the enhanced domains compared to the original
domain. This impact is showed in terms of the log10 value of Gr in the y-axis for
each problem in the x-axis. Remember that, for problems coloured in red, the gain is
underestimated since the original domain did not solve them. Also, we only analysed
problems solved in a time greater than 0.1s. Thus, we observed that the gain ranges are
very significant. The domains present a similar behaviour, and even when the barman
domain presents the lowest gains, they are still important.

Table 6.12 summarises the time performance results for each domain by presenting the
well-known IPC score but also our planning time metric Gr. As stated before, the
former allow us to decide which strategy is better than another, but the later quantifies
the average time gain.

Domain IPC Score Gr
Original domain Enhanced domain

Barman 7.6 23 34.95

Blocksworld 11.3 22 182.91

Depots 2.2 26 163.9

Satellite 15 30 201.16

Table 6.12: Results represented as IPC Score and average time gain for each
domain.

The impact in the size of the final search space is given in Figure 6.7 and Figure 6.8.
Indeed, they present the number of nodes explored in the y-axis for each problem in the
x-axis. This number is presented in terms of the log10 value of N. The final space size
was best impacted when using the enhanced domain. As the use of macro-operators is
supposed to provide a way to go deep quickly into the search space, this behaviour was
expected.

The length of the found plans, for each domain, when using the original domain, in
comparison to the length of the found plans when using the enhanced domain are shown
in Figure 6.9 and Figure 6.10 show. For each problem in the x-axis, the plan length of
the found plan is plotted in the y-axis. We observe a slightly difference between length
of plans, often it is within 5.

Finally, Table 6.13 summarises these last observations by showing the average impact
in the final space size Gy and the average impact in the length of the plans G for each
domain. Thus, we observed that the enhanced domain provides a positive impact in the

131

1074 EQOriginal domain “ Enhanced domain

Search time (s)
=
>
o

10~°-1

107-2

10"-3
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23

Problem number

(a) Barman

1074 H QOriginal domain * Enhanced domain

Search time (s)

10~-1

107-2

10~-3

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
Problem number

(b) Blocksworld

Figure 6.3: Search time performance for barman and blocksworld domains.
In blue (resp. in green), the time performance for problems solved with the
original domain (resp. enhanced domain). In red, the problems not solved with
the original domain but solved with the enhanced domain.

132

1074 W QOriginal domain * Enhanced domain

1073

1072

Search time (s)

1 23456 7 8 91011121314151617 18 19 2021 22232425 26
Problem number

(a) Depots

H Original domain “ Enhanced domain

=

o

>

=
1

—
o

)
o

Search tiem (s)

107-1

107-2

107-3

123456178 9101112131415161718192021222324252627282930
Problem number

(b) Satellite

Figure 6.4: Search time performance for depots and satellite domains. In
blue (resp. in green), the time performance for problems solved with the original
domain (resp. enhanced domain). In red, the problems not solved with the
original domain but solved with the enhanced domain.

133

1073

10~2

Gain

10~°1

1070 -
3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Problem number

(a) Barman

1074

1073

1071

1070 -
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Problem number

(b) Blocksworld

Figure 6.5: Time gain for barman and blocksworld domains. In blue, the gain
for problems solved with the original domain and with the enhanced domain.
In red, the gain for problems that were not solved with the original domain but
solved with the enhanced domain. Thus, the gain is underestimated.

134

1074

1073

1071

10°0 T
1 23456 7 8 91011121314151617 18192021 2223 24 25 26
Problem number

(a) Depots

1074

1073

10~1

1070 -
8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Problem number

(b) Satellite

Figure 6.6: Time gain for depots and satellite domains. In blue, the gain for
problems solved with the original domain and with the enhanced domain. In red,
the gain for problems that were not solved with the original domain but solved
with the enhanced domain. Thus, the gain is underestimated.

135

final search space without drastically decreasing the quality of the plans.

Domain Gy Gg

Barman 4930 0.89
Blocksworld 437.05 0.94
Depots 227.88 0.89
Satellite 54.62 0.98

Table 6.13: Results represented as the average impact in the final space size Gy
and the average impact in the length of the plans G¢ for each domain.

136

¥ Original Domain * Enhanced domain

1078

1077

1076

1075

1074

Number of Nodes
)
b
w

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Problem number

(a) Barman

¥ Original Domain * Enhanced domain

1078

1077

8 1076

Number of Nod
= = = =
o o o o

) b))
N w 1N o

=
o

>
=

1070

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Problem number

(b) Blocksworld

Figure 6.7: Number of explored nodes for barman and blocksworld domains.
In blue (resp. in green), the nodes for problems solved with the original domain
(resp. the enhanced domain). In red, the nodes for problems that were not solved
with the original domain.

137

H Original Domain “ Enhanced domain

1074

[
o

>
w

Number of Nodes

1072

1071

10°0
1 2345617 8 91011121314151617 181920 21 2223 24 25 26
Problem number

(a) Depots

H Original Domain “ Enhanced domain

1078

1077

8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Problem number

(b) Satellite

Figure 6.8: Number of explored nodes for depots and satellite domains. In
blue (resp. in green), the nodes for problems solved with the original domain
(resp. the enhanced domain). In red, the nodes for problems that were not solved
with the original domain.

138

H Original Domain * Enhanced domain

80

70

60

40

30

Plan len

10 -

3 4 5 6 7 8 9 10 11 12 13 14
Problem number

(a) Barman

H QOriginal Domain * Enhanced domain

Problem number

(b) Blocksworld

Figure 6.9: Plan length for each problem in barman and blocksworld domains.
In blue (resp. in green), the plan length for problems solved with the original
domain (resp. the enhanced domain).

139

¥ Original Domain “ Enhanced domain

(=2}
o

[al
o

I
o
]

Plan length
w
S

20 -
10 -
0 - T
3 4 5 6
Problem number
(a) Depots
¥ Original Domain “ Enhanced domain
40

Problem number

(b) Satellite

Figure 6.10: Plan length for each problem in depots and satellite domains.

In blue (resp. in green), the plan length for problems solved with the original
domain (resp. the enhanced domain).

140

6.8 Discussion

This chapter present and assess the METEOR framework. We assumed that the prob-
lem solving task would show better performances when using a domain enhanced with
macro-operators learned through our framework from previous experiences. Indeed, our
framework was conceived for mining macro-operators from previous acquired knowl-
edge, and for selecting the optimal set of macro-operators that maximises the node gain.
Our approach has the advantage that it can be used on past plans from a given domain
regardless any domain characteristic or the planner used to obtain those plans.

The mining phase was done by using the presented ERA algorithm on past plans. The
filter step in our algorithm was inspired from the Apriori (Agrawal and Srikant, 1994)
pattern mining algorithm, i.e. for mining a pattern of length /, we consider if its sub-
patterns of length / — 1 satisfying the minsup. In addition, as an answer to the present
work, our algorithm has the particular feature of being able to mine patterns with at-
tribute structures, as is the case with macro-operators. Results in this phase were con-
sistent (Table 6.11) since our algorithm successfully mined valid macro-operators of
different lengths for different domains. It is possible that domains having longest task
sequences (e.g. barman with twelve primitive operators) with a high support causes
a big number of macro-operators because all its sub-sequences will also have a high
support.

The selection phase was essential to avoid unwelcome side-effects of the use of macro-
operators, namely the overload caused by increasing the branching factor in the search
space when adding macro-operators. Thus, for a set of macro-operators, we have cho-
sen to optimise this trade-off between the branching factor increase and the search depth
reduction. It resulted in an optimal set of macro-operators for each domain (Table 6.11).
Although there was no limitation about the number of macro-operators in the optimal
set, each one was composed of two macro-operators. These findings led us to believe
that the gain is often maximised with two macro-operators. These results are in agree-
ment with those of Botea et al. (2005b). They allow only the two best macro-operators
resulting from a training step and in their used domains (depots, satellite and rover),
their experiments showed that using only one or two macros was helpful for reducing
the search. Besides, resulting optimal sets show that our selection phase can success-
fully find as an optimal set, macro-operators of different lengths. However, the selected
optimal set can only be composed of non-overlapping macro-operators.

We used the resulting optimal set of macro-operators to enhance the original domain
and we evaluated our framework by analysing elements such as the improvement in
the runtime, the number of explored nodes and the plan length. Problem solving was
more efficient by using the enhanced domain compared to the original domain. The
gain ranges were very significant and the domains presented a similar behaviour. Even
when the barman domain presents the lowest gains, they are still important (34 times
faster). It is possible that the non-overlapping restriction, when finding the optimal set,
has an impact in this domain. Regarding the impact in the final size of the search space,
results showed an impressive improvement in blocksworld domain when using the
enhanced domain (Table 6.13). By looking more closely at its individual data, we found

141

that the enhanced domain has done exceptionally well for two complex problems. If
we remove them from the computations, Gy is in the same order of magnitude as for
the other domains. As the use of macro-operators is supposed to provide a way to go
deep quickly into the search space, this behaviour was expected. Globally, plan length
slightly increased when using the enhanced domain but the difference was not more
than 5 actions.

In summary, our framework has proven to successfully mine macro-operators of differ-
ent lengths for different domains and thanks to the selection phase, be able to deliver a
positive impact in the search time without drastically decreasing the quality of the plans.

6.9 Conclusion

Our objectives in this chapter were twofold: (1) to provide a way out of the limitations of
sequential pattern mining in planning; (2) to came up with a selection measure allowing
us to avoid undesirable side-effects of the use of macro-operators. We then presented
a novel approach called METEOR which ensures to find the frequent sequences of
operators from a set of plans without a loss of information about their characteristics.

Our METEOR framework was conceived for mining macro-operators from previous ac-
quired knowledge, and for selecting the optimal set of macro-operators that maximises
the node gain. The mining phase was done by using the presented ERA algorithm on
past plans. For the selection phase, we have chosen to optimise the trade-off between
the branching factor increase and the search depth reduction. Our approach has the ad-
vantage that it can be used on past plans from a given domain regardless any domain
characteristic or the planner used to obtain those plans.

Our framework has proven to successfully mine macro-operators of different lengths for
different domains and thanks to the selection phase, be able to deliver a positive impact
in the search time without drastically decreasing the quality of the plans.

142

Conclusion and Perspectives

A great accomplishment shouldn’t be the end of the road, just
the starting point for the next leap forward.

Harvey Mackay
7.1 Summary of contributions 144
7.2 Limitationso 149
7.3 Perspectiveso e e 150

This thesis contributes mainly to the field of automated planning, and it is more specifi-
cally related to learning macros for classical planning.

We studied the following research questions:
Research question #1

Is there a monotonic relationship between the frequency of apparition of a macro
and its utility? i.e. can the frequency alone be used as an estimator for macro
ranking by utility?

Research question #2

Can we learn routines from past experiences that are not only frequent but above
all useful?

143

For approaches extracting macros from past experiences, an assumption often used is
that frequent sequences of actions are potentially good candidates to enhance the do-
main. This assumption is then related to the first research question. We, therefore, chose
the sequential pattern mining technique to exploit this hypothesis. This technique from
the field of data mining aims to analyse sequential data to discover frequent sequential
patterns.

To answer the first research question, we studied the possibility of extracting macro-
actions (i.e. sequences of actions with known objects) via sequential pattern mining
algorithms and selecting useful macro-actions based on their frequency (Chapter 4). As
we found some discrepancies in the results of the precedent study, we wanted to explore
them. We then transposed the study to macro-operators (i.e. sequences of actions with
variable objects), and we proposed a new approach to validate the generated macros
(Chapter 5). This approach proved to be successful in eliminating problematic macro-
operators. However, we found out that the frequency alone may not provide a consistent
selection of useful macro-actions.

We discussed the problems of using classic pattern mining algorithms in planning. De-
spite the efforts, we find ourselves in a dead-end with the selection process because the
pattern mining filtering structures are not adapted to planning. Then, to answer the sec-
ond research question, we proposed a novel approach which ensures to find the frequent
sequences of operators from a set of plans without a loss of information about their
characteristics (Chapter 6). It proved to successfully mine macro-operators of different
lengths for four different domains and thanks to the selection phase, be able to deliver a
positive impact on the search time (underestimated gain between 7 times and 200 times
faster) with little influence on the quality of the plans (plan length difference was not
more than 5 actions).

In the following, we first provide a reminder of our contributions. Then, we present
the limitations of this work and finally, we introduce perspectives for future research
directions.

7.1 Summary of contributions

7.1.1 Exploration of the link between macro-action frequency
and macro-action utility

We proposed a framework to extract macro-actions (i.e. sequences of actions with
known objects) via sequential pattern mining algorithms. We based the selection phase
on filter structures provided by sequential pattern mining. On the one hand, the sup-
port, which filters patterns based on the frequency of apparition. On the other hand, the

144

closed frequent pattern set, which includes only patterns that are not included in another
pattern having the same support.

Under this framework, i.e. the construction of macro-actions from extracted sequences
of actions (not necessarily adjacent), we found out that regardless of the domain, the
frequency alone may not provide a consistent selection of useful macro-actions. If there
was a link between macro-actions frequency and macro-actions utility, from our study,
we can conclude that the effect of this link is very weak compared to the negative effect
caused by the lack of macro-actions generality and the use of non-adjacent actions.

7.1.2 Removing problematic macro-operators

In an attempt to diminish the influence of confounding factors (i.e. the lack of macro-
actions generality and the use of non-adjacent actions) from the precedent study, we
generalised macro-actions into macro-operators (i.e. sequences of actions with variable
objects). We noticed that some of the created macro-operators were invalid (i.e. they
cannot be applied to solve a problem) because of the extraction of sequences of not
adjacent actions leading to the incompatibility of some predicates.

We proposed a formalism to identify three types of problematic macro-operators: the

incompatible macro-operators, the useless macro-operators and the redundant macro-

operators. The incompatible macro-operators cannot be applied during planning search

because of the incompatibility of their predicates (e.g. handempty incompatible with

put-down blockA). The useless macro-operators can be applied during planning search,
but their application is equivalent either to do nothing (i.e. no changes in the state) or

to use a primitive operator. The redundant macro-operators can be applied during plan-

ning search, but their application is equivalent to use a simpler macro-operator (i.e. a

macro-operator with fewer actions).

The first type results from macro-operators created from sequences of actions whose
actions do not appear contiguously in the solution plans. The second and the third type
result from macro-operators created either from sequences of actions extracted from
non-optimal solution plans or from sequences of actions whose actions do not appear
contiguously in the solution plans.

From the definition of our formalism, we developed an algorithm to reduce problematic
macro-operators by using a method which automatically detects predicates incompati-
bility. This approach proved to be successful in reducing problematic macro-operators.
Because of its generality, it could be used in other planning applications.

However, we noticed that the use of sequential pattern mining led to a lack in the detec-
tion of all instances of a macro-operator. This conducted to an unreliable computation
of the support. Despite the efforts, we find ourselves in a dead-end with the selection
process because the pattern mining filtering structures are not adapted to planning.

145

7.1.3 METEOR framework

We provided a domain-independent learning framework that identifies sequences of ac-
tions (even non-adjacent) from past solution plans and selects the most useful macro-
operators, based on a priori evaluation, to enhance the planning domain. It consist of
two phases:

1. Extraction phase: We developed ERA, a pattern mining inspired algorithm
which extracts rich patterns with attribute structures. It allows then to extract
macro-operators from plan recycling and their characteristics (support, sequences
ids where the macro appears and number of apparitions by sequence). We believe
that this algorithm without the planning module can be a contribution to the pat-
tern mining community.

2. Selection phase: We presented a formalism for the estimation of the trade-off
between the branching factor increase and the search depth reduction not only
for a single macro (as usually presented in the literature) but for a set of macros.
By following this formalism, we developed an algorithm to choose an optimal
macro-operator set that maximises our metric based on the a priori node gain.

Below, we highlight the advantages of our work:

o Planner independent, we do not need to modify the planner’ structure.

e Domain-independent, the framework does not need a priori knowledge on the
domain.

e Non-adjacent actions, we can identify routines from a sequence of adjacent and
non-adjacent actions.

e A priori evaluation, there is no need to re-solve past problems to select the most
useful routines.

e Anoptimal set of routines, we can identify not only useful routines but the optimal
set to enhance a domain.

Our framework has proven to successfully mine macro-operators of different lengths
for four different domains (barman, blocksworld, depots, satellite) and thanks to the
selection phase, be able to deliver a positive impact on the search time (underestimated
gain between 7 times and 200 times faster) with little influence on the quality of the
plans (plan length difference was not more than 5 actions).

We present a comparative table between METEOR and other macro learning methods in
Table 7.1 and Table 7.2. We observe that METEOR framework provides the most advan-
tageous in the presented features. However, our framework presents some limitations
that will be discussed in the next section.

146

“JueAd[aaI :- Axadoad aaey jou seop :O
Kadoad sey Ajented :@ Luxodoid sey :@ “spoyjowr Surured] o1oewW JAYI0 pue JYOILAIN Uoomiaq 9[qer aaneredwo)) 1/ 9[qe],

Surdderroao-uou C wisua jo ouou | y3u9 [enba Junoo Jajourered 7=Su9| SOIOBUL P23o9[as
: oIoBW J[3UIS pue yi3u9| 9} U0 UONOILNSNY
SOIOBW PIJI[As JO Joquinu

L O O O O O paialas 6 124

9U) UO jrwitf prey oN
Kouanbaiy oxoew uo AJuo
(] - (] ® - - 10U Paseq uonen[eAd
11014d v AN OIOBIN

so1oBW JO J3s ' JO AJI[nn oy}
Jren[eas 0} 9[qede)

AN o10BW 9)JBWIS? 0] UreWop
o @) o <) @) @) pauswdne s swapqoid
QA[OS 0} PIAU J0U S0
SOIORW PAJLIAUIS JO YISU[

[O [O O O
9Y) U0 Jrwut] prey oN
SOIoBRW PIAIRIAUASG JO
° ° o ° ° ° poyIatias 3o #
9y U0 it prey oN
suonoe juddelpe-uou
[O [O O O Sun :
urpuey jo ajqede)
D [[O () ()] juapuadapur ouue[q
L L L L L L Juapuadapur-urewrog
S S = i
S s & F & 0
& s & ¢ 3 &
5 & N 8 g &

147

1L 91qeL 2aneredwod ur pajuasaid sayoeordde ay) Jo MATAIAQ 7L QIqBL

uonewnse jyoopen totd v | wiyiios|e paseq JAd (VId FOHLAN
wipered aseqeiep | (L10T T8 10 UUBWJOH)
7 P3u9[Jo oxoew juanbaij 1SON K1omb sonpar depy T —
d “ d

oay0 juauoduwrod SuewaBuEINe 1IN0 (10T “TR 19 vdayD)
puE JUSWI[3ULIUS [BUONB[Y INOIN
"SOTISLINAY UO paseq JrweuAp SiSA[eUE SWEIs-N (€107 “Te 12 oe[n(Q)
pUE 93BIIA0D 0IOBW JUISN dNBIS AL swead-N
3urajos worqoad wgLoS[e onouen (L00T “Te 19 U0IMAN))
3ururen uo QOUBWIOJIJ : : MIAVZIM

w Q C.
HHAOS WRIQ0T uonoensqe juduodwo)) (2600€ [¥ 12 e2108D)
3ururen uo QOUBWIOJIdJ ada-vD

UoI309[aS

UOI}BIdUAD)

yoroadde pasn

148

7.2 Limitations

7.2.1 Incompatibilities for inertia predicates

As defined by Koehler and Hoffmann (1999), inertia predicates represent propositions
that are never produced or consumed by any operator. In the implementation of the
incompatibility graph (see Chapter 5 Section 5.6), these predicates can be added to a
predicate layer L, | during an expansion phase since they can be preconditions of some
actions of the action layer L,. During the link phase, however, inertia predicates can be
linked neither to the top action layer because they do not appear as positive effects of
any action, nor to the bottom action layer because they do not appear as negative effects
of any action. Therefore, we cannot infer any incompatibilities for inertia predicates.

Besides, the transitivity property cannot infer any incompatibilities for inertia predicates
either. In order to apply this property to two predicates, we must know part of their
incompatibilities. We extract initial incompatibilities from the incompatibility graph,
but as stated before this method cannot infer any incompatibilities for inertia predicates.

However, our main goal is to remove problematic macro operators. We eliminate them
after detecting some incompatible predicates and the specific characteristics for each
kind of problematic macro operator. In other words, to decide on whether or not a
macro operator is problematic, we need to have at least two predicates mutually in-
compatible in its preconditions. Experimentally, we observed that most problematic
macro-operators were captured.

7.2.2 Slight modification of the planner

The formalism proposed in Chapter 6 supposes that the heuristic has the same behaviour
with or without macro-operators. Then, to have this assumption as accurate as possible,
we ignore macro-operators during the heuristic computation. Besides that, we do not
need to change any other structure of the planner or the way the planner behaves, i.e.
apart from the heuristic computation, macro-operators and operators are indistinguish-
able. For a relaxation-based heuristic, we believe that not using macro-operators in the
heuristic is an advantage rather than a limitation since they may cause more plateaus
and thus, loose part of their guiding power for the search.

7.2.3 Set of non overlapping macro-operators

The selection phase of our METEOR framework is based on a formalism for the es-
timation of the trade-off between the branching factor increase and the search depth

149

reduction not only for a single macro (as usually presented in the literature) but for a set
of macros. The algorithm of this selection phase chooses an optimal macro-operator set
that maximises our metric based on the a priori node gain.

We, therefore, propose a new method to choose macro-operators that will enhance the
planning domain. Although our method can only be applied to find a set composed
of non overlapping macro-operators (see Chapter 6 Section 6.5), i.e. a set where each
operator never appears more than once, it is the only limitation. Indeed, we have no
limitations on the length of macro-operators (Dawson and Siklossy, 1977; Botea et al.,
2005a; Dulac et al., 2013), or on the number of preconditions of the operators that
compose a macro-operator (Jonsson, 2009) or on the number of macros to add to the
planning domain (Dulac et al., 2013; Chrpa et al., 2014). We believe that this limitation
is not too restrictive. Intuitively, macros sharing operators will probably have the same
or a similar objective.

7.3 Perspectives

We have identified several research perspectives to extend this work.
Extend the study of the link between the frequency of a macro and its utility.

In this work, we explored the link between macro-action frequency and macro-action
utility, for macro-actions built from sequences of actions (not necessarily adjacent) ex-
tracted using pattern mining algorithms on a set of solution plans.

More studies are required to investigate the link between frequency and utility under this
framework, i.e. the construction of macro-actions from extracted sequences of actions
(not necessarily adjacent), without the influence of confounding factors such that the
lack of macro-actions generality and the presence of invalid macro-actions.

The study can be extended in different ways:

e the link between the utility of valid macro-actions built from sequences of actions
not necessarily adjacent and their frequency.

o the link between the utility of valid macro-operators built from sequences of
actions not necessarily adjacent and the reliable computation of their frequency.
Notice that we do not recommend the use of pattern mining algorithms since
they lead to an unreliable computation of the frequency via the macro-action
generalisation method.

Study of different metrics for the total gain of a set of macro-operators.

150

In the selection phase of our METEOR framework, we first compute the macro set gain
for each plan in the set of solution plans and then, we aggregate these gains to obtain
the macro set gain over the set of solution plans. This lead us to a metric based on the
arithmetic mean. However, outliers could influence this metric. For example, it could
favour a macro with an exceptional utility on some solution plans but very limited utility
on the rest of the set of solution plans.

Some metrics may be more appropriate to the great difference in the gains found in
a set of solution plans. For example, the average log (geometric mean) of the gains
could respond better to low gains. Another metric could be a weighted arithmetic (or
geometric) mean which takes into account the complexity of each planning task. For
example, a gain on a very difficult plan may be more valuable than a similar gain on a
trivial plan. Finally, we could prefer a macro with more consistent performances than a
macro with very erratic utility (i.e. sometimes very high but sometimes very low utility).
This would lead to a metric based on the weighted difference between the average gain
and the gain standard deviation.

Incremental learning

Intuitively, the macro-operators extracted and selected are dependent on our learning set
of solution plans. Therefore, the effectiveness of macro-operators used on a planning
domain is dependent on how well the problems in the training set represent the problems
encountered during the application.

In addition, it is conceivable that in real learning, the objectives to be met could change
periodically. Let us consider as example, a change in the products to be manufactured
in a production line. A production line is in charge of three tasks: A, B and C. A change
occurs: task A is removed and a new task D is added. The system must therefore forget
the macro-operator that achieves task A and learn the macro-operator that achieves task
D.

To overcome this problem, an incremental learning system could be implemented. First,
the learning set of solution plans would consist of a sliding window of n past plans.
Second, every m solved plans the system would forget its experiences and start a new
learning process from scratch. Obviously, n and m would be very important parameters
and they will be one of the main concerns of this study.

For small values of n, the computation time would be low as well as the reaction time,
but learning would not be robust against small variations in the objectives. For large
values of n, there would be some delay between an actual changing objective and the
adaption of the system. Finally, we would like m as small as possible depending on the
computation time constraint on 7.

151

Benchmark domains

These benchmarks problems were taken from past International Planning Competitions'.
For each benchmark domain, we present:

e A description.

e The generator parameters.

e The domain objects and their respective types.

e A graphical description of the operators domain.

A.1 Barman

A.1.1 Description

A robot barman manipulates drink dispensers, glasses and a shaker. The goal is to find
a plan of the robot’s actions that serves a desired set of drinks. In this domain deletes of
actions encode relevant knowledge given that robot hands can only grasp one object at
a time and given that glasses need to be empty and clean to be filled.

Thttp://icaps-conference.org/index.php/Main/Competitions

153

Parameters

e number of cocktails

e number of ingredients

Objects

Left hand

Robot Barman
N Right hand

Dispensers

Glasses
Container
Shaker

Figure A.1: Barman objects

//O bjfa\\

hand hand }/erage dispenser }taini
ingredient cocktall shot shaker

Figure A.2: Barman object types

Operators

154

Rarman

container
m‘ :action GRASP
—_—
hands :action GRASP
| | _—
h1 g g
=5 dispenser

:action POUR-SHOT-TO-CLEAN-SHAKER
G Qlevel 1

level 1
level 0

:action POUR-SHOT-TO-USED-SHAKER

level 1

h1 g :action PREFILL-SHOT g
h2
i

:action EMPTY-SHOT g@

h1 !57 :action CLEAN-SHOT
%

h2

h1
:action SHAKE A
—_— cod“a\

h2
:action POURTSHAKED-TO-SHOT

A\ —_—
TG
level P o«

level P1

v}

:action EMPTY-SHAKER :action CLEAN-SHAKER
_ _
level P
level P1 level P1 h2 ‘ﬁg
g@'
Figure A.3: Barman operators

155

A.2 Blocksworld

A.2.1 Description

It consists of a set of blocks settled on a table and a mechanical hand. The hand can
move one block at a time to perform one of the following actions: place it on another
block, place it on the table, pick it from the table or removes it from another block. The
goal is to build one or more vertical stacks of blocks.

Parameters

e number of blocks

Objects
e Block

Operators

Rloelbaworld

:action PICK-UP

g@' _—

:action PUT-DOWN
—

:action UNSTACK
—_—
% %
:action STACK
(—

Figure A.4: Blocksworld operators

A.3 Depots

A.3.1 Description

This domain is a combination of a transportation domain and the Blocksworld domain.
The transportation element of the task is to move crates from one depot to another using

156

trucks. The blocksworld element arises due to the need to stack and unstack crates,
with the amount of space on the ’table’ being limited by the number of pallets at each
location. Hoists server the function of the robot arm, doubling as the mechanism by
which crates are loaded/unloaded onto/from trucks. The goal is to find a plan where
crates are stacked appropriately at their destinations.

Parameters

e number of depots

e number of distributors
e number of trucks

e number of pallets

e number of hoists

e number of crates

e number of ingredients

Objects
Hoist
Truck
Pallet } Surface
Crate
Depot } Place
Distributor
Figure A.5: Depots objects
Object
Place Locatable
Depot Distributor Truck Hoist Surface
Pallet Crate
Figure A.6: Depots objects types
Operators

157

!} :action LIFT
_
-y
:action DROP
P —
place
:action LOAD
_— .
:action UNLOAD !
P
o* L/“ 0’
place truck place truck
D :action DRIVE D
D ———
lace X
P placeY
I o l .I ol
truck truck

Figure A.7: Depots operators

158

A.4 Satellite

A.4.1 Description

In this domain there is a set of satellites equipped with different instruments, which
can operate in different modes. The goal is to acquire desired images, dividing the
observation tasks between the satellites, based on the capabilities of their instruments.

Parameters

e number of satellites

e number of instruments
e number of modes

e number of targets

e number of observations

Objects

satellite

instrument

direction

e mode

Operators

159

:action TURN_TO

_—

:action TAKE _IMAGE

(mode)
@ infrared, etc
&

:action CALIBRATE

calibration
target 5
S
/
&
&
=
&
6\

Figure A.8: Satellite operators

160

direction’Y

Understanding results: operators
translation and full report

B.1 Barman

B.1.1 Operators translation

: grasp

: leave

: fill-shot

: refill-shot

: empty-shot

: clean-shot

: pour-shot-to-clean-shaker
: pour-shot-to-used-shaker
: empty-shaker

: clean-shaker

: shake

: pour-shaker-to-shot

PO WO NOOPDdWNEFLO

e

161

(uetd/gg" 71 Fo ueew) suorjtxedde Te3ol 6. pue 0g 3xoddns yta 8zOT--£-L-g-G-SUOTIOE-{-0IORW
(wetd/0° 7 Fo ueew) suorztredde Tezo3 g pue (g 3xoddns YiTA LZ0T--g-G-9-g-SUOTIOR-{-0IDRUW
(wetd/0°7 Fo ueew) suoritredde Tezol Gy pue Gy 3xoddns Y3TA 9Z0T--Z-G-9-0-SUOTIOR-{-0IDRU

(wetd/0' 7 Jo uwesw) suoritxedde Te3z01 oG pue g 2xoddns YITM GZOT--6-8-T]-SUOTIDE-L-0IDRW
(wetd/0'1 Jo uesw) suotqtxedde Tezoa oG pue g 2xoddns YITM $ZOT--8-TT-0T-SUOTIDE-EL-OIDRW
(wetd/0'z o uwesw) suoritxedde Te3z01 Q0T pue oG 2xoddns yYatM €Z0T--L-Z-G-SUOTIDE-L-O0IDRW
(wetd/0'7 Jo uesw) suotitxedde Te3z0q oG pue (oG 1xoddns YITM gZOT--9-Z-0-SUOTIOR-L-OIDRU
(wetd/0'7 Jo uweesw) suoritxedde Te3z0q oG pue (oG 1xoddns yaTMm [ZOT--G-9-Z-SUOTIOR-EL-OIDRU
(wetd/0'7 Jo ueew) suoritxedde Tejz0q gy pue gy 1xoddns yaTm QZOT--T-E£-L-SUOTIOR-L-OIDRU
(wetd/0"T o uesw) suoritredde Tejol oG pue Qg 21xoddns YITM GT0T--TT-0T-0-SUOTIDOE-L-0IDBW
(wetd/0'T Fo uweew) suorqtxedde Tejzoq gy pue gy 1xoddns yaTm QIQT--0-6-8-SUOTIOR-L-OIDRU
(wetd/0 7 Fo uweew) suorqtxedde Tezoq oG pue QG 1xoddns yaTm LJQT--T-6-8-SUOTIOR-EL-OIDRU
(wetd/0 7 Fo uweew) suorqtxedde Tez0q Gy pue Gy 1xoddns yaTM 9TQT--G-9-0-SUOTIOR-EL-OIDRU
(wetd/0 'z Fo uweew) suorqTxedde Tea0q QQT pue 0§ 1xoddns yYaTMm GIQT--Z-G-9-SUOTIDE-E£-OIDRW
(wetd/gG 1 Fo ueew) suorqTredde Tejoq g, pue oG 1xoddns yYatm HTQT--£-L-Z-SUOTIDE-E£-0IDRW
(wetd/0 1 Fo ueew) suorqtxedde Tezoq oG pue Qg 2xoddns YITM €IQT--9-Z-SUOTIDE-Z-O0IDRW
(wetd/0 1 Fo ueew) suorqtredde Teizoq oG pue Qg 2xoddns YITM ZIQT--6-8-SUOTIDE-Z-O0IDRW
(uetd/Q" 7 Fo ueew) suorjriedde Tejo3 Gy pue Gy 3xoddns Y3TM T[TQT--9-0-SUOTIOR-Z-0IDRU
(uetd/Q" T Fo ueew) suorjriedde Tejol OG pue (G 3xoddns Y3ITM QTQT--8-TT-SUOTIOE-Z-OIORW
(wetd/0°z Fo ueew) suorztredde Tezo3 QT pue G 3xoddns Y3ITA 600T--Z-G-SUOTIOR-Z-O0IORU
(wetd/0 7 Jo uesw) suotitxedde Te3zo01 gy pue g§ 2xoddns yiTm 800T--0-6-SUOTIDE-Z-0IORW
(wetd/gG' 1 o uesuw) suoriTxedde Te3o03 g, pue oG 21xoddns yatm JQQT--£-.-SUOTIDOB-Z-OIDBU
(wetd/0 1 Jo uesw) suotqtxedde Tezoa oG pue (g 2xoddns YiTM 9QQT--T-6-SUOTIDE-Z-OIORW
(wetd/0'7 Jo uesw) suoriixedde Te3zo0a oG pue (g 2xoddns yaTM GOOT--0T-0-SUOTIDOEB-Z-OIDEU
(wetd/0'z Jo uesw) suotqtxedde Tezoa QT pue oG 2xoddns yYITM $0QT--G-9-SUOTIOEB-Z-OIDRU
(wetd/0'7 Jo uesw) suotqtxedde Te3zoa g pue g 2xoddns YITM €00T--Z-0-SUOTIDE-Z-OIDRW
(wetd/0"T Fo uesw) suoritxedde Tejol oG pue QG 21xoddns YITM ZOOT--TT-0T-SUOTIDOB-Z-OIDBU
(wetd/0'z Jo uesw) suorqtxedde Tezoq QT pue oG axoddns yYlTM TQQT--L-Z-SUOTIOEB-Z-OIDRU
(wetd/0'T Fo ueew) suorqtxedde Tezo3 gy pue Gf 3xoddns Y3TM QQOT--T-£-SUOTIDE-Z-OIDRW

0IoR)
0IoR)
0IoR)
0IoR)
0IoR®)
0IoR)
0IoRe)
0IoRe)
0IoRe)
o0IoRe)
0IoRe)
0IoRe)
0IoR)
0IoRe)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoRe)
0IoR)
0IoRe)
o0IoRe)
0IoRe)
o0IoRe)
0IoRe)

pPe3doeIjlxXxe soJdvW g9

go3utuiiN T1'd

162

(uetd/0 1 Jo uesw) suotitxedde Tejzoa gy pue gf axoddns yaTm [G0T--T-£-.-C-G-9-2-
(wetd/0°7 Fo ueew) suorirredde Tejo3 gy pue Gy 3xoddns yaTM 0G0T--T-€-L-CT-G-9-
(uetd/0'1 Jo uesw) suotatxedde Tejoa gy pue gf axoddns YITM 6%0T--€-L-2-G-9-C-
(uetd/0 1 Jo uesw) suotatredde Tejoa gy pue g axoddns yatm 8%0T--0-6-8-TT-0T-

(uetd/0'1 Jo ueosw) suorqtxedde Tejol gy pue gf axoddns yatm LH0T--T-€-L-C-G-
(wetd/0 1 Fo ueosw) suorqtxedde Tejol gy pue gf axoddns yaTM 9%0T--£-.-3-G-9-
(uetd/0 1 Fo ueosw) suoratredde Tejoa g pue Qg axoddns YITM GHOT--T-6-8-TT-0T-
(wetd/0 1 Fo uweesw) suorqtxedde Tejzol g pue Qg 3xoddns yaITM $H0T--L-Z-G-9-3-
(wetd/0 7 Fo uweew) suorjtxedde Teizo0q gy pue gy 3xoddns yaTMm €H0T--T-£-L.-C-
(wetd/0 1 Fo ueesw) suorqtxedde Tejol gy pue g§ axoddns UyITA ZHOT--0-6-8-TT
(wetd/0 7 Fo weew) suorjrredde Te3o3 0§ pue 0§ 3xoddns yitm THOT--L-2-G-9-
(wetd/0 1 Fo uweew) suorqtxedde Teazoq oG pue QG 2xoddns yaTMm QH0T--Z-G-9-C-
(uetd/Q 1 Fo ueew) suoritxedde Te3z03 QG pue QG 3xoddns yaTm GE0T--T-6-8-TT
(uetd/Q' 7 Fo ueeuw) suorqTxedde Tea03 G pue G axoddns yatM 8€0T--L-C-G-9-
(uetd/8G°'7 Fo ueauw) suordTxedde Tejol g, pue Qg axoddns yatm ,€0T--€-.-3-G-

-0

0-
¢-
0-
0-
9-
¢-
0-
0-
G-
I-
¢~
0-
-0T-
0
9

SUOT]0®-8-0IORW
SUOT30®-) -0JIORU
SUOT10®-) -0JIORU
SUOT10®-9-0JI0ORU
SUOT10®-9-0JI0ORU
SUOT10®-9-0JIORU
SUOT10®-9-0JIDORU
SUOT10®-9-0JIDORU
SUOT10®-G-0JIDORU
SUOT10®-G-0JIORU
SUOT10®-G-0JIORU
SUOT10®-G-0JIORU

SUOT10®-G-0IDRW

UOT3O®-G-0IdRU

S
SUOT30®-G-0IDeW

(wetd/0° 7 Fo ueew) suorirredde Tezo3 g pue (g 3xoddns U3ITA 9€0T--6-8-TT-0T-0-SUOTIOR-G-OIORW
(wetd/0° 71 Fo ueew) suorzrredde Tezo3 g pue (g 3xoddns YITA GEOT--T-6-8-TT-SUOTIOR-F-0I0RU
(wetd/0" T o uesw) suoratredde Tejol g pue gf 1xoddns YITM HEOT--0-6-8-TT-SUOTIOB-H-0IOCW

(wetd/0 1 Jo uesw) suotqtxedde Tezo01 gy pue gf 2xoddns YITM €€0T--T-£-L-Z-SUOTIDE-{-0IORW
(uetd/0'1 Fo uesw) suotatxedde Tezoa og pue g 2xoddns YITM ZgOT--G-9-Z-0-SUOTIDE-{-0IORW
(wetd/0"T Jo uesw) suoratredde Tejol oG pue Qg 21xoddns YITM T€0T--8-TT-0T-0-SUOTIOB-{-OIDBUW
(wetd/0 'z o uesw) suoratredde Tezoa QT pue 0§ 2xoddns yY3ITM QEOT--L-C-G-9-SUOTIDB-FH-O0IOBW
(wetd/0" T o uesw) suoritredde Tejol oG pue Qg 21xoddns YITM GZ0OT--6-8-TT-0T-SUOTIOB-F-OIDBUW

0IoR)
0ID®J
o0IoRe)
0IoRe)
0IoRe)
0IoRe)
0IoRe)
0IoRe)
0IoRe)
0IoR)
0IoRe)
0IoRe)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoR)
0IoRe)]
0Io®)]
o0IoRe)
0IoRe)
o0IoRe)

163

B.1.3 Macro analyser log

macro-2-actions-3-1--1000 : total Gain = 0.09577121805998921
macro-2-actions-2-7--1001 : total Gain = 0.011679458833872667
macro-2-actions-10-11--1002 : total Gain = 0.8413896113524574
macro-2-actions-0-2--1003 : total Gain = 0.07146436302150379
macro-2-actions-6-5--1004 : total Gain = 1.306082546379102
macro-2-actions-0-10--1005 : total Gain = 0.9260495081948406
macro-2-actions-9-1--1006 : total Gain = 0.40335631667120797
macro-2-actions-7-3--1007 : total Gain = 0.06398043137259492
macro-2-actions-9-0--1008 : total Gain = 1.6838690121344482
macro-2-actions-5-2--1009 : total Gain = 3.311917328034674
macro-2-actions-11-8--1010 : total Gain = 0.8413896113524574
macro-2-actions-0-6--1011 : total Gain = 0.6765093034230286
macro-2-actions-8-9--1012 : total Gain = 0.40335631667120797
macro-2-actions-2-6--1013 : total Gain = 0.3289867762519236
macro-3-actions-2-7-3--1014 : total Gain = 0.06091256610049259
macro-3-actions-6-5-2--1015 : total Gain = 4.058107415362549
macro-3-actions-0-6-5--1016 : total Gain = 2.38894238784685
macro-3-actions-8-9-1--1017 : total Gain = 0.7985696613288876
macro-3-actions-8-9-0--1018 total Gain = 2.9465929819029277
macro-3-actions-0-10- 11--1019 : total Gain = 2.032888067461868
macro-3-actions-7-3-1--1020 : total Gain = 0.0028072000981503795
macro-3-actions-2-6-5--1021 : total Gain = 0.6562502368423868
macro-3-actions-0-2-6--1022 : total Gain 0.15401426663115156
macro-3-actions-5-2-7--1023 : total Gain 11.349024474245716
macro-3-actions-10-11-8--1024 : total Gain = 1.602105675220187
macro-3-actions-11-8-9--1025 : total Gain = 1.602105675220187
macro-4-actions-0-6-5-2--1026 : total Gain = 4.312695368579807
macro-4-actions-2-6-5-2--1027 : total Gain = 0.2127831090586036
macro-4-actions-5-2-7-3--1028 : total Gain = 30.757761367764267
macro-4-actions-10-11-8-9--1029 : total Gain = 3.076830260901096
macro-4-actions-6-5-2-7--1030 : total Gain = 16.077352064581554
macro-4-actions-0-10-11-8--1031 : total Gain = 3.8379972491745047
macro-4-actions-0-2-6-5--1032 : total Gain = 0.33483362387540466
macro-4-actions-2-7-3-1--1033 : total Gain = 0.028242245072074637
macro-4-actions-11-8-9-0--1034 : total Gain = 5.294994215979314
macro-4-actions-11-8-9-1--1035 : total Gain 3.076830260901096
macro-5-actions-0-10-11-8-9--1036 : total Gain 7.305970576066381

macro-5-actions-6-5-2-7-3--1037 : total Gain = 55.223603705058615
macro-5-actions-0-6-5-2-7--1038 : total Gain = 7.99108758229327
macro-5-actions-10-11-8-9-1--1039 : total Gain = 5.957312015759768
macro-5-actions-0-2-6-5-2--1040 : total Gain = 0.4340652545671022
macro-5-actions-2-6-5-2-7--1041 : total Gain = 0.47017127308198825
macro-5-actions-10-11-8-9-0--1042 : total Gain = 9.692475087497211
macro-5-actions-5-2-7-3-1--1043 : total Gain = 10.057982944920033
macro-6-actions-0-2-6-5-2-7--1044 : total Gain = 0.9672359175489974
macro-6-actions-0-10-11-8-9-1--1045 : total Gain = 14.016530032193836
macro-6-actions-2-6-5-2-7-3--1046 : total Gain = 1.0449423879929363

164

7-3-1--1047 : total Gain = 7.7249235709277855
1-8-9-0--1048 : total Gain = 17.980106909866578
-5-2-7-3--1049 : total Gain = 2.167779240066138
2-7-3-1--1050 : total Gain = 2.3355802641005123
5-2-7-3-1--1051 : total Gain =

macro-6-actions-6-5

macro-6-actions-0-1

macro-7-actions-0-2-
6 _
2

macro-7-actions-2-

macro-8-actions-0- 4 .859857286152655

B.1.4 Recommended Optimal Macro Set

macro-6-actions-0-10-11-8-9-0--1048 with gain : 17.980106909866578
macro-5-actions-6-5-2-7-3--1037 with gain : 55.223603705058615
for total optimal gain : 96937.14826813425

B.2 Blocksworld

B.2.1 Operators translation

: pick-up
: put-down
: stack

: unstack

WN—=O

B.2.2 Mining Log

6 macros extracted

Macro : macro-2-actions-3-1--1000 with support 50 and 149 total apparitions

(mean of 2.98/plan)

Macro : macro-2-actions-0-2--1001 with support 47 and 114 total apparitions

(mean of 2.425531914893617/plan)

Macro : macro-2-actions-3-2--1002 with support 50 and 215 total apparitions

(mean of 4.3/plan)

Macro : macro-3-actions-0-2-3--1003 with support 42 and 60 total apparitions

(mean of 1.4285714285714286/plan)

Macro : macro-3-actions-3-2-3--1004 with support 43 and 74 total apparitions

(mean of 1.7209302325581395/plan)

Macro : macro-3-actions-3-1-3--1005 with support 43 and 76 total apparitions

(mean of 1.7674418604651163/plan)

165

B.2.3

macro-
macro-
macro-
macro-
macro-
macro-

Macro analyser log

2-actions-3-1--1000 : total Gain =

2-actions-0-2--1001 : total Gain
2-actions-3-2--1002 : total Gain

3-actions-0-2-3--1003 : total Gain

0.15271442029409768
0.014905674155709975
0.006369325185660316
= 0.0004495624534990441

3-actions-3-2-3--1004 : total Gain = 4.585863731632646e-05

3-actions-3-1-3--1005 : total Gain =

B.2.4 Recommended Optimal Macro Set

macro-2-actions-3-1--1000 with gain :
macro-2-actions-0-2--1001 with gain :

for total optimal gain :

B.3

B.3.1

W N~ O

Depots

Operators translation

drive
lift

: drop
: load
: unload

B.3.2 Mining Log

10 macros extracted

Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro

: macro-2-actions-3-0--10

00

of 1.7916666666666667/plan)

: macro-2-actions-3-1--10

01

of 2.4893617021276597/plan)

: macro-2-actions-1-3--10
of 5.12/plan)
: macro-2-actions-4-2--10
of 2.32/plan)
: macro-2-actions-0-3--10

02
03

04

166

with

with

with

with

with

support
support
support
support

support

48

a7

50

50

46

0.0028053793719730632

0.15271442029409768
0.014905674155709975
0.3813509128794204

and 86 total apparitions
and 117 total apparitions
and 256 total apparitions
and 116 total apparitions

and 100 total apparitions

(mean of 2.1739130434782608/plan)

Macro : macro-3-actions-1-3-1--1005

(mean of 1.891304347826087/plan)

Macro : macro-3-actions-3-1-3--1006

(mean of 1.75/plan)

Macro : macro-3-actions-1-3-0--1007

(mean of 1.7916666666666667/plan)

Macro : macro-3-actions-1-3-1--1008

(mean of 1.75/plan)
Macro : macro-4-actions-1-3-1-3--1009 with support 43 and 76 total apparitioms
(mean of 1.7674418604651163/plan)

B.3.3 Macro analyser log

macro-2-actions-3-
macro-2-actions-3-
macro-2-actions-1-

macro-2-actions-4-
macro-2-actions-0-

macro-3-actions-1-3- 1——1005 :
macro-3-actions-3-1-3--1006 :
macro-3-actions-1-3-0--1007 :
macro-3-actions-1-3-1--1008 :
macro-4-actions-1-3-1-3--1009 :

0--1000 :
: total Gain
3--1002 :
2--1003 :

1--1001

3--1004

total Gain =

total Gain
total Gain
total Gain =

total Gain
total Gain =
total Gain
total Gain =
total Gain

0.
3.

with support 46 and 87 total apparitions
with support 44 and 77 total apparitions
with support 48 and 86 total apparitions

with support 48 and 84 total apparitions

17963054581634705
2698550109114723

14.107121929491381

1.
1.

e o oo

606629581472632
059255162057205
.51992081245396
.633222610787586
.8685936682235017
.88311731220142
19.524723021667302

B.3.4 Recommended Optimal Macro Set

macro-4-actions-1-3-1-3--1009 with gain :

macro-2-actions-4-2--1003 with gain :

for total optimal

B.4 Satellite

gain :

B.4.1 Operators translation

: turn_to

: switch_on
: switch_off
: calibrate
: take_image

P WN RO

167

19.524723021667302
1.606629581472632
1602.106171520573

B.4.2 Mining Log

13 macros extracted

Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean
Macro
(mean

: macro-2-actions-0-3--1000 with support 43 and 64 total apparitions

of 1.4883720930232558/plan)

: macro-2-actions-4-0--1001 with support 50 and 287 total apparitioms

of 5.74/plan)

: macro-2-actions-1-3--1002 with support 50 and 80 total apparitions

of 1.6/plan)

: macro-2-actions-3-0--1003 with support 50 and 79 total apparitions

of 1.58/plan)

: macro-2-actions-0-4--1004 with support 50 and 331 total apparitions

of 6.62/plan)

: macro-3-actions-1-3-0--1005 with support 50 and 79 total apparitions
of 1.58/plan)

: macro-3-actions-3-0-4--1006 with support 50 and 76 total apparitions
of 1.52/plan)

: macro-3-actions-4-0-4--1007 with support 44 and 100 total apparitions
of 2.272727272727273/plan)

: macro-3-actions-0-4-0--1008 with support 50 and 155 total apparitions
of 3.1/plan)

: macro-4-actions-0-4-0-4--1009 with support 43 and 96 total apparitions
of 2.2325581395348837/plan)

: macro-4-actions-3-0-4-0--1010 with support 48 and 63 total apparitions
of 1.3125/plan)

: macro-4-actions-1-3-0-4--1011 with support 50 and 76 total apparitions
of 1.52/plan)

: macro-5-actions-1-3-0-4-0--1012 with support 48 and 63 total apparitions
of 1.3125/plan)

B.4.3 Macro analyser log

macro-2-actions-0-3--1000 : total Gain = 0.9372774673267826
macro-2-actions-4-0--1001 : total Gain = 0.07481345300457362
macro-2-actions-1-3--1002 : total Gain = 2.735464323973243

macro-2-actions-3-0--1003 : total Gain = 0.6999653507639872
macro-2-actions-0-4--1004 : total Gain = 0.18351028000047603

macro-
macro-
macro-
macro-

3-actions-1-3-0--1005 : total Gain

3-actions-3-0-4--1006 : total Gain 1.302056574593954

3-actions-4-0-4--1007 : total Gain = 0.13488815352205202
7

7.836104007771476

3-actions-0-4-0--1008 : total Gain = 7.6151103258830905e-06

macro-4-actions-0-4-0-4--1009 : total Gain 0.0027120438914648346
macro-4-actions-3-0-4-0--1010 : total Gain = 0.013685838564669378
macro-4-actions-1-3-0-4--1011 : total Gain = 23.358343546987943

macro-5-actions-1-3-0-4-0--1012 :

168

total Gain = 29.82248891732685

B.4.4 Recommended Optimal Macro Set

macro-2-actions-1-3--1002 with gain : 2.735464323973243
macro-2-actions-0-4--1004 with gain : 0.18351028000047603
for total optimal gain : 34.00268187509237

169

Results from the graph-based
approach to remove problematic
macro-operators

C.1 Barman

C.1.1 Predicate incompatibilities

empty ?shotO | contains ?shotO ?ingredient0, contains ?shotO ?ingredient3, contains
?shot0 ?ingredient], contains ?shotO ?ingredient2

dispenses ?dispenser] ?ingredient?2 |

dispenses ?dispenser] ?ingredient] |

empty ?shotl | contains ?shotl ?ingredient3, contains ?shotl ?ingredient0, contains
?shotl ?ingredient2, contains ?shotl ?ingredientl

ontable ?shot0 | holding ?hand0 ?shot0, holding ?hand2 ?shot0, holding ?hand1 ?shot0
clean ?shotl | used ?shotl ?ingredient0, used ?shotl ?ingredient2, used ?shot1 ?ingredi-
entl, used ?shotl ?ingredient3

next ?levell ?levelO |

shaker-level ?shakerl ?levell | shaker-level ?shakerl ?level3, shaker-level ?shakerl ?level2,
shaker-level ?shakerl ?level0

dispenses ?dispenser0 ?ingredientO |

shaker-level ?shakerQ ?level2 | shaker-level ?shakerQ ?level3, shaker-level ?shaker(
?levell, shaker-level ?shakerO ?levelO

171

empty ?shaker] |

next ?level2 ?levell |

dispenses ?dispenserl ?ingredientO |

next ?levell ?level?2 |

shaker-level ?shakerO ?levell | shaker-level ?shaker0 ?level3, shaker-level ?shaker(
?evel2, shaker-level ?shakerQ ?levelO

dispenses ?dispenserQ ?ingredient! |

shaker-level ?shakerl ?levelO | shaker-level ?shaker1 ?level3, shaker-level ?shakerl ?level2,
shaker-level ?shakerl1 ?levell

next ?levelO ?level?2 |

handempty ?handO | holding ?hand0 ?shaker1, holding ?hand0 ?shaker2, holding ?hand0
?shaker(, holding ?handO ?shot0O, holding ?handO ?shaker3, holding ?hand0 ?shotl,
holding ?handO ?shot2

next ?levelQ ?levell |

clean ?shot0 | used ?shot0 ?ingredient0, used ?shot0O ?ingredient2, used ?shot0 ?ingredi-
entl, used ?shot0 ?ingredient3

shaker-level ?shaker0O ?levelO | shaker-level ?shaker0 ?level3, shaker-level ?shakerQ
Nevel2, shaker-level ?shakerO ?levell

handempty ?hand1 | holding ?hand1 ?shaker0, holding ?hand1 ?shaker3, holding ?hand1
?shotl, holding ?handl ?shaker2, holding ?handl ?shot2, holding ?handl ?shakerl,
holding ?hand1 ?shot0

clean ?shaker0 |

handempty ?hand2 | holding ?hand2 ?shaker3, holding ?hand2 ?shot2, holding ?hand2
?shakerl, holding ?hand2 ?shotl, holding ?hand2 ?shaker2, holding ?hand2 ?shot0,
holding ?hand2 ?shakerO

empty ?shaker0 |

dispenses ?dispenserQ ?ingredient2 |

ontable ?shotl | holding ?hand2 ?shot1, holding ?handO ?shot1, holding ?hand1 ?shot1
next ?level2 ?levelO |

shaker-level ?shaker1 ?level2 | shaker-level ?shaker]1 ?level3, shaker-level ?shakerl ?level0,
shaker-level ?shakerl ?levell

clean ?shakerl |

ontable ?shaker] | holding ?hand2 ?shakerl, holding ?hand1 ?shakerl, holding ?hand0
?shakerl

contains ?shotl ?ingredient0 | empty ?shotl, contains ?shotl ?ingredient2, contains
?shot1 ?ingredientl

contains ?shotl ?ingredientl | contains ?shotl ?ingredientO, empty ?shotl, contains
?shot1 ?ingredient2

unshaked ?shaker0 |

contains ?shotl ?ingredient2 | contains ?shotl ?ingredient0, empty ?shotl, contains
?shotl ?ingredientl

unshaked ?shakerl |

contains ?shot0 ?ingredient2 | contains ?shot0 ?ingredient0, empty ?shot0, contains
?shot0 ?ingredientl

ontable ?shaker0 | holding ?hand1 ?shaker0, holding ?hand2 ?shaker(, holding ?hand0
?shaker0

contains ?shot0 ?ingredient0 | empty ?shot0, contains ?shotO ?ingredientl, contains
?shot0 ?ingredient2

contains ?shot0 ?ingredientl | contains ?shotO ?ingredientO, empty ?shotO, contains
?shot0 ?ingredient2

shaker-empty-level ?shakerQ ?level2 |

172

shaker-empty-level ?shakerQ ?levelO |

shaker-empty-level ?shaker(?levell |

contains ?shaker] ?cocktaill |

contains ?shaker0 ?cocktaill |

shaked ?shakerl |

shaker-empty-level ?shakerl ?levelO |

contains ?shaker] ?cocktailO |

shaker-empty-level ?shakerl ?level2 |

shaked ?shakerO |

contains ?shaker0 ?cocktailO |

shaker-empty-level ?shakerl ?levell |

ontable ?shot2 | holding ?hand1 ?shot2, holding ?handO ?shot2, holding ?hand2 ?shot2
empty ?shot2 | contains ?shot2 ?ingredientl, contains ?shot2 ?ingredient0, contains
?shot2 ?ingredient2

clean ?shot2 | used ?shot2 ?ingredient0, used ?shot2 ?ingredient2, used ?shot2 ?ingredi-
entl

contains ?shaker0 ?ingredientO |

contains ?shakerl ?ingredient! |

contains ?shaker] ?ingredient?2 |

contains ?shaker0 ?ingredient] |

contains ?shaker0 ?ingredient?2 |

contains ?shaker] ?ingredientO |

contains ?shot2 ?ingredient0 | contains ?shot2 ?ingredientl, empty ?shot2, contains
?shot2 ?ingredient2

holding ?hand2 ?shotl | holding ?handl ?shotl, handempty ?hand2, holding ?hand2
?shot2, ontable ?shotl, holding ?hand2 ?shot0, holding ?handO ?shot1

contains ?shot2 ?ingredient] | contains ?shot2 ?ingredient0, empty ?shot2, contains
?shot2 ?ingredient2

holding ?hand1 ?shotl | handempty ?handl, holding ?hand1 ?shot2, holding ?hand2
?shotl, ontable ?shotl, holding ?hand0 ?shotl, holding ?hand1 ?shotO

holding ?handl ?shot2 | handempty ?handl, ontable ?shot2, holding ?handl ?shotl,
holding ?hand2 ?shot2, holding ?hand1 ?shot0, holding ?hand0 ?shot2

holding ?hand2 ?shot2 | ontable ?shot2, handempty ?hand2, holding ?handl ?shot2,
holding ?hand2 ?shotl, holding ?hand2 ?shot0, holding ?hand0 ?shot2

holding ?handO ?shotl | holding ?handl ?shotl, holding ?hand0 ?shot0, handempty
?hand0, ontable ?shotl, holding ?hand2 ?shotl, holding ?hand0 ?shot2

holding ?hand0 ?shot2 | ontable ?shot2, holding ?hand2 ?shot2, holding ?hand1 ?shot2,
holding ?hand0 ?shot0, handempty ?hand0, holding ?hand0 ?shot1

contains ?shot2 ?ingredient2 | contains ?shot2 ?ingredientl, contains ?shot2 ?ingredi-
ent0, empty ?shot2

holding ?hand0 ?shotO | handempty ?hand0, holding ?hand2 ?shot0, holding ?hand0
?shot1, holding ?hand1 ?shot0, holding ?hand0 ?shot2, ontable ?shotO

holding ?hand2 ?shotO | handempty ?hand2, holding ?hand2 ?shot2, holding ?hand0
?shot0, holding ?hand2 ?shotl, holding ?hand1 ?shot0, ontable ?shotO

holding ?handl ?shotO | handempty ?handl, holding ?handl ?shotl, holding ?handl
?shot2, holding ?hand0 ?shot0, holding ?hand2 ?shot0, ontable ?shotO

holding ?hand]1 ?shaker0 | handempty ?hand1, holding ?hand1 ?shaker3, holding ?hand1
?shaker2, holding ?hand0 ?shaker(, holding ?hand1 ?shakerl, ontable ?shaker(, hold-
ing ?hand2 ?shaker0

holding ?hand0 ?shakerl | ontable ?shaker1, holding ?hand0 ?shaker2, holding ?hand0
?shaker(, holding ?hand2 ?shaker1, handempty ?hand0, holding ?hand1 ?shakerl1, hold-

173

ing ?hand0 ?shaker3

cocktail-part2 ?cocktail0 ?ingredient! |

cocktail-part] ?cocktailO ?ingredient] |

holding ?hand1 ?shakerl | ontable ?shaker1, handempty ?hand1, holding ?hand1 ?shaker0,
holding ?hand0 ?shakerl, holding ?hand1 ?shaker2, holding ?hand2 ?shakerl, holding
?hand1 ?shaker3

cocktail-part2 ?cocktaill ?ingredient?2 |

cocktail-partl ?cocktail0 ?ingredientO |

cocktail-partl ?cocktail0 ?ingredient? |

cocktail-partl ?cocktaill ?ingredientO |

cocktail-part2 ?cocktail0 ?ingredientO |

cocktail-part2 ?cocktaill ?ingredientO |

holding ?hand2 ?shakerl | ontable ?shakerl, holding ?handO ?shakerl, holding ?hand2
?shaker3, handempty ?hand2, holding ?hand1 ?shakerl, holding ?hand2 ?shaker2, hold-
ing 7hand2 ?shaker0

cocktail-partl ?cocktaill ?ingredientl |

holding ?hand2 ?shaker0 | holding ?handl ?shaker0, holding ?hand2 ?shaker3, hold-
ing ?handO ?shakerO, handempty ?hand2, holding ?hand2 ?7shakerl, holding ?hand2
?shaker2, ontable ?shaker(

cocktail-part2 ?cocktail0 ?ingredient2 |

cocktail-part2 ?cocktaill ?ingredient] |

holding ?hand0 ?shakerO | holding ?handl ?shaker0, holding ?hand0 ?shakerl, hold-
ing ?handO ?shaker2, holding ?hand2 ?shakerO, handempty ?hand0O, holding ?handO
7shaker3, ontable ?shakerQ

cocktail-part] ?cocktaill ?ingredient?2 |

used ?shot0 ?cocktailO |

used ?shotl ?ingredient] |

used ?shot1 ?cocktailO |

used ?shot0 ?ingredient? |

used ?shot1 ?ingredient? |

used ?shot0 ?ingredientO |

used ?shot0 ?ingredient] |

used ?shot]1 ?ingredientO |

used ?shot0 ?cocktaill |

used ?shotl ?cocktaill |

used ?shot2 ?cocktailO |

used ?shot2 ?ingredient! |

used ?shot2 ?ingredientO |

used ?shot2 ?cocktaill |

used ?shot2 ?ingredient? |

contains ?shaker2 ?ingredient?2 |

holding ?hand1 ?shaker2 | holding ?hand1 ?shaker0, handempty ?hand1, holding ?hand0
?shaker2, ontable ?shaker2, holding ?hand1 ?shakerl, holding ?hand2 ?shaker2, hold-
ing ?handl ?shaker3

shaker-level ?shaker2 ?levelO | shaker-level ?shaker2 ?levell, shaker-level ?shaker2
Nevel2

ontable ?shaker2 | holding ?hand2 ?shaker2, holding ?hand0 ?shaker2, holding ?hand1
?shaker2

unshaked ?shaker? |

shaker-level ?shaker2 ?levell | shaker-level ?shaker2 ?levelO, shaker-level ?shaker2
MNevel2

174

holding ?hand0 ?shaker2 | holding ?hand0 ?shakerl, ontable ?shaker2, holding ?hand1
?shaker2, holding ?hand0 ?shaker(O, handempty ?hand0, holding ?hand2 ?shaker2, hold-
ing 7hand0 ?shaker3

shaker-level ?shaker2 ?level2 | shaker-level ?shaker2 ?levell, shaker-level ?shaker2
NevelO

holding ?hand2 ?shaker2 | holding ?hand2 ?shaker3, holding ?hand0 ?shaker2, ontable
?shaker2, holding ?hand1 ?shaker2, handempty ?hand2, holding ?hand2 ?shaker1, hold-
ing ?hand2 ?shakerQ

contains ?shaker2 ?ingredientO |

contains ?shaker2 ?ingredient] |

shaker-empty-level ?shaker2 ?levell |

shaker-empty-level ?shaker2 ?level2 |

shaker-empty-level ?shaker2 ?levelO |

shaker-level ?shaker0 ?level3 | shaker-level ?shaker0 ?level2, shaker-level ?shaker(
Nevell, shaker-level ?shaker0 ?level0

next ?level3 ?level2 |

shaker-empty-level ?shakerQ ?level3 |

next ?level0 ?level3 |

next ?levell ?level3 |

next ?level3 ?levell |

shaker-level ?shakerl ?level3 | shaker-level ?shakerl ?level2, shaker-level ?shakerl ?level0,
shaker-level ?shakerl ?levell

next ?level3 ?levelO |

shaker-empty-level ?shakerl ?level3 |

next ?level2 ?level3 |

holding ?hand?2 ?shaker3 | holding ?hand1 ?shaker3, handempty ?hand2, ontable ?shaker3,
holding ?hand2 ?shaker1, holding ?hand2 ?shaker2, holding ?hand0 ?shaker3, holding
?hand2 ?shaker0

empty ?shaker3 |

holding ?hand0 ?shaker3 | holding ?hand0 ?shaker1, holding ?hand2 ?shaker3, holding
?hand0 ?shaker2, holding ?hand0O ?shaker0, ontable ?shaker3, handempty ?hand0, hold-
ing ?handl ?shaker3

empty ?shaker? |

ontable ?shaker3 | holding ?hand1 ?shaker3, holding ?hand2 ?shaker3, holding ?hand0
?shaker3

holding ?hand1 ?shaker3 | holding ?hand1 ?shaker0, handempty ?hand1, holding ?hand2
?shaker3, holding ?handl ?shaker2, ontable ?shaker3, holding ?handl ?shakerl, hold-
ing 7hand0 ?shaker3

contains ?shaker2 ?cocktaill |

contains ?shaker2 ?cocktail0 |

shaked ?shaker? |

clean ?shaker?2 |

contains ?shaker0 ?cocktail2 |

used ?shotl ?cocktail?2 |

used ?shot0 ?cocktail?2 |

contains ?shaker] ?cocktail2 |

used ?shot2 ?cocktail?2 |

cocktail-part2 ?cocktail2 ?ingredient? |

cocktail-partl ?cocktail2 ?ingredient? |

cocktail-partl ?cocktail2 ?ingredientO |

cocktail-part2 ?cocktail2 ?ingredient! |

175

cocktail-partl ?cocktail2 ?ingredientl |
cocktail-part2 ?cocktail2 ?ingredientO |
dispenses ?dispenserQ ?ingredient3 |
dispenses ?dispenser1 ?ingredient3 |
cocktail-partl ?cocktail0 ?ingredient3 |
cocktail-part2 ?cocktail0 ?ingredient3 |
contains ?shaker(?ingredient3 |
cocktail-part2 ?cocktaill ?ingredient3 |
contains ?shakerl ?ingredient3 |
cocktail-partl ?cocktaill ?ingredient3 |
dispenses ?dispenser2 ?ingredient] |
dispenses ?dispenser2 ?ingredientO |
dispenses ?dispenser2 ?ingredient?2 |

C.1.2 Understanding the found macro-operators

=

macro

action macro-4-actions-0-2-0-7-6-2
action macro-4-actions-0-2-0-7—-6-6
action macro-4-actions-0-2-1-10-14-7
action macro-4-actions-0-2-1-9—16-8
action macro-4-actions-0-2-0-7—6-13
action macro-3-actions-0-1-10-28-15
action macro-4-actions-0-1-0-1-30-17
action macro-3-actions-0-1-11-35-20
action macro-2-actions-0-1-44-30
action macro-4-actions-0-5-1-10-51-34
action macro-4-actions-0-5-1-11-52-35
action macro-4-actions-0-10-1-5-59-42
action macro-4-actions-0-10-1-2-71-48
action macro-4-actions-0-9-1-2—85-58
action macro-4-actions-0-9-1-5-86-59
action macro-4-actions-0-9-1-6-87-57
action macro-4-actions-0-9-1-3-85-58
action macro-4-actions-0-9-1-7-87-57
action macro-4-actions-0-1-0-1-100-65
action macro-4-actions-0-1-0-7—-121-57
action macro-3-actions-0-1-0—-122-65
action macro-4-actions-0-6-0-11-132-77
action macro-4-actions-0-5-0-7—138-82
action macro-4-actions-0-2-1-10-14-84
action macro-4-actions-0-2-7-1-144-85
action macro-4-actions-0-2-7-3—-145-86
action macro-3-actions-0-1-0-147-17
action macro-4-actions-0-3-0-7-6-2
action macro-4-actions-0-6-0-7-153-90
action macro-4-actions-0-5-0-7-138-92

— = = O R R =k =k = O R O = e m = =k = = O O OO = = = = =
S OO~ OOO0OOO—OROO0O0OCOCOOOO == =000 0O e
C OO0 OO OO0 OO0 OO0 (R

176

Table C.1 continued from previous page

action macro-4-actions-0-5-1-9—-159-93
action macro-4-actions-0-2-6-5—-1-1
action macro-4-actions-0-2-0-8-9-3
action macro-4-actions-0-2-0-1-11-4
action macro-4-actions-0-2-0-11-8-5
action macro-3-actions-0-2-0-12-4
action macro-4-actions-0-2-1-0-13-4
action macro-3-actions-0-2-1-17-9
action macro-4-actions-0-2-7-5-1-1
action macro-4-actions-0-2-7-1-18-1
action macro-4-actions-0-5-2-1-19-10
action macro-4-actions-0-5-1-0-20-11
action macro-3-actions-0-5-1-21-12
action macro-4-actions-0-2-0-7-6-1
action macro-4-actions-0-2-7-0-23-1
action macro-4-actions-0-2-7-3-24-1
action macro-4-actions-0-1-10-11-27-14
action macro-4-actions-0-1-0-2-29-16
action macro-4-actions-0-1-10-8-31-18
action macro-4-actions-0-1-10-1-32-15
action macro-4-actions-0-1-11-8-33-19
action macro-4-actions-0-1-11-1-34-20
action macro-4-actions-0-1-9-0-36-21
action macro-4-actions-0-1-9-1-37-22
action macro-4-actions-0-1-0-5-38-23
action macro-4-actions-0-1-0-10-39-24
action macro-4-actions-0-1-0-11-40-25
action macro-4-actions-0-1-0-8—41-26
action macro-4-actions-0-1-0-9-42-27
action macro-4-actions-0-1-0-11-40-28
action macro-4-actions-0-1-0-6—43-29
action macro-4-actions-0-1-0-7-43-29
action macro-4-actions-0-5-2-0-45-31
action macro-4-actions-0-5-2-7-46-32
action macro-4-actions-0-5-0-11-49-33
action macro-3-actions-0-5-0-50-11
action macro-4-actions-0-7-1-10-53-36
action macro-3-actions-0-7-1-54-37

=

=lejejelslal Jeleli=l=i=l=lelelejelal el i olelslelelelal jelo el A=l =i=lehehehaieljeiala)y] =5

[oNeleoNeleololeloNelolololololoNoloNoeloNolololeloNoeloNoloNololololoNelo NNl ool Nl Nae o Na i
eeololeololeoleololeololeololeoleolecleoleoleleoleololeoleoleoleoleleoleoleoleoleoleoleolNeleoNeloNeloloNeoloNoloNoloNoRao)

action macro-4-actions-0-10-11-8-55-38
action macro-3-actions-0-10-11-56-39
action macro-4-actions-0-10-8-9-57-40
action macro-4-actions-0-10-1-0-58-41
action macro-3-actions-0-10-1-60-41
action macro-4-actions-0-10-11-1-61-39
action macro-2-actions-0-10-63-41
action macro-4-actions-0-11-8-9-64-43
action macro-4-actions-0-11-8-1-65-44
action macro-4-actions-0-11-1-2—-66-45

177

Table C.1 continued from previous page

macro |

=

SO0 O0OCOO—HOOOOOOOCOOO—R—OO0OO0O0OOOO0OO0O—O—O—ROO0O0OO—OO O |k

action macro-2-actions-0-11-67-46
action macro-4-actions-0-10-0-1-69-47
action macro-4-actions-0-10-8-1-70-40
action macro-4-actions-0-11-1-5-72-49
action macro-4-actions-0-11-1-0-73-50
action macro-3-actions-0-11-1-74-46

action macro-4-actions-0-8-9-0-75-51
action macro-4-actions-0-8-9-1-76-52
action macro-4-actions-0-8-1-2—77-53
action macro-4-actions-0-8-1-5-78-54
action macro-4-actions-0-8-1-0-79-52
action macro-3-actions-0-8-1-80-55
action macro-4-actions-0-9-0-1-83-56
action macro-4-actions-0-9-0-6-84-57
action macro-4-actions-0-9-1-0-88-60
action macro-4-actions-0-9-1-0-89-56
action macro-3-actions-0-9-1-90-60
action macro-4-actions-0-9-0-7-84-57
action macro-4-actions-0-1-2-1-92-16
action macro-4-actions-0-1-2-7-93-61
action macro-4-actions-0-1-5-2-94-62
action macro-4-actions-0-1-5-1-95-23
action macro-4-actions-0-1-5-5-97-63
action macro-4-actions-0-1-0-8—-98-64
action macro-4-actions-0-1-0-9-99-60
action macro-4-actions-0-1-0-11-101-66
action macro-4-actions-0-1-0-10-102-67
action macro-4-actions-0-1-2-6-93-61
action macro-4-actions-0-7-1-9—-103-37
action macro-4-actions-0-7-1-0-104-37
action macro-4-actions-0-8-1-0-107-68
action macro-4-actions-0-7-1-0-108-69
action macro-4-actions-0-6-1-0-111-70
action macro-4-actions-0-6-1-0-111-71
action macro-3-actions-0-6-1-112-70
action macro-4-actions-0-2-6-1-18-1
action macro-4-actions-0-8-9-10-118-72
action macro-4-actions-0-9-10-11-119-73
action macro-4-actions-0-9-10-1-120-67
action macro-4-actions-0-1-0-7—43-74
action macro-4-actions-0-1-0-6—43-74
action macro-4-actions-0-1-0-3-29-16

=leleoleoleolelalalelalelaleielelielielielelelelelelelelelolo ol NN NN NN NN NN N NN oo No o)
=leleleleolslalalslslelelelslslslslslslslslslolololslololo oo oo o oo oo oo oo oo oo o o)

action macro-4-actions-0-11-9-1-123-50
action macro-4-actions-0-11-9-0-124-75
action macro-4-actions-0-10-9-1-125-41
action macro-4-actions-0-10-9-0-126-47
action macro-4-actions-0-10-1-0-127-47
action macro-4-actions-0-10-11-9-128-39

178

Table C.1 continued from previous page

action macro-4-actions-0-11-1-0-129-76
action macro-4-actions-0-2-6-0-23-1
action macro-4-actions-0-2-6-3-24-1
action macro-3-actions-0-6-0—-133-78
action macro-4-actions-0-6-5-0—134-78
action macro-4-actions-0-6-5-1-135-78
action macro-4-actions-0-6-5-2—-136-79
action macro-3-actions-0-3-0-12-4
action macro-3-actions-0-3-1-17-9
action macro-4-actions-0-1-10-11-27-80
action macro-4-actions-0-5-0-11-49-81
action macro-4-actions-0-7-3-0-139-83
action macro-4-actions-0-2-1-0-142-9
action macro-4-actions-0-7-1-0-149-78
action macro-4-actions-0-7-3-1-150-83
action macro-4-actions-0-7-5-1-135-78
action macro-4-actions-0-7-5-0-134-78
action macro-4-actions-0-2-6-5—-151-87
action macro-4-actions-0-6-0-8—148-88
action macro-4-actions-0-6-1-10-154-89
action macro-4-actions-0-3-0-8-9-3
action macro-4-actions-0-3-7-0-23-1
action macro-4-actions-0-3-7-5—1-1
action macro-4-actions-0-5-0-8—157-91
action macro-4-actions-0-5-2-6-46-32
action macro-4-actions-0-5-2-6—-160-1

=

COCOOCOOOCO—OOOCOOOOCOOOOOOCOOOO OO |-

slelelsleleleolalslslalslslslalalaolalalaololololoNoNe)
SO DD OO OO

Table C.1: Detail of the found macro-operators for barman domain.

C.2 Blocksworld

C.2.1 Predicate incompatibilities

clear ?blockl | on ?block0 ?block1, on ?block2 ?block1, holding ?block1

on ?blockl ?block2 | on ?blockO ?block2, clear ?block2, on ?blockl ?block0, holding
?block1, ontable ?block1

clear ?block0 | on ?block2 ?block0, on ?block1 ?block0, holding ?block0

on ?block0O ?block2 | on ?blockl ?block2, ontable ?block0, clear ?block2, holding
?block0, on ?block0 ?block1

on ?block2 ?blockl | holding ?block2, clear ?blockl, on ?block2 ?block0, ontable
?block?2, on ?block0 ?blockl

179

]

macro

action macro-3-actions-3-1-0-1-1
action macro-2-actions-3-1-3-1
action macro-2-actions-1-2—4-1
action macro-2-actions-1-0-2-2
action macro-2-actions-2-3-5-1
action macro-3-actions-1-0-2-6-1
action macro-2-actions-0-1-2-2
action macro-3-actions-3-1-0-8-1
action macro-2-actions-3-1-2-1
action macro-2-actions-0-2—7-1

SO R OO OO == O
OOOHH»—A»—AOO»—AG
© O O OO OO OO O R

Table C.2: Detail of the found macro-operators for blocksworld domain.

clear ?block?2 | holding ?block2, on ?block1 ?block2, on ?block0 ?block2

on ?block2 ?blockO | holding ?block2, clear ?blockO, on ?block2 ?blockl, ontable
?block2, on ?block1 ?block0

on ?block! ?block0 | on ?blockl ?block2, clear ?block0, on ?block2 ?block0, holding
?block1, ontable ?block1

handempty | holding ?block2, holding ?block0, holding ?block1

on ?block0 ?block1 | clear ?blockl, on ?block0 ?block2, on ?block2 ?blockl, ontable
?block0, holding ?block0

holding ?block2 | on ?block2 ?blockl, clear ?block2, on ?block2 ?block0, ontable
?block2, holding ?block0, holding ?block1, handempty

holding ?blockO | holding ?block?2, clear ?block0, on ?block0 ?block2, ontable ?block0,
holding ?block1, handempty, on ?blockO ?blockl

holding ?block]1 | clear ?block1, on ?block1 ?block2, holding ?block2, holding ?block0,
on ?block1 ?block0, ontable ?block1, handempty

ontable ?block0 | holding ?block0

ontable ?block2 | holding ?block2

ontable ?block1 | holding ?block1

180

C.2.2 Understanding the found macro-operators

C.3 Depots

C.3.1 Predicate incompatibilities

at ?hoist2 2distributorO |

on ?crate() ?crate2 | on ?crate2 ?palletl, on ?crate0 ?palletl, on ?crate0 ?cratel, lifting
7hoist2 ?crate0, in ?crateQ ?truck2, on ?crate2 ?crateQ, in ?crate0 ?truck(, on ?crate2
IpalletO, on ?7crate2 ?cratel, clear ?crate2, on ?cratel ?crate2, on ?crate2 ?crate3, on
Icrate3 ?crate2, lifting ?hoistO ?crate2, on ?crate0 ?crate4, in ?crate2 ?truckO, lifting
Thoistl ?crate2, lifting 7hoistl ?crate0, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on
Icratel ?crate0, on ?crate4 ?crate2, on 7crate() ?palletO, on ?crate0 ?pallet2, in ?crate0
Mruckl, in ?crate2 ?truckl, lifting ?hoistO ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3

at 2truck0 ?distributor?2 | at ?truck0 ?depot4, at ?truck0 ?distributorl, at ?truckO ?depot2,
at ?truckO ?distributor(, at ?truckO ?depot0, at ?truckO ?depotl, at ?truckO ?distributor4,
at 7truckO ?depot3, at ?truck(?distributor3

at ?crate2 ?distributor2 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor0, at ?crate2 ?de-
pot0, at 7crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2 ?crate2, in ?crate2
MNruck?2, in ?crate2 ?truckl, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck(O

at ?cratel ?depot2 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot3, lifting
7hoist0O ?cratel, at ?cratel ?distributor3, in ?cratel ?truck?2, lifting ?hoist2 ?7cratel, at
Icratel ?depot0, at 7cratel ?distributor2, in ?cratel ?truckO, lifting ?hoist]l ?cratel, at
2cratel ?distributor(, at ?cratel ?distributorl

at ?crate2 ?distributor0 | lifting ?hoist] ?crate2, at ?crate2 ?distributor2, at ?crate2 ?de-
pot0, at ?crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2 ?crate2, in ?crate2
truck?2, in ?crate2 7truckl, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck(

on ?crate2 ?pallet] | on ?crate0 ?crate2, on ?crateQ ?palletl, clear ?palletl, on ?crate2
Icrate0, on ?crate2 7palletO, on ?crate2 ?cratel, on ?cratel ?crate2, on ?crate2 ?crate3,
on ?crate3 ?7crate2, on ?cratel ?palletl, lifting ?hoistO ?crate2, on ?crate4 ?palletl, in
Icrate2 truckO, lifting ?hoistl ?crate2, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on
Icrate2 ?pallet2, on ?crate4 ?crate2, in ?crate2 ?truck2, in ?crate2 ?truckl, on ?crate3
Ipalletl

on ?crate0 ?pallet] | on ?crate0 ?crate2, on ?crate2 ?palletl, clear ?palletl, on ?crate0
Icratel, lifting hoist2 ?crateQ, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truckO,
on 7cratel ?palletl, on 7crateQ ?crate4, on 7crate4 ?palletl, lifting ?hoistl ?7crate0, on
Icratel ?7crate0, on ?crate0 ?palletO, on ?crate0 ?pallet2, in ?crate0 ?truckl, lifting
ThoistO ?crate(, on ?crate3 ?palletl, on ?crate3 ?crate(, on ?crate4 ?crate0, on ?crateQ
2crate3

available ?hoistl | lifting ?hoist1 ?crate2, lifting ?hoistl ?crate0, lifting ?hoist1 ?crate4,
lifting ?hoist1 ?cratel, lifting ?hoistl ?crate3

at ?hoist2 ?depot0 |

181

at ?crate2 ?depot] | lifting ?hoist] ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor(, at ?crate2 ?depot0, at ?crate2 ?distributorl, lifting ?hoist2 ?crate2, in ?crate2
truck2, in ?crate2 ?truckl, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0

clear ?crate0 | lifting ?hoist1 ?crate0, clear ?palletl, clear ?crate3, lifting ?hoist2 ?crate0,
in ?crate0 ?truck2, on ?crate2 ?crateO, clear ?crate4, in ?crate0 ?truckO, on ?cratel
?crate0, clear ?crate2, in ?crateQ ?truckl, clear ?palletO, clear ?cratel, lifting ?hoistO
?crate0, on ?crate3 ?crate(, on ?crate4 ?crate(, clear 7pallet2

on ?crate0 ?cratel | on ?crateQ ?crate2, on ?crate0 ?palletl, lifting ?hoistO ?cratel,
lifting ?hoist2 ?crate0, in ?crateQ ?truck2, on ?crate2 ?crate(, in ?crateQ ?truck0, on
?cratel ?crated, on ?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel ?crate2, clear ?cratel,
in ?cratel ?truck(, on ?cratel ?palletl, lifting ?hoistl ?cratel, on ?crate0Q ?crate4, on
Icratel ?palletO, in ?cratel ?truckl, lifting ?hoistl ?crate0, lifting ?hoist2 ?cratel, on
?cratel ?crate(, on ?crate4 ?cratel, on ?cratel ?crate3, on ?crate0 ?palletO, on ?crateQ
Ipallet2, in ?crate0 ?truckl, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3

available ?hoistO | lifting ?hoistO ?crate3, lifting ?hoistO ?crate0, lifting ?hoist0 ?cratel,
lifting ?hoist0 ?crate2, lifting 7hoist0 ?crate4

on ?crate2 ?crateQ | on ?crateQ ?crate2, on ?crate2 ?palletl, on ?crate0 ?palletl, clear
?crate0, on ?crate0 ?cratel, lifting ?hoist2 ?crate(, in ?crate0 ?truck0, on ?crate2 7pal-
letO, on ?crate2 ?cratel, on ?cratel ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2, lift-
ing ?hoist0 ?7crate2, on ?crateQ ?crate4, in 7crate2 ?truckO, lifting ?hoistl ?crate2, lift-
ing ?hoistl ?crate0, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate2 ?pallet2, on
?cratel ?crate(, on ?crate4 ?7crate2, in 7crate2 ?truck2, on ?crateQ ?pallet0O, in ?crate0
Nruckl, in ?crate2 ?truckl, lifting ?hoist0 ?crate0, on ?crate3 7crate0, on ?crate4 7crate0,
on ?crateQ ?crate3

at ?truck1 ?depotO | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at ?truck1 ?depot3, at ?truck1 ?distributorl, at ?truck1 ?distributor4, at ?truck1 ?distrib-
utor2, at ?truckl ?depot4, at ?truckl ?depotl

at ?crate0 ?depotO | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck?2, in
?crate0 ?truckO, at ?crateQ ?distributor(, at ?crateQ ?distributor3, at ?crate0 ?depot2, in
?crate0 ?truckl, lifting ?hoistO ?crate0, at ?crate0 ?depotl, at ?crate0 ?depot3, at ?crate0
?distributor2, at ?crateQ ?distributorl

at 2truck1 ?depotl | at ?truckl ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at 7truckl ?depot3, at 7truck1 ?distributor1, at ?truck1 ?distributor4, at ?truck1 ?distrib-
utor2, at ?truckl ?depot0, at ?truck1 ?depot4

on ?crate2 ?palletO | on ?crate0 ?crate2, on ?crate2 ?palletl, on ?crate2 ?crate0, on
?crate3 7palletO, on 7crate2 ?cratel, on 7cratel ?crate2, clear ?palletO, on ?crate2 ?crate3,
on ?crate3 ?crate2, lifting ?hoistO ?crate2, in ?crate2 ?truckO, on ?cratel ?palletO, lift-
ing ?hoistl ?crate2, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate2 ?pallet2, on
Icrate4 ?crate2, in ?crate2 ?truck2, on ?crateQ ?palletO, in ?crate2 ?truckl, on ?crate4
?palletO

at ?hoist0 ?distributor] |

on ?crate2 ?cratel | on ?crateQ ?crate2, on ?crate2 ?palletl, lifting ?hoist0 ?cratel, on
?crate0 ?cratel, on ?crate2 ?crate0, on ?cratel ?crate4, on ?crate2 ?palletO, on ?crate3
?cratel, on ?cratel ?crate2, clear ?cratel, on ?crate2 ?crate3, in ?cratel ?truckO, on
Icrate3 7crate2, on ?Tcratel ?palletl, lifting hoistO ?crate2, lifting ?hoistl ?cratel, in
Icrate2 ?truckO, on ?cratel ?palletO, lifting ?hoistl ?7crate2, in ?cratel ?truckl, on
Icrate2 ?crated, lifting ?hoist2 ?crate2, lifting ?hoist2 ?cratel, on ?crate2 ?pallet2, on
2cratel ?crate0, on ?crate4 ?cratel, on ?crated4 ?crate2, in ?crate2 ?truck2, on ?cratel
?crate3, in ?crate2 ?truckl

182

at 2truckO ?distributor] | at ?truck0 ?depot4, at ?truck0 ?distributor2, at ?truckO ?depot2,
at truckO ?distributor(, at ?truckO ?depot0, at ?truckO ?depotl, at ?truckO ?distributor4,
at 7truckO ?depot3, at ?truck(?distributor3

at ?truck0 ?depot2 | at 2truck0 ?depot4, at ?truck0 ?distributorl, at ?truckO ?distributor2,
at 2truckO ?depot0, at ?truck0 ?distributor0, at ?truck0 ?depotl, at ?truckO ?distributor4,
at ?truckO ?depot3, at ?truckO ?distributor3

at ?truck0 ?distributor0 | at ?truckO ?depot4, at ?truck0 ?distributorl, at ?truckO ?distrib-
utor2, at ?truckO ?depot2, at ?truckO ?depot0, at ?truckO ?depotl, at ?truckO ?distribu-
tor4, at ?truckO ?depot3, at ?truckO ?distributor3

at ?crate0 ?depot?2 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
Icrate(?truckO, at ?crateQ ?distributor0, at ?crateQ ?distributor3, at ?crate0 ?depot0, in
?crate0 ?truckl, lifting ?hoist0 ?crate0, at ?crate(?depotl, at ?crateQ ?depot3, at ?crate(
2distributor2, at ?crate0 ?distributor1

at 2cratel ?distributor] | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, at
Icratel ?depot3, lifting ?hoistQ ?cratel, at ?cratel ?distributor3, in ?cratel ?truck2, lift-
ing ?hoist2 7cratel, at ?cratel ?depot0, at ?cratel ?distributor2, in ?cratel ?truckO, lift-
ing 7hoistl ?cratel, at ?cratel ?distributorQ

at ?hoist0 ?distributorO |

clear ?cratel | in ?cratel ?truckl, clear ?palletl, clear ?crate0, on ?crateQ ?cratel, lifting
ThoistO ?cratel, clear ?crate3, clear 7crate4, in ?cratel ?truck2, lifting ?hoist2 ?cratel,
on ?crate4 ?cratel, on ?crate2 ?cratel, on 7crate3 ?cratel, clear ?crate2, clear 7pallet0,
clear ?pallet2, in ?cratel ?truckO, lifting hoistl ?cratel

on ?cratel ?crate2 | on ?crateQ ?crate2, on ?crate2 ?palletl, lifting ?hoistO ?cratel, on
2crate0 ?cratel, on ?crate2 ?crate(, in ?cratel ?truck2, on ?cratel ?crate4, on ?crate2
IpalletO, on ?crate2 ?cratel, on ?crate3 ?cratel, clear ?crate2, on ?cratel ?7pallet2, on
Icrate2 ?crate3, in ?cratel ?truckO, on ?cratel ?palletl, lifting ?hoistl ?cratel, lift-
ing ?hoistO ?crate2, on ?crate3 ?crate2, in ?crate2 ?truckO, on ?cratel ?palletO, lifting
Thoistl ?crate2, in ?cratel ?truckl, on ?7crate2 ?crate4, lifting ?hoist2 ?crate2, lifting
7hoist2 ?cratel, on ?cratel ?crateQ, on ?crate4 ?cratel, on ?crate4 ?crate2, on ?cratel
2crate3, in ?crate2 ?truckl

clear ?crate2 | lifting ?hoistl ?crate2, on ?crateQ ?crate2, clear ?palletl, clear ?crate0,
clear ?crate3, lifting ?hoist2 ?crate2, clear 7crate4, on ?crate4 ?crate2, in ?crate2 Ttruck2,
on ?cratel ?crate2, in ?crate2 ?truckl, clear ?palletO, clear 7cratel, clear ?pallet2, on
Icrate3 ?crate2, lifting ?hoistO 7crate2, in ?crate2 ?truckO

at ?crate0 ?depotl | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truckO, at ?crateQ ?distributor0, at ?crateQ ?distributor3, at ?crate0 ?depot0, at
Icrate0 ?depot2, in 7crate0 ?truckl, lifting ?hoistO ?crate(, at ?crate0 ?depot3, at ?crate0
2distributor2, at ?crate0 ?distributorl

at ?truckl ?distributor2 | at ?truckl ?distributorQ, at ?truckl ?distributor3, at ?truckl
?depot2, at ?truck1 ?depot3, at ?truck] ?distributor1, at ?truck1 ?distributor4, at ?truck1
?depot0, at ?truckl ?depot4, at ?truck1 ?depotl

at ?hoist0 ?depot |

on ?cratel ?pallet]l | on ?crate2 ?palletl, on ?crate0 ?palletl, clear ?palletl, lifting
7hoistO ?cratel, on ?crate0 ?cratel, in ?cratel ?truck2, on ?cratel ?crate4, on ?crate?
Icratel, on ?crate3 ?cratel, on ?cratel ?crate2, on ?cratel ?pallet2, in ?cratel ?truckO,
lifting ?hoist1 7cratel, on ?crate4 ?palletl, on ?cratel ?pallet(, in ?cratel ?truckl1, lifting
7hoist2 ?cratel, on ?cratel ?crate0, on ?crated4 ?cratel, on ?cratel ?crate3, on ?crate3
Ipalletl

at ?hoist0 ?depot?2 |

at ?hoist2 ?distributor? |

at ?hoistl ?depot0 |

183

at ?crate0 ?distributor1 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crateQ ?truck?2,
in ?crateQ ?truckO, at ?crateQ ?distributor(, at 7crateQ ?distributor3, at ?crate0 ?depot0,
at ?crate0 ?depot2, in ?crate0 ?truckl, lifting ?hoist0 ?crate0, at ?crate0 ?depotl, at

?crate0 ?depot3, at ?crate(?distributor2

on ?cratel ?palletO | lifting ?hoistO ?cratel, on ?crate0 ?cratel, in ?cratel ?truck2, on

?crate3 7palletO, on ?cratel ?crate4, on ?crate2 ?palletO, on ?crate2 ?cratel, on ?crate3

Icratel, on ?cratel ?crate2, clear 7palletO, on ?7cratel 7pallet2, in ?cratel ?truck0, on

Icratel ?palletl, lifting ?hoist]l ?cratel, in ?cratel ?truckl, lifting ?hoist2 ?cratel, on

?cratel ?crate0, on ?crate4 ?cratel, on ?cratel ?crate3, on ?crateO ?palletO, on ?crate4

IpalletO

at 2truck ?distributorO | at ?truck1 ?distributor3, at ?truck1 ?depot2, at ?truck1 ?depot3,
at ?truck1 ?distributorl, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truckl ?depotl

at ?cratel ?depotl | in ?cratel ?truckl, at ?cratel ?depot2, at ?cratel ?depot3, lifting

7hoist0 ?cratel, at ?cratel ?distributor3, in ?cratel ?truck?2, lifting ?hoist2 ?7cratel, at

?cratel ?depot0, at ?cratel ?distributor2, in 7cratel ?truckO, lifting ?hoistl ?cratel, at

2cratel ?distributorQ, at ?cratel ?distributorl

at 2truck0 ?depotO | at ?truckO ?depot4, at ?truckO ?distributor1, at ?truckO ?depot2, at

NruckO ?distributor2, at 7truckO ?distributorQ, at ?truckO ?depotl, at ?truckO ?distribu-
tor4, at TtruckO ?depot3, at ?truck(?distributor3

at ?hoist0 ?depot1 |

at ?crate2 ?depot0 | lifting ?hoistl ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor(0, at ?crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2 ?crate2, in ?crate2

Nruck?2, in ?crate2 ?truckl, at ?crate2 ?depot3, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0

at 2truckO ?depot] | at ?truckO ?depot4, at ?truckO ?distributor1, at ?truckO ?depot2, at

ruckO ?depot0, at ?truckO ?distributor2, at ?truckO ?distributor0, at ?truckO ?distribu-
tor4, at ?truckO ?depot3, at ?truckO ?distributor3

at ?crate2 ?distributorl | lifting ?hoistl ?crate2, at ?crate2 ?distributor2, at ?crate2

2distributor0, at ?crate2 ?depot0, at ?crate2 ?depotl, lifting ?hoist2 ?crate2, in ?crate2

2truck2, in ?crate2 ?truckl, at ?crate2 ?depot3, at 7crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0O

at ?hoist1 ?distributorO |

at 2truck1 ?depot2 | at ?truck1 ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot3,
at ?truck1 ?distributorl, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at truck1 ?depot4, at ?truckl ?depotl

available ?hoist2 | lifting ?hoist2 ?crate0, lifting ?hoist2 ?crate2, lifting ?hoist2 ?cratel,
lifting ?hoist2 ?crate3, lifting 7hoist2 ?crate4

at ?hoistl ?depot?2 |

at ?crate0 ?distributor0 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck?2,
in ?7crate0 ?truckO, at ?crateQ ?distributor3, at ?crate0 ?depot0, at ?crate0 ?depot2, in

?crate0 ?truckl, lifting ?hoistO ?crate0, at ?crate0 ?depotl, at 7crate0Q ?depot3, at ?crate0

?distributor2, at ?crate0 ?distributorl

on ?cratel ?crate0 | on ?crateQ ?crate2, on ?crate0 ?palletl, lifting ?hoistO ?cratel,
clear ?crate(, on ?crateQ ?cratel, lifting ?hoist2 ?crate0, on ?crate2 ?crate(, in ?cratel

ruck?2, in ?crate0 ?truckO, on ?cratel ?crate4, on ?crate? ?cratel, on ?crate3 ?cratel,
on ?cratel ?crate2, on ?7cratel ?pallet2, in ?cratel ?truckO, on ?cratel ?palletl, lift-
ing ?hoistl ?cratel, on ?crate0 ?crate4, on ?cratel ?palletO, in ?cratel ?truckl, lifting

?hoist1 ?crateO0, lifting 7hoist2 ?cratel, on ?crate4 ?cratel, on ?cratel ?crate3, on ?crate0

IpalletO, in ?crate0 ?truckl, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0,
on 7crateQ ?crate3

184

at ?hoist2 ?distributorl |

on ?crate(?palletO | on ?crateQ ?crate2, on ?crateQ ?palletl, on ?crate0 ?cratel, lifting

7hoist2 ?crate0, in ?crate0 ?truck2, on ?crate2 ?crate(, in ?crate0 ?truckO, on ?crate3

IpalletO, on ?crate2 ?palletO, clear ?palletO, on ?crate0 ?7crate4, on ?cratel ?palletO,

lifting ?hoistl ?crate0, on ?cratel ?crateQ, on ?crateQ ?pallet2, in ?crate0 ?truckl, on

Icrate4 7palletO, lifting ?hoist0 ?crate0, on ?crate3 ?crate0, on ?crate4 ?crate0, on

2crate(0 ?crate3

at ?hoist2 ?depotl |

at ?hoist1 ?distributor] |

at ?hoist1 ?distributor?2 |

at ?crate] ?depot0 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, at ?cratel

?depot3, lifting ?hoist0 ?cratel, at ?cratel ?distributor3, in ?cratel ?truck2, lifting ?hoist2
Icratel, at ?cratel ?distributor2, in ?cratel ?truckO, lifting ?hoistl ?cratel, at ?cratel

2distributor0, at ?cratel ?distributorl

at 2cratel ?distributor2 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, at

Icratel ?7depot3, lifting ?hoistQ ?cratel, at ?cratel ?distributor3, in 7cratel ?truck2, lift-
ing ?hoist2 ?cratel, at ?cratel ?depotO, in ?cratel ?truckO, lifting ?hoistl ?cratel, at

?cratel ?distributorQ, at ?cratel ?distributorl

at ?truckl ?distributor] | at ?truckl ?distributor0, at ?truckl ?distributor3, at ?truckl

?depot2, at ?truckl ?depot3, at ?truck] ?distributor4, at ?truck1 ?distributor2, at ?truck1

?depot0, at truck1 ?depot4, at ?truckl ?depotl

at ?crate2 ?depot2 | lifting ?hoistl ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-

utor(Q, at ?crate2 ?depot0, at ?crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2

Icrate2, in ?crate2 truck?2, in ?crate2 ?truckl, at ?crate2 ?depot3, lifting 7hoistO ?crate2,

at ?crate2 ?distributor3, in ?crate2 ?truck(

at ?crate0 ?distributor?2 | lifting ?hoist]1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck?2,
in ?crateQ ?truckO, at ?crateQ ?distributor(, at ?crate0 ?distributor3, at ?crate0 ?depot0,

at 7crateQ ?depot2, in ?crateQ ?truckl, lifting ?hoistO ?crate(, at ?crate0 ?depotl, at

?crate(?depot3, at 7crate(Q ?distributorl

at ?hoist0 ?distributor? |

at ?hoistl ?depot] |

at 2cratel ?distributor0 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, at

Icratel ?depot3, lifting ?hoistO ?cratel, at ?cratel ?distributor3, in ?cratel ?truck2, lift-

ing ?hoist2 7cratel, at ?cratel ?depot0, at ?cratel ?distributor2, in ?cratel ?truckO, lift-

ing 7hoistl ?cratel, at ?cratel ?distributorl

at ?hoist2 ?depot2
at 2truck2 ?depotl | at ?truck2 ?distributor4, at ?truck?2 ?distributor3, at ?truck2 ?depot0,
at 2truck?2 ?distributor2, at truck?2 ?depot4, at ?truck2 ?depot3, at ?truck?2 ?distributorl,
at ?truck?2 ?distributor0, at ?truck2 ?depot2

at ?truck2 ?distributorQ | at ?truck2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?dis-
tributor3, at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck?2
?depot3, at ?truck?2 ?distributor1, at ?truck2 ?depot2

at ?truck2 ?depot0 | at ?truck?2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?distributor3,
at ?truck?2 ?distributor2, at ?truck?2 ?depot4, at ?truck?2 ?depot3, at ?truck?2 ?distributorl,
at 7truck2 ?distributor0, at ?truck2 ?depot2

at ?truck2 ?distributorl | at ?truck2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?dis-
tributor3, at ?truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2
?depot3, at ?truck?2 ?distributor0, at ?truck2 ?depot2

at 2truck?2 ?distributor2 | at ?truck2 ?distributor4, at ?truck2 ?depotl, at ?truck?2 ?distrib-
utor3, at ?truck?2 ?depot0, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distribu-
torl, at ?truck2 ?distributor0, at ?truck?2 ?depot2

185

at ?truck2 ?depot2 | at ?truck?2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?distributor3,
at truck2 ?depot0, at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at
ruck?2 ?distributorl, at ?truck2 ?distributorQ

in 2crate3 ?truckl | lifting ?hoistl ?crate3, on ?crate3 ?pallet0, lifting ?hoist2 ?crate3,
on ?crate3 ?cratel, at 7crate3 ?distributor(, at ?crate3 ?depotl, on 7crate2 ?crate3, on
7crate3 ?crate2, at ?crate3 ?distributorl, on ?crate4 ?crate3, in ?crate3 ?truckO, clear
?crate3, on ?crate3 7crated, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?cratel
?crate3, lifting ?hoistO ?crate3, on ?crate3 ?palletl, on ?crate3 ?crate0, at ?crate3 ?de-
pot0, on ?crate0 ?crate3

at ?crate3 ?depot?2 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck?2, at ?crate3
distributor2, lifting ?hoist1 ?crate3, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, at 7crate3
2distributor(, at ?crate3 ?distributor3, at ?crate3 ?depotl, lifting ?hoist0 ?7crate3, at
?crate3 ?depot0, at ?crate3 ?distributorl

on ?crate2 ?crate3 | on ?crate0 ?crate2, on Zcrate2 ?palletl, on ?crate2 ?crate0, lift-
ing 7hoistl ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, on
Icrate2 ?palletO, on ?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel ?crate2, on ?crate3
?crate2, lifting ?hoistQ ?crate2, in ?crate2 ?truckO, lifting ?hoistl ?crate2, on ?crate4
Pcrate3, in ?crate3 ?truckO, on ?crate2 ?crate4, clear ?crate3, lifting ?hoist2 7crate2, on
?crate3 ?crate4, on ?crate2 ?pallet2, on 7crate4 ?crate2, on 7cratel ?crate3, in ?crate2
Mruck2, in ?crate2 ?truckl, lifting ?hoist0 ?crate3, on ?crate3 ?palletl, on ?crate3
?crate0, on ?crate0 ?crate3

in ?cratel ?truckO | at ?cratel ?depot2, lifting ?hoist0 ?cratel, on ?crate0 ?cratel, in
2cratel ?truck2, on ?cratel ?crate4, on ?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel
Icrate2, clear ?cratel, on ?cratel 7palletl, lifting ?hoist]l ?cratel, at ?cratel ?depotl,
on ?7cratel ?palletO, in ?cratel ?truckl, lifting ?hoist2 ?cratel, on ?cratel ?crate(, on
?crate4 7cratel, on ?cratel ?crate3, in ?cratel ?truck3, at 7cratel ?depotQ, at ?cratel
?distributor?2, at ?cratel ?distributorQ, at ?cratel ?distributorl

on ?crate3 ?crate2 | on ?crate0 ?crate2, on ?crate2 ?palletl, on ?crate2 ?crate, on
?crate3 ?pallet2, in ?crate3 ?truck?2, lifting hoistl ?crate3, on ?crate3 ?pallet0, in ?crate3
truckl, lifting ?hoist2 ?crate3, on ?crate2 ?pallet0, on ?crate3 ?cratel, on ?crate2
Icratel, clear ?crate2, on ?cratel ?crate2, on ?crate2 ?crate3, lifting ?hoistO ?crate2,
in 7crate2 ?truckO, lifting ?hoistl ?7crate2, on ?crate4 ?crate3, in ?crate3 ?truck0, on
?crate? ?crate4, lifting ?hoist2 ?crate2, on ?crate3 ?crate4, on ?crate4 ?crate2, on ?cratel
?crate3, lifting ?hoist0 ?crate3, in ?crate2 ?truck1, on ?crate3 ?palletl, on ?crate3 ?crate0,
on ?crate0 ?crate3

at ?crate3 ?distributorl | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at
?crate3 ?distributor2, lifting ?hoistl ?crate3, at ?crate3 ?depot2, in ?crate3 ?truckl, lift-
ing ?hoist2 ?crate3, at ?crate3 ?distributor0, at ?crate3 ?distributor3, at ?crate3 ?depotl,
lifting ?hoistO 7crate3, at ?crate3 ?depot0

in ?cratel ?truckl | at ?cratel ?depot2, lifting ?hoist0 ?cratel, on ?crate0 ?cratel, in
2cratel ?truck2, on ?cratel ?crate4, on ?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel
Icrate2, clear ?cratel, in ?cratel ?truck(, on ?7cratel ?palletl, lifting ?hoistl ?cratel,
at 7cratel ?depotl, on ?cratel ?palletO, lifting ?hoist2 ?cratel, on ?cratel ?crateQ, on
?crate4 7cratel, on ?cratel ?crate3, in ?cratel ?truck3, at ?cratel ?depotQ, at ?cratel
?distributor?2, at ?cratel ?distributorQ, at ?cratel ?distributorl

clear ?crate3 | on ?crate4 ?crate3, in ?crate3 ?truck0, clear ?palletl, clear ?crate0, clear
Icrate4, in ?crate3 ?truck2, lifting ?hoistl ?crate3, in ?crate3 ?truckl, lifting ?hoist2
Icrate3, on ?cratel ?7crate3, clear ?crate2, lifting ?hoistQ ?crate3, clear ?palletO, clear
Icratel, clear ?pallet2, on ?crate2 ?crate3, on ?crate(?crate3

on ?crate3 ?crate0 | on ?crateQ ?crate2, on ?crateQ ?palletl, clear ?crate0, on ?crate0
Icratel, lifting ?hoist2 ?crate(, on ?crate2 ?7crate0, in ?crate0 ?truckO, on ?crate3 ?pal-

186

let2, in ?crate3 ?truck?2, lifting ?hoist]l ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl,
lifting ?hoist2 ?crate3, on ?crate3 ?7cratel, on ?crate2 ?crate3, on ?crate3 ?crate2, on

?crate ?crate4, on ?crate4 7crate3, in ?crate3 ?truckO, lifting ?hoist1 ?crateQ, on ?crate3

Icrate4, on ?cratel ?crate0, on ?cratel ?crate3, on ?crateQ ?palletO, in ?crate0 ?truckl,
lifting ?hoist0 ?crate3, on ?crate3 ?palletl, lifting ?hoistO0 ?crate0, on ?crate4 ?crate0,
on ?crate0 ?crate3

at ?crate3 ?depotO | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at ?crate3

2distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in ?crate3 ?truckl, lifting ?hoist2
Icrate3, at ?crate3 ?distributor(O, at ?crate3 ?distributor3, at ?crate3 ?depotl, lifting

7hoist0 ?crate3, at ?crate3 ?distributor]

on ?crate3 ?palletO | on ?crate3 ?pallet2, in ?crate3 ?truck2, lifting ?hoistl ?crate3, in

Icrate3 ?truckl, lifting ?hoist2 ?crate3, on ?crate2 ?pallet0, on ?crate3 ?cratel, clear

IpalletO, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?cratel ?palletO, on ?crate4 ?crate3,
in ?crate3 7truckO, on ?crate3 ?crate4, on ?cratel ?crate3, on ?crateQ ?palletO, lifting

ThoistO ?crate3, on ?crate4 ?palletO, on ?crate3 ?palletl, on ?crate3 ?crate(, on ?crateQ

7crate3

at ?crate3 ?distributorQ | at ?crate3 ?depot3, in ?crate3 ?truckO, in ?crate3 ?truck2, at

Icrate3 ?distributor2, lifting ?hoist] ?crate3, at ?crate3 ?depot2, in ?crate3 ?truckl, lift-
ing ?hoist2 ?crate3, at ?crate3 ?distributor3, at ?crate3 ?depotl, lifting ?hoistO ?crate3,
at 7crate3 ?depot0, at ?crate3 ?distributorl

in ?crate2 truckO | at ?crate2 ?distributor2, on ?crate0 ?crate2, at ?crate2 ?distribu-
tor0, on 7crate2 ?palletl, at ?crate2 ?depotl, on ?crate2 ?crate(, on ?crate2 ?palletO, on

2crate2 ?cratel, clear ?crate2, on ?cratel ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2,
lifting ?hoistO ?crate2, lifting ?hoist] ?crate2, at ?crate2 ?depot0, at ?crate2 ?distribu-
torl, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on ?crate4 ?crate2,
in ?crate2 7truck2, in ?crate2 ?truckl, at ?crate2 ?depot2

at ?crate3 ?distributor2 | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, lift-
ing ?hoistl ?crate3, at ?crate3 ?depot2, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, at

?crate3 ?distributor(, at ?crate3 ?distributor3, at ?crate3 ?depotl, lifting ?hoist0 ?crate3,
at ?crate3 ?depot0, at ?crate3 ?distributorl

in ?crate2 truckl | at ?crate2 ?distributor2, on ?crate0 ?crate2, at ?crate2 ?distribu-
tor0, on ?crate2 ?palletl, at ?crate2 ?depotl, on ?crate2 ?crate(, on ?crate2 ?palletO, on

2crate2 ?cratel, clear ?crate2, on ?cratel ?crate2, on ?crate2 ?crate3, on ?crate3 ?crate2,
lifting ?hoist0 ?crate2, in ?crate2 7truckO, lifting ?hoistl ?crate2, at ?crate2 ?depot0, at

Icrate2 ?distributorl, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 ?crate2, on

Icrate4 7crate2, in ?crate2 7truck?2, at ?crate2 ?depot2

in ?crate0 ?truckO | on ?crate0 ?crate2, on ?crate0 ?palletl, clear ?crate0, on ?crate0

Icratel, lifting 7hoist2 ?crate0, in ?crate0Q ?truck2, on ?crate2 ?7crate0, at ?crateQ ?de-
pot0, at ?crate0 ?depot2, at ?crate0 ?depotl, on ?crateQ 7crate4, at ?crateQ ?distributorl,
in ?crate0 ?truck3, lifting ?hoistl ?crate(, at ?crateQ ?distributor(Q, on ?cratel ?crate0,
on 7crateQ ?palletO, in ?crate0 ?truckl, lifting ?hoistQ ?crate0, on ?crate3 ?crateQ, on

2crate4 ?crate0, at ?crate0Q ?distributor2, on ?crate0 ?crate3

on ?crate3 ?cratel | lifting ?hoistO ?cratel, on ?crate0 ?cratel, on ?crate3 ?pallet2, in

Icrate3 truck?2, lifting 7hoistl ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lift-
ing ?hoist2 ?7crate3, on ?7cratel ?crate4, on 7crate2 ?cratel, on ?cratel ?crate2, clear

Icratel, on ?crate2 ?crate3, on ?crate3 ?crate2, in ?cratel ?truckO, on ?cratel ?pal-
letl, lifting ?hoist] ?cratel, on ?cratel ?pallet0, in ?cratel ?truckl, on 7crate4 ?crate3,
in ?crate3 ?truckO, on ?crate3 ?crate4, lifting ?hoist2 ?cratel, on ?cratel ?crate0, on

Icrate4 ?cratel, on ?cratel ?7crate3, lifting ?hoist0 ?crate3, on ?crate3 ?palletl, on

?crate3 ?crate0, on ?crateQ ?crate3

at ?crate3 ?depotl | at ?crate3 ?depot3, in ?crate3 ?truck0, in ?crate3 ?truck2, at ?crate3

187

?distributor2, lifting ?hoist1 ?crate3, at ?crate3 ?depot2, in 7crate3 ?truckl, lifting ?hoist2
Icrate3, at ?crate3 ?distributor(, at 7crate3 ?distributor3, lifting ?hoist0 ?crate3, at ?crate3
?depot0, at ?crate3 ?distributorl

in ?crate3 ?truckO | lifting ?hoistl ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lift-
ing ?hoist2 ?crate3, on ?crate3 ?cratel, at ?crate3 ?distributor(, at ?crate3 ?depotl, on
7crate2 ?crate3, on ?crate3 ?crate2, at ?crate3 ?distributorl, on ?crate4 ?crate3, clear
?crate3, on ?crate3 7crated, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?cratel
?crate3, lifting ?hoistO ?crate3, on ?crate3 ?palletl, on ?crate3 ?crate0, at ?crate3 ?de-
pot0, on ?crate0 ?crate3

on ?cratel ?crate3 | lifting ?hoist0 ?cratel, on ?crate0 ?cratel, in ?cratel ?truck2, lift-
ing ?hoistl ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lifting ?hoist2 ?7crate3, on
?cratel ?crate4, on ?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel ?crate2, on ?cratel
Ipallet2, on ?7crate2 ?crate3, in ?cratel ?truckO, on ?cratel ?palletl, lifting 7hoistl
?cratel, on ?crate3 ?crate2, on ?cratel ?palletO, in ?cratel ?truckl, on ?crate4 ?crate3,
in ?crate3 ?truck0, clear ?crate3, on ?crate3 ?crate4, lifting ?hoist2 ?cratel, on ?cratel
Icrate0, on ?crate4 ?cratel, lifting ?hoist0 ?crate3, on ?crate3 ?palletl, on ?crate3
2crate0, on ?crate0 ?crate3

in ?crate0 ?truckl | on ?crate0 ?crate2, on ?crate0 ?palletl, clear ?crate0, on ?crateQ
Icratel, lifting ?hoist2 ?crate0, in ?crate0 ?truck?2, on ?crate2 ?crate0, in ?crateQ ?truckO,
at 7crate0 ?depot0, at ?crate0 ?depot2, at ?crateQ ?depotl, on ?crate0 ?crate4, at ?crate(
?distributorl, in ?crateQ ?truck3, lifting ?hoistl ?7crate0, at ?crate0 ?distributorQO, on
Icrate]l ?crate0, on ?crateQ ?palletO, lifting ?hoistQ ?crate0, on ?crate3 ?crate0, on
2crate4 ?crate0, at ?crate0 ?distributor2, on ?crate0 ?crate3

on ?crate3 ?pallet] | on ?crate2 ?palletl, on ?crateQ ?palletl, clear ?palletl, on ?crate3
Ipallet2, in ?crate3 ?truck?, lifting ?hoist1 ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl,
lifting ?hoist2 ?crate3, on ?7crate3 ?cratel, on ?crate2 ?crate3, on ?7crate3 ?crate2, on
Icratel 7palletl, on ?crate4 ?palletl, on ?crate4 ?crate3, in ?crate3 ?truckO, on ?crate3
Icrate4, on ?cratel ?crate3, lifting ?hoist0 ?crate3, on ?crate3 ?crate(, on ?crate(?crate3
on ?crate0 ?crate3 | on ?crate0 ?crate2, on ?crateQ ?palletl, on ?crate0 ?cratel, lift-
ing ?hoist2 ?crate0, in ?crate0 ?truck2, on ?7crate2 ?crate0, in ?crate0 ?truckO, lift-
ing ?hoist] ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, on
?crate3 ?cratel, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crateQ ?crate4, on ?crated
?crate3, in ?crate3 ?truckO, lifting ?hoistl ?crate(, clear ?crate3, on ?crate3 ?crate4, on
?cratel ?crate0, on 7cratel ?crate3, on ?crate(Q ?palletO, on ?crate0 ?pallet2, in ?crate0
Nruckl, lifting ?hoistQ ?crate3, lifting ?hoistO ?crate(, on ?crate3 ?palletl, on ?crate3
?crate0, on ?crate4 ?crateQ

at ?hoist1 ?distributor3 |

at ?cratel ?depot3 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, lifting
?hoist0 ?cratel, at ?cratel ?distributor3, in ?cratel ?truck?2, lifting ?hoist2 ?7cratel, at
?cratel ?depot0, at ?cratel ?distributor2, in 7cratel ?truckO, lifting ?hoistl ?cratel, at
?cratel ?distributorQ, at ?cratel ?distributorl

at ?crate(?distributor3 | lifting ?hoist1 ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck?2,
in ?crate0 ?truck0, at ?crate0 ?distributor0, at ?crate0 ?depot0, at ?crate0 ?depot2, in
?crate0 ?truckl, lifting ?hoistO ?crate0, at ?crate0 ?depotl, at ?crate0 ?depot3, at ?crate0
?distributor?2, at ?crateQ ?distributorl

at ?hoistl ?depot3 |

at ?crate2 ?depot3 | lifting ?hoist] ?crate2, at ?crate2 ?distributor2, at ?crate2 ?distrib-
utor(, at ?crate2 ?depot0, at ?crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2
Icrate2, in ?crate2 ?truck?2, in ?crate2 ?truckl, at ?crate2 ?depot2, lifting ?hoist0 ?crate2,
at ?crate2 ?distributor3, in ?crate2 ?truck0O

at 2truck1 ?depot3 | at ?truckl ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,

188

at ?truck1 ?distributorl, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at 7truckl ?depot4, at ?truckl ?depotl

at ?crate0 ?depot3 | lifting ?hoistl ?crate0, lifting ?hoist2 ?crate0, in ?crate0 ?truck2, in
?crate0 ?truckO, at ?crate0 ?distributor0, at ?crateQ ?distributor3, at ?crate0 ?depot0, at
?crate0 ?depot2, in 7crate0 ?truckl, lifting 7hoistO ?crate(, at ?crate0 ?depotl, at ?crate0
2distributor2, at ?crate0 ?distributorl

at ?crate2 ?distributor3 | lifting ?hoist1 ?crate2, at ?crate2 ?distributor2, at ?crate2 ?dis-
tributor0, at ?crate2 ?depot0, at ?crate2 ?depotl, at ?crate2 ?distributorl, lifting ?hoist2
Icrate2, in 7crate2 ?truck2, in ?crate2 ?truckl, at 7crate2 ?depot3, at ?crate2 ?depot2,
lifting ?hoist0 ?crate2, in ?crate2 ?truckO

at ?hoist0 ?distributor3 |

at 2truck1 ?distributor3 | at ?truck1 ?distributor0, at ?truck1 ?depot3, at ?truck1 ?depot2,
at ?truck1 ?distributorl, at ?truck1 ?distributor4, at ?truck1 ?distributor2, at ?truck1 ?de-
pot0, at ?truck1 ?depot4, at ?truckl ?depotl

at ?hoist0 ?depot3 |

at 2cratel ?distributor3 | at ?cratel ?depotl, in ?cratel ?truckl, at ?cratel ?depot2, at
Icratel ?depot3, lifting ?hoistO ?cratel, in ?cratel ?truck2, lifting ?hoist2 ?7cratel, at
Icratel ?depot0, at 7cratel ?distributor2, in ?cratel ?truckO, lifting ?hoist]l ?cratel, at
2cratel ?distributor(, at ?cratel ?distributorl

at 2truckO ?depot3 | at ?truckO ?depot4, at ?truckO ?distributor1, at ?truck0 ?distributor2,
at ?truckO ?distributor0, at ?truckO ?depot2, at ?truckO ?depotO, at ?truckO ?depotl, at
2truckO ?distributor4, at ?truckO ?distributor3

at ?truckO ?distributor3 | at ?truckO ?depot4, at ?truckO ?distributorl, at ?truckO ?dis-
tributor2, at ?truckO ?depot0Q, at ?truckO ?depot2, at ?truckO ?distributor0, at ?truckO
?depotl, at ?truck(?distributor4, at ?truckO ?depot3

lifting ?hoist] ?crate3 | available ?hoistl, on ?crate3 ?pallet2, in ?crate3 ?truck2, on
?crate3 ?palletO, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, on ?crate3 ?cratel, at ?crate3
distributor(, at ?crate3 ?depotl, on ?crate2 ?crate3, on ?crate3 ?crate2, lifting ?hoistl
Icratel, at ?crate3 ?distributorl, lifting ?hoistl ?crate2, at ?crate3 ?depot3, on ?crate4
Icrate3, in ?crate3 ?truckO, lifting ?hoistl ?crate0, lifting ?hoist] ?crate4, clear ?crate3,
on ?crate3 ?crate4, at 7crate3 ?distributor2, at ?crate3 ?depot2, on ?cratel ?crate3, at
Icrate3 ?distributor3, lifting ?hoist0 7crate3, on ?crate3 ?palletl, on ?crate3 ?crate0, at
Icrate3 ?7depot0, on 7crate0 ?crate3

at ?palletO ?depotO |

lifting ?hoist] ?cratel | at ?cratel ?depot2, at ?cratel ?depot3, available ?hoistl, lift-
ing ?hoist0 ?cratel, on ?crate0 ?cratel, in ?cratel ?truck2, lifting ?hoistl ?crate3, at
Icratel ?depot4, on ?cratel ?crate4, on ?crate2 ?cratel, on 7crate3 ?cratel, on ?cratel
Icrate2, clear ?cratel, on ?cratel ?pallet2, in ?cratel ?truckO, on ?cratel ?palletl, at
Icratel ?depotl, on ?cratel ?palletO, lifting ?hoist] ?crate2, in ?cratel ?truckl, lifting
Thoist] ?crateQ, lifting ?hoist]l ?crate4, at ?cratel ?distributor3, lifting ?hoist2 ?cratel,
on ?cratel ?crate(, on ?crate4 ?cratel, on ?cratel ?crate3, in ?cratel ?truck3, at ?cratel
?depot0, at ?cratel ?distributor2, at ?cratel ?distributor4, at ?cratel ?distributor(, at
2cratel ?distributorl

at ?pallet] ?distributor?2 |

at ?pallet] ?depot] |

at ?palletO ?distributor0 |

at ?pallet] ?distributor]l |

at ?palletO ?depot? |

at ?palletO ?distributor?2 |

at ?palletO ?depot] |

lifting ?hoist0 ?crate3 | lifting ?hoist0 ?cratel, available ?hoist0, on ?crate3 ?pallet2,

189

in ?crate3 ?truck2, lifting 7hoistl ?crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lift-
ing ?hoist2 ?crate3, on ?crate3 ?7cratel, at ?crate3 ?distributor0Q, at ?crate3 ?depotl, on
Icrate2 7crate3, on ?crate3 ?crate2, lifting 7hoistO ?crate2, lifting ?hoistO ?crate4, at
?crate3 ?distributorl, at ?crate3 ?depot3, on ?7crate4 7crate3, in ?crate3 ?truckO, clear
?crate3, on ?crate3 7crated, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?cratel
crate3, at ?crate3 ?distributor3, on ?crate3 ?palletl, lifting ?hoistO ?crate0, on ?crate3
?crate0, at ?crate3 ?depot0, on ?crate(Q ?crate3

at ?pallet] ?depotO |

lifting ?hoistO ?cratel | at ?cratel ?depot2, at ?cratel ?depot3, on ?crateQ ?cratel, avail-
able ?hoist0, in ?cratel ?truck2, at ?cratel ?depot4, on ?7cratel ?crate4, on ?7crate3
Icratel, on ?crate2 ?cratel, on ?cratel 7crate2, clear ?cratel, on ?cratel ?7pallet2, in
2cratel ?truckO, on ?cratel ?palletl, lifting ?hoist] ?cratel, lifting ?hoistO ?crate2, lift-
ing ?hoist0 ?crate4, at ?cratel ?depotl, on ?cratel ?pallet0, in ?cratel ?truckl, at ?cratel
?distributor3, lifting ?hoist2 ?cratel, on ?cratel ?crate0, on ?crate4 ?cratel, on ?cratel
?crate3, in ?cratel ?truck3, lifting ?hoistO ?crate3, lifting ?hoistO ?crate0, at ?cratel ?de-
pot0, at ?cratel ?distributor2, at ?cratel ?distributor4, at 7cratel ?distributorQ, at ?cratel
?distributorl

lifting ?hoist0 ?crate2 | at ?crate2 ?distributor2, on ?crate0 ?crate2, on ?crate2 ?palletl,
at 7crate2 ?distributorQ, at ?crate2 ?depotl, lifting ?hoistO ?cratel, available ?hoist0, on
Icrate? ?crate(, at ?crate2 ?distributor4, on ?crate2 ?palletO, on ?crate2 ?cratel, clear
?crate2, on 7cratel ?crate2, at ?crate2 ?depot3, on ?crate? ?crate3, on ?crate3 ?crate2, at
?crate2 ?distributor3, in ?crate2 ?truckO, lifting ?hoistO ?crate4, lifting ?hoist]l ?crate2,
at ?crate2 ?7depot0, at 7crate2 ?distributorl, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting
?hoist2 ?crate2, on ?crate2 7pallet2, on ?crate4 ?crate2, in ?crate2 ?truck2, in ?crate2
Nruckl, lifting ?hoist0 ?crate3, lifting ?hoist0 ?crate(, at 7crate2 ?depot4, at ?crate2
?depot2

at ?palletO ?distributor] |

lifting ?hoistl ?crate2 | at ?crate2 ?distributor2, on ?crateQ ?crate2, at ?crate2 ?distrib-
utor(, on ?7crate2 ?palletl, available ?hoistl, at ?crate2 ?depotl, on ?crate2 ?crate0, at
Icrate2 ?distributor4, lifting ?hoistl ?crate3, on ?crate2 ?palletO, on ?crate2 ?cratel,
clear ?crate2, on ?cratel ?crate2, at ?crate2 ?depot3, on ?crate2 ?crate3, on ?crate3
Icrate2, lifting ?hoistl ?cratel, lifting ?hoistO ?crate2, at ?crate2 ?distributor3, in 7crate2
NruckO, at ?crate2 ?depot0, lifting ?hoistl ?crate(, lifting ?hoistl ?crate4, at ?crate2
?distributorl, in ?crate2 ?truck3, on ?crate2 ?crate4, lifting ?hoist2 7crate2, on ?crate2
Ipallet2, on 7crate4 ?crate2, in ?crate2 truck2, in ?crate2 ?truckl, at ?crate2 ?depot4,
at 7crate2 ?depot2

lifting ?hoistl ?crate0 | on ?crate0 ?crate2, on ?crateQ ?palletl, available ?hoistl, clear
?crate0, on ?crate(?cratel, lifting ?hoist2 ?crate0, in ?crateQ ?truck2, on ?crate2 ?crate0,
in ?crate0 ?truckO, lifting ?hoist] ?crate3, at ?crateQ ?distributor3, at ?crate0 ?depot0,
at 7crate0 ?depot2, at ?crate0 ?depotl, at ?crate0 ?depot3, lifting ?hoistl ?cratel, on
Icrate0 ?crate4, at ?crateQ ?distributorl, lifting ?hoistl ?crate2, in ?crate0 ?truck3, at
?crate0 ?distributor4, lifting ?hoist] ?crate4, at ?crate0 ?distributorQ, on ?cratel ?crate0,
on ?crate0 ?palletO, on ?crate0 7pallet2, in ?crate0 ?truckl, lifting ?hoistO ?crate0, on
?crate3 ?crate0, on ?crate4 ?crate0, at ?crate0 ?depotd, at ?crateQ ?distributor2, on
7crate(Q ?crate3

at ?pallet] ?depot?2 |

at ?pallet] ?distributorQ |

lifting ?hoist0 ?crate0 | on ?crate(?crate2, on ?crate0 ?palletl, clear ?crate0, on ?crate0
Icratel, lifting ?hoist0 ?cratel, lifting 7hoist2 ?crate0, in ?crateQ ?truck2, available
7hoist0, on ?crate2 ?crate0, in ?crate0 ?truckO, at ?crateO ?distributor3, at ?crateQ ?de-
pot0, at ?crate0 ?depot2, at ?crate0 ?depotl, at ?crate0 ?depot3, lifting ?hoistO ?crate2,

190

on ?7crateQ ?crated, lifting ?hoistO ?crate4, at ?crateQ ?distributorl, in ?crateQ ?truck3,
lifting ?hoistl ?crate0, at ?crateQ ?distributor4, at ?crate(?distributor(, on ?cratel ?crate0,
on ?crate0 ?palletO, on ?crate0 ?pallet2, in ?crate0 ?truckl, lifting ?hoist0 ?crate3, on
Icrate3 ?crate0, on ?7crate4 ?crate0, at 7crate0 ?depotd, at ?crateQ ?distributor2, on
2crate(Q ?crate3

lifting ?hoist2 ?crate0 | on ?crate(?crate2, on ?crateQ ?palletl, clear ?crate(, on ?crateQ
2cratel, in ?crate0 ?truck2, on ?crate2 ?crate0, in ?crate0 ?truck0, at ?crateQ ?distribu-
tor3, lifting ?hoist2 ?crate3, at ?crate0 ?depot0, at ?crateQ ?depot2, at ?crate0 ?depotl, at
?crate0 ?depot3, at ?crate0 ?distributorl, lifting ?hoistl ?crate0, lifting ?hoist2 ?crate2,
available ?hoist2, lifting ?hoist2 ?cratel, at ?crate0 ?distributorQ, on ?cratel ?crateO,
on ?crate0 ?palletO, on ?crate0 ?pallet2, in ?crate0 ?truckl, lifting ?hoistQ ?crate(, on
2crate3 ?crate0, at ?crate0 ?distributor2, on ?crateQ ?crate3

lifting ?hoist2 ?crate3 | lifting ?hoist2 ?crate0, on ?crate3 ?pallet2, lifting ?hoist1 ?crate3,
on ?crate3 ?palletO, in ?crate3 ?truckl, on ?crate3 ?cratel, at ?crate3 ?distributor0,
at 7crate3 ?depotl, on ?crate2 7crate3, on ?crate3 ?crate2, at ?crate3 ?distributorl,
at 7crate3 ?depot3, in ?crate3 ?truckO, clear ?crate3, lifting ?hoist2 ?crate2, available
Thoist2, lifting ?hoist2 7cratel, at ?crate3 ?distributor2, at ?crate3 ?depot2, on ?cratel
Icrate3, at ?crate3 ?distributor3, lifting 7hoistO ?crate3, on 7crate3 ?palletl, on ?crate3
Icrate0, at ?crate3 ?depot0, on ?crateQ ?crate3

lifting ?hoist2 ?crate2 | on ?crateQ ?crate2, at ?crate2 ?distributor2, at ?crate2 ?dis-
tributor0O, on ?crate2 ?palletl, at ?crate2 ?depotl, lifting ?hoist2 ?crate0, on ?crate2
Icrate0, lifting ?hoist2 ?crate3, on ?crate2 7palletO, on ?crate2 ?cratel, clear ?crate2,
on ?cratel ?crate2, at ?crate2 ?depot3, on ?crate2 ?crate3, on ?7crate3 ?crate2, lifting
Thoist0O ?crate2, at ?crate? ?distributor3, in ?crate2 ?truckO, lifting ?hoistl ?7crate2, at
Icrate2 ?depot0, at ?crate2 ?distributorl, available ?hoist2, lifting ?hoist2 ?cratel, on
Icrate? Tpallet2, in ?crate2 ?truck?2, in ?crate2 ?truckl, at ?crate2 ?depot2

lifting ?hoist2 ?cratel | at ?cratel ?depot2, at ?cratel ?depot3, lifting ?hoistO ?cratel,
on ?crate0 ?cratel, lifting ?hoist2 ?crate0, in 7cratel ?truck2, lifting ?hoist2 ?crate3,
on ?crate?2 ?cratel, on ?crate3 ?cratel, on ?cratel ?crate2, clear ?cratel, on ?cratel
Ipallet2, in ?cratel ?truckO, on ?cratel ?7palletl, lifting ?hoistl ?cratel, at ?cratel ?de-
potl, on ?cratel ?palletO, in ?cratel ?truckl, lifting ?hoist2 ?crate2, available ?hoist2,
at 7cratel ?distributor3, on ?cratel ?crate0, on ?cratel ?crate3, at ?cratel ?depot0, at
2crate] ?distributor2, at ?cratel ?distributor0, at ?cratel ?distributorl

at ?pallet2 ?depotl |

at ?pallet2 ?distributor] |

on ?crate3 ?pallet2 | in ?crate3 ?truckO, on ?crate3 ?crate4, on ?crate2 ?pallet2, lift-
ing ?hoistl ?7crate3, on ?crate3 ?palletO, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, on
Icrate3 ?cratel, on ?crateQ ?pallet2, lifting ?hoist0 ?crate3, on ?crate3 ?palletl, on
Icrate3 ?crate0, on 7cratel ?pallet2, clear ?pallet2, on ?crate3 ?crate2, on ?crate4 ?pal-
let2

clear ?palletl | on ?crate2 ?palletl, on ?crate0 ?palletl, clear ?crate0, clear ?crate3, clear
Icrate4, clear 7crate2, clear ?cratel, on ?crate3 ?palletl, clear 7palletO, clear ?pallet2,
on ?cratel ?palletl, on ?crate4 ?palletl

on ?crate0 ?pallet2 | on ?crate0 ?crate2, lifting ?hoistl ?crate0, on ?crateQ ?palletl,
on 7crateQ ?cratel, lifting ?hoist2 ?crate(, in ?crateQ ?truck(, on ?crate3 ?pallet2, on
Icrate2 7pallet2, on ?crate0 ?palletO, in ?crate0 ?truckl, lifting ?hoistQ ?crate0, on
Icrate]l 7pallet2, clear 7pallet2, on ?crate0 ?crate4, on ?crate4 ?pallet2, on ?crateO
Icrate3

at ?pallet2 ?depotO |

at ?pallet2 ?depot? |

clear ?palletO | on ?cratel ?palletO, clear ?palletl, clear ?crate0, clear ?crate3, clear

191

?crate4, on ?crate3 ?palletO, on ?crate2 ?palletO, on ?crateQ ?palletO, clear ?crate2, on
?crated 7palletO, clear ?cratel, clear ?pallet2

on ?cratel ?pallet2 | on ?cratel ?palletO, in ?cratel ?truckl, lifting ?hoist0 ?cratel,
on ?crate3 ?pallet2, lifting ?hoist2 ?cratel, on ?crate2 ?pallet2, on ?cratel ?crate0, on
?cratel ?crate4, on ?cratel ?crate3, on ?crate0 7pallet2, on ?cratel ?7crate2, clear ?pal-
let2, in 7cratel ?truckO, on ?cratel ?palletl, lifting ?hoistl ?cratel, on ?crate4 ?pallet2
at ?pallet2 ?distributorQ |

at ?pallet2 ?distributor?2 |

on ?crate2 ?pallet2 | lifting ?hoistl ?crate2, on ?crate2 ?palletl, on ?crate2 ?crate4,
lifting ?hoist2 ?crate2, on ?crate2 ?crate0, on ?crate3 ?pallet2, on ?crate2 ?pallet0, on
Icrate2 ?cratel, on ?crate0 7pallet2, in ?crate2 ?truckl, on ?cratel ?7pallet2, clear ?pal-
let2, on ?7crate2 ?crate3, lifting ?hoist0 ?crate2, on ?crate4 ?pallet2, in ?crate2 ?truck(
clear ?pallet2 | clear ?palletl, clear ?crate0, clear ?crate3, clear ?crate4, on ?crate3 ?pal-
let2, on 7crate2 ?pallet2, on ?crate0 ?pallet2, clear 7crate2, clear ?cratel, clear 7pallet0,
on ?cratel ?pallet2, on ?crate4 ?pallet2

in ?crate0 ?truck?2 | in ?crate0 ?truckl, in ?crate0 ?truck3, lifting ?hoist1 ?crate0, lifting
7hoistO ?crate0, in ?crate0Q ?truckO

in ?cratel ?truck2 | in ?cratel ?truckl, in ?cratel ?truck3, lifting ?hoist0 ?cratel, in
?cratel 7truckO, lifting ?hoistl ?cratel

in ?crate2 ?truck? | lifting ?hoistl ?crate2, in ?crate2 ?truckl, in ?crate2 ?truck3, lifting
7hoist0 ?crate2, in ?crate2 ?truckO

at ?truck3 ?distributor2 | at ?truck3 ?distributor0, at ?truck3 ?depotl, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at 7truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
torl

at ?truck3 ?depot0 | at ?truck3 ?distributor0, at ?truck3 ?depotl, at ?truck3 ?distributor2,
at 7truck3 ?distributor3, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distributorl
at ?truck3 ?distributor0 | at ?truck3 ?depotl, at ?truck3 ?distributor2, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
torl

at ?truck3 ?depotl | at ?truck3 ?distributor0, at ?truck3 ?distributor2, at ?truck3 ?distrib-
utor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?depot3, at ?truck3 ?distribu-
torl

at 2truck3 ?depot2 | at ?truck3 ?distributor0, at ?truck3 ?depot1, at ?truck3 ?distributor2,
at 7truck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot3, at ?truck3 ?distributorl
at ?truck3 ?distributorl | at ?truck3 ?distributor0, at ?truck3 ?depotl, at ?truck3 ?dis-
tributor2, at ?truck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3
?depot3

at ?truck?2 ?distributor3 | at ?truck?2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?depot0,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck2 ?depot3, at ?truck2 ?distributorl,
at 7truck2 ?distributor0, at ?truck?2 ?depot2

at ?truck2 ?depot3 | at ?truck?2 ?distributor4, at ?truck2 ?depotl, at ?truck2 ?distributor3,
at 2truck? ?depot0, at ?truck? ?distributor2, at ?truck2 ?depot4, at ?truck2 ?distributorl,
at ?truck2 ?distributor0, at ?truck2 ?depot2

at ?hoist2 ?depot3 |

at ?hoist2 ?distributor3 |

at ?palletO ?distributor3 |

at ?pallet] ?depot3 |

at ?palletO ?depot3 |

at ?pallet] ?distributor3 |

at 2truck1 ?depot4 | at ?truckl ?distributor0, at ?truck1 ?distributor3, at ?truck1 ?depot2,
at ?truck1 ?depot0, at ?truckl ?depotl, at ?truckl ?depot3, at ?truckl ?distributorl, at

192

2truck1 ?distributor4, at ?truck1 ?distributor2

at ?truckO ?depot4 | at ?truckO ?distributor2, at ?truckO ?depot0, at ?truckO ?depotl, at
NtruckO ?depot3, at ?truck(?distributorl, at ?truckO ?depot2, at ?truckO ?distributorO,
at 7truckO ?distributor4, at ?truckO ?distributor3

at ?truckl ?distributor4 | at ?truckl ?distributorQ, at ?truckl ?distributor3, at ?truckl
?depot2, at ?truckl ?depot0, at ?truckl ?depot4, at ?truckl ?depotl, at ?truckl ?depot3,
at ?truckl ?distributorl, at ?truckl ?distributor2

at ?truck0 ?distributor4 | at ?truck0 ?depot4, at ?truck0 ?distributor2, at ?truckO ?depot0,
at ?truckO ?depotl, at ?truckO ?depot3, at ?truckO ?distributorl, at ?truckO ?depot2, at
2truckO ?distributor0, at ?truckO ?distributor3

at ?hoist0 ?depot4 |

at ?hoist0 ?distributor4 |

at ?hoistl ?depot4 |

at ?hoistl ?distributor4 |

at ?crate3 ?depot3 | in ?crate3 ?truckO, at ?crate3 ?distributor2, lifting ?hoist] ?crate3,
at ?crate3 ?depot2, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, at ?crate3 ?distributor3, at
Icrate3 ?distributor0Q, at ?crate3 ?depotl, lifting ?hoistO ?crate3, at ?crate3 ?depot0, at
?crate3 ?distributorl

at ?crate3 ?distributor3 | at ?crate3 ?depot3, in ?crate3 ?truck0, at ?crate3 ?distributor2,
lifting 7hoistl ?crate3, at ?crate3 ?depot2, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, at
?crate3 ?distributorQ, at ?crate3 ?depotl, lifting ?hoistO ?crate3, at ?crate3 ?depot0, at
2crate3 ?distributorl

at ?crate4 ?distributor2 | lifting ?hoist1 ?crate4, at ?crate4 ?depot2, in ?crate4 ?truckl,
at ?crate4 ?depotl, at ?crate4 ?distributorl, at ?crate4 ?distributor0, in ?crate4 ?truckO,
at ?crate4 ?depot0, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

at ?crate4 ?depot2 | lifting ?hoistl ?crate4, in ?crate4 ?truckl, at ?crate4 ?distributor2,
at ?crate4 ?depotl, at ?crate4 ?distributorl, at ?crate4 ?distributor0, in ?crate4 ?truckO,
at ?crate4 ?depot0, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

at ?crate4 ?distributor0Q | lifting ?hoistl ?crate4, at ?crate4 ?depot2, in ?crate4 ?truckl,
at 7crate4 ?distributor2, at ?crate4 ?depotl, at ?crate4 ?distributorl, in ?crate4 ?truckO,
at ?crate4 ?depot0, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

on ?cratel ?crate4 | lifting ?hoistO ?cratel, on ?crateQ ?cratel, clear ?crate4, on ?crate2
Icratel, on ?crate3 ?cratel, on ?cratel ?crate2, on ?cratel ?pallet2, in ?cratel ?truckO,
on ?cratel 7palletl, lifting ?hoist]l ?cratel, on ?crateQ ?crate4, on 7crate4 ?palletl, lift-
ing ?hoist0 ?crate4, on ?cratel ?palletO, in ?cratel ?truckl, on ?crate4 ?crate3, lifting
Thoist] ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, lifting ?hoist2 ?cratel, on ?cratel
2crate0, on ?crate4 ?cratel, on ?crate4 ?crate2, on ?cratel ?crate3, in ?crate4 ?truckl,
on ?Tcrate4 ?palletO, on ?crate4 ?crate0, in ?crate4 ?truckO

on ?crate4 ?pallet] | on ?crate2 ?palletl, on ?crateQ ?palletl, clear ?palletl, on ?cratel
Icrate4, on ?7cratel ?palletl, on ?crate0 ?crate4, lifting ?hoistQ ?crate4, on ?crate4
Icrate3, lifting ?hoistl 7crate4, on ?crate2 7crate4, on ?crate3 ?crate4, on ?crate4 ?cratel,
on ?crate4 ?crate2, in ?crate4 ?truckl, on ?crate4 ?palletO, on ?crate3 ?palletl, on
Icrate4 7crate0, in ?crate4 ?truckO, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4

on ?crate4 ?crate3 | lifting ?hoistl ?crate3, on ?crate3 ?pallet0, in ?crate3 ?truckl, on
2cratel ?crated4, on ?crate3 ?cratel, on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crateQ
Icrate4, on ?crated4 ?Tpalletl, lifting ?hoistO ?crate4, in ?crate3 ?truckO, lifting ?hoistl
2crate4, on ?crate? ?crated4, clear ?crate3, on ?crate3 ?crate4, on ?crate4 ?cratel, on
Icrate4 ?crate2, on ?cratel ?crate3, in 7crate4 ?truckl, on ?crate4 ?pallet0, lifting ?hoist0
Icrate3, on ?crate3 ?palletl, on ?crate4 ?crate0, on ?crate3 ?7crate(, in ?crate4 ?truckO,
on ?crate4 ?pallet2, on ?crateQ ?crate3, lifting ?hoist2 ?crate4

on ?crate3 ?crate4 | clear ?crate4, on ?crate3 ?pallet2, lifting ?hoistl ?crate3, on ?crate3

193

IpalletO, in ?crate3 ?truckl, lifting ?hoist2 ?crate3, on ?cratel ?crate4, on ?crate3 ?cratel,
on ?crate2 ?crate3, on ?crate3 ?crate2, on ?crateQ ?crate4, on ?crate4 ?palletl, lifting
?hoist0 ?crate4, on ?crate4 ?crate3, in ?crate3 ?truckO, lifting ?hoist1 ?crate4, on ?crate2
7crate4, on ?crate4 ?cratel, on ?crate4 ?crate2, on ?cratel ?crate3, in ?crate4 ?truckl,
lifting 7hoistO ?crate3, on ?7crate4 ?palletO, on ?crate3 ?palletl, on ?crate3 ?crate0, on
2crate4 ?crate0, in ?crate4 ?truckO, on ?crateQ ?crate3

on ?crate4 ?cratel | lifting ?hoist0 ?cratel, on ?crate0 ?cratel, on ?cratel ?crate4, on
?crate2 ?cratel, on ?crate3 ?cratel, on ?cratel ?crate2, clear ?cratel, in ?cratel ?truckO,
on ?cratel ?palletl, lifting ?hoist]l ?cratel, on ?crate0 ?crate4, on ?crate4 ?palletl, lift-
ing ?hoist0 ?crate4, on ?cratel ?palletO, in ?cratel ?truckl, on ?crate4 ?crate3, lifting
7hoist] ?crate4, on ?crate2 ?crated, on ?crate3 ?crated4, on ?cratel ?crate0, on ?crated
Icrate2, on ?cratel ?crate3, in ?crate4 ?truckl, on ?crate4 ?palletO, on ?crate4 ?crate0,
in ?crate4 truckO, on 7crate4 ?pallet2, lifting ?hoist2 ?crate4

at ?crate4 ?depotl | lifting ?hoistl ?crate4, at ?crate4 ?depot2, in ?crate4 ?truckl, at
2crate4 ?distributor2, at ?crate4 ?distributorl, at ?crate4 ?distributor0, in ?crate4 ?truckO,
at 7crated4 ?depot0, lifting ?hoistO ?crated, lifting ?hoist2 ?crate4

at ?crate4 ?distributorl | lifting ?hoistl ?crate4, at ?crate4 ?depot2, in ?crate4 ?truckl,
at ?crate4 ?distributor2, at 7crate4 ?depotl, at ?crate4 ?distributorQ, in ?crate4 ?truck0,
at 7crate4 ?depot0, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

on ?crate0 ?crate4 | on ?crateQ ?crate2, on ?crateQ ?palletl, on ?crate0 ?cratel, lifting
7hoist2 ?crate(, clear ?crate4, on ?crate2 ?crateQ, in ?crate0 ?truckO, on ?cratel ?crate4,
on ?7crate4 7palletl, lifting ?hoistO ?crate4, on ?7crate4 ?7crate3, lifting ?hoistl ?crate0,
lifting ?hoistl ?crate4, on 7crate2 ?crate4, on ?crate3 ?crate4, on 7cratel ?crate0, on
?crate4 7cratel, on 7crate4 ?crate2, on ?crateQ ?palletO, on ?crateQ ?pallet2, in ?crate4
Mruckl, in ?7crate0 ?truckl, on ?crate4 ?palletO, lifting ?hoistO ?crate0, on ?crate3
?crateQ, on ?crate4 ?crate0, in ?crate4 ?truckO, on ?crateQ ?crate3

on ?crate4 ?crate2 | on ?crateQ ?crate2, on ?crate2 ?palletl, on ?crate2 ?crate0, on
Icratel ?crate4, on ?crate2 ?palletO, on ?crate2 ?cratel, clear ?crate2, on ?cratel ?crate2,
on ?crate2 ?crate3, on ?crate3 ?7crate2, lifting ?hoistQ ?crate2, on ?crateQ ?crate4, on
Icrated4 7palletl, in ?crate2 ?truckO, lifting ?hoistO ?crate4, lifting ?hoistl ?crate2, on
Icrate4 ?crate3, lifting hoistl ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?crate4
?cratel, in ?crate4 ?truckl, on ?crate4 7palletO, in ?crate2 ?truckl, on ?crate4 ?crate0,
in ?crate4 truck0, on 7crate4 ?pallet2, lifting ?hoist2 ?crate4

at ?crate4 ?depotO | lifting ?hoistl ?crate4, at ?crate4 ?depot2, in ?crate4 ?truckl, at
?crate4 ?distributor2, at ?crate4 ?depotl, at ?crate4 ?distributorl, at ?crate4 ?distribu-
tor0, in ?crate4 ?truckO, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

on ?crate4 ?pallet2 | on ?crate4 ?crate3, lifting ?hoist] ?crate4, on ?crate3 ?pallet2, on
?crate2 ?pallet2, on ?crate4 ?cratel, on ?crate4 ?7crate2, in ?crate4 ?truckl, on ?crateQ
?pallet2, on ?crate4 ?palletO, on ?crate4 ?crate0, on ?cratel ?pallet2, in ?crate4 ?truckO,
clear ?7pallet2, on ?crate4 ?palletl, lifting ?hoistO ?crate4, lifting ?hoist2 ?crate4

clear ?crate4 | lifting ?hoistl ?crate4, clear ?palletl, clear ?crateQ, on ?crate2 ?crate4,
clear ?crate3, on ?crate3 ?crate4, on ?cratel ?crate4, in ?crate4 ?truckl, clear ?crate2,
clear ?pallet0, clear ?cratel, clear 7pallet2, in ?crate4 ?truck0, on 7crateQ ?crate4, lifting
?hoist0 ?crate4, lifting 7hoist2 7crate4

on ?crate2 ?crate4 | on ?crate0 ?crate2, on ?crate2 ?palletl, clear ?crate4, on ?crate2
?crate0, on ?cratel ?crate4, on ?crate2 7palletO, on ?crate2 7cratel, on ?cratel ?crate2,
on ?crate2 ?crate3, on ?crate3 ?7crate2, lifting ?hoistQ ?crate2, on ?crateQ ?crate4, on
Icrated4 7Tpalletl, in ?crate2 ?truckO, lifting ?hoistO ?crate4, lifting ?hoistl ?crate2, on
Icrated4 7crate3, lifting ?hoistl ?crate4, lifting ?hoist2 ?crate2, on ?crate3 ?crate4, on
?crate2 ?pallet2, on ?crate4 7cratel, on ?crate4 ?crate2, in ?crate4 ?truckl, in ?crate2
Nruckl, on ?crate4 ?palletO, on ?crate4 ?7crate0, in ?crate4 ?truckO

194

on ?crate4 ?palletO | on ?crate3 ?palletO, on ?cratel ?crate4, on ?crate2 ?palletO, clear
IpalletO, on ?crate0 ?crate4, on ?crate4 ?palletl, lifting ?hoistO ?crate4, on ?cratel ?pal-
letO, on ?7crate4 ?7crate3, lifting ?hoist] ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4,
on ?crate4 ?cratel, on ?crate4 ?crate2, on ?crate0 ?pallet0, in ?crate4 ?truckl, on ?crate4

Icrate0, in ?crate4 ?truck(, on ?crate4 ?pallet2, lifting ?hoist2 ?crate4

on ?crate4 ?crate0 | on ?crate0 ?crate2, on ?crateQ ?palletl, clear ?crate0, on ?crateQ

2cratel, on ?crate2 ?crate0, in ?crateQ ?truckO, on ?cratel ?crate4, on ?crate(Q ?crate4, on

Icrate4 ?palletl, lifting ?hoistO ?crate4, on ?crate4 ?crate3, lifting ?hoistl ?crate4, lift-
ing ?hoist1 ?crate0, on ?crate2 ?crate4, on ?crate3 ?crate4, on ?cratel ?crate0, on ?crate4

Icratel, on ?crate4 ?crate2, on ?crateQ ?palletO, in ?crate4 ?truckl, in ?crate0 ?truckl,
on ?crate4 ?palletO, lifting 7hoistO ?crate0, on ?crate3 ?crate0, in ?crate4 ?truckO, on

Icrate4 7pallet2, on 7crate(Q ?crate3, lifting ?hoist2 ?crate4

in ?crate0 ?truck3 | in ?crate0 ?truckl, lifting ?hoistl ?crate0, lifting ?hoistO ?crate0, in

2crate0 ?truck2, in ?crate0 ?truckO

in 2crate2 ?truck3 | in ?crate2 ?truck?2, lifting ?hoistl ?crate2, in ?crate2 ?truckl, lifting

7hoistO ?crate2, in ?crate2 ?truckO

in ?cratel ?truck3 | in ?cratel ?truckl, lifting ?hoistO ?cratel, in ?cratel ?truckO, in

Icratel ?truck?2, lifting ?hoistl ?cratel

at 2truck3 ?depot3 | at ?truck3 ?distributor0, at ?truck3 ?depotl, at ?truck3 ?distributor2,
at Mtruck3 ?distributor3, at ?truck3 ?depot0, at ?truck3 ?depot2, at ?truck3 ?distributorl

at ?truck3 ?distributor3 | at ?truck3 ?distributor0, at ?truck3 ?depotl, at ?truck3 ?distrib-
utor2, at ?truck3 ?depot0, at truck3 ?depot2, at truck3 ?depot3, at ?truck3 ?distribu-
torl

in ?crate4 ?truckl | clear ?crate4, on ?cratel ?crate4, at ?crate4 ?distributor2, at ?crate4

2distributor1, on ?crateQ ?crate4, on ?crate4 ?palletl, lifting ?hoistO ?crate4, on ?crate4

Icrate3, lifting ?hoist]l ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, at 7crate4 7de-
pot2, on ?crate4 ?cratel, on ?crate4 ?crate2, at 7crate4 ?depotl, on ?crate4 ?palletO, on

Icrate4 ?crate(, at ?crate4 ?distributor0, in ?crate4 ?truck0, at ?crate4 ?depotO

in ?crate4 ?truckO | clear ?crate4, on ?cratel ?crate4, at ?crate4 ?distributor2, at ?crate4

Adistributor1, on ?crate(?crate4, on ?crate4 ?palletl, lifting ?hoistO ?crate4, on ?crate4

Icrate3, lifting ?hoist]l ?crate4, on ?crate2 ?crate4, on ?crate3 ?crate4, at ?crate4 ?de-
pot2, on ?crate4 ?cratel, on ?crate4 ?crate2, in ?crated4 ?truckl, at ?crate4 ?depotl, on

Icrate4 7palletO, on 7crate4 ?crate0, at ?crate4 ?distributor(, at ?crate4 ?depotO

lifting ?hoist0 ?crate4 | lifting ?hoistO ?cratel, clear ?crate4, available ?hoist0, on ?crate

Icrate4, at ?crate4 ?distributor2, at ?crate4 ?distributorl, lifting ?hoist0 ?crate2, on

IcrateQ ?crate4, on ?crate4 7palletl, on ?crate4d ?7crate3, lifting ?hoistl ?crate4, on

Icrate2 ?crate4, on ?crate3 ?7crate4, at ?crate4 ?depot2, on ?crate4 ?cratel, on ?crate4

Icrate2, in 7crate4 ?truckl, at ?crate4 ?depotl, on ?crate4 ?palletO, lifting ?hoistO ?crate3,
lifting ?hoistO ?crate0, on ?crate4 ?crate0, at ?crate4 ?distributor0, in ?crate4 ?truck0, at
Icrate4 ?depot0, on ?crate4 ?pallet2

lifting ?hoist1 ?crate4 | available ?hoistl, clear ?crate4, lifting ?hoist1 ?crate3, on ?cratel
Icrate4, at ?crate4 ?distributor2, at ?crate4 ?distributorl, lifting ?hoistl ?cratel, on

Icrate0 ?crate4, on ?crate4 7palletl, lifting ?hoistO ?crate4, lifting ?hoistl ?crate2, on

Icrate4 ?crate3, lifting ?hoist] ?crate0, on 7crate2 ?crate4, on 7crate3 ?crate4, at 7crate4

?depot2, on ?crate4 ?cratel, on ?crate4 ?crate2, in ?crate4 ?truckl, at ?crate4 ?depotl,
on ?7crate4 7palletO, on ?crate4 ?crate(, at ?crate4 ?distributor(, in ?crate4 ?truckO, at
Icrate4 ?7depot0, on ?crate4 7pallet2

at 2truck?2 ?distributor4 | at ?truck2 ?depot1, at ?truck?2 ?distributor3, at ?truck2 ?depot0,
at ?truck2 ?distributor2, at ?truck2 ?depot4, at ?truck?2 ?depot3, at ?truck2 ?distributorl,
at 7truck2 ?distributor0, at ?truck2 ?depot2

at 2truck?2 ?depot4 | at ?truck2 ?distributor4, at ?truck2 ?depotl, at ?truck?2 ?distributor3,

195

at Mtruck? ?depot0, at ?truck? ?distributor2, at ?truck? ?depot3, at ?truck2 ?distributorl,
at 2truck2 ?distributor0, at ?truck2 ?depot2

C.3.2 Understanding the found macro-operators

|

macro

action macro-3-actions-1-
action macro-3-actions-1-
action macro-3-actions-1-
action macro-3-actions-1-
action macro-3-actions-1- 6
action macro-3-actions-1- 8
action macro-4-actions-1-3-4-2—-14-9
action macro-3-actions-1-0-0—-17-2
action macro-3-actions-1-4-2-23-12
action macro-2-actions-1-4-24-13
action macro-2-actions-1-2-24-14
action macro-3-actions-1-0-0-25-2
action macro-4-actions-1-0-0-4—29-1
action macro-2-actions-1-2—-31-15
action macro-3-actions-3-0-0-36-19
action macro-2-actions-3-4—40-20
action macro-2-actions-3-0-41-19
action macro-2-actions-3-4-42-22
action macro-2-actions-3-2-30-24
action macro-2-actions-3-3—43-25
action macro-3-actions-0-1-4—-49-26
action macro-3-actions-0-1-0-50-27
action macro-4-actions-0-4-3-0-56-29
action macro-3-actions-0-4-3-57-29
action macro-3-actions-0-4-3-58-31
action macro-4-actions-0-1-3-2—-65-32
action macro-3-actions-0-1-0-70-27
action macro-3-actions-0-1-2-71-32
action macro-2-actions-0-3-73-30
action macro-4-actions-0-0-0-0-77-35
action macro-3-actions-0-0-0—78-35
action macro-3-actions-0-0-0-79-37
action macro-3-actions-0-0-0—-80-37
action macro-4-actions-0-0-0-0—-84-35
action macro-3-actions-0-0-0-87-35
action macro-3-actions-0-0-0-92-37
action macro-4-actions-0-3-4-0-56-29
action macro-3-actions-0-3-4-57-29
action macro-3-actions-0-3-2-99-39
action macro-3-actions-0-3-0-101-30
action macro-3-actions-0-3-4-100-41
action macro-3-actions-0-3-3-58-31
action macro-3-actions-0-4-0-101-30

www(lﬁww
wwofo#

—_— == = = O OO OO RO OO OO0 R R RO RO RO PR PEOFRFEEFEQO R —
SO0 OoOOR—O—RPOO—ROO—OO0O— RO OOROO—OO—ROOO OO O—0OO0 |l
SO0 OO0 OO0 |

196

Table C.3 continued from previous page

macro |

action macro-3-actions-0-4-0-107-30 1
action macro-3-actions-0-4-2—110-31 1
action macro-4-actions-0-4-3-0-95-31 1
action macro-3-actions-0-4-4—112-43 1
action macro-3-actions-0-0-1-115-27 0
action macro-3-actions-0-0-3—-118-29 0
action macro-3-actions-0-0-1-122-27 0
action macro-4-actions-0-0-0-0-125-35 0
action macro-3-actions-0-0-0-128-35 0
action macro-3-actions-0-0-2—-122-27 0
action macro-3-actions-0-0-4-118-29 0
action macro-4-actions-0-0-0-0-134-44 1
action macro-3-actions-0-0-0-135-44 1
action macro-4-actions-0-0-0-0-136-44 1
action macro-3-actions-0-0-0-137-44 1
action macro-4-actions-0-0-0-0-138-44 0
action macro-4-actions-0-0-0-0-139-44 0
action macro-3-actions-0-0-0-142-44 0
action macro-3-actions-0-0-4—-143-30 1
action macro-3-actions-0-0-0—144-37 0
action macro-4-actions-0-0-3-0—-145-30 1
action macro-4-actions-0-0-0-0-147-35 0
action macro-3-actions-0-0-0-152-35 0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

=jejejelsjeliejsjeliejel=li=lelelelels el le el lslsle el leleje el el =ls e e s e le s e lalal <

action macro-3-actions-0-0-3—-122-38
action macro-3-actions-0-0-0—-154-37
action macro-3-actions-0-0-4—-122-38
action macro-3-actions-0-0-2—115-27
action macro-4-actions-0-0-4-3-155-29
action macro-4-actions-0-0-3-3-117-31
action macro-4-actions-0-0-3-4—-155-29
action macro-3-actions-0-0-0-157-37
action macro-3-actions-0-0-3-143-30
action macro-3-actions-0-0-0-158-37
action macro-2-actions-0-0-163-46
action macro-3-actions-0-2-2—-164-32
action macro-3-actions-0-0-4—165-45
action macro-3-actions-0-0-0-166-47
action macro-3-actions-0-0-3—-165-45
action macro-4-actions-0-0-4-0-167-45
action macro-3-actions-0-0-0-168-44
action macro-3-actions-0-0-2—169-48
action macro-4-actions-0-0-3-0-167-45
action macro-3-actions-0-0-1-179-48
action macro-4-actions-0-0-0-0-181-44
action macro-4-actions-0-0-0-1-183-48
action macro-4-actions-0-0-0-3-184-45
action macro-4-actions-0-0-0-4—184-45
action macro-3-actions-0-0-0-185-44

SO DO OO OO OO OO OO R ORFRFORMFREMFEEMEPEORORE)OO0 RFEFREMFER==)OOO0OO0

197

Table C.3 continued from previous page

macro |

action macro-3-actions-0-0-0—186-47 1
action macro-3-actions-0-0-0—187-47 1
action macro-3-actions-0-0-0—168-49 1
action macro-3-actions-0-0-0—188-47 1
action macro-3-actions-0-0-0—-189-47 1
action macro-3-actions-0-0-2—179-48 1
action macro-2-actions-0-0-191-44 1
action macro-4-actions-0-0-0-0-195-44 1
action macro-4-actions-0-0-0-4—196-45 1
action macro-3-actions-0-0-0-197-47 1
action macro-3-actions-0-0-0-199-44 1
action macro-3-actions-0-0-4-202-45 1
action macro-3-actions-0-0-3-202-45 1
action macro-4-actions-0-0-0-0-203-44 1
action macro-4-actions-0-0-0-0-204-44 1
action macro-4-actions-0-0-0-3-206-45 1
action macro-4-actions-0-0-0-0-207-47 1
action macro-4-actions-0-0-0-0-208-47 1
action macro-4-actions-0-0-0-4—206-45 1
action macro-4-actions-0-0-0-4—209-45 1
action macro-4-actions-0-0-0-0-210-47 1
action macro-4-actions-0-0-0-0-211-47 1
action macro-3-actions-0-0-0-212-44 1
action macro-3-actions-0-0-0-214-47 1
action macro-3-actions-0-0-1-215-48 1
action macro-4-actions-0-0-0-0-216-44 1
action macro-4-actions-0-0-0-4-217-45 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1

=

=jejejejejejejejleleisi=l ===l el lelelelo el lelelololole e e e e o e e e = = e e R =R =0 =

action macro-3-actions-0-0-0-218-44
action macro-3-actions-0-0-0-219-47
action macro-3-actions-0-0-0-220-47
action macro-3-actions-0-0-4-221-45
action macro-4-actions-0-0-4-0-222-45
action macro-4-actions-0-0-0-0-223-47
action macro-3-actions-0-0-0-224-47
action macro-4-actions-0-0-0-0-225-47
action macro-4-actions-0-0-0-0-226-47
action macro-3-actions-0-0-0-227-47
action macro-3-actions-0-0-2—-215-48
action macro-2-actions-0-0-229-44
action macro-3-actions-0-4-2—-259-50
action macro-2-actions-0-4-73-30
action macro-3-actions-0-0-0-260-37
action macro-4-actions-0-0-0-0-265-35
action macro-3-actions-0-0-0-268-35
action macro-4-actions-0-0-0-0-271-35
action macro-3-actions-0-0-0-274-35
action macro-3-actions-0-0-0-275-37
action macro-3-actions-0-0-0-276-37

el g el e lelaleleleolelieleleleleoleoleoleolelieoNelieNeloNeloNololoNeleNe o NeloNoloNo oo ol N lo)

198

Table C.3 continued from previous page

action macro-3-actions-0-0-0-284-37 1
action macro-4-actions-0-0-0-0-285-37 0
action macro-4-actions-0-1-3-0-288-31 1
action macro-3-actions-0-1-3-289-31 1
action macro-4-actions-0-1-3-1-65-39 1
action macro-4-actions-0-1-3-3-63-31 1
action macro-4-actions-0-3-3-0-95-31 1
action macro-4-actions-0-3-0-0-293-30 1
action macro-3-actions-0-3-0-107-30 1
action macro-3-actions-0-3-0-295-30 1
action macro-3-actions-0-3-0-296-30 1
action macro-3-actions-0-3-4-297-54 1
action macro-3-actions-0-0-0-298-49 1
action macro-2-actions-0-0-299-49 1
action macro-3-actions-0-0-4-300-55 1
action macro-3-actions-0-0-0-301-49 1
action macro-3-actions-0-0-0-302-49 1
action macro-3-actions-0-0-3-300-55 1
action macro-4-actions-0-0-0-0-312-44 0
action macro-4-actions-0-0-0-0-312-49 0
action macro-3-actions-0-0-0-319-44 0
action macro-4-actions-0-0-0-0-320-47 0
action macro-4-actions-0-0-0-4-323-45 0
action macro-4-actions-0-0-0-0-324-44 0
action macro-4-actions-0-0-0-3-323-45 0
action macro-4-actions-0-0-0-1-327-48 0
0
0
0
0
0
0
1
0
0
1
0
1
1
0
1
0
0
0
0
1
1
1

=

COO0OOC OO0 OO |k

action macro-4-actions-0-0-0-0-328-47
action macro-4-actions-0-0-0-0-329-47
action macro-4-actions-0-0-0-0-330-47
action macro-4-actions-0-0-0-0-331-47
action macro-3-actions-0-0-0-332-44
action macro-4-actions-0-0-1-0-342-48
action macro-3-actions-0-0-0-338-49
action macro-4-actions-0-0-0-0-324-49
action macro-3-actions-0-0-0-332-49
action macro-3-actions-0-0-4-303-56
action macro-4-actions-0-0-0-0-348-47
action macro-3-actions-0-0-3-303-56
action macro-3-actions-0-0-0-352-49
action macro-4-actions-0-0-0-0-356-47
action macro-3-actions-0-0-0-358-49
action macro-4-actions-0-0-0-0-359-47
action macro-4-actions-0-0-3-4-364-45
action macro-4-actions-0-0-4-3-364-45
action macro-2-actions-0-0-366-44
action macro-3-actions-0-3-4-367-53
action macro-3-actions-0-3-0-368-30
action macro-4-actions-0-3-0-4-369-53

SOOR =R)OO, OORORRORMEEMFEFERFEFEFE === = O 0000000000 O —O

199

Table C.3 continued from previous page

action macro-3-actions-0-3-3-370-59
action macro-3-actions-0-0-0-372-37
action macro-3-actions-0-0-0-373-37
action macro-3-actions-0-0-0-378-37
action macro-3-actions-0-0-0-379-37
action macro-3-actions-0-0-0-380-37
action macro-3-actions-0-0-0-382-37
action macro-4-actions-0-0-0-0-385-37
action macro-3-actions-0-0-0-386-37
action macro-3-actions-0-1-3-69-32
action macro-4-actions-0-3-3-3-104-60
action macro-4-actions-0-3-3-4-104-31
action macro-3-actions-0-3-4-112-43
action macro-4-actions-0-3-3-4-392-31
action macro-3-actions-0-2-0-70-27
action macro-3-actions-0-4-0-295-30
action macro-3-actions-0-4-0-296-30
action macro-3-actions-0-4-3-398-30
action macro-3-actions-0-4-4-370-59
action macro-4-actions-0-1-3-4—66-61
action macro-4-actions-0-3-3-4—104-60
action macro-3-actions-0-4-3—112-43
action macro-3-actions-0-0-0—403-37
action macro-3-actions-0-0-0—407-37
action macro-3-actions-0-3-4—408-38
action macro-3-actions-0-0-0—411-37
action macro-3-actions-0-0-0-412-37
action macro-4-actions-0-0-0-0-414-37
action macro-3-actions-0-0-0-415-37
action macro-3-actions-0-2-0-50-27
action macro-3-actions-0-3-0-70-38
action macro-3-actions-0-4-0-417-38
action macro-4-actions-0-4-0-0—-420-30
action macro-3-actions-0-3-4-370-59
action macro-4-actions-0-3-0-0—-420-30
action macro-4-actions-0-3-0-0-421-30
action macro-4-actions-0-3-0-0-423-30
action macro-4-actions-0-3-0-0-424-30
action macro-3-actions-0-3-4-398-30
action macro-4-actions-0-3-0-0-425-30
action macro-3-actions-0-4-3-370-59
action macro-4-actions-0-4-0-0-423-30
action macro-4-actions-0-4-3-0-426-30
action macro-4-actions-0-3-0-0-427-30
action macro-3-actions-0-3-3-297-54
action macro-3-actions-0-3-1-430-62
action macro-3-actions-4-0-3—431-19
action macro-2-actions-4-0-41-19

=

=jejejejejejejelelei=i=l ===l lelslelelelelelslvislelelelolole e e e e o e e e = e e e R =R =] <

= = e e e e e e e e e e e e e = = O O O OO R OO, R m e O R R = OO R = O = O -
eoleloleolaoleoleoleleleoleleoleoleollelelell g Heleol sl loleoleoleljleoNeloNolell i e Nelol el]

200

Table C.3 continued from previous page

action macro-3-actions-4-3-4-432-23 0
action macro-3-actions-4-3-0-433-19 0
action macro-2-actions-4-3-42-22 0
action macro-4-actions-4-0-0-3—434-19 0
action macro-3-actions-4-0-0-36-19 0
action macro-2-actions-4-3-31-23 1
action macro-2-actions-4-0-435-66 1
action macro-2-actions-4-4-43-25 1
action macro-2-actions-4-2-436-23 1
action macro-3-actions-1-0-2-437-68 1
action macro-3-actions-1-0-0-438-7 1
action macro-4-actions-1-3-0-4-441-2 1
action macro-4-actions-1-3-0-4-441-68 1
action macro-4-actions-1-3-0-0-442-7 1
action macro-4-actions-1-3-4-0-444-69 1
action macro-4-actions-1-3-0-0-448-7 1
action macro-4-actions-1-3-0-0-449-7 1
action macro-4-actions-1-3-0-2—451-68 1
action macro-4-actions-1-3-0-0—-452-7 1
action macro-4-actions-1-3-0-0-453-2 1
action macro-3-actions-1-3-2-454-70 1
action macro-4-actions-1-3-0-0—455-7 1
action macro-4-actions-1-3-0-0—456-7 1
action macro-4-actions-1-3-0-0-457-7 1
action macro-4-actions-1-3-0-0-459-7 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
1
1
0

=

=lejejelsjeliejsjeliejelsi=lelels el le el lelelselsle el e lejee s e el lsls e e ls e le s e la el <

action macro-4-actions-1-3-0-3—460-71
action macro-4-actions-1-3-4-0-461-72
action macro-3-actions-1-3-4—13-8
action macro-3-actions-1-3-3-4-3
action macro-3-actions-1-3-3-8-6
action macro-4-actions-1-3-3-0—-463-73
action macro-3-actions-1-0-2—468-68
action macro-3-actions-1-0-0—-469-7
action macro-3-actions-1-0-1-471-74
action macro-3-actions-1-0-2—-471-75
action macro-2-actions-1-3-30-67
action macro-3-actions-1-0-4—19-1
action macro-3-actions-0-0-0-482-37
action macro-3-actions-0-4-0-491-38
action macro-3-actions-0-4-0-50-38
action macro-3-actions-0-4-3—493-38
action macro-3-actions-0-0-0—499-37
action macro-3-actions-0-0-0-501-37
action macro-3-actions-0-0-0-502-37
action macro-4-actions-0-0-0-0-503-37
action macro-4-actions-0-0-0-0-505-37
action macro-4-actions-0-0-0-0-506-37
action macro-4-actions-0-0-0-0-508-37

el el el S HelololololololololeololeloleoleoleoleoleoleleoleNeoleoNeleoNeloNo oo NoloNoNa e il

201

Table C.3 continued from previous page

action macro-3-actions-0-0-0-509-37 1
action macro-4-actions-0-0-0-0-510-37 1
action macro-3-actions-0-0-0-513-37 1
action macro-4-actions-0-0-0-0-516-37 0
action macro-3-actions-0-0-4—115-38 0
action macro-3-actions-0-0-3—115-38 0
action macro-4-actions-0-0-0-0-518-37 0
action macro-4-actions-0-0-0-0-519-37 0
action macro-4-actions-0-0-0-0-520-37 0
action macro-4-actions-0-0-3-0-521-38 1
action macro-3-actions-0-3-4-493-38 0
action macro-4-actions-0-0-0-0-524-37 0
action macro-4-actions-0-0-0-0-525-37 1
action macro-3-actions-0-0-0-528-37 1
action macro-3-actions-0-3-0-491-38 1
action macro-4-actions-0-0-0-0-529-47 1
action macro-4-actions-0-0-0-0-530-47 1
action macro-3-actions-0-4-0-70-38 0
action macro-3-actions-0-3-3-71-77 1
action macro-3-actions-0-3-0—417-38 1
action macro-3-actions-1-4-0-532-13 1
action macro-3-actions-3-3-0-534-84 1
action macro-2-actions-3-3—-31-23 1
action macro-3-actions-3-4-0-540-20 1
1
1
1
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
0
1
1
1

=

=jejejejajejejelelelisi= ===l el lelelelelololslelo oo lolelelela e e o e e e = e e e N =R=0] <

action macro-3-actions-3-0-4-431-86
action macro-2-actions-3-4—43-25
action macro-3-actions-3-0-4—-431-19
action macro-3-actions-3-4-2-541-65
action macro-4-actions-3-4-0-0-542-19
action macro-3-actions-3-4-0-433-19
action macro-3-actions-3-0-0-16-21
action macro-3-actions-3-0-0-17-21
action macro-3-actions-3-4-0-543-84
action macro-4-actions-3-0-0-4—-434-19
action macro-3-actions-3-0-0-546-66
action macro-3-actions-3-0-2—548-87
action macro-3-actions-3-0-0-549-66
action macro-3-actions-3-4-2—550-88
action macro-2-actions-3-2—24-89
action macro-3-actions-3-0-0-551-66
action macro-4-actions-3-0-0-0-553-66
action macro-3-actions-3-0-0-554-66
action macro-2-actions-3-0-435-66
action macro-4-actions-3-0-0-0-556-66
action macro-3-actions-3-4-3-558-23
action macro-3-actions-3-3-4-559-25
action macro-3-actions-4-0-3—-431-86
action macro-3-actions-4-0-0-560-19

S OO PO OO—RO—RORFR RO R ORFEMFREEFE=~,OOO

202

Table C.3 continued from previous page

action macro-4-actions-4-0-3-0-561-19 1
action macro-3-actions-4-0-0-16-21 1
action macro-3-actions-4-0-0-17-21 0
action macro-4-actions-4-0-0-3—434-86 1
action macro-3-actions-4-2-2—-563-63 1
action macro-3-actions-4-0-0-551-66 1
action macro-3-actions-4-0-0-554-66 1
action macro-3-actions-4-0-0-439-21 1
action macro-3-actions-4-0-0-25-21 0
action macro-3-actions-4-3-0-565-19 1
action macro-3-actions-4-3-3-432-23 1
action macro-2-actions-4-3—43-25 1
action macro-4-actions-0-0-1-4-568-26 1
action macro-4-actions-0-0-4-3-117-31 1
action macro-4-actions-0-0-0-3-571-45 1
action macro-4-actions-0-0-0-4-571-45 1
action macro-4-actions-0-0-0-0-574-47 1
action macro-4-actions-0-0-0-0-575-47 1
action macro-3-actions-0-0-0-579-49 1
action macro-4-actions-0-0-0-0-138-49 0
action macro-4-actions-0-0-3-0-584-30 1
action macro-4-actions-0-0-4-0—145-30 1
action macro-4-actions-0-0-4-0-584-30 1
action macro-4-actions-0-0-4-0-586-30 1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

=jejejelsjeliejsjeliejelsi=lslels el le el lelelslslsle el leleje el e e lslsls e e ls el el e lalal <

action macro-4-actions-0-0-0-0-587-37
action macro-4-actions-0-0-3-0-585-30
action macro-4-actions-0-0-4-0-585-30
action macro-4-actions-0-0-4-2—588-50
action macro-4-actions-0-0-3-4-589-54
action macro-3-actions-0-1-2—489-32

action macro-4-actions-0-0-0-0-595-37
action macro-3-actions-0-0-0-599-37

action macro-4-actions-0-0-0-0-602-44
action macro-4-actions-0-0-4-0-603-45
action macro-4-actions-0-0-0-0-607-44
action macro-4-actions-0-0-3-0-603-45
action macro-4-actions-0-0-0-0-608-44
action macro-4-actions-0-0-0-1-609-48
action macro-3-actions-0-0-2-610-48

action macro-3-actions-0-0-0-611-49

action macro-4-actions-0-0-4-0-612-45
action macro-3-actions-0-0-3-221-45

action macro-3-actions-0-0-0-616-47

action macro-4-actions-0-0-0-0-618-47
action macro-4-actions-0-0-0-0-619-47
action macro-4-actions-0-0-0-0-620-47
action macro-4-actions-0-0-0-0-621-47
action macro-4-actions-0-0-0-0-622-47

eeololeololeoleololeolecleloleclolecleoleoleloleololeoleol leololeoleol SeoleoleoleoleleoleleoNeleol NeolleoNeloNol el

203

Table C.3 continued from previous page

action macro-4-actions-0-0-0-0-637-37 1
action macro-4-actions-0-0-0-0-638-37 1
action macro-4-actions-0-3-0-0-657-30 1
action macro-3-actions-0-0-0-659-37 0
action macro-3-actions-0-0-3—-662-81 1
action macro-3-actions-0-4-0-368-30 1
action macro-4-actions-0-4-0-0-657-30 1
action macro-4-actions-0-0-0-0-670-37 1
action macro-4-actions-0-0-0-0-671-37 0
action macro-3-actions-0-0-0-672-37 1
action macro-4-actions-0-0-0-0-673-37 0
action macro-4-actions-0-3-0-0-675-30 1
action macro-2-actions-2-2—436-15 1
action macro-2-actions-2-1-42-93 0
action macro-4-actions-0-0-4-2—-677-48 1
action macro-4-actions-0-0-0-3-196-45 1
action macro-4-actions-0-0-3-4—682-45 1
action macro-3-actions-0-0-1-169-48 1
action macro-4-actions-0-0-4-3—-682-45 1
action macro-3-actions-0-1-0—-684-33 1
action macro-4-actions-0-1-3-0—-685-33 1
action macro-4-actions-0-1-3-0—-686-33 1
action macro-4-actions-0-0-0-0—-689-37 1
action macro-4-actions-0-0-0-0-690-37 1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

=jejejejejejejelelei=i=i=i=ielelslelelsisisielelelslvislelelololole e la e e o e e e = e e e N =R=0] <

action macro-3-actions-0-0-0-694-37
action macro-4-actions-0-4-0-0-425-30
action macro-4-actions-0-0-0-0-705-47
action macro-4-actions-0-0-0-0-707-47
action macro-4-actions-0-0-0-0-731-47
action macro-4-actions-0-0-1-0-732-48
action macro-4-actions-0-0-1-3-733-48
action macro-4-actions-0-0-1-0-734-48
action macro-3-actions-0-0-1-610-48
action macro-4-actions-0-0-0-4—737-45
action macro-4-actions-0-0-0-0-739-47
action macro-4-actions-0-0-0-0-740-47
action macro-4-actions-0-0-0-0-741-47
action macro-4-actions-0-0-0-0-742-47
action macro-4-actions-0-0-3-0-612-45
action macro-4-actions-0-0-3-4—743-58
action macro-4-actions-0-0-0-0-746-37
action macro-4-actions-0-3-3-0-95-94
action macro-4-actions-0-3-0-0-749-30
action macro-3-actions-0-1-0-50-33
action macro-4-actions-0-0-0-4—751-45
action macro-4-actions-0-0-0-3-751-45
action macro-4-actions-0-0-0-1-756-48
action macro-4-actions-0-0-3-0-586-30

SO OO DO OO0 R OOODODODDODODDDO0OODOOoO—ROOROROOOoOO OO0

204

Table C.3 continued from previous page

action macro-4-actions-0-0-0-0-761-37
action macro-4-actions-0-0-0-0-765-37
action macro-4-actions-0-0-0-0-766-37
action macro-4-actions-0-0-0-0-767-37
action macro-3-actions-0-0-0-771-37
action macro-4-actions-0-0-0-0-773-37
action macro-4-actions-0-0-0-0-774-37
action macro-4-actions-0-0-0-0-776-37
action macro-4-actions-0-0-0-0-777-37
action macro-4-actions-0-0-0-0-779-37
action macro-4-actions-0-0-0-0-781-37
action macro-4-actions-0-0-0-0-782-37
action macro-4-actions-0-3-0-2-391-39
action macro-4-actions-0-4-0-0-293-30
action macro-4-actions-0-4-0-0-749-30
action macro-4-actions-0-0-0-0-788-37
action macro-4-actions-0-0-0-0-791-37
action macro-4-actions-0-0-0-0-792-37
action macro-3-actions-0-0-0-796-37
action macro-4-actions-0-4-0-0-797-30
action macro-4-actions-0-4-0-3—798-30
action macro-4-actions-0-4-3-0-56-30
action macro-4-actions-0-0-0-0-803-37
action macro-4-actions-0-0-0-0-804-37
action macro-4-actions-0-0-0-0-807-37
action macro-4-actions-0-4-0-0-812-30
action macro-4-actions-0-4-0-4—-813-43
action macro-3-actions-0-3-0-815-98
action macro-4-actions-1-3-1-3-562-99
action macro-4-actions-0-0-1-3-820-48
action macro-4-actions-0-0-0-0-823-47
action macro-4-actions-0-0-0-0-824-47
action macro-4-actions-0-0-0-1-825-48
action macro-4-actions-0-0-0-2-327-48
action macro-4-actions-0-0-0-0-826-47
action macro-4-actions-0-0-0-0-827-47
action macro-4-actions-0-0-0-0-828-47
action macro-4-actions-0-0-0-0-829-47
action macro-4-actions-0-0-0-0-832-37
action macro-4-actions-0-0-4-3—-836-30
action macro-4-actions-0-0-0-0-837-44
action macro-4-actions-0-0-0-4—-839-45
action macro-4-actions-0-0-0-3-839-45
action macro-4-actions-0-0-0-0-840-37
action macro-4-actions-0-0-1-0-841-33
action macro-4-actions-0-0-3-4—-836-30
action macro-4-actions-0-0-0-0-846-37
action macro-4-actions-0-0-0-0-848-37

=

=lejejelsjeliejsjeliejelsi=lslels el leleislelejslslsle el e le e e s el le e ls el el e lalal <

— O OO OO0 R FEREEFEEFEMFEEFEFOOODOODOODODODODOR OO0 —RO

(e R e I Y e Hes Nes les Nes Nes Nes Nes R e I g e e ™ e e e e N e e B N R e e W el W)

205

Table C.3 continued from previous page

action macro-4-actions-0-0-0-0-849-37 0
action macro-4-actions-0-0-0-0-850-37 0
action macro-4-actions-0-0-0-0-851-37 0
action macro-4-actions-0-0-0-3—-737-45 1
action macro-4-actions-0-0-4-2—852-48 1
action macro-4-actions-0-0-3-4—853-45 1
action macro-4-actions-0-0-0-0-854-37 0
action macro-4-actions-0-0-0-0-855-37 1
action macro-4-actions-0-0-0-0-856-37 0
action macro-4-actions-0-0-0-0-857-37 1
action macro-4-actions-0-0-0-0-860-37 0
action macro-4-actions-0-0-0-0-861-37 1
action macro-4-actions-0-3-4-0-863-30 1
action macro-4-actions-0-4-0-2—865-50 1
action macro-4-actions-0-0-0-0-866-37 0
action macro-4-actions-0-0-0-0-867-37 0
action macro-4-actions-0-0-0-0-868-37 1
action macro-4-actions-0-3-0-4—-798-30 1
action macro-4-actions-0-3-3-4-871-54 1
action macro-4-actions-0-0-0-0-874-37 0
action macro-4-actions-0-0-0-0-887-47 1
action macro-4-actions-0-0-0-0-894-37 1
action macro-4-actions-0-0-1-0—-895-33 1
action macro-3-actions-0-0-4—169-57 1
1
0
1
1
1
1
0
1
1
1
1
1
1
0
1
0
0
1
1
1
0
1
1
1

=

=jejejejajejejejelelsl=l ===l e lelslelelelo el lelelololole e la e e o e e e = e e e R =R =0 =

action macro-3-actions-0-3-3—-100-41
action macro-4-actions-0-3-4-0-56-30
action macro-4-actions-0-0-0-0-903-37
action macro-3-actions-0-0-4-662-81
action macro-4-actions-0-0-0-0-904-37
action macro-4-actions-0-0-0-0-906-37
action macro-4-actions-0-0-0-0-909-37
action macro-4-actions-0-3-0-0-797-30
action macro-4-actions-0-3-0-0-812-30
action macro-4-actions-0-4-3-0-911-30
action macro-3-actions-3-0-0-560-19
action macro-3-actions-3-0-0-914-66
action macro-4-actions-0-0-0-0-915-37
action macro-3-actions-0-4-3—408-38
action macro-4-actions-0-0-0-0-919-37
action macro-4-actions-0-0-0-0-922-37
action macro-4-actions-0-0-0-0-928-37
action macro-4-actions-0-0-0-0-929-37
action macro-4-actions-0-0-0-0-930-37
action macro-3-actions-0-3-3—489-77
action macro-3-actions-0-3-0-50-38
action macro-3-actions-0-3-4-932-76
action macro-2-actions-1-3-819-100
action macro-3-actions-1-3-0-939-101

S OO OOO—RrRPROROO0OOO0OOOrROO0OOOROO0O0OOORrOO0OOORROOORROROR,ROOO ==

206

Table C.3 continued from previous page

action macro-4-actions-1-3-1-0-940-102 1
action macro-4-actions-1-3-1-0-942-102 1
action macro-3-actions-1-3-1-12-99 1
action macro-4-actions-1-3-3-0-446-101 1
action macro-3-actions-1-3-3-8-100 1
action macro-3-actions-3-0-3—431-86 1
action macro-3-actions-3-1-0-943-83 1
action macro-3-actions-3-3-4-558-23 1
action macro-4-actions-3-3-0-0-947-84 1
action macro-4-actions-3-0-0-3—-434-86 1
action macro-3-actions-3-0-1-948-104 1
action macro-3-actions-3-0-0-949-66 1
action macro-3-actions-3-0-1-950-104 1
action macro-3-actions-3-0-0-951-66 1
action macro-3-actions-3-0-0-952-66 1
action macro-3-actions-3-0-2-953-16 1
action macro-3-actions-3-4-0-540-107 1
action macro-3-actions-1-4-0-532-108 1
action macro-4-actions-1-0-0-0-954-7 0
action macro-3-actions-1-0-2—-955-75 1
action macro-4-actions-0-0-4-3—-853-45 1
action macro-4-actions-0-0-3-0-222-45 1
action macro-4-actions-0-0-3-4-956-45 1
action macro-4-actions-0-0-0-0-959-37 1
action macro-4-actions-0-0-3-2—-156-39 1
action macro-4-actions-0-0-4-4—-162-43 1
0
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1

=

=jejejelsjeliejsjelejelsi=lslels el le el lelels sl le el leleje el e el e e ls el el e lalal <

action macro-4-actions-0-0-0-2—-825-48
action macro-4-actions-0-0-0-0-969-47
action macro-3-actions-0-0-4—-170-56
action macro-4-actions-0-0-0-0-972-47
action macro-4-actions-0-0-0-0-974-47
action macro-4-actions-0-0-0-0-976-37
action macro-3-actions-0-1-4-567-61
action macro-4-actions-0-1-0-4-977-109
action macro-4-actions-0-0-0-0-983-37
action macro-3-actions-0-0-0-218-49
action macro-4-actions-0-0-0-0-985-37
action macro-4-actions-0-0-0-0-988-37
action macro-4-actions-0-0-0-0-989-37
action macro-3-actions-0-3-0-295-111
action macro-4-actions-0-4-0-4-910-59
action macro-4-actions-0-4-0-3-910-59
action macro-4-actions-0-4-3-4-991-41
action macro-4-actions-0-3-0-4-910-59
action macro-4-actions-0-3-4-0-990-41
action macro-4-actions-3-0-0-0-992-66
action macro-3-actions-3-0-3-993-112
action macro-3-actions-3-4-2-994-113

eeololeololeoleololel Jeoi Jeolololololololeolol Seololololeoleoleol oo loleoloNeloNeloloNeoloNeoloNolo NN

207

Table C.3 continued from previous page

action macro-3-actions-3-4-0-995-20 1
action macro-3-actions-3-4-3-996-20 1
action macro-3-actions-3-0-3-34-17 1
action macro-3-actions-3-4-0-997-114 1
action macro-4-actions-3-0-0-0-1001-66 1
action macro-4-actions-3-0-0-0—-1002-66 1
action macro-3-actions-3-0-0—1005-66 1
action macro-2-actions-3-3-40-20 1
action macro-3-actions-3-1-4—-1007-116 1
action macro-4-actions-3-0-4-0-561-19 1
action macro-3-actions-3-0-0—1008-117 1
action macro-3-actions-3-0-0-25-21 0
action macro-4-actions-0-0-0-0-1009-37 0
action macro-3-actions-1-3-0-465-118 1
action macro-4-actions-1-3-1-0-942-119 1
action macro-3-actions-1-3-1-12-120 1
action macro-4-actions-1-3-3-0-446-69 1
action macro-4-actions-1-3-3-3—445-121 1
action macro-4-actions-1-3-3-4-1010-122 1
action macro-4-actions-1-3-3-4-445-100 1
action macro-4-actions-1-3-1-3—-1011-121 1
action macro-4-actions-1-3-1-0-1013-123 1
action macro-3-actions-1-3-1-936-124 1
action macro-3-actions-1-3-4-938-121 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

=jejejejajejejelelel=i=l=i=i=lelelelelelelelelelelelslelelelelolole e la e e o e e e = e e e R =R =0 =

action macro-4-actions-1-3-0-0-1014-101
action macro-4-actions-1-3-0-4-1015-125
action macro-4-actions-1-3-3-0-1016-126
action macro-3-actions-1-3-3-938-121
action macro-3-actions-1-3-4-1017-122
action macro-2-actions-1-2—15-127

action macro-3-actions-3-0-0-1018-18
action macro-3-actions-3-3-4-544-23
action macro-4-actions-3-0-0-0-1021-66
action macro-3-actions-3-0-4-993-112
action macro-3-actions-3-3-3-544-128
action macro-3-actions-3-3-4-544-128
action macro-4-actions-3-3-1-3—-1023-129
action macro-4-actions-3-3-1-0-1024-130
action macro-3-actions-3-3-1-1025-129
action macro-4-actions-3-3-0-4—1026-131
action macro-3-actions-3-3-4—1027-132
action macro-4-actions-3-3-4-0-1028-84
action macro-3-actions-3-1-3—-1022-128
action macro-4-actions-3-1-3-3-944-128
action macro-3-actions-3-0-0-1031-18
action macro-4-actions-3-0-0-0-1032-66
action macro-4-actions-3-0-4-0-561-86
action macro-3-actions-3-0-0-439-21

sleolololeleleolaololaloleoleolelieleoleoleolaoeolaoleolelieoelieeolaeolaleololeoe el i o lo o oo o o No o No lo)

208

Table C.3 continued from previous page

action macro-4-actions-3-1-3-1-1042-129 1
action macro-4-actions-3-3-3-0-1028-136 1
action macro-3-actions-3-4-0-565-19 1
action macro-3-actions-3-4-3—432-23 1
action macro-3-actions-1-0-4—-19-125 1
action macro-3-actions-1-3-4-1044-100 1
action macro-4-actions-1-3-3-4-462-100 1
action macro-4-actions-1-3-3-4-445-121 1
action macro-2-actions-1-2-30-137 1
action macro-4-actions-4-0-0-0-556-66 0
action macro-3-actions-4-0-0-914-66 1
action macro-4-actions-4-3-0-0-542-19 0
action macro-3-actions-4-4-0-997-25 1
action macro-3-actions-4-0-0-1018-18 1
action macro-3-actions-4-0-0-1031-18 1
action macro-3-actions-4-0-0-546-66 1
action macro-3-actions-4-3-0-534-84 1
action macro-3-actions-4-3-3-544-23 1
action macro-3-actions-4-3-1-1046-24 0
action macro-3-actions-4-4-2-994-113 1
action macro-3-actions-4-2-0-5-64 1
action macro-3-actions-1-0-0-1047-7 1
action macro-3-actions-4-0-0-952-66 1
action macro-4-actions-3-0-0-4—-1049-17 1
action macro-3-actions-3-1-2—475-103 1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0

=

=jejejelsjeliejsjeliejelsi=lslels el le el lelelssls el lelele el el lsls e e ls el el e lalal <

action macro-4-actions-3-0-0-0—-1050-21
action macro-4-actions-3-0-0-0-1051-21
action macro-4-actions-3-0-0-0—-1053-21
action macro-4-actions-3-3-0-0-1058-84
action macro-3-actions-3-3-0-543-84
action macro-3-actions-3-3-0-1036-135
action macro-4-actions-3-3-4-0-1060-84
action macro-2-actions-3-3-30-139
action macro-3-actions-4-0-0-951-66
action macro-3-actions-4-0-0-949-66
action macro-4-actions-4-0-0-0-1021-66
action macro-3-actions-4-3-0-997-114
action macro-3-actions-2-0-0-17-2
action macro-4-actions-0-0-0-0-1067-37
action macro-3-actions-0-3-0-50-79
action macro-4-actions-0-0-0-0-1068-47
action macro-3-actions-0-0-0-1071-49
action macro-4-actions-0-0-0-4—1073-55
action macro-3-actions-4-3-4-544-128
action macro-4-actions-4-3-0-0-947-84
action macro-3-actions-4-3-4-558-23
action macro-4-actions-0-0-0-0-1076-37
action macro-4-actions-0-0-0-0-1079-37

i leleloleoleoleolel Jeololeolololeololeoleoleloleoleoleleoleleoleol SeoleoleoleoNelol Sell el NoloNoloNoNola)

209

Table C.3 continued from previous page

macro |

action macro-4-actions-1-3-3-0-444-101 1
action macro-3-actions-3-4-0-995-107 1
action macro-3-actions-3-4-0—1081-107 1
action macro-4-actions-3-4-0-0-1082-20 1
action macro-3-actions-3-0-4—1083-141 1
action macro-3-actions-3-0-1-1048-87 1
action macro-4-actions-3-0-0-0—1085-66 1
action macro-3-actions-3-3-0-997-25 1
action macro-4-actions-3-0-3-0-561-86 1
action macro-4-actions-3-3-0-4—-1086-84 1
action macro-3-actions-3-4-0-1087-21 0
action macro-3-actions-3-4-0-1088-21 0
action macro-3-actions-2-0-0-25-2 0
action macro-4-actions-3-0-0-0-1090-18 1
action macro-4-actions-3-0-0-0-1091-18 1
action macro-4-actions-3-0-0-0-1092-18 1
action macro-4-actions-3-0-0-0-1093-18 1
action macro-4-actions-3-0-0-4—1049-90 1
action macro-4-actions-3-0-0-0-1094-18 1
action macro-4-actions-3-0-0-0—-1095-18 1
action macro-4-actions-3-0-0-0-1097-21 1
action macro-4-actions-3-0-0-0—1098-21 1
action macro-4-actions-3-0-0-0—-1099-21 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

=jejejejejejejelelei=i=i=l=lele sl ieis il el lelelelolele e la e e o e e e = e e e R =R=0] <

action macro-4-actions-3-1-3-3-1103-142
action macro-4-actions-3-3-3-4—-1104-128
action macro-3-actions-4-0-4-993-112
action macro-4-actions-4-0-3-0-1105-141
action macro-4-actions-4-3-0-0-1106-19
action macro-3-actions-4-3-4—-1107-20
action macro-3-actions-1-0-3-28-68
action macro-4-actions-1-0-0-3—466-68
action macro-4-actions-1-3-0-3—441-68
action macro-4-actions-1-3-0-3—1108-143
action macro-3-actions-1-3-0-1109-101
action macro-3-actions-1-3-4-938-100
action macro-4-actions-4-0-0-0-992-66
action macro-3-actions-4-0-3—1110-66
action macro-3-actions-4-4-3-559-25
action macro-3-actions-4-3-0-997-25
action macro-3-actions-4-3-0-543-84
action macro-3-actions-4-0-0—1005-66
action macro-3-actions-4-0-0-549-66
action macro-4-actions-4-3-0-0-1111-66
action macro-4-actions-4-3-0-0—-1112-66
action macro-3-actions-4-3-3—-1113-25
action macro-4-actions-4-0-0-0—-1002-66
action macro-4-actions-3-0-0-0-1114-66
action macro-4-actions-3-0-0-0-1115-66

sleolololeoleeolaoleolaloleoleolelieleoleleolaeoleoleolelieoelieeolaeolaleololeoe el i S H oo oo oo o ool o)

210

Table C.3 continued from previous page

macro |

action macro-3-actions-3-0-4-1116-141
action macro-3-actions-3-4-0-997-25
action macro-4-actions-3-0-0-0-1117-66
action macro-4-actions-3-0-0-3—1049-17
action macro-3-actions-3-4-0-1119-25
action macro-3-actions-3-4-3-559-25
action macro-3-actions-3-3-0-1120-144

=

—_—_oO OO0 RO OR RO RO OR PR RPOR—RORRFO—RO—RO0000 000 |k

1

1

1

1

1

1

1

0

0

0

0

0
action macro-3-actions-1-3-0-10-4 0
action macro-4-actions-1-3-0-0-11-7 0
action macro-2-actions-1-3-15-5 0
action macro-3-actions-1-0-0-16-10 0
action macro-3-actions-1-0-0-18-10 0
action macro-3-actions-1-0-3—-19-11 0
action macro-3-actions-1-0-0-20-7 0
action macro-2-actions-1-0-22-2 0
action macro-2-actions-1-0-26-2 0
action macro-4-actions-1-0-3-0-27-2 0
action macro-3-actions-1-0-3-28-2 0
action macro-4-actions-3-0-4-2-32-16 0
action macro-4-actions-3-0-4-0-33-17 0
action macro-3-actions-3-0-4-34-17 0
action macro-3-actions-3-0-0-35-18 0
action macro-3-actions-3-0-0-37-18 0
action macro-2-actions-3-0-39-19 0
action macro-2-actions-3-0-26-21 0
action macro-2-actions-3-0-22-21 0
action macro-2-actions-3-4-31-23 0
action macro-3-actions-0-1-0-51-28 0
action macro-2-actions-0-1-52-27 0
action macro-3-actions-0-4-2-55-27 0
action macro-3-actions-0-4-0-59-29 0
action macro-3-actions-0-4-0-59-30 0
action macro-2-actions-0-4-60-29 0
action macro-2-actions-0-2—61-27 0
action macro-4-actions-0-1-3-4-62-27 0
action macro-4-actions-0-1-3-4-63-32 0
action macro-4-actions-0-1-3-0-64-27 0
action macro-4-actions-0-1-3-0-64-33 0
action macro-3-actions-0-1-3-67-27 0
action macro-3-actions-0-1-0-70-33 0
action macro-2-actions-0-1-61-27 0
action macro-3-actions-0-0-4-75-34 0
action macro-4-actions-0-0-0-4—76-34 0

eleololeololeolololeololeololeoleolecleololeloleololeoleoleoleololeolieoleleoleoleleoleleoNeleoNeloloNeoloNoloNolo NNl

211

Table C.3 continued from previous page

macro |

=

action macro-4-actions-0-0-0-0-77-36
action macro-4-actions-0-0-0-0-81-37
action macro-3-actions-0-0-0—-82-37
action macro-4-actions-0-0-0-4—-83-34
action macro-4-actions-0-0-0-0-85-36
action macro-4-actions-0-0-0-0-88-36
action macro-3-actions-0-0-0-78-36
action macro-3-actions-0-0-3-75-34
action macro-3-actions-0-0-0-89-37
action macro-4-actions-0-0-0-0-90-36
action macro-3-actions-0-0-0-91-36
action macro-2-actions-0-0-93-35
action macro-3-actions-0-3-0-94-38
action macro-4-actions-0-3-4-0-95-31
action macro-4-actions-0-3-4-2-96-39
action macro-3-actions-0-3-4-58-31
action macro-4-actions-0-3-0-4-98-40
action macro-3-actions-0-3-0-59-29
action macro-3-actions-0-3-0—-102-38
action macro-4-actions-0-3-0-0—-103-30
action macro-3-actions-0-3-0-59-30
action macro-2-actions-0-3—-60-29
action macro-3-actions-0-4-0-94-38
action macro-4-actions-0-4-0-0—105-38
action macro-4-actions-0-4-0-4-98-42
action macro-4-actions-0-4-0-0—106-38
action macro-4-actions-0-4-0-0—108-38
action macro-4-actions-0-4-0-0—-109-38
action macro-3-actions-0-4-0-102-38
action macro-4-actions-0-4-2-0-111-27
action macro-3-actions-0-4-3-55-38
action macro-4-actions-0-0-1-3-113-27
action macro-4-actions-0-0-3-4-117-31
action macro-4-actions-0-0-0-3-123-34
action macro-4-actions-0-0-0-0-126-36
action macro-4-actions-0-0-0-4—-123-34
action macro-4-actions-0-0-0-0-127-36
action macro-4-actions-0-0-0-4—141-45
action macro-4-actions-0-0-0-3—141-45
action macro-4-actions-0-0-0-3—-146-34
action macro-4-actions-0-0-0-0—-149-36
action macro-4-actions-0-0-0-0—-150-36
action macro-4-actions-0-0-0-3—-151-34
action macro-4-actions-0-0-0-4—146-34
action macro-4-actions-0-0-3-1-156-39
action macro-4-actions-0-0-4-0—-160-38
action macro-4-actions-0-0-4-2—-161-27

R
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
action macro-3-actions-0-2-4—-69-32 0

=leleolelolslelalelalelaleiielalielielieleleloelelolelele ool NNl NN NN NN NN NNl NN N No o)
=leleoleleolslslalslelslelslslslslslslslslslslolololslo oo oo oo o oo oo oo oo oo oo o o)

212

Table C.3 continued from previous page

macro |

=

action macro-2-actions-0-2—-52-27
action macro-2-actions-0-0-261-37
action macro-3-actions-0-0-1-262-51
action macro-3-actions-0-0-4-263-34
action macro-3-actions-0-0-1-263-51
action macro-4-actions-0-0-0-4-264-34
action macro-4-actions-0-0-0-0-265-36
action macro-4-actions-0-0-0-3-264-34
action macro-4-actions-0-0-0-0-267-36
action macro-3-actions-0-0-3-263-34
action macro-4-actions-0-0-4-0-269-34
action macro-4-actions-0-0-4-0-270-34
action macro-4-actions-0-0-0-4-272-34
action macro-4-actions-0-0-0-0-273-36
action macro-4-actions-0-0-0-0-277-36
action macro-3-actions-0-0-0-274-36
action macro-3-actions-0-0-0-278-37
action macro-3-actions-0-0-4-279-34
action macro-4-actions-0-0-3-0-269-34
action macro-3-actions-0-0-0-280-37
action macro-4-actions-0-0-3-0-270-34
action macro-4-actions-0-0-0-0-281-36
action macro-4-actions-0-0-0-0-282-36
action macro-3-actions-0-0-0-283-36
action macro-3-actions-0-0-2-263-51
action macro-3-actions-0-0-3-279-34
action macro-3-actions-0-0-3-263-52
action macro-2-actions-0-0-286-35
action macro-2-actions-0-3-61-38
action macro-4-actions-0-3-1-3-290-39
action macro-4-actions-0-3-1-0-291-39
action macro-3-actions-0-3-1-99-39
action macro-4-actions-0-3-4-2-292-27
action macro-4-actions-0-3-0-0-105-38
action macro-4-actions-0-3-0-4-98-42
action macro-4-actions-0-3-0-0-294-30
action macro-4-actions-0-3-0-4-98-53
action macro-3-actions-0-0-1-305-48
action macro-3-actions-0-0-0-306-47
action macro-3-actions-0-0-2-305-48
action macro-4-actions-0-0-0-4-311-45
action macro-4-actions-0-0-0-3-311-45
action macro-4-actions-0-0-0-1-316-48
action macro-4-actions-0-0-0-0-318-47
action macro-3-actions-0-0-4-339-45
action macro-3-actions-0-0-2-340-48
action macro-3-actions-0-0-0-341-47

R
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
action macro-4-actions-0-0-1-3-343-48 1

=l lslelelelolalslslslslslslslslolslolslo oo oo oo oo oo oo oo oo oo oo o)
=leleoleleoleoleolelelelieleleiielelielelieleleloeloeloelelelolololo oo NN NN NoNoNoNoNoNoNoNo oo NN No)

213

Table C.3 continued from previous page

macro |

=

action macro-3-actions-0-0-1-340-48
action macro-4-actions-0-0-3-0—-344-45
action macro-3-actions-0-0-3—-339-45
action macro-3-actions-0-0-0-346-47
action macro-4-actions-0-0-0-0-347-47
action macro-3-actions-0-0-0-349-47
action macro-4-actions-0-0-4-0-344-45
action macro-4-actions-0-0-4-2—-350-48
action macro-3-actions-0-0-0-357-47
action macro-4-actions-0-0-0-0-360-47
action macro-3-actions-0-0-0-361-47
action macro-3-actions-0-0-4-340-57
action macro-4-actions-0-0-3-4-363-58
action macro-3-actions-0-0-0-375-37
action macro-3-actions-0-0-0-376-37
action macro-3-actions-0-0-0-377-37
action macro-3-actions-0-0-0-383-37
action macro-2-actions-0-0-387-37
action macro-3-actions-0-4-0-388-38
action macro-2-actions-0-4—-61-38
action macro-4-actions-0-3-0-1-391-39
action macro-4-actions-0-3-0-0—106-38
action macro-4-actions-0-3-0-0—108-38
action macro-3-actions-0-0-0-396-37
action macro-2-actions-0-0-397-37
action macro-3-actions-0-1-0-70-28
action macro-4-actions-0-4-0-0-400-38
action macro-4-actions-0-4-0-0-103-30
action macro-4-actions-0-4-0-0-294-30
action macro-4-actions-0-4-0-4-98-59
action macro-4-actions-0-4-2-4-401-32
action macro-4-actions-0-3-0-0—-402-38
action macro-4-actions-0-3-0-0—-400-38
action macro-4-actions-0-4-0-2-391-50
action macro-4-actions-0-0-0-0-271-36
action macro-3-actions-0-0-0—405-37
action macro-3-actions-0-0-0—406-37
action macro-2-actions-0-0-24-37
action macro-3-actions-0-3-0-388-38
action macro-4-actions-0-0-0-0—409-47
action macro-4-actions-0-4-3-4-394-31
action macro-3-actions-0-0-0—413-37
action macro-3-actions-4-2-4—12-63
action macro-3-actions-4-2-0—-10-64
action macro-2-actions-4-2—15-65
action macro-2-actions-4-0-22-21
action macro-2-actions-4-0-39-19

R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
1
0
1
0
action macro-2-actions-4-0-26-21 0

=leleoleoleolelelelelelelaleielelielielielelelelelelelelelolo oo NN NN NN NN NN N NN NN No o)
=leleoleoleolslslslslslslelelslslslslslslslslslolololslo oo oo oo o oo oo oo oo oo oo o o)

214

Table C.3 continued from previous page

macro |

action macro-2-actions-2-4-30-67
action macro-2-actions-2-0-22-2
action macro-3-actions-1-0-0—439-10
action macro-3-actions-1-0-0—-440-7
action macro-4-actions-1-3-4-0-443-2
action macro-4-actions-1-3-4-0-446-69
action macro-4-actions-1-3-4-2-447-6
action macro-4-actions-1-3-0-3—1-11
action macro-4-actions-1-3-4-3-462-6
action macro-4-actions-1-0-0-0-467-10
action macro-4-actions-1-0-0-0-470-7
action macro-4-actions-1-0-3-0-27-7
action macro-4-actions-1-0-0-0-472-7
action macro-3-actions-0-1-3—67-28
action macro-3-actions-0-0-4—477-34
action macro-3-actions-0-0-1-74-51
action macro-4-actions-0-0-3-0-478-34
action macro-3-actions-0-0-3—477-34
action macro-4-actions-0-0-4-0-478-34
action macro-4-actions-0-0-4-0-479-34
action macro-4-actions-0-0-0-3—480-34
action macro-4-actions-0-0-0-0-84-36
action macro-3-actions-0-0-2—-74-51
action macro-4-actions-0-0-0-4—-483-34
action macro-4-actions-0-0-0-3—483-34
action macro-4-actions-0-0-0-0-484-36
action macro-2-actions-0-4-52-38
action macro-3-actions-0-1-3-48-28
action macro-4-actions-0-3-0-4-486-76
action macro-4-actions-0-3-0-0-487-38
action macro-4-actions-0-3-0-0-488-38
action macro-3-actions-0-3-4-489-77
action macro-3-actions-0-3-0-490-38
action macro-2-actions-0-3-52-38
action macro-4-actions-0-4-0-0-492-38
action macro-3-actions-0-4-0-490-38
action macro-3-actions-0-4-2—48-78
action macro-4-actions-0-0-0-4-494-34
action macro-4-actions-0-0-0-3—494-34
action macro-4-actions-0-0-3-0-495-34
action macro-4-actions-0-0-0-4-497-34
action macro-3-actions-0-0-2-262-51
action macro-4-actions-0-0-0-0-504-37
action macro-4-actions-0-0-0-0-512-37
action macro-4-actions-0-0-0-3-515-34
action macro-4-actions-0-0-0-4-515-34
action macro-4-actions-0-0-4-0-517-38
action macro-4-actions-0-0-0-4—-151-34

=

— = = =t =, O =R O, R OR RO R R RO R R PR EE =R, OOORROOR = =000 =RO—=O0 w

=lelejeleolslslslslelelaolelslslslslslslslslslalalslslo oo oo oo o oo oo o lo oo oo oo o o)
=leloleoleoleleolelelelieieleiielielielelieleleleloelolelololo ool NN NN NN NN NN NoNo oo oo N No)

215

Table C.3 continued from previous page

action macro-4-actions-0-0-3-0-517-38
action macro-4-actions-0-0-3-0-522-38
action macro-4-actions-0-0-4-0-523-38
action macro-3-actions-0-0-4-262-52
action macro-3-actions-0-3-0—490-79
action macro-3-actions-0-0-1-526-80
action macro-3-actions-0-0-4-527-81
action macro-3-actions-0-3-1-485-82
action macro-4-actions-0-3-0-0-492-38
action macro-3-actions-0-0-4—74-52
action macro-4-actions-0-4-0-0-487-38
action macro-4-actions-3-1-3-0-533-83
action macro-3-actions-3-1-3—-464-24
action macro-4-actions-3-0-4-0-535-85
action macro-4-actions-3-0-4-0-536-85
action macro-4-actions-3-0-0-0-537-18
action macro-4-actions-3-0-0-0-538-18
action macro-4-actions-3-0-0-0-539-18
action macro-3-actions-3-4-0-534-84
action macro-3-actions-3-4-2-545-24
action macro-4-actions-3-0-0-4—434-86
action macro-3-actions-3-0-0-547-66
action macro-4-actions-3-0-0-0-557-66
action macro-3-actions-3-0-4-34-90
action macro-3-actions-3-0-3-34-90
action macro-3-actions-4-0-0—-18-21
action macro-3-actions-4-0-2-548-91
action macro-3-actions-4-0-4-34-90
action macro-4-actions-4-2-4-2-562-63
action macro-3-actions-4-0-0-564-21
action macro-4-actions-4-3-0-4-566-17
action macro-4-actions-4-0-0-0-557-66
action macro-3-actions-4-0-0-547-66
action macro-3-actions-4-0-3-34-90
action macro-2-actions-4-3—15-92
action macro-4-actions-0-0-4-0-570-30
action macro-4-actions-0-0-0-1-124-51
action macro-4-actions-0-0-3-0-570-30
action macro-4-actions-0-0-0-1-582-48
action macro-4-actions-0-0-0-0-583-47
action macro-4-actions-0-0-0-2—582-48
action macro-4-actions-0-0-3-0—160-38
action macro-4-actions-0-1-0-3-590-27
action macro-4-actions-0-0-0-3-272-34
action macro-4-actions-0-0-0-0-596-37
Table C.3: Detail of the found macro-operators for depots domain.

=

e e e e e e e N e Res I W es Nes Nen I W es Nes IS i es Nes B WS i es les Nes Nes li- Wes IS i en Nes les Nan ISR z

=leleolslslslelalalalielalelelelielelelelelolololololo ool N NN NN N NN NN NN N No N No)
=lelelslslslslalslslslslslslslslslslslalslolo oo oo oo oo lo o lolo oo oo lo oo oo e

216

C.4 Satellite

C.4.1 Predicate incompatibilities

pointing ?satellite] ?direction0 | pointing ?satellitel ?direction2, pointing ?satellitel
?direction3, pointing ?satellite] ?directionl

power_avail ?satellite |

pointing ?satelliteQ ?directionl | pointing ?satellite0 ?direction3, pointing ?satellite0
?direction0, pointing ?satellite0 ?direction2

on_board ?instrument0 ?satellitel |

pointing ?satellite] ?directionl | pointing ?satellitel ?direction2, pointing ?satellitel
?direction0, pointing ?satellite]l ?direction3

pointing ?satellitel ?direction2 | pointing ?satellite] ?direction0, pointing ?satellitel
?direction3, pointing ?satellitel ?directionl

on_board ?instrument] ?satellite] |

on_board ?instrument0 ?satellite0 |

power_avail ?satellitel |

pointing ?satellite0 ?direction0 | pointing ?satellite0 ?directionl, pointing ?satellite0
?direction3, pointing ?satellite0 ?direction2

on_board ?instrument] ?satellite0 |

pointing ?satellite0 ?direction2 | pointing ?satellite0 ?directionl, pointing ?satellite0
?direction3, pointing ?satellite0 ?direction0

calibration_target ?instrument] ?direction0 |

calibration_target ?instrument] ?directionl |

calibration_target ?instrumentO ?direction3 |

pointing ?satelliteQ ?direction3 | pointing ?satellite0 ?directionl, pointing ?satellite0
?direction0, pointing ?satellite0 ?direction2

calibration_target ?instrumentl ?direction? |

pointing ?satellite] ?direction3 | pointing ?satellite] ?direction2, pointing ?satellitel
?direction], pointing ?satellite] ?directionO

calibration_target ?instrument0 ?direction0 |

calibration_target ?instrument] ?direction3 |

calibration_target ?instrument0 ?direction2 |

calibration_target ?instrument0 ?directionl |

supports ?instrument0 ?model |

supports ?instrument0 ?mode0 |

supports ?instrument] ?model |

supports ?instrument] ?mode0 |

power_on ?instrument] |

calibration_target ?instrument2 ?direction0 |

on_board ?instrument! ?satellite2 |

pointing ?satellite2 ?direction2 | pointing ?satellite2 ?directionl, pointing ?satellite2
?direction0

on_board ?instrument0 ?satellite2 |

power_on ?instrumentO |

calibration_target ?instrument2 ?direction? |

pointing ?satellite2 ?direction0 | pointing ?satellite2 ?directionl, pointing ?satellite2

217

?direction2

power_avail ?satellite2 |

power_on ?instrument?2 |

calibration_target ?instrument2 ?direction] |

on_board ?instrument2 ?satellitel |

pointing ?satellite2 ?directionl | pointing ?satellite2 ?direction0, pointing ?satellite2
?direction2

on_board ?instrument2 ?satellite2 |

on_board ?instrument2 ?satellite0 |

C.4.2 Understanding the found macro-operators

c

S OO O = O OO = O oo O |

macro |

action macro-3-actions-1-3-0—4-2
action macro-3-actions-1-3-4-5-3
action macro-2-actions-0-0-13-8
action macro-2-actions-1-0-1-1
action macro-4-actions-1-3-0-0-2-2
action macro-3-actions-1-3-0-3-1
action macro-3-actions-1-3-3-6-4
action macro-2-actions-1-3-7-5
action macro-3-actions-1-0-0-9-2
action macro-4-actions-1-0-3-0-10-1
action macro-3-actions-1-2-1-11-6
action macro-2-actions-1-2—-12-7

S OO DODDODDOD O OO OO =
S OO O OO OO OO~ OO

action macro-2-actions-0-3—-13-9

Table C.4: Detail of the found macro-operators for satellite domain.

218

Bibliography

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of the 20th International Conference on Very large data bases., volume 1215, pages
487-499, 1994. (Cited on pages 49, 109, and 141.)

R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the Eleventh
International Conference on Data Engineering., pages 3—14. IEEE, 1995. (Cited on
page 52.)

R. Aler, D. Borrajo, and P. Isasi. Using genetic programming to learn and improve
control knowledge. Artificial Intelligence, 141(1-2):29-56, 2002. (Cited on page 33.)

S. Amarel. On representations of problems of reasoning about actions. 1968. (Cited on
pages 33 and 36.)

M. Asai and A. S. Fukunaga. Solving large-scale planning problems by decomposition
and macro generation. In Proceedings of the Twenty-Fifth International Conference
on International Conference on Automated Planning and Scheduling, 2015. (Cited
on page 4.)

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 429435, 2002. URL http://
doi.acm.org/10.1145/775047.775109. (Cited on page 53.)

R. Bartdk. A novel constraint model for parallel planning. In Proceedings of the
Twenty-Fourth International Florida Artificial Intelligence Research Society Confer-
ence, pages 9-14, 2011. (Cited on page 27.)

A. Blum and M. L. Furst. Fast planning through planning graph analysis. Artifi-
cial Intelligence, 90(1-2):281-300, 1997. URL http://dx.doi.org/10.1016/
S0004-3702(96)00047-1. (Cited on pages 3 and 29.)

B. Bonet and H. Geffner. Heuristic search planner 2.0. Al Magazine, 22(3):77, 2001.
(Cited on pages 3, 28, and 31.)

B. Bonet and M. Helmert. Strengthening landmark heuristics via hitting sets. In ECAI,

219

http://doi.acm.org/10.1145/775047.775109
http://doi.acm.org/10.1145/775047.775109
http://dx.doi.org/10.1016/S0004-3702(96)00047-1
http://dx.doi.org/10.1016/S0004-3702(96)00047-1

volume 215, pages 329-334, 2010. (Cited on page 31.)

D. Borrajo and M. Veloso. Lazy incremental learning of control knowledge for effi-
ciently obtaining quality plans. In Lazy learning, pages 371-405. Springer, 1997.
(Cited on page 33.)

A. Botea, M. Miiller, and J. Schaeffer. Using component abstraction for automatic
generation of macro-actions. In Proceedings of the Fourteenth International Con-
ference on International Conference on Automated Planning and Scheduling., pages
181-190, 2004. (Cited on pages 4, 7, 64, and 76.)

A. Botea, M. Enzenberger, M. Miiller, and J. Schaeffer. Macro-FF: Improving Al Plan-
ning with Automatically Learned Macro-Operators. Journal of Artificial Intelligence
Research, 24:581-621, 2005a. (Cited on pages 4, 7, 28, 33, 36, 37, 38, 76, 148,
and 150.)

A. Botea, M. Miiller, and J. Schaeffer. Learning partial-order macros from solutions. In
Proceedings of the Fifteenth International Conference on International Conference
on Automated Planning and Scheduling, pages 231-240. AAAI Press, 2005b. (Cited
on pages 7 and 141.)

M. Campbell, A. Hoane, and F. hsiung Hsu. Deep blue. Artificial Intelligence, 134(1):
57 -83,2002. URL http://www.sciencedirect.com/science/article/pii/
S0004370201001291. (Cited on page 17.)

C. Carrick, Q. Yang, I. Abi-Zeid, and L. Lamontagne. Activating CBR systems through
autonomous information gathering. In International Conference on Case-Based Rea-
soning, pages 74—88. Springer, 1999. (Cited on page 33.)

S. Castellanos-Paez, D. Pellier, H. Fiorino, and S. Pesty. Mining useful macro-actions
in planning. In Third International Conference on Artificial Intelligence and Pattern
Recognition, pages 1-6. IEEE, 2016. (Cited on pages 8 and 66.)

L. Chrpa. Generation of macro-operators via investigation of action dependencies in
plans. The Knowledge Engineering Review, 25(3):281-297, 2010. (Cited on page 7.)

L. Chrpa, M. Vallati, and T. L. McCluskey. MUM: A technique for maximising the
utility of macro-operators by constrained generation and use. In Proceedings of
the Twenty-Fourth International Conference on Automated Planning and Scheduling,
2014. URL http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/
view/7905. (Cited on pages 4, 7, 36, 37, 38, 148, and 150.)

L. Chrpa, M. Vallati, and T. McCluskey. On the online generation of effective macro-
operators. In Q. Yang and M. Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, pages 1544—1550. AAAI
Press, 2015. URL http://eprints.hud.ac.uk/24492/. (Cited on pages 36
and 37.)

A. Coles and A. Smith. Marvin: A heuristic search planner with online macro-action

learning. Journal of Artificial Intelligence Research, 28:119-156, 2007. (Cited on
pages 4 and 37.)

220

http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7905
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7905
http://eprints.hud.ac.uk/24492/

A. Coles, M. Fox, and A. Smith. Online identification of useful macro-actions for
planning. In Proceedings of the Seventeenth International Conference on Automated
Planning and Scheduling, 2007. (Cited on pages 36 and 37.)

S. Craw, N. Wiratunga, and R. C. Rowe. Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence, 170(16-17):1175-1192, 2006. (Cited
on page 33.)

P. Crews and G. Maxia. test_db. https://github.com/datacharmer/test_db,
2015. (Cited on page 42.)

J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):
318-334, 1998. (Cited on page 31.)

K. Currie and A. Tate. O-plan: the open planning architecture. Artificial intelligence,
52(1):49-86, 1991. (Cited on page 28.)

C. Dawson and L. Siklossy. The role of preprocessing in problem solving systems:
An ounce of reflection is worth a pound of backtracking. In Proceedings of the
Sth international joint conference on Artificial intelligence-Volume 1, pages 465—471.
Morgan Kaufmann Publishers Inc., 1977. (Cited on pages 36, 64, and 150.)

T. de la Rosa, S. Jimenez, and D. Borrajo. Learning relational decision trees for guiding
heuristic planning. In Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), pages 60-67, 2008. (Cited on
page 33.)

R. L. De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B. Faltings,
M. L. Maher, M. T COX, K. Forbus, et al. Retrieval, reuse, revision and retention
in case-based reasoning. The Knowledge Engineering Review, 20(3):215-240, 2005.
(Cited on page 33.)

M. B. Do and S. Kambhampati. Solving planning-graph by compiling it into csp. In
AIPS, pages 82-91, 2000. (Cited on page 27.)

K. Driéger, B. Finkbeiner, and A. Podelski. Directed model checking with distance-
preserving abstractions. [International Journal on Software Tools for Technology
Transfer, 11(1):27-37, 2009. (Cited on page 31.)

A. Dulac, D. Pellier, H. Fiorino, and D. Janiszek. Learning useful macro-actions
for planning with n-grams. In 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pages 803-810, 11 2013. doi: 10.1109/ICTAI.2013.123.
(Cited on pages 4, 5, 36, 37, 148, and 150.)

S. Edelkamp. Planning with pattern databases. In ECP-01, page 13, 2001. (Cited on
page 31.)

K. Erol, J. A. Hendler, and D. S. Nau. Umcp: A sound and complete procedure for hi-
erarchical task-network planning. In AIPS, volume 94, pages 249-254, 1994. (Cited
on page 28.)

O. Etzioni. Acquiring search-control knowledge via static analysis. Artificial Intelli-

221

https://github.com/datacharmer/test_db

gence, 62(2):255-301, 1993. (Cited on page 33.)

D. J. Fagnant and K. Kockelman. Preparing a nation for autonomous vehicles: opportu-
nities, barriers and policy recommendations. Transportation Research Part A: Policy
and Practice, 77:167 — 181, 2015. ISSN 0965-8564. doi: https://doi.org/10.1016/
j.tra.2015.04.003. URL http://www.sciencedirect.com/science/article/
pii/S0965856415000804. (Cited on page 2.)

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 3-4(2):189-208, 1971. (Cited on pages 21
and 28.)

R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robot
plans. Artificial intelligence, 3:251-288, 1972. (Cited on page 36.)

P. Fournier-Viger, C.-W. Wu, and V. S. Tseng. Mining maximal sequential patterns with-
out candidate maintenance. In International Conference on Advanced Data Mining
and Applications, pages 169—180. Springer, 2013. (Cited on page 54.)

P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas. Fast vertical mining of
sequential patterns using co-occurrence information. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 40-52. Springer, 2014a. (Cited on
pages 53 and 54.)

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and V. S. Tseng.
SPMF: A java open-source pattern mining library. Journal of Machine Learn-
ing Research, 15:3569-3573, 2014b. URL http://jmlr.org/papers/v1i5/
fourniervigeri4a.html. (Cited on page 67.)

P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. VMSP: Efficient vertical
mining of maximal sequential patterns. In Canadian Conference on Artificial Intelli-
gence, pages 83-94. Springer, 2014c. (Cited on page 54.)

P. Fournier-Viger, C.-W. Lin, Q.-H. Duong, T.-L. Dam, L. gevéfk, D. Uhrin, and M. Voz-
nak. Pfpm: discovering periodic frequent patterns with novel periodicity measures.
In Proceedings of the 2nd Czech-China Scientific Conference 2016. InTech, 2017a.
(Cited on page 45.)

P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A survey of
sequential pattern mining. Data Science and Pattern Recognition, 1(1):54-77, 2017b.
(Cited on page 54.)

F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba. Clofast: closed sequential pattern
mining using sparse and vertical id-lists. Knowledge and Information Systems, 48(2):
429-463, 2016. (Cited on pages 54 and 67.)

C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning to rank for synthesizing
planning heuristics. arXiv preprint arXiv:1608.01302, 2016. (Cited on page 33.)

P. H. H. Geffner and P. Haslum. Admissible heuristics for optimal planning. In Proceed-
ings of the 5th Internat. Conf. of Al Planning Systems (AIPS 2000), pages 140-149,
2000. (Cited on pages 3 and 30.)

222

http://www.sciencedirect.com/science/article/pii/S0965856415000804
http://www.sciencedirect.com/science/article/pii/S0965856415000804
http://jmlr.org/papers/v15/fournierviger14a.html
http://jmlr.org/papers/v15/fournierviger14a.html

M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory and practice, 2004.
(Cited on page 2.)

A. Gomariz, M. Campos, R. Marin, and B. Goethals. Clasp: An efficient algorithm
for mining frequent closed sequences. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 50-61. Springer, 2013. (Cited on page 54.)

E.-Z. Guan, X.-Y. Chang, Z. Wang, and C.-G. Zhou. Mining maximal sequential pat-
terns. In Neural Networks and Brain, 2005. ICNN&B’05. International Conference
on, volume 1, pages 525-528. IEEE, 2005. (Cited on page 54.)

K. J. Hammond. Explaining and repairing plans that fail. Artificial intelligence, 45(1-2):
173-228, 1990. (Cited on page 33.)

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan: fre-
quent pattern-projected sequential pattern mining. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
355-359. ACM, 2000. (Cited on page 53.)

J. Han, M. Kamber, and J. Pei. 13 - data mining trends and research frontiers. In J. Han,
M. Kamber, and J. Pei, editors, Data Mining (Third Edition), The Morgan Kauf-
mann Series in Data Management Systems, pages 585 — 631. Morgan Kaufmann,
Boston, third edition edition, 2012. ISBN 978-0-12-381479-1. doi: https://doi.org/
10.1016/B978-0-12-381479-1.00013-7. URL http://www.sciencedirect.com/
science/article/pii/B9780123814791000137. (Cited on page 51.)

P. Haslum, B. Bonet, H. Geffner, et al. New admissible heuristics for domain-
independent planning. In AAAI, volume 5, pages 9-13, 2005. (Cited on page 30.)

P. Haslum, A. Botea, M. Helmert, B. Bonet, S. Koenig, et al. Domain-independent con-
struction of pattern database heuristics for cost-optimal planning. In AAAI, volume 7,
pages 1007-1012, 2007. (Cited on page 31.)

M. Helmert. The fast downward planning system. J. Artif. Intell. Res. (JAIR), 26:191—
246, 2006. doi: 10.1613/jair.1705. URL http://dx.doi.org/10.1613/jair.
1705. (Cited on page 31.)

M. Helmert and C. Domshlak. Landmarks, critical paths and abstractions: what’s the
difference anyway? In ICAPS, pages 162-169, 2009. (Cited on page 31.)

M. Helmert and H. Geftner. Unifying the causal graph and additive heuristics. In /ICAPS,
pages 140-147, 2008. (Cited on page 31.)

M. Helmert, P. Haslum, J. Hoffmann, et al. Flexible abstraction heuristics for optimal
sequential planning. In ICAPS, pages 176-183, 2007. (Cited on page 31.)

F. Herrera, M. Lozano, and J. L. Verdegay. A learning process for fuzzy control rules
using genetic algorithms. Fuzzy sets and systems, 100(1-3):143-158, 1998. (Cited
on page 33.)

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. J. Artif. Intell. Res. (JAIR), 14:253-302, 2001. doi: 10.1613/jair.855.

223

http://www.sciencedirect.com/science/article/pii/B9780123814791000137
http://www.sciencedirect.com/science/article/pii/B9780123814791000137
http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1613/jair.1705

URL http://dx.doi.org/10.1613/jair.855. (Cited on pages 28, 30, and 31.)

T. Hofmann, T. Niemueller, and G. Lakemeyer. Initial results on generating macro ac-
tions from a plan database for planning on autonomous mobile robots. In Tiventy-

Seventh International Conference on Automated Planning and Scheduling, 2017.

(Cited on pages 7, 36, 37, and 148.)
G. A. Iba. A heuristic approach to the discovery of macro-operators. Machine Learning,

3(4):285-317, 1989. (Cited on page 36.)
O. Ilghami, D. S. Nau, H. Munoz-Avila, and D. W. Aha. Camel: Learning method
preconditions for htn planning. In AIPS, pages 131-142, 2002. (Cited on page 32.)

O. Ilghami, D. S. Nau, and H. Munoz-Avila. Learning to do htn planning. In ICAPS,

pages 390-393, 2006. (Cited on page 32.)

I. C. ILOG. 8.0 user’s manual. ILOG SA, Gentilly, France, 2002. (Cited on page 27.)
The seventh international plan-

S. Jiménez Celorrio, A. Coles, and A. Coles.
ning competition - learning track, 2011. URL http://www.plg.inf.uc3m.es/
ipc2011-learning/. (Cited on pages 68 and 129.)

A. Jonsson. The role of macros in tractable planning. J. Artif. Int. Res., 36(1):471—
511, Sept. 2009. ISSN 1076-9757. URL http://dl.acm.org/citation.cfm?

1d=1734953.1734964. (Cited on page 150.)
H. A. Kautz, B. Selman, et al. Planning as satisfiability. In ECAI, volume 92, pages

359-363. Citeseer, 1992. (Cited on pages 3 and 26.)
R. Khardon. Learning action strategies for planning domains. Artificial Intelligence,

113(1-2):125-148, 1999. (Cited on page 33.)
J. Koehler and J. Hoffmann. Handling of inertia in a planning system. 1999. (Cited on

page 149.)
R. E. Korf. Macro-operators: A weak method for learning. Artificial intelligence, 26

(1):35-77, 1985. (Cited on page 36.)
Ixtet: an integrated approach for plan generation and

P. Laborie and M. Ghallab.
scheduling. In Emerging Technologies and Factory Automation, 1995. ETFA’95, Pro-
ceedings., 1995 INRIA/IEEE Symposium on, volume 1, pages 485—-495. IEEE, 1995.

(Cited on page 28.)
D. Long and M. Fox. The 3rd international planning competition: Results and analysis.

J. Artif. Int. Res., 20(1):1-59, Dec. 2003. ISSN 1076-9757. (Cited on page 38.)

A. Lopez and F. Bacchus. Generalizing graphplan by formulating planning as a csp. In
1JCAI, volume 3, pages 954-960, 2003. (Cited on pages 3 and 27.)

S. Lu and C. Li. Aprioriadjust: An efficient algorithm for discovering the maximum
sequential patterns. In Proc. Intern. Workshop knowl. Grid and grid intell, 2004.

(Cited on page 54.)

224

http://dx.doi.org/10.1613/jair.855
http://www.plg.inf.uc3m.es/ipc2011-learning/
http://www.plg.inf.uc3m.es/ipc2011-learning/
http://dl.acm.org/citation.cfm?id=1734953.1734964
http://dl.acm.org/citation.cfm?id=1734953.1734964

N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms.
ACM Computing Surveys (CSUR), 43(1):3, 2010. (Cited on page 54.)

T. McCluskey, S. Cresswell, N. Richardson, and M. M. West. Automated acquisition
of action knowledge. In International Conference on Agents and Artificial Intelli-
gence (ICAART), pages 93-100, 1 2009. URL http://eprints.hud.ac.uk/id/
eprint/3292/. (Cited on page 32.)

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. Pddl-the planning domain definition language. 1998. (Cited on page 19.)

D. M. McDermott. The 1998 ai planning systems competition. Al magazine, 21(2):35,
2000. (Cited on page 19.)

T. M. Mitchell. Generalization as search. In Readings in artificial intelligence, pages
517-542. Elsevier, 1981. (Cited on page 32.)

D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. Shop: Simple hierarchical or-
dered planner. In Proceedings of the 16th international joint conference on Artifi-
cial intelligence-Volume 2, pages 968-973. Morgan Kaufmann Publishers Inc., 1999.
(Cited on page 28.)

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. Shop2:
An htn planning system. Journal of artificial intelligence research, 20:379-404, 2003.
(Cited on page 28.)

A. Newell, J. C. Shaw, and H. A. Simon. The processes of creative thinking. Rand
Corporation Santa Monica, CA, 1959. (Cited on page 24.)

A. S. Newell. H., 1963. gps, a program that simulates human thought. Computers and
thought, pages 279-293, 1963. (Cited on page 24.)

M. A. H. Newton and J. Levine. Implicit learning of macro-actions for planning. In
Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010),
8 2010. (Cited on pages 4, 7, 33, and 76.)

M. A. H. Newton, J. Levine, M. Fox, and D. Long. Learning macro-actions for arbitrary
planners and domains. In ICAPS, volume 2007, pages 256-263, 2007. (Cited on
pages 36, 37, and 148.)

X. Nguyen and S. Kambhampati. Reviving partial order planning. In Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, 1JCAI
2001, Seattle, Washington, USA, August 4-10, 2001, pages 459466, 2001. (Cited on
pages 3 and 28.)

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C.
Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE
Transactions on Knowledge & Data Engineering, (11):1424-1440, 2004. (Cited on
page 53.)

D. Pellier and H. Fiorino. Pddl4j: a planning domain description library for java.
Journal of Experimental & Theoretical Artificial Intelligence, 30(1):143-176, 2018.

225

http://eprints.hud.ac.uk/id/eprint/3292/
http://eprints.hud.ac.uk/id/eprint/3292/

(Cited on page 66.)

J. S. Penberthy, D. S. Weld, et al. Ucpop: A sound, complete, partial order planner for
adl. In Proceedings of the third international conference KR’92, 1992. (Cited on
page 28.)

J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage of
landmarks in planning. In Sixth European Conference on Planning, 2014. (Cited on

page 31.)

S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Pearson Educa-
tion Limited., 2010. (Cited on page 2.)

E. D. Sacerdoti. A structure for plans and behavior. Technical report, SRI INTER-
NATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER, 1975.
(Cited on page 28.)

E. Salvemini, F. Fumarola, D. Malerba, and J. Han. Fast sequence mining based on
sparse id-lists. In International Symposium on Methodologies for Intelligent Systems,
pages 316-325. Springer, 2011. (Cited on page 53.)

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.
(Cited on page 17.)

R. Smullyan. First-order Logic. Dover books on advanced mathematics. Dover,
1995. ISBN 9780486683706. URL https://books.google.fr/books?id=
kgvhQ-0SZiUC. (Cited on page 89.)

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In International Conference on Extending Database Technol-
ogy, pages 1-17. Springer, 1996. (Cited on page 53.)

A. Tate. Generating project networks. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence - Volume 2, 1IJCAI'77, pages 888—893, San Fran-
cisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc. URL http://dl.acm.
org/citation.cfm?id=1622943.1623021. (Cited on page 28.)

A. Torralba Arias de Reyna. Symbolic search and abstraction heuristics for cost-optimal
planning in automated planning. 2015. (Cited on page 30.)

C. Urmson et al. Self-driving cars and the urban challenge. IEEE Intelligent Systems,
23(2):66-68, 2008. (Cited on page 2.)

M. Van Den Briel, J. Benton, S. Kambhampati, and T. Vossen. An Ip-based heuristic
for optimal planning. In International Conference on Principles and Practice of
Constraint Programming, pages 651-665. Springer, 2007. (Cited on page 31.)

M. H. Van Den Briel and S. Kambhampati. Optiplan: Unifying ip-based and graph-

based planning. Journal of Artificial Intelligence Research, 24:919-931, 2005. (Cited
on pages 3 and 27.)

226

https://books.google.fr/books?id=kgvhQ-oSZiUC
https://books.google.fr/books?id=kgvhQ-oSZiUC
http://dl.acm.org/citation.cfm?id=1622943.1623021
http://dl.acm.org/citation.cfm?id=1622943.1623021

J. Wang and J. Han. BIDE: efficient mining of frequent closed sequences. In Data
Engineering, 2004. Proceedings. 20th International Conference on, pages 79-90, 3
2004. doi: 10.1109/ICDE.2004.1319986. (Cited on page 54.)

X. Wang. Learning by observation and practice: An incremental approach for plan-
ning operator acquisition. In Machine Learning Proceedings 1995, pages 549-557.
Elsevier, 1995. (Cited on page 32.)

Y. Xu, A. Fern, and S. W. Yoon. Discriminative learning of beam-search heuristics for
planning. In IJCAI, pages 2041-2046, 2007. (Cited on page 33.)

X. Yan, J. Han, and R. Afshar. Clospan: Mining: Closed sequential patterns in large
datasets. In Proceedings of the 2003 SIAM international conference on data mining,
pages 166—177. SIAM, 2003. (Cited on page 54.)

Z. Yang and M. Kitsuregawa. Lapin-spam: An improved algorithm for mining sequen-
tial pattern. In Data Engineering Workshops, 2005. 21st International Conference
on, pages 1222-1222. IEEE, 2005. (Cited on page 53.)

S. W. Yoon, A. Fern, and R. Givan. Learning heuristic functions from relaxed plans. In
ICAPS, pages 162-171, 2006. (Cited on page 33.)

S. W. Yoon, A. Fern, and R. Givan. Using learned policies in heuristic-search planning.
In IJCAI, volume 7, pages 2047-2052, 2007. (Cited on page 33.)

M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine
learning, 42(1-2):31-60, 2001. (Cited on page 53.)

227

Abstract

Intuitively, a system capable of exploiting its past experiences should be able to
achieve better performance. One way to build on past experiences is to learn macros (i.e.
routines). They can then be used to improve the performance of the solving process of
new problems. In automated planning, the challenge remains on developing powerful
planning techniques capable of effectively explore the search space that grows exponen-
tially. Learning macros from previously acquired knowledge has proven to be beneficial
for improving a planner’s performance.

This thesis contributes mainly to the field of automated planning, and it is more
specifically related to learning macros for classical planning. We focused on develop-
ing a domain-independent learning framework that identifies sequences of actions (even
non-adjacent) from past solution plans and selects the most useful routines (i.e. macros),
based on a priori evaluation, to enhance the planning domain.

First, we studied the possibility of using sequential pattern mining for extract-
ing frequent sequences of actions from past solution plans, and the link between the
frequency of a macro and its utility. We found out that the frequency alone may not
provide a consistent selection of useful macro-actions (i.e. sequences of actions with
constant objects).

Second, we discussed the problem of learning macro-operators (i.e. sequences of
actions with variable objects) by using classic pattern mining algorithms in planning.
Despite the efforts, we find ourselves in a dead-end with the selection process because
the pattern mining filtering structures are not adapted to planning.

Finally, we provided a novel approach called METEOR, which ensures to find the
frequent sequences of operators from a set of plans without a loss of information about
their characteristics. This framework was conceived for mining macro-operators from
past solution plans, and for selecting the optimal set of macro-operators that maximises
the node gain. It has proven to successfully mine macro-operators of different lengths
for four different benchmarks domains and thanks to the selection phase, be able to de-
liver a positive impact on the search time without drastically decreasing the quality of
the plans.

Keywords: Automated Planning, Artificial Intelligence, Macro-operators, Macro-
actions, Data Mining, Learning.

Résumé

Intuitivement, un systéme capable d’exploiter son expérience devrait étre capable
d’atteindre de meilleures performances. Une fagon de tirer parti des expériences passées
est d’apprendre des macros (c.-a-d. des routines), elle peuvent étre ensuite utilisés pour
améliorer la performance du processus de résolution de nouveaux problémes. Le défi de
la planification automatique est de développer des techniques de planification capables
d’explorer efficacement I’espace de recherche qui croit exponentiellement. L’ appren-
tissage de macros a partir de connaissances précédemment acquises s’avere bénéfique
pour I’amélioration de la performance d’un planificateur.

Cette these contribue principalement au domaine de la planification automatique,
et plus spécifiquement a I’apprentissage de macros pour la planification classique. Nous
nous sommes concentrés sur le développement d’un modele d’apprentissage indépen-
dant du domaine qui identifie des séquences d’actions (méme non adjacentes) a partir
de plans solutions connus. Ce dernier sélectionne les routines les plus utiles (c’est-a-dire
les macros), grace a une évaluation a priori, pour améliorer le domaine de planification.

Tout d’abord, nous avons étudié la possibilité d’utiliser la fouille de motifs sé-
quentiels pour extraire des séquences fréquentes d’actions a partir de plans de solutions
connus, et le lien entre la fréquence d’une macro et son utilité. Nous avons découvert
que la fréquence seule peut ne pas fournir une sélection cohérente de macro-actions
utiles (c.-a-d. des séquences d’actions avec des objets constants).

Ensuite, nous avons discuté du probleme de 1’apprentissage des macro-opérateurs
(c’est-a-dire des séquences d’actions avec des objets variables) en utilisant des algo-
rithmes classiques de fouille de motifs dans la planification. Malgré les efforts, nous
nous sommes trouvés dans une impasse dans le processus de sélection car les structures
de filtrage de la fouille de motifs ne sont pas adaptées a la planification.

Finalement, nous avons proposé une nouvelle approche appelée METEOR, qui
permet de trouver les séquences fréquentes d’opérateurs d’un ensemble de plans sans
perte d’information sur leurs caractéristiques. Cette approche a été concue pour 1’ex-
traction des macro-opérateurs a partir de plans solutions connus, et pour la sélection
d’un ensemble optimal de macro-opérateurs maximisant le gain en noeuds. Il s’est avéré
efficace pour extraire avec succes des macro-opérateurs de différentes longueurs pour
quatre domaines de référence différents. De plus, grice a la phase de sélection I’ap-
proche a montré un impact positif sur le temps de recherche sans réduire drastiquement
la qualité des plans.

Mots clés : Planification Automatique, Intelligence Artificielle, Macro-opérateurs,
Macro-actions, Fouille de données, Apprentissage.

231

	Introduction
	Introduction
	Context of research
	Automated Planning
	Learning Macros
	Pattern mining

	Problem
	Contributions
	Publications

	Outline of the dissertation

	I Background and Literature Review
	Automated Planning
	Introduction
	Classical Planning
	PDDL representation language
	Key concepts
	Development of Automated Planning
	[yellow].2cm.3cm Translation into another problems
	Search for planning
	Techniques to improve planning search

	Macro learning methods in Automated Planning
	Off-line approaches
	On-line approaches

	Conclusion

	Pattern Mining
	Introduction
	Pattern Mining: Basic concepts
	Simple types of data
	Types of patterns

	Mining frequent patterns
	Pattern sets
	Apriori algorithm

	Mining sequence data
	Sequential pattern mining

	Conclusion

	II Contributions
	Extraction of macros via Sequential Pattern Mining
	Introduction
	Plan encoding
	Macro-actions learning framework
	Mining and filtering candidates
	Macro-action construction
	Enhancing planning domain with macro-actions

	Evaluation of the support parameter
	Methodology
	Evaluation criteria

	Results
	Discussion
	Conclusion

	Classical pattern mining applied to planning
	Introduction
	Macro-actions generality
	Macro-operators construction
	Validity of the generated macro-operators
	Problematic macro-operators: Definition
	Problematic macro-operators: Detection
	Incompatibility graph implementation
	Results for the removing method

	Selection process
	Conclusion

	The METEOR framework
	Introduction
	Limitations of classical pattern mining algorithms in planning
	Description of the METEOR framework
	ERA Algorithm
	Encoding formalism
	Description of the main algorithm
	The mining procedure
	Complexity analysis

	Selection of the optimal macro-operator set
	Evaluation of the METEOR framework
	Methodology
	Evaluation criteria

	Results
	Discussion
	Conclusion

	Conclusion and Perspectives
	Conclusions
	Summary of contributions
	Exploration of the link between macro-action frequency and macro-action utility
	Removing problematic macro-operators
	METEOR framework

	Limitations
	Incompatibilities for inertia predicates
	Slight modification of the planner
	Set of non overlapping macro-operators

	Perspectives

	Benchmark domains
	Barman
	Description

	Blocksworld
	Description

	Depots
	Description

	Satellite
	Description

	Understanding results: operators translation and full report
	Barman
	Operators translation
	Mining Log
	Macro analyser log
	Recommended Optimal Macro Set

	Blocksworld
	Operators translation
	Mining Log
	Macro analyser log
	Recommended Optimal Macro Set

	Depots
	Operators translation
	Mining Log
	Macro analyser log
	Recommended Optimal Macro Set

	Satellite
	Operators translation
	Mining Log
	Macro analyser log
	Recommended Optimal Macro Set

	Results on removing problematic macro-operators
	Barman
	Predicate incompatibilities
	Understanding the found macro-operators

	Blocksworld
	Predicate incompatibilities
	Understanding the found macro-operators

	Depots
	Predicate incompatibilities
	Understanding the found macro-operators

	Satellite
	Predicate incompatibilities
	Understanding the found macro-operators

	Bibliography

