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The intentional mistuning, also called detuning, has been identied as an ecient technological way for reducing the sensitivity of the forced response of bladeddisks to unintentional mistuning (simply called mistuning), caused by the manufacturing tolerances and the small variations in the mechanical properties from blade to blade. The intentional mistuning consists in detuning the bladed-disk structure by using partial or alternating patterns of dierent sector types. However, the recent technological improvements that include the use of more exible and lighter blades can lead to large strains/displacements, which requires the use of nonlinear dynamic equations involving geometric nonlinearities. This work is devoted to the robust analysis of the eects of geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned bladed-disks in presence of mistuning. The detuning corresponds to uncertainties in the computational model, and are taken into account by a probabilistic approach. This thesis presents a series of novel results in dynamics of rotating bladed-disks with mistuning and detuning in presence of nonlinear geometrical eects. The structural responses are computed in the time domain and are analyzed in the frequency domain. The frequency analysis exhibits responses outside the frequency band of excitation. The condence region of the stochastic responses allows the robustness to be analyzed with respect to uncertainties, that is to say with respect to the level of mistuning. The bladed-disk structure, which is used for the numerical simulations, is made up of 24 blades for which several dierent detuned patterns are investigated with and without mistuning.

Résumé

Le désaccordage intentionnel, plus communément appelé detuning, a été identié comme une possible technonologie pour réduire la sensibilité du comportement dynamique de roues aubagées soumises au désaccordage involontaire, aussi appelé mistuning, causé par les dispersions matérielle d'une aube à une autre engendrées lors du processus de fabrication et par la variabilité des propriétés mécaniques des matériaux. Le désaccordage intentionnel est mis en place par l'introduction de motifs à partir desquels diérents types de secteurs générateurs, ayant des propriétés géométriques et matérielles diérentes, sont assemblés. Cependant, les récentes innovations technologiques impliquant l'utilisation d'aubes de plus en plus exibles et plus légères conduisent à de grands niveaux de déplacements et de déformations, requiérant l'utilisation des équations dynamiques non linéaires tenant compte des non-linéarités géométriques. Ce travail est dédié à l'analyse robuste des eets des non-linéarités géométriques sur la dynamique non linéaire de roues aubagées désacccordées intentionnellement, en rotation, en présence de désaccordage involontaire. Le désaccordage involontaire correspond à des incertitudes dans le modèle numériques et sont prises en compte par une approche probabiliste. Cette thèse de nouveaux résultats concernant la dynamique non linéaire des roues aubagées désaccordées intentionnellement en présense de non-linéarités géométriques et en présence de désaccordage involontaire. Les analyses dynamiques sont eectuées dans le domaine temporel et analysées dans le domaine fréquentiel. L'analyse fréquentielle des réponses non-linéaires mettent en évidence des réponses signicatives en dehors de la bande d'excitation. Les intervalles de conance des réponses stochastiques permettent d'analyser la robustesse du modèle vis-à-vis des incertitudes, c'est-à-dire du niveau de désaccordage involontaire. La roue aubagées utilisée pour les simulations numériques est composée de 24 secteurs pour lesquels diérents motifs de roues aubagées désaccordées intentionnellement sont analysés, avec ou sans désaccordage involontaire. Linear scale (left gure) and log scale (right gure) . . . . . . . . . 6.10 For s 0 = 1, graphs of function δ K → b +,∞ L (δ K ) for tuned pattern P 0 and detuned ones, P 2 , P 3 , P 5 , P 6 , P 12 , and P 31 dened in Appendix B. In this section, we briey recall the origins of the mistuning phenomenon in bladeddisk structure and how it aects their dynamic behavior. Typically, a bladed-disk is an assembly of blade sectors designed to be identical from one to another one. However, there are unavoidable variations and discrepancies in the structural properties of individual blades due to manufacturing tolerances, material or geometric discrepancies. Such a phenomenon is called mistuning. These variations modify the natural frequencies of the bladed-disk structure from its nominal design. Research about the origins of mistuning phenomenon in bladed-disk structures has rst been investigated in the 1960's [4,5]. Then, Whitehead investigated the inuence of mistuning on the forced vibration behavior of bladed-disk structures [6].
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This pioneered work has been followed by those of Ewins [7], Dye and Henry [8], where the amplication factor has been introduced in order to measure the consequences of the mistuning into the dynamic response. This amplication factor is dened as the ratio of the two following quantities. The rst one is the highest forced response of a given mistuned bladed-disk structure. The second one is the highest forced response level of the tuned bladed-disk structure submitted to the same excitation [START_REF] Chan | Management of the variability of vibration response levels in mistuned bladed discs using robust design concepts. part 2: tolerance design[END_REF]. The uncertainties associated with the structural, material, manufacturing, and assembly characteristics of a bladed-disk structure, aect the modal properties of the tuned system. The eigenfrequencies and the mode shapes are modied [7,[START_REF] Hodges | Connement of vibration by structural irregularity[END_REF]. The presence of mistuning could possibly lead to mode localization, in which the blades vibration energy is transferred and conned to only one or few blades [START_REF] Pierre | Mode localization and eigenvalue loci veering phenomena in disordered structures[END_REF], inducing larger dynamic amplitudes compared to the tuned one [START_REF] Lin | An adaptive perturbation scheme for the analysis of mistuned bladed disks[END_REF][START_REF] Whitehead | The maximum factor by which forced vibration of blades can increase due to mistuning[END_REF][START_REF] Rivas-Guerras | Local/global eects of mistuning on the forced response of bladed disks[END_REF][START_REF] Vargiu | A reduced order model based on sector mistuning for the dynamic analysis of mistuned bladed disks[END_REF]. Localization phenomenon has received wide attention in the literature. It appears in various types of engineering structures, such as the small disordering of periodic truss beams [START_REF] Chen | Vibration localization and wave conversion phenomena in a multi-coupled, nearly periodic, disordered truss beam[END_REF][START_REF] Lust | Free and forced response of nearly periodic multi-span beams and multi-bay trusses[END_REF], and of cyclic structures [START_REF] Pierre | Localization of vibrations by structural irregularity[END_REF][START_REF] Pierre | Strong mode localization in nearly periodic disordered structures[END_REF][START_REF] Hemberger | Investigations on maximum amplitude amplication factor of real mistuned bladed structures[END_REF] (cf Figure 1.1). Hodge [START_REF] Hodges | Connement of vibration by structural irregularity[END_REF] showed that the mode localization of a bladed-disk struc-Figure 1.1 Amplication factors from measurement results [START_REF] Hemberger | Investigations on maximum amplitude amplication factor of real mistuned bladed structures[END_REF] ture becomes worse either with increasing mistuning levels, or by decreasing the mechanical coupling between blades. The role played by inter-blade coupling has also been investigated by Ottarsson and Pierre [START_REF] Pierre | Mode localization and eigenvalue loci veering phenomena in disordered structures[END_REF]. They showed that a weak coupling could signicantly increase the forced response amplitudes, each blade acting as an isolated part avoiding of the vibration energy to be transferred between the other blades whereas a very strong inter-blade coupling allows the energy to be spacially distributed, and therefore reducing the possibility of mode localization. Previous work published in [START_REF] Pierre | Mode localization and eigenvalue loci veering phenomena in disordered structures[END_REF][START_REF] Gottlieb | Extension of a text-book problem to curve veering for coupled pendulums[END_REF] also indicates that the sensitivity of the forced response to mistuning is associated with the frequency-veering region. When there is mistuning, the modes in the veering region tend to generate a disk-blade motion yielding a strong inter-blade coupling and then a mode localization with a significant dynamic amplitudes levels [START_REF] Ottarson | On the eects of interblade coupling on the statistics of maximum forced response amplitudes in mistuned bladed disks[END_REF]. Furthemore, the mode localization strongly depends on the mistuning levels of the blades, and the maximum amplitude factor is very sensitive to small perturbations levels. Indeed, in references [7] and [START_REF] Ottarson | On the eects of interblade coupling on the statistics of maximum forced response amplitudes in mistuned bladed disks[END_REF], it has been proved that the maximum amplitude of the blade disk dynamic response increases with the increasing of the mistuning only up to a certain level, after which mistuning leads to lower forced response amplitudes. An example of such phenomenon is shown in Figure 1.2 [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions[END_REF]. 

Combining detuning and mistuning

The detuning (called intentional mistuning) consists in voluntarily breaking the cyclic symmetry of a tuned bladed-disk that is only made up from a given gen-erating sector. The breaking is obtained by substituting one or several sectors of the tuned bladed-disk by a perturbed sector. A perturbed sector is obtained by modifying the geometry and or the mechanical properties of the generating sector. A given assembly of sectors is dened as a pattern. Such a strategy has been shown to be ecient for mitigating the harmful eects generated by the mistuning. Indeed, it has been reported that the maximum blade forced response levels can be decreased by detuning the tuned design [START_REF] Grin | Model development and statistical investigation of turbine blade mistuning[END_REF][START_REF] Castanier | Consideration on the benets of intentional blade mistuning for the forced response of turbomachinery rotors[END_REF][START_REF] Castanier | Investigation of the combined eects of intentional and random mistuning on the forced response of bladed disks[END_REF][START_REF] Castanier | Using intentional mistuning in the design of turbomachinery rotors[END_REF]. Using two or more designs of blades with nominally dierent natural frequencies can make the detuned bladed-disk structure more robust with respect to the mistuning eects [3]. However, the eectiveness of such strategy, which consists in detuning the tuned design strongly depends on the selected pattern [START_REF] Yiu | Dependence on blade arrangements of mistuned bladed disc of the optimal and critical resonant responses[END_REF][START_REF] Sinha | Computation of the maximum amplitude of a mistuned bladed disk assembly via innity norm[END_REF][START_REF] Petrov | Optimization of mistuned bladed discs using gradient-based response surface approximations[END_REF][START_REF] Petrov | Search for the best blade arrangement in a mistuned bladed disc assembly[END_REF][START_REF] Choi | Optimization of intentional mistuning patterns for the reduction of the forced response eects of unintentional mistuning: Formulation and assessment[END_REF][START_REF] Petrov | Analysis of the worst mistuning patterns in bladed disk assemblies[END_REF][START_REF] Han | Optimization of intentional mistuning patterns for the mitigation of the eects of random mistuning[END_REF][START_REF] Tan | Mistuning sensitivity and optimization for bladed disks using high-delity models[END_REF][START_REF] Beirow | Vibration analysis of an axial turbine blisk with optimized intentional mistuning pattern[END_REF]. In order to select the detuned pattern leading to the smallest dynamic amplication, a design optimization can be performed. It should be noted that the optimization of the detuning, which consists in nding the optimal pattern, requires the calculation of a very large number of detuned patterns in presence of mistuning, that is to say, using a stochastic computation model. Consequently, the computational cost becomes very large for a bladeddisk made up with a large number of blades. More recently, the technological improvements that include the use of more exible and lighter blades can lead to large strains/displacements (as shown in Figure 1.3) so that the linearization of the dynamic equations can no longer be used. In this context, the geometric nonlinearities have to be taken into account as proposed in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF], and there is a growing interest for including geometric nonlinearities in the dynamic analyses of detuned bladed-disks.

Eects of geometric nonlinearities

Research dealing with geometric nonlinearities have been mainly focused on geometric nonlinear problems of beams, plates, and shells [START_REF] Volmir | Flexible plates and shells (in russian)[END_REF][START_REF] Wood | Geometrically nonlinear nite element analysis of beams, frames, arches and axisymmetric shells[END_REF][START_REF] Argyris | On large displacement-small strain analysis of structures with rotational degrees of freedom[END_REF][START_REF] Bathe | Large displacement analysis of threedimensional beam structures[END_REF]. Moreover, one can nd a lot of scientic litterature about theoretical and numerical algorithms adapted to such context. Among them, we can cite books from Belytschko [START_REF] Belytschko | Hourglass control in linear and nonlinear problems[END_REF][START_REF] Belytschko | Nonlinear Finite Elements for Continua and Structures[END_REF], Bonet [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis[END_REF] and Criseld [START_REF] Borst | Nonlinear Finite Element Analysis of Solids and Structures[END_REF]. Nowadays, because of the use of more lighter, more slender, and more exible structural components, the structure may undergo large displacements in structural dynamics and for uid-structure interactions.

In the framework of cyclic structures, the eects of nonlinearities on the dynamics have rst been considered by [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF] for a simple generic cyclic structure exhibiting nonlinear stiness connections (and not for nonlinear geometric eects, and furthermore, without mistuning). For the nonlinear dynamic analysis of rotating bladed-disk structures with exible blades, geometric nonlinearities can no longer be neglected [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF][START_REF] Picou | Eects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk[END_REF][START_REF] Picou | Robust dynamic analysis of detuned-mistuned rotating bladed disk with geometric nonlinearities[END_REF]. Note that the need to accurately predict the dynamic response of such geometric nonlinear dynamical systems becomes essential for the designer.

In the framework of cylic geometric structures, many research have been carried out in order to include local nonlinearities such as dry friction [START_REF] Wei | Eects of dry friction damping on the occurrence of localized forced vibrations in nearly cyclic structures[END_REF][START_REF] Nacivet | A dynamic lagrangian frequencytime method for the vibration of dry-friction-damped systems[END_REF][START_REF] Ci | Nonlinear vibration analysis of bladed disks with dry friction dampers[END_REF][START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF][START_REF] Liu | A nonlinear vibration analysis of forced response for a bladed-disk with dry friction dampers[END_REF][START_REF] Tang | Geometric optimization of dry friction ring dampers[END_REF]. Furthermore, due to the complexity of modern structures with cyclic geometry, large nite element computational models are needed. Consequently, research on the construction of adapted nonlinear reduced-order models for bladed-disk structures have also been largely investigated [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF][START_REF] Krack | Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact[END_REF][START_REF] Tang | Nonlinear dynamics of mistuned bladed disks with ring dampers[END_REF][START_REF] Baek | Reduced-order models of blisks with small geometric mistuning[END_REF][START_REF] Battiato | Reduced order modeling for multistage bladed disks with friction contacts at the ange joint[END_REF][START_REF] Mitra | Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces[END_REF][START_REF] Pourkiaee | A reduced order model for nonlinear dynamics of mistuned bladed disks with shroud friction contacts[END_REF].

One of strategy that can be used for constructing nonlinear reduced-order models is the Stiness Evaluation Procedure (STEP) proposed in [START_REF] Muravyov | Determination of nonlinear stiness with application to random vibration of geometrically nonlinear structures[END_REF][START_REF] Mignolet | A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[END_REF], which is applicable to a wide class of problems carried out with commercial nite element codes having a geometrically nonlinear static capability. The methodology is based on the use of a standard commercial nite element code for which no further nu-merical development is needed, only requiring a series of nonlinear static computations with prescribed displacements [START_REF] Perez | Reduced order model for the geometric nonlinear response of complex structures[END_REF][START_REF] Wang | Nonlinear reduced order modeling of complex wing models[END_REF]. Such method has been used in several contexts (see for instance, [START_REF] Wang | Nonlinear reduced order modeling of curved beams: a comparison of methods[END_REF][START_REF] Perez | Nonlinear reduced-order models for thermoelastodynamic response of isotropic and functionally graded panels[END_REF][START_REF] Perez | Reduced order model for the geometric nonlinear response of complex structures[END_REF][START_REF] Thomas | Finite elements based reduced order models for nonlinear dynamics of piezoelectric and dielectric laminated micro/nanostructures[END_REF]). In the framework of the STEP method, methodologies for constructing non-intrusive reduced-order models have been reviewed by [START_REF] Mignolet | A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[END_REF].

Another approach for analyzing nonlinear dynamical systems is the Harmonic Balance Method (HBM) (see for instance [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF] for friction problems and [START_REF] Lewandowski | Computational formulation for periodic vibration of geometrically nonlinear structures part 1: theoretical background[END_REF] for geometric nonlinear problems). In 2011, Grolet et al investigated nonlinear systems with cyclic symmetry submitted to geometric nonlinearities [START_REF] Grolet | Vibration analysis of a nonlinear system with cyclic symmetry[END_REF] followed by the work presented in [START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplied model[END_REF] and solved by using HBM. Note that all these works do not take into account neither detuning nor mistuning phenomena. Likewise, Martin et al proposed in [START_REF] Martin | Dynamic analysis and reduction of a cyclic symmetric system subjected to geometric nonlinearities[END_REF] an investigation of a stator vane composed of nonlinear beams subjected to nonlinear eects and proposes an original coupling of several methods used for the study of nonlinear systems. The nonlinear eects of each substructure are reduced by using linear normal modes (LNMs) completed with modal derivatives (MD) [START_REF] Idelsohn | A reduction method for nonlinear structural dynamic analysis[END_REF][START_REF] Slaats | Model reduction tools for nonlinear structural dynamics[END_REF]. The reduced nonlinear stinesses associated with the basis are determined using the STEP method [START_REF] Muravyov | Determination of nonlinear stiness with application to random vibration of geometrically nonlinear structures[END_REF][START_REF] Givois | On the frequency response computation of geometrically nonlinear at structures using reduced-order nite element models[END_REF]. The nonlinear eects exhibits strong localizations on the structure at low amplitudes, which must be avoided to ensure the integrity of the components.

The classical Proper Orthogonal Decomposition (POD) method is an ecient tool for constructing the vector basis, which allows nonlinear reduced-order models to be constructed [START_REF] Loève | Probability theory[END_REF][START_REF] Holmes | Turbulence, coherent structures, dynamical systems and symmetry[END_REF][START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF][START_REF] Azeez | Proper orthogonal decomposition (pod) of a class of vibroimpact oscillations[END_REF][START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for a general equation in uid dynamics[END_REF][START_REF] Meyer | Ecient model reduction in non-linear dynamics using the karhunen-loeve expansion and dual-weighted-residual methods[END_REF][START_REF] Sampaio | Remarks on the eciency of pod for model reduction in non-linear dynamics of continuous elastic systems[END_REF], and which is commonly used in many applications.

For nonlinear dynamic systems, another overview concerning the construction of vector bases used for obtaining the reduced-order model has been carried out in [START_REF] Lülf | Reduced bases for nonlinear structural dynamic systems: A comparative study[END_REF], where the robustness and the performance of these bases are investigated. More recently, an autonomous geometric nonlinear reduced-order model for studying the solution of complex rotating structures has been presented in [START_REF] Lülf | An integrated method for the transient solution of reduced order models of geometrically nonlinear structures[END_REF][START_REF] Aguirre | Reduced order models for dynamic analysis of nonlinear rotating structures[END_REF]. For that purpose, the linear normal modes basis is used for the construction of the reduced-order model, the STEP method is applied to compute the nonlinear forces, and the assumption of nonlinear perturbations around the static equilibrium is considered. In [START_REF] Hui | Nonlinear cyclic transient dynamic analysis for bladed disk tip deection[END_REF], a methodology is presented to calculate the nonlinear dynamic response of cyclic structures undergoing large vibratory deformation under a traveling wave excitation using a double-sector model and transient dynamic analysis. Some other works on the eld of geometric nonlinearities with application on beam [START_REF] Huang | An explicit method for geometrically nonlinear dynamic analysis of spatial beams[END_REF], coupled dynamic system [START_REF] Capiez-Lernout | Uncertainty quantication for an elasto-acoustic nonlinear reduced-order computational model[END_REF], curved structure [START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity[END_REF] and compos-1.2. Objectives of research ite blades [START_REF] Shang | Geometrically exact nonlinear analysis of pre-twisted composite rotor blades[END_REF] have also been carried out.

In this work, the nonlinear reduced-order model is constructed using a novel approach. It consists in introducing a double projection approach [START_REF] Picou | Eects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk[END_REF][START_REF] Picou | Robust dynamic analysis of detuned-mistuned rotating bladed disk with geometric nonlinearities[END_REF] followed by the the use of the POD method for constructing the nal vector basis. In addition, an explicit approach is used for directly constructing the reduced linear, quadratic, and cubic stiness operators of the mean nonlinear computational model [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF][START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity[END_REF][START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF]. Such approach allows for analyzing industrial rotating integrally bladed-disks in order to quantify the impact of the nonlinear geometrical eects on the detuned-mistuned structure, in terms of dynamic amplication of the responses and of uncertainty propagation.

Objectives of research

As explained above, nonlinear complex phenomena remain to be understood and analyzed in order to integrate these new concepts in industrial issues, in particular concerning optimization problems. Moreover, the uncertainty quantication and numerical errors is nowadays recognized as necessary to improve the robustness of predictions for design optimization. Lot of studies have been conducted in the framework of the linear dynamic analysis for which the mistuning eects have been modeled using either parametric probabilistic approaches (see for instance, [START_REF] Castanier | Investigation of the combined eects of intentional and random mistuning on the forced response of bladed disks[END_REF][START_REF] Mignolet | On the forced response of harmonically and partially mistuned bladed disks. part 2: partial mistuning and applications[END_REF][START_REF] Mignolet | Identication of mistuning characteristics of bladed disks from free response data -part 1[END_REF][START_REF] Brown | Probabilistic analysis of geometric uncertainty eects on blade modal response[END_REF][START_REF] Lee | Assessment of probabilistic methods for mistuned bladed disk vibration[END_REF]), or using the nonparametric probabilistic approach ( [START_REF] Capiez-Lernout | Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed-disks[END_REF][START_REF] Capiez-Lernout | Blade manufacturing tolerances denition for a mistuned industrial bladed disk[END_REF][START_REF] Nyssen | Modeling of uncertainties in bladed disks using a nonparametric approach[END_REF][START_REF] Soize | Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF]), and for which the optimization of alternating patterns has been studied (see for instance, [START_REF] Choi | Optimization of intentional mistuning patterns for the reduction of the forced response eects of unintentional mistuning: Formulation and assessment[END_REF][START_REF] Han | Optimization of intentional mistuning patterns for the mitigation of the eects of random mistuning[END_REF]3,[START_REF] Han | Optimization of intentional mistuning patterns for the mitigation of the eects of random mistuning[END_REF]). More recently, nonparametric probabilistic approach has been used for nonlinear structural vibration with nonlinear geometric eects [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF][START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity[END_REF][START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF][START_REF] Capiez-Lernout | An improvement of the uncertainty quantication in computational structural dynamics with nonlinear geometrical eects[END_REF]. Blade optimization problems in nonlinear dynamics with nonlinear geometric eects and with uncertainty quantication is today considered as a real need for aeronautical industry. In this context, this research follows the works proposed in [START_REF] Capiez-Lernout | Dynamique des Structures Tournantes à Symétrie Cyclique en Présence d'Incertitudes Aléatoires: application au Désaccordage des Roues Aubagées[END_REF][START_REF] Mbaye | Conception Robuste en Vibration et Aéroélasticité des Roues Aubagées de Turbomachines[END_REF], in which tuned and detuned bladed-disks in presence of mistuning have been investigated in the context of the linear dynamics. Particularly, it has been shown in [3] that detuning is an ecient technology to reduce the dynamic amplication due to the mistuning phenomena, as shown in Figure 1.4. This present work is devoted to the robust analysis of the eects of geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned bladed-disk structures in presence of mistuning. The bladed-disk structure results from an assembly of reference sectors that constitute a given detuned pattern for which the dynamic analysis is carried out. Mistuning is taken into account Figure 1.4 Amplication factor with respect to the mistuning rate: the continuous curves with circles (and non continuous curves with triangles) are related to the tuned (and detuned) bladed-disk structure. The lower, middle, and upper curves correspond respectively to a probability level p=0.50, p=0.95, and p=0.99). From [3]. in the computational model by the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF]. A complete methodology adapted to the robust dynamic analysis of rotating detuned bladed-disk structures in presence of both geometric nonlinear eects and mistuning is presented. The corresponding computational tool is constructed in an industrial context that involves large computational models. A series of novel results are then presented.

Organization of the manuscrip and denition of the used terminology

Chapter 2 is devoted to the formulation of the nonlinear boundary value problem for a rotating detuned bladed-disk structure. This allows for constructing the weak formulation that is suitable for the use of the nite element method. We then obtain a nominal (mean) nonlinear computational model that will be called the NonLinear High-Fidelity computational Model (NL-HFM). Its linear counterpart will be called the Linear High-Fidelity computational Model 1.3. Organization of the manuscrip and denition of the used terminology (L-HFM)

Chapter 3 presents the construction of an adapted reduced-order basis, using a double projection method. A rst modal basis is computed by solving the generalized eigenvalue problem associated with the L-HFM for which the gyroscopic coupling is neglected. By projecting the NL-HFM on the subspace spanned by this modal basis, we then obtain a First NonLinear Reduced-Order Model (NL-ROMF). Another vector basis is then calculated using the Proper-Orthogonal Decomposition (POD) method from the nonlinear solution of the NL-ROMF. The nal NL-ROM is then obtained by double projection of the NL-HFM. In the present context, it is necessary to explicitly construct all the nonlinear stiness contributions related to the NL-ROM, in agreement with the use of the nonparametric probabilistic strategy.

In Chapter 4, four patterns corresponding to one tuned and three detuned congurations of an industrial rotating bladed-disk structure are analyzed in details. In particular, convergence analyses allow for optimizing the size of the NL-ROM. Such NL-ROM is then used for analyzing the sensitivity of the nonlinear response with respect to the load intensity that controls the amount of geometric nonlinearities. In this latter context, a comparison of the dynamical responses is performed between the linear case and the nonlinear one, in both time and frequency domain.

Chapter 5 is devoted to the construction of the NonLinear Stochastic Reduced-Order Model (NL-SROM), based on the use of the nonparametric probabilistic approach.

In Chapter 6, convergence analyses are carried out with respect to the number of Monte-Carlo simulations and to the dimension of the random matrix germ for constructing the stochastic solution of the NL-SROM. The condence regions of the stochastic dynamic responses allow for quantifying the robustness with respect to the level of uncertainties, that is to say with respect to the level of mistuning.

Chapter 7 presents a robust nonlinear dynamic analysis of the tuned, of the detuned, and of the mistuned-detuned rotating bladed-disk structure. The detuned cases consists in analyzing 46 patterns. The frequency analysis of the time responses is presented on a broad frequency band that is written as an interval union of three sub-frequency bands. The variability of the responses for these 46 mistuned patterns is analyzed in details.

The last chapter proposes a quantitative nonlinear analysis in terms of modal contribution. For the present industrial computational model, the mechanisms governing the dierent modal contributions are proposed. This last Chapter is followed by a conclusion and perspective section, followed by three appendices: the rst one is devoted to the construction of the geometric stiness matrix; the second one denes the patterns, and nally the last one is devoted to the implementation of the 3D nite element in the house code. 

Introduction

This chapter is devoted to the formulation of the dynamics of rotating detuned bladed-disks undergoing large displacements inducing nonlinear geometric eects. In section 2.3 the nonlinear boundary value problem and its weak formulation are written. In section 2.4, the nite element method is used for discretizing the weak formulation in order to construct the nonlinear dynamic computational model. As explained in Section 1, the detuned bladed-disk structure consists in voluntarily breaking the cyclic symmetry of the tuned bladed-disk that is made up of one given generating sector. The breaking is obtained by substituting in this tuned bladed-disk, one or several sectors by a perturbed sector(dierent from the generating sector). A perturbed sector is obtained by modifying the geometry and or the mechanical properties of the blade of this sector. A given assembly of sectors is dened as a pattern. The construction of the computational model is obtained by assembling the computational model of each sector type. Note that the mesh of the computational model of two consecutive sectors is assumed to be compatible at their common interface. Such strategy allows for constructing the nominal (mean) nonlinear computational model for a given rotating detuned bladed-disk structure. As previously explained, this nonlinear computational model is referred as the NonLinear High-Fidelity computational Model (NL-HFM). Similarly, the corresponding linear computational model is referred as the Linear High-Fidelity computational Model (L-HFM) (see Section 1.3).

Notations

For a better readability of the manuscript, the following notations are used.

• A real deterministic scalar is denoted by a lower case letter (for instance a)

• A real-valued random variable is denoted by an upper case letter (for instance A)

• A real deterministic vector is denoted by a boldface lower case letter (for instance a = (a 1 , . . . , a n ))

• A real-valued random vector is denoted by a boldface upper case letter (for instance

A = (A 1 . . . A n ))
• A real deterministic matrix is denoted by a lower or an upper case letter between brackets (for instance [a] or [A])

• A real-valued random matrix is denoted by a boldface upper case letter between brackets (for instance [A])

• A tensor is denoted by a blackboard letter (for instance e = {e ij } ij for a second-order tensor or e = {e ijk } ijk for a fourth-order tensor)

Furthermore, the convention of summation over repeated latin indices is generally used. For instance,

a • b = n i=1 a i b i is written as a i b i (2.1)
{e b} i = n j=1 e ij b j is written as e ij b j (2.2) e : f = n i=1 n j=1 A ij B ij is written as A ij B ij (2.3) 2.
3 Dynamic problem of a rotating detuned bladeddisk

Assumptions and terminology

Although the terminology of the "tuned", "detuned", and "mistuned" has been dened in Section 1.3, for the sake of clarity and for helping the reading, we reintroduce below the terminology while dening the assumptions.

1. The tuned structure is related to the conceptual structure, which exhibits a perfect M -order cyclic symmetry. For this conguration denoted as P 0 , the geometry, the constitutive equation of material, and the boundary conditions related to the reference sector are invariant under the 2π M rotation around its symmetry axis, which corresponds to the rotational axis of the bladed-disk. In the case of a linear dynamic analysis, only one reference sector can be used and analyzed for deducing the linear dynamic response (L-HFM) of the rotating bladed-disk, introducing an appropriate phase-lag condition on the boundary [START_REF] Henry | Calcul des fréquences et modes propres des structures répétitives ciculaires[END_REF][START_REF] Valid | Static and dynamic analysis of cyclically symmetric structures[END_REF][START_REF] Thomas | Dynamics of rotationally periodic structures[END_REF].

2. The detuned structure (or intentionally mistuned structure) is related to the conceptual structure for which there is a spatial distribution of dierent types of sectors, dening a pattern. In the present work, two different sector types, denoted as A and B, are considered. These two sector types have identical geometry and dier by the material properties of the blades. The detuned structure is thus dened by an assembly of these two sector types. For a rotating bladed-disk with M = 24 blades, a pattern will Chapter 2. Nonlinear dynamics of rotating detuned bladed-disks be dened, for instance, by 12B6A3B3A, which consists of 12 consecutive blades of type B, 6 of type A, 3 of type B, and 3 of type A.

3. The mistuned structure is related to the real structure that is manufactured from the conceptual structure (tuned structure). The mistuned structure is the tuned structure for which the cyclic symmetry is broken by discrepancies occuring during the manufacturing process. In this work, the mistuning phenomenon is modeled by using the nonparametric probabilistic approach of uncertainties [START_REF] Soize | Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF].

4. The detuned-mistuned structure is the detuned structure in which there is mistuning.

The following hypothesis are introduced.

H1 The bladed-disk is in rotation around its rotational axis at a constant rotation speed Ω (rad/s). The rotational axis has a xed direction and consequently, there is no rigid body motion of the disk.

H2

The boundary value problem of the rotating bladed-disk is written in the rotating frame.

H3 The bladed-disk is made up of an elastic material that is modeled by the Saint Venant-Kirchho constitutive equation. A damping term will arbitrarily be added at the weak-formulation level of the conservative boundary value problem.

H4 The amplitude of the external forces expressed in the rotating frame is assumed to be suciently large so that the structure undergoes geometric nonlinear eects.

Nonlinear boundary value problem in the rotating frame

We are interested in considering the nonlinear boundary value problem of the rotating detuned bladed-disk, considered as a structure in rotation. The boundary value problem is written in the rotating frame. In this rotating frame, a total Lagrangian formulation is used and the nonlinear dynamic equations are expressed with respect to a reference conguration (reference conguration that is dened in the rotating frame). Let R be the rotating frame (cartesian coordinates system) and let (O, e 1 , e 2 , e 3 ) be its related basis. The rotation axis of the bladed-disk is dened as (O, e 3 ) that is xed. Let D be the three-dimensional bounded open domain corresponding to such reference conguration in the rotating frame and subjected to the body force eld g(x, t) = (g 1 (x, t), g 2 (x, t), g 3 (x, t)), in which x = (x 1 , x 2 , x 3 ) denotes the position of a given point belonging to domain D. The boundary ∂D is such that ∂D = Γ∪Σ with Γ∩Σ = ∅. The external unit normal to boundary ∂D is denoted by n = (n 1 , n 2 , n 3 ). The boundary part Γ corresponds to the xed part of the structure (in the rotating frame) whereas the boundary part Σ is subjected to the external surface force eld

G(x, t) = (G 1 (x, t), G 2 (x, t), G 3 (x, t)).
Note that, in the rotating frame, the external force elds are derived from the Lagrangian transport into the reference conguration of the physical body/surface. We then introduce the

(3 × 3) rotation matrix [R(Ω)] that is written as [R(Ω)] =   0 -Ω 0 Ω 0 0 0 0 0   , (2.4) 
in which Ω is the rotation speed. Under the hypotheses H1 to H4 dened in Section 2.3.1, and in the rotating frame, the unknown displacement eld is denoted as u(x, t) = (u 1 (x, t), u 2 (x, t), u 3 (x, t)) and is solution of the following nonlinear boundary value problem [START_REF] Desceliers | Nonlinear viscoelastodynamic equations of threedimensional rotating structures in nite displacement and nite element discretization[END_REF][START_REF] Ehrlich | Handbook of Rotordynamics[END_REF][START_REF] Rao | History of Rotating Machinery Dynamics[END_REF][START_REF] Genta | Vibration of structures and machines: practical aspects[END_REF], which is written, for i = 1, 2, 3, as

ρ ∂ 2 u i ∂t 2 + 2ρ [R] ij ∂u j ∂t + ρ [R] ij [R] jk (x k + u k ) - ∂ ∂x j (F ik kj ) = g i , ∀x ∈ D , (2.5) F ik kj n j = G i , ∀x ∈ Σ , (2.6 
)

u i = 0 , ∀x ∈ Γ , (2.7) 
in which ρ is the mass density and where the second-order deformation gradient tensor F is dened by

F ij = ∂u i ∂x j + δ ij , (2.8) 
with δ ij the Kronecker symbol such that δ ij = 1 if i = j and 0 otherwise. The second-order Piola-Kirchho symmetric stress tensor can be decomposed as

ij = ' geom ij + ¥ ij (2.9)
where ' geom is the second-order prestress tensor induced by the centrifugal loads and where ¥ is the second-order symmetric stress tensor such that [START_REF] Desceliers | Nonlinear viscoelastodynamic equations of threedimensional rotating structures in nite displacement and nite element discretization[END_REF] ¥ ij = ijk E k .

(2.10)

In Eq. (2.10), is the fourth-order elasticity tensor that is symmetric and positive denite and E is the Green strain tensor that is written as

E ij (u) = ij (u) + ij (u) , (2.11) 
in which

ij (u) = 1 2 ∂u i ∂x j + ∂u j ∂x i , ij (u) = 1 2 ∂u s ∂x i ∂u s ∂x j (2.
12)

The second-order prestress tensor ' geom is calculated from the following static boundary value problem that corresponds to the equilibrium of the reference conguration (in the rotating frame) submitted to the static centrifugal body forces and is written [START_REF] Desceliers | Nonlinear viscoelastodynamic equations of threedimensional rotating structures in nite displacement and nite element discretization[END_REF], for i = 1, 2, 3, as

∂ ∂x j ' geom ij = ρ [R] ij [R] jk x k , ∀x ∈ D , (2.13) 
'

geom ij n j = 0 , ∀x ∈ Σ , (2.14) 
u i = 0 , ∀x ∈ Γ . (2.15)

Weak formulation of the nonlinear boundary value problem

Let C ad be the space of the admissible displacements dened by

C ad = x → v(x) : D → 3 , v suciently regular, v = 0 on Γ .
(2.16)

The weak formulation of the boundary value problem dened by Equation (2.5) to (2.12), with the arbitrarily linear damping term (see hypothesis H3), consists in nding the unknown displacement eld u(•, t) in C ad such that, for all v in C ad ,

m(ü, v) + c( u, v) + d( u, v) + k e (u, v) + k c (u, v) + k g (u, v) + k 2 (u, u, v) + k 3 (u, u, u, v) = (v) , (2.17) 
in which u = ∂u/∂t and ü = ∂ 2 u/∂t 2 . The expressions and the properties of the linear, bilinear, and multilinear forms are detailed below. Furthermore, it is recalled that the external forces induced by the aerodynamics coupling forces are not taken into account in this work.

Expression and properties of the linear and multilinear forms

External loads

The linear form (v) dened on C ad , related to the external loads is such that

(v) = D g • v dx + Σ G • v ds x (2.18) 

Mass

The bilinear form m(u, v) dened on C ad × C ad , related to the mass,

m(u, v) = D ρ u • v dx , (2.19) 
is symmetric and positive denite,

m(u, v) = m(v, u) , m(u, u) > 0 . (2.20)

Elastic stiness

The bilinear form k e (u, v) dened on C ad × C ad , related to the elastic stiness,

k e (u, v) = D ((x) : (u)) : (v) dx , (2.21) 
is symmetric and positive denite,

k e (u, v) = k e (v, u) , k e (u, u) > 0 . (2.22)

Geometric stiness

The bilinear form k g (u, v) dened on C ad × C ad , related to the geometric stiness,

k g (u, v) = D ' geom : ∂u T ∂x ∂v ∂x dx , (2.23) is symmetric, k g (u, v) = k g (v, u) . (2.24)
The notation ∂u/∂x means the second-order tensor such that {∂u/∂x} ij = ∂u i /∂x j .

Centrifugal stiness

The bilinear form k c (u, v) dened on C ad × C ad , related to the centrifugal stiness,

k c (u, v) = D ρ [R] 2 u • v dx , (2.25) 
is symmetric and negative semi-denite (as [R] is skew-symmetric and not invertible matrix),

k c (u, v) = k c (v, u) , k c (u, u) ≤ 0 . (2.26) 
Let k 1 (u, v) be the bilinear form dened on C ad × C ad such that

k 1 (u, v) = k e (u, v) + k c (u, v) + k g (u, v) . (2.27) 
It can be seen that k 1 (u, v) is symmetric and is generally not positive denite. However, it will be assumed that this symmetric bilinear form is positive denite,

k 1 (u, v) = k 1 (v, u) , k 1 (u, u) > 0 .
(2.28)

For rotating bladed-disk structures, such hypothesis is reasonable considering that the operating regime associated with a given rotation speed Ω ensures the stability of the bladed-disk.

Damping

The arbitrarily linear damping term, which has been added to the weak formulation of the conservative system, is dened by the positive-denite symmetric bilinear form d(u, v) on C ad × C ad , according to a Rayleigh model, which is written as

d(u, v) = α m(u, v) + β k e (u, v) , (2.29) 
in which α and β are constant that are adjusted according to the critical damping rate coherent with the chosen elastic material. We then have

d(u, v) = d(v, u) , d(u, u) > 0 . (2.30)

Quadratic stiness

The multilinear form k 2 (u, v, w) dened on C ad × C ad × C ad , related to the quadratic stiness, is such that

k 2 (u, v, w) = k 2 (u, v, w) + k 2 (v, w, u) + k 2 (w, u, v) (2.31)
where

k 2 (u, v, w) = 1 2 D : ∂u ∂x T ∂v ∂x : ∂w ∂x dx , (2.32) 
and satises the property

k 2 (u, v, w) = k 2 (v, u, w) . (2.33)
Consequently we have

k 2 (u, u, v) = k 2 (u, u, v) + 2 k 2 (v, u, u) . (2.34)

Cubic stiness

The multilinear form k 3 (u, v, w, r) dened on C ad × C ad × C ad × C ad , related to the cubic stiness,

k 3 (u, v, w, r) = 1 2 D : ∂u ∂x T ∂v ∂x : ∂w ∂x T ∂r ∂x , (2.35) 
satises the properties

k 3 (u, v, w, r) = k 3 (u, v, r, w) = k 3 (w, r, u, v) , k 3 (u, v, v, u) > 0 . (2.36)

Gyroscopic coupling

The bilinear form c(u, v) dened on C ad × C ad , related to the gyroscopic coupling, 

c(u, v) = 2 D ρ ([R]u) .v dx , (2.37) is skew-symmetric (since [R] is skew-symmetric) c(u, v) = -c(v, u) , c(u, u) = 0 . ( 2 
U i e i (x) , (2.39) 
where U 1 , • • • , U n are the degrees-of-freedom (dofs) of the nite element model.

Let U = (U 1 , . . . , U n ) be the vector in n of all the dofs. For notational reasons, U will be noted u (the same notation will be used for the continuous eld and its discretization; there will be no possible confusion). The nonlinear computational model of the detuned bladed-disk structure, which is identied as the NL-HFM, is written as,

[M ] ü(t) + ( [D] + [C(Ω)] ) u(t) + [K 1 (Ω)] u(t) + f NL (u(t)) = f(t) , (2.40) 
in which the

(n × n) matrix [K 1 (Ω)] is dened by [K 1 (Ω)] = [K e ] + [K c (Ω)] + [K g (Ω)] , (2.41) 
and is assumed to be symmetric positive denite. The mass, damping, and stiness

(n × n) real matrices [M ], [D],
[K e ] are positive denite, the geometric stiness (n×n) real matrix [K g (Ω)] is symmetric, the gyroscopic coupling (n×n) real matrix [C(Ω)] is skew-symmetric, and the centrifugal stiness ∂t . Their block writing is presented in Section 2.4.2. The R n -vector f(t) is the external force vector depending on time issued from the nite element discretization of the surface and body force elds. The R n -vector f NL (u(t)) describes the nonlinear internal forces induced by the geometric nonlinearities and issued from the quadratic and cubic stiness terms. The corresponding linear high-delity model (L-HFM) is dened similarly to Eq.(2.40) by removing the nonlinear term f NL (u(t)) and is written as

(n × n) real matrix [K c (Ω)] is negative semi-denite. More precisely, matrix [K g (Ω)] corresponds to the dis- cretization of the bilinear form k g (u, v) that comes from the term ρ[R] ij [R] jk x k in Equation (2.5), matrix [K c (Ω)] corresponds to the discretization of the bilinear form k c (u, v) that comes from the term ρ[R] ij [R] jk u k ,
[M ] ü(t) + ( [D] + [C(Ω)] ) u(t) + [K 1 (Ω)] u(t) = f(t) .
(2.42)

Block writing of the matrices related to a given sector type

The detuned bladed-disk structure is constituted of M sectors, which are assumed to be geometrically identical (their material properties can dier). In the rotating frame, let us consider a reference sector number j, that is composed of a blade and a disk part and let R j = (O, e 1 j , e 2 j , e 3 ) be the local frame dened in Figure 2.2. Note this local frame rotates at a constant speed Ω around its rotational axis (O, e 3 ). We denote by n m , n p , and n i , the dofs respectively located at the right Figure 2.2 Blade sector boundary, left boundary (meaning the interface of two consecutive sectors) and internal domain. We then have n p = n i . It should be noted that the total number of dofs is n = M (n m + n i ). Furthermore, for a better readability, Ω will be omitted in the following.

Let [E] be the matrix representing either

[M ], [D], [K e ], [K g ], or [K c ]. Let [E α ] be the matrix [E] related to one sector α. The bloc writing of matrix [E α ] with respect to the dofs (n m , n i , n p ) is [E α ] =   [E α mm ] [E α mi ] [H] [E α mi ] T [E α ii ] [E α ip ] [H] [E α ip ] T [E α pp ]   . (2.43)
Similarly, the bloc writing of the skew-symmetric nite element matrix [C(Ω)] is written as

[C α ] =   [C α mm ] [C α mi ] [H] -[C α mi ] T [C α ii ] [C α ip ] [H] -[C α ip ] T [C α pp ]   . (2.44) Note that the diagonal of matrix [C α ] is equal to zero since [C α ] is skew-symmetric.
It is assumed that the detuned bladed-disk structure is constructed using only two sector types, denoted by A and B. Let j ∈ {0, • • • , M -1} be a given sector of the detuned bladed-disk structure and let α j ∈ {1, 2} be the its type. For instance, α 3 = 1 means that sector number j = 3 is related to sector type A.

Let P = {α 0 , • • • , α M -1
} be a given pattern dening a conguration of the detuned bladed-disk structure. For instance, pattern P = 12B6A3B3A, is constituted of 12 consecutive blades of type B, 6 of type A, 3 of type B, and 3 of type A. The nite element matrix [E] of the detuned bladed-disk is written as 

[E] =            [E 0 1 ] [E 0 2 ] [H] . . . [H] [E 0 3 ] [E 1 3 ] [E 1 1 ] [E
[E M -2 2 ] [E M -1 2 ] [H] • • • [H] [E M -1 3 ] [E M -1 1 ]            . (2.45)
where the block matrices

[E j 1 ], [E j 2 ], [E j 3 ] of matrix [E] are dened by [E j 1 ] = [E α j mm ] + [P ] T [E α j pp ] [P ] [E α j mi ] [E α j mi ] T [E α j ii ] , [E j 2 ] = [H] [H] [E α j ip ] [P ] [H] , [E j 3 ] = [E j 2 ] T , (2.46)
and where the (n m × n m ) matrix [P ] is dened by:

[P ] =       [P 0 ] [H] • • • [H] [H] . . . . . . . . . . . . . . . . . . [H] [H] . . . [H] [P 0 ]       . (2.47)
with [P 0 ] the (3 × 3) rotation matrix of angle θ 0 = 2π M such that

[P 0 ] =   cos(θ 0 ) -sin(θ 0 ) 0 sin(θ 0 ) cos(θ 0 ) 0 0 0 1   . (2.48)
Considering the gyroscopic coupling term, we similarly dene from Equation (2.44) the block matrices

[C j 1 ], [C j 2 ]
, and [C j 3 ] are written as

[C α j 1 ] = [C α j mm ] + [P ] T [C α j pp ] [P ] [C α j mi ] -[C α j mi ] T [C α j ii ] , [C α j 2 ] = [H] [H] [C α j ip ] [P ] [H] , [C α j 3 ] = -[C α j 2 ] T . (2.49)

Particular case of the tuned bladed-disk structure

In this Section, we consider the particular case for which the pattern is such that P = 24A or P = 24B which correspond to tuned cases, that is to say, two bladeddisk structures that have cyclic symmetry. In this case, we have the following properties

[E 0 1 ] = [E 1 1 ] = • • • = [E M -1 1 ] denoted by [E 1 ] (2.50 
)

[E 0 2 ] = [E 1 2 ] = • • • = [E M -1 2 ] denoted by [E 2 ]
(2.51)

[E 0 3 ] = [E 1 3 ] = • • • = [E M -1 3 ] denoted by [E 3 ] . (2.52)
Consequently, the nite element matrix [E] is a block-circulant matrix, that is written as

[E] =            [E 1 ] [E 2 ] [H] . . . [H] [E 3 ] [E 3 ] [E 1 ] [E 2 ] . . . [H] [H] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [H] [H] . . . . . . . . . . . . [E 2 ] [E 2 ] [H] • • • [H] [E 3 ] [E 1 ]            . (2.53)
where the block matrices 

[E j 1 ], [E j 2 ],

Introduction

As explained in Chapter 2, the computational model is constructed by using the nite element method is referred as the NonLinear High-Fidelity computational Model (NL-HFM), which cannot be solved because the number of degrees-offreedom is too large for analyzing such nonlinear dynamic system. Consequently, it is necessary to introduce an appropriate NonLinear Reduced-Order Model (NL-ROM) that allows for reducing the number of unknowns.

The objective of this Section is to construct the NL-ROM for a rotating detuned bladed-disk structure. Such a construction requires the use of a vector basis for projecting the nonlinear computational model. As explained in Chapter 1, many methods can be used for constructing such a vector basis. In this work, the methodology proposed is the one summarized in Section 1.3 and detailed below.

The rst step consists in computing the eigenmodes of the generalized eigenvalue problem dened by mass matrix [M ] and matrix [K 1 (Ω)] for rotation speed Ω xed, associated with the linear high delity model (L-HFM). Note that damping matrix [D] and gyroscopic coupling matrix [C(Ω)] are not included in the generalized eigenvalue problem in order to obtain real eigenvalues and real eigenvectors and not complex eigenvalues and complex eigenvectors, which would induce great diculties for very large computational models (case for the considered rotating bladed-disk structure). Removing the damping matrix in such formulation is usual for small damping, which is the case. The gyroscopic coupling matrix plays a important role. This matrix will obviously be kept for constructing the nonlinear reduced-order model NL-ROMF, using this vector basis. It should also be noted that this constructed vector basis is not an optimal one with respect to the convergence speed of the NL-ROM, since this vector basis ignores the nonlinear geometrical eects and the gyroscopic coupling terms (the damping matrix [D] does not inuence the convergence speed because damping is very small). The projection of the NL-HFM on this basis yields an intermediate nonlinear reduced-order model, denoted as NL-ROMF, which takes into account all the physical phenomena modeled in the NL-HFM. The convergence of the dynamical response of this NL-ROMF towards the nonlinear dynamical response of the NL-HFM (rotating detuned bladed-disk structure) will carefully be studied. Indeed, the nonlinear dynamic response generated by this NL-ROMF must be equivalent to the one generated by the NL-HFM. The converged nonlinear solution of the NL-ROMF, which is computed in the time domain, is then used to calculate a second vector basis using the Proper Orthogonal Decomposition method (POD-method). By combining these two vector bases, the NL-ROM is constructed and has a dimension that is lower than the dimension of the NL-ROMF .

Consequently, with this NL-ROM, (1) the damping eects and all the rotating eects are taken into account, (2) for the rotating detuned bladed-disk structure, the NL-ROM is of lower order, which is more ecient than the NL-ROMF in terms of computational costs in the framework of implementing uncertainties, (3) the probabilistic model describing the mistuning can then be implemented in the NL-ROM, in order to obtain the nonlinear stochastic reduced-order model (NL-SROM) with a decreasing of the computational costs involved by the use of the Monte Carlo numerical method.

3.2. First NonLinear Reduced-Order Model (NL-ROMF) for a detuned bladed-disk 3.2 First NonLinear Reduced-Order Model (NL-ROMF) for a detuned bladed-disk structure

As explained in Section 3.1, the rst nonlinear reduced-order model (NL-ROMF) requires the computation of the vector basis obtained by solving the following generalized eigenvalue problem,

[K 1 (Ω)] ϕ α = λ α [M ] ϕ α , (3.1) 
in which, for α = {1, ..., m} with m n, the eigenvalues 

λ α = (2πν α ) 2 are sorted such that 0 < λ 1 λ 2 • • • λ m ,
[Φ m ] T [M ] [Φ m ] = [I m ] (3.2) [Φ m ] T [K 1 (Ω)] [Φ m ] = [Λ m ] , (3.3 
u(t) = [Φ m ] q(t) , (3.4) 
[ M ] q(t) 

+ [ D ] + [ C(Ω)] q(t) + [ K 1 (Ω)] q(t) + F NL (q(t)) = F(t) , (3.5 
F(t) = [Φ m ] T f(t) , (3.6) 
F NL (q(t)) = [Φ m ] T f NL ([Φ m ] q(t)) . (3.7) 
Remark about the nonlinear reduced internal forces

In Eq. (3.5), F NL (q(t)) are the reduced nonlinear internal forces written [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF][START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity[END_REF] as, F NL (q(t)) = K

(2)

αβγ q β q γ + K (3) αβγδ q β q γ q δ , (3.8) 
where the quadratic and cubic reduced stinesses K

(2)

αβγ and K

αβγδ are such that

K (2) αβγ = 1 2 K (2)
αβγ + K

(2)

γαβ + K (2) βγα , (3.9) 
K (2) αβγ = D ijk ∂ϕ α i ∂x j ∂ϕ β m ∂x k ∂ϕ γ m ∂x dx , (3.10) 
K (3) αβγδ = 1 2 D ijk ∂ϕ α s ∂x i ∂ϕ β s ∂x j ∂ϕ γ m ∂x k ∂ϕ δ m ∂x dx . (3.11)
Due to the properties of the elasticity tensor , we have the following properties, K

αβγ = K (2) γαβ = K (2) (2) 
βγα , (3.12)

K (2) αβγ = K (2) αγβ , (3.13) 
K (3) αβγδ = K (3) βαγδ = K (3) αβδγ = K (3) γδαβ . (3.14) 
It should be noted that the vector of the nonlinear reduced internal forces is constructed according to Eq. (3.7), by using an algebraic explicit calculation of the integrals (3.10) and (3.11), which are discretized by the nite element method.

When the intensity of the external load is small, yielding negligible nonlinear geometric eects, the nonlinear reduced internal forces F NL (q(t)) can be removed from Eq. (3.5), yielding the Linear Reduced-Order Model (L-ROM) that is written as

[ M ] q(t) + ([ D ] + [ C(Ω)]) q(t) + [ K 1 (Ω)] q(t) = F(t) . (3.15) 
3.3 Second nonlinear reduced-order model (NL--ROM) for a detuned bladed-disk structure

As explained in Section 3.1, the second step consists in using the POD-method applied to the NL-ROMF that includes all the eects (in particular, damping, gyroscopic coupling, and geometric nonlinearity). Eq. (3.5) is solved using the scheme proposed in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF]. The Newmark scheme [START_REF] Bathe | Numerical methods in nite element analysis[END_REF] is used for which the time step ∆t is constant. At each time step, the nonlinear algebraic equation is solved using the xed point method. When the xed point does not converge, it is replaced by the Criseld arc-length method [START_REF] Criseld | Non-linear nite element analysis of solids and structures[END_REF], depending on the local nonlinearity rate. Integration time step ∆t is also used as the distance between two consecutive snapshots for the POD method, which is not penalizing because the dimension m 3.3. Second nonlinear reduced-order model (NL-ROM) for a detuned bladed-disk of the NL-ROMF is small (m n). Let n t be the number of time steps. Let [A] be the (m × n t ) real matrix with n t > m dened by

[A] ij = q i (t j ) √ ∆t . (3.16)
Let [C A ] be the (m × m) real matrix dened by

[C A ] = [A][A] T , (3.17) 
whose rank is m that is less than or equal to m (if m < m, then [C A ] is not positive denite but only positive). The vector basis is obtained by solving the eigenvalue problem

[C A ]ψ α = µ α ψ α , (3.18) 
in which the vector basis is made up of the eigenvectors ψ α corresponding to the m largest eigenvalues µ α . In practice, matrix [C A ] is not computed. Its eigenvalues and its eigenvectors are obtained by computing the singular value decomposition of matrix [A] using an economy size algorithm [START_REF] Golub | Matrix Computations[END_REF]. Removing the zero singular values, this decomposition can be written as,

[A] = [W ][S][V ] T , (3.19) 
in which 

[W ] is a unitary (m × m) real matrix ([W ] T [W ] = [I m ]), where [V ] is another unitary (n t × m) real matrix ([V ] T [V ] = [I m ]),
α , α = {1, • • • , N }, which is such that [W (m,N ) ] T [W (m,N ) ] = [I N ].
Finally, the projection basis, represented by the (m × N ) real matrix [Φ (m,N ) ] and that will be used for obtaining the NL-ROM, is such that

[Φ (m,N ) ] = [Φ m ] [W (m,N ) ] , (3.21) 
in which the column number α of matrix [Φ (m,N ) ] is denoted by ϕ α . It should be noted that we have

[Φ (m,N ) ] T [M ] [Φ (m,N ) ] = [I N ] . (3.22)
The NL-ROM is then obtained by projecting the NL-HFM on the reduced-order basis [Φ (m,N ) ] and is written as

u(t) = [Φ (m,N ) ] q(t) , (3.23) 
[M] q(t) + ( [D] + [C(Ω)] ) q(t) + [K 1 (Ω)] q(t) + F NL (q(t)) = F(t) , (3.24) 
in which q(t) is the R N -vector of the generalized coordinates, and where ] can be decomposed according to its elastic, centrifugal, and geometric stiness parts such that

[K 1 (Ω)] = [K e ] + [K c (Ω)] + [K g (Ω)] . (3.25) 
In Eq. (3.24), the R N -vectors F(t) and F NL (q(t)) are the vectors dened by

F(t) = [Φ m,N ] T f(t) (3.26) F NL (q(t)) = [Φ m,N ] T f NL ([Φ m,N ] q(t)) . (3.27) 
Similarly to Eqs. (3.8) to (3.14), vector F NL (q(t)) can be written as,

F NL (q(t)) = K (2) 
αβγ q β q γ + K

(3)

αβγδ q β q γ q δ , (3.28) 
where the quadratic and cubic reduced stinesses K

αβγ and K

αβγδ are such that

K (2) αβγ = 1 2 K (2)
αβγ + K

(2)

γαβ + K (2) βγα , (3.29) 
K (2) αβγ = D ijk ∂ϕ α i ∂x j ∂ϕ β m ∂x k ∂ϕ γ m ∂x dx , (3.30) 
K (3) αβγδ = 1 2 D ijk ∂ϕ α s ∂x i ∂ϕ β s ∂x j ∂ϕ γ m ∂x k ∂ϕ δ m ∂x dx . (3.31) 
Due to the properties of the elasticity tensor , we have the following properties:

K (2) αβγ = K (2) γαβ = K (2) βγα , (3.32) 
K (2) αβγ = K (2) αγβ , (3.33) 
K (3) αβγδ = K (3) βαγδ = K (3) αβδγ = K (3) 
γδαβ .

(3.34)

Note that the separation of the quadratic and cubic stiness contributions K 

Introduction

In this chapter we dene the computational model of a tuned and of a detuned bladed-disk structure constituted of M = 24 blades, which are used for performing the numerical simulations. This chapter is mainly devoted to the analysis of the eects of geometric nonlinearities on the nonlinear dynamic behavior of these two structures (tuned and detuned) without mistuning. In this framework, an ensemble of novel results is presented.

4.2 Computational model for the tuned and for the detuned bladed-disk structure

In this section we rst present the computational model of the tuned bladed-disk structure, and then the computational model for the detuned one.

Computational model of the tuned bladed-disk structure

The nite element meshes of the 24-blades tuned bladed-disk structure and of its corresponding reference sector are shown in Figure 4.1. The bladed-disk rotates around its cyclic axis with a constant rotation speed Ω = 2π × 74 rad/s (4 440 RPM (Rotation Per Minute)). The material is steel, which is considered as a homogeneous and isotropic elastic material with Young modulus 2 × 10 11 N ×m -2 , Poisson's ratio 0.3, and mass density 7 650 Kg ×m -3 . In the rotating frame, the disk is clamped at the inner radius of the disk (as previously shown in Figure 2.1).

The main geometric characteristics of the bladed-disk are summarized in Table 4.1.

The nite element model of the reference sector has been carried out using tridimensional isoparametric solid nite elements with quadratic interpolation functions, in order to obtain a sucient precision. The nite element mesh of the full bladed-disk is made of 37 488 HEXahedral nite elements with 20 nodes (HEX20), 1 848 PYRamidal nite elements with 13 (PYR13) nodes, and 45 864 TETrahedral nite elements with 10 nodes (TET10). The numerical description of the nite element model is given in Table 4.2. For the linear tuned rotating bladed- ), the coecients α and β are chosen to obtain a critical damping rate that is equal to 10 -2 for the frequency ν 1 . A general house-code written in MATLAB has been developed. This house-code has been validated in comparing its results with the commercial ANSYS code concerning the computation of the eigenfrequencies and the eigenmodes. Concerning the hexahedral nite elements, for which hourglass phenomenon can occur [START_REF] Belytschko | Hourglass control in linear and nonlinear problems[END_REF], ANSYS software uses a proper integration scheme for constructing the stiness matrix. Table 4.3 summarizes the number of integration points used by ANSYS. The details concerning the choice of the interpolation functions and the position of the integration points are given in Appendix C, that are taken from ANSYS manual [START_REF] Desalvo | Ansys user's manual[END_REF] and ASTER manual [START_REF]Shape functions and points of integration of the nite elements[END_REF]. These values have been used in the house-code, developed in MATLAB. In the following we will precise the element types and their integration point that will be used in the presented calculations.

Matrices Element type Integration points

Elastic and geometric stiness matrices 

Modal analysis of the rotating tuned bladeddisk structure and numerical validation 4.3.1 Modal analysis

We consider the tuned rotating bladed-disk corresponding to pattern P 0 , for which the generalized eigenvalue problem dened by Eq. (3.1) is solved. It should be noted that the cyclic symmetry properties of the structure is not used. . A required condition for that an Engine Order (EO) excite a bladed-disk is that the EO frequency coincides with an eigenfrequency of the bladed-disk. The intersection of the eigenfrequencies with the dashed lines gives then an indication of the rotating speed yielding resonant situations of interest. The EO that allows to excite a circumferential wave number h corresponding to the number of nodal diameters of the considered mode is given by

j M ± h = k × EO , (4.1) 
in which j and k are integers. Figure 4.5 displays the graph of ν α (h) as a function of h for which rotation speed is 4 440 RPM. For this rotation speed, we are interested in the rst 3 modes related to h = 4, which correspond to the rst bending mode of the blades (mode 1 at 484 Hz), the second bending mode of the blades (mode 2 at 1 170 Hz), and the rst torsional mode of the blades (mode 3 at 1 490 Hz). This modal analysis allows for validating the house-code with respect to the results obtained with the engineering software ANSYS (see Section 4.3.2) and useful for dening the external applied load that will be used in the numerical simulations presented in Section 4.4.

Numerical validation

In this Section, we present the numerical validation of the modal analysis. Let ν Ansys α and ν α be the eigenfrequencies computed with ANSYS and with the housecode. Let α → Err(α) be the function that quanties the relative error, dened by

Err(α) = 100 1 - ν α ν Ansys α in % . (4.2)
Figure 4.8 shows the graph α → Err(α) for Ω = 0 rad.s -1 (red line) and Ω = 1 000 rad.s -1 (blue line). A good agreement is obtained that validates the computational developments with the house-code. It can be observed that there is a small peak around the 30 th eigenfrequency for a rotational speed of 1 000 rad/s with a maximum relative error level below 0.25 %. This small error can be explained by the fact that we do not have all information about integration points used by ANSYS concerning the PYR13 nite element. Indeed, ANSYS uses 8 integration points, which are not dened in the user guide. In the house code, we have chosen the 6 integration points dened in the ASTER user guide [START_REF]Shape functions and points of integration of the nite elements[END_REF].

Nonlinear deterministic analysis of the tuned and the detuned rotating bladed-disk without mistuning

In this section, a nonlinear deterministic analysis of the tuned structure and of several congurations of detuned structures is considered using the NL-ROMF and the NL-ROM. The numerical results are compared with the corresponding linear responses obtained with the L-ROM.

Denition of the external load (excitation)

The objective of the presented analysis is not to compute the nonlinear dynamical response for a general physical excitation, but is to present a sensitivity study for Circumferential wave number h understanding the role played by the geometrical nonlinear eects with respect to the linear counterpart. In this framework, the chosen spatial excitation will not correspond to a travelling wave in the rotating frame but to a standing wave. It should be noted that such a choice is coherent with the fact that no aerodynamic coupling is taken into account. Inspired by the type of analyses performed for the linear mistuned cases, the external forces have been chosen in order to control the circumferential wave number and also the frequency band of excitation, which has to be suciently narrow around the specied frequency of interest. This type of excitation allows for clearly analyzing the transfer of energy outside the excitation frequency band (which is the objective of the work). According to the Campbell diagram displayed in Figure 4.4, it can be seen that the third mode intersect the EO line corresponding to EO = 20 for the considered rotating speed Ω = 4 440 RPM. As a consequence, the excitation is chosen with a circumferential wave number h = 4 (nodal diameter), for which Eq. (4.1) is satised with j = k = 1.

According to the Campbell diagram displayed in Figure 4.4, a 20-engine order is chosen corresponding to circumferential wave number h = 4 (nodal diameter).

The excitation frequency band is chosen as f e = [1 000, 1 600] Hz, in which ν min = 1 000 Hz and ν max = 1 600 Hz. It contains the eigenfrequencies of the rotating In Eq. ( 4.3), the dimensionless time-function t → g(t) is dened on R and is such that the modulus | g(2πν)| of its Fourier transform g(2πν) is equal to 1 in frequency band f e and equal to zero outside f e . In this case, the time-dependant function g(t) is written as

g(t) = 2 sin(π∆ν t) π t cos(2π s ∆ν t) , (4.4) 
in which parameters ∆ν and s are such that

∆ν = ν max -ν min , s = ν max + ν min 2∆ν . (4.5)
The load intensity of the force is controlled by scalar parameter s 0 . From a numerical point of view, function g(t) is truncated by choosing t ini = -0.065 s such that g(t ini ) = 0 with a time duration T = 0.18 s. The calculations are carried out with n t = 4 096 time steps, using a sampling frequency ν e = 16 000 Hz. These numerical parameters allow for considering the frequency band of analysis f a = [0, 4 000] Hz. With such parameters corresponding to a constant sample frequency step δν = 3.9 Hz and a constant time step δt = 6.25 × 10 -5 s, it can be seen that, for h = 4, the rst eigenfrequency of the rotating tuned bladed-disk structure could possibly be excited and in such case would correctly be represented with these parameters. Furthermore, such choice also ensures the dynamic system to return to its equilibrium state within a good relative tolerance. Figures 4.9 will have negligible magnitude in the band f a \f e (that will not be the case for the nonlinear dynamic response). The nonlinear dynamic analysis is then performed in the time domain according to Eqs. (3.23) and (3.24). A Fourier transform of the forced response obtained in the time domain is carried out and allows for analyzing, a posteriori, the nonlinear dynamic responses in the frequency domain.

The numerical parameters have been carefully using the tuned conguration P 0 and are used for any detuned conguration of the bladed-disk structure.

Denition of the observations

In this Chapter, we are interested in analyzing the nonlinear dynamic behavior of rotating tuned and detuned bladed-disk structures. Such analysis is performed by following the procedure described in Chapter 3 for constructing the NL-ROM. The nonlinear dynamic response u(t) is computed in the time domain according to Eqs. (3.23) and (3.24). The Fourier Transform of the nonlinear solution u(t) allows for computing the nonlinear dynamic response u(2πν) in the frequency domain. The nonlinear observation of interest are dened from u(2πν) as described hereinafter.

The observations of the nonlinear dynamic system have to be dened for performing the robust analysis of the rotating tuned and the detuned bladed-disk with or without mistuning. It is recalled that, in presence of mistuning, the responses are random. There are several possibilities for dening the observations. We have chosen one, which is coherent with all the analyses that are performed in the frequency domain. First, we dene only one observation point in each blade that is located at its tip shown as red dot symbol in Figure 4.1. This means that, the number of observation points is equal to the number M of blades. For the rotating detuned bladed-disk structure without mistuning, we will look for the blade number j 0 where the maximum related to the amplitude of the displacement occurs, over all the blades and for the entire frequency band of analysis. It should be noted that, in presence of mistuning, j 0 becomes a random variable. Nevertheless, we want to characterize the random responses of the rotating tuned and detuned bladed-disk structures in presence of mistuning with respect to the deterministic response of its counterpart without mistuning. Consequently, we have chosen to keep j 0 as the deterministic blade number for the case for which mistuning is taken into account. The nonlinear analysis is carried out for the rotating tuned and detuned bladed-disk structures without mistuning. For each time t and for the observation in blade j, let u j (t) = (u j 1 (t), u j 2 (t), u j 3 (t)) be the vector whose coordinates are given in the local basis (e j 1 , e j 2 , e 3 ). For frequency ν in Hz, the Fourier Transform of function t → u j (t) is written as u j (2πν) = ( u j 1 (2πν), u j 2 (2πν), u j 3 (2πν)). We have to nd the blade number j 0 such that

j 0 = arg max j=1,...,M ||| u j ||| , (4.6) in which ||| u j ||| is such that ||| u j ||| = max ν || u j (2πν)|| , (4.7) with u j (2πν) 2 = 3 k=1 | u j k (2πν)| 2 .
For the rotating tuned bladed-disk (therefore, it is not detuned and there is no mistuning), the quantity ||| u j ||| will be rewritten as ||| u j,tuned |||. It should be noted that, the blade number j 0 depends on the considered pattern and on the type of analysis, which is performed for the rotating detuned bladed-disk. There are two types of analysis, the linear one denoted by subscript L and the nonlinear one denoted by subscript NL. These subscripts will be omitted when no confusion will be possible.

We are thus interested in characterizing the amplication levels for the nonlinear deterministic case. We then dene the quantity b(2πν) as the deterministic amplication factor such that

b(2πν) = || u j 0 (2πν)|| ||| u j 0 ,tuned ||| . (4.8)

Numerical aspects

The dynamic response of the L-ROM dened by Eq. (3.15) is solved using the Newmark method [START_REF] Newmark | A method of computation for structural dynamics[END_REF] with the averaging acceleration scheme, which is an implicit and unconditionally stable integration scheme. The NL-ROMF and the NL-ROM dened by Eqs. (3.4)-(3.5) and (3.23)-(3.24) are also solved using the Newmark method. As explained in Chapter 3, for each time step, the nonlinear algebraic equation is solved using the xed point method. In case of a non-convergence, the Criseld arc-length algorithm [START_REF] Borst | Nonlinear Finite Element Analysis of Solids and Structures[END_REF][START_REF] Criseld | An arc-length method including line searches and accelerations[END_REF] is used.

Convergence analysis with respect to the dimension of the NL-ROM

In this section, the convergence analysis of the deterministic response of the NL-ROM, with respect to its dimension m, is considered for a given pattern of the rotating detuned bladed-disk (without mistuning). We estimate the optimal values of parameters m and N related to the truncation of the vector bases used for constructing the NL-ROM (according to Sections 3.2 and 3.3). Let w(2πν) be the scalar value such that

w(2πν) = M j=1 || u j (2πν)|| 2 . (4.9)
When dealing with the rst projection basis represented by matrix [ Φm ], the quantity w(2πν) is rewritten as w m (2πν). When dealing with the second reduction, involving the modal matrix [Φ m,N ], the quantity w(2πν) is rewritten as w m,N (2πν). The sensitivity analysis of the intensity s 0 of the external load is performed using the NL-ROMF with m = 145 for the nonlinear tuned rotating bladed-disk (pattern P 0 = 24A). The objective is to determine the value of parameter s 0 for which the geometric nonlinear eects occur in the dynamic response. This analysis is performed by quantifying the energy i NL outside the excitation frequency band f e (that is to say, in the band f a \f e ) such that

Number m of modes

i NL (s 0 ) = Ba\Be ( w(2πν; s 0 )) 2 dν
Be ( w(2πν; s 0 )) 2 dν . (4.12) Figure 4.13 displays the graph of function s 0 → i NL (s 0 ). It can be seen that geometric nonlinear eects appear for s 0 > 0.10. Strictly speaking, the NL-ROM that was built for m = 145 is only valid for s 0 ≤ 1. However, Figure 4.13 shows the value of i NL (s 0 ) for s 0 > 1, and for which the convergence for m = 145 is not assured. However, the objective of Figure 4.13 is to nd from what value of s 0 the nonlinear regime is reached. This one is clearly identied with s 0 = 0.1 < 1. || constructed with the NL-ROMF for s 0 equal to 0.04 (response belonging to the quasi-linear regime of the nonlinear response), and equal to 0.25, 1, and 4.0 (response belonging to the nonlinear regime of the nonlinear response). The left top gure clearly shows a dynamic response that remains in the linear regime (there is no response outside f e ). On the other hand, subsequent contributions with unexpected resonances appear outside f e in the frequency band f a \f e as soon as s 0 increases. For s 0 = 0.04, the nonlinear geometric eects are negligible, for s 0 = 0.25, the nonlinear geometric eects are moderate, and for s 0 = 1 the eects are strong. Note that the value s 0 = 4 has also been used for the sensitivity analysis but the convergence with respect to m is not ensured. In this section, the linear and nonlinear dynamic respons of the tuned conguration (pattern P 0 = 24A) and three detuned congurations (patterns P 6 = (4A2B) 4 , P 11 = B4AB18A, P 25 = 3A3B3A15B) are analyzed for s 0 = 1. Figure 4.15 displays the graph of function t → u j 0 2,L (t) for patterns (P 0 , P 6 , P 11 , P 25 ) corresponding to a linear computation performed with the L-ROM dened by Eq (3.15). Figure 4.16 displays the graph of t → u j 0 2,NL (t) for patterns (P 0 , P 6 , P 11 , P 25 ) corresponding to the nonlinear computation performed with the NL-ROM. By comparing the nonlinear results with the linear ones, it can be seen that strong nonlinear geometric eects that mitigate the amplitude of the responses and show "irregular" responses, suggesting numerous resonances contributing outside band f e . the graphs of functions ν → b L (2πν) (linear) and ν → b NL (2πν) (nonlinear) for the rotating tuned bladed-disk (pattern P 0 ) and for the rotating detuned bladed-disk structures (patterns P 6 , P 11 , P 25 ). By comparing the linear responses with the nonlinear ones, it can be seen the strong eects of the nonlinearities outside the frequency band of excitation f e and that new resonances occur below and above this frequency band f e . Such phenomena has previously been observed [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF][START_REF] Picou | Eects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk[END_REF] in the turbomachinery context. 

Introduction

As explained in Chapter 1, the mistuning phenomenon is modeled using a probabilistic approach of uncertainties. We recall that there exist two types of probabilistic approaches.

• The rst one is called the parametric probabilistic approach: in such an approach, the parameters of the computational model are modeled by random variables.

• The second one is called the nonparametric probabilistic approach: it allows for taking into account both parameter uncertainties and model uncertainties [START_REF] Soize | Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF]. The nonparametric probilistic approach consists in replacing the matrices issued from a reduced-order model by random matrices. This means that the probability distribution is directly constructed from the reduced operators. It is constructed using the maximum entropy principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] with the available information [START_REF] Shannon | A mathematical theory of communication[END_REF]. It should be noted that only a scalar hyperparameter controls the uncertainty level for each reduced operator.

In the present work the mistuning phenomenon is modeled with the nonparametric probabilistic approach. Below we recall the main theoretical steps for constructing the probability model. Sections 5.2 and 5.2.2 are taken from [START_REF] Soize | Uncertainty Quantication: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF].

5.2 Ensemble SG + 0 of positive-denite random matrices

Available information

A random matrix [G] in SG + 0 is a random matrix, dened on the probability space (Θ, T, P), with values in w + n (), which is constructed by using the Maximum Entropy principle with the following available information

• Positive-denite matrix: Full random matrix [G] is almost surely in w + n ().
• Statistical mean: Statistical mean of random matrix [G] is equal to the identity matrix, that is to say

E{[G]} = [I n ] (5.1) 
in which E {.} is the mathematical expectation.

Ensemble SG + 0 of positive-denite random matrices

• Integrability of the inverse: A random matrix [G], which belongs to SG + 0 , is a second-order random variable, must verify the following integrability property for its inverse

E{log(det[G])} = ν G , |ν G | < +∞ (5.2)

Probability distribution of random matrix [G]

The probability distribution of random matrix [G] is dened by a probability density function

p [G] ([G]
), with respect to dG such that

dG = 2 n(n-1)/4 × 1≤j≤k≤n d[G] jk , (5.3) 
which is written as

p [G] ([G]) = 1 M + n (R) ([G]) × C G × (det([G])) (n+1) 1-δ 2 2 δ 2 × e -n+1 2 δ 2 tr([G]) , (5.4) 
where 1

M + n (R) ([G]) is the indicator function of the set w + n () dened by 1 M + n (R) ([G]) = 1 if [G] ∈ w + n () and 1 M + n (R) ([G]) = 0 if [G] / ∈ w + n (). The normalization positive constant C G is such that C G = (2π) -n(n-1)/4 n + 1 2δ 2 n(n+1) 2δ 2 n j=1 Γ n + 1 2δ 2 + 1 -j 2 -1 (5.5) 
in which

Γ(z) = +∞ 0 t z-1 e -t dt , ∀z > 0 (5.6)

Dispersion parameter

The dispersion parameter δ, allowing for controlling the level of the statistical uctuations of [G], is dened by

δ = E {||[G] -[I n ]|| 2 F } ||[I n ]|| 2 F 1 2
.

(5.7)

Parameter δ must be chosen such that

0 < δ < (n + 1) 1/2 (n + 5) -1/2 .
(5.8)

Construction of linear and nonlinear stochastic reduced-order models

In this section, the construction principle of the stochastic nonlinear reducedorder model of the rotating detuned-mistuned bladed-disk structure is presented. The tuned-mistuned case is also presented. We recall that the dimension of the computational NL-HFM is n, the dimension of the reduced NL-ROMF is m, and the dimension of the NL-ROM is N . Here, we introduce two probabilistic models from the NL-ROM, yielding two nonlinear stochastic reduced-order models, NL-SROM1 and NL-SROM2. The implementation of uncertainties is performed only on the nonlinear stiness forces (including the linear and the nonlinear operators) and is based on the methodology presented in [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF].

Global stiness matrix

Let [K NL ] be the (N K × N K ) real matrix, with N K = N (N + 1), such that

[K NL ] = [K e ] [ K (2) ] [ K (2) 
] T 2 [K (3) ] , (5.14) 
in which [K e ] is the reduced elastic matrix dened in Eq. (3.25) and where [ K

] and [K (3) ] are respectively the (N × N 2 ) and (N 2 × N 2 ) real matrices resulting from the following reshaping operation,

[ K (2) 
] αJ = K (2) αγδ , [K (3) ] IJ = K (3) αβγδ , (5.15) 
with I = (α -1)N + β and J = (γ -1)N + δ. It is proven in [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF] that matrix [K NL ] is positive denite, allowing for applying the nonparametric probabilistic approach for this matrix.

Stochastic nonlinear reduced-order model NL-SROM1 of a rotating detuned bladed-disk structure with mistuning

For this stochastic nonlinear computational model NL-SROM1, it is assumed that the random uncertainties aect all the contributions of the global stiness matrix [K NL ]. Since the dimension of matrix [K NL ] is huge, applying the usual nonparametric probabilistic approach would yield to a very large number of random variables. Instead of performing a Cholesky factorization of matrix [K NL ], it is proposed in [START_REF] Capiez-Lernout | An improvement of the uncertainty quantication in computational structural dynamics with nonlinear geometrical eects[END_REF] another factorization that allows for reducing the number of random variables by introducing a matrix of size N K × N K with N K N K . Let us then consider the eigenvalue problem

[K NL ]Ψ α = λ α Ψ α (5.16)
Matrix [K NL ] can then be approximated by the

(N K × N K ) matrix [ K NL ] such that [ K NL ] = [ L K ] T [ L K ] , (5.17) 
in which [ L K ] is the full ( N K × N K ) matrix dened by

[ L K ] = [Λ N K ] 1 2 [Ψ N K ] T (5.18) 
where

[Λ N K ] is the ( N K × N K ) diagonal matrix such that [Λ N K ] αα = λ α , where λ 1 ≥ λ 2 ≥ • • • ≥ λ N K
and where the columns of the

(N K × N K ) matrix [Ψ N K ] is the matrix containing the N K eigenvectors ψ α , α ∈ 1, • • • , N K , related to eigenvalues λ α such that [Ψ N K ] T [Ψ N K ] = [I N K ] (5.19) 
Random matrix [K NL ] is then replaced by the random matrix

[ K NL ] such that [ K NL ] = [ L K ] T [ G K (δ K )][ L K ] + [∆ K] , (5.20) 
in which [ G K (δ K )] is a ( N K × N K ) random matrix belonging to set G + 0 and where [∆ K] is the ( N K × N K ) real matrix written as

[∆ K] = [K NL ] -[ L K ] T [ L K ] .
(5.21)

We have E{[ ] that have the same bloc structure as its deterministic counterpart dened in Eq. (5.14).

K NL ]} = [ K NL ] because E{[ G K (δ K )]} = [I N K ].
The rst stochastic nonlinear reduced-order model, NL-SROM1, is then written as,

U(t) = [Φ (m,N ) ] Q(t) , (5.22) [M] Q(t)+([D] + [C(Ω)]) Q(t)+([K e ]+[K c (Ω)]+[K g (Ω)]) Q(t)+F NLS (Q(t)) = F(t) , (5.23) 
Chapter 6

Nonlinear stochastic computational dynamics of the mistuned-detuned bladed disk structure The convergence analyses with respect to N K and n s are presented, and allows for reducing the size of the germ matrix [ G K ] and for dening an optimal number n s of Monte-Carlo numerical simulations. Following [START_REF] Capiez-Lernout | An improvement of the uncertainty quantication in computational structural dynamics with nonlinear geometrical eects[END_REF], we introduce the relative error function

N K → err( N K ) such that err( N K ) = [∆ K] 2 F [K NL ] 2 F . (6.1) 
Figure 6.1 displays the graph of N K → err( N K ). A good convergence is obtained for N K = 500 corresponding to a relative error err( N K ) = 10 -6 . This means that the dimension of random matrix [G K ] is reduced from 3080 to 500, which allows for reducing the computional cost. The range of values of hyperparameter δ K that will be used for performing the sensitivity analysis of the nonlinear dynamical response with respect to the level of uncertainties, will be 0 < δ K < 0.1. The convergence analysis is thus performed for the larger value 0.1 of δ K ensuring the convergence for all values of δ K less than 0.1. Let

W(2πν) = M j=1 || U j (2πν)|| 2 (6.2)
be the random observation dened similarly to Eq. (4.9). The stochastic Eq. ( 5 Let u max (s 0 ) be the real number depending on s 0 such that Proba{ U max (s 0 ) ≤ u max (s 0 )} ≤ 0.95. Figure 6.3 displays function s 0 → u max (s 0 ) computed with the stochastic models L-SROM and NL-SROM2 for δ K = 0.1 and for patterns P 0 (tuned) and P 6 (detuned). It can be seen that the propagation of uncertainties for the nonlinear geometric eects (NL-SROM2) is smaller than for the linear one (L-SROM). This attenuation is more important while s 0 is increasing, that is to say when the nonlinear eects increase. 3) tends to vanish when the nonlinear geometric eects increase. Furthermore, it can be noticed that the width of the condence region is not constant with respect to the frequency.

We consider now that s 0 is xed to the value 1. Let B L (2πν; δ K ) be the random variable depending on δ K , dened by Eq. (6.4), and constructed using the L-SROM. Let B ∞ L (δ K ) be the random variable dened by

B ∞ L (δ K ) = max ν∈Be B L (2πν, δ K ) ,
which corresponds to the maximum dynamic amplication factor over the excitation frequency band. We then denote by b +,∞ L (δ K ) the value of B ∞ L (δ K ) depending on δ K and such that L (δ K ) for seven patterns of congurations: tuned pattern P 0 and detuned ones P 2 , P 3 , P 5 , P 6 , P 12 , and P 31 dened in Appendix B. The results obtained are coherent with those published in [3], especially, for each pattern, a maximum is obtained for a small mistuning (small value of δ K ). In this section, we present the results obtained using NL-SROM1 for the nonlinear rotating tuned and detuned bladed-disks in presence of mistuning for which s 0 = 1. Let B NL (2πν; δ K ) be the random variable depending on δ K , dened by Eq. (6.4), and constructed using the NL-SROM1. For two values of δ K controlling the mistuning level, Figure 6.11 (δ K = 0.03) and Figure 6.12 (δ K = 0.1) display the condence region of random variable B NL (2πν; δ K ), estimated with a probability level of 0.95, for congurations P 0 (tuned), and for P 6 , P 11 , and P 25 (detuned dened in Appendix B). These gures allow for estimating the robustness of the responses with respect to the level of uncertainties as a function of the considered patterns. Nevertheless, the rst torsion mode for h = 4 (mode 3 around 1 490 Hz dened in Section 4.3) located in f e is very sensitive to the mistuning, as already mentioned for the linear case in Section 6.3.2. It can be seen that the nonlinear stochastic response of the mistuned-detuned bladed-disk is particularly complex. It should also be noted, as in Section 6.3.2, that unexpected resonances occur outside the excitation frequency band as soon as the level of nonlinearities is signicant.

Proba{B ∞ L (δ K ) ≤ b +,∞ L (δ K )} ≤ 0.95 .

Discussion

It is interesting to observe that the results obtain using NL-SROM1 and NL-SROM2 yield dierent nonlinear dynamic behaviors. We recall that the main dierences between these two stochastic computational models are that uncertainties do aect all the linear and nonlinear contributions in the NL-SROM1 case and only the linear elastic stiness contribution in the NL-SROM2 case. One subsequent dierence observed through the nonlinear computational analysis is that NL-SROM1 yields a robust behavior in the excitation frequency band that is not the case when considering NL-SROM2. Furthermore, it should be noted that the use of the NL-SROM1 with a Cholesky factorization for the global stiness matrix yields (as shown in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF]) a similar nonrobust behavior. This is explained by the fact that in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantication of an industrial bladed disk with geometrical nonlinearity[END_REF], uncertainties also did aect the other linear operators (mass, damping, ...), which is not the case here. 7.2 Detuned bladed-disk structure without mistuning

In order to better understand the discrepancy of the detuned deterministic nonlinear dynamic responses with respect to the tuned ones, let b ± NL (2πν) be the upper (+) and the lower (-) envelopes of the dynamic amplication factors, dened over the family of patterns. Figure 7.1 displays the graphs of functions ν → b ± NL (2πν) and ν → b tuned NL (2πν) performed with the NL-ROM for which s 0 = 1, that characterize the variability of the nonlinear dynamic behavior with respect to the family of patterns. It can be seen that the nonlinear dynamic response is very sensitive to the detuning, especially outside excitation frequency band f e . At a given frequency, the amplication factor can strongly dier from one pattern to another one.

Stochastic analysis of nonlinear rotating tuned

and detuned bladed-disk structure in presence of mistuning

The analysis that we have presented in Section 6.3.3 is revisited considering all the 46 patterns dened in Appendice B. For simplifying the presentation of the results, the 46 patterns (the tuned pattern and the 45 detuned patterns, all in presence of mistuning) are considered as 46 realizations of a random mechanical system. Let B all NL (2πν) be the random amplication factor dened by Eq. (6.4) of this random mechanical system, estimated using the NL-SROM1 with δ K = 0.1 and s 0 = 1. In practice, the condence region associated with a probability level of 0.95 of random variable B all NL (2πν) is estimated in concatenating all the Monte-Carlo realizations computed for each one of the 46 patterns. Figure 7.2 displays (in linear and log scales) the condence region of the deterministic amplication factor b tuned NL (2πν) for the rotating tuned bladed-disk without mistuning and the random variable B all NL (2πν) for all the 46 detuned patterns with mistuning, which includes, as previously mentioned, the tuned pattern P 0 in presence of mistuning. We use the same type of analysis as the one presented in Section 6.3.3. This gure shows that the random amplication factor is high outside excitation frequency band f e Moreover, the analysis of Figure 7.2 shows that the robustness of the stochastic response around the two main resonances, located in band f e , is signicantly higher than outside f e , while there are relatively of high levels outside f e (in the linear case, there is no response outside the band f e ). In the low-frequency band [0, 1 000] Hz (not excited by the external forces), there are mistuned congurations for which the amplitude level outside f e is four times lower than the one in f e . Nevertheless, it should be noted that the levels of responses (induced by the nonlinear geometric eects), which occur outside band f e , depend on the pattern.

Robust analysis with respect to sub-frequency bands

The results presented in Section 7.3 lead us to split the frequency band of analysis f a in 3 sub-frequency bands to better analyze the amplication factor. We then dene the following bands: f low = [0, 1 000] Hz, f med = [1 000, 1 300] Hz, and f high = [1 300, 4 000] Hz. Note that band f med is included in frequency band of excitation f e and that band f high overlaps band f e with the common frequency band [1 300, 1 600] Hz. This partition of the frequency band of analysis has been introduced in order to analyze the amplication of the resonances in each subfrequency band. Let {low, med, high} be the set of the three identiers such that, for "band" ∈ {low, med, high}, the band f band denotes one of the band f low , f med , and f high .

For s 0 = 1, let B NL (2πν; δ K ) be the random amplication factor dened by Eq. (6.4), computed using NL-SROM1 and let

B ∞,band NL (δ K ) = max ν∈B band B NL (2πν; δ K ) (7.1)
be the random variable that corresponds to the maximum dynamic amplication factor over frequency band f band . We then denote by b +,∞,band

NL (δ K ) the value of B ∞,band NL (δ K ) depending on δ K and such that Proba{B ∞,band NL (δ K ) ≤ b +,∞,band NL (δ K )} ≤ 0.95 . (7.2)
For anyone of the 46 patterns, we are interested in plotting the graphs of functions

δ K → b +,∞,low NL (δ K ), δ K → b +,∞,med NL (δ K ), and δ K → b +,∞,high
NL (δ K ), which describe the evolution of the maximum amplication factor for each pattern according to the dispersion parameter δ K . However, to maintain a sucient readability of the gures, we only plot the lower and the upper envelopes of the 46 patterns. These two envelopes dene a region in which all the 46 pattern belong. Figures 7.4 to 7.5 show the graphs for each frequency band, f med , f low , and f high . In the caption of each one of these three gures, the patterns corresponding to the lower and the upper envelopes are indicated. Figure 7.3 shows that there is a weak sensitivity of the envelopes with respect to the mistuning level represented by the value of δ K . Pattern P 34 , which corresponds to the upper envelope, yields the largest dynamic amplication factor in band f med , whereas pattern P 1 , which corresponds to the lower envelope, has the lowest dynamic amplication factor. In Figures 7.4 and 7.5, it can be seen that the envelopes are sensitive to the level of mistuning represented by δ K , and that a very high dynamic amplication factor can be obtained, that is the case for pattern P 26 (upper envelope for f low ) and for pattern P 9 (upper envelope for f high ). Note that these dynamic amplication factor is normalized with respect to the nonlinear tuned response without mistuning and could not be normalized with respect to the linear tuned system, which would yield an innite value. understand the modal participation of modes 2B and 1T. Certainly, such a limited analysis should be extended to the analysis of detuned patterns.

Nonlinear deterministic analyses related to modes 2B and 1T

In this Section, the two modes of interest (2B at 1 170 Hz and 1T at 1 490 Hz belonging to the excitation frequency band as shown in Figure 7.2) are individually excited using the L-ROM and the NL-ROM in order to understand why the rst torsion mode vanishes (1T) whereas the second bending (2B) mode does not. We proceed to two distinct analyses that dier from one to another one by the excitation frequency band characterized by function g(t). Let f 2B e = [1 000, 1 300]Hz and f 1T e = [1 300, 1 600]Hz be the excitation frequency bands, which respectively contain the eigenfrequencies ν (2B) = 1 130 Hz and ν (1T) = 1 483 Hz. Since the excitation is chosen with a circumferential wave number h = 4, it ensures that only one mode is excited when dealing with a linear operating regime. The intensity of the load is taken as s 0 = 1, which means that there are signicant geometric nonlinear eects as shown in 4.4.5. Figures 8.1 displays the graphs of function ν → || u j 0 (2πν)|| for these two linear and nonlinear computations. There are subsequent geometric nonlinear eects. The modal resonances are shifted to the right and its amplitude is reduced. In particular, for the present case, the torsional contribution drastically vanishes (10 times lower) comparing to the bending contribution that vanishes (2 times lower).

Stochastic nonlinear analyses of modes 2B and 1T

The stochastic nonlinear analyses are carried out with a mistuning level corresponding to δ K = 0.1 and for s 0 = 1. Figure 8.2 displays the graph of condence region of ν → || U j 0 (2πν)|| corresponding to a probability level 0.95. It can be clearly seen that the mode 2B is robust with respect to uncertainties, whereas mode 1T is sensitive. In particular, the sensitivity of the response in the higher frequencies above the excitation frequency band is almost entirely due to the excitation of the torsional mode, taking into account the response shown in Figure 7.2.

Quantication concerning the energy transfer according to the modal excitation

In section 8.2, modes 2B and 1T have been individually excited in order to understand how these modes are modifyed by the geometric nonlinearity eects. In this section, we investigate the energy transfer between modes. We have limited the investigations to pattern P 0 with an excitation for which the circumferential wave number is h = 4. First we quantify the evolution of the modal contents as a function of rotation speed Ω as follows. Let R να (Ω) be the quantity dened by

R να (Ω) = ν α (Ω) ν (1B) (Ω) , (8.1) 
in which ν α (Ω) is any eigenfrequency of the rotating tuned bladed-disk for h = 4 and ν (1B) (Ω) is its counterpart for mode 1B. linear analysis is then carried out with respect to the rotation speed Ω. We want to quantify the energy transfer with respect to the value of R να (Ω).

Conclusion and Perspectives

Summary

This thesis has proposed a robust analysis of rotating mistuned-detuned bladed disk structures in order to understand the amplication eects induced by the mistuning phenomenon in presence of nonlinear geometric eects. A complete methodology has been proposed for constructing a nonlinear stochastic reducedorder model (NL-SROM). A main contribution concerns the methodology proposed for constructing a reduced-order basis used for obtaining the NL-ROM and then the NL-SROM. More precisely, a modal basis has been computed by solving the generalized eigenvalue problem associated with the nonlinear high-delity model (NL-HFM), without nonlinear geometrical eects, without damping, and without mistuning. A rst nonlinear reduced-order model has been obtained by projecting the nonlinear NL-HFM on the subspace spanned by this modal basis for which the convergence has carefully been studied. Then, another vector basis has been calculated using the Proper-Orthogonal Decomposition (POD) method applied to the nonlinear solution of the rst nonlinear reduce-order model, which has been solved in the time domain. Finally, a projection basis for the NL-HFM has been obtained by composing the modal basis with the vector basis constructed with the POD method. The nal nonlinear reduced-order model has then been obtained by projecting the NL-HFM on the subspace spanned by the projection basis introduced above. A careful attention has been done to take into account the random character of the mistuning phenomena that we have modeled with the nonparametric probabilistic approach of uncertainties. The nonlinear dynamic analyses have been carried out in the time domain and its Fourier Transform has allowed a posteriori frequency analysis to be conducted. A comparison has led us to conclude that the geometrical nonlinearities propagate the energy of the excitation outside the frequency band of excitation, yielding unexpected resonances that could be potentially dangerous. It is well known that the interest of the detuning is to reduce for the best all the dynamic amplication induced by the mistuning.

The corresponding nonlinear analysis is more complex because dierent dynamic behaviours occur according to dierent sub-frequency bands of analysis. Finally, a robust analysis of the eects of geometric nonlinearities on the nonlinear dynamic behavior of rotating bladed-disks structures that are detuned in presence of mistuning, has been presented. To this end, 46 patterns have been investigated, which have shown the variability of the amplication factor over a family of patterns. In the low-frequency band, which is not excited by the external forces, there are detuned congurations whose local amplication level can vary with a factor 4. In the excitation frequency band, the local variability of the dynamic amplication factor has been found to be lower compared to those obtained outside the excitation frequency band. Nevertheless, although a nonexhaustive study optimization could not be made, it has been shown that there were detuned congurations that minimize the dynamic amplication factor in presence of mistuning.

Perspectives

The results obtained allow for increasing the knowledge in the area of the nonlinear stochastic dynamics of the rotating detuned bladed disk structures in presence of mistuning. The envelopes of the dynamic amplications factors among the investigated patterns show that the nonlinear dynamic response is sensitive to the detuning in presence of mistuning. A rst additional work would consist in taking into account the aerodynamic couplings. A second perspective could be related to the optimization of the patterns. Indeed, the optimization with respect to all the possible congurations dened by the patterns, with the objective to nd the pattern that minimizes the random dynamic amplication factor, remains a problem that demands large computer ressources in term of CPU time. The complexity of the results obtained for the 46 congurations studied, seems to show that such a discrete nonconvex optimization problem on a set of congurations having a huge number of patterns, is dicult. Certainly, new algorithms based on machine learning should help to solve this dicult optimization problem. The PYR13 nite element is constructed with quadratic interpolations [START_REF]Shape functions and points of integration of the nite elements[END_REF][START_REF] Dhatt | Une Présentation de la Méthode des Eléments Finis[END_REF]. There are 13 nodes yielding 39 degrees of freedom in this pyramidal element. 

C.2.2 Numerical integration points

The PYR13 numerical Gauss integration points are summarized in 
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 11741783818111123134281 For s 0 = 1 and for δ K = 0.03, condence region (yellow region) of the random amplication factor, B NL (2πν), estimated with a probability level of 0.95 using NL-SROM1, for the tuned rotating bladed-disk structure (pattern P 0 ) (left top gure), and for detuned patterns, P 6 (right top), P 11 (left down), and P 25 (right down). The dashed-line is the nominal amplication factor b NL (2πν). The vertical grey region corresponds to excitation frequency band f e . . . xii 6.12 For s 0 = 1 and for δ K = 0.1, condence region (yellow region) of the random amplication factor, B NL (2πν), estimated with a probability level of 0.95 using NL-SROM1, for the tuned rotating bladed-disk structure (pattern P 0 ) (left top gure), and for detuned patterns, P 6 (right top), P 11 (left down), and P 25 (right down). The dashed-line is the nominal amplication factor b NL (2πν). The vertical grey region corresponds to excitation frequency band f e . . . For s 0 = 1, graphs of functions ν → b ± NL (2πν) (black irregular thick lines) and ν → b tuned NL (2πν) (red irregular thin line) corresponding to the upper (+) and the lower (-) envelopes of the dynamic amplication factor among the investigated patterns. Linear scale (top gure) and log scale (down gure) . . . . . . . . . . . . . . . . . . 77 7.2 For δ K = 0.1 and s 0 = 1, condence region (yellow/grey region) of the random amplication factor, B all NL (2πν), related to the 46 patterns, estimated with a probability level of 0.95 using NL-SROM1. The dashed-line is the amplication factor b tuned NL (2πν) of the tuned system without mistuning. The thick solid line is the median value of random variable B all NL (2πν). The vertical grey region corresponds to excitation frequency band f e . Linear scale (top gure), log scale (down gure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For s 0 = 1 and for band f med , lower (thin solid line) and upper (thick solid line) envelopes of the regions containing the 46 graphs of functions δ K → b +,∞,med NL (δ K ) for the 46 patterns using NLSROM1. The upper envelope corresponds to detuned pattern P 33 and the lower one to detuned pattern P 1 . . . . . . . . . . . . . . . . . . . . 80 7.4 For s 0 = 1 and for band f low , lower (thin solid line) and upper (thick solid line) envelopes of the regions containing the 46 graphs of functions δ K → b +,∞,low NL (δ K ) for the 46 patterns using NLSROM1. The upper envelope corresponds to detuned pattern P 26 and the lower one to detuned pattern P 37 . . . . . . . . . . . . . . . . . . . . 81 7.5 For s 0 = 1 and for band f high , lower (thin solid line) and upper (thick solid line) envelopes of the regions containing the 46 graphs of functions δ K → b +,∞,high NL (δ K ) for the 46 patterns using NLSROM1. The upper envelope corresponds to detuned pattern P 9 and the lower one to P 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For s 0 = 1, frequency analysis of the time responses related to mode 1B (left gure)and mode 1T (right gure). In each gure, the computation with the L-ROM is in red color and with the NL-ROM in blue color: graph of function ν → || u j 0 (2πν)|| for the tuned rotating bladed-disk structure (pattern P 0 ). The excitation frequency band f e is in light grey area. . . . . . . . . . . . . . . . . 8.2 For s 0 = 1 and for δ K = 0.1, condence region (yellow/grey region) of ν → || U j 0 (2πν)|| corresponding to a probability level 0.95, computed using NL-SROM1 for the tuned rotating bladed-disk structure (pattern P 0 ) related to mode 2B (left gure) and mode 1T (right gure). The dashed-line is the response of the deterministic mean (nominal) model. The vertical grey region corresponds to excitation frequency band f e . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Graph of the evolution of the ratio R(ν α ) with respect to the rotation speed Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Graphs of function ν → || u j 0 (2πν)|| for s 0 = 0.05 (left gure) and s 0 = 0.3 (right gure). The light blue zone corresponds to the excitation frequency band f e . . . . . . . . . . . . . . . . . . . . . . 8.5 Graphs of function ν → || u j 0 (2πν)|| for s 0 = 0.7 (left gure) and s 0 = 1 (right gure). The light blue zone corresponds to the excitation frequency band f e . . . . . . . . . . . . . . . . . . . . . . . . 8.6 Graphs of function ν → || u j 0 (2πν)|| for s 0 = 0.05 (left gure) and s 0 = 0.3 (right gure). The light blue zone corresponds to the excitation frequency band f e . . . . . . . . . . . . . . . . . . . . . . 8.7 Graphs of function ν → || u j 0 (2πν)|| for s 0 = 0.7 (left gure) and s 0 = 1 (right gure). The light blue zone corresponds to the excitation frequency band f e . . . . . . . . . . . . . . . . . . . . . . . . Context of research . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mistuning denition . . . . . . . . . . . . . . . . . . . . Combining detuning and mistuning . . . . . . . . . . . . Eects of geometric nonlinearities . . . . . . . . . . . . . Objectives of research . . . . . . . . . . . . . . . . . . . . 7 1.3 Organization of the manuscrip and denition of the used terminology . . . . . . . . . . . . . . . . . . . . . . . Context of research 1.1.1 Mistuning denition

Figure 1 . 2

 12 Figure 1.2 Variation of the maximum amplication factor with respect to the rate of mistuning [2]

Figure 1 . 3

 13 Figure 1.3 Blade undergoing small (grey blade) and large displacements (blue blade)

Figure 2 . 1

 21 Figure 2.1 Reference conguration of the bladed-disk structure in the rotating frame

  and matrix [C(Ω)] corresponds to the discretization of the bilinear form c(u, v) that comes from the term 2ρ [R] ij ∂u j

Chapter 3 Construction

 3 of the nominal (or mean) nonlinear reduced-order model Contents 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 First NonLinear Reduced-Order Model (NL-ROMF) for a detuned bladed-disk . . . . . . . . . . . . . . . . . . 27 3.3 Second nonlinear reduced-order model (NL-ROM) for a detuned bladed-disk . . . . . . . . . . . . . . . . . . . . 28

  and where the corresponding elastic modes ϕ 1 , . . . , ϕ m are stored in the (n × m) real modal matrix [Φ m ], with the following orthogonality properties

  ) in which [I m ] is the identity matrix of dimension m and where [Λ m ] is the diagonal matrix containing the eigenvalues λ α . The NL-ROMF is thus obtained by projecting Eq. (2.40) on the subspace spanned by [Φ m ],

  ) in which q(t) is the R m -vector of the generalized coordinates, and where [ M ], [ D ], [ C(Ω)], and [ K 1 (Ω)] are the (m × m) reduced mass, damping, gyroscopic, and stiness matrices. Note that matrices [ M ] and [ K 1 (Ω)] are diagonal positive-denite matrices, matrix [ D ] is a full positive-denite matrix in the general case (and will presently be a diagonal positive-denite matrix due to the use of a damping Rayleigh model), and [ C(Ω)] is a full skew-symmetric matrix. In Eq. (3.5), the R m -vectors F(t) and F NL (q(t)) are the vectors of the reduced external forces and of the nonlinear reduced internal forces dened by

  and where the diagonal (m × m) real matrix [S] contains all the m non-zeros singular values sorted by decreasing order s 1 s 2 • • • s m > 0. It can be shown that the singular values are the square-roots of the positive eigenvalues of matrix [C A ], that is to say, s α = √ µ α . (3.20) It can also be shown that the m columns of matrix [W ] are the corresponding eigenvectors ψ α of matrix [C A ]. Let [W (m,N ) ] be the (m × N ) matrix with N m < m that contains the eigenvectors related to the N greatest singular values s

  [M], [D], [C(Ω)], and [K 1 (Ω)] are the (N × N ) mass, damping, gyroscopic coupling, and stiness reduced matrices. Note that matrix [M] = [I N ], matrices [D], [K 1 (Ω)] are full positive denite matrices, and [C(Ω)] is a full skew-symmetric matrix. It should be noted that matrix [K 1 (Ω)
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Figure 4 . 1

 41 Figure 4.1 Finite element model of the bladed-disk with 24 blades in which the dot symbols (red color) correspond to the excitation points (left gure). Zoom of the nite element model of a sector (right gure).

Figure 4 . 2

 42 Figure 4.2 Zoom of the nite element sector: grey, red and green nite elements are respectively related to hexahedral, pyramidal, and tetrahedral nite elements

Table 4 . 3

 43 Numercial integration points used by ANSYS commercial nite element software 4.3. Modal analysis of the rotating tuned bladed-disk structure and numerical validation4.2.2 Computational model of the detuned bladed-disk structureThe computational model of the detuned bladed-disk structure is constructed from the knowledge of two compatible meshes corresponding to the two dierent sector types that we have denoted as A and B. The reference sector B is obtained from sector A by decreasing the Young modulus of the blade by 10 %, the Young modulus of the disk remaining unchanged.

Figure 4 .Figure 4 . 3

 443 Figure 4.3 Tuned bladed-disk structure P 0 = 24A (left gure) and detuned bladed-disk conguration P 31 = (6A6B) 2 with red blade for B and blue blade for A (right gure).

Figure 4 . 4 displays

 44 the Campbell diagram representing the evolution of the eigenfrequencies ν α of the linear tuned rotating bladed-disk P 0 according to rotation speed Ω. The dashed lines represent the EO-engine order characterized by function Ω → EO × Ω 60

Figures 4 .

 4 6 and 4.7 display a representation of the rst four eigenmodes of the rotating structure.

Figure 4 . 4

 44 Figure 4.4 Graph of Ω → ν α (Ω) dening the Campbell diagram of the eigenfrequencies (in Hz) of the linear tuned rotating bladed-disk structure (pattern P 0 ) as a function of the rotation speed (in RPM), where EO denotes the engine order, and where the vertical dashed line identies the speed of rotation that is considered.

Figure 4 . 5

 45 Figure 4.5 Graph of h → ν α (h) of the eigenfrequencies ν α of the linear tuned rotating bladed-disk structure (pattern P 0 ) for rotation speed Ω = 4 440 RPM as a function of the circumferential wave number h.

Figure 4 . 6 Figure 4 . 7 Figure 4 . 8 = π 3 ,

 4647483 Figure 4.6 Representation of the mode shapes of the tuned rotating bladed-disk structure for circumferential wave number h = 4. First bending mode related to eigenfrequency ν 1 = 484 Hz (left gure) and second bending mode related to eigenfrequency ν 2 = 1 170 Hz (right gure)

and 4 .

 4 [START_REF] Hodges | Connement of vibration by structural irregularity[END_REF] show the graphs of function t → g(t) and the modulus of its Fourier transform ν → | g(2πν)|. It should be noted that, from a computational point of view, the numerical values of | g(2πν)| for ν in f a \f e are not exactly zero but dier with three orders of magnitude lower, which means that the linear dynamic response

Figure 4 . 9

 49 Figure 4.9 Denition of the excitation: graph of the time-function excitation, t → g(t), denes on interval [-0.065, 0.18] s (top gure) and zoom on [-0.02, 0.02] s interval (down gure).

Figure 4 .

 4 Figure 4.10 Graph of function ν → | g(2πν)| in log scale.

13 Figure 4 .Figure 4 .Figure 4 . 13 Figure 4 .

 13444134 Figure 4.11 Convergence analysis with respect to the reduced order m of the NL-ROMF: graphs of function m → Conv 1 (m) for patterns P 0 = 24A, P 2 = (AB) 12 , and P 13 = 6B12A3B3A.

Figure 4 .Figure 4 .

 44 Figure 4.13 Sensitivity analysis with respect to parameter s 0 using the NL-ROMF for the nonlinear tuned rotating bladed-disk structure (pattern P 0 = 24A): graph of function s 0 → i NL (s 0 ). The red dashed line represents the boundary between the linear and nonlinear regimes

Figure 4 .

 4 Figure 4.14 Sensitivity analysis with respect to parameter s 0 of the responses computed with the NL-ROMF and analyzed in the frequency domain: graphs of function ν → || u j 0 (2πν)|| for s 0 = 0.04 (left top gure), s 0 = 0.25 (right top gure), s 0 = 1 (left down gure), and s 0 = 4.0 (right down gure). The light yellow zone corresponds to the excitation frequency band f e 4.4.6 Linear and nonlinear dynamic analyses in the time domain using the L-ROM and NL-ROM

Figure 4 .

 4 Figure 4.15 Zoom on the time interval [-0.01, 0.1] s of the linear dynamic analysis in the time domain performed with the L-ROM: graph of function t → u j 0 2,L (t) dened on the time interval [-0.05, 1.5] s for the patterns P 0 (left top gure), P 6 (right top), P 11 (left down), and P 25 (right down).
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 47 Analysis of the nonlinear dynamic time responses in the frequency domainAs previously explained, a Fourier transform of the time responses constructed with the L-ROM (linear) and the NL-ROM (nonlinear) is performed, allowing the spectrum of the responses to be analyzed in the frequency band of analysis f a = [0, 4 000] Hz. We are interested in the dynamic amplication factor b(2πν) (dened by Eq. (4.8)) with respect to the tuned conguration.

Figure 4 Figure 4 .

 44 Figure 4.16 Zoom on the time interval [-0.01, 0.1] s of the nonlinear dynamic analysis in the time domain performed with the NL-ROM: graph of function t → u j 0 2,NL (t) dened on the time interval [-0.05, 1.5] s for the patterns P 0 (left top gure), P 6 (right top), P 11 (left down), and P 25 (right down).

Figure 4 .

 4 Figure 4.17 Frequency analysis of the time responses computed with the NL-ROM: graphs of functions ν → b L (2πν) (red smooth thin lines) and ν → b NL (2πν) (blue irregular thick lines) for patterns P 0 (left top gure), P 6 (right top gure), P 11 (left down gure), and P 25 (right down gure). The excitation frequency band f e is in light grey area.
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 21 Convergence analysis with respect to N K From Section 4.4.4, dimension N of the NL-ROM is xed to 55. Consequently, dimension N K of the global stiness matrix [K NL ] dened by Eq. (5.14) is 55×56 = 3 080. We are then interested in quantifying the numerical error resulting from the factorization of matrix [K NL ] which depends on the number of N K related to the dimension of matrix [Ψ N K ].

Figure 6 . 1

 61 Figure 6.1 Convergence analysis with respect to parameter N K : graph of function N K → err( N K ) in log-scale. 6.2.2 Stochastic convergence analysis with respect to n s Parameters m, N , and N K are xed such that m = 145, N = 55, and N K = 500.The range of values of hyperparameter δ K that will be used for performing the sensitivity analysis of the nonlinear dynamical response with respect to the level of uncertainties, will be 0 < δ K < 0.1. The convergence analysis is thus performed for the larger value 0.1 of δ K ensuring the convergence for all values of δ K less than 0.1. Let

Figure 6 . 2

 62 Figure 6.2 Convergence analysis with respect to the number n s of realizations for the Monte-Carlo numerical simulation of the NL-SROM1: graph of function n s → Conv(n s ).

Figures 6 .

 6 4 to 6.9 display the graphs of the condence region of ν → || U j 0 (2πν)|| corresponding to a probability level 0.95 for both patterns P 0 (tuned) and P 6 (detuned) computed using NL-SROM2 for three external-forces intensities s 0 = 0.01, s 0 = 0.15, and s 0 = 1 corresponding to negligible, moderate, and strong geometric nonlinear eects. It can be seen that for s 0 = 0.01, the response in the frequency domain is clearly located in excitation frequency band f e , similarly to the linear case. For the medium and high values of s 0 , geometric nonlinear eects yield unexpected resonances that occur outside f e , especially, around 484 Hz (mode 1 dened in Section 4.5), which corresponds to the rst bending mode of the blade and around 3 700 Hz, which corresponds to a combination of elastic modes. In addition, the general level of responses outside band f e increases with s 0 . Concerning frequency band of excitation f e , it can be seen that the second bending mode of blade (mode 2 around 1 170 Hz dened in Section 4.3) is relatively stable in amplitude with respect to s 0 while the rst torsion mode of blade (mode 3 at around 1 490 Hz dened in Section 4.

Figure 6 .

 6 Figure 6.10 displays the graph of function δ K → b +,∞L (δ K ) for seven patterns of congurations: tuned pattern P 0 and detuned ones P 2 , P 3 , P 5 , P 6 , P 12 , and P 31

Figure 6 . 3

 63 Figure 6.3 For δ K = 0.1, graphs of function s 0 → u max (s 0 ) such that Proba{ U max (s 0 ) ≤ u max (s 0 )} ≤ 0.95 for the tuned rotating bladed-disk structure (pattern P 0 ) and for the detuned pattern P 6 . Calculation with L-SROM (red line with crosses) and with NL-SROM2 (blue line with circles).

Figure 6 . 4 Figure 6 . 5

 6465 Figure 6.4 For δ K = 0.1, condence region (yellow region) of ν → || U j 0 (2πν)|| corresponding to a probability level 0.95, computed using NL-SROM2 for the tuned rotating bladed-disk structure (pattern P 0 ) and for s 0 = 0.01. The dashed-line is the response of the deterministic nominal (mean) model. The vertical grey region corresponds to excitation frequency band f e . Linear scale (left gure) and log scale (right gure)

Figure 6 .Figure 6 .

 66 Figure 6.11 For s 0 = 1 and for δ K = 0.03, condence region (yellow region) of the random amplication factor, B NL (2πν), estimated with a probability level of 0.95 using NL-SROM1, for the tuned rotating bladed-disk structure (pattern P 0 ) (left top gure), and for detuned patterns, P 6 (right top), P 11 (left down), and P 25 (right down). The dashed-line is the nominal amplication factor b NL (2πν). The vertical grey region corresponds to excitation frequency band f e .

7. 3 .Figure 7 . 1

 371 Figure 7.1 For s 0 = 1, graphs of functions ν → b ± NL (2πν) (black irregular thick lines) and ν → b tuned NL (2πν) (red irregular thin line) corresponding to the upper (+) and the lower (-) envelopes of the dynamic amplication factor among the investigated patterns. Linear scale (top gure) and log scale (down gure)

Figure 7 . 2

 72 Figure 7.2 For δ K = 0.1 and s 0 = 1, condence region (yellow/grey region) of the random amplication factor, B all NL (2πν), related to the 46 patterns, estimated with a probability level of 0.95 using NL-SROM1. The dashed-line is the amplication factor b tuned NL (2πν) of the tuned system without mistuning. The thick solid line is the median value of random variable B all NL (2πν). The vertical grey region corresponds to excitation frequency band f e . Linear scale (top gure), log scale (down gure)

Figure 7 . 3 Figure 7 . 4

 7374 Figure 7.3 For s 0 = 1 and for band f med , lower (thin solid line) and upper (thick solid line) envelopes of the regions containing the 46 graphs of functions δ K → b +,∞,med NL (δ K ) for the 46 patterns using NLSROM1. The upper envelope corresponds to detuned pattern P 33 and the lower one to detuned pattern P 1 .

Figure 7 . 5

 75 Figure 7.5 For s 0 = 1 and for band f high , lower (thin solid line) and upper (thick solid line) envelopes of the regions containing the 46 graphs of functions δ K → b +,∞,high NL (δ K ) for the 46 patterns using NLSROM1. The upper envelope corresponds to detuned pattern P 9 and the lower one to P 8 .

Figure 8 .Figure 8 . 3

 883 Figure 8.3 Graph of the evolution of the ratio R(ν α ) with respect to the rotation speed Ω.

Figure C. 2

 2 shows a representation of the 13-node pyramidal nite element. Let (ξ, η, ζ) be the coordinates in the cartesian coordinate systems (O, e ξ , e η , e ζ ) of the corresponding reference nite element which occupies the domain [-1, 1] × [-1, 1] and for which ζ ∈ [0, 1].

N 1 ( 7

 17 ξ, η, ζ) = η(2η -1) N 2 (ξ, η, ζ) = ζ(2ζ -1) N 3 (ξ, η, ζ) = (1 -ξ -η -ζ)(1 -2ξ -2η -2ζ) N 4 (ξ, η, ζ) = ξ(2ξ -1) N 5 (ξ, η, ζ) = 4ηζ N 6 (ξ, η, ζ) = 4ζ(1 -ξ -η -ζ) N 7 (ξ, η, ζ) = 4η(1 -ξ -η -ζ) N 8 (ξ, η, ζ) = 4ξη N 9 (ξ, η, ζ) = 4ξζ N 10 (ξ, η, ζ) = 4ξ(1 -ξ -η -ζ) Table C.6 Interpolation functions related to the TET10 nite element Point ξ η ζ Weight a Localization of the 4 numerical integration points in the TET10 nite element
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  Linear and nonlinear nite element model of the detuned bladed-disk structureThe weak formulation related to the nonlinear boundary value problem is discretized using the nite element method[START_REF] Zienkiewicz | The nite element method[END_REF][START_REF] Hughes | The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[END_REF]. The unknown displacement eld u is approximated by projecting u in the n-dimension subspace C ad of C ad , spanned by the n basis functions e 1 , • • • , e n deduced from the interpolation func-

	2.4 Finite element discretization
	2.4.1 tions of the nite elements,
	u(x)
	.38)

n i=1

  and [E j 3 ] of the matrix [E] are similarly expressed as those in Equation (2.46). It should be noted that the gyroscopic coupling matrix [C] has also the same block circulant property.

Table 4 .

 4 1 Geometric characteristics of the bladed-disk structure

	Structure	Elements Nodes	DOFs
	Blade alone	2 714	6 896	20 688
	Disk sector	836	4 554	13 662
	Full structure	85 200	265 080 787 176

Table 4 .

 4 

2 Element, nodes, and dofs of the nite element model by Eq. (2.29

  The hyperparameter δ K allows for controlling the level of uncertainties in random matrix [ K The random linear, quadratic, and cubic coecients, [K e ] αβ , K

	extracted from random matrix [ K	NL	(2) αβγ , and K	(3) αβγδ K , are

NL

].

  Contents 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Convergence analyses . . . . . . . . . . . . . . . . . . . . 62 6.2.1 Convergence analysis with respect to N K . . . . . . . . 62 6.2.2 Stochastic convergence analysis with respect to n s . . . 63 6.3 Linear and nonlinear stochastic analyses . . . . . . . . . 65 6.3.1 Random dynamic amplication . . . . . . . . . . . . . . 65 6.3.2 Sensitivity analysis with respect to parameter s 0 for the rotating tuned and detuned bladed-disk structure in presence of mistuning . . . . . . . . . . . . . . . . . . . . . . 65 6.3.3 Stochastic analysis of nonlinear rotating tuned and detuned bladed-disk structure in presence of mistuning for dierent patterns . . . . . . . . . . . . . . . . . . . . . . 72 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1 Introduction This section is devoted to the stochastic nonlinear dynamic analyses of the rotating detuned bladed-disk presented in Chapter 4 in presence of mistuning. More particularly, four congurations are investigated: the tuned bladed-disk structure (pattern P 0 ), and three arbitrary detuned congurations (patterns P 6 , P 11 , and P 25 ). The computation NL-ROM of these congurations is constructed with numerical parameters m = 145 and N = 55 (see Chapter 4). The rst section deals with the convergence analysis of NL-SROM1 with respect (1) to parameter N K controlling the dimension of the random matrix [ G K ] (see Section 5.4.2) and (2) to parameter n s controlling the number of realizations used in the Monte-Carlo numerical simulation. The second section concerns the numerical results that consist in the condence region of the nonlinear stochastic responses related to the investigated tuned and detuned congurations obtained with L-SROM, NL-SROM1, and NL-SROM2. 6.2 Convergence analyses with respect to N K and

	n s

  .[START_REF] Castanier | Consideration on the benets of intentional blade mistuning for the forced response of turbomachinery rotors[END_REF]) is solved by using the Monte-Carlo numerical simulation with n s realizations denoted by θ 1 , • • • , θ ns . Let W(2πν, θ ) be the realization θ of the random variable W(2πν). The convergence analysis with respect to n s is then carried out studying the function n s → Conv(n s ) dened by Figure6.2 displays the graph of function n s → Conv(n s ). It can be seen that a reasonable approximation is obtained for n s ≥ 500. In order to limit the CPU-time for performing the robust analysis of the detuned systems in presence of mistuning, the chosen value 500 of parameter n s is retained.

	Conv(n s ) =	1 n s	ns =1 Ba	( W(2πν, θ )) 2 dν	(6.3)

  Figure 6.10 For s 0 = 1, graphs of function δ K → b +,∞L (δ K ) for tuned pattern P 0 and detuned ones, P 2 , P 3 , P 5 , P 6 , P 12 , and P 31 dened in Appendix B.6.3.3 Stochastic analysis of nonlinear rotating tuned and de-tuned bladed-disk structure in presence of mistuning for dierent patterns
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  7.1 IntroductionIn Chapters 4 and 6, nonlinear dynamic analyses have been performed for three detuned patterns. In this Chapter, we are interested in the robust nonlinear dynamic analysis of rotating detuned bladed-disks in presence of mistuning with respect to a large family of patterns. Due to computation cost, only 46 patterns have been considered and are dened in Appendix B. This means that 46 nonlinear reduced-order models have been constructed. It should be noted that we mainly investigate the patterns involving three identical consecutive blades of type B. Since M = 24, it can be shown that there are 34 possible patterns, which are denoted by P i , i = {12, • • • , 45}. For instance, pattern 12B6A3B3A exhibits 12 consecutive blades of type B, 6 blades of type A, 3 blades of type B, and 3 blades of type A (note that patterns from P 1 to P 11 are those already used in the previous chapters).

Table C .

 C 2 Localization of the 27 numerical integration points in the HEX20 nite element TableC.3 Localization of the 14 numerical integration points in the HEX20 nite element

	Point	ξ	η	ζ	Weight
		r	s	t	w 1
		r -s	t	w 1
	10 11	r -s -t r s -t -r s t -r -s t -r -s -t -r s -t u 0 0 -u 0 0 0 -v 0	w 1 w 1 w 1 w 1 w 1 w 1 w 2 w 2 w 2	with	r = 0.758786910639329 s = 0.758786910639329 t = 0.758786910639329 u = 0.795822425754222 v = 0.795822425754222 w = 0.795822425754222 w 1 = 0.335180055401662 w 2 = 0.886426592797784
	12	0	v	0	w 2
	13	0	0	w	w 2
	14	0	0 -w	w 2

C.2 Pyramidal elements with 13 nodes

  Table C.5. Table C.5 Localization of the 6 numerical integration points in the PYR13 nite element

	Point	ξ	η	ζ Weight	p 1 = 0.1024890634400000
	1	a	0. h 1	p 1	p 2 = 0.1100000000000000
	2	0	a h 1	p 1	p 3 = 0.1467104129066667
	3	-a 0. h 1	p 1	with	a = 0.5702963741068025
	4	0. -a h 1	p 1	h 1 = 0.1666666666666666
	5	0.	0. h 2	p 2	h 2 = 0.08063183038464675
	6	0.	0. h 3	p 3	h 3 = 0.6098484849057127

Construction of the nominal (or mean) nonlinear reduced-order model 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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Chapter 5

Probabilistic model of mistuning for the mistuned-detuned bladed-disk structures 

Algebraic representation of random matrix [G]

The following algebraic representation of [G] ∈ SG + 0 gives an explicit generator of realizations of random matrix [G],

[G] = [L] T [L],

(5.9)

in which [L] is an upper triangular random matrix with values in w n () such that

(1) the random variables {[L] jj , j ≤ j } are mutually independent.

(2) for j < j , we have [L] jj = σU jj , in which σ = δ(n + 1) -1/2 and where U jj is a real-valued Gaussian random variable with zero mean and with a variance that is equal to 1.

(3) for j = j , we have [L] jj = σ 2V j , where V j is a positive-valued Gamma random variable whose probability density function with respect to dν is written as

(5.10)

Ensemble SE + 0 of positive-denite random matrices

Let [A] be a deterministic matrix given in w + n () and representing a given mean value that is dierent from the identity matrix. Any random matrix [A] in SE + 0 is with values in w + n (), and is such that

(5.12)

Random matrix [A] is written as

in which Q(t) is the R N -valued random vector of the generalized coordinates. In Eq. (5.23), the vector of the stochastic nonlinear internal forces F NLS (Q(t)) is written, for all q = (q 1 , . . . , q N ) as

αβγ q β q γ + K

(3) αβγδ q β q γ q δ . (5.24) 5.4.3 Stochastic nonlinear reduced-order model NL-SROM2 of a rotating detuned bladed-disk structure with mistuning

The second nonlinear stochastic reduced-order model NL-SROM2 only takes into account uncertainties on the linear elastic part of the rotating detuned-mistuned bladed-disk structure. Consequently, random matrix [K e ] is written as

in which [L Ke ] is the upper triangular (N × N ) real matrix, which results from the Cholesky factorization of (N × N ) real matrix [K e ], and where [G K (δ K )] is the (N × N ) random matrix belonging to SG + 0 . The second stochastic nonlinear reduced-order model, NL-SROM2, is then written as,

) in which Q(t) is the R N -valued random vector of the generalized coordinates. In Eq. (5.27), the vector of the stochastic nonlinear internal forces F NL (q(t)) is written, for all q = (q 1 , . . . , q N ) as

αβγ q β q γ + K

αβγδ q β q γ q δ .

(5.28)

Stochastic linear reduced-order model L-SROM of a rotating detuned bladed-disk with mistuning

We also introduce a stochastic linear reduced-order model L-SROM, which is the NL-SROM2, in which the nonlinear term F NL is removed. The stochastic linear reduced-order model, L-SROM, is then written as, (5.30) in which Q(t) is the R N -valued random vector of the generalized coordinates.

Linear and nonlinear stochastic analyses

In this section, we consider the following cases: the nonlinear rotating tuned bladed-disk structure in presence of mistuning and also three congurations of the rotating detuned bladed-disk structure in presence of mistuning. The nonlinear computational analyses are carried out using the NL-SROM1, the NL-SROM2, and the L-SROM dened in Chapter 5.

Random dynamic amplication

As explained in Section 4.4.2, we are interested in characterizing the amplication levels for the stochastic nonlinear responses. We thus introduce the quantity B(2πν) as the random dynamic amplication factor such that

in which

is a random observation of blade j 0 , expressed in the frequency domain .

6.3.2 Sensitivity analysis with respect to parameter s 0 for the rotating tuned and detuned bladed-disk structure in presence of mistuning

The objective is to quantify and to give explanations concerning the eects of the level of uncertainties related to the level of mistuning. In that sense, a parametric analysis is carried out with respect to (i) the dispersion parameter δ K that controls the level of uncertainties in the computational model and (ii) parameter s 0 that controls the amplitude of the external excitation, that is to say that allows the geometric nonlinear eects to be controlled. A comparison is performed between the linear stochastic responses computed with L-SROM and the nonlinear stochastic responses computed with NL-SROM2 for hyperparameter δ K xed to 0.1. Let U max (s 0 ) be the real-valued random variable dened by

depending on s 0 . A rst nonlinear dynamic analysis without mistuning is conducted as follows.

The excitation frequency band is dened as f 1B e = [350, 550]Hz, which contains ν (1B) = 425.1 Hz for a rotation speed Ω = 4 440 RPM. We consider several rotation speeds Ω = 19 098, 17 188, and 7 352 RPM yielding R να (Ω) = 2.0, 2.1, and 2.5 for ν α corresponding to mode 2B. Four values of s 0 are considered, s 0 = 0.05, s 0 = 0.3, s 0 = 0.7, and s 0 = 1. Figures 8.4 and 8.5 display function ν → || u j 0 (2πν)|| for all theses cases. It is clearly seen that the mode 2B corresponding to eigenfrequency ν (2B) = 1130 Hz (Ω = 4 440 RPM) does not seem excited through geometric nonlinearities, which is not the case when observing resonances around 1 500 Hz to mode 1T. It is interesting to observe that, the third bending mode (3B) related to eigenfrequency ν (3B) = 2 234 Hz (Ω = 4 440 RPM) yields a maximal contribution for a ratio R να (Ω) = 2.5. Again, we observe that all the modes located in the excitation frequency bands are excited as expected through the geometric nonlinearities. We reuse the notations introduced in Chapter 2. The objective of this Appendix is to briey explain how is calculated the geometric stiness matrix [K g (Ω)], which results from the nite element discretization of the linear form

Let F c be the vector of n of the nite element discretization of the centrifugal forces in the computational model, applied in the rotating frame, for the rotating bladed-disk structure. The geometric stiness matrix [K g (Ω)] is constructed from the corresponding stress state. The following static problem is solved:

The computation of the static response U geom allows the corresponding stress tensor σ geom to be constructed at any integration point of the nite element mesh.

Let k g (u, v) be the bilinear form related to the geometric stiness as explained in Equation (2.23) of Chapter 2

Appendix A. Construction of the geometric stiness matrix

For each nite element, the corresponding stress state is given by

where U is the R 3q -vector of the displacements of the q nodes of a nite element, where [D] is the (6 × 6) elasticity matrix of the nite element constituted of the components of the fourth-order elasticity tensor, and where [B(ξ)] is the (6 × 3q) interpolation matrix for the constructed with the derivatives of the interpolation functions. The geometric stiness matrix is then obtained by assembling each nite element contribution of the geometric stiness matrix.

Appendix B Appendix C

Implementation of three 3D nite elements in the house-code

In the industrial context of this thesis, ANSYS software is the nite element code used by the industrial. Indeed, the numerical developments of this work require to have similar functionalities, since the industrial meshes are considered at the same time as entry for the ANSYS users and for the developed house-code. This section is devoted to a brief description of the implementation of the 3-D solid nite elements with quadratic interpolation used in the development of the housecode written using the MATLAB language. Three types of solide elements have been developed:

• hexahedral 20-node solid nite element.

• pyramidal 13-node solid nite element.

• tetrahedral 10-node solid nite element.

C.1 Hexahedral nite element with 20 nodes

The HEX20 isoparametric 3D nite element is constructed with quadratic interpolations [START_REF]Shape functions and points of integration of the nite elements[END_REF][START_REF] Dhatt | Une Présentation de la Méthode des Eléments Finis[END_REF]. There are 20 nodes yielding 60 degrees of freedom for such solid nite element. C.1. Hexahedral nite element with 20 nodes C.3 give the integration points when using 27 Gauss integration points (complete integration) or 14 integration points (reduced integration used by ANSYS software). Note that the reduced numerical integration scheme allows the hourglass phenomenon to be avoided [START_REF] Belytschko | Hourglass control in linear and nonlinear problems[END_REF]. The TET10 nite element is constructed with quadratic interpolations [START_REF]Shape functions and points of integration of the nite elements[END_REF][START_REF] Dhatt | Une Présentation de la Méthode des Eléments Finis[END_REF]. There are 10 nodes yielding 30 degrees of freedom in this tetrahedral element. 

C.3.2 Numerical integration points

The TET10 numerical Gauss integration points are summarized in Table C. 7