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Chapter 1

Introduction

During the embryonic development, one single cell divides itself multiple times,
allowing the embryo to grow and finally becoming a baby. The first cells of the
embryo are known as embryonic stem cells. During the development process,
these cells differentiate into neurons, muscle cells, bone marrow cells, etc. This
differentiation process is gradual, and can be seen as a landscape, where the
differentiation process takes place in descending valleys, and in which the cell
naturally follows a path downhill. This landscape is shown in figure 1.1 (left).
Notice that even during this path downhill, there might be some hills to climb,
as shown in the same figure (right). This is because some cells only partially
differentiate, they are called progenitors. They divide to create new cells, that
can differentiate to what is needed.

For many years, this differentiation process downhill was thought to be irre-
versible. However, in 2007, S. Yamanaka et al. found that some factors can
induce stem cells from human differentiated cells (fibroblasts) [TTO+07]. Ded-
ifferentiation was born. Using the same principle, some factors can allow a
differentiated cell to become an other kind of differentiated cell. This is known
as transdifferentiation. In the context of the epigenetic landscape, this means
that a cell can be pushed uphill towards the origin or a progenitor, or that they
can be pushed in an other valley, and roll downhill until reaching an other kind
of differentiated cell.

Cell reprogramming is the term used to speak about both dedifferentiation
and transdifferentiation. The factors for cell reprogramming were mostly found
by deductive reasoning, knowledge of the network, trial and error, and intuitions.
However, as more and more precise mathematical models for the cell are cre-
ated, the possibility to compute solutions from the models has emerged.

Nowadays, finding solutions to cell reprogramming problems by using algo-
rithms is a tremendous challenge faced by numerous teams, to try to reduce
financial costs and time spent on experiments. Multiple approaches are used
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Figure 1.1: The epigenetic landscape, from [Rod08]

to find which factors are the most likely to succeed, using different methods to
analyze the available data where computation times are often very high. Among
them, creating a (partial) epigenetic landscape can be done, using probabilities
and experimental data, or the goal can be to create a model of the cell, to un-
derstand better the differentiation process, and perturbing this model allows to
find cell reprogrammings. These models can be continuous, they can be prob-
abilistic, or they can be discrete, each of which either in time, values, or both.
Different models and methodologies are described in section 2.3.

However, most solutions are ad hoc for a specific model and a given data set,
which makes comparison difficult. As a result, a goal of this thesis is to have a
unified vision of cell reprogramming, to be able to compare and categorize the
different methods. We decided to focus on Boolean networks.

Boolean networks are widely employed for the modelling of the differentiation
process and other processes, such as diseases, cell activity or cancer. They
require minimal information and thus are particularly adapted to represent bio-
logical data, where we might be lacking detailed information. A Boolean network
is a set of Boolean functions, each representing the behavior of an interesting
part of the cell, most often a gene, a protein or a micro RNA. These functions
return Boolean values: 0 or 1, which is a simplification of the state of the part of
the cell, with 1 meaning it is active, or that it has a concentration high enough to
influence the behavior of other components, and 0 meaning the opposite.
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Boolean networks have an updating scheme, which dictate how the functions
are applied to the current state of the network, thus dictating the future behavior
of the network. We are particularly interested in the long-term behaviors of the
network, called attractors. They correspond to the differentiated states of the
cell, and among them are often the initial state of the cell reprogramming, as
well as its target.

Cell reprogramming can be modelled in the scope of Boolean networks by a
modification of the current state of the network, to represent a change in con-
centration of some components, or a modification of some Boolean functions,
to represent a mutation of the DNA. After that, the modified model is studied,
to find if it leads to the desired target. However, in experimental protocols, the
experimenter sometimes needs to make concentration changes multiple times,
waiting multiple hours or even days between each. This possibility has not been
studied in the context of Boolean networks.

To introduce these, we had to define what are perturbations in the case of
Boolean networks. Moreover, we want these perturbations to verify a property:
when the perturbations are applied, the system always end up in the target at-
tractor. This is easy to understand and define if there is only one perturbation in
the initial state, but requires a formal definition when sequentiality is used, with
perturbations at different times. We define Boolean networks and their dynam-
ics in chapter 2, as well as the new definitions for perturbations, perturbation
sequences, reprogramming strategies and reprogrammability. This chapter also
states what methods are currently used to infer cell reprogramming, in Boolean
networks and in other domains.

We did not think of sequentiality at first, and focused on similar methods that
other algorithms use: analyzing the Boolean network to find perturbations from
an initial state toward a desired attractor. During this, we understood the im-
portance of dynamics, and that they need to be at least partly computed to find
minimal solutions. At this point, we added sequentiality to the perturbations,
in order to have a more precise control of the network. The static analysis is
discussed in chapter 3. This static analysis already allows for sequentiality in
the perturbations. The limits of the static analysis are also discussed, and why
computing the dynamics, at least partly, is essential.

As a result, we wanted to be able to study the dynamics of the models, and
to be able to have perturbations changing the dynamics or the state of the net-
work. We created a modelling technique to add perturbations to a Boolean
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network dynamics, and we designed an algorithm to find all perturbation se-
quences smaller than an upper bound, from an initial state to a target. This
algorithm, for complexity reasons, returns a set of state, so we designed an al-
gorithm to extract the solutions from this set. We also designed an algorithm
aimed at more practical uses, where every state might not be observable, and
where some variables cannot be perturbed. These algorithms are detailed in
chapter 4. These algorithms return sets of solutions, to allow multiple possibili-
ties and experiments. The modelling technique to compute the transition graph
with perturbations is explained in appendix A.

Lastly, in chapter 5 we tested our algorithms on published biological exam-
ples, to compare the results of sequential reprogramming to the ones obtained
by other methods. We first studied the algorithms from chapters 3 and 4 on the
cardiac network by Hermann et al. [HGZ+12], where the static analysis returns
very good results, thanks to the small size of the strongly connected compo-
nents, and studied the special case of reprogramming from SHF to FHF. We also
used the algorithms on a network from Curie Institute, described in [CMR+15]
by Cohen et al., where we showed that the perturbation sequences mostly show
the artifacts of the model, with very strong input variables. As a result, we stud-
ied the possible perturbations when the input variables cannot be changed, with
permanent and instantaneous perturbations. Permanent perturbations were
shown to be surprisingly strong, where only one perturbation allows to repro-
gram to any kind of attractor when reprogramming is possible. We also studied
the PC12 differentiation network explained and constructed in [OKS+16] by Of-
ferman et al., and the special case of cell cycle arrest to differentiation. In this
reprogramming, we gave insight on the perturbations by studying the interaction
graph.



Chapter 2

Formal Framework for Boolean
Networks Reprogramming

This chapter explains and defines the different kind of objects we will be work-
ing with, Boolean networks, interaction graphs, transition graphs and their at-
tractors, and basins of a set of nodes of a graph. It also gives new definitions
such as perturbation (of a Boolean network), perturbation sequences, repro-
gramming strategies and reprogrammability, and gives a thorough state of the
art.

2.1 Boolean Networks and their dynamics

Boolean networks are widely used to model biological systems, simplifying the
gene interactions to activation and inhibition, and the concentration levels to
active or inactive. These networks have proven themselves precise enough
to model the dynamics of biological systems[MSRSL10], and allow using only
partial information on the interactions between the components of the system.

Boolean Networks: A Boolean network is a function, associating to a variable
its next value given the values of other variables, as defined as follows.

Definition 1. A Boolean Network (BN) of dimension n is a function f such that:

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

Example 1 gives an example of a Boolean network.

9
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Example 1. An example of BN of dimension 3 (n = 3) is

f1(x) = x3 ∨ (¬x1 ∧ x2)
f2(x) = ¬x1 ∨ x2
f3(x) = x3 ∨ (x1 ∧ ¬x2)

Interaction graph: The interactions between the genes can be simplified in an
interaction graph: a graph in which known positive influences are represented
by positive edges. The edges of interaction graphs are often a simplification of
multiple biological processes. For example, a gene A could be transcripted to
a micro RNA Am which is then translated to a protein Ap. This protein Ap can
bind on an enhancer of gene B, to allow it to be transcripted. In this case, we
consider that there is a positive interaction from A to B, and the edge A

+−→ B
will be in the interaction graph. In the same fashion, negative interactions are
represented by negative edges.

Definition 2 (Interaction Graph). An interaction graph is denoted as G = (V,E),
with V being the vertex set, and E being the directed, signed edge set, E ⊆
(V × V × {−,+})

A cycle between a set of nodes C ⊆ V is said positive (resp. negative) if and
only if there is an even (odd) number of negative edges between those nodes.

An interaction graph can also be defined as an abstraction of a Boolean
network: the vertex set is the set of variables, and the Boolean functions are
abstracted in the edges: if there exists two states, x and y, and a variable v,
with only xv 6= yv, and all other variables are equal, and if fv(x) 6= fv(y), then
fv contains either xu or ¬xv (depending if the value of fv increases when v
increases or when it decreases).

Definition 3 (Interaction Graph of a Boolean network (G(f))). An interaction
graph can be obtained from the Boolean network f : the vertex set is [1, n], and
for all u, v ∈ [1, n] there is a positive (resp. negative) arc from u to v if fvu(x) is
positive (resp. negative) for at least one x ∈ {0, 1}n (For every u, v ∈ {1, ..., n},
the function fvu is the discrete derivative of fv considering u, defined on {0, 1}n
by : fvu(x) := fv(x1, .., xu−1, 1, xu+1, .., xn)− fv(x1, .., xu−1, 0, xu+1, .., xn)).

As the interaction graph of a Boolean network abstracts away part of the
function specification, two different Boolean networks can have the same inter-
action graph.

Example 2. Fig. 2.1 gives an example of an interaction graph, which is also
equal to G(f), where f is the Boolean network of Ex.1.
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Figure 2.1: Interaction graph of Ex.1 A “normal” blue arrow means an activation,
and a “flattened” red arrow means an inhibition.

Transition graph and attractors: The dynamics of a Boolean network f are
modelled by transitions between its states x ∈ {0, 1}n. Here, we consider the
fully asynchronous semantics of Boolean networks: a transition updates the
value of only one variable i ∈ [1, n]. Notice that examples for the relevance of
sequential reprogrammability can easily be exhibited in the synchronous update
semantics as well.

Thus, from a state x ∈ {0, 1}n, there is one transition for each vertex i such
that fi(x) 6= xi. The transition graph (Def. 4) is a digraph where vertices are all
the possible states {0, 1}n, and edges correspond to asynchronous transitions.
The transition graph of a Boolean network f can be denoted as STG(f).

Definition 4 (Transition graph of a Boolean network (STG(f))). The transition
graph (also known as state graph) of a Boolean network f is the graph STG(f) =
(V,Ef ) having V = {0, 1}n as vertex set and the edges set Ef = {x → y | x ∈
{0, 1}n,∃i ∈ [1, n], fi(x) = ¬xi = yi and ∀j ∈ [1, n] \ {i}, yj = xj}.

If at least one path exists from x to y, we can write x →∗ y. The set of all
paths from x to y is interesting to better understand the dynamics when used in
the transition graph, and is required for future definitions. However, this set is
infinite, since there could be infinitely long paths from x to y, because of loops.
Therefore, we use the set of paths without loops from x to y, paths(x, y), (def. 5).
This means that the same vertex will never appear twice.

Definition 5 (Set of paths without loops from x to y, paths(x, y)). paths(x, y) =
{x = z1 → · · · → zk = y | k ∈ N, {z1, . . . , zk} ∈ {0, 1}nk,∀a, b ∈ {z1, . . . , zk}2, a 6=
b}

This notion of set of all loop-less paths from a state x to a state y can be
extended to a set of loop-less paths from a set of states X to a set of states Y .

Definition 6 (Set of paths from X to Y ). paths(X, Y ) =
⋃

x∈X,y∈Y paths(x, y)
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f1(x) = x1 ∨ x2
f2(x) = x1 ∨ ¬x2

00 01

10 11

Figure 2.2: Boolean network and its transition graph illustrating strong fairness.

Strong fairness: In this work, we assume strong fairness of the dynamics,
meaning that if a path goes infinitely often in a state, it takes infinitely often all
outgoing edges. In biology, a system is supposed to eventually leave transient
cycles, which is ensured by strong fairness.

Example 3. Fig. 2.2 gives a Boolean network f and its transition graph, where
strong fairness is important. Indeed, in this example, we can see that 00 and 01
are inside a loop. Without strong fairness, we have to consider that they might
never leave the loop, whereas with strong fairness, we know it will eventually get
out of the loop, and reach 11.

Attractors: The terminal strongly connected components of the transition graph
can be seen as the long-term dynamics, phenotypes or “fates” of the system;
throughout, we will refer to them as attractors. An attractor may model a unique
state, referred to as a fixpoint, f(x) = x, or sustained oscillations (cyclic attrac-
tor ) among several states.

Definition 7 (Attractor).

A ⊆ {0, 1}n is an attractor⇔
A 6= ∅
and ∀x ∈ A, ∀y ∈ {0, 1}n \ A, x 6→∗ y
and ∀x, y ∈ A, x→∗ y

If |A| = 1 then A is a fixpoint. Otherwise, A is a cyclic attractor.

We denote A(f) the list of all attractors of a Boolean network f .

Example 4. Fig.2.3 gives the transition graph of the asynchronous dynamics of
Boolean network of Ex.1, with the attractors in magenta.
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Figure 2.3: Transition graph of the Boolean network defined in Ex.1.

Predecessors, successors and basins: The computation of the predeces-
sors and successors utilize two basic functions, with a set of vertices X of
the graph G = (V,E): Preimage(X,G) = {s′ ∈ V | ∃s ∈ X such that (s′ →
s) ∈ E}, which returns the direct predecessors of X in G, i.e. pre(G)(X);
Image(X,G) = {s′ ∈ V | ∃s ∈ X such that (s → s′) ∈ E}, which returns
the direct successors of X ⊆ V in G, i.e. post(G)(X). To simplify, we define
Preimage i(X,G) = Preimage(. . . (Preimage(X,G)))︸ ︷︷ ︸

i times

with Preimage0(X,G) = X

and Image i(X,G) = Image(. . . (Image(X,G)))︸ ︷︷ ︸
i times

with Image0(X,G) = X. In this

way, the set of all predecessors of X via transitions in G is defined as an itera-

tive procedure pre∗(G)(X) =
m⋃
i=0

Preimage i(X,G) such that Preimagem(X,G) =

Preimagem+1(X,G). Similarly, the set of all successors of X via transitions in

G is defined as an iterative procedure post∗(G)(X) =
m⋃
i=0

Image i(X,G) such that

Imagem(X,G) = Imagem+1(X,G). Lastly, we define pre+(G)(X) =
m⋃
i=1

Preimage iX,G =

pre∗(G)(pre(G)(X)), with m verifying Preimagem(X,G) = Preimagem+1(X,G),
which is the set of all predecessors of X, starting from its predecessors. This
set can include X, if it is its own predecessor, because of a loop inside the set.

The (strong) basin of X is the set of states that always eventually reach a
state in X. It should be noted that X can be any set of states, not necessarily
an attractor. In other works, the term strong basin is used instead of basin, but
only for attractors. Here, we chose to use a different term, basin, because it can
apply to any set of node. Moreover, the previous definition of pre∗(G)(X) covers
what others call weak basin of X, the set of all vertices having a path to X.

Definition 8 (Basin of X in G, bas(G,X)). Let X be a set of nodes in G. The
basin of X, bas(G,X) is the biggest set Y such that X ⊆ Y and ∀y ∈ Y \
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X, post(G)(y) ⊆ Y ∧ ∃x ∈ X, y →∗ x.

Basins are particularly interesting in the case of attractors: the basin of an
attractor is the set of all states that will inevitably end up in the attractor. In
most applications to cell reprogramming, the target of a reprogramming is an
attractor.

Moreover, if a set of states A is in the basin of an other set of states B, then
the basin of A is in the basin of B.

Property 1. Given two sets of states, A and B of a graph G, if A ⊆ bas(G,B)
then bas(G,A) ⊆ bas(G,B).

Proof. If there exists a ∈ bas(G,A) such that a 6∈ bas(G,B), then, there ex-
ists b ∈ post(G)(a) that is not in bas(G,B), otherwise bas(G, b) is not minimal.
Recursively applying this reasoning to b and its successors not in bas(G,B), ei-
ther there exists a loop of states that are in bas(G,A) and are not in bas(G,B),
in which case bas(G,B) is not minimal (because this loop could be added to
bas(G,B) ; or since there exists a′ ∈ A such that a →∗ a′, then a′ 6∈ bas(G,B).
However, A ⊆ bas(G,B), thus a ∈ bas(G, b).

2.2 Perturbations, reprogramming strategies and
reprogrammability

This section introduces definitions for the perturbations, the perturbation se-
quences, the reprogramming strategies and for existential and inevitable repro-
grammability.

2.2.1 Perturbations

In order to modify the future behavior of a Boolean network, we want to perturb
either one of its functions or its actual state. We define a perturbation valuation
(def. 9) as a set of variables of a Boolean network and associated values. The
values must be possible values of the system, 0 or 1 since we are working with
Boolean networks, and the variables should all be distinct.

Definition 9 (Perturbation valuation). A perturbation valuation M is a set of
values associated to variables M = {v1 = a1, . . . , vk = ak} with k ≤ n, ai values
verifying {a1, . . . , ak} ∈ {0, 1}k, and for all i, j ∈ [1, k],i 6= j ⇒ vi 6= vj.
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This perturbation valuation indicates which variables to perturb. The set of
all possible perturbation valuations for a network f is denoted M. We define two
operators to perturb the system with a perturbation valuation.

First, the state perturbation operator consists of applying the perturbation
valuation to the current state x of a Boolean network f . We can note that since
the operator will only modify the value of some variables, the function f is irrel-
evant, and only the size n of the Boolean network matters.

Definition 10 (State perturbation). We define χM(x) as the state perturbation
of state x (of any Boolean network of size n) with perturbation valuation M =
{v1 = a1, . . . , vk = ak}: χM(x) = x′ where ∀v ∈ [k + 1, n], x′v = xv and ∀i ∈
[1, k], x′vi = ai.

On the other hand, the function perturbation operator consists of changing
the Boolean network f function according to the perturbation valuation. In this
case, the state of the Boolean network is irrelevant.

Definition 11 (Function perturbation). We define φM(f) as the function pertur-
bation of the Boolean network f (of size n) with perturbation valuation M =
{v1 = a1, . . . , vk = ak}: φM(f) = f ′ where ∀v ∈ [1, n] \ {v1, . . . , vk}, f ′v = fv and
∀i ∈ [1, k], f ′vi = ai.

We can see that applying state or function perturbation operator will result in
a different behavior for the impacted variables. Applying the state perturbation
operator will change the variable’s value, changing the current behavior of the
system, without changing the function, making it an instantaneous perturbation
with no lasting effects. Applying function perturbation operator will modify the
variable long-term behavior, the perturbation is always active.

From these operators, we can define instantaneous and permanent pertur-
bations of a Boolean network f , which will be two of the main perturbations
discussed in the next chapters. Both of these perturbations take (M,L, x) as
parameters: a perturbation valuation M , the perturbation valuation of all previ-
ous function perturbations L on the Boolean network f , and one state of f ; and
return a couple (f ′, x′) as a result of the perturbation.

Instantaneous perturbations, pertI(M,L, x), are short-term perturbations of
the network, i.e., only x is perturbed. However, the function could have been
perturbed previously, thus we keep the current active function perturbations.

Definition 12 (Instantaneous perturbation). pertI(M,L, x) = (φL(f), χM(x)).

Permanent perturbations, pertP (M,L, x), are long-term perturbations of the
network, where both f and x will be perturbed. We chose to perturb both func-
tion and state because changing the function to a constant will always result in
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an update where the variable’s value is updated to the constant. Not changing
the variable’s value at the same time than the function would result in some
behaviors which are mostly artifacts of the asynchronous updating scheme. As
a result, we change the variable’s value and ensure it stays at this value by
modifying the function as well.

To have an easier notation for updating the valuation with the function per-
turbations, we define the operator + for valuation sets as:

M ′ +M = {(v = a) | (v = a) ∈M or [(v = a) ∈M ′ and ∀(v′ = a′) ∈M, v 6= v′]}

As a result, a permanent perturbation modifies f by updating the past valu-
ation with the new one.

Definition 13 (Permanent perturbation). pertP (M,L, x) = (φL+M(f), χM(x)).

Since both kinds of perturbations use the same parameters and return the
same objects, we will use the notation pert(M,L, x) = (φM ′(f), x′) when there
is no need to precise if the perturbation is instantaneous or permanent. In this
case, M ′ is either L for instantaneous perturbations or L + M for permanent
perturbations.

Perturbation sequence: We are interested in multiple perturbations at differ-
ent times. We need to define perturbation sequences, which are ordered lists
of couples (perturbation, parameters). We decided to focus on perturbation
sequences where all perturbation in a sequence are of the same type, either
instantaneous or permanent.

Definition 14 (Instantaneous perturbations sequence). An instantaneous per-
turbation sequence is an ordered list of k instantaneous perturbations for some
k ; we denote it as S = [(pertI , (M1, ∅, x1)), . . . , (pertI , (Mk, ∅, xk))].

Definition 15 (Permanent perturbations sequence). A permanent perturbation
sequence is an ordered list of k permanent perturbations for some k ; we denote
it as S = [(pertP , (M1, L1, x1)), . . . , (pertP , (Mk, Lk, xk))], with L1 = ∅ and for all
1 < i ≤ k, Li = Li−1 +Mi.

In the case of permanent perturbations sequence, an interesting case to
make is to allow the Boolean network f to revert back to its original function
when in some states. Therefore, we define a new operator, the function restora-
tion operator, pert−1 with parameters a state x and L, the set of valuations for
the function perturbations on f , and W a set of variables which function has
been perturbed and will return to its original value.



2.2. PERTURBATIONS, REPR. STRATEGIES, REPROGRAMMABILITY 17

Definition 16 (Function restoration). Given a Boolean network f , a perturba-
tion valuation for all previous function perturbations L, and W ⊆ V verify-
ing ∀v ∈ W,∃(v = a) ∈ L. We define the function restoration operator as
pert−1(W,L, x) = (φM(f), x) with M = {(v = a) | (v = a) ∈ L and v 6∈ W}.

With this operator, we can define a temporary perturbations sequence, a se-
quence of permanent perturbations with one or multiple function restorations,
over all perturbed variables. In this case, there can be multiple function restora-
tions at different states during the sequence, but each perturbed variable should
be restored at one point.

Definition 17 (Temporary perturbations sequence). A temporary perturbation
sequence S = [s1, . . . , sk+m] is a sequence containing k permanent perturba-
tions and m function restorations for some k and some m , where the following
property is true:
∀i ∈ [1, k], ∀j ∈ [1, |Mi|],∃sa = (pert−1, (W,L, x)) ∈ S where vj ∈ W and
sb = (pertP , (Mi, L, xi)) verifies b < a.

Since there always exist a state in which a perturbed function is restored,
the Boolean network resulting of the last operator in the sequence is always f .
Once again, we made this choice for the sake of simplicity, to ensure that the
final network is the same than the original, which corresponds to having long
external influences on a cell in biology, without modifying its DNA.

“One-step” perturbation sequence: A “one-step” perturbation sequence is
a sequence where only one perturbation is done, and thus contains only one
perturbation valuation. In most cases, this perturbation is applied in the initial
state of the network.

Size of a perturbation and size of a perturbation sequence: The size of a
perturbation pert(M,L, x) is the size of the perturbation valuation M , denoted
|M |. The size of a perturbation sequence S, denoted |S| is the sum of the sizes
of all perturbation valuations Mi.

|S| = Σpert(M,L,x)∈S|M |

We decided that the size of a perturbation sequence should represent the effort
necessary to reprogram the cell. Thus, it needs to account for the number of
interventions, the number of perturbations in the sequence, and the difficulty of
the interventions, the size of each perturbation.
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2.2.2 Reprogramming strategies

The goal of reprogramming a system is to apply the right set of perturbations in
the right states of the system and eventually reach a target.

To find these perturbations, we need a strategy. A reprogramming strat-
egy S is a function that associate to each couple (valuation of past function
perturbations, state) an action. This action can either be to do a perturbation,
instantaneous or permanent, with a perturbation valuation, or to do a function
restoration on a set of nodes.

We define the set of possible actions as A, with 2[1,n] being the set of all
subsets of [1, n]:

A = (pertI ×M) ∪ (pertP ×M) ∪ (pert−1 × 2[1,n])

Moreover, a possible “action” in a reprogramming strategy is the lack of ac-
tion, to do nothing and let the Boolean network update itself, denoted nothing.

Definition 18 (Reprogramming strategy S). A reprogramming strategy S is a
function that associate actions to couples (valuation of past function perturba-
tions, state).

S : M× {0, 1}n → A ∪ {nothing}
(L, x) 7→ action

We denote the set of reprogramming strategies for a Boolean network as S.
We can note that a reprogramming strategy can be adapted to a more general
case, where only part of the state is observable. In this case, instead of (L, x),
it would be (L, o(x)) where o(x) is the observable part of the state.

Note that reprogramming strategies are deterministic, with a given action
based on the past perturbations and the current state of the system. Once
a strategy has been defined, we need to know what are the semantics of the
strategy, what happens when the strategy is applied.

Reprogramming strategy semantics are how the strategy is applied. Ap-
plying this strategy to a Boolean network f will result in a new state transition
graph, STG(S).

Definition 19 (Reprogramming strategy semantics STG(S)). STG(S) is a tran-
sition graph with states M × {0, 1}n and the transitions (L, x) → (L′, x′) with

(L′, x′) =

{
S(L, x) if S(L, x) 6= nothing

L′ = L and x→ x′ ∈ STG(φL(f)) otherwise.
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Note that even if a reprogramming strategy is deterministic, its semantics
are not, since they use updates from the Boolean network, which can be non-
deterministic.

We want to know if a reprogramming strategy S semantics from an initial
state or set of states, to a set of target states is successful, in the sense that it
allows a set of target states to be reached. Moreover, there are different degrees
of success in a reprogramming strategy: if the target is reachable with the strat-
egy semantics, but might never be reached, the strategy is called existential. If
the target is always reached, then the strategy is called inevitable.

As a result, we have the following definitions for inevitable and existential
reprogramming strategies.

Definition 20 (Inevitable reprogramming strategy S from X to Y ). Given a set
of initial states X, a set of targets Y and a reprogramming strategy S, what
it means for the reprogramming strategy to be inevitable from X to Y is that
X ⊆ bas(STG(S), Y ).

Definition 21 (Existential reprogramming strategy S from X to Y ). Given a set
of initial states X, a set of targets Y and a reprogramming strategy S, what
it means for the reprogramming strategy to be existential from X to Y is that
X ⊆ pre∗(STG(S))(Y ).

Links between reprogramming strategies and reprogramming sequences:
If a strategy S is existential, we can easily construct a perturbation sequence
from it. First an empty list seq is created. Then a path from one state x in X
to one state y in Y is chosen, and for each state reached in order from x to y,
the action done by S is added to seq with its parameters, except if the action is
nothing.

To create perturbation sequences from an inevitable strategy, we need to
consider the set of all loop-less paths from any x in X to any y in Y . Each path
results in a sequence, constructed as previously for existential strategies. More-
over, the sequences from a same inevitable strategy can be grouped together
to show the inevitability.

A perturbation sequence corresponds to an existential strategy if the follow-
ing property is verified:

Property 2. Given a set of initial states X, a set of targets Y and a sequence
S = [pert1, (M1, ∅, x1), . . . , pertk, (Mk, Lk, xk)], S corresponds to an existential
strategy if:

• ∃x ∈ X, x ∈ pre∗(STG(f))({x1})
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• ∀(f ′, x′) = perti(Mi, Li, xi), x
′ ∈ pre∗(STG(f ′))({xi+1})

• (fk+1, xk+1) = pertk(Mk, Lk, xk), xk+1 ∈ pre∗(STG(fk+1))(Y )

To prove this property, we need to construct the right reprogramming strategy
S from the sequence S. We begin with an “empty” strategy, where the only
action done is nothing in all cases. Then, we apply the following procedure:

• We find the highest i such that perti(Mi, ∅, xi) ∈ S and ∃x ∈ X, x ∈
pre∗(STG(f))({xi}).

• Then, we denote (φL(f), x′) = perti(Mi, ∅, xi), and we add (∅, xi) 7→ (perti,Mi)
to S.

• Using the same principle, we find the highest j such that pertj(Mj, L, xj) ∈
S and xi ∈ pre∗(STG(φL(f)))({xj}).

• We denote (φL′(f), x”) = pertj(Mj, L, xj) and we add (L, xj) 7→ (pertj,Mj)

• We repeat the two previous steps replacing L and x′ by L′ and x” until
j = k.

• Lastly, we add (Lk, xk) 7→ (pertk,Mk) to S.

Reviewing step by step the above procedure, we know that each step is possi-
ble. Because of the first point of property 2, there exists i such that perti(Mi, ∅, xi) ∈
S and ∃x ∈ X, x ∈ pre∗(STG(f))({xi}). And because of the second point,
we know that the steps 3 to 5 can be repeated until xk is reached. We can
note that during this procedure, we created a new perturbation sequence S ′ =
[(pert′1, (M

′
1, ∅, x′1), . . . , (pert′k′ , (M

′
k′ , L

′
k′ , x

′
k′))] with perturbations from S and only

from S, with k′ ≤ k and with (pert′k′ , (M
′
k′ , L

′
k′ , x

′
k′)) = (pertk, (Mk, Lk, xk)).

We will now prove that this reprogramming strategy S is existential.

Proof. We want to prove that there exists x in X such that x ∈ pre∗(STG(S))(Y ).
We know that ∃x ∈ X, x ∈ pre∗(STG(f))({x′1}), by construction of S. To prove

that x ∈ pre∗(STG(S))({x′1}), we only need to prove that there is no perturba-
tion (pert′i′ , (M

′
i′ , L

′
i′ , x

′
i′)) in S ′ preventing x′1 to be reached, because the only

differences between STG(f) and STG(S) is when actions other than nothing are
made.

If there exists such a perturbation, then we know that this was a perturbation
of the sequence S, that we denote as perti. Moreover, we know that pert′1 is also
a perturbation from the original sequence S, denoted as pertj. We also chose
to take the highest j possible, meaning that i < j.
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We know that in the original sequence if we denote (f ′, x′) = pertj(Mj, Lj, xj)
then x′ is in pre∗(STG(f ′))({xj+1}). In S ′, we chose the highest h such that
x′ ∈ pre∗(STG(f ′))({xh}). As a result, h ≥ j + 1, and since we can repeat
this reasoning for all perturbations of the sequence S ′, we can deduce that
h ≤ i. From these two inequalities, we deduce that j < i. Therefore, such a
perturbation does not exists, and x ∈ pre∗(STG(S))({x′1}).

We repeat the same proof for each (f ′, x′) = pert′i(M
′
i , L

′
i, x
′
i), until (f ′k′+1, x

′
k′+1) =

pert′k′(M
′
k′ , L

′
k′ , x

′
k′) is reached. Moreover, each time we prove that x′ is in pre∗(STG(S))({x′i+1}),

we get that x is in pre∗(STG(S))({x′i+1}). We have that x is in pre∗(STG(S))({x′i})
and that x′ is in pre∗(STG(S))({x′i+1}). Moreover, x′i → x′ is an edge of STG(S) by
definition. As a result, x ∈ pre∗(STG(S))({x′}) and thus x ∈ pre∗(STG(S))({x′i+1}).

After the recurrence, we have x ∈ pre∗(STG(S))({x′k′+1}). We know that
(pert′k′ , (M

′
k′ , L

′
k′ , x

′
k′) = (pertk, (Mk, Lk, xk) and that if we denote (fk+1, xk+1) =

pertk(Mk, Lk, xk), then xk+1 ∈ pre∗(STG(fk+1))(Y ). As a result, x′k′+1 is in pre∗(STG(fk+1))(Y ).
We know that there is no perturbation that can prevent Y to be reached in
STG(S), because of the previous reasoning. Therefore, x′k′+1 is in pre∗(STG(S))(Y )
and x is in the same set.

A set of sequences can correspond to an inevitable strategy if it verifies
property 3 (below). We denote the set of sequences P :

P = {S1 = [(pert11, (M
1
1 , L

1
1, x

1
1)), . . . , (pert, (M1

k1
, L1

k1
, x1k1))]

S2 = [(pert22, (M
2
1 , L

2
1, x

2
1)), . . . , (pert, (M2

k2
, L2

k2
, x2k2))]

. . . ,

Sm = [(pertmkm , (M
m
1 , L

m
1 , x

m
1 )), . . . , (pert, (Mm

km , L
m
km , x

m
km))]}

With all Si verifying Li
1 = ∅, and pertij among pertI , pertP , and pert−1 (in which

case M is a set of states instead of a perturbation valuation).

Property 3. Given a set of initial states X, a set of targets Y and a set of
sequences P , P corresponds to an inevitable strategy if:

• ∀i ∈ [1,m],∀(pert1, (M,L, x)) ∈ Si if ∃j ∈ [1,m] such that ∃(pert2, (M
′, L, x)) ∈

Sj then pert1 = pert2 and M = M ′.

• ∀x ∈ X, x ∈ bas(STG(f), Y ∪{x | ∃i ∈ [1,m],∃M i
1 such that perti1(M

i
1, L

i
1, x) ∈

Si}).

• ∀j ∈ [1,m], ∀(φL′(f), x′) = pertji (M
j
i , L

j
i , x

j
i ), x

′ ∈ bas(STG(φL′(f)), Y ∪ {z |
∃h ∈ [1,m],∃Mh such that pert(Mh, L′, z) ∈ Sh}).
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As for the previous property, to prove this, we need to construct the correct
strategy S from sequence S. We start from an “empty” strategy where the only
possible action is nothing. We will use a procedure similar to the one used for
the proof of property 2, but which caters greater needs:

• We denote A = {x11, x21, . . . , xm1 }

• For each i,

– we find the highest j such that each x in X is in bas(STG(f), Y ∪ ((A \
{xi1}) ∪ {xij})).

– A = (A \ {xi1}) ∪ {xij}, and we add (∅, xij) 7→ (pertij,M
i
j) to S.

• In the same fashion, for each j ∈ [1,m], for each (φL′(f), x′) = pertji (M
j
i , L

j
i , x

j
i )

– We denote B = {z | ∃h ∈ [1,m],∃Mh such that pert(Mh, L′, z) ∈ Sh}
– For each h such that ∃xhb ∈ B
∗ We find the highest c such that x′ is in bas(STG(φL′(f)), Y ∪ ((B \
{xhb}) ∪ {xhc}))
∗ B = (B \ {xhb}) ∪ {xhc}, and we add (L′, xhc ) 7→ (perthc ,M

h
c )

• Lastly, for each i, we add (Li
ki
, xiki) 7→ (pertiki ,M

i
ki

) to S.

We know that each step of this procedure is possible thanks to property 3.

Proof. We want to prove that S is inevitable. This means that we want to
prove that all x in X are in bas(STG(S), Y ). We know that each x in X is in
bas(STG(f), Y ∪ A) with A as constructed above. Moreover, we know that we
took the highest j possible for each sequence i. In STG(S), some x might not be
in bas(STG(S), Y ∪A), but they will be in the basin of a bigger set Y ∪A∪C, with
C being a set of x from perturbations allowed by S, preventing some normal
transitions because the action nothing was not used.

For each state in A ∪ C, we can apply a perturbation, thus we can denote
(φL′(f), x′) = pertji (M

j
i , L

j
i , x

j
i ). We know that x’ is in bas(STG(φL′(f)), Y ∪ B)

with B as constructed above. As previously, in STG(S), we might need a bigger
set Y ∪B ∪D, with D a set of x from perturbations allowed by S. As previously,
this is not problematic. Moreover, by prop. 1, we have that all x in X x is in
bas(STG(S), Y ∪ B ∪D). Recursively, we repeat this steps, replacing A ∪ C by
B ∪ D′ each time, where D′ is D from which some x have been removed, as
explained below.

We now need to prove that this recursion ends. If D = ∅ then we know that
for all i ∈ [1,m], the index of the perturbation can only increase, as proved for
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prop. 2. Thus, we will reach a time where B = ∅, stopping the recursion. If D
contains xij, then if j > c (with c as defined in the procedure), it only speeds
up the recursion. If j < c then this will create a loop: we already verified that
x is in the basin of a set containing χM i

j
(xij), by recursion hypothesis. Thus, we

remove xij from the recurrence, allowing it to end.

Size of a strategy The size of a strategy is the sum of the size of all the
possible perturbations.

“One-step” reprogramming strategy: We speak about “one-step” reprogram-
ming strategy when S only allows perturbations when L = ∅. Often, the pertur-
bations are only allowed in the initial state as an other condition on S. We will
speak of sequential reprogramming sequences when comparing with ”one-step”
reprogramming strategies when a distinction should be made.

2.2.3 Reprogrammability

A Boolean network f is inevitably (resp. existentially) reprogrammable from X
to Y if and only if it admits some reprogramming strategy S among all possible
strategies S, which is inevitable (resp. existential) from X to Y .

Definition 22 (existential reprogrammability from X to Y ). A set of states X has
existential reprogrammability to Y if:
∃S ∈ S such that S is existential from X to Y .

Definition 23 (inevitable reprogrammability from X to Y ). A set of states X has
inevitable reprogrammability to Y if:
∃S ∈ S such that S is inevitable from X to Y .

We also say that there exists one-step reprogrammability (existential or in-
evitable) if S is a one step reprogramming strategy.

Remark: Without restrictions on perturbation valuations, existential and in-
evitable reprogrammability for any X to any state y in f is trivial, because we
can use the perturbation valuation M = {v = yv | v ∈ [1, n]} in the sequence
[(pert, (M, ∅, x))] for every x in X. Most of the time, we are interested in minimal
perturbation strategies, or strategies that result in perturbation sequences that
are minimal. Finding reprogramming strategies with constraints on the number
of perturbations, on the states in which the perturbations take place, or on the
perturbation valuations is also interesting, to have a bigger set of solutions to
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choose from. The constraints on the perturbation valuations can be that some
variables cannot be perturbed, or that they can only be perturbed to a value, or
that the perturbation valuations are not allowed to be too big.

2.3 State of the art

While cell reprogramming is quite a new field, there are a lot of techniques
that have been found to improve it. Induced pluripotent human stem cells were
found in 2007 by Takahashi and Yamanaka [TTO+07], but earlier research al-
ready show possible reprogrammings [KFG95, XYFG04]. Since 2007, there
have been multiple improvements and discoveries, summed up in [TY16] from
2016.

In literature, we can find that reprogrammability for biological systems has
mostly been done for one-step reprogrammability, as shown in subsection 2.3.1.
However, sequential reprogrammability research and experiments can be found
as well, and are explained in subsection 2.3.2. On the other hand, general
sequential reprogrammability can be seen as a two player game, where one
player is the system and the other is the experimenter. This is discussed, with
comparison to literature, in subsection 2.3.3.

2.3.1 One-step reprogramming strategies

Since cell reprogramming as an experimental protocol often uses a single per-
turbation of multiple transcription factors, one-step reprogramming strategies
are adapted to this context. To find these transcription factors, a wide array of
methods are used, with different constraints and complexity.

For experimental verification and predictions from known results, model-
checking is often used, for example by Mendoza in 2006 or Hermann et al.
in 2012 [Men06, HGZ+12]. These works are often performed by biologists or
people very close to the experiments, and aim at creating a model and check-
ing known results, experimental results, and intuitions. After constructing the
model, trajectories from an initial state are explored, to show closeness to the
reality. Perturbations of the initial state, by changing the function and the value
of some variables can also be tested, showing how the trajectories are modified
and which new trajectories are found. In [Men06, HGZ+12] the authors have
exploited and constructed a Boolean network.

Probabilities are a widely used tool for cell reprogramming, either as possible
outcomes of the perturbations or in the model itself. The computation of the
results can be probabilistic, computing the probabilities to reach all possible



2.3. STATE OF THE ART 25

attractors from a initial state, as used by Sahin et al. in 2009 or by Cohen et al.
in 2015 [SFL+09, CMR+15]. With this kind of tool, the method is close to the
model-checking approach, where the perturbations are modelled by a change
in the model, but returns more detailled results, that can be used for statistical
studies.
The model itself can be probabilistic, as the ones created by Chang et al. in
2011 or Hannam et al. in 2016 [CSW11, HAK16], where each variable has a
probability of changing value depending on other variables and external factors.

An other kind of model is epigenetic landscape, an example of which is built
by Lang et al. in 2014 [LLCM14]. It aims at recreating the dynamics of the dif-
ferentiation, by creating a landscape, were valleys are attractors and cell fates,
and differentiation goes downward towards the valleys. From this, cell repro-
gramming can be studied by finding how to go over the hills and let the system
stabilize in the target attractor.

A less common method is a static analysis of the model, using it to predict
which genes to target, as used by Crespo et al. in 2013, or by Zañudo and Reka
in 2015 [CPJdS13, ZA15]. By analyzing the network and finding patterns in it, it
is possible to find targets for the perturbations. Most of the time, simulations are
done with these targets to verify that all behaviors lead to the wanted attractor.
In this thesis, we will formally analyze this static approach, to show what are the
benefits and the limits.

In [BD17] by Biane and Delaplace, two kinds of perturbations are used, per-
manent perturbations equivalent to the ones described in def. 13, and a spe-
cial kind of function perturbation where a literal of the function is deleted, thus
changing the dynamics. This method uses integer linear programming to infer
the perturbations. Moreover, their initial state is the whole transition graph.

2.3.2 Sequential reprogrammability

However, even if the majority of predictions are done with one-step reprogramma-
bility in mind, sequential reprogrammability has been studied as well. Some-
times, as an improvement of one-step reprogrammability, where timing yields
better results, sometimes as a general case which includes one-step perturba-
tion sequences.

As with one-step reprogrammability, model-checking can be used. Pertur-
bations can be allowed only in attractors, or at any state of the system. When
perturbations are only in attractors, one can compute all possible one-step per-
turbation sequences to go from any attractor to any other attractor, and use
the attractors as intermediate states, a method used by Abou-Jaoudé et al. in
2015 [AJMN+15]. These computations are made by testing all possible per-
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turbations and testing reachability from the new perturbed state. When pertur-
bations are allowed in every state, it is possible to reduce the set of allowed
perturbation valuations to reduce computation times, as shown by Samaga et
al. in 2010 in [SVKK10]. In the case of [SVKK10], the updates of the system
are synchronous.

As previously, an epigenetic landscape can be created, to find which genes
are linked to which phenotypes, in order to perturb the genes the most linked to
the target attractor. In the model of Ronquist et al. from 2011 [RPM+17] this is
used with time-series and allows for time-dependent perturbations, where the
efficiency is better when some factors are introduced later.

2.3.3 Game theory

We can translate the reprogrammability to a game, where player 0 is the Boolean
network, and player 1 controls the perturbations. In this context, inevitable re-
programmability becomes a reachability game, where we want to find the solu-
tions for player 1. Creating an game arena from the perturbed transition graph
described in chapter 4 is quite easy, and therefore, reachability in this game
can be dealt with in the usual way, described in the book from Grädel et al. in
2003 [GTW03]. However, the reprogrammability problem itself is trivial if there
is no maximum number of perturbations. Reachability games will return solu-
tions under a bound, and the shortest paths, but they will fail to return shortest
perturbation sequences.

2.4 Contributions of this thesis

In this thesis, we explain how static analysis of the Boolean network’s interac-
tion graph allows to find reprogramming strategies. We expand upon our results
from 2016 in [MHP16] in the light of sequential reprogramming. We show that
some parts of the interaction graph are highly influential on the dynamics, the
strongly connected components (SCC), and that perturbing some of them in the
correct order allows for an inevitable reprogramming strategy. Reprogramming
a smaller set of these components with a less strict order allows an existential
reprogramming strategy. We also think that to find the complete set of repro-
gramming strategies, an analysis of the dynamics of the whole Boolean network
is required. This is discussed in chapter 3.

To perform an analysis of the dynamics, we use two approaches. The first
one, from [MHP17, MSH+19], consists of having minimal constraints on the
perturbation valuations and where the perturbation takes place, resulting in a
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strategy S, creating STG(S), and analyzing this graph to find smaller repro-
gramming strategies that are inevitable or existential, whichever is needed. We
created a model to compute STG(S), and two algorithms to extract a simplified
reprogramming strategy from it.

The second approach consists of only allowing perturbations in attractors,
resulting in much smaller computation times. In this approach, from [MSP+19],
we use a modified Hamming distance to compute quickly the perturbations re-
quired to reach the target attractor from the initial attractor, and we then repeat
this procedure to use other attractors as intermediate steps.

These two approaches are further discussed in chapter 4.
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Chapter 3

Network Static Analysis

A first approach to Boolean Network reprogrammability, is to find the perturba-
tions from the Boolean network f and its interaction graph G(f) (which can eas-
ily be computed from f ), without computing the transition graph. To be able to
reprogram the system, we also need a starting point, the initial state initial, and
a target target. In this chapter, we will discuss how to find strategies or perturba-
tion sequences for inevitable and existential reprogrammability with permanent,
temporary or instantaneous perturbation sequences, with limited computation
of the system dynamics. We will use the terms short-term temporary pertur-
bation to describe a temporary perturbation which only last a few updates, and
long-term temporary perturbations to describe temporary perturbations lasting
until an attractor is reached.

This chapter contains published results from [MHP16], which have been ex-
tended upon in the light of sequential reprogrammability. In this chapter, we
give an algorithm that results in clusters of variables to perturb, namely some
strongly connected components of the interaction graph, and when to perturb
them. We also prove that to find more specific variables, the system cannot be
divided in subparts studied individually, and should be studied as a whole, and
that dynamics should be taken into account. The detailed study of dynamics is
explained in chapter 4.

3.1 Computations on the Interaction Graph and prop-
erties on initial and target

Comparing initial, the initial state, and target, the target state, already gives
a reprogramming of the system, even if it is the least efficient one, by look-
ing at all variables which have different values between the two states. For
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this perturbation sequence, the perturbation valuation is the set M = {(v =
targetv) with v verifying initialv 6= targetv}. This perturbation sequence corre-
sponds to an inevitable reprogramming strategy, as applying pert(M, ∅, initial) =
(φM ′(f), target). Instantaneous, temporary and permanent perturbations will all
ensure such property.

We will suppose that target is in an attractor, as properties on the interaction
graph rely on attractors.

3.1.1 Using the cycles of the Interaction Graph

The first rule of Thomas (theorem 1) gives useful information on the attractors
of f .

Theorem 1 (Thomas’ first rule). If G(f) = (V,E) has no positive cycles, then f
has at most one attractor.
Moreover, if f has two distinct fixed points x and y, then G(f) has a positive
cycle C ⊆ V such that xv 6= yv for every variable v in C.

This conjecture, made by René Thomas[Tho73] in 1973, has been demon-
strated for Boolean and discrete networks[Ara08, RRT08] in 2008.

If G(f) has no positive cycle, and since target is in an attractor, then initial
always reach target, without any perturbation needed, because of the first point
of the theorem. Therefore initial is in bas(STG(f), target), resulting in inevitable
reprogrammability being trivial (def. 23) in this case.

However, if G(f) has positive cycles, then it can have multiple attractors. In
the completely asynchronous dynamics, to have a complex attractor which is
not a fixed point, G(f) has to contain a negative cycle:

Theorem 2 (Thomas’ second rule). If f has a cyclic attractor, thenG(f) contains
a negative cycle.

This theorem is derived from the second rule of Thomas, and is proved for
Boolean networks[RRT08].

With this theorem, we can deduce than perturbing all cycles of the network
would probably allow target to be reached. However, in order to prove it, and to
find which kind of perturbation to make and which kind of reprogrammability to
expect, we need to order the graph.

3.1.2 Ordering the Interaction Graph

Theorems 1 and 2 give an intuition on the parts of the graph which have a strong
influence on the dynamics: the cycles. Indeed, we know that the value of a vari-
able v of the Boolean Network f depends on fv. In terms of Interaction Graph, it
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means that the value of v is determined by its direct predecessors, by the defini-
tion of Interaction Graph (def. 3). By recursion, we can deduce that the value of
v depends on the value of all predecessors in G(f), the set pre+(G(f))(v). From
this, we can also deduce that if all predecessors of a variable have the same
value as in a fixed point, then the variable will always have the value it has in
the fixed point. The same kind of reasoning can be applied if the value are the
ones in a complex attractor, the set pre∗(G(f))(u) will keep values in the same
attractor. The set of all predecessors including the variable are locally stable.

Theorem 3 (Local stability). Let f be a Boolean network of size n, and y be a
state.
∀z ∈ {0, 1}n,∀v ∈ [1, n], if ∀u ∈ pre+(G(f))(v), zu = yu
then ∀u ∈ pre∗(G(f))(v), fu(z) = fu(y).
If y is a fixed point, the second part of the implication can be refined to ∀u ∈
pre∗(G(f))(v), fu(z) = yu.
If y is part of a more complex attractor C, the second part of the implication can
be refined to ∀u ∈ pre∗(G(f))(v), ∃c ∈ C, fu(z) = cu.

Proof. Let z be a state in {0, 1}n, and v a variable of f . We suppose that for all u
predecessor of v, excluding v if it is not a predecessor of itself, in G(f), zu = yu.
Then, by construction of the Interaction Graph, fv(z) = fv(y), since the values of
pre(G(f))(v) are the same in y and z. This can be generalized to all variables in
pre∗(G(f))(v), for the same reason, all values of the predecessors are the same
in y and z. Hence, for all u in pre∗(G(f))(v), we have fu(z) = fu(y).

Moreover, if y is a fixed point, then for all u variable, fu(y) = yu. With this fact
and fu(z) = fu(y), we have that for all u in pre∗(G(f))(v), fu(z) = yu.

Finally, if y is part of a more complex attractor C, then, by definition of at-
tractor, for every state c in the attractor C and every variable i, there exists c′ in
C such that fi(c) = c′i. Since y is in C, then for all variables, including u, there
exists c ∈ C such that fu(y) = cu. Since we know that fu(z) = fu(y), we have
fu(z) = cu.

This confirms our intuition: a variable inside a cycle has a behavior hard
to predict, since it will influence itself, and its influence on its successors will
also influence its predecessors and itself. On the other hand, it shows that a
variable outside a cycle is easier to reprogram, since it does not have this kind
of feedback, perturbing the cycles in the predecessors is enough in most cases.

In order to hierarchize the candidate variables to perturb, we want to order
the Interaction Graph. It allows us to find which variables impact strongly the
network’s dynamics, and which ones do not have much influence. However,
cycles are a problem, and even more when they are interwoven. To solve this
issue, we order the strongly connected components (SCCs) of the Interaction
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Graph. Moreover, we can distinguish between trivial SCCs, which do not contain
cycles, and complex SCCs, which contain one or more cycles. We can remark
that all trivial SCCs are of cardinality 1 by definition of SCC: if there are more
than 1 variables in a SCC, then by definition there is a cycle, and hence the
SCC is not trivial.

We order the SCCs following any topological order. The local stability theo-
rem (theorem 3) gives an intuition on which SCCs to perturb, especially when
paired with the ordering. Indeed, if we suppose that a SCC C and all its prede-
cessors have the same value as in target, then there are two possibilities.

First, if target is a fixed point, then the system will reach a state where all
predecessors of C that are trivial SCCs have the same value as in target, by
recursively applying the local stability. Second possibility is if target is in a more
complex attractor. Then, if for all successors of target, C and all predecessors
keep the same values, then we fall back to the first case. Lastly, if some prede-
cessors can change value because they can change value in the attractor, then
the local stability applies, and the predecessors keep values that are possible
in the attractor. Since the system is asynchronous, there is no need to time the
perturbation of the SCCs predecessors of C to have them be synchronous to
their successors.
This is discussed in details and proved further in the next section.

Notations: We denote the set of all SCC as C and the set of all non-trivial
SCCs as CNT .

3.1.3 Perturbing the Strongly Connected Components

One might wonder if ordering the SCCs always reduce the number of complex
SCCs to perturb, and if perturbing the first SCCs that have different values than
in target in each topological order is enough to have a perturbation sequence to
target.

However, that is not the case. We can always end up in a different attractor
than target if only the first SCCs with different values that target are perturbed,
as shows example 5.

Example 5. This example shows that perturbing a node in a SCC first in topo-
logical order is not enough to perturb the nodes below. In this example, target =
10101 and initial = 01100, both of which are fixed points. Perturbing the first
SCC, the set of variables {1, 2, 3} in order to have the same value as in target
results in {4} never being activated, and thus {5} never being activated, and
target is never reached.
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f1(x) = ¬x2
f2(x) = ¬x1
f3(x) = x1 ∨ x2
f4(x) = x2 ∧ ¬x3
f5(x) = x4 ∨ x5

3

1 2

4 5

Figure 3.1: Boolean network preventing changes in the lower SCC

Inspired by this counter-example, we deduced that almost all SCCs need
to be perturbed. Which SCCs are perturbed will depend on the kind of repro-
grammability desired. However, the sources, variables which have a constant
function and thus, no incoming edges in the interaction graph, can be a huge
issue. If the perturbations are instantaneous, and there exists a source s which
verifies initials 6= targets then only existential reprogramming strategies can be
found, since s will always come back to its value. Moreover, even if the system
reaches target, it will not stay in it. If the perturbations are temporary, repro-
gramming strategies exist, but the system will not stay in target after the per-
turbations stop. If the perturbations are permanent, reprogramming strategies
exist as well. In all cases, all sources {s} are added to CNT , as they behave
in the same fashion as a self-loop for reprogrammability with permanent and
temporary perturbations, and are required in all cases.

Existential reprogrammability: It is usually easier to find reprogramming strate-
gies for existential reprogrammability (def. 22) than for inevitable reprogramma-
bility (def. 23). In order to be existential, the strategy only needs to perturb the
SCCs that contain a variable v with initialv 6= targetv. In this case, the kind of per-
turbation (instantaneous (def. 12), temporary, or permanent (def. 13)) does not
matter much, because a path can be built with the variable never being updated.

Property 4. Let M = {(v = targetv) | v verifies initialv 6= targetv and ∃C ∈
CNT such that v ∈ C}. pert(M, f, initial) = (f ′, x) where x ∈ pre∗(STG(f))(target).

Proof. Applying M to initial results in a state x and a Boolean network f ′. Here,
we are only interested in the trivial SCCs {v} which verify initialv 6= targetv.
We know that pre∗(G(f))(v) 6= because sources are transformed in self loops,
and we know that v 6∈ pre+(G(f))(v) because {v} is a trivial SCC. Therefore,
we can apply theorem 3 to all these trivial SCCs in a topological order. Since
all variables inside non trivial SCCs have the same values in x as in target,
applying local stability in this specific order results in target being reached, thus
x ∈ pre∗(STG(f))(target).
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Inevitable reprogrammability: In order for initial to be inevitably reprogrammable
(def. 23) to target, the strategy requires more SCCs to be perturbed than for the
existential strategy. We need to add the successors of the variables perturbed
by the existential reprogramming strategy.

Property 5. Let V0 = {v | initialv 6= targetv and ∃C ∈ CNT such that v ∈ C}. Let
V1 = {v | v ∈ post∗(G(f))(V0) and ∃C ∈ CNT such that v ∈ C}.
Let M = {(v = targetv) | v ∈ V1} pertP (M, f, initial) = (f ′, x) where x ∈
bas(STG(f ′), target).

Proof. V0 is the set of non-trivial SCCs that have at least one variable with a
different value in initial and target. V1 is the set of all non-trivial SCCs successors
of V0, including itself. M is the perturbation valuation coupling each variable v
from V1 with targetv. Let x be the state resulting from the perturbation M in
initial, and f ′ is the new Boolean network. For every variable in the new network
f ′, either the variable has no predecessor and has a constant function (if the
variable was perturbed) or theorem 3 can be recursively applied in a topological
order. As a result, all non-trivial SCCs will be updated to reach the value in
target.

Long-term temporary perturbation can be used in the same way: the per-
turbation has to hold until the system reaches an attractor, and the proof is the
same.

For initial to be inevitably reprogrammable to target with instantaneous per-
turbations, the perturbations need to be done in a sequence, following a topo-
logical order. Moreover, if there are sources in the interaction graph, then in-
evitable reprogrammability with instantaneous perturbations is never achieved.
If it is not the case, more SCCs are perturbed than the permanent perturbations
case because we do not know how stable the system is in initial.

Property 6. Let CNT = {C1, . . . , Ck} in topological order. For i from 1 to k, let
Mi = {(v = targetv) | v ∈ Ci}. initial is inevitably reprogrammable to target in
f . Using the perturbation valuations in the list [M1, . . . ,Mk] with instantaneous
perturbations in attractors is an inevitable reprogramming strategy.

Proof. The first perturbation has to be done in initial. All paths will end up in
attractors. Let {A1, . . . , Am} be the set of reachable attractors from χM1(initial).
For all i ∈ [1,m], there exists a state a ∈ Ai such that for all c ∈ C1, ac = targetc,
by theorem 3. Moreover, all trivial SCCs {v} after C1 and before the next non
trivial SCC Ci verify av = targetv by theorem 3. Perturbing the system in a state
a from an attractor A with M2 (pertI(M, f, a) = (f ′, a′)) results in a′, which also
verifies a′v = targetv for C1 and all non trivial SCCs after it and before the next
non-trivial SCC.
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Recursion:
Let i ∈ [2, k] be an integer, we suppose that all perturbations with perturbation
valuation Mj have been done for all 1 ≤ j < i. Let a be a state of an attractor
A reached after the previous perturbation, we have pertI(Mi, f, a) = (f ′, a′). By
recursion, we know that for all 1 ≤ j < i, Cj verifies ∀c ∈ Cj, cj = targetj. By
recursion, we also know that for all trivial SCCs after any Cj with 1 ≤ j < i
but before any Cj with i ≤ j < k, the same property holds. Let b be a state
in a reachable attractor B from a′. Since Mi perturbs Ci, by theorem 3, for all
c ∈ Ci, we have bc = targetc. Therefore, since b is in an attractor, all trivial SCCs
{v} after Ci but before the next non-trivial SCC verify bv = targetv. Applying
the perturbation Mi+1 to b results in a state b′ where these properties are still
true.

This property is even true with perturbations done before an attractor is
reached, but the right part of the system (the non-trivial SCC and the succes-
sors trivial SCCs before the next non-trivial SCC) needs to be stable. Short-
term temporary perturbations, where the perturbations stop before an attractor
is reached can be used instead of instantaneous perturbations.

3.2 Adding attractors information

In discrete models for biology, often all the attractors are computed when possi-
ble, to show how close the model is to reality. This allows us to study the same
problem as in the previous section, but with extra information, A(f), the list of
attractors of the Boolean network f . Indeed, knowing all attractors allows us to
compare them, and compare the values of the complex SCCs, and to know in
which attractor target is. When target is not a fixed point, we define target′ as
the state inside the attractor containing target which has the least variables in
non-trivial SCCs whose values differ from initial, and we use target′ instead of
target for all computations. If multiple such states exist, a random one is chosen.

Knowing in which attractor is target is the only improvement we found in the
case of existential reprogrammability. Knowing in which attractor the perturbed
system may end up is not necessary, and the set described in property 4 is the
smaller we found.

Therefore, the following algorithms are made for inevitable reprogrammability
with permanent (or long-term temporary) perturbations. A quick explanation on
how to use them with instantaneous (or short-term temporary) perturbations is
given after each algorithm.
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f1(x) = x1
f2(x) = x2
f3(x) = x1 ∧ ¬x2
f4(x) = x3 ∨ x4

Boolean Network
1

3

2

4

Figure 3.2: Boolean network f and its interaction graph

3.2.1 A “one-step” algorithm

Example 6 (below) shows how the list of all attractors can be used to reduce the
number of SCCs to perturb.

Example 6. In the context of the Boolean network f , we want initial = 0000
to be inevitably reprogrammable to target = 1011, which is in an attractor (as
indicated at the very beginning of the chapter, static analysis of the graph and
network relies on this fact). f and its interaction graph are shown in fig. 3.2.
By only using the methods of the previous section, we can deduce from the
interaction graph an order on the SCCs, and which SCCs are trivial. In this
example, all SCCs are set of size 1, and are {1}, {2}, {3}, {4}, and only {3} is
trivial. Moreover, the variables are already in a topological order. Since there
are positive cycles, the self-loops on {1}, {2} and {4}, we need to perturb the
system. By the properties of subsection 3.1.3, we know that perturbing {2} is
not needed. Thus, we can deduce that {1} and {4} need to be perturbed in our
strategy to make it inevitable from initial to target.

However, if new information is given, the list of all attractors, then we can
reduce the number of variables to perturb. The set of all attractors, which are all
fixpoints, of the system is:

{{0000}, {0001}, {0100}, {0101}, {1011}, {1100}, {1101}}

Since {1} has no ancestor other than itself and has a different value in initial
and target, we know we need to perturb it. For {4}, a close look at the list of
attractor reveals that if {1} has the value 1 and {2} has a value 0, then only one
attractor contains such values, {1011}, from which we can deduce that {4} does
not need to be perturbed.

Inspired from this example, we design algorithm 1 to find which SCCs to
perturb.
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Algorithm explanation: Algorithm 1 searches for inevitable reprogramming
strategies to target with permanent perturbations, and returns a perturbation
sequence (of one perturbation), based on property 5, which corresponds to an
inevitable strategy (see prop 3). The inputs are f , the Boolean network, initial
the initial state, target the target, and A(f) the list of attractors of f . The first
step is to compute the interaction graph G(f), as most computations are done
on it. If there is no positive cycle in the interaction graph, there is no need to
perturb the system. If not, the list of non-trivial SCCs is computed, and ordered
in a topological order. A list of the SCCs to perturb, SCC list is initialized to the
empty list. Then, for all non-trivial SCC C taken in topological order:

• If no predecessor of C is in SCC list, meaning there is no SCC perturbed
in the predecessors of C, then if there is a variable v inside C that verifies
initialv 6= targetv, C is added to SCC list.

• If a predecessor of C is in SCC list, then we need to compare the attractors.

To compare the attractors, we look at each state of each attractor that verifies
that the variables in pre+(G(f))(C) have the same values as target. If this attrac-
tor has the same values in every variable of C than target has, then there is no
need to perturb C, as it will always take the right value after some updates. Oth-
erwise, C needs to be perturbed, and is added to SCC list as a consequence.
Lastly, the SCC list is translated to a perturbation valuation M , and the pertur-
bation sequence containing the perturbation from initial with the valuation M is
returned.

Instantaneous perturbations: If the perturbations are instantaneous, the per-
turbation sequence returned by the algorithm can not happen, allowing the sys-
tem to never reach target. To ensure such property, we need to verify that all
predecessors (instead of only non-trivial SCCs) have the correct value and none
are perturbed. As a result, the condition “∀v ∈ pre∗(G(f))(C), v 6∈ SCC list”
becomes “∀v ∈ pre∗(G(f))(C), v 6∈ SCC list and initialv = targetv”. Moreover,
the algorithm needs to return a perturbation sequence with multiple steps as
described in prop. 6. To do so, the last lines are modified as shown in sub-
algorithm 2, with a sequence created before the For loop, and a modification to
the loop, where the sequence is created inside the loop. In this case, the state
in which the perturbation needs to be done is not explicit, it is any state of a
reached but unknown attractor.

Complexity: For a Boolean network f of n variables and m attractors, algo-
rithm 1 runs in O(n3×m) in the worst case. The first For loop runs in the number
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Algorithm 1 Reprogrammability by static analysis and knowledge of attractors
1: function DIRECT REPROGRAMMABILITY(f, initial, target,A(f))
2: G(f) = interaction graph(f)
3: if has no positive cycle(G(f)) then
4: Return ∅
5: SCC = non trivial strongly connected components ordered(G(f)) . This

function is not described here, but is quite easy. Multiple algorithms exist
that return an ordered list of all SCCs, from which removing trivial SCC is
easy

6: SCC list = []
7: for C ∈ SCC do
8: if ∀v ∈ pre∗(G(f))(C), v 6∈ SCC list then .

To replace with ”∀v ∈ pre∗(G(f))(C), v 6∈ SCC list and initialv = targetv” for
instantaneous perturbations

9: if ∃c ∈ C, initialc 6= targetc then
10: SCC list.add(C)

11: else
12: for A ∈ A(f) do
13: for a ∈ A do
14: if ∀v ∈ pre+(G(f))(C), av = targetv then
15: if ∃c ∈ C, ac 6= targetc then
16: SCC list.add(C)

. In the case of instantaneous perturbations, replace the following lines
with sub-algorithm 2

17: M = {}
18: for C ∈ SCC list do
19: for v ∈ C do
20: M.add((v = targetv))

21: Return [pertP (M, f, initial)]
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Algorithm 2 Replacement in case of instantaneous perturbations
s = []
for C ∈ SCC list do

M = {}
for v ∈ C do

M.add((v = targetv))

if s = [] then
s.add(pertI(M, f, initial)

else
s.add(pertI(M, f, ·)

Return s

of non trivial SCCs, which can be as many as n if they are all self loops. The If
checks again all predecessors, which in this case is between 0 and n, and can
fail, entering the Else. In this Else, all attractors are checked, which is m attrac-
tors, and all predecessors are tested for equality, which is n again. This means
that the algorithm depend on the number of attractors in the network, which can
range from 1 to en. However, optimizations can be done on the list of attractors,
by removing some of them that are not interesting because their first SCCs in
different topological orders have variables with different values than target.

3.2.2 A more complex, sequential algorithm

Using the same toy model, we can see that algorithm 1 still does not always
returns the smallest SCC set to perturb. Example 7 explains a case where a
smaller solution set can be found.

Example 7. With the same Boolean network f , shown with its interaction graph
in fig. 3.2, we now want the same initial state, initial = 0000 to be inevitably re-
programmable to a new target, target = 1101. Since both 1100 and 1101 are in
attractors, the previous algorithm would return the following permanent pertur-
bation sequence [(pertP , ({(x1 = 1), (x2 = 1), (x4 = 1)}, ∅, initial))]. However, a
smaller perturbation sequence exists, [(pertP , ((x1 = 1), ∅, initial); (pertP , ((x2 =
1), (x1 = 1), 1011))].

[(pertP , ((x1 = 1), ∅, initial)] is an inevitable reprogramming strategy from
initial = 0000 to 1011, as shown in ex. 6. Next, from 1011, [(pertP , ((x2 = 1), (x1 =
1), 1011))] is an inevitable reprogramming strategy to target = 1101.

To find this kind of solution set, we need our algorithm to include sequen-
tiality. The idea is to use other attractors as intermediate steps to reach target.
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We use algorithm 1 to compute which SCCs to perturb in each step. However,
since attractors can be complex, we only keep fixpoints as intermediate steps.
This point is discussed in the remarks at the end of the subsection.

Algorithm 3 explanation: Algorithm 3 recursively computes the perturbations
to do to reach target from all single state attractors of the system, with a number
of perturbations growing at each repetition.

It takes as inputs f , the Boolean network, initial the initial state, target the
target, andA(f) the list of attractors of f . The first thing it does is to compute the
direct reprogrammability from initial to target, using algorithm 1, and it computes
the size of the perturbation sequence. This number, max dist, will be used as a
maximal value for all future computations. This algorithm only return sequences
which are smaller. Note that a variable perturbed twice will be counted twice,
this is on purpose, to represent the total size of the perturbation sequence. This
first solution is added to solution, the list of all perturbation sequences from initial
to target.

Next, the list of attractors we will work with is reduced to the list of single
state attractors Af . The list of attractors that can be used as a step towards
target is created at the same time, next step. For each fixpoint a in Af , an empty
list is created, solutiona, which is the set of all perturbation sequences from a to
target. The direct reprogrammability from a to target is computed, and added to
solutiona if its size is lower than max dist. a is added to the list of possible next
steps.

Then the algorithm adds new reprogrammability possibilities to all attractors.
To do so, it does the following steps as long as long as next step is not empty:

1. A new empty list is created, next step2 which has the same purpose as
next step

2. For all a1 ∈ Af and a2 ∈ next step

(a) the perturbation sequence s from a1 to a2 is computed, as well as its
length d.

(b) if there exists a perturbation sequence combining p and a perturba-
tion sequence from solutiona2 that has a smaller length than max dist:

(c) a1 is added to next step2

(d) all sequences verifying this condition are added to solutiona1

3. next step replaces next step2, and the algorithm goes back to 1.
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Algorithm 3 Sequential reprogrammability by static analysis and attractors
1: function SEQUENTIAL REPROGRAMMABILITY(f, initial, target,A(f))
2: direct sequence = Direct Reprogrammibility(f, initial, target,A(f))
3: max dist = seq size(direct sequence)
4: solution = [] ; solution.add(direct path)
5: Af = fixpoints(A(f))
6: next step = []
7: for a ∈ Af do
8: solutiona = []
9: l = Direct Reprogrammibility(f, a, target,A(f))

10: if seq size(l) < max dist then
11: next step.add(a) ; solutiona.add(l)

12: while next step 6= [] do
13: next step2 = []
14: for a1 ∈ Af do
15: for a2 ∈ next step do
16: s = Direct Reprogrammibility(f, a1, a2,A(f))
17: d = seq size(s)
18: if ∃seq ∈ solutiona2 , d+ seq size(seq) < max dist then
19: next step2.add(a1)
20: for seq ∈ solutiona2 do
21: dist = seq size(s) + seq size(seq)
22: if dist < max dist and s 6∈ seq then
23: solutiona2 .add(s.add(seq))

24: next step = next step2

25: if ∃a ∈ Af , a = {target} then
26: solution = solutiona ; solution.add([direct sequence])
27: else
28: for a ∈ Af do
29: if solutiona 6= [] then
30: sa = Direct Reprogrammibility(f, initial, a,A(f))
31: d = seq size(sa)
32: if ∃seq ∈ solutiona, d+ seq size(seq) < max dist then
33: for se ∈ solutiona do
34: dist = seq size(sa) + seq size(se)
35: if dist < max dist and sa 6∈ seq then
36: solution.add(sa.add(seq))

37: Return solution
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Algorithm 4 Length functions
1: function SEQ SIZE(s)
2: . Returns the size of a perturbation sequence with multiple steps
3: Return Σpert(M,f,·)∈p|M|

Once this is done, the possible perturbation sequences from all fixpoints to
target are computed. We need to find how to reach this fixpoints from initial. If
initial is in one of the fixpoints, the sequences from this fixpoint are returned,
with the direct reprogrammability added. If not, the above procedure (3.a to 3.d)
is repeated, with a1 = initial and a2 any attractor in Af , and the solutions are
directly added to solution. Lastly, solution is returned.

Remarks: First, we can note that we use the number of perturbed variables
as a limit for the iterations. Using the number of SCCs would have returned
different SCCs, but ultimately, we are interested in having a minimal number of
variables to perturb. An other option would have been to set it to infinite, to have
the complete set of solutions.

Secondly, the algorithm is not optimal. Improvements could be made on this
algorithm, by allowing cyclic attractors to act as intermediate steps. However,
doing so requires Direct Reprogrammibility to work with a set as initial states. It
implies knowing more of the observability of the system, and includes a lot of
different possibilities, making the algorithm much more complicated. A more
general version algorithm is given in chapter 4.

3.3 Limitations of the SCC approach

Algorithm 3 returns solutions, and uses sequentiality to return more solutions
than algorithm 1. It works great on networks with small SCCs, but when the
SCCs are bigger, it raises the issue of finding which variables to perturb. More-
over, the results returned are not always minimal. As a result of these, we
conclude that the dynamics have to be at least partially computed. We try to
find necessary conditions on the variables to perturb or the order in which they
are perturbed.

3.3.1 Main issues

The main issue is large networks, with big SCCs. These SCCs will contain a lot
of variables, and we want a minimal number of variables to perturb.
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f1(x) = ¬x3 ∧ ¬x2
f2(x) = ¬x1
f3(x) = ¬x1
f4(x) = x2 ∧ ¬x1 ∧ ¬x3
f5(x) = x4 ∨ x5

1

2

3

4 5

Figure 3.3: Boolean network where the feedback vertex set strategy is only
existential

Trying to find a minimal set of variables to perturb in each SCC results in
an important issue: inevitable reprogramming strategies can become existential
reprogramming strategies when some variables of the SCC are removed from
the perturbation valuations. However, there always exists a set of variables to
perturb inside the SCC that results in an inevitable reprogramming strategy, but
this set can be the whole SCC.

Finding this set is no easy task. An idea was to use the feedback vertex
set, but example 8 shows that this does not always ensure inevitability of the
strategy.

Example 8. Let f be the Boolean network in fig. 3.3, pictured with its interac-
tion graph. Let initial = 10000 be the initial state and target = 01100 be the
target. Both algorithms would return that the first SCC, {1, 2, 3} is the only one
to perturb. We choose to make permanent perturbations so that this strategy
is inevitable. Using the feedback vertex set, we choose to perturb only {1},
to the value 0. However, in the new Boolean network f ′ where f ′1(x) = 0 and
f ′i(x) = fi(x) for all i 6= 1, two attractors are reachable, target and 01101, thus
the strategy is only existential.

Moreover, the previous algorithms 1 and 3 can return non-minimal results,
as shows example 9.

Example 9. Let f be the Boolean network described in fig. 3.4, with its inter-
action graph in the same figure. The SCCs are {1} and {2, 3, 4}, squared in
black in fig 3.4. We choose initial = 0011 and target = 1000, and the set of all
attractors, once again all fixpoints, is:

{{0000}, {0011}, {0100}, {1000}, {1100}}

Algorithms 3 and 1 would both return to perturb the two SCCs of the system.
However, perturbing only {1} is an inevitable reprogramming strategy from initial
to target, as 1100 is not reachable from 1011. This means that both algorithm do
not return complete or minimal solutions.
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f1(x) = x1
f2(x) = x2 ∧ ¬x3 ∧ ¬x4
f3(x) = x4 ∧ ¬x2 ∧ ¬x1
f4(x) = x3 ∧ ¬x2 ∧ ¬x1

1

2

3 4

Figure 3.4: Boolean network that returns non minimal results.

These two examples imply that some analysis of the dynamics of the network
is needed.

3.3.2 Necessary conditions?

However, even if analysis of the dynamics is needed, we want to find if there
are some necessary conditions on which variables to perturb or which order to
follow, to simplify our task.

Conditions on the variables

We did not find any necessary conditions on which variables to perturb when the
perturbations are temporary. There is so much possibilities on how to time the
perturbations, from nearly instantaneous to almost permanent, that the vari-
ables perturbed can be anywhere, inside the non-trivial SCCs or outside of
them, variables that can have a different value in initial and target, or ones that
keep the same value.

If the perturbations were not sequential, then for permanent perturbations,
we would not perturb variables that do not have a different value in initial and
target. However, due to the sequentiality of the perturbations, perturbing twice
such a variable can be a very interesting option, as shows example 10. In the
special case of one-step reprogramming strategies, permanent perturbations
are always on variables vi perturbed to have the value ai = targetvi. Inside or
outside of SCCs does not matter.

Theorem 4. Let P = (P1) be a one-step perturbation sequence with permanent
perturbations. ∀vi ∈ P1, ai = targetvi.
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f1(x) = x1
f2(x) = x1 ∧ x2
f3(x) = x1 ∧ x3

1

2 3

Figure 3.5: Boolean network where the same variable can be perturbed twice

Proof. If there exists a vi in P1 such that ai 6= targetvi, then for any state x, when
perturbed permanently results in pertP (M,L, x) = (φL+M(f), χM(x)) = (x′, f ′).
x′ always verify x′vi = ai, and f ′(x′) = ai.

Example 10. Let f be the Boolean network in fig. 3.5, and its transition graph.
From initial = 000 to target = 011, there are two perturbation sequences: either
perturbing variables 2 and 3 to the value 1, or perturbing variable 1 to the value
1 and wait for 111 to be reached, then perturbing 1 again to the value 0.

With the idea that a variable can be perturbed multiple times, all variables
in the network can be permanently perturbed, with a small exception. If target
is part of a complex attractor, and we want the whole attractor to be reachable,
then a variable that have different values inside the attractor should not be per-
manently perturbed.

For instantaneous perturbations no necessary conditions on the variables
were found.

Conditions on the perturbation order

We wondered if the perturbations order is linked to the topological order of the
interaction graph, or if the system can be cut in subparts to reduce computation
times.

However, no interesting way to cut the graph has been found, other than
SCCs. Example 11 shows a Boolean network where the last SCC in topological
order should be perturbed first.

Example 11. Let f be the Boolean network described in fig. 3.6, with its inter-
action graph. To go from initial = 100 to target = 011, the shortest perturbation
sequences are:
first, either x2 or x3 to 1, then x1 to 0.

Algorithm 3 finds the shortest perturbation sequences for this kind of exam-
ple.
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f1(x) = x1
f2(x) = x2 ∨ (x1 ∧ x3)
f3(x) = x3 ∨ (x1 ∧ x2)

1

2 3

Figure 3.6: Sequentiality can be from lower SCCs first

f1(x) = x1 ∧ x3
f2(x) = x2 ∨ (x3 ∧ ¬x1)
f3(x) = x3 ∨ (x2 ∧ ¬x1)

3

1 2

Figure 3.7: Better results in a single SCC with sequential perturbation sequence

Inside the SCC itself, we wondered if “one-step” perturbation sequences
were always as good as sequential, and it is not the case, as shows example 12

Example 12. Let f be the Boolean network in fig. 3.7, with its interaction graph.
We want f to be inevitably reprogrammable from initial = 000 to target = 111,
both of which are attractors, using instantaneous perturbations only (permanent
perturbations would not change the example). If sequential, x2 or x3 can be
modified first, then x1. If simultaneous, the 3 of them have to be changed.

Since we know that the order of the perturbations does not depend on the
topology of the interaction graph, we wondered if it is still possible to cut the
network in subparts, in order to lower computation times. However, perturbing
the minimal number of variables in a SCC might result in a higher number of
variables to perturb in an other one, as shows example 13.

Example 13. Let f be the Boolean network presented in fig. 3.8, next to its
interaction graph. Let initial = 0100000 as the initial state and target = 1010000
as the target attractor, we use permanent perturbations and want initial to be
inevitably reprogrammable to target. Taking the minimum number of nodes to
change in the first block means that x2 has to be perturbed. Then both x6 and
x7 have to be perturbed. On the other hand, if both x1 and x3 are perturbed in
the first block, then there is no other change needed.

As a conclusion, we need to have a global approach on the whole graph,
using the complete dynamics of the system.
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f1(x) = ¬x2
f2(x) = ¬x1 ∧ ¬x3
f3(x) = ¬x2
f4(x) = ¬x2 ∧ (¬x1 ∨ ¬x3)
f5(x) = x4v ∨ x5 ∨ x6
f6(x) = x4v ∨ x5 ∨ x6

21 3

4

65

Figure 3.8: BN that results in higher number of changes in below block
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Chapter 4

Sequential Reprogrammability

We saw in chapter 3 that even if static analysis of the Boolean network can
return perturbation sequences, in most cases they are not minimal, and we
concluded that to have such minimal results, an analysis of the dynamics is
required. As explained in section 2.3, other works find some perturbation se-
quences, but none of them give the complete set of perturbation sequences.

This chapter uses published results from [MHP17, MSP+19, MSH+19], and
explains a model to compute the complete set of perturbation sequences, as
well as the algorithm to find this set. We also expand on the idea of algorithm 3
to use other attractors as intermediate steps, to reduce computation times.

4.1 Model

To find reprogrammability of the system and the perturbation sequences, we
decided to create a model that includes the normal transitions and the pertur-
bations that are possible at any given state of the network. To do so, we used
Petri nets that copy the dynamics of the system, and add new places and tran-
sitions to model the perturbations. The Petri net model is explained in [MHP17],
which is given in Appendix A (in an updated version in line with the definitions
and terms used in this thesis). We are interested in the resulting “perturbed
transition graph”, which will include perturbation transitions and multiple layers.

From the Petri net model, we can create a Perturbed Transition Graph (Def. 24)
which encompasses the transitions allowed by the Boolean network (often mul-
tiple times, to be able to track the perturbation sequence) and transitions due
to perturbations. A new variable vk tracks the number of applied perturbations.
Therefore, the set of states of the perturbed transition graph is V × [0, k] ∪ V ′,
where V ′ represents the variables locking the functions when permanent per-
turbations are done, or other necessary variables. V ′ can be empty. The set

49
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of transitions contains normal transitions, which do not change the value of vk,
and perturbations, which increase its value by one.

Definition 24 (Perturbed Transition Graph). Given a Boolean network f of di-
mension n, its transition graph STG(f) = (V,Ef ), and a maximum number of al-
lowed perturbations k, the Perturbed Transition Graph G is a pair (Vp, Ep) where

• Vp = (V × [0, k]) ∪ V ′ is the set of states, with V ′ accounting for new
variables required to model the perturbations.

• Ep ⊆ {(s, i), v → (s′, i), v | i ∈ [0, k], (s → s′) ∈ Ef , v ∈ V ′} ∪ {(s, i), v →
(s′, i + 1), v′ | i ∈ [0, k − 1], s, s′ ∈ V, v, v′ ∈ V ′}, is the set of transitions,
where variables inside V ′ change value only if perturbations are done.

It should be noted that how the perturbations are made, which variables can
be perturbed, in which states the variables can be perturbed, and other details
are all part of the model. The model is an input from the user, and should
conform to the following definition in order for the properties and algorithm to
work on it. Other methods to compute the model can work as well, as long as
the graph complies with def. 24.

Graph layers and layer subsets: The transition graph can be layered by re-
grouping all states having the same perturbation count in the same layer. Let
Nj = V ×{j} be the set of all states in layer j. A subset of the original transition
graph STG(f), A ⊆ V , times a layer j is Aj := A× {j}. The subscript j will also
be used when defining sets that are only on layer j.

Property 7. Given a Perturbed Transition Graph G of a Boolean network f with
temporary perturbations, for all i ≤ k, the subgraph Ni of G is isomorphic to
STG(f), the original network’s transition graph.

Property 8. If i > j, then (s, j) ∈ Vp cannot be reached from (s′, i) ∈ Vp, regard-
less of s and s′. That is, the perturbation counter can only increase.

From the definition of basin (Def. 8), the basin of a set of nodes X restricted
to a layer considers only the transitions in the layer. Since we will always work
with the same transition graph, the perturbed transition graph G, we drop the G
in the notation of basin restricted to a layer for the sake of readability.

Definition 25 (Basin restricted to a layer, basj(X)). The basin of X restricted to
a layer j, denoted by basj(X), is the biggest set Y such that X ⊆ Y ⊆ Nj and
∀y ∈ Y \X, (post(G)(y) ∩Nj) ⊆ Y ∧ ∃x ∈ X, y →∗ x.
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Figure 4.1: Transition graph of f

Examples

Examples 14 and 15 show how to build perturbed transition graphs when in-
stantaneous or permanent perturbations are used.

Example 14. From a Boolean network f , we will build the perturbed transition
graph when the perturbations are instantaneous. f is the same Boolean net-
work than in example 6:
f1(x) = x1
f2(x) = x2
f3(x) = x1 ∧ ¬x2
f4(x) = x3 ∨ x4

Fig. 4.1 is the transition graph of f . We want to add two perturbations to this
graph, that is, k = 2 and Vp = V × {0, 1, 2}, which means there will be three
layers, layer 0, layer 1, and layer 2. All three layers are exact replicas of layer
0, because instantaneous perturbations are used. In order to obtain a graph
easier to read, we only allow the first perturbation to happen in 0000, and only
one variable can be perturbed ; also, we only allow the perturbation valuation
M = {x2 = 1} as the valuation for the second perturbation. The perturbed
transition graph with these constraints is shown in fig. 4.2, with perturbation
transitions in red.

Example 15. From a smaller Boolean network f ′, we build the perturbed tran-
sition graph with permanent perturbations. We use the Boolean network from
ex. 1, defined as:
f ′1(x) = x3 ∨ (¬x1 ∧ x2)
f ′2(x) = ¬x1 ∨ x2
f ′3(x) = x3 ∨ (x1 ∧ ¬x2)

Fig. 4.3 gives the transition graph of the Boolean network f ′.
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Figure 4.2: Perturbed transition graph with k = 2 and constraints on the pertur-
bations.
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Figure 4.3: Transition graph of the Boolean network f ′.

We construct a (partial) perturbed transition graph of this network in fig. 4.4,
allowing all variables to be perturbed, but only allowing the perturbations to
occur in the states 000 and 111. Three new variables are created, lock(x1),
lock(x2), and lock(x3). These variables start at value 0, and change value when
a perturbation is made, locking the variable, preventing it to change value.

Please note that this perturbed transition graph is only partial. For the sake
of simplicity, we have omitted the parts where multiple locks are active at the
same time, either two locks or all three locks (which would add 38 vertices to
the graph). In this example, the layer is the number of active locks.

4.2 Set characterization of inevitable and existen-
tial reprogrammability

Given a Perturbed Transition Graph (Vp, Ep) of a Boolean network f with a max-
imum number of perturbations k (temporary or permanent), let target ⊆ V be a
set of states of the original STG(f). We first focus on inevitable reprogramma-
bility, and we explain how the method can be changed to return existential re-
programming strategies. States in target are the targets of the inevitable repro-
grammability. solution is the solution set, the set of all states that have inevitable
reprogrammability (often using different strategies) from them to one of the tar-
get states. The initial state of the system is initial.

As a reminder, targetj is the set of states in target in STG(f) which are in
layer j in the perturbed transition graph.

In order to compute solution, two other sets ψj and solutionj for each layer
are computed. ψj is the set of states in layer j that need we need to reprogram
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Figure 4.4: Perturbed Transition Graph of the Boolean network f ′.
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to in order to reach one of the target states in target. Thus, ψj contains states of
targetj and states allowing one or multiple perturbations to a lower layer, where
target can be reached. solutionj is the basin, restricted to the layer j, of ψj.
Hence, solutionj is the set of states, in layer j, that can be reprogrammed to
target, whether there are states in target in layer j or not.

The sets ψj and solutionj are defined as follows:
ψk = {x | x ∈ Nk ∧ x ∈ targetk}
solutionk = bask(ψk)

For j between k − 1 and 0:
ψj = {x | x ∈ Nj ∧ (x ∈ targetj ∨ x ∈ pre(G)(solutionj+1)}
solutionj = basj(ψj)
Since ψk exists and is defined, all ψj and solutionj are defined.

The set describing the solution is solution = ∪j∈[1,k]solutionj.
If the initial state initial is in solution, then there exist inevitable reprogramming
strategies, from which we can construct perturbation sequences (with a maxi-
mum size equal to k) and all these perturbation sequences are in solution.

Property 9. By construction, the set of all attractors reachable in the graph
restricted to solution is a subset of target× [0, k].

4.2.1 Algorithm computing the set of states verifying the char-
acterization

Algorithm 5, given in pseudo-code, returns all states verifying set characteri-
zation explained previously. The notations are the same. A loop invariant is
that solution corresponds to the set of states from layer j to layer k that have
inevitable reprogrammability to a state in target.

The inputs of the algorithm are a Perturbed Transition Graph (Vp, Ep), a set
of states target, an initial state initial, and the maximal number of perturbations,
k.

The first step is to set solutionk+1 to the empty set, as there are no states
in layer k + 1 (line 2), and solution is the set of all possible solutions, hence
solution = ∅ at the beginning.

Then, for each layer j, ψj has to be computed. ψj is the set of states either
in targetj or being direct predecessors of the solution states of the lower layer,
the layer j + 1. The basin of ψj is then computed. These states are the solution
states of layer j, and are added to the set of all solution states, solution.

When the computation has reached the first layer, either the initial state is
not among the solution states, in which case there is no perturbation sequence
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for this reprogramming (line 9), or, if initial ∈ solution0, then the set of states
corresponding to the biggest reprogramming sequence is returned (line 11).

Algorithm 5 inevitable reprogrammability relying on the Set Characterization
1: function REPROGRAMMABILITY(G, target, initial, k)
2: solutionk+1 = ∅.
3: solution = ∅
4: for j = k to 0 do
5: ψj = {x ∈ Nj | x ∈ targetj ∨ x ∈ pre(G)(solutionj+1)}
6: solutionj = basj(ψj)
7: solution = solution

⋃
solutionj

8: if initial 6∈ solution0 then
9: Return ∅

10: else
11: Return solution

One could be surprised by the definition of ψj: in solutionj, we use the basin
of ψj, where the system will always reach one of the state in ψj, and on the
other hand, in ψj, only the preimage of solutionj+1 is used. However, in this
case, the perturbations are chosen by the controller. As a consequence, the
controller only needs to choose one perturbation among all possible ones in
order to reach solutionj+1.

Complexity: Given a transition graph G from a network with n variables, and
the possibility of doing up to k perturbations, k×m can be defined as the number
of states of G, with m = O(en).

Since the algorithm relies on the exploration of subparts of the graph, and
the distance between basins of attraction and other layers, the complexity, both
in space and time, will vastly depend on the graph properties.

In the worst case, all ln(m) perturbations from a state in ψj have to be ex-
plored, and all k ×m states are in different ψj. Hence, the worst time complex-
ity is in O(k × m × ln(m)), or, if we use the size of the network as the entry,
O(k × n× en).

As for space complexity, the algorithm returns solution, which is the set of
explored states mentioned for time complexity, giving the same complexity.

However, these worst cases happen only if there are only perturbations in the
transition graph, meaning there is no inherent dynamics to the model. Typical
cases would have a lower time and space complexity.
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Analysis of the solution returned by the algorithm: Since algorithm 5 re-
turns a set of states, we want to extract from it a more precise information about
which variables to perturb. We could chose to return all perturbation sequences,
but in big networks this set of sequences is both very big and very redundant,
with only a few different perturbation valuations, and the sequences changing
only in the states in which the perturbation is applied. Therefore, we designed
algorithm 6 to return simplified sequences: the ordered lists of the perturbation
valuations.

Algorithm 6 takes as input G, the perturbed transition graph, initial and target
the initial set of states and the target set of states, and solution, a set of states,
which in our case is the solution from algorithm 5. First, it computes the set which
are in all paths from initial to target, by taking the intersection of all successors of
initial and solution. Next, this set of states is ordered in reverse topological order,
and thus, the first state will be in target, by construction of solution in the previous
algorithm. For every state in target, in every layer, a new set of lists is created,
containing the empty list. This set of lists is the set of ordered perturbation
valuations. One will be created for each state of the network, in order to have
all perturbation valuations when reaching initial.

For each state y, in this set of states in reverse topological order, we look
at each direct predecessor x. A new set of lists is created Px, empty, if one
does not exists. If x → y is not a perturbation, then the perturbations are the
same as those of the successors of x, meaning y and possibly others. If it
is a perturbation, then the perturbation valuation is extracted with the function
pert valuation. This perturbation is added to each perturbation lists in x, and
each new list is added to Px.

After going through all states, the algorithm returns Pinitial, which contains all
lists of perturbation valuations.

Visual explanation of the set algorithm, on example 6: Example 6 with two
instantaneous perturbations (k = 2) results in the perturbed transition graph in
fig. 4.5, from which most of the perturbation transitions have been removed, to
make reading easier.

We want initial = 0000, the initial state to be inevitably reprogrammable to
target = 1101, a target single state attractor. In fig. 6, initial in layer 0 and target
(in all layers) are in red. Algorithm 5 can be seen as a highlighting of some
states with different colors. In each layer i, the states in green are the states in
ψi, and the states in blue are the states added to ψi in solutioni, meaning the set
of colored states in each layer i is the set solutioni.

This graph should be looked at from bottom to top. In layer 2, only 1101, 2
is in ψ2, and solution2 = {1101, 2; 1111, 2}. In layer 1, the set ψ1 is significantly
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Algorithm 6 Characterization Set Analysis
1: function SOLUTION EXTRACTION(G, initial, target, solution)
2: States = solution ∩ post∗(G)(initial)
3: States = reverse topological order(States, G)
4: . returns the reverse topological order of States in G
5: for x ∈ target do
6: for i ∈ [0, k] do
7: xi = x× {i}
8: Pxi

= {[]} . Set containing an empty list
9: for y ∈ States do

10: for x ∈ pre(G)(y) do
11: if Px does not exists then
12: solutionx = {}
13: if ∃j such that x ∈ Nj and y ∈ Nj then
14: . x and y are in the same layer
15: Px = Px ∪ Py

16: else
17: . x is one layer “before” y
18: p = pert valuation(x, y)
19: for l ∈ Py do
20: l2 = l.add(p)
21: Px.add(l2)
22: return Pinitial

23: function pert valuation(G = (Vp, Ep), x, y)
24: solution = new map()
25: for v ∈ V do . with V from def. 24
26: if xv 6= yv then
27: solution.add(v = yv)
28: Return solution
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larger than ψ2:

ψ1 = {0101, 1; 0111, 1; 1001, 1; 1011, 1; 1100, 1; 1101, 1; 1110, 1; 1111, 1}

In solution1, two new states are added to ψ1, 1000 and 1010. Lastly ψ0 is the
whole layer 0.

As a result, the algorithm will return the set of all colored states, solution.
Applying algorithm 6 can be seen in fig. 4.6. The set “States” is the set of
highlighted states, all other states have been greyed out. Inside this set, the
perturbation transitions are shown. We can see that the only solution is first the
perturbation x1 = 1 and then x2 = 1 when the state 1011, 1 is reached. Thus,
algorithm 6 returns {[x1 = 1, x2 = 1]} on this example.

In this case, there is only one perturbation sequence, [pertI((x1 = 1), f, 0000); pertI((x2 =
1), f, 1011)], but in larger networks, there can be many perturbation sequences
with the same perturbation valuations.

Existential reprogrammability: The algorithm and experiments focus on in-
evitable reprogrammability as it is the most relevant for applications in cellular
reprogramming. However, existential reprogramming strategies can be easily
found with the same algorithm by changing basj(X) to pre∗j(X) on line 6.
As a reminder, in chapter 2 the definition for pre∗(STG(f))(X) is the set of states
that can lead to X. This set can then be restricted to states only being in layer
j, resulting in pre∗j(X).
existential reprogrammability is the existence of a path to target. By using the
set of predecessors instead of the basin, the algorithm no longer guarantees the
inevitability, but still guarantees the target to be reachable with the perturbations
returned. Therefore, replacing basj(ψj) for pre∗j(ψ)j in algorithm 5 results in an
existential reprogrammability algorithm.

4.3 Attractor-based Sequential Reprogrammability

Sequential reprogrammability allows the network to be perturbed in any state
(transient states or states in an attractor), but this requires complete observabil-
ity of the system, which is very hard to obtain experimentally.

To make sequential reprogrammability and the perturbation sequences more
practical, we designed an attractor-based sequential reprogrammability algo-
rithm, using the idea of algorithm 3 from chapter 3. This algorithm only require
partial observability, we only need to know the actual state of the attractor in
which the system is. At each step, we apply a set of perturbations to stir the
dynamics towards a state in the basin of an intermediate attractor (or a target
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Figure 4.5: Computation of the set of nodes returned by the set characterization
algorithm.
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attractor). We then let the network evolve spontaneously to the intermediate at-
tractor (or the target attractor). We repeat the above procedure until the network
reaches the target attractor.

In this section, we focus on instantaneous perturbations, while applying the
perturbations longer will not affect the reachability of the target attractor. We
also suppose that both initial and target are inside attractors, because cell repro-
gramming often consists of going from an initial phenotype (attractor in Boolean
networks) to a different phenotype, our target. In practice, based on empirical
experience, biologists may be able to determine how long it takes for the net-
work to stabilize in an intermediate attractor, i.e., the timing to apply the next
perturbations. In that case, if the intermediate attractors are single-state attrac-
tors, partial observability is not required. However, if the intermediate attractors
are cyclic attractors, an observation of the state might still be required.

A feasible reprogrammability method has to encode practical considerations.
In most cases, some variables cannot be perturbed, either because they rep-
resent an external cause the experimenter cannot change, or a set of multiple
genes and proteins that would require a lot more work to perturb, or a tran-
scription factor impacting only the gene or protein hasn’t been found. Moreover,
some attractors might not be suitable as intermediate states, because they lead
to the death or disease of the cell.

Due to the diversity of biological networks, there does not exist one universal
reprogramming strategy that suits all different networks. Hence, we develop an
algorithm to compute all attractor-based perturbation sequences satisfying the
following constraints:

1. the total number of perturbations is less than a threshold;

2. certain attractors can be avoided as intermediates;

3. certain variables of the network can be avoided to be perturbed.

These constraints encode the previous practical considerations and thus lead
to biologically feasible perturbation sequences. We describe such an algorithm
in the next subsection.

The general principle of this method can be applied to other means to com-
pute the required perturbations for the system to reach a target attractor, given
an initial state in an attractor.

4.3.1 Algorithm

Let f be a Boolean Network of size n. Let V̄ be the set of variables that cannot
be perturbed, initial be an attractor of the network, which is the initial state of
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the system, and target be another attractor of the network, which is the target to
reprogram to.

Algorithm 7 describes the algorithm to compute perturbation sequences
from initial to target, using other attractors as intermediate steps. The inputs
are: the Boolean Network f , the initial attractor initial, the target attractor target,
the set of attractors A(f) of f that can act as intermediate states, and the set
of variables V̄ that cannot be perturbed. We define the set A, which is A(f)
excluding the attractors that cannot act as intermediates, such as the attractor
target and the undesired attractors1. In this case, since only instantaneous per-
turbations are considered, the Boolean network f will not change, thus allowing
to use the same list of attractors.

The algorithm uses a modified Hamming distance hdm between the states of
the transition system. This modified Hamming distance is equal to the Hamming
distance hd except if there is a variable v from V̄ which have a different value in
the two states, in which case the distance is infinite. Between a state x and a
state y, this modified Hamming distance hdm(x, y) is defined as:

hdm(x, y) =

{
∞ if ∃v ∈ V̄, xv 6= yv
hd(x, y) otherwise

The modified Hamming distance between two sets of states X and Y is
defined as: hdm(X, Y ) = minx∈X,y∈Y (hdm(x, y)).

To compute the sequential paths from initial to target using other attrac-
tors as intermediate states, we have to compute the basin of target, which is
bas(STG(f), target). Since we only use the distance between a set of states and
a basin, let HBm, the distance between a set of states X and the basin of a set
of states Y , be defined as HBm(X, Y ) = hdm(X, bas(STG(f), Y )). Algorithm 8
describes how to compute both of these distances, as well as how to compute
the argument of HBm: the set(s) of variables that realize the minimum Hamming
distance and the desired value of these variables. The distance between initial
and the basin of target, max dist = HBm(initial, target), will be used as a bench-
mark for the next computations: this is the maximum perturbation sequence
size allowed to reach target.

An empty dictionary Linitial is created, to store the possible perturbation se-
quences. If max dist <∞, the perturbation valuation, a = arg HB(f, V̄, initial, target)
is computed. The perturbation sequence, represented by a list of targets to
reach in order to reach the next one, [target] is added as an entry of the dic-
tionary Linitial, with the value (max dist, [a]), its size and the list of perturbation
valuations. This dictionary regroups Linitial all perturbation sequences from initial
to target, the first value is its size, and the second is the list of the perturbation

1We refer details on attractor detection to [MPQY18].
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valuations. From an entry [A,B,C] = (size, [MA,MB,MC ]) the perturbation se-
quence S can be easily computed: S = [pertI(MA, f, A), pertI(MB, f, B), pertI(MC , f, C)]
A special value is added to the dictionary, “min”, which is the minimal size of
all the perturbation sequences from initial to target, and it is given the value
max dist.

Then (for loop), for each attractor A in A except initial (since we already did
the computations on it), the distance d = HBm(A, target) is computed. If this
distance d is strictly lower than max dist2, then A is added to a list of attractors
list and a dictionary LA is created. We add to LA the entry [target] to which we
associate the size of the perturbation sequence, d, and the perturbation valua-
tion, [arg HB(f, V̄,A, target)]. The perturbation sequence is a list of the attractors
to reach in the right order. The perturbation valuation is a set, a dictionary in
our case, containing the variables to perturb and the desired values. This set is
put in a list: each set of the list is a perturbation valuation to apply in the current
attractor to reach the next one in the sequence. A special value “min” is added
to the dictionary, in the same way as for Linitial, to store the minimal length of
paths from A to target.

The list list is used to recursively compute the shortest perturbation se-
quences. As long as list is not empty, the following steps are done (while loop):

1. First, create an empty list l.

2. Then, from all attractor A1 in A, for all attractor A2 in list, the distance
d = HBm(A1,A2) is computed. If this distance plus LA2 [“min”]3 is lower than
max dist, then for every perturbation sequence seq in LA2, the total size
d + LA2 [seq][0]4 is computed. If this distance is lower or equal to max dist
and if A1 6∈ seq, a new entry [A2] + seq5 is added to LA1, with the value
(d + LA2 [seq][0], [arg HB(A1,A2)] + LA2 [seq][1]). The first value, the size, is
the distance to go from A1 to target using A2 as an intermediate step, and
the paths from A2 to target already computed. The second value is the
perturbation valuation, using the same principle. If the dictionary does not
exist, it is created, and “min” is updated or created. Moreover, A1 is added
to l if there exists at least one new sequence, and if A1 6= initial because
we do not use initial as an intermediate step.

3. Lastly, the value of list is changed to match l, list = l.

When this loop is over, all perturbation sequences are in Linitial, with the
associated size and perturbation valuations, and Linitial is returned.

2In this case, if max dist =∞, any non infinite distance is considered strictly lower.
3This value is the minimal size of any perturbation sequence from A1 to target.
4As A2 is in list, LA2

exists.
5Here, the + is the usual concatenation for lists.
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Algorithm 7 inevitable reprogrammability of BNs from initial to target

1: procedure COMPUTATION OF INEVITABLE PATHS(f, initial, target,A, V̄)
2: max dist = HBm(f, V̄, initial, target))
3: Linitial = new empty dictionary
4: if max dist <∞ then
5: a = arg HB(f, V̄, initial, target)
6: Linitial.add([target] : (max dist, [a])) ; Linitial.add(“min” : max dist)
7: list := ∅
8: for A ∈ (A \ initial) do
9: d = HBm(f, V̄,A, target)

10: if d < max dist then
11: list.add(A)
12: LA = map()
13: a = arg HB(f, V̄,A, target)
14: LA.add([target] : (d, [a])) ; LA.add(“min” : d)
15: while list 6= ∅ do
16: l := ∅
17: for A1 ∈ A do
18: add to l = 0
19: for A2 ∈ list \ {A1} do
20: d = HBm(f, V̄,A1,A2)
21: if d 6=∞ and d+ LA2 [“min”] ≤ max dist then
22: for seq ∈ LA2 \ {“min”} do
23: td = d+ LA2 [seq][0]
24: if td ≤ max dist and A1 6∈ seq then
25: add to l = 1
26: if LA1 does not exists then
27: LA1 = map()
28: LA1.add(“min” : td)
29: a = arg HB(f, V̄,A1,A2)
30: LA1.add([A2] + seq : (td, [a] + LA2 [seq][1]))
31: if td < LA1 [“min”] then
32: LA1 [“min”] = td

33: if add to l = 1 and A1 6= initial then
34: l.add(A1)
35: list = l
36: return Linitial
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Algorithm 8 Distance functions

1: function hdm(f, V̄, x, y)
2: sum = 0
3: for i = 1, i ≤ n, i+ + do
4: if xi 6= yi then
5: if i ∈ V̄ then
6: return∞
7: sum = sum+ |xi − yi|
8: return sum
9: function HBm(f, V̄, X, Y )

10: B = bas(STG(f), Y )
11: . Details on the computation of basins can be found in [PSPM18, PSPM19]
12: return minx∈X,y∈Y (hdm(V̄, x, y))

13: function arg HB(f, V̄, X, Y )
14: min = HBm(f, V̄, X, Y )
15: if min =∞ then
16: Fail(”infinite distance”)
17: D = valuation()
18: for x ∈ X do
19: for y ∈ Y do
20: if hdm(f, V̄, x, y) = min then
21: for i = 1, i ≤ n, i+ + do
22: if xi 6= yi then
23: . Associate with variable i its desired value yi
24: D.add(i : yi)
25: return D
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Figure 4.7: Transition graph of f

4.3.2 Example

We apply algorithm 7 to example 6, with Boolean network f :
f1(x) = x1
f2(x) = x2
f3(x) = x1 ∧ ¬x2
f4(x) = x3 ∨ x4

As a reminder, fig. 4.7 is the transition graph (which is not computed in algo-
rithm 7). We want to find an inevitable reprogramming strategies and the result-
ing perturbation sequences from initial = 0000 (boxed in red) to target = 1101
(boxed in blue).

To make it more challenging, we set V̄ = {x4}. Before computing the se-
quences, all attractors are computed. Below is the list of all attractors of f :

A(f) = {0000; 0001; 0100; 0101; 1011; 1100; 1101}

.
For this example, A = A(f) \ {0100; 1101} (target is always removed from

A(f), as it will not be used as an intermediate step). Algorithm 7 first computes
max dist, here max dist =∞ because initial4 6= target4 and x4 ∈ V̄. Then, for each
attractor A, HBm(f, V̄, A, 1101) is computed, and LA is created when needed.

0001 0101 1011 1100
LA [1101] : (2, [(x1 = 1, x2 = 1)]) [1101] : (1, [(x1 = 1)]) [1101] : (1, [(x2 = 1)]) ∅
min: 2 1 1 ∞

Most of these results are obvious, except 1011. bas(STG(f), 1101) = {1111, 1101},
hence why HBm(f, V̄, 1011, 1101) = 1, thanks to 1111. As a result, list = [0001, 0101, 1011].

While loop: For each attractor A in A, the distance to each attractor in list is
computed.
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HBm(f, V̄,A1,A2) A2 = 0001 A2 = 0101 A2 = 1011
A1 = 0000 ∞ ∞ 1
A1 = 0001 / 1 1
A1 = 0101 1 / 2
A1 = 1011 1 2 /
A1 = 1100 ∞ ∞ 1

Since there is at least one finite distance for each attractor, and no sequence
of more than one attractor yet, they are all added to the new list, meaning list =
A.

All dictionaries are either updated, or created and updated:

Dictionary Perturbation sequences Min
L0000 =[1011, 1101] : (2, [(x1 = 1), (x2 = 1)]) (“min”) : 2
L0001 =[1101] : (2, [(x1 = 1, x2 = 1)]);

[0101, 1101] : (2, [(x2 = 1), (x1 = 1)]);

[1011, 1101] : (2, [(x1 = 1), (x2 = 1)]) (“min”) : 2
L0101 =[1101] : (1, [(x1 = 1)]);

[0001, 1101] : (3, [(x2 = 0), (x1 = 1, x2 = 1)]);

[1011, 1101] : (3, [(x1 = 1, x2 = 0), (x2 = 1)]) (“min”) : 1
L1011 =[1101] : (1, [(x1 = 1)]);

[0001, 1101] : (3, [(x1 = 0), (x1 = 1, x2 = 1)]);

[0101, 1101] : (3, [(x1 = 0, x2 = 1), (x1 = 1)]); (“min”) : 1
L1100 =[1011, 1101] : (2, [(x2 = 0), (x2 = 1)]; (“min”) : 2

We can note that there is already a solution in L0000, where a “one-step”
reprogramming strategy cannot find one.

Once again, the while loop is executed, for each attractor in A and each
attractor in list, the distances are computed:

HBm(f, V̄,A1,A2) A2 = 0000 A2 = 0001 A2 = 0101 A2 = 1011 A2 = 1100
A1 = 0000 / ∞ ∞ 1 2
A1 = 0001 ∞ / 1 1 ∞
A1 = 0101 ∞ 1 / 2 ∞
A1 = 1011 ∞ 1 2 / ∞
A1 = 1100 2 ∞ ∞ 1 /

To simplify further reading, we can already see a pattern here, where all
“one-step” perturbation sequences from any attractor to any other have been
computed. Below is the table of perturbation valuations for “one-step” perturba-
tion sequences from A1 to A2, or the∞ symbol when impossible.
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A1 \ A2 0000 0001 0101 1011 1100 1101
0000 / ∞ ∞ (x1 = 1) (x1 = 1, x2 = 1) ∞
0001 ∞ / (x2 = 1) (x1 = 1) ∞ (x1 = 1, x2 = 1)
0101 ∞ (x2 = 0) / (x1 = 1, x2 = 0) ∞ (x1 = 1)
1011 ∞ (x1 = 0) (x1 = 0, x2 = 1) / ∞ (x2 = 1)
1100 (x1 = 0, x2 = 0) ∞ ∞ (x2 = 0) / ∞

In practice, the already computed modified hamming distances and pertur-
bation valuations should be stored, to avoid computing them each time they are
needed. Now that we have this table, we will only show the sequences in the
dictionaries, without the associated perturbation valuations, which can be easily
found in the previous table. The “min” is also excluded, since the value will not
change anymore.

Dictionary Perturbation sequences
L0000 =[1011, 1101]; [1011, 0001, 1101]; [1011, 0101, 1101];

[1100, 1011, 1101]

L0001 =[1101];

[0101, 1101]; [0101, 1011, 1101];

[1011, 1101]

L0101 =[1101]

[0001, 1101]; [0001, 1011, 1101]

[1011, 1101]; 1011, 0001, 1101]

L1011 =[1101]

[0001, 1101]; [0001, 0101, 1101];

[0101, 1101]; [0101, 0001, 1101];

L1100 =[1011, 1101]; [1011, 0001, 1101]; [1011, 0101, 1101]

After two more iterations, we obtain the following L0000:

L0000 = { [1011, 1101]

[1011, 0101, 1101]; [1011, 0101, 0001, 1101]

[1011, 0001, 1101]; [1011, 0001, 0101, 1101]

[1100, 1011, 1101]

[1100, 1011, 0101, 1101]; [1100, 1011, 0101, 0001, 1101]

[1100, 1011, 0001, 1101]; [1100, 1011, 0001, 0101, 1101] }

Which means there are ten perturbation sequences, from size 2 to size 8.
If perturbations were allowed on x4, the computation would have been much
quicker, since in this case, max dist = 3.
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Chapter 5

Case Studies

To show the differences between the two algorithms from chapter 4 and com-
pare with other methods from the literature, we tested them on different net-
works from literature. We tested the specific case of instantaneous perturba-
tions for inevitable reprogrammability. The first network we studied is the car-
diac gene regulatory network. This rather small network contains small SCCs.
As a result, the static analysis from chapter 3 returns very small perturbation
sequences. The completely sequential algorithm from chapter 4 returns even
smaller perturbation sequences. The special case of reprogramming from SHF
to FHF is studied, in which we show that using sequential reprogramming strate-
gies allow for smaller perturbation sequences than one-step reprogramming
strategies, and that a wide range of genes can be perturbed after perturbing
the first exogen of canWnt.

We then studied the case of the model of molecular pathways enabling tu-
mour cell invasion and migration, which we refer as “tumour” model. In this
model, attractor-based strategies return very short perturbation sequences, of
size equal to the shortest perturbation sequences returned by completely se-
quential strategies, except in one case. We studied how constraints on the
perturbations changed the results, and how permanent perturbations allowed
to reach any kind of attractor with only one variable perturbed.

Lastly, we studied the PC12 cell differentiation network, and how to go from
cell cycle arrest to differentiation, and how static analysis helps understanding
better the results obtained for this reprogramming.

Tools used: Algorithms 5 and 6 were first implemented in python, which showed
that the results were interesting. These algorithms are the ones computing the
completely sequential perturbation sequences, and extracting the results.

Then, algorithms 5 and 7 were implemented and integrated in Cabean by

71



72 CHAPTER 5. CASE STUDIES

Cui Su under the supervision of Jun Pang from SnT Team from University of
Luxembourg, using binary decision diagrams to reduce computation times. Al-
gorithm 7 which computes attractor-based perturbation sequences was created
with them, to combine the quickness of their computations for one-step pertur-
bation sequences with the shorter size of sequential perturbation sequences.
We worked with them to clarify the algorithms. The details of the implementa-
tion are given in [MSH+19, MSP+19].

The material to reproduce the case studies is available at https://github.
com/HuguesMandon/CaseStudiesCellReprogrammingBN.

Remark: We defined the perturbations as functions with three parameters, a
perturbation valuation to apply, a perturbation valuation corresponding to past
modifications on the function, and a state in which to apply the perturbation. In
this chapter, given the size of perturbation sequences, and the fact that multiple
perturbations with the same valuations but in a different state can result in the
same results, we will mostly focus on the variables perturbed. When the state
is important, it will be specified.

5.1 Cardiac gene regulatory network

The cardiac gene regulatory network is a Boolean network constructed by Her-
mann et al. in 2012 to study the early cardiac development of the mouse, using
the gene regulations to understand the FHF / SHF determination[HGZ+12]. This
is a rather small network, with only 15 variables and 6 attractors, which we stud-
ied quite early on, and on which it is easier to give more complete results, such
as detailed perturbation sequences. Its interaction graph is shown in fig. 5.1,
and is in a topological order, increasing from top to bottom. The non-trivial
SCCs are in magenta.

Attractors: The network has been designed with two specific attractors in
mind, FHF and SHF. In [HGZ+12], the variable exogen BMP2 I is supposed to
be always active, but we allowed it to change value and behave as a self-loop.
In this case, the network contains 6 attractors: two which are probably artifacts
of the model, one were all variables are inactive (Inactive) and one where only
BMP2 and its exogens are active (ActiveBMP, which was found in the original
paper but not much discussed). Two attractors are the ones the network was
built for, FHF and SHF, and two are close to either FHF or SHF, with only few
variables having different values. We named these last two “FHF muted” and

https://github.com/HuguesMandon/CaseStudiesCellReprogrammingBN
https://github.com/HuguesMandon/CaseStudiesCellReprogrammingBN
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Figure 5.1: Interaction graph of the “cardiac” Boolean network
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“SHF muted” which both have exogen BMP2 I inactive. The list of active and
inactive variables in each attractor is shown in table 5.1.

Static analysis: From the attractor list and the interaction graph, we can per-
form static analysis of the network. There are three non-trivial SCCs, which
are A = {exogen BMP2 I}, B = {exogen CanWnt I}, and a larger one, C =
{Tbx5, GATAs,Nkx2 5}.

Algorithm 3 from chapter 3 computes the best sequences of non-trivial SCCs
to perturb to reach a target attractor. To simplify, we will denote the sequences
as lists of non-trivial SCCs, A, B or C, where the valuation is the list of variables
of the SCC associated with the value they have in the target. Table 5.2 are the
lists returned by the algorithm for each initial state and target attractor.

We can already see that if we use sequences with no restrictions, the maxi-
mum size of the sequences is five, because both A and B have 1 element, and
C have three.

Dynamical analysis: To compare with one-step, completely sequential, and
attractor-based reprogramming strategies, we computed table 5.3, which con-
tains all three results. If there is only one number in a case, then it means all
methods return the same sequences, this is often the case when only a few per-
turbations are needed. It also means that the result is the same as if one-step
reprogramming strategies methods were used. If there are multiple results, the
first one is always the size of the smallest perturbation sequence for the com-
pletely sequential reprogramming strategies, the list represent all perturbation
sequences returned by the attractor-based sequential reprogramming strate-
gies, and the last result of the list is always the size of the one-step sequence,
which is returned by the attractor-based reprogramming strategies. When the
first result is inside parenthesis, it means attractor-based sequential reprogram-
ming strategies return longer perturbation sequences. The computation times
for attractor-based reprogramming strategies are given in table 5.4. Computa-
tions for completely sequential strategies were made on a different computer,
with times ranging from 0.006 to 0.228. All times are given in seconds.

exogen1 exogen2 exogen1 exogen2
BMP2 BMP2 CanWnt CanWnt canWnt Bmp2 Foxc1/2 Mesp1 Dkk1 Tbx1 Fgf8 Isl1 GATAs Nkx2 5 Tbx5

Inactive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Active BMP 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
FHF 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1
FHF muted 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
SHF 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0
SHF muted 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0

Table 5.1: Attractors of the cardiac network
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initial\target Inactive ActiveBMP FHF FHF muted SHF SHF muted
Inactive ∅ [A] [A,C]; [C,A] [C] [A,B]; [B,A] [B]
ActiveBMP [A] ∅ [C] [A,C]; [C,A] [B] [A,B]; [B;A]
FHF [A,C]; [C,A] [C] ∅ [A] [B] [A,B]; [B,A]
FHF muted [C] [A,C]; [C,A] [A] ∅ [A,B]; [B,A] [B]
SHF [A,B,C]; [B,C,A] [B,C] [B,C] [A,B,C]; [B,C,A] ∅ [A]
SHF muted [B,C] [A,B,C]; [B,C,A] [A,B,C]; [B,C,A] [B,C] [A] ∅

Table 5.2: SCCs to perturb from static analysis for the cardiac network.

initial\target Inactive ActiveBMP FHF FHF muted SHF SHF muted
Inactive 0 1 2 1 2 1
ActiveBMP 1 0 1 2 1 2
FHF 3,4 3 0 1 1 2
FHF muted 2 3,4 1 0 2 1
SHF (4) 7,8 (3) 6 (2) 4 (3) 5,7 0 1
SHF muted (3) 8 (4) 7,9 (3) 5,6 (2) 6 1 0

Table 5.3: Total size of the perturbation sequences for the cardiac network for
completely sequential, attractor-based, and one-step reprogramming strategies.
Values inside parenthesis were only found with completely sequential repro-
gramming strategies.

initial\target Inactive ActiveBMP FHF FHF muted SHF SHF muted
Inactive 0 0.033 0.026 0.027 0.023 0.049
ActiveBMP 0.025 0 0.025 0.039 0.024 0.042
FHF 0.028 0.021 0 0.041 0.025 0.046
FHF muted 0.04 0.031 0.027 0 0.025 0.04
SHF 0.069 0.079 0.02 0.089 0 0.02
SHF muted 0.031 0.041 0.02 0.024 0.071 0

Table 5.4: Computation time for attractor-based strategies.
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Comparison: By comparing table 5.3 and table 5.2, we can note that, in this
example where SCCs are small, the static analysis algorithm returns very good
results for minimal computations. If the initial state is SHF or SHF muted, all
sequences returned by the static analysis algorithm are either shorter than the
sequences for one-step and attractor-based reprogramming strategies, or in the
worst case, as short as the best sequence returned by attractor-based repro-
gramming strategy. Indeed, even if the static analysis algorithm uses attrac-
tors as intermediate steps, the algorithm does not need to know which attractor
will be reached after the perturbations. The attractor-based algorithm relies on
knowing the intermediate steps, and thus, does not perform as well on net-
works with small SCCs. We can also note that when C needs to be perturbed,
the static analysis often becomes under performing compared to the completely
sequential algorithm. Because C is a bigger SCC, it is often possible to only
perturb one or two variables inside to reprogram the system.

From SHF to FHF: We study the case of inevitable reprogrammability from
SHF to FHF. They are both attractors of the network representing known phe-
notypes. The one-step perturbation sequence consists of perturbing BMP2,
canWnt, and the two exogens of canWnt, thus perturbing four variables. How-
ever, smaller perturbation sequences exist, of size two, with two steps with
perturbation valuations containing only one variable. The first perturbation,
done in the SHF attractor, is always perturbing the first exogen of canWnt,
exogen canWnt I.

After that, roughly a hundred (105) possible perturbation sequences are
found. The second perturbation can be done on the second exogen of BMP2 or
any gene except canWnt (but not the exogens, with the exception of exogen BMP2 II
as already mentioned). From this and the one-step perturbation sequence, we
can understand that the perturbation the first exogen of canWnt will always lead
to a change of value for the second one and canWnt, but that this is not enough
for this strategy to be inevitable from SHF to FHF. If that was the case, the one-
step perturbation sequence would only consists of exogen canWnt I. However,
once that the perturbation from exogen canWnt I propagated to canWnt, only
one gene needs to be perturbed, depending how the system evolves.

5.2 Tumour network

An other network we studied is a mathematical modelling of molecular pathways
enabling tumour cell invasion and migration, from Cohen et al. [CMR+15]. This
network aims at better understanding the role of individual or multiple mutations
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Figure 5.2: Interaction graph of the “tumour” Boolean network, from [CMR+15]

in the metastatic process, with attractors in three main categories: apoptosis,
EMT, and migration. Lastly, an attractor HS represents the homeostatic state of
the cell.

This model has 32 variables and 158 edges, which can be seen in fig. 5.2,
and 9 attractors, 4 apoptosis, 2 EMT, 2 migration and one HS. These attractors
are not listed explicitly here, since each is a list of 32 values of the variables, but
a precise description of them can be found in [CMR+15].

Static analysis: This network is much more connected than the cardiac net-
work. As a result, the SCCs are fewer and bigger. The inputs are two single
state non-trivial SCCs, the outputs are all trivial SCCs, and four other variables
are trivial SCCs (V IM ,p21,ERK and SMAD). The remaining twenty variables
all form a single non-trivial SCC. Thus, algorithm 3 will return very large per-
turbation sequences, except in some rare cases where only the input variables
need to be modified. The only case where it happens is when trying to reach
Migration 2 from any other attractor. Then either one or both inputs need to be
perturbed, but no other variables.
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Apop1 Apop2 Apop3 Apop4 HS EMT1 EMT2 Migra1 Migra2
Apop1 0 2 1 3 1 4,5,6 3,4,5,6 3,5,6,7 2
Apop2 2 0 3 1 1 (3) 4 3,4 3,5 2
Apop3 1 3 0 2 2 3,5,6,7 2,4,5,6,7 2,4,5,6 1
Apop4 3 1 2 0 2 3,5 2,4,5 2,4 1
HS 2 2 3 3 0 3,4,5 2,3 2,5 1
EMT1 3 5,7 4 6,8 4,6,7,8 0 1 1 2
EMT2 4 6,8 5 7,9 5,7 1 0 2 1
Migra1 4 6,8,9 3 5,7,8 5,7,8,9,10 1 2 0 1
Migra2 5 7,9,10 4 6,8,9 6,8,9 2 1 1 0

Table 5.5: Total size of the perturbation sequences for the tumour network for
completely sequential, attractor-based, and one-step reprogramming strategies.
Values inside parenthesis were only found with completely sequential repro-
gramming strategies.

Dynamical analysis: Table 5.5 contains the results from completely sequen-
tial reprogramming strategies, attractor-based sequential reprogramming strate-
gies and one-step reprogramming strategies: if there is only one number in a
case, then it means all methods return the same sequences, this is often the
case when only a few perturbations are needed. It also means that the re-
sult is the same as if one-step reprogramming strategies were used. If there
are multiple results, the first one is always the size of the smallest perturbation
sequence for the completely sequential reprogramming strategies, and the list
represent all perturbation sequences returned by the attractor-based sequential
reprogramming strategies. When the first result is inside parenthesis, it means
attractor-based sequential reprogramming strategies return longer perturbation
sequences.

The time costs of computations range from 0.05 to 2.338 for attractor-based
reprogramming strategies, which were mostly studied in this case, and up to 390
seconds for completely sequential strategies.

We can see that reprogramming from one attractor to an other in the same
category is quite easy, the perturbation sequences are always of size 3 or less.
Moreover, these perturbation sequences are always found by one-step repro-
gramming strategies. On the other hand, going from one category to an other is,
in most cases, much more complicated. We can also see that in the best case,
sequential reprogramming strategies and attractor-based sequential reprogram-
ming strategies return sequences that can be three time smaller than one-step
perturbation sequences in the case of Apoptosis 3 to EMT 2 or Migration 1.

However, looking the precise results show that the perturbed variables are
often the inputs of the system, DNAdamage and ECMicroenv, meaning it al-
lows for better understanding of the artifacts of the model, but lacks in-depth
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Apoptosis HS EMT Migration
Apoptosis 0 ∞ 3 4
HS ∞ 0 3 ∞
EMT 3 7 0 ∞
Migration 3 ∞ ∞ 0

Table 5.6: Shortest instantaneous perturbation sequences for inevitable repro-
grammability with constraints on the perturbations, DNAdamage and ECMi-
croenv cannot be perturbed.

Apoptosis HS EMT Migration
Apoptosis 0 ≈33 10.158 57.01
HS ≈33 0 10.828 ≈33
EMT 17.306 38.513 0 ≈33
Migration 147.963 ≈33 ≈33 0

Table 5.7: Computation times for inevitable reprogrammability with constraints
on the instantaneous perturbations, DNAdamage and ECMicroenv cannot be
perturbed.

insight on possible new perturbation sequences.

Constraints on the perturbations: As a result, we studied the system where
these variables cannot be perturbed. We regrouped the states in the same
category as a single target, meaning we only have four resulting attractor sets,
Apoptosis, HS, EMT and Migration. This is because the different attractors in
the same category often only differ by the values of the inputs.

We first studied inevitable reprogrammability with instantaneous perturba-
tions, where DNAdamage and ECMicroenv cannot be perturbed. The shortest
size of perturbation sequences is shown in table 5.6. The ∞ symbol means
that the reprogramming is impossible, which is the case when DNAdamage or
ECMicroenv has a different value in all attractors inside the initial category than
in all attractors inside the target category. Computation times are given in ta-
ble 5.7 in seconds. The computation when the reprogramming is impossible
still allows for the 30 other variables to be perturbed, hence a computation time
around 33 seconds.

Note that since attractors are grouped together, the results may seem con-
fusing. It is possible to go from Migration to Apoptosis, and from Apoptosis to
EMT, but impossible from Migration to Apoptosis. This is because ECMicroenv
is inactive in all attractors in EMT, but active in all attractors of Migration, pre-
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Apoptosis HS EMT Migration
Apoptosis 0 ∞ 1 1
HS ∞ 0 1 ∞
EMT 1 1 0 ∞
Migration 1 ∞ ∞ 0

Table 5.8: Shortest permanent perturbation sequences for inevitable repro-
grammability with constraints on the permanent perturbations.

Apoptosis HS EMT Migration
Apoptosis 0 - 1440.55 704.429
HS - 0 1070.35 -
EMT 46239.9 1286 0 -
Migration 45369 - - 0

Table 5.9: Computation times for inevitable reprogrammability with constraints
on the permanent perturbations.

venting them to be reprogrammable to one another. However, it is active in
some Apoptosis attractors, and inactive in other Apoptosis attractors, allowing
both Migration and EMT to be reprogrammable to Apoptosis, and vice-versa.

We can see that most reprogrammings become harder than without the con-
straints, Apoptosis to Migration going from size 1 perturbation sequence to size
4 for example, or EMT to HS increasing from size 4 to size 7 perturbation se-
quences.

We can also see that going from a state to Apoptosis remains of the same
difficulty that without the constraints. Because there are four attractors in Apop-
tosis, there always was one with the same inputs, where the perturbation se-
quences did not perturb ECMicroenv or DNAdamage. These sequences are
left unchanged by the constraints on ECMicroenv and DNAdamage.

We then studied the network with even stronger restrictions on the perturba-
tions, where DNAdamage and ECMicroenv cannot be perturbed as previously,
and EMT , Invasion, CellCycleArrest, Apoptosis, Migration and Metastasis
cannot be perturbed either. The results are shown in table 5.8. This shows how
strong can permanent perturbations be. These perturbations often model mu-
tations in the cell, thus showing that only a single mutation in the DNA can lead
to disease. Table 5.9 shows the computation times required to compute these
single perturbations, which can be very high (approximately 13 hours in some
cases).



5.3. PC12 CELL DIFFERENTIATION NETWORK 81

From HS to EMT We had an in-depth look at the HS to EMT reprogram-
ming, with all the previous results. Without any constraints on the perturbations,
the one-step perturbation sequence perturbs CDH2, Twist1 and SNAI1. The
attractor-based sequence however only perturbs ECMicroenv, first activating it
and then inhibiting it. Once we introduce constraints on the perturbations, the
minimal size of the sequence is three. As a result, these sequences include
the one-step perturbation sequence, which does not require to perturb any vari-
able on which we have constraints. However, with permanent perturbations, this
minimal size goes down to one, with more possibilities. If any variable among
Twist1, SNAI1, ZEB2, CDH1, AKT2, SNAI2 and ZEB1 is permanently per-
turbed in HS, then EMT is the only reachable attractor.

5.3 PC12 Cell differentiation network

An other network we studied is PC12 cell differentiation network, used to under-
stand cellular decisions towards proliferation or differentiation, explained and
constructed in [OKS+16]. It describes the interactions between protein sig-
nalling, transcription factor activity and gene regulatory feedback in PC12 cells
after the stimulation of NGF, in order to understand more the cell differentiation.

The PC12 cell differentiation network contains 33 variables, and 62 edges
and is shown in fig. 5.3. It has 7 attractors. One of which represents the differ-
entiation, two the cell cycle arrest (CCA), and the 4 left are probably artifacts of
the network, where the outcome is both Cell Cycle Arrest and Differentiation at
the same time, or none.

Static Analysis: The interaction graph of the PC12 Boolean network contains
three non-trivial SCCs. The first in topological order is {NGF}, the input. If
set to active, only one attractor is reachable, where both cell cycle arrest and
differentiation are active (arbitrarily named Both 1). The second SCC is rather
big, with thirteen variables inside, that we will not list here. Lastly, the third
SCC contains three variables, {Btg2, Klf4, CellCycleArrest}, with three pos-
sible configurations in attractors, one where both Btg2 and Klf4 are inactive,
but CellCycleArrest is active (all CCA and Both attractors), one where Klf4 is
active, thus preventing CellCycleArrest to be active (only present in the Differ-
entiation attractor), and one where all variables are inactive (both ”None” attrac-
tors).

The attractors differ only on the third SCC between CCA 1 and None 1 as
well as on CCA 2 and None 2, thus we already know that the sequences will
be of size 1. Moreover, the variables have approximately the same values for
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Figure 5.3: PC12 Boolean network, from [OKS+16]

these attractors, at the exception of two of them. As a result, we know that
the sequences will be of size 2 maximum. We also know that only Both 1 is
reachable when NGF is active, thus all sequences will consist of activating
NGF and waiting for Both 1 to be reached.

However, the second SCC needs to be perturbed for all other perturbations,
thus we know that the sequences will be bigger, but none will be bigger than 14.

Dynamical analysis: Table 5.10 contains the results for attractor-based and
completely sequential reprogramming strategies with instantaneous perturba-
tions, given in sizes of the sequences: as previously, if there is only one number
in a case, then it means all strategies return the same sequences, this is often
the case when only a few perturbations are needed. It also means that the re-
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Differentiation CCA 1 CCA 2 None 1 None 2 Both 1 Both 2
Differentiation 0 8 9 7 8 1 1
CCA 1 (3) 4,5,6,10,11 0 1 1 2 1 2,6,10
CCA 2 (3) 4,5,6,10,11 1 0 2 1 1 2,6,10
None 1 (3) 4,6,10 1 2 0 1 1 2,3,4,6,9,10,11
None 2 (3) 4,6,10 2 1 1 0 1 2,3,4,6,9,10,11
Both 1 2.3 8,9 9,10 9,10 10,11 0 1
Both 2 1 7 8 8 9 1 0

Table 5.10: Total size of the perturbation sequences for the PC12 network for
completely sequential, attractor-based, and one-step reprogramming strategies.
Values inside parenthesis were only found with completely sequential repro-
gramming strategies.

sult is the same as if one-step reprogramming strategies were used. If there
are multiple results, the first one is always the size of the smallest perturbation
sequences for the completely sequential reprogramming strategies, and the list
represent all perturbation sequences returned by the attractor-based sequential
reprogramming strategies. When the first result is inside parenthesis, it means
attractor-based sequential reprogramming strategies return longer perturbation
sequences. The computation times range from 0.011 to 0.227 for attractor-based
strategies, and from 0.183 to 5.8 for completely sequential strategies.

In this network, we can see that both attractor-based sequential reprogram-
ming strategies and total sequential reprogramming strategies return new re-
sults with much smaller perturbation sequence size than one-step reprogram-
ming strategies.

Cell cycle arrest to cell differentiation: Going from cell cycle arrest to cell
differentiation would require a one-step perturbation sequence of size 11, whereas
if sequentiality is used, the size of the perturbation sequences goes down to 3 or
4. For example, going from any cell cycle arrest to cell differentiation can be re-
duced to perturbing only NGF , then perturbing PI3K and CellCycleArrest and
NGF once again. Please note that even the one-step perturbation sequence
requires the perturbation of CellCycleArrest. With completely sequential repro-
gramming strategies, only NGF and CellCycleArrest are perturbed, with NGF
being perturbed twice.

As remarked in the static analysis paragraph, NGF has a very strong in-
fluence on the Boolean network, due to its place as an input. Moreover, we
remarked that if CellCycleArrest is active, either it needs to be perturbed, or
Klf4 needs to be. As a result, these perturbation sequences are not surpris-
ing, given the topology of the network’s interaction graph.
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Chapter 6

Discussion

Conclusion

In this thesis, we started by introducing cell differentiation, what is cell repro-
gramming, and what kind of systems are used to model the cell. We explained
why we chose to work with Boolean networks, which do not require too much
in-depth knowledge of the cell, and that model closely enough the dynamics
of the studied systems. We also stated how we went from studying one-step
reprogramming strategies to sequential ones during the PhD, and explained the
content of this thesis and what to expect in each chapter.

We then defined formally what are perturbations in the context of Boolean
networks. We also extended on these with perturbation sequences, to be able to
use the dynamics of the network between the perturbations, a technique that is
already used in biology but not extensively, and not studied much when working
with Boolean networks. We then defined reprogramming strategies, how they
can be translated to perturbation sequences, and how perturbation sequences
(or set of sequences) can consist in different kinds of reprogramming strategies.
We clarified the reprogrammability problem, by differentiating between existen-
tial and inevitable, showing why the distinction matters. In the first case, only
some cells will be reprogrammed to the target, or none if some transitions are
faster than others. In the second case, all cells will be reprogrammed to the
target, or there is a problem with the model.

Next, we studied the Boolean network and its interaction graph, to try to
find perturbation sequences with minimal computation times. It showed that the
strongly connected components of the interaction graph have a lot of influence
on the behavior of the graph, and that some heuristics can be used, which are
very effective in graphs where there is no big strongly connected components.
We showed that if a SCC contains no loop, then it is strongly influenced by the

85
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SCCs that contain loops and are topologically preceding it. We designed an
algorithm to perturb the SCCs in a given order, using sequentiality to shorten
the size of the perturbation sequences. This algorithm performs fast and well
on any graph where the SCCs with loops are small. However, in graphs with
big strongly connected components, we showed that an analysis of the sys-
tem’s dynamics is needed to get smaller perturbation sequences, and we found
some cases where the choice of variables to perturb can be reduced to improve
computation time.

From these results, we focused on the study of the dynamics, and how to
introduce the perturbations as part of the dynamics. To do so, we constructed
a new transition graph with multiple layers corresponding to the number of per-
turbations. We made an algorithm which returns all perturbation sequences of
size lower than a k given by the user, and an algorithm to extract which perturba-
tion valuations correspond to this set of perturbation sequences. This algorithm
returns a very complete list of solutions for instantaneous and permanent per-
turbations, but it is very slow, and therefore can only work on small networks.
Lastly, we improved on one idea from the static analysis, to use attractors as
intermediate steps. This allows for a much quicker algorithm, which returns
shorter perturbation sequences than other methods in some cases. However,
the results are both not as many and not as short as the first algorithm.

Lastly, we studied the results of our algorithms on examples from literature.
We showed how performing can be the static analysis algorithm when used on
a network with small SCCs, performing better than the attractor-based algorithm
in a lot of cases, and outperforming one-step reprogrammability algorithms. We
studied the specific case of cell reprogramming from SHF to FHF in the car-
diac gene regulatory network, where the completely sequential algorithm re-
turns shorter perturbation sequences than one-step reprogrammability. We also
studied a network modelling the tumour enabling pathways, in which we found
that the inputs have a very strong influence, and that preventing them to change
values results in new, longer perturbation sequences, but that permanent per-
turbations allow to reprogramm to any target with only one variable perturbed.
We also studied the PC12 differentiation network, in which we showed how the
interaction graph can give insight on the variables returned in perturbation se-
quences.

Perspectives

Chronologically, the first study was the static analysis, which helped understand
the need for dynamics analysis. We then heavily focused on the dynamics anal-
ysis, but there might be more that can be found in the static analysis. When
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writing this thesis, the static analysis was explored more in-depth, using the dy-
namics of the network to improve results. However, we mainly use the interac-
tion graph, which contains less information than the Boolean network. Working
more closely to the Boolean network might help reduce the number of possible
perturbation valuations. We also think that there some very good heuristics to
choose which variables to perturb can be found in the interaction graph. We
noticed that in the case of inevitable reprogrammability, there exists a strat-
egy where each perturbation valuation contain only variables in the non-trivial
SCCs. But in the general case, variables in non-trivial SCCs can be perturbed
to help reach quicker the target attractor, thus forcing strategies to be inevitable.
We wish we had more time to focus on the study of the Boolean network, and
finding pattern in it which would help find inevitable strategies.

Chronologically, we also defined reprogramming sequences only lately, we
wish we did it earlier, as it helped us understand that one of the most optimal
structure for the strategies are graphs, and thus should have been the kind of
results returned by the algorithms.

Concerning the dynamics, we had multiple projects to improve the algorithm
for completely sequential reprogrammability. We wanted to find ways to exploit
the concurrency of some parts of the Boolean network, allowing for faster algo-
rithms. We also wanted to compute on-the-fly parts of the transition graph, once
again to reduce computation times, and to allow some solutions to be returned
quickly, while the algorithm is not yet over.

Algorithm 6 was roughly implemented in python as a prototype, but we
lacked time to properly implement it. The version used in this paper computes
all paths, which is much worse complexity-wise, preventing in-depth analysis
when there are too many solutions.

We did not find an easy way to encode permanent perturbations in the case
of attractor-based sequential reprogrammability. It would require to compute
a specific basin, which is not easily described, both smaller than the set of
predecessors and bigger than the basin as defined in chapter 2, and we found
no easy way to compute this basin.

Lastly, we often considered full observability, or in the case of attractor-based
reprogramming strategies, observability of the attractor when needed. Limiting
observability is a very interesting problem, either when the observability is set,
to find the best reprogramming strategy with this observability ; or, to find the
observability required (which variables should be observed) in order to have
small perturbation sequences.
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and Michael Kühl. A boolean model of the cardiac gene regulatory
network determining first and second heart field identity. PLOS
ONE, 7(10):1–10, 10 2012.

[KFG95] H Kulessa, J Frampton, and T Graf. Gata-1 reprograms avian
myelomonocytic cell lines into eosinophils, thromboblasts, and ery-
throblasts. Genes & Development, 9(10):1250–1262, 1995.

[LLCM14] Alex H. Lang, Hu Li, James J. Collins, and Pankaj Mehta. Epige-
netic landscapes explain partially reprogrammed cells and identify
key reprogramming genes. PLOS Computational Biology, 10(8):1–
13, 08 2014.

[Men06] Luis Mendoza. A network model for the control of the differentiation
process in th cells. Biosystems, 84(2):101 – 114, 2006. Dynamical
Modeling of Biological Regulatory Networks.

[MHP16] Hugues Mandon, Stefan Haar, and Loı̈c Paulevé. Relationship be-
tween the reprogramming determinants of boolean networks and
their interaction graph. In Eugenio Cinquemani and Alexandre
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Appendix A

Encoding asynchronous Boolean
networks and sequential
perturbations

This appendix explains in details what Safe Petri Nets are, how they are used
to model a reprogramming strategy S of a Boolean network, and how from this
modelling, we can extract STG(S).

Definition 26 (Safe Petri Net). A Petri net is a tuple (P, T,A,M0) where P and
T are sets of nodes, called places and transitions respectively, and A ⊆ (P ×
T )∪ (T ×P ) is a flow relation whose elements are called arcs. A subset M ⊆ P
of the places is called a marking, and M0 is a distinguished initial marking.

For any node u ∈ P ∪T , we call pre-set of u the set •u = {v ∈ P ∪T | (v, u) ∈
A} and post-set of u the set u• = {v ∈ P ∪ T | (u, v) ∈ A}.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆ M . The
application of such a transition leads to the new marking M ′ = (M \ •t)∪ t•, and
is denoted by M t−→ M ′. A marking M ′ is reachable if there exists a sequence
of transitions t1, . . . , tk such that M0

t1−→ . . .
tk−→M ′.

A Petri net is safe if and only if any reachable marking M is such that for
any t ∈ T that can fire from M leading to M ′, the following property holds:
∀p ∈M ∩M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.

Less formally, a safe Petri Net is a Petri Net where in all reachable markings
from the initial marking, all places have at most one token. A subset of places
{p1, . . . , pk} ⊆ P is mutually exclusive if every reachable marking M contains at
most one these place.
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A.1 Encoding asynchronous Boolean networks

The equivalent representation of the asynchronous semantics of a Boolean
network of dimension n f = (f1, · · · , fn) in Petri net has been addressed in
[CNRT11, CHJ+14]. Essentially, to each variable i ∈ [1, n] of the Boolean net-
work f is associated two places, i0 and i1, acting respectively for the variable i
being inactive and active. Then, transitions are derived from clauses of the Dis-
junctive Normal Form (DNF; disjunction of conjunctive clauses) representation
of [¬xi ∧ fi(x)] for i activation, and from [xi ∧ ¬fi(x)] for i inactivation.

Given a logical formula [e], we write DNF[e] for its DNF representation. DNF[e]
is thus a set of clauses, where clauses are sets of literals. A literal correspond
to the state of a node, and is either of the form xi (node i is active), or ¬xi (node
i is inactive). Given such a literal l, place(l) associates the corresponding Petri
net place: place([xi]) = i1 and place([¬xi]) = i0.

The safe Petri net encoding the asynchronous semantics of a Boolean net-
work f is defined as follows.

Definition 27 (PN(f)). Given a Boolean network f of dimension n and an initial
state x ∈ {0, 1}n, PN(f) = (Pf , Tf , Af ,M0) is the corresponding Safe Petri Net
such that:

• Pf =
⋃

i∈[1,n]{i0, i1} is the set of places,

• Tf and Af are the smallest sets which satisfy, for each i ∈ [1, n],

– for each clause c ∈ DNF[¬xi∧fi(x)], there is a transition ti,c ∈ Tf with
Af such that •ti,c = {place(l) | l ∈ c} and ti,c• = {i1} ∪ •ti,c \ {i0};

– for each clause c ∈ DNF[xi∧¬fi(x)], there is a transition t¬i,c ∈ Tf with
Af such that •t¬i,c = {place(l) | l ∈ c} and t¬i,c• = {i0} ∪ •t¬i,c \ {i1},

• M0 = {ixi
| i ∈ [1, n]} is the initial marking.

Note that [CHJ+14] also extends the encoding to multi-valued networks into
1-bounded Petri nets (contrary to the encoding of multi-valued networks of [CNRT11]
which does not result in a safe Petri net). For the sake of simplicity, we restrict
the presentation to Boolean networks. However, our encoding of sequential
perturbations can be easily extended to multi-valued networks.

Example 16. Fig. A.1 gives the resulting Petri net encoding of the Boolean
function f3(x) = x1∧¬x2. In this case, DNF[¬x3∧ (x1∧¬x2)] = {{¬x3, x1,¬x2}}
and DNF[x3 ∧ (¬x1 ∨ x2)] = {{x3,¬x1}, {x3, x2}}.
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Figure A.1: Safe Petri net encoding of f3(x) = x1 ∧ ¬x2. Places are drawn as
circles and transitions as rectangles. Marked places have a dot.
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Figure A.2: (top) Excerpt of the encoding of temporary perturbations. (bottom)
Excerpt of the encoding of permanent perturbations.
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A.2 Encoding sequential perturbations

Perturbations are modelled as additional transitions which modify the value of
variables of the BN f . These perturbations can be performed at any time during
the transient dynamics, and independently of the current state of the network.

As in chapter 3, we consider three kinds of perturbations: instantaneous per-
turbations induce a change of value of some variables, but these variables can
later be updated according to their Boolean function. Such perturbations can
model, for instance, the transient activation of transcription factor through a sig-
nalling pathway. Permanent perturbations induce a permanent change of value
of some variables. These perturbations model mutations (loss or gain of func-
tions). Lastly, temporary perturbations induce a reversible change of value of
some variables. It behaves as a permanent perturbation, but can be “unlocked”
to allow the nodes to be updated according to their Boolean function. This kind
of perturbations can model environmental factors, such as the constant afflux of
a protein, which stops after some time.

Whichever the kind, we consider a limited amount of allowed perturbations:
only up to k successive perturbations can be performed. Moreover, we only
consider perturbations where one variable is perturbed. Doing so allows us to
control the total size of the perturbations, and one two-variables perturbation is
easy to model with two one-variable perturbations.

A.2.1 Instantaneous perturbations:

In addition to the places for the BN variable values, we add k mutually exclusive
places c1, . . . , ck and two mutually exclusive places p0 and p1. Essentially, cj is
marked if the next perturbation is the j-th; and p0 is marked if the j-th perturba-
tion is yet to be performed, and p1 is marked if the j-th perturbation has been
performed.

The transitions are the same as the asynchronous model, with additional
transitions ti,0 and ti,1 for each variable i ∈ [1, n] which set their value to 0 and 1
respectively. To be enabled, these transitions need p0 to be marked, and after
the transition, p1 is marked. Finally, a transition tcj re-enabling p0 is defined for
each cj, j ∈ [1, k − 1], which moves the marking of cj to cj+1.

Definition 28. Given a Boolean network f of dimension n, the Petri net (P, T,A,M0)
modelling its k temporary perturbations is given by

• P = Pf ∪ {p0, p1, c1, . . . , ck},

• T and A are the smallest sets which satisfy
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(a) BN transitions Tf ⊆ T , Af ⊆ A;

(b) Perturbation transitions for i ∈ [1, n],
ti,0 ∈ T with •ti,0 = {i1, p0} and ti,0• = {i0, p1}
ti,1 ∈ T with •ti,1 = {i0, p0} and ti,1• = {i1, p1};

(c) Perturbation enabling for j ∈ [1, k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj• = {p0, cj+1},

• M0 = {ixi
| i ∈ [1, n]} ∪ {p0, c1},

where (Pf , Tf , Af ,M
′
0) = PN(f).

Example 17. Fig. A.2(top) shows part of the transitions added by the modelling
of k = 2 instantaneous perturbations in the example of Fig. A.1. In the given
marking, the perturbation are enabled, therefore, any of the 3 shown perturba-
tion transitions can be applied. The application of one such transition disable the
other perturbation transitions (as p0 is no longer marked). By applying the tran-
sition tc1, the perturbations transitions are then re-enabled, allowing a second
(and last) one to be applied.

A.2.2 Permanent and temporary perturbations:

Contrary to instantaneous perturbations, once a variable has been (perma-
nently or temporarily) perturbed, its value should no longer change. This is
modelled by locks: if the i-th lock is active the variable i cannot perform any
transition, and as such, cannot change value. In addition to the places intro-
duced for temporary perturbations, our encoding add mutually exclusive places
lock0

i , lock1
i for each each variable i ∈ [1, n], lock0

i being marked if the node i has
not been perturbed, lock1

i being marked otherwise.
The transitions of the Boolean network are then modified so that a transition

changing the value of variable i requires the place lock0
i to be marked. For each

variable i, 4 perturbations transitions are defined: two for the value changes (0
to 1 and 1 to 0) also inducing the marking of lock1

i ; and two for the marking of
lock1

i without value change: indeed, a perturbation does not necessarily have to
change the current value of the variable, but it prevents any further evolution of
it.

For temporary perturbations, one more perturbation transition is defined for
each variable i: the “unlocking” of i, where lock0

i is marked, allowing the variable
to be updated according to the Boolean function, once again.

Definition 29. Given a Boolean network f of dimension n, the Petri net (P, T,A,M0)
modelling its k permanent perturbations is given by
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• P = Pf ∪ {p0, p1, c1, . . . , ck} ∪
⋃

i∈[1,n]{locki0, locki1}

• T and A are the smallest sets which satisfy

BN transitions ∀tl,c ∈ Tf , with l = i or l = ¬i, i ∈ [1, n],
t′l,c ∈ T with •t′l,c = •tl,c ∪ {locki0} and t′l,c

• = tl,c
• ∪ {locki0}

Perturbation transitions for i ∈ [1, n],
ti,0 ∈ T with •ti,0 = {i1, p0, locki0} and ti,0• = {i0, p1, locki1}
ti,0′ ∈ T with •ti,0′ = {i0, p0, locki0} and ti,0′• = {i0, p1, locki1}
ti,1 ∈ T with •ti,1 = {i0, p0, locki0} and ti,1• = {i1, p1, locki1}
ti,1′ ∈ T with •ti,1′ = {i1, p0, locki0} and ti,1′• = {i1, p1, locki1}

Perturbation enabling for j ∈ [1, k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj• = {p0, cj+1}

• M0 = {ixi
| i ∈ [1, n]} ∪ {p0, c1}

where (Pf , Tf , Af ,M
′
0) = PN(f).

Example 18. Fig. A.2(bottom) shows part of the transitions added by the mod-
elling of k = 2 permanent perturbations. The transition t3,{¬x1} of Fig. A.1 is
modified so that it is enabled only if lock30 is marked, i.e., the node 3 has not
been perturbed yet. Permanent perturbation transitions t3,1 and t3,1′ lock the
node 3 to its value 1. Once applied, none of the transitions modifying the value
of node 3 can be enabled. Transitions for re-enabling perturbations are identical
to the temporary case.

A.3 State Transition Graph

Given a BN f and an initial state x, the above modelling allows to compute
all the states reachable by any combination and succession of k perturbations,
instantaneous, temporary or permanent.

The explicit state transition graph resulting needed for chapter 4 is composed
of two classes of transitions: the transitions induced by BN f , and the transitions
induced by the perturbation.

It can be remarked that our encoding uses an additional kind of transition:
the transitions for re-enabling the perturbation transitions, when strictly less than
k perturbations have been applied (transitions noted tcj, j ∈ [1, k − 1]). These
transitions are artefacts of the modelling, and can be skipped during the state
transition graph construction.
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Let us define a state transition graph among states S with two classes of tran-
sitions E (induced by f ) andM (induced by the perturbations), as the smallest
digraph (S, E ,M) such that M0 ∈ S, and for each M ∈ S, for each t ∈ T such
that •t ⊆M , let M ′ = (M \ •t) ∪ t•,

• if p1 ∈M and ck /∈M , then ∃j ∈ [1, k] : •tcj ∈M ′; let M ′′ = (M ′ \ •tcj)∪ tcj•,
M ′′ ∈ S and (M,M ′′) ∈ E,

• otherwise, M ′ ∈ S, and if t = tl,c, then (M,M ′) ∈ E , else (M,M ′) ∈M.

Given any marking M ∈ S of the resulting state transition graph, the number of
perturbations applied to reach M is given by j + b where cj ∈M and pb ∈M .
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perturber, parfois nécessairement dans un ordre
donné.
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les différentes approches expliquées au long de
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