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La bonne réception de signaux ainsi émis par plusieurs utilisateurs implique deux dicultés majeures. Premièrement, les signaux de chaque utilisateur interfèrent au niveau de la station de base, ce qui génère de l'interférence inter-utilisateur (IUI) et complexie sensiblement le décodage du signal. De plus, ces signaux subissent lors de leur propagation l'inuence de leur environnement, modélisée par le canal de propagation. Ces canaux sont inconnus du récepteur, mais leur estimation est cruciale pour garantir une transmission able : c'est le problème d'estimation du canal. Dans les réseaux actuels, le traitement de l'interférence inter-utilisateur est le plus souvent réalisé par de l'accès multiple dit orthogonal.

Par exemple, l'accès orthogonal en temps consiste en ce que les utilisateurs transmettent leur signal à tour de rôle dans des intervalles de temps successifs, tandis que l'accès orthogonal en fréquence attribue aux utilisateurs des bandes de fréquence séparées. Cela permet ainsi de prévenir l'interférence, les contributions des diérentes sources ne se recouvrant pas. L'estimation du canal se fait quant à elle via des symboles pilotes c'est-à-dire des séquences prédéterminées connues du récepteur, qui lui permettent par comparaison avec le signal réellement reçu d'en déduire une estimation du canal. Ces séquences pilotes ne portent en revanche aucune information sur le signal en lui-même.

xii Résumé Bien qu'ecaces, ces techniques induisent une raréfaction de la bande passante et une réduction du débit utile qui deviennent de plus en plus dicile à concilier avec les applications sans l modernes telles que l'Internet des Objets (IoT), lesquelles exigent des débits toujours plus élevés sur des réseaux de plus en plus denses en utilisateurs. Dans la perspective des prochaines générations de réseaux il est donc crucial de pouvoir aller au-delà de ces limitations en considérant d'une part de l'accès multiple non orthogonal (NOMA), permettant ainsi à plusieurs utilisateurs d'émettre dans les mêmes ressources, qu'elles soient temporelles, fréquentielles ou autres, et l'estimation aveugle de canal, qui s'aranchit des séquences pilotes et n'utilise que le signal utile pour estimer le canal de propagation.

Modélisation

La communication entre un utilisateur et sa station de base est modélisée de la manière suivante : tout d'abord, le signal émis par l'utilisateur consiste en une séquence de N nombres complexes s n nommés symboles, qui prennent leur valeur uniformément dans un ensemble ni C appelé constellation. Les symboles d'une constellation, génériquement notés c, représentent l'amplitude et la phase d'un signal de référence, la porteuse, qui consiste en une simple sinusoïde de fréquence supposée connue du récepteur et qui sert de support à la transmission des symboles on parle alors de modulation linéaire. On peut distinguer trois grandes familles de telles modulations, à savoir les modulation en amplitude (ASK), dont la constellation associée consiste en des points régulièrement espacés sur l'axe réel, les modulations en phase (PSK), pour lesquelles les symboles sont disposés en cercle, et les modulations en quadrature (QAM), dont les symboles sont répartis selon une grille carrée (voir Fig. 2 Lors de sa propagation, le signal émis subit un certain nombre de modications dues à son environnement. Ces modications sont représentées par le canal de propagation, qui en général est une fonction complexe du temps et de la fréquence. Une approximation forte faite dans cette thèse est celle du canal plat , dont la réponse en fréquence est constante sur la bande passante du signal émis. Un tel canal est alors modélisé par un simple nombre complexe h. Le signal est de plus perturbé par des uctuations aléatoires modélisées par un bruit complexe additif w de distribution gaussienne circulaire de variance N 0 .

Au niveau de la station de base, le signal reçu consiste alors en une série de N symboles notés r n donnés par r n = hs n + w n

où w n est une réalisation du bruit. Du fait de ce dernier, les symboles reçus ne coïncident pas avec les symboles de la constellation d'où ils ont été émis. Pour estimer les symboles qui lui ont été envoyés, le récepteur utilise alors le principe de la détection à seuils, qui consiste à associer à chaque symbole reçu le symbole de la constellation qui lui est le plus proche. Il a pour ce faire besoin au préalable de compenser l'inuence du canal, ce qui nécessite donc une estimation de h, notée h. L'imprécision de cette estimation ainsi que le bruit impliquent En supposant que les utilisateurs émettent chacun N symboles, le vecteur des symboles reçus r s'écrit comme r = hS + w, avec h le vecteur canal, qui contient les coecients de canal de chaque source, S la matrice des symboles émis, dont chaque ligne représente les symboles émis par un utilisateur donné, et w le vecteur des réalisations du bruit. La récupération des symboles émis par chaque source implique donc un double problème d'estimation, à savoir estimer le vecteur canal h et la matrice des symboles émis S. Ce type de problème est connu dans la littérature sous le nom de séparation de sources aveugle (BSS). Le travail présenté dans cette thèse se place en réalité dans un cas limite de ce xiv Résumé problème puisque les transmissions considérées sont mono-antennaires, c'est-à-dire que la station de base et les utilisateurs ne sont pourvus chacun que d'une seule antenne. Du fait de sa complexité, cette instance du problème de séparation de sources est relativement peu traitée dans la littérature, comparativement aux cas à plusieurs antennes.

Méthodes et objectifs

Une approche particulièrement répandue pour résoudre ce double problème d'estimation (h, S) est celle de l'annulation successive d'interférence (SIC) [START_REF] Verdú | Multiuser detection. CambridgeK[END_REF], qui repose sur l'hypothèse que les contributions de chaque source à la puissance totale du signal reçu sont très diérentes.

Cela permet de décoder le signal source par source, par ordre de puissance reçue décroissante, en assimilant les signaux issus des sources de moindre puissance à du bruit. Lorsque cette hypothèse est vériée, l'annulation successive d'interférence fournit en eet une méthode peu coûteuse et performante pour séparer les signaux d'utilisateurs en accès non orthogonal.

En revanche, dès que plusieurs sources ont des puissance comparables à la réception, les conséquences en termes de taux d'erreur s'avèrent la plupart du temps dramatiques. Les erreurs commises se propagent de plus à l'estimation des sources restantes, pénalisant ainsi doublement les sources les moins puissantes : étant décodées en dernier, elles sourent d'une latence de traitement plus élevée, et sont les plus à même d'être l'objet d'une mauvaise estimation. Ainsi ce type d'approche n'est pas adapté aux cas où l'interférence entre les sources est prédominante, et on préfèrera dès lors se tourner vers des méthodes de détection conjointe.

L'algorithme au c÷ur de cette thèse, connu sous le nom d'Iterative Least Squares with Enumeration (ILSE) [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF], constitue une alternative pertinente au SIC en ceci qu'elle propose une estimation conjointe du vecteur canal et des symboles émis. L'approche utilisée est celle dite du maximum de vraisemblance, qui consiste à chercher les paramètres du mélange les plus vraisemblables compte tenu des symboles observés. Dans le cas du mélange linéaire gaussien, la fonction à minimiser, notée J, revêt la forme particulièrement simple d'un problème des moindres carrés :

J(h, S) r -hS 2 (3) 
La minimisation directe de cette fonction n'étant pour autant pas accessible, l'algorithme ILSE propose une procédure itérative basée sur l'alternance entre la minimisation de J par rapport à h, la variable S étant alors xée, et la minimisation de J par rapport à S à canal xé. Ainsi, partant d'une estimation initiale h 0 du canal, l'algorithme en déduit une première estimation de la matrice des symboles émis, qui à son tour est utilisée pour obtenir une estimation anée du canal, et ainsi de suite jusqu'à ce que l'algorithme atteigne un point xe, qui correspond à un minimum de la fonction J. L'estimation du canal à une itération donnée, h t , compte tenu des symboles estimés à l'étape précédente S t-1 est donnée par l'estimateur ordinaire des moindres carrés :

h T t = r S † t-1 S t-1 S † t-1 -1 (4) 
xv L'estimation de la matrice des symboles émis à partir de l'estimation du canal se fait quant à elle en associant chaque symbole reçu au symbole de la constellation estimée qui lui est le plus proche. Il s'agit donc d'une détection à seuils eectuée sur la constellation mélange estimée, appelée dans le cadre de cet algorithme l'étape d'énumération :

S t = argmin S∈(C 1 ו••×C K ) N r -h T t S 2 (5) 
La gure 3 illustre la constellation mélange estimée à convergence de l'algorithme dans le cas d'un mélange de deux QAM 4 pour deux estimations initiales diérentes du vecteur canal.

Dans le premier cas (à gauche) on constate une estimation quasi-parfaite du canal et des symboles émis, qui correspond au minimum global de la fonction J. En particulier, les modulations en quadrature régulières exhibent une propriété structurelle remarquable appelée structure hiérarchique : toute constellation QAM à 4 m symboles, notée ici C m , peut être décomposée de manière non unique en une combinaison linéaire de deux QAM de taille inférieure selon l'équation ensembliste suivante :

C m = 2 m-m C m + C m-m (6) 
Pour une QAM de taille 4 m , on dénombre ainsi m -1 décompositions hiérarchiques non triviales. Si on prend le cas d'une QAM 64 par exemple, on vérie que n'importe quel symbole c de la constellation associée peut être obtenu par combinaison linéaire d'un symbole de QAM 4, c 1 , multiplié par 4, et d'un symbole de QAM 16, noté c 2 , ou de manière équivalente à partir d'un symbole de QAM 16 multiplié par 2 et d'un symbole de QAM 4, tel qu'illustré sur la gure 4.

On montre alors que ces décompositions induisent un ensemble de points xes situés en {h, 2h, 4h, • • • 2 m-1 h}, que l'on appelle points xes hiérarchiques. La phase d'énumération associée à ces points particuliers peut être vue comme une projection de la constellation observée sur la constellation dont le préfacteur est le plus grand dans la décomposition hiérarchique correspondante.

En reprenant le cas de la QAM 64 l'étape d'énumération associée au point 4h ramène chaque symbole c sur le symbole c 1 de sa QAM 16 sous-jacente.

On obtient ainsi un sous-ensemble de points xes, commun dans sa construction à toutes les QAM et plus généralement à toute constellation basée sur une structure hiérarchique. En particulier, ces résultats s'appliquent directement aux modulations en amplitude (ASK), qui sont les homologues réels des constellations QAM.

On peut également obtenir une cartographie complète des points xes dans le régime asymptotique par simulation, en initialisant l'algorithme ILSE sur un nombre susant de points dans le plan complexe. Le résultat obtenu pour la QAM 16 avec un canal pris égal à 1 est représenté sur la gure 5, à gauche. Cet exemple constitue le cas non trivial le plus simple à considérer, étant donné que la QAM 4, et plus généralement les modulations en phase (PSK), n'admettent qu'un seul point xe dans le régime asymptotique à certaines rotations près, comme montré à la section II.3.1. Outre la position des points xes on accède également à leur région de convergence, c'est-à-dire l'ensemble des points du plan complexe tel que l'algorithme ILSE converge vers un point xe donné. La couleur associée à chacune de ces régions est représentative de la valeur de la fonction de coût à convergence de l'algorithme, les zones plus sombres correspondant à des minima locaux plus profonds .

On vérie la présence des deux points xes hiérarchiques prévus par la théorie, situés en h et 2h, auxquels viennent s'ajoutent quatre autres points xes, spéciques à la QAM 16, dont l'expression exacte est donnée dans le tableau II.1 et qui n'ont pas d'interprétation géométrique évidente vis-à-vis du minimum global h. On relève également la symétrie de l'ensemble par rapport à la première bissectrice, conséquence de la symétrie par rotation et par conjugaison complexe de la constellation.

La procédure peut être réitérée pour des QAM d'ordre supérieur. La partie droite de la gure 5 montre le résultat obtenu pour la QAM 256, et le cas de la QAM 64 peut être visualisé sur la gure II.11. Le nombre de points xes augmente drastiquement avec la taille de la constellation : sans compter les répliques obtenues par symétrie, on en dénombre une On peut alors envisager essentiellement deux stratégies d'initialisation : choisir un point initial h 0 extrêmement loin en module du véritable canal, ce que l'on nomme l'approche lointaine , ou à l'inverse choisir un point initial de module très faible, que l'on appelle approche perturbative . Dans le premier cas, la recherche du minimum global s'eectue de manière détournée, en faisant converger l'algorithme vers le point xe hiérarchique de module le plus élevé, c'est-à-dire 2 m-1 h, et dont on peut directement déduire le canal h. Ce point présente en eet le double avantage d'être commun à toutes les QAM et remarquablement bien isolé des autres points xes. Le vecteur des symboles émis qui lui est associé, obtenu via la phase d'énumération, a de plus la particularité de n'être constitué que de quatre symboles distincts contre 4 m pour l'ensemble de la constellation, ce qui le rend aisément détectable. Pour ce qui est de l'approche perturbative, l'objectif est de converger directement vers le minimum global, h. Compte tenu de la forme des régions de convergence au voisinage de l'origine, la meilleure stratégie consiste à choisir un point arbitrairement proche de 0, l'envergure en angle de la région de convergence associée au minimum global (zone la plus sombre) augmentant à mesure que l'on s'approche de l'origine. Dans les deux cas, le canal étant inconnu il n'est pas possible de savoir à l'avance quelle phase choisir pour que le point initial appartienne à la zone de convergence du point xe désiré. En pratique xix l'algorithme doit donc être testé sur plusieurs points initiaux avec des phases diérentes, qu'on peut choisir régulièrement espacées, et garder la solution qui atteint la plus petite valeur en termes de fonction de coût.

La question est maintenant de savoir si les stratégies d'initialisation proposées sont applicables hors du cas asymptotique, c'est-à-dire à nombre de symboles reçus ni et bruit non nul. On eectue donc des simulations Monte Carlo sur des QAM 16 et QAM 64 en moyennant sur un grand nombre de canaux tirés aléatoirement le taux d'erreur symbole obtenu en initialisant l'algorithme ILSE via la méthode lointaine et perturbative. Les résultats sont présentés section II.5.2 en fonction du rapport E b /N 0 qui donne le rapport signal à bruit.

De manière générale, la méthode perturbative se révèle plus able que l'approche lointaine. Ce résultat peut s'expliquer par le fait que l'introduction du bruit dans le mélange a pour eets de déplacer, masquer ou ajouter certains minima locaux. Ce phénomène est d'autant plus marqué sur les minima locaux les plus superciels, et en particulier le point hiérarchique vers lequel la stratégie lointaine repose. Il est alors extrêmement dicile de prévoir vers quel point xe l'algorithme converge. Les deux méthodes se révèlent néanmoins supérieures à la stratégie d'initialisation naïve, notamment dans le cas de la QAM 16 pour lequel l'approche perturbative donne des résultats identiques à la situation idéale avec un canal parfaitement connu du récepteur. La raison pour laquelle la méthode perturbative est moins performante pour la QAM 64 tient au fait que l'espacement en angle utilisé entre les diérents essais d'initialisation est le même que pour la QAM 16, là où les régions de convergence de la QAM 64 sont plus resserrées en angle les unes des autres. Il est donc possible d'obtenir de meilleures performances en utilisant une résolution angulaire plus élevée, au prix d'un nombre d'essais plus important. On constate également un gain signicatif par rapport à la stratégie naïve en termes du nombre d'itérations avant convergence de l'algorithme ILSE, cumulé sur les diérentes initialisations. Le nombre d'itérations moyen reste cependant assez élevé, les méthodes d'initialisation considérées étant aléatoires et ne se basant pas sur le signal reçu pour en extraire une estimation initiale du canal.

Outre ces stratégies d'initialisation aléatoire, on peut également initialiser l'algorithme ILSE en utilisant directement le signal reçu. Deux méthodes sont ainsi proposées : la première est basée sur un algorithme de classication appelé k-produits [START_REF] Paul | A global algorithm to estimate the expectations of the components of an observed univariate mixture[END_REF]. L'algorithme original étant inutilisable hors des modulations PSK, une généralisation tirant parti de la structure hiérarchique des QAM et des ASK est eectuée, appelée k-produits hiérarchiques, et permet à la fois un gain en précision et une baisse de complexité. L'algorithme produit une classication initiale des symboles émis que l'on peut ainsi utiliser via l'étape d'estimation du canal, Eq.( 4), pour obtenir une estimation initiale de h. La seconde méthode consiste à utiliser les statistiques du signal reçu, et plus particulièrement ses moments, pour en déduire une expression théorique du canal. Ces deux méthodes se révèlent par simulation extrêmement ecaces en termes de précision et de complexité et surpassent assez largement les méthodes d'initialisation aléatoire précédentes.

À un utilisateur, il est donc possible de mettre en évidence un certain nombre de propriétés des points xes de l'algorithme ILSE, en se basant sur la structure géométrique des constel-xx Résumé lations considérées, et plus particulièrement la structure hiérarchique des QAM régulières. L'étude et l'utilisation de ces points xes permettent d'élaborer des méthodes d'initialisation aléatoires améliorées par rapport à la stratégie naïve traditionnelle. En particulier, la stratégie perturbative se présente comme la plus able du fait de sa grande robustesse aux eets du bruit sur les points xes, et également la moins coûteuse. Ces approches restent néanmoins assez sophistiquées, et sous-optimales dans le sens où elles ne tirent pas avantage de l'information contenue dans le signal reçu. Ceci amène à considérer d'autres stratégies d'initialisation pour traiter le cas de plusieurs utilisateurs.

Détection aveugle à plusieurs sources

Une approche générale pour l'initialisation de problèmes d'optimisation connus comme étant non convexes, consiste à chercher un initialiseur statistiquement moins performant que l'estimateur du maximum de vraisemblance, mais plus facilement accessible. L'idée sousjacente étant que la méthode d'initialisation choisie fournisse un estimateur susamment able pour appartenir à la région de convergence du minimum global. La stratégie adoptée consiste donc à obtenir, à partir du signal reçu r, un premier estimateur h 0 du vecteur canal, qui servira ensuite comme point initial pour l'algorithme ILSE. La méthode d'estimation retenue est celle de la méthode des moments, qui repose sur le fait que les quantités statistiques déduites du signal reçu, exprimées comme une fonction vectorielle T des moments µ n de r, dépendent explicitement des paramètres du modèle, ici le vecteur canal h, via une certaine fonction g. L'estimateur de la méthode des moments, h 0 , est alors obtenu en inversant cette dépendance et en substituant aux moments théoriques de la variable r leur équivalent empirique µ n (r):

T (µ 1 (r), µ 2 (r), • • • , µ n (r))) = g(h) ⇒ h 0 = g -1 (T(µ 1 (r), µ 2 (r)), • • • , µ n (r)) [START_REF] Eriksson | Essential Statistics and Tools for Complex Random Variables[END_REF] Les sources s k étant indépendantes, un choix naturel pour les quantités statistiques à considérer réside dans les cumulants κ n (r) du signal reçu, qui s'expriment comme des polynômes particuliers des moments, et ont l'avantage d'être additifs sur des sommes de variables aléatoires indépendantes. On se limite ici aux pseudo-cumulants, c'est-à-dire aux cumulants qui ne font pas intervenir la conjuguée complexe de r.

κ n (r) = K k=1 h n k κ n (s k ) + κ n (w) (8) 
L'expression du n-ième cumulant peut être simpliée en invoquant d'une part la symétrie circulaire continue du bruit, qui implique que tous les cumulants non-circulaires de w sont nuls, permettant ainsi de s'aranchir d'une dépendance explicite de l'estimateur vis-à-vis du bruit. D'autre part la symétrie de rotation discrète de chaque source s k , caractérisée par un entier q k appelé cyclicité, implique que seuls les cumulants de la source s k d'ordres multiples de q k peuvent être non nuls. On obtient ainsi une équation polynomiale faisant intervenir les coecients du canal mis à la puissance q k , notés η k , des coecients combinatoires dénis par xxi α p,q (p k q k )! p k (q k !) p k et les moments des sources mises à la puissance q k , notées χ k :

κ n (r) = k∈Dq(n) η p k k α p k ,q k κ p k µ 1 (χ k ) α 1,q k , µ 2 (χ k ) α 2,q k , • • • , µ p k (χ k ) α p k ,q k (9) 
L'estimateur des moments h 0 est alors obtenu en choisissant un ensemble de cumulants d'ordres appropriés et en résolvant le système associé.

De manière générale, il n'existe pas de solution exacte au problème des moments (9) pour un nombre de sources quelconque. Le choix du nombre de cumulants à considérer et de leur ordre dépend du nombre de sources et des relations arithmétiques entre leur cyclicité. Le tableau 1 présente un certain nombre de mélanges pour lesquels une expression théorique de l'estimateur du vecteur canal a été obtenue avec les cyclicités associées aux constellations considérées et les ordres des cumulants utilisés. Au-delà de trois ou quatre sources le problème devient en général insoluble analytiquement, et l'application à un nombre arbitraire de sources nécessite donc de recourir à des méthodes numériques. On montre néanmoins qu'il est toujours possible, par un choix approprié de cumulants, d'obtenir un système triangulaire par blocs, ce qui permet dans certains cas une résolution exacte. En particulier, lorsque les cyclicités des constellations du mélange sont toutes diérentes, le système devient triangulaire, ce qui permet une résolution par récurrence pour un nombre arbitraire de sources. Table 1 Exemples de mélanges résolus analytiquement par la méthode des moments.

Mélange

Parmi les mélanges considérés le cas de deux QAM régulières de taille respective M 1 et M 2 constitue un exemple récurrent dans cette thèse. Toutes les QAM ayant la symétrie du carré, leur cyclicité est égale à 4. Les cumulants d'ordre 4 et 8 du signal reçu permettent alors d'exprimer les coecients du canal mis à la puissance 4 en fonction du nombre de symboles de chaque QAM et de la valeur moyenne et pseudo-variance empiriques du signal mis à la puissance quatrième : 

η 1 (m) = -15/8 M 2 1 M 2 2 -1 • (M 2 2 + 1)ρ + (-1) m+1 M 2 2 -1 M 2 1 -1 γ(µ ρ , σ 2 ρ ) (10a) η 2 (m) = -15/8 M 2 2 M 2 1 -1 • (M 2 1 + 1)ρ + (-1) m+1 M 2 1 -1 M 2 2 -1 γ(µ ρ , σ 2 ρ ) (10b)
h 1 s 1 + h 2 s 2 = h 1 s 1 + h 2 s 2 (11) 
r n = L =1 h τ s n-τ + w n (12) 
Les trajets multiples empruntés par le signal introduisent de l'interférence inter-symboles 

On fait également l'hypothèse d'un canal à mémoire courte, à savoir que le nombre de trajets est petit devant le nombre de sous-porteuses, L P , ce qui est souvent le cas en pratique. 

H = F L H (14) 
avec H la matrice P × L des canaux temporels et F L la restriction de la matrice de Fourier de taille P à ses L premières colonnes. Cette approche est d'autant plus justiée que le nombre de sous-porteuses P est généralement grand devant la mémoire L des canaux. En estimant le canal directement en temps, on diminue ainsi considérablement le nombre de paramètres eectifs du modèle par la même occasion.

On procède donc à la généralisation de l'algorithme ILSE aux transmissions OFDM, que l'on appelle simplement ILSE-OFDM. La fonction de coût à minimiser est donnée par la somme sur les sous-porteuses des fonctions de coût de l'algorithme d'origine, en remplaçant de plus les canaux fréquentiels hp par leur expression en termes de la matrice des canaux temporels H :

J P (H, { Sp }; R) = P p=1 rp -f p H Sp 2 = P p=1 J(f p H, Sp ; rp ) (15) 
avec f p la p-ième ligne de la matrice F L . Les symboles entre chaque sous-porteuse étant indépendants, l'étape d'énumération consiste simplement en P étapes d'énumérations en parallèle qui donnent la matrice des symboles émis relative à chaque sous-porteuse. La principale diérence tient à l'étape d'estimation du canal, qui implique la minimisation de J par rapport à la matrice H :

vec (H) =   P p=1 ( ST p ⊗ f p ) † ( ST p ⊗ f p )   -1 vec   P p=1 f † p rp S † p   (16) 
avec vec (H) le vecteur de taille LK obtenu en superposant les colonnes de H.

Reste à considérer le problème de l'initialisation de l'algorithme, qui nécessite une estimation temporelle initiale du canal. L'application de la méthode des moments sur chaque sousporteuse p donne un vecteur ηp qui contient les estimations du p-ième coecient fréquentiel du canal de chaque utilisateur mis à la puissance sa cyclicité. On construit ainsi une matrice Ξ0 dont chaque colonne ξk donne une estimation du canal en fréquence d'un utilisateur donné, mis à la puissance sa cyclicité q k . On dispose ensuite d'un algorithme connu sous le nom d'autodéconvolution, qui utilise le fait que la transformée de Fourier discrete inverse de la puissance q-ième du vecteur canal fréquentiel d'un utilisateur donne la convolution cyclique du canal temporel avec lui même q fois :

ξ = hq ⇒ ξ = h q h h • • • h q fois (17) 
En développant l'expression de cette 

ρ w (x) = 1 N n=1 w n N n=1 w n 1 -tanh x n -x 2 (18) 

Thesis objectives

This thesis addresses the above issues by considering the two-fold problem of blind channel estimation and multiuser signal detection in scenarios where interference is predominant, and with the additional constraint that only one antenna is available at the receiver. Blind estimation of channel and sources have received considerable interest in the past decades, and have led to the development of a wide diversity of techniques in the context of Blind Source Separation (BSS) [START_REF] Cardoso | Blind signal separation: statistical principles[END_REF]. Of particular interest are the estimation methods based on the Maximum Likelihood (ML) approach, which exhibit very interesting statistical properties.

However, these methods most often involve resolution of non-convex optimization problems.

As a consequence, these algorithms have the undesirable property of converging to spurious solutions depending on the initial point they are provided with, which stronly limits their practical use.

The main objective of the presented work is to understand under which conditions convergence of the above approaches towards spurious solutions can be prevented, and to propose optimization strategies for making them more likely to converge to their global minimum in a single try.

In particular our study will be centered around the ILSE algorithm [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF], an iterative method initially proposed in the framework of overdetermined linear mixtures. Our motivation is to show that, within reasonable assumptions about the incoming signals, information on the potential xed points of the algorithm and initialization strategies can be jointly used to achieve low detection error rates even in the worst-case scenario of a single-sensor and maximal degree of interference.

Outline

The thesis is divided into ve chapters with an increasing order of complexity in the considered transmission models. The rst chapter is designed as an introductory part to the basic tools and fundamental concepts pertaining to wireless communications. The main assumptions that constitute the basis for the forthcoming developments are exposed at the end of the chapter, in light of the notions reviewed therein.

The second chapter considers one of the simplest conceivable communication model, namely the point-to-point transmission in a at-fading propagation environment. The clustering approach to the joint ML channel estimation and symbol detection is presented along with the core algorithm of our study, ILSE. We show that, in the simple case of a single source, it is possible to infer information about the location of the xed points based on the geometric properties of the source constellations. Consequently, some blind strategies taking into account this information are proposed so as to ensure convergence of the algorithm towards its global minimum even starting from a totally random initial state.

Two simple initialization techniques derived from the received data are discussed as well and tested through simulations. The results reveal that in this oversimplied case it is indeed possible to make the algorithm converge to its global minimum with a single try.

The third chapter stands as the cornerstone of the presented work and introduces IUI by considering the at-fading multiple access channel transmission with an arbitrary number of users and one single sensor. Based on the connection of the model to BSS, we propose general channel estimators to be used as initial states for ILSE derived from the cumulants of the received signal and the method of moments. Explicit expressions for the channel estimators are derived in diverse mixture settings. The proposed initialization scheme is compared to the traditional SIC techniques and demonstrates both the pertinence of the ML approach and the necessity to nd good initial states for the algorithm. A further analysis of the obtained results shows that the situations in which ILSE is likely to converge to a local xed point are restricted to a predictable subset of channel realizations, and that some of the corresponding outcomes of the algorithm can be identied, thus allowing the design of possible corrective strategies.

In the fourth chapter we consider the more realistic model of a frequency-selective multiple access channel. In the framework of multicarrier transmissions, this problem can be casted as several parallel at-fading multiuser transmissions. Based on the assumption of a short impulse response in comparison to the number of subcarriers, an extension of ILSE allowing for a temporal estimation of the channel is derived. Several initialization strategies addressing the phase and permutation ambiguities inherent to the BSS problem are discussed, and the overall scheme is evaluated by simulations. The method is shown to have the potential to perfectly estimate the channel provided that all phase and source ordering ambiguities can be reliably solved.

The fth and last chapter is devoted to an enlarged discussion around cluster analysis, and in particular the ability of clustering algorithms to detect and appropriately deal with clusters that are partially merged or entangled This rst chapter is devoted to an introduction of the key fundamental concepts used troughout this thesis. Its content is divided in three parts, namely theory of complex random variables, statistical estimation and wireless communication principles. The objective is to provide the reader with the minimal material required for this work to be accessible, hence the addressed topics are not intended to be exhaustive. References to classical books from the literature are provided all along the chapter for the reader interested in more technical details and advanced considerations.

I.1 Generalities on complex random variables

Signal processing, in particular when applied to wireless communications, is mostly concerned with complex-valued random signals. Complex random variables thus stand as the natural framework for modeling such processes. Yet, fundamentals results from probability theory expressed in the complex formalism are seldom encountered in the literature. This introductory part makes a good opportunity to review well-known elementary notions of probabilities in the complex eld framework.

I.1.1 Basic denitions and functions

Most of the probabilistic results on complex random variables readily follows from the theory of two-dimensional random vectors. Let X and Y be two real random variables, supposedly continuous for simplicity. The scalar complex random variable Z, dened by Z X + iY with i the square root of -1, is entirely described by its probability density function (pdf ) p Z (z), which is a real-valued function dened on (a part of ) the complex plane C. The natural isomorphism between Z and the bivariate random vector (X, Y ) allows p Z (z) to be dened by p Z (z) p (X,Y ) ( (z), (z)) 2i denote the real and imaginary parts of z respectively, and p (X,Y ) (x, y) is the joint pdf of (X, Y ). The summability condition of p Z can be written

z∈C p Z (z)dz = 1 (I.2)
with dz dxdy. Alternatively, Z can be written in polar coordinates as

Z = R exp (iΘ), with R |Z| = √ X 2 + Y 2 and Θ Arg Z = arctan (Y /X
) the modulus and (principal determination of ) the argument of Z, respectively. The corresponding expression of p Z (z) in terms of the joint pdf of (R, Θ) then reads

p Z (z) = 1 |z| p (R,Θ) (|z| , Arg z) (I.3)
From (I.3) the pdf of the modulus of Z can be expressed as a contour integral of p Z (z),

p R (r) = 1 i C(0,r) p Z (z) |z| z dz = 2π 0 p Z (re iθ )rdθ (I.4)
where C(0, r) denotes the circle of radius r centered at the origin of the complex plane.

Closely related to the pdf is the cumulative distribution function (cdf ) of Z, denoted by F Z (z)

and dened by

F Z (z) P (Z z) = P (X ≤ (z) ∪ Y ≤ (z)) = F (X,Y ) ( (z), (z)) (I.5)
where F (X,Y ) is the joint cdf of (X, Y ) and is the partial order on C induced by the nonnegative, component-wise generalized inequality on R 2 [START_REF] Boyd | Convex optimization[END_REF]. The relation between F Z (z) and p Z (z) can then be written [START_REF] Eriksson | Essential Statistics and Tools for Complex Random Variables[END_REF] p [8].

Z (z) = 2i ∂ 2 F Z (z) ∂z 2 - ∂ 2 F Z (z) ∂z *
A third way of describing a complex random variable Z is by means of the rst characteristic function (cf ) Φ Z (z), dened by

Φ Z (z) E exp i 2 (zZ * + z * Z = Φ (X,Y ) ( (z), (z)) (I.7)
where Φ (X,Y ) (x, y) is the usual characteristic function of the real random vector (X, Y ). The cf Φ Z (z) is closely related to the moments of Z, as shown in the next section.

I.1.2 Moments of complex random variables

The moments of a complex random variable Z are dened directly from those of real random variables by linearity of the expectation operator E on the complex eld. That is, the mean of Z, E [Z] simply reads

E [Z] E [X] + iE [Y ] (I.8)
provided E [X] and E [Y ] are well-dened. The major dierence with respect to real random variables is that both Z and its conjugate Z * can be used in the denition of moments. For instance, there are two distinct second-order moments, given by E Z 2 and E |Z| 2 (the

third possibility being E (Z * ) 2 = E Z 2 *
which is redundant with E Z 2 ). For a given integer n there are n 2 + 1 essentially distinct n-th order moments, where • is the oor function. In order to account for this multiplicity the following compact notation is often used in the literature

µ q p (Z) E [Z p (Z q ) * ] (I.9)
Equivalently, the moments of Z can be obtained from the rst cf (I.7) as

µ q p (Z) = 2 i p+q ∂ p ∂z p ∂ q ∂z * q (Φ Z (0)) (I.10)
In the rest of this thesis we will mainly be interested in the pure (i.e. non-mixed) moments of Z. Thus we will simply drop the exponent in (I.9), so that µ n (Z)

≡ µ 0 n (Z) = E [Z n ].
Similarly to the case of real random variables, the central moments of Z are dened as the moments of the centered variable Z -E [Z]. Of particlar interest are the central moments of order 2, respectively known as the variance V [Z] and pseudo-variance J [Z] and given by

V [Z] E |Z -E [Z]| 2 = E |Z| 2 -|E [Z]| 2 = V [X] + V [Y ] (I.11a) J [Z] E (Z -E [Z]) 2 = E Z 2 -E [Z] 2 = V [X] -V [Y ] + 2i Cov (X, Y ) (I.11b) where V [X] and V [Y ] respectively denote the usual variance of X and Y and Cov (X, Y ) E [(X -E [X])(Y -E [Y ]]
) is the covariance between X and Y . A complex random variable having a zero variance is equivalent to a deterministic complex number.

On the other hand, a random variable having zero pseudo-variance implies for its real and imaginary parts to have the same variance and be uncorrelated. If, in addition to J [Z] = 0

we have E [Z] = 0, then Z is called a proper random variable [START_REF] Neeser | Proper complex random processes with applications to information theory[END_REF].

Chapter I. Technical background I.1.3 Circularly-symmetric complex random variables A complex random variable Z is called circular-symmetric if, for any ϕ ∈ [0 ; 2π[, Z and e iϕ Z have the same distribution [START_REF] Picinbono | On circularity[END_REF]. The pdf of such variable is spherical with respect to the origin, i.e. p Z (z) = g(|z|) for a given real-positive function g. From (I.3) the pdf of the modulus of Z simply reads p R (r) = 2πrg(r)

(I.12)
It also follows from the denition that all non-absolute (p = q) moments µ q p (Z) of a circularlysymmetric random variables are null. This is easily seen by imposing Z and e iϕ Z to have the same moments for any ϕ, so µ q p (Z) = µ q p (e iϕ Z) = e iϕ(p-q) E [Z p (Z q ) * ] = e iϕ(p-q) µ q p (Z)

(I.13)
hence µ q p (Z) = 0 whenever p = q. In particular, all pure moments µ n (Z) with n > 0 are null.

A sucient condition for a random variable Z to be circular-symmetric is for its argument to be uniformly distributed in [0 ; 2π[ and decorrelated from |Z|. The most well-known example of such variable is the circularly-symmetric normal distribution, whose distribution is given as [START_REF] Goodman | Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (An Introduction)[END_REF] p Z (z)

1 πσ 2 e -|z| 2 σ 2 (I.14)
where the parameter σ 2 gives the variance of Z, V [Z] = σ 2 . Eq.(I.14) is equivalent to the bivariate real gaussian distribution with zero mean and covariance matrix σ 2

2 1, with 1 the identity matrix of dimension 2. The particular case σ = 1 corresponds to the standard complex normal distribution, which is the complex analog of the standard normal distribution.

From (I.12) the pdf of the modulus of a circularly-symmetric normal variable is given by p R (r) = 2r σ 2 e -r 2 σ 2 , r ≥ 0

(I.15)
which is a Rayleigh distribution with parameter σ √ 2 [START_REF] Montgomery | Applied statistics and probability for engineers[END_REF]. The moments of R (the absolute moments of Z) read

E [R n ] = σ n n 2 Γ n 2 (I.16)
with Γ(x) the gamma function [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF].

I.1.4 Cumulants

Cumulant are statistical quantitites alternative to moments and central moments. They are formally dened as the derivatives at the origin of the second characteristic function,

Ψ Z (z) Log(Φ Z (z))
, where Log(z) denotes the principal determination of the complex logarithm κ q p (Z)

2 i p+q ∂ p ∂z p ∂ q ∂z * q (Ψ Z (0)) (I.17)
Similarly to the moments we have κ q p (Z) = κ p q (Z) * , so for a given integer n there are n 2 + 1 distinct cumulants. The only cumulant of order 1 is the mean of Z, and the two cumulants of order two are the variance and pseudo-variance of Z. For real random variables, the third and fourth-order cumulants are involved in the skewness and kurtosis of the pdf, respectively. More generally, higher order cumulants can be thought of as measures of deviation of Z from the complex normal distribution, for which all cumulants of order higher than two vanish [START_REF] Comon | Handbook of blind source separation: independent component analysis and applications[END_REF].

Cumulants of order n can be expressed as polynomials of degree n in the moments of Z and their conjugates. Restricting to the specic case of pure cumulants, we can write

κ n (Z) = P n (µ 1 (Z), µ 2 (Z), • • • , µ n (Z)) (I.18)
where P n is a n-variate polynomial of degree n and the same simplied notation as for pure moments was used. The rst polynomials P n (z

1 , • • • , z n ) read [15] P 1 (z 1 ) = z 1 (I.19a) P 2 (z 1 , z 2 ) = z 2 -z 2 1 (I.19b) P 3 (z 1 , z 2 , z 3 ) = z 3 -3z 2 z 1 + 2z 2 1 (I.19c) P 4 (z 1 , z 2 , z 3 , z 4 ) = z 4 -4z 3 z 1 -3z 2 2 + 12z 2 z 2 1 -6z 4 1 (I.19d)
In the following, to avoid dealing with multiple notations we will most often write the n-th pure cumulant κ n (Z) and its polynomial expression in terms of its moments alike. Additionally, when the context makes it clear we will also drop the explicit dependency of the moments in their underlying variable Z, making the three following notations equivalent

κ n (Z) ≡ κ n (µ 1 (Z), µ 2 (Z), • • • , µ n (Z)) ≡ κ n (µ 1 , µ 2 , • • • , µ n ) (I.20)
One of the principal motivations for use of cumulants is their additivity property for mutually independent random variables. That is, if (Z 1 , Z 2 , • • • Z n ) denotes a set of n mutually independent complex random variables, then

κ q p (Z 1 + Z 2 + • • • + Z n ) = κ q p (Z 1 ) + κ q p (Z 2 ) + • • • + κ q p (Z n ) (I.21)
This is essentially a consequence of the additivity of the complex logarithm and the factorization of the characteristic function of a random vector with independent components into the product of the characteristic function of each component. Additionally, the n-th pure cumulant is a complex-homogeneous function of degree n in the complex random variable Z,

meaning that κ n (cZ) = c n κ n (Z) (I.22)
for any complex number c. More generally, all n-th order cumulants are real-homogeneous functions of degree n in Z.

I.1.5 Convergence of random variables

Convergence modes of complex random variables do not formally dier from their real counterparts. Given a sequence Z n , n ∈ N, of complex random variables, there are four usual Chapter I. Technical background notions of convergence of Z n towards a complex random variable Z:

Almost sure convergence: Z n a.s.

→ Z ⇔ P Z n (ω) → n→∞ Z(ω) = 1 (I.23a)
Convergence in probability:

Z n p → Z ⇔ ∀ε > 0, P (|Z n -Z| > ε) → n→∞ = 0 (I.23b) Convergence in distribution: Z n d → Z ⇔ F Zn (z) → n→∞ F Z (z) (I.23c)
Convergence in r-th mean:

Z n r → Z ⇔ E [|Z n -Z| r ] → n→∞ 0 (I.23d)
As is well-known [START_REF] Grimmett | Probability and random processes[END_REF], almost sure convergence implies convergence in probability, which itself implies convergence in distribution. Convergence in r-th mean implies convergence in probability but generally share a direct relation with the other convergence modes. The most common occurrences of the convergence in r-th mean are the convergence in mean (r = 1) and the mean square convergence (r = 2).

From denitions (I.23a)(I.23d) many properties on the convergence of operations on random variables can be derived. We only retain the so-called continuous mapping theorem [START_REF] Vaart | ser. Cambridge series in statistical and probabilistic mathematics[END_REF], which states that almost sure convergence, convergence in probability and convergence in distribution are preserved under continuous functions. Formally,

Z n a.s./p/d -→ Z ⇒ g(Z n ) a.s./p/d -→ g(Z) (I.24)
for any complex function g continuous everywhere except possibly on a set with probability zero for the probability measure of Z.

The above convergence modes nd a direct application in the most fundamental limit theorems of statistics: the almost sure convergence and convergence in probability are respectively involved in the strong and weak law of large numbers, while convergence in distribution is at the core of the Central Limit Theorem. For scalar complex variables the latter reads

1 N N n=1 Z n d → N C(µ, σ 2 /N, γ 2 /N ) (I.25)
for any sequence Z n of independent and identically distributed complex random variables with mean E [Z] = µ, variance V [Z] = σ 2 and pseudo-variance J [Z] = γ 2 , and where N C(µ, σ 2 , γ 2 ) denotes the complex normal distribution

Z ∼ N C(µ, σ 2 , γ 2 ) ⇔ p Z (z) = 1 π σ 4 -|γ| 4 exp |z -µ| 2 σ 2 -(γ 2 (z * -µ * ) 2 ) σ 4 -|γ| 4 (I.26)
with V [Z] = σ 2 and J [Z] = γ 2 . The circularly-symmetric complex normal variable (I.14) is obtained as a special case of (I.26) for γ = 0.

I.2 Estimation theory

Estimation theory is concerned with infering properties of an unknown random process with only a limited amount of information available. More specically, given a sample of N observations of the process under consideration, as well as some possible prior information on its statistical properties, one aims at drawing the most accurate conclusions on the process so as to characterize or predict its behavior within as small uncertainty as possible. Typical examples include meteorological forecast, poll-based electoral strategies or stock market prices predictions, among countless others [START_REF] Kay | Fundamentals of statistical signal processing, ser. Prentice Hall signal processing series[END_REF].

I.2.1 Denitions

Formally speaking, the unknown random process is modeled by a complex random variable (or vector, or function) Z, and the sample consists in N realizations (Z 1 , • • • , Z N ) of Z, usually assumed but not necessarily independent. A priori partial knowledge on Z can be of many kinds, including constraints on its value range, statistical independence of its components for a vector, ergodicity or stationarity for a time series, and so on. In the framework of parametric estimation, the random variable Z is known to belong to a family of probability distributions p θ (z) parametrized by a parameter vector θ taking its values in a set Θ. In this context the aim of estimation theory is to nd from the observed sample the actual value θ 0 of Θ taken by Z. Alternatively one may be more interested in statistical quantities derived from the distribution of Z, typically the mean or the variance, which are functions of θ 0 . Estimation methods then consist in deriving functions of the observations

T (Z 1 , • • • , Z N )
, called statistics, such that whatever value θ 0 the actual distribution of Z may have, T (Z 1 , • • • , Z N ) yields a good approximation of θ 0 or the function g(θ 0 ) of interest. The resulting rule is called an estimator of θ 0 (or g(θ 0 )), and is denoted by θ, i.e. θ

T (Z 1 , • • • , Z N ).
The estimator is itself a random variable, as it depends on the random observations through the statistics T . A particular realization of θ is called an estimate of θ 0 , and the quantity of interest (θ 0 ) the estimand. The distribution parameter is usually considered as deterministic, but may also be considered random so as to model the uncertainty or lack of information about the underlying statistical data model. The latter case corresponds to the Bayesian inference philosophy [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]. From a more general perspective, it is not always possible, nor relevant, to assume an a priori parametric model for the estimation problem under consideration. Non-parametric estimation refers to this class of methods which do not imply a full parameter characterization, or do not rely on a specic type of distribution at all. Latter approaches are also termed distribution-free [START_REF] Gibbons | Nonparametric statistical inference[END_REF].

In the next parts of the thesis we will occasionnally make the following distinction on estimators depending on the nature of the quantity they aim at nding:

• we will call estimator a statistics or a rule which aims at nding a deterministic quantity. This is the most-encountered case and corresponds to the above denition for parametric models;

• we will call predictor a statistics for which the estimated quantity is itself random.

Typically, given a random variable Z a predictor Z aims at producing an instantaneous value which is as close as possible as the current realization of Z.

The notion of predictor encompasses that of estimator, in the sense that the latter is obtained from the former by simply imposing the predicted random variale to be deterministic. For this reason in the literature the term estimator is often found to refer to both notions alike.

It is also worth mentioning that despite being apparently close, the notions of predictor and Bayesian inference are fundamentally dierent in that the interpretation of randomness is not the same: in the Bayesian framework the use of a probability distribution for the estimand stems from a degree of incertitude in the assumed data model. On the other hand, the variable estimated by a predictor is the result of an actual random process, to which the observed data are subsequent.

I.2.2 Properties of estimators

Once an estimator (or a predictor) has been derived, the fundamental question to address is that of its quality. Loosely speaking, a good estimator θ is one that tends to produce estimates close to the actual value θ 0 . There are several ways of formally dening this notion of accuracy. The most intuitive one is to check whether the estimates of θ are on average close to the estimand θ 0 . This is measured by the bias B( θ):

B( θ) θ 0 -θ (I.27)
An estimator achieving a null bias is said to be unbiased: the realizations produced are on average identical to the estimated quantity. The simplest example of an unbiased estimator is the sample mean of a random variable Z, denoted by Z:

Z = 1 N N n=1 Z n (I.28)
for which we have trivially E Z = E [Z]. On the opposite, the uncorrected sample variance and pseudo-variance are respectively biased estimators of the variance and pseudo-variance of Z. For the variance we have indeed

σ 2 1 N N n=1 |Z n -Z| 2 ⇒ E σ 2 = N -1 N V [Z] (I.29) so that B(σ 2 ) = V[Z]
N , and similarly for J [Z]. The uncorrected sample variance and pseudo-variance are however asymptotically unbiased, meaning that their bias goes to 0 as the sample size N tends to innity.

Another way of assessing how close a given estimator is from its estimand is by measuring its mean square deviation, known as the Mean Square Error (MSE) and dened by

MSE( θ) E | θ -θ 0 | 2 = |B( θ)| 2 + V θ (I.30)
Estimators minimizing the MSE are called Minimum Mean Square Error (MMSE) estimators. Such estimators are endowed with better statistical properties than unbiased ones. Yet exact derivation of the MMSE is often unachievable. A reasonable compromise then consists in restricting oneself to the class of Minimum Variance Unbiased Estimators (MVUE). As can be seen from the decomposition of the MSE as the sum of the squared-modulus bias and the variance of θ Eq.(I.30), MVUE are usually suboptimal compared to MMSE estimators, as the latter are not necessarily unbiased. However the study of MVUEs is easier than that of MMSE, and several statistical tools, such as the Cramer-Rao Lower Bound (CRLB) exist to help achieving or at least approaching the MVUE [START_REF] Kay | Fundamentals of statistical signal processing, ser. Prentice Hall signal processing series[END_REF]. A further suboptimal class of estimators is provided by the Best Linear Unbiased Estimators (BLUE), which consists in estimators that are linear in the observations, unbiased and whose variance is minimal compared to any other linear unbiased estimator. Except for some specic cases, the BLUE does not generally coincide with the MVUE.

Several other quality properties of estimators can be dened. One of the most important is consistency, which means that an estimator converges in probability to its estimand, i.e. θ p → θ 0 . If convergence holds almost surely, we say that the estimator is strongly consistent. Other useful properties of estimators include eciency, asymptotic normality and robustness [START_REF] Ramachandran | Mathematical statistics with applications. Amsterdam[END_REF]. In the remaining sections we briey review some of the most well-known classes of estimators.

I.2.3 Least Squares Estimators

Least Squares Estimators (LSE) refer to a wide class of estimators that are built upon minimizing the squared deviation between an observed sample Z 1 , • • • Z N and a set of predicted data Z 1 , • • • Z N . More specically, the observations Z n are assumed to originate from a predened data model depending on the parameter θ 0 to be estimated, and are corrupted by additive noise:

Z n = f (s n , θ 0 ) + B n (I.31)
where f is a known function, s n a deterministic known m-th dimensonal vector and B n is a random variable modeling the noise, usually assumed to have zero mean. The LSE is then obtained by searching the estimated data according to the same model, Z n = f (s n , θ)), and minimizing the sum of squared residuals between the observed and estimated samples with respect to θ:

J LS N n=1 |Z n -f (s n , θ)| 2 (I.32)
The dierent least-squares approaches depend on the form of the function f . In the simplest setting, the data is supposed to depend linearly on θ 0 , so that f (s, θ 0 ) = s T θ 0 , where s T is the transpose of s, i.e. a row vector of dimension m. This is called the Linear Least Squares (LLS) problem, and the minimum of (I.32) is then given by the so-called normal equation

θ = (SS † ) -1 S † Z (I.33) where S (s 1 , • • • s N )
is the M × N matrix obtained by concatenating the vectors s n , † denotes the hermitian transpose and Z (Z 1 , • • • Z N ). The resulting estimator θ is known as the Ordinary Least Squares (OLS) estimator.

Generally, neither the OLS estimator nor LSE exhibit any optimality condition as is the case for the MMSE or MVUE estimators. This is because the least-squares cost function does not take into account the full random nature of Z but only specic realizations. One can notably see that (I.32) is merely a sampled version of the MSE, Eq.(I.30). The very same reason accounts for the ubiquity of least-squares methods in practical applications, as they do not require any probabilistic assumption on the noise B n (the zero-mean assumption is not an actual requirement for use of least-squares methods). There are cases however where the LSE can be related to other classes of estimators. The most well-known such example is given by the Gauss-Markov theorem [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF], which states that under the assumptions that the noise realizations B n are uncorrelated, zero-mean and homoscedastic (i.e. with identical variance), the OLS estimator coincides with the BLUE. Furthermore, with the additional assumption that the B n 's are distributed according to a circular-symmetric complex normal variable (Eq.(I.14)), the OLS estimator can be shown to be the MVUE.

Least squares methods are extensively used in a wide variety of problems such as curvetting and regression analysis [START_REF] Keeping | Introduction to statistical inference[END_REF], to name a few. Extensions of the LLS model to less restrictive hypotheses include the Weighted Least Squares (WLS) problem, which assumes the noise variables have dierent variances (heteroscedasticity), the Generalized Least Squares (GLS) problem, which further accounts for correlation between the noise realizations, and Non Linear Least Squares (NLLS) which considers non linear function-based data models [START_REF] Strutz | Data tting and uncertainty: a practical introduction to weighted least squares and beyond[END_REF].

I.2.4 The method of moments

The method of moments [START_REF] Kay | Fundamentals of statistical signal processing, ser. Prentice Hall signal processing series[END_REF] provides a quite easy and general way of estimating the parameters θ 0 of an unknown parametric distribution p θ 0 (z). The fundamental idea of the method is that statistical quantities derived from p θ 0 (z) almost always depend on θ 0 . The most natural example of such quantities are the moments of Z, µ q p (Z), but other possibilities such as cumulants may be considered as well. Restricting to pure moments only for simplicity we can thus write

µ p (Z) = f p (θ 0 ) (I.34)
for a given known function f p (θ). Consequently, if P is the number of parameters θ p in θ, then by considering an appropriate choice of P moments of Z one obtains a set of equations which, if invertible, directly yield the desired actual parameters θ 0 as functions of the chosen moments. The choice of which moments to consider is in general not unique. Now, because the distribution of Z is precisely unknown, the actual moments of Z cannot be observed.

The method of moments then suggests to replace them with their sample counterpart. That is, denoting μp the sample estimator of µ p (Z), the moment method estimator components θ p are given by

θ p g p (μ 1 , • • • μP ) (I.35)
for p ∈ {1, • • • , P }, where g p is a function derived from the inversion of the system of equations induced by the chosen moments, which for simplicity have been here assumed to consist in the rst P moments of Z.

The estimators provided by the moment method are most often consistent, as long as their derivation involves continuous functions. This is essentially a consequence of the fact that all sample moments are consistent and of the continuous mapping theorem (I.24). On the opposite, the moment method estimators are generally biased, even though all sample moments are unbiased. For some classes of functions however, corrections may be applied to turn these estimators into unbiased ones. This is notably the case for any estimator expressed as a polynomial of the sample moments, the simplest example being the Bessel's correction to the sample variance (I.29). This holds in particular for all sample cumulants and central moments, the unbiased versions of which are sometimes referred to as k-statistics and h-statistics, respectively [START_REF] Keeping | Introduction to statistical inference[END_REF].

The formal simplicity underlying the method of moments makes it applicable to many problems where an exact derivation of more optimal estimators is impossible. At least, the method provides a convenient basis for obtaining consistent estimators that can then be rened using more advanced techniques. An extension of the method is the Generalized Moment Method (GMM) [START_REF] Hall | Generalized method of moments, ser. Advanced texts in econometrics. Oxford[END_REF], which relies on more general moment constraints and is applicable even when an exact solution to the traditional moment problem does not exist. Not only the GMM extends the original moment method, but it actually encompasses several other families of estimators, including the OLS discussed previously and the maximum likelihood estimators, that we now introduce.

I.2.5 Maximum Likelihood Estimators

We conclude our overview of state of the art parametric estimation methods by the most well-known of them, namely Maximum Likelihood Estimators (MLE) [START_REF] Ramachandran | Mathematical statistics with applications. Amsterdam[END_REF]. Contrary to the method of moments, which relies on statistical quantities derived from actual underlying distribution p θ 0 of the data, maximum-likelihood methods are directly based on the joint distribution of the observed sample p θ 0 (z), where z = (z 1 , • • • , z N ). More precisely, in this approach the joint pdf is seen only as a function of the parameter θ ∈ Θ, the variable z being xed, and is called the likelihood. Equivalently, the log-likelihood is dened as the logarithm of p θ 0 (z) viewed as a function of θ:

L [θ; z] log (p θ (z)) . (I.36)
The MLE θ is then obtained by maximizing the (log)-likelihood and replacing z with the random observed sample 

Z (Z 1 , • • • , Z N ).
L [c; z] = -N log(π) -2N log(σ) - N n=1 |z n -c| 2 σ 2 (I.39)
Ignoring the irrelevant known constants, the maximization of (I.39) here reduces to the LLS minimization problem (I.32). The resulting estimator is simply given by the sample mean (I.28), i.e. c = Z. In this particular case, the MLE, the LSE and the moment method estimator all coincide and achieve the minimal possible variance among all other unbiased estimators.

Under weak conditions, the MLE is shown to be consistent, unbiased, and asymptotically ecient, meaning that its variance tends to the CRLB with the sample size N . For large enough samples, the MLE is thus a good approximation to the MVUE, making it a relevant choice in most situations. The maximization of the log-likelihod may represent in itself a challenging problem, and theoretical solutions such as the one presented above are not often achievable in more advanced, practical applications. Iterative optimization methods such as gradient descents or Newton-Raphson based algorithms are possible alternatives to nd the MLE in such cases. Among the manifold applications of the maximum likelihood approach to estimation, let us mention the well-known Expectation-Maximization (EM) algorithm, a data clustering technique which essentially consists in nding the MLE of a linear mixture of parametric probability distributions [START_REF] Dempster | Maximum Likelihood from Incomplete Data Via the EM Algorithm[END_REF].

I.3 Introduction to wireless communications

With the far-reaching success of cellular telephony, wireless communications have garnered considerable interest and experienced major developments in the past few decades.

This last part of our introductory chapter is devoted to an overview of the very basic concepts underlying digital wireless transmissions. The fundamental notions and terminology developed in the subsequent sections will be extensively used all along the thesis. At the emitter side, the information takes the form of a digital stream. The input bits are mapped to binary codewords through a source encoder, so as to remove the inherent correlation between the initial bits due to the informative content of the transmitted message.

I.3.1 Basic model of a wireless transmission

The resulting binary stream can then be approximated by a sequence of independent and equally likely random bits. Another encoding, named channel encoding, adds a structured redundancy to the emitted sequence which acts as a safeguard against errors that may occur during signal propagation. The coded binary sequence is next transformed into an analog signal by a modulator. Due to the propagation medium and the environment, the transmitted wave experiences various sources of impairment. The channel models signal distortions related to the propagation environment, while noise refers to undesirable and totally unpredictable residual radiations, stemming for instance from internal thermal noise of electronic components.

The equalizer aims at mitigating the eects of these transformations at the receiver. As for the rest of the reception steps they are by and large In the rest of the thesis we will only be interested in the part of the transmission that takes place between the modulator and the demodulator. The following sections describe in more detail the involved functional blocks.

I.3.2 Modulation

The aim of the modulator is to convert the input binary sequence into a continuous signal suited to the application requirements. Obviously the analog signal must be adaptative and in one-to-one correspondance with the input sequence. To do so the modulator segments the incoming sequence in binary words of xed size d, and maps the set of 2 d possible binary words to a set of M predened waveforms the preceding output symbols. In the case where the symbols are solely determined by the binary words the modulator is dened as memoryless [START_REF] Benedetto | Principles of Digital Transmission: With Wireless Applications[END_REF]. The modulation alphabet C is then in one-to-one correspondance with the set of binary words, and M = 2 d . Furthermore, if the functions ψ m (t; c m ) are linear in the modulations symbols, i.e. ψ m (t) = c m φ m (t) for a given function φ m (t), the modulation is said to be linear. This is the case we will consider in the following.

ψ m (t; c m ), m ∈ {1, • • • , M }.
In most wireless communications, the modulated signals are obtained by modication of the amplitude and phase of the same reference waveform called a carrier. The carrier is a pure sinusoid of frequency f c . In the complex representation of signals the m-th modulated waveform simply reads ψ m (t) = c m e 2iπfct . Hence the modulation is fully characterized by the carrier frequency f c and the M complex numbers c m whose amplitude and argument respectively give the amplitude and phase to apply to the carrier. The corresponding alphabet

C is called the constellation. Linear wireless modulation schemes can be declined in three main classes [START_REF] Proakis | Digital communications[END_REF]:

• Amplitude Shift Keying (ASK) modulations, also called Pulse Amplitude Modulation . For M = 2 we recover the BPSK, and the case M = 4 is also given the specic name of Quadratic Phase Shift Keying (QPSK);

• Quadrature Amplitude Modulation (QAM) modulations aect the carrier in both amplitude and phase. A QAM M with M = 4 n symbols for a given integer n is called regular. The constellation of a regular QAM M is obtained from two independent ASK of size √ M , one on the real axis and the other on the imaginary axis. The resulting symbols can be written c m = a mr + ia

m i = A(2m r -1 - √ M + i(2m i -1 - √ M ))
, where a mr and a m i belong to an ASK

√ M and m ∈ {1, • • • , M } is specied by the couple of integers (m r , m i ) ∈ {1, • • • , √ M } 2 as m √ M (m r -1) + m i .
The simplest example of a QAM constellation is obtained for M = 4, and is equivalent, up to a complex multiplication, to the QPSK modulation. For M not a power of 4 there are several ways of dening a QAM constellation [START_REF] Benedetto | Principles of Digital Transmission: With Wireless Applications[END_REF]. In the following we will only be interested in regular QAM, that we will simply call QAM for short.

Representative examples of the three types of modulations described above are presented on Fig.I.3. As can be seen all three constellations exhibit several geometrical symmetries. The rst one is the complex conjugate invariance: the constellation C is stable under complex conjugation, meaning that for each symbol c in C , we have c * ∈ C . The second symmetry is the discrete rotational invariance: for each constellation, we can nd a minimal, non-zero integer q such that e 3 we nd that for ASK modulations q = 2, for PSK q = M and for QAM q = 4.

The energy of a constellation C is dened as the mean energy of its symbols. Since the bits in the input sequence are close from being equally likely, we can consider that the modulation symbols have a discrete uniform distribution, so the energy E s of C is simply given by

E s 1 M M m=1 |c m | 2 (I.40)
The energy of the above three families of modulations can be computed for a general M and read [START_REF] Ruyet | Bases de communications numériques[END_REF]:

ASK: E s = 1 3 (M 2 -1)A 2 (I.41a) PSK: E s = A 2 (I.41b) QAM: E s = 2 3 (M -1)A 2 (I.41c)
One can also dene the energy per bit E b of the modulation, dened as the average energy needed to modulate one bit of signal and given by E b E s / log 2 (M ).

Within the assumption of a linear carrier-based modulation scheme, the transmitted waveform at the output of the modulator can be written as the real part of

s(t) = +∞ n=-∞ s n e 2iπfct g(t -nT ) (I.42)
where s n ∈ C are independent realizations of the constellation symbols and g(t) is a baseband function referred to as the pulse-shaping lter. The simplest choice for g(t) is a rectangular window of duration T the symbol period, so that signals associated with consecutive symbols do not overlap. The latter phenomenon is called Inter-Symbol Interference (ISI). In practice, due to spectral constraints smoother choices of waveforms may be preferable. A popular choice is the raised-cosine lter, dened by [START_REF] Ruyet | Bases de communications numériques[END_REF] g α (t) sin (πt/T ) πt/T It is worth mentioning that in addition to the linear modulations presented here, many non-linear modulations schemes also exist for wireless systems. These modulations may introduce memory in the choice of the reference waveforms, meaning that the signal emitted by the modulator in a given symbol period depends both on its current input (the binary word) and on its previous outputs. The interest of such methods is an increased exibility for designing an overall waveform with good temporal and spectral properties. 

cos (απt/T ) 1 -4α 2 t 2 /T 2 (I.

I.3.3 Propagation channel and noise

Due to interactions with its environment, the transmitted waveform is subject to various physical processes that alter its temporal and spectral content. Reection on obstacles such as buildings, scattering by small objects or particles, diraction, motion of the transmitter and/or the receiver are as many typical examples of phenomena inducing transformations of the signal such as attenuation, delay, dephasing or frequency shifts. The state of the propagation environment is encapsulated in what is called the channel. Formally, the channel Chapter I. Technical background is modeled as a linear, time-invariant or slowly time-variant system fully characterized by its impulse response function h(t). The received signal r(t) can thus be written as the convolution product of the input signal s(t) and the channel impulse response h(t):

r(t) = h(t) * s(t) ∞ -∞ h(u)s(t -u)du (I.44)
Equivalently one can consider the channel transfer function h(f ), dened as the Fourier transform of h(t), which gives the attenuation and dephasing induced by the environment for every frequency component.

A quite simple but reasonable channel model extensively used in wireless communications is the multipath fading channel: due to the presence of obstacles that deect or scatter the input signal, the observed signal r(t) at the receiver is composed of a sum of scaled and delayed replicas of s(t) coming from several paths, each having its own length, dephasing and attenuation. The impulse response of such channels have the following form [START_REF] Goldsmith | Wireless communications[END_REF]:

h(t) = L =1 h (t)δ(t -τ l (t)) (I.45)
where the integer ∈ {1, • • • , L} indexes the dierent paths, h (t) is a complex number accounting both for attenuation and dephasing, τ (t) is the time propagation delay of the -th path and δ(t) is the Dirac delta function. The coecients h (t) are called the channel taps, and h(t) is said to be a L-taps channel. An illustrative example of a multipath propagation with 5 paths/taps is presented on Fig.I.6. Both attenuation and delay are generally functions of time, as the position or properties of obstacles involved in a given path may evolve during the transmission. For instance, a reector moving at constant velocity introduces a linear time delay, which corresponds to a global frequency shift in the spectrum known as the Doppler shift. Temporal variations of the complex amplitudes h (t) are generically called fading. The time scale on which the channel taps and delays change signicantly is measured by the channel coherence time T c . A channel with a small, respectively large, coherence time is categorized as fast-fading, respectively slow-fading. In the latter case the paths characteristics can be considered as approximately constants for several time symbol periods T [START_REF] Tse | Fundamentals of Wireless Communication[END_REF].

Another useful temporal quantity is the delayspread T d of the multipath channel, dened as the dierence between the maximum and minimum path delays

T d max 1≤ ≤L (τ l ) -min 1≤ ≤L (τ l ) (I.46)
For an homogeneous enough propagation medium this is equivalent to the delay between the longest and shortest paths. The delayspread allows to characterize two central channel properties, namely ISI and coherence bandwith. In a multipath propagation, ISI occurs when the propagation delay of some of the paths is longer than that of the shortest path by more than a symbol period T . Thus in order to prevent ISI one needs to make sure that T > T d . This way all the relevant information about a given symbol is contained in a single symbol period of the received signal. A related property of the channel is provided by the coherence bandwidth B c , which is the spectral counterpart of the coherence time T c . That is, B c is a measure of how fast the spectral content of the channel signicantly changes with frequency. It is roughly given by the inverse of the delayspread, B c 1/T d . Comparing the bandwidth B = 1/T of the input signal s(t) to the channel coherence bandwidth B c leads to the following useful characterization of channels: a channel is referred to as at-fading if the input signal bandwidth is small compared to the channel coherence bandwidth, i.e. B B c .

The name stems from the fact that the transfer function H(f ) of a at-fading channel can be approximated as constant over a frequency range B. In the time domain this means the impulse response h(t) is essentially composed of a single tap, or equivalently that all signal replicas arrive at approximately the same time relatively to a symbol period, T d T . In the opposite case where B and B c are of the same order, the channel is said to be frequency-selective.

Figure I.6 Multipath channel propagation (L = 4)

The tremendous number of degrees of freedom involved in a typical channel propagation, such as the density of obstacles, their position and velocity, makes an exact characterization of the channel variations out of reach. Most often fading is then modeled as a random process, and the coecients h are considered as random variables. Several statistical models can be used, depending on the spatial scale at which the fading takes place. In particular, multipath fading accounts for the small-scale variations of the channel amplitudes due to the interference of signal replicas coming from many dierent paths. The simplest statistical approach to multipath fading stems from Rayleigh scattering, a well-known physical phenomenon which arises when a propagating wave is scattered by a high density of objects with typical size far lower than the signal wavelength. The eect of each scatterer on the incoming wave is modeled as a random attenuation and dephasing. According to the central limit theorem (I.25), the sum of the contributions from each scatterer follows a complex gaussian distribution. Provided there is no line of sight between the transmitter and the receiver the limiting distribution can be assumed circular-symmetric complex normal, so h ∝ CN (0, 1, 0), and |h | follows a Rayleigh distribution (I.15). More rened probabilistic models of multipath fading exist, such as the Nakagami distribution or the Rician fading, which occurs when a direct path exists between the emitter and the receiver [START_REF] Verdú | Multiuser detection. CambridgeK[END_REF].

The channel accounts for the input signal transformations related to the propagation conditions. Another source of impairment must be considered on the receiver side: due to impredictable radiations coming from thermal uctuations or residual interference with other transmissions, the received signal is corrupted by a background noise, usually modeled by an additive white gaussian random process w(t). Loosely speaking, w(t) can be thought of as a continuous sequence of independent and identically distributed complex, circularlysymmetric normal variables. It is characterized by its power spectral density, that is the power of the background noise per unit bandwidth, which is constant and often denoted by N 0

. Integrating this noise model to the channel results in the Additive White Gaussian

Noise (AWGN) channel model. In the case of a at-fading channel, h(t) = hδ(t), the received signal r(t) is thus given by r(t) = hs(t) + w(t)

(I.47)
This model is the one we will adopt almost all along the thesis. The more realistic frequencyselective channels will be considered in Chapter IV in the context of multicarrier transmissions.

I.3.4 Demodulation

We can now turn to the crucial part of the wireless transmission, that is, recovering the input binary sequence from the received signal r(t). Let us consider an input signal s(t) consisting of N modulated waveforms, with N chosen so that the channel amplitude h is approximately constant over the time interval N T , i.e. N T < T c . Equations (I.42) and (I.47)

give r(t) as

r(t) = h N -1 n=0
s n e 2iπfct g T (t -nT ) + w(t)

(I.48)
where g T (t) denotes the normalized rectangular pulse of duration T and amplitude 1/ √ T . The role of demodulation is to recover the symbols c n from r(t). For the time being, let us consider that there is no channel, i.e. h = 1. The information relative to a given c n is entirely contained in the restriction of r(t) to the interval [nT ; (n + 1)T [. The irrelevant contribution of the carrier e 2iπfct can also be removed by applying a correlator to r(t), or equivalently an adaptive matched lter [START_REF] Ruyet | Bases de communications numériques[END_REF]. This results in an observed symbol r n dened as

r n g T (t -nT )e 2iπtfc |r(t) = 1 √ T (n+1)T nT r(t)e -2iπtfc dt = s n + w n (I.49)
1 Actually the spectral power density of the white noise is constant over the bandwidth B of the emitted signal, which is assumed to be normalized to one at the receiver. where w n g T (t -nT )e 2iπtfc |w(t) is a random variable than can be shown to follow a circular-symmetric complex normal distribution with variance N 0 . Hence the observed symbols r n are noisy realizations of the source symbols s n , as illustrated on Fig.I.7 for a QAM 4 modulation. Demodulation consists then in an estimation problem: given an observed symbol r n , we must nd an estimate s n ∈ C of the actual transmitted symbol s n . Note also that in order to apply (I.49) the receiver needs the carrier frequency f c . We dene as coherent modulation the situation where f c is perfectly known at the receiver. Otherwise the modulation is referred to as non-coherent: the carrier frequency must be estimated by the receiver, and other types of correlators or lters can be applied to the received signal so as to account for the uncertainty of the resulting estimator. In the following we will always consider a coherent demodulation.

A natural approach for estimating s n is to look for the MLE estimator. Because the emitted symbols are equally likely and the noise is complex normal, it can be shown that in this case the MLE is simply given by

s n = argmin c∈C (|r n -c| 2 ) (I.50)
Eq.(I.50) has a simple geometrical meaning: the estimate of s n is given by the constellation symbol which is the closest to the noisy received symbol r n . The demodulation then comes down to assigning each r n to the closest symbol in the constellation. This is tantamount to considering for each c in C the region V(c) such that any point belonging to V(c) is closest to c than to any other constellation symbol. This set of regions form a partition of the complex plane better known as a Voronoï tessellation [START_REF] Okabe | Spatial tessellations: concepts and applications of Voronoi diagrams[END_REF]. The regions V(c) are called Voronoï cells, and their boundaries dene the decision thresholds for assigning r n to a given c. Error Rate (SER), namely the probability P s P ( s = s) of a symbol misdetection. For a circularly-symmetric complex normal noise with variance N 0 and equally likely modulation symbols, P s can be written as

P s = 1 - 1 M M m=1 P (r ∈ V(c m )|s = c m ) = 1 - 1 M M m=1 V(cm) e -|z-cm| 2 /N 0 dz πN 0 (I.51)
where we used the law of total probability on the discrete random variable s. In general P s does not admit a closed-form expression, except for some specic constellations such as the regular QAMs. In this case Eq.(I.51) reads

P s = 2( √ M -1) √ M erfc 3 log 2 (M ) 2(M -1) E b N 0 1 - 1 2 ( √ M -1) √ M erfc 3 log 2 (M ) 2(M -1) E b N 0 (I.52)
The result of P s is often expressed in terms of the ratio E b /N 0 , which mesures the received Signal to Noise Ratio (SNR) per bit, that is the relative proportion of informative signal compared to the background noise. The theoretical SER curves of several regular QAMs are presented on Fig.I.52. As can be seen, larger constellations result in a higher symbol error probability. This is the counterpart of the higher transmission rate gain achieved by these constellations, since they encode longer binary words in the same duration T .

The modulation symbols being coded representations of binary words, one can also measure the Bit Error Rate (BER), or probability P b of a wrong bit detection. There is in general no exact formula relating P b and P s , as the number of misdetected bits for a given symbol error depends on the precise relation between the symbols and the binary words. There is one particular coding however that allows to minimize the BER in most circumstances, namely the Gray coding. It consists in mapping the binary words to the constellation symbols in such a way that, between any pair of neighbouring symbols, the associated binary words dier by only one bit. As in case of a wrong symbol estimation the actual and estimated symbols are more likely to be neighbours of each other, we can then reasonably expect that for a moderate noise power, a symbol misdetection most often results in a single bit error.

The probability of a bit misdetection is then approximately given by V(hc) = hV(c), so only the received symbols belonging to the intersection sets V(c) ∩ V(hc) are mapped to the correct symbol c. Consequently, in order for the threshold detection to apply the receiver must compensate the eect of h on the received signal. This is called signal equalization, and the knowledge of the channel is called the Channel State Information (CSI). Unlike information relative to the emitted signal, such as the carrier frequency or the modulation scheme, that can be considered as shared by both the transmitter and receiver, the channel is unknown at both sides of the transmission, so there is no other choice for the receiver but to estimate it. There are essentially two classes of estimation methods to acquire the CSI:

P b P s log 2 (M ) (I.
• pilot-based estimation strategies rely on the transmission of a predened sequence of symbols, called pilots, prior to the actual signal. The pilot sequence is known by the Chapter I. Technical background receiver, so it can be demodulated and compared to the expected sequence to derive an estimation of the channel coecients. Other pilots are regularly transmitted so as to account for the temporal variation of the channel. By an appropriate design of the pilots, this method can result in accurate estimation of the CSI. It implies however a loss in the useful data rate as the pilots do not carry any information on the transmitted signal.

• blind estimation methods on the opposite only rely on the received signal to estimate the channel. Prior information on the channel statistics, when available, may be used as well to improve the accuracy of the resulting estimators.

I.4 Conclusion and main assumptions

In this introductory chapter the essential statistical tools underlying wireless communications were reviewed, and fundamentals of modulations, channel fading and symbol detection were presented. At this stage and before proceeding any further, it is worthwhile to summarize the assumptions made on the transmissions that will be considered all along the thesis:

• the input waveform consists in a sequence of N independent and identically distributed source symbols s n linearly modulating a carrier of known frequency f c , and transmitted at the known symbol period T ;

• the common distribution of the source symbols s n is discrete uniform, of support the modulator constellation C with M symbols, so P (s n = c) = 1 M for all c ∈ C . The constellation is known at the receiver and can be either an ASK, a PSK or a regular QAM. C exhibits the complex conjugate symmetry and discrete rotational invariance of order q;

• the propagation channel is assumed to be at-fading and to vary slowly enough with time to be considered as constant over the whole transmission, i.e. N T < T c . Within these assumptions the channel is modeled by a single coecient h. When neccessary, the statistical model considered for h is the Rayleigh fading: h then follows a zero-mean, circularly-symmetric complex normal distribution with unknown variance σ 2 h ;

• the signal is corrupted by an additive white gaussian noise w(t) with power spectal density N 0 . N 0 is not supposed to be known by the receiver;

• the unknown channel h is blindly estimated at the receiver: no pilot symbols are transmitted;

• the received signal is coherently demodulated by threshold detection of the observed corrupted symbols r n given by (I.54). The noise samples w n follow a circularly-symmetric complex normal distribution with variance N 0 .

Blind channel estimation stands at the core of this thesis. It will rst be discussed in the context of single-user transmissions in the next chapter. The results and methods derived therein will be then extended to multiuser blind detection in Chapter III, and to multicarrier transmissions in Chapter IV. 

II.1 Introduction

II.1.1 Point-to-point transmission

We begin our study with the simplest wireless transmission model, namely the Single-Input Single-Output (SISO) transmission in a at-fading environment. In this model, the channel h is reduced to a single complex coecient which multiplies the incoming symbols. Addition of a cicularly-symmetric complex normal noise with variance N 0 leads to the following expression for the n-th received symbol r n :

r n = hs n + w n (II.1)
where s n are the source symbols, assumed to belong to a nite constellation C with discrete uniform distribution over its M symbols. As we have seen in the previous chapter, applying a threshold decoding to (II.1) without taking into account the channel results in catastrophic error rates, making channel estimation necessary. Actually, estimating the channel in such a simple case as (II.1) is of little interest, as blind identication of the more general SISO frequency-selective channel is already well-covered in the literature [START_REF] Liu | Recent developments in blind channel equalization: From cyclostationarity to subspaces[END_REF]. In Section II.4 we will see an example of a very simple estimator of the SISO at-fading channel derived from the method of moments.

Our objective in this chapter is more related to the study of the algorithm that will serve as the very basis for the later multiuser blind detection problem. Specically, the general approach we will adopt for channel and symbol estimation is that of Maximum Likelihood (ML). As we have seen in Chapter I, for equally likely constellation symbols the ML estimation of the emitted symbols comes down to the Voronoï classication of the received symbols. This step is actually reminiscent of a reference clustering algorithm known as k-means [START_REF] Lloyd | Least squares quantization in PCM[END_REF] 1 . More precisely, it appears that the joint ML estimation of h and s (s 1 , • • • , s N ) can be seen as a constrained k-means clustering problem, as is explained in the following.

II.1.2 Blind channel estimation by the k-means algorithm

In [START_REF] Manesh | Physical Layer Data Fusion Via Distributed Co-Phasing With General Signal Constellations[END_REF] a clustering approach to blind channel estimation was proposed in the context of distributed co-phasing transmissions, consisting in a geometrically constrained version of the well-known k-means algorithm. Specically, while in the original algorithm the centroïds (= centers of the data clusters) can be anywhere in the data space, here the symbols belong by denition to a given constellation with a specic structure. Accounting for this constraint leads to the following modied cost function

J(h, s) = N n=1 |r n -hs n | 2 = r -hs 2 (II.2)
with h ∈ C and s ∈ C N (here h and s are dummy variables and are not to be confused with the actual channel and actual emitted symbols). The k-means algorithm iteratively minimizes (II.2) by alternating two steps, namely estimation of the centroïds location and assignment of the data points to clusters by Voronoï tessellation. In its constrained variant the former step is readily obtained as

h t = N n=1 ( s n ) * t-1 r n N n=1 |( s n ) t-1 )| 2 = s t |r s t 2 (II.3)
where h t and s t-1 respectively denote the estimated channel and emitted symbols at iteration t and t -1. The assignment step comes down to the usual threshold demodulation (I.50) based on the current channel estimator h t

(s n ) t = argmin c∈C |r n -h t c| (II.4)
It turns out that the proposed constrained k-means algorithm is actually a particular case of a more general blind estimation multiuser technique known as Iterative Least Squares with Enumeration (ILSE) [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF]. This algorithm will be at the core of the next chapter, so we will not present it here, but as it encompasses the algorithm presented in [START_REF] Manesh | Physical Layer Data Fusion Via Distributed Co-Phasing With General Signal Constellations[END_REF] it seems more appropriate for consistency to use the name of the more general method. To emphasize that we are here in the particular case of a single source signal and a single receiver, we will refer to this algorithm as the SISO-ILSE algorithm.

As a variant of k-means, the SISO-ILSE approach exhibits the same general features. In particular, the sequence ( h t , s t ) can be shown to systematically converge to a xed point of the algorithm: that is, from a given t * the channel estimation step (II.3) maps h t * to s t * and similarly the threshold decoding (II.4) maps s t * to h t * . The couple ( h t * , s t * ) is a minimum of the cost function (II.2). The main limitation of the k-means approach is that most often there are several such xed points, and only one or a few of them achieve the global minimum of J. In other words the function is not jointly convex in (h, s) and the algorithm may converge to spurious local minima. Forasmuch as the nal xed point entirely depends on the initial state h 0 or s 0 provided to the algorithm, the usual way of circumventing this indesirable behavior is to test the algorithm on several, usually random, initial points, and retain the solution achieving the lowest cost function at convergence, J( h t * , s t * ). This naïve strategy is often considered as sucient in many applications, but has in general no guarantee of succeeding and induces a computational loss. Consequently, in situations where the number of xed points makes the random strategy unfruitful or the delay requirements of the application are prohibitive, it becomes crucial to provide k-means with appropriate initialization techniques or prior information about potential spurious xed points. This chapter is devoted to the design of such initialization strategies in the reducedcomplexity framework provided by the point-to-point transmission. In this simple setting the degrees of freedom of the symbol locations, or centroïds, reduce to a single complex coecient, namely the channel h. We can thus expect reliable methods for ensuring convergence of the SISO-ILSE algorithm towards its global minimum to exist. We will be interested in two types of initializations:

• methods based on the data and designed to provide the algorithm with a suitable initial state, whether it be a channel estimate or an initial symbol assignment;

• methods based on a priori knowledge of the structure and position of particular local minima.

II.2 Hierarchical k-products algorithm II.2.1 The k-products algorithm

In [START_REF] Paul | A global algorithm to estimate the expectations of the components of an observed univariate mixture[END_REF], an alternative approach to the traditional k-means clustering algorithm was introduced. The method, called k-products, aims at estimating the means c m of a mixture of 32 Chapter II. Single-user blind detection M unspecied complex distributions based on an observation sample z of size N . This is achieved by minimizing the following positive cost function

J KP (u; z) N n=1 M m=1 |z n -u m | 2 (II.5)
where u ∈ C M . The name k-products stems from the fact that J KP is formally identical to the k-means cost function with the sum over the centroïds replaced by products. The motivation for this choice is that, for a noiseless mixture, there is necessarily one integer m such that z n = c m , so at u = c all products in (II.5) are exactly zero and J KP = 0. For non-zero noises one can thus expect that at u = c each product has one of its factor very close to zero so J KP (c; z) should be close to its minimum.

The core interest of the k-products approach is that it can be turned into a convex optimization problem on the set of equivalence classes C M /S M , where S M denotes the set of permutations of M elements. More specically, the authors showed that minimization of J KP reduces to nding the roots of a complex polynomial of degree M , whose coecients

(v 1 , • • • , v M ) v are the solution to Mv = m (II.6)
where M and m are the M × M matrix and M × 1 vector of sample moments of the random mixture variable Z, respectively dened by M j k µ j k (Z) and m j µ j K (Z)

with the moment notations introduced in Section I.1.2.

The matrix M can be shown to be non-singular (see apendix A of [START_REF] Paul | A global algorithm to estimate the expectations of the components of an observed univariate mixture[END_REF]), so the solution to (II.6) is unique, and the roots of the resulting polynomial provide, up to permutations, the estimation of the mixture components means c. The computational complexity of the algorithm is in O (N M ).

Convexity of the k-products represents a very appealing feature for a clustering algorithm. The cost for this property, however, is that the mimimum of J KP yields a biased estimator of the mixture components means, i.e.

E [ c] = E [c].
Loosely speaking, the value of each product in (II.5) is the result of a balance between the contribution from the closest mixture component of z n , for which the distance is minimal, and the other components, which may lie far from z n . Hence the minimum of the overall product is not necessarily achieved next to the closest component, as it is attracted , so to speak, by the other components.

In regard to these two properties, the k-products algorithm can be thought of as the counterpart of the k-means approach: the unbiasedness and non-global nature of the latter transpose to biasedness and convexity for the former. This makes k-products, in addition to its reduced complexity, a natural candidate to use as an initial estimation step for k-means.

We can thus reasonably expect the same strategy to apply to the SISO-ILSE algorithm. It turns out that, while for free clusters the biased centroïds provided by k-products are in many cases close enough to the actual ones, introducing symmetry and regularity in the centroïds locations generally has a catastrophic impact on the bias. Blue dots correspond to the received symbols and red dots to the estimated centroïds.
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As a manifest illustration of this statement, we consider on Fig.II.1 the result of the kproducts on a QAM 4 and a QAM 16, respectively. In the rst case we see that the estimated constellation symbols coincide almost perfectly with the actual ones. More generally, it appears that for PSK modulations the k-products algorithm performs quite well in nding the symbols location. The situation is radically dierent in the QAM 16 case: the resulting estimators are all located close to the outer square symbols of the constellation. In particular, the algorithm places two centroïds for each corner symbol, so that the inner square symbols are completely ignored. With the qualitative argument provided earlier to account for the bias, in this case the outer symbols attract the centroïds to the point of leaving the inner clusters empty. Note that this phenomenon is not due to a particularly unfavorable observed sample, and is characteristic of the algorithm for this constellation. Applying k-products to a QAM 64 results in an even worse estimation, with less than half of the centroïds correctly estimated.

A similar behavior can also be observed on ASK modulations, with the outmost symbols exercing more and more attraction on inner symbols as the size of the constellation increases. This is a quite expectable resemblance, as QAM are constructed from ASK constellations. As a consequence, except for PSK modulations, straight application of the k-products algorithm is not a reasonable initialization strategy for the SISO-ILSE, and modications of the original method are necessary to make this approach relevant for constellations associated with linear modulations.

II.2.2 The hierarchical k-products algorithm

QAM constellations, or equivalently ASK, exhibit an interesting structural property in addition to conjugation and rotational symmetry in that they are recursively built from a single PSK constellation. Specically, a (regular) QAM with M = 4 p symbols can be decomposed into a QAM with 4 (p-1) symbols and a QAM 4. This can be shown directly from the generic expression of the QAM symbols c m , see I.3.2. Assuming A = 1 for simplicity we 

c m = (2m 1 + 1 -2 p ) + i(2m 2 + 1 -2 p ) = 2 (2a 1 + 1 -2 p-1 ) + i(2a 2 + 1 -2 p-1 ) ∈ QAM 4 p-1 +2 p-1 [(2b 1 -1) + i(2b 2 -1)] ∈ QAM 4 (II.7)
where a j ∈ 0, • • • , 2 p-1 and b j ∈ {0, 1} respectively denote the quotient and remainder of the Euclidean division of m j by 2, i.e. m j = 2a j +b j . Hence, recursively applying (II.7) shows that a QAM 4 p is given by a linear combination of p independent QAM 4 constellations as The recursive property of QAM constellations suggests the following modication to the k-products algorithm: since the method yields good results on PSK modulations, we can expect that, by applying it to a dataset of received QAM M symbols with M = 4 p as if it was a QAM 4, the estimated centroïds will be close to the centers of the four QAM 4 p-1 in the decomposition (II.7). In other words we cluster the data in four coarse clusters according to a QAM 4, ignoring their internal structure. Then, we can repeat the same procedure to cluster each of the four obtained QAM 4 p-1 constellations in four QAM with 4 p-2 symbols, and so forth until the full decomposition (II.8) in p QAM 4 has been achieved. The clustering As can be seen in both cases all the centroïds are now close to the actual constellations symbols. We notice that the intermediary centers returned by the algorithm do not always coincide very well with the expected ones. Yet, as long as the threshold detection is able to correctly cluster most of the data, this bias has a negligible impact on subsequent iterations.

C = p j=1 2 p-j C 4 = { p j=1 2 p-j c m j |c m j ∈ C 4 } (II.
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The complexity of the hierarchical k-products algorithm can be obtained as follows: at the rst step, we perform a single k-products on the full dataset with 4 clusters, so the complexity is in O (4N ). The subsequent threshold decoding requires computations of the distances between each data point and each centroïd, which results in a complexity in O (4N ) as well. For the second step, 4 k-products are applied to the four data clusters obtained in step 1, the size of which can be considered as N/4 (this hypothesis has no consequence on the nal result). The computational load of the centroïd estimation step is then 4 O (4N/4) = O (4N ). The clustering step, being carried out on the same data subsets, is also in O (4N ). Iterating in this fashion we see that each recursion has the same complexity O (8N ), so the overall cost of the algorithm is given by p O (8N ) = O (N p). This is to be compared with the complexity O (N 4 p ) of a single k-products with 4 p clusters. Hence, making use of the special recursive structure of QAM contellations in the k-products approach both allows a fairly accurate estimation of all the symbols and a reduction in the overall computational load.

We have successfully modied the k-products algorithm to provide a meaningful, low computational initial estimation of the constellation symbols. From there, by threshold decoding a rst estimation of the emitted symbols is obtained, which can be used as an initial state of the SISO-ILSE algorithm for renement. Finally, although all the above discussion and presented gures made the assumption of no propagation channel, h = 1, introduction of an unknown channel does not require any modication of the algorithm since

J KP (u; r) = h M N n=1 M m=1 |s n + w n /h -u m /h| 2 = h M J KP (u ; s ) (II.9)
with u m u m /h and s n s n + w n /h.

II.3 Local minima of the SISO-ILSE algorithm

The study of the xed points of the general k-means algorithm is made extremely dicult by the fact that the centroïds are completely unconstrained, so the number of degrees of freedom is large. Several seeding strategies for the initial points to provide to the algorithm have been studied, the most well-known being the k-means++ algorithm, [START_REF] Arthur | k-means++: The Advantages of Careful Seeding[END_REF]. In the case of the SISO-ILSE, the location of the centroïds only depends on a complex parameter the channel h , and the geometrical structure of the constellation C . As the most commonly used constellations are of only three types, in this simplied framework it may be possible to infer the location of some potential xed points.

This prior information is of great interest, as it can be used to design strategies for preventing the algorithm from converging to spurious solutions.

II.3.1 General results

All three types of constellations commonly used in wireless modulations exhibit some symmetries. It is thus natural to expect the xed points of the SISO-ILSE algorithm to observe a regular structure as well. In the following we give a rst insight of how symmetry of the constellation and symmetry of the xed points are related. To do so it is rst useful to rewrite the SISO-ILSE cost function as

J(h, s) = N n=1 r n -hc I(n) 2 ≡ J(h, I) (II.10)
where I(n) ∈ {1, • • • , M } is a random variable indicating the label of the constellation symbol corresponding to s n , i.e. s n = c I(n) . The cost function J is equivalently described by the variables (h, s) or (h, I). From now on, the actual channel and emitted symbols indicator function will be respectively denoted by h and I, so that r n = hc I(n) + w n .

Most of the discussion on the SISO-ILSE xed points will be made for zero noise and in the limit of large sample sizes. The former assumption implies that all received symbols emitted from the same constellation symbol, say c m , are mapped to a same given symbol c m by threshold decoding. The corresponding indicator function I (n) is then fully characterized by a mapping g :

C → C such that c I (n) = g(c I(n) ), or, equivalently, by a mapping g : {1, • • • , M } → {1, • • • , M } such that c I (n) = c g (I(n))
. For simplicity we denote both mappings with the same notation g, i.e. g(c I(n) ) ≡ c g(I(n)) . In the limit N → ∞, the channel estimation step (II.4) then reads

h = N n=1 c * I (n) hc I(n) N n=1 |c I (n) | 2 = h M m=1 f m c * g(m) c m M m=1 f m |c g(m) | 2 → N →∞ h E [g * (C)C] E [|g(C)| 2 ] (II.11)
where C is the random variable from which the emitted symbols c n are drawn, C being the support of its pdf, and f m

|I -1 ({m})| N
is the empirical frequency of symbol c m , which by the law of large number converges in probability to P (C = c m ) = 1 M , since the symbols are assumed equally likely. In the following we examine (II.11) for several mappings g induced by the symmetries of the constellation.

Discrete rotational symmetry

The simplest symmetry to consider is the discrete rotational invariance of C of order q. In this case we do not need to assume a zero noise, neither a uniform distribution for the emitted symbols. Let us assume that h 1 , denes a xed point of the SISO-ILSE algorithm, with associated indicator function I 1 , and consider the channel predictor dened by h 2 e 2iπk q h 1 , with k ∈ {1, • • • , q}. Then h 2 is also a xed point of the algorithm, with indicator function

I 2 dened by c I 2 (n) e -2iπk q c I 1 (n) . First, given I 2 we have h = N n=1 c * I 2 (n) r n N n=1 |c I 2 (n) | 2 = N n=1 e 2iπk q c * I 1 (n) r n N n=1 |c I 2 (n) | 2 = e 2iπk q N n=1 c * I 1 (n) r n N n=1 |c I 1 (n) | 2 = e 2iπk q h 1 = h 2 (II.12)
so the channel estimation based on the indicator function I 2 indeed yields h 2 . Now, it is easy to see that threshold decoding of the received symbols based on the transformed constellation minima, regardless of the initial state. A sucient condition for this property to hold in nonzero noise scenarios would be for the noise not to inuence the assignment of the received symbols to the constellation symbols, so that c

h 2 C gives the indicator function I 2 since c I 2 (n) = arg min c∈C (|r n -c h 2 |) = arg min c∈C |r n -c e 2iπk q h 1 | = c I 1 (n) e -2iπk q (II.
I (n) = g(c I(n) ) for any n ∈ {1, • • • , N } as in
the zero-noise case.

Symmetry by complex conjugation

A similar, yet more restrictive result can be obtained for complex conjugation symmetry. 

g 1 , h 2 h h * 1
h * is also a xed point of the algorithm with associated mapping g 2 dened by g 2 (C) g * 1 (C * ). From (II.11) we have indeed 

h = h E [g * 2 (C)C] E [|g 2 (C)| 2 ] = h E [g 1 (C * )C] E [|g * 1 (C * )| 2 ] = h E [g * 1 (C)C] * E [|g 1 (C)| 2 ] = h h * 1 h * (II.

Recursive symmetry

In the previous section we have seen that any QAM constellation with M = 4 p symbols can be decomposed as p QAM 4 with scaling factors given by powers of two, Eq.(II.8). This decomposition aects the support C of the pdf of C. Now, in the case of equally likely symbols, the recursive property of QAM holds for the variable C itself. That is, if C is distributed according to a discrete uniform distribution with support a QAM M and M = 4 p , then C can be decomposed as

C = p j=1 2 p-j C j (II.15)
where the C j 's are independent random variables following a discrete uniform distribution with support a QAM 4. This is a consequence of the fact that the sum of independent and uniform random variables with disjoint supports is also uniform. From (II.15) C can also be expressed as

C = 2 p 1 C 1 + C 2 (II.16)
where C 1 and C 2 are independent variables following a uniform QAM 4 p 1 and QAM 4 p-p 1 distribution, respectively. Let us consider then the mapping g dened by g(C) = C 1 . Eq.(II.11)

thus reads h = h E [C * 1 (2 p 1 C 1 + C 2 )] E [|C 1 | 2 ] = h 2 p 1 E |C 1 | 2 + E [C * 1 C 2 ] E [|C 1 | 2 ] = 2 p 1 h (II.17)
since C 1 and C 2 are independent and have zero-mean. One can also check that threshold decoding based on 2 p 1 h results in mapping g, i.e. g(c m ) = g(2 

p 1 c m 1 + c m 2 ) = c m 1 with m 1 ∈ {1, • • • , 4 p 1 } and m 2 ∈ {1, • • • , 4 p-p 1 }.

II.3.2 Case study: the QAM 16

Let us illustrate the previous results on a specic example. Among the three usual linear modulation schemes, QAM constellations have the richer structure. Besides we have seen that for PSK modulations there is essentially one single xed point. Hence the simplest non trivial constellation we can consider is the QAM [START_REF] Grimmett | Probability and random processes[END_REF]. In this case it is possible to completely characterize the set of xed points in the large samples limit and zero-noise assumption.

First, the rotational symmetry of order q = 4 and complex conjugation invariance allow us to restrict our search to the subset S {z ∈ C|0 ≤ Arg (z) ≤ π/4}. We also know from the constellation recursive structure that h and 2h are xed points of the SISO-ILSE algorithm.

In addition to these we can nd four other xed points given in Table II.1 along with their associated mapping g. Despite the relative simplicity of the constellation under consideration, we observe that the convergence regions exhibit non trivial geometrical shapes. In the set S we can identify 8 xed points, among which the four points of II.1, the two points induced by the hierarchical symmetry, plus two unpredicted points located at 0 and 3 4 (1 + i). Their convergence region is reduced to a single point, i.e. R(0) = {0} and likewise for 3

g(C ) 7+5i 8 h 17+9i 20 h 8+3i 8 h 13+7i 12 h g(1 + i) 1 + i 1 + i 1 + i 1 + i g(1 + 3i) 3 + i 3 + 3i 1 + 3i 1 + i g(3 + i) 3 -i 3 -i 3 -i 3 -i g(3 + 3i) 3 + i 3 + i 3 + i 3 + i
h = h M m=1 g * (c m )c m M m=1 |g(c m )| 2 = |1 + i| 2 + (1 -i)(1 + 3i) + (3 + i) 2 + (3 -i)(3 + 3i) |1 + i| 2 + |1 + i| 2 + |3 -i| 2 + |3 + i| 2 h = 17 + 9i 20 
4 (1 + i). Such points are referred to as unstable, in the sense that they are not observable in non-zero noise cases. They arise from the fact that at those precise locations some of the constellation symbols are equidistant to some subset of symbols of the transformed constellation, so there is an ambiguity in the threshold decoding. Such situations never occur for non-zero noise, so these points are of no practical interest, as we are only concerned with xed points that can survive non-zero noises. This means that the 6 xed points given by Table II structure for these three constellations actually reveals two common features that can be used to ease the convergence of the algorithm towards its global minimum.

The rst observation is that the xed points induced by the recursive structure of QAM are well separated from the others, and have a rather large convergence region. In particular, for a QAM with M = 4 p symbols, the largest (in the modulus sense) of these local minima is located at h = 2 p-1 h and is completely isolated. One can be quite easily convinced that this xed point is actually the furthest local minimum admissible by the QAM constellation, at least in the zero-noise limit. Another special property of these xed points is that, by denition, their associated mapping is such that some constellation symbols are not represented, resulting in empty clusters. Specically, for h j 2 j-1 h with j ∈ {1, • • • , p}, the number of non-empty clusters (the cardinal of the image set of the associated mapping g j ) is given by 4 p+1-j . This makes these local minima very easy to detect, even for non-zero noises. In particular, the point h p = 2 p-1 h has only 4 non-empty clusters.

The second feature concerns the convergence region structure of the global minimum h. As can be seen from gures II.10II.12, inside the principal ring of xed points the convergence regions have a strong dependency in the argument of the initial point provided to the algorithm. As we get closer from the origin we see that the angular range spanned by R(h) increases, suggesting that we are more likely to converge to h with a initial point very close to zero. As far as our simulations can tell, this feature also holds for non-zero noises, as h is always a global minimum of the algorithm.

These two special properties of QAM constellations provide us with two possible complementary intialization strategies for the SISO-ILSE algorithm:

far-o initialization: the initial point is chosen with an arbitrary large modulus so as for the algorithm to converge to h p = 2 p-1 h. Then dividing by 2 p-1 an estimation of h can be obtained and rened by a second run of the algorithm at this point;

perturbative initialization: here the objective is to directly converge to the global min- imum h. The optimal strategy is to choose an initial point arbitrary close from the origin so as to benet for the maximum angular spread of R(h).

The proposed initializations can be considered as dual, both in their very denition but also in their advantages and limits. The local minimum aimed by the far-o initialization has the advantage of being very easily identiable, since all but four of its clusters are empty or almost empty. On the opposite, the global minimum h is not the only xed point having all constellations symbols equally represented, even in the zero-noise case. For instance, in the QAM 16 case both h and 17+9i 20 h have an uniform repartition of classes. Reliable distinction between such xed points requires examination of the cost function at convergence and taking the point achieving the minimum cost. In any case, the success of either strategy is conditioned by the angle of the initial point provided to the algorithm. In practice one would test the algorithm on several initial points in the positive orthant, equally separated in angle so as to ensure one of them lies in the proper angular range. From gures II.10II.12 one can see that the angular spread of R(h) is larger than that of R(2 p-1 h), so the number of initializations is expected to be lower for the perturbative strategy than for the far-o intialization. As we can also see that the angular range of R(h) decreases as the size of the constellation increases, for higher order QAM the angular spacing between consecutive initializations may be reduced, resulting in an increased number of initializations. 

II.3.4 Inuence of the noise

Most of our analysis on the SISO-ILSE xed points was conducted in the noise-free case and in the asymptotic sample size limit. This allowed exact derivations but is of limited practical interest. A precise characterization of how relaxing these assumptions aect the position and structure of the xed points is dicult, so we limit ourselves to a qualitative discussion. Note that more advanced results on the eects of noise have been carried out in the scope of Constant Modulus Algorithms (CMA) and can be found in [START_REF] Fijalkow | Adaptive fractionally spaced blind CMA equalization: excess MSE[END_REF].

In our case, it was observed that introducing noise has the eect of masking some of the xed points, in addition to shifting the location of the remaining ones. Quite intuitively, xed points with lower cost function at convergence tend to better survive noise than shallow costs xed points, as small perturbations to a function with a deep minimum is unlikely to signicantly alter its overall behavior. In that respect, introducing noise is at the advantage of the algorithm since it has statistically fewer possible local minima to converge to.

On the other hand, joint eect of noise and deviation from the uniform symbol distribution may occasionnally result in the emergence of xed points non predicted by the asymptotic analysis. While in most cases the conditions for these additional local minima to appear seem too stringent to signicantly alter the algorithm outcome, they have a negative impact on the seeding strategies introduced in the previous section, which heavily rely on the properties and relations between xed points. In particular, it was observed for the QAM 

µ m (r) = E [r m ] = m p=1 m p h p E [s p ] E w m-p = h m E [s m ] (II.19)
where we have used the fact that all pure moments of a circularly-symmetric complex random variable are zero, Eq.(I.13). Hence considering pure moments makes unnecessary to estimate the unknown noise variance N 0 . Now, because the constellation C observes the discrete rotational symmetry of order q and the emitted symbols are equiprobable, the random variable s is itself discrete circularly-symmetric, meaning that s and e 2iπk q s have the same distribution. As a consequence, all pure moments of s must verify

E [s m ] = E exp 2iπm q s m = exp 2iπm q E [s m ] (II.20)
which implies E [s m ] = 0 for all integers m which are not a multiple of q. From (II. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]) the smallest non zero moment of r is thus µ q (r). Finally replacing the actual, unobservable moment by its sample counterpart µ q (r) yields the following simple moment method predictor h:

h µ q (r) µ q (s) 1 q (II.21)
It should be noted that because the complex q-th root is not uniquely dened the obtained predictor is not unique. Also, the fact that (II. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF] does not depend on the noise variance N 0 does not imply that h is independent on the noise, as the sample moment statistics usually depend on N 0 .

II.4.2 Statistics of the channel predictor

Let us consider the q-th power of the channel predictor given by (II.21). Then by the Central Limit Theorem, Eq.(I.25), h q approximates the following complex normal distribution for large sample sizes

h q ∼ N C h q , V [r q |h] A 2 N |E [s q ]| 2 , J [r q |h] A 2 N E [s q ] 2 (II.22)
where A is the reference amplitude of the constellation C , that we suppose equal to 1 for simplicity. From (II. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]) the pseudo-variance of r q can be readily expressed as

J [r q |h] = h 2q J [s q ].
Besides, because C is invariant under complex conjugation and the symbols are equally likely, s and s * follow the same distribution, so J [s q ] = J [s q ] * and the pseudo-variance is real. By Eq.(I.11b) this implies that the real and imaginary parts of h q are uncorrelated, which under the complex normal assumption is equivalent to statistical independence.

Computing J [s q ] is a straighforward task for PSK modulations as E [s p q ] = 1 for any integer p, so J [s q ] = 0. In this particular case the distribution of h is asymptotically circularlysymmetric complex normal, Eq.(I.26). The situation is dierent for QAM constellations, for which q = 4. The fourth and eighth moments of s 4 can be computed by decomposing the QAM M symbols into two independent ASK

√ M symbols, s = a 1 + ia 2 with (a j ) m = 2m -1 - √ M . This yields E s 4 = 2E a 4 -2E a 2 2 = 2 √ M √ M m=1 a 4 m -2   √ M m=1 a 2 m   2 = - 4 15 (M 2 -1) (II.23a) E s 8 = 2E a 8 -56E a 2 E a 6 + 70E a 2 2 = 16 45 (M 2 -1)(M 2 -13) (II.23b)
where derivation of the moments of the ASK involves computation of Bernoulli numbers [START_REF] Ireland | A classical introduction to modern number theory[END_REF].

Consequently the conditional pseudo-variance of the predictor h 4 reads

J h 4 h = h 8 N J s 4 E [s 4 ] 2 = 4 h 8 N M 2 -16 M 2 -1 (II.24)
As for the variance of r q , using the independence of the noise with respect to the source symbols and the noise circular symmetry it is given by

E |r 2q | h = q j=1 q j 2 |h| 2j E |s| 2j E |w| 2(q-j) (II.25)
where from Eq.(I.16) E |w| 2m = N 2m 0 m!. Hence computation of the variance of h requires computation of the even absolute moments of s. In the case of PSK modulations we have again E [|s| p ] = 1 for any integer p so (II.25) can be simplied as

E |r 2q | h = q!N q 0 q j=1 q j 1 j! |h| 2 N 0 j = N q 0 q!L n -|h| 2 N 0 (II.26)
with L n (x) the n-th Laguerre polynomial [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. For QAM constellations the even absolute moments can be derived with the same procedure as the pure moments

E |s| 2 = 2E a 2 = 2 3 (M -1) (II.27a) E |s| 4 = 2E a 4 + 2E a 2 2 = 4 45 (M -1)(7M -13) (II.27b) E |s| 6 = 2E a 6 + 6E a 2 E a 4 = 8 105 (M -1)(9M 2 -40M + 51) (II.27c) E |s| 8 = 16 1575 (M -1)(83M 3 -637M 2 + 1897M -2183) (II.27d)
As can be seen from Eq.(II.27) the p-th moment of |s| 2 is essentially given by M p , with M ≥ 4. In most settings it is safe to assume that N 0 < 1 < M , so we can reasonably reduce the sum in (II.25) to its dominant term |h 8 |E |s| 8 . The variance of h 4 is then approximated by

V h 4 h |h| 8 N V s 4 E [s 4 ] 2 = |h| 8 N 4 7 (M -4)(19M 2 -85M + 136) (M 2 -1)(M + 1)
(II.28)

II.4.3 Outage probability

In order for the SISO-ILSE algorithm to converge to its global minimum, the initial channel predictor must lie in the convergence region of h, R(h). A natural way of measuring how good the moment method predictor is would consist in evaluating the conditional outage probability p P h / ∈ R(h) h . Even for a rather simple case such as the QAM 16, due to the complicated shape of R(h) it may be dicult to compute exactly p. We can however nd an upperbound on p by considering a real number α such that the complex ball of radius α centered at h is included in the convergence region of h, i.e. B(h, α) ∈ R(h). Then, by Chebyshev's inequality we have

p = P h / ∈ R(h) h ≤ P h / ∈ B(h, α) h = P | h -h| > α h ≤ E |h -h| 2 h α 2 (II.29)
We recognize on the right-hand side of Eq.(II.29) the conditional MSE of predictor h given a channel h. Similarly to (I.30) we can decompose the conditional MSE in terms of conditional bias and variance as follows:

E |h -h| 2 h = E |h -E h h | 2 h + E | h -E h h | 2 h (II.30)
so to compute the conditional MSE we need the conditional means of h and | h| 2 . An exact computation would require the distribution of h, which for QAM is not easy to derive even assuming h 4 to be complex normal. We can resort to approximate moments by Taylor expansion of Z γ and |Z| 2γ around E [Z], with Z a complex random variable and γ ∈ R. At
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E [Z γ ] E [Z] γ 1 + γ(γ -1) 2 J [Z] E [Z] 2 (II.31a) E |Z| 2γ |E [Z]| 2γ 1 + γ 2 V [Z] |E [Z] | 2 + γ(γ -1) 2 
J [Z] E [Z] 2 + J [Z] * E [Z] * 2 (II.31b)
Applying (II.31) to Z = h 4 and γ = 1 4 we have then

E h h h 1 - 3 32N J s 4 E [s 4 ] 2 (II.32a) E | h| 2 h |h| 2 1 + 1 16N V s 4 E [s 4 ] 2 - 3 16N J s 4 E [s 4 ] 2 (II.32b)
which provides the following approximate expression for the conditional MSE

E |h -h| 2 h |h| 2 16N V s 4 E [s 4 ] 2 = |h| 2 28N (M -4)(19M 2 -85M + 136) (M 2 -1)(M + 1) (II.33)
We are now left with the choice of α to compute the upper bound on p. Ideally α should be as large as possible, so that B(h, α) is the largest complex ball included in R(h). As this requires to know the boundaries of R(h), it may be dicult to derive an exact expression of α for a generic QAM. In the case of the QAM 16 however, the number of xed points and the structure of their convergence regions allow a precise characterization of α. In wireless communication systems there are two essential measures of performance we can think of: the rst one is the averaged SER (I.51), which evaluates the quality or reliability of the transmission. The second is the computational complexity, which provides an appreciation of whether a practical implementation of the considered method is feasible with respect to the delay requirements of the application at hand. As we are here concerned with an iterative procedure, a natural basis for comparison is the mean number of iterations required for the algorithm to converge.

To be more accurate we should account for the fact that some of the presented strategies require multiple runs of the algorithm. We thus dene N ite as the mean number of iterations of SISO-ILSE cumulated over the dierent runs needed for a given strategy to yield its nal channel predictor.

The above gures of merit are computed through Monte-Carlo simulations. The channel fading statistical model considered is the Rayleigh fading: h follows a circularly-symmetric complex normal distribution with variance σ 2 = 1, Eq.(I.14) (meaning that |h| is Rayleighdistributed with parameter

1 √ 2 
). For each channel realization, N = 1000 symbols are generated from a regular QAM source with M equally likely symbols. The noise is circularlysymmetric complex normal with power N 0 . The reference amplitude of the constellation A is chosen so that the energy per bit E b is equal to one. The channel is estimated by the SISO-ILSE algorithm and the received sequence is demodulated accordingly by threshold perturbative initialization: the initial channel is chosen at random with an arbitrary small modulus and three dierent phases {-π 8 , 0, π 8 } so as to converge to one of the inner xed points of the algorithm. The one achieving the lowest cost is then retained as the global minimum. The algorithm is thus performed thrice.

II.5.2 Results

The averaged SER and mean total number of iterations of the algorithm are provided the far-o strategy is no longer monotonically decreasing and is even outperformed by the fully-random strategy at high E b /N 0 levels. This is the result of the increase in the number of xed points with the constellation size, and the related decrease in the angle spread of the convergence regions of interest. In that respect the perturbative scheme is more reliably transposable to higher order QAM as it is essentially immune to the emergence of additional local minima. In order to improve the performance of the blind strategies a tighter angular resolution than the π/8 one can be considered, but at the evident cost of an increase in the total number of iterations. Alternatively a ner characterization of the local minima of the II.6. Conclusion
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QAM 64 could be performed so as to design more elaborate seeding strategies. In the light of this second simulation the k-products and moment method channel predictor appear as equivalently appropriate initialization strategies for the SISO-ILSE algorithm.

II.6 Conclusion

The blind estimation of the at-fading SISO channel was addressed in the ML sense by means of the SISO-ILSE algorithm, a geometrically constrained version of the k-means clustering technique. Because the centroïds are fully characterized by a single complex parameter and the constellation's geometry, some general results on the location of xed points of the algorithm were derived in the noise-free case, based on the inherent symmetries of usual linear wireless modulations. In particular, it was shown that for PSK constellations there was essentially a single xed point, thus making a preliminary initialization of the algorithm unnecessary. The situation is radically dierent for regular QAM, for which two seeding strategies to nd the global minimum from a fully random initialization were proposed, based on the location and convergence regions of the xed points. Two initialization strategies for the SISO-ILSE algorithm were also presented, equally suitable for any constellation type.

The rst one consists in a modication of the k-products algorithm to address constellations with recursive structure, and the second consists in a simple moment method channel prediction. Simulations revealed rst the relevance of our xed point analysis in mitigating the convergence of the algorithm towards spurious solution, and emphasized the eectiveness of the proposed blind initialization procedures in successfully estimating the channel. While in this simplied framework the latter strategies clearly outperform the former both in achieved error rates and complexity, making practical use of seeding techniques unnecessary, we will see in the next chapter that for multiuser transmissions both kinds of techniques are relevant in their own right.

Chapter III propagation environment that we model by a at-fading channel h k . We also assume that the users have the same symbol period T and that they are all time-synchronized. That is, at a given time epoch the BS receives exactly one symbol from each user during the symbol duration T . At the receiver, an additive background noise modeled as a circularly-symmetric complex normal variable with variance N 0 further impinges on the observed signal. Within these assumptions, at a given time epoch the observed symbol resulting from the superposition of the symbols from each user transformed by the channel and the background noise is given by the following instantaneous, linear mixture model:

r = K k=1 h k s k + w = h|s + w (III.1)
where •|• denotes the hermitian scalar product on C K . The sources s k can reasonably be assumed mutually independent and independent of the noise w. Moreover, each source is assumed to be uniformly distributed over its constellation, denoted by C k , with a corresponding rotational order q k . We refer to the joint (mixed) constellation and denote by C h the set of all symbols observable from the mixture without any noise, i.e. C h K k=1 h k C k . An example of received symbols from K = 3 users is presented on Fig.III.2. The objective of the receiver is to blindly recover the emitted symbols from each user. In the following we will call Eq.(III.1) the Multiple-Input Single-Output (MISO) transmission model to indicate that there is a single sensor at the receiver. Note that in general the term MISO actually refers to communications scenarios where the emitter uses several antennas to transmit its input signal. Since here only one antenna is assumed for each source it would be more appropriate to speak of a multiuser SISO transmission. Yet, as all considered transmissions in the thesis involve only one antenna at both the transmitter and receiver sides, we will use the MISO denomination for convenience. 

III.1.2 Blind Source Separation

The model described by Eq.(III.1) can actually be seen as a particular instance of a general signal processing problem known as Blind Source Separation (BSS) [START_REF] Cardoso | Blind signal separation: statistical principles[END_REF]. In the scope of instantaneous and linear mixtures, it is based on the following matrix model

r = AS + w (III.2)
where:

• r is the D-dimensional vector of received signals with D the number of sensors or diversity of the mixture;

• s is a vector of K unknown mutually independent source signals;

• A is an unknown D × K matrix known as the mixing matrix;

• w is a D-dimensional noise vector, usually assumed to be independent of the sources.

The aim of BSS is two-fold: from a set of N realizations of r, identify the mixing matrix H and recover the N realizations of the source vector s. A typical application of (III.2) is the estimation of directions of arrival in signal array processing [START_REF] Ottersten | Signal waveform estimation in sensor array processing[END_REF]: in this framework the columns of A are also known as steering vectors. Other popular applications of BSS include medical bioengineering, audio or speech signal processing and statistical data analysis, among many others [START_REF] Hyvärinen | Independent Component Analysis. S.l[END_REF], [START_REF] Comon | Handbook of blind source separation: independent component analysis and applications[END_REF].

The main diculty of this problem stems from the fact that both s and H are unkown to the receiver. As a consequence, solutions to the BSS problem are generally not unique and can only be dened up to some ambiguities [START_REF] Tong | Indeterminacy and identiability of blind identication[END_REF]. It is indeed easy to check that given any solution (A, s) of (III.2), then for any permutation matrix P and any non-singular diagonal matrix D, (APD, D -1 P -1 s) is also a solution to the BSS problem, thus resulting in a scaling and ordering ambiguity of the solution. Such matrices formed by the combination of a permutation and a scaling are sometimes called generalized permutation matrices. The conditions under which, up to these fundamental model invariances, the mixing matrix and the sources can be recovered are known as the identiability and separability conditions.

Several works have been devoted to the theoretical study of these conditions and can be found in [START_REF] Cao | General approach to blind source separation[END_REF] and [START_REF] Eriksson | Identiability, separability, and uniqueness of linear ICA models[END_REF] for real-valued mixtures, in [START_REF]Complex random vectors and ICA models: identiability, uniqueness, and separability[END_REF] for complex mixtures, and more recently in [START_REF] Behr | Identiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures[END_REF] in the scope of nite-alphabet sources.

The most well-known framework for addressing the BSS problem is probably the Independent Component Analysis (ICA) [START_REF] Comon | Independent component analysis, A new concept[END_REF], which aims at nding a transformation of the received signal so as to obtain the most statistically independent components. ICA techniques usually involve minimization of contrast functions based on the cumulants of the received signal as well as joint diagonalization methods [START_REF] Chabriel | Joint Matrices Decompositions and Blind Source Separation: A survey of methods, identication, and applications[END_REF][START_REF] Wang | Nonnegative Matrix Factorization: A Comprehensive Review[END_REF]. Additional assumptions on the sources can be used to further constrain the problem, such as constant modulus [START_REF] Van Der Veen | An analytical constant modulus algorithm[END_REF][START_REF] Papadias | A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays[END_REF], time-frequency signatures [START_REF] Belouchrani | Blind source separation based on time-frequency signal representations[END_REF][START_REF] Aissa-El-Bey | Underdetermined Blind Separation of Nondisjoint Sources in the Time-Frequency Domain[END_REF] or nite-alphabet property of the sources [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF][START_REF] Gamboa | Source separation when the input sources are discrete or have constant modulus[END_REF][START_REF] Li | Blind digital signal separation using successive interference cancellation iterative least squares[END_REF]. More recently, Bounded Component Analysis (BCA) has been proposed as an alternative technique based on the assumption that the sources are bounded and on the geometry of their joint support [START_REF] Cruces | Bounded Component Analysis of Linear Mixtures: A Criterion of Minimum Convex Perimeter[END_REF]. This can be thought as a generalization of ICA inasmuch the assumption of mutual independence is relaxed. BCA can thus be applied to the separation on independent and dependent sources [START_REF] Erdogan | A Class of Bounded Component Analysis Algorithms for the Separation of Both Independent and Dependent Sources[END_REF], in underdetermined and overdetermined mixtures alike [START_REF] Cruces | Bounded Component Analysis of Noisy Underdetermined and Overdetermined Mixtures[END_REF] as well as convolutive mixtures [START_REF] Inan | A Convolutive Bounded Component Analysis Framework for Potentially Nonstationary Independent and/or Dependent Sources[END_REF].

Whenever the number of sources exceeds the number of sensors (K > L), the mixture model of Eq.(III.2) is referred to as an Underdetermined Mixtures (UDM) and traditional ICA techniques no longer apply as the mixing matrix A is rank-decient. This led to the development of other strategies to address the BSS problem, most of which are based on the cumulants of the received signal [START_REF] Lathauwer | Fourth-Order Cumulant-Based Blind Identication of Underdetermined Mixtures[END_REF] and symmetric tensor decompositions [START_REF] Comon | Symmetric Tensors and Symmetric Tensor Rank[END_REF][START_REF] Lathauwer | Blind Identication of Underdetermined Mixtures by Simultaneous Matrix Diagonalization[END_REF]. FOOBI [START_REF] Cardoso | Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identication of more sources than sensors[END_REF], FOBIUM [START_REF] Ferreol | Fourth-order blind identication of underdetermined mixtures of sources (FOBIUM)[END_REF], BIOME [START_REF] Albera | Blind Identication of Overcomplete MixturEs of sources (BIOME)[END_REF] or BIRTH [START_REF] Albera | Blind identication of underdetermined mixtures based on the hexacovariance[END_REF] are a few names of such algorithms that exploit the so-called covariance (second order), quadricovariance (fourth-order) or hexacovariance (sixth-order) of the received signal. For a given number of sensors D these methods are usually characterized by an upper bound on the number of sources they can deal with. Another possible approach to underdetermined BSS is also provided by Sparse Component Analysis (SCA), which relies on the assumption that only a small number of sources are simultaneously active, resulting in a sparse representation of the source realizations vectors [6871].

The MISO channel model introduced in (III.1) represents a limiting case of underdetermined BSS in that the receiver has only one sensor (D = 1) at his disposal to estimate both the incoming sources and the mixing vector h. This situation represents the worst scenario in terms of available information, and is not covered by the above algorithms, as their operating upper bound on the number of users reduces to 1 in this specic case.

Moreover, since the symbols come from discrete modulations the sources exhibit the nite-alphabet property, which constitutes a precious information in this highly unfavorable framework. Despite having received less treatment, the BSS of nite-alphabet sources with a single sensor has been addressed in several works. In [START_REF] Pajunen | Blind separation of binary sources with less sensors than sources[END_REF] the case of balanced binary sources was addressed by an iterative learning procedure. A deterministic approach for ASK constellations with arbitrary symbol probabilities in a noiseless environment was proposed in [START_REF] Diamantaras | A clustering approach for the blind separation of multiple nite alphabet sequences from a single linear mixture[END_REF], and a geometric approach based on the distribution of dierences between the mixed symbols was discussed in [START_REF] Rostami | Blind source separation of discrete nite alphabet sources using a single mixture[END_REF] for ASK modulations. Generalizations to non-linear and convolutive mixtures can be found in [START_REF] Diamantaras | Blind separation of multiple binary sources from one nonlinear mixture[END_REF] and [START_REF] Diamantaras | Blind channel identication based on the geometry of the received signal constellation[END_REF], respectively.

There are two main limitations to the above algorithms: rst, they are restricted to realmixtures, while the channels in our model are complex-valued. More importantly, though it is true that the proposed approaches are based on the geometrical structure induced by the users constellations and the channels, in the noisy case they rely on techniques such as the EM scheme to estimate the location of the mixed joint constellation symbols. Such algorithms, in their original formulation, do not impose any constraint on the centroïds structure. Consequently their parameter space is by far larger than that of the mixture.

Forasmuch as these algorithms are known to have local minima, not taking into account the reduced dimension of the actual parameter space makes them more likely to fail at successively nding the mixed symbols. On the opposite, the Iterative Least Squares with Enumeration (ILSE) algorithm proposed in [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF] in the framework of overdetermined mixtures fully accounts for the special structure of the joint constellation. ILSE seems then a more appropriate algorithm to consider for addressing noisy mixtures of nite-alphabet sources, provided it can be applied to the underdetermined case.

On the basis of these observations and the results of the previous chapter, our objectives can be summarized as follows:

• in a rst part we will present the ILSE algorithm in the MISO framework, along with a classical procedure from wireless communications allowing the recovery of interfering sources in low interference scenarios, known as Successive Interference Cancellation (SIC). The justication for use of ILSE to our problem will be further discussed and made clear in light of our model assumptions;

• the main part of the chapter will be devoted to the initialization of ILSE. The method of moments will serve as a basis for providing the algorithm with appropriate initial channel estimates. Explicit formulas for the derived predictors will be given for various mixture settings;

• simulations will be carried out to evaluate the proposed initialization strategies. Contrary to what is usually done in the literature, our results will account for the overall ability of the algorithm to converge in a single try to its global minimum, and will not restrict to specic channel realizations. In particular, our simulations will assume maximum interference levels between the users. 

E |r| 2 = K k=1 |h k | 2 E |s k | 2 + E |w| 2 = |h 1 | 2 E |s 1 | 2 + ε (III.3)
where ε, the sum of the received powers from the remaining sources and the noise, is small compared to |h 1 | 2 E |s 1 | 2 . In words, from the perspective of the strongest source, the contributions from all other users and the background noise are tantamount to a single, global noise. Consequently, the statistics of the received signal can be used to estimate h 1 within small imprecision. Should one be solely interested in the square modulus of h 1 for instance, then from (III.3) the following estimator could be reasonably used

|h 1 | 2 µ(|r| 2 ) E |s 1 | 2 (III.4)
where µ(|r| 2 ) denotes the sample averaged received power. Hence the source signal s 1 can be separately estimated using a standard threshold detection scheme, allowing its contribution to the total received signal to be compensated. The same procedure can then be applied to the residual received signal to decode the strongest remaining sources, and so forth until all the sources have been estimated. Assuming for simplicity that the sources are sorted by decreasing received power, the overall SIC procedure basically consists in iterating over the following steps

h k = T ( r k ) (III.5a) s k = argmin s∈C k | r k -h k s| 2 (III.5b) r k+1 = r k -h k s k (III.5c)
with k ∈ {1, • • • , K}, r 1 r and T (r) is a given statistics of the received signal used to estimate the channels. If the number of sources K is known, then SIC stops after K iterations. Otherwise, one can dene a lower power bound on the residual signal under which it is considered that all signals of interest have been estimated and only noise remains. This requires however all sources to have signicantly higher power than the noise, as well as an estimation of the noise power. The fundamental underlying assumption of SIC is that the received contributions from each user have a strong power diversity. If this condition is not fulllled, (III.5a) essentially results in an estimation of a mixture of channel powers corresponding to subsets of source signals with similar powers. Consequently, the associated decoding step yields a poor estimation of the source under consideration, which is likely to considerably hinder the estimation of the remaining sources in subsequent iterations through the residual received signal. This is illustrated on Fig.III.3 for two users using QAM modulation schemes. In the left conguration, the channel coecients are such that the received powers are well separated from each other and from the noise, allowing an almost perfect estimation of the rst source. In the second setting, the received powers are of the same order, hence despite an appreciably low noise power level only half of the rst user transmitted symbols are correctly estimated. All in all, SIC provides a simple and low-computational estimation of linear mixtures involving weakly interfering sources, but is not adapted beyond this framework, as will be demonstrated in later simulations.

III.2.2 Iterative Least Squares with Enumeration

One possible approach to solve the linear BSS problem lies in ML estimation. That is, given a set of N independent observations of the received signal, we aim at maximizing the (log)-likelihood function with respect to the mixture parameters, namely the channel vector h and the emitted source symbols. Denoting by r the (row) vector of realizations of r and by S the K × N matrix whose columns are the realizations of the source vector s, Eq.(III.1) yields r = hS + w

(III.6)
with w a vector of N independent realizations of w. Since the background noise is circularlysymmetric complex normal with variance N 0 , the conditional probability distribution of the received signal given h and S is complex normal with the same variance and mean hS. Hence, maximizing the log-likelihood function L [h, S; r] amounts to minimizing the following least squares cost function:

J(h, S) r -hS 2 (III.7)
Despite being merely quadratic, the joint minimization of (III.7) in h and S is a non-trivial problem, especially since it involves both a continuous variable (the channel vector) and a discrete one (the transmitted symbols matrix). The Iterative Least Squares with Enumeration method [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF] proposes an iterative procedure to minimize J in an alternating least squares fashion: at each step of the algorithm, the cost function is rst minimized with respect to one of its variales h or S, the other being xed. The resulting optimum is then used to minimize J with respect to the remaining variable, and the overall procedure is iterated until convergence of the algorithm.

In the single-sensor BSS model setting, the minimization of J with respect to the continuous channel vector h at iteration t yields the usual OLS estimator h t given by Eq.(I.33)

h T t = r S † t-1 S t-1 S † t-1 -1 (III.8)
where S t-1 is the estimation of the transmitted symbols matrix at iteration t -1. Obviously equation (III.8) is meaningful only if S t-1 has independent rows. Otherwise the channel estimator is obtained by taking the minimum norm solution of (III.7). The authors have shown that a sucient condition for the K rows of S t-1 to be linearly independent is that every combination of symbols from each user appears at least once. In particular this result holds regardless of the underdetermined or overdetermined nature of the mixture. Let us note however that independence of the rows of S t at a given iteration t is not necessarily preserved under subsequent iterations.

As for the transmitted symbols matrix estimation step, given an estimation of the channel vector h t ILSE proceeds by enumerating all combinations of symbols from each user, and selecting one which minimizes the squared residual

S t = argmin S∈(C 1 ו••×C K ) N r -h T t S 2 (III.9)
It is shown in [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF] that the sequence of joint estimators ( h t , S t ) produced by the algorithm belongs to a nite set, and that the corresponding sequence of costs J( h t , S t ) is decreasing and stationary. Consequently, the algorithm converges to a xed point in a nite number of steps. The overall complexity of the method is dominated by the enumeration step (III.9) and is in O (N KD) per iteration, where here the dimension of the mixture D is one. Additional performance analyses such as bounds on the error rates achievable by the proposed method were provided in [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. II. Performance analysis[END_REF].

As in the SISO case, the ILSE algorithm can be thought of as a particular case of the k-means clustering algorithm, in which the position of the centroïds are constrained to lie on a predened stucture determined by the mixed constellation C h . As such, many of the well-established properties of k-means readily apply to ILSE. Foremost is that the cost function (III.7) generally has several local minima, so the minimization iterative procedure presented above does not necessarily converge to the actual minimum of J.

As a deterministic process, the xed point towards which the method converges is, for a given mixture, solely determined by the initial point provided to the algorithm. It is thus customary to test the algorithm on several random initial states, either until the global minimum has been achieved, or for a xed number of times and retaining the solution with minimal nal cost. Note that in the former strategy the appreciation of whether the xed point under consideration is a local or global minimum may require additional information such as for instance an estimation of the background noise power, as well as careful lower threshold design for the cost function. In any case, randomly repeating over the algorithm has in general no guarantee of succeeding in nding the true minimum of J, and can besides reveal computationnally prohibitive as the number of sources and dimension of the mixture grow.

In [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF] an alternative initialization strategy for ILSE was proposed, namely Iterative Least Squares with Projection (ILSP). In this variant of the initial procedure, the source matrix S is rst considered as a continuous variable. Minimizing (III.7) with respect to S then reduces to an OLS problem similar to (III.8). The (continuous) resulting estimator is then projected back onto the joint discrete constellation in the minimum distance sense. The mixing matrix estimation step is left unchanged. Despite a decreased complexity compared to the original ILSE, the ILSP procedure suers from two major drawbacks:

• due to the projection step, the sequence of estimators produced does not necessarily decrease the cost function J. Hence the algorithm does not always converge, or can exhibit cyclic behavior, as reported in [START_REF] Li | Blind digital signal separation using successive interference cancellation iterative least squares[END_REF];

• since based on the same cost function and the same alternating least squares process, the previous discussion on the presence of local minima and the choice of the initial state also applies to ILSP.

This motivated the use of ILSP as an initialization procedure for ILSE rather than a self-consistent algorithm. Additionally, in the case of single-sensor mixtures, the mixing matrix reduces to a row vector, hence the matrix inversion in the computation of the OLS continuous source matrix estimator is never possible. One can of course always consider the pseudo-inverse solution instead, but in all likelihood the use of ILSP does not seem appropriate to address this particular setting.

Despite being originally presented as a solution to the overdetermined linear BSS problem, the ILSE approach is not limited to this setting, as neither the enumeration nor the channel vector estimation steps have any requirement regarding the mixture dimension. Hence ILSE can be applied to underdetermined problems as well. Moreover, as a special case of k-means, the same underlying assumptions on the statistical mixtures under consideration can be made, namely:

• mixture components have nearly the same variances;

• mixture components are equally likely.

Note that the above properties rather dene an ideal framework for use of k-means based algorithms than actual requirements. In other words, k-means or ILSE can also be used on non homogeneous mixtures with unequal weights, but at the expense of an expected decrease in overall performance. Within our assumptions of a complex circular noise and the uniformity of each source's distribution however, the ILSE indeed appears to be a particularly relevant candidate, shall one provides it with a good enough initialization strategy. This is the main objective of this chapter and the object of the next section.

III.3 Proposed channel predictor III.3.1 Problem Formulation

In order to make ILSE more likely to converge to its global minimum, we propose to initialize it with a channel vector predictor based on the method of moments and the cumulants of the received signal. Due to the mutual independence of the sources and their independence with respect to the noise, the n-order pure cumulant of r conditioned on the realization of the channel vector, simply denoted by κ n (r), reads

κ n (r) = K k=1 (A k h k ) n κ n (s k ) + κ n (w) (III.10)
where we used the homogeneity property of cumulants on the channel coecients, Eq.(I.22), and A k is the reference amplitude of constellation C k . Eq.(III.10) can be simplied as follows :

rst, because of the circular symmetry of the noise, all the pure moments, and consequently all the pure cumulants of w, are zero. Besides, as was seen in Section II.4, Eq.(II.20), the uniform assumption of each source's distribution combined with the discrete rotational symmetry of their support C k , implies that all (pure) moments of source s k of order non-multiple of q k are zero as well. Likewise, the n-th order (pure) cumulant of s k , as an homogeneous polynomial of degree n in the variable s k , is necessarily zero if n is not a multiple of q k . In the case q k divides n, we can express the n-th order cumulant of source s k as

κ n (s k ) = α p k ,q k κ p k µ q k (s k ) α 1,q k , µ 2q k (s k ) α 2,q k , • • • , µ p k q k (s k ) α p k ,q k (III.11)
with p k the quotient of the division of n by q k and α p,q (pq)! p!(q!) p . Let us recall that the right-hand side of (III.11) is to be understood as the polynomial associated with the general pure cumulant of order p k , and not as a cumulant of s k , as was explained in Section I.1.4. A proof of (III.11) is provided in Appendix A.1. Further dening q (q 1 , •

• • q K ), χ k s q k k and η k (A k h k ) q k , (III.10) simplies to κ n (r) = k∈Dq(n) η p k k α p k ,q k κ p k µ 1 (χ k ) α 1,q k , µ 2 (χ k ) α 2,q k , • • • , µ p k (χ k ) α p k ,q k (III.12)
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where D q (n) is the subset of {1, • • • , K} such that q k divides n, with quotient p k . Thus, by an appropriate choice of cumulants of the received signal to be estimated, one obtains a polynomial system in the channels q k -th power predictors. As for arbitrary rotational orders q k (III.12) does not generally have an analytical solution, in the following we will mainly restrict to two opposite special cases: all rotational orders are distinct, and all are equal.

III.3.2 Distinct rotational orders

The linear BSS problem being dened up to permutation of the sources, we can without loss of generality assume that the q k 's are sorted in ascending order, q k < q k+1 with k ∈ {1, • • • , K -1}. Then, from (III.12) we see that E [r q k ] can only depend on the rst k sources, i.e. D q (q k ) ⊆ {1, • • • , k}. Further assuming that E [χ k ] = 0 for each source s k , by considering the cumulants of r for each order q k Eq.(III.12) reduces to a triangular system, whose solution is recursively given by

η 1 = E [r q 1 ] /E [χ 1 ] η k = 1 E [χ k ]   κ q k (r) - m∈D + q (q k ) η pm m κ pm (χ m )   (III.13)
where D + q (q k ) D q (q k )\{k}. The number of terms in the sum of (III.13) depends on the divisibility relations between the rotational orders. As a particular case, when all q k 's are mutually prime, the system is diagonal (D q (q k ) = ∅), and the solution of each channel's power predictor simply reads

η k = E [r q k ] E [χ k ] (III.14)
In the context of digital communications this setting is however quite unlikely to occur, as the modulation schemes employed are most often binary.

The computation of the channel predictors in (III.13) essentially requires to compute the K cumulant estimates of r from order q 1 to q K . The precise number of distinct moments of r involved for this depends on the divisibility relations between the q k 's, but is in any case included in the integer set {q 1 , q 1 + 1, • • • , q K }. The computational load of the n-th order sample moment is in O (N n). Further neglecting the number of operations in the expression of each cumulant with respect to N , the overall complexity of the method is given by

q K n=q 1 O (nN ) = O N q 1 + q K 2 (q K -q 1 + 1) O N (q 2 K -q 2 1 ) (III.15)
In digital transmissions, practical choices of rotational orders are powers of 2 and typically range from 2 to 16, meaning that system (III.13) can basically estimate up to K = 4 channel predictors. Beyond this bound it is likely that some users will share the same rotational orders. Let us give a practical example of (III.13) by considering a BPSK modulation, a QPSK and a PSK 8. Then q = (2, 4, 8) and E [χ k ] = 1 for all k in {1, 2, 3}, so from (III.13) 66
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η 1 = E [ρ] (III.16a) η 2 = J [ρ] (III.16b) η 3 = J ρ 2 -68E [ρ] 2 J [ρ] (III.16c)
where ρ r 2 and we used the additional equation given by κ 6 (r) to simplify the expression of κ 8 (r) in (III.16c).

Finally, since the system is triangular there is only one predictor η. However, for each η k there are q k possible roots h k , hence strictly speaking the moment channel predictor is not unique, and the number of possible channel predictors is given by q 1 q 2 • • • q K . Yet, as far as ILSE is concerned, the particular choice of a given predictor has in this case no inuence on the output of the algorithm because of the rotational symmetry of the sources, and only results in global permutations in the estimated symbols for each user. Consequently for distinct rotational orders there is essentially only one possible initial channel predictor for ILSE, which makes the solution of the moment problem unique, in that respect.

III.3.3 Equal rotational orders

In the opposite case where all rotational orders are equal, i.e. q k = q for all k in {1, • • • , K}, only moments of r that are multiple of q can be non-zero. The appropriate variable to consider is then ρ r q . Let us recall that having identical rotation orders does not imply having identical constellations. Especially, all QAM constellations are of rotational order q = 4 regardless of their size. Considering (III.12) for the n-th multiple of q yields

κ n µ 1 (ρ) α 1,q , µ 2 (ρ) α 2,q , • • • , µ n (ρ) α n,q = K k=1 κ n µ 1 (χ k ) α 1,q , µ 2 (χ k ) α 2,q , • • • , µ n (χ k ) α n,q η n k (III.17)
Hence, taking (III.17) for integers n from 1 to K results in a full polynomial set of equations.

For an arbitrary number of sources K there is no analytical solution to this system, so in general solving the problem requires numerical algorithms. For K ≤ 4 however, algebraic expressions for η can be derived. As for complexity, the computation of predictors from system (III.17) essentially consists in estimating the moments of ρ from order 1 to qK.

Considering sample moment estimators and neglecting both the number of operations in the polynomials κ n and the complexity of the root-nding algorithm needed in the general case, the overall complexity of the estimation process is approximately in O N qK 2 .

In the two next sections we give exact solutions to (III.17) for two and three sources, respectively. As we will often illustrate our results with QAM constellations, it is useful to note that in this case the polynomials κ n involved in (III.17) have the following simplied expression

κ n µ(χ) α 1,4 , µ 2 (χ) α 2,4 , • • • , µ n (χ) α n,4 = 2 M 2n -1 4 2n -1 6 n κ 2n 1 α 2,2 , 1 α 4,2 , • • • , 1 α 2n,2 (III.18)
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To illustrate the two-sources scenario let us consider two QAM constellations of respective size M 1 and M 2 . Then we have µ

k = -4 15 (M 2 k -1), σ 2 k = 4 3 15 2 (M 2 k -1)(M 2 k -16) and ω k = 4 3 30 (M 4 k -1), so (III.21) reads η k (m) = -15/8 M 2 1 M 2 2 -1 • (M 2 τ (k) + 1)ρ + (-1) τ (k)+m+1 M 2 τ (k) -1 M 2 k -1 γ(µ ρ , σ 2 ρ ) (III.23)
where τ (k) is the swap operator, i.e. τ (1) = 2 and τ (2) = 1, and γ(µ ρ , σ 2 ρ ) is the principal complex square root of

Γ(µ ρ , σ 2 ρ ) 1 15 (19µ 2 ρ -σ 2 ρ )(M 2 1 M 2 2 -1) -µ 2 ρ (M 2 1 + M 2 2 + 2) (III.24)
Three-sources case

In the three-sources case (III.17) can also be exactly solved for arbitrary source constella-

tions. Yet to avoid unecessary cumbersome expressions we will restrict the derivation to the case where all three constellations are the same. System (III.17) can then be rewritten as

Φ n P n µ 1 (ρ) α 1,q , µ 2 (ρ) α 2,q , • • • , µn(ρ)
αn,q 

P n µ 1 α 1,q , µ 2 α 1,q , • • • , µn αn,q = η n 1 + η n 2 + η n 3 , n ∈ {1, 2, 3} ( 
             Φ 1 = a Φ 2 = 1 3 a 2 + 2b Φ 3 = 1 9 a 3 + c 3 + b c 3 + 6ab (III.26)
whose solution is

               a = Φ 1 b = 1 2 3Φ 2 -Φ 2 1 c = 3 1 2 9Φ 3 + 9Φ 1 Φ 2 -2Φ 3 1 + 9Φ 3 + 9Φ 1 Φ 2 -2Φ 3 1 2 -1 2 (3Φ 2 -Φ 2 1 ) 3 (III.27)
where in the expression of c the choice of the cubic and square roots has no consequence on the solution η, apart from permutation of its components. Similarly to the two-users case, for QAM constellations the coecients a, b and c can be rewritten in terms of the constellation size M through equations (III.19a) -(III.19c). The resulting expressions are rather complicated and are omitted for the sake of simplicity.
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In the general case of arbitrary rotational orders, there may be several approaches to solve the moment problem (III.11), depending on which cumulants one chooses to consider.

An interesting fact is that we can always nd an appropriate set of cumulants for which the resulting equation system displays a block-triangular structure. The number of blocks is then

given by the number of distinct values in the rotational vector q, and the number of equations in each block by the multiplicity m k of the q k associated to that block, i.e. the number of times the value taken by q k appears in q. For instance, in the all-distinct rotational orders case m k = 1 for all k so the system is indeed triangular, while in the previous section we had m k = K for all k, resulting in a single-block structure of size K. Within each bock the number of distinct predictors (up to permutations) lies between 1, when all constellations associated to that block are the same, and m k !, when all constellations are dierent. Hence the total number of distinct predictors is bounded by the products of the factorials of the multiplicities in q.

To show how the orders of the cumulants in (III.11) can be chosen so as to obtain a block-triangular system, let us assume the q k 's to be sorted in ascending order. According to the previous section on equal rotational orders , the m 1 rst cumulants of r of order multiple of q 1 form a set of equations in the channel vector power coecients η 1 to η m 1 . Some of those equations may however also depend on other coecients. This actually occurs for any integer m ≤ m 1 such that m q 1 is a multiple of one of the (strictly) greater q k 's, k > m 1 . So, in order to have a closed subset of equations for coecients η 1 to η m 1 we can simply choose the m 1 smallest multiples of q 1 that are not multiples of any of the other distinct q k . Applying the same reasoning to the second distinct rotational order, q m 1 +1 , we see that taking the m 2 smallest cumulants of order multiple of q m 1 +1 and not multiple of any of the remaining q k 's result in a subset of m 2 equations in the channels coecients η m 1 +1 to η m 1 +m 2 , and possibly in the coecients from η 1 to η m 1 , which have already been estimated. By recursion, we can build in this fashion subsets of m k equations which depend on the m k channel coecients associated with the sources having the same rotational order q k , and possibly on some of the coecients derived from previous recursions. In particular, when all distinct rotational orders are mutually prime, the system is block-diagonal, meaning that each block forms a closed subset of equations.

Let us take a specic example to illustrate the above discussion by considering K = 4 sources, with q 1 = q 2 and q 3 = q 4 (so m 1 = m 2 = 2 and m 3 = m 4 = 2). The precise structure of the resulting system is determined by the divisibility relations between q 1 and q 3 and can be decomposed into three cases:

1. q 1 < q 3 < 2q 1 : in this setting, q 3 cannot divide 2 q 1 , since q 3 > q 1 so any multiple of q 3 is stricly greater than 2 q 1 . Taking then the cumulants of r of order q 1 and 2 q 1 yields the closed subset of equations given by (III.20). Likewise, 2 q 3 is not a multiple of 2 q 1 (otherwise q 3 would be a multiple of q 1 , which is impossible since the smallest multiple of q 1 is 2 q 1 > q 3 ), so taking the cumulants of order q 3 and 2 q 3 results in another closed subset of equations (III.20) which can be independently solved from the rst one. The system is block-diagonal, and the solutions are given by (III.21);

2. 2q 1 < q 3 : here the rst subset of equations is obviously identical to that of the previous case.

As for the second, if q 3 is not a multiple of q 1 then the system is block-diagonal.

Otherwise, the cumulants of order q 3 and 2 q 3 depend on the coecients η 1 and η 2 . Using the solution from the rst subset the second subset can be expressed in the same form as (III.20), and the solution is formally similar to (III.21); 3. the most interesting case occurs when q 3 = 2 q 1 . Considering equation (III.12) for n = q 1 , 2 q 1 , 3 q 1 and 4 q 1 results in the following system

                 κ 1 (ρ) = κ 1 (χ 1 )η 1 + κ 1 (χ 2 )η 2 κ 2 (ρ) = κ 2 (χ 1 )η 2 1 + κ 1 (χ 2 )η 2 2 + α 1,q 3 α 2,q 1 κ 1 (χ 3 )η 3 + α 1,q 3 α 2,q 1 κ 1 (χ 4 )η 4 κ 3 (ρ) = κ 3 (χ 1 ) η 3 1 + κ 3 (χ 2 ) η 3 2 κ 4 (ρ) = κ 4 (χ 1 ) η 4 1 + κ 4 (χ 2 ) η 4 2 + α 2,q 3 α 4,q 1 κ 2 (χ 3 ) η 2 3 + α 2,q 3 α 4,q 1 κ 2 (χ 4 ) η 2 4 (III.28) Here κ p (χ k ) is just a shorthand notation for κ p µ 1 (χ k ) α 1,q k , • • • , µp(χ k ) αp,q k
and similarly for κ p (ρ) with ρ r q 1 . As expected the second equation depends not only on η 1 and η 2 , but also on η 3 and η 4 . The third equation only involves η 1 and η 2 since 3 q 1 is not a mutiple of q 3 = 2 q 1 . Thus we can use the rst and third equations of (III.28) to nd predictors for η 1 and η 2 , then solve the second and fourth equations in η 3 and η 4 . To simplify the derivations, let us assume that constellations with equal rotational order are identical. Dening

Φ p κ p (ρ) κ p (χ 1 ) = κ p µ 1 (ρ) α 1,q 1 , • • • , µ k (ρ) αp,q 1 κ p µ 1 (χ 1 ) α 1,q 1 , • • • , µ k (χ 1 )
αp,q 1 (III.29) for p ∈ {1, 2, 3, 4}, the (essentially unique) solution to system (III.28) is given by

       η k = 1 2 Ψ 1 + (-1) k 2Ψ 2 -Ψ 2 1 , k ∈ {1, 2} η k = 1 2 Ψ 3 + (-1) k 2Ψ 4 -Ψ 2 3 , k ∈ {3, 4} (III.30)
where the Ψ p 's, p ∈ {1, 2, 3, 4}, are dened by

Ψ 1 Φ 1 (III.31a) Ψ 2 1 3 2 Φ 3 Φ 1 + Φ 2 1 (III.31b) Ψ 3 1 3 α 2,q 1 α 1,q 3 κ 2 (χ 1 ) κ 1 (χ 3 ) 3Φ 2 -2 Φ 3 Φ 1 -Φ 2 1 (III.31c) Ψ 4 1 9 α 4,q 1 α 2,q 3 κ 4 (χ 1 ) κ 2 (χ 3 ) 9Φ 4 -2 Φ 2 3 Φ 2 1 -8Φ 1 Φ 3 + Φ 4 1 (III.31d)
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As a practical application of (III.30) we can take for instance two ASK constellations of size M 1 and two QAM constellations of size M 2 . Computing the rst four polynomials κ n (χ 1 ) (Eq.(A.12)),

κ 1 (χ 1 ) = 1 3 (M 2 1 -1) κ 2 (χ 1 ) = - 2 45 (M 4 1 -1) (III.32a) κ 3 (χ 1 ) = 16 945 (M 6 1 -1) κ 4 (χ 1 ) = - 16 1575 (M 8 1 -1) (III.32b)
and using (III.19a) and (III.19b) for κ 1 (χ 3 ) and κ 2 (χ 3 ) the expression of the Ψ p 's are found to be

Ψ 1 = 3ϕ 1 (ρ) (III.33a) Ψ 2 = 105 8 ϕ 3 (ρ) φ 1 (ρ) + 3ϕ 2 1 (ρ) (III.33b) Ψ 3 = - 1 16 
M 4 1 -1 M 2 2 -1 180ϕ 2 (ρ) + 105 ϕ 3 (ρ) ϕ 1 (ρ) + 24ϕ 2 1 (ρ) (III.33c) Ψ 4 = - 315 4 M 8 1 -1 M 4 2 -1 5 8 ϕ 4 (ρ) + 35 64 ϕ 3 (ρ)ϕ 1 (ρ) + ϕ 2 3 (ρ) ϕ 2 1 (ρ) - 2 35 ϕ 4 1 (ρ) (III.33d) with ϕ p (ρ) κp(ρ) M 2p 1 -1 .
The block-triangular structure of the moment problem (III.11) has the theoretical interest of making possible derivation of analytical predictors for mixtures of more than four sources, the only constraint being for the size of each block (i.e. the multiplicities) to not exceed four.

This strategy may however not be the best one in regards to computational complexity and overall quality of the derived predictors, as it requires computation of high-order cumulants, the estimation of which is known to be increasingly dicult due to higher variance and slower convergence properties. As a consequence, in practical implementations it may be more reliable to consider full sets of equations derived from cumulants of lower order. That is, for K sources we search for the K smallest cumulant orders such that the system is solvable with respect to all the channel coecients. This may lead to an increased quality of the estimated quantitites, but generally requires as a counterpart the use of numerical algorithms to solve the system under consideration.

Let us also make clear that the block-triangular structure is a direct consequence of the discrete circular symmetry of the sources. Within our assumptions, this property is itself granted by the structure of the constellations and the uniformity assumption of the source distributions. Should the latter hypothesis be strongly violated, the constraints on the moments of the sources (II.20) will no longer hold. Consequently, any cumulant of the received signal is likely to be non zero and dependent on all the sources, resulting in systematically full equation system structures. The number of sources we can analytically address is then bounded by four, regardless of the considered modulation schemes. In digital communications however, the uniformity of sources is in general justied enough, so we can expect the proposed estimation procedure to provide channel predictors accurate enough to enhance robustness of the ILSE algorithm against convergence to spurious local minima.
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III.3.5 Statistics of the cumulant-based predictors

In Section I.2.4 we stated that estimators provided by the methods of moments are generally consistent, as long as they involve continuous functions in the moments of the observed variables. In our case though this result must be considered with caution, because predictors derived from system (III.11) are generally not unique. In the case of distinct rotational orders, the predictor η is indeed unique. Moreover, as it only involves polynomial functions of the sample moments, it is always possible to nd an unbiased, minimum-variance predictor. When the sample size is large, choice between an unbiased or biased predictor usually makes little dierence in vertue of consistency. Besides, the channel predictor h is generally biased, regardless of whether η is unbiased or not. Consequently we will always only consider the non-corrected predictors obtained by simply replacing each moment by its sample counterpart.

The situation is more complicated for equal rotational orders, as the predictors are non unique. In Appendix A.3 we show that for two sources with circularly-symmetric channels, the asymptotic expected squared bias of both predictors η (m) given in (III. [START_REF] Ramachandran | Mathematical statistics with applications. Amsterdam[END_REF]) is

E B(η (m) |η) 2 1 2 (|ε 1 -1| 2 + |ζ 1 | 2 )E |η 1 | 2 + (|ε 2 -1| 2 + |ζ 2 | 2 )E |η 2 | 2 (III.34)
where ε k 1 -

2 1+r k /r τ (k)) , ζ k 2µ k /µ τ (k) 1+r k /r τ (k) and r k µ 2 k ω k
. For QAM constellations we have

r k = 1 30 M 2 k -1 M 2 k +1 ∈ 1 34 ; 1 30 , so ε k 0, ζ k µ k /µ τ (k) = M 2 k -1 M 2 τ (k) -1
, and (III.34) simplies to E B(η (m) |η)

2 1 + M 2 1 -1 M 2 2 -1 2 E |η 1 | 2 2 + 1 + M 2 2 -1 M 2 1 -1 2 E |η 2 | 2 2 (III.35)
Equations (III.34) and (III. [START_REF] Lloyd | Least squares quantization in PCM[END_REF] show that none of the predictors η (m) are consistent when considered independently. This is because, given a channel vector realisation h, only one of the predictor in (III.21) is asymptotically unbiased. Consequently, in order to minimize the bias and the MSE, the choice of which predictor to use between η(1) and η (2) is of foremost importance. Obviously, the ideal strategy would consist in choosing the estimator which is the closest to the actual channel vector in the (conditional) MSE sense. In practice, we search for suboptimal strategies that should be as close as possible to the ideal one. Formally speaking, the choice between both η (m) is conditioned on an event, say A , such that denoting by η the retained predictor, we have for instance η = η (1) if A is realized and η = η (2) otherwise. Still assuming circular-symmetric channels, the expected, asymptotic squared bias of η can be obtained from the law of total expectation as

E |B(η|η)| 2 p 2 (|ε 1 -1| 2 + |φ 1 | 2 )E |η 1 | 2 + (|ε 2 -1| 2 + |φ 2 | 2 )E |η 2 | 2 (III.36)
where p is the probability that the predictor chosen according to a given suboptimal strategy diers from the one obtained with the ideal strategy. For any A -based strategy, p can always be considered less than 1/2, since otherwise one just has to consider the inverse strategy based on A c instead.

There may be several ways of dening an appropriate strategy such that p is small. Below are two possibilities:

• rst, we can consider an additional moment or cumulant, say κ n (r), of the received signal. Applying (III.12) to both η (m) , the best predictor is dened as the one which is the closest, in the quadratic sense, to the sample cumulant κn

η argmin m∈{1,2} κn -κ (m) n 2 (III.37)
where κ

(m) n

is the estimator of κ n (r) obtained by replacing η with η (m) in (III.12)

• another possibility is to use the ILSE cost function (III.7) as a discrimination criterion

η argmin m∈{1,2} J h (m) , S (m) (III.38)
where S (m) is an estimation of the emitted symbols matrix obtained from h (m) by enumeration (III.9) and h (m) denotes any q-th roots of η (m) . In the same fashion we can base the decision regarding which initial predictor to keep on a given iteration t rather than the rst iteration. In particular, one can wait for ILSE to converge for both initial predictors and decide which one to discard based on the nal cost function achieved by the algorithm.

Both strategies (III.37) and (III.38) naturally extend to an arbitrary number of sources: one has simply to consider as many additional moments or cumulants as needed in the rst case, or compute the ILSE cost function for all possible distinct predictors, up to permutations within subsets of sources having equal rotational orders.

Fig.III.4

shows the MSE of channel predictors h obtained with dierent strategies from a mixture of two sources using respectively a QAM 16 and a QAM 4, with circularly-symmetric channel coecients drawn from the same Rayleigh distribution with parameter σ r , and a ratio E b /N 0 of 50 dB. For the additional moment/cumulant-based strategy the third cumulant of the fourth-power received signal was used, see (III.17) for (n, K, q) = (3, 2, 4).

Both additional moment (III.37) and the ILSE cost-driven (III.38) decision rules result in a substantial improvement of the quadratic error compared to the naïve, purely random strategy (p = 1/2). The probability of wrong decision against the ideal, actual channel-based strategy, p, was numerically computed for each Rayleigh parameter σ r and found to tend very quickly to approximately 0.15 for the moment-based strategy and 0.11 for the ILSE one. Yet, only the full ILSE-based decision rule is able to compare to the ideal case in the whole range of Rayleigh parameters, with a misdecision probability of nearly 0.01. Quite intuitively, the best initial predictor, in the MSE sense, between η (1) and η (2) , is most likely the one which converges to the best ILSE predictor at convergence of the algorithm. It should be mentioned that when the constellations are identical, all the suboptimal strategies discussed above reduce to the random choice strategy, p = 1 2 . Because for identical sources the BSS problem is completely transparent to permutation, no blind strategy can distinguish between the several possible predictors provided by the moment problem.

The ILSE-based decision rule (III.38), when considered for more than one iteration, is actually little relevant, in the extent that the retained moment predictor is precisely to be used as an initial state for ILSE. Hence, after t iterations of ILSE one has not much of a reason to choose which η (m) to discard and should directly consider instead the predictors η (m) t

provided by ILSE at that iteration. A better strategy then consists in running ILSE in parallel for all initial predictors, and at a given iteration to stop all algorithms but the one achieving the lowest cost for that iteration. Likewise one can wait for ILSE to converge for all tested initial states and select the lowest, nal cost solution. The latter possibility is obviously more computationnally demanding. Note however that in the framework of digital communications with binary modulation schemes, practical choices of constellations are such that the number of distinct solutions is in most cases reasonably small, so the additional computational load resulting from an exhaustive testing is not prohibitive. Consequently, in all the following we will always adopt this strategy whenever discriminating between distinct moment channel predictors is needed.

III.4 Performance analysis III.4.1 Simulation settings

We now turn to the concrete application of the proposed initialization strategy to ILSE.

Performances of the resulting algorithm are obtained through Monte Carlo simulations conducted on several of the mixtures discussed in Section III. [START_REF] Dai | Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends[END_REF]. In all simulations, the channel vector coecients are independently drawn from the same complex gaussian distribution with uniform variance σ 2 h = 1 √ 2

(so E [|h|] 2 = 1). For each channel realization, the emitted signal consists in a sequence of N = 1000 symbol vectors s n whose components are uniformly drawn from each source's constellation C k . Each constellation's reference amplitude A k is dened so as to normalize the energy per bit, E b = 1. This implies, in addition to the fact that the channels have the same distribution, that the averaged SIR equals one, meaning that the level of interference is maximal, and also accounts for the scaling invariance of the linear BSS model. The per-user emitted Signal to Noise Ratio (SNR) is expressed as the ratio E b /N 0 , with N 0 the complex noise variance.

The quality of the multiuser detector is measured in terms of the joint averaged SER, namely the sample probability of wrong symbol detection across all users

P s P (s = s) = P K k=1 {s k = s k } (III.39)
where s is the estimator of the source vector resulting from a threshold decoding based on the channel predictor h. Unlike the single-source case, there is no simple theoretical formula such as (I.52) for the averaged SER of the ideal (i.e. perfect CSI) threshold detection. This is because the Voronoï regions of the joint constellation C h have a non-trivial dependency in the channel vector h, as shown on Fig.III.5. An exact expression for BPSK sources was actually derived in [START_REF] Proakis | Digital communications[END_REF] but the resulting expression is already quite cumbersome to handle. Several upper and lower bounds on P s can be derived, but as we are here only interested in the perfect CSI detection for comparative purposes, we will simply compute the corresponding SER by simulation. Addtionally we can measure the quality of the channel predictor by considering the (sample) Normalized Root Mean Square Error (NRMSE), which for multiuser transmissions is given by

NRMSE( h) 1 √ K E h -h 2 σ h (III.40)
For comparison the performance of several blind multiuser detection methods is measured as well. The tested algorithms are listed below along with their denomination in the foregoing discussion.

perfect CSI: the ideal case where the channel is perfectly estimated; MB-ILSE: predictors obtained from ILSE initialized with the MB strategy.

In the following we will always assume any of the algorithms involved in the above strategies to have maximal partial information on the channels so as to achieve their best outcome.

For instance, we provide SIC with a perfect estimation of the received powers from each user so that the source decoding order is optimized. Likewise, for the ILSE and ILSP-ILSE strategies, both based on random channel initalizations, the channels underlying probability density function is assumed to be known, so that the tested initial states are drawned according to the very same distribution. Finally, all indeterminacies aecting the channels predictors inherent to the symmetry of the BSS model or the sources are tackled by selecting the best solution with respect to the actual channel realization, in the squared error sense.

Specically, this amounts for the receiver to know

• the order in which each estimated source and channel are associated to their respective user (permutation invariance);

• the reference amplitude A k of each constellation C k (scaling invariance)

• which of the q k 's complex roots of η k to consider (discrete-circular source invariance).

Obviously, in practical implementations the above information would have to be acquired through additional estimation procedures. Examples of suboptimal strategies based on partial information on the channels will be discussed in Section III.6. In any case, a priori knowledge is always necessary for a meaningful solution of the BSS model to be retrieved.

III.4.2 Simulation results

Two sources

We rst consider a two-users mixture simply composed of two QAM 4 sources. the perfect knowledge of the contributions of each source to the total received power, SIC is not able to yield reliable channel and source estimates, as the averaged SIR is 0dB. Likewise, the predictors derived from the moment method are in themselves not accurate enough to achieve satisfying error rates. Only ILSE initialized with either the moment method predictors or the SIC compares well to the ideal case for a wide range of noise power levels, yet with a clear advantage for the moment-based strategy. However, from approximately 20-25dB both algorithms seem to reach an error oor, close to 1.10 -3 for the MB-ILSE scheme.

It is interesting to note that for very low values of E b /N 0 (0-8dB), the self-consistent moment-based strategy performs better in terms of channel NRMSE than when used in conjonction with ILSE. This is because ILSE aims at jointly minimizing the likelihood with respect to the sources and the channels. For such high noise powers it appears indeed that the ILSE cost function J is not necessarily the best solution in the MSE sense. The additional fact that the SER and the NRMSE seem to asymptotically tend to a xed value can be explained by the residual occurence of those mixtures for which ILSE cannot easily avoid the local minima, even with a decent inital state. A more in-depth analysis of this hypothesis is proposed in the next section. We have seen that, for all mixtures considered above, the SER of the MB-ILSE algorithm always enters a saturation regime for low enough noise powers, and that the corresponding error oor increases drastically with the overall complexity (number of sources and geometry of the sources) of the mixture. This section aims at a better understanding of this phenomenon and some strategies to partially circumvent it. For this discussion the two-QAM 4 mixture will be mostly used as our reference model. Generalizations to more complex congurations will be carried out at the end of this section.

First, let us take a closer look at the SER of the two-QAM 4 mixture in the low noise power regime by considering its empirical probability function, restricted to cases where at least one symbol has been wrongly detected. This is represented on Here the possible error rates at low noise powers are necessarily of the form k/4, with k ∈ {0, • • • , 4}, so one could also expect additional modes located at 0.75 and 1. The pdf reveals that such scenarios have a negligible probability of occurrence. In other words, for the two-QAM 4, the minimum proportion of symbols the MB-ILSE algorithm can decode correctly is approximately 50%, regardless of the channel realizations. In the perspective of mitigating ILSE's residual error, study of the empirical pdf can thus help identify which mixture congurations contribute the most to the density prole and should be dealt with in priority.

The fundamental question we should address is whether the residual error rate of MB-ILSE originates from a subset of specic joint constellations structures, and hence is dependent on the channel realizations, or occurs regardless of the mixture.

In the two-users setting, the joint constellation's geometry is entirely determined by the channel ratio h r h 1 /h 2 . We can then have a representation in the complex plane of the channel outputs for which the SER achieved by ILSE exceeds a given acceptable threshold value.

For simplicity we take a threshold of zero, i.e. we consider all cases for which at least one symbol has been decoded wrong. The result is presented on Restricting to the rst quadrant (h r 0), we have four centroïds approximately located at 0, 1+i 2 , 1 and 1 + i. to each other, to the point of completely fusing when approaching the exact location of the centroïds. We can then postulate that the channel coecients for which the SER of MB-ILSE is non zero are the solutions to the equation

h 1 s 11 + h 2 s 12 = h 1 s 21 + h 2 s 22 ⇒ h r = h 1 h 2 = s 22 -s 12 s 11 -s 12 (III.41)
where s ij ∈ C j , (i, j) ∈ {1, 2} 2 . Hence the centroïds belong to the nite support of the ratio of the random variables s 1 -s 2 , where s 1 and s 2 are independent realizations of the same source. Considering the case of two QAM 4 we nd that

supp(s 1 -s 2 ) = {0, 1, i, -1, -i, 2 + 2i, -2 + 2i, -2 -2i, 2 -2i} (III.42)
so the support of the ratio, restricted to the rst quadrant and assimilating the innite quotient to zero, reads {0, 1, 1 + i, Eq.(III.41) is actually a direct application of the non-identiability conditions derived for nite-alphabet mixtures in noise-free scenarios in [START_REF] Behr | Identiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures[END_REF]. This provides a very intuitive and consistent explanation of ILSE's limitations in terms of the fundamental BSS concepts.

Namely, ILSE is most likely to fail at solving the linear BSS model when the mixture is close to non-identiability. Note however that in theory the involved mixtures are actually always III.5. Optimization strategies
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Figure III.12 Typical realizations of the four mixture congurations for which the SER is non-zero. From left to right and top to bottom: h r 1, h r 0, h r 1+i 2 and h r 1 + i identiable, since the probability to have channel realizations such that (III.41) exactly holds is zero. We can then think of three main reasons accounting for ILSE to fail at perfectly decoding the received sequence in such scenarios:

1. the initial predictors provided by the moment method are statistically far from the actual channel;

2. the distribution of the local minima of the ILSE cost function for these mixtures makes it more dicult for the algorithm to converge to its global minimum, even with a good initial state;

3. the increased proximity of some of the symbols in these scenarios is such that the noise level makes it impossible to properly decode the symbols, even with a predictor close to the actual channel.

We can quite condently discard the third hypothesis, as it would imply a similar error oor phenomenon for the perfect CSI decoding, which was not observed in any of our simulations.

As for the rst hypothesis, restricting the MSE of the moment method predictors to the channel realizations of With these additional elements we now have a pretty good picture of the origin of the MB-ILSE error oor. Non optimal detections are essentially restricted to mixed constellations for which subsets of symbols are very close to each other. While for most channel realizations the distribution of local minima is such that convergence of ILSE to the global minimum is not hindered by imprecision of the moment method predictors, for these subsets of constellations proximity of some spurious xed points makes global convergence very sensitive to the initial predictor bias. From this analysis we can conclude that the main limitation of the MB-ILSE method is not interference, as otherwise any channel ratios with modulus close to 1 would be likely to result in non zero SER, but minimal inter-symbol distance in the joint constellation. Degradation of the performance of clustering-based algorithms for close or partially merged clusters is a quite general problem in statistical data analysis, that we will discuss in the last chapter of this thesis.

III.5.2 Detection of local minima

The next crucial point to address is whether the spurious solutions subsequent to nonglobal convergence of ILSE can be detected only with the limited information we have at disposal. We recall that ILSE, and more generally k-means, makes implicit assumptions on the underlying data distribution (see III.2.2), yet there is no guarantee all resulting solutions are actually consistent with these hypotheses. Hence a natural strategy for detecting suboptimal solutions is to check whether the assumptions made on the mixture are observed, namely:

• the sources are independent;

• the sources are uniformly distributed.

Violation of the rst condition has a strong implication: if some of the sources are fully correlated, then some combinations of symbols are impossible. Formally stated, the joint support of a linear combination (mixture) of correlated random variables is strictly included in the linear combination of the supports. This is simply the translation of k-means empty clusters solutions to geometrically constrained random variables. Consequently, if a solution of ILSE is such that some combinations of symbols are absent or extremely rare, most likely the algorithm has converged to a local minimum. Fully appropriate detection of empty classes would normally require design of a threshold value under which a given class is regarded as empty. For such low noise powers as those involved in the occurence of the SER oor, it is safe enough to simply consider a zero or innitesimal threshold. • it is valid for non-uniform sources as well;

• the involved spurious solutions highly contribute to the residual error oor.

However these solutions cannot entirely account for the residual error oor. To proceed further less restrictive hypotheses must be considered.

The second main assumption of our model is the discrete-uniform source distribution.

Given an estimation of the mixed source symbols, exact uniformity implies for the population of each class to follow a binomial distribution with parameters N the number of received symbols and p = M/N the probability of any class, with M = K k M k the size of the joint constellation. We can then dene a condence interval for the population of each class within which we have a reasonable degree of condence that the uniformity assumption is indeed observed. Specically, for any estimated class C we design an interval I ε of the form

I ε N M (1 -ε) ; N M (1 + ε) (III.43) such that P | C | ∈ I ε ≥ p ε ,
where p ε is the so-called p-value representing the minimal condence we have that a class with population contained in I ε is indeed uniform. For the binomial distribution there is no convenient expression of ε as a function of p ε . One can usually either compute ε numerically, or rely on bounds such as that provided by Hoeding's inequality [START_REF] Hoeding | Probability Inequalities for Sums of Bounded Random Variables[END_REF] P A too large threshold ε (high tolerance) results in most suboptimal solutions to be considered as uniform and not being detected. Conversely, if ε is chosen too small then good solutions are likely to be identied as spurious. This is not even mentioning that the optimal threshold may strongly depend on the sample size N . For these reasons, in the rest of the discussion we will focus on the non-independent sources solutions, whose detection appears more robust.

| C | ∈ I ε ≥ p H 1 -2 exp (-2ε 2 N ) ⇒ ε = M - 1 2N log 1 -p H 2 (III.
The above analysis conducted on the two-QAM 4 mixtures holds for other two-users scenarios as well. was derived from the same method as for the two-QAM 4 case, Eq.(III.41). We see that all problematic ratio clusters but one are recovered in this way. The unpredicted clusters correspond to the set h r ∈ { 1 4 , i 4 , -1 4 , -i 4 }, and the related joint constellations appears to exhibit a structure very close to the single-user QAM 64 constellation. This is reminiscent of the fact that for a QAM 64 with channel h, the point 4h is a local minimum of the SISO-ILSE algorithm, as was demonstrated in Chapter II. Oddly enough though, the local minimum similarly induced by 2h is not observed, neither for the QAM [START_REF] Grimmett | Probability and random processes[END_REF] the two-QAM 4 one. We also observe a substantial increase in both the proportion of nonindependent sources solutions and their relative contribution to the residual error compared to the two-QAM 4 mixture: in the latter case these solutions were found to represent 29% of all suboptimal detections and their average SER was approximately 0.5, against 40% with an average error rate of 0.68 for the QAM 16-QAM 4. This phenomenon is even more visible for the two-PSK 8 mixture, Fig.III.18, for which 71.5% of suboptimal solutions were indentied as source-correlated, with an average SER of 0.65. Note here that the increased rotational symmetry order (q = 8) and the proximity of the centroïds makes it dicult to discern the dierent clusters. In any case, the predominance of non-independent sources solutions and their contribution to the asymptotic SER stresses the need and pertinence of giving particular care to their treatment.
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III.5.3 Proposed solutions

Now that we dispose, at least for two-user mixtures, of a reliable way of both predicting for which channel realizations MB-ILSE is likely to result in a spurious solution, and detect those local xed points for which independence and uniformity of the sources is not observed, we can think of several strategies to lower the asymptotic SER of the algorithm. At the very least, if a suboptimal solution is detected at the output of ILSE, the receiver can always ask for a retransmission of the current sequence in the hope that the next channel realization will be more favorable. This prudent strategy has however several drawbacks, the most obvious one being a loss in the useful data rate, and it does not exploit the predictable structure of the problematic channel ratios. Thus it should rather be used as a last resort solution, when attempts at correcting the output of the algorithm reveal ineective.

Considering solely non-independent sources local minima, a possible strategy consists in providing ILSE with alternative initial channel predictors whose ratio are close to those predicted by (III.41) and known to result in the violation of the sources independence assumption.

As an example, for the two-QAM 4 mixture there is essentially (modulo π/2-rotations symmetry) one single such point, namely h r = 1 (Fig. ). The new initial states may be chosen randomly or based on the moment method predictors h. Of course, there is no guarantee to reach the global minimum with these initial states. Besides, if non-uniform sources solutions are to be included, this results in computing ILSE for the whole set of problematic channel ratios, which becomes large even for reasonably complex constellations, as can be seen for instance the two-PSK 8 case in Fig. III.18. As this whole analysis is fully relevant only in the low noise power regime, study of the ILSE cost function at convergence may here help to determine whether the global minimum has been achieved, possibly limiting the number of trials. Still for more complex mixtures this exhaustive testing procedure is likely to be too computationnally demanding for a practical use.

The strategy we will retain is somehow midway between systematic ask for retransmission and exhaustive testing. We will try additional initial states only for this channel ratio which is the closest, in the complex distance sense, to the one provided by the moment method predictors. In this fashion we limit the number of ILSE runs even for complex mixtures. In a fully preventive scheme, one can systematically compute the closest channel ratio from the estimated one and perform an additional run of ILSE to see which solution yields the minimum cost function, regardless of whether the solution achieved with the mere moment method predictors is detected as spurious or not. Otherwise the same possibilities as for the exhaustive testing strategy can be applied to determine if additional initial states should be tested: violation of the source independence/uniformity and examination of the cost function at convergence, among possible others. The performance of the resulting enhanced MB-ILSE algorithm is labeled MB-ILSE+ . For this simulation the fully preventive correction scheme was used: given the moment method channel predictor h and its closest problematic ratio h r the following three additional initializations were systematically tested on ILSE:

(h r h 1 , h 1 ), ( h 2 , h 2 /h r ) and ( h 1 + h 2 /hr 2 , hr h 1 + h 2 2
).

We observe a clear improvement of the nal SER compared to the mere, non-corrected MB-ILSE, with error rates easily falling beyond the latter 10 -3 asymptotic threshold. For very low noise powers the corrected MB-ILSE eventually loses to the perfect CSI detection.

Regardless the achieved scores are very satisfying, given that they take into account any subsequent error control coding.

Let us conclude this section with a few words on higher-order mixtures. To this point, extension of the above strategies for more than two sources was not carried out. We can expect that channel realizations for which ILSE is more likely to converge to a local minimum still result in joint constellations having closely grouped subsets of symbols. The equivalent of (III.41) to predict the position of these clusters would then be [START_REF] Behr | Identiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures[END_REF] h|s 1 -s 2 = 0 (III. [START_REF] Eriksson | Identiability, separability, and uniqueness of linear ICA models[END_REF] where s 1 and s 2 are two independent realizations of the random source vector s. Note however that in regard to what was observed for the QAM 16-QAM 4 mixture, other problematic channels not covered by (III.45) may also exist. Applicability of the treatment strategies proposed for two-sources mixtures mostly depend if all solutions to (III.45) can be found. This matter is not covered by this work. As far as our simulations can tell, what still holds however is that non-independent sources spurious solutions highly contribute to the poor SER scores achieved by MB-ILSE for more than two-user mixtures. Fig. III.20 shows for instance, on the two-BPSK, two-QAM 4 mixture, the comparison between the raw MB-ILSE performance and the SER obtained by discarding solutions which do not observe source independence.

Although the latter strategy is still clearly suboptimal with respect to the ideal, perfect CSI decoding, we see how signicantly the non-independent sources xed points account for the overall performance of MB-ILSE and how much can be gained by simply detecting them. 

III.6 Comments on practical implementation

All the performance curves presented so far assume that, within the equivalence class of predictors induced by the BSS model and source invariances, one can always identify the best representant with respect to the actual channel. It is legitimate to question whether this exact information can be well-approached with only partial information on the channels. First, it is not unrealistic to assume the receiver knows the reference amplitude of the constellations: the choice of amplitude may basically either depend solely on the transmitter, in which case the information could be sent to the receiver at the beginning of the whole transmission along with the used modulation scheme, or on the communication protocol, in which case the information can be accessed both by the receiver and the transmitter. Hence scaling invariance does not represent a fundamental problem in itself and can be considered as systematically resolved.

The situation is dierent for the permutation and discrete-circular phase invariances, for which neither the transmitters nor the receiver have generally any control on. As long as only dierent constellations are involved, the receiver can reliably associate each estimated symbol sequence to the right user based on the a priori knowledge of the modulation schemes used, except for very unlikely, strongly non-uniform scenarios in which the estimated symbols associated to a given user would be restricted to a subset included in the constellation from another user. When some of the constellations are identical however, the associated estimated symbol sequences can a priori come from any of the concerned users alike. A possible suboptimal strategy to recover the correct ordering would be then for the receiver to know or estimate the ordering of the channel powers. This again does not seem unfeasible in practice, as other multiuser detection techniques, such as SIC with the received powers, III.6. Comments on practical implementation 91 require equivalent information.

To address the third problem, the receiver needs to have partial information on the channel's phase. This can be for instance the interval

2pπ q k ; 2(p+1)π q k , p ∈ {0, • • • , q k -1},
in which each channel's phase lies. This is indeed suboptimal compared to a direct use of the actual channel, because for channel's phase close to the bounds of the latter intervals the best channel predictor may actually belong to one of the adjacent intervals, due to estimation bias. The consequence of taking the wrong q k -th root (i.e. the wrong interval) essentially consists in a global permutation for each of the estimated sequence symbols. This reveals dramatic for the SER as all subsequent estimated symbols are wrong. We can however expect that by appropriate error correction schemes such permutations can be detected, thus allowing phase correction to be performed past the symbol estimation step itself. by implementing the above suboptimal decision rules and comparing them to the optimal ones. We see that for most mixtures suboptimal and optimal strategies yield very close results. The relative gap is more pronounced for the two-QAM4 mixture, still the error rates achieved by the suboptimal strategy range in very satisfying values. This suggests that, by use of reliable estimation procedures for acquiring appropriate partial information about the channel realization, the performances obtained with a practical MB-ILSE are comparable to those of the ideal strategy. . The number of steps obviously tends to increase with the number of sources and the joint contellation's size, yet is of order no more than 15 for most of the tested mixtures. For moderate noise power levels (E b /N 0 18 -20dB) the convergence is on average achieved in less than 10 iterations. It is striking how for mixtures with distinct rotational orders the mean number of steps substantially increases, as is evident from the comparison of the three-PSK and three QAM 4 curves. In accordance with our previous observation concerning the SER scores achieved for such kind of mixtures, it seems indeed that the ILSE cost function has a more complex structure than for contellations with equal rotational orders. Let us nally recall that for distinct constellations with the same rotational order, several parallel, partial or full ILSE runs may be needed to extract a unique predictor depending on the chosen strategy, III. A last practical matter we should mention is the fact that the number of sources and the modulation schemes are supposed to be known at the receiver. In a more realistic implementation of the method such information should be acquired by the receiver as well.

Estimation of the number and structure of the sources is out of the scope of this work, but we note that several methods for modulation classication and detection of the number of sources have been proposed in the literature, see for intance [START_REF] Abdelmutalab | Automatic modulation classication using hierarchical polynomial classier and stepwise regression[END_REF] or [START_REF] Gouldie | Blind automatic modulation classication in multipath fading channels[END_REF]. 

III.7 Conclusion

In this chapter the blind detection of multiuser tranmissions with a single receiver and in strong interference was addressed. The problem was formulated in the underdetermined linear BSS framework.

We have seen through simulations how even for simple enough mixtures, traditional techniques such as SIC or randomly initialized ILSE fail at achieving acceptable error rates. In order to circumvent convergence of ILSE towards local xed points we proposed an estimation strategy based on the cumulants of the received signal to be used as an initial state for ILSE. Exact solutions to various mixtures congurations were explicitely derived.

The resulting algorithm has shown considerable performance gain compared to all other tested methods. Yet for complex mixtures the achieved error rates cannot ensure a reliable symbol decoding scheme. An in-depth analysis conducted on two-users mixtures in the low noise power regime revealed that the residual error rate originates from clusters of channel realizations for which the resulting mixed constellations are close to non-identiability. In these congurations, the proximity of some local xed value. At rst order, we simply have E [γ(ρ, ρ2 )] (E [Γ(ρ, ρ2 )]) 1/2 . Further assuming that E ρ2

E [ρ] 2 = E [ρ] 2 , we can show that E [Γ(ρ, ρ2 )] (µ 2 ω 1 η 1 -µ 1 ω 2 η 2 ) 2 (A.13)
so at rst order the conditionnal expectation E [η|η] of the predictor given a realisation of the (q-th power) channel η is

E η(m) η =        η if Arg (µ τ (m) ω m η m -µ m ω τ (m) η τ (m) ) ∈ - π 2 ; π 2 ε 1 ζ 2 ζ 1 ε 2 η if Arg (µ τ (m) ω m η m -µ m ω τ (m) η τ (m) ) / ∈ - π 2 ; π 2 (A.14) with ε k 1 - 2 1+r k /r τ (k)) , ζ k 2µ k /µ τ (k) 1+r k /r τ (k) and r k µ 2 k ω k
. We see that the bias of both predictors is conditioned by the event B {Arg (µ 2 ω 1 η 1 -µ 1 ω 2 η 2 ) ∈ -π 2 ; π 2 , whose outcome obviously depends on the unknown channel realization η. Using the law of total expectation with the partition set induced by B, the mean squared bias of η(m) is expressed as

E B(η (m) |η) 2 = E B(η (m) |η) 2 B P (B) + E B(η (m) |η) 2 B c P (B c ) (A.15)
where B(η (m) |η) E η(m) ηη is the conditional bias of η(m) given η. For circularsymmetric channels we can easily compute the probability of event B. First, we can always write P (B) as

P (B) = P Arg 1 c 1 η 1 -c 2 η 2 / ∈ -π 2 ; π 2 = P Arg ((c 1 η 1 -c 2 η 2 ) * ) / ∈ -π 2 ; π 2 (A.16)
Now if h k is circular symmetric, then c k η k is also circular-symmetric for any complex number c k , so c k η k and c * k η * k have the same distribution. Hence we simply have P (B) = P (B c ) = 1 2 , and the expected squared modulus bias of any of the predictors η(m) simplies to

E B(η (m) |η) 2 1 2 (|ε 1 -1| 2 + |ζ 1 | 2 )E |η 1 | 2 + (|ε 2 -1| 2 + |ζ 2 | 2 )E |η 2 | 2 (A.17)
for any circular-symmetric independent channels.

Chapter IV 

r n = L =1 h s n-+ w n (IV.1)
where compared to time-continuous multipath channel fading model Eq.(I.45), each path delay has been quantized at the symbol period. The maximal length L on the channel impulse response is called the channel memory, and can be related to the channel delay spread T d by T d T L. From (IV.1) we see that the received symbol at period n not only contains the emitted symbol at time n (we neglect the rst time delay by choosing an appropriate time origin for the receiver), but also replicas of previously emitted symbols due to the multipath propagation. This phenomenon is called the Inter-Symbol Interference (ISI), and is a highly undesirable eect is wireless communications.

The motivating idea behind multicarrier (more generally block) transmissions is to suppress ISI by emitting successive blocks of symbols instead of a fully serial time sequence [START_REF] Bingham | Multicarrier modulation for data transmission: an idea whose time has come[END_REF]. To do so, the input sequence is segmented in blocks of P symbols, and each symbol in a block is transmitted during the period T according to a distinct carrier signal with frequency f p , called a subcarrier. In the particular case of Orthogonal Frequency Division Multiplexing (OFDM) [START_REF] Nee | OFDM for wireless multimedia communications, ser. Artech House universal personal communications series[END_REF], the data blocks are referred to as OFDM symbols, and the subcarrier frequencies are equally spaced, in such a way that f p = f c + (p -1)∆f with f c the reference carrier frequency, and the frequency spacing ∆f is chosen small compared to the channel coherence bandwidth, ∆f B c . Because the subcarriers are ortogonal to eachother, each symbol in a block can be recovered without interference at the receiver by observing the signal in the appropriate subcarrier frequency band.

Emitting the symbols block-wise does actually not entirely prevent ISI, as symbols located at the end of a given block still interfer with the rst symbols from the subsequent block. Interference between consecutive blocks is generically called Inter-Block Interference (IBI), and in the context of multicarrier transmissions is better known as Inter-Carrier Interference (ICI). The usual strategy to address ICI consists in introducing redundancy in each transmitted blocks by addition of the so-called Cyclic Prex (CP). Denoting by s a generic OFDM symbol, the CP is composed of the N CP rst symbols of s, and is appended to s to form an extended block of size P + N CP . By doing so the last useful symbols in s are now transmitted free of interference, provided the size of the CP is larger that the channel memory L, i.e. N CP > L. At the receiver, the CP is discarded from the observed signal, resulting in a block r of length P which from (IV.1) can be shown to have the following expression [START_REF] Wang | Wireless multicarrier communications[END_REF]:

r = h s + w (IV.2)
where denotes the cyclic convolution. The cyclic convolution is the discrete counterpart of the continuous convolution product, and in particular is mapped to a regular product under the Discrete Fourier Transform (DFT). Consequently, dening s to be the DFT of s and The conceptual simplicity of OFDM, in addition to its spectral eciency and the low complexity pertaining to its practical implementation have considerably contributed to its popularity and spreading to various wireless applications, including radio and television broadcast [START_REF] Stuber | Terrestrial digital video broadcasting for mobile reception using OFDM[END_REF], [START_REF] Rault | The coded orthogonal frequency division multiplexing (COFDM) technique, and its application to digital radio broadcasting towards mobile receivers[END_REF]. A wired counterpart of OFDM is also known as Discrete Multi-Tone (DMT) and has application in hight-speed Digital Subscribe Line (DSL)-based transmissions [START_REF] Bingham | and multicarrier modulation, ser. Wiley series in telecommunications and signal processing[END_REF].

While addition of the CP is the most encountered technique to suppress ICI in practice, other more recent techniques have been proposed, such as Zero-Padding (ZP)-OFDM, which consists in appending trailing zeros to each data block. The resulting scheme was shown to exhibit interesting properties over traditional CP-based strategies such as enhanced channel identiability even in the presence of zero channel gains at the carrier frequencies [START_REF] Scaglione | Redundant lterbank precoders and equalizers. II. Blind channel estimation, synchronization, and direct equalization[END_REF]. The main limitation of OFDM is certainly its inherent dependency on the subcarriers frequency synchronisation: as suppression of ICI originates from the orthogonality between subcarriers, frequency osets are a major source of impairment of OFDM, and requires the implementation of regular and reliable phase synchronization procedures [START_REF] Pollet | Synchronizability of OFDM signals[END_REF].

IV.1.2 Channel estimation in OFDM

Channel estimation for SISO OFDM transmissions have been extensively studied in the literature. Blind procedures have attracted particular interest as they are free of any known pilot sequences, thus allowing to spare bandwidth. A general class of channel estimators is provided by the subspace methods, which rely on a matrix formulation of the received signal and its statistics, such as the autocorrelation. Based on distinct specicities introduced by the OFDM scheme several subspace procedures have been proposed. Some of them rely on the data redundancy inherent to the introduction of the CP [START_REF] Muquet | Subspace-based blind and semi-blind channel estimation for OFDM systems[END_REF], [START_REF] Heath | Exploiting input cyclostationarity for blind channel identication in OFDM systems[END_REF]. Virtual carriers, namely subcarriers left unmodulated in practical OFDM systems for spectral limitation purposes, provide another kind of diversity that is commonly exploited [START_REF] Li | Subspace-based blind channel estimation for OFDM by exploiting virtual carriers[END_REF]. Some methods focus on minimizing the number of consecutive OFDM symbols required for the subspace problem to be well-conditioned [START_REF] Pham | A subspace algorithm for guard interval based channel identication and source recovery requiring just two received blocks[END_REF], [START_REF] Su | Subspace-Based Blind Channel Identication for Cyclic Prex Systems Using Few Received Blocks[END_REF]. Subspace methods have also been proposed for the alternative ZP-OFDM scheme [START_REF] Scaglione | Redundant lterbank precoders and equalizers. II. Blind channel estimation, synchronization, and direct equalization[END_REF].

The special properties of OFDM have also led to the development of non-subspace estimation techniques.

Oversampling was for instance used in [START_REF] De Courville | Blind equalization of OFDM systems based on the minimization of a quadratic criterion[END_REF] to derive a CP-free channel estimator. Of particular interest is also the nite alphabet property of the source symbols, which introduces additional constraints in the estimation problem. This was used in [START_REF] Zhou | Finite-alphabet based channel estimation for OFDM and related multicarrier systems[END_REF] on PSK signals to propose a single-block based channel estimator. Joint use of virtual carriers and nite alphabets in [START_REF] Song | Joint blind estimation of channel and data symbols in OFDM[END_REF] was proposed to estimate the channel directy in the time domain rather than in frequency. The resulting algorithm consists in an extension of the ILSP algorithm mentioned in Chapter III. Estimating the channel directly in time has the important advantage of circumventing the inherent phase ambiguities arising on each subcarrier due to the sources rotational symmetry. In general, this problem is solved through the use of training sequences. More generally, semi-blind channel estimation strategies are often used as a compromise between pilot-based and fully blind estimations [START_REF] Cui | Semi-blind Channel Estimation and Data Detection for OFDM Systems Over Frequency-Selective Fading Channels[END_REF], [START_REF] Li | Pilot-symbol-aided channel estimation for OFDM in wireless systems[END_REF].

As for multiuser OFDM transmissions, much of the eorts have focused on Multiple-Input Multiple-Output (MIMO)-OFDM. In most cases the estimation problem has been addressed by the Stochastic Maximum Likelihood (SML) approach, based on a probabilistic representation of the emitted symbols. The EM algorithm is the most popular method to provide SML estimators and has been extensively used [START_REF] Zamiri-Jafarian | EM-based recursive estimation of channel parameters[END_REF], [START_REF] Khalighi | Semi-blind Channel Estimation Using EM Algorithm in Iterative MIMO APP Detectors[END_REF], [START_REF] Wautelet | Comparison of EM-Based Algorithms for MIMO Channel Estimation[END_REF]. Alternative methods based on the SML approach include Information Geometric Identication (IGID) [START_REF] Zia | Information geometric approach to channel identication: a comparison with EM-MCMC algorithm[END_REF] and Majorize-Maximization (MM) [START_REF] Chen | On MM-Type Channel Estimation for MIMO OFDM Systems[END_REF] algorithms. Hard-decision ML estimation can be found in [START_REF] Naskovska | Generalized Tensor Contractions for an Improved Receiver Design in MIMO-OFDM Systems[END_REF] where a tensor formulation of the MIMO-OFDM was proposed and the ILSE, ILSP algorithms as well as their recursive extensions were applied subcarrier-wise. Other BSS methods, and more particularly ICA have also been reported in [START_REF] Chiu Shun Wong | Independent component analysis (ICA) for blind equalization of frequency selective channels[END_REF] and [START_REF] Sarperi | Blind OFDM Receiver Based on Independent Component Analysis for Multiple-Input Multiple-Output Systems[END_REF], along with strategies to address the permutation ambiguities inherent to the problem formulation.

As far as we can tell, the study of underdetermined, and particularly single-sensor OFDM transmissions have been scarcely addressed in the literature. We can notably mention [START_REF] Aldana | Channel estimation for multicarrier multiple input single output systems using the EM algorithm[END_REF],

in which several results on the identiability conditions of the sources and the channels are derived for blind and non-blind scenarios, and the EM algorithm is applied in dierent settings. An adaptative EM algorithm is also proposed to track temporal channel variations in non-stationary environments. More generally, almost all MIMO-OFDM strategies presented above operate exclusively in the frequency domain. While this is well-motivated by the fact that symbol detection is indeed performed in frequency, this does not exploit the special structure of the channel frequency components as the DFT of an impulse response with a length often much shorter than the number of subcarriers. As EM-based or iterative least squares algorithms such as ILSE and ILSP are known to be very sensitive to their initialization, exploiting this additional information to reduce the parameter space of these methods can be determinant to prevent convergence towards local xed points. In many cases the initialization is circumvented by use of training sequences, so the overall channel estimation is not completely blind. An additional advantage of estimating the channel in the time domain is that the phase ambiguities on each subcarrier are naturally solved, up to a global phase rotation. These two observations strongly motivate to extend the above algorithms to a direct, time domain channel estimation. On this basis, the main objectives of this chapter are the following:

• generalize the multiuser single receiver ILSE algorithm to the case of OFDM signals and with the channel estimated in the time domain. The resulting algorithm will be referred to as ILSE-OFDM;

• propose a channel initialization strategy for the ILSE-OFDM algorithm. The permutation and phase ambiguities will receive a particular attention.

The resulting channel estimation procedure will be simulated in several settings. Finally, in the following it will always be assumed that the channel memory L is much shorter than the number of subcarriers P , L P . As a matter of fact, this assumption is not needed for the derivation of ILSE-OFDM, but will reveal useful when addressing the initialization of the algorithm, in addition to be a quite reasonable hypothesis in many practical transmission settings.

IV.2 The OFDM-ILSE algorithm

The single-sensor multiuser OFDM model can be readily obtained from the SISO-OFDM model of Eq.(IV.3). On each subcarrier the received signal is an instantaneous linear mixture of the emitted sources, as in Chapter III. Denoting by rp the sequence of N received symbols from subcarrier p, we have rp = hp Sp + wp = f p H Sp + wp

(IV.4)
where:

• hp is the 1 × K row vector of the p-th frequency component of each user's channel;

• Sp is the K × N matrix whose columns represent the transmitted joint constellation symbols on subcarrier p;

• wp is the 1 × N row vector of complex normal noise on subcarrier p;

• H is the L × K matrix whose columns are the time channel vectors associated with each source;

• f p is the p-th row of F (P,L) , the submatrix obtained from the DFT matrix F by extraction of its L rst columns.

We now proceed to the extension of the MISO-ILSE algorithm of Chapter III to OFDM signals. Let R denote the P × N received symbol matrix obtained by stacking the P row vectors rp . The (conditional) distribution of R is parametrized by the channel matrix H and the set of transmitted symbol matrices { Sp }, p ∈ {1, • • • , P }. Because the emitted symbols and the noise realizations are independent, the vectors rp are independent so the conditional distribution of R factorizes as

p R(Z) = P p=1 p rp (z p ) (IV.5)
with Z a P × N complex matrix with rows z p . According to (IV.4) and the complex normal noise assumption, each rp follows a shifted complex normal distribution with variance N 0 and mean f p H Sp . Maximizing the log-likelihood L H, { Sp }; R reduces then to the minimization of IV.2. The OFDM-ILSE algorithm 105

J P (H, { Sp }; R) = P p=1 rp -f p H Sp 2 = P p=1 J(f p H, Sp ; rp ) (IV.6)
where J(h, S; r) is the multiuser single sensor ILSE cost function dened in Chapter III, Eq.(III.7), and where we have reintroduced the received sequence as a parameter for clarity.

From the above decomposition of the multicarrier cost function it directly follows that the enumeration step simply consists in P parallel single-carrier enumerations, Eq.(III.9):

Sp = argmin

S∈(C 1 ו••×C K ) N rp -f p H S 2 (IV.7)
The minimization of J with respect to H given the set of symbol matrix estimates { Sp } can be carried out exactly as follows. First, it is straightforward to check that J P is a convex function of H, as a sum of convex functions of the linearly transformed variable f p H [START_REF] Boyd | Convex optimization[END_REF]. To nd the minimum we have to dierentiate J P with respect to the complex matrix H. Without entering into the technical details, the dierential of J P is obtained by expressing ∆J P (dH) J P (H + dH) -J P (H) as

∆J P (dH) = ∂J P ∂H |dH + ∂J P ∂H † |dH † (IV.8)
with A|B F Tr A † B the hermitian scalar product of matrices induced by the Frobenius norm [START_REF] Lancaster | The theory of matrices: with applications[END_REF] with Tr [•] the trace operator, and ∂J P ∂H is a P ×L matrix called the matrix gradient of J P with respect to H. The minimum of J P is achieved when either ∂J P ∂H or ∂J P ∂H † are zero.

From the denition of J P and after a few classic matrix manipulations we obtain

∆J P (dH) = P p=1 Tr Sp S † p H † f † p f p -Sp r † p f p dH + h.c.
(IV.9)

where h.c. denotes the hermitian conjugate of the sum in the right hand side of (IV.9). By linearity of the Trace operator and identication with (IV.8) we thus have

∂J P ∂H = P p=1 Sp S † p H † f † p f p -Sp r † p f p † = P p=1 f † p f p H Sp S † p -f † p rp S † p (IV.10)
Now, in order to solve ∂J P ∂H = 0 for H the following useful matrix identity is used [START_REF] Hogben | Handbook of Linear Algebra[END_REF]: let us denote M an arbitrary complex matrix such that M factorizes in three matrices (U, Z, V) as

UZV = M (IV.11)
Then it can be easily shown that

V T ⊗ U vec (Z) = vec (M) (IV.12)
where ⊗ denotes the tensor or Kronecker product and vec (•) is the vectorization operation that concatenates the columns of a given matrix in a single column vector. Applying (IV.12) to Z = H, U = Sp S † p , V = f p f † p and M = rp S † p , Eq.(IV. 

ST p ⊗ f † p f p ) = rk ( S * p ST p ) rk (f † p f p ) = K.
This is most often veried in practice for equally likely constellation symbols, provided that N is large enough. As the sum of P matrices of rank K does not generally yield a matrice of rank KL, the inversion operation in (IV. [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF] is not ensured, but seems to be veried in our simulations under the short chanel memory assumpion, P L.

The overall complexity of the ILSE-OFDM algorithm can be computed as follows: the complexity of the enumeration step requires, for each subcarrier p and each symbol matrix S, computation of f p H S, which is in O ((K + 1)LN ), and computation of a norm over C N , which is in O (N ). Hence the complexity of (IV.7) is in O (KLM N P ) As for the estimation step, from (IV.13) the complexity is given by the sum of O K 2 L 2 N P (sum of the matrices ( ST

p ⊗ f p ) † ( ST p ⊗ f p )), O K 3 L 3 (matrix inversion), O (KP (N + L)) (sum of the matrices f † p rp S † p )
and O K 2 L 2 (matrix-vector multiplication). Altogether the complexity of one whole iteration of the algorithm is, retaining only the dominant terms, in O (KLN P (M + KL)). In most settings the total number of symbols in the joint constellation M is greater than KL, so the overall complexity is dominated by the enumeration step, as in the single-carrier case.

IV.3 Initialization strategies for ILSE-OFDM

The importance of providing ILSE with an initial channel estimate has already been highlighted in the two previous chapters. This is even more crucial in the multi-carrier case, as H ∈ C LK , so the number of degrees of freedom involved is considerable. Inasmuch as the initial channel predictors derived from the method of moments were previously shown to be in many cases reliable enough for ensuring convergence of ILSE towards its global minimum, it would seem then natural to apply the same strategy to multicarrier transmissions. That is, for each subcarrier p we solve the moment problem for hp using the received sequence r p , and build column by column an estimator for H. The major dierence here is that the ILSE-OFDM algorithm directly estimates the channel in the time domain. The simplest solution to get a temporal channel estimate from a spectral one consists in taking the IDFT of the latter and retaining only the rst L rows. Without additional care however this strategy is very likely to yield poor channel estimates as:

• the multiuser moment method predictors are in general not unique: each subcarrier is then subject to an ambiguity in the choice of the predictor;
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• even in the SISO case, the discrete circular invariance of the source symbols implies that the predictors are only dened up to discrete rotations.

Hence, applying the inverse Fourier transform without addressing beforehand any of these indeterminacies will result in a spurious temporal channel matrix predictor. While for the single-carrier case it was not too unrealistic to suppose that the receiver could acquire the actual phase and decoding order, for multi-carrier transmissions this would require this information to be available for each sub-carrier. As the number of subcarriers P can be very large, this ideal framework does not seem reasonable. Consequently, we will propose in the following several strategies attempting to reduce the problem of solving all subcarrier phases and ordering ambiguities to that of acquiring this information for only one sub-carrier, just as in the MISO at-fading case.

IV.3.1 Phase sorting strategies

Root-nding algorithms

The phase indeterminacies of blind channel estimators constitute a well known problem in OFDM transmissions, and several algorithms have been proposed in the literature to address it [START_REF] Zhou | Long codes for generalized FH-OFDMA through unknown multipath channels[END_REF], [START_REF] Shiratsuchi | Frequency domain blind channel estimation without phase ambiguity for QAM-OFDM systems[END_REF]. Many of them rely on the convolution property of the Fourier Transform, namely, the DFT of a cyclic convolution is given by the product of the DFTs. In the following we consider without loss of generality a SISO-OFDM transmission with P subcarriers. Applying the moment method estimator II.4 to each subcarrier independently yields the P × 1 vector of q-th power channel frequency estimates ξ hq where the power exponent applies component-wise and the hat notation for estimators has been dropped for convenience.

Taking the IDFT of ξ, denoted by ξ, we obtain by the (cyclic) q-th fold convolution of the temporal channel with itself, denoted by h q :

ξ = h q h h • • • h q times (IV.14)
To be accurate, since the channel impulse response has L taps, its q-th autoconvolution has length L h q = q(L -1) + 1, so ξ is actually obtained from the IDFT of ξ and by retaining the L h q rst coecients. Note that this requires P ≥ q(L -1) + 1 which is compatible with the short impulse response assumption, L P . Let us further dene, for any vector a with length L a , the complex polynomial P a (z)

La-1 =0 a z , known for z → 1/z as the Z-transform of a. It is then not dicult to check that P a a (z) = P 2 a (z), so P ξ (z) = P q h (z) and the L h q -1 = q(L -1) roots of P ξ (z) are the L -1 roots of P h (z) with multiplicity q. In other words, recovering the impulse channel response a reduces to nding the L distinct roots of the polynomial P ξ(z). In practice things are obviously not so simple because ξ is derived from the moment estimator of ξ which has a non-zero residual error. Consequently the roots of P ξ(z) are in general all distinct, requiring additional treatment for the multiple roots to be identied. Several strategies have been proposed in [START_REF] Zhou | Finite-alphabet based channel estimation for OFDM and related multicarrier systems[END_REF]. The solution we will adopt here is to cluster the roots of P ξ(z) in L -1 groups with the k-means algorithm, initialized with the k-products algorithm, presented in Section II.2.1. This choice may not 108 Chapter IV. Blind multiuser detection in OFDM transmissions be optimal in terms of computational load but has the desirable property of always converging.

Autodeconvolution

Another possibility to recover the channel taps from the q-th power channel frequency estimator is the so-called autodeconvolution proposed in [START_REF] Maoudj | 4th order statistics based blind channel estimation for multicarrier transmission[END_REF], which aims at directly solving (IV.14) in h. Expanding the q-th power autoconvolution results in an overdetermined non linear system of L h q equations in the coecients h , ∈ {1, • • • , L}. The Gauss substitution method allows to turn this system into a linear one as Mh = 0 (IV. [START_REF] Kendall | The advanced theory of statistics in 3 volumes[END_REF] with M the L h q × L matrix dened by M p, (p -(q + 1) + 1) ξ p-+1 and M p, = 0 for indices such that p -+ 1 / ∈ {1, • • • , L h q }. Again, because ξ is an estimator (IV.15) does not hold exactly. The estimator of h is then obtained from the minimum norm solution. To avoid the trivial solution h = 0 the rst coecient h 1 can be separately estimated as h 1 = q ξ 1 , and the remaining coecients, denoted by the vector h

|1 ( h 2 , • • • , h L ) are obtained as h |1 = -M † |1 M |1 -1 M † |1 M {1} h 1 (IV.16)
where M |1 and M {1} denote the matrices obtained by extracting the L -1 last columns of M and the rst column of M, respectively. Equivalently the L-th coecient h L can be separately estimated as h L = q ξ L h q and the remaining coecients deduce by an equation similar to (IV.16). The latter method is termed backward autodeconvolution, as the channel coecients are estimated in reverse order, while the former is referred to as forward autodeconvolution. An improvement of the algorithm was proposed in [START_REF] Maoudj | Blind propagation channel estimation with enhanced auto-deconvolution[END_REF] based on an iterative WLS resolution of (IV.15) to account for heteroscedasticity in the residual estimation errors. In the following though we will restrict to the original formulation of the autodeconvolution.

Autodeconvolution by Singular Value Decomposition

It has been observed that the performance of algorithms such as the above forward/backward autodeconvolution are very sensitive to noise, inasmuch as they are subject to error propagation. More specically, if the rst (respectively last) channel tap h 1 (h L ) has a low power, the resulting estimation error made on h 1 ( h L ) is likely to be important, and (back)-propagates through Eq.(IV.16). To counter this eect another way of nding the minimal norm solution of Mh consists in considering the Singular Value Decomposition (SVD) of M and taking the right singular vector associated with the smallest singular value. Denoting by h s this vector, with h s 2 = 1 by denition of the SVD, the temporal channel estimator h is obtained as h = λh s . The real coecient λ is then derived by imposing the q-th power of the DFT of h to be the closest, in the complex distance sense, to ξ leading to

h q ξs | ξ ξs 2 h s (IV.17)
where ξs is the q-th power of the DFT of h s .

Qualitative comparison

We have seen several possible ways of nding an initial estimate for the temporal channel h. The advantage of such methods is that by operating in the time domain they implicitely solve the phase ambiguities for each subcarrier, except for one global phase shift. We have then reduced the problem of determining P phases to just a single one. The performances of the three presented temporal estimation strategies can be compared on the basis of the temporal NRMSE, dened similarly as in (III.40) for a given temporal channel estimator h

as

NRMSE( h) E h -h 2 E [ h 2 ] (IV.18)
Comparative Monte-Carlo simulations performed on P = 128 independent circular complex normal subcarriers and various channel memories L ∈ {3, 5, 10, 15, 20} reveal that in more than 90% of cases the SVD-based estimation outperforms by large the k-means root clustering and the forward/backward algorithm. This percentage increases with the number of taps, reaching more than 99% when L = 20. On the other hand the autodeconvolution does not generally yield good results because of noise propagation. In rare cases (less than 10% for L = 3 and 1% for L = 20), the clustering scheme happens to produce the better estimate in terms NRMSE. These results suggest that we can in almost all cases have access to a reliable initial temporal channel estimate by simultaneously applying the SVD and the root clustering, and selecting the best outcome. Since the NRMSE is actually unobservable, in practice the choice is based on the distance between the q-th power initial frequency channel estimate provided by the moment method and the q-th power DFT of the temporal estimates. Regarding complexity, the computational costs of the root-clustering, autodeconvolution and SVD are roughly given by O qL 2 N ite for the former, where N ite denotes the number of iterations needed for k-means to converge, and O qL 3 for the two other methods. Considering that convergence of k-means is usually fast and that the channel memory L is short, the three methods have thus quite comparable complexities.

Finally, this whole discussion was based on a single-user OFDM transmission. In the case of several users, the presented algorithms will be capable of providing good results only if there is no permutation ambiguity between the channels q-th power of each subcarrier. Otherwise expressing ξp as a q-th power DFT does not make much sense. In practical uses it is then crucial to address the permutation ambiguities prior to the phases resolution step.

IV.3.2 Permutation sorting Classication of permutation problems

As we have seen in Chapter III for single-carrier MISO transmissions, in many cases the channel power predictors derived from the method of moment are not unique. According to the discussion made in Section (III.3), three possible cases can occur, depending on the users constellations and the corresponding rotational order vector q:

• the simplest scenario occurs when all entries of q are distinct, i.e. each constellation has its own unique discrete rotational symmetry. In that case the moment method channel predictor ξ was shown to be unique, so the receiver can without ambiguity identify each source based on the estimated symbol sequences constellation, provided that prior knowledge of each user's constellation is available;

• some entries of q are equal, but the associated constellations are distinct. This happens for instance when several users modulate their symbols according to dierent QAM schemes. The moment-based channel predictors associated to identical rotational orders are then no longer unique, but the estimated symbols can still be associated without ambiguity to their respective source;

• the most general case consists in some sources to use the same constellations. Such sources are dened as indistinguishable, and without additional assumption or a priori information there is no blind way for the receiver to dierentiate them.

The rst case is ideal but of limited practical interest, as the rotational orders typically range from 2 to 16 by powers of two, strongly limiting the number of users that can be dealt with. The second case was addressed in Section III.3.5 by applying ILSE on each of the possible channel predictors and selecting the best one, in the ILSE cost function sense.

The same strategy can readily be extended to the multicarrier framework in a per-subcarrier fashion. This scenario imposes less stringent conditions on the sources constellations than the rst one, making identication of a moderate number of users possible. As for the most general case, while blind single-carrier strategies are at a standstill, the diversity induced by the channel frequency selective nature provides us with additional information that may help to recover all sources without ordering ambiguity.

Full-search criterion

In the previous section we expressed the single-user moment method frequency channel ξ as the DFT of the temporal channel q-fold cyclic convolution h q , Eq.(IV.14). Because of the channel nite memory L, the Inverse Fourier Transform of ξ has its last P -L + 1 coecients equal to zero. Consequently, if for K users we dene L as the longest channel impulse response, i.e. L max k (L k ), denoting by Ξ the P × K matrix whose k-th column is the DFT of h q k k , and by Ξ the (column-wise) IDFT of Ξ, i.e. Ξ F † Ξ, then the (P -L + 1) × K submatrix T Ξ obtained from Ξ by restriction to its last P -L + 1 rows is null. Apart from full column permutations, any permutation of one or more elements between any two IV.3. Initialization strategies for ILSE-OFDM 111 columns of Ξ is likely to result in the introduction of non zeros entries in the associated subblock T Ξ . This provides a way of detecting permutations of channel frequency coecients from subsets of indistinguishable users, and of recovering the right ordering up to a global permutation. Again, as the coecients in Ξ are estimated from the method of moments, their residuals with respect to the actual channel frequency coecients imply that T Ξ will be lled with non zeros entries, regardless of the permutation. It is however reasonable to assume that in most cases those entries should be minimal when the correct ordering is considered. The appropriate criterion for identication of the optimal permutation is then the norm of T Ξ . Note that here for simplicity we considered the whole submatrix T Ξ , but only those columns associated with identical sources are actually concerned by permutation ambiguities. A more accurate formulation of our sorting criterion is thus given as follows:

Let us consider k indistinguishable sources with the same constellation, and denote by Ξ the associated P × k channel matrix estimated from the method of moments. For each subcarrier p from 2 to P , we dene τ p as a permutation of k elements, and τ the associated (P -1) × 1 vector. We further dene Ξτ as the matrix obtained from Ξ by permuting the elements in the P -1 last rows according to τ , and Ξ τ = F † Ξτ its Inverse Fourier Transform.

Finally, we denote by T Ξτ the submatrix of Ξ τ composed of its P -max k≤m (L k ) + 1 last rows, where L k denotes the memory of the k-th user channel. Then the best permutation τ * among the k users is dened as the permutation vector which minimizes the Frobenius norm of T Ξτ : τ * argmin

τ ∈S P -1 k ( T Ξτ F ) (IV.19)
where S k is the permutation set of k elements. The reason why we only consider permutations on subcarriers from 2 to P is to discard vectors τ that are related to each other by a global permutation of the columns of Ξτ , as they result in the same value for T Ξτ F . This way the optimal permutation τ * is (almost surely) unique. It is important to note that the above criterion is only suboptimal: it was observed in simulations that the permutation providing the closest channel estimate to the actual one, in the squared distance sense, can dier from the permutation τ * achieving the lowest cost. Finally, by denition the sorting procedure can be applied to each subset of identical sources independently, allowing use of parallel architectures in practical implementations.

Partial search strategy

The main limitation of the above criterion is that, for a given k there are (k!) P -1 possible permutation vectors. As the number of subcarriers P is typically greater than 32, even for just two users having the same constellation an exhaustive search would require as much as 2 31 = O 10 9 permutations, which in regard to practical delay requirements is not reasonably feasible. A solution consists then in resorting to an iterative partial search: starting from a given subcarrier p, we search for all permutations of k elements only for subcarriers from p to p + p 0 , with p 0 < P . The best of the associated permutation vectors, in the sense of (IV. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]) is then used as an indication of the best permutation for the p-th subcarrier. In other words, the decision of the best ordering for the channel coecients of subcarrier p is based on the permutations of the coecients in the subsequent p 0 subcarriers. The motivating idea is that permutations of coecients in rows that are far from p should intuitively not signicantly alter the IDFT of Ξ. The procedure is then iterated until all (but the rst) subcarriers have been sorted, thus constructing the best matrix Ξ row by row. The resulting algorithm can be thought of as a forward troncated Viterbi algorithm [START_REF] Forney | The viterbi algorithm[END_REF], where each state corresponds to a possible permutation for a given subcarrier, and p 0 is referred to as the horizon of depth of the algorithm. Note that the cost function for a given subcarrier p is still computed from the full P × k matrices Ξτ and not just from the rst p + p 0 rows.

An illustrative example of the troncated search is shown on Fig.IV.3 for k = 2 indistinguishable users and a horizon p 0 = 2. The algorithm starts at p = 2 since the rst subcarrier only accounts for a global permutation. The two columns of Ξ are respectively denoted by ζ and ξ. At the rst iteration the minimal troncated path with respect to (IV. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]) suggests to permute coecients ζ2 and ξ2 . The procedure is then repeated from the retained state ( ξ2 , ζ2 ), and the resulting minimal path indicates to leave unchanged the coecients in the third subcarrier. At this stage, the rst three rows of the suboptimal Ξ thus read ( ζ1 , ξ1 ), ( ξ2 , ζ2 ) and ( ζ3 , ξ3 ), respectively.

With an appropriate choice of the horizon p 0 , the troncated search allows to considerably reduce the complexity of the sorting strategy. For a given subcarrier p, there are k! p 0 possible permutations. Neglecting the fact that for the last P -p 0 + 1 subcarriers this number is reduced to k! P -p+1 , the total number of permutations is roughly given by P (k!) p 0 instead of (k!) P -1 for the full search. For two users with 32 subcarriers and horizon 4 for instance, this gives only 512 permutations, and 131072 for a horizon 12, far below the billion permutations required by the exhaustive strategy. To approximate the induced computational complexity, each tested permutation requires k IDFT and computation of the matix norm in (IV. [START_REF] Bolstad | Introduction to Bayesian Statistics, Third Edition[END_REF]). The former operation is eciently implemented by the Fast Fourier Transform (FFT) algorithm with complexity in O (P log (P )), and the latter has complexity O (k(P -L + 1)). Altogether the computational load of the troncated search for k indistinguishable sources and horizon p 0 is then in O P 2 k(k!) p 0 operations.

IV.4 Simulations

IV.4.1 General settings

We have carried out several Monte-Carlo simulations on the ILSE-OFDM algorithm using the above strategies for phase and permutation resolution. The L × K channel matrix H is assumed to have independent, circularly-symmetric complex normal random entries with variance N 0 , so the users channels are mutually independent and no time correlation between the multiple paths of a given user is assumed either. The chosen performance measures are the joint SER (III.39) and the temporal NRMSE of the estimated channel matrix H, dened similarly to (IV.18) by replacing channel vectors by the corresponding matrices and the complex norm by the Frobenius norm. Two dierent mixtures with K = 2 users have been considered: a double QAM 4 and a QAM 16-QAM 4. In both settings the number of taps for all channels is L = 3, and the number of subcarriers P = 32. The number of consecutive OFDM symbols has been chosen to 400 for the rst setting and 1000 for the second. The per-sub carrier ILSE introduces an additional step before the partial search by applying the MISO-ILSE algorithm for each subcarrier. The objective is to reduce the estimation noise introduced by the moment method at the input of the pemutation and phase solving steps. The channel estimation procedure is stopped after the phase resolution, i.e. no ILSE-OFDM is applied in this case;

per-sub carrier ILSE + ILSE-OFDM is the same strategy as the previous one but with the additional use of the ILSE-OFDM.

It appears clear from both gures that the proposed strategies to solve permutation and phase ambiguities cannot ensure convergence of ILSE-OFDM towards its global minimum.

Prior application of the MISO-ILSE algorithm on each subcarrier alone is not sucient to appreciably improve the estimation either, but together with ILSE-OFDM a substantial gain can be obtained, at the cost of a signicant increase in complexity. Only when all sources ordering and phase ambiguities are perfectly resolved does the resulting SER closely match the perfect CSI curve for the whole considered SNR range. This is in neat contrast with the single-carrier MISO-ILSE of Chapter III as no asymptotic error oor is observed here. From a general perspective all the achieved error rates are quite poor, even for the ideal curve.

This can be imputed to the extremely unfavorable transmission conditions, with a SIR equal to 0dB on each subcarrier and with completely uncorrelated path fadings. We recall however that the presented performances are uncoded, meaning they do not include any channel encoding at the transmitter nor error correction scheme at the receiver. Implementing such additional safeguards would hopefully lead to singicantly lower error rates, closer to the reliability requirements of practical wireless transmissions.

QAM4-QAM16 mixture By and large the same conclusions as for the previous mixture can be drawn. Application of ILSE-OFDM reveals necessary to approach the 10% error threshold, but without a strongly reliable carrier phases recovery the algorithm cannot do better and quickly saturates. Here again we note how closely the perfect phase ILSE-OFDM performs with respect to a fully known channel scenario. In regard to the performances obtained for the same mixture in Chapter III, applying individually ILSE to each subcarrier without any optimization strategies such as those introduced in Section III.5 is likely to result in an increased probability of not converging to the global minimum. On the opposite, taking into account the full temporal channel matrix structure seems to make the estimation method almost free of spurious xed points. This suggests that ILSE-OFDM is a suitable and robust strategy to address blind MISO-OFDM transmissions, at least for short impulse responses and provided the phase and ordering ambiguities can be reliably acquired by the receiver. This comes at the cost of a considerable complexity: for the presented simulation the averaged number of iterations for the algorithm to converge was measured to be of order 50 at E b /N 0 = 15dB and only fell below 10 at approximtely E b /N 0 24dB. In a nutshell, the method is powerful but requires a stringent framework to fully reveal its eciency. Yet the method demonstrated at the same time a real potential in successfully estimating the temporal channels even in extremely harsh transmission settings. The conditions to fully benet from the method are quite demanding, the most limiting one certainly being the number of OFDM symbols required for the outcome of the algorithm to be meaningful. While for a small number of users these conditions may still be compatible with the channel coherence time and the application delay requirements, as more sources and higher order constellations are involved practical application of the algorithm seems increasingly unlikely. As of now, alternative methods such as recursive algorithms or semi-blind procedures appear more realistic for practical purposes. Still, with the fast evolution in the complexity of the embedded technologies in wireless communication devices, the ILSE-OFDM stands as a powerful potential tool to address high interference and strongly unfavorable related transmission scenarios.

V.1 Introduction

In this last chapter we will slightly deviate from the wireless communications framework and adopt a more general point of view by considering a quite fundamental problem in cluster analysis. We have seen in Chapter III how performances of the k-means constrained ILSE algorithm are signicantly aected when some points of the joint constellation lie very close to each other. In this particular case it was evidenced that the presence of local minima close to the global one mostly accounted for the incapacity of the algorithm to reliably converge to the optimal solution. More generally, the problem of clustering data in the presence of clusters partially merged or entangled is of both conceptual and practical V.2 A brief overview of clustering

V.2.1 Denition

A wide diversity of clustering methods and algorithms have been developed and successfully applied in manifold applications including image processing, genetics and data mining [START_REF] Xu | Survey of Clustering Algorithms[END_REF]. The objective of this section is simply to give a short overview of the most well-known clustering approaches, and is certainly not intended to be exhaustive. Countless textbooks and papers on the subject can be found in the literature. The interested reader can for instance refer to [START_REF] Jain | Algorithms for clustering data, ser. Prentice Hall advanced reference series[END_REF] or [START_REF] Bishop | Pattern recognition and machine learning, ser. Information science and statistics[END_REF], among many other references.

We formally introduce the clustering problem as follows: given a nite dataset D of N multidimensional observations denoted by x n , where n ∈ {1, • • • N }, we aim at classifying the dataset in K meaningful clusters C k , k ∈ {1, • • • K}, such that all members of any class are more similar to each other than elements taken from dierent classes. For the sake of simplicity we shall consider from now on that the data points are D-dimensional real vectors,

x n ∈ R D , which allows us to rely on metrics such as the euclidean distance to evaluate similarity between observations.

V.2.2 Properties of clusterings and existing algorithms

From a general point of view clustering techniques can usually be characterized by three properties. First, the number of clusters K required to sort the data may be known in advance or used as a constraint on the algorithm, but may also be a result of the classication process itself. Besides, one may consider by classifying the observations a hard partitioning of the dataset D, meaning that each x n exclusively belongs to a single cluster C k . This is the case of most variations on the k-means algorithm such as k-medians [START_REF] Huang | Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[END_REF], k-modes [START_REF] Jain | Algorithms for clustering data, ser. Prentice Hall advanced reference series[END_REF] or k-medoïds [119]. Fuzzy clusterings on the other hand allow data points to belong to several classes with dierent membership degrees [START_REF] Bezdek | Pattern recognition with fuzzy objective function algorithms, ser. Advanced applications in pattern recognition[END_REF]. The c-means fuzzy algorithm for instance can be thought as a fuzzy counterpart to k-means [START_REF] Dunn | A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[END_REF]. Finally, some clustering methods are capable of handling the presence of outliers, that is, observations which do not belong to any cluster, i.e. x n ∈ ∩ K k=1 C c k . The Fuzzy Clustering by Local Approximation of Membership (FLAME) algorithm is a relatively recent fuzzy algorithm based on a relation graph between neighbouring data points and which accounts for the presence of outliers [START_REF] Fu | FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[END_REF].

More specic distinctions can be made between clustering techniques based on the underlying procedure used to perform the classication. Many algorithms aim at optimizing an objective cost function, the absolute minimum of which corresponds to the best clustering of the dataset. One of the most representative of such methods is the EM algorithm [START_REF] Dempster | Maximum Likelihood from Incomplete Data Via the EM Algorithm[END_REF] which models the data as realizations from a parametric mixture probability distribution and 122 Chapter V. Clustering techniques for entangled data aims at iteratively maximizing the log-likelihood Section I.2.5. It is worth mentioning that the k-means algorithm, one of the other well-known representant of this class of methods, can actually be seen as a particular case of EM for equally likely and homoscedastic mixture components. The k-products algorithm proposed in [START_REF] Paul | A global algorithm to estimate the expectations of the components of an observed univariate mixture[END_REF] is another example which focuses on estimating the means of the mixture components.

Density-based clustering algorithms represent clusters as dense regions of the observation space. In this framework clusters are identied based on the local density around each observation. The main advantages of such methods are that they do not require a priori information on the number of clusters in the dataset and are suitable for clusters of arbitrary shape, as opposed for instance to k-means which by construction is limited to convex shapes. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] algorithm and Ordering Points to Identify the Clustering Structure (OPTICS) [START_REF] Ankerst | OPTICS: ordering points to identify the clustering structure[END_REF], an extension to clusters with heterogeneous densities, are popular members of this class of methods. Hierarchical methods dene yet another possible approach to clustering, based on iteratively merging or splitting data clusters. They essentially are of two types, namely agglomerative or divisive. [START_REF] Gower | Minimum Spanning Trees and Single Linkage Cluster Analysis[END_REF]. Specically, divisive hierarchical methods start by considering the whole dataset as a single cluster, and sequentially split it in several smaller clusters based on a predened dissimilarity measure, until each data point dened its own cluster.

Agglomerative techniques proceed in reverse order by starting with singleton clusters and iteravely merging them to the point of obtaining a global cluster. By doing so both methods do not actually result in a specic partition of the dataset but rather in a set of nested partitions represented as a dendrogram. Additional criteria and partition quality measures are then usually required to extract an optimal clustering. Dierent metrics to measure the dissimilariy between clusters lead to various algorithms, the most well-known being the Single-Link (SINK) [START_REF] Sibson | SLINK: An optimally ecient algorithm for the single-link cluster method[END_REF] and Complete-Link (CLINK) [START_REF] Defays | An ecient algorithm for a complete link method[END_REF], respectively based on the nearest and farthest neighbor distance. Application of hierarchical clustering to large data sets has also been proposed with the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm, an agglomerative method suitable for equally likely and spherical clusters with the additional ability to take outliers into account [START_REF] Zhang | BIRCH: an ecient data clustering method for very large databases[END_REF].

More recently, spectral clustering has attracted much interest in the eld of data analysis. Spectral clustering techniques are based on the concepts of graph theory and on the so-called similarity matrix, which encapsulates the pairwise measures of similarity between the points in the dataset. The clustering problem can be then turned into an eigenvalue problem [START_REF] Luxburg | A tutorial on spectral clustering[END_REF].

Advantages of spectral clustering include its applicablity to large datasets and to clusters with arbitrary shapes, but the results can be very sensitive to the choice of the similarity measure. Normalized cut stands as a reference example of spectral algorithms that was initially applied to image processing [START_REF] Shi | Normalized cuts and image segmentation[END_REF].

A last family of clustering techniques that we can mention is the class of search-based algorithms, which are designed to solve complex optimization problems where traditional methods are subject to the recurent problem of convergence towards local minima. Among where x is a D-dimensional vector and w a N -dimensional weight vector whose each entry w n is associated with observation x n . The function ρ w (x) takes maximal values for all x lying 124 Chapter V. Clustering techniques for entangled data in regions with a high concentration of observations, and cancels when x is far enough from the data. In the context of probability distribution mixtures, these maxima correspond to the modes of each mixture's component, which for unimodal symmetric probability densities such as gaussian distributions coincide with the mean value, provided that the components are separated enough so that their respective modes are still modes of the overall mixture.

Hence, by nding all the maxima of the density function, one can in principle recover the centroids of all the clusters in the dataset. Since in general extracting the maxima of a density function such as ρ w in one row is analytically impossible, we rather try to nd them successively, so that a new cluster is extracted at each iteration of the algorithm. Computing the gradient of (V.1) with respect to x, we nd that the locations of the maxima obey an auto-coherent equation that we solve iteratively. Given an estimation x (c) of the location of one of the maxima of ρ w computed at the current iteration c of the maximization process, the updated estimation at the next iteration c + 1 is given by

x (c+1) = N n=1 w n C n (x (c) )x n N n=1 w n C n (x (c) ) (V.2)
where C n (x) = 1 -tanh x n -x 2 2

. Since the variations of the density function only occur close to the data points, a random observation point is chosen as the initial estimation

x (0) . The maximization step stops when the variations of x (c) with respect to the iteration counter c are small enough, and the resulting vector, denoted by x * , denes the centroid of the new cluster to be expanded. As the starting point to nd a cluster is to randomly pick a data point to initialize the maximization step, it is necessary to nd the members of a given cluster as soon as its centroid has been extracted in such a way that all observations found to be part of this cluster can be removed from the possible initialization set for the next centroid detection step.

V.3.2 Elliptical-shaped classication

In an attempt to circumvent the tendency of density-based algorithms to merge entangled clusters, we constrain the classes generated during the expansion step to have ellipsoidal shapes. The motivation behind this choice is to encapsulate enough data points in a simple geometrical shape so that the cluster is well-represented, without assimilating points that would possibly belong to another class, hence giving the algorithm the ability to better distinguish entangled clusters. We thus need to specify both the orientation or principal axes {u d } d∈{1,••• ,D} and the corresponding semi-axes {a d } d∈{1,••• ,D} to fully parametrize the cluster. In a D-dimensional space, D-1 orthonormal direction vectors are chosen, the last one being imposed by orthogonality. A possible choice for the rst direction is the vector dened by the initial and nal estimations of the centroid of the current cluster, i.e. u 1 = (x (0) -x * )

x (0) -x * 2 , so that if D = 2 the orientation of the ellipse is systematic, while additional arbitrary choices may have to be made in higher dimension. Then, starting from the centroid x * and for each previously dened direction u d , the corresponding semi-axis a d is obtained by sequentially searching for the closest point in that direction for which either a minimum of the density function is found, revealing the presence of an entangled cluster, or a given threshold value is V.3. The elliptical clustering algorithm 125 reached. This critical value, denoted by ρ th , serves as a maximal extension that an isolated class can achieve, and is adaptative of the inner density of the cluster under consideration, which is related to the amplitude of its maximum, ρ w (x * ). We express this threshold value as ρ th = ρ w (x * ) (1 -T h ), where T h is an external parameter strictly lying between 0 and 1.

T h acts as a balance between the typical size of the ellipsoids found by the algorithm and its ability to split partially merged clusters. In our applications the value 0.7 has shown to be a good compromise, but specic applications where for instance a priori knowledge on the relative positions of the clusters is available would lead to other choices. 

V.3.3 Post-processing of the elliptical clustering

The raw classication returned by the elliptical algorithm can be thought of as a covering of the dataset by K ellipsoidal structures. A rst immediate preliminary step to reduce the number of classes is to remove those clusters that only have a single member, and which actually correspond to outlier observations. Then, we enforce the number of real classes K as a constraint to further reduce the number of clusters. Among all pairs of clusters having a non-empty intersection, we select the one which achieves the maximum intersection relatively to the size of the smaller cluster. respectively. An important point to mention is the fact that even after the above pruning phase, the algorithm may still overestimate the number of clusters. Moreover, if the raw classication of the algorithm is such that K < K, no further processing is performed. The knowledge of K is then rather used as a guide to improve the bare elliptical classication than as an absolute requirement. As a matter of fact, in situations where the true number of classes is out of reach, the algorithm may still yield satisfying results using an estimation of K instead.

V.3.4 Pseudo-code and additional comments

The elliptical algorithm takes the three input parameters D, T h and η in its unconstrained version, as well as the number of real classes K in its constrained form. A summary of how the algorithm proceeds is given in Algorithm 2 as a pseudo-code. The post-processing phase can be considered to begin with the suppression of single-element clusters, but this step can also be included in the unconstrained version of the algorithm since it does not require the parameter K. The outliers classication step is optional as well. Because the observations used as the initial points for the maximization of ρ w are chosen randomly, the resulting classication is non deterministic, and thus one may have to perform several runs in order to achieve the best possible clustering accessible by the algorithm. The Myrkin index [START_REF] Mirkin | Mathematical Classication and Clustering[END_REF] is a pair-counting based metric which evaluates the number of misclassied data points. It is dened as

M C,C = K k=1 |C k | 2 + K k =1 |C k | 2 -2 K k=1 K k =1 |C k ∩ C k | 2 (V.9)
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The resulting expression is always positive and null if the two classications are equal.

An additional normalization of the Myrkin index can be achieved in order to grant it the N -invariance property, meaning that the index is dependant on the relative proportions of the classes and not directly on the number of data points N . This normalized version is obtained by dividing the bare Myrkin index by N 2 .

The Variation of Information [START_REF] Meil | Comparing clusteringsan information based distance[END_REF] is an information-based measure which evaluates the gain and loss of uncertainty about a given classication under the assumption that the other is known. Formally speaking, it is dened as 

V.4.2 Simulation assumptions and results

To evaluate the quality of the classications produced by the elliptical algorithm we have generated 200 random sets of 1000 two-dimensional sample points using gaussian mixture distributions for each value of the mixture component number K from 1 to 10.

The weights, means and covariance matrices of each gaussian component are randomly chosen according to a uniform distribution for each independant parameter. The means range from -10 to 10 in each direction, and the maximum value for the covariance matrices entries is set to 1. For each dataset the Normalized Myrkin index and the Variation of Information are computed, then averaged over all datasets having the same number of classes. runs have been extracted before the averaging. Both plots tend to show that our algorithm provides better classication results than k-means and k-product. We also note how similar the performance curves of the elliptical and EM algorithms are, though E-M seems slighty better. This could be an illustration of the fact that for gaussian mixtures the probability distribution components actually are of ellipsoidal shape, so in some sense the two approaches rely on the same underlying principle. First the point-to-point transmission scenario with a at-fading channel was considered.

Based on the structure and symmetries of the constellation, several theoretical results on the position of the ILSE xed points were derived in the noise-free case. In particular, it was shown that for PSK modulations there was essentially a single xed point, and that the hierarchical structure of regular QAMs induced local minima that could be easily identied and related to the global minimum. A complete characterization of the xed points for the QAM 16 modulation was provided and validated by simulation, and from the study of higher order QAMs two strategies were proposed to limit the number of random tries needed to reach the global minimum. Two initialization procedures relying on the received data were also discussed: the rst one is based on the k-products algorithm and aims at estimating the channel-transformed symbols. The prohibitive bias exhibited by the original method for QAMs was resolved using the hierarchical structure of these constellations. The second consists in a channel estimator derived from the method of moments. Simulations demonstrated the relevance of all proposed initialization methods compared to a fully-random strategy, with the data-based strategies achieving error rates identical to the perfect channel knowledge case.

Next, multiple users communication scenarios were introduced. The resulting model was expressed as a particular instance of the underdetermined Blind Source Separation problem for a single linear mixture. Capitalizing on the assumed mutual independence and known distribution of the sources, a cumulant-based moment problem for estimating the channels was derived, and exactly solved in several mixture settings. The non-uniqueness of the channel estimators for constellations with identical rotational orders was discussed, and possible strategies to resolve it were presented. The resulting channel estimators were used as initial states for the ILSE algorithm. Simulations with maximal interference levels and comparison with other multiuser detection methods showed that the proposed initialization strategy achieved very good results for a small number of sources and constellation sizes. For higher order constellations and more sources the asymptotic error oor exhibited by the method becomes prohibitive to ensure a reliable symbol detection.

A more in-depth analysis of the two-users case revealed that the error oor stems from channel realizations for which the mixed constellation is close to non-identiability. In these cases the presence of local minima near the global one makes the algorithm very sensitive to its initialization. From these results several strategies for identifying spurious solutions and correcting them were proposed and tested on the two QAM 4 mixture, with promising results. More general considerations on issues pertaining to practical implementations and fundamental assumptions of the method were discussed at the end of the chapter.

Finally we extended our communication model to frequency-selective propagation environments by considering multiuser, Orthogonal Frequency Division Multiplexing transmissions. A new generalization of ILSE to this framework was carried out, based on a direct estimation of the channel in the time domain. The initialization of the algorithm was then addressed, and several strategies were proposed based on existing algorithms and the channel moment method estimators previously derived. For the phase ambiguities, a joint use of a root-clustering algorithm, the autodeconvolution algorithm [START_REF] Maoudj | Blind propagation channel estimation with enhanced auto-deconvolution[END_REF] and its SVD-based renement was suggested. As for the permutation ambiguities, a partial search algorithm reminiscent of a troncated Viterbi algorithm was presented. Conducted simulations showed that the novel ILSE-OFDM approach is capable of achieving the same error rates than the perfect channel knowledge case even in maximal interference and completely uncorrelated channels, but only when the permutation and phase ambiguities are perfectly resolved.

Otherwise the algorithm demonstrated mitigated performances, in addition to being quite restrictive in its operating assumptions.

The last part of the presented work adopted a somehow more general viewpoint and introduced a quite fundamental problem in cluster analysis, namely identication and treatment of entangled data clusters. A rst insight to address this issue was provided in the framework of mixture distributions, and an algorithm based on probability density estimation by kernel functions was proposed. For the main part the algorithm aims at successively identifying each mode of the mixture and weight the corresponding cluster so as to intensify the contributions of the remaining components to the overall density prole. By doing so the method tends to produce more clusters than expected, hence a postprocessing of the obtained data partition was discussed, based on an iterative merging of clusters identied as spurious. The proposed algorithm was compared by simulations on random gaussian mixtures to well-known clustering techniques from the literature and showed encouraging results in regard to the selected cluster evaluation metrics.
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 1 Figure 1 Communication entre une station de base (BS) et trois utilisateurs (UE).

  ou Fig.I.3 pour des exemples).

h k s k + w ( 2 )Figure 2

 22 Figure 2 Représentation schématique d'une transmission à trois utilisateurs avec le modèle du canal à accès multiple. Les points en orange forment la constellation mélange.
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 3 Figure 3 Observations d'un mélange de deux QAM 4 (points bleus) et constellation mélange estimée à convergence de l'algorithme ILSE (points oranges) avec les seuils associés (traits noirs). Gauche : cas du minimum global. Droite : cas d'un minimum local.
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 4 Figure 4 Décomposition hiérarchique de la QAM 64 (points bleus) en une QAM 4 et une QAM 16 (gauche) et en une QAM 16 et une QAM 4 (droite).
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 5 Figure 5 Positions des points xes et régions de convergence de l'algorithme ILSE pour la QAM 16 (gauche) et la QAM 256 (droite).
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 7 Figure 7 Canal à trajets multiples avec L = 4.
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 8 Figure 8 Approximation d'un canal de bande de cohérence B c par P sous-canaux plats de largeur ∆f .
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 9 Figure 9 Illustration sous forme de graphe de l'algorithme de recherche partielle pour K = 2 sources et P = 6 sous-porteuses. Les chemins en bleu correspondent aux sous-porteuses déjà traitées, et les parties en gris clair à celles qui ne sont pas considérées pour la sous-porteuse en cours. Le chemin en gras représente la solution de moindre coût pour la sous-porteuse considérée. La gure de droite montre le résultat nal de l'algorithme.

  où les x n sont les observations et w un vecteur de poids de taille N . Les minima de cette fonction constituent des estimations des modes de la distribution mélange sous-jacente, qui correspondent aux centroïdes des classes. Le principe de la méthode de classication proposée consiste à alterner l'estimation d'un centroïde par minimisation de la fonction densité, et l'estimation de la classe associée. L'étape de minimisation se fait selon un algorithme itératif initialisé sur une observation aléatoire non-encore classée. La classe associée C est ensuite déterminée en construisant un ellipsoïde centré autour de ce mode et en sélectionnant les observations qui y appartiennent. L'extension de l'ellipsoïde, caractérisée par ses demi-axes, dépend d'un paramètre T h choisi de telle sorte à limiter la taille de l'ellipsoïde et ainsi éviter d'absorber les éventuelles classes proches. La mise à jour du vecteur poids w permet par ailleurs de supprimer la contribution des points nouvellement classés au prol de densité global, favorisant la détection des classes de moindre importance aux itérations suivantes. L'algorithme se poursuit jusqu'à ce que tout ou une proportion susante d'observations aient été classées. Par construction, cet algorithme de classication dit elliptique produit un recouvrement de l'ensemble des observations par des structures ellipsoïdales. Le nombre de classes trouvé se révèle en général supérieur au nombre réel de classes, l'introduction du vecteur poids favorisant également l'apparition de classes résiduelles. Pour palier à ce problème une seconde phase est ajoutée à l'algorithme, qui consiste à identier parmi chaque sous-ensemble de classes partageant une intersection non vide les moins signiantes, et à en redistribuer le contenu parmi les classes restantes. Cette seconde phase s'arrête lorsque le nombre de xxx Résumé classes restantes coïncide avec le nombre attendu. L'algorithme proposé est testé sur des mélanges gaussiens aléatoires avec des nombres de composantes croissants et comparé à quelques méthodes de classication de la littérature. La qualité des classications produites est mesurée selon deux critères, à savoir l'indice de Myrkin normalisé et la Variation d'Information [133]. De manière générale, l'algorithme elliptique produit de meilleurs sinon comparables résultats que la plupart des autres méthodes testées. Seul l'algorithme Espérance-Maximisation [26], spéciquement adapté aux mélanges gaussiens, atteint des performances légèrement supérieures. Ceci encourage de futurs développements et améliorations de l'algorithme elliptique ainsi que des simulations plus poussées faisant intervenir d'autres méthodes de classication. Conclusion L'ensemble des résultats présentés dans cette thèse, obtenus pour des hypothèses de transmission particulièrement défavorables en termes d'interférence et de nombre d'antennes à disposition, contribuent à mieux comprendre l'algorithme ILSE et constituent une base de travail pour rendre ce type d'algorithmes plus à même d'être appliqués dans des systèmes réels. Les diérentes approches proposées ouvrent la voie vers de nombreuses extensions et améliorations, à commencer par la généralisation de ces méthodes à un nombre de sources plus important et à des mélanges plus complexes. La relaxation de certaines hypothèses du modèle constitue également un axe de recherche pertinent, notamment en ce qui concerne la synchronicité des sources. Background With the recent densication of networks and the fast-increasing volumes of data conveyed by modern mobile applications, wireless communication systems are faced with upcoming challenges in terms of resources allocation, achieved data rates and reliability constraints. In that respect, Non Orthogonal Multiple Access (NOMA) techniques have received considerable interest in recent years from both the research and industrial elds as a promising alternative to the traditional Orthogonal Multiple Access (OMA) schemes, compatible with the massive connectivity and spectral eciency requirements of Fifth Generation (5G) networks and of the Internet of Things (IoT) functionalities [1]. As opposed to Frequency Division Multiple Access (FDMA),Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) and Orthogonal Frequency Division with Multiple Access (OFDMA) [2], all based on a mutually exclusive allocation of the overall radio resource between User Equipments (UE) through the use of distinct time slots, frequency bands or spreading codes, NOMA allows multiple users to simultaneously share the same resources, thus increasing by large the achievable capacity of reception devices.Allowing several UE to use the same resources for their transmissions introduces Inter-User Interference (IUI), a major source of impairment in wireless communication systems. Actually, the motivation for use of OMA in previous networks generations is largely accountable by the fact that they provide simple, low-complexity solutions to eciently suppress interference. The counterpart for imposing orthogonality between users is however a scarcity in the available resources, substantially limiting the number of distinct users that can be simultaneously dealt with. On the other hand, ensuring reliable communications while maintaining high data rates in interfering scenarios comes at the expense of an increasing complexity in the detection schemes employed by wireless receivers and of their embedded hardware. Typical NOMA strategies for addressing IUI exploit power diversity and allocate dierent power levels to the users according to the quality of their propagation environment[START_REF] Dai | Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends[END_REF]. At the receiver these dierences in power can be used to extract each users's signal based on Successive Interference Cancellation (SIC) techniques. Such strategies are ecient in many situations, but their performances are strongly limited in low received Signal to Interference Ratio (SIR) levels scenarios. The second central concern of both orthogonal and non-orthogonal multiple access wireless communications relates to the propagation environment of the transmitted signals, known as the channel. The performances of any detection scheme are entirely dependent on its ability to compensate the undesirable eects introduced during signal propagation. Hence, robust strategies to acquire the Channel State Information (CSI) are of foremost importance in the design of reliable detectors. In most cases this estimation process is carried out by means of reference signals, called pilots, which are known at both sides of the transmission and sent to Introduction the receiver prior to the actual signal of interest. Such data-aided strategies however require a regular reacquisition of the pilot sequences to account for the temporal evolution of the propagation environment. This, in turn, results in a loss of the actual datarate achieved by the transmission. On the other hand, blind channel estimation methods aim at estimating the channel directly from the received signal, without resorting to any training sequence. At the expense of an increased complexity, these techniques make ecient use of all available information about the data. In regard to the increasing volumes of data required by modern wireless applications, these methods stand as a serious alternative to the traditional pilotbased schemes.
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 22 Conceptually, the MLE corresponds to the value of the parameter θ which best accounts for the observed data sample Z. The motivation for use of the log-likelihood instead of the likelihood is rst because for independent observations, L [θ; z] simply decomposes as the sum of the log-likelihood of each observation L [θ; z] = N n=1 L [θ; z n ] (I.37) Chapter I. Technical background which is easier to handle than the corresponding product of likelihoods. Besides, the expectation of the Hessian matrix (= matrix of second derivatives) of L [θ; Z] with respect to the data, known as the Fisher information matrix, also has a strong conceptual meaning in terms of the minimum variance achievable by any unbiased estimator. One of the simplest example of explicit derivation of the MLE is for a circularly-symmetric complex normal variable with known variance σ 2 , translated by a unknown complex constant c 0 . The resulting variable Z has the following distribution p Z (z) = 1 πσ 2 e -|z-c 0 | I.38) and E [Z] = c 0 . Here we have a single parameter to estimate, namely c 0 ∈ C. The loglikelihood of N independent realizations of Z reads

  Wireless communications allow transmission of information on long distances and between a large number of users without dependency on full-wired networks. The information is encoded in electromagnetic waves radiating in the air instead of electric signals transiting through wires, making communication possible even between mobile devices. In the cellular telephony framework, the basic model for wireless transmission involves several User Equipments (UE), such as mobile phones or laptop computers, emitting signals to a reception device called a Base Station (BS), as shown on Fig.I.1. The BS consists essentially in one or several antennas covering a certain space area, here represented as an hexagon, called a cell. A wireless network is composed of several such interconnected BS, each receiving from and transmitting to devices belonging to their cell. Interconnection between BS allows communication between users located in dierent cells. Several devices can simultaneously transmit to the same BS and, conversely, the BS can send individual signals to each user or broadcast the same signal to all users in its cell. In the telecommunication terminology, a transmission between one or several UE to a given BS is called an uplink transmission, and the reverse communication is referred to as downlink. An important feature of wireless communications is that they eciently take advantage of the frequency spectrum to allow multiple simultaneous transmissions without interference. The signals involved in a wireless system are band-limited, meaning that their spectral (= frequency) content is limited to a bounded region of the spectrum. Formally speaking, the Fourier transform of a band-limited signal vanishes outside of a positive frequency interval whose length B is called the bandwidth. A signal whose spectral band contains the zero frequency is called a baseband signal, and a passband signal otherwise. Each wireless application relies on its own frequency range, allowing for signals intended to dierent systems to be superposed in time and still be separately recovered based on their frequency content. In Fig.I.1 for instance, adjacent BS may operate in dierent frequency bands so as to avoid interference from neighbouring cells transmissions. A simplied representation of an overall wireless transmission is depicted on Fig.I.2.
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 12 Figure I.1 Basic wireless network model with 3 base stations and 5 user equipments.

  The numbers c m are called the modulation symbols and take their values in a given nite alphabet C . Each incoming binary word is associated with one of the M signals, which is emitted for a xed duration T called the symbol period or time epoch. The transmitted signal consists then in the concatenation of these reference signals. In a general setting, the choice of the modulation symbol at a given time epoch depends both on the current binary word and on

(

  schemes, with transmitted signals that are simply antipodal, s m (t) = (-1) m Ae 2iπfct , with m ∈ {1, 2}. An example of the resulting waveform s(t) is shown in Fig.I.5; • Phase Shift Keying (PSK) modulations only aect the phase of the carrier. The symbols are equally distributed over a circle of radius A, c m = Ae 2iπ(m-1) M

2iπq

  C = C , where c 0 C {c 0 c | c ∈ C } for any c 0 ∈ C. The integer q is called the rotational order of the constellation C . From the previous denitions and Fig.I.
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 3 Figure I.3 Three representative examples of linear modulations. From left to right: ASK 4, PSK 8 and QAM 16.

  [START_REF] Tong | Indeterminacy and identiability of blind identication[END_REF] where α ∈ [0; 1] is called the roll-o factor. The advantage of the raised cosine lter is that it is stricly band-limited and still prevents ISI, while the rectanglar pulse has a theoretically innite bandwidth, as can be seen on Fig.I.4. Yet for conceptual simplicity we will consider in the following the simpler model provided by the rectangular window.
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 45 Figure I.4 Frequency response of the rectangular pulse and of the raised cosine lter for several roll-os factors.
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 708 Figure I.7 Threshold demodulation of the QAM 4. Red dots show the constellation symbols, blue dots the correctly estimated received symbols and orange dots the misdetections. Decision boundaries are indicated by the black lines.

  For this reason the demodulation dened by (I.50) is called a threshold detection or decoding. The decision thresholds of the QAM 4 are shown on Fig.I.7. In this simple case the estimation of s n is simply based on the sign of the real and imaginary parts of r n , and the Voronoï cells are the four principal orthants of R 2 ≡ C, so for instance V(A(1 + i)) = {z ∈ C|z 0}. More generally the shape of the decision regions is determined by the geometrical structure of the constellation C . Because of the additive gaussian noise, the received symbol r n may not lie in the Voronoï region of their corresponding emitted symbol s n , i.e. r n / ∈ V(s n ). This results in a misdetection, as the estimated symbol s n diers from the actual one. This corresponds to the orange dots in Fig.I.7. Quite intuitively, higher power noise levels are expected to result in more frequent detection errors. The quality of the demodulation is measured by the Symbol

Figure I. 9

 9 Figure I.9 Probability of symbol error for several regular QAM constellations.

53 )

 53 All the previous discussion was based on a transmission without any channel. Introduction of the channel has a determinant impact on the demodulation scheme, as the received symbols now read r n = hs n + w n (I.54) Compared to (I.49), the observed symbols are centered around the complex-scaled constellation hC . The eect of h on C is a scaling by |h| and a rotation by Arg (h). Applying without any modication the previous threshold detection will result in a catastrophic misdetection probability. This can be seen on Fig.I.8, with most of the symbols being incorrectly estimated. This is because the Voronoï cells of the transformed constellation are given by

Figure II. 1

 1 Figure II.1 Representative outcome of k-products on a QAM 4 (left) and a QAM 16 (right). Blue dots correspond to the received symbols and red dots to the estimated centroïds.

Figure II. 2

 2 Figure II.2 Recursive decomposition of a QAM 64 as four QAM 16 or sixteen QAM 4. Smaller dots indicate the origin of each sub-constellation.

  have

Figure II. 3

 3 Figure II.3 Outcome of the hierarchical k-products algorithm on a QAM 16 (left) and a QAM 64 (right). Red dots indicate the nal centroïds and orange dots the result of the intermediary steps.

Fig.II. 3

 3 Fig.II.3 shows the results of applying the hierarchical k-products clustering to a QAM 16 and a QAM 64. As can be seen in both cases all the centroïds are now close to the actual

13 )FigureFigure

 13 Figure II.4 Illustration of the conjugate mapping. Dashed lines represent decision boundaries.

  It requires C and C * to have the same pdf, i.e. P (C = c m ) = P (C = c * m ) for any m ∈ {1, • • • , M }, which is in particular veried for uniformly distributed symbols. Then, if h 1 is a xed point of the SISO-ILSE algorithm with indicator function characterized by mapping

  Fig.II.5 provides an illustration for the QAM 16 case. We have thus shown that for QAM constellations, 2 p h with p ∈ 1, • • • , log 2 (M ) 2 denes a set of xed points of the SISO-ILSE algorithm in the noise-free case and in the limit of large sample sizes. The same result holds for ASK modulations with p ∈ {1, • • • , log 2 (M )}.

Figure II. 6

 6 Figure II.6 Threshold detection of a QAM 16 with h = 17+9i 20 (h = 1).

Figure II. 7

 7 Figure II.7 Threshold detection of a QAM 16 with h = 8+3i 8 (h = 1)

  can see from Fig.II.6 (with h = 1 for simplicity) that the threshold decoding of the actual constellation (blue dots) with respect to the estimated one (orange dots) indeed results in the mapping g of II.1. The proof is similar for the three other xed points, whose respective mappings are illustrated on II.7, II.8 and II.9.

Figure II. 10

 10 Figure II.10 Fixed points of SISO-ILSE and associated convergence regions for the QAM 16, h = 1. Darker colors indicate lower values for the cost function at convergence.

Figure II. 11

 11 Figure II.11 Fixed points of SISO-ILSE and associated convergence regions for the QAM 64.

Figure II. 12

 12 Figure II.12 Fixed points of SISO-ILSE and associated convergence regions for the QAM 256.

For simplicity we assume here that h = 1 . 2 ( 10 , 3 √ 10 , 10 ,≤ 10 |h| 2 E |h -h| 2 h 5 7N(M - 4 )(19M 2 -

 1210310102542 Denoting h the point in C lying on the boundary of R(1) and such that |h -1| = α, i.e. h R(h) ∩ C(h, α) a rst condition h must fulll is given by |h (3 + i) -(3 + i)| 2 = |h (3 -i) -(3 + i)| II.34) which yields Arg (h ) = arctan (1/3), or h = λ 3+i √ with λ ∈ R. This corresponds to the straight line boundary of R(1), as seen on Fig.II.13. Minimizing then |h -1| 2 with respect to λ we nd λ = so h = 9+3i 10 , or h = 9+3i 10 h in the general case. The location of h is shown on Fig.II.13. The maximal radius α is thus given by |h| √ which combined with (II.33) yields the following bound for the QAM 16 outage probability p provided by (II.35) is actually very loose: simulations performed with N = 50 QAM 16 symbols result in a measured probability of h lying out of B(h, |h|/ √ 10) of order 10 -3 for a noise power of order 10dB, while (II.35) only gives p ≤ 0.14. It seems Chebyshev's bound is not a fully appropriate choice to accurately approximate the outage probability, so other bounds should be considered to get closer to the actual result. Apart from very low values of N (N 10), the simulated outage probabilities are extremely low, so we can expect the moment channel predictor to perform very well in most practical situations.

Figure II. 13

 13 Figure II.13 Largest complex ball with center h lying in R(h) for the QAM 16 (h = 1). The orange dot shows the intersecting point h between the boundaries of R(h) and B(h, α ).

50 Chapter 8 }

 508 II. Single-user blind detection detection. For comparison we also perform the ideally equalized demodulation, in which the channel is perfectly known. The dierent tested strategies are summarized below: perfect CSI: threshold detection based on the actual value of the channel; random initialization: the naïve SISO-ILSE algorithm initialized with several random channels drawn from the same distribution as that of the actual channel. The number of initializations is xed to four, and the retained solution is the one that achieves the lowest cost function; moment method predictor: the SISO-ILSE algorithm is initialized with the channel predictor provided by the method of moments, Eq.(II.21); hierarchical k-products: the channel-transformed constellation symbols are estimated by the hierarchical k-products algorithm introduced in Section II.2. The obtained centroïds are used to demodulate the received symbols by threshold detection, and the result is provided as an initial symbol estimation state for the SISO-ILSE algorithm; far-o initialization: the initial channel is rst chosen at random with an arbitrary large modulus to drive the algorithm to one of its outer local minima. The resulting xed point is then rescaled so as to serve as a basis for better initial states. The scaling modulus is chosen according to the number of empty clusters resulting from a threshold decoding based on the xed point, Section II.3.3, and the three phase values {-π 8 , 0, π are tested. The nal channel estimate is then chosen as the one which minimizes the nal cost of the algorithm. The overall procedure thus requires four entire runs of the algorithm, which motivates the choice made for the random initialization strategy;

onFigure II. 14 Figure II. 15

 1415 Figure II.14 Performances of the SISO-ILSE algorithm for the QAM 16 with several initialization strategies: average SER (top) and mean cumulated number of iterations (bottom).

  Part of this work has been published in the following letter: S. Smith, M. Pischella, M. Terre. "A moment-based estimation strategy for underdetermined single-sensor blind source separation", IEEE Signal Processing Letters, vol. 26(6), pp. 1-5, 2019, (doi:10.1109/LSP.2019.2909968) III.1 Introduction III.1.1 Multiple access channel This chapter constitutes the core of the work presented in this thesis, namely blind channel estimation in multiuser transmissions. We consider K users simultaneously transmitting their source signal to the same receiver. This situation can occur for instance in an uplink communication where several devices located in the same cell are emitting to the same Base Station (BS), as is represented on Fig.III.1. At the BS, a superposition of the signals coming from each user is observed, hindering the identication of each individual source: this is called Multiuser Interference (MUI) or Inter-User Interference (IUI). Let us denote the symbols emitted from user k by s k , with k ∈ {1, • • • , K}. Each source signal experiences a dierent

Figure

  Figure III.1 Illustration of a multiuser uplink transmission (K = 3).

Figure III. 2

 2 Figure III.2 Received symbols from three sources using a BPSK, a QAM 4 and a PSK 8. The red dots constitute the joint mixed constellation C h .

III. 2 3 Figure III. 3

 233 Figure III.3 First source decoding step of a two-users mixture with SIC in weak (left) and strong (right) interference regimes. The blue lines represent the decision regions associated with the channel estimation.

  III.25) with µ k E χ k and χ denotes any of the three statistically identical sources. By permutation symmetry we know that the solutions to this system are the three roots of the same cubic equation. We can thus search the components of η under the form η k = 1 3 a + e ik 2π 3 c + e -ik 2π 3 b c with (a, b, c) ∈ C 3 . From (III.25) we obtain the equivalent system

  Figure III.5 Example of the decision regions for a mixture with two QAM 4

Fig.III. 6 shows

 6 the SER and channel NRMSE of the algorithms presented above. Even in this quite simple case, 10 initializations of the random ILSE and ILSP-ILSE strategies are not enough to nd the global minimum of their cost function. As expected, despite being provided with

  For moderate to high E b /N 0 the predictors provided by ILSE are also the minimum NRMSE solutions among all other tested algorithms. The most striking feature on Fig.III.6 is that the NRMSE of the MB-ILSE strategy is not monotonic decreasing, and achieves a minimum value around 26dB. Coincidentally, within the same range of E b /N 0 the SER starts to considerably drift from the perfect CSI performance curve. A possible explanation accouting for this behavior is the global masking eect of the mixture's background noise with respect to local minima, which facilitates convergence of ILSE towards the global minimum of J. This has already been observed in Chapter II for the single-source case. Past a certain noise power level, thoses minima become more an more apparent to ILSE, hence making the global minimum more dicult to reach.

Fig.III. 7 Figure III. 6

 76 Fig.III.7 addresses a more complex case by considering a QAM 4 and a QAM 16. Essentially the same conclusions as in the previous case can be drawn, yet with an observed sensible loss in performance for all tested algorithms. In particular, compared to the previous
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 7894 Figure III.7 Averaged SER (top) and NRMSE (bottom) of two-sources mixtures with one QAM 4 and one QAM 16

  Fig.III.10 by means of the normalized histogram. The empirical pdf is clearly bimodal (trimodal if we include back the dominant mode consisting of the zero-error cases), with modes located at approximately 0.25 and 0.5 error rates. The number of modes, their position and their relative contribution to the overall density all depend on the size and structure of each source's constellation.

Fig.III. 11 .FigureFigure

 11 Figure III.10 Normalized histogram (blue) and empirical p.d.f. (orange) of the SER of the two-QAM 4 mixture conditioned on non-perfect decoding cases (E b /N 0 = 50dB)

  Fig.III.12 shows the typical shapes of the joint constellations associated with each of these clusters. All have in common the fact that some symbols are very close

1+i 2 }

 2 . We indeed theoretically recover the empirical centroïds read from Fig.III.11.

  Fig.III.11 indeed results in an higher score than for the global MSE. Additional specic simulations conducted on channel realizations representatives of the problematic mixtures also reveal the presence of xed points close to the global minimum.

Fig.III. 13 FigureFigure

 13 Fig.III.[START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF] shows, for the two-QAM 4 mixture, which of the channel ratios resulting in an imperfect symbol decoding are such that some combinations of symbols never appear (a threshold value of 0.05 was used). Clearly the involved ratios are concentrated on the set {1, i, -1, -i}. Conditioning the SER on those solutions result in an averaged SER of approximately 0.5, which corresponds to the highest mode in the empirical error pdf of Fig.III.10. Quite intuitively solutions for which symbols are missing are the worst in terms of symbol detection errors. Identication and treatment of non-independent sources solutions hence present a triple advantage:• its implementation is straightforward and does not require subtle threshold design;

FigureFigure

  Figure III.15 Normalized histogram (blue) and empirical p.d.f. (orange) of the SER of the QAM 16-QAM 4 mixture conditioned on non-perfect decoding cases (E b /N 0 = 50dB)

Fig.III. 14

 14 Fig.III.14 displays the channel ratios for which ILSE solutions are regarded as nonuniform. For this simulation a threshold of 0.5 was used, meaning that we tolerate solutions having population up to 1.5 times the expected population of a truly uniform distribution. Obviously non-uniform cases include the non-independent sources cases of Fig.III.13. We see that the identied local solutions originate from the whole set of problematic channel ratios. Still a non negligible fraction of spurious xed points remain undetected. The design of the condence interval for identication of non-uniform solutions is in general a subtle problem.

  Fig.III.15 and III.16 respectively show the empirical residual error pdf and the associated channel ratios for the QAM 16-QAM 4 mixture, along with the solutions detected as non consistent with the sources independence assumption. The position of the centroïds

Figure

  Figure III.18 Channel ratios leading to non-zero SER (blue) and non-independent ILSE sources solutions (yellow) for the two-PSK 8 mixture.

  III.13), and ve for the QAM 16-QAM 4 mixture (h r ∈ {0, 1, 1+i 2 , }, Fig.III.16

Fig

  Fig.III.19 shows the result of applying the above strategy to the two-QAM 4 mixture.

III. 5 Figure

 5 Figure III.19 Comparison of SER obtained for the two-QAM 4 mixture with perfect CSI (red), MB-ILSE (orange) and MB-ILSE with a preventive correction scheme (purple).

  Figure III.20 Comparison of SER obtained with perfect CSI (red), non corrected MB-ILSE (orange) and MB-ILSE with rejection of non-independent source solutions (purple).

Fig

  Fig.III.21 shows the SER curves obtained from the same mixtures as in Section III.4.2

Figure 92 ChapterFigure

 92 Figure III.21 Comparison of the SER between perfect decision (continuous lines) and suboptimal decision (dashed lines) among equivalent predictors

  3.5. So, for the QAM 16 and QAM 4 mixture with an exhaustive cost-testing strategy for instance the mean number of iterations of the overall method should be doubled compared to the corresponding curve on Fig.III.22.
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 1931 shows a global view of a possible complete MB-ILSE-based detection algorithm, taking into account the additional estimation steps discussed above. Strategies for detection and treatment of spurious xed points have been included as well. We emphasize that all proposed procedures related to non uniqueness of the linear BSS model and convergence of ILSE to local minima are not intended to be exhaustive. Depending on the application and the computational resources at disposal, many other solutions may be designed, and the III.7. Conclusion Overall procedure illustration of the MB-ILSE blind multiuser detection 1)Preliminary steps estimation of the number of sources K estimation of the constellations C k and their amplitude A k , k ∈ {1, • • • , K}

Figure IV. 1 1 √

 11 Figure IV.1 Division of a frequency-selective channel in P = 64 narrowband subcarriers.

Figure IV. 2

 2 Figure IV.2 Functional block diagram of an OFDM transmission.

Figure IV. 3

 3 Figure IV.3 First two iterations of the troncated search with K = 2 users and a horizon p 0 = 4. Dashed lines represent transitions between states obtained by permutations in the subsequent subcarrier, and the solid lines show the path that yields the lowest cost function (IV.19)

Figure IV. 4

 4 Figure IV.4 Functional block diagrams of the ILSE-OFDM channel estimation procedure. Top: identical constellations; Bottom: distinct constellations with equal rotational orders. Crossed arrows indicate parallelization of the pointed block over subcarriers.

For a mixture composed of a QAM 4

 4 and a QAM 16 the troncated Viterbi search is unnecessary and is replaced by a bank of single-carrier ILSEs applied on each subcarrier and for each possible moment channel predictor. According to Section III.3.4 there are two such possible predictors, totalizing 2P runs of the algorithm. Note that for each subcarrier the ILSE initialized with the correct moment predictor converges most often very quickly in one or two iterations , limiting the actual complexity of this stage. Fig.IV.6 displays the results obtained for the perfect CSI and the three following algorithms: autodeconvolution refers to the use of the strategies in Section IV.3.1 as a self-consistent temporal channel estimation, i.e. ILSE-OFDM is not applied afterwards; autodeconvolution + ILSE-OFDM is the main strategy corresponding to the lower block diagram of Fig.IV.2; ILSE-OFDM with perfect phases represents the theoretically best achievable averaged outcome of ILSE-OFDM based on the initial moment method predictors and perfectly recovered phases.

Figure IV. 5 Figure IV. 6

 56 Figure IV.5 Joint SER (top) and Temporal NRMSE (bottom) for a two-QAM 4 OFDM transmission.

Figure V. 1

 1 Figure V.1 Naive clustering of a gaussian mixture distribution with entangled components.

Figure V. 2

 2 Figure V.2 Supervised clustering of a gaussian mixture distribution with entangled components.

V. 3 . 1 N n=1 w n N n=1 w n 1 -tanh x n -x 2 (

 3112 The elliptical clustering algorithm 123 others, evolutionary techniques and in particular Genetic Algorithms (GA) address the considered optimization problem by applying the fundamental principles of natural selection[START_REF] Filho | Genetic-algorithm programming environments[END_REF]. Starting from a population of potential solutions to the problem, several operations inspired from genetics are applied to the population to produce new solutions, called osprings.The new populations are then evaluated according to the problem requirements and only those which best fulll them are selected, then used as a new basis for the next generation of solutions. In particular, a mutation operator introduces randomness in the passage to the next generation, allowing new solutions to emerge and preventing the algorithm from being trapped in local minima.Clustering methods may usually encounter two major limitations. First, the classication produced by a given algorithm can be very sensitive to its initialization conguration, thus requiring several runs to extract the best possible result. Classication approaches relying on the minimization of non convex functions like k-means are typically concerned with this diculty. Another persistent drawback of classication procedures is that they often experience diculty in the detection and handling of entangled clusters. We attempt to address the latter by introduction of our elliptical clustering technique.V.3 The elliptical clustering algorithmWe now introduce the elliptical clustering algorithm, a density-based classication technique which performs a covering of the dataset by elliptical-shaped structures. In its original version this classication technique does not require any assumption on the number of real classes, but it also admits a constrained version which aims at improving the nal clustering by a post-processing of the raw result. In the rst two sections we describe the underlying concepts motivating the elliptical clustering as well as the classication process, while in Section V.3.3 we adress how the knowledge of the number of real clusters K can be enforced in the resulting clustering. Section V.3.4 provides a complete overview of the algorithm by means of a pseudo-code. V.3.1 The weighted density function The elliptical clustering method is based on a representation of clusters as dense regions of the observation space. Similarly to the DBSCAN algorithm, it alternates two steps: rstly detecting a new cluster, then expanding it, until all or enough data points have been processed. However, while DBSCAN relies on local density criteria, we here adopt a more global point of view and represent the overall density of the dataset by means of weighted hyperbolic tangent kernel functions. The resulting density estimation function, denoted by ρ w (x) is dened as ρ w (x) =

a 126 ChapterFigure V. 3

 1263 Figure V.3 Top: Elliptical classication of two entangled bi-dimensional gaussian distributions with weights (0.5, 0.5), means (0, 0), (2, 0) and spherical covariance matrices 0.7 and 0.5, respectively. Bottom: Density prole ρ w in the x direction at the initial state (black curve) and after the extraction of the rst cluster (blue curve) using the density threshold ρ T h (red line).

(k 1

 1 , k 2 ) = argmax k∈{1,•••K } k >k |C k ∩ C k | min (|C k |, |C k |) (V.5)The most irrelevant cluster C k * is then dened as the smaller one in the resulting pairk * = argmin (|C k 1 |, |C k 2 |) (V.6)Finally, we remove C k * by redistributing its members among all clusters that share a non empty intersection with it.Let V k * = {k ∈ {1, • • • , K }\{k * }|C k * ∩ C k = ∅} be the corre-sponding class labels, and d M (x n , C k ) the Mahalanobis distance between observation x n and class C k , dened as d M (x n , C k ) = (x n -x k * ) T Σ -1 k (x n -x k * ) (V.7)with x k * and Σ k the centroid and covariance matrix of C k respectively. We assign to each class C k of V k * all data points of C k * for which the minimum of the Mahalanobis distance with respect to all other classes of V k * is achieved. We can thus write the update of clusterC k as C k ← C k ∪ {x n ∈ C k * |argmin k ∈V k * d M (x n , C k ) = k} (V.8) These two steps of detection of residual clusters and reassignment of the corresponding data points is repeated until either K = K, or there are no more non-empty intersection between any pair of clusters. Finally, a last optional phase consists in classifying the outlier observations to the remaining clusters replacing C k * and V k * by ∩ K k=1 C c k and {1, • • • , K } in (V.8),
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 1 Chapter V. Clustering techniques for entangled data Algorithm 2 Pseudo-code of the elliptical clustering algorithm function elliptical_clustering(D, η, T h , K) // Phase 1: elliptical clustering of the dataK ← 0, w ← (1, • • • , 1) while | ∪ K k=1 C k | < N × η do choose x (0) as a random x n in ∩ K k=1 C c k nd x * K+1 by iteratively maximizing ρ w (x) using (V.2) for d = 1 • • • D do choose u d orthogonal to {u 1 , • • • u d-1 } compute a d using (V.3) end for dene C K +1 using (V.4) update w K ← K + 1end while // Phase 2: pruning of irrelevant clusters add all single-element clusters to the set of outliers while K < K and ∪ K k=1 V k = ∅ do select the cluster to remove using (V.5) and (V.6) reassign members of the removed cluster using (V.8) Clustering validity metricsThe performance of the proposed algorithm is evaluated comparatively to an ideal, gold standard classication of the dataset using two dierent metrics based on the so-called confusion matrix. Given the target classication C = {C k } k∈{1,•••K} and the clustering under evaluation C = {C k } k ∈{1,•••K } the K × K entries of the confusion matrix are dened as m kk = |C k ∩ C k |. Starting from this general tool a wide variety of clustering evaluation criteria can be derived. For our performance tests we selected two indices, namely the normalized Myrkin index and the Variation of Information.

V

  I C,C = H(C|C ) + H(C|C ) is the conditional entropy of classication C knowing classication C and m k• = K k =1 m kk . The Variation of Information is zero if and only if both classications are equal (up to a permutation in the class labels) and is naturally N -invariant.

Fig. V. 4

 4 Fig. V.4 shows the performance curves for k-means, k-product, EM and the constrained elliptical clustering. For these initialization-dependant algorithms the best result over 100

Fig. V. 5

 5 Fig. V.5 depicts the normalized Myrkin index obtained for the unconstrained elliptical algorithm and DBSCAN for two sets of its parameters Eps and M inP ts. While DBSCAN tends to yield better clusterings for a small range of K values, it then considerably drifts in accuracy. This is because as the number of clusters increases while the observation space range is xed, more and more entangled classes appear and DBSCAN considers them as single entities. The bare elliptical clustering on the opposite overestimates the number of classes but doing so carries more relevant information about the actual clustering of the data. This

Figure V. 4 Figure V. 5

 45 Figure V.4 Performance of the constrained elliptical clustering with parameters η = 0.95, T h = 0.7 using the normalized Myrkin index (top) and the Variation of Information (bottom)

  

  

  On comprend ainsi l'intérêt des méthodes d'estimation conjointes, qui ne sont pas limitées par le niveau d'interférence en-

tre les utilisateurs. En revanche, la fonction de coût exhibe la plupart du temps de nombreux minima locaux, et les constellations mélange qui leur sont associées dièrent radicalement du mélange réel, comme l'illustre le second cas de gure, à droite. La nature du point xe vers lequel l'algorithme converge est uniquement déterminée par l'estimation initiale du vecteur canal. La stratégie habituelle consiste donc à initialiser l'algorithme plusieurs fois jusqu'à ce que le minimum global ait été atteint. Cette approche naïve soulève néanmoins deux problèmes, à savoir celui du critère à adopter pour déterminer si une solution donnée est optimale ou non, ainsi que le nombre d'itérations requis pour atteindre ce minimum global. Ces limitations, en plus d'une complexité relativement élevée due à la phase d'énumération, font de l'algorithme ILSE une méthode peu utilisée en pratique. La question de l'initialisation est donc fondamentale pour la mise en application réelle de cet algorithme, et plus généralement des méthodes d'estimation basées sur le maximum de vraisemblance.

  permet pas de distinguer des sources utilisant la même constellation. De la même manière, il existe une ambiguïté de phase de π/2 sur chacun des deux coecients du canal estimé, qui correspond à la symétrie de rotation discrète de π/2 des constellations QAM. En pratique, ces ambiguïtés de phase et de permutation, qui sont inhérentes au modèle, doivent être levées explicitement par l'ajout d'informations extrinsèques.Les performances de l'algorithme ILSE initialisé au moyen de la méthode des moments sont évaluées par simulations Monte Carlo, et comparées à celles obtenues par une approche de type SIC et une stratégie d'initialisation naïve. Les canaux sont tirés de manière aléatoire avec la même amplitude moyenne, ce qui signie que l'interférence entre utilisateurs, mesurée par le rapport signal sur interférence, est maximale. Les mesures considérées sont l'erreur quadratique moyenne normalisée des canaux estimés et le taux d'erreur symbole conjoint,

	Si les deux QAM ont des tailles diérentes, on obtient deux solutions distinctes pour
	l'estimateur du vecteur canal.	Se pose alors la question du critère à utiliser an de
	déterminer le choix qui fera converger l'algorithme Iterative Least Squares with Enumeration

(ILSE) vers la meilleure solution. Si en revanche les deux QAM sont identiques les deux solutions sont permutation l'une de l'autre, ce qui correspond au fait que le modèle de xxii Résumé mélange linéaire ne déni comme la probabilité de commettre une erreur de décision sur l'estimation du symbole d'au moins un utilisateur. Les résultats, présentés section III.4.2, attestent un gain très appréciable vis-à-vis de la stratégie d'initialisation aléatoire d'une part, mais également du SIC qui se trouve ici hors de son point de fonctionnement idéal. La stratégie consistant à initialiser l'algorithme ILSE avec l'estimateur fourni par le SIC ne sut pas par ailleurs à compenser la faiblesse de cet algorithme en situation d'interférence forte. Les taux d'erreur obtenus pour des mélanges de deux QAM pour l'algorithme proposé sont extrêmement satisfaisants compte tenu du fait qu'il s'agit des taux d'erreur non codés, c'est-à-dire sans codage de canal préalable. On observe néanmoins un plancher d'erreur dans la limite de bruit faible, d'autant plus élevé que la complexité des constellations impliquées dans le mélange augmente et qui correspond à la convergence de l'algorithme vers des minima locaux. On mesure nalement le nombre moyen d'itérations requis par l'algorithme pour converger. Celui-ci augmente naturellement avec la taille de la constellation mélange, mais reste raisonnable même à fort bruit et à quatre utilisateurs.

À fort bruit l'algorithme converge très rapidement, en une dizaine d'itérations tout au plus.

On peut fournir une analyse plus poussée du plancher d'erreur observé dans les simulations dans le cas simplié de deux utilisateurs, pour lequel la structure globale de la constellation mélange est caractérisée par le rapport h r des coecients du vecteur canal. Si on se restreint aux réalisations des canaux telles que le taux d'erreur obtenu à l'issue de l'initialisation par la méthode des moments et l'algorithme ILSE est non nul, on constate que les quotients correspondants sont concentrés autour de points bien spéciques, comme illustré sur la gure 6. Les constellations mélange associées sont telles que certains symboles sont quasiment confondus. A l'extrême, on atteint une condition de non identiabilité

[START_REF] Behr | Identiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures[END_REF]

, c'est-à-dire qu'on peut trouver plusieurs jeux de symboles distincts (s 1 , s 2 ) et (s 1 , s 2 ) qui par combinaison linéaire donnent le même symbole dans la constellation mélange :

  Étantxxvii donné que l'estimation ξ0 du vecteur ξ obtenu par la méthode des moments est imparfaite, l'estimation initiale du canal temporel de l'utilisateur considéré est en pratique dénie comme la solution de moindre norme du système, obtenue par une décomposition en valeurs singulières.Pour que la méthode de l'autodéconvolution soit réellement pertinente il est néanmoins nécessaire que les coecients du vecteur colonne ξ correspondent bien à un même utilisateur, ce qui n'est pas garanti compte tenu des ambiguïtés de permutation introduites par la méthode des moments sur chaque sous-ensemble de sources utilisant la même constellation.Lorsque tel est le cas pour chaque colonne de Ξ, la matrice Ξ obtenue par transformée de Fourier inverse a sa partie inférieure nulle. Partant de l'estimation Ξ0 de la méthode des moments on cherche donc à permuter les coecients sur chaque ligne an d'identier,

autoconvolution, il est alors possible d'exprimer h comme la solution d'un problème linéaire dont les coecients dépendent du vecteur ξ.

par transformée de Fourier inverse, ce sous-bloc de zéros. L'estimation étant imparfaite, la permutation retenue est plus précisément celle qui minimise la norme du sous-bloc inférieur. Néanmoins, le nombre de sous-porteuses utilisé en pratique ne permet pas en général de tester toutes les permutations possibles, et on est donc contraint de se limiter à une recherche partielle, illustrée sur la gure 9 pour le cas simplié de deux utilisateurs et six sous-porteuses. La matrice Ξ0 est ainsi constituée de deux colonnes notées ζ et ξ.

  La dernière partie de cette thèse rompt quelque peu avec les considérations précédentes en s'intéressant aux techniques de classication de données. Plus particulièrement, le problème abordé est celui de la capacité des algorithmes de classication a produire des résultats ables lorsque certaines classes de données se recouvrent partiellement. Ce problème touche à la notion même de classe , et peut donc être envisagé sous diérents angles.

utilisateur, ce qui donne une estimation initiale de la matrice des canaux temporels que l'on utilise comme point de départ pour l'algorithme ILSE-OFDM. Dans le cas ou les constellations sont diérentes, il n'y a pas d'ambiguïté de permutation mais la méthode des moments donne généralement plusieurs solutions pour chaque sous-porteuse. On applique alors pour chaque sous-porteuse l'algorithme ILSE monoporteuse sur ces diérentes solutions, et on retient celle qui donne le meilleur résultat au sens de la fonction de coût.

Les résultats en termes de taux d'erreur symbole conjoint de ces deux séquences d'algorithmes ont été mesurés sur un mélange de deux QAM 4 pour le cas de constellations identiques et sur un mélange QAM 4QAM 16 pour le cas de constellations distinctes. Les résultats obtenus, présentés en section IV.4.2, ne sont en l'état pas satisfaisants. On vérie cependant que dans l'hypothèse où les ambiguïtés de phase et de permutation ont été parfaitement résolues, l'algorithme ILSE-OFDM atteint des taux d'erreurs comparables à ceux obtenus en supposant une connaissance parfaite du canal, ce qui suggère que les méthodes de recherche partielle et d'autodéconvolution ne sont pas susamment performantes. Il n'en reste pas moins que l'algorithme ILSE-OFDM montre de meilleures performances que l'application sur chaque sous-porteuse de l'algorithme ILSE pour estimer les canaux en fréquentiels. On en conclut que l'algorithme proposé constitue une approche pertinente et prometteuse du problème d'estimation aveugle de sources dans les transmissions multiporteuses par rapport aux méthodes d'estimation conjointes purement fréquentielles, mais qu'elle nécessite en amont des méthodes qui soient à même de lever les ambiguïtés de phase xxix et de permutation de l'estimation initiale, sans quoi la convergence de l'algorithme vers son minimum global ne peut être garantie.

Classication de données partiellement intriquées

L'approche proposée repose sur la représentation des données comme réalisations d'un mélange de distributions de probabilités ayant des modes distincts. Considérant N données réelles de dimension D, la densité de probabilité empirique ρ w (x) des observations est modélisée par le biais de fonctions noyaux , ici choisies comme des tangents hyperboliques, centrées autour de chaque observation :
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		. A two-step algorithm based on a density
	representation of the dataset is proposed as a rst solution to this problem. Comparative
	simulations with other clusterings techniques show promising results and suggest further
	developments of the method.	
	Finally, the thesis concludes by a summary of its main contributions and elaborates on
	future work perspectives.	
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  For instance, a QAM 64 can be decomposed as the sum of a QAM 16 with scaling factor 2 and a QAM 4, or as the sum of a QAM 4 with scaling factor 4 and a QAM 16,

[START_REF] Remmert | Theory of complex functions, ser. Graduate texts in mathematics[END_REF] 

where C 4 denotes the QAM 4 constellation. As an immediate consequence of (II.8), any QAM 4 p can be decomposed into two independent QAM with 4 p 1 and 4 p 2 symbols, with p = p 1 + p 2 . as illustrated on Fig.II.2. The same results readily apply to the ASK constellations with BPSK replacing the QAM 4 in (II.8).

  [START_REF] Comon | Handbook of blind source separation: independent component analysis and applications[END_REF] It is then not dicult to check that threshold decoding with h = h 2 results in the indicator function induced by mapping g 2 , as is schematized on Fig.II.4. Unlike the previous case here the result only holds in probability: given a xed point h 1 , the probability that h

	h * 1 h

* is also a xed point tends to 1 as the sample size N grows.

Table II

 II 

.1 Non trivial xed points of SISO-ILSE for a QAM 16.

  .1 and the recursive symmetry are the only relevant xed points of the SISO-ILSE algorithm, and fully characterize its possible outcomes in the noise-free and asymptotic sample size limit. II.3.3 Initialization strategies for higher order QAM The above simulation for nding the xed points and their convergence region can be readily applied to higher order QAM constellations. The results are presented on Fig.II.11 for the QAM 64 and Fig.II.12 for the QAM 256. As is evident from the gures, the number of xed points drastically increases with the constellation size. Compared to the QAM 16, restricting to S and including unstable xed points 113 points are identied for the QAM 64, and 806 for the QAM 256. Most of xed points are concentrated around a circle with radius slightly greater than 1, or |h| in the general case. Despite being quite isolated from its neighbouring points, it seems increasingly unlikely to nd the global minimum h with only one or even several completely random initializations. Yet, a closer look at the xed points

  16 an unpre-dicted xed point located at 14+6i 8 h, also having only 4 non-empty clusters as the point 2h. as the far-o seeding strategy is solely based on this empty-cluster property, not taking into account this additional xed point is likely to result in spurious solutions. A possible strategy for the QAM 16 will be exposed in a later simulation. Noise and non-uniform induced xed points may also aect the perturbative seeding technique, but according to our simulations it is globally more resilient to this phenomenon, as it involves deeper local minima which are more robust against noise, and make little place for additional xed points.

	Forasmuch II.4 Initialization by channel prediction
	II.4.1 Moment method channel predictor

The two previous sections were respectively concerned with providing the SISO-ILSE algorithm with an initial symbol estimation, achieved by the k-products algorithm, and proposing optimization strategies to improve the probability of converging to the global minimum with random initializations. A third possibility not yet addressed is to provide SISO-ILSE with an initial channel estimate. That is, we search for a channel predictor accurate enough to ensure that the algorithm converges to the actual channel with high reliability. A straightforward way of obtaining such predictor is given by the method of moments, I.2.4. Here the only parameter is the channel h, so we just need one single statistical quantity. The moments of the received symbols r n are the natural choice to consider. Denoting r the random variable from which the r n 's are drawn, the m-th pure moment of r, µ m (r), reads
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  More specically, given K linearly mixed independent source signals s k and a background noise w, the averaged received power is given from (III.1) by the sum of the received powers from each user, plus the noise power. Now, if one of the sources, say s 1 , has a substantially stronger received power relative to all other sources and noise, i.e.|h 1 | 2 E |s 1 | 2 |h k | 2 E |s k | 2 for k = 1 and |h 1 | 2 E |s 1 | 2 E [|w|]2 , then we can write

	60	Chapter III. Multiuser blind detection
	III.2 Blind multiuser detection algorithms
	III.2.1 Successive Interference Cancellation
	Successive Interference Cancellation [32] is a well-known iterative method which allows
	to sequentially retrieve multiple simultaneous interfering source signals based on their rel-
	ative powers.	

  Figure III.4 Mean Square Error of dierent strategy-based channel predictors for two sources using a QAM 16 and a QAM 4
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	Blind multiuser detection in OFDM
	transmissions
	Contents
	IV.1 IV.1 Introduction
	Heretofore we have been exclusively interested in narrowband transmissions, which allow
	to conveniently model the channel propagation as at-fading. This framework is however
	quite restrictive and little realistic, as practical wireless communications involve signals whose
	spectral support is typically larger than the channel coherence bandwidth. The propagation
	channel is then selective in frequency over the total used bandwidth. In this chapter we
	will consider a particular class of transmission schemes suited to such frequency-selective
	environments, namely multicarrier transmissions.
	IV.1.1 OFDM transmission
	Modeling the propagation channel as at-fading is tantamount to consider that the re-
	ceived signal comes from a single path, i.e. the channel impulse response reduces to a single
	coecient h,

  IV.[START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]) is invertible since f † p f p has rank 1. If all combinations of symbols from the joint constellation C appear in Sp then rk ( Sp ) = K, with rk (•) the matrix rank operator, so rk ( S *

				10) is equal to zero for
			P	 -1		P		
	vec (H) =			( ST p ⊗ f p ) † ( ST p ⊗ f p ) 	vec		f † p rp	S † p		(IV.13)
			p=1				p=1		
	and the matrix solution is then nally obtained from vec (H) by reversing the vectorization
	operation. Note that taken individually none of the matrices ( ST p ⊗f p ) † ( ST p ⊗f p ) = S * p	ST p ⊗f † p f p
	in (p								

In this thesis, the k-means algorithm actually refers to the iterative procedure proposed in[START_REF] Lloyd | Least squares quantization in PCM[END_REF] to solve the k-means problem. While this approach is not the only one it is certainly the most widespread, hence this misuse of language is very comon in the literature.
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where χ denotes the fourth power of a QAM source with M symbols. The rst terms of (III. [START_REF] Kay | Fundamentals of statistical signal processing, ser. Prentice Hall signal processing series[END_REF] A similar expression can be derived for ASK constellations, and is provided in Appendix A.2

along with a proof of (III.18).

Two-sources case

When K = 2, system (III.17) can be quite easily solved in the q-th power channel η for any choice of constellations with equal rotation order. The system to consider explicitely reads

There are two solutions η (m) , m ∈ {1, 2} to this system. Dening

k -σ 2 k with β q α 2,q -1 = 2q-1 q -1, the components of each vector solution are

where γ(µ ρ , σ 2 ρ ) is the principal complex square root of

Thus, we are basically left with two possible predictors η (1) and η (2) . Although the choice of the q-th root of each component is irrelevant as pointed out in the previous section, each channel predictor η(m) will generally make ILSE converge to dierent xed points. Strategies regarding how to choose between both predictors are discussed in Section III.3.5. When both constellations are the same however, we have ( η 1 (1) , η 2 (1) ) = ( η 2 (2) , η 1 (2) ), so each solution is a permutation of the other and the predictor can be considered unique, as a consequence of the linear BSS model permutation invariance.

points to the global minimum of the ILSE cost function results in an increased sensibility to the initial state provided to the algorithm. Fortunately enough it also turns out that most of these spurious solutions can be easily detected, as they do not observe the source independence and uniformity assumptions. Based on these observations several strategies to improve the output of ILSE in these problematic mixture congurations were proposed, and successfully applied to the two-QAM 4 mixture. Extension of these strategies to more than two sources has not been carried out yet, but represents a foremost perspective for future work.

Appendix A

Proofs of Chapter III

A.1 Cumulants of a discrete-circular random variable

In this section we consider a complex random variable χ with discrete-circular invariance of order q. In Section III.3.1 we have already shown that the cumulants of χ of order n non multiple of q are necessarily zero. What is left to prove then is the expression (III.11) of κ n (χ) when n = pq

with α p,q (pq)! p!(q!) p and p ∈ N.

Let us proceed by recursion on p : for p = 1, the only non zero moment of χ from order 1 to q is µ q (χ), so κ q (χ) = κ q (0, • • • , 0, µ q (χ)) = µ q (χ) and the result is veried, since α 1,q = 1. Now let us assume that (A.1) holds for all integers up to p -1. For arbitrary integer n, the n-th cumulant κ n (χ) admits the following recursive formula in terms of lower order cumulants and moments

where the dependency of the moments in the variable χ has been made implicit. Applying this formula for n = pq and using the recursion hypothesis on the non-zero cumulants in the right-hand side yields

For convenience only the non-zero moments of κ pq have been explicitely written in the lefthand side of (A.3). The combinatorial prefactor of each P m can be rewritten as pq - 

Finally, using (A.2) again with n = p and variables µ k µ kq α k,q yields the desired result (III.11).

Appendix A. Proofs of Chapter III

A.2 Cumulants of uniform QAM and ASK sources

In this section we consider special cases of Eq.(III.11) for QAM (q = 4) and ASK (q = 2) sources, respectively. Let us denote S M an uniform, regular QAM source with M symbols. Then S can be written as the linear combination of K = 1 2 log 2 M uniform, mutually independent QAM4 sources S

Applying the additivity of cumulants for independent variables and their homogeneity yields

The n-th cumulant of S 4 can be further simplied in a similar fashion by decomposing the QAM4 source S 4 in two independant, pure real and pure imaginary uniform BPSK sources, so that

where B denotes a BPSK source.

Considering now n = 4p and the fact that for any PSKM modulation µ M p = 1 we get from (III.11)

which combined with equations (A.8) and (A.7) gives

Applying again (III.11) on the left hand side of (A.10) nally yields

A very similar derivation can be made for ASK uniform sources and leads to

(A.12)

A.3 Asymptotic bias of the two-sources q-th power channel predictor

In this section we derive an approximate bias and MSE for the fourth-power channel predictor η, valid in the large sample size limit. The predictor being non linear in the received signal statistics, we perform a Taylor expansion of γ(ρ, ρ2 ) around its expected

Perspectives

Each axis developed in the thesis opens several perspectives for further renements and future work. Some possible directions are listed below:

• the study of xed points proposed in Chapter II was conducted in the noise-free case and in the asymptotic limit of innite sample sizes. Several heuristic observations regarding introduction of noise and nite sample size eects were made but lack a rigorous framework to be precisely described. In particular, a characterization of the xed points uncovered by the asymptotic regime and their relative probabilities of occurrence would provide a precious insight for a better understanding of the possible outcomes of ILSE in noisy scenarios, as well as additional freedom in the design of both robust and optimal initialization strategies;

• in the multiuser case, the number of considered sources was chosen quite small so that the proposed moment problem channel predictors have analytical expressions. More generally numerical algorithms should be implemented so as to address an arbitrary number of sources. Additionally, one of our most promising result concerns the theoretical identication of high-risk channel ratios for which ILSE is likely to fail converging to its global minimum, based on the identiability condition of nite-alphabets mixtures [START_REF] Behr | Identiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures[END_REF]. Extension of this analysis to more than two sources would be insightful to determine whether the proposed initialization strategies are still likely to be relevant.

Finally, a strong inherent assumption of our multiuser transmission model is the perfect mutual synchronicity between the sources. This hypothesis is quite stringent and its relaxation should be considered for practical implementation;

• as the ILSE-OFDM algorithm presented in Chapter IV is highly sensitive to its initialization, alternative algorithms for solving phase and permutation ambiguities should be considered. Also, a recursive, time domain version of the method could be proposed so as to accomodate for time-varying channel coecients. The recursive version of ILSE proposed in [START_REF] Talwar | Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms[END_REF] stands as a reasonable basis to start with. It would also be enlightening to perform the same time domain extension for SML approaches such as the EM algorithm, which because they are based on a stochastic representation of the data have often more desirable properties than decision-directed approaches [START_REF] Aldana | Channel estimation for multicarrier multiple input single output systems using the EM algorithm[END_REF];

• the algorithm presented in Chapter V belongs to the class of density-based clustering.

In that respect clusters were represented by the modes of the underlying data mixture distribution. This clustering approach may not be the most relevant to address partially merged clusters. Among other possibilities, the choice of hierarchical clustering would appear as a natural candidate for further considerations, as its very foundation precisely Mots clés : Analyse statistique de données, traitement du signal, télécommunications Abstract : In this thesis we address the blind channel estimation and source detection of linear mixtures with a single sensor in scenarios strongly dominated by interference. In this framework our only assumptions relate to the sources mutual independence, as well as the discrete and uniform nature of their probability distribution. Based on existing iterative algorithms from the literature, we propose several initialization strategies so as to enhance both their overall performance and robustness to highly unfavorable mixture congurations. We provide a detailed analysis of the relation between the spurious xed points these algorithms are known to possibly converge to and the underlying mixtures geometry. Possible strategies to account for this additional information in the overall detection process are discussed as well. Simulation results attest to a signicant improvement of the achieved error rates compared to all tested traditional detection schemes. An extension of the method to the estimation of frequency-selective channels in multiuser and orthogonal multicarrier transmissions is then performed, along with several initialization propositions. We conclude our study by more general considerations on clustering algorithms and their ability to discriminate between partially entangled data classes.

Keywords : Statistical data analysis, signal processing, wireless communications