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Introduction

This chapter gives an overview of the thesis context. Then, we highlight the thesis motivations and our contributions.

Context

The gradual automation of autonomous vehicle aims to reduce accident conditions, optimize energy consumption, and traffic efficiency. To this end, an autonomous vehicle uses a set of sensors to perceive its surrounding environment and drive autonomously (Figure 1.1). However, autonomous driving may affect the driver' safety and security. Indeed, components of the vehicle may become faulty and, thus, disable autonomous driving. For example, an automotive camera cannot detect the color of the traffic light because the camera lens can be broken. The camera may fail to detect a pedestrian (Figure 1.2). Besides, hackers may decide to take control of autonomous vehicles and cause road accidents remotely. The road environment may also threaten the safety of autonomous driving. For instance, solar lights may blind the vehicle's camera and Chapter 1. Introduction 2 disable its ability to detect a pedestrian. Alternatively, intentionally, a pedestrian may attack the autonomous vehicle by flashing its camera.

Moreover, trucks and buildings may occlude the camera vision. For instance, the camera is unable to detect a pedestrian behind a truck. As seen, these intentional and unintentional perception failures should be solved to ensure safe autonomous driving. The integration of vehicular communication (V2X) in the perception system of connected vehicles partially solves these perception failures. For instance, the traffic light can communicate its light color to the vehicle. Thus, the vehicle knows the light color even if a flash blinds the camera. In fact, the vehicular communication can be viewed as a redundant data source for the perception system. It can be used to prevent an absence of detection or to detect a faulty sensor fulfilling anomaly detection purposes. Thus, V2X communication can be used for anomaly detection. Moreover, as mentioned, sensors may not detect occluded road users. However, an occluded pedestrian can communicate its location to all surrounding road users. We can conclude that V2X communication is an efficient data source able of enhancing the horizon of the perception system and improving failure detection for future connected and automated vehicles.

Unfortunately, V2X communication is also the target of security attacks. Therefore, these attacks jeopardize the benefits of an augmented perception system. It is very critical to take into account the security flaws as well as the security attacks in order to define necessary countermeasures against these attacks.

Motivations and Objectives

In the absence of security and safety counter-measures, the presence of automotive attacks and faults threaten the proper functioning of any perception system. Therefore, we aim to design a generic failure resilient perception system for a connected and automated vehicle (CAV). This perception system must include different types of sensors (radar, camera, lidar, GPS) but also V2X data carried through various V2X communications that can exist in a cooperative intelligent transportation system such as vehicle-to-vehicle (V2V), vehicle-to-vehicle (V2I), vehicle-to-vehicle (I2V), and vehicle-to-pedestrian (V2P).

Firstly, we propose to define a generic perception architecture as a key basis for our perception failure resilient system. This generic architecture models any connected and automated vehicle. It includes both physical (sensors, computers, actuators) and logical (processes and data flows) elements. Unlike previous architectures that were designed for a specific CAV architecture. Our architecture for failure perception proposes a generic and modular solution to prevent perception failures.

Secondly, we identify the source of failures in our generic perception architecture. Then, our resilient perception system must counter sources with the highest risk of failures. To do so, we analyze and assess each cause of failures. In the domain of safety, there is a standard method that assesses the risk of failures caused by faults. However, there is no method for connected and automated vehicles that assesses the risk of failures caused by security attacks. Thus, our second objective is to identify the attacks and assess their risks in the perception system of any connected and automated vehicle. Indeed, current methods do not consider the fact that the driver may not be able to control the vehicle in case of an attack and the safety repercussion of such attacks on road users.

Besides identifying and assessing attacks, we need to understand where and when these attacks can occur during a driving scenario. Indeed, it is crucial to know the motivation of an attacker while launching its attacks. For instance, the attacker may jam the wireless V2X communication to blind our perception system. Therefore, our third objective is to define the attacker model. This attacker model must consider attacks targeting sensors, V2X data, but also the algorithms of the perception systems.

To counter these attackers, we must design a resilient perception system that includes a set of security modules such as the verification of digital signatures and intrusion detection using machine learning methods. For instance, perception data obtained from sensor (radars and cameras) and from V2X communication can allow to identify cross detected objects among these three sources. Thus, a source among these three sources, becoming faulty can be easily detected thanks to crossing perception information of these sources. Therefore, the fourth objective is to design an efficient and failure resilient perception algorithm. In our work, we focus on attacks targeting V2X communications. Indeed, few works have studied the consequences of these attacks and their countermeasures in the context of CAVs.

Lastly, this failure resilient perception algorithm must have low computation latency and high detection accuracy. Therefore, the fifth objective is to evaluate this failure resilient perception algorithm through a deep analysis of several metrics considering various road scenarios. could self-detect abnormal data to prevent failures. Moreover, we show how to use another perception source to detect anomalous perception data.

In Chapter 7, we evaluate our framework for Machine Learning based Failure Classifiers and our V2X-Sensor Correlation Module. We test our ML Framework on classification data. During this evaluation, we test 3 ML classifiers and compare them with a threshold model. Besides, we analyze several metrics to assess the performance of a classifier model with an unbalanced dataset distribution (more normal data than abnormal data). Then, we test our sensor correlation module with anomalous position data in a V2X message. During this evaluation, we test different frequencies of V2X message reception and various sensor types (radar and camera).

Chapter 8 concludes the thesis and highlights the short and long term research perspectives of thesis work.

Chapter 2

State-of-the-art

This chapter describes the thesis State of art over six sections. Firstly, Section 2.1 gives an overview of Connected and Automated Vehicles (CAV). Secondly, Section 2.2 defines and presents perception failures related to CAV. Thirdly, Section 2.3 surveys methods to assess the security risk of failures in CAV. Fourthly, Section 2.4 presents the state of the art of Machine Learning methods to detect attacks related to security CAV failures. Fifthly, Section 2.5 presents related work on the Sensor-V2X data correlation to detect security attacks leading to CAV failures. Lastly, Section 2.6 surveys the current CAV simulators and describes the mandatory modules for the thesis simulations.

Connected and Automated Vehicle (CAV)

Section 2.1 presents the context of the connected vehicle (CV), as well as the context of the automated vehicle (AV).

Connected Vehicle

Global positioning system (GPS) technology has opened the doors for new cooperative intelligent transportation system (C-ITS) applications in which CVs are one of the most promising technological advances. Indeed, CVs introduce wireless communications among vehicles and roadside infrastructures [START_REF] Chandan | Real-time traffic signal control for isolated intersection, using car-following logic under connected vehicle environment[END_REF] (Figure 2.1).

In the following sections, we review the types of entities involved in C-ITS as well as V2X communication and communications protocols. urban environment). For instance, Cellular networks provide broader coverage and higher data rate than DSRC. The full deployment of cellular networks benefits new applications or existing applications. The different cellular technologies regroup two categories. The first category regroups Cellular technologies designed for V2X communication (C-V2X) such as LTE-V2X or 5GV2X. The second category regroups the cellular technology used in cell phones (device). In this configuration, the device needs to discover the neighboring devices before any direct communication. Regular cellular includes 3G, LTE, and 5G technologies.

The Networking and Transport Layers supports the protocols for the dissemination of messages from the source to the destination. This layer is defined by a communication profile that contains at least a transportation protocol and a networking protocol. For instance, ETSI considers the following profiles: BTP over GeoNet, TCP/UDP over IPv6, TCP/UDP over IPv6 over GeoNet [ETS19].

The Facility Layer processes the V2X messages during their reception and their emission. The layer supports several messages types. Each message serves specific driving uses cases. For instance, the message named CAM has a role in warning the surrounding connected vehicle of the message emitter presence. Therefore, the CAM has a function of cooperative awareness used in road safety applications. Indeed, in none line of sight (NLoS) scenarios (e.g., traffic jams), vehicle sensors cannot detect occluded ITS Stations. Therefore, the communication of an occluded vehicle location increases the local perception and may prevent road collision due to an occluded environment. Table 2.1 is a brief description of the information contained in a CAM. Other messages types give details regarding the environmental event (DENM), signal phase, and time (SPaT) and topology specification (MAP). The next section describes the applications developed upon the presented V2X messages. The Application Layer concerns C-ITS applications. We distinguish three types of applications, which are road safety, traffic efficiency, and services (Table 2

.2).

Safety applications prevent road accidents and protect road users' lives. These applications require high communication availability (e.g., radio channel availability) and high bandwidth (e.g., high reception frequency) to reach a highly accurate spatial and temporal visualization of all the surrounding connected objects. Traffic efficiency applications optimize the driver itinerary. For instance, an application can choose an optimal path in terms of driving time. Alternatively, an application can adopt an ecology friendly drive by knowing each encountered traffic light duration. Services entertain the vehicle resident during their road trip. These applications require a broad bandwidth due to the high amount of downloaded data. Therefore, the used communication stack regroups protocols related to Internet usage (e.g., website reading, media streaming).

With the development of connected and automated vehicles, the mentioned applications may benefit from or support other sources of perception located in the vehicle (e.g., camera, radar, lidar). The current automation race leads to the progressive deployment of Advanced Driver Assistance Systems (ADAS) and their applications regarding road safety and traffic efficiency. In such an aim, ADAS use more and more V2X communications. Thus, in the following section, we highlight the relationship between V2X communication and automotive perception. 

Automated Vehicle

Self-driving vehicles incorporate multiple complex systems to sense the surrounding environment, plan a path to a destination, and control steering and speed. Thus, this section gives an overview of an automated vehicle. Firstly, we list the levels and applications in the context of vehicular automation. Secondly, we present the No driver assistance system is active, which intervenes in the longitudinal and lateral control. Safety systems, such as ABS and DSC, or warning systems, may still be active.

-Driver Assistance

The driver continuously carries out either longitudinal or lateral control of the vehicle. The driver must continuously monitor the system and driving environment and at any time be prepared to take over full control of the vehicle.

Adaptive Cruise Control (ACC): the vehicle takes over longitudinal control and keeps a safe distance to the vehicle in front automatically.

-Partial Automation

The system takes over longitudinal and lateral control of the vehicle under certain conditions and situations and for a limited amount of time. The driver must still permanently monitor the system and driving environment and be prepared to take over control of the vehicle at any time.

Highway or Traffic Jam Assistant: The vehicle automatically carries out longitudinal and lateral control on the highway or in a traffic jam up to a certain speed. The driver permanently monitors the system and takes over full control when required to do so. 3 -Conditional Automation The systems take over longitudinal and lateral control of the vehicle under certain conditions and situations and for a limited amount of time. The driver need not permanently monitor the system nor the driving environment when it is activated, but must still serve as a fallback and take over control in case the automation fails or reaches a limit.

Highway Pilot: The vehicle takes over longitudinal and lateral control up to a certain speed. The driver need not permanently monitor the system but must be able to take over control upon request within a specific time frame.

-High Automation

The system takes over longitudinal and lateral control of the vehicle under certain conditions and situations and for a limited amount of time. In case the driver fails to take over during a system failure or limit, the vehicle will automatically initiate a maneuver to bring the vehicle to a minimum risk condition (this is the main difference to Level 3 conditional automation).

Remote Valet Parking: Performs all driving tasks at low speeds in a parking environment, autonomously driving the vehicle from a start position to an available parking spot. A driver is not physically necessary, as the vehicle come to a stop in case of a system failure or limit.

-Full Automation

The system completely takes over longitudinal and lateral control of the vehicle during all conditions, all driving situations, and at all times. In the event of a system failure or limit, the systems automatically brings the vehicle to a minimum risk condition.

Automated Taxi: The vehicles completely take over longitudinal and lateral control of the vehicle during the complete journey, without any intervention or monitoring necessary by any of the passengers (a driver is most likely not present). 

Camera

Night Vision Provides an enhanced visual view at night, sometimes with an integrated pedestrian warning system.

Thermal camera 1 Active Cruise Control A cruise control system which automatically keeps a safe distance to the vehicle in front.

Radar

Active Lane Assist Keeps the vehicle from crossing the lane boundaries by actively applying a force on the steering wheel in the opposite direction when the vehicle is about to cross a lane boundary inadvertently.

Camera Lateral Collision Avoidance

Makes an active steering intervention during a lane change situation to avoid a collision with another overseen vehicle during the lane change.

Radar

Park Assistant Takes over steering control during a parallel parking maneuver. Ultrasonic

2

Traffic Jam Assistant Hands-on steering wheel automated driving in traffic jams up to a specific speed limit.

Several

Advanced Park Assist Automated steering, braking and gas control during a complete parallel parking maneuver.

Ultrasonic

Lane Keeping Assist Keeps the vehicle actively in the center of the lane while keeping a safe distance to the vehicle in front.

Several 3 Highway Chauffeur

The System performs the longitudinal and lateral driving task in highway Several Traffic Jam Chauffeur

The System performs the longitudinal and lateral driving task in highway traffic jams (e.g., 60 km/h max) Several 4

Traffic Jam Pilot

The System takes full control the longitudinal and lateral driving task in highway traffic jams.

Several

Highway Pilot

The System takes full control the longitudinal and lateral driving task in highway. Several TABLE 2.4: Current driver assistance systems which inform or warn the driver along with the sensor technology used.

Perception Sensors

As shown in Figure 2.5, each sensor provides data to one or several ADAS functions. A Perception based on a set of sensors may depend on many criteria. The first criterion is the type of ADAS function implemented in the AV. For instance, the ADAS application named Adaptative Cruise Control relies only on a long-range radar. Indeed, Tables 2.6 and 2.7 depict radars as performant sensors to detect objects. The second criterion is the performances of the sensor. Indeed, Table 2.5 shows that lidars have different features and may perform their tasks with dissimilar performances. Radar is a technology that uses high-frequency electromagnetic waves to measure the distance and relative speed of target objects. Radars can already be found today in middle-class vehicles for forwarding collision warning applications, lane change assistance or automatic cruise control. Other characteristics of radar sensors are their invisible integration behind electromagnetically-transparent materials, for instance, behind the front bumper. Besides a few exceptions, radars usually have no moving parts and are, therefore, more robust and less prone to mechanical failures than laser scanners. In contrast to vision-based and laser scanners, radars are robust against environmental conditions, such as changes in light or fog and rain. Other characteristics of radar sensors are their invisible integration behind electromagnetically-transparent materials, for instance, behind the front bumper.

Lidars are laser-based ranging systems. Similarly to radars, they are based on the time-of-flight of reflected light pulses and can measure the distance towards an object. The use of laser scanners is mainly in the field of obstacle detection, collision mitigation, and stop-and-go assistance. Nevertheless, the use of laser scanners for ACC is already finding its place in ITS. Future autonomous vehicles may rely on laser scanner information to get information from surrounding obstacles [START_REF] Göhring | Radar/lidar sensor fusion for car-following on highways[END_REF]. Environmental conditions (fog, rain, dust, and dirt) importantly limit the availability of laser scanners. Furthermore, incident sunlight in the morning and afternoon hours can cause significant disturbances on the laser detecting device. The price is still high to incorporate laser scanners into commercial vehicles. Nevertheless, they are extensively used by many research groups to test novel advanced driver assistant systems or self-driving vehicles. Cameras detect and localize objects by processing the images drawn from an imaging device like a camera. Although vision can provide highly valuable information about the environment, image processing techniques are complicated, computationally expensive, and still under research. For automotive vision sensors, processing of road scenes can provide accurate information other sensors fail to obtain. Already today, cameras are being introduced in high-class vehicles for detecting lane marks and offer lane-keeping assistance or lane departure warning systems. Furthermore, automatic traffic sign recognition systems are already able to inform the driver about the current speed limit and other types of hazards along the road. Recently, applications for object detection incorporate camera readings. Especially the detection of pedestrians, which would otherwise fail with radar sensors or laser scanners, can be accomplished with vision-based solutions. Camera sensors are, as human visual perception, sensitive to adverse lighting conditions, for instance, fog and rain or low sun and blinded by the headlights of approaching vehicles.

In our work, we want to fuse V2X data with sensor data. 

Perception System & Architectures

This section provides a quick overview of perception systems and basic fusion architectures. Recent work has favored the low and feature-level fusion approach [START_REF] Aeberhard | Object-level Fusion for Surround Environment Perception in Automated Driving Applications[END_REF]. However, the high-level fusion approach [START_REF] Aeberhard | Object-level Fusion for Surround Environment Perception in Automated Driving Applications[END_REF], if implemented correctly, has large potential and many advantages over low/feature-level fusion.

The perception system regroups two parts:

• The Sense part concerns non-cooperative sensors and their processes

• The Understand part includes a database (e.g., embedded map) and processes for data fusion.

Today, driver assistance systems have fairly basic sensor processing architectures. Indeed, one or more applications use the input from one or multiple sensors. As driver assistance systems become more complex, edging towards autonomous driving technology, this simple sensor processing architecture is insufficient. The combination of each sensor strength culminates in an accurate single perception of the environment surrounding the automated vehicle. The process of data combination, named data fusion, increases the automated system performance and reduces its performance cost [DW05; Kae+04; NF05]. Figure 2.6 shows the difference between these two basic architectural models for processing sensor data.

Direct Sensor architecture is an architecture of a perception system without data fusion (Figure 2.6a). This architecture exists if an automated system relies on a single sensor for a given task. For instance, only a camera can perform the task of traffic light recognition.

The Sensor Fusion architecture is an architecture of a perception system with data fusion (Figure 2.6b). In the literature, we can find several generic architecture proposals for automotive perception [BTC13; BT16; Ulb+17; BP99]. In airborne radar applications, the aerospace industry fuses radars data to track aircraft objects. The visualization of a detected object is a point due to the significant distance between the radar station, and the detected aircraft. However, this assumption does not hold in automotive applications, since a detected object, such as an overtaking vehicle, can fill the entire field-of-view of a sensor. Therefore, sensor data fusion algorithms and architectures must be newly investigated for ADAS applications. Low-level Fusion: Figure 2.7a illustrates a low-level fusion architecture. In a low-level fusion architecture, no pre-processing of raw data takes place at the sensorlevel. Each sensor transmits its raw data to the fusion module, which then performs a low-level fusion of the raw data from all of the sensors. Then, the fused raw data serves as inputs to a central tracker before reaching each ADAS application. For example, in the automotive context, a pre-crash application uses a low-level fusion method [START_REF] Pietzsch | Results of a precrash application based on laser scanner and short-range radars[END_REF]. The advantage of low-level fusion is to classify data at a very early stage through the fusion of raw data from different sources. However, low-level fusion requires high data bandwidth and can be complex to implement in practice. The sensor measurements require a high likelihood of being a relevant object. Also, the addition of a new sensor to the architecture requires significant changes to the fusion module, since raw data from different sensor types come in different formats. Thus, the addition of extra processing to align the data format is mandatory.

Feature-level fusion: a feature-level fusion architecture process raw data to extract features before fusion. Then, the tracking algorithm uses the extracted features as inputs. Figure 2.7b depicts the architecture of a feature-level fusion. The main advantage of feature-level fusion is the reduction of required data bandwidth between sensors and the fusion module. Indeed features extraction includes the aggregation of raw sensor data. Also, feature-level fusion retains the same classification and preprocessing capabilities of low-level fusion, allowing for a similar efficient integration of relevant data into the tracking algorithm. Several works use feature level fusion in automotive applications [START_REF] Kaempchen | Featurelevel fusion for free-form object tracking using laserscanner and video[END_REF][START_REF] Mahlisch | Sensorfusion using spatio-temporal aligned video and lidar for improved vehicle detection[END_REF].

High-level Fusion: Also named track-to-track fusion, the architecture is the opposite of low-level fusion. Each sensor data is transformed from a raw state (e.g., pixels) to a refined state (e.g., pixels cluster). Figure 2.7c depicts a high-level fusion architecture. The main advantages of high-level fusion are the architecture modularity and the encapsulation of sensor-specific details. All sensor details remain at the sensor-level. Therefore, the fusion module processes abstracted data. For instance, there is a single measurement per sensor object (e.g., centroid center) instead of multiple measurements per sensor object (e.g., measurement within the centroid). Therefore, high-level fusion architectures favor applications with modular design requirements (e.g., camera, radar, lidar). However, object classification becomes more difficult because the sensor-level tracking algorithms have less information when associating raw data measurements to relevant objects. The definition of a high-level fusion is a complex task because each sensor tracker requires a definition specific to the sensor capability and reliability (e.g., acquisition frequency). Wrong tracking settings may impact the overall module performance of data fusion. Despite these disadvantages, several works use high-level fusion architectures in automotive applications [TYI04; Flo+07].

Vehicular perception failures

While developing a highly autonomous system, the requirements to ensure the driver and the road users' safety increases. Indeed, the autonomous vehicle must drive in challenging environments for sensors. These environments include lousy weather, highly cluttered area, damaged road infrastructures, or broken hardware. In such conditions, the CAV must not fail in achieving an ADAS function. For now, the analysis of the causes leading to a potential failure in the perception system is the focus of two domains: automotive safety and security.

The leading standard defining automotive Safety is ISO26262 [START_REF] Iso | Road vehicles -Functional safety[END_REF]. This standard regroups all the words and framework definitions used to perform a safety risk assessment. The purpose of risk assessment is to link each failure case with all potential hazardous events that lead to an accident. In our work, we use the following definitions when referring to automotive safety:

• Item is a system or array of systems which implements a safety-related function (e.g., steering, braking, transmission) to which ISO26262 applies.

• System consists of elements (sub-systems, components, HW, SW) and relates a sensor, controller, and actuator with each other.

• Component is a none system-level element which consists of more than one HW part or more than one SW unit.

• Hardware Part is an indivisible hardware component.

• Software Unit is an atomic level of the Software architecture tested as a standalone part.

• Element is a system or part of a system, including components, hardware, software, hardware parts, and software units effectively, anything in a system that can be distinctly identified and manipulated.

• Hazard is a potential source of harm caused by malfunctioning behavior of the item.

• Fault is an abnormal condition that can cause an element or an item to fail. There are several types of faults [START_REF] Jha | Avfi: Fault injection for autonomous vehicles[END_REF]. First, Data Faults can originate from a faulty sensor due to an alteration of its settings or to world perturbation (weather or degraded road infrastructures). Next, Hardware Faults can originate from a mechanical malfunction of a hardware component leading to bit or stuck-at faults. Timing Faults which can be caused by a high propagation time in a highly obstructed external environment (e.g., urban scenario). Another cause is the processing time caused by a highly dense external environment (e.g., many pedestrians).

• Error is a discrepancy between a computed, observed or measured value or condition, and the real, specified or theoretically correct value or condition.

• Failure is a termination of the ability of an element to perform a function as required. Failure is systematic or random hardware (e.g., Aging or Oxidation). Systematic Failures relates to processing (e.g., bugged specifications), software (e.g., programming error), or hardware (e.g., insufficient immunity to environmental conditions).

• Exposure is state of being in an operational situation that can be hazardous if coincident with the failure mode under analysis

• Operational situation addresses the limits within which the item is expected to behave safely. For example, an average passenger road vehicle is not expected to travel the cross country at high speed. Operational situations include visibility, road surface traction, road surface unevenness, road surface bank angle change, road surface pitch change, objects in the path of the vehicle, objects on a trajectory intersecting the path of the vehicle, relative velocity of the vehicle and the object it is approaching, relative to the distance (gap).

satellite simulator is used to generate radio signals or messages that overwrite the signals from the accurate GPS satellite. This way, an attacker can spoof the vehicle to receive and process a different location than the one that they are. The attacks can cause severe consequences for a car.

• Tampering is the modification of an element. Attacks attempt to modify or inject malicious code or messages in the execution of the program. The attack has the potential to disrupt the operations of the vehicular network, OBUs, and RSUs because they receive periodic updates. An example of tampering attacks is when they generate and broadcast false safety messages (BSM). The attack is often made to deceive other vehicles and get other vehicles to behave in a specific manner. In addition to broadcast tempering, an attacker can also tamper transaction messages in flight. Tampering attacks belongs to the class of active attacks.

• Repudiation is the refutation of a performed. The attack happens when a vehicle refuses to accept the message causing the sender node to resend the message. Usually, this happens when the receiver does not verify the sender authenticity or freshness.

• Information Disclosure is the exposition of information to someone or something unauthorized to see it. Attacks attempt to violate the confidentiality of messages. These attacks are often used to track or record certain confidential information and have privacy consequences. A typical example of these is an eavesdropping attack. These attacks only impact one vehicle and attempt to collect user or other information about that vehicle (e.g., payment information or identity information). Another example related to information disclosure is when attackers try to exploit vehicle tracking information. In general, an OBU sends out a safety message to inform other surrounding vehicles for traffic or safety situations. This message contains the OBU certificate and other identifiers. If the attacker can track this piece of information across time, then it can track vehicle location.

• Denial of Service is the denial or the degradation of an element Jamming is also used to hide the identity of the attacker.

• Elevation of Privileges is the capability gain, without authorization, over an element. An attack happens when messages attempt to obtain higher privileges. For example, fake high priority messages which attempt to flash malicious software would consist of this type of attack. Because this dissertation looks at safety messages, the elevation of privilege attacks has similar properties to the tempering attacks.

For each threat, a counter-measurement must ensure the corresponding security goal.

• Authenticity is the process of verifying the uniqueness of an information (e.g., message or a vehicle)

• Integrity is the assurance that the information is trustworthy and accurate

• Non-Repudiation is the association of indisputable actions with a unique individual.

• Confidentiality is ensuring that information is accessible only to authorized entities.

• Availability is a guarantee of reliable access to the information by authorized people

• Authorization is the selective restriction of access to a place or other resource.

As seen, current models do not include new threats specific to the context of CAV such as data privacy. Thus, a new threat model in the context of CAV perception is needed.

Attack Model

However, in complex systems such as in a cooperative autonomous vehicle, each element of the perception system is vulnerable to one or multiple threats. Table 2 During the literature review, we surveyed automotive security risk assessment methods [Mon+18c]. Most methods rely on the STRIDE threat model that do not capture the recent threats related to data trustworthiness [START_REF] Heng Chuan | A non-biased trust model for wireless mesh networks[END_REF] or data linkability [START_REF] Emara | On evaluation of location privacy preserving schemes for VANET safety applications[END_REF].

In Table 2 In 2009, Henniger et al., [START_REF] Henniger | Security requirements for automotive on-board networks[END_REF] proposed EVITA. They defined a risk matrix considering the attack likelihood, the attack severity, and the driver controllability. However, their attack tree definition is unclear. Indeed, the confusion comes from their distinction between attack goals and objectives that are respectively, the roots and the second nodes of their attack tree. Also, they only consider driver control during the risk computation which does not work with driver-less vehicles. To this end, we introduce the CAV observation and controllability metrics later to be compliant with SAE standard [START_REF]Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems[END_REF]. Indeed, SAE standard requires the CAV to self-observe potential faults or failures (caused by hazards or threats) to self-control vehicle dynamics and reduce the safety and security risks.

In 2012, Moalla et al., [START_REF] Moalla | Risk analysis study of its communication architecture[END_REF] applied TVRA on a connected vehicle. They did not consider threats from the internal vehicle network. Besides, their considered threats list is not exhaustive, due to the absence of threat modeling despite standards recommendation [START_REF]Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems[END_REF][START_REF] Ts Etsi | 102 165-1[END_REF]. Wolf and Sheibel [START_REF] Wolf | A Systematic Approach to a Qualified Security Risk Analysis for Vehicular IT Systems[END_REF] applied their security risk assessment framework to a generic ECU model. The framework suits for subsystems but not for the whole vehicular system. Also, the method does not assess the privacy impact on security risk.

In 2015, Boudguiga et al., [START_REF] Boudguiga | RACE: Risk analysis for cooperative engines[END_REF] proposed a method, named RACE, combining TVRA and EVITA. The authors clarified the definition of EVITA attack tree for automotive experts by using automotive functions instead of EVITA attack objectives. Besides, they proposed a unique risk computation method using EVITA controllability that matches TVRA rating of risk. However, they did not demonstrate RACE feasibility nor the impact of scalable attacks on the computation of risk value.

In 2016, Macher et al., [START_REF] Macher | Threat and risk assessment methodologies in the automotive domain[END_REF] proposed a method named SAHARA. Their method framework just maps attack goals to ISO26262 safety use cases. However, the framework does not allow interactions between security risk and safety metrics. Their method uses the threat model STRIDE [START_REF] Howard | The STRIDE Threat Model. From the Book Writing Secure Code[END_REF] which does not consider authentic messages with false data attacks. Also, STRIDE fails to consider attack with multiples security goals. Finally, authors used DREAD [START_REF] Leblanc | Writing secure code[END_REF] to assess the security risk. Unfortunately, the discovery of a new attack affects the computation of DREAD. Indeed, if a blog advertises an attack, the value of the metric discoverability increases. Then, it increases the values of metrics reproducibility, exploitability, and affected users because, thanks to the leak, an attacker knows how to reproduce and perform the attack massively. That is, DREAD is not suitable for assessing risk. Islam et al., [START_REF] Mafijul | A risk assessment framework for automotive embedded systems[END_REF] combined STRIDE to Data Flow Diagrams (DFD) to categorize vulnerabilities on an automotive speed limiter. However, as they studied only the speed limiter, their approach does not scale to the whole vehicle system. Dominic et al., [START_REF] Dominic | Risk Assessment for Cooperative Automated Driving[END_REF] proposed a method for autonomous driving systems. As required by standards [ETSa], the authors used attacker profiles to compute the risk value using the metric Motivation. However, they only consider surface attacks and not internal attacks such as ECU confusion attack [START_REF] Petit | Revisiting attacker model for smart vehicles[END_REF].

In 2017, the European Telecommunications Standards Institute (ETSI) provides a revised version of TVRA [ETSa]. TVRA relies on industry-proven methods (e.g., Target of Evaluation [START_REF]Common Methodology for Information Technology Security Evaluation, Evaluation methodology[END_REF]) and metrics (e.g., attack potential [08; 09]) to assess security risk. Also, TVRA mandates to identify attackers for the computation of risk. However, there is no proposed solution to relate an attacker to its attack. Moreover, TVRA [ETSa] focuses only on telecommunication threats. Therefore, it misses the automation threats domain [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF] and ISO26262 safety for the risk computation.

In Table 2.9, we resume the main related work using multiple criteria. We can conclude that the main used methods do not consider a highly CAV as a system of study. These methods always rely on driver control. However, a CAV must rely only on self-control vehicle dynamics to reduce risk in case of failure from an automated feature [START_REF]Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems[END_REF]. Also, despite standard requirement, many methods do not link the attacker to its attack. Moreover, many methods has insufficient threat-security goal modeling against vehicle tracking misbehaving nodes threats [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF]. Also, despite having a threat model, methods consider only mono-threat attack instead of multiples threats attacks as mentioned in state of the art [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF] due to the lack of attack modeling. Finally, some methods do not consider the impact on safety or privacy despite the European Commission recommendations. In this thesis, we propose SARA, an improved security risk analysis method for CAV, which comprises safety experts opinions, a new threat model, attack method/asset map, and attack tree definition including the attacker as a metric. Moreover, we define a new metric which considers driver/CAV controllability for the computation of the risk value.

Machine Learning based Failure Detection

Currently, machine learning application have gained recent interest. In our work, we investigated the usage of machine learning to detect abnormal perception data. Indeed, the application of machine learning techniques to detect attacks has not been sufficiently evaluated in the context of CAV [START_REF] Rens | Survey on misbehavior detection in cooperative intelligent transportation systems[END_REF].

Related Work

In Table 2.10, we review the main ML methods used for detection. We grouped each work per year of publication and authors. Then, we highlight the data location in the V2X Stack (Communication layer), the type of connected object, the ML model, the methodology to train and test their ML model, and the type of threat detected by the classifier.

Raya et al;, [START_REF] Raya | Eviction of misbehaving and faulty nodes in vehicular networks[END_REF] used entropy to represent the "abnormal" and "normal" behaviors of nodes, and k-means clustering to identify outliers which are the assumed attackers. Another assumption is the existence of honest nodes majority. Thus, the suspected nodes eviction relies on distance enlargement and deviation between the attacking node and the majority of honest nodes. The scheme uses the position of each observed station to compute the entropy.

Tian et al., [START_REF] Tian | A vehicular ad hoc networks intrusion detection system based on BUSNet[END_REF] proposed a centralized intrusion detection system based on RSU for VANET. The network of connected buses, named BUSNet, individually eavesdrops and collects the data packets and routing control messages exchanged in VANET. The BUSNet forward the information to RSU to process and to detect anomalies based on a neural network.

Grover et al., designed a framework for differentiating between legitimate and malicious nodes in VANET [START_REF] Grover | Machine learning approach for multiple misbehavior detection in VANET[END_REF]. They used a machine learning approach to classify multiple misbehaviors node in VANET using behavioral features of each node. These features are speed deviation, distance, received signal strength (RSS), the number of packets generated, delivered, dropped, collided. They measured the accuracy of two classifier types. The first one is a binary classifier whereas the second one is a multi-class classifier. Also, the authors extracted the features of packets by performing experiments in NCTUns-5.0 simulator with various simulation scenario and calculated by nearby observer nodes. Also, they used WEKA to classify the misbehavior with several classifiers: Random Forest (RF), J-48, Naive Bayes, Ada Boost1, and IBK. Experimental results show that RF and J-48 classifiers perform better compared to other classifiers. The RF and J-48 classifier gives better classification due to the boosting and bagging properties. Then, their extension used a majority voting scheme to improve the detection accuracy of their classifier [START_REF] Grover | Misbehavior detection based on ensemble learning in vanet[END_REF]. The voting scheme is plurality vote and decides based on the label which received the most vote among all voting classifier. The proposed system shows a better result than any model used singly.

Dutta et al., [START_REF] Dutta | A time-series clustering approach for Sybil attack detection in vehicular ad hoc networks[END_REF] used a fuzzy time-series clustering for Sybil attack detection. Their proposed scheme leverages the dispersion of vehicles by clustering their locations. Sybil nodes are detected as those closely located and move for an unusually long period.

Sedjelmaci et al. [START_REF] Sedjelmaci | A new intrusion detection framework for vehicular networks[END_REF][START_REF] Sedjelmaci | An accurate and efficient collaborative intrusion detection framework to secure vehicular networks[END_REF] proposed an intrusion detection framework, named AECFV, which monitors node mobility and frequent changes in a network topology. At its core, there is a clustering algorithm, where cluster-heads are selected based on the trust level of each vehicle and a boundary distance. Trust levels are evaluated based on majority voting and a reputation protocol and are broadcast periodically within the network. The proposed framework uses two detection systems and a single decision system. The first system runs locally at each cluster member and monitors the neighboring vehicles and the cluster-head. The second system runs globally at the cluster-head level and evaluates the trustworthiness of its cluster members. The global decision system runs at the roadside unit (RSU) level, computes, and classifies each vehicle based on the level of trust. Together, these systems constitute a network IDS as they take a decision based on monitoring of behaviors of nodes within their radio range. The two IDSs use rules and support vector machines to classify vehicle behavior. The network simulator is NS-3. Their scheme outperforms T-CLAIDS [START_REF] Kumar | Collaborative trust aware intelligent intrusion detection in VANETs[END_REF].

Li et al., [START_REF] Li | Svm-case: An svm-based context aware security framework for vehicular ad-hoc networks[END_REF] proposed a context-aware security framework for VANETs based on SVM algorithm. The objective of the proposed framework is to automatically differentiate between malicious nodes from abnormal nodes due to contextual reasons such as movement speed, temperature, and transmission range. The proposed framework has three functional modules, start with behavior data collection, then context sensing and processing, finally the misbehavior detection. In the experiment, they generated a dataset thanks to the simulator named GloMoSim [START_REF] Zeng | GloMoSim: a library for parallel simulation of large-scale wireless networks[END_REF]. The results demonstrate that the proposed framework achieves excellent accuracy, recall values, and an acceptable value of communication overhead.

Alheeti et al., [START_REF] Khattab | An intrusion detection system against black hole attacks on the communication network of self-driving cars[END_REF] an intrusion detection mechanism for the VANETs based on Artificial Neural Networks (ANNs) to detect a specific type of Denial of Service (DoS) attack known as black hole attacks. The classifier uses spatial, temporal, and networking features as inputs for the training and testing phase. Their simulation framework is NS2, SUMO, and MOVE. The proposed mechanism shows high error rate despite having a high accuracy score and a low false-positive alarm rate.Their first extension includes a method, named Proportional Overlapping Scores (POS), which reduces the number of features extracted from the trace file. In the context of black holes detection, the POS method ranked networking features above state features. Also, the extension uses the fuzzy set method, which improves the separation between label types. Besides, the classier is a feed forward neural network (FFNN). Overall, the classifier performances improved. However, the mechanism requires more memory and computation resources than the previous work. In a second extension [AGM15c; AGM16], the intrusion detection mechanism focuses on the detection of a new type of DoS attacks known as the grey hole and rushing attacks. This extension used two classifiers which are FFNN and SVM. Overall, FFNN has the best detection rate for grey holes. However, SVM has the best detection rate for rushing attacks. In a third extension [START_REF] Khattab | An intelligent intrusion detection scheme for self-driving vehicles based on magnetometer sensors[END_REF], the authors includes a new feature based on an hashed ICMetric number. Mathematical functions generate the "ICMetric" number based on sensors readings (magnetometer [START_REF] Khattab | An intelligent intrusion detection scheme for self-driving vehicles based on magnetometer sensors[END_REF], gyroscope [START_REF] Khattab | An intrusion detection scheme for driverless vehicles based gyroscope sensor profiling[END_REF], and infrared sensors [START_REF] Khattab | An intelligent security system for autonomous cars based on infrared sensors[END_REF]). Additionally, the hash function outputs a hash from the ICMetric number. The classifier is K-NN. Overall, the scheme shows a higher accuracy rate of detection with low false alarms rate than their previous proposal [START_REF] Khattab | An intrusion detection system against black hole attacks on the communication network of self-driving cars[END_REF]. In their last extension, the authors evaluated and compared the performance of the Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) to detect Dos attacks [START_REF] Khattab | Using discriminant analysis to detect intrusions in external communication for self-driving vehicles[END_REF]. Unlike previous, the framework uses only V2X data without features selection. Overall, the LDA classifier outperforms the QDA in both detection accuracy and computation time. In comparison with previous work, their scheme outperforms previous proposals in terms of error rates and false alarm rate [START_REF] Khattab | An intrusion detection system against malicious attacks on the communication network of driverless cars[END_REF].

Wahab et al., [START_REF] Omar | CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc networks[END_REF] proposed a mechanism based on SVM to detect misbehaving node.

Berlin et al. [START_REF] Berlin | POSTER: Anomaly-based misbehaviour detection in connected car backends[END_REF] proposed the idea of a security information and event management system (SIEM) for connected vehicles based on machine learning. However, the author did not provide any specification and implementation.

Kim et al., [START_REF] Kim | Collaborative security attack detection in softwaredefined vehicular networks[END_REF] proposed a collaborative security attack detection mechanism in a software-defined vehicular cloud architecture. Each vehicle analyses the received information and transmits the result periodically to the controller for training the support vector machine. After training, each vehicle classifies nodes. However, this method is energy inefficient.

Ghaleb et al., [START_REF] Fuad | An effective misbehavior detection model using artificial neural network for vehicular ad hoc network applications[END_REF]proposed a model based on Artificial Network (ANN) using feedforward and backpropagation. The mechanism uses historical data from to classify normal or malicious data. The classifier uses the NGSIM dataset.

Gu et al., [START_REF] Gu | Support vector machine (svm) based sybil attack detection in vehicular networks[END_REF][START_REF] Gu | k-Nearest Neighbours classification based Sybil attack detection in Vehicular networks[END_REF] used driving patterns of vehicles and machine learning model (nearest neighbors and support vector machines) to detect Sybil attacks.

Sharanya et al., [START_REF] Sharanya | CLASSIFYING MALICIOUS NODES IN VANETS USING SUPPORT VECTOR MACHINES WITH MODI-FIED FADING MEMORY[END_REF] proposed the use of the Support Vector Machine (SVM) algorithm with Modified Fading Memory (MFM) to classify legitimate and malicious nodes. The purpose of the MFM is to reduce the computational overhead for the machine learning algorithm by only considering as eligible nodes those in the range of the VANET communication only for a limited time.

So et al., [START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF] proposed a machine learning-based mechanism to detect V2X message with malicious content. The scheme training and testing use the VeRemi dataset. The classifier used are KNN and SVM. In an extension, the authors used an additional feature which is RSSI [START_REF] So | Physical layer plausibility checks for misbehavior detection in V2X networks[END_REF]. Gyawali et al., [START_REF] Gyawali | Misbehavior Detection using Machine Learning in Vehicular Communication Networks[END_REF] used a similar approach by using the same dataset. However, they tested their classifier through the simulator VEINS. In addition to previous work, the author compared different models.

Subba et al. have combined several promising ideas for VANET IDSs into a single multi-layered framework, which they have shown to be effective against a variety of different attacks [START_REF] Subba | A game theory based multi layered intrusion detection framework for VANET[END_REF]. In all cases, detection compares audit features against thresholds. These include packet delivery rates (PDR) and Received Signal Strength Information (RSSI) for selective forwarding (gray hole) and blackhole attacks; duplicate packet rate and packet forwarding rate for denial of service; RSSI and PDR for wormhole attack; and the z-score of RSSI for Sybil attack. Evaluation based on NS-3 simulation has shown that this framework can achieve greater accuracy and lower overhead in terms of IDS-specific network traffic generated than [DR13; SS15; KC14]. The reduction of IDS traffic overhead is the result of adopting a game-theoretic approach in modeling the interaction between the IDS and the malicious vehicle as a two-player non-cooperative game and using the Nash Equilibrium to inform the choice of the monitoring strategy.

Sharma et al., [START_REF] Sharma | Pearson Correlation Analysis to Detect Misbehavior in VANET[END_REF] used the Pearson Correlation to detect location forging attacks. The proposed solution works in real-time and requires at least four to seven seconds of history to be fully efficient. Experiments used the real datasets from Wyoming Connected Vehicle Pilot Deployment. [USDb].

Eziama et al., [START_REF] Eziama | Malicious Node Detection in Vehicular Ad-Hoc Network Using Machine Learning and Deep Learning[END_REF] proposed a Bayesian deep learning approach to detect VANET anomalies. However, the author did not evaluate their contribution.

Zeng et al., [START_REF] Zeng | Senior2Local: A machine learning based intrusion detection method for vanets[END_REF] proposed a machine learning-based intrusion detection methods to detect intruders in VANET automatically. They used ANNs and SVMs for implementing their approach.

Kamel et al., [START_REF] Kamel | CaTch: A Confidence Range Tolerant Misbehavior Detection Approach[END_REF] proposed confidence based plausibility checks to detect anomalies inside the V2X message. The authors tested and trained their classifier using the VEINS simulator. The used classifier is a non-optimal MLP.

Wang et al., [START_REF] Wang | Location Anomalies Detection for Connected and Autonomous Vehicles[END_REF] used unsupervised machine learning to detect VANET anomalies. The classifier is a deep autoencoder. The goal is to identify the abnormal position in the V2X message based on the vehicle location and the RSSI.

Kaja et al., [START_REF] Kaja | Artificial Intelligence and Cybersecurity: Building an Automotive Cybersecurity Framework Using Machine Learning Algorithms[END_REF] used the WCVP dataset. Thus, their classifier analyses only BSM fields. Also, the authors created their attacks by modifying the dataset.

Kosmanos et al., [START_REF] Kosmanos | RF Jamming Classification using Relative Speed Estimation in Vehicular Wireless Networks[END_REF] used supervised learning models (KNN and RF). Features include the variation of relative speed (VRS). Radar measures the relative speed between the jammer and the receiver.

Current works do not consider several type of ITS-Station. Therefore, the anomalies related to a vehicle mobility may be be different from the one related to a pedestrian mobility. Besides, perception data does not include only mobility data but also classification data. Thus, we propose a method which fill these gaps [Mon+18a] (Chapter 6). 
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Datasets

In the context of CAV, we did not succeed to find a dataset which covers both failures due to faults and security attacks. However, we found the following datasets that can be used to dealt with V2X failures classification:

1. NGSIM [START_REF]Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data: Department of Transportation -Data Portal[END_REF] has recorded vehicle movements on various roadways in the United States.

2. Safety Pilot Model Deployment (SPMD) [USDa] dataset has more than 5.6 TB of recorded Basic Safety Messages (BSM)

3. The Wyoming Connected Vehicle Pilot (WCVP) [USDb] dataset contains V2X data collected during an experiment that runs on US I-80.

4. VeReMi [START_REF] Rens W Van Der Heijden | VeReMi: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs[END_REF] is a simulated dataset that contains several types of misbehavior attacks.

Then, in Table 2.11, we classified each dataset based on the several characteristics: covered safety message fields, the presence of failure causes, physical signal data, meta data, and the CAV context. We observed the following:

• datasets are mostly unrealistic (simulated data)

• datasets are mostly incomplete (missing safety message fields or absence of attacks).

• datasets focus on vehicles and do not include others types of C-ITS stations (pedestrian, road infrastructures stations, and motorbike) 

Classifier evaluation

The following sections cover the evaluation tool and metrics used to evaluate the performance of machine learning algorithms used to detect CAV failures.

Confusion Matrix

A confusion matrix is a table that is often used to describe the performance of a classifier on a set of test data for which the actual labels are known. In a binary classification problem (Table 2.12), it is crucial to define which labels are a positive case and a negative case. For instance, Table 2.12 defines "normal" data as a positive case and "attack" is related to a negative case. • True Positive (TP): The classifier predicts the data label as Normal, which is the actual (ground truth) label of the data.

• False Positive (FP): The classifier predicts the data label as Normal. However, the actual label is Abnormal.

• True Negative (TN): The classifier predicts the data label as Abnormal, which is the actual (ground truth) label of the data.

• False Negative (FN): The classifier predicts the data label as Abnormal. However, the actual label is Normal.

A confusion matrix is a visualization tool providing an overview of the classifier performance for a given data set. However, the confusion matrix does not measure classifier performances. Therefore, several metrics measure different parameters related to classifier performances.

Metrics

Generally, the metrics computed from the confusion matrix are recall, precision, and accuracy.

Recall = TP TP + FN , Precision = TP TP + FP , Accuracy = TP + TN TP + FP + TN + FN (2.
1) The recall defines the number of message containing Normal data that are classified as Normal divided by the total number of Normal or Abnormal data that actually are Normal.

The precision defines the number of Normal data classified as Normal divided by the total number of messages which contain data classified as Normal that actually are Normal or Abnormal.

The accuracy defines sum of messages correctly classified over the entire dataset.

Besides, other research fields studied used other performance metrics [START_REF] Haghighi | PyCM: Multiclass confusion matrix library in Python[END_REF]. Therefore, we will compare and analyse the differences between the regular metrics and these other.

Cross-validated perception

Section 2.5 presents the related work of cross-validation perception to detect perception attacks.

An attacker may create a V2X ghost vehicle which copy the mobility of a real vehicle. In the absence of exhaustive attack dataset, a classifier may label this attack as normal. An approach proposed to alleviate this drawback is to use vehicle sensor to confirm the existence of V2X object. is the use of vehicle sensors to detect the physical existence of a V2X object. Table 2.13 surveys the related work and positions our work. As seen, only few works use data cross-validation between perception sources to detect anomalies.

Yan et al., used radar measurements to detect Sybil Attacks [START_REF] Yan | Providing VANET security through active position detection[END_REF]. Indeed, the lack of physical object presence hints that the V2X object does not exist. Their scheme depends on radars. In this scheme, the radars acts as the system eye. if the radar can see the node then the V2X object exists, otherwise it does not exist. Thus, the proposed scheme verifies the physical existence of a connected vehicle in radar LoS. However, their work ignores the highly dynamic and harsh road environment. For instance, radar echoes increases the false alarm rate. Also, the current scheme classify occluded object as an attack. Thus, the proposed does not handle NLoS scenarios.

Obst et al., compared the similarity between a V2X and a camera detection to detect a ghost Attack [START_REF] Obst | Multi-sensor data fusion for checking plausibility of V2V communications by vision-based multiple-object tracking[END_REF]. However, the paper does not consider multiple objects scenarios which require to associate measurements to their respective object. Thus, the paper assumes both measurements are related to the same object.

Zacharias et al., measured the local traffic density using its local sensors to detect Sybil Attacks [START_REF] Zacharias | Misbehavior detection system in VANETs using local traffic density[END_REF]. However, the lack of simulation results questions their solution feasibility.

Our work [Mon+19] uses V2X and a camera detection to detect a ghost attack. Our scheme handles multiple objects scenarios thanks to a multiple objects tracker. Besides, our scheme includes evidence from a surrounding RSU to tackle objects which are in camera NLoS. Finally, our scheme uses subjective logic to measure the certainty in our security scheme decisions. 

Work

Simulators for autonomous and cooperative perception

Lastly, Section 2.6 overviews the existing CAV simulators. First, we give the main modules found in a simulator. Then, we survey the existing simulators to verify if they support each module. Lastly, we explain the reasons behind choosing Matlab as our thesis simulator.

Main Simulation modules

The simulation platform must include several modules to evaluate the failure-resiliency of a cooperative and autonomous vehicular perception system.

V2X Communication module

A communication module simulates features related to V2X communication. The first goal is to model protocols used in vehicular communication. The second feature is to model the behavior of a wireless communication given a driving context (e.g., packet drop, path loss, and signal fading).

Traffic Mobility module

A traffic module simulates the mobility of each ITS-Station (e.g., pedestrian, CAV, bike) for a given driving context. For instance, The mobility model depends on the type of the ITS Station (e.g., speed based on the station dimension) and also on the driving context (e.g., highway)

ADAS module

The ADAS module simulates each component defining an ADAS such as sensors, controllers, and actuators with their specifications. For instance, the module can include sensor models such as a radar or a lidar. For the generalization sake, the ADAS module must provide models which mimic the behavior of each component.

The ADAS module must provide algorithms library to associate and process the data provided and needed by each component. For instance, these algorithms include state predictors, classifiers, and data fusion algorithms.

Security module

The security module must provide a library of security mechanism defined in the research literature or standards at various level of the V2X protocol stacks. For instance, the security module can provide a model for each standardized cryptography operation such as key generation, digital signature computation, and digital signature verification. The security library aims to provide an implementation of existing security mechanism or an imitation of the expected behavior (e.g., the computation time of a digital signature) depending on a list of parameters (e.g., message size).

Existing Simulators

As shown in Table 2.14, we briefly review the main simulators in the following sections. The communication module focuses on the application layer, such as beacon message (e.g., CAM) and event message (e.g., DENM). Therefore, the lower protocol layers are excluded from the simulation.

VANETsim

As a result, the simulator does not take into account the risk of packet drop due to signal collision or attenuation. The module related to traffic mobility, VANETSim uses a microscopic model [START_REF] Krauß | Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics[END_REF] of traffic flow where each vehicle makes its own decisions based on the simulated traffic context and personal observation. Unfortunately, VanetSim has no ADAS module. However, the simulator includes a security module with privacy schemes. Lastly, VanetSim is no longer maintained.

VEINS

Veins [START_REF] Sommer | Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis[END_REF] (Vehicles in network simulation) is an open-source simulation framework. The V2X communication module integrates several standardized V2X protocol stacks and the network simulator OMNeT++ [START_REF] Varga | OMNeT++". In: Modeling and tools for network simulation[END_REF]. The Traffic mobility module uses SUMO as its traffic simulator. Unfortunately, VEINS has not an ADAS module which prevents to simulate sensor measurements [START_REF] Rens | Misbehavior detection in cooperative intelligent transport systems[END_REF]. However, VEINS provides a security module with an exhaustive library of security mechanisms related to misbehavior detection [START_REF] Rens | Misbehavior detection in cooperative intelligent transport systems[END_REF] or privacy preservation [START_REF] Rens | Misbehavior detection in cooperative intelligent transport systems[END_REF].

iTETRIS iTETRIS [Ron+13] (An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

) is an open-source simulation framework. The V2X communication module uses NS-3 [START_REF] George | The ns-3 network simulator[END_REF] as its network simulator and is compliant with the protocols stack defined by the ETSI standard [START_REF] Jemaa | An Overview of Security Ongoing Work in Cooperative ITS[END_REF]. The Traffic mobility module uses SUMO as its traffic simulator. Unfortunately, iTETRIS does not provide an ADAS module and a security module.

PreScan

Prescan [19c] is a proprietary simulator for Advanced Driver Assistance Systems for driving systems. The V2X communication module integrates statistical V2X communication models within its network simulator and several standardized protocols stacks. Also, Prescan uses the traffic simulator named Vissim [START_REF] Fellendorf | VISSIM: A microscopic simulation tool to evaluate actuated signal control including bus priority[END_REF], which provides microscopic traffic simulation. The ADAS module proposes several sensors models. Also, the ADAS module proposes an interface which enables users to design and verify algorithms for data processing, sensor fusion, decision making, and control implemented in Matlab/Simulink [19a]. Unfortunately, Prescan has not a Security module.

SiVIC-RTMaps

The SiVIC-RTMaps is a simulation framework [START_REF] Gruyer | SiVIC and RTMaps, interconnected platforms for the conception and the evaluation of driving assistance systems[END_REF] for ADAS Evaluation. The framework regroups two proprietary simulation platforms named Pro-SiVIC and RTMAPS (Real-Time Mines Automotive Prototyping System). Pro-SiVIC is a virtual prototyping platform that enables 3D simulations of physically realistic environments and sensors. Whereas RTMAPS is a software platform capable of recording, replaying, managing, and processing multiple data flows in real-time. For now, the framework does not include a V2X module. However, The framework includes a traffic module which allows the definition of the driving object (e.g., vehicle or pedestrian) trajectory. Also, the framework has its own ADAS module, which includes sensors models and algorithms to process sensor acquisitions. Finally, the framework does not include any security module despite some work in the context of V2X Privacy [START_REF] Lefevre | Impact of v2x privacy strategies on intersection collision avoidance systems[END_REF].

CARLA

CARLA [Dos+17] (Car Learning to Act

) is an open-source simulator for autonomous driving research. The simulator does not include a V2X communication module. Also, CARLA integrates its traffic simulator for both vehicle and pedestrians. Besides, CARLA integrates an ADAS module which includes several sensors models and tools to conceive perception, planning, and control systems. However, CARLA does include any security module.

Matlab

Matlab [19a] is a multi-paradigm numerical computing environment and proprietary programming language. Recently, Matlab provides libraries to simulate, conceive, and evaluate system related to an ADAS context. Matlab does not include a V2X module. However, some work proposes an open-source V2X module based on Matlab [START_REF] Wang | VANET Toolbox: A Vehicular Network Simulator based on DES -File Exchange -MATLAB Central[END_REF]. The traffic module uses basic traffic modeling based on the object trajectory. Indeed, Matlab provides driving scenarios or tools to set the object trajectory (e.g., position and speed). Thus, in our work, we choose to use Matlab as our simulator.

Thesis Simulator

As shown in Table 2.14, the number of simulators to evaluate cooperative and autonomous system is low. As far as we know, there is none open-source simulator that permits to evaluate simultaneously cooperative and autonomous aspects. Therefore, the development of such a platform which must provide security and safety mechanism is one of the main challenge encountered during the thesis. However, the thesis goal was not to develop such a platform but the definition of mechanisms or methods towards a generic cooperative perception architecture which is failure-resilient. Regarding its high number of users and its ties with other simulators, we decide to use Matlab for our research perspectives in the context of ADAS.

Synthesis

In this chapter, we presented state of the art related to the thesis context. Section 2.1 presents the CAV context. Firstly, we remind the CV and its relationship with the C-ITS domain. Secondly, we presented the AV context and detailed the perception system of the CAV. Secondly, Section 2.2 defines and presents failures in CAV Perception. Thirdly, Section 2.3 presents the related work to assess the risk of security perception failures. Fourthly, Section 2.4 presents the concepts and related work of machine learning classifiers in the context of CAV Perception. Fifthly, Section 2.5 presents the related work of cross-validated perception for V2X attacks in the context of CAV. Lastly, Section 2.6 overviews the CAV simulators.

From this chapter, we made several observations:

• observed CAV perception architectures have specificities but also similarities (e.g., type of sensors, perception algorithms). Therefore, current failure resilient modules may be designed for a specific CAV architecture. Consequently, our contribution, described in Chapter 3, is the definition of generic architecture (GPA) and its failure resilient perception algorithm (FRPA). Thus, this failure resilient algorithm fits to any CAV architectures.

• A second observation is the lack of methodology which assesses the risk of failures in the context of CAV. Indeed, current methods focus on perception faults without considering the presence of attacks or focus on V2X and sensors attacks without considering the surrounding environment and the driverless context. Therefore, we propose in chapter 4, a security risk assessment method for CAV architecture. This contribution aims to integrate the safety expert assignment on safety metrics for safety-related attack goals. Besides, we propose in chapter 5, an attacker model adapted to CAV which surveys the cause of failures.

• A third observation is the lack of security modules to detect attacks originating from incoming V2X communication or local sensors in CAV perception. Thus, we propose two security mechanisms to detect malicious perception data. In Chapter 6, we propose a machine learning to detect sensor failures and prevent a perception failures. Secondly, we propose a mechanism that uses local sensor to detect V2X anomalies.

Physical Architecture Model [Mon+18c]

Our physical vehicle architecture (Figures 3.2) is derived from the state of the art disclosed architectures. Our considered architecture is composed of Electronic Controller Unit (ECU), sensors, and actuators connected through several field buses (CAN, FlexRay, Ethernet. . . ). Each ECU achieves an automotive function (i.e., powertrain, infotainment, body, chassis, safety, communication, ADAS. . . ) by collecting and processing data from various sources. For instance, sensors (e.g., camera, lidar, and radar) sense vehicle internals and its environment to detect mechanical problems, road lines, and traffic signs. ECUs process sensors information using data fusion and tracking techniques to extract advanced data features (e.g., obstacle class, speed value, localization). Then, the ADAS controller processes the perceived data into a real-world data model. The latter relies on V2X data collected by the On-Board Unit and on the driver inputs via the Infotainment Controller. Once we establish the environment model, the ADAS controller improves vehicle driving by ensuring functions such as Automatic Emergency Braking, Automatic Parking, and Lane Keeping Assist System. 
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Vehicle Assets categories

The components above are critical for vehicle control. They are vehicle assets and, therefore, targets of malicious road users. We divide assets into three categories. The first category is named Equipements, which groups controller, sensors, and actuators (with their installed software and stored data).

The second category is named External Entities groups entities interacting with our architecture (e.g., other vehicles, road infrastructures, pedestrians. . . ).

The third category, named Data Flow are flows between External Entities and Equipements. This category regroups in-vehicle communication (e.g., CAN bus, automotive Ethernet), V2X Communications, and sensors acquisition.

Interfaces

Besides, each equipment has one or multiple Interfaces such as OBD II interface, USB, Bluetooth, Cellular, G5, GNSS, internal Wi-Fi, and ranged sensors receiver/transmitter (e.g., lidar, radar, camera). Interfaces lead to a various number of surface attacks that can occur on the vehicle.

Logical Architecture Model

Our logical vehicle architecture (Figure 3.3) is based on the state of the art disclosed architectures. This section models the perception data and flows in our GPA. Figure 3.3 depicts the logical architecture of a CAV. This architecture has several features. The first feature is the architecture modularity. Indeed, it is independent of any algorithms and technologies and used in CAV Perception. For instance, we can choose the number and the type of sensors. Also, the interconnection between modules are interchangeable. For instance, we can choose to fuse or not V2X data with sensor data. The second feature is the integration of V2X communication. In this architecture, we consider the following specificities of V2X communication. Firstly, V2X share mutual data with sensors. Thus, V2X Data can serve as the input of the exterioperception modules. The last feature is the integration of security modules for CAV Perception. For instance, our architecture considers the cryptography module, which authenticates and verifies the integrity of V2X data. 

Sensors

Exterioreceptive

Camera

Controlling

Actuators

Perception Module

Perception Lifecycle Model [Mon+18b]

Figure 3.4 outlines the perception lifecycle which has two main components. The first one is Objects which regroups:

• the perceiver of the perception system named ego-vehicle,

• the perceived entities named Road Object.

The second component is Data Stages which are the stages followed by the data through the perception lifecycle defined as follows:

• Data Acquisition is the transition of the physical signal (e.g., light intensity, radio wave, pulsed laser light, sound waves) between a detected road object and the ego-vehicle and its acquisition processes. It includes communication signals for V2X and measurement signals for ranging sensors. The acquisition processes include message encoding/decoding, security modules (e.g., cryptographic verification) [17], object detection (e.g., Doppler Shift [SLG17]), and object classification (e.g., dots and pixels clustering).

• Data Processing regroups the data fusion modules applied to the acquired data such as association and/or tracking [START_REF] Blackman | Design and analysis of modern tracking systems(Book)[END_REF]. Their localization and their implementation within the Perception Lifecycle model vary among OEMs [Yua+17; Aeb17; Raw+17].

• Data Storage contains the data stored temporarily (e.g., tracks) or permanently (e.g., algorithms). Indeed, these data are a keystone in ensuring the monitoring (e.g., tracks) or the operation of the perception system (e.g., association algorithm).

• Phenotype Data is the observable traits of a Road Object, such as its morphology (e.g., dimensions), physiological properties (e.g., color), behavior (object state over time), and behavior actions (e.g., human-made tags).

Data Storage

Data Processing Data Acquisition Phenotype Data The Identification feature includes data related to the identity and the authenticity of an object. For instance, the station identifier of a C-ITS Station confirms the object identity and authenticity.

The State feature includes data related to the object mobility such as its position.

The object type and its dimension are part of the Classification feature.

The State feature regroups all temporal data. Finally, the Security feature includes all data related to cyber security. 

Category

Multi-Data Layers Perception Model

This section presents our Multi-Data Layers Perception Model (Figure 3.6) which has six layers:

Layer 0: Phenotypic Object

A phenotypic object is defined by all information visible by the human eye. For instance, such an object can be defined by its car matriculation (identification data) or color (dimension data).

Layer 1: Raw Object

Raw sensor measurements define a raw object. Depending on the sensor type, raw objects can be defined by pixels (camera) or physical signals suc as light beams or radio waves. For instance, the received signal strength indication of a radio wave can provide the position of a road object.

Raw object resolution:

The resolution of a raw object depends on the detection performance of the sensor. For instance, some sensors may measure only the position of an object. However, some sensors can compute other information such as the speed or its existence (multiple object tracking). Thus, the amount of data detected by a sensor defines the resolution of a raw object.

Raw objects Density:

A sensor resolution defines the number of times a sensor can detect an object in a single measurement. For instance, a high-resolution sensor may assign multiple detections to a single object. In this case, a raw object has a high density of detections. In a dense traffic scenario (multiple pedestrians), multiple raw objects with high detection density may affect the detection performance of the sensor. On the contrary, in the absence of crowds, raw objects with high detection density may help to determine object dimensions and type, as seen in the next section.

Layer 2: Sensed Object

A sensed object is defined by all information processed and extracted from a raw object. For instance, a cluster of pixels can define an object type (car) and dimensions.

Sensed object density: In general, the number of sensed objects is lower than the number of raw objects. Indeed, the clustering of several laser beams into a cluster centroid reduce the computation latency of the sensor in crowded environments.

Sensed object resolution: A sensed object has higher detection resolution than a raw object. For instance, clustering several raw objects provides more information such as the object shape or dimensions. Besides, the tracking of a sensed object can provides new information such as an identifier (track id) for a specific duration.

Layer 3: Communicated Object

Communicated objects are defined by data contained in a safety message. For instance, data may be the internal state of CAV (action intention, driver state, vehicle health). In the thesis, a communicated object contains all the information in Table 3.1.

Communicated object density:

The number of sensed objects is lower or equal to the number of phenotypic objects. Indeed, all phenotypic objects do not communicate at the same time or at all (not connected vehicles and roadsigns).

Communicated object resolution:

The resolution of a sensed object depends on the safety message content. For instance, security algorithms allow to verify the authenticity and the integrity of a secured safety message.

Layer 4: Fusion Object

Fusion objects regrouped objects detected and processed from sensors and V2X communication. This layer aims to align each detection (spatial transformation) structurally.

Fusion object density: The number of fusion object equals to the sum of mutual and non-mutual objects detected from sensors and V2X communication.

Fusion object resolution: The resolution of a fusion object is the same as the one from its originating layer (Layer 1 or Layer 2) and according to its originating sensors noise (Radar, Lidar, emitter GNSS), or Camera).

Layer 5: Perceived Object

In this layer, detections from sources referring to a single phenotypic object are fused into a single detection.

Perceived object density: The number of perceived objects equals to the sum of fused and non-fused objects between sources.

Perceived object resolution: The data contained in the perceived object are identical to the data contained in the fusion object. Regarding data accuracy, the fusion process depends on the type of fusion architecture. In Low and Feature fusion, the perception system uses the fused object, which is the most similar to the predicted mobility data of a perceived object. Thus, the perceived object is at least as accurate as of the most similar fused object. In high-level fusion, the perception system exploits the strength of each sensor to output a perceived object. Thus, a perceived object will rely on the fused object of a radar for the data related to velocity. However, the perceived object will use classification data from V2X communication due to its high accuracy.
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Failures Resilient Perception Algorithm (FRPA)

This section presents our Failures Resilient Perception Algorithm (FRPA) depicted in Figures 3.7). Our FRPA design is compliant with our generic perception architecture by including V2X messages, sensor acquisition, and perception algorithms (tracking and fusion).

Besides, based on our Perception Data Model, our FRPA has six modules that detect perception anomalies. Each module is compliant with security standards (e.g., verification of digital signature). Accordingly, modules are divided into two groups named Self-Resilient and Multi-Sources Resilient. Each modules group is described in the following sections.

Self-Resilient modules

Self-Resilient modules do not rely on other perception sources to detect perception anomalies, which are faults or attacks.

Cryptography module

According to the ETSI Stack, cryptography modules are the first performed selfresilient modules. Besides, cryptography modules are standardized and mandatory security modules implemented in CAVs. As identified in our DMP, cryptography modules are specific to V2X communication. Examples of cryptography modules are digital signature verification or message encryption, as seen in our work [START_REF] Jp Monteuuis | Securing PKI Requests for C-ITS Systems[END_REF].

Facility module

Facility modules verify the plausibility of the data contained in a V2X message or measured from a sensor at the time of object detection. Facility modules use methods such as static threshold or ML (Section 2.4).

Physical module

Physical modules measure features from the received physical signal, such as the Angle of Arrival or Time of Arrival. These modules aim to compare the measured features issued from V2X signal and computed features contained in a safety message [SLG17; Han+17].

Temporal module

Temporal modules verify the behavior of a source (object or CAV sensor) over time to detect anomalies. Such methods exist for perception sensors to remove errors (e.g., radar echoes). However, such methods are not fit for V2X attacks and to CAV perception yet. Thus, our FRPA fills the gaps.

Multi-Sources Resilient modules

Multi-Sources modules exploit measurements from other sources in the perception system to detect anomalies or converges toward an accurate perceived object.

Cooperative-Sensor module

According to our DMP, cooperative-Sensor modules detect anomalies among mutual data contained in an object detected by several perception sources (Section2.5). However, Cooperative-Sensor modules require a trusted source. Therefore, FRPA ensures the existence of a trusted source with self-resilient modules per source.

Opinion Fusion module

Each presented module has a confidence value regarding its output (e.g., malicious data). An opinion Fusion module merges the confidence value of each module into a single confidence value.

Conclusion

In this chapter, we presented three contributions. The first contribution is the definition of Generic Perception Architecture (GPA) composed of a Physical Architecture Model and a Logical Architecture Model which are modular and generic to define any physical and logical architecture of a CAV vehicle. The associated Perception Lifecycle Model, which models the main flows and the processes of the Perception Lifecycle is also described

The second contribution is the definition of a Perception Data Model (PDM). The first part is the Data Model per Source, which models the data from each perception source into several categories. The second part is the Multi-Data Layers Perception which defines the processes and data structures for an object perception.

The last contribution is the design of a Failure Resilient Perception Algorithm (FRPA). The latter includes security modules to prevent perception failures in the CAV.

Our GPA offers a systemic and generic definition of the target of evaluation for automotive threat analysis and risk assessment (Chapter 4). Besides, the extensive analysis of our GPA leads us to the definition of a new attacker model for CAV (Chapter 5).

Also, our PDM helped us to identify data that are specific and common to all perception sources. The result of these findings lead to the definition of two failure resilient modules (Chapters 6 and 7).

In the next chapter (Chapter 4), we will present a new method for threat analysis and risk assessment adapted for the CAV.

Chapter 4

Security automotive risk analysis method (SARA)

As mentioned in Chapter 2, current threat analysis and risk assessment methods do not consider CAV architectures.

Therefore, this chapter aims to fill this gap by proposing a new threat analysis and risk assessment method named SARA. Our contribution is three folds. Firstly, Section 4.1 presents the SARA framework. Secondly, Section 4.2 describes our new threat analysis method. Section 4.3 presents SARA's risk assessment method and its application to two use cases. Section 4.4 describes SARA's countermeasure method. Finally, Section 4.5 concludes the chapter.

SARA method [Mon+18c]

SARA method is organized into four blocks (Figure 4.1):

• Feature definition describes the defense perimeter 1 of the assessed system.

The system definition follows two architectures. The physical architecture represents interfaces, controllers, sensors, actuators, and communication links.

The logical architecture represents the data flows issued by aforementioned physical entities. Indeed, a CAV relies on data flows to observe its surrounding environment and control the vehicle dynamics [START_REF] Merdrignac | Fusion of perception and v2p communication systems for the safety of vulnerable road users[END_REF]. By knowing the threaten data flows, the expert forecasts the severity of attacks on assets, the capabilities of self-observation, and self-controllability of the CAV.

• Threat specification describes SARA threat to security goal map, attack method to asset map, and SARA attacker list definition. The SARA threat to security goal map associates our threat model (STRIDELC) to our security goal model (AINCAAUT) 2 . Then, SARA attack method to asset maps a set of assets categories and threats/security goals to an attack method. The latter is a single threat or a set of threats performed by an attacker on an asset. SARA attackers list maps an attacker profile and its attacker capability score. The latter is the sum of the standardized metrics values (expertise, knowledge, and equipment) required as a minimum to perform an attack 3 . The attacker capability serves to compute the attack likelihood in the next building block.

• Risk assessment returns the risk value of an attack. SARA attack tree defines the attack goal as the tree root and selects its related threats from those identified in the previous threat specification step. Then, we define the attacker as the minimally required profile to perform a threat using SARA attacker list. Therefore, we compute the attack likelihood of a threat. Then, security and safety experts define attacks goal severity, observation and control values. Finally, experts compute the risk value of an attack goal from the following metrics: severity, observation, controllability and the highest attack likelihood. Section 4.3 details the risk computation using SARA attack tree.

• Countermeasures minimize the computed risk from an attack tree. The applied countermeasures refine the risk level or end the risk assessment process. Indeed, risk analysis is an iterative process that ends once countermeasures have been applied to critical threats until the risk value converges to an acceptable level.

SARA Threat Specification

Risk assessment requires security experts to define the evaluated vehicle architecture and its features. The detail level of the system description reflects the architecture maturity and affects risk assessment results. In this section, we consider the vehicle architecture described in Chapter 3.

We identify assets and their related threats using our systematic threats specification. Our method follows three steps: SARA threat/security goal mapping, SARA attack method/asset mapping and SARA attackers list definition.

Threat to security goal mapping

To identify considered threats, we define a new threat model named STRIDELC (Table 4.1). The latter extends STRIDE by adding two categories that are Linkability and Confusion. The latter refers to the processing of authentic data structure with incorrect content that does not reflect the ground truth state. For instance, a traffic light emits authentic V2X messages with incorrect traffic light states. Therefore, The incorrect state confuses the ADS which must rely on another reliable data source.

Confusion differentiates from threats such as Spoofing, Tampering, and Elevation of Privilege. Indeed, a source sending authentic messages with incorrect content neither usurps another source identity nor alters a data structure [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF]. Confusion related security goal is Trustworthy which includes countermeasures assessing the trustworthiness of the content and/or its source [START_REF] Bismeyer | Assessment of node trustworthiness in vanets using data plausibility checks with particle filters[END_REF].

Linkability refers to the ability to link pseudonymous or anonymous data to identify the data owner. Linkability differentiates from Confidentiality as follows. For instance, malicious observers collect vehicle signed cooperative awareness messages (CAMs) on a predefined road path. By tracking vehicle localization contained in the messages, the attacker extract private data such as preferred driving path [START_REF] Petit | Connected vehicles: Surveillance threat and mitigation[END_REF], housing localization, children localization, health status (e.g., hospital, gym, fastfood), and its customers localization. After data processing, the data allow to map to confidential information such as vehicle owner identity using its house localization (despite anonymous/pseudonymous message [START_REF] Wiedersheim | Privacy in inter-vehicular networks: Why simple pseudonym change is not enough[END_REF]). The related security goal Unlinkability includes countermeasures providing dynamic confidentiality such as pseudonym certificate change scheme [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF] or obscuring proxies [START_REF] Whyte | A security credential management system for V2V communications[END_REF].

For the remaining threat/security goal associations, we refer to Microsoft SDL STRIDE to security goals map [START_REF] Hernan | Threat modeling-uncover security design flaws using the stride approach[END_REF]. Also, we prioritize Confidentiality, Integrity, Availability, and Trustworthy for their strong impact on ensuring system safety and as a standard procedure (CIA model). That is, Table 4 

Attack method to asset mapping

Once the considered threats and security goal defined, we map them to system assets.

Mapping threats to asset categories

To this end, we revisit Microsoft STRIDE-per-Element map [START_REF] Hernan | Threat modeling-uncover security design flaws using the stride approach[END_REF]. First, we associate defined assets categories with elements. As mentioned in section 3.1.1.1, Equipment stores data and processes it using the software. Therefore, we map this asset category to Data Process and Data Store elements. The remaining associations between asset categories and elements are straightforward. Then, we match our asset categories to our STRIDELC threat model. As defined in Table 4 

Defining attack methods classes

Once the threats-assets map defined, we define the attack methods classes. An attack method groups one or multiple threat categories. For instance, an attack greedy jamming vehicular communication channel includes an Elevation of Privilege threat and a Denial of Service threat. To define attack methods, we use CIA model and TVRA Threat Tree [ETSa]. As a result, we define four attacks method classes as follows:

• Alter attacks aim to modify data which relate to Tampering threats/Integrity security goals

• Listen attacks aim to monitor data which relate to Information Disclosure threats/Confidentiality security goals

• Disable attacks aim to deny access to data which relate to Denial of Service threats/Availability security goals

• Forge attacks aim to create incorrect data which relate to Confusing threats/Trustworthy security goals

Mapping attack method classes to asset categories

Once the attack method classes defined, we map the major threat of each attack method (e.g., Tampering) to our STRIDELC-per-asset categories map (Table 4.2). As a result, we obtain the SARA attack method per asset map (Table 4.3). This map allows a systematic tool to map multiple threats/security objectives to assets which can be useful to build attack tree, Petri-nets or graphs. Also, non-security experts can use SARA attack method per asset map to avoid security goal omission/misidentification. For instance, in [START_REF] Steger | A security metric for structured security analysis of cyber-physical systems supporting SAE J3061[END_REF], the author identifies a spoofing threat from a malicious diagnostic tester as an Authorization security goal whereas it is an Authenticity security goal. 

Attackers list

This section defines SARA attackers list and provides an analysis of its advatanges.

Attackers profiles definition

We define an attacker as the combination of an attacker profile and an attacker capability. To define the attacker profile, we refer to previous methods [Dom+16; PFK14] and the attacker model defined in [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF]. • Knowledge factor (K) refers to the attacker knowledge regarding the chosen system. K can be public, restricted, sensitive and critical.

• Expertise factor (Ex) refers to an attacker expertise. It specifies four attacker categories. A layman is a person without specific security knowledge. A proficient is a person with basic security knowledge. An expert has a strong security culture learned from his past hacks and attended conferences. Multiple experts are a group of experts united around a common attack goal. Multiple experts launch simultaneous attacks to achieve their attack goal.

• Equipment factor (Eq) refers to the equipment needed by an attacker to perform an attack. There are 4 types of equipment. A standard equipment is an equipment already available for the attacker. A specialized equipment needs to be ordered from a specialized shop. A bespoke equipment is not easy to purchase and is expensive to create. Some attacks require multiple bespoke pieces of equipment which are hardly available and very expensive.

Security expert sums factor values (C j ) to compute the capability Ca A of an attacker A as follows:

Ca A = ∑ j∈{K,Ex,Eq} C j (4.1)

Attacker profile analysis

This approach differs from previous work in two ways. First, an attacker profile defines the attacker capability whereas previous work defined attacker capability based on threats. Second, we optimize previous approaches by reducing the total decision time and the total number of choice combinations. The latter is the number of possible combinations proposed to the expert to evaluate the attacker capability. Our method proposes 7 possible combinations (7 attacker profiles) to evaluate the attacker capability whereas the standard offers 48 combinations. Therefore, our method reduces the decision time. Indeed, if we assume the same time of evaluation per metric(t), an expert needs only a single t to evaluate the attacker capability instead of three t. That is, SARA attacker profiles optimize the computation of attacker capability.

Risk Assessment

This section presents SARA risk assessment. We first define SARA attack tree and its metrics used for risk computation. Then, we apply our risk assessment method to two use cases.

SARA attack tree

An attack tree defines threats used by attackers to reach an attacking goal (Figure 4.2). Attackers reach their goal through attacked automotive functions. Attacked functions simplify targeted components identification within the CAV and clarify the attack description for automotive experts. Then, SARA attack method (Section4.2.2) maps an attack method to the impacted assets using SARA attack method to asset map (Table 4.3). Finally, we associate a minimally required attacker (Table 4.4) to the attack on an asset which maps one or multiple threats to the impacted asset(Table 4.3). Experts compute the attack goal risk score based on the highest attack likelihood score among all attacked assets. 

Attacker profile and attack likelihood

SARA attacker profiles help experts to identify the minimally required attackers regarding an attack goal. As mentioned, an attack is composed of one or multiples threats which are performed by attackers. Therefore, as mentioned, the success of an attack depends on the attacker capability but also on the elapsed time (T) and on the required opportunity (WO) to perform the attack [START_REF] Henniger | Security requirements for automotive on-board networks[END_REF]. The time factor is the time needed to identify and successfully realize an attack considering the attacker capability. The opportunity tells if an attack requires a special window of opportunity to be executed or it can be easily executed. 

AP A = Ca A + T + WO (4.2)
That is, attacks requiring the lowest minimal attack potential are more likely to occur (Table 4.6). As a result of improving attacker capability, we reduce the total metrics for attack potential from initially 5 to 3.

Attack goal severity

Standardized severity factors are safety (S s ), privacy (S p ), financial (S f ) and operational (S o ) [START_REF]Cybersecurity Guidebook for Cyber-Physical Vehicle Systems[END_REF]. SARA severity relies on the previous factors values and expert motivation for severity vector computation (Table 4.8):

S = (S s , S p , S f , S o ) (4.3) 
We choose a maximization approach by assuming that all severity factors have equal importance. That is, SARA severity value is the highest severity vector coefficient.

For instance, we consider as attack goal an unauthorized braking from one CAV at low speed with specific severity vector (e.g., S = (1, 1, 0, 2)). The maximized severity value is S = S o = 2. Therefore, we reduce risk assessment time by avoiding the full risk vector computation. However, our approach still supports vector approach if threat risk must be evaluated for each severity factor separately. SARA severity considers attack goal scalability. For instance, if the aforementioned attack goal occurs in a traffic jam. An unauthorized brake has a strong impact on multiple CAV safety and their operational state. The severity of this situation (S = 3) is higher than in the single-CAV case (S = 2). That is, SARA Severity is flexible (e.g., maximization or vector approach), supports severity absence (e.g., S = 0) and is scalable (e.g., single or multiple attacks). 

O C

Attack goal observation and controllability

System control requires system internal and external observation to anticipate system failures caused by hazards or threats. The fully autonomous vehicle cannot rely on human perception. We tackle this issue with a new metric called Observation (O). The latter defines system tolerant default and its ability to detect errors and faults. Therefore, it controls system security risks. Observation has two values: perceptible (O = 1) and imperceptible (O = 0). Figure 4.3 illustrates the use of Observation in practice.

A mechanic attacker targets a sensor connected to a vehicle by altering a sensor calibration. The faulty sensor creates system error and probably a system failure. At initialization, expert considers threat observation as null. However, with appropriate countermeasures, the threat becomes perceptible which leads to risk reduction. The metric Observation advantages are considering vehicle safety without human control and forecasting vehicle architecture countermeasures to failures (Table 4.7). Architecture countermeasures control fault propagation and rely for example, on data redundancy, watchdog or IDS. Note that data redundancy increases vehicle cost.

FIGURE 4.3: Concept of Observation and Controllability

Controllability (C) quantifies the autonomous system or driver influence on security risk [START_REF] Iso | Road vehicles -Functional safety[END_REF]. C ranges from 0 to 3: 3 refers to the absence of driver/ADS controllability over the vehicle, whereas 0 is the opposite (Table 4.7).

Risk computation

SARA computes the risk score using the SARA matrix function (f) defined in Table 4.9.

R = f(C, S, Al) (4.4)
The risk score ranges from insignificant (R0) to unacceptable (R7+). Expert uses risk score to evaluate a threat and decide if countermeasures are needed. Besides considering machine controllability, our approach advantage is to rely on the same matrix for safety and none safety-related use cases. Also, it is similar to ASIL computation method which reduces the gap between security and safety. 
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SARA risk assessment application

In this section, we assess the security risk of two use cases: the Vehicle Tracking [START_REF] Petit | Revisiting attacker model for smart vehicles[END_REF] and the Comfortable Emergency Brake Failure [START_REF] Li | Assessing and mitigating cybersecurity risks of traffic light systems in smart cities[END_REF].

Vehicle Tracking use case

A vehicle broadcasts periodically signed cooperative awareness messages (CAMs) in a defined area. The latter contains public anonymous/pseudonymous data related to the vehicle localization. However, despite anonymous data, an observer eavesdrops and tracks vehicles messages. Then, knowing vehicles positions history in the neighborhood, an observer maps the pseudonym certificate of the car owner to its house address and so, its identity. A global observer can track information on the supply chain of a company such as the supply chain path or the position and or

• attacker capability value (Ca),

• Elapsed Time value (T), and

• Window of Opportunity value (WO).

As defined in [START_REF] Petit | Connected vehicles: Surveillance threat and mitigation[END_REF], the attacker profile is a Researcher which attacker capability value ((Ca researcher )) is 12 (Table 4.4). To perform Eavesdropping on the V2X channel, we assume an attacker requires less than a day. Therefore, referring to Elapsed Time map [Hen+09; ETSa], the Elapsed Time value is 4 (T = 4). Tracking CAMs requires 2 weeks [START_REF] Petit | Connected vehicles: Surveillance threat and mitigation[END_REF]. Therefore, the Elapsed Time value is 4 (T = 4). The attacker does not need a Window of Opportunity to reach his attack goal. Therefore, the Window of Opportunity value for both threats is null (WO = 0) based on [START_REF] Henniger | Security requirements for automotive on-board networks[END_REF][START_REF] Ts Etsi | 102 165-1[END_REF]). Then, using Equation 2, we compute Eavesdropping on the V2X channel and Tracking CAMs attack potential values (respectively, AP = 0 and AP = 0). Finally, using Table 4.6, we map their attack likelihood values (respectively, Al = 4 and Al = 3).

Fourth, we compute the attack likelihood value of the attack method class Listen using:

• each threat attack likelihood value, and

• if multiple threats, the logical operator definition.

Tracking CAMs is possible only if the attacker is Eavesdropping on the V2X channel. Therefore, the logical operator is AND. Using the threats attack likelihood value and the logical operator definition, we compute Listen attack likelihood value (Al = 3).

Fifth, we compute the security risk value on the attack goal using:

• the attack likelihood value of each attack method, and

• if multiple attack methods, the logical operator definition.

• Controllability and Severity values defined during the attack goal setting.

Listen is the only attack method for this attack goal. Using Equation 4and the risk matrix (Table 4.9, we compute the risk value of the attack goal Tracking vehicles (R = R4).

Although not high, SARA risk value is pertinent regarding current work. As ongoing researches on the autonomous vehicle enhance tracking algorithms, the price decrease and the accessibility increase of tracking device will increase the spectrum of attackers and therefore the attack likelihood over time. Countering such attack remains difficult. Indeed, the removal of the identifier from V2X messages may increase the identification process and favors spoofing attacks. On the other hand, the removal of data elements from V2X messages threatens cooperative awareness applications that rely on both classification and location data from the lidar and the CAM to detect accurately pedestrian [START_REF] Merdrignac | Fusion of perception and v2p communication systems for the safety of vulnerable road users[END_REF]. Even though countermeasures such as pseudonym change strategies exist, their efficiency still need to be evaluated [START_REF] Bismeyer | Assessment of node trustworthiness in vanets using data plausibility checks with particle filters[END_REF][START_REF] Jaeger | A novel framework for efficient mobility data verification in vehicular ad-hoc networks[END_REF]. This analysis confirms two facts. First, the assessed risk score reflects the current situation regarding this attack. No satisfying solution has been proposed yet despite mutual efforts from standardization and industrials. Second, the need to revise or extend current threat models such as STRIDE. As we see, privacy is not just a matter of confidentiality or anonymity but of unlinkability of public data which may variate following the needs of cooperative awareness applications.

Comfortable Emergency Brake Failure use case

To assess the impact of a faulty traffic light on a driver-less vehicle, we assess the risk of an attacked automated and connected feature called Comfortable Emergency Brake feature (CEB) [START_REF] Zaydounr | Comfortable Automated Emergency Brake for Urban Traffic Light Based on DSRC and On-Board Sensors[END_REF].

This feature uses the content of the Signal Phase and Timing (SPaT) and of the MAP messages emitted from a connected traffic light. Then, once the traffic light is in the camera line of sight, the automated driving system (ADS) collects, processes the output of the camera and the V2X messages. The ADS compares the state of the traffic light inside the SPaT message with the camera output for color matching. The camera output assess the correctness of the SPaT before braking.

Due to the lack of security mechanisms [START_REF] Zaydounr | Comfortable Automated Emergency Brake for Urban Traffic Light Based on DSRC and On-Board Sensors[END_REF], we assess the security risk of this feature. A potential attack goal is CEB fails to trigger braking at a red light. We define the following settings:

• The severity factor concerns mainly safety. Therefore, the security experts need to discuss the safety impacts with the safety experts to assess the following metrics. We assume in this case the chosen severity metric value is 3(S p = 3, Table 4.8).

• The attack impacts the system observation (O = 0).

• There is no driver response with a driver-less vehicle (C = 3).

We assume the ADAS controller is the automotive function that processes the data and decides to brake. Therefore, the attacked automotive function is ADAS.

To reach their attack goal, attackers must send a color different than red to the vehicle driving system. Based on SARA attack method classification, three attack classes fulfill such conditions: Alter, Disable, Forge. For the sake of clarity, we will discuss on the most interesting threats: First, we discuss about attacks disabling the optical flow are efficient. They require no effort from the attacker and hardly detectable by the system. Indeed, a delivery van standing in front a traffic light is hardly seen as an attack. Also, physical attacks on the road infrastructure are hardly detectable. Indeed, Figure 4.5a depicts a physically damaged traffic light. Despite targeting the infrastructure, this attack has an impact on the vehicle waiting for the red light to turn green. Moreover, this attack is easily scalable for an attacker which means the system cannot rely on other surrounding traffic lights. Even in a big city such as Paris, it took one month to report and repair the damaged infrastructure.

We assume most vehicular communications to be cryptographically secured as requested by standards [17]. Therefore, we do not focus on attacks altering the content of the SPAT message using MITM.

Next, we discuss attacks forging data. However, as mentioned, road infrastructures are easily accessible and can misbehave. Indeed, an altered traffic light [START_REF] Li | Assessing and mitigating cybersecurity risks of traffic light systems in smart cities[END_REF] can emit a SPAT with an incorrect red state instead of a ground truth green state. If an attacker physically damage the traffic light (Figure 4.5a) or blind the camera [PS15], the driving system can only rely on an incorrect SPaT. If the SPAT emits incorrect green state, the vehicle can cross the intersection without seeing unconnected objects coming from its left or its rights leading to a potential collision. This threats goal is to confuse the system [START_REF] Petit | Revisiting attacker model for smart vehicles[END_REF] and require appropriate countermeasure to allow the automated driving system to take safe decision.

Countermeasures

SARA final step is to apply countermeasures to reduce highest attack risk values. Then, we re-iterate SARA risk assessment application process until reaching an acceptable risk value. We initially reduce the reiteration process by setting an acceptable risk value for each attack goal. The setting of R and S values define the maximal accepted attack likelihood (Al wanted ) for all attacks on asset related to that attack goal. Finally, we apply countermeasures on attacks on asset until all their attack likelihood values (Al) verify:

Al Al wanted (4.5)

For instance, in the case of the Comfortable Emergency Brake Failure (Figure 4.6), we set a risk value of R5 as a satisfying requirement without changing Severity and Controllability values. Then, we compute Al wanted using SARA Risk Matrix (Table 4.9). The wanted attack likelihood value is 1. Therefore, we know that we need to assess all the threats with an attack likelihood value greater than 1. Doing so, we do not re-iterate SARA risk assessment application process and we know which threats require to be countered first.

Conclusion

In this chapter, we propose a new method for threat analysis and risk assessment named SARA. First, we present the method which introduces safety experts feedbacks in various security processes. Next, we highlight the need for methods for proper threat analysis coverage against human omissions to consider recent concerns regarding the trustworthiness and privacy of the driver-less vehicle. Also, we propose some improvements to existing standards. Finally, SARA proposes a new metric for attack observation for CAV controllability. Indeed, automated driving system-dedicated vehicles can be designed without having human interaction and, therefore, must be able to detect an attack to control and reduce risk value. To this end, we presented the potential risk of two uses cases named "a malicious observer" and "faulty road infrastructures on the vehicle." Finally, we refined the risk value after applying counter-measurements for each attack identified in each use case.

Currently, SARA attacker model focus on the V2X and in-vehicle domain. Therefore, we need to define an attacker model which includes attacker related to the domain of perception (e.g., attack on perception algorithms). Thus, in the next chapter, we propose a new attacker model with its security goal model for CAV.

Chapter 5

Attacker and Security Goal Models for Perception

As mentioned in Chapter 2, current attacker models focus on VANET or insidevehicle. Thus, there is a gap for CAV, to combine both domains with Perception.

In this chapter, we propose a new attacker model (AM) and a new Security Goal Model (SGM). In Section 5.1, we present our attacker model derived from the identified assets. In Section 5.2, we provide the corresponding security goals model. Finally, Section 5.3 concludes the chapter.

A New Attacker Model [Mon+18b]

First, we define a generic attacker model. Next, using the assets identified in the PLM (Section 3.1.3), we describe specific attacker models for the perception system. To do so, we assume that cryptographic mechanisms yield against cryptanalytic attacks (e.g., message forgery or side channel attacks).

Generic Attacker Model Definition

Firstly introduced in VANETs [RH07] then extended for automotive sensors [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF], a general attacker model defines attacker actions and potential targets. However, previous works assume that the attacker always reaches its goal directly which is false. Indeed, a malicious node can badmouth to neighboring nodes to provoke its victim exclusion from the network [START_REF] Heng Chuan | A non-biased trust model for wireless mesh networks[END_REF]. Also, the alteration of road sign impacts the vehicle perception indirectly [START_REF] Evtimov | Robust Physical-World Attacks on Machine Learning Models[END_REF][START_REF] Sitawarin | DARTS: Deceiving Autonomous Cars with Toxic Signs[END_REF]. Thus, we propose a new generic attacker model with a five-dimensional set as follows:

• Membership stands for an Insider or an Outsider attacker. An insider attacker is an authenticated member of one or multiple CAV networks (e.g., CAN, LIN, V2X). Therefore, he can mount a diverse set of attacks using his given credentials. Whereas, an outsider is an unauthenticated member who can mount a limited set of attacks due to her restricted network access.

• Motivation stands for Malicious or Rational. A malicious attacker seeks no personal benefits from the attacks and aims to harm an asset. Whereas, a rational attacker seeks profit and thus is predictable regarding her attack means and target(s). Such attribute may help to define the financial severities of an attack in security risk analysis process [START_REF]Cybersecurity Guidebook for Cyber-Physical Vehicle Systems[END_REF]. For instance, a rational attacker will aim the perception algorithms contained in a CAV to sell them to hackers on the black market.

• Scope stands for Local or Extended. A local attacker controls few entities (e.g., car or traffic light [START_REF] Ghena | Green Lights Forever: Analyzing the Security of Traffic Infrastructure[END_REF]) within a limited scope (e.g., road intersection). However, an extended attacker controls several entities scattered across an extended scope (e.g., university campus [START_REF] Petit | Connected vehicles: Surveillance threat and mitigation[END_REF]).

• Method stands for Active or Passive. While an active attacker must act to attack, a passive attacker simply listens or observes its target (e.g., network eavesdropping). For instance, in the context of standardized efforts towards the cooperation between safety and security risk analysis [START_REF]Cybersecurity Guidebook for Cyber-Physical Vehicle Systems[END_REF], a meteorological hazard could be a passive attacker.

• Goal stands for Direct or Indirect. A direct attacker reaches its primary target directly, whereas an indirect attacker reaches its primary target through secondary targets.

This attacker model has a different purpose than the one defined in SARA. In SARA, the attacker is defined by its equipment, vulnerabilities knowledge, and level of expertise. Differently, our attacker is defined by the context before the attack. For instance, an insider attacker implies that the attacker has some credentials prior launching the attack (e.g. private key with a digital certificate). Therefore, the context defines the attacks that an attacker can launch. Indeed, an attacker cannot emits malicious messages with fake position without credentials.

As depicted in Table 5.1, the attack goal helps to define attackers in the perception domain. However, Goal does not situate wherein the perception domain the attacker may perform an attack. Therefore, we need to specify Goal explicitly. To do so, we derive each sub-attacker model from the Data Stages (Table 5.2). We define these sub-attacker models and their attacker profiles in the following sections. 

Sensor Disrupter

Sensor Disrupter is an attacker that aims at vehicle sensors. Indeed, CAV perception relies on the acquisitions of exteroceptive sensors (e.g., camera, lidar, or radar) to perceive the surrounding environment. Thus, sensors are assets which a Sensor Disrupter can disturb through various attack means.

Sensor Illusionist

Sensor Illusionists target sensors directly during the acquisition stage. During this stage, ranging sensors (e.g., lidar) provide a closely real-time, trusted, and more or less accurate depiction of the surrounding by measuring the reflected physical signal [START_REF] Merdrignac | Fusion of perception and v2p communication systems for the safety of vulnerable road users[END_REF]. However, at signal impact, an Illusionist can capture, delay, and replay it forcing the sensor to produce erroneous measurements. For instance, from the position of sensors target (the detected object), Petit et al. [START_REF] Petit | Remote attacks on automated vehicles sensors: Experiments on camera and lidar[END_REF] captured, delayed, and replayed the lidar signal. Also, they relayed the signal and replayed it from a different position leading the way towards signal forgery attacks. Thus, Illusionist attack means include signal delay, relay, replay, and forgery.

Sensor Blinder

Similarly, Sensor Blinders target exteroceptive sensors directly during the acquisition stage. During this stage, Blinders can alter the physical signal trajectory transiting between ego-CAV sensors and its surrogating environment. For instance, a camera cannot detect a facing traffic light state due to the parked vehicle blocking the view. Or, Blinders can maximize or minimize signal intensity to emit signals outside the sensing domain of the sensor [Pet+15c; YXL16]. For instance, using fog light against an automotive camera is a realistic and accessible attack to perform.

Evil Sensor Calibrator

Evil Sensor Calibrators target exteroceptive sensors directly during the storage stage.Evil Calibrators aims to modify sensor settings to provoke incorrect/missing measurements. Indeed, range sensors measure the distance between the Road Object and itself. Then, the measurement system of the sensor computes the absolute position by moving from the local referential base of the sensor to a global referential base. However, Evil Calibrators can modify the local referential base by changing the physical position, orientation, or internal settings of the sensor. Such actions lead to an incorrect perception of the Road Object. For instance, taking the case of Lenticular Printing attack which is an optical process used to create road signs that look different when viewed from different angles [START_REF] Sitawarin | DARTS: Deceiving Autonomous Cars with Toxic Signs[END_REF]. Sitawarin et al. demonstrated that if the localization of the camera used for road signs recognition is at a different height from the human controller, then the camera classifier performances are diminished while appearing to be correctly positioned to the human operator. Thus, an Evil Sensor Calibrator can drastically modify the sensor orientation to provoke an absence of measurements. Rarely mentioned, Evil Sensor Calibrator attacks remain easy to perform physically and may extend to other in-vehicle hardware (e.g., Evil Mechanic attacks).

Ground Truth Falsifier

Ground Truth Falsifiers target exteroceptive sensors indirectly through Road objects at phenotype stage. Falsifiers physically alter Road objects (e.g., road signs) to provoke incorrect sensors measurement. For instance, Falsifiers can forge counterfeit road marks [Els17]. Therefore, an automotive camera can detect fake road marks as real ones which may influence vehicle trajectory. Also, the alteration of road signs known as Deceiving Autonomous caRs with Toxic Signs (DARTS) leads to camera misclassification from the camera which may affect vehicle dynamic [Evt+17; Sit+18]. Thus, mentioned attacks are indirect Illusionists attacks.

Finally, the massive alteration of a Road Object can provoke an acquisition absence. Indeed, Falsifiers can destroy, remove, or severely deface road infrastructures. Therefore, mentioned attacks are indirect Blinder attacks.

Evil Mechanic

As depicted in Figure 3.4, the perception lifecycle takes place mostly within the ego-CAV. Each ECU performs an automotive function (e.g., powertrain, infotainment, body, chassis, safety) by collecting and processing data from various sources such as sensors and ECUs. Therefore, attacking processing data is valuable for an attacker willing to force the CAV into a wrong assessment or to extract valuable data (e.g., data fusion algorithms). Related attack sets are In-vehicle Manipulator and In-vehicle Miner.

In-vehicle Manipulator

This attacker aims to add, modify, or remove automotive components or data contained in it. Indeed, an attacker with elevated physical access (e.g., mechanic) could easily replace a smart camera by one with a dysfunctional detection algorithm. Although the camera is recording, its detection capabilities are abnormal which may catch off-guard the driver. Besides safety, the removal or injection (e.g., odometer manipulation [START_REF] Petit | Revisiting attacker model for smart vehicles[END_REF]) of vehicle history permits data repudiation. Therefore, a vehicle owner can repudiate facts in case of fraud insurance, resale, or crime investigation because the falsified vehicle history confirms her statement. Moreover, the intentional manipulation of tamper-resistant automotive equipment [PFK14; WG11] may activate defense mechanisms that erase all the data contained in such hardware which, thus, benefits to the attacker. Finally, a mechanic can flash equipment with a modified firmware to increase her attack range [START_REF] Miller | CAN Message Injection[END_REF]. Therefore, a malware installation in this equipment allows the injection of CAN message with incorrect content without requiring the mechanic to remain plugged into the vehicle.

In-vehicle Miner

This attacker eavesdrops in-vehicle data for personal deeds. For instance, a Miner can sell the vehicle history to third parties (rational attacker). Indeed, robbers can use the sole localization history to identify the driver routine and rob her house. Moreover, eavesdropping Storage and Processing steps help to analyze the behavior of perception algorithms. Once reviewed, this information is valuable to Sensor Disrupter, Malicious Communicator, or Fusion Persuader.

Malicious Communicator

As introduced, V2X communications aim to improve vehicular automation reliability, safety, and traffic efficiency. Like in all social group, some participants behave against the interest of the community. Such behaviors threaten communication. We define such attacker as Malicious Communicator which regroups Fully Adversarial Networking, Voyeur and Communication Deceiver.

Fully Adversarial Networking

This attacker inserts arbitrary messages and performs selective Denial Of Service attack [START_REF] Petit | Revisiting attacker model for smart vehicles[END_REF].

Voyeur

This attacker surveys anonymous public data exchanged in cooperative ITS to obtain confidential data (e.g., car owner identity). For instance, in VANET, localization and trajectory of the vehicle are willingly broadcast. Indeed, cooperative awareness through communication requires a frequent update of surrounding vehicles localization. Therefore, it is mandatory to be able to track vehicles locally. However, Voyeurs can use tracking to track broadcasting vehicles in a neighborhood or a campus [START_REF] Petit | Connected vehicles: Surveillance threat and mitigation[END_REF]. By tracking vehicle localization contained in the messages, the attacker extracts private data such as preferred driving path, house localization, children localization, or health status (e.g., hospital, gym, fast-food). After being processed, the anonymous data allow extracting confidential information such as vehicle owner identity using its house localization [START_REF] Wiedersheim | Privacy in inter-vehicular networks: Why simple pseudonym change is not enough[END_REF].

Communication Deceiver

This attacker emits authentic messages with erroneous content. For instance, a malicious traffic light can send incorrect Signal Phase and Timing (SPaT) messages with a color state which differs from the phenotypic state. At best, it creates two different outputs which confuse the automated driving system. At worst, if the real state color is unavailable (e.g., NLoS), the system relies on a single incorrect output from the SPaT. Another example of erroneous message content is the definition of a node dimension for the standardized Cooperative Awareness Message [ETS14]. Indeed, the absence of correlation between the class of a V2X node (e.g., pedestrian) and the node dimensions could allow Communication Deceivers to emit a message defining an object with an implausible size. Therefore, a pedestrian node may have a length that is between 10 centimeters and 102 meters. Despite some standards recommendations, the choice of plausibility mechanisms regarding V2X Data are left open. Thus, if these erroneous content remain unchecked that may lead to some mis-associations between a V2X message and a sensor measurements.

OTA Poisoner

This attacker sends any malicious updates Over-The-Air (OTA). Indeed, CAVs will update OTA their software, firmware, Data Storage to fix vulnerabilities, inaccurate information, bugs [Bri14]. A malicious update can alter the integrity of the Data Storage by modifying the processing algorithms (e.g., cryptographic algorithms) or the perception data (e.g., cartography data).

Fusion Persuader

Persuaders disrupt the processing and storage stages to disable or to deceive the perception system. Persuaders can perform the followings attacks:

Misbehaving Ground Truth

is a road object behaving against the CAV mission (e.g., pedestrian crossing the road at red or traffic light blocked on a red state). These attacks have safety, functional, financial, and privacy impacts on the system. Indeed, a pedestrian faking a collision can block the CAV, extort money from the car company/driver, or provoke an emergency braking threatening passenger safety [START_REF] Kirsten | Scammers in China Fake Road Injuries, but Cameras Capture the Truth[END_REF]. Such a behavior questions the need to register and report such actions using the camera recording as juridical proof. Indeed, the recording and storage of identifiable traits of an individual may imply some privacy issues.

Sybil Gating

The Gating process is a filtering/screening mechanism to determine which objects observations (e.g., V2X messages or sensor measurements) are valid candidates to update existing objects tracks. Gating aims primarily to reduce unnecessary computation during data association and tracks maintenance processes [START_REF] Blackman | Design and analysis of modern tracking systems(Book)[END_REF]. Therefore, an attacker could create valid virtual candidates to increase the computation load of Data Processing. Although lidar spoofing is possible [START_REF] Petit | Potential cyberattacks on automated vehicles[END_REF], its feasibility in dense or/and highly dynamic scenario may be unrealistic. Indeed while the targeted vehicle is moving fast or is highly surrounded by Road Objects, aiming its lidar to achieve a detection is challenging. However, the creation through V2X communication of ghost vehicles [START_REF] Golle | Detecting and correcting malicious data in VANETs[END_REF] fitting the gate conditions is achievable. Therefore, the attacker could create Sybil Attacks to disable the filtering benefits of the Gating. We define such attack as Sybil Gating (Figure 5.1).
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Tracking Poisoner

Tracking algorithms aim to predict the state of an object at the next step according to the measurement of object state at the current step. Thus, the system must update each track of its tracking database to ensure the next prediction [START_REF] Blackman | Design and analysis of modern tracking systems(Book)[END_REF]. However, it remains unclear how to perform the track management in pseudonymous V2X communication [START_REF] Jaeger | A novel framework for efficient mobility data verification in vehicular ad-hoc networks[END_REF]. According to the European Certification Policy [gro17], a vehicle can contain simultaneously valid pseudonymous certificates. As mentioned, a vehicle can create a ghost vehicle per pseudonymous certificates. Without proper trustworthiness mechanisms, the ego-CAV will have its tracking database poisoned by tracks of ghost vehicles (Figure 5.2). Thus, we called such attack Tracking Poisoning. Also, such attacks require to adapt existing tracks update mechanisms. Indeed without proper tracks update, these attacks could impact the association process which aims to find the most plausible acquisition-to-track association. Association algorithms aim to search the most likely acquisition from each source observation set (e.g., sensor measurements or V2X messages) that share the same detected object as subject. Therefore, a Fusion Manipulator has multiple ways to manipulate the association process.

First, an attacker can increase the computation time by increasing the number of potential measurements (Sybil Gating or/and Tracking Poisoner). For instance, Merdrignac et al., [START_REF] Merdrignac | Fusion of perception and v2p communication systems for the safety of vulnerable road users[END_REF] proposed a perception system associating lidar measurements and V2X messages. Despite working with few connected pedestrians, their system does not scale in dense scenarios. Indeed, the perception system associates each lidar observations within the Gating area, which is the Global Navigation Satellite System (GNSS) error defined as a circle of 5 meters radius around the GNSS position of the pedestrian emitting V2X messages. Thus, we can assume that the increasing number of potential associations between lidar measurements-V2X Tracks in an urban scenario leads to an increase in the association time.

Second, an attacker can provoke conflicting acquisition between two acquisitions. For instance, let us consider a Green Light Optimal Speed Advice (GLOSA) system that uses camera acquisition to verify the content correctness of a SPaT message [START_REF] Zaydounr | Comfortable Automated Emergency Brake for Urban Traffic Light Based on DSRC and On-Board Sensors[END_REF]. A Misbehaving Ground Truth attacker alters the physical signal state of a traffic light [START_REF] Ghena | Green Lights Forever: Analyzing the Security of Traffic Infrastructure[END_REF]. Hence, the perception system would disapprove all SPaT message thinking that the camera acquisition represents the correct state.

Security Goals Model [Mon+18b]

To secure a CAV perception, both identifying and defining proper security goals against identified attackers are mandatory. This section defines such security goals. First, we identify security countermeasures based on the attackers defined in Section 5.1. Then, we derive the security goals model from the identified countermeasures. Finally, we evaluate the model against standardized models.

Security Goals

This section identifies security Goals for each attacker defined in Section 5.1.

Security Goals for Sensor Disrupter

To do so, we define the security goals for a Sensor Disrupter which regroups Sensor Illusion, Sensor Blindness, and Evil Sensor Calibrator.

Sensor Illusion requires mechanisms which assess the trustworthiness of sensor measurements. Approaches checking the measurement consistency assume that a ghost (e.g., Radar) or spoofed measurements are not or hardly repeatable. Therefore, the use of metrics such as Object Existence [START_REF] Aeberhard | Object-level Fusion for Surround Environment Perception in Automated Driving Applications[END_REF] computed on the object past detections allows to down-weight newly appearing and inconsistent objects during the fusion process.

Sensor Blindness attacks target the availability of sensor measurements. Therefore, it is crucial to ensure the redundancy of Data Acquisition. Current solutions include hardware redundancy (redundant sensor) or data redundancy (different sensor type). For instance, SPaT messages can provide an accurate state of a traffic light while the camera is under Sensor Blindness.

Evil Sensor Calibrator targets the sensor integrity. Therefore, the security goal to ensure is physical integrity. Indeed, a sensor should not be easily manipulated or moved. For instance, tamperproof hardware can store valuable data (e.g., detection algorithms). Also, the access to the sensor settings must be restricted. Thus, Access Control is mandatory to identify and to authenticate authorized personnel. Hence, binding authorized actions to a person profile limits its actions on the sensor according to its function (e.g., developer, mechanic).

Ground Truth Falsifier requires to harden the physical structure of Road Objects to ensure their Phenotype integrity and availability. For instance, the use of anti-graffiti coatings is a solution to avoid the alteration of road signs.

Overall, Accountability is a significant security goal against a Sensor Disrupter. Indeed, the sensor inability to perform its task must be recorded to understand the causes of misperception. For instance, if the radar detects an object forward but the camera does not, an analysis of the images recorded by the camera can explain that the mis-detection was due to the dense fog which blinded the camera. However, the global acceptance of this mechanism is unsure due to privacy concerns. For instance, the recording of a person face to identify and punish the author of road marks forgery is a possible option [Els17]. But, it requires a strict Privacy Policy regarding the data recorded by the camera of a road infrastructure or a CAV.

Security Goals for a Malicious Communicator

Against recent attackers such as a Voyeur, standardized countermeasures are ineffective. Thus, the need for new security goals is necessary. Although mentioned [PFK14; Pet+15c], the need for Linkability and Anonymity as distinct security goals remain unsettled. Despite Privacy recommendations from the European C-ITS Platform group [gro17], efficient countermeasures such as pseudonym change in V2X communication are still unsolved [START_REF] Petit | Pseudonym schemes in vehicular networks: A survey[END_REF]. Despite common belief, it is the association algorithm and not tracking that decides whether two observations (e.g., track, sensor measurement or V2X message) belong to the same observed object [START_REF] Blackman | Design and analysis of modern tracking systems(Book)[END_REF]. In the sensor domain, range sensor measurements may be incorrect and anonymous. Therefore, it is essential to define the temporal window between two messages which disallows an association algorithm to match two observations based on just their dynamic state.

Communication Deceiver requires the use of trustworthiness countermeasures which regroups:

• Consistency mechanisms that check how often the emitting node state deviates from the predicted normal behavior (e.g., Kalman Filter [START_REF] Jaeger | A novel framework for efficient mobility data verification in vehicular ad-hoc networks[END_REF]). Unlike Voyeur Linkability, V2X messages linkability is necessary for automotive perception. Indeed to track the V2X node state, the association algorithm must associate each V2X messages to its corresponding tracks.

• Plausibility mechanisms which rely on plausibility rules (e.g., maximal emitting distance) [START_REF] Jaeger | A novel framework for efficient mobility data verification in vehicular ad-hoc networks[END_REF], multi-source checking [START_REF] Zaydounr | Comfortable Automated Emergency Brake for Urban Traffic Light Based on DSRC and On-Board Sensors[END_REF], or single source various means checking [START_REF] Sun | A data trust framework for VANETs enabling false data detection and secure vehicle tracking[END_REF]. The latter compares the object state contained in the V2X message to the measured object state from the communication radio wave (e.g., Doppler Shift).

• Reputation mechanisms which rely on the computation of trust score relative to a V2X node behavior [START_REF] Heng Chuan | A non-biased trust model for wireless mesh networks[END_REF]. The Scope of node trust can be global or local. Local trust implies that the trust value of a node is computed in the vehicle using trust mechanisms (e.g., Consistency and Plausibility mechanisms).

Local trust defines a subjective opinion of the perception system towards a V2X node and therefore should not be extended in a cooperative system to avoid badmouthing attacks [START_REF] Heng Chuan | A non-biased trust model for wireless mesh networks[END_REF]. Whereas, global trust values are computed by a global authority (Public Key Infrastructure) and acknowledged by all authenticated VANET members. A specific authority of the Public Key Infrastructure (e.g., Misbehavior Authority) collects misbehavior reports and decides on revocation of node [START_REF] Brecht | A Security Credential Management System for V2X Communications[END_REF].

Overall, Malicious Communicators also require the following security goals:

• Accountability is mandatory to report and revoke malicious nodes.

• Adaptability is a major security goal for communication. Indeed, most of the related work assume that cryptographic algorithms will ensure security goals such as Confidentiality and Integrity. However, few questioned the algorithms obsolescence due to advances in quantum computing. Therefore, without a backup plan, communication system relying on Public Key Infrastructures based on these algorithms are vulnerable [START_REF] Whyte | Quantum cryptanalysis, quantumsafe algorithms based on hard problems over lattices, and how we get there from here[END_REF]. The need to define a system able to adapt by supporting other algorithms in case of such attacks becomes mandatory. For instance, the SCMS PKI uses such system thanks to the integration of specific authorities named Elector CAs [START_REF] Brecht | A Security Credential Management System for V2X Communications[END_REF].

Security Goals for an Evil Mechanic

Evil Mechanics are difficult to counter because non-expert can hardly detect the malicious actions of an expert. However, some security requirements can be implemented to prevent such attacks. Security goals against In-vehicle Manipulator attacks include Integrity, Availability, Access Control, and Non-Repudiation. To perform In-vehicle Manipulator attacks, an Evil Mechanic will first try to access the hardware or the data. Therefore, Access Control mechanisms are important to ensure that only authorized personnel can access the data. For instance, such mechanisms include multiple authentication factors to ensure that the personnel or installed programs are authorized to access such data. Authorization mechanisms restrict actions from an Evil Mechanic or malware. Instructions to modify Data Storage should be signed using asymmetric cryptography to avoid communication alteration, hardware replacement or the spoofing of administrator session. Also, Integrity mechanisms mandatory to avoid the removal of any hardware components and ensure the overall availability of the perception system. Finally, Accountability mechanisms (e.g., events logs) is mandatory to monitor actions performed a hardware and its data. For instance, during a hardware replacement, the hardware logs indicate if it is new or already used.

Security goal against In-vehicle Miner attacks focus on Confidentiality. As mentioned, Data Storage contains valuable information such as private information or fusion algorithm. Therefore, they should be encrypted.

Security Goals for a Fusion Persuader

We define security goals for a Fusion Persuader that require the following Trustworthy mechanisms:

• Consistency mechanisms that detect a potential deviation between the estimated state and the observed state of a data source.

• Plausibility mechanisms that confront multiple data sources and detect disagreements among sources. For instance, the disagreement regarding a traffic light state between a camera recording and a SPaT message will raise an anomaly report [START_REF] Zaydounr | Comfortable Automated Emergency Brake for Urban Traffic Light Based on DSRC and On-Board Sensors[END_REF].

• Reputation mechanisms that compute the opinion value of the perception system regarding a perceived Road Object by using sensor confidence and V2X node trust metrics. The former assigns a weight to the sensor observations based on sensor past performances such as the number of successful detection of a Road Object. The latter is the trust computed based on the detection number of malicious messages emitted by a V2X node.

Also, Accountability mechanisms require to record every conflict between data sources that occurs during the fusion process. The aftermath goal is to provide meaningful reports to the Misbehavior Authority [17]. For instance, law enforcement authorities or insurance companies can request these reports to verify the events occurred in an accident. But also, it could help OEMs to detect, understand, and improve vehicles automation. Experts can extract events logs and misbehavior reports to reconstruct the road scene and correct potential weaknesses in the cooperative perception.

Also, Freshness mechanisms are mandatory to update the tracks database. For instance, the temporal freshness of tracks is a criterion to remove ghost tracks caused by Sybil Gating attacks or outdated Road Object tracks that are out of the perception range.

Finally, Adaptability mechanisms require to patch the fusion algorithms against potential undiscovered weaknesses during the vehicle lifetime. Moreover, in the case of a detected faulty/malicious source of acquisition, the system can only rely on its communication mode or on its local sensors mode to achieve perception [START_REF] Mohammad Y Abualhoul | Study and evaluation of laser-based perception and light communication for a platoon of autonomous vehicles[END_REF]. Privacy is the degree to prevent unauthorized parties to obtain sensitive information. Note that Privacy includes Confidentiality because sensitive information does not only imply private data but also confidential data (e.g., source code) [START_REF] Firesmith | Specifying reusable security requirements[END_REF].

Our Security Goals Model (SGM) [Mon+18b]

• Anonymity is the degree of identity disclosure of data users. Thus, Pseudonymity is one degree of anonymity that uses pseudonyms (e.g., pseudonym certificate) to identify users.

• Linkability is the degree of linking anonymous or pseudonymous data to their owner risking a potential disclosure of its private identity (e.g., home localization).

Trustworthy is the degree of trust assessed by the system regarding perceived Road Objects and perception data (Section 3.1.3). Trustworthy mechanisms rely on reputation, consistency, plausibility security goals.

• Reputation is the perception system opinion of a V2X system entity. This opinion is subjective. Its validity domain ranges from local to global.

• Consistency is the degree of temporal plausibility of a Road Objects behavior or products of behavior assessed by the perception system along the perception lifecycle (Section 3.1.3).

• Plausibility is the degree to which the system verifies that the perceived data are consistent with the ground truth (Section 3.1.3). As mentioned, other acquisition sources, Road Objects model, maximum-minimum thresholds, or Highway Code can be system ground truth assuming they are trustworthy.

Phenotype Integrity is the degree of protection of the Phenotype of a Road Object from malicious alterations.

Accountability is the degree of mapping security-related events to system entities.

• Non-repudiation is the degree of actions recognition of the entity that performs it.

• Reporting is the degree of recording Non-repudiated actions.

• Security Auditing is the degree of prevention, analysis, and evaluation of occurring, occurred, and potential security-events within a system.

Adaptability is the degree of attack recovery and defense of a system against future similar attacks. 

Comparison

This section analyses our security goal model through the comparison Table 5.3.

To build this table, we define the Target of Evaluation which is the perception domain (Section 3.1.3). Then, we set the involved entities which are Objects which regroup Ego-CAV and Road Object. Then, we link each Object to its Data Stages (Figure 3.4). This approach avoids speculating on the chosen architecture for data fusion. Indeed, acquisitions tracking is either decentralized (acquisitions source) or centralized (fusion ECU) [START_REF] Blackman | Design and analysis of modern tracking systems(Book)[END_REF]. Accordingly, we relate each Data Stages to a sub-attacker (Table 5.2). Finally, we match to each sub-attackers its security goals (Section 5.2.1).

Second, we compare our proposal to standardized security goal models such as STRIDE and CIA. Where STRIDE stands for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege. CIA stands for Confidentiality, Integrity, and Availability. Therefore, both do not consider Trustworthiness and Adaptability as security goals. An explanation is that both models were designed for traditional IT environment and not for the CAV domain. Also, both do not distinguish Authentication and Identification which is not adapted to the CAV domain. Indeed, in the case of Sybil attack on V2X nodes, the system allows a single identity to authenticate itself using multiple authenticators (e.g., Pseudonyms). Finally, STRIDE refers to accountability only through non-repudiation. However, CAV domain may rely on trust between entities and therefore will need security reports from CAVs to report malicious Data Objects.

That is, we showed the need for a new security goal model in the domain of CAV. Our model can answer this need. Indeed, our SGM includes new security goals which fits the recent attack occurring in the CAV domain. Besides, our SGM maps road objects, perception data, attacker model and security goals to ease the security analysis of a CAV. 

Conclusion

In this chapter, at first, we describe a data lifecycle within generic perception system model from which we identified its primary assets. Therefore, we derived an attacker model based on such assets and state of the art attacks. Following, we determined related countermeasures then accordingly we defined a security goals model. Finally, we compared our SGM against some standardized models and highlighted missing security goals. As a result, this chapter showed the need for costless and straightforward countermeasures against attacks performed on the surrounding environment. Also, despite the use of pseudonym certificate, we explained the need to investigate privacy mechanisms furthermore against Voyeur attacker. Overall, we demonstrated that sensor and V2X data are untrustable and may lead to new attacks within data fusion processes which were not designed for an uncooperative environment. Therefore, we explained the need to revisit such processes which led to the identification of three trustworthy sub-goals. Also, we showed the current lack of adaptability countermeasures of a perception system which remains an unsettled issue. Indeed, few works analyzed the obsolescence of perception algorithms such as the break of cryptographic algorithms. Finally, by focusing on the automotive perception, we demonstrated that current tools for threat analysis are insufficient. To conclude, we believe that standardizing automotive perception will help security experts to deepen existing automotive security analysis.

In the next chapter, we will present two modules of our FRPA to counter a Malicious Communicator. For the first module, we propose a Framework for a Machine Learning based Failure Classifier to detect anomalies in the V2X message. Then, we will describe the V2X-Sensor Correlation module that uses local sensor to detect V2X anomalies.

Chapter 6

Classification & Correlation Modules

In this chapter, we present two modules of our FRPA to counter the attackers described in chapter 5. In Section 6.1, we describe our framework to design a ML based Failure Classifier. Then, Section 6.2 describes our V2X-Sensor correlation module. Finally, Section 6.3 concludes this chapter. • Acquisition that aims to collect the data to train and test our classifier.

Framework for ML based Failure Classifier

• Preprocessing aims to format the acquired data.

• Training aims to train the classifier model and optimize its hyper-parameters value using the formatted data.

• Testing aims to evaluate the trained model. 

Preprocessing

Each source database is cleaned and formated into a preprocessed database. Indeed, unformatted and cleaned source databases may contain duplicated, noisy, or incomplete instances. Also, each source database has a different total number of features (Table 6.1). Therefore, we must select the required features for our classifier goal. To do so, we follow these preprocessing steps: cleaning, integration, transformation, and reduction.

Cleaning

An algorithm processes missing, noisy, and duplicated data. The causes of this type of data could be technical problems during data gathering, human mistakes, or attacker manipulation during data entry. For example, a Random Forest classifier does not support null values. To tackle this issue, there are three techniques that are removal, manual filling, and computed values filling.

In our work, we use the removal technique due to its straightforwardness while allowing us to maintain a high number of instances for each source database. While the second method is time-consuming due to the number of missing values (Table 6.1), the third method can generate a bias due to the number of redundant entries that may influence the mean or median values used to fill the missing values. Figure 6.2 highlights the presence of outliers in the raw datasets that are instances far from the instances cluster. In our work, an outlier is a data point that is distant from a group of data points. By cross-validation, we remove outliers that do not fit the dimension range of another car data source [18c]. For instance, in Figure 6.2, we circled in black outliers such as a car with a width smaller than 1 meter. process, the classifier model learns to associate a given instance to its actual label. After training, we compare the similarity between the predicted instance label by the classifier against the actual label of the instance.

The Shuffling process sets random instances order given a preprocessed database. For instance, this process avoids having a testing database that contains only a dataset of misbehaving instances.

The Sampling process divides the preprocessed database into multiple databases. A common approach is to divide the database into a training database and a testing database. Where the first database is for training the classifier model while the second database is for testing the model. In our work, we follow the Pareto Principle for the sampling process.

Selection

The Selection process defines the used machine learning algorithm and its statistical model. This model has higher-level properties named hyper-parameters which influences the model complexity, learning speed, and its application results. In our work, we use four classifiers and their corresponding models defined in Table 6.3.

Cross-Validation & Grid Search

The Cross-Validation process aims to train the classifier model given a training database and a set of hyper-parameters combination. The second goal of Cross-Validation is to avoid over-fitting. Indeed, during its training, the statistical model must minimize its performance error while maximizing its correctness during the testing stage. Therefore, by training on the same dataset, the model minimizes its performance error on this specific dataset but not on other datasets. To avoid this behavior, the Cross-Validation splits the training database into multiple datasets named folds that will serve for the model validation and training. The splitting strategy depends on the chosen type of Cross-Validation (exhaustive or non-exhaustive). For each model trained on a given combination of hyper-parameters, the cross-validation computes a performance score based on a defined metrics (e.g., accuracy).

The Grid search searches all the combinations of hyper-parameters and hyperparameters values tested in the Cross-Validation process (Table 6.3). At the end of the search, the ML model with the highest performance score becomes the trained model to be used in the testing stage. 

Testing

The testing stage evaluates the performance of a trained model on the testing dataset.

To do so, this stage has three steps that are Classification, Evaluation, and Validation.

Classification

This process tests the performance of the trained model on the testing database. Given a trained model and a testing dataset where each instance label is unknown, the classifier model predicts the label of each encountered instance.

Then, we store the comparison between the predicted label of the instance and its actual label in a confusion matrix database as defined in Table 6.5. Table 6.4 defines the terms related to this matrix.

In Table 6.5, the positive cases (TP, TN) regroup instances predicted as nonmisbehaving, whereas the negative cases (FP, FN) regroup instances predicted as misbehaving. The definition of the positive and the negative case is important during the analysis of classifier performance. Indeed, some metrics such as F1-score relies only on positive cases. Therefore, if the classifier performs better in detecting misbehaving instances than non-misbehaving ones, then the assignment of the cases influences the metric score.

For the online phase, the real-time system outputs the predicted label and does not create a confusion matrix because the system does not know the actual label of the incoming instance. In our work, we analyse the following metrics:

Terminology

• The Accuracy metric measures the proportion of predictions correctly classified among all predictions.

• The F1-Score metric is the harmonic mean of precision and sensitivity.

• The Cohen Kappa metric [START_REF] Cohen | A Coefficient of Agreement for Nominal Scales[END_REF] measures the agreement between two raters (e.g., the actual label against the predicted label). The kappa score measures the classifier performance with the model compared to its performance using random assignments. The metric value ranges from 0 to 1. While a value of 1 means there is a complete agreement, a value of 0 means there is no agreement.

• The Informedness metric [START_REF] William J Youden | Index for rating diagnostic tests[END_REF] is a function of sensitivity and specificity that measures the overall effectiveness of a test. The metric value ranges from 0 to 1. While a value of 1 means the test is effective, a value of 0 means the test is as efficient as a classifier with a random assignment strategy.

• The Matthews correlation coefficient metric [START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF] is the proportion of responses correctly classified. Unlike Accuracy and F1 score, this metric takes into account the balance ratios of the four confusion matrix categories. Therefore, this metric takes into consideration both positive and negative cases which include false positive and false negative cases.

Validation

To validate our ML classifer, the module must classify perception data with at least a metric score of 90% .

V2X-Sensor Correlation Module

In this section, we present our V2X-Sensor Correlation module. The module uses a perception sensor to detect abnormal V2X data. Thus, subsection 6.2.1 defines the local sensors embedded on the vehicle. Then, subsection 6.2.2 describes our V2X model. Next, the third subsection 6.2.3 describes the correlation module.

Sensors Set

Vehicular perception relies on the data acquisition of several sensor types embedded on an automated vehicle named ego (Figure 6.4). In this chapter, we consider a perception architecture with a local sensors (radars and cameras) and an OBU defined in Appendix A. This perception system receives V2X messages (m) from surrounding CAVs and sensor acquisitions (a). Then, each detection (message or acquisition) is processed into the same temporal and spatial frame (Data alignment). After alignment, each source processes each detection to a multiple object tracker. At the reception of each detection, the tracker will update the list of objects detected by the source within a time slot. Finally, each tracker provides its updated list of detected objects to our Sensor correlation module. Angle between the CAV head (a) and the magnetic North ψ s,i

Angle centered on a sensor (s) between the North and a tracked object (i) ψ V2X,a

Angle centered on an OBU (V2X) between the North and a tracked CAV (a) 

Message Model

We model a safety message as the following vector:

m a (t) = id a z WGS a C a C a (6.4)
We define a V2X Object Model as a rectangular model with four corners (Figure 6.5). Moreover, each corner position depends on the vehicle width (w a ) and length (l a ).

Spatial alignment

For spatial alignment, we perform two spatial transformation. First, we transform the V2X state from the GNSS system to the East North Up (ENU) system [19b]:

z ENU = geodetic2enu(z WGS , 0 WGS , P WGS ) (6.7)
Where 0 WGS is the location of the WGS-84 origin. Finally, P WGS is the spheroid settings [19b]. Then, we position our V2X object coordinates into the ego vehicle frame with a second transformation (z e a = z ENU e z ENU a

). The same transformation is performed for the object model C e a .

Correlation Module

We check the plausibility of a V2X object by verifying if the camera and OBU have detected this object. In Table 6 

FoV Check

Algorithm 2 verifies the presence of the tracked V2X object in the camera Field of View (FoV). To do so, the algorithm must compute the angle between the sensor (s) heading and the position (x e i , y e i ) of the track (i) as defined in Equation 6.8. Besides, the algorithm computes the distance between the sensor location and the location of emitter OBU (Equation 6.9). 

LoS Check

The second mandatory condition of the correlation module is to understand the non-detection of all V2X objects inside the camera FoV. An explanation for that is the presence of physical objects (e.g. other vehicles) which prevent the detection of these V2X object by the camera. The goal is to verify if there are objects occluding the Camera Line of Sight (LoS). Algorithm 4 verifies the intersection between two segments. The first segment (segmentLoS) extremities are the OBU location of the ego vehicle and of the V2X object. The second segment is iteratively each side of each physically confirmed object within the sensor FoV. The intersection algorithm outputs a binary value which confirms the intersection or the non intersection of the two segments.

In case of intersection, it means the tracked V2X object is in sensor NLoS. Therefore, the sensor cannot confirm its physical existence. Thus, the tracked V2X object is classified as an unconfirmed track.

However, if the V2X object is in sensor LoS. Then, the tracked V2X object should be detected by the camera. Thus, the tracked V2X object is classified as an unconfirmed track. 

Metrics Analysis

Another important task was to choose a suitable metric to assess the overall performance of a classifier model for the training and the testing phases. Based on Table 7.1, we study several metrics (Table 6.6). The F1 score is not a reliable metric to give an overall performance for our framework. Indeed, the metric focuses only on the performance of the positive cases. For instance, the MinMax classifier that includes all the positive cases (non-misbehaving instances) has the highest score among all studied classifiers. However, we see that its TNR and FPR scores are the worst among classifiers. Thus, if we defined positive cases as misbehaving instances, the F1-score will have the lowest score among all classifiers. Therefore, in our context, it is a good metric performance for detecting positive cases only.

Overall, Accuracy, Informedness, Cohen Kappa, and Matthews Correlation Coefficient metrics converge towards the same ranking that is that Random Forest is the best classifier for the chosen dataset.

Accuracy is the most optimistic performance metric to assess the overall classifier performance. For instance, the Naive classifier has a high accuracy score (94%) because the classifier detected all the positive and half of the negatives cases (maximal TP and mean TN values). However, its accuracy value does not reflect its poor FNR score. Informedness is the most pessimistic performance metric to assess the overall classifier performance. Although Cohen Kappa and Matthews Correlation Coefficient scores are closely tied to Informedness score, both metrics give an in-between value of the overall performance of our classifier model. While Cohen Kappa metric fits a binary classification problem like in this chapter, Matthews Correlation Coefficient metric fits multiple classification problems. Therefore, it suits as an overall performance metric for our framework.

Classifiers Analysis

Each classifier has three colored areas of dimension plausibility where each area represents a type of ITS-Station. The inner area is the non-misbehaving domain and the outer area is the misbehaving area (Figure 7.1).

The MinMax method classifies all the non-misbehaving instances correctly. The reason behind this behavior is the design of MinMax. Indeed, the definition of each plausibility area is set on the lowest and highest values of width and length of its non-misbehaving dataset. Thus, the MinMax method reaches the maximal TPR value (100%) and the minimal FNR value (0%) (Table 7.1). However, Figure 7.1a shows that the plausibility boundaries do not fit each cluster well. Indeed, the error margin that is the area between the cluster and its plausibility boundaries is high. As a result, the MinMax method has a higher risk to classify a misbehaving instance as a non misbehaving one (rectangle point within the area). Thus, its TNR score is mediocre (54%). Overall, the classifier performance has a MCC score of 71% which is below our requirement score (90%) defined in Section 6.1.5.3.

Each machine learning classifier (MLP, AdaBoost, and Random Forest) has a plausibility area that fits more the instances cluster of each ITS-Station type. The error margin is smaller than the margin of MinMax method (Figures 7.1b, 7.1c, and 7.1d). The risk to classify a misbehaving instance as non misbehaving is smaller. As a result, each classifier has a high TNR score (99%) which means the detection of misbehaving instances is accurate. However, by fitting the instances cluster, their TPR score is lower than the TPR score of the MinMax method. Therefore, our machine learning classifiers have a higher risk to classify a non-misbehaving instance as a misbehaving instance and a lower chance to classify it as a non-misbehaving instance. Overall, each machine learning classifier has a MCC score above or close to our requirement score.

To summarize, Random Forest with its default model is the best classifier in our context (MCC= 93%) despite having suboptimal hyper-parameter values. Therefore, our experiment highlights the importance of the classifier choice to detect. For instance, Figure 7.1d shows two moto plausibility areas within the car plausibility area. Therefore, a malicious CAV can pretend to be a moto.

• the detection performance inside the sensor FoV.

During this evaluation, we measure the run time of our sensor correlation module and of our two multiple objects trackers using the matlab script named tic toc. Then, we compute the run time of the perception life cycle that is equal to the sum of the two previously measured run times. Finally, we verify if the run time of our implementation is below latency requirements of 100ms (horizontal red line).

Also, we measure the detection performance of our sensor correlation module using four metrics for two areas of evaluation (the simulation area and the sensor field of view). The metrics are the mean real object detection score, ghost object detection score, uncertain object score, and detection accuracy score. The real object detection score is the ratio between the number of real object detected by our sensor correlation module and the number of real object in the evaluation area. We use the same computation for the ghost object detection score by using ghost object instead. The uncertain object score is equal to the number of object labeled as uncertain over the total number of object (ghost and real objects) in the evaluation area. Finally, the detection accuracy score is the inverse of the uncertainty metric.

Evaluation with a 1 Hz Emission Frequency of V2X Safety Message

Except at the first perception cycle, we observe that the latency of the perception cycle is below the threshold of 100 ms (Figure 7.3). Indeed, the multi-object tracker requires to perform some extra-processing during the initialization phase. Regarding the latency of our V2X-Sensor Correlation module (Figure 7.3b), we observe a 0,03 ms latency difference between the camera and the radar during the second and third perception iteration.

Then, we evaluated the detection performances of our V2X-Sensor Correlation module inside the whole simulation area. As seen in Figure 7.4a, the correlation module detects at least one of the two real objects (the parked vehicle and the crossing pedestrian) for both sensors. At the first iteration, our correlation module detects the parked vehicle but cannot detect the hidden pedestrian. However, the correlation module detects and classifies correctly the newly appeared pedestrian but cannot detect the parked vehicle (outside sensor FoV).

Moreover, the camera-based correlation module has a better detection score than the radar to detect V2X ghost objects (Figure 7.4b). For iterations 2 and 3, the ghost objects are outside sensor FoV. Therefore, the mechanism has no ghost object to detect.

Regarding detection uncertainty, the number of uncertain V2X objects increases because most of the real and ghost objects are moving outside the sensor FoV (Figure 7.4c). Therefore, our V2X-Sensor Correlation module is unable to detect and classify these objects (ghost or real). Thus, the detection accuracy decreases over time (Figure 7.4d).

Then, we restrict the evaluation to the sensor FoV. During the first perception iteration, each sensor detects only one of the two real objects (Figure 7.5a). This result is caused by the pedestrian hidden behind the parked vehicle. For the second and last iteration, the pedestrian is the only real object remaining in the sensor FoV. Thus, both sensors can classify the V2X object correctly as real. In Figure 7.5b, 80% of the total number of ghost objects are detected at the first perception iteration. Overall, the detection score is good regarding the other security methods. However, we believed that such score can be improved by analyzing each played scenario instance. Regarding the uncertainty score (Figure 7.5c), there is two factors that can explain such score. The first one is the hidden pedestrian that cannot be classified as a real object by our correlation module. Indeed, the sensor LoS is occluded by the parked vehicle. Thus, the correlation is unable to detect and classify the pedestrian at this time of the simulation. Besides, the second cause is the absence of sensor detection that leads to a mis classification of the parked vehicle. Sometimes, the camera may not detect the parked vehicle due to harsh operational conditions (e.g., sunlight). Therefore, the consequence of this undetection is the classification of the parked vehicle as a ghost vehicle. Thus, this failed detection raises the uncertainty score from 0.25 (perfect detection) to 0.4. Now, if we compare the radar and the camera, then the radar has a higher uncertainty rate than the camera. We observed this result because the radar track needs several radar detection before being confirmed and used. Therefore, overall, the parked vehicle requires more time to be tracked by the radar. Then for iterations number 2 and 3, the pedestrian is in sensor LoS and, thus, correctly detected. Besides, the V2X attacks are not located inside sensor FoV. Thus, the uncertainty score is almost null. Accordingly, the accuracy score increases over time as seen in Figure 7.5d.

As shown, the detection system can detect ghost and real objects during the first perception iteration. However, the emission frequency of V2X safety messages is too low to collect pieces of evidence to prove the existence of the V2X object. Thus, we decide to perform the same evaluation with a higher frequency (10 Hz).

To resume, a V2X safety message emitted at a high frequency increases the perception and detection capabilities of our sensor correlation module. Moreover, we observe that the radar is an efficient sensor to detect objects in NLoS.

Conclusion

In this chapter, we evaluated two modules of our FRPA to detect perception anomalies: a ML based Failure Classifier and a V2X-Sensor correlation module.

In this first part of the chapter, we evaluated our ML classifier framework for different types of objects (pedestrian and vehicles). We implemented 4 classifiers such as MinMax, MLP, Adaboost, and Random Forest. Then, we evaluated these classifiers with 5 performance metrics. The first result of this evaluation is the choice of MCC as our performance metric instead of the commonly used accuracy metric. Indeed, MCC is the most balanced metric among all tested metrics. The second result is that Random Forest is the best algorithm to classify dimension data. Indeed, this classifier has a the best MCC score (93%) among all classifiers. Also, this unoptimized classifier has better results than the other optimized classifiers used in our evaluation. As a future work, it will be relevant to extend our evaluation to other types of data such as the emitter position, speed, and heading.

Then, we evaluated our V2X-Sensor correlation module with two types of sensors and with two different emission frequencies of a V2X safety message. First, we showed that our V2X-Sensor correlation module detects NLoS objects thanks to the combination of radar and V2X data. We observed that our V2X-Sensor correlation module has better detection capabilities at high frequency (10 Hz). As a consequence, our V2X-Sensor correlation module force the attacker to generate ghost outside sensor FoV or minimize the number of emitted messages. Overall, our V2Xsensor correlation module has a detection score close to 90%.

As further analysis, we will vary the GNSS noise and study its impact on the detection performance of our V2X-sensor correlation module. Besides, other parameters can include the traffic density and its impacts on the perception latency. Indeed, if we increase the number of CAV in the scenario, then the perception cycle must store and process more CAV data that may result in a DDoS of the perception system.

Chapter 8

Conclusion & Perspectives

The future of autonomous driving depends on our ability to prevent perception failures for any automated and connected vehicles. The integration of V2X communication in the perception system is very interesting. Nevertheless, it implies the presence of security attacks targeting all connected and automated vehicles. To face these attacks, it is mandatory to design an efficient failures-resilient perception system that fits any connected and automated vehicles. In our thesis, we propose a generic perception architecture (GPA). Based on this architecture, we defined a failures-resilient pseudo algorithm (FRPA) that prevents the presence of perception failures in any connected and automated vehicle.

To reach this solution, we focus on failures caused by V2X attacks. In the absence of TARA methods to identify the most threatening attacks, we proposed a threat analysis and risk assessment method named SARA. Our method helped us to assess the security risk level of attacks. Besides, we proposed an attacker model to identify where and how an attack may target our GPA. After identifying and assessing perception attacks, we investigate more in detail two critical perception security modules: anomalies classification and correlation. We proposed then a ML-based Failure Classification and a V2X-Sensor Correlation Modules. Then, we evaluated our contributions.

Finally, we summarize the thesis by outlining the contributions above and by discussing future research directions.

Conclusion

First of all, we analyzed works related to CAV failures in Chapter 2. Also, we compared TARA methods, security modules, and simulators. As a conclusion, we pointed out the need for a generic architecture to propose a generic proposal that is failures resilient.

In Chapter 3, we proposed a Generic Perception Architecture (GPA). Our architecture is capable of supporting several types of physical and logical CAV architectures, including vehicles with automation level 5. Alongside our GPA, we defined an associated Perception Data Model (PDM). The latter highlights the specific and common data among perception sources and their location in the perception lifecycle. Next, we designed a failure resilient pseudo algorithm (FRPA) to prevent failures. FRPA design takes into account our PDM. Indeed, each FRPA module is based on data properties (raw/processed, specificity/common, discrete).

We wanted to identify the attacks with the highest level of risk for our GPA. Knowing these attacks, we could prioritize the attacks to be solved. As no TARA methods exist for CAV, we proposed a new method named SARA in Chapter 4. Our method includes new threat analysis tools: a new attack to asset mapping as well as a new attacker model. Besides, SARA includes new risk assessment metrics such as the degree of auto-pilot controllability and the degree of CAV observation. To prove its practicability, we applied our method on two use cases named Comfortable Emergency Brake Failure and Vehicle Tracking.

After identifying the attacks, we investigated how and when the perception attacks may occur in a driving scenario. Thus, in chapter 5, we proposed a new attacker model. Accordingly, we extended the security goals model from SARA and compared it with state of the art models to highlight our contribution.

After identifying the most threatening attacks, we proposed two modules: a framework for ML based failure and a V2X-Sensor Correlation Module. The first contribution detects abnormal data in a V2X message using supervised machine learningmethods. The second contribution detects abnormal data in a V2X message using a camera and a radar. We showed how a perception source could self-detect abnormal data to prevent failures. We also showed how to use another perception source to detect abnormal data.

In Chapter 7, we evaluated our two contributions. We tested our first contribution with abnormal classification data in a V2X message. During this evaluation, we tested optimized and unoptimized several ML models and compared them with a threshold-based model. Besides, we analyzed several metrics to assess the performance of a classifier model with an unbalanced dataset distribution (more normal data than abnormal data). Then, we tested our second contribution with abnormal position data in a V2X message. During this evaluation, we tested different frequencies of V2X message reception and different sensor types (radar and camera). Our contribution is highly accurate, but its performance is highly affected by the driving scenario (NLoS and frequency of the message reception). Besides, we showed that a radar outperforms a Camera in NLoS scenarios. Finally, our second contribution forces the attacker to avoid the sensor LoS and limits the frequency of message emission.

Overall, the thesis contributions resulted in the submission of ten french patents for Groupe PSA paving the way towards new research perspectives. Our contributions include the detection of sensor failures using V2X data. Others contributions include the computation of a machine learning features by using different methods.

For instance, we propose to compute the distance between the V2X message emitter and receiver by using ToA, euclidean distance, RSSI. Then, we use the three distance values as inputs of our ML algorithm. Thus, the ML module verifies if the three computed distance values are similar meaning the emitter position in the V2X message is plausible. In addition to anomaly detection, we provided three secured cooperative ADAS applications such as autonomous railway crossings, autonomous boarding in a cargo ship, and autonomous navigation on an airport tarmac. Finally, two patents are related to our sensor correlation module.

Perspectives

As part of the thesis perspectives, it will be relevant to investigate the following improvements to our contributions in the short and long-terms.

Short-term perspectives

This section presents a potential extension for each thesis contribution.

SARA

We propose two extensions to SARA. Unlike existing safety risk assessment methods, SARA assumes that an attack may occur on a CAV under perfect road conditions. Thus, a first extension could be to extend it with safety road conditions. As a second future work, it will be relevant to link our attacker model to the attack to asset mapping to take into account the attacker location and capabilities. For instance, an attacker like a communication deceiver targets the vehicle through V2X communication. Being defined as an insider, he possess cryptography materials and could emit and sign message with incorrect data. Thus, this attacker category can be defined as an attacker with high capabilities in the SARA method. Therefore, we believe we can define a systemic approach linking our attacker model and the attack to asset mapping defined in SARA.

Framework for ML based Failure Classifier

Currently, the absence of complete and approved attacks datasets limits the proposal of new machine learning methods designed to detect and classify abnormal perception data. A perspective is to simulate these attacks and create peer-reviewed datasets. It will be also interesting to pursue other tests such as testing other classification algorithms or widening the range of hyper-parameters values.

V2X-Sensor Correlation

It will be relevant to test our module under harsh road conditions such as extreme weather conditions, urban environments, and high traffic density. Therefore, the implementation of these conditions will help to pursue extensive analysis to evaluate the resiliency and the robustness of our correlation module.

Failures Resilient Perception Algorithm Implementation

In our work, we implemented two FRPA modules using Matlab 2019b. To evaluate FRPA's resiliency and robustness, we must implement the remaining modules such as the cryptography, the physical, temporal and, fusion modules. In addition to FRPA modules, the implementation of a V2X model that accounts of signal attenuation, collision, and obstruction is mandatory. Finally, a weather model that alters the physical signal of sensors and V2X communication could be a valuable asset to evaluate FRPA resiliency under harsh environmental conditions.

Long term perspectives

This section highlights three long term research future works:

• Privacy by design for secured automotive and cooperative perception Current perception trackers assume the absence of a privacy module. Indeed, cooperative perception systems rely on a unique lifetime station identifier to track surrounding connected and automated vehicles. However, vehicles have several identifiers changing over time to avoid being tracked. Therefore, an important open issue is to build a cooperative system scheme that identifies all surrounding vehicles within the perception system range. The first approach could be to investigate the data association mechanisms used in the local perception system. Indeed, a non cooperative perception must track a surrounding detected object without knowing its identity while identification data contained in V2X messages could be used straightforward y to identify an object. The bias contained in mobility data may lead to an incorrect identification. Therefore, the conception of a pseudonym resilient tracker for V2X communication could be a new contribution to secure cooperative perception system. An other open issue is to define a privacy strategy to mislead the tracker. For instance, as mentioned in Chapter 3, a global voyeur can use the tracker to track the whole driving history of a target. A privacy mechanism could be defined to avoid the voyeur to track its target without affecting the efficiency of the local V2X tracker.

• Distributed Geo-Sensing

To enhance failure perception, an interesting approach is to use autonomous vehicles as distributed sensors providing collected information to other entities belonging to an intelligent transportation system. Indeed, a float of autonomous vehicles can drive and collect several data such as images, dot clouds, V2X information about a whole city.

• Towards an open source test platform for secured CAV Currently, we find that the evaluation of algorithms for connected and autonomous vehicles is costly, incomplete, unoptimized, or proprietary. Thus, it is difficult to evaluate correctly security or safety solutions without an open-source dedicated for modeling and testing. The development fo such a research initiative will diminish the time spent in development and improve research proposals and industrial developments. Besides, this platform may help to provide realistic datasets.

• Data-driven for perception optimization

The machine learning based perception needs to train the model by trying different kinds of combinations of hyper-parameters. The set of such hyper-parameters can be different from time to time, and from scenarios to scenarios. As a future work, it will be relevant to study context-aware methods to selectively utilize the suitable hyper-parameters based on environment's context, in a data-driven manner. For example, at an intersection with a high density of pedestrians, the perception algorithm settings should be more sensitive to false negative faults (actual real pedestrian perceived as non-existing). while with roads where there is few pedestrians, the perception algorithm settings should be more sensitive to the possibility of false positive faults (ghosts).
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 4 6 depicts the potentially obtained attack tree.
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 5 Figure 5.4 presents our security goals model derived from the attackers security goals identified previously. Our model includes new security goals defined follow:Privacy is the degree to prevent unauthorized parties to obtain sensitive information. Note that Privacy includes Confidentiality because sensitive information does not only imply private data but also confidential data (e.g., source code)[START_REF] Firesmith | Specifying reusable security requirements[END_REF].

  FIGURE 5.4: SGM

Figure 6 .

 6 Figure 6.1 depicts our framework which describes the processes and flows involved in the realization of a ML based Failure Classifier. The framework has two phases named offline and online. Each phase contains several stages with processes, data, checks, and databases. The stages of the offline phase are:

Algorithm 1 : 2 T 3 ifT 4 { 5 {

 12345 V2X-Sensor Correlation ( checkCorrelation (...) ) Input : T V2X , T s , S s Output: T V2X+ , T V2X? , T V2X-, T ∫ 1 if T V2X is not empty then FoV = checkFoVTracks(T V2X , S s ) FoV and T s are not empty then T V2X? , T V2X+ } = checkExistence(T s , T FoV ) T V2X-, T V2X? } = checkNLoS(T V2X? , T V2X+ )
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	Data Elements	Description
		Standard Elements
	DSRCmsgID	Identifier for message type
	SecMark	Timestamp
	MsgCount	Message Number for a sequence
	TemporaryID	Network ID
	Latitude	Position along the latitude axis
	Longitude	Position along the longitude axis
	Elevation	Elevation relative to the sea level
	Speed	Object speed
	Heading	Angle between object head and North
	Yaw Rate	Heading per second
	Lat. Accel	Acceleration along the latitude axis
	Long. Accel	Acceleration along the longitude axis
	Vet. Accel	Acceleration along the vertical axis
	Positional Accuracy Semi-Major/Minor accuracy at one standard deviation
	Brake System Status Status of the Brake System
	Length	Vehicle Length
	Width	Vehicle Width
		Meta Data
	Sender ID	ID of the emitter
	Gentime	Time of message generation

1: CAM Structure

TABLE 2 .

 2 

2: Basic Set of C-ITS Applications

TABLE 2 .

 2 

	3: Automation Levels

Table 2 .

 2 5 depicts a set of lidars used in a project in Nevada for Connected Vehicles and New Traffic Application[START_REF] Xu | High Resolution Micro Traffic Data From Roadside Li-DAR Sensors for Connected Vehicles and New Traffic Applications[END_REF].

	Name	Detection Range (m) Beams # of	Max. Measurement FoV Price Frequency
	LeddarOne	40	1	140	3 •	$115
	Leddar IS16	50	16	50	45 •	$940
	Leddar M16	100	16	50	95 •	$740
	HDL 32E	100	32	10	360 •	NC
	VLP 16	100	16	20	360 •	NC
	HDL 64E	120	64	20	360 •	NC
	Vu8	215	8	100	100 • $650

TABLE 2 .
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5: LiDARs from various Manufacturers

[START_REF] Xu | High Resolution Micro Traffic Data From Roadside Li-DAR Sensors for Connected Vehicles and New Traffic Applications[END_REF] 
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	.6 summarizes
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7: Sensor performances

[START_REF] Schoettle | Sensor fusion: A comparison of sensing capabilities of human drivers and highly automated vehicles[END_REF] 

TABLE 2 .8: Subset of Attack Surfaces in a cooperative automated vehicle [PS15] 2.3 Threat Analysis and Risk Assessment (TARA)
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.10: Machine learning based Attacks Detection for a CAV

TABLE 2

 2 

					Dataset	
	Data Elements	Description	1 [Tra18]	2 [USDa]	3 [USDb]	4 [HLK18]	6 [Mon+18a]
		Standard Elements					
	DSRCmsgID	Identifier for message type	x				x
	SecMark	Timestamp					x
	MsgCount	Message Number for a sequence	x				x
	TemporaryID	Network ID	x		x	x	x
	Latitude	Position along the latitude axis	x				x
	Longitude	Position along the longitude axis	x				x
	Elevation	Elevation relative to the sea level	x				x
	Speed	Object speed					x
	Heading	Angle between object head and North x			x	x
	Yaw Rate	Heading per second	x		x	x	x
	Lat. Accel	Acceleration along the latitude axis	x		x	x	x
	Long. Accel	Acceleration along the longitude axis	x		x	x	x
	Vet. Accel	Acceleration along the vertical axis	x		x	x	x
	Positional Accuracy	Accuracy at one standard deviation	x		x	x	x
	Brake System Status	Status of the Brake System	x			x	x
	Vehicle Length	Vehicle Length		x	x	x	
	Vehicle Width	Vehicle Width		x	x	x	
		Physical Signal Data					
	RSSI	Received Signal Strength Indication	x	x	x		x
		Meta Data					
	Sender ID	Emitter Identifier	x				x
	Gentime	Time of message creation	x				x
		Receiver Data					
	Receiver ID	Receiver Identifier	x		x		x
	Receiver Position	Position along the X-Y-Z axis	x	x	x		x
		Cause of Perception Failures					
	Attacks	Presence of attacks	x	x	x		
		CAV Type					
	#Type	Diversity of CAV types	x	x	x	x	
	Our contribution						

Therefore, in chapter 6, we propose a new dataset

[Mon+18a] 

considering C-ITS stations dimensions and type (for more details, see Chapter 6). .11: Datasets for CAV Perception Failures

TABLE 3 .

 3 

		Sub-Category	Source Sensors V2X
		Source Identifier	✕
	Identification	Object Identifier Signal Strength	
		Existence	
		Position	
	State	Heading Speed	
		Acceleration	
	Classification	Dimension Type	
		Object Creation	
	Time	Message reception	✕
		Validity Duration	
		Digital Certificate	✕
	Security	Digital Signature	✕
		Global Trust	✕

1: Data Model for CAV Perception

  .1 depicts the considered threat model and security goal model in SARA.

	STRIDELC		AINCAAUT
	Threats	Explanation	Security Goals
	Categories		Categories
	Spoofing	impersonate someone or something else	Authenticity
	Tampering to modify data or functions	Integrity (*)
	Repudiation cannot traced back the author actions	Non-Repudiation
	Information to access to confidential data Disclosure	Confidentiality (Privacy)(*)
	Denial of Service	interrupt a system legitimate operation	Availability (*)
	Elevation of Privilege	perform unauthorized actions	Authorization
	Linkability deduce the owner identity from owner public [PFK14] unidentified data	Unlinkability (Privacy) [Why+13]
	Confusion	a data source confuses the system by sending	Trustworthy (*)
	[PFK14]	incorrect data within authentic data structure	[PS15]

(*) identifies prioritized goal, ( ) (Contribution Thesis

[START_REF] Jp Monteuuis | Securing PKI Requests for C-ITS Systems[END_REF]

) TABLE 4.1: SARA Threat-Security goals

  Linkability threat targets data related to our system of definition. This includes both Data Store and Data Flow which are, if not confidential, public or semi-public information (e.g., logs) potentially used to gather confidential information as mentioned. Finally, Table4.2 maps STRIDELC threats to our defined assets categories.

	Element	Assets	STRIDELC threats (Table 4.1)
	[Her+06]	(Section 3.1.1.1)	S T R I D E L C
	External Entity	External Entity	✓ ✘ ✓ ✘ ✘ ✘ ✘ ✓
	Data Process Data Store	Equipment	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
	Data Flow	Data Flow	✘ ✓ ✘ ✓ ✓ ✘ ✓ ✘

.1, only data emitters such as Equipment and External Entity produce authentic messages with incorrect content. Therefore, we map Confusion threat to Equipment and External Entity asset categories.

TABLE 4.2: STRIDELC-per-asset categories map

Table 4 .

 4 

	Ca A depends on multiple standardized factors [08; 09]:

4 depicts a list of attackers (A) and their corresponding capabilities (Ca A ).

TABLE 4 .

 4 

4: ISO metrics to Attackers Capabilities

  4. Security automotive risk analysis method (SARA)

						62
	Metric j ∈ {K, Ex, Eq, A}		K Ex Eq A
	Available choices per metric	n j	4	4	4	7
	Setting time per metric	t j	t	t	t	t
	Total of choices combination	∏ j n j		64		7
	Total setting time	∑ j t j		3 × t		t
	TABLE 4.5: Decision-Gain regarding Choices and Time			

TABLE 4 .

 4 Experts compute attack potential (AP A ) using the values of attacker capability Ca A , normalized elapsed time T and opportunity metrics WO as follows:

		6: Standardized Mapping Attack Likelihood [ETSa; Int16;	
		Hen+09]	
	AP A	Description	Al
	[0, 9]	Basic	5
	[10, 13]	Enhanced basic	4
	[14, 19]	Moderate	3
	[20, 24]	High	2
	> 24	Beyond high	1

TABLE 4 .

 4 

	7: Observation and controllability classification

TABLE 4

 4 

	.9: SARA Risk Matrix
	(C: Controllability, S: Severity, Al: Attack Likelihood)

TABLE 5 .

 5 

		1: Examples of similar attacks with different goals
	Data Stage Sensor Disrupter Evil Mechanic Malicious Communicator Fusion Persuader
	Phenotype	✘	✘
	Acquisition	✘	
	Storage	✘	✘
	Processing	✘	
		TABLE 5.2: Sub-Attacker Models in the Perception Lifecycle

  : the full security goal is not covered as depicted in Figure5.4 

	Object	Data Stage	Attacker Model	Security Goals	STRIDE	CIA	SGM
				Access Control	≈	✘	
			Voyeur	Trustworthy	✘	✘	
		Acquisition	Fully Adversarial Sensor Blindness	Availability Integrity			
			Sensor Illusion	Accountability	≈	✘	
				Privacy	≈	≈	
				Adaptability	✘	✘	
	Ego-CAV	Processing	Fusion Manipulator Communication Deceiver Sybil Gating	Availability Trustworthy Accountability Adaptability	✘ ≈ ✘	✘ ✘ ✘	
			In-vehicle Miner	Access Control	≈	✘	
			In-vehicle Manipulator	Availability			
		Storage	Tracking Poisoner	Integrity			
			Evil Sensor Calibrator	Accountability	≈	✘	
			OTA Poisoner	Privacy	≈	≈	
	Road Object	Phenotype	Ground Truth Falsifier Misbehaving Ground Truth	Availability Integrity			

≈

TABLE 5 .

 5 3: Comparison of SGM with STRIDE and CIA

Table 6 .

 6 1 summarizes each source database where raw is an unprocessed dataset.

	Source	ITS-Station	#Entries		#Features
		Type	(Row)		(Column)
		[ETS14]	Raw Cleaned Raw Reducted
	[18a]	Car	70847	55261	37	
	[Teo18; Fur18]	Moto	236	201	2	2
	[18b]	Pedestrian	501	501	15	
		TABLE 6.1: Collected Datasets		

TABLE 6 .

 6 

		4: Terms related to the confusion matrix
	Actual	Predicted Non-Misbehaving Misbehaving
	Non-Misbehaving	TP	FN
	Misbehaving	FP	TN

TABLE 6 .5: Matrix for Misbehavior Classification 6.1.5.2 Evaluation This

 6 step evaluates the classifier performance on the testing database. Table6.6 summarizes the list of metrics derived from the confusion matrix. TN -FP × FN (TP + FP)(TP + FN)(TN + FP)(TN + FN) Correlation Coefficient

	Metric	Notation		Equation
	Recall (Sensitivity)	TPR		TP TP + FN
	False			
	Positive Ratio	FPR		FP FP + TN
	(Fallout)			
	Specificity	TNR		TN TN + FP
	False Negative Ratio	FNR		FN TP + FN
	Positive			
	Predictive Value	PPV		TP TP + FP
	(Precision)			
	Negative Predictive Value	NPV		TN TN + FN
	Accuracy	ACC	TP + TN TP + FP + TN + FN
	F1-Score	F1	2×	PPV × TPR PPV + TPR
	Cohen Kappa	κ	ACC -(TP+FP)×(TP+TN)+(TN+FP)×(TN+FN) (TN+TP+FP+FN) 2 1 -(TP+FP)×(TP+TN)+(TN+FP)×(TN+FN) (TN+TP+FP+FN) 2
	Informedness (Youden's J)	J	TPR + TNR -1
	Matthews	MCC	TP ×	

TABLE 6 . 6 :

 66 Metrics of a confusion matrix

TABLE 6 .
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7: Variables within the Correlation Module

  .8, we collet the variables used in the correlation module.

	Variable	Meaning
	S s	Sensor settings
	T s	Tracked sensor objects
	T i	Tracked V2X object (i)
	T FoV	V2X tracks in camera FoV
	T V2X	Tracked V2X objects
	T V2X+ Real V2X tracks
	T V2X?	V2X tracks with unconfirmed existence
	T V2X-Malicious V2X tracks
	ρ s,max	Maximal detection range of the sensor
	ρ s,i	Distance between the position of a sensor (s) and the position of a track (i)
	φ s,max	sensor azimuth (FoV)

TABLE 6 .

 6 8: Variables within the Correlation ModuleAlgorithm 1 is composed of three algorithms used in our correlation module. The next sections describe each algorithm.

end

  Besides, the algorithm computes a rectangle model based on the width and the length values contained in the received V2X message.

	6.2.3.2 Existence Check		
	Algorithm 3 verifies if there are objects simultaneously tracked by the camera and
	the OBU tracks in the camera FoV. Therefore, the algorithm verifies if the location
	of a camera track (p e j ) is within the object model of the V2X track (C e i ). To do so,
	Equation 6.10 determines if a point is within a polygon [HA01].
		test = inpolygon(p e j , C e i )	(6.10)
	Algorithm 3: Existence Check ( checkExistence(...) )
		Input : T ∫ , T FoV		
		Output: T V2X? , T V2X+		
	1 for each T FoV i 2 for each T ∫ ∈ T FoV do j ∈ T ∫ do		
	3	test ← Equation 6.11		
	4	end		
	5	if test then		
	6	T V2X+ ← T FoV i		
	7	end		
	8 end		
		ψ s,i = arctan	x e i -x e s y e s i -y e	;	(6.8)
		ρ s,i = (x e i -x e s ) 2 + (y e i -y e s ) 2 ;	(6.9)
	Algorithm 2: FoV Check ( checkFoV(...) )		
		Input : T V2X , s 1 Output: T FoV		
	1 ψ s = (θ s + φ s ) ÷ 2		
	2 for each T V2X i 3 ρ s,i ← Equation 6.9 ∈ T V2X do		
	4	ψ s,i ← Equation 6.8		
	5 6	if T V2X i T FoV ← T V2X is within sensor max range and bearing then i
	7			

  Thus, it means the sensor correlation module is unable to classify the V2X track as malicious or non malicious.At this point, the V2X tracks classified as unconfirmed or real are sent to the fusion algorithm.

	Method TPR FPR TNR FNR ACC F1	J	k	MCC
	MinMax 1	0.452 0.547 0.0	0.942 0.96 0.54 0.67 0.71
	MLP 0.88 0.002 0.997 0.11 0.982 0.92 0.87 0.91 0.91
	AdaBoost 0.89 0.006 0.993 0.13 0.977 0.90 0.85 0.89 0.89
	R Forest 0.90 0.002 0.997 0.09 0.985 0.94 0.90 0.93 0.93
		test = intersect(p e j , C e i )		(6.11)

TABLE 7 .
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1: Classifiers Evaluation

refer to Table 4.7

refer toTable 4.8 

refer to Table 4.6, if S=0, it means an absence of risk.
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Acquisition

During this step, data are collected to train and test our classifier. we found three types of datasets for three ITS stations:

• pedestrians,

• motos, and

• CAV.

Transformation

We transform raw features into a specific format needed by the model as follows. For instance, we use Normalization to scales raw numerical values into a specified range (i.e., between 0 and 1). This technique ensures that features with large domains will not dominate features with smaller domains.

Reduction

The attacker targets the width, length, and type of an ITS-Station. Thus, we select the needed features according to our attacker model. Then, we remove the redundant instances among the selected features. For instance, different car models may have the same dimension. As a result, there are duplicated instances in the future preprocessed database that must be removed. Indeed, duplicated instances may provoke bias on the performance of learning techniques by affecting the inferred statistical distribution of data features. Table 6.2 gives the number of non-misbehaving instances within our preprocessed database. As seen in Table 6.1, the car source database has around 70000 instances and at most 37 features before the preprocessing. After the preprocessing, preprocessed database which is the aggregation of all data sources has 5500 instances and 3 features. 

Database

Revocation

The detected malicious tracks (T V2X-) are added to a black list and removed from the perception flow. The information contained in the black listed tracks are used to remove safety messages with the same station ID.

Conclusion

In this chapter, we present two modules of our FRPA to detect malicious V2X message.

The first module is a framework for ML based Failure Classifier. Our frameworks fits to any dataset (simulated or collected online) and any type of supervised ML algorithms (Random forest, KNN, and MLP).

The second module uses sensor measurements to detect V2X anomalies and prevent perception failures. Our module works with different type of sensors (radar and camera) and perception algorithms (Kalman Filter, Extended Kalman Filter, and Particle Filter). In the next chapter, we provide an evaluation of the described modules.

Chapter 7

Evaluation & Analysis

In this chapter, our contribution is two folds. First, we evaluated our ML based Failure Classifier. Secondly, we assessed and analyzed the performance of our V2X-Sensor Correlation Module. Finally, Section 7.3 concludes this chapter.

ML based Failure Classifier

This section presents the experiment setup, results for four failures classifiers and a discussion on the integration of our classifiers in our resilient perception architecture (GPA).

Experimentation Settings

We used an Intel Core i5 with 3.3 GHz laptop. We implement four classifiers, named MinMax, MLP, Adaboost, and Random Forest, on Python using numpy [START_REF]NumPy[END_REF], panda [START_REF] Mckinney | Data Structures for Statistical Computing in Python[END_REF], and scikitlearn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] libraries. Each classifier was designed to classify the dimension data contained in a V2X safety message as malicious or non malicious. For this experiment, we used a dataset composed of three types of ITS-Station. A difficult task during experimentation is to define the settings for the training step to obtain a well-trained model with optimized hyper-parameters. For this purpose, we use the sci-kit class named GridSearchCV [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. For Cross-Validation, we use the default k-fold cross-validation method with k set to 5 through empirical testing. For this case, the training database is split into 5 datasets where four sets serve as the training dataset and one as the validation dataset. Therefore, for a given set of hyper-parameters values, the Cross-Validation iterates this process five times until each one of the five datasets is used as a validation dataset for model validation. For each iteration, the Cross-Validation process computes a score defining the model performance of the validation dataset. Once the five iterations passed, a mean score value is computed that reflects the average performance of the model given a set of hyper-parameters. We choose Matthews Correlation Coefficient as a scoring metric. Then, the GridSearch method tests the next combination of hyper-parameters values according to Table 6.3. Once all the combinations tested, GridSearchCV outputs the hyper-parameters that got the highest mean score during the Cross-Validation. The process duration was 37 hours long just for MLP. At last, we test the trained model on the testing dataset and we obtain the results collected inTable 7.1. 

Results Analysis

Simulated Scenario

We evaluated our module considering a standardized safety scenario named AEB Pedestrian Child Nearside [ENC18]. Figure 7.2 depicts the simulation area (50 × 60m 2 )scenario. The scenario includes a pedestrian crossing the road (blue dots) behind a parked vehicle (yellow rectangle). Our ego vehicle (red rectangle) is in the middle of the road driving towards the pedestrian. Table 7 For the simulation, we used several sensors (GNSS receiver, camera, and radar) and several multiple objects trackers (MOT). For clarity sake, the reader may refer to Appendix A for details on sensors and trackers settings.

In this evaluation, we compare two types of architectures:

• one with a front Long Range Radar and V2X,

• one with a front Camera and V2X.

For evaluation fairness, we defined a bigger Field of View (FoV) for the radar. Indeed, each sensor must have the same area of detection. However, by default, a long-range radar model has a narrower FoV than a vision sensor model. This is why the default radar model was changed.

Appendix A Simulation Model & Settings

A.1 Sensors

This section defines the mutual and exclusif sensor properties used in Section 6.2 

A.1.1 Common

A.2.2 Tracker

Meaning & Variable Model • V2X message from ITS-V classifies it as "special vehicle"

• Camera classifies ITS-V as "civilian vehicle"

3. Altered Roadsign (90km/h limitation) is altered into a 10 km/h roadsign • Camera classifies obstacle as "10km/h roadsign"

• V2X, roadmap classifies obstacle as "90 km/h roadsign" 4. CAV is misclassified by a Sensor.

• physical alteration of the connected vehicle shape

• faulty sensor classifier

B.2 Object Detection Failure

In this use case, a CAV is undetected by a sensor due to several cause of failures. We identified 5 categories of failures scenario.

1. destruction/alteration/removal of:

• the sensor hardware

• the sensor data (software, measurements, and settings)

• the C-ITS station or its components (traffic light, brake light, traffic sign)

signal spoofing

• sensor spoofing

• GPS spoofing (malicious safety message)

signal attenuation/ reflection

Appendix B. Use Cases for Perception Failure
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• adversarial material on the vehicle (signal absorption or reflection)

• harsh weather conditions (Blizzard, Rain)

• replay attack 4. signal obstruction

• The CAV and the ego vehicle are sensor jammed.

• road topologies (hill, hairpin turns, superposed roads)

• road obstacles (buildings and vehicles)

• harsh weather conditions (blizzard, sand storm, mist or tropical rain).

5. Combination of malicious V2X data and a cause of sensor failure

B.3 Self-localization Failure

We identified a single scenario for this use case. In a tunnel, a CAV emits an incorrect position to surrounding CAVs.

• GNSS Data are unavailable

• IMU is faulty