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Résumé

Les moteurs électriques pour satellites, qui accélèrent les ions d’un plasma, sont primordiaux
pour le succès des missions spatiales, qui sont de plus en plus essentielles dans nos vies (GPS,
météo, communication, etc.). En effet, ils utilisent plus efficacement la masse du carburant que
les moteurs chimiques plus conventionnels. Le moteur à effet Hall fait partie des technologies
les plus performantes et utilisées. Cependant, sa conception et son optimisation sont longs et
coûteux, car des processus physiques clefs, qui impactent son fonctionnement, sont encore mal
compris. En particulier le transport des électrons à travers les lignes de champs magnétique, et
l’interaction entre le plasma et les parois du canal du moteur.

Ces deux phénomènes sont basés sur des mécanismes cinétiques, et donc ne peuvent pas être
étudier précisément avec des modèles fluides. Le transport des électrons est fortement impacté
par une instabilité de dérive électronique qui croie dans la direction azimutale. L’interaction
plasma-surface, elle, se déroule dans la direction radial du moteur. Ainsi, afin d’étudier ces deux
phénomènes, nous utilisons une simulation cinétique bidimensionnelle qui modélise les direction
radial et azimuthal du moteur. Le code de simulation, LPPic, a été développé dans ce but précis
par Vivien Croes. Massivement parallélisé, il permet de simuler en un temps respectable le moteur
a effet hall dans des conditions réalistes.

Grace aux résultats de simulations, nous avons mis en évidence que les électrons sont non-
locaux, car ils sont absorbés plus vite aux parois qu’ils ne sont thermalisés par les collisions.
Cette observation est primordiale pour la modélisation de l’interaction plasma-surface, car elle
remet en question l’hypothèse des électrons isothermes. En conséquence, nous avons développé
un modèle de gaine avec une loi d’état polytropique pour les électrons, qui décrit plus précisément
l’interaction plasma-surface. Une très bonne correspondance a été observé entre les simulations
bidimensionnelles cinétiques et le modèle de gaine fluid unidirectionnel. Ce modèle peut être
utilisé en présence, ou non, d’émission électronique secondaire. Lorsque l’émission secondaire est
présente, le modèle de gaine présente jusqu’à trois solutions, ce qui explique les oscillations de
gaines observées précédemment dans les simulations. De plus, ce résultats est en accords avec
des observations expérimentales, ce qui conforte ça validité.

Ce modèle est une première étape important pour mieux modéliser les moteurs à effet Hall.
Cependant, certains aspects, comme la courbure du canal et le gradient de champs magnétiques,
ont été négligé. Ces autres aspects de l’interaction plasma surface devront être pris en compte
afin d’obtenir une modélisation précise des moteurs à effet Hall.

Concernant le transport des électrons dans la direction axial du moteur, l’instabilité azimutale
observée, responsable du transport, est comparée aux relations de dispersions de l’instabilité
acoustique ionique et l’instabilité cyclotronique de dérive électronique. Nous montrons que la
phase de croissance linéaire est bien comprise, mais que l’état stationnaire dépend de l’interaction
onde-particule et de phénomènes non-linéaires qui ne sont pas pris en compte dans les relations
de dispersion. Ces phénomènes non-linéaire et cinétique doivent être mieux compris afin de
déterminer l’état stationnaire de l’instabilité de dérive électronique, et donc la mobilité des
électrons.
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Summary

Electric propulsion systems that accelerate plasma ions are important for the success of
spatial missions, which are more and more needed in our daily lives (GPS, weather forecast,
communication, etc.). Indeed, they uses more efficiently the propellant mass compared to the
more conventional chemical thrusters. The Hall effect thruster is one of the most used and efficient
technology. However, its conception and optimization is slow and costly, as key processes are
still poorly understood. In particular the electron transport across the magnetic field lines, and
the interaction between the plasma and the ceramic walls of the channel.

Both phenomena are governed by kinetic mechanisms, and so they cannot be studied precisely
with fluid models. Th electron transport is governed by the electron drift instability, which rises
in the azimuthal direction. On the other hand, the plasma-wall interaction happens in the radial
direction. Consequently, in order to study both phenomena we use a bi-dimensional kinetic
simulation. The simulation code, LPPic, was developed in the objective by Vivien Croes. Highly
parallelized, it allows us to simulate under a reasonable time the Hall effect thruster under
realistic conditions.

We showed with 2D PIC simulation results that electrons are non-local, as they are absorbed
more quickly at the wall compared to the collision frequency. This observation is essential, as
it questions a usually made hypotheses concerning the isothermal electrons. Consequently, we
derived a non-isothermal sheath model using a polytropic state law for the electrons that describes
more accurately the plasma-wall interaction. A very good agreement was found between the
bi-dimensional kinetic simulations and the uni-dimensional sheath model. The model can be
used with and without secondary electron emission. With electron emission, the sheath model
can present up to three solutions, explaining the oscillations observed in the simulations. Lastly,
these results are in agreement with experimental measurements on the maximum , assuring its
validity.

This plasma-wall interaction model is an important first step in order to better model Hall
effect thrusters. however, some aspects of the thruster, such as the channel curvature and the
magnetic field gradient, were neglected. These phenomena would need to be taken into account
in order to model more precisely the thruster.

Concerning the electron transport across the magnetic field lines, the azimuthal instability
observed, responsible for the transport, is compared to the dispersion relation of the ion acoustic
wave and the electron cyclotron drift instability. We show that, while the first linear stage of
the instability is well understood, the saturated quasi-steady-state is affected by particle-wave
interactions and non-linear mechanisms that are not included in the dispersion relation. These
non-linear and kinetic phenomena must be better understood in order to determine the stationary
state of the instability, and so the electron mobility.
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Chapitre 1

Concepts and preliminaries

The Earth is the cradle of humanity, but man-
kind cannot stay in the cradle forever.

Konstantin Tsiolkovsky, pioneer of the astronau-
tic theory

Contents

1.1 Propulsion system for spacecrafts . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The rocket equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Chemical propulsion systems . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Electric propulsion systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Electric propulsion environment in France . . . . . . . . . . . . . . . . . 5

1.2 Electric propulsion challenges . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Hall Effect Thruster research and development . . . . . . . . . . . . 6

1.4 Presentation of the Hall Effect Thruster . . . . . . . . . . . . . . . . 7

1.4.1 Hall Effect Thruster operating principle . . . . . . . . . . . . . . . . . . 9

1.4.2 Instabilities present in the Hall Effect Thruster . . . . . . . . . . . . . . 10

1.5 Scientific challenges of the Hall Effect Thruster . . . . . . . . . . . . 10

1.5.1 Electron drift and azimuthal instability in the Hall Effect Thruster . . . 11

1.5.2 Cross-field transport of the electrons . . . . . . . . . . . . . . . . . . . . 11

1.5.3 Plasma-wall interaction and secondary electron emission . . . . . . . . . 12

1.5.4 Three-dimensional physics of the Hall Effect Thruster . . . . . . . . . . 13

1.6 Introduction to plasma models and simulations . . . . . . . . . . . . 13

1.6.1 Describing the plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.2 Plasma simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Problem statement and outline of the thesis . . . . . . . . . . . . . . 16

1.1 Propulsion system for spacecrafts

In order to move in space, satellites, scientific probes, and spacecrafts in general rely on
a propulsion system. The cost to go from one location to another can be expressed as ∆v, a
measure of impulse needed to maneuver. Figure 1.1 illustrates the ∆v required to evolve in the
solar system. We can see that reaching Low Earth Orbit (LEO) needs a ∆v of 9400 m/s while the
GEostationary Orbit (GEO) is 3910 m/s further. Landing on the Moon from the Earth ground
requires a total of 15 km/s, while landing on Neptune requires ∆v = 43.7 km/s. For a spacecraft
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1.1.1 The rocket equation

The thrust T generated by ejecting mass at high velocity is

T = vexṀ (1.2)

with vex the exhaust velocity of the propellant, and Ṁ the propellant mass flow rate through
the thruster. Hence,

∆v =

∫ t2

t1

vex
|Ṁ |

M(t)
dt = vex ln

(

M0

M1

)

(1.3)

with M0 = M(t0) and M1 = M(t1), and supposing that vex is constant. We see from Eq. (1.3)
that for a spacecraft of dry mass M1 to have a given ∆v, the exhaust velocity is directly linked
to the initial wet mass M0 = M1 + Mprop, with Mprop the propellant mass. Equation (1.3) is
known as the rocket equation, or Tsiolkovsky’s equation. Usually, instead of the exhaust velocity
vex, the specific impulse Isp = g0vex, with g0 the standard gravity, is used.

1.1.2 Chemical propulsion systems

The usual rocket thruster uses a chemical reaction to generate the thrust. For instance, the
Vulcain (the thruster engine of the main stage of the European Ariane 5 and 6, developed by
ArianeGroup, ex. Safran) uses the oxygen-hydrogen combustion, the most efficient chemical
reaction for chemical thrusters [12]

2H2 + O2 = 2H2O + 572 kJ,

with the energy of 572 kJ of heat generated by 1 mol of oxygen. This means that burning 1 kg of
hydrogen-oxygen mixture generates a total energy of 13 MJ. Supposing that the entire energy is
converted into the exhaust of the water produced, its velocity would be of 5.1 km/s. In reality,
the exhaust velocity of the Vulcain is of 4.2 km/s, corresponding to Isp = 431 s. The efficiency of
the Vulcain is close to 80%, which is a very high efficiency, and it would be difficult to increase
it significantly.

In chemical propulsion systems, the fact that the energy released is related to the propellant
mass gives an upper limit of exhaust velocity for a given combustion. Electric propulsion engines,
on the other hand, decouple the mass ejected (the propellant) from the energy source. This
decoupling allows a theoretical unlimited exhaust velocity. Another advantage is the absence of
reactive species, which lowers the security requirements impacting the spacecrafts. Unfortunately,
electric propulsion engines only work in vacuum and do not deliver sufficient thrust to compensate
the earth gravity. Hence, while electric propulsion can be used on spacecrafts, chemical propulsion
is the only solution for rockets.

1.1.3 Electric propulsion systems

Electric Propulsion (EP) systems mostly rely on plasmas [13, 14]. They have been successfully
used since the 1960s by governments, but their complexity, the limited electric power available,
and the inherent risk aversion of the space industry kept the EP technologies hidden from the
commercial applications [15]. The breakthrough came in the ’90s when the former Soviet Union’s
companies licensed the technology to Western propulsion companies. However, many commercial
satellite manufacturers were skeptical, until the first decade of the 21st century, which brought
strong evidence of the competitiveness of EP. The landmark of commercial use of EP is the selling
of four all-electric satellites for GEO by Boeing in 2012, the first two of which were launched in
March 2015.

The two leading EP technologies used are
— the Hall Effect Thruster (HET), also known as Stationary Plasma Thruster (SPT) in

Russia
— the Gridded Ion Thruster (GIT), usually referred simply as Ion Thruster
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The Gridded Ion Thruster is a plasma chamber closed at one end by two or more grids.
The plasma source can be an emitting cathode, generating energetic electrons that ionize the
propellant (usually Xenon), or a Radio Frequency (RF) source. The potential difference between
the grids accelerates the ions. Another cathode is used to neutralize the ion beam. Compared
to HETs, it produces an ion beam with less divergence and a higher Isp of the order of 3000 to
4000 s. Figure 1.2 shows a picture of the ion thruster used for the BepiColombo mission toward
Mercury. We see the neutralizing cathode, the accelerating grid, and the ion beam.

Figure 1.2 – The T6 ion thruster will help send BepiColombo to Mercury. The neutralizing
cathode is in the upper left quadrant of the thruster. (Credit: QinetiQ)

Hall Effect thrusters use a magnetic barrier to both increase the ionization of the propellant
and create the accelerating electric field. A detailed description of the HET is presented in the
next section. One cathode is used to start the discharge and neutralize the ion beam. Compared
to GITs, HETs need less power, hence reaching better thrust per power ratio and a smaller
(therefore lighter) Power Processing Unit. Recently, the first satellites of two mega-constellations
(OneWeb, 648 satellites planned, from which six were launched on February, 26th 2019, and
Starlink, 12 000 satellites planned, from which 62 were launched on May, 23rd 2019) were sent to
Low Earth orbit, both using HETs. Their typical Isp is of the order of 1500 s. Figure 1.3 shows
a high power prototype firing. We see the emitting cathode, in this design at the center, and the
ion beam.

Figure 1.3 – A 13 kilowatt HET prototype on a testing bench in a vacuum chamber (Credit:
NASA).
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1.1.4 Electric propulsion environment in France

France is a leader country in the aerospace industry in both Europe and the world, with
companies such as Airbus, Thales, Safran, and ArianeGroup (join-venture of Safran and Airbus).
As a consequence, the French ecosystem of electric propulsion is vibrant. The main thrusters
produced in France are the PPS series by Safran, with the PPS®1350 (version G at 1.5 kW
nominal power, and the version E at 2.7 kW), and the PPS®5000, a high power HET at 5 kW,
the first models of which have been delivered to Boeing in May 2019. A low-power version
(between 500W and 1kW) of the PPS® is currently developed[11]. A list for the PPS® series
elements and their respective characteristics can be seen in Table 1.1.

Table 1.1 – Members of the PPS® series developed by Safran Aircraft Engines [9, 10, 11]. The
nominal operating condition of the PPS®X00 is not fixed yet.

Name Power Thrust Isp

PPS®1350-G 1.5 kW 89 mN 1650 s

PPS®1350-E 2.7 kW 140 mN 1800 s

PPS®5000 3 − 5 kW 150 − 300 mN 1850 − 1700 s

PPS®X00 ∼ 650W ∼40 mN ∼ 1450 s

Several initiatives concerning the small-sat sector are also undertaken, such as the start-ups
Exotrail (micro HET) and Thrust Me (radio frequency Ion Thruster), or the Electron Cyclotron
Resonance Thruster at ONERA. Since 1996, numerous research projects have been carried out in
France on HET with the Centre National d’Etude Spatial (CNES), SAFRAN and several research
laboratories : ICARE, LAPLACE, CPHT, LPP, etc. [9]. These numerous actors, combined with
the support of the French and European space agencies, compose a stimulating environment that
contributes both to the most mature technologies and the promising EP concepts that could
disrupt the propulsion sector.

1.2 Electric propulsion challenges

Several challenges are currently tackled in the EP industry. The most prominent are listed
by Samukawa et al. [16]:

1. Performance improvement: efficiency, lifetime, and cost-effectiveness. Lifetime is an impor-
tant issue and is limited by electrode or wall erosion. The lifetime of an electric thruster
must be larger than 10 000 h of (reliable) operation.

2. Design of more versatile thrusters, i.e. able to operate at different combinations of thrust
and propellant velocity.

3. Extension of the domain of operation to lower power (µN to 10 mN thrust range) for
microsatellites or accurate attitude control.

4. Extension to higher power for orbit raising of telecommunication satellites (several tens
of kW) and interplanetary missions (100 kW and more).

5. Extension of EP to low-altitude spacecraft: there is an increasing interest in civilian and
military satellites flying at altitudes around 100 km where the drag is significant and must
be continuously compensated.

HET technology has the potential to answer many of these challenges. For instance, the
lifetime issue can be addressed with wall-less and magnetically shielded configurations. Versatility
is tackled with dual-mode HET configuration [9], low power thruster is attained with µ-thrusters
[17], and so forth. However, the development of HETs is slow and expensive. A better physical
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understanding of the processes governing HETs is needed in order to reduce the cost and
development times. This is the objective of the current collaboration between Safran Aircraft
Engines and Laboratoire de Physique des Plasmas (LPP).

1.3 Hall Effect Thruster research and development

Safran Aircraft Engines has been collaborating with LPP since 2014, starting with the Ph.D.
thesis of Viven Croes [5]. During these first three years, a 2 dimensions (2D) Particle In Cell (PIC)
code has been developed simulating the radial and azimuthal directions of a HET. Azimuthal
instabilities have been observed in Croes et al. [18], and the effects of alternative propellants
have been investigated in Croes et al. [19].

From this fruitful collaboration, an ANR (Agence National de la Recherche) industrial chair
Poseidon for "future Plasma thrusters for lOw earth orbit SatEllIte propulsiON systems",
Grant No. ANR-16-CHIN-0003-01, has been created. Its objective is to develop novel methods to
reduce the development time and cost of the next EP systems. Both experiments and simulations
are being worked on to unlock the barriers of HET development. The Poseidon chair is
linked to the current development of a low power HET at Safran, the PPS®X00, which nominal
operating point is of the order of 600W. The scientific part of the chair is led by LPP, while an
unstructured 3D simulation code is developed by the CERFACS, in Toulouse. Safran leads the
technical development and experimental investigation.

At the beginning of my thesis, I participated in the development of a Laboratory Model (ML)
of the PPS®X00. The objectives of the PPS®X00-ML is to represent the physics of the PPS®X00
while allowing parametric studies of the main parameters of a HET, such as the geometry, the
magnetic field topology, or the wall material. The PPS®X00-ML has successfully shown its
usefulness, as the first tests allow to obtain state of the art performances [11]. My work at
Safran showed us that the development of HET is still currently driven by experiments because
numerical tools are not yet predictive. Simulations can be helpful to engineers to obtain some
insights on the thruster behavior, but cannot be used with confidence for development. On the
other hand, experiments are costly and time-consuming. They also are prone to delays in the
conception schedule, and reduce innovation as designers take fewer risks.

The lack of numerical tools comes from some physical phenomena that need to be better
understood, even though HET has been studied and used for more than 40 years. These critical
phenomena are [16, 20]

— the electron transport,
— the plasma-surface interaction,
— the wall erosion,
— the nature of the propellant.

The objective of my thesis in the context of the Poseidon chair was to study the two first
points – the plasma wall interaction and the electron mobility – and how they can influence each
other. I also studied the wall erosion, but this work is classified, and will not be disclosed in this
manuscript.

The propellant’s nature impacts mainly two things: the ion mass and the ionization energy.
Because of its high mass and low ionization energy, xenon has been used since the beginning of
HET. However, it is very costly, as it is mostly extracted from air with cryogenic distillation. The
atmosphere is composed on average of 9×10−6% of xenon [21]. The cheaper, but less effective,
propellant of choice is krypton, which has recently started to be used. Iodine could also be
interesting, as it can be stored at room temperature in a solid state. However, iodine is not a
noble gas so it presents a more complex plasma chemistry, with for instance the presence of
negative ions. The impact of the propellant mass and chemistry is not yet clear and slows down
the use of alternative propellants on already designed systems. Preliminary works concerning
the impact of the propellant nature on the accelerating region have been conducted during my
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Ph.D. [19], but it is not the subject of this thesis.

1.4 Presentation of the Hall Effect Thruster

The HET is an electrostatic electrical propulsion system accelerating ions by the mean of an
imposed voltage difference. Figure 1.4 shows a picture of the front view of an HET switched on
and off. We can see the plasma in the annular plasma chamber.

Figure 1.4 – Front view of an HET, the BHT-1500 from Busek, USA, switched on (left) and
off (right). The cathode is located at the center.

We can summarize the HET design into four parts:

1. The annular chamber.

2. The injecting anode

3. The cathode

4. The magnetic circuit

Figure 1.5 presents a schematic cut of the HET along its axial and radial directions.

The chamber has an annular shape. It is closed at the anode side and kept open at the other
side. The axial length of the chamber is between 1 and 3 cm ; the radial width of the chamber
is between 1 and 2 cm, and its mean radius is of the order of 5 cm. The walls are usually made
out of ceramic, such as the Boron Nitride-Silicon Dioxide (BNSiO2). The material needs to be
resistant to erosion by ion impact sputtering. But changing the material is also known to affect
the behavior of the discharge. The usually supposed phenomenon for this impact is the secondary
electron emission yield that is a function of the material nature. For materials used in HET, this
yield may be higher than one.
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1.4.2 Instabilities present in the Hall Effect Thruster

The HETs are subject to numerous plasma oscillations, over a broad range of frequencies
[24, 25]. The most important ones are:

1. Low frequency (10-20 kHz) ionization oscillations, usually referred to as breathing mode,

2. Azimuthal low frequency rotating spokes, also in the kHz range,

3. Axial ion transit time oscillations, of the order of 100-500 kHz,

4. Azimuthal fast oscillations, with frequencies of the order of the ion plasma frequency.

1. Breathing mode
The breathing mode is relatively understood [26, 27, 28]. Indeed, a simple predator-prey model

of two equations is enough to obtain the observed behavior qualitatively. It is related to the
idea that when the ionization is important, the neutral atom density decreases, reducing the
ionization. Hence, the plasma density decreases, allowing the neutral density to rise again until
the ionization grows up again.

2. Rotating spokes
Experimental measurements with segmented anode [29, 30] seem to indicate that rotating

spokes are present in the anode region. Their physical origins are less understood, as they were
first attributed to ionization [31] but were later related to Simon-Hoh instability, and they were
observed in PIC simulations even with neglecting ionization [32]. However, in recent experiments,
the presence of spokes did not seem to affect the HET performances [24].

3. Transit time instability
Transit time instability has been predicted and observed in analytical and numerical models,

respectively [33, 8]. Experimental studies of these instabilities are rather scarce, and it is only
recently that time-resolved Laser-Induced Fluorescence measurements of the local ion velocity
distribution function have confirmed the presence of this instability in a Hall thruster [34]. This
oscillation could reduce the performance of the thruster by increasing the overlap between the
acceleration and ionization regions [8].

4. High-frequency azimuthal oscillations
These oscillations were first observed in PIC simulations [35, 36, 37, 38] before being witnessed

by electron Thomson scattering [39, 40, 41]. They are essential, as they enhance the electron
transport in the axial direction [35, 4]. They are further described in the next section.

1.5 Scientific challenges of the Hall Effect Thruster

The scientific challenges are the critical phenomena that are currently not understood enough
and prevent the industrial development of HETs. As introduced before, in this Ph.D. manuscript,
we focus on two of them : the electron transport and the plasma-wall interaction.
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1.5.1 Electron drift and azimuthal instability in the Hall Effect Thruster

The axial electric field Ez and the radial magnetic field Br induces an azimuthal E × B drift
of the electrons. The drift velocity vd,ExB is

vd,ExB =

∣

∣

∣

∣

E × B

B2

∣

∣

∣

∣

=
Ez

Br
∼ 1.5×106 m/s (1.5)

Because of their large mass, the ions are not significantly affected by the magnetic field. Hence
they do not drift azimuthally. As a consequence, there is a significant difference between the
movement of electrons and ions in the azimuthal direction.

This drift of electrons relative to the ions leads to instability in the azimuthal directions, so
some authors refer to this instability as E × B Electron Drift Instability (EDI). However, as the
drift is perpendicular to the magnetic field, it is subject to the cyclotron resonances. Therefore,
in this thesis we use the more accurate name of Electron Cyclotron Drift Instability (ECDI).
But it should be noted that both terms refer to the same physical phenomena.

The nature of the ECDI remains unclear[8], as the ECDI characteristics are very close to
usual Ion Acoustic Wave (IAW), and that experimental measurements are challenging to conduct
in the range of parameter of interest. Hence, the community is still arguing about the actual
nature of the observed wave. A part of the work undertaken during my thesis focuses on the study
and characterization of the instabilities observed in the kinetic simulations. These instabilities
are treated in Chapter 3.

1.5.2 Cross-field transport of the electrons

As a first approximation, electrons are usually assumed to be frozen by the magnetic field
and rotate only in the azimuthal direction due to the drift E × B. But in fact, they present a
so-called cross-field transport toward the anode in the axial direction. For instance because of
collisions, the electrons can jump from one magnetic line to another. This leads to a transport
in the direction of the electric field. This transport can be expressed considering the electron
momentum conservation equation [4]:

∂t(menevde) + ∇ · (menevdevde) =qene(E + vde × B) (Lorentz force)

− ∇ · Πe (pressure gradient)

− meνmnevde, (collisions)

where me, qe, ne, vde, and Πe are the electron mass, charge, density, drift velocity and pressure
tensor, and νm is the electron-neutral momentum transfer collision frequency. Ignoring the
electron inertia and the pressure term, and with B = B0er, we can write the conservation
equation projected on the axial and azimuthal direction







0 = neEz − nevdeθBr − me

qe
νmnevdez

0 = neEθ − nevdezBr − me

qe
νmnevdeθ

(1.6)

Assuming that there is no electric field in the azimuthal direction because of the azimuthal
periodicity (Eθ = 0), we can combine the two equations of Eq. (1.6) to obtain the mobility
[42, 43]

µclassical ≡ nevdez

neEz
=

|q|
mνm

1 + ω2
ce

ν2
m

(1.7)

with ωce = |q|B0

m the cyclotron frequency. At the exit plane, the classical mobility predicts a

mobility of the order of µclassical = 0.001 − 0.01 m2(Vs)−1 [37]. However, it has been observed in
experiments by Meezan et al. [43] that the electron cross-field transport in the axial direction of
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the HET is higher than µclassical. Two phenomena are supposed to be mainly responsible for this
enhanced anomalous mobility [5]: the azimuthal instability and the near-wall mobility due to
electron emission. A significant part of the work of this Ph.D. thesis focuses on the quantitative
comparison of the relative importance of the two phenomena.

The mobility induced by the azimuthal instability has first been observed in PIC simulations
by Adam et al. [35], since then, it has been reproduced several times [37, 38, 4, 5, 8, 44]. The
kinetic approach allowed Lafleur et al. [4] to propose a modified mobility due to the oscillations of
the electron density and the azimuthal electric field of the ECDI. This effective mobility obtained
is

µeff = µclassical

(

1 − ωce

νm

< δneδEθ >θ

n0Ez

)

(1.8)

with δne and δEθ the fluctuations in the azimuthal directions of the electron density and azimuthal
electric field, respectively, the operator < . >θ is the average in the azimuthal direction, and n0

is the average plasma density. In the case where νm << ωce, Eq. (1.8) can be simplified to

µeff =
e

me
νm

ω2
ce

(

1 − ωce

νm

< δneδEθ >θ

n0Ez

)

=
< δneδEθ >θ

n0Ez

1

Br
(1.9)

which shows that the instability enhances the electron axial mobility in a way similar to an E ×B
drift. The electric field Eθ oscillates and has a zero mean value, but the average effect on the
electron transport is not zero if the correlation between δEθ and δne is not zero.

The amplitude of the instability at steady-state depends on the saturation mechanisms and
the convection of the wave. Studies have been undertaken very recently but more work is still
needed to derive expressions of the effective cross-field mobility that could be used in fluid
models [24]. Another approach has been recently proposed by Jorns [45]. The author compared
the experimental measurements of four different HET with a radial-axial fluid code, Hall2De.
Following a data-driven approach, the author proposes five models of enhanced mobility. These
models uses local plasma characteristics, such as the ion sound speed cs, the ion velocity ui, the
electron velocity ue, and the Debye length λDe. Unfortunately, the experimental dataset is sparse,
hence the domain of validity of this model is difficult to estimate. More precisely, the four HET
used operate between 1 and 6 kW, thus the model may not be usable for smaller thruster.

The other mechanism enhancing the electron mobility is the secondary electron emission,
responsible for a near-wall conductivity [46, 47, 6]. The coupling between the instability and the
electron emission has first been studied in Héron and Adam [38], but the mechanism is still not
clearly understood. Consequently, a better understanding of the electron cross-field mobility, the
azimuthal instability, and the secondary electron emission is required before being able to model
realistically the HET.

1.5.3 Plasma-wall interaction and secondary electron emission

Ceramic walls close the chamber in the radial directions. It has been observed in experiments
that the nature of the wall can significantly affect the discharge behavior [48]. The primary
phenomenon held responsible for this observation is the electron emission. As usually observed
in bounded plasmas, a floating sheath forms between the plasma and the dielectric wall. The
sheath confines the electrons in the plasma and accelerates the ions toward the walls. This allows
to obtain a flux of electrons equal to the flux of ions, resulting in charge conservation in the
plasma, and a neutral flux, also named zero-net current, to the surfaces.

Due to the relatively high electron energy, the impact of a primary electron can lead to the
emission of secondary electrons [6, 49]. The probability of Secondary Electron Emission (SEE)
depends on the electron impact characteristics (energy, angle) but also of the material: some
materials are emitting more than others [48]. Ion induced secondary electron emission is much less
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likely to happen at the range of energy impact [50], thus it is neglected compared to the electron
induced SEE. In addition to the near-wall conductivity discussed previously, these secondary
electrons are accelerated toward the plasma by the sheath. Thus they modify the plasma and
the sheath properties. Their impact on the electron temperature also affects the ionization rate,
which is directly linked to the thruster efficiency.

Raitses et al. [51] have observed that the current models of plasma-wall interactions with
secondary electron emission cannot reproduce the electron temperature measured experimentally.
Kinetic effects have been proposed by Sydorenko et al. [52] to explain this discrepancy between the
models and the experiments. This could explain the differences between the kinetic simulations
results and the global models in Croes [5].

In addition to SEE, the ion impact energy is large enough to erode the walls by sputtering.
This erosion is sufficient to be the main limitation of the lifetime of the HETs. While most aspects
of the erosion are well understood, we observe the apparition of patterns with a typical scale of
the order of the millimeter on the eroded surfaces. The origin and the possible implications of
these erosion striations remain open questions.

1.5.4 Three-dimensional physics of the Hall Effect Thruster

The physics governing the HET is three dimensional:

1. The plasma is accelerated in the axial direction by the electric field, and it is observed
experimentally that the axial profile of the magnetic field is responsible for the performance
of the thruster.

2. The chamber walls close the radial dimension. The walls are responsible for most of the
plasma losses, both on the particle and energy balances.

3. The electrons drift in the azimuthal direction, leading to strong instabilities that affect
the axial transport.

Consequently, when modeling or simulating a HET, if one of the direction is not included,
some of the physics will be missing:

— No axial direction: the ionization or the acceleration, as well as the plasma transport, are
missing,

— No radial direction: the wall losses and interactions are missing,
— No azimuthal direction: the instability is missing. Hence the electron cross-field transport

is not well represented.
While 3D-simulations have recently been proposed, they use scaling laws to simulate the

system in a reasonable amount of time[53]. For instance, a reduced geometry is used in Taccogna
and Minelli [54], or a reduced density is used in Fubiani et al. [55]. A 3D simulation at real scale
is not yet accessible. Hence, we need to be able to rely on 1D or 2D simulations. Consequently,
we have to take into account the missing physics or include a model of its effects on the system.

1.6 Introduction to plasma models and simulations

1.6.1 Describing the plasma

Depending on the pressure, energy, and time scale, different models are more suitable to
describe the plasma. There are mainly two distinct models. The first is the kinetic description
of the species of the plasma, via the Boltzmann equation. The second uses a fluid description of
the species, by means of moments.
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Boltzmann equation
The Boltzmann equation in Eq. (1.10) describes the evolution of the particles (atoms, ions,

and electrons) in the phase space. The phase space is the set of each possible position x and
velocity v that can be attained by a particle. The evolutions in the phase space are due to forces,
diffusion, and collisions.

∂f

∂t
+ v · ∇x f + F · ∇v f =

∂f

∂t

∣

∣

∣

∣

coll

(1.10)

where f is the distribution function of the particle at x, v, and ∂f
∂t |coll denotes the effects of the

collisions, ∇ is the gradient in both the positions (subscript x) and the velocities (subscript v)
and F is the force applied to the particle. In the general electromagnetic case,

F = qE + qv × B

with q the particle charge, E the electric field, and B the magnetic field. The solution function
of the stationary Boltzmann equation without collision, also known as the stationary Vlasov
equation, is

f(v) = N(
m

2πkBT
)3/2 exp

(

−qφ + mv2/2

kBT

)

, (1.11)

with kB the Boltzmann constant, T is the temperature of the particle population, and φ is
the electric potential, defined as E = − ∇ φ, and N is the density at the position where φ = 0.
Eq. (1.11) is the Maxwell-Boltzmann distribution function in velocity. The unit of the temperature
T is the Kelvin, but in plasma physics, it is usual to use T, defined as

eT = kBT. (1.12)

The unit of T is therefore the Volt. The equivalence is 1 V ≃ 104 K. 1 We can write Eq. (1.11)
with the particle kinetic energy ǫ = 1

2mv2 to define the energy distribution function

fǫ(ǫ) = N
2
√

ǫ

kBT 3/2√
π

exp

(

−qφ + ǫ

kBT

)

. (1.13)

The factor
√

ǫ in Eq. (1.13) appears because of the integration of the velocity distribution function
f over the three directions. Thus, it is convenient to use the energy probability function

fP (ǫ) =
fǫ√

ǫ
. (1.14)

We name the Maxwellian distribution function the distribution

fM(v) = n

(

m

2πkBT

)3/2

exp

(

−mv2/2

kBT

)

, (1.15)

with n the density. One can show that the Maxwellian distribution function is the solution
of the Boltzmann equation with only elastic collisions [56]. In one dimension, the Maxwellian
distribution function becomes

fM,1D(v) = n

(

m

2πkBT

)1/2

exp

(

−mv2/2

kBT

)

, (1.16)

1. It is usual to find in the literature the temperature T expressed in electron-Volt (eV). This is not coherent
with the definition Eq. (1.12), but it highlights the fact that the temperature is related to an energy via kB .
Therefore, the reader needs not to be confused by the equivalence between the electron-Volt and the Volt.
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Fluid equations
The description of the plasma in 7 dimensions (3 of space, 3 of velocity, and one of time) can

make the resolution of the Boltzmann equation complicated. If the accurate description of f is
not needed, we can instead use the first moments of Eq. (1.10) on the velocity to obtain a set of
simpler equations.

The first equation is obtained by integrating Eq. (1.10) over the velocity space, which gives

∫∫∫

v

∂f

∂t
d3v +

∫∫∫

v
v · ∇x fd3v +

∫∫∫

v
F · ∇v fd3v =

∫∫∫

v

∂f

∂t

∣

∣

∣

∣

coll

⇐⇒ ∂n

∂t
+ ∇x · (un) + 0 = Siz (1.17)

where n =
∫∫∫

fd3v is the density, u = 1
n

∫∫∫

vfd3v is the mean velocity, and Siz is the source
term of particle due to ionization. Equation (1.17) is the continuity equation for a given species.
In a similar way, integrating the Boltzmann equation times the velocity or the kinetic energy
gives the momentum conservation equation or the energy conservation equation, respectively.
This set of equations is simpler, although it relies on additional hypotheses.

One of them is the closure of the system. Indeed, the continuity equation describes the
evolution of the density n but needs the mean velocity u. However, the velocity is described by
the momentum conservation equation that needs the temperature T , and so on. To close the
system, one has to make a hypothesis on the higher moment of the distribution function. A usual
closure is the isothermal hypothesis, that fixes the temperature. Hence, the energy conservation
equation is not needed. Other possible closures are the adiabatic hypothesis (no heat flux, the
3rd moment of f), the polytropic law linking the evolution of n with T , or the Fourier law for
heat diffusion.

It is important to note that the set of fluid equations can be written without making any
assumption on the distribution function f , except for the collisions. In this work, the temperature
is defined by the second moment of the distribution function

eT = kBT =
m

3n

∫∫∫

(v − u)2f(v)d3v. (1.18)

It happens that in the case of the Maxwell-Boltzmann distribution, the quantity defined by
Eq. (1.18) is the denominator of the argument of the exponential in Eq. (1.11). The integral in
Eq. (1.18) can be decomposed over the three directions x, y, and z as

eT = kBT =
m

3n

∑

i=x,y,z

∫∫∫

(vi − ui)
2f(v)d3v = kB

Tx + Ty + Tz

3
, (1.19)

which defines the directed temperatures. A distribution is said anisotropic if the three tempera-
tures differ.

1.6.2 Plasma simulation models

As there are two different models to describe the plasma, there are two different simulation
approaches: the fluid simulations and the kinetic simulations. The fluid simulations solve the
moments of the distribution function (the density, mean velocity, and usually the temperature of
the species), and the electromagnetic fields. Depending on the conditions, the system of equations
can be simplified before resolution. For instance, under the electrodynamic conditions, mainly
for space plasmas and fusion, the Maxwell equations are coupled to the fluid equations leading
to magnetohydrodynamics (MHD). In the case of electrostatic conditions, as it is usual for Low-
Temperature (LT) plasmas, the Poisson equation is coupled to the fluid equations. In most of
LT plasmas the plasma is quasi-neutral except in a limited near-wall region called the plasma
sheath. It is also common to neglect inertia terms and assume a steady-state in the momentum
equations, leading to the drift-diffusion approximation. The fluid equations can be solved in 3
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dimensions (3D), 2D, or 1 dimension (1D) for space. In a low dimension model, the effects of
the missing dimensions are usually included, for instance, in the source terms as done by Barral
et al. [6].

However, some phenomena can only be described via the knowledge of the distribution
function. An example of such phenomena is the particle-wave interaction, such as the Landau
Damping [57, 58], or the plasma-beam instability [59], for which the gradient of the distribution
function in the velocity space is important. In contrast to the fluid descriptions, kinetic simulations
solve the distribution function f for both position and velocities. Two approaches are usually
used for kinetic simulations:

— The Direct Kinetic (DK) model, that discretizes Eq. (1.10) in the full phase space.
— The Particle In Cell (PIC) model, which uses an ensemble of particles to discretize the

distribution function.
While the DK simulations use a Eulerian description of the distribution function, we can see the
PIC simulations as a Lagrangian approach. The DK simulations can theoretically better describe
the plasma, mostly because there is less numerical noise and we can model binary collisions
more easily, especially Coulomb collisions. On the other hand, PIC simulations are much simpler
to develop both on a mathematical and a computational perspective. For instance, the kinetic
effects of electron emission have been recently studied using DK simulation by Cagas et al. [60],
while it has been done since the last century in PIC simulations [61].

1.7 Problem statement and outline of the thesis

My thesis takes part of the collaboration between Safran Aircraft Engines and the Laboratory
of Plasma Physics, whose objective is to study the fundamental physics governing the HET, in
the prospect of accelerating the developments of the next generations of thrusters. I mainly
focused on the electron transport and the plasma-wall interaction, both aspects requiring the
use of kinetic tools.

Indeed, the electron transport is affected by instabilities that can only be described by kinetic
models [37, 4]. Furthermore, the plasma-wall interaction is also affected by kinetic effects, both
regarding the electron emission induced by electron impact [6, 62, 63] and the wall erosion by ion
impact sputtering. Relatively few highly parallelized simulation codes have been developed, that
could allow parametric studies. But the ever-increasing computational power available allows
larger simulations to be conducted. Thus, a significant part of my work involves the development
of a highly efficient PIC simulation code, with all of the technical difficulties related to it. The
simulation code is then used to proceed to several parametric studies, that I used to derive
reliable low-dimensional models that could be used to derive new engineering development tools.

In Chapter 2, we introduce LPPic , the primary simulation model used in this work, with
an emphasis on the axial convection of the particles and the plasma-wall interaction. Chapter 3
focus on the azimuthal instability observed in the simulation and compares it to the dispersion
relation. Chapter 4 presents the results of a parametric study investigating the wall effect. In
Chapters 5 and 6, we modify the sheath model in order to reproduce the PIC simulation results.
Chapter 5 focuses on a simplified 1D simulation to study the electron state law, while Chapter 6
continues the same model by including the secondary electron emission. While the majority of
the work studied the 2D radial and azimuthal simulation, we end by studying the radial direction
in a 2D axial and azimuthal simulation in Chapter 7.



Chapter 2

Particle-In-Cell simulations of HETs

This first chapter presents the basics of the Particle In Cell (PIC) - Monte Carlo Collision
(MCC) simulations, and the simulation code LPPic that is developed at Laboratoire de
Physique des Plasmas (LPP). Then the domain simulated is described, focusing on the wall
and the axial convection of particle models implemented. The essential theories and laws of
the plasma-wall interaction and electron cross-field transport are also given, preparing the
discussion of the simulation results in the next chapters.
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2.1 Elements of the 2D PIC-MCC simulations

2.1.1 The PIC simulations

The PIC simulation models particles moving freely on a grid. The grid is used to compute
the electric field, in the electrostatic approximation by solving the Poisson equation

∆φ = − ρ

ǫ0
(2.1)

where φ is the electric potential, ρ is the charge density, and ǫ0 the vacuum permittivity. If the
electrostatic approximation is not correct, one needs to solve the Maxwell equations.

The particles move following the Lorentz forces

m
∂v

∂t
= qE + qv × B (2.2)

with m and q, the particle mass and electric charge, respectively. The numerical particles followed
in the simulations correspond to qf physical particles, with

qf =
nV

Npc
(2.3)

with n the particle density, V the volume of a cell, and Npc the number of numerical particles in
a cell. A large enough number of particles is needed in order to obtain physical results. Indeed,
an insufficient number of particles leads to numerical heating [64]. Usually, a minimum of 100
particles per cell is used, but recent results seem to encourage to use more particles [65].

2.1.2 The Monte Carlo collisions

In PIC simulations, collisions between charged and neutral particles can be modeled by
binary collision, but this approach is computationally costly. Instead, a Monte-Carlo algorithm
can be used [66]. This approach is very efficient and allows scattering, momentum transfer, and
ionization to be consistently modeled. The propellant used in Hall Effect Thruster (HET) is
xenon (Xe). The cross-sections used for modeling Xe or other gases collisions are taken from
the LXCat database project [67, 68]. Unless otherwise stated, the elastic, inelastic scattering
and ionization reactions listed in Table 2.1 are used. The cross-section values are summarized in
Fig. 2.1.

In the context of this thesis, and except precised otherwise, the ‘PIC simulation’ refers to
the ‘PIC-MCC simulation’. In the case where no collision is modeled, we also call it ‘collisionless
simulation’.
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Table 2.1 – Reactions for xenon used in the PIC simulations

Reaction Threshold Reference

Elastic scattering

e + Xe = e + Xe – [2, 3]

Excitation

e + Xe = e + Xe∗ 8.315eV [2, 3]

e + Xe = e + Xe∗ 9.447eV [2, 3]

e + Xe = e + Xe∗ 9.917eV [2, 3]

e + Xe = e + Xe∗ 11.7eV [2, 3]

Ionization

e + Xe = e + Xe+ 12.13eV [2, 3]

2.2 Numerical implementation of the Particle in cell simula-

tion

LPPic is an explicit electrostatic PIC-MCC simulation code. Every time-step, the simulation
loop presented in Fig. 2.2 is computed. The different steps constituting the PIC-loop are described
in the next subsections.

2.2.1 Numerical characteristics

In PIC simulations, there are two kinds of data used:

— Particles (electrons and ions ; neutrals can be followed as well but not in the version of
LPPic I have used for my Ph.D.),

— Mesh, also named fields (densities, electric and magnetic fields, and so on).

Particles
For each particle, its position x and its velocity v are known. In most PIC-MCC simulations,

the three directions of the velocity vector are followed in order to take into account scattering.
It is abbreviated as 3V. The particle positions and velocity are not discretized, except to the
numerical floating-point precision.

One numerical particle represents a large number of physical particles. Therefore they can be
called superparticle or macroparticle in the literature. We will simply call them particle, unless
the context requires clarification.

Fields
The fields are defined at the center of each cell of the mesh. The charge density ρ is computed

by depositing the particle on the mesh, using the Cloud-in-cell model [69]. The electric field at
the position of the particle is also obtained by bilinear interpolation. The mesh dimension defines
the dimension of the simulation. It is usual to find 1D3V or 2D3V PIC simulations, for particles
with 3 directions on the velocity but one or two dimension(s) in space, respectively.

Early studies on the stability of the PIC simulations gave conditions for the cell size and the
time step as functions of the physical parameters [69, 70]

∆tωpe ≤ 0.2, (2.4)

∆x ≤ 0.5λDe, (2.5)
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Magnetized particles For magnetized particles, we use a modification of the leapfrog algo-
rithm proposed by Boris [72]. It corresponds to an operator splitting between the electrostatic
acceleration and the magnetic rotation. This splitting is described below:

1. accelerate the particle during ∆t
2 : vt− ∆t

2 = vt−1 + q
mE∆t

2

2. rotate the particle velocity with the magnetic field

3. accelerate the particle during ∆t
2 : vt = vt− ∆t

2 + q
mE∆t

2

It is important to note that the leapfrog and the Boris schemes induce a shift of ∆t
2 between the

position and the velocity[69], as illustrated in Fig. 2.3. This shift can lead to erroneous diagnostics
when computing moments of the particles distribution. For instance, the mean velocity of a set
of N particles at time t is computed as:

vt =
1

N

N
∑

i

(

vi
t +

q

m
Ei

∆t

2

)

. (2.11)

Other moments like the mean energy or heat flux follow the same correction. We can see that
the error between v defined above and

ṽ =
1

N

N
∑

i

vi
t

is

v − ṽ =
q∆t

2m

1

N

N
∑

i

Ei.

Hence, the error in the diagnostic is larger in the region of large electric field (as in the sheaths).

Figure 2.3 – Illustration of the shift between the particle velocity and position due to the
leapfrog scheme Eqs. (2.9) and (2.10).

2.2.4 Poisson equation solver

In order to compute the electric field due to the particle charge density, the Poisson equation
Eq. (2.1) needs to be discretized over the mesh. We can directly discretize the differential operator
by using the finite volume approach over a cell of the mesh. The formal discretization is developed
in Section 2.4, for the particular case of taking into account the presence of dielectric boundaries.

In 1 dimension (1D), the obtained linear system is tridiagonal. It can be solved directly using
Thomas’ algorithm, which stores the Gauss elimination’s coefficient. In 2 dimensions (2D),
the linear system is pentadiagonal. A direct solver, like the LU decomposition, would require
a large amount of memory to store the factorization matrices. On the other hand, as the time
step is usually small in PIC simulation, we expect the plasma potential φ not to change rapidly.
Hence, an iterative solver using the previous solution as an initial guess seems more reasonable
from both the memory storage and the computational time. The choice of the Poisson solver is
discussed later in Section 2.10.
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2.3 Bidimensional simulation of an HET

We are interested in studying the azimuthal instabilities and the induced electron transport
in the axial direction. In addition, we want to study the plasma-wall interactions. As realistic 3
dimensions (3D) simulations are not yet achievable, we choose to simulate the radial-azimuthal
plane. The axial location where the electron drift is the highest is close to the exit plane, where
the axial electric field is the highest. Hence, we choose this location to be simulated. In this
section, we describe the characteristics of the radial-azimuthal simulation.

2.3.1 Neglecting curvature

The Electron Cyclotron Drift Instability (ECDI) features oscillations of short wavelength of
the order of the mm. Hence, neglecting the curvature of the channel is expected not to change
the ECDI characteristics while improving the simulation performances.

In Héron and Adam [38], the authors have performed a 2D PIC simulation including the
channel curvature. They have observed a small difference between the inner and the outer walls.
In Domínguez-Vázquez et al. [73], the authors studied the effect of the curvature using a 1D radial
model. They have shown asymmetries due to the combination of the geometric expansion, the
magnetic mirror effect, and the centrifugal force. However, the global behavior of the discharge
is not affected compared to simulations without the curvature model. Hence, in order to simplify
the analogy, we choose to neglect the curvature.

Consequently, we can use a Cartesian mesh (also called a rectangular mesh). In spite of this
Cartesion domain, we will continue to use the words ’azimuthal’ to characterize the y direction,
and ’radial’ for the x direction. The z component corresponds to the axial direction, normal to
the simulation domain.

2.3.2 Radial-azimuthal domain description

The azimuthal direction is closed using a periodic boundary condition for both the particles
and the fields. Consequently, when a particle crosses the azimuthal boundary, it is moved to the
other side of the domain. The plasma potential and the azimuthal electric field are continuous
in the azimuthal direction. The radial direction is closed by the walls. They can be grounded
metallic, or a dielectric boundary can be modeled. The physics related to the boundary conditions
of the walls are described and discussed in Section 2.4.

A constant and uniform magnetic field B0 is imposed in the radial direction. This does not
take into account the magnetic mirror effect, that has been shown to be important [74, 75, 73].
However, it cannot be modeled in the 2D Cartesian radial-azimuthal domain while conserving a
divergent-free magnetic field topology. A constant and uniform axial electric field E0 is imposed.
Figure 2.4 shows a schematic representation of the simulated domain, overlaid with the computed
azimuthal electric field Ey.

2.3.3 Particle balance

As the axial position simulated is the exit plane, the ionization is too low to balance the
particle losses to the wall (see Fig. 1.6 and 1.7). Instead, the ionization takes place upstream, and
the particles are convected downstream. In these conditions, two models can be used concerning
the particle losses at the walls:

— having a simulation that dies off, as done in Janhunen et al. [65],
— forcing an arbitrary ionization to occur in order to compensate the radial losses [73].

The second option is no self-consistent, but allows to obtain a steady-state and is supposed not to
affect the simulation significantly. Hence, we use this model to achieve a constant mean plasma
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2.4.1 Non-uniform mesh

In the dielectric layers, there is no particle nor charge. Hence, the numerical constraints on
the cell size are not applicable, and the cell size can be increased. In order to reduce the cell
size difference between two neighboring cells, we use an exponential growth of the cell size in
the radial direction. The cell size in the azimuthal direction ∆y is kept constant. The resulting
non-uniform mesh can be seen in Fig. 2.5.

2.4.2 Poisson equation discretization

The dielectric permittivity is ǫ = ǫRǫ0 with ǫR the relative permittivity of the dielectric. The
Poisson equation with a not-constant permittivity is

− ∇ · ǫ ∇ φ = ρ (2.14)

with ρ the charge density. We note D = ǫE = ǫ ∇ φ the electric flux. Figure 2.6 shows the
Cartesian decomposition of the 2D domain. The cell (i, j) has four direct neighbors:

— the east E in (i + 1, j)
— the west W in (i − 1, j)
— the north N in (i, j + 1)
— the south S in (i, j − 1)

The cell dimensions are ∆xi,j and ∆yi,j , and Ωi,j = ∆xi,j∆yi,j is the cell volume. As the mesh is
Cartesian, we have for a given j ∆xi,j = cst for all i. Hence, we note ∆xi,j = di and ∆yi,j = dj

The boundaries are noted Ss
i,j with s = E, W, N or S. We can see that SW

i,j = SE
i−1,j , and the

same goes for the other borders. We note Ci,j = SE
i,j ∪ SW

i,j ∪ SN
i,j ∪ SS

i,j the cell surface boundary.
The center of the cell is located at (i, j) and the borders are located at i ± 1/2 in the East-West
direction and j ± 1/2 in the North-South direction.

i i+1i-1

j+1

j

j-1

Figure 2.6 – Illustration of the Cartesian decomposition of the 2D domain

We start the discretization by positioning the plasma-dielectric interface on the surface
between two cells. This means that the permittivity ǫ = ǫ0ǫR is constant over a cell. In order to
discretize the Poisson equation, we integrate Eq. (2.14) over the cell volume

∫

Ωi,j

− ∇ · (ǫ ∇ φ)dv =

∫

Ωi,j

ρdv. (2.15)

Using Gauss (also known as Green-Ostrogradsky) theorem, we obtain

∮

Ci,j

(−ǫ ∇ φ) · ndS = Qtot = Ωi,j ρ̄, (2.16)
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with n the normal vector directed outward, Qtot is the total charge of the cell and ρ̄ is the mean
value of ρ in the cell. We can decompose the integration over the cell boundary with the four
surfaces Ss

i,j as
∮

Ci,j

(−ǫ ∇ φ) · ndS =
∑

k∈(E,W,N,S)

Sk
i,jDk

i,j · n (2.17)

with Dk
i,j the flux through the surface k of the cell (i, j).

Electric flux
Let us define the electric flux through the East border DE

i,j . We assume there is no surface

charge on SE . We can hence write the electric flux as

DE
i,j · n = ǫi,jE−

x,i+1/2,j (2.18)

= −ǫi,j

φi+1/2,j − φi,j

di/2
, (2.19)

with E−
x,i+1/2,j the electric field at the left of the border (respectively E+

x,i+1/2,j the electric field

on the right of the border. In Eq. (2.19), we used an off-center discretization of the electric field
E−

x,i+1/2,j . Using Gauss law, we have the jump relation between the electric fields on the left on
the right of the border

ǫi,jE−
x,i+1/2,j − ǫi+1,jE+

x,i+1/2,j = 0, (2.20)

we have

ǫi,j

φi+1/2,j − φi,j

di/2
= ǫi+1,j

φi+1,j − φi+1/2,j

di+1/2
. (2.21)

Hence

φi+1/2,j =
ǫi,jdi+1φi,j + ǫi+1,jdiφi+1,j

ǫi,jdi+1 + ǫi+1,jdi
, (2.22)

which corresponds to the usual discretization [5] when ǫ and di are both constant. Using Eq. (2.22)
in Eq. (2.18) we obtain

DE
i,j · n = 2

ǫi,jǫi+1,j

ǫi,jdi+1 + ǫi+1,jdi
(φi,j − φi+1,j) = 2ǫ0

ǫRi,jǫRi+1,j

ǫRi,jdi+1 + ǫRi+1,jdi
(φi,j − φi+1,j) (2.23)

We note QE
i,j ≡ 2

ǫi,jǫi+1,j

ǫi,jdi+1+ǫi+1,jdi
. Reproducing the same decomposition on the other borders,

we obtain

SE
i,jQE

i,jφi+1,j + SW
i,j QW

i,jφi−1,j + SN
i,jQN

i,jφi,j+1 + SS
i,jQS

i,jφi,j−1 − QC
i,jφi,j = −Ωi,j ¯ρi,j (2.24)

with







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





































QE
i,j = 2

ǫi,jǫi+1,j

ǫi,jdi+1 + ǫi+1,jdi

QW
i,j = QE

i−1,j

QN
i,j = 2

ǫi,jǫi,j+1

ǫi,jdj+1 + ǫi,j+1dj

QS
i,j = QN

i−1,j

QC
i,j = QE

i,jSE
i,j + QW

i,jSW
i,j + QN

i,jSN
i,j + QS

i,jSS
i,j

as well as SE
i,j = SW

i,j = didz, SN
i,j = SS

i,j = djdz et Ωi,j = djdidz. We observe that the evolution
of the relative permittivity and the cell size affects the coefficients to be used, but the system
remains symmetric as we have QS

i,j = QN
i−1,j and QW

i,j = QE
i−1,j .

A symmetric system is a linear system of equation A · X = B which matrix A is equal to its
transpose: A = AT . It allows reducing by a factor of two the memory needed to store the matrix.
It also allows to use algorithms exploiting this property. For instance, the eigenvalues are real-
valued, and the matrix factorization only need to store one factor using Cholesky decomposition,
which gives A = LLT with L a lower-triangular matrix.
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2.4.3 Including surfaces charges

Let us now consider the presence of surface charges on the surface SE
i,j . Gauss’s law now reads

− ǫi,jE−
x,i+1/2,j + ǫi+1,jE+

x,i+1/2,j = σE , (2.25)

with σE the surface charge on the surface. The surface charge is not taken into account when
computing the total charge in a cell. Using the same discretization as before, we obtain

ǫi,j

φi+1/2,j − φi,j

di/2
− ǫi+1,j

φi+1,j − φi+1/2,j

di+1/2
= σE (2.26)

so that

φi+1/2,j =
ǫi,jdi+1φi,j + ǫi+1,jdiφi+1,j

ǫi,jdi+1 + ǫi+1,jdi
+

1

2
σE didi+1

ǫi,jdi+1 + ǫi+1,jdi
(2.27)

hence

DE
i,j · n = 2

ǫi,jǫi+1,j

ǫi,jdi+1 + ǫi+1,jdi
(φi,j − φi+1,j) − σE ǫi,jdi+1

ǫi,jdi+1 + ǫi+1,jdi

We obtain the same relation as Eq. (2.23) updated by −σE ǫi,jdi+1

ǫi,jdi+1+ǫi+1,jdi

Hence, we finally obtain

SE
i,jQE

i,jφi+1,j+SW
i,j QW

i,jφi−1,j+SN
i,jQN

i,jφi,j+1+SS
i,jQS

i,jφi,j−1−QC
i,jφi,j = −Ωi,j ¯ρi,j+QW

σ σW (2.28)

with QW
σ = SW

i,j
ǫi,jdi−1

ǫi,jdi−1+ǫi−1,jdi
.

2.4.4 Verification of the Poisson solver

We verify the discretization by modeling a 1D capacitor. The length of system is L = 1 m.
The relative permittivity of the dielectric inside the capacitor (from x = 0.475 to 0.525 m) is set
to ǫR = 8, and a surface charge of σ = 8 nC.cm−2 is imposed on one side, and −8 nC.cm−2 on
the other side. The expected electric field in the capacitor using the infinite plane approximation
is E = σ/(ǫ0ǫR) = 1.15 kV.mm−1.

Figure 2.7 shows the electric field computed using the obtained decomposition We see that
we obtain the expected jump for the electric field due to the surface charge (∆E = 1.15 kV/m).
The difference with the theoretical value is due to the Dirichlet conditions φ = 0 used in x = 0
and x = 1 m.

2.4.5 Interface at the cell center

In the previous section, we supposed that the plasma-dielectric boundary was at the interface
between the cells. However, this means that the electric field close to the interface is unknown,
as it is defined at the cell center. Moreover, the Dirichlet condition for the potential is better
defined at the cell center, and for the sake of simplicity, changing the boundary conditions should
not change the particle domain. Hence, we chose to position the plasma-wall interface at the
center of the cell as shown in Figs. 2.5 and 2.8. This means that the permittivity is not constant
over a cell.

Because the wall boundaries are only in the radial direction, we consider only an interface in
the North-South direction. Figure 2.8 shows the domain decomposition. The decomposition is
the same as previously, except for the permittivity that can have two different values: one in the
North half-plane ǫR

n
,i,j and another in the South half plane ǫR

s
,i,j .

The discretization of the Poisson (Equation (2.17)) follows the same path as previously,
except that the electric flux in not constant anymore so that Eq. (2.17) becomes

∮

Ci,j

(−ǫ ∇ φ) · ndS =
∑

k∈(E,W,N,S)

Sk
i,j < Dk

i,j · n > . (2.29)
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As well as SE
i,j = SW

i,j = didz, SN
i,j = SS

i,j = djdz et Ωi,j = djdidz. Here, the system is no more
symmetric. However, we can assume that the only permittivity jump happens at the cell center,

so that ǫS
i,j = ǫN

i,j−1. Hence, QN
i,j = 2

ǫN
i,j

dj+1+dj
and the system is symmetric.

2.4.6 Surface charges for centered interface

In the case of centered plasma-wall interface, we have surface charges at the center of the
cell. Hence

∫

Ωi,j

ρdv = Ωi,j ρ̄ + SN
i,jσi,j . (2.33)

The surface charges behave like volume charges. Hence, we obtain

SE
i,jQE

i,jφi+1,j+SW
i,j QW

i,jφi−1,j+SN
i,jQN

i,jφi,j+1+SS
i,jQS

i,jφi,j−1−QC
i,jφi,j = −Ωi,j ¯ρi,j−SN

i,jσi,j (2.34)

The discretization obtained for the cell-centered plasma-wall interface is very similar to the
one obtained for the interface at the cell interface. However, it conserves the particle domain when
the dielectric layer is not modeled, and that Dirichlet conditions are applied, and the electric
field at the plasma-wall interface is better defined. Hence, the cell-centered interface will be used.

This decomposition has been validated with the same test than presented in Section 2.4.4.
We observed no difference between the two decompositions in term of precision.

2.4.7 Electric field computation

The resolution of the Poisson equation returns the value of the plasma potential φ at the cell
center. The electric field is computed by taking the first derivative of the potential at the cell
interface, as in Eq. (2.18),

E−
x,i+1/2,j = −ǫi,j

φi+1/2,j − φi,j

di/2
, (2.35)

with φi+1/2,j defined with Eq. (2.22). However, in order to have consistent data, the electric field
is also computed at the cell center by interpolation

Ex,i,j =
1

2

(

Ex,i−1/2,j + Ex,i+1/2,j

)

= −ǫi,j

φi+1/2,j − φi−i/2,j

di
. (2.36)

In the cells along to the plasma-wall interface, the effect of the surface charge must be taken
into account, as previously described.
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with C a constant that ensures that the periodical Boundary Conditions (BC) are respected.
The part of the electric field Eθ,0 corresponds to the unperturbed charge density ρ0 and Eθ,1

corresponds to the noisy charge density N (0, σstat). Hence, let us focus now on Eθ,1. We can
study Eθ,1 using two equivalent means: the Fourier Transform (FT) and the Brownian bridge.

Fourier Transform
Applying the FT on the equation

Eθ,1 =
1

ǫ0

∫ θ

0
N (0, σReinj)ds (2.43)

gives

FFT (Eθ,1

)

(k) =
1

ǫ0
FFT

(

∫ θ

0
N (0, σReinj)ds

)

(2.44)

=
1

ǫ0

N (µFT, σFT)

k
(2.45)

Equation (2.45) shows that Eθ,1 also follows a Gaussian distribution, but with a non-zero
mean value. It is also inversely proportional to the wave number k. Hence, when we increase the
azimuthal length, which means that small wave numbers can exist in the simulation domain, the
amplitude of Eθ,1 increases as well.

Brownian Bridge
Equation (2.43), combined with the BC, is the definition of the a Brownian bridge.

A Brownian bridge is a particular Brownian motion that reaches at a given distance the same
value as the initial value. Hence, we have [76]

E(Eθ,1) = 0,

var(Eθ,1) = σ2
Reinj

L2
θ

4

Hence, the increase of the azimuthal length increases the amplitude of Eθ,1.
We believe that when the amplitude of Eθ,1 is too large, it can trigger an unphysical oscillation.

The next section uses this conclusion in order to adapt the convection model.

2.5.5 Noiseless convection model

In the previous section, we have shown that the convection model induces a noise in the charge
density, that produces an azimuthal electric field which amplitude depends on the azimuthal
length.

We propose here a modified version of Lafleur’s convection model in order to remove the
noise in the charge density. The noiseless convection model follows the same algorithm as before,
but the azimuthal position of the particle created is not chosen uniformly as random, but instead
the new particle has the same position as the removed particle. Figure 2.14 shows a schematic
illustration of the noiseless convection algorithm applied on a particle.

We have implemented this modified convection model in the 2D radial and azimuthal simula-
tion. Figure 2.15 shows the time evolution of the azimuthal electric field at the center of the radial
dimension with and without the noiseless convection model. It presents the same conditions as
in Fig. 2.12.a and b. As previously, the convection stabilizes the growth of the instability to a
steady-state, but it does not affect the physics.

Figure 2.16 shows the time evolution of the azimuthal electric field at the center of the radial
dimension with the convection modeled using Lafleur’s model and the noiseless model with a
small azimuthal length. We can see that the two models give almost exactly the same results.
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Table 2.2 – Emission parameters for different materials, from Barral et al. [6].

Material ǫ∗ (V) σ0

BN-SiO2 53 0.45

Al2O3 18 0.57

SiC 43 0.69

Graphite 305 0.40

Since the model used describes both the reflected and true secondary electron emission, we
will use the general name electron emission to refer to the flux of electrons emitted by the walls
towards the plasma. In contrast, the electrons reaching the plasma are referred to as the primary
electrons.

2.7 Sheath model with electron emission

The floating sheath is the plasma response to the presence of an absorbing boundary. The
light electrons are quickly absorbed by the material. Hence, in order to balance the particles
fluxes, a non-neutral region appears between the plasma and the boundary.

The sheath model featuring SEE processes has been historically studied by Hobbs and Wesson
[81], but is still an active research topic nowadays [82]. The sheath is often considered to be
collisionless and isothermal, while the plasma is composed of hot Maxwellian electrons and cold
ions. A third population of electron-induced secondary electrons is also present in the sheath,
and the re-emission rate σ̄ is assumed to be constant. The sheath must ensure the charge balance,
hence

Γi = (1 − σ̄)Γe (2.52)

with Γi and Γe the ion and electron particle flux to the wall, respectively. The SEE process
modifies the potential drop in the sheath as [81]

∆φsheath = Te ln

(

(1 − σ̄)

√

mi

2πme

)

. (2.53)

Adding a pre-sheath drop of Te/2 [83], the total potential drop to the wall becomes

∆φ = ∆φsheath +
Te

2
= Te

(

1

2
+ ln

[

(1 − σ̄)

√

mi

2πme

])

(2.54)

We can see that Eq. (2.53) becomes negative for a critical value of the emission rate

σ̄max = 1 −
√

2πme

mi
≃ 0.985 for xenon. (2.55)

However, before that σ̄ reaches σ̄max, the model of Hobbs and Wesson [81] presents another
behavior against the hypotheses of Eq. (2.53), as the sheath becomes Space Charge Limited (SCL).
In the SCL conditions, the electron emission is so large that the electric field at the wall becomes
zero

∂φ

∂r

∣

∣

∣

∣

wall

= 0 (2.56)

In this case, the plasma potential drop to the wall for any ion mass is [81]

∆φSCL ≃ 1.02Te ≃ Te, (2.57)
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In the classical drift diffusion theory of the electron mobility transverse to a magnetic field
presented in Chapter 1 (Eq. (1.7)), the mobility is due to collisions is

µclassical =
e

me

νm

ν2
m + ω2

ce

(2.60)

with ωce = eB
me

the electron cyclotron frequency and νm the electron-neutral momentum transfer
collision frequency. In order to evaluate Eq. (2.60), νm is calculated in the PIC simulations at
every cell. The mobility induced by the instability when neglecting the collisions, as introduced
in Chapter 1 (Eq. (1.9)), is

µeff =
< δneδEθ >θ

n0Ez

1

Br
(2.61)

The correlation term < δneδEθ >θ can be computed in the PIC simulation at each radial position.
Using its radial profile, we will be able to determine where the instability enhances the most the
electron mobility.

In Lafleur et al. [85], the authors present the instability effect as an electron-ion friction force
Rei = −e < δneδEθ >θ. Under the assumption that the saturation of the instability is mainly
due to ion trapping, the electron-ion friction force can be simplified in the 2D geometry of the
simulation to

Rsat
ei =

e|∇ · (neTevi)|
4
√

6cs

≃ eneTevi,out

4
√

6csLz

(2.62)

where vi is the ion velocity, cs = (eTe/mi)
1/2 is the ion sound speed, and the spatial derivative

has been approximated across the axial simulation direction, with vi,out the ion outlet velocity

vi,out =

√

2eUz

mi
, (2.63)

with Uz = EzLz the total potential difference in the axial direction.
Using Eq. (2.62) in Eq. (1.9), we obtain the simplified expression of the effective mobility at

saturation

µsat
eff =

√

Te

Uz

4
√

3Br

. (2.64)

Equation (2.64) shows that for the radial and azimuthal 2D geometry being used here, the
enhanced mobility due to ECDI scales as the square-root of the electron temperature Te if the
simulation parameters are constant. However, it is not the case in general, as the saturation of
the instability can be also be due to convection, and there are axial gradients in the electron
temperature and plasma density as well.

We can note that µPIC, µeff and µclassical are defined at every position of the simulation, but
that µsat

eff can only be globally calculated.

2.9 Axial-azimuthal 2D PIC simulation

The radial and azimuthal simulation allows us to study the plasma-wall interaction coupled
with the self-consistent azimuthal instability. As previously mentioned, however, axial gradients
are missing (magnetic field, densities, temperatures, etc.) as well as the axial convection of the
wave and the particles. In order to study those phenomena, the axial and azimuthal simulation
domain is used [35, 86, 87, 8]. Figure 2.22 shows a schematic representation of this simulation
domain. In this configuration, the anode voltage is set to Ud, and the cathode is grounded.

A radial magnetic field is imposed, whose amplitude follows an axial profile such as in Fig. 1.6.
The axial electric field is self-consistently computed by solving the Poisson equation. In this
configuration, one needs to inject a flux of electrons Je,c corresponding to the contribution of
the cathode to sustain the plasma. While this configuration models the physics of the axial
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2.11 Conclusion

In order to study the plasma wall interaction in an HET, we developed a bi-dimensional
simulation code using PIC-MCC modeling. As the electrons drift azimuthally due to the E × B
configuration, the ECDI rises, enhancing the cross-field transport of the electron towards the
anode. The walls closing the chamber in the radial direction are also important for the discharge
behavior. Hence, in order to compare the interaction between these phenomena, we simulate the
radial-azimuthal domain. In my Ph.D., I have worked on the development of LPPic , the 2D-3V
PIC-MCC simulation code, concerning in the radial-azimuthal configuration

— the modeling of the axial convection, in order to model the energy losses and so attain a
steady-state,

— the modeling of the radial boundary with the dielectric layer included in the simulation
domain.

We also adapted LPPic to simulation the axial-azimuthal domain, that is presented in more
detailed in Chapter 7. The performances of the code are good, with 90% of the calculation
parallelized, and an important effort as been made concerning the validation and verification.



Chapter 3

Evolution of the azimuthal instability and

generalized dispersion relation (DR)

As briefly mentioned previously, the E × B configuration of the Hall Effect Thruster (HET)
gives rise to azimuthal instabilities. These instabilities are important for the behavior of the
HET, as they are responsible for the electron cross-field transport. Even if these instabilities
have been the subject of numerous studies, they are still not well understood. Using the Particle
In Cell (PIC) simulations, we propose new insights for the understanding of the instability. In
particular, we develop a dispersion relation solver that uses the velocity distribution function
measured in the simulations. Then, we compare the simulation instability characteristics
with the dispersion relations. A special care is taken with the boundary condition and the
instability non-linear saturation.

Contents

3.1 Instability in the 2D radial-azimuthal PIC simulations . . . . . . . . 48

3.1.1 Introduction and state of the art . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Overview of the 2D simulation . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 General characteristics of the azimuthal instability . . . . . . . . . . . . 50

3.1.4 Energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.5 Temporal evolution of the oscillation amplitude . . . . . . . . . . . . . . 52

3.2 Dispersion relation of the instabilities . . . . . . . . . . . . . . . . . . 55

3.2.1 General dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Modified Ion Acoustic Wave . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Solving the kinetic DR for general distribution functions . . . . . . 58

3.3.1 Numerical determination of ǫ̂ . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Finding the root of ǫ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Use of analytic distribution functions . . . . . . . . . . . . . . . . . . . . 60

3.4 Comparison of the DR with the PIC simulations . . . . . . . . . . . 63

3.4.1 Temporal evolution of the distribution functions in the PIC simulation . 63

3.4.2 Resolution of the electron cyclotron drift instability . . . . . . . . . . . 66

3.4.3 Resolution of the ion acoustic wave dispersion relation . . . . . . . . . . 69

3.5 Discussion on the radial wavenumber . . . . . . . . . . . . . . . . . . 72

3.5.1 Radial profile of the oscillation . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Impact of the radial wavenumber on the DR . . . . . . . . . . . . . . . 74

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



48 CHAPTER 3. EVOLUTION OF THE INSTABILITY AND GENERAL DR

3.1 Instability in the 2D radial-azimuthal PIC simulations

3.1.1 Introduction and state of the art

The presence of azimuthal instabilities in the Hall effect thrusters has first been shown with
numerical simulations by Adam et al. [35]. Then, they have been the subject of numerous studies,
especially numerical [36, 85, 4, 5, 19, 65, 44], but also experimental [96, 97, 98]. However, their
nature remains unclear [8]. Viven Croes studied the azimuthal instability in a bi-dimensional (2D)
radial-azimuthal simulation domain of radial length LR = 2 cm and azimuthal length Lθ = 0.5 cm,
with the model of particle convection proposed by Lafleur [5, 19]. He showed that the saturation of
the oscillations was due to ion-wave trapping. Using a parametric study over the plasma density
and the ion mass, he observed that the main oscillation is consistent with the characteristics of
the Ion Acoustic Wave (IAW).

During the three years of my Ph.D., other groups presented new simulation results in similar
radial-azimuthal geometries. Hara [99] presented kinetic simulation results on a two-dimensional
domain, of size similar to the case studied here. However, that work was focused on the electron
mobility values, and little information on the instability is given. In Janhunen et al. [65], the
authors presented a collisionless highly resolved 2D PIC simulation. No convection and no
compensation model for radial losses are used, hence the electron energy quickly rises and the
density decreases. On the other hand, the domain is bigger, with a radial length of Lr = 53.8 mm
for an azimuthal length of Lθ = 13.45 mm. Three cells by Debye length are used, while there are
on average 800 particles per cell. Under these conditions, the instability rises, but a large radial
structure, named Modified Two Stream Instability (MTSI), of radial wavelength twice as big
as Lr is observed. The simulation parameters of Taccogna et al. [44] are similar to the results
presented here, with Lr = 15 mm and Lθ = 12.5 mm. The results are qualitatively similar to the
others, however the authors also observed radial structures, but this time with a wavelength of
a third of Lr.

We can see that the results obtained with similar configurations differ significantly, meaning
that some points needs to be clarified. In Section 3.1, we present the oscillations observed in
the PIC simulations carried out with LPPic . After that, we derive the dispersion relation with
no hypothesis concerning the particle distribution functions in Section 3.2, and we present in
Section 3.3 a numerical algorithm that solves the dispersion relation using the distribution
function measured in the PIC simulations. The oscillations observed in the simulation are
compared in Section 3.4 to the results of the dispersion relation. To finish with, the impact of
the radial boundary condition is investigated in Section 3.5.

3.1.2 Overview of the 2D simulation

We present in this section the simulation conducted to study the azimuthal instability. The
parameters of the simulation are given in Table 3.1. The imposed axial electric field Ez and
the radial magnetic field Br are uniform in space and constant in time. The radial direction is
closed with the dielectric boundary condition of dielectric width Ldiel = 3 mm. No Secondary
Electron Emission (SEE) is modeled, and the convection is modeled with the new noiseless
model (see Section 2.5.5). The simulation is initialized with a uniform electron and ion density
ne = ni = 3×1017/m3, with an electron temperature Te = 10 V and an ion temperature
Ti = 0.025 V. The mean particle density is conserved by imposing an ionization which compensate
the particle losses at the wall a each time step.

Figure 3.1 shows the radial profile of the electron and ion densities, as well as the plasma
potential, at the end of the simulation, averaged azimuthally and in time between t = 4 and 7µs.
The results are averaged azimuthally and in time over the 3 last microseconds. We can observe
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[97] and compared to experimental measurements. In Lafleur et al. [85], the authors added the
ion drift velocity to the dispersion relation.

The Electron Cyclotron Drift Instability (ECDI) dispersion relation obtained presents re-
sonances at the cyclotron frequencies, which broadens when kr increased. The limit when kr

tends to large values is similar to an IAW. This limit is usually used, even if recently, 2D PIC
simulations with a larger domain observed radial structures in the oscillations [65, 99].

Lafleur et al. [87] removed the Maxwellian hypothesis by using directly the distribution
functions measured in the PIC simulations in the IAW dispersion relation. The authors showed
that the frequency of the oscillation is almost unperturbed, but the growth rate is significantly
reduced, even when the ions were still supposed Maxwellian [87, Fig. 8].

Here, we propose to continue the investigation by solving the dispersion relation numerically
with the electron and ion distribution function for both the IAW and the ECDI.

3.2.1 General dispersion relation

We follow the development presented in Ducrocq et al. [36], Cavalier [97], Lafleur et al. [85].
The plasma dielectric function is defined as

ǫ̂(k, ω) = 1 −
∑

s

χs(k, ω) (3.8)

where χs(k, ω) is the susceptibility of the species s. It is obtained by coupling the Poisson
equation with the particles description. The dispersion relation is obtained by setting ǫ̂(k, ω) = 0
and solving for k, ω.

For the unmagnetized ions, supposing a Maxwellian distribution, the susceptibility is

χi(k, ω) =
ω2

pi

k2v2
th,i

Z ′
(

ω − k · ui

kvth,i

)

(3.9)

where ωpi the ion plasma pulsation, k = |k| and ui is the mean velocity of the ions. The function
Z ′ is the derivative of the Fried and Conte function [104]

Z(η) =
1√
π

∫ ∞

−∞

exp (−t2)

t − η
dt. (3.10)

We use here the Fried and Conte function because of the Maxwellian hypothesis. Xie [105]
proposes a numerical algorithm to calculate the susceptibility for a general distribution function

Z(η, f) =

∫ ∞

−∞

f(t)

t − η
dt, (3.11)

with f the velocity distribution function to consider, normalized to one, centered, and of standard
deviation σ = 1/2. For the sake of brevity, the generalized dispersion function Z(η, f) is noted
Z(η), and the Fried and Conte function is noted ZM (η). The derivative of Z is

Z ′(η) =

∫ ∞

−∞

∂f(t)/∂t

t − η
dt, (3.12)

A general expression for the plasma dielectric function can be obtained for magnetized
electrons by making use of the method of characteristics and is given by

ǫ̂(k, ω) =1−
ω2

pi

k2v2
th,i

Z ′
(

ω − k · ui

kvth,i

)

+

1

k2λ2
De

[

1 +

(

ω − k · ue

kvth,e

) ∞
∑

n=−∞
e−βIn(β)Z

(

ω − k · ue − nωce

krvth,e

)]

,

(3.13)
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where In are the modified Bessel functions of the first kind, and

β =
(k2

θ + k2
z)b2

th,e

ω2
ce

(3.14)

Equation (3.13) is the dispersion relation for drifting magnetized electrons and unmagnetized
ions. It will be used to study the Electron Cyclotron Drift Instability (ECDI).

3.2.2 Modified Ion Acoustic Wave

The dispersion relation of Eq. (3.13) presents sharp resonances due to cyclotron resonances.
However, kinetic simulations in Janhunen et al. [65] and Taccogna et al. [44] have shown that
after some time (around t = 0.5µs and t = 3µs respectively) the resonances are no longer
present, with a progressive decrease of the higher harmonics and the first harmonics becoming
the most prominent. Without the resonances, the dispersion relation evolves to the nonmagnetic
ion-acoustic instability

ǫ̂(k, ω) =1−
ω2

pi

k2v2
th,i

Z ′
(

ω − k · ui

kvth,i

)

+

1

k2λ2
De

Z ′
(

ω − k · ue

kvth,e

)

,

(3.15)

Lafleur et al. [85] and Janhunen et al. [65] show that after some assumptions – mostly a
drifting Maxwellian distribution, cold ions, and a small electron drift velocity compared to thermal
speed – Eq. (3.15) can be solved to obtain

ω = ωr + iγ = k · ui ± kcs
√

1 + k2λ2
De

± i

√

πme

8mi

k · ue

(1 + k2λ2
De)3/2

. (3.16)

The above equation represents the analytic modified ion-acoustic dispersion relation. The wave-
number that corresponds to the maximum growth rate is [85]

kmax =
1√

2λDe

(3.17)

which gives, subtituted in Eq. (3.16)

ωmax = k · ui ± ωpi√
3

+ i

√

πme

54mi

ue

λDe
(3.18)

We can see that the growth rate is proportional to the electron drift velocity, and inversely
proportional to the Debye length.

However, one should note that there is no consensus on the transition to an IAW. It could be
attributed to non-linear resonance broadening, because the electron orbit is distorted, leading to
the loss of the phase relation between the electron and the wave [44]. The electron demagnetization
leads to a dispersion relation where the ions and the electrons have the same type of contribution.
But recently, Janhunen et al. [106] stated that the demagnetization condition due to nonlinear
resonance broadening is not fulfilled. Lafleur and Chabert [107] use the fact that in 2D simulations,
the finite minimum value for the radial wave vector is responsible for the ion acoustic dispersion
relation.
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Starting from a large rectangular domain, if N > 1, we divide the first domain into four
sub-domains, and we repeat recursively the algorithm. If N = 1, we can once again use an
integral on the contour to find the root [111].

This algorithm has been implemented in a python package and successfully tested. However,
it takes a significant amount of time to obtain the solutions, as ǫ̂ needs to be evaluated several
times during the integration. Moreover, we have observed that the dispersion relations Eqs. (3.13)
and (3.16) present only one solution with a positive growth rate. This solution, corresponding to
the instability, is isolated from the others as observed in Fig. 3.11. Hence, a simpler algorithm,
as the Gradient descent, can be used.

Fast root finding algorithm
A faster root finding algorithm is proposed to solve the dispersion relation by supposing that

the wave growing the most is the only root over a domain sufficiently large. In other words, it
is not close to other roots. Hence, we can use a standard minimization method for non-linear
equation. As the analytic expression of the Hessian or the gradient are unknown, we use the
Nelder-Mead method [112]. We also tried the Conjugate gradient method by approximating
the gradient using finite differences. However, even if this method converges in fewer steps, the
gradient estimation takes a significant amount of time. Powell’s method [113] has also been
implemented, but the Nelder-Mead method features the best performances.

The first guess of the iterative Nelder-Mead method is either
— the solution obtained for the previous value of k,
— the solution of the analytic ion acoustic wave dispersion relation (Eq. (3.16)).

In addition, we can see in Fig. 3.11 that the interesting root is far from the others in the complex
plane. Hence, a poor initial guess should not affect significantly the converged results, as long
as the step size is small enough. The results presented hereafter have been obtained using this
second faster algorithm.

3.3.3 Use of analytic distribution functions

Before using the electron and ion distribution functions measured in the PIC simulations, we
compare the dispersion relation for ECDI and IAW for different analytic distribution functions.

Ion acoustic wave
Figure 3.12 shows the comparison with the dispersion relation Eq. (3.15) for cold ions and

drifting Maxwellian electrons of temperature Te = 50 V and drift velocity ue = 2×106 m/s for
which the plasma dispersion function ZM is computed analytically (with the plasmapy package)
or numerically. The plasma density is ne = ni = 1×1017 /m3. The frequency and growth rate
obtained using the simplified dispersion relation of Eq. (3.16) is also shown.

We can see that the three approaches give almost the same solutions. The growth rates are all
overlapping, hence it is difficult to see the differences. For ωr, the simplified analytic expression
returns a slightly different result, but the difference is negligible. The numerical evaluation of
Z̃M gives the same result as the analytic evaluation.

Figure 3.13 shows the effect of a Druyvesteyn electron distribution compared to a Maxwellian.
We recall that a Druyvesteyn distribution follows the expression

fD(v) = v−1
th C2 exp

(

−C1
|v|4
v4

th

)

, (3.20)

where C1 ≃ Γ(3/4)2Γ(5/4)−2/4 ≃ 0.457 and C2 = Γ(3/4)1/2Γ(5/4)−3/22−3/2 ≃ 0.453 are
two normalizing constants, so that the density and the thermal velocity vth are consistent with
the Maxwellian distribution. The electron density used is ne = 1×1017 m−3 and the electron
temperature is Te = 50 V, the ion temperature is Ti = 0.1 V, and the drift velocity is ue =
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3.4 Comparison of the DR with the PIC simulations

In this section, we continue to analyze the simulation results described in Section 3.1. First, we
described in Section 3.4.1 the velocity distribution functions (VDF) measured in the simulation.
Then, we solve the relation dispersion with the measured VDFs, for both the ECDI (Eq. (3.13))
and the IAW waves (Eq. (3.15)), with the solved developed in Section 3.3.

3.4.1 Temporal evolution of the distribution functions in the PIC simula-

tion

To begin with, we visualize and comment the distribution functions measured in the PIC
simulation. Figure 3.16 shows at different times in the simulation the normalized electron azi-
muthal velocity distribution functions (the ion VDF is showed in Fig. 3.17). The velocities are
normalized by the electron thermal velocity. To help reading the figure, the theoretical electron
drift velocity ue = Ez

Br
, normalized to the electron thermal velocity is shown. The distributions

are averaged in time over 4 ns, and in space over all the azimuthal direction and over a small
length in the radial direction at the center of the channel, between r = 0.45 cm and r = 0.55 cm.

We can see in Fig. 3.16 that the electron mean velocity is always near the E ×B drift velocity,
which is of the order of one quarter of the electron thermal speed. The shape of the distribution
functions is slightly different from the Maxwellian distribution, with smaller maximum and a
wider distribution, similarly to a Druyvesteyn distribution.

Figure 3.17 shows at different times in the simulation the normalized ion azimuthal velocity
distribution functions. As in Fig. 3.16, the mean velocity is shows, and a Maxwellian distribution
of same density, mean velocity and temperature is shown.

At the beginning of the simulation the ions are Maxwellian with a zero mean velocity.
Starting from t = 0.8µs, the ions are dragged in the same direction as the electron drift. This
is characteristic of the ion-wave trapping [107]. Consequently, the ion distribution function is
significantly different from the Maxwellian. Indeed, because of the particle-wave interactions
a small population of high energy ions is generated. This leads to both an increase of the ion
temperature, and the formation of a drift velocity in the azimuthal direction. The high energy
ion population comes from ion-wave trapping, as we can see that their velocity is of the order of
the ion sound speed, which is close to the wave phase velocity [87]. We can see that the trapped
population is larger at t = 1.6µs compared to t = 2.44µs. This is consistent with the discussion
of Section 3.1.5, as we can see in Fig. 3.9 that at t = 1.4µs the ion temperature is large, and the
wave energy density ǫwave is large compared to the thermal energy density ǫth, while at t = 2.4µs
the ion temperature is small and we have 432ǫwave ≃ ǫth.

As both electron and ion velocity distribution functions are different from a drifting Max-
wellian, we will study the influence of both distributions in the calculations of the dispersion
relation.
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3.6 Conclusion

Azimuthal instabilities have been observed in the PIC simulations presented here, as well as
by several groups of the community [99, 65, 44]. As their nature remains unclear, we investigated
in this chapter the PIC simulation results in order to obtain more insights on their nature and
their behavior. The theoretical dispersion relations for the ECDI and the IAW have been used
in both their simplified and general forms. The general form of the dispersion relation uses
the particle velocity distribution function directly measured in the PIC simulations. The solver
develop and used used is presented in Section 3.3.

At the beginning, the resonances typical of the ECDI are observed. After about 0.7µs, they
disappear, evolving towards the IAW dispersion relation. However, we show that the evolution
from the ECDI to the IAW is not due to the larger radial wavenumber, as we observe no radial
pattern in the simulation. Instead, it might be due to non-linear resonance broadening and
electron demagnetization.

We also observed low frequency modulations of the amplitude of the instability. This oscilla-
tion is believed to be driven by the ion dynamic of the ion-wave trapping. Indeed, the oscillation
period is of the order of τ = 1.5µs, which is four times the ion bouncing period.

The oscillation of the growth rate is also observed with the dispersion relation when the ion
temperature is used and that ions are supposed Maxwellian. However, when the ion velocity
distribution function measured in the PIC simulation is used, the growth rate stays almost
constant, with small oscillations. The growth rate in the simulation is estimated with the wave
equation. The measured growth rate is in better agreement with the dispersion relation assuming
Maxwellian distribution function, compared to the one using the VDF measured int he PIC
simulation.

The origin of the discrepancy is unclear, as there are several possible reason. Firstly, to obtain
the dispersion relations used here, we assumed small oscillations. However, the quasi-steady state
is governed by non-linear phenomena, which probably have an affect the dispersion relation.
Secondly, the estimation of the growth rate in the simulation uses a crude estimation of impact of
the axial direction and the convection model on the wave. Lastly, the general dispersion relation
solver use here has not been validated with distribution functions of complex shape, as the one
observed in Fig. 3.17. A proper cross-validation with other solvers using complex distribution
function is needed to confirm the result obtained. Another approach for the dispersion relation
solver is to fit the VDF using a sum of analytic functions. Usually, one or few simple distribution
functions are used, such as done by Rönnmark [109]. A general algorithm finding the best fit
in a large ensemble of analytic functions could be used to analyze more complex distribution
function as the one observed here in the PIC simulation.

The results observed here are globally similar with the other simulation results of the com-
munity discussed in Section 3.1.1. However, some differences remain, in particular during the
non-linear stage. In order to conclude on the origins of the discrepancies, a precise compari-
son between the simulation codes and the parameters used will be conducted. A Benchmark
is currently in construction, to compare some of these codes on the radial-azimuthal geometry
similarly to the work done on the axial-azimuthal domain [91].
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Chapter 4

Impact of the dielectric walls on the ano-

malous electron mobility

Part of the work presented in this chapter has been published in Tavant et al. [92].

In this chapter, we will now use the PIC simulation code described in Chapter 2 to perform
a parametric study over two aspects of the dielectric walls: the secondary electron emission,
and the modification of the electrostatic boundary condition. We study their impact on the
electron cross-field mobility, the electron mean temperature and the sheath characteristics.
The electrostatic boundary condition does not modify the results significantly. On the other
hand, the electron emission increases the near-wall mobility while decreasing the mean electron
temperature, which reduces the mobility due to the Electron Cyclotron Drift Instability
(ECDI). A large discrepancy is observed between the sheath model of Section 2.7 and the
PIC simulation results.
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4.1 Presentation of the study

As introduced in Chapter 2, the Hall Effect Thruster (HET) behavior depends strongly on
the axial electron transport toward the anode across the magnetic barrier. Two main phenomena
are proposed to enhance the electron mobility,

— plasma instabilities and in particular the azimuthal ECDI, extensively studied in Chapter 3
— the electron induced electron emission from the wall

In order to compare quantitatively the relative importance of the two phenomena, we propose
to conduct a parametric study on the dielectric wall characteristics. As highlighted in the
introduction and in Chapter 3, the ECDI rises due to the E × B electron drift, but saturates
due to both the axial convection which limits the electron heating, and the ion-wave trapping.

The first section describes the parameters of the simulation, while the second section highlights
the main characteristics of the base simulation results (electron mobility, plasma potential,
electron mobility, etc.). The other sections of the chapter present the results of the parametric
study on the wall characteristics: first we study in Section 4.3 the influence of the dielectric layer,
then in Section 4.5 the secondary electron emission is analyze, and lastly we combine the two
characteristics in Section 4.7.

The simulation domain corresponds to the exit plane of the thruster. Hence, a neutral pressure
Pn of 0.1 mTorr and a plasma density ne of 1×1017 m−3 are used. The fixed axial electric field
and radial magnetic field are Ez = 2×104 V/m and Br = 200 G, respectively. The rectangular 2D
domain measures Lr = 2 cm in the radial dimension and Lθ = 0.5 cm in the azimuthal direction.
The axial length used for the convection is set to Lz = 1 cm. It is important to note that the
results shown in this chapter have been obtained at the beginning of my thesis, before the study
of the convection presented in Chapter 2. Hence, in this chapter we use the convection model of
Lafleur et al. [4]. However, we have validated that the convection model used does not modify
the results under the conditions studied. The numerical parameters are chosen to respect the
stability criterion of Particle In Cell (PIC) simulation, and are presented in Table 4.1

The simulation is initialized with a uniform density of particles, following a Maxwellian
distribution with temperatures Te,0 and Ti,0 for the electrons and the ions, respectively.

4.2 The base case

The base case corresponds to the case when the walls are grounded, and are fully absorbing.
It is the reference case that will be extensively described and commented. Then, it will be used
as reference to analyze and quantify the effects of two characteristics of the dielectric walls on
the studied discharges : the secondary electron emission, and the modification of the electrostatic
boundary condition.

4.2.1 Initial phase of the simulation: t < 2µs

The initial phase of the simulation corresponds to the growth of the ECDI, and the formation
of the sheaths. Because of the growth of the instability, the electron transport increases as well,
which increases the electron heating. The time scale of the sheath formation is governed by
the ion inertia. It is roughly the same time scale as the saturation of the instability due to
ion-trapping.

Figure 4.1 shows the temporal evolution of the electron mean kinetic energy decomposed
over the three directions, Eer, Eeθ, Eez, such that

Eed =
1

n

1

2
me

∫∫∫

v
v2

e,df(v)d3v, with d ∈ {r, θ, z} (4.1)

The mean kinetic energy is the sum of the thermal energy and the kinetic energy of the mean
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Table 4.1 – Standard operating and numerical parameters used in the 2D PIC simulations of
an HET. The simulation results are given as representative values.

Physical Parameter notation Value Unit

Gas Xenon -

Domain dimensions Lx × Ly × Lz 2.0 × 0.5 × 1.0 [cm3]

Radial magnetic field B0 200 [G]

Axial electric field E0 2 × 104 [Vm−1]

Mean plasma density n0 3 × 1017 [m−3]

Initial electron temperature Te,0 10.0 [V]

Initial ion temperature Ti,0 0.1 [V]

Secondary electron temperature Tsee 1.0 [V]

Neutral gas pressure Pn 1.0 [mTorr]

Neutral gas temperature Tn 300 [K]

Neutral gas density ng 3.22 × 1019 [m−3]

Simulation Parameter

Time step ∆t 4 × 10−12 [s]

Cell size ∆x = ∆y 2 × 10−5 [m]

Number of particles per cell N/NG 80 [part/cell]

Typical quantities

Electron plasma frequency ωpe 3.1 × 1010 [rad/s]

Ion plasma frequency ωpi 36 × 106 [rad/s]

Electron cyclotron frequency ωce 3.5 × 109 [rad/s]

Electron Larmor radius rLe 6×10−4 [m]
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Figure 4.1 – Temporal evolution of the electron mean kinetic energy decomposed over the
three directions. Only the beginning of the simulation is shown.

velocity. Because the electrons drift mainly in the azimuthal direction, we have


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with me

2

(

E0

B0

)2
≃ 2.84 V. We see that after some high frequency oscillations of Eeθ and Eez due to

the cyclotron motion, the energies rise before stabilizing at Ee ≃ 45V. The radial kinetic energy
Eer is less than Eez and Eeθ, but only by a small difference of 5 V, corresponding to roughly 10%.
The small difference between the azimuthal and the axial kinetic energy is of the order of 2 V, as
expected from the cyclotron motion of the electrons and Eq. (4.2). This means that the electrons
are almost isotropic.

0 1 2 3 4
Time [μs]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ra
di

al 
po

sit
io

n 
[c

m
] 

0

1

2

3

4

n e
 [m

−3
]

1e17

a

0 1 2 3 4
Time [μs]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ra
di

al 
po

sit
io

n 
[c

m
] 

50

100

150

200

250

300

350

ϕ 
[V

]

b

Figure 4.2 – Temporal evolution of the radial profile of the (a) electron density and (b) the
plasma potential averaged azimuthally.

We can see in Figure 4.2 the evolution of the radial profile of the electron density on the
plasma potential over the same period as Fig. 4.1. We observe on both quantities the formation
of the sheath and the evolution toward a steady-state.
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4.2.2 Saturated quasi steady-state: t ≥ 2µs

After the relatively fast rise of the plasma characteristics, the simulation reaches a quasi
steady-state, as we can see in Figure 4.3. We observe that after t ≃ 2µs , the electron energy Ee

starts to oscillate around a mean value. The oscillations are then damped and reach their minimum
amplitude at t ≃ 7µs and then remain with a small amplitude as shown on simulations carried
out up to 25µs in Fig. 4.3 (the origin of these oscillations has been discussed in Section 3.1.5).
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Figure 4.3 – Temporal evolution of the electron mean kinetic energy decomposed over the
three directions, similar to Fig. 4.1 but for a longer period. We still see the difference between
Eez and Eeθ due to the E × B drift, and the colder radial energy.

Figure 4.4 shows the azimuthally-averaged radial profiles of the electron and ion densities.
The plasma is mostly quasineutral, except close to the walls, in the sheath, where the electron
density falls more rapidly compared to that of ions. The sheath length can be roughly estimated
to be 1 mm. The Debye length in our conditions is

λD =

√

ǫ0kbTe

nee2
∼ 0.4 mm, (4.3)

which corresponds to the expected floating sheath length [115] (a few λDe).

4.2.3 Enhanced electron transport

As introduced in Section 2.8, the electron cross-field axial transport is characterized by the
electron mobility

µe =
ue,z

Ez
(4.4)

with ue,z and Ez the electron mean axial velocity and the axial electric field, respectively. In PIC
simulations, µe is computed at each time step by

µPIC =
1

NEz

∑

N

ve,z (4.5)

Figure 4.5 shows the temporal evolution of the electron mobility µPIC measured in the
simulation with Eq. (4.5). We can see that it presents the same characteristics as the evolution
of the electron energy Ee on Fig. 4.3. We recall that the classical electron mobility from the
collisional theory developed in Eq. (1.7) is [4]

µclassical =
νm

e
me

ω2
ce + ν2

m

(4.6)
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4.5.2 Near-wall conductivity

The results presented in Section 4.5.1 are spatially averaged. However, the mobility coming
from the instability is expected to be higher where the instability is larger, hence at the center
of the channel. On the other hand, the mobility due to wall emission is located close to the wall
[46].

Figure 4.15 presents the radial profiles of the mobility measured in the PIC simulations
without electron emission and for three values of ǫ∗. On the left, the measured mobility µPIC is
shown and on the right it is the effective mobility µeff given by Eq. (1.8).
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Figure 4.15 – Radial profile of the electron mobility (left) measured in the PIC simulations,
and (right) given by Eq. (1.8), for different wall emissivities.

We can see in Fig. 4.15 that the mobility measured µPIC in the center decreases by roughly
20% as the emission rate increases. This observation is in agreement with µsat

eff observed in
Figs. 4.14 and 4.15. This is due the electron temperature Te which decreases from around
Te = 45V at ǫ∗ = 200V to Te = 30V at low ǫ∗ (the evolution of Te can be seen in Fig. 4.19).

On the other hand, the near-wall mobility increases on µPIC almost by a factor of two between
the case withour emission and ǫ∗ = 38 V. However, we do not see this evolution on µsat

eff which
was derived from a theory with no Secondary Electron Emission (SEE), meaning that it indeed
comes from another physical mechanism than the ECDI.

4.5.3 Three different regimes

In Figure 4.14, three regimes have been identified. Regime I corresponds to low values of
ǫ∗ (lower than 38V), during which µsat

eff increases with ǫ∗ but µPIC and µeff decreases. Regime
III corresponds to high values of ǫ∗ (higher than 50V), during which µsat

eff , and µPIC are roughly
constants, but µeff increases slightly. Regime II is a short transition regime, for 38 < ǫ∗ < 50V.

The different regimes appear clearly on the temporal evolution of the different variables.
Figure 4.16 presents the temporal evolution of the space average σ̄PIC for three different values
of ǫ∗ , corresponding to the three different regimes we have identified. In regimes I and III, σ̄PIC

reaches a quasi steady-state after a few microseconds.

Regime I, with low ǫ∗, is characterized by a saturation of σ̄PIC at a value between σ̄cr and 1,
which leads to a non-monotonic potential profile. Regime III, for higher ǫ∗, is characterized by
a quasi steady-state with a SEE rate lower than σ̄cr.
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rate σ̄PIC, even for ǫ∗ > 50V. The bulk electron temperature is much higher than the effective
Te,eff obtained to correctly predict the emission rate.

Figure 4.19.a shows the evolution of the potential drop to the wall measured in the PIC
simulation compared to the theory Eq. (2.53) ). As expected by Eq. (2.57), ∆φ measured in the
simulation saturates to Te for high emission rate (σ̄PIC ∼ 1). However, we see that at low emission
rate, the potential drop is significantly lower than expected. The sheath model of Section 2.7
used two hypotheses:

— Maxwellian distribution function to obtain σ̄Maxw from Eq. (4.10),
— Isothermal electrons in the sheath.

These two hypotheses will be checked against the PIC simulations in the next chapter.

4.7 Full dielectric model with secondary electron emission

We have observed the effects of the electron emission and the electrostatic boundary condition
separately in Sections 4.3 and 4.5, respectively. In Section 4.5, we observed three regimes depen-
ding on the emission rate. At high emissivity, the sheath is space-charge limited, resulting in an
inverse sheath. At low emissivity, we obtain the standard sheath model with electron emission.
The transition between the regimes passes by a oscillating regime.

In Section 4.3 we observed that when there is no emission, the dielectric boundary condition
for the potential does not change the simulation results. In this section, we investigate the
interaction between the two characteristics of the dielectric walls, especially with a high emission
rate. More precisely, regime II is the most interesting, as it features a complex behavior. Hence,
we use ǫ∗ = 45 V to study the impact of the dielectric layer combined with the electron emission.

The dielectric layer thickness is LDiel = 3 mm, and the relative permittivity of the dielectric
is ǫR = 25. The dimensions of the plasma domain is not modified between the case with and
without the dielectric layer. Instead, it is the width between the grounded electrodes that is
increased.

4.7.1 Impact of the dielectric boundary condition on the mobility with

electron emission

Figure 4.20 shows the temporal evolution of the electron mobility measured in the simulation
µPIC for both cases, with and without the dielectric layer. We can see that the two variables
are quite similar, with similar mean values and oscillation. Interestingly, the beginning of the
simulations, up to t = 3µs, are almost identical. After this, the values are no more in phase, but
follow a similar behavior.

Hence, we conclude that results concerning the electron mobility obtained in Section 4.5
without the dielectric layer modeled will apply as well with the dielectric electrostatic boundary
condition. In the next section, we analyze the plasma-wall interaction is more details.

4.7.2 Plasma-wall interaction

Figure 4.21 compares the temporal evolution of the mean electron emission rate σ̄PIC for
the same parameter ǫ∗ = 45 V, with and without the dielectric wall modeled. As previously, the
dielectric width is 3 mm, and the electrodes are now 2.6 cm apart (the geometry of the plasma
domain is kept constant). As previously with the electron mobility, the two case present the
same result at the beginning, up to t = 2µs. After that, the value of σ̄PIC in the case with the
dielectric layer oscillates lightly close to the critical value σ̄cr, in contrast to the case without the
dielectric layer that shows large variations. As Fig. 4.21 shows the values average over all of the
wall, it can hide spatial variations. Hence the next figures present localized values.

Figure 4.22 shows the temporal evolution of the radial electric field in the sheath at the
center of the azimuthal direction (θ = 0.25 cm) for (a) the case with grounded wall, and (b) the
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used here does not increase significantly the computational time, we recommend to use it instead
of the Neumann boundary condition, that do not reproduce the same plasma-wall interaction.

Electron induced electron emission

The electron emission from the wall due to the impact of primary electrons reaching the
wall is modeled using the model described in Section 2.6. The value of the crossover energy ǫ∗

is varied from a large value (low emissivity) to small values (high emissivity). We observed in
the simulations that when the electron emission rate increases, the mean electron temperature
decreases. This decreases the amplitude of the ECDI at saturation, hence decreases the electron
mobility in the plasma (see Fig. 4.15). However, electron emission induces Near-Wall Conductivity
(NWC), which almost doubles the electron mobility close to the wall when ǫ∗ varies from 200V to
30V. Consequently, the overall electron cross-field mobility is almost constant in our simulation.

We observed in our PIC simulations three different regimes depending on the values of ǫ∗. For
high values of ǫ∗, the plasma stabilises with an emission rate σ̄PIC < σ̄cr. When ǫ∗ is small, we
observe a stable configuration with σ̄PIC ∼ σ̄cr. Under these conditions, the sheath is space-charge
limited. The transition between the two regimes is not stable, but instead passes by a bi-stable
regime. In this third regime, the sheath oscillates between the two stable regimes.

Comparison with classical sheath model

The simulation results have been compared to the classical sheath model of Hobbs and Wesson
[81]. We observed a significant discrepancy between the PIC simulations and the sheath model
that comes from a fluid approach. In particular, the potential drop and the electron emission rate
are both overestimated. These overestimations can lead to erroneous conclusion and prediction
when using fluid models. Hence, a better understanding of the plasma-wall transition via the
sheath is needed.

The sheath model currently used is based mainly on two hypothesis
— Maxwellian electron distribution function
— Isothermal electrons in the sheath
Both hypotheses will be questioned in the next chapter.



Chapter 5

Non-isothermal sheath model

The work presented in this chapter has been published in Tavant et al. [93].

In Chapter 4, discrepancies between the expected plasma-wall interaction quantities – as the
plasma potential drop through the sheath and the electron emission rate – and the Particle
In Cell (PIC) simulation results have been observed. In this chapter, we carry out a detailed
analysis of the simulation results presented in Chapter 4 in order to gain more insight on the
plasma-wall interaction. We focus on a simplified simulation in order to isolate the plasma-
wall interaction from the other phenomena. This new PIC simulation is one-dimensional
in space and three-dimensional in velocity (1D-3V), un-magnetized, and without electron
emission. From this simplified simulation, we derived a non-isothermal sheath model, that
describes well the kinetic simulations. We also extend the model to the case where ionization
is self-consistent.
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Figure 5.3 – Estimation of the electron emission rate σ̄ as a function of ǫ∗ using the values of
the electron temperature close to the wall.

so-called Space Charge Limited (SCL) regime. Consequently, some secondary electrons emitted
at low energy would be reflected back to the wall. Hence, since Eq. (4.11) does not take into
account this local effect, it is not surprising that the SEE rate calculated using the mean electron
temperature in the sheath is too high.

To summarize, Fig. 5.3 shows that when the sheath is not in the SCL regime, the SEE rate
can be well predicted by Eq. (4.11) using the electron temperature close to the wall, which is
lower than in the center of the domain. The particle and energy flux inducing the SEE rate are
not well described if we use the electron temperature of the bulk as in the isothermal sheath
model. This explains the overestimation of both σ̄ and and ∆φ presented in Figs. 4.18 and 4.19.
Hence, the isothermal hypothesis used in the sheath model of Section 2.7 is denied by the PIC
simulations.

In the next sections, we use a simplified PIC simulation to study in detail the origin of the
electron temperature gradient in the sheath.

5.2 Simplified 1D PIC simulations

We have seen in Section 5.1 in Fig. 5.2 that the secondary electron emission is not responsible
for the temperature radial profile. Hence, we neglect it in this section. The simulations are at low
pressure, in which case the electrons are non-local [116, 117]. In low pressure bounded discharges,
it is well-known that the EEDF is not Maxwellian in both capacitively coupled plasmas and
inductively coupled plasmas [118, 119, 120, 73], in agreement with Fig. 5.1.

The impact of non-Maxwellian EEDF on the electron flux to the wall has been studied
by Kaganovich et al. [121, 122]. They showed that the electron kinetics at low pressure can
significantly reduce the electron flux to the wall, in agreement with kinetic simulations. The
main parameter determining the electron flux was found to be the electron scattering frequency.
However, to our knowledge no fluid model describes the sheath with non-Maxwellian EEDF.

The evolution of the electron temperature and the non-locality of the electrons in bounded
plasmas has been studied in Meige and Boswell [120]. The authors showed that the high energy
tail of the Electron Energy Distribution Function (EEDF) is depleted. They observed that the
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Parameter Value Unit

Pressure P 0.05, 0.1, 0.5, 2, 10 mTorr
Initial density 1.1015 m−3

Te,inj 5 V
Domain length L 10 cm
gas Argon -

Table 5.1 – Simulation parameters for the 1D PIC simulations.

energy at which the depletion starts corresponds to the local plasma potential related to the wall.
Hence, we will use in this chapter similar physical conditions, in order to compare our results to
their observations.

5.2.1 Description of the 1D simulations

We use a 1D PIC simulation of an argon plasma confined between two walls separated by a
length L = 10cm. The background pressure is varied between 0.05 and 10 mTorr. The direction
of the simulation is x, and y, z are perpendicular to the simulation domain.

The same particle source model as in 2DPIC of the Hall Effect Thruster (HET) is used. In
order to compensate the particle losses at the wall, we inject with a spatially uniform probability
an electron-ion couple for every ion lost at the wall. This corresponds to the following ionization
source term:

Siz =
1

L
2Γe (5.2)

with Γe the electron flux to the wall. A second model will be used later, with a self-consistent
heating and ionization.

Monte Carlo collisions (MCC) are still used, but we do not model the particle generation of
the ionization process, but only the scattering and momentum transfer. As previously, Coulomb
collisions are not included in the study as we are at low plasma density (at steady-state the
electron density is around ne = 1015m−3).

To satisfy generally accepted accuracy conditions for the cell size and time step [70], a time
step of 3.7 · 10−11 s is used with a cell length of 1.7 · 10−5 m. This allows us to resolve properly
the plasma frequency 2π

ωpe
= 3.5 · 10−9 s and the Debye length λDe = 3.10−4 m. Around 300

particles per cell are used for the simulations, and statistical convergence has been verified for
both the cell length and the number of particles per cell.

5.2.2 Simulation results of the 1D PIC simulation

Figure 5.4 shows the results of the simulation for a neutral pressure P = 0.1mTorr. The
results obtained with the different pressures of Table 5.1 show the same characteristics, and the
effect of the pressure is further discussed in Section 5.3.3.

On the left-hand side we observe the electron and ion density profiles, while on the right the
plasma potential and the electron temperature, defined with Eq. (1.18), are shown. In Fig. 5.4,
the electron and ion densities and the plasma potential feature the usual symmetric profiles with
a pre-sheath and a sheath. However, while the electron temperature is almost constant in the
plasma bulk at the center of the simulation domain, we observe a steep decrease in the sheath.
The electron temperature gradient should affect the density profile in the sheath and the electron
heat flux to the wall.

For isotropic distribution functions, it is convenient to introduce the electron energy distri-
bution function (EEDF) fǫ [123]:

fǫ(ǫ)dǫ = 4πv2fe(v)dv (5.3)
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Combining this equation with Eq. (5.7) for vx = γ(x),

(

eφ′

me
− γγ′

)

∂vxfe = 0 (5.11)

In general ∂vxfe 6= 0 such that (eφ′/me − γγ′) can be integrated

γ(x)2

2
− eφ(x)

me
=

γ(xs)2

2
− eφs

me
(5.12)

Since the EVDF is conserved along the contour γ,

fe(x, γ(x)) = fe(xs, γ(xs)) (5.13)

and

γ(xs) =

[

γ(x)2 − 2e(φ(x) − φs)

me

]1/2

(5.14)

with φs the plasma potential at the sheath edge. Using Eq. (5.8),

fe(x, v) = f0

(

[

v2 − 2e(φ(x) − φs)

me

]1/2
)

(5.15)

Condition (5.9) yields a condition on f0:

for all v >

(

2eφs

me

)1/2

, f0(v) = 0 (5.16)

This simple collisionless model explains rigorously how the tail of the EVDF is cut by the
wall absorption. This asymmetry of the Electron Velocity Distribution Function (EVDF) could
press us to separate the electrons into the population going toward the wall and the one going
away from the wall. Figure 5.8 shows the EEPF of the electron going toward and from the
wall. We can see that there is only a small difference between the EEPF of the two populations.
Indeed, as the domain is symmetric and bounded in the two directions, the population coming
toward the wall is also depleted by the opposite wall. Hence in the following, we will neglect this
asymmetry due to the wall.

Figure 5.9 compares the EEPF from Eq. (5.15) with the PIC simulations between the
position x = 1.3 mm and x = 23.7 mm. The plasma potential reads φ(x = 1.3 mm) = 4.1 V and
φ(x = 23.7 mm) = 7.7 V. We can observe a very good agreement between the actual evolution
of the EEPF measured in the simulations and the prediction of Eq. (5.15). This confirms the
possibility to neglect the collisions in the sheath.

5.3.2 Polytropic state law for the electrons

The evolution of a two-Te EEDF in a collisionless potential drop has been studied by Zhang
et al. [125]. The authors have shown that the evolution of the electron population can be described
using a polytropic index γ, such that:

∇x
(

pe,x(x)ne(x)−γ) = 0 (5.17)

with pe,x = neTe,x the electron pressure in the x direction. The value of γ is related to the two
temperatures T1 and T2, and for T1 > T2, we have γ > 1.

Figure 5.10 shows the PIC simulation results presented in Fig. 5.4 in log scale. Each marker
represents one cell of the PIC simulation. Overlaid is a linear regression which slope is the
polytropic index γ. The regression is conducted over the whole simulation domain. We can see
that the linear regression fits the simulation results with a very good agreement (R2 = 0.999).
The value γ = 1.43 is significantly higher than the isothermal case (γisothermal = 1). Interestingly,
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Integrating Eq. (5.19) from the sheath edge, the electron density is hence :

ne(φ) = n0

[

1 +
(γ − 1)(φ − φ0)

γTe0

]

1

γ−1

(5.21)

with the subscript 0 corresponding to the sheath edge. In Eq. (5.21), we need to have γ strictly
greater than one. For γ = 1, we find the usual Boltzmann electrons :

ne(φ) = n0 exp(−(φ − φ0)

Te
) (5.22)

corresponding to the isothermal model.

5.4.1 Comparison with the PIC simulations

The PIC simulations of Section 5.2 can be modeled using a 1D low pressure fluid model
with collisionless ions. We use the solver described in Riemann et al. [129], modified to take into
account the new electron closure. We simply need to add one equation for the temperature, and
the ionization source term is fixed constant in space.

Using the normalized variables and parameters :

λ =
SizL

cs
, Φ = − eφ

Te,c
, u =

vi

cs
(5.23)

n =
ni

ne,c
, χ = λ

x

L
, ǫ = λ

λDe

L
(5.24)

(5.25)

with Te,c, ne,c the electron temperature and density at the center, cs =
√

Te,c

mi
the ion sound

speed, vi, ni the ion speed and density, and Siz the ionization frequency, we can write the set of
equations as [129] :







































dχ(nu) = λ

dχ(u) =
dχ(φ)

u − λ
n

d2
χ(Φ) = (n−ne)

ǫ2

Siz = cst

ne =
[

1 + (γ−1)Φ
γ

]
1

γ−1

(5.26)

Starting from the center, and using the results of the PIC simulations to determine γ, we
can use the system of Eq. (5.26) to compute the profile of each variable. The plasma potential
is self consistently computed from an arbitrary value at the center. It is then shifted to set the
wall potential to 0V. The integration uses the 4th order Runge-Kutta integration scheme of the
python package scipy.

Figure 5.13 shows the comparison of the electron temperature and the plasma potential with
the resolution of the set of Eq. (5.26). We can see a very good agreement between the model
and the PIC simulations.
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that the ratio is significantly lower than the isothermal value Qe

Γe
= 2Te0 when γ > 1. Overlaid

in Fig. 5.15 are the PIC simulation results. We can see that the PIC results are lower than
the isothermal value, but do not agree well with Eq. (5.37). The discrepancy could be due to
the two-Te hypothesis used in Eq. (5.36). Indeed, we can see in Fig. 5.8 that there is a small
population of high energy electrons. This population is not big enough to modify the electron flux
to the wall, hence the potential drop [131], but may increase the mean energy of electron leaving
the plasma. We tested the hypothesis for one case (Pn = 2 mTorr). Once the steady-state was
reached, we stopped generating the electron-ion couples. We observed that during a transition
time of around 0.74µs, the mean energy per electron decreased significantly from 0.9Te,0 to
0.3Te,0, while the electron flux to the wall Γe and the electron temperature Te,0 was not yet
affected. Another phenomena is the anisotropy of the EVDF, as shown in ?? for low pressure,
hence large polytropic index (see Fig. 5.11). This could explain why the mean energy per electron
in the PIC simulations increases with increasing γ.

This is more consistent with the value given by Eq. (5.37) shown in Fig. 5.15, and seems to
confirm the hypothesis, but more investigations on the heat flux are needed.

5.5 Realistic heating and ionization

In the study of Section 5.2, the ionization and the heating mechanism are not self-consistent,
but allowed us to obtain quickly a steady-state as in the simulations of Chapter 2. We now
study the impact of the wall absorption in a case of self-consistent heating and ionization. The
electrons are heated "inductively" with a radio-frequency (RF) electric field in the direction
normal to the simulation grid [120, 94, 132]. The electrons are heated in the y direction, and
momentum is transferred to the x and z axis via electron-neutral collisions. The heating electric
field Erf = Erf ey is independent of x in the simulation domain, its frequency is 13.56 MHz, and
its amplitude is adjusted in order to obtain the desired absorbed power Pabs =< Je · Erf >.

Parameter value unit

Pressure 0.1 mTorr

Pabs 0.25 W/m−3

Length L 10 cm

Table 5.2 – Input parameters for the simulation using the self-consistent model.

Figure 5.16 presents the simulation results for the electron density, plasma potential and
electron temperature using the parameters of Table 5.2. We can see that the different variables
(density, electron temperature and the plasma potential) are not much affected compared to the
results of Section 5.2.

Figure 5.17 presents the electron pressure as a function of the electron density measured in
the simulation in log scale. We see that the trend is not purely linear. Hence, the linear regression
used in order to obtain the polytropic index is conducted twice:

— In the whole domain: γ = 1.5
— Only in the sheath: γ = 1.6

The linear relation conducted on the whole domain is less accurate than for the simulation result
of Section 5.2 (R2 = 0.992). However, we can see that the linear relation still describes quite well
the electron evolution in the sheath. The polytropic indexes obtained with the self-consistent
model are close to the one of the simulation of Section 5.2 at the same pressure.

Figure 5.18 shows the comparison of the electron temperature and the plasma potential in
the PIC simulation using the self-consistent model with the prediction of the fluid model of
Section 5.4. We can see that the agreement between the PIC results and the fluid models is less
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5.6.3 Discussion on the different time scales

The results presented in the previous section show two main time scales. In this section, we
compare the observed time scales with the theoretical times. The electrons collected at the wall
have a kinetic energy at least equal to the potential drop to the wall ǫ = e∆φ, which corresponds
in our case to a limit velocity of vlim = 1.5×106 m/s. Hence, the limit time of flight between the
two boundaries is

Tflight =
L

vlim
= 0.068µs.

This is in agreement with the results of Fig. 5.20, where we see that the high energy tails are
depleted around t = 0.06µs.

The electron-neutral scattering frequency is computed for a background pressure of 0.13 Pa
(1 mTorr) at the temperature of 300 K, which corresponds to a neutral density of

ng = 3.2×1019m−3.

For an electron temperature of 5 V, the thermal electron-neutral elastic scattering frequency for
argon is [56, p.73]

νela = 4.70 MHz,

which corresponds to a period of τela = 0.2µs. This period is shorter than the one observed in
the Monte-Carlo simulation, as we see in Fig. 5.21 that the low energy part of the EEPF is
significantly affected after t = 1µs.

This discrepancy can be due to two reasons. First, at high energy the electron-neutral
scattering is not isotropic, but instead gives mostly small angles (forward scattering) [66]. Hence,
a large number of collisions is required for the isotropization to be observable. Secondly, the
argon presents a significant Ramsauer minimum (a quantum mechanical resonance [56]) at 0.3 V,
were the cross-section is two orders of magnitude lower than at 5 V.

Numerical artifacts
In PIC simulations, numerical parameters can induce numerical heating and thermalization

[134]. The numerical heating has been studied in detail [69]. It is due to aliasing effects, and
depends on the grid size, time step and number of particles per cell. It is important to carefully
choose these parameters to reduce the effect of the heating.

The thermalization is the fact that the distribution of the particle tends toward a Maxwellian.
It originates from fluctuations of the electric field due to the discretization of the particles. The
first studies showed that the thermalization time τT depends on ND the number of (numerical)
particles per Debye sphere [135, 136]. The presence of collisions can affect τT [71, 134]. In Turner
[71], the author observed the evolution of the thermalization time with ND as

τT =
1

ωpe

34.4

N−2
D + 28.0N−1

D
νm

ωpe

(5.38)

which gives in our condition a time-scale several orders of magnitude larger than the typical
simulation time. We confirmed it by doubling the number of particle per cell for one pressure
condition, and no observable impact has been detected. Hence, the effects of numerical parameters
on the simulation results are expected to be negligible.
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5.7 Conclusion

Using the kinetic informations from the PIC simulations, we have seen that the electrons are
not Maxwellian, in contrast with the hypothesis of the usual models for plasma wall interactions.
The electron distribution function is affected by two phenomena:

— the absorption of high energy electrons at the wall
— the electron-neutral scattering

The absorption depletes rapidly the high energy tail of the EEPF for energies higher than the
local plasma potential relative to the wall. However, the low energy population is not affected
by the wall.

The collisions affect the electrons more slowly, by replenishing the high energy tail by scatte-
ring. Indeed, in the directions parallel to the wall, the high energy tail is not depleted. However,
for large energies (ǫ > 10 V), the electron-neutral scattering angle is small [66], hence the time
scale over which the collisions impact the EEPF is much longer than the typical time between
two collisions.

The electron trajectory in the discharge chamber is hence mostly collisionless. We have
successfully confirmed this by confronting the EEDF measurements to the 1D stationary Vlasov
equation. Following the work of Zhang et al. [125] on the collisionless evolution of non-Maxwellian
electron through a potential drop, we have found that a polytropic closure for the electron
describes very accurately the electron temperature evolution:

Ten
1−γ
e = cst, with γ the polytropic index

The polytropic state law for the electrons, when used in fluid model, allows to obtain the
same densities and plasma potential as in the PIC simulation. This paves the way for a modified
sheath model to compare to the 2D PIC simulation of the HET of Chapter 4.

We have also seen in Section 5.5 that the polytropic state law also stands when a self-consistent
heating mechanism is used, even if the agreement is not as good as in the other case.

In Section 5.7, the value of the polytropic index γ depends on the shape of the EVDF. We
showed in Section 5.6 that a Monte Carlo computation can be used in order to obtain the EVDF
for a given plasma potential profile and neutral pressure. As the Monte Carlo approach does not
need the Poisson equation to be solved, it produces the EVDF much faster than a PIC simulation.
Hence, we could couple the Monte Carlo calculation with a fluid model to accurately take into
account the real shape of the EVDF in the closure of terms in fluid models.



Chapter 6

Polytropic sheath model in the presence

of electron emission

In this Chapter, we add to the non-isothermal sheath model developed in Chapter 5 the
secondary electron emission. Using the Particle In Cell (PIC) simulations with secondary
emission, we observe that the electrons are well described by a polytropic state law, which
index is almost constant when varying the cross-over energy ǫ∗. Hence, we derive the sheath
characteristics using the same fluid approach. We note that this model allows multiple
solutions for a given electron temperature, which could explain the oscillations observed in
regime II observed in Chapter 4, as shown in Fig. 6.12. The predictions of the polytropic
sheath model are successfully compared to the PIC simulation results presented in Chapter 4.
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6.1 Objectives of the chapter

In Section 4.6, we have seen that the plasma-wall interaction observed in the 2 dimensions
(2D) PIC simulations are different from the classical sheath models. We recall here the main
observations of Chapter 4. We have conducted a parametric study on the wall emissivity by
varying the crossover energy ǫ∗ in the emission probability

σ = σ0 + (1 − σ0)
ǫ

ǫ∗ ,

with ǫ the electron kinetic energy. The Secondary Electron Emission (SEE) rate (or yield) σ̄ is
the emission probability σ averaged over the electron flux at the wall. With a Maxwellian flux
of temperature Te, we have

σ̄Maxw = σ0 + (1 − σ0)
2Te

ǫ∗ . (6.1)
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6.6 Conclusion

We observed using the 2D radial-azimuthal PIC simulations of the exit plane of the HET
with secondary electron emission that the plasma-wall interaction was not modeled accurately
using classical sheath models. This is certainly due to the decrease of the averaged electron
temperature from the center to the wall. We saw that the polytropic law could be used to
describe this radial evolution of the electrons. The polytropic index is observe to be close to
γ = 1.36 and depends weakly on the SEE rate σ̄. We have noted that the primary electrons,
going from the plasma center toward the wall, presented a lower polytropic index, of the order
of γ = 1.28. This is consistent with the fact that the secondary electrons are emitted with a
Maxwellian flux distribution of temperature Te = 2 V.

We have derived a sheath model that uses the polytropic state law to close the electron
equations, and the SEE rate is computed with the electron temperature at the wall, with a local
Maxwellian hypothesis. This model gives an equation of the potential sheath drop ∆φ between
the sheath edge and the wall. Depending on the electron temperature Te,0 and the crossover
energy ǫ∗, the equation can have one or three solutions.

Confronted to the PIC simulation, the polytropic model was able to predict accurately
the characteristics of the plasma-wall interaction observed in the PIC simulation. Using only
the electron temperature and the polytropic index of the PIC simulations, we obtain a good
correspondence for both the plasma potential drop to the wall ∆φ and the secondary electron
emission rate σ̄ between the sheath model and the PIC simulations.

We also observed a good correspondence between the multiple solutions of the sheath model
and the sheath oscillations observed in regime II. Indeed, we observe that the electron temperature
rises following the first branch of the solution, corresponding to regime III. When the electron
temperature crosses the maximal temperature Te

(1), the sheath jumps to the third branch, which
corresponds to regime I. In regime I, the electron power losses increase drastically, which reduces
the electron temperature until the minimum electron temperature Te

(2). There, the sheath jumps
back to the first branch of the solutions.

In the model developed here, the anisotropy between the temperature parallel and perpendi-
cular to the magnetic field line has not been taken into account. However, the electron flux to
the wall is governed by the parallel electron temperature, while the SEE rate depends on the
two temperatures. Hence, the electron anisotropy could modify the results of the current sheath
model. However, the radial evolution of the perpendicular electron temperature is not clearly
understood. Figure 6.22 shows the radial evolution of the electron temperature anisotropy

Te,R

Te,⊥

for three values of the crossover energy ǫ∗. We see that the electron anisotropy increases with the
increases of the SEE rate. This is expected, as the radial losses, which increases with increasing
SEE rate, reduces the electrons with a high radial energy, without effects on the perpendicular
energy. Another observation in Fig. 6.22 is the anisotropy radial profile, which is almost uniform.
This is not consistent with the current understanding of the collisionless evolution of the electron
described with the Vlasov equation developed in Section 5.3. The reason of this constant aniso-
tropy could be the azimuthal instability, which presents radial structures during the saturated
state. The importance of the instability on the radial electron energy is further discussed in the
next chapter, especially in Section 7.5.1.
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Chapter 7

Modeling the radial losses in a 2D axial-

azimuthal PIC simulation

In this chapter, we modify the simulation code LPPic in order to simulate the axial-azimuthal
plane of the Hall Effect Thruster (HET). This allows us to challenge the conclusion obtained
from the results of the radial-azimuthal simulations. The impact of the radial plasma-wall
interaction is also studied, using a simple model that reproduces the particle radial losses.
Its effects on the plasma characteristics and the Electron Cyclotron Drift Instability (ECDI)
are studied. The axial transport of the wave and the question of the energy transfer between
the three directions are discussed.
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Instead, we implemented a dynamic redistribution of the CPU domain, so that every CPU
owns approximately the same number of particles. As the density gradient is principally in the
axial direction, we only change the axial size of the CPU domains. The dynamic load balancing
is done every 150 000 time steps.

Electron time-step sub-cycling
Due to the large mass ratio between the ions and the electrons, the ion dynamic is much slower

than the electron dynamic that constrained the time step ∆t. In Adam et al. [144], the authors
propose to reduce the computational time by using a different time-step for the ions ∆ti and the
electrons ∆te. They show theoretically and numerically that numerical instabilities rise when
ωpe∆ti ∼ π. With the stability criterion on ∆te (Eq. (2.5)), we find the stability criterion

∆ti

∆te
<

π

0.2
≃ 15.7. (7.1)

Consequently, we use ∆ti

∆te
= 11 in what follows. We verified for one case that using the same

time-step for the ions and the electrons produces the same solution.

7.1.2 Facing the breathing mode

The breathing mode comes from the coupling between the neutral gas flow and the plasma
dynamics, via the ionization. Under the typical conditions of the HET, this oscillation is observed
with a low frequency, around 10 − 30 kHz, and a large amplitude, as the plasma density can
change up to one order of magnitude during the oscillation period [6, 27]. This oscillation is
much slower than the ECDI, and is present throughout the entire channel.

If these oscillations are not problematic for the fluid or Direct Kinetic (DK) simulations, they
are for Particle In Cell (PIC) simulations. Indeed, the total number of numerical particles is
proportional to the plasma density, and a minimal number of particles is required to limit the
numerical heating [71]. Thus, when the mean plasma density oscillates, the number of numerical
particles (hence the amount of memory used) can change drastically. This reduces significantly
the performance of the simulation code, and can lead to memory overflow if the memory available
is not high enough to store all the particles during the peak of density of the oscillation. The
merging-splitting of the particles can be used to reduce the variation of the number of numerical
particles, but it is not used for the same reason than discussed above.

In addition to the number of particles, the numerical parameters (time step and cell size)
have to be chosen to satisfy the stability criteria during all the simulation, which also reduces
significantly the performance of the simulation. This could be overcome by adapting dynamically
the mesh and the time step. However, too few studies of the consequences of the use of adaptive
mesh and time step on the simulations have been conducted. Thus, we have chosen not to modify
the PIC algorithm. Two other approaches have been followed to reduce the computational cost
of axial-azimuthal simulations:

1. the approach used by Coche and Garrigues [86]: using a scaling of the permittivity to
reduce the computational load to simulate the breathing mode,

2. the approach of Boeuf and Garrigues [8]: using an imposed ionization source term to
obtain a steady-state without breathing mode.

Since we want to get insights on the radial wall effects in a reasonable computational time, we
use in this study the test-case of Boeuf. It is interesting to note that a very close configuration
has been used as a international benchmark published recently in Charoy et al. [91].
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Table 7.1 – Physical and numerical parameters used in the 2D PIC simulations of an axial
and azimuthal (Z − θ) plane of a HET.

Physical Parameter notation Value Unit

Gas Xenon -

Domain dimensions Lθ × Lz 1.25 × 2.5 [cm2]

Maximum magnetic field max(Br) 100 [G]

Position of max(Br) zmax(Br) 0.75 [cm]

Anode voltage Ud 200 [V]

Initial electron temperature Te,0 10.0 [V]

Initial ion temperature Ti,0 0.5 [V]

Initial plasma density n0 5×1016 [m−3]

Maximum Ionisation S0 5.23×1023 [m−3s−1]

Center of Siz profile zM 0.625 [cm]

Width of Siz profile LS 0.75 [cm]

Simulation Parameter

Permittivity scaling α 1 -

Cell size ∆x = ∆y 5 × 10−5 [m]

Time step ∆t 5 × 10−12 [s]

Electron sub-cycling ∆ti

∆t 11 -

Initial number of particles per cell N/NG 25 [part/cell]

Model 1 for the radial losses: sheath model
In the first approach, we set the potential drop at the walls by the use of a sheath model, such

as the one described in Section 2.7, or in Chapters 5 and 6. The ions would be absorbed by the
radial boundary, as well as the electrons of energy higher than the sheath potential. Electrons
with smaller energy are reflected spectacularly. This model is more physical, and it would allow
local charge imbalance. However, as there is no electric field self-consistently computed in the
radial direction, the plasma cannot react to such imbalances. Hence, we chose not to use it.

Model 2 for the radial losses: flux equality
The second approach directly imposes the flux equality by absorbing at every time step the

same number of electrons as ions. The electrons crossing the radial boundaries are sorted by
their energy in the radial direction, and the electrons absorbed are the most energetic ones. The
others are reflected specularly. Due to the small number of ions crossing the boundary, and for
performance issues, we choose to impose the flux equality averaged over the domain of one CPU.
As 360 CPU domains are used to decompose the whole simulation domain, this allows a partial
locality of the flux equality.

While the sheath can be supposed infinitely thin, the ion flux to the wall usually depends
on the pre-sheaths, which display an ambipolar electric field that accelerates the ions to the ion
sound speed at the sheath edge. Since the development and validation of a pre-sheath electric
field model in the radial model required more resources than available, there is no such pre-sheath
model in the results presented in this chapter. Consequently, the ion flux to the wall is a thermal
flux, which is much smaller than the flux created by a pre-sheath. Hence, using a realistic radial
length of the order of LR = 2 cm, the particle losses are underestimated.
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Since the simulations are collisionless, the electron mobility comes from the azimuthal insta-
bility. We observed that the amplitude of the instability, thus the induced electron axial mobility,
is reduced by the radial losses. Several hypotheses that could explain the decrease of the wave
amplitude have been discussed. The most probable reasons are the decrease of the electron
azimuthal drift, hence the reduction of the growth rate, and the fact that the radial losses absorb
the particles preferentially at the maxima of the oscillations.

When radial losses are considered, the reduced wave amplitude is related to a decrease of the
ion-wave trapping, which seems to be one of the dominant mechanisms of saturation when the
radial losses are not modeled. In addition, the characteristics of the wave (frequency, wavelength)
are modified. More precisely, in the upstream region, close to the maximum of the magnetic field,
the waves are not affected. On the other hand, in the downstream region, a low-frequency and
large wavelength oscillation is present when no radial losses are modeled (no LR). The amplitude
of this large wave is reduced for LR = 4 cm, and disappears for LR = 2 cm. We believe that this
large wavelength oscillation comes from a nonlinear inverse cascade mechanism, most certainly
related to the ion-wave trapping. As the wave amplitude is smaller, the nonlinear stage of the
wave is not reached when the radial losses are modeled.

Lastly, we observed that the electrons are less isotropic than seen in the radial-azimuthal
simulation. However, the plasma-wall interaction is governed by the radial temperature. Hence,
a better understanding of the energy transfer between the different directions is important. To
open the discussion on future work, we present in the following section some additional results
we obtained on the radial heating observed in both the axial-azimuthal and the radial-azimuthal
simulations.

7.5.1 Study of the radial electron heating

We have seen in Figs. 7.5 and 7.7 that the radial electron temperature is constant in both
time and space, leading to a large anisotropy. This could be due to the lack of collisions in the
2D (Z − θ) case proposed by Boeuf. Thus, we investigate thereafter the impact of the neutrals
on the electron anisotropy by modeling the collisions with the Monte Carlo Collision (MCC)
algorithm.

2D axial-azimuthal simulation with collisions

To model the neutral density in the reference test-case of Section 7.2, we inject at the anode
a constant xenon flow of rate ṁ = 5mg/s at a temperature of Tg = 640 K. Using a typical surface
area, this corresponds to a neutral density at the anode of ng = 1.0 × 1019 m−3 and a mean
velocity of ug = 200 m/s. The evolution of the neutral density is modeled using the system of 1D
fluid equations, and considers azimuthal uniformity:















∂tng + ∂z(ngug) = −Siz

∂t(ngug) + ∂z(ngu2
g) = −∂zpg − Sizug

∂tE + ∂z(Eug) = −∂z(pgug)

(7.9)

with ug, pg the neutral axial velocity and the pressure, respectively, Siz is the imposed ionization
source term, and E the total energy per volume unit

E =
pg

γ − 1
+

1

2
ngu2

g, (7.10)

with γ = 5/3. This Euler system is solved using the HLLC Riemann solver, which has been
validated on the shock tube test case [146]. The neutral temperature is kept constant by adding
an artificial source term in the third equation of Eq. (7.9)

S3 = −1

τ

(

pg

γ − 1
− ngRT0

γ − 1

)

(7.11)









Chapter 8

Conclusion

8.1 Summary of the thesis

The Hall Effect Thruster (HET) is governed by two phenomena that are ill understood: the
electron cross-field mobility – due to the azimuthal Electron Cyclotron Drift Instability (ECDI)
and the electron collisions – and the wall interaction that is affected by the Secondary Electron
Emission. The use of modeling for the future design of the HET requires a better understanding
of both phenomena. As they are of kinetic nature, we used a Particle-In-Cell (PIC) simulation
model, LPPic , that is presented in Chapter 2. Since full 3D realistic PIC simulations are still out
of reach due to the excessive computational load, we used in this work bi-dimensional simulation
domains to study both the radial-azimuthal and the axial-azimuthal planes of the HET.

8.1.1 Growth and saturation of the azimuthal instability

The radial-azimuthal simulation domain has first been used in Chapter 3 to provide more
insights on the ECDI, and its interaction with the wall. The instability presents two phases: the
first corresponds to the linear growth of the instability ; the second phase corresponds to the
quasi-steady phase, during which the amplitude of the instability saturates.

We implemented a solver for the general Dispersion Relation (DR), that uses the Electron
Velocity Distribution Function (EVDF) and the Ion Velocity Distribution Function (IVDF)
measured in the PIC simulations to compute the growth rate and the frequency for a given wave-
vector. We observed a good agreement between the characteristics (wavenumber and frequency)
observed in the PIC simulation and the theoretical DR of the ECDI. During the linear phase,
the wave presents the cyclotron resonances, characteristic of the ECDI. Conversely, during the
saturated phase the resonances broaden, and the ECDI DR can be approximated by the Ion
Accoustic Wave (IAW).

We showed that the modulation of the wave amplitude during the saturated phase is certainly
due to the ions, as the main saturation mechanism of the instability is the ion-wave trapping.
However, due to the large xenon ion mass, the ion-wave trapping takes some time before being
effective, resulting in the oscillation observed.

This hypothesis is strengthened by the resolution of the dispersion relation, when the ion
temperature is taken into account. Indeed, we observe the same temporal oscillation of the
maximum of the growth rate. However, the results of the General DR solver, using the IVDF,
yields a growth rate that oscillates less than observed on the amplitude of the wave.

Lastly, we observed that in our simulation the instability does not present any radial modu-
lation. Conversely, the ratio between the ion density fluctuation δni and the mean value ni is
constant along the radial direction. This corresponds to a wavevector strictly perpendicular to
the magnetic field, in disagreement with the expected impact of the wall. Instead, it seems that
the walls are totally screened from the instability.
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8.1.2 Impact of the wall characteristics on the plasma-wall interaction

Using the 2D PIC simulation code in the radial-azimuthal domain, we presented in Chapter 4
a parametric study over the characteristics of the dielectric walls. We uncoupled and studied
separately the two main aspects of the dielectric wall: the physical insulating layer between
the plasma and the grounded electrode ; and the electron induced Secondary Electron Emission
(SEE).

The dielectric layer has been modeled by solving the Poisson equation inside the layer,
between the plasma and the grounded electrodes. The impact of the insulating layer alone has
been observed to have only a small impact on the discharge. The azimuthal instability in the
electric field is observed to be larger at the vicinity of the wall with the dielectric modeled,
compared to the case with only the grounded wall. However, this difference disappears quickly
after one Debye length. In addition, no impact of the dielectric is observed on the fluctuation of
the ion density. Lastly, its impact on the electron mobility is not significant.

The impact of the SEE has been studied with a parametric study over the emissivity of the wall.
We covered a large ensemble of parameters, from low emissive material (such as Graphite) to very
high emissive material (as Alumina Al2O3). We observed that the increase of SEE is associated
with a decrease of the mean electron temperature, which in turn decreases the amplitude of
the instability, and the axial electron mobility. However, the SEE induces a so-called near-wall
mobility, which compensates the total electron mobility.

Three regimes of emission have been observed depending on the wall emissivity. For a low
emissivity, the sheath follows the usual positive sheath behavior. With a high emissivity, the
sheath enters a Space-Charge Limited (SCL) regime, during which a potential well appears close
to the wall. The potential well reflects the secondary electrons emitted back towards the wall,
so that the effective total emission rate is strictly bellow one. The transition between the two
regimes passes through a third unstable regime, during which the sheath oscillates between the
two stable regimes. The nature of this so-called Relaxation Sheath Oscillation (RSO), and issues
related to the value of the SEE rate are discussed in the next section.

Lastly, we combined both aspects of the dielectric wall together. We chose to use the SEE
parameters that led to the oscillating regime when using only the grounded wall. These parameters
are close to the one measured for the Boron-Nitride (BN) ceramic. The overall electron mobility
and the plasma parameters were not significantly affected by the dielectric layer, compared to the
case with only the grounded wall. However, we observed that the RSO was no more synchronous
over the two walls, but instead it presented differences between the two opposing walls and along
the azimuthal direction of the same wall. This could explain why such oscillations have not
yet been observed experimentally, since the experimental measurement average this localized
behavior.

8.1.3 Non-isothermal sheath model

We have observed with the parametric study that the rate of emission measured in the
simulation is overestimated by the usual sheath models. Moreover, the sheath characteristics,
like the potential drop, also differs from the theory. It appears that the discrepancy is due to the
isothermal hypothesis used so far in the sheath models. Indeed, the PIC simulation presents a
decreases of the electron temperature from the center of the channel to the wall.

This decrease of temperature is not due to the SEE, as the same results have been observed
with a simplified 1D argon discharge without SEE, that is presented in Chapter 5. Instead, it
comes from the absorption at the wall of the high energy tail of the electrons distribution function.
As the gas pressure is low, the tail of the EVDF cannot be replenished by collisions fast enough
compared to the losses at the wall. Hence, the EVDF follows a 2-temperature profile, which
presents an evolution through a potential drop of the density and temperature similar to the
polytropic state law. We observed with a parametric study that the polytropic index for the
electron evolution through the sheath depends on the neutral pressure.
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We have developed a stationary fluid model with polytropic electrons for the same conditions
as the simplified 1D PIC simulation. Given the polytropic index measured in the PIC simulations,
the fluid model gives results very close to those of the PIC simulations when the ionization source
term is imposed (no heating), and a acceptable agreement with a self-consistent ionization and
a Inductively Coupled Radio-Frequency (ICP RF) heating.

The sheath model with polytropic electrons has been extended to the case with Secondary
Electron Emission (SEE) in Chapter 6. We observed in the PIC simulations that the polytropic
state law could be used even in the presence of large rate of secondary electron emission. In
addition, the polytropic index γ does not evolve significantly with the emissivity of the wall,
so that we used a constant value γ = 1.36 over the range of parameters studied. Due to the
reduction of the electron temperature at the wall with the polytropic state law, the modified
sheath model allowed us to obtain the SEE rate and the plasma potential drop at the wall with
a good agreement with the PIC simulation results.

Interestingly, the sheath model with polytropic electrons and SEE presents over a domain of
electron temperature three coexisting solutions: one with a low emissivity, another corresponding
to the Space Charge Limited (SCL) sheath, and a third in between. These three solutions induce
an hysteresis evolution of the sheath with the electron temperature. Indeed, starting from a low
electron temperature and rising, the sheath remains in the usual sheath regime until a maximum
electron temperature value, at which it switches abruptly to the SCL regime. Reciprocally,
starting from the SCL regime and decreasing the electron temperature, the sheath remains over
a large domain of temperature in the SCL regime until the a minimum electron temperature
value. This evolution is also observed in the PIC simulations, during the intermediate regime
which presents quasi-periodic oscillations between the two regimes.

8.1.4 Modeling the radial dimension in a 2D axial-azimuthal PIC simu-

lation

Lastly, we studied in Chapter 7 the axial-azimuthal simulation domain in order to challenge
the conclusion obtained in the radial-azimuthal simulation domain. Indeed, the radial-azimuthal
domain does not include the ionization region, nor the convection of the wave. We also proposed
a model to include the impact of the wall in the radial direction in the 2D axial-azimuthal
simulation.

We have chosen to present in this manuscript an axial-azimuthal simulation which follows
the model of Boeuf and Garrigues [8] with an imposed constant ionization, so that the breathing
mode is not present. We observed that under this condition, the electron drift was reduced by the
diamagnetic drift as strong electron density and temperature gradients are present, in contrast
to the radial-azimuthal simulation. The azimuthal instability also rises in this condition, but the
wave convection becomes a significant phenomenon for the wave amplitude saturation, and the
ion-wave trapping is less developed.

The radial loss model proposed considers a simple fully absorbing surface with an infinitely
fine sheath located at a certain length LR = 2 or 4 cm. The ions crossing the surface are removed
from the simulation, and part of the electrons are reflected in order to obtain a neutral loss. The
presheaths are not modeled. We observed as expected that the radial losses reduce the particle
density and the electron temperature, and do not induce any detectable numerical artifact.

Including the radial particle losses in the simulation is shown to reduce the amplitude of
the instability, hence the anomalous electron axial mobility. Several phenomena could explain
the reduction of the wave amplitude, such as the reduction of the azimuthal electron drift, the
decrease of the electron temperature, or the absorption of the particle at the maximum of the
oscillation that reduces the wave amplitude. As the wave amplitude is smaller than without the
radial boundary modeled, it seems to remain in the linear phase, with less ion wave trapping
and no inverse cascade.
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To conclude on my doctoral project, I have used highly resolved kinetic simulations to
better understand the plasma-wall interaction and the electron axial transport, two phenomena
governing the behavior of Hall thrusters. The electron transport is enhanced by instabilities,
whose amplitude depends on the relative importance of the axial convection of the wave and the
growth rate. We have seen that the growth rate during the saturated quasi-steady-state is highly
affected by particle-wave interactions, and that the quasi-linear relation dispersion solved with the
measured distribution functions only returned rough estimations of the instability characteristics
in the radial-azimuthal simulations. To better model the plasma-wall interaction, we developed a
polytropic sheath model that better include the non-local nature of the electrons at low pressure.
This new model can be used not only to model HETs, even in the presence of secondary electron
emission, but also for other low-pressure plasmas.

8.2 Perspectives

The work of this thesis was focused on the better understanding of the fundamental physical
phenomena involved in the Hall Effect Thrusters. There are several perspectives on this work.
The first one concerns physics and theoretical work, the second is related to the simulation and
modeling, and the third concerns the experimental insights required to validate the simulations
and the theories. These three aspects are intertwined, and should be used together over three
main issues highlighted by the work conducted during my thesis, namely the interaction of the
instability with the wall; the non-linear stage of the instability with a focus on the particle-wave
interaction; and the reliability of the simulation of the HETs. To finish with, a discussion on the
improvement of the HET modeling is proposed.

8.2.1 Interaction of the instability with the wall

We observed in the radial-azimuthal PIC simulation no radial mode of the wave, so it seems
that the walls are screened from the azimuthal instability by the sheath. Similar, but non-identical,
screening was observed in Janhunen et al. [65], where the authors observed a radial mode larger
than the radial length. In contrast, Taccogna et al. [44] observed short scale radial oscillations in
a similar geometry. A comparison of the 2D PIC simulations obtained by different international
groups in the radial-azimuthal domain is currently being conducted, and a better understanding
of the discrepancy between the different results should be achieved in a short period of time.

Experimental investigation of the radial modulation of the instability would also be useful to
validate the simulation results. Electrostatic probes cannot resolve yet the scale of the instability
[148], and they may affect the discharge. The measurement could however be achieved by collective
light scattering [40] resolved in the radial direction, for instance by orienting the primary laser
beams in the axial direction.

In addition, we observed that modeling the radial particle losses in the axial-azimuthal
simulation reduced the wave amplitude. The origin of the decrease of the instability is unclear,
as it could be due to a reduction of the growth rate (function of the azimuthal drift velocity
and electron temperature that are affected by the wall), or to a direct damping of the instability
due to the particle loss in phase with the wave amplitude. In the parametric study of the wall
emissivity presented in Chapter 4, we also observed an impact of the wall on the amplitude
of the wave. However, in the configuration studied, the wave amplitude was governed by the
saturation due to ion-wave trapping, in contrast to the axial-azimuthal simulation for which the
wave convection is dominant. The damping effect of the walls on the wave could be investigated
with a radial-azimuthal PIC simulation, for instance by varying the radial length of the channel
or the emissivity of the material, but only if the effect of convection modeled is larger than the
ion-wave trapping, so that the wave amplitude would not be governed by it.
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8.2.2 Particle-wave interaction during the non-linear saturated stage

We have observed that the azimuthal instability affects the ion and the electron distribution
functions, that have a counter reaction on the instability by modifying the dispersion relation. It
also seems that it is responsible for the isotropization and the radial heating of the electrons, that
impacts the plasma-wall interaction. The non-linear stage of the instability is unclear, and could
require an in-depth mathematical and theoretical investigation of the different phenomena obser-
ved in the simulation, such as the resonances broadening, particle-wave coupling, the turbulent
and inverse cascade, and the saturation mechanisms.

The saturation of the ExB instability could be investigated by simulations with a simplified
geometry. Indeed, the 2D axial-azimuthal simulation used in Chapter 7 presents multiple gradients
that increases the complexity of the physics observed. However, it is expected that the results of
a 1D purely azimuthal simulation would be affected by the presence of the other directions. A
simplified simulation, for instance without gradient, would allow a simplified understanding of
the physics observed, and enable more efficient parametric studies.

We observed that depending of the 2D geometry used (radial-azimuthal or the axial-azimuthal
domains), different phenomena are present. We proposed during this thesis to include in both
domains the effect of the missing direction (the axial convection and the radial boundaries,
respectively). However, in order to validate the results, a proper 3D simulation of the ExB
configuration bounded by walls is necessary, in order to determine how the two directions are
coupled with the instability.

Lastly, more insights from experimental measurements are required to validate or not the
results of the simulation and theoretical investigations. The measurements of the electron and ion
velocity distribution functions in the azimuthal direction would be a significant contribution to
the understanding of the particle-wave interaction present in the HETs. However, the geometry
and the usual parameter range of the HET increases the complexity of such measurements. More
interactions with experimental and numerical works on other ExB devices, such as Magnetrons,
that present similar behaviors could be beneficial to the HET community.

8.2.3 Improving precision and reliability simulations of the HET

We have seen that the kinetic phenomena in the HET are important in the behavior of
the discharge. We derived from the kinetic simulations a polytropic sheath model that allows
us to include some of the kinetic effects in a fluid model that reproduce the PIC simulation
results. This model could be used in HET fluid simulations to better model the plasma-wall
interaction. The value of the polytropic index could be self-consistently obtained with a Monte
Carlo algorithm coupled to the fluid simulation, or an uncertainty quantification study could be
conducted on its value to quantify the required accuracy of this polytropic index to obtain a
good agreement with PIC results in a given range of conditions typical of HETs.

In addition to the low dimensional fluid simulations, that allow to obtain quickly rough
estimations, kinetic simulations have to be improved. First, the theory of the PIC simulation is
sparse, and many guidelines followed by the community are based on past experiences and not
on a theoretical background. The impact of dynamically adaptive time step and mesh refinement
should be studied, and reliable merging and splitting algorithms should be developed.

On top of that, the validation and the verification of the simulation codes need to be improved.
The international work on the axial-azimuthal benchmark [91] is a first step in the improvement
of the reliability of PIC modeling of magnetized plasmas. However, the reference case of the
Benchmark uses an imposed the ionization, instead of a self-consistently computed source term.
Hence, the simplified geometry of the magnetized column of Lucken et al. [95] could be a choice of
interest for the low pressure magnetized plasma community. In addition, as discussed previously a
detailed comparison of the results obtained in the radial-azimuthal simulation domain is currently
being conducted, and a similar effort is lead by the community for the purely 1D azimuthal PIC
simulation.



172 CHAPTER 8. CONCLUSION

8.2.4 Improving HET modeling, design and developments

As presented in the introduction of this thesis, the long term objective of this work is to
improve the design of the future Hall effect thrusters. The "light" fluid models that are currently
used in the development process use crude estimations of the plasma-wall interaction and the
anomalous electron mobility. On the other hand, "heavy" kinetic simulation that can model
accurately such phenomena are too costly to be used during the industrial development.

In this thesis, we proposed a new model for the plasma-wall interaction that can improve
the accuracy of fluid models. The new model could reproduce accurately the PIC simulation
results given the value of the polytropic index obtained from the PIC results. The value of the
polytropic index could be estimated without the PIC simulation, by using a simple Monte Carlo
simulation or experimentally by measuring the radial evolution of the electron density with the
electron temperature or the plasma potential.

Conversely, the issue of the electron cross-field transport is less understood compared to the
plasma-wall interaction. As a matter of fact, if there is a general agreement on its origin, the
saturation mechanism remains difficult to evaluate. More insights from the simulations have
been given is this thesis, but we also showed its complexity. Indeed, the general dispersion
relation solver that uses the velocity distribution functions measured in the PIC simulation could
not described accurately the observed instability, as particle-wave interactions and non-linear
mechanisms are important during the saturated stage. Recently, a proposition to model the
electron transport following a data-driven approach using a machine-learning model trained on
experimental data has been presented [45]. Unfortunately, the current data set is sparse which
limits the applicability of the model. More experimental measurements, as well as measurements
of better accuracy are required in order to improve the modeling of HETs [149].

One reason for the lack of usable data is the wide variety of thrusters used in experiments,
so that the measurement of one of them cannot be combined to that of another. In addition,
most thrusters are confidential due to the close relation between research and industry, so that
few of the required information to reproduce experiment are available. The Radio Frequency
plasma community had a similar problem, that has been solved by proposing a Reference Cell at
the Gaseous Electrical Conference in 1989[150]. Five years later, 66 experimental measurements
and 17 numerical models of this unique Reference Cell have been published. A similar reference
thruster should be used the improve the model accuracy, and allow a more efficient thruster
design.

Another reason is the limited range of parameters achievable experimentally. Indeed, a thruster
is designed to be used at a nominal power, mass flow rate and magnetic field topology, that
depends on its geometry. Consequently, the numerical models are fitted over a small range of
parameters, which reduces the versatility of such models. The PPS®X00 Laboratory Model,
developed during my thesis, will allow us to investigate a wider range of geometry, wall material,
and magnetic field topology. It will enable a better verification of the numerical models used,
and pave the way to improve the design of future low-power thrusters. It could be interesting to
have a similar Laboratory Model for the design of higher power thrusters.



Annexe A

Scalability tests

In this annexe, we give more information on the scalability tests conducted. We conducted
both a weak and a strong scalability tests. We recall that the strong scalability keeps the load
constant while increasing the computational performance, here the number of CPU. The weak
scalability keeps the load to the number of CPU ratio constant. However, it does not correspond
to the need we had, which is to find the optimal number of CPU for a given task. Beside, the
results of the weak scalability were less clear to analyze. Hence, we discarded them.

The parameters of the strong scalability test used are given in Table A.1. They are close
to the parameter used in production, presented in Table 4.1. The smaller test-case uses the
same settings, except for the domain which is divided by a factor of 4. The dielectric boundary
conditions are not modeled (no Secondary Electron Emission (SEE), no dielectric layer). The
Inputs, set-up, and Outputs are not taken into account in the study of the performances. However,
the usual diagnostics (mean density, fluxes, temperature, at boundaries and in the plasma) are
computed. The performances are averaged over the 1000 first time steps of the simulations.
Hence, the load is well balanced between the CPU.

An example of the relative importance of each module of the simulation over a time step is
given in Table A.3. Each module is called 1000 times, except for the outputs function, that writes
the diagnostics to the disk, which is called only once. Its duration is divided by the number of
time steps, in order to compare it to the other modules. To give an order of magnitude, taking
t = 10.08 s for one time-step corresponds to an average of 8.2 ns per particle.
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Table A.1 – Operating and numerical parameters used in the strong scalability large test-case.

Physical Parameter notation Value Unit

Gas Xenon -

Domain dimensions Lx × Ly 1.0 × 1.023 [cm2]

Radial magnetic field B0 200 [G]

Axial electric field E0 2 × 104 [Vm−1]

Mean plasma density n0 1 × 1017 [m−3]

Initial electron temperature Te,0 1.0 [V]

Initial ion temperature Ti,0 0.05 [V]

Neutral gas pressure Pn 0.1 [mTorr]

Neutral gas temperature Tn 300 [K]

Neutral gas density ng 3.22 × 1018 [m−3]

Simulation Parameter

Time step ∆t 4 × 10−13 [s]

Cell size ∆x = ∆y = ∆z 5 × 10−7 [m]

Number of particles per cell N/NG 150 [part/cell]

Number of particles N 2 × 614099924 [particles]

Number of time steps Nt 1000 –

Table A.2 – Modified parameter for the strong-scalability small test-case. The other parameters
are given in Table A.1.

Physical Parameter notation Value Unit

Domain dimensions Lx × Ly 1.0 × 1.023 [cm2]

Simulation Parameter

Cell size ∆x = ∆y = ∆z 1 × 10−6 [m]

Table A.3 – Performances of the large test-case (parameters of Table A.1) when using 96 CPUs,
average over 1000 time steps.

Module Duration one time-step [s] Percentage

Total 10.08 100

Diagnostics particle to mesh 6.03 59.9

Particle motion 2.88 28.6

Monte Carlo Collision 0.729 7.31

Outputs 0.287 2.84

Poisson solver 0.075 0.75



Annexe B

Calculation of the SEE rate with and wi-

thout saturation

The calculation of σ̄Maxw in Eq. (4.11) was done neglecting the saturation of σ at σmax.
The exact value of σ̄Maxw is proposed here including the saturation. Eq. (4.10) give, using the
Maxwellian hypothesis

σ̄Maxw(Te) = σ0 + (1 − σ0)
2Te

ǫ∗ +

∫+∞
ǫmax

(σmax − σ(ǫ)fM (ǫ)dǫ

1/4nev̄
(B.1)

with ǫmax = σmax−σ0

1−σ0
ǫ∗ is the minimum energy for which σ̄ = σmax. We obtain

σ̄Maxw(Te) =σ0 + (1 − σ0)
2Te

ǫ∗ (B.2)

+ (σmax − σ0)(ǫmax + 1) exp(−ǫmax) (B.3)

+ (σ0 − 1)(ǫ2
max + 2ǫmax + 2)

Te

ǫ∗ exp(−ǫmax) (B.4)

Figure B.1 shows the evolution of the SEE rate σ̄Maxw as a function of the electron tempera-
ture Te normalized by the crossover energy ǫ∗. On the left of Fig. B.1, we can see the comparison
between the calculation neglecting the saturation Eq. (4.11) and the calculation without neglec-
ting it Eq. (B.2). We can see that the two values are close up to Te

ǫ∗ ∼ 1, where the two values
start to diverge from each other. The right panel of Fig. B.1 shows the evolution of the relative
error as a function of Te

ǫ∗ . We can see that at Te

ǫ∗ ∼ 1, the error only equals 2%.
On the other hand, the SEE rate σ̄ crosses the threshold value of σ̄cr ≃ 1 at Te/ǫ∗ = 0.5. We

know that the a theoretical SEE rate above σ̄cr, the a potential well is present so that electrons
are reflected to the wall, and therefore the effective SEE rate is close to σ̄cr. Hence, the error
between Eq. (B.2) and Eq. (4.11) can always be neglected.
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