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Introduction

THE first observation of Bose-Einstein condensation (BEC) in dilute atomic vapors
[1] has been a breakthrough both fundamentally, verifying theoretical concept

predicted by Bose [2] and Einstein[3] several decades ago, and experimentally, because in
order to reach the BEC regime with ultra-cold atoms a temperature of the order of 10−9K
had to be reached revealing the statistical property of quantum particles. Since then, a
new field has emerged and experimentalists are able to study this artificial matter in a very
clean and controllable way both for bosons and fermions. Interactions between atoms
can be long-ranged [4] or short-ranged [1]. In the latter case, the strength of the interac-
tion can be tuned using Feshbach resonances. Light-matter interaction is the key tool to
confine atoms and the shape of the confining potential can now be controlled with very
high precision. Such cold-atom systems allows us to explore a whole range of fundamen-
tal phenomena that are extremely difficult or impossible to study in real materials, such
as Bloch oscillation, Mott-superfluid transition, topology of band structure, orbital mag-
netism just to name a few. Specially designed optical lattice experiments are paving the
way to study condensed-matter problems where particles are confined into a periodical
potential. Recent experimental advances using ultra-cold quantum gases has allow to en-
gineer the coupling between different internal states of the atoms, in order to realize syn-
thetic gauge fields [5, 6, 7]. The dynamics of the center-of-mass of a neutral atom which
moves in a properly designed laser field, is analogue to the dynamics of a charged particle
in a magnetic field, on the influence of a Lorentz-like force. The corresponding Aharonov-
Bohm phase is related to the Berry’s phase that emerges when the atom adiabatically fol-
lows one of the dressed states of the atom-laser interaction [5]. These progresses allow
the quantum simulation of a large class of Hamiltonians. Indeed, condensed matter phe-
nomena under strong magnetic fields are still intriguing and are at the center of modern
research. For instance, topological states of matter are realized in quantum Hall systems,
which are insulating in the bulk, but bear conducting edge states [8].

A ladder is the simplest geometry where one can get some insight on two-dimensional
quantum systems subjected to a synthetic gauge field [9, 10]. The bosonic linear ladder
has been the subject of intense theoretical work. The phase diagram has been established
by means of field-theoretical methods [11, 12], and intensive DMRG simulations [13].
Those studies, in addition to common features of Bose-Hubbard models such as super-
fluid and Mott insulating phases, revealed new exciting phases of matter induced by the
magnetic field: chiral superfluid phases, chiral Mott insulating phases displaying Meissner
currents [12, 14] and vortex-Mott insulating phases [15]. In the weakly interacting regime,
an additional phase has been predicted [16] a biased ladder phase characterized by an
imbalanced population of the bosons between the two legs, explicitly breaking Z2 sym-
metry. This phase was shown to be stable in the interacting case, except for a special value
of the applied flux, where umklapp processes destabilize it [17]. The dependence of the
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critical flux separating Meissner and vortex phase on inter particle interactions has been
also studied [18]. In parallel to these theoretical advances, the experimental realization of
the bosonic flux ladder has been reported in optical lattices [19] as well as for lattices in
synthetic dimensions, both for fermions and bosons [20, 21].

As in the case of cold atoms, exciton-polaritons in semiconductor microcavities are an
ideal model system to simulate and engineer condensed matter systems. They allow for
the control of the density, the temperature of the sample, and, in the case of lattice sys-
tems, the topology of the band structure. It is possible to directly image exciton polaritons
thanks to the their photonic component: all the statistical properties of the intracavity
polariton field are contained in the far-field of the polariton luminescence [22]. The possi-
bility of realizing coupled micropillars thanks to deep etching of a planar structure [23, 24]
has opened the way towards the engineering of lattices for polaritons with controlled tun-
neling and deep on-site potentials with arbitrary geometry. The honeycomb lattice is one
of such intriguing condensed matter system where topological effect arise. One of the
most interesting aspect of the honeycomb lattice problem is that its low-energy excita-
tions are mass-less, chiral, Dirac particles. This particular dispersion, that is only valid at
low energies, mimics the physics of quantum electrodynamics (QED) for mass-less par-
ticles except for the fact that in honeycomb lattice the Dirac particles move with a speed
of sound vS , which is 300 times smaller than the speed of light c. Hence, many of the un-
usual properties of QED such as the Klein paradox [25] can show up in graphene but at
much smaller speeds or, identically, energy scales.

In the first part of this thesis, i.e chapters 2, 3, 4 and 5, we consider a system made of
two one-dimensional coupled lattice rings subjected to different fluxes in each leg. This
specific bosonic ladder corresponds to different boundary conditions with respect to the
case of a linear ladder. In particular, this double ring lattice geometry allows to study per-
sistent currents in dimension larger than one [26], which shows promising applications for
atomtronics developments [27, 28]. We focus on a planar geometry with concentric rings,
as could be realized eg with dressed potentials [29], or using co-propagating Laguerre-
Gauss beams [30].

The first part of the thesis is organized as follows:

In chapter 1 we introduce some key concepts about cold-atoms experiments focusing
on the trapping of atoms by light potential in optical lattices. We also provide some infor-
mations about gauge-dependent phenomena by connecting to the notion of Aharonov-
Bohm effect. Finally we discuss the peculiarities of bosons in one dimensional systems.
Then throughout the next chapters 2, 3, 4 and 5 the theoretical methods employed to de-
scribe the model studied in different physical regimes are introduced, and original results
are presented.

In chapter 2 the non-interacting regime of the two one-dimensional coupled lattice

Contents 7
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rings subjected to different fluxes in each leg is derived. After identifying the vortex and
Meissner phases, we discuss specific features of the double ring lattice geometry, as the
appearance of a vortex in the Meissner phase and parity effect in the vortex phase arising
from the commensurability of the total flux. Through a numerical study we then explore
the dilute, weak-interacting regime and address the nature of the ground state at mean-
field level. In particular we identify known phases [16] such as the Meissner, vortex and
biased-ladder phases as well as the effect of commensurability of the total flux. The persis-
tent current is shown to be a good observable to identify the different phase of the system.
Finally, we propose the spiral interferogram images obtained by interference among the
two rings during time of flight expansion as a probe of vortex-carrying phases, specifically
adapted to the ring geometry. The results outlined in this chapter can be found in the fol-
lowing published article:
Nicolas Victorin, Frank Hekking, and Anna Minguzzi. Bosonic double ring lattice under
artificial gauge fields. Phys. Rev. A, 98:053626, Nov 2018

In chapter 3, using both numerical and analytic approaches, we explore the excita-
tion spectrum of two one-dimensional coupled lattice rings subjected to different fluxes
in each leg. The excitation spectrum in Meissner, biased-ladder and vortex phase is ex-
plicitly shown via the dynamical structure factor. We show that the vortex phase has su-
persolid properties stemming from the combination of coherence and spatial order. Then
the nature of the Bogoliubov modes is studied reveling Josephson oscillation between the
two rings. The results outlined in this chapter can be found in the following arxiv article:
Nicolas Victorin, Paolo Pedri and Anna Minguzzi. Excitation spectrum and supersolidity
of a two-leg bosonic ring ladder. arXiv:1910.06410, Oct 2019

In chapter 4 we explore the regime of infinitely strong interactions on the double ring.
We make use of the exact mapping into fermions via the Jordan-Wigner transformation,
that is made possible in a peculiar physical regime at strong magnetic flux and weak cou-
pling between the rings. Using both analytic and exact diagonalization, fragmentation of
the ground-state is explicitly shown ranging from a fragmentation in momentum space
at weak interaction to a fragmented Fermi sea at infinite interaction. The regime of frag-
mented Fermi sea is then characterized via different physical observables. The results
outlined in this chapter can be found in the following published article:
Nicolas Victorin, Tobias Haug, Leong-Chuan Kwek, Luigi Amico, and Anna Minguzzi. Non-
classical states in strongly correlated bosonic ring ladders. Phys. Rev.A, 99:033616, Mar
2019.

In chapter 5 we explore the intermediate regime of interactions. Thanks to a mode ex-
pansion and re-fermionization approach of the bosonized Hamiltonian of the double ring
under gauge flux, we show the peculiarities of finite size periodic boundary condition on
the current in the double ring. A rotating barrier is then introduced and we show a gap
opening in the spin sector of the energy spectrum. The dynamical structure factor is de-
rived revealing the decomposition in spin and charge mode of the excitation spectrum at

8 Contents
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low energy. The results outlined in this chapter is the outcome of an on going work.

In the second part of this thesis, i.e Chapters 6 and 7, we consider a system of exciton
polaritons in honeycomb lattice. Driven by experiment realization of the model in Institut
Néel in the group of Maxime Richard, we explore the Bogoliubov excitation spectrum of
the model as well as its observation in relation with relevant experimental procedures.

The second part of the thesis is organized as follows:

In chapter 6 we review some key concepts about exciton-polariton in microcavities.
Then we study the honeycomb lattice and its low energy properties. We outline the con-
cept of Brillouin zone selection mechanism and we provide a new interpretation in terms
of dark-state.

In chapter 7 we explore the Bogoliubov excitation spectrum of exciton-polaritons in
honeycomb lattice structure. We show that this Bogoliubov spectrum exhibit a instability
of the C point of the bistability curve that is usually stable for polariton in microcavities.
Superfluid properties below and above the C point arises at momentum away from the
momentum of the laser pump that populate one of the Dirac point of the system. Finally
we see that the theory derived in this chapter models experimental observation of the ex-
citation spectrum of interacting polaritons in honeycomb lattice.

The second part of this thesis is part of an on going work.

List of published and soon to be published work

The original results presented in this thesis have been published in the following articles:

(i) Nicolas Victorin, Frank Hekking, and Anna Minguzzi. Bosonic double ring lattice
under artificial gauge fields. Phys. Rev. A, 98:053626, Nov 2018

Subject of part I, chapter 2
(ii) Nicolas Victorin, Tobias Haug, Leong-Chuan Kwek, Luigi Amico, and Anna

Minguzzi. Non-classical states in strongly correlated bosonic ring ladders. Phys. Rev.A,
99:033616, Mar 2019.

Subject of part I, chapter 4
(iii) Nicolas Victorin, Paolo Pedri and Anna Minguzzi. Excitation spectrum and

supersolidity of a two-leg bosonic ring ladder. arXiv:1910.06410, Oct 2019
Subject of part I, chapter 3

(iv) Nicolas Victorin, Roberta Citro and Anna Minguzzi. Luttinger Liquid description
of a two-leg bosonic ring ladder subjected to gauge fluxes. In preparation.

Subject of part I, chapter 5
(v) Petr Stepanov, Nicolas Victorin, Anna Minguzzi and Maxime Richard.

Experimental observation of the excitation spectrum of an interacting gas of polariton in
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a honeycomb lattice. In preparation.
Subject of part II
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Chapter 1

Artificial gauge fields with ultra-cold
atoms in optical lattices

THIS chapter will focus on the necessary tools to understand the content of Part
I of this manuscript. The relevant concepts of optical lattices, gauge fields and

the emerging phenomena of ultra-cold gases placed under those constraints will be in-
troduced. Also, the peculiarities of bosonic one dimensional many-body systems will be
reviewed. All other necessary concepts will be introduced at the beginning of each forth-
coming chapter.

1.1 Optical lattices

Using the sensitivity of the electrons of an atom to an oscillating electric field E(r, t ) it is
possible to engineer a trapping potential for neutral atoms. Indeed, the interaction be-
tween electrons and an electric field made by laser field induce a dipole moment that os-
cillates with the imposed laser field, far from resonance reads

d±
i (t ) = ∑

j=x,y,z
αi j (ωL)E±

j (r, t ) (1.1)

where d±
i is the i th component of the dipole moment, ωL the laser frequency and αi j (ωL)

the matrix elements of the complex polarizability tensor characteristic the response of
the atoms to the applied electric field. The energy shift is then ∆E = d ·E and for a fully
isotropic response of the medium to applied electric field it is diagonal, i.e αi j =αδi j ,

∆E(r, t ) =−2Re[α]I (r, t ) ∝ I (r, t )

∆
(1.2)

where I (r, t ) is the laser beam intensity and ∆ = ωL −ω1 is the detuning of the laser fre-
quency to the frequency of the first excited state of the atom. The last equation means

13
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Figure 1.1: Schematic pictures of optical lattice potentials created by counter-propagating
lasers: (a) 2D array of quasi-1D tubes and (b) 3D simple cubic lattice. From [32].

that the atoms feel an optical potential created by the spatial pattern of the laser field in-
tensity. This technique is widely used for trapping atoms [31]. Upon changing the sign of
the detuning ∆ it is possible to change the sign of the potential and therefore its attractive
or repulsive character.
Optical lattices are formed using light confinement forming periodic intensity pattern
thanks to interference of two or more laser beams. The simplest optical lattice can be
made with two laser beams with the same wavelength, with paths which are in opposite
direction. Their interference creates a 1D periodic intensity pattern of period half their
wavelength, of the form

V (x) =V0 sin2(kx) (1.3)

with k = 2π/λ, λ being the wavelength of the lasers that form the standing wave and V0

the depth of the optical lattice proportional to the intensity of the laser beam. It is possible
then to create complex lattice structures by creating complex interference patterns playing
with wavelength, angle, polarization, shape and number of the laser beams.

1.1.1 Bose-Hubbard model

A relevant Hamiltonian for lattice models is the Bose-Hubbard Hamiltonian that is useful
to treat a lattice system in tight binding approximation and has proven to be the relevant
one to describe bosonic atoms with repulsive interaction in a periodic lattice potential
[33]. We will review here its derivation as it will be helpful for the next chapters 2, 3, 4,

14 Chapter 1. Artificial gauge fields with ultra-cold atoms in optical lattices
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5 and in Part II of this thesis. The Bose-Hubbard Hamiltonian can be derived from the
general second quantized form of many-body Hamiltonian

H =
∫

drψ†(r)hrψ(r)+
∫

dr′
∫

drψ†(r)ψ†(r′)Vr,r′ψ(r′)ψ(r), (1.4)

where hr is a general differential operator acting on the bosonic field operators ψ(r) rep-
resenting the kinetic energy and the external potential, and the second term Vr,r′ is the

inter-particle interactions. In the specific case of atoms in an optical lattice, hr =− ħ2

2m 52
r

+Vlatt(r)+Vext(r) whereVlatt(r) represents the lattice confining potential and Vext(r) an ex-
ternal potential. In typical cold-atom experiments the quantum gas is very dilute, with
densities typically ranging from 1013 to 1015cm−1. Interactions between atoms are never-
theless very important and are well characterized by two-body contact interactions at low
energy. The interactions are then described by a single parameter, the s-wave scattering
length as , which enters into the contact two-body interaction potential Vr,r′ = gδ(r− r′)
where g = 4πħ2as

m . The s-wave scattering length is tunable using Feschbach resonances
[34]. This provides to the cold-atoms experiments a unique playground to study effect
of interactions between particles for a large range of interaction strengths. Considering
deep lattice potentials, we use a tight-binding approximation that consists in expanding
bosonic field operator on the basis of Wannier functions of the lowest band,

ψ(r) =∑
i

bi w(r− ri ), (1.5)

where bi and b†
i are respectively the annihilation and creation operators of a particle lo-

calized in the i th lattice site, satisfying bosonic commutation rules
[

bi ,b†
j

]
= δi j . This

approximation works also for interacting bosonic gases as long as the typical interaction
between particles is not enough to excite the population of higher bands. One then ob-
tains the Bose-Hubbard Hamiltonian by taking into account only nearest neighbor hop-
ping and contact interactions,

H =− ∑
〈i , j 〉

(
Ji j b†

i b j +h.c
)
+ U

2

∑
i

ni (ni −1), (1.6)

where 〈i , j 〉 is restricting the sum to nearest neighbors and ni = b†
i bi is the number op-

erator of bosons on each site. The coefficients Ji j is interpreted as the rate of tunneling
between site i to j through the lattice potential barrier and it is given by

Ji j =−
∫

drw∗(r− ri )

[
−ħ252

r

2m
+Vext(r)+Vlatt(r)

]
w(r− r j ). (1.7)

As the Wannier functions are strongly localized in the tight binding approximation, the
on-site interaction U is given by

U = g
∫

dr|w(r)|4. (1.8)

Chapter 1. Artificial gauge fields with ultra-cold atoms in optical lattices 15



1.2. Gauge field

f

1.1.2 Ring shaped lattice

The geometry of the lattice that one can consider depends on the intensity pattern formed
by the interference of the laser beams. Therefore, a large class of lattices can be consid-
ered e.g cylindrical optical lattices[30]. Those lattices can be formed using Laguerre-Gauss
beams carrying angular momentum [35, 36], see Fig. 1.2. Another way of forming ring

Figure 1.2: Two rings geometry, formed by two Laguerre-Gauss beams with flux per placket
Φ. From [30].

shaped lattice is to use the idea of synthetic dimensions that uses the internal degrees of
freedom of the atoms to generate extra transverse dimensions [37].

1.2 Gauge field

In the context of the standard model, gauge theories describe three of the four fundamen-
tal forces of nature, electromagnetism U(1), weak SU(2)×U(1) and strong SU(3) forces.
These symmetries imply invariance of the Lagrangian and define conserved charges that
are linked to the bosons that mediates those forces. In the context of condensed mat-
ter, those gauge symmetries are widely used and many-body quantum system subjected
to external magnetic fields exhibit rich and intriguing behaviour. Integer and fractional
quantum Hall effects are examples of such physical effects, where the transverse trans-
port of a 2D system induced by external magnetic field exhibits plateaus corresponding to
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an integer or fractional multiple of e2/h [38], e and h being the electron charge and the
Planck’s constant, respectively. This effect arises for charged particles with applied mag-
netic field but can also be induced by an artificial magnetic field on neutral bosonic atoms.
Several ways of inducing magnetic like dependence on neutral atoms are possible, to cite
a few :

• rotating trapped ultra-cold gases: using to analogy between Lorentz and Coriolis
force[39, 40]: with this technique it is possible to create Abelian gauge fields.

• laser induced gauge fields in optical lattices: exploiting properties of laser-assisted
tunneling [41] (see Fig. 1.3) it is possible to access the regime of large magnetic field.

Figure 1.3: Laser assisted tunneling is a way of implementing gauge field in optical lattice.
Using internal degrees of freedom of the neutral atoms: with this technique it is possible
to implement a complex hopping. From [42]

.

1.2.1 Analogy between rotation and magnetic field, persistent currents

Let’s consider a fluid of neutral particles confined in a trap that is rotating at frequency Ω
around the z axis. We show here below that the dynamics of a fluid is equivalent to charged
particles subjected to magnetic field. One can link magnetic and rotation frequency in the
following way

qB = 2mΩ with Ω=Ωez (1.9)

where q is the charge of the particle and m the mass. The rotation induce a Coriolis force
on the fluid that is FC = 2Mv×Ω that is very similar to the Lorentz force acting on charge
particle FL = qv×B. Let’s draw the analogy a little bit deeper by considering the full quan-
tum Hamiltonian problem of the rotating fluid, this time in first quantization. Let’s con-
sider a quantum particle of mass m evolving in a one dimensional ring of circumference
L, radius R and rotating defect turning at velocity vθ = veθ

Ĥ(t ) = p̂2
θ

2m
+δ(Rθ− v t ) =− ħ2

2mR2
∂2
θ+δ(Rθ− v t ) (1.10)
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Figure 1.4: Experimentally observed vortex lattice arising from the rotation of a bosonic
atomic BEC. The pictures show different configuration of the number of vortices in the
sample. Taken from [44].

One can eliminate the time dependence in the Hamiltonian by a unitary transformation
Û (t ) = exp(iΩL̂z t/ħ) where L̂z is the angular momentum operator L̂z =−iħ∂θ. The Hamil-
tonian transforms into

Ĥ ′ = Û (t )†Ĥ(t )Û (t ) = ħ2

2mR2

(−iħ∂θ−q Aθ

)2 +δ(θ)+Vcentr (1.11)

where Vcentr represents the centrifugal effect Vcentr = −1
2 mR2Ω2 and qA = mΩ× r̂. The

action of the unitary transformation Û (t ) is to change the frame of reference of the sys-
tem to the moving frame of angular frequency Ω so that the momentum of the particle
in the moving frame is shifted by the analogue of a magnetic vector potential. The only
difference is the centrifugal potential effect, however for a 1D ring this contribution can
be considered as a constant shift of the full spectrum so that it will not be relevant. For
2D systems this contribution tends to push the particles away from the center and one
cannot have a toy model of orbital magnetism on a neutral gas. To overcome this problem
the confining trap is turning at frequency equal to the confinement frequency so that the
centrifugal contribution cancel out with the trapping contribution and one can observe
2D gauge dependent physics [5, 43]. This analogy allowed to experimentally access gauge
dependent physics and create vortex lattices in BEC experiments [44]. Figure 1.4 shows an
example of a vortex lattice.

1.2.2 Magnetism and quantum physics

Continuum case : The Maxwell equation for the magnetic field B in the absence of mag-
netic monopoles 5r.B(r) = 0 implies B(r) =5r ×A(r). It shows that the equation is invari-
ant under transformation of the vector potential up to a gradient term a scalar field φ(r),
meaning that two vector potentials A(r) and A(r)′ where A(r)′ = A(r)+5rφ(r) lead to the
same magnetic field. This gauge invariance can be absorbed at the level of the quantum
Hamiltonian

H = 1

2m

∫
drψ†(r)

[−iħ5r −qA(r)
]2
ψ(r) (1.12)
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where q is the charge of the particle, by a redefinition of the momentum operator

p̂ → p̂′ =−iħ5r +q 5rφ(r) (1.13)

or by a change of gauge of the field operators

ψ(r) →ψ(r)′ = Ûψ(r) = e
i q
ħ φ(r)ψ(r) (1.14)

This define a U(1) gauge invariance. One important fact is that the invariance of the mag-
netic field upon a shift of the vector potential by a gradient term lies on the fact that the
space is connected, meaning that closed loop can be deformed continuously into a dot.
This will not be the case for a particle evolving in a space where a singularity is present.
The Aharonov–Bohm effect [45] is such an example.

The Aharonov-Bohm effect is the sensitivity of the phase of the wave function to the
vector potential of the magnetic field. Let’s consider (see Fig.1.5) a charged particle evolv-
ing in a plane with a solenoid creating a non-zero magnetic field only inside itself. The
Hamiltonian describing such a setup is the following

H =
(
p̂−qA(r)

)
2m

. (1.15)

Outside of the solenoid we have no magnetic field so that 5×A(r) = B(r) = 0. As we said
earlier, the vector potential of the magnetic field can be expressed as the gradient of a
scalar field only if the space is simply connected (i.e there is no singularity of the magnetic
field). We can only define a vector potential for different path but not enclosing the discon-
tinuity. For the two beams of Fig.1.5 we can define such a vector potential that we’ll call

AI /I I (r) = 5χI /I I (r) associated to wave function ΨI /I I = e
i
ħ qχI /I I (r)Ψ0(r) where the phase

has been absorbed into the wave function and Ψ0(r) is wave-function without magnetic
field. The dephasing between the two wave functions at a point r is then

φ= q

ħ
(
χI (r)−χI I (r)

)= q

ħ
∮
C

A(r)dr = 2π
Φ

Φ0
(1.16)

where Φ is flux in the solenoid and Φ0 the quantum of flux. Such an effect is remarkable
as the presence of a magnetic field yield a dephasing of the particles circulating around
it without encountering it: the particles are affected by the flux of this magnetic field as a
direct consequence of the gauge invariance of the quantum theory. This phase is said to
be topological as it is not depending on the path chosen.

The persistent current phenomenon arises from the Aharonov-Bohm effect which af-
fects the quantum dynamics of charged particles in a multiply-connected geometry [45]
(i.e with holes). In condensed-matter physics the study of persistent currents has emerged
in the context of metallic rings under magnetic fields at very low temperature. If quantum
phase coherence is large compared to the size of the system and thermal fluctuations are
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Figure 1.5: Representation of the Aharonov set-up: incoming electrons take two alterna-
tive paths around a solenoid. The beam is then recombined and interference is observed.
Figure from [46].

weak enough, persistent currents manifest themselves as dissipationless currents even in
the absence of any applied voltage [47]. Persistent currents were first observed in solid
state superconductors electronic systems subjected to a magnetic field [48].
Mathematically, the persistent current is defined [49] through the Hellman-Feynman the-
orem as I = − 1

Φ0
〈∂ΦH〉 = − 1

Φ0
∂Φ〈H〉. For a homogeneous system without impurities, the

spectrum is En = (
n − 2π

L Φ/Φ0
)2

, where n ∈Z labels the different angular momentum state.
The persistent current is then an oscillating function of period fixed by the quantum of flux
Φ0. Impurities will break the rotational invariance and couple the different angular mo-
mentum states of the system. This will introduce a gap between the different energy levels
En corresponding to momentum n for any value of repulsive interactions (Leggett’s theo-
rem [50]).
We see from Eq.(1.11) that even a moderate concentration of impurities will affect the cur-
rent amplitude. Nevertheless, the persistent current is stronger than one can think. In-
deed, when performing a gauge transformation, ψ(θ) → e i q Aθψ(θ) one removes the Aθ

dependence in the Hamiltonian on the price of twisting the boundary condition (ψ(0) =
e2πAθψ(2π)). The persistent current is then seen as a measure of the sensitivity of the
spectrum to the twist, so that even in presence of disorder the persistent current does not
vanish. This fact has been observed in metallic rings in a disordered environment [51].
Of course, rotating Bose-Einstein condensates made of ultra-cold atoms, being in a su-
perfluid state, will exhibit coherence properties analogue to electronic superconducting
system and dissipationless flow is likely to occur [52].

1.2.3 Lattice systems

In a lattice two length scales are competing, the inter-site distance a and the magnetic
length l = √ħ/qB . Their ratio can be expressed as the ratio of the magnetic flux Φ and
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the quantum of flux Φ0. When Φ is much smaller than Φ0 nothing more is expected than
for the case of a single particle whereas for Φ≈Φ0 the physics will change drastically and
can create fractal structure in the energy spectrum (Hofstadter butterfly [53]). Artificial
materials, such as the ones which can be implemented in cold atoms experiments [6, 7] are
able to access those regimes since the inter-site distance can be tuned so that it becomes
comparable with the magnetic length. In the tight binding approximation, (see Eq.1.6), we
consider the Bose-Hubbard Hamiltonian. For simplicity we will consider a 1D chain

H =−J
∑

l

(
a†

l+1al +h.c
)

. (1.17)

In the presence of a magnetic field perpendicular to the sample, we have to take into ac-
count the Aharonov-Bohm phase that is accumulated by a particle from a site l to l ′ of the
lattice

φ(l → l ′) = q

ħ
∫ rl ′

rl

A(rm).drm (1.18)

At the level of the Bose-Hubbard Hamiltonian this phase can be included via the Peierls
substitution [54] in the tunneling coefficient J → Je iφ for a constant magnetic field. Thus
the Hamiltonian reads

H =−J
∑

l

(
a†

l+1al e iφ+h.c
)

. (1.19)

2D lattice The situation for a square lattice is analogous. The 2D lattice Bose-Hubbard
Hamiltonian is

H =−J
∑
m,n

(
a†

m+1,n am,n +a†
m,n+1am,n +h.c

)
. (1.20)

Due to the presence of the magnetic field, the hopping is complex due to the Peierls sub-
stitution, of phase φi

m,n = q Ai
m,n/ħ at site {m,n} in direction i = {x, y}. So that the Hamil-

tonian transform into

H =−J
∑
m,n

(
e iφx

m,n a†
m+1,n am,n +e iφ

y
m,n a†

m,n+1am,n +h.c
)

(1.21)

For a homogeneous magnetic field the flux is fixed and equal for each plaquette (as de-
noted by Φ in 1.6), Φ = φx

m,n +φy
m+1,n −φx

m,n+1 −φ
y
m,n and represents the gauge invariant

quantity of the square lattice. All along this thesis we will consider the Landau gauge, un-
der which the vector potential is aligned to a certain direction of space x or y . When it is
aligned in the x direction, the vector potential is A = (−B y,0,0) and we are in the situation
considered by Atala et al in the experiment on bosonic ladders[19] (see Fig. 2.2). In the
case of the lattice system it corresponds to the configuration where all the phases of the
vertical transition are zero and all horizontal ones increase linearly with the lattice posi-
tion l . The gauge that we will consider later in our theoretical work is the one where the
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Figure 1.6: Schematic representation of a 2D lattice with gauge dependent hopping of
Peierls phases φi

m,n , with i = {x, y}. From [55].

vector potential is aligned in the y direction so that A = (0, xB ,0) and the corresponding
lattice flux are non zero only along x, taking the advantage of having a flux dependent tun-
neling that doesn’t depend on the lattice position makes the calculations easier.
In the case of the ring geometry, the description follows closely the one presented here,
except that the space coordinates are now cylindrical (see Sec. 2.2).

1.3 Peculiarities of one dimensional systems

The physics of many-body one-dimensional (1D) Bose systems is very different from that
of ordinary three-dimensional (3D) bosonic gases. For example, by decreasing the particle
density n, a usual 3D quantum many-body system becomes more ideal, whereas in a 1D
Bose gas the role of interactions becomes more important. The reason is that at tempera-
tures T close to zero, the kinetic energy of a particle at the mean inter-particle separation
1/n scales as K ∝ n2 and it decreases with decreasing density n faster than the interaction
energy per particle, I ∝ n. The ratio of the interaction to kinetic energy, γ = I /K , char-
acterizes the different physical regimes of the 1D quantum gas (see Fig 1.9).This ratio has
first been introduced in the context of the Lieb-Liniger model [56, 57] which is the model
describing many-body bosons in 1D interacting with delta potential. The Lieb-Liniger
many-body Hamiltonian in second quantization reads

H =− ħ2

2m

∫
d xΨ†(x)4xΨ(x)+ g1D

2

∫
d xΨ(x)†Ψ(x)†Ψ(x)Ψ(x) (1.22)

with Ψ(x) the bosonic field operator and g1D the interacting strength. The Lieb-Liniger
parameter is defined as γ = mg1D

n0ħ2 . This model is integrable, and Bethe ansatz allows to
derive exact expressions for the ground state energy, its excitations (see Fig 1.7) and the
static correlations of the system at arbitrary interaction strength [58]. However, analytic
expressions are difficult to compute. Expansions around the strongly and weakly interact-
ing regime are known, while for intermediate γ numerical calculations give very accurate
results. For a small value of γ the gas is in a weakly interacting regime where particle tends
to be delocalized on the length of the system, in this regime mean-field theory is appli-
cable (see chapter 2 and 3). For a large value of γ, the gas enters the Tonks–Girardeau
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Figure 1.7: a) Ground-state energy of the Lieb-Liniger model versus interaction strength,
from [56]. b) Excitation spectrum of the Lieb-Liniger model, showing two branches. One
is called Lieb-I and corresponds to sound like excitations corresponding to the Bogoli-
ubov modes at weak interactions (as we can see that line 1 and 3 are close to each other),
the second branch corresponds to umklapp processes and are interpreted as holes in the
corresponding Fermi sea. Their low-energy behaviour can be captured within Luttinger-
Liquid theory (see Chap. 5). From [57].

(TG) regime, where the repulsion between particles strongly decreases the wave function
at short inter-particle distances (see chapter 4.1 for more details and method of solution).
At intermediate values of γ, the Luttinger-liquid framework well describes the low-energy
properties of the 1D gas (see chapter 5).

Figure 1.8: Sketch of the 1D bosonic cloud illustrating the size and separation of single-
particle wave functions for different value of γ. Taken from [59]
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Figure 1.9: Physical regimes of a 1D Bose gas with repulsive contact interactions in the
parameter space (γ, t), where γ is the Lieb-Liniger parameter and t the re-scaled temper-
ature. Taken from [60].

1.3.1 Condensation and coherence properties in 1D

Mathematically, as we will later see in chapter 4, the concept of Bose-Einstein condensa-
tion (BEC) is well defined for a system of interacting particles as the macroscopic occu-
pation of the largest eigenvalue of the one-body density matrix g (1)(x, x ′) = 〈Ψ†(x)Ψ(x ′)〉,
where we recall thatΨ(x) is the bosonic field operator. This description is due to Penrose
and Onsager[61] and is the most rigorous criterion for the identification of BEC but it’s not
the only one. Coherence properties in a BEC are large and off-diagonal-long range order
emerges in the one-body density matrix [62]. Those two criterions define what is a true
condensate in the sense that it has macroscopic coherence properties characterized by
the off-diagonal long range order and a macroscopic occupation of the ground-state.
Taking those definitions as a cornerstone for the nature of a true condensate we see that
a system of interacting bosonic particles confined in one dimension does not respect this
criterion in the thermodynamic limit. As the dimensionality is strongly reduced, fluctua-
tion in one dimension are enhanced and prevent the appearance of a true condensate. It

has been shown [63] that the momentum distribution n(q) diverges at small q as q
1

2K −1, so
that in 1D the condition

∫
d qn(q) = N shows the absence of BEC. Indeed, long-range order

is not present in both 1D and 2D [64] at finite temperature and we talk about quasi-long

range as the one-body density matrix displays a power law decay g (1)(x, x ′) ∝ ∣∣x −x ′∣∣− 1
2K .

In the above expressions K is the Luttinger parameter and is associated to the compress-
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ibility of the system, see Chapter 5. For a finite system size, finite number of particles,
and at very low temperatures, instead, the system can show macroscopic occupation of
the ground state and the phase coherence can cover the whole system, thus reaching a
true-condensate regime [65] (see Fig. 1.10).

Figure 1.10: Regime of quantum degeneracy in a harmonically trapped quantum gas in the
parameter space (T /ħω,N ) where T is the temperature and N the number of particles. The
regime of quasi-condensation is shown and true condensation appears at low temperature
for a large number of particle. The parameter N∗ represents a critical number of particle
for N À N∗ the gas is weakly interacting and when N ¿ N∗ we enter the so called Tonks
regime where bosons are strongly interacting. Taken from [65].
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Chapter 2

Mean-field of the double ring

TIS chapter is organized as follows. In Sec 2.1 we provide a quick review of the
Gross-Pitaevskii equation. Then in Sec 2.2 we introduce the model a Bose gas

confined in a double ring lattice under gauge fields. In Sec 2.3 we will study the properties
of the non interacting gas identifying the vortex and Meissner phases. Mesoscopic effects
in the system will be shown in Sec 2.4 as the appearance of a vortex in the Meissner phase
and parity effect in the vortex phase, and the behavior of persistent currents. We also
propose the spiral interferogram images obtained by interference among the two rings
during time of flight expansion as a probe of vortex-carrying phases, specifically adapted
to the ring geometry. Finally in Sec 2.5, we will explore, through a numerical study the
dilute, weak-interacting regime and address the nature of the ground state at mean field
level. In particular we identify known phases such as the Meissner, vortex and biased-
ladder phases [16] as well as the effect of commensurability of the total flux.

2.1 Gross-Pitaevskii equation

As we have discussed in the introduction, a Bose-Einstein condensate is obtained from
a collection of bosons sharing a macroscopic occupation of the ground state at very low
temperatures. We will consider here the regime where the action of the non-condensed
part on the condensate is negligible. We will focus on the energy of the ground state and
use this to obtain information about the system. A general representation of an Hamilto-
nian in second quantized form reads

H =
∫

drψ†(r)hrψ(r)+
∫

dr′
∫

drψ†(r)ψ†(r′)Vr,r′ψ(r′)ψ(r), (2.1)

where hr is a general one-body differential operator acting on the bosonic field opera-
tors ψ(r), containing the kinetic energy and the external potential and the second term
Vr,r′ represents the inter-particle interaction. The Heisenberg equation of motion for the
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bosonic field operator is

iħ d

d t
ψ(r, t ) = [

ψ(r, t ), H
]= δH

δψ†(r, t )
(2.2)

= hrψ(r, t )+
∫

dr′ψ†(r′, t )Vr,r′ψ(r′, t )ψ(r, t ) (2.3)

The Gross-Pitaevskii equation is the equation of motion of the bosonic field in classical
approximation, meaning that the quantum fluctuations and hence correlation between
particles are neglected, so that the bosonic field is approximated as an averaged field. The
Gross-Pitaevskii equation is then obtained by replacing the bosonic field operator by a
classical field ψ→p

N0φ, where N0 is the number of condensed particles, thus obtaining

iħ∂tφ(r, t ) =
[

hr +N0

∫
dr′Vr′,r|φ(r′, t )|2

]
φ(r, t ) (2.4)

Generally, the Gross-Pitaevskii equation [63] was first derived and mostly studied is the

special case of contact interparticle interaction, i.e Vr′,r = gδ(r− r′) where g = 4πħ2as
m com-

ing from the two-body scattering problem where as is the s-wave scattering length,

iħ∂tφ(r, t ) = [
hr + g N0|φ(r, t )|2]φ(r, t ). (2.5)

This equation is also called non-linear Schrodinger equation.

2.2 The model

Bosons trapped in a ladder pierced by a magnetic field provide a minimal and quasi-one
dimensional setup to study the interplay between orbital magnetism and interactions. In
particular, the system as described in Fig 2.1 and by Hamiltonian (2.6) (in another gauge
and linear configuration) displays chiral Meissner currents. It has been already experi-
mentally realized in a linear configuration [19]. Its phases are illustrated in the diagram of
Fig 2.2. Below a critical inter-leg coupling strength, the chiral current decreases in good
agreement with the theoretical prediction of a vortex lattice phase [12].

In our work, published in [66], we consider a Bose gas confined in a double ring lat-
tice see Fig 2.2. In the tight-binding approximation we model the system using the Bose-
Hubbard model:

Ĥ = Ĥ0 + Ĥi nt =

−
Ns∑

l=1,p=1,2
Jp

(
a†

l ,p al+1,p e iΦp +a†
l+1,p al ,p e−iΦp

)
−K

Ns∑
l=1

(
a†

l ,1al ,2 +a†
l ,2al ,1

)
+ U

2

Ns∑
l=1,p=1,2

a†
l ,p a†

l ,p al ,p al ,p (2.6)
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Figure 2.1: a) Schematic representation of the experimental setup of Ref [19] and b) energy
levels. An effective homogeneous magnetic field in each ladder is realized through laser-
induced tunneling (red arrows) between the left (L) and right (R) legs of the ladder. Taken
from [19]. The gauge here is changed with respect to Eq (2.6) by al ,1 → e i (φ/2)l al ,1 and
al ,2 → e−i (φ/2)l al ,2.

Figure 2.2: a) Phase diagram of ladder chiral current as order parameter for the distinctive
Meissner and Vortex phases. b) Theoretically calculated individual currents and particle
densities for the different values of K /J . Taken from [19]

where the angular position on the double ring lattice is given by θl = 2π
Ns

l where l is an inte-
ger l ∈ [1, Ns] with Ns the number of sites in each ring. In Eq (2.6) J1 and J2 are respectively
the tunneling amplitude from one site to an other along each ring, the parameter K is the
tunneling amplitude between the two rings, connecting only sites with the same position
index l and Φ1,2 are the fluxes threading the inner and outer ring respectively. In the case

where the gauge fields are induced by applying a rotation to each ring one has Φi = 2π
Ns

Φ̃i
Φ0

,
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Figure 2.3: Representation of the geometry studied in this work: co-planar ring lattices of
radii R1 and R2 with the same number of sites, with inter-ring tunnel energy K and intra-
ring tunnel energies Je iΦp , with p = 1,2.

with Φ̃i = ΩR2
i , Ω being the angular rotation frequency, Ri radius of ring i , Φ0 = 2πħ/m

the Coriolis flux quantum. As Ji ≈ ħ2

2mR2
i

, to lowest order we can consider J1 ≈ J2 corre-

sponding to two rings close to each other, or realized using adjusted lattice potential. In
the following, it will be useful to introduce the relative flux φ = Φ1 −Φ2 and average flux
Φ= (Φ1 +Φ2)/2.

2.3 Non interacting regime

We first proceed by analyzing the non-interacting problem. The diagonalization of H0 (see
Appendix A for details) yields the following two-band Hamiltonian:

Ĥ0 =
∑
k
α†

kαk E+(k)+β†
kβk E−(k), (2.7)

where (
ak,1

ak,2

)
=

(
vk uk

−uk vk

)(
αk

βk

)
, (2.8)

and the functions uk and vk depend on the parameters φ and K /J (see Appendix A for
details), the momentum in units of inverse lattice spacing takes discrete values given by
k = 2πn

Ns
, with n = 0,1,2...Ns −1 and the dispersion relation E±(k) reads

E±(k) =−2J cos(φ/2)cos(k −Φ)

±
√

K 2 + (2J )2 sin(φ/2)2 sin(k −Φ)2. (2.9)
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Figure 2.4: Energy spectrum (in units of J with Ns = 40 sites on each ring) as a function
of wavevector k (in units of inverse lattice spacing) of non-interacting bosons on a dou-
ble ring lattice, for several values of the tunneling ratio K /J at fixed relative flux φ = π/2
(bottom) and several values of φ at fixed K /J =p

2 (top).

We see that the only influence of the average flux Φ is to shift in momentum space the
energy spectrum.

The relevant ground-state properties are obtained from the low-energy branch of the
spectrum since, for a finite size-ring, at T = 0 and U = 0 the bosons form a condensate
in the lowest-energy state available. At varying tunneling ratio K /J and relative flux φ,
two possible situations arise from the lowest-energy branch E−(k) (see Fig. 2.4). When
E−(k) has a single minimum, the bosons condense in the state k = Φ, corresponding to
the Meissner phase, while one has a vortex phase when E−(k) has two minima and bosons
condense with the same occupancy in each of the two minima k1 and k2 given by

k1,2 =Φ∓arccos

cot

(
φ

2

)√(
K

2J

)2

+ sin2
(
φ

2

) . (2.10)

Other possible occupancies of the two minima are discussed in Appendix A. The vortex
to Meissner phase transition has been experimentally observed in bosonic linear flux lad-
ders [19]. At fixed K /J value, the critical flux where the transition appears is obtained by
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determining the change of curvature in E−(k =Φ), thus yielding [11]:

φc = 2arccos

√(
K

4J

)2

+1−
(

K

4J

) . (2.11)

The Meissner phase is characterized by vanishing transverse currents

jl ,⊥ = i K
〈

a†
l ,1al ,2 −a†

l ,2al ,1

〉
, (2.12)

the longitudinal currents on each ring, defined as

jl ,p = i J
〈

a†
l ,p al+1,p e iΦp −a†

l+1,p al ,p e−iΦp
〉

, (2.13)

are opposite and the chiral current, i.e Jc = ∑
l
〈

jl ,1 − jl ,2
〉

is saturated. The vortex phase
is characterized by a modulated density, jumps of the phase of the wave function, and
non-zero, oscillating transverse currents which create a vortex pattern. This is illustrated
in Fig.2.6, which shows the longitudinal and transverse current configurations both in the
Meissner and in the vortex phase.

2.3.1 Persistent and chiral currents

We proceed next to study the persistent currents on the ring. They are defined as Ip = ∂〈H〉
∂Φp

.

Since for the Hamiltonian (2.6) one has ∂〈H〉
∂Φ = 0, we obtain that I1 =−I2 = I and we have a

correspondence between chiral current Jc and persistent current:

Jc = 2I = ∂〈H〉
∂φ

. (2.14)

In particular, Fig 2.5 represents the dependence of the excitation spectrum branches on
the relative flux. In order to obtain the persistent currents for each value of φ we iden-
tify the lowest-energy branch as defined piece-wise by following the lowest-energy part
of E−(k) (see Fig. 2.5 upper panel). The persistent current is then readily obtained by de-
riving this curve with respect to the flux φ. The resulting persistent current as a function
of relative flux φ is illustrated in Fig. 2.5 (bottom panel). By increasing the relative flux at
fixed K /J , the system undergoes a transition from Meissner to vortex phase. For low φ

values, the particle stays in the branch E−(k =Φ) as long as it is in the Meissner phase. At
the critical value φc for entering the vortex phase, the persistent current displays a jump,
and takes an angular momentum value equal to Φ+ 2π/Ns . As the flux φ increases, the
persistent currents display several other jumps, each corresponding to the appearance of
a vortex pair in the ring. We notice that the total number of jumps in the current curve
corresponds to Ns/2, ie the maximal number of vortex pairs on the ring.
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Figure 2.5: Upper panel: Excitation branches E−(kn ,φ) as a function of the relative flux φ
(dimensionless) for various values of kn = 2π

Ns
n, n ∈ [0, Ns/2]. At φ= 0, one has E−(k0,φ) <

E−(k1,φ) < ·· · < E−(kn ,φ) (blue to brown curves, from bottom to top). The energy of the
lowest excitation branch is the lower envelope of these curves and is used to calculate the
chiral current. Lower panel: chiral current, obtained from Eq. (2.14), as a function of φ. In
both panels we have taken Ns = 20,Φ= 0 and K /J = 0.8.

2.3.2 Infinite system - Variational Ansatz

In the case of non interacting bosons, when the single-particle spectrum has two degen-
erate minima, the many-body ground state energy is highly degenerate as it corresponds
to all possible partitions of the particles among the two minima. In the presence of inter-
actions this degeneracy is broken. Introducing the variational ansatz

|ΦN 〉 = 1p
N !

(
cos(θ/2)β†

k1
+ sin(θ/2)β†

k2

)N |0〉, (2.15)

which is valid in weakly interacting regime, Wei and Mueller [16] have identified two phases,
corresponding to two different partitions of the bosons on the minima k1 and k2: a vortex
phase, when each minimum is occupied by N /2 bosons, occuring if 1−6uk1 vk1 > 0; and a
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biased ladder phase, characterized by symmetry breaking and full occupancy of only one
of the two minima, occurring when 1−6uk1 vk1 < 0. The biased ladder phase is character-
ized by the absence of density modulations and different density values on the two rings.

2.4 Mesoscopic effects and commensurability of the flux

2.4.1 Vortex configurations on a finite double ring lattice

Figure 2.8 shows the distribution of the phase and density of the condensate wave function
of the non-interacting gas in the vortex phase, which reads

ψl ,p =
√

N

2Ns

(
δp,1(uk1 e i k1l +uk2 e i k2l )+δp,2(vk1 e i k1l + vk2 e i k2l )

)
, (2.16)

for various values of the system parameters. The number Nv of vortices is obtained by
counting the number of jumps in the phase. Since it is also associated to the number
of oscillations in the density, which are characterized by the wavevector k = k2 −k1, it is
readily obtained as Nv = Ns(k2 −k1)/2π. Recalling that the value of the total flux Φ fixes
the position of the minima of the dispersion relation (2.9), in the case where the total flux
is multiple of π

Ns
we obtain specific features associated to the commensurability ofΦwith

the allowed values of the discrete wavevector k. Figure 2.7 depicts the various possibilities.
When Φ= 2 j π

Ns
, with j integer number, the dispersion relation is centered on an allowed

value of the quantized momentum k. In this case vortices start to form when the disper-
sion relation displays a double-minima structure, and the number of vortices is even.

On the other hand, whenΦ= (2 j +1) π
Ns

the value ofΦ falls among two adjacent values
of quantized momentum k (see again Fig.2.7). In this case, in the vortex phase, the dis-
tance among the two minima corresponds to an odd multiple of π

Ns
, giving rise to an odd

number of vortices. Quite interestingly, in the Meissner phase, ie for a choice of param-
eters φ and K /J leading to a single minimum in the single-particle excitation dispersion
E−(k), for Φ = (2 j +1) π

Ns
we find a nontrivial pattern in the current profiles, correspond-

ing to a single vortex configuration (see Fig.2.6, third panel). This is a mesoscopic effect
associated to the finite size and the geometry of the ring. As we shall see below, however,
this vortex is more fragile than those appearing in the vortex phase, and is destroyed in the
presence of interactions.

2.4.2 Fate of the single vortex in the Meissner phase

As discussed in Sec.2.4.1, in the case when the total fluxΦ= (2 j +1) π
Ns

and the system is in
the Meissner phase, the non-interacting solution predicts the formation of a single vortex.
We explore here the fate of such a vortex in the presence of weak interactions.

A first answer is provided by the variational ansatz introduced in Ref.[16] specialized
to the case where the bosons occupy two neighbouring momentum states of the single-

34 Chapter 2. Mean-field of the double ring



2.4. Mesoscopic effects and commensurability of the flux

f

Φ= 0, K /J = 2

Φ= 0, K /J = 0.9

Φ= π
Ns

,K /J = 0.9

Figure 2.6: Representation of the current patterns for non-interacting bosons on a double
ring lattice in various parameter regimes as indicated on the figure. The length of arrows
is proportional to the amplitude of the current field. The currents fields are minimal at
the core of the vortex, where also the density drops. Upper panel: Meissner phase. Middle
panel: vortex phase, case of two vortices. Lower panel: single vortex in the Meissner phase.
In all panels, φ=π/2 and Ns = 12.
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Figure 2.7: Scheme of the occupancy of the single-particle levels by non-interacting
bosons at zero temperature (filled green circles), on the single-particle dispersion rela-
tion in the energy-momentum plane (empty circles joined by line), for various choices of
total flux Φ (dashed vertical line). In the Meissner phase, when Φ = 2 j π

Ns
(left top panel,

with Φ = 10π/Ns) bosons condense in the k = Φ mode. When Φ = (2 j + 1) π
Ns

(right top
panel, with Φ = 9π/Ns), Φ lies between two momentum modes, the lowest-energy states
are doubly degenerate and the system supports a vortex in the Meissner phase. In the vor-
tex phase, when Φ= 2 j π

Ns
(bottom left panel, with Φ= 8π/Ns) we find an even number of

vortices, whereas whenΦ= (2 j +1) π
Ns

(bottom right panel, withΦ= 9π/Ns) the number of
vortices is odd. Notice that the scheme is completely general for values of Φ equal to any
odd or even multiple of π/Ns .

particle excitation spectrum centered around k =Φ, in the case where it has a single min-
imum (as shown in Fig. 5, upper left panel):

|ΨN 〉 = 1p
N !

(
cos(θ/2)β†

Φ+π/Ns
+ sin(θ/2)β†

Φ−π/Ns

)N |0〉. (2.17)

One readily obtains, if 1−6u2
Φ+π/Ns

v2
Φ+π/Ns

< 0, that the total energy is minimized by the

choice θ = π, while one has θ = π/2 if 1− 6u2
Φ+π/Ns

v2
Φ+π/Ns

> 0. However, by using the
results of Appendix A for the amplitudes uk and vk , one readily finds that in the Meissner
phase 1−6u2

Φ+π/Ns
v2
Φ+π/Ns

is always negative, and we conclude that lowest-energy solution
is of biased-ladder type.

We have verified this prediction by the numerical solution of the DNLSE, and we con-
firm that no vortex is found at finite interactions and the density profile is of biased-ladder
type, as illustrated in Fig. 2.9 and in the phase diagram (Fig. 2.11, lower panel). By per-
forming calculations at varying system size, we find that the imbalance among the two
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Figure 2.8: Phase and density profiles of the condensate wavefunction for non-interacting
bosons along the double ring lattice as a function of the lattice index. Top panel: odd
number of vortices for average flux Φ= π/Ns . Bottom panel: even number of vortices for
Φ= 0. The other parameters are K /J = 0.8, φ=π/2,Ns = 20 and n = N /Ns .

rings decreases with increasing Ns .
It is interesting to notice that this is different from the case of the biased ladder phase

BL-V obtained for values of flux corresponding to even multiples of π/Ns . In this case, the
particle imbalance does not depend on Ns and the phase is also found in the thermody-
namic limit.

2.4.3 Spiral interferograms

It has been shown [67, 68, 69] that it is possible to reconstruct the phase pattern of ring
trapped Bose-Einstein condensate by studying its interference pattern with a reference
disk-shaped condensate placed at the center of the ring. Using a similar principle, we
show here that the interference pattern of two concentric rings allows to characterize the
vortices in the bosonic double ring lattice.

Assuming that the distance between neighbouring sites on each ring is larger than the
difference of the radii of the two rings, the main contribution to the interference process is
due to radially overlapping condensates belonging to the same site index in each ring (ie
with the same angular coordinate). In this case, the wave function after after a time tT OF

from releasing the double ring trap is given by (see Appendix D for details):

Ψp (r,θl ) ≈ Ψ̃0(ks,p )e iħ k2
s,p

2m tT OF e iφl ,p
√

nl ,p (2.18)

where φl ,p and nl ,p are respectively the phase and the number of particles of a conden-

sate on the ring p at site l , and ks,p = (Rp−r )(−1)p m
ħtT OF

is related to the velocity at which each

Chapter 2. Mean-field of the double ring 37



2.4. Mesoscopic effects and commensurability of the flux

f

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20

Un/J = 0

0

0.2

0.4

0.6

0.8

1 5 10 15 20

Un/J = 0Un/J = 0.1

|Ψ
l,
p
|2 /

n

l

|Ψl,1|2/n
|Ψl,2|2/n

|Ψ
l,
p
|2 /

n

l

Figure 2.9: Density profile for a double ring lattice of interacting bosons with total flux
Φ=π/Ns , in the absence of interactions, single vortex in the Meissner phase (upper panel)
and for weak repulsive interactions biased-ladder (BL-M) phase (lower panel). The other
parameters are Ns = 20,K /J = 2,φ=π/2.

wave function evolve after releasing the trap. The interference pattern intensity is given
by I (r,θ) = 2 Re[Ψ∗

1 (r,θ)Ψ2(r,θ)]. By recalling that in density-phase representation

p
nl ,1nl ,2e i (φl ,1−φl ,2) = 〈a†

l ,2al ,1〉, (2.19)

we obtain the following intensity distribution in the polar plane (r,θl ):

I (r,θl ) = 〈a†
l ,1al ,1〉+〈a†

l ,2al ,2〉+2Re
[

e i∆R e iQr 〈a†
l ,1al ,2〉

]
(2.20)

with Q = m(R1−R2)
ħtT OF

and ∆R = (R2
2−R2

1 )m
ħtT OF

.
In order to analyze typical interference profiles in the various phases, we start from

the non-interacting regime. In this case, using the results of Appendix A, in the Meissner
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Figure 2.10: Spiral interferogram in the Meissner phase (upper panels) with K /J = 1.5,
φ = π/2 and Un/J = 0.3 , Φ = 0 (upper left panel), Un/J = 0, Φ = π

Ns
(upper right panel),

and in the vortex phase (lower panels) taking K /J = 0.1,Un/J = 0.3, φ = π/3, with Φ = 0
(lower left panel), andΦ= π

Ns
(lower right panel). In all panels Ns = 35.

phase one readily obtains

I (r,θl ) ∝ 1

Ns
cos(Qr +∆R )+nθl (2.21)

where nθl = 〈a†
l ,1al ,1 +a†

l ,2al ,2〉. This corresponds to an interference pattern made of con-
centric rings, as illustrated in the first panel of Fig.2.10.

In the case of a single vortex in the Meissner phase, (second panel of Fig.2.10) the in-
terference pattern displays a line of dislocations, which are due to the phase slip and van-
ishing of the density in correspondence of the vortex core.

In the vortex phase, Eq.(2.20) yields

I (r,θl ) ∝ 1

Ns
[2uk1 vk1 cos(Qr +∆R )

+ v2
k1

cos(θl (k2 −k1)−∆R −Qr )

+ u2
k1

cos(θl (k2 −k1)+∆R +Qr )]

+nθl . (2.22)
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In this case, the interference pattern is composed of a term which is constant along θ,
that gives rise to concentric rings and two spirals patterns with uniform intensity each of
them corresponding to one of the two ring , one going clockwise and the other counter-
clockwise. The superposition of the three contributions yields a modulated spiral pattern,
shown in Fig.2.10. This method, which is specific for the ring geometry, is a very powerful
characterization of the vortex phase, as the number of branches in the pattern yields the
number of vortices in the system. This allows in particular to evidence the possibility of
having even or odd number of vortices, depending on the value of the total flux. As a final
remark we notice that the interference pattern is dependent on the choice of gauge, other
choices will lead to different spiral interferogram pictures.

2.5 Mean-field ground state phase diagram

2.5.1 Coupled discrete nonlinear Schrödinger equations (DNLSE)

In order to explore in a broader way the weakly-interacting regime, we study the ground
state of the system in the mean-field approximation, obtained by neglecting the quantum
fluctuations and correlations.

We start from the equations of motion for the bosonic field operators in the Heisenberg
picture:

iħd al ,p (t )

d t
= [

al ,p (t ), H
]

. (2.23)

Taking the mean-field approximation, ie settingΨl ,p (t ) = 〈al ,p (t )〉 we obtain two coupled
discrete non-linear Schrödinger equations (DNLSE):

i∂tΨl ,1(t ) = −JΨl+1,1(t )e i (Φ+φ/2) − JΨl−1,1(t )e−i (Φ+φ/2)

− KΨl ,2(t )+U |Ψl ,1(t )|2Ψl ,1(t ) (2.24)

i∂tΨl ,2(t ) = −JΨl+1,2(t )e i (Φ−φ/2) − JΨl−1,2(t )e−i (Φ−φ/2)

− KΨl ,1(t )+U |Ψl ,2(t )|2Ψl ,2(t ) (2.25)

This is the lattice version of the Gross-Pitaevskii equation 2.4 generalized to the two ring
case. The above equations are expected to hold for weak interactions and large number of
particle on each site.

The corresponding energy functional is given by

E [Ψ1,Ψ2] =−J
∑
l ,p

(
Ψ∗

l ,pΨl+1,p e iΦp + c.c
)

−K
∑

l

(
Ψ∗

l ,1Ψl ,2 + c.c
)
+ U

2

∑
l ,p

|Ψl ,p |4, (2.26)

whereΨp = {Ψl ,p }.
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We use a split-step Fourier transform method [70] to solve the discrete time dependent
NLSE and perform imaginary-time evolution to obtain the ground state of the system with
the normalization condition,

Ns∑
l=1

∑
p=1,2

|Ψl ,p |2 = N (2.27)

where N is the number of particles in the system. We use the numerical solution of the
DNLSE (3.20) to explore the nature of the ground state at varying interactions and inter-
ring tunnel coupling, as identified by the ratios Un/J and K /J , with n = N /Ns . For simplic-
ity of the analysis, we choose a fixed valueφ=π/2 for the relative flux. Our results are illus-
trated in Fig. 2.11, showing the particle imbalance among the two rings∆= ∣∣∑

l 〈nl ,1 −nl ,2〉
∣∣/N .

For a choice of total flux Φ corresponding to an even multiple of π/Ns (upper panel of
Fig. 2.11) at varying interaction and tunnel parameters we identify three phases: the vortex
(V) and Meissner (M) phases found in the non-interacting regime, as well as the biased-
ladder phase (BL-V) predicted by the variational ansatz. We have denoted this latter phase
BL-V since it is competing with the vortex phase, and are both obtained from the ansatz
when the single-particle spectrum has a double minimum structure. The white triangles
in Fig. 2.9 represent the frontiers between biased-ladder phase and the two other phase,
namely vortex phase and Meissner phase as calculated with the variational ansatz includ-
ing finite size effects 1. The agreement between the variational approach and numerical
calculation shows that the ansatz is well suited to capture the relevant features of the dou-
ble ring lattice. Figure 2.12 shows the corresponding density profiles of the various phases:
biased-ladder, Meissner and vortex phases are illustrated in panels (BL-V), (M) and (V) re-
spectively. For values of total flux corresponding to an odd multiple of π/Ns (lower panel
of Fig. 2.11) in place of the Meissner phase admitting a single vortex, as predicted in ab-
sence of interactions, we find a biased-ladder phase (denoted as BL-M in the figure). As it
will be discussed in section V.B, this is a mesoscopic effect due to the finite size of the ring
– the imbalance decreases with increasing number of sites on the ring.

2.5.2 Persistent currents for interacting bosons on the double ring lat-
tice

The numerical solution of the DNLSE allows also to obtain the persistent currents in the
presence of weakly repulsive interactions. Figure 2.13 shows the dependence on persistent
currents amplitude on relative flux φ for the interacting double ring lattice. As compared
to the non-interacting case, notable differences occur at increasing φ when the phase
boundary is crossed: due to the presence of the intermediate biased-ladder phase, the
jumps in the persistent current are suppressed as they are associated to the creation of
vortices. For the parameter choice used in Fig. 2.13 one can then identify both the tran-

1We take the wave functions of the ansatz (Eq. (3.51)) corresponding to the various phases (BL-V,V,M) and
we compare their energies calculated from Eq. (2.26) to obtain the phase boundaries.
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Figure 2.11: Color map of the imbalance among particle numbers in each ring, in the
(K /J ,Un/J ) plane, for (upper panel) φ = π/2, Φ = 6π/Ns and Ns = 20, (lower panel)
φ = π/2, Φ = π/Ns and Ns = 20 The letters indicate the parameter regimes where we find
a biased-ladder phase (BL-V) where the single-particle spectrum has a double minimum,
a Meissner phase (M), a vortex phase (V) and a biased-ladder phase (BL-M) where the
single-particle spectrum has a single minimum. The corresponding density profiles are
illustrated in Fig. 2.12 and 2.9. White triangles represent the frontiers between biased-
ladder phase the two other phase, namely vortex phase and Meissner phase as calculated
with the variational ansatz including finite size effect.

sition from Meissner to biased ladder and from the latter to the vortex phase. Persistent
currents thus provide a powerful tool to explore the phases of the double ring lattice.
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Figure 2.13: Chiral currents in units of J as a function of the relative fluxφ (dimensionless)
for non-interacting bosons (blue, thin solid line) and weakly interacting ones Un/J = 0.1
(red, thick solid line) for Ns = 20 and K /J = 3.

Conclusions of the chapter

In this chapter, we have studied the ground-state properties of weakly interacting bosons
on a double ring lattice, subjected to two gauge fields. Depending on the ratio between
inter-ring and intra-ring tunnel energies, as well on the relative flux, the bosons are found
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to be in the Meissner or vortex phases, previously identified for the linear ladder geometry.
As specific of the ring geometry, for the non interacting gas, we have found a parity effect
on the number of vortices in the system, which originates from the commensurability of
total flux with respect to allowed momentum states on the rings. Also, for special values
of total flux Φ, due to finite size effects, we have found that the ground state may host a
single vortex even in the Meissner phase. The analysis of persistent currents shows that
at varying relative flux it is possible to identify both the Meissner and vortex phase. In the
latter, due to finite-size of the double ring lattice, it is possible to monitor the appearance
of pairs of vortices at increasing φ. We have then considered the effect of weakly repulsive
interactions, as described within a mean-field approach. We have identified the biased
ladder phase and shown that the Meissner phase becomes imbalanced at odd value of the
total flux Φ due to mesoscopic effects. Even in the presence of interactions, the study of
persistent currents is a useful tool to characterize the various phases.

Finally, we have proposed the interference patterns among the two rings as probe of
the various phases, specifically adapted to the our ring geometry, yielding in particular
spiral images in the presence of vortices.

An analysis beyond mean-field suggests that the very small ring lattice at weak filling
displays fragmentation [71] in a similar way as what is found for spin-orbit coupled Bose
gases [72]. In outlook, it would be interesting to explore the crossover from mean-field to
fragmented state at decreasing the lattice filling and size.
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Chapter 3

Bogoliubov excitations

SUPERSOLIDITY is a combined effect of solid order and superfluid flow. In order
for a system to form a supersolid it has to break two symmetries, continuous

translational symmetry (discrete rotational symmetry in our case) to create a crystal order
and U (1) symmetry in order to create a condensate. The concept of supersolidity was
first introduced in the context of Helium more than 50 years ago [73, 74]. This peculiar
state of matter seems contradictory as it combines a dissipationless flow that emerges
from the Bose-Einstein condensation, hence from the delocalization of atoms under the
sample that makes the atomic gas ordered in momentum space and an order in real space
emerging from the localization of atoms in a periodic crystalline structure. Experiments in
the beginning of the century revealed the possibility of supersolid behavior in 4He [75, 76].
It has later been made clear that the superflow in solid Helium was due to imperfections
that change the bulk modulus of the crystal [77] so that the dislocations in the crystal are
superfluid [78] but not the system itself.

With ultra-cold atoms, a supersolid has been realized based on self organization of a
Bose-Einstein condensate in a cavity [79]. Key ingredients for emergence of supersolidity
is long range interactions [80] an idea first introduced by Gross [81], or peculiar single-
particle dispersion. An example of this second case is provided by spin-orbit coupled Bose
gases where supersolidity has also been studied [82, 83]. Experimentally, crystal order
has been evidenced by the observation of stripes. However, visibility of the fringes of the
density is a major issue to overcome and is due to interspecies interaction.

In this chapter, we consider a two-leg bosonic ring lattice subjected to two gauge fields.
Here, thanks to the peculiar geometry of the system the inter-species interactions can be
completely suppressed hence providing a new arena for studying supersolidity in a con-
dition of high fringe visibility. As for the case of spin-orbit coupled Bose gas, there is no
explicit long range interaction in two-leg bosonic ring ladder but it emerges as an effective
low energy property due to the effect of gauge field and tunneling coupling between the
rings.

The chapter is organized as follows. In Secs. 3.1 and 3.2 we review some key aspect
of the Bogoliubov theory and the Josephson effect. Before studying the properties of the
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excitation spectrum in the phases of the ring ladder in Sec. 3.3 and 3.4, we will remind the
reader with the system we are considering and the method used. The study of the excita-
tion spectrum in Sec 3.4 reveals in the Meissner phase a single Goldstone mode, associated
to the condensation in the only minimum of the single-particle dispersion relation and a
slowing down of the group velocity. In the biased ladder phase, in addition to the phonon
branch a roton minimum is found. This is a precursor of the vortex phase, in agreement
with previews studies [16]. In the vortex phase, two Goldstone modes are clearly observed,
indicating that the ground state breaks twi symmetries: the U (1) and rotational symme-
try. The spontaneous breaking of the U (1) symmetry, associated to condensation, which
implies superfluidity. A further proof of the coherence properties of the system is pro-
vided by the calculation of the first-order spatial correlation function in Sec 3.5. We then
provide various indications of crystal order. First of all, in the excitation spectrum of the
vortex phases we find a folding of the Brillouin zone. This is a consequence of the forma-
tion of a vortex lattice in the mean-field condensate density. Furthermore, the analysis of
the static structure factor shows the emergence of a peak at finite wavevector, correspond-
ing to the density modulation along the rings. Putting together the various evidences of
coherence properties and crystalline order, we obtain a clear indication of supersolidity.
Coupled rings under gauge flux hence provide a novel platform for the experimental study
of supersolid order with ultracold atoms.

Finally, in the last part of the chapter, in Sec 3.6, we address some features peculiar to
the finite ring case, and in particular the emergence of Josephson modes for weakly cou-
pled rings in the Meissner phase. These modes correspond to dynamical coherent oscilla-
tion of particles between the rings, hence providing a further indication of the coherence
among the two rings [84].

3.1 Diagonalization of general quadratic Hamiltonian

In second quantization a quadratic non-Hermitian Hamiltonian can be cast in a general
way as follows

H = ∑
α,β

Aα,βa†
αaβ+

1

2

∑
α,β

[
Bα,βa†

αa†
β
+B∗

α,βaβaα
]

(3.1)

where B is a symmetric matrix Bα,β = Bβ,α and A is taken as hermitian Aα,β = A∗
β,α. This

type of matrices is often encountered in physics, eg ,to name a few in the Hartree-Fock,
BCS theory and of course Bogoliubov Hamiltonian.
The Heisenberg equation of motion reads

iħ∂t

(
uk

vk

)
=L

(
uk

vk

)
with L =

(
A B

−B∗ −A∗
)

(3.2)

We see here that the non-hermiticity of the L matrix comes directly from the commuta-
tion properties of the bosons, while L is Hermitian for fermions.
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Eigenvalues from symmetry of the dynamical matrix L The dynamical matrix L sat-
isfies several relations that put constraints on its spectrum. One has

L † = η−1L η η= η−1 =
(
1 0
0 −1

)
(3.3)

L ∗ =−σLσ σ=σ−1 =
(
0 1
1 0

)
(3.4)

Equation (3.3) implies that L is said to be pseudo-hermitian, because it is hermitian un-
der a modified scalar product 〈X1,X2〉 = X∗

1 .ηX2 and 〈L X1,X2〉 = 〈X1,L X2〉 for any vector
X1 and X1. This modified scalar product is not a real scalar product as it is not strictly
positive so that the eigenvalues of L are not necessarily real and L might also not be di-
agonalizable. But let’s suppose that it is diagonalizable. In this case we have the following
eigenvalue problem

L

(
uk

vk

)
= εk

(
uk

vk

)
(3.5)

From Eq.(3.3) we see that if εk is an eigenvalue of L , then ε∗k is also an eigenvalue. The sec-
ond symmetry property of the dynamical matrix L implies that the spectrum is divided

in two families F+ and F−, with respectively eigenvectors (uk ,vk )T ,
(
v∗k ,u∗

k

)T and eigen-
values εk > 0 and −εk > 0. Then all together this implies that if εk is an eigenvalue of L

then ε∗k , −ε∗k and −εk also are eigenvalues.
It should be noticed that the pseudo hermiticity (3.3) implies that the normalization con-
dition is changed, and reads

〈uk |uk ′〉−〈vk |vk ′〉 = δk,k ′ for family F+ (3.6)

〈uk |uk ′〉−〈vk |vk ′〉 =−δk,k ′ for family F−. (3.7)

3.2 Bogoliubov formalism

The Bogoliubov formalism considers quantum fluctuations around the mean-field ground
state by separating the fluctuations δΨ̂(r) from the mean-field wave functionΦ(r). This is
well suited in the presence of a condensate of mean-field modeΦ(r) which is macroscop-
ically occupied, so that the bosonic field is expressed as follows

Ψ̂(r) =Φ(r)aΦ+δΨ̂(r) (3.8)

where aΦ is a bosonic field operator annihilating the mode Φ(r) of the condensate. The
Bogoliubov approximation holds as long as δΨ̂(r) is small compared to Φ(r)aΦ in the fol-
lowing sense ∫

dr
〈
δΨ̂†(r)δΨ̂(r)

〉
¿

∫
drΦ∗Φ

〈
a†
ΦaΦ

〉
=

〈
a†
ΦaΦ

〉
= N0 (3.9)
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where N0 is the number of condensed particle. The non-condensed particles are thought
of as being in the grand canonical ensemble where the condensate mode act as a reservoir
for the non-condensed ones. It then crucial to introduce a chemical potential to treat the
fluctuations of non-condensed particles. The Hamiltonian (1.4) of bosons in continuum
with contact interactions at second order in the fluctuations field, reads

H = 1

2

∫
dr

(
δΨ̂†(r),δΨ̂(r)

)(− ħ2

2m 52 +V (r)−µ+2g |Φ(r)|2 gΦ(r)2

g
(
Φ(r)2

)∗ − ħ2

2m 52 +V (r)−µ+2g |Φ(r)|2
)(
δΨ̂(r)
δΨ̂†(r)

)
(3.10)

One needs to find the transformation to quasi-particles γ̂ν such that the Bogoliubov Hamil-
tonian takes diagonal form H =∑

νħωνγ̂†
νγ̂nu . A general transformation reads

δΨ̂(r) =∑
nu

[
uν(r)γ̂nu − v∗

ν (r)γ̂†
ν

]
(3.11)

with a priori unknown functions uν(r) and vν(r). Imposing the fact that Bogoliubov Hamil-
tonian takes diagonal form implies that the functions uν and vν should satisfy the follow-
ing equation of motion, called Bogoliubov de Gennes equations.

ηL

(
uν(r)
vν(r)

)
=ħων

(
uν(r)
vν(r)

)
, (3.12)

where matrix L is called the dynamical matrix and η accounts for the non-hermiticity of
the problem, and it reads as follows,

L =
(
− ħ2

2m 52 +V (r)−µ+2g |Φ(r)|2 −gΦ(r)2

g
(
Φ(r)2

)∗ − ħ2

2m 52 +V (r)−µ+2g |Φ(r)|2
)

, η=
(
1 0
0 −1

)
(3.13)

This eigenvalue problem define a non self-adjoint eigenvalue problem that will be the
topic of the next paragraph. Let’s consider a spatially homogeneous condensate with re-
pulsive contact interaction at zero temperature. In this case the mode of the condensate is
φ(r) = 1/Ld/2, where d is the dimension of the system and L its length, the chemical poten-
tial is given byµ= ρg and the eigenfunctions of L are plane waves due to the translational
invariance of the system:

uk(r) = Uk

Ld/2
e i k.r with |uk|2 −|vk|2 = 1 (3.14)

vk(r) = Vk

Ld/2
e i k.r (3.15)

(3.16)

Diagonalization of the corresponding L matrix yields the Bogoliubov spectrum

εk =
[ħk2

2m

(ħ2k2

2m
+2µ

)]1/2

. (3.17)
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An interesting fact is that for attractive interactions an instability of the condensate arises

and a condensate is stable only for a low number of particle ħ2

2m

(2π
L

)2 < 2ρ|g |. For repul-
sive interaction no dynamical instability is present and so the condensate is stable. In
the small momentum limit (see Fig. 3.1) the excitation spectrum is linear ε(k) = ck with

sound velocity c =
√

gρ
m and the corresponding collective excitations are phonons asso-

ciated to the Goldstone mode of the U (1) symmetry breaking. At large momentum the

excitation behave like free particles ε(k) = ħ2k2

2m +gρ. This excitation spectrum can be seen
in Fig. 3.1 where both theoretical and experimental are represented. In order to link to
the further part II of the thesis Fig. 3.2 displays the experimentally measured excitation
spectrum of an excitation-polariton condensate where the same features appears and Bo-
goliubov theory is applicable (as we shall see later, we will use it to treat exciton-polariton
condensates).

3.2.1 Zero frequency modes

A special solution of eigenvalue problem (3.12) is given by functions u(r) and v(r) propor-
tional to the ground state, that will be called zero frequency solutions u0(r) = v0(r) =αΦ(r)
solution of (L11 +L12)Φ = 0 where α ∈ C. The contribution of this solution to the wave
function is a phase shift 2i Im[α]Φ(r) and should not be considered as excitations, there-
fore they correspond to the Goldstone mode of the U(1) symmetry breaking [88].

3.2.2 Josephson effect

Originally the Josephson effect has been predicted [89] and observed between two super-
conductors separated by a weak link. It is a macroscopic quantum phenomena of coherent
oscillation of Cooper pairs between the two superconductors without any applied voltage
(dc Josephson). Application of a voltage (V ) induces an alternative current due to the de-
pendence of the phase φ of the Cooper pair to the voltage φ̇= 2e

ħ V , where 2e is the charge
of the Cooper pair. In the context of trapped cold-atom gases the Josephson effect has
been predicted and observed in a system of two condensates spatially separated in a dou-
ble well structure [90] (see Fig. 3.3). Such a system is represented by standard Josephson
Hamiltonian in its two-mode version of the Bose-Hubbard model

H =−E J

N

(
a†b +b†a

)
+ Ec

4

[(
a†a

)2 +
(
b†b

)2
]

(3.18)

where E J is the Josephson coupling energy, Ec the charging energy, annihilation operators
a and b correspond to the condensate wavefunctions of the left and right well. The physics
of these experiments is based on the macroscopic coherent tunneling of atoms between
the wells, and is very similar to that of the Josephson effect between two superconductors
connected by an insulating junction. Three physical situation arise:

• In the so called Rabi regime where Ec ¿ E J /N 2 the atoms are all in the bonding
state and behave independently so that the effect of interaction can be neglected.
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Figure 3.1: The upper panel represents the excitation spectrum of an homogeneous BEC
from [85]. Lower panels: Left panel, theoretical spectrum where the transition from
phononic behaviour at low frequency ε(p) = cp to the free particle behaviour ε(p) =
p2/2m +mc2 is outlined. Right panel, measured excitation spectrum in an atomic BEC
using light scattering, from [86].

The phase is well-defined and excitations correspond to the anti-bonding state. The
tunnel dynamic corresponds to a sinusoidal Rabi oscillation between the two wells
at frequency fixed by the energy of the modes.

• In the Josephson regime, Ec /N 2 ¿ Ec ¿ E J , the ground state has still a well-defined
phase, but the excitation forms a collective motion called Josephson plasmon. The
effect of the interaction becomes more important in the dynamics as it will change
the oscillation of the collective motion. The oscillation frequency of the Josephson
modes is directly linked to the Bogoliubov spectrum.

• In the Fock regime E J ¿ Ec , the Josephson link is dominated by the interaction en-
ergy and n is a good quantum number. Therefore the ground state has a well-defined
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Figure 3.2: Observed light intensity from an exciton-polariton condensate (see Chap-
ter 6.3) in a linear plot of intensity (up left panel) and in a logarithmic plot of intensity
(right panel). Taken from [87].

atom number on each side, the phase is completely undefined.

Figure 3.3: From [90]. Observation of the tunneling dynamics of two weakly linked Bose-
Einstein condensates in a symmetric double-well potential. Left: time-resolved Josephson
oscillations. Right: macroscopic quantum self-trapping

The Gross-Pitaevskii approach yields the same excitation spectrum as the one obtained by
solving directly the time-independent Bogoliubov-deGennes equations. This approach of
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the time-independent Bogoliubov-deGennes equations will be used later in this chapter
to characterize the Josephson oscillation in the double ring.

3.3 Model and method

Figure 3.4: Reminder of the sketch of the system studied in this work: coplanar ring lattices
of radii R1 and R2 with the same number of sites, with inter-ring tunnel energy K , intra-
ring tunnel energies Je iΦp with p = 1,2 and contact interaction strength U .

We consider a Bose gas confined in a double ring lattice (See Fig. 3.4). In the tight-
binding approximation we model the system using the Bose-Hubbard Hamiltonian (2.6)
which we report here for sake of clarity,

Ĥ = Ĥ0 + Ĥi nt =

−
Ns∑

l=1,p=1,2
Jp

(
a†

l ,p al+1,p e iΦp +a†
l+1,p al ,p e−iΦp

)
−K

Ns∑
l=1

(
a†

l ,1al ,2 +a†
l ,2al ,1

)
+ U

2

Ns∑
l=1,p=1,2

a†
l ,p a†

l ,p al ,p al ,p (3.19)

where we recall that the angular position on the double ring is given by θl = 2π
Ns

l where l is
an integer l ∈ [1, Ns] with Ns the number of sites in each ring, J1 and J2 are the tunneling
amplitudes from one site to another along each ring, K is the tunneling amplitude be-
tween the two rings andΦ1,2 are the fluxes threading the inner and outer ring respectively.

3.3.1 Bogoliubov De-Gennes equations of the double ring

In order to obtain the excitation spectrum of the double ring in the Bogoliubov approxima-
tion, following [91] we start from the Heisenberg equations of motion for the bosonic field
operators âl ,α and we replace âl ,α in the quantum Hamiltonian (2.6) by âl ,α =Ψ(0)

l ,α+δâl ,α.
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The field Ψ(0)
l ,α is the ground-state condensate wave function, solution of the coupled dis-

crete non linear Schrödinger equation (3.20) below,

µΨl ,1 = −JΨl+1,1e i (Φ+φ/2) − JΨl−1,1e−i (Φ+φ/2)

− KΨl ,2 +U |Ψl ,1|2Ψl ,1

µΨl ,2(t ) = −JΨl+1,2e i (Φ−φ/2) − JΨl−1,2e−i (Φ−φ/2)

− KΨl ,1 +U |Ψl ,2|2Ψl ,2 (3.20)

whereΦ= Φ1+Φ2
2 and φ=Φ1 −Φ2 and µ is the chemical potential. In the following, we will

consider for simplicity Φ = 0. Expansion and truncation of the Hamiltonian to quadratic
order in δâl ,p , δâ†

l ,p yields the Bogoliubov Hamiltonian

ĤBog =
(
δâ†

1,δâ1,δâ†
2,δâ2

)
H (2)


δâ1

δâ†
1

δâ2

δâ†
2

 , (3.21)

with

H (2) =


A1 B1 −K 0

B1
∗ A1

∗ 0 −K
−K 0 A2 B2

0 −K B2
∗ A2

∗

 , (3.22)

where the matrix Ap with p = 1,2 is given by

Ap =



2U |Ψ(0)
1,p |2 −Je iΦp

−Je−iΦp 2U |Ψ(0)
2,p |2

· · · −Je−iΦp

...
. . .

...

−Je iΦp · · · 2U |Ψ(0)
Ns−1,p |2 −Je iΦp

−Je−iΦp 2U |Ψ(0)
Ns ,p |2

 , (3.23)

and Bp and Kp are diagonal matrices of dimension Ns ×Ns , i.e.

Bp = diag(U (Ψ(0)
1,p )2, ...,U (Ψ(0)

Ns ,p )2) (3.24)

K = K I, (3.25)

with I the identity matrix. We search then a transformation to quasi-particle operators
γ̂ν for an excitation in mode ν = µ,n, where µ the quantum number related to the quasi-
momentum of the Bogoliubov particles and n is the band index n = 1,2. The Bogoliubov
Hamiltonian takes diagonal form:

HBog =∑
ν

ħωνγ†
νγν (3.26)
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We use the following general transformation, where the operators γν follow usual bosonic

commutation rules,
[
γν,γν′

]= 0,
[
γν,γ†

ν′

]
= δν,ν′ .

δâl ,1 =
∑
ν

h(1)
ν,lγν−Q∗(1)

ν,l γ
†
ν, (3.27)

δâl ,2 =
∑
ν

h(2)
ν,lγν−Q∗(2)

ν,l γ
†
ν, (3.28)

As next step, we substitute Eq. (3.28) into the equation of motion, and use the following
properties [

γν, H
]=ħωνγν (3.29)[

γ†
ν, H

]
=−ħωνγ†

ν. (3.30)

Finally, by equating the coefficients of the different modes {h(p)
ν ,Q(p)

ν } we obtain that the
modes have to verify the following eigenvalue problem, corresponding to the Bogoliubov-
De Gennes equations for the ring ladder:

εν


h(1)
ν

Q(1)
ν

h(2)
ν

Q(2)
ν

=


A1 −µI B1 −K 0
−B1

∗ −A1
∗+µI 0 K

−K 0 A2 −µI B2

0 K −B2
∗ −A2

∗+µI




h(1)
ν

Q(1)
ν

h(2)
ν

Q(2)
ν

 , (3.31)

where h(p)
ν = (h(p)

ν,1...h(p)
ν,l ...h(p)

ν,Ns
)T and Q(p)

ν = (Q(p)
ν,1...Q(p)

ν,l ...Q(p)
ν,Ns

)T and the chemical poten-
tial is µ= 〈Ψ(0)|H0|Ψ(0)〉+2〈Ψ(0)|Hi nt |Ψ(0)〉 The eigenmodes satisfy the following orthogo-
nality relations which follow from commutation relations among γν:∑

ν,p
hp
ν,l (h(p)

ν,l ′)
∗−Qp

ν,l (Q(p)
ν,l ′)

∗ = δl ,l ′ (3.32)

∑
l ,p

hp
ν,l (h(p)

ν′,l )∗−Qp
ν,l (Q(p)

ν′,l )∗ = δν,ν′ . (3.33)

3.3.2 Dynamical structure factor

The dynamical structure factor is a powerful tool to study correlations in many-body sys-
tems both theoretically and experimentally. It corresponds to the space- and time- Fourier
transform of the density-density correlation function. The poles of the dynamical struc-
ture correspond to the collective excitation spectrum of the system. For a single-component
one-dimensional system, the dynamical structure factor is defined as follows [92]

S(q,ω) = ∑
ν6=0

|〈ν|ρ̂q |0〉|2δ(ω−ων) (3.34)
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where the sum runs on all the modes, q and ω are the momentum and energy transferred
by the probe to the sample, |ν〉 are many-body eigenstates of the system and |0〉 is the
ground state, corresponding to the vacuum of Bogoliubov quasi-particles, ρ̂q is the den-
sity fluctuation operator in momentum space and ωs = Eν−E0 is the energy difference
between excited and ground state.

For the case of coupled rings, since the excitations belong to both rings, we need to
define several dynamical structure factors: Sp,p ′(q,ω) with p, p ′ = 1,2 being the ring index,
and

Sp,p ′(q,ω) = ∑
ν6=0

|〈ν|ρ̂(p,p ′)
q |0〉|2δ(ω−ων) (3.35)

with

ρ̂
(p,p ′)
q =∑

k
â†

k+q,p âk,p ′ , (3.36)

and q and k are wavevectors corresponding to the longitudinal momentum along each
ring, i.e we have set âk,p = (1/

p
Ns)

∑
j exp(i ka j )â j ,p Using the expansion onto Bogoliubov

modes, Eq.(3.28), one can show that

Sp,p ′(q,ω) =∑
ν6=0

∣∣∣∣∣∑
l

(
Ψ(0)

l ,p ′h
∗(p)
ν,l −Ψ∗(0)

l ,p Q∗(p ′)
ν,l

)
e i ql

∣∣∣∣∣
2

δ(ω−ων) (3.37)

In order to understand the low energy properties of the system, it is useful to refer to oper-
ators α̂k ,β̂k that diagonalize the single-particle non-interacting Hamiltonian H0 (see Ap-
pendix A). In particular, the low-energy properties of the system under study are governed
by the lowest excitation branch associated to the operator βk (see Eq.A.3). The dynami-
cal structure factor Sβ,β relative to the βk particles gives us access to the properties of the
low-energy excitation spectrum

Sβ,β(q,ω) = ∑
ν6=0

|〈ν|ρ̂(β)
q |0〉|2δ(ω−ων) (3.38)

where ρ̂βq = ∑
k β

†
k+qβk . Using Eq.(3.28) and Eq.(3.37), the dynamical structure factor in

the Bogoliubov approximation reads

Sβ,β(q,ω)

= ∑
s 6=0

|∑
k

uk+q uk

(
(h̃(1)

s,k+q )∗Ψ̃(0)
k,1 − (Ψ̃(0)

k+q,1Q̃(1)
s,−k )∗

)
+ vk+q vk

(
(h̃(2)

s,k+q )∗Ψ̃(0)
k,2 − (Ψ̃(0)

k+q,2Q̃(2)
s,−k )∗

)
+uk+q vk

(
(h̃(1)

s,k+q )∗Ψ̃(0)
k,2 − (Ψ̃(0)

k+q,1Q̃(2)
s,−k )∗

)
+ vk+q uk

(
(h̃(2)

s,k+q )∗Ψ̃(0)
k,1 − (Ψ̃(0)

k+q,2Q̃(1)
s,−k )∗

)
|2δ(ω−ωs) (3.39)

where h̃ν,k , Q̃ν,k and Ψ̃(0)
k,p are the Fourier transforms of h(α)

ν,l ,Q(α)
ν,α of the excitation and of

condensate wavefunctionΨ(0)
l ,α respectively.

Chapter 3. Bogoliubov excitations 55



3.4. Excitation spectrum as a probe of the phases of the two-leg bosonic ring ladder

f

Non-interacting limit: by taking the ground state as being |0〉 = 1p
2

(|k1〉+|k2〉) the struc-

ture factor is easily computed as being

Sβ,β(q, w) = 1

2
(δ(ω−ωq+k1 )+δ(ω−ωq+k2 )) (3.40)

with ωk = E−(k)−E−(k1). We see that it consist in two bands that coincide only for k1 =
k2 = 0 (Meissner phase) or k1 =−k2 =−π.

3.3.3 Static structure factor

The static structure factor yields information on spatial long-range order, eg crystal or den-
sity wave order, hence it is particularly suited to address the spatial modulations emerging
in the vortex phase (see Sec. 3.4.3 below). The static structure factor is defined as

S(p,p ′)(q) =∑
ν

Z (p,p ′)
ν (q) (3.41)

where Zν(q) =
∣∣∣〈ν|ρp,p ′

q |0〉
∣∣∣2

. In order to access the properties of supersolidity we need to

compute the total static structure factor Stot (q) = Se (q)+S(q), which takes into account
both elastic and inelastic scattering. Inelastic scattering is captured by S(q) and elastic
scattering corresponds to the so-called disconnected dynamic structure factor Se (q) =
Zν=0(q) [92].

3.4 Excitation spectrum as a probe of the phases of the two-
leg bosonic ring ladder

For the lattice ring three phases are known: the Meissner (M), vortex (V) and biased-
ladder (BL) phase. A schematic phase diagram for the infinite-ladder limit is illustrated
in Fig.3.5. It is obtained by minimizing the mean-field energy with respect to the Ansatz

|Ψ〉 = 1p
N !

(
cos(θ)β†

k1
+ sin(θ)β†

k2

)N |0〉 [16], where βk are the field operator creating a parti-

cle in the lowest band related to the non-interacting problem and k1/2 are the lowest mode
of the non-interacting spectrum (see Appendix A). The Meissner phase is characterized by
vanishing expectation value of the transverse currents jl ,⊥ = i K 〈a†

l ,1al ,2−a†
l ,2al ,1〉; the lon-

gitudinal currents on each ring, defined as jl ,p = i J〈a†
l ,p al+1,p e iΦp − a†

l+1,p al ,p e−iΦp 〉, are

opposite and the chiral current, i.e Jc =∑
l 〈 jl ,1− jl ,2〉 is saturated. The vortex phase is char-

acterized by a modulated density, jumps of the phase of the wave function, and non-zero,
oscillating transverse currents which create a vortex pattern. The biased-ladder phase has
only longitudinal currents as in the Meissner phase, but displays and imbalanced popula-
tion between the two rings.
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Figure 3.5: Phase diagram of the infinite double ring lattice as a function of the flux φ
per plaquette and tunnel ratio K /J for interaction strength Un/J = 0.01. The Meissner
(M), vortex (V) and biased ladder (BL) phases are indicated on the figure, and the typical
current pattern is sketched.

3.4.1 Meissner phase

In the Meissner phase, the ground-state solution for the condensate wave function is uni-
form in space and corresponds to a condensate occupying the k = 0 state that is the mini-
mum of the single particle dispersion (see Appendix A).

The lowest branch of the spectrum shows a single phononic Goldstone mode at small
wave vector k. A simplified expression can be obtained by performing the Bogoliubov
approximation on the lower branch of the single-particle spectrum [16]. It reads

εM
k = 1

2

√
(Un +2ε̃k )2 − (2Unuk vk )2 (3.42)

with ε̃k = E−(k)−E−(0) and uk , vk defined in Appendix A. Fig. 3.6 shows the dynamical
structure factor as obtained by the numerical diagonalization of the Bogoliubov DeGennes
equations. The poles of the dynamical structure factor in the frequency-wavevector plane
are in excellent agreement with Eq.(3.42), also shown in the figure.

The Meissner excitation spectrum takes imaginary eigenvalues as the uniform mean-
field solution becomes unstable owing to the fact that the true mean-field solution is a
vortex wave function. With this criterion it is possible to control the boundaries between
the Meissner and vortex phase [18] and also to the biased ladder phase. We see that inter-
action favors the Meissner phase compared to the vortex phase and biased-ladder phase.
One noteworthy fact occurs when the coupling between the rings is sufficiently low and
interaction strong so that interplay between interaction and kinetic energy affects the low
momentum properties of the excitation spectrum. As the non-interacting spectrum in
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Figure 3.6: Excitation spectrum (black line) and dynamical structure factor in the lowest
branch (β) basis in the Meissner phase, in the frequency-wavevector plane (color map) for
Un/J = 0.2, φ=π/2, K /J = 3.

this regime is of vortex type with two minima there is a reminiscence of the vortex pattern
that tends to slow the group velocity near the momentum minima k1 and k2. The excita-
tion spectrum can be computed analytically also in this case. As the mean-field solution is
uniform in space so thatΨl ,p =p

N /2Ns =
p

n. The equation of motion for the Bogoliubov

modes can be expanded in plane wave solutions h(p)
ν,l = h(p)

q e i ql , Q(p)
ν,l =Q(p)

q e i ql , where ν is
identified as the plane-wave momentum q longitudinal to the rings. It reads

ε(q)


h(1)

q

Q(1)
q

h(2)
q

Q(2)
q

=


ε+(q)+Un −Un −K 0

Un −ε−(q)−Un 0 K
−K 0 ε−(q)+Un −Un

0 K Un −ε+(q)+Un




h(1)
q

Q(1)
q

h(2)
q

Q(2)
q

 (3.43)

where ε±(q) =−2J [cos(q ±φ/2)−cos(φ/2)]+K .

This matrix is diagonalizable and the positive eigenvalues read
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Figure 3.7: (upper panels) Excitation spectrum in the Meissner phase for (a) φ = π/4,
K /J = 0.1 and (b) φ = π/4, K /J = 1 for several values of the interaction strength as men-
tioned in panel (d). (bottom panel) Corresponding group velocity as a function of mo-
mentum q for (c) φ = π/4, K /J = 0.1 and (d) φ = π/4, K /J = 1 for several values of the
interaction strength as mentioned in panel (d). Solid lines correspond to the Meissner ex-
citation spectrum taking into account both lower and upper branch of the non-interacting
problem (see Eq. 3.44). Dashed lines correspond to the lowest band approximation (see
Eq 3.42).

ε(q) = 1p
2

{
ε2++ε2−+2(ε++ε−)Un +2K 2

±
√(

ε2+−ε2−
)2 +4Un

(
ε3++ε3−−ε2−ε++ε2+ε−

)+4K 2
[
(ε++ε−)2 +4Un (ε++ε−+Un)

]}1/2

(3.44)

For a similar derivation see Ref.[18].
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The main effect of the coupling among the lower and upper branch is to change the
sound velocity at low momenta and to reduce the region where the spectrum is linear (see
Fig 3.4.1). Comparing lowest branch approximation of the Meissner excitation spectrum
(Eq.3.42) and the analytic solution of the full problem (Eq.3.44) we see (see Fig.3.4.1) that
band repulsion plays an important role in the lowering of the group velocity near k → 0
and increase it near the minima (See Fig.3.4.1 panel (c)).

3.4.2 Biased-ladder phase

In the biased-ladder phase, as well as in the vortex phase, the single-particle dispersion
relation has two minima at k = k1,k2. In the biased ladder phases only one of the two min-
ima is macroscopically populated. The excitation spectrum shows a phononic Goldstone
mode and a rotonic structure [16]. A similar behaviour is found in spin-orbit coupled Bose
gases [93]. At fixed flux φ, when decreasing the coupling K between the ring, the vortex
phase is accessed through a softening of the roton minimum. The system enters the vor-
tex phase when the roton minimum decreases down to a critical (non zero) value thus
indicating a first-order transition, similarly to what predicted for dipolar gases [94].
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Figure 3.8: (a) Dynamical structure factor for the biased-ladder phase, with Ns =
100,Un/J = 0.01,φ = π/2 and K /J = 1.15, (b) dynamical structure factor for the biased-
ladder phase, with Ns = 100,Un/J = 0.05,φ=π/2 and K /J = 1.4

3.4.3 Vortex Phase

At the mean field level, the vortex phase is characterized by a fragmented condensate, oc-
cupying the two momentum modes k = k1,k2 corresponding to the minima of the single-
particle dispersion relation [16].
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The numerical result for the dynamical structure factor Sβ,β(q,ω) in the vortex phase is
shown in Fig.3.9. We find various minima of the dispersion relation for q = 0 and q = k2−k1

as well as at the points q = 2π and q = 2π− (k2 −k1). Two linear dispersion branches are
found around each of these minima, characterized by two different sound velocities.

An analysis of the dynamical structure factor in log scale (see Fig. 3.9.b) shows a folding
of the Brillouin zone for the excitations, corresponding to the underlying ground-state vor-
tex superlattice felt by the Bogoliubov excitations. Specifically, for the parameters chosen
in the calculation of Fig.3.9 we have that the ground state density profile has a modulation
with wavevector k1 − k2, leading to a 2π

k1−k2
-times folding of the excitation spectrum, i.e

5-times in the case of Fig 3.9.
The overall features of the excitation spectrum can be understood by comparing it with

the one in the K = 0 case. In this regime the rings are independent and the excitation
spectrum is given by two branches, obtained by solving the Bogoliubov equations for each
ring separately:

εV (1)
k =−1

2

(
εk+k1 −εk−k1 ±

√
(εk+k1 +εk−k1 )2 +4U |ψ0|2(εk+k1 +εk−k1 )

)
εV (2)

k =−1

2

(
εk+k2 −εk−k2 ±

√
(εk+k2 +εk−k2 )2 +4U |ψ0|2(εk+k2 +εk−k2 )

)
(3.45)

where εk = 2J (1−cos(k)). Exploiting a low-energy model (see Sec.3.7) we can then under-
stand qualitatively the behaviour of the excitation spectrum at small but finite K . In this
regime, the excitations can tunnel from one ring to the other with k-dependent interaction
parameters Ũ and ˜̃U (see Appendix 3.7). These scattering events break the degeneracy of
the sound velocities around each minimum.

In Fig. 3.10 we show the different dynamical structure in the ring basis. The off-diagonal
dynamical structure factors show the symmetry relation S12(q,ω) = S21(q,−ω).

3.4.4 Experimental probe of dynamical structure factor

In ultra-cold atomic gases in an elongated geometry the dynamical structure factor can
be measured using two-photon optical Bragg spectroscopy [95, 86], according to the fol-
lowing scheme: two laser beams are impinged upon the condensate, and he difference
in the wave vectors of the beams defines the momentum transfer ħq , and the frequency
difference defines the energy transfer ħω to the fluid. Both the values of q and ω can
be tuned by changing the angle between the two beams and varying the frequency dif-
ference of the two laser beams. A way of probing the excitation spectrum of the dou-
ble ring studied in this work is to use angular momentum spectroscopy [96]: in this case,
one needs two laser beams denoted by 1,2 in high-order Laguerre-Gauss modes with op-
tical angular momenta l1,2 and frequencies ω1,2. Their corresponding electric fields read

E1,2(r ) = fl1,l2 (r )e−i l1,2θ−iω1,2t where the radial mode functions fl (r ) ∝ (r /r0)|l |er 2/2r 2
0 need

to be chosen in order to match the shape of the double ring to probe.
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Figure 3.9: (a) Dynamical structure factor in the vortex phase for K /J = 0.8; (b) same as
(a) but in log scale scale; (c) dynamical structure factor for K /J = 0. The other parameters
used in all the panels are φ=π/2, Un/J = 0.2, Ns = 80.
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Figure 3.10: Dynamical structure factor Sα,α′(q,ω) in the ring basis in the vortex phase for
φ = π/2, Ns = 80, K /J = 0.8 and Un/J = 0.2. With a) S1,1(q,ω), b) S1,2(q,ω), c) S2,1(q,ω)
and d) S2,2(q,ω)

3.5 Coherence properties and supersolidity

3.5.1 One-body density matrix

In order to study the coherence properties of the system we consider the one-body density
matrix ρ(1)

α,α′( j , l ) = 〈â†
j ,αâl ,α′〉, which in the Bogoliubov approximation reads [97, 98]

ρ(1)
α,α′( j , l ) =

√
ρ(0)

j ,αρ
(0)
l ,α′ exp

−1

2

∑
s

∣∣∣∣∣∣
Q(α)

s, j

|Ψ(0)
j ,α|

−
Q(α′)

s,l

|Ψ(0)
l ,α′ |

∣∣∣∣∣∣
2 , (3.46)
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where the function in the exponential relates to the fluctuation of the phase of the con-
densate and ρ(0)

l ,α stands for the mean-field ground-state density profile of each ring. Since
the system is inhomogeneous the one-body density matrix does not depend only on the
coordinate difference j − l . Therefore, to estimate the coherence we study the averaged
first-order correlation function defined as

g (1)
(α,α′)(l ) =∑

j
ρ(1)

(α,α′)( j , j + l )/
√
ρ j ,αρ j+l ,α′ . (3.47)

Figure 3.11 shows the g (1) correlations in the vortex phase. As the coupling K /J between

0.95

1

1 20 40 60 Ns

g
(1

)
(l
)

l

K/J = 0.2
K/J = 0.4
K/J = 0.6
K/J = 0.8

Figure 3.11: Degree of coherence in the vortex phase for φ= π/2, Ns = 80 and Un/J = 0.2.
Where α=α′ = 1.

the rings increases, we notice that the correlations in the ring decrease. However, even for
large values of K /J the coherence in the vortex phase stays high even at large distances.
This corresponds to a large condensate fraction, thereby implying Bose-Einstein conden-
sation (BEC) and superfluidity.

3.5.2 Static structure factor - probe of solidity

In order to probe the spatial crystalline order expected in the vortex phase we compute the
total static structure factor Stot(k), which is illustrated in Fig. 3.12. We clearly see a peak at
wavevectors k = k2−k1 and k = 2π− (k2−k1), revealing the crystalline order associated to
the spatial modulations of the condensate density profile.
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Figure 3.12: Total static structure factor for φ=π/2, Ns = 150, K /J = 0.8 and Un/J = 0.2.

3.6 Small ring limit and nature of the excitations

We report in this section a study on the nature of the excitations in the different phases
of the system. For this purpose, we calculate the density fluctuations δnν

l ,p defined as

〈s|ρl ,p |0〉 which can be obtained from of the Bogoliubov eigenmodes h(p)
ν,l and Q(p)

ν,l ac-
cording to

δnν
l ,p = 2Re

[
Ψ(0)

l ,p (h(p)
ν,l )∗− (Ψ(0)

l ,p )∗Q(p)
ν,l

]
. (3.48)

Our results for the density fluctuations of chosen low-energy modes are shown in Fig. 3.13.
Among the various types of excitation modes, in addition to the phononic Goldstone modes
propagating along each ring, we identify the Josephson mode, typical of a finite ring sys-
tem, which is characterized by spatially homogeneous density fluctuations and out-phase
oscillations of the relative populations among the two rings, as in the small-amplitude
dynamics of the Josephson effect [99, 100]. We see in Fig. 3.13 that a uniform Josephson
mode occurs at low energy in the Meissner phase for low enough coupling among the
rings, whereas higher excited modes are of phonons of charge (ie in-phase) type. Close to
the phase boundary, in the vortex phase we find that the lowest excitation is a spin (ie out-
of-phase) oscillation. In the nearby Meissner phase the lowest excitation become phonon
of charge type, as well as in the biased-ladder phase. The Josephson modes are found in
the Meissner phase for weak tunnel coupling K /J and weak fluxφ. In order to estimate the
parameter regime where phonon or Josephson modes are present in the ring, we provide
here below some estimates based on energy scales. In the Meissner phase, close to k → 0
the spectrum has a linear behaviour,
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Figure 3.13: Excitation eigenmodes δnl ,p , as a function of the position l along each ring
(blue lines with squares p = 1, red lines with squares p = 2) for the first three excited Bo-
goliubov modes. a) Josephson out-of-phase mode and two in-phase phonon modes in the
Meissner phase for Ns = 10, K /J = 0.1, φ= 0.1, Un/J = 0.1; b) in-phase phonon modes in
the Meissner phase for Ns = 10, K /J = 0.8, φ = 0.1, Un/J = 0.2; c) out-of-phase mode in
the vortex phase for Ns = 10, K /J = 0.01, φ = π/4, Un/J = 0.2; d) in-phase modes in the
biased-ladder phase with Ns = 20, K /J = 1 and φ=π/2.

εM
k ≈ Ephk +τ(k2) (3.49)

where

Eph/J = J2π

K Ns

√
U

J

(
K 2

J 2
cos(φ/2)+

(
U

J
−2

K

J

)
sin(φ/2)2

)
. (3.50)

When comparing it to the energy of the Josephson mode which scales as the band gap
between the upper and lower branch of the excitation spectrum Eg ap ≈ K we predict that
the region where Josephson modes are allowed appears at very low K and φ (see Fig 3.14).
This is in agreement with the numerical simulations. Moreover, we obtain that Joseph-
son region shrinks at increasing the number of sites in the ring, thereby showing that the
Josephson modes are a finite-size effect.

3.7 Bogoliubov excitation spectrum for the lowest single-
particle branch

In this part, using the following ansatz (3.51)

|Ψ〉 = 1p
N !

(
β†

k1
e−iψ1 +β†

k2
e−iψ2

)N |0〉 (3.51)
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Figure 3.14: Sketch of phase diagram at fixed interaction strengh Un/J = 0.2 and Ns = 10
as deduced from the analysis of the excitation eigenmodes, summarizing the cases illus-
trated in Fig. 3.13. The coloured regions marked by letters indicate: a) Meissner phase
with lowest mode of Josephsontype, b) Meissner phase with lowest mode of charge type,
c) Vortex phase with lowest mode of spin type, d) Biased-ladder phase with lowest mode
of charge type.

for the ground state, we study the excitation spectrum of the vortex phase by analyzing the
Bogoliubov excitations on top of the lowest single-particle excitation branch β. The con-
tributions from the upper branch, which corresponds to particles created by the operators
α̂k , are negligible when the interaction strength is much smaller than the gap among the
lower and upper branch of the single-particle spectrum.

In order to perform the Bogoliubov analysis we start from the original Hamiltonian
(2.6) and compute the interacting part of the Hamiltonian in the free particle diagonal
basis {β†

k ,βk } (see [11]). we obtain

Hi nt = U

2Ns

∑
q,k,r

K (k −q,r +q,k,r )β†
k−qβ

†
r+qβkβr (3.52)

where the kernel K is given by K (q1, q2, q3, q4) = uq1 uq2 uq3 uq4 + vq1 vq2 vq3 vq4 .
Here we see that the restriction to the lowest branch yields a one-dimensional Bose gas
with effective non-zero range interaction potential. We then proceed by performing the
Bogoliubov approximation: we assume that the states k1 and k2 are macroscopically oc-
cupied and so approximate the operators in those states by C-numbers:

βk1 =
√

N0/2e iψ1 (3.53)

βk2 =
√

N0/2e iψ2 (3.54)

where N0 is the number of condensed particles in the whole system. We then rewrite the
Hamiltonian keeping up all terms up to quadratic order in operators βk 6=k1,k2 , β†

k 6=k1,k2
.

In order to conserve particle number within the Bogoliubov approximation we write the
number of condensed particles as a function of the total particle number using relation
N0 = N −∑

k 6=(k1,k2)β
†
kβk . This procedure yields the following quadratic Hamiltonian:

H = H (0) +HBog , (3.55)
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where H (0) is the mean field energy in the vortex phase given by:

H (0) = N E−(k1)+ U N n

4

[
1+2u2

k1
v2

k1

]
(3.56)

HBog = ∑
k 6=(k1,k2)

ε̃kβ
†
kβk +

∑
k
β†

2k1+kβ
†
−kU1,k +h.c

+∑
k
β†

2k2+kβ
†
−kU2,k +h.c +∑

k
β†

k1+k2+kβ
†
−kU12,k +h.c

+∑
k
β†

k1−k2+kβk (Ũ12,k + c.c)+∑
k
β†

k2−k1+kβk ( ˜̃U12,k + c.c)

where the coefficients ε̃k and Uk are detailed in Appendix C (corresponding to the Feyn-
man diagrams of Fig. 3.15)and n = N

Ns
. Writing down the Heisenberg equations of motion

for the operators of the excitations leads to 4Ns+1 coupled algebraic equations. Due to the
large dimensionality of the matrix to diagonalize, we make a low energy approximation:
i.e we impose a cut-off kc around each of the two minima in momentum space. This al-
lows us to truncate the hierarchy of equations and reduce the eigenvalue problem to four
coupled equations(see Appendix C for more details):

iħ∂t


β†

1,k
β1,−k

β†
2,k

β2,−k

= L


β†

1,k
β1,−k

β†
2,k

β2,−k

 (3.57)

Figure 3.15: Diagrams corresponding to the major scattering processes between modes of
the condensates and excitations.

3.8 Details on the approximation

As the mean-field solution is a periodically oscillating function, the excitations are like
particles in a periodic potential. If K /J is strong enough we are in a regime where the
amplitude of the mean field solution is relatively strong so we can try to model our excita-
tion in a tight binding regime as done in [101]. In the next section we will use numerical
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simulations (one can see in those simulation that low-energy modes are indeed localized
in the lattice created by the mean field solution). From this approximated Hamiltonian
we can compute the equation of motion for each operators. We notice when computing
the equation of motion for the operator βk1−k that it is linked to higher excitation modes
β−2k2+k1−k and β†

2k2−k1+k (see Eq 3.58).

i∂tβk1−k = ε̃k1−kβk1−k +2U1,−k1+kβ
†
k1+k

+2U2,−k1+kβ
†
2k2−k1+k +2ReU12,−k1+kβk2+k

+2ReŨ12,2k2+kβk2−k +2Re ˜̃U12,−2k2+k1−kβ−2k2+k1−k (3.58)

The goal of our approximation is to claim that this higher mode will be negligible at low
energy since they correspond to high energy excitation. But this hold if the two minima are
away from the peculiar value of ±π/2 since cause to periodicity of the system β−2k2−k1 will
be close toβk2 and so be relevant mode. In our study we are atφ=π/2 so that k2,1 ≈Φ±π/4
and indeed prevent the relevance of those higher modes. Cutting all those modes gives us
the following evolution matrix:

L =


−ε̃k1+λ −2e−2iψ1U∗

1,−k1+λ −2cos(ψ1 −ψ2) ˜̃U12,k1+λ −2e−i (ψ1+ψ2)U∗
12,−k1−λ

2e2iψ1U1,−k1+λ ε̃k1−λ 2e i (ψ1+ψ2)U12,−k1+λ 2cos(ψ1 −ψ2) ˜̃U12,k1−λ
−2cos(ψ1 −ψ2) ˜̃U12,k1+λ −2e−i (ψ1+ψ2)U∗

12,−k2−λ −ε̃k1−λ −2e−2iψ2U∗
2,−k2−λ

2e i (ψ1+ψ2)U12,−k2+λ 2cos(ψ1 −ψ2)Ũ12,k2−λ 2e2iψ2U2,−k2+λ ε̃k1+λ


(3.59)

Where all the functions stand for:

ε̃k = E−(k)−E−(k1)− U N

2Ns

(
1+2u2

k1
v2

k1

)
+ U N

Ns

(
u2

k1
u2

k + v2
k1

v2
k

)
+ U N

Ns

(
u2

k2
u2

k + v2
k2

v2
k

)
(3.60)

U1,k = U N

4Ns
K (k1,k1,2k1 +k,−k) (3.61)

U2,k = U N

4Ns
K (k2,k2,2k2 +k,−k) (3.62)

U12,k = U N

4Ns
2K (k1 +k2 +k,−k,k1,k2) (3.63)

Ũ12,k = 2U N

Ns
K (k1,k2,k1 −k2 +k,k) (3.64)

˜̃U12,k = 2U N

Ns
K (k1,k2,k2 −k1 +k,k) (3.65)

This approximation is justified for K /J << 1 and values of φ preventing higher order cou-
pling between the minima in k-space (k+3kd lying in another minimum) By analyzing the
eigenvalues of the evolution matrix L we find that they can take imaginary values and are
complex conjugate pairs [102] indicating the failure of the low-energy approximation.
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Conclusions of the chapter

In conclusion, in this work we have performed a detailed study of the excitation spectrum
of a weakly interacting Bose gas in a two-leg bosonic ring ladder subjected to an artificial
gauge flux. For all the three phases expected at weak interactions, i.e the Meissner, vortex
ad biased ladder phase, we have solved the Bogoliubov-de Gennes equations for the ring
ladder and calculated the dynamical structure factor. For a cigar-shaped gas and for a
one-dimensional gas in a linear atomic wave-guide, the dynamical structure factor has
been already experimentally measured. Here we propose that it is accessed in the ring
geometry by angular momentum spectroscopy.

Our main predictions are a single phonon-like dispersion at long wavelength in the
Meissner phase, a roton minimum emerging in the biased-ladder phase and two phonic
branches in the vortex phase. Furthermore, we find evidence of the underlying spatially
modulated structure of the vortex phase in the spectrum by a folding of the Brillouin zone
of the excitations.

Using the Bogoliubov excitations eigenmodes, we have also calculated the first-order
correlation function, monitoring the coherence of the gas, and found that it remains high
all over the ring. This feature, together with the diagonal long-range order in the vortex
phase is hallmarking the supersolid nature of the fluid. The emergence of supersolidity
in this system is quite remarkable, as, at difference from the spin-orbit coupled Bose gas,
the visibility of the fringes can be arbitrarily tuned thanks to the absence of interspecies
contact interactions in the current model.

Finally, we have shown the emergence of Josephson excitations in a finite ring, corre-
sponding to population imbalance oscillations among the two rings. We have found that
the Josephson modes appear both in the Meissner and vortex phase, in the latter case we
have found both homogeneous oscillations as well as spin-like excitations carrying a lon-
gitudinal momentum.

In outlook, it would be interesting to study the excitation spectrum at larger interaction
strengths, where the nature of the ground state changes onto a fragmented condensate
[71] or a fragmented Fermi sphere [103] at intermediate and large interactions respectively,
as we should see in the next Chapter.
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Chapter 4

Hard-core bosons

IN this chapter we study the ground state of a bosonic ring ladder under a gauge flux
in the vortex phase, corresponding to the case where the single-particle dispersion

relation has two degenerate minima. By combining exact diagonalization and an approxi-
mate fermionization approach we show that the ground state of the system evolves from a
fragmented state of two single-particle states at weak inter-particle interactions to a frag-
mented state of two Fermi seas at large interactions. Fragmentation is inferred from the
study of the eigenvalues of the reduced single-particle density matrix as well as from the
calculation of the fidelity of the states. We characterize these non-classical states by the
momentum distribution, the chiral currents and the current-current correlations.

A bosonic system is in a single Bose-Einstein condensate if its single-particle density
matrix has one macroscopic eigenvalue (i.e order of the number of particles) [61]. If the
single-particle density matrix has more than one macroscopically occupied eigenvalue,
then the state is named fragmented [104, 105]. Nozières and Saint James [104] demon-
strated that no fragmentation can take place in a homogeneous Bose gas with repulsive
interactions. For dispersion relations with degenerate minima, instead, fragmented states
may emerge [106, 107, 72].

Such a type of dispersion relation occurs in the vortex phase of double ring lattices,
displaying in particular a two-minima structure. Here, we investigate the nature of the
system’s ground state at arbitrary interactions. The mean-field approach assumes a co-
herent state, made of a superposition of single-particle occupancies of each minimum.
However, it has been shown that the ground state at small lattice fillings and weak inter-
actions is indeed a fragmented state constructed with single-particle momentum states
[71]. This result can be related to the studies of spin-orbit coupled systems, which share
the same type of Hamiltonian as bosonic flux ladders, and where the fragmentation was
also observed with an ab-initio numerical study [72]. In this work, we explore the fate of
the fragmented state at increasing interactions. In particular, we show that strong repul-
sive interactions destroy the fragmented single-particle state, and give rise to a novel type
of non-classical state, which can be described as a fragmentation of two Fermi spheres.
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The ground state crossover is analyzed by studying the correlation functions as implied in
the the one-body density matrix and the specific changes in the configuration of the cur-
rents flowing in the ladder.

The chapter is organized as follows. In Sec.4.1 we introduce the necessary tools on the
Bose-Fermi mapping. In Sec.4.2 we review the physics of fragmentation largely inspired
by [105] which provide a more complete description of fragmentation in many-body sys-
tem. In Sec.4.3, we introduce the model Hamiltonian and discuss the different properties
of the ground states in the different physical regimes of the ladder; in addition we sketch
the analytical methods (an approximate fermionization scheme) that we employ to study
the different system’s observables we refer to. In the Sec.4.4, we present the results ob-
tained with the analytical methods and compare them with the exact diagonalization; our
findings are corroborated by the study of the configuration of currents flowing in the ring
ladder. Finally Sect. 4.4.5, is devoted to a summary and concluding remarks.

4.1 Tonks-Girardeau Bose-Fermi mapping

We consider a system of one-dimensonal bosons interacting via contact interaction v(x −
x ′) = gδ(x − x ′) at infinitely strong interactions g →∞ an exact solution provided by the
Bose-Fermi mapping [108]. This method is extremely powerful as it can deal with arbitrary
external potential of the Lieb-Liniger Hamiltonian (1.22). It allows to evaluate the exact
many-body wave function with trapping potential. The idea of the mapping lies on the fact
that the physics is dominated by the interaction between the particle and bosons cannot
occupy the same position in space. This constraint mimics the Pauli exclusion’s principle
for fermions, and causes the bosons to show fermionic properties. Therefore, the many-
body wave function of bosons can be written in terms of the non-interacting fermionic
wave function, times a mapping function A (x1, ..., xN ) =∏

j<l sign
(
x j −xl

)
ΨTG(x1, ..., xN ) =A (x1, ..., xN )

1p
N !

det
[
ψl (xm)

]
(4.1)

where ψl (xm) are the eigenfunctions of the non-interacting problem and the determi-
nant of such set of function is the Slater determinant that provide the solution of a non-
interacting many-body fermionic system. The mapping factor A restores the symmetry
properties of the bosonic gas under exchange of particles. The Tonks-Girardeau gas [108],
proposed more than 50 years ago, was experimentally realized on a lattice [109](see Fig
4.1) and in a one-dimensional atomic wave-guide [59].

Observables that only depend on the absolute value of the wave function of hard-core
bosons within the Tonks-Girardeau mapping are the same as those of free fermions as
the overall phase factor emerging from the mapping factor A cancels. For example, the
density profile and the density correlation functions will be the same. On the other hand,
quantities connecting wave functions in different point in space like the one-body density
matrix or the momentum distribution will have a different behavior than the one of an
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Figure 4.1: Momentum distribution of the 1D atomic gas in an optical lattice. The dots rep-
resent measured data whereas the lines correspond to the computed momentum distribu-
tions. The green dotted line represents ideal bosons, the yellow dashed line represents the
ideal Fermi gas and the gray solid line represents the TG gas. Due to the non-uniformity of
the TG gas on the lattice, the slope of the linear part in the double logarithmic plot deviates
from the expected 1/2 behaviour of the uniform TG gas indicated in short dashes (Figure
from [109]

ideal Fermi gas (see Fig 4.2). The momentum distribution of a Tonks-Girardeau gas will
display k−1/2 divergences when k → 0 whereas for ideal fermions the momentum distri-
bution is a flat Fermi surface (see Fig 4.2).

On a one-dimensional lattice the Bose-Fermi mapping, from bosonic bl operator to
fermionic cl at site l , is ensured via the Jordan-Wigner transformation [111]

cl =
l−1∏
j=1

e
iπb†

j b j bl . (4.2)

This transformation ensures that the fermionic operators cl have anti-commutation rela-

tion i.e,
{

cl ,c†
m

}
= δl ,m . Moreover, due to the space Pauli exclusion principle, the bosonic

operators have mixed commutation relation, i.e
[

bl ,b†
m

]
=

[
b†

l ,b†
m

]
= [bl ,bm] = 0 when

m 6= l and
{

bl ,b†
m

}
= 1 when m = l so that we indeed get a mixed algebra of on-site fermion
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Figure 4.2: Schematic representation of the momentum distribution of a ideal Fermi gas
(n f f (kx)) and Tonks-Girardeau gas (nhcb(kx)). Taken from [110]

and off-site bosons, this really underlying the fact that local quantities for fermions and
hard-core bosons are the same and off-diagonal correlations will differ. Hard-core bosons
on a finite lattice periodic system display ensure a similar behavior with some additional
mesoscopic effects (see Fig 4.3) namely that the divergence in the momentum distribution
at k = 0 is removed [112]. The peak in the momentum distribution at k = 0, nk=0 scales as
nk=0 = C (ρ)

p
N where N is the number of particles and C a density dependent function

finite size correction appears so that nk=0 will scale as nk=0 =C (ρ)
p

N −D(ρ) .

Figure 4.3: Density profile (left panels) and momentum distribution (right panels) of a gas
of hard-core bosons on a one-dimensional lattice. Taken from [112]
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4.2 Fragmentation

As mentioned in chapter 1.3.1 the concept of BEC is defined as the macroscopic occupa-
tion of the first eigenvalue of the one-body density matrix ρ(1)(r,r′) = 〈ψ†(r)ψ(r′)〉, whereψ
stands for the bosonic field operators. In the basis of an orthogonal set of eigenfunctions
fi (r) (natural orbitals) with corresponding eigenvalue Ni , i.e

∫
ρ(1)(r,r′) fi (r′)dr′ = Ni fi (r)

,the one-body density matrix takes a diagonal form

ρ(1)(r,r′) =∑
i

Ni fi (r′)∗ fi (r) (4.3)

and
∑

i Ni = N , where N is the number of particle in the system. Fragmentation is defined
as the macroscopic occupancy of a q > 1 eigenvalue, i.e that Ni<q ∼ O(N ) and Ni>q ∼
O(N 0). Many different kinds of fragmentation can occur in physical bosonic system [105].
The condensate can be fragmented in space or momentum space. One historical example
is the Nozières one [104] which is a model of N bosons belonging to two internal states
labeled 1 and 2. This model can for example describe a double well in the quantum regime
and the Hamiltonian reads as follows

H = ε1a†
1a1 +ε2a†

2a2 + g

2
(a†

1a†
2a2a1 +n1n1 +n2n2), (4.4)

where g is the interaction strength between the bosons and can be either repulsive (g > 0)
or attractive (g < 0). The ground state is made of N1 bosons in well 1 and N2 bosons
in well 2. For repulsive interactions g > 0 and the ground state is two-fold degenerate
with state |N ,0〉 and |0, N〉. For g < 0 the ground state however is fragmented with Fock-

state |Frag〉 = a
N1
1 a

N2
2p

N1!N2!
|0〉. One has then to compare the energies of two different states, a

fragmented state and a single condensate state

|Frag〉 = aN1
1 aN2

2p
N1!N2!

|0〉 |Bec〉 = aN
1p
N !

|0〉 (4.5)

where the one-body density matrix reads for each one

ρFrag = 〈a†
i a j 〉 =

(
N1 0
0 N2

)
ρBec = 〈a†

i a j 〉 =
(

N1 0
0 0

)
(4.6)

If one looks only at the interaction energy (i.e ε1 = ε2 = 0) when comparing the energy of
the gas in fragmented state and BEC state we see that

∆E = 〈H〉Frag −〈H〉Bec = g N0N1 (4.7)

so that interactions play a key role on the ground state property of the gas: when g > 0 (re-
pulsive interactions) it prevents from having a fragmented state whereas when g < 0 the
condensate will be fragmented. The situation changes when considering states spatially
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separated as in the case of the double well. The Hamiltonian is slightly changed, com-
pared to the situation explained earlier, in order to add tunneling between the wells and
to remove interaction between species.

H =−t
(
a†

1a2 +a†
2a1

)
+ g

2
(n1(n1 −1)+n2(n2 −1)) (4.8)

This system is exactly solvable [105], we will not give the derivation here but provide the
important physical results. For g = 0, the single particle eigenstates are the symmetric
state (a1 + a2)/

p
2|0〉 with energy Es = −t and anti-symmetric state (a1 − a2)/

p
2|0〉 with

energy Ea = t so that the symmetric state describes the ground state of the system that is

a coherent state of this symmetric eigenstates |Coh〉 = 1
2N N !

(
a†

1 +a†
2

)N |0〉 which is clearly

not fragmented. In the case of non-zero interactions the physical situation will be quite
different as the ground state will depend again on the sign of the interactions. For attrac-
tive interactions the ground state is fragmented as the fluctuation in the number of parti-
cles are suppressed and the transition from coherent state to fragmented state is induced
by the increase of the phase fluctuation. When interactions are repulsive the ground state
will be a Schrödinger cat-like state |Cat〉 = 1/

p
2(|N ,0〉+ |0, N〉) as the interaction term

g /4(n1 −n2)2 will favor a different number of particle in the two wells.
An important conclusion is that the fragmented state in this example is favored in meso-
scopic system as the transition from coherent to fragmented state takes place for t/g >
1/N [105]. In what follows we will study the fragmentation effects in the double ring lattice
under gauge fields. Even though we saw that in double well structure the fragmentation
is deeply linked to the sign of the interaction, in the double ring the fragmentation arise
more from the degeneracy of the single particle dispersion relation than from the interac-
tion process as said in the introduction. Indeed, if the single-particle dispersion relation
exhibits degeneracy of the lowest energy state, then the condensation can take place in
any of those minima or simultaneously in all of them.

4.3 Fragmented Fermi seas

The concepts of fragmentation and fermionization introduced so far will be useful to un-
derstand the strongly interacting regime for the double ring system that we will study now
in the quantum regime. In the tight-binding approximation we model the system using
the Bose-Hubbard Hamiltonian (2.6)

Ĥ = Ĥ0 + Ĥi nt =

−
Ns∑

l=1,p=1,2
Jp

(
a†

l ,p al+1,p e iΦp +a†
l+1,p al ,p e−iΦp

)
−K

Ns∑
l=1

(
a†

l ,1al ,2 +a†
l ,2al ,1

)
+ U

2

Ns∑
l=1,p=1,2

a†
l ,p a†

l ,p al ,p al ,p (4.9)
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where we recall that the angular position on the double ring is given by θl = 2π
Ns

l where
l is an integer l ∈ [1, Ns] with Ns the number of sites in each ring, J1 and J2 are the tun-
neling amplitudes from one site to another along each ring, K is the tunneling amplitude
between the two rings, Φ1,2 are the fluxes threading the inner and outer ring respectively
and U the on-site interaction. As in chapter 2, we introduce the relative flux φ =Φ1 −Φ2

and average fluxΦ= (Φ1 +Φ2)/2. We will restrict our self to the case ofΦ= 0.
In order to characterize the ground state of the system we use various observables: the

momentum distribution in ring p is defined as nk,p = 〈â†
k,p âk,p〉, with

âk,p = 1p
L

L∑
m=1

âm,p e i mk , (4.10)

where k is the wavevector in units of inverse lattice spacing. The current operator at po-
sition m along the same ring is defined as ĵ ∥m,p =−i J (â†

m,p âm+1,p −h.c.), where p labels

the rings. We define the chiral current in the ladder as ĵc = 1
L

∑
m( ĵ ∥m,1 − ĵ ∥m,2). The inter-

ring current operator at site m is ĵ⊥m =−i K (â†
m,1âm,2 −h.c.). Correspondingly, we define

the current-current correlation of the current between the rings
〈

ĵ⊥0 ĵ⊥m
〉

and the current

inside the ring
〈

ĵ ∥0 ĵ ∥m
〉

. We also investigate the density-density correlations in the leg

∆nm = 〈n̂0n̂m〉−〈n̂0〉〈n̂m〉 and between legs ∆n⊥
m = 〈n̂1

0n̂2
m〉−〈n̂1

0〉〈n̂2
m〉.

By Fourier transforming, the Hamiltonian (Eq. 4.9) is readily expressed in momentum
space (see Appendix A). It is useful to transform the above Hamiltonian to a new basis,
which is diagonal in absence of interactions. We call this the “diagonal" basis. By using
the transformation (

âk,1

âk,2

)
=

(
vk uk

−uk vk

)(
α̂k

β̂k

)
, (4.11)

where uk and vk are given by

vk =

√√√√√√1

2

1+ sin(2πφ)sin(k)√
(K /2J )2 +sin2(2πφ)sin2(k))

 (4.12)

uk =

√√√√√√1

2

1− sin(2πφ)sin(k)√
(K /2J )2 +sin2(2πφ)sin2(k))

 (4.13)

the non-interacting part of the Hamiltonian becomes

Ĥ0 =
∑
k

E+(k)α̂†
kα̂k +E−(k)β̂†

k β̂k , (4.14)

with E± =−2J cos(k)cos(2πφ)±
√

K 2 +4J 2 sin2(k)sin2(2πφ). In the vortex phase the low-
est branch E−(k) of the dispersion relation has two degenerate minima at

k1,2 =±arcsin

√
sin2(2πφ)− K 2

(2J tan(2πφ))2
(4.15)
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It will be useful to study the momentum distributions in the diagonal basis, ie the one of
the lower branch nβ(k) = 〈β̂†

k β̂k〉 and the one of the upper branch nα(k) = 〈α̂†
kα̂k〉

In the vortex phase, for very small ring-ring coupling K and small, non-zero interaction
strength U , the ground state is fragmented, i.e. displays macroscopic occupation of the
two single-particle momentum states k1,2 as described by the the ansatz [71]

|Ψ(sp)
0 〉 = β̂†

k=k1

N /2β̂†
k=k2

N /2 |0〉 . (4.16)

Notice that the ground state is built only with the field operators β associated to the lowest
branch of the dispersion relation, and the problem has been mapped to an effectively one-
dimensional one. In the presence of interactions, the effective one-dimensional Hamilto-
nian restricted to the lowest branch reads

Ĥ =∑
k

E−(k)β̂†
k β̂k

+ U

2Ns

∑
q,k,r

κ(k −q,r +q,k,r )β̂†
k−q β̂

†
r+q β̂k β̂r (4.17)

where the kernel κ(k − q,r + q,k,r ) = uk−q ur+q uk ur + vk−q vr+q vk vr is an effective in-
teraction potential in momentum space, which has some involved momentum structure.
However, if the ratio K /J is small, the parameters uk and vk can be approximated as con-
stants for wavevector k close to k1 and k2. In this case, for the sake of finding the ground
state, the Hamiltonian is equivalent to the one of a one-dimensional Bose gas with contact
interactions with a single-particle dispersion E−(k).

At increasing interaction strength, clearly the fragmented single-particle state ansatz
(4.16) is not expected to describe the ground state state of the system well, since repul-
sive interactions give rise to a spread in momentum occupancy. In the regime U →∞ of
very strong repulsion, we predict an effective fermionization of the ground state, ie two
particles cannot occupy the same single-particle state and we propose the following frag-
mented Fermi-sea ansatz:

|Ψ(F s)
0 〉 = ∏

−kF+k1<k<kF+k1

ĉ†
k

∏
−kF+k2<k<kF+k2

ĉ†
k |0〉 . (4.18)

where kF is the Fermi wavevector corresponding to N /2 particles and ĉ†
k the fermionic

creation operator for the lower band of the non-interacting Hamiltonian (e.g.
{

ĉ†
k , ĉ†

k ′

}
=

δk,k ′ , where {.} is the anti-commutator). This ansatz is only valid as long as the Fermi
energy is smaller than the energy of the upper band, i.e EFermi < E+(k).

4.3.1 Bose-Fermi mapping

Using the fragmented Fermi sea ground state, in the U = ∞ limit we calculate the one-
body density matrix and the momentum distribution of the gas using a mapping onto
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non interacting fermions. In detail, we Fourier transform the ansatz into real space, then
apply the Jordan-Wigner transformation introduced in Sec 4.1

b̂†
i = c†

i

i−1∏
j=1

e
−iπc†

j c j b̂i =
i−1∏
j=1

e
iπc†

j c j ci (4.19)

Hard-core bosons and non-interacting fermions have the same spectrum in one dimen-
sion. Differences between the two appears in off-diagonal correlation functions, eg in the
one-body density matrix. Using the relation between the one-body density matrix ρi j and

the one-particle Green’s function Gi j = 〈bi b†
j 〉

ρi j = 〈b†
i b j 〉 =Gi j +δi j (1−Gi i ), (4.20)

we calculate the one-body density matrix using a method developed by Rigol and Mura-
matsu [112]. In particular the one-particle Green’s function can be expressed in term of
our ansatz and fermionic operators according to

Gi j = 〈Ψ(HC B)
0 |bi b†

j |Ψ(HC B)
0 〉

= 〈Ψ(F s)
0 |

i−1∏
p=1

e iπc†
p cp ci c†

j

j−1∏
s=1

e−iπc†
s cs |Ψ(F s)

0 〉 (4.21)

where |Ψ(HC B)
0 〉 is the ground state for hard-core bosons.

4.4 Numerical results

4.4.1 Fidelity with respect to fragmented states

In order to infer the nature of the ground state of the system we calculate the fidelity of the
ground state obtained by exact diagonalization of the many-body Hamiltonian with the
Lanczos algorithm and we project it onto the two ansatz states discussed in Sec.4.3, i.e. we
take F = ∣∣〈Ψ0|ψGS〉

∣∣2 , where |Ψ0〉 is either the single-particle fragmented state Eq.(4.16)
or the Fermi-sea fragmented state Eq.(4.18). Notice that since we use a real-space basis
for the numerical diagonalization we perform first a Fourier transform of the ansatz state
onto real-space.

Our results are shown in Fig.4.4. In the left panel we show that the fidelity with respect
to the single-particle fragmented state decreases at increasing interactions. In the right
panel, we show that the fidelity with respect to the fragmented Fermi sea increases with
interaction. For weak inter-ring coupling, we reach nearly unity fidelity for U /J > 10 for
any flux, thus confirming the validity of our ansatz.

For strong inter-ring coupling, where the description of hard-core bosons breaks down,
we find that the fidelity stays below one for any interaction and its value depends strongly
on the choice of flux values. In this case there is no simple analytical description since
bosons belonging to the lower band interact with a long-range interacting potential.
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Figure 4.4: Fidelity (dimensionless) of the ground state obtained from numerical diag-
onalization as a function of respectively interaction strength in units of tunnel energy J
and flux φ (dimensionless): a) and c) with respect to the single-particle fragmented state

|Ψ(sp)
0 〉 and b) and d) with respect to the fragmented Fermi sea |Ψ(F S)

0 〉. The parameters
used are L = 12, N = 6. The values of K /J and φ are indicated in the figure legend for a)
and b). For panels c) and d) interaction strength are specified in the figure legend and
K /J = 0.1. A third dip occurs in panels c) and d), in correspondence of the third jump in
the chiral current but is not resolved in this figure.
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Fidelity at varying flux (see Fig.4.4 panels c) and d)) exhibit discontinuities associated
to change of quantized momenta and jumps in the chiral current (see Fig.4.5a)). At those
transitions the eigenvalues of the single-particle density matrix are 4-fold degenerate im-
plying that the description in terms of the single-particle fragmented state (4.16) and frag-
mented Fermi sea (4.18) ansatz breaks down.

In the following, we provide an analysis of the observables characterizing the ground
state of the system and identify the ones needed to infer the fragmented nature of the state
in the vortex phase.

4.4.2 Currents

First, we show that the study of chiral currents can be used to identify unequivocally the
vortex phase in parameter space, both in the interacting and non-interacting regime.

The Hamiltonian (4.9) in absence of interactions features the Meissner to vortex tran-
sition. At weak interactions, an additional biased ladder phase is found. At stronger inter-
actions, chiral Mott insulating phase with Meissner like current and vortex Mott insulating
phase are predicted [15, 13].

In Fig.4.5a) we show the chiral current as a function of the gauge field φ in the non-
interacting case. The Meissner phase has an increasing chiral current, whereas the current
decreases in the vortex phase. For finite-sized rings, the current acquires a step structure,
each jump being associated to a integer change of the phase winding. This signals the
formation of a vortex pair in the rings [66]. In Fig.4.5b) we show the chiral current at in-
creasing inter-ring tunneling K /J . We see that a change of behaviour occurs in the chiral
currents in correspondence to the transition from the vortex phase at low values of K /J
to the Meissner phase at large K /J : a jump in the chiral current is found in the finite
size-system while the chiral current is continuous with discontinuous derivative in the
infinite-size limit. We expect the transition to be of first order in analogy to the case of
spin-orbit-coupled bosons [113].
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Figure 4.5: Chiral current jc (in units of J ) a) as a function of flux φ (dimensionless) for
K /J = 1 for different ring lengths L. b) as a function of inter-ring coupling K (in units of J )
for φ= 1/8. In both panels we have taken U = 0 and half filling of the lattice.
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The chiral current for interacting systems is shown in Fig.4.6. We see that even though
interactions smooth out the steps of the current and reduces the positions of the steps
to lower values of K /J , overall it is still possible to infer the vortex phase as the regime
where chiral current has a decreasing and oscillating behaviour as a function of the flux
φ. Similarly to the non-interacting case, the transition from vortex to Meissner phase is
visible by studying the dependence of chiral current on inter-ring coupling K /J .
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Figure 4.6: a) Chiral current (in units of J ) as a function of fluxφ (dimensionless) for K /J =
1 and on-site interaction U /J as indicated in the legend b) Chiral current as function of
inter-ring coupling K /J for φ = 1/8 and interaction strength as indicated in the legend.
The other parameters are L = 12 and N = 6 particles.

4.4.3 Current-current correlations

Another way to identify the vortex phase is the study of current-current correlations [114].
For linear ladders the ground state in the vortex phase is characterized by a vortex

structure along the ladder, a modulation of the density along the legs, and a modulation of
the current between rungs. In the case of coupled lattice rings, corresponding to periodic
boundary conditions, these features are not visible since the ground state displays rota-
tional invariance. In this case as the vortex phase sets in, the mentioned features are en-
coded in the correlation functions. In particular, the current-current correlation

〈
j⊥0 j⊥x

〉
,

where j⊥x is the current operator for the current between the rings, show a clear vortex
structure in Fig.4.7.

4.4.4 Density-density correlations

Next, we show that density-density correlations of the ground state may be used to infer
the onset of strong correlations and the fermionized regime.

A hallmark of fermionization is the presence of Friedel-like oscillations, characterized
by wavevevector 2kF , with kF the Fermi wavevector. These are found e.g. in the density-
density correlation function ∆nm , shown in Fig.4.8 along one chosen ring (same results
are found for the other ring). For small inter-ring coupling, we observe the build-up of
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Figure 4.7: Inter-ring current-current correlation function
〈

j⊥0 j⊥x
〉

in units of J 2 at varying
flux φ (dimensionless) and lattice position m for L = 60, Np = 2, U /J = 1 and K /J = 1.

Friedel-like oscillations at increasing interaction, with wavelength corresponding to four
times the lattice spacing, corresponding to the chosen average lattice filling in each ring.
For large values of K /J , the system is not any more quasi-one-dimensional. In this case
we find that the wavelength of Friedel oscillations changes with the applied flux.

4.4.5 One-body density matrix and momentum distribution

Finally, in this section we show that the study of the first-order correlations and momen-
tum distribution allows us to obtain information about fragmentation.

The momentum distribution in each ring A and B is plotted in Fig.4.9. We see that
at weak inter-ring coupling the momentum distribution is centered in each of the two
minima k = k1 or k2, corresponding to the applied gauge flux on each ring.

The momentum distribution in the diagonal basis, corresponding to occupation of
lower and upper excitation branch in momentum space, is plotted in Fig.4.10 and 4.11
for two choices of the inter-ring coupling. It displays a two-peak structure, correspond-
ing to the two minima of the single-particle dispersion relation k = k1,k2. We notice first
that most of the population occupies the lower branch, while the upper branch popu-
lation is two orders of magnitude smaller. This validates the reduction to an effective
one-dimensional system corresponding to the lower branch discussed in Sec.4.3. Focus-
ing on the lower-branch momentum distribution, we notice that at strong interactions
the momentum distribution broadens due to interaction effects as well as develops large-
momentum tails characteristic of strongly-interacting regime. The peaks remain well de-
fined even in the fermionized limit, as typical of bosonic statistics, though their width
coincides with the kinetic energy of the corresponding Fermi gas. The width of the mo-
mentum distribution for bosons and fermions is shown in the Appendix.

The width of the momentum distribution κ=∑
k k2nk is shown in Fig.4.12. At increas-
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Figure 4.8: Density-density correlation function ∆nm (dimensionless) as a function of the
position m along the lattice. a) K /J = 0.1, φ= 1/4 b) K /J = 0.1, φ= 1/6 c) K /J = 1, φ= 1/4
d) K /J = 1,φ= 1/6. The other parameters are N = 6, L = 12 and the fluxφ is dimensionless.

a b

Figure 4.9: Momentum distribution (dimensionless) as a function of the wavevector k (in
units of inverse of lattice spacing) in the leg basis for leg 1 with a) K /J = 1, φ= 1/4 b) φ=
1/6. The momentum distribution in ring 2 is the same graph reflected at zero momentum.
The calculations are performed with N = 6 particles in total in the two rings and L = 12
sites per ring.
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Figure 4.10: Momentum distribution (dimensionless) as a function of the wavevector k
(in units of inverse of lattice spacing) in the diagonal basis for weak inter-ring coupling
K /J = 0.1 with a,b) φ = 1/4 c,d) φ = 1/6. a,c) shows the lowest branch, b,d) shows the
upper branch. We take N = 6 particles in total in the two rings and L = 12 sites per ring.

Chapter 4. Hard-core bosons 85



4.4. Numerical results

f

−1 0 1

k/π

0

1

2

3

n
β

(k
)

U/J = 1
U/J = 5
U/J = 40

a

−1 0 1

k/π

0.000

0.005

0.010

n
α

(k
)

b

−1 0 1

k/π

0

1

2

3

n
β

(k
)

c

−1 0 1

k/π

0.00

0.02

0.04

0.06

n
α

(k
)

d

Figure 4.11: Momentum distribution (dimensionless) as a function of the wavevector k
(in units of inverse of lattice spacing) in the diagonal basis for strong inter-ring coupling
K /J = 1 with a,b) φ= 1/4 c,d) φ= 1/6. a,c) shows the lowest branch, b,d) shows the upper
branch. We take N = 6 particles in total in the two rings and L = 12 sites per ring.
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ing interactions and small-interring coupling it tends to the fermionic value, thereby fur-
ther confirming the fermionized nature of the state.

Figure 4.12: Width of the momentum distribution κ = ∑
k k2nk (in units of the inverse

of the square of the lattice spacing) as a function of interaction strength U /J for various
values of φ and K . The red dashed line is the corresponding value for non-interaction
fermions. The calculations are performed for N = 6 particles, L = 12 sites.

We finally analyze the single particle density matrix (SPDM), which is independent
of the chosen basis and whose Fourier transform yields the momentum distribution. By
analyzing its eigenvalues, in the case of weak inter-ring coupling we find that for all values
of interactions, it displays a double degeneracy of the two largest eigenvalues, as shown
in Fig.4.13 and Fig.4.14. The degeneracy of the two largest eigenvalues of the one-body
density matrix provides a strong indication of fragmentation.

As already noticed in the study of other observables, for strong inter-ring coupling the
quasi-one dimensional description does not apply. We see in particular that the eigen-
values decay faster with increasing interactions, in a flux-dependent way, indicating the
important role of the transverse direction in this case.

Degeneracy of eigenvalues : We provide further information about the eigenvalues of
the reduced one-body density matrix of the double ring. In particular, Fig.4.14 shows the
eigenvalues in decreasing order, at various values of the system parameters. One sees that
the two largest eigenvalues are degenerate both at small and larger values of both K /J and
φ, thus indicating fragmentation of the state for all choices of parameters investigated in
this work.
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Figure 4.13: Two largest degenerate eigenvalues λ (superimposed, indicated by a single
line) of the single particle density matrix as a function of interaction strength U /J for dif-
ferent values of flux φ and inter-ring coupling K /J as indicated in the legend. The param-
eters use in the calculation are L = 12, N = 6.
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Figure 4.14: Single particle density matrix eigenvalues λn (dimensionless) ordered in de-
scending order n for a) K /J = 0.1, φ = 1/4 b) K /J = 0.1, φ = 1/6 c) K /J = 1, φ = 1/4 d)
K /J = 1, φ= 1/6. First two eigenvalues are degenerate. Results for N = 6 particles, L = 12
sites.

Conclusions of the chapter

In this chapter we have studied the ground-state properties of two tunnel-coupled lattice
rings in the quantum regime. In particular, we have shown that the ground-state of the
system is always fragmented at any interaction strength, and the nature of the fragmented
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state depends on the interaction strength: for weak interactions it consists of fragmenta-
tion among two single-particle states, while for strong interactions it corresponds to two
fragmented Fermi seas. This Fermi seas description holds provided that the tunnel cou-
pling between the two rings is sufficiently weak and the flux threading the system relatively
strong. This allowing for an analytical ansatz which well describes the limits of very weak
or very strong interactions.

The information of the nature of the state can be inferred by combining the knowledge
of various observables: the study of chiral currents and current-current correlation func-
tions allow to identify the vortex phase. By increasing interactions, the flux dependence
of the currents across the transitions between states with different winding numbers is
smoothed out - see Fig.4.6. The density-density correlation function shows the onset to
fermionization via the appearance of Friedel-like oscillations at large interactions, and a
double-peak structure in the momentum distribution together with the demonstration of
degenerate eigenvalues of the one-body density matrix establishes the fragmented nature
of the state. In outlook, it would be interesting to explore the crossover from quantum
regime at very weak filling considered in this work and the mean-field Gross-Pitaevskii
description used in the case of very large number of bosons per lattice site.
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Chapter 5

Quantum fluctuation effects, Luttinger
liquid description

IN this chapter we will use the framework of the Luttinger liquid approach to de-
scribe the double ring under artificial gauge fluxes. The approach consists of con-

sidering the continuous limit of the lattice system considered in the previous chapters.
As mentioned earlier, many theoretical works have treated the subject of infinite bosonic
ladder under gauge fluxes with contact interactions [12, 115], inter-rung interaction and
long range interactions. The case of periodic boundary conditions have not been adressed
so far, while studies have been carried out in the case of open boundary conditions in or-
der to cope with density-matrix-renormalization-group numerical calculations (DMRG, a
very powerful numerical tool to solve 1D problems).
The chapter is organized as follows: in Sec. 5.1 we introduce the fundamental notions
of the Luttinger liquid theory as well as sine-Gordon model renormalization group equa-
tions. In Sec. 5.2 we bosonize the Hamiltonian of the double ring and, using the mode ex-
pansion of the field operators, we show the properties of mesoscopic rings in both Meiss-
ner and Vortex phase through the studies of various physical observables.

5.1 Bosonization and Luttinger liquid

A very elegant way of solving many-body strongly correlated fermionic system in 1D was
provided by Luttinger [116]. As the interaction term between fermions is the product of
four fermionic field operators and can naively be seen as a product of two bosonic fields
corresponding to density fluctuations, he provided a solution in terms of free bosonic
operators. Tomonaga[117] was the first to relate fermionic excitations to boson-like be-
haviour [117], paving the way for a description of many-body interacting fermionic sys-
tem in terms of bosonic operators. Haldane was then the one who realized that a one-
dimensional system who exhibit gapless linear spectrum can be treated within the same
framework, defining a universality class of systems sharing similar behavior and critical
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exponents. This universality class of systems called "Luttinger liquid" by Haldane includes
1D Hubbard model at half-filling, 1D electron-phonon systems or metals with impurities
as well as the edge states in the quantum Hall effect. The Bose gas with repulsive contact
interactions falls also in this universality class of fermionic systems due to the absence of
well defined statistics in 1D.
Following Cazalilla [118] we introduce the harmonic-fluid approach developed by Hal-
dane [119]. In order to describe 1D bosonic gases of size L, the relevant low-energy Hamil-
tonian is expressed as

H L = ħv

2π

∫ L

0
d x

[
KL

(
∂xφ(x)

)2 + 1

KL
(∂xθ(x))2

]
(5.1)

where v is the sound velocity and KL is the Luttinger parameter, corresponding to the
compressibility of the gas. These coefficients are introduced phenomenologically in the
equation. They depend on the microscopic properties of the system, usually accessible
by means of numerical or, when available exact calculations: Bethe Ansatz for the Lieb-
Liniger model of bosons or in the hard-core interaction limit via Tonks-Girardeau Bose-
Fermi mapping. The two fields φ(x) and ∂xθ(x) correspond respectively to phase and
density fluctuations around a certain mean value, and satisfy the following commutation
relation [

∂xθ(x),φ(x ′)
]= iπδ(x −x ′). (5.2)

One can then identify two regimes. For large values of the Luttinger parameter KL , the sys-
tem is in a weakly interacting regime where density fluctuations are important and phase
fluctuations are reduced and behave classically. This regime is analogus to a BEC phase
without symmetry breaking due to the Mermin-Wagner theorem [64]. If KL is small then
the phase has large fluctuations and the density behave classically corresponding almost
to a crystal.

5.1.1 Correlation functions

Correlation function in the gapless phase

For a single-component Luttinger liquid Hamiltonian (see Eq. 5.1), the excitation spec-
trum is gapless and it is easy to calculate its correlation functions as the Hamiltonian is
quadratic. Let us consider the following correlation function, that is the one-body density
matrix 〈Ψ†(x)Ψ(x ′)〉. To lowest order, within bosonization, it reads

〈Ψ†(x)Ψ(x ′)〉 = ρ0〈e−iφ(x)e iφ(x ′)〉 (5.3)

For an infinite system this can be calculated [120] using bosonization techniques and
reads,

〈Ψ†(x)Ψ(x ′)〉 = ρ0

(
d

x −x ′

) 1
2KL

(5.4)
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where d is a short distance cut-off. The situation becomes more complex when one needs
to consider a finite system with given boundary conditions. A good way to treat bound-
ary conditions is to use conformal field theory approach, that is well suited for Luttinger
Hamiltonian as the theory is self critical [120]. When computing the correlation function
with periodic boundary condition within the framework of conformal field theory (see Ap-
pendix of [118] and Appendix E of this thesis) one has

〈Ψ†(x)Ψ(x ′)〉pbc = c0,1ρ0

[
1

ρ0d(x −x ′|L)

] 1
2KL

e iπ〈J〉(x−x ′)/L (5.5)

where 〈J〉 is the expectation value of the zero mode of the mode expansion of the fieldφ(x)
and correspond to the kinetic momentum of the system, c0,1 is a non-universal coefficient
that depends on the system and d(x|L) = L|sin(π|x|/L)|/π is known as cord function, ap-
pearing due to the finite size of the system. It measures the length of a cord between two
points separated by an arc x in a ring of circumference L.

Density-density correlation

We consider next the density-density correlation function, which does not depend on
statistics, within harmonic fluid approach. Keeping only the leading term of the corre-
lation function with periodic boundary conditions we have

〈ρ(x)ρ(0)〉pbc =
[

1

π2
〈∂xθ(x)∂xθ(0)〉+ρ2

0

∞∑
m=−∞

e2πi mρ0x〈A2m,0(x)A−2m(0)〉pbc

]
(5.6)

= ρ2
0

[
1− KL

2π2

[
1

ρ0d(x|L)

]2

+ ∑
m>0

am

[
1

ρ0d(x|L)

]2m2KL

cos(2πmρ0x)

]
(5.7)

where the vertex operators Am,n(x,τ) are defined within conformal theory in the Appendix
of [118]. For an infinite system this correlation function reads

〈ρ(x)ρ(0)〉 = ρ2
0

[
1− KL

2

1

(πρ0x)2
+

+∞∑
m>0

am
cos(2πmρ0x)

(πρ0x)2KLm2

]
, (5.8)

as first derived by Haldane [119] and later improved [121].

5.1.2 Sine-Gordon model

We introduce here basics about renormalization group equation of the sine-Gordon model
as they will be useful to treat the bosonized version of the double ring. The Hamiltonian
for the sine-Gordon model reads

H = H L + y
∫

d x cos(
p

8θ) (5.9)
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Figure 5.1: Renormalization flow corresponding to Eq 5.10. Left diagonal thick line sepa-
rates regions (a) where y is irrelevant and region (b) where y flows to strong coupling and
the cosine is relevant. From [120].

The flow equation for the sine-Gordon model are the following [120]

dKL(l )

dl
=− y2(l )K 2

L (l )

2
d y(l )

dl
= (2−2KL(l ))y(l ) (5.10)

Indeed for KL < 1 y is relevant (grows upon change of scale). For KL > 1, y is irrelevant
(decrease upon change of scale). The point KL = 1 is marginal, and corresponds to the
transition point between a phase where the cosine term is relevant and one where it is
irrelevant. The spectrum of a sine-Gordon Hamiltonian is known, and displays solitons
and anti-solitons excitations [122, 123]. This model describes the competition between
the cosine term who wants to fix the phase and the kinetic part which impose a gradient.
When the cosine term is dominating we face a transition towards a gapped phase.
We expect that the renormalization group equation should not differ from a infinite sys-
tem and a system of finite size as the cord function can be Taylor expanded during the
perturbative renormalization approach and bring back the power law decaying of the in-
finite correlation functions. The only difference between finite and infinite system is that
the renormalization flow should stop at critical scale l∗ ∝ log(L). If the Hamiltonian has
the form H = H L + y cos(

p
8φ) the flow equations are dual and corresponds to the trans-

formation KL → 1/KL .
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5.2 Luttinger liquid description of the double ring

5.2.1 Derivation of the Luttinger Liquid Hamiltonian of the double ring

Following [115], we apply Haldane’s bosonization of interacting bosons [119, 118] to our
Bose-Hubbard Hamiltonian. The tunneling coupling K between the two rings is assumed
to be small compared to the longitudinal tunneling J , K /J ¿ 1 in order to decouple the
two rings. We introduce the canonically conjugate fields, ∂xθp (x)/π = Πp (x) and φp (x)
accounting respectively for the fluctuation of the density and phase of the ring p. We
perform a continuous limit of the Bose-Hubbard Hamiltonian and consider the bosonic
field operator as

a†
l ,pp
a

=ψ†
p (x) = [

ρ0,p +Πp (x)
]1/2 ∑

m∈Z
e2i m(θp (x)−πρ0,p x)e−iφp (x) (5.11)

where a stand for the distance between two sites. Without the term of coupling between
the rings, the Hamiltonian reads

H =∑
p

∫
d x

[
Jρ0,p (∂xφp (x))2 + U

2π2
(∂xθp (x))2

]
(5.12)

Defining vN = U
ħπ , v J ,p = 2πJ

ħ ρ0,p , vp =p
vN v J ,p and K̃p =√

v J ,p /vN we end up with

H =∑
p

ħ
2π

∫
d x

[
vp K̃p (∂xφp (x))2 + vp

K̃p
(∂xθp (x))2

]
(5.13)

The coupling term between the two rings in the lowest mode approximation can be writ-
ten as a tunnel term in the following way:

HT =−2K
p
ρ0,1

p
ρ0,2

∫
d x cos(φ1(x)−φ2(x)) (5.14)

We now turn to the representation in terms of spin (s) and charge (c) fields i.e

φs =φ1 −φ2 (5.15)

φc = φ1 +φ2

2
. (5.16)

The density fluctuation field transforms in the following way in order to ensure the good
commutation relation in both charge and spin sector[

∂x ′θs(x ′),φs(x)
]= 2i aδ(x −x ′) (5.17)[

∂x ′θc (x ′),φc (x)
]= i bδ(x −x ′) (5.18)

so that θs = a(θ1−θ2) = θ1−θ2
2 and θc = b(θ1+θ2) = θ1+θ2 . We next add the flux in the same

gauge as Chap. 2 and express the flux threading each ring Φ1 and Φ2 in terms of φ and Φ.
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Assuming that ρ0,1 = ρ0,2, v1 = v2 = v , K̃1 = K̃2 = K̃ We see that the Hamiltonian transform
in

H = ħ
2π

∫
d xv

[
Ks

(
∂xφs + 2π

L

φ

Φ0

)2

+ 1

Ks
(∂xθs)2

]
+ ħ

2π

∫
d xv

[
Kc

(
∂xφc + 2π

L

Φ

Φ0

)2

+ 1

Kc
(∂xθc )2

]
−2Kρ0

∫
d x cos(φs) (5.19)

where we set Ks = K̃
2 , Kc = 2K̃ and with Φ0 being the quantum of flux already introduced

in Chap. 2. We see that the mean flux couple to the charge sector of the phase field and
the relative flux to the spin sector of the phase field. Moreover the hopping term of the
Hamiltonian brings a cosine of the spin phase field so that it will induce a pinning of the
phase under renormalization group as will be explained in the next section.

5.2.2 Meissner-Vortex transition

The quantum sine-Gordon Hamiltonian is an integrable model and exact solution are
known [122, 123] in analogy with the massive Thirring model. In the classical picture the
solutions are solitons, kinks and breathers and those topological object are still considered
as solution of the quantum problem. A difficulty arise when one is faced with a flux that
shifts the phase field, no solution are known, the problem is no longer integrable and the
renormalization group equations are divergent [120]. This problem has been deeply stud-
ied in the context of the Mott transition in 1D [124] as the backscattering term of fermion
evolving in a shallow lattice gives rise to a cosine term shifted by a term related to the devi-
ation to the commensurate filling of the lattice (i.e when the number of particle per sites is
an integer). Let’s consider in the following the spin part of the Hamiltonian of the double
ring under fluxes

Hs =
∫

d x

2π

[
usKs

(
∂xφs(x)+ 2π

L

φ

Φ0

)2

+ us

Ks
(∂xθs(x))2

]
−2Kρ0

∫
d x cos(φs) (5.20)

Forφ= 0 the renormalization flow equation of Sec. 5.1.2 tell us that the spectrum is gapped
for Ks > 1/8 and the phase field is pinned in the ground state to the maxima of the cosine
term so that 〈φs(x)〉 = 0 modulo 2π. This phase is known as the commensurate phase in
analogy with the Mott-insulator phase and corresponds to the Meissner phase.

As shown in [125], expanding
(
∂xφs(x)+ 2π

L
φ
Φ0

)2
we see that up to a constant the term

depending on the flux adds
usKsφ

Φ0

∫
d x

L
∂xφs (5.21)

In a semi-classical picture, we can interpret this term as a chemical potential for the soliton
antisoliton forming the vortex pattern. Indeed calling Ñs the number of solitons and Ñs̃

the number of antisolitons of the sine-Gordon model, we have:

Ñs − Ñs̃ =
∫

d x

L
∂xφs , (5.22)
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so that the flux-dependent term becomes

usKsφ

Φ0
(Ñs − Ñs̃). (5.23)

This term acts as a chemical potential for the solitons and anti-solitons in the system. As
the flux grows, it will becomes energetically advantageous to populate the ground state
with solitons giving rise to incommensurate phase known as the vortex phase. In order
to understand the Meissner to vortex transition we will fermionize the spin part of our
Hamiltonian by making use of the Luther-Emery solution as already performed in [12,
115]. This way of solving the problem is very elegant, understandable and will be useful as
a root to go beyond.
One special point of the sine-Gordon model is the Luther-Emery point [126], for Ks = 1/4.
At this point, the sine-Gordon model can be fermionized and corresponds to a free gapful
fermionic system. On the point of view of the renormalization group equation this point
correspond to a critical point where the operators Ks is said to be marginally irrelevant.
Indeed the sine-Gordon Hamiltonian with rescaled fields φ̃s = φs/2 and θ̃s = 2θs can be
cast as follows

Hs =
∫

d x

2π
v

[
(∂x θ̃)2 + (∂xφ̃s)2]−2K cos(2φ̃s). (5.24)

Relating the bosons to the fermions with free fermionic field ψ̃σ = e i (θ̃−σφ̃), where σ = ±
depending if the fermions are right or left movers, we obtain the free fermionic Hamilto-
nian

H =
∫

d x

[
−i v

∑
σ

σψ̃†
σ∂xψ̃σ−m

∑
σ

ψ̃σψ̃−σ+h
∑
σ

ψ̃†
σψ̃σ

]
(5.25)

with h = 4π
L v φ

Φ0
and m = 2πKρ0. We made use of the following equations that relate

bosonic fields to fermionic field ∑
σ ψ̃

†
σψ̃σ = ∂φ̃s

2π (5.26)

−i
∑
σσψ̃

†
σ∂xψ̃σ = 1

2π

[
(∂xφ̃s)2 + (∂x θ̃s)2

]
(5.27)∑

σ ψ̃
†
σψ̃−σ = cos(2φ̃s )

π (5.28)

As the last equation is easy to derive, the first two are tricky and we advise the reader the
following review [127]. We see that the flux dependent term h acts as a chemical poten-
tial and m as a gap term for the theory and correspond to a backscattering term in the
fermionic language. This fermionic Hamiltonian can be diagonalized in k-space using the
following two dimensional rotation of the fermionic field operators(

ψ̃+
ψ̃−

)
= 1p

L

∑
k

e i kx
(
cos(ηk ) −sin(ηk )
sin(ηk ) cos(ηk )

)(
ck,U

ck,D

)
(5.29)
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Figure 5.2: Representation of the gapful spectrum of the spin-less fermion with h chemical
potential and m the gap of the excitation spectrum. Black lines represent the linearization
for k values around q(φ) with renormalized slope v∗(φ).

with e2iηk = vk+i mp
(vk)2+m2

. This leads to the following diagonal Hamiltonian

Hs =
∑

k,σ=U /D
εk,σc†

k,σck,σ (5.30)

with a gapful spectrum εk,U /D = ±
√

(vk)2 +m2 −h. The Meissner to vortex transition is
then interpreted as follow, when |h| < |m| we are in the Meissner and when |h| > |m| we
enter the vortex phase or in the language of Mott insulator transition the incommensurate
phase. It is then possible from the above representation (see Fig. 5.2) to go back to the
bosonic representation by linearizing the following theory around the Fermi points q(φ) =
1
v

√
( φ
Φ0

)2 − (φc
Φ0

)2 where φc is related to the gap but take a more general sense as away from
the Luther-Emery line the gap is renormalized but the spectrum keep its form [120]. The

Fermi velocity is v∗
s = v

h2

√
( φ
Φ0

)2 − (φc
Φ0

)2 and the renormalized Luttinger Hamiltonian

H∗
s =

∫
d x

2π

[
v∗

s (φ)K ∗(φ)
(
∂xφ̃s

)2 + v∗
s (φ)

K ∗
s (φ)

(∂xθx)2
]

(5.31)

where φ̃s =φs −q(φ)x
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5.2.3 Mode expansion

It is possible to diagonalize the Luttinger Hamiltonian (5.19) by applying the mode expan-
sion of the quantum fields [118, 119] in the spin and charge basis where bq,s =

(
bq,1 −bq,2

)
/
p

2

and bq,c =
(
bq,1 +bq,2

)
/
p

2 such that
[

b†
q,ν,bq ′,ν′

]
= δq,q ′δν,ν′

θs,c (x) = θ(0)
s,c +

πx

L
δNs,c + 1

2

∑
q 6=0

∣∣∣∣2πKs,c

qL

∣∣∣∣1/2 [
e i qxbq,(s,c) +e−i qxb†

q,(s,c)

]
φs(x) =φ(0)

s + πx

L
Js + 1

2

∑
q 6=0

∣∣∣∣ 2π

Ks qL

∣∣∣∣1/2

sign(q)
[

e i qxbq,s +e−i qxb†
q,s

]
φc (x) =φ(0)

c + πx

L
Jc + 1

2

∑
q 6=0

∣∣∣∣ 2π

Kc qL

∣∣∣∣1/2

sign(q)
[

e i qxbq,c +e−i qxb†
q,c

]
(5.32)

with δNc = (N̂1+N̂2−(N1+N2))/2,δNs = (N̂1−N̂2−(N1−N2)), Jc = (J1+J2)/2 and Js = J1−J2

and are Haldane’s topological excitations[119], q = 2π j /L and j ∈ Z, with N1 and N2 the
particle number in ground state, taken equal in our case. The pairs (θ(0)

p , Jp ) and (φ(0)
p , Np )

are conjugate action-angle variables with
[

Np ,φ(0)
p

]
=

[
Jp ,θ(0)

p

]
= i where the eigenvalues

of Js are even numbers 2ms ∈Z i.e respecting the selection rule for bosons (−1)Js = 1, and
N the particle number operator. Inserting the mode expansion (5.32) into (5.19) we get
the following Hamiltonian

H = H0 +HQ +HT (5.33)

where HQ is the free Hamiltonian in the bosonic excitation operators bq,s/c , the zero mode
Hamiltonian is given by

H0 = ħvπ

K̃ L

(
δN 2

s +
δN 2

c

4

)
+ħv

[
2Ksπ

L

(
Js + φ

Φ0

)2

+ 2Kcπ

L

(
Jc + Φ

Φ0

)2]
(5.34)

and the tunneling part reads

HT =−2Kρ0

∫
d x cos(φ(0)

s + πx

L
Js +δφs(x)) (5.35)

The tunneling Hamiltonian HT is not easy to handle since it couples zero and non zero

modes δφs(x) = 1
2

∑
q 6=0

∣∣∣ 2π
Ks qL

∣∣∣1/2
sign(q)

[
e i qxbq,s +e−i qxb†

q,s

]
. We’ll treat with this by aver-

aging over the non-zero modes with the average taken with respect to the quadratic Hamil-
tonian HQ

Hq = ∑
ν,q 6=0

ħvν|q|b†
q,νbq,ν (5.36)

Using Wick’s theorem for quadratic Hamiltonian 〈eαx〉 = e〈x2〉/2α2
and the zero-temperature

relations 〈β†
qβq ′〉 = 0, 〈βqβ

†
q ′〉 = δq,q ′ we evaluate the effective tunneling Hamiltonian as

〈〈HT 〉Hq 〉Js =−K ∗ρ
∫ L

0
d x

(∑
Ns

e i xπ2ms /L|Ns −1〉〈Ns |+e−i xπ2ms /L|Ns〉〈Ns +1|
)

(5.37)
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with the renormalized tunneling due to non zero modes K ∗ = K
(

d
L

) 1
2Ks , where d is a small-

distance cut-off. We see that as we increase the strength of the interactions between
particle (lowering Ks), the coupling between the rings decreases because of the effect
of the quantum fluctuations of the phase. As Ns and the zero mode of the phase are

action-angle variables i.e they verify the commutation relation
[

Ns ,e−iφ(0)
s

]
= e−iφ(0)

s , it

implies that the zero mode φ(0)
s acts as a raising operator for the difference in particle

number difference between the two rings, implying a Josephson effect, we then can write

e−iφ(0)
s |Ns〉 = |Ns +1〉.This allows us to introduce the completeness of the basis set e−iφ(0)

s =∑
Ns |Ns +1〉〈Ns | leading to Eq. (5.37). We’ll now evaluate the matrix structure in the basis

of the particle number imbalance. We see that it is a tridiagonal matrix.

∑
Ns

e i xπ2m/L|Ns −1〉〈Ns |+e−i xπ2m/L|Ns〉〈Ns +1| = 2cos(xπ2m/L)Q f (5.38)

Q f =
(|−N〉 . . . |N〉)


0 1 0

1
. . . . . .
. . . . . . 1

0 1 0


〈−N |

...
〈N |

 (5.39)

Integration over x yields

〈〈HT 〉Hq 〉Js = 0 (5.40)

The tunneling term, as it is oscillating, gives zero contribution to the Hamiltonian. Aver-
aging the phase excitations within bosonization doesn’t allow us to take into account the
contribution of the tunneling part. We are only able to capture the physics of the Meissner
phase since the phase is then locked in 〈φs〉 = 0. The flux dependence appears in the zero
mode contribution of the Hamiltonian H0 which shows a quadratic behaviour in the spin
part of the angular momentum Js (we recall that Js |ms〉 = 2ms |ms〉) whose eigenvalues
are even integers. As the relative flux increases, the spin part of the angular momentum
increases in order to minimize the energy of the system (see Fig.5.3) In the case of ring
geometry we have a periodic dependence of the energy as a function of the fluxes φ andΦ
with periodΦ0. The value of the fluxes fix the angular momentum of the ground state en-
ergy giving rise to a sequence of parabolas. This change of angular momentum gives rise to
saw-tooth chiral current Ic =−∂φ〈H〉, analogue to persistent current of one-dimensional
ring [26]. Notice that this change of angular momentum corresponds to a phase slip of
the wave function i.e a change of its winding number corresponding to a vortex creation
along the circumference of a ring. We remark that this is different from the vortex phase
featured in this model as it corresponds rather to the creation of vortices in the bulk of the
system i.e in the radial direction.
The decrease of the chiral current while entering the vortex phase as observed in Chap. 2
will be explicitly shown in Sec. 5.2.5.
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Figure 5.3: Left panel, ground state energy in units of E0 = ħvK̃π/L for different values
of the relative angular momentum ms between the two rings as a function of the applied
gauge flux. Right panel, represents the associated chiral currents Ic = −∂φE in units of
I0 = 2ħvK̃π/L

,

5.2.4 Weak link

As explained in Sec. 1.2.1, it is possible to implement a gauge field by rotating a defect.
Placing this defect on one of the two ring we can access the spin sector of the Hamiltonian.
We’ll then consider the following static Hamiltonian.

Hb =U0

∫ L

0
d xδ(x)ρ1(x) (5.41)

and add it to the previous Hamiltonian (5.19). We treat this term perturbatively in the weak
barrier case and we keep only the lowest harmonics of the density field,

ρ1(x) = (
ρ(0) +∂xθs(x)/π+∂xθc (x)/2π

) ∑
l∈Z

e2i l (θs (x)+θc /2)−2i lπρ(0)x (5.42)

which reads,

ρ1(x) ≈ ρ(0) (1+2cos(2θs(x)+θc (x)))+∂x (θs(x)+θc (x)/2)/π (5.43)

We will focus on the spin part of the Hamiltonian as the charge part can be treated analo-
gously. Using the mode expansion of the field and the action-angle properties of the θ0,s

and Js operators, the impurity part of the Hamiltonian can be expressed as

Hb =U0ρ
(0)

(
1+∑

ms

|ms −1〉〈ms |e i 2δθs (0) +|ms〉〈ms +1|e−i 2δθs (0)

)
+ U0N̂s

2L
. (5.44)

The second term U0N̂s
2L = ∑

N s
U0Ns

2L |Ns〉〈Ns | shifts the diagonal part of the Hamiltonian H0

and can be considered as a flux for the relative number of particle. Thus, the diagonal part
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of Hamiltonian becomes

H0 =
∑
Ns

[
Ec

(
Ns + U0

4Ec L

)2

− U 2
0

16L2

]
|Ns〉〈Ns |, (5.45)

with Ec = πħvs

K̃ L
, and 〈N̂s〉 is shifted from 0 to the value of − U0

4Ec L creating imbalance of the
density fluctuation in the system. The first term in (5.44) opens a gap between different
energy levels labelled by the angular momentum quantum number ms . We see from this
that the weak link can drive transition from different angular momentum states. We next
average over the fluctuations with the same procedure as for the case of the coupling be-

tween the rings, thus obtaining 〈e±2iδθs (0)〉 = (d/L)K̃ /2. Finally, the Hamiltonian HJ for the
angular momentum part reads:

HJ =ħvK̃

[
π
L

(
Js + φ

Φ0

)2 + 4π
L

(
Jc + Φ

Φ0

)2
]
+ρ(0)Ueff,c

∑
Jc [|Jc −1〉〈Jc |+h.c]

+ρ(0)Ueff,s
∑

Js [|Js −1〉〈Js |+h.c] (5.46)

where Ueff,c = U0 (d/L)Kc and Ueff,s = U0 (d/L)Ks . The presence of the barrier breaks ro-
tational invariance along the ring and gives rise to coupling among angular momentum
states. This leads to a smoothening of the perfect saw-tooth behaviour of the chiral current
of Fig. 5.3.

5.2.5 Current and correlations functions in the vortex phase

In this section we calculate some observables at the Luther-Emery point, using the renor-
malized Luttinger-Liquid Hamiltonian of the spin sector (5.31) The chiral current is given
within bosonization

jc (x,φ) = usKs

2π

(
∂xφs + 2π

L

φ

Φ0

)
. (5.47)

The spatially averaged chiral current is then given in this point by

Ic = 1

L

∫
d x〈 jc (x,φ)〉 = v∗

s K ∗
s π

2π

(
φ

Φ0
− 2π

L
E

[
L

2πΦ0

√
φ2 −φ2

c

])
(5.48)

where E [x] is the integer part of x. This function is a step function, discontinuous for each
multiple of 2π/L and explains the discrete jumps in the chiral current in the finite ring
shown in Fig. 5.4. Within the fermionized language, each jump is associated to the cre-
ation of solitons in the field φs .

At the Luther-Emery point it is also possible to calculate the momentum distribution.
The large-distance behaviour of the one-body density matrix in the vortex phase on a fi-
nite ring with periodic boundary conditions reads within conformal-field approach (see
Appendix of [118])

〈Ψ†
p (x)Ψp (x ′)〉 = ρ0

e i (−1)2p+1q(φ)(x−x ′)[
L
π sin

(
π|x−x ′|

L

)]1/(2Kc )+1/(4K ∗
s )

e−(−1)2p+1i πL ms (x−x ′)e i 2π
L mc (x−x ′) (5.49)
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Figure 5.4: Sketch of the step-wise decrease of the chiral current in the vortex phase as a
function of the applied flux φ/Φ0. With for simplicity φc /Φ0 = 1

where the quantum numbers ms and mc represent the angular momentum along the ring
(corresponding to the Meissner currents) and are found within conformal field theory
approach, p = 1,2 labels the rings and q(φ) is given by fermionized approach and reads

q(φ) ∝
√(

φ
Φ0

)2 −
(
φc
Φ0

)2
. Let us consider the case where we have no charge flux, i.e Φ = 0.

In this situation the momentum distribution is given by:

np (n) = 1

L

∫ L

0
d x〈Ψ†

p (x)Ψp (x ′)〉e i 2π
L n(x−x ′) (5.50)

where we used the following convention for the Fourier transform u(x) =∑∞
n=−∞ u(n)e i 2πn

L x .
The small k momentum distribution can be calculated analytically and give the following
for 1/Kt ≡ 1/(4Kc )+1/(4K ∗

s ) < 1

np (k) = 1

π

(
2π

L

)1/Kt Γ (1−1/Kt )Γ (1/2Kt +k)sin(π/2Kt ))

Γ(1−1/2Kt +k)
(5.51)

where one should replace k → k±(ms− 2π
L E [ L

2πq(φ)]) for n1/2 respectively. This function is
peaked whenever k ± (ms −E [ L

2πq(φ)]) = 0. We notice that the gradient term of the Hamil-
tonian imposes the eigenvalue of the kinetic momentum Js , ms to change of an integer
each time the flux increase by 2π. Then the ms(φ) is a step function increasing by unity
every integer value of φ/Φ0.

Current profile in the Meissner phase

As we saw in Sec. 5.2.2 for Ks > 1/8 the cosine term is relevant and fixe the phase 〈φs〉 =
0 [2π], we are in the so called Meissner phase. Below the transition at critical flux φc the
relevant form of the Hamiltonian is the following:

Hs =
∫

d x

2π

[
vKs

(
∂xφs + 2π

L

φ

Φ0

)2

+ v

Ks
(∂xθs)2

]
−2Kρ0

∫
d x cos(φs) (5.52)
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Figure 5.5: Total momentum distribution of the double ring nk = n1,k +n2,k , as a function
of the wavevector k in units of 2π/L for 1/(2Kc )+1/(4K ∗

c ) = 1/2, ms = mc = 0 and q(φ) =
0.5.

The bosonization form of the transverse current is the following

J⊥(x) = 2Kρ0 sin(φs) (5.53)

whose expectation value vanishes, i.e 〈J⊥〉 = 0 due to fixing of the phase field in the Meiss-
ner phase. Using the mode expansion we recover the saw-tooth behavior of the spatial
averaged of chiral current predicted in Sec.5.2.3. It displays a non-zero expectation value
growing linearly with applied flux

〈Ic (φ)〉 = πvsKs

L

(
ms + φ

Φ0

)
(5.54)

where we have used that 〈Js〉 = 2ms is the expectation value of the angular momentum
zero mode, with ms ∈Z.

Dynamical structure factor

We provide here a derivation of the dynamical structure factor for the ladder. The dynam-
ical structure factor is the Fourier transform both in space and time of the density-density
correlation function.

Single-component 1D Bose gas

We recall first the derivation of the dynamical structure factor for an infinite one-component
Bose gas in one dimension. We evaluate the Fourier transform of the first leading term of
the expansion (5.8), i.e we take ρ(x) ≈ ∂xθ

π
. This term is related to the phononic modes and

reads

S0(q,ω) = F.T.
[〈ρ(x, t )ρ(0,0)〉]0 =− KL

2π2

∫
R

d x
∫
R

d te i (ωt−qx) 1

(x − v t + iε)2 . (5.55)

104 Chapter 5. Quantum fluctuation effects, Luttinger liquid description



5.2. Luttinger liquid description of the double ring

f

By making the following change of coordinates, u = x − v t , the integral reads

S0(q,ω) =−KL

π

∫
R

du
e−i qu

(u + iε)2
= i q

KL

π

∫
R

du
e−i qu

u + iε
(5.56)

Using the residue theorem, where the sign of the contour depend on the sign of q , we
obtain

S0(q,ω) = KL|q|δ(ω−|q|vs) (5.57)

The second term of the expansion corresponding to m = 1 is given by (for a full derivation
see Guillaume Lang, PhD Thesis [128])

S1(q,ω) = a1

(2πρ0v)2(KL−1)Γ(KL)2

1

v

[
ω2 − (q −2πρ0)2v2]KL−1

sign
(
ω−|q −2πρ0|v

)
(5.58)

This contribution corresponds to a broad continuum within two linear branches symmet-
ric around the umklapp point (k = 2πρ0 = 2kF ,ω= 0) with slope v .

Finite-size periodic system - one component

First contribution The first contribution of the dynamical structure factor S1(q,ω) on a
finite ring is related to the following integral

I± =
∫
R

d te iωt
∫ L

0
d xe−i 2π

L qx 1∣∣sin(πL (x ± v t ))
∣∣2 (5.59)

= L

2π

∫
R

d te−i ( 2π
L vq−ω)t

∫ 2π−v t

−v t
due−i uq 1

|sin(u/2)|2 (5.60)

by making the change of variable u = 2π
L (x−vs t ). The integral over u can be cast on a inte-

gral over closed contour C corresponding to a circle unity centered around 0, by making
the change z = e i u so that for q > 0

IC = 4i
∮
C

d z
1

zq

1(
z2 −2z +1

) (5.61)

with d z = i zdu. Knowing the integral representation of Gegenbauer polynomials where
C ′ is a simple contour encircling z = 0 and avoiding z = 1

Cλ
n (x) = 1

2πi

∮
C ′

1

zn

1(
z2 −2xz +1

)λ (5.62)

we see that IC = 8πC 1
q−1(1), so that I− = 16π2δ

(
ω− 2π

L qvs
)

C 1
q−1(1) for q > 0. This poly-

nomial is behaving linearly with respect to q so we recover the behaviour of the infinite
system for L →∞.
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Two components Near the incommensurate-commensurate transition, at the Luther-
Emery point (See Sec. 5.2.2), we can use the renormalized Luttinger Hamiltonian (5.31) to
evaluate the correlation function of the spin part. We next calculate the dynamical struc-
ture factor for a two-leg ladder. If one wants to compute F T [〈ρp (x)ρp (0)〉], with p the
indice of the rung, one will deal with product of charge and spin. Let’s take a close look at
density-density correlation function on wire 1. It reads as follows

〈ρ1(x, t )ρ1(x ′, t ′)〉 =
〈(
ρ0 +∂xθ1(x, t )

)(
ρ0 +∂x ′θ1(x ′, t ′)

)+∞∑
m,m′=−∞

e2i m[θ1(x,t )+πρ0x]e2i ′m[θ1(x ′,t ′)+πρ0x ′]
〉

(5.63)

Decomposing it in charge (c) and spin (s) sectors with respect to the renormalized Hamil-
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Figure 5.6: First contribution of the dynamical structure factor for v∗
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tonian (5.31) one gets

〈ρ1(x, t )ρ1(x ′, t ′)〉 = ρ2
0

[
1− K ∗

s

4π2ρ2
0

[
1

(x−v∗
s t )2 + 1

(x+v∗
s t )2

]]
+ ρ2

0
4

[
1− Kc

4π2ρ2
0

[
1

(x−vc t )2 + 1
(x+vc t )2

]]
+ρ4

0
4

∑∞
m=1 ac

m as
m

cos(2πmρ0x)

[(x−v∗
s t )(x+v∗

s t )]K∗
s m2

1

(πρ0)2K∗
s m2 × cos(2πmρ0x)

[(x−vc t )(x+vc t )]Kc m2
1

(πρ0)2Kc m2 (5.64)

The Fourier transform of the first term is easily computable and gives the sound waves
contribution to the dynamical structure factor for q > 0,

S(0)
1 (q,ω) = K ∗

s |q |δ(ω−|q |v∗
s )+ Kc

4
|q|δ(ω−|q|vc ) (5.65)

where vc = v is the sound speed in the "charge" branch (in-phase motion) and v∗
s is the

sound speed of the spin branch (out-of-phase motion of the two-components). It is inter-
esting to notice that we find the same features observed in the weakly interacting regime
for the vortex phase, where two Goldstone modes were obtained (See Chap. 3) The calcu-
lation of the next order term m = 1 is non trivial and will be the object of future work.
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Conclusions of the chapter

In this chapter we have used the Luttinger liquid method applied to the double ring Hamil-
tonian, assuming weak tunnel coupling between the rings. We have used the mode expan-
sion to study the Meissner phase and the influence of a defect on the low-energy proper-
ties of the gas. The average over the phase fluctuations cancels the cosine term of the
Hamiltonian, which was also shown to be fixing the phase fluctuation field in the Meiss-
ner phase. We have then seen that the bosonized version of the double ring features the
Meissner to vortex transition and this transition is driven by the tunnel term in the Hamil-
tonian. In order to describe features of the vortex phase, we have worked at the Luther-
Emery point, where a fermionization approach allows to compute a renormalized form
of the Luttinger Hamiltonian. This has allowed us to calculate some relevant observables
such as the chiral current, in which we saw the same behavior as in the non-interacting
case, the momentum distribution, which exhibits two peaks related to the finite momen-
tum of the dispersion relation in the vortex phase and lowest order term of the dynamical
structure factor that displays a separation in spin and charge modes in direct correspon-
dence with the results of Chapter 3. In outlook, our calculations for the dynamical struc-
ture factor could be extended to the study of the umklapp term for the two-leg ladder, as
well as of the dispersion of the excitations at small frequency around wavevector k = q(φ),
corresponding to the typical density modulation in the vortex phase.
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Part II

Polaritons in honeycomb lattice
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Chapter 6

Exciton-Polaritons and the honeycomb
lattice

BOSE-Einstein condensation is understood in thermal equilibrium as a macro-
scopic occupation of the ground state. several theoretical works have been ded-

icated to the study of condensation away from the ground-state using resonant excitation
of a ground state of cold atoms [129]. This approach should allow the study of processes
of dynamical energy relaxation into the ground state. Thermal equilibrium is not per-
fectly achieved in condensing bosons since three-body losses give them a finite lifetime.
The theoretical description of energy relaxation in non-equilibrium systems, with multi-
ple states, is then an important issue. In solid-state systems such as exciton-polaritons
in semiconductor microcavities the life time of particle is very short allowing the study of
highly non-equilibrium bosonic gases[130].

Exciton-polaritons in semiconductor microcavities constitute an amazing playground
to study quantum fluids of light where remarkable effects, analogus to those observed in
cold atoms experiments, arise. Among those effects, superfluidity [131], topological exci-
tations as solitons [132, 133] and quantized vortices [134, 135, 136] have been observed.
The subject of superfluidity is still controversial: even though the experimental observa-
tion in exciton-polariton semiconductor microcavity has been reported [131], recent the-
oretical studies [137] claim the opposite, i.e that superfluid response - the difference be-
tween longitudinal and transverse current-current response - is zero. It appears that the
observation of superfluidity highly depends on the criterion chosen to reveal it and there
are as many superfluidities as criteria to define it. Even though this quantum fluid of light
is assumed to be composed, almost [138], upon pure condensate, the non-equilibrium
nature of the gas make the comparison with typical condensates in cold atom experiment
rather non trivial.

This chapter is organized as follows: in Sec. 6.1 some aspects of exciton-polariton
physics, then we will derive and review some general features of bosons in honeycomb lat-
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tice in Sec.6.2 including retarded Green’s functions, Brillouin-zone selection mechanism
and a new contribution relating the geometry of the lattice and the decay of polariton into
free photons. This decay mode will be shown to be suppressed as a consequence of the
symmetry of the lattice.

6.1 Exciton-polaritons

Exciton result from Coulomb interactions between excited electrons and holes in a semi-
conductor. They require an almost filled valence band, with a small number of unoccu-
pied states to give valence band holes, and a partly occupied conduction band. Classically,
an exciton corresponds to polarization field in the material [139]. The lifetime of an exci-
tonic state depends on the rate of transfer back to the valence band of conduction electron
with emission of a photon and the on spatial overlap of the hole and electron wave func-
tion. Experimentally, it is then convenient to consider excitonic systems in quantum wells
(QW), where the electrons and holes are spatially separated and choose materials with in-
trinsically lower dipole matrix elements to reduce optical recombination.
Microcavity exciton polaritons are the result of strong coupling between photons confined
in semiconductor microcavities, and excitons in QWs. A polariton can then be seen as a
photon dressed by a matter-field exciton.

The creation of a stable luminous fluid it is crucial to give a mass to the photon. This
can be done by confining the photonic field inside a cavity so that the effective mass arise
from momentum quantization due to spatial confinement. In a planar geometry with a
dielectric medium of refractive index n0 and thickness lz enclosed within a pair of metallic
mirrors, the photon motion along the perpendicular z direction is quantized as qz =πn/lz ,
with n ∈N. For each longitudinal mode, the frequency dispersion as a function of the in-
plane wave vector k has the form

ωcav,k = c

n0

√
q2

z +|k|2 ≈ω0
cav +

ħ|k|2
2meff

(6.1)

where the effective mass meff and the cut-off frequency are related by

meff =
ħn0qz

c
= ħω0

cav

c2/n2
0

(6.2)

At the simplest level, the strong coupling between excitons and polaritons can be under-
stood in terms of a model of non-interacting bosonic field of cavity photon and exciton,
where a†

p,k creates a cavity photon in in-plane momentum state k and a†
e,k creates an ex-

citon in in-plane momentum state k

Ĥ =∑
k

(
a†

p,k a†
e,k

)(
ωcav,k ΩR /2
ΩR /2 εexc,k

)(
ap,k

ae,k

)
, (6.3)

where ΩR is the light matter coupling strength. In the absence of disorder, the exciton
energy in the QW is εexc,k = ε0 + |k|2/2M , where M is the total exciton mass, and ε0 =
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Figure 6.1: Polaritons in semiconductor microcavities. a Polaritons are quasi-particles
formed when cavity photons, which are massive due to confinement in the z direction
between two Bragg mirrors, interact strongly with excitons confined in a quantum well.
Polaritons are free to move in the two-dimensional plane perpendicular to their confine-
ment. b The excitonic dispersion (dashed green) is approximately constant compared to
the photonic (dashed red) due to the much larger exciton mass. Strong coupling leads to
anti-crossing and the formation of upper and lower polariton branches (solid black). Po-
laritons interact because of their excitonic component, while their photonic part causes
decay and the need for an external drive. A coherent laser pump resonantly tuned to the
polariton dispersion is marked by a blue dot. Figure taken from [137].

Egap −R yexc comes from the conduction-valence band gap Egap including QW confine-
ment and the exciton binding energy (Rydberg) R yexc. The above Hamiltonian ( 6.3) can
be diagonalized and the corresponding quasi-particles made of a superposition of exci-
tons and cavity photons are called polaritons, leading to

Ĥ =∑
k
ω(LP)

k a†
LP,kaLP,k +ω(UP)

k a†
UP,kaUP,k, (6.4)

which is diagonalized by the following transformation(
ap,k

ae,k

)
=

(
cos(θk) −sin(θk)
sin(θk) cos(θk)

)(
aU P,k

aLP,k

)
. (6.5)

The dispersion relation as shown in Fig 6.1 is composed of two branches ω(LP/UP)
k , called

lower and upper polariton corresponding to the hybridization of the excitonic and cavity
photon energies, given by

ω(UP/LP)
k = ωcav,k +εexc,k

2
±

√
Ω2

R +
(ωcav,k −εexc,k

2

)2
, (6.6)
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Figure 6.2: Experimental observation of polariton Bose-Einstein condensation obtained
by increasing the intensity of the incoherent off-resonant optical pump. From [140]

where ± refers to respectively upper (UP) and lower (LP) polariton branches. The strong
light-matter coupling regime is defined when the light-matter coupling exceeds losses,
ΩR > γ.
Microcavity polaritons are an interesting system in which to investigate condensation
because they combine a very light effective mass (104 times smaller than the electron
mass), with a matter component, and hence the possibility of collisions and thermali-
sation. These together open the possibility of polariton condensation at elevated temper-
atures. Polaritons however introduce another feature not normally present in, e.g., cold
atomic gases, that is the finite lifetime of the quasi-particles: photons are imperfectly con-
fined by the mirrors, and so can leak out. This means that the polariton condensate is best
thought of as a non-equilibrium steady state, balancing pumping and decay. This moti-
vates the approach in the following subsection to understand how to describe the light
emission accounting for finite lifetimes as well as the polariton-polariton interaction.

6.1.1 Polariton-polariton interaction

As general description of a quantum object, light is dual, and so can be described either
as a corpuscle, a photon, or an electromagnetic wave. Light is the most relativistic object
as it is fixing a upper bound for the velocity of any propagating object, its dispersion re-
lation is known to be linear as the photon is a relativistic particle without a mass, and its
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Lifetime Thermalization Linewidth Temperature
Atoms 10s 10ms 2.5 ×10−13meV 10−8K
Excitons 50 ns 0.2 ns 5 ×10−5meV 1 K
Polaritons [141] 2 ps 5 ps 0.5 meV 200 K
Magnons 1 µs 100 ns 2.5 ×10−6meV 300 K

Table 6.1: Summary the characteristic timescales and energies for: particle lifetimes, times
to establish a thermal distribution, linewidth due to finite lifetime, and characteristic tem-
peratures for various type of composite particles. The first two columns give information
on the thermal properties, the latter two on coherence properties. Taken from [142]

velocity invariant in any frame. A crucial element is still missing for the photonic many-
body system to acquire a collective fluid-like behavior namely, the possibility for the pho-
tons to collide. While photon-photon interactions have been predicted to occur even in
vacuum via virtual excitation of electron-positron pairs [143], the probability for such a
process in vacuum is so small that it can hardly be expected to play any role in realistic
optical experiments. The interactions between polaritons is due to exciton-exciton inter-
actions, which, thanks to the strong coupling with photons lead to an effective quantum
fluid of light displaying effective photon-photon interaction. Exciton-exciton interactions
is a rather complicated problem to solve as it is a 4-body problem interacting via long-
range Coulomb potential. Indeed, it can be recast as a two-body contact interaction [144]

Ĥexc-exc =
∫

d 2r
Vexc-exc

2
Ψ̂†

exc(r)Ψ̂†
exc(r)Ψ̂exc(r)Ψ̂exc(r) (6.7)

where Ψ̂exc(r) is the field operator for the exciton so that

Ψ̂exc(r) = 1p
S

∑
k

ae,ke i k.r. (6.8)

Where S is the surface of the sample and k is a 2D wavevector. The approximate value for
effective interaction strength Vexc-exc between two excitons has been calculated[145, 146]

Vexc-exc ≈ 6e2a∗
B /ε (6.9)

a∗
B is the 2D Bohr radius and ε the dielectric constant of the QW. Using the transforma-

tion to the polariton basis, Eq. (6.5), the effective interaction among lower polaritons by
neglecting upper polariton contributions can be expressed as

ĤLP =∑
k
ω(LP )

k a†
LP,kaLP,k +

∑
k,k′q

V e f f
k,k′q

2
a†

LP,k+qa†
LP,k′−qaLP,kaLP,k′ , (6.10)

where V eff
kk′q = Vexc-exc

2 cos(θk+q)cos(θk′−q)cos(θk)cos(θk′). One can then show [144] that the

interacting kernel V eff
kk′q is mainly constant because of the parabolic dispersion of the lower

polaritonic branch.
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6.1.2 The driven-dissipative mean-field Gross-Pitaevskii equation

Interaction effects in exciton-polaritons are in general weak in current experimental se-
tups so that a mean-field description of this quantum fluid is a very good approximation.
We saw that the interactions between polariton is mainly due to Coulomb interactions
between excitons and can be considered as contact interactions. Here, we present the de-
scription of polaritons in the mean-field approximation. We focus on the lower polariton
branch, neglecting the upper polariton branch. For simplicity, we omit indices LP in the
notations. As discussed before (Chapter 2 Sec. 2.1) the Gross-Pitaevskii equation can be
derived from the Hamiltonian (6.10) and is given by

i∂tΨ(r, t ) =− ħ
2m

∇2
rΨ(r, t )+VLP |Ψ(r, t )|2Ψ(r, t ) (6.11)

where Ψ(r) = 〈Ψ̂LP (r)〉, Ψ̂LP (r) = 1p
S

∑
k aLP,ke i k.r. As said before, polariton have a driven-

dissipative nature. The main sources of decay of polariton come from radiative damping
of the cavity field due to emission of light by the cavity and non radiative decay due to
absorption in the cavity. We will refer to γ as a phenomenological parameter describing
the losses of polariton in the system. To overcome this decay one introduce a pumping
that correspond to the laser field imposed to the system. The phenomenological Gross-
Pitaevskii equation considering loss and pumping can be expressed as

i∂tΨ(r, t ) =
(
ω0

LP − ħ
2m

∇2
r

)
Ψ(r, t )+VLP |Ψ(r, t )|2Ψ(r, t )− i

γ

2
Ψ(r, t )+Einc(r, t ) (6.12)

where ω0
LP is the frequency of the bottom of the lower polariton branch. This simplified

description is generally well justified provided the Rabi frequencyΩR is much larger than
all other energy scales of the problem, namely, the kinetic and interaction energies, the
pump detuning from the bottom of the lower polariton, and the loss rates.

6.1.3 Steady state and bistability

From the above Gross-Pitaevskii equation, it is possible to characterize the steady state
solution of the lower polariton wave function under a coherent continuous wave pump
Einc(r, t ) = Eince i ki nc re−iωi nc t , where Ei nc is the incoming laser field. The wavefunction is
cast into the form

Ψ(r, t ) =Ψ(0)e i ki nc re−iωi nc t (6.13)

The steady-state solution of the system is given by the following equation.[
ωinc −ω0

LP − ħ|kinc|2
2m

+VLP |Ψ(0)|2 − i
γ

2

]
Ψ(0) = Einc (6.14)

Several situations can arise [144]:
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• If ωi nc <ωLP (ki nc ) =ω0
LP + ħ|kinc|2

2m , the density nLP = |Ψ0|2 is growing monotonically
with the laser intensity I = |Einc|2 (see Fig 6.3 upper-left panel). This behaviour is
referred to as optical limiter. The Bogoliubov excitation spectrum is then gapped
(see Fig 6.3 upper-right panel, case E)

• If ωi nc > ωLP (ki nc ) = ω0
LP + ħ|kinc|2

2m , the density nLP is growing with the applied in-
tensity I , but shows hysteretic behavior termed optical bistability in the nonlinear
optics literature. The central branch of the hysteresis loop with a negative slope is al-
ways dynamically unstable. Depending on the specific values of pump parameters,
other regions may also be dynamically unstable towards the parametric generation
of polaritons into other modes at different k 6= kinc as can be seen from the Bogoli-
ubov excitation spectrum (see Fig 6.3 upper-right panels from A to D).

A linear stability analysis of the Gross-Pitaevskii steady-state solution can be achieved by
studying at the quadratic fluctuations around the steady state solution. It leads to the
following Bogoliubov excitation spectrum [144]

ωBog(k) =±
√(

ω0
LP +

ħ|k|2
2m

+2VLPnLP −ωinc

)2

− (VLPnLP)2 − i
γ

2
(6.15)

From point A to B’ in Fig. 6.3 (right panel) a dynamical instability arises i.e the Bogoliubov
excitation spectrum shows non zero dispersive imaginary part. The imaginary part is dis-
persionless at the special point C in Fig. 6.3 where the excitation spectrum becomes linear
at low k, that is where superfluid properties can arise. Then, at increasing pump intensity
beyond point C, the spectrum is gapped.
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Figure 6.3: Upper panels: Polariton density vs pump intensity in the optical limiter regime
(top) and bistable regime (bottom). The dashed line indicates the unstable regions. Top
panels: Real part (top) and imaginary part (bottom) of the excitation frequencies for the
non-equilibrium Bogoliubov modes corresponding to the points indicated as A, B’, C, C’,
D, E in the left panel.Taken from [144]
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6.2 Honeycomb lattice

Before presenting our studies of the polariton properties in a honeycomb lattice in the next
chapter, we will review here the properties of a single quantum particle in a honeycomb
lattice. The honeycomb lattice can be described by two triangular sub-lattices A and B (see
Fig 6.2) forming a 2D plane paved by hexagons, and its reciprocal lattice is also hexagonal.
Important point for the physics of the honeycomb lattice are the two points K and K ′

located at the corner of the Brillouin zone, called the Dirac points:

K =
(

2π

3a
,

2π

3
p

3a

)
K ′ =

(
2π

3a
,− 2π

3
p

3a

)
(6.16)

Their importance will be made clear later. When considering just the nearest neighbour-
ing hopping in the tight-binding regime the Hamiltonian can be expressed by the follow-
ing Bose-Hubbard Hamiltonian H = H0 +Hint

H =− ∑
〈i , j 〉

ti j a†
i b j +h.c − U

2

[∑
i∈A

n A
i (n A

i −1)+ ∑
i∈B

nB
i (nB

i −1)

]
(6.17)

where 〈.〉 restricts the sum over the nearest neighbours and A,B represent the two sub-
lattice of the hexagonal lattice as shown in Fig.6.2. The non-interacting part of the Hamil-
tonian H0 can be diagonalized in k-space. We define the following operators for each
sub-lattice

a†
i =

1√
N A

s

∑
k

exp(i k.Ai ) a†
k (6.18)

b†
i =

1√
N B

s

∑
k

exp(i k.Bi )b†
k (6.19)

where N A
s and N B

s are the number of sites in sub-lattice A and B respectively, Ai and Bi

are Bravais vectors of triangular sub-lattice A and B respectively. The Hamiltonian reads
in k-space,

H0 =−∑
k

(
a†

k,b†
k

)(
0 φ(k)

φ∗(k) 0

)(
ak

bk

)
(6.20)

where φ(k) = (e i k.u1 + e i k.u2 + e i k.u3 )tAB . At this point we should mention that the value
of the function φ(k) is not arbitrary and depends on the choice of the gauge [147]. The
choice of the gauge is important as we will see in the next section, indeed the analysis of
this chapter would be strongly modified by an other choice of gauge even though the ob-
servables stay gauge independent. The non-interacting Hamiltonian can be diagonalized,
yielding eigenenergies ε±(k) =± ∣∣φ(k)

∣∣ with respective eigenvectors

Ψ±(k) = 1p
2

(
1

±e iχ(k)

)
(6.21)
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Figure 6.4: (a)-Representation of the hexagonal lattice with ~u1 = a
(

1
2 ,

p
3

2

)
,~u2 =

a
(

1
2 ,−

p
3

2

)
,~u3 = a (−1,0). (b) Representation of the first Brillouin zone of the honeycomb

lattice where K and K ′ represents the Dirac points and Γ the center of the Brillouin zone.
It is important to stress that K and K ′ are not connected by a reciprocal lattice vector,
they are truly independent values of k.

where we have set φ(k) = |φ(k)|e iχ(k). The dispersion relation shown in Fig. 6.5 displays
two bands in k-space analogues to the π and π∗ bands of the graphene [148] that we will
refer to as + or −. These two bands are crossing at the Dirac points (K and K ′) in the
vicinity of which the dispersion relation is linear. This linear dispersion relation implies an
effective relativistic behaviour around the Dirac points where the particles become mass-
less. Such a band structure has been experimentally observed with polariton gases [149].

Nearest neighbor tunneling Tunneling into the same sub-lattice A/B adds the following
term in the tight binding Hamiltonian

HN N =−tA A
∑

〈〈i j 〉〉
a†

i a j − tBB
∑

〈〈i j 〉〉
b†

i b j +h.c (6.22)
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Figure 6.5: Dispersion relation of non-interacting particle in honeycomb lattice in units of
the tA,B . Positive and negative bands are observed and referred to as + or −.

We will call a1, a2, a3 the three vectors connecting a site to its nearest neighbor of the
same sub-lattice. They connect to the known Bravais vector the following way a1 = u1−u3,
a2 = u2−u3, a3 = u1−u2. Assuming tA A/tAB = tBB /tAB = t ′ and Fourier transforming HN N

we get thatH0 +HN N reads

H0 +HN N =−∑
k

(
a†

k,b†
k

)(
t ′ f (k) φ(k)
φ∗(k) t ′ f (k)

)(
ak

bk

)
(6.23)

where f (k) = 2cos(
p

3ky ) + 4cos(
p

3
2 ky )cos( 3

2 kx). This correction to the single-particle
spectrum will affect only the high energy properties, so that close to the Dirac point no
change are expected as tA A ¿ tAB .

6.2.1 Berry phase

Let us consider a set of parameter λ = (λ1,λ2, ...) so that a generic Hamiltonian H [λ] de-
pend on this set. Let |Ψ(t )〉 be a quantum state whose evolution is

iħ d

d t
|Ψ(t )〉 = H [λ(t )] |Ψ(t )〉 (6.24)

We assume that the Hamiltonian is diagonalizable and H [λ] |Ψn(λ)〉 = En(λ) |Ψ(λ)〉. We
consider an adiabatic evolution of the parameters λ in time so that when the system is
prepared in an eigenstate of H [λ] it will stay in this state during the time evolution up to a
phase

|Ψ(t )〉 = cn(t ) |Ψ[λ(t )]〉 (6.25)

where cn(t ) satisfy the equation of motion

iħċn(t ) = cn(t )En[λ(t )]− iħcn(t )〈Ψn[λ(t )]| d

d t
|Ψn[λ(t )]〉 (6.26)
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A formal solution of this equation is cn(t ) = cn(0)e i
(
θd yn+θBer r y

)
where,

θd yn =−1

ħ
∫ T

0
En[λ(t )]d t θBer r y = i

∫ T

0
〈Ψn[λ(t )]| d

d t
|Ψn[λ(t )]〉d t (6.27)

θd yn represents the usual dephasing term due to the time evolution and θBer r y is called
the Berry phase. This Berry phase can be expressed as a closed path integral in parameter
space of all the λ calledΛ,

θBer r y = i
∮
C
〈Ψn[λ]|5λ |Ψn[λ]〉dλ (6.28)

so that this phase indeed has a geometric character as it will only depend on the chosen
path. In analogy with the Aharonov-Bohm effect we can define an analogue of the vec-
tor potential of the magnetic field called the Berry connexion that represent the parallel
transport of the eigenfunction in the parameter spaceΛ.

A (λ) =−i 〈Ψn[λ]|5λ |Ψn[λ]〉. (6.29)

There is a strong analogy between the Berry phase and the Aharonov-Bohm phase as they
are both geometrical phases, the difference being that the Aharonov-Bohm phase is de-
pendent on the real space path whereas the Berry phase on the path in a more abstract
parameter spaceΛ.
For crystal wave functions, the set of eigenfunction is of the Bloch formΨn,k(r) = un,k(r)e i k.r

where the un,k(r) are the eigenfunctions of the tight-binding Hamiltonian. The parameter
space is the one of the crystal quasi-momenta k and the Berry phase is the integral over a
closed path of the connexion A (n)(k) =−i 〈un,k|5k |un,k〉 associated to the parallel trans-
port of Bloch wave function over the Brillouin zone.
In the context of the honeycomb lattice we can define two connexion associated to the
two bands (±),

A (+)(k) =− i

2

(
1 e−iχk

)
i 5kχk

(
1

e iχk

)
= 1

2
5kχk (6.30)

A (+)(k) =−1

2
5kχk (6.31)

Each connection integrated along a closed path cancels except around the Dirac points.
The Dirac cones are then acting as Berry flux tubes in analogy with the Aharonov-Bohm
effect where the flux comes from the connexity of the magnetic field, the Berry phase is
non zero whenever discontinuity in of the derivative of the energy arise. Hence, the Berry
phase around the Dirac point are given by (see Fig. 6.6),

θ(+)
Ber r y,∂K =

∮
∂K

A (+)(k)dk =π θ(+)
Ber r y,∂K ′ =

∮
∂K ′

A (+)(k)dk =−π (6.32)

122 Chapter 6. Exciton-Polaritons and the honeycomb lattice



6.2. Honeycomb lattice

f

Figure 6.6: Representation of Berry flux acquired around two Dirac points

6.2.2 Brillouin zone selection

As already mentioned in Sec. 6, the band structure for polariton in honeycomb lattices
has been experimentally observed. However due to the destructive interference between
sub-lattice emitted photons, some branches are not visible as reported in [149, 150]. We
sketch here a simple argument for this effect, in analogy with [151]. One can relate the
photo-luminescence intensity of the emitted photon resulting from the decay of excitons-
photon coupling seen in the experiment as the modulus squared of the time and space
Fourier transform of the wave function |Ψn(q,ω)|2. In order to do so, we express the Bloch
function of a particle in the nth-band and crystal momentum k as follows

Ψnk(r) = 1p
N /2

∑
j

(
e i k.RA

j C nk
A ψ(r−RA

j )+e i k.RB
j C nk

B ψ(r−RB
j )

)
(6.33)

= 1p
N /2

∑
j

(
e i k.RA

j C nk
A ψ(r−RA

j )+e i k.(RA
j +δ1)C nk

B ψ(r−RA
j −δ1)

)
(6.34)

where C nk
A/B are the coefficients of the eigenfunction of the tight binding problem of the n-

band, RA/B
j are the vector positions of the sub-lattice atoms A/B in the crystal. The Fourier

transform reads∫
R

dr e−i q.rΨnk(r) =∑
j

e−i (q−k).RA
j ψ̃(q)C nk

A +∑
j

e−i (q−k).RA
j e−i (q−k).δ1ψ̃(q)C nk

B (6.35)

where ψ̃(q) is the Fourier transform of the Wannier function, q is the physical momentum
and bol d s ymbolδ1 = RB

j −RA
j is the distance between atom of type A and B in the unit

cell. Noticing that

e−i (q−k).RA
j = ∑

n1,n2

δ(k−q− (n1b1 +n2b2)), (6.36)
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and within the first Brillouin zone this sum corresponds to e−i (q−k).RA
j = δq,k, one is left

with the following expression for the Fourier transform of the Bloch function

Ψ±k(q) = δk,qψ̃(q)
(
1±e iχ(q)

)
. (6.37)

The time dependence of the Bloch function is a phase, so that Ψnk(r, t ) = Ψnk(r)e−iεnkt .
Within the first Brillouin zone, we finally obtain

Ψnk(q,ω) =
∫
R

d tdr e iωt e i r.qψnk(r, t ) = δ (ω−εnk)δk,qψ̃(q)
(
1±e iχ(q)

)
(6.38)

Similarly, one has to be careful to include the extra phase (6.36) that needs to be added
in higher order Brillouin zone. This leads to additional extinction of the intensity pattern
[151]. Typical extinction in the

(
kx ,ky

)
plane is illustrated in Fig. 6.7.
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Figure 6.7: Behaviour of the phase f (k)± = ∣∣1±e iχ(k)
∣∣2

term in the
(
kx ,ky

)
plan for a)

f (k)−and b) f (k)+.

6.2.3 Coupling to photonic bath vacuum

We now proceed to add into the theoretical description of the system the effect of cavity
losses. These are due to a coupling of photon modes inside the cavity and the electro-
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magnetic modes outside the cavity (see e.g [152]). As there is a one to one correspon-
dence between in plane cavity modes and electromagnetic modes (i.e that the coupling
Hamiltonian is diagonal in Fourier space) we consider a constant tunneling matrix el-
ement α(x) = α through the cavity mirror, whose value depends on the specific mirror
structure. The coupling Hamiltonian accounting for the conversion of cavity modes in
vacuum photons reads,

Hdecay = iα

(∫
d zdrΨ(r)†φ(z,r)−H.c

)
(6.39)

where φ(x) is the vacuum photon field operator in the 3D space and Ψ(r) the polaritonic
field operator in the 2D space (in plane). We expand the polariton field operators in Wan-
nier basis of the lattice A and B, i.eΨ(r) =∑

i ai w(r−RA
i )+bi w(r−RB

i ), where r = (x, y) are
in-plane coordinates and z the orthogonal direction. In this case the decay Hamiltonian
becomes

Hdecay = iα
∫

d pe−i pz

(∑
q

w(q)∗a†
qcp,q +w(q)∗b†

qcp,q −H.c

)
(6.40)

where c†
p,q creates a vacuum photon with in-plane wave vector q and orthogonal out-of-

plane wave vector p. Transforming the lattice polariton field operators in the diagonal

basis ±, so that aq = 1p
2

(
Ψ+,q +Ψ−,q

)
and bq = e−iχqp

2

(
Ψ+,q −Ψ−,q

)
, we have

H̃decay = i

(∫
d p

∑
q∈1stBZ,n

ζq,q,nΨ
†
n,qcp,q −H.c

)
(6.41)

where ζn
q,q =αw(q)∗e−i qz

p
2

(
C nq

A +C nq
B

)
is the coupling constant between the polariton evolv-

ing in the honeycomb lattice and electromagnetic vacuum modes. In order to treat the
loss term due to decay of polariton in the vacuum, we treat the coupling of the system
with a decay bath of photon. It is then modeled by the following Hamiltonian

Ĥ =∑
k,n

εk,nΨ̂
†
k,nΨ̂k,n +

∫
d q

∑
k
ωq,kc†

q,kcq,k + i
∫

d p
∑
q,n

(
ζn

p,qΨ
†
q,ncp,q −H.c

)
(6.42)

where ωp,q is the frequency of the free photonic field cp,q with momentum in plane mo-
mentum q and out-of-plane momentum p, ζn

p,q is the coupling constant between pho-
tonic and honeycomb polaritonic field Ψk,n of branches n = ±. We are interested in the
equation of motion of the polaritonic and photon fieldsΨk,n and cp,q

i
dΨq,n(t )

d t
= [
Ψq,n(t ),Ĥ

]= εq,nΨq,n(t )+ i
∫

d pζn
p,qcp,q(t ) (6.43)

i
dcp,q(t )

d t
= [

cp,q(t ),Ĥ
]=ωp,qcp,q(t )− i (ζn

p,q)∗Ψq,n(t ) (6.44)
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Formal solution for the photonic field is

cp,q(t ) = e−iωp,qt cp,q(0)− (ζp,q)∗
∫ t

0
d t ′e−iωp,qΨq,n(t ′) (6.45)

Inserting it in the equation of motion for the polariton, we end up with the following equa-
tion,

i
dΨq,n(t )

d t
= εq,nΨq,n(t )+ i

∫
d pζp,qcp,qe−iωp,qt

− i
∫

d p
∣∣ζp,q

∣∣2
∫

d t ′θ(t ′)e−iωp,q(t−t ′)Ψq,n(t ′) (6.46)

where we can identify DR
c†

p,qcp,q
(t , t ′) = −iθ(t − t ′)e−iωp,q(t−t ′) as the free photonic field re-

tarded Green’s function. The second term in r.h.s of Eq(6.46) refers to a noise term [153]
and will be neglected in the following. Using the fact that transmission through the mirrors
is almost instantaneous meaning that the coefficient γ is independent of the frequency ω

(Markovian approximation), we have
∫

dω ∂p
∂ω

∣∣∣ζn
p,q

∣∣∣2
e−iωp,q(t−t ′) ≈ δ(t − t ′)γq where γk =

2π ∂p
∂ω

|ζp(ω),k|2 is independent of ω. It implies that equation of motion forΨk,n(t ) reads

i∂tΨk,n(t ) = εk,nΨk,n(t )− iγkΨk,n(t ) (6.47)

One can then readily define the diagonal retarded Green’s function as (see Appendix F)

G±(k,ω) = 1

ω−εk,±+ iγk
(6.48)

Finally we see that the spectral function A(k,n,ω) of a given band n =± is

A(k,n,ω) =− 1

π
Im[Gn=±(k,ω)] = 1

π

γk

(ω−εk,±)2 +γ2
k

(6.49)

so that A(k,n,ω) is Lorentzian peaked at ω = εk,±. One recovers the same effect as for
the interference of the two sub-lattice. It should be emphasized that the geometry of the
system, inserted in the coupling factor, induces the vanishing of the loss term so that decay
of polaritons into photons is prohibited. The life-time of such particles is then infinite and
one could be able to engineer dark-state of polariton so that regimes of high interactions
among polaritons can be created. This extinction has the same physical origin as the one
of Sec. 6.2.2.
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Bogoliubov excitation spectrum of
polaritons in honeycomb lattice

THE formalism of the Bogoliubov approximation allows to study the properties of
the a system around a steady-state solution and characterize its stability, as we

saw in 6.
The chapter is organized as follows: In Sec. 7.1 we will derive the steady state equations of
the system then the equation of motion of the Bogoliubov excitation in order to access and
study the excitation spectrum of the system. Then we will explore the Bogoliubov excita-
tion spectrum of exciton-polariton in honeycomb lattices in Sec. 7.2 that will be compared
to experimental data.

7.1 Bogoliubov excitation spectrum

Steady state solution In order to obtain the Bogoliubov spectrum of a polariton con-
densate pumped at the K point we first determine its steady state. As the coupling be-
tween the two sub-lattices vanishes when driving the condensate in the Dirac point, i.e
φ(k =K ) = 0, we are left with two uncoupled Gross-Pitaevskii equations. The steady state
solution in sub-lattice A or B ψ(0)

A/B is then solution of the following polynomial equation

((
∆c +U |ψ(0)

A/B |2
)2 + γ2

4

)
|ψ(0)

A/B |2 = |F0|2 (7.1)

where ∆c = ωLP −ωi nc and 〈ai 〉 = ψ(0)
A e iK ri e−iωinct , 〈bi 〉 = ψ(0)

B e iK ri e−iωinct . This means
that the stability criterion for a polaritonic gas driven at wave vector equal to Dirac wavevec-
tor is the one of an one component system (Eq (6.3)) for a laser driving exactly at the Dirac
point. Experimentally this is generally not the case but this decoupling approach provides
a first approximation.
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Condensation at the Dirac point k =K Assuming equal condensation on the two sub-
lattice i.e ak=K =p

Na = bk=K =p
Nb =p

N , the Bogoliubov Hamiltonian of the interact-
ing gas on honeycomb lattice can be written in terms of the fluctuation fields on the two
sub-lattices {δak,δbk}.

Hi nt ,A = U
2Ns

∑
k

[
4Nδa†

k−K
δak−K +N

(
δa†

k−K
δa†

−k+K
+δa−k+K δak−K

)]
(7.2)

Hi nt ,B = U
2Ns

∑
k

[
4Nδb†

k−K
δbk−K +N

(
δb†

k−K
δb†

−k+K
+δb−k+K δbk−K

)]
(7.3)

H = H0 +Hi nt ,A +Hi nt ,B (7.4)

The equation of motion i∂tδas =
[
δas , HBog

]
are forming a closed system of linearly cou-

pled equations. When performing the Bogoliubov approximation for the field, ai =ψ(0)
A +

δai , we have to solve the following non-Hermitian eigenvalue problem

εk


δaK +k

δa†
K −k

δbK +k

δb†
K −k

= ηL


δaK +k

δa†
K −k

δbK +k

δb†
K −k

− i
γ

2
Id (7.5)

the Bogoliubov excitation then corresponds to the eigenvalues of the following dynamical
L matrix,

L =


∆c +2Un Une2iθA −φ(k+K ) 0
−Une−2iθA −∆c −2Un 0 φ∗(K −k)
−φ∗(k+K ) 0 ∆c +2Un Une2iθB

0 φ(K −k) −Une−2iθB −∆c −2Un

 (7.6)

The dynamical matrix with next nearest neighbour hopping reads

L ′ =L +


−t ′ f (K +k) 0 0 0

0 t ′ f (K −k) 0 0
0 0 −t ′ f (K +k) 0
0 0 0 t ′ f (K −k)

 (7.7)

where t ′ = tA A/tAB = tBB /tAB and f (k) = 2cos(
p

3ky )+4cos(
p

3
2 ky )cos( 3

2 kx). For the spe-
cial case where we look at the cut for kx = 0 the eigenvalues of the L matrix can be found
analytically and are given by

εK (k) = 1
2

[±(
φ(K −k)−φ∗(k+K )

)
±

√
(2∆c +6Un ∓ (

φ(K −k)+φ∗(k+K )
)
)(2(∆c +Un)∓ (

φ(K −k)+φ∗(k+K )
)
)
]

(7.8)

with ψ(0)
A/B = nA/B e iθA/B assuming nA = nB and K = a(0,4 π

3
p

3
) the momenta of the con-

sidered Dirac point. In the general case, when one considers nA 6= nB , one introduces
anisotropy in the system leading to an opening of the gap. In polariton experiments, one
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can observe the Bogoliubov ghost branch that corresponds to negative energy excitation.
This is due to parametric excitations [154, 155] and observed for both incoherent [156] and
coherent [157] pumping. Ghost branches have then a highly relevant role as they corre-
spond to the excitations holes. We remark that the matrix L does not satisfy the inversion
symmetry relation, i.e L ∗ =−σLσ where,

σ=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (7.9)

which implies that there is no set of eigenvalues which are opposite (εky ,−ε∗ky
). In other

words, the ghosts branches are not expressed as the opposite of the physical excitation
branches. They form a lattice structure in k-space shifted with respect to the normal
branches lattice, as shown in Fig. 7.1. This is due to the scattering allowed by the Bo-
goliubov approximation, that transforms modes of the condensates into excitations with
wavevector k and k−2K .

Figure 7.1: Sketch of the ghost lattice in k-space as compared to the real lattice.

The ghost branches corresponds to particles with opposite momenta and energy as
can be clearly seen in Fig. 7.2 so that the Doppler effect for ghost excitations is opposite.
Along the x direction, this symmetry is present and the spectrum is composed of a set of
opposite complex conjugated eigenvalues (εkx ,−ε∗kx

). This is due to the fact that the con-
densate is not moving in the x direction. The spectrum is composed of multiple branches,
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Figure 7.2: The excitation spectrum at different polariton densities and energy shift ∆c .
The real (solid) and the imaginary (dashed) parts of the spectrum in the frame of the pump
momentum at the Dirac point, which is kinc = K in the y-direction, for kx = 0. For a)
∆c = −1 and Un = 1, b) ∆c = −5 and Un = 5, c) ∆c = −0.5 and Un = 0.5,d) ∆c = −0.5 and
Un = 2, e) ∆c =−5 and Un = 1, f ) ∆c = 1 and Un = 1, g) ∆c =−8 and Un = 1. Black dashed
line correspond to the single-particle dispersion.
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the real and imaginary part is plotted in Fig 7.2 for the case of the stable C point 6.3 in hys-
teresis loop (sub-panels a) to c) in Fig. 7.2). It appears that in this C point only one of the
branch is stable (+ or − depending on the sign of ∆c ) so that only one sub k-space lattice
Dirac points will be turned on, corresponding to the wavevector ki nc of the pump. This lat-
ter point is a manifestation of the symmetry of the system. This stability of the branch is in
correspondence with observability of the branch, i.e unstable branches are not observable
due to the interference of the two sub-lattices (See discussion in Sec. 6.2.2). Reducing the
interactions, the + branch becomes stable. The spectrum in Fig. 7.2 d) corresponds to the
stable region above the C point where the + branch becomes gapped in agreement with
the prediction for one component case.
The spectrum at low energy close to the Dirac point is Doppler shifted, i.e as we are in the
laboratory frame of, excitations at q =K +k or q =K −k will feel different sound veloc-
ities as they will flow against or with the flow of the condensate at velocity K . In Fig. 7.2
panels a)c)e)f ), the low-k dispersion relation around the Dirac point has sonic shape with
sound speed lower than the speed of flow corresponding to a supersonic motion: here the
system is not superfluid [158] as Bogoliubov modes can be resonantly excited by a defect
inducing Rayleigh scattering ring. Fig. 7.2b) illustrate the case of a subsonic motion, where
the polariton gas behaves as a superfluid: no Bogoliubov mode can be any longer reso-
nantly excited and the resonant Rayleigh scattering ring disappears. It has been recently
shown that the polaritonic systems are not Galilean invariant in the presence of a reservoir
[159]. Then there is no one to one correspondence between Landau critical velocity and
the Bogoliubov speed of sound, however this criterion still holds when the sound velocity
is properly renormalized. Moreover, we observe that, strangely enough, the gas of polari-
ton acquire superfluid property at momenta k 6=K different from the driving of the pump
as can be seen in panel e) and f ). This two point are found to be stable without any dy-
namical instability and ghost and normal branches are exchanging position with respect
the the horizontal axis.

7.1.1 Stability analysis

From the study of the above dynamical matrix L one is able to link the stability of the
polaritonic gas with the eigenvalues of the dynamical matrix. We define

γeff(k) = Im[ε(k)] (7.10)

Following [144] the stability criterion is defined as follows, whenever γeff(k)+γ > 0, ∀k,
the gas of polaritons is drawn to an instability as the excitations are damped. Thus, us-
ing this criterion we see that in the optical bistability regime, beyond the point C where
|Un| = |∆c | the system is found to be unstable (see Fig. 7.3) and does not follow the usual
behavior of a 2D polaritonic gas (see Fig. 6.3). Therefore, one can see that the mean-field
analysis might be not suited to characterize the polaritonic gas and quantum-fluctuation
should be high in those unusual regions of instability. At the C point, the symmetry of the
Dirac cones is allowing momentum transfer processes that can empty the polaritonic con-
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Figure 7.3: Panel a) represents the hysteresis loop in the optical bistability regime. The dots
are marking the unstable region corresponding to panel b) where the fraction of unstable
mode is plotted. We see that beyond the C point where |Un| = |∆c | the system is found to
be unstable.

densate. In this case the Bogoliubov approximation of a macroscopically occupied ground
state breaks down and a more refined theory would be needed.

7.2 Experimental excitation spectrum

As a matter of consistency with the earlier approach presented in Sec 6.2.2 we link the
intensity of the excitation in terms of their Bloch wave expression. The contribution of
Bogoliubov excitation to Bloch wave δΨn,k(r) is expressed in term of the Bogoliubov am-
plitudes [160]

δΨnk(r, t ) = 1p
N /2

∑
j

(
e i k.RA

j

(
u A

k,ne−i ε̃k,n + v A
−kne i ε̃k,n

)
φ(r−RA

j )

+e i k.RB
j
(
uB

kne−i ε̃k,n + vB
−kne i ε̃k,n

)
φ(r−RB

j )
)

, (7.11)

so that the observed intensity within the first Brillouin zone and for a band n =± reads

I = ∣∣δΨn(q,ω)
∣∣2

= ∣∣ψ̃(q)
∣∣2

[
δ(ω− ε̃k,n)

∣∣∣u A
k,n +uB

k,n

∣∣∣2
δk,q +δ(ω+ ε̃k,n)

∣∣∣v A
−k,n + vB

−k,n

∣∣∣2
δ−k,q

]
(7.12)

In the limit where there is no interaction we recover u A/B
nk = C nk

A/B consistent with the re-
sult of Sec. 6.2.2. The additional contribution coming from the ghost branch is weighted
by the v amplitude that is weak compared to u coefficient of Bogoliubov transformation,
as we see from the numerical diagonalization of L (or L ′). The calculated intensity is
given in Fig. 7.4 as a fit of experimental data of observed intensity pattern of polariton in
honeycomb lattice structure.
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7.2.1 Experimental realization

Experimental realization have been done in the group of Maxime Richard at Néel Institute
in Grenoble with whom we were in close collaboration. Their experiment implements the
honeycomb lattice with coupled micropillars etched in a planar semiconductor microcav-
ity driven with coherent laser field at the Dirac point wavevector yielding a macroscopic
occupation of the state at k = K . As can be seen from Fig. 7.4 the system being unstable

Un=0 meV
dAB=1.1meV

tAA=0 meV

Un=0.24 meV
Stable: yes

Figure 7.4: Experimental data of observed intensity pattern of polariton in honeycomb
lattice for both zero (top panels) and finite (lower panels) interaction strength. Red curves
correspond to theoretical fit from (Eq. 7.12). White dots are average data with Lorentzian
weight. In the experiment the k-space is turned by 900 so that kx and ky are exchanged
compared to the theoretical description.

at the C point, the Dirac cone structure is suppressed and the system is in a state below
the C point (see red dot in Fig. 7.3, left panel, that represents the state of the system in
the bistability one-component curve). The experimental data fit remarkably with Bogoli-
ubov theory in both direction of momentum. We want to emphasies that the momentum
space in the experiment is turned by 900 so that kx and ky are exchanged compared to
the theoretical description. Annihilation of a part of the spectrum in the experiment as
theoretically described in Sec. 6.2.2 is also seen. A gap is observed in the spectrum in the
experimental ky direction (Fig. 7.4 top middle panel). The theoretical fit is made possible
thanks to energy shift between the sub-lattice. This shift might arise from the polarization
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depend tunneling of polaritons in the honeycomb structure.

7.2.2 Retarded Green’s function

Before concluding the Chapter, we would like to calculate the polariton spectral functions
using the Green’s function formalism. Since the Hamiltonian is time independent, the
retarded Green’s function dependent only on the time difference. We define the normal
retarded Green’s function as follow,

GR
α,β(k, t ) =−iθ(t )〈

[
ψk,α(t ),ψ†

k,β(0)
]
〉 (7.13)

and the anomalous retarded Green’s function

G̃R
α,β(k, t ) =−iθ(t )〈[ψ−k,α(t ),ψk,β(0)

]〉 (7.14)

It is convenient to represent the Green’s function in the so called Nambu structure

ĜR
α,β(k, t ) =−iθ(t )

〈[
ψk,α(t )ψ†

k,β(0) ψ−k,α(t )ψk,β(0)

ψ†
k,α(t )ψ†

−k,β(0) ψ†
k,α(t )ψk,β(0)

]〉
(7.15)

The equation of motion leads to

i∂tG̃R
α,β(k, t ) = δ(t )δα,β+θ(t )

〈[
∂tψk,α(t )ψ†

k,β(0) ∂tψ−k,α(t )ψk,β(0)

∂tψ
†
k,α(t )ψ†

−k,β(0) ∂tψ
†
k,α(t )ψk,β(0)

]〉
(7.16)

where we used equal time commutation relation [ψk′,α(t ),ψ†
k,β(t )] = δα,βδk′,k. We next use

the Bogoliubov equation of motion for the fields,

[i∂tI −L ]

(
ĜR

A,A(k, t ) ĜR
A,B (k, t )

ĜR
B ,A(k, t ) ĜR

B ,B (k, t )

)
= δ(t )I (7.17)

where I is the identity matrix. The equation leads to the following representation in mo-
mentum and frequency domain

[ωI −L ]

(
ĜR

A,A(k,ω) ĜR
A,B (k,ω)

ĜR
B ,A(k,ω) ĜR

B ,B (k,ω)

)
=I (7.18)

leading us to the interpretation of this retarded Green’s matrix as the inverse of [ωI −L ].
Considering the following Bogoliubov transformation

δak = ∑
n=±

u A
k,nγk,n + (v A

−k,n)∗γ†
−k,n (7.19)

δbk = ∑
n=±

uB
k,nγk,n + (vB

−k,n)∗γ†
−k,n (7.20)
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where the operators γ†
k,n creates a Bogoliubov excitation in band n = ± of wave vector k

diagonalizing the Bogoliubov Hamiltonian

HBog =
∑

n=±
ε̃k,nγ

†
k,nγk,n (7.21)

The retarded Green’s function in the diagonal Bogoliubov basis is expressed by

GR
γn

(k, t ) =−iθ(t )〈
[
γk,n(t ),γ†

k,n(0)
]
〉 (7.22)

GR
γn

(k, t ) =−iθ(t )〈
[
γ†

k,n(t ),γk,n(0)
]
〉 (7.23)

GR
γn

(k,ω) = lim
η→0

1

ω− ε̃k,n + iη
(7.24)

GR
γn

(k,ω) = lim
η→0

1

ω+ ε̃k,n + iη
(7.25)

where the mean value is taken over the Bogoliubov vacuum of excitation, i.e γk,n |0〉 = 0,
GR
γn

(k,ω) refers to the ghost branch Green’s function. Addition of the single particle loss

rate γk as in Sec. 6.2.3 induces the mechanism of Brillouin zone selection for the Bo-

goliubov modes for the observed intensity of ghost A(k,ω,n) = − 1
π Im

[
GR
γn

]
and normal

branches A(k,ω,n) =− 1
π Im

[
GR
γn

]
.
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Chapter 8

Conclusion and perspectives

IN this thesis we have studied the properties of a two-leg bosonic ring ladder sub-
jected to a gauge field for wide range of interaction strengths between particles

with specific application to ultra-cold atomic gases. Another type of quantum system,
namely a gas of polaritons in honeycomb lattice has also been studied.

In chapter 2, we have studied the ground-state properties of weakly interacting bosons
on a double ring lattice, subjected to two gauge fields. The phase diagram has been com-
puted for high magnetic flux recovering known phases, namely the Meissner, the vortex
and biased-ladder phase. An additional phase has been revealed due to the commen-
surability of the total flux with respect to the allowed momentum in the rings, showing
imbalanced density in the Meissner phase. Also, for special values of total flux Φ, due to
finite size effects, we have found that the ground state may host a single vortex even in the
Meissner phase at zero interaction strength. An analysis of the persistent currents shows
that it is possible to identify the Meissner, biased ladder and vortex phase. In the latter, due
to finite-size of the double ring lattice, it is possible to monitor the appearance of pairs of
vortices at increasing φ. The interference patterns among the two rings yield spiral im-
ages adapted to probe those various phases in a cold-atom experiment. In outlook of this
chapter it would be interesting to study the influence of centrifugal forces to understand
the threshold above which particles are ejected from the inner ring.

Beyond mean-field analysis, we computed the Bogoliubov equations in order to take
into account quantum fluctuation in the double ring ladder. This has been the subject of
chapter 3. We have performed a detailed study of the excitation spectrum of a weakly in-
teracting Bose gas in a two-leg bosonic ring ladder subjected to an artificial gauge flux
for all the three phases expected at weak interactions, i.e the Meissner, vortex and bi-
ased ladder phase. To capture the excitation spectrum in cold-atom experiment we have
computed the dynamical structure factor accessible via angular momentum Bragg spec-
troscopy. Features of supersolidity have been highlighted, i.e high coherence of the gas
over the ring and diagonal long-range order. The emergence of supersolidity in this system
is quite remarkable, as, at difference from the spin-orbit coupled Bose gas, the visibility of
the fringes can be arbitrarily tuned thanks to the absence of interspecies contact interac-
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tions in the current model. Phonon like dispersion are visible in the dynamical structure
factor in the Meissner phase as well as roton minima and double Goldstone mode in the
vortex phase. Finally, we have shown the emergence of Josephson excitations in a finite
ring, corresponding to population imbalance oscillations among the two rings. We have
found that the Josephson modes appear both in the Meissner and vortex phase, in the
latter case we have found both homogeneous oscillations as well as spin-like excitations
carrying a longitudinal momentum. In outlook, it would be interesting to study the excita-
tion spectrum at larger interaction strengths, where the nature of the ground state changes
onto a fragmented condensate [71] or a fragmented Fermi sphere [103] at intermediate
and large interactions respectively. Also a detailed study of the Josephson modes should
be carried out as well as Goldstone and Higgs modes at the supersolid to BEC transition.

In chapter 4 we have studied the ground-state properties of a two-leg bosonic ring
ladder subjected to gauge field in the quantum regime using both analytic and exact diag-
onalization techniques. The ground-state is always fragmented but its nature depends on
the interaction strength, ranging from a fragmentation among two single-particle states
at weak interactions to fragmented Fermi seas at very large interaction. This Fermi seas
description holds provided that the tunnel coupling between the two rings is sufficiently
weak and the flux threading the system relatively strong. This allows for an analytical
ansatz which well describes the limits of very weak or very strong interactions. The chi-
ral current and current-current correlation functions have been used to characterize the
vortex phase. The density-density correlation function shows the onset to fermioniza-
tion via the appearance of Friedel-like oscillations at large interactions, and a double-peak
structure in the momentum distribution together with the demonstration of degenerate
eigenvalues of the one-body density matrix establishes the fragmented nature of the state.
In outlook, it would be interesting to explore the crossover from quantum regime at very
weak filling considered in this work and the mean-field Gross-Pitaevskii description used
in the case of very large number of bosons per lattice site.

In chapter 5, we bosonized the double ring Hamiltonian at low coupling between the
rings and, thanks to the mode expansion, we have explored the influence of a defect in
the Meissner phase. The bosonized Hamiltonian obtained is of the form of a sine-Gordon
model with a flux. This Hamiltonian in the context of Mott insulator to superfluid tran-
sition is well known and features a commensurate-incommensurate transition that is the
analogue of the Meissner to vortex transition. The vortex phase emerges when the co-
sine term is relevant in the sense of the renormalization group equations and is pinning
the angular momentum of the system. Known fermionization approach allows to com-
pute a renormalized form of the Luttinger Hamiltonian that permits the calculation of
observables such as the chiral current in which we saw the same behavior as in the non-
interacting case, and the momentum distribution, which exhibits two peaks related to the
finite momenta of the solitons which are the excitations of the sine-Gordon there. We
have also calculated the lowest order term of the dynamical structure factor in the vortex
phase, that displays a separation in spin and charge modes. This is the same features as
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what observed in Chapter 3 at weak interactions. Further studies need to be done in the
calculation of the umklapp term in the dynamical structure factor. It would be an interest-
ing point to carry numerical simulation in order to take into account finite size corrections
on the dynamical structure factor and to calculate higher order terms.

In the last chapter 6 and 7 we studied the physics of a polaritonic gas in a honey-
comb lattice. First we saw that the single particle description that interference between
sub-lattice polariton decay into vacuum photon was inducing a disparition of a part of
the spectrum, as experimentally observed. This interference has been shown to have a
deeper origin, i.e that the coupling between the vacuum electromagnetic field and the po-
lariton inside the honeycomb is suppressed. This implies the possibility of engineering
dark states with very long life time. Then, considering the non-equilibrium nature of the
polaritons we derived the steady state for a pumping at momentum equal to the Dirac
point and contact interaction between the polaritons. As the steady-state Gross Pitaevskii
equations decouple at the Dirac point we were able to derive an analogue of the one com-
ponent bistability equation for polaritonic field. Quantum fluctuation on top of the steady
state solution via Bogoliubov formalism enabled us to study the excitation spectrum of the
interacting gas. A stability analysis of the Bogoliubov mode revealed the possibility of a
physics beyond mean-field as the bistability curve shows unexpected instabilities. Finally,
we drew a formal link between the excitation spectrum and the Green’s function in order
to account for the extinction due to the geometry of the lattice also in the case of an inter-
acting gas. As an outlook it would be interesting to study in greater detail the origin of the
dynamical instability and look for beyond mean-field states with advanced techniques,
taking into account the quantum fluctuations. Moreover, the question of the topology of
the Dirac point at varying interaction by the study of the Berry phase in the Bogoliubov
formalism would be an interesting direction of investigation.
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Appendix A

Diagonalization of the non interacting
Hamiltonian

In order to diagonalize the Hamiltonian H0 in Eq.(2.6) we introduce the Fourier transform
of the field operator according to al ,p = 1p

Ns

∑
k ak,p e−i kp l . Periodic boundary conditions

on each ring al ,p = al+Ns ,p lead to quantized values for the wavevectors k = 2π
Ns

j , where
j ∈ [0, Ns −1] is an integer number. The Hamiltonian in Fourier space then reads

Ĥ0 =
∑
k

(
a†

k,1 a†
k,2

)
H(k)

(
ak,1

ak,2

)
, (A.1)

where H(k) is given by

H(k)=
(−2J cos(k−Φ−φ/2) −K

−K −2J cos(k−Φ+φ/2)

)
. (A.2)

We diagonalize it using the unitary transformation(
ak,1

ak,2

)
=

(
vk uk

−uk vk

)(
αk

βk

)
, (A.3)

where uk and vk are given by

vk =
√√√√1

2
(1+ sin(φ/2)sin(k −Φ)√

(K /2J )2 +sin2(φ/2)sin2(k −Φ))
) (A.4)

uk =
√√√√1

2
(1− sin(φ/2)sin(k −Φ)√

(K /2J )2 +sin2(φ/2)sin2(k −Φ))
). (A.5)

The final form for the Hamiltonian reads

Ĥ0 =
∑
k
α†

kαk E+(k)+β†
kβk E−(k), (A.6)
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Figure A.1: Density on the double ring for K /J = 0.95,Ns = 20,φ = π/2 and upper panel
θ = 0.01, down panel θ = 0.

with

E± = −2J cos(φ/2)cos(k −Φ) (A.7)

±
√

K 2 + (2J )2 sin2(φ/2)sin2(k −Φ). (A.8)

In the non-interacting regime, in the parameter region where the energy spectrum has

a double minimum, the ground state has the form |ψ〉 = 1p
N !

(
cos(θ/2)β†

k1
+ sin(θ/2)β†

k2

)N |0〉.
This state is fully degenerate in the occupancy of the minima, ie it provides the same
ground-state energy for any choice of θ. As discussed in section IV, this degeneracy is
broken at the level of mean-field by the interactions. In section III we chose to consider,
in the non-interacting regime, only the case θ = π/2 which leads to the same occupancy
of the minima and hence the same density profiles on the two rings. Different choices for
θ will induce different density profiles, eg an imbalanced vortex for θ ∈ ]0,π[ and θ 6= π/2,
and a biased-ladder for θ = 0 and θ =π (see Fig. A.1).
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Appendix B

Numerical method for the solution of the
DNLSE

We provide here the details for the numerical solution of the DNLSE (3.20), obtained by
iterative steps of the type (

Ψ1(t +∆t )
Ψ2(t +∆t )

)
=U (∆t )

(
Ψ1(t )
Ψ2(t )

)
(B.1)

where U (∆t ) = exp(−i H∆t ) is the time-evolution operator and we have introduced the
vector notation Ψp = {Ψ1,p , ...,ΨNs ,p } Using the Campbell Hausdorff formula we approxi-
mate it to order (∆t )2 by

U (t , t +∆t ) = e−i H0∆t e−i Hi nt∆t +O(∆t )2 (B.2)

The interacting Hamiltonian being diagonal in position space and the kinetic one in k-
space, we use the split-step Fourier algorithm [70]. Furthermore, to obtain the ground-
state wave function we perform an evolution in imaginary times. Hence the evolution of
our wave function can be recast as follows:

(
Ψ1(t +∆t )
Ψ2(t +∆t )

)
=F−1

[
M

(
e−E+∆t INs 0Ns×Ns

0Ns×Ns e−E−∆t INs

)
M−1F

[(
e−U |Ψ1(t )|2∆tΨ1(t )

e−U |Ψ2(t )|2∆tΨ2(t )

)]]
,(B.3)

where |Ψp (t )|2 = {|Ψl ,p |2, ....|ΨNs ,p |2}, E± = {E±(2π/Ns), ...,E±(2π j /Ns), ...,E±(2π)}, and M
is the unitary matrix which diagonalizes the non-interacting Hamiltonian H(k) (A.2) ac-
cording to

M =
(

vk uk

−uk vk

)
(B.4)

and F indicates the Fourier transform.
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Appendix C

Interference patterns of expanding rings

We derive here the expression for the intensity of the interference pattern of expanding
rings given in Eq.(2.21).

We consider first the expansion dynamics of a single condensate initially subjected to a
tightly confining potential. We follow the time evolution of the condensate wavefunction
following a sudden turn-off of the confinement at time t = 0. We will also assume that, due
to a sudden decrease of the condensate density, interactions can be neglected during the
dynamics, they indeed affect the dynamics of the condensate only in the initial stages of
the expansion [161]. If |Ψ(0)〉 is the initial state of the system, its time evolution following
the trap opening is given by

|Ψ(t )〉 = e−i H t/ħ|Ψ(0)〉
' e−i Hki n t/ħ∑

k
|k〉〈k|Ψ(0)〉

= ∑
k
Ψ̃0(k)e−i ħk2

2m t |k〉 (C.1)

where Hki n = p̂2/2m is the kinetic part of the Hamiltonian. This readily yields

Ψ(x, t ) =
∫

d 2kΨ̃0(k)e−i ħk2

2m t e i k·x (C.2)

Using the saddle-point method to approximate the above integral, in the long-time limit
we obtain

Ψ(x, t ) ≈
√

2πm

tħ Ψ̃0(k̄x , k̄y )e i m
2tħ (x2+y2), (C.3)

where k̄x = xm/(ħt ), k̄y = ym/(ħt ), thus corresponding to the ballistic regime of the ex-
pansion – the condensate expands at constant velocity, reaching a point in space fixed by
its initial momentum in the trap.

In the specific case where the initial confining potential is a double ring lattice, where
V (x) = ∑

l
1
2 mω2|x− xl |2 and xl indicate the minima of the double ring lattice in a two-

dimensional plane, we study the expansion and interference of the condensates released
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from each ring lattice. Assuming a deep lattice for each ring, and weak inter-ring tunnel-
ing, one may consider each lattice site l as occupied by a condensate with phase φl ,p and
density nl ,p weakly coupled to the condensates on the adjacent sites.

After releasing both ring lattices, as well turning off the artificial gauge fields, using
Eq.(C.3) above, the condensate wavefunctions will overlap and give rise to an interference
pattern at position r . If the confinement is very tight in the radial direction or the inter-
ring distance is larger than the distance among adjacent sites, the first interference fringes
are obtained by the superposition of the condensates wavefunctions radially expanding,
ie belonging to the same site index l . This is estimated assuming that each condensate has
travelled a distance (Rp − r ) at constant velocity ks,p = (−1)p (Rp − r )m/ħtT OF , where p =
1,2 labels each ring, thus acquiring a dynamical phase ħtT OF k2

s,p /2m, which adds to the
initial phase φl ,p . Taking into account the normalization of each condensate, one readily
obtains Eq.(2.18). As discussed in [69, 162] these interference fringes, and in particular the
spirals founds in the vortex phase, occur for typical times tT OF of the order of τK = m(R2−
R1)σr /ħ with σr the size of the initial condensate in each well. This time is large enough
to ensure ballistic expansion (ie on times larger than τb = mσ2

r /ħ), but shorter than the
time where neighbouring condensates would contribute to the interference pattern (ie
τJ = 2πmRpσr /ħNs) and would wash out the spirals. At extremely long times, the time-
of-flight images will correspond to the momentum distribution of the initial double ring
lattice.
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Appendix D

Rigol’s method for hard-core bosons

In this appendix I present the exact approach used in Chapter 4 used to calculate the
one-body density matrix in a one dimensional lattice. This approach has been introduced
by Rigol [112]. The one-body Green’s function for hard-core bosons can be written in the
form

Gi j = 〈ΨG
HC B |bi b†

j |ΨG
HC B 〉 = 〈ΨA

F |ΨB
F 〉 (D.1)

where we used the Jordan-Wigner transformation introduced in Chapter 4 Sec.3.51 Eq.4.19

|ΨA
F 〉 = f †

j

j−1∏
γ=1

e−iπ f †
γ fγ |ΨG

F 〉 (D.2)

〈ΨB
F | =

(
f †

i

i−1∏
µ=1

e−iπ f †
µ fµ |ΨG

F 〉
)†

(D.3)

moreover |ΨG
F 〉 refers to the non-interacting fermionic ground state and |ΨG

HC B 〉 to the
corresponding hard-core boson ground state. In general the non-interacting fermionic
ground state can be put into a general form in term of the single-particle eigenfunction
Pσδ of the non-interacting problem

|ΨG
F 〉 =

N f∏
δ=1

N∑
σ=1

Pσδ f †
σ |0〉 (D.4)

where N f is the number of fermions, N the number of sites and |0〉 the vacuum state. In
order to calculate |ΨA/B

F 〉 we observe that

j−1∏
γ=1

e−iπ f †
γ fγ =

l−1∏
γ=1

[
1−2 f †

γ fγ
]

(D.5)

then, the action of
∏l−1
γ=1 e−iπ f †

γ fγ on the fermionic ground-state given by Eq. D.4 implies
only a change of sign of the elements Pσ,δ for σ≤ l −1, and the creation of a particle at site
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l implies the addition of one column to the matrix P , with the element Pl ,N+1 = 1 and all
the others equal to zero. Thus, |ΨA

F 〉, and |ΨB
F 〉 can be rewritten as

|ΨA/B
F 〉 =

N+1∏
δ=1

M∑
σ=1

P A/B
σδ f †

σ |0〉 (D.6)

where the matrices P A,B are obtained from P changing the proper signs and adding the
new column N +1. The Green’s function is then calculated numerically and the one-body
density matrix ρi j is given in term of the one-body Green’s function

ρi j = 〈b†
i b j 〉 =Gi j +δi j (1−Gi i ), (D.7)
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Appendix E

Conformal field approach

It is known that the correlation of a Luttinger liquid in the massless phase corresponds to
the correlation functions of a classical two-dimensional system that is at criticality since
they decay as power laws. Correlation function for critical systems are known to be in-
variant under a large class of transformation, including space and time rotation, scale
transformations that can be included in a larger class of transformation, the conformal
transformations(see Cardy(1996) Di Francesco et al (1997)). As the correlations function
decay as power laws, correlations functions are invariant under rescaling so that, with ψi

a field of the theory,

〈ψ1(r1)ψ1(r2) . . .ψ1(rn)〉 = b−ν1 b−ν2 . . .b−νn 〈ψ1(r̃1)ψ1(r̃2) . . .ψ1(r̃n)〉 (E.1)

where r̃i = b−1ri and the νi are the scaling dimensions of the operators of the theory. The
goal is then to find the proper set of {νi } that will leave the correlation function unchanged
upon the rescaling. The idea of the conformal theory is to generalize these transforma-
tions to are locally simple rescalings, rotations or translations. The transformations that
are locally identical to dilatation, rotations, translations are known as conformal transfor-
mation E.1. The class of conformal transformation has to preserve locally the metric so
that if r = (x1, x2, . . . , xn), ∑

i
d x ′

i d x ′
i = b(r )−2

∑
i

d xi d xi (E.2)

The use of complex number is very useful as one is in 2D (space and time in our case),
thus parametrizing the position as z = x + i y . The rescaling factor is then express in terms
of analytic function f

d z ′d z ′ = | f ′(z)|2d zd z ′ (E.3)

Let us take a correlation function that can be written in terms of the complex variable z as

G(z1, z2) =
(

1

z1 − z2

)h (
1

z1 − z2

)h̃

(E.4)
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Figure E.1: Example of conformal transformation that preserves locally the angles of the
original network. From [163]

Upon a change of coordinates z → z ′ the correlation function changes into

G(z ′
1, z ′

2) =
[

d z1

d z ′
1

]h/2 [
d z2

d z ′
2

]h/2 [
d z1

d z ′
1

]h̃/2 [
d z2

d z ′
2

]h̃/2

G(z1, z2) (E.5)

This transformation is then allowing use to obtain correlation function in any geometry
that can be obtained by a conformal transformation of the plane. It is then a incredible
tool to consider special boundary condition of the system especially periodic boundary
condition.

We then advice the reader to follow [118] for the technicalities of the conformal field
approach for Luttinger Liquid theory with periodic boundary conditions.
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Appendix F

Retarded Green’s function

Green’s Function One can link the retarder Green’s function GR (k,σ, t − t ′) = −iθ(t −
t ′)〈

[
ψk,σ(t ),ψ†

k,σ(t ′)
]
〉 to the measured photo-emission spectra A(k,σ,ω), whereσ is a spin

parameter.

A(k,σ,ω) =− 1

π
Im

[
GR (k,ω)

]
(F.1)

One can derive the Lehmann representation (in (k,ω)) which reads

GR (k,σ,ω) = ∑
n,m

| 〈m|ψ†
k,σ |n〉 |2

ω+En −Em + iη
(F.2)

where {|n〉} is a set of eigenvector of the Hamiltonian of the system and η a regularizator
parameter. For the case of single particle Hamiltonian A(k,σ,ω) = δ(ω−εk,σ).

Honeycomb lattice Green’s function performing the equation of motion for the Green’s
function in an honeycomb lattice one get in the basis of site A and B .

G A/B (k,ω) = limη→0
1

ω2 −|φ(k)|2 + iη

(
ω φ(k)

φ(k)∗ ω

)
(F.3)

One can then evaluate the limit in the sense of the distribution with f (ω) being a test
function

limη→0

∫
R

dω
ω

ω2 −|φk |2 + iη
f (ω). (F.4)

Let’s make the following change of variable g (ω) = f (ω)ω so that g is still a test function
and we can use known relation

limη→0

∫
R

dω
1

ω2 −|φk |2 + iη
g (ω) =

∫
R

dω

(
P

1

ω2 −|φk |2
− iπδ

(
ω2 −|φk |2

))
g (ω) (F.5)
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Where P is the principal part, this term should vanish as it behaves as an odd function
near 0. Then in the sense of the distribution we have that

limη→0

∫
R

dω
ω

ω2 −|φk |2 + iη
f (ω) =−i

π

2

[
δ(ω−εk,+)−δ(ω−εk,−)

]
(F.6)

In the same way,

limη→0

∫
R

dω
φk

ω2 −|φk |2 + iη
f (ω) =−i

π

2
e iφk

[
δ(ω−εk,+)+δ(ω−εk,−)

]
f (ω) (F.7)

limη→0

∫
R

dω
φ∗

k

ω2 −|φk |2 + iη
f (ω) =−i

π

2
e−iφk

[
δ(ω−εk,+)+δ(ω−εk,−)

]
f (ω) (F.8)

In the diagonal basis the Green’s function reads

G±(k,ω) =
(
δ(ω−εk,+) 0

0 δ(ω−εk,−)

)
(F.9)

For a delta like source the wave function is equal to the Green’s function of the problem.
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