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Introduction

Issues and context

Electrical cables are used in many fields, such as transportation systems, industrial machinery,
power plants, and infrastructure in order to connect devices for energy or data transmission.
Hence, these cables guarantee good performance of a system. In recent decades, the
increasing use of electrical components has increased the demand for electrical cables. For
instance, the cumulative length of the electrical wires installed in a typical civil aviation
aeroplane is more than 400 km, and a modern train contains around 200 km of wire.
Consequently, electrical wires have become important subsystems in critical systems.
However, these subsystems have a lifespan. Indeed, over time, due to either external reasons,
such as chemical contamination or mechanical stress, or internal causes manifested in
manufacturing defects or temperature increases, a cable breaks down partially or entirely.
Increasing the number of cables can also increase the wiring fault risk. Wiring faults are
classified into two categories: hard, which refers to open circuits that completely interrupt the
transmission of energy or data in the cable and are easy to detect, and soft, which refers to
insulation damage, cracks, and frays that are difficult to detect and, over time, become hard
defects. Wiring faults have been considered a major cause of safety and control problems. In
particular, the Boeing 747 TWA Flight 800 disaster in 1996 and the crash of a Swissair MD-
11 in 1998 that took the lives of hundreds of passengers were caused by electrical wiring
faults, according to the U.S. National Transportation Safety Board (NTSB). Accordingly, the
importance of electrical wires in daily life requires rigorous fault detection methods able to
detect wiring defects before systems are put in jeopardy. It suggests an industry spends a
significant amount of money each year at the operational level to troubleshoot and repair
wiring system problems.

Two types of wiring fault detection methods are used: techniques relying on direct
observation by human senses (visual inspection, X-ray methods, and so on), which are time
consuming, expensive, and inefficient in most cases, and techniques based on mathematical
and physics concepts, such as low-frequency and direct current (DC) methods, capacitive
method and inductive method, and medium-frequency approaches, in addition to several other
techniques. Despite the evolution of these methods over time, reflectometry-based techniques
are at the centre of industrial research applications in the signal processing domain. The
reflectometry relies on testing the propagation of an electromagnetic waveform in the wire
network and then monitoring its reflection to detect and localize an impedance discontinuity.
There are two main reflectometry families: time domain reflectometry (TDR) and frequency
domain reflectometry (FDR). They are efficient in detecting hard faults due to the high
reflection coefficients of such faults, but they are less reliable in detecting soft faults. In fact,
soft faults are usually associated with reflectiveness so weak it can pass unnoticed because of
junctions and noise level. Additionally, these methods are inefficient to detect fault in
complex networks.

Thesis objective

The objective of this thesis is to propose new approaches to locate single or multiple chafing
faults in networks of varying complexity. Time domain reflectometry, standing for the
reflection coefficient, was originally developed for diagnostic and monitoring purposes for
fault detection in electric wires in buildings, aircraft, and transportation systems. Basically, it
allows high versatility and accuracy with relatively low implementation costs, providing a
visual method for inferring chafing fault positions. When moving from a simple cable to a



wire network, however, this is no longer true. Multiple chafing faults cannot be resolved
separately, because of their reflection coefficient.

The denoising method decomposes the signal in the time domain and allows for removing
noise from signals before applying fault detection methods. Three well-known methods are
used to reduce noise: empirical mode decomposition (EMD), local mean decomposition
(LMD), and the discrete wavelet transform (DWT). These denoising methods already exist in
the literature, but they were limited only to denoise signals. In this work, these denoising
methods are used to denoise signals and detect chafing faults.

Providing a denoised signal, the time—frequency analysis is reviewed for inferring the chafing
fault’s position. These Time Frequency methods was already used in different literature.
However, in this thesis, we compare between them in terms of their sensitivity regarding
chafing fault position. These methods concern the analysis and processing of signals with
time-varying frequency content. Such signals are best represented by time—frequency
transforms, which depict the signal energy over the two-dimensional time—frequency space
instead of only the one dimension of time or frequency. However, conventional
representations of a signal in the time domain or frequency domain do not facilitate the
signal’s interpretation because of the noise level.

To overcome this, a Bayesian approach is used. In the research, the Bayesian method solved
by the Nested Sampling method was already used to detect the wiring fault. However, in this
thesis, the Bayesian method is solved via Nested Sampling and Gauss Newton in order to
overcome some limitations of the Nested Sampling method and compare between them. In the
Bayesian approach, test signals are obtained from the network’s scattering matrix that once
injected into the network model will make it possible to locate the position of the chafing
fault. Notably, this novel approach allows extracting the signature of each chafing fault
characterized by its posterior parameters. Additionally, converging the network model to the
measurement allows a clear identification of the chafing fault and reduces the probability of
false alarms. This method gives credibility to critical real-life configurations that are not well
addressed in current literature. In addition, the proposed procedure allows an accurate
estimate of the severity of a chafing fault, a feature of practical interest when monitoring the
state of a cable in a wiring network. Notably, the proposed method has shown a remarkable
robustness in the presence of noise, and this efficiency improves when the network’s
complexity increases. However, the approach is less stable because it depends on estimations
of prior parameters estimations and prior distribution. It is also time-consuming and costly.

To address these challenges, we use chaos time domain reflectometry (CTDR) based on time-
domain analysis. In the literature, the CTDR was used only for hard fault detections by using
only the simulations. In this thesis, we develop the CTDR to detect chafing faults by using
measurements and simulations. This method shares the same foundations as other TDR-based
methods — namely, the characterization of the wiring network. However, the difference is that
in the CTDR approach, the injected signal is a chaotic signal. Therefore, its resolution is
limited by bandwidth, as with any other time-domain method. In addition, a correlation
process between the injected and the received signal is defined to detect and locate single and
multiple chafing faults in different network configurations. Experimental and simulated
results confirm the practical potential of this novel approach. It is important to point out
CTDR has also shown a great robustness with noisy measured scattering data, proving its
feasibility for working in noisy environments.

Thesis organization

The following thesis is composed of five chapters. Chapter 1 presents an overview of the
context of our study, starting with defining electrical cables, their types, and their fields of
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application, followed by an introduction of the main causes behind the appearance of wiring
faults. After that, we list some of the consequences that these cable defects can lead to and
introduce the most common methods used for investigating cables. The general principles of
reflectometry techniques are presented with their different varieties, along with an illustration
of their major advantages and limitations. The bases that allow understanding of the proposed
methods, namely, the principles of wave propagation along transmission lines, are
represented, and the concepts and tools used to model and simulate a cable are described. We
review the transmission line theory tools needed for our study, and multiport modelling with
the S-parameter matrix that is used to define our model. Finally, the chapter content is
illustrated with an application.

Chapter 2 is dedicated to denoising a signal and detecting a chafing fault. Three denoising
methods are proposed: EMD, LMD, and the DWT. To denoise a signal, different
threshold filtering algorithms are used. In the present study, we investigate which method
provides coherent denoised data. For that, we compare the proposed methods applied to some
examples by studying their sensitivity regarding chafing fault detection.

Chapter 3 focuses on the concepts of time—frequency analysis while presenting three of its
major approaches. We address the theoretical bases of these three methods, their areas of
applications, and the merits and demerits of each.

Chapter 4 addresses the Bayesian approach applied to transmission lines. This Bayesian
approach is reviewed, and its feasibility in locating single soft faults in cables of different
complexity is addressed. This method is solved via two statistical methods: The Gauss—
Newton algorithm and nested sampling. Based on these two statistical methods, we examine
the Bayesian approach while showing its different steps, which allow for detecting and
locating multiple soft faults in various cables. This is validated numerically, and results are
presented of computations of the severities of the soft faults of the tested cables.

Chapter 5 deals with the application of CTDR to transmission lines and the high-resolution
results obtained with continuous wave excitation signals for the accurate detection and
location of single and multiple soft faults in different networks under test. A numerical and
experimental study validates the novel approach. This is accompanied by a presentation of the
process. The faults’ reflection coefficients are computed, and corresponding results are
presented. Finally, the robustness of CTDR to noise is examined.
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Chapter 1: State of Art



1 State of the art

1.1  Introduction

The increasing of embedded electronic devices is responsible of the increasing number of
electrical wires connections. Therefore, the importance of electrical wires and their reliability
has dramatically risen over the last decade. The explosion of the electrical link number can be
observed in different domains that concern our daily life. This is mainly:

- The telecommunications that was one of the first area where cables are essential used
to transmit information from one point to another,

- The aeronautic and automotive domains where the number of embedded sensors and
calculators has submitted an exponential increasing these last years because of the
various safety and comfort functions that they are used for. In the future, the evolution
toward autonomous vehicles will also increase the need of cables for data
transmissions,

- The power feeding where high voltage cables transport the energy from the production
centres to the customer.
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Figure 1-1. The cumulative length of the wiring in different industrial applications [1].

In some of these domains, the quality of the cables (ex: telecommunication) is need and their
dysfunctions are not permitted (aeronautic and automotive). Indeed, the cables are primarily
responsible, contributing to 29% of aircraft accidents, while connectors contribute to 14% of
them as illustrated in Figure 1-2. Thus, they generate safety issues and increase maintenance
costs [2]. In 2010, in Spain, a Bombardier flight was cancelled because of an autopilot control
cable breakdown. In 1998, Swiss Air flight 111 experienced smoke and fire caused by cable
failures, as was the case with the Apollo accident in 1970 [3] because over time, wires’
characteristics change, particularly in response to cyclic temperature variations, ageing, in the
presence of corrosive media or due to vibrations. As a result, some wiring parts are



prematurely. Therefore, optimal operational conditions require regular monitoring of wear
and tear.

contributions to aircraft accidents

Figure 1-2. Breakdown of components contributing to aircraft accidents according to data collected by AFSA[4].

To sum up:

- The choice of a cable depends on the application that it is used for. As the constrains
are different from one domain to another, specific kind of cables have been developed.
Main categories will be described below,

- It is important to detect wiring defects. For that, first, we will define what kind of
defect can arise on a cable, and then some techniques for the wiring fault detection
will be described later in details.

The importance of electrical wires has risen dramatically over the past decade. As
technologies, electrical wires play a significant role in our daily lives and are widely used in
almost all fields, such as aeronautics, telecommunications, and electronics. They enable the
transfer of electrical signals or power from one device to another. Several systems use
transmission lines, such as transportation systems [5], reactor machinery [6], modern
industrialized systems [7], and telecommunications [8]. The optimal use of these transmission
lines depends on the target function and can include both technical and economic aspects; the
frequency bandwidth; the transmitted signal, which can be either analogue or digital [9]; and
the cable’s environment, such as the sea, the air, or the ground [10].

In recent years, many new methodologies have been developed to determine the new
optimum sophisticated cables. One of these cables is the ethernet cable, which is assumed to
have good reliability, good propagation characteristics (linear attenuation and signal distortion
as frequency function), and improved ability to carry information. It is widely accepted that
the cumulative length of the wiring used in different industrial fields must increase to supply
the increased electric loads, as shown in Figure 1-1. For instance, last-generation cars use
many kilometres of cables, and this use is expected to increase in electric autonomous cars,
which require many sensors to relate to the embedded computers. In addition, the introduction
of sensors such as radars and lidars can provide great benefits for system safety, which is the
priority in all fields. However, construction and connection of electrical wires cannot be done
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without considering the impact they will have on the system. For instance, the National
Transportation Safety Board (NTSB) investigation revealed that it was electrical wiring faults
that caused the Long Island TWA Flight 800 crash and the Cincinnati Air Canada Flight 797
crash [11]. In fact, the optimum reliability related to safety will depend on the optimal
operating modes, which must be considered in he operating frequency bands, particularly for
data transfers, and The working environment that may be responsible for performance
degradation (underground cables, submarines, and so on).

In recent years, many new methodologies have been developed to detect the wiring problem.
Indeed, there are some wiring faults that are undetectable at first appearance but whose impact
can grow with time. However, over time these faults could lead to system breakdowns. This
chapter is summarized as follows. First, we present different kind of cables and their
application domains, and we define cable modelling methods: 3D approaches, transmission
line theory, and scattering parameters. Second, wiring faults are presented. Notably, we
present different kind of defects, their origins, and two main approaches of fault detection
methods, including the well-known reflectometry-based methods and others that are not
reflectometry based. Third, we introduce methods for modelling wiring faults and we define
network modelling. Finally, among the cable configurations used all along this thesis, the two
simplest cable configurations with soft fault are depicted. In particular, the analysis of the
reflected signals leads to use and/or develop advanced method for the soft fault detection.

1.2 The cable: features, models, applications

As shown above, over the past decade, cables have become increasingly popular due to their
reliability, safety, and physical characteristics. With technological advances and various
objectives and constraints in different fields, the process of choosing cables has become more
economical and efficient, as illustrated in Figure 1-3. Although electrical cables perform
numerous functions such as supplying electricity to motors, transformers, and heaters, they
can also affect the performance of systems by creating fire, or breakdowns. The dependable
operation of electrical cables is essential to safe operations in different fields. For instance, to
ensure an increases of the throughput in digital transmissions, cables with low attenuation
over a wide frequency band are required. Cables that typically consist of one or more metallic
conductors with insulation, filler, shielding, sheaths, and jacket [12] - [13] can be modelled as
impedances [14]. In addition, for electric equipment EMC, it is necessary to not only reduce
the electromagnetic waves radiated from the equipment but also raise the resistance against
external electromagnetic waves. For that, the cable pairs must be isolated. The insulation is
often considered the single most important component of the cable and cable categories are
indicated by their insulation use.

Ranked by increasing shielding efficiency for the transmission of the information, the
categories are shielded, unshielded, and foiled twisted pair cables (Figure 1-4).
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Figure 1-3. Different cables and their areas of application [15].

o Twisted pair cable:

Twisted pair (TP) cables (Figure 1-4) are composed of two conductors twisted together to
eliminate internal and external electromagnetic interference. For instance, in computer
networking, two pairs of twisted-pair cables are typically used for transmitting data, while
other pairs receive data. Three main twisted-pair cable types exist: shielded twisted pair (STP,
its impedance Z = 100Q), unshielded twisted pair (UTP, its impedance Z = 100Q), and
foiled twisted pair (FTP, its impedance Z = 100Q) [16]. While even unshielded UTP cables
reduce electromagnetic interference, shielded STP cables eliminate it more effectively. In
addition, UTP cable is used more often than FTP in Europe, and especially in France, in
Ethernet networking. In addition, for RJ45 cable [17], the twisted pair cables are classified
into three standards: Category 5, Category 6, and Category 7, according to theoretical data
speed and the frequency range [18]. For instance, Category Se (Class D) transmits data with a
theoretical data speed of 1,000 Mb/s at frequencies up to 155 MHz, while Category 7 (Class
F) transmits data at theoretical speeds of 10 Gb/s with frequencies up to 600 MHz. Moreover,
the greater the number of twists, the lower the crosstalk.
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Figure 1-4. Twisted pair cable [18].

e Coaxial cable

Coaxial cables carry electrical signals using an inner conductor (usually copper wire), as seen
in Figure 1-5. They are surrounded by three layers, which are, from the internal to the
external, an insulating layer, a shield layer, and an outer insulation layer [19]. Usually, the
ground potential is connected to the shield, while the voltage is applied to the internal copper
wire to carry a signal. The advantage of a coaxial cable is that the electromagnetic fields are
kept in the dielectric with low leakage outside the shield. Besides, this cable type is protected
from external interferences, which makes it useful for carrying weak signals that cannot
tolerate any interference from the environment. Furthermore, using coaxial cable is relevant
for higher power signals that must not be allowed to radiate or couple with adjacent structures
or circuits [20]. Moreover, the losses are highly dependent on the quality of the dielectric
used. To avoid microwave attenuation (for example up to 40 GHz), expensive special
dielectrics are used. In addition, coaxial cable is used in computer science and low-frequency
electronics but also in the field of radio frequency (RF) and microwaves up to several tens of
gigahertz [21]. The present work depicts experimental measurements made with coaxial
cables to compare with simulated data to validate our new fault detection methods (Chapters
1, 1, and Error! Reference source not found.).

COPPER
WIRE

INSULATION
COPPER MESH
QUTSIDE INSULATION

Figure 1-5. Example of a coaxial cable, showing four parts: copper wire, insulation, copper mesh, and outside
insulation [22].

e Power cables
Power cable is used for high-voltage signals. It is covered by a metallic shield layer, which is
kept at earth ground and designed to equalize the dielectric stress on the insulation layer.
Figure 1-6 depicts a high-voltage power cable. The inner conductor must tolerate stresses
during cable laying, while the metallic layer contributes to the mechanical protection. Power
cables come in a variety of materials, sizes, and types depending on the application they are
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used for. These cables sometimes use large insulated conductors to protect the cable from the
surrounding medium circumstances as the heating causing by the joule’s losses [15].

Figure 1-6. Power transmission cables [15].

In this section, we introduced some cable types, their features, and their applications. We now
define different cable modelling methods.

In all the following sections, coaxial cables are considered when applying the processing
techniques developed.

1.3  Cable modelling

Several EMC issues (shielding, electromagnetic coupling...) concerns cables. The electronic
devices connected to cable leading to complex system are more and more increasing. Thus,
the EMC study is becoming increasingly difficult. This is one of the main reasons why
interest in modelling cables has increased considerably. Because of the expansion of
transmission lines, it is necessary to have accurate simulation models [23].

To understand the modelling used for transmission lines, this section provides an analysis of
many methods to model a cable. These include methods based on the resolution of Maxwell's
equations without approximation, methods based on transverse electromagnetic (TEM) mode
propagation (transmission line theory), and methods based on scattering parameters.

1.3.1 3D approaches

As the electrical properties differ considerably from one cable to another, the modelling and
studies of cables are considered very challenging. To model a cable, it is necessary to have a
good knowledge of the physical structure of the cable and of the electrical characteristics of
the material as well as the variation of losses (in the dielectric and the conductor) versus
frequency. For this, 3D modelling methods can be used [24]. These methods are numerical
approaches consist in a resolution of Maxwell equations after their discretization. Two main
categories of approach can be distinguished: the first one consists in the resolution of the
problem in a three-dimensional volume by decomposing it into elementary cells. In this case,
the electromagnetic fields are computed in each elementary cell by the discretized Maxwell
equations which allow the propagation of the energy from one cell to the adjacent one. The
second category consists in, first, deriving an integral formulation of the Maxwell’s system,
then a surface resolution that consists in the surface currents calculation is made [25].

The finite element method (FEM) is one of the most useful approaches in many fields [26]. It
is a mathematical technique used to solve partial differential equations that depict physical
problems. Approximating functions in finite elements solve the Maxwell equations in a
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domain of interest. Additionally, this approach consists of discretizing a physical problem.
Thus, the most important properties of the FEM are worth mentioning [27]:

Decomposition of the three-dimensional computational volume into elementary
volumes, that generally have a tetrahedral shape,

Discretization of an integral formulation of the Maxwell’s equation in each cell. For
that, two main approaches can be used: the nodal FEM method where the unknowns
are the fields at the nodes of the discretized volume, and, the edge method where the
integral formulation of the electromagnetic fields along edges of the cells is derived.
Thanks to the discretization, a submatrix can be obtained on each cell, and then the
following operation consists in the integration of all these matrices into a general
matrix containing all unknowns. This general matrix is a sparse matrix that can be
constructed and solved by using an appropriate method.

The approximation of physical fields on finite elements to simple approximating

functions provides good precision.
In discretizing problems, approximation leads to sparse equation systems which lead
to large numbers of nodal variables (when considering nodal finite elements).

There are five steps to model a cable via the FEM.

First, the cable’s region is divided into elementary volumes. Then, the Maxwell
equations are discretized in each cell.

Second, this discretization of the Maxwell equation in each cell can be solved by two
main approaches: the nodal FEM method or the edge method.

Third, due to this discretization, a submatrix can be obtained on each cell, and then the
following operation consists in the integration of all these matrices into a general
sparse matrix containing all unknowns.

Fourth, imposition of the boundary conditions and element connectivity to assemble
the element equations that defining the sparse matrix.

Finally, resolution of the global equation system that is sparse, symmetric and positive
definite. The study of a large frequency band requires building the system and its
resolution as many times as the frequencies be considered.

These steps are used in the High Frequency Structure Simulator (HFSS) commercial software
that discretizes the cable undertest via FEM, as shown in Figure 1-7.

=

A

Figure 1-7. Coaxial cable model via HFSS [28].

There are also other approaches, matched to broadband problems, for solving Maxwell’s
equations in the time domain, such as the finite-difference time-domain (FDTD) method. The
FDTD method is simple in terms of implementation to solve electromagnetics problems. In
some cases, the FDTD simulator models the cable on the order of a wavelength. The smaller
the wavelength compared to the physical features of interest, the faster the FDTD method
solves the problem. The FDTD method consists in a decomposition of the three-dimensional
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space into elementary parallelepipeds cells by positioning the electric and magnetic field
points interlaced in each cell in order to have a second order accuracy in the spatial
derivatives that appear in the curl operator of the Maxwell’s equation. In order to get a second
order accuracy in the time domain, the electrical field and magnetic field components are
interlaced and separated of half one-time step. As a result, the global scheme is of second
order, this accuracy is attained simply using central derivatives in time and space, obtained by
using only two separated of one space or time step [29]. Moreover, the interlaced calculation
instants of the electric and the magnetic fields lead to an explicit problem resolution without
any matrix inversion. The main constraint is the Courant Fredrich Levy (CFL) criterion that
constraints the time step to be lower than a given value depending on the space increments
(Ax, Ay, Az). Physically, the numerical propagation should be lower than the speed of light c,
if it is not the case, a divergence can be observed.

1

e J Yy ) .

In the FEKO commercial software, by contrast, the moment method is used [30]. Using
Computer Aided Drafting (CAD), the software carries out a superficial discretization, usually
in triangles, and calculating the normal currents at the edges of each triangle (Rao—Glisson—
Wilton functions). Based on the Maxwell’s equations, this method leads to a large full matrix
unlike the FEM. Its only difficulty lies in the system resolution, which is now accelerated by
recent approaches such as the Fast Multipole method (FMM) or the Adaptive Cross
Approximation (ACA) method. Besides, there are four steps to model the cable. First,
building geometry for the cable. Second, building a geometry to represent surrounding
geometry. Third, meshing the created cable. Finally, solving the Maxwell’s equation via the
method of moments.

It is important to notice that the FDTD or the MoM methods do not need a discretization of
the section of the wire, only segmentation is necessary. In this case the longitudinal current
component is computed. On the contrary, the FEM method needs a discretization of the length
as well as the section of the wire, as a result, it cannot be used in cables modeling (but only
for short section of cables or for fault modeling)

In the next section, we present the transmission line method, which is an easier and useful tool
for studying propagation inside wires.

1.3.2 Transmission line theory
The rigorous formulation methods seen above will give precise answer if all parameters of the
problem to be modelled are well known. In particular, on a cable or a transmission line, they
are able to take radiation phenomena into account. In the present work, we will concentrate on
the flowing current along a transmission line, if the frequency is not two high, the radiation
phenomena can be neglected in a first approximation. Then, in this case, we can only consider
the TEM mode. Consequently, it is possible to use the transmission line method (TLM) for
this kind of problem because of its short computational time. The TLM principle will now be
described more in details [31].
The lines theory is based on a quasi-TEM approximation of the propagation between at least
two conductors. The Maxwell’s system approximation assumes a potential difference in any
section of the cable based on the following constraints:

o The distance between the cables or between a cable and a ground plane must be small

(typically lower than A /10); and
e The cable geometry is invariant all along the direction of propagation.

1 11}
26



The transmission line method consists of solving two coupled equations on voltage and
current either in time or in frequency [32]. Moreover, the transformation from one to the other
can be achieved using the Fourier transform [33].

A simple transmission line is represented as a two-wire line (multiconductor transmission line
will not be used in this work). By considering equation (1.2), the piece of line of infinitesimal

length dx can be modelled as an RLCG circuit [34] as shown in Figure 1-8.

dx « A, (1.2)

The parameters are as follows:
e A: wavelength.

e L: linear inductance (henry/m) is divided into two kinds: an inner inductance which is
due to the magnetic field inside the conductors and an outer inductance that is due to
the magnetic field between conductors.

e C: linear capacitance (farad/m) depends on the permittivity of the insulator.
e G: linear conductance (siemens/m) represents a current flow between two conductors.

I(x,1} A~ YL _ (x4, 1)
+ Rdx Ldx +
Vi Cdx Gdx V(x+dx, 1)

Figure 1-8. A scheme of an RLCG equivalent model of a segment of a transmission line.

By the application of Kirchhoff’s laws, the equations (1.3) and (1.4) are obtained:

di(x, t

v(x + dx,t) — v(x,t) = —Rdxi(x,t) — Ldx ((,;1 ), (1.3)
ov(x, t

i(x+dx,t) —i(x,t) = —Gdxv(x,t) — Cdx Vgi ) (1.4)

where v and [ are the voltage and the current, respectively, at the instant 7 in a segment dx of
the line.
In addition, by deriving the equations (1.3) and (1.4), we get the telegraphist equations [2]:
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di(x, t) (1.5)

Ov(x,t
YO i D — L =

Jx

av(x, 1)
T (1.6)

di(x,t)
= —Gv(x,t) —C
0x

By considering a sinusoidal wave as an excitation, the current and voltage waves are given in
the harmonic regime as shown below:

v(x w,t) = V(x, w)ei®t,

(1.7)
(1.8)

i(x,w,t) = I(x, w)el®t,

where V(x,w) and I(x,w) represent the complex amplitudes associated with the voltage

v(x, w, t) and current i(x, w, t), respectively.
By replacing the equations (1.7) and (1.8) in the equations (1.5) and (1.6), we obtain

G —(R + jowl)I(x, ), (1.9)

0x

%};a)) =—(G+jwC)V(x,w). (1.10)

Deriving the equation (1.10) with respect to x, we get

vix, w) (1.11)

0%1(x, ) G + jo)
B J® 0x

Ox2

Then, by replacing equation (1.9) in equation (1.11), we can write
0%1(x, w
—a(xz - (G +jwO)(R + jol)I(x, ) . (1.12)

In the same way, we can obtain equation (1.13):

% = (G + jwC)(R + joL)V(x,w) . (1.13)

Finally, the two propagation equations are thus obtained:

9*1x,0) (1.14)

5z V) =0,

V@) (1.15)

o Y2V (x,w) = 0.
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where v is the propagation constant defined as follows:

¥ =G +jol)(R + jwl) = a+jp. (1.16)

with o the attenuation constant and 3 the phase constant.
As aresult, the solutions of equations (1.14) and (1.15) are written as

V(x)=V*te*+Verx | (1.17)
I(x,0) = ITeV* +ev* | (1.18)

Equation (1.17) shows that the voltage and the current can be written as the summation of two
waves:
o Vte ¥ is a progressive wave which propagates towards the load impedance Zi. (in
the direction of the x-axes) and
o V7e¥* is a regressive wave that propagates towards the generator (in the opposite
direction of the x-axes).

The equations (1.17) and (1.18) are connected by the characteristic impedance Z. expressed in
(1.19).

R +jol
7 — |20 1.19
¢ G+ jwC (1.19)

In the case of a lossless transmission line, (R = 0 and G = 0), the propagation constant
becomes

Yy =jwVvCL = j§ . (1.20)
In addition, in this case, the characteristic impedance is
L
Z.= |z (1.21)

At a distance x from the origin, the reflection coefficient I'(x) is defined by the ratio of a
reflected wave on an incident wave as follows:

V-eV*

I['(x) = Tl

(1.22)

In nutshell, this section introduces that while the cable does not radiate, the Transmission Line
Theory model it as RLCG circuit. As consequence, it defines how waves propagate into a
cable in quasi TEM mode in order to analyze the information that they carry. The concepts of
describing cables in terms of the S-matrix and related matrices are defined in the next section.
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1.3.3 Modelling a cable by its scattering matrix

The TLM is a numerical way to solve efficiently the propagation along transmission lines, but
a simpler way to consider simple configurations consists in modelling the cable seen from its
two extremities. As it will be recalled after, the scattering matrix is an efficient way to solve
the problem. In the case of serial fault present along the line, we will see that the
transformation into a chain matrix and the multiplication of these matrix give directly the
behaviour of the damaged cable.

As all along this thesis only coaxial cables will be considered, we will focus on this kind of
cable in the following of this part.

A coaxial cable symmetric with respect to the x-axis and invariant in the x direction will now
be considered. Its cross-section in the transverse plane is given in Figure 1-9.

OF @

Figure 1-9. Coaxial cable.
As seen above, this cable is characterized either by its primary parameters (RLCG) or by its
secondary parameters: complex propagation constant and characteristic impedance.

Considering these last two quantities, the voltage and current are written as [35]

V(z) = Ae™"* + Be'™, (1.23)
1

1(2) = - (Ae™"* — Be"™). (1.24)
c

The outgoing waves b and the incoming waves a, which are linked by the S parameters, are
defined in terms of the current and the voltage, where Z,. is the reference impedance.

V+Z,.1 e
a = y .

2VZ, (1.25)

p= L4l 1.26

vz, (1.26)

b = Sa. (1.27)

We are interested in the matrix representation because of its ability to characterize the system
from its ports.

S= [S“ Slz] : (1.28)

SZl SZZ
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b
i = ;}l i, j € [1,2]. (1.29)

Si

where b; and a; are the reflected wave and the incident wave, respectively and when a; = 0
with k #j.

The S-parameters for a lossy symmetric transmission line are given by Equations (1.30),
(1.31) where Z,. is the characteristic impedance of the transmission line, ¥ is the propagation
constant of the line, [ is the length of the line, and Z; is the port impedance of the generator.

(ZE—Z3)sinh(yD)

S$11=8,, = ,
B2 (724 22)sinh(yl) + 2Z,.Zgcosh(yl)

(1.30)

27,7

S =851 = :
12772 (724 72)sinh(yl) + 2Z,Zgcosh(yl)

(1.31)

Moreover, if a cable is matched at the input and the output port, the scattering parameters
become

S11=S822=0, (1.32)

521 = 512 = e_iyl . (133)

Although the S-matrix is efficient for characterizing a two-port transmission line, it is also a
very convenient way to describe an n-port line in terms of waves. A straightforward approach
to the problem is possible with the T-matrix (transfer matrix), which directly relates the waves
to the input and to the output [36]. Although in the literature various uses of the T-matrix and
the S-matrix can be found, the most important one for this work is detecting wiring faults,
which are defined in the next section.

1.4  Wiring faults

1.4.1 Types of wiring faults

Generally, faults are classified into two main categories:

* Hard faults: open and short circuits. They are caused by a broken connection in the system.

* Soft faults: insulation damage (Figure 1-11), cracks, frays, the pinch defect which reflects a
variation of a section of the cable over a length L, (Figure 1-11) and the chafing fault, which
indicates the tearing of the shield at an angle 6rand a length Ly (Figure 1-11). They are
caused by a weak impedance discontinuity along the cable [41]. Figure 1-10 depicts the
different fault types that occur in naval and aircraft equipment. Different types of soft faults
[166] are shown, as well as their significant percentage of occurrence compared to hard faults.
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Figure 1-10. Wire fault types and their percentage of occurrence [39].

Pinch defect

L.

Chafed defect

Figure 1-11. Different kinds of chafing faults [166].

Soft wiring faults, especially chafing faults (Figure 1-11) result from either external or
internal causes:

- External causes can result from chemical contamination (fuel oil or corrosion), mechanical
stresses [43] such as vibrations, or inappropriate application of the cable linked. For example,
to an underestimation of the rim, tensions, or thermal resistance of the environment.

- Internal causes include design defects not detected during post-manufacturing testing and
cable ageing.

At the end, a chafing fault is a defect that can lead to dramatic consequences, since it induces
the breaking of the bond [42]. It is generally an emerging defect which should be detected
early, before it turns into a hard defect. Thus, in this work, we are interested in chafing faults,
because hard faults are easier to detect.
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1.4.2 Wiring fault detection method

In the previous section, we described different types of defects that can appear along a cable.
Each type of defect has its own characteristics (type, origin, consequences, and so on).
Several methods have been developed to realize a diagnostic and to detect faults. These
methods can be divided into two classes: reflectometry and others [44] - [45]. The visual
inspection method, the X-ray method, the capacitive method and the inductive method are
usually listed as the non-reflectometry-based methods. Although the visual inspection method
is the most used, it is inefficient due to the complexity of cable networks. In addition, it
detects only 25% of the defects present in an aircraft [46]. X-ray inspection requires the use of
heavy equipment, direct access to cables, and human intervention for post-acquisition data
analysis. However, it does not detect all types of wiring defects [47]. Both the capacitive and
inductive methods are effective in hard fault detection in a simple cable [48], however, their
use remains limited in cable networks. In the present work, only in reflectometry-based
methods will be studied.

1.4.3 The reflectometry-based method

Reflectometry is a high-frequency method. It is an industrial standard approach based on the
transmission of an incident signal in the conductor. If there are impedance discontinuities, the
incident signal (Vi) will be reflected back to the source (Figure 1-12) [45]. Reflectometry has
been used in the characterization of rheological properties [49], in geotechnology [50],
hydrology [51], and telecommunication networks [52]. It is also widely used in determining
the properties of cables. In particular, it allows the detection, location, and characterization of
electrical defects [5]. The reflectometer setup is composed of a wave generator, the tested
cable, and the load, as shown in Figure 1-12. The reflected signal, V., is referred to as the
reflectogram and can be measured by an oscilloscope (for time domain reflectometry as
explained below).

Reflected wave

Figure 1-12. A scheme showing the principal of reflectometry.

There are two well-known reflectometry based-methods: frequency domain reflectometry
(FDR) and time domain reflectometry (TDR).

1.4.3.1 Frequency domain reflectometry

FDR, which is also called swept frequency reflectometry (SFR), sends a set of stepped-
frequency waves along the cable under test in order to analyze the changes in frequency
domain between the incident wave and the reflected one [56]. To measure the reflected signal
at the cable entry, we use a VNA instrument to determine the characteristics of the line
(length, hard fault location, and so on).

Three main types of FDR are commonly used:

1. Standing wave reflectometry (SWR) [57] is the simplest FDR method. It is based on
measuring the maxima and the nulls in the standing wave causing by the constructive and
destructive interferences of the transmitted and reflected waves.

2. The frequency modulated carrier wave (FMCW) method measures the frequency shift AF’
between the incident and reflected signals to calculate the distance d (1.34) to the fault [58].
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vaAF
— 1.34
d T (1.34)

with §F being the bandwidth of the injected signal, v, the velocity of wave propagation, and

T'the signal’s period.
3. Phase detection frequency domain reflectometry (PD-FDR) measures the phase shift
between the transmitted and reflected waves [59].

1.4.3.2 Time domain reflectometry

TDR is widely used in detecting and locating faults. In its standard form, it is based on
emitting a train of fast voltage pulses and analysing the magnitude, duration, and shape of the
reflected pulses. Consequently, the position of the fault d (1.36) is retrieved from the round-
trip time ¢, the velocity of wave propagation (vp) of the cable given by equation (1.35), and

the distance running by the signal onto the conductor.

C

v = 7 (1.35)
t

d =v,5. (1.36)

Three main types of TDR are commonly used:

1. Online TDR (OTDR) [60] applies the TDR technique while the system is functioning by
using high-power signals which are limited by the cable’s propagation attenuation. Notably,
this requires the use of a binary pseudorandom signal and calculating the correlation of the
measured signal to the injected one to obtain the reflectogram [61].

2. Sequence TDR (STDR) [62] uses pseudo noise (PN) as testing signals, which have small
magnitudes and are well-suited to use in aircraft applications. The combination of incident
and reflected waves is correlated with a test copy of the PN code, and the distance to the fault
is easily determined from the correlation data.

3. Spread spectrum TDR (SSTDR) follows the same principal as STDR. The difference is that
SSTDR leads to sharper correlation peaks than those obtained with STDR, leading to more
accurate estimates of the fault’s position. Indeed, as shown in Figure 1-13, the STDR or
SSTDR creates first a PN code depending on the application that they are used for. Second, a
signal is injected onto the PN Sequence block in order to generate the waveform of PN
sequence. Finally, in STDR, this signal is transmitted along the cable. However, SSTDR, the
PN sequence passes through the BPSK block to perform the Direct Sequence Spread
Spectrum Signal.
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trace

Figure 1-13. S/SSTDR schematic setup.

The objective of TDR is to look for V.. To this end, a model is made to look for S-parameters
by using the reflection coefficient I'(x), which is defined as the ratio of a reflected wave
v~ on an incident wave vt as follows:

V__ZL_ZC
vt 7+ Z,

rx=1 = (1.37)

Hard-fault detection using equation (1.37) is efficient due to the higher impedance
discontinuity at the load Z; .
- If short circuit Z; = 0, which makes I'(x) = —1, the reflected signal has the same

magnitude as the incident signal with an opposite direction.

- If open circuit Z; = oo, which makes I'(x) = 1, the reflected signal has the same
magnitude as the incident signal.

- IfZ;, = Z., which makes I'(x) = 0, there is no reflected signal.

Moreover, the reflection coefficient at the first interface of a soft fault encountered by the
incident wave:

Ze— 127
f c
F(x = df) = Y7, (1.38)

Equation (1.38) shows that the magnitude of the reflected signal depends on the value of the
fault impedance Z;. If the fault signature is small, TDR generally fails to detect it in practice
for at least several reasons such as the noise level.

1.5  Wiring faults modelling

Previously, several defect types are presented. In this thesis, and especially in this section,
only the chafing defect will be studied. The chafing defect is the chafing of the shield and
insulator as shown in Figure 1-14. A damaged cable with this defect is named the chafe
model. To model this damaged cable, a circuit diagram of impedances is used as shown in
Figure 1-15. This scheme will always be used to make a simple model of a coaxial cable with
the chafing defect.
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Figure 1-14. The chafing fault.

Coaxial cable Z_ Chafing fault Z, Coaxial cable Z,

Figure 1-15. Modeling of a damaged coaxial cable called the chafe model with Z is the fault's impedance.

1.5.1 Theory

In this section, we look for the chafe model that will be defined in the section 1.5.2. As a
defect is an impedance discontinuity, two cables with different characteristic impedances are
first studied, as seen in Figure 1-16.

+ p— m—
. —

Ilir:|.
E, — T,
1A I, vy

Figure 1-16. Scheme of the impedance step.

The objective is to find [. First, the reflection coefficient [y and the transmission coefficient
T, caused by the impedance discontinuities are defined at the discontinuity level.
For waves moving to the right:

Zy-7Z Vi
L= 222 = lyymo » (1.39)
T=1+T; . (1.40)

For waves moving to the left (from the second cable to the first), the reflection coefficient I,
at the discontinuity level is defined as

7,-Z
F52=le—+zzz=-l"s, (1.41)

Then, the transmission coefficient is
Tey=1-T} . (1.42)

Combining the equations (1.39), (1.40), (1.41), and (1.42), we get
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Vl'] [FS 1-1"5] [Vf]
= . 1.43
o Pt | (1.43)
As consequence, we get
V=LV +(1-Ty)V; , (1.44)
Vi =(1+T) Vi -TLV; . (1.45)

Combining equations (1.44) and (1.45), the desired result is

_ TDe+Tc
14T -

1 (1.46)

_n. _¥
Where Fl = V_"" FC = F
1 2

1.5.2 Chafe model

Consider a chafe placed at a distance d ¢ on a coaxial cable of length £, having width w¢ =
r;Ay, length ¢ | and angular position @ ¢, as depicted in Figure 1-18(a). It is represented by
a modified characteristic impedance Z ¢ (1.38), as indicated in Figure 1-18(b). To calculate
the fault impedance Z p, numerical methods can be used, such as FDTD, electromagnetic
modelling via HFSS (Figure 1-17), or the capacitive and inductive method [62].

Figure 1-17. 3D chafed RG-58 modelling via HFSS.

However, these methods are time-consuming and expensive, and they need a large system
storage size. In order to simplify the problem, the fault will be supposed to have the same
geometry along the x axis, therefore, a two-dimensional problem can be solved. The fault
region will be a kind of line having a short length (Figure 1-18). In order to have a good
approximation, we neglect the capacitive effect at the beginning and at the end of this short
line. Moreover, as the impedance of this short line is very close to the impedance of the
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nominal transmission line part, we can consider the speed of light in this part is the same as in
the rest of the line. With these approximations, the problem will now be solved. First, we need
to find the linear characteristics of the fault. It is classically made by calculating the linear
capacitance in the static approximation case.

This computation for a nonstandard geometry is made by using a numerical approach to solve
the Laplace equation. In the present case, the computation of the electric potential is made
using a finite difference scheme. It consists in discretizing the cable and surrounding space in
a Cartesian grid. To make such a computation, the following rules should be considered:

- The computation surface border is situated sufficiently far from the cable to avoid
potential lines perturbations,
- A zero potential is considered on the external part of the coaxial,
- A unity potential is applied on the internal conductor.
With these considerations, the charge on the internal conductor can be expressed in two
different ways.
First, the charge can be expressed by the internal linear capacitance as

Q=CV. (1.47)
As V=1V, we have C=Q
Moreover, this charge equals the integral of the charge density all around the conductor. In
addition, this density is connected to the potential V and to the normal electric field E,.
Finally, we have:

Q=C=§eEydc = —§V,Vdc (1.48)

If the integral negative term is denoted 77, then, we have:

C= €14 (1.49)
As the speed of light is
-+ -1
v = T v (1.50)

Where: ¢ is the permittivity, y is the permeability, L,is the inductance, and C, is the
capacitance.

If C is multiplied by a factor 7 compared to Cy, L is devided by the same factor, therefore,
the impedance is divided by this factor:

1
Zp=— |£ (1.51)

5 &
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As we must consider different chafing faults, with different angles, 7, can be stored in a
lookup table using a polynomial interpolation.

Tf = CO + Clw + CZWZ + C3W3. (152)

Therefore, in our work, the efficient approach used is to approximate the fault equivalent
impedance to a polynomial whose coefficients are calculated from a lookup table via Matlab.

(@) (b)

Figure 1-18. Scheme of a chafed cable.

After Tty is calculated, it is substituted into equation (1.51). From this, the value of the fault
impedance Zs is calculated.

Since the chafe model is symmetric with respect to the cable axis, the fault S matrix is defined
as

sf, st
sle & }Zl . (1.53)
SZl SZZ

Moreover, the incident wave travels the default length, reflects from the discontinuity, and
travels back. As consequence, the reflection coefficient is I e?¥1lf,
Where

_ Z¢Zc

=Tz (1.54)

¥ 1s the attenuation in this fault, which for our model equals the attenuation ¥ of the nominal
cable.

Furthermore, the incident wave is delayed by elf'f because of its transmission through the
impedance discontinuity.

Consequently, the transmission coefficient is (1 — I,)el?lf,

Noting from Figure 1-16, that I; = —T, and by replacing T, = —I, and I, = T,e?ff in
equation (1.46), we obtain
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FZ(eZi]/flf _ 1)
1—TZe®rrls’

sl = (1.55)

ivrly _ 12
f =) (156
1 —T2e?rl
Notice that we have calculated the scattering parameters of the nominal cable (§1.3.3) as that
of the fault (1.55) and (1.56). To get the total scattering parameters of the chafed cable, we
should transform each S-parameters matrix to a T-parameters matrix. Then, we multiply these
T-parameters matrices to obtain the T-parameters matrix of the chafed cable. At the end, we
switch to the S-parameters matrix.
Finally, the composite S-parameters matrix for a chafed cable may be written as

¢ Sfleiz)/df Slfzeizy(l—lf)

B Szfleizl’(l—lf) S{ZeiZ]/(l—lf—df) : (1.57)

1.5.3 S-scattering parameters of the whole system

In the previous sections, the S-matrix of the chafed cable was obtained. In this paragraph, we
look for the total S-matrix of the entire system, taking into consideration the VNA’s
impedance Z and the load’s impedance Z; , which is infinite, as shown in Figure 1-12.

To get the total S-matrix, Mason’s Rule [64] was applied (Figure 1-19),

b; ay b,

—

Figure 1-19. Scheme of Mason’s Rule.

where [§ is the reflexion coefficient between the first nominal section of the cable and the

VNA, and [}, is the reflexion coefficient between the second nominal section of the cable and
the load.
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_ ZcZs

ST rr (1.58)
_ ZL‘Zc
L= (1.59)

Using Mason’s Rule, we calculate the transfer function T for a signal flow graph (Figure
1-19).

T
_P(1- TLOO® + TLR)D- ) + P(1- YLD + TLR)P-..) + -
B 1- YL(1) + Y L(2)-.. '

(1.60)

P is the product of the coefficients of the directed route from the input to the output signal.
L£(1)9 represents the sum over all j order loops.
Applying Mason’s Rule to our system, S parameters are written as

S11+T s TsT1.S22-(S11522-S21512)TL

S = 1.61

LLSyStem™ 4 45,1 Ts-TLS22-(S11522-521512)TLTs (1.61)
S12(14Tg) (1+TL)

S = L : 1.62

12_SyStem™ 4 4.1 Ts-T1S22-(S11522-521512) LT s ( )

1.6  Network modelling

Having found S-parameters for a simple faulted cable, we look now for S-parameters for a
bifurcation. Three sets of cables were designed for this research work. The cables were
grouped into three types:

Type A: nominal coaxial cable (Lq: length).

Type B: nominal coaxial cable (L,:length).

Type C: chafed coaxial cable (Ls: length).

L2a Lr L1z

Figure 1-20. This network cable has one fault placed in cable C. Zy is equal to the cable impedance Zo.

In the literature, there are several methods to model transmission lines. The objective is to
look for Si1 at the cable entry. We choose to work with the easiest one, namely the reduced
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impedance [65]. It implies that by knowing the impedance at a point of this cable (e.g., at the
end), we can determine the impedance back to any point of the cable.

The considered transmission line (Figure 1-20) has a fault with two sections attached to it. For
each section, the reduced impedance at its entry was calculated. Moreover, the fault is a
straightforward variation in impedance, denoted Zg.

For the last part in cable C, the reflected impedance Z;,; 1s

Z,+Zytanh (yLq3)
Zin1 = Zy . (1.63)
Zy+ Z,tanh (yLq3)
where y is the propagation constant.
We then recalculate the new reflected impedance Z;,, at the fault entry.
Zini+Zptanh (yL
Zin2: - inl F (V F). (1.64)
Zg + Z;ptanh (yLg)
Afterward, Z will be reflected at cable C as
Zina+Zotanh (yL
7. =7, in2T4g (v 23). (1.65)
Zy + Zipptanh (yLy3)
The reflected impedance Zgat the cable B entry is
Z;+Zytanh (yL
Z LT4g (yL2) (1.66)

-0 Zoy + Z tanh (yLy)

Therefore, as B and C come in parallel at the end of the line A, the equivalent impedance at D
is written as

Zp* L
Zinpc = A (1.67)
B c

As a result, the reflected impedance at the cable A entry is

ZinpctZotanh (yL,)

Z. = )
" 0 Zo + Zippctanh (yLy)

(1.68)

Finally, the reflected coefficient at the cable entry is

Zin _ZS

Sy =——. 1.69

Moreover, S11 is in the frequency domain. To get the reflected signal S, we convert Si1 to the
time domain by using the inverse Fourier transform (IFT).

S = IFT(Sy,). (1.70)
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1.7  Application

A coaxial cable with length I and characteristic impedance Z. which equals 50 Q, as shown
in Figure 1-21 will be now considered. The shield has the outer radius rg = 1.5 mm. The
conductor, having the latter radius r,, = 0.3 mm, is symmetric with respect to the cable axis.
The area between the shield and the conductor is a homogeneous, isotropic insulator of radius
r; = 1.35 mm, having permittivity € = 2.3 g, permeability p = 1.0 py, conductivity shield
0s=60 MS/m, conductivity insulator 0 = 0S/m, and conductivity conductor 6w=60 MS/m.
Moreover, the attenuation constant of the nominal coaxial cable is written as [63]

N 1 W€<1 +1)

Yo =Wy HWET——F~ |~ \— T} 1.71

; 2in(2) 10 \ru T (70
w

where w is the pulsation:

w = 2nf,

(1.72)

where f'is the frequency.

Figure 1-21. Cable with a characteristic impedance Z. and a length L.

In this section, the coaxial cable with respect to the Z-axis is treated as a two-port device with
a 2 x 2 matrix of S-parameters (1.28). By replacing y = y; x =1, , and x = 1; in equation
(1.26), we obtain the scattering parameters of the both nominal sections of the cable.

This cable is matched at the input port Z; = Z., where Zg is the generator impedance. For
conventional TDR, a Gaussian injected signal is used (1.73). In this work, the frequencies

range is [IMHz,4GHz].

(x—p)?

f) = 2 (1.73)

Where u = 0, corresponds to the mean, and g, the standard deviation.
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To calculate Z¢, a look-up table that is described in (§1.5.1) is made. For this, we select a set
of fault widths within the range (0, nr;). For wg, the 2D Laplace’s equation (V2, @ ¢ = 0) is
numerically solved by a finite difference approach using boundary conditions. At the end, an
outer surface is used to not disturb the fields leaking out through the chafe.

%103 Solution to Laplace's Equation

-5 [ 5
x1073

Figure 1-22. Numerical solution to Laplace's equation for the angular fault position 7t/2 and the width 7ri. i is
the inner radius of the coaxial cable conductor.

After getting the Laplace’s equation solution (Figure 1-22), t¢ is calculated by using an
interpolating function (1.52). Then, t; is introduced into equation (1.51). As a result, the value
of the fault impedance is Zf = 62.56(). This fault impedance will be used for all the
applications shown in this thesis.

By replacing y = . in equation (1.57), we obtain the scattering parameters of the fault.
Using Mason’s Rule defined in Section 1.5.3, the scattering parameters of the whole system
are calculated. The simulated reflected signal at the three meters cable entry with one chafing

fault at 1 m is depicted in Figure 1-23. This signal has SNR;,4;5, f = 10 dB.
0.5 T . T .
04 0.02 1

-0.02 7

Magnitude (V)
o
N

_0- 1 | 1 l 1 1 1 l l l
0 10 20 30 40 50 60 70 80 90 100

Distance (m)
Figure 1-23. The simulated reflected voltage at the 3 m coaxial cable with one chafing fault at 1 m and 1; =
0.014 m.
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For 10 m coaxial cable with two chafing faults at 3 m and 8 m, the simulated reflected signal
at this cable entry whose SNRy,;s, r = 10 dB is depicted in Figure 1-24.
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Figure 1-24. The simulated reflected voltage in the 10 m coaxial cable with two chafing faults at 3 m and 8 m
and I = 0.014 m.

All the results and figures in this thesis are generated for these two coaxial cables via Matlab.
These systems are open circuit. For these two signals whose SNR;, 5, f = 10dB shown in
Figure 1-23 and Figure 1-24, the chafing faults are barely identified because they are drown in
the noise. As a result, the objective of this thesis is to detect these chafing faults’
characteristics. For this reason, before the post-treatment of these two simulated signals
shown in Figure 1-23 and Figure 1-24, we denoise them in the next section using
sophisticated denoising methods. Then, we detect the chafing faults via some advanced fault
detection methods. In addition, because the TDR has some difficulties to detect the chafing
fault in simple cables, there is no necessity to try it on the network cable at the moment.

1.8 Conclusion

In this chapter, we presented an overview of electrical cable types widely used today. Their
cumulative length can increase the probability of wiring faults which cause safety problems.
Two kind of fault have been identified: Hard faults which are open or short circuits. Soft
faults, such as chafing faults, still allow signals to propagate along a cable, but over time they
can lead to hard faults. We then illustrated some of the fatal consequences that a wiring
breakdown can lead to and presented statistical examples of the losses such breakdowns have
caused, particularly in the avionics industry. Because detecting and locating soft faults is a
necessity, we highlighted two main groups of fault detection and location methods:
reflectometry-based methods and other methods. We have seen that the reflectometry-based
techniques, which have formed the pivot of nearly all modern studies in this field, can be
distinguished according to the analysis domain of the reflected signals: time domain (TDR)
methods and frequency domain (FDR) methods.

We reviewed the primary well-known reflectometry-based methods developed in recent
decades. These have shown great performance but also some limitations. Most are unable to
produce efficient results with simple cables involving multiple faults, and noise.

To sum up, we adopted a frequency domain analysis to implement our simulation, based on
the S-matrix approach, due to its simplicity and ease of implementation. The transmission line
theory and the reduced impedance allowed us to represent the studied cables in a simple
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manner to give insight into the voltage propagation. We also showed that reflectometry
methods are highly sensitive for detecting chafing faults but only under perfect conditions that
are not feasible in practical applications. One idea is to denoise the signal before post-
treatment and combine TDR with sophisticated denoising approaches. For that, multiple
methods are used in the next chapter. These denoising methods were already used to denoise
signals in different literature. However, in this work, we use them as denoising methods and
also as chafing fault detection methods. In chapter 3, the Time Frequency is introduced in
order to compare between them in terms of chafing fault position. In Chapter 4, Bayesian
approach is represented. The Bayesian method exists in the literature, but it is limited to be
solved by Nested Sampling. In this work, we solve it by the Nested Sampling and Gauss
Newton approach in order to overcome some limitations of the Nested Sampling. In Chapter
5, chaos time domain reflectometry (CTDR) based on time-domain analysis is performed. In
the research, this approach was used only for hard fault detections by using only the
simulations. In this thesis, we develop the CTDR to detect chafing faults by using
measurements and simulations.
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Chapter 2: Denoising Methods



2 Denoising methods

2.1  Introduction

In this thesis, we concentrate mainly on the Time Domain Reflectometry. The signals are
often disturbed by an undesirable perturbation which is superimposed on the useful data, in a
transmission line or in a system. This disturbance is called the noise that is created by the
environment where the system is, or by the measurement set-up (measurement dynamics,
measurement devices’ noise ...). To enhance the quality of the reflected signal produced by
wiring faults, advanced denoising methods are required. In general, denoising methods
impose a compromise between noise reduction and preserving significant signal details [66].
To achieve good performance in this respect, a denoising algorithm has to be adaptative in
order to take into account the signal discontinuities, particularly strong variations.

The denoising approach generally compresses the essential information in a signal into
relatively few, large coefficients, which represent signal details at different resolution levels.
In fact, this approach, which generally consists in suppressing rapid signal changes versus
time, performs low-frequency filtering that can be performed delicately [67]. Two main things
are important in the choice of the denoising parameters. First, the choice of a low cut-off
frequency can be excessive and eliminate low-amplitude signals that correspond to the soft
fault reflectometry pulses that are the subject of this work. Second, the choice of too high a
cut-off frequency may not be sufficient to eliminate unwanted signals. Then, it will always be
difficult to extract the real signal from the noise. The filtering process consists in eliminating
as much noise as possible while preserving as much information as possible and involves
selecting and strengthening certain frequency bands that provide interesting information [68].
There are three types of such filtering:

o Linear filtering, such as spatial linear filtering, frequency filtering, differential
filtering, and wavelet transform [69], is one of the most powerful signal-enhancement
methods. It is a process in which part of the signal frequency spectrum is modified by
the transfer function of the filter [70]. In general, the filters under consideration are
linear and shift-invariant, and thus, the output signals are characterized by
the convolution between the input signal and the filter impulse response.

e Non-linear filtering, such as median filters [71], Perona—Malik model [72], Wiener
filtering [73], EMD [74], and LMD [75], is not based on linear relationships between
an input and an output via a system function. Instead, these filters represent a much
broader class of operations that do not have any explicit frequency domain transfer
function [76]. Non-linear filters find applications in a range of signal processing and
coding applications such as denoising, edge preserving operations, and some forms of
prediction.

e Variational filtering [77] suggests variational methods based on Bayesian interference
combined with an efficient importance-sampling procedure to obtain the required
filtering estimates to minimize errors between the original and reconstructed signals.
These methods include the Rudin—Osher—Fat model [78], and the Kalman filter [79].

Given a great variety of denoising methods, we decided to limit our research to three relevant
techniques:

- the EMD method (empirical mode decomposition) based on intuitive signal processing and
used particularly for non-stationary signals;

- the LMD method (local mode decomposition), which is an improvement on the EMD
method and considers local signal variations;



- DWT method (discrete wavelet transform) [80].

Efficient denoising is a challenge. These methods are difficult to apply, and they do not
always attain the desired result because they can create artefacts or remove signal structures.
The basic challenge in this section is to correctly denoise the signal before applying any post-
treatment. For this purpose, there are some classical denoising methods such as filter-bank
techniques based on the Fourier transform [81] and the bandpass filter [82]. The literature
abounds with methods that can denoise signals that have relatively little background noise.
There are also the three well-known methods identified above: EMD, LMD, and DWT. These
methods, based on the Fourier, are used for denoising non-linear and non-stationary signals.
Moreover, they have been applied in various applications such as industrial machine
monitoring, medical signal analysis, and signal processing [83]-[84]-[85]-[86]-[87]-[88]-[89].
Compared to classical approaches where the extracted modes are thresholded in the time
domain, in the proposed methods, especially DWT [90] -[91]- [92], the thresholding can be
done in the frequency domain. Each mode divides signals into blocks of equal length, and the
frequency content of each is analysed. The denoised signal is obtained by the superposition of
the thresholded modes.

This section aims to define a general mathematical methodology for EMD, LMD, and DWT
algorithms and to analyse, and compare between them. The mathematical analysis is based on
the difference between a signal and its denoised version. In this work, the denoising
performances of all considered methods are compared using two approaches: quantitative
simulation, which compares the denoised version with the original signal and perceptual-
mathematical, which looks at the soft fault amplitude regarding the noise level.

2.2 Empirical mode decomposition (EMD)
EMD is the fundamental part of Hilbert Huang transforms (HHT) [93]. It is like filter bank
decompositions [84], which makes it an efficient method for non-stationary signal analysis
and, specifically, for signal denoising [94]. The EMD is the construction of some intrinsic
mode functions (IMFs) [93] that are constructed through a sifting process. This sifting process
is an iterative process based on an interpolation approach and a stopping criterion. Various
interpolation approaches are proposed, such as thin-plate splines [95]-[96]-[97]. However, this
interpolation method is too time-consuming.
EMD is a decomposition of signal f in IMFs that are defined as follows [96]- [98]:
- A function f is an IMF if
e the number of extremities and the number of zeroes must be equal or must have a
difference of at least 1.
e its average envelope is defined by the envelope of local maxima and the envelope
of local minima.
- A IMF should correspond at least to f e C? (f e C? means that f can be derivative
twice).

Moreover, a function f € C? is IMF if it has zero local mean. Conversely, a single-
component signal is not necessarily an IMF although it has positive maxima and negative
minima. In addition, the first IMF contains the most oscillatory component which could be
rejected during the signal reconstruction in the interest of smoothing.

The EMD algorithm for a one-dimensional signal f(n)g<n<y—1 is defined below in Figure
2-1. N being the number of points constituting the signal.
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Figure 2-1. EMD algorithm for a signal f.

The EMD decomposes a given signal f(t) into a series of IMFs, through the sifting process,
each with a distinct time [98]. This decomposition is made by adaptive basis functions on
each local time slice of the signal. First, throughout an IMF, the number of extrema and the
number of zero crossings must either be equal or differ by one at most. Second, at any data
location, the mean values of the local maxima envelope and the local minima envelope must
be zero. Given these properties, the sifting process for extracting an IMF from f(t) is
employed. Third, the mean of these two envelopes is subtracted from the data to get their
difference: Let 1;(t) be the data and repeat steps 1 and 2 iteratively until the envelopes are
symmetric with respect to zero mean under certain stopping criteria. Moreover, the choice of
a relevant stopping criterion is the most important factor in improving the EMD algorithm
[99]. Four stopping criteria are given in the literature [93]- [83]:

e Standard deviation
This method is proposed by HUANG et al.; the process stops if the SD is less than a given
value.

e Threshold method

This method uses two thresholds to guarantee the fluctuations around the low average.
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o Different Energy Tracking
This approach calculates the energy according to a decomposed orthogonal signal.

Our work uses the standard deviation stopping criterion, which is based on the standard error
between two successive iterations of the signal p; ,(t) (2.1) [93]. As a result, p;,(t) is an
IMF if 6;, < 0.3 and 67, < 0.0003.

_ N\ Pie 1 (O-pik (D2

0.’k_
1 - piz,k-1(t)

2.1)

o5 2 Pk OB |2
b l1Pis-1 (DI

(2.2)

Once the stopping criterion is selected, the first IMF, p; 4, is obtained. Then, the final 7;(t) is
designated as d;(t) and the first IMF satisfies the criteria of an intrinsic mode function. The
residue 13,4 (t) = r;(t) — d;(t) is then treated as the new data subject of the sifting process as
described above. The procedure continues until either the recovered IMF or the residual data
are small enough. Finally, when the decomposition is complete, the function is written as
follows:

K
f(n)= kZl di(n)+r(n), KEN’ (2.3)

In brief, the main advantage of the EMD approach compared to other decompositions is that it
is fully adaptive. However, the interpolation method used in the construction of envelopes
(spline interpolation) and the mathematical analysis of the sifting process are very expensive.
In particular, the mode mixing is the major drawback. Indeed, a detail related to one scale can
appear in two different intrinsic modes. This makes an individual IMF devoid of physical
meaning.

To illustrate the sifting process, a harmonic signal is considered (2.4).

f(t) = sin(2xt) + sin(6mt) * sin(2mwt)? + cos (6mt), (2.4)

where 7 is the time.
Figure 2-2 illustrates the signal f(t) over the time interval t € [0 — 10 s].
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Figure 2-2. Harmonic signal over time interval [0 — 10 s].

For the EMD algorithm shown in Figure 2-1, we consider the signal f(t) = p; ; illustrated in
Figure 2-2 as the input signal. At the first iteration, we calculate its lower and upper envelope
as they are illustrated in the Figure 2-3 with the black line. Then, we calculate the mean
envelope as it is illustrated in the Figure 2-3 with the red line. After that, we subtract the mean
envelope from the input signal f(t), as it is shown in the Figure 2-4. we noted the resulting
signal p; ,. At that point, we test if p; , is IMF, wich mean if ¢, ; < 0.3 and o7, < 0.0003.
If yes, then we subtract the p;, from the input signal. The result is considered as the new
input signal for the next iteration. The algorithm continues running until there is no IMF. If
not, the algorithm stops. For our signal f(t), Figure 2-5 depicts five IMF sub-blocks of the
signal f(t) decomposed by EMD. It shows that the side effects are perceptible over a short
time interval at each extremity of the IMF signals. Moreover, it illustrates that the signal
oscillations decreases as the number of decomposition cycles increases. In short, Figure 2-5
depicts that EMD efficiently decomposes the signal to several IMFs, however, it generates
side-effects at the IMFs extremities.
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Figure 2-3. First iteration of the EMD Decomposition. The calculation of the lower envelope, upper envelope
and mean envelope of the harmonic signal.
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Figure 2-5. Decomposition of the harmonic signal over time (seconds) by EMD.

2.3  Local mean decomposition (LMD)

In the present work, the second method chosen for denoising signals is the Local Mean
Decomposition (LMD). LMD is an adaptive method originally introduced by Smith [75] and
applied in signal processing. It replaces EMD with another type of decomposition, as detailed
in this section. LMD comprises a decomposition of the signal f(t) into a sum of IMF [89].
LMD eliminates the negative instance frequency [100] because it can generate instantaneous
amplitude and frequency data. However, LMD has two major drawbacks, which are end
effect and mode mixing. It is notable that these two LMD disadvantages are associated with
boundary conditions, envelope estimation, and the sifting stopping criterion. Therefore, LMD
performance is based on the setting of these three properties [93]. The LMD sifting process 1s
similar to that used for EMD; however, several new methods have been used in determining
the sifting stopping criterion. Zhang et al. [101] introduced an orthogonality criterion into
LMD, and Cheng et al. [102] proposed a two-condition criterion. In the present work, the
algorithm is repeated as long as the signal modulated in frequency and amplitude does not
have a constant envelope equal to 1.

LMD is an iterative signal process which consists in extracting a set of product functions
(PFs) of a signal [98]. The algorithm for LMD is based on a nested loop structure that
calculates PFs and signal envelopes. In the following, we briefly introduce the LMD process,
as shown schematically in Figure 2-6.
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Figure 2-6. LMD algorithm for a signal [f(n)] _(0<n<N-1).

The first step of the robust LMD is to initialize 7;(t) of the sifting process as (i = 1,7;(t) =
f(t)) to obtain the y;(t) PF. The local extrema of r;(t), noted as n; 1, are determined. These
extrema are then used to calculate local means m;; (2.5) and local magnitudes a;; (2.6)
denoted by the following formulas Error! Reference source not found..

m; = ni,1"‘:i+1,1 ’ (2.5)

ai’1: |ni,1'f21i+1,1| . (2.6)

The local mean and magnitude are extended to form stepped continuous magnitude and mean
functions. The width of the steps is determined by the abscissa separating two consecutive
extrema. These functions are smoothed by a slippery average whose window is between the
two most distant extrema. The result of smoothing provides the mean m;,(t) and the
envelope a;;(t). Then, the signal r;(t) is subtracted from its mean m; 1(t) and the result is
divided by the envelope a; 1(t):

hi 1 (O=ri(0-my; (O, 27
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s;1(D=h;;(D/a;1 (D) . (2.3)

where s; 1(t) is a signal modulated in frequency and amplitude. The algorithm is repeated as
long as the resulting signal s; , (t) does not have a constant envelope equal to 1.
Then, if s;,(t) €[—1,1], the sifting process stops. As a result, we write

su®=cos(4,®) (29)

¢,(t)=arccos (si’k(t)) . (2.10)

¢,(t) is the instantaneous phase of the analytic signal s; ,(t). The instantaneous frequency is
deduced immediately from expression (2.11):

wi(t)=%t) : (2.11)

Finally, PF (y;(t)) is written as
Vi®O=six(®O [Tg=1 2,00 (2.12)
e (O=ri®O-v;(O . (2.13)

The procedure is iterated for calculating y;,4(t) until the residual signal r;,,(t) is monotonic
or non-oscillating.
To better understand the LMD method, an academic signal is considered (2.14).

f(t) = 2 + cos(mt) = cos (10mt + 15t2) + cos(4mnt), (2.14)

where 7 is the time.
Figure 2-7 illustrates the signal f over the time interval t € [0 — 3 s].
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The signal f(t) = S, illustrated in Figure 2-7 is considered as the input signal for the LMD
algorithm. At the first iteration, we calculate local means and local magnitudes of the signal
f(t). The width of the steps is determined by the abscissa separating two consecutive
extrema. These local mean and local magnitudes functions are smoothed by a slippery
average whose window is between the two most distant extrema. The result of smoothing
provides the mean m, ,(t) as it is illustrated in the Figure 2-8 by the red line and the
magnitude envelope a,,(t) illustrated by the black line. After that, we subtract the mean
envelope from the input signal. As a result, we get the signal h, jthat is illustrated in Figure
2-9 by the blue line. Then, we divided it by the envelope in order to get the signal S, , that is
illustrated in Figure 2-9 by the black line. At that point, we test if S; , has a constant envelope
equal to 1. If yes, the algorithm stops. If not, then we subtract the S, , multiplied by the
envelope a,;(t) calculated from the input signal. The result is the new input signal. The
algorithm continues running until S; , has no constant envelope equal to 1. The signal f (2.4)
represented in Figure 2-7 is broken down by LMD into two PFs and residual as depicted in
Figure 2-10. Overall, the PFs stands for the product function. They are calculated by
multiplying the last frequency demodulated signal S;, by allthe magnitude envelope
calculated during the LMD decomposition. Moreover, these PFs obtained by LMD have the
same problem as EMD regarding the side effects. However, LMD converges more quickly
than EMD. PF; is called the first PF component of signal f{f) and contains the highest
frequency component of the original signal, which is a single-component AM-FM signal. The
residual signal is monotonic or non-oscillating which stops the LMD algorithm after two
iterations.
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Figure 2-8. First iteration of the LMD Decomposition. The calculation of the mean envelope, and the magnitude
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Figure 2-9. First iteration of the LMD Decomposition. The subtraction of the mean envelope from the harmonic
signal (h, ). S; , results in the frequency demodulation of A, ;.
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2.4  Discrete wavelet transform (DWT)

The third method chosen to denoise a signal is the Discrete Wavelet Transform (DWT). The
wavelet transform has been recently used for analysing and denoising signals and images.
There are two wavelet transforms types: continuous (Section 3.5) and DWTs. These
transforms differ based on the application. This section focuses only on the Discrete Wavelet
Transform. The DWT uses a discrete wavelet scales and translations. It decomposes the signal
into mutually orthogonal sets of wavelets, which is its main difference from the continuous
wavelet transform (CWT).

Generally, a wavelet is a wave with zero mean and a finite duration. Mathematically, it is

+ 00
f b®dt=0 , (2.15)
There are many types of wavelets with different sizes and shapes, as shown in Figure 2-11.
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Figure 2-11. Well-known wavelet types.
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The robustness of the wavelet is in its wide range. The chosen wavelet is called the mother
wavelet. In addition, the wavelet has two important wavelet components: scaling and shifting.
s, the scaling factor which is a positive value, is stretching or shrinking the signal in time,
which is expressed by (2.16). It is used to capture the slowly and abrupt changes in a signal.
This scaling factor is proportional to the frequency (2.17), because of the bandpass wavelet
characteristic in the frequency domain.

¥ (5), >0, (2.16)
F¢
Foq=15, 5>0. 2.17)

where F_ is the central frequency of the wavelet, s is the wavelet scale, and At is the sampling
step.

The second important wavelet component is shifting u, which is delaying or advancing the
wavelet along a signal to align with its feature sought for in it (2.18).

P(t-u), u>0. (2.18)

Using the translation and dilation properties, the mother wavelet becomes:
1 t-
L|"s,u(t): s ] (Tu) (2.19)

where u, s € R* R*, sis the scale coefficient, and u is the translation coefficient.

The DWT is split into three major steps [90]-[91]-[103]-[104]:

1. Look for the approximation and detail coefficients by splitting the signal into a low-pass
sub-band (‘approximation level’) and a high-pass sub-band (‘detail level’).

2. Analyse the wavelet decomposition and identify a threshold.

3. Apply the threshold and reconstruct the signal.

The DWT splits the noisy signal into 7 levels. The first level represents the noisy part of the
signal which could carry some important information that we want to retain. We remove the
noise using a threshold. Although there are different threshold types [105], the universal
threshold which is used in all our applications used in the DWT method, is the simplest to
compute (2.20). Moreover, there are two kinds of thresholding techniques: soft (2.21) and
hard (2.22).

JZ(length(signal))*median|D|

Threshold universal= Co7aE (2.20)
where D is a set of first detail coefficients.
-Si T if |x| =T,

()= {X sign(x) .

&Y { 0 otherwise (2.21)
if |x|=T,

fx=1 *' .

& {O otherwise (222)
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Where T is the threshold.

»

-A A /
w w
A / A

(a) (b)

Figure 2-12. The (a) hard and (b) soft threshold methods to estimate wavelet coefficients [106].

Figure 2-12 depicts when the coefficient magnitudes are less than T, they are set to zero for
both thresholdings. Otherwise, for soft thresholding the coefficients are shrunk towards zero
by subtracting the threshold value from the coefficient value; for hard thresholding they are
unchanged.

Finally, before reconstructing the signal, it is decomposed into multiple levels to compute and
thresholded the detail coefficients.

2.4.1 The construction of the approximation and detail coefficients

As the DWT breaks down the signal into bi-orthogonal wavelets, the DWT is subdivided into
several transforms; the difference between them lies in the number of low-pass and high-pass
filter coefficients and the decomposition of a signal into a set of bi-orthogonal wavelets. The
decomposition of a signal represents the construction of wavelet coefficients [107]-[108]. To
carry out this construction, it is necessary to construct the wavelet tree that is based on the
pyramid algorithm or Mallab’s algorithm [109].

o Bi-orthogonal Basis definition

Two families (14, - -, uy) and (v4,- - -, v} )of E are biorthogonal, if they are:
1 <i,j < k<u,v;>=1, (2.23)
andforl < i,j < k,
(#)<u,vi>=0 |, (2.24)

In all that follows, we work in a Hilbert space with bi-orthogonal basis (wy,, ¢,).
Where ¢, is the detail basis, and w,, is the approximation basis.
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Figure 2-13. DWT tree.

f is a function defined in Hilbert space.

Figure 2-13 depicts the decomposition of f in the high-pass g(n) (2.29) and low-pass h(n)
(2.28) filters. This decomposition produces details d, and approximations Cy, coefficients that
are referred to as the wavelet coefficients. The approximations are the output of the low-pass
filter, conversely the details are the output of the high-pass filter. In each level, the
approximations are separated and used for another decomposition filtering, and only the
approximations of the last level are kept. In addition, the number of levels M is defined by
(2.30). This also determines the number and the length of detail coefficients; for instance, for
level 0, the length of the detail coefficient is one-half of the initial function f length, due to
decimation. Consequently, d1 has one-fourth the number of coefficients, and so on.

eg=f , (2.25)
e, = hx*e,i€[0,1], (2.26)
d, =g *egk €[0,2], (2.27)

h(n)=z Zm <®y, &> , (2.28)
i=0 =0
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g(n)zz Zi <Oy, wi>w; (2.29)
=0 "

M=E(log, N) , (2.30)
Where:

length (f) =N . (2.31)

In this section, we have seen the DWT’s construction, starting by choosing filters, then
calculating levels, and finally decomposing the signal on a biorthogonal basis. Now, we
proceed to the reconstruction process.

2.4.2 Wavelet synthesis

In the reconstruction or synthesis process, after thresholding the levels, the detail and
approximation coefficients are assembled back into the original signal f with no loss of
information. The mathematical method that effects synthesis is the inverse discrete wavelet
transform (IDWT). Figure 2-14 illustrates the synthesis procedure. The detail and
approximation coefficients are up-sampled and filtered with the resynthesis low-pass rh(n)
(2.32) and high-pass rg(n) (2.33) filters. The sum gives the approximation coefficients for
the next level. The process is repeated until level 0 has been resynthesized.
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Figure 2-14. Resynthesis wavelet tree.

rh(n) = h(n)T, (2.32)

rg(n) =g’ (233)

To better illustrate the discrete wavelet transform, the sinusoidal signal f(t) (2.34) illustrated
in Figure 2-15 is considered.

f(t) = cos (int), (2.34)

Where 7 is the time.
We add to the signal f(t) a white gaussian noise ¥ whose signal noise ratio (SNR) equals 5

dB.

X(t) = cos (int) + 9, (2.35)
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Figure 2-15. Noisy sinusoidal signal X(t) over time interval (SNR = 5 dB).

The aim of this section is to denoise the signal X(t) by using the DWT. For that, before the
wavelet decomposition, we select the wavelet basis which is called the mother wavelet. In this
example, daubechies (db13) wavelet, which has thirteen vanishing moments, is used to
decompose the noisy signal down to three levels (Figure 2-16). In fact, the Daubechies
wavelet family with fewer vanishing moments would fail to suppress the noise. The wavelet
decomposition consists in decomposing the signal X(t) into low-pass h and high-pass filter g.
In Figure 2-16, D1 which is the first detail coefficient, corresponds to the decomposition of
the signal by the first high-pass filter. D2 which is the second detail coefficient, corresponds
to the decomposition of the signal by the first low-pass filter and then by the high-pass filter.
D3 which is the third detail coefficient, corresponds to the decomposition of the signal by the
two low-pass filter and then by the high-pass filter. A3 is the result of decomposition of the
signal by the three low-pass filters. Moreover, these details coefficients (D1, D2, D3) take
into account primarily the fluctuations of the function around its mean value. After
decomposing the signal, it is the time to reconstruct it. However, before reconstructing it, we
should denoised it. For that, a threshold should be selected. In our work, to denoise the signal
X(t), the soft universal threshold (2.20) is applied to each detail coefficient (Figure 2-17).
The signal is then reconstructed with the thresholded detail coefticients (Figure 2-18). The
signal noise ratio of the denoised signal equals 8.40 dB which is higher than the signal noise
ratio of the noisy signal X(t).
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Figure 2-16. Decomposition of noisy signal X(t) by DWT into three levels.
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Figure 2-17. The denoised detail coefficients by the universal threshold.
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Figure 2-18. The denoised signal via DWT approach (SNR = 8.40 dB).
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2.5  Application
The performances of the three methods will now be compared with test cases defined in the

first part that will be used along this thesis. A cable with non-fault and a cable with one fault
will be tested.

Figure 2-19. An open circuit with three meters nominal cable.

) —) &———)

Li=1m Ly=14mn L,=2m

Figure 2-20. An open circuit with three meters cable with one fault at 1 m.

EMD

To test the EMD, the LMD, and the DWT denoising methods, we performed numerical
simulations for the reflected test signal obtained from the coaxial cable with one chafing fault
as shown in Figure 1-23, and Figure 2-20. First, we test the EMD method. For that, we apply
the algorithm shown in Figure 2-1. Our input signal is the reflected signal (Figure 1-23)
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whose SNR; 5y 5 = 10 dB and the SNRy 15y intervai f = 2.77 dB which represents the SNR
for the fault interval defined as [0.5-1.6] m. The EMD method decomposes this signal into
eleven Intrinsic Mode Function (IMFs), because after eleven iterations, the residual is non-
oscillating signal which stops the EMD algorithm. In Figure 2-21, one can remark that the
first IMF corresponds to fast oscillation while the eleventh IMF corresponds to slow
oscillation. As a reminder, the proposed method is divided into three steps. First, the signal is
decomposed into different IMFs. Second, the first IMF is eliminated because it contains the
maximum of the noise. Finally, the signal is reconstructed after removing the first IMF.
Figure 2-22 displays the outcomes of applying the EMD denoising scheme to the one-fault
reflected signal after eliminating the First IMF. Its SNRgenoisea emp = 13 dB which is
obviously higher than SNR,,;s, ; = 10 dB. Therefore, using the EMD method, The SNR has
3 dB improvement. In addition, in order to examine and improve the EMD performances, we
consider a 3-m nominal cable (Figure 2-19) which has the same topology as the one-fault
cable illustrated in Figure 2-20. In this time, for the EMD decomposition, our input signal is
the reflected signal at the entry of the three meters nominal cable. Its signal noise ratio
SNRyisy equals the signal noise ratio of the one-fault cable, SNRy iy = SNRypisy 5 =
10 dB. Moreover, the generated noise is the same than the one with the one-fault cable. We
apply the algorithm shown in Figure 2-1 to our new input signal. After that, we reconstruct
the signal by removing the first IMF as depicted in Figure 2-23. Then, we subtract the
reconstructed reflected signal at the entry of the 3 meters one-fault cable (Figure 2-22) from
this reconstructed signal. We obtain the signal shown in Figure 2-24. After that, we calculate
the signal noise ratio SNRgy s gyp Of this signal only for the fault interval defined as [0.5-1.6]
m in order to extract and detect the soft fault regarding the noise. The SNRg, s gyp = 23 dB,
as a result, the fault amplitude is higher than the noise level. Therefore, we detect the fault
better than using only the time domain reflectometry without the denoising methods. Besides,
the EMD method creates some side effects at the beginning and the end of each signal’s peak.

However, if SNRy,;5, f = 5 dB, there is no way to denoise satisfactorily the soft fault as it is
illustrated in Figure 2-25 because the SNRyepnpiseq smp = 5-81 dB. Although if we subtract
this denoised signal from the denoised signal of the nominal cable, we detect the fault as
shown in Figure 2-26 because the SNRgy,s pyp = 24.15 dB, this substraction is not
realisable in real time because we could not generate the same noise for the both signals
(nominal cable, and one-fault cable). Nevertheless, the solution could be measuring the
reflected signal of the nominal cable several times. Then, we calculate the mean amplitude of
the signal which is decomposed and reconstructed, after that, by the EMD algorithm. After
that, we subtract it from the reconstructed reflected signal at the one fault cable entry.
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Figure 2-21. EMD decomposition over the time into eleven levels (IMFi, i€[1,11]) of noisy reflected signal in 3
m coaxial cable with one chafing fault at 1 m (SNR o5, = 10 d B).
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Figure 2-22. The denoised signal of 3 m coaxial cable with one chafing fault at 1 m via EMD method
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Figure 2-23. The denoised signal of 3 m nominal coaxial cable via EMD method (SNR,,,;s, ; = 10 dB).
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Figure 2-24. The subtraction between the reconstructed reflected signal at the entry of the 3 meters faulty cable
and the reconstructed reflected signal at the entry of the 3 meters nominal cable
(SNR,oi5y 5 = 10dB,SNRgyps gup = 23 dB).
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Figure 2-25. The denoised signal of 3 m coaxial cable with one chafing fault at 1 m whose SNR,,y;5,, = 5 dB
via EMD method (SNRzenoiseq gmp = 5.81 dB).
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Figure 2-26. The subtraction between the reconstructed reflected signal at the entry of the 3 meters faulty cable
and the reconstructed reflected signal at the entry of the 3 meters nominal cable
(SNRy5isy f =5 dB,SNRgys pup = 24.15dB).

LMD

In this section, LMD was employed to the reflected test signal obtained from the coaxial cable
with one chafing fault as shown in Figure 1-23, and Figure 2-20. For that, we apply the
algorithm shown in Figure 2-6. Our input signal is the reflected signal (Figure 1-23) whose
SNRyoisy f = 10 dB and the SNRy, 5y intervar g = 2.77 dB which represents the SNR for the
fault interval defined as [0.5-1.6] m. The LMD method decomposed this signal into six
product functions (PFs), because after six iterations, the residual is monotonic and non-
oscillating signal which stops the algorithm. In Figure 2-27, the first PF corresponds to fast
oscillation while the sixth PF corresponds to slow oscillation. The LMD follows the same
process as the EMD. It is divided into three steps. First, the decomposition of the signal into
different PFs. Second, the elimination of the first PF because it contains the maximum of the
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noise. Finally, the reconstruction of the signal after removing the first PF. Figure 2-28
displays the outcomes of applying the LMD denoising scheme to the one-fault reflected signal
after removing the First PF. Its SNRyenoiseq imp = 12.62 dB which is higher than
SNRyoisy s but lower than the one computed by the EMD method (SNRyenoisea mp =
13 dB). As the EMD method, in order to examine and improve the LMD performances, we
consider also a three meters nominal cable (Figure 2-19) which has the same topology as the
one-fault cable illustrated in Figure 2-20. We apply the same process and the same signal with
the same noise used in the EMD method. After subtracting the reconstructed reflected signal
at the entry of the 3 meters one-fault cable from the reconstructed reflected signal at the entry
of the 3 meters nominal cable. We obtain the signal shown in Figure 2-29. Its SNR,ps 1yup =
7.35 dB, as a result, the fault amplitude is higher than the noise level. Therefore, we detect
the fault better than using only the time domain reflectometry (SNRyisy intervai f =
2.77 dB ). However, it is worse than SNRg, s gump.

However, if SNRy,;5, f = 5 dB, there is no way to denoise satisfactorily the soft fault as it is
illustrated in Figure 2-30 because the SNRjenpisea vp = 6.32 dB. Indeed, if we subtract this
denoised signal from the denoised signal of the nominal cable, we detect the fault as shown in
Figure 2-31 because the SNRg s 1yp = 5.46 dB.
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Figure 2-27. LMD decomposition of noisy reflected signal in 3-m coaxial cable with one chafing fault at 1 m
into five levels (PFi, i€[1,6]) and the residue coefficient (SNR,; 5, 5 = 10 dB).
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Figure 2-28. The denoised signals of 3 m coaxial cable with one chafing fault at 1 m via LMD method

(SNRpoisy 5 = 10 dB, SNRyenoiseq tup = 12.62 dB).
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Figure 2-29. The subtraction between the reconstructed reflected signal at the entry of the 3 meters faulty cable

and the reconstructed reflected signal at the entry of the 3 meters nominal cable
(SNRyi5y 5 = 10dB, SNRgps 1yp = 7-35dB).
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Figure 2-30. The denoised signals of 3 m coaxial cable with one chafing fault at 1 m via LMD method
(SNRnoisyj =5 dB'SNRdenoisedeMD = 6.32 dB)
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Figure 2-31. The subtraction between the reconstructed reflected signal at the entry of the 3 meters faulty cable
and the reconstructed reflected signal at the entry of the 3 meters nominal cable
(SNRoi5y f = 5dB,SNRgs 1up = 5.46 dB).

DWT

After tested the LMD and the EMD on the cable with one fault, The DWT operated on the
reflected test signal obtained from the coaxial cable with one chafing fault as shown in Figure
1-23, and Figure 2-20. For that, we choose the Daubechies with thirteen moments as the
mother wavelet. The wavelet decomposition consists in decomposing the tested signal into
low-pass h and high-pass filter g. In Figure 2-32, D1 which is the first detail coefficient,
corresponds to the decomposition of the signal by the first high-pass filter. D2 which is the
second detail coefficient, corresponds to the decomposition of the signal by the first low-pass
filter and then by the high-pass filter. D3 which is the third detail coefficient, corresponds to
the decomposition of the signal by the two low-pass filters and then by the high-pass filter. A3
is the result of decomposition of the signal by the three low-pass filters. This method aims to

1 1]
74



denoising the signal. For that, the process splits into three steps: First, we choose the mother
wavelet, then the signal is decomposed into different detail coefficients. Second, we choose
the threshold and apply it to all detail coefficients. Finally, reconstruct the signal after
thresholding it. Figure 2-33 displays the outcomes of applying the DWT denoising scheme to
the one-fault reflected signal after thresholding the detail coefficients (D1, D2, D3) by the
universal threshold defined in (2.14). Its SNRgenoisea pwr = 10.20 dB  which is higher than
SNRyoisy ¢ but lower than SNRyenoisea gmp = 13 dB and SNRyenoisea mp = 12.62 dB. As
the previous methods, in order to examine and improve the DWT performances, we consider
also a three meters nominal cable (Figure 2-19). We apply the same process and the same
signal with the same noise used in the previous methods. After subtracting the reconstructed
reflected signal at the entry of the 3 meters one-fault cable from the reconstructed reflected
signal at the entry of the 3 meters nominal cable. We obtain the signal shown in Figure 2-34.
Its SNRgyps pwr = 0 dB, which means that the DWT method considers this chafing fault as a
noise that it should remove.
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Figure 2-32. The DWT decomposition into three levels (Di, i€[1,3]) of the noisy reflected signal from 3 m
coaxial cable with one chafing fault at 1 m (SNR,,4;, = 10 dB).
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Figure 2-33. The denoised signal from 3 m coaxial cable with one chafing fault at 1 m via DWT method
(SNRypisy 1 = 10 dB, SNRyenoisea pwr = 10.20dB ).
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Figure 2-34. The subtraction between the reconstructed reflected signal at the entry of the 3 meters faulty cable
and the reconstructed reflected signal at the entry of the 3 meters nominal cable
(SNRypisy f = 10 dB, SNRgyps pwr = 0 dB).

To compare between the EMD, the LMD, and the DWT denoising methods, we tested them
on a complicated case regarding the first one. We performed numerical simulations for the
reflected test signal obtained from the coaxial cable with two chafing faults, as shown in
Figure 2-35 and, for the three methods, our input signal that is the reflected signal illustrated
in Figure 1-23 whose SNR;5;sy 5 = 10 dB and SNRyisy intervar £12,.9]1 = 2.5 dB. For this
signal, we apply the EMD algorithm, the LMD algorithm and the DWT. Figure 2-36 displays
the outcomes of applying the EMD denoising scheme whose SNRyenoiseq gmp = 15.32 dB
after removing the first IMF. Figure 2-38 depicts the reconstructed reflected signal via the
LMD method after removing the first PF, SNRyenoiseq tup = 13.6 dB which is lower than
SNRgenoisea emp = 15.32 dB.

For the DWT method, Figure 2-40 displays the outcomes of applying the DWT denoising
scheme to the two-faults reflected signal after thresholding the detail coefficients (D1, D2,
D3) by the universal threshold. Its SNRgenoisea pwr = 10.18 dB. Which is lower than
SNRgenoisea emp = 15.32 dB. As a consequence, we detect the fault better than using only
the time domain reflectometry but barely which confirm that the refelectometry is a limited
method to detect the soft fault. In order to compare between the three methods’ detection
performances, we apply the same process used in the cable with one fault. We consider a 10
m nominal cable which has the same topology as the two faults cable. Its signal noise ratio
SNRyisy equals the signal noise ratio of the one-fault cable, SNRy iy = SNRypisy 5 =
10 dB. Moreover, the generated noise is the same than the one with the one-fault cable. We
apply the three approaches to our new input signal. After that, we reconstruct the signal by
eliminating the first IMF for EMD, the first PF for LMD and filtered the DWT’s detail
coefficients by the universal threshold. Then, we subtract the reconstructed reflected signal at
the entry of the 10 m two-faults cable of each method from the reconstructed reflected signal
at the entry of the 10 m nominal cable of each method. for DWT, the signal noise ratio
SNRgyups pwr = 0 dB of the signal shown in Figure 2-41, as a consequence, we cannot detect
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the soft fault. For LMD, and EMD, the signal noise ratio SNRgyps 1yp = 17 dB, and
SNRgyups emp = 24 dB, respectively, of the signal shown in Figure 2-39, and Figure 2-37
respectively. As a result, for the both methods, the fault amplitude is higher than the noise
level, however EMD is better than LMD because SNRgps 1mp < SNRsyps gmp-
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—
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Figure 2-35. Ten meters cable with two faults with 14 mm length at 3 m and 8 m. It is an Open circuit.
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Figure 2-36. The denoised signal from 10 m coaxial cable with two chafing faults at 3 m and 8 m via EMD
method (SNRnoisyff =10 dB, SNRdenoised_EMD = 15.32 dB)
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Figure 2-37. The subtraction between the reconstructed reflected signal via EMD at the entry of the 10 meters
faulty cable and the reconstructed reflected signal via EMD at the entry of the 10 meters nominal cable
(SNRyisy f = 10dB,SNRyps pup = 24 dB).
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Figure 2-38. The denoised signal from 10 m coaxial cable with two chafing faults at 3 m and 8 m via LMD
method (SNRnoisyff =10 dB,SNRdenoised_LMD =13.6 dB)

1 1)
78



0-01 T T T T T T

0.005 7

-0.005 - *

Magnitude (V)

-0.01 ]

_0.01 5 l | 1 | 1 1 1 1
1 2 3 4 5 6 7 8 9

Distance (m)
Figure 2-39. The subtraction between the reconstructed reflected signal via LMD at the entry of the 10 meters
faulty cable and the reconstructed reflected signal via LMD at the entry of the 10 meters nominal cable
(SNRyoisy r = 10dB, SNRgyps 1ip = 17 dB).
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Figure 2-40. The denoised signal from 10 m coaxial cable with two chafing faults at 3 m and 8 m via DWT
method (SNRnoisyff =10 dB,SNRdenoised_DWT = 10.18 dB)
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Figure 2-41. The subtraction between the reconstructed reflected signal via DWT at the entry of the 10 meters
faulty cable and the reconstructed reflected signal via DWT at the entry of the 10 meters nominal cable
(SNRyisy r = 10dB, SNRps pwr = 0 dB).

To sum up, In this section, first, we applied the EMD, LMD and the DWT on a signal for
several SNR (SNRy4i5y 5 = 10dB, SNRy,is, f = 5 dB). Second, we decompose it into
several blocks as IMFs for EMD, and PFs for LMD, or to several detail coefficients for DWT.
Third, we threshold these sub-functions, either by remove the first IMF or PF for EMD and
LMD, respectively, or by filtering all the detail coefficients for DWT by the universal
threshold. After that, we reconstruct the reflected signal after filtering. For SNRy 5, 5 =
10 dB, using EMD, SNR jcnoisea emp = 13 dB for one fault cable, and SNRyenpiseqa smp =
15.32 dB for two faults cable. Using LMD, SNR;enpiseq tmup = 12.62 dB for one fault cable,
and SNRgenoisea up = 13.6 dB for two faults cable. For DWT, SNRyenoisea pwr =
10.20 dB for one fault cable, and SNR;enpisea pwr = 10.18 dB for two faults cable. For
SNRyoisy f = 5dB, using EMD, SNRgenjiseq gmp = 581 dB for one fault cable. For
LMD, SNRgenoisea mp = 6.32 dB for one fault cable. For DWT, SNRgenoisea pwr =
5.43 dB for one fault cable. Fourth, for each method, we subtract this reflected signal from
the reconstructed reflected signal of a nominal cable whose topology is the same as the faulty
cable. Finally, for each method, we calculate the SNR of the result as shown in Table 2-1. For
both case, the cable with one fault and the cable with two faults, SNRg,ps gpp 15 higher than
SNRgyps tup and the SNRg, s pwr. As a result, for the EMD, the fault amplitude is higher
than the noise level. Consequently, we detect the fault better than using only the time domain
reflectometry or LMD or DWT. However, this subtraction is not realisable in real time
because we could not generate the same noise for the both signals (nominal cable, and fault
cable). Nevertheless, the solution could be measuring the reflected signal of the nominal cable
several times. Then, we calculate the mean amplitude of the signal which is decomposed and
reconstructed, after that, by the EMD algorithm. After that, we subtract it from the
reconstructed reflected signal at the fault cable entry.
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Table 2-1. The comparison between the SNRdenoised for different SNRuoisy.

EMD LMD DWT
Coaxial cable with SNRdenoised_EMD SNRdenoised_LMD SNRdenoised_DWT
=13 dB =12.62dB =10.20dB
one chafing fault.
SNRnoisy f =10dB SNRsubs_EMD SNRsubs_LMD SNRsubs_DWT
B =23dB = 7.35dB =0dB
Coaxial cable with SNRdenoised_EMD SNRdenoised_LMD SNRdenoised_DWT
=5.81dB =6.32dB =543dB
one chafing fault.
SNRnoisy f =5dRB SNRsubs_EMD SNRsubs_LMD SNRsubs_DWT
B = 24.15dB = 5.46 dB =0dB
CoaXial Cable Wlth SNRdenoised_EMD SNRdenoised_LMD SNRdenoised_DWT
two chafing faults. =15.32dB =13.6dB =10.18 dB
SNRTIOiSy_f =10dB SNRsubs_EMD SNRsubsLMD SNRsubs_DWT
=24dB =17dB =0dB

2.6  Conclusion

This chapter investigated noise models and included an in-depth literature survey of denoising
based on level decomposition. Desirable features and complexities of denoising algorithms
were discussed. In addition, common mechanisms used to evaluate the performance of
denoising algorithms were explained. According to the current literature, denoising
algorithms based on EMD are the best choice for achieving the desired performance.
However, the computational complexity must also be considered.

The EMD decomposition can be determined approximately by calculating the mean of two
curves generated by local maxima and local minima of the signal. The decomposition
performance of EMD is improved by the movement of any extremum point involved in the
first IMF in the iteration process. It can be found that the residual tends to zero with the
increase of iteration times, which makes the process converge quickly. With this
consideration, the EMD algorithm has good robustness. EMD does, however, have a major
drawback: the side effects.

LMD is an adaptive method of signal processing like EMD. The difference is in the behaviour
of the IMF at each level. LMD has shown promising results in convergence but failed to
denoise the soft fault signal properly. This method has the same drawbacks as EMD.
Thresholding techniques using the DWT are the simplest to implement. DWT decomposition
is the construction of the detail and approximation coefficient. The wavelet transform
provides a high degree of flexibility in its properties and performance. Fixing the wavelet and
its parameters would eliminate this flexibility.

To sum up, in this study, the denoised results of the proposed algorithms are compared under
different cable models. The evaluation methods introduced above indicated that the DWT and
LMD failed to denoise properly the reflected signals, while EMD shows promising results
with some limitations. As a result, EMD is the method that we retain at the following. With
this in mind, the next chapter recalls the basic principles of detecting wiring faults via time—
frequency analysis and presents some of the simulation results. Accordingly, the limitations of
time—frequency methods in detecting multiple faults are illustrated.
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Chapter 3: Time-Frequency Analysis



3 Time—frequency analysis

3.1 Introduction

As discussed in previous sections, the signals carrying information into transmission lines can
be classified into two categories: stationary and non-stationary signals [110]. In the first type,
the signal frequency content does not change over time, while it is not the case in the second
kind, non-stationary signals can be encountered in speech and vibrations. Because of the non-
stationary characteristic of these latter signals, a Fourier transformation cannot be performed.
Moreover, a frequency domain analysis would not provide information about the changing
frequencies over time [111].

Representations of the stationary noisy signals can be carried out in two ways: in the time
domain, in which voltage or current levels are represented versus time or in the frequency
domain by replacing oneself by the spectral domain. The relation between the two combined
domains is the Fourier transform [111]. In our case, our signals do not evolve over time on the
scale of observation, which means they can be considered as stationary. However, some
interesting properties of non-stationary signal processing techniques may be used to have a
better detection of soft faults. The recently developed field of time—frequency signal analysis
(TFA) provides suitable tools for analysing non-stationary signals occurring in many fields of
engineering [112], such as telecommunications, radar, sonar, vibration analysis, biomedicine,
speech, and seismic exploration [118]. This chapter approaches such signals using a TFA
approach; it outlines many of the important concepts underpinning TFA. The work
represented in this chapter is based on some researches made to detect the wiring faults such
as [113]-[114]-[115]-[116]-[117]. In addition, the chapter builds upon and refines concepts
and results that were originally reported in [119]. Major theoretical breakthroughs in the field
of time—frequency methods were accomplished via the Short-Time Fourier transform (STFT),
the Wigner—Ville Transform (WVT), and the Continuous Wavelet Transform (CWT) in the
context of fault detection. The STFT consists in a segmentation of a signal into narrow time
intervals and takes the FT of each one [120]. Each FT provides the spectral information of a
separate time-slice of the signal, providing simultaneous time and frequency information. The
WVT provides high spectral resolution and is optimal [121] in the sense of energy
concentration around the signal instantaneous frequency (IF), for linear frequency modulated
(FM) signals. The CWT i1s a formal tool that provides an overcomplete representation of a
signal by letting the translation and scale parameters of the wavelets vary continuously [122].
To understand the effects of time—frequency transforms in detecting wiring faults, this chapter
describes the FT and derives the STFT, the WVT, and the CWT. These three time—frequency
methods allow us to project the reflected signal at the cable entry in a bidimensional space,
the time and frequency domains, as explained in the next sections.

3.2 The Fourier transform

To obtain the frequency content of the electrical signal, we should use many narrow bandpass
filters, which is equivalent to modulating the signal in the frequency domain and using one
low-pass filter. This is the idea behind frequency analysis and Fourier expansion [123].

Arthur Schuster observed that there were some periodicities in sunspot numbers using Fourier
series. This observation in turn helped James Cooley to develop the fast Fourier transform
(FFT), the algorithm for which was developed in 1805 by Carl Friedreich Gauss. The FFT is
useful for calculating the discrete Fourier series [124]. The Cooley-Turkey algorithm is
frequently used for calculating the Fourier Transform in a fast version. It is based on a "divide
and rule" approach through recursion. It subdivides a discrete Fourier transform into several
discrete Fourier transforms of smaller sizes. This evolution of frequency representation makes
the FT an efficient tool for understanding stationary signals.



The FT (3.1) 1s used to pull original signal frequencies from their combined sum.
FT(w) = [, s(De it dt, (3.1)

Where s is an integrable function defined on R. FT is the complex Fourier Transform. As the
time signal is generally causal, the integration can only be made from O to the infinity.

This representation (3.1) corresponds to a signal expansion into the orthogonal family of
complex exponentials called FTs. It is a representation of the signal spectrum.

Although the FT is the most useful mathematical tool of signal analysis, it has some
limitations, such as not representing the signal in both the time and frequency domains, as
shown in the equation (3.1). Moreover, as explained above the FT is not efficient for
analysing non-stationary signals, which are considered as the most common signals.

One of the well-known methods used to overcome the FT restrictions is time—frequency
analysis using the STFT, the CWT, or the WVT. These approaches are described in the next
paragraphs. Then, these methods are applied to a cable under test to evaluate their
performance.

3.3 The Short-Time Fourier Transform (STFT)

The STFT (3.2) is a windowed FT [125]. It represents the signal in both time and frequency
domains. This method is based on two steps (Figure 3-1): First, dividing the signal in the time
domain into sub-sequences dt multiplied by a temporal window w(t). Second, calculating the
spectrum for each sub-sequence. The time and frequency resolution are limited by the
window length. Indeed, a wide window w gives better frequency resolution but poor time
resolution; on the other hand, a narrower window w gives better time resolution but poor
frequency resolution. They are different kinds of the temporal window as Gaussian,
rectangular, Hanning, hamming and Blackman Harris. In this work, we use the hamming
window (3.3) because it minimises the side-effects and gives an accurate result regarding the
other windows. After choosing the window and applying the STFT, the spectrogram is
depicted. The spectrogram is a three-dimensional graph of power, frequency, and time. There
are several advantages to use the spectrogram: fast implementation using the FFT and easy
interpretation.

STFT(f,w) = fjozo f@w(t —1)e 2PU7qr, (3.2)
i) = {o. 54 — 0.46 cos (Zn%) if n € [0,N] 63)
0 if not

Where N+1 is the samples’ number chosen in terms of the width of the filter used in the
applications. Indeed, the higher the samples’ number, the largest the frequency band of the
filter.
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Figure 3-1. The short-time Fourier transform decomposition over the time and frequency domains [108].

The STFT will be more obvious with an illustrating example. The reflected signal at the cable
with one fault denoised by the EMD (SNR,,,;5y f = 10 dB, SNRjenoisea smp = 13dB ) as
defined in the chapter 2 (Figure 3-2) is considered.

First, the hamming window defined in (3.3) is used in the STFT with N=64. The denoised
reflected signal is divided into shorter sub-sequences, and the periodogram is calculated for
each one, giving frequency spectra for all sub-sequences. Then, we obtain the spectrogram
(Figure 3-3) which has slow power variations in terms of frequency. Indeed, in Figure 3-3,
there is almost no variation regarding the frequency because we look for a better time
resolution or variation. Consequently, we lose the frequency resolution. In Figure 3-3, STFT
was able to localize the fault interval [1-1.2] m for a range frequency range [3-4] GHz but not
the fault accurate position because of its time resolution. Finally, the STFT lacks the precision
and the accuracy to detect the chafing fault. In addition, the second drawback is the colour-
code. For instance, in Figure 3-3, the intensity of the colours is near to each other because of
the value of the power/frequency. For 1 GHz, at 1 m, the power/frequency equals -20.52
dB/GHz and at 0.4 m, the power/frequency equals -23 dB/GHz. As a result, it can be
confusing to distinguish between them and to conclude in which position the chafing fault is.
As regards the hard fault which is the open circuit in this case, the STFT is able to detect its
interval [2.9-3.1] m at 3 GHz. In addition, it is clearer than the chafing fault because of the
value of the power 18 dB/GHz in this interval.

1 11N
85



0.04

0.3} 0.02 |
0 /»\I\N‘\I\/\l./\{‘/‘/vd\w‘
S 0.2} -0.02 ]
3 05 1
2 01} i
c
g g
s 0 |_—'|f_1 % A pespbany Wiyl AR g oy e
0.1} J
_0.2 1 L 1 | 1 | 1 | |
0 5 10 15 20 25 30 35 40 45 50

Distance (m)
Figure 3-2. The denoised signal of 3 m coaxial cable with one chafing fault at 1 m via EMD method
(SNRnoisyj =10 dB'SNRdenoisedeMD =13 dB)
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Figure 3-3. The spectrogram of the reflected signal with the Hamming window.

3.4 The Wigner—Ville Transform (WVT)

The WVT [121] represents the signal in frequency versus time by calculating the power
spectrum via the local autocorrelation. The autocorrelation (3.4) means that the signal is
compared to itself for all possible relative shifts or lags.

r (D= [ x(7) x(t+1)d. (3.4)

where 7 is the delay time of the signal regarding itself.
The WVT uses the instantaneous autocorrelation function R,

R (£T)=x(t+1/2)x"(t-1/2). (3.5)

where T is the time lag, and x™ represents the complex conjugate of the signal x.
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The Wigner—Ville transform is defined as
WVT(t, w) = R (t + E) x*(t — t/2)e" @7 dr (3.6)
’ 2m 2 ' '

The WVT has some properties, such as marginal energy-preserving properties (3.7), shifting
properties (3.8),(3.9), and a time delay property (3.10) which are not present with the STFT.

lx(D)]? = f +OOWVT(t, w)dw, (3.7)
if y(t) = x(t —1),then WVT,(t,w) = WVT,(t — 1, w), (3.8)
if y(t) = x(t)e™'of, then WVT, (t, w) = WVT,(t, w — wy), (3.9)
d TCWVT (8, w) de
At = - T8 X(w) = L @) (3.10)

2 wvrt, wydt”

The principle of the WVT will be more obvious with an illustrating example. The reflected
signal at the cable with one fault denoised by the EMD (SNRy,y r =
10 dB, SNR genoisea emp = 13 dB) as defined in the chapter 2 (Figure 3-4) is considered.
Figure 3-5 depicts a three-dimensional picture, distance, frequency, and power. The
frequencies are ordered on a corresponding time-scale. The WVT does not suffer from
leakage effects as the STFT does. Even though the WVT provides the best spectral resolution
than the STFT, it gave the two signal’s components at 0 m and 3 m, and one interference at
1.5 m. This interference is due to the cross terms that appears while calculating the
autocorrelation function of the signal. For that reason, the interference appears in the middle
of the cable. These cross terms which are the major drawback of the Wigner distribution, can
be partly suppressed by extending the WVT or simply by using a smoothed pseudo WVT
(SPWVT). As consequence, the WVT is not able to detect the chafing fault for the frequency
range [3-4] GHz which is worse than the STFT which detects this fault at [1-1.2] m for the
same frequency range. As regards the hard fault which is the open circuit in this case, the
WVT can detect its position 3.1 m at 3 GHz. As a result, the WVT is more accurate than the
STFT regarding the hard fault.
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Figure 3-4. The denoised signal of 3 m coaxial cable with one chafing fault at 1 m via EMD method
(SNRnoisyj =10 dB'SNRdenoisedeMD =13 dB)
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Figure 3-5. The Wigner—Ville transform applied on the reflected signal.

3.5 The Continuous Wavelet Transform (CWT)

In this section, we introduce the wavelet transform to overcome the limitations of the STFT
and WVT. Some basic wavelet concepts have already been covered in Chapter 1.
The abrupt signal’s changes contain the most interesting information in the data. To

efficiently analyse these signals, they are analysed by a method called the continuous wavelet
transform (CWT).

The outputs of CWT are coefficients (3.11), which are a function of scale or frequency and
time.

CWT(s,u)=<f(t),Pg >

- f Hu.0dt

- f :of(t)% h <%u) dt

(3.11)
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Figure 3-6. The continuous wavelet transform decomposition over the time and frequency domains [126].

Equation (3.11) and Figure 3-6 depict the transformation of one-dimensional signal f(t) to
two-dimensional function CWT(s,u). The translation coefficient indicates which region is
concerned, and the scaling coefficient eliminates the negative scales. For instance, the higher
the number of scales per octave, the finer the scale discretization due to the relation between
the equivalent frequency Feq and the scale s (Figure 3-7) (2.17). For instance, a signal with
100 samples analysed with 10 scales results in 1,000 coefficients that better characterize

oscillatory signal behaviour with the CWT.
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Figure 3-7. The relation between the equivalent frequency F_eq and the scale s.

In addition, the inverse continuous wavelet transform is defined as

1 p+oo ptoo 1 t-u ds
f(t)—afo f_oo CWT(S,U) NS U} (T) du = (3.]2)
where Cy, is defined as
o) ( 2
Cy= [, AL Gy <o, (3.13)

where Y(w) is the FT of the mother wavelet ¥(t).
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The CWT will be more obvious with an illustrating example. The reflected signal at the cable
with one fault denoised by the EMD (SNR;i5y 5 = 10 dB,SNRyenoisea gmp = 13 dB) as
defined in the chapter 2 (Figure 3-8) is considered. Before using the CWT, the daubechies
wavelet with thirteen vanishing moments (db13) is chosen as a mother wavelet. The dbl3
wavelet gives accurate results that were not possible using FT techniques. It can show short
signals with a clear start and end time for each signal. The CWT produces a time—frequency
visualization of the input signal. In Figure 3-9, the magnitude of the wavelet coefficients
returned by equation (3.11) are color-coded. The wavelet coefficient estimates are reliable. In
addition, there are three wavelet coefficients convergence produced by the signal studied, at 0
m, 1 m and 3 m. However, the wavelet coefficients convergence requires to be at high
frequencies. For instance, at [3-4] GHz, the CWT detects the chafing fault at 1 m which is
more accurate than the STFT which localize the chafing fault interval [1-1.2] m and the WVT
which does not detect the chafing fault for the same range frequency. As regards the hard fault
which is the open circuit in this case, the CWT is able to detect its position at 3 m at 3 GHz.
As aresult, the CWT is more accurate than the STFT and the WVT regarding the hard fault.
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Figure 3-8. The denoised signal of 3 m coaxial cable with one chafing fault at 1 m via EMD method
(SNRnoisyj =10 dB'SNRdenoisedeMD =13 dB)
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Figure 3-9. The sinusoidal signal and its scalogram via CWT.
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3.6  Application

In this section, we will apply the time frequency method on the reflected signal at the cable
with one fault denoised by the EMD (SNR 5y, f = 10 dB,SNRyenoisea gmp = 15.32 dB) as
defined in the chapter 2 (Figure 3-10) is considered.

First, STFT was used with the hamming window. The reflected signal at the cable with two
faults (Figure 3-10) is divided into shorter sub-sequences, which often overlap, and the
periodogram shown in is calculated for each one, giving frequency spectra for all sub-
sequences which form a three-dimensional picture (distance, frequency, and power). In Figure
3-11, STFT was not able to localize the both chafing faults because of the sensitivity issues
discussed previously. For 1 GHz, at 8 m, the power/frequency equals -14.65 dB/GHz and at 7
m, the power/frequency equals -15.2 dB/GHz. At 3 m, the power/frequency equals -3 dB/GHz
and at 0.9 m, the power/frequency equals -9 dB/GHz. As a result, it is so confusing to
distinguish between them and to conclude in which position the chafing fault is.

Second, as depicted in the section 3.4, the WVT failed to detect the chafing fault by applying
it on the reflected signal at the cable with one fault because of the cross-terms. As a result, it
is not necessary to apply it on the reflected signal at the cable with two chafing faults.

Finally, CWT was applied. The scalogram is produced from the reflected signal at the cable
with two faults (Figure 3-10). Daubechies wavelet with thirteen vanished moments is used as
an orthonormal basis. As depicted in Figure 3-12, CWT was able to detect the chafing faults
even from our noisy signal. For high frequencies, for example at [2-3] GHz, the CWT detects
the chafing faults at 3 m and 8 m which is more accurate and better than the STFT and the
WVT which do not be able to detect the chafing faults.
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Figure 3-10. The denoised signal from 10 m coaxial cable with two chafing faults at 3 m and 8 m via EMD
method (SNR,,i5, 5 = 10 dB, SNRyenoisea sup = 15.32 dB).
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Figure 3-12. CWT of the 10 m coaxial cable with two chafing faults at 3 m and 8 m.

To sum up, in this section, as shown in Table 3-1, we applied the STFT, WVT and the CWT
on the reflected signal of one-fault cable, and the reflected signal of two-faults cable. In the
case of one-fault cable, we conclude that the STFT is able to detect the proposed chafing fault
with the proposed denoised signal. Nevertheless, the best approximated fault’s position cannot
be determined because of the STFT’s time resolution. As regards the WVT, it cannot be
applied to detect the chafing fault. In addition, the most accurate method to detect this fault
seems to be the CWT which is able to localize it at almost 1 m. However, it requires to be at a
“high” frequency in order to obtain the wavelet coefficients convergence.

For the reflected signal of two-faults cable, for high frequencies [2-3] GHz, the CWT detects
the chafing faults at almost 3 m and 8 m in contrast with the STFT and the WVT which do not
detect the chafing faults.
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Table 3-1. The comparison between the chafing fault position gotten by the STFT, the WVT, and the CWT in
the frequency range [2-3] GHz.

STFT WVT CWT
Chafing fault
position estimated in
coaxial cable with Failed to detect the
1-1.2 Al I m.
one chafing fault [ Iz chafing fault. most 1 m

(accurate position is
1 m).

Chafing fault
position estimated in
coaxial cable with Failed to detect the | Failed to detect the
two chafing faults chafing faults. chafing faults.
(accurate positions
are 3 m and 8 m).

Almost 3 m, 8 m.

3.7 Conclusion

As discussed in the previous sections, time—frequency techniques involve a physical
decomposition of signals acquired by a set of frequencies in a time domain and can be used
for a host of applications. The analysis of hard faults is a fundamental task for time—frequency
applications. This chapter employed the STFT, the WVT, and the CWT for time—frequency
decomposition. This was done via the use of complementary temporal windows for the STFT,
whereas the WVT employs local signal autocorrelation, and the CWT employs an
orthonormal wavelet basis. Furthermore, both the STFT and WVT are approaches that fail to
identify simple or multiple chafing faults.

The STFT uses a window to give the spectrum in the time domain, but the frequency and time
resolutions are limited by the window length. A wide window gives better frequency
resolution but poor time resolution, whereas a narrower window gives better time resolution
but poor frequency resolution. Additionally, the STFT performance degrades if the noise level
is high relative to the amplitude of the signal reflected from the chafing fault. The WVT can
be interpreted as the power spectral density, and the propagation of a noisy signal creates
overlapped signals which make difficult the fault detection and localization. On the other
hand, the WVT needs to be combined by some temporal window to make the result smoother
according to the inferences.

It was shown that for well-resolved point-like information on chafing faults, location
information is partially encoded by the CWT. Backpropagation of the continuous wavelet
coefficients in the Daubechies wavelet basis yields target chafing faults. The projection of any
signal onto the wavelet basis via the CWT method provides better detection and location
properties than the STFT and the WVT methods as shown in Table 3-2.

Since the problem of chafing-fault detection and location in cables is, to a great extent, a
signal analysis problem, the STFT, WVT, and CWT methods were adopted. The CWT
method showed promising results in locating single and multiple chafing faults in a simple
cable but failed to give fault’s characteristics as its width, and its length. With this in mind,
the coming chapter recalls the basic principles of the Bayesian method and presents some of
the simulation results that validated it. Limitations of the Bayesian approach in the face of
different cable topologies are also illustrated.
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Table 3-2. Comparison between the three time frequency methods.

STFT WVT CWT
Advantages Hard fault detection. | Hard fault detection. Hard and chgﬁng
fault detection.
Inconvenient Noise/resolution. Interferences. Fault‘ S
characteristics.
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4 Bayesian approach

4.1  Introduction

The time—frequency analysis, although quite a sophisticated technique, left practically
unresolved one of the most important objectives of the study — namely, whether the CWT can
be used in the chafing fault detection. It is, therefore, clearly of interest to reanalyse the data
with a different methodology, such as the Bayesian approach taken in this thesis. Bayesian
data analysis has become more attractive to researchers in various disciplines [63]-[127]-
[128]-[129]. The approach has been popular in econometrics, in astrophysical studies, in
medical research, in image processing, and in many other areas. The values of unknown
parameters entering the cable’s model are constant, not random; hence, probability theory
cannot be directly applied to them. To cope with this problem, mathematicians created a new
statistical approach to estimate these parameters from data and other functions [130]-[131].
This statistical approach is used to derive conclusions about both the process which produces
the observations and the expected behaviour in future instances of the same process. The
approach is based on a probability model which describes the mechanism of the observed data
Y as a function of a parameter 6.

Bayesian statistics, unlike most other statistical methods, reduces statistical inference to
problems in probability theory, thereby involving three assumptions [132]. It first draws on
prior knowledge to better estimate the posterior distribution of model parameters. Second, it
chooses the answer that best explains the observations. Finally, it avoids making extra
assumptions. In fact, it describes by means of probability distributions all uncertainties
present in the problem. In particular, unknown parameters in probability models must have a
joint probability distribution which describes the available information about their values; this
is often regarded as the characteristic element of a Bayesian approach. Moreover, the
parameters are treated as random variables within the Bayesian paradigm by using prior
information that is subjective and objective. The Bayesian approach is based on accepted
model assumptions and data. This is addressed to derive appropriate posterior distributions,
defined to encapsulate inferential conclusions about the model, data, and parameters. The
Bayesian inference presents an optimization problem solved by nested sampling (NS) or by
the Gauss Newton (GN) algorithm.

Proposed by John Skilling in 2004 [133], NS has been used in many domains, including
biology [134]-[135], astronomy, and cosmology [136]. NS is based on the Monte Carlo
method [63]. In this work, we use the same NS used in [63] and we compare it to the GN
method in order to conclude if the GN method can overcome some NS method limitations or
not. The Gauss Newton (GN) algorithm [137] is used to solve non-linear functions. It is a
modification of Newton’s method to find an optimization solution of a function. NS and GN
used in Bayesian evidence calculation bring two advantages. First, they give an accurate
posterior distribution estimation. Second, they converge faster than the traditional Markov
Chain Monte Carlo (MCMC) approach [138].

Chapter 4 briefly reviews the principles of Bayesian inference, with particular attention to
parameter estimation and model selection. First, the Bayesian method is introduced with its
properties. Second, cable’s model used for the present study is described. Third, GN and NS
are presented to determine their effectiveness in the soft fault detection. Finally, we conclude
the chapter with a critical discussion of the results of the Bayesian analysis versus those of the
time—frequency methods and point out future useful directions for application of the Bayesian
methodology.



4.2  Bayesian approach

Bayesian inference is based on the forward model M (4.1) and probability theory to take into
consideration measurement noise ¢ and to describe uncertainty, often about unknown
parameters 6 [139]. Data Y, which is the sum of the model and the noise as shown in the
equation (4.1), is obtained via either the RF instrument or simulation. The prior distribution
P(B) for the unknown parameters is chosen based on prior information, along with a
conditional distribution P(8|M), which describes knowledge about the unknown model
parameters O before the simulation is made and the likelihood distribution P(Y|6, M), which
stands for the simulation’s probability regarding the model’s parameters [ 140]. By the product
rule, this yields the Bayes' formula (4.2):

Y=M+cg, 4.1)

P(Y|8,M)P(8|M)

P(B|YM)= POYIM)

(4.2)

In the Bayesian approach, posterior information is based on prior information. So, it is
important to assign P(0) properly. For this, there are two concepts:

1. In a real physical problem, prior information about the observed data or the observation
procedure is known.

2. Prior information can be exactly represented by one certain probability distribution.

The first point shows that, in most problems, it is possible to determine a family of prior laws
for specific parameters. The second point shows that the parameters are not fixed a priori.
However, these parameters can be estimated, either from a set of training data or even
posteriori from the observed data [141].

The Bayesian algorithm can be summarized as follows [142]:

1. Prior modelling: assign the prior probability distributions P(8|M) and P(8).

2. Compute the posterior probability: once P(6|M) and P(8) are assigned, equation (4.2) is
used, which contains all the information from data and a priori information.

3. Use this posterior probability to infer the unknown 6.

To calculate the posterior information, equation (4.2) estimates the maximum posterior laws
[63]:

maximize P(0|Y,M). (4.3)

To do this, it is necessary to calculate the normalizing term in the equation (4.2), called the
evidence, P(Y|M), which, being an integral, can sometimes be problematic to evaluate.

P(Y|M) = f P(Y|6, M) P(8|M)d®. (4.4)

The idea is to generate a reference particle 6,, from the distribution P(8). Then, a Bayesian
approach run evolves a set of variables 6, n = 1:N, initially representing P(0), tending to
calculate the log-evidence. Nearness is defined using a distribution prior function and the
likelihood distribution. The posterior parameters are chosen according to the log-evidence that
is higher than a threshold r. If a different threshold is chosen, then this estimate of posterior
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parameters will change. In the literature, there are many methods to solve equation (4.3); the
approach depends on the model used and the desired results. We choose to solve it with the
GN algorithm and NS because of their convergence, simplicity, and efficacy. These exposed
methods are implemented in Matlab.

4.3 Theory

4.3.1 Gauss—Newton (GN)

The GN algorithm is a modification of Newton’s method. It consists in finding the solution 6*
of the function F(8) = 0 for which the partial derivative Df(8*) is reversible.

F(6)=£(6)-](6)*(6-6,) . (4.5)

where ] denotes the Jacobian matrix of f(0), and 6, is the vector of model’s prior parameters.
This method is well-known for its quick convergence if the function has one variable, but to
ensure a quick convergence in the case of a multivariable function, the partial derivative Df
calculation should be minimized. Otherwise, the approach will be slow and extremely costly.
To solve equation (4.3), the points that zero out Df should be looked for. For that, a choice of
prior parameters is made. In the case where f = 0 is the minimum, or when f varies almost as
a linear function near to the minimum point, the approximation to the partial derivative is
significant, and the convergence of the GN method is noticed [143]. Solving a function fusing
GN [144] is applying non-linear least-squares to fit the function f. As a result, the solution is
0"

The GN algorithm is used to solve non-linear systems. After modelling S;1mode1 bY @ non-
linear function with a set of the 6 model’s parameter, the square error £ between the S;;tpr
calculated by TDR and the S;; simulated by our model should be minimized.

e(0) = X1 = Li(Si1rpg = Stipoqe (0))7. (4.6)

where 1€[ 1, N] is the number of iterations.
The optimal parameters 8 that minimize this £(8) have to satisfy the equation such that the
gradient vector is equal to zero.

de(O , ,
;9]') = =2 2i(S11rpr ~ St1moae 01 (4.7)

where J;; is the ijth component of the Jacobian matrix J.

35! vroder(6)
Jij = —1“;9‘]1, = (4.8)

where j is the jth component of the 6 model’s parameter.
To find the optimal parameter, the iterations shown in the equation (4.9) are used.

041 = 0n + A0 =0, — J7(S1170r(0) — S11m0ae1(6)). (4.9)

where /= = (JT))7J7 is the pseudo inverse of J.
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To avoid the possibility that the iteration may not converge, a parameter 0<C<1 to reduce the
step size is introduced.

0, ,=0,+CA0. (4.10)

4.3.2 Nested sampling (NS)

A model has been used to develop and test the chosen parameters and their distributions.
Running this model requires developing sampling algorithms to fully explore and calculate
the posterior parameters. These algorithms are needed to overcome difficulties in a time-
computing and the space of interest scale. Thus, a set of model parameters is proposed and is
accepted or rejected using the standard Metropolis—Hastings acceptance criterion. Many
sampling techniques have been developed, such as the metadynamics technique [145]-[146]
and umbrella sampling [147], which is widely used in studying chemical reactions, originally
tested on Lennard—Jones clusters. In addition, some sophisticated sampling algorithms have
been developed that do not require prior knowledge about the model parameters [148]. One of
the initial sampling algorithms is Monte Carlo sampling [149]. Recently, Skilling introduced
the novel technique of NS [142], an algorithm specifically designed to sample high-
dimensional spaces [150]. Its outputs are a set of samples and associated weights from which
an estimated marginal likelihood and model variables are calculated, such as fault length and
width. While initially developed for Bayesian statistical inference [142], the algorithm is well-
established in the astrophysics community [136] and has also been successfully applied in a
variety of other fields, including bioinformatics [151], systems biology [152], and data
analysis. As a reminder, the objective of this section is to solve the Bayes’ formula defined in
(4.2). Noted Z the Bayesian evidence P(Y|M), NS [150] - [134] which is a Bayesian sampling
method, is used to estimate this Bayesian evidence Z as well as posterior distribution
parameters of the faulty cable (4.2). The main step in NS is to create N samples (6; ... ... On)
from each point 8 of a function interval. As a result the evidence for each point 8 in this
interval is a multidimensional integral (4.11).

Z={[..[PY|M®....04))d0; ....dOy. (4.11)

However, NS converts a multidimensional integral to one dimension (4.13), which is easier to
evaluate numerically. The posterior distribution is incrementally constructed by having a set
of samples that evolves to high-probability regions X of the research area. Starting from
the iteration indexj =1, X, = 1, and Z = 0, this Bayesian method could be formulated by
sampling prior information using N samples and evaluating their likelihood.
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L(x) }

O 1 x
Figure 4-1. The NS algorithm integrates the likelihood over the prior volume by peeling away thin isosurfaces of
equal likelihood [153].

These samples are called the 'active set'. Subsequently, the active set samples are evaluated in
the high-probability region by an iterative replacement of the sample 0,,,rst, Which has the
lowest likelihood function L(B,.st), by a new sample 6., which has the highest
likelihood: L(Bpew) > L(Oworst) (Figure 4-1). While replacing the worst likelihood, the prior
volume shrinks at each iteration. However, the uncertainty in this shrinkage gives rise to an
error in Z. Besides, the shrinkage of this prior for a sequence of points from a two-
dimensional parameter space is illustrated in Figure 4-1.

Area £

] X 1

Figure 4-2. Likelihood function with area Z [125].

Then, the next iteration's volume can be estimated as
)
X;=exp(- ﬁ)' (4.12)

The Bayesian evidence (Figure 4-2) is
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L:

After M iterations, the total Bayesian evidence (4.13) can be approximated by summing the
contributions of each iteration. Furthermore, the active and rejected sets are used for the
calculation of posterior distribution.

The NS’s main difficulty lies in the sample replacement step, which requires the proposition
of a new sample 8, corresponding to L(By¢,,) > L;. The problem becomes more difficult
after a few iterations, when L; reaches a high value and the research area which satisfies the
constraint of the lower limit is reduced to a smaller region. As a solution, Skilling proposed
NS based on the MCMC approach (Markov Chain Monte Carlo) [146]. Consider a sequence
of a random variables [0, 0, ... 0, ] sampled from the distribution P(8,,,|6,), which means
that 8,,1 depends only on 8, and not on the further variables [84,60, ...6,,_1]. Such a
sequence is called a Markov chain.

Py g,

P9291 P9391= 0

P 2162

P9292 P9392

P925'3

Figure 4-3. A Markov chain.

As illustrated in Figure 4-3, a Markov chain is a probabilistic way to traverse a random walk
across a graph. It traces a series of transitions from one state to another. In addition, a Markov
graph is used to formulate a problem. The nodes are formulated by including the node that
must be predicted. Therefore, MCMC is used to make sampled chains which draw samples
from the distribution. It is a sampling algorithm from probability distributions using Markov
chains [154]-[155]. MCMC methods can be considered as special cases of the Metropolis
algorithm (MH). The Metropolis algorithm is a random sampling that uses an acceptance and
rejection rule to converge to the target distribution.

The MCMC algorithm is as follows:

1. Define a value for the prior variable.

2. For I iteration sampling variables 8, from the prior distribution, calculate the ratio
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_ _Db(6:Y)
r= Ol (4.14)

Consequently, the new variable is

0. {9* with probability min (r,1) (4.15)

1 0;, otherwise

44  Application

Before moving on, to keep the idea clear:
Our process includes four parts:

» Model:
e Create a TDR response model of the nominal and chafed cable.

» Simulation:
e Concentrate on a chafing fault (Figure 1-14) in the coax cable
o Simulate TDR response of the undamaged coax cable
e C(Create a chafing fault on the coax cable
e Simulate TDR response of the chafed coax cable

» Probabilistic approach:
e Use the model and the simulated data.
e Solve the Bayesian method by Nested Sampling or Gauss Newton.
e Look for the evidence and the posterior parameters.

» Comparison between Gauss Newton and Nested Sampling.

For all this chapter, the research area represented is very limited. In fact, the analysis is made
over the entire length of the cable but only the results corresponding to a short research area
are represented. In addition, the chafing fault treated in this section is the same chafing fault
shown in Figure 1-14 that we treated in the previous applications.

As discussed above, the key to the Bayesian inversion methods is to model some prior
information of scattering coefficients and to recover the scattering coefficients under the
Bayesian principle. In the context of this thesis, the Bayesian approach consists in calculating
the reflected signal at the coaxial cable input. This requires identifying the S-matrix [62] of
the fault and integrating it in the transmission line model so as to be more compatible with the
simulated S-matrix over the whole frequency range of the injected signal. To provide clear
evidence, the Bayesian model studied is the S;; parameter at the cable entry with regard to the
model’s parameters 6.

S11:S11System ) . (4.16)

where 0 is a vector of unknown model parameters: 0 = [d¢, Lg].
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Table 4-1. Model’s parameters and their distributions
Model’s parameters Distribution for GN or NS

Distance to fault (dr) Gaussian distribution.  Its
mean equals 0.1, and its
standard deviation equals
50.

Fault’s length (L) Gaussian distribution.  Its
mean equals 0.005, and its
standard deviation equals
25

The Gaussian distribution is chosen for these parameters because it is symmetric, and it is
denser in the centre and less dense in the tails.
Given a set of input variables vector 8,,, where n = [1: NJ, the non-linear model is written as

fa = M(6). (4.17)

The output variable is then given as a linear combination:

Yn = fn(0) + ¢n. (4.18)

where 6 is a column vector of coefficients, and ¢ is zero-mean Gaussian noise with the
covariance f5.
Given a data set Y, the likelihood is written as

B
P(Y|0n, M) = ()2 e 27D, (4.19)

where Y is a column vector of data, and F is the nth row of the matrix X containing f,. The
weights are drawn from a zero-mean Gaussian prior with an isotropic covariance .

P(0,|M) = (—)”/z s (4.20)

The evidence is then

_Be—g(Y—FG)T(Y—FG) -ZgTg

P(Y|M) = (i)’v/z(“)p/z e +ae™2 " gg. (4.21)

2pi
The log of the evidence can then be written as

a B
log(P(Y|M)) = —qe 3?0 _ ﬁe—;(Y—FG)T(Y—Fe) +

B @ 422
0.5log ﬁe_?(Y_Fg)T(Y_Fg) +ae 2?0+ glog a+ glogﬁ — glog (2pi). (*+22)
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As defined in the previous paragraphs, the chafing fault exists where the log evidence is
higher than a threshold, which is the log evidence of the nominal cable data.

In brief, to infer the chafing fault parameters, the fault prior parameters (position and length)
are defined. Afterward, the Bayesian approach is solved by NS or GN, as elaborated upon in
Section 4.3, for the sake of the evidence and the model posterior parameters.

In this section, we validate our method by using the reflected signal at the cable entries
denoised via EMD shown in Figure 2-22 and Figure 2-36. To substantiate the probabilistic
approach, the fault’s length and position should be identified using the Bayesian process. To
accelerate the process for the first case, the cable with one fault in Figure 2-20, the Bayesian
inference is applied either in a small interval referred to as the research area, or launching
several searches on evenly spaced cable sections instead of browsing the entire cable in a
single search which is more efficient for convergence. In fact, the analysis is made over the
entire length of the cable but only the results corresponding to the research area [0.9-1.5] m
are represented.

Scanning for Faults ...

N
by

width (mm)
o

)
o_

[N RNORRRRRNONARRRNn| | 1 ]
0.5 1 1.5 2 2.5 3
location (m)

Figure 4-4. The 3-m coaxial cable is represented by the yellow section. The research area is the blue sections
[0.9-1.5] m.

Using the Bayesian approach, evidence was generated via NS (Figure 4-7) and GN (Figure
4-6). The fault exists when the evidence is higher than the threshold for both methods. For the
other research areas, there is no evidence higher than the threshold, meaning that there is no
fault present.

In Figure 4-5, the NS generates almost 500 points from the fault’s prior parameters (1,=0.5
cm, dg=0.1m). These samples are evaluated in the high-probability region by an iterative
replacement of the sample B¢ \,0rst, Which has the lowest likelihood function L(0¢ yorst), by @
new sample O¢ o, = [l = 1.39 cm,dy = 1.01m], which has the highest likelihood:

L(ef_new) > L(ef_worst) .
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Figure 4-6. The evidence via GN (straight line with pentagram) is represented indicating the fault position in the
research area [0.9—1.5] m. The threshold (dashed line) is 12.
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Figure 4-7. The evidence via NS (straight line with pentagram) is represented indicating the fault position in the
research area [0.9—1.5] m. The threshold (dashed line) is 3.
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In Figure 4-6 and Figure 4-7, we observe that there is only one value in the evidence that is
higher than the threshold for both methods. This value indicates the existence of the fault and
its position. The fault is marked at 0.98 m using GN but at 1.01 m using NS.

Table 4-2. Prior parameters vs Posterior parameters

Model’s Fault’s Prior Estimated | Estimated

parameters | parameters | parameters | posterior posterior

7 parameters | parameters
Via NS Via GN

Distance to | I m 0.1m 1.0l m 0.98 m

fault (df)

Fault’s 0.014 m 0.005 m 0.013 m 0.013m

length (L¢)

Sensitivity 0.01 0.02

regarding

fault’s

position

Table 4-2 depicts the model’s prior and posterior parameters. Thanks to the probabilistic
inference, these parameters are close for both methods.

To learn which method is more accurate, we calculated their sensitivities to the fault’s
position. As seen in Table 4-2, the NS sensitivity is better than the GN sensitivity, meaning
that in this case NS is more accurate than GN in uncovering the chafing fault on the coaxial
cable. Using the posterior parameters (Table 4-2), in Figure 4-8, we graph the reflected signal
at the cable entry via GN (dotted red line) and via NS (solid blue line).

0.5 . . -
0.04 —NS Data
s DR | A R GN Data

041 0.2
S 03 e |
= 0311 002
S 0.2 -0.04 |
= 09 1 11 1.2 43
o)
S 0.1 \ 1

of %

-0-1 1 | 1 1 I 1 I 1 1
0 0.5 1 1.5 2 25 3 35 4 4.5 5

Distance (m)
Figure 4-8. TDR response simulated signal via GN (dotted red line) and via NS (solid blue line). The first peak
represents the Gaussian injected signal. The second peak is caused by the impedance discontinuities due to the
chafing fault.

Thanks to the Bayesian approach, the solutions via NS or GN are pseudo-similar, and the fault
prior and posterior parameters are much the same, which validates both methods. However,
the fundamental flaw of solving the Bayesian approach via NS is the time required to
calculate the posterior parameters. As an example, in the research area [0.9—-1.5] m, it took
almost 2 hours to detect one fault. However, the GN method took only 5 minutes to detect the
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fault. Solving the Bayesian problem via GN made this algorithm less flexible and more
sensitive to the prior parameters.

After proving the reliability of the Bayesian approach to detect one fault, the next step is to
investigate its ability to detect multiple defects. In this section, a 10 m coaxial cable is
considered, as shown in Figure 1-24. This time, our research area is divided into two small
intervals. In each, we are looking for the Bayesian evidence. Indeed, the Bayesian evidence is
calculated over the entire length of the cable but only the results corresponding to the research
areas [2.9-3.5] m and [7.9-8.5] m are represented.

The first interval [2.9-3.5] m is considered.

Scanning for Faults ...
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Figure 4-9. The 10 m coaxial cable is represented by the yellow section. The research area is the blue sections
[2.9-3.5] m.

For each point in our first research area, the evidence using the Bayesian approach solved via
NS and GN was calculated.
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Figure 4-10. The evidence via GN (straight line with pentagram) is represented indicating the fault position in
the research area [2.9-3.5] m. The threshold (dashed line) is 2.
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Figure 4-11. The evidence via NS (straight line with pentagram) is represented indicating the fault position in the
research area [2.9-3.5] m. The threshold (dashed line) is 6.

Figure 4-10 and Figure 4-11 depict the existence of one fault which is inferred by the highest

value among the evidence. The fault is marked at 2.98 m using NS but at 3.01 m using GN.
The second interval is [7.9-8.5] m.
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Figure 4-12. The 10 m coaxial cable is represented by the yellow section. The research area is the blue section
[7.9-8.5] m.

Figure 4-13 and Figure 4-14 show the existence of the second chafing fault in the research
area [7.9-8.5] m. It is indicated by the value that is higher than the threshold. Using NS, the
fault was marked at 7.98 m but at 8.06 m using GN.
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The evidence via GN (straight line with pentagram) is represented indicating the fault position in

the research area [7.9-8.5] m. The threshold (dashed line) is 2.
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Figure 4-14. The evidence via NS (straight line with pentagram) is represented indicating the fault position in the

research area [7.9-9.5] m. The threshold (dashed line) is 6.

For the other research areas, there was no evidence value higher than the threshold, meaning
that no fault was found.

Table 4-3. Prior parameters vs posterior parameters.

Model’s Fault’s Prior Estimated posterior | Estimated

parameters 6 parameters | parameters | parameters posterior
Via NS parameters

Via GN

Distance to fault [ 3m,8m |[O0.1m 298m,3.0l m 7.98 m, 8.06 m

(dr)

Fault’s  length | 14 mm 5 mm 13 mm 12.9 mm

(Ly)

Sensitivity 0.02, 0.01 0.02, 0.06

regarding fault’s

position
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Table 4-3 shows the model’s prior and posterior parameters. To see which method is more
accurate, we calculate their sensitivities to the faults’ position. We find that GN is more
sensitive to the fault’s prior position changes than NS. As a result, the Bayesian evidence
solved via GN is sufficient to detect both chafing faults, but it is less accurate than NS.
Moreover, the process via NS took almost 2 hours to track down these chafing defects, while
it took only 5 minutes via GN method which make it faster than the NS method.

Using these posterior parameters (Table 4-3), the reflected signal at the cable entry via GN
(solid red line) and via NS (dotted blue line) are graphed in Figure 4-15.
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Figure 4-15. TDR response simulated signal via GN (dotted red line) and via NS (solid blue line). The first peak
represents the Gaussian injected signal. The second and third peaks are caused by the impedance discontinuities
due to the chafing fault.

In summary, the results of the present study demonstrate the efficiency of the probabilistic
inference in detecting many chafing faults in a coaxial cable. Furthermore, we provided the
first insight into detecting chafing faults via NS and GN. In the next section, we apply the
probabilistic approach to a cable network.

4.5  Cable network application

4.5.1 Network modelling

Three sets of cables were designed for this research work. The cables were grouped into three
types: Type A, Type B, and Type C. The cable C and B have one chafing fault at d; = 6 m.
This chafing fault is the same chafing fault as shown in Figure 1-14 that we treated in the
previous applications.

Type A: nominal coaxial cable (Li: 4 m).

Type B: nominal coaxial cable (L,: 5m).

Type C: chated coaxial cable (L;: 3 m).
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Figure 4-16. This network cable has two faults, placed in cable C and cable B. Z1 is equal to the cable
impedance Zo.

Using the model presented in Figure 4-16, the simulated reflected signal at this cable network
entry whose SNR,,;5,, r = 10 dB is depicted in Figure 4-17.
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Figure 4-17. The reflected voltage in the 9 m cable network with one chafing fault at 6 m.

After comparing between the three denoising methods in the section 1, the evaluation
methods indicated that the DWT and LMD failed to denoise properly the reflected signals of a
simple coaxial cable with one and two chafing faults, while EMD shows promising results
with some limitations. As a result, EMD is the method that we retain to denoise the signal
depicted in Figure 4-17. Our input signal is the reflected signal (Figure 4-17) whose
SNRyoisy f = 10 dB. The EMD method decomposes the signal of Figure 4-17 into eleven
Intrinsic Mode Function (IMFs). After eleven iterations, the residual is non-oscillating signal
which stops the EMD algorithm. The first IMF corresponds to fast oscillation while the
eleventh IMF corresponds to slow oscillation. As a reminder, the proposed method is divided
into three steps. First, the signal is decomposed into different IMFs. Second, the first IMF is
eliminated because it contains the maximum of the noise. Finally, the signal is reconstructed
after removing the first IMF. Figure 4-18 displays the outcomes of applying the EMD
denoising scheme to the one-fault reflected signal after eliminating the first IMF. Its
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SNRgenoisea_ mp = 12.1 dB which is obviously higher than SNR;, 45, 5 = 10 dB. Therefore,
using the EMD method, The SNR has 2.1 dB improvement. In addition, in order to examine
and improve the EMD performances, we consider a 9-m nominal cable without any chafing
fault which has the same topology as the one-fault cable illustrated in Figure 4-16. In this
time, for the EMD decomposition, our input signal is the reflected signal at the entry of the
three meters nominal cable. Its signal noise ratio SNRy,;s,, equals the signal noise ratio of the
one-fault cable, SNR; 55y = SNRy,i5, r = 10 dB. Moreover, the generated noise is the same
than the one with the one-fault cable. We apply the algorithm shown in Figure 2-1 to our new
input signal. After that, we reconstruct the signal by removing the first IMF. Then, we
subtract the reconstructed reflected signal at the entry of the 9 meters one-fault cable from this
reconstructed signal. We obtain the signal shown in Figure 4-19. After that, we calculate the
signal noise ratio SNRg, s gyp Of this signal only for the fault interval defined as [5.9-6.5] m
in order to extract and detect the soft fault regarding the noise. The SNRg, s gyp = 29 dB, as
a result, the fault amplitude is higher than the noise level. Consequently, we detect the fault
better than using only the time domain reflectometry without the denoising methods. Besides,
the EMD method creates some side effects at the beginning and the end of each signal’s peak.
This subtraction is not realisable in real time because we could not generate the same noise
for the both signals (nominal cable, and one-fault cable). Nevertheless, the solution could be
measuring the reflected signal of the nominal cable several times. Then, we calculate the
mean amplitude of the signal which is decomposed and reconstructed, after that, by the EMD
algorithm. After that, we subtract it from the reconstructed reflected signal at the one fault
cable entry.
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Figure 4-18. The denoised signal of 9 m coaxial cable with one chafing faults at 6 m via EMD method.
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Figure 4-19. The subtraction between the reconstructed reflected signal at the entry of the 9 meters faulty cable
and the reconstructed reflected signal at the entry of the 9 meters nominal cable (SNR,, o5, ; = 10 dB).

Even denoising the signal with the EMD method, it is barely to detect the chafing fault at 6 m
via the TDR. To overcome this, the time frequency analysis will be applied. The section 1
employed the STFT, the WVT, and the CWT for time—frequency decomposition. In the
chapter 1, we conclude that both the STFT and WVT fail to identify simple or multiple
chafing faults on a simple coaxial cable while the CWT method showed promising results.
Consequently, the CWT will be applied on the denoised signal displayed in Figure 4-18. The
scalogram 1is represented in Figure 4-20. We used a Daubechies wavelet with thirteen
vanished moments for the tested signal. As depicted in Figure 4-20, CWT was able only to
barely detect the chafing fault at 6 m.
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Figure 4-20. CWT of the 9 m cable network with one chafing faults at 6 m.

As a result, the CWT method, although quite a sophisticated technique, it can be used in soft
fault detection only on a simple cable not on a cable network. It is, therefore, clearly of
interest to reanalyse the data with a different methodology, such as the Bayesian approach
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defined in this chapter. Using the model, we exposed in Figure 4-16, we applied the Bayesian
approach solved via GN and NS.

To accelerate the process, the Bayesian inference is applied in a small interval referred to as
the research area [5.9-6.5] m (Figure 4-21). In fact, the Bayesian evidence is calculated over
the entire length of the cable but only the results corresponding to the research area [5.9-6.5]
m are represented.
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Figure 4-21. The 9-m cable network is represented by the yellow section. The research area is the blue sections

[5.9-6.5] m.

For each point in our first research area, the evidence using the Bayesian approach solved via
NS and GN was calculated.

— log Evidence
P e e e e e e e e ---Detection Thresh. |

log Evidence

1 | L

5.95 6 605 61 615 62 625 63 6.35 64 6.45

fault location (m)
Figure 4-22. The evidence via GN (straight line with pentagram) is represented indicating the fault position in
the research area [5.9-6.5] m. The threshold (dashed line) is 12.
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Figure 4-23. The evidence via NS (straight line with pentagram) is represented indicating the fault position in the
research area [5.9—6.5] m. The threshold (dashed line) is 10.

The Figure 4-22 and Figure 4-23 depict the log evidence calculated by using GN and NS
respectively. They show that only one evidence that is higher than the threshold for both
methods which betokens the existence of the fault and its position. The fault exists at 6.01 m
using Nested Sampling however it is at 6.05m using Gauss Newton.

Table 4-4. Prior parameters vs posterior parameters

Model’s Fault’s Prior Estimated | Estimated
parameters | parameters | parameters posterior posterior
6 parameters | parameters
Via NS Via GN
distance to 6 m 0.1m 6.01 m, 6.05 m,
fault (dy)
fault’s 0.014 m 0.005 m 0.015m 0.012m
length (L¢)
Sensitivity 0.001 0.002
regarding
fault’s
length

Table 4-4 depicts the model’s prior and posterior parameters. Thanks to the probabilistic
inference, these parameters are almost similar for both methods. To see which method is more
accurate, we calculate their sensitivities to the fault’s length. For choosing the more
significant position, we calculate their sensitivities to the fault’s prior length. As a result, NS
is more accurate than GN because GN is more sensitive to the fault’s prior length and position
changes. In Figure 4-24, two curves are depicted indicating that the chafing faults are detected
(the third peak), which validates our Bayesian approach solved via NS or via GN. The fault’s
amplitude calculated via GN is smaller than the one calculated via NS because the GN is
more sensitive than NS to the prior parameters such as the fault’s length and position. In the
other hand, NS took almost 2 hours to identify the defect while GN took almost 5 minutes. In
Figure 4-24, the second peak is due to impedance discontinuities at 4 m, at the end of cable A.
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Figure 4-24. TDR response simulated signal via GN (dotted red line) and via NS (solid blue line). The first peak
represents the Gaussian injected signal. The second peak matches the reflection at 4 m, the end of cable A. The
third peak stems from the impedance discontinuity which is ascribable to the chafing fault at almost 6 m.

In summary, the results of the present study demonstrate the efficiency of probabilistic
inference solved by NS and GN in detecting many chafing faults in a coaxial cable.
Furthermore, the Bayesian approach is susceptible to prior parameters. Indeed, the Bayesian
approach solved by GN is faster than the Bayesian approach solved via NS. Moreover, to
identify which cable has the chafing fault in the cable network, the model of the cable used
should be modified. To overcome this, the chaotic time domain reflectometry is discussed in
the next chapter.

4.6 Conclusion

Recently developed methods of Bayesian approaches and models have been presented. The
Bayesian approach can be ranked by evaluating the evidence and a model’s ability to fit the
data with its complexity. In addition, the model’s posterior probabilities depend on the
subjective priors that are assigned to them. For many cable problems, the prior parameters
make it possible to perform the optimization of the Bayesian approach. In the examples
discussed, the evidence was used to identify the wiring faults in the cable model and to
indicate the fault position and length.

A solution has been obtained to maximize the optimization problem. The solution applies to a
non-linear interpolation model but depends on the GN approximation and NS approach.
Multiple simulations have been made. In each case, a function of x has been derived that
predicts the information for a simulation at that x. This function can be used to search for an
optimal value of x called the posterior parameters. This function, which has been made to
lucidly discuss the Bayesian approach and how it helps to detect chafing faults in cable
networks, has been solved via NS, although the solution process requires several hours, and
via GN, which makes the method’s convergence quicker, although it is more dependent on
prior parameters and thus less flexible.

This chapter describes the basics of probabilistic inference and how Bayesian evidence can be
employed in soft fault detection. The results validate the effectiveness of this approach solved
via NS or GN. However, NS pinpoints the fault more accurately than GN. It is important to
notice that the capacity for chafing fault detection using the Bayesian approach does not
depend on how the cables are arranged or terminated, but it does depend on the fault
dimensions and the prior parameters. Additionally, a possible weakness of the Bayesian
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approach solved via either NS or GN is that it estimates the utility of a simulation assuming
that the model is correct.

Further work is needed to formalize the relationship of this framework to the model. Using
the Bayesian approach, it is possible to detect chafing faults in the underlying assumptions
implicit in the data and model being used. For this reason, in the next chapter a new method
termed chaotic time domain reflectometry is discussed and illustrated via different cable
topology examples.
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Chapter 5: Chaotic Time Domain
Reflectometry



5 Chaotic time domain reflectometry

5.1 Introduction

In the previous chapters, different advanced methods have been studied and developed in
simulation for the fault detection. In our last chapter, we propose to analyse a last method
based on the chaos time domain reflectometry (CTDR). In particular, this chapter aims to
propose a specific measurement bench for fault detection.

Some literature: ‘The flap of a butterfly’s wings in Brazil set off a tornado in Texas’. This
disturbance created by the flight of a butterfly is known as ‘the butterfly effect’, which is the
metaphor expression used by Lorenz to describe the idea of chaotic effects. The chaotic signal
is a pseudo-noise signal generated from a deterministic system whose variations strongly
depend on its initial conditions. Moreover, it is also non-periodic and unpredictable over the
long term, which makes it highly useful in fields such as astrophysics, computer science,
aerodynamics, and signal processing.

In the literature, we find several kinds of chaotic signal [156]-[163]. For instance, the Lorenz
system, the logistic map, the Bernoulli map, the Van der Pol system, the Holling Tanner
model, Volterra Lotka equations, Baker’s map, the Bogdanov map, Rayleigh Benard
convection, etc.. have been studied in various scientific domains [161]-[162]-[163]. In
particular, we note the Lorenz system, the logistic map, and the Bernoulli map have been
already studied for reflectometry-based applications, especially in fault detection [156]-[158]-
[159]-[160].

In terms of fault detection, a method has been proposed in [159]. The chaotic signal is
generated using a Colpitts oscillator. Indeed, it has been demonstrated than using a specific
input current, this oscillator can produce an output behaviour. Measurements with different
hard and soft faults leads to good results for the location of open circuits, short circuits,
impedance discontinuities and other different damage on wires. Simulations have been also
perform in order to prove the ability for real time diagnosis. This method is quite efficient for
single cable topology, however, the oscillators must be well designed in order to propose a
chaotic behaviour. Moreover, this chaotic behaviour cannot be managed as it depends on the
oscillator design. As a further matter, an average measurement from 1000 measures must be
performed in order to reduce the noise of the test bench. Thus, another method has been
proposed in [156]-[158]. In [158], it has been demonstrated that a combination between the
logistic map and the Bernoulli map leads to a chaotic behaviour “choosing properly” the
parameters. Moreover, the orthogonality of the generated chaotic signals has been shown
modifying slightly the parameters. Hence, simulations highlight the ability of the hard fault
detection for complex wire network. Thus, this chaotic signal is used in [156] to demonstrate
the efficiency of the method in a high noisy cable network, and, for real time measurements.
From a measurement bench where the chaotic signal is generated with an arbitrary wave
generator, the sensitivity analysis carried out in this article was promising for the soft fault
detection. As a consequence, in our work, we focus on soft fault detection for more or less
complex cables network. In particular, we propose to compare the efficiency of two chaotic
signals (the one used in [156] and the Lorenz signal) in terms of soft fault detection. In
another hand, we proposed to validate the proposed method in measurement from a specific
measurement bench. The process for the fault detection has been improved in comparison
with [156] and leads to demonstrate the ability to detect soft fault using the CTDR.

First a sensitivity analysis is carried out from simulations in order to compare the efficiency of
two chaotic signals in terms of soft fault detection. Then, the measurement process is depicted
and the experimental results are discussed.



5.2 Chaotic signals

5.2.1 Introduction

In this section, we introduce several chaotic signals. In particular, the choice of the use of two
different chaotic signals is discussed in terms of fault detection.

First, we can define a chaotic signal with two general conditions:

- it must be sensitive to initial conditions, that means that small causes can have great effects
and,

- it must be recurrent.

It exists different kind of chaotic signal as the ones illustrated in Figure 5-1.
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Figure 5-1. Different chaotic signals.

For the soft fault detection, we decide to use two different chaotic signals which are 1) a
combination of the logistic map and Bernoulli map and 2) a Lorenz signal. First of all, a
simulation analysis is carried out. For this, we choose the 3 meters length cable which a 14
mm length chafed fault at 1 meter as in the previous chapters in order to be consistent.
Nevertheless, the manner to obtain the reflected signal is different in this chapter. Indeed, the
previous proposed method required to use a Fourier transform which can lead to wrong results
for chaotic signals. Therefore, we decide to build a code in the time domain based on the
transmission line theory. The simulated cable is represented in Figure 5-2. Hence, the step

mesh dx is fixed to 1 mm while the time step df is equal to ZdeC with ¢ the celerity. Indeed, for

chaotic signals it is better to choose dt < % using the tansmission line theory. The number of

Tmax

iteration is Nt = f( "

) with, fthe function which rounds the proposed ratio to the nearest
3000dx

integer less than or equal to that ratio, and, Tmax > . The characteristic impedance Z.

C
of the cable 50 Q and the one of the chafing fault Zris 62.5658 Q. Each segment d¥x is defined
as an inductance and a capacitance in parallel as shown in Figure 5-2. Between 1 m to 1.014

. . z : . .
m the inductance is defined as Ly = Tf and the capacitance as Cf = 1*C . Outside this interval

?
1 1
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we have L = % and = . Hence, the current and the voltage can be computed for each

c*C

segment for the injected chaotic signal solving the following equations:

al av

L%+R1+a=o, (51)
av ol
- 52
6t+6x 0 (5:2)

These equations are solved using the finite difference process in the time domain as
mentioned previously. Then, we do the correlation between the injected chaotic signal and the
obtained signal. Finally, the convolution between the right-side of this signal and a Gaussian
signal is carried out in order to filter our signal and to obtain a smooth reflected signal.

As the chosen chaotic signals are parameters dependent, the sensitivity about the parameters
of each signal is studied in the next sections in terms of soft fault detections. Furthermore, the
sensitivity on the fault detection against the used chaotic signal is also carried out in the next
sections. In the next paragraphs, both used chaotic signals are depicted.
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Figure 5-2. Transmission line model of the coaxial cable.

5.2.2 Combination of Logistic map and Bernoulli map

5.2.2.1 Definition

In this subsection, the combination between the logistic map and the Bernoulli map is
presented.
The logistic map is a chaotic second-order polynomial (5.3) using non-linear dynamical
equations.

Xm+1 = ka(l - Xm )I m= 1! 2;-"1M ” (53)

where k € [0,4], and M is the number of samples.
Usually, the Bernoulli map (5.4) is defined as follow:
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_ (By, + 0.5 ify, >0
In+1 = {Byn -05  ify, <0’ 54

with B a constant value.

We decide to combine the both maps. Using initial conditions {xo,ym’l}, the logistic map
generates the Bernoulli map (5.5) as follow:

Byy,, 105 ify <0
Yot { Buyp,-05 ify,,>0 " &N (5.5)
with
B, = 1.4+0.6x,,. (5.6)

where N is the number of samples. Therefore, the total number of samples of the chaotic
signal is M x N. The chaotic signal is S = [V}, Y5, ¥3,..,Yy |, where Y3, V5, Y3 ,.., Yy =
Y1 Yz Yz s Ymum ] 1s generated using (5.3), (5.5) and (5.6). This kind of signal with
these choices of parameters values ensures a chaotic behaviour as demonstrated in [145]. In
particular, we note a specific property related to the number of sample which is that the noise
level of this chaotic signal decreases as the number of the samples increases. Indeed, the noise
level of the chaotic signal noted L can be calculated using (5.7) according to [147]. For
instance, the S chaotic signal with 65000 samples has a —33.69 dB noise level, which is lower
than the one with 10000 samples which has a -28.00 dB noise level as shown in Figure 5-3.

L = —7log10 (NM) (5.7)
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Figure 5-3. Noise level versus sample number.

Finally, the chaotic signal S has two parameters which are the number of samples and the
value of k (in addition to the initial conditions). In the next subsection, a parametric study is
carried out in terms of soft fault detection.
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5.2.2.2 Parametric study

First, the sample number sensitivity is studied in terms of fault detection. Four chaotic signals
are compared; 1) a 20000 samples signal noted 20k signal, 2) a 40000 samples signal noted
40k signal, 3) a 50000 samples signal noted 50k signal, and, 4) a 65000 samples signal noted
65k signal. For each signal, N is fixed to 100 while M takes the value 200, 400, 500 or 650
respectively for the 20k signal, 40k signal, 50 signal and 65k signal. These generated signals
are illustrated in Figure 5-4 using k = 3.9,x, = 0.1 and y,,, ; = —0.4. By definition, these
signals are surrounded between -0.5 V and 0.5 V with the chosen parameters.
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Figure 5-4. The different generated chaotic signals with k=3.9.

Then, each signal is the injected voltage V; of Figure 5-2 and the reflected signal is computed
using the iterative procedure presented in the subsection 5.2.1. The obtained reflected signals
are illustrated in Figure 5-5. It appears clearly the peak related to the soft fault at 1 meter and
the one related to the “hard fault” at 3 m. It seems that the peak-to-peak amplitude related to
the soft fault at one meter increases with the number of samples of the injected signal.
Moreover, as expected according to (5.7), the noise level seems to decrease with the number
of samples of the injected signal. In order to quantify these assumptions, we define an

indicator as follow:
Apeak—to—peak
A= 20log;, (&> (5.8)

0[0,0.95]

with, Aszgkd:}aﬁﬁ ¥ the peak-to-peak amplitude related to the soft fault and 010,095 the standard
deviation on the interval [0, 0.95] m. Thus, the indicator A can be understand as a signal to
noise ratio which is hard to define for a chaotic signal because of its own structure. The higher
the indicator A is, the better the soft fault detection is. For instance, we can considerer the
fault detection acceptable while A > 6 dB which lead to a signal more than twice than the
“noise”. The results are depicted in Table 5-1. Indeed, the standard deviation decreases with

the increase of the number of samples of the injected signal. However, the peak-to-peak
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amplitude related to the soft fault is higher for the 40k signal than for the 50k signal or 65k
signal. Nevertheless, the “performance indicator” A can be considered better increasing the
number of samples. As a consequence, for the next paragraph, we will keep the 65k signal and
we will apply a variation on the k parameter in order to quantify the sensitivity in terms of
soft fault detection.
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Figure 5-5. Reflected signals for several chaotic signals with different number of samples. The inset is a zoom of

the signals on the interval [0.5,1.6] m.

Table 5-1. Performance indicators in terms of fault detection for several chaotic signals with different number of

samples.
20k signal 40k signal 50k signal 65k signal
Afj;kc_l:;ﬁfk (V) 0.3264 0.3521 03516 03411
070,0.95] (V) 0.0389 0.0348 0.0323 0.0310
A (dB) 18.4866 20.1130 20.7277 20.8409

Now, the sensitivity analysis about the k parameter of the proposed chaotic signal is carried
out. We note a small difference in the manner to generate the chaotic signals choosing to
initialize ym as follow:

Ymi=X—05Vme [1..M], (5.9)

with, X~U(0,1) which means that X is a uniformly distributed random number in the interval
[0,1], and, M=650. Therefore, we must use the same ym initial vector for each generated
signal in order to be consistent for comparison. This random initialization is important in
order to ensure a chaotic behavior for some k values. Indeed, with a constant initial value the
generated signal can be pseudo-periodic using k=2 for instance. We decide to analyze the
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reflected signal with three different values of k. The generated signals are illustrated in Figure
5-6. Using the iterative procedure presented in the subsection 5.2.1, we obtain the reflected
signals depicted in Figure 5-7. As previously, it appears the peak related to the soft fault at 1
meter and the one related to the “hard fault” at 3 m with a better dynamic increasing k. Thus,
the peak-to-peak amplitude related to the soft fault increases with k. From this figure,
conclusions about the noise level is not easy. Therefore, we compare the results with the
“performance indicator” defined in (5.8). This time, the standard deviation decreases with the
decrease of k. Nevertheless, the “performance indicator” A can be considered better by
increasing k.
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Figure 5-6. 65k signal with different values of k.
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Figure 5-7. Reflected signals for several 65000 samples chaotic signals with different values of k. The inset is a

zoom of the signals on the interval [0.5,1.6] m.

Table 5-2. Performance indicators in terms of fault detection for the 65k chaotic signal with different values of k.

k=1 k=2 k=3.9
eak-to-peak
Arecopek ) 0.0215 0.2590 0.5259
o005 (V) 0.0024 0.0270 0.0344
A (dB) 19.1706 19.6304 23.6884

5.2.3 Lorenz chaotic signal

5.2.3.1 Definition

The second chaotic signal used is the Lorentz chaotic signal. Edward Lorenz discovered a three
nonlinearly coupled ordinary differential equations called the Lorenz model. The dynamics of the
Lorenz chaotic system can be described in the equations:

dx

dt

x—
dt

dz

dt

= a(y(®) — x(0)),

o(y(0) —x(©)),

bz(t) + x(t)y(t).

(5.10)

(5.11)

(5.12)
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with o, b and r three parameters. Usually, =10, b=8/3 and r is variable. Nevertheless, to
obtain a chaotic behaviour the r parameter value must be higher than 24 3. Indeed, according
to the Lorentz attractor plots in Figure 5-8, we note that under this threshold value the
attractor converges to one value. As a consequence, for instance, the signal x(t) begins
pseudo-periodic as shown in Figure 5-9. We note also that the chaotic behaviour can have
some lags for r=28. It means that the signal is pseudo-periodic in the first 18 seconds, then,
the signal has a chaotic behaviour. Increasing the r value, this lag is reduced. At r=40, the
signal has a chaotic behaviour since zero second.
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Figure 5-8. Lorenz attractors for different r values.
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Moreover, this discussion about the threshold value and the time lag is also related to the
numerical solver of the Lorenz equations. The previous results (Figure 5-8 and Figure 5-9)
has been produced solving these equations with a 4" order Runge-Kutta algorithm. We
propose to study the impact of the ordinary differential equations (ODE) solver on the x(t)
result. Therefore, we compare the result with the 4™ order Runge-Kutta algorithm against the
result from the forward Euler method which leads to more important errors. Hence, we define
the initial conditions to=0, x0=0.1, yo=0.1 and z;=0.1. Then, we apply the iterative process
below:

dx
= - 5.13
Xe = Xp_q +dT I (5.13)
dy
= - 5.14
Ve =Yeq +dT ar’ ( )
dz
= i 5.15
Zy = Zp_q +dT I (5.15)
t; =t;_4 +dT. (5.16)

with dT the time step. The time step dT must be well chosen in order to obtain a stable
numerical solution with this kind of solving method. In particular, it must be “enough short”.
We choose two different time steps; dT1=0.0013 s and dT2=dT1/1000. The results are
displayed in Figure 5-10. First, it is obvious that the three manners to solve the ODE lead to
three different results. We note that the time lag is slightly different from the different solvers.
Furthermore, we expected that with a smaller time step (dT2), the solution could converge to
the Runge-Kutta solution. Indeed, we can see a better convergence between 18 seconds and
22 seconds. Therefore, it is hard to conclude. We can only said than the time steps required to
converge to the Runge-Kutta solution is not acceptable in terms of computation resources.
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To conclude, the chaotic Lorenz signal is three parameters signal. By setting 6=10, b=8/3 the
third parameter r must be higher than a threshold value which depend on the ODE solver.
Moreover, the time lag defined previously is reduced increasing the r value. As a
consequence, we decide to compare, in the next subsection, the influence of the r value in
terms of soft fault detection for =40 and r=50 with the 4" order Runge-Kutta solver. Both
signals are normalized between +0.5 V and -0.5 V in order to be consistent with the previous
chaotic signal studied in the subsection 5.2.2.1. Moreover, for the same reason, the signal is
compressed in the time scale with the same dt than previously.

5.2.3.2 Parametric study

First, as previously, the sample number sensitivity is studied in terms of fault detection. We
fixe =40 and we define four injected signals; 1) a 20000 samples signal noted 20k Lorenz
signal , 2) a 40000 samples signal noted 40k Lorenz signal, 3) a 50000 samples signal noted
50k Lorenz signal, and, 4) a 65000 samples signal noted 65k Lorenz signal. These signals are
the result of the x(t) solved with the 4" order Runge-Kutta solver (with t¢=0, x¢=0.1, y¢=0.1
and zo=0.1 as initial conditions) are normalized between +0.5 V and -0.5 V and compressed in
the time scale with the same dt than the used signals in the subsection 5.2.2.2. Figure 5-11
illustrates the proposed generated signals. Then, each signal is the injected voltage V, of
Figure 5-2 and the reflected signal that is computed using the iterative procedure presented in
the subsection 5.2.1. Figure 5-12 displays the obtained reflected signals. As in the subsection
5.2.2.2, the peak related to the soft fault at 1 meter, and, the one related to the “hard fault” at 3
m, appear. We note that the amplitude of the peaks is considerably higher with this kind of
signal. Nevertheless, the “noise” is also higher. Therefore, the “performance indicator”
defined in (5.8) is used to compare the result in terms of soft fault detection. The results are
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summarized in Table 5-3. Clearly, the higher the sample number, the better the soft fault
detection.

0.5 0.5

20K sampies]
z z
B 2
2 0 20
3 £
< <<
-0.5 05
0 0.5 1 1.5 2 25 3 Q 0.5 1 1.5 2 2.5 3
Time (s) w1077 Time (s) w107
0.5 ; ; 0.5 .
— 50k samples
E £
<F] @
ER R
£ £
< <
-0.5 : : : 0.5 : : :
1 15 2 25 3 0 0.5 1 L5 2 2.5 3
Time (s) =107 Time (s) <107
Figure 5-11. The different generated Lorenz signals with r=40.
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Table 5-3. Performance indicators in terms of fault detection for several Lorenz signals with different number of

samples.
20k signal 40k signal 50k signal 65k signal
Afjgké:?aﬁfk (V) 4.6538 4.5931 5.6722 5.8960
070,0.95] (V) 0.8171 0.6866 0.6813 0.5809
A (dB) 15.1111 16.5084 18.4087 20.1292

Now, the sensitivity analysis about the r parameter value of the 65k Lorenz signal is carried
out. We decide to analyze the reflected signal with two different values of r (=40 and r=50).
The generated signals are illustrated in Figure 5-12. Using the iterative procedure presented in
the subsection 5.2.1, we obtain the reflected signals depicted in Figure 5-14. Obviously, we
two peaks related to the faults are highlighted. It seems that increasing the r value leads to a
better fault detection. In order to verify this assumption, we use the “performance indicator”.
Indeed, the Table 5-4 confirms our assumption. The comparison between the 65k signal and

the 65k Lorenz signal is carried out in the next subsection.
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Figure 5-13. 65k Lorenz signal with different values of r.
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Figure 5-14. Reflected signals for 65k Lorenz signals with different values of r. The inset is a zoom of the
signals on the interval [0.5,1.6] m.

Table 5-4. Performance indicators in terms of fault detection for the 65k Lorenz signal with different values of r.

=40 =50
cak-to-peak
A et (V) 5.8960 56127
10,0.95] (V) 0.5809 0 4465
A (dB) 20.1292 71 9860

5.2.4 Conclusions

Finally, we want to validate the chaotic signal in terms of soft fault detection with
measurement. We had proposed in this section a simulation analysis with two signals 1) a
combination of the logistic map and Bernoulli map and 2) a Lorenz signal. This analysis leads
to increase the sample number of each chaotic signal in order to obtain better performances.
Furthermore, a sensitivity analysis has been performed on the parameters of both signals. We
conclude that for the combination of the logistic map and Bernoulli map, it is better to
increase the parameter k. Similarly, for the Lorenz signal, it is better to increase the r value.
Table 5-5 summarizes the results for the both signals. We can conclude that it should be better
to use the combination of the logistic map and Bernoulli map with 65k samples and k=3.9
than the 65k Lorenz signal with r=50 while the measurement dynamic is acceptable. As a
consequence, in the following, the measurement are performed with the combination of the
logistic map and Bernoulli map with 65k samples and k=3.9.
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of fault detection)
65k signal 65k Lorenz
(k=3.9) signal (r=50)
Af:gkc'lte‘]’;alffhak (V) 0.5259 5.6127
070,0.95] (V) 0.0344 0.4465
A (dB) 23.6884 21.9860

Measurement bench

Table 5-5. Performance indicators for the 65k signal and 65 Lorenz signal (with the “better parameters” in terms

The CTDR is based on the same concept as the TDR; the differences are in the exciting
signal, which is the chaotic signal generated via a Matlab script from an arbitrary waveform
generator AWG801 with a 8 GHz sampling frequency, and in the reflected chaotic signal,
which is visualized and collected using a Tektronix DPO 7354 digital phosphor oscilloscope
(DPO). The 8 GHz sampling frequency means that the time step dt = fmlax = 0.125 ns. The
arbitrary waveform generator AWG801 with the sampling frequency of 8 GHz has been
chosen in order to stimulate in the good frequency range the coaxial cable under test which is
a RGS58 coaxial cable. First, the chaotic signal is injected into the arbitrary waveform
generator through a T-junction loaded with a 50 Q matched load and we measure the reflected
signal S,.(t) with the oscilloscope. This step may be associated to a calibration in a manner of
speaking. Then, the 50 Q load is replaced with the cable under test and we measure the
reflected signal S;(t). Finally, we do the cross-correlated with the reference chaotic signal
S, (t) measured previously to detect the wiring faults as below:

Ry (Ta) =S¢ (©) ® S, (©). (5.17)
From the correlated result R,(Ty), the reflected signal can be computed using the right-side of
the correlation as in simulation previously. This measurement process is depicted in Figure
5-15. Moreover, from the correlated result R,(Ty), the length of the fault can be find using
(5.18) defined as follow:

Lf:CVde/Z. (518)
where, ¢ the celerity, vp = 0.66 the velocity factor of the cable, and T4 the round-trip time
between the input signal and the first reflection.

133



Uoes 1 15 1 A5 3
Thme (s et

Sarpll Signal , 50 € load or cable ]
Signal > -
: Generator under test
Generation
Reflected signal
* [ oo 9 ‘ ' measurement S, or S,
£ sl L with oscilloscope
g T
$u ] | '
? ¥l Correlation
o Mvvﬂ — _
o R, =5:®S,

=

0.5 1 15 2 5
Distance (m) #

TDR result

Figure 5-15. Measurement process.

Different cables under test are built with different soft faults. We note four different soft fault
illustrated in Figure 5-16. The first one has a 2.5-cm length and 2.5-mm thickness (Figure
5-16 (a)). Figure 5-16 (c) represents a soft fault with a 4-cm length. Figure 5-16 (b) depicts a
soft fault created by taking off the outer conductor at two positions separated by a length of 2
cm. Figure 5-16 (d) represents another soft fault with 2-cm length and a cut in the insulator
and shield of less than 30° (Figure 5-16 (d)). All these faults are created in a RG-58/U type
coaxial cable, with the characteristic impedance of 50 Q. This type of coaxial cables often
used for low-power signal and RF connections at moderately high frequencies. The signal

attenuation depends on the frequency, e.g. from 10.8 dB per 100 m at 50 MHz to 70.5 dB per
100 m at 1 GHz.

(c) (d)

Figure 5-16. Different types of soft faults: (a) 2.5-cm-long 90° cut in the insulator and shield of the coaxial, (b)
cuts in the shield and insulator, (¢) 4-cm-long 90° cut in the insulator and shield of the coaxial, and (d) 2-cm-
long <30° long cut on the insulator and shield of the coaxial.

Four measurement setups are studied in the following. These setups are displayed in Figure
5-17. The first one is a 2 m coaxial cable with the soft fault of Figure 5-16 (a), (b), (¢) or (d)
located at a point 1 m from the T junction. This setup allows the comparison between the
different soft faults. The second setup is a 2 m coaxial cable with simultaneously two faults;
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the soft fault of Figure 5-16 (d) and the soft fault of Figure 5-16 (b) respectively located at 1
m and 1.5 m from the T junction. This setup is created in order to prove that the method can
be applied for several soft faults in the same cable. The third setup is a 16 m coaxial cable
with the soft fault of Figure 5-16 (a) or (d) located at a point 15.1 m from the T junction. The
16 m cable is created by connecting cables of 10, 3, 1, and 2 m. This setup allows a sensitivity
analysis with the length of cable in comparison with the first setup. The last setup is a network
composed with one cable ¢l connected to two cables; one 3 m coaxial cable ¢3 without soft
faults, and one 2 m cable c2 with the soft fault of Figure 5-16 (a) or (d) located at 2 m of the
first T junction. This setup is built in order to study the feasibility of CTDR for different
network topologies in comparison with the previous ones. As shown in Figure 5-17, all the
cables are in open circuit.
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Figure 5-17. The different configurations of the measurement setup.
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5.4  Experimental results

5.4.1.1 For the first setup

First, the chaos TDR is performed for the faulted RG-58 coaxial cable, in which the soft fault
of 2.5 cm with 90° cut in the insulator (Figure 5-16 (a)) is located at 1 m (first setup of Figure
5-17). As a reminder, the injected signal is a 65k samples combination of Logistic map and
Bernoulli map. The measurement process depicted in section 5.3 is performed. The obtained
reflected signal is illustrated in Figure 5-18. The result shows that there is a visible and proper
reflection at 1 m in the cable, which corresponds to the reflected signal from the soft fault.
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Figure 5-18. Reflected signal for the 2 m coaxial cable with the soft fault of Figure 5-16 (a) located at 1 m.

Table 5-6. Performance indicators for reflected signal due to the soft fault 2.5 cm 90° with first measurement
setup.

Fault 2.5 cm 90° with
first measurement setup

eak-to-peak
Als)oﬁkdlfa?ﬂt (mV) 21.0118
010.009,0.99] (MV) 1.9637
A (dB) 20.5877

As expected, the reflected signal is slightly noisy. This noise and the quality of the fault
detection is therefore quantify using the “performance indicator” of (5.8). The results are
summarized in Table 5-6. We will try to enhance this “performance indicator”. The trick is to
subtract the reflected signal from a cable without default called nominal cable and the
reflected signal of the cable with the soft fault. Thus, the reflected signal of the faulted cable
is computed from:

Rp (Tq) =Scr (H) S, (D). (5.19)

with, Rp(Ty4) the cross-correlation between the reflected signal Scp from the nominal cable
and the injected signal S,;. Then, we subtract (5.19) from (5.17):
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Rp = Rp — Re. (5.20)

From Ry, we obtain the reflected signal illustrated in Figure 5-19. Obviously, the nominal
cable and the cable with a soft fault must have the same characteristics (dimensions, EM
characteristics, etc...). We note that the length of the nominal cable used here must be slightly
different in comparison with the cable with fault because of the peak obtained at 2 m. If the
both cables have the same length, this peak can disappear. As, we are interested in the soft
fault, it does not matter. Table 5-7 displays the performance indicators of the reflected signal
due to the soft fault 2.5 cm 90° with first measurement setup from (5.19) and (5.17). Although
the proposed enhancement reduce slighlty the peak-to-peak amplitude of the soft fault, it
increases significantly the fault detection performance by reducing considerably the noise. As
a consequence, all the following results come from (5.20).
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Figure 5-19. Reflected signal from (5.20) for the 2 m coaxial cable with the soft fault of Figure 5-16 (a) located
at 1 m.

Table 5-7. Comparison of the performance indicators of the reflected signal due to the soft fault 2.5 cm 90° with
first measurement setup from (5.20) and (5.17).

Fault 2.5 cm 90° with
first measurement setup

Fault 2.5 cm 90° with
first measurement setup

from (5.17) from (5.20)
Abscoral (mv) 21.0118 19.0710
0-[0.009’0.99] (mV) 19637 07167
A (dB) 20.5877 28.5005

Now, we will compare the impact of the different soft faults presented in Figure 5-16 in the
fault detection. Figure 5-20 displays the different reflected signals. We note, in particular, that
the length of the soft fault seems to have a smaller impact than the extracted volume of
insulator and shield. Indeed, the peak-to-peak amplitude due the 4 cm length fault with 90°
cut in the insulator and shield seems to be really close to the one with 2.5 cm length fault with
90° cut in the insulator and shield. Moreover, these amplitudes are, clearly smaller than the
one due to the 4.5 cm length fault with 120° cut in the insulator and shield, and, clearly higher
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than the one due to 2 cm length fault with less than 30° cut in the insulator and shield. In
order to quantify this, the performance indicators are presented in Table 5-8. The previous
observations are confirmed according to the peak-to-peak amplitude. Nevertheless, the noise
with the 2.5 cm length fault with 90° cut in the insulator and shield is noticeably smaller than
the one with the 4 cm length fault with 90° cut in the insulator and shield. Thus, it leads to a
better performance indicator for the 2.5 cm length fault with 90° cut in the insulator and
shield which is close to the one of the 4.5 ¢cm length fault with 120° cut in the insulator and
shield. Furthermore, we note that the results of Table 5-8 are slightly different than the ones
of Table 5-7 for the same fault. It can be explained by the fact that we did another measure
leading to new results. In this thesis, the measurement uncertainties have not been studied.
This topic could be an interesting perspective of the work proposed in this manuscript.
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Figure 5-20. Reflected signal from (5.20) for the 2 m coaxial cable with the soft faults of Figure 5-16 located at 1
m.
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Table 5-8. Comparison of the performance indicators of the reflected signals due to the soft fault of Figure 5-16
for the 2 m coaxial cable.

Fault 2.5 cm Fault 4 cm 90° | Fault 2 cm <30° Fault 4.5 cm
90° with first with first with first 120° with first
measurement measurement measurement measurement
setup from from setup from setup from setup from
(5.20) (5.20) (5.20) (5.20)
A‘;j;k;;?;i‘??k (mV) 19.8901 20.9076 9.5383 45.4478
070.009,0.99] 0.4386 1.0689 0.7596 0.9878
(mV)
A (dB) 33.1313 25.8275 21.9774 33.2572

5.4.1.2 For the second setup

In this section, we are interested in the second setup which is, as a reminder, a 2 m coaxial
cable with simultaneously two different faults (Figure 5-16 (d) and (b)) respectively located at
1 and 1.5 m from the T junction. Figure 5-21 displays the obtained reflected signal. First, we
note that the first fault seems to be hard to detect even considering the dynamic. Moreover,
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we note a small shift of the first fault which must be located at 1 m. This shift can be
explained by the fact that the nominal cable has, as previously, a different length in
comparison to the cable under test. This measurement uncertainty leads to an uncertainty in
the soft fault location unlike the previous results. Indeed, the error regarding the cable length
is clearly higher than previously according to the peak at 2 m. We propose to analyze the
results with the performances indicators of Table 5-9. Regarding the peak-to-peak amplitude
versus the “noise” and the performance indicator of the first fault, we can consider the
detection of this fault acceptable. Obviously, the second fault can be easily detected by the
proposed method. This experiment highlights the performance of the proposed method
applied on a coaxial cable with different soft fault regarding simultaneously an accuracy due
to the impact of the soft faults and the measurement uncertainties.
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Figure 5-21. Reflected signals for the 2 m coaxial cable with the soft fault of Figure 5-16 (d) located at 1 m and
the soft fault of Figure 5-16 (b) located at 1.5 m.

Table 5-9. Performance indicators of the reflected signals due to the soft fault of Figure 5-16 (d) and (b) for the
second setup.

Fault 2 cm <30° with
second measurement
setup from (5.20)

Fault 4.5 cm 120°
with second
measurement setup

from (5.20)
eak-to-peak
ASn dtefalillt (mV) 11.9704 93.5093
010.009,0.99] (MV) 1.4343 14343
A (dB) 18.4292 362841

5.4.1.3 For the third setup

In this subsection, we are interested in the sensitivity with the length of the cable in terms of
fault detection. Hence, we consider a 16 m coaxial cable with two different soft faults (Figure
5-16 (a) or (d)) located at 15.1 m from the T junction. As a reminder, the 16 m cable is created
by connecting cables of 10, 3, 1, and 2 m. It is important to note that the lengths of the
connectors between the cables can be considered as additional lengths for the fault location.
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Figure 5-22 illustrates the both reflected signals with an inset which shows a zoom of both
signals in the distance interval of the soft faults. Both peaks clearly appears. Once again, the
nominal cable and the cables under test have a different length according to the peak close to
16 m. This time, it does not significantly affect the fault location. As previously, the
performance indicator is chosen as a quantifier with a standard deviation computed in the
interval [1.98, 9.90] m. The results are summarized in Table 5-10. The trend is the same as the
one in Table 5-8, it leads to a better performance indicator for the 2.5 cm length fault with 90°
cut in the insulator than for the 2 cm length fault with less than 30° cut in the insulator and
shield. We note that for the 16 m coaxial cable the amplitudes related to the soft faults are
smaller than the ones with the 2 m coaxial cable. However, the dynamic is better when the
noise is smaller. To conclude, the length of the cable is not an obstacle for the soft fault
detection using the proposed method.
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Figure 5-22. Reflected signals for the 16 m coaxial cable with the soft faults of Figure 5-16 (a) and (d) located at
15.1 m. The inset shows a zoom of both signals in the distance interval of the soft faults.

Table 5-10. Performance indicators of the reflected signals due to the soft fault of Figure 5-16 (a) and (d) for the

third setup.
Fault2.5cm | Fault 2 cm <30°
90° with third with third
measurement measurement
setup from setup from
(5.20) (5.20)
Areactorsik (my) 8.1960 1.9898
O71.989.90] (MV) 0.1417 0.0618
A (dB) 35.2470 30.1558
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5.4.1.4 For the fourth setup

To study the feasibility of CTDR for different network topologies, the measurement of a cable
with a single T-connection was performed, as shown in Figure 5-17. As a reminder, this setup
correspond to one cable ¢l connected to two cables; one 3 m coaxial cable ¢3 without soft
faults, and one 2 m cable c2 with the soft fault of Figure 5-16 (a) or (d) located at 2 m of the
first T junction. Two different faults (Figure 5-16 (a) and (d)) located in the middle of ¢c2 are
studied. To perform the subtraction (5.20), a topology similar to that of the nominal cable
measurement was used to obtain the reference signal needed for the subtraction process. The
obtained reflected signal is displays in Figure 5-23. The peaks at 1 m correspond to the T
junction between the cables cl, ¢2 and ¢3, while the peak close to 2 m correspond to the soft
fault, the peak close to 3 m is related to the end of the cable c2 and the one close to 4 m
correspond to the end of the cable c3. Except for the peak related to the soft fault, the others
are due to the measurement uncertainties as explained before. In any event, the soft fault
might be detected with a small location error. The performance indicator is used to quantify
our results with a standard deviation computed in the interval [1.485, 1.980] m. The results
are presented in Table 5-11. The same conclusions as previously can be made. The
performance indicator for the 2.5 cm length fault with 90° cut in the insulator is better than
the one for the 2 cm length fault with less than 30° cut in the insulator and shield. Although,
the dynamic is slighly lower in the cables networks than in the second or third setup, the faults
are detectable. These results prove that CTDR can be used in multiple-cable networks.
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Figure 5-23. Reflected signals for the cables network with the soft faults of Figure 5-16 (a) and (d) located at 2

m.

Table 5-11. Performance indicators of the reflected signals due to the soft fault of Figure 5-16 (a) and (d) for the
fourth setup.

Fault 2.5 ¢cm 90° with
fourth measurement
setup from (5.20)

Fault 2 cm <30° with
fourth measurement
setup from (5.20)

cak-to-peak
A et (mV) 0.0464 3.4697
O[1.98,9.90] (MV) 0.2737 03313
A (dB) 30.3848 204019
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5.4.1.5 Conclusions

An improved chaos TDR has been presented for wire diagnosis. Different measurements have
been performed for four different setup with different soft faults. The different kinds of soft
faults have been analyzed with the different topology of the cable. In all measurements, the
chaos TDR assures an efficient performance with relatively accurate results for any kind of
soft faults. In particular, it has been shown that the length of the soft fault seems to have a
smaller impact than the extracted volume of insulator and shield. Moreover, we demonstrated
that the length of the cable should not be an obstacle for the soft fault detection using the
proposed method. Finally, we highlight that proposed CTDR can be used in multiple-cable
networks.

5.5 Conclusions

The chaotic signal is only a recent advancement in science within the last few decades.
Although the chaotic signal suffered from various disadvantages, mainly being vulnerable in
the application, it can detect wiring faults because it is broadband, and sensitive to initial
conditions. Different techniques exist to produce chaotic signals, such as chaotic masking.
Thus, adaptive algorithms have been used to provide promising results.

In this chapter, we first perform a simulation analysis with two signals 1) a combination of the
logistic map and Bernoulli map and 2) a Lorenz signal. The sensitivity analysis carried out on
the parameters of both signals lead us to use the combination of the logistic map and
Bernoulli map with 65k samples and k=3.9 for measurement. Indeed, it has been shown that
this signal allows a better fault detection in comparison with the Lorenz signal, even if the
Lorenz signal could be used. Hence, we proposed a measurement method based on the CTDR
with an arbitrary waveform generator and an oscilloscope. The method has been improved
doing in a manner of a calibration replacing the faulted cable with a nominal cable. In
practice, it is not easy to perform this kind of calibration for industrial process as cable cannot
be replaced. However, we can calculate the reference signal just after the certification of a
device or another. Finally, the proposed method allows us to obtain promising results with a
better dynamic. Furthermore, some limits about the measurement uncertainties of this method
has been raised. This topic could be an interesting perspective of the work proposed in this
manuscript. A sensitivity analyze has been performed with different kinds of soft faults and
different setup of cables. The proposed measurement method provides efficient performance
with relatively accurate results for any kind of soft faults or cables setups. In particular, it has
been proved that the proposed method is efficient in multiple-cable networks in terms of soft
fault detection. In the future, it could be interesting to investigate the limits of the method
according to the soft faults and the cable topologies.

Furthermore, the chaos TDR is a promising method for the diagnosis of the complex cables
networks because of its orthogonality. This point has not been studied in this manuscript.
Nevertheless, it could be really interesting to investigate it in the future work. Moreover, the
method is also promising for the real-time detection as the chaotic signals can be considered
as a “noise”, and, thus, they should not disturb the useful injected signal. In addition, the
chaotic signals can easily be generated by using arbitrary waveform generators (AWG),
FPGAs or microcontrollers. These electronic devices and circuits are fairly less expensive to
build than a TDR equipment or a VNA thus reduces the cost of implementation of chaos
TDR.
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Conclusions / Perspectives

The objective of this research was to examine whether a Bayesian approach, time—frequency
analysis, and chaotic signal techniques could be used to make earlier chafing fault detection
possible. The main challenge in model-based TDR is to diagnose incipient faults in non-linear
dynamic systems under the assumption that input, and output measurements are affected by
the disturbances caused by faults in a system. In the thesis, four approaches were introduced.
These techniques were applied to coaxial cables with one or two faults and to a cable network.
When different denoising tools were applied, the outputs of some of these diagnostic tools
contained useful information for other treatment tools. In other words, integrating denoising
methods and using their information in a hybrid framework will increase the accuracy of the
fault diagnosis task. The EMD method is a more efficient method than LMD and the DWT to
denoise the signal while conserving the fault signature. The EMD method suffers from a lack
of a full, generally accepted theoretical framework. Thus, it is of immense importance that an
analytical formulation for the so-called mean envelope be developed for characterization of
this method. The main problems are associated with the fact that the local mean of a signal
depends on its characteristic local time scales. The LMD method is developed from EMD and
has the same drawbacks as EMD. However, it loses the fault signature while denoising the
signal. The process of DWT is different from EMD and LMD, as it filters the signal with low-
pass and high-pass filters. Although it thresholded the signal at each level, it was unable to
maintain the fault information due to its weak amplitude.

Time—frequency analysis has been proposed for processing the signal after denoising. In these
fault detection algorithms, it might use only output measurements, which might provide
enough information to detect certain types of faults. Moreover, the time—frequency method
can provide satisfactory results for certain non-linear signals. We can say that the proposed
CWT method is robust compared to the other time—frequency methods STFT and WVT.
Using the CWT method, we can detect wiring faults. However, due to the noise level and
window length, the time—frequency methods are not able to localize and isolate these faults.
Hence, intelligent techniques to isolate faults should be used. The Bayesian method can be
used to extract information from data to construct posterior parameters. These parameters
correspond to fault characteristics. This process can serve as a step towards earlier chafing
fault detection in processes that do not necessarily operate at steady state. Using a coaxial
cable model to simulate the reflected signal at its entry, the simulated signal can be
converging to the reflected signal. This convergence is effected by solving the Bayesian
approach via either NS or the GN algorithm. Although, the results show that NS performs
better than GN in terms of stability, GN method converges faster than NS.

At the end, an improved chaos TDR is presented for real-time wire diagnosis. Different
measurements of different topologies of the cable with different kinds of faults are performed
for both hard and soft faults detections. In all measurements, the chaos TDR assures an
efficient performance and accurate results for any kind of soft faults. In addition, the chaotic
signals can easily be generated by using arbitrary waveform generators (AWG). These
electronic devices are fairly less expensive to build than a TDR equipment or a VNA thus
reduces the cost of implementation of chaos TDR. This thesis presents soft fault detection
methods and assesses their feasibility for fault detection and location.

The following future work can be carried out to improve the potential of our proposed
methods. In this thesis, the Bayesian approach is analysed on a coaxial cable based on prior
parameters. This proposed method needs to be modified to better analyse faults and improve
precision. To do so, the Maxwell equations should be used to predict the prior parameters,
which will increase computational complexity. In addition, the soft fault used in this thesis is



modelled as an impedance. In upcoming work, the fault will be introduced as RLC parameters
to increase accuracy and performance in soft fault detection. The last point invoked in Chapter
4 is the chafing fault detection using a Bayesian approach based on prior parameters. To go
further in subsequent studies, temperature should also be taken into consideration as prior
parameters. For Chapter 5, experiments using CTDR were conducted to detect different fault
types via the Bernoulli map. The proposed methods can also be analysed with other chaotic
maps. Moreover, the implementation of the chaos TDR for the live wire monitoring in a T-
network.
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Abstract

In this thesis, we present new approaches of soft fault detection and location in simple and
complex wire networks. The idea is to find a new approach to overcome the difficulties with
standard reflectometry techniques. We prove that before applying post-treatment methods,
denoising techniques should be applied, such as empirical mode decomposition (EMD), local
mean decomposition (LMD), or the discrete wavelet transform (DWT). These three methods
decompose a signal into multiple levels to threshold them before signal reconstruction.
Testing several applications shows that EMD is the most efficient method, although it has
some limitations as side effects. After the denoising step, the wiring faults can be detected.
Time—frequency analysis is employed at this step. This approach, based on the Fourier
Transform, is able to detect wiring faults only if the noise level is low. To overcome this
difficulty, the Bayesian approach is beneficial when system complexity increases. Its response
is based on estimation of prior parameters and prior distributions. In this work, the Bayesian
approach is applied via a formal mathematical study followed by simulation results validating
the proposed approach, with analysis of the parameters that affect the method’s performance.
In the domain of soft fault location, we derive a chaos time domain reflectometry approach
based on chaotic signal properties. Our simulation and experimental results prove that this
method can synthesize signals and localize the soft fault position without the need for
supplemental methods.

Résumé

Dans cette these, nous présentons de nouvelles approches pour la détection de défauts sur des
structures filaires plus ou moins complexes. L’idée est de trouver une nouvelle approche pour
surmonter les difficultés des techniques de réflectométrie standards. Tout d’abord, des
techniques de débruitage doivent étre appliquées, telles que la décomposition en mode
empirique (EMD), la décomposition moyenne locale (LMD), ou la transformée des ondelettes
discrete (DWT). Ces trois méthodes décomposent un signal en plusieurs niveaux de
reconstruire un signal utile. On montre dans ce manuscrit que I’EMD est la méthode la plus
efficace, bien que limitée par les effets de bords. Ensuite, [’analyse temps fréquence est
utilisée afin de détecter et localiser les défauts sur le cablage. Cette approche, basée sur la
transformation de Fourier, ne permet de détecter les défauts de cablage que si le niveau de
bruit est faible d’ou I’intérét de la premiére étape de débruitage. Par ailleurs, on propose aussi
une approche bayésienne utile notamment lorsque la complexité du systéme augmente. Sa
réponse est basée sur l’estimation des parameétres et des distributions a priori. Dans ce
manuscrit, ’approche bayésienne est décrite mathématiquement puis les résultats validant
I’approche sont présentés en analysant en particulier les parameétres qui affectent la
performance de la méthode. Enfin, nous utilisons une approche de la réflectométrie chaotique
temporelle basée sur les propriétés du signal chaotique. Les résultats montrent que cette
méthode est capable de synthétiser des signaux et de localiser les défauts de cablage
sans prétraitement ou informations a priori.
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