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Abstract

This thesis deals with the localized failure for structures built of heterogeneous
composite material, such as concrete, at two different scale. These two scale are
latter connected through the stochastic upscaling, where any information obtained
at meso-scale are used as prior knowledge at macro-scale.

At meso scale, lattice model is used to represent the multi-phase structure of
concrete, namely cement and aggregates. The beam element represented by 3D
Timoshenko beam embedded with strong discontinuities ensures complete mesh
independency of crack propagation. Geometry of aggregate size is taken in agreement
with EMPA and Fuller curve while Poisson distribution is used for spatial distribution.
Material properties of each phase is obtained with Gaussian distribution which takes
into account the Interface Transition Zone (ITZ) through the weakening of concrete.

At macro scale multisurface plasticity model is chosen that takes into account
both the contribution of a strain hardening with non-associative flow rule as well as
a strain softening model components for full set of different 3D failure modes. The
plasticity model is represented with Drucker-Prager yield criterion, with similar plastic
potential function governing hardening behavior while strain softening behavior is
represented with St. Venant criterion.

The identification procedure for macro-scale model is perfomed in sequential way.
Due to the fact that all ingredients of macro-scale model have physical interpretation
we made calibration of material parameters relevant to particular stage. This
approach is latter used for model reduction from meso-scale model to macro-scale
model where all scales are considered as uncertain and probability computation is
performed. When we are modeling homogeneous material each unknown parameter of
reduced model is modeled as a random variable while for heterogeneous material, these
material parameters are described as random fields. In order to make appropriate
discretizations we choose p-method mesh refinement over probability domain and
h-method over spatial domain. The forward model outputs are constructed by using
Stochastic Galerkin method providing outputs more quickly the the full forward model.
The probabilistic procedure of identification is performed with two different methods
based on Bayes’s theorem that allows incorporating new observation generated in a
particular loading program. The first method Markov Chain Monte Carlo (MCMC)
is identified as updating the measure, whereas the second method Polynomial Chaos
Kalman Filter(PceKF) is updating the measurable function. The implementation
aspects of presented models are given in full detail as well as their validation through
the numerical examples against the experimental results or against the benchmarks
available from literature.





Sažetak

Ova teza se bavi problemima lokalizovanog loma konstrukcija izgrađenih od hetero-
genih materijala, kao što je beton, na dva različita nivoa. Ova dva nivoa su povezane
pomoću metoda stohastičkog uvećavanja, gdje je svaka informacija dobijena na mezo
nivou iskorištena kao prethodno znanje na makro nivou.

Na mezo nivou korišten je rešetkasti model kako bi predstavili više komponentnu
strukturu betona, odnosno cement i agregat. Gredni elementi modela su predstavljeni
pomoću 3D Timošenkove grede sa dodatim jakim diskontinuitetom koji osigurava
propagaciju pukotine neovisno od odabrane mreže. Veličina zrna agregata je uzeta
u skladu sa EMPA i Fuller-ovom krivom, a prostorna raspodjela unutar domene je
izvršena pomoću Poisson-ove distribucije. Materijalne karakteristike obje faze su
odabrane pomoću Gauss-ove distribucije čime je kroz slabljenje betona uzeta u obzir
i zona prelaza između ovih faza.

Na makro nivou je odabran višekriterijalni model plastičnosti koji uzima u
obzir doprinos komponenti očršćavanja sa ne-asocijativnim zakonom tečenja kao i
komponenti omekšavanja kako bi prikazali kompletan 3D način otkazivanja. Model
plastičnosti je predstavljen pomoću Drucker-Prager-ovog kriterija tečenja, sa sličnom
funkcijom plastičnog potencijala kojom je definisan način očršćavanja, dok je zakon
omekšavanja predstavljen pomoću St. Venant-ovog kriterija.

Postupak identifikacije za makro model izvršen je postupno. Zbog činjenice da svi
parametri makro modela imaju fizičko značenje, kalibracija parametara materijala je
izvršena za svaku fazu relevantu za određeni parametar. Ovaj pristup je korišten i
za redukciju makro modela, gdje su oba nivoa uzeta u obzir sa određenim izvorima
nesigurnosti. U slučaju kada modeliramo homogeni materijal parametri modela
su definisani kao slučajne promjenljive dok su u slučaju heterogenog materijala
parametri definisani kao slučajna polja. Za diskretizaciju prostorne domene korišten
je h-metoda progušćavanja mreže dok je za domenu vjerovatnoće korišten p-method.
Korištenjem Stohastičke Galjerkinove metode formiran je zamjenski model koji nam
daje mnogo brže rezultate proračuna nego puni proračunski model. Probabilistička
procedura identifikacije parametara je izvršena sa dvije različite metode zasnovane
na Bayes-ovoj teoremi koja nam omogućava da svaku novu informaciju dobijenu
određenim ispitivanjima uključimo u proračun. Prva metoda, Markov Chain Monte
Carlo (MCMC) metoda je zasnovana na ažuriranju mjere vjerovatnoće, dok je
druga metoda Polynomial Chaos Kalman Filter (PceKF) predstavlja ažuriranje
slučajne promjenljive. Implementacija predstavljenih modela je detaljno prikazana
u radu kao i potvrđivanje modela poređenjem rezultata numeričkih simulacija sa
eksperimentalnim rezultatima i rezultatima dostupnim u literaturi.
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2 Introduction

1.1 Motivation
At many structures in Bosnia and Herzegovina there are visible scars of war after more
than a two decades. As witnesses of a dark period, they are demolished, unstructured
and horrific structures. Regardless of their condition, some of these structures
are still being exploited (Figure 1.1). Thus, it is very important to determine the
functionality of these structures and propose future action. Is it possible to repair
these structures and retain their functionality, or it is necessary to demolish them
completely depends on our knowledge about their durability (life-cycle integrity).
Experimental testing for large structures is still lacking whether due to their size
or due to different loading programs (natural or man-made) that cannot be fully
reproduced in laboratory testing. Furthermore, the testing on small size structure are
not sufficient to provide full validation because a well-known size-effect (for different
size structures built of same heterogeneous material we can observed different failure
modes). Moreover, many of these structures are built of probably the most used
heterogeneous composite material, such as concrete which in traditional engineering
studies have been considered as a homogeneous material. It is well-known by now
that observation of concrete stands on three levels. Each of these levels have a life
on their own and brings it to the next level.

All the specific features described above, which are characteristic for concrete-like
materials, pushes us to construct a models for the structures built of heterogeneous
composite materials capable to predict structure response probability distribution
taking into account multi-scale analysis. In vast majority of recent works upscaling
approach is based only on capturing the ’average’ response on the larger scale or a
pre-defined probability distribution is used. A large number of numerical models
can be found in the literature dealing with mesostructure and macrostructure of
heterogeneous materials and many shows some important limitations. Thus, in next
section we provide an overview of numerical methods for simulation of concrete
bahavior.

Figure 1.1: Structures built of heterogeneous materials: Hotel Igman (Sarajevo); Concrete
bridge (Visoko); Hydropower Plant (Jablanica)

1.2 Multi-scale modeling of concrete
Concrete as a mixture of cement, water and aggregates of different sizes, can be
modeled and understood considering it as a multiscale material which consist from
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different scales: micro-scale (µm), meso-scale (mm−cm) and macro-scale (m) (Figure
1.2). At macro-scale concrete is considered as homogeneous material, and in most of
the recent works proposed models at this scale are phenomenological. Disadvantage
of macro-scale simulation is that we can not represent actual nonlinear behavior of
concrete when constitutive materials are changed. Thus, combining phenomenological
models with continuum-type constitutive models such as plasticity and/or damage
theory along with some principles of fracture mechanics provides a satisfactory
description of mechanical behavior of concrete. The price to pay is the complexity
of models as well as additional parameters, in some cases physically-maeningless,
required to describe such models.

>10 m
-1

(a)

(b)

(c)

>10  m
-3

>10  m
-5

Figure 1.2: Representation of different levels of analysis: (a) macroscale; (b) concrete
mesoscale; (c) micro scale

Numerical simulation of concrete at meso-scale starts to develop with the increase
in computer power. At this scale concrete is modelled as a composite material
consisting of three phases: the larger aggregates, the mortar, and the interfaces
between these two (Figure 1.2b). ITZ properties vary substantially from the mortar
matrix due to the gradient of porosity and the complementary gradient of anhydrous
cement and hence, it is logical to model these phases separately in the mesoscale
models [1]. This approach can be used effectively to study the effect of concrete
mix on the macro properties of concrete and to investigate the nonlinear behaviour
of concrete [2]. It is the most useful and practical way of modelling concrete when

Failure models in heterogeneous materials



4 Introduction

the heterogeneous nature of concrete should be taken in to account in order to
understand how the phases affect the macro behavior, fracture mechanics of concrete
and how to improve the performance of concrete. By using mesoscale models to
simulate the behavior of concrete, number of experimental tests and amount of time
is spent can be reduced. Therefore, meso-scale modeling with accurate constitutive
material behavior can be considered as cost-effective, and time effective alternative
to predict mechanical behavior and optimum mix design method for concrete.

At the microscale level ITZ and internal structure of the hardened cement paste
are taken into account. Chemical processes during hydration of cement, autogenous
swelling and self-desiccation or aggressive agent impact can be studied at this scale.
All these features can improve concrete resistance and durability. In recent decades
a new experimental techniques are developed, such as nanoindentation which allows
to determine the behavior of the calcium silicate hydrates (CSH). Also, there exist
in the literature a developed program for modeling the microstructural development
and performance properties of cement based materials [3] providing a influence of
different process that happanes at this scale. Latter, it turns out to be very important
to overall mechanical and time-dependent properties of concrete.

In multiscale analysis, the results from lower scale are transfered to the upper
scale. For instance, in the case dealt with in this thesis, information obtained at
meso-scale are used as a prior knowledge on macro-scale. This upscaling requires
both meso-scale and macro-scale model which are latter coneccted through the
deterministic or stochastic upscaling techniques.

1.2.1 Meso-scale modeling
Although concrete modeling at mesoscale has become popular in the last few decades,
a large number of such models can be found in the literature. The pioneering
continuum model [4], is followed by many others [5, 7, 6, 8–12] based on the lattice
and continuous representation of heterogeneous media with a focus on the global
response and the cracks propagation under the mechanical loads.

As already mention above, there is a large number of different mesoscale models
and most of them may be included into the following broad groups: particle models,
rigid body spring models, lattice models and continuum models. In following section
we give a brief review and comparison of these meso-scale models.

1.2.1.1 Particle models

Lattice Discrete Particle Methods (LDPM) is a combination of the discrete element
method (DEM), which was initially introduced to model granular systems, and the
confinement shear lattice model [8, 13]. In LDPM, element size in the lattice is not
a free parameter as in the traditional lattice methods. Element size is dependent on
the aggregate arrangement of the concrete and the lattice nodes are coincident with
the centroids of the aggregates. These lattice elements characterize the interaction
between aggregates in concrete [14]. Lattice element structure connecting the concrete
is obtained by 3D domain tessellation defining polyhedral set which includes one
aggregate particle. Both normal and shear stresses characterize the interaction
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Figure 1.3: Meso-structure tessellation (left) and definition of nodal degrees of freedom
and contact facets in two-dimension (right) [15]

between the aggregate particles. Four aggregates particles whose centers lie in the
Delaunay tetrahedral participate to formulate the interactions among the particles.
Stresses and strains are defined on the every face of the polyhedral which contain
the aggregate particles [15].

Authors in [16] developed a mesoscale model using LDPM by assigning the
average properties of two adjacent aggregates and the mortar matrix in between
those two aggregates to the lattice element connecting the two aggregates. This model
was satisfactory in simulating the meso structure of concrete with high aggregate
density. LDPM has found to be realistically simulating most of the loading conditions
including quasi static loading, predicting tensile and compressive strength, fracture
modelling and size effect of concrete, damage in compression, confined loading
conditions etc. [13].

Authors in [15] developed a lattice discrete particle meso model of concrete
and validated with the experimental results and carried out simulations for uncon-
fined compression, bi-axial behaviour, triaxial compression, torsional compressive
behaviour, cyclic behaviour, tensile fracturing behaviour and tensile splitting test and
found that all those loading conditions can be successfully simulated using LDPM.

The advantage of these models is that they are not computationally expensive,
but they also have some drawbacks. The first is conceptual type: whenever we
consider a lower scale of concrete, constitutive laws should be as simple as possible,
which is not the case here. Another disadvantage of this models, in some previous
works, relates to the unrealistic crack roughness at large scale.

1.2.1.2 Rigid body spring models

Rigid Body Spring Model (RBSM) was introduced in [17] where the structure is
discretized in to rigid sections and these sections are connected using zero size springs
distributed in the contact boundaries [18]. Voronoi diagrams are generally used to
partition the continuum in to rigid bodies [19]. In this method, behavior of individual
materials is represented using springs. Elastic behaviour of the representing material
is obtained by assigning appropriate spring constants. This procedure requires a low
computational capacity compared with the continuum finite element method [17].
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Element 1 Element 2

h 1 h 2

k n

k m

Figure 1.4: Element formulation in RBSM [20]

RBSM has the advantages of simplicity and freedom of mesh and layout generation
[21].

In [20] authors carried out a mesoscale model analysis using a RBSM in 2D and
in 3D. Each aggregate particle has two translational and one rotational degrees of
freedom in 2D. Normal and shear springs are assigned to the boundary of these ele-
ments as shown in Figure 1.4. Normal springs can have both tensile and compressive
stresses and the shear springs can have shear stresses. Fracture is known to happen
if the normal spring reaches the tensile strength of the concrete or the shear springs
reach the shear strength. It was found that using this model, compressive failure,
tensile failure and crack propagation can be predicted.

Fracture analysis concrete can be effectively done using RBSM [21]. Fracture
propagation can be modelled by removing the springs or degrading the stiffness
values of the springs. In this method, fracture is propagated through interparticle
boundaries and hence the fracture pattern might be affected by the arrangement of
rigid particles [22]. This can be reduced by using a random mesh design.

1.2.1.3 Lattice models

In lattice models, a continuum is discretized using a set of points called ’sites’ which
forms a grid. These sites are connected by 1D elements such as beams, trusses and
springs generating the meso structure of the material. Depending on the material
represented by the bonds, a constitutive relationship is selected.

The lattice structures can have various geometrical arrangements such as triangu-
lar lattices, square lattices, random lattices as shown in Figure 1.5 [23]. It has been
shown that fracture pattern is dependent on the element type used in the lattice
as well as the orientation of the mesh in the model which can be solved by using a
random lattice in the model [24].

The main idea in large number of lattice meso-scale models is that lattice elements
progressively fail (leading to softening behaviour in failed elements) which eventually
results in total macroscopic failure. However, there is still an ongoing problem of
how to represent correctly the post peak softening behaviour, which is normally
dependent on the mesh. This pertains to released fracture energy (i.e. area below
the softening curve) which is not unique for different mesh size. Avoiding this fact
can lead not only to wrong global fracture energy and wrong post peak response, but
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a)

beams

Unit cell

b)

Unit cell

beams

Figure 1.5: Lattice-beam models: (a) regular triangular lattice; (b) regular square lattice,
taken from [23]

(a) (b)

Figure 1.6: (a) 2D irregular lattice with Voronoi cells (b) 3D irregular lattice with Voronoi
cells

it can also underestimate the global fracture limits. Many lattice element models
use sequentially linear algorithms to avoid negative stiffness terms and deals with
mesh-dependence by performing additional regularization procedures with scaling
initial strength and ultimate strain on local element level to obtain correct fracture
energy on a global level [25]. Some other models use incremental (sometimes also
iterative) schemes in time, but the problem of fracture energy depending on mesh
still remains, like in standard finite elements. One of the ways to provide mesh
independent response is by using embedded strong discontinuity approach [26, 27],
which is generalized to include the fracture process zone [28, 29].

There are basically two types of lattice models to analyze the meso structure of
concrete. In the first type, single lattice elements are used to represent the interaction
between aggregates [30]. In this model, midpoints of the concrete aggregates are used
as the nodes for the finite element mesh. In the second type, heterogeneity of the
concrete material is represented using a lattice element in which material properties
are spatially varying [31, 32]. In some recent works authors proposed an element
that has only two nodes and it is a two-phase or three-phase element [33, 31].

Advantages of lattice models compared with the finite element models. is that
arrangement of the particle structure can be achieved without having to generate
complicated shapes like polyhedrons and one-dimensional fracture criteria can be
used instead of complex material models [34]. Another major advantage of the lattice
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models is that heterogeneities can be represented by them conveniently. However,
one drawback of the lattice element method compared with the continuum-based FE
models is the difficulty in calculating the effective model parameters [35] because
it is difficult to capture lattice parameters using conventional macro scale testing
methods. This issue can be solved by using inverse procedure proposed in this work.
In three-phase lattice models, ITZ has a thickness of one lattice element. However,
this thickness values are overestimated because the thickness of ITZ in found to be
10-50 Îijm. To avoid this issue, either length of the ITZ elements should be reduced
or the length of the all elements should be reduced. However, this will increase the
number of elements and the computational time and memory as well [7].

1.2.1.4 Continuum models

Another family of meso-scale representations is the continuum-based models. During
the last years a large number of continuum models have been developed either for
meso-scale representation of concrete [2, 4, 11, 12, 36, 37] and mortar and cement
paste with porosity taken into account [38]. The main advantages of these models is
that composite materials are presented realistically (Figure 1.7), and they use a very
simple constitutive law, consisting of the normal and shear cracking laws along the
interface. However, one drawback of these models is that they are computational
too expensive especially when they are used in large scale simulations.

Methods used to create the geometry, the cracking strategies, or meshing tech-
niques used to generated particle arrangement are the main differences that exist
between the above mentioned models. Many works are based on aligned meshing
with no material discontinuities within the elements, while others use unaligned
meshing with material interface within FE. Structured and non-structured mesh are
used as well, although non-structured meshes yields a larger number of degrees of
freedom increasing the computational cost.

a) b)

Figure 1.7: (a) 3D crack pattern in unaxial tension test for a structured mesh [39]; (b)
3D FE mesh of concrete with spherical aggregates [2]

1.2.1.5 Generation of geometry for meso-scale

One of the most important points in a mesoscale simulation becomes geometry
generation since we want to capture the (desired) heterogeneous nature of the
composite material, and at the same time to have FE mesh which is not too large for
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latter computation. Generally, there are two methods to generate geometry of meso
structure of the mesoscale models. First one is using the digital image based approach
which uses image-processing techniques and the other method uses parameterization
modelling approach for generating the meso structure [40].

Digital image based approach The mesoscale model is generated by processing
the digital images of the concrete specimen. This approach can be used to create
the concrete meso structure with a great extent of accuracy. There are two main
approaches to generate the images of the concrete specimen. In the first method,
concrete specimen is scraped and 2D images are taken using a scanner and these
images are combined to get the full 3D geometry of the concrete specimen [20].
Second method uses scanning of an actual concrete cube using X-ray computed
tomography (XCT) scanners and generate mesh using the digitally scanned elements
[18]. This method is a nondestructive method of generating the mesoscale and
this can identify the different components of a material. It can also be is used to
visualize the materials because of the clear 3D visualizations and high resolution
image generation [41]. In [34] is developed a mesoscale model using a medical CT
scanner. By scanning the concrete specimen, a collection of 2D images were obtained
and these 2D images were stacked on top of each other in a process called ’volume
rendering’ to obtain the 3D mesoscale model.

After generating the geometry of the meso-scale, it needs to be meshed before
the analysis. A meshing preprocessor such as hypermesh [42], Gmsh [43], and
TetGen [44] can be used to mesh the developed geometry. Analysis is carried out
using a finite element software as same as in the meso-scale geometries developed
using parameterization modelling. However, generating the meso structure is time
consuming and costly. Also, there should be large number of samples for statistical
analysis and this is not feasible with this method. Mesh generation of the scanned
meso structure is complicated [40]. Another drawback is that when the volume
rendering is done by stacking the obtained 2D images, resolution of the horizontal
and vertical directions will be different because the spacing of the 2D images is
larger compared with the image resolution. Thus, this method is much more suitable
to simulate the performance of casted samples and can be used for validation of
mesoscale modeling.

Parameterization modelling approach In the parameterization approach, the
concrete meso structure is generated using algorithms. These algorithms to generate
the meso structure can be direct or indirect. In the direct method, the aggregates, ITZ
and mortar matrix are geometrically generated, and material properties are assigned,
and finite element analysis is carried out. In the indirect method, consisting phases
of the meso structure are not explicitly modelled. Equivalent material properties
of the consisting phases are assigned to the representative elements such as lattice
beams and trusses [40]. There are many direct algorithms to place the particles
inside the area: take and place method [35, 2], random particle drop method [45]
(Figure 1.8) , divide and fill method [37], random extension method [46], and the
Voronoi/Delaunay tessellations [47, 48].
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Figure 1.8: Random particle drop method

Different shapes such as spherical, ellipsoidal and polyhedral have been used to
represent the aggregates. Spherical shape is the widely used aggregate shape due
to the convenience in particle shape generation. Irregular shape of the particle is
uniquely defined using a set of spherical harmonic coefficients. Using these irregular
particle shapes, particles shapes similar to the actual aggregate shapes in concrete
can be achieved. Shape of the aggregates plays a vital role in stress distribution in
the concrete and the fracture. Also, this will affect the cracking behavior and damage
of the concrete volume. Moreover, aggregate distribution is an important aspect in
mesoscale modelling of concrete as this will affect the mechanical properties and
behavior including the fracture. Most of the researchers have used Fuller curve [49]
to obtain the Particle Size Distribution (PSD) curve for the mesoscale modelling of
the concrete [2, 50, 36]. Fuller curve is widely accepted as the grading curve which
gives the optimum compaction, density and strength in concrete and also a good
workability and a good segregation resistance [2]. Two well-known grading curves,
EMPA and Fuller, are defined with relations

p(dFuller) = 100
√

d
dmax

p(dEMPA) = 50
(

d
dmax

+
√

d
dmax

) (1.1)

where p(dF ) and p(dE) are the cumulative percent passing through a sieve with
diameter d, with dmax as the diameter of the coarsest aggregate.

1.2.1.6 Material Constitutive Models

After meshing the developed geometry, finite element method can be used to analyze
the mesoscale model with suitable material models and properties assigned to the
consisting phases. To obtain an accurate response from the FE analysis, using
suitable material parameters and material constitutive models for the consisting
phases is vital.

Most of the researchers have used isotropic plasticity model combined with
isotropic or anisotropic damage model in order to represent the mortar material
behaviour [2, 46, 51, 52]. Also, a nonlinear isotropic damage model instead of a linear
damage model is used [53]. Shear damage has also been considered in mesoscale
models through Mohr-Coulomb criterion, Drucker-Prager material model or the
Ottosen model [54]. Regarding the aggregate, most researchers have used a linear
elastic material model in normal strength concrete under low rate of loadings which
can be reasonable because the failure is going through the mortar and the ITZ
while aggregate remain in elastic stage. However, for high strength concrete some
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researchers stated that aggregate crushed and failure surface going through the
aggregate rather going around the ITZ [55].

Material properties of the ITZ are generally assumed to be constant. In most of
the instances, mechanical properties of ITZ is taken as a fraction of the properties of
mortar matrix due to the lack of reliable material properties for ITZ. However, nano
indentation and nano scratch methods can be used to determine the mechanical
properties of ITZ [56]. Cohesive contacts and cohesive elements have been used
to model the ITZ successfully [57]. Cohesive elements are founded on the basis of
cohesive crack models. It is assumed that there is a Fracture Process Zone (FPZ)
at the front of crack tip and tractions in normal and two shear direction exist.
Traction separation graph is obtained using experiments and damage is incorporated
by degrading the stiffness values in normal and shear directions when the separations
increase assuming an irreversible progressive damage. However, the separation
displacement is difficult to obtain from the experiments and hence, fracture energy
is generally used as the fracture initiation criterion [24].

Material parameters which are needed for the simulation are generally taken using
the past literature or conducting experiments. For the three phases in the mesoscale
concrete , uniform constant material parameters such as elastic modulus, compressive
strength are assigned in most of the meso-scale models. However, to capture the
heterogeneity at the meso level, some researchers used Weibull probability distribution
to vary the material properties of mortar paste while others used similar probability
distribution to represent non-homogeneous properties in ITZ and aggregates.

1.2.2 Macro-scale modeling
To simulate the material failure at macroscopic level two frameworks are accepted:
Fracture mechanics and Continuum mechanics. In Fracture mechanics after failure
initiation the traction-separation relationship is invoked while in Continuum me-
chanics stress-strain relationship is assumed after strain localization which stands
as a precursor for failure. Thus, in next section we present most important failure
strategies.

1.2.2.1 Fracture principles: LEFM and NLFM

Fracture mechanics was first introduced by Inglis [58] on studies of the stress conce-
tration in a large elastic plate with a eliptic hole. Later, these studies was used by
Grifitth [59] to predict critical stress under which crack grows causing the material
failure. Main assumptions for linear elastic fracture mechanics (LEFM) is that stress
at the tip of the crack cannot be used as a failure criterion (stress becomes infinite
in elastic continuum), and energy dissipation occurs only at the crack tip while
the rest of the body remains linear elastic. This fracture energy can be define as
amount of energy required to open a unit of crack area. For instance, when the
work Wf neccesary to develop failure surface Af is known then fracture energy can
be expressed as Gf = Wf/Af . When cracking happens in a zone which is small
enough compared to the total structure, as in case of fracture in dams, then LEFM
approach find to be usefull. In reality the size of developed nonlinear hardening zone
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at the crack tip varies a lot. Thus, this zone is not negligible and it needs to be
taken into account which is achived by NLFM where FPZ exist and material behaves
inelastically. Another advantage of NLFM over LEFM is in its formulation which
provides direct implementation into finite element analysis. Within the framework of
NLFM the crack can be represented in two ways, either explicitly as a discontinuity
in the continuum mesh as in a discrete crack approach [60, 61], or to propagate within
the finite elements representing the continuum, smeared crack approach [62, 63].

1.2.2.2 Discrete crack approach

Discrete crack models are developed based on a Cohesive crack model, where stress
can be transfered from one side to another (Figure 1.9), and they can be found in
literature under different names: cohesive zone models developed for metals and
composites [64], or fictitious crack models developed for concrete [61]. From Figure
1.9 we can note couples of two constitutive laws: first, in a non damaged zone given in
terms of stress-strain relationship, and second as traction-separation (or stress-crack
opening) relationship. In the latter, we can distinguish another two zone, true crack
zone where is no more stress transfer and fracture process zone where stresses are
still transferred.

true crackfracture process zone

           (FPZ)

micro cracks

G f

w

ts

e

wceu

f +

f +

w

- tensile strength

- crack opening

Figure 1.9: Fictitious crack model

Although at first glance these models are matching with the nature of physical
crack [65], they still have some drawbacks. If we want to get the accurate results
for the fixed FE mesh it is necessary to know the crack path apriori and elements
should be oriented in the crack direction. This is implied by the fact that between
adjacent elements special boundary conditions or interface elements are placed in
order to simulate the crack propagation.
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1.2.2.3 Smeared crack approach

In smeared crack approach both behaviors, fracture and continuum within same
framework of continuum are considered. With this approach a infinitly many parralell
cracks are imagined to be smeared (continuously distributed) over element [62]. This
approach was also used in works carried out by [66, 67].

There are currently two types of models based on this approach: the fixed-crack
model and rotating-crack model. In the first, the cracks forms perpendicular to
the direction of principal tension stress and remain fixed throughout subsequent
computation while in the second crack rotates with the direction of principal strains.
In the latter a stress locking can be occurred. In order to overcome so-called
localization instability in smeared crack models Band Smeared crack models are
developed [63], also known as Crack Band models in case of tensile crack. This model
is accepted from concept of Fictitious crack model and fracture energy is smeared
over the width of the area of the crack domain, Gf = gf ·h∗ (Figure 1.10).
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Figure 1.10: Comparison of Discrete crack model and Smeared crack model

The disadvantage of this approach is the inability to capture deformation jump,
which results in the structure being able support more than it actually can. Fur-
thermore, a very fine mesh is needed to capture a very high displacement gradient,
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which can be computationally too expensive. Also, the orientation of cracks in such
models depends on the mesh orientation, so-called mesh orientation bias.

1.2.2.4 Enhanced crack approach

When models with strain softening is used in framework of classical continuum,
enhanced continua have been proposed in order to overcome boundary value ill-posed
problem. This enhancement implied a minimal width of localized strain zone, and
hence they are often called as localization limiters.

Cosserat continua In Cosserat continuum theory, developed by Cosserat brothers
[68], additional independent rotation field are considered. Thus, in each point in
continuum micromoments are added as the independent parameters in addition to the
translation in classical continuum. Such enhanced kinematics implies a modification
of stain measure, latter the choice is the Biot strain. With a such kind of enhacement
characteristic length is required. Furthermore, models based on Cosserat continum
theory (often called micro-polar continuum) can elimante FE mesh lack of objectivity
but only when rotational degree of freedom is activated, with no use for separation
failure.

Non-local methods In non-local methods enhancement no longer fits within the
framework of classical continuum mechanics [69]. In this method stress value at a
point depends on stress at this point but also on the average strains in the choosen
neighborhood of that point, which is given by characteristic length. With a such
approach inelastic dissipation remains independetnt of the choosen FE mesh, but its
not easy to implement this method into standard FE procedure. Namely, the stress
computation in any element will impose the communication with the elements in the
neighborhood and in standard FE code we deal with only one element at the time.

Gradient enhanced models This model can be considered as an approximation
of integral non-local damage models. They are typically characterized by explicit
dependence of the yield function on Laplacian of the effective plastic strain. Dis-
placement field and effective plastic strain are discretized by linear shape function.

1.2.2.5 Weak/strong discontinuity approach

Another family of methods, which will enhance the theoretical formulation is strong
and weak discontinuity method. In discontinuity method a continuous displacement
filed is considered [27] while in strong discontinuity method discontinuity in displace-
ment field is considered [27, 26, 70, 71, 28, 24, 72] and this is the main difference
between these two approach. In first method a strain filed is enhanced while in
second displacement field is the one which is enhanced. The whole analysis can
be perfomed in continuum mechanics framework. There are several advantages of
this approach: the implementation in FE code is very easy, it is mesh independent
approacg where re-meshing techniques are not neccesary and there is no need to
introduce any material length scale (characteristic length).
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1.3 Aims and scopes
The main scientific goal of this thesis is to provide approach for identification of
failure models parameters in heterogenous materials by using Stochastic Galerkin
finite element method. Analysis of any heterogenous materials is considered at three
main level (micro-scale, meso-scale and macro-scale). Each of these levels pertains
to concrete features which can not be captured on upper level. Thus, first goal of
this thesis is to develop models for concrete-like materials at meso-scale and latter
at macro-scale in order to describe all prominent feature for particular scale. For
this purpose at meso-scale lattice model is taken to represent concrete failure, and
at macro-scale non-associative Drucker-Prager with St. Veneant criterion is choosen
for yield function and failure function, respectively.

Another goal of this thesis is to obtain material parameters, as deterministic
value, for a macro-scale model with measurements taken with meso-scale model or
from real experiment. Combining meso-scale model with macro-scale model and
Bayesian inference can provide reduced macro-scale model, which can be stated as
final goal of this thesis.

1.4 Organization of the thesis
This thesis is structured as follows. In Chapter 2 we present a formulation with
several numerical simulation compered to experimental ones for novel concrete
meso-scale model with full set of 3D failure modes with random distribution of
aggregate and cement phase. Chapter 3 provides multi-surface plasticity model
for concrete with 3D hardening/softening failure modes for tension, compression
and shear, together with the numericaly obtained results that are compared to
experimental ones. Considerations of inverese problem in deterministic setting is
given in Chapter 4. The novel upscaling approach for reduced macro-scale model is
presented in Chapter 5. In Chapter 6 conclusions and perspectives for future work
are given.

Failure models in heterogeneous materials





2
Concrete meso-scale model with full set of

3D failure modes with random distribution
of aggregate and cement phase:

formulation and numerical implementation

Prediction of failure mechanisms in concrete is a fairly complex task due to heteroge-
neous concrete micro structure, localization process triggered by cracks, multiple crack
interactions during their growth and coalescence, different dissipative mechanisms
in fracture process zone prior to localized failure and in a localization zone during
the failure. None of the currently used phenomenological models can represent the
full set of 3D failure modes. This work presents an attempt to solve this with the 3D
meso-scale model based on discrete lattice approach. In particular we show that we
can capture such complexities at the meso-scale, which is able to represent microc-
racks in fracture process zone along with the localized failure represented in terms of
embedded strong discontinuity and accompanied with softening constitutive law. The
model can also successfully simulate salient features of concrete response, such as
order of magnitude of reduction in strength in uniaxial tension versus compression,
strength increase in biaxial loading or hydrostatic tension. Moreover, macro-scale
representation of failure surfaces obtained with presented model for different loading
programs confirms the need for failure concrete criterion of multi-surface kind. This
chapter presents the proposed meso-scale based on extensive number of numerical
simulations with multiple realizations of different concrete specimens, along as the
optimal deterministic fit for several common concrete failure models. The ultimate
interest of the this chapter is to provide detailed data set for different failure modes
which can be used for identification of probability distribution of material parameters
for different criterion. Such task is carried in Chapter 3. of this thesis.
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2.1 Introduction
The key assumption explored in this chapter pertains to the role of material het-
erogeneity in a study of the mechanical behavior and failure modes in concrete.
When a concrete specimen under extreme loading condition enters in the stage
where localized cracks and displacement discontinuities appear, the most appropriate
model changes from continuous into discrete one. Crack propagation and final crack
patterns in concrete are mostly based on accumulated microcracks of various kind
of initial flaws, defects in aggregates structure,voids or pores inside concrete caused
during fabrication. This processes of accumulation of microcracks leads to com-
plete set of 3D failure mechanisms, usually governed by multiple crack interactions,
growth and coalescence producing the brittle type failure characteristic for concrete.
In order to provide a reliable predictive model for failure of such heterogeneous
material, we build the model at meso-scale. The approach we focus upon in this
chapter relies on spatial beam models, as a class of discrete lattice models [23]. For
each random distribution realization of aggregate geometry is built using Delaunay
triangulation. Such approach has an advantage of representing the multi-phase
structure of concrete, namely cement paste and aggregates, and can provide the
localized failure mechanisms with respect to heterogeneities. Here, the Delaunay
edges in triangulation can be considered as lattice elements representing cohesive
links between the Voronoi cells, each filled-in with a single phase of heterogeneous
material (Figure 2.1a). Lattice elements are simulated with 3D Timoshenko beams
which allows to represent the complete set of 3D failure modes. The Voronoi cells can
guarantee the exact representation of linear elastic isotropic response, considering
the concrete statistically as isotropic material. The geometrical properties of the
beams can be extracted from common area between the two neighboring Voronoi
cells (Figure 2.1b).

Another advantage of the chosen discrete model is ability to account all failure
modes, I, II and III. The only remaining difficulty in failure analysis is to provide
mesh-independent representation of the post-peak softening behavior [73]. The
main idea in large number of lattice meso-scale models is that lattice elements
progressively fail (leading to softening behaviour in failed elements) which eventually
results in total macroscopic failure. However, there is still an ongoing problem of
how to represent correctly the post peak softening behaviour, which is normally
dependent on the mesh. This pertains to released fracture energy (i.e. area below
the softening curve) which is not unique for different mesh size. Avoiding this fact
can lead not only to wrong global fracture energy and wrong post peak response, but
it can also underestimate the global fracture limits. Many lattice element models
use sequentially linear algorithms to avoid negative stiffness terms and deals with
mesh-dependence by performing additional regularization procedures with scaling
initial strength and ultimate strain on local element level to obtain correct fracture
energy on a global level [25]. Some other models use incremental (sometimes also
iterative) schemes in time, but the problem of fracture energy depending on mesh
still remains, like in standard finite elements. One of the ways to provide mesh
independent response is by using embedded strong discontinuity approach [26, 27],
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Figure 2.1: (a) Structure of discrete lattice model with Voronoi cells as units of heteroge-
neous material and cohesive links between them (b) two neighbouring Voronoi cells

which is generalized to include the fracture process zone [28, 29]. The main reason for
this mesh independence is that discontinuity, or displacement jump, always remains
localized inside the element. This approach can be interpreted as a localization
limiter that enhances the classical continuum mechanics theoretical formulation by
admitting discontinuities in the displacement field. The numerical implementation
of the discontinuity requires a modification of the standard finite element procedure,
which is similar to the method of incompatible modes [74].

Embedded discontinuity formulation is developed here to enhance the 3D Tim-
oshenko beam lattice elements to provide all three failure modes characteristic for
concrete. The model is adopted from our previous works dealing with failure of rocks
[76, 75, 72].

The adaptation concerns the microstructure representation being aggregate in
agreement with the granulometric curve. In other words, we recognize that the
concrete is highly heterogeneous composite material. One can distinguish between
the two phases of the material at the observational meso-scale. The meso-scale can
capture fundamental aspects of material heterogeneity without being computationally
too expensive [15]. Various models of concrete failure can be found in literature
[15, 5, 7, 6, 8–10, 77–79], none of them comparable to the present model that provides
all failure modes I, II and III in terms of embedded discontinuities in Timoshenko
lattice beam elements. By using only mode I at meso-scale we can successfully
represent simple tension test, or even be able to deal with 3 point bending test when
bending failure (not shear) remains dominant failure mode. However, the failure
modes of concrete composites are more complex, in anything else from simple tension.
The model for concrete failure restricted to truss bars and embedded discontinuities
providing only mode I failure could get only 1:5 overall ratio between uniaxial tension
and compression [31, 32]. The model concerning mode I at the meso-scale proposed
by [80] is positioning the cohesive links in the direction of stress principal axes, which
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automatically eliminates the contribution of shear. Lattice elements in this case are
perfectly brittle upon reaching failure criterion, when they are physically removed
from mesh. The algorithm for solution of equations fitting into this framework
is based on sequentially linear analysis, which does not have the same stringent
equilibrium enforcing properties, as the method proposed in this thesis, where lattice
elements are not removed from mesh after reaching failure criterion, but they go
into softening regime in agreement with defined fracture energy for modes I, II and
III. Shear failure mechanisms contribute here mostly through presence of aggregate
in concrete composite, which makes the crack deviate from shortest (orthogonal)
path and introduces the contribution of modes II and III. Here, the failure criteria
include modes II and III, together with Mohr-Coulomb law on local element level for
shear failure under compression. Macroscopic mechanical response depends strongly
on each phase properties, both for cement paste and aggregates, as well as on their
spatial distribution. Spatial distribution of each phase is spread here with random
process with Poisson distribution of the aggregates (phase I) subsequently filling
the voids between them with cement paste (phase II). The distribution of aggregate
size is taken in agreement with one of two well-known aggregates grading curves
in concrete mixture [81]. The choice is made that all particles with size less than
2.0 mm be included in cement matrix volume, thus forming cement mortar. By
using this way of distribution we are able to obtain realistic values of phase volume
fraction. The Gaussian distribution of the material properties heterogeneity in each
phase (aggregate and cement paste) is taken into account with standard deviation
restricted to ± 2σ. Such distribution of material properties takes into account the
weakening of concrete through Interface Transition Zone (ITZ), whose properties are
considered heterogeneous and represent weak spots in concrete decided by random
process through the distribution of material properties for cement paste, from where
the cracks are then triggered.

Various types of phenomenological constitutive models are widely used in struc-
tural scale computations for prediction of behavior in static or dynamic cases [82, 83].
In adopting to the case of a complex loading program, these models require choice
of the elaborate and equally complex criterion. Because of their macroscopic point
of view, these models encounter insurmountable difficulties in describing correctly
the fine scale physical mechanisms, such as fracture or damage. The proposed meso-
scale model can improve this and provide different failure mechanisms leading to
macro-scale representation typically given in terms of multi-surface failure criterion
for concrete. In order to identify the most appropriate failure criterion, we carry
out large number of numerical tests at fine scale with different loading programs. In
particular, we consider uniaxial tension and compression, biaxial tests with strength
increase and hydrostatic tension. We thus obtain different values for compression
and tension strength as a function of aggregate volume fraction.

The outline of the chapter is as follows: In Section 2 we describe the meso-
scale model, with the cohesive links in terms of Timoshenko beam elements. In
Section 3, we present the results of numerical simulations with the ultimate goal of
computing corresponding macro-scale failure surface obtained with meso-scale model
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Figure 2.2: Grading curves

computations. Section 4 summarizes the conclusion regarding all the main findings
and suggests the perspective studies.

2.2 Meso-scale model for concrete failure
In this section we give a description of the meso-scale model of concrete constitutive
behavior as a two phase material. First, the 3D Delaunay triangulation [43] is
performed in certain volume, representing the specimen. Second, the Voronoi
diagram is extracted from Delaunay triangulation resulting with Voronoi cells that
occupy smaller part of the volume. The size of the Voronoi cells should correspond
to the representative size of heterogeneities, and thus form the grains in the material
(Figures 2.1). Voronoi cells should be initially kept together, like grains, with cohesive
forces which are represented by the beam lattice network extracted from Delaunay
triangulation edges [84].

Phase I, chosen as the aggregate, is spatially spread across specimen by using
the Poisson distribution seeking to achieve the corresponding grading curves for
aggregate [81]. Two well-known grading curves, EMPA and Fuller (Figure 2.2), are
defined with relations

p(dFuller) = 100
√

d
dmax

p(dEMPA) = 50
(

d
dmax

+
√

d
dmax

) (2.1)

where p(dF ) and p(dE) are the cumulative percent passing through a sieve with
diameter d, white dmax as the diameter of the coarsest aggregate. We consider here
the distribution of aggregate as an arithmetic mean of these two grading curves
where all particles smaller than 2.00 mm are included in cement matrix volume
forming cement mortar. The second, separate study of this phase is not necessary
since formation of cement or mortar layer can be determined based on distribution
of the aggregates. According to defined grading curve we use in further study, the
aggregate with maximal diameter of 8 mm, 16 mm and 32 mm obtaining, respectively
30%, 50% and 60% volume fraction for phase I.
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Figure 2.3: 3D Timoshenko beam displacements
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Figure 2.4: Three failure modes in concrete

Each phase material properties are assigned to corresponding beam elements
which fall inside the particular phase. The geometric properties of beams are
extracted from Voronoi diagram. Namely, the common area of the two neighboring
Voronoi cells (Figure 2.1b) is approximated by circular cross section and used to
compute the single beam diameter, from which the beam cross-section parameters
are obtained [72]. This leads to the lattice of thick beams which can be represented
by Timoshenko beam elements accounting for shear deformation. One can write the
standard kinematics for 3D Timoshenko beam element with length le

ϵ(x) = du(x)
dx

γy(x) = dv(x)
dx − θ(x)

γz(x) = dw(x)
dx +ψ(x)

κx(x) = dϕ(x)
dx

κy(x) = dψ(x)
dx

κz(x) = dθ(x)
dx

(2.2)

By using the matrix notation, the Timoshenko beam strains are placed in a vector that
can be written as ϵ =

[
ϵ γy γz κx κy κz

]T
. Vector u =

[
u v w ϕ ψ θ

]T
represents the beam axis displacements and cross-section notations as shown in
Figure 2.3.

In order to represent the three failure modes in concrete, we consider discon-
tinuities in the generalized displacement field of the 3D Timoshenko beam. Such
enhancements of 3D Timoshenko beam can provide mode I as axial failure mode and
modes II and III as shear failure modes between the Voronoi cells (Figure 2.4). To
that end, the standard beam displacements are enhanced with Heaviside function
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and decomposed into regular and singular parts in the following way

u(x) = u(x)+αααHxc =



u(x)
v(x)
w(x)
ϕ(x)
ψ(x)
θ(x)


+



αu
αv
αw
0
0
0


Hxc (2.3)

Here, Hxc is the Heaviside function defined by Hxc(x) = 0 for x≤ xc and Hxc(x) = 1
for x > xc and ααα = [αu αv αw 0 0 0]T represents the vector of displacement jumps
at the point of discontinuity, which is positioned exactly in the middle of the beam.
This is also the point where two neighboring Voronoi cells share the same side.

One can rewrite the equation 2.3 by adding and subtracting a regular differen-
tiable function φ from Heaviside function, which will produce the following form of
displacement field

u(x) = u(x)+αααφ(x)︸ ︷︷ ︸
regular part

+ααα(Hxc−φ(x))︸ ︷︷ ︸
localized part

(2.4)

In the context of finite elements, the regular part of displacement field is inter-
polated with standard shape functions. On the other side, localized part requires
additional treatment which can be handled within the framework of incompatible
modes [74], with element modification for localized discontinuity. The enhanced
strain field is obtained through the Dirac delta δxc resulting from the derivative of
the Heaviside function multiplying a discontinuous displacement field from above

ϵϵϵ(x) = ϵ̃ϵϵ(x)+Gααα+αααδxc (2.5)

where ϵ̃ϵϵ represents the regular part of the strain field obtained from the regular part
of displacement field in equation 2.4. Operator G is defined as L(−φ(x)), where L is
the strain-displacement operator.

The finite element interpolation of the total displacement field from equation 2.3
can be written as

u(x) =N1(x)u1 +N2(x)u2 +αααHxc (2.6)
where interpolation of the regular part of Timoshenko beam displacements can
be performed with linear polynomials as shape functions, namely N1(x) = 1− x

le
,

N2(x) = x
le

. Vectors u1 and u2 are the nodal vectors of regular displacement part
from (2.3) related to element nodes 1 and 2, respectively. Total displacements for
nodes 1 and 2 can be written in terms of displacements of the regular part as

u(x1) = u1 = u1
u(x2) = u2 = u2 +ααα (2.7)

Failure models in heterogeneous materials



Meso-scale model for concrete failure 25

and expression (2.6) can be rewritten with u2 = u2−ααα in terms of total displacements
as

u(x) =N1(x)u1 +N2(x)u2 +ααα (Hxc−N2(x))︸ ︷︷ ︸
M(x)

(2.8)

One can note that function φ(x) from (2.4) can be taken as φ(x) = N2(x) for the
chosen linear interpolation. Second part in (2.8), related to incompatible mode, can
be denoted as interpolation function M(x) for the discontinuity

M(x) =
{
− x
le

;x ∈ [0,xc⟩
1− x

le
;x ∈ ⟨xc, le]

(2.9)

The interpolation of total displacement field from (2.8) can thus be re-written in
matrix form as

u = Nua+Mααα (2.10)
with N being 6x12 element shape function matrix containing functions N1(x) and
N2(x), ua =

[
u1 u2

]T
and M is 6x6 matrix of discontinuity interpolation functions

M positioned at the diagonal first three entries related to translational degrees of
freedom.

In order to obtain interpolated enhanced strain field, one needs to consider deriva-
tives of shape functions B1(x) =− 1

le
, B2(x) = 1

le
and the derivative of discontinuity

interpolation function, leading to

G(x) =G(x)+ δxc , G(x) =− 1
le

(2.11)

The function G is split into regular part G and singular part in terms of δxc .
With preferred choice of φ, the expression above reduces to G(x) = −B2(x). The
interpolated enhanced strain field can finally be obtained with

ϵ = Bua+Gααα+αααδxc (2.12)

where B is 6x12 beam strain-displacement matrix corresponding to equation (2.2)
and G is the 6x6 matrix of derivatives of discontinuity interpolation function G at
the entries related to translational degrees of freedom.

The same kind of interpolations for virtual strain field is used to construct the
weak form of equilibrium equations

δϵ = Bδua+Gvδααα+ δαααδxc (2.13)

where δua and δααα denote the total virtual displacement field and virtual displacement
jump, respectively. Enforcement of orthogonality between the enhanced strain and
constant stress is needed within the element by fulfilling the patch test condition [74]

Gv = G− 1
le

∫ le

0
Gdx (2.14)

Failure models in heterogeneous materials



26 Concrete meso-scale model with full set of 3D failure modes

For this element, where reduced one Gauss point integration is used, it hold that
Gv = G.

The virtual work equation can be written at element level

Gint,(e)−Gext,(e) = 0 (2.15)

where Gint,(e) =
∫ le
0 (δϵ)Tσdx. By replacing the virtual strain field from (2.13) into

virtual work equation, we end up with a set of two equations∫ le

0
(δua)BTσdx=Gext∫ le

0
(δα)(G+δxc)Tσdx= 0

(2.16)

The standard internal force vector fint,(e) is obtained from the standard part of
internal virtual work, while the enhanced part produces the element residual h(e) at
discontinuity. By using the standard finite element assembly procedure, we get

Anel
e=1

(
fint,(e)− fext

)
= 0

h(e) =
∫ le

0
GT

σσσdx+ t, ∀e ∈ [1,nel]
(2.17)

where f int,(e) =
∫ le
0 BTσdx. The condition h(e) = 0 needs to be enforced for each

element where discontinuity is activated, which leads to definition of the traction
vector at discontinuity

t =−
∫ le

0
Gσdx (2.18)

Note that assembly operator in the first equation in (2.17) considers all elements,
while the second equation remains limited to a particular element due to character
of interpolation function for discontinuity which takes zero values at the element
boundary.

In order to solve the nonlinear problem in (2.17), the consistent linearization of
both equations has to be performed. The standard Newton incremental-iterative
procedure is used to provide new iterative values of nodal displacements

Anel
e=1

[
Ke,(i)
n+1∆u(i)

n+1 +Fe,(i)
n+1∆ααα(i)

n+1

]
= Anel

e=1

[
fext,en+1 − fint,e,(i)n+1

]
he,(i)n+1 +

(
Fe,(i)
v,n+1 +K(i)

d,n+1

)
∆u(i)

n+1 +
(

He,(i)
n+1 +K(i)

α,n+1

)
∆ααα(i)

n+1 = 0
(2.19)

where the explicit form of matrices are

Ke,(i)
n+1 =

∫ le
0 BTC(i)

n+1Bdx, Fe,(i)
n+1 =

∫ le
0 BTC(i)

n+1Gdx

Fe,(i)
v,n+1 =

∫ le
0 GTC(i)

n+1Bdx, He,(i)
n+1 =

∫ le
0 GTC(i)

n+1Gdx
(2.20)

and C(i)
n+1 = diag(EA,GA,GA,GIp,EI11,EI22) is the tangent stiffness for 3D Timo-

shenko beam.
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Similary, K(i)
d,n+1 and K(i)

α,n+1 are the consistent tangent stiffness for discontinuity

∆t(i)
n+1 = K(i)

d,n+1∆u(i)
n+1 +K(i)

α,n+1∆ααα(i)
n+1 (2.21)

By enforcing the local equation in (2.17), to be equal to zero, allows to use the
static condensation (e.g. [73]) of the system providing elimination of the incompatible
mode parameters α from global equations. This leads to the reduced size of stiffness
matrix, which is calculated as follows:

K̂
e,(i)
n+1 = Ke,(i)

n+1−Fe,(i),T
n+1 (He,(i)

n+1 +K
(i)
α,n+1)−1(Fe,(i)

v,n+1 +K
(i)
d,n+1) (2.22)

Such a reduced stiffness matrix can be sent to the standard finite element assembly
procedure to provide global set of linearized equilibrium equations. Computed
incremental displacements ∆u(i)

n+1 are used to perform corresponding displacement
vector update

Anel
e=1K̂

e
n+1∆u(i)

n+1 = Anel
e=1

[
fext,en+1 − fint,e,(i)n+1

]
=⇒ u(i+1)

n+1 = u(i)
n+1 +∆u(i)

n+1

(2.23)

Solution of equation (2.23) requires the computation of internal force vector, σσσ =[
N V W Mx My Mz

]T
, with the particular values of stress resultants vector.

Rotations of 3D Timoshenko beams as lattice elements are kept linear elastic like in
[72], while axial and two shear stress resultants undergo softening plasticity regime
upon reaching failure threshold which corresponds to failure in modes I, II or III.
Although the plasticity model is used in present study, one can note that damage
model could be used as well. However, as long as we do not go to true cyclic loading
applications, either of them can be successfully applied to obtain the limit load
in quasi-static applications. Softening plasticity constitutive law is enforced by
producing plastic deformation in the localized part of the element at the position of
discontinuity. This is guided by singular part of deformation field presented with the
Dirac delta function. The computation of vector σσσ can be split into scalar equations,
where each translational component with potential discontinuity appears separately.
In order to simplify the following presentation, we will give the evolution of softening
plasticity with a scalar variable, knowing that each step is the same for all three
directional components corresponding to three failure modes. Namely, the evolution
equations for discontinuity can be written similarly to standard plasticity with the
main difference that in softening the plastic deformation remains localized at the
position of Dirac function

α̇ = λ̇
∂Φ
∂σ

= λ̇sign(σ)

ξ̇ = λ̇
∂Φ
∂q

= λ̇
(2.24)

where λ is the plastic multiplier associated with the softening behavior and α (also
corresponding to incompatible mode parameter) is equivalent to the accumulated
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plastic strain at the discontinuity. The failure function involves the stress value at
the point of discontinuity δxc where the plastic strain localizes

Φ(t,q) = t− (σu− q)≤ 0 (2.25)

Here, t is a traction computed from (2.18) acting at the discontinuity, σu is a failure
threshold and q is the internal plasticity variable for evolution of softening. When the
softening constitutive law is chosen to be exponential, internal variable for plasticity
can be written as

q = σu

(
1− exp

(
−ξ σu

Gf

))
(2.26)

with Gf as the corresponding value of fracture energy.
In order to compute the internal variables related to discontinuity and perform

the corresponding stress updates, element-wise algorithm should be performed for
each directional component. Such algorithm is similar to return mapping algorithm
of standard plasticity, except for the trial state computation. Computing the internal
variables locally, the global solution procedure with Newton incremental/iterative
procedure can be performed to give the best iterative value of displacements u(i)

n+1,
for which we can obtain the trial value of the traction force

ttrialn+1 =−
∫ le

0
G

EA
 2∑
a=1

Bau
(i)
a,n+1 +Gαn

dx (2.27)

where αn represents the accumulated plastic deformation at previous time step
for softening plasticity. Note that we computed the trial value of traction force
with regular part of strain field from (2.12) and that singular part (Dirac function)
vanished. This holds because when keeping the stress rate bounded, one needs
to ensure that the plastic multiplier λ be proportional to Dirac function. This
results with localized plastic deformation at the discontinuity and the softening
law reinterpreted in distributional sense [73, 26]. Computation of trial values for
shear forces in the beam requires the independent internal variables α for shear
directions, shear stiffness GA and strains for shear ∑2

a=1Bav
(i)
a,n+1−Naθ

(i)
a,n+1 and∑2

a=1Baw
(i)
a,n+1 +Naψ

(i)
a,n+1. The trial value of failure functions is calculated as

Φtrial
n+1 =

∣∣∣ttrialn+1
∣∣∣− (σu− qn) (2.28)

with qn defined in (2.26). If the trial values of the failure functions are negative or
zero, the elastic trial step is accepted for final, with no need to modify the plastic
strain from the previous time step

αn+1 = αn; ξn+1 = ξn (2.29)

The plastic softening parameters remain intact, while the traction force is changed due
to displacement increment. This step represents the unloading of the discontinuity
which is crucial for the case when many cracks star to appear but some of them become
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dominant and continue to grow, while the others unload from the discontinuity. The
consistent tangent stiffness for discontinuity is K(i)

d,n+1 =−Fe,(i)
v,n+1 and K(i)

α,n+1 = 0 in
this case.

On the other hand, if the trial values of failure functions are positive, the current
step is in the softening plasticity and internal variables should be modified to re-
establish the plastic admissibility at discontinuity. The internal softening plasticity
variables are updated by using evolution equations

αn+1 = αn+λn+1sign
(
ttrialn+1

)
(2.30)

and
ξn+1 = ξn+λn+1 (2.31)

where λn+1 is softening plastic multiplier. The value of the plastic multiplier is
determined from the condition Φn+1 ≤ tol

Φn+1 = Φtrial
n+1 +(qn+1− qn)+EAGλn+1 ≤ tol (2.32)

The solution of local nonlinear equation providing the value of plastic multiplier can
be obtained iteratively by using the Newton method. Finally, one can update the
stress values by updated internal variables. Traction forces are produced by a change
of discontinuity parameters with discontinuity tangent stiffness K(i)

α,n+1 = K
(i)
α,n+1

and K(i)
d,n+1 = 0. Here, K

(i)
α,n+1 is obtained as the derivative of exponential softening

law (26) with respect to internal variable ξ.
In order to represent the failure behavior of concrete-like materials, it is necessary

to study crack growth under mixed modes I, II and III in the presence of hetero-
geneities. Heterogeneous concrete samples are prepared with random process with
Gaussian distribution to define limit stress for each phase with restriction to ± 2σ,
setting mean value and standard deviation for each limit stress. The heterogeneities
also play a crucial role in making the computational iterative procedure more robust
by eliminating the academic case of localized failure of homogeneous material under
homogeneous stress field. The computational model of this kind thus leads to more
robust iterative procedure.

The three trial failure surfaces regarding three directions of local frame are defined
in order to detect softening behavior in the tension case

Φtrial
u,n+1 = ttrialu,n+1− (σu,t− qu,n)

Φtrial
v,n+1 =

∣∣∣ttrialv,n+1
∣∣∣− (τu,v− qv,n)

Φtrial
w,n+1 =

∣∣∣ttrialw,n+1
∣∣∣− (τu,w− qw,n)

(2.33)

where σu,t, τu,v and τu,w are limit stress values randomly assigned for each element
using Gaussian distribution with mean value and standard deviation. Moreover,
when the softening is detected with only one of these failure surfaces, the limit stress
values of other two failure surfaces are reduced to current stress computational values
leading to simultaneous softening in all three failure modes.
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Cement matrix Aggregate
E=15 GPa E=70 GPa
ν=0.25 ν=0.25
fracture limits:

mean value st. dev -
σu,t 4 MPa 0.15 -
σu,c 40 MPa 0.5 -
τu,v 1 MPa 0.1 -
τu,w 1 MPa 0.1 -
fracture energies:
Gfu 6 N/m -
Gfv 100 N/m -
Gfw 100 N/m -
Φ=20◦ -

Table 2.1: Material parameters for meso-scale model

Failure in compression case is detected by

Φtrial
u,n+1 =

∣∣∣ttrialu,n+1
∣∣∣− (σu,c− qu,n)

Φtrial
v,n+1 =

∣∣∣ttrialv,n+1
∣∣∣−(τf,v− qv,n)

Φtrial
w,n+1 =

∣∣∣ttrialw,n+1
∣∣∣−(τf,w− qw,n)

(2.34)

where failure in each mode is handled independently of other two failure surfaces.
Moreover, the compression force influences the failure threshold for shear sliding
with the Mohr-Coulomb friction law

τf,v = τu,v +σtan(Φ); τf,w = τu,w +σtan(Φ) (2.35)

and it magnifies the shear strength by internal angle of friction Φ.

2.3 Macroscopic response: numerical homogeniza-
tion

In this section we present the numerical simulations and computed macroscopic
responses for a number of different concrete specimens and various loading conditions.
The computations are performed by a research version of computer program FEAP,
developed by R.L. Taylor at UC Berkeley [85].

2.3.1 Construction of specimen
As already elaborated in previous section, the presented approach relies on meso-scale
model with cohesive links in terms of spatial beams. Such beams are generated
by computing the 3D Delaunay triangulation which is performed by using Gmsh
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Figure 2.5: Uniaxial tension test: macroscopic response for different aggregate volume
fraction

Figure 2.6: Specimen contours at the end of uniaxial tension test. Beam elements in
increasing softening are red colored

[43] over the spatial domain of interest. The edges of the resulting tetrahedral
elements are converted into the beams whose cross sections are computed from the
corresponding Voronoi tessellation. Such task is computed using a code written in
Matlab.

2.3.2 Tension test

2.3.2.1 Uniaxial tension test

We consider here the specimen given as a cube with 15 cm side length with different
volume fraction of aggregates (phase I), namely 30%, 50% and 60%. Table 2.1
summarizes the chosen mechanical properties for each phase. The values for shear
strength (cohesion) of Portland cement are determined in agreement with empirical
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Figure 2.7: Uniaxial tension test: macroscopic responses for specimen (phase I-50%) in
three loading directions

Figure 2.8: Specimen contours at the end of uniaxial tension test for phase I-50% specimen
in all three loading directions. Beam elements in increasing softening are red colored

relations [86, 87]. However, meso scale parameters can be obtained from inverse
identification of parameters, which will be given in Part II. One can note that
aggregate is much stiffer than the cement matrix and is kept linear elastic. These
computations (and the subsequent ones) are all made under the displacement control
with unrestrained lateral displacements for tension test.

Figure 2.5 shows macroscopic stress (sum of all reactions in Z direction per
cross-sectional area of the concrete cube) with respect to strain. The macroscopic
Young’s modulus and limit stress which triggers the global softening change due
to volume fraction of phase I for 30%, 50% and 60%. With an increase of phase I
volume fraction, the global modulus of elasticity increases, as well as elastic limit
stress point. It can also be seen that when volume fraction ratio of phase II increases,
the failure of specimen becomes more ductile with larger fracture process zone (before
reaching elastic limit point) and more brittle in softening response. The main physical
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Figure 2.9: Macroscopic response - phase I-50%: (a) hydrostatic tension test; (b)
hydrostatic-uniaxial tension test comparison for X direction

explanation of this influence lies in total volume of voids in concrete. The structure
of cement paste is complex and there exist several sources of flaws and defects even
before the application of external load, up to 50% of the volume of cement paste
may consist of pores (gel pores, capillary pores and accidental or entrapped air).
If we ignore all voids in aggregate (for normal aggregates these are minimal) with
increasing aggregate-cement ratio, the cement paste will represent smaller proportion
of specimen volume. Thus the total porosity is lower, and hence the limit stress
point is higher [81].

Figure 2.6 presents beam elements in subsequent stages of increasing softening
at the end of tension test computation for three different heterogeneous specimen.
Here, macro-crack lies in direction perpendicular to the imposed displacement. One
dominant macro-crack is present in any specimen inducing the final failure mechanism
formed differently depending on the distribution of weaker phase, which decides the
final crack position. Failure due to mode I is more pronounced in tension test.

Figure 2.7 shows macroscopic stress (sum of all reactions in X, Y and Z direction
per cross-sectional area of concrete cube) with respect to strain curve for 50%
volume fraction of phase I. The macroscopic limit stress which triggers the global
softening changes mainly due to the beam spatial position of phase II with respect
to loading direction while the macroscopic Young’s modulus remains unchanged.
Figure 2.8 presents beam elements in increasing softening at the end of tension test
computations with 50% of phase I for each loading direction. Here again, we can
note that one dominant macro-crack is present in each direction inducing the final
failure mechanism.

2.3.2.2 Hydrostatic tension test

For simulation of hydrostatic tension test the chosen material and geometry properties
remain the same as for uniaxial case (see Table 2.1). This computation is made under
simultaneously imposed displacements along X, Y and Z axes. Figure 2.9a shows
macroscopic stress (sum of all reactions in X, Y and Z direction per cross-sectional
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area) with respect to strain curve for 50% volume fraction of phase I. In Figure 2.9b,
the comparison in X direction between macroscopic stresses for 50% volume fraction
of phase I obtained in uniaxial tension test and in hydrostatic case is given. It can
be noted that hydrostatic response is stiffer and less ductile comparing to uniaxial
response. Figure 2.10 presents beam elements in increasing softening at the end of
hydrostatic tension test computations. We can observe several macro-cracks contrary
to a simple tension test where only one macro-crack is observed.

Figure 2.10: Specimen contour at the end of hydrostatic tension test for phase I-50%
specimen. Beam elements in increasing softening are red colored

2.3.3 Compression test
The results of numerical simulations and corresponding macroscopic responses for
specimens under uniaxial (unconfined) compression loading program are given here.
Simulations in compression test are conducted with displacement control, while
lateral displacements are restrained which corresponds to the case with higher
friction between the load platen and the specimen. Geometric, material parameters
and distribution of aggregate and cement paste are the same as for the previously
used specimens (see Table 2.1). Macroscopic responses (Figure 2.11a) reveal the
change in modulus of elasticity and elastic limit stress point due to different volume
fraction of aggregate. With an increase of phase I, the global modulus of elasticity
and elastic limit point increase similar to tension test case. The difference with
respect to uniaxial tension test mechanism concerns the ductile phase of the response
during creation of the fracture process zone, which is more pronounced in compression
test than in tension test. Thus, not only the ductile part with fracture process zone
is larger, but also its contribution to total dissipation compression failure. The
main reason for this is that more elements are subjected to shear and compression
simultaneously, where crack propagates because of the shear, which leads to mode II
or mode III failure. If the crack propagates in mode II or III, it is still possible to
transfer the compression force through the specimen, assuming that two separated
blocks formed during cracking in mode II or III, lean on each other. Compression
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Figure 2.11: Macroscopic response for uniaxial compression test: (a) different aggregate
volume fraction; (b) phase I-50%
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Figure 2.12: Complete macroscopic response for different aggregate volume fraction

force in this situation increases until the point where significant damage on the
specimen is made, and until cracking is extensive enough that loading capacity starts
to decrease. One can note that macroscopic response for numerical specimen with
60% of aggregate fits very well with experimental result conducted on the concrete
cube with similar properties taken from [88].

Figure 2.11b shows macroscopic stress (sum of all reactions in X, Y and Z direction
per cross-sectional area) versus strain curve for 50% volume fraction of phase I. The
macroscopic limit stress which triggers the softening changes mainly due to the beam
spatial position of phase II with respect to loading direction while the macroscopic
Young’s modulus remain unchanged as in tension case.

In order to compare the macroscopic responses corresponding to uniaxial tension
and compression, Figure 2.12 presents macroscopic curves and reveals that the overall
compression-tension ratio is equal to 8.8, 9.37 and 9.50 for respectively 30%, 50%
and 60% of phase I.

Figure 2.13 (upper row) presents beam elements in increasing softening at the
end of compression test computations for phase I - 50% specimen in three loading
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36 Concrete meso-scale model with full set of 3D failure modes

Figure 2.13: Specimen contour at the end of uniaxial compression test for phase I-50%
specimen in three loading directions. Beam elements in increasing softening are red colored
(upper row), displacements in the direction perpendicular to loading direction (lower row)

directions. Contrary to tension test crack patterns, in compression test much more
macro-cracks are needed to drive the specimens to failure and these are influenced
more by mode II and mode III mechanisms, which form the final crack patterns
together with mode I. Figure 2.13 (lower row) reveals the displacements in beam
elements at the end of compression test computations which correspond to the upper
row figures. Here, we can see clearly that the diagonal orientation failure mode is
dominant.

2.3.4 Failure surfaces for biaxial loading
In this section we show how to obtain macroscopic multi-surface criterion for concrete-
like materials by taking into account heterogeneities and different process of cracking
using meso-scale model proposed in previous section. The most appropriate combina-
tion of multi-surface models for concrete can be considered combining Drucker-Prager
for compression stress and Rankine for tensile stress with plasticity model describing
the failure of structure. It can be written in terms of the principal stress values
according to:

ΦDP =
√
J2 +µI1/

√
6− (fc− q̂c(ξc))≤ 0

ΦR
i = σi− (ft− q̂t(ξt))≤ 0 (2.36)

where ΦDP and ΦRi are, respectively, the Drucker-Prager and Rankine yield surfaces,
σi, J2 and I1 are principal values, the second and the first invariant of stress tensor, fc
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and ft are compressive and tensile yield stress values, qc and qt are the corresponding
internal variables that control the plasticity threshold evolution resulting with desired
amount of fracture energy for any particular mode of localized failure [32].

u1

u3

X

Z

Figure 2.14: Specimen for biaxial test: boundary conditions and loading

In addition to this criterion we can find coupled plasticity-damage model [89] and
Saint-Venant multisurface criterion [90]. The coupled plasticity-damage model com-
ponents are selected in order to provide the representation of concrete in compaction
where the plastic component is given in terms of the Drucker-Prager criterion and
damage criterion in terms of the spherical part of stress tensor:

Φp(σσσ) =
√
J2 + tan(α)1

3tr(σσσ)−
√

2/3σpf
Φd(σσσ,qd) = tr(σσσ)− (σdf − qd)

(2.37)

where tan(α) is material parameter which can characterize the internal friction, σdf
is the elasticity limit point for damage and qd is hardening damage variable.

Furthermore, we can express the Saint-Venant multisurface plasticity criterion
directly in stress space, in terms of principal values of stress tensor:

Φ1(σσσ) = λ̄+2µ
2µ σ1− λ̄

2µσ2−σy ≤ 0
Φ2(σσσ) =− λ̄

2µσ1 + λ̄+2µ
2µ σ2−σy ≤ 0

(2.38)

where the value of elasticity limit point is obtained from biaxial tension test.
In order to test biaxial failure behavior, we choose the plate specimen with

the dimensions of 150 mm x 30 m x 150 mm. The plate is subjected to biaxial
imposed displacements, producing the following stress combinations: tension-tension,
compression-compression, compression-tension and tension-compression (Figure 2.14).
Uniaxial compressive strength value is taken from uniaxial compressive test performed
on plate concrete specimen for 6 different distribution of each phase with 50% of
aggregates volume (Table A.1).

Figure 2.15 shows macroscopic tension and compression stress (sum of all reactions
in X direction per cross-sectional area) versus strain curve for 6 realizations with
50% volume fraction of phase I. Macroscopic responses reveal the changes in elastic
limit point mainly due to different spatial beam position of phase II with respect to
loading direction.
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Figure 2.15: Uniaxial macroscopic response for 6 realizations in plate specimen: (a)
tension test; (b) compression test

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

σ
1
/σ

c

σ 3/σ
c

(a)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

σ
1
/σ

c

σ 3/σ
c

(b)

Figure 2.16: Failure surfaces: (a) for realization 1; (b) for 6 realizations with the
multisurface Drucker-Prager - Rankine surface (red line - eq. 36), coupled plasticity-
damage model (black line - eq. 37), Saint-Venant (green line - eq. 38) and experimental
(blue line)
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Figure 2.17: Evolution of σ1/σci with respect to σ3/σci during loading until failure for
realization 1 (red dots)
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Figure 2.18: Biaxial-Uniaxial test comparison for realization 1 - phase I-50%: macroscopic
response in X direction - tension test

In order to obtain four loading combinations (compression - compression, tension
- tension, compression - tension and tension - compression), we perform a circular
loading program based upon the trigonometrical circle cos(α)2 + sin(α)2 = 1. Thus,
couples of imposed displacements (u1 = cos(α), u3 = sin(α)) are parametrized in
terms of angle α. Faces X = 150 mm and Z = 150 mm are respectively subjected
to imposed displacements u1 and u3, while faces X = 0 mm and Z = 0 mm are
blocked in X and Z directions (Figure 2.14). Compressive and tensile are chosen
with negative and positive values, respectively. Stress in the principal direction 1
(X direction) is labelled as σ1 and stress in principal direction 3 (Z direction) as σ3.
The ultimate strength in the principal direction 1 is written σ1 and the one in the
direction 3, σ3. Tables A.2 and A.2 (See Appendix) contain all computed data on
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ratio of ultimate strengths σ1 and σ3 with respect to σci under different values of
imposed displacements.

Graphical representations of Tables A.2 and A.3 are presented in Figure 2.16a (1
realization) and Figure 2.16b (6 realizations), while Figure 2.17 shows evolution of
σ1/σci with respect to σ3/σci during loading until failure for realization 1. Figure
2.16b also provides some plots of failure criteria the Drucker-Prager and the Rankine
from equation (36), coupled plasticity-damage from equation (37) and the Saint-
Venant multisurface from equation (38). Results computed with the proposed model
best fits with the multisurface Drucker-Prager Rankine criterion and experimental
results on biaxial specimens taken from [88]. Table 2 contains the computed
macroscopic fracture energies under particular couples of imposed displacements
for realization 1 (red dots). Macroscopic differences between uniaxial and biaxial
test on a plate specimen for tension case can be observed (Figure 2.18). It can be
noted that in biaxial response strength increase is observed compared to the uniaxial
one. Moreover, specimen is also less ductile in biaxial loading condition than in
uniaxial response either. The same is observed for biaxial compression case. The
contours of the plate specimens can be observed in Figure 2.19 with red colored
beam elements in increasing softening regime at the end of both tension (upper row)
and compression test (lower row) computations.

Combined regions u1(mm),u3(mm) Gf (N/m)
Tension-tension 0.0200,0.0200 6.525
Compres-compres -0.2000,-0.2000 357.351
Tension-compres 0.0224,-0.0380 73.157
Compres-Tension -0.0380,0.0224 72.241

Table 2.2: Fracture energy under particular couples of imposed displacements for realiza-
tion 1 (red points)

Symmetrical failure behavior of concrete in relation with the 45◦ line under
biaxial loading is observed in Figures 16.a and 16.b, as well as in experimental
approaches [91]. As already shown, the ultimate compression strength of concrete
is higher under biaxial compression test than in uniaxial compression. Most likely,
this happens due to concrete compaction effect leading to decrease in porosity
during biaxial compression test. Increase of ultimate biaxial compression strength
in relation to the corresponding uniaxial compression strength is observed for each
couples of imposed displacement in compression-compression region. Maximum value
of ultimate compression strength is obtained for imposed displacements u1=-0.1800
mm, u3=-0.0872 mm and u1=-0.0872 mm, u3=-0.1800 mm for σ1 and σ3, respectively,
in each realization. In tension-tension region the value of the concrete ultimate
strength for each couples of imposed displacement is very close to the corresponding
uniaxial tensile strength. Finally, in tension-compression and compression-tension
region, concrete compression ultimate strength increases while the tension decreases.

Figure 17 shows that in the region compression-compression, behavior of concrete
is linear between σ1/σci and σ3/σci due to prevented cracks opening. Moreover,
biaxial compression loading in X and Z direction tends to prevent crack opening
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Figure 2.19: Plate specimen contours at the end of uniaxial and biaxial tension test
(upper row) and compression test (lower row). Beam elements in increasing softening are
red colored

respectively in Z and X direction and dominant failure mechanism occurs in Y
direction (out of plane). For other regions (tension-tension, tension-compression,
compression-tension) linear relation between σ1/σci and σ3/σci is firstly observed
until cracking is not present, and non-linear relation between these two ratios, where
cracking is more pronounced. In regions tension-compression and compression-tension
one can note that the ultimate tension strength is sooner reached rather then for
compression due to higher ratio of imposed displacements.

2.4 Final comments on the presented 3D concrete
meso-scale model

In this chapter we proposed meso-scale constitutive model for concrete employing
a three-dimensional beam lattice model. We confirmed the model capability to
represent the salient features of failure phenomena for concrete-like materials. The
model is able to provide the corresponding variability of material parameters for
macro-scale failure criterion, combining the Drucker-Prager for compression stress
and the Rankine for tensile stress. The numerical tests carried out with a meso-scale
model consider different volume fraction of cohesive links or spatial beam elements
representing cement paste and aggregates in agreement with the chosen granulometric
curve. The beam element is represented by 3D Timoshenko beam, embedded with
strong discontinuities in local coordinate system directions, which provides the
capability to simulate the localized failure in modes I, II and III. Failure can occur
individually in any mode or in mixed mode. The failure criteria is different under
tension or compression force. In tension case, softening is activated simultaneously
for all modes as soon as one failure surface becomes active, whereas in compression
the failure modes are handled separately. The compression force influences the
shear strength threshold in the Mohr-Coulomb manner. Another feature of the
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model is that each material phase parameters are introduced through the Gaussian
distribution representing heterogeneities of each phase. We illustrated here that the
model of this kind can be used successfully to present quite complex macroscopic
responses. Three concrete specimens with 30%, 50% and 60% volume fractions of
aggregate were subjected to uniaxial tension and compression tests. We confirm that
the resistance to tension is much lower than the one in compression. We can observe
one dominant macro-crack that lead to specimen failure in tension case, whereas
for compression case many more macro-cracks are needed to drive the specimens to
failure, with a significant contribution of mode II and mode III mechanisms. We also
find that ultimate strength increases with increase of volume fraction of aggregates,
and also influences the crack path. Overall compression-tension ratio σc/σt is equal
to 8.8, 9.37 and 9.50 for 30%, 50% and 60% of phase I, respectively. All these points
fit well with typical observations made for concrete-like materials [92, 93].

Finally, one of the most significant findings is that this approach can provide the
definition of the parameters, such as the fracture energy, ultimate strength taking
into account the heterogeneity and different process of cracking governing the final
failure mechanism. This approach can also be used for parameters identification
of multi-surface models (e.g. coupled plasticity-damage model [89], Saint-Venant
plasticity model [90] or combination of the Rankine and the Drucker-Prager criteria
[94]) providing more predictive results from classical phenomenological models in
structural analysis. Such task is carried in next chapter of this thesis.

The proposed meso-scale model provides many enhanced features, but also requires
a more refined procedure to obtain the model parameters, and their distribution
typical of material heterogeneities. The subsequent work, presented in next chapter
of this thesis, describes the solution to inverse identification problem by using coupled
nonlinear mechanics-probability approach to provide not only the parameters, but
also their probability distribution. This pertains not only to elastic model parameters,
but also to all different parameters governing the complete failure process. The latter
requires very careful description of the experimental procedure and the ability to
provide the corresponding computational result to any given measurement, as well
as the most extensive set of experimental results.
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3
Multi-surface plasticity model for concrete
with 3D hardening/softening failure modes

for tension, compression and shear

In this chapter multi-surface plasticity model is developed which can reproduce the
inelastic behavior and failure modes of concrete in tension, compression and shear.
The main novelty of the proposed concrete model can also capture all different phases
of localized failure for massive structures, where the elastic behavior is followed by
the creation of the fracture process zone with a large number of micro-cracks and
subsequent final failure mode with micro-cracks coalescence into the macro-crack.
The fracture process zone is represented by homogenized plasticity criterion with
hardening (in particular the non-associated Drucker-Prager) since the number of
micro-cracks is considered sufficiently large and their orientation random. The
macro-crack is represented with a surface of displacement discontinuity, which is
typical of all localized dissipative mechanisms due to the apparition and development
of localization zones. The main novelty of proposed model is to provide the full set of
3D localization modes for tension, for compression and for shear, with each mode
using corresponding fracture energy.
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3.1 Introduction
The intensive investigations made over recent years have led to a much better
understanding of the constitutive behavior of concrete under complex loading con-
ditions. A variety of constitutive models have been proposed, and many of them
are phenomenological. In order to achieve a more reliable prediction of the limit
load and structural design, it is required to provide model which describe not only
pre-failure hardening regime but also post-peak softening response. The evolution in
the behavior of quasi-brittle materials, especially concrete, submitted to quasi-static
external mechanical loads, compression or tension, is initially characterized by a
quasi-elastic phase, in which the material can recover its initial state upon unloading.
Then, as the load increases, microcracks (the size of which depend on the material
components) appear in a regular way and will coalesce to form a macrocrack. This
macrocrack will grow and spread until the final material fractures. The appearance
and development of these cracks play an essential role in the failure or collapse of
concrete structures. Several proposed approaches, enable us to describe this behavior,
range from discrete crack concepts [95, 96], either with or without remeshing, to
various types of smeared crack concepts, either with fixed or with rotating fracture
planes [97, 98]. Separation in discrete crack models can occur only at element
interface which is why these models are dependent on mesh alignment. Due to
this special re-meshing techniques appears to be necessary [99]. When the classical
continuum is applied for softening materials as for smeared crack models it results
with dependency on element alignment and element size. Thus, with such method
infromation over crack orientation is not provided. The application of gradient [100]
and non-local [101, 69, 102] continuum theories has proved successful in overcoming
the deficiency of the classical continuum when analyzing softening materials. All the
modifications of this kind requires a fine mesh within the localisation zone in order
to capture the high strain gradients or in other words a priori knowledge of where
failure will occur. Thus, the potential of such methods for structural scale problems,
especially in three-dimensions is limited. For that reason, they are often replaced by a
particular modification of the classical continuum that allows for either displacement
[73, 28, 26, 103, 104, 71, 105, 106, 70, 107, 108] or strain discontinuities in the formu-
lation [27, 110, 111]. The main advantage of the modified continuum models of this
kind is to provide the adequate measure of the total inelastic dissipation of the strain
softening component regardless of the chosen finite element mesh. However, the
vast majority of previous works are mainly developed by combining elastic response
with strain softening and thus completely ignore the possible inelastic deformation
in fracture process zone that proceeds the strain-softening. In some previous work
based on smeared crack concept the inelastic deformation during hardening is taken
into account [112]. Moreover, it is well known by now that the nonlinear volume
change during hardening is prominent feature of concrete-like materials. This sort
of behavior generally violates the associated flow rule. Therefore a separate plastic
potential rather than loading function is needed to define flow rule.

In this chapter, we develop model capable of taking into account both types of
dissipative mechanisms which can better reproduce the behavior of massive structures:
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a bulk dissipation characterized by the development of micro-cracks and a surface
dissipation in localization zones in terms of the macro-cracks. Here plasticity model
with Drucker-Prager yield criterion is considered, with similar plastic potential
function governing hardening behavior and corresponding shear line representing the
strain softening behavior. Although the plasticity model is used in present study,
one can note that damage model could be used as well. However, as long as we do
not go to true cyclic loading applications, either of them can be successfully applied
to obtain the adequate value of limit load in quasi-static applications. Another
advantage of proposed model is ability to represent nonlinear volume change during
hardening obtained by using plastic potential function similar to yield function in
order to define flow rule.

The condition which allows to connect pre- and post-localization state, pertains
to imposing the equivalence of the corresponding dissipations, which can be cast as
the stress orthogonality with respect to localization induced enhanced strain field.
The standard finite element implementation ought to be modified in order to account
for this orthogonality condition and addition of corresponding displacement modes
representing displacement discontinuity along yield line, which can be carried out in
a very similar manner as for the method of incompatible modes [28, 74].

Other multi-surface model ingredients pertains of St. Venant criterion that can
handle failure in tension and in compression. Figure 3.1a shows a graphic illustration
of the proposed criterion in principal axes of stress tensor. One can note that in
tension region elastic stage is followed by softening, while in compression not only
the ductile part with fracture process zone is larger, but also its contribution to total
dissipation for compression failure. Figure 3.1b clearly reveals that the only special
load case which is not limited, is a three-axial compression that can be produced by
hydrostatic pressure.

The outline of the chapter is as follows. Next section briefly present the theoretical
framework capable of accommodating both strain-hardening and strain-softening
effects. We first start with hardening for non-associative flow rule written in six-
dimensional and in principal stress space followed by softening plasticity model.
Considerations of the discrete approximation, based on the finite element method,
are given in Section 3. The results for several numerical examples are presented in
Section 4. In Section 5 we state some closing remarks.

3.2 Continuum model formulation
In this section, we present the concrete model built in the view of failure models
for massive structures, where the elastic behavior is followed by the creation of the
fracture process zone with a large number of micro-cracks and subsequent final failure
mode in terms of the macro-cracks. The fracture process zone is represented by
the non-associated Drucker-Prager continuum plasticity model since the number
of micro-cracks is considered sufficiently large and their orientation random. The
macro-crack is represented with a surface of displacement discontinuity, where all
localized dissipative mechanisms will led to development of localization zones.
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3.2.1 Thermodynamics framework
To simplify our discussion we consider the Euclidean setting and corresponding tensor
[73]. We consider the displacement vector, u, as a function of both space position x
and pseudo-time t

u(x, t) = ui(x, t)ei; x = xiei (3.1)
Standard kinematic considerations define the tensor of total strains, ϵ, as the

symmetric part of the displacement gradient tensor

ϵϵϵ=∇su; ϵijei⊗ej = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
ei⊗ej (3.2)

The hypothesis of small displacement gradient allows us to express the equilibrium
equations in terms of Cauchy (or true) stress, σσσ = σijei⊗ej directly in the initial
configuration

div [σσσ]+b = 0⇐⇒ ∂σij
∂xj

+ bi = 0 (3.3)

where b is the body force. In elasticity the constitutive model is governed by Hooke’s
law which only requires to specify the material parameters that allows to construct
corresponding elasticity tensor C

σσσ = Cϵϵϵ; σijkl = Cijklϵkl (3.4)

The elasticity tensor of the simplest case of isotropic material (we refer to [24]
where fine scale model confirms that concrete is statistically close to isotropic) can
be constructed with two parameters only; by choosing Lame’s parameters, λ and µ,
we can write such an elasticity tensor as:

C = λ1⊗1+2µI (3.5)
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Figure 3.1: Multisurface criterion (a) in principal stress space (b) in meridian plane
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with I and 1 being, respectively, fourth and second order unit tensors. Alternatively,
the elasticity tensor can be expressed in terms of bulk (K) and shear modulus (G)

C = K1⊗1+2G
(
I− 1

31⊗1
)

(3.6)

In the presence of plastic deformation, the constitutive relation in (3.4) is no
longer featuring the total but the elastic deformation. Namely, by assuming the
independence of the elastic response on plastic flow, the total deformation can be
split additively into elastic ϵϵϵe and plastic part ϵϵϵp,

ϵϵϵ= ϵϵϵe+ϵϵϵp (3.7)

By further assuming that the elastic response remains linear, reducing to Hooke’s
law in (3.4) in the absence of plastic deformation, we can construct the free energy
potential as a quadratic form in terms of deformations

ψ(ϵϵϵ,ϵϵϵp,ζζζ) := 1
2(ϵϵϵ−ϵϵϵp) ·C(ϵϵϵ−ϵϵϵp))+ 1

2ζKζ (3.8)

Besides the stress tensor σσσ we define the stress-like internal variable q, which is
dual to the strain-like internal state variable ζ. We assume that this dual variable is
used to define the yield criterion which corresponds to the classical Drucker-Prager
model:

φy(σσσ,q) :=∥ dev[σσσ] ∥+1
3 tan(ϕ)tr[σσσ]−

√
2
3(σy− q) (3.9)

where
dev[σσσ] = σσσ− 1

3(tr[σσσ])1 (3.10)
is the deviatoric part of the stress tensor, tan(ϕ) is material parameter that can
characterize the internal friction and σy is uni-axial yield stress identified from a
tension test. In (3.10) the Frobenius norm is used with ∥ σ ∥:=

√
σ : σ. Instead to

the yield function, plastic flow develops along the normal to the plastic potential
function resulting with non-associated Drucker-Prager model. Here, we will use
plastic potential function that is different then yield function

φp(σσσ,q) :=∥ dev[σσσ] ∥+1
3 tan(ψ)tr[σσσ] (3.11)

where tan(ψ) is material parameter describing the angle of dilatancy.
Specifying three fundamental equations in (3.7), (3.8) and (3.9) along with (3.11),

are sufficient to completely define the stress tensor computation as well as the internal
variables evolution corresponding to the plasticity model. Namely, we simply use the
second principle of thermodynamics and the principle of maximum plastic dissipation.
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For the isothermal case of dissipation inequality, we have:

0≤ D := σσσ · ϵ̇ϵϵ− ∂

∂t
ψ

= σσσ · ϵ̇ϵϵ− ∂ψ
∂ϵϵϵ
· ϵ̇ϵϵ− ∂ψ

∂ϵϵϵp
· ϵ̇ϵϵp− ∂ψ

∂ζ
· ζ̇

= (σσσ− ∂ψ
∂ϵϵϵ

) · ϵ̇ϵϵ− ∂ψ

∂ϵϵϵp
· ϵ̇ϵϵp− ∂ψ

∂ζ
· ζ̇

(3.12)

In the elastic case, where plastic dissipation remains equal to zero with no change
of internal variables, ϵ̇ϵϵp= 0 and ζ̇ = 0, the last result confirms that the stress can be
computed as:

D = 0; ϵ̇ϵϵp= 0; ζ̇ = 0; σσσ := ∂ψ

∂ϵϵϵ
= C(ϵϵϵ−ϵϵϵp) (3.13)

By assuming that such a stress computation remains valid in the plastic case,
and by introducing the thermodynamic fluxes conjugate to internal variables,

σσσ :=− ∂ψ
∂ϵϵϵp

q :=−∂ψ
∂ζ

(3.14)

we can obtain the final expression for the plastic dissipation according to:

0≤ Dp := σσσ · ϵ̇ϵϵp+ q · ζ̇ (3.15)

The principle of maximum plastic dissipation is then invoked stating that among
all the admissible stress states (for which φy(σσσ,q) � 0) , we ought to choose those
which maximize the plastic dissipation:

Dp(σσσ,q) =maxφy(σσσ∗,q∗)≤0 [Dp(σσσ∗,q∗)] ; (3.16)

By the Lagrange multiplier method, this problem of computing the maximum under
the corresponding constraint can be transformed into an unconstrained minimization
problem:

Lp(σσσ,q, γ̇) = max
γ̇≥0

min
∀σσσ∗,q∗

[Lp(σσσ∗,q∗, γ̇∗) ]

Lp(σσσ,q, γ̇) :=−Dp(σσσ,q) + γ̇φy(σσσ,q)
(3.17)

The associated Kuhn-Tucker optimality conditions will provide the corresponding
evolution equation for internal variables:

0 = ∂Lp(σσσ,q, γ̇)
∂σσσ

=−ϵ̇ϵϵp+ γ̇
∂φy(σσσ,q)

∂σσσ
;

0 = ∂Lp(σσσ,q, γ̇)
∂q =−ζ̇+ γ̇

∂φy(σσσ,q)
∂q ;

γ̇ ≥ 0; φy(σσσ,q)≤ 0; γ̇φy(σσσ,q) = 0

(3.18)

Failure models in heterogeneous materials



50 Multi-surface plasticity model for concrete with 3D failure modes

The corresponding value of each Lagrange multiplier γ̇ for associative plasticity
model is obtained from the consistency condition, which assures that in a plastic
loading process, subsequent stress and deformation states remains on subsequent
yield surface:

0 = φ̇y = ∂φy
∂σσσ · σ̇σσ+ ∂φy

∂q · q̇
= ∂φy

∂σσσ ·C ϵ̇ϵϵ−Gyγ̇;
(3.19)

where
Gy = ∂φy

∂σσσ ·C
∂φy
∂σσσ + ∂φy

∂q ·K
∂φy
∂q (3.20)

Since γ̇ is non-zero only when yield surface is active it follows that

0 = φ̇y⇒ γ̇ = G−1
y

(
∂φy
∂σσσ ·C ϵ̇ϵϵ

)
(3.21)

where G−1
ij is the inverse of matrix Gij . By using the last result we obtain the rate

form of the stress-strain relations in (3.4)

σ̇σσ = Cepϵ̇ϵϵ (3.22)

where Cep are elastoplastic tangent moduli given by the expression

Cep =
{

C; ∀γ̇i = 0; i = 1,2, ...,m
C−G−1

y C ∂φy
∂σσσ ⊗C ∂φy

∂σσσ

(3.23)

The consequences of the principle of maximum plastic dissipation characterizing
such associative plasticity model is the convexity of the yield surface in stress space
and normality of plastic flow with respect to the yield surface. Drucker’s stability
postulate is also in agreement with this principle. By changing the proposed flow
rule with separate potential in (3.11) we can conclude that proposed model results
with Drucker-Prager non-associative plasticity that is not stable in the sense of
Drucker. However, stability postulate is sufficient but not a necessary criterion.
Since the uniqueness of stress and strain trajectories for a given loading exists, the
material can be regarded as locally stable, thus the condition of uniqueness rather
than the stability postulate may be regarded as a basic for establishing stress-strain
relationship. The non-associative flow rule for the plastic strain rate tensor, using
(3.11) and strain-like hardening variable , is given by

0 =−ϵ̇ϵϵp+ γ̇
∂φp(σσσ,q)

∂σσσ

0 =−ζ̇+ γ̇
∂φy(σσσ,q)

∂q

(3.24)

The loading/unloading conditions can be expressed in the Kuhn-Tucker form as

γ̇ ≥ 0; φy(σσσ,q) ≤ 0; γ̇φy = 0 (3.25)
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The plastic multiplier γ̇ using the plastic consistency condition φ̇y = 0 can be
expressed in the form

0 = φ̇y = ∂φy
∂σσσ
· σ̇σσ+ ∂φy

∂q · q̇

= ∂φy
∂σσσ
·C ϵ̇ϵϵ− γ̇

(
∂φy
∂σσσ
·C ∂φp

∂σσσ
+ ∂φy

∂q ·K
∂φy
∂q

)

⇒ γ̇ = h−1∂φy
∂σσσ
·C ϵ̇ϵϵ

(3.26)

where we used relation

h−1 = ∂φy
∂σσσ
·C ∂φp

∂σσσ
+ ∂φy

∂q ·K
∂φy
∂q (3.27)

We can simplify corresponding results in (3.26) for proposed model to obtain:

γ̇ = 2Gννν : ϵ̇ϵϵ+3Kα1tr(ϵ̇ϵϵ)
2G+9Kα1α2 + 2

3Kh
(3.28)

where

ννν = dev[σσσ]
∥ dev[σσσ] ∥ ; α1 = 1

3 tanϕ; α2 = 1
3 tanψ;

Kh = dq(ζ)
dζ

;

q(ζ) =−(σ∞−σy) [1− exp(−βζ)]+Kh,linζ;

(3.29)

In (3.29) above, σy is initial uniaxial yield stress, β is the hardening parameter that
governs the rate with which the saturation is achieved, σ∞ is limit until the stress
increase,Kh,lin is hardening modulus.

Once the scalar function γ̇ is determined the plastic strain increment from flow
rule can be expressed as

ϵ̇ϵϵp = γ̇
∂φp
∂σσσ

= h−1 ∂φy
∂σσσ
·C︸ ︷︷ ︸

H

∂φp
∂σσσ

ϵ̇ϵϵ (3.30)

and corresponding stress increment can be determined from (3.4) and (3.7)
combining with last expression

σ̇σσ = C
(
ϵ̇ϵϵ− γ̇ ∂φp

∂σσσ

)

=
(

C −h−1C ∂φy
∂σσσ
⊗C ∂φp

∂σσσ

)
ϵ̇ϵϵ

= C epϵ̇ϵϵ

(3.31)
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Thus the tangent elastoplastic tensor can be written in an additive format

C ep = C +Cp (3.32)

with

Cp =−h−1C ∂φy
∂σσσ
⊗C ∂φp

∂σσσ
=−h−1H ⊗H ∗ (3.33)

where Cp is plastic tangent stiffness tensor and represents the degradation of the
stiffness of material due to plastic flow. It can be noted from (3.33) that tensor Cp

lacks symmetry. The same holds for C ep with a non-associative flow rule is used as
stated for chosen Drucker-Prager model:

C ep = C − (2Gνννn+1 +3Kα11)⊗ (2Gνννn+1 +3Kα21)
2G+9Kα1α2 + 2

3Kh,iso
(3.34)

3.2.2 Stress resultant hardening model
The stress update and formation of the elastoplastic tangent modulus requires the
derivative of the yield function and the plastic potential function. Even for linear
criteria, this is a cumbersome task when carried out in the general six-dimensional
stress space. It will be shown in the following that computation in principal stress
space simplifies procedure, presented in Section 3.2.1.. First, the dimension of the
problem reduces from six to three, and second, in the three-dimensional stress space
the stress states can be easily visualized graphically, making it possible to successfully
apply geometric arguments. The approach is applicable to general isotropic yield
criteria (e.g [113–115]), but in the following only Drucker-Prager criteria will be
considered. As only isotropic material models are considered, the manipulations can
be carried out with respect to any set of coordinates. Therefore the predictor stress
is transformed into principal stress space, to compute the return to the yield surface.
Considering the fact that the stress return preserves the principal directions, the
updated stress can then be transformed back into the original Cartesian coordinates.
The constitutive matrices are also first formed in principal stress space and then
subsequently transformed to standard coordinates.

The Drucker-Prager model in principal stress space is right-circular cone with its
axis equally inclined with respect to each of the coordinate axes, and with its apex in
the tension octant. It can be shown that plastic deformation must be accompanied
by an increase in volume if ϕ ̸= 0. This property known as dilatancy is consequences
of the dependency of yield surface for associative or plastic potential surface for
non-associative flow rule, on hydrostatic pressure. Figure 3.2 shows Drucker-Prager
yield surface open in direction of the negative hydrostatic axis along with plastic
potential function. From flow rule the plastic strain increment dϵpij is perpendicular
to plastic potential surface at the actual yield point M. The vector dϵpij can be
decomposed into vertical and horizontal component where horizontal components
dϵpvij represents the plastic volume change, which is always positive for ψ > 0 so
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and for associative plasticity. When using a negative dilatancy angle, we find that
stress-strain curve gradually approaches a line with a negative slope. In other words,
hardening is followed by softening leading to unstable behavior where the material
resistance vanishes.

-I1

J1/2
2

d pv
ij

d p
ij

M

Current loading surface

Plastic potential surface

Subsequent loading surface

Figure 3.2: The loading and plastic potential surfaces for the Drucker-Prager material
with a non-associated flow rule

Defining three main ingredients sufficient for the constitutive model of plasticity
we can provide the stress tensor computation as well as internal variables evolution:

• additive decomposition of total strain into elastic and plastic component
ε= εe+ εp

• the free energy function constructed in terms of deformations
ψ(ϵϵϵ,ϵϵϵp,ζζζ) := 1

2(ϵϵϵ−ϵϵϵp) · Ĉ(ϵϵϵ−ϵϵϵp)+ 1
2ζKζ

• the yield criterion takes a very simple form in the principal axis representation
φy,s(σσσ,q) :=

√
J2 + 1

3 tan(ϕ)I1−
√

2
3(σy− q)

while plastic potential function is defined as
φp,s(σσσ,q) :=

√
J2 + 1

3 tan(ψ)I1

where
J2 = 1/6

[
(σσσ1−σσσ2)2 +(σσσ2−σσσ3)2 +(σσσ3−σσσ1)2]

I1 = σσσ1 +σσσ2 +σσσ3
is the second invariant of the deviatoric part of the Cauchy stress and the first
invariant of the Cauchy stress, respectively.

The principal stresses and deformations as well as their directions are found by
solving the eigenvalue problem

(σσσ−σiI)ni = 0
(εεε− εiI)mi = 0

(3.35)

Failure models in heterogeneous materials



54 Multi-surface plasticity model for concrete with 3D failure modes

where σσσ,εεε are stress and deformation tensor, σσσi,εεεi are the eigenvalues, I is identity
matrix and ni,mi are eigenvectors. The three eigenvectors of deformation tensor
form a coordinate transformation tensor Qi,j

Qi,j =
[
nj,1 nj,2 nj,3

]
=

=

cos(x,x) cos(y,x) cos(z,x)
cos(x,y) cos(y,x) cos(z,x)
cos(x,z) cos(y,x) cos(z,x)

=

cxx cyx czx
cxy cyy czy
cxz cyz czz

 (3.36)

where the components are direction cosines between the two sets of axes. With the
elements of Qi,j the transformation matrix can be written as:

T =



c2xx c2yx c2zx
c2xy c2yy c2zy
c2xz c2yz c2zz

cxxcxy cxycxz cxxcxz
cyxcyy cyycyz cyxcyz
czxczy czyczz czxczz


(3.37)

All the remaining ingredients of the plasticity model can be obtained from the
standard thermodynamics considerations. Namely, the plastic strain rate tensor and
strain-like hardening variable in principal direction, is given in same way as given in
(3.24).

Using plastic consistency condition we can obtain plastic multiplier in same way
as for computation in local coordinates and then update stress in the principal stress
space. Stress tensor in local coordinates can be obtain by using transformation
matrix either using spectral decomposition of the principal stresses

σσσ =
3∑

i=1
σini⊗ni→ σσσ = Tσσσ (3.38)

After this computation, we also have to obtain the elastoplastic tangent modulus
which consists of a material and of a geometric part

C = ∂σσσ

∂ϵϵϵ

=
3∑

i=1

∂σi
∂ϵϵϵ

ni⊗ni︸ ︷︷ ︸
Cmat

+
3∑

i=1
σi
∂

∂ϵϵϵ
(ni⊗ni︸ ︷︷ ︸

Cgeo

) (3.39)

By applying the Gâteaux derivative formalism to the eigenvalue problem in (3.35)
we obtain

∂εi
∂ϵϵϵ

= ni⊗ni (3.40)

By exploiting this results we can provide the closed form expression for the
material part of elastoplastic tangent modulus in terms of its reduced form in
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principal axes Dep
ij :

C ep
mat =

3∑
i=1

∂σi
∂ϵϵϵ

ni⊗ni

=
3∑

i=1

3∑
j=1

∂σi
∂εj

∂εj
∂ϵϵϵ

ni⊗ni

=
3∑

i=1

3∑
j=1

Dep
ij [ni⊗ni]⊗ [nj⊗nj ]

(3.41)

In particular, for an elastic step the elastoplastic tangent modulus in principal
direction is the same as the elasticity tensor Dij , while for a plastic step it is computed
as the corresponding modification of elasticity tensor taking into account the final
value of stress tensor for plastic step defined in (3.38):

Dep = D−
D ∂φy,s

∂σσσ ⊗D ∂φp,s
∂σσσ

∂φy,s
∂σσσ ·D

∂φp,s
∂σσσ + ∂φy,s

∂q ·K
∂φy,s
∂q

(3.42)

In order to obtain geometric part of the tangent tensor we use fact that ni⊗ni
can be obtained in closed form in terms of ϵϵϵ which follows from Serrin’s representation
theorem. If all εi are distinct, then

ni⊗ni = εi
di

[
ϵϵϵ− (i1− εi)I+ i3ε−1

i ϵϵϵ−1
]

(3.43)

if and only if di ̸= 0 where ii; i=1,2,3 are the principal invariants of deformation
tensor and

di = (εi− εj)(εi− εk) (3.44)

With this result in hand and using chain rule we can write the geometric part of
tangent modulus as:

Cgeo = σi
di

[
I−1⊗1− i3ε−1

i (Iϵϵϵ−1−ϵϵϵ−1⊗ϵϵϵ−1)+1⊗ni

+ni⊗1− i3ε−2
i × ((ni⊗ni)⊗ϵϵϵ−1 +ϵϵϵ−1⊗ (ni⊗ni)

+2(i3ε−3
i −1)(ni⊗ni)⊗ (ni⊗ni)

] (3.45)

where

IABCDϵϵϵ−1 = 1
2(ϵϵϵ−1ACϵϵϵ−1BD +ϵϵϵ−1ADϵϵϵ−1BC) (3.46)
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In the case two or even all three principal deformation are the same, we can
obtain similar expression (3.43) by using numerical perturbation of the identical
values.

Finally, we can write the tangent tensor in matrix form using transformation
matrix

C ep︸︷︷︸
6x6

= T︸︷︷︸
6x3

Cep
mat︸ ︷︷ ︸

3x3

TT︸︷︷︸
3x6

+Cgeo︸ ︷︷ ︸
6x6

(3.47)

3.2.3 Softening plasticity
In this section, we present the theoretical formulation of the strong discontinuity
approach for modeling the cracking of concrete. While in compression it can be
observed three different deformation stages, linear elastic, nonlinear inelastic and
localized stage in tension, elastic stage is followed by unstable softening stage. In
order to take into account these two types of dissipative mechanisms we build multi-
surface model in order to better reproduce the behavior of massive structures: a bulk
dissipation characterized by the development of micro-cracks, which is taken into
account by the introduction of Drucker-Prager model and a surface dissipation taking
place at the level of the localization zones in terms of the macro-cracks triggered
with St. Venant plasticity criterion in strain space defined by three surfaces.

φ1(ϵϵϵe) = ϵe1− (ϵy− q)≤ 0
φ2(ϵϵϵe) = ϵe2− (ϵy− q)≤ 0
φ3(ϵϵϵe) = ϵe3− (ϵy− q)≤ 0

(3.48)

n n1 1

n n2 2

1

2

3

inadmissible

domain

hydrostatic

axis

s

s

s

(a)

s1

s2

(b)

Figure 3.3: Elastic domain in principal stress space (a) 3D case (b) 2D case for σ3 = 0
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One can also recover the standard format of the limit criterion in the stress space,
which is more efficient in numerical implementation,according to:

φ1(σσσ) = 3K+G

9KG σ1−
3K−2G
18KG (σ2 +σ3)− (σy− q)≤ 0

φ2(σσσ) = 3K+G

9KG σ2−
3K−2G
18KG (σ1 +σ3)− (σy− q)≤ 0

φ3(σσσ) = 3K+G

9KG σ3−
3K−2G
18KG (σ1 +σ2)− (σy− q)≤ 0

(3.49)

where we have chosen the reference value of the elasticity limit obtained from
hydrostatic tension test.

Figure 3.3 present the principal axis representation of this three dimensional
criterion. The three surfaces are therefore simply represented by planes in 3D or
straight lines in 2D case. We should note that Φ1 ≥ Φ2 ≥ Φ3, so that the second and
third surface can never be the only one active, for 2D case the second surface is the
one which can never be the only one active (see Figure 3.3b). In pure tension mode,
the limit of the elastic domain is,

φ1(σσσ2) = 3K+G

9KG σ1−σy ≤ 0 (3.50)

and, in pure compression:

φ1(σσσ1) = 3K−2G
18KG σ2−σy ≤ 0 (3.51)

where we have chosen the reference value of the elasticity limit obtained from
hydrostatic tension test.

In order to provide reliable predictive model for concrete taking into account
two types of dissipative mechanisms, we combine this multi-surface model in order
to represent localized failure. The fracture process zone is still represented with
non-associative Drucker-Prager model. Figure 3.1a shows a graphic illustration of
the proposed criterion in principal axes of stress tensor. One can note that in tension
region elastic stage is followed by softening, while in compression not only the ductile
part with fracture process zone is larger, but also its contribution to total dissipation
for compression failure. Figure 3.1b clearly reveals that the only special load case
which is not limited, is a three-axial compression that can be produced by hydrostatic
pressure.

In order to provide the appropriate interpretation of the localized plastic de-
formation, we consider a domain Ω split into two sub-domains Ω+ and Ω− by a
surface of discontinuity, denoted as Γs, see Figure 3.4 The total displacement field u
is written as the sum of a smooth regular part ū and the displacement discontinuity
¯̄u , centered at the Γs. The surface of discontinuity Γs is characterized at each point
by a unit vector of exterior normal denoted as n, a tangential vector denoted as m
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and binormal vector b. The discontinuous displacement field can then be written as

u(x, t) = ū(x, t)+ ¯̄u(x, t)MΓs(x)
MΓs(x) = HΓs(x)−NΩ̃(x)

(3.52)

where HΓs(x) is the Heaviside function being equal to 1 in Ω+ and to 0 in Ω−,
whereas NΩ̃(x) is continuous function which can be sketched arbitrary except for
satisfying following two conditions:

NΩ̃(x) =
1; x ∈ Ω+

0; x ∈ Ω−

Figure 3.4: Slip line Γs separating domain into Ω+ and Ω−

By combining the Newton third law which imposes the continuity of traction
across displacement discontinuity line Γs and the Cauchy principle, we can write:

0 = ṫ = σ̇σσn+σσσ ṅ︸︷︷︸
=0

(3.53)

where the second term drops out because it is assumed that the direction of the
discontinuity remains fixed in time.

Furthermore, by using last results with assumption that the bifurcation phenom-
ena in an elasto-plastic response can be interpolated as the difference between two
smooth stress fields, defining the corresponding jump in the stress rate, we obtain:

0 = Cep(m⊗nα̇)n
= Aepmα̇; Aep = nCepn

(3.54)

where Aep is the acoustic tensor. Herein, we assume that the critical mode m is
parallel to a normal vector n providing mode I as a opening mode in tension.

The corresponding deformation field that is produced by such a displacement
field can be written as

ϵϵϵ(x, t) =∇sū(x, t)+ Ḡ(x)¯̄u(t)︸ ︷︷ ︸
ϵ̄ϵϵ

+(¯̄u(t)⊗n)sδΓ(x)

Ḡ(x) =−∇sNΩ̃(x)
(3.55)

The strain field appears then to be decomposed into a regular part and a singular
part, the latter accompanying the Dirac-delta function δΓ(x). The strain energy in
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this case can be written:

ψ(ϵϵϵ, ζ̄, ¯̄ζ) := ψe(ϵϵϵe)+ Ξ̄(ζ̄)︸ ︷︷ ︸
regular

+¯̄Ξ(¯̄ζ)δΓs (3.56)

where the first term is the elastic energy, whereas the second and the third terms
are the contributions of hardening and softening mechanisms, respectively.The total
plastic dissipation can be expressed as the sum of the dissipation from fracture
process zone in Ω̃ and from the discontinuity on Γs, which can be written:

0≤ Dp

Ω̃ =
∫

Ω̃

[
σσσ · ϵ̇ϵϵ− ψ̇(ϵϵϵ, ζ̄, ¯̄ζ)

]
dV

=
∫

Ω̃

[
σσσ · ˙̄ϵϵϵ− (ψ̇e(ϵϵϵe)+ ˙̄Ξ(ζ̄))

]
dV

+
∫

Γs

[t ·m] α̇dA−
∫

Γs

˙̄̄Ξ(¯̄ζ)dA

(3.57)

From results above we can then obtain the additive decomposition of the total plastic
dissipation into a regular and a singular part:

Dp

Ω̃ =
∫

Ω̃

(
σσσ · ˙̄ϵϵϵp+ q̄ ˙̄ζ

)
dV +

∫
Γs

¯̄q ¯̄̇
ζdA (3.58)

For the last result to be valid we assume that the following stress orthogonality
condition must be satisfied:∫

Ω̃
σσσ · G̃mα̇dV +

∫
Γs

(t ·m) α̇dA= 0 (3.59)

The yield condition controlling inelastic deformation at discontinuity is set directly
in terms of the traction vector component tm = t ·m (⇐m = n):

¯̄Φ(tm, ¯̄q) = |t ·m︸ ︷︷ ︸
tm

|− (σy− ¯̄q) (3.60)

Here, σy is a failure threshold and ¯̄q is the internal plasticity variable for evolution
of softening. When the softening constitutive law is chosen to be exponential, the
internal variable for plasticity can be written as:

¯̄q = σy

(
1− exp

(
− ¯̄ζ σy

Gf

))
(3.61)

where Gf is the corresponding value of fracture energy. Since the compressive and
the tension failure mechanisms are reproduced according to the same fracture mode
driven by the principal tensile strains, the corresponding amount of fracture energy
can be quite different because of the number of cracks created in those two cases.
This is illustrated in Figure 3.5a representing the crack pattern in simple tension
and the one in simple compression test, leading to quite different dissipated energy.
Here, we indicate that the fracture energy is supposed to change continuously from
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(a)

Gc

Gt

Gf

tr e 

(b)

Figure 3.5: (a) Failure modes in both compression and tension (b) Influence of strain
state on fracture energy

a specified value in tension Gt to compression Gc (Figure 3.5b) according to:

Gf = Gc+Gt

2 − Gc−Gt

2 tanh(βtr[ϵ]) (3.62)

where β is a parameter to be chosen to set a more or less rapid transition.
Assuming further that the plastic multiplier takes the form γ̇ = ˙̄γ+ ˙̄̄γδΓs , we can

make use of the principle of maximum plastic dissipation with

¯̄Lp(σσσ, q̄, ˙̄̄γ) = max
˙̄̄γ≥0

min
∀(t∗,¯̄q∗)

[ ¯̄Lp(σσσ∗, q̄∗, ˙̄̄γ∗)
]

=−Dloc
Ω (·)+

∫
Ω

˙̄γΦ̄dV +
∫

Γs

˙̄̄γ ¯̄ΦdA
(3.63)

The Kuhn-Tucker optimality condition will provide the corresponding evolution
equation for internal variables:

0 =
∫

Ω

(
− ˙̄ϵϵϵp+ ˙̄γ ∂φ̄

∂σσσ

)
dV ;

0 =
∫

Ω

(
− ˙̄ζp+ ˙̄γ ∂φ̄

∂q̄

)
dV ;

(3.64)

accompanied with

0 =
∫

Γs

− ˙̄̄
ζ+ ˙̄̄γ ∂

¯̄φ
∂ ¯̄q

dA ⇒
∫

Γs

˙̄̄
ζdA=

∫
Γs

˙̄̄γdA (3.65)

The plastic multiplier can be computed from plastic consistency condition enforcing
that ¯̄Φ = 0, which results with:

˙̄̄γ = 1
¯̄K

∫
Ω
σ̇σσḠdV (3.66)
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3.3 Space and time Discrete approximation
In this section we will present the main steps in applying the implicit backward Euler
scheme to 3D plasticity model for concrete materials.

3.3.1 Spatial discretization
We first elaborate upon the solution of the initial boundary value problem, posed by
the weak form of the equilibrium equations (3.3) and the evolution equations (3.24).
We use standard semi-discretization procedure to construct the finite-element-based
displacement approximation over a single element Ωe

u(x, t) |Ωe =
nen∑
a=1

Ne
a(x)ua(t) (3.67)

where ‘nen’ is the total number of element nodes, Ne
a(x) are the finite element shape

functions and ua(t) are the nodal displacements. Upon replacing this approximation
into the weak form of the equilibrium equations in (3.3) we can integrate with respect
to the space variables x, thus reducing the current problem to tracing the pseudo-time
history of the state variables. In other words, the weak form of equilibrium equations
can be written as

G =
nel

A
e=1
{
∫
Ωe BeT

a (x)σσσ(ϵϵϵ(x, t),ϵϵϵp(x, t), ζ(ξξξ, t))dV
−
∫
Ωe Ne

a(x) ·b(x, t)dV −
∫
Γσ

Ne
a(x) · t(x, t)dA}= 0

(3.68)

where
nel

A
e=1

denotes the standard finite element assembly procedure over the total
number of elements nel.

By choosing the Gauss quadrature rule with nin points, with abscissas ξξξl and
integration points wl we can rewrite equilibrium equations as

G =
nel

A
e=1
{

nin∑
l=1

(wlBeT
a (ξξξl)σσσ(ϵϵϵ(ξξξl, t),ϵϵϵp(ξξξl, t), ζ(ξξξl, t)) j(ξξξl)

−wlNe
a(ξξξl) ·b(ξξξl, t) j(ξξξl)−

nin∑
l=1

wlNe
a(ξξξl) · t(ξξξl, t)}= 0

(3.69)

The numerical integration introduces a crucial simplification concerning the in-
ternal state variable computation, in that their values need to be obtained only at
the integration points. The computed values of internal variables, obtained for a par-
ticular value of pseudo-time, are then stored at each integration point for subsequent
use. The corresponding values of the total strains at a numerical integration point ξξξl
can be simply recovered from the chosen displacement approximation as

ϵϵϵ(ξξξl, t) = Be
a(ξξξl)ue(t) (3.70)
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3.3.2 Integration of internal state variables for plasticity
As the result of using the semi-discretization procedure, the evolution equations
(3.18) become the ordinary differential equations in time. Integrating those equations
in the time interval of interest, [0;T], we can trace the evolution of the internal state
variables. This integration is carried out numerically by using the unconditionally
stable backward Euler time integration scheme. The solution is thus obtained for
the chosen values of pseudo-time in the incremental sequence: 0 < t1 < t2 < ... <
tn < tn+ 1 < ... < T. Considering that the backward Euler is one-step integration
scheme, it only remains to elaborate upon the solution procedure over a typical time
increment. To that end, let

ϵϵϵn = ϵϵϵ(tn); ϵϵϵpn = ϵϵϵp(tn); ζn = ζ(tn); (3.71)

be given data at time tn, and ∆t = tn+1− tn the given time increment. The problem
is to obtain the corresponding values of the state variables at time tn+1,

ϵϵϵn+1; ϵϵϵpn+1; ζn+1; (3.72)

which are admissible in the sense that the yield criterion is satisfied.
Tackling this problem in the spirit of the operator split method, we assume to be

given the total strain increment ∆ϵϵϵ(k)
n+1 which corresponds to the best iterative guess

of the displacement value u(k), with k being the iteration counter. The first part of
the computation reduces to a simple additive update of the total deformation field

ϵϵϵ
(k)
n+1 = ϵϵϵn+∆ϵϵϵ(k)

n+1 (3.73)

The computation of the remaining state variables is carried out by applying the
backward Euler method to the evolution equations (3.24) leading to following system:

ϵϵϵpn+1 = ϵϵϵpn+γn+1(νννn+1 +α21)

ζn+1 = ζn+γn+1

√
2
3

σσσn+1 = C
(
ϵϵϵn+1−ϵϵϵpn+1

)
qn+1 =−Kζn+1

(3.74)

In addition, the discrete counterpart of Kuhn-Tucker conditions becomes:

φy
(
σσσn+1,qn+1

)
≤ 0

γi,n+1 ≥ 0
γn+1φy

(
σσσn+1,qn+1

)
= 0

(3.75)

However, since the correct value of plastic multiplier γ̇n+1 ≥ 0 is not known a
priori, we proceed with the elastic trial test. Namely, we start by assuming that the
step remains elastic and setting γ̇trialn+1 = 0, which results with the corresponding trial
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values of the internal variables

ϵϵϵp,trialn+1 = ϵϵϵpn; ζtrialn+1 = ζn; (3.76)

We can thus readily compute the trial values of stress

σσσtrialn+1 = C(ϵϵϵn+1−ϵϵϵpn);
q̄trialn+1 = q̄n =−Kζn;

φtrialy,n+1 = φy
(
σσσtrialn+1 ,qtrialn+1

) (3.77)

If the trial value of yield functions is indeed not positive, the trial state is accepted
for final, and the internal variables will not change their values with respect to the
previous step.

0≥ φtrialy,n+1(σσσtrialn+1 ,qtrialn+1 ) :=∥ dev[σσσtrialn+1 ] ∥

+ 1
3 tan(α)tr[σσσtrialn+1 ]−

√
2
3(σy− qtrialn+1 )

ϵϵϵpn+1 = ϵϵϵpn; ζn+1 = ζn

(3.78)

In the opposite case producing a positive trial value of yield function φtrialn+1 > 0, we
know that the step is plastic in fact. Thus we have to find the true (positive) value
of plastic multiplier γn+1 > 0, which will reestablish the plastic admissibility of stress
with φn+1 = 0. The corresponding value of the plastic multiplier is obtained from
the consistency condition taking into account non-associative flow rule to obtain:

γn+1 =
φtrialy,n+1

2G+9Kα1α2 + 2
3Kh,lin

(3.79)

This value of plastic multiplier will also provide the corresponding new values of
plastic deformation, hardening variable and the corresponding stress:

σσσn+1 = σσσtrialn+1 −γn+1C(νννn+1 +α21) (3.80)

After the convergence of this computation, we also have to obtain the consistent
elastoplastic tangent modulus, which can be written:

C ep = C − (2Gνννn+1 +3Kα11)⊗ (2Gνννn+1 +3Kα21)
2G+9Kα1α2 + 2

3Kh,iso

− 4G2

∥ dev[σσσtrialn+1 ] ∥

[
I −νννn+1⊗νννn+1−

1
3I⊗ I

] (3.81)

We note in passing that the consistent elastoplastic tangent modulus given above
is different from the corresponding one valid for the continuum problem in (3.34).
The difference between the consistent and continuum tangent moduli concerns the
third term in (3.81) above, which is due to the change of normal to the yield surface
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over a time step. Equivalent computations are carried out in strain softening phase,
which is started once the localization condition in (3.54) happens to be verified for
one of the quadrature points. One can thus obtain that:

¯̄Φ(¯̄γn+1) = 0; tm,n+1 = ty− ¯̄q(¯̄ζn+1)
¯̄K =− d¯̄q

d ¯̄ζn+1

(3.82)

The finite element interpolation is chosen to take into account a displacement
discontinuity, by considering the incompatible mode methods. More precisely, we
choose the finite element interpolation according to:

uh(x, t) = N(x)ua+ααα(t)M(x) (3.83)

where N(x) is the classical shape function associated to the considered brick element,
ua denotes the nodal displacement and M(x) is a discontinuous interpolation function.
The discontinuity can be introduced by splitting the 8-node brick in such a way that
a pair of nodes is placed at each side of the discontinuity. If Ω+ denotes the part of
the element on one side of the opening surface, we can thus write:

M(x) =HΓs(x)−
∑
b∈Ω+

Nb(x) (3.84)

With such an approximation, the finite element interpolation of the strain field
can be written as:

ϵϵϵh(x, t) = B(x)ua+ααα(t)Gr(x) (3.85)

where Gr(x) = LM(x) with L the matrix associated to the operator ∇s. The finite
element interpolation of the virtual strain field can be constructed with the same
scheme as

δϵϵϵh(x, t) = B(x)δua+ δααα(t)Gv(x) (3.86)

where δua and δααα(t) denote, respectively, the virtual displacement field and virtual
displacement jump field. Gv(x) is a modified incompatible mode function constructed
from the function Gr(x) so as to guarantee the satisfaction of the patch-test. We
note that in general Gv(x) is different from the function Gr(x). It has to be noted
that, as M(x) is a discontinuous function, the functions Gr(x) and Gv(x) can be
decomposed into a regular and a singular part as

Gr(x) = Ḡr(x)+ ¯̄Gr(x)δΓs

Gv(x) = Ḡv(x)+ ¯̄Gv(x)δΓs

(3.87)
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With those interpolations for real and virtual strain fields using the incompatible
mode, the discretized problem can be written as

Anel
e=1

(
fint,(e)− fext

)
= 0; fint,(e) =

∫
Ωe

BT ·σσσn+1dV

h(e)
n+1 =

∫
Ωe

ḠT
v (x) ·σσσn+1dV +

∫
Γs

tm,n+1dA; ∀e ∈ [1,nel]
(3.88)

The weak form of equilibrium is written as a system of two equations. The first one
is the set of global equilibrium equations, which is classically written in the finite
element method. The second one is a local equilibrium equation written in each
localized element. Independently this equation can be interpreted as the weak form
of the traction continuity condition along the surface of discontinuity. The consistent
linearization of system (3.88) leads to the set of equilibrium equations, which can be
written for time step n+1 and iteration (i):

Anel
e=1

[
Ke,(i)
n+1∆u(i)

n+1 +Fe,(i)
n+1∆ααα(i)

n+1

]
= Anel

e=1

[
fext,en+1 − fint,e,(i)n+1

]
he,(i)n+1 +

(
Fe,(i)
v,n+1 +K(i)

d,n+1

)
∆u(i)

n+1+(
He,(i)
n+1 +K(i)

α,n+1

)
∆ααα(i)

n+1 = 0

(3.89)

where:
Ke,(i)
n+1 =

∫
Ωe BTCep,(i)

n+1 BdV, Fe,(i)
n+1 =

∫
Ωe BTCep,(i)

n+1 ḠmdV

Fe,(i)
v,n+1 =

∫
Ωe mT ḠTCep,(i)

n+1 BdV,
He,(i)
n+1 =

∫
Ωe mT ḠTCep,(i)

n+1 ḠmTdV

Ke,(i)
d,n+1 = AΓe

s
∂tm
∂u |

(i)
n+1, Ke,(i)

α,n+1 = AΓe
s
∂tm
∂α |

(i)
n+1

(3.90)

At that stage there are a couple of possibilities to solve the above set of equilibrium
equations. The first possibility consists in solving simultaneously at global level the
two equations. The second possibility, which is chosen herein, consists in taking
advantage of the fact that the second equation is written locally in each localized
element. Then, this second equation is solved at the element level for a given value
of the displacement field increment ∆u(i)

n+1. This allows determining the value of the
displacement jump increment ∆ααα(i)

n+1. Then by static condensation at the element
level, the system of equations in (90) is reduced to a single equation which takes the
classical form in the finite element method as:

Anel
e=1K̂

e
n+1∆u(i)

n+1 = Anel
e=1

[
fext,en+1 − fint,e,(i)n+1

]
with

K̂
e,(i)
n+1 = Ke,(i)

n+1−Fe,(i),T
n+1 (He,(i)

n+1 +K
(i)
α,n+1)−1(Fe,(i)

v,n+1 +K
(i)
d,n+1)

(3.91)
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3.4 Numerical examples
In this section we present the numerical simulations and computed macroscopic
responses for a number of different concrete specimens and various loading conditions
illustrating the ability of the proposed procedure to describe the behavior till complete
failure. The computations are performed by a research version of computer program
FEAP, developed by R.L. Taylor at UC Berkeley [85]

3.4.1 Uniaxial tension test
We consider here the specimen given as a cube with 15 cm side length. The material
parameters adopted are shown in Table 3.1. These computations (and subsequent
ones) are made under the displacement control with unrestrained lateral displacements
for tension test.

In order to avoid the ambiguity of the failure pattern under homogeneous stress
field in the solid elements, the slight imperfection is introduced into only one element.
This allows to avoid the academic case when the uniform load is applied to a series
of homogeneous solid elements resulting in localized failure in different elements at
the same time, or only decided by numerical round-off errors [24].

Figure 3.6a shows macroscopic stress (sum of all reactions in vertical direction
divided by cross-section area of the concrete cube) with respect to strain. Limit
stress which triggers the global softening obtained with proposed model is lower then
the limit stress obtained with Rankine criterion with the same parameters. Namely,
the limit stress for proposed model is chosen to correspond to elasticity limit in
hydrostatic tension test. Thus, for uniaxial and biaxial loading we can note from
(3.49) that this limit is lower compared to the limit stress obtained with Rankine
type of failure (Figure 3.2). We can note from Figure 3.6b that the model gives the
mesh independent results when the imperfection is added to one of the solid finite
elements and the exponential softening drives the solid to complete failure.

Moreover, we can see from Figure 3.7 that all displacements plotted at the end of
computation are localized in zone where we placed element with slight imperfection
and where final failure surface is formed.

 9.67E-03

 1.93E-02

 2.90E-02

 3.87E-02

 4.83E-02

 5.80E-02

 6.77E-02

 7.73E-02

 8.70E-02

 9.67E-02

 1.06E-01

 1.16E-01

 0.00E+00

_________________ DISPLACEMENT  3 

Time = 5.80E-02Time = 5.80E-02

(a)

 9.67E-03

 1.93E-02

 2.90E-02

 3.87E-02

 4.83E-02

 5.80E-02

 6.77E-02

 7.73E-02

 8.70E-02

 9.67E-02

 1.06E-01

 1.16E-01

 0.00E+00

_________________ DISPLACEMENT  3 

Time = 5.80E-02Time = 5.80E-02

(b)

 8.92E-03

 1.78E-02

 2.68E-02

 3.57E-02

 4.46E-02

 5.35E-02

 6.24E-02

 7.13E-02

 8.03E-02

 8.92E-02

 9.81E-02

 1.07E-01

 0.00E+00

_________________ DISPLACEMENT  3 

Time = 5.35E-02Time = 5.35E-02

(c)

Figure 3.7: Vertical displacement at the end of uniaxial tension test for three different
mesh versions: (a) 2 elements; (b) 3 elements; (c) 63 elements
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Figure 3.6: Macroscopic response for uniaxial tension test

K 15 GPa
G 15 GPa
σu 6.5 MPa
Gf,t 0.5 N/mm

Table 3.1: Material parameters

3.4.2 Notched bar in tension

Figure 3.8: Notched specimen: geometry, boundary conditions and loading

In this example we construct specimen with a notch as presented in Figure 3.8.
The specimen dimensions are given in millimeters. The proposed values of material
properties are: K=17.0 GPa, G=15.0 GPa, σu=6.5 MPa and Gf,t=0.14 N/mm.

A double-notched specimen is constructed by placing notch on two side of
specimen, at the one-third and at two-thirds of the specimen length.

Figure 3.9 shows localization of displacement in loading direction. It can be
noted that for single notched specimen all displacement at the end of computation
are localized where we placed notch, while for double-notched specimen this zone
connect two notches.
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Figure 3.11: Macroscopic response for notched specimen in tension
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Figure 3.12: Macroscopic response for double-notched specimen in tension

Figure 3.10 reveals that at the and of computation single notch specimen is
split in two parts with flat failure surface while for double-notched specimen failure
surfaces split specimen in two L-shaped parts.

Macroscopic response (stress vs. imposed displacement) is presented in Figure
3.11 and 3.12 for both specimen and compared to response obtained with Rankine
type of failure. Again, due to definition of elasticity limit stress in proposed model
we can observe different limit stress for these two kinds of computed response.

3.4.3 Three point notched beam
We consider a simply supported concrete beam (Figure 3.13) of length l = 2000 mm,
height h = 200 mm and thickness t = 50 mm. At its half-length it has a notch
of dimensions a = 10 mm and b = 100 1m. The beam is loaded at the middle of
the span, on the upper edge, with imposed vertical displacement. The material
properties are chosen as in [116]: elastic modulus E = 30 GPa, Poisson ratio ν =
0.2, ultimate strength σu = 4.5 MPa and fracture energy Gf,t=0.120 N/mm. Figure
3.13 shows the used finite element mesh with geometry, boundary conditions and
loading. Computation is performed under displacement control.

In Figure 3.14 is presented dependence of the reaction force on the imposed
displacement for coarse and fine mesh, with 20 (mesh 1) and 40 (mesh 2) finite
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Figure 3.9: Displacement in loading direction at the end of numerical simulation:(a)
Notched specimen ; (b) Double-notched specimen

(a)
(b)

Figure 3.10: Mesh without fractured elements with discontinuity surface Γs; (a) Notched
specimen ; (b) Double-notched specimen

element along the height of the beam. We can note that for small number of element
in the region where the crack is expected to occur and propagate force-displacement
curves exhibit jumps. At jump, the crack propagated through the element much
faster for coarse mesh than to the response with refined mesh. Moreover, we can note
nice matching of the computed results with the range of experimental data presented
in [117]. Upper and lower curve from experiment corresponds to Gf,t=0.137 N/mm
and Gf,t=0.115 N/mm , respectively. The crack propagates along the mesh only
in mode I (crack opening mode). This is also evident from Figure 3.15 where final
deformed configuration of the mesh is presented.

3.4.4 Shear test
The shear-box test is widely used test to determine the shear strength of soils, rock
and similar materials. This test has fallen from favor as an instrument of fundamental
research because it tends to give non-uniform stresses in the rupture zone [118]. In
order to obtain uniform stresses, a so-called simple-shear apparatus was developed
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[119] in such way (Figure 3.16b) that all normal strains can be kept equal to zero, so
that we have a so-called isochoric test (with no volume changes). These tests are
used for soils and also in some previous research projects for concrete [118]. Thus,
we consider such test for sand in order to verify proposed model, but it can be also
used for concrete-like materials. The material properties are: E= 45 MPa, ν=0.2,
Φ=43o and σy=Kh,lin=β=0, . For the initial stress state in the specimen, we assume
σyy = - 100 kPa, σxx= σzz = - 25 kPa and σxy = 0. During the test all strain rates
vanish, with the exception of the shear-strain rate γ̇xy. Test is performed on cube
specimen with 15 cm side length under displacement control.

In Figure 3.16a is presented dependency of shear stress on shear strain which
fits well with results given in [120]. The upper curve is obtained for a dilatancy
angle of 15o. Despite the use of a non-hardening model, this curve shows hardening.
Indeed, the slope of the curve gradually decreases to reach a constant, but positive
value. So elastic-perfectly plastic models do not necessarily involve limit loads. When
using a negative dilatancy angle, we find the lower curve presented in Figure 3.16a.
This stress-strain curve gradually approaches a line with a negative slope. In other
words, hardening is followed by softening and during this unstable behavior the shear
resistance vanishes completely. Thus, even if the model is based on perfect plasticity
we find softening behavior which is due to non-associated plasticity.

In order to arrive at a better understanding of this phenomenon, it is helpful to
consider the stress path for the isochoric shear test in principal stress space. The
stress path begins at the point A with coordinates Aσ1 = - 100 kPa and Aσ2= Aσ3
= - 25 kPa. Then the stresses are more or less controlled by the elastic volume
change. In the beginning of the test the strains are entirely elastic, so that the
condition of zero volume strain implies that sum of stress rate is also equal to zero.
This give a elastic path until we reach the yield surface. From this point on plastic
strains develop, including plastic volume change when Ψ is non-zero. Then an elastic
volume change is needed to compensate for the plastic volume change. For a negative
dilatancy angle, plastic contraction must be balanced by elastic expansion, or ϵ̇ev=-ϵ̇pv.
The elastic expansion gives rise to tensile stress increments, so that the existing
compressive stresses will vanish. Then we can note that the plastic strain-rate vector
forms an obtuse angle with the stress rate vector. As a consequence the inner product
is negative (σ̇σσT ϵ̇ϵϵp < 0), which is the Drucker definition of unstable material behavior.
The negativeness of the above inner product is a necessary but not a sufficient
condition for softening behavior. For softening we need to consider the inner product
of the stress rate and the total strain rate rather than the plastic strain rate. The
total strain rate is always parallel to the line of elastic path, making an obtuse angle
to the stress-rate vector. Finally it is noted that softening is not only possible for
Ψ< 0 but more generally for Ψ< Φ.

3.4.5 Compression test
The results of numerical simulations and corresponding macroscopic response for
specimen under uniaxial (unconfined) compression loading program are given here.
Simulations in compression test are conducted with displacement control, while
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K 15 GPa
G 15 GPa
σy 10.0 MPa
β 7500.0
σ∞ 36.7 MPa
Kh,lin 10.0 MPa
σu 6.5 MPa
Gf,c 20.0 N/mm
tan(Φ) 0.3
tan(Ψ) 0.3

Table 3.2: Material parameters for uniaxial compression test

lateral displacements are unrestrained which corresponds to the case with no friction
between the load platen and the specimen. Geometry of specimen is the same as for
specimen used for uniaxial tension test. Table 3.2 summarizes the chosen mechanical
properties of specimen where σy is yield stress defined for a simple tension test,
β is the hardening parameter that governs the rate with which the saturation is
achieved, σ∞ is limit stress until the stress increase,Kh,lin is hardening modulus, σu
is ultimate stress which triggers the softening, Gf,c is fracture energy in compression,
while tan(Φ) and tan(Ψ) are internal friction angle and dilatancy angle defined in
meridian plane.

Figure 3.17a shows macroscopic stress (sum of all reactions in vertical direction
divided by cross-section area of concrete cube) versus strain curves for saturation type
of hardening (black line) and linear isotropic hardening (red line). The macroscopic
limit stress which triggers the softening changes due to the type of hardening while
limit strains remains the same. This is in accordance with the concrete material
model, which is defined in terms of limit strains. Also, we can find that for non-
associative hardening limit stress is not changed but only the total dissipation energy
in small amount.

The difference with respect to uniaxial tension test mechanism concerns the
ductile phase of the response during creation of the fracture process zone, which

Figure 3.13: Three point notched beam: geometry, boundary conditions and loading
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Figure 3.19: Bending test cross-section
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Figure 3.14: Load-displacement diagram for three point notched beam and comparison
with the experimental results

is more pronounced in compression test than in tension test. Thus, not only the
ductile part with fracture process zone is larger, but also its contribution to the total
dissipation in compression failure.

In order to compare the macroscopic responses corresponding to uniaxial tension
and compression, Figure 3.17b presents macroscopic curves and reveals that the
overall compression-tension ratio is equal to 8.5 which fits well to typical observation
made for a concrete [92, 121].

3.4.6 Bending test on a reinforced concrete beam
We consider here a beam of length L = 8.89 m, with a rectangular cross-section:
width 60 cm and height 20 cm. Six reinforcement longitudinal bars of diameter 26
mm are placed at the top side, and six with the same diameter at the bottom side of
the cross-section (see Figures 3.18 and 3.19 for details on the geometry). This test
was proposed as a benchmark for different failure modes of reinforced concrete by
ETH Institute for Concrete Structures [122], who also provided a detailed description
of the chosen test specimens.

Three loading condition are considered. In each case, the beam is subjected to
three loads Q applied vertically in the span between the two supports and a load P
applied at the free end. The first test, marked as T0, is performed without axial load
T , while in test T1 and T2 axial load T is limited to 1911 kN and 956 kN, respectively.
All tests follow the same procedure: First, the axial load T is increased linearly up
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Figure 3.15: Three point notched beam: deformed mesh

K 15.482 GPa
G 12.998 GPa
σy 10.0 MPa
β 7000.0
σ∞ 36.7 MPa
σu 6.1 MPa
Gf,c 21.5 N/mm
Gf,t 0.5 N/mm
tan(Φ) 0.32
tan(Ψ) 0.21

Table 3.3: Material parameters for bending test

to the chosen value and held constant. Second, the transverse loads Q and P are
increased linearly with P = 8.58 kN +1.44Q for test T0, P = 15.84 kN +1.90Q for
test T1, P = 12.21 kN +1.68Q for test T2.

The material properties of concrete, as summarized in Table 3.3„ are determined by
inverse procedure in order to obtain matching of stress-strain diagram for compression
test (Figure 3.20) with average experimental results performed on a cube and cylinder
specimen [122]. For the steel bar we use truss element with Von Mises plasticity
model.

Material properties for bars are: Young’s modulus of elasticity, Es= 215 GPa,
Yield strength, fsy= 498 MPa, Hardening modulus Ksh = 20 GPa. Interface between
concrete and steel is represented with perfect bond providing that the dilatations
in adjacent steel and concrete remain the same in each step of computation. The
computation is carried out using the arc-length method (e.g. [73]). The mesh grading
in the horizontal direction is chosen to comply with solid/truss elements of length
0.2 m. In the vertical direction, the finite element mesh along cross-section is built
up in order to ensure position of longitudinal steel bars. This results with the mesh
with 112 and 224 FE along cross-section (Figure 3.22).
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Figure 3.16: Isochoric shear test: (a) Computed responses (solid line) and results taken
from [120] (dash line); (b) boundary conditions and loading

Figure 3.21 (upper part) shows the state of specimen at the end of computation,
where white color represents elements that remain in elastic phase, green color
represents hardening in compression and red color represents element in softening
phase. A major part of the concrete cross-section starts softening in tension (the
bottom part between the supports and the top part above the right support). Concrete
gets into the hardening phase of compression in the top layers at the middle of the
span and the bottom ones above the right support. A few steps before the end of
the analysis, the compressed layers of concrete above the right support also start
softening. Also, the top reinforcement layer above right support starts to yield just
before the end of analysis.

Figure 3.21 (middle) shows that crack propagates mostly due to tension stress,
while crack above right support propagates due to compression stress.

The results for test T0, for two adopted FE mesh, in terms of load/deflection are
given in Figure 3.23a (Q in terms of deflection at the mid-point of the inner span).
We can note that after major part of beam starts softening global resistance decrease.
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Figure 3.17: Macroscopic response: (a) uniaxial compression test; (b) complete response
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Figure 3.18: Bending test: loading and geometry

Softening

Hardening

Elastic

T0

T1(2)

Figure 3.21: Bending test: state of specimen and crack propagation

This computation is limited to predefined load because further load increase can not
drive the beam to total failure due to elastoplastic model of steel bar.

For test marked as T1 and T2 at the end of first phase, when beam is subjected
to axial load, all element reaches elastic limit stress point in tension, thus forming
cracks along the beam which are perpendicular to the subjected load (Figure 3.21-
lower). Figure 3.23b reveals that during first phase, the global stiffness of the beam
is decreased and latter transverse loads is transferred only through the steel bars
until they starts yielding.

To validate the prediction of our model, we compared the obtained results with
the stress-resultant reinforced-concrete model for Timoshenko beam that can capture
the localized failure in shear, see [123]. We have also compared our results against
the experimental results (Figure 3.24). The prediction result we obtain in terms of
crack pattern for concrete fits well with these experimental results.

3.5 Final comments on the presented 3D concrete
macro-scale model

In this chapter we proposed multisurface plasticity model for concrete that takes
into account both the contribution of a strain hardening with non-associative flow
rule as well as a strain softening model components for full set of different 3D failure
modes. The proposed model is capable of representing the localized failure of massive
structures, where final failure mechanism is preceded by significant development of
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Figure 3.22: Bending test cross-section finite element mesh (red circles represent position
of truss element)
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Figure 3.23: (a) Load Q in terms of the deflection at the mid-point of the inner span;
(b) Load T in terms of the resulting displacement for test T2

plastic deformations in so-called fracture process zone, which provides an important
contribution to total plastic dissipation as the final failure mechanism. The plasticity
model is represented with Drucker-Prager yield criterion, with similar plastic potential
function governing hardening behavior while strain softening behavior is represented
with St. Venant criterion.

We illustrated here that the model of this kind ensures complete mesh indepen-
dency of the discrete approximation constructed by the finite element methods. In
particular, for representing the failure, a displacement jump is embedded in the
element to describe the post-peak behavior. Another feature of the model is ability
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(a)

(b)

Figure 3.24: Crack propagation: (a) experimental results for test T0-lower beam,T2-midlle
beam, T1-upper beam; (b) results taken from [123]

to represent nonlinear volume change during hardening, which is obtained by using
plastic potential function defining the plastic flow rule, which is similar to (but not
the same as) the yield function.

The model is validated by presenting several numerical examples where we confirm
that the resistance of concrete to tension is much lower than the one in compression.
The computed results fits quite well with the corresponding experimental results,
pertinent not only to global but also to local results, such as the resulting crack
pattern for the bending test on a reinforced concrete beam.

Although the chosen model problem considers plasticity model, the proposed
concept of combining the inelastic hardening and inelastic softening to fully explain
the failure of a massive structure can easily be adapted to other models of inelastic
response, such as damage or combined damage plasticity.
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4
Identification of macro-scale model

parameters

In chapter 2 and chapter 3 meso-scale and macro scale model capable to represent
failure of concrete-like materials are presented. In this chapter the identification
of the model parameters from different kind of numerical experiments is presented.
While meso-scale model is used for numerical simulation of experimental results,
macro-scale model, capable to take into account different type of dissipation, is used
as a model on which the identification procedure is based. The sequential identification
approach employed in this chapter is accomplished due the fact that all macro-scale
parameters have a clear physical interpretation. Moreover, substantial computational
time savings can be achieved by using only the part of test simulation for each of
three stages.
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4.1 Introduction
In chapter 2 and chapter 3 both scale model (meso-scale and macro-scale model)
are presented. It has been shown that meso-scale model is capable to represent the
salient features of failure phenomena for concrete-like materials for different loading
regime [24]. Moreover, this meso-scale model can be used to provide the definition of
the parameters, such as the fracture energy or ultimate strength taking into account
the heterogeneity and different process of cracking governing the final mechanisms.
On the other hand, macro-scale model can reproduce the inelastic behavior and
failure modes of concrete taking into account both dissipative mechanisms. The
model contains all the ingredients for taking into account both phases of localized
failure, where the elastic phase is followed by the creation of the fracture process zone
with large number of micro-cracks as well as final failure mode with micro-cracks
coalescence into the macro-crack. Plasticity model with Drucker-Prager criterion
is considered for yield function with similar plastic potential function governing
hardening behavior and the strain softening bahavior is represented with St. Venant
criterion. This kind of model ingredients definition allows to straightforward visualize
the model parameters in terms of stress-strain diagram. Later, it can be shown that
this knowledge can be used to greatly simplify the optimization procedure.

The proposed identification procedure presented in this chapter relies on measure-
ments obtained with numerical simulation for different loading condition. Without
limiting only to numerical measurements, which can be much easier to obtain as
well as much appropriate (e.g. free energy and dissipation) due to fact that both
models are prepared in accordance with FE method definition, the proposed approach
can be successfully used with experimental measurements. It will be shown latter
that all modification concerns about appropriate change of measurements made on
meso-scale model with experimental measurements.

Complexity of identification procedure depends on numerical or experimental
setup. Thus, the simplest test to execute, in identification point of view, is simple
tension test. This type of test is commonly used for determination of material
parameters such as metals and rarly for concrete-like materials due to specimen
grapping condition. By using numerical simulation instead of laboratory experiment
this test could be reproduce providing us a additional information about material
behavior. In experimental practice simple tension test could be replaced by uniaxial
compression test or by three point bending test. Both kind of test are simple to
perform and their results are well-reproducible, especially for the uniaxial compression
test. In this chapter, we present which type of numerical/experimental test can
provide more information about parameters which we are try to identify and the how
chooses of numerical simulation affects the final results. This material calibration
procedure can be defined as one special case of Bayesian updating procedure presented
in chapter 5 (Figure 4.1). In this case, our prior knowledge is very poor and it
can be presented with a large deviation, while information/measurement provided
by meso-scale model is almost deterministic with very narrow probability region.
Moreover, material parameters in identification approach presented in this chapter
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Figure 4.1: The graphical representation of uncertain one dimensinal material parame-
ter(a) deterministic description K(x) = const= 15; (b) homogeneous material described
by Gaussian radndom variable K(x,ω) =N (15,1); (c) heterogeneous material described
by random field K(x,ω) = K̄+γ(x,ω) where γ(x,ω) is Gaussian random field

are deterministic on both scale and modeled without any measurements or model
error.

In order to take advantage of the model structure the identification procedure is
divided into three completly separete stages. Such aprroach allows us to perform
identification only for part of simulation depending on particular material parameters
providing a much more efficient computation then for a full-scale problem. Thus,
the material calibration can be understood as a sequential optimization problem.

Optimization algorithm used to find minimum of objective function adopted in
this work is downhill simplex or Nelder-Mead method [124]. Note, that variety of
techniques is available for optimization problem e.g gradient-based methods [125–128],
stochastic evolutionary algorithms [129–132] or adaptive smoothing of the objective
function by artificial neural networks [133–135].

The outline of this chapter is as follows. In next section we briefly describe
meso-scale and maco-scale model. Material calibration obtain from tension test is
presented in section 3 followed by results from compression test in section 4. Closing
remarks can be found in section 5.

4.2 A brief description of meso/macro-scale model
In the following section, we give a brief description of the meso-scale model on which
the measurements are performed and macro-scale model on which the identification
procedure is based. Complete description for both scale model is given in chapter 2
and chapter 3. Here, we give a main ingredients for each of the two models.

As already mention above, in chapter 2 of this work we present a fine scale
constitutive model of concrete capable to take into acccount the complete set of 3D
failure mechanisms. Microstructure at meso-scale is able to distinguish between the
two phases of the material (aggregate and cement), where aggregate is in agreement
with the granulometric curve. Multi-surface criteria set in local frame are defined in
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order to detect softening behavior in the tension case

φu,n+1 := tu,n+1− (σu,t− qu,n)≤ 0
φv,n+1 := |tv,n+1|− (τu,v− qv,n)≤ 0
φw,n+1 := |tw,n+1|− (τu,w− qw,n)≤ 0

(4.1)

where σu,t, τu,v and τu,w are fracture stress values in mode I, mode II and mode III,
respectively. The variability of these fracture values can be quantified in terms of
independent Gaussian random variables. Moreover, once the condition in (4.3) at
least in one direction is detected simultaneous softening in all three failure modes
occurs. Failure in compression is defined with similary multi-surface criteria

φu,n+1 := |tu,n+1|− (σu,c− qu,n)≤ 0
φv,n+1 := |tv,n+1|−

(
τf,v− qv,n

)
≤ 0

φw,n+1 := |tw,n+1|−
(
τf,w− qw,n

)
≤ 0

(4.2)

where failure in each mode occurs independently. Note that shear strength is
magnified by friction angle φ in agreement with the Mohr-Coulomb law

τf,v = τu,v +σtan(Φ); τf,w = τu,w +σtan(Φ) (4.3)

Computation of the failure require the solution to the following set of equation

r := Anel
e=1

(
fint,(e)− fext

)
= 0

h(e) :=
∫ le

0
GT

σσσdx+ t = 0, ∀e ∈ [1,neel]
(4.4)

where fint,(e) =
∫ le
0 BTσdx the standard internal force vector obtained from the

internal stress resultans σ = (N,V,M), while the enhanced part h(e) is added for
every beam with active failure mode for which the yield condition in (5.1) applies.
Thus, for any such beam ∀e ∈ [1,neel] with a active micro-crack, we first have to
compute the current crack opening α(i,j)

n+1 in agreement with current displacement
value u(i)

n+1 and obtain corresponding traction value.
In order to solve nonlinear problem in (4.4) we carry out new iterative sweep on

to provide new iterative values of nodal displacements

Anel
e=1K̂

e
n+1∆u(i)

n+1 = Anel
e=1

[
fext,en+1 − fint,e,(i)n+1

]
=⇒ u(i+1)

n+1 = u(i)
n+1 +∆u(i)

n+1

(4.5)

K̂
e,(i)
n+1 = Ke,(i)

n+1−Fe,(i),T
n+1 (He,(i)

n+1 +K
(i)
α,n+1)−1(Fe,(i)

v,n+1 +K
(i)
d,n+1) (4.6)

Ke,(i)
n+1 =

∫ le
0 BTC(i)

n+1Bdx, Fe,(i)
n+1 =

∫ le
0 BTC(i)

n+1Gdx

Fe,(i)
v,n+1 =

∫ le
0 GTC(i)

n+1Bdx, He,(i)
n+1 =

∫ le
0 GTC(i)

n+1Gdx
(4.7)
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and C(i)
n+1 = diag(EA,GA,GA,GIp,EI11,EI22) is the tangent stiffness for 3D Timo-

shenko beam.
In order to describe macro-scale model in following we define three main ingredi-

ents for constitutive model of plasticity sufficient for the stress tensor computation
as well as internal variables evolution

• additive decomposition of total strain into elastic and plastic component
ϵϵϵ= ϵϵϵe+ϵϵϵp

• the free energy function constructed in terms of deformations
ψ(ϵϵϵ,ϵϵϵp, ζ) := 1

2(ϵϵϵ−ϵϵϵp) ·C(ϵϵϵ−ϵϵϵp))+ 1
2ζKζ

• the yield criterion which corresponds to the classical Drucker-Prager model
φy(σσσ,q) :=∥ dev[σσσ] ∥+1

3 tan(ϕ)tr[σσσ]−
√

2
3(σy− q) = 0; dev[σσσ] = σσσ− 1

3(tr[σσσ])1

while plastic potential function is defined as
φp(σσσ,q) :=∥ dev[σσσ] ∥+1

3 tan(ψ)tr[σσσ]

where ∥ σ ∥:=
√
σ : σ is the Frobenius norm, dev[σσσ] is the deviatoric part of the

stress tensor, tan(ϕ) is material parameter that can characterize the internal friction,
tan(ψ) is material parameter describing the angle of dilatancy and σy is uni-axial
yield stress identified from a tension test.

We can note that for plastic potential function different than yield function
material instability phenomena occurs even in hardening. Another material instability
taken into account on macro-scale model, refered to typical case, is associated with
the softening. Adopting the strong discontinuity formulation we can represent the
cracking of concrete both in tension and compression. While in tension we can
observe elastic stage followed by unstable softening stage, in compression we can
observe three different deformation stages, linear elastic, hardening and localized
softening. With the macro-scale model able to take into account all these types
of dissipative mechanisms we can represent behavior of massive structure: bulk
dissipation characterized by the development of micro-cracks (Drucker-Prager model)
and a surface dissipation in localization zones in terms of the macro-cracks (St.
Venant plasticity criterion). The latter is defined in strain space defined by three
surfaces, but it can be written in standard format in stress space

φ1(σσσ) = 3K+G

9KG σ1−
3K−2G
18KG (σ2 +σ3)− (σy− q)≤ 0

φ2(σσσ) = 3K+G

9KG σ2−
3K−2G
18KG (σ1 +σ3)− (σy− q)≤ 0

φ3(σσσ) = 3K+G

9KG σ3−
3K−2G
18KG (σ1 +σ2)− (σy− q)≤ 0

(4.8)

where we have chosen the reference value of the elasticity limit obtained from
hydrostatic tension test.
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The weak form of equilibrium can be written as a system of global and local
equilibrium equations. The first set of equations is classically written in the finite
element method while the letter is written in each localized element.

Anel
e=1

[
Ke,(i)
n+1∆u(i)

n+1 +Fe,(i)
n+1∆ααα(i)

n+1

]
= Anel

e=1

[
fext,en+1 − fint,e,(i)n+1

]
he,(i)n+1 +

(
Fe,(i)
v,n+1 +K(i)

d,n+1

)
∆u(i)

n+1 +
(

He,(i)
n+1 +K(i)

α,n+1

)
∆ααα(i)

n+1 = 0
(4.9)

where:
Ke,(i)
n+1 =

∫
Ωe BTCep,(i)

n+1 BdV, Fe,(i)
n+1 =

∫
Ωe BTCep,(i)

n+1 ḠmdV

Fe,(i)
v,n+1 =

∫
Ωe mT ḠTCep,(i)

n+1 BdV,
He,(i)
n+1 =

∫
Ωe mT ḠTCep,(i)

n+1 ḠmTdV

Ke,(i)
d,n+1 = AΓe

s
∂tm
∂u |

(i)
n+1, Ke,(i)

α,n+1 = AΓe
s
∂tm
∂α |

(i)
n+1

(4.10)

To take advantage of the fact that the second equation is written locally in
each localized element, it can be solved at the element level which further allows
determining the value of the displacement jump increment ∆α(i). Latter, by static
condensation the system of equations in (4.9) can be reduced to a single equation
which takes the classical form in the finite element.

4.3 Tension test
In the case of uniaxial tension test, the strain and stress fields remain homogeneous
during the whole computation until the final localized failure phase. Thus, this
kind of test is the simplest one to use in order to identify material parameters. We
can note that bahavior on structural level is very close to the response of material
point. Moreover, fracture process zone (FPZ) is less pronounced in tension test than
in compression test. Thus, the global stress-strain diagram on meso-scale can be
divided into two parts which is in agreement with macro-scale respone in tension:
the first one which corresponds to the elastic response and the second one describing
softening regime. Following the same pattern we can perform calibration of model
parameters: first, from elastic part Bulk modulus K and Shear modulus G are
determined, followed by elasticity limit stress σy and fracture energy in tension Gf,t
estimated from softening part.

4.3.1 Identification of elastic parameters
In order to perform identification procedure for Bulk modulus K and Shear modulus
G force or energy measurement needs to be supplemented with an additional one. In
particular, we include the lateral contraction ∆l defined as the average horizontal
displacements of central point on each free side of the specimen (as indicated by
arrows in the Figure 4.2a).
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Figure 4.2: (a) Displacements measured to evaluate the contraction ∆l = 0.25 · (u1 +u2 +
u3 +u4) of the specimen; (b) loading path

The objective function J1 applicable for the determination of elastic parameters
using only uniaxial tension test can be defined as follows:

J1 =
(
Fref,t(up)−Fr,t(up)

)2
·w1 +

(
∆lref,t(up)−∆lr,t(up)

)2
·w2;

up = 0.00005 mm
(4.11)

where Fref (u) is reaction force obtained with lattice model and Fr(u) is reaction
force obtained with 3D solid model. The corresponding value of weights w1 and w2
were chosen in order to get similar norm of each of summation terms. Taking into
account that in beginning of loading regime only elastic parameters are important
simulation can be sttoped after reaching prescribed value of imposed displacement up.
This makes first optimization stage computationally very efficient. Additional savings
in computation can be achieved by using proxy or surrogate model on macro-scale
as it presented in chapter 4. In this case we need to take into consideration model
error in computation of objective function. For the sake of illustration, the shape of
objective function J1 is shown in the Figure 4.3 for loading in 3 different direction.

We can note from Figure 4.3 that in each loading direction elastic parameters
varies only a little indicating that concrete is statistically isotropic material. Also,
Figure 4.3 shows that objective function remains convex in the neighborhood of the
optimal value.
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Figure 4.3: Objective function for unaixial tension test with loading in (a) X-direction;
(b) Y-direction; (c) Z-direction
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4.4 Compression test
Similary to the uniaxial tension test, the solution of the optimization process for
compression test is divided into three subsequent stages: elastic, hardening and
softening. Another simplification of optimization process concern hardening part. In
the following of this chapter we present each of this parts.

4.4.1 Identification of elastic parameters
In elastic range, Bulk modulus (K) and Shear modulus (G) can be determined using
a short simulations describing only the elastic response of a specimen under applied
loading. In order to identify only Shear modulus, which controls the resistance to the
change of shape, we can use simple shear test (Figure 4.4a), whereas for identification
of Bulk modulus, which controls the material resistance to the volume change, we
can use hydrostatic compression test (Figure 4.4b), instead uniaxial compression test.
For both procedure force or energy is only which is compered to the measurement
obtained with meso-scale model.
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Figure 4.4: Numerical tests : (a) simple shear test; (b) hydrostatic pressure test; (c)
loading path

The objective function J2 and J3 applicable for the determination of elastic
parameters using simple shear and hydrostatic test can be defined as follows:

J2 =
(
Fref,sh(up)−Fr,sh(up)

)2
; up = 0.001 mm

J3 =
(
Fref,hp(up)−Fr,hp(up)

)2
; up = 0.00025 mm

(4.12)

where up is the prescribed imposed displacement for praticular test.
The shape of objective functions J2 and J3 are shown in the Figure 4.5 and 4.5.

As shown in this figures, the objective function for simple shear test remains linear
in direction which corresponds to the Bulk modulus whereas for hydrostatic pressure
test it is linear in direction which corresponds to the Shear modulus. With such
simplification, there is only one independent material parameters to be identified in
both tests (Figure 4.6). Identified Bulk and Shear modulus are the same as the one
obtained with meso-scale model (G=14,918 GPa; K=17,232 GPa).

Although this kind of calibration procedure is robust and accurate, the experiment
dealing with a simple shear test and especially hydrostatic pressure test are rather
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Figure 4.5: Objective function for : (a) simple shear test - J 2; (b) hydrostatic pressure
test -J 3
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Figure 4.6: Objective function for single parameter: (a) simple shear test; (b) hydrostatic
pressure test

difficult to perform in a well-reproducible way. For that reason, we turn to study
the possibility of parameter estimates by using only uniaxial compression test. To
identify both elastic parameters information about force needs to be supplemented
with an additional measurement. In particular, we propose to include the specimen
expansion ∆l defined as the average horizontal displacements of central point on
each free side of the specimen (as indicated by arrows in the Figure 4.7).
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Figure 4.7: (a) Displacements measured to evaluate the expansion ∆l = 0.25 · (u1 +u2 +
u3 +u4) of the specimen; (b) loading path
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The objective function J4 applicable for the determination of elastic parameters
using only uniaxial compression test can be defined as:

J4 =
(
Fref,c(up)−Fr,c(up)

)2
·w3 +

(
∆lref,c(up)−∆lr,c(up)

)2
·w4;

up = 0.0005mm
(4.13)

where again Fref (u) is reaction force obtained with lattice model and Fr(u) is reaction
force obtained with 3D solid model. As shown in this Figure 4.8a, the objective
function remains rather wiggly in the neighborhood of the optimal value.

Combining results from simple shear and hydrostatic pressure tests we can define
new objective function (Figure 4.8b) in order to provide better optimization. Note
that in all propsed objective functions instead of force we can include information
about free potential energy computed on meso-scale (lattice model) and macro scale
(3D solid model). The shape of objective function will remain the same.

J5 =
(
Fref,sh(up)−Fr,sh(up)

)2
·w5 +

(
Fref,hp(up)−Fr,hp(up)

)2
·w6; (4.14)
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Figure 4.8: Objective function for: (a) uniaxial compression test; (b) simple shear test
combined with hydrostatic pressure test

4.4.2 Identification of hardening parameters
Once we have successfully determined Bulk and Shear modulus, we can continue
towards the estimate of the parameters of Drucker-Prager yield surface defined as:

φy(σσσ,q) :=∥ dev[σσσ] ∥+1
3 tan(ϕ)tr[σσσ])−

√
2
3(σy− q) (4.15)

where

q =−(σ∞−σy)[1− exp(−βζ)]−Kh,lin · ζ (4.16)
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In (4.16) above, β is the hardening parameter that governs the rate with which
the saturation is achieved, σ∞ is limit stress until the stress increase and Kh,lin is
hardening modulus. Defining hardening in such way we are able to obtain nonlinear
isotropic hardening taking simply Kh,lin to be equal to zero, while in the opposite
taking β to be equal to zero we obtain isotropic linear hardening.

In order to define yield criterion we need to determine tan(ϕ), which can charac-
terize the internal friction, σy as uniaxial yield stress and Kh,lin for linear hardening
while for nonlinear hardening additionally we need to identify σ∞ and β. Regardless
of the type of hardening for plastic potential function we need to identify tan(ψ).
Note that nonlinear hardening is represented with six parameters while for linear
hardening we need four parameters. In order to simplify optimization procedure
we assume that for nonlinear hardening Kh,lin=0 which leads to σ∞ = σmax,ref +σy
(Figure 4.9).
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Figure 4.9: Internal variable q for σ∞=10 MPa, σy=2 MPa : (a) β =1000; Kh,lin=0 (b)
β =0; Kh,lin=200; (c) β =1000; Kh,lin=200

With such simplification, there are four material parameters to be identified:
• for linear isotropic hardening: σy, tan(ϕ), tan(ψ),Kh,lin

• for nonlinear isotropic hardening: σy, tan(ϕ), tan(ψ),β
By using only uniaxial compression test these parameters can be idenfied where

objective function include information about force (energy or dissipation) and cor-
responding volumetric strain for four measurements (Figure 4.10). Thus, objective
function is defined as:

J6 =
[(
Fref,c(u1)−Fr,c(u1)

)2
+
(
Fref,c(u2)−Fr,c(u2)

)2]
·w7+[(

Fref,c(u3)−Fr,c(u3)
)2

+
(
Fref,c(u4)−Fr,c(u4)

)2]
·w7+[(

Vref,c(u1)−Vr,c(u1)
)2

+
(
Vref,c(u2)−Vr,c(u2)

)2]
·w8+[(

Vref,c(u3)−Vr,c(u3)
)2

+
(
Vref,c(u4)−Vr,c(u4)

)2]
·w8;

(4.17)

where Vref (ui) and Vr(ui) represents volumetric strain obtain with meso-scale model
and 3D solid model, respectively.

Figure 4.11a shows objective function J6 where axis represent three parameters
that we are recovering (σy,Kh and tan(ϕ)) while the size of circle represent the
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Figure 4.10: Macroscopic response for uniaxial compression test with lattice model -
phase I-60% : (a) measurements on stress-strain curve; (b) measurements on volumetric
strain-axial strain curve

fourth parameter tan(ψ). Values of objective function are presented with colormap.
For the better representation Figure 4.11b and 4.11c shows objective function drawn
for pair of identified parameters.
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Figure 4.11: Objective function J6
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Figure 4.12: Comparison of macroscopic response for uniaxial compression test with
lattice model - phase I-60% and continuum model with linear hardening : (a) stress versus
axial strain curve; (b) volumetric strain versus axial strain curve; (c) free energy-axial
strain curve

With such objective function optimization process is not only computationally
too expensive but also significant difference can be noted on stress-strain curve and

Failure models in heterogeneous materials



92 Identification of macro-scale model parameters

also in the free energy potential obtained with lattice model compared to results
obtained with 3D solid model using identified parameters (Figure 4.12). In order to
avoid this problem we propose to split identification process of hardening parameters
in two step.

From (4.15) it can be noted that σy and tan(ϕ) are sufficient to define Drucker-
Prage yield point while the hardening parameter β and tan(ψ) can be identified during
hardening process. Thus, first step is identification of yield stress and internal friction.
The objective function applicable for the determination of these two parameters can
be defined as follows:

J7 =
(
Fref,max,c(Dp = 0)−Fr,max,c

)2
·w9 +

(
Fref,max,bc(Dp = 0)−Fr,max,bc

)2
·w10;
(4.18)

where Fref,max(Dp = 0) is maximum reaction force obtained with lattice model
where plastic dissipation remains equal to zero and Fr,max is maximum reaction
force obtained with 3D solid model setting parameters to correspond to perfect
plasticity. The quantities with index c and bc correspond to the values taken from
the uniaxial and biaxial compression test,respectively. Measurements are obtained
with lattice model, thus we can determine point where plasticity start (Figure 4.13a).
To keep this optimization step efficient, the simulations should again be restricted to
a limited loading range, where the limit imposed displacement correspond to axial
strain ϵaxial=0.2%.
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Figure 4.13: (a) force measured on meso-scale model (red) and 3D solid model (black)
with simplified model for identification of yield function; (b) loading path

Note that objective function J7 contains measurement taken from the uniaxial
and biaxial compression test performed on a plate specimen with the dimensions of
150 mm x 30 m x 150 mm with 50% volume fraction of aggregate (Figure 4.13b).
Figure 4.14 reveals differences in macroscopic response for uniaxial test compared to
biaxial compression test performed on a plate specimen.

Figure 5.22a and 5.22b shows that we can draw a infinitely many line through
point 1 or point 2 (Figure 4.13b) if objective function depends on the measurement of
a single test, uniaxial either biaxial test. The shape of objective function J7 is shown
in the Figure 5.22c. As shown in this figure, the objective function remains rather
wiggly in the neighborhood of the optimal value and hence more easy to optimize
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Figure 4.14: Biaxial-Uniaxial compression test comparison with lattice model - phase
I-50%: (a) stress versus axial strain curve; (b) volumetric strain versus axial strain curve;
(c) free energy-axial strain curve

compered to objective function J6. Identified parameters, yield stress and internal
friction, in such way can be used for linear either nonlinear hardening.
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Figure 4.15: Objective function J7 with measurements taken from: (a) uniaxial test; (b)
biaxial test; (c) uniaxial and biaxial test combined

Although this kind of calibration procedure is robust and accurate, dissipation
and free energy potential can not be computed in laboratory experiment. For that
reason we propose objective function in form:

J8 =
(
Fref,c(ϵy)−Fr,c(ϵy)

)2
·w11 +

(
Fref,bc(ϵy)−Fr,bc(ϵy)

)2
·w12; (4.19)

where Fref,c(ϵy) is reaction which is related to the limit strain ϵy at the end of the
linear part of the stress-strain diagram (Figure 4.16) while Fr(ϵy) is reaction obtained
with 3D solid model. As before, the quantities with index c and bc correspond to the
values taken from the uniaxial and biaxial compression test,respectively. The shape
of objective function J8 is same as objective function J7.

The second stage of identification of hardening parameters involves the angle
of dilatancy tan(ψ) and the hardening parameter β for nonlinear or Kh for linear
hardening. There are two requirements for the choice of measurements. First,
measurements should be choosen between ϵy and strain which corresponds to the
limit stress and second, the number of measurements should ensure convex objective
function. If the first requirement is fulfilled the corresponding objective function
depends only on values of the hardening parameter or hardening modulus, according
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Figure 4.16: Measurements for objective function J8

to the choice of hardening, and the dilatancy angle, because Bulk and Shear modulus
as well as yield stress and internal friction are fixed on the optimal values determined
during the previous optimization stage. To identify these two parameters we propose
to include four measurements not only of force or dissipation but also of volumetric
strain (Figure 4.17). Then, objective function can be defined as follows:

J9 =
[(
Dp
ref,c(u1)−Dp

r,c(u1)
)2

+
(
Dp
ref,c(u2)−Dp

r,c(u2)
)2]
·w13+[(

Dp
ref,c(u3)−Dp

r,c(u3)
)2

+
(
Dp
ref,c(u4)−Dp

r,c(u4)
)2]
·w13+[(

Vref,c(u1)−Vr,c(u1)
)2

+
(
Vref,c(u2)−Vr,c(u2)

)2]
·w14+[(

Vref,c(u3)−Vr,c(u3)
)2

+
(
Vref,c(u4)−Vr,c(u4)

)2]
·w14;

(4.20)

where Dp
ref (ui) and Dp

r(ui) represents plastic dissipation energy obtained with meso-
scale model and 3D solid model,respectively. Objective function J9 can be wrriten in
terms of force instead of the plastic dissipation energy regardless of hardening type.
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Figure 4.17: Measurements for objective function J9 definition (a) stress-strain curve;
(b) volumetric strain-axial strain

Figure 4.18a shows the shape of objective function J9 where only plastic disipation
energy is taken into account. We can note that measuring only plastic dissipation
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Dp objective function is unchagned for wide range of parameters (β, tanΦ). Taking
into account volumetric strain, objective function is improved with addditional
measurements which can capture any change of tgΦ resulting with optimal value as
it presented in Figure 4.18b.

5500

50000
0.2

0.3 45000.4

100

tg

0.5 40000.6

O
bj

ec
tiv

e 
fu

nc
tio

n

0.7

200

35000.8

300

(a)

5500

5000

4500
0

4000
0.2 0.3

tg

0.4

2000

0.5 35000.6 0.7 0.8

4000

O
bj

ec
tiv

e 
fu

nc
tio

n

0.9

6000

8000

(b)

Figure 4.18: Objective function J9 with measurements taken from uniaxial compression
test (a) plastic dissipation (Dp); (b) plastic dissipation (Dp) + volumetric strain
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Figure 4.19: Comparison of stress-strain diagram for uniaxial tension test with loading
in: (a) X-direction; (b) Y-direction; (c) Z-direction
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Figure 4.20: Comparison of results for uniaxial compression test: (a) X-direction; (b)
stress-strain diagram; (c) volumetric-axial strain diagram
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Results of identification procedure for tension test and for compression test are
presented in Figure 4.19 and 4.20. This figure reaveals nice matching with results
obtained by meso-scale model for macroscopic stress-strain response and computed
total energy as well as for volume changes. Note, that matching with meso-scale
model,here simulates experimental results, is performed in agreement with total
energy. Thus, stress-strain diagram fits well in elastic part while in softening part
fracture energy on macro-scale model corresponds to meso-scale model results.

4.5 Final comments on the presented identifica-
tion procedure of macro-scale model parame-
ters

In this chapter we proposed identification procedure for material paremeters of
macro-scale model used for representation of failure of massive structure. Approach
presented here is based on sequential identification procedure employed for uniaxial
tension test and for uniaxial compression test. The proposed algorithm can be directly
used for other type of tests. Each stage in identification is stopped when prescribed
imposed displacement value is reached which significantly reduce computation time.
Moreover, we propose to split optimization procedure not only on elastic, hardening
and softening stage, but also hardening part in compression is divided into two part.
First part, which deals with the yield function and latter which deals with the plastic
potential function.

Due to the fact that all ingredients of macro-scale model have physical interpre-
tation we can construct simple objective function sensitive to the relevant material
parameters. We aslo show that elastic parameters can be identified from simple
shear test and hydrostatic pressure test. Measurements used for optimization can be
expressed in terms of force or displacement in case of labaratory experiments, but
also in terms of free energy or plastic dissipation.

As the result of a sequential identification approach we present macroscopic
response and we find nice matching with meso-scale results. The major difficulty
of the proposed procedure is properly recognition of the three stages of structural
behavior, especially for experimental results. In order to fully accept the propose
procedure the experimental validation of the method is necessary.
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Reduced model of macro-scale stochastic

plasticity identification by Bayesian
inference

In this chapter we deal with constructing probability-based scale bridging when passing
the detailed information of the meso-scale plasticity model for localized failure of
concrete towards the chosen reduced model at macro-scale. This is accomplished by
using Bayesian inference providing the probability distribution of macro-scale model
parameters expressed as random variables or fields in order to compensate for model
reduction. The original aspect of this approach is in resulting macro-scale stochastic
plasticity model, which can best quantify uncertainty due to data loss in terms of
corresponding probability distribution. The proposed procedure is illustrated in detail
for concrete meso-scale model presented in chapter 2 of this work (see [24]), both
for simple elastic response and plastic response with hardening in fracture process
zone, as well as for softening response in localized failure phase. The latter implies
that the classical homogenization procedure no longer applies, and should be replaced
by macro-scale reduced model defined with respect to the quantity of interest, not
necessarily the same for each particular response phase. The complete set of results
for parameters identification are combined together at the level of a solid finite element
with embedded discontinuity, granting it very powerful predictive properties.

Failure models in heterogeneous materials
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5.1 Introduction and motivation
Of special interest for this work are stochastic model that can capture localized
failure sensitivity for structures built of heterogeneous composite material, such as
concrete. The biggest benefits are for industrial applications of the probably the
most used material in construction and the potential high gain for this composite
materials is in improved durability. From standpoint of constructing predictive
stochastic plasticity fracture models, this kind of composite material has rather
favorable features with: two-phase meso-structure (aggregate vs. cement), non-local
dimension brought by typical fracture modes of massive structures with significant
contribution of fracture process zone (FPZ), and fabrication that is comparable to
large-scale additive-manufacturing, where the complete structure is cast with the
same material rather than an assembly of various components. The latter is the
crucial hypothesis that can render the proposed macro-scale stochastic plasticity
model feasible in terms of predicting probability-distribution-based estimates of
structure properties.

The main novelty is seen in the fact that all scales are to be treated probabilis-
tically, and not only capturing the average response on the larger scale. This is
particularly important for testing of heterogeneous cement-based composites, where
the scales in test specimen are in general not well separated. Such is the case when
testing reduced-size specimen with respect to microstructure heterogeneities, where
significant variability occurs in the test results due to small-scale uncertainty. [136].
More important for these quasi-brittle composite materials is fracture sensitivity to
small-scale defects that trigger crack coalescence and accelerates structure failures.
This is especially visible when more than one failure mode is active, where only
fine-scale models representing material heterogeneities can provide sufficiently pre-
dictive results, whereas those based upon homogenization (with average properties)
fail. Therefore, despite ample literature (e.g. see [137] or [138] for summary), the
fully predictive macro-scale model for localized failure of concrete remains somewhat
elusive goal, due to a number of uncertainties that influence the nonlinear response.

In this work we focus in particular upon uncertainty propagation that allows
connecting the inelasticity at multiple scales, starting from the fine scale (here
meso-scale for concrete) where the heterogeneous composite failure mechanisms and
the variability of model parameters can be captured much better by corresponding
representation of different phases (here aggregate versus cement paste). The main goal
is to provide the corresponding macro-scale reduced model, which can significantly
increase the computational efficiency and render the analysis of complex structures
feasible. The proposed approach can be considered as a part of a scale-coarsening
strategy, but much different from ad-hoc choices ([139]). Namely, once the crack
pattern at meso-scale has stabilized, we will use an efficient Bayesian updating,
replacing subsequently meso-scale by macro-scale generalized ED-FEM element with
parameters/arrays as random fields. The probability distribution of such random field
will be computed separately between loading program variability and microstructure
variability. With such an approach we can recover a reduced model that defines
probability distribution of fracture parameters describing localized failure with both
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volume and surface dissipation ([73], [28]). Such a ’mechanics-based’ model reduction
is fundamentally different from vast majority of recent works ([140], [141], [109], [142],
[143], [144]) using statistical modes with either POD-proper orthogonal decomposition
or PGD-proper generalized decomposition. Moreover, we can recover any probability
distribution of structure failure modes for advanced safety evaluation, contrary
to pre-defined distributions currently used: log-normal distribution to construct
fragility curves ([146]), uniform to construct bounds ([147]), Weibull to account
for weakest link failure ([148]), or ad-hoc combination of power law and Gaussian
as two asymptotic values ([149]). We note that stochastic upscaling is an original
approach providing coarse-scaling of uncertainty in inelasticity at multiple scales.
This is an off-line probability computation using efficient Bayesian updates with
many realizations to assimilate information on microstructure evolution, obtained
by simulations or measurements, to provide probability distribution of coarse-scale
fracture parameters expressed as random field. Higher computational efficiency is
obtained by not seeking detailed representation of microstructure initial defects,
but their effects on quantity-of-interest (e.g. dissipation), new PCE Kalman filter
that simplifies the Bayesian updates. Similar off-line probability computations
are also used for an original scale-coarsening strategy, using variability in loading
program, to provide mechanics-based model reduction; one such reduced model
can replace stabilized meso-scale crack pattern by generalized ED-FEM model with
parameters/arrays expressed as random fields.

Model reduction from meso-scale to macro-scale defining generalized ED-FEM in
probability framework that we seek to develop is one of the crucial ingredients of the
proposed approach, which allows for stochastic coarse graining. This is illustrated in
switching from meso-scale to macro-scale, in order to provide a replacement with a
generalized ED-FEM once the crack pattern inside the element is stabilized. Namely,
the goal is to then replace the meso-scale computation with the corresponding
probability distribution of the macro-scale model parameters of such ED-FEM. We
will illustrate this idea on a plasticity model, where such parameters q would also
include yield and ultimate stress.

Two different methods for Bayesian inference have been tested and compared in the
proposed approach, both based upon the Bayes theorem that allows incorporating new
information generated in a particular loading program. Each unknown parameter of
reduced model is modeled as a random variable (which can also be high-dimensional).
Such description has two constituents, the measurable function and the measure. One
method (MCMC) is identified as updating the measure, whereas the other method
(PceKF) changes the measurable function. We formulate both methods as functional
approximation of stochastic problems, and introduce especially in combination with
the second method a new procedure which does not need any sampling, hence works
completely deterministically. It also seems to be the fastest and more reliable when
compared with other methods. We show by example that it also works for highly
nonlinear non-smooth problems with non-Gaussian measures.

The outline of the chapter is as follows: In Section 2 we describe the meso-scale
and macro-scale plasticity model for concrete, and the corresponding manner to
identify its reduced model in terms of stochastic plasticity. Considerations of the
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Figure 5.1: (a) Structure of discrete lattice model with Voronoi cells as units of heteroge-
neous material and cohesive links between them (b) two neighbouring Voronoi cells

Bayesian inference replacing inverse problem by direct coupled mechanics-probability
problem, are given in Section 3. The results for several numerical examples are
presented in Section 4. In Section 5 we state some closing remarks.

5.2 Plasticity at multiple scales: meso-scale model
for failure analysis of concrete with parame-
ters as random fields

In chapter 2 of this work [24] we developed a fine scale constitutive model of concrete
that can distinguish the complete set of 3D failure mechanisms. The price to pay is
to start with the microstructure at meso-scale that is able to distinguish between
aggregate and cement paste (see Figure 5.1) and which allows to explicitly handle
the failure at their interface.

The typical failure modes at interface in tension are described by multi-surface
criteria set in local frame:

φu,n+1 := tu,n+1− (σu,t− qu,n)≤ 0
φv,n+1 := |tv,n+1|− (τu,v− qv,n)≤ 0
φw,n+1 := |tw,n+1|− (τu,w− qw,n)≤ 0

(5.1)

where σu,t, τu,v and τu,w are fracture stress values in mode I, mode II and mode III,
respectively. The variability of interface fracture values can be quantified in terms of
independent Gaussian random variables in agreement with random field distribution
as explained next. First, we note that [24] fracture stress in tension does not vary a
lot with respect to variation of aggregate, for we need only one failure surface for
complete fracture of the representative volume element (see Figure 5.2).
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Figure 5.2: i) Uniaxial tension test: macroscopic response for different aggregate volume
fraction; ii) Specimen contours at the end of uniaxial tension test. Beam elements in
increasing softening are red colored
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Figure 5.3: i) Uniaxial tension test: macroscopic responses for specimen (phase I-50%) in
three loading directions; ii) Specimen contours at the end of uniaxial tension test for phase
I-50% specimen in all three loading directions. Beam elements in increasing softening are
red colored

Moreover, even for high volume fraction of aggregate, the fracture stress in tension
varies only a little for tests in 3 different directions (see Figure 5.3) indicating that
concrete is statistically isotropic material. Thus, given distribution of the fracture
stress , it remains to clarify two subsequent steps: how to carry on computation for a
single realization of properties variations and how to obatin uncertainty propagation
in computed response. The failure is discussed in detail in Chapter 2 of this work
[24] as the deterministic computation requiring the solution to the following set of
equation:

r := Anel
e=1

(
fint,(e)− fext

)
= 0

h(e) :=
∫ le

0
GT

σσσdx+ t = 0, ∀e ∈ [1,neel]
(5.2)

where fint,(e) =
∫ le
0 BTσdx the standard internal force vector obtained from the

internal stress resultans σ = (N,V,M), while the enhanced part h(e) is added for
every beam with active failure mode for which the yield condition in (5.1) applies.
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Thus, for any such beam ∀e ∈ [1,neel] with a active micro-crack, we first have to
compute the current crack opening α(i,j)

n+1 in agreement with current displacement
value u(i)

n+1 and obtain corresponding traction value.

φtrial(t(i)n+1,α
(j)
n+1)> 0⇒∆t(j,i)

n+1 = K(j,i)
d,n+1∆u(i)

n+1 +K(j,i)
α,n+1∆ααα(j,i)

n+1 j = 1,2, . . .

ααα
(j+1,i)
n+1 =ααα

(j,i)
n+1 +∆ααα(j,i)

n+1

φ(t(j+1,i)
n+1 ,α

(i+1)
n+1 )≤ 0 (i)← (j+1)

(5.3)

where K(j,i)
d,n+1 and K(j,i)

α,n+1 are the consistent tangent stiffness for discontinuity (see
[24]).

In order to solve nonlinear problem in (5.2) we carry out new iterative sweep on
to provide new iterative values of nodal displacements

Anel
e=1K̂

e
n+1∆u(i)

n+1 = Anel
e=1

[
fext,en+1 − fint,e,(i)n+1

]
=⇒ u(i+1)

n+1 = u(i)
n+1 +∆u(i)

n+1

(5.4)

K̂
e,(i)
n+1 = Ke,(i)

n+1−Fe,(i),T
n+1 (He,(i)

n+1 +K
(i)
α,n+1)−1(Fe,(i)

v,n+1 +K
(i)
d,n+1) (5.5)

Ke,(i)
n+1 =

∫ le
0 BTC(i)

n+1Bdx, Fe,(i)
n+1 =

∫ le
0 BTC(i)

n+1Gdx

Fe,(i)
v,n+1 =

∫ le
0 GTC(i)

n+1Bdx, He,(i)
n+1 =

∫ le
0 GTC(i)

n+1Gdx
(5.6)

and C(i)
n+1 = diag(EA,GA,GA,GIp,EI11,EI22) is the tangent stiffness for 3D Timo-

shenko beam.
In Chapter 2 of this work [24], the material parameters are considered as random

variables. Here, we will generalize this development for the case where these fracture
parameters of the meso-scale plasticity model can be considered as random fields, i.e.
with properties that might be changing from point-to-point.

This point-of-view is also in agreement with the role of probability, which is needed
to retain the unresolved physics of the smaller scale as the probabilistic noise at bigger
scale. This is done through stochastic upscaling (opposite of methods like relative
entropy,( [150]). Namely, due to composite material heterogeneities one cannot predict
exact microstructure evolution with initial defects, unless assuming prior distribution
of meso-scale fracture parameters (at phase-interface). We can thus find solution
to a multiphysics problem with chemistry of cement hydration (e.g. NIST model
[3]) combined with cement-drying next to aggregates resulting with self-desiccation
induced micro-cracks. Such results are then used to improve posterior probability
distribution of meso-scale fracture parameters through Bayesian inference. This is
can be done in off-line probability computation performed as a pre-processing step
were we can to use many different microstructure simulations (or measurements) to
construct predictive posterior distribution of meso-scale fracture parameters expressed
as random fields. Subsequently, we will use an on-line probability computation to
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Figure 5.4: Reduced-model in terms of generalized ED-FEM computed from meso-scale:
(a) two-phase concrete model meso-scale representation [31, 24]: aggregate (white) vs.
cement paste (violet); (b) cohesive links at meso-scale with structured mesh (keeping the
same mesh for different realizations in probability computations) requiring both strain and
displacement discontinuity implemented within ED-FEM with same number of parameters
as X-FEM, but more clear role for each parameter resulting with higher computational effi-
ciency [29]; (c) simple tension test force-displacement diagram (statistically isotropic=same
in any direction) and failure mode in tension illustrated with displacement contours and
cohesive link failure; d) replacement of tension failure mode at meso-scale (rough surface)
with discontinuity (plane) at macro-scale with ED-FEM, not matching perfectly the crack
but fracture energy material parameter Gf ; (e) uniaxial compression force-displacement
and failure mode with cohesive links failure; f) biaxial compression (confirming compressive
strength increase from uniaxial case) and failure mode; (g) replacing failure criterion
for different failure modes under biaxial stress (colors: showing increased resistance in
compression for higher aggregate volume fraction, dots: providing computed value of
fracture energy for corresponding failure mode) and comparison against classical Rankin,
St. Venant or Drucker-Prager macro-scale plasticity criteria [73].

provide the variability of structure response (here, a macro-scale solid element
with ED-FEM discrete approximation) with uncertainty propagation starting from
such meso-scale parameters probability distribution, where stochastic upscaling will
be used again for scale-coarsening producing mechanics-based reduced model at
macro-scale to grant computational efficiency (see Figure 5.4).

The first step in building such coupled-probability model concerns representing
the source of uncertainty , here the fracture stress parameters p= (σn, τv, τw), When
we are not quite sure about their value, we model them as random variables p(ω) that
can take different values according to the given probability distribution. When we are
modeling heterogeneous material, these material parameters are described as random
fields. It means that the uncertainty in the particular material parameter p is modeled
by defining p(x,ω) for each point in the region x ∈ V ∈ Rd as a random variable
on a suitable probability space (Ω,U,P) where Ω is set off all random events, U is a
class of subsets or σ- algebra to which a real number in interval [0,1] can be assigned
reffered as a measure P in region x ∈ V ∈ Rd. For p(x,ω) :G×V → R as a random
field one may identify Ω with the set of all possible values of parameters, or so-called
realization in the space of all real-valued functions pω̄(x) on V . Alternatively, p(x,ω)
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can be seen as a collection of real-valued random variables px̄(ω) indexed by x ∈ V .
Assuming the random field p(x,ω) to be Gaussian, its distribution can be defined by
its mean

µp(x) = E [p(x,ω)] =
∫

Ω
p(x,ω)P(dω) (5.7)

and its covariance

Cp(x,x′) = E
[
(p(x,ω)−µp(x))(p(x′,ω)−µp(x′))

]
=
∫

Ω
(p(x,ω)−µp(x))(p(x′,ω)−µp(x′))P(dω)

(5.8)

We note that non-Gaussian fields (e.g. log-normal) may be expressed directly
as functions of Gaussian fields (see e.g. [152]) or [153]), that is p(x,ω) = Ξ(x,θ(ω)),
where Ξ is a pointwise transformation, and θ(ω) is a standard normal random
variable. Thus we further use these variables with zero mean unit variance variable
θ(ω)∼N (0,1) which allows for a uncoupled integration over probability domain Ω
much like Cartesian coordinates over physical domain ([153]).

In a computational setting with the finite physical domain V , this field must
be discretized. If a parameter field p(x) can be adequately represented on a finite
collection of points xi ∈ R(i = 1,2, . . . ,n), then we can write both the prior and
posterior densities in terms of p= (p(x1), . . . ,p(xn))T , where pi = p(xi) are random
variables usually correlated among each other. The spatial coefficient functions
are given by simple projection qα(x) = E(q(x, ·)Hα(θθθ(·)). The computational cost
usually goes high with this approach where the PCE is completely general and
is defined without any reference to the random field q(x,ω). This means that an
excessive number of RVs θ1(ω), ..., θk(ω), ... may be needed to give an accurate enough
approximation when the above PCE is truncated to some α ∈ J ⊂ N . We can
replace them with variables through the Karhunen-Loève expansion.

Karhunen-Loève expansion (KLE) is also a useful tool for more concise represen-
tation of the stochastic processes ([155]).

p(x,ω) = µp(x)+
∞∑
i=0

√
λiξi(ω)ϕi(x) (5.9)

where ξi(ω) is a set of uncorrelated Gaussian random variables of zero mean and unit
variance whereas λi are eigenvalues and ϕi(x) are the eigenfunctions obtained by
solving the Fredholm integral equation with the covariance function as the integral
kernel ∫

V
Cp(x,x′)ϕi(x)dx′ = λiϕi(x) (5.10)

This results allows to provide the spectral decomposition of the covariance

Cp(x,x′) =
∞∑
i=0

λiϕi(x)ϕi(x′) (5.11)

ξj(ω) = 1√
λj

∫
V

(p(x,ω)− µ̄p(x))ϕj(x)dx (5.12)
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where λi are positive eigenvalues ordered in a descending order.
For more complex physical domain computing the eigenfunctions analytically is

usually not feasible, but we have to discretize the covariance spatially according to
chosen grid points (in finite element mesh). The resulting covariance Cp is again
symmetric and positive definite matrix, and Fredholm equation in Eq. (5.10) becomes
a symmetric matrix eigenvalue problem, where the eigenfunctions ϕi(x) are replaced
by eigenvectors ϕi.The eigenvalue problem of this kind can be solved by a Krylov
subspace method with a sparse matrix approximation ([156], [157]).

With descending sequence of eigenvalues, a sufficient accuracy can be obtain even
with the series in Eq. (5.9) and Eq. (5.11) truncated after Nξ terms, leading to the
approximations

p̂(ω) = µp+σc

Nξ∑
i=0

√
λiξi(ω)ϕi(x) (5.13)

which has the same mean p̄(x) as the original field and covariance cp(x1,x2) =
σc
∑
j≤M λjqj(x1)qj(x2). If the correction factor σc is chosen as σc =

√
σ2
t /(σ2

t −σ2
r ),

the approximate field will also have the correct total variance-only distributed on the
modes ϕj(x) with j ≤M . Thus, such spatial semi-discretization is optimal in the
sense that the mean square error resulting from a truncation after the Nξ-th term is
minimized.

In summary, the vector of model parameters p(ω) represents now the discretized
spatial field p(x,ω) which is described by a limited number Nξ of uncorrelated
random variables ξ(ω) = (ξ1(ω), . . . , ξNξ

(ω))T . Hence, all the other response for the
discretized system has also the random nature and can be expressed in terms of
the same random variables ξ(ω). Having chosen ξ(ω) as standard Gaussian random
variables any surrogate model (or discrete approximation in probability space) can be
constructed with the Wiener polynomial chaos expansion. For example, displacement
u(.,ω) = (. . .ui(.,ω) . . .)T ∈ V (p(ω)) can be written as

ũ(ξ) =
∑
α
βαHα(ξ(ω)) (5.14)

where βi = (. . .βα,i . . .)T is a vector of PCE coefficients βα,i corresponding to a
particular component of system response ui(ω) . . .) whereas Hα(ξ(ω)) are multivariate
Hermite polynomials constructed as product of hα(ξ(ω)) the univariate Hermite
polynomials.

Hα(ξ(ω)) =
∞∏
j=1

hαj (ξj(ω)) (5.15)

Univariate Hermite polynomials can be obtained as

hk(t) := (−1)ket
2/2
(
d

dt

)k
e−t2/2; ∀t ∈ R,k ∈ N0 (5.16)
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where the coefficient of the highest power of t-which is tk for hk- is equal to unity.
For example the first five polynomials can be written as

h0(t) = 1, h1(t) = t, h2(t) = t2−1,
h3(t) = t3−3t, h4(t) = t4−6t2 +3

(5.17)

and each subsequent follows from the recursion relation for these polynomials given
as

hk+1(t) = thk(t)−khk−1(t);k ∈ N (5.18)
The optimality in such choice in PCE follows from the orthogonality of Her-

mite polynomials with respect to standard Gaussian probability measure Γ(dt) =
(2π)−1/2e−t2/2dt. Hence, the set {hk(t)

√
k!|k ∈ N0} forms complete orthonormal

system in L2(R,Γ) with the Hermite polynomials that satisfy
∞∫

−∞
hm(t)hn(t)Γ(dt) = n!δnm (5.19)

One way of interpretation of their choice for surrogate model construction is
in terms of discrete approximation, where the probability set Ω is treated as an
approximation domain over which we choose p-method mesh refinement (e.g.[158]).
Theoretically, the whole domain Ω can be N-dimensional t = (t1, t2, . . . , tn) ∈ RN and
multi-variate Hermite polynomials can be defined for infinite number of terms.

Hα(t) =
∞∏
j=1

hαj (tj); ∀t ∈ RN,α ∈ J (5.20)

where α = (α1,α2, . . . ,αj , . . .) ∈ J is multi-index introduced for short-hand notation
([153]).

The expansion Eq. (5.14) is truncated to the limited number of terms N , which is
related to the dimension Nξ of vector ξ(ω) and to the maximal degree of polynomials
Np according to the relation

N = (Np+Nξ)!
Np!Nξ!

(5.21)

Thus, the complete discrete approximation of displacement field combining finite
element (h-method) and PCE (p-method) can be written as

uh(x,ω) = N (x)ũ(ξ); ũ(ξ) = (I⊗H∗(ξ)) ·β (5.22)

where N(x) are standard FE shape function I ∈ RM,M is the unity matrix , H(ξ)
is an N -dimensional vector of Hermite polynomials, and H∗(ξ)) is its dual, βi =
(. . .βαi . . .)T ∈ RM,N is a vector of PC coefficients, M is the number of chosen grid
points (e.g. nodes in FE mesh) discretizing the spatial domain V , and ⊗ is a tensor
product.

With chosen appropriate discretization over spatial and probability domains, the
response further obtained by Stochastic Galerkin method ([153]) resulting with a
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system of equations. Considering elastic case, for simplicity, we can write

K (p(u)) ũ = f (5.23)

By approximating the model response ũ by its PC approximation ũ given in
(5.22) and applying Galerkin weighting residual procedure we can compute PCE
coefficients corresponding to displacement field:∫

Ω
H(ξ)⊗K (p(ξ))⊗H∗(ξ))dP(ω) ·β−

∫
Ω

H(ξ)dP(ω)⊗f (5.24)

Moreover, if the operator K(p) is linear also with respect to model parameters
p(ω), it can directly be expanded according to (Eq. (5.13)) as

K̂(p̂(ξ))≈ K̄ +
Nξ∑
i=0

√
λiξiKi (5.25)

and then substituted in Eq. (5.24), which results with final product of Stochastic
Galerkin method as Nξ ’copies’ of deterministic computationK̄⊗

∫
Ω

H(ξ)⊗H∗(ξ)dP+
Nξ∑
i=0

√
λiKi⊗

∫
Ω
ξi ·H(ξ)⊗H∗(ξ)dP

 ·β
−
∫

Ω
H(ξ)dP(ω)⊗f = 0

(5.26)

The integrals in Eq. (5.26) can be solved numerically or analytically for less
complex case resulting with a system of M ×N equations for PCE coefficients
β. These computation can be somewhat simplified by normalizing the Hermite
polynomials, with

∫
Ω H(ξ)⊗H∗dP(ξ) as the identity matrix and

∫
Ω H(ξ)dP(ξ) as

the first unit vector.
It is clear that the number of terms of PCE expansion increases quite fast with the

increasing degree of polynomials Np and/or dimensions Nξ of ξ(ω) according to Eq.
(5.21). The number of random variables is already reduced by transformation from
vector of correlated random variables for model parameters p(ω) into uncorrelated
variables ξ(ω). These variables are related to eigenvalues of different magnitude
expressing the importance of particular eigenmodes. One possibility to decrease N
is to neglect terms in PC expansion, where less important variables ξi are in higher
orders ([153]). The maximal degree of polynomials p can be also reduced e.g. by
a division of modeled domain V as presented e.g. by [155]. Other computational
savings can be achieved by formulating Eq. (5.13) in tensorial notation instead of
matrix one ([153]). These methods effectively create a ’surrogate’ containing PCE
representations of the forward model outputs. This model approximation may be
evaluated in orders of magnitude more quickly than the ’direct’ evaluation containing
the full forward problem.
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5.3 Plasticity at multiple scales: macro-scale re-
duced ED-FEM model for localized failure anal-
ysis of concrete

We also indicated in Chapter 2 that none of the classical plasticity criteria for
concrete, which go under names of St. Venant or Rankine (e.g. see [73]), even when
combined together [154], can not fully match the results obtained by our meso-scale
model (see also Figure 5.4). Yet there is the need for concrete macro-scale model
that can make structure scale computations accessible. Hence, the first goal of this
paper is to provide the computational plasticity multi-surface criteria for concrete
that can do better job than any classical criteria only in representing the full set of
failure modes. The second goal is to enhance such model by making it stochastic
plasticity in the sense that the parameters of such plasticity models are replaced by
random fields or random variables. More importantly, we also seek to present the
procedure of Bayesian inference providing probability distributions for such random
variable that can serve as indication of quality of the particular model; for example
with a smaller or larger value of standard deviation for such random variable, if it is
Gaussian (although the proposed approach is not limited to Gaussian distribution,
but can recover much more complex one). This development is carried out on a
typical realization of the microstructure, and can thus be considered as the approach
to provide the reduced model quantifying the lack of knowledge with respect to a
given quantity of interest. If the latter is the internal energy, we recover the standard
homogenization result on linear elastic response for any loading program (e.g. [159]
or [160]), provided we have separation of scales with sufficient number of typical
microstructure details.

To simplify our discussion we first consider deterministic case in the Euclidean
setting and corresponding tensor notation [73], with displacement vector, u, as a
function of both space position x and pseudo-time t

u(x, t) = ui(x, t)ei; x = xiei (5.27)

Linearized kinematics is used to define the total strain tensor, ϵ, as the symmetric
part of the displacement gradient

ϵϵϵ=∇su; ϵijei⊗ej = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
ei⊗ej (5.28)

The same hypothesis on small displacement gradient allows us to express the equilib-
rium equations directly in the initial configuration in terms of Cauchy or true stress,
σσσ = σijei⊗ej

In the presence of plastic deformation, the stress is computed not from the total
but the elastic deformation. Namely, by assuming the independence of the elastic
response on plastic flow, the total deformation can be split additively into elastic ϵϵϵe
and plastic part ϵϵϵp,

ϵϵϵ= ϵϵϵe+ϵϵϵp (5.29)
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By further assuming that the elastic response remains linear, reducing to Hooke’s
law in the absence of plastic deformation, we can construct the free energy potential
as a quadratic form in terms of deformation tensor

ψ(ϵϵϵ,ϵϵϵp, ζ) := 1
2(ϵϵϵ−ϵϵϵp) ·C(ϵϵϵ−ϵϵϵp))+ 1

2ζKζ (5.30)

With concrete as statistically isotropic material we can fully characterize the elasticity
tensor from two parameters only, such as bulk modulus K and shear modulus G. For
simplicity, we also assume isotropic hardening case where qi is the stress-like internal
variable dual to the strain-like internal state variable ζ. When limited to hardening
regime in the fracture process zone the last ingredient of macro-plasticity model to
define is the yield criterion. For example we take the classical Drucker-Prager model
assuming shear failure:

φy(σσσ,q) :=∥ dev[σσσ] ∥+1
3 tan(ϕ)tr[σσσ]−

√
2
3(σy− q) = 0; dev[σσσ] = σσσ− 1

3(tr[σσσ])1

(5.31)

where ∥ σ ∥:=
√
σ : σ is the norm of the deviatoric part of the stress tensor dev[σσσ],

tan(ϕ) is material parameter that can characterize the internal friction and σy is
uni-axial yield stress identified from a tension test.

By specifying three fundamental ingredients in (5.29), (5.30) and (5.31), we can
completely define the stress tensor computation as well as the internal variables
evolution for particular plasticity model. To that end we simply use the second
principle of thermodynamics specifying the plastic dissipation:

0≤ Dp := (σσσ− ∂ψ
∂ϵϵϵ

) · ϵ̇ϵϵ− ∂ψ

∂ϵϵϵp
· ϵ̇ϵϵp− ∂ψ

∂ζ
· ζ̇ (5.32)

In the elastic case for φ < 0, the plastic dissipation remains equal to zero, which
allows to define the constitutive equation Dp = 0.

σσσ :=− ∂ψ
∂ϵϵϵp

q :=−∂ψ
∂ζ

(5.33)

By assuming these equation remain valid for plastic case for φ < 0 we can obtain the
final expression for the plastic dissipation in inelastic case:

φ= 0⇒ 0< Dp := σσσ · ϵ̇ϵϵp+ q · ζ̇ (5.34)

The principle of maximum plastic dissipation can be invoked stating that among
all the admissible stress states (for which φy(σσσ,q) = 0) , we ought to choose the one
which maximizes the plastic dissipation. This problem of computing the maximum
under the plastic admissibility constraint can be transformed into the corresponding
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unconstrained minimization problem (see [73])

Lp(σσσ,q, γ̇) = max
γ̇=0

min
∀(σσσ∗,q∗)

[Lp(σσσ∗,q∗, γ̇∗) ] ; Lp(σσσ,q, γ̇) :=−Dp(σσσ,q) + γ̇φy(σσσ,q)

(5.35)

The associated Kuhn-Tucker optimality conditions lead to evolution equations
for internal variables:

0 = ∂Lp(σσσ,q, γ̇)
∂σσσ

=−ϵ̇ϵϵp+ γ̇
∂φy(σσσ,q)

∂σσσ
;

0 = ∂Lp(σσσ,q, γ̇)
∂q =−ζ̇+ γ̇

∂φy(σσσ,q)
∂q ;

γ̇ ≥ 0; φy(σσσ,q)≤ 0; γ̇φy(σσσ,q) = 0

(5.36)

For a concrete-like material the dilatancy of plastic flow develops, which requires
that the plastic potential function be different than the yield function

φp(σσσ,q) :=∥ dev[σσσ] ∥+1
3 tan(ψ)tr[σσσ] (5.37)

where tan(ψ) is material parameter describing the angle of dilatancy. It is important
that such a choice can further lead to material instability phenomena even in hard-
ening [73]. More typical case of material instability for either tension or compression
failure which dealt with is associated with softening where stress decreases for increas-
ing strain. Namely, we further present the strong discontinuity approach that can
represent the cracking of concrete both in tension and compression. In compression,
the model can represent three different deformation stages: linear elastic, hardening
and localized softening. In tension, we only take elastic stage followed by unstable
softening stage. In order to take into account all these dissipative mechanisms,
we build multi-surface model which can reproduce the behavior of massive struc-
tures: a bulk dissipation characterized by the development of micro-cracks with
Drucker-Prager citerion and a surface dissipation in localization zones in terms of
the macro-cracks with St. Venant plasticity criterion. The latter is normally defined
as three surface criterion ([73]) in strain space, but it can also be recast in standard
format in stress space leading to:

φ1(σσσ) = 3K+G

9KG σ1−
3K−2G
18KG (σ2 +σ3)− (σy− q)≤ 0

φ2(σσσ) = 3K+G

9KG σ2−
3K−2G
18KG (σ1 +σ3)− (σy− q)≤ 0

φ3(σσσ) = 3K+G

9KG σ3−
3K−2G
18KG (σ1 +σ2)− (σy− q)≤ 0

(5.38)

where we have chosen the reference value of the elasticity limit obtained from
hydrostatic tension test. Figure 5.5.a shows a graphic illustration of the proposed
multy-surface plasticity criterion in space of principal axes of stress tensor. We note
that elastic region in tension is directly followed by softening. In compression, not
only the ductile part with fracture process zone is larger, but also its contribution
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Figure 5.5: Multisurface criterion (a) in principal stress space (b) in meridian plane

to total dissipation for compression failure. Figure 5.5.b reveals that the only load
case which is not covered by this plasticity criterion, is a special case of failure under
hydrostatic pressure.

It is now well understood that the softening phenomena require special inter-
polation referred as embedded discontinuity [162, 163] which can provide sharp
representation of the crack. What is less well understood, is the kind of modification
that such embedded discontinuity approach provides to representing the total plastic
dissipation smeared in fracture process zone and sharp over macro crack [164]. More
precisely, in order to provide the appropriate interpretation of the localized plastic
deformation, we consider a domain V split into two sub-domains V+ and V− by a
crack as a surface of discontinuity. The total displacement field u is written as the
sum of a smooth regular part ū and the displacement discontinuity ¯̄u , centered at
the Γs. For the surface of discontinuity, we can define at each point a unit vector of
exterior normal n, a tangential vector m and binormal vector b. The discontinuous
displacement field can then be written as

u(x, t) = ū(x, t)+ ¯̄u(x, t)MΓs(x); MΓs(x) = HΓs(x)−NṼ(x) (5.39)

where HΓs(x) is the Heaviside function being equal to 1 in V+ and to 0 in V−,
whereas NṼ(x) is chosen function which leaves only regular part of displacement fiels
at nodes (typically judicious combination of shape functions)

The corresponding deformation field produced by such a displacement can be
decomposed into a regular part and a singular part as

ϵϵϵ(x, t) =∇sū(x, t)+ Ḡ(x)¯̄u(t)︸ ︷︷ ︸
ϵ̄ϵϵ=ϵ̄ϵϵe+ϵ̄ϵϵp

+(¯̄u(t)⊗n)s︸ ︷︷ ︸
¯̄ϵϵϵp=αm⊗n

δΓ(x); Ḡ(x) =−∇sNṼ(x) (5.40)

The strain field appears then to be decomposed into a regular part and a singular
part. The latter is used to express localized plastic deformation by means of the
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Dirac-delta function δΓ(x). The strain energy in this case can be written:

ψ(ϵϵϵ, ζ̄, ¯̄ζ) := ψ̄e(ϵϵϵe, ζ̄)︸ ︷︷ ︸
regular

+¯̄Ξ(¯̄ζ)δΓs (5.41)

where the first term is the elastic energy and hardening, whereas the second term
is the contributions of softening mechanisms. The total plastic dissipation can be
expressed as the sum of the dissipation in the fracture process zone in Ṽ and from
the crack induced discontinuity on Γs, which can be written:

0≤ Dp

Ṽ =
∫

Ṽ

[
σσσ · ˙̄ϵϵϵ− (ψ̇e(ϵϵϵe)+ ˙̄Ξ(ζ̄))

]
dV +

∫
Γs

[t ·m] α̇dA−
∫

Γs

˙̄̄Ξ(¯̄ζ)dA (5.42)

Provided we enforce the weak form of the Cauchy principle connecting stress in
the fracture process zone with traction at discontinuity∫

Ṽ
σσσ · G̃mα̇dV +

∫
Γs

(t ·m) α̇dA= 0 (5.43)

we can further obtain the additive decomposition of the total plastic dissipation into
a regular part in fracture process zone and a singular part at crack of surface of
discontinuity:

Dp

Ṽ =
∫

Ṽ

(
σσσ · ˙̄ϵϵϵp+ q̄ ˙̄ζ

)
dV +

∫
Γs

¯̄q ¯̄̇
ζdA (5.44)

The yield condition controlling evolution of the inelastic deformation at disconti-
nuity is set directly in terms of the traction vector:

¯̄φ(tm, ¯̄q) = |t ·m︸ ︷︷ ︸
tm

|− (σy− ¯̄q) (5.45)

where σy is a localized failure threshold and ¯̄q is the internal variable for softening.
When choosing exponential constitutive law for softening, we define stress like internal
variable for softening plasticity as:

¯̄q = σy

(
1− exp

(
− ¯̄ζ σy

Gf

))
(5.46)

where Gf is the corresponding value of fracture energy. At the level of meso-scale
model the compressive and the tension failure mechanisms are reproduced according
to the same fracture mode driven by the principal tensile strains. However, at present
macro-scale, the corresponding amount of fracture energy can be quite different
because of the number of cracks created in those two cases. This can be handled by
modifying in (5.46) how to compute fracture energy change from a value in tension
Gt to compression in agreement with dominant elastic strain:

Gf = Gc+Gt

2 − Gc−Gt

2 tanh(βtr[ϵ]) (5.47)
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where β is a parameter to be chosen to set a more or less rapid transition.
In the case where both fracture process zone and macro crack are active, we

assume most general condition of plastic deformation with the plastic multiplier that
takes the form γ̇ = ˙̄γ+ ˙̄̄γδΓs . The principle of maximum plastic dissipation can be
stated for the complete macro-scale domain including the crack (or for a particular
finite element with embedded discontinuity)

¯̄LpV(σσσ, q̄, ¯̄q, ˙̄̄γ) = max
˙̄̄γ≥0

min
∀(t∗,¯̄q∗)

[ ¯̄Lp
V(σσσ∗, q̄∗, ¯̄q∗, ˙̄̄γ∗)

]
=−Dloc

V (·)+
∫

V
˙̄γΦ̄dV +

∫
Γs

˙̄̄γ ¯̄ΦdA

(5.48)

The Kuhn-Tucker optimality condition will provide the global form of correspond-
ing evolution on (5.36)equation for internal variables:

0 =
∫

V

(
− ˙̄ϵϵϵp+ ˙̄γ ∂φ̄

∂σσσ

)
dV ;

0 =
∫

V

(
− ˙̄ζp+ ˙̄γ ∂φ̄

∂q̄

)
dV ;

(5.49)

along with evolution equation for softening internal variable

0 =
∫

Γs

− ˙̄̄
ζ+ ˙̄̄γ ∂

¯̄φ
∂ ¯̄q

dA ⇒
∫

Γs

˙̄̄
ζdA=

∫
Γs

˙̄̄γdA (5.50)

The plastic multiplier can be computed from enforcing plastic consistency condition
which by means of (5.45) results with:∫

V
˙̄̄γΓs

˙̄̄
φ⇒ ˙̄̄γ = 1

¯̄K

∫
V

Ḡσ̇σσdV (5.51)

The finite element implementation of macro-scale model in deterministic setting
is based upon standard semi-discretization procedure [73] to construct the finite-
element-based displacement approximation over a single element Ve

u(x, t) |Ve =
nen∑
a=1

Ne
a(x)ua(t) (5.52)

where ‘nen’ is the total number of element nodes, Ne
a(x) are the finite element

shape functions and ua(t) are the nodal displacements. By replacing this discrete
approximation into the weak form of the equilibrium equations and integrating with
respect to the space variables x, we reduce the problem to tracing the pseudo-time
history of the state variables. In other words, the strong form of evolution equations
in (5.49) will accompany the weak form of equilibrium equations that can be written
as

G :=
nel

A
e=1
{
∫
Ve BeT

a (x)σσσ(ϵϵϵ(x, t),ϵϵϵp(x, t), ζ(ξξξ, t))dV
−
∫
Ve Ne

a(x) ·b(x, t)dV −
∫
Γσ

Ne
a(x) · t(x, t)dA}= 0

(5.53)
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where
nel

A
e=1

denotes the standard finite element assembly procedure over the total
number of elements nel.

By choosing the Gauss quadrature rule with nin points, with abscissas ξξξl and
integration weights wl we can significantly reduce the computation for evolution of
internal variables to a finite number of numerical integration points:

G =
nel

A
e=1
{

nin∑
l=1

(wlBeT
a (ξξξl)σσσ(ϵϵϵ(ξξξl, t),ϵϵϵp(ξξξl, t), ζ(ξξξl, t)) j(ξξξl)

−wlNe
a(ξξξl) ·b(ξξξl, t) j(ξξξl)−

nin∑
l=1

wlNe
a(ξξξl) · t(ξξξl, t)}= 0

(5.54)

In the softening phase the finite element interpolation is chosen to take into
account a displacement discontinuity, by considering the incompatible mode methods
[74], we choose :

uh(x, t)|Ve = N(x)ua(t)+M(x)ααα(t) (5.55)

where α(t) is incompatible mode parameters and M(x) are discontinuous interpola-
tion functions. The discontinuity can be introduced by splitting the 8-node brick
element such that a pair of nodes is placed at each side of the discontinuity, if V+

denotes the part of the element on one side of the opening surface, we can thus write:

M(x)|Ve =HΓs(x)−
∑
b∈V+

Nb(x) (5.56)

With such a discrete approximation, the finite element interpolation of the strain
field can be written as:

ϵϵϵh(x, t)|Ve = B(x)ua+Gr(x)ααα(t) (5.57)

where Gr(x) is strain-incompatible-modes matrix. The finite element interpolation
of the virtual strain field can be constructed with the same scheme but with the
modified strain-incompatible-modes matrix so that the patch test condition of its
orthogonality as constant stress field is meet [73].

δϵϵϵh(x)|Ve = B(x)δua+ δαααGv(x);
∫

Ve
Gv(α)dV = 0 (5.58)

where δua and δααα(t) denote, respectively, the virtual displacement field and incom-
patible modes variations.

5.4 Stochastic macro-scale plasticity model param-
eters identification by Bayesian inference

It is the first goal of this work to consider inelastic response, both in plastic hardening
and localized failure regime, and define the corresponding choice of model parameters
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described as random variables and provide their probability distributions. Here,
this will be accomplished in terms of Bayesian inference adapted to here proposed
framework, where the data generated by both experiments and computations with the
concrete meso-scale model obtained for a particular realization of the microstructure
and for a particular loading program will be considered as information produced
by dynamic process. The main benefits of the proposed approach and this point-of-
view is in providing the way of selecting the most appropriate model ingredients in
handling different phases of inelastic response, as well as the most adequate loading
programs that favors the sharp estimates of the probability distributions of each
macro-scale model parameter.

The proposed approach is targeting the stochastic scale transition, which need
not discard the excessive information from fine scales when providing the coarse scale
model parameters, such as done in homogenization. Thus, it can also be thought
as the part of the multi-scale modeling strategy. However, the same approach
should be used in combination with experiments, where possible measurements
(force, displacement) are completed by the fine scale results that replace the real
measurements on the specimen for a particular loading program. For this particular
case, the quality of identification results is improved by fine scale simulations with
the response of real heterogeneous materials. Hence, the choice of the quantity of
interest, which here corresponds to the cost function for particular inverse problem,
need not be significantly reduced to using only the quantities that can be directly
measured.

Two modifications are needed for stochastic plasticity described in this section.
First, we replace the Galerkin procedure domain V by combined spatial V and
probability domain Ω. Second, we need to obtain the probability distribution on
stochastic plasticity model parameters (or stochastic discretization) in order to
be able to solve this coupled mechanics-probability problem. In summary, the
deterministic model of macro-scale plasticity is defined by a set of model parameters
p = (K,G,σy,β, tan(φ), tan(ψ),σu,Gf,t,Gf,c) denoting respectively bulk modulus,
shear modulus, yield stress, angle of internal friction, angle of internal dilatancy,
ultimate stress and fracture energy in tension and in compression. This prediction
depends on how the parameters are chosen. They have to be chosen so that the
difference between the prediction of the mathematical model and the observed system
response (micro-scale prediction or experiment) will be as small as possible. Different
possibilities for this task have been explored.

One possibility is to look at the difference between predicted and observed
behavior and to try to minimise this difference. This is an optimisation approach
which leads to regularization procedures, see e.g. [165, 166, 133]. This is a purely
deterministic procedure, where no previous knowledge on the possible parameter
values enters the picture, and where the functional of the difference alluded to above
is usually chosen out of convenience - least squares is a frequent choice.

On the other hand the whole problem can be viewed as a situation where one is
uncertain about the best value for the parameters, and models this situation by not
just considering a fixed value as the solution, but contemplating a whole range of
possible values, something which can be modeled by a random variable (RV). This is
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true especially when prior knowledge is to be taken into account. In that case one
wants to attach different weights to the prior knowledge and to the new knowledge
learned from the observation. The probabilistic procedures for this are based on
Bayes′s theorem, see e.g. [167]. This can be explained in a simple manner as that
one models the uncertainty about a certain event - a parameter having a certain
value here - with a probabilistic model. One then observes another variable, which
in some way is dependent on or correlated with the parameter in question. This
observation then can be used to correct or update the probabilistic model of the
uncertainty we have about the value of the parameter. To be more specific these
parameters are need to carry out the macro-scale prediction computation by solving
the set of evolution equation for the state u(t) ∈ U at time t ∈ [0,T ] in the week form
in (5.54) and internal variable flow equations in (5.36), for any loading program,
which we will symbolically denote with:

∂u(t)
∂t

+A(p;u(t)) = f(p; t) (5.59)

and where A is an operator modeling the physics of the system, and f ∈ U∗ (the
dual space) is some external influence (action / excitation / loading). The model A
and the action f depend on some parameters p ∈ P . Some of these parameters may
actually be ’controls’, i.e. something one can influence and hence it is known exactly.
By q ∈ Q we shall denote that component of the parameters p which we cannot
control and where we are uncertain about their best value. In the following we shall
only track the dependence on the uncertain part q trying to obtain their probability
distribution and thus better define their values. It is important to say that this
random variable are defined by corresponding transformation of the parameters p
(often restricted to the positive cone to the vector space by bijective differentiable
mapping Tq such that q = Tq(p).

The observation of the system are the best prediction we could obtain by either
micro-scale model computation or some experimental measurements ŷ ∈ Y, where
Y is the space of all possible measurements, typically some Rk, assuming that the
measurements consists of k real numbers each time it is observed. In addition to
the mathematical model 5.59 describing the state evolution t→ u(q; t), which also
depends on the parameters p resp. q, one has to make the corresponding model
for the observations or measurements, and their dependence on p resp. q. So the
mathematical model for the observation is defined as quantity of interest as function
of the state of the system

(q, t, ϵ)→ Y (u(q; t), q, ϵ) ∈ Y (5.60)
and the parameters q we would like to determine. The variable ϵ is meant to model
possible errors, due to the observation or measurement procedure or due to the model
5.59 being less than perfect, i.e. model error. So Y (u(q; t), q, ϵ) is the mathematical
model to predict what the observation at time t would be, given a certain value for
the state u(t) at time t, the parameters q, and the error ϵ.

It seems natural that we would be interested in choosing the parameter q such as
to make the difference ŷ−Y (u(q; t), q, ϵ) as small as possible. The task of predicting
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the state u(q; t) for given q and t from 5.59, and subsequently a prediction or forecast
for the observation y = Y (u(q; t), q, ϵ is called the forward problem. We shall assume
that this is a well-posed problem in the sense of Hadamard for all possible values of
q ∈Q.

To glean information about q from observing ŷ, one has to in some way invert
the mapping in 5.60 q→ Y (q) = ŷ, where we have neglected the other variables for
the sake of concise notation. This is called the inverse problem, and as the mapping
q→ Y (q) is usually not invertible, the inverse problem is ill-posed [165–167]. To
approach ill-posed problems computationally directly is typically ill-advised as it is
numerically unstable and hence would produce unreliable results. This means that
one has to add some additional information to the situation for the inverse problem
to become reliable and numerically stable.

The regularization approach, e.g. [165, 166], is proposed to make q ∈ Q in
some way regular - hence the name - by desiring that the parameter be in some
more regular subset q ∈Q0 ⊂Q, and typically penalizing deviations from Q0. The
kind of regularization proposed here concerns, widening the problem of finding the
best q to a larger class of problems, where the knowledge about q is described
probabilistically. More precisely, this means that one wants to update the probability
distribution describing the knowledge about q to include the new information gained
from observing ŷ. These updates rest on Bayes’s theorem - e.g. [167] and are thus
called Bayesian updates. There are intimate connections between the two approaches,
with the main view being that the probabilistic approach gives some explanations
resp. background information for otherwise seemingly ad-hoc decisions which have
to be taken in the regularization approach.

The description of the general Bayesian updating procedure [168–171, 180] gives
as follows. Proceeding from computed results by mathematical model in (5.59) and
the measurement or observation operator defined in (5.60), for simplicity we envisage
observations y = Y (u(q; t), q, ϵ) at discrete times 0< t1 < · · ·< tn, · · · ∈ [0,T ], i.e

yn := Y (u(q; tn), q, ϵ), n= 1, . . . ; (5.61)

which are different realization of quantity of interest provided by computations or
the model of the measurement. From these observation one would like to obtain at
each instant tn both a new — and hopefully better — estimate for q and for the
state u(q; tn). In the Bayesian framework (e.g. [167]) this is done by modeling the
uncertainty about the value of q probabilistically, by assuming

q : Ω→Q as a RV on a probability space(Ω,U,P) (5.62)

where Ω is the set of all possible realisations of q and the error ϵ in (5.60), and A is
the σ-algebra of measurable sets E ⊂ Ω which may be assigned a probability P(E)
via the prior probability measure P which represents our initial or prior probabilistic
knowledge about q, as well as about the error ϵ in (5.60).

Failure models in heterogeneous materials



Stochastic macro-scale plasticity model parameters identification 119

By introducing this random variable into the defining model equations (5.59),
turns the state u(q; t) into RV

u : Ω× [0,T ]→U ; (ω,t) 7→ u(q(ω); t), (5.63)

as well as the predicted or forecast measurement Y in (5.60)

Y : Ω× [0,T ]→U ; (ω,t) 7→ Y (u(q(ω), t), q(ω), ϵ(ω)). (5.64)

The model evolution equation (5.59) has now become a stochastic or differential
equation, which we will solve by Galerkin procedure by computing expected values,
which concerns the integrals over domain Ω At fixed time t= tn in (5.64) the predicted
observation yn in (5.61) also becomes a RVs. What is actually measured or observed
(e.g. computed by micro-scale model) at time tn may be viewed as a realization
ωn ∈ Ω of this random variable

ŷn = yn(ωn) = Y (u(q(ωn), tn), q(ωn), ϵ(ωn)) = Y (un, q, ϵn) ∈ Y . (5.65)

So the observation or measurement is a sequence of K samples of Y in (5.64),
ŷ = (ŷ1, . . . , ŷn, . . . , ŷN ) ∈ YN . With such a sequence of observations, there are
different ways how the update can be done. The simplest is to assume that after each
observation we perform an update of the knowledge about q, which is one extreme
where updating would proceeds in a purely sequential manner:

1. start with the prior q0(ω) as forecast qf (ω) = q0(ω), and set k = 0;

2. loop over n := n+1;

3. forecast or predict the observation at tk as a RV yf (ω) = yn(ω) from (5.64);

4. observe or measure ŷn at time tn as described in (5.65);

5. from yn(ω) and ŷn update the forecast qf (ω) = qn−1(ω) to the assimilated
qa(ω), and set qn(ω) = qa(ω);

6. endloop

At the extreme other end one could updating all in one step after the results of
all realization are gettered:

1. from the prior or forecast qf (ω) = q0(ω) predict or forecast the observations
yf (ω) = (y1(ω), . . . ,yN (ω)) at times t1, . . . , tN ;

2. observe or measure all the values ŷ = (ŷ1, . . . , ŷN ) at times t1, . . . , tN ;

3. from ŷ and yf (ω) update the forecast qf (ω) to the assimilated qa(ω).

The steps 1–3 in this last algorithm are formally analogous to the steps 3–5 of the
preceding sequential algorithm, just the forecast and observation vector are larger in
the last all-in-one update procedure. Obviously it is also possible to mix the purely
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sequential and the all-in-one procedures by updating in batches several times. The
best strategy depend on a particular problem at hands. If we want to identify the
probability distribution of parameters in p= (K,G,σy,β, tan(φ), tan(ψ),σu,Gf,t,Gf,c)
, not only we split the choice of the quantity of interest Y into corresponding sequence
of separating parameters governing elastic, hardening and softening response [133],
but we also split the time sequence of realizations to privilege certain type of response.
If the updating is used to control the particular loading program and the response of
the system (5.59), would most probably choose the purely sequential procedure.

Hence we will focus on just one step, knowing the forecast RV qf (ω) predicting
or forecasting the observation RV yf (ω) — which may be just yf (ω) = yn(ω), or
yf (ω) = (y1(ω), . . . ,yN (ω)) — and observing the corresponding measurement ŷ we
perform the update of the forecast qf (ω) to the assimilated qa(ω), i.e. the information
or knowledge of the observation ŷ has been assimilated into the system. Two methods
of Bayesian updates will be proposed: the first is Markov-Chain Monte Carlo (MCMC)
that is updating the the probability measure having the same function q(ω), and the
second is referred to as Gauss-Markov-Kalman filter that keeps the same measure
but updates the function q(ω).

5.4.1 MCMC Bayesian updating of the measure
Bayes’s theorem is considered as the consistent way to update a probabilistic de-
scription when new data in the form of the observation ŷ is available. Assume that
Iq ⊂Q is some subset where the probabilistic model, in form of the prior RV qf ,
gives a prior probability of P(Iq). Then Bayes’s theorem (e.g.[167]) states:

P(Iq|My) = P(M|Iq)
P(My)

P(Iq), if P(My)> 0; (5.66)

where My is the information provided by the measurement. It shows that the prior
probability P(Iq) is multiplied by the so-called Bayes-factor P(My|Iq)/P(My) to
give the posterior conditional probability P(Iq|My), the probability of Iq conditioned
on the observation My. The numerator P(My|Iq) in the Bayes-factor is called the
likelihood — the conditional probability of observing My under the condition that
Iq is true — and the denominator P(My), which is the total probability of observing
My not knowing anything about qf , is called the evidence.

It is worthwhile to observe from (5.66) that no matter what the observation and
the resulting Bayes-factor, P(Iq) = 0 will always imply P(Iq|My) = 0. Similarly, by
using Bayes’s theorem (5.66) on the set Q\Iq with P(Q\Iq) = 1−P(Iq), one sees
that P(Iq) = 1 will always imply P(Iq|My) = 1. Hence strong convictions in this
sense in the prior probabilistic model are completely insensitive to any evidence.
This should be avoided in the probabilistic model, unless there is a physical or logical
impossibility involved. It has been called Cromwell’s rule in Bayesian inference
after Oliver Cromwell who famously wrote “. . . think it possible that you may be
mistaken”.

As one may glean from (5.66), Bayes’s theorem only tells us how to change the
distribution of the RV q : Ω→Q. This is a probability measure on subsets of Q which
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comes from the probability measure P in (5.62), such that in (5.66) for example for
Iq ⊆Q one measures the probability of q−1(Iq)⊆ Ω. This measure, the distribution
of q, is also known as the push-forward, as it is carried from Ω to Q, and could be
more precisely be denoted by q∗P or Pq, but it is common for the sake of brevity to
denote all probabilities just by the symbol P, as it is clear from the context what is
meant:

P(Iq) := q∗P(Iq) := Pq(Iq) = P(q−1(Iq)) = P({ω ∈ Ω | q(ω) ∈ Iq}), (5.67)

where the first three expressions denote the distribution resp. the push-forward
measure of q, and the last two expressions are the original measure on subsets of Ω
from (5.62). Analogous statements can be made for the other probabilities appearing
in (5.66).

Now (5.66) describes how the distribution of the RV q should change when new
evidence in the form of My is observed. From (5.67) one may see that this can
be achieved in different ways. One possibility is to leave the map q : Ω→Q in
(5.62) unchanged and change the measure P according to (5.66). A procedure which
builds on this idea is the Markov-chain Monte Carlo (MCMC) method, which will
be described subsequently.

Updating of the Probability Density: the main difficulty in using the statement
of (5.66) as computational tool is that it requires that P(My) > 0. When the
observation ŷ is one of a non-discrete or continuous RV, it is typical that the setMy

has vanishing probability measure, i.e. P(My) = 0, as for a continuous RV yf (ω) the
observation is eitherMy = {y(ωn) = ŷ = ŷn ∈ Y}, orMy = {(y(ω1), . . . ,y(ωN ) = ŷ =
(ŷ1, . . . , ŷN ) ∈ YN}. In any case it is usually a set of vanishing probability measure,
and hence in (5.66) the Bayes-factor P(My|Iq)/P(My) then becomes the undefined
expression 0/0, and ammn we will need some limiting argument [172, 173]. This has
in the history of probability theory led to controversy on how to do the passage to
the limit, cf. the Borel-Kolmogorov paradox.

One case where such a passage to the limit is possible is the case when all measures
involved in (5.66) have probability density functions (pdf), with respect to the same
background measure. In case Q and Y are finite dimensional vector spaces, this
background measure is often the Lebesgue measure. A main requirement is that
there is a joint pdf π(Q,Y )(q,y) of the RVs q and y [173]. In such case it is possible
to state for the conditional density π(Q|Y )(q|y):

π(Q|Y )(q|y) =
π(Q,Y )(q,y)
πY (y) =

π(Y |Q)(y|q)
πY (y) πQ(q), (5.68)

where
πY (y) =

∫
Q
π(Q,Y )(q,y)dq =

∫
Q
π(Y |Q)(y|q)πQ(q)dq (5.69)

is the pdf of the RV y, the evidence, and πQ(q) is the prior pdf of q, and π(Y |Q)(y|q)
is the likelihood of y = Y (q,ϵ) given q. These terms are in direct correspondence with
those in (5.66). The second part of the equation in both (5.68) and (5.69) comes
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from factoring the joint density into the likelihood and the prior: π(Q,Y )(q,y) =
π(Y |Q)(y|q)πQ(q), which is how the joint pdf is typically available.

After observing ŷ, the posterior pdf of q is then given by π(Q|Y )(q|ŷ). Observe
from (5.68) that Cromwell’s rule is visible here again: if Iq ⊂ Q is assigned a
vanishing prior pdf, i.e. πQ(q) = 0 for q ∈ Iq, then no matter what the evidence in the
Bayes-factor π(Q,Y )(q,y)/πY (y) for pdfs, the posterior π(Q|Y )(q|y) will also always
be identically zero.

Let us point out that to evaluate (5.59), one may assume that the prior πQ(q)
is given. However, to evaluate the conditional pdf or likelihood π(Y |Q)(y|q), for
each given q one has to solve for the model response and evaluate the forecast
measurement in (5.60). This computational expense is amplified when the evidence
πY (y) in (5.69) has to be evaluated, as it is a often high-dimensional integral over Q
requiring typically many evaluations of the likelihood.

Most computational approaches to determine the pdfs are based on variants of
the Markov-chain Monte Carlo (MCMC) method [174–176, 168], where at least the
evidence πY (y) does not have to be evaluated, as these algorithms can evaluate the
Bayes-factor directly as a ratio of densities. A simple version of a MCMC algorithm,
also known as the Metropolis-Hastings algorithm [177], looks as follows [168]: The
main idea is to construct a Markov-chain that has a stationary distribution of states,
which will be the posterior distribution one is seeking. For this, the range of possible
q’s has to be quantized into X bins of equal background measure, i.e. in case of
a Lebesgue background measure of equal Q-volume, with representatives {qξ}Xξ=1.
These representatives of the bins qξ are the states of the Markov-chain, which will
be denoted by {ςk}k=1,... in the order visited at step k = 1, . . . of the Markov-chain.
Assuming that ŷ has been observed or measured, the Markov-chain steps are the
following:

1. draw ξ randomly from {1, . . . ,X};

2. starting in state qξ, set ς1 := qξ and k := 0;

3. compute ρξ := π(Y |Q)(ŷ|qξ)πQ(qξ); the product of likelihood and prior,

4. loop over k := k+1;

5. pick any state qζ with ζ ̸= ξ randomly with probability 1/(X−1), this is
the proposal;

6. if not already computed in a previous step, compute ρζ := π(Y |Q)(ŷ|qζ)πQ(qζ);

7. let α = min{1,ρζ/ρξ}, this is the acceptance probability;

8. accept qζ with probability α, i.e. pick a sample of a uniformly distributed
RV U ∈ [0,1]; and

9. if U ≤ α then

10. set ςk+1 = qζ ;
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11. else

12. set ςk+1 = qξ;

13. endif

14. endloop

One can then show [177, 174–176] that after the so-called burn-in, i.e. a number
of steps which the Markov-chain needs to reach the stationary distribution, the
relative frequency with which the states qξ are visited is equal to the posterior pdf
π(Q|Y )(qξ|ŷ). One may observe that if the number ρζ in line 6 of the algorithm,
the product of likelihood and prior for the proposal state qζ is larger than for the
current state qξ, i.e. ρζ ≥ ρξ, one has α= 1 in line 7, and the new state is accepted
in any case. As the ρξ are proportional to the posterior conditional pdf π(Q|Y )(qξ|ŷ)
at the representatives qξ, it is clear the the algorithm is a probabilistic search for
the maximum of the posterior. It moves away from a state to lower posterior
values in line 10 of the algorithm according to the posterior ratios. Obviously,
one error involved in the algorithm is the quantization into bins and choosing the
representatives qξ. Due to the required burn-in, one is not sure that the sequence of
visited states ςk is stationary, as the equilibrium distribution is only the asymptotic
distribution. Estimating that the burn-in period is over has to be tested by looking
at the stationarity of the sequence.

The main advantages of the method are certainly the simplicity of the formulation
and the possibility to directly estimate the posterior conditional pdf π(Q|Y )(qξ|ŷ). We
should warn though, that although the formulation is so simple, to use the method
efficiently and correctly may not be.

The main drawbacks of the methods is potentially expensive step of often having
to evaluate the likelihood π(Y |Q)(ŷ|qζ) in line 6 , and we shall return to this point
later. Additionally, the algorithm is a Monte Carlo (MC) method, or more precisely
a MC method within a MC-method, meaning that it converges only slowly with the
number of samples, so that there will always be a sampling error. In addition, the
successive Markov-chain samples are obviously not independent but highly correlated.
This makes estimating any statistic other than the mean (e.g. the variance) difficult.
Also usual statistical formulas for the accuracy of the estimates assume independent
samples and are not directly applicable. And finally, if the likelihood function and
prior pdf differ very much, the acceptance probabilities α in line 7 may be very low,
α < 1, meaning that practically the chain has gets stuck in some state and does not
move on.

5.4.2 The Bayesian upadetes with linear Gauss-Markov-
Kálmán filter

Another possibility, which was implicitly already alluded to in the description of
the “forecast-observe-assimilate” algorithms above, is to leave the base measure P
on Ω unchanged, and to change the RV from the forecast qf = q to the updated or
assimilated qa, such that qa,∗P(Iq) = Pqa(Iq) = P(Iq|My), so that (5.66) is satisfied.
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Such algorithms are often called filters, as the observation or measurement ŷ is
filtered to update the forecast qf to qa. This is often advantageous if one needs a RV
to do further forecast according to (5.60), as then the assimilated qa becomes the
new forecast.

The main idea here is to provide a convenient many of constructed probability
measure, here in terms of conditional expectation, which is already already addressed
by Kolmogorov himself. Here we use systematic use of expectation The expected
value of a RV X defined on the probability space (Ω,A,P) in (5.62) is given by

E(X) :=
∫

Ω
X(ω) P(dω), (5.70)

and given a conditional probability measure such as the one in (5.66), the conditional
expectation of the RV X is defined as

E(X|My) :=
∫

Ω
X(ω) P(dq|My). (5.71)

In the traditional setting, the probability measure and the conditional probability
measure define the expectation and conditional expectation. However, Kolmogorov
turned this around [172, 173] and defined conditional probabilities via the condi-
tional expectation. Given the conditional expectation E(·|My) as an operator, the
conditional probability is easily recovered through P(Iq|My) = E(1Iq |My), where
1Iq is the characteristic or indicator function of the subset Iq, i.e. one has 1Iq(q)
equal to one iff q ∈ Iq, and zero otherwise.

The question remains how to define the operator E(X|My) for a RV X. The
easiest point of departure for conditional expectation is to define it not just for
one piece of measurement My, but for sub-σ-algebras S⊆ A. The connection with
an event My is to take S = σ(yf ), the σ-algebra generated by yf (ω). This is the
smallest sub-σ-algebra which contains all the sets y−1

f (A)⊆Ω for measurable subsets
A⊆ YN .

The conditional expectation can then be defined for all RV X ∈ L1(Ω,A) as that
RV measurable w.r.t S, i.e. in L1(Ω,S), which satisfies

∀S ∈S :
∫

S
X P(dω) =

∫
S
E(X|S) P(dω). (5.72)

Using the indicator function 1S and rearranging, (5.72) may written as an orthogo-
nality condition

∀A ∈S :
∫

Ω
1A (X−E(X|S)) P(dω) = 0. (5.73)

Noting that span of the indicators 1A ∈ L∞(Ω,S) is actually dense in L∞(Ω,S), 1A
in (5.73) may be replaced by an arbitrary bounded RV χ ∈ L∞(Ω,S), enforcing the
condition that X−E(X|S) is orthogonal to L∞(Ω,S):

∀χ ∈ L∞(Ω,S) :
∫

Ω
χ(X−E(X|S)) P(dω) = 0. (5.74)
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This may be regarded as a Galerkin-orthogonality, immediately suggesting computa-
tional procedures based on (5.73) resp. (5.74). Hence, for RVs X with finite variance,
elements of the Euclidean or Hilbert space X ∈ S := L2(Ω,A), the conditional expec-
tation is defined by

∀χ ∈ S∞ : ⟨χ|X−E(X|S)⟩ :=
∫

Ω
χ(X−E(X|S)) P(dω) = 0, (5.75)

where S∞ := L2(Ω,S) is the L2 subspace generated by the measurement sub-σ-
algebra S. It is now clear that (5.75) are the conditions for minimizing the Euclidean
L2-distance from X to S∞, i.e. defining an orthogonal projection P∞ onto the closed
subspace S∞ ⊂ S:

E(X|S) := P∞(X) = arg min
X̃∈S∞

∥X− X̃∥2S∞ . (5.76)

If we take now the Q-valued RV q instead of the real-valued RV X, one has to
define the space Q :=Q⊗S of Q-valued RVs of finite variance, and set Q∞ :=Q⊗S∞
to get as in (5.76) the orthogonal projection, again denoted by P∞, onto the closed
subspace Q∞ ⊂ Q:

E(q|S) := P∞(q) := arg min
q̃∈Q∞

∥q− q̃∥2Q. (5.77)

The distance squared ∥q− q̃∥2Q in (5.77) may be regarded as a Bayesian loss-
function. Requiring the derivative of the loss function in (5.77) to vanish again
produces the Galerkin orthogonality conditions, but now in Q:

∀q̃ ∈ Q∞ : ⟨⟨q−E(q|S)|q̃⟩⟩Q = 0, (5.78)

which actually implies the normally stronger condition that the covariance vanishes
[169]:

∀q̃ ∈ Q∞ : E(q̃⊗ (q−E(q|S))) = 0. (5.79)
Furthermore, note that the Doob−Dynkin-lemma [172] assures us that if a

RV like E(q|S) is measurable w.r.t. S = σ(yf ), then E(q|S) = φq(yf ) for some
measurable φq ∈ L0(YN ;Q), where L0(YN ;Q) denotes the measurable maps from
YN to Q. More precisely one should write E(q|S) = φq((yf (q))) = φq ◦yf ◦q. In this
light the task of finding the conditional expectation may be seen as rephrasing (5.77)
as: find φq ∈ L0(YN ;Q) such that

φq = arg min
ϕ∈L0(Y;Q)

∥q−ϕ◦yf ◦ q∥2Q. (5.80)

One may conclude that φq is in some mean-square sense an inverse of yf .
Orthogonal decomposition and conditional expectation filter : as Q∞ is a closed

subspace of Q with projection P∞ : Q→ Q∞, one has the orthogonal decomposition
of Q = Q∞⊕Q⊥

∞, i.e.

q = P∞(q)+(I−P∞)(q) = E(q|S)+(q−E(q|S)) = φq(yf (q))+(q−φq(yf (q))).
(5.81)
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This decomposition may be used to build a first version of a filter to produce an
assimilated RV qa, which at least has the conditional expectation correct. Observe
that from (5.81), applying the projection P∞ which, being a projection, satisfies
P∞(P∞(q)) = P∞(q), one obtains

E(q|S) = P∞(q) = P∞(P∞(q))+P∞((I−P∞)(q)) = P∞(q) = φq(yf (q)). (5.82)

As the new information from the observation ŷ comes from the measurement map
yf and is all in the subspace Q∞, following (5.81) one may define

qa := φq(ŷ)+(qf −φq(yf (qf ))), (5.83)

where the component in Q∞ has been changed to the constant φq(ŷ) and the
orthogonal component qf −φq(yf (qf )) has been left as is. From (5.82) we can see
that

E(qa|S)(ŷ) = φq(ŷ) = E(q|S)(ŷ).
We call qa in (5.83) the analysis, assimilated, or posterior RV, incorporating the
new information.

One should emphasize that it is the vector space setting of Q and Y which has
made this formulation possible [169], also allowing for easy numerical computation.
In case the parameters q ∈Q are not without constraints, or not in a vector space,
then they should be mapped to such quantities. For example, if q is elasticity tensor,
then it has to be symmetric and positive definite. The symmetric tensors are of
course a subspace, but the sub-manifold of positive definite ones is not a subspace,
but an open cone. However, the symmetric positive definite tensors can be given the
structure of a Riemanian manifold, and then distance is measured via geodesics. A
simple case of this are positive scalars either used for bulk modulus or shear modulus;
through the logarithm they are transformed into a vector space without constraints.

The linear Bayesian Gauss-Markov-Kálmán update: The minimisation in (5.80)
is performed over all measurable ϕ ∈ L0(YN ;Q), a space which is typically very
large and not easily accessible. But the vector space setting allows a simplification
or approximation. One replaces in (5.80) the space L0(YN ;Q) by the subspace of
affine mappings A(YN ;Q), mappings which are certainly measurable and of the form
ϕ(y) =Hy+ b ∈A(YN ;Q)⊂ L0(YN ;Q), where b ∈Q is a constant and H is a linear
continuous map H ∈ L(YN ;Q). Find K ∈ L(YN ;Q) and c ∈Q such that

(K,c) = arg minH∈L(YN ;Q),b∈Q ∥q− (H(yf ◦ q)+ b)∥2Q (5.84)

As one sees immediately from (5.83), in the filter equation for qa the constant c ∈Q
cancels, so that one only needs the Kálmán-gain K ∈ L(YN ;Q), see [178, 179]:

K := Cqf ,yf
C−1

yf
, (5.85)

Cyf
:= E(ỹf (qf )⊗ ỹf (qf )), (5.86)

Cqf ,yf
:= E(q̃f ⊗ ỹf (qf )), (5.87)
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where for any RV like q for the sake of brevity we set q̄ := E(q) such that q̃ := q− q̄
is the zero-mean part. From (5.84) we obtain the so-called Gauss-Markov-Kálmán
(GMK) filter as an approximation of (5.83)

qa :=K(ŷ)+(qf −K(yf (qf ))) = qf +K(ŷ)−K(yf (qf )) = qf +K(ŷ−yf (qf )).
(5.88)

The name of this filter [169–171, 180] is due to the fact that it is a generalized version
of the Gauss-Markov theorem [179], and gives a generalization of the well-known
Kálmán filter [178]. In case Cyf

is not invertible or close to singularity, its inverse
in 5.85 should be replaced by the Moore-Penrose pseudo-inverse. This update is
in some ways very similar to the ’Bayes linear’ approach, see [181]. If the mean
is taken in 5.88, one obtains the familiar Kálmán filter formula [178, 179] for the
update of the mean. But one may show [182] that (5.88) also contains the Kálmán
update for the covariance. As in (5.84) the minimization is over a smaller space
A(YN ;Q)⊂ L0(YN ;Q), we are not using all the information available. Hence the
value of the functional being minimized will remain larger, but the computation is
simpler.

Discrete approximation: In the instances where we want to employ the theory
detailed in the previous sections, the spaces U and Q are usually infinite dimensional,
as is the space S = L2(Ω). For an actual computation they have to be discretized or
approximated by finite dimensional spaces. The discretization if probability space is
somewhat different from the finite element discretization, in the sense that the whole
domain is discretized. In our examples we will chose finite element discretization and
corresponding subspace. Hence let QM := span{ϱm : m = 1, . . . ,M} ⊂ Q be an M -
dimensional subspace with basis {ϱm}Mm=1. An element of QM will be represented by
the vector of RVs q =

[
q1, ..., qM

]T
∈SM such that ∑M

m=1 q
mϱm ∈QM =QM⊗S. The

space of possible measurements Y can usually be assumed to be finite dimensional,
whose elements similarly are represented by a vector of coefficients y ∈ RR. Observe
that then ŷ ∈ RR·N and yf ∈ RR·N ⊗S.

With this discretization, the MCMC-method can be carried out after the obvious
modifications. For the conditional expectation and the GMK-filter things are also
straight forward, as is shown next. On RM , representing QM , the minimisation in
(5.84) is translated to: find K ∈ RM×(R·N) and c ∈ RM such that

(K,c) = arg minH∈RM×(R·N),b∈RM ∥q− (H(yf (q))+b)∥2Q, (5.89)

where the norm ∥q∥Q results from the inner product ⟨⟨q1|q2⟩⟩Q := E(qT1 Qq2) with
Qmn = ⟨⟨ϱm|ϱn⟩⟩Q, the Gram matrix of the basis. Then the update corresponding
to (5.88), more precisely its spatial semi-discretization, is

qa := qf +K(ŷ−yf (qf )), with (5.90)
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K = Cqf ,yf
C−1

yf
, (5.91)

Cyf
= E(ỹf (qf )⊗ ỹf (qf )), (5.92)

Cqf ,yf
= E(q̃f ỹTf ) = E(q̃f ⊗ ỹf ), (5.93)

as before in (5.85) to (5.87). Let us note that, in contrast to the usual Kálmán-filter,
here the quantities qa,qf , and yf in (5.90) are RVs. With these specifications, a
sampling or particle filter version of (5.90) can be carried out, this is the Ensemble
Kálmán filter (EnKF), see [168? ? ]. Here we shall follow a different tack.

Spectral or polynomial chaos projection: In preceding sections it was already
indicated how computations could be carried out, by discretizing the RVs involved
through sampling. Sampling the model (5.59) and the measurement operator (5.60)
or even the spatially discretized RVs yf which appear in all the algorithms may be
computationally quite expensive. Therefore it is quite natural to try and find simpler
representations for this, something what is known often as proxy- or surrogate models.
Mathematically we can see this with the variables qf ∈ Q⊗S = Q, u ∈ U ⊗S = U,
and yf ∈ Y ⊗S = Y. In the preceding section these were already discretised in the
first factor of the tensor product to qf ∈ QM ⊗S and yf ∈ RR·N ⊗S. As Y was
assumed finite dimensional (Y ≡ RR), no further discretisation was needed here in
the first factor; and yf a RV with values in RR·N comes from N measurement of R
quantities at a time. Along with the discretization of QM ⊂Q typically one also has
to discretize the model (5.59) in space by UL ⊂ U , something what is standard (e.g.
finite elements), and will not be further discussed.

But the second factor in those tensor products, the space of real-valued RVs S,
is typically an infinite dimensional space and has to be discretized as well for real
computations. In a numerical sense the sampling used earlier is of course also a
discretization. But here we want to introduce another one by explicitly choosing a
subspace SB ⊂ S. As for QM one picks a finite set {Ψα}α of B independent vectors
in S which span the B-dimensional subspace SB, span{Ψb}Bb=1 = SB. As S = L2(Ω),
these independent vectors are in fact RVs with finite variance. Here we will use
Wiener’s polynomial chaos expansion (PCE) as basis. This is well-known by now,
and has also descriptions in text-books [185] and monographs [186, 187]. Other
possibilities [188] are the generalized PCE, or even other systems of RVs which are
dense [189] in S.

The approximation qf for example may be achieved by either collocation/ in-
terpolation at a suitable number of points ωb ∈ Ω, or by projecting qf ∈ QM ⊗S
orthogonally to QM ⊗SB; in fact, as we are in a Hilbert space, a least squares
approximation or regression. Concretely, this means we minimize

min { ∥qf −
B,M∑

b=1,m=1
qmf,bΨbϱm∥2Q | qmf,b ∈ R,m= 1, . . . ,M,b= 1, . . . ,B}. (5.94)

This defines an orthogonal projection PB : S → SB. We set PB = I⊗PB, and by
setting qf,b =

[
q1
f,b, . . . , q

M
f,b

]T
, we see that the approximation PBqf to qf can be
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written as PBqf =∑
bqf,bΨb. A similar projection is applied to the RVs yf and qa

in (5.90).
Now [190, 191, 168–171, 180] project both sides of (5.90) with PB, to obtain

PBqa =
B∑
b=1

qa,bΨb = PBqf +PBK(ŷ−yf (qf )) = PBqf +K(ŷ−PByf (qf ))

(5.95)

=
B∑
b=1

qf,bΨb+K(ŷ−
B∑
b=1

yf,bΨb), (5.96)

as obviously the projection PB commutes with the Kálmán-gain operator K. Now
assume without loss of generality that the function / RV Ψ1 = 1 is actually constant,
whereas the Ψb for b > 1 satisfy E(Ψb) = 0. Then the b = 1 term in (5.95) is for
the mean, the rest (b > 1) has mean zero. We shall also assume in extension of
these relations that the Ψb are orthonormal, i.e. E(Ψb1Ψb2) = δb1,b2 . One obtains the
stochastic discretization of (5.90):

qa,1 = qf,1 +K(ŷ−yf,1), and (5.97)
qa,b = qf,b−Kyf,b for b > 1. (5.98)

Denoting the canonical basis vectors in RB as eb, one may set

qa =
B∑
b=1

qa,b⊗eb, qf =
B∑
b=1

qf,b⊗eb, yf =
B∑
b=1

yf,b⊗eb, ŷ = ŷ⊗e1, K = K⊗I.

(5.99)
With this, the relations (5.97) and (5.98), the stochastic discretization of (5.90) may
concisely be written as

qa := qf +K (ŷ−yf ). (5.100)
The filter in (5.97) is the classical Kálmán-filter for the mean, the relations in

(5.99) are a non-Gaussian extension of the Kálmán-filter, where it can be shown
that it really extends the Kálmán-filter. This filter, and its concise form (5.100) is
called the spectral projection Kálmán-filter (SPKF) or polynomial chaos Kálmán-
filter (PCKF), where the former (SPKF) seems preferable. In contrast to the EnKF,
this filter is formulated in an orthogonal basis, and hence does not suffer from the
breakdown of the EnKF analyzed in [192].

It remains to show how to compute K in (5.91) from the covariances in (5.92) and
(5.93), see also [168–171, 180]. Given the expansion of the RVs qa,qf , and yf , this is
actually quite simple as any moment can be computed directly from the expansion.
One has E(PBqf ) = PBqf = qf,1 and P̃Bqf =∑

b>1 qf,bΨb. The covariance Cyf
of

yf in (5.92) will be approximated by the covariance of PByf , similarly for Cyf ,qf
in
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(5.93). Hence:

Cyf
≈ E((PByf )⊗ (PByf )) =

∑
b>1

yf,b⊗yf,b; (5.101)

Cqf ,yf
≈ E((PBqf )⊗ (PByf )) =

∑
b>1

qf,b⊗yf,b. (5.102)

Now all the terms needed for the update 5.100 have been explicitly stated and are
readily computable.

5.5 Numerical simulations
In this section, we discuss the identification of the presented model parameters,
by Markov chain Monte Carlo (MCMC) method and by Polynomial Chaos based
Kalman filter for Linear Bayesian update (PceKF). Another important point for our
discussion is related to the proper choice of the cost function or the measurements
which are relevant to the appropriate parameters that we try to identify. In this
way we can determine which numerical or experimental test favors the role of a
certain parameter of interest and achieve a higher efficiency of the corresponding
identification procedure. Any such cost function can be constructed not only from
experimental measurements. Finally, based on our previous practice experience in
deterministic setting (e.g. see [133]) we propose to split identification to elastic,
hardening and softening parameters in order to reduce computational costs.
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Figure 5.6: The algorithmic scheme of an inverse problem solved by (a) proxy MCMC
filtering; (b) Square Root Polynomial Chaos based Linear Bayesian Update

Simplified representation and flow-chart for two proposed methods (PceKF and
MCMC) for each set of parameters to be identified separately by taking into account
different tests and measurements are shown in Figure 5.6. It is important to note that
in the case of MCMC method the posterior is described by changing the distribution
of the underlying RVs, while in case of PceKF the posterior is obtained by changing
the RV. The main advantage of the MCMC algorithm (Figure 5.6a) is in being a
model independent method. However, the main drawback is its slow convergence and
very demanding procedure because one has to compute the system response for each
new sample. One way to speed up the assimilation process is to introduce a proxy
model on macro scale for the forecasted measurement, which is used in this work. The
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computation starts with samples that are used as input in the deterministic proxy
model on macro-scale. Once the response is computed, the measurement operator
Y is applied and the value of the observable quantity y is diagnosed by a sensor.
The predicted measurements are then compared to the meso-scale/experimental
measurements, which further results in the distance measure d entering the likelihood
function. The process is repeated all over again for the next sample which results
with a posterior sample.

The issue of high computational cost in MCMC can be improved by using Bayesian
linear methods. Recalling that the RV qa(ω) can be numerically represented by
either sampling qa(ωi) or as functional approximation such as polynomial chaos
expansion. Here one may distinguish at least two numerical approaches to the given
problem: the ensemble Kalman filter and the polynomial chaos based update [168].
In ensemble Kalman filter numerical estimates of qa is performed in Monte Carlo
fashion while in PceKF the random variables are functionally approximated. The
algorithm which is used in this work is presented in Figure 5.6b and whole update
process can be represented by only one loop.

5.5.1 Identification of elastic parameters
Given that the concrete is statistically isotropic material (see [24]) the elastic response
of specimen defining the linear part of global response on a stress-strain diagram
is described by only two parameters, bulk and shear moduli (K and G). In order
to identify the shear modulus, which controls the resistance to the change of shape,
we can use simple shear test (Figure 5.7a). For identification of bulk modulus,
which controls the material resistance to the volume change, we can preferably use
hydrostatic compression test (Figure 5.7b).

up
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up

up

(b)

-I /31
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compression-
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compression-

compression

failure
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Figure 5.7: Numerical tests : (a) simple shear test; (b) hydrostatic pressure test; (c)
loading path

Our prior knowledge for both elastic parameters, on which posterior distribution
depends, is based on knowledge about Young’s modulus and Poisson’s ratio which
are well-known in engineering practice. Namely, the mean value for Young’s modulus
and Poisson’s ratio are chose as 30 GPa and 0.16, respectively.

In Figure 5.8 we display the shape of the prior, the likelihood function, and the
posterior probability density function (pdf) obtained by MCMC method. The true
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Figure 5.8: Comparison of prior and posterior pdf and the likelihood function for shear
modulus - Simple shear test (upper row) and bulk modulus - hydrostatic compression test
(lower row) with standard deviation for the prior σp=500 MPa (left) and σp=200 MPa
(right) - energy measurements

value, obtained by deterministic identification in [133] for shear modulus is 14.918
GPa and for bulk modulus 17.232 GPa. These are obtained from simple shear test
and hydrostatic compression test, respectively. We see that the mean and mode
of the posterior have moved in the direction of the truth which are both taken as
single point estimates, when compared to the prior (Figure 5.8a and Figure 5.8c). In
Figure 5.8b and Figure 5.8d the posterior moved to the prior due to smaller standard
deviation of the prior compared to the likelihood, which can be observed in case
when our prior knowledge is more relevant than measurement. Dependence of the
choice of measurements is presented in Figure 5.9, when we can note that either
measuring the force (suitable for real experiment) or measuring the elastic energy
(suitable for numerical tests) the resulting posterior distribution remains here the
same, regardless of the chosen method, MCMC or PceKF.

The samples used for computation in MCMC method are drawn from proposal
distribution with some probability r thus forming the corresponding sampling se-
quence. As presented in Figure 5.10 this sequence converges in distribution to our
target posterior distribution, regardless of the starting point.

In Figure 5.11 we show that each new information from experiment is updating
our knowledge about bulk modulus, resulting with sharper posterior distribution
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Figure 5.9: Prior and posterior pdf for shear modulus - simple shear test and Bulk
modulus - hydrostatic compression test, obtained by SQRT Kalman filter (left - force
measurements) and comparison with MCMC (right - energy measurements)
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Figure 5.10: Comparison of prior and posterior pdf and the likelihood function for bulk
modulus-hydrostatic compression test for different initial point of MC

(e.g. the standard deviation is decreasing). Posterior distribution after first update
is used as prior for the next one. The measurement used in updating are taken from
three elastic loading steps in case of simple shear test and hydrostatic compression
test. Moreover, we can find that the same updated distribution are obtained with
PceKF method (see Figure 5.12).

An interesting illustration is presented in Figure 5.13 with an inadequate choice
of the test used for the parameters identification of interest. We note in particular
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Figure 5.11: MCMC update of elastic material parameters {K,G} using elastic step of
load: (a) simple shear test; (b) hydrostatic compresion test
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Figure 5.12: The square root update of elastic material parameters {K,G} using elastic
step of load: (a) simple shear test; (b) hydrostatic compresion test

that information obtained in a simple shear test does not change likelihood function
and posterior distribution which remains the same as the prior. The same conclusion
pertains to deterministic identification revealing that simple shear test is not relevant
for identification of bulk modulus, and on other side shear modulus cannot be
identified from hydrostatic compression test.

The previous results are also supported by the plots of posterior 95% confidence
intervals shown in Figure 5.14. With every new successive measurement, the proba-
bility region narrows down such that the interval becomes almost deterministic after
few performed measurements. We note that even though the truth is assumed to be
deterministic, the posterior 95% confidence interval does not disappear due to the
measurement and model errors.

Figure 5.15 reveals macroscopic response in elastic stage for a specimen under
uniaxial compression with the mean values of identified parameters. We can note
that the difference between computed response and experimental one is small enough
even for only one measurement taken into account. This difference is even smaller if
we perform identification with several measurements in elastic stage.
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Figure 5.13: Comparison of prior and posterior pdf and the likelihood function for shear
modulus-hydrostatic compression test and for bulk modulus-simple shear test
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Figure 5.14: Comparison of posterior PDF for different measurement points describing
elastic material parameter: (a) shear modulus (G) - simple shear test; (b) bulk modulus
(K) - hydrostatic compresion test
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Figure 5.15: Macroscopic response in elastic range with computed parameters

Although this kind of calibration procedure is robust and accurate, the experiment
dealing with a simple shear test and especially hydrostatic pressure test are rather
difficult to perform in a fully reproducible way. For that reason, we turn to studying
the possibility of parameter estimates by using the standard uniaxial compression
test. In particular, the loading path in meridian plane clearly reveals that elastic
parameters (K,G) can be also recovered by using measurements obtained in uniaxial
tension or compression test (Figure 5.16b). In this case, the measurement of force
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Figure 5.16: (a) Displacements measured to evaluate the expansion ∆l = 0.25 · (u1 +u2 +
u3 +u4) of the specimen; (b) loading path
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Figure 5.17: Comparison of prior and posterior pdf function for: (a) shear modulus; (b)
bulk modulus performed on uniaxial compression test obtained by MCMC (upper row)
and by SQRT Kalman filter (lower row)

or energy are not sufficient to perform identification, unless these measurements
also include information about the specimen expansion. Figure 5.17 shows the
updated parameters from these measurements revealing that uniaxial compression
test improves better our knowledge about the shear modulus than about the bulk
modulus regardless of the chosen method.

The dependence of the PCE on the polynomial order is investigated in Figure 5.18
where the accuracy of the sum of force approximation on the uniaxial compression
test is plotted for different polynomial orders. By comparing the approximated
solution against the reference value obtained by forward model, one concludes that
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only the third order approximation can be safely used. In this case response in both
direction (direction of K and G) match with forward model response. Otherwise,
for lower values of the polynomial order the mean value is estimated correctly (the
crossing point) but not the higher order moments (the lines do not match).
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Figure 5.18: Polynomial chaos approximation of the model response for uniaxial com-
pression test: (a) bulk modulus; (b) shear modulus
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Figure 5.19: Comparison of prior and posterior pdf function obtained by SQRT Kalman
filter for: (a) shear modulus; (b) bulk modulus performed on uniaxial tension test for three
loading direction

As mentioned before, the concrete can be considered statistically isotropic material,
since the response for loading in any of three directions differs only a little. Here, we
provide identification of both elastic parameters in sequential manner by using one
measurement from uniaxial tension test with loading in three directions. We can
note in Figure 5.19 that updating is similar to the one performed on one test with
multiple measurements proving that response in three direction is almost the same.
All these measurements are taken from uniaxial tension test obtained by meso-scale
model with 50% of volume fraction of aggregates.
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5.5.2 Identification of hardening parameters
Once we have identified the elastic parameters from the appropriate tests, we can
continue towards the estimate of the hardening parameters. Namely, the parameters
that we are trying to recover are now p = (σy,β, tan(φ), tan(ψ),σinf) denoting the
yield stress, the hardening parameter, the angle of internal friction, the angle of
internal dilatancy and the ultimate limit stress for saturation type of hardening,
respectively. Note, that hardening on macro-scale model follows after elastic response
in compression test, whereas in tension test the elastic response is directly followed
by softening part. The stress in hardening increases until it reaches σ∞, which
can be directly computed as σ∞ = σmax,ref +σy, where σmax,ref is the limit stress
at stress-strain diagram obtained with numerical or experimental tests. With a
such simplification there are four material parameters to be identified. Performing
deterministic identification we can note that identifying these four parameters simul-
taneously, the cost function remains quite demanding to optimize. From definition of
yield function and of plastic potential function we can note that these four parameters
are split into two groups. First, the yield stress and the angle of internal friction
(σy, tan(φ)), which are sufficient to define yield function, and then the hardening
parameter and the angle of internal dilatancy (β,tan(ψ)), which are sufficient to
define plastic potential function. In addition to this simplification and to keep this
optimization step efficient, the simulations is restricted to a limited loading range.
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Figure 5.20: (a) force measured on meso-scale model (red) and 3D solid model (black)
with simplified model for identification of yield function; (b) loading path

Thus for the purpose of the first step in identification of σy and tan(φ) can be
performed by setting the macro-scale model to ideal-plastic model (Figure 5.20a).
The measurement of free potential energy ψ and dissipation Dp are taken here from
uniaxial and biaxial compression tests performed on a plate specimen with dimension
150 x 30 x 150 cm (Figure 5.20b).

Figure 5.21 shows that we update our knowledge only if measurements from both
biaxial and uniaxial test are taken into account, proving that the yield function
can be recovered with minimum two measurements (red points in Figure 5.20b).
If only measurements from uniaxial or biaxial compression tests are include into
identification procedure, it results with a wide range of parameters that can provide
the results, which is again in agreement with deterministic identification (Figure
5.22).
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Figure 5.21: Updates for plastic parameters {σy, tgΦ} obtained by SQRT Kalman filter
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Figure 5.22: Objective function with measurements taken from: (a) uniaxial test; (b)
biaxial test; (c) uniaxial and biaxial test combined

The second stage of identification of hardening parameters involves the angle of
dilatancy tan(ψ) and the hardening parameter β for saturation type of hardening.
There are two requirements for the choice of measurements in this stage. First,
measurements should be chosen between yield strain - ϵy and strain which corresponds
to the limit stress. Second, the number of measurements should ensure convex
objective function. If the first requirement is fulfilled the corresponding objective
function depends only on values of the hardening parameter and the dilatancy angle,
because bulk and shear modulus, as well as the yield stress and the angle of internal
friction, are kept fixed with the optimal values determined during the previous stage.

To identify these two parameters we propose to include four measurements not
only of force or dissipation but also of volumetric strain (Figure 5.23)

The choice of the cost function or measurements is explored in Figure 5.24.
From Figures 5.24a-5.24b we can note that measuring only plastic dissipation is
not sufficient to recover updated distribution for both parameters. Namely, our
prior knowledge about angle of internal dilatancy remains unchanged due to lack of
information. If we include in updating process information about volumetric strain
in particular computational time then updated distribution is moving towards true
value for each new measurements for hardening parameter β, while for the angle
of internal dilatancy tan(ψ) only third and fourth measurements provides adequate
information about this parameter.
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Figure 5.23: Measurements for objective function for hardening parameters (β,tan(ψ))
(a) stress-strain curve; (b) volumetric strain-axial strain
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Figure 5.24: Updates for plastic parameters {β, tgΨ} obtained by SQRT Kalman filter
with four measurement (plastic dissipation - Dp) shown in (a)-(b) and (plastic dissipation -
Dp + volumetric strain) shown in (c)-(d), taken from uniaxial compression test

The cost function obtained with deterministic identification is presented in Figure
5.25. We can note that optimal parameters are in wide range in direction of β
opposite to the narrow range for the angle of internal dilatancy tan(ψ). These
findings are in agreement with results obtained with stochastic identification where
deviation about mean value is much higher for hardening parameter than for the
angle of internal dilatancy.
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Figure 5.25: Objective function J9 with measurements taken from uniaxial compression
test (a) plastic dissipation (Dp); (b) plastic dissipation (Dp) + volumetric strain

5.5.3 Identification of softening parameters
The last stage of identification involves the limit stress σu, the fracture energy in
tension Gf,t and the fracture energy in compression Gf,c. Variable σu represents a
limit of hardening response phase of material, in compression and elasticity limit in
tension. Either is followed by the appearance of macroscopic crack typically placed
in the direction of principal elastic strain, but with different number or fracture
energy release for tension versus compression case. There are two possibilities
to determine the corresponding limit stress. The first is based on comparison of
displacement corresponding to this event on meso-scale model or in experimental
results with a macro-scale model. The second is based on comparison of maximum
stress on reference curve with a maximum stress on macro model. Determination of
displacement at which limit stress is reached is rather difficult task, and thus we turn
to the second possibility. In order to recover both softening parameters (σu,Gf,t)
in tension and (σu,Gf,c) compression, we take measurements of the limit stress on
meso-scale model as well as measurements of total energy in two arbitrary steps in
softening part of global response. In the case of experimental data we could also use
measurements of volumetric strain, which can be stated in deterministic manner as
local measurements, while the limit stress belongs to the global measurements.

In Figure 5.26 we present updated distributions for softening parameters and we
can note that first measurement (step I) do not change the posterior distribution
of fracture energy due to inadequate choice of measurements. Namely, the first
measurement represent the limit stress on meso-scale model, and thus the information
about fracture energy is not completed. In the subsequent steps the total energy
becomes more relevant for fracture energy and it moves the distribution towards
the truth value. Again, we can find that distribution of the limit stress is sharper
compared to the distribution of fracture energy, which is in agreement with results
obtained with deterministic identification (Figure 5.27).

The presented comments on uniaxial tension test can be stated also for uniaxial
compression test (Figure 5.28). Here, we can note that limit stress is changed a
little due to nonlinear fracture criterion, which can be observed on meso-scale model.
This kind of behavior fits very well with the experimental results for concrete. Thus,

Failure models in heterogeneous materials



142 Reduced model of macro-scale stochastic plasticity

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

u 10-3

0

2000

4000

6000

8000

10000

12000

P
D

F
prior
true
posterior-SQRT (step I)
posterior-SQRT (step II)
posterior-SQRT (step III)

(a)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

G
f,t 10-4

0

1

2

3

4

5

6

7

8

P
D

F

104

prior
true
posterior-SQRT (step I)
posterior-SQRT (step II)
posterior-SQRT (step III)

(b)

Figure 5.26: Updates for softening parameters σu,and Gf,t obtained by SQRT Kalman
filter with three measurements taken from uniaxial tension test
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Figure 5.27: Objective function for: (a) uniaxial tension test; (b) uniaxial compression
test
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Figure 5.28: Updates for softening parameters σu,and Gf,t obtained by SQRT Kalman
filter with three measurements taken from uniaxial compression test

with such an approach to identification we can determine which model is good for
particular test or which parameters we should use on macro scale in order to describe
behavior typical of concrete-like materials.

In Figure 5.29 we plot global response with parameters corresponding to 2.5%
fractil value, marked as lower limit curve and with parameters which correspond to
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Figure 5.29: Global response compute with 95% confidence interval of posterior distribu-
tion for: (a) uniaxial compression test; (b) uniaxial tension test

97.5% fractil value of posterior distribution marked as upper limit curve. We can
note that elasticity parameters remains almost deterministic, while limit stress in
compression varies much more than limit stress in tension. Fracture energy with
each new measurement moves to the true value both in tension and in compression.

5.5.4 Simultaneous identification of all macro-scale model
parameters and use of standard experiments

In this last example we want to illustrate two important points concerning possible
difficulty for solving such identification problems: first using only standard experi-
mental results, and second an alternative strategy to the one advocated herein that
would attempt to identify all model parameters simultaneously. As for the former,
we show that the standard uniaxial compression test for concrete is often insufficient
to allow for robust identification of all model parameters, at least not in a unique
manner. For illustration, we performed identification on the specimen presented in
Figure 5.30 where the only measurements are those for force-displacement diagram,
which is the usual type of results obtained by real experiments. We show that in
such a case even elastic parameters can not be fully identified. Namely, the updated
probability distribution of the shear modulus indeed moves towards the true value,
but all updates for the bulk modulus stay only close to the prior. As for other two
parameters we identified, the distribution of the yield stress remains unchanged
compared to the prior, while distribution of the angle of internal friction moves
towards the true value, but only after third plastic step. This clearly illustrates the
need for more elaborate measurements in the standard tests, or using the computa-
tional results obtained by the presented meso-scale model for providing a very robust
identification.

If the model does not offer the clear split between the groups parameters con-
trolling different response phases (e.g. micro-plane model of concrete [193]), we
have to use an alternative approach in which identification of all macro-scale model
parameters and their probability distributions are computed simultaneously. First
difficulty with such an approach is its excessive cost. Namely, the simultaneous
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Figure 5.30: Updates for elastic and hardening parameters performed simultaneously on
uniaxial compression test with measurements of force-displacement diagram

identification of all parameters requires computation of a proxy model for eight
parameters in 48 integration points for third order polynomial. Such an identification
would be very expensive computationally, resulting with days of computations.

For the sake of illustration, we here perform the identification by using a proxy
model with four parameters, which still requires a considerable computations with 46

or 44 integration points. More precisely, we perform computations for three different
groups of parameters where elastic parameters are simultaneously identified with
either the yield stress and the angle of internal friction in the first group, or with the
hardening parameter and the angle of internal dilatancy in the second group, or yet
with the limit stress and the fracture energy in compression in the third group.

The usual measurements of force-displacement diagram would not be sufficient
to carry out any such identification procedure. Thus, we need to complement these
measurement with the computational results, or ’measurements’. In particular, in
the elastic stage we take one measurement of elastic energy, in hardening we take
four measurements of plastic dissipations along with volumetric strain, while in the
softening stage we take measurements of the limit stress as well as measurements of
total energy in two arbitrary steps. All these ’measurements’ are made in fact by
using the meso-scale model computations. The results for corresponding updates of
elastic and plastic parameters’ distributions are presented in Figure 5.31.

We can note in Figure 5.31a and Figure 5.31b that prior knowledge about
elastic parameters is moved to the true value after elastic step while subsequent
measurements taken in the hardening stage would no longer move their distribution
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Figure 5.31: Updates for elastic and plastic parameters performed simultaneously on
uniaxial compression test

towards the true value. This indicates that the elastic parameters can be identified
by only using the measurements made in elastic response stage. Moreover, we can
see from Figure 5.31 that elastic measurements do not change prior knowledge about
plastic parameters. Namely, the identification of the yield stress and angle of internal
friction can not be performed only with uniaxial compression test measurements
(Figure 5.31c and Figure 5.31d). The measurements that are taken at a later stage
of hardening provide much more information about angle of internal dilatancy and
hardening parameter than any measurement made at the early stage. Similarly, from
Figure 5.32 we can see that the elastic measurements do not affect prior knowledge
about softening parameters (e.g. see Figure 5.32.a-b).

The final parameter identification attempt is here carried out with a group
of six parameters that consists of two hardening parameters in compression, the
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Figure 5.32: Updates for elastic and softening parameters performed simultaneously on
uniaxial compression test

hardening parameter and the angle of internal dilatancy in shear, and two softening
parameters. Again we find that the measurements made in softening stage do
not provide any additional information either about elastic parameters nor about
hardening parameters. In Figure 5.33.a-b, as well as Figure 5.33.c and Figure
5.33.d, we can find that measurements in hardening stage are irrelevant for softening
parameters. In such a case, a reduced computational cost of splitting the parameters
identification produces the same results as with the simultaneous computations of
all parameters. This fully confirms the interest of the identification procedure split
which we used in the previous examples.

5.6 Final comments on the presented stochastic
plasticity identification

In this chapter we propose the reduced macro-scale model for concrete with multi-
surface plasticity criteria for fracture process zone with parameters defined as random
variables, along with the embedded-discontinuity finite element localized failure
criteria with parameters also defined as random variables. At macro-scale we build
multi-surface model which can better reproduce the behavior of massive structures
by taking into account different types of dissipative mechanisms: a bulk dissipation
characterized by the development of micro-cracks (by using Drucker-Prager citerion

Failure models in heterogeneous materials



Final comments on the presented stochastic plasticity identification 147

0.35 0.4 0.45 0.5 0.55 0.6
0

5

10

15

20

25

P
D

F

prior
true
plastic step I
plastic step II
plastic step III
plastic step IV
softening step I
softening step II
softening step III

(a)

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
0

0.5

1

1.5

2

2.5

3

P
D

F

10-3

prior
true
plastic step I
plastic step II
plastic step III
plastic step IV
softening step I
softening step II
softening step III

(b)

5 5.5 6 6.5 7 7.5 8

u 10-3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
D

F

prior
true
plastic step I
plastic step II
plastic step III
plastic step IV
softening step I
softening step II
softening step III

(c)

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

G
f,c

0

50

100

150

200

250

300

350

400

P
D

F

prior
true
plastic step I
plastic step II
plastic step III
plastic step IV
softening step I
softening step II
softening step III

(d)

Figure 5.33: Updates for hardening and softening parameters performed simultaneously
on uniaxial compression test

with non-associative flow rule) and a surface dissipation in localization zones in terms
of the macro-cracks (with St. Venant plasticity criterion). The main advantage
of such multi-surface plasticity model is in its ability to represent the complete
set of global failure modes for concrete in tension, compression or shear. Another
advantage of the proposed model is in its ability to represent three different stages
of deformations in compression, with linear elastic, followed by hardening and finally
by localized softening, whereas in tension it is sufficient to take elastic stage followed
by unstable softening response. We note that all such elaborate features have to be
combined in a single macro-scale model in order to provide the corresponding match
with fine scale models of concrete.

In order to quantify the loss of information in bridging the scales from meso
to macro, we account for the crucial role of uncertainties at both scales. Namely,
the model parameters at meso-scale are here considered as random field. Moreover,
the macro-scale model is also the one of stochastic plasticity. We used Bayesian
inference to compensate for model reduction providing the probability distribution
of macro-scale model parameters, which can provide better predictive properties
to such model for any choice of plasticity criteria (and not only those used herein).
We have shown that information used in such an identification approach should
be obtained by using not only experimental test results but also the simulation
results obtained with meso-scale model for concrete. The most significant finding
concerns the use of energy or dissipated energy (or dissipation) to successfully update
the macro-scale model parameters probability distributions. In order to provide
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an additional information about parameters uncertainty it would be desirable to
further combine all these computational results with more detailed experimental
measurements (e.g digital image correlation or tomography), but this is not very
convenient due to very large size of concrete specimen used in testing.

The reduced macro-scale model for concrete will have the local (point-wise)
multi-surface plasticity criteria for fracture process zone with parameters defined
as random fields, along with the embedded-discontinuity finite element localized
failure criteria with parameters also defined as random fields. We consider two
sources of uncertainty in development of this scale bridging: i) uncertainties in the
choice of meso-scale fracture parameters and ii) uncertainties in the microstructure of
meso-scale model. This results with a fairly limited number of sources of uncertainty
that can be expressed in terms of random fields, and further transferred by KLE
into uncorrelated Gaussian random variables, which renders the stochastic Galerkin
approach feasible in terms of computational cost required for constructing probability
distributions in terms of Bayesian updates.

Two different methods for Bayesian inference have been tested and compared in
the proposed approach that allows incorporating new information generated in a
particular loading program. The first method Markov Chain Monte Carlo (MCMC)
is identified as updating the measure, whereas the second method Polynomial Chaos
Kalman Filter(PceKF) is updating the measurable function. We carried out various
numerical tests and show that the identification approach split into three stages
leads to not only substantial computational savings, but also provides more reliable
results. We confirm that posterior distribution of elastic parameters is the same for
both methods, as well as for different choice of the cost function or measurements
(either free energy or force). We propose identification procedure for tests which
are not difficult to impose in a laboratory environment, like uniaxial compression
test. We observe that such kind of test favors shear modulus due to restrained
lateral displacements corresponding to higher friction between the load plates and
the specimen. Hardening parameters which characterize the behavior of concrete
in compression are identified in two steps. First, the parameters which defines the
yield function, and latter the parameters which define plastic potential function. We
show that local measurements of volumetric strain provides essential information
about angle of internal dilatancy. The measurements of ultimate stress on reference
curve along with total energy is sufficient to obtain the posterior distribution of
softening parameters. We also find that limit stress and fracture energy varies more
in compression than in tension.
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Conclusions and future perspectives

In this chapter we present an overview of the proposed approach as well as comments
on the obtained results. The scientific contributions of this work and perspectives for
future work are given.
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This thesis aimed to provide solution for inverse problem by direct coupled
nonlinear mechanics-probability problem in heterogeneous materials. It is based on
combination of two different approaches: the generalized ED-FEM that has the role
to provide the corresponding failure mechanisms and fracture model; and stochastic
upscaling where any coarse scale can retain the unresolved physics of the smaller
scale in terms of the corresponding probability distribution properties to match
quantity-of-interest.

Meso-scale model for concrete relies on spatial beam models, as a class of discrete
lattice models. Such a model can represent the multi-phase structure of concrete,
namely cement paste and aggregates, considered as lattice elements representing
cohesive links between the Voronoi cells. The beam element is represented by 3D
Timoshenko beam, embedded with strong discontinuities in local coordinate system
directions, capable to simulate the localized failure in modes I, II and III. Due to
this enhancement complete mesh independency of crack propagation is ensured.
Aggregate size is taken in agreement with well-known aggregates grading curves in
concrete mixture (EMPA and Fuller). Spreading aggregates in domain of interest
with Poisson distribution provides realistic values of phase volume fraction. Gaussian
distribution is used to represent heterogenities of each phase which takes into account
the Interface Transition Zone (ITZ) through the weakening of concrete. The results
of numerical simulation with proposed model indicate that resistance to tension and
compresion is influenced by volume fraction of aggregates while two different failure
mechanisms are observed. It was shown that model is capable to provide a reliable
results in biaxial loading which fits very well with experimental results made for
concrete.

The presented macro-scale model is developed as multisurface plasticity model
for concrete that takes into account both the contribution of a strain hardening with
non-associative flow rule as well as a strain softening model components for full set of
different 3D failure modes. The plasticity model is represented with Drucker-Prager
yield criterion, with similar plastic potential function governing hardening behavior
while strain softening behavior is represented with St. Venant criterion. The reason
why we take non-associative flow rule is based on experimental observations where
it is noted that during hardening concrete-like materials shows nonlinear volume
change. For representing the failure, a displacement jump is embedded in the solid
element to describe the postpeak behavior providing complete mesh independency
of the discrete approximation constructed by the finite element methods. Although
none of the above ingredients are novel in the field of computational solid mechanics
when considered separately we have extended them and combined them into the
proposed concrete model and provide more realistic representation of the limit state
of massive structures. Numerical examples validate the model against experimental
results for different deformation modes, reproducing also crack patterns on reinforced
concrete beams under bending.

The presented identification procedure for macro-scale model is perfomed in
sequential way. Due to the fact that all ingredients of macro-scale model have
physical interpretation we made calibration of material parameters relevant to
particular stage. Objective functions are constructed so that both measurement of

Failure models in heterogeneous materials



151

force and displacement either energy and dissipation is appropriate. We observe
that for experimental setting major difficulty concerns for properly recognition of
the structural response stages.

Model reduction from meso-scale model to macro-scale model is considered as a
part of a scale-coarsening strategy. Namely, all scales are considered as uncertain
and probability computation is performed. First, an off-line probability computation
in terms of pre-processing by Bayesian updates of many realizations for particular
composite material microstructure to define meso-scale parameters as random fields.
Second, an on-line probability computation to carry on with uncertainty propagation
starting from such meso-scale to structural scale. Each unknown parameter of
reduced model is modeled as a random variable when we are modeling homogeneous
material while for heterogeneous material, these material parameters are described
as random fields. We choose p-method mesh refinement over probability domain
and h-method over spatial domain to make appropriate discretizations. Latter,
by using Stochastic Galerkin method we construct the forward model outputs in
terms of Wiener polynomial chaos expansion (PCE). Such model approximation
provides outputs more quickly the the full forward model. The probabilistic procedure
of identification with two different methods based on Bayes’s theorem that allows
incorporating new observation generated in a particular loading program are presented.
These methods, MCMC and PceKF, have been tested and compared and we observed
that updating the measure (MCMC) or updating the measurable function (PceKF)
results with the same distribution. It also seems that second method (PceKF) is
the fastest than first method (MCMC). Moreover, with proposed approach we can
recover any probability distribution of structure failure modes for advanced safety
evaluation, contrary to pre-defined distributions which is currently used.

The scientific contributions of this work are related to the following: two novel
models with full set of 3D failure modes for heterogeneous materials on meso-scale
and macro-scale are developed; development of an inverse problem for concrete-like
materials based on sequential computation not only for global response but for
hardening stage as well; development of novel multi-scale two-way coupling approach
for modeling of fracture with the probabilistic description.

The proposed approach can be extended to take into account nonlinear consti-
tutive law on macro-scale model. Also, the application for reinforcement concrete
could be considered with extension about bonding phenomena integrated into the
model. Deterministic identification procedure could be extended by taking into
account experimental measurements not just of force and displacement but also the
measurements on surface with digital image correlation (DIC) methods. Regarding
the probabilistic identification future work could be extended with the uncertainty
which comes from spatial distribution of aggregates. Also, it could be considered the
solution to a multiphysics problem on micro-scale to improve a posteriori distribution
on meso-scale. We can also consider the application of proposed approach to the
other types of materials and structures, such as soils, or rocks, or masonry structures.
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A
Tables

Realizationj Directioni Tension strength σjti(MPa) Compressive strength σjci(MPa)
1 1(X) 2.744 -24.767

3(Z) 2.636 -23.266
2 1(X) 2.681 -25.477

3(Z) 2.696 -26.197
3 1(X) 2.515 -24.520

3(Z) 2.703 -25.456
4 1(X) 2.588 -25.739

3(Z) 2.742 -26.580
5 1(X) 2.509 -23.033

3(Z) 2.554 -23.017
6 1(X) 2.507 -23.946

3(Z) 2.641 -23.560

Table A.1: Uniaxial strength with 50% of aggregates
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168 Tables

Combined re-
gions

u1(mm),u3(mm) σ1
1/σ1

c σ1
3/σ1

c σ2
1/σ2

c σ2
3/σ2

c σ3
1/σ3

c σ3
3/σ3

c

Tension-
tension

0.0000,0.0200 0.000 0.112 0.000 0.103 0.000 0.106

0.0173,0.0100 0.113 0.091 0.113 0.083 0.112 0.086
0.0100,0.0173 0.097 0.120 0.100 0.108 0.099 0.113
0.0200,0.0000 0.104 0.000 0.105 0.000 0.103 0.000
0.0056,0.0192 0.065 0.119 0.057 0.108 0.057 0.113
0.0192,0.0056 0.112 0.057 0.113 0.054 0.111 0.078
0.0200,0.0200 0.111 0.117 0.109 0.105 0.110 0.108

Compression-
compression

0.0000,-0.2000 0.000 -1.000 0.000 -1.000 0.000 -1.000

-0.1732,-0.1000 -1.220 -0.969 -1.273 -1.028 -1.272 -1.077
-0.1000,-0.1732 -1.040 -1.251 -1.126 -1.197 -1.074 -1.216
-0.2000,0.0000 -1.000 0.000 -1.000 0.000 -1.000 0.000
-0.0872,-0.1800 -0.976 -1.248 -1.052 -1.190 -1.026 -1.214
-0.1800,-0.0872 -1.224 -0.862 -1.280 -0.966 -1.260 -1.017
-0.2000,-0.2000 -1.181 -1.186 -1.211 -1.162 -1.211 -1.190
-0.1990,-0.0200 -1.192 -0.445 -1.210 -0.508 -1.200 -0.466
-0.0200,-0.1990 -0.421 -1.152 -0.432 -1.163 -0.524 -1.118
-0.1950,-0.0444 -1.224 -0.589 -1.253 -0.669 -1.231 -0.685
-0.0444,-0.1950 -0.647 -1.208 -0.654 -1.181 -0.729 -1.172
-0.2000,-0.0020 -1.156 -0.346 -1.167 -0.414 -1.168 -0.330
-0.0020,-0.2000 -0.315 -1.126 -0.309 -1.147 -0.378 -1.085

Tension-
compression

0.1732,-0.1000 0.107 -0.639 0.106 -0.583 0.103 -0.634

0.1936,-0.0500 0.106 -0.512 0.115 -0.318 0.111 -0.424
0.0224,-0.0380 0.071 -0.810 0.071 -0.802 0.069 -0.826
0.0173,-0.0200 0.082 -0.707 0.089 -0.686 0.085 -0.728

Compression-
tension

0.1732,-0.1000 -0.604 0.130 -0.606 0.101 -0.615 0.106

0.1936,-0.0100 -0.507 0.124 -0.306 0.107 -0.321 0.114
0.0224,-0.0380 -0.801 0.083 -0.809 0.074 -0.817 0.076
0.0173,-0.0200 -0.686 0.100 -0.680 0.087 -0.686 0.090

Table A.2: Ratios of ultimate strength with respect to σc along X and Z directions under
different couples of imposed displacements for realization 1,2 and 3
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Combined re-
gions

u1(mm),u3(mm) σ4
1/σ4

c σ4
3/σ4

c σ5
1/σ5

c σ5
3/σ5

c σ6
1/σ6

c σ6
3/σ6

c

Tension-
tension

0.0000,0.0200 0.000 0.103 0.000 0.111 0.000 0.112

0.0173,0.0100 0.113 0.087 0.119 0.095 0.117 0.096
0.0100,0.0173 0.097 0.107 0.100 0.114 0.104 0.110
0.0200,0.0000 0.101 0.000 0.109 0.000 0.105 0.000
0.0056,0.0192 0.058 0.107 0.094 0.114 0.056 0.113
0.0192,0.0056 0.114 0.056 0.117 0.086 0.115 0.059
0.0200,0.0200 0.107 0.106 0.115 0.111 0.114 0.108

Compression-
compression

0.0000,-0.2000 0.000 -1.000 0.000 -1.000 0.000 -1.000

-0.1732,-0.1000 -1.316 -1.030 -1.319 -1.152 -1.330 -1.142
-0.1000,-0.1732 -1.124 -1.251 -1.192 -1.295 -1.175 -1.292
-0.2000,0.0000 -1.000 0.000 -1.000 0.000 -1.000 0.000
-0.0872,-0.1800 -1.087 -1.248 -1.161 -1.292 -1.125 -1.300
-0.1800,-0.0872 -1.310 -0.981 -1.319 -1.075 -1.324 -1.101
-0.2000,-0.2000 -1.240 -1.206 -1.279 -1.272 -1.320 -1.244
-0.1990,-0.0200 -1.200 -0.510 -1.270 -0.452 -1.283 -0.514
-0.0200,-0.1990 -0.421 -1.185 -0.467 -1.205 -0.520 -1.194
-0.1950,-0.0444 -1.264 -0.742 -1.305 -0.685 -1.304 -0.779
-0.0444,-0.1950 -0.719 -1.221 -0.709 -1.237 -0.791 -1.231
-0.2000,-0.0020 -1.183 -0.355 -1.244 -0.357 -1.250 -0.367
-0.0020,-0.2000 -0.311 -1.159 -0.328 -1.182 -0.354 -1.180

Tension-
compression

0.1732,-0.1000 0.103 -0.604 0.111 -0.669 0.105 -0.630

0.1936,-0.0500 0.112 -0.359 0.119 -0.431 0.113 -0.385
0.0224,-0.0380 0.069 -0.834 0.076 -0.850 0.071 -0.850
0.0173,-0.0200 0.084 -0.735 0.093 -0.749 0.088 -0.749

Compression-
tension

0.1732,-0.1000 -0.572 0.104 -0.634 0.113 -0.615 0.113

0.1936,-0.0100 -0.322 0.110 -0.352 0.125 -0.379 0.119
0.0224,-0.0380 -0.785 0.075 -0.817 0.082 -0.825 0.078
0.0173,-0.0200 -0.666 0.088 -0.721 0.096 -0.714 0.092

Table A.3: Ratios of ultimate strength with respect to σc along X and Z directions under
different couples of imposed displacements for realization 4,5 and 6
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