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William PUECH Professeur, Université de Montpellier, France



Résumé
Au cours des dernières années, la croissance rapide des technologies de l’information et de

l’usage du numérique a rendu les images de documents plus omniprésentes que jamais. Dans

les faits, il existe une grande variété de documents administratifs et commerciaux ayant une

valeur “juridique” tels que les certificats, les diplômes, les contrats, les factures, etc. Ces

documents sont utilisés par les institutions, les banques, les assurances, les établissements

d’enseignement, etc. Par souci de simplicité, ces documents sont souvent échangés par des

canaux numériques (la messagerie électronique, transfert de fichiers). L’interception de ces

documents et leur potentielle falsification est devenue une question inévitable, en particulier

avec le développement de la cybercriminalité. Par conséquent, la fiabilité de ces documents

numériques peut être remise en question avec un impact important sur la confiance et en-

trainer des conséquences pénales, économiques et sociales en cas de fraudes avérées. Pour

protéger ces documents numériques contre toute ingérence non autorisée, le domaine de la

lutte contre la fraude a évolué et attiré l’attention des chercheurs de la communauté de

l’analyse et de la reconnaissance de documents. Une solution efficace pour lutter contre la

fraude consiste à dissimuler des données en utilisant des techniques de reconnaissance de

formes.

L’objectif de ce travail est de développer des approches fiables pour dissimuler des informa-

tions et être capable de vérifier si un document est authentique ou falsifié. Les problématiques

abordées dans cette thèse concernent: (1) l’extraction de caractéristiques stables dans les

documents, même en présence de distorsions; et (2) la capacité à détecter avec précision

les informations cachées pour sécuriser les documents notamment lorsque les documents

“protégés” sont soumis à des distorsions causées par des processus tels que impression /

numérisation ou impression / photocopie / numérisation. La première problématique est

abordée en tirant parti des techniques conventionnelles de reconnaissance des formes et
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d’approches basées sur les apprentissages profond (deep learning). Plus précisément, nous

utilisons des détecteurs de la littérature pour détecter les points caractéristiques au sein des

documents et proposons un nouveau détecteur de points caractéristiques pour développer une

méthode de stéganographie. Afin d’améliorer la stabilité des caractéristiques face aux distor-

sions réelles, nous proposons plusieurs approches de tatouage (watermarking) utilisant des

régions stables du document au lieu des points caractéristiques. Ces approches combinent des

techniques conventionnelles et les réseaux entièrement connectés (FCN). Les réseaux antag-

onistes génératifs (GAN) sont également utilisés pour produire un document de référence, et

générer des caractères alternatifs utilisés pendant le processus de tatouage. Nous proposons

ainsi deux approches pour dissimuler et détecter des informations. La première repose sur

la modification de l’intensité des pixels, l’autre sur la forme des caractères.

Les évaluations montrent que nos approches sont capables de détecter correctement les in-

formations cachées lorsque les documents “protégés” sont soumis à diverses distorsions. Une

comparaison avec les méthodes de la littérature montre que nos approches offrent des perfor-

mances compétitives en termes de robustesse pour sécuriser différents types de documents.
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Abstract
The fast-growing information technologies and digital image technology over the past decades

have made digital document images becoming more ubiquitous than ever. In reality, there

have been variety of legal documents consisting of administrative and business documents

such as certificate, diploma, contract, invoice, etc. These documents are in use in govern-

ment agencies, banks, educational institutions and so on. Due to convenience of exchanging

information, the genuine documents are often transferred from one place to another by using

digital channels. The tampering of these documents during the transmission has become an

unavoidable matter, especially in the field of cybercrime. Hence, the credibility and trust-

worthiness of the legal digital documents have been diminished, this often results in a serious

aftermath with respect to criminal, economic and social issues. To secure the genuine dig-

ital documents against unauthorized interference, the field of document forensics has been

evolved, and it has drawn much attention from researchers in the community of document

analysis and recognition. One of the efficient solutions to address this matter is data hiding

in conjunction with pattern recognition techniques.

The objective of this work is to develop a data hiding framework as trustworthy as possible

that enables to verify if a document is genuine or phony. The challenging problems dealt

with in this thesis are: (1) extraction of enough stable features from the documents even in

the presence of various distortions; and (2) be able to detect precisely hidden information

embedded for securing documents from watermarked documents undergone real distortions

caused by print-and-scan, or print-photocopy-scan processes. For the former issue, we ad-

dress it by taking advantage of conventional pattern recognition techniques and deep learning

based approaches. Specifically, we utilize well-known detectors to detect feature points from

the documents, and propose a new feature point detector for developing a steganography

scheme. To enhance feature stability against the real distortions, we approach to develop

watermarking systems based on stable regions instead of feature points, which are based
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on the conventional techniques and fully convolutional networks (FCN). In addition, the

generative adversarial networks (GAN) are also applied to produce a reference document,

and character variations or fonts used for watermarking process. For the later issue, we have

come up with two approaches to develop data hiding and detection algorithms: one is based

on the changing of pixel intensities, and the other is relied on the shape of characters and

symbols.

The assessments show that our approaches are able to properly detect the hidden information

when the watermarked documents are subjected to various distortions. In comparison with

state-of-the-art methods, our approaches give competitive performance in terms of robustness

with applications to various types of document.
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Chapter 1

Introduction

The fast-growing information and digital image technology over the past decades have made
digital document images becoming more ubiquitous than ever. In reality, there have been
variety of legal documents consisting of administrative and business documents such as cer-
tificate, diploma, contract, invoice, etc. These documents are in use in government agencies,
banks, educational institutions and so on. The genuine documents are often exchanged
by using digital channels. The tampering of these documents during the transmission has
become an unavoidable matter, especially in the field of cybercrime. Thus, securing these
documents against unauthorized intervention is a matter that draws a lot of attention. It
also poses many challenges for researchers, especially in the community of document analysis
and recognition.

This chapter presents our motivations and an overview of data hiding techniques relevant
for our thesis. In the wake of the popularity of transmission of daily genuine documents over
the digital channels, we present the necessity of using data hiding techniques to secure these
legal documents against illegal intervention or falsification. We briefly introduce the concept
of data hiding technique, its applications and the properties required for a data hiding system.
We also point out challenges in designing a data hiding system for document images. In
addition, our general framework and contributions are also detailed in this chapter.

1.1 Problem definition

Due to convenience of information exchange, the genuine documents are daily transmitted
over the digital channels more than ever. The availability and effeciency of fast-growing
advanced technologies make digital data becoming more popular for the end users. Thus,
the daily legal documents as contracts, invoices, reports, bank guarantees, balance sheets
and so on are mostly scanned and stored under the digital format. These documents are in
use in several sectors like government agencies, bank, military, business, etc. The free-access
digital information communication also leads to unprecedented opportunities to violate the
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usage of these genuine documents. Specifically, these digital documents are easily modified
by inauthentic users with the support of available image processing softwares, e.g. Adobe
Photoshop, which can be used to delete or replace content in some areas of the documents
without leaving any detectable trace. The alteration may be physical or intellectual in which
physical alteration refers to crossing-out of items or references, addition of information to
change the original content of a document, etc. whereas the other indicates the content
of a document that does not accord with the reality such as false description of services,
false content of reports, false signature on contracts, etc. The action of illegally modifying
legitimate documents is known as tampering, the modified version generated from tamper
is regarded as fraudulent document.

Figure 1.1: The use of different types of fraudulent documents for illegal activities (Council
of the European Union (September 2017)).

According to Interpol 2017 (COM/FS/2017-01/FHT-05), the fraudulent use of identity
and travel documents presents a threat to the security of countries and their citizens, the
economy and global commerce, and it facilitates a wide range of crimes. The inauthentic
users often make fraudulent use of genuine documents in order to carry out their illegal
activities. The fraudulent documents are classified into three categories: (i) the modified
documents are typically based on a genuine document in which a part has been inserted or
altered in order to give misleading information about the person who presents it. This kind of
modified documents is known as forgery; (ii) the documents are produced with no authority,
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they are not officially recognized. They can occur in various forms and may have the physical
appearance of a genuine document. This kind of produced documents is regarded as pseudo
document; (iii) the documents that are constituted from an unauthorized reproduction of a
genuine document. These documents are not legitimately manufactured or recognized by an
official authority, they are known as counterfeit.

According to Council of the European Union (September 2017), document fraud entails
the production and the use of false documents as well as the misuse of genuine documents.
The use of fraudulent documents in the EU has significantly increased the unauthorised users
counterfeit or fabricate different types of paperwork and administrative documents such as
transport certificates or company registration forms to facilitate their illegal activities. Figure
1.1 shows the use of different types of fraudulent documents in illegitimate activities.

In France, according to a recent survey from Pwc 2016 report “La fraude en entreprise”,
the 68-percent of interviewed companies have identified at least one case of fraud in 2016.

With the growing risk of using falsified documents in governmental agencies and business,
securing the legal documents against unauthorired interventions is not just a matter that
draws much attention from those who make the genuine documents. It also introduces many
challenges which are dealing with by reseachers, especially in the community of document
analysis and recognition. In fact, to secure or authenticate genuine documents, several
approaches that can be used as follows.

Figure 1.2: An example of identification document: the holder image or photograph is at top
left. Textual personal information is on document in human readable form. Photo signature
(encrypted form) in machine readable form is at bottom of document.

Photo signature17;18 has been proposed to secure identification documents as passport,
driver’s licenses, welfare cards, national identification, credit cards, etc. This method utilizes
the technique of pattern recognition, public key, digital signature cryptography for establish-
ing and maintaining authentic documents. It is more effective than physical means such as
microprinting, embedded holograms and optical laminates which are used to prevent tam-
pering. The identification documents as in Figure 1.2 often consists of holder’s photograph
and textual personal information. The idea of this approach is to generate a photo sig-
nature from the holder photograph in which each holder image or photograph produces a
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concise and unique descriptor. The photo signature is then affixed to the documents under
an encrypted form for document verification.

Biometric-based authentication systems19 are relevant to human characteristics that iden-
tify individuals based on fingerprint as illustrated in Figure 1.3(a), voice, face, hand geometry,
signature, iris and retina. These methods are more effective than traditional authentication
systems such as knowledge-based information or token-based information because biometrics
can not be borrowed, stolen, or forgotten. They are more convenient because there is no
need to refer to any extra information. One of the widely used applications of biometrics is
fingerprint-based authentication system. Although this method gives high effectiveness, it
has also posed some limitations as it is used for remote authentication20. By using spoofing
approaches, the falsified fingerprint can be easily generated by malicious users.

Figure 1.3: (a) is a fingerprint sample from the United States National Institute of Stan-
dards and Technology database. (b), (c) and (d) are the appearance of barcode, quick response
code and document signature respectively.

Digital signature associated with barcode-based system21;22 has been proposed to verify
the integrity of the document text content and the origin of a document. The idea of
this approach is to use 1D or 2D barcode to carry integrity and authenticity information
(presented as digital signature form) within the documents. This method allows to verify
the document author when the document has not been falsified. The system also enables to
detect whether or not the received document has been altered by malicious users. In general,
the technique combining digital signature and barcode provides high effectiveness without
any requirement of special equipment or expertise. Similar to barcode, quick response code
as in Figure 1.3(c) has also been used to develop document authentication system23. To
improve the performance of the system, the quick response code is sometimes combined with
other methods as visual secret sharing24.

Document signature25;26 has been put forward for the purpose of document security. The
idea of this approach is to extract document content and transform the extracted content to
its proper format. A hash algorithm is then applied on it to generate a document signature.
The document signature as in Figure 1.3(d) is then affixed to the document with the support
of barcode or quick response code for document verification. Besides, the approach of passive
image forensics has been implemented to detect tampered regions in the images, and the
existing approaches27–33 show that they provide high performance when they are applied on

4



natural images.

As we can see that various approaches have been proposed to protect legal documents
against unauthorized interventions. Apart from their advantages, each method has also the
drawbacks mentioned above as in the case of fingerprint-based authentication system. With
regard to photo signature, barcode (1D, 2D), quick response code and document signature,
they enables to visibly affix a secret information or digital signature to the documents. We
refer to visibly affixed information on documents as visible codes. Although these approaches
give high performance for the purpose of securing genuine documents, they also have intro-
duced some concerns such as: (1) the visible codes are almost unattractive and meaningless
to normal users; (2) the visible codes often require a certain blank space on documents for
embedding in and sometimes make the genuine documents losing their aesthetics; (3) this
kind of codes also draws much attention from malicious users who try to break these codes
to illegitimately access to embedded information.

Figure 1.4: The illustration of data hiding technique that enables to hide a secret informa-
tion into a document and detect the hidden information from the watermarked document,
even in the presence of distortions.

To overcome the issues of presented approaches, the data hiding technique can be used
as an effectively alternative solution. This technique enables to integrate invisibly a security
feature within the genuine documents, and the security feature is later extracted by recipients
to verify whether a received document is genuine or falsified, as illustrated in Figure 1.4.
Moreover, recently, the data hiding technique is also applied for protecting pre-trained models
of deep neural networks34;35. The purpose of this application is to reduce complexity and
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save time for training models. In fact, the authors are willing to release their trained models
to help reseachers and engineers develop deep learning-based system and do research with
less effort. However, they want to remain the ownership authorization of their pre-trained
models. Thus, prior to releasing the pre-trained models publicly, the authors hide necessary
information into their pre-trained models for later verification. As a result, we are motivated
by the advantage of data hiding technique, so we have adopted data hiding approach in the
field of securing legal documents.

1.2 An overview of data hiding technique

Data hiding36 is a technique that enables to hide an information (e.g. secret message or
watermark) into a carrier (e.g. image, video, software, etc.) without causing much perceptual
distortion of the original content. In the scope of this thesis, we refer to documents or images
as carrier. Digital watermarking and steganography are two sub-branches of data hiding.
The hidden information is either visible or invisible with regard to watermarking system
whereas it is always invisible for steganography. Depending on the purpose of use like
document authentication, document security or covert communication, the watermarking or
steganography approach is going to be selected to meet the requirement of real application.
With the invisible data hiding scheme, hiding information embedded in documents should
not be perceived by normal observers. This means that the observers have difficulties to
recognize the regions of the document where the secret information is hidden inside. For
detection process, extracting the hidden information without any reference to the original
document is regarded as a blind detection. A general data hiding system as shown in Figure
1.5 consists of three main components such as information hiding process, distortion channel
and information detection process. During its life, the document, where secret information
is hidden, is more or less subjected to distortions which can be intentional or unintentional.
In general, there are fundamental properties that we need to take into consideration when
designing a data hiding system as follows.

Figure 1.5: Fundamental components of a data hiding system.

Imperceptibility: Hiding a secret information into documents has to degrade minimally the
quality of document content, and it should not be perceptible by the human visual system.
This property refers to a similarity between the document images before and after hiding a
secret information. In some data hiding applications, the hidden positions can be recognized
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by experts in the field. However, it still remains unnoticed with respect to the eyes of normal
end-users.

Capacity: This property indicates the amount of information that can be stored in a
document image. Depending on the application, the amount of information would be more
or less. For copy control application, for example, a little amount of information seems to be
sufficient. Meanwhile, the intellectual property applications require more capacity to store
necessary information such as author, copyright, etc. It is noticeable that high capacity
could result in reduction of quality of images after hiding a secret information.

Robustness: It refers to the ability of a data hiding system against intentional or uninten-
tional distortions. In other words, it is able to properly detect the hidden secret information
in case the documents undergo distortions. These distortions can be caused by JPEG com-
pression, geometric transformation, print-and-scan process, print-photocopy-scan process,
print-photograph and so on. This property often conflicts with the imperceptibility and ca-
pacity. It means that increasing the robustness may result in reducing the imperceptibility
and capacity.

Security: It is the inability for malicious users having permission to decode the hidden
secret information. The process of hiding secret information should be difficult for unautho-
rized users to destroy the hidden information without the knowledge of a secret key.

Digital watermarking37 has been proposed as an effective solution for determining cre-
ator, owner, source, authorised receivers of a document or image. Besides, this method has
been also used to detect a document or image that is illegitimately modified or distributed.
Unlike traditional watermarking for printed or visible watermark, the digital watermarking
system is mostly designed to be imperceptible to human eye. For the purpose of real ap-
plication, the watermarking system can be classified into three categories including fragile,
semi-fragile and robust. Fragile and semi-fragile watermarks38;39 are primarily designed for
detecting the integrity and authenticity of images. The fragile watermark is always used
to detect unauthorized modification for the purpose of image authentication. The robust
watermarking scheme40;41 is mainly designed to withstand distortions such as common im-
age processing operations, geometric transformation, print-and-scan operation, etc., and it is
mainly applied for copyright protection. In the context of digital watermarking, the original
document is known as a host, the secret information is regarded as a watermark, and the
document after hiding a watermark inside is known as a watermarked document.

The watermarking system can be implemented in either spatial domain or transform
domain. For watermarking system in the spatial domain, the gray value of pixels in the
original images is directly adjusted to obtain the purpose of hiding information. For ex-
ample, the least significant bit (LSB) algorithm42 is a popular spatial domain method. For
transform domain41;43, the watermarking scheme is implemented by transforming the images
into discrete cosine transform (DCT), discrete Fourier transform (DFT) or discrete wavelet
transform (DWT). The information is often hidden into the low and medium frequency areas
because of less degradation. The transformed domain is then reversed to achieve the water-
marked image. As a result, the watermarking system can be apply for variety of practical
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applications such as copyright protection, data authentication, fingerprinting, copy control
and device control.

Digital steganography37 is an art and science of hiding information into images in order
to conceal the information and prevent the detection of hidden data. Unlike watermarking
applications, steganography is mostly designed for the purpose of covert communication in
which this technique aims to obscure the hidden information in an image with the intent
of not drawing suspicion that the information is being transferred. Thus, a good steganog-
raphy should meet the requirements of imperceptibility, capacity and security. To meet
the property of security, steganography is often combined with cryptography (symmetric or
asymmetric). Basically, there are three types of steganography: (i) technical steganogra-
phy uses scientific methods to hide a secret information, these methods are invisible ink,
microdots, shaved head; (ii) linguistic steganography applies written natural language to
conceal a secret message. Hiding information can be performed by using visual symbols,
signs or special pre-defined pattern which is not recognized by normal observers; (iii) digital
steganography is the art of hiding secret information into digital media which is increasingly
used so far. The terminologies used in steganography are defined as follows. The original
document is known as a cover whereas the document after hiding a secret information inside
is regarded as a stego-document.

Depending on the practical applications, the performance of a data hiding system is re-
flected through its properties. As mentioned above, the imperceptibility is measured by the
quality of watermarked images or stego-images. The higher the quality of watermarked im-
ages or stego-images, the better the imperceptibility will be. The methods to measure this
property consist of peak signal to noise ratio (PSNR), structural similarity index (SSIM)44,
distance reciprocal distortion measure (DRDM)45, edge line segment similarity46 and flip-
pability score47. Meanwhile, the evaluation of robustness is measured by bit error rate, or
false positive rate, false negative rate and true positive rate. The smaller the value of false
positive rate and false negative rate, the better the accuracy ratio of hidden data detection
will obtain.

1.3 Objective and challenges

From the merits and demerits of existing authentication systems, we utilize pattern recogni-
tion techniques in conjunction with document image analysis to develop data hiding systems
in order to secure documents against malicious activities as illustrated in Figure 1.6. There
are two main objectives from the context of our study. From a perspective of practical ap-
plications, we are going to provide a framework that is reliable enough to meet the necessary
requirements that a document might have to undergo during the process of document ex-
change. From a conceptual perspective, we are going to provide data hiding algorithms that
are robust enough to be capable of hiding a secret information into and detecting the hidden
information from various types of documents in the presence of possible distortions.

Several data hiding approaches have been proposed for document images and natural
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Figure 1.6: The illustration of securing documents against inauthentic activities.

images. For document images, most existing data hiding approaches have been proposed for
text content1;48–54, or specific languages such as Indian or Chinese. Recent works55;56 have
been designed for general content but they have been developed in the transform domain.
The methods for text content seem not to work well for general content because these works
provide no detail on how to identify and separate text and non-text elements. In addition, the
approaches for natural images57–61 can be applied for document images but they need to be
adjusted to improve the robustness (e.g. extracted features as keypoints or edges are unstable
regarding to distorted document images) or to eliminate empty regions (e.g. document
images often contain a lot of empty areas). Moreover, deep learning is also exploited to
develop data hiding systems, which are designed for natural images62;63 or text document53;54.
The types of deep neural network used in these works are convolutional neural network
(CNN), or CNN-based autoencoder.

In the scope of our study, to make a data hiding as trustworthy as possible, we have to
deal with three main challenging problems:

• The first challenge is to design a data hiding system which is compatible with diverse
documents. Due to the nature of the administrative and business documents, the
system should be applicable for typewritten and handwritten documents where the
content of these documents could be a combination of picture, text, table and so on.
Besides, these documents could be grayscale or binary documents.

• Second, there are always a conflict among imperceptibility, capacity and robustness.
Thus, hiding authentic information into documents has to preserve the property of
robustness as much as possible whereas it has to meet the other requirements. In fact,
the features extracted from document images by using conventional pattern recogni-
tion technique are relatively unstable against distortions. The instability of extracted
features will result in reducing the precision of detecting the hidden information.

• The third challenge is that the data hiding algorithms should be robust enough to hide
the secret information into genuine documents and to detect the hidden information
from the watermarked or stego documents, which are possibly subjected to distortions
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like JPEG compression (due to size reduction or storing scanned versions), geometric
transformation, print-and-scan process (scanning at various resolutions), and printing-
photocopying-scanning process (multi rounds of photocopying prior to scanning at
various resolutions).

The general framework of our data hiding system is shown in Figure 1.7.

Figure 1.7: The general framework of our data hiding system.

1.4 Contributions

In this research, we have contributed a number of achievements to the field of securing legal
document by taking advantage of pattern recognition techniques in combination with data
hiding techniques. Specifically, we have developed the data hiding schemes based upon con-
ventional approaches and deep learning approaches. On the one hand, we have proposed a
number of solutions to improve the stability of features extracted from the document im-
ages, which are used to develop data hiding systems in the spatial domain. These solutions
consist of feature point extraction, detection of stable regions, generation of an intermediate
document from the input document, generation of character and symbol variants. On the
other hand, we have come up with a number of new robust data hiding algorithms which
are capable of properly detecting the hidden information from the watermarked documents
which are undergone different transformations such as JPEG compression, geometric trans-
formation, print-and-scan operations and print-photocopy-scan operations. The summary of
our contributions is listed as follows.

1. Conventional approaches

(a) Constructing a steganography scheme based on the feature points which are ex-
tracted by BRISK detector64.

(b) Proposing a new feature point detector by using a combination of non-subsampled
contourlet transform (NSCT)65 and distance transform.
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(c) Developing a watermarking scheme based on stable region approach, which is
performed by combining common image processing operations and NSCT.

2. Deep learning approaches

(a) An approach for detecting watermarking regions has been developed by using
fully convolutional networks (FCN)66.

(b) A method for generating an intermediate document from the input document
has been proposed by utilizing generative adversarial networks (GAN)67. The
generated document is then used as a reference for watermarking process.

(c) Another GAN network has also been proposed to generate variations of document
characters and symbols from their skeleton, which is known as font generation.

(d) Taking advantage of FCN network to detect the character variants from the wa-
termarked documents.

1.5 Thesis organization

The thesis is organised in six chapters whose current chapter presents an introduction to the
thesis. The rest of the thesis is structured as follows.

Chapter 2 presents a detailed review of state-of-the-art approaches that are relevant to
the data hiding system, evaluation of geometric correction method based on feature points,
and assessment of stability of extracted features used to construct hiding regions. Regarding
the data hiding schemes, we have reviewed watermarking schemes for document images with
textual content, document images with hybrid content and natural images, watermarking
scheme for protecting pre-trained model of deep neural network, forgery detection, and
steganography and steganalysis schemes for natural images. The reviewed schemes will also
cover typical techniques used to detect image features as well as data hiding algorithms in
both spatial and transform domain.

Chapter 3 introduces feature points-based steganography scheme and stable regions-
based watermarking scheme. In the former, we use speeded up robust features (SUFR)
detector to extract feature point for constructing hiding regions, local binary pattern (LBP)
and local ternary pattern (LTP) for determining potential hiding positions. Hiding data into
document is based on odd and even feature of gray level values, and we also utilize error
correction code to enhance the accuracy of hidden data detection. Besides, a new feature
point detector for stability improvement is also presented in this chapter. In the later, we
combine common image processing operations and non-supsampled contourlet transform to
detect the stable hiding regions. The watermarking algorithm is developed depending on
each group of pixel values assigned with weights in which we have eliminated pixel values
that are vulnerable to distortions.
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Chapter 4 presents the watermarking schemes designed by taking advantage of deep
learning. Specifically, the FCN network for the purpose of semantic image segmentation is
adjusted to solve the problem of detecting watermark hiding regions, and to detect positions
of character variants. In addition, we introduce two watermarking algorithms which are
based on changing pixel intensities for watermarking process, and they are able to apply for
both typewritten and handwritten documents. Besides, we make use of GAN to develop
two other watermarking schemes: the first scheme is applied to produce a good quality
document from an input document, and the generated document is then used as a reference
for developing watermarking algorithms; meanwhile, the other is based on the shape of
document characters and symbols, and it is performed by generating new fonts of document
or variations of document characters and symbols. Finally, a watermarking scheme for binary
documents is also presented in this chapter. We introduce hiding patterns used for detecting
edge features and corner features, and these features are utilized to carry information bits.
Two watermarking algorithms for binary documents are then presented in which one is
designed to hide information bit directly into each hiding pattern, and the other is based on
the disparity between the number of edge features and the number of corner features in each
group of objects.

In Chapter 5, we detail the performance of our approaches through various experiments.
The performance is evaluated based on the following factors such as imperceptibility, capacity
and robustness against common distortions like JPEG compression, geometric transforma-
tion, and real noises caused by print-and-scan process and print-photocopy-scan process.
The experimental results show that our proposed approaches are able to detect the hidden
information from: the watermarked douments scanned at low resolutions, even at the reso-
lution of 200 dpi for some types of document; and the watermarked documents suffered two
rounds of photocopying prior to scanning at various resolutions. Besides, we also present
quantitative comparison to prove the improvement of our approaches, and comparison with
other typical schemes.

Chapter 6 elaborates a summary of thesis contributions and possible improvements of
data hiding scheme for securing documents.
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Chapter 2

Review of data hiding researches in
the literature

This chapter provides a comprehensive survey on data hiding research for document and
natural images, and feature points-based methods for geometric correction and construction
of hiding regions. For watermarking approaches, we review the existing techniques by clas-
sifying them into schemes dedicated to: text documents, hybrid documents, natural images
and pre-trained models of deep neural networks. Meanwhile, steganography schemes are
only designed for natural images. With each of data hiding schemes, we also introduce tech-
niques used to detect image features as well as data hiding and detection algorithm, which
are implemented in either spatial domain or frequency domain. The data hiding schemes
for binary images are also reviewed in this chapter. In addition, we also present steganalysis
schemes and forgery detection. Finally, we evaluate the performance of geometric correc-
tion processes and hiding region construction processes that are based on feature points,
and which are usually designed for natural images in order to determine their relevance for
document images.

2.1 Watermarking techniques

A digital watermarking system enables to hide a secret information with moderate capac-
ity into images or documents in such a way the hidden information can be precisely ex-
tracted in the presence of various distortions caused by image processing operations, printing-
photocopying-scanning process, operation of image capture. The most common important
requirements for digital watermarking are imperceptibility, robustness and security.
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2.1.1 Watermarking for text documents

Low et al.68 have proposed a method based on line and word shifting. Regarding line
shifting method, the marked line can be slightly shifted up or down from its normal position
to carry one watermark bit. Meanwhile, word shifting method divides the words of each
line into three groups of words with a large middle group. The middle group is slightly
shifted left or right as hiding watermark bit whereas two neighboring blocks are regarded
as control blocks, and remain stationary. This approach requires the original document
when detecting watermark. A feature calibration method has been proposed by Amano and
Misaki69 in which each character is detected and grouped into text line, then the bounding
box of text line is calculated. Each bounding box is divided into four partitions which are
classified into four sets. The average width of the horizontal strokes of characters is computed
as feature. The authors defined two operations like “make fat” and “make thin” as in Figure
2.1 to add or remove pixel values on these four sets for hiding watermark bits. This method
is able to resist to noises caused by print-and-scan operations.

Figure 2.1: The demonstration of “make fat” and “make thin” operations.

Kim and Oh1 have proposed an approach by using edge direction histograms. The edge
direction histograms are calculated by making use of Sobel edge operator. The watermarking
algorithm is based on the shape of the histogram. The edge direction is quantized into 16
levels. Figure 2.2 gives an example of edge direction and the encoding of 16 directions. The
document is partitioned into blocks in which the first three blocks are used as a reference of
edge direction histogram, the length of diagonal directions of remaining blocks are adjusted
to carry watermark bits. This approach is robust against some distortions like rotation,
blurring, sharping and etc.

Kim et al.49 have put forward word classification and inter-word space statistics for text
document. The number of words in each line are identified wherein the width of words is
used as a feature for word classification. All words in the document are classified, and the
segment is defined to be a group of consecutive words in a line. The watermark bits are
hidden by slightly shifting words to left or right in each segment. This method gives good
imperceptibility and robustness against the error of page segmentation. A weight-invariant
partition-based scheme presented by Hu50 divides document into partitions by using support
vector machine (SVM). The authors claim that the weight of a partition is not likely to be
significantly changed due to noises. With this approach, the watermark is then hidden into
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Figure 2.2: Encoding of edge directions1 extracted from: (a) edge directions, and (b) quan-
tization.

uniform partitions by adding or removing pixel values to a text line such that the line in the
partition is suitable for hiding watermark bits. Another inter-word space method51 hides
secret information by partitioning words in a text row into two sets as in Figure 2.3, and
each set contains the equal number of inter-word spaces. If there are an odd number of
inter-word spaces within a text row, one of them will be removed. Hiding process is carried
out by adjusting these spaces. The inter-word space methods give good imperceptibility and
robustness to print-photocopy-scan (PCS) noises. In general, the approach based on word
or line shifting can be applied for both grayscale and binary documents.

Figure 2.3: An illustration of inter-word space method in which “set A” and “set B” contain
the equal number of space elements.

Palit and Garain48 have proposed a method by hiding data into prototypes constructed
from document. The authors use pattern matching techniques for clustering symbols into
prototypes, and the image of prototypes is represented under binarized form. This method
can withstand distortions like JPEG compression, uniform random noise and scaling. How-
ever, it is only designed for Indian text document. Another scheme based on continuous
line70 makes use all of word spaces and considers the document as one long line. The main
idea of this method is to take word spaces, and to divide them into pairs of sets in which each
set contains three consecutive word spaces as depicted in Figure 2.4. If the word spaces are
not enough to form a pair of sets, these word spaces are then classified into a spare group.
The horizontal and vertical profiles are utilized to partition document into lines, words and
letters. To hide information, the difference among the total widths of the sets within each
pair is adjusted. This method is able to resist to printing and scanning distortion, and it
can be applied for binary and grayscale documents.

Varna et al.52 hides information into the vertically left edge of the character stroke by
adding or deleting two groups of pixels which are equidistant from the center as in Figure 2.5.
The authors have combined message packetization and error correction code for improving
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Similarly, another approach based on the shape of characters has been recently proposed
by Chang et al.53;54. This method hides secret information into text by perturbing the glyphs
of text characters. The variation of a character is produced by utilizing the font manifold
presented in72. To do so, the authors have constructed a glyph codebook containing character
variations. CNN is used for both codebook construction and glyph recognition in which the
authors develop a lookup table which contains a set of variations for each character in three
common fonts such as Times New Roman, Helvetica and Calibri. In addition, the authors
have employed error correction code based on Chinese remainder theorem for rectifying
recognition errors. This method is robust to real noises like print-and-scan as well as print-
and-photograph. Figure 2.7 demonstrates the variations of a character.

Figure 2.7: The illustration of 5 points (left) around the manifold of a character “a” in
Times New Roman font (center) and generated glyphs (right).

2.1.2 Watermarking for hybrid documents

At the time of conducting our research, we have only found few watermarking schemes
designed for documents with mixed content, and they are implemented in transform domain.
A combination of discrete cosine transform, singular value decomposition (SVD) and genetic
algorithm has been proposed by Horng et al.55. The idea in combining DCT and SVD
is to use luminance masking in accordance with the characteristics of the human visual
system to improve noise sensitivity whereas genetic algorithm is used to find the scaling
factor for watermarking optimization. The hiding process begins by calculating the masks
of the original document and transforming them into coefficients. The information is then
hidden into document by adjusting the singular values of transformed document, the singular
values of document’s mask coefficients and scaling factor. With this combination, the authors
claims that their scheme provides high performance and security, and it is able to resist to
common image processing operations. The method proposed by Chetan and Nirmala56 hides
data into document by using integer wavelets and block coding of binary watermark. To
identify the regions for carrying watermark bits, the document is divided into empty and
non-empty blocks depending on the presence of document content. Prior to hiding, the
binary watermark is compressed by using binary block coding technique. Next, a level-2 of
integer wavelet transformation is applied on the non-empty blocks of document. The low
level subband of level-2 of the transformed document is subdivided into blocks with uniform
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size, and the compressed watermark is then hidden into these blocks. This approach is
capable of robustness against common image processing operations.

2.1.3 Watermarking for natural images

In contrast to watermarking for hybrid document, there are several schemes dedicated to
natural images, and they are implemented in both spatial and transform domain.

A salient feature points-based scheme73 hides a version of inversely normalized watermark
from a DCT transformation of original watermark into images. The watermarking process
is conducted by transforming the input image into nomalized form using image moments.
The feature points are extracted from the normalized image that will act as centers of
watermark hiding regions where the watermark is hidden into. The proposed scheme are
experimented on feature points extracted from four feature point detectors such as radial
symmetry transform (RST), scale-invariant feature transform (SIFT), speeded up robust
features (SURF) and features from accelerated segment test (FAST). This scheme is robust
to geometric distortions and signal processing distortions. The diagram of watermark hiding
process is depicted in Figure 2.8.

Figure 2.8: Watermark hiding process: IDCT stands for inverse DCT.

Discrete fourier transform (DFT) domain along with feature points74 is utilized to hide
information into images. To enhance security feature, the watermark is a pseudo random
binary sequence generated by a secret key. It is then hidden into the magnitude of the
middle frequencies of DFT which is transformed from the original image. The magnitude
of middle frequencies of DFT is choosen because modifying coefficients in the magnitude of
low frequencies leads to visible distortion whereas it is vulnerable to JPEG compression with
respect to magnitude of high frequencies. Finally, the feature points of a watermarked image
are extracted and stored in a file. The data stored in this file is used to match with feature
points extracted from distorted image for the purpose of geometric correction. This method
is robust to geometric and signal processing distortions. A scheme based on feature points
and Zernike moments is proposed by Yuan and Pun75. SIFT detector is used to extract
feature points, and circular regions centered at these feature points are constructed for
watermark hiding and detection wherein the overlapping and small regions are eliminated.
To avoid degradation of a watermarked image, each circular region is decomposed into a
series of binary images as depicted in Figure 2.9. The Zernike moments are applied to these
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binary images, and the watermark is then hidden by altering the magnitude of these local
moments. Another method76 is relied upon feature points extracted by SIFT detector and
DFT transformation. The appropriate feature points are selected to construct disks centered
at these feature points. For each disk, orientation alignment is performed to obtain rotation
invariance. Next, the DFT is applied to these disks, and the secret information is then
hidden into the middle frequency coefficients of each disk.

Figure 2.9: An illustration of circular regions centered at extracted feature points and de-
composition of binary images.

Similarly, Zhang and Li propose a feature points and DCT-based scheme77 that enables to
hide data into circular regions. The authors use SURF detector to extract feature points, and
the circular regions are constructed around these feature points wherein the overlapping and
small regions are also eliminated. The watermark is then hidden into these circular regions
by adjusting coefficients in the middle frequency of DCT. In general, the schemes based on
feature points and circular regions in transform domain are robust to geometric and signal
processing distortions. The scheme presented by Manuel et al.78 is depending upon SURF
feature matching and DFT domain. The watermarking process is conducted as follows. The
watermark is produced as 1-D binary pseudo-random pattern generated by a secret key.
The image is then transformed into frequency domain by using DFT, and the magnitude of
middle frequency components are selected for data hiding and detection. Finally, the feature
points are extracted from watermarked image, stored in a file, and used to match with the
feature points extracted from distorted watermarked image for gemometric correction.

Dang et al.79 have proposed a watermarking scheme based on neural network and memetic
optimization for color images. The authors select the luminance component Y of Y CbCr
colour image for hiding a watermark. The component Y is decomposed by Symlet-2 DWT
in the four-level wavelet transform, and only appropriate subbands are used for hiding data.
The selected subbands are then divided into non-overlapping blocks. The relationship be-
tween wavelet coefficients and its neighborhoods in selected blocks are calculated by general
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regression neural networks. The multi-objective memetic algorithm is used to optimally se-
lect the value of standard deviation for this network. Another scheme in frequency domain
has been presented in58. The two-dimensional DWT is applied on the original image to
obtain the middle frequency subbands whereas the one-dimensional DCT is applied to the
selected middle frequency subbands to extract the final coefficients for hiding information.
To enhance the quality of watermarked images, the genetic algorithm is analyzed to deter-
mine suitable positions for watermarking process. Then, the coefficients of middle frequency
subbands are modified for hiding data. This method is able to withstand print-and-scan
distortions. Zolotavkin et al.59 have come up with a technique of Distortion Compensation
(DC) for two dimensional Quincunx Lattice Quantization in which the parameters for con-
trolling DC are modified to improve the efficiency of their scheme. The main steps of hiding
procedure are briefly described as follows: applying a transform on the original image for
obtaining a sequence of coefficients; performing a modification of 2D Quincunx to obtain
pairs of quantized coefficients; replacing original coefficients with quantized coefficients to
hide secret information; reversing the tranformed image to obtain a watermarked image in
the spatial domain.

The scheme proposed by Haribabu et al.80 uses auto encoder-based convolutional neural
networks for learning features from positive image and negative image. The positive and
negative image are generated from the original image, and the two generated images are
then fed into two different networks. These two networks produce positive learned image
and negative learned images. Depending on the watermark bit, the watermarked image is
generated by adjusting pixel values which are picked up from either the positive learned
image or the negative learned image. Munib et al.60 have put forward another scheme based
on triangular regions and Zernike moments. With the keypoints obtained by using Harris
detector, Delaunay tessellation is then applied to partition image into distinct triangular
segments. The magnitude of Zernike moments of each triangle is then used to hide a secret
information. Maedeh et al.61 have proposed a method based on DWT and DCT in which the
image features like edge, saliency and intensity are used to compute hiding factors with the
support of a fuzzy system. The authors use appropriate sub-bands of a 2D wavelet transform
in two levels. Hiding data is carried out by modifying coefficients of frequency sub-bands,
and the modification is based on the value of hiding factor.

2.1.4 Watermarking for trained neural networks

Recently, digital watermarking is also exploited to maintain the ownership authorization of
deep neural networks. We have found few works relevant to this research direction as follows.
Uchida et al.34 have proposed a framework that enables to hide a watermark into a host net-
work. There are three possibilities to hide a watermark into a network including training,
fine-tuning and distilling process, and there are two distortions that can affect the accuracy
ratio of watermark detection like fine-tune process and model compression (parameter prun-
ing). The main idea is to hide watermark into one of the convolutional layers as depicted
in Figure 2.10. To avoid impairing the performance of the host network, the authors utilize
parameter regularizer instead of modifying parameters of a trained network. This method
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can be applicable to other networks such as standard multilayer perceptron, recurrent neu-
ral network and long short-term memory. The hidden watermark can be detected in case
of fine-tune process and model compression. Similarly, another scheme for neural networks
has been proposed by Nagai et al.35. This method enables to hide information into trained
networks through the process of training, fine-tuning and distilling network. For the training
and fine-tuning process, the copyright holders of the network is expected to hide watermark
into their network. For the distilling process, the non-copyright holder is entrusted to hide
information into the network on behalf of a copyright holder. This method is capable of
detecting hidden watermark from the trained model in case it is subjected to fine-tuning,
model compression and watermark overwriting.

Figure 2.10: The illustration of network structure wherein the watermark is hidden into
convolutional layers enclosed by blue rectangles.

Another CNN-based method63 hides secret bits by dividing the original image and water-
mark into non-overlapping blocks. The CNN’s weight parameters are then modified during
the training process for watermarking image. With this approach, each block is able to
carry one watermark bit. Recently, CNN-based scheme81 enables to hide a watermark im-
age into appropriate sub-bands of DCT transform of image by modifying its corresponding
coefficients. The hidden information is detected by making use of CNN network.

2.2 Steganography technique

As mentioned above, digital steganography is utilized for the purpose of covert communica-
tion. From our survey, we have found several existing works that are designed only for natural
images. Different from digital watermarking, the most common important requirements for
digital steganography are imperceptibility, capacity and security.

The most common algorithm used in designing steganography scheme is least significant
bit (LSB) substitution42. With this method, each pixel value of cover image is converted
into binary form, and hiding secret data into image is conducted by replacing a number of
bits which is farthest to the right and holds the least value in a multi-bit binary number as
depicted in Figure 2.11. Changing the value of these bits does not much affect the quality
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Figure 2.11: Least significant bit (LSB) substitution.

of stego-image. Chang et al.82 have proposed a scheme based on Hamming code. The idea
of this scheme is to hide a group of seven secret bits into a group of seven pixel values of the
cover image. By doing so, the parity check matrix of the (7, 4) Hamming code is applied to
classify 128 different bit strings of length seven into 16 groups whereas each group contains
eight different bit strings of length seven. Hiding data is performed by replacing the least
significant bit of a pixel with an appropriate bit string in the group.

Figure 2.12: An example of (a) cover image and (b) selected blocks at appropriate bit-plane.

The method presented by Wang et al.29 enables to hide four bits into a pixel value of the
medical image by changing its four least significant bits. To enhance the security feature, a
logistic mapping is used to generate pseudo random sequence and use it to scramble image
before hiding secret information. Besides, to avoid losing important information in some
regions of the medical images, these regions are ruled out before the hiding process begins.
In83, Nguyen et al. have proposed a scheme in which the secret information is hidden into
multi bit-planes of an image. The cover image is first divided into non-overlapping blocks,
and the complexity of the bit-planes of a block are then measured to identify which bit-
plane of a block is used to carry secret bits. A block is only selected for carrying secret
information when its bit-plane complexity satisfies a predefined condition as in Figure 2.12.
Liu et al.84 have introduced a scheme based on an extended turtle shell matrix in which
a pair of non-overlapping pixel values (xi, xi+1) is used to carry one secret bit by referring
to the constructed turtle shell matrix. The appearance of turtle shell matrix is depicted in
Figure 2.13.

In13, Soleymani et al. have proposed a method that enables to hide message scanned
from a document in which the halftoning algorithm is used to convert the scanned document
into binary image. To prevent hiding data into pixel values located in the smooth regions of
cover image, the five most significant bit are used to compute standard deviation for filtering
the concealable pixels, which are used to hide data, and preserving the quality of the stego-
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Figure 2.13: An illustration of turtle shell matrix with the cycle of difference values (3, 5).

image. The three least significant bits are then used to carry the message bits. Wang
et al.85 have introduced a scheme based on re-adjusted generalized exploiting modification
direction (GEMD). The orginal GEMD algorithm is able to obtain a number of pixels for
each group of pixels and maintain the hiding capacity of more than one bit per pixel. In this
method, the authors adjust this algorithm to extend the hiding capacity up to two bits per
pixel. The scheme presented in86 is based on chaotic map in the DCT domain in which the
authors select the alternating current (AC)-coefficients of the cover image for hiding secret
information. To begin with, the cover image is partitioned into non-overlapping blocks, these
blocks are then transformed into the frequency domain by applying DCT transformation.
The AC coefficients are obtained by searching each transformed block in zigzag manner
from the low significant DCT-coefficient to the most significant DCT-coefficient as depicted
in Figure 2.14. Besides, the chaotic function is also utilized to enhance the security feature
of the hiding algorithm.

Figure 2.14: Zigzag scanning in a block of size 8 × 8.

Recently, deep neural networks-based schemes enable to hide a secret image into a cover
image. Specifically, the scheme presented in87 consists of three components as in Figure
2.15: (i) a preparation network is responsible for the preparation of the secret image. If
the secret image is smaller than the cover image, this network increases the size of secret
image to the size of the cover image. This network also transforms color-based pixels to more
useful features; (ii) a hiding network takes RGB channels of the cover image and transformed
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channels of secret image, and generates stego-image; and (iii) a reveal network is used to
detect the secret image from the stego-image. Shi et al.88 have come up with a scheme
including one generative network and two discriminative networks. The former network
is used to evaluate the visual quality of the generated images for steganography whereas
the later networks are used to assess their suitableness for hiding information. Similarly,
Volkhonskiy et al.89 have proposed another scheme also based on three networks like one
generative network and two discriminative networks. The generative network is utilized
to produces realistic images from noise whereas the first discriminative network is used to
classify whether an image is synthetic or real, and the second discriminative network is used
to determine whether or not an image contains a concealed secret message. Another CNN-
based scheme90 has been proposed in which the authors make use of autoencoder neural
network which is trained to generate an output image with the same size of the input image.
Hiding or extracting secret information requires an estimation of parameters of the network,
and this is obtained by using standard loss function (L1) for weight optimization and variance
losses.

Figure 2.15: Three networks for hiding and detecting secret image: S and C are the secret
and cover image.

2.3 Data hiding for binary images

Lu et al.91 have proposed a data hiding scheme in the frequency domain by making use of
direct current (DC) components of DCT. The approach is conducted by blurring a binary
image to obtain a gray-level image. The blurred image is then divided into non-overlapping
blocks with size of 8 × 8. Data is only hidden into non-uniform blocks whereas the uniform
blocks (containing all white or black pixels) are eliminated because of imperceptibility. The
DCT transformation is applied for the selected blocks, and then the coefficients of DC
component are changed for carrying data. After hiding data, the gray-level image is converted
into the binary form by using a dynamic threshold. The experimental results show that this
method can resist to cropping and noises. Another scheme92 enables to hide data by enforcing
the odd-even feature of non-uniform blocks of size 8 × 8. The even number of black pixels
in the block corresponds to bit 0 whereas the odd number corresponds to bit 1. Besides,
the authors have employed a 2D shifting to provide security for their watermarking scheme.
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Yang et al.93 have proposed a scheme in which the image features are extracted by scanning
through image by using a block B of predefined size, and a decomposition of non-interlaced
blocks from B as depicted in Figure 2.16 is applied. A moving window is used to scan
through each of non-interlaced blocks to identify the flippability of each pixel. Shuffling is
also performed on the original image to increase the security of the scheme.

Figure 2.16: An illustration of a block B (a) and a decomposition of its non-interlaced
blocks (b), (c), (d) and (e).

The method based on dots has been presented in94 wherein the dots are inserted into
and randomly distributed over the whole document for hiding data. The authors have
proposed “dots-image” for data hiding and detection, this image contains tiny dots which
are inserted into the watermarked document as in Figure 2.17(b). The “dots-image” is also
divided into four quadrants, and each quadrant containing four data bearing pixels marked
as 0, 1, 2, 3 in Figure 2.17(a) is used to hide one data bit. To enhance the accuracy ratio
of data detection, the authors divide document into four quadrants, and the same data is
hidden into each quadrant. This method is robust to print-and-scan, print-photocopy-scan
distortions and affine transformation. However, the distortion caused by the hiding process
is visually perceptible.

Figure 2.17: An illustration of: (a) a “dots-image” with four quadrants where the dots at
positions of 0, 1, 2, 3 are flipped to carry one data bit; and (b) a watermarked document.

Yang and Kot14 have put forward an interesting method in which the embedding process
is conducted by flipping a center pixel value of appropriate 3 × 3 blocks and preserving the
connectivity of its corresponding neighbors. To identify the potential blocks depicted in
Figure 2.18 for hiding data, the authors have defined rules such as: the number of uniform
white transition and the number of uniform black transitions along vertical and horizontal
directions; the number of the interior right angle transitions; and the number of transitions
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from the center pixel to the sharp corners. The odd-even feature of the number of white and
black pixels is considered for these blocks. Besides, the security feature of the scheme is also
mentioned in this method.

Figure 2.18: A sample of potential blocks used for hiding data.

A multi-level signature-based scheme95 is effectively used to detect malicious tampering.
The signature employed in this scheme is generated by utilizing the interlaced morphological
binary wavelet transform in which the coefficients (LL) obtained from computing the odd-
odd transform are used to hide information, and the coefficients (LL,HL,LH) obtained from
computing the even-even transform are employed to generate signature. Lee et al.96 have
proposed another method to select flippable pixels with less distortion, and this method is
based on edge line segment similarity (ELSS) measure. The ELSS is estimated to represent
the degree of visual distortion. The authors use a block of size 3×3 for carrying information
bit, and only block with appropriate ELSS value is selected to hide data. Instead of hiding
data bits sequentially, the order of data bits is randomly suffled prior to being hidden into the
document for security enhancement, and the recovery of extracted data requires a symmetric
key. Edge adaptive grid-based scheme15;97 enables to select pixel locations for carrying
information better than methods based on the block. The authors have proposed a content
adaptive process illustrated in Figure 2.19, which is used to trace new contour segments and
look for new pixel locations for carrying data.

Figure 2.19: (a) Several types of contour segment, and (b) change code used for transition
determination.

Wang et al.98 have come up with two kinds of block patterns (including 14 variances) of
size 2 × 2 and two types of matching pair methods for their scheme. The block patterns
are used to improve hiding capacity whereas the matching pair methods including external
and internal adjustment are employed to reduce changes in the image, which are occurred
during the information hiding process. To enhance the security feature, the authors permute
the set of predefined block patterns by using a secret key which is only authorized for legal
users. Li et al.99 have proposed a watermarking system in which the authors use scaling
interpolation prior to flipping pixels for hiding secret data. Flipping pixel values is based on
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the score of connectivity and the smoothness of a 3× 3 pattern, and keeps a high structural
similarity. This method obtains good image quality and capacity. Jung and Yoo100 have
proposed a scheme based upon key pairs depicted in Figure 2.20. These keys play a critical
role in deciding potential hiding positions and determining whether or not it is possible to
carry secret information bits. This method obtains good visual quality of the images after
hiding secret information. Another watermarking scheme relied upon fractal codes has been
proposed by Daraee and Mozaffari101. The secret information is hidden into the fractal code
of selected range segments. The decoding process of fractal code is applied to produce the
watermarked image. This approach is capable to be robust against common distortions.

Figure 2.20: An example of key pairs generated from a block of size 3 × 3.

Recently, an additive model and sampling-based watermarking scheme has been proposed
by Hou et al.102 wherein the input image is splitted into multiple thumbnails by using a
perimeter expansion and a sampling operation. The binary image perimeter expansion is
applied on the original image prior to conducting the sampling operation because of avoiding
devoid of external white margin surrounding the thumbnail images. The secret data is hidden
into the appropriate thumbnails by adjusting the number of black pixels. The watermarked
image is obtained by inversely sampling these thumbnails. This method is likely robust
against print-and-scan distortion. Nguyen et al.16 have put forward a data hiding method
based on block classification in which the image is partitioned into non-overlapping blocks
of size 3 × 3, and the complexity is calculated for each block. The value of complexity is
used to determine if a block is a complex region or a smooth region. The complex regions
are appropriately selected for carrying secret data bits. For each complex block, the center
pixel is kept unchanged whereas eight neighboring pixels are used to hide a number of secret
bits. To improve the security feature, the center pixel of each block can be selected by
using a secret key. This approach is able to achieve high capacity. However, a threshold
for determining the appropriate blocks needs to be estimated for a specific image, and the
robustness against distortions is not mentioned.

2.4 Steganalysis

This technique aims at revealing the presence of a secret information which is hidden within
the digital media. Liu et al.103 have proposed a scheme based on feature mining and pattern
classification for detection of LSB matching steganography in grayscale images. The authors
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have proposed five types of feature such as: shape parameter of generalized Gaussian dis-
tribution (GGD) in the wavelet domain to measure the image complexity, entropy of the
histogram of the nearest neighbors, the high-order statistics of the histogram of the nearest
neighbors, probabilities of the equal neighbors, and correlations features. Besides, there are
several learning classifiers such as naive Bayes classifier, support vector machines (SVM),
quadratic Bayes normal classifier, and adaboost, which are applied on these features to de-
termine whether there is a secret information hidden within an image. Gaussian-Neuron
CNN-based approach104 has been proposed for capturing the complex dependencies, which
are useful for detecting the presence of hidden information. The authors have pointed out
that with the conventional approach, the feature extraction and classification steps are sepa-
rately performed. Hence, the classification step cannot refer to useful information extracted
from the extraction step. Their network consists of three kinds of layers: an image process-
ing layer, several convolutional layers for feature representation, and several fully connected
layers for classification. The image processing layer contains filtering operation with a prede-
fined high-pass filter, which aims to strengthen the weak stego image and reduce the impact
of image content. To better distinguish a stego image from its cover image, the authors use
Gaussian activation function for their network.

Another CNN-based method105 is similar to the work presented in104 in which the authors
have conducted several experiments to find out an appropriate architecture of CNN, and
their network is greater in height than in deep and without pooling layer. Qian et al.106

have put forth a method based on CNN. This network consists of one image processing
layer, five convolutional layers for feature representation, and three fully connected layers
for classification. The role of the image processing layer is similar to the one presented
in104. In addition, the authors have proposed a cropping strategy which enables the CNN
network to deal with arbitrary input image sizes. A hybrid deep-learning-based method107

consists of two stages in which the first stage takes decompressed JPEG images as input,
and it corresponds to the convolution phase, and the quantization and truncation phase of
the rich models. Meanwhile, the second stage is a compound deep CNN network in which
the network parameters are learned in the training procedure, and it is composed of three
subnets with identical structure. Each subnet corresponds to one group of quantized and
truncated residual maps.

Wu et al.108 have proposed a method using CNN with shared normalization layer. The
authors have shown that the CNN network with multiple batch normalization layers is hard
to be generalized to the test data once the cover images and their stego images are not
paired in a test batch. The shared normalization shares the same statistics for all train-
ing and test batches. The network consists of three sub-networks such as preprocessing,
feature learning and classification. The preprocessing network is used to extract the high
frequency component from input cover and stego image. It contains high pass filtering layer
and truncation layer. The feature learning network is used to extract effective features for
image steganalysis. The classification network is used to map the extracted features into
binary labels. An unsupervised method109 has been proposed in a combination of artificial
training sets and supervised classification. The artificial training set is formed by applying
the targeted steganography algorithm to the testing data, and it is used to find a boundary
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between classes with remarkable accuracy. The approach is to transform the cover images
into images that belong to the class of stego images. The classification technique can have a
relevant impact in the manner that the steganalysis system is approached. Thus, it allows to
classify the images without a real training set. The classifier used in this approach is SVM
with a Gaussian kernel.

The method based on wider separate-then-reunion network110 has been proposed for color
images. In this method, the authors replace summation in normal convolution with channel-
wise convolution in the bottom convolutional layer. However, in the upper convolutional
layers the authors use normal convolution which retains summation and makes them re-
markably wider. This network takes a color image as an input and applies channel-wise
convolution to the red, green and blue channel of the input image.

2.5 Forgery detection

Apart from visibly or invisibly embedding a secret information into the documents or images
for tracing their origin, determining whether an image is genuine or manipulated can also
be performed by the techniques of forgery detection. These techniques are the essential
objectives of image forensics.

Image forgery is divided into two categories like active approach and passive approach. For
the active approach, the concept of digital watermarking or digital signature or combination
of them is used in which the detector knows secret information that the image contains.
For the passive approach, the tampering is detected in a way the detector requires no prior
information about the original image, digital signature or digital watermark, instead the
specific algorithms are designed to determine the tampered regions. The passive approach is
divided into three categories: copy-move forgery, image splicing and image retouching. Copy-
move forgery technique is used to hide some sensitive or important information into image
by copying and pasting a portion of image such that no one can easily recognize whether
an image is original or forged. Detecting copy-move forgery is based on either keypoint or
block. Image splicing is created by a combination of two or more images, and it is classified
into two types such as region based and boundary based. Image retouching technique is
to make small change in color, background, rotation, scaling, etc. for generating a forged
image. The typical techniques used to detect forgery are presented below.

A new region duplication detection method27 has been proposed to detect duplicated and
distorted regions in an image in which SIFT is utilized to extract keypoints and acquire image
features from the extracted keypoints. The authors formulate region duplication detection as
finding transformed identical regions in an image, and they use robust estimation to obtain
the matching of correct keypoints and transforms between duplicated regions simultaneously.
With the estimated transforms, the method is able to obtain precise location of duplicated
regions. A two-stage feature detection28 has been put forth to obtain better feature coverage
and enhance the matching performance. The feature point detection consists of two stages
for extracting feature points for common areas rather than small smooth regions, which
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guarantee sufficient feature point coverage all over the image while maintaining a moderate
feature point number. This is done by performing a non-maximal suppression with an ap-
propriate radius. To extract feature for ordinary regions, the authors have decided to choose
local feature descriptor as multi-support region order-based gradient histogram (MROGH)
which avoids the dominant orientation assignment. To extract feature for small smooth re-
gions, the authors construct a fused feature by combining the MROGH and hue histogram
so that the discriminability of the obtained descriptor can be enhanced. The descriptor is
then used to find identical regions.

Wang et al.29 have come up with a keypoint-based method for detecting move-copy forgery
in small smooth regions. To do so, the tampered image is partitioned into non-overalpping
and irregular superpixels in which the superpixels are classified into smooth, texture and
strong texture based on local information entropy. The keypoints are then extracted from
each superpixel by utilizing the superpixel content-based adaptive feature point detector.
For each keypoint, the local visual features are constructed, and the best bin and general-
ized 2 nearest-neighbor algorithm are employed to find the matching keypoints. Finally, the
duplicated regions are determined by using zero mean normalized cross-correlation measure.
A passive scaling robust algorithm30 has been proposed by using normalized cross corre-
lation. This method detects highly correlated regions from the image and image blocks.
The normalized cross correlation is used as a metric to assess to the level of dissimilarity or
similarity between two digital images. To detect tampering regions, the image is segmented
into blocks. Coarse regions of the tampering are detected based on the computation of the
correlation matrix. Each of detected coarse blocks is divided into small blocks, and the
normalized cross correlation is carried out on the corresponding coarse block to determine
the tampering.

Another SIFT-based method31 has been proposed with the improvement of matching
operation such that the method is capable of detecting matching pairs located in duplicated
regions. The keypoints and their descriptors are extracted from the image by utilizing SIFT.
An improvement of matching operation is performed to handle both single and multiple copy-
move forgeries in which a verification algorithm based on SIFT scale space representation
has been proposed to select a subset of matched pairs. This subset is used to estimate
geometric transformation, and the duplicated regions are localized by using the estimated
transformation. Prakash et al.32 have proposed a method for detecting splicing and move-
copy forgery in which the authors combine block discrete cosine transform and polar Zernike
moment. To extract the features of a color image, the authors utilize advanced threshold
method in chroma space. A combination of block discrete cosine transform and de-correlation
are first applied to reduce the influence caused by the diversity of the image content. The
enhanced threshold method based on Markov random process is then applied to extract the
discriminative feature for forgery detection. SVM with radial basis function (RBF) kernel
as classifier and k-fold cross validation is then used for detection of forgery.

A local features-based method33 has been proposed to localize any kind of tampering in
image obtained from the social network. This is performed by detecting the inconsistencies
between two images. The analyzed image is compared to the most similar images retrieved
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by a content-based image retrieval (CBIR) system. Once similar images are retrieved, a
local descriptor-based approach is used to identify and localize differences. The authors
have chosen the 7th fully connected layer of the VGG-19 CNN trained on ImageNet to
build descriptors. Besides, dense SURF features are extracted from images, and RANSAC
algorithm is then applied to estimate the affine transformation between the two images. This
estimation enables to filter the false positives returned by the CBIR. This method is able
to be robust to various transformations such as rotation, illumination changes, crop and
translation.

2.6 Evaluation of feature point stability

In the scope of this research, we take advantage of pattern recognition techniques to develop
data hiding systems in the spatial domain for the purpose of securing document images.
From our survey, we have seen that both conventional techniques and deep learning have
been utilized in developing digital watermarking and steganography. Moreover, we have
also found that a diversity of these techniques is applied for designing data hiding schemes
wherein several schemes are dedicated to natural images, and fewer schemes for document
images. Thus, we would like to evaluate the performance of the feature points, which are
effectively applied for natural images, extracted by using the conventional pattern recognition
techniques when applying for document images. From which we find out suitable approaches
that can be used to improve the limitations of the existing methods designed for documents
as mentioned in Section 1.3. The stability of feature points is presented through the following
evaluations.

2.6.1 Construction of hiding regions

Apart from using feature points to design circular regions or disks and transforming them to
the frequency domain for watermarking development as presented in Section 2.1.3, the fea-
ture points are also used to construct hiding regions2 for data hiding system in the spatial
domain. To do so, the feature points are used to construct non-overlapping square re-
gions centered at their corresponding feature points in which the unnecessary feature points
are eliminated based on their stability and the size of the hiding region. The hiding re-
gions of size B × B within an image of size M × N are depicted as in Figure 2.21 where
Mi(i = 1, ..., 6) represents the center of a hiding region. There are a number of well-known
detectors utilized to detect the feature points from the natural images such as SIFT111, Har-
ris112, Harris-Laplace (HL)113, Laplacian of Gaussian (LoG)114, maximally stable extremal
regions (MSER)115, speeded up robust features (SURF)116, binary robust invariant scalable
keypoints (BRISK)117 and active contour118. The brief explanation of these detectors is
presented as below.

• SIFT: This technique enables to detect keypoints and to compute their local descriptors
by using Gaussian scale space. The algorithm is conducted by smoothing and resizing
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scaling the filter size instead of reducing the image size. Meanwhile, the process of
feature description is conducted by assigning orientation for the interest points and
constructing a square region for extracting the descriptor.

• BRISK: This technique enables to detect keypoints and to compute their local de-
scriptors. It consists of the following steps: detecting scale space keypoint, filtering
keypoint, assigning orientation to the keypoint and generating descriptor. The pro-
cess of detecting the keypoint is relied upon pyramid scale space which is constructed
by downsampling the image into octaves and intra-octaves. The candidate keypoints
are determined in the image pyramid by using features from accelerated segment test
(FAST).

• Active contour is based on snakes and level sets, and it formalizes the problem as
an energy minimization. It works by minimising an energy that is in part defined
by the image and part by the shape of spline such as length and smoothness. The
minimization is done implicitly in the shape energy and explicitly in the image energy.

In the context of data hiding, the stability of feature points is measured by the robustness
of feature points-based hiding regions against distortions. Compared to the hiding regions
constructed from the undistorted document, a hiding region constructed from the distorted
document could fall into one of the possible cases: (i) it is extracted at the same position with
the same order in a set of extracted hiding regions; (ii) it is moved to another position; (iii) it
is vanished and replaced by a new hiding region. The last two cases of (ii) and (iii) are known
as mismatched hiding regions. Let Rureg be the set of watermarking regions constructed
from the undistorted document, and Rdreg be the set of hiding regions constructed from the
distorted document. The matching proportion Pm is estimated by:

Pm =

∣
∣Rureg ∩Rdreg

∣
∣

∣
∣Rureg

∣
∣

(2.1)

where ∩ is the intersection operator, |A| is the number of elements in set A.

For natural images, the works presented in2 use various distortions including: D1- Gamma
noise with γ = 1.5, D2- Gamma noise with γ = 0.6, D3- add white Gaussian noise with
signal-to-noise ratio of 25 dB, D4- geometric distortions (rotation of 30◦ + scaling of 0.75),
D5- Gaussian blur at σ = 2, D6- JPEG compression with quality factor of 10, D7- unsharp
masking of 3 × 3 , D8- median filtering of 5 × 5. The average value of matching proportion
Pm on 250 natural images suffered from various distortions is presented in Figure 2.22.

For document images, we evaluate the stability of feature points extracted by SIFT,
SURF, BRISK, MSER, and active contour detector. The datasets used for this evaluation
consist of Tobacco119, L3iDocCopies120 and DSSE-200121. The kind of noise caused by JPEG
compression is selected in the assessment of feature point stability because the compression
of document with low quality factor leads to significant change of document pixel intensities
and much affects the outcome of feature point detection. The JPEG compression algorithm
utilizes the block-based DCT for image quantization, and the image discontinuities appear at
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Figure 2.22: The average value of matching proportion of hiding regions extracted from
standard grayscale test images by using various feature point detectors.

Figure 2.23: The average result of matching proportion of hiding regions extracted from
documents of (a) Tobacco and (b) L3iDocCopies dataset.

the boundaries of each block. Thus, the sharpness of edge is reduced due to the suppression of
high frequency coefficients. The average result of matching proportion Pm on 20 documents
from each dataset is shown in Figure 2.23 wherein (a) for Tobacco and (b) for L3iDocCopies.
Besides, we also assess the stability of feature points extracted by SURF, MSER and active
contour on 60 documents from DSSE-200. The distortion used in this assessment is also
JPEG compression. The average results are shown in Figure 2.24.
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Figure 2.24: The average result of matching proportion of hiding regions extracted from
documents of DSSE-200 dataset.

2.6.2 Image normalization

Aside from construction of hiding regions, the feature points are also employed to normalize
images, this means that the input image is transformed into a standard form with the
objective to obtain invariance with respect to geometric distortion. The works presented
in3;122;123 demonstrate two ways to identify parameters for image standardization including
translation, rotation and scaling wherein one is based on two most stable feature points, and
the other is relied upon three most stable feature points. The image normalization is briefly
described as follows.

For the method based on two feature points, given a set of feature points obtained from a
specific detector, these feature points are sorted according to their response values, and two
feature points with the highest response value are taken for computing the normalization
parameters. Regarding translation parameter, translating the input image (x, y) to the
center point of a normalized image (xc, yc) is conducted by:

(tx, ty)
T = (xc − x, yc − y)T (2.2)

The rotation angle θ is estimated based on the line segment P0P1 obtained from such two
selected feature points as P0(x0, y0) and P1(x1, y1):

θ = tan−1 y1 − y0
x1 − x0

(2.3)

Let d be the Euclidean distance between P0 and P1, and c be a predefined constant, the
scaling factor s is calculated as a ratio between c and d:
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Chapter 3

Securing document images via
conventional approaches

This chapter introduces feature points-based steganography scheme and stable regions-based
watermarking scheme. In the former, we use SURF detector to extract feature points for
constructing hiding regions, local binary pattern and local ternary pattern for determining
potential hiding positions. Hiding data into document is based on odd and even feature of
gray level values, and we also utilize error correction code to enhance the accuracy of hidden
data detection. Besides, we also present another proposed detector that can be applicable to
detect more stable feature points in the context of distorted document images. In the later,
we combine common image processing operations and non-subsampled contourlet transform
to detect stable hiding regions. The correction of geometric distortion is also integrated
into this scheme to enhance its performance. Meanwhile, the watermarking algorithm is
developed depending on each group of consecutive pixel values assigned with weights in
which we have eliminated the pixel values that are vulnerable to distortions.

3.1 Introduction

As discussed in Section 2.1.3 and Section 2.6, the feature points extracted from natural im-
ages have been widely used to develop data hiding system in the transform domain. Taking
advantage of this idea, we develop a digital steganography in the spatial domain for the
purpose of securing document images. The feature points-based steganography scheme is
the beginning of our work, which deals with the security issue of legal documents. With the
evaluation of feature point stability in Section 2.6, we can see that the feature points are less
robust in case of distorted images and documents. Thus, another stable feature point detec-
tor, which is relied upon non-subsampled contourlet transform and distance transform, has
been introduced to improve the precision of detecting the hidden information. Although the
new feature point detector has slightly improved the stability of the feature points extracted
from the distorted documents, the scheme still has not met the property of robustness in
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order that it can be applied in the environment of real distortions caused by print-and-scan
process, print-photocopying-scan process and so on. Because of more focusing on the robust-
ness of a data hiding system designed for securing document images, so we have decided to
replace steganography with watermarking, which is presented from Section 3.3 onwards. For
this reason, the watermarking scheme has been developed in which the document features
used to develop this scheme are stable regions instead of the feature points. As mentioned
in Chapter 1, there are two main challenges in designing a data hiding system including the
features extracted from document is sufficiently stable, and the algorithm for data hiding and
detection is robust enough when the watermarked documents are suffered from distortions.
The solutions to solve these challanges will be in turn presented in the remaining sections of
this thesis.

Figure 3.1: The components of a blind data hiding framework.

The general data hiding framework proposed in our research is presented in Figure 3.1.
For information hiding process, we need to provide a legal document I, a secret information
S used for document verification, a secret key K to encode the secret information or to
generate ramdom positions in the document for security enhancement, a method to detect
document features and a hiding algorithm, which are used to generate a stego or water-
marked document. The block “Modulation” refers to the detection of document features
and hiding algorithm. For the process of information detection, the system requires the
stego or watermarked document Im, the secret key K, the method to detect document feat-
ues and data detection algorithm, which are employed to extract the hidden information S ′.
The detail of detecting document features and the algorithms of data hiding and detection
will be presented in this chapter and next chapters.

3.2 Steganography scheme based on feature points

Steganography is an effective way to hide a secret information into a document image with the
objective of providing authenticity of transmitted documents. We introduce a novel data
hiding scheme that enables to embed a secret information with a moderate length in the
document by taking advantage of pattern recognition techniques. The main functions of this
method consist of: (i) the potential feature points used for constructing the hiding regions
are identified by using speed up robust features (SURF) detector; (ii) local binary pattern
(LBP) is utilized to figure out content regions where the pixel values can be changed to hide
data, and local ternary pattern (LTP) are then effectively exploited to locate the possible
hiding positions within the content regions where the secret information bits are hidden
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depending on the determinant of the Hessian matrix for selecting the location and the scale.
To adapt for any scale, the image are filtered by using a Gaussian kernel, so given a point
p(x, y) from the original image I, the Hessian matrix H(p, σ) of a point p belonging to scale
σ is defined as follows:

H(p, σ) =

[

Lxx(p, σ) Lxy(p, σ)
Lxy(p, σ) Lyy(p, σ)

]

(3.2)

where Lxx(p, σ) is the convolution of the Gaussian second order derivative with the image
I in point p, and σ is the standard variance of the Gaussian, and similarly for Lxy(p, σ) and
Lyy(p, σ).

The extreme values are obtained by using Hessian matrix, and the stable location and
scale of a feature point are obtained by utilizing interpolation operator. The approximated
Hessian matrix Ĥ(p, σ) is defined by:

Ĥ(p, σ) =

[

Dxx(p, σ) Dxy(p, σ)
Dxy(p, σ) Dyy(p, σ)

]

(3.3)

where Dxx(p, σ), Dxy(p, σ) and Dyy(p, σ) are the convolutions of the approximated filters
with image I.

Once the feature points and their scales are obtained, each feature point is assigned a
repeatable angle before obtaining the invariant descriptor vector. The angle of the gradients
around the feature point is calculated, and the maximum angular response is selected as
the direction of the feature point. This process depends on the calculation of Haar wavelet
responses. The obtained direction is then applied to generate a rotated square surrounding
the feature point. The gradients within this square are then combined to form the final
invariant descriptor vector.

LBP has been initially proposed for characterizing the spatial structure of a texture,
which is invariant to transformations of intensities or color. Due to its high performance,
LBP has become a widely used operator for image processing in real application. By applying
LBP to an image, each pixel value is depicted by an integer label which is robust to monotonic
illumination change. There are 256 different labels in a 3×3 neighborhood, and each of these
labels is regarded as a LBP pattern. The LBP pattern for a pixel is computed by comparing
neighboring pixels with the center pixel in terms of their intensities. The neighboring pixels
whose intensities are larger than the central pixel are assigned to 1 while the other intensities
are assigned to 0. The comparison will result in a bit string with eight elements. The binary
weights, which come from a geometric sequence, are set to the bits corresponding to their
positions in the bit string. The bit string associated with its weights is then converted into
a decimal valued index. A pixel c with gray level value gc is labeled by:
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S(gp − gc) =

{

1, if gp ≥ gc

0, if gp < gc
(3.4)

where pixels p belong to a 3 × 3 neighborhood with gray levels gp

The LBP pattern of the 3 × 3 neighborhood is computed by summing the corresponding
values S(gp − gc) weighted by a binomial factor of 2i:

LBP =
7∑

i=0

S(gp − gc).2
i (3.5)

Figure 3.3: The illustration of LBP computation for a pixel.

After computing the labeling for each pixel of the image, a 256-bin histogram of the
resulting labels is used as a feature descriptor for the texture. The illustration of LBP
computation for a pixel is depicted in Figure 3.3.

Figure 3.4: The illustration of LTP computation for a pixel.

LTP is an extension of LBP to a three-valued code (−1, 0, 1), which deals with the noise
sensitivity issue of LBP. The LTP pattern for a pixel is labeled by using a threshold function
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around zero to evaluate the local grayscale difference. The gray level values in the zone
of width t (predefined threshold) are assigned to 0, the pixels whose intensities above the
threshold t are assigned to 1, and those whose intensities below t are assigned to −1. A pixel
c with gray level value gc is labeled by:

S(gp − gc) =







1, if gp ≥ gc + t

0, if − t <
∣
∣gp − gc

∣
∣ < t

−1, if gp ≤ gc − t

(3.6)

where gp is a pixel value in neighborhood, gc is the center pixel value.

The LTP pattern can be decomposed into two binary patterns which are upper and lower
patterns, and two binary patterns are converted into two decimal values and replaced back
at the center pixels similar to LBP. The LTP operator is the concatenation of the code of
the upper pattern and the lower pattern. The illustration of LTP computation for a pixel is
depicted in Figure 3.4.

Hough transform maps a line in the spatial domain to a point in the Hough parametric
space, and it is used to find lines, curves or parametric curves. The simplest case of Hough
transform is the linear transform for detecting straight lines. The slope intercept model of a
straight line is defined by:

y = mx + c (3.7)

where m is the slope, and c is the y intercept.

Figure 3.5: Hough transform: (a) is the image space, and (b) is the parametric space.

The straight line can be written in the form of parametric space by:

ρ = xcosθ + ysinθ (3.8)

where ρ is the distance of line from origin, and θ is the angle of ρ with respect to x axis.
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The line in the image space is just a point in a parameter space as depicted in Figure
3.5. Hough transform uses two dimentional arrays which are regarded as accumulator array
for detecting the presence of lines in image space where each row and column correspond to
θ and ρ values respectively. Peak point is the strong point in the accumulator array which
represents straight line in the image space.

3.2.1 Pattern analysis for hiding patterns and hiding positions

In this section, we present how to identify content regions by using LBP and to determine
hiding position within content regions by utilizing LTP. Hiding information into documents
(based on pixel level approach) is simply the process of changing pixel intensities such that
it has to keep the quality of the stego or watermarked documents, and this change has to
be imperceptible to visual perception. In order to keep the imperceptibility, we need to
find out the suitable features of document where any small change does not significantly
affect the visibility of a document. For this reason, with the support of LBP, the corner
and non-uniform patterns are considered as potential features that can be used to identify
the regions of document content for data hiding because changing pixel values in these
regions are less sensitive in terms of human visual perception. We consider the corner
and non-uniform patterns as hiding patterns. Meanwhile, the edge and uniform patterns
are eliminated from this context because changing pixel intensities in this regions is easily
noticeable and could draw much attention by human perception. By taking advantages of
LBP as mentioned in Section 3.2, we can easily identify such document features as corner,
edge, uniform and non-uniform features. To hide much information bits, we decide to choose
the hiding pattern with size of 3 × 3, and then the document features are determined by
considering the neighboring pixels of a pattern where corner or nonuniform features come
under. It is noticeable that the number of secret information bits that be hidden into a
document depends on the characteristic of its content.

Depending upon the binary code of a LBP pattern, the document features are determined
as follows. The dark corner features consist of three successive bits 1 and five successive bits
0. The bright corner features consist of five successive bits 1 and three successive bits
0 whereas the edge features include four successive bits 1 and four successive bits 0. To
determine whether a pattern is uniform or non-uniform, an uniformity measure of a pattern
is defined as the number of bitwise transitions from 0 to 1 or vice versa. A local binary
pattern is called uniform if its uniformity measure is at most 2 (e.g. 00000000 - 0 transition,
11111111 - 0 transition, 01110000 - 2 transitions), otherwise it is called non-uniform pattern
(e.g. 11001001 - 4 transitions, 01010011 - 6 transitions). The dark and bright corner patterns
are depicted in Figure 3.6 in which (a) is dark corner features, and the extracted dark corner
features are depicted in (b). Similarly, the bright corner features are depicted in (c) and (d).

After using hiding patterns to identify appropriate content regions for data hiding, LTP is
then applied on these regions to locate which positions are relevant for carrying the concealed
message bits. LTP produces 3-valued code (−1, 0, 1) depending on a predefined and fixed
threshold t. In the context of our work, the gray values corresponding to valued-code “1”
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Figure 3.6: Hiding patterns: (a) and (b) are dark corner features. (c) and (d) are bright
corner features.

in each of LTP patterns are selected for carrying the secret bits. With this method, the
number of bits that can be hidden into a 3 × 3 pattern reaches five bits. For instance, the
LTP pattern as illustrated in Figure 3.7(c) enables to change pixel intensities at appropriate
positions (corresponding to code 1 of LTP) to hide four secret bits. If we replace the gray
level value of 232 corresponding to code “0” of LTP with 235, the LTP then enables to change
the gray level values to hide five secret bits. The relationship between pixel intensities, LBP
and LTP is shown in Figure 3.7 in which (a) is a sample of pixel intensities from undistorted
document, (b) and (c) are LBP binary code and LTP code.

Figure 3.7: The demonstration of identifying hiding region and positions.

By applying corner and non-uniform features to find out the hiding patterns, and LTP
to determine the hiding positions as described in Figure 3.6, we have encountered lots of
hiding patterns and hiding positions which are not robust against pixel intensity changes
caused by distortions, e.g. JPEG compression. Based on our experiments, we have seen that
once the pixel values of document changed, there are two cases leading to loss of integrity
in identifying the positions of pixels whose gray values are adjusted to hide the secret data
including: LBP binary code generated from undistorted document is disrupted compared
to LBP binary code generated from distorted document; the hiding positions corresponding
to LTP code are inconsistent because of the fixed threshold t. Figure 3.8 demonstrates a
sample of pixel values from distorted document (a), the corresponding LBP code (b) and
LTP code (c). Apparently, we can see that the LBP code and LTP code generated from
distorted document is inconsistent with the ones generated from undistorted document. This
inconsistency will affect the robustness of data hiding scheme.
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Figure 3.8: The illustration of hiding region and positions from distorted pixel intensities.

To reduce the inconsistency of LBP and LTP code generated between undistorted and
distorted document, we choose the median binary pattern (MBP), which is a variation of
LBP, as an alternative method. For LTP, instead of using a fixed threshold for whole
document, we estimate a dynamic threshold ti for each of LTP patterns by:

ti = c×mi (3.9)

where c is a predefined constant, mi is the median value of all gray values of each LTP
pattern.

Figure 3.9: The illustration of hiding region and positions from the distorted pixel intensities
using MBP and dynamic threshold.

Figure 3.9 shows that the MBP and dynamic threshold have improved the consistency of
detecting the hiding region and positions from the distorted pixel intensities.

3.2.2 Rotation correction using Hough transform

To meet the requirement of robustness against real distortions, by observation, we have seen
that the scanned documents are more or less suffered from geometric distortions including
rotation and scaling. The rotated document will result in considerably reducing the per-
formace of data hiding scheme. Thus, the correction of rotated document partly improves
the scheme performance. To address geometric distortions, in the spatial domain, feature
points-based method3;122;123 enables to transform natural image into a standard form in
which the direction of the standard image is rotated with a certain angle instead of vertical
direction. This method has been proved to provide good performance for natural image, and
it gives less efficiency when applying on document images because the appropriate feature
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points obtained to estimate parameters for geometric correction are inconsistent between the
distorted and undistorted document. The evaluation of this method for natural images and
documents is also presented in Section 2.6.2. Therefore, we have decided to utilize Hough
transform to deal with the rotated documents, and this technique is very effective to detect
text lines in the documents, which are used to indentify the rotation angle.

With the Hough transform, a point in the original (x, y) image space is mapped to all
points in the (ρ, θ) parameter space of lines through (x, y) in which ρ is the distance of a
line from origin, and θ is the angle of ρ with respect to x axis. This technique computes
the values for the parameters (ρ, θ) of all curves of straight lines that can pass through
each black pixel of a document. Votes are then casted for each curve in an accumulator
matrix. Each dimension of this matrix corresponds to one of the parameters. After the
entire document has been processed, the accumulator matrix is inspected for local maxima.
Each such maximum indicates the existence of a curve in the original document given by
the corresponding parameter values on the axes. The rotation angle is then determined by
(ρi, θi) corresponding to the maximum values in the accumulator matrix.

With the rotation angle θ, an affine transformation is applied to the rotated document to
obtain the corrected document by:
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 (3.10)

where (x′, y′) is a point of the corrected document, (x, y) is a point of the rotated document,
and

(
cosθ sinθ
−sinθ cosθ

)
is the rotation transformation matrix.

With this approach, we can correctly estimate the rotation angle in case of documents
rotated within [−90◦,+90◦]. Figure 3.10 demonstrates the estimation of rotation angle with
the help of Hough transform technique in which the estimated rotation angle is −14.9951
and 20.0027 corresponding to −15 and 20 degrees, and the appropriate blue line is used to
estimate the rotation angle.

Figure 3.10: Hough lines used for estimation of rotation angle.
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3.2.3 Data hiding process

The data hiding scheme in our research is designed to hide a meaningful text information
into the documents, so this information is converted into a series of binary digit as secret
bits. The hiding process is conducted based on the following main steps:

Step 1 - Extracting feature points from grayscale document

Given an input document I size of M × N . A set of feature points F = {pi(xi, yi)}ni=1 is
extracted by using SURF detector, where n is the number of feature points. We sort them
in descending order based on their response value, and we then obtain a sorted list. Here, we
prioritize to hide the secret information into regions around the feature points with strong
reponse first and in turn to the feature points with weaker response because the higher the
response value is, the more the stability obtains.

Step 2 - Constructing hiding regions and eliminating overlapping regions

The secret bits can not be hidden by directly changing the pixel values at positions cor-
responding to the feature points because this results in losing the consistency of feature
poins extracted from the original document and document whose pixel values changed at
positions of feature points. This is why we need to construct hiding regions surrounding
the appropriate feature points. The hiding region B with size of L × L as illustrated in
Figure 3.11 is centered at an appropriate feature point, and the size of hiding regions de-
termines the performance of our scheme. If L is too small, lots of feature points detected
from the original document could mismatch with the feature points detected from the stego
document. Otherwise, the number of hiding regions will be insuffcient, and this results in
having less data to be hidden. To make sure the border of the hiding region B is not over-
flowed outside the document, a feature point pi(xi, yi) is appropriately opted if and only if
⌈L/2⌉ ≤ xi ≤ (N − ⌈L/2⌉) and ⌈L/2⌉ ≤ yi ≤ (M − ⌈L/2⌉).

SURF extracts a lot of feature points that densely cover the whole document content.
Thus, the hiding regions centered at these feature points are definitely overlapped each other.
To apply feature points for constructing the hiding regions, the feature points making the
overlapping hiding regions should be eliminated because if data is hidden into the overlapping
regions, it will results in robustness reduction. To eliminate the feature points making the
overlapping regions, we begin with the first feature point in the sorted list, the distance d
between every pair of feature points is measured by Euclidean distance. If d is less than L,
one of these two feature points has to be removed out of the list. In this case, we prioritize
to keep the feature point with higher response value. This process is iterated until reaching
the end of the sorted list. Eventually, the feature points remained in the list are ready to
construct the hiding regions.
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Figure 3.11: The hiding region B(L× L) contains corner patterns of l × l.

Step 3 - Hiding secret information into the document

As mentioned above, the secret information is converted into a sequence of bits denoted
as W = {w1, w2, ..., wm|wi ∈ {0, 1}}, where m is the length of a secret information. The
message bits are sequentially hidden into possible positions of the 3 × 3 hiding patterns,
which are located inside the hiding regions B by:

p′i = pi − pi mod 2 + wi (3.11)

where wi is the ith secret bit, pi and p′i are the gray level values in the original and stego
document respectively.

Although the robustness against lossy compression has been implemented by using MBP
instead of LBP, and dynamic threshold for LTP, the accuracy for detecting the hidden
information bits is still not as high as expected. Thus, we have employed error correction
code in our steganography scheme. Correcting the corrupted bits can be performed by
various ways such as implementing each error correction code separately, or combining a
type of correction code with another one. Basically, the technique of error correction code
enables to add extra data to the transmitted information, and the extra data help detection
of error and reconstruction of original information. In this work, we apply repetition code
on the secret bits by repeating each bit three times, which allows us to correct one error in
each group of three bits. This will generate a new sequence of bits with lots of repeated bits.
The generated sequence of bits is then hidden into the document.

Besides, we also improve the hiding method as presented in Equation 3.11. Changing
pixel intensities in a range [−1, 1] for data hiding scheme is possibly considered as the best
way for imperceptibility because the quality of stego document is least affected. However,
this range is easily destroyed by lossy compression algorithm where the gray level values are
much changed even with the highest quality factor. For this reason, we extend this range
to [−4, 4] for adjusting the pixel intensities, the wider range of changing gray values for
data hiding is able to raise the robustness of scheme against distortions. With addition or
subtraction of 4 pixel units, the adjusted gray level values is hardly perceived by the human
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visual system whereas the quality of stego documents still remains at an acceptable level.

3.2.4 Data detection process

Before detecting the hidden information, the stego document is first restored to its correct
form as described in Section 3.2.2 for enhancing the accuracy of data detection because the
stego documents may be subjected to rotated distortion caused by the printing and scanning
process. The secret information bits w′

i are simply extracted by:

w′

i = p′i mod 2 (3.12)

The accuracy ratio of extracted secret bits is measured by:

StegoR =

∑m
i=1 ¬(W (wi) ⊕ W̃ (wi))

m
(3.13)

where W (wi) and W̃ (wi) are the ith secret information bit corresponding to original and
extracted bit, m is the length of a secret information, ¬ depicts the NOT operator and ⊕
denotes the exclusive-OR operator.

The detected message bits are divided into groups of three bits, and the secret information
is recorvered by extracting bit 0 or 1 from each group based on the occurrence of bit 0 and
1 within the group.

3.2.5 Improvement of feature point detection

As discussed in Section 2.6, the well-known feature extraction methods such as SIFT and
SURF give good performance even when images contain distortions like view point change,
blur and rotation125. However, their performance declines significantly when images are
compressed using the discrete Cosine transform-based algorithm, especially when they are
applied on documents. It means that the number of feature points extracted from uncom-
pressed images do not match with the feature points extracted from compressed images.
Hence, the detectors give too many false feature points to design a robust data hiding
scheme. For this reason, to improve our hiding scheme, we propose a new feature points
detector which is more stable than the existing methods in the context of detecting feature
points for documents. The distorted document images caused by JPEG compression could
fall into the following possible cases126: (i) For pure texture components, the distortion can
blur the texture of dark regions and make an appearance of some new blocks or effects; (ii)
For edge components, the weak edges in the document image may be distorted by this noise;
(iii) For edge components in the texture regions, some edges are lost, some new edges are
inserted to the document. These cases will lead to change significantly the intensities of the
document and certainly cause instability of feature points. To reduce these distortions which
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affect the feature point detection, the proposed detector is operated in the following steps:

Step 1 - Eliminating weak components of document

The document image is first converted to binary form, and opening morphological operator
is then applied on binary document to remove small regions. This task is to eliminate the
content regions of document which are sensitive to intensity changes.

Step 2 - Normalization of generated binary document

Figure 3.12: Illustration of normalization: The original document (a) and normalized
document (b).

The binary document is transformed into an intermediate form by utilizing contour de-
tection. The methods of transformation are often used in feature detection consisting of
skeleton and contour in which skeletonizing document image will preserve the connectivity
of object regions, but reduce most of foreground intensities. In addition, skeleton is also
sensitive to boundary deformation. In contrast to skeleton, contours are more stable in the
presence of noises regardless of image categogy127. Hence, the contourlet transformation128

is applied on the binary document, and this results in a contourlet document. The contourlet
document is considered as a normalized document. The normalized document is illustrated
in Figure 3.12(b).

Step 3 - Detection of local maxima

We apply distance transform129 on the normalized document which contains boundary inten-
sities. The distance transform is often used to improve the performance of feature detection.
The result of this transform generates a graylevel document in which every intensity is as-
signed by a value corresponding to the distance L2 which is nearest to foreground objects.
The regions of interest of documents are depicted as the foreground objects O. Let p1 be
a given pixel of the document, and p2 be a pixel belonging to the object O. The distance
transform dt(p1, p2) is calculated by:
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dt(p1, p2) =

{

0 if p1 ∈ O

minp2∈Od(p1, p2) if p1 /∈ O
(3.14)

where d(p1, p2) is the Euclidean distance between p1 and p2.

Next, we find the local maxima in the transformed grayscale document by using a kernel
with size of k×k. The factor k determines the number of feature points that will be extracted.
The larger k is, the fewer the feature points are obtained.

Step 4 - Computation of feature points

The approach of filtering feature points using scale space filtering130 is applied in this step.
This produces consecutive blurred documents by using Gaussian filter, which is defined by:

G(x, y, σ) =
1

2πσ2
e−(x+y)2/2σ2

(3.15)

where σ is the smoothing factor which controls the scale, and x and y are pixel coordinates.

The filtered documents are also binarized in order to generate documents which are used
for feature point detection. The extracted feature points are depicted as small color circles
in Figure 3.13(b).

Figure 3.13: Detection of feature points: The distance transform document (a) and ex-
tracted feature points (b).

Besides, we also demonstrate the feature points which are extracted from well-known de-
tectors such as SIFT, SURF and BRISK as shown in Figure 3.14(a), (b) and (c) respectively.

In this section, we have introduced a steganography scheme for document authentication,
which is based on the feature points extracted by using the well-known SURF detector. By
experiments, we have observed that the stability of the feature points has significantly been
mitigated when the documents undergone distortions. To overcome this, we have proposed
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Figure 3.14: Feature points extracted from (a) SIFT, (b) SURF and (c) BRISK detector.

another detector for feature point extraction, which provides better stability in terms of
distortions. In addition, the data hiding and detection processes have been developed by
making use of LBP and LTP. The robustness of the scheme has also been improved by
utilizing MBP and the dynamic threshold used for LTP. The experimental results of this
approach are detailed in Section 5.2.

However, the performance of the scheme still has not met the requirement of high ro-
bustness to be applied for real applications. It means that the scheme has ability to detect
the hidden information from the documents which are subject to high distortions such as
JPEG compression with low quality factor, print-and-scan operations, print-photocopy-scan
operations, etc. Thus, the feature stability extracted from the documents and the robustness
of the scheme have to be further investigated and improved to meet these requirements. The
scheme improvement is presented in the next section.

3.3 Watermarking scheme based on stable regions and

object fill

Depending on the performance of feature points-based steganography scheme as presented
in Section 3.2, we have seen that it is quite difficult to extract feature points for developing
data hiding scheme in spatial domain, which is robust enough to practical distortions such
as printing and scanning noises, print-photocopy-scan noises. Thus, we have proposed to
extract stable regions from the documents for developing data hiding scheme instead of
feature points. In our research, we wish to develop a framework being able to resist to
various practical noises, so the robustness of scheme is prioritized to deal with. According
to the characteristics of a data hiding system as discussed in Section 1.2, the robustness
property is always concentrated in designing a watermarking system.

In this section, we introduce a watermarking system in which the stable regions are
extracted from documents by making use of image processing operations and non-subsampled
contourlet transform (NSCT)65. The watermarking algorithm is developed based on a group
of successive pixel intensities within the stable regions.
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3.3.1 Stable region detection

By observation, we have seen that the extracted bounding boxes surrounding document
content are not highly robust to some distortions when applying NSCT directly on document
images. Thus, the input document needs to be transformed into another form such that it is
less affected by noises as much as possible. Figure 3.15 depicts the general steps for detecting
document regions which are likely stable against noises.

Figure 3.15: Steps of detecting stable regions.

First, we apply two filtering operations to remove noises. Gaussian filter (GF) is known
to reduce noise and straighten the edges of the document content, but this operator makes
document blurred. Meanwhile, median filter (MF) is known to reduce noise and does not
blur document. After removing noises, the difference between GF and MF is made by
subtracting each other to locate the positions in the document that fluctuate in intensity
change due to the distortions. To enhance variations of intensity pixel in the document
difference, morphological gradient operator is applied. These variations correspond to the
edges of the document content. It detects either the internal or external boundary of an
edge. The document produced at this step is considered as a transformed document.

Next, we take advantage of the properties of non-subsampled contourlet transform such
as translation invariant, multiscale, multidirection and anisotropy to identify contour from
the transformed document. NSCT first decomposes document into several pyramidal levels
ranging from finer to coarser scale and different directions with the same size of the original
document in which each pixel in the original document corresponds to subbands in the same
location. To detect object contour, the coefficients corresponding to pixels of document
are classified into three categories like strong edges, weak edges and noise. The strong
edges depict those pixels with large magnitude coefficients in all subbands. The weak edges
represent those pixels with large magnitude coefficients in some directional subbands but
small magnitude coefficients in other directional subbands within the same scale. The noises
illustrate those pixels with small magnitude coefficients in all subbands.

By observation of the coefficients in the multiscale decomposition, we have observed that
the coefficients in some directional subbands are able to maintain the document structure as
strong edge, and background pixels as weak edges or noises. These edges are classified by:







strong edge, if mean ≥ cσ

weak edge, if mean < cσ,max ≥ cσ

noise, if mean < cσ,max < cσ

(3.16)
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where mean and max are the mean and the maximum magnitude of the coefficients for each
pixel across directional subbands, c is a constant between 1 and 5, σ is the noise standard
deviation of the subbands of directions at a specific pyramidal level.

As discussed above, we implement four levels of NSCT decomposition on the transformed
document to determine which level is suitable for contour detection. The notation coi,j is
used to demonstrate the variance of coefficients at the ith directional subband of the jth

pyramidal scale, coi,j = {cvalk|k ∈ (1, ..., n)} where n is the number of coefficients, cvalk
is the kth coefficient value. The directions at various levels are obtained as follows: one
direction at the first level (co1,1), one direction at the second level (co1,2), two directions at
the third level (co1,3, co2,3) and eight directions at the fourth level (co1,4, co2,4, co3,4, co4,4,
co5,4, co6,4, co7,4, co8,4). The result of contour detection is depicted in Figure 3.16.

Figure 3.16: Illustration of four levels of NSCT decomposition for stable hiding region
detection.

With the obtained coefficients in Figure 3.16, we have observed that the coefficients
are blurred at level 1. Most of object edges are maintained at level 2 but many noises
are presented. Coefficients at level 3 (co13, co23) give better object contours of document.
Meanwhile, there are too many edges lost at level 4. Thus, the variance of coefficients at
level 3 is suitably opted for detecting the objects contour of documents. However, there
are two set of coefficients acquired at this level, so these coefficients need to be integrated
to generate a united set of coefficients for describing objects contour of the document. To
integrate coefficients from two directions at level 3, we have eliminated unnecessary edges
and made the integrated contours keeping more their edge features by:

co13 = co13 \ {cvalk < (mean(co13)/stdev(co13))} (3.17)
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co23 = co23 \ {cvalk < (mean(co23)/stdev(co23))} (3.18)

where stdev is the standard deviation of corresponding coefficients.

contours =
√

co213 + co223 (3.19)

The result of integrated contour pixels is depicted in Figure 3.17(a). These contours are
used to construct stable regions of document with the support of convex hull. The blue
rectangles in Figure 3.17(b) represent the stable regions which are employed to hide secret
information. We consider contents extracted separately from document as objects.

Figure 3.17: The integrated coefficients (a) and bounding boxes (b) representing the stable
regions.

3.3.2 Identification of potential positions for watermarking

Due to the essence of documents, there are a lot of empty spaces contained inside objects or
interlaced among them. The empty regions are unusable in data hiding and detection. The
document’s objects are constituted by stroke and filling part as illustrated in Figure 3.18 in
which red and green points represent the stroke and filling part of an object respectively. To
determine the positions of the object’s filling part, we separate the objects situated inside
stable regions, and these objects are obtained by detecting their connected components.
Then, the detection of stroke and filling positions of an object is performed by checking the
eight connected neighborhoods of its pixels. The document difference obtained in Section
3.3.1 shows that the object’s stroke part is easily affected by noises. Therefore, only positions
of object’s filling part are appropriately selected, and these positions are used to map to their
corresponding gray level values where the watermarking process will be conducted.
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box of the original document. With the obtained parameters θ and s, the input document
is then transformed into its standard form by affine transformation as in Equation 2.5.

3.3.4 Watermark hiding process

The overall hiding process is depicted in Figure 3.20. The watermark used in this work is a
text message, so it has to be converted into a sequence of bits. The hiding process basically
consists of the main following steps.

Figure 3.20: Information hiding process.

Step 1 - Transforming the input document into its standard form

This task improves the accuracy of extracted secret message in case the watermarked doc-
uments are rotated a certain degree, or scaled up or down due to the distortion of printing
and scanning process. The transformation is performed as in Section 3.3.3.

Step 2 - Detection of stable regions

The stable regions are obtained by Section 3.3.1. We sort these regions based on their area in
descending order. There are three possible kinds of extracted regions including: (c1) Small
regions that are unstable and need to be eliminated; (c2) Nested regions are also eliminated.
If we hide watermark bits into a nested region, the hidden data within an inner region will be
overwritten by the data hiding operations carried out in an outer region. In this case, we only
keep the outermost region; (c3) Overlapping regions also overwrite some of the previously
hidden data so that the intersection part of a smaller region is merged to a larger region.

Step 3 - Identifying positions of the filling part of the objects

As discussed above, the pixel values belonging to the stroke part of an object are considerably
fluctuated in case noises like print-and-scan, so we only keep the filling part of document
objects for watermarking scheme. The detection of object’s filling part is descrided in Section
3.3.2.
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Step 4 - Hiding watermark bits into document

We sort the positions of each object fill by y-coordinate in ascending order. Then, for each
object, we split the pixels belonging to this object into groups of m successive pixels. Then,
for a given group G, the m pixel values are used to carry one watermark bit. A weight
W (wi) is assigned to each pixel of the group G as illustrated in Figure 3.21(a).

Figure 3.21: Demonstration of assigning weight to a group of pixel values (a) and ranges
of hiding factor (b).

Each element of weighted array W holds a value by:

wi =

{

−1, if i ≤ m/2

1, otherwise
(3.21)

where m is an even number (m > 0)

To determine which gray level values in G are adjusted to hide watermark bit, the hiding
factor f for the kth group is calculated by:

fk =
m∑

i=1

wi × ai (3.22)

where m is the number of elements in Wk and Gk

The set of hiding factors of whole document (F = {f1, f2, ..., fn}) includes negative (N),
zero and positive (P ) values and is distributed in the range [N,P ]. We use the range of
negative values of F to hide bit 0 and positive range of F to hide bit 1. However, when
the watermarked documents undergo noises, the hiding factor might move from the negative
range to the positive one and vice versa. Thus, these two ranges need to be separated by
a certain distance D for improving the accuracy of watermark detection. Depending on the
hiding factor of each group and watermark bit, its gray level values will be adjusted such
that its hiding factor lies on the range with fk ≤ −D or fk ≥ D as described in Figure
3.21(b). A watermark bit is hidden into an appropriate range by:

– if the jth watermark bit wmj = 0:

� fk ≤ −D: gray level values in G keep unchanged.
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� fk > −D: adjust gray level values in G such that fk ≤ −D.

– if the jth watermark bit wmj = 1:

� fk ≥ D: gray level values in G keep unchanged.

� fk < D: adjust gray level values in G such that fk ≥ D.

The adjustment is done by: (i) swapping the first block of m/2 gray level values with the
second block of m/2 gray level values; or (ii) modifying gray level values of the first or second
block of m/2; or both of (i) and (ii).

3.3.5 Watermark detection process

The steps for watermark detection is conducted in the same manner with the watermark
hiding process, it just differs in the data extraction process. The watermark bit wmj is
extracted by:

wmj =

{

0, if fk ≤ 0

1, otherwise
(3.23)

The accuracy of information detection is measured by bit error rate (BER), which is
defined as a ratio between the number of detected error bits and the total number of hidden
bits.

3.4 Summary

In this chapter, we present the feature points-based steganography scheme and stable regions-
based watermarking scheme. For the method based on feature points, we make use of SURF
detector for extracting the feature points from the documents. Although these kinds of
feature points give high performance like for natural images (the schemes are designed in
the transformed domain), they give low performance when applied on the documents, as
shown in the experiments for detecting the hidden information detailed in Section 5.2. In
addition, we also proposed another detector for detecting the feature points, which is more
stable than the well-known detectors in terms of distorted document images. However, the
steganography scheme based on the feature points extracted from our proposed detector still
has not meet the requirement of the robustness against practical distortions like printing
and scanning, or print-photocopy-scan distortion.

For this reason, we have proposed to improve the robustness of the scheme by designing
another watermarking scheme based on the stable regions extracted from the documents
instead of the feature points. To achieve this objective, we take advantage of common image
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processing operations and non-subsampled contourlet transform to detect stable regions from
the documents. The new watermarking algorithm has been proposed, which is relied upon
a group of sucessive pixel values associated with weights for carrying one watermark bit.
As a result, the stable regions-based watermarking scheme has significantly improved the
robustness, especially the scheme is capable of tolerating the real distortions like printing
and scanning at high resolution of 600 dpi. However, the scheme fails to detect the hidden
information from the watermarked documents, which are scanned at lower resolutions of 400,
300 and 200 dpi (as presented in Section 5.3). Thus, the performance of the scheme needs
to be improved in order to meet higher requirement of practical applications.
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Chapter 4

Securing document images via deep
learning

In this chapter we introduce five other watermarking schemes by making use of deep learning
with the aim of improving the scheme robustness including: three schemes for grayscale
typewritten documents; one scheme for both handwritten and typewritten documents; and
one scheme for binary documents. To improve the stability of extracted hiding regions which
has been presented in Section 3.3.1, we make use of fully convolutional networks, which
has been initially proposed for semantic image segmentation. This kind of network is also
utilized to detect the variations of document characters and symbols from the watermarked
documents. Besides, we also take advantage of generative adversarial networks to:

• Generate an intermediate document from an input document, which is used as a ref-
erence for the watermarking process.

• Produce new fonts of a document, or variants of document characters and symbols
from their skeleton. With respect to watermarking algorithms, we develop them based
on pixel intensity level, and shape of characters and symbols.

4.1 Introduction

Although the stable regions-based watermarking scheme has considerably improved the per-
formance of information detection in comparison with the steganography scheme based on
the feature points, the robustness didn’t reach the expected level. Thus, we have proposed
to take advantage of deep learning to enhance the scheme robustness. Deep learning is a
subfield of machine learning research, which is utilized to design models and learning algo-
rithms for deep neural networks. It has been incorporated in a large number of applications
of pattern recognition and artificial intelligence including character and text recognition,
image segmentation, object detection and recognition, traffic sign recognition and so on.
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Deep learning has its roots from conventional neural networks, and it enables computa-
tional models of multiple processing layers to learn and represent data with multiple levels
of abstraction mimicking how the brain perceives and understands multimodal information.
Hence, deep learning implicitly captures intricate structures of large scale data. The recent
researches in deep learning have shown that it outperformes previous state-of-the-art tech-
niques in several tasks. Specifically, in our work, we make use of such two kinds of neural
networks, namely fully convolutional networks (FCN) and generative adversarial networks
(GAN). The principle of FCN and its application are presented below while the one of GAN
is depicted in Section 4.4.

Fully convolutional network is a contemporary technique that provides very good per-
formance for several applications in the field of pattern recognition, which is adjusted to
solve the issue of detecting document content regions for watermarking. FCN has been ini-
tially proposed to solve the problem of semantic image segmentation66;131, and recently this
advanced technique has been efficiently applied for scene text detection132–134, document
structure segmentation135;136 and document image binarization137. Compared to convolu-
tional neural networks which only work with the fixed size of an input images and only
generate one label per image, FCN is designed to provide pixel level predictions, and it can
take the input documents with arbitrary size and generate outputs as feature maps with the
same size of the inputs.

Figure 4.1: Fully convolutional network architecture.

The FCN is designed by replacing fully connected layers with convolutional layers which
enable it to preserve coarse spatial information that is essential for specific tasks. The
convolutions are chosen in such a way that the input document is transmitted without any
change in the spatial dimension, it means that the height and width of the output document
keep the same dimension than the input. The fully convolutional network predicts all the
pixel labels at once rather than having individual patches from a document independently
evaluated for pixel labeling. The output layer of this kind of network consists of C feature
maps, where C is the number of labels, including the background, in that each pixel can be
classified. If the height and width of the original document are h and w respectively, then the
output of the network comprises h× w × C feature maps. For the ground truth document,
there should be C number of segmented documents corresponding to the C classes. For
any spatial coordinate (h1, w1), each of the feature maps contains the score of that pixel
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pertaining to the class that the feature map is associated with. These scores across the
feature maps for each spatial pixel location (h1, w1) are obtained from the softmax function
over the different classes.

The architecture of fully convolutional networks is presented in Figure 4.1 in which the
number of output feature maps corresponding to five classes are displayed. Assume that the
score at the spatial coordinate (i, j) for the kth class is depicted by sk(i, j), the probability of
the kth class for the pixel at spatial coordinate (i, j) under the Softmax activation function
is given by:

Pk(i, j) =
esk(i,j)

∑C
k′=1 e

s
k′
(i,j)

(4.1)

Assume that the ground truth labels at the spatial coordinate (i, j) for the kth class
are given by gk(i, j), the cross-entropy loss of the pixel at spatial coordinate (i, j) can be
computed by:

L(i, j) = −
C∑

k=1

gk(i, j)logPk(i, j) (4.2)

Assume that the input document of size M × N used to feed to the network, the total
loss for a document is given by:

LD(i, j) = −
M−1∑

i=0

N−1∑

j=0

C∑

k=1

gk(i, j)logPk(i, j) (4.3)

The output class k̂ for a pixel at spatial coordinate (i, j) can be determined by taking the
class k where the probability Pk(i, j) is maximum as below.

k̂ = Arg max
︸ ︷︷ ︸

k

Pk(i, j)
(4.4)

The output feature maps of the network for document structure segmentation in Figure
4.1 correspond to five classes of document regions including subsection headings, paragraphs,
tables, pictures and background. We can see that there is a feature map associated with
each class or label, and the spatial dimensions of the feature maps are the same size of the
input document.

With the FCN presented in Figure 4.1, all convolutional layers in the network retain the
spatial dimensions of the input document. However, the documents with high dimension
or resolution could make computational time of the network becoming more intensive, es-
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pecially if the number of feature maps in each convolution is high. To deal with this issue,
the operations of downsampling are applied to the convolutional layers during the process of
feature extraction to reduce the size of feature maps, and the feature maps with dimension
reduction will be restored to the dimension of original document by using upsampling opera-
tions. It is important that the downsampling and upsampling tasks should retain the spatial
information of the documents. The downsampling task can be performed through stride and
pooling (max pooling or average pooling) operations, which are applied to the convolutional
layers. Meanwhile, the techniques that are commonly used to upsample the document or
feature map consisting of unpooling, max unpooling and transpose convolution. For upsam-
pling operations, few convolutional layers are required. An example of downsampling and
upsampling operations for this network is depicted in Figure 4.2.

Figure 4.2: Illustration of FCN with downsampling and upsampling operations.

This kind of network is adjusted to solve the problem of detecting document content
regions for watermarking system, and its performance is demonstrated through watermarking
schemes detailed below.

4.2 Watermarking scheme for typewritten documents

Depending on our survey, we have noticed that deep learning, specifically convolutional neu-
ral networks, generative adversarial networks or CNN-based autoencoder, has been exploited
to develop data hiding schemes for natural images as presented in Chapter 2. However, the
FCN has been employed yet in the field of data hiding. Although the watermarking scheme
presented in Section 3.3 has improved the performance as compared to the existing ap-
proaches, the extracted regions for watermarking development is still unstable against high
distortions. For this reason, we propose another FCN-based watermarking approach for
document images with mixed content and introduce this advanced technique to the field of
document watermarking for security concern. Unlike the CNN-based approaches in which
the authors leverage weight parameters of deep learning framework, or the output image of
the network for watermarking process on the fixed size images, here we train the FCN so
that the trained network can be used to generate a salient map describing watermarking
regions of a document with arbitrary size. The process of our watermarking development is
separately designed with the phase of training the network.
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4.2.1 Detection of stable hiding regions using FCN

In reality, the document images are represented under several forms with various size. After
watermarking process, the watermarked document is expected to keep a similar shape with
the one of host document. The FCN66;131 is adopted for developing our watermarking scheme
because this network is able to take an arbitrary sized document and generate an output
with the same dimension (this network has no any fully connected layer which is replaced
by convolutional layer). The FCN is initially designed for semantic image segmentation, and
this kind of network is very powerful to solve the problem of document structure segmenta-
tion135;136 and document binarization137. By experiments, we have shown that the segmented
content regions of document such as running text, headline, picture, table, etc. are stable
against distortions. Thus, we transform the problem of document structure segmentation,
which includes many labels describing various segmented content regions, to the problem of
watermarking regions detection which consists of two labels: one describes background re-
gion (black color in Figur 4.3(b)), and the other depicts all segmented content regions (white
color in Figure 4.3(b)). It means that in the context of our work, the segmented content
regions are assigned with the same label, e.g. a segmented region containing the running
text does not differentiate from the other segmented content regions and so on.

Figure 4.3: The illustration of a mixed document (a) and its ground truth document (b).

Our network as depicted in Figure 4.4 is based on the principle of FCN presented in131

in which we use the VGG 16-layer138 network and replace its three fully connected layers
with convolutional layers (two blocks of additional layers) for preserving spatial information.
The feature maps generated in the phase of convolution operations (downsampling) are
reduced in dimension, so they need to be reconstructed by performing upsampling through
a few transposed convolutional layers. This task produces the feature maps with the same
dimension of original document in the output layer. Besides, we apply Softmax layer on the
output layer to transform the result of network into a two-class problem for representing the
probability of document’s watermarking regions.

Next, we describe briefly our network as follows. The first five convolutional blocks are
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Figure 4.4: The architecture of FCN for detecting watermarking regions.

analogous to the VGG-16 net in which the first two blocks (Conv 1, Conv 2) contain two
convolutional layers in each, while the next three blocks (Conv 3, Conv 4, Conv 5) contain
three convolutional layers in each. The kernel size used in the first five convolutional blocks
is set to 3 × 3. Each additional block (Conv 6, Conv 7) contains two convolutional layers
including one with a kernel size of 3 × 3, and the other with a kernel size of 2 × 2. The step
size used for shifting convolution kernel is of 1× 1. The activation function used in all layers
of network is a rectified linear unit (ReLU). Besides, the max pooling layer with a kernel size
and stride of 2× 2 is applied after the last convolutional layer of each block except for block
of Conv 7. We apply dropout layer after Conv 6 and Conv 7 for preventing the problem
of overfitting. The phase for reconstructing the spatial dimension of the original document
is represented by the “Upconvolution” block (upsampling operations) in Figure 4.4 wherein
a few transposed convolutional layers are utilized for retaining the spatial information. By
our experiment, we have observed that the transposed convolution restores better spatial
information than other upsampling operations. With the transposed convolution, the filter
values at a specific location are weighted by the input value at which the filter is placed, and
the weighted filter values are populated in the corresponding locations in the output. The
outputs corresponding to each of the input values are added to produce the final output.

Figure 4.5: The generated salient map (a), and the bounding boxes surrounding the docu-
ment content regions (b).

The annotating documents are performed by creating the ground truth of document’s
content regions. The input documents (Figure 4.3(a)) along with their ground truth seg-
mentation as described in Figure 4.3(b) are used to feed the network for training purpose. By
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observation, we have seen that the feature maps generated from low blocks of convolutional
layers represent overall shape of document content while regions-specific information at high
blocks. The salient map is computed based on the scores of output feature maps obtained
from our trained network, and it is represented under grayscale form as in Figure 4.5(a).
Based on the output salient map, which is converted into binary form, the bounding boxes
as blue rectangles on Figure 4.5(b) surrounding the content regions of document are easily
detected by utilizing connected components. These regions are considered as watermarking
regions.

4.2.2 Feature points-based geometric correction

During the process of printing and scanning, the watermarked document is possibly subjected
to distortions such as rotation and scaling. The distortions could make the watermarked
document rotating a certain angle, or changing its dimension due to scanning with different
resolutions. Thus, these distortions need to be mitigated before conducting watermarking
operations by transforming the input document into a standard form. In this work, we adopt
BRISK64 detector for detecting keypoints, and these keypoints are used for determining the
minimum rectangle surrounding the content of entire document, which is illustrated as blue
rectangle in Figure 4.6(a). The small color circles in Figure 4.6(a) are feature points extracted
by BRISK detector. Then, the rotation angle θ is estimated based on this minimum rectangle.

Figure 4.6: Estimation of geometric parameters.

Next, the scale factor s is calculated as a ratio between a predefined constant and the
Euclidean distance of such two points as a top left point P1 and a center point P2 as illustrated
in Figure 4.6(b). With the acquired parameters of rotation θ and scale s, the input document
is then transformed into its standard form by affine transformation as in Equation 2.5.
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4.2.3 Data hiding process

The main steps of information hiding process is illustrated in Figure 4.7. The watermark
hiding process basically comprises the following main steps:

Figure 4.7: The main steps of watermark hiding process.

Step 1 - Transforming the input document into its standard form

The information hiding algorithm in this work is designed based on a m×n pattern of pixel
values for carrying one information bit. Thus, the pattern of pixel values extracted from
an undistorted document is possibly different from the one extracted from geometrically
distorted document. To minimize this inconsistency, the document is transformed into its
standard form before starting the procedure of information hiding and detection. This task
will result in increasing the performance of detecting hidden information from the distorted
documents. The document standardization is carried out as described in Section 4.2.2.

Step 2 - Detection of watermarking regions

The watermarking regions are detected by utilizing FCN as detailed in Section 4.2.1. With
this approach, we can easily localize any type of document contents such as text, picture,
table and so on where we want to hide the secret information. In addition, this method is
able to efficiently identify text and non-text elements of documents so that it can be applied
to address the shortcoming of state-of-the-art schemes designed for pure text documents. To
hide as many information bits as possible into a document, we take all its extracted content
regions for information hiding. Similar to the stable regions in Section 3.3.1, the extracted
watermarking regions based on FCN could be nested or overlap. This issue has been solved
similarly to the method presented in Section 3.3.4.

Step 3 - Identifying watermarking positions

Depending on the natural shape of document content, we use a watermarking pattern B
with size of m × 2 as on Figure 4.8(a) to scan through each of watermarking regions for
locating appropriate positions where the watermarking process will be conducted. As we
know that, for each of document characters, there are many pixels whose grey values with
high intensity are interlaced either inside individual character or around it. These positions
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are unusable for watermarking process, so they have to be eliminated. To make sure that the
watermarking process is not fallen into these positions, all gray level values (p1, p2, .., pm×2)
of the watermarking pattern B have to be less than a threshold δ.

Figure 4.8: The watermarking pattern Bi with size of m × 2 (a), and the distribution of
mean values m1 and m2 calculated from Bi (b).

The watermarking pattern is used to carry a watermark bit, so the number of watermark
bits that a document can carry is depending on the number of satisfied watermarking patterns
described above.

Step 4 - Hiding watermark bits into document

We divide the gray level values of each of watermarking patterns B into two groups of m
values such as (p1, ..., pm) and (pm+1, ..., pm×2). The idea of hiding an information bit into
the document is based on two mean values (m1,m2) corresponding to two groups of pixel
values of B, and the absolute difference di between these mean values. It is possibly either
m1 ≤ m2 or m1 > m2, and we use m1 ≤ m2 for carrying bit 0 and m1 > m2 for bit 1.

{

m1 = 1
m

∑m
k=1 pk;m2 = 1

m

∑m×2
k=m+1 pk

di = |m1 −m2|
(4.5)

However, when the watermarked documents suffer from distortions, the mean value m1

might move passed towards the mean value m2 and vice versa as illustrated in Figure 4.8(b).
Thus, these two means need to be separated by a certain distance of W for improving the
precision of watermark detection. The value of W will determine the robustness of the
scheme. A watermarking pattern Bi carrying a watermark bit wmi is given by:

– if the ith watermark bit wmi = 0:

� m1 < m2 and di ≥ W : the gray level values in B remain unchanged.

� Otherwise: adjust the gray level values in B such that m1 < m2 and di ≥ W .

– if the ith watermark bit wmi = 1:
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� m1 > m2 and di ≥ W : the gray level values in B remain unchanged.

� Otherwise: adjust the gray level values in B such that m1 > m2 and di ≥ W .

The adjustment is performed by: (i) permuting the first group of gray level values
(p1, ..., pm) with the second groups of gray level values (pm+1, ..., pm×2); or (ii) modifying
gray level values of the first or second group; or both of (i) and (ii).

4.2.4 Data detection process

The watermark extraction is the inverse of the watermark hiding process. The watermarked
document is first transformed into its standard form in order to minimize the geometric
distortions. The geometrically corrected document is then fed into the fully convolutional
networks, and this network will produce a salient map with the same dimension of the
input document. The generated salient map is used to help identify the content regions of
document, which is regarded as watermarking regions, where we wish to detect the secret
information hidden inside. The watermarking pattern of size m × 2 is positioned within
each of these watermarking regions, and the pixel values of each of watermarking patterns
is partitioned into two sets. The mean values m1 and m2 corresponding to these two sets of
pixel values will determine either bit 0 or 1 is extracted, and this is estimated by:

wmi =

{

0, if m1 ≤ m2

1, otherwise
(4.6)

The precision of information detection (bit error rate) is measured by the proportion
between the total number of incorrectly extracted bits and the total number of hidden
information bits.

To conclude, we have improved the stability of watermarking regions extracted from the
documents by using FCN. With the FCN networks, the scheme can easily provides a flexible
way to hide the secret data into a specific region of the document. This region can be textutal
content or a picture. During the experiments, we have observed that the watermarking
regions extracted by FCN networks give better stability than the method presented in Section
3.3. In addition, the precision of hidden data detection has been improved compared to our
previous schemes. However, the scheme gives low performance when detecting the watermark
from the watermarked documents undergone the scanning operation with the resolution of
400 dpi or lower. The experimental results of this method are presented in Section 5.4.
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4.3 Watermarking scheme for handwritten documents

With the fast-growing advanced technologies, the action of writing with pen has been con-
siderably decreased in our daily activities. However, the handwriting documents still remain
an important role in the digital age. The handwriting documents are really inevitable and
in use at various sectors such as notarized agreements, judicial documents, sworn statement,
bank transfer forms, etc. There are several existing researches dealing with the integrity and
authenticity of digital material like signature determination, handwriting identification, ink
verification and other document characteristics in the field of forensic specialty. Before going
into our approach for securing handwriting documents, we would like to introduce a couple
of typical works related to this field.

Signature determination: It can be used for the purpose of individual identification and
document authentication. Signature detection for document image retrieval has been pro-
posed by Zhu et al.4. To detect and segment signature from document images, the authors
have proposed a multiscale approach which captures structural saliency using a signature
production model and computes the dynamic curvature of 2D contour fragments over these
multiple scales. The signature production model is based on the incorporation of two degrees
of freedom in the Cartesian coordinates: when producing a signature the pen moves in a
fashion with reference to a sequence of shifting baselines. Within a short curve segment, the
baseline remains unchanged; the locus of the pen maintains a propositional distance from the
local center point to the local baseline. Thus, a fragment of signature can be equivalently
considered as concatenations of small elliptic segments. Regarding signature recognition
and retrieval, the authors measure the shape dissimilarity based on anisotropic scaling and
registration residual error where a supervised learning framework is utilized to combine com-
plementary shape information from different dissimilarity metrics with the support of linear
discriminant analysis. Figure 4.9 shows the infinite number of geometric curves that pass
two given end points E1 and E2 on a signature, very few are realistic (solid curves) whereas
the dotted line is an unrealistic curve.

Figure 4.9: The geometric curves4 passing through the two points E1 and E2: solid lines
are realistic curves, and dotted line is unrealistic curve.

Ahmed et al.139 proposed a method for signature extraction whereas SURF is utilized to
differentiate the machine printed text from signatures. To do so, for all connected compo-
nents from the printed text images, the corresponding extracted keypoints and descriptors
are added to a database for printed text features. For connected components of signature
images, their extracted keypoints and descriptors are also added to another database for sig-
nature features. These two databases provide a reference for the matching of features, which
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is used for the purpose of signature segmentation. Another method140 detects signature
using hyper-spectral imaging. In this work, the authors have pointed out the character-
istics of hyper-spectral response of document images in which the response of printer ink
and background is almost consistent across all the bands whereas the response of signature
pixels varies a lot, especially in the bands near infrared region. To extract signature from
documents, the connected components are first extracted from the printed text documents.
Then the corresponding extracted keypoints and descriptors are stored in a database for
printed text features. With respect to connected components of signature images, their key-
points and descriptors are also stored in another database. These databases are used for
signature segmentation, and the authors utilize k-nearest neighbours algorithm to classify
the connected components instead of Euclidean distance metric as method presented in139.

Figure 4.10: The architecture of SVM training5 wherein the forgery signatures are generated
by verifying signatures of different signers.

The multi-cript signature verification method5 uses the genuine signatures of third signers
as training samples of the forgery class for support vector machine (SVM) training in which
the authors have proposed an effective sampling method that uses one-class SVM to reduce
the sample number for the training dataset. This method provides procedures for both
online and offline signature verification. For the offline verification procedure, the system
consists of signature image generation for which the grayscale values reflect the velocity, and
the thickness of strokes reflects pressure of pen movement. To generate the signature image,
the authors have combined grayscale values and width of trokes to enhance the appearance
difference between genuine and forgery signatures. Meanwhile, the online verification task
processes time series data of the signature by using a procedure similar to offline verification
for signature image generation. The architecture of this method is depicted in Figure 4.10.

Writer verification: This kind of application is used to authenticate whether a given
document is written by a certain individual or not, and this is performed by matching
the writers to their handwriting specimens. The general framework of this application is
presented in Figure 4.11.

Adak et al.141 have proposed a method that is based on handcrafted features and auto-
derived features extracted from intra-variable writing. The handcrated features are extracted
by using SVM whereas the auto-derived features are extracted by using CNN network. The
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Figure 4.11: A framework of writer identification and verification6.

handcrafted features consist of:

• The macro and micro features: (i) the macro feature vector contains 11 features such
as gray-level entropy (f1), gray-level threshold (f2), count of black pixels (f3), inte-
rior/exterior contour connectivity (f4 − f5), vertical/negative/positive/horizontal con-
tour slope (f6 − f9), average slant and height of the text-line (f10 − f11). The authors
define that the features f1 − f3 are related to the pen pressure, the features f4 and
f5 are relevant to writing movement, the features f6 − f9 are related to strokes, the
feature f10 depicts the writing slant, and f11 represents the text proportion; (ii) two
paragraph-level macro features include the width and height ratio of paragraph f12
and margin width f13. The word-level macro features are upper zone ratio (f14), lower
zone ratio (f15) and length (f16); (iii) character-level micro features consist of 192-bit
gradient, 192-bit structural and 128-bit concavity features.

• The contour direction and contour hinge features of handwriting strokes.

• The features of the writing direction and the curvature of a writing stroke.

The auto-derived features are computed based upon two types of patches: character-level
patch is acquired by calculating the center of gravity of a segmented character, and another
patch is obtained as a window of appropriate size centered at a keypoint on writing strokes.

The Bengali writer verification system142 is also based on handcrafted features and auto-
derived features. The authors perform classification for writer verification based on the
handcrafted features and then feed it into a CNN network for generating the auto-derived
features. The generated features are fed into multi-layer perceptron and Siamese neural
network for writer verification. Aubin et al.143 have put forward a writer verification that is
based on simple graphemes. The descriptors obtained from individual and simple characters
have improved the recognition capacity. The descriptors are constructed in considering
several factors such as the width of the stroke, the gray level of the character or grapheme
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skeleton, the average of the gray level on the perpendicular line to the skeleton, and the
transformation coefficients of the area of the grapheme. The system is implemented by using
SVM with k-fold cross validation. Another writer verification method has been proposed by
Akao et al.144 in which the multi-dimensional scaling is applied to earth mover’s distance
(EMD). The earth mover’s distance is able to represent the difference of kernel density
distributions between writers, and the flow of EMD is calculated between k-means cluster
centroids.

The method based on the analysis of a unique sample of a handwriting word145 makes
use of Levenshtein edit distance based on Fisher-Wagner algorithm which is used to esti-
mate the cost of transforming one handwritten word into another. Prior to the process of
measuring edit distance between handwriting words, the graphemes need to be generated
as elementary components for each word. This is performed by binarization of documents,
making skeletonization, and upper contour extraction. Parziale et al.146 have developed a
writer verification by using the stroke level measurements. The features of documents are
computed by building a triangle between every two consecutive strokes, and they are used
to measure the similarity between the genuine and the questioned handwriting document.

Ink verification: This kind of application is also utilized to assist in making decision
whether a given document is genuine or not, specifically it helps answer the question of
whether some texts or strokes are added with a different pen or ink. Howe et al.147 have
proposed a method of ink verification in which the authors utilize inkball models to generate a
varying feature set which is used to train the hidden markov model for character recognition.
With this model, the hidden stages correspond to characters in the target language, and each
of these characters has a corresponding inkball model produced from a prototype of each
character. The prototype of character is based upon k-medoids and information gain, the
k-medoids algorithm operates in the same manner as k-means, except that at each step
the cluster centers are not the actual centroid but the cluster member which is closest to
it. For information gain, it is computed as the difference in entropy of a set before and
after a partition into subsets (using a threshold). The maximum information gain over all
possible threshold is computed and stored for each candidate prototype, and the candidate
with the greatest information gain within each character class becomes the prototype. The
obtained character prototypes are then converted into inkball models. The best matching
between inkball model and a sample of handwritting text is estimated by the model and the
hidden markov model. Another ink verification system148 is based on the gradients of the
spectral power histogram. The input documents have to be pre-processed in order to extract
measure points which contain parts of the stroke. The task of pre-processing consists of
removal of measurement drop-outs, building of reference vector, wavelength normalization
and extraction of measure points. The features used for ink verification are gradients in
which the absolute value norm or the Euclidean norm is used to measure the difference
between two measure points.

Instead of using the aboved techniques to verify the genuine handwriting documents,
we would like to introduce a watermarking method that can be effectively used to secure
the legal handwritten documents, and can provide high performance for the purpose of

75



document verification. The main ideas of our approach are as follows. The handwritten
document is pre-processed by replacing gray level values holding high intensity with the
mean value of whole document content. The document is then transformed into standard
form to minimize geometric distortion. Next, fully convolutional networks (FCN) is leveraged
to detect document’s content regions used for hiding secret information. Lastly, the data
hiding process is conducted by dividing the gray level values of each separated object situated
within content regions into two sets for carrying one watermark bit. To our knowledge, there
is currently no watermarking approach designed for handwritten document protection.

4.3.1 FCN-based hiding region detection

Similar to the watermarking system presented in Section 4.2, we also make use of FCN
for detecting content regions of handwriting documents, which are known as watermarking
regions. To apply FCN in this work, we adjust FCN for the purpose of document layout
segmentation135;136 to tackle the problem of watermarking regions detection. The adjustment
is to modify the convolutional layers for better feature extraction and representation. Instead
of having many labels as applied for layout segmentation, our watermarking regions detection
only requires two labels. The first one describes background region as black color in Figure
4.12(b), and the other depicts regions where document contents will be segmented as white
color in Figure 4.12(b). Hence, our network to detect the watermarking regions is likely
flexible to work well even for handwriting documents with mixed content like text, picture,
table, etc. Moreover, this network provides a powerful way to eliminate a certain content
regions of document if necessary.

Figure 4.12: The handwritten document annotation with two labels: (a) a sample of hand-
writing document, and (b) its corresponding ground truth document.

The FCN network for detecting the watermarking regions is depicted in Figure 4.13 in
which the blocks (B1-B7) contain convolutional layers for feature extraction (downsampling
phase). The principle of downsampling and upsampling operations for FCN are following the
work presented in66;131. Our network architecture is partly based on the VGG-16 network138

which is converted to fully convolutional networks. We replace three fully connected layers
with convolutional layers (B6, B7) for retaining spatial information. For this network, the
feature maps generated in the phase of convolution operations (downsampling) are reduced
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in dimension, so they need to be reconstructed by performing upsampling. The process of
recovering the spatial dimension of original document is represented by “UpConv” block
(upsampling operations) in Figure 4.13 wherein the transposed convolution is used for re-
taining the spatial information of document. Besides, we apply Softmax layer on the output
to transform the result of network into a two-class problem for representing the probability
of document’s watermarking regions. As a result, the feature maps with the same dimension
than the input handwriting document are produced at the output layer. The convolutional
layers of each block of the network are briefly described in Table 4.1, and we use the notation
of (kernel, stride) and (kernel) to define the convolutional layers.

Figure 4.13: The architecture of FCN for detecting the watermarking regions.

Table 4.1: Description for convolutional operations of each block
Blocks Convolutional operations in each block

B1, B2 2 conv layers (3×3, 1×1), ReLU, max pooling (2×2)
B3, B4 3 conv layers (3×3, 1×1), ReLU, max pooling (2×2)

B5 3 conv layers (1×1, 1×1), ReLU, max pooling (2×2)
B6 1 conv layer (7×7, 1×1), ReLU, dropout
B7 2 conv layers (1×1, 1×1), ReLU, dropout

The ground truth corresponding to the bounding boxes around the words of the text is
carried out automatically relied on gradients of text, which is presented in149. The documents
along with their ground truth as depicted in Figure 4.12(b) are used to train the network.
The feature maps generated from first blocks (B1 - B3) of convolutional layers represent
the overall shape of handwriting document content while the regions-specific information is
extracted from the last blocks (B4 - B7). The salient map as described in Figure 4.14(a) is
then obtained by computing the scores of the output feature maps gained from our trained
network. Lastly, depending on the salient map, the bounding boxes (blue rectangles in
Figure 4.14(b)) surrounding the content regions of document are easily determined by taking
advantage of connected components. We consider these regions as the watermarking regions,
and the separated handwriting elements located inside the watermarking regions are regarded
as objects. These objects are used to carry the secret information bits.

4.3.2 Watermark hiding process

Figure 4.15 demonstrates the general steps of information hiding process.

77



Figure 4.14: The salient map and watermarking regions: (a) the salient map depicts the
content regions of document, and (b) the blue rectangles are the watermarking regions.

Figure 4.15: The main steps of information hiding process.

Step 1 - Pre-processing and standardization of the input document

Due to the stroke of pen and writing style, the content of handwriting documents is often
written with irregular ink strokes. Hence, much information is lost during printing and
scanning process. The loss often falls into the areas of objects containing gray level values
with high intensity, and this could lead to fail in detecting the secret information. To prevent
from losing much information, the document is pre-processed by updating gray level values
of objects, which are greater than mean value of entire documents content, with the mean
value of the document.

To identify the parameters for geometric correction, the rotation angle θ is effectively
determined through a minimum rectangle containing the content of entire document, and
the positions of the object’s stroke as described in Section 3.3.2 along with convex hull are
used for identifying the minimum rectangle. The scale factor s is estimated depending on
the Euclidean distance d of two points like a top left point and an intersecting point of
two diagonal lines of this rectangle. The document standardization is then carried out by
applying affine transformation as in Equation 2.5.

Step 2 - Detection of watermarking regions

This task is conducted as described in Section 4.3.1. The extracted watermarking regions
are possibly overlapped or nested together, and this issue has been solved similarly to the
method presented in Section 3.3.4.
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Step 3 - Hiding secret information bits into the document

By experiment, we have observed that the pixel values situated in the positions of object
stroke are much changed when documents undergo the process of printing and scanning.
Thus these pixel values are not selected to carry the secret information bits. Only the
gray level values corresponding to the filling part of the objects (as detailed in Section
3.3.2) are used to hide information, and they are illustrated as blue color in Figure 4.16(a).
To hide a watermark bit into a separated object, we divide the pixel values of the object
fill into two sets by processing pixels from left to right and from top to bottom, which
is depicted as blue and green color in Figure 4.16(b): P = {p1, p2, ..., pm|m = n/2} and
Q = {pm+1, pm+2, ..., pn|m = n/2}, where n is the number of pixel values of an object fill.
Let s1 be the sum of all pixel values of P , s2 be the sum of all pixel values of Q, d be the
absolute difference between s1 and s2, and δ1 be the minimum distance required between s1
and s2. The adjusment of gray level values for carrying the watermark bit is performed by:

Figure 4.16: The objects stroke and fill are depicted in red and blue color respectively (a).
The two sets P and Q (blue and green color) of each of separated handwriting elements are
used for carrying watermark bit (b).

– if the ith watermark bit wmi = 0:

� s1 < s2 and d ≥ δ1 : the pixel values in P and Q keep unchanged.

� Otherwise: decreasing pixel values of P by a threshold δ2, and increasing pixel
values of Q by δ2 such that s1 < s2 and d ≥ δ1.

– if the ith watermark bit wmi = 1:

� s1 > s2 and d ≥ δ1 : the pixel values in P and Q keep unchanged.

� Otherwise: increasing pixel values of P by δ2, and decreasing pixel values of Q by
δ2 such that s1 > s2 and d ≥ δ1.

4.3.3 Watermark detection process

The detection of watermark bits is conducted in a similar fashion as the watermark hiding
process wherein the extraction of hidden data does not require the pre-processing task. The
watermarked document is first transformed into its standard form in order to minimize
the geometric distortions. The geometrically corrected document is then fed into the fully
convolutional networks, and this network will produce a salient map with the same dimension
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of the input document. The generated salient map is used to help identify the content regions
of document, which are known as the watermarking regions, where the secret information
will be extracted. Each separated handwriting element within the watermarking regions is
divided into two sets, and the sums of pixel values s1 and s2 corresponding to these two sets
are used to detect the hidden information bits. The information bit wmi is extracted by:

wmi =

{

0, if s1 ≤ s2

1, otherwise
(4.7)

The accuracy ratio of watermark extraction is measured by Equation 3.13.

In comparison with the existing techniques such as signature determination, writer verifi-
cation and ink verification, the data hiding technique also gives high performance for tracing
the origin of genuine documents. The proposed scheme is capable of verifying the document
origin without requiring any reference information as the state-of-the-art approaches pre-
sented above. However, our approach can not resist to the distortions caused by the process
of scanning with low resolutions or other complicated distortions. Thus, the scheme robust-
ness needs to be further improved. The experimental results of this method are detailed in
Section 5.5.

4.4 A robust watermarking scheme using generative

adversarial networks

As discussed in the previous works, although the approaches presented in Section 3.3, Section
4.2 and Section 4.3 have significantly improved the robustness against common distortions
compared to the feature points-based method presented in Section 3.2, they still have failed
in detecting the hidden information from the watermarked documents, which are scanned
at the resolution of 400 dpi or lower, or subjected to complicated distortions like print-
photocopy-scan. Thus, we are motivated to come up with another solution for scheme
improvement. The main idea of this work is to generate a good quality document from an
input document, which is robust enough to distortions, and this document is regarded as a
reference for building the watermarking system. The good quality documents are obtained
by utilizing generative adversarial networks (GAN).

Prior to presenting the detail of our watermarking scheme, we would like to introduce
some prominent techniques which are recently applied to generate a good quality image from
an input one. These techniques are image restoration, image reconstruction, super-resolution
image reconstruction and image-to-image translation.

Image restoration is a process for reconstructing a clean image from a degraded observa-
tion (e.g. noise, blurring, and sampling). Kim et al.150 have proposed a CNN-based scheme
for learning the regularizer of the alternating minimization algorithm. In this work, the
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authors introduce the aggregated mapping in the alternating minimization algorithm, which
produces better restoration model than the conventional pixel-wise mapping. The idea of
alternating minimization algorithm is to solve the problem of formulating a data term for
the degraded observation and a regularization term for image to be reconstructed. Their
network consists of three sub-networks such as guidance network, parameter network and
deep aggregation network. The guidance network is accountable for considering structures
of both input and guidance images. Another framework based on fully convolutional and de-
convolutional layers151 is used for image restoration in which the convolutional layers work as
feature extraction, which obtain the spatial information of image contents while eliminating
noises, and the deconvolutional layers are used to recover the image details. However, when
the network goes deeper or using operations like max pooling, the deconvolutional phase does
not work well because lots of information are lost during the convolutional operations. To
address this issue, the authors utilize skip connection between corresponding convolutional
and deconvolutional layers. The feature maps passed by skip connection hold much image
detail, so this helps the deconvolutional process recover a better image.

Chen et al.152 have proposed a learning framework based on learning optimal nonlinear
reaction diffusion model. With this approach, the training parameters such as filters and
influence functions are learned from training data in a supervised manner. The authors apply
feedback step in their diffusion network rather than conventional feed-forward networks. The
nonlinearity (influence function) used in their network is trainable whereas the activation
function (ReLU or sigmoid function) used in conventional convolutional networks is fixed.
Zhang et al.7 have put forward a deep CNN denoiser prior based optimization method in
which the authors make use of dilated convolution, instead of normal convolution, to make
a tradeoff between the size of receptive field and network depth. The dilated convolution is
known for expanding capacity of the receptive field while maintaining the merits of normal
convolution. Besides, the batch normalization and residual learning have been adopted
in their network, which enable the network to result in better denoising performance. The
authors have pointed out their network to be applicable to image denoising, image deblurring
and single image super-resolution. Figure 4.17 illustrates an example of image deblurring.

Figure 4.17: The illustration of image deblurring7.

Another method based on regularization153 is capable of handling arbitrary degradations
such as blur, missing pixels, etc. To do so, the authors rely on the tendency of small patches
to recur within natural images, and they do that by adopting the weighted nuclear norm
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minimization which has been shown to obtain better results in image denoising. In addition,
the authors have pointed out the fact that the small patches tend to recur not just within the
same scale but across different scales in the natural images. Finally, instead of formulating
an independent reconstruction for each patch group, the authors apply regularization that
take all patch groups by using the expected patch log-likelihood approach. Yoo et al.8 have
proposed a method for restoring the details of corrupted image, which is due to the loss
caused by JPEG compression. The authors consider the task of image restoration as a
task of classification. The frequency distribution of target image is directly estimated from
the input image by using the cross-entropy loss function. The network for image restoration
consists of three subnets namely a classifier, an encoder and a decoder. The classifier network
produces a discrete distribution containing probability of frequency coefficient class for each
frequency channel. The cross entropy loss is used to train the classifier network. The encoder
network is used to generate feature map, and the decoder network is used to produce output
image. Figure 4.18 demonstrates the restoration of compressed image with JPEG quality
factor of 10.

Figure 4.18: The restoration of JPEG compressed image8.

Image reconstruction: Similar to image restoration, it refers to recovering the clean image
from the corrupted image (e.g. blur, low resolution). CNN-based method154 has been
proposed to reconstruct image from incomplete measurement data. This network is trained to
learn the mapping between the true (original) image and the artifact (degraded) image. This
mapping is embbed within an iterative reconstruction method that could result in reducing
artifact levels. Instead of learning a direct mapping, this network predicts a residual image
which is added to the original image to get the output image. Besides, the authors train
their network with two-stage process in which the network is first trained with zero-initialized
reconstructed images, the weights are then fine-tuned with the weights obtained in the first
stage. Another CNN-based method9 has been proposed to reconstruct high dynamic range
(HDR) images from low dynamic range (LDR) images which are captured with arbitrary
and low-end cameras. This network is designed in the form of autoencoder network that is
adjusted to operate on the LDR images and produce the HDR images in which the encoder
side operates directly on LDR input image, and the decoder side is accountable for producing
HDR output image. In addition, the authors use skip connection in their network to transfer
each level of information from the encoder side to the corresponding level of information from
the decoder side. The reconstruction of corrupted image is shown in Figure 4.19.
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Figure 4.19: The reconstruction of corrupted image9.

Cheng155 et al. have proposed a CNN-based method for reconstructing image from sub-
sampled acquisition in the spatial-frequency domain in which the network is applied to
patches of data in the frequency domain. It means that a bandpass filter is used to select
and isolate the reconstruction to small localized patches in the frequency space (k-space).
With this approach, the training and inference process are carried out on localized patches
of k-space. The network consists of two different blocks such as update block and de-noising
block. The update block is critical to ensure that the final reconstructed image accords
with the measured data samples. The de-noising block consists of a number of convolutional
layers to de-noise effectively images.

Super-resolution image reconstruction aims to reconstruct a high resolution image from
a low resolution input image. Kim et al.156 have come up with a deeply-recursive convolu-
tional network. The feature maps after each recursion, which are supervised, are used to
reconstruct the output high resolution image. The authors use skip connection to transfer
information from input to the reconstruction layer. Their network consists of three sub-
networks: embedding, inference and reconstruction network. The embedding network takes
the input image and generate a set of feature maps, which is passed to the inference network.
The inference network is the main component to solve the issue of super-resolution, and it
contains a recursive layer. The feature maps obtained from the final application of recur-
sive layer represent the high resolution image. The reconstruction network is responsible
for transforming these feature maps back to the original image space. Laplacian pyramid
network-based method157 has been proposed for reconstructing the sub-band residuals of
high resolution images in which a cascade of convolutional layers is used to extract feature
maps. This network takes an input image and predicts residual images at log2(s) level where
s is the scale factor, and it consists of two main processes. For feature extraction, at a level
s, the network consists of a number of convolutional layers and a tranposed convolutional
layer to upsample the extracted features by a scale of 2. The output of each transposed
convolutional layer is connected to a convolutional layer for reconstructing the residual im-
age at level s, and a convolutional layer for extracting features at the finer layer s + 1. For
image reconstruction, the upsampled image is combined with the predicted residual image
from the feature extraction process to produce a high resolution image. The output image
at level s is fed into the image reconstruction of level s + 1.

The dual-state recurrent network-based method158 adopts two current states that enables
to use features obtained from both low resolution (LR) and high resolution (HR) space. With
this approach, the bottom state captures information at LR space while the top state operates
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in HR space. There is a connection from the bottom to the top state via deconvolutional
operations. Besides, the authors use a delayed feedback mechanism to allow information flow
from the top state to the bottom one. This allows LR and HR signals joint together to learn
the mapping. Wang et al.159 have proposed a method based on spatial feature transform layer
which is capable of transforming the features of some intermediate layers of the network. The
spatial feature transform layer is conditioned on semantic segmentation probability maps, so
it can generate a pair of modulation parameters to apply affine transformation spatially on
feature maps of the network. The authors turn out that reconstructing high resolution image
with rich semantic regions can be obtained by a single forward pass through transforming
the intermediate features of a single network.

Another method based on a combination of residual block and dense block160 enables
to extract abundant local features via dense connected covolutional layers. This network
consists of four parts: shallow feature extraction, residual dense blocks, dense feature fusion
and the upsampling network. The residual dense block consists of dense connected layer
and local feature fusion with local residual learning. Besides, the authors use mechanism of
contiguous memory for passing the state of preceding residual dense block to each layer of
current block. The output of one block has direct access to each layer of the next block.
Each convolutional layer in block has access to all the subsequence layers and passes on the
information that needs to be maintained. CNN-based method161 has been proposed to solve
the problem of multiple degradations via a single model. This network enables to take low
resolution image along with its degradation maps as input in which the degradation maps
are obtained by a simple dimensionality stretching of the degradation parameters like blur
kernel and noise level. The authors use a cascade of convolutional layers to perform the
non-linear mapping in which each layer is composed of three operations such as convolution,
rectified linear units and batch normalization except for the last convolutional layer. In
addition, a sub-pixel convolutional layer is followed by the last convolutional layer, which is
used to convert multiple high resolution subimages to a single high resolution image. Figure
4.20 shows the result of high resolution image obtained from a degraded one.

Figure 4.20: The high resolution image constructed from the low resolution one with variant
degradation10.

The method based on generative adversarial network (GAN)162 is capable of inferring
photo-realistic natural images for 4× upscaling factors. The authors have adopted a deep
residual network with skip connection and diverge from mean squared error. To enhance
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the performance of their generator network, the authors have proposed a perceptual loss
function which consists of an adversarial loss and content loss in which the content loss
is calculated by using high level feature maps of the VGG network. The objective of this
network is to train a generator network with the goal of fooling a differentiable discriminator
that is trained to distinguish super-resolved images from real images. With this approach,
the generator network can learn to produce images which are similar to the real images, and
thus it is difficult to classify by the discriminator network.

Image-to-image translation aims at learning a mapping that can convert an image from
a source domain to a target domain, while preserving the main presentations of the input
images. Isola et al.11 have proposed a method based on conditional adversarial network. This
network enables to learn the mapping from input image to output image, and it is also learn
a loss function to train this mapping. The network consists of generator and discriminator,
and both of them uses modules of the form convolution-batch normalization-ReLU. Figure
4.21 depicts the result of converting a satellite image into a map. The conditional dual GAN
method163 makes use of the strengths of GAN network and dual learning. The architecture
of this network is based on the principle of encoder-decoder network in which the encoder
side is responsible for extracting the domain-independent and domain-specific features, while
the decoder side is accountable for merging the two kinds of features to generate images. The
dual learning helps extract and merge the domain-independent and domain-specific features
by minimizing the construction errors.

Figure 4.21: An example of image translation11.

A method based on deep attention GAN164 enables to decompose the task of translating
samples from two independent sets into translating instances in a highly structured latent
space. This network consists of four components such as a deep attention encoder, a generator
and two discriminators. The deep attention encoder decomposes the original image into
instances, which makes it possible to find correct semantic alignments and exploit geometric
changes. The constraint of instance level enables the mapping function to find the meaningful
semantics. Another method for inferring three dimensional plant branch structures has been
proposed in165. The inference of the probability of branch existence is conducted by using
Bayesian deep learning framework, which is applied to each of multiple view images. Choi et
al.166 have proposed a method that can perform translation for multiple domains using only
a single model. This method is based on GAN in which the generator network is capable of
learning mapping among multiple domains, and the auxiliary classifier is used to enable the
discriminator network to control multiple domains.

85





takes a random real sample from the training dataset and the generated data obtained from
the generator network. It tries to classify the real sample and generated sample. The dis-
criminator network computes the classification errors and backpropagates the total error to
update the discriminator weights and biases in order to minimize the classification errors. In
general, the GAN network works similar to the situation of a zero-sum game in which one
player’s gains are equal to another’s losses. It means that when one player gets better off
by some amount, the other player gets worse off by the exact same amount. The generator
and discriminator networks can reach their situation at which neither player can improve his
or her situation when the fake samples generated by the generator network are not distin-
guishable from the real data, and the discriminator network can at best classify whether a
particular sample is real or fake.

The discriminator network can be trained by minimizing the loss function by:

L(D)(θ(G), θ(D)) = −Ex∼Pr

[
logD(x)

]
− Ez∼Pz

[
log(1 −D(G(z)))

]
(4.8)

where Ex∼Pr
is an expected value from the real data distribution, and Ez∼Pz

is a value from
the noisy data distribution. θ(G) and θ(D) are the parameters of generator and discriminator
network respectively.

The loss function of the generator network is simply the negative of the discriminator loss
function, and it is given by:

L(G)(θ(G), θ(D)) = −L(D)(θ(G), θ(D)) (4.9)

However, the main problem with this generative model is vanishing gradient because the
gradient of the discriminator network not only provides to itself but also provides to the
generator network as a feedback. If the discriminator network gets stronger quickly, the
gradient of the loss function is down to 0. Otherwise, if the discriminator network gets too
weakly, the generator network does not provide a good feedback to the discriminator network.
To address these problems, the loss function of the generator network can be adjusted by:

L(G)(θ(G), θ(D)) = −Ez∼Pz

[
logD(G(z))

]
(4.10)

The loss function is used to maximize the performance of the discriminator network in
which the network recognizes that the generated data is real by training the generator net-
work. The parameters of the generator network are updated only when the whole adversarial
network is trained where the gradients are passed from the discriminator network to the gen-
erator network.
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4.4.1 Document generation for watermarking process

Our observations have shown that the content detection of a document and the performance
of the watermarking algorithm decrease when the distorted documents are processed. This is
why we are motivated to come up with a solution in order to produce a good quality document
from the distorted document. The possible solution to address this concern is to generate an
intermediate document from the input document, which is robust enough to distortions, and
this document is regarded as a reference for building the watermarking system. The research
fields which have inspired us are super-resolution and image denoising as presented above
wherein the former enables to recover a high-resolution image from a low-resolution input
image, and the latter is to remove noises from the input images. Taking advantage of these
techniques, we construct a network based on the principle of GAN167 for generating a desired
document from a given document with or without distortions. Our network consists of three
main parts including a generator network G, a discriminator network D and a combination
of modified loss functions. The brief explanation of our network is presented below.

Figure 4.23: The architecture of generator network in which k is the kernel size, n is the
number of feature maps, and s is the stride in each convolutional layer (e.g. k7n64s1 means
the convolutional layer has 64 kernels with size 7 and stride 1).

The generator network as shown in Figure 4.23 is used to map the input document to
its manifold from the training distribution. This kind of network in our model is trained
in an end-to-end manner by using a combination of adversarial loss, Euclidean loss and
feature loss. The network begins with a block of one convolution followed by two blocks
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of convolutional operations in order to spatially downsample and encode the documents.
Afterwards, three blocks of residual unit with identical structure are used to generate the
content and manifold features. The structure of residual unit is presented as a dash line
rectangle on the right side of the network. The batch normalization (BN) is utilized to keep
the deep model working without falling into collapse mode. It is a situation in which the
generator network creates samples with very low diversity. In other words, this network
returns the same aspect samples for different input signals. Finally, the generated document
is reconstructed from the obtained features by two blocks of de-convolution, a convolutional
layer with kernel of 7 × 7 and a sigmoid layer (for pixel-level prediction). The combination
of convolutional, residual and de-convolutional layers allows the network to preserve the
features of the document while eliminating possible distortions. For instance, “k7n64s1”
means the convolutional layer has 64 kernels with size 7 and stride 1 where k, n and s are
stand for kernel, the number of filters and stride respectively.

Figure 4.24: The architecture of discriminator network: from left, the number of kernels
of covolutional layer 2 and layer 3 is 128; 256 for layer 4 and layer 5; 512 for layer 6 and
layer 7.

The discriminator network takes either real document or document generated from the
generator network as an input. It tries to predict whether the input is a real or generated
document. This network solves a problem of binary classification and gives an output with
a scalar value between 0 and 1. The architecture of the discriminator network consists of
convolutional layers, fully-connected layers and a sigmoid activation function as presented
in Figure 4.24.

Given a pair of documents (X, Y ) with width W and height H in which X is the water-
marked or distorted document, and Y is its corresponding real document. The loss function
used for obtaining better gradient behavior is defined as follows:

LG = − 1

N

N∑

i=1

log(D(G(Xi))) (4.11)

LD = − 1

N

N∑

i=1

(log(D(Yi)) + log(1 −D(G(Xi)))) (4.12)
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where D(.) is discriminator output, G(.) is generator output, and N is a set of generated
documents.

The feature-based loss LF is defined by the squared and normalized Euclidean distance of
the high level feature maps extracted at layer relu1 2 as in the pretrained model presented
in Section 4.2.1 between the generated and real documents (transformed by a non-linear
activation function). This layer level is selected because the feature representations obtained
from low layers (relu1 2) tend to produce an output that keeps content and spatial structure
close to the input document.

LF =
1

WH

W∑

i=1

H∑

j=1

‖φi(G(X i,j)) − φi(Y
i,j)‖22 (4.13)

where φi is the activation at the ith layer of the network, and it represents a non-linear
transformation.

The pixel loss (per-pixel Euclidean loss) LE is defined by the normalized Euclidean dis-
tance between the intermediate document generated by the generator network and its real
document.

LE =
1

WH

W∑

i=1

H∑

j=1

‖G(X i,j) − Y i,j‖22 (4.14)

The total loss function L for G is then defined by:

L = αgLG + αeLE + αfLF (4.15)

where αg, αe and αf are weighting parameters.

Figure 4.25 shows the generated documents by using our proposed network: (a) and (b)
are input documents, and (a1) and (b1) are their corresponding generated documents. We
can see that the quality of generated document from distorted document has been signifi-
cantly improved compared to the input one ((a) vs (b): peak signal to noise ratio (PSNR)
= 18.41, structural similarity index measurement (SSIM) = 0.93; (a1) vs (b1): PSNR =
25.46, SSIM = 0.97). The generated documents are then used as reference for developing
our watermarking algorithm.

4.4.2 Data hiding process

Figure 4.26 depicts the general process of watermark hiding. Hiding information into docu-
ment is sequentially conducted as follows:

– Step 1 - Transforming an input document into its correct form (Ic) is carried out as
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Figure 4.25: The illustration of generated documents: (a) and (b) are input documents,
and (a1) and (b1) are generated documents.

Figure 4.26: The main steps of information hiding process.

described in Section 3.2.2. We make use of Hough transform to detect lines which
are parallel with the text lines of document, and the rotation angle of document is
determined based upon an appropriate line.

– Step 2 - Generating a referenced document (Ig) from an input document, which is used
as an enhancement of detecting document content and a reference for watermarking
process, is detailed in 4.4.1.

– Step 3 - Information encoding for enhancing security feature is conducted in a similar
manner as presented in Section 4.6.3.

– Step 4 - To hide watermark bits into document, we make use of optical character recog-
nition (OCR) to detect bounding boxes of objects within document. By experiments,
we have observed that OCR gives the extraction of bounding boxes more stable than
other methods in terms of distorted documents. Each bounding box containing an
object is used to carry a watermark bit by:

– if the ith watermark bit wmi = 0:

� Replacing the ith bounding box within the document Ic with its corresponding
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bounding box within the document Ig.

– if the ith watermark bit wmi = 1:

� Replacing the ith bounding box within the document Ic with its corresponding
bounding box within the document Ig.

� Increasing the gray level values of the ith object in the document Ic by a
threshold λ.

4.4.3 Data detection process

The main steps of watermark detection are conducted in a similar manner as the watermark
hiding process just different in extracting hidden information and decoding the extracted
information for recorvering it to a meaningful information. To do so, for each eight bounding
boxes, we measure the absolute distance of pixel values between each object in Ic and its
respective object in Ig. We choose groups of eight bounding boxes because it is enough to
balance the minimum, maximum and average pixel values of corresponding characters within
these boxes for extracting the secret bits. The absolute distance di of the ith pair of objects
is computed by:

{

s1 =
∑n

j=1 pj; s2 =
∑n

j=1 qj

di = |s1 − s2|
(4.16)

where p and q are pixel values of an object in Ic and Ig respectively, and n is the number
of object’s pixel values.

The set of absolute distances of each eight bounding boxes is depicted by D = {d1, d2, ..., d8}.
Assume dmin and dmax are the minimum and maximum values in D, davg is the average value
of dmin and dmax. The ith watermark bit is then determined by:

wmi =

{

0, if di < davg

1, otherwise
(4.17)

The accuracy ratio of watermark extraction is measured by a ratio between the number
of correctly extracted watermark bits and the total number of hidden watermark bits.

In summary, we have proposed another watermarking scheme based on the idea of gen-
erating a reference document from the input one for watermarking process. The watermark
hiding algorithm is developed relied upon the changing of pixel intensities. Our approach has
significantly improved the scheme robustness compared to our previous approaches. Specif-
ically, the scheme can detect the hidden information when the watermarked documents are
scanned at low resolutions, or subject to two rounds of photocopying before scanning at
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various resolutions. The details of our experiments are presented in Section 5.6.

4.5 Watermarking scheme based on font generation

In this section, we introduce another watermarking framework for securing legal documents,
which is relied upon font generation or variations of document characters. Unlike the data
hiding schemes based on changing pixel intensities, a few approaches have been proposed by
using variants of characters as presented in the works53;54 and SOOD company1. The schemes
based on variations of characters53;54 give high resistance to complicated distortions like PS
and print-and-photograph. Howerver, this scheme requires a codebook to store characters
and their variations, which are used as a reference for prediction (CNN network) of extracted
information. The variations of a character are generated by using font manifold presented
in72. Another concern with this method is that it seems to be hard to build a general
codebook for characters with different styles and fonts. Different from these approaches,
we generate variations of characters by utilizing generative adversarial networks (GAN)
for hiding secret information, and we have adopted fully convolutional networks (FCN)
to detect the hidden information from the watermarked documents (without any reference
information). As a result, our proposed method is able to detect the hidden information in
case of the watermarked documents scanned at low resolutions and subjected to two rounds
of photocopying.

4.5.1 Generation of character variations using GAN

To address concerns mentioned in the existing schemes, we are going to develop a water-
marking framework which is independent of fonts, styles of characters and symbols used in
the documents. For simplicity, we refer to the document characters and symbols as charac-
ters. The research field which has inspired us is the image-to-image translation as presented
in Section 4.4. Taking advantage of these techniques, we construct a network based on the
principle of GAN167 for the purpose of generating a desired variation of characters from a
given document. This kind of network is applicable to produce new font or variation of
characters from the input document with arbitrary font and style. The information of a
character can be described by its skeleton and normal shape. Thus, these two features are
used to train the network, and the trained network is capable of generating the variants of
a character from its skeleton. We utilize the thinning algorithm presented in168 to make
the skeleton of a character. Our network consists of three main parts including a generator
network G, a discriminator network D and a combination of modified loss functions. The
skeleton feature and shape feature are obtained at the output of the last block of downsam-
pling convolutional layers in the network G, and these features are then concatenated as
the input of the remaining part of the network, which has several upsampling convolutional
layers.

1http://sood.fr/en/patents/sood tattoing.html
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Figure 4.27: The architecture of generator network for producing character variation in
which “SkF” and “ShF” stand for skeleton feature and shape feature respectively.

The generator network as shown in Figure 4.27 is used to map the input document to
its manifold from the training distribution. This kind of network in our model is trained
in an end-to-end manner by using a combination of modified adversarial loss and feature
loss. The structure of our network is symmetrical by applying successively downsampling
and upsampling process. There is a connection between each pair of processes (dash arrow
in Figure 4.27) which enables the feature maps of downsampling block to its corresponding
upsampling block. The convolutional layers in each downsampling block are partly based on
the VGG 16-layer network138, and they are briefly described in Table 4.2. We use notation
of (kernel, stride) and (kernel) to define the convolutional layers.

Table 4.2: Convolutional operations of downsampling blocks
Downsample Convolutional operations in each block

1, 2 2 conv layers (3×3, 1×1), ReLU, max pooling (2×2)
3, 4 3 conv layers (3×3, 1×1), ReLU, max pooling (2×2)

5
3 conv layers: (1×1, 1×1), (3×3, 1×1), (1×1, 1×1)

ReLU, max pooling (2×2)

The discriminator network is used to distinguish between the real documents and gener-
ated documents synthesized by the generator network. The architecture of this network is
similar to the discriminator network presented in Section 4.4.1.

In the process of network training, the downsampling blocks of the generator network are
used to generate the feature of character’s skeleton and the feature of character’s normal
shape. These two features are then concatenated and fed the upsampling blocks of the
network for generating character variation. Meanwhile, in the inference process, the network
takes only skeleton document as an input. The loss function for the discriminator network is
defined by Equation 4.12. Meanwhile, the total loss function for generator network is defined
by:
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L = αaLG + αfLF (4.18)

where αa and αf are weighting parameters to determine a tradeoff between the adversarial
loss and the feature loss. LG and LF are adversarial and feature loss corresponding to
Equation 4.11 and Equation 4.13.

Figure 4.28 demonstrates the generated characters by using our proposed network in
which (a) is the original document, and (b), (c) and (d) are the corresponding character
variations. These variants are obtained by combining the skeleton feature with the various
shape features.

Figure 4.28: The generated characters: original characters (a), and their variants (b), (c)
and (d).

4.5.2 Detection of character variations using FCN

To detect the regions of character replaced by their variations from the watermarked docu-
ments, we adjust FCN66 for the purpose of image semantic segmentation to deal with the
problem of detecting character variation. The adjustment has been performed by rectifying
convolutional layers for better feature extraction and representation from the watermarked
documents. The network presented in Figure 4.29 consists of two main stages: downsam-
pling and upsampling operations. The downsampling process contains convolutional layers,
elementwise activation function (ReLU) and max pooling as described in the architecture of
generator network, and followed by two blocks of convolutional layers: (1 × conv layer (7×7,
1×1) + ReLU + dropout) and (2 × conv layers (1×1, 1×1) + ReLU + dropout). Mean-
while, the upsampling process (“UpConv”) consists of few convolutional layers instead of
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symmetrical convolutional layers as in the generator network. It is responsible for recovering
the spatial dimension of the original document wherein the transposed convolution layers
are used for maintaining the spatial information. Besides, we apply Softmax function at the
output layer to transform the result of the network into a two-class problem for representing
the probability that the characters are replaced by their variations. As a result, the feature
maps with the same dimension of its input document are produced at the output layer.

Figure 4.29: The architecture of FCN for detecting the character variations.

The watermarked documents (Figure 4.30(a)) and their ground truths corresponding to
the bounding boxes around character variation (Figure 4.30(b)) are used to train the network.
We generate the ground truths by marking the positions of group of adjacent variations. This
helps the FCN learn features from the character variations better than the ground truths
made by marking the positions of single variation.

Figure 4.30: An example of a watermarked document (a) and its corresponding ground
truth regions (b).

Figure 4.31(a) depicts in color the salient regions, which are obtained by computing
the scores of the output feature maps gained from the trained network, that describes the
positions of characters substituted by their variations.
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Figure 4.31: (a) The color regions mark the regions of character variants. (b) The bound-
ing boxes (blue rectangles) correspond to the regions of character variants, the red points
correspond to the center of the bounding boxes surrounding each character (note that these
bounding boxes are not represented here).

4.5.3 Generating random positions for watermarking process

In order to enhance the security feature, instead of selecting characters extracted from docu-
ment in sequence for watermarking process, we randomly chose characters by using pseudo-
random numbers. With a seed which is regarded as a private key, this technique enables to
generate a series of positive numbers, and these numbers correspond to the positions of the
characters in the document, which are used for data hiding and detection. With the same
generator of pseudo-random numbers and the same seed, we always obtain the same series of
positive numbers. The number of positive numbers is selected to be equal to the number of
characters extracted from the document. This approach enables to hide secret information
into document in a manner that the secret bits are distributed over the entire document even
that the number of secret bits is much less than the document content.

4.5.4 Watermark hiding process

The secret information is converted into a string of bits, and hiding information into the
document is sequentially conducted as follows:

– Step 1 - Skeletonizing the document by using thinning algorithm168.

– Step 2 - Generating the character variants from the skeleton document as described in
Section 4.5.1.
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– Step 3 - Producing a set of random positions corresponding to document characters as
presented in Section 4.5.3.

– Step 4 - To hide secret bits into document, we make use of optical character recognition
(OCR) to detect bounding boxes of characters within document. Each bounding box
containing a character at respective random position is used to carry an information
bit by:

� if the ith watermark bit wmi = 0: The character remains unchanged.

� if the ith watermark bit wmi = 1: The character is replaced with its corresponding
variation, which is generated in step 2.

4.5.5 Watermark detection process

The process of detecting the hidden information is performed with the following steps:

– Step 1 - Transforming the document into its correct direction as depicted in Section
3.2.2.

– Step 2 - Generating the salient regions Is from the watermarked document Iw as pre-
sented in Section 4.5.2.

– Step 3 - Producing a set of random positions with the same seed used in the hiding
process.

– Step 4 - Detecting the bounding boxes Bs (Bs = {bj}nj=1, where n is the number
of bounding boxes) of the salient regions from Is by utilizing connected component
algorithm (blue rectangles in Figure 4.31(b)), and the bounding boxes of characters
from Iw by OCR. For each bounding box of a character at its corresponding random
position, we compute its center point pc (red points in Figure 4.31(b)), and the hidden
information are then extracted by:

wmi =

{

1, if pc ∈ bj(bj ∈ Bs)

0, otherwise
(4.19)

– Step 5 - Converting the extracted bits into text to obtain the meaning information.

The accuracy ratio of watermark extraction is measured by a ratio between the number
of correctly extracted watermark bits and the total number of hidden watermark bits.

In this section, we have proposed a new watermarking scheme relied upon the variation
of characters, which has been little studied in the literature. Unlike the existing variation-
based works, we generate the variants of characters by using GAN, and detect the hidden
information from the watermarked documents by utilizing FCN, which does not required
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any reference information. The results presented in Section 5.7 show that our approach has
ability to detect the hidden information in terms of complicated distortions. However, the
watermarking scheme needs to be further improved to obtain higher precision when detecting
the hidden information from the watermarked documents whose contents are replaced by the
variants closer to the shape of normal characters.

4.6 Watermarking for securing binary documents

As discussed in the previous chapters, the possibility to convert the genuine documents into
their digital and readable formats has become a necessity. Scanning or capturing document
is a way of changing the printed document into its digital format. The digital versions of
documents commonly suffer from various degrations. Specifically, the document images can
be heavily degraded due to ink bleed-through, faded ink, wrinkles, stains, missing data,
constrast variation, warping effect, and noise due to lighting variation during the process
of scanning or capturing. A common problem encountered when scanning documents is
distortions which could occur in documents because of paper quality, or quality of scanners
used during the scanning process. For instance, the distortions in a scanned document could
come from the page rule line which can be a source of noise and can affect text objects.
The marginal noise often occurs in a large dark region around the document, which could
be textual or non-textual. For captured documents, some regions of background appear in
the documents, and these undesired regions of documents are referred to as border noise169.

There are two types of border noises including textual and non-textual noise. For exam-
ple, when the regions of textual noise are fed to a character recognition engine, some extra
characters will be obtained in the the ouput of this system along with the actual content
of the document. Meanwhile, the non-textual noise would make further processing of docu-
ment, such as text line extraction or removal of warp, a difficult task. These degradations
would reduce the accuracy of tasks of document analysis and recognition, so transferring the
documents into binarized forms or removing noise, and storing them in a binarized format
is a pervasive solution to deal with these issues. As a result, the genuine documents which
exist in the binarized format for meeting the requirement of various purposes are inevitable
in the real world, and this is why we have decided to develop a watermarking scheme for
securing binary documents.

As presented in Chapter 2, most of the previous watermarking schemes have been put
forward for natural and document images, which are in color or grayscale format whose
pixel intensity has a wide range of value. There are several techniques utilized in grayscale
and color images to extract image features which are used to construct the watermarking
system. These techniques consist of keypoint detector, edge detector, local binary pattern,
contour detection, etc. However, the schemes for grayscale and color images can not be
directly applied for binary images because the pixel values of binary images are represented
by only back and white value. Besides, the approaches presented in1;48–53;71 can be applied
for both grayscale and binary documents. However, these methods are only dedicated to text
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documents or a specific text language like Indian or Chinese. They might not perform well
when applying for documents with mixed content because these approaches do not provide
strategies on how identify and separate text and non-text elements.

Compared to color and grayscale images, there are few data hiding and watermarking
methods14–16;91;96;97;100–102 designed for binary images. Majority of existing techniques for
binary images partition images into non-overlapping blocks with a predefined window of size
m× n in order to retrieve image content where the secret information is hidden into. In the
the work15;97 the authors utilize contour tracing technique to detect object contours that are
flipped to hide a secret information. Furthermore, the approaches presented in14–16 satisfy
the properties of imperceptibility and capacity, but they do not meet the requirements of
robustness and security. Meanwhile, apart from satisfying the essential properties of imper-
ceptility and capacity, other schemes91;96;98;100–102 meet one of the other critical properties
either robustness or security, but not both of them.

To address the shortcomings of existing approaches, we apply pattern recognition tech-
nique, which is very less exploited in designing data hiding and watermarking system for
binary images, to develop a new watermarking framework for security issue of binary doc-
uments. This technique is FCN, which has been proposed in our previous works presented
in Chapter 4 for grayscale documents. Unlike CNN-based method63 wherein the authors
make use of weight parameters of deep learning framework for watermarking process on the
fixed size images, the FCN-based method can be applied on the arbitrary sized documents.
With this approach, we train the network in such a way the trained network can be used
for producing a salient map describing watermarking regions, and the process of watermark
hiding and detection is separately designed during the training of the FCN. As discussed
earlier, our proposed network provides a flexible way to identify a certain content region of
document. With a given document as in Figure 4.32(a), the network can accurately identify
the text region and picture region corresponding to Figure 4.32(b) and Figure 4.32(c).

Figure 4.32: The content regions of document: the text regions (b) and picture region (c).

A binary document image of size M ×N is defined by a matrix I(x, y).

I(x, y) =

{

1, for points on the object;
0, for background points.

}

where 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1, 1 and 0 demonstrate white (object or foreground)
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and black (background) pixels.

4.6.1 Detection of hiding regions using FCN

Due to the need of work in different sectors, the documents are often presented under various
dimension. After hiding secret information into document, furthermore, we expect to obtain
a watermarked document retaining a dimension similar to the original document. Besides,
from our observation, the extracted regions describing various types of document content such
as running text, headline, picture, table, etc. using FCN66 are relatively more stable against
distortions when using FCN than other approaches such as active contour, non-subsampled
contourlet transform65, maximally stable extremal regions115, speeded up robust features116,
etc. This is why we have adopted this kind of network in our work.

The FCN network for detecting watermarking regions is depicted in Figure 4.33 in which
the blocks (B1-B7) contain convolutional layers for feature extraction, and the process of
feature extraction is known as downsampling. The principle of downsampling and upsam-
pling operations for FCN follows the work presented in66. The architecture of our network is
partly based on the VGG-16 network138, which is converted to fully convolutional networks.
We replace three fully connected layers of the network138 with convolutional layer blocks (B6,
B7) for retaining spatial information. This replacement makes VGG-16 network becoming
a fully convolutional networks. With regard to the FCN, the feature maps obtained at the
output layer have the same dimension than the input document.

Figure 4.33: The architecture of FCN for detecting watermarking regions. This kind of
network takes a binary document as an input and generates the salient maps with the same
dimension of the input document as an output.

However, the feature maps generated in the phase of convolutional operations or downsam-
pling are reduced in dimension, so they need to be reconstructed by performing upsampling.
The process of recovering the spatial dimension of the original document is represented by
“UpConv” block, which is known as upsampling operations, in Figure 4.33 wherein a few
transposed convolution layers are used for maintaining the spatial information. Besides, we
apply Softmax function on the output layer to transform the result of the network into a
two-class problem for representing the probability of document’s watermarking regions. As
a result, the feature maps or salient maps with the same dimension of the input document
are produced at the output layer.

The convolutional operations of each block of the network are briefly described in Table
4.3 in which each block consists of one or more convolutional layers, a rectified linear unit
(ReLU), a max pooling layer, and with or without a dropout layer. We use notation of
(kernel, stride) and (kernel) to define the convolutional layers as follows.
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Table 4.3: The description of convolutional operations of FCN

Blocks Convolutional operations in each block

B1, B2 2 conv layers (3×3, 1×1), ReLU, max pooling (2×2)

B3, B4 3 conv layers (3×3, 1×1), ReLU, max pooling (2×2)

B5 3 conv layers (3×3, 1×1), ReLU, max pooling (2×2)

B6 1 conv layer (7×7, 1×1), ReLU, dropout

B7 2 conv layers (1×1, 1×1), ReLU, dropout

Figure 4.34: The illustration of generated feature maps: (a) and (b) are document and
ground truth used for training network; (c) is a binary document; (d)-(f) are features obtained
at block B1, B3 and B6.

Figure 4.35: The illustration of generated salient maps (a) and watermarking regions which
are surrounded by blue rectangles (b).

The documents along with their ground truth as illustrated in Figure 4.34(a)-(b) are used
to train the network. The feature maps generated from first blocks (B1 - B3) of convolutional
layers represent the overall shape of document content while the region-specific information
at last blocks (B4 - B7). The salient maps describing the content regions of document are
obtained at the output layer as depicted in Figure 4.35(a) wherein the yellow color depicts the
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background of document, and the dark blue color depicts the foreground of document. The
salient maps are computed based on the score of the feature maps acquired from our trained
network. Lastly, with the obtained salient maps, the bounding boxes as blue rectangles in
Figure 4.35(b) are easily determined by making use of connected components. The advantage
of our network is that it provides a flexible way to eliminate unwanted content regions, which
are not expected to hide data, in the documents if necessary.

4.6.2 Construction of hiding patterns

For binary document images, the connectivity of neighboring pixels and distance among
pixel values play a crucial role for preserving the quality of documents because changing a
pixel value from black to white and vice versa could easily cause visual perception. Thus,
in the previous pattern-based approaches like14;15;98, such features as connectivity, uneven
embeddability and pattern score are considering in designing their data hiding schemes. To
achieve imperceptibility, the possibility of changing pixel values can be only carried out on
the boundary of document objects. Unlike the existing approaches, our proposed hiding
patterns are constructed in a combination among the connectivity of neighboring pixels and
the characteristics of document content like corner and edge features. After changing pixel
values for carrying secret information, these features need to be maintained. In order to
obtain invariant feature and maximize the capacity, a pattern of 3 × 3 as illustrated in
Figure 4.36 is selected to detect the corner and edge features of the objects where the secret
information is hidden into.

Figure 4.36: The hiding pattern of 3 × 3 used to detect the corner and edge features of the
objects.

A 3 × 3 hiding pattern of neighboring pixels representing the corner and edge features of
the objects can be described as follows:

Hiding patterns for corner feature detection: There are two types of hiding patterns
describing the corner features. These patterns have to satisfy the following requirements:
The number of all neighboring black pixels of pc (center of the pattern) is equal to 4 or 5; and
the number of such transition as 0 − 1 or 1 − 0 between two consecutive neighboring pixels
of pc is equal to 2. If the transition is greater than two, the connectivity of pixels within a
pattern will be broken. This could easily lead to visual perception and substantially affect
the quality of binary document. The black neighboring pixels of the center pixel pc for these
two types of hiding pattern are illustrated by:
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CP1 = {pi ∧ pi+1 ∧ pi+2 ∧ pi+3} (4.20)

where i = {1, . . . , 8}, p9 = p1, p10 = p2 and p11 = p3.

CP2 = {pi ∧ pi+1 ∧ pi+2 ∧ pi+3 ∧ pi+4} (4.21)

where i = {1, 3, 5, 7}, p9 = p1, p10 = p2 and p11 = p3.

Figure 4.37: The illustration of corner feature detection: (a) and (b) depicts an instance of
hiding patterns CP1 and CP2 with i = 1. The corner positions corresponding to all instances
of these patterns are illustrated in (c) and (d).

Concerning CP2, to maintain the corner features, the center pixel pc has to be equal to
0. If pc = 1, this pattern will become a pattern which describes an edge feature EP2 in case
of i = 1, 3, 5, 7. Meanwhile, pc is possibly equal to 0 or 1 for the case of CP1.

An illustration of hiding patterns for corner features and the outcome of corner feature
detection are depicted in Figure 4.37 in which (a) and (b) are an instance of hiding patterns
demonstrating the corner patterns CP1 and CP2 in case of i = 1 whereas (c) and (d) depict
the result of corner feature detection. The small color circles depict corner positions obtained
by detecting all instances of the hiding patterns CP1 and CP2. The sign “x” in an instance
of the corner pattern CP1 indicates that we don’t care the pixel value at this position. It
means that this value can be either equal to 0 or 1.

Hiding patterns for edge feature detection: Similar to the corner features, there are
two types of hiding pattern describing the edge features. These patterns are also required to
meet the following conditions: The number of all neighboring black pixels of pc is equal to 3
or 6; and the number of such transition as 0− 1 or 1− 0 between two successive neighboring
pixels of pc is equal to 2. The black neighboring pixels of the center pixel pc for the edge
features are given by:

EP1 = {pi ∧ pi+1 ∧ pi+2} (4.22)
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where i = {1, . . . , 8}, p9 = p1 and p10 = p2.

EP2 = {pi ∧ pi+1 ∧ pi+2 ∧ pi+3 ∧ pi+4 ∧ pc} (4.23)

where i = {1, . . . , 8}, p9 = p1, p10 = p2, p11 = p3 and p12 = p4.

Figure 4.38: An example of edge feature detection: (a) and (b) depict an instance of hiding
patterns EP1 and EP2 with i = 1 and i = 2 respectively. The color circles in (c) and (d)
represent the edge positions corresponding to all instances of these patterns.

To keep the edge features, the center pixel pc of EP1 could be assigned by either 0 or 1
whereas it must be assigned by 1 for EP2. For EP1, the hiding pattern will become a pattern
describing a convex point if pc = 1. Meanwhile, regarding EP2, if pc is equal to 0, the hiding
pattern will become a pattern describing a concave point for i = 2, 4, 6, 8, and describing the
corner feature CP2 when i = 1, 3, 5, 7. Figure 4.38 depicts an instance of hiding patterns for
edge features and the illustration of edge positions corresponding to all instances of patterns
EP1 and EP2: (a) and (b) are an example of the patterns EP1 and EP2 when i = 1 and
i = 2 respectively. The small color circles in (c) and (d) demonstrate the edge positions
acquired by detecting all instances of the hiding patterns EP1 and EP2.

4.6.3 Data encoding and decoding for enhancing security feature

The secret information used in this work is a text message. Thus, it needs to be modulated
into a sequence of bits before the encoding process in which every character is converted into
eight bits. In fact, majority of data hiding and watermarking algorithms are likely public,
so the malicious users can obtain easily the secret information hidden inside the documents.
For this reason, to enhance the security of the watermarking scheme, we encode the secret
information prior to hiding it into document and decode the extracted secret data by using
pseudo-random numbers. This technique can be used to generate a series of positive numbers
based on a random seed. Different from the previous methods in which the authors use this
technique to shuffle positions of flippable pixels as in96 or to permute block patterns as in98,
here we use these generated positive numbers to encode and decode the secret information.
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In order to choose a good random seed, we apply an algorithm of symmetric key to
generate a secret key. This key is converted into a number, and it is secretly shared with
authorized recipients. We consider the converted number of the secret key as a seed. This
seed is used to feed the pseudo-random numbers generator for generating a series of positive
numbers, which are used for encoding and decoding the secret information. With the same
generator of pseudo-random numbers and the same seed, we obtain the exact sequence of
positive numbers. The number of positive numbers generated from pseudo-random numbers
generator is set to be equal to the number of characters that the secret information contains.

Figure 4.39: The illustration of encoding and decoding process in a combination of secret
information and pseudo-random numbers by using “X-OR” operator. The random seed is
considered as a “private key” in this context.

The main idea of encoding the secret information is to combine each character of the secret
information (text message) with a positive number of pseudo-random numbers to generate
the respective encoded data. To do so, the sequence of positive numbers is also converted
into a string of bits wherein each positive number is converted into eight bits. We apply “X-
OR” operator between these two bytes of binary data generated from the secret information
and pseudo-random numbers for combining them. As a result, we obtain the encoded data
which is hidden into the document. With regard to data decoding, the process is carried out
by applying “X-OR” operator on the extracted information and pseudo-random numbers
with the same random seed used during the encoding phase.

Figure 4.39 shows an example of data encoding and decoding process in which “a” is
a character of secret information, “7” is a positive number of a series of pseudo-ramdom
numbers generated in the encoding and decoding phase. For the encoding phase, the “X-
OR” operator is applied on two sequences of binary digits corresponding to “a” and “7”.
The result of this step produces an encoded data known as “encoded”. For the decoding
phase, the same random seed is used to regenerate the positive number as “7”. The “X-OR”
operator is applied on the two sequences of binary digits corresponding to “encoded” and
“7”, and then the hidden data is recovered.
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4.6.4 Data hiding process

In this section, we present two methods for hiding secret information into binary documents
including: (i) Hiding data based on the characteristics of document content such as the
corner and edge features; (ii) Enhancing robustness against distortions by adjusting the
proportion between the number of edge features and the number of corner features inside
each subregion of the watermarking regions. The main steps of watermark hiding process
are illustrated in Figure 4.40.

Figure 4.40: The main steps of hiding secret information.

Watermark hiding scheme 1 (WM1)

This scheme is implemented by flipping the center pixel of hiding patterns describing the
corner and edge features of the objects, and it satisfies the properties of imperceptibility,
capacity and security. The process of hiding secret information basically comprises of the
following main steps:

– Step 1 - Encoding the secret information: as detailed in Section 4.6.3.

– Step 2 - Standardization of input documents: Determining parameters for document
standardization is conducted based on the minimum box surrounding the entire doc-
ument, where the points located on the stroke part of document’s objects are used
to construst the minimum rectangle. This task is conducted similar to the method
presented in Section 3.3.3.

– Step 3 - Detection of the watermarking regions: as described in Section 4.6.1. For
documents with complicated structure, the extracted watermarking regions could be
overlapped or nested to another, so these regions need to be eliminated similarly to
the method presented in Section 3.3.4.

– Step 4 - Hiding the watermark bits into the document: We use the hiding patterns
for corner and edge feature detection as presented in Section 4.6.2 to find potential
positions inside the watermarking regions for hiding secret information bits. The center
pixel pc of an appropriate pattern is changed (replacing 0 with 1 and vice versa) to
hold a secret bit wmi. For the hiding pattern CP2, for instance, if the center pixel
pc is changed to 1, this pattern will become a pattern describing the edge features as
in EP2. Meanwhile, with regard to hiding patterns EP1, if pc = 1, this pattern will
become a pattern describing a convex point, in case of i = 1, 3, 5, 7. In case of hiding
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pattern EP2, the pattern will describe a concave point if the center pixel pc is adjusted
to 0, in case of i = 2, 4, 6, 8. Changing the center pixel pc is described by:

pc =

{

0, if wmi = 1

1(255), if wmi = 0
(4.24)

Watermark hiding scheme 2 (WM2)

Despite the method presented in Section 4.6.4 is capable to resist to common distortions
including JPEG compression and geometric distortion, it gives low perfomance when the
watermarked documents go through print-and-scan (PS) process. Obviously, the pixel values
located on the stroke part of binary document objects are changed a lot when the documents
are subjected to PS distortion, and these changes are illustrated in Figure 4.41. Changing
pixel values due to PS distortion leads to lose the integrity of corner and edge features, and
this mainly causes failure in extracting the hidden information. This is why we propose
another approach to improve the robustness such that the scheme is able to withstand such
a distortion.

Figure 4.41: A sample of original text of a binary document (a), and the printed and
scanned text at resolution of 600 dpi (b).

The idea of this approach is to adjust the proportion between the number of edge features
and the number of corner features within each subregion of the watermarking regions for
carrying one secret information bit, instead of changing only the center pixel pc of hiding
patterns as in WM1. The subregion is formed by concatenating the adjacent bounding
boxes of the objects, which are detected by optical character recognition (OCR), with an
appropriate distance such that its content is large enough to retain the proportion of edge and
corner features under the environment of distortions. The subregions within watermarking
regions are depicted as blue rectangles in Figure 4.42.

Unlike the approach presented in102 in which the authors adjust back pixels within the
appropriate thumbnail images in order to balance the difference between the number of black
pixels in each thumbnail and the mean value of all thumbnail images, our approach is to
change corner features in each subregion into the edge features for hiding bit 0, or to change
edge features into the corner features for hiding bit 1. In other words, after hiding bit 0,
a subregion of watermarking regions contains more edge features than corner features. A
subregion of watermarking regions will contain more corner features than edge features if
we want to hide bit 1. To do so, the hiding patterns of 3 × 3 are reused for detecting the
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Figure 4.42: The illustration of subregions (blue rectangles) within the watermarking re-
gions.

edge and corner features as presented in WM1. Once these features are located, there are
two types of operations for feature adjustment such as either deleting black pixels of the
object’s stroke (decreasing the number of black pixels and increasing the number of white
ones) or adding black pixels of the object’s stroke (increasing the number of black pixels and
decreasing the number of white ones). With this approach, it enables to hide one secret bit
into a subregion instead of a corner or an edge feature as WM1. Thus, the amount of secret
information that a document can carry to be less than as compared to WM1.

Figure 4.43: A representation of 3 × 3 neighboring pixels around the object’s stroke (a),
and the corresponding undirected graph is constructed (b).

To preserve the document quality with regard to human perception, the operation of
deleting or adding black pixels of an object should keep its corner or edge features, and
does not break the connectivity of neighboring pixels. Figure 4.43(a) demonstrates a 3 × 3
hiding pattern representing the neighboring pixels around the object’s stroke, and the graph
representation of the neighboring conectivity for black pixels is shown in Figure 4.43(b).
We consider the connectivity of black pixels as an undirected graph where arcs depict the
adjacency of 1’s pixels. An arc will be legal if it directly connects from one vertex to another
(e.g. p1−p8) and without going through a third vertex (e.g. p1−p7, p1 connects to p7 through
p8 or pc). The possible legal arcs between vetices representing the neighboring pixels of pc
are depicted in Table 4.4. The vertex pc always makes a legal arc to all its neighbors.

Deleting or adding a black pixel without causing the disconnectivity (separated subgraph)
is possible if each vertex in the graph has at least one arc connected to it. In order to examine
whether it is eligible to remove, or to add a vertex to the graph, we construct an adjacency
matrix for the connectivity examination. For instance, if we delete the center pixel pc in
Figure 4.43(b), it will generate a new graph with the adjacency matrix depicted in Table
4.5. It is easy to see that the deletion of a pixel will not produce a disconnected graph if
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Table 4.4: The illustration of possible arcs for neighboring pixels in a 3 × 3 hiding pattern

Vertex
Connect to

Vertex
Connect to

possible vertices possible vertices

1 2, 8 5 4, 6
2 1, 3, 4, 8 6 4, 5, 7, 8
3 2, 4 7 6, 8
4 2, 3, 5, 6 8 1, 2, 6, 7

every row of the adjacency matrix contains at least one value of 1. If pc and p8 are deleted
simultaneously, this will not be allowed because there is a complete line with values of 0. This
means that a disconnected subgraph is generated. In case of pixel insertion, the connectivity
examination is similar to the deletion.

Table 4.5: An adjacency matrix for the undirected graph depicted in Figure 4.43(b) as
deleting the center pixel pc

Graph vertex
Connectivity of vertices

Sum
p1 p5 p6 p7 p8

p1 0 0 0 0 1 1
p5 0 0 1 0 0 1
p6 0 1 0 1 0 2
p7 0 0 1 0 1 2
p8 1 0 0 1 0 2

For both of WM1 and WM2, we eliminate the hiding patterns with full of white or black
pixels because these patterns represent uniform areas, and deleting or adding pixel values
on the uniform areas of binary documents easily affects to the visual perception. In order to
change the edge features into corner features and vice versa, the operation of adjusting pixel
values is performed by checking the connectivity using the adjacency matrix as presented
above. After adjustment of black pixels, all pixel values inside the 3 × 3 hiding pattern
have to satisfy the neighboring connectivity and its corner or edge features. We refer to
maintaining the neighboring connectivity, and the corner or edge features as “connectivity-
features”. Specifically, we adjust black and white pixels of each subregion in such a way the
number of corner features is lower than the number of edge features by a threshold δ for
hiding bit 0, and the number of corner features is greater than the number of edge features
by a threshold δ for hiding bit 1.

To hide a secret bit wmi into a subregion Oi, let Pi = {pt1, pt2, ..., ptn} be a set of edge
and corner features situated around the stroke of Oi, s1 be the sum of all edge features in Pi,
s2 be the sum of all corner features in Pi, d be the absolute difference between s1 and s2, δ
be a threshold to separate s1 and s2. The main steps for hiding secret information is similar
to the watermark hiding scheme 1. It just differs in step 4, which adjusts the proportion
between the number of edge and the number of corner features. The algorithm for changing
these features is described as follows:
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– if the ith watermark bit wmi = 0:

– s1 > s2 and d ≥ δ: the proportion between the number of edge features and the
number of corner features in Pi keeps unchanged.

– Otherwise: changing the pixel values in ptk ∈ Pi in a way to decrease the number
of corner features and increase the number of edge features in Pi such that s1 > s2,
d ≥ δ and keeping “connectivity-features”.

– if the ith watermark bit wmi = 1:

– s1 < s2 and d ≥ δ: the proportion between the number of edge features and the
number of corner features in Pi keeps unchanged.

– Otherwise: changing the pixel values in ptk ∈ Pi in a way to increase the number
of corner features and decrease the number of edge features in Pi such that s1 < s2,
d ≥ δ and keeping “connectivity-features”.

Figure 4.44: (a) A hiding pattern of the object stroke located within a subregion. (b) and
(c) are the result of pixel adjustment in order to obtain the edge and corner feature, and keep
the neighboring connectivity for hiding secret bit 0 and 1.

Figure 4.44(a) illustrates an example of a hiding pattern within a subregion where we
need to change its pixel values into an edge feature or corner feature for watermark hiding
process, the sign of “x” indicates that the pixel value at this position is either equal to 0 or
1. If we want to hide a secret bit 0, this pattern needs to be changed into the edge feature
as in Figure 4.44(b) by deleting the pixel value at the center position pc. Otherwise, if the
secret bit is 1, the pattern has to be changed into the corner feature by deleting pixel value
at the position pc and inserting the pixel values at the positions corresponding to p1 and
p5 as depicted in Figure 4.44(c). These modifications are carried out in compliance with
the requirement of “connectivity-features”, so distortion caused by such alteration is less
perceptible by the human visual system.

4.6.5 Data detection process

The main steps of secret information detection are carried out in similar fashion as the
watermark hiding process. It just differs by extracting the hidden information and decoding

111



the extracted information to obtain a meaningful information. The hidden bit wmi from the
watermark hiding scheme 1 is extracted by:

WM1: wmi =

{

0, if pc = 255

1, if pc = 0
(4.25)

In order to extract the hidden information from the watermark hiding scheme 2, let s1 be
the number of edge features, and s2 be the number of corner features in each subregion Pi.
The hidden information bit wmi is then extracted by:

WM2: wmi =

{

0, if s1 ≥ s2

1, otherwise
(4.26)

The extracted information bits acquired from WM1 and WM2 correspond to the encoded
form, and therefore these extracted bits need to be decoded for information recovery. To
do so, the pseudo-random numbers generator with the same seed as in the encoding phase
is reused to generate a series of positive numbers. These numbers are converted into a
sequence of bits, and the process of hidden information decoding is then conducted by
applying “exclusive-OR” operator on a sequence of bits of extracted information and a
sequence of bits of random numbers as presented in Section 4.6.3.

The accurate proportion of secret information extraction is measured by comparing the
original secret bits with the extracted bits after decoding, and it is defined by Equation 3.13.

In brief, we have proposed a new watermarking scheme for securing binary documents. In
this work, we utilize the FCN network to detect the regions of document content, which are
known as watermarking regions. Besides, we have proposed the hiding patterns describing
the corner and edge features. The watermarking algorithm is designed by changing the center
position of these patterns, or the proportion between the number of edge and corner features.
Changing the pixel values for hiding secret data into the document has been conducted in
order to keep the condition of “connectivity-features”. The security feature is also integrated
into the scheme. The scheme is capable of resisting to common distortions, and print-and-
scan process with high resolution. However, it still has not reached high performance when
the watermarked documents are subject to complicated distortions.

4.7 Summary

In this chapter, we have theoretically made two major contributions in designing water-
marking schemes for grayscale typewritten, handwritten documents, and binary documents,
consisting of:

• Document feature extraction by using deep learning technique, which is used to detect
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the hiding regions, reconstruct a good quality document from a distorted one, and
generate variations of characters and symbols.

• Development of watermarking algorithms based on pixel intensity, and shape of char-
acter and symbols.

For the former, the FCN is adjusted to detect the regions of the document content that
correspond to various types of documents, and this network provides a flexible way to elim-
inate unwanted content regions where the secret information can not be hidden. Besides,
the FCN is effectively applied to detect the regions of a watermarked document where the
appropriate characters and symbols are replaced by their variations during the process of
information hiding. Furthermore, we have utilized GAN network to generate a good qual-
ity document which is used to improve the detection of document content, and develop
watermarking algorithm.

For the later, several watermarking algorithms, which are based on the pixel level and the
shape of characters, have been proposed. The pixel intensity-based algorithms are developed
by adjusting: (1) the pixel values within each watermarking pattern; (2) the pixel values
within each separated handwriting element; (3) the difference of pixel values between the
watermarked and reference document; (4) the center position of the hiding patterns describ-
ing the edge and corner features; and (5) the ratio between the number of corner and edge
features.

Meanwhile, the shape of characters-based algorithm is developed relied upon the vari-
ations of document characters. The performance of these approaches will be presented in
detail in Chapter 5.
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Chapter 5

Experiments and evaluation of scheme
performance

In this chapter, we evaluate the performances of the proposed approaches. The experi-
ments are carried out on public datasets. Some comparisons with state-of-the-art methods
are also provided in order to show the relevance of the proposed strategies. We assess our
schemes based on the following properties: imperceptibility, capacity and robustness against
simulated and practical distortions. Besides, we also compare the performance among our
proposed approaches to see the improvement of our schemes in detecting the hidden informa-
tion in the environment of practical distortions. Specifically, we present the public datasets
that we use to evaluate our works. The performance evaluations of the proposed data hiding
systems based on the conventional approaches (Chapter 3) and the deep learning approaches
(Chapter 4) are detailed in the following sections of this chapter.

5.1 Dataset and measurement of imperceptibility

In order to evaluate our methods and train the deep networks, we use the following datasets:

• Tobacco119 consists of 1290 document images, which are collected and scanned using
a wide variety of equipment. The resolutions of documents vary significantly from 150
to 300 dpi, and the dimensions of images range from 1200 by 1600 to 2500 by 3200
pixels.

• L3iDocCopies120 contains 990 documents which are printed and scanned at various
resolutions of 300 dpi and 600 dpi from different machines. This dataset is dedicated
to document segmentation analysis, and print and scan noise analysis.

• PRImA170 for ICDAR page segmentation competitions, which is based on comprehen-
sive and detailed representation of both simple and complex layouts. It consists of 54
sample pages of magazines together with ground truth metadata.
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• DSSE-200121 contains 200 pages from magazines and academic papers. This dataset
provides both appearance-based and semantics-based labels.

• CVL-database149 consists of 7 different handwritten texts (1 German and 6 English
texts). In total 310 writers participated in the dataset. 27 of which wrote 7 texts and
283 writers had to write 5 texts. For each text, a rgb color image (300 dpi) comprising
the handwritten text and the printed text sample is available as well as a cropped
version (only handwritten).

• Standard grayscale test images 1 which are widely used to test image processing and
image compression algorithms.

To measure the quality of stego and watermarked documents, the following measures are
applied for evaluating the performance of our method:

• Peak signal to noise ratio (PSNR) that uses the amount of pixel errors between the
reference and distorted images to determine the level of distortion. This method does
not consider the characteristics of the human visual system (HVS).

• Structural similarity index measurement (SSIM)171 that estimates local brightness,
contrast, structure of reference and image distortion, and then averages all local as-
sessments to obtain the overall assessment. The human eyes can easily perceive the
local information differences within an area, so this technique adopts a patch-based
approach instead of individual pixel differences.

• Distance reciprocal distortion measure (DRDM)45 corresponds to the change of smooth-
ness and connectivity that significantly affects the human visual perception. In addi-
tion, this method correlates well with subjective assessment by human eyes.

The maximum number for PSNR and SSIM is ∞ and 1, respectively. Meanwhile, the
minimum value for both is 0. The higher the value of PSNR or SSIM is, the better the image
quality is. The small value of DRDM indicates less distortion. They are defined as follows.

PSNR = 10 × log10
2552

MSE
(5.1)

where

MSE =
1

M ×N

M∑

i=1

N∑

j=1

(Ic(i, j) − Is(i, j))
2 (5.2)

where M and N represent the length and width of a document.

SSIM(Ic, Is) =
2uIcuIs + c1
u2
Ic

+ u2
Is

+ c1
× 2σIcσIs + c2

σ2
Ic

+ σ2
Is

+ c2
× σIc,Is + c3

σIcσIs + c3
(5.3)

1http://decsai.ugr.es/cvg/CG/base.htm
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where uIc , uIs , σIc and σIs represent the mean and variance of pixel values of the undistorted
document (Ic) and distorted document (Is), and σIc,Is is the covariance between Ic and Is.
Meanwhile c1, c2 and c3 are constants to avoid instability when u2

Ic
+u2

Is
, σ2

Ic
+σ2

Is
and σIcσIs

are very close to zero.

DRDM measures the difference of distortion between a distorted image g(x, y) and the
original image f(x, y) using a weight matrix wherein each weight corresponds to the recip-
rocal of the distance measured from the center pixel. A weight matrix Wm is of size m×m,
m = 2n + 1, n = 1, 2, 3, ... Wm(i, j) is then defined by:

Wm(i, j) =







0, for i = iC and j = jC
1√

(i−iC)2+(j−jC)2
, otherwise

(5.4)

where 1 ≤ i, j ≤ m, (iC , jC) is the center location of this matrix, and iC = jC = (m + 1)/2.

This matrix is normalized to form the normalized weight matrix W ′.

W ′

m(i, j) =
Wm(i, j)

∑m
i=1

∑m
j=1 Wm(i, j)

(5.5)

Assume that there are P flipped pixel in g(x, y), each pixel will have a distortion dk, k =
1, 2, 3, ..., P . For the kth flipped pixel (changing black pixel to white pixel and vice versa) at
(x, y)k in the distorted image, the resulted distortion is calculated from a m×m block Bk in
f(x, y) that is centered at (x, y)k. The distortion measure dk for this flipped pixel g[(x, y)k]
is defined by:

dk =
∑

i,j

[Dk(i, j) ×W ′

m(i, j)] (5.6)

where the element of the difference matrix Dk is given by:

Dk(i, j) =
∣
∣Bk(i, j) − g[(x, y)k]

∣
∣ (5.7)

For possibility of flipped pixel near the image corner or border, where m×m neighborhood
may not exist, so it is possible to expand the rest of m × m neighborhood with the same
value as g[(x, y)k]. The distortion in g(x, y) is then calculated by:

d =

∑P
k=1 dk
K

(5.8)

where K is determined as the number non-uniform (not all white or black pixels) blocks of
8 × 8 in f(x, y), P is the positions of flipped pixels.
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5.2 Steganography scheme based on feature points

This section demonstrates the performance of the approach presented in Section 3.2. We
have experimented this scheme on documents and images from three datasets including: To-
bacco800 (Type1); L3iDocCopies120 (Type2); and standard grayscale test images (Type3).
The secret information used in this experiment is the message “stego-msg”, and it is con-
verted into a sequence of bits with a length of 72 bits (9 characters × 8 bits). The size of
a hiding region B is assigned to the value L = 27. The constant c to estimate a dynamic
threshold used for LTP is set to 0.06. These values are selected relied upon the good tradeoff
between capacity and robustness. If L is too large, the capacity will be diminished. Oth-
erwise, the robustness will be low. The sample documents are shown in Figure 5.1. The
performance of our steganography scheme is depicted through the following factors.

Figure 5.1: Sample documents: (a) and (d) from Tobacco, (b) and (c) from L3iDocCopies.

Imperceptibility and capacity

The imperceptibility or quality of stego-documents is measured by the difference between the
document before and after hiding a secret information. To evaluate the quality of a stego-
document Is, we have adopted peak signal to noise ratio (PSNR) and structural similarity
(SSIM) in this experiment. The higher the PSNR and SSIM are, the more the similarity
between the stego-document and the cover document Ic is. In fact, if PSNR is lower than 30
dB, the stego-document can be visually differentiated from the cover document. Regarding
SSIM, it reflects perceptual distortions more precisely than PSNR. The value of SSIM is in
the range of [0, 1], and the closer value to 1 represents the better quality of stego-document
with respect to the cover document.

Table 5.1: The average of imperceptibility and accuracy of data detection
Documents Hiding patterns PSNR (cover vs stego) StegoR (%)

Type1 (20 documents) 23 37.88 100.00
Type2 (20 documents) 19 103.25 100.00
Type3 (12 images) 23 86.74 100.00
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The average of imperceptibility (stego-document quality), hiding patterns and accuracy
ratio of secret information detection is presented in Table 5.1 in which the hiding pattern
column indicates the average of the number of hiding patterns used to hide 72 message
bits. The value of “StegoR” indicates the percentage of the number of correctly extracted
bits. From our experiment, we have seen that the hidden information has been successfully
extracted from the stego-documents without distortion with high accuracy.

The hiding regions B where the information bits are hidden are presented as red rectangles
in Figure 5.2.

Figure 5.2: Feature points based-hiding regions (red rectangles) for data hiding

Robustness assessment

The documents are often subjected to two kinds of distortion: JPEG compression, printing
and scanning noises. Thus, these two distortions can prove the robustness of our steganog-
raphy scheme.

Robustness against JPEG compression: To make the scheme more robust against this
noise, we have implemented two types of error correction code. The first one is repetition
code, and the other is a combination of repetition code and Hamming(7, 3) code in which
the Hamming code enables to add more redundant bits for each group of information bits,
and it corrects only one bit in each group of data bits. As a result, correcting the extracted
information by repetition code gives high performance than others. With 72 bits of the
sample secret information, we obtain 216 bits and 378 bits generated from repetition code,
and the combination of repetition and Hamming(7, 3) code respectively. In general, with a
lossy compression algorithm, it is quite difficult to manage the changing of pixel intensities.
Thus, the possibility of encountering corrupted bits from the compressed document is very
high. Figure 5.3 demonstrates the average accuracy ratio of information detection on the
three datasets.

Robustness against printing and scanning (PS) distortions: Due to the life cycle of the
document, the stego-documents may be printed out, and the printed versions can be scanned
back. This process could be repeatedly performed several times before the scanned docu-
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Figure 5.3: Average accuracy ratio according to the JPEG quality factor.

ments are delivered to the destination. According to the work presented in172, the print-and-
scan model for grayscale images consists of two processes: the printing process could cause
some noises such as halftone, blur and geometric distortion whereas the scanning operation
could introduce blur and geometric distortion. In this scheme, we only choose distortion
of rotation to simulate the scanning operation. We assume that the documents are printed
and scanned at the same resolution of 600 dpi. Thus, the size of documents still remain
unchanged. This is why we ignore the scaling issue in this experiment. In addition, we
apply Gaussian lowpass filter of size 3× 3 to simulate blur noise which often occurred in the
process of printing and scanning. The rotation of a small angle during the scanning process
is mainly caused by human when placing the paper on the scanner screen. Prior to detecting
the hidden information, the rotated document is corrected by using the Hough transfrom as
discussed in Section 3.2.2.

Table 5.2: Evaluation of the robustness to PS distortion (accuracy ratio in % when detecting
information).

Documents Gaussian lowpass filter
Rotation (degree)

1 1.5 2

Type1 3 × 3 66.94 50.00 48.61
Type2 3 × 3 65.56 50.00 44.44
Type3 3 × 3 66.66 55.56 47.22

We have evaluated the robustness of the proposed scheme to the PS distortion. The
results are presented in Table 5.2 in which the last three columns depict the accuracy ratio
of data detection in case of distortion caused by a combination of Gaussian lowpass filter and
rotation with three different angles. We can see that the resistance to printing and scanning
distortion has not met the requirement of a practical application, this low performance is due
to the mismatch of feature points extracted from the cover document and stego-document,
and the lack of precision of algorithm when hiding and detecting data.

Besides, we also compare our method with other typical steganography methods for nat-
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Table 5.3: Comparison of our steganography scheme with Lin12 and Soleymani13

Images
Our method Lin12 Soleymani13

PSNR Capacity PSNR Capacity PSNR Capacity

Boat 61.83 732 - - 37.00 1,494,221
Man 61.02 879 - - 37.14 1,410,335
Pepper 61.37 537 - - 36.19 1,481,114
Lena 61.30 554 51.14 262,144 36.91 1,410,335
Baboon 60.08 1,096 51.13 262,144 - -
Jet 62.97 597 51.14 262,144 - -
Scene 61.16 568 51.14 262,144 - -

ural images, specifically we compare the performance of data hiding schemes on standard
grayscale test images. The comparison shows that the capacity of our approach is lower
than the methods presented by Lin12 and Soleymani13. However, our method gives better
quality for stego-images. In addition, it is not robust against common distortions. Despite
of lower capacity, our scheme enables to hide a secret message whose length is long enough
for document authentication. The comparison results on natural images from the dataset of
standard grayscale test images are presented in Table 5.3.

Improvement the robustness of our steganography scheme

As discussed above, the steganography scheme based on feature points extracted from well-
known detectors gives low performance in terms of documents. Thus, we have proposed
another method to detect feature points as presented in Section 3.2.5, which is more stable
than the existing approaches. To prove the robustness of detectors against distortions, we
have conducted a new experiment on documents and natural images on the three mentioned
datasets, including 20 documents from Tobacco, 20 documents from L3iDocCopies and 10
images from standard grayscale images. The feature points are extracted from documents
and images compressed at various quality factors. The average stability of feature point
extraction against JPG compression by using SIFT, SURF, BRISK and our detector are
shown in Figure 5.4.

Besides, we have employed the feature points extracted from our detector to develop a
data hiding scheme similar to method presented in Section 3.2.3. It just differs in data
hiding and detection algorithm. This algorithm is based on the mean of two appropriately
neighboring pixels within a 3 × 3 hiding pattern. Let p1, p2 and p3 be three consecutive
pixels corresponding to positions of bit 1 of the ith corner pattern, the pixel value p2 is then
adjusted to hide data by:

p2 =

{

(p1 + p3)/2 − T ,wi = 0

(p1 + p3)/2 + T ,wi = 1
(5.9)
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Figure 5.4: The average stability of extracting feature points by using various detectors.

where T is a threshold, wi is the ith secret bit.

Table 5.4: The measurement of imperceptibility and capacity.
Documents PSNR (cover vs stego) SSIM (cover vs stego) Capacity (bits)

Type1 35.23 0.92 2,478
Type2 38.49 0.95 4,357
Type3 37.14 0.91 1,073

With this hiding method, the hidden information bits are extracted by:

wi =

{

0 , p2 ≤ (p1 + p3)/2

1 , otherwise
(5.10)

We have implemented our improvement-based steganography scheme on various docu-
ments from Tobacco and L3iDocCopies dataset. The measurement of imperceptibility and
capacity on the sample documents (Figure 5.1) are presented in Table 5.4, and the results
of robustness against JPEG compression is presented in Figure 5.5. Obviously, we can see
that the scheme performance on lossy compression has been slightly improved as compared
to method presented in Section 3.2.3. However, the robustness of scheme on geometric dis-
tortion still has been low, so it needs to be further improved in order to apply for the real
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Figure 5.5: Average accuracy ratio according to the JPEG quality factor.

applications.

In this section, we have developed the feature points-based steganography schemes for
document authentication. For the feature points extraction, we utilize the well-known SURF
detector, and propose a new feature point detector for stability improvement in terms of
document distortions. For the algorithm of data hiding and detection, we make use the
parity of the pixel values, and the group of three consecutive pixels.

5.3 Watermarking scheme based on stable regions and

object fill (STA-WM)

This section demonstrates the performance of the approach presented in Section 3.3. In this
scheme, the experiment is conducted on documents with various contents, which are selected
from two datasets like Tobacco and L3iDocCopies. For Tobacco (Type I), we opt for 20
documents. For L3iDocCopies, we choose 60 documents including: 15 documents scanned
from Konica Minolta Bizhub 223 at the resolution of 300 dpi (Type II) and 15 documents
scanned at the resolution of 600 dpi (Type III); 15 documents scanned from Fujitsu fi 6800
at the resolution of 300 dpi (Type IV) and 15 documents scanned at the resolution of 600 dpi
(Type V). We have totally tested our approach on 80 various documents. The watermark
used in this experiment is “watermarking-information”, this text message is modulated into
192 bits. Besides, the parameters of watermarking scheme are set as follows. The distance
for separating the hiding range is set with D = 30. The number of gray level values for
carrying each watermark bit is assigned to m = 4. These values are experimentally chosen
to provide a good tradeoff among robustness, imperceptibility and capacity. If D is too
small, the robustness will be diminished. Otherwise, the imperceptibility will be degraded;
If m is too large, the capacity will be low.
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Figure 5.6: Sample documents.

The sample documents are manifested as in Figure 5.6 in which documents (a), (b) and
(c) with corresponding size of 1695 × 2262, 2502 × 3240 and 2514 × 3190 represent Tobacco
dataset whereas documents (d) and (e) with size of 2480 × 3507 and 4960 × 7015 represent
L3iDocCopies dataset, which are scanned at the resolution of 300 and 600 dpi. With these
sample documents, the value of c is set to 1401, 2009, 1931, 2115 and 4203 for (a)-(e)
respectively, based on the size of the bounding box. The performance of our scheme is
evaluated depending on the following factors.

Imperceptibility and capacity

The maximum number of watermark bits that can be hidden into a document is estimated
by:

Capacity =
n∑

i=1

⌊
length(Oi)

m

⌋

(5.11)

where length(Oi) is the number of pixels corresponding to the ith object’s filling part, m
is the length of a group of gray level values for carrying one watermark bit, and n is the
number of separated objects extracted from a document.

Figure 5.7: Imperceptibility and adjusted positions for watermarking: (a)-(c) are respec-
tively the host document, watermarked document and adjusted positions.
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The imperceptibility is evaluated by measuring the difference between the original and
watermarked document. Peak-Signal-to-Noise Ratio (PSNR) has been adopted in this work.
To evaluate the quality of watermarked document, the watermark bits used in this part is
randomly generated based on the maximum number of bits that the host documents can
carry. Table 5.5 demonstrates PSNR and capacity of sample documents and the average
values of 80 documents. Figure 5.7 shows an example where 2092 random message bits have
been hidden into a host document with a size of 984 × 764, the PSNR of this watermarked
document is 53.95. We can see hidden positions (black dots in Figure 5.7(c)) where the
gray level values have been adjusted. For evaluation of our scheme’s performance in the
environment without noises, we hide the mentioned watermark into these 80 documents.
The hidden message has been correctly retrieved in all watermarked documents.

Table 5.5: The quality of watermarked documents and capacity
Documents PSNR (original vs watermarked) Capacity (bits)

1 (Doc1) 52.45 40,738
2 (Doc2) 53.66 28,737
3 (Doc3) 54.70 21,057
4 (Doc4) 52.13 38,238
5 (Doc5) 52.09 45,247

6 51.10 17,135
7 52.13 11,431
8 50.78 24,280
... ... ...

Average (80 documents) 51.81 25,148

Robustness evaluation

We present below the robustness of our scheme against JPEG compression, geometric dis-
tortion and printing and scanning distortions, which often affect the legal documents.

Geometric transformation and JPEG compression: We have conducted tests on the
scheme under various distortions such as: document rotation with rotation angle varying
from 1 degree to 10 degrees with a step of 1 degree; document scaling with scale factor vary-
ing from 0.5 to 1.5 with a step of 0.1; a combination between rotation and scaling; document
affected by JPEG compression with quality factor varying from 10 to 100 with a step of 10.
The results of these distortions are shown in Table 5.6. In this table, we just present the
levels of distortion that the watermarked documents are able to suffer from, and one level
of distortion that the watermarked documents get completely failed in detecting the hidden
information. We can see that the performances of our scheme are capable of resisting to
JPEG compression with a low quality factor of 50, rotation up to 5 degrees, scaling down to
0.8 and up to 1.2, a combination between rotation of 5 degrees and scaling of 0.9 and 1.1.

Printing and scanning distortion: We have studied the robustness of our algorithm against
print and scan attack in four conditions such as very small geometric transformation, with
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Table 5.6: The accuracy ratio of watermark detection on various distortions
Lossy compression Bit Error Rate
and geometric distortions Doc1 Doc2 Doc3 Doc4 Doc5 Avg. (80 documents)

No noises 0 0 0 0 0 0
1◦ rotation 0 0 0 0 0 0
3◦ rotation 0 0 0 0 0 0
5◦ rotation (a) 0 0 0 0 0 0.06
7◦ rotation 0.14 0.12 0.15 0.17 0.15 0.19
Scaling 0.8 0 0 0.11 0.16 0 0.13
Scaling 0.9 (b) 0 0 0 0 0 0
Scaling 1.1 (c) 0 0 0 0 0 0
Scaling 1.2 (d) 0 0 0 0.07 0 0.09
(a) + (b) 0 0 0 0 0 0.08
(a) + (c) 0 0 0 0 0 0.03
(a) + (d) 0.25 0.24 0.27 0.30 0.28 0.21
JPEG 90% 0 0 0 0 0 0
JPEG 60% 0 0 0 0 0 0
JPEG 50% 0 0 0 0.13 0 0.11
JPEG 40% 0.12 0.15 0.22 0.26 0.23 0.21

Figure 5.8: The average results of watermark detection on PS noise.

rotation distortion, with scaling distortion and with a combination of rotation and scal-
ing. After hiding the watermark, we use machine named Kyocera TASKalfa 3252ci KX for
printing the watermarked documents at the default resolution of 600 dpi. This machine is
also used for scanning the printed versions of these watermarked documents. The scanning
resolution is sequentially chosen to be equal to the resolution of 200, 300, 400 and 600 dpi.
As a result, our scheme properly works in case of printing and scanning the watermarked
documents with high resolution of 600 dpi. The BER is substantially increased as scanning
at lower resolutions due to the degradation of quality of watermarked documents. Besides,
we have found that the scanned documents more or less suffer from geometric distortions.
Figure 5.8 shows the average of BER detected from five types of watermarked documents at
varying resolutions.
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In general, we have proposed a new watermarking scheme in which the stable regions
are detected by using the combination of the common image processing operations and
non-subsampled contourlet transform. Meanwhile, the watermarking algorithm has been
developed relied on the hiding factor of each group of successive pixel values. The proposed
scheme has significantly been improved compared to the previous steganography scheme.

5.4 Watermarking scheme for securing documents us-

ing FCN (PAT-WM)

This section details the experimental results of the scheme presented in Section 4.2. For
training configurations, we use two datasets: PRImA and DSSE-200. In the context of our
work, we expect invariance to rotation, scale variation and variation of the quality factor
of the lossy compression. Thus, we generate 5080 documents from 254 original document
images as training samples. Regarding initialization of network parameters, the number of
learning steps is set to 200,000. The high momentum is assigned to 0.9. The weight decay
is 5 × 10−4. The learning rate is set to 10−4, and it is adjusted to 10−5 when reaching half
of the learning steps. The dropout rate is assigned to 0.5.

Figure 5.9: Sample documents with various content: (a), (b) and (c) from DSSE-200
dataset. (d) and (e) from L3iDocCopies dataset.

For watermarking configurations, we select 15 documents from DSSE-200 (Type-1). 60
documents are selected from L3iDocCopies120 including: 15 documents scanned from Konica
Minolta Bizhub 223 at the resolution of 300 dpi (Type-2) and 15 documents scanned at the
resolution of 600 dpi (Type-3); 15 documents scanned from Fujitsu fi 6800 at the resolution
of 300 dpi (Type-4) and 15 documents scanned at the resolution of 600 dpi (Type-5). We
have tested our approach on 75 various documents. The watermark used in this experiment
is “watermarking-information”, this text message is modulated into 192 bits. The distance
for separating the mean values is set with W = 25. The size of the watermarking pattern
is assigned to m = 3. These values are experimentally chosen to provide a good tradeoff
among robustness, imperceptibility and capacity (if W and m are too small, the robustness
will be diminished. If W is large, the imperceptibility will be degraded. If m is too large,
the capacity will be low). With the sample documents in Figure 5.9, the value of c is set to

126



1836, 1765, 2414, 2147 and 4223 for (a)-(e) respectively, and it is estimated relied upon the
size of minimum rectangle of entire document. The performance of our scheme is evaluated
depending on the following factors.

Imperceptibility and capacity

The quality of watermarked document is evaluated by measuring the difference between
original and watermarked document. Peak-Signal-to-Noise Ratio (PSNR) has been adopted
in this work. The capacity of a document is measured by the total number of watermarking
patterns satisfying the condition described in Section 4.2.3. To measure the imperceptibility,
the watermark bits used in this part is randomly generated depending on the maximum
number of bits that the host documents can contain. The quality of watermarked documents,
capacity of sample documents and the average values of 75 testing documents are given in
Table 5.7.

Table 5.7: The measurement of imperceptibility and capacity
Documents PSNR (original vs watermarked) Capacity (bits)

1 (Doc1) 44.60 16,115
2 (Doc2) 46.59 3,417
3 (Doc3) 44.60 15,711
4 (Doc4) 42.58 16,962
5 (Doc5) 44.26 9,533

6 41.42 4,157
7 44.27 2,425
8 40.53 11,478
... ... ...

Average (75 documents) 43.02 9,167

To demonstrate the quality of documents after modifing for watermarking, Figure 5.10
shows an example of hiding 132 random information bits into a host document with size
of 208 × 186 in which the PSNR of this watermarked document is 46.63. We can see the
positions of the document where the pixel values are adjusted for hiding information, and
they are depicted as the white vertical lines in Figure 5.10(c). To evaluate the performance
of our scheme in the environment without distortions, we hide the mentioned watermark into
these 75 documents. The hidden message has been correctly retrieved in all watermarked
documents.

Robustness evaluation

In this part, we would like to prove the robustness of our scheme against JPEG compres-
sion, geometric distortion and printing and scanning distortions, which often affect the legal
documents.
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Figure 5.10: The demonstration of host document (a), watermarked document (b) and
adjusted pixel positions (c).

Geometric transformation and JPEG compression: Similar to the assessment of robust-
ness of watermarking scheme presented in Chapter 3, we still have conducted tests of our
scheme under various distortions. We use the same protocol than the previous experiments
presented in Section 5.3. We demonstrate the robustness of our scheme on the sample doc-
uments in details. The results of the robustness against distortions are shown in Table
5.8.

Table 5.8: The precision of watermark detection on JPEG compression and geometric
distortions

Lossy compression Bit Error Rate
and geometric distortions Doc1 Doc2 Doc3 Doc4 Doc5 Avg. (75 documents)

No noises 0 0 0 0 0 0
Rotation 1◦ 0 0 0 0 0 0
Rotation 3◦ 0 0 0 0 0 0
Rotation 5◦ (a) 0 0 0 0 0 0.05
Rotation 7◦ 0.16 0.18 0.13 0.21 0.17 0.15
Scaling 0.8 0 0 0 0.28 0 0.09
Scaling 0.9 (b) 0 0 0 0 0 0
Scaling 1.1 (c) 0 0 0 0 0 0
Scaling 1.2 (d) 0 0 0 0.25 0 0.07
(a) + (b) 0 0 0 0 0 0.08
(a) + (c) 0 0 0 0 0 0.06
(a) + (d) 0.27 0.23 0.29 0.31 0.26 0.24
JPEG 90% 0 0 0 0 0 0
JPEG 60% 0 0 0 0 0 0.03
JPEG 50% 0 0 0 0.24 0 0.08
JPEG 40% 0.17 0.16 0.21 0.34 0.25 0.19

In this table, we just present the levels of distortion that the watermarked documents
are able to suffer from, and one level of distortion that the watermarked documents get
failed in detecting the hidden information. We can see that the performance of our scheme
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is capable of resisting to JPEG compression with a low quality factor of 50, rotation of 5
degrees, scaling down to 0.8 and up to 1.2, a combination between rotation of 5 degrees
and scaling of 0.9 and 1.1. However, the accurate ratio of information detection is degraded
regarding the host documents, e.g. the content quality of Doc4 is degraded because it has
been scanned at low resolutions.

Printing and scanning distortion: We printed and scanned several watermarked docu-
ments using commercially integrated printer and scanner named Kyocera TASKalfa 3252ci.
In these experiments, we assume a degree of control over the printing and the scanning
operation. The watermarked documents were printed at high resolution of 600 dpi, with
several dots dedicated to one pixel. The printed version of these watermarked documents is
scanned at varying resolutions of 200, 300, 400 and 600 dpi. There are several factors that
degrade the quality of printed and scanned version of documents such as printer and scanner
resolutions, rotation due to placing paper on the printer and scanner screen, rotation due
to loading paper from the paper tray of printing machine. To minimize these effects to the
scheme performance, they need to be eliminated by transforming the input document into
its standard form as described in Section 4.2.2. As a result, our scheme properly works in
case of printing and scanning the watermarked documents with high resolution of 600 dpi.
The precision of information detection is substantially decreased when scanning at lower res-
olutions due to the degradation of quality of watermarked documents. The average accuracy
of watermark detection at varying resolutions is presented in Figure 5.11.

Figure 5.11: The average results of watermark detection on PS distortion.

In brief, we have improved the robustness of the scheme by making use the FCN network
for detecting the watermarking regions. The algorithms of data hiding and detection are
designed based on two mean values corresponding to two groups of pixel values of each
watermarking pattern. The scheme can resist to JPEG compression with quality factor
down to 50, the rotation of 5 degrees in conjunction with the scale of 0.9 or 1.1. Besides, it
can be robust against the PS operations with a resolution of 600 dpi.
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5.5 Watermarking scheme for handwritten documents

using FCN (HAN-WM)

This section details the experimental results of the scheme presented in Section 4.3. For
training FCN network, dataset from CVL-database is selected to train our network. With
regard to initialization of network parameters, the maximum number of learning steps is set
to 200,000. The high momentum is assigned to 0.9. The weight decay is 5 × 10−4. The
learning rate is fixed to 2−6 during the training phase. The dropout rate is assigned to 0.5.

Figure 5.12: Sample documents from different writers: (a), (b) and (c) with corresponding
size of 2499× 1726, 2529× 1670 and 2530× 1870 represent Type-1 dataset. (d) and (e) with
size of 2471 × 1705 and 2255 × 1062 represent Type-2 dataset.

For watermarking scheme, we use documents from two datasets published in ICDAR
2013149;173 for testing our approach: 35 documents are selected from149 including 7 various
handwriting text contents from 5 different writers (noted as Type-1 document); 40 documents
are picked from173 consisting of 4 various handwriting text contents from 10 different writers
(noted as Type-2 document). Totally, we have experienced our approach on 75 various
handwriting documents. The secret message used in this experiment is “secret-information”,

130



this text message is converted into 144 bits. The values used to adjust gray level values
of document for carrying watermark bits are set to δ1 = 400, δ2 = 4. These values are
experimentally selected to give a good tradeoff between robustness and imperceptibility. If
δ1 and δ2 are small, the robustness of the scheme against the distortions will be reduced.
Otherwise, the imperceptibility will be diminished. Figure 5.12 shows the sample documents
in which we crop the empty region around content for saving display space. The value of
the constant c is assigned to 1147, 1337, 1341, 1345, 1464, 1237 corresponding respectively
to Doc1, . . ., Doc6. These values are estimated relied on the minimum rectangle of original
handwriting documents. The effectiveness of our approach is evaluated depending on the
following factors.

Imperceptibility and capacity

The possible number of hidden bits could be maximally equal to the number of letters of
document if these letters are separately written. The capacity will be reduced if the letters
of the document are connected together due to writing style of writers. The imperceptibility
is evaluated by assessing the difference between pre-processing and watermarked document.
The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) have been
adopted in this work. The secret message bits used in this part is randomly generated
depending on the maximum number of bits that the handwriting documents can contain.
The quality, capacity and average values of 75 documents are shown in Table 5.9 wherein
their minimum and maximum values are illustrated in color.

Table 5.9: Imperceptibility (pre-processing vs watermarked) and capacity
Documents PSNR SSIM [0, 1] Capacity (bits)

1 (Doc1) 46.54 0.99981 170
2 (Doc2) 45.88 0.99980 348
3 (Doc5) 42.26 0.99916 521

4 44.83 0.99976 133
5 41.66 0.99716 554
6 41.71 0.99437 434
7 46.63 0.99984 187
. . . . . . . . . . . .

Average (75 documents) 44.52 0.99877 327

Figure 5.13 shows an example of hiding 30 random bits into a small document. The PSNR
and SSIM of this watermarked document are 42.89 and 0.99906 respectively.

Robustness evaluation

To evaluate the effectiveness of the approach in the environment without distortions, we
hide the mentioned secret information into these 75 documents. As a result, the hidden
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Figure 5.13: The imperceptibility between pre-processing document (a) and watermarked
document (b).

data have been successfully detected on all watermarked documents. Regarding robustness
against distortions, we demonstrate the accuracy ratio of watermark detection over popular
degradations that documents often undergo as follows.

Geometric transformation and JPEG compression: Like watermarking schemes presented
in previous chapter, we use the same protocol than the previous experiments presented in
Section 5.3. The results of these distortions are shown in Table 5.10. In this table, for saving
space, we present the levels of distortion that the watermarked documents are able to suffer
from, and one level of distortion that the watermarked documents get failed in detecting the
hidden information. We can see that the performance of our scheme is capable of resisting
to JPEG compression with a low quality factor of 40, rotation of 7 degrees, scaling down to
0.8 and up to 1.3, a combination between the rotation of 5 degrees and scaling of 0.8 and
1.3.

Table 5.10: The accuracy rate of information detection on lossy compression and geometric
distortion

Lossy compression Accuracy Ratio
and geometric distortions Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (75 documents)

JPEG 40% 1 1 1 1 1 1 1
JPEG 30% 0.88 0.82 0.85 0.83 0.79 0.86 0.81
Rotation 5◦ (a) 1 1 1 1 1 1 1
Rotation 7◦ (b) 1 1 1 1 1 1 0.97
Rotation 9◦ 0.86 0.80 0.76 0.79 0.85 0.83 0.84
Scaling 0.7 0.79 0.82 0.75 0.84 0.81 0.78 0.83
Scaling 0.8 (c) 1 1 1 1 1 1 1
Scaling 1.3 (d) 1 1 1 1 1 1 1
Scaling 1.4 (e) 0.83 0.87 0.82 0.77 0.80 0.84 0.81
(a) + (c) 1 1 1 1 1 1 0.96
(a) + (d) 1 1 1 1 1 1 1
(b) + (e) 0.69 0.71 0.74 0.67 0.64 0.72 0.72

Printing and scanning distortion: We use the same protocol than the previous experiments
presented in Section 5.3. Figure 5.14 shows the average results of accuracy ratio of watermark
detection. Our approach gives the highest accuracy rate when the watermarked documents
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are printed and scanned at the resolution of 600 dpi. At the lower resolutions, the accuracy
ratio of watermark detection is considerably diminished. The main factors causing this
reduction are the inconsistency of watermarking regions and separated objects extracted
from the distorted watermarked documents.

Figure 5.14: The average accuracy of information detection on PS distortion.

On the whole, we have proposed a watermarking system able to protect the handwriting
documents. The FCN network is utilized to detect the document content where the secret
information is hidden into. The algorithms of data hiding and detection are developed
depending on the difference between two sets of pixel values of each connected handwritten
element. The scheme can resist to JPEG compression with quality factor down to 40, the
rotation of 5 degrees in conjunction with the scale down to 0.8, or up to 1.3. Besides, it
can be robust against the PS operations with the resolution of 600 dpi. This scheme can be
effectively applied for the typewriting documents.

5.6 Watermarking scheme using generative adversarial

networks (GEN-WM)

This section demonstrates the experimental results of the scheme presented in Section 4.4.

For training our GAN network, we use dataset DSSE-200 published in121 which contains
200 document pages from magazines and academic papers. For the context of our work,
we synthesize our training dataset consisting of 900 documents in which we hide randomly
generated data bits into 50 documents with three various thresholds (λ = 20, 30, 40) which
are added to the pixel values for carrying message bits. The hidden documents are then
subjected to blur with five different kernels. Besides, we have created 150 documents with
real PS noise. The documents with data hiding and noises form the set of distored documents,
and the corresponding clean documents are regarded as the set of real documents. Regarding
network parameters, Adam optimizer is used for optimization with a mini-batch size of 1.
The learning rate starts from 0.0002 and is divided by 10 after reaching half of the number
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of epoches. The weighting parameters of function loss are set to αg = 0.005, αe = 1 and
αf = 0.9.

Figure 5.15: The illustration of sample documents with various resolutions, fonts and lay-
outs.

For watermarking scheme, we also use documents published in121 for testing our pro-
posed approach. Totally, we have conducted our experiment on 70 documents with various
resolutions and fonts. The watermark used in this experiment is “watermarking-scheme-
GAN”, this watermark is converted into a message of 184 bits. The thresholds used to
adjust pixel values of document content for holding secret bits are set to λ = 15 and λ = 25
(a value added to the pixel values). These values are experimentally chosen to provide a
good tradeoff between imperceptibility and robustness. If λ is small, the scheme resistance
to distortions will be diminished. Otherwise, the quality of watermarked documents will be
reduced. The illustration of sample documents with various contents are shown in Figure
5.15. The performance of our approach is presented through the following factors.
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Imperceptibility and capacity

The capacity (bits) is measured by the number of bounding boxes extracted by OCR while the
quality of watermarked documents (imperceptibility) is evaluated by the difference between
the document before and after hiding a secret information. We adopt peak signal to noise
ratio (PSNR) and the structural similarity index (SSIM)171 for estimating the quality of
watermarked documents. The watermark bits used in this part are randomly generated
relied upon the maximum number of bits that a document can carry. The imperceptibility,
capacity and average values of 70 testing documents are shown in Table 5.14 wherein the
minimum and maximum values are illustrated in blue and red color respectively. In this
table, we just present a few records of sample documents and others which hold the minimal
and maximal values of PSNR and SSIM.

Table 5.11: Imperceptibility (generated vs watermarked) and capacity

Documents
PSNR SSIM

Capacity
λ = 15 λ = 25 λ = 15 λ = 25

1 (Doc1) 35.52 31.54 0.9988 0.9972 338
2 (Doc2) 35.86 32.25 0.9984 0.9968 228

3 36.02 32.04 0.9990 0.9977 395
4 37.14 33.34 0.9992 0.9982 247
5 37.15 33.39 0.9990 0.9980 248

6 (Doc3) 36.87 33.32 0.9991 0.9981 214
7 33.90 31.13 0.9983 0.9967 248
... ... ... ... ... ...

Average (70 documents) 35.82 32.28 0.9988 0.9974 265

Figure 5.16 shows an example of hiding 87 random bits into a small document with
threshold λ = 25 in which the watermarked document is shown in (b), and the white
characters in document (c) mark positions whose pixel values are slightly changed during
the hiding process (the missing characters in document (c) remain unchanged). We gain the
PSNR and SSIM of this watermarked document to be 31.99 and 0.9974 respectively.

Figure 5.16: An illustration of imperceptibility and capacity: (a) and (b) are a small gener-
ated document and watermarked document respectively, and the marked document (c) whose
pixel values are adjusted after hiding 87 random bits.

135



Robustness evaluation

Geometric transformation and JPEG compression: We use the same protocol than the pre-
vious experiments presented in Section 5.3. Table 5.12 presents the accuracy of detecting the
hidden information when hiding data with threshold λ = 15 whereas Table 5.13 for threshold
λ = 25.

Table 5.12: The accurate ratio of extracted information (λ = 15)

Distortions
Accuracy Ratio

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (70 documents)

JPEG 50% 0.99 1 0.99 0.99 0.99 1 0.97
JPEG 30% 0.55 1 0.91 0.90 0.95 0.92 0.93
Rotation 3◦ 1 1 1 0.86 0.84 1 0.96
Rotation 5◦ (a) 1 1 1 0.31 0.47 1 0.91
Rotation 7◦ 1 1 1 0.45 0.41 1 0.86
Scaling 0.7 (b) 0.99 1 0.97 0.47 0.61 0.98 0.87
Scaling 0.8 (c) 0.96 1 1 0.45 0.67 1 0.94
Scaling 1.2 (d) 1 1 0.98 0.84 1 1 0.97
Scaling 1.3 (e) 0.97 1 1 0.66 0.95 1 0.90
(a) + (b) 0.93 1 0.90 0.42 0.56 0.97 0.87
(a) + (c) 0.99 1 1 0.41 0.52 1 0.93
(a) + (d) 1 1 1 0.63 0.53 0.99 0.95
(a) + (e) 0.98 1 1 0.53 0.46 1 0.88

Table 5.13: The accurate ratio of extracted information (λ = 25)

Distortions
Accuracy Ratio

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (70 documents)

JPEG 50% 1 1 1 1 1 1 1
JPEG 30% 0.66 1 0.99 0.98 0.99 1 0.96
Rotation 3◦ 1 1 1 0.93 1 1 0.99
Rotation 5◦ (a) 1 1 1 0.55 0.58 1 0.99
Rotation 7◦ 1 1 1 0.49 0.84 1 0.96
Scaling 0.7 (b) 1 1 0.99 0.45 0.61 1 0.89
Scaling 0.8 (c) 0.98 1 1 0.39 0.69 1 0.97
Scaling 1.2 (d) 1 1 1 0.96 1 1 0.99
Scaling 1.3 (e) 1 1 1 0.79 1 1 0.93
(a) + (b) 0.99 1 1 0.46 0.45 1 0.96
(a) + (c) 1 1 1 0.42 0.53 1 0.98
(a) + (d) 1 1 1 0.65 0.57 1 0.93
(a) + (e) 1 1 1 0.61 0.47 1 0.91

During the experiments, we observe that the low accuracy mostly occurs on documents
with low quality (the original documents are made by printing and scanning at low resolutions
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or quality of PS machine). The inconsistency of extracted bounding boxes between the orig-
inal and distorted documents partly affects the accuracy ratio of extracted data. For exam-
ple, the extracted information like “waturearking-sche-e-GAN” and “wateroavking=scxe}e-
GAN” corresponds to accuracy ratio of 0.98 and 0.97.

Printing, photocopying and scanning distortion: We use the same protocol than the pre-
vious experiments presented in Section 5.3. In addition, we also evaluate the robustness
of our approach by adding more complicated noises by making two rounds of photocopy-
ing. The two-round-photocopying documents are also scanned back at several resolutions.
Figure 5.17 shows the results of watermark detection. PS threshold-1 and PS threshold-2
depict robustness against PS distortion in case of hiding information into documents with
threshold λ = 15 and λ = 25 whereas PCS represents resistance to PCS distortion in case
of hiding data into documents with threshold λ = 25. For documents with sufficiently good
quality, which are used to hide information, our scheme is capable of detecting the hidden
information with high accuracy, even for some types of document scanned at the resolution
of 200 dpi.

Figure 5.17: The average results of extracted information on PS and PCS distortion.

To conclude, we have improved the robustness of the scheme by using GAN for document
generation, which is used as a reference for watermarking process. The algorithms of data
hiding and detection are designed by measuring the absolute distance of pixel values between
each object within the watermarked and generated documents. The scheme can resist to
JPEG compression with quality factor down to 30, the rotation of 5 degrees in combination
with the scale down to 0.7, or up to 1.3. Besides, it can be robust against the PS operations
with the low resolutions, and two rounds of photocopying before scanning back at various
resolutions.
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5.7 Watermarking scheme based on font generation

(VAR-WM)

This section demonstrates the experimental results of the scheme presented in Section 4.5.

For training our GAN network, we use the dataset DSSE-200 published in121. We utilize
thinning algorithm168 to make skeleton documents from these documents. The documents
containing normal shape of characters are regarded as the set of real documents. Regarding
initialization of network parameters, the Adam optimizer is used to optimize the network
parameters with β1 = 0.5 and β2 = 0.9. The learning rate starts from 0.0002 and is divided
by 10 after reaching half of the number of epochs. The weighting parameters are set to
αa = 0.005 and αf = 0.9.

Figure 5.18: Sample documents with various fonts and styles.

For training our FCN network, we create 800 watermarked documents and annotated doc-
uments from 200 documents in which the watermarked documents are obtained by replacing
appropriate characters with their corresponding variations generated from GAN network.
The secret bits used to create this training documents are randomly generated. Besides, dis-
tortions caused by JPEG compression are also added to these documents. Meanwhile, the
annotated documents are obtained by marking positions where the characters of document
are substituted by their corresponding variations. The number of learning steps is set to
200,000. The high momentum is assigned to 0.9. The weight decay is 5×10−4. The learning
rate is set to 10−4. The dropout rate is assigned to 0.5.
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For watermarking scheme, we also use documents published in121 for testing the proposed
approach. We have conducted our experiments on a total of 70 documents with various
contents and fonts. The watermark used in this experiment is “watermarking-scheme”, and
it is converted into 152 bits. We apply two types of character variants including “Variation
1” (Font1) and “Variation 3” (Font3) as in Figure 4.28(b) and 4.28(d) for depicting the
performance of our scheme. The illustrations of sample documents with various contents are
shown in Figure 5.18. The performance of our approach is presented through the following
factors.

Imperceptibility and capacity

The capacity is measured by the number of bounding boxes containing document content
extracted by OCR while the quality of watermarked documents (imperceptibility) is evalu-
ated by the difference between the document before and after hiding a secret information.
We adopt peak signal to noise ratio (PSNR) and the structural similarity index (SSIM) to
estimate document quality. The watermark bits used in this part are randomly generated
relied upon the maximum number of bits that a document can carry. The imperceptibility,
capacity and average values of 70 testing documents are shown in Table 5.14 wherein their
minimum and maximum values are illustrated in blue and red color respectively. In this
table, for saving the displaying space, we just present the results of a limited number of
documents whose the ones with the minimal and maximal values of PSNR and SSIM.

Table 5.14: Imperceptibility (original vs watermarked) and capacity

Documents
PSNR SSIM

Capacity
Font1 Font3 Font1 Font3

1 (Doc1) 17.30 19.80 0.9113 0.9452 238
2 (Doc2) 19.24 21.55 0.9277 0.9562 201
3 (Doc3) 19.25 21.09 0.9251 0.9492 256

4 19.91 25.11 0.9213 0.9747 95
5 21.16 22.71 0.9464 0.9617 326

6 (Doc5) 16.86 21.39 0.8795 0.9555 238
7 18.18 21.33 0.9231 0.9568 357
... ... ... ... ... ...

Average (70 documents) 18.67 21.52 0.9234 0.9564 264

Figure 5.19 shows an example of watermarked documents whose characters are substituted
by their variations corresponding to Font1 and Font3.

Robustness evaluation

Geometric transformation and JPEG compression: We use the same protocol than the pre-
vious experiments presented in Section 5.3. Table 5.15 presents the accuracy of detecting
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Figure 5.19: (a) The document is watermarked by replacing its characters with Font1, and
(b) with Font3.

the hidden information in case of hiding data with Font1 whereas Table 5.16 with Font3.

Table 5.15: The precision of extracted information (Font1)

Distortions
Accuracy Ratio

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (70 documents)

JPEG 50% 1 1 1 1 1 0.96 0.99
JPEG 30% 1 1 1 1 0.48 0.97 0.96
Rotation 3◦ 1 1 1 0.99 1 0.94 0.99
Rotation 5◦ (a) 1 1 1 1 1 0.99 0.98
Rotation 7◦ 1 1 1 1 1 0.99 0.99
Scaling 0.7 (b) 0.97 0.99 0.96 0.97 0.60 0.79 0.97
Scaling 0.8 (c) 0.59 0.79 0.99 0.99 0.39 0.72 0.94
Scaling 1.2 (d) 0.98 0.98 1 1 1 0.96 0.97
Scaling 1.3 (e) 1 0.97 1 1 1 0.99 0.99
(a) + (b) 0.82 0.95 0.99 0.95 0.61 0.74 0.95
(a) + (c) 1 1 0.99 0.89 1 0.59 0.94
(a) + (d) 1 1 1 1 1 0.94 0.97
(a) + (e) 1 1 1 1 1 0.95 0.98

The results in Table 5.15 and Table 5.16 show that using FCN to detect character variants
substituted by Font3 gives less accuracy than the ones replaced by Font1. Substitution with
Font1 gives the watermarked documents with better quality. Besides, the inconsistency of
extracted bounding boxes (by OCR) between the original and distorted documents partly
affects the precision of detecting the hidden information. Unlike image watermark, the
textual watermark requires high accuracy ratio in order to retrieve a meaningful text from
the extracted watermark bits. For example, the extracted information like “watermarkil¿4bo
E” and “water-ar#i.f4s#haom” corresponds to accuracy ratio of 0.84 and 0.92. In general,
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Table 5.16: The precision of extracted information (Font3)

Distortions
Accuracy Ratio

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (70 documents)

JPEG 50% 1 1 1 1 1 0.96 0.99
JPEG 30% 1 1 1 0.99 0.88 0.97 0.95
Rotation 3◦ 1 0.99 1 0.99 0.99 0.99 0.98
Rotation 5◦ (a) 1 1 1 0.98 1 0.99 0.99
Rotation 7◦ 1 1 1 0.99 1 0.99 0.96
Scaling 0.7 (b) 0.91 0.83 0.91 0.88 0.66 0.73 0.93
Scaling 0.8 (c) 0.59 0.76 0.96 0.95 0.43 0.70 0.95
Scaling 1.2 (d) 0.96 0.96 0.97 0.94 0.99 0.96 0.96
Scaling 1.3 (e) 0.96 0.93 0.95 0.93 0.98 0.95 0.94
(a) + (b) 0.77 0.89 0.92 0.90 0.64 0.70 0.89
(a) + (c) 0.96 0.93 0.94 0.82 0.96 0.58 0.91
(a) + (d) 1 0.96 0.98 0.99 0.80 0.93 0.93
(a) + (e) 0.98 0.99 0.96 0.95 0.98 0.95 0.90

with the results presented in Table 5.15 and Table 5.16, we can observe that we need a
tradeoff between imperceptibility and robustness when designing a waterkmarking system.

Printing, photocopying and scanning distortion: We use the same protocol than the pre-
vious experiments presented in Section 5.6. Figure 5.20 shows the results of watermark
detection. PS-Font1 and PS-Font3 depict robustness against PS distortion when altering se-
lected characters by their Font1 and Font3 respectively whereas PCS-Font1 and PCS-Font3
represent resistance to PCS distortion. Our approach can detect the watermark at the reso-
lution of 600 dpi, and at 400 dpi from hidden documents with good quality (accuracy ratio
≥ 0.98), and even some types of document scanned at the resolution of 300 dpi and 200 dpi.

Figure 5.20: The average results of extracted information on PS and PCS distortion.

In general, the font generation-based watermarking scheme has been proposed by utilizing
GAN for variation generation, and FCN for variation detection. The scheme can resist to
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common distortions such as JPEG compression, geometric transformation, PS and PCS
operations.

5.8 Comparison of scheme performance designed for

grayscale documents

We would like to make comparison among our proposed schemes (STA-WM, PAT-WM,
HAN-WM, GEN-WM and VAR-WM) designed for grayscale documents to see the improve-
ment of scheme performance. The comparison is carried out based on the precision of
watermark detection, which is extracted from the watermarked documents subjected to PS
distortion. The result of comparison presented in Figure 5.21 shows that the methods based
on generated document (GEN-WM) and character variations (VAR-WM) have significantly
improved the accuracy of watermark detection, and they are able to withstand two rounds
of photocopying prior to scanning back.

Figure 5.21: The comparison of performance among our watermarking schemes in terms
of PS distortion.

We have observed that there are two main factors affecting the performance of the water-
marking scheme: the features extracted from the documents, and the algorithm for hiding
and detecting the secret data. Although the features (watermarking regions) extracted from
the schemes like STA-WM, PAT-WM and HAN-WM are quite stable against distortions,
they can not be capable of detecting the hidden information correctly when the watermarked
documents undergo high distortions. This is because their watermarking algorithms are de-
signed based on the changing of pixel values. By the experiments, we have observed that
the pixel values of distorted watermarked documents are significantly changed. This change
results in breaking predefined conditions used between the data hiding and detection process.
It means that the conditions calculated from the original document (data hiding phase) are
inconsistent with the conditions calculated from the distorted watermarked document (data
detection phase). Thus, the scheme can not extract the hidden data correctly when the
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watermarked documents are subject to high distortions. The other schemes (GAN-WM and
VAR-WM) have been proposed to overcome the issue of this inconsistency. The comparison
shows that the scheme based on font generation (VAR-WM) gives the highest performance
because the shape of character variations are little affected by the distortions.

Besides, we also compare the performance of our watermarking schemes with other typical
methods. Due to unavailability of dataset and implementation of these methods, we can
not make quantitative comparison by implementing our proposed schemes on the datasets
which are used in the existing approaches, and implementing the existing approaches on
the public datasets which are used in our schemes. Thus, our comparison is performed
relied on the functionalities of these schemes. We define various types of distortion for our
comparison including: (1) geometric transformation; (2) JPEG compression; (3) PS noise;
(4) PCS noise; (5) cropping, salt and pepper noise; (6) filtering noises; (7) format conversion;
(8) rasterization; and (9) print-capture. The comparison as depicted in Table 5.17 shows
that our approaches can be applied for various types of documents whose content can be
typewritten, handwritten, hybrid or textual. In addition, the schemes (GEN-WM and VAR-
WM) can resist to highly practical distortions. Thus, they can be deployed for practical
applications. In general, we have proposed various schemes that are compatible with various
document content, and resist to various distortions compared to the existing works.

Table 5.17: The comparison with the existing approaches. The word “Security” refers
whether a private key is used to recover the original data from the extracted data. The sign
of “-” indicates that this feature is not mentioned in their work.

Methods Document type Distortions Security
Data hiding
algorithm based

Horng55 Hybrid content (2), (5), (6) - Coefficient value
Chetan56 Hybrid content (1), (2), (5) - Coefficient value
Kim49 Text content Cropping, page segmentation - Word shifting
Low68 Text content (3), (4) - Line shifting

Kim1 Text content
Rotation, noise insertion, cropping

- Histogram value
blurring, sharpening, binarization

Zou51 Text content (3), (4) - Inter-word space
Varna52 Text content (3), (4) - Stroke’s left edge
Palit48 Indian text (2), noise and scaling - Character prototype
Tan71 Chinese text (2), (3), (4), (5), (6) - Character stroke
Xiao53;54 Text content (3), (7), (8), (9) - Character variant
STA-WM General content (1), (2), (3) - Pixel value
PAT-WM General content (1), (2), (3) - Pixel value

HAN-WM
Handwriting,

(1), (2), (3) - Pixel value
typewriting

GEN-WM General content (1), (2), (3), (4) Yes Pixel value
VAR-WM General content (1), (2), (3), (4), (7) Yes Character variant
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5.9 Watermarking for securing binary documents

The digital versions of the documents commonly suffer from various degradations. These
degradations could reduce the accuracy of tasks of document analysis and recognition. Thus,
transferring the documents into binarized forms is a common solution to deal with these
issues. The genuine documents which exist in the binarized format for meeting the require-
ment of various purposes are inevitable in the real world. This section demonstrates the
experimental results of the scheme presented in Section 4.6.

Figure 5.22: Sample general documents with various content: (a) and (b) are documents
from DSSE-200 dataset. (c)-(f) are documents from L3iDocCopies dataset.

For training FCN network, we test our approaches on two datasets: PRImA170 and DSSE-
200121. A total of 254 document images with diverse and complex content layouts have been
selected for making training sample. In the context of our work, we expect invariance to
rotation, scale variation and variation of the quality factor of the lossy compression. Thus,
we generate 1,524 from a total of 254 document images for training samples. Regarding
initialization of network parameters, the number of learning steps is set to 200,000. The
high momentum is assigned to 0.9. The weight decay is 5 × 10−4. The learning rate is fixed
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to 10−4 during the training phase. The dropout rate is assigned to 0.5.

For watermarking scheme, we select 15 documents from DSSE-200 (referred to Type-1)
whereas 60 documents are selected from L3iDocCopies120 including: 15 documents scanned
from Konica Minolta Bizhub 223, and 15 documents scanned from Fujitsu fi 6800 at the
resolution of 300 dpi. These documents are referred to Type-2 including: 15 documents
scanned from Konica Minolta Bizhub 223, and 15 documents scanned from Fujitsu fi 6800 at
the resolution of 600 dpi. This kind of documents is known as Type-3. We have tested our
approach on 75 various documents. These documents are color documents, so they need to
be converted into binary form before doing the experiments. The secret information hidden
in the documents is wm = “watermarking-information”, and this text message is modulated
into 192 bits.

With respect to parameters of watermark hiding scheme, the threshold to separate the
number of edge features and the number of corner features within each subregion is set to
δ = 20 (applying for watermark hiding scheme 2). This value is experimentally selected to
provide a good robustness, especially when the watermarked documents suffering from PS
distortion. Related to scaling factor estimation, the value of c is set to 1,694, 1,873, 1,940,
4,055, 2,152 and 4,190 corresponding to the sample documents Doc1 - Doc6 as in Figure
5.22. These values are determined depending on the Euclidean distance between a top left
point and an intersecting point of two diagonal lines of the minimum rectangle of original
document. The performance of our approach is evaluated through the following factors.

Imperceptibility and capacity

With regard to the watermark hiding scheme 1, the capacity is measured by the number of
3×3 hiding patterns satisfying condition of corner features (CP1 and CP2) and edge features
(EP1 and EP2). For the watermark hiding scheme 2, the capacity is equal to the number
of subregions (the adjacent bounding boxes of objects are grouped together). These two
watermark hiding schemes are presented in Section 4.6.4. The imperceptibility or quality
of watermarked documents is measured by the difference between the document prior to
hiding a secret information and the document after hiding a secret information. To assess
the quality of watermarked documents, we have adopted three methods in this experiments:
peak signal to noise ratio (PSNR), distance reciprocal distortion measure (DRDM)45, and
structural similarity index (SSIM)171. We have observed that the watermark hiding scheme
1 provides high capacity compared to the watermark hiding scheme 2.

The imperceptibility (watermarked document quality), capacity (the number of bits) and
average values of 75 documents are shown in Table 5.18 (for the watermark hiding scheme 1)
and Table 5.19 (for the watermark hiding scheme 2) wherein their minimum and maximum
values are illustrated in color. To save the displaying space, we do not show all records of 75
documents. We just present the results of the sample documents and the ones which allow
to show the minimal and maximal values of PSNR, SSIM and DRDM.

Figure 5.23 shows an example of hiding 3,837 and 10 random message bits into a small
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Table 5.18: The assessment of watermarked document quality and capacity for the water-
mark hiding scheme 1

Documents PSNR SSIM [0, 1] DRDM Capacity

1 (Doc1) 22.5388 0.9747 0.8001 43,211
2 (Doc2) 22.1989 0.9742 0.9801 44,350
3 (Doc3) 21.7668 0.9618 0.8816 72,345
4 (Doc4) 24.9702 0.9789 0.7940 128,944
5 (Doc5) 21.9765 0.9694 0.8091 78,725
6 (Doc6) 24.3565 0.9736 0.9165 154,895

7 25.8832 0.9855 1.1050 12,547
. . . . . . . . . . . . . . .

Average (75 documents) 23.4877 0.9759 0.8934 60,772

Table 5.19: The assessment of watermarked document quality and capacity for the water-
mark hiding scheme 2

Documents PSNR SSIM [0, 1] DRDM Capacity

1 (Doc1) 21.2972 0.9680 3.7333 358
2 (Doc2) 21.2556 0.9713 4.6231 511
3 (Doc3) 21.1561 0.9672 4.1650 606
4 (Doc4) 23.3509 0.9691 4.3933 1428
5 (Doc5) 20.9203 0.9638 4.2756 756
6 (Doc6) 23.2303 0.9683 5.0502 2012

7 23.0225 0.9809 4.2822 326
8 23.9660 0.9784 4.9359 100
. . . . . . . . . . . . . . .

Average (75 documents) 22.4221 0.9720 4.3363 664

document with a size 1624 × 324 by using the watermark hiding scheme 1 and the wa-
termark hiding scheme 2 respectively. The PSNR, SSIM and DRDM of this watermarked
document are respectively 24.4671, 0.976126 and 4.0989 for the watermark hiding scheme
1, and 25.4848, 0.983157 and 3.8798 for the watermark hiding scheme 2. We can see hid-
den positions as illustrated by white dots in Figure 5.23(c) and Figure 5.23(e) where the
pixel values are changed to hide secret data. The document quality assessment shows that
the visual distortion caused by the hiding process is less perceptible. In other words, the
differences between the original documents and watermarked documents in Figure 5.23 are
difficult to observe by human eyes.

The results shown in Table 5.18 and Table 5.19 confirm that the proposed schemes satisfy
the imperceptibility criteria. Moreover, the watermark hiding scheme 2 gives less capacity
than the scheme 1 because this scheme uses a group of adjacent objects for carrying one
message bit instead of a hiding pattern (as discussed in Section 4.6.2). The watermark
hiding scheme 2 is designed to improve the robustness which is demonstrated in the next
section.
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Figure 5.23: An illustration of imperceptibility and capacity: (a) a small document with a
size of 1624 × 324; The watermarked document and document difference after hiding 3,837
random bits by using watermark hiding scheme 1 are depicted in (b) and (c); For watermark
hiding scheme 2, each subregion within watermarking regions carries one information bit.
(e) and (f) are watermarked document and document difference after hiding 10 random bits.

Robustness evaluation

In order to prove the robustness of our approach, we evaluate our two watermark hiding
schemes with and without distortions. In case experiments without distortions, we hide
the mentioned secret information (wm = “watermarking-information”) into 75 documents
picked up from two datasets as described above. The hidden information has been success-
fully extracted from the watermarked documents with the highest accuracy value of 1. To
demonstrate the accuracy ratio for detecting the hidden information with distortions, we hide
the same secret information into the sample documents shown in Figure 5.22. After hiding
the secret information, additional distortions are added to the watermarked documents. The
precision obtained for the detection of the hidden information is detailed as follows.

Robustness against JPEG compression: Figure 5.24 presents the results of hidden infor-
mation detection for quality factors ranging from 10 to 100. We can see that the watermark
hiding scheme 1 is capable to resist to distortions with the quality factor down to 70, and
60 for some types of document content whereas the watermark hiding scheme 2 is able to
withstand the degradations when the quality factor goes down to 50. However, the accuracy
is greatly reduced due to the severe degradations of watermarked documents. This reduction
is due to: (i) the watermarking regions extracted from the distorted watermarked documents
do not completely match with the ones extracted from the undistorted documents; (ii) the
integrity of edge and corner features between the distorted and undistorted documents is
lost.

Robustness against geometric distortions, salt and pepper noise, and filtering: Another
category of popular distortions, a good watermarking scheme should resist, concerns geomet-
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Figure 5.24: The illustration of robustness against JPEG compression where the secret in-
formation is detected at several quality factors: (a) and (b) show the accuracy when extracting
the hidden information from the watermark hiding scheme 1 and 2.

ric transformations. These distortions consist of rotation, scaling and a combination of them.
In this work, we utilize affine transformation to simulate geometric distortion as well as to
correct it. As mentioned above the affine normalization is applied on the original document
before hiding the secret information, and it is applied on the watermarked document prior
to detecting the hidden information. Concerning the rotation, we conduct the experiments
with the rotation angles of 3, 5 and 7 degrees whereas the scaling factor is taking values
in the range

[
0.8, 1.2

]
with a step of 0.1. We also test our approach for salt and pepper

noise with noise density varying from 1 to 5%, media filtering and Gaussian filtering with a
kernel of size 3 × 3. The results of robustness against geometric distortions and filtering are
presented in Table 5.20 and Table 5.21.

We can see that the watermark hiding scheme 1 (each hiding pattern of edge feature
or corner feature carrying one secret bit) gives low robustness as presented in Table 5.20
because these distortions cause much change on the pixel values located on the stroke of
document foreground. Many edge and corner features are broken, and this leads to fail in
data detection. Meanwhile, the watermark hiding scheme 2 gives better performance as
depicted in Table 5.21. This scheme is designed based on the difference between the number
of edge and corner features within each subregion for carrying one secret bit. Specifically, it
can be able to withstand rotation angle up to 5 degrees and even 7 degrees for some types
of document. In case of scaling, the scheme works well for the factors of 0.9 and 1.1 (1.2 for
some types of document). In addition, the rotation of 3 degrees followed by scaling 0.9 or
1.1 is also tolerated in the watermark hiding scheme 2. We can observed that despite the
geometric distortions make edge and corner features lose much their integrity, the proportion
between the number of edge features and the number of corner features within a subregion
or grouped contiguous bounding boxes of objetcs is still maintained at a moderate level of
degradation.

Furthermore, we also test our approach under salt and pepper noise with ratio of 1, 3
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Table 5.20: Watermark hiding scheme 1: The results of accuracy when detecting the hidden
information under geometric distortion, salt and pepper noise, media filtering (MF) and
Gaussian filtering (GF)

Distortions
Watermark hiding scheme 1 (Accuracy)

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (75 documents)

Rotation 3◦ (a) 0.98 1 0.73 1 0.58 0.68 0.97
Rotation 5◦ 0.73 0.58 0.68 0.63 0.50 0.55 0.72
Rotation 7◦ 0.43 0.50 0.40 0.58 0.48 0.45 0.59
Scaling 0.8 (d) 0.55 0.58 0.48 0.60 0.38 0.53 0.56
Scaling 0.9 (b) 0.93 0.81 0.75 0.98 0.83 0.95 0.95
Scaling 1.1 (c) 1 1 1 1 0.95 1 0.97
Scaling 1.2 0.95 0.84 0.78 1 1 0.98 0.96
(a) + (b) 0.58 0.68 0.64 0.83 0.63 0.75 0.73
(a) + (c) 0.55 0.65 0.53 0.48 0.53 0.50 0.59
(a) + (d) 0.50 0.45 0.38 0.45 0.48 0.45 0.49
Salt pepper 1% 0.90 0.85 0.98 0.88 0.83 0.95 0.96
Salt pepper 3% 0.63 0.75 0.60 0.63 0.73 0.65 0.73
Salt pepper 5% 0.65 0.68 0.50 0.58 0.55 0.48 0.64
MF 3 × 3 0.58 0.53 0.50 0.45 0.33 0.40 0.57
GF 3 × 3 0.83 0.55 0.43 0.58 0.70 0.43 0.72

Table 5.21: Watermark hiding scheme 2: The results of accuracy when detecting the hidden
information under geometric distortion, salt and pepper noise, media filtering (MF) and
Gaussian filtering (GF)

Distortions
Watermark hiding scheme 2 (Accuracy)

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Avg. (75 documents)

Rotation 3◦ (a) 1 1 1 1 1 1 1
Rotation 5◦ 1 1 1 1 1 1 1
Rotation 7◦ 0.84 1 1 0.78 0.63 0.45 0.97
Scaling 0.8 (d) 0.73 0.68 0.80 0.95 0.93 0.90 0.92
Scaling 0.9 (b) 1 1 1 1 1 1 0.99
Scaling 1.1 (c) 1 1 1 1 1 1 1
Scaling 1.2 1 1 0.87 1 0.93 0.88 0.96
(a) + (b) 1 1 1 1 1 1 0.99
(a) + (c) 1 1 1 1 1 0.83 0.98
(a) + (d) 0.69 0.63 0.65 0.63 0.45 0.43 0.67
Salt pepper 1% 1 0.98 0.98 1 0.98 1 0.99
Salt pepper 3% 1 0.93 0.78 0.70 0.83 0.85 0.91
Salt pepper 5% 0.65 0.84 0.60 0.63 0.74 0.53 0.72
MF 3 × 3 0.76 0.65 0.50 0.68 0.60 0.50 0.68
GF 3 × 3 0.98 0.80 0.78 0.65 0.73 0.60 0.89

149



and 5 percents. This type of noise converts white pixels into black ones and vice versa, and
it considerably contaminates binary documents and grayscale images. It can be seen that
only the watermark hiding scheme 2 is able to resist to this noise if the percentage of noise
is low. Compared to other distortions, both of our watermark hiding schemes give lower
performance when the watermarked documents undergo median and gaussian filtering with
a kernel of size 3× 3. These filtering change pixel values of stroke of document foreground a
lot (smoothing the edge of document content and resulting in breaking the edge and corner
features). This is the main reason leading to reduce the accuracy of hidden information
detection because the hiding process for binary documents in the spatial domain is primarily
based on the stroke of document foreground. To conclude, the robustness against geometric
and salt-and-pepper distortions is an important property to enhance the performance of the
proposed scheme against printing and scanning degradations as shown in the next section.

Robustness against print-and-scan distortion: A good watermarking system for binary
document images should tolerate distortions caused by print-and-scan process. The printing
and scanning process do not just geometrically distort the documents, but make the doc-
uments suffering from salt-and-pepper noise and blur. The scanned documents are more
or less subjected to rotation with a certain degree. This is due to paper loaded from the
paper tray of printer or placed on the scanning screen of scanner machine by human, but
the rotation is quite small in general. However, the document dimension (scaling factor) is
much change at different resolutions. In fact, the level of print-and-scan distortions is relied
on the quality of printing and scanning machine used for.

Figure 5.25: The average results of hidden information detection for different documents
in which the watermarked documents are printed at resolution of 600 dpi, and then scanned
at various resolutions.

In order to carry out experiment for the robustness against print-and-scan process, we use
the watermark hiding scheme 2 for demonstrating the resistance to this kind of distortion.
The printing machine named Kyocera TASKalfa 3252ci is used to print the watermarked
documents. The printed documents are then scanned by using the same machine at various
resolutions including 200, 300, 400 and 600 dpi. The documents printed and scanned at the
same resolution of 600 dpi keep the same dimension (4960 × 7014). In this experiment, one
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round of the printing and scanning process is deployed for watermarked documents. Then,
the hidden information is extracted from these scanned documents.

The average results of accuracy when detecting the hidden information is illustrated
in Figure 5.25. Our approach is capable to resist to distortions when the watermarked
documents are printed and scanned at high resolution of 600 dpi. For lower resolutions,
the accuracy of hidden information detection is considerably diminished. The main reason
for this reduction is the integrity between the number of edge and corner features within
each subregion is lost, and the other factor is that the matching of the watermarking regions
between the watermarked and scanned documents can not be done. With a resolution of
600 dpi, the scanned documents obtain a good accuracy ratio during the detection of hidden
information. However, some types of documents give lower performance when extracting
the hidden information (failed to restore to the meaningful information), and most of these
documents belong to Type-2. Below is an illustration of extracting the hidden information
with the accuracy lower than 1.

– wm = “fa4ermarking-informataon” corresponding to Accurary = 0.98.

– wm = “Watarma2kifg-informati/n” corresponding to Accurary = 0.97.

– wm = “watermaskkng-informction” corresponding to Accurary = 0.98.

– wm = “watermarkh3formation” corresponding to Accurary = 0.89.

– wm = “watermarkhg-i” corresponding to Accurary = 0.74.

Comparison with the state-of-the-art methods

In this section, we make a quantitative comparison with other data hiding methods for
binary document and natural images14–16 in spatial domain. Unfortunately, we can only
access to limited resources of the methods of the literature, and therefore we can not make
more quantitative comparison with the other. The comparison only focuses on whether
the data hiding scheme is capable to satisfy such requirements as imperceptibility, capacity,
robustness and security.

We used the binary documents made publicly available by Cao15, consisting of two types
of documents with English text (English text 1, English text 2 and English text 3 refer to
document with Arial, Times New Roman and Bradley Hand ITC font style, size of 12pt)
and Chinese text (Chinese text 1 and Chinese text 2 indicate document with Song Ti and
Hei Ti font style, size of 12pt) as shown in Figure 5.26. These documents contain text in
A4-size paper and are presented under different resolutions including 150 dpi (1240× 1753),
300 dpi (2479 × 3507) and 600 dpi (4958 × 7016). The results of the comparison in regard
to capacity is illustrated in Table 5.22 where IB3 and IB4 refer to interlaced block with size
of 3 × 3 and 4 × 4.

As mentioned in the state-of-the-art review, the approach presented by Yang and Kot14
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Figure 5.26: The sample document content with English text and Chinese text used for
comparison.

Figure 5.27: Sample binary natural images with size of 512 × 512.

satisfies the essential properties such as imperceptibility, capacity and security whereas the
scheme presented by Cao and Kot15 is designed to meet the requirements of imperceptibility
and capacity. In comparison with these approaches, our watermark hiding scheme 1 (WM1)
gives better capacity, except for English 3 at resolution of 300 and 600 dpi. Regarding the
watermark hiding scheme 2 (WM2), the capacity is lower than other approaches, but our
scheme has proved to be robust against the distortions, which has not been demonstrated in
the other existing works, especially against print-and-scan distortion. We can not propose
the quantitative comparison on the imperceptibility property because the implementation
for measuring the visual quality used in their work are not publicly available.

Moreover, we make a quantitative comparison with the recent data hiding approach pro-
posed by Nguyen et al.16 in which we test this algorithm on our sample documents depicted
in Figure 5.22 as well as our watermark hiding scheme 1 on the sample natural images
(standard test images) as shown in Figure 5.27. There are three thresholds which affect the
quality of hidden images and capacity in their scheme16, and we use the maximum threshold
Th = 6 (maximum hiding capacity) for this experiment. The higher the threshold is, the
more the capacity is obtained. However, the quality of images after hiding secret bits will
be low. The results of comparison on binary documents and natural images are shown in
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Table 5.22: Comparison of our watermark hiding schemes and the schemes presented in14;15

in terms of capacity (bits)

Documents Resolution
Scheme presented in14 Scheme Our method

IB3 IB4 presented in15 WM1 WM2

English 1
150 5,245 6,357 9,442 10,175 889
300 15,873 17,701 30,391 38,528 1,485
600 29,548 31,735 48,017 61,989 1,732

English 2
150 5,721 6,392 6,693 8,213 671
300 16,083 17,515 27,789 33,372 1,682
600 33,640 36,285 63,871 76,535 1,746

English 3
150 4,018 4,603 4,115 4,563 473
300 18,577 19,481 24,850 23,646 1,693
600 44,296 46,884 83,231 63,173 1,868

Chinese 1
150 5,282 6,013 6,252 10,629 906
300 15,822 17,513 25,650 30,959 1,588
600 34,640 38,513 66,077 73,098 2,273

Chinese 2
150 5,220 5,917 7,629 12,650 981
300 13,166 14,525 24,200 30,837 1,629
600 28,276 30,914 55,118 66,337 2,257

Table 5.23: Comparison of our approach (WM1) and Nguyen’s method16 on capacity and
imperceptibility for natural images as shown in Figure 5.27

Images
Scheme presented by Nguyen16 Our method (WM1)
Capacity PSNR SSIM Capacity PSNR SSIM

Lena 86,613 10.86 0.6787 1,565 29.86 0.9921
Baboon 86,280 9.91 0.7234 3,693 29.79 0.9966
Peppers 86,634 10.96 0.6866 1,231 29.53 0.9915
Airplane 86,598 10.86 0.6387 1,612 29.44 0.9909

Table 5.23 and Table 5.24.

Table 5.24: Comparison of our approach (WM1) and Nguyen’s method16 on capacity and
imperceptibility for binary documents depicted in Figure 5.22

Documents
Scheme presented by Nguyen16 Our method (WM1)
Capacity PSNR SSIM Capacity PSNR SSIM

Doc1 35,514 25.60 0.9826 43,211 22.54 0.9747
Doc2 5,130 34.76 0.9840 44,350 22.20 0.9742
Doc3 109,212 23.45 0.9568 72,345 21.77 0.9618
Doc4 3,294 35.97 0.9864 128,944 24.97 0.9789
Doc5 120,183 20.18 0.9424 78,725 21.98 0.9694
Doc6 120,228 24.31 0.9418 154,895 24.36 0.9736
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The Table 5.23 and Table 5.24 show that our watermark hiding scheme 1 gives better
performance for the documents whose the stroke part of the objects contains many of edge
and corner features. Meanwhile, for natural images, the data hiding method presented by
Nguyen et al.16 gives higher capacity than our WM1, but instead its imperceptibility is
quite low (as depicted in Table 5.23). The main factor allowing the Nguyen’s approach16 to
provide high capacity on natural images is that the complex blocks for data hiding found on
this type of image are much more numerous than on the document images. In general, based
on the scheme’s functionalities, these data hiding methods14–16 are appropriately classified
into steganography applications because their approaches mainly focus on the capacity, and
security (as found in14) whereas the robustness of the scheme is not mentioned.

To provide an overview of the performance of our approach compared to the existing
data hiding methods, apart from previous quantitative comparisons, we compare our ap-
proach with other typical watermarking and data hiding schemes for binary images. This
comparison basically concentrates on: (i) whether the watermarking scheme can be applied
on binary documents with hybrid content; (ii) the scheme is capable to satisfy the crucial
properties such as robustness, which is very challanging for binary documents, and security;
(iii) which techique is used to detect document features in order to develop the data hiding
or watermarking scheme; and (iv) whether the security features such as the encryption of
secret message, the shuffling of blocks used for carrying data, etc. are integrated into the
data hiding schemes. The comparison are depicted in Table 5.25. The comparison shows
that our approach obtains competitive performance compared to the existing approaches.
The proposed approach is based on pattern recognition technique unlike other methods of
the literature, and it provides robustness and security enhancement.

Table 5.25: Comparison with typical watermarking and data hiding approaches

Method General PS Security Technique

content distortion

Kim1 No No No Edge direction histogram (each word)

Zou51 No Yes No Inter-word spaces (spaces in each row)

Palit48 No No No Pattern matching (character prototype)

Lina71 No Yes No Stroke direction modulation (each character)

Lee96 Yes No Yes Edge line segment similarity measure

Yang14 Yes No Yes Pixel transition and uneven embeddability

Cao15 Yes No No Edge adaptive grid and contour tracing

Wang98 Yes No Yes Block pattern (block-by-block)

Daraee101 Yes Yes No Fractal codes (block-by-block)

Hou102 Yes Yes No Sampling operation (image thumbnail)

Son16 Yes No Yes Block classification (block-by-block)

Our method Yes Yes Yes
Fully convolutional networks,

corner and edge features
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5.10 Summary

In this chapter, we have presented the experimental results of our proposed schemes de-
signed for securing (1) grayscale documents and (2) binary documents. In the former, we
have proposed: a feature points-based steganography scheme; a stable regions and object fill-
based watermarking scheme (STA-WM); a watermarking regions and hiding pattern-based
watermarking scheme (PAT-WM); a watermarking regions and connected object-based wa-
termarking scheme (HAN-WM) which can be applied for both typewriting and handwriting
documents; a generated document-based watermarking scheme (GEN-WM); and a character
variations-based watermarking scheme (VAR-WM). In the later, we have implemented a wa-
termarking scheme based on the watermarking regions, and the hiding patterns describing
the edge and corner features of document content. To develop these approaches, we have
used various pattern recognition techniques to detect document features such as: SURF
detector; a new detector based on contourlet transform and distance transform; a combi-
nation of common image processing operations and non-subsampled contourlet transform;
fully convolutional networks; and generative adversarial networks. The steganography and
watermarking algorithms are based on the level of pixel intensities, or the shape of document
characters and symbols.

The experimental results show that the approaches of generating an intermediate docu-
ment from the input one, which is used as a reference for scheme development, and generating
variations of document characters give high performance. Specifically, the watermark is prop-
erly detected from the watermarked documents subjected to: printing at resolution of 600
dpi and scanning at resolutions of 600, 400, 300 and 200 dpi; two rounds of photocopying
prior to scanning at various resolutions. However, the scheme for binary documents is only
able to detect the watermark from the watermarked documents when printing and scanning
at a resolution of 600 dpi.
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Chapter 6

Conclusion and future work

This thesis presents various approaches using pattern recognition techniques to develop data
hiding system for securing administrative and bussiness documents. Both analytic study
and experimental results are detailed in this manuscript. We have presented several strate-
gies, which have been designed to protect legal documents or images including data hiding,
barcode, quick response code, document signature, fraud detection, photo signature, etc.
Due to the wide range of applications of data hiding technique and in the context of docu-
ment images, this technique can be applied for various applications, consisting of ownership
protection, alteration detection, access or copy control, annotation, covert communication
and protection of trained neural network. This is why we have decided to choose digital
steganography and watermarking as an efficient solution for document protection. There-
fore, one steganography and six watermarking schemes have been developed to integrate
security feature within various types of hybrid documents (grayscale and binary document,
and handwritten document) for the purpose of securing documents. To implement these
schemes, different aspects have been considered as follows.

1. The consistency of features extracted from the original document and watermarked or
stego document for constructing data hiding scheme.

2. Leveraging conventional pattern recognition techniques to construct hiding regions for
steganography, and to extract the stable regions for watermarking documents.

3. Taking advantage of deep learning to enhance stable watermarking regions, generate
a quality document from the input document (in order to enhance the detection of
document content and the performance of watermarking algorithm), and to produce
new fonts or variations of document characters for improvement of scheme robustness.

4. Correction of geometric distortions caused by the process of printing and scanning,
and print-photocopy-scan for enhancing the precision of hidden information detection.

5. Developing watermarking algorithms based on: (1) level of pixel intensities such as
group of contiguous pixel values, connected objects, ratio between the number of edge
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and the number of corner features, absolute distance of pixel values between the gener-
ated and watermarked document; and (2) variations of document characters (shape of
characters). In addition, pseudo random number generator is also applied to enhance
the security feature of watermarking scheme.

6.1 The stability of feature points for steganography

scheme

The extracted feature points by using SURF detector are sorted based on their response
values. The sorted feature points are then used to construct a B × B hiding regions. The
pixel values of selected feature points are slightly changed for carrying secret bits. We make
use of LBP for detecting corner features and LTP for determining positions where their
pixel values are adjusted to hide information. The Hough transform is utilized to estimate
rotation angle for document correction. The information hiding algorithm is developed based
on an odd-even feature of a pixel value. In addition, we have proposed a new feature point
detector based on contourlet transform and distance transform with the aim of improving
the stability of feature points against usual distortions. The extracted feature points and
steganography algorithm are detailed in Section 3.2. The results show that this approach
gives good quality of stego-documents but low robustness against distortions.

6.2 Stable regions and group of pixel values for water-

marking documents

Developing steganography scheme for documents in spatial domain using feature points gives
low resistance to distortions. Instead, we have developed other robust watermarking schemes
by extracting stable regions from the documents, and developing watermarking algorithms
based on a group of pixel values. Specifically, as the scheme presented in Section 3.3, we
detect the stable regions by making use of a combination of common image processing
operations and non-subsampled contourlet transform. The watermarking algorithm is based
on a group of m successive pixel values situated within the filling part of document objects.
This approach allows to obtain the watermarked documents whose content is minimally
distorted in terms of normal observation. It is robust to printing and scanning at high
resolution.

Another approach presented in Section 4.2 detects watermarking regions using fully con-
volutional networks. We construct a hiding pattern of size m × n to hide one information
bit. The watermarking algorithm is developed based on the mean values corresponding to
two divided group of pixel values within each hiding pattern. In addition, the watermarking
scheme for handwritten document presented in Section 4.3 can also be applied for type-
writing documents. The watermarking algorithm depends on sum values corresponding to
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two divided group of pixel values in each connected object extracted from the document.
Correcting geometric distortion of these three schemes are performed by determining the
minimum rectangle surrounding entire document. The results show that the regions ex-
tracted using FCN are more stable than the approach using conventional techniques. The
FCN-based watermarking schemes also give good imperceptibility and enable to be robust
to printing and scaning at high resolution.

The proposed strategy based on the extraction of stable regions and the use of a group of
pixel values has been significantly improved the robustness of the scheme in comparison with
the approach based on feature points and odd-even feature of a pixel value. However, the
accuracy of the hidden information detection process is still low when printing and scanning
the watermarked documents at middle and low resolutions.

6.3 The generation of referenced document and varia-

tions of characters

The robust watermarking scheme presented in Section 4.4 generates an intermediate doc-
ument from the input document by using generative adversarial networks. The generated
document is then used as a reference to enhance the ability of detecting document content,
and it is also utilized to measure the absolute distance of pixel values between each of bound-
ing boxes extracted from the watermarked document and its corresponding bounding box
from the referenced document. Another approach based on character variants has been pro-
posed in Section 4.5 wherein the new font generation is conducted by making use of GAN.
Then a FCN network is utilized to detect the hidden information. These approaches have sig-
nificantly improved the precision of hidden information detection compared to the previous
approaches. Specifically, the watermark can be detected when the watermarked documents
are scanned at low resolutions, and even at low resolution for some types of document, and
then the watermarked documents suffer two rounds of photocopying prior to scanning at
various resolutions. Both of these schemes are also designed for security enhancement by
using pseudo random numbers.

6.4 The corner and edge features for watermarking bi-

nary documents

Detecting salient maps, which are used as a guidance for identifying appropriate content
regions for watermarking, is conducted by using FCN. The hiding pattern of size 3 × 3 has
been constructed to detect the corner and edge features of document. They are applied
for carrying watermark bits. There are two watermarking algorithms developed in this
scheme. The first one hides one secret bit into each hiding pattern describing the edge and
corner features. The second one hides one secret bit into a group of adjacent objects. The
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former algorithm hides data directly into the center pixel of a hiding pattern whereas the
later algorithm hides data by adjusting the ratio between the number of corner features
and the number of edge features within each of grouped objects. In addition, the pseudo
random number generator has been adopted to encode and decode the secret information
for enhancement of security feature. This scheme is able to withstand distortions caused by
printing and scanning at high resolution.

6.5 Future works

This thesis has proposed a steganography and several watermarking schemes for various
documents like grayscale and binary documents, and handwriting documents to improve the
effectiveness for securing legal documents. However, there are some opportunities to further
improve these approaches, and also to deal with other relevant issues when using pattern
recognition techniques. One of these issues is to detect the hidden information from captured
documents, which has not been covered in the thesis. Depending on the discussions carried
out during the current research, some of these issues are detailed as follows.

– More experiments are needed to evaluate all the proposed methods: (i) Testing the
proposed schemes on a bigger testing dataset; (ii) For print-photocopying-scan resis-
tance, the schemes need to be tested on differents machine with different resolutions;
(iii) Applying various error correction codes for correcting the improperly extracted
message bits in order to improve the scheme robustness.

– For convenience usage in real applications, it is expected that the watermarking sys-
tem is capable of verifying the legal documents by using a mobile device. Thus, the
robustness against these distortions should be integrated in the watermarking sys-
tem. Although the approaches based on the generated document and the character
variations using GAN and FCN have significantly improved the robustness, they still
have not been able to detect the hidden information from the watermarked documents
which are subjected to light contrast due to capturing from camera. To improve the
accuracy of the information detection, a specific learning process combining supervised
and unsupervised approaches could be applied to the networks such as FCN, CNN-
autoencoder, etc. With this strategy, the network could learn better features from the
variations of document characters, and it could obtain better results when detecting
the character variants in the watermarked documents even the documents undergone
distortions.

– The documents captured from mobile devices or camera often suffer from perspective
distortions and background noise. This kind of distortions could much affect the de-
tection of document content, so the performance of a watermarking scheme could be
considerably diminished. The proposed schemes have to provide some strategies to
correct the perspective distortions and to eliminate the background noise. There are
possible approaches to cope with this problem, consisting of: training a deep neural
network, or using Apple’s rectangle detection SDK, or Hough transform.
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Appendix A

Publications

A.1 Journal papers

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “A robust watermarking
approach for security issue of binary documents using fully convolutional networks”.
International Journal on Document Analysis and Recognition (IJDAR), 2019 (under
review).

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “Content enhancement and
font generation-based data hiding approach for securing genuine documents”. Pattern
Recognition Journal, 2019 (under review).

A.2 Workshop and conference papers

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “A spatial domain steganog-
raphy for grayscale documents using pattern recognition techniques”. International
Workshop on Computational Document Forensics, International Conference on Docu-
ment Analysis and Recognition (IWCDF@ICDAR), 2017.

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “Stable regions and object
fill-based approach for document images watermarking”. International Workshop on
Document Analysis Systems (DAS), 2018.

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “Document images water-
marking for security issue using fully convolutional networks”. International Confer-
ence on Pattern Recognition (ICPR), 2018.

– Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier. “Watermarking for secu-
rity issue of handwritten documents with fully convolutional networks”. International
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Conference on Frontiers in Handwriting Recognition (ICFHR), 2018.

– Cu Vinh Loc, Jean-Christophe Burie, Jean-Marc Ogier and Cheng-Lin Liu. “A ro-
bust data hiding scheme using generated content for securing genuine documents”.
International Conference on Document Analysis and Recognition (ICDAR), 2019.

– Cu Vinh Loc, Jean-Christophe Burie, Jean-Marc Ogier and Cheng-Lin Liu. “Hid-
ing security feature into text content for securing documents using generated font”.
International Conference on Document Analysis and Recognition (ICDAR), 2019.
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