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pour l’obtention du
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Résumé

Le désaccordage intentionnel, plus communément appelé detuning, a été identi�é
comme une possible technonologie pour réduire la sensibilité du comportement
dynamique de roues aubagées soumises au désaccordage involontaire, aussi appelé
mistuning, causé par les dispersions matérielle d'une aube à une autre engendrées
lors du processus de fabrication et par la variabilité des propriétés mécaniques des
matériaux. Le désaccordage intentionnel est mis en place par l'introduction de mo-
tifs à partir desquels di�érents types de secteurs générateurs, ayant des propriétés
géométriques et matérielles di�érentes, sont assemblés. Cependant, les récentes in-
novations technologiques impliquant l'utilisation d'aubes de plus en plus �exibles
et plus légères conduisent à de grands niveaux de déplacements et de déformations,
requiérant l'utilisation des équations dynamiques non linéaires tenant compte des
non-linéarités géométriques. Ce travail est dédié à l'analyse robuste des e�ets des
non-linéarités géométriques sur la dynamique non linéaire de roues aubagées désac-
ccordées intentionnellement, en rotation, en présence de désaccordage involon-
taire. Le désaccordage involontaire correspond à des incertitudes dans le modèle
numériques et sont prises en compte par une approche probabiliste. Cette thèse
de nouveaux résultats concernant la dynamique non linéaire des roues aubagées
désaccordées intentionnellement en présense de non-linéarités géométriques et en
présence de désaccordage involontaire. Les analyses dynamiques sont e�ectuées
dans le domaine temporel et analysées dans le domaine fréquentiel. L'analyse
fréquentielle des réponses non-linéaires mettent en évidence des réponses signi�ca-
tives en dehors de la bande d'excitation. Les intervalles de con�ance des réponses
stochastiques permettent d'analyser la robustesse du modèle vis-à-vis des incer-
titudes, c'est-à-dire du niveau de désaccordage involontaire. La roue aubagées
utilisée pour les simulations numériques est composée de 24 secteurs pour lesquels
di�érents motifs de roues aubagées désaccordées intentionnellement sont analysés,
avec ou sans désaccordage involontaire.



Abstract

The intentional mistuning, also called detuning, has been identi�ed as an e�-
cient technological way for reducing the sensitivity of the forced response of bladed-
disks to unintentional mistuning (simply called mistuning), caused by the man-
ufacturing tolerances and the small variations in the mechanical properties from
blade to blade. The intentional mistuning consists in detuning the bladed-disk
structure by using partial or alternating patterns of di�erent sector types. How-
ever, the recent technological improvements that include the use of more �exible
and lighter blades can lead to large strains/displacements, which requires the use
of nonlinear dynamic equations involving geometric nonlinearities. This work is
devoted to the robust analysis of the e�ects of geometric nonlinearities on the non-
linear dynamic behavior of rotating detuned bladed-disks in presence of mistuning.
The detuning corresponds to uncertainties in the computational model, and are
taken into account by a probabilistic approach. This thesis presents a series of
novel results in dynamics of rotating bladed-disks with mistuning and detuning in
presence of nonlinear geometrical e�ects. The structural responses are computed
in the time domain and are analyzed in the frequency domain. The frequency
analysis exhibits responses outside the frequency band of excitation. The con�-
dence region of the stochastic responses allows the robustness to be analyzed with
respect to uncertainties, that is to say with respect to the level of mistuning. The
bladed-disk structure, which is used for the numerical simulations, is made up of
24 blades for which several di�erent detuned patterns are investigated with and
without mistuning.
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ûmax(s0)} ≤ 0.95 for the tuned rotating bladed-disk structure (pat-
tern P0) and for the detuned pattern P6. Calculation with L-SROM
(red line with crosses) and with NL-SROM2 (blue line with circles). 67

6.4 For δK = 0.1, con�dence region (yellow region) of ν 7→ ||Û
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1.1 Context of research

1.1.1 Mistuning de�nition

In this section, we brie�y recall the origins of the mistuning phenomenon in bladed-
disk structure and how it a�ects their dynamic behavior. Typically, a bladed-disk
is an assembly of blade sectors designed to be identical from one to another one.
However, there are unavoidable variations and discrepancies in the structural prop-
erties of individual blades due to manufacturing tolerances, material or geometric
discrepancies. Such a phenomenon is called mistuning. These variations modify
the natural frequencies of the bladed-disk structure from its nominal design. Re-
search about the origins of mistuning phenomenon in bladed-disk structures has
�rst been investigated in the 1960's [4, 5]. Then, Whitehead investigated the in-
�uence of mistuning on the forced vibration behavior of bladed-disk structures [6].
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Chapter 1. Introduction

This pioneered work has been followed by those of Ewins [7], Dye and Henry [8],
where the ampli�cation factor has been introduced in order to measure the con-
sequences of the mistuning into the dynamic response. This ampli�cation factor
is de�ned as the ratio of the two following quantities. The �rst one is the highest
forced response of a given mistuned bladed-disk structure. The second one is the
highest forced response level of the tuned bladed-disk structure submitted to the
same excitation [9]. The uncertainties associated with the structural, material,
manufacturing, and assembly characteristics of a bladed-disk structure, a�ect the
modal properties of the tuned system. The eigenfrequencies and the mode shapes
are modi�ed [7, 10]. The presence of mistuning could possibly lead to mode local-
ization, in which the blades vibration energy is transferred and con�ned to only
one or few blades [11], inducing larger dynamic amplitudes compared to the tuned
one [12, 13, 14, 15]. Localization phenomenon has received wide attention in the
literature. It appears in various types of engineering structures, such as the small
disordering of periodic truss beams [16, 17], and of cyclic structures [18, 19, 1] (cf
Figure 1.1). Hodge [10] showed that the mode localization of a bladed-disk struc-

Figure 1.1 � Ampli�cation factors from measurement results [1]

ture becomes worse either with increasing mistuning levels, or by decreasing the
mechanical coupling between blades. The role played by inter-blade coupling has
also been investigated by Ottarsson and Pierre [11]. They showed that a weak cou-
pling could signi�cantly increase the forced response amplitudes, each blade acting
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as an isolated part avoiding of the vibration energy to be transferred between the
other blades whereas a very strong inter-blade coupling allows the energy to be
spacially distributed, and therefore reducing the possibility of mode localization.
Previous work published in [11, 20] also indicates that the sensitivity of the forced
response to mistuning is associated with the frequency-veering region. When there
is mistuning, the modes in the veering region tend to generate a disk-blade motion
yielding a strong inter-blade coupling and then a mode localization with a signif-
icant dynamic amplitudes levels [21]. Furthemore, the mode localization strongly
depends on the mistuning levels of the blades, and the maximum amplitude factor
is very sensitive to small perturbations levels. Indeed, in references [7] and [21], it
has been proved that the maximum amplitude of the blade disk dynamic response
increases with the increasing of the mistuning only up to a certain level, after
which mistuning leads to lower forced response amplitudes. An example of such
phenomenon is shown in Figure 1.2 [2].

Figure 1.2 � Variation of the maximum ampli�cation factor with respect to the
rate of mistuning [2]

1.1.2 Combining detuning and mistuning

The detuning (called intentional mistuning) consists in voluntarily breaking the
cyclic symmetry of a tuned bladed-disk that is only made up from a given gen-
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erating sector. The breaking is obtained by substituting one or several sectors of
the tuned bladed-disk by a perturbed sector. A perturbed sector is obtained by
modifying the geometry and or the mechanical properties of the generating sector.
A given assembly of sectors is de�ned as a pattern.

Such a strategy has been shown to be e�cient for mitigating the harmful e�ects
generated by the mistuning. Indeed, it has been reported that the maximum
blade forced response levels can be decreased by detuning the tuned design [22,
23, 24, 25]. Using two or more designs of blades with nominally di�erent natural
frequencies can make the detuned bladed-disk structure more robust with respect
to the mistuning e�ects [3]. However, the e�ectiveness of such strategy, which
consists in detuning the tuned design strongly depends on the selected pattern
[26, 27, 28, 29, 30, 31, 32, 33, 34]. In order to select the detuned pattern leading
to the smallest dynamic ampli�cation, a design optimization can be performed. It
should be noted that the optimization of the detuning, which consists in �nding
the optimal pattern, requires the calculation of a very large number of detuned
patterns in presence of mistuning, that is to say, using a stochastic computation
model. Consequently, the computational cost becomes very large for a bladed-
disk made up with a large number of blades. More recently, the technological
improvements that include the use of more �exible and lighter blades can lead
to large strains/displacements (as shown in Figure 1.3) so that the linearization
of the dynamic equations can no longer be used. In this context, the geometric
nonlinearities have to be taken into account as proposed in [35], and there is a
growing interest for including geometric nonlinearities in the dynamic analyses of
detuned bladed-disks.

1.1.3 E�ects of geometric nonlinearities

Research dealing with geometric nonlinearities have been mainly focused on ge-
ometric nonlinear problems of beams, plates, and shells [36, 37, 38, 39]. More-
over, one can �nd a lot of scienti�c litterature about theoretical and numerical
algorithms adapted to such context. Among them, we can cite books from Be-
lytschko [40, 41], Bonet [42] and Cris�eld [43]. Nowadays, because of the use of
more lighter, more slender, and more �exible structural components, the structure
may undergo large displacements in structural dynamics and for �uid-structure
interactions.

In the framework of cyclic structures, the e�ects of nonlinearities on the dy-
namics have �rst been considered by [44] for a simple generic cyclic structure
exhibiting nonlinear sti�ness connections (and not for nonlinear geometric e�ects,

4



1.1. Context of research

Figure 1.3 � Blade undergoing small (grey blade) and large displacements (blue
blade)

and furthermore, without mistuning). For the nonlinear dynamic analysis of ro-
tating bladed-disk structures with �exible blades, geometric nonlinearities can no
longer be neglected [35, 45, 46]. Note that the need to accurately predict the dy-
namic response of such geometric nonlinear dynamical systems becomes essential
for the designer.

In the framework of cylic geometric structures, many research have been carried
out in order to include local nonlinearities such as dry friction [47, 48, 49, 50, 51,
52]. Furthermore, due to the complexity of modern structures with cyclic geometry,
large �nite element computational models are needed. Consequently, research
on the construction of adapted nonlinear reduced-order models for bladed-disk
structures have also been largely investigated [53, 54, 55, 56, 57, 58, 59].

One of strategy that can be used for constructing nonlinear reduced-order mod-
els is the Sti�ness Evaluation Procedure (STEP) proposed in [60, 61], which is
applicable to a wide class of problems carried out with commercial �nite element
codes having a geometrically nonlinear static capability. The methodology is based
on the use of a standard commercial �nite element code for which no further nu-
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merical development is needed, only requiring a series of nonlinear static com-
putations with prescribed displacements [62, 63]. Such method has been used in
several contexts (see for instance, [64, 65, 66, 67]). In the framework of the STEP
method, methodologies for constructing non-intrusive reduced-order models have
been reviewed by [61].

Another approach for analyzing nonlinear dynamical systems is the Harmonic
Balance Method (HBM) (see for instance [68] for friction problems and [69] for
geometric nonlinear problems). In 2011, Grolet et al investigated nonlinear sys-
tems with cyclic symmetry submitted to geometric nonlinearities [70] followed by
the work presented in [71] and solved by using HBM. Note that all these works do
not take into account neither detuning nor mistuning phenomena. Likewise, Mar-
tin et al proposed in [72] an investigation of a stator vane composed of nonlinear
beams subjected to nonlinear e�ects and proposes an original coupling of several
methods used for the study of nonlinear systems. The nonlinear e�ects of each
substructure are reduced by using linear normal modes (LNMs) completed with
modal derivatives (MD) [73, 74]. The reduced nonlinear sti�nesses associated with
the basis are determined using the STEP method [60, 75]. The nonlinear e�ects
exhibits strong localizations on the structure at low amplitudes, which must be
avoided to ensure the integrity of the components.

The classical Proper Orthogonal Decomposition (POD) method is an e�cient
tool for constructing the vector basis, which allows nonlinear reduced-order models
to be constructed [76, 77, 78, 79, 80, 81, 82], and which is commonly used in many
applications.

For nonlinear dynamic systems, another overview concerning the construction
of vector bases used for obtaining the reduced-order model has been carried out
in [83], where the robustness and the performance of these bases are investigated.
More recently, an autonomous geometric nonlinear reduced-order model for study-
ing the solution of complex rotating structures has been presented in [84, 85].
For that purpose, the linear normal modes basis is used for the construction of
the reduced-order model, the STEP method is applied to compute the nonlinear
forces, and the assumption of nonlinear perturbations around the static equilib-
rium is considered. In [86], a methodology is presented to calculate the nonlinear
dynamic response of cyclic structures undergoing large vibratory deformation un-
der a traveling wave excitation using a double-sector model and transient dynamic
analysis.

Some other works on the �eld of geometric nonlinearities with application
on beam [87], coupled dynamic system [88], curved structure [89] and compos-
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ite blades [90] have also been carried out.

In this work, the nonlinear reduced-order model is constructed using a novel
approach. It consists in introducing a double projection approach [45, 46] followed
by the the use of the POD method for constructing the �nal vector basis. In
addition, an explicit approach is used for directly constructing the reduced linear,
quadratic, and cubic sti�ness operators of the mean nonlinear computational model
[91, 89, 35]. Such approach allows for analyzing industrial rotating integrally
bladed-disks in order to quantify the impact of the nonlinear geometrical e�ects on
the detuned-mistuned structure, in terms of dynamic ampli�cation of the responses
and of uncertainty propagation.

1.2 Objectives of research

As explained above, nonlinear complex phenomena remain to be understood and
analyzed in order to integrate these new concepts in industrial issues, in particular
concerning optimization problems. Moreover, the uncertainty quanti�cation and
numerical errors is nowadays recognized as necessary to improve the robustness
of predictions for design optimization. Lot of studies have been conducted in the
framework of the linear dynamic analysis for which the mistuning e�ects have
been modeled using either parametric probabilistic approaches (see for instance,
[24, 92, 93, 94, 95]), or using the nonparametric probabilistic approach ([96, 97,
98, 99]), and for which the optimization of alternating patterns has been studied
(see for instance, [30, 100, 3, 32]). More recently, nonparametric probabilistic
approach has been used for nonlinear structural vibration with nonlinear geometric
e�ects [91, 89, 35, 101]. Blade optimization problems in nonlinear dynamics with
nonlinear geometric e�ects and with uncertainty quanti�cation is today considered
as a real need for aeronautical industry. In this context, this research follows
the works proposed in [102, 103], in which tuned and detuned bladed-disks in
presence of mistuning have been investigated in the context of the linear dynamics.
Particularly, it has been shown in [3] that detuning is an e�cient technology to
reduce the dynamic ampli�cation due to the mistuning phenomena, as shown in
Figure 1.4. This present work is devoted to the robust analysis of the e�ects of
geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned
bladed-disk structures in presence of mistuning. The bladed-disk structure results
from an assembly of reference sectors that constitute a given detuned pattern
for which the dynamic analysis is carried out. Mistuning is taken into account
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Figure 1.4 � Ampli�cation factor with respect to the mistuning rate: the continuous
curves with circles (and non continuous curves with triangles) are related to the
tuned (and detuned) bladed-disk structure. The lower, middle, and upper curves
correspond respectively to a probability level p=0.50, p=0.95, and p=0.99). From
[3].

in the computational model by the nonparametric probabilistic approach [104,
99]. A complete methodology adapted to the robust dynamic analysis of rotating
detuned bladed-disk structures in presence of both geometric nonlinear e�ects and
mistuning is presented. The corresponding computational tool is constructed in
an industrial context that involves large computational models. A series of novel
results are then presented.

1.3 Organization of the manuscrip and de�nition

of the used terminology

Chapter 2 is devoted to the formulation of the nonlinear boundary value prob-
lem for a rotating detuned bladed-disk structure. This allows for constructing the
weak formulation that is suitable for the use of the �nite element method. We
then obtain a nominal (mean) nonlinear computational model that will be called
the NonLinear High-Fidelity computational Model (NL-HFM). Its linear
counterpart will be called the Linear High-Fidelity computational Model
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(L-HFM)

Chapter 3 presents the construction of an adapted reduced-order basis, using
a double projection method. A �rst modal basis is computed by solving the gen-
eralized eigenvalue problem associated with the L-HFM for which the gyroscopic
coupling is neglected. By projecting the NL-HFM on the subspace spanned by this
modal basis, we then obtain a First NonLinear Reduced-Order Model (NL-

ROMF). Another vector basis is then calculated using the Proper-Orthogonal
Decomposition (POD) method from the nonlinear solution of the NL-ROMF. The
�nal NL-ROM is then obtained by double projection of the NL-HFM. In the present
context, it is necessary to explicitly construct all the nonlinear sti�ness contribu-
tions related to the NL-ROM, in agreement with the use of the nonparametric
probabilistic strategy.

In Chapter 4, four patterns corresponding to one tuned and three detuned con-
�gurations of an industrial rotating bladed-disk structure are analyzed in details.
In particular, convergence analyses allow for optimizing the size of the NL-ROM.
Such NL-ROM is then used for analyzing the sensitivity of the nonlinear response
with respect to the load intensity that controls the amount of geometric nonlinear-
ities. In this latter context, a comparison of the dynamical responses is performed
between the linear case and the nonlinear one, in both time and frequency domain.

Chapter 5 is devoted to the construction of theNonLinear Stochastic Redu-
ced-Order Model (NL-SROM), based on the use of the nonparametric prob-
abilistic approach.

In Chapter 6, convergence analyses are carried out with respect to the number
of Monte-Carlo simulations and to the dimension of the random matrix germ for
constructing the stochastic solution of the NL-SROM. The con�dence regions of
the stochastic dynamic responses allow for quantifying the robustness with respect
to the level of uncertainties, that is to say with respect to the level of mistuning.

Chapter 7 presents a robust nonlinear dynamic analysis of the tuned, of the
detuned, and of the mistuned-detuned rotating bladed-disk structure. The de-
tuned cases consists in analyzing 46 patterns. The frequency analysis of the time
responses is presented on a broad frequency band that is written as an interval
union of three sub-frequency bands. The variability of the responses for these 46
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mistuned patterns is analyzed in details.

The last chapter proposes a quantitative nonlinear analysis in terms of modal
contribution. For the present industrial computational model, the mechanisms
governing the di�erent modal contributions are proposed.

This last Chapter is followed by a conclusion and perspective section, followed
by three appendices: the �rst one is devoted to the construction of the geometric
sti�ness matrix; the second one de�nes the patterns, and �nally the last one is
devoted to the implementation of the 3D �nite element in the house code.
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Nonlinear dynamics of rotating

detuned bladed-disks
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2.1 Introduction

This chapter is devoted to the formulation of the dynamics of rotating detuned
bladed-disks undergoing large displacements inducing nonlinear geometric e�ects.
In section 2.3 the nonlinear boundary value problem and its weak formulation are
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written. In section 2.4, the �nite element method is used for discretizing the weak
formulation in order to construct the nonlinear dynamic computational model.

As explained in Section 1, the detuned bladed-disk structure consists in vol-
untarily breaking the cyclic symmetry of the tuned bladed-disk that is made up
of one given generating sector. The breaking is obtained by substituting in this
tuned bladed-disk, one or several sectors by a perturbed sector(di�erent from the
generating sector). A perturbed sector is obtained by modifying the geometry and
or the mechanical properties of the blade of this sector. A given assembly of sectors
is de�ned as a pattern. The construction of the computational model is obtained
by assembling the computational model of each sector type. Note that the mesh
of the computational model of two consecutive sectors is assumed to be compati-
ble at their common interface. Such strategy allows for constructing the nominal
(mean) nonlinear computational model for a given rotating detuned bladed-disk
structure. As previously explained, this nonlinear computational model is referred
as the NonLinear High-Fidelity computational Model (NL-HFM). Sim-
ilarly, the corresponding linear computational model is referred as the Linear
High-Fidelity computational Model (L-HFM) (see Section 1.3).

2.2 Notations

For a better readability of the manuscript, the following notations are used.

• A real deterministic scalar is denoted by a lower case letter (for instance a)

• A real-valued random variable is denoted by an upper case letter (for instance
A)

• A real deterministic vector is denoted by a boldface lower case letter (for
instance a = (a1, . . . , an))

• A real-valued random vector is denoted by a boldface upper case letter (for
instance A = (A1 . . . An))

• A real deterministic matrix is denoted by a lower or an upper case letter
between brackets (for instance [a] or [A])

• A real-valued random matrix is denoted by a boldface upper case letter
between brackets (for instance [A])

• A tensor is denoted by a blackboard letter (for instance A = {Aij}ij for a
second-order tensor or A = {Aijk`}ijk` for a fourth-order tensor)
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Furthermore, the convention of summation over repeated latin indices is generally
used. For instance,

a · b =
n∑
i=1

ai bi is written as ai bi (2.1)

{Ab}i =
n∑
j=1

Aij bj is written as Aij bj (2.2)

A : B =
n∑
i=1

n∑
j=1

Aij Bij is written as AijBij (2.3)

2.3 Dynamic problem of a rotating detuned bladed-

disk

2.3.1 Assumptions and terminology

Although the terminology of the "tuned", "detuned", and "mistuned" has been
de�ned in Section 1.3, for the sake of clarity and for helping the reading, we
reintroduce below the terminology while de�ning the assumptions.

1. The tuned structure is related to the conceptual structure, which exhibits
a perfectM -order cyclic symmetry. For this con�guration denoted as P0, the
geometry, the constitutive equation of material, and the boundary conditions

related to the reference sector are invariant under the
2π

M
rotation around its

symmetry axis, which corresponds to the rotational axis of the bladed-disk.
In the case of a linear dynamic analysis, only one reference sector can be
used and analyzed for deducing the linear dynamic response (L-HFM) of the
rotating bladed-disk, introducing an appropriate phase-lag condition on the
boundary [105, 106, 107].

2. The detuned structure (or intentionally mistuned structure) is re-
lated to the conceptual structure for which there is a spatial distribution of

di�erent types of sectors, de�ning a pattern. In the present work, two dif-
ferent sector types, denoted as A and B, are considered. These two sector
types have identical geometry and di�er by the material properties of the
blades. The detuned structure is thus de�ned by an assembly of these two
sector types. For a rotating bladed-disk with M = 24 blades, a pattern will
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be de�ned, for instance, by 12B6A3B3A, which consists of 12 consecutive
blades of type B, 6 of type A, 3 of type B, and 3 of type A.

3. The mistuned structure is related to the real structure that is manu-
factured from the conceptual structure (tuned structure). The mistuned
structure is the tuned structure for which the cyclic symmetry is broken by
discrepancies occuring during the manufacturing process. In this work, the
mistuning phenomenon is modeled by using the nonparametric probabilis-
tic approach of uncertainties [99].

4. The detuned-mistuned structure is the detuned structure in which there
is mistuning.

The following hypothesis are introduced.

H1 The bladed-disk is in rotation around its rotational axis at a constant rotation
speed Ω (rad/s). The rotational axis has a �xed direction and consequently,
there is no rigid body motion of the disk.

H2 The boundary value problem of the rotating bladed-disk is written in the
rotating frame.

H3 The bladed-disk is made up of an elastic material that is modeled by the Saint
Venant-Kirchho� constitutive equation. A damping term will arbitrarily
be added at the weak-formulation level of the conservative boundary value
problem.

H4 The amplitude of the external forces expressed in the rotating frame is as-
sumed to be su�ciently large so that the structure undergoes geometric
nonlinear e�ects.

2.3.2 Nonlinear boundary value problem in the rotating frame

We are interested in considering the nonlinear boundary value problem of the
rotating detuned bladed-disk, considered as a structure in rotation. The boundary
value problem is written in the rotating frame. In this rotating frame, a total
Lagrangian formulation is used and the nonlinear dynamic equations are expressed
with respect to a reference con�guration (reference con�guration that is de�ned in
the rotating frame). Let R be the rotating frame (cartesian coordinates system)
and let (O, e1, e2, e3) be its related basis. The rotation axis of the bladed-disk is
de�ned as (O, e3) that is �xed. Let D be the three-dimensional bounded open
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2.3. Dynamic problem of a rotating detuned bladed-disk

domain corresponding to such reference con�guration in the rotating frame and
subjected to the body force �eld g(x, t) = (g1(x, t), g2(x, t), g3(x, t)), in which x =

(x1, x2, x3) denotes the position of a given point belonging to domain D. The
boundary ∂D is such that ∂D = Γ∪Σ with Γ∩Σ = ∅. The external unit normal to
boundary ∂D is denoted by n = (n1, n2, n3). The boundary part Γ corresponds to
the �xed part of the structure (in the rotating frame) whereas the boundary part Σ

is subjected to the external surface force �eld G(x, t) = (G1(x, t), G2(x, t), G3(x, t)).
Note that, in the rotating frame, the external force �elds are derived from the
Lagrangian transport into the reference con�guration of the physical body/surface.
We then introduce the (3× 3) rotation matrix [R(Ω)] that is written as

[R(Ω)] =

 0 −Ω 0

Ω 0 0

0 0 0

 , (2.4)

in which Ω is the rotation speed.

Figure 2.1 � Reference con�guration of the bladed-disk structure in the rotating
frame

Under the hypotheses H1 to H4 de�ned in Section 2.3.1, and in the rotating
frame, the unknown displacement �eld is denoted as u(x, t) = (u1(x, t), u2(x, t),
u3(x, t)) and is solution of the following nonlinear boundary value problem [108,
109, 110, 111], which is written, for i = 1, 2, 3, as

ρ
∂2 ui
∂t2

+ 2ρ [R]ij
∂uj
∂t

+ ρ [R]ij[R]jk (xk + uk)−
∂

∂xj
(FikSkj) = gi , ∀x ∈ D , (2.5)
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Chapter 2. Nonlinear dynamics of rotating detuned bladed-disks

FikSkj nj = Gi , ∀x ∈ Σ , (2.6)

ui = 0 , ∀x ∈ Γ , (2.7)

in which ρ is the mass density and where the second-order deformation gradient
tensor F is de�ned by

Fij =
∂ui
∂xj

+ δij , (2.8)

with δij the Kronecker symbol such that δij = 1 if i = j and 0 otherwise. The
second-order Piola-Kirchho� symmetric stress tensor S can be decomposed as

Sij = �
geom
ij + �ij (2.9)

where �geom is the second-order prestress tensor induced by the centrifugal loads
and where � is the second-order symmetric stress tensor such that [108]

�ij = aijk`Ek` . (2.10)

In Eq. (2.10), a is the fourth-order elasticity tensor that is symmetric and positive
de�nite and E is the Green strain tensor that is written as

Eij(u) = �ij(u) + �ij(u) , (2.11)

in which

�ij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, �ij(u) =

1

2

∂us
∂xi

∂us
∂xj

(2.12)

The second-order prestress tensor �geom is calculated from the following static
boundary value problem that corresponds to the equilibrium of the reference con-
�guration (in the rotating frame) submitted to the static centrifugal body forces
and is written [108], for i = 1, 2, 3, as

∂

∂xj
�

geom
ij = ρ [R]ij[R]jkxk , ∀x ∈ D , (2.13)

�
geom
ij nj = 0 , ∀x ∈ Σ , (2.14)

ui = 0 , ∀x ∈ Γ . (2.15)

2.3.3 Weak formulation of the nonlinear boundary value

problem

Let Cad be the space of the admissible displacements de�ned by

Cad =
{

x 7→ v(x) : D → R3, v su�ciently regular, v = 0 onΓ
}
. (2.16)
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2.3. Dynamic problem of a rotating detuned bladed-disk

The weak formulation of the boundary value problem de�ned by Equation (2.5)
to (2.12), with the arbitrarily linear damping term (see hypothesis H3), consists
in �nding the unknown displacement �eld u(·, t) in Cad such that, for all v in Cad,

m(ü, v) + c(u̇, v) + d(u̇, v) + ke(u, v) + kc(u, v) + kg(u, v)

+ k2(u,u, v) + k3(u,u,u, v) = `(v) , (2.17)

in which u̇ = ∂u/∂t and ü = ∂2u/∂t2. The expressions and the properties of
the linear, bilinear, and multilinear forms are detailed below. Furthermore, it is
recalled that the external forces induced by the aerodynamics coupling forces are
not taken into account in this work.

2.3.4 Expression and properties of the linear and multilin-

ear forms

External loads

The linear form `(v) de�ned on Cad, related to the external loads is such that

`(v) =

∫
D

g · v dx +

∫
Σ

G · v dsx (2.18)

Mass

The bilinear form m(u, v) de�ned on Cad × Cad, related to the mass,

m(u, v) =

∫
D
ρu · v dx , (2.19)

is symmetric and positive de�nite,

m(u, v) = m(v,u) , m(u,u) > 0 . (2.20)

Elastic sti�ness

The bilinear form ke(u, v) de�ned on Cad × Cad, related to the elastic sti�ness,

ke(u, v) =

∫
D

(a(x) : �(u)) : �(v) dx , (2.21)

is symmetric and positive de�nite,

ke(u, v) = ke(v,u) , ke(u,u) > 0 . (2.22)
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Chapter 2. Nonlinear dynamics of rotating detuned bladed-disks

Geometric sti�ness

The bilinear form kg(u, v) de�ned on Cad × Cad, related to the geometric sti�ness,

kg(u, v) =

∫
D
�geom :

(
∂uT

∂x
∂v
∂x

)
dx , (2.23)

is symmetric,
kg(u, v) = kg(v,u) . (2.24)

The notation ∂u/∂x means the second-order tensor such that {∂u/∂x}ij = ∂ui/∂xj.

Centrifugal sti�ness

The bilinear form kc(u, v) de�ned on Cad×Cad, related to the centrifugal sti�ness,

kc(u, v) =

∫
D
ρ
(
[R]2 u

)
· v dx , (2.25)

is symmetric and negative semi-de�nite (as [R] is skew-symmetric and not invert-
ible matrix),

kc(u, v) = kc(v,u) , kc(u,u) ≤ 0 . (2.26)

Let k1(u, v) be the bilinear form de�ned on Cad × Cad such that

k1(u, v) = ke(u, v) + kc(u, v) + kg(u, v) . (2.27)

It can be seen that k1(u, v) is symmetric and is generally not positive de�nite.
However, it will be assumed that this symmetric bilinear form is positive de�nite,

k1(u, v) = k1(v,u) , k1(u,u) > 0 . (2.28)

For rotating bladed-disk structures, such hypothesis is reasonable considering that
the operating regime associated with a given rotation speed Ω ensures the stability
of the bladed-disk.

Damping

The arbitrarily linear damping term, which has been added to the weak formulation
of the conservative system, is de�ned by the positive-de�nite symmetric bilinear
form d(u, v) on Cad × Cad, according to a Rayleigh model, which is written as

d(u, v) = αm(u, v) + β ke(u, v) , (2.29)

in which α and β are constant that are adjusted according to the critical damping
rate coherent with the chosen elastic material. We then have

d(u, v) = d(v,u) , d(u,u) > 0 . (2.30)
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2.3. Dynamic problem of a rotating detuned bladed-disk

Quadratic sti�ness

The multilinear form k2(u, v,w) de�ned on Cad×Cad×Cad, related to the quadratic
sti�ness, is such that

k2(u, v,w) = k̂2(u, v,w) + k̂2(v,w,u) + k̂2(w,u, v) (2.31)

where

k̂2(u, v,w) =
1

2

∫
D

(
a :

(
∂u
∂x

T ∂v
∂x

))
:
∂w
∂x

dx , (2.32)

and satis�es the property

k̂2(u, v,w) = k̂2(v,u,w) . (2.33)

Consequently we have

k2(u,u, v) = k̂2(u,u, v) + 2 k̂2(v,u,u) . (2.34)

Cubic sti�ness

The multilinear form k3(u, v,w, r) de�ned on Cad × Cad × Cad × Cad, related to the
cubic sti�ness,

k3(u, v,w, r) =
1

2

∫
D

(
a :

(
∂u
∂x

T ∂v
∂x

))
:

(
∂w
∂x

T ∂r
∂x

)
, (2.35)

satis�es the properties

k3(u, v,w, r) = k3(u, v, r,w) = k3(w, r,u, v) , k3(u, v, v,u) > 0 . (2.36)

Gyroscopic coupling

The bilinear form c(u, v) de�ned on Cad × Cad, related to the gyroscopic coupling,

c(u, v) = 2

∫
D
ρ ([R]u) .v dx , (2.37)

is skew-symmetric (since [R] is skew-symmetric)

c(u, v) = −c(v,u) , c(u,u) = 0 . (2.38)
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Chapter 2. Nonlinear dynamics of rotating detuned bladed-disks

2.4 Finite element discretization

2.4.1 Linear and nonlinear �nite element model of the de-

tuned bladed-disk structure

The weak formulation related to the nonlinear boundary value problem is dis-
cretized using the �nite element method [112, 113]. The unknown displacement
�eld u is approximated by projecting u in the n-dimension subspace C̃ad of Cad,
spanned by the n basis functions e1, · · · , en deduced from the interpolation func-
tions of the �nite elements,

u(x) '
n∑
i=1

Uiei(x) , (2.39)

where U1, · · · , Un are the degrees-of-freedom (dofs) of the �nite element model.
Let U = (U1, . . . , Un) be the vector in Rn of all the dofs. For notational reasons,
U will be noted u (the same notation will be used for the continuous �eld and its
discretization; there will be no possible confusion). The nonlinear computational
model of the detuned bladed-disk structure, which is identi�ed as the NL-HFM, is
written as,

[M ] ü(t) + ( [D] + [C(Ω)] ) u̇(t) + [K1(Ω)] u(t) + fNL(u(t)) = f(t) , (2.40)

in which the (n× n) matrix [K1(Ω)] is de�ned by

[K1(Ω)] = [Ke] + [Kc(Ω)] + [Kg(Ω)] , (2.41)

and is assumed to be symmetric positive de�nite. The mass, damping, and sti�ness
(n × n) real matrices [M ], [D], [Ke] are positive de�nite, the geometric sti�ness
(n×n) real matrix [Kg(Ω)] is symmetric, the gyroscopic coupling (n×n) real matrix
[C(Ω)] is skew-symmetric, and the centrifugal sti�ness (n×n) real matrix [Kc(Ω)]

is negative semi-de�nite. More precisely, matrix [Kg(Ω)] corresponds to the dis-
cretization of the bilinear form kg(u, v) that comes from the term ρ[R]ij[R]jkxk
in Equation (2.5), matrix [Kc(Ω)] corresponds to the discretization of the bilinear
form kc(u, v) that comes from the term ρ[R]ij[R]jkuk, and matrix [C(Ω)] corre-
sponds to the discretization of the bilinear form c(u, v) that comes from the term
2ρ [R]ij

∂uj
∂t
.

Their block writing is presented in Section 2.4.2. The Rn-vector f(t) is the
external force vector depending on time issued from the �nite element discretiza-
tion of the surface and body force �elds. The Rn-vector fNL(u(t)) describes the
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2.4. Finite element discretization

nonlinear internal forces induced by the geometric nonlinearities and issued from
the quadratic and cubic sti�ness terms. The corresponding linear high-�delity
model (L-HFM) is de�ned similarly to Eq.(2.40) by removing the nonlinear term
fNL(u(t)) and is written as

[M ] ü(t) + ( [D] + [C(Ω)] ) u̇(t) + [K1(Ω)] u(t) = f(t) . (2.42)

2.4.2 Block writing of the matrices related to a given sector

type

The detuned bladed-disk structure is constituted of M sectors, which are assumed
to be geometrically identical (their material properties can di�er). In the rotating
frame, let us consider a reference sector number j, that is composed of a blade and
a disk part and let Rj = (O, e1

j, e2
j, e3) be the local frame de�ned in Figure 2.2.

Note this local frame rotates at a constant speed Ω around its rotational axis
(O, e3). We denote by nm, np, and ni, the dofs respectively located at the right

Figure 2.2 � Blade sector

boundary, left boundary (meaning the interface of two consecutive sectors) and
internal domain. We then have np = ni. It should be noted that the total number
of dofs is n = M(nm+ni). Furthermore, for a better readability, Ω will be omitted
in the following.

Let [E] be the matrix representing either [M ], [D], [Ke], [Kg], or [Kc]. Let [Eα]

be the matrix [E] related to one sector α. The bloc writing of matrix [Eα] with
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Chapter 2. Nonlinear dynamics of rotating detuned bladed-disks

respect to the dofs (nm, ni, np) is

[Eα] =

 [Eα
mm] [Eα

mi] [0]

[Eα
mi]

T [Eα
ii] [Eα

ip]

[0] [Eα
ip]
T [Eα

pp]

 . (2.43)

Similarly, the bloc writing of the skew-symmetric �nite element matrix [C(Ω)] is
written as

[Cα] =

 [Cα
mm] [Cα

mi] [0]

−[Cα
mi]

T [Cα
ii ] [Cα

ip]

[0] −[Cα
ip]
T [Cα

pp]

 . (2.44)

Note that the diagonal of matrix [Cα] is equal to zero since [Cα] is skew-symmetric.
It is assumed that the detuned bladed-disk structure is constructed using only two
sector types, denoted by A and B. Let j ∈ {0, · · · ,M − 1} be a given sector of the
detuned bladed-disk structure and let αj ∈ {1, 2} be the its type. For instance,
α3 = 1 means that sector number j = 3 is related to sector type A.

Let P = {α0, · · · , αM−1} be a given pattern de�ning a con�guration of the
detuned bladed-disk structure. For instance, pattern P = 12B6A3B3A, is consti-
tuted of 12 consecutive blades of type B, 6 of type A, 3 of type B, and 3 of type
A. The �nite element matrix [E] of the detuned bladed-disk is written as

[E] =



[E0
1 ] [E0

2 ] [0] . . . [0] [E0
3 ]

[E1
3 ] [E1

1 ] [E1
2 ]

. . . [0]

[0]
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . [0]

[0]
. . . . . . . . . . . . [EM−2

2 ]

[EM−1
2 ] [0] · · · [0] [EM−1

3 ] [EM−1
1 ]


. (2.45)

where the block matrices [Ej
1], [Ej

2], [Ej
3] of matrix [E] are de�ned by

[Ej
1] =

[
[E

αj
mm] + [P ]T [E

αj
pp ] [P ] [E

αj
mi]

[E
αj
mi]

T [E
αj
ii ]

]
, [Ej

2] =

[
[0] [0]

[E
αj
ip ] [P ] [0]

]
, [Ej

3] = [Ej
2]T ,

(2.46)
and where the (nm × nm) matrix [P ] is de�ned by:

[P ] =


[P0] [0] · · · [0]

[0]
. . . . . .

...
...

. . . . . . [0]

[0] . . . [0] [P0]

 . (2.47)
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2.4. Finite element discretization

with [P0] the (3× 3) rotation matrix of angle θ0 =
2π

M
such that

[P0] =

cos(θ0) − sin(θ0) 0

sin(θ0) cos(θ0) 0

0 0 1

 . (2.48)

Considering the gyroscopic coupling term, we similarly de�ne from Equation (2.44)
the block matrices [Cj

1 ], [Cj
2 ], and [Cj

3 ] are written as

[C
αj
1 ] =

[
[C

αj
mm] + [P ]T [C

αj
pp ] [P ] [C

αj
mi]

−[C
αj
mi]

T [C
αj
ii ]

]
, [C

αj
2 ] =

[
[0] [0]

[C
αj
ip ] [P ] [0]

]
,

[C
αj
3 ] = −[C

αj
2 ]T . (2.49)

2.4.3 Particular case of the tuned bladed-disk structure

In this Section, we consider the particular case for which the pattern is such that
P = 24A or P = 24B which correspond to tuned cases, that is to say, two bladed-
disk structures that have cyclic symmetry. In this case, we have the following
properties

[E0
1 ] = [E1

1 ] = · · · = [EM−1
1 ] denoted by [E1] (2.50)

[E0
2 ] = [E1

2 ] = · · · = [EM−1
2 ] denoted by [E2] (2.51)

[E0
3 ] = [E1

3 ] = · · · = [EM−1
3 ] denoted by [E3] . (2.52)

Consequently, the �nite element matrix [E] is a block-circulant matrix, that is
written as

[E] =



[E1] [E2] [0] . . . [0] [E3]

[E3] [E1] [E2]
. . . [0]

[0]
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . [0]

[0]
. . . . . . . . . . . . [E2]

[E2] [0] · · · [0] [E3] [E1]


. (2.53)

where the block matrices [Ej
1], [Ej

2], and [Ej
3] of the matrix [E] are similarly ex-

pressed as those in Equation (2.46). It should be noted that the gyroscopic coupling
matrix [C] has also the same block circulant property.
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Chapter 3

Construction of the nominal (or

mean) nonlinear reduced-order

model

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 First NonLinear Reduced-Order Model (NL-ROMF)

for a detuned bladed-disk . . . . . . . . . . . . . . . . . . 27

3.3 Second nonlinear reduced-order model (NL-ROM) for

a detuned bladed-disk . . . . . . . . . . . . . . . . . . . . 28

3.1 Introduction

As explained in Chapter 2, the computational model is constructed by using the
�nite element method is referred as the NonLinear High-Fidelity computational
Model (NL-HFM), which cannot be solved because the number of degrees-of-
freedom is too large for analyzing such nonlinear dynamic system. Consequently,
it is necessary to introduce an appropriate NonLinear Reduced-Order Model

(NL-ROM) that allows for reducing the number of unknowns.
The objective of this Section is to construct the NL-ROM for a rotating de-

tuned bladed-disk structure. Such a construction requires the use of a vector basis
for projecting the nonlinear computational model. As explained in Chapter 1,
many methods can be used for constructing such a vector basis. In this work, the
methodology proposed is the one summarized in Section 1.3 and detailed below.
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Chapter 3. Construction of the nominal (or mean) nonlinear reduced-order model

The �rst step consists in computing the eigenmodes of the generalized eigenvalue
problem de�ned by mass matrix [M ] and matrix [K1(Ω)] for rotation speed Ω

�xed, associated with the linear high �delity model (L-HFM). Note that damping
matrix [D] and gyroscopic coupling matrix [C(Ω)] are not included in the gener-
alized eigenvalue problem in order to obtain real eigenvalues and real eigenvectors
and not complex eigenvalues and complex eigenvectors, which would induce great
di�culties for very large computational models (case for the considered rotat-
ing bladed-disk structure). Removing the damping matrix in such formulation is
usual for small damping, which is the case. The gyroscopic coupling matrix plays
a important role. This matrix will obviously be kept for constructing the non-
linear reduced-order model NL-ROMF, using this vector basis. It should also be
noted that this constructed vector basis is not an optimal one with respect to the
convergence speed of the NL-ROM, since this vector basis ignores the nonlinear ge-
ometrical e�ects and the gyroscopic coupling terms (the damping matrix [D] does
not in�uence the convergence speed because damping is very small). The projec-
tion of the NL-HFM on this basis yields an intermediate nonlinear reduced-order
model, denoted as NL-ROMF, which takes into account all the physical phenom-
ena modeled in the NL-HFM. The convergence of the dynamical response of this
NL-ROMF towards the nonlinear dynamical response of the NL-HFM (rotating
detuned bladed-disk structure) will carefully be studied. Indeed, the nonlinear
dynamic response generated by this NL-ROMF must be equivalent to the one gen-
erated by the NL-HFM. The converged nonlinear solution of the NL-ROMF, which
is computed in the time domain, is then used to calculate a second vector basis
using the Proper Orthogonal Decomposition method (POD-method). By combin-
ing these two vector bases, the NL-ROM is constructed and has a dimension that
is lower than the dimension of the NL-ROMF .

Consequently, with this NL-ROM, (1) the damping e�ects and all the rotating
e�ects are taken into account, (2) for the rotating detuned bladed-disk structure,
the NL-ROM is of lower order, which is more e�cient than the NL-ROMF in
terms of computational costs in the framework of implementing uncertainties, (3)
the probabilistic model describing the mistuning can then be implemented in the
NL-ROM, in order to obtain the nonlinear stochastic reduced-order model (NL-
SROM) with a decreasing of the computational costs involved by the use of the
Monte Carlo numerical method.
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3.2 First NonLinear Reduced-Order Model (NL-

ROMF) for a detuned bladed-disk structure

As explained in Section 3.1, the �rst nonlinear reduced-order model (NL-ROMF)
requires the computation of the vector basis obtained by solving the following
generalized eigenvalue problem,

[K1(Ω)]ϕα = λα [M ]ϕα , (3.1)

in which, for α = {1, ...,m} with m� n, the eigenvalues λα = (2πνα)2 are sorted
such that 0 < λ1 6 λ2 6 · · · 6 λm, and where the corresponding elastic modes
ϕ1, . . . ,ϕm are stored in the (n ×m) real modal matrix [Φ

m
], with the following

orthogonality properties

[Φ
m

]T [M ] [Φ
m

] = [Im] (3.2)

[Φ
m

]T [K1(Ω)] [Φ
m

] = [Λm] , (3.3)

in which [Im] is the identity matrix of dimension m and where [Λm] is the diag-
onal matrix containing the eigenvalues λα. The NL-ROMF is thus obtained by
projecting Eq. (2.40) on the subspace spanned by [Φ

m
],

u(t) = [Φ
m

] q(t) , (3.4)

[M ] q̈(t) +
(
[D ] + [ C(Ω)]

)
q̇(t) + [K1(Ω)] q(t) + FNL

(q(t)) = F(t) , (3.5)

in which q(t) is the Rm-vector of the generalized coordinates, and where [M ], [D ],
[ C(Ω)], and [K1(Ω)] are the (m×m) reduced mass, damping, gyroscopic, and sti�-
ness matrices. Note that matrices [M ] and [K1(Ω)] are diagonal positive- de�nite
matrices, matrix [D ] is a full positive-de�nite matrix in the general case (and
will presently be a diagonal positive-de�nite matrix due to the use of a damping
Rayleigh model), and [ C(Ω)] is a full skew-symmetric matrix. In Eq. (3.5), the

Rm-vectors F(t) and FNL
(q(t)) are the vectors of the reduced external forces and

of the nonlinear reduced internal forces de�ned by

F(t) = [Φ
m

]T f(t) , (3.6)

FNL
(q(t)) = [Φ

m
]T fNL([Φ

m
] q(t)) . (3.7)

Remark about the nonlinear reduced internal forces

In Eq. (3.5), FNL
(q(t)) are the reduced nonlinear internal forces written [91, 89]

as,
FNL

(q(t)) = K (2)

αβγ qβ qγ +K (3)

αβγδ qβ qγ qδ , (3.8)
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where the quadratic and cubic reduced sti�nesses K (2)

αβγ and K
(3)

αβγδ are such that

K (2)

αβγ =
1

2

(
K̂

(2)

αβγ + K̂
(2)

γαβ + K̂
(2)

βγα

)
, (3.9)

K̂
(2)

αβγ =

∫
D
aijk`

∂ϕαi
∂xj

∂ϕβm
∂xk

∂ϕγm
∂x`

dx , (3.10)

K (3)

αβγδ =
1

2

∫
D
aijk`

∂ϕαs
∂xi

∂ϕβs
∂xj

∂ϕγm
∂xk

∂ϕδm
∂x`

dx . (3.11)

Due to the properties of the elasticity tensor a, we have the following properties,

K (2)

αβγ = K (2)

γαβ = K (2)

βγα , (3.12)

K̂
(2)

αβγ = K̂
(2)

αγβ , (3.13)

K (3)

αβγδ = K (3)

βαγδ = K (3)

αβδγ = K (3)

γδαβ . (3.14)

It should be noted that the vector of the nonlinear reduced internal forces is
constructed according to Eq. (3.7), by using an algebraic explicit calculation of
the integrals (3.10) and (3.11), which are discretized by the �nite element method.
When the intensity of the external load is small, yielding negligible nonlinear
geometric e�ects, the nonlinear reduced internal forces FNL

(q(t)) can be removed
from Eq. (3.5), yielding the Linear Reduced-Order Model (L-ROM) that is
written as

[M ] q̈(t) + ([D ] + [ C(Ω)]) q̇(t) + [K1(Ω)] q(t) = F(t) . (3.15)

3.3 Second nonlinear reduced-order model (NL--

ROM) for a detuned bladed-disk structure

As explained in Section 3.1, the second step consists in using the POD-method
applied to the NL-ROMF that includes all the e�ects (in particular, damping,
gyroscopic coupling, and geometric nonlinearity). Eq. (3.5) is solved using the
scheme proposed in [35]. The Newmark scheme [114] is used for which the time step
∆t is constant. At each time step, the nonlinear algebraic equation is solved using
the �xed point method. When the �xed point does not converge, it is replaced
by the Cris�eld arc-length method [115], depending on the local nonlinearity rate.
Integration time step ∆t is also used as the distance between two consecutive
snapshots for the POD method, which is not penalizing because the dimension m
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of the NL-ROMF is small (m � n). Let nt be the number of time steps. Let [A]

be the (m× nt) real matrix with nt > m de�ned by

[A]ij = qi(tj)
√

∆t . (3.16)

Let [CA] be the (m×m) real matrix de�ned by

[CA] = [A][A]T , (3.17)

whose rank is m that is less than or equal to m (if m < m, then [CA] is not positive
de�nite but only positive). The vector basis is obtained by solving the eigenvalue
problem

[CA]ψα = µαψα , (3.18)

in which the vector basis is made up of the eigenvectors ψα corresponding to the
m largest eigenvalues µα. In practice, matrix [CA] is not computed. Its eigenvalues
and its eigenvectors are obtained by computing the singular value decomposition
of matrix [A] using an economy size algorithm [116]. Removing the zero singular
values, this decomposition can be written as,

[A] = [W ][S][V ]T , (3.19)

in which [W ] is a unitary (m × m) real matrix ([W ]T [W ] = [Im]), where [V ] is
another unitary (nt × m) real matrix ([V ]T [V ] = [Im]), and where the diagonal
(m × m) real matrix [S] contains all the m non-zeros singular values sorted by
decreasing order s1 > s2 > · · · > sm > 0. It can be shown that the singular values
are the square-roots of the positive eigenvalues of matrix [CA], that is to say,

sα =
√
µα . (3.20)

It can also be shown that the m columns of matrix [W ] are the corresponding
eigenvectors ψα of matrix [CA].

Let [W (m,N)] be the (m × N) matrix with N 6 m < m that contains the
eigenvectors related to the N greatest singular values sα, α = {1, · · · , N}, which
is such that [W (m,N)]T [W (m,N)] = [IN ]. Finally, the projection basis, represented
by the (m × N) real matrix [Φ(m,N)] and that will be used for obtaining the NL-
ROM, is such that

[Φ(m,N)] = [Φ
m

] [W (m,N)] , (3.21)

in which the column number α of matrix [Φ(m,N)] is denoted by ϕα. It should be
noted that we have

[Φ(m,N)]T [M ] [Φ(m,N)] = [IN ] . (3.22)
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Chapter 3. Construction of the nominal (or mean) nonlinear reduced-order model

The NL-ROM is then obtained by projecting the NL-HFM on the reduced-order
basis [Φ(m,N)] and is written as

u(t) = [Φ(m,N)] q(t) , (3.23)

[M] q̈(t) + ( [D] + [C(Ω)] ) q̇(t) + [K1(Ω)] q(t) + FNL(q(t)) = F(t) , (3.24)

in which q(t) is the RN -vector of the generalized coordinates, and where [M], [D],
[C(Ω)], and [K1(Ω)] are the (N × N) mass, damping, gyroscopic coupling, and
sti�ness reduced matrices. Note that matrix [M] = [IN ], matrices [D], [K1(Ω)]

are full positive de�nite matrices, and [C(Ω)] is a full skew-symmetric matrix. It
should be noted that matrix [K1(Ω)] can be decomposed according to its elastic,
centrifugal, and geometric sti�ness parts such that

[K1(Ω)] = [Ke] + [Kc(Ω)] + [Kg(Ω)] . (3.25)

In Eq. (3.24), the RN -vectors F(t) and FNL(q(t)) are the vectors de�ned by

F(t) = [Φm,N ]T f(t) (3.26)

FNL(q(t)) = [Φm,N ]T fNL([Φm,N ] q(t)) . (3.27)

Similarly to Eqs. (3.8) to (3.14), vector FNL(q(t)) can be written as,

FNL(q(t)) = K (2)
αβγ qβ qγ +K (3)

αβγδ qβ qγ qδ , (3.28)

where the quadratic and cubic reduced sti�nesses K (2)
αβγ and K

(3)
αβγδ are such that

K (2)
αβγ =

1

2

(
K̂

(2)

αβγ + K̂
(2)

γαβ + K̂
(2)

βγα

)
, (3.29)

K̂
(2)

αβγ =

∫
D
aijk`

∂ϕαi
∂xj

∂ϕβm
∂xk

∂ϕγm
∂x`

dx , (3.30)

K (3)
αβγδ =

1

2

∫
D
aijk`

∂ϕαs
∂xi

∂ϕβs
∂xj

∂ϕγm
∂xk

∂ϕδm
∂x`

dx . (3.31)

Due to the properties of the elasticity tensor a, we have the following properties:

K (2)
αβγ = K (2)

γαβ = K (2)
βγα , (3.32)

K̂
(2)

αβγ = K̂
(2)

αγβ , (3.33)

K (3)
αβγδ = K (3)

βαγδ = K (3)
αβδγ = K (3)

γδαβ . (3.34)

Note that the separation of the quadratic and cubic sti�ness contributions K̂
(2)

αβγ

and K (3)
αβγδ de�ned by Eqs. (3.30) and (3.31) is volountary kept in order to im-

plement the nonparametric probabilistic approach for modeling mistuning (see
Chapter 5).
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4.4.7 Analysis of the nonlinear dynamic time responses in the

frequency domain . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction

In this chapter we de�ne the computational model of a tuned and of a detuned
bladed-disk structure constituted ofM = 24 blades, which are used for performing
the numerical simulations. This chapter is mainly devoted to the analysis of the
e�ects of geometric nonlinearities on the nonlinear dynamic behavior of these two
structures (tuned and detuned) without mistuning. In this framework, an ensemble
of novel results is presented.

4.2 Computational model for the tuned and for the

detuned bladed-disk structure

In this section we �rst present the computational model of the tuned bladed-disk
structure, and then the computational model for the detuned one.

4.2.1 Computational model of the tuned bladed-disk struc-

ture

The �nite element meshes of the 24-blades tuned bladed-disk structure and of its
corresponding reference sector are shown in Figure 4.1. The bladed-disk rotates
around its cyclic axis with a constant rotation speed Ω = 2π × 74 rad/s (4 440

RPM (Rotation Per Minute)). The material is steel, which is considered as a ho-
mogeneous and isotropic elastic material with Young modulus 2 × 1011N×m−2,
Poisson's ratio 0.3, and mass density 7 650Kg×m−3. In the rotating frame, the
disk is clamped at the inner radius of the disk (as previously shown in Figure 2.1).
The main geometric characteristics of the bladed-disk are summarized in Table 4.1.
The �nite element model of the reference sector has been carried out using tridi-
mensional isoparametric solid �nite elements with quadratic interpolation func-
tions, in order to obtain a su�cient precision. The �nite element mesh of the full
bladed-disk is made of 37 488 HEXahedral �nite elements with 20 nodes (HEX20),
1 848 PYRamidal �nite elements with 13 (PYR13) nodes, and 45 864 TETrahe-
dral �nite elements with 10 nodes (TET10). The numerical description of the
�nite element model is given in Table 4.2. For the linear tuned rotating bladed-
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4.2. Computational model for the tuned and for the detuned bladed-disk structure

Figure 4.1 � Finite element model of the bladed-disk with 24 blades in which the
dot symbols (red color) correspond to the excitation points (left �gure). Zoom of
the �nite element model of a sector (right �gure).

Figure 4.2 � Zoom of the �nite element sector: grey, red and green �nite elements
are respectively related to hexahedral, pyramidal, and tetrahedral �nite elements

disk structure, the eigenfrequency of the elastic mode that corresponds to the
�rst bending mode of the blade with a circumeferential wave number h = 4 is
ν1 = 435Hz (see Figure 4.5). Following the Rayleigh damping model de�ned
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Inner disk radius 19.8 ×10−3 m
Outer disk radius 100 ×10−3 m
Disk thickness 20 ×10−3 m

Blade thickness at root section 4.8 ×10−3 m
Blade thickness at tip section 2 ×10−3 m

Blade length from the root section 79 ×10−3 m

Table 4.1 � Geometric characteristics of the bladed-disk structure

Structure Elements Nodes DOFs
Blade alone 2 714 6 896 20 688
Disk sector 836 4 554 13 662
Full structure 85 200 265 080 787 176

Table 4.2 � Element, nodes, and dofs of the �nite element model

by Eq. (2.29), the coe�cients α and β are chosen to obtain a critical damping
rate that is equal to 10−2 for the frequency ν1. A general house-code written in
MATLAB has been developed. This house-code has been validated in comparing
its results with the commercial ANSYS code concerning the computation of the
eigenfrequencies and the eigenmodes. Concerning the hexahedral �nite elements,
for which hourglass phenomenon can occur [40], ANSYS software uses a proper
integration scheme for constructing the sti�ness matrix. Table 4.3 summarizes the
number of integration points used by ANSYS. The details concerning the choice of
the interpolation functions and the position of the integration points are given in
Appendix C, that are taken from ANSYS manual [117] and ASTER manual [118].
These values have been used in the house-code, developed in MATLAB. In the
following we will precise the element types and their integration point that will be
used in the presented calculations.

Matrices Element type Integration points

Elastic and geometric sti�ness matrices
HEX20 14
PYR13 2x2x2
TET10 4

Mass matrix
HEX20 3x3x3
PYR13 2x2x2
TET10 4

Table 4.3 � Numercial integration points used by ANSYS commercial �nite element
software
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4.3. Modal analysis of the rotating tuned bladed-disk structure and numerical validation

4.2.2 Computational model of the detuned bladed-disk struc-

ture

The computational model of the detuned bladed-disk structure is constructed from
the knowledge of two compatible meshes corresponding to the two di�erent sector
types that we have denoted as A and B. The reference sector B is obtained
from sector A by decreasing the Young modulus of the blade by 10 %, the Young
modulus of the disk remaining unchanged. Figure 4.3 shows a representation of
the tuned structure P0 = 24A and of one con�guration of a detuned bladed-disk
structure P31 = (6A6B)2. In the present research we consider 45 detuned bladed-

Figure 4.3 � Tuned bladed-disk structure P0 = 24A (left �gure) and detuned
bladed-disk con�guration P31 = (6A6B)2 with red blade for B and blue blade for
A (right �gure).

disk patterns, whose de�nition are given in Appendix B.

4.3 Modal analysis of the rotating tuned bladed-

disk structure and numerical validation

4.3.1 Modal analysis

We consider the tuned rotating bladed-disk corresponding to pattern P0, for which
the generalized eigenvalue problem de�ned by Eq. (3.1) is solved. It should be
noted that the cyclic symmetry properties of the structure is not used. Figure 4.4
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Chapter 4. Nonlinear computational dynamics of a detuned bladed-disk structure

displays the Campbell diagram representing the evolution of the eigenfrequencies
να of the linear tuned rotating bladed-disk P0 according to rotation speed Ω.
The dashed lines represent the EO-engine order characterized by function Ω 7→
EO× Ω

60
. A required condition for that an Engine Order (EO) excite a bladed-disk

is that the EO frequency coincides with an eigenfrequency of the bladed-disk. The
intersection of the eigenfrequencies with the dashed lines gives then an indication
of the rotating speed yielding resonant situations of interest. The EO that allows
to excite a circumferential wave number h corresponding to the number of nodal
diameters of the considered mode is given by

j M ± h = k × EO , (4.1)

in which j and k are integers. Figure 4.5 displays the graph of να(h) as a function of
h for which rotation speed is 4 440 RPM. For this rotation speed, we are interested
in the �rst 3 modes related to h = 4, which correspond to the �rst bending mode
of the blades (mode 1 at 484Hz), the second bending mode of the blades (mode
2 at 1 170Hz), and the �rst torsional mode of the blades (mode 3 at 1 490Hz).
Figures 4.6 and 4.7 display a representation of the �rst four eigenmodes of the
rotating structure. This modal analysis allows for validating the house-code
with respect to the results obtained with the engineering software ANSYS (see
Section 4.3.2) and useful for de�ning the external applied load that will be used
in the numerical simulations presented in Section 4.4.

4.3.2 Numerical validation

In this Section, we present the numerical validation of the modal analysis. Let
νAnsys
α and να be the eigenfrequencies computed with ANSYS and with the house-
code. Let α 7→ Err(α) be the function that quanti�es the relative error, de�ned
by

Err(α) = 100

∣∣∣∣(1− να

νAnsys
α

)∣∣∣∣ in % . (4.2)

Figure 4.8 shows the graph α 7→ Err(α) for Ω = 0 rad.s−1 (red line) and
Ω = 1 000 rad.s−1 (blue line). A good agreement is obtained that validates the
computational developments with the house-code. It can be observed that there is
a small peak around the 30th eigenfrequency for a rotational speed of 1 000 rad/s

with a maximum relative error level below 0.25 %. This small error can be ex-
plained by the fact that we do not have all information about integration points
used by ANSYS concerning the PYR13 �nite element. Indeed, ANSYS uses 8
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4.4. Nonlinear deterministic analysis

Figure 4.4 � Graph of Ω 7→ να(Ω) de�ning the Campbell diagram of the eigenfre-
quencies (in Hz) of the linear tuned rotating bladed-disk structure (pattern P0) as
a function of the rotation speed (in RPM), where EO denotes the engine order, and
where the vertical dashed line identi�es the speed of rotation that is considered.

integration points, which are not de�ned in the user guide. In the house code, we
have chosen the 6 integration points de�ned in the ASTER user guide [118].

4.4 Nonlinear deterministic analysis of the tuned

and the detuned rotating bladed-disk without

mistuning

In this section, a nonlinear deterministic analysis of the tuned structure and of
several con�gurations of detuned structures is considered using the NL-ROMF
and the NL-ROM. The numerical results are compared with the corresponding
linear responses obtained with the L-ROM.

4.4.1 De�nition of the external load (excitation)

The objective of the presented analysis is not to compute the nonlinear dynamical
response for a general physical excitation, but is to present a sensitivity study for
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Figure 4.5 � Graph of h 7→ να(h) of the eigenfrequencies να of the linear tuned
rotating bladed-disk structure (pattern P0) for rotation speed Ω = 4 440 RPM as
a function of the circumferential wave number h.

understanding the role played by the geometrical nonlinear e�ects with respect to
the linear counterpart. In this framework, the chosen spatial excitation will not
correspond to a travelling wave in the rotating frame but to a standing wave. It
should be noted that such a choice is coherent with the fact that no aerodynamic
coupling is taken into account. Inspired by the type of analyses performed for the
linear mistuned cases, the external forces have been chosen in order to control the
circumferential wave number and also the frequency band of excitation, which has
to be su�ciently narrow around the speci�ed frequency of interest. This type of
excitation allows for clearly analyzing the transfer of energy outside the excitation
frequency band (which is the objective of the work). According to the Campbell
diagram displayed in Figure 4.4, it can be seen that the third mode intersect the
EO line corresponding to EO = 20 for the considered rotating speed Ω = 4 440

RPM. As a consequence, the excitation is chosen with a circumferential wave
number h = 4 (nodal diameter), for which Eq. (4.1) is satis�ed with j = k = 1.
According to the Campbell diagram displayed in Figure 4.4, a 20-engine order
is chosen corresponding to circumferential wave number h = 4 (nodal diameter).
The excitation frequency band is chosen as Be = [1 000, 1 600]Hz, in which νmin =

1 000Hz and νmax = 1 600Hz. It contains the eigenfrequencies of the rotating
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4.4. Nonlinear deterministic analysis

Figure 4.6 � Representation of the mode shapes of the tuned rotating bladed-disk
structure for circumferential wave number h = 4. First bending mode related
to eigenfrequency ν1 = 484Hz (left �gure) and second bending mode related to
eigenfrequency ν2 = 1 170Hz (right �gure)

Figure 4.7 � Representation of the mode shapes of the tuned rotating bladed-disk
structure for circumferential wave number h = 4. First torsional mode related
to eigenfrequency ν3 = 1 490Hz (left �gure) and third bending mode related to
eigenfrequency ν4 = 2 234Hz (right �gure)
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Figure 4.8 � Graph of function α 7→ Err(α) corresponding to the case Ω =

0 rad.s−1 (blue line) and to the case Ω = 1000 rad.s−1 (red line)

tuned bladed-disk structure related to the second bending mode (displayed in
Figure 4.6) and the �rst torsional mode (displayed in Figure 4.7). In the time
domain, the external force vector f(t) is de�ned by,

f(t) = s0 g(t) f s , (4.3)

in which f s is the Rn-vector representing the normalized spatial distribution of the
external forces. In the present case, the excitation is located at the tip of each blade
(see the red dot symbols in Figures 4.1) according to all the possible direction and

with a constant phase-angle
2πh

M
=
π

3
, corresponding to a circumferential h = 4.

In Eq. (4.3), the dimensionless time-function t 7→ g(t) is de�ned on R and is such
that the modulus |ĝ(2πν)| of its Fourier transform ĝ(2πν) is equal to 1 in frequency
band Be and equal to zero outside Be. In this case, the time-dependant function
g(t) is written as

g(t) = 2
sin(π∆ν t)

π t
cos(2π s∆ν t) , (4.4)

in which parameters ∆ν and s are such that

∆ν = νmax − νmin , s =
νmax + νmin

2∆ν
. (4.5)

The load intensity of the force is controlled by scalar parameter s0. From a nu-
merical point of view, function g(t) is truncated by choosing tini = −0.065 s such
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4.4. Nonlinear deterministic analysis

that g(tini) = 0 with a time duration T = 0.18 s. The calculations are car-
ried out with nt = 4 096 time steps, using a sampling frequency νe = 16 000Hz.
These numerical parameters allow for considering the frequency band of analysis
Ba = [0, 4 000]Hz. With such parameters corresponding to a constant sample
frequency step δν = 3.9Hz and a constant time step δt = 6.25×10−5 s, it can
be seen that, for h = 4, the �rst eigenfrequency of the rotating tuned bladed-disk
structure could possibly be excited and in such case would correctly be represented
with these parameters. Furthermore, such choice also ensures the dynamic system
to return to its equilibrium state within a good relative tolerance. Figures 4.9 and
4.10 show the graphs of function t 7→ g(t) and the modulus of its Fourier transform
ν 7→ |ĝ(2πν)|. It should be noted that, from a computational point of view, the
numerical values of |ĝ(2πν)| for ν in Ba\Be are not exactly zero but di�er with
three orders of magnitude lower, which means that the linear dynamic response
will have negligible magnitude in the band Ba\Be (that will not be the case for the
nonlinear dynamic response). The nonlinear dynamic analysis is then performed
in the time domain according to Eqs. (3.23) and (3.24). A Fourier transform
of the forced response obtained in the time domain is carried out and allows for
analyzing, a posteriori, the nonlinear dynamic responses in the frequency domain.
The numerical parameters have been carefully using the tuned con�guration P0

and are used for any detuned con�guration of the bladed-disk structure.

4.4.2 De�nition of the observations

In this Chapter, we are interested in analyzing the nonlinear dynamic behavior
of rotating tuned and detuned bladed-disk structures. Such analysis is performed
by following the procedure described in Chapter 3 for constructing the NL-ROM.
The nonlinear dynamic response u(t) is computed in the time domain according
to Eqs. (3.23) and (3.24). The Fourier Transform of the nonlinear solution u(t)

allows for computing the nonlinear dynamic response û(2πν) in the frequency
domain. The nonlinear observation of interest are de�ned from û(2πν) as described
hereinafter.

The observations of the nonlinear dynamic system have to be de�ned for per-
forming the robust analysis of the rotating tuned and the detuned bladed-disk with
or without mistuning. It is recalled that, in presence of mistuning, the responses
are random. There are several possibilities for de�ning the observations. We have
chosen one, which is coherent with all the analyses that are performed in the fre-
quency domain. First, we de�ne only one observation point in each blade that is
located at its tip shown as red dot symbol in Figure 4.1. This means that, the
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Figure 4.9 � De�nition of the excitation: graph of the time-function excitation,
t 7→ g(t), de�nes on interval [−0.065, 0.18] s (top �gure) and zoom on [−0.02, 0.02] s

interval (down �gure).

number of observation points is equal to the numberM of blades. For the rotating
detuned bladed-disk structure without mistuning, we will look for the blade num-
ber j0 where the maximum related to the amplitude of the displacement occurs,
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Figure 4.10 � Graph of function ν 7→ |ĝ(2πν)| in log scale.

over all the blades and for the entire frequency band of analysis. It should be noted
that, in presence of mistuning, j0 becomes a random variable. Nevertheless, we
want to characterize the random responses � of the rotating tuned and detuned
bladed-disk structures in presence of mistuning � with respect to the determinis-
tic response of its counterpart without mistuning. Consequently, we have chosen
to keep j0 as the deterministic blade number for the case for which mistuning is
taken into account. The nonlinear analysis is carried out for the rotating tuned and
detuned bladed-disk structures without mistuning. For each time t and for the ob-
servation in blade j, let uj(t) = (uj1(t), uj2(t), uj3(t)) be the vector whose coordinates
are given in the local basis (ej1, e

j
2, e3). For frequency ν in Hz, the Fourier Trans-

form of function t 7→ uj(t) is written as ûj(2πν) = (ûj1(2πν), ûj2(2πν), ûj3(2πν)).
We have to �nd the blade number j0 such that

j0 = arg max
j=1,...,M

|||ûj||| , (4.6)

in which |||ûj||| is such that

|||ûj||| = max
ν
||ûj(2πν)|| , (4.7)

with ‖ûj(2πν)‖2 =
∑3

k=1 |û
j
k(2πν)|2. For the rotating tuned bladed-disk (therefore,

it is not detuned and there is no mistuning), the quantity |||ûj||| will be rewritten as
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Chapter 4. Nonlinear computational dynamics of a detuned bladed-disk structure

|||ûj,tuned|||. It should be noted that, the blade number j0 depends on the considered
pattern and on the type of analysis, which is performed for the rotating detuned
bladed-disk. There are two types of analysis, the linear one denoted by subscript L
and the nonlinear one denoted by subscript NL. These subscripts will be omitted
when no confusion will be possible.

We are thus interested in characterizing the ampli�cation levels for the non-
linear deterministic case. We then de�ne the quantity b(2πν) as the deterministic
ampli�cation factor such that

b(2πν) =
||ûj0(2πν)||
|||ûj0,tuned|||

. (4.8)

4.4.3 Numerical aspects

The dynamic response of the L-ROM de�ned by Eq. (3.15) is solved using the
Newmark method [119] with the averaging acceleration scheme, which is an implicit
and unconditionally stable integration scheme. The NL-ROMF and the NL-ROM
de�ned by Eqs. (3.4)-(3.5) and (3.23)-(3.24) are also solved using the Newmark
method. As explained in Chapter 3, for each time step, the nonlinear algebraic
equation is solved using the �xed point method. In case of a non-convergence, the
Cris�eld arc-length algorithm [43, 120] is used.

4.4.4 Convergence analysis with respect to the dimension of

the NL-ROM

In this section, the convergence analysis of the deterministic response of the
NL-ROM, with respect to its dimension m, is considered for a given pattern of
the rotating detuned bladed-disk (without mistuning). We estimate the optimal
values of parameters m and N related to the truncation of the vector bases used
for constructing the NL-ROM (according to Sections 3.2 and 3.3). Let ŵ(2πν) be
the scalar value such that

ŵ(2πν) =

√√√√ M∑
j=1

||ûj(2πν)||2 . (4.9)

When dealing with the �rst projection basis represented by matrix [Φ̄m], the
quantity ŵ(2πν) is rewritten as ŵm(2πν). When dealing with the second reduction,
involving the modal matrix [Φm,N ], the quantity ŵ(2πν) is rewritten as ŵm,N(2πν).

44



4.4. Nonlinear deterministic analysis

Number m of modes
50 100 150 200

C
on

v
1
(m

)

#10 -7

0

0.2

0.4

0.6

0.8

1
P0

P2

P13

Figure 4.11 � Convergence analysis with respect to the reduced order m of the NL-
ROMF: graphs of function m 7→ Conv1(m) for patterns P0 = 24A, P2 = (AB)12,
and P13 = 6B12A3B3A.

A �rst convergence analysis is performed with respect to the number m of modes
that are kept for constructing the NL-ROMF. Let Conv1(m) be the function de-
�ned by

Conv1(m) =

√∫
Ba

(ŵm(2πν))2 dν . (4.10)

Figure 4.11 displays the graph of function m 7→ Conv1(m) for three di�erent
patterns. The considered con�gurations are the tuned pattern P0 = 24A and two
detuned patterns (P2 = (AB)12 and P13 = 6B12A3B3A). A good convergence
is obtained for m = 145 that will be the retained value. A second convergence
analysis is then carried out with respect to N < m = 145 according to Eq. (3.21).
Let Conv2(m,N) be the function de�ned by

Conv2(m,N) =

√∫
Ba

(ŵm,N(2πν))2 dν . (4.11)

Figure 4.12 displays the graph of function N 7→ Conv2(m = 145, N). It can be
seen that a good approximation is obtained for N=55, which shows the e�ciency
of the reduction strategy that is proposed.
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Figure 4.12 � Convergence analysis with respect to the reduced order N of the NL-
ROM for m = 145: graphs of function N 7→ Conv2(m,N) for patterns P0 = 24A,
P2 = (AB)12, and P13 = 6B12A3B3A.

4.4.5 Sensitivity analysis of the deterministic responses for

the nonlinear tuned rotating bladed-disk with respect

to amplitude s0 of the excitation

The sensitivity analysis of the intensity s0 of the external load is performed using
the NL-ROMF withm = 145 for the nonlinear tuned rotating bladed-disk (pattern
P0 = 24A). The objective is to determine the value of parameter s0 for which
the geometric nonlinear e�ects occur in the dynamic response. This analysis is
performed by quantifying the energy iNL outside the excitation frequency band Be
(that is to say, in the band Ba\Be) such that

iNL(s0) =

√∫
Ba\Be (ŵ(2πν; s0))2 dν√∫
Be (ŵ(2πν; s0))2 dν

. (4.12)

Figure 4.13 displays the graph of function s0 7→ iNL(s0). It can be seen that
geometric nonlinear e�ects appear for s0 > 0.10. Strictly speaking, the NL-ROM
that was built for m = 145 is only valid for s0 ≤ 1. However, Figure 4.13 shows
the value of iNL(s0) for s0 > 1, and for which the convergence for m = 145 is not
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assured. However, the objective of Figure 4.13 is to �nd from what value of s0 the
nonlinear regime is reached. This one is clearly identi�ed with s0 = 0.1 < 1.

s0
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i N
L
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0
)
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Nonlinear
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Linear
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Figure 4.13 � Sensitivity analysis with respect to parameter s0 using the NL-ROMF
for the nonlinear tuned rotating bladed-disk structure (pattern P0 = 24A): graph
of function s0 7→ iNL(s0). The red dashed line represents the boundary between
the linear and nonlinear regimes

Figure 4.14 displays the graph of function ν 7→ ||ûj0(2πν)|| constructed with
the NL-ROMF for s0 equal to 0.04 (response belonging to the quasi-linear regime
of the nonlinear response), and equal to 0.25, 1, and 4.0 (response belonging to
the nonlinear regime of the nonlinear response). The left top �gure clearly shows
a dynamic response that remains in the linear regime (there is no response outside
Be). On the other hand, subsequent contributions with unexpected resonances
appear outside Be in the frequency band Ba\Be as soon as s0 increases. For s0 =

0.04, the nonlinear geometric e�ects are negligible, for s0 = 0.25, the nonlinear
geometric e�ects are moderate, and for s0 = 1 the e�ects are strong. Note that
the value s0 = 4 has also been used for the sensitivity analysis but the convergence
with respect to m is not ensured.
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Figure 4.14 � Sensitivity analysis with respect to parameter s0 of the responses
computed with the NL-ROMF and analyzed in the frequency domain: graphs of
function ν 7→ ||ûj0(2πν)|| for s0 = 0.04 (left top �gure), s0 = 0.25 (right top
�gure), s0 = 1 (left down �gure), and s0 = 4.0 (right down �gure). The light
yellow zone corresponds to the excitation frequency band Be

4.4.6 Linear and nonlinear dynamic analyses in the time

domain using the L-ROM and NL-ROM

In this section, the linear and nonlinear dynamic respons of the tuned con�guration
(pattern P0 = 24A) and three detuned con�gurations (patterns P6 = (4A2B)4,
P11 = B4AB18A, P25 = 3A3B3A15B) are analyzed for s0 = 1. Figure 4.15 dis-
plays the graph of function t 7→ uj02,L(t) for patterns (P0, P6, P11, P25) correspond-
ing to a linear computation performed with the L-ROM de�ned by Eq (3.15).
Figure 4.16 displays the graph of t 7→ uj02,NL(t) for patterns (P0, P6, P11, P25)
corresponding to the nonlinear computation performed with the NL-ROM. By
comparing the nonlinear results with the linear ones, it can be seen that strong
nonlinear geometric e�ects that mitigate the amplitude of the responses and show
"irregular" responses, suggesting numerous resonances contributing outside band
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Figure 4.15 � Zoom on the time interval [−0.01, 0.1] s of the linear dynamic analysis
in the time domain performed with the L-ROM: graph of function t 7→ uj02,L(t)

de�ned on the time interval [−0.05, 1.5] s for the patterns P0 (left top �gure), P6

(right top), P11 (left down), and P25 (right down).

4.4.7 Analysis of the nonlinear dynamic time responses in

the frequency domain

As previously explained, a Fourier transform of the time responses constructed
with the L-ROM (linear) and the NL-ROM (nonlinear) is performed, allowing
the spectrum of the responses to be analyzed in the frequency band of analysis
Ba = [0, 4 000]Hz. We are interested in the dynamic ampli�cation factor b(2πν)

(de�ned by Eq. (4.8)) with respect to the tuned con�guration. Figure 4.17 displays
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Figure 4.16 � Zoom on the time interval [−0.01, 0.1] s of the nonlinear dynamic
analysis in the time domain performed with the NL-ROM: graph of function t 7→
uj02,NL(t) de�ned on the time interval [−0.05, 1.5] s for the patterns P0 (left top
�gure), P6 (right top), P11 (left down), and P25 (right down).

the graphs of functions ν 7→ bL(2πν) (linear) and ν 7→ bNL(2πν) (nonlinear) for the
rotating tuned bladed-disk (pattern P0) and for the rotating detuned bladed-disk
structures (patterns P6, P11, P25). By comparing the linear responses with the
nonlinear ones, it can be seen the strong e�ects of the nonlinearities outside the
frequency band of excitation Be and that new resonances occur below and above
this frequency band Be. Such phenomena has previously been observed [35, 45] in
the turbomachinery context.
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Figure 4.17 � Frequency analysis of the time responses computed with the NL-
ROM: graphs of functions ν 7→ bL(2πν) (red smooth thin lines) and ν 7→ bNL(2πν)

(blue irregular thick lines) for patterns P0 (left top �gure), P6 (right top �gure),
P11 (left down �gure), and P25 (right down �gure). The excitation frequency band
Be is in light grey area.
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Chapter 5. Probabilistic model of mistuning

5.1 Introduction

As explained in Chapter 1, the mistuning phenomenon is modeled using a prob-
abilistic approach of uncertainties. We recall that there exist two types of proba-
bilistic approaches.

• The �rst one is called the parametric probabilistic approach: in such an ap-
proach, the parameters of the computational model are modeled by random
variables.

• The second one is called the nonparametric probabilistic approach: it allows
for taking into account both parameter uncertainties and model uncertainties
[99]. The nonparametric probilistic approach consists in replacing the ma-
trices issued from a reduced-order model by random matrices. This means
that the probability distribution is directly constructed from the reduced
operators. It is constructed using the maximum entropy principle [121] with
the available information [122]. It should be noted that only a scalar hyper-
parameter controls the uncertainty level for each reduced operator.

In the present work the mistuning phenomenon is modeled with the nonpara-
metric probabilistic approach. Below we recall the main theoretical steps for
constructing the probability model. Sections 5.2 and 5.2.2 are taken from
[99].

5.2 Ensemble SG+
0 of positive-de�nite random ma-

trices

5.2.1 Available information

A random matrix [G] in SG+
0 is a random matrix, de�ned on the probability

space (Θ, T,P), with values in M+
n (R), which is constructed by using the Maximum

Entropy principle with the following available information

• Positive-de�nite matrix: Full random matrix [G] is almost surely in M+
n (R).

• Statistical mean: Statistical mean of random matrix [G] is equal to the iden-
tity matrix, that is to say

E{[G]} = [In] (5.1)

in which E {.} is the mathematical expectation.

54



5.2. Ensemble SG+
0 of positive-de�nite random matrices

• Integrability of the inverse: A random matrix [G], which belongs to SG+
0 ,

is a second-order random variable, must verify the following integrability
property for its inverse

E{log(det[G])} = νG , |νG| < +∞ (5.2)

5.2.2 Probability distribution of random matrix [G]

The probability distribution of random matrix [G] is de�ned by a probability
density function p[G]([G]), with respect to d̃G such that

d̃G = 2n(n−1)/4 ×
∏

1≤j≤k≤n

d[G]jk , (5.3)

which is written as

p
[G]

([G]) = 1M+
n (R)([G])× CG × (det([G]))(n+1) 1−δ2

2 δ2 × e−
n+1

2 δ2
tr([G]) , (5.4)

where 1M+
n (R)([G]) is the indicator function of the set M+

n (R) de�ned by 1M+
n (R)([G]) =

1 if [G] ∈ M+
n (R) and 1M+

n (R)([G]) = 0 if [G] /∈ M+
n (R). The normalization positive

constant CG is such that

CG = (2π)−n(n−1)/4

(
n+ 1

2δ2

)n(n+1)

2δ2

{
n∏
j=1

Γ

(
n+ 1

2δ2
+

1− j
2

)}−1

(5.5)

in which

Γ(z) =

∫ +∞

0

tz−1e−tdt , ∀z > 0 (5.6)

5.2.3 Dispersion parameter

The dispersion parameter δ, allowing for controlling the level of the statistical
�uctuations of [G], is de�ned by

δ =

{
E {||[G]− [In]||2F}

||[In]||2F

} 1
2

. (5.7)

Parameter δ must be chosen such that

0 < δ < (n+ 1)1/2(n+ 5)−1/2 . (5.8)
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5.2.4 Algebraic representation of random matrix [G]

The following algebraic representation of [G] ∈ SG+
0 gives an explicit generator of

realizations of random matrix [G],

[G] = [L]T [L], (5.9)

in which [L] is an upper triangular random matrix with values in Mn(R) such that

(1) the random variables {[L]jj′ , j ≤ j′} are mutually independent.

(2) for j < j′, we have [L]jj′ = σUjj′ , in which σ = δ(n + 1)−1/2 and where
Ujj′ is a real-valued Gaussian random variable with zero mean and with a
variance that is equal to 1.

(3) for j = j′, we have [L]jj = σ
√

2Vj, where Vj is a positive-valued Gamma
random variable whose probability density function with respect to dν is
written as

pVj(ν) = 1R+(ν)
1

Γ
(
n+1
2δ2

+ 1−j
2

)ν n+1

2δ2
− 1+j

2 e−ν . (5.10)

5.3 Ensemble SE+
0 of positive-de�nite random ma-

trices

Let [A] be a deterministic matrix given in M+
n (R) and representing a given mean

value that is di�erent from the identity matrix. Any random matrix [A] in SE+
0

is with values in M+
n (R), and is such that

E{[A]} = [A] ∈ M+
n (R) (5.11)

E{log(det[A])} = νA , |νA| < +∞ . (5.12)

Random matrix [A] is written as

[A] = [LA]T [G][LA] , [G] ∈ SG+
0 , (5.13)

in which [A] = [LA]T [LA].
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5.4 Construction of linear and nonlinear stochastic

reduced-order models

In this section, the construction principle of the stochastic nonlinear reduced-
order model of the rotating detuned-mistuned bladed-disk structure is presented.
The tuned-mistuned case is also presented. We recall that the dimension of the
computational NL-HFM is n, the dimension of the reduced NL-ROMF is m, and
the dimension of the NL-ROM is N . Here, we introduce two probabilistic models
from the NL-ROM, yielding two nonlinear stochastic reduced-order models, NL-
SROM1 and NL-SROM2. The implementation of uncertainties is performed only
on the nonlinear sti�ness forces (including the linear and the nonlinear operators)
and is based on the methodology presented in [91].

5.4.1 Global sti�ness matrix

Let [KNL] be the (NK ×NK) real matrix, with NK = N(N + 1), such that

[KNL] =

[
[Ke] [K̂

(2)
]

[K̂
(2)

]T 2 [K(3)]

]
, (5.14)

in which [Ke] is the reduced elastic matrix de�ned in Eq. (3.25) and where [K̂
(2)

]

and [K(3)] are respectively the (N × N2) and (N2 × N2) real matrices resulting
from the following reshaping operation,

[K̂
(2)

]αJ = K̂
(2)

αγδ , [K(3)]IJ = K(3)
αβγδ , (5.15)

with I = (α−1)N+β and J = (γ−1)N+δ. It is proven in [91] that matrix [KNL]

is positive de�nite, allowing for applying the nonparametric probabilistic approach
for this matrix.

5.4.2 Stochastic nonlinear reduced-order model NL-SROM1

of a rotating detuned bladed-disk structure with mis-

tuning

For this stochastic nonlinear computational model NL-SROM1, it is assumed that
the random uncertainties a�ect all the contributions of the global sti�ness matrix
[KNL]. Since the dimension of matrix [KNL] is huge, applying the usual non-
parametric probabilistic approach would yield to a very large number of random

57



Chapter 5. Probabilistic model of mistuning

variables. Instead of performing a Cholesky factorization of matrix [KNL], it is
proposed in [101] another factorization that allows for reducing the number of
random variables by introducing a matrix of size ÑK × ÑK with ÑK � NK . Let
us then consider the eigenvalue problem

[KNL]Ψα = λαΨα (5.16)

Matrix [KNL] can then be approximated by the (NK×NK) matrix [K̃NL] such that

[K̃NL] = [L̃K ]T [L̃K ] , (5.17)

in which [L̃K ] is the full (ÑK ×NK) matrix de�ned by

[L̃K ] = [ΛÑK ]
1
2 [ΨÑK ]T (5.18)

where [ΛÑK ] is the (ÑK × ÑK) diagonal matrix such that [ΛÑK ]αα = λα, where
λ1 ≥ λ2 ≥ · · · ≥ λÑK and where the columns of the (NK × ÑK) matrix [ΨÑK ]

is the matrix containing the ÑK eigenvectors ψα, α ∈
{

1, · · · , ÑK

}
, related to

eigenvalues λα such that
[ΨÑK ]T [ΨÑK ] = [IÑK ] (5.19)

Random matrix [KNL] is then replaced by the random matrix [K̃
NL

] such that

[K̃
NL

] = [L̃K ]T [G̃K(δK)][L̃K ] + [∆K̃] , (5.20)

in which [G̃K(δK)] is a (ÑK × ÑK) random matrix belonging to set G+
0 and where

[∆K̃] is the (ÑK × ÑK) real matrix written as

[∆K̃] = [KNL]− [L̃K ]T [L̃K ] . (5.21)

We have E{[K̃
NL

]} = [K̃
NL

] because E{[G̃K(δK)]} = [IÑK ]. The hyperparameter

δK allows for controlling the level of uncertainties in random matrix [K̃
NL

]. The
random linear, quadratic, and cubic coe�cients, [Ke]αβ, K(2)

αβγ, and K(3)
αβγδK

, are

extracted from random matrix [K̃
NL

] that have the same bloc structure as its
deterministic counterpart de�ned in Eq. (5.14).

The �rst stochastic nonlinear reduced-order model, NL-SROM1, is then written
as,

U(t) = [Φ(m,N)] Q(t) , (5.22)

[M] Q̈(t)+([D] + [C(Ω)]) Q̇(t)+([Ke]+[Kc(Ω)]+[Kg(Ω)]) Q(t)+FNLS (Q(t)) = F(t) ,

(5.23)
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in which Q(t) is the RN -valued random vector of the generalized coordinates. In
Eq. (5.23), the vector of the stochastic nonlinear internal forces FNLS(Q(t)) is
written, for all q = (q1, . . . , qN) as

FNLS
α (q) = K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ . (5.24)

5.4.3 Stochastic nonlinear reduced-order model NL-SROM2

of a rotating detuned bladed-disk structure with mis-

tuning

The second nonlinear stochastic reduced-order model NL-SROM2 only takes into
account uncertainties on the linear elastic part of the rotating detuned-mistuned
bladed-disk structure. Consequently, random matrix [Ke] is written as

[Ke] = [LKe ]
T [GK(δK)] [LKe ] , (5.25)

in which [LKe ] is the upper triangular (N × N) real matrix, which results from
the Cholesky factorization of (N ×N) real matrix [Ke], and where [GK(δK)] is the
(N ×N) random matrix belonging to SG+

0 .
The second stochastic nonlinear reduced-order model, NL-SROM2, is then writ-

ten as,
U(t) = [Φ(m,N)] Q(t) , (5.26)

[M] Q̈(t)+([D] + [C(Ω)]) Q̇(t)+([Ke]+[Kc(Ω)]+[Kg(Ω)]) Q(t)+FNL (Q(t)) = F(t) ,

(5.27)
in which Q(t) is the RN -valued random vector of the generalized coordinates.
In Eq. (5.27), the vector of the stochastic nonlinear internal forces FNL(q(t)) is
written, for all q = (q1, . . . , qN) as

FNL
α (q) = K(2)

αβγ qβ qγ +K(3)
αβγδ qβ qγ qδ . (5.28)

5.4.4 Stochastic linear reduced-order model L-SROM of a

rotating detuned bladed-disk with mistuning

We also introduce a stochastic linear reduced-order model L-SROM, which is the
NL-SROM2, in which the nonlinear term FNL is removed. The stochastic linear
reduced-order model, L-SROM, is then written as,

U(t) = [Φ(m,N)] Q(t) , (5.29)

[M] Q̈(t) + ([D] + [C(Ω)]) Q̇(t) + ([Ke] + [Kc(Ω)] + [Kg(Ω)]) Q(t) = F(t) , (5.30)

in which Q(t) is the RN -valued random vector of the generalized coordinates.
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6.1 Introduction

This section is devoted to the stochastic nonlinear dynamic analyses of the rotat-
ing detuned bladed-disk presented in Chapter 4 in presence of mistuning. More

61
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particularly, four con�gurations are investigated: the tuned bladed-disk structure
(pattern P0), and three arbitrary detuned con�gurations (patterns P6, P11, and
P25). The computation NL-ROM of these con�gurations is constructed with nu-
merical parameters m = 145 and N = 55 (see Chapter 4). The �rst section deals
with the convergence analysis of NL-SROM1 with respect (1) to parameter ÑK

controlling the dimension of the random matrix [G̃K ] (see Section 5.4.2) and (2) to
parameter ns controlling the number of realizations used in the Monte-Carlo nu-
merical simulation. The second section concerns the numerical results that consist
in the con�dence region of the nonlinear stochastic responses related to the inves-
tigated tuned and detuned con�gurations obtained with L-SROM, NL-SROM1,
and NL-SROM2.

6.2 Convergence analyses with respect to ÑK and

ns

The convergence analyses with respect to ÑK and ns are presented, and allows for
reducing the size of the germ matrix [G̃K ] and for de�ning an optimal number ns
of Monte-Carlo numerical simulations.

6.2.1 Convergence analysis with respect to ÑK

From Section 4.4.4, dimension N of the NL-ROM is �xed to 55. Consequently,
dimension NK of the global sti�ness matrix [KNL] de�ned by Eq. (5.14) is 55×56 =

3 080. We are then interested in quantifying the numerical error resulting from the
factorization of matrix [KNL] which depends on the number of ÑK related to the
dimension of matrix [ΨÑK ].

Following [101], we introduce the relative error function ÑK 7→ err(ÑK) such
that

err(ÑK) =

√
‖[∆K̃]‖2

F

‖[KNL]‖2
F

. (6.1)

Figure 6.1 displays the graph of ÑK 7→ err(ÑK). A good convergence is obtained
for ÑK = 500 corresponding to a relative error err(ÑK) = 10−6. This means that
the dimension of random matrix [GK ] is reduced from 3080 to 500, which allows
for reducing the computional cost.
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Figure 6.1 � Convergence analysis with respect to parameter ÑK : graph of function
ÑK 7→ err(ÑK) in log-scale.

6.2.2 Stochastic convergence analysis with respect to ns

Parameters m, N , and ÑK are �xed such that m = 145, N = 55, and ÑK = 500.
The range of values of hyperparameter δK that will be used for performing the
sensitivity analysis of the nonlinear dynamical response with respect to the level
of uncertainties, will be 0 < δK < 0.1. The convergence analysis is thus performed
for the larger value 0.1 of δK ensuring the convergence for all values of δK less than
0.1. Let

Ŵ(2πν) =

√√√√ M∑
j=1

||Û
j
(2πν)||2 (6.2)

be the random observation de�ned similarly to Eq. (4.9). The stochastic Eq. (5.23)
is solved by using the Monte-Carlo numerical simulation with ns realizations de-
noted by θ1, · · · , θns . Let Ŵ(2πν, θ`) be the realization θ` of the random variable
Ŵ(2πν). The convergence analysis with respect to ns is then carried out studying
the function ns 7→ Conv(ns) de�ned by

Conv(ns) =

√√√√ 1

ns

ns∑
`=1

∫
Ba

(Ŵ(2πν, θ`))2 dν (6.3)
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Figure 6.2 displays the graph of function ns 7→ Conv(ns). It can be seen that a
reasonable approximation is obtained for ns ≥ 500. In order to limit the CPU-time
for performing the robust analysis of the detuned systems in presence of mistuning,
the chosen value 500 of parameter ns is retained.
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Figure 6.2 � Convergence analysis with respect to the number ns of realizations
for the Monte-Carlo numerical simulation of the NL-SROM1: graph of function
ns 7→ Conv(ns).
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6.3 Linear and nonlinear stochastic analyses

In this section, we consider the following cases: the nonlinear rotating tuned
bladed-disk structure in presence of mistuning and also three con�gurations of
the rotating detuned bladed-disk structure in presence of mistuning. The nonlin-
ear computational analyses are carried out using the NL-SROM1, the NL-SROM2,
and the L-SROM de�ned in Chapter 5.

6.3.1 Random dynamic ampli�cation

As explained in Section 4.4.2, we are interested in characterizing the ampli�ca-
tion levels for the stochastic nonlinear responses. We thus introduce the quantity
B(2πν) as the random dynamic ampli�cation factor such that

B(2πν) =
||Û

j0
(2πν)||

|||ûj0,tuned|||
, (6.4)

in which

‖Û
j0

(2πν)‖2 =
3∑

k=1

|Û j0
k (2πν)|2 (6.5)

is a random observation of blade j0, expressed in the frequency domain .

6.3.2 Sensitivity analysis with respect to parameter s0 for

the rotating tuned and detuned bladed-disk structure

in presence of mistuning

The objective is to quantify and to give explanations concerning the e�ects of the
level of uncertainties related to the level of mistuning. In that sense, a parametric
analysis is carried out with respect to (i) the dispersion parameter δK that controls
the level of uncertainties in the computational model and (ii) parameter s0 that
controls the amplitude of the external excitation, that is to say that allows the
geometric nonlinear e�ects to be controlled. A comparison is performed between
the linear stochastic responses computed with L-SROM and the nonlinear stochas-
tic responses computed with NL-SROM2 for hyperparameter δK �xed to 0.1. Let
Ûmax(s0) be the real-valued random variable de�ned by

Ûmax(s0) = max
ν∈Be
‖Uj0(2πν; s0)‖ , (6.6)

depending on s0.
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Let ûmax(s0) be the real number depending on s0 such that Proba{Ûmax(s0) ≤
ûmax(s0)} ≤ 0.95. Figure 6.3 displays function s0 7→ ûmax(s0) computed with the
stochastic models L-SROM and NL-SROM2 for δK = 0.1 and for patterns P0

(tuned) and P6 (detuned). It can be seen that the propagation of uncertainties
for the nonlinear geometric e�ects (NL-SROM2) is smaller than for the linear one
(L-SROM). This attenuation is more important while s0 is increasing, that is to
say when the nonlinear e�ects increase.

Figures 6.4 to 6.9 display the graphs of the con�dence region of ν 7→ ||Û
j0

(2πν)||
corresponding to a probability level 0.95 for both patterns P0 (tuned) and P6 (de-
tuned) computed using NL-SROM2 for three external-forces intensities s0 = 0.01,
s0 = 0.15, and s0 = 1 corresponding to negligible, moderate, and strong geometric
nonlinear e�ects. It can be seen that for s0 = 0.01, the response in the frequency
domain is clearly located in excitation frequency band Be, similarly to the linear
case. For the medium and high values of s0, geometric nonlinear e�ects yield
unexpected resonances that occur outside Be, especially, around 484Hz (mode 1
de�ned in Section 4.5), which corresponds to the �rst bending mode of the blade
and around 3 700Hz, which corresponds to a combination of elastic modes. In
addition, the general level of responses outside band Be increases with s0. Con-
cerning frequency band of excitation Be, it can be seen that the second bending
mode of blade (mode 2 around 1 170Hz de�ned in Section 4.3) is relatively sta-
ble in amplitude with respect to s0 while the �rst torsion mode of blade (mode
3 at around 1 490Hz de�ned in Section 4.3) tends to vanish when the nonlinear
geometric e�ects increase. Furthermore, it can be noticed that the width of the
con�dence region is not constant with respect to the frequency.

We consider now that s0 is �xed to the value 1. Let BL(2πν; δK) be the random
variable depending on δK , de�ned by Eq. (6.4), and constructed using the L-SROM.
Let B∞L (δK) be the random variable de�ned by

B∞L (δK) = max
ν∈Be

BL(2πν, δK) ,

which corresponds to the maximum dynamic ampli�cation factor over the excita-
tion frequency band. We then denote by b+,∞

L (δK) the value of B∞L (δK) depending
on δK and such that

Proba{B∞L (δK) ≤ b+,∞
L (δK)} ≤ 0.95 .

Figure 6.10 displays the graph of function δK 7→ b+,∞
L (δK) for seven patterns of

con�gurations: tuned pattern P0 and detuned ones P2, P3, P5, P6, P12, and P31
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de�ned in Appendix B. The results obtained are coherent with those published
in [3], especially, for each pattern, a maximum is obtained for a small mistuning
(small value of δK).
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Figure 6.3 � For δK = 0.1, graphs of function s0 7→ ûmax(s0) such that
Proba{Ûmax(s0) ≤ ûmax(s0)} ≤ 0.95 for the tuned rotating bladed-disk structure
(pattern P0) and for the detuned pattern P6. Calculation with L-SROM (red line
with crosses) and with NL-SROM2 (blue line with circles).
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Figure 6.4 � For δK = 0.1, con�dence region (yellow region) of ν 7→ ||Û
j0

(2πν)||
corresponding to a probability level 0.95, computed using NL-SROM2 for the tuned
rotating bladed-disk structure (pattern P0) and for s0 = 0.01. The dashed-line is
the response of the deterministic nominal (mean) model. The vertical grey region
corresponds to excitation frequency band Be. Linear scale (left �gure) and log
scale (right �gure)
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Figure 6.5 � For δK = 0.1, con�dence region (yellow region) of ν 7→ ||Û
j0

(2πν)||
corresponding to a probability level 0.95, computed using NL-SROM2 for the
detuned pattern P6 and for s0 = 0.01. The dashed-line is the response of the
deterministic nominal (mean) model. The vertical grey region corresponds to
excitation frequency band Be. Linear scale (left �gure) and log scale (right �gure)
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ν 7→ ||Û
j0

(2πν)|| corresponding to a probability level 0.95, computed using NL-
SROM2 for the tuned rotating bladed-disk structure (pattern P0). The dashed-
line is the response of the deterministic nominal (mean) model. The vertical grey
region corresponds to excitation frequency band Be. Linear scale (left �gure) and
log scale (right �gure)
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Figure 6.7 � For s0 = 0.15 and for δK = 0.1, con�dence region (yellow region) of

ν 7→ ||Û
j0

(2πν)|| corresponding to a probability level 0.95, computed using NL-
SROM2 for detuned pattern P6 and for s0 = 0.15. The dashed-line is the response
of the deterministic nominal (mean) model. The vertical grey region corresponds
to excitation frequency band Be. Linear scale (left �gure) and log scale (right
�gure)
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ν 7→ ||Û
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(2πν)|| corresponding to a probability level 0.95, computed using NL-
SROM2 for the tuned rotating bladed-disk structure (pattern P0). The dashed-
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region corresponds to excitation frequency band Be. Linear scale (left �gure) and
log scale (right �gure)
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ν 7→ ||Û
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(2πν)|| corresponding to a probability level 0.95, computed using NL-
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L (δK) for tuned pattern P0
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6.3.3 Stochastic analysis of nonlinear rotating tuned and de-

tuned bladed-disk structure in presence of mistuning

for di�erent patterns

In this section, we present the results obtained using NL-SROM1 for the nonlin-
ear rotating tuned and detuned bladed-disks in presence of mistuning for which
s0 = 1.
Let BNL(2πν; δK) be the random variable depending on δK , de�ned by Eq. (6.4),
and constructed using the NL-SROM1. For two values of δK controlling the mis-
tuning level, Figure 6.11 (δK = 0.03) and Figure 6.12 (δK = 0.1) display the
con�dence region of random variable BNL(2πν; δK), estimated with a probability
level of 0.95, for con�gurations P0 (tuned), and for P6, P11, and P25 (detuned
de�ned in Appendix B). These �gures allow for estimating the robustness of the
responses with respect to the level of uncertainties as a function of the consid-
ered patterns. Nevertheless, the �rst torsion mode for h = 4 (mode 3 around
1 490Hz de�ned in Section 4.3) located in Be is very sensitive to the mistuning,
as already mentioned for the linear case in Section 6.3.2. It can be seen that the
nonlinear stochastic response of the mistuned-detuned bladed-disk is particularly
complex. It should also be noted, as in Section 6.3.2, that unexpected resonances
occur outside the excitation frequency band as soon as the level of nonlinearities
is signi�cant.

6.4 Discussion

It is interesting to observe that the results obtain using NL-SROM1 and NL-
SROM2 yield di�erent nonlinear dynamic behaviors. We recall that the main
di�erences between these two stochastic computational models are that uncertain-
ties do a�ect all the linear and nonlinear contributions in the NL-SROM1 case
and only the linear elastic sti�ness contribution in the NL-SROM2 case. One sub-
sequent di�erence observed through the nonlinear computational analysis is that
NL-SROM1 yields a robust behavior in the excitation frequency band that is not
the case when considering NL-SROM2. Furthermore, it should be noted that the
use of the NL-SROM1 with a Cholesky factorization for the global sti�ness matrix
yields (as shown in [35]) a similar nonrobust behavior. This is explained by the
fact that in [35], uncertainties also did a�ect the other linear operators (mass,
damping, ...), which is not the case here.
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Figure 6.11 � For s0 = 1 and for δK = 0.03, con�dence region (yellow region) of
the random ampli�cation factor, BNL(2πν), estimated with a probability level of
0.95 using NL-SROM1, for the tuned rotating bladed-disk structure (pattern P0)
(left top �gure), and for detuned patterns, P6 (right top), P11 (left down), and P25

(right down). The dashed-line is the nominal ampli�cation factor bNL(2πν). The
vertical grey region corresponds to excitation frequency band Be.
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Figure 6.12 � For s0 = 1 and for δK = 0.1, con�dence region (yellow region) of
the random ampli�cation factor, BNL(2πν), estimated with a probability level of
0.95 using NL-SROM1, for the tuned rotating bladed-disk structure (pattern P0)
(left top �gure), and for detuned patterns, P6 (right top), P11 (left down), and P25

(right down). The dashed-line is the nominal ampli�cation factor bNL(2πν). The
vertical grey region corresponds to excitation frequency band Be.

74



Chapter 7

Robust nonlinear computational

dynamics of the mistuned-detuned

bladed-disk structure

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Detuned bladed-disk structure without mistuning . . . 76

7.3 Stochastic analysis of nonlinear structures . . . . . . . 76

7.4 Robust analysis with respect to sub-frequency bands . 79

7.1 Introduction

In Chapters 4 and 6, nonlinear dynamic analyses have been performed for three
detuned patterns. In this Chapter, we are interested in the robust nonlinear dy-
namic analysis of rotating detuned bladed-disks in presence of mistuning with
respect to a large family of patterns. Due to computation cost, only 46 patterns
have been considered and are de�ned in Appendix B. This means that 46 non-
linear reduced-order models have been constructed. It should be noted that we
mainly investigate the patterns involving three identical consecutive blades of type
B. Since M = 24, it can be shown that there are 34 possible patterns, which are
denoted by Pi, i = {12, · · · , 45}. For instance, pattern 12B6A3B3A exhibits 12
consecutive blades of type B, 6 blades of type A, 3 blades of type B, and 3 blades
of type A (note that patterns from P1 to P11 are those already used in the previous
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chapters).

7.2 Detuned bladed-disk structure without mistun-

ing

In order to better understand the discrepancy of the detuned deterministic nonlin-
ear dynamic responses with respect to the tuned ones, let b±NL(2πν) be the upper
(+) and the lower (−) envelopes of the dynamic ampli�cation factors, de�ned over
the family of patterns. Figure 7.1 displays the graphs of functions ν 7→ b±NL(2πν)

and ν 7→ btunedNL (2πν) performed with the NL-ROM for which s0 = 1, that charac-
terize the variability of the nonlinear dynamic behavior with respect to the family
of patterns. It can be seen that the nonlinear dynamic response is very sensitive
to the detuning, especially outside excitation frequency band Be. At a given fre-
quency, the ampli�cation factor can strongly di�er from one pattern to another
one.

7.3 Stochastic analysis of nonlinear rotating tuned

and detuned bladed-disk structure in presence

of mistuning

The analysis that we have presented in Section 6.3.3 is revisited considering all
the 46 patterns de�ned in Appendice B. For simplifying the presentation of the
results, the 46 patterns (the tuned pattern and the 45 detuned patterns, all in
presence of mistuning) are considered as 46 realizations of a random mechanical
system. Let Ball

NL(2πν) be the random ampli�cation factor de�ned by Eq. (6.4) of
this random mechanical system, estimated using the NL-SROM1 with δK = 0.1

and s0 = 1. In practice, the con�dence region associated with a probability level
of 0.95 of random variable Ball

NL(2πν) is estimated in concatenating all the Monte-
Carlo realizations computed for each one of the 46 patterns. Figure 7.2 displays (in
linear and log scales) the con�dence region of the deterministic ampli�cation factor
btuned
NL (2πν) for the rotating tuned bladed-disk without mistuning and the random
variable Ball

NL(2πν) for all the 46 detuned patterns with mistuning, which includes,
as previously mentioned, the tuned pattern P0 in presence of mistuning. We use
the same type of analysis as the one presented in Section 6.3.3. This �gure shows
that the random ampli�cation factor is high outside excitation frequency band Be
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Figure 7.1 � For s0 = 1, graphs of functions ν 7→ b±NL(2πν) (black irregular thick
lines) and ν 7→ btunedNL (2πν) (red irregular thin line) corresponding to the upper
(+) and the lower (−) envelopes of the dynamic ampli�cation factor among the
investigated patterns. Linear scale (top �gure) and log scale (down �gure)

and is sensitive to uncertainties. It should be noted that btuned
NL (2πν) belongs to

the con�dence region.
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Figure 7.2 � For δK = 0.1 and s0 = 1, con�dence region (yellow/grey region) of the
random ampli�cation factor, Ball

NL(2πν), related to the 46 patterns, estimated with
a probability level of 0.95 using NL-SROM1. The dashed-line is the ampli�cation
factor btuned

NL (2πν) of the tuned system without mistuning. The thick solid line is the
median value of random variable Ball

NL(2πν). The vertical grey region corresponds
to excitation frequency band Be. Linear scale (top �gure), log scale (down �gure)

78



7.4. Robust analysis with respect to sub-frequency bands

Moreover, the analysis of Figure 7.2 shows that the robustness of the stochas-
tic response around the two main resonances, located in band Be, is signi�cantly
higher than outside Be, while there are relatively of high levels outside Be (in the
linear case, there is no response outside the band Be). In the low-frequency band
[0, 1 000]Hz (not excited by the external forces), there are mistuned con�gura-
tions for which the amplitude level outside Be is four times lower than the one in
Be. Nevertheless, it should be noted that the levels of responses (induced by the
nonlinear geometric e�ects), which occur outside band Be, depend on the pattern.

7.4 Robust analysis with respect to sub-frequency

bands

The results presented in Section 7.3 lead us to split the frequency band of anal-
ysis Ba in 3 sub-frequency bands to better analyze the ampli�cation factor. We
then de�ne the following bands: Blow = [0, 1 000]Hz, Bmed = [1 000, 1 300]Hz, and
Bhigh = [1 300, 4 000]Hz. Note that band Bmed is included in frequency band of
excitation Be and that band Bhigh overlaps band Be with the common frequency
band [1 300, 1 600]Hz. This partition of the frequency band of analysis has been
introduced in order to analyze the ampli�cation of the resonances in each sub-
frequency band. Let {low,med, high} be the set of the three identi�ers such that,
for ”band” ∈ {low,med, high}, the band Bband denotes one of the band Blow, Bmed,
and Bhigh.

For s0 = 1, let BNL(2πν; δK) be the random ampli�cation factor de�ned by
Eq. (6.4), computed using NL-SROM1 and let

B∞,band
NL (δK) = max

ν∈Bband

BNL(2πν; δK) (7.1)

be the random variable that corresponds to the maximum dynamic ampli�cation
factor over frequency band Bband. We then denote by b+,∞,band

NL (δK) the value of
B∞,band

NL (δK) depending on δK and such that

Proba{B∞,band
NL (δK) ≤ b+,∞,band

NL (δK)} ≤ 0.95 . (7.2)

For anyone of the 46 patterns, we are interested in plotting the graphs of functions
δK 7→ b+,∞,low

NL (δK), δK 7→ b+,∞,med
NL (δK), and δK 7→ b+,∞,high

NL (δK), which describe
the evolution of the maximum ampli�cation factor for each pattern according to
the dispersion parameter δK . However, to maintain a su�cient readability of the

79



Chapter 7. Robust nonlinear computational dynamics

�gures, we only plot the lower and the upper envelopes of the 46 patterns. These
two envelopes de�ne a region in which all the 46 pattern belong.

Figures 7.4 to 7.5 show the graphs for each frequency band, Bmed, Blow, and
Bhigh. In the caption of each one of these three �gures, the patterns corresponding
to the lower and the upper envelopes are indicated. Figure 7.3 shows that there is
a weak sensitivity of the envelopes with respect to the mistuning level represented
by the value of δK . Pattern P34, which corresponds to the upper envelope, yields
the largest dynamic ampli�cation factor in band Bmed, whereas pattern P1, which
corresponds to the lower envelope, has the lowest dynamic ampli�cation factor. In
Figures 7.4 and 7.5, it can be seen that the envelopes are sensitive to the level of
mistuning represented by δK , and that a very high dynamic ampli�cation factor
can be obtained, that is the case for pattern P26 (upper envelope for Blow) and for
pattern P9 (upper envelope for Bhigh). Note that these dynamic ampli�cation factor
is normalized with respect to the nonlinear tuned response without mistuning and
could not be normalized with respect to the linear tuned system, which would
yield an in�nite value.
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Figure 7.3 � For s0 = 1 and for band Bmed, lower (thin solid line) and upper
(thick solid line) envelopes of the regions containing the 46 graphs of functions
δK 7→ b+,∞,med

NL (δK) for the 46 patterns using NLSROM1. The upper envelope
corresponds to detuned pattern P33 and the lower one to detuned pattern P1.
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Figure 7.4 � For s0 = 1 and for band Blow, lower (thin solid line) and upper
(thick solid line) envelopes of the regions containing the 46 graphs of functions
δK 7→ b+,∞,low

NL (δK) for the 46 patterns using NLSROM1. The upper envelope
corresponds to detuned pattern P26 and the lower one to detuned pattern P37.
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Figure 7.5 � For s0 = 1 and for band Bhigh, lower (thin solid line) and upper
(thick solid line) envelopes of the regions containing the 46 graphs of functions
δK 7→ b+,∞,high

NL (δK) for the 46 patterns using NLSROM1. The upper envelope
corresponds to detuned pattern P9 and the lower one to P8.
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Chapter 8

Quantitative nonlinear analysis in

terms of modal participation

Contents
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8.3 Stochastic nonlinear analyses of modes 2B and 1T . . 84

8.4 Quanti�cation concerning the energy transfer accord-

ing to the modal excitation . . . . . . . . . . . . . . . . 86

8.1 Introduction

Until now, the external loading has been characterized with a circumferential wave
number h = 4 (nodal diameter) with an excitation frequency band Be chosen
as Be = [1 000, 1 600]Hz. Such excitation frequency band Be contains the two
eigenfrequencies corresponding to the second bending mode of the blade (2B) and
the �rst torsional mode of the blade (1T). Furthermore, the results presented in
Chapter 7 for the rotating tuned and detuned bladed-disk structures with and
without mistuning, have shown that the mode 1T vanishes and is sensitive to
uncertainties, whereas the mode 2B does not vanish remaining robust, as shown
in Figure 7.2. Here, we propose a partial analysis limited to a detailed nonlinear
analysis for the tuned pattern P0 with and without mistuning, in order to better
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Chapter 8. Quantitative nonlinear analysis in terms of modal participation

understand the modal participation of modes 2B and 1T. Certainly, such a limited
analysis should be extended to the analysis of detuned patterns.

8.2 Nonlinear deterministic analyses related to modes

2B and 1T

In this Section, the two modes of interest (2B at 1 170Hz and 1T at 1 490Hz be-
longing to the excitation frequency band as shown in Figure 7.2) are individually
excited using the L-ROM and the NL-ROM in order to understand why the �rst
torsion mode vanishes (1T) whereas the second bending (2B) mode does not. We
proceed to two distinct analyses that di�er from one to another one by the exci-
tation frequency band characterized by function g(t). Let B2B

e = [1 000, 1 300]Hz

and B1T
e = [1 300, 1 600]Hz be the excitation frequency bands, which respectively

contain the eigenfrequencies ν(2B) = 1 130Hz and ν(1T) = 1 483Hz. Since the
excitation is chosen with a circumferential wave number h = 4, it ensures that
only one mode is excited when dealing with a linear operating regime. The in-
tensity of the load is taken as s0 = 1, which means that there are signi�cant
geometric nonlinear e�ects as shown in 4.4.5. Figures 8.1 displays the graphs of
function ν 7→ ||ûj0(2πν)|| for these two linear and nonlinear computations. There
are subsequent geometric nonlinear e�ects. The modal resonances are shifted to
the right and its amplitude is reduced. In particular, for the present case, the tor-
sional contribution drastically vanishes (10 times lower) comparing to the bending
contribution that vanishes (2 times lower).

8.3 Stochastic nonlinear analyses of modes 2B and

1T

The stochastic nonlinear analyses are carried out with a mistuning level corre-
sponding to δK = 0.1 and for s0 = 1. Figure 8.2 displays the graph of con�dence

region of ν 7→ ||Û
j0

(2πν)|| corresponding to a probability level 0.95. It can be
clearly seen that the mode 2B is robust with respect to uncertainties, whereas
mode 1T is sensitive. In particular, the sensitivity of the response in the higher
frequencies above the excitation frequency band is almost entirely due to the exci-
tation of the torsional mode, taking into account the response shown in Figure 7.2.
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Figure 8.1 � For s0 = 1, frequency analysis of the time responses related to mode
1B (left �gure)and mode 1T (right �gure). In each �gure, the computation with
the L-ROM is in red color and with the NL-ROM in blue color: graph of function
ν 7→ ||ûj0(2πν)|| for the tuned rotating bladed-disk structure (pattern P0). The
excitation frequency band Be is in light grey area.
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Figure 8.2 � For s0 = 1 and for δK = 0.1, con�dence region (yellow/grey region)

of ν 7→ ||Û
j0

(2πν)|| corresponding to a probability level 0.95, computed using NL-
SROM1 for the tuned rotating bladed-disk structure (pattern P0) related to mode
2B (left �gure) and mode 1T (right �gure). The dashed-line is the response of
the deterministic mean (nominal) model. The vertical grey region corresponds to
excitation frequency band Be
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8.4 Quanti�cation concerning the energy transfer

according to the modal excitation

In section 8.2, modes 2B and 1T have been individually excited in order to un-
derstand how these modes are modifyed by the geometric nonlinearity e�ects. In
this section, we investigate the energy transfer between modes. We have limited
the investigations to pattern P0 with an excitation for which the circumferential
wave number is h = 4. First we quantify the evolution of the modal contents as a
function of rotation speed Ω as follows. Let Rνα(Ω) be the quantity de�ned by

Rνα(Ω) =
να(Ω)

ν(1B)(Ω)
, (8.1)

in which να(Ω) is any eigenfrequency of the rotating tuned bladed-disk for h = 4

and ν(1B)(Ω) is its counterpart for mode 1B. Figure 8.3 displays the graph Ω 7→
Rνα(Ω) for α corresponding to the modes 1B, 2B, 1T, and 3B. A parametric non-
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Figure 8.3 � Graph of the evolution of the ratio R(να) with respect to the rotation
speed Ω.

linear analysis is then carried out with respect to the rotation speed Ω. We want
to quantify the energy transfer with respect to the value of Rνα(Ω).
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8.4. Quanti�cation concerning the energy transfer according to the modal excitation

A �rst nonlinear dynamic analysis without mistuning is conducted as follows.
The excitation frequency band is de�ned as B1B

e = [350, 550]Hz, which contains
ν(1B) = 425.1Hz for a rotation speed Ω = 4 440 RPM. We consider several rotation
speeds Ω = 19 098, 17 188, and 7 352 RPM yielding Rνα(Ω) = 2.0, 2.1, and 2.5

for να corresponding to mode 2B. Four values of s0 are considered, s0 = 0.05,
s0 = 0.3, s0 = 0.7, and s0 = 1. Figures 8.4 and 8.5 display function ν 7→
||ûj0(2πν)|| for all theses cases. It is clearly seen that the mode 2B corresponding to
eigenfrequency ν(2B) = 1130Hz (Ω = 4 440 RPM) does not seem excited through
geometric nonlinearities, which is not the case when observing resonances around
1 500Hz to mode 1T. It is interesting to observe that, the third bending mode (3B)
related to eigenfrequency ν(3B) = 2 234Hz (Ω = 4 440 RPM) yields a maximal
contribution for a ratio Rνα(Ω) = 2.5. Again, we observe that all the modes
located in the excitation frequency bands are excited as expected through the
geometric nonlinearities.
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Figure 8.4 � Graphs of function ν 7→ ||ûj0(2πν)|| for s0 = 0.05 (left �gure) and
s0 = 0.3 (right �gure). The light blue zone corresponds to the excitation frequency
band Be

A second nonlinear dynamic analysis is conducted as the �rst one but for
another excitation frequency band that is Be = [1 000, 1 400]Hz, which contains
the mode 2B corresponding to eigenfrequency ν(2B) = 1130Hz (Ω = 4 440 RPM).
Figures 8.6 and 8.7 display function ν 7→ ||ûj0(2πν)|| for four load intensities and
three values of Rνα(Ω). It can be seen that a small quantity of vibrational energy
is transferred to mode 1B (around 500Hz) whereas the energy transfer from mode
2B to mode 1T is more important.
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Figure 8.5 � Graphs of function ν 7→ ||ûj0(2πν)|| for s0 = 0.7 (left �gure) and
s0 = 1 (right �gure). The light blue zone corresponds to the excitation frequency
band Be
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Figure 8.6 � Graphs of function ν 7→ ||ûj0(2πν)|| for s0 = 0.05 (left �gure) and
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Figure 8.7 � Graphs of function ν 7→ ||ûj0(2πν)|| for s0 = 0.7 (left �gure) and
s0 = 1 (right �gure). The light blue zone corresponds to the excitation frequency
band Be
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Conclusion and Perspectives

Summary

This thesis has proposed a robust analysis of rotating mistuned-detuned bladed
disk structures in order to understand the ampli�cation e�ects induced by the
mistuning phenomenon in presence of nonlinear geometric e�ects. A complete
methodology has been proposed for constructing a nonlinear stochastic reduced-
order model (NL-SROM). A main contribution concerns the methodology pro-
posed for constructing a reduced-order basis used for obtaining the NL-ROM and
then the NL-SROM. More precisely, a modal basis has been computed by solv-
ing the generalized eigenvalue problem associated with the nonlinear high-�delity
model (NL-HFM), without nonlinear geometrical e�ects, without damping, and
without mistuning. A �rst nonlinear reduced-order model has been obtained by
projecting the nonlinear NL-HFM on the subspace spanned by this modal basis
for which the convergence has carefully been studied. Then, another vector basis
has been calculated using the Proper-Orthogonal Decomposition (POD) method
applied to the nonlinear solution of the �rst nonlinear reduce-order model, which
has been solved in the time domain. Finally, a projection basis for the NL-HFM
has been obtained by composing the modal basis with the vector basis constructed
with the POD method. The �nal nonlinear reduced-order model has then been
obtained by projecting the NL-HFM on the subspace spanned by the projection
basis introduced above. A careful attention has been done to take into account
the random character of the mistuning phenomena that we have modeled with
the nonparametric probabilistic approach of uncertainties. The nonlinear dynamic
analyses have been carried out in the time domain and its Fourier Transform has
allowed a posteriori frequency analysis to be conducted. A comparison has led us
to conclude that the geometrical nonlinearities propagate the energy of the excita-
tion outside the frequency band of excitation, yielding unexpected resonances that
could be potentially dangerous. It is well known that the interest of the detuning
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is to reduce for the best all the dynamic ampli�cation induced by the mistuning.
The corresponding nonlinear analysis is more complex because di�erent dynamic
behaviours occur according to di�erent sub-frequency bands of analysis. Finally, a
robust analysis of the e�ects of geometric nonlinearities on the nonlinear dynamic
behavior of rotating bladed-disks structures that are detuned in presence of mis-
tuning, has been presented. To this end, 46 patterns have been investigated, which
have shown the variability of the ampli�cation factor over a family of patterns. In
the low-frequency band, which is not excited by the external forces, there are de-
tuned con�gurations whose local ampli�cation level can vary with a factor 4. In
the excitation frequency band, the local variability of the dynamic ampli�cation
factor has been found to be lower compared to those obtained outside the excita-
tion frequency band. Nevertheless, although a nonexhaustive study optimization
could not be made, it has been shown that there were detuned con�gurations that
minimize the dynamic ampli�cation factor in presence of mistuning.

Perspectives

The results obtained allow for increasing the knowledge in the area of the nonlinear
stochastic dynamics of the rotating detuned bladed disk structures in presence
of mistuning. The envelopes of the dynamic ampli�cations factors among the
investigated patterns show that the nonlinear dynamic response is sensitive to
the detuning in presence of mistuning. A �rst additional work would consist in
taking into account the aerodynamic couplings. A second perspective could be
related to the optimization of the patterns. Indeed, the optimization with respect
to all the possible con�gurations de�ned by the patterns, with the objective to
�nd the pattern that minimizes the random dynamic ampli�cation factor, remains
a problem that demands large computer ressources in term of CPU time. The
complexity of the results obtained for the 46 con�gurations studied, seems to show
that such a discrete nonconvex optimization problem on a set of con�gurations
having a huge number of patterns, is di�cult. Certainly, new algorithms based on
machine learning should help to solve this di�cult optimization problem.
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Appendix A

Construction of the geometric

sti�ness matrix

We reuse the notations introduced in Chapter 2. The objective of this Appendix is
to brie�y explain how is calculated the geometric sti�ness matrix [Kg(Ω)], which
results from the �nite element discretization of the linear form

lc(v) =

∫
D
ρ [R(Ω)]2 xi ei · v dx . (A.1)

Let Fc be the vector of Rn of the �nite element discretization of the centrifugal
forces in the computational model, applied in the rotating frame, for the rotating
bladed-disk structure. The geometric sti�ness matrix [Kg(Ω)] is constructed from
the corresponding stress state. The following static problem is solved:

[Ke] Ugeom = Fc (A.2)

The computation of the static response Ugeom allows the corresponding stress tensor
σgeom to be constructed at any integration point of the �nite element mesh.

Let kg(u, v) be the bilinear form related to the geometric sti�ness as explained
in Equation (2.23) of Chapter 2

kg(u, v) =

∫
D
us,i σ

geom
ij vs,j dx . (A.3)
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For each �nite element, the corresponding stress state is given by

σgeom11

σgeom22

σgeom11

σgeom12

σgeom13

σgeom23


= [D][B(ξ)]Ũ , (A.4)

where Ũ is the R3q -vector of the displacements of the q nodes of a �nite element,
where [D] is the (6 × 6) elasticity matrix of the �nite element constituted of the
components of the fourth-order elasticity tensor, and where [B(ξ)] is the (6× 3q)

interpolation matrix for the constructed with the derivatives of the interpolation
functions. The geometric sti�ness matrix is then obtained by assembling each
�nite element contribution of the geometric sti�ness matrix.
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Table of patterns
Pattern number Arrangement Pattern number Arrangement

P0 24A P26 15B9A

P1 (5A1B)4 P27 3B6A12B3A

P2 (AB)12 P28 3A21B

P3 (4A4B)3 P29 3A3B(3A6B)2

P4 4A2B3A2B5A2B3A2B P30 (3A3B)23A9B

P5 (3A3B)4 P31 (6A6B)2

P6 (4A2B)4 P32 3B9A9B3A

P7 AB2A2B(AB)22A2B2AAB2B(AB)2 P33 3B21A

P8 2ABA2B2A3B(AB)22AB3A3B P34 6A6B3A9B

P9 (2A2B)6 P35 18A6B

P10 4A4B(2A2B)22A6B P36 3B12A3B6A

P11 B4AB18A P37 3B6A3B3A6B3A

P12 12A12B P38 6A8B3A6B

P13 6B12A3B3A P39 9A3B3A9B

P14 3B15A3B3A P40 3B9A3B3A3B3A

P15 6A3B6A9B P41 3B6A6B3A3B3A

P16 (3B6A)23B3A P42 3B9A6B6A

P17 3A6B3A12B P43 (3A3B)4

P18 3B12A6B3A P44 (3A9B)2

P19 18A6B P45 (9A3B)2

P20 3B12A6B3A

P21 6B9A6B3A

P22 6A3B3A12B

P23 9A3B6A6B

P24 14A9B

P25 3A3B3A15B
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Appendix C

Implementation of three 3D �nite

elements in the house-code

In the industrial context of this thesis, ANSYS software is the �nite element code
used by the industrial. Indeed, the numerical developments of this work require
to have similar functionalities, since the industrial meshes are considered at the
same time as entry for the ANSYS users and for the developed house-code. This
section is devoted to a brief description of the implementation of the 3-D solid
�nite elements with quadratic interpolation used in the development of the house-
code written using the MATLAB language. Three types of solide elements have
been developed:

• hexahedral 20-node solid �nite element.

• pyramidal 13-node solid �nite element.

• tetrahedral 10-node solid �nite element.

C.1 Hexahedral �nite element with 20 nodes

The HEX20 isoparametric 3D �nite element is constructed with quadratic inter-
polations [118, 123]. There are 20 nodes yielding 60 degrees of freedom for such
solid �nite element. Figure C.1 displays a representation of the 20-node hexahe-
dral �nite element. Let (ξ, η, ζ) be the coordinates in the cartesian coordinate
system (O, ~eξ, ~eη, ~eζ) of the corresponding reference �nite element which occupies
the domain {[−1, 1]× [−1, 1]× [−1, 1]}.
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Figure C.1 � 20-node solid �nite element.

C.1.1 Interpolation functions

Table C.1 summarizes the interpolation functions of the HEX20 �nite element as
functions of ξ, η, ζ.
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C.1. Hexahedral �nite element with 20 nodes

N1(ξ, η, ζ) = (1− ξ)(1− η)(1− ζ)(−2− ξ − η − ζ)/8

N2(ξ, η, ζ) = (1 + ξ)(1− η)(1− ζ)(−2 + ξ − η − ζ)/8

N3(ξ, η, ζ) = (1 + ξ)(1 + η)(1− ζ)(−2 + ξ + η − ζ)/8

N4(ξ, η, ζ) = (1− ξ)(1 + η)(1− ζ)(−2− ξ + η − ζ)/8

N5(ξ, η, ζ) = (1− ξ)(1− η)(1 + ζ)(−2− ξ − η + ζ)/8

N6(ξ, η, ζ) = (1 + ξ)(1− η)(1 + ζ)(−2 + ξ − η + ζ)/8

N7(ξ, η, ζ) = (1 + ξ)(1 + η)(1 + ζ)(−2 + ξ + η + ζ)/8

N8(ξ, η, ζ) = (1− ξ)(1 + η)(1 + ζ)(−2− ξ + η + ζ)/8

N9(ξ, η, ζ) = (1− ξ2)(1− η)(1− ζ)/4

N10(ξ, η, ζ) = (1− η2)(1 + ξ)(1− ζ)/4

N11(ξ, η, ζ) = (1− ξ2)(1 + η)(1− ζ)/4

N12(ξ, η, ζ) = (1− η2)(1− ξ)(1− ζ)/4

N13(ξ, η, ζ) = (1− ζ2)(1− η)(1− ξ)/4
N14(ξ, η, ζ) = (1− ζ2)(1 + ξ)(1− η)/4

N15(ξ, η, ζ) = (1− ζ2)(1 + ξ)(1 + η)/4

N16(ξ, η, ζ) = (1− ζ2)(1 + η)(1− ξ)/4
N17(ξ, η, ζ) = (1− ξ2)(1− η)(1 + ζ)/4

N18(ξ, η, ζ) = (1− η2)(1 + ξ)(1 + ζ)/4

N19(ξ, η, ζ) = (1− ξ2)(1 + η)(1 + ζ)/4

N20(ξ, η, ζ) = (1− η2)(1− ξ)(1 + ζ)/4

Table C.1 � Interpolation functions related to the HEX20 �nite element

C.1.2 Numerical integration points

Table C.2 and Table C.3 give the integration points when using 27 Gauss inte-
gration points (complete integration) or 14 integration points (reduced integration
used by ANSYS software). Note that the reduced numerical integration scheme
allows the hourglass phenomenon to be avoided [40].
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Appendix C. Implementation of three 3D �nite elements in the house-code

Point ξ η ζ Weight

1 −α −α −α c3
1

2 −α −α 0. c2
1 c2

3 −α −α α c3
1

4 −α 0. −α c2
1 c2

5 −α 0. 0. c1 c
2
2

6 −α 0. α c2
1 c2

7 −α α −α c3
1

8 −α α 0. c2
1 c2

9 −α α α c3
1

10 0. −α −α c2
1 c2

11 0. −α 0. c1 c
2
2

12 0. −α α c2
1 c2

13 0. 0. −α c1 c
2
2

14 0. 0. 0. c3
2

15 0. 0. α c1 c
2
2

16 0. α −α c2
1 c2

17 0. α 0. c1 c
2
2

18 0. α α c2
1 c2

19 α −α −α c3
1

20 α −α 0. c2
1 c2

21 α −α α c3
1

22 α 0. −α c2
1 c2

23 α 0. 0. c1 c
2
2

24 α 0. α c2
1 c2

25 α α −α c3
1

26 α α 0. c2
1 c2

27 α α α c3
1

with

α =

√
3

5

c1 =
5

9

c2 =
8

9

Table C.2 � Localization of the 27 numerical integration points in the HEX20 �nite
element
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C.2. Pyramidal elements with 13 nodes

Point ξ η ζ Weight

1 r s t w1

2 r −s t w1

3 r −s −t w1

4 r s −t w1

5 −r s t w1

6 −r −s t w1

7 −r −s −t w1

8 −r s −t w1

9 u 0 0 w2

10 −u 0 0 w2

11 0 −v 0 w2

12 0 v 0 w2

13 0 0 w w2

14 0 0 −w w2

with

r = 0.758786910639329

s = 0.758786910639329

t = 0.758786910639329

u = 0.795822425754222

v = 0.795822425754222

w = 0.795822425754222

w1 = 0.335180055401662

w2 = 0.886426592797784

Table C.3 � Localization of the 14 numerical integration points in the HEX20 �nite
element

C.2 Pyramidal elements with 13 nodes

The PYR13 �nite element is constructed with quadratic interpolations [118, 123].
There are 13 nodes yielding 39 degrees of freedom in this pyramidal element.
Figure C.2 shows a representation of the 13-node pyramidal �nite element. Let
(ξ, η, ζ) be the coordinates in the cartesian coordinate systems (O, ~eξ, ~eη, ~eζ) of the
corresponding reference �nite element which occupies the domain [−1, 1]× [−1, 1]

and for which ζ ∈ [0, 1].

101



Appendix C. Implementation of three 3D �nite elements in the house-code

1 2

34

5

6

7
8

9

10
11

1213

Figure C.2 � 13-node solid �nite element

C.2.1 Interpolation functions

Table C.4 summarizes the interpolation functions of the PYR13 �nite element as
functions of ξ, η, ζ.

N1(ξ, η, ζ) = ((−ξ + η + ζ − 1)(−ξ − η + ζ − 1)(ξ − 0.5))/(2(1− ζ))

N2(ξ, η, ζ) = ((−ξ − η + ζ − 1)(ξ − η + ζ − 1)(η − 0.5))/(2(1− ζ))

N3(ξ, η, ζ) = ((ξ − η + ζ − 1)(ξ + η + ζ − 1)(−ξ − 0.5))/(2(1− ζ))

N4(ξ, η, ζ) = ((ξ + η + ζ − 1)(−ξ + η + ζ − 1)(−η − 0.5))/(2(1− ζ))

N5(ξ, η, ζ) = 2ζ(ζ − 0.5)

N6(ξ, η, ζ) = −((−ξ + η + ζ − 1)(−ξ − η + ζ − 1)(ξ − η + ζ − 1))/(2(1− ζ))

N7(ξ, η, ζ) = −((−ξ − η + ζ − 1)(ξ − η + ζ − 1)(ξ + η + ζ − 1))/(2(1− ζ))

N8(ξ, η, ζ) = −((ξ − η + ζ − 1)(ξ + η + ζ − 1)(−ξ + η + ζ − 1))/(2(1− ζ))

N9(ξ, η, ζ) = −((ξ + η + ζ − 1)(−ξ + η + ζ − 1)(−ξ − η + ζ − 1))/(2(1− ζ))

N10(ξ, η, ζ) = (ζ(−ξ + η + ζ − 1)(−ξ − η + ζ − 1))/((1− ζ))

N11(ξ, η, ζ) = (ζ(−ξ − η + ζ − 1)(ξ − η + ζ − 1))/((1− ζ))

N12(ξ, η, ζ) = (ζ(ξ − η + ζ − 1)(ξ + η + ζ − 1))/((1− ζ))

N13(ξ, η, ζ) = (ζ(ξ + η + ζ − 1)(−ξ + η + ζ − 1))/((1− ζ))

Table C.4 � Interpolation functions related to the PYR13 �nite element
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C.2. Pyramidal elements with 13 nodes

C.2.2 Numerical integration points

The PYR13 numerical Gauss integration points are summarized in Table C.5.

Point ξ η ζ Weight

1 a 0. h1 p1

2 0 a h1 p1

3 −a 0. h1 p1

4 0. −a h1 p1

5 0. 0. h2 p2

6 0. 0. h3 p3

with

p1 = 0.1024890634400000

p2 = 0.1100000000000000

p3 = 0.1467104129066667

a = 0.5702963741068025

h1 = 0.1666666666666666

h2 = 0.08063183038464675

h3 = 0.6098484849057127

Table C.5 � Localization of the 6 numerical integration points in the PYR13 �nite
element

103



Appendix C. Implementation of three 3D �nite elements in the house-code

C.3 Tetrahedral element with 10 nodes

The TET10 �nite element is constructed with quadratic interpolations [118, 123].
There are 10 nodes yielding 30 degrees of freedom in this tetrahedral element.
Figure C.3 shows a representation of the 10-node pyramidal �nite element. Let
(ξ, η, ζ) be the coordinates in the cartesian coordinate systems (O, ~eξ, ~eη, ~eζ) of the
corresponding reference �nite element which occupies the domain [0, 1] × [0, 1] ×
[0, 1].

1

10

4

5
7

8
9

2

6

3

Figure C.3 � 10-node solid �nite element

C.3.1 Interpolation functions

Table C.6 summarizes the interpolation functions of the TET10 �nite element as
functions of ξ, η, ζ.

C.3.2 Numerical integration points

The TET10 numerical Gauss integration points are summarized in Table C.7
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C.3. Tetrahedral element with 10 nodes

N1(ξ, η, ζ) = η(2η − 1)

N2(ξ, η, ζ) = ζ(2ζ − 1)

N3(ξ, η, ζ) = (1− ξ − η − ζ)(1− 2ξ − 2η − 2ζ)

N4(ξ, η, ζ) = ξ(2ξ − 1)

N5(ξ, η, ζ) = 4ηζ

N6(ξ, η, ζ) = 4ζ(1− ξ − η − ζ)

N7(ξ, η, ζ) = 4η(1− ξ − η − ζ)

N8(ξ, η, ζ) = 4ξη

N9(ξ, η, ζ) = 4ξζ

N10(ξ, η, ζ) = 4ξ(1− ξ − η − ζ)

Table C.6 � Interpolation functions related to the TET10 �nite element

Point ξ η ζ Weight

1 a a a
1

24

2 a a b
1

24

3 a b a
1

24

4 b a a
1

24

with
a =

(5−
√

5)

20

b =
(5 + 3

√
5)

20

Table C.7 � Localization of the 4 numerical integration points in the TET10 �nite
element
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