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Et pour la jeune génération : Matthieu Guilbot, Matei Badalan, Simon Santoso, Himani Garg,
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Chapter 1

Introduction : the boiling phenomenon

In this chapter we give a physical description of the boiling phenomenon.

Outline
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Physics of two-phase flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Physics of boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction

1.1.1 Generalities

1.1.1.1 Introduction to boiling

Phase change is the transition of fluid particles from one phase to another. In a fluid, boiling
is the phase change from the liquid phase to the vapor phase due to temperature increase. Figure
1.1 shows an example of boiling in everyday life. Boiling is a physical phenomenon which plays
an important role in various industrial processes. It occurs especially in steam cycles of thermal
power stations, nuclear power plants, two-phase loops used in cooling of electronic components and
spray cooling processes. It is also used in the condenser heat exchangers of every refrigerating
machine or heat pump. The study of boiling proves to be a major stake not only from a theoretical
and academic point of view but also from a technical and industrial point of view, where any
improvement of boiling heat transfer would have a major impact given the number of applications.

1.1.1.2 Two-phase flows

The boiling phenomenon implies flows composed of a liquid phase and a vapor phase. In such
flows, the separation between the two phases is referred to as interface. Gravitational, inertial and
surface tension forces all play a role in the physics of two-phase flows. For large bubbles, the inertial

5



6 CHAPTER 1. INTRODUCTION : THE BOILING PHENOMENON

Fig. 1.1 – Nucleate boiling in a heated tureen. Credit: Roman Sigaev/Fotolia.

forces due to the surrounding flow velocity are dominant. For small bubbles, the surface tension
forces, resulting from the intermolecular forces at the interface, are dominant. Inertial forces tend
to deform the bubbles, while surface tension forces tend to maintain their spherical shape, as the
spatial configuration minimizing their internal energy.

1.1.1.3 Phase change in two-phase flows

Under certain circumstances, part of the liquid phase adjacent to the interface is transformed
into vapor. This transition from the liquid phase to the vapor phase can be due to a temperature
or pressure change in the fluid. Cavitation is the phase change from the liquid phase to the vapor
phase due to a decrease of the liquid pressure below a limit called saturation pressure of the liquid.
Below the saturation pressure, the molecular bonds in the liquid phase are broken, leading to the
appearance of a vapor phase. Boiling is the phase change from the liquid phase to the vapor
phase due to an increase of the liquid temperature above a limit called boiling temperature of the
liquid. Similarly to cavitation, above the boiling temperature, molecular bonds in the liquid phase
are broken. As a result, the liquid phase in the concerned neighborhood turns into vapor. As
shown on the qualitative phase diagram of water in Fig. 1.2, boiling corresponds to an increase
of temperature during which the pressure remains constant (isobaric phenomenon). Conversely,
cavitation corresponds to a decrease of pressure at constant temperature.

When liquid molecules become vapor, their intermolecular bonding is broken. To do so, energy
must be given to the system. This corresponds to the latent heat of vaporization. Therefore, if a
thermal flux reaches a vaporizing interface, only a part of it will be able to cross the interface, since
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Fig. 1.2 – Pressure-temperature (P-T) phase diagram for water adapted from the book of Franc
and Michel [23]. The triple point Tr is the point at which the three phases coexist, the critical point
C separates the liquid and vapor domains.

a part is converted into latent heat.

1.1.1.4 Nucleate boiling

This work is the first step of a project aiming at the numerical simulation of two-phase flows
with phase change in the nucleate boiling regime. Nucleate boiling occurs when a liquid phase is
in contact with a solid phase at a temperature superior to the boiling temperature of the liquid.
In this case, a thermal flux is directed from the solid to the fluid, and the liquid close to the
solid is transformed into vapor : nucleated bubbles develop along the solid surface. These bubbles
are initially attached to the surface. Due to the heat flux from the solid to the liquid phase, the
nucleated bubbles grow on the solid surface. Above a critical size, the bubbles detach from the
solid surface under buoyancy effects. Nucleate boiling is an efficient heat transfer mode in the sense
that it is generally associated to high rates of heat transfer from the heated surface to the fluid for
relatively low temperature differences between the solid and liquid phases. Nevertheless, attention
has to be paid to the intensity of the heat flux at the solid-liquid interface in order to avoid to
damage the solid part, as explained below.

1.1.1.5 The boiling crisis

One major drawback of nucleate boiling appears when the heat flux at the solid surface reaches
a limit called Critical Heat Flux (CHF). Above the CHF, bubbles attached to the surface merge and
tend to form a vapor film covering the solid surface. Suddenly, the solid is totally separated from
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the liquid phase. Due to the weak thermal conductivity of the vapor, as compared to the thermal
conductivity of the liquid, the heat transfer coefficient, accounting for heat transfer from the solid
phase to the fluid, decreases drastically. As a consequence, the temperature at the solid surface
increases dramatically. This increase of the surface temperature can seriously damage and even
destroy the solid part if the melting temperature of the solid material is reached. This phenomenon
is called boiling crisis. In industrial applications, e.g. in nuclear power plants, the boiling crisis can
have destructive consequences.

1.1.1.6 Objective of this thesis

The objective of this thesis is the development of a numerical simulation code for boiling flows.
As a first step, the contact with a solid surface is neglected. Therefore, we focus only on the fluid,
constituted by liquid and vapor.

1.1.1.7 Numerical developments

The numerical developments have been implemented in the YALES2 code, a community-based
code developed by a network of several French labs within the Scientific Interest Group (GIS)
“SUCCESS”1. YALES2 is a numerical code whose general purpose is the resolution of fluid mechanics
problems. It is designed for three-dimensional unstructured grids in order to simulate single-phase
and two-phase flows on complex geometries. At the beginning of this thesis, numerical simulations
of two-phase flows could be performed with YALES2 but phase change was not implemented. I then
dedicated myself to the development and validation of a numerical method suitable for simulations
of boiling in two and three dimensions.

Numerical simulations consist in solving on a computer the differential equations describing the
evolution of the flow. These equations are solved on a discretized space called grid. Two families
of grids can be used : cartesian grids and non-cartesian, or unstructured, grids. Cartesian grids
have the advantage of being aligned with the orthogonal directions of the reference frame, thus
making various computations easier, as will be largely detailed in this thesis. The drawback of
cartesian grids is their limitation to basic computational domains, only delimited by horizontal and
vertical lines. Conversely, unstructured grids have the ability to describe more complex geometries.
The drawback of unstructured grids is the desordered layout of the points where the equations are
solved, thus making accuracy more difficult to be reached in numerical schemes. Our methodology
has been designed for unstructured grids, with distributed memory parallelism in order to take
advantage of computational power. I focused on the development of all the tools needed to simulate
phase change on unstructured grids. Taking into account the triple contact (liquid, vapor, solid) is
left to future works.

Our configuration of interest is a vapor bubble surrounded by a liquid phase, as shown in Fig. 1.3.
Both the vapor and liquid phases are of the same chemical composition. We focus on the growth of
the bubble due to the liquid phase heated above the saturation temperature. The nucleation of the
vapor bubble inside the liquid phase is not addressed in this thesis. In addition to the complexity of
the physical phenomena encountered at the interface when phase change is not considered (action of
surface tension and parameter discontinuity, density and viscosity, as well as pressure discontinuity
between the two phases), boiling contributes to the pressure discontinuity and also implies a velocity
discontinuity at the interface between the liquid and vapor phases. Classical numerical methods

1https://success.coria-cfd.fr

https://success.coria-cfd.fr
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Fig. 1.3 – The boiling phenomenon : growth of a vapor bubble surrounded by a liquid phase. The
dashed blue circle represents the location of the liquid-vapor interface at a previous time. The plain
blue circle represents the current interface location. The red arrows give the expansion direction of
the interface.

for the simulation of two-phase flows are not designed to take into account a discontinuous velocity
field whose discontinuity is moreover coupled to the temperature field. Substantial efforts are then
required to extend existing algorithms in order to simulate boiling flows, especially on unstructured
grids.

In this thesis, we present these developments along with some promising results concerning
numerical simulations of boiling flows on unstructured grids.

This work has been conducted at LEGI Laboratory (Laboratoire des Ecoulements Géophysiques
et Industriels), Grenoble, France, in the MoST2 team, and has been funded by the Tec21 LabEx3

of Université Grenoble Alpes.

1.1.2 Thesis overview

This thesis is composed of six chapters and a conclusion.
Chapter 1 introduces the physics of boiling and the particular regime of nucleate boiling as the

motivation of this work.
Chapter 2 presents the state-of-the-art numerical methods used in two-phase flow simulations,

with a strong emphasis on the numerical methods commonly used to model the motion of the
liquid-vapor interface.

Chapter 3 introduces the YALES2 code suitable for two-phase flow simulations on three-dimensional
unstructured grids in which I developed a numerical method to take boiling into account.

2Modeling and Simulation of Turbulence
3The laboratoire d’excellence for mechanical and process engineering is a group of seven research laboratories

located in Grenoble, France (https://www.tec21.fr).

https://www.tec21.fr
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Chapter 4 details the numerical method developed for simulations of two-phase flows with boiling
in one dimension, where phase change is driven by thermal fluxes at the liquid-vapor interface.

Chapter 5 extends the numerical method to multidimensional structured and unstructured grids,
where the amount of liquid turning into vapor per surface and time units is imposed. This chapter
exposes the difficulties met due to the complex shape of the interface with respect to the one-
dimensional case, then introduces and validates the different solutions implemented.

Chapter 6 extends the previous methodology by computing the amount of liquid turning into
vapor per surface and time units from the thermal fluxes at the interface (as in Chapter 4 for the
one-dimensional case) on two- and three-dimensional unstructured grids.

Finally, a conclusion on the presented work is given and highlights on the perspectives of this
work towards numerical simulations of two-phase flows with phase change by nucleate boiling on
three-dimensional unstructured grids are mentioned.

1.2 Physics of two-phase flows

In this section, the equations for the fluid motion are given.

1.2.1 Incompressible two-phase flows

Equations describing fluid dynamics are based on the conservation of mass, momentum and
energy. The total mass of a fluid is conserved throughout time. Mass conservation reads

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

where t is the time, ρ is the density and u the velocity of the fluid. Momentum, or quantity of
motion, of the fluid is also conserved. Momentum conservation corresponds to the conservation of
the quantity ρu. The equation describing momentum conservation is the Navier-Stokes equation,
given by

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = −∇P +∇ ·

(
µ
(
∇u +∇uT

))
+ ρg, (1.2)

where P is the fluid pressure, µ is the fluid dynamic viscosity and g is the gravitational acceleration.
If ρ is assumed to be constant and uniform (incompressible flow), Eqs. (1.1) and (1.2) can be
simplified. Mass conservation then reads

∇ · u = 0. (1.3)

Similarly, the Navier-Stokes equation reads

∂u

∂t
+ (u · ∇) u = −1

ρ
∇P +

1

ρ
∇ ·
(
µ
(
∇u +∇uT

))
+ g. (1.4)

1.2.2 Energy conservation

Energy conservation can be formulated by means of different primitive variables as the internal
energy or the enthalpy. The internal energy is favored to describe thermodynamics phenomena
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in closed systems, and temperature (or enthalpy) is more commonly used for description of quasi-
isobaric phenomena (usually open systems) [85]. In this thesis we focus on simulations of boiling
on open systems, we then express energy conservation with the temperature variable, i.e.

∂T

∂t
+ u · ∇T =

1

ρcp
∇ · (λ∇T ) , (1.5)

where T is the temperature, cp is the heat capacity at constant pressure and λ is the thermal
conductivity of the fluid. If λ is uniform, then the coefficient α = λ/ (ρcp) in the rhs of Eq. (1.5)
is the thermal diffusivity of the fluid.

1.2.3 Rankine-Hugoniot jump conditions at the liquid-vapor interface
without phase change

In a two-phase flow without phase change, the velocity is continuous across the interface [57],
i.e. one has

[u]Γ = 0, (1.6)

where [·]Γ is the jump operator defined for a scalar or vector field A as

[A]Γ = Aliq −Avap, (1.7)

where Aliq is the value of A in the liquid side and Avap is the value of A in the vapor side, both
immediately close to the interface. Furthermore, the pressure is in general discontinuous at the
interface between the two phases. For a liquid at rest, if it possesses a surface tension, the pressure
discontinuity at the interface is given by the Laplace pressure as

[P ]Γ = σκ, (1.8)

where σ is the surface tension of the fluid, κ is the interface curvature. Moreover, if the flow velocity
is non-zero at the interface, the discontinuity of dynamic viscosity at the interface also contributes
to [P ]Γ. The pressure discontinuity at the interface, due to the combined effects of surface tension
and shear stress, is then given by the Rankine-Hugoniot jump condition [19, 57]

[P ]Γ = σκ+ 2 [µ]Γ nT · ∇u · nT, (1.9)

where n is the interface normal vector and u the flow velocity at the interface.

1.3 Physics of boiling

Boiling is the phase change characterized by the transition of the fluid particles from the liquid
phase to the vapor phase entailed by thermal fluxes at the interface. It exists then a mass transfer
between the two phases, characterized by a mass transfer rate ṁ. Navier-Stokes equations are then
coupled to the heat equation by means of the mass transfer rate computed from the thermal fluxes
at the interface. Due to this mass transfer rate, and to the fact that vapor and liquid densities
are different, we will show in this section that boiling induces a volume expansion at the interface,
which in turn leads to a non-zero divergence velocity field at the interface. We then show that this
non-zero divergence velocity field, together with the mass transfer rate, create additional terms for
the discontinuities of pressure and velocity at the interface. Moreover, we stress here that the mass
transfer rate also contributes to the interface motion.



12 CHAPTER 1. INTRODUCTION : THE BOILING PHENOMENON

(a) Advection of diffuse interface without phase
change. The fluid particle centered at point xP

is at rest with respect to the interface frame.

(b) Advection of diffuse interface with phase
change : the interface motion is faster than the
fluid particle motion due to the source term in
Eq. (1.17). As a result, the fluid particle exits
the interface region. The hatched area represents
the contribution of phase change to the interface
motion.

Fig. 1.4 – The density ρ describes the interface Γ at a fine scale at times t and t + dt (a) without
phase change, and (b) with phase change.

1.3.1 Phase change in a non-confined area leads to volume expansion

When a fluid particle located in the liquid phase is transformed into vapor, its physical properties
become the ones of the vapor phase. As a result, boiling acts on the flow by means of the abrupt
transition imposed to the physical properties of the fluid particles that cross the interface. A ratio
of three orders of magnitude is typically observed between densities of the liquid and vapor phases
of a given chemical compound (e.g. water). Consequently, boiling divides the density of liquid-
turned-vapor fluid particles by a factor roughly equal to 103. The mass δm of a fluid particle is
given by

δm = ρδV, (1.10)

where ρ is the density and δV the volume of the fluid particle. Mass conservation implies that δm
is constant, hence a decrease of ρ implies an increase of δV .

1.3.2 Influence on velocity divergence of volume expansion at the interface

In order to examine the physical changes at the interface induced by boiling, it is useful to
describe the interface at a scale where its width is non zero. This interface smoothing can be
represented by means of the smoothing of a per-phase uniform physical property (density, dynamic
viscosity, etc). The following derivation uses the density function. Figure 1.4 represents the density
function with a smooth transition between the two phases at times t and t + dt, 1.4(a) without
phase change, and 1.4(b) with phase change. The density transition describing the interface (i.e.
the area where ‖∇ρ‖ 6= 0) used in Fig. 1.4 depends on the model used to represent the molecular
dynamics between the two phases. In both cases, the interface is advected from right to left, so
the liquid and vapor velocities are not null. In Fig. 1.4(a), the fluid particle located in the diffuse
interface and centered at point xP is advected at the same velocity as the surrounding interface (in
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absence of phase change). Mass conservation applied to the center xP of the fluid particle at time
t still reads

dρ

dt
(t,xP ) =

∂ρ

∂t
(t,xP ) +∇ · (ρ(t,xP )u(t,xP )) = 0, (1.11)

i.e.

∇ · (ρ(t,xP )u(t,xP )) = −∂ρ
∂t

(t,xP ). (1.12)

Since

∇ · (ρ(t,xP )u(t,xP )) = ρ(t,xP )∇ · u(t,xP ) + u(t,xP ) · ∇ρ(t,xP ), (1.13)

one has

∇ · u(t,xP ) = − 1

ρ(t,xP )

(
∂ρ

∂t
(t,xP ) + u(t,xP ) · ∇ρ(t,xP )

)
, (1.14)

where the terms between parentheses are the lhs of the density advection equation given at point
xP and at time t.

Without phase change, this density advection equation reads

∂ρ

∂t
(t,xP ) + u(t,xP ) · ∇ρ(t,xP ) = 0, (1.15)

leading, by Eq. (1.14), to

∇ · u(t,xP ) = 0. (1.16)

In the presence of phase change, the fluid particle, in addition to being advected by the surround-
ing interface velocity at point xP , exits the interface region, implying that the interface moves faster
than the fluid particle. This increase in the interface velocity in case of phase change is accounted
for by a source term Ṁ in Eq. (1.15) which then reads

∂ρ

∂t
(t,xP ) + u(t,xP ) · ∇ρ(t,xP ) = −Ṁ(t,xP ), (1.17)

resulting, by Eq. (1.14), in

∇ · u(t,xP ) =
Ṁ(t,xP )

ρ(t,xP )
. (1.18)

The source term Ṁ is a volumetric mass transfer rate expressed in kg m−3 s−1, so the rhs of Eq.
(1.18), expressed in s−1, is the rate of change of the velocity u at point xP and at time t. The effect
of Ṁ is illustrated in Fig. 1.4(b). Integrating the rhs of Eq. (1.17) in the direction along which the
interface has been smoothed, one has

ṁ(t) =

ˆ
Ṁ (t,x) d`, (1.19)

where ṁ is the mass transfer rate at the interface accounting for the boiling phenomenon (see
Section 1.3.3). An integration by parts along the same direction of the rhs of Eq. (1.18) then gives

ˆ
∇ · u (t,x) d` = ṁ(t)

(
1

ρliq
− 1

ρvap

)
, (1.20)



14 CHAPTER 1. INTRODUCTION : THE BOILING PHENOMENON

which, as stated in [85], in the case of an infinitely thin interface, reads

(∇ · u)|Γ = ṁ

[
1

ρ

]
Γ

δΓ, (1.21)

where the temporal dependence is omitted and δΓ is the Dirac delta function defined by δΓ(x) = 0
everywhere except when x belongs to the interface, and

ˆ
Rn

δΓ(x)dx = 1, (1.22)

where n is the spatial dimension of the problem.

1.3.3 Mass transfer rate

The mass transfer rate ṁ introduced in the previous section is equal to the number of liquid
mass units crossing the interface per surface and time units, thus it is expressed in kg m−2 s−1.
When there is no phase change, energy conservation implies that the heat flux at the interface
is entirely transmitted from one phase to the other. Mathematically, this means that the normal
component of the heat flux is continuous at the interface, i.e.(

−λliq ∇Tliq|Γ + λvap ∇Tvap|Γ
)
· nΓ = 0, (1.23)

where ∇Tliq|Γ and ∇Tvap|Γ are the restrictions to the interface Γ of the liquid and vapor temperature
gradients, and nΓ is the interface normal vector. Equation (1.23) can be shortened to

[−λ∇T · n]Γ = 0. (1.24)

When phase change occurs, the heat flux at the interface is divided in two parts :

• a portion of the heat flux, equal to [−λ∇T · n]Γ, is absorbed by the interface neighborhood in
order to provide the latent heat Lv required to break liquid molecular bonds and transform
some quantity ṁ of liquid into vapor per interface surface and time units,

• the remaining part of the heat flux is transmitted from one phase to the other.

The energy conservation equation (1.24) is then rewritten

[−λ∇T · n]Γ = ṁLv, (1.25)

accounting for the latent heat of vaporization as an energy well at the interface. Consequently, the
quantity of liquid transformed into vapor per surface and time units, namely the mass transfer rate
ṁ, is given by the amount of thermal energy brought to the interface by the flow dynamics (heat
equation), per surface and time units, and absorbed by the interface, i.e. [−λ∇T · n]Γ expressed in
W m−2, divided by the amount of energy needed to transform one mass unit of liquid into vapor,
i.e. the latent heat of vaporization Lv of the fluid expressed in J kg−1. The mass transfer rate ṁ is
thus defined as

ṁ =
1

Lv
[−λ∇T · n]Γ . (1.26)

The discontinuity of the heat flux component normal to the interface is then equivalent to the
occurrence of boiling.
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1.3.4 Rankine-Hugoniot jump conditions at a liquid-vapor interface with
phase change

Following the notations of Nguyen et al. [54] and Gibou et al. [26], we denote the interface
normal velocity by W = Dn, where n is the interface normal vector. Mass conservation across the
interface reads (see also [88])

ṁ = ρliq (uliq · n−D) = ρvap (uvap · n−D) . (1.27)

As a result, the magnitude of the interface normal velocity D is given by

D = uliq · n−
ṁ

ρliq
= uvap · n−

ṁ

ρvap
, (1.28)

leading to the discontinuity of the normal velocity at the interface, given by

[u · n]Γ = ṁ

[
1

ρ

]
Γ

. (1.29)

Moreover, in order to specify that the tangential components of the velocity are continuous across
the interface, it more convenient to rewrite Eq. (1.29) as [54, 26, 85]

[u]Γ = ṁ

[
1

ρ

]
Γ

n, (1.30)

which is the equivalent of Eq. (1.6) in the case of phase change.
Similarly, integrating Eq. (1.4) across the interface and including surface tension effects leads

to the pressure discontinuity across the interface given by [85]

[P ]Γ = σκ+ 2

[
µ
∂un

∂n

]
Γ

− ṁ2

[
1

ρ

]
Γ

, (1.31)

where the first term of the rhs accounts for surface tension effects, the second term accounts for
viscous effects (only if the flow is in motion), and the third term accounts for the ejection of the
liquid from the interface due to the density difference between the liquid and vapor phases. Equation
(1.31) is the equivalent of Eq. (1.9) in the case of phase change.

Equations (1.30) and (1.31) imply that the mass transfer rate is of primary importance in the
physics of boiling flows since it directly acts on the velocity and pressure of the flow at the interface.

1.3.5 Velocity and temperature of the liquid-vapor interface

The velocity of the interface in absence of phase change is equal to the velocities of the fluids
surrounding it. With phase change, these two velocities differ due to Eq. (1.30). The total velocity
of the interface uΓ,tot is then given, using Eq. (1.28), by

uΓ,tot = uliq −
ṁ

ρliq
nΓ (1.32)

and

uΓ,tot = uvap −
ṁ

ρvap
nΓ, (1.33)
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where the subscript Γ emphasizes that the normal vector is considered at the interface. Equations
(1.32) and (1.33) denote that the transport of the interface can be formulated in both phases.

The temperature can usually be assumed continuous at the interface [85] (considerations on
the variation of the saturation temperature due to the pressure jump condition and the interface
thermal resistance due to molecular effects can be used to question this assumption [42]). In this
thesis, the interface temperature is always assumed equal to the saturation temperature, and the
saturation temperature is always assumed uniform (mono-component vapor phase and liquid phase)
and constant (isobaric approximation), i.e.

TΓ = Tsat, (1.34)

where TΓ is the interface temperature and Tsat is the saturation temperature of the fluid.
This concludes the physical description of a two-phase boiling fluid without mention of a contact

with a heated surface.

1.3.6 Nucleate boiling

We now pass to the discussion of the physical properties of two-phase flows in contact with a
solid surface. This part is given for reference, despite the fact that triple contact is not a subject
of this thesis.

When a liquid phase is in contact with a solid phase at a temperature above the fluid boiling
point, the liquid close to the solid is vaporized and vapor bubbles form on the solid surface. This
phenomenon is called nucleate boiling. High rates of heat transfer from the solid to the fluid can be
reached, thus making nucleate boiling a widely used heat transfer mode in industrial applications.
Appendix A introduces the physics of nucleate boiling.



Chapter 2

State-of-the-art numerical methods for
incompressible two-phase flow simulations

A review of some classical numerical methods for incompressible two-phase flow simulations is
presented in this chapter. Extensions to phase change are briefly discussed and will be detailed in
the next chapters. Finally, a literature review on numerical methods for simulations of two-phase
flows with phase change is provided.
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2.1 Generalities

2.1.1 Molecular dynamics versus continuum mechanics

Numerical simulations in fluid dynamics consist in the study of the evolution of some important
fluid physical properties. Conservation principles are used to derive partial differential equations
in order to model the temporal and spatial evolution of these properties. Typically, the physical
properties of interest are the velocity, pressure, density and dynamic viscosity of the fluid. If heat
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transfer is considered, the thermal conductivity and capacity at constant pressure or volume, and
finally the temperature are also included in the simulation. Some of these properties are generally
assumed to exhibit negligible variations in space and time. Such a property is thus modeled using a
single uniform and constant value known beforehand. Dynamic viscosity and thermal conductivity
are two examples of physical properties which can reasonably be assumed to be uniform and constant
in many cases. For liquids, density can somehow be also considered uniform and constant, as
detailed in Section 2.1.2. Conversely, velocity, pressure and temperature are not known a priori
and need be computed. The observed fluid behavior, and thus the modeling of its evolution,
depends on the observation scale. At microscopic scale, matter is a discrete set of molecules and
is thus discontinuous. At macroscopic scale, the entire space is filled with matter, which is then
continuous. The scale-dependent duality between discrete and continuous representation of matter
leads to different numerical methods.

When a fluid is described at microscopic scale, space itself can be discretized by means of a
lattice, implying that particles can only hop from site to site on the lattice. The particle dynamics
is driven by propagation and collision steps in such a way that the particles always stay on the
lattice, and mass, momentum and energy are conserved. These fluid models are called Lattice-
Gas Cellular Automata (LGCA) and the associated equations of propagation and collision, Lattice
Boltzmann Models (LBM) [12]. Numerical simulations of phase change using LGCA and LBM have
been reported in [6, 7, 30], and a methodology for three-phase contact line modeling on curved
boundaries is presented in [21]. The foundations of the theory of LGCA and LBM are widely
detailed in [69, 96, 82]. The interest for LBM grew in 1986 when Frisch et. al. [24] showed that
the molecular dynamics within a fluid, even drastically simplified, still led to a realistic description
of fluid mechanics. The ability of LBM to model realistic fluid dynamics has been shown in [20]
where von Kármán streets behind a flat obstacle have been observed, in accordance to the results
obtained with the Navier-Stokes equations when the fluid is described as a continuum.

At macroscopic scale, since space is a continuum filled with matter, temporal and spatial evo-
lutions of physical properties (velocity, pressure, temperature) are easily modeled with differential
operators. The evolution of velocity and pressure is modeled by the Navier-Stokes equations, while
the evolution of temperature is modeled using the heat equation. In this thesis, we focus on a
macroscopic description of the fluid, hence we solve the Navier-Stokes and heat equations as given
in Chapter 1.

2.1.2 Compressible versus incompressible flows

In a fluid, variations of pressure induce variations of density. Due to these variations, the fluid is
compressible. The two main consequences of compressibility are the propagation of pressure waves,
which are challenging to treat numerically [66], and the non-zero divergence of the velocity field.
In order to close the system of Navier-Stokes equations, an equation of state is needed to compute
the density from the pressure. However, these density variations are usually neglected when the
Mach number (ratio of the flow speed and sound speed in the flow) is smaller than 0.3. Taking
flow compressibility into account is only relevant when very high speeds are met (aircraft, rocket
engines, atmospheric entries, cavitation in water turbines, etc).

For Mach numbers lower than 0.3, the flow is said incompressible (it is still compressible but its
compressibility is neglected). As a result, pressure (sound) travels at infinite speed, i.e. pressure
waves immediately vanish. We then emphasize here that purely incompressible flows are only flow
models and do not exist in reality. Nevertheless, incompressible flows are sufficiently accurate
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models to be widely used in the literature : approximating pressure waves at very high velocity
(compared to the fluid velocity) with pressure waves at infinite velocity does not alter the evolution
of the flow. One advantage of incompressible flows is that no equation of state is needed to compute
the density since it is a constant value known beforehand. In this thesis, only incompressible flows
are considered.

2.1.3 Multiphase flows

Numerical simulations of multiphase flows have to account for the different physical properties
of each phase. In multiphase flows without phase change, the velocity is continuous at the interface
(Eq. (1.6), whereas the pressure is discontinuous at the interface due to the surface tension and
the discontinuity of the dynamical viscosity at the interface (Eq. (1.9)). Moreover, numerical
methods also have to take into account the discontinuity of density, and, if the heat equation is
solved, the discontinuities of thermal conductivity and heat capacity at constant pressure of the
two phases. If phase change is considered, the velocity is discontinuous at the interface (Eq. (1.30))
and the pressure discontinuity at the interface is increased by phase change due to the different
phase densities. Consequently, numerical simulations of two-phase flows require numerical methods
to follow the interface position in order to treat these discontinuities.

2.2 Interface modeling : the Sharp Interface model versus the
Continuum Surface Force model

At macroscopic scale, the interface separating the two non-miscible phases is infinitely thin.
Consequently, the physical properties, e.g. density and viscosity, are uniform in each phase and
admit a mathematical discontinuity at the interface. This assumption is referenced in the literature
as the Sharp Interface (SI) model. In this model, the interface is a discrete set of points in one
dimension, a set of lines in two dimensions and of surfaces in three dimensions. The main difficulty
arising with the SI model is the localization of the interface, and more, the computation of quantities
defined only at the interface.

In order to alleviate this difficulty, Brackbill et al. [10] proposed the Continuum Surface Force
(CSF) model which represents the interface as a smoothed transition region of controlled width to
ease the computation of surface tension forces, as shown in Fig. 2.1. Instead of applying a pressure
jump at the interface (Eq. (1.9)), the CSF model computes a force density distributed in a small
region around the interface. Integrating this force density over the small region in the interface
normal direction leads to the surface tension force at the interface. The derivatives involved in the
calculations are easily computed using smoothly-varying values defined in the smoothed interface.
Anderson et al. [2] proposed a review of diffuse-interface models and their application to a wide
variety of interfacial phenomena (see also references therein).

2.3 Lagrangian Front Tracking Methods

Two families of numerical methods are used in the literature to account for the two-phase
interface movement : lagrangian and eulerian methods. In the context of two-phase flows, lagrangian
methods are referred to as Front Tracking Methods, while eulerian methods are referred to as Front
Capturing Methods. This section introduces the basics of Front Tracking Methods. The next
section addresses Front Capturing Methods.
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Fig. 2.1 – Sketch of a diffuse interface using the CSF model (excerpt from [10]). A smoothly-varying
color function c̃ is defined in the whole computational domain. This function is equal to c1 in one
phase and c2 in the other phase. The transition region (unshaded) has width h. The interface
normal vector n̂ is computed at grid nodes located in the transition region by n̂ = ∇c̃/ ‖∇c̃‖.
Surface tension force density, Fsv, is calculated at cell centers from the divergence of n̂. The values
P1 and P2 are local pressure values of fluids 1 and 2, respectively. Point xs is lying on the initial
interface.

The lagrangian approach of Front Tracking Methods consists in following the interface by means
of a distribution of massless particles. These particles are advected by the local fluid velocity field
by the advection equation

dx

dt
= u, (2.1)

where x is the particle location and u the fluid velocity. Harlow and Welch [32] developed the
first front tracking method in 1965, the Marker-and-Cell (MAC) method, limited to free surface
flows. The phase is seeded with lagrangian markers, as shown in Fig. 2.2(a). Using this method,
the geometrical characterization of the interface is quite challenging since markers are not directly
located at the interface.

Tryggvason et al. [89, 41, 87] adapted the MAC method by distributing markers only at the
interface, as shown in Fig. 2.2(b). After advection by Eq. (2.1), the markers are reconnected to
reconstruct the interface. This method is referred to as the Front Tracking Method. Two major
difficulties arise : one needs to interpolate surface tension forces, known at the markers, to the
eulerian grid, and the fluid velocity field, known on the eulerian grid, to the markers to solve Eq.
(2.1) ; moreover, marker reconnection can prove highly challenging on complex geometries.
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(a) Reproduced from [57]. (b) Reproduced from [87].

Fig. 2.2 – Front Tracking Methods : (a) in the MAC method of Harlow and Welch [32], markers
are distributed in all the phase of interest and the interface is defined as the border of the area
filled with markers ; (b) Tryggvason et al. [89, 41, 87] adapted the MAC method with markers
distributed only at the interface, leading to the Front Tracking Method.

2.4 Eulerian Front Capturing Methods

Front Capturing Methods model the interface movement with the transport of a marker function,
that identifies one phase w.r.t. the other, by the fluid velocity field using the advection equation

∂G

∂t
+ u · ∇G = 0, (2.2)

where G is the marker function and u, the fluid velocity.

2.4.1 Volume Of Fluid Method

Hirt and Nichols [35] developed the first eulerian method to capture the interface, namely the
Volume Of Fluid (VOF) method. The marker function is the liquid volume fraction α, which is
substituted to G in Eq. (2.2). The physical quantities of interest are then expressed in terms of α
through linear interpolations, i.e.

ρ = αρ1 + (1− α) ρ2, (2.3)

µ = αµ1 + (1− α)µ2, (2.4)

where ρ is the density, µ, the dynamic viscosity, and the indices 1 and 2 denote the two phases.
Figure 2.3(a) shows the values of α on a two-dimensional cartesian grid. The liquid volume fraction
does not give any information about the shape of the interface. The only information available is
0 < α < 1 in grid cells crossed by the interface. In order to reconstruct the interface, Hirt and
Nichols [35] proposed the Simple Line Interface Calculation (SLIC) method, in which the interface
is reconstructed with per-cell horizontal lines, as shown in Fig. 2.3(b). Youngs [98] improved the
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(a) (b) (c)

Fig. 2.3 – The dark area represents the liquid phase, the white area represents the vapor phase.
The real interface is shown in (a), its SLIC reconstruction, in (b), and its PLIC reconstruction, in
(c).

method and proposed the Piecewise Linear Interpolation Construction (PLIC) method, in which
the interface orientation is determined by the neighboring values of α, as shown in Fig. 2.3(c). Mass
conservation is an intrinsic feature of the VOF method. The major drawback of this method is the
difficulty to compute an accurate interface curvature after reconstruction with either the SLIC or
PLIC method.

2.4.2 Level Set Methods

Since the interface is a subset of null measure of the set of real numbers, the interface can be
seen as a given iso-level of a real function defined in the computational domain.

2.4.2.1 The Signed Distance Function to the interface

Osher and Sethian [60] proposed to use the Signed Distance Function (SDF) φ to the interface
Γ defined for any node x in the computational domain Ω by

φ (t,x) = min
xΓ∈Γ(t)

‖x− xΓ‖ . (2.5)

The interface is identified as the 0 iso-level of the level set function. The signed distance function
is advected by solving the standard advection equation

∂φ

∂t
+ u · ∇φ = 0, (2.6)

where u is the fluid velocity.

After advection, the error due to the numerical scheme used to solve Eq. (2.6) and the non-
uniformity of u are responsible for the deviation of φ from the signed distance function to the
new interface position. The function φ is then reinitialized as a signed distance function to the
interface. The literature on reinitialization methods of level set functions is divided into two families
of methods : the Hamilton-Jacobi (HJ) equation and the Fast Marching Method (FMM). The
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Hamilton-Jacobi partial differential equation (PDE) is given by

∂φ

∂τ
+ S

(
φ0
)

(‖∇φ‖ − 1) = 0, (2.7)

where τ is a pseudo-time, S is a smoothed sign function typically given by Sussman et al. [83],
and φ0 is the previously advected level set that need be reinitialized. Equation (2.7) is solved in
pseudo-time until convergence, i.e. until ‖∇φ‖ = 1, which is part of the definition of the signed
distance function. In order to avoid perturbations in the interface normal vector and curvature (see
below), the term ∇φ in Eq. (2.7) is computed using a high-order scheme such as the Fifth-Order
WENO schemes developed by Shu [78] or Jiang and Peng [40]. High-order schemes require higher
computational cost, are difficult to implement on unstructured grids and may reduce performance
in a parallel code.

Another method for the reinitialization of the signed distance function after advection by Eq.
(5.28) is to consider the signed distance function to the interface as the solution of an Eikonal
equation. As detailed in Appendix A of [46], in the theory of wave propagation, the wave equation

∂2f

∂t2
(t,x) = c2∇2f (t,x) , (2.8)

where f : [0,∞[×Rn −→ R is a given function describing a wave and c > 0 is the wave speed, can
be rewritten, in the geometric optics approximation, as the Eikonal equation

‖∇φ (t,x)‖2 =
(c0
c

)2

, (2.9)

where the iso-surfaces {φ (t,x) = constant} are the wave fronts, c0 being the velocity in vacuum
and c the phase velocity of the wave in the given medium. If the medium is the vacuum, the wave
is travelling at speed c = c0, and one has the Eikonal equation

‖∇φ‖ = 1. (2.10)

Note that if boundary condition φ = 0 is imposed at the interface, then φ in Eq. (2.10) is the
signed distance function to the interface. Eikonal equation (2.10) can be seen as the stationary
version of the Hamilton-Jacobi equation (2.7) and can be solved by the Fast Marching Method
[76, 44]. The solution of equation (2.10) is based on the propagation of the signed distance function
values from the interface along the interface normal direction. The advantage of the Fast Marching
Method compared to the resolution of the Hamilton-Jacobi equation (2.7) is that the FMM does
not require high-order schemes to compute ∇φ. The drawback of the FMM is the need to sort node
lists efficiently to ensure fast access to specific φ values.

The interface normal vector is then computed as

n =
∇φ
‖∇φ‖

. (2.11)

Since φ is the signed distance function to the interface, one could expect n to be defined as n = ∇φ.
However, while mathematically true, this definition could introduce oscillations in n. It is indeed
numerically very difficult to get a normalized gradient of φ, as one would expect from a distance
function. On one hand, numerical errors in the advection and reinitialization of φ are inevitable ;
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on the other hand, the numerical scheme used to compute the gradient operator also introduces
numerical errors. As a result, it is very unlikely that ∇φ is normalized. The interface curvature
must be computed to take into account surface tension forces in the pressure jump at the interface
given by Eq. (1.31). Mathematically, the interface curvature κ is defined as the divergence of the
interface normal vector n, i.e.

κ = −∇ · n (2.12)

= −∇ ·
(
∇φ
‖∇φ‖

)
, (2.13)

which, if ‖∇φ‖ = 1, simplifies to
κ = −∇2φ, (2.14)

where ∇2 is the laplacian operator. Numerically, this computation requires particular attention.
Computing the gradient of φ on one node demands access to the φ values on the closest neighbors
of this node. Then computing the divergence of this gradient demands access to φ values on the
neighbors of the neighbors of the initial node. This has the side effect of filtering high frequencies
of φ, leading to a potential smoothing of the curvature.

2.4.2.2 The Conservative Level Set function

In order to improve mass conservation in each phase, Olsson and Kreiss [58] and Olsson et al.
[59] proposed the Conservative Level Set (CLS) method in which the level set function ψ is a shifted
smeared-out Heaviside function defined for x ∈ Ω by

ψ (t,x) =
1

1 + exp
(
−φ(t,x)

ε(x)

) , (2.15)

where φ is the signed distance function to the interface and ε is a parameter of the cell size order
controlling the thickness of the profile. Equation (2.15) is usually rewritten

ψ (t,x) =
1

2

(
1 + tanh

(
φ (t,x)

2ε (x)

))
. (2.16)

The interface is identified as the 0.5 iso-level of ψ, and ψ is uniform in each phase (ψ = 0 or ψ = 1)
starting from a small distance from the interface. The CLS function is advected by the standard
conservative advection equation

∂ψ

∂t
+∇ · (ψu) = 0, (2.17)

where u is the fluid velocity. The divergence in the lhs of Eq. (2.17) can be rewritten

∇ · (ψu) = u · ∇ψ + ψ∇ · u, (2.18)

and, for an incompressible flow (∇ · u = 0), simplifies to

∇ · (ψu) = u · ∇ψ. (2.19)

For incompressible flows, Eq. (2.17) is then equivalent to the non-conservative advection equation

∂ψ

∂t
+ u · ∇ψ = 0. (2.20)
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One advantage of the CLS is the use of the conservative advection equation (2.17) which implies
that the quantity ψ is conserved during the simulation, improving the localization of the interface
{ψ = 0.5}. Another advantage of the CLS is the ability to compute at time t the mass m+ of the
phase in which ψ > 0.5 by

m+(t) =

ˆ
Ω

ρ(x)ψ(t,x) dΩ, (2.21)

and the mass m− of the phase in which ψ < 0.5 by

m−(t) =

ˆ
Ω

ρ(x) (1− ψ(t,x)) dΩ, (2.22)

where Ω is the computational domain. Consequently, the total mass m present at time t in Ω is
given by

m(t) = m+(t) +m−(t). (2.23)

The major drawback of level set functions is their need of a reinitialization step after advection.
Indeed, the advection equation (2.17) tends to deform the hyperbolic tangent profile of ψ. This
deformation can lead to severe deviations of the expected interface shape, and even make the
simulation crash if not corrected during the time integration. In order to correct this deformation,
a reinitialization step is performed after advection to reinitialize, or reshape, the hyperbolic tangent
profile of ψ. This step has no physical meaning and is only a numerical requirement. Special care
must be taken in this step which is subject to two constraints :

1. The hyperbolic tangent profile must be recovered.

2. The interface position must not be changed during reinitialization since the advection equation
(2.17) has already been solved.

Olsson et al. [58, 59] proposed the reinitialization equation for the CLS function given by

∂ψ

∂τ
(τ,x) +∇ · (ψ (τ,x) (1− ψ (τ,x)) n (t,x)) = ∇ · (ε (x) (∇ψ (τ,x) · n (t,x)) n (t,x)) , (2.24)

where the first term of the lhs is the pseudo-temporal variation, the second term is a compression
term in the normal direction to reshape the hyperbolic tangent profile, and the rhs is a diffusion
term to enforce the characteristic thickness ε of the profile. Equation (2.24) is solved in pseudo-
time τ , highlighting the fact that the reinitialization step is purely a numerical constraint. This
reinitialization slightly changes the position of the interface on a sub-grid scale. In Eq. (2.24), the
interface normal vector n is given by

n (t,x) =
∇ψ (t,x)

‖∇ψ (t,x)‖
. (2.25)

As stated in [19], even with an accurate reinitialization algorithm, ψ can locally deviate from an
exact hyperbolic tangent function, introducing spurious currents in the normal vector. For this
reason, in the Accurate Conservative Level Set (ACLS) method [19], the authors first recompute
the new signed distance function to the interface φ by the Fast Marching Method, and then compute
the normal vector from φ by n = ∇φ/ ‖∇φ‖.
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(a) Compression in the lhs. (b) Diffusion in the rhs.

Fig. 2.4 – The compression and diffusion effects in the reinitialization equation of the Conservative
Level Set function proposed by Olsson et al. [58, 59].

In order to illustrate the compression and diffusion effects of respectively the lhs and rhs of Eq.
(2.24), we consider the one-dimensional version of Eq. (2.24) given by

∂ψ

∂τ
+

∂

∂x
(ψ (1− ψ)) =

∂

∂x

(
ε

(
∂ψ

∂x

))
. (2.26)

On a uniform grid, the ε parameter can be dropped out of the gradient, leading to

∂ψ

∂τ
+

∂

∂x
(ψ (1− ψ)) = ε

∂2ψ

∂x2
. (2.27)

Figure (2.4) illustrates the compression effect of the lhs and the diffusion effect of the rhs of Eq.
(2.27). Nevertheless, the necessity to set ε in Eqs. (2.16) and (2.24) to a small value to improve
volume conservation produces sharp gradients in ψ and thus potential oscillations in n by Eq.
(2.25).

In order to avoid this problem, and with the aim of increasing accuracy, Chiodi and Desjardins
[13] proposed a new reinitialization method for the Conservative Level Set function on cartesian
grids. In this method, Eq. (2.24) is rewritten

∂ψ

∂τ
(τ,x) = ∇ ·

 1

4 cosh2

(
φmap (τ,x)

2ε (x)

) (|∇φmap (τ,x) · n (t,x)| − 1) n (t,x)

 , (2.28)

where the inverse of the Conservative Level Set function φmap is given by

φmap (τ,x) = ε (x) log

(
ψ (τ,x)

1− ψ (τ,x)

)
, (2.29)

and the interface normal vector n is computed as

n (t,x) =
∇φFMM (t,x)

‖∇φFMM (t,x)‖
, (2.30)

φFMM being the signed distance function to the interface computed by the Fast Marching Method.



2.4. EULERIAN FRONT CAPTURING METHODS 27

2.4.2.3 Equivalence of the Conservative Level Set and Accurate Conservation Level
Set reinitialization equations

We now demonstrate that Eq. (2.28) is equivalent to Eq. (2.24). To this purpose, we first give
two useful identities : for all s ∈ R, one has

tanh2(s) = 1− 1

cosh2(s)
, (2.31)

and
d

ds
tanh(s) =

1

cosh2(s)
. (2.32)

Then one has

ψ (τ,x) (1− ψ (τ,x)) =
1

2

(
1 + tanh

(
φ (τ,x)

2ε (x)

))
︸ ︷︷ ︸

ψ(τ,x)

.
1

2

(
1− tanh

(
φ (τ,x)

2ε (x)

))
︸ ︷︷ ︸

1−ψ(τ,x)

(2.33)

=
1

4

(
1− tanh2

(
φ (τ,x)

2ε (x)

))
, (2.34)

which by Eq. (2.31) leads to

ψ (τ,x) (1− ψ (τ,x)) =
1

4 cosh2

(
φ (τ,x)

2ε (x)

) . (2.35)

The compression term in the lhs of Eq. (2.24) is then given by

∇ · (ψ (τ,x) (1− ψ (τ,x)) n (t,x)) = ∇ ·

 1

4 cosh2

(
φ (τ,x)

2ε (x)

)n (t,x)

 . (2.36)

Moreover, Eq. (2.32) implies

∇ψ (τ,x) =
1

2 cosh2

(
φ (τ,x)

2ε (x)

)∇(φ (τ,x)

2ε (x)

)
(2.37)

=
1

2 cosh2

(
φ (τ,x)

2ε (x)

) 2ε (x)∇φ (τ,x)− 2φ (τ,x)∇ε (x)

4ε2 (x)
, (2.38)

where∇ε (x) = 0 on uniform grids (and may reasonably be considered negligible on weakly stretched
grids), leading to

∇ψ (τ,x) =
1

4ε (x) cosh2

(
φ (τ,x)

2ε (x)

)∇φ (τ,x) . (2.39)



28
CHAPTER 2. STATE-OF-THE-ART NUMERICAL METHODS FOR INCOMPRESSIBLE

TWO-PHASE FLOW SIMULATIONS

The diffusion term in the rhs of Eq. (2.24) is then given by

∇ · (ε (x) (∇ψ (τ,x) · n (t,x)) n (t,x)) = ∇ ·




1

4 cosh2

(
φ (τ,x)

2ε (x)

)∇φ (τ,x) · n (t,x)

n (t,x)

 .

(2.40)

Using Eqs. (2.36) and (2.40), Eq. (2.24) can be rewritten as Eq. (2.28) where the compression
term is written in the rhs, φmap is substituted to φ and the absolute value of ∇φmap ·n is taken into
account for the case where φFMM is defined to be positive in the phase where ψ < 0.5. Finally, we
show that φmap defined by Eq. (2.29) is equal to φ. At any pseudo-time τ during reinitialization,
an approximation of the signed distance function to the interface φ (τ,x) can be recovered from the
(partially) reinitialized conservative level set function ψ (τ,x) by

φ (τ,x) = 2ε (x) atanh (2ψ (τ,x)− 1) . (2.41)

Since for s ∈]− 1; 1[, one has

atanh (s) =
1

2
log

(
1 + s

1− s

)
, (2.42)

taking s = 2ψ (τ,x) − 1 and substituting Eq. (2.42) into Eq. (2.41) establishes the equality of φ
and φmap.

The signed distance function is (theoretically only) easier to advect and reinitialize than the
Conservative Level Set function, but does not present any conservation property. Conversely, the
Conservative Level Set exhibits interesting conservation properties but is challenging to advect and
reinitialize accurately.

2.4.2.4 Level Set Methods with phase change

In the presence of phase change, the mass transfer rate ṁ contributes to the interface movement
(see Section 1.3.5). As such, ṁ appears in the advection equation of the level set function. The
detailed derivation of the exact advection equation for both the signed distance function and the
conservative level set function will be found in Chapter 5.

2.5 Numerical treatment of the discontinuities at the interface and
computation of the mass transfer rate with the Ghost Fluid Method

In the context of the Sharp Interface model, Fedkiw et al. [22] proposed the Ghost Fluid
Method (GFM) to treat the discontinuities at the interface. Each physical field is divided in one
field per phase. Each field of each phase is artificially extended (or extrapolated) beyond the
interface. The accuracy of the extrapolation depends on the method used (see below) and is
independent from the GFM. The superposition at one node of the fields of the two phases enables the
computation of a discontinuity, or jump, at this node. Nevertheless, this jump, in the formulation of
continuum mechanics, is defined only at the interface, and thus has be to interpreted with particular
attention. The extended values are called ghost values. These ghost values permit the computation
of derivatives across the interface since the discontinuity is artificially removed for the field of a
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Fig. 2.5 – Illustration of the Ghost Fluid Method in one dimension where the interface Γ separating
subdomains Ω+ and Ω− is located between nodes i and i+ 1. The physical field u is extrapolated
across the interface from node i to node i + 1, where the ghost value is noted u+

i+1, artificially
removing the discontinuity aΓ of u at the interface.

given phase. Gibou et al. [27, 26] used the GFM with linear extrapolation of the temperature fields
to compute the mass transfer rate ṁ at the interface. Tanguy et al. [85] extended the accuracy of
the method by using high-order extensions performed with the extrapolation technique proposed
by Aslam [4] and detailed in Appendix G.

2.6 The Projection Method

Incompressible Navier-Stokes equations (1.4) are classically solved by means of the projection
method based on fractional time steps developed by Chorin [14] and improved by Kim and Moin
[43]. The velocity is solved at overall iteration times (n, n + 1, etc) whereas the pressure and
the density are solved at half iteration times (n + 1

2 , n + 3
2 , etc). Projection methods are based

on Helmholtz decomposition which states that a two- or three-dimensional vector field u can be
expressed as the sum of a solenoidal (divergence-free) component uΨ and an irrotational (curl-free)
component uΦ,

u = uΨ + uΦ. (2.43)

The irrotational component uΦ derives from a scalar potential A, i.e. one has uΦ = ∇A. The
divergence operator applied to Eq. (2.43) leads to the Poisson equation

∇ · u = ∇ · uΦ = ∇2A. (2.44)

In the projection method, a velocity predictor u∗ is first computed from Eq. (1.4) from which the
pressure gradient at time n− 1

2 is dropped, i.e.

u∗ − un

∆t
= − (un · ∇) un +

1

ρn−
1
2

∇ ·
(
µ
(
∇un + (∇un)

T
))

+ g. (2.45)
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The velocity predictor u∗ is a priori not divergence-free. Second, the velocity predictor is corrected
using the pressure gradient at time n+ 1

2 ,

un+1 − u∗

∆t
= − 1

ρn+ 1
2

∇Pn+ 1
2 . (2.46)

Equation (2.46) has two unknowns, un+1 and Pn+ 1
2 (ρn+ 1

2 only depends on the phase). Since un+1

is divergence-free, taking the divergence of Eq. (2.46), one obtains the Poisson equation for the

updated pressure Pn+ 1
2 ,

∇ ·
(

1

ρn+ 1
2

∇Pn+ 1
2

)
=

1

∆t
∇ · u∗, (2.47)

where Pn+ 1
2 is the only unknown. Numerical discretization of the Poisson equation (2.47) leads to

a linear system in which the pressure jump at the interface, that will appear as a source term in the
rhs, is imposed using the Ghost Fluid Method (see Section 2.5). Once the updated pressure Pn+ 1

2

is known, Eq. (2.46) is used to correct u∗ in order to compute the updated velocity un+1. In this
correction, since the pressure gradient is also computed close to the interface, the pressure jump at
the interface is again imposed in the discretization of ∇Pn+ 1

2 in Eq. (2.46).
When phase change is considered, one has to account for the velocity jump at the interface (Eq.

(1.30)) in the Poisson equation (2.47). As will be detailed in Chapter 4, a two-velocity formulation
coupled to the Ghost Fluid Method can be used to impose the velocity jump in the Poisson equation
[85].

2.7 Literature review on numerical methods for simulations of
two-phase flows with phase change

Abundant literature exists on numerical methods for simulations of two-phase flows with phase
change. We mention here some milestones as well as state-of-the-art numerical methods for such
simulations.

2.7.1 Early works

Direct Numerical Simulations (DNS) of boiling flows were pioneered by Welch [94] in 1995.
The author developed a two-dimensional, moving-mesh finite-volume method for a single, weakly
deformable bubble. A simple interface model based on surface tension and surface energy is used.
The mass transfer rate at the interface is computed using moving grid triangles. The computations
are performed on interface-dependent triangular grids. The results showed basic capabilities to
track interfaces with phase change. Son and Dhir [80] used the Continuum Surface Force model
(see Section 2.2) to compute the mass transfer rate and the velocity discontinuity at the interface
in the context of nucleate boiling to investigate bubble release pattern depending on the heat flux.
The interface is captured by a level set method. Juric and Tryggvason [42] presented a numerical
method to simulate liquid-vapor phase change in which the interface is tracked by a Front Tracking
method (see Section 2.3). Interfacial source terms for surface tension, mass transfer and latent heat
are added as indicator functions of the interface. The authors used finite differences on cartesian
grids to simulate film boiling and bubble departure. Based on the work of Welch [94], Welch and
Wilson [95] presented in 2000 two-dimensional numerical simulations of incompressible two-phase
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flows with phase change, using a VOF-based interface tracking method in conjunction with a mass
transfer model and a model for surface tension. The authors derived a one-dimensional analytical
test problem featuring a thin thermal layer propagating with the moving phase interface. The
authors emphasized that this test problem isolates the ability of a method to accurately calculate the
thermal layers responsible for driving the mass transfer in boiling flows. A simulation of horizontal
film boiling is also provided.

2.7.2 Coupling between Level Set and Ghost Fluid Method

As stated in Chapter 1, boiling is driven by the mass transfer rate at the interface computed
from the discontinuity of the thermal fluxes on both sides of the interface (Eq. (1.26)). Numerical
methods able to accurately take discontinuities at the interface into account are then of high interest
for phase change simulations. In 1999, Fedkiw et al. [22] proposed the Ghost Fluid Method (GFM)
to provide a sharp treatment of the discontinuities at the interface. In the GFM, a physical field
defined on one phase is continuously extended across the interface to the other phase in order to
populate “ghost cells”. This technique, applied to both liquid and vapor fields constituting the same
physical field, each having a physical meaning only in their respective phase, allows knowledge of
one physical value and one extrapolated, or “ghost”, value at the same grid node. Consequently,
the discontinuity of the physical field at this node is simply given by the substraction of one value
from the other one (see also Section 2.5). Since then, the GFM has become a major ingredient in
phase change simulations, as detailed below.

In 2007, Tanguy et al. [84] used a level set function to capture the interface coupled to the ghost
fluid method to simulate vaporizing flows (liquid-to-vapor phase change with multi-component
species) in two-dimensional cartesian grids. The method is validated against various test cases of
vaporizing droplets yielding good agreement with analytical results. Also in 2007, Gibou et al.
[26] used the same coupling for two-dimensional film boiling simulation, again with good accuracy.
These two references demonstrate the efficiency of the level set/ghost fluid method coupling, and
thus mark a milestone in two-phase flow simulations with phase change.

In 2014, Tanguy et al. [85] proposed a comparison of different numerical methods suited to
simulations of two-phase flows with phase change. The liquid-vapor interface is captured using
the level set method. The accuracies of the ghost fluid method (sharp interface) and the delta
function method (smooth interface) are compared to compute the normal velocity jump condition.
The authors showed that smoothing the velocity jump condition at the interface could lead to a
misleading mass prediction, whereas the ghost fluid method performed well that test. Moreover,
the authors demonstrated that high order extrapolation methods on the thermal field allowed
performing accurate and robust simulations for a thermally controlled bubble growth. Simulations
of the growth of static and rising bubbles are presented. The computations are performed on
two-dimensional structured cartesian grids.

In order to put into perspective the developments realized in the present thesis, we emphasize
that this thesis started in 2015. The references given below have been published since then.

In 2017, Huber et al. [36] applied the method of Tanguy et al. [85] to present a DNS of
nucleate boiling on 2D axisymmetric cartesian grids. A single site with a large microscopic contact
angle and a high density ratio between the two phases is considered. The authors have studied the
influence on the numerical solution of the thermal conduction in the solid heater and concluded
that this parameter had no influence when thick and highly conductive materials were considered.
The authors also came to the conclusion that the implementation of a micro-region model (see
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Fig. A.4) in the neighborhood of the contact line and its coupling with the overall solver was not
required to perform well-resolved and accurate numerical simulations in the case of high density
ratio, high microscopic contact angle (up to 30°) and moderate Jakob number (ratio of sensible
heat to latent heat absorbed, or released, during phase change). Moreover, the authors proposed
a new correlation on the bubble detachment radius depending on the Jakob number. Lee et al.
[48] proposed to use a smooth distribution of sharp velocity jumps and mass flux within a narrow
region surrounding the interface, an improved mass flux projection from the implicit interface onto
the uniform cartesian grid and a post-advection velocity correction step to ensure accurate velocity
divergence in interfacial cells. A sharp treatment is used to take the discontinuities of pressure and
temperature gradients into account. The methodology is validated with results of axisymmetric
film boiling. Lee and Son [47] addressed the growth and collapse of a compressible vapor bubble,
in which the interface tracking method is extended to include the effects of bubble compressibility
and liquid-vapor phase change. To this purpose, the ghost fluid method is used to compute the
discontinuities at the interface. Yap et al. [97] proposed numerical simulations of three-phase flows
with phase change (two fluids among which only one admits phase change). The authors then used
two level set functions to capture the two interfaces involved in the problem, i.e. the interface
between two fluids and the interface between two phases of the same fluid. The surface tension is
treated using the continuum surface force model. The model is validated against different three-
phase flow with phase change problems involving a liquid with a rising condensing vapor bubble and
a falling immiscible liquid droplet, and solidification in stratified two-fluid flow with a growing solid
layer. In 2018, Anumolu and Trujillo [3] used second-order one-sided differences to discretize the
temperature laplacian, i.e. the numerical stencil completely resides within each respective phase, to
solve the heat equation in phase change simulations. Perez-Raya and Kandlikar [63] used a single
cell around the interface to compute the interfacial temperature gradient, and a linear interpolation
normal to the interface to compute the temperature of the cell containing the interface. Shao et al.
[77] proposed a DNS of multi-component flows with phase change in the context of combustion. The
advection of the level set function is discretized by a semi-lagrangian scheme in which phase change
is modelled by a source term. In the context of nucleate pool boiling, Urbano et al. [91] applied the
method of Tanguy et al. [85] to investigate the physical mechanisms associated with the evolution
of a micro-layer beneath a bubble and the transition between contact line and micro-layer regimes.
The authors concluded that neglecting the micro-layer would lead to erroneous results because it
has a strong influence on the overall bubble growth. Perez and Kandlikar [64] proposed numerical
simulations of nucleate boiling with a sharp interface around which interpolation functions estimate
the temperature at points located in a direction normal to the interface. A linear temperature
profile at the interface interpolates the temperature of the interface-cells. In 2019, Urbano et al.
[90] applied the method of Tanguy et al. [85] in zero gravity conditions, in the context of space
applications. The authors have established and verified numerically an analytical model for the
equilibrium radius reached by a bubble nucleated in subcooled conditions. To this purpose, DNS of
nucleate boiling are proposed in which the heat conduction in the solid wall is taken into account.
Also in 2019, Rajkotwala et al. [67] provided a comparison of smooth and sharp interface methods
for numerical simulations of two-phase flows with phase change. The authors used a hybrid front
tracking method without connectivity, which can easily handle complex topological changes. The
expansion due to phase change is incorporated as a non-zero divergence condition at the interface.
The energy equation is treated with two different approaches: smooth interface approach and
sharp interface approach. In both methods, the saturation temperature is imposed at the interface.
The numerical results underline certain advantages of the sharp interface approach over the smooth
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interface approach such as better accuracy and convergence rate, reduced fluctuations in the velocity
field and a physically bounded temperature field near the interface. Both approaches are validated
against the analytical test case of a three-dimensional vapor bubble growing in a superheated liquid,
on cartesian grids. The initial bubble radius is 0.15 m and the computational domain is a cube of
size 1 m. The results showed that the bubble radius converges with grid refinement in L2 norm,
but no information is provided towards convergence of the bubble radius in L∞ norm.

2.7.3 Coupling between VOF and Ghost Fluid Method

In 2018, Zhang and Ni [99] developed a new phase change model for the simulation of incom-
pressible multiphase magnetohydrodynamics (study of the magnetic properties and behavior of
electrically conducting fluids) based on the VOF method. In order to decrease the pressure oscilla-
tions when large density ratios are present between the liquid phase and the vapor phase, a smooth
distribution of sharp mass transfer rate in the narrow band around the interface is adopted, and
a ghost fluid approach is used to impose the saturation temperature at the liquid-vapor interface
when solving the energy equation.

In 2019, Palmore and Desjardins [61] presented numerical simulations of vaporizing two-phase
flows with large density ratios using an unsplit VOF method to transport the interface. The
mass transfer rate is computed from the thermal fluxes at the interface. A novel, divergence-free
extrapolation technique, similar to that of Tanguy et al. [85], is used to create a velocity field
that is suitable for interface transport. Sharp treatments are used for the vapor mass fractions and
temperature fields. The Poisson equation for the pressure is treated using the ghost fluid method.
The overall method is validated in one dimension and tested in two dimensions against the test
case of vaporization of a curved interface. In two dimensions, the authors obtained convergence of
the liquid temperature with grid refinement in the L1 sense but not in the L∞ sense. The authors
then emphasize the difficulty to reach L∞ convergence and how L1 convergence, while commonly
reported in the literature, can be misleading for numerical analysis of flows with sharp features or
discontinuities.

2.7.4 Coupling between Level Set, VOF and Ghost Fluid Method

In 2005, Tomar et al. [86] used a coupled level set and volume-of-fluid (a.k.a. CLSVOF) method
for modeling incompressible two-phase flows with surface tension. A simulation of film boiling and
bubble formation in refrigerant R134a is provided. The authors studied the effect of saturation
pressure on the frequency of bubble formation.

In 2018, Singh and Premachandran [79] proposed the first extension of the CLSVOF method
to two-dimensional unstructured grids for simulations of two-phase flows including phase change.
The methodology is validated with results on saturated film boiling on a horizontal flat plate (in
excellent agreement in comparison with results available in the literature using structured grids),
and natural convection film boiling over a horizontal cylinder (also in good agreement with semi-
empirical correlations). The boiling simulations presented do not exhibit analytical solutions.

2.7.5 Comments

From this review, one can see that numerical methods for simulations of two-phase flows in-
cluding phase change constitute a quite active research field. At the time of writing this thesis,
in 2019, numerical treatment of phase change in two-phase flows is still a highly challenging task,
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as confirmed by the difficulty to reach L∞ convergence of interface-related quantities (distance,
velocity, temperature, etc) with grid refinement.

Accuracy of such numerical methods is even more challenging to reach on unstructured grids,
for which the literature is much more thinner.

Moreover, the physical mechanisms involved in nucleate boiling still need to be clarified. To this
purpose, numerical simulations can be performed without taking phase change into account. In this
context, we mention the work of Guion et al. [29] where the VOF method is used to reproduce the
hydrodynamics of hemispherical bubble growth at the wall, in order to resolve the formation of the
liquid microlayer beneath the vapor bubble.



Chapter 3

Numerical simulation of two-phase flows
without phase change

This chapter presents the starting point of our work. First, a detailed presentation of the YALES2
library is given. Second, we focus on its ability to simulate two-phase flows without phase change
and detail all the implemented ingredients to achieve such simulations.
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3.1 Presentation of YALES2

YALES2 is a library of numerical solvers developed for realistic turbulent two-phase flow sim-
ulations with low Mach numbers. YALES2 is the acronym of Yet Another LES Solver where LES
stands for Large-Eddy Simulations, as explained below. The code is developed and maintained since
2007 by V. Moureau and his research team “Numerical simulation and modeling of turbulent com-
bustion” at CORIA laboratory (CNRS) near Rouen, France. Several research laboratories including
LEGI actively contribute to its development. YALES2 originally aims at solving two-phase com-
bustion from primary atomization to pollutant prediction on massive complex meshes. It has also
been largely used in hydraulics problems like accurate computing of the flow in hydraulic or wind
turbines. It is able to handle efficiently unstructured meshes with several billions of elements, thus
enabling the Direct Numerical Simulation (DNS) of laboratory and semi-industrial configurations.

35
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In DNS, all turbulence scales are resolved, hence such simulations are accurate but quite time-
and memory-consuming. YALES2 is also able to perform LES, in which only the largest turbulent
scales are explicitely resolved the effect of smallest ones are modeled. This allows to predict the most
important unsteadiness of the flow (conversely to statistical approaches) with reduced computational
cost in comparison with DNS [71]. Turbulence is not considered in this thesis, and then only DNS
will be performed.

The Mach number is defined as the ratio of the local fluid velocity by the sound speed in the
same fluid. When the Mach number is very small, compressibility of the fluid can be neglected,
and Navier-Stokes equations can be solved under incompressible assumption. Low-Mach number
flows are encountered for instance in combustion chambers [53]. In boiling simulations, the Mach
number is negligible, thus the low-Mach number approach is relevant.

More general information on YALES2 can also be found in Moureau et al. [8].

3.1.1 The Finite Volume Method

In YALES2, the equations of fluid dynamics are solved on grid nodes. In order to ease the
resolution of equations, physical quantities are stored on grid nodes. As a result, the derivatives
of physical quantities are computed using only physical values stored on grid nodes. YALES2 uses
the Finite Volume Method (FVM) for the computation of the differential operators. The principle
of the FVM is the partitioning of the computational domain into small volumes over which all
differential operators are reconstructed by integration of the fluxes across the volume faces.

3.1.1.1 Mathematical background

The FVM provides discretizations of differential operators based on the following theorems.

Theorem 1 (Divergence theorem, Gauss’s theorem, Ostrogradsky’s theorem). Let V ⊂ R3 be a
volume delimited by the closed surface S ⊂ R3, and let F : V −→ R3 be a continuously differentiable
vector function on V. One has

˚
V
∇ · F (v) d3v =

‹
S

F (σ) · n (σ) d2σ, (3.1)

where the point v ∈ V represents successively all points in the volume V, d3v ⊂ V is the three-
dimensional volume element around point v, σ ∈ S represents successively all points on the surface
S, d2σ ⊂ S is the two-dimensional surface element around point σ, and n (σ) is the outward-
pointing normal vector to S at point σ. In two dimensions, i.e. V, S ⊂ R2, F ∈ C1

(
V;R2

)
, Eq. 3.1

simplifies to ¨
V
∇ · F (v) d2v =

˛
S

F (σ) · n (σ) d1σ. (3.2)

Proof. The proof can be found in the book of Spiegel et al. [81].

Theorem 2 (Gradient theorem, fundamental theorem for line integrals). Let V ⊂ R3 be a volume
delimited by the closed surface S ⊂ R3, and let F : V −→ R3 be a continuously differentiable scalar
function on V. One has ˚

V
∇F (v) d3v =

‹
S

F (σ) n (σ) d2σ, (3.3)
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Fig. 3.1 – Example of a two-dimensional control volume used in the Finite Volume Method. The
control volume associated to node p1 is defined by the neighbor grid element barycenters and edge
midpoints.

where the point v ∈ V represents successively all points in the volume V, d3v ⊂ V is the three-
dimensional volume element around point v, σ ∈ S represents successively all points on the surface
S, d2σ ⊂ S is the two-dimensional surface element around point σ, and n (σ) is the outward-
pointing normal vector to S at point σ. In two dimensions, i.e. V, S ⊂ R2, F ∈ C1

(
V;R2

)
, Eq. 3.3

simplifies to ¨
V
∇F (v) d2v =

˛
S

F (σ) n (σ) d1σ. (3.4)

Proof. The proof can also be found in the book of Spiegel et al. [81].

3.1.1.2 Construction of control volumes

In order to apply Eqs. (3.1)-(3.4) in numerical simulations, one needs to define the volume V.
Since simulations are performed on discrete sets of points (nodes), the volume V will be restricted to
a polygon in two dimensions or a polyhedron in three dimensions. In the terminology of the FVM,
this restricted volume is called a control volume. In one dimension, control volumes are simply
delimited by the midpoints of the grid elements.

Control volumes in two dimensions

Figure 3.1 shows an example of such a two-dimensional control volume used in YALES2. The
control volume V1 associated to node p1 is built using the following procedure :

1. Identification of the grid elements Ei to which node p1 is a summit.
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2. Computation of the barycenters bi of elements Ei.

3. Among the edges of elements Ei, identification of the edges (p1,pj) linking node p1 to another
node pj .

4. Computation of the midpoints p1,j of edges (p1,pj).

5. For all elements Ei and all edges (p1,pj) of Ei, computation of the area A1,i,j of triangle T1,i,j

formed by nodes p1, p1,j and bi denoted here respectively by points A(xA, yA), B(xB , yB)
and C(xC , yC) for clarity, as

A1,i,j =
1

2
|(xB − xA) (yC − yB)− (yB − yA) (xC − xB)| . (3.5)

6. Computation of the control volume V1 associated to node p1 as the sum of all areas A1,i,j ,
i.e.

V1 =
∑
i∈I1

∑
j∈J1

i

A1,i,j , (3.6)

where I1 =
{
i11, . . . , i

1
N1

}
, with N1 ∈ N∗ the number of grid elements having p1 as summit,

and J1
i =

{
j1
i,1, j

1
i,2

}
is the set of the two indices j1

i,1 and j1
i,2 such that grid edges

(
p1,pj1i,1

)
and

(
p1,pj1i,2

)
exist.

Applied to node p1 in Fig. 3.1, the above method yields{
I1 = {1, 2, 3, 4, 5} ,
J1

1 = {2, 3} , J1
2 = {3, 5} , J1

3 = {5, 6} , J1
4 = {6, 7} , J1

5 = {2, 7} .
(3.7)

Since for all i ∈ I1, the set J1
i is composed of two elements, each grid element Ei contributes with

two triangles T1,i,j to the volume V1. To summarize, in two dimensions, control volumes are built
by joining the grid element barycenters to the grid edge midpoints.

Control volumes in three dimensions

In three dimensions, control volumes are delimited by the grid element barycenters and the
grid element face barycenters. In order to simplify the visualization, the construction of three-
dimensional control volumes is illustrated on a cartesian grid. The same methodology is applied on
unstructured tetrahedral grids.

Figure 3.2 shows a hexahedral grid element E delimited by nodes p1, . . . ,p8, as well as the
contribution E1 of E to the control volume associated to node p1. In the present case, the subvol-
ume E1 is also a hexahedron. Currently, the computation of E1 can not be performed as a single
operation in YALES2. Indeed, one has to compute independently the volumes of the six tetrahedra
constituting E1 and then compute E1 as their sum. Figure 3.3 shows the six tetrahedra constituting
E1. Depending on the grid, other grid elements can contribute to the control volume of node p1.
Figure 3.4 shows the whole control volume of node p1 as the disjoint union of all contributions of
grid elements to which p1 is a summit.
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Fig. 3.2 – Contribution E1 of the hexahedral element E delimited by nodes p1, . . . ,p8 to the control
volume associated to node p1.

3.1.1.3 Discretizations of differential operators on control volumes

We now give the FVM discretizations of the divergence, gradient and laplacian operators used in
YALES2. Equations (3.1)-(3.4) are written in continuous form. Under this form, the integrands of
both lhs and rhs of each equation are locally defined. For instance, in Eq. (3.2), ∇·F (v) depends on
v ∈ V, and F (σ) · n (σ) depends on σ ∈ S. These equations need be discretized on control volumes
defined in Section 3.1.1.2. Discretizations are only given in two dimensions but their extensions to
three dimensions are straightforward.

Refering to the control volume V1 shown in Fig. 3.1 and Eq. (3.2) of Thm. 1, the divergence
discretization of flux F used in YALES2 is based on the following assumptions :

1. The divergence of flux F (integrand of the lhs) is uniform in the whole control volume V1.

2. The flux F at the control volume boundary ∂V1 is uniform on each piecewise-linear part of
∂V1.

The second assumption needs clarification. One has

∂V1 =
⋃
i∈I1

⋃
j∈J1

i

{
σ ∈ R2 : σ ∈ {(bi − p1,j) η + p1,j} , η ∈ [0; 1]

}
, (3.8)

where the sets I1 and J1
i are defined by Eq. (3.7) and η ∈ [0, 1] is a real parameter used to describe

the segment between bi and p1,j . Along each of the segments {(bi − p1,j) η + p1,j} where η ∈ [0, 1],



40
CHAPTER 3. NUMERICAL SIMULATION OF TWO-PHASE FLOWS WITHOUT PHASE

CHANGE

(a) Tetrahedron n°1. (b) Tetrahedron n°2.

(c) Tetrahedron n°3. (d) Tetrahedron n°4.

(e) Tetrahedron n°5. (f) Tetrahedron n°6.

Fig. 3.3 – The six tetrahedra constituting the volume E1 shown in Fig. 3.2.

the flux F is then assumed to be uniform. Otherwise stated, ∂V1 is the union of all blue segments
of Fig. 3.1, linking grid element barycenters bi to grid edge midpoints p1,j , and F is assumed to
be uniform on each of these segments.

Under these assumptions, a first version of the discretization of Eq. (3.2) on control volume V1

is given by

(∇ · F)|V1
V1 =

∑
i∈I1

∑
j∈J1

i

F (σ) · (‖bi − p1,j‖n1,j;i (σ)), (3.9)

where σ = (bi − p1,j) η + p1,j for some η ∈ [0, 1]. To speed up computations, some terms of Eq.
(3.9) are grouped and pre-computed. Figure 3.5 shows a zoomed portion of V1. As previously
stated, the flux F is uniform on segment S3;1,5 = {(b3 − p1,5) η + p1,5} and on segment S2;1,5 =
{(b2 − p1,5) η + p1,5}, where η ∈ [0, 1]. Moreover, n is also uniform on these two segments. Let
Fi;1,j be the value of F on Si;1,j , Li;1,j be the length of Si;1,j , ni;1,j be the normal vector to Si;1,j
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Fig. 3.4 – Total control volume of node p1. Each contribution is built according to the method
illustrated in Figs. 3.2 and 3.3. The contribution shown in Fig. 3.2 is represented in green.

and η be a fixed real number between 0 and 1. Equation (3.9) is rewritten

(∇ · F)|V1
V1 =

∑
i∈I1

∑
j∈J1

i

Fi;1,j · (Li;1,jni;1,j). (3.10)

The vector Li;1,jni;1,j is equal to the orthogonal vector to bi − p1,j pointing to the outside of V1.
In Fig. 3.5, one has

L3;1,5n3;1,5 = R
(
−π

2

)
(b3 − p1,5) , (3.11)

and

L2;1,5n2;1,5 = R
(π

2

)
(b2 − p1,5) , (3.12)

where the rotation matrix R of angle α ∈ [0, 2π[ is given by

R (α) =

(
cosα − sinα
sinα cosα

)
. (3.13)

The sum A1,5 of L3;1,5n3;1,5 and L2;1,5n2;1,5 is computed and stored at edge (p1,p5). More generally,
for all neighbor nodes pj of p1, we define A1,j as

A1,j = Li1;1,jni1;1,j + Li2;1,jni2;1,j , (3.14)
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Fig. 3.5 – Definition and storage of vector A1,5 at edge (p1,p5) as the sum of the oriented surfaces
‖b3 − p1,5‖n1,5;3 and ‖b2 − p1,5‖n1,5;2.

where i1 and i2 are the indices of the two grid elements to which p1 and pj are two summits.
Moreover, we make the assumption that F on S3;1,5 is equal to F on S2;1,5. This common value is
given by

F|S3;1,5
= F|S2;1,5

=
1

2
(F (p1) + F (p5)) . (3.15)

These approximations are used on all grid edges (p1,pj). Finally, Eq. (3.10) is rewritten

(∇ · F)|V1
=

1

V1

M1∑
j=1

1

2
(F (p1) + F (pj)) ·A1,j , (3.16)

where M1 is the number of nodes directly linked to node p1 (M1 = 7 on Fig. 3.1). Equation (3.16)
is the second-order discretization of the divergence operator in two dimensions used in YALES2.

Similarly, the discretized version of Eq. (3.4) reads

(∇F )|V1
=

1

V1

M1∑
j=1

1

2
(F (p1) + F (pj)) A1,j . (3.17)

Equation (3.17) is the second-order discretization of the gradient operator in two dimensions used
in YALES2. Fourth-order versions of Eqs. (3.16) and (3.17) are also available.
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The FVM makes the flux balance of the physical quantity considered on control volumes, exh-
biting inherent conservation properties : a fluid particle leaving a given control volume enters one of
its neighbor control volumes, the physical quantities related to this fluid particle are then conserved
across control volume boundaries. Numerical simulations in fluid dynamics are based on mass and
momentum conservation (Navier-Stokes equations) and energy conservation (heat equation). The
FVM is then very well-suited for such simulations.

3.1.2 Temporal integration schemes

Several temporal integration schemes are available in YALES2. The fourth-order Runge-Kutta
scheme (RK4) uses the following successive iterative computation to determine the updated variable
field ξn+1 :

ξ1 = ξn − 1

4
∆tC (ξn) , (3.18)

ξ2 = ξn − 1

3
∆tC

(
ξ1
)
, (3.19)

ξ3 = ξn − 1

2
∆tC

(
ξ2
)
, (3.20)

ξn+1 = ξn −∆tC
(
ξ3
)
, (3.21)

where C is the discretized spatial operator. This scheme is explicit in the sense that it only uses the
known solution at time tn. In this thesis, otherwise stated, we use the RK4 scheme for temporal
integration.

YALES2 also implements the Crank-Nicolson (CN) scheme given as

ξn+1 = ξn + ∆t

[
1

2
C
(
ξn+1

)
+

1

2
C (ξn)

]
. (3.22)

This scheme is semi-implicit in the sense that the field ξ is advanced using both the known solution
at time tn and also the unknown solution itself at time tn+1. This scheme will be extended to a full
implicit resolution of the heat equation in Section 6.2.1.

We also mention the TRK4 scheme developed in YALES2 by Kraushaar [45] and based on RK4.
Informations on the TRK4 scheme and other temporal schemes available in YALES2 can also be
found in the thesis of Sarkar [74].

3.1.3 A massively parallel code : High-Performance Computing

Numerical simulations in three-dimensional complex geometries, e.g. combustion chambers or
rocket nozzles, imply large grids. Simulations on such grids are time- and memory-consuming.
In order to save wall-clock time and to overcome memory limitations, YALES2 heavily relies on
parallelism. A High-Performance Computing (HPC) approach has been adopted.

From the beginning of YALES2’s development, particular attention has been paid to the paral-
lelism of the code. The classical parallelism method consists in splitting the computational domain
on subdomains between computer cores. This method is called the Simple Domain Decomposition
(SDD) method and is illustrated in Fig. 3.6. In the SDD, each core has knowledge of only one
subdomain and MPI communications are performed between subdomain boundaries to share in-
formations when needed (typically to compute derivatives). This technique speeds up simulations
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Fig. 3.6 – MPI parallelism using the Simple Domain Decomposition method. Each core has knowl-
edge of only one subdomain.

(a) Each core has knowledge of only one subdo-
main. Each subdomain is divided into element
groups to fill the core-specific L1, L2 or L3 caches
(see Section 3.1.3.1).

(b) Communication scheme used in the DDD. In
one subdomain (on one CPU), element groups
(or cell groups) communicate by means of data
structures called internal communicators. Two
subdomains (on two different CPUs) communi-
cate by means of data structures called external
communicators via MPI (Message Passing Inter-
face).

Fig. 3.7 – Illustration of the Double Domain Decomposition (DDD) used in YALES2 [52].

depending on the scalability of the chosen solver. To further improve the computation speed, a
second level of domain decomposition has been adopted in YALES2. Each subdomain defined in
the SDD is indeed divided in element groups of customizable number of elements. This method
is called the Double Domain Decomposition (DDD) method and is illustrated in Fig. 3.7. The
purpose of the DDD is the optimization of data transfer time at the hardware level.

3.1.3.1 The Double Domain Decomposition and the three levels of processor caches

Computer memory can be classified according to a hierarchy defined by data access time. Three
main memory types can be distinguished in this hierarchy, from the fastest provided data access
time to the slowest one :
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Fig. 3.8 – The three levels of L1, L2 and L3 caches on a quad-core processor.

1. Processor caches

a) L1

b) L2

c) L3

2. Random Access Memory (RAM)

3. Hard disks

When a processor, or CPU, has to perform an operation on given data, it has first to access data.
To this purpose, data stored on the Hard disk has to be copied on all memory units listed above
until one of the L1, L2 or L3 caches. The two well-known memory types of this list are Hard disks
and RAM. A Hard Disk has an important amount of memory but provides the processor with slow
data access. To speed up access time, data are copied (mounted) to the RAM, where the amount of
memory is much smaller but the data access much faster. To further speed operations, processors
have their own caches. A processor has typically three caches named L1, L2 and L3. The L1 cache
has the smallest amount of memory but provides the processor with a very fast data access. The
L2 cache has more memory than the L1 cache but gives slower data access, and the L3 cache has
more memory than the L2 cache but also gives slower data access. Figure 3.8 shows the hierarchy
of memory units listed above.

In YALES2, data access time is slowered by means of the Double Domain Decomposition. Using
this method, operations are performed on a per-element-group basis, where the size of element
groups is user-defined. The data associated to each element group are expected to fit in the L1 (or
L2) cache memory, thus a single cache filling is theoretically expected when data need to be copied.
The element group size is typically set between 1 000 and 2 000, based on empirical tests.
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3.2 The Spray solver

In this section we focus on the Spray solver developed for liquid jet atomization simulations
but generally valid for two-phase flows. This solver is the base of our Boiling solver detailed in the
following chapters. A good understanding of the Spray solver is then needed to understand our
developments.

Atomization simulations require a Navier-Stokes solver and a robust and accurate method to
simulate the two-phase interface movement. In the Spray solver, the interface is represented by
means of the Conservative Level Set method introduced in Section 2.4.2.2. Once the CLS function
has been advected and reinitialized, the incompressible Navier-Stokes equations are solved. The
Spray solver uses the projection method detailed in Section 2.6 to solve Navier-Stokes equations with
a time decoupling between velocity and pressure. The velocity is continuous across the interface.
The only discontinuity at the interface that explicitely intervenes in the projection method is the
pressure discontinuity due to surface tension.

One temporal iteration of the Spray solver is completed when both the CLS and Navier-Stokes
equations are solved. The algorithm of the Spray solver is summarized in Alg. (1), and more details
about the ACLS method and the projection method are given in the following sections.

Algorithm 1: One iteration of the Spray solver

1 Prescription of initial and boundary conditions for CLS and velocity or pressure;
2 while t < tmax do
3 Compute SDF function from CLS function, interface normal and curvature;
4 Advect CLS function;
5 Reinitialize CLS function;
6 Solve incompressible Navier-Stokes equations with the projection method;

3.3 Interface modeling and localization : the Sharp Interface model
versus the Narrow Band Approach

The Continuum Surface Force model presented in Section 2.2 only approximates surface tension
forces at the interface. Since simulations of phase change heavily rely on the ability of the numerical
method to accurately locate the interface, we made the choice to compute surface tension forces
directly at the interface, i.e. to use the SI model. The boiling phenomenon is defined by the tran-
sition of fluid particles, due to heat fluxes, from the liquid phase to the vapor phase. Theoretically,
the transition of one fluid particle lasts a certain amount of time since, at microscopic scale, the
liquid-vapor interface is diffuse and has a non-zero thickness, similar to the macroscopic diffuse
interface depicted in Fig. 2.1. Nevertheless, since we want to simulate boiling at macroscopic scale
using the SI model, phase change is characterized in our simulations by the abrupt passage of one
fluid particle from one phase to the other, i.e. phase change happens instantaneously (at infinite
speed).

In two-phase flow simulations, the interface location is a crucial information. Independently of
the numerical method used to track or capture the interface, it is also useful for various numerical
operations to identify the grid nodes close to the interface. In YALES2, the nodes around the
interface are flagged with a signed integer number indicating their degree of remoteness from the
interface. This method is called the Narrow Band Approach [1]. These signed integer numbers
are called band levels. Sign apart, nodes of band level 1 are the closest nodes to the interface,
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Fig. 3.9 – Narrow band defined around the two-phase interface (in blue) with 3 band levels in each
phase : from 1 to 3 in the liquid phase and from −1 to −3 in the vapor phase. In YALES2, the
default number of band levels is usually set to 8.

nodes of band level 2 are the direct neighbors of nodes of band level 1, and so on until a chosen
maximum band level. In YALES2, the maximum band level is user-defined and typically set to 8.
By convention, nodes located in the liquid phase are flagged with positive integer numbers, and
nodes located in the vapor phase are flagged with negative integer numbers. Figure 3.9 shows an
example of a narrow band definition in two dimensions. In the following parts, the expression “band
levels” refers to the band levels defined in Fig. 3.9.

3.4 Accurate Conservative Level Set method

YALES2 uses the Accurate Conservative Level Set method from Desjardins et al. [19] introduced
in Section 2.4.2.2. In YALES2, the Fast Marching Method is not implemented for the computation of
the signed distance function because this method strongly relies on a cartesian mesh. Unstructured
versions of the FMM exist [11], but are difficult to implement1, even in a sequential algorithm.
Instead, YALES2 uses its own distance computation method.

3.4.1 Computation of the Signed Distance Function

In [19], once the CLS is advected and reinitialized, the authors compute the Signed Distance
Function with the Fast Marching Method. Instead, YALES2 uses a robust method suitable to
unstructured grids. The Spray solver computes the Signed Distance Function the following way :
once the CLS is advected and reinitialized, the exact position of the interface is computed on each
grid edge by inversion of the CLS function on the closest nodes to the interface. From ψ, one can

1See following chapters.
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Fig. 3.10 – Computation on node x1 (band level 1) of the signed distance function φ to the interface
Γ by Eq. (3.25) where the relative distance θx1,x2

is given by Eq. (3.24). The exact value of φ (x1)
is given by the length of the green segment.

recover the relative position of the interface θ ∈ [0; 1] on one grid edge by inversion of the hyperbolic
tangent function. Let (x1,x2) be the grid edge between nodes x1 and x2. For i = 1, 2, YALES2
computes the signed distance values at xi as

φ(t,xi) = 2ε(xi) atanh

(
2 max

(
min(ψ(t,xi), 1− δ), δ

)
− 1

)
, (3.23)

where the min and max functions are used to avoid under- and overshoots on the argument of the
atanh function, and δ is a non-dimensional constant fixed to 10−15. The interface relative distance
θ is given by

θx1,x2
(t) =

φ(t,x1)

φ(t,x1)− φ(t,x2)
, (3.24)

where θ = 0 when the interface is on node x1 and θ = 1 when on node x2. From the knowledge of
θ, the value of the signed distance function on node x1 is computed as

φ(t,x1) = min {θx1,x2 ‖x1 − x2‖ , θx1,x3 ‖x1 − x3‖} , (3.25)

as depicted in Fig. 3.10, meaning that the distance of node x1 is computed with an error O(1)
coming from the simplification of the orthogonal distance (in green) with the distance of node x1

to the closest intersection of the interface with an edge containing node x1.
Once a signed distance value is computed on all the closest nodes to the interface (band level 1)

by Eq. (3.25), signed distance values are computed for the nodes immediately close to them (band
level 2). Figure 3.11 shows an example of signed distance computation for a node x4 of band level
2. For this node, the signed distance value is computed using Chasles’s identity, i.e.

φ(t,x4) = ‖A + B‖ , (3.26)

where A is a vector from x4 to a node of band level 1 and B is a vector from the same node to the
interface, such that A + B has the smallest norm among all candidates for A and B.

As seen in Fig. 3.10, this computation method is a bold approximation of the real signed
distance value at node x1, equal to the length of the segment linking node x1 to its projection onto
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Fig. 3.11 – Computation on a node of band level 2 of the signed distance function φ to the interface
Γ by Eq. (3.26) where the vector summation is done on the grid edges shown in red. The resulting
φ value is equal to the norm of vector A + B. The exact value is given by the length of the green
segment.

the piecewise-linear interface Γ, shown in green. Indeed, as will be largely detailed in the following
chapters, the lack of precision in the computation of the signed distance function must absolutely be
eliminated when dealing with phase change, and more generally, with any numerical method which
heavily relies on the interface normal vector. The motivation behind this rough approximation is
the robustness and simplicity of the method. It must be said that the error, non-negligible on band
level ±1, becomes increasingly small on outer band levels.

3.4.2 Computation of the interface normal vector

As typically done in the level set formalism, the Spray solver computes the interface normal
vector n as

n =
∇φ
‖∇φ‖

, (3.27)

where φ is given by Eq. (3.25). The interface normal vector is used in two different steps of the
numerical method of the Spray solver : in the computation of the interface curvature (see Section
3.4.3) and in the reinitialization of the CLS function (see Section 2.4.2.2, Eq. (2.24)).

3.4.3 Computation of the interface curvature

The Spray solver uses Eq. (3.6) from Goldman [28], based on Frenet equations and compatible
with Eq. (2.13), to compute the interface curvature. This equation is

κ =
∇φT ·H(φ) · ∇φ− ‖∇φ‖2 Tr (H (φ))

‖∇φ‖3
, (3.28)
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where H(φ) is the hessian matrix of φ given by

H (φ) =

φxx φxy φxz
φyx φyy φyz
φzx φzy φzz

 , (3.29)

and Tr is the trace operator given by

Tr (H (φ)) = φxx + φyy + φzz. (3.30)

Until the 2nd Extreme CFD Workshop in January 2019, CERFACS, Toulouse, France, Eq. (3.28)
was solved using compact schemes (i.e. schemes involving only the closest neghbors of a node) for
the discretization of the gradient and hesssian operators. During the workshop, it has been found
more accurate on some simulations to use a non-compact scheme to compute the hessian operator
in Eq. (3.28). This is now the preferred method to compute the interface curvature in YALES2.

3.5 The Projection Method

The Spray solver uses the projection method detailed in Section 2.6 in which the pressure jump
is given by Eq. (1.8). The discretization of the Poisson equation with the application of the
discontinuities at the interface in the case of phase change with the Boiling solver will be detailed
in Chapter 4 and Appendix B.

3.6 Resolution of the Poisson equation

Poisson equation (2.47) where Pn+ 1
2 is the unknown is written as a linear system of the form

APn+ 1
2 = B, (3.31)

where A is a N ×N matrix, N being the total number of grid nodes, only composed of geometrical
grid properties (and information on the per-phase uniform density ρn+ 1

2 ), Pn+ 1
2 is the vector

of unknown pressures P
n+ 1

2
i and B is the vector of predictor velocity divergences 1

∆t∇ · u
∗
i , for

i = 1, . . . , N , and terms related to the pressure jump at the interface (Eq. (1.8)). The linear system
(3.31) is solved using a linear solver. Linear solvers use different iterative methods depending

on the properties of A. Since YALES2 is designed to handle grids with billions of elements, the

system (3.31) is never solved by direct inversion of the whole matrix A which would be unfeasible.

Moreover, MPI parallelism implies that A and B are never entirely known on one given computer

core. One core has only knowledge of coefficients of A and B concerning nodes located in their
assigned subdomain, and MPI communications are performed between core boundaries at each
iteration of the linear solver to share information when needed. These communications can occupy
up to 80% of the overall computation time [50]. The resolution optimization of Poisson equation
(2.47) is of major importance in parallel incompressible flow simulations.

Abundant literature can be found on linear solvers. When matrix A is symmetric positive
definite, the Conjugate Gradient (CG) method can de used [34]. The CG method is iterative and
can be time-consuming. A good initialization of the method, called preconditioning, significatively
lowers the number of iterations. This method is called the Preconditionned Conjugate Gradient
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(PCG) [92]. To further speed up computations, a deflation operation can be performed. A first set

of iterations is performed where the unknown Pn+ 1
2 is assumed to be uniform on predefined grid

regions. The resulting field is used as initialization in the PCG solver. The method is called the
Deflated PCG (DPCG) [55], [5]. In YALES2, these three solvers are available. In our simulations,
Eq. (3.31) is solved using the DPCG solver. The grid regions used in the DPCG solver are the
element groups defined by the DDD method detailed in Section 3.1.3 and illustrated in Fig. 3.7(a).
Details about the DPCG solver implementation in YALES2 can be found in [49, 50]. Linear systems
involving non-symmetric matrices are solved with the BiConjugate Gradient (BiCG) method using
the BiCGStab and BiCGStab2 methods [92].

As stated in Section 2.6, once the updated pressure is known, Eq. (2.46) is used to correct the
velocity predictor in order to compute the updated velocity.





Chapter 4

Numerical simulation of two-phase flows
with phase change in one dimension

A first version of our numerical method is presented in this chapter and evaluated against a one-
dimensional stationary test case. Only mandatory ingredients of the method for one-dimensional
simulations are presented and used in this chapter.

Phase change naturally arises in real flows, either because of pressure variations, or because
of temperature variations. In YALES2, we developed the Boiling solver to enhance the numerical
method presented in Chapter 3 in order to simulate phase change due to heat transfer.

Outline
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4.1 Introduction

Boiling is a complex physical phenomenon (see Chapter 1 for a description of the physics of
boiling). As detailed in Chapter 3, two-phase flows imply the existence of an interface separating
the two phases. In two dimensions, the interface is a curve ; in three dimensions, it is a surface, and
in one dimension, it is a point. Phase change occurs precisely at the interface. We recall here that
the interface whose position changes w.r.t. time, is not necessarily lying on grid nodes. Indeed,
the interface is in general located between grid nodes and is thus defined through a set of points at
subgrid level. The interface position is then captured using the Conservative Level Set function ψ
given by Eq. (2.16). Since the interface normal vector and curvature are needed in the numerical
method, a complex machinery is used to compute them from the knowledge of ψ. As will be detailed

53
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in Chapter 5, the methods available in the version of YALES2 of 2015 introduce large deviations in
the interface location. This chapter introduces the numerical method used to simulate two-phase
flows with phase change. Since our goal is to focus on the numerical ingredients used to take phase
change into account in Navier-Stokes equations, the problem of deviations in the interface location
is avoided by restricting the presentation and validation of the method to the one-dimensional case.
The strategy will be extended to 2D and 3D in Chapters 5 and 6.

The contribution of this thesis is the development of the Boiling solver in the YALES2 library.
The Boiling solver has been validated against test cases in one, two and three dimensions, on
structured and unstructured grids, in sequential and parallel algorithms. This chapter introduces
the main ingredients of the Boiling solver with the restriction to the one-dimensional case. Chapters
5 and 6 detail and validate the numerical method implemented in the Boiling solver in 2D and 3D,
with a fixed mass transfer rate (Ch. 5) and a computed mass transfer rate (Ch. 6). The notion of
mass transfer rate is explained in this chapter.

We used the Spray solver detailed in Chapter 3 as a base to develop the Boiling solver. The
choice of the Spray solver comes from the fact that is was the most advanced two-phase flow solver
in YALES2 when we started this work. As a consequence, the Boiling solver implements the same
families of methodologies (Level Set function to capture the interface movement and Projection
Method to solve Navier-Stokes equations with Ghost Fluid Method to handle discontinuities at the
interface). The Boiling solver extends these methodologies and implements new ones to take phase
change into account. These improvements are presented in the following sections in which space is
one-dimensional.

4.2 Governing equations

4.2.1 Mass conservation

In one dimension, Eq. (1.3) reads
∂ui
∂x

= 0, (4.1)

where the subscript i denotes the phase. The velocity ui is thus only dependent on time, i.e.

ui = ui(t). (4.2)

Note that different unconnected regions of the same phase i can present different values of ui (see
Section 4.4).

4.2.2 Incompressible Navier-Stokes equation with phase change

Equation (1.21) states that the volume expansion at the interface due to boiling leads to a non
zero velocity divergence at the interface, i.e. the incompressible hypothesis, valid for both the vapor
and liquid phases, does not hold at the interface. Considering a vaporizing spherical bubble, since
volume expansion occurs at all points on the interface, the surrounding liquid is pushed away from
the interface. In YALES2 we use the infinitely thin interface model together with an incompressible
formalism for Navier-Stokes equations in both phases. Since the infinitely thin interface is a subgrid
set of null measure, it would be quite challenging to use a single velocity field and enforce Eq. (1.21).
On the contrary, we use the Ghost Fluid Method to enforce the velocity discontinuity uliq − uvap

at the interface, i.e. to mimic Eq. (1.21), by means of two different velocity fields [84, 85].
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Fig. 4.1 – Velocity and pressure profiles for one phase in one dimension as given by the solution of
the incompressible Navier-Stokes equation (4.4).

This methodology is relevant as long as the computational domain does not prevent the liquid
to be pushed away from the interface by boiling. In this thesis, we consider boiling in an open
system, so the liquid pushed by the vapor volume increase at the interface due to boiling can exit
the domain. In a confined area, liquid-to-vapor phase change would lead, due to mass conservation,
to the compression of the fluid everywhere in the domain.

The one-dimensional incompressible Navier-Stokes equation is given in each phase i by

∂ui
∂t

+ ui
∂ui
∂x

= − 1

ρi

∂P

∂x
+ 2νi

∂2ui
∂x2

, (4.3)

where ui is the velocity, ρi the density and νi the kinematic viscosity of the given phase, P is the
pressure field (the gravitational forces are neglected). Equation (4.3) simplifies by Eq. (4.1) to

∂ui
∂t

= − 1

ρi

∂P

∂x
, (4.4)

simply relating the fluid acceleration to its pressure gradient at the same point. Equations (4.2)
and (4.4) establish that ∂P/∂x is only dependent on time. Figure 4.1 shows a sketch of a velocity
profile for one phase and a compatible pressure profile.

4.2.2.1 Velocity and pressure jumps at the interface

As a consequence of vapor volume expansion and difference in density between the liquid and
vapor phases, the velocity is discontinuous across the interface. This discontinuity is given by Eq.
(1.30) recalled here,

[u]Γ = ṁ

[
1

ρ

]
Γ

nΓ, (4.5)

where u = ±‖u‖ ex and nΓ = ±ex.
Since in one dimension, the interface is reduced to a disjoint set of points, the interface curvature

is not defined, and the pressure jump given by Eq. (1.31) simplifies to

[P ]Γ = −ṁ2

[
1

ρ

]
Γ

. (4.6)

The velocity and pressure jumps are computed from the mass transfer rate and imposed at the
interface location when solving Eq. (4.4).
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4.2.3 Advection and reinitialization equations of the Accurate Conservative
Level Set function with phase change

The Accurate Conservative Level Set Method from Sections 2.4.2.2 and 3.4 is used to capture
the interface. In each phase, the advection equation of the Conservative Level Set function ψ is
given by

∂ψ

∂t
+

∂

∂x
(ψui) = 0, (4.7)

where i stands for the liq or vap subscript, depending on the phase containing the node where the
equation is solved, which simplifies by Eq. (4.1) to

∂ψ

∂t
+ ui

∂ψ

∂x
= 0. (4.8)

Without phase change, the interface is only advected by the fluid velocity. The density difference
between phases implies that the liquid-turned-vapor fluid particles occupy a larger space. As a
result, boiling contributes to the interface movement, even for an otherwise quiescent fluid. The
total interface velocity in presence of phase change is given by Eqs. (1.32) and (1.33). We adopt the
following convention : the interface motion is computed w.r.t. the velocity of the enclosed phase,
i.e. a vapor bubble surrounded by liquid has an interface computed w.r.t. the vapor velocity, a
liquid droplet surrounded by vapor has an interface computed w.r.t. the liquid velocity. Since we
focus this work on boiling, we are then more interested in vapor bubbles surrounding by liquid. As
a result, uvap − ṁ/ρvap is substituted to ui in Eq. (4.8) which is rewritten

∂ψ

∂t
+ uvap

∂ψ

∂x
=

ṁ

ρvap

∂ψ

∂x
, (4.9)

where the phase change contribution is considered as a source term. The philosophy underlying the
choice of this equation form is to consider phase change as an external ingredient in the dynamics
of a two-phase flow. If there is no phase change, the rhs of Eq. (4.9) vanishes and this equation
defaults to Eq. (4.8). Conversely, in the case of bubbles at rest in a hotter liquid, the advection
term in the lhs of Eq. (4.9) vanishes, and the interface motion is only driven by the phase change
contribution in the rhs of the same equation. These two observations are also valid in the case of
droplets at rest where the liquid velocity and density are substituted in Eq. (4.9). Equation (4.9) is
the advection equation of the Accurate Conservative Level Set function solved in the Boiling solver
for one-dimensional simulations.

Advection deforms the CLS function, then it is reinitialized using Eq. (2.27).

4.2.4 Temperature equation with immersed Dirichlet boundary condition at
the interface

In boiling, the mass transfer rate depends on the heat exchanges across the interface. We recall
that the mass transfer rate is defined as the difference between the heat fluxes across the interface
divided by the latent heat, as given by Eq. (1.26). The heat equation has thus to be solved in
the Boiling solver. We assume that the interface temperature TΓ is equal to the fluid saturation
temperature Tsat. The classical explicit advection-diffusion equation at the interface given by

∂Ti
∂t

+ ui
∂Ti
∂x

=
1

ρicp,i

∂

∂x

(
λi
∂Ti
∂x

)
(4.10)

TΓ = Tsat (4.11)
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is solved on both phases, where ui is the fluid velocity, ρi the density, cp,i the heat capacity at
constant pressure, λi the thermal conductivity of the phase denoted by the subscript i. The difficulty
is that condition (4.11) is not applied on given nodes, rather on an interface whose position is in
general not coincident with grid nodes. We use the terminology immersed to state that the interface
is a subgrid point set, and Eq. (4.11) is said to be an immersed boundary condition [65].

4.2.5 Mass transfer rate equation

Once the liquid and vapor temperature fields have been advanced in time with immersed Dirich-
let boundary condition (4.11), one can compute the mass transfer rate. In one dimension, the
definition (1.26) of the mass transfer rate ṁ becomes

ṁ =
1

Lv

(
−λliq

∂Tliq

∂x

∣∣∣∣
Γ

ex + λvap
∂Tvap

∂x

∣∣∣∣
Γ

ex

)
· nΓ, (4.12)

where Lv is the latent heat of the fluid and nΓ is the interface normal vector, that is trivially
computed as ±ex in one dimension.

4.3 Solving the governing equations

We now describe the methodologies used to solve the governing equations presented above in the
Boiling solver for the one-dimensional case. These numerical methods will be extended to higher
dimensions in Chapters 5 and 6.

4.3.1 Solving the incompressible Navier-Stokes equation with phase change:
two-velocity formulation in the projection method

The Boiling solver solves the one-dimensional Navier-Stokes equation (4.4) using the projection
method presented in Section 2.6 with some adaptations. The main difference between the projection
method used in the Spray solver and the one used in the Boiling solver is the non-zero velocity
jump at the interface (Eq. (4.5)) computed in the Boiling solver. The velocity jump cannot be
handled as easily as adding a new term in the method used in the Spray solver. Indeed, as for
all discontinuities accounted in this methodology, the velocity jump is defined precisely at the
subgrid interface location, as denoted by the Γ subscript. As a result, when one has to apply
differential operators to the velocity field on nodes close to the interface, one has also to apply
the corresponding velocity jump in the operator discretization. This requirement leads to the
famous problem of differentiating across an interface with discontinuities. It is well-known that
classical differential operators act on continuous functions, thus are not designed to differentiate
across discontinuities. In terms of two-phase flow dynamics, classical differential operators are not
designed to differentiate across the two-phase interface. In order to overcome this difficulty, the
Boiling solver uses the Ghost Fluid Method detailed in Chapter 2 : both velocity fields uliq and uvap

are defined in the whole domain. Physical values of the liquid (vapor) velocity are contained in the
liquid (vapor) part of uliq (uvap), and the vapor (liquid) part of uliq (uvap) can be used to store any
working values, with potentially no physical meaning. Figure 4.2 illustrates the definitions of the
velocity fields used. These working values are called ghost values and, in the present case, are used
to compute the velocity jump at the interface. In the projection method, prior to the computation
of the velocity predictor u∗, a constant extrapolation of the liquid velocity is performed in the
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(a) Liquid velocity field. (b) Vapor velocity field.

Fig. 4.2 – Liquid (a) and vapor (b) velocity fields defined in the whole computational domain. For
each field, the green part represents the physical field and the blue part is used to store working
values for use with the Ghost Fluid Method, as shown in Fig. 4.3.

Fig. 4.3 – Constant extrapolations (in red) of the liquid velocity uliq in the vapor phase, and of the
vapor velocity uvap in the liquid phase.

direction of the interface normal vector, from the liquid nodes to the vapor nodes, until the vapor
boundary of the narrow band. A similar extrapolation is performed on the vapor velocity uvap, from
the vapor nodes to the liquid nodes. Figure 4.3 represents the two velocity fields and their constant
extrapolations in the opposite phases. We emphasize that these extrapolations are here particularly
easy to perform since in one dimension, both liquid and vapor velocities are uniform due to Eq.
(4.1). The extrapolation consists then simply in copying a uniform value on the nodes located on
the opposite side of the interface. As will be shown in Chapters 5 and 6, this is not the case in
multidimensions. Thanks to the use of two distinct velocity fields and their constant extrapolations
across the interface, each velocity field can now be differentiated across the interface. The velocity
predictors u∗liq and u∗vap are independently computed by Eq. (2.45), which, in one dimension, simply
states that

u∗liq = unliq (4.13)

and

u∗vap = unvap, (4.14)

since thr rhs of Eq. (2.45) is zero. As opposed to the two velocity fields, our method does not
require the definition of two pressure fields. Indeed, only one pressure field is defined in the whole
domain and only one Poisson equation (2.47) is solved to compute the new pressure Pn+ 1

2 in the
whole domain. The velocity and pressure jumps are imposed in the matrix coefficients and in
the rhs of the linear system yielded by the Poisson equation in order to compute the divergences
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of the predictor velocities u∗liq and u∗vap. Due to Eqs. (4.13) and (4.14) and the incompressible
hypothesis, these divergences are null in one dimension. On each grid node crossed by the interface,
two different velocity jumps are computed : the velocity predictor jump [u∗]Γ and the updated
velocity jump

[
un+1

]
Γ
. On one grid edge (x1,x2) crossed by the interface, the velocity predictor

jump is computed by

[u∗]Γ =
1

2

(
u∗liq,1 + u∗liq,2

)
− 1

2

(
u∗vap,1 + u∗vap,2

)
(4.15)

and the updated velocity jump is computed as[
un+1

]
Γ

=
1

2

(
ṁn+1

1 + ṁn+1
2

) [1

ρ

]
Γ

nΓ, (4.16)

where nΓ = ±ex. The pressure jump is computed as[
Pn+ 1

2

]
Γ

= −
(
ṁn+1

1 + ṁn+1
2

2

)2 [
1

ρ

]
Γ

. (4.17)

The jumps [u∗]Γ,
[
un+1

]
Γ

and
[
Pn+ 1

2

]
Γ

are imposed in the discretization of the Poisson equation

(2.47) as detailed in Appendix B. Once the updated pressure Pn+ 1
2 is known, we use Eq. (2.46)

to correct the velocity predictors u∗liq and u∗vap in order to obtain the updated velocities un+1
liq and

un+1
vap . Using Eq. (2.46) requires the computation of ∇Pn+ 1

2 . Close to the interface, valid pressure
values are neeeded by the other phase to compute the gradient, as in the case of the velocity for
the velocity predictors computations. The computation of such valid pressure values is detailed
in Appendix B. The following enumeration summarizes the steps of the specific one-dimensional
variant of the projection method implemented in the Boiling solver.

1. Computation of velocity predictors Using constant extrapolations on unliq and unvap across
the interface to compute ghost values for nodes close to the interface, computation of u∗liq and
u∗vap by

u∗i = uni (4.18)

where i denotes the phase (liquid or vapor).

2. Solving the Poisson equation with discontinuities at the interface Building of the ma-
trix coefficients of the linear system corresponding to the Poisson equation

∂

∂x

(
1

ρ
n+ 1

2
i

∂

∂x
Pn+ 1

2

)
= 0 (4.19)

imposing the velocity and pressure jumps according to Appendix B.

3. Computation of the updated pressure gradient Computation of ∂Pn+ 1
2 /∂x with the Ghost

Fluid Method : extrapolation of pressure local ghost values across the interface, based on phys-
ical pressure values and velocity and pressure jumps at the interface, according to Appendix
B.

4. Correction of the velocity predictors Correction of u∗liq and u∗vap to obtain the updated

velocities un+1
liq and un+1

vap by

un+1
i = u∗i −

∆t

ρi

∂

∂x
Pn+ 1

2 . (4.20)
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5. Constant extrapolation of the updated velocities across the interface Constant extrap-
olation of un+1

liq from the liquid to the vapor phase, and of un+1
vap from the vapor to the liquid

phase, to compute updated velocity ghost values, eliminating the velocity jump on each up-
dated velocity field, enabling differentiation across the interface for the next solver iteration.

4.3.2 Solving the Accurate Conservative Level Set equations

In one dimension, the interface normal vector need not be computed from the signed distance
function by Eq. (3.27). As a result, one does not need to compute the signed distance function,
and the considerations on the potential under- and overshoots of the Accurate Conservative Level
Set function due to advection and reinitialization discussed on Section 3.4.1 simply vanish. The
one-dimensional case is more permissive concerning small interval overshoots of the CLS function
outside the interval [0; 1].

4.3.3 Solving the temperature equation with immersed Dirichlet boundary
condition at the interface

Enforcing immersed Dirichlet boundary condition (4.11) is challenging. Indeed, because the
liquid-vapor interface is not lying on grid nodes but can be located anywhere between them, the
immersed boundary condition has to be imposed at a subgrid level corresponding to the exact
interface location. Due to the fact that condition (4.11) is of Dirichlet type, the subdomains Ω1 and
Ω2 corresponding to the liquid and vapor phases can be considered separated from the temperature
equation point of view. As a result, the temperature equation can be solved independently on
both subdomains, provided that condition (4.11) is enforced at the interface from both phases.
Considering the computational domain depicted in Fig. 4.4, we use the Ghost Fluid Method
detailed in chapter 2 to fulfill two purposes : first, that condition (4.11) is satisfied from both phase
perspectives ; second, that one temperature field is advanced by Eq. (4.10) without the influence
of the other temperature field. The method consists in imposing condition (4.11) in the advection
term of Eq. (4.10). We recall here the definition of the gradient operator in the finite volume
framework as detailed in chapter 2 or chapter 3. In one dimension, the gradient operator ∂ · /∂x
applied to a scalar field T is evaluated at node i by

∂T

∂x

∣∣∣∣
i

=
Ti+1 − Ti−1

2∆x
ex. (4.21)

We need to modify the rhs of Eq. (4.21) to satisfy condition (4.11). We detail the procedure for
the liquid temperature field. The counterpart with the vapor phase is straightforward.

In Fig. 4.4, the liquid phase is on the left of the interface, and the interface is between nodes
i in the liquid and i + 1 in the vapor. Due to the independence of the two subdomains Ω1 and
Ω2 with respect to the temperature equation (thanks to the Dirichlet condition imposed on Γ), the
value of Ti+1 must not be used in Eq. (4.21) when solved for the liquid phase. The Ghost Fluid
Method is a well-suited method to handle discontinuities in a two-phase flow. It enables the use of
two temperature fields, one for each phase. The liquid and vapor temperature fields are denoted
Tliq and Tvap respectively. Both Tliq and Tvap are defined in the whole domain. The vapor part of
Tliq is used to store liquid ghost values. The liquid part of Tvap is used to store vapor ghost values.
Again, this is the principle of the Ghost Fluid Method (see chapter 2 for more details). The liquid
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Fig. 4.4 – Representation of a 1D computational domain with liquid on the left of the interface Γ,
vapor on the right, and linear extrapolation according to Eq. (4.24) of the liquid temperature field
ensuring TΓ := Tsat by the use of the Ghost Fluid Method.

temperature value at node i+ 1 is then a ghost value, and Eq. (4.21) becomes

∂T

∂x

∣∣∣∣
i

=
TGi+1 − Ti−1

2∆x
ex, (4.22)

where the superscript G denotes a ghost value. The value TGi+1 has no physical meaning from the
liquid phase point of view since it is not in the liquid phase, but permits to enforce condition (4.11)
for the liquid phase. To this purpose, several options exist as stated in [27] : constant extrapolation,

TG
i+1 = Tsat, (4.23)

linear extrapolation between node i and the interface,

TG
i+1 = Ti +

Tsat − Ti
θ

, (4.24)

linear extrapolation between node i− 1 and the interface

TG
i+1 = Ti−1 +

Tsat − Ti−1

1 + θ
, (4.25)

quadratic extrapolation between nodes i− 1, i and the interface,

TG
i+1 =

2Tsat +
(
2θ2 − 2

)
Ti +

(
1− θ2

)
Ti−1

θ2 + θ
, (4.26)

cubic extrapolation between nodes i − 2, i − 1, i and the interface, etc. . . where θ is the relative
distance detailed in chapter 3. We choose the option that is the most compatible with a multi-
dimensional simulation, it being understood that our goal is to extend the methodology to two-
and three-dimensional simulations in the next chapters. As it will be explained in chapter 5, the
most suitable option is then the linear extrapolation (4.24) between node i and the interface. It
is then important to enforce condition (4.11) at the interface and not on the closest nodes to the
interface since, in the latter case, the computation of the temperature ghost value TG

i+1 by linear
extrapolation (4.24) would lead to TG

i+1 = Ti, and to a null temperature gradient between nodes i
and i + 1, which in turn would affect the mass transfer rate ṁ (see Sections 4.2.5 and 4.3.4). By
definition of θ, the linear extrapolation (4.24) enforces condition (4.11) along the grid edge [i; i+ 1].
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Fig. 4.4 shows the application of Eq. (4.24) to a 1D computational domain. By symmetry, the
vapor ghost value at node i is given by

TG
i := Ti+1 +

Tsat − Ti+1

1− θ
. (4.27)

Substituting Eq. (4.24) in Eq. (4.22) gives a new expression for the gradient operator of T at node
i,

∂T

∂x

∣∣∣∣
i

=
Tsat + (θ − 1)Ti − θTi−1

2θ∆x
ex. (4.28)

Finally, we use Eq. (4.28) to replace the expression of the gradient of T for the nodes close to the
interface in Eq. (4.10), leading to the advection-diffusion equation for the liquid temperature with
immersed Dirichlet boundary condition (4.11). An obvious problem occurs when the interface is
very close to node i. In this case, θ tends to 0 and Eq. (4.24) can no longer be used to compute a
ghost value on node i+ 1. A threshold has to be used on the value of θ to avoid division by 0 [27].
In the Boiling solver, if θ is smaller than 10−3, then Ti is set to Tsat and Eq. (4.10) need not be
solved on this node.

4.3.4 Computing the mass transfer rate

Accounting for the amount of liquid mass which crosses the interface per surface and time units,
as detailed in Section 1.3.1, the mass transfer rate ṁ has then a physical significance only at the
points lying on the interface. Consequently, the temperature gradients in Eq. (4.12) have to be
computed at the interface.

As an introduction to our numerical method in one dimension, the temperature gradients at the
interface are approximated by their values at the closest nodes to the interface,

ṁ ∼=
1

Lv

(
−λliq

∂Tliq

∂x

∣∣∣∣
i

ex · ni + λvap
∂Tvap

∂x

∣∣∣∣
i+1

ex · ni+1

)
, (4.29)

involving the assumption that the variations of the liquid and vapor temperature gradients between
node i and the interface, and node i + 1 and the interface, respectively, are negligible, which is
considered acceptable on a well-resolved flow. Using Eq. (4.29) to compute ṁ still requires a liquid
ghost value on node i + 1 to compute ∂Tliq/∂x|i (and a vapor ghost value on node i to compute
∂Tvap/∂x|i+1). Again, linear extrapolations (4.24) and (4.27) are used to compute these ghost
values.

Once the temperature gradients are computed, one can compute the mass transfer rate “at the
interface” with Eq. (4.29). This value of ṁ is defined at the interface by the approximation (4.29),
whereas the Conservative Level Set advection equation (4.9) is solved on grid nodes. A transport
step of ṁ from the interface to the nodes is then needed. As a first approximation in one dimension,
ṁ is computed on the closest vapor node to the interface and the obtained value is then copied on
all the nodes of the narrow band defined around the interface (a finer computation will be used in
two and three dimensions).

4.4 Numerical results

In order to assess the validity of the numerical method detailed in this chapter, the result of a
one-dimensional simulation is now presented. Let Ω = [−L;L] be the computational domain where
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ρliq ρvap νliq νvap λliq

1000 kg m−3 1 kg m−3 1× 10−3 Pa s−1 1.78× 10−5 Pa s−1 0.73 W m−1 K−1

λvap cp,liq cp,vap Lv Tsat

2.51× 10−2 W m−1 K−1 4038 J kg−1 K−1 2079 J kg−1 K−1 2.23× 106 J kg−1 373 K

Table 4.1 – Physical parameters used in one dimension [85].

L = 4× 10−3 m. Let N = 100 be the number of subdivisions of Ω such that Ω =
⋃N−1
i=0 [xi;xi+1]

where {xi : i ∈ {0, . . . , N}} is the computational node set associated to Ω and all subdivisions
[xi;xi+1] are of equal length ∆x. Consider a vapor bubble of radius R0 = 1× 10−3 m centered at
the origin of Ω, surrounded by a liquid phase. The physical parameters of interest are listed in
Table 4.1. Both phases are initially at rest, i.e. the vapor and liquid velocity fields are initialized
to zero. The vapor temperature field Tvap is initialized to Tsat = 373 K in both phases. The liquid
temperature field Tliq is initialized to Tsat in the vapor phase. In the liquid phase, Tliq is initialized
at time t0 with the linear profile given by

Tliq(t0, x) =

Tsat +
T∞(t0)− Tsat

L−R0
(|x| −R0) , if |x| ≥ R0,

Tsat, otherwise,
(4.30)

where T∞(t0) = Tliq(t0, x0) = Tliq(t0, xN ) is used to control the slope of the profile and is set to
T∞(t0) = 573 K. Due to the diffusion of the liquid temperature to the outside of the domain,
permitted by the use of outlet boundary conditions on both left and right boundaries, T∞ decreases
during the simulation. The time step ∆t is set to 1× 10−5 s. We emphasize here that the purpose
of this test-case is only to demonstrate the ability of our numerical method to compute, in one
dimension, the interface movement by means of the liquid and vapor thermal fluxes at the interface.
Thus we did not derive an analytical solution for Tliq at time t > t0, and the analytical liquid
temperature profile is known only at initialization by Eq. (4.30). Comparisons with analytical
solutions will be provided in Chapters 5 and 6 in 2D and 3D. Figure 4.5 shows the interface motion
between time t0 = 0 s and arbitrary time t1 = 7.8× 10−2 s at which the initial bubble radius has
been multiplied by a factor roughly equal to three. Figure 4.5(a) shows the evolution of the
Accurate Conservative Level Set function by means of Eq. (4.9) in which the interface motion is
only driven by the mass transfer rate ṁ since the vapor velocity, while also recomputed at each
iteration, remains null. On the x-axis, the initial position of the interface is denoted by xΓ,0, and
the position of the interface at time t1 is denoted by xΓ,1, both corresponding to the value ψ (xΓ)
on the y-axis. Figures 4.5(b) and 4.5(d) show the liquid and vapor temperature profiles at times
t0 and t1, respectively. Figure 4.5(f) shows the values of the mass transfer rate computed, by Eq.
(4.29), from the thermal fluxes at the interface given by λliq, λvap and temperature profiles of Figs.
4.5(b) and 4.5(d). The values of the mass transfer rate are then copied on neighbor nodes as stated
in Section 4.3.4. Figures 4.5(c) and 4.5(e) show the liquid and vapor velocity profiles at times t0
and t1, respectively. The interface motion is only due to phase change since the vapor and liquid
phases are globally at rest. Indeed, the vapor velocity, while recomputed at every iteration, remains
null. The liquid velocity at the interface is thus equal to the velocity jump at the interface given by
Eq. (4.5), and is uniform in the two liquid portions of the domain, in accordance with Eq. (4.1).
Figure 4.5(g) shows the pressure profile at times t0 and t1. The pressure is uniform in the vapor
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phase, and the pressure gradient in the liquid phase is given by Eq. (4.8). Since the mass transfer
rate increases with time (see again Fig. 4.5(f)), the liquid velocity also increases with time, by
Eq. (4.5), as can be seen in Figs. 4.5(c) and 4.5(e). Equation (4.4) then states that the pressure
gradient decreases in the liquid phase, from the interface to the outer of the domain, as can be
observed in Fig. 4.5(g). Note that the small values of ṁ shown in Fig. 4.5(f) lead, by Eq. (4.6), to
a small pressure jump at the interface in Fig. 4.5(g) (in which the pressure field seems continuous
at the interface). Due to the scale chosen for the y-axis, this small pressure jump is not visible in
Fig. 4.5(g). These results show the ability of the Boiling solver to simulate the interface motion
due to phase change in one dimension.

4.5 Conclusion

In this chapter, the numerical method implemented in the Boiling solver has been presented for
one-dimensional simulations. We review here the main steps of the algorithm. The Navier-Stokes
equation

∂ui
∂t

= − 1

ρi

∂P

∂x
, (4.31)

on the phase i with jump conditions at the interface

[u]Γ = ṁ

[
1

ρ

]
Γ

nΓ, (4.32)

where u = ±‖u‖ ex and nΓ = ±ex, and

[P ]Γ = −ṁ2

[
1

ρ

]
Γ

, (4.33)

is solved with the two-step projection method
∂

∂x

(
1

ρ
n+ 1

2
i

∂

∂x
Pn+ 1

2

)
= 0,

un+1
i = uni −

∆t

ρi

∂

∂x
Pn+ 1

2 .

(4.34)

The Accurate Conservative Level Set ψ given by

ψ(t, x) =
1

2
+

1

2
tanh

(
φ(t, x)

2ε(x)

)
(4.35)

is advected by
∂ψ

∂t
+ uvap

∂ψ

∂x
=

ṁ

ρvap

∂ψ

∂x
, (4.36)

and reinitialized after advection by

∂ψ

∂τ
+

∂

∂x
(ψ (1− ψ)) = ε

∂2ψ

∂x2
. (4.37)



4.5. CONCLUSION 65

The heat equation with immersed Dirichlet boundary condition
∂Ti
∂t

+ ui
∂Ti
∂x

=
1

ρicp,i

∂

∂x

(
λi
∂Ti
∂x

)
(4.38)

TΓ = Tsat (4.39)

is solved where a ghost temperature value is computed at node xi+1 by

TG
i+1 = Ti +

Tsat − Ti
θ

(4.40)

when the interface is located between nodes xi and xi+1, in order to compute the corresponding
temperature gradient at node xi. The mass transfer rate is computed as

ṁ =
1

Lv

(
−λliq

∂Tliq

∂x

∣∣∣∣
i

ex · ni + λvap
∂Tvap

∂x

∣∣∣∣
i+1

ex · ni+1

)
, (4.41)

where ni is the interface normal vector shifted at node xi.
The implementation has been illustrated in one dimension. The next two chapters extend this

methodology to two and three dimensions, where several numerical challenges arise mostly from
the fact that the normal vector is not aligned with grid nodes.
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Fig. 4.5 – Results of the one-dimensional simulation shown at initialization (t0 = 0 s) and at time
t1 = 7.8× 10−2 s where the initial bubble radius has been multiplied by a factor roughly equal
to three : (a) the Accurate Conservative Level Set function ψ, (b) and (d) the vapor and liquid
temperature fields, (c) and (e) the vapor and liquid velocity fields, (f) the mass transfer rate, (g) the
pressure field. On the x-axis, the initial interface location is represented by xΓ,0, and the interface
location at time t1 is represented by xΓ,1.





Chapter 5

Numerical simulation of two-phase flows
with phase change in two and three
dimensions with a fixed mass transfer rate

In this chapter, we focus on the simplified situation of fixed (constant and uniform) mass transfer
rate across the two-phase interface, meaning that the mass transfer rate is decoupled from the
temperature field. The accuracy of the method is first tested against a two-dimensional case. The
interface normal vector and curvature have now to be computed with high precision to avoid too
large deformations of the interface, potentially leading to numerical instabilities. The extension to
three dimensions is provided at the end of the chapter. Boiling simulations using a mass transfer
rate coupled to the temperature field will be addressed in the next chapter.
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5.1 Introduction

Multidimensional simulations of two-phase flows are much more challenging than monodimen-
sional ones. Many of the simplifications used in one dimension would lead to complete aberrations
in two or three dimensions, when not mathematically ill-defined. The main difference between one-
and two- (three-)dimensional boiling simulations is that, in the first case, the interface is a disjoint
point set, whereas in the second case, it is a curve (surface). This difference has one main conse-
quence : the interface normal vector can not be fixed to ±ex anymore and has to be computed. It
is indeed a crucial ingredient involved in many steps of our method. The interface normal vector
is present in the Accurate Conservative Level Set time advancement and reinitialization equations
and in the velocity and pressure jumps at the interface. In this chapter, we show that the interface
normal vector is also used in other steps of the method when multidimensional simulations are
considered. The interface curvature is well-defined and must be computed to take into account
surface tension forces at the interface.

Section 5.2 recalls the governing equations and the numerical method used for two-phase flow
simulations with phase change in multidimensions. Section 5.3 presents some preliminary results
obtained with this methodology. Section 5.4 explains the lack of accuracy of the previous method.
Sections 5.5 to 5.10 detail the implementation of enhanced Level Set method variants developed
along this thesis to allow for multidimensional simulations on structured and unstructured grids.
Section 5.11 shows the improved accuracy in the interface transport provided by the different
methods on structured and unstructured grids. Finally, Section 5.12 concludes this chapter.

5.2 Governing equations

We recall the governing equations for two-phase flow simulations with phase change in two and
three dimensions.

5.2.1 Incompressible Navier-Stokes equations with phase change

In this section, we recall the steps of the projection method presented in Section 2.6 with the
contribution of phase change detailed in Section 4.3.1, extended to the multidimensional case.

Incompressible Navier-Stokes equations with phase change are given in each phase by

∂ui
∂t

+ (ui · ∇) ui = − 1

ρi
∇P +

1

ρi
∇ ·
(
µi
(
∇ui +∇uTi

))
(5.1)

where u is the velocity, P the pressure, ρ the density and µ the dynamic viscosity of the phase
denoted by the i subscript. The incompressibility hypothesis reads

∇ · ui = 0. (5.2)

In the projection method, the velocity predictors are given by

u∗i = uni + ∆t

(
− (uni · ∇) uni +

1

ρ
n− 1

2
i

∇ ·
(
µi

(
∇uni + (∇uni )

T
)))

. (5.3)

The updated velocities are given by the Helmholtz decomposition applied to u∗i ,

un+1
i = u∗i −

∆t

ρ
n+ 1

2
i

∇Pn+ 1
2 . (5.4)
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The divergence of Eq. (5.4) and the incompressibility hypothesis (5.2) applied to un+1
i lead to the

Poisson equation for Pn+ 1
2 ,

∇ ·

(
1

ρ
n+ 1

2
i

∇Pn+ 1
2

)
=

1

∆t
∇ · u∗i . (5.5)

The pressure discontinuity at the interface is given by

[P ]Γ = σκ− ṁ2

[
1

ρ

]
Γ

, (5.6)

where ṁ is the mass transfer rate expressed in kg m1−d s−1, with d the spatial dimension, and the
dynamic viscosity contribution is neglected. The velocity discontinuity at the interface is given by

[u]Γ = ṁ

[
1

ρ

]
Γ

nΓ. (5.7)

Poisson equation (5.5) is solved using the methodology detailed in Appendix B in which the pressure
and velocity discontinuity Eqs. (5.6) and (5.7) are imposed at the exact interface location. The
linear system formed from Eq. (5.5) and jump conditions (5.6) and (5.7) is solved using the Deflated

Pre-Conjugate Gradient (DPCG) solver [49, 50]. Once Pn+ 1
2 is known, the velocity predictors u∗i

are corrected using Eq. (5.4) to obtain the updated velocities un+1
i .

5.2.2 Constant extrapolation of the velocities across the interface in the
interface normal direction

In Section 4.3.1, constant extrapolations of the velocities across the interface have been intro-
duced to be used in the projection method in one dimension. In multidimensions, such extrapola-
tions of the velocities are still required to apply the projection method described in Section 5.2.1
in order to compute derivatives of the velocities close to the interface in Eqs. (5.3) and (5.5). The
major difference with the one-dimensional case is the unknown direction of the interface normal
vector nΓ. Indeed, in one dimension, nΓ is always equal to ±ex, whereas in multidimensions, nΓ

can point to any direction and so has to be computed. It is then straightforward to infer that
the accuracy with which nΓ will be computed will strongly influence the overall accuracy of the
simulation. Once nΓ is known, the liquid velocity uliq is extrapolated across the interface by solving
the equation

∂uliq

∂τ
+∇uliq · nΓ = 0 (5.8)

only on the vapor nodes of the narrow band around the interface. The same extrapolation is
computed for uvap on the liquid nodes of the narrow band. More details on Eq. (5.8) will be found
in Aslam [4] and in Appendix G.

5.2.3 Accurate Conservative Level Set method

The advection equation of the Accurate Conservative Level Set function described in Section
3.4 and extended to phase change in the previous chapter is given in multidimensions by

∂ψ

∂t
+∇ · (ψ (uvap + uΓχΓ)) = 0, (5.9)
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where uΓ = − (ṁ/ρvap) nΓ is the contribution of phase change to the interface velocity, and χΓ is
the indicator function of the interface defined as

χΓ (t,x) =

{
1, if ψ (t,x) = 0.5,

0, otherwise.
(5.10)

The divergence in the lhs of Eq. (5.9) can not be computed due to the two following incompatibil-
ities :

Finite Volume node-centered discretization The node-centered convention used in YALES2
for the discretization of the differential operators in the finite volume framework implies the
creation of a domain partition where each part called control volume is attached to a node.
By definition of a partition, there is then no space left on Ω to define a control volume that
would be attached to a subgrid point of Ω (the creation of a partition is mandatory in the
finite volume method, no control volume overlapping is allowed). The interface Γ is a good
example of such a subgrid point set : one can not compute the divergence of a field defined
only at the interface in the finite volume framework.

Dimension mismatch A second condition for the usability of the divergence operator (and other
differential operators) in the finite volume framework is that the definition set of the vectors
of which the divergence is computed must be of the same dimension as the whole domain Ω.
Unfortunately, this property is not satisfied by the interface Γ, and one has

dim Γ = dim Ω− 1. (5.11)

Using the identity

∇ · (ψuΓχΓ) = χΓuΓ · ∇ψ + ψ∇ · (χΓuΓ) , (5.12)

= χΓuΓ · ∇ψ + ψ (χΓ∇ · uΓ + uΓ · ∇χΓ) , (5.13)

and neglecting the derivatives of quantities defined only at the interface, the interface advection due
to phase change is solved under non-conservative form, i.e. ∇ · (ψuΓχΓ) is modified to χΓuΓ · ∇ψ
in Eq. (5.9) which is rewritten

∂ψ

∂t
+∇ · (ψuvap) = −uΓ · ∇ψχΓ, (5.14)

where phase change is considered as a source term in the advection of the ACLS function. The
rhs of Eq. (5.14) still contains a velocity term only defined at the interface, whereas the equation
is solved at grid nodes. One needs to make grid nodes aware of uΓ in a coherent manner. A first
observation can be done : only grid nodes relatively close to the interface need to infer the value
of uΓ. Attention must be paid to the different node levels that need to be provided a value of uΓ.
In order to avoid numerical difficulties, all grid nodes located in the area where ∇ψ is non zero
are provided a value of uΓ. For ease of implementation, this area is extended to the narrow band
defined is Section 2.4.2. The contribution of phase change to the interface motion is given by the
second term of the rhs of Eq. (1.33), i.e.

uΓ = − ṁ

ρvap
nΓ. (5.15)



5.2. GOVERNING EQUATIONS 73

In this chapter, the mass transfer rate is imposed to a constant and uniform value on the whole
interface. As a result, no special operation is required to populate the narrow band nodes with the
value of the mass transfer rate. In this particular case, the imposed ṁ value is simply assigned to
the concerned nodes. As a result, the Navier-Stokes equations and the heat equation are decoupled.
Equation (5.14) is written under conservative form with source term, i.e.

temporal variation of ψ + divergence of the flux ψuvap = source term, (5.16)

but the actual form of an advection equation with source term for ψ is given by

temporal variation of ψ + advection of ψ by the velocity uvap = source term. (5.17)

Since we use the incompressible form of the Navier-Stokes equations, the vapor velocity is theo-
retically divergence-free. Nevertheless, the constant extrapolation of uvap across the interface does
not guarantee that the ghost values of uvap in the liquid phase are divergence-free. Moreover, the
divergence of uvap can suffer from numerical errors caused by the numerical schemes used to advect
ψ even on nodes far from the interface, due to the limited precision of the differential operators on
unstructured grids. In order to minimize these problems, the possibly non-zero divergence of uvap

is substracted from the lhs of Eq. (5.14), leading to

∂ψ

∂t
+ {∇ · (ψuvap)− ψ∇ · uvap} = −uΓ · ∇ψχΓ. (5.18)

Using Eq. (5.12) transposed to ψ and uvap, one establishes the mathematical equality of the term
between braces in the lhs of Eq. (5.18) to uvap ·∇ψ. Consequently, Eq. (5.18) is the actual advection
equation of ψ written under form (5.17). In order to benefit from the conservative form, Eq. (5.18)
is rewritten

∂ψ

∂t
+∇ · (ψuvap) = −uΓ · ∇ψχΓ + ψ∇ · uvap, (5.19)

where ψ∇ · uvap is considered positively in the rhs. Equation (5.19) written under conservative
form enforces conservation of the quantity ψ by integration of the flux ψuvap over control volumes
to compute its divergence (see Section 3.1.1), whereas it enforces the incompressibility hypothesis
(∇ · uvap = 0) by removing the divergence of uvap which is non zero in the ghost liquid part of
uvap. The conflict between the indicator function of the interface in Eq. (5.19) and the fact that
this equation is solved on grid nodes has to be resolved. In the case where the mass transfer rate
is imposed, the function χ is simply removed from the equation, resulting by Eq. (5.15) in the
approximation

nΓ · ∇ψ|Γ = np · ∇ψ|p , (5.20)

for all nodes p in the narrow band around the interface. Outside the narrow band, ṁ is set to zero.
The advection equation of the Accurate Conservative Level Set function is then given by

∂ψ

∂t
+∇ · (ψuvap) =

ṁ

ρvap
nΓ · ∇ψ + ψ∇ · uvap, (5.21)

where the first term of the rhs vanishes outside the narrow band.
After advection of ψ by Eq. (5.21), the CLS function is reinitialized to the hyperbolic tangent

of the new signed distance function by Eq. (2.24) where the interface normal vector from the
previous iteration is used. After reinitialization, the updated interface normal vector and curvature
are computed by Eqs. (3.27) and (3.28).
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5.3 First numerical results

We evaluate the numerical method presented in this chapter on the case of a 2D static growing
bubble with a fixed mass transfer rate from [85]. The computational domain is a square of side
length L = 8× 10−3 m. The initial bubble radius is R0 = 1× 10−3 m and the imposed mass transfer
rate is ṁ = 1× 10−1 kg m−2 s−1. The simulations are performed until final time tf = 1× 10−2 s
needed for the bubble radius to double the initial radius. The other physical parameters of interest
are ρliq = 1× 103 kg m−3, ρvap = 1 kg m−3, σ = 7× 10−2 N m−1, µliq = 1× 10−3 kg m−1 s−1 and
µvap = 1.78× 10−5 kg m−1 s−1.

5.3.1 Interface displacement due to level set reinitialization numerical errors

Prior to the actual simulation, Eq. (2.24) is solved at initialization in order to highlight the
resulting displacement of the liquid-vapor interface, as shown in Fig. 5.1. The implementation of

(a) (b)

Fig. 5.1 – Interface displacement due to the reinitialization of the level set function performed
at initialization by Eq. (2.24) on two unstructured grids : (a) ∆x = 4× 10−4 m and (b) ∆x =
1× 10−4 m. The initial interface is shown in blue and the interface after reinitialization of the level
set function is shown in red. The interface is initially circular, the observed discontinuities at grid
edges are due to the interpolation performed by the visualization software in each grid triangle.

the level set reinitialization method then needs to be improved in order to preserve the interface
location resulting from the advection of the level set function by Eq. (5.21).

5.3.2 First attempt to validate the numerical method

Figure 5.2 shows the result on two different unstructured grids. One can see the lack of accuracy
in the interface localization. Indeed, since the mass transfer rate is constant and uniform, the bubble
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(a) Conservative Level Set function. (b) Associated Signed Distance Function.

(c) Conservative Level Set function. (d) Associated Signed Distance Function.

Fig. 5.2 – Static circular bubble growing by means of a fixed (uniform and constant) mass transfer
rate. The bubble shape is expected to be a circle at any time of the simulation. Subfigs. (a) and
(b) show the simulation on a grid of cell size ∆x = 4× 10−4 m and Subfigs. (c) and (d), on a grid
of cell size ∆x = 1× 10−4 m. The initial interface is shown in blue in (a) and (b) and in white in
(c) and (d). Shortly before the failure of the simulation, the computed interface is shown in black
while the corresponding theoretical interface is shown in green.

should remain circular while expanding. In both cases, the simulation failed soon after the physical
times of the snapshots. On the coarsest grid (Subfigs. 5.2(a) and 5.2(b)), the bubble radius increased
weakly before the failure of the simulation (initial interface in blue and last theoretical interface
before failure in green in Subfig. 5.2(a)). On the finest grid (Subfigs. 5.2(c) and 5.2(d)), the
bubble radius further increased before failure. While the computed interface shown on the finest
grid is globally closer to the corresponding theoretical interface than the computed interface on the
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(a) Computation of signed distance values on
closest nodes to the interface (band level +1).

(b) Computation of signed distance values on
neighbor nodes of the closest nodes to the in-
terface (band level +2).

Fig. 5.3 – Computation of the signed distance function to the interface by the Simple Marker
Method in which the distance of a node to the interface is approximated as the distance to the
closest intersection of the edge and the piecewise-linear interface. Once all closest nodes to the
interface (level 1 in the narrow band) have an updated signed distance value (a), updated values
are computed for their closest neighbors (level 2 in the narrow band) (b), and so on until the
boundary of the narrow band is reached.

coarsest grid, one has to notice that grid refinement also increases small interface distortions, as can
be seen comparing the two computed interfaces shown in black. As a result, the interface curvature
given by Eq. (2.12) is highly polluted by these distortions of the signed distance function.

As will be detailed in Section 5.4, these distortions are due to a slight inaccuracy in the signed
distance function computation. One has to notice that the interface distortions will in general be
higher in the case where the mass transfer rate is computed (see Chapter 6), due to inevitable
numerical errors in its computation. This test case is even more challenging in three dimensions
where the interface is expected to remain spherical during boiling. The next part of this chapter is
devoted to the improvement of the signed distance function computation using different numerical
methods.

5.4 Inaccuracy of the Simple Marker Method in the computation of
the Signed Distance Function to the interface

At the beginning of this thesis, YALES2 used the method presented in Section 3.4.1 to compute
the signed distance function to the interface. In order to briefly recall the principle of this method,
Figs. 3.10 and 3.11 are reproduced in Fig. 5.3. The signed distance function is approximated
on nodes of band level +1 by their distance to the closest intersection of a grid edge and the
piecewise-linear interface, as shown in red in Subfig. 5.3(a), in which the actual distance is given
by the length of the green segment. Subfigure 5.3(b) extends this method using Chasles’s identity
(3.26) to nodes of band level +2. Similar operations are performed on nodes of band levels greater
than 2. This method is robust and gives a signed distance value at every node, being on one,
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two or three dimensions, on structured or unstructured grids, and on sequential or parallel domain
decomposition. In this manuscript, we refer to this method as the Simple Marker Method (SMM).
The drawback of this method is its important lack of accuracy. On Fig. 5.3.(a), one can clearly
notice the error made on the signed distance values of the closest nodes to the interface. The error
depends on the angle between the element edges crossed by the interface and the piecewise-linear
interface inside the element. If edge (x1,x2) is orthogonal to the interface, then the error on the
signed distance value on node x1 is null. In the general case, edge (x1,x2) is not orthogonal to
the interface, and the error is not negligeable. Figure 5.3.(b) shows the same problem for signed
distance values on nodes of band level +2. One can not advect the Conservative Level Set function
with Eq. (5.21) and reinitialize it with Eq. (2.24) if the interface normal vector nΓ is computed as
the gradient of the signed distance function φ reinitialized by the Simple Marker Method.

5.4.1 Collaboration with the CORIA team

Some improvements of the method have been tested in collaboration with Vincent Moureau
from the CORIA team responsible for the main development and coordination of YALES2. For
instance, the signed distance values on the closest nodes can be corrected by the projection of the
nodes onto the interface (see the green segment on Fig. 5.3.(a)).

YALES2 is mainly used to solve the incompressible Navier-Stokes equations on 3D unstructured
grids. Single-phase flow simulations are now mature in the CFD community, and a strong interest
in two-phase flow simulations has been shown for the last few years to take into account more
complex physical phenomena. Among YALES2 users, these phenomena have mainly been liquid jet
atomization and combustion. Since two-phase flows imply the presence of an interface separating the
two phases, the problem of the signed distance function reinitialization appears, meaning that other
research teams using YALES2 also faced this problem on unstructured grids with MPI parallelism.
As a consequence, V. Moureau’s team also investigated the problem. In collaboration with him and
his team, we improved the SMM by computing the signed distance value of a node of band level
±1 as the distance between this node and its projection onto the closest segment representing the
piecewise-linear interface. We only mention here that, while as expected, this correction improved
the accuracy of φ values on the closest nodes to the interface, it was still insufficient to accurately
reinitialize φ on farther nodes to the interface in order to compute the interface normal vector by
Eq. (3.27). Further improvements were needed and are developed in the following sections.

5.5 The Multiple Marker Method

V. Moureau developed the Multiple Marker Method (MMM) in which the notion of marker is
extended to the whole segment representing the piecewise-linear interface inside a given grid element
(or the whole polygon representing the piecewise-planar interface inside a given grid element in three
dimensions). Let (x1,x2) be a grid edge crossed by the interface Γ. In the MMM, if n ∈ {1, . . . , 3}
is the spatial dimension, a marker Mi(x1) associated to node x1 is the (n + 1)-dimensional vector
given by

Mi(x1) = (xΓ1 , . . . , xΓn , ‖x1 − xΓ‖)T
, (5.22)



78 CHAPTER 5. SIMULATION OF BOILING WITH A FIXED MASS TRANSFER RATE

where xΓ = (xΓ1 , . . . , xΓn)
T

is the coordinate vector of the intersection point between edge (x1,x2)
and the interface Γ, and i ∈ In with

In =


{1} , if n = 1,

{1, . . . , 3} , if n = 2,

{1, . . . , 6} , if n = 3,

(5.23)

i.e. one defines one marker in one dimension, three markers in two dimensions and six markers in
three dimensions. These values have been adopted based on empirical tests. The signed distance
value φ on node x1 is then given by

φ (x1) = min
i∈In

{
(Mi (x1))n+1

}
, (5.24)

where (Mi (x1))n+1 is the last component of vector Mi (x1). Otherwise stated, Eqs. (5.22) and
(5.23) show that marker lists are composed of one marker in one dimension, three markers in two
dimensions and six markers in three dimensions.

In the MMM, the reinitialization of φ on the closest nodes to the interface is similar to that
of the SMM. The difference concerns the reinitialization of φ on the farther nodes. Indeed, in the
MMM, a list of markers is built for each node. Each list is ordered in ascending order (in absolute
value) of the values of its (n + 1)-th element components, i.e. for any node x, the first marker
M1(x) in the marker list asssociated to x is the closest marker to x. Since markers are located at
the interface, φ(x) is updated as the (n+ 1)-th component of marker M1(x).

Consequently, such marker lists are useless for the closest nodes to the interface since only one
marker is needed to update φ. The advantage of marker lists appears when φ is reinitialized on
farther nodes to the interface. When φ has been reinitialized on all closest nodes to the interface,
then φ is reinitialized on nodes of band level ±2, and so on until the narrow band boundary (nodes of
band level ±8 by default in YALES2). For clarity, only positive values of band levels are considered
in the following part. In order to reinitialize φ on nodes of band level 2, nodes of band level 1 share
their marker list to their neighbor nodes of band level 2. A node x of band level 2 can be connected
to an important number K of nodes xk of band level 1. Node x builds its marker list among markers
of nodes xk by ordering all these markers in ascending order of the value of their (n+ 1)-th element
components. The number of markers retained by node x is equal to the cardinality of the set In
given by Eq. (5.23). The signed distance value on node x is then given by

φ (x) = min
1≤k≤K

min
i∈In

{
(Mi (xk))n+1

}
. (5.25)

Unfortunately, the accuracy of the signed distance function reinitialization has not been clearly
enhanced using the MMM.

5.5.1 Improvement of the Multiple Marker Method

After discussions with V. Moureau, we tried to improve the method by computing the projection
of the closest nodes to the interface onto the per-element segment representing the piecewise-linear
interface, as shown in Fig. 5.3(a). For a node x of band level ±1 and a segment Γh representing
the piecewise-linear restriction of the interface Γ to a grid element Eh to which x is a summit, the
orthogonal projection xh of x on Γh is computed. The point xh is retained only if it is located
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in element Eh. If xh ∈ Eh, then the first marker of the marker list of xh becomes M1(x) =

(xh1
, . . . , xhn

, ‖x− xh‖)T
, and φ is updated on x by

φ (x) = ±‖x− xh‖ . (5.26)

Equation (5.26) gives the exact φ value on x provided that there exists a grid element Eh to which
x is a summit and which contains the orthogonal projection xh of x on Γh. The reinitialization
method of φ on farther nodes to the interface is unchanged but such nodes benefit from these new
markers by means of marker list propagation. As for the SMM, this projection step improved the
accuracy of φ on the closest nodes to the interface, but imprecisions on the farther nodes were
still significant. The interface normal vector and curvature then computed from φ were still highly
polluted by oscillations on φ.

5.6 Strategy adopted to improve the reinitialization accuracy of the
signed distance function to the interface

While V. Moureau’s team kept on working on marker-based methods (see Section 5.9.3 for
the most recent developments), we focused on classical reinitialization methods. A large study of
the classical and state-of-the-art reinitialization methods for level set functions has been realized,
and the classical methods have been implemented and validated. YALES2 uses the CLS since
conservation is a needed feature in larger scale two-phase flow simulations, e.g. atomization, where
a drop of liquid may be discretized by only a few grid nodes. Nevertheless, it has been shown
in Section 5.3 that the overall implementation of the method lacks accuracy in the case of the
simulations addressed in this thesis. We then decided to adopt the SDF as level set function.
I implemented the corresponding classical reinitialization methods on cartesian grids, with the
perspective of understanding their key points and reimplementing it on unstructured grids. I then
followed the same methodology for the CLS function. On structured grids, Section 5.7 details
the implementation of the signed distance function reinitialization, and Section 5.8 details the
implementation of the conservative level set function reinitialization. On unstructured grids, Section
5.9 details the implementation of the signed distance function reinitialization, and Section 5.10
details the implementation of the conservative level set function reinitialization.

This study has been presented at the Dispersed Two-Phase Flows 2018 Conference in Toulouse,
France, and can be found in Sahut et al. [73].

In the following sections, φ denotes the signed distance function and ψ, the conservative level
set function. In all the implemented methods, the interface normal vector n and curvature κ are
computed as

n =
∇φ
‖∇φ‖

and κ =
∇φT ·H(φ) · ∇φ− ‖∇φ‖2 Tr (H(φ))

‖∇φ‖3
, (5.27)

where the equation to compute κ is Eq. (3.6) from Goldman [28], emphasizing again that high
precision is needed in the reinitialization of φ to avoid perturbations in n and κ.

5.7 The Signed Distance Level Set function on uniform cartesian grids

The two classical reinitialization methods for the signed distance function, namely the Hamilton-
Jacobi equation and the Fast Marching Method, have been implemented for cartesian grids.
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(a) Cartesian grid : the neighbor nodes of node
xi,j in the directions ±ex and ±ey are uniquely
defined. For instance, the three neighbor nodes
of node xi,j in the direction −ex are the nodes
xi,j−1, xi,j−2 and xi,j−3.

(b) Unstructured grid : the notion of neighbor
nodes of node xp in the directions ±ex and ±ey

is ill-defined.

Fig. 5.4 – Large orthogonal stencils are uniquely defined on cartesian grids (a) for a node xi,j
using the neighbor nodes located on the red + sign whose origin is at node xi,j , but undefined on
unstructured grids (b) since neighbor nodes are not necessarily located on the + sign.

5.7.1 Reinitialization of the Signed Distance Function by the
Hamilton-Jacobi equation

In the case of phase change, the signed distance function is advected by solving the standard
advection equation with source term

∂φ

∂t
+ uvap · ∇φ =

ṁ

ρvap
, (5.28)

where uvap is the vapor velocity, ρvap is the vapor density and the source term is due to phase
change. After advection, the function φ is reinitialized as a signed distance function to the interface
by solving Eq. (2.7). We now describe the procedure used to solve Eq. (2.7). We use a high-order
scheme to compute ∇φ meaning that large orthogonal stencils are needed for every grid node. This
requirement conflicts with the strategy of YALES2 to compute differential operators using only
the direct neighbor nodes. Such operators are called compact operators. Indeed, on unstructured
grids, neighbor nodes are not located on an orthogonal cross stencil centered on one node. As a
consequence, neighbors in the x- and y-directions of a given node are not well-defined, as shown
in Fig. 5.4. YALES2 focuses on complex, realistic geometries, so is more devoted to unstructured
grids. This implies huge differences in the core of the code structure between YALES2 and classical
structured codes. The latter ones usually adopt a simple method to store the grid : an array of
dimension of the problem considered is declared and grid nodes are accessed by means of i, j and k
indices. The main advantage of this method is the ability from one node xi,j,k to access its neighbors
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Fig. 5.5 – Addition of a ghost domain (in green) to the initial domain (in black) in order to build
neighbor lists composed of three neighbors on top, right, bottom and left of all nodes located on
and close to the initial domain boundaries.

with simple operations on the indices. For instance, the right neighbor in the x-direction of node
xi,j,k is accessed via xi,j+1,k. In order to mimic this behavior in two dimensions, we first build a
large neighbor list for each node composed of three neighbors on top, right, bottom and left of the
node by looping over grid edges. Let (xp,xq) be one grid edge. If (xp − xq) · ex = 0, then (xp,xq)
is a vertical grid edge. If (xp)y < (xq)y, then xq is the neighbor of xp in the y-direction of level +1.

If (xp)y > (xq)y, then xq is the neighbor of xp in the y-direction of level −1. For the nodes close
to the domain boundaries, we add a ghost domain to the initial domain in order to build neighbor
lists for these nodes. Figure 5.5 illustrates the addition of a ghost domain. The method is iterated
until all nodes have a list of three neighbors in the four cardinal directions (in two dimensions). An
example of such a neighbor list is shown in Fig. 5.4(a). These neighbor lists are built only once
before entering the temporal loop of the Boiling solver.

The first step of the pseudo-temporal loop is the extrapolation of ghost values on the ghost
domain from the values in the physical domain. Refering to Fig. 5.5, the ghost value φG of φ on
node xi,j−1 is given by

φG
i,j−1 = φi,j +H∗h (φi,j , `)h, (5.29)

where h is the cell size, ` =
√

2h is the diagonal of one grid cell, and H∗h is the shifted smoothed
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Heaviside function defined for x, y ∈ R by

H∗h (x, y) = 2Hh (x, y)− 1, (5.30)

and Hh is the smoothed Heaviside function defined as

Hh (x, y) =


0, if x < −y,
1

2

(
1 +

x

h
+

1

π
sin
(
π
x

h

))
, if |x| ≤ |y|,

1, if x > y.

(5.31)

One can deduce from Eqs. (5.29), (5.30) and (5.31) that if the interface does not cross elements
Ei−1/2,j+1/2 and Ei+1/2,j+1/2, then the φ ghost value on node xi,j−1 is simply given by

φG
i,j−1 = φi,j ± h, (5.32)

depending whether xi,j is located on the liquid or vapor phase (we recall that φ > 0 in the liquid
and φ < 0 in the vapor).

The second step is the computation of the Godunov flux G (φi,j) = ‖∇φi,j‖ − 1 for all nodes
xi,j of the initial domain using the Fifth-Order WENO scheme from [78] detailed in Appendix C.

The last step is the actual pseudo-temporal advancement of φ given by

φn+1
i,j = φni,j −∆τS (φn)G

(
φni,j
)
. (5.33)

Equation (5.33) is given for clarity reasons with an explicit Euler temporal integration scheme. The
0 superscript in Eq. (2.7) is then replaced by the n superscript. Nevertheless, Eq. (5.33) is solved
in the Boiling solver with a third-order Runge-Kutta scheme.

5.7.2 Reinitialization of the Signed Distance Function by the Fast Marching
Method

In order to limit the computational cost needed to perform the Fast Marching Method, we solve
it only in the narrow band around the interface, large enough to be able to compute the interface
normal vector and curvature by Eqs. (5.27). The implementation of the Fast Marching Method in
the Boiling solver is detailed in Appendix D.

5.8 Reinitialization of the Conservative Level Set function on uniform
cartesian grids

In the Boiling solver, ψ is advected using Eq. (5.21). Instead of computing ∇ψ in the rhs of
Eq. (5.21) by the classical finite volume gradient operator detailed in Section 3.1.1, we reuse the
idea of [13] to express ∇ψ by Eq. (2.39), replacing φ by φFMM, leading to

∇ψ (t,x) =
1

4ε (x) cosh2

(
φFMM (t,x)

2ε (x)

)∇φFMM (t,x) , (5.34)
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where ∇φFMM is computed by the finite volume gradient operator of Section 3.1.1. Normalizing
∇φFMM (t,x) by Eq. (2.30) to avoid numerical errors, one has

∇ψ (t,x) =
1

4ε (x) cosh2

(
φFMM (t,x)

2ε (x)

)n (t,x) . (5.35)

5.9 The Signed Distance Level Set function on unstructured grids

In order to tackle complex geometries, the previous algorithms are now extended to unstructured
grids.

5.9.1 Reinitialization of the Signed Distance Function by the
Hamilton-Jacobi equation on unstructured grids

Section 5.7.1 details the reinitialization of the signed distance function using Hamilton-Jacobi
equation (2.7) on cartesian grids. The fifth-order WENO scheme used heavily relies on a cartesian
grid to define large stencils for each node. These large stencils are composed of one, two or three
neighbors in the x- and y-directions. While particularly efficient on structured cartesian grids, carte-
sian WENO schemes use large stencils that are undefined on unstructured grids. Moreover, using
large stencils is against the global strategy adopted in YALES2 to reconstruct differential operators
using compact schemes, i.e. with only the direct neighbor nodes. Unstructured high-order schemes
with a compact reconstruction of the differential operators exist [62] but are highly challenging to
implement in a parallel algorithm. Since classical cartesian high-order WENO schemes are unusable
on unstructured grids, another solution has been found.

In [17], the authors developed a numerical method to solve Hamilton-Jacobi Eq. (2.7) on
unstructured grids in two and three dimensions. An implementation is provided by means of the
MshDist open source library1. This method has two restrictions : 1), the grid must be composed only
of simplices (triangles in two dimensions, tetrahedra in three dimensions), and 2), while it can be
used with shared memory (OpenMP), the library can not be used with distributed memory (MPI).
While using simplicial grids is quite acceptable, the limitation to shared memory must be overcome.
YALES2 solvers are designed to launch several processes with distributed memory. If limited to
shared memory, solvers can only launch one process (with memory possibly shared by several
cores), and the computational time needed for large 3D simulations becomes cumbersome, not to
speak about severe memory limitations. First, thanks to fruitful discussions with C. Dapogny2,
the MshDist library has been coupled to the Boiling solver in order to evaluate the accuracy of the
reinitialized φ values in a sequential boiling simulation. Second, since the resulting φ function was
highly accurate, the algorithm has been implemented directly in YALES2 where a solution for MPI
parallelism has been derived. Appendix E details the implementation of this algorithm in YALES2
with MPI parallelism.

1The source code is freely available at https://github.com/ISCDtoolbox/Mshdist.
2Jean Kuntzmann Lab., Université Grenoble Alpes, France

https://github.com/ISCDtoolbox/Mshdist
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5.9.2 Reinitialization of the Signed Distance Function by the Fast Marching
Method

Section 5.7.2 details the use of the Fast Marching Method (FMM) to reinitialize φ on cartesian
grids. An extension of the FMM to unstructured grids has recently been implemented in the MshDist
library discussed in Section 5.9.1. Currently, the library proposes two methods to reinitialize φ :
the Hamilton-Jacobi (HJ) equation (Section 5.9.1) and the FMM. The FMM proposed in MshDist
has the same limitations as the HJ equation : simplices are required and, above all, the method can
not be used with distributed memory (MPI). Tests have been performed using the FMM sequential
implementation of MshDist (see Section 5.11 for numerical results).

5.9.3 Reinitialization of the Signed Distance Function by the Geometric
Marker Method

Developed by the CORIA team, the Geometric Marker Method (GMM) is based on the Multiple
Marker Method (MMM) presented in Section 5.5. Instead of computing the signed distance function
to points, as in the MMM, in this new approach, one computes the signed distance function to the
piecewise-linear interface in each grid element. As for the MMM, a complex mechanism is used to
propagate marker lists such that farther nodes x to the interface can select the marker minimizing
φ(x) among marker lists of closer nodes to the interface. This method has been implemented in
two and three dimensions, and is detailed in Appendix F.

5.10 The Conservative Level Set function on unstructured grids

The reinitialization method for the Conservative Level Set [13] presented in Section 5.8 has
been extended to unstructured grids. The function ψ is still reinitialized by Eq. (2.28), but the
interface normal vector n is now computed from the signed distance function φ reinitialized using a
method suitable to unstructured grids. In Eq. (2.30), φFMM, denoting the function φ reinitialized
by the cartesian Fast Marching Method detailed in Section 5.7.2, is replaced by φHJu

, φFMMu
or

φGMM, denoting the signed distance function φ reinitialized, using the previously advected φ values
on the closest nodes to the interface as boundary conditions, respectively by the Hamilton-Jacobi
equation (Section 5.9.1), the Fast Marching Method (Section 5.9.2) and the Geometric Marker
Method (Section 5.9.3), where the subscript u denotes the unstructured versions of the methods
(the GMM in only defined for unstructured grids since it requires simplices).

5.11 Improved numerical results

The different level set reinitialization methods presented in the previous sections are validated
against the case of a 2D static growing bubble of initial radius R0 = 1× 10−3 m with a fixed
mass transfer rate presented in Section 5.3. The methods tested are summarized in Table 5.1.
The seven cases have been computed on four different grid cell sizes : 4× 10−4 m, 2× 10−4 m,
1× 10−4 m, 5× 10−5 m, where the grid cell size is approximated on unstructured grids by the
meshing software algorithm. In order to evaluate the accuracy of our different methods, we first
plot the relative error on the bubble radius ξR at final time. The theoretical bubble radius at final
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Grid topology Structured Unstructured

Level set type SDF CLS SDF CLS

Reinitialization
methods

HJ FMM
Chiodi &
Desjardins

[13]

FMM
from
[17]

GMM
HJ //

from [17]

Chiodi &
Desjardins

[13] +
FMM from

[17]

Cases 1 2 3 4 5 6 7

Table 5.1 – The seven tested combinations : SDF stands for Signed Distance Function, CLS for
Conservative Level Set, HJ for Hamilton-Jacobi, FMM for Fast Marching Method and // for parallel.

time is Rth = 2× 10−3 m. One has

ξR =
1

Rth
max

(x1,x2)∈Λ

∣∣R (xΓ)−Rth
∣∣ , (5.36)

where Λ is the set of grid edges crossed by the interface, the max function defines the L∞-norm of
the error, xΓ is the interface location interpolated on edge (x1,x2) ∈ Λ by

xΓ = (1− θx1,x2) x1 + θx1,x2x2, (5.37)

with θx1,x2 the relative distance defined in Eq. (3.24), and R (xΓ) is given by

R (xΓ) = ‖xΓ‖ , (5.38)

since the bubble is centered on the origin of the (ex, ey) frame. We then plot the L∞-norm of
the error on the x-component of the interface normal vector ξN at final time. The error ξN is not
normalized since normal vectors at the top and bottom of the bubble have an x-component equal
to 0. One has

ξN = max
(x1,x2)∈Λ

∣∣(n (xΓ))1 −
(
nth (xΓ)

)
1

∣∣ , (5.39)

where the interface normal vector n (xΓ) is computed as

n (xΓ) = (1− θx1,x2
) n (x1) + θx1,x2

n (x2) , (5.40)

and the theoretical interface normal vector nth (xΓ) is given by

nth (xΓ) =
xΓ

‖xΓ‖
. (5.41)

Finally we plot the relative error on the interface curvature ξκ at final time, given by

ξκ =
1

|κth|
max

(x1,x2)∈Λ

∣∣κ (xΓ)− κth
∣∣ , (5.42)
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where the interface curvature κ (xΓ) is given by

κ (xΓ) =
κ (x1)κ (x2)

(1− θx1,x2)κ (x2) + θx1,x2κ (x1)
(5.43)

and the theoretical interface curvature κth is given by

κth = − 1

Rth
= −5× 102 m−1. (5.44)

Figure 5.6 shows the interface location at final time on the finest cartesian grid considered for
Cases 1, 2 and 3 ; and Fig. 5.7 shows the relative errors at final time on the bubble radius, the
x-component of the interface normal vector and the interface curvature for these cases. Figure 5.8
shows the interface location at final time on the finest unstructured grid considered for Cases 4, 5,
6 and 7 ; and Fig. 5.9 shows the relative errors at final time on the bubble radius, the x-component
of the interface normal vector and the interface curvature for these cases. Figure 5.10 summarizes
the relative errors on the final bubble radius, x-component of interface normal vector and interface
curvature for all cases. For the final bubble radius, the seven methods have a convergence rate close
to one with respect to the grid cell size (see Fig. 5.10(a)). For the finest grid, all relative errors
on the bubble radius are below 1% (the error of Case 7 being equal to 1.06%). The errors on the
normal vector and the curvature are shown in respectively Figs. 5.10(b) and 5.10(c). The results
show that the error on the normal vector decreases at order 1 for all methods. Whereas Fig. 5.10(a)
shows that Case 7, the Conservative Level Set function on unstructured grids, presents the highest
relative error for the final bubble radius on the finest unstructured grid (1.06%), Fig. 5.11 shows
that the final interface location is quite satisfactory even for this case on the four unstructured
grids. Case 7 is the analogous of the case presented in Section 5.3 and illustrated in Fig. 5.2. One
can see the improvement of our implementation in the accuracy of the interface shape comparing
to the initial method implemented in YALES2. Further work is needed to improve the convergence
of both normal vector and curvature for Case 7.

This test case has also been performed on three-dimensional unstructured grids with the GMM,
as the method giving the best results for the final bubble radius on two-dimensional unstructured
grids. Figure 5.12 shows the interface at final time in three dimensions and Fig. 5.13 shows the
corresponding errors on the bubble radius, x-component of the interface normal vector and interface
curvature.

The Boiling solver is then able to simulate phase change with high accuracy by means of an
imposed mass transfer rate on two- and three-dimensional unstructured grids. Indeed, the proposed
implementations of the Level Set method, the Signed Distance Function and the Conservative Level
Set function, have demonstrated their ability to accurately model the interface motion and capture
the interface location when the mass transfer rate is uniform and constant. In two dimensions, Fig.
5.7 shows a convergence rate of 1 for the final bubble radius and interface normal vector and a
convergence rate of 0.5 for the final interface curvature on cartesian grids. Similarly, Fig. 5.9 shows
a convergence rate of 1 for the final bubble radius and interface normal vector and a convergence
rate between 0 and 0.5 for the final interface curvature (except for Case 7) on unstructured grids.
In three dimensions, as shown in Fig. 5.13, the L∞-norm of the error on the bubble radius at
final time decreases at order one with grid refinement. Further work is needed to improve the
convergence of the interface normal vector and curvature at final time. Nevertheless, we emphasize
that the convergence of the final interface normal vector and curvature are challenging to obtain if
the convergence rate of the bubble radius (Level Set function) is not sufficiently high.
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5.12 Conclusion

In this chapter, the numerical methodology implemented in the Boiling solver has been presented
in multidimensions. The lack of accuracy in the computation of the signed distance function to
the interface and its impact on the interface shape have been exposed. Several numerical methods
for the advection and reinitialization of the Level Set function have been presented to solve this
issue. These methods have been validated and compared on the case of a static growing bubble
with a fixed mass transfer rate. All implemented methods present for the final bubble radius a
convergence rate of one with grid refinement. Four of the seven methods presented are designed
for unstructured grids (Cases 4, 5, 6 and 7). Figure 5.14 shows the improvement in the simulation
of a two-dimensional bubble growth with a fixed mass transfer rate w.r.t. the initial simulation
performed using the basic implementation of the ACLS function. The Boiling solver is then able
to simulate phase change with a fixed mass transfer rate. The bubble radius converges at order
one with grid refinement on structured and unstructured two-dimensional grids and unstructured
three-dimensional grids. The ability to accurately compute the interface location on unstructured
grids opens the path to numerical simulations of liquid-vapor phase change on complex geometries.

In the next chapter, the numerical method of the Boiling solver is enhanced by the computation
of the mass transfer rate, and boiling simulations on unstructured grids are presented.
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(a) (b)

(c)

Fig. 5.6 – Interface location at final time on the finest structured grid considered (∆x = 5× 10−5 m)
for (a) Case 1, (b) Case 2 and (c) Case 3. The initial interface is represented in blue (in white on
(c)), the computed interface at final time, in black. Our FMM implementation reinitializes φ only
in the narrow band around the interface to save computational time. The liquid and vapor velocity
fields are represented on (c).
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Fig. 5.7 – Errors at final time of (a) bubble radius, (b) x-component of interface normal vector and
(c) interface curvature for Cases 1, 2 and 3.



90 CHAPTER 5. SIMULATION OF BOILING WITH A FIXED MASS TRANSFER RATE

(a) (b)

(c) (d)

Fig. 5.8 – Interface location at final time on the finest unstructured grid considered (∆x =
5× 10−5 m) for (a) Case 4, (b) Case 5, (c) Case 6 and (d) Case 7. The initial interface is rep-
resented in blue on (a) and (d) and in white on (b) and (c), the computed interface at final time,
in black. The liquid and vapor velocity fields are represented on (b).
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Fig. 5.9 – Errors at final time of (a) bubble radius, (b) x-component of interface normal vector and
(c) interface curvature for Cases 4, 5, 6 and 7.



92 CHAPTER 5. SIMULATION OF BOILING WITH A FIXED MASS TRANSFER RATE

5×10
-5

1×10
-4

2×10
-4

4×10
-4

Cell size (m)

1×10
-2

1×10
-1

1×10
0

ξ
R
 (

-)

Case 1 (S - SDF with seq. HJ eq.)

Case 2 (S - SDF with seq. FMM)

Case 3 (S - CLS with seq. FMM for SDF)

Case 4 (U - SDF with seq. FMM)

Case 5 (U - SDF with par. GMM)

Case 6 (U - SDF with par. HJ eq.)

Case 7 (U - CLS with seq. FMM for SDF)

Slope 1

(a)

5×10
-5

1×10
-4

2×10
-4

4×10
-4

Cell size (m)

1×10
-2

1×10
-1

1×10
0

ξ
N

 (
m

)

Case 1 (S - SDF with seq. HJ eq.)

Case 2 (S - SDF with seq. FMM)

Case 3 (S - CLS with seq. FMM for SDF)

Case 4 (U - SDF with seq. FMM)

Case 5 (U - SDF with par. GMM)

Case 6 (U - SDF with par. HJ eq.)

Case 7 (U - CLS with seq. FMM for SDF)

Slope 1

(b)

5×10
-5

1×10
-4

2×10
-4

4×10
-4

Cell size (m)

1×10
-1

1×10
0

1×10
1

ξ
κ
 (

-)

Case 1 (S - SDF with seq. HJ eq.)

Case 2 (S - SDF with seq. FMM)

Case 3 (S - CLS with seq. FMM for SDF)

Case 4 (U - SDF with seq. FMM)

Case 5 (U - SDF with par. GMM)

Case 6 (U - SDF with par. HJ eq.)

Case 7 (U - CLS with seq. FMM for SDF)

Slope 0.5

(c)

Fig. 5.10 – Errors at final time of (a) bubble radius, (b) x-component of interface normal vector
and (c) interface curvature for all Cases of Tab. 5.1. The letters S and U stand respectively for
Structured and Unstructured.
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(a) (b)

(c) (d)

Fig. 5.11 – The results for the Case 7 on four different unstructured grids are plotted at final time
with a characteristic cell size of (a) 4× 10−4 m, (b) 2× 10−4 m, (c) 1× 10−4 m and (d) 5× 10−5 m.
The initial interface is plotted in blue, the computed interface in black, and the theoretical interface
in red. For clarity, only the coarsest grid is represented in (a). The computed liquid and vapor
velocity fields are plotted in (b).
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Fig. 5.12 – Three-dimensional extension of Case 5 to four tetrahedral unstructured grids : (a)-(b)
∆x = 4× 10−4 m, (c)-(d) ∆x = 2× 10−4 m, (e)-(f) ∆x = 1× 10−4 m and (g)-(h) ∆x = 5× 10−5 m.
The initial interface is shown in blue, the theoretical and computed interfaces are shown at final
time in green and yellow, respectively. We emphasize here the excellent agreement between the
theoretical and numerical results.
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Fig. 5.13 – Error on (a) the bubble radius, (b) the x-component of the interface normal vector and
(c) the interface curvature relative to the three-dimensional simulations shown in Fig. 5.12.
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(a) (b)

(c) (d)

Fig. 5.14 – Comparison of the two-dimensional bubble shape growing with a fixed mass transfer
rate : (a), (c) with the basic ACLS implementation of YALES2 on respectively ∆ = 4× 10−4 m and
∆ = 1× 10−4 m (large imprecisions on the interface location led to the failure of the simulation in
both cases), reproduced from Figs. 5.2(a) and 5.2(c), and (b), (d) with our implementation denoted
as Case 7 in Table 5.1, on grids of same characteristic cell sizes, reproduced from Figs. 5.11(a) and
5.11(c), where the final bubble radius is twice the initial one. The initial interface is colored in blue,
the theoretical interface at current time is colored in red and the corresponding computed interface
is colored in black.





Chapter 6

Numerical simulation of two-phase flows
with phase change in two and three
dimensions with a computed mass
transfer rate

In this chapter, the resolution of the heat equation and the computation of the mass transfer rate
as a function of the temperature gradients across the interface are detailed, and the whole method
is validated against the test case of a static bubble, growing under the effect of the surrounding
superheated liquid.

Outline
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6.1 Introduction

In Chapter 5, the mass transfer rate ṁ was imposed to a uniform and constant value. As a
result, the flow dynamics was decoupled from the temperature field (the heat equation was not even
solved). The Boiling solver has been validated against the case of a two- and three-dimensional static
bubble, expanding due to a fixed mass tranfer rate. This chapter deals with the computation of the
mass transfer rate as a function of the temperature gradients across the interface and demonstrates

99
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the accuracy of the overall method against the case of a two- and three-dimensional static bubble
surrounded by a superheated liquid responsible for phase change.

Section 6.2 presents the methodology used to solve the heat equation with immersed Dirichlet
boundary condition in multidimensions. Section 6.3 details the computation of the mass transfer
rate in multidimensions. Section 6.4 presents the application of a numerical method detailed in
Section 6.2 to the computation of the interface curvature. Section 6.5 introduces the test case and
gives the demonstration of its analytical solutions in two and three dimensions. Section 6.6 presents
the numerical results and shows the accuracy of the overall numerical method implemented in the
Boiling solver to simulate boiling flows on two- and three-dimensional unstructured grids. Finally,
Section 6.7 concludes this chapter with a summary of the methodology used for boiling simulations
in multidimenssions.

6.2 Solving the heat equation with immersed Dirichlet boundary
condition in multidimensions

Under the assumption that boiling occurs at saturation temperature, the condition

TΓ = Tsat (6.1)

needs to be enforced in order to maintain the interface at saturation temperature. Since this
condition is applied at the interface, which can be seen as a boundary immersed in the computational
domain, i.e. the interface does not coincide with the grid nodes, this condition is said immersed
Dirichlet boundary condition. Section 4.3.3 details a method to satisfy Eq. (6.1) in one dimension.
In this method, Eq. (6.1) is satisfied by extrapolating ghost values across the interface using two
values along the grid edge crossed by the interface : the physical (computed) temperature on
one node and the (imposed) interface temperature. This scheme leads to a linearly extrapolated
temperature value across the interface, ensuring that Eq. (6.1) is satisfied. The heat equation (4.10)
is then solved explicitly : the temperature gradient and laplacian at time n are used to advance the
temperature from time n to time n+ 1. While very simple to implement in one dimension (though
attention must be paid to the threshold value used, see Section 4.3.3), this explicit method has
proven inaccurate in multidimensions.

6.2.1 Temporal β-scheme

The heat equation (1.5) is solved using the temporal β-scheme [26, 85]

ρicp,i
∆t

Tn+1
i − β∇ ·

(
λi∇Tn+1

i

)
=
ρicp,i
∆t

Tni + (1− β)∇ · (λi∇Tni )− ρicp,iui · ∇Tni , (6.2)

where 0 ≤ β ≤ 1 is the implicitation factor for the diffusion term ∇ · (λi∇Tni ) and the subscript i
denotes the phase. The advection term ρicp,iui · ∇Tni is included in the rhs as a source term. If β
is set to 0, Eq. (6.2) defaults to the explicit scheme used in Section 4.3.3 to solve Eq. (4.10). If β
is set to 0.5, Eq. (6.2) is the Crank-Nicolson scheme with source term. If β is set to 1, the diffusion
term is fully implicit, and Eq. (6.2) is the semi-implicit temporal discretization scheme used in [85],
where the term semi -implicit refers to the fact that the advection term is still computed explicitly.
In order to compute close to the interface all derivatives involved in the temporal β-scheme (6.2),
one needs :
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Fig. 6.1 – The node with a question mark is swept over by the interface Γ separating the subdomains
Ω− and Ω+ between times n and n + 1. A temperature value needs to be extrapolated at time n
from Ω− in order to advance the temperature in Ω− with Eq. (6.2). Reproduced from [26].

1. one per-edge ghost temperature value to compute the diffusion term at time n+ 1 (if β > 0),

2. one per-edge ghost temperature value to compute the diffusion term at time n (if β < 1),

3. one per-edge ghost temperature value to compute the advection term at time n.

Besides, as stated in [26], due to the interface motion, Eq. (6.2) requires that

4. nodes that are swept over by the interface need to be provided with valid physical temperature
values, as illustrated in Fig. 6.1.

The computation of ghost values is always a source of imprecisions since it is based on extrapolations.
In the present case, extrapolations have to be computed across the interface along the direction of
the interface normal vector, thus increasing the error magnitude on ghost values due to potential
imprecisions on the interface normal vector computation (see Ch. 5). If β is set to 1, requirement 2
disappears. The iterative methods implemented in linear solvers used to solve Eq. (6.2) still converge
when computing ghost temperature values for the diffusion term, thus satisfying requirement 1 (see
Section 6.2.2). The methods used to satisfy requirements 1, 3 and 4 are discussed below.

6.2.2 Discretization of the implicit diffusion term with Dirichlet boundary
condition at the interface

Refering to Fig. 6.2(a), the diffusion term at time n+ 1 of Eq. (6.2) is given at node p by Eq.
(3.16), i.e.

∇ · (λ∇T )|p =
1

Vp

5∑
j=1

λp,qj
∇T |p,qj

·Ap,qj
, (6.3)
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(a) Control volume without liquid-vapor inter-
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(b) Control volume crossed by the liquid-vapor
interface : in order to compute the implicit diffu-
sion term of Eq. (6.2) on node p, a temperature
ghost value is computed on node q1 by Eq. (6.8).

Fig. 6.2 – The presence of the liquid-vapor interface is taken into account in the implicit diffusion
term of the lhs of Eq. (6.2). Without interface inside the control volume (a), the implicit diffusion
term of Eq. (6.2) is computed by the usual finite volume procedure. When the interface crosses the
control volume (b), temperature ghost values are computed by means of Eq. (6.8).

where λp,qj =
(
λp + λqj

)
/2 and the gradient ∇T |p,qj

along the edge (p,qj) is computed by

∇T |p,qj
=
Tqj
− Tp

‖qj − p‖
qj − p

‖qj − p‖

=
Tqj
− Tp

‖qj − p‖2
(qj − p) . (6.4)

Equations (6.3) and (6.4) form a compact scheme in the sense that, while the laplacian of T at node
p involves second-order derivatives of T , only the values on the closest neighbor nodes qj (and on
p) are needed.

Note that for a one-dimensional uniform grid of cell size ∆x where the indices i− 1, i and i+ 1
represent nodes q1, p and q2 respectively, one has ‖qj − p‖ = ∆x, (qj − p) / ‖qj − p‖ = ±ex and
Ap,qj

= ex. As a result, Eq. (6.4) simplifies to

∇T |xi−1,xi
=
Ti − Ti−1

∆x
ex (6.5)

and

∇T |xi,xi+1
=
Ti+1 − Ti

∆x
ex, (6.6)
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and Eq. (6.3) writes

∇ · (λ∇T )|i = λ
Ti−1 − 2Ti + Ti+1

∆x2
, (6.7)

(assuming uniformity of the thermal conductivity λ). Equations (6.6) and (6.7) are respectively the
first- and second-order accurate finite difference spatial discretization schemes used for the gradient
and laplacian operators in one dimension.

When the interface crosses the control volume, as illustrated in Fig. 6.2(b), temperature ghost
values need be computed to avoid using potentially irrelevant temperature values from the other
phase, and to ensure saturation temperature at the interface. For instance, in Fig. 6.2(b), when
computing the implicit temperature diffusion term of Eq. (6.2) on node p, one needs to compute a
temperature ghost value TG

q1
on node q1 since this node is not located in the same phase than node

p. In multidimensions, Eq. (4.24) applied to edge (p,q1) writes

TG
q1

= Tp +
Tsat − Tp
θp,q1

, (6.8)

and, by Eq. (6.4), the temperature gradient ∇T |p,q1
along grid edge (p,q1) is given by

∇T |p,q1
=

TG
q1
− Tp

‖q1 − p‖2
(q1 − p)

=
Tsat − Tp

θp,q1
‖q1 − p‖2

(q1 − p) . (6.9)

The implicit temperature diffusion term is then computed at node p by Eqs. (6.3), (6.4) and (6.9),
yielding

∇ · (λ∇T )|p =
1

Vp
λp,q1

∇T |p,q1
·Ap,q1

+
1

Vp

5∑
j=2

λp,qj
∇T |p,qj

·Ap,qj

=
1

Vp
λp,q1

Tsat − Tp
θp,q1

‖q1 − p‖2
(q1 − p) ·Ap,q1

+
1

Vp

5∑
j=2

λp,qj

Tqj
− Tp

‖qj − p‖2
(qj − p) ·Ap,qj

(6.10)

In one dimension, considering nodes xi−1, xi and xi+1, and assuming that the interface is located
between nodes xi and xi+1, Eq. (6.8) becomes

TG
i+1 = Ti +

Tsat − Ti
θxi,xi+1

, (6.11)

and Eq. (6.9) simplifies to

∇T |xi,xi+1
=

Tsat − Ti
θxi,xi+1

∆x
ex. (6.12)

Finally, assuming again uniformity of the thermal conductivity λ in each phase, Eq. (6.10) is
rewritten

∇ · (λ∇T )|i =
1

∆x

(
λ
Tsat − Ti
θxi,xi+1

∆x
− λTi − Ti−1

∆x

)
= λ

θxi,xi+1Ti−1 −
(
1 + θxi,xi+1

)
Ti

θxi,xi+1
∆x2

+ λ
Tsat

θxi,xi+1
∆x2

. (6.13)
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6.2.3 Discretization of the explicit advection term

6.2.3.1 Interface temperature

The advection term −ρcpu · ∇Tn is solved explicitly, as noted by the n superscript. As a
previously advected field, we do not reimpose the saturation temperature at the interface on Tn

when computing ∇T in the advection term, avoiding the abrupt perturbation of the field associated
with such linear extrapolation in explicit formalism. Indeed, while using Eq. (6.8) within an implicit
formalism (e.g. computation of ghost values in the implicit temperature diffusion of Eq. (6.2)) does
not degrade the field, non negligeable perturbations of the temperature fields have been observed
when using Eq. (6.8) within an explicit resolution of Eq. (6.2). Moreover, while one could think
that reimposing the saturation temperature at the interface could improve accuracy of the method
(since boiling is assumed to occur at saturation temperature), it may theoretically be not as crucial
since the temperature has already been advected, with the saturation temperature imposed at the
interface in the previous computation of the implicit diffusion term (see Section 6.2.2). The interface
temperature at time n is then expected to be very close to the saturation temperature.

6.2.3.2 Temperature ghost values close to the interface

When computed on the closest nodes to the interface, the temperature gradient of the explicit
advection term also requires valid temperature values on the other side of the interface. This re-
quirement is typically fulfilled by populating ghost nodes close to the interface by ghost values.
These ghost values are generally computed by means of extrapolations from the physical values
defined in one phase to the other side of the interface. In [85], the authors used the high-order
extrapolation method from [4] on two-dimensional axisymmetric cartesian grids. This method has
been implemented in the Boiling solver up to order two for arbitrary two- and three-dimensional
grids. Nevertheless, the accuracy of the extrapolated temperature values was not sufficient to com-
pute an accurate temperature gradient close to the interface. The method is detailed in Appendix
G, where some numerical results are shown.

During this thesis, another methodology to reconstruct differential operators at high order on
unstructured simplicial grids has been developed within a collaboration between LEGI and CORIA
teams. This new method also enables high-order interpolations and extrapolations, and is presented
in the next section.

6.2.4 Differential operator reconstructions and extrapolations : the
High-Order Framework

6.2.4.1 Numerical error inherent to the Finite Volume Method

In [9], the authors proposed a new framework to reconstruct differential operators up to a chosen
accuracy order within the node-centered finite-volume method on unstructured simplicial grids, in
two and three dimensions. This method has been implemented in the Boiling solver and is detailed
below.

Let Ω be the computational domain, let S be one non-moving unstructured simplicial partition
of Ω and let X be the set of nodes delimiting S. Let Z : Ω −→ R be a scalar field. For each node
xI ∈ X , let ΩI ⊂ Ω be the control volume associated to node xI , and ZI the value of Z on node
xI . Let assume that the field Z is advected during the simulation by some velocity u according to
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the conservative advection equation

∂Z

∂t
+∇ · (Zu) = 0. (6.14)

In the rest of this section, let xI be one given node of X . At any given time of the simulation,
the updated value of Z obtained by solving Eq. (6.14) and stored at node xI is not equal to the
theoretical new value ZI = Z (xI). This difference does not entirely originate from the numerical
error inherent to the advection scheme used to solve Eq. (6.14). Indeed, as will be shown in this
section, it is mainly due to the foundations of the finite volume method itself. In order to minimize
this difference, the following methodology is applied.

By construction of the finite volume method, the value of Z stored at node xI is the average

value of Z over ΩI . As a result, this value will be noted Z
ΩI

where the averaging operator ·ΩI

applied to Z is given by

Z
ΩI

=
1

VI

ˆ
ΩI

Z (ω) dω, (6.15)

where VI is the volume of the set ΩI . Integrating Eq. (6.14) over ΩI and using Eqs. (6.15) and
(3.2) yields

∂Z
ΩI

∂t
+

1

VI

ˆ
∂ΩI

Z (σ) u (σ) · n (σ) dσ = 0. (6.16)

Equation (6.16) is the equation which is actually solved in the finite volume method. The value

Z
ΩI

is expected to be close to ZI = Z (xI). Particularly, Z
ΩI

is a second-order accurate approx-
imation of ZI on regular grids and a first-order accurate approximation of ZI on unstructured
grids. Nevertheless, when high precision is needed on Z (especially to compute its derivatives),

this approximation is not sufficient and more work is needed to recover ZI from Z
ΩI

. This step is
called deconvolution. In [9], the authors propose a third-order polynomial reconstruction of ZI from

Z
ΩI

, together with a second-order polynomial reconstruction of ∇ZI and a first-order polynomial
reconstruction of ∇∇ZI .

6.2.4.2 Computation of control volume first- and second-order moments

Let x ∈ ΩI , not necessarily a node of X , the Taylor expansion of Z at order 2 in point x w.r.t.
node xI is given by

Z (x) = ZI +∇ZI ·∆I (x) +
1

2
(∇∇ZI) : (∆I (x)⊗∆I (x)) +O

(
∆3
)
, (6.17)

where ∆I = x− xI , ∆ is the characteristic length of grid cells, · denotes the simple dot product, :,
the double dot product and ⊗, the tensor product. Applying the averaging operator of Eq. (6.15)
to Eq. (6.17) yields

Z
ΩI

= ZI +∇ZI ·∆I
ΩI

+
1

2
(∇∇ZI) :

(
∆I ⊗∆I

ΩI
)

+O
(
∆3
)
, (6.18)

where

∆I
ΩI

=
1

VI

ˆ
ΩI

(x(ω)− xI) dω = O (∆) (6.19)
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Fig. 6.3 – The control volume ΩI associated to node xI represented by point I is the disjoint union
of simplices S1, . . . ,S10. The symbol • denotes the grid nodes I and J1, . . . , J5, +, the grid element
barycenters I2, I4, I6, I8, I10, ◦, the grid edge midpoints I3, I5, I7, I9, and � , the point O (frame
origin) which does not necessarily represent a grid node.

and

∆I ⊗∆I
ΩI

=
1

VI

ˆ
ΩI

(x(ω)− xI)⊗ (x(ω)− xI) dω = O
(
∆2
)

(6.20)

are respectively the first- and second-order moments of ΩI . One can remark that ∆I
ΩI

= xΩI
−xI ,

where xΩI
is the mass center of ΩI . As a result, ∆I

ΩI
is null iif node xI is the mass center of

ΩI , i.e. when ΩI is a regular or uniformly stretched control volume. Moreover, the eigenvalues of

∆I ⊗∆I
ΩI

are the moments of inertia of ΩI , implying that ∆I ⊗∆I
ΩI

is never null. Adapting
formulas given in [68] for a tetrahedron, the authors have been able to derive the first- and second-
order moments of any simplex w.r.t. any point in the computational domain. The computation
of the first- and second-order moments is now illustrated on the two-dimensional control volume
depicted in Fig. 6.3. The following methodology is equivalently applicable to three-dimensional
grids.

The first-order moment MO
1,i of simplex Si w.r.t. the frame origin O is given by

MO
1,i =

1

d+ 1

d+1∑
i=1

xi, (6.21)

where d is the simplex dimension and the points xi are the simplex vertices. The second-order
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moment MO
2,i of simplex Si w.r.t. point O is given by

MO
2,i =

1

(d+ 1) (d+ 2)

d+1∑
i=1

d+1∑
j=1

xi ⊗ xj +

d+1∑
i=1

xi ⊗ xi

 . (6.22)

In the case of the two-dimensional simplices Si shown in Figure 6.3, one has d = 2 in Eqs. (6.21)
and (6.22). Moments can also be computed w.r.t. any point of Ω from moments computed w.r.t.
point O using translation formulas. We are interested in the first- and second-order moments of
the control volume ΩI computed w.r.t. node xI represented by point I on Fig. 6.3. The first-order
moment MI

1,i of simplex Si w.r.t. point I is given by

MI
1,i = MO

1,i − xI , (6.23)

and the second-order moment MI
2,i of simplex Si w.r.t. point I is given by

MI
2,i = MO

2,i − xI ⊗MO
1,i −MO

1,i ⊗ xI + xI ⊗ xI . (6.24)

Finally, using the linearity of the integral, the moments of the whole control volume ΩI are given
by summation of the moments of all simplices constituting ΩI . In the case depicted in Fig.6.3, ΩI

is composed of ten simplices. The first-order moment ∆I
ΩI

of ΩI w.r.t. point I is then given by

∆I
ΩI

=

10∑
i=1

MI
1,i, (6.25)

and the second-order moment ∆I ⊗∆I
ΩI

of Ωi w.r.t. point I, by

∆I ⊗∆I
ΩI

=

10∑
i=1

MI
2,i. (6.26)

Using the moments of control volumes, the data deconvolution step can now be detailed.

6.2.4.3 Data deconvolution from control volumes

Let NI be the direct neighbor node set of node xI . Let NI ⊂ N be the set of integers q such
that node xJq ∈ NI . At node xI , the classical integrated gradient operator GI and hessian operator
HI applied to the field Z lead to

GI(Z) =
1

VI

∑
q∈NI

ZI + ZJq
2

AI,Jq (6.27)

and

HI(Z) =
1

VI

∑
q∈NI

(
ZJq − ZI∥∥xJq − xI

∥∥
)

1

2

(
nI,Jq ⊗ SI,Jq + SI,Jq ⊗ nI,Jq

)
, (6.28)

where Z is the vector containing all values of Z computed on nodes of X , being pointwise or
averaged values, and nI,Jq =

(
xJq − xI

)
/
∥∥xJq − xI

∥∥. Since GI is typically second-order accurate
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on cartesian grids and first-order accurate on unstructured grids, and since HI is typically divergent
on unstructured grids, these two operators can not be used to achieve third-order reconstruction of
ZI on unstructured grids by solving Eq. (6.18).

Applying nodal gradient and hessian operators to the averaged quantity of Eq. (6.18) leads to

GI
(
Z

Ω
)

= (∇ZI) · GI
(
∆I

Ω
)

+
1

2
(∇∇ZI) : GI

(
∆I ⊗∆I

Ω
)

+O
(
∆2
)

(6.29)

and

HI
(
Z

Ω
)

= (∇ZI) · HI
(
∆I

Ω
)

+
1

2
(∇∇ZI) : HI

(
∆I ⊗∆I

Ω
)

+O (∆) . (6.30)

Equations (6.18), (6.29) and (6.30) yield the linear system

LI = CO3

I HI + E, (6.31)

where

LI =


Z

ΩI

GI
(
Z

Ω
)

HI
(
Z

Ω
)
 , HI =

 ZI
∇ZI
∇∇ZI

 and E =

O (∆3
)

O
(
∆2
)

O (∆)

 (6.32)

are respectively the vectors of Low-order approximations, High-order approximations and Errors,
and the third-order convolution matrix CO3

I is given by

CO3

I =


1

ΩI
(
∆I

ΩI
)T

1
2∆I ⊗∆I

ΩI

GI
(

1
Ω
)
GI
(
∆I

Ω
)

1
2GI

(
∆I ⊗∆I

Ω
)

HI
(

1
Ω
)
HI
(
∆I

Ω
)

1
2HI

(
∆I ⊗∆I

Ω
)
 . (6.33)

Notice that, in order for the definitions of LI , HI and CO3

I in Eqs. (6.32) and (6.33) to be con-

sistent, the third-order tensors HI
(
∆I

Ω
)

and 1
2GI

(
∆I ⊗∆I

Ω
)

as well as the fourth-order tensor

1
2HI

(
∆I ⊗∆I

Ω
)

are transformed to second-order tensors of dimensions 4 × 2, 2 × 4 and 4 × 4,

respectively (9× 3, 3× 9 and 9× 9, respectively, in three dimensions). Similarly, the second-order

tensors HI
(
Z

Ω
)

, ∇∇ZI , HI
(

1
Ω
)

and 1
2∆I ⊗∆I

ΩI
are transformed to first-order tensors of di-

mensions 4×1, 4×1, 4×1 and 1×4, respectively (9×1, 9×1, 9×1 and 1×9, respectively, in three
dimensions). Furthermore, considering the (consistent) differential operators GI and HI defined in

Eqs. (6.27) and (6.28), one has GI
(

1
Ω
)

= 0 and HI
(

1
Ω
)

= 0. In two dimensions, CO3

I is then a

7× 7 matrix, while in three dimensions, it is a 13× 13 matrix1.

If the convolution matrix was equal to the identity matrix, then the nodal and integrated vari-
ables would be equal up to the orders given by E and no deconvolution would be neeeded : operators
GI and HI could directly be used to perform a polynomial reconstruction of ZI . Unfortunately,

1In practice, the symmetry of HI and ∆I ⊗∆I
Ω

is actually used to reduce the tensor orders and thus the size

of CO3
I .
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the convolution matrix is always different from the identity matrix, since, as previously stated,

∆I ⊗∆I
ΩI

is never null. Inverting linear system of Eq. (6.31) yields ZO3

I

GO2

I (Z)

HO1

I (Z)

 =
(
CO3

I

)−1


Z

ΩI

GI
(
Z

Ω
)

HI
(
Z

Ω
)
 , (6.34)

where ZO3

I is a third-order accurate approximation of ZI , GO2

I (Z) is a second-order accurate ap-

proximation of ∇ZI and HO1

I (Z) is a first-order accurate approximation of ∇∇ZI , respectively.
This method enables a third-order accurate approximation of ZI even on highly distorted grids

and only requires the computation of two compact operators and the inversion of a relatively small
matrix at each grid node, avoiding the necessity to build large stencils. As such, this method is very
well suited for parallelism. Nevertheless, attention has to be paid prior to the solving of Eq. (6.34)
to the invertibility of matrix CO3

I . This matrix is invertible iif node xI has a sufficient number of
direct neighbor nodes (see [9] for details). In case of an insufficient number of direct neighbors to
perform a third-order reconstruction, a lower-order reconstruction can be applied, or the third-order
reconstruction performed on some direct neighbor node can be used to reconstruct Z at order three
on the initial node.

Finally, the deconvoluted operators in the lhs of Eq. (6.34) provide a third-order Taylor expan-
sion of Z on node x around node xI , given by

ZO3

I (x) = ZO3

I + GO2

I (Z) ·∆I (x) +
1

2
HO1

I (Z) : (∆I (x)⊗∆I (x)) . (6.35)

One has to notice that this methodology is still valid if x ∈ ΩJ where J 6= I, enabling high-order
extrapolations from one node to an arbitrary point in the computational domain. This methodology
has been extended to the reconstruction of vector fields, in two and three dimensions.

6.2.5 Extrapolations using the High-Order Framework applied to the
computation of the explicit temperature advection term close to the
interface

The High-Order Framework can also be used to perform high-order extrapolations. In the
case of the explicit temperature advection term computation of Eq. (6.2), we use the High-Order
Framework to perform Taylor expansions in order to compute a relevant temperature gradient on
nodes of band level ±1. Refering to Fig. 6.2(b), nodes of band level +2 contribute to the liquid
temperature gradient on node p by means of the second-order Taylor expansion given by

GO2
qj

(Tliq) (p) = GO2
qj

(Tliq) + HO1
qj

(Tliq) · (p− qj) (6.36)

where j ∈ {3, 4}. The final value of GO2
p (Tliq) is then computed as the average of all Taylor

expansions. In the case depicted in Fig. 6.2(b), one has

GO2
p (Tliq) =

1

2

(
GO2

q3
(Tliq) (p) + GO2

q4
(Tliq) (p)

)
. (6.37)

Similarly, the vapor temperature gradient is computed on nodes of band level −1 by means of Taylor
expansions from nodes of band level −2. This method avoids differentiating across the interface,
thus does not require the computation of ghost values.
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6.2.6 Computation of the temporal temperature variation when the
interface crosses the node

When a node is swept over by the interface between times n and n+ 1, the computation of the
temporal fluctuation

(
Tn+1 − Tn

)
/∆t requires the knowledge of Tn, as shown in Fig. 6.1. Due to

the immersed Dirichlet boundary condition at the interface, it is convenient to consider that the
liquid and vapor subdomains are unrelated when solving the heat equation. Then, when a node
has been swept over by the interface, e.g. when a node has left the liquid phase to enter the vapor
phase, no relevant vapor temperature value was known at time n since the node was in the liquid
phase. As a result, one can not compute the temporal fluctuation of the vapor temperature field
on this node. One solution to this problem is to perform extrapolation of vapor temperature values
from nodes of band level −1 to nodes of band level +1. Such extrapolations can be performed using
the High-Order Framework by means of Eq. (6.35) where Z stands for Tvap, I represents a node of
band level −1 and x is a node a band level +1.

6.2.7 Summary of the numerical method used to solve the heat equation
with immersed Dirichlet boundary condition at the interface

In this section, we summarize the different steps used to solve the heat equation in the Boiling
solver. We refer to Fig. 6.2 where node p is far from the interface in Subfig. 6.2(a) and close to the
interface in Subfig. 6.2(b). Equation (6.2) is solved at node p with full implicit diffusion (β = 1),
i.e.

ρ(p)cp(p)

∆t
Tn+1(p)−∇ ·

(
λ(p)∇Tn+1(p)

)
=
ρ(p)cp(p)

∆t
Tn(p)− ρ(p)cp(p)u(p) · ∇Tn(p). (6.38)

For clarity in the notations, the implicit diffusion term will be noted ∇ · (λ∇T )|n+1
p and the tem-

perature gradient in the explicit advection term will be noted ∇T |np. The control volume associated
to node p is denoted Ωp.

6.2.7.1 Implicit diffusion term

If the interface does not cross the control volume Ωp, as in Subfig. 6.2(a), the diffusion term is
computed as

∇ · (λ∇T )|n+1
p =

1

Vp

5∑
j=1

λn+1
p,qj

Tn+1
qj
− Tn+1

p

‖qj − p‖2
(qj − p) ·Ap,qj

, (6.39)

where λn+1
p,qj

=
(
λn+1
p + λn+1

qj

)
/2 is known (since the interface has already been advected).

If the interface crosses Ωp, as in Subfig. 6.2(b), the diffusion term is computed as

∇ · (λ∇T )|n+1
p =

1

Vp
λn+1
p,q1

Tsat − Tn+1
p

θp,q1
‖q1 − p‖2

(q1 − p)·Ap,q1
+

1

Vp

5∑
j=2

λn+1
p,qj

Tn+1
qj
− Tn+1

p

‖qj − p‖2
(qj − p)·Ap,qj

.

(6.40)
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6.2.7.2 Explicit advection term

If the interface does not cross Ωp, the explicit temperature gradient of the advection term is
computed with the classical second-order finite volume gradient given by

∇T |np =
1

Vp

5∑
j=1

Tnp + Tnqj

2
Ap,qj

. (6.41)

If the interface crosses Ωp, the explicit temperature gradient of the advection term is computed
at p by means of Taylor expansions performed using the High-Order Framework from the direct
neighbor nodes of p located in the same phase. In the case depicted in Subfig. 6.2(b), one has

∇T |np = GO2
p (Tn)

=
1

2

(
GO2

q3
(Tn) (p) + GO2

q4
(Tn) (p)

)
, (6.42)

where the rhs of Eq. (6.42) is given by Eqs. (6.36) and (6.37).

6.2.7.3 Complete linear system

Equation (6.38) leads to the following linear system

ATn+1 = Bn, (6.43)

where A is a matrix defined below, Tn+1 is the vector of unknown temperature values and Bn is
the vector of known temperature values.

Let N ∈ N∗ be the total node number of the grid and let p ∈ {1, . . . , N} be the indice of node
p.

If the interface does not cross the control volume (Subfig. 6.2(a)), then using Eqs. (6.39) and
(6.41), Eq. (6.38) can be rewritten at node p asρcp

∆t
+

1

Vp

5∑
j=1

λp,qj

qj − p

‖qj − p‖2
·Ap,qj

Tn+1
p − 1

Vp

5∑
j=1

λp,qj

qj − p

‖qj − p‖2
·Ap,qj

Tn+1
qj

=
ρcp
∆t

Tnp − ρcpup · ∇T |np .

(6.44)

Let J ⊂ {1, . . . , N} be the indices of the direct neighbor nodes qj of node p. The p-th line Ap,· of

matrix A is given by

Ap,· = (Ap,1, . . . , Ap,N ) , (6.45)

where, for 1 ≤ k ≤ N , one has

Ap,k =


ρcp
∆t

+
1

Vp
∑
j∈J λp,qj

qj − p

‖qj − p‖2
·Ap,qj

, if k = p,

− 1

Vp
λp,qk

qk − p

‖qk − p‖2
·Ap,qk

, if k ∈ J ,

0, otherwise.

(6.46)
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The p-th component Bnp of vector Bn is given by the rhs of Eq. (6.44).
If the interface crosses an edge (p,qj) (Subfig. 6.2(b)), then using Eqs. (6.40) and (6.42), Eq.

(6.38) can be rewritten at node p asρcp
∆t

+
1

Vp
λp,q1

q1 − p

θp,q1 ‖q1 − p‖2
·Ap,q1

+
1

Vp

5∑
j=2

λp,qj

qj − p

‖qj − p‖2
·Ap,qj

Tn+1
p

− 1

Vp

5∑
j=2

λp,qj

qj − p

‖qj − p‖2
·Ap,qj

Tn+1
qj

=
ρcp
∆t

Tnp − ρcpup · ∇T |np +
1

Vp
λp,q1

q1 − p

θp,q1 ‖q1 − p‖2
·Ap,q1

Tsat

(6.47)

Let J∗ ( J be the indices of the direct neighbor nodes qj of node p which are located in the same

phase than p. The p-th line Ap,· of matrix A is given by Eq. (6.45) where, for 1 ≤ k ≤ N , one has

Ap,k =


ρcp
∆t

+
1

Vp
λp,q1

q1 − p

θp,q1
‖q1 − p‖2

·Ap,q1 +
1

Vp
∑
j∈J∗ λp,qj

qj − p

‖qj − p‖2
·Ap,qj if k = p,

− 1

Vp
λp,qk

qk − p

‖qk − p‖2
·Ap,qk

, if k ∈ J ,

0, otherwise.

(6.48)
The p-th component Bnp of vector Bn is given by the rhs of Eq. (6.47).

In both cases, the linear system of Eq. (6.43) is solved using the BiConjugate Gradient solver
[92]. While the relative distance θp,q1 appears in both the lhs and rhs of Eq. (6.47) in denominators,
our simulations did not require the use of a threshold on the value of θp,q1

, as opposed to the explicit
resolution of the heat equation used in one dimension (see Section 4.3.3).

6.3 Computation of the mass transfer rate

Once the heat equation has been solved in both phases, Tliq and Tvap are known at time n+ 1
in their respective phases. The mass transfer rate ṁ can then be computed at time n + 1. Since
the mass transfer rate has physical meaning only at the interface, special care is taken for its
computation. Again, we use the High-Order Framework presented in Section 6.2.4. We recall that
the mass tranfer rate ṁ is given by

ṁΓ =
[−λ∇T · nΓ]Γ

Lv
(6.49)

=
−λliq ∇Tliq|Γ + λvap ∇Tvap|Γ

Lv
· nΓ, (6.50)

where Lv is the (constant) latent heat of the fluid. In order to compute ∇Tliq|Γ and ∇Tvap|Γ
precisely at the interface, we use the High-Order Framework to perform high-order extrapolations.
First, we compute ∇Tliq|b=2 on the liquid nodes of band level +2 and ∇Tvap|b=−2 on the vapor

nodes of band level −2 using the second-order accurate nodal deconvoluted gradient operator GO2

I

of Eq. (6.34). Then, ∇Tliq|b=2 is extrapolated by Taylor expansion on the liquid nodes of band level
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+1 using Eqs. (6.36) and (6.37), yielding ∇Tliq|b=1. A similar Taylor expansion of ∇Tvap|b=−2 on
the vapor nodes of band level −1 yields ∇Tvap|b=−1. After this step, each grid edge (p,q) such that
node p is in the liquid phase and node q is in the vapor phase has knowledge of a value of ∇Tliq|p
on p and ∇Tvap|q on q. Along every such edge (p,q), another Taylor expansion is performed for

∇Tliq|p from node p to the interface, yielding ∇Tliq|p,Γ. Similarly, ∇Tvap|q is extrapolated to

the interface location, yielding ∇Tvap|q,Γ. The interface normal vector is computed at the same

interface location by np,q;Γ = (1− θp,q) np + θp,qnq. The mass transfer rate ṁ is then computed
precisely at the interface location along edge (p,q) by

ṁp,q;Γ =
−λliq ∇Tliq|p,Γ + λvap ∇Tvap|q,Γ

Lv
· np,q;Γ. (6.51)

Finally, since values of ṁ are needed on nodes to solve the level set advection equation and Navier-
Stokes equations, the value of ṁ stored on node p is computed as the simple average of the values
ṁp,q;Γ computed on edges containing node p.

6.4 Improvement of the interface curvature computation using the
High-Order Framework

The deconvoluted operators presented in Section 6.2.4 have been applied in the Boiling solver
to the computation of the interface curvature by Eq. (3.28). Let (xI ,xJ) be a grid edge crossed
by the interface Γ. First, the second-order deconvoluted gradient operator GO2

I (φ) and first-order

deconvoluted hessian operator HO1

I (φ) are computed on nodes xI and xJ , where φ is the signed
distance function to the interface. Then, since the interface curvature κ has mathematical meaning
only at the interface, these operators are extrapolated by Taylor expansion along the edge (xI ,xJ)
to the exact interface location xΓ. These Taylor expansions are given by

{
GO2

Γ,I(φ) = GO2

I (φ) + ∆I (xΓ) ·HO1

I (φ) +O
(
∆2
)

GO2

Γ,J(φ) = GO2

J (φ) + ∆J (xΓ) ·HO1

J (φ) +O
(
∆2
) (6.52)

and

{
HO1

Γ,I(φ) = HO1

I (φ) +O (∆)

HO1

Γ,J(φ) = HO1

J (φ) +O (∆)
. (6.53)
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Equation (3.28) is then rewritten

κΓ =
∇φ|TΓ · H(φ)|Γ · ∇φ|Γ − ‖∇φ|Γ‖

2
Tr (H (φ)|Γ)

‖∇φ|Γ‖
3 (6.54)

=

1
2

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)T

· 1
2

(
HO1

Γ,I(φ) + HO1

Γ,J(φ)
)
· 1

2

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)

−
∥∥∥ 1

2

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)∥∥∥2

Tr
(

1
2

(
HO1

Γ,I(φ) + HO1

Γ,J(φ)
))

∥∥∥ 1
2

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)∥∥∥3 (6.55)

=

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)T

·
(
HO1

Γ,I(φ) + HO1

Γ,J(φ)
)
·
(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)

−
∥∥∥GO2

Γ,I(φ) + GO2

Γ,J(φ)
∥∥∥2

Tr
(
HO1

Γ,I(φ) + HO1

Γ,J(φ)
)

∥∥∥GO2

Γ,I(φ) + GO2

Γ,J(φ)
∥∥∥3 , (6.56)

where

∇φ|Γ =
1

2

(
GO2

Γ,I(φ) + GO2

Γ,J(φ)
)

(6.57)

and

H(φ)|Γ =
1

2

(
HO1

Γ,I(φ) + HO1

Γ,J(φ)
)
. (6.58)

One can notice that the sums of Eqs. (6.57) and (6.58) can also be weighted by the relative distance
θxI ,xJ

in order to improve accuracy. In [9], the interface curvature computed using Eq. (6.56) is
shown to be second-order accurate on cartesian grids and first-order accurate on unstructured grids.
Convergence of interface curvature on unstructured grids is a very important achievement since the
curvature, as a sum of second-order derivatives of the potentially polluted signed distance function
to the interface (due to reinitialization), often degrades the accuracy of two-phase flow simulations
[19, 13, 51].

Figure 6.4 shows the improvement in the interface curvature computation provided by the High-
Order Framework (Eq. (6.56)) w.r.t. the classical finite-volume operators (Eqs. (3.16) and (3.17)).

Equation (6.56) is the preferred method to compute the interface curvature in the Boiling solver.

6.5 Radially symmetric growth of a 3D bubble: a test case

In this section, the test case used to validate the numerical method implemented in the Boiling
solver to simulate boiling flows is presented. This test case consists in a vapor bubble surrounded
by a superheated liquid. The vapor temperature field is initialized in the vapor phase at satura-
tion temperature, and the liquid temperature field is initialized in the liquid phase by means of
a spherically symmetric profile whose complex analytical formulation has been derived in Scriven
[75] and is detailed in Appendix H. The liquid temperature gradient is non-zero in the liquid side
of the interface, leading to a non-zero mass transfer rate at the interface. Due to the initially
stationary bubble and to the symmetry of the problem, the liquid-vapor interface motion is then
only due to phase change. The gravitational forces being neglected, the interface is expected to
remain spherical for the whole temporal evolution. The duration of the simulation is equal to the
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Fig. 6.4 – Relative error of the interface curvature computation on six different two-dimensional
simplicial grids using the classical finite-volume operators (Eqs. (3.16) and (3.17)) and the High-
Order Framework (Eq. (6.56)). The computation is performed on the analytical expression of the
signed distance function φ to the interface (no previous reinitialization).

theoretical duration needed for the bubble radius to double. Appendix H also presents a derivation
of the initial liquid temperature profile analytical formulation in two dimensions.

6.6 Numerical results

In this section, we present our numerical results in two and three dimensions for the test case
introduced in Section 6.5.

6.6.1 Numerical results in 2D

6.6.1.1 On equilateral triangles

In order to avoid the influence of anisotropic control volumes, we first present the results obtained
on two-dimensional grids built only with equilateral triangles, leading to regular hexagonal control
volumes. The computational domain is a rhombus of side length L = 8× 10−3 m, as shown in Fig.
6.5. The grids used are listed in Table 6.1. The initial bubble radius is R0 = 1× 10−3 m and the
simulation is performed until the theoretical bubble radius is twice the initial radius. The physical
properties of interest are listed in Table 6.2 where the heat capacity at constant pressure of the
liquid has been divided by two orders of magnitude w.r.t. the value used in [85] (see discussion in
Section 6.6.2). Figure 6.6 shows the computed interface at final time and the final temperature,
velocity and pressure fields for the finest grid. One can notice the high accuracy on the bubble
shape at final time : the bubble is perfectly circular and its radius is in excellent agreement with
the theoretical one. Due to the symmetry of the problem, the liquid velocity profile is expected to
be colinear to the interface normal vector. However, due to the proximity of the domain boundaries
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Characteristic grid cell size
∆ (m)

Number of cells N (-)

9.375× 10−5 14 450
4.688× 10−5 57 800
2.344× 10−5 231 200

Table 6.1 – Two-dimensional grids composed of equilateral triangles.

ρliq ρvap σ µliq

958 kg m−3 0.59 kg m−3 5.9× 10−2 N m−1 2.82× 10−4 kg m−1 s−1

µvap λliq λvap cp,liq

1.23× 10−6 kg m−1 s−1 0.6 W m−1 K−1 0.026 W m−1 K−1 42.16 J kg−1 K−1

cp,vap Lv Tsat

2034 J kg−1 K−1 2.257× 106 J kg−1 373 K

Table 6.2 – Physical properties used in two dimensions. Only cp,liq differs (by two orders of magni-
tude) from the value used in Tanguy et al. [85].

to the interface, one can observe anisotropy of the liquid velocity profile, as shown in Fig. 6.6(c).
This does not alter the accuracy of the computed interface. Figure 6.7 shows the relative error on
the final bubble radius. The relative error on the final bubble radius decreases with grid refinement.
A deeper analysis is presented in Fig. 6.8 which shows the error on the x-component of the interface
normal vector and the relative error of the interface curvature. The error on the interface normal
vector decreases with grid refinement, whereas the error on the interface curvature does not decrease
with grid refinement. We emphasize that the errors presented here are given in L∞-norm. Hence
one single inaccurate curvature value can lead to a high relative error.

6.6.1.2 On fully unstructured triangles

We now validate our numerical method using unstructured triangles. We have found that large
deformations of the interface were observed when the surface tension was considered on arbitrary
unstructured triangles of equivalent sizes to the equilateral triangles used in the previous section.
These large deformations of the interface are assumed to be due to the lack of accuracy of the inter-
face curvature computation on arbitrary triangles (despite the use of the High-Order Framework),
since the product σκ is present in the pressure jump at the interface (Eq. (1.31)). As will be shown
in Section 6.6.2, this is not the case in three dimensions.

In order to avoid these instabilities, as opposed to the simulations performed on equilateral
triangles, the surface tension has been taken equal to zero on unstructured triangles. The grids
used are listed in Table 6.3. Figure 6.9 shows the coarsest grid. Figure 6.10 shows the computed
interface at final time and the final temperature, velocity and pressure fields for the finest grid. One
can observe the high accuracy of the final interface shape and the radial symmetry of the liquid
temperature and velocity profiles. Figure 6.11 shows the relative error on the final bubble radius for
the three grids. The relative error on the bubble radius at final time is smaller than 5% on the three
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Characteristic grid cell size
∆ (m)

Number of cells N (-)

1.875× 10−4 8 806
9.375× 10−5 14 450
4.688× 10−5 57 800

Table 6.3 – Two-dimensional grids composed of arbitrary triangles.

grids. The convergence of the bubble radius is less clear than on equilateral triangles (see Fig. 6.7).
This is due to the absence of surface tension forces (which would maintain the bubble circular)
and to the anisotropy of control volumes (which favors numerical errors on the computation of
differential operators). A deeper analysis is presented in Fig. 6.12 which shows the error on the
x-component of the interface normal vector and the relative error on the interface curvature. The
errors on the interface normal vector and curvature are clearly divergent with grid refinement (Figs.
6.12(a) and 6.12(b)). Again, we emphasize that the errors presented here are given in L∞-norm.
Hence one single inaccurate value can lead to a high relative error.

These results on equilateral and unstructured triangles have been presented in the 4th World
Congress on Momentum, Heat and Mass Transfer on April 10-12, 2019, in Rome, Italy and can be
found in Sahut et al. [72].

6.6.2 Numerical results in 3D

This test case has been simulated by Tanguy et al. [85] on two-dimensional axisymmetric
cartesian grids and by Rajkotwala et al. [67] on three-dimensional cartesian grids. Our goal is to
reproduce similar results in order to validate our numerical method on three-dimensional unstruc-
tured grids. The liquid temperature field is initialized using the procedure described in Section
H.1.4. The computational domain is a cube of side length L = 1.2× 10−2 m. The initial bubble
radius is R0 = 1× 10−3 m and the simulation is performed until the bubble radius is twice the
initial one. Equation (H.44) implies that the initial time tini is not equal to zero but is given by

tini =
R2

0

4Kβ2
, (6.59)

and that the final time tfin is given by
tfin = 4tini. (6.60)

In Tanguy et al. [85], the simulations are performed for Jakob numbers ranging from 3 to 10,
on three two-dimensional axi-symmetric cartesian grids. The authors have simulated the test case
using different variants of the numerical method. We chose to compare our method to the variant
giving the smallest final relative errors on the bubble radius for the highest tested Jakob numbers,
since increasing the Jakob number decreases the width of the thermal boundary layer at the in-
terface, thus making the mass transfer rate more challenging to compute on a given grid [85]. We
performed our simulations with Jakob numbers of 3, 5, 7 and 9. Table 6.4 reproduces the errors
given for these Jakob numbers in Table 6 of [85]. We performed our simulations on the three three-
dimensional unstructured tetrahedral grids listed in Table 6.5. In order to speed up computations,
the characteristic cell sizes of these grids are multiplied by a factor 1.6 w.r.t. the characteristic cell
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∆ (m) Ja=3 Ja=5 Ja=7 Ja=9

9.375× 10−5 9.3% 21% 30.5% 36.6%
4.688× 10−5 1.4% 2.8% 7.9% 14.4%
2.344× 10−5 1.0% 1.0% 0.5% 1.0%

Table 6.4 – Relative errors on the bubble radius at final time for different Jakob numbers on three
two-dimensional axi-symmetric cartesian grids extracted from Table 6 of Tanguy et al. [85]. The
cell sizes in the first column have been computed from the number of cells and the size of the domain
given by the authors.

∆ (m) Number of cells N (-)

1.5× 10−4 554 800
7.5× 10−5 1 933 621
3.75× 10−5 9 186 699

Table 6.5 – Unstructured tetrahedral grids used in three dimensions. The cell sizes correspond to
the ones listed in Table 6.4 multiplied by 1.6. The refined area around the interface is shown in
Fig. 6.13.

∆ (m) Ja=3 Ja=5 Ja=7 Ja=9

1.5× 10−4 6.8% 20% 34% 47%
7.5× 10−5 0.8% 1.7% 7.9% 16%
3.75× 10−5 1.7% 0.6% 1.0% 1.9%

Table 6.6 – Relative errors on the bubble radius at final time for different unstructured grids and
Jakob numbers in three dimensions.

sizes used in [85] and listed in Table 6.4. Moreover, the liquid heat capacity at constant pressure is
divided by two orders of magnitude with respect to the value used in [85] (see Table 6.2). Indeed,
Eq. (H.66) shows that if cp,liq decreases, then T∞ increases (all other parameters being unchanged).
As a result, the liquid temperature field, given at time t by Eq. (H.72), has a steeper initial slope
close to the interface. Consequently, the mass transfer rate ṁ and so the interface velocity due to
phase change (rhs of Eq. (5.28)) are then increased, leading to faster simulations.

Table 6.6 shows the relative errors of the L∞-norm of the bubble radius at final time on the three
grids and for the four Jakob numbers considered. The relative error on the bubble radius at final
time decreases with grid refinement for all Jakob numbers (except for Ja = 3 on the finest grid).
Moreover, the relative error on the bubble radius at final time decreases when the Jakob number is
decreased on all grids considered (except for Ja = 3 on the finest grid). One can observe an error
increase for the smallest Jakob number (Ja = 3) on the finest grid. This behavior can be related
to the results of Tanguy et al. [85] listed in Table 6.4 in which the error on the bubble radius
reaches a minimum value on the finest grid and does not clearly converge with grid refinement
below this minimum value. As stated above and in [85], increasing the Jakob number reduces, by
Eq. (H.72), the width of the thermal boundary layer at the interface. Consequently, the mass
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transfer rate and the interface velocity due to phase change are computed with less accuracy since
a reduced number of grids nodes are located in the thermal boundary layer at every iteration.
Then, the bubble radius, measured at final time from the signed distance function advected by the
interface velocity due to phase change, is also less accurate. The convergence of the bubble radius
with grid refinement and decrease of Jakob number has been obtained by Tanguy et al. [85] on
two-dimensional axisymmetric cartesian grids, as summarized in Table 6.4. In the present work,
this convergence is extended to three-dimensional unstructured grids with comparable results : in
our simulations, the bubble radius at final time is generally slightly more accurate for low Jakob
numbers (3 and 5) and slightly less accurate for high Jakob numbers (7 and 9). Since our grid
cells are larger than the ones used in [85] by a factor 1.6, and since our grids are three-dimensional,
which implies that the sizes of the tetrahedra mentioned in Table 6.5 are only approximated by the
meshing software, further comparison would not be relevant. Table 6.6 is the main result of this
thesis.

For a Jakob number of 5, Eq. (H.73) gives β = 5.304, Eqs. (6.59) and (6.60) give tini =
5.98× 10−4 s and tfin = 2.39× 10−3 s, and Eq. (H.66) gives T∞ = 538 K. Figure 6.13 shows a two-
dimensional slice of the coarsest grid used to validate this test case. Figure 6.14 shows the relative
error on the final bubble radius for the three grids used. The final bubble radius converges with grid
refinement. On the finest grid, the relative error of the L∞-norm of the final bubble radius is equal
to 0.6%, as reported in Table 6.6. A deeper analysis is presented in Fig. 6.15 which shows the error
on the x-component of the interface normal vector and the relative error on the interface curvature
at final time. Neither the final interface normal vector nor the final interface curvature converge
with grid refinement. We hypothesize that the convergence rate of the bubble radius is not sufficient
in order for the normal vector and curvature, respectively first- and second-order derivatives of the
signed distance function, to converge at final time with grid refinement. Nevertheless, one has to
notice that the overall high accuracy of the method is well established thanks to the convergence of
the bubble radius. Indeed, since this convergence is observed at final time, despite non-converging,
the interface normal vector and curvature recomputed and used at each iteration of the simulation
have permitted to obtain an accurate final bubble radius. Figure 6.16 shows the initial interface
and the final computed and theoretical interfaces for the three grids. Again, one can see that on
the finest grid, the interface at final time is very close to the theoretical one (Subfig. 6.16(e)).
Figure 6.17 shows the liquid temperature at final time on the finest grid. As expected, the liquid
temperature is very close to T∞ in all the liquid phase, except in a region close to the interface, the
thermal boundary layer, where a steep gradient responsible for the interface movement is observed.
In this area, the liquid temperature decreases from T∞ = 538 K in the liquid phase to Tsat = 373 K
at the interface, showing that the immersed Dirichlet boundary condition TΓ = Tsat is satisfied.
Figure 6.18 shows the liquid velocity field at final time on the finest grid. Also as expected, the
liquid is ejected from the interface and the liquid velocity field is thus aligned with the interface
normal vector. The velocity jump at the interface due to phase change is responsible for the liquid
motion which can exit the domain thanks to the outlet boundary conditions used on all six faces
of the cubic domain.

Thanks to the important improvements on the computation of the signed distance function made
in this thesis, the Boiling solver is now able to maintain the spherical shape of the bubble throughout
the simulation. Since this test case is very severe relatively to the accuracy of the interface capturing
or tracking method used, especially on unstructured grids, we believe that the present results have a
strong interest for further simulations of two-phase flows with phase change on unstructured grids.
These simulations have been performed using the Geometric Marker Method (see Section 5.9.3)
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to reinitialize the signed distance function to the interface at each iteration. Similar results are
obtained when the signed distance function is reinitialized using the parallel implementation of the
Hamilton-Jacobi equation (see Section 5.9.1).

6.7 Conclusion

In this chapter, the numerical method implemented in the Boiling solver for simulations of
two-phase flows with phase change in multidimensions has been extended to take into account the
computation of the mass transfer rate at the interface from the thermal fluxes on both sides of
the interface. To this purpose, the heat equation is solved in both phases and two temperature
fields are used to take into account the discontinuity of the heat flux at the interface. An immersed
Dirichlet boundary condition is imposed at the interface in order to ensure that boiling always occurs
at saturation temperature. The mass transfer rate is computed using a high-order framework to
extrapolate the liquid temperature gradient from the liquid phase to the interface, and the vapor
temperature gradient from the vapor phase to the interface, in order to compute the mass transfer
rate precisely at the interface. The overall implementation has been validated against the test case
of a bubble at rest growing in a superheated liquid, in two and three dimensions. The simulations
have been performed until the physical time needed for the bubble radius to double. Excellent
agreement with the theoretical bubble radius has been obtained at final time on two- and three-
dimensional unstructured grids. Moreover, the bubble radius converges with grid refinement in all
cases. In three dimensions, the relative L∞-norm of the error on the bubble radius is below 3% on
the finest grid considered. These results demonstrate the ability of the Boiling solver to accurately
simulate two-phase flows with phase change where the mass transfer rate is computed from the
thermal fluxes at the interface, thus taking a step towards realistic boiling simulations in industrial
context.
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Fig. 6.5 – Coarsest two-dimensional grid (∆ = 9.375× 10−5 m) composed only of equilateral
triangles used is our simulations. The small circle represents the initial interface of radius
R0 = 1× 10−3 m, whereas the bigger circle represents the final theoretical interface (the radius
is twice the initial one).
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(a) (b)

(c) (d)

Fig. 6.6 – Numerical results for the two-dimensional test case on the finest grid (equilateral trian-
gles). On (a), the initial interface is shown in blue, the final computed interface, in black, and the
final theoretical interface in red. The final liquid and vapor temperature fields are shown on (b),
the final velocity fields are shown on (c) and the final pressure field is shown on (d).
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Fig. 6.7 – Relative error on the final bubble radius for the two-dimensional simulations on equilateral
triangles presented in Section 6.6.1.1.
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Fig. 6.8 – Error on (a) the final x-component of the interface normal vector and relative error on (b)
the final interface curvature for the two-dimensional simulations on equilateral triangles presented
in Section 6.6.1.1.
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Fig. 6.9 – Coarsest unstructured grid (∆ = 1.875× 10−4 m) used to perform the test case in two
dimensions presented in Section 6.6.1.2. The grid is refined in the area in which the interface will
evolve. The small circle represents the initial interface location of radius R0 = 1× 10−3 m, the
bigger circle represents the final theoretical interface location (the radius is twice the initial one).
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(a) (b)

(c) (d)

Fig. 6.10 – Numerical results for the two-dimensional test case on the finest grid (unstructured
triangles). On (a), the initial interface is shown in blue, the final computed interface, in black, and
the final theoretical interface in red. The final liquid and vapor temperature fields are shown on
(b), the final velocity fields are shown on (c) and the final pressure field is shown on (d).
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Fig. 6.11 – Relative error on the final bubble radius for the two-dimensional simulations on arbitrary
triangles presented in Section 6.6.1.2.
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Fig. 6.12 – Error on (a) the final x-component of the interface normal vector and relative error on
(b) the final interface curvature for the two-dimensional simulations on arbitrary triangles presented
in Section 6.6.1.2.
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Fig. 6.13 – Refined three-dimensional cubic grid used in our simulations. The small circle repre-
sents the initial interface location of radius R0 = 1× 10−3 m, the bigger circle represents the final
theoretical interface location (the radius is twice the initial one). The grid is refined only in an area
englobing the narrow band around the interface in order to speed up computations. This grid has a
characteristic cell size around the interface of ∆ = 1.5× 10−4 m and counts 554 800 grid cells. This
is the coarsest grid used in our tests. Outlet boundary conditions are applied on all six faces of the
domain in order to permit the evacuation of the liquid.
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Fig. 6.14 – Relative error on the final bubble radius for the three-dimensional simulations on un-
structured grids presented in Section 6.6.2 with a Jakob number of 5.
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Fig. 6.15 – Error on (a) the final x-component of the interface normal vector and relative error
on (b) the final interface curvature for the three-dimensional simulations on unstructured grids
presented in Section 6.6.2 with a Jakob number of 5.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.16 – The left column shows the initial interface in blue, the final computed interface in yellow
and the final theoretical interface in green for the three unstructured grids. The right column shows
the whole final computed interface. The simulations are shown in sorted lines by ascending order
of grid refinement (coarsest grid on the first line, finest grid on the last line). Local errors in the
interface position, as shown in red on (f), directly affect the value of the relative L∞-error on the
bubble radius.
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Fig. 6.17 – Liquid temperature field at final time on the finest unstructured grid, corresponding to
Subfig. 6.16(f).
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Fig. 6.18 – Liquid velocity field at final time on the finest unstructured grid, corresponding to
Subfig. 6.16(f), where the vector field shows the direction of the velocity.
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7.1 Conclusion

In this thesis, a numerical method for simulations of two-phase flows with phase change due to
heat transfer (boiling) has been developed within the YALES2 code and validated in one, two and
three dimensions.

Chapter 1 introduces the physics of boiling, emphasizing the coupling between the Navier-Stokes
equations and the heat equation by means of the velocity and pressure discontinuities at the interface
computed as functions of the mass transfer rate. Chapter 2 presents the state-of-the-art numerical
methods dedicated to two-phase flow simulations. In Chapter 3, a detailed presentation of the
YALES2 code is given, focusing on the Spray solver for two-phase flow simulations without phase
change. The numerical developments realized in this thesis to take phase change into account, i.e.
the Boiling solver implemented in YALES2, have been presented in Chapters 4, 5 and 6.

Chapter 4 introduces the overall numerical strategy implemented in the Boiling solver for simu-
lations in one dimension. The restriction to one dimension permits to focus on the coupling between
the velocity and temperature fields without striving with difficulties involved with a curved inter-
face, namely the computation of the interface normal vector and curvature, needed to compute the
velocity and pressure discontinuities at the interface. Performing extrapolations across the inter-
face in one dimension is trivial since the interface normal vector is aligned with the unique spatial
dimension. The ability of the Boiling solver to simulate the interface motion due to phase change
has been demonstrated in this chapter.

Chapter 5 extends the numerical method to two and three dimensions, starting from the simpli-
fied test case of a uniform and constant mass transfer rate not coupled with the temperature field.
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The computation of the interface normal vector and curvature from the signed distance function
to the interface (the Level Set function) has been largely studied and improved. It has been shown
that inaccuracy on the computation of these quantities leads to large numerical instabilities. The
state-of-the-art numerical methods to reinitialize the signed distance function to the interface, the
Hamilton-Jacobi equation and the Fast Marching Method, have then been implemented and vali-
dated on cartesian and unstructured grids against the test case of a two-dimensional bubble growing
with an imposed mass transfer rate inside a liquid at rest. Similarly, a state-of-the-art reinitializa-
tion methodology for the conservative level set (that has a hyperbolic tangent profile, designed to
improve mass conservation) has been implemented and validated on the same test case. The use
of the signed distance function or of the conservative level set function both led to a first-order
accurate final bubble radius with grid refinement, where the errors are computed at the physical
time needed to double the initial bubble radius. For all methodologies presented, the relative error
on the final bubble radius is below 1% on the finest grid considered. The simulation has been
extended to three dimensions, and the final bubble radius also converges at order one with grid
refinement. In three dimensions, the relative error on the final bubble radius is equal to 1.6% on
the finest grid. These errors have been computed as the L∞-norm of the local error normalized
by the corresponding theoretical radius. One should stress that the L∞-norm is the most severe
computation method of errors, taking into account the highest local error without any averaging.

Chapter 6 further extends the numerical method of the Boiling solver by introducing the coupling
of the mass transfer rate at the interface with the thermal fluxes across the interface. The heat
equation is then solved in both liquid and vapor phases, and an immersed Dirichlet boundary
condition is used to impose the fluid saturation temperature to the interface at a subgrid level.
In order to accurately compute the mass transfer rate from the thermal fluxes at the interface,
which represents the thermal coupling of boiling simulations, a new framework has been used to
perform high-order extrapolations of temperature gradients precisely at the interface. The overall
methodology has been validated against the test case of a three-dimensional bubble growing in a
superheated liquid at rest for different Jakob numbers, the heat flux in the liquid side of the interface
being responsible for the bubble expansion. Again, the simulation has been performed until the
doubling of the bubble radius. Convergence in relative L∞-norm of the final bubble radius with
grid refinement is obtained. Also, the errors decrease with the Jakob number, in accordance with
previous results found in the literature for the same test case on two-dimensional axisymmetric
cartesian grids. The Boiling solver has thus successfully extended the ability of performing L∞-
convergent simulations on two- and three-dimensional unstructured grids.

To the best of my knowledge, this thesis has provided the first numerical simulations of bubble
growth in three dimensions with a bubble radius converging with grid refinement in the L∞-norm
sense. The L∞ convergence of the radius implies that the position of the bubble surface converges
to the exact solution at every surface point. It is then considered as an important ingredient for
predictive numerical simulations.

7.2 Perspectives

The results obtained in this thesis open the path to accurate numerical simulations of two-phase
flows with phase change on three-dimensional unstructured grids. However, one should note that
not all the terms present in the differential equations show an L∞ convergence in our simulations.
Indeed, the normal vector, present in Eqs. (1.26), (1.30), (1.31) and (2.12) in the definitions of
the mass transfer rate, the velocity and pressure discontinuities at the interface and the interface
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curvature, respectively, does not show a decrease of the error with grid refinement (Fig. 6.15(a)).
Worse, the interface curvature diverges with grid refinement (Fig. 6.15(b)). On a highly refined
grid, this could lead to the failure of the simulation since an arbitrary elevated curvature value
would be used in the computation of the pressure discontinuity at the interface. Convergence in
L∞-norm of the interface curvature is probably necessary in order to maintain the accuracy of the
simulation for an arbitrary grid refinement.

The natural extension of this work is the simulation of nucleate boiling, a mode of heat transfer
widely used in industrial applications, occurring when a liquid is in contact with a solid whose
temperature is above the liquid boiling point, leading to the formation of vapor bubbles on the
solid surface. Numerical simulations of nucleate boiling require a methodology to take the motion
of the contact line (where the solid, liquid and vapor phases meet) into account, as well as the contact
angle existing between the solid surface and the liquid-vapor interface. The numerical simulation
of nucleate boiling on unstructured grids is currently under development at LEGI in the MoST
team, as an extension of the Boiling solver. The inclusion of the contact line and contact angle in
the Boiling solver is expected to enable predictive three-dimensional direct numerical simulations
of nucleate boiling at the bubble scale in the coming years.
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A.1 Contact line dynamics without phase change

When a liquid-vapor interface at rest is in contact with a solid substrate, the differences of
physico-chemical properties between the three phases in presence (solid, liquid, vapor) entail inter-
actions which manifest through an energetic equilibrium. The region where the three phases are in
contact is called contact line. The aforementioned energetic equilibrium forces the interface to form
an angle with the substrate. This angle is generally evaluated in the liquid phase and called contact
angle. The contact line and the contact angle have been the subject of multiple studies from the
XIXth century to nowadays. Numerous authors have done experiments and have thus contributed
to the understanding of the physics implied in the dynamics of contact line. Thereafter, analytical
models have been developed and numerical studies have been carried out. Nevertheless, the knowl-
edge on the subject is not sufficient yet, and still today, research is ongoing on the different spatial
scales of such systems.

A.1.1 Static contact line

When a droplet or bubble lies on a solid surface, the shape of the interface, in the neighborhood of
the contact line, is controlled by interactions between the different phases, and forms a contact angle
θ, as shown in Fig. A.1. In the static case without phase change, there exists theoretical models
enabling the computation of the contact angle, with respect to the surfacic energies generated by
the discontinuity of density across the interface. One famous theoretical model is the Young-Dupré
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Fig. A.1 – Surfacic energies at contact angle θ formed by a liquid droplet lying on a solid surface,
γSL between solid and liquid phases, γSV between solid and vapor phases and σ between liquid and
vapor phases.

relation, given by
σ cos(θ) = γSV − γSL, (A.1)

where γSV , γSL and σ represent the surfacic energies respectively of the interface between the solid
and vapor, solid and liquid, and liquid and vapor phases, as indicated in Fig A.1. The fluid is said
perfectly wetting when the contact angle is equal to zero. In this case, the Young-Dupré relation
then becomes σ = γSV − γSL. Equation (A.1) comes from the balance of forces by unit length
acting on the contact line when the three phases are in thermodynamical equilibrium determined
by the physico-chemical properties of the three phases.

These properties determine the shape (the contact angle) of a droplet lying on a surface. The
tendency of the droplet to spread along the surface is called wetting. Depending on the contact
angle, two types of wetting can be observed : total wetting (the liquid phase recovers the whole solid
phase, i.e. the vapor phase is not in contact with the solid phase, so there is no contact line) and
partial wetting (0 < θ < π). These types of wetting are characterized by the spreading parameter
S measuring the difference between the surfacic energy of the dry and wet substrate, and defined
as

S = Edry substrate − Ewet substrate (A.2)

= γSV − (γSL + σ) . (A.3)

The value of S gives the type of wetting :

• If S < 0, the regime is called partial wetting. The liquid does not spread and forms a spherical
cap lying on the substrate with a contact angle at equilibrium θe.

• If S > 0, the regime is called total wetting. The liquid entirely spreads over the solid in a film
of nanoscopic width to lower the interfacial energy γSV.

Figure A.2 illustrates the two types of wetting according to the spreading parameter S.

A.1.2 Dynamics of contact line

The analysis and modeling of contact angle dynamics has been highly challenging for scientists.
Although wetting dynamics plays a role in numerous processes, the understanding of the different
physical phenomena implied during the spreading of a liquid droplet over a solid surface is still far
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Fig. A.2 – Types of wetting defined by the spreading parameter S.

Fig. A.3 – Navier condition : the width Ls of the fictitious film is equivalent to the slipping length
of the contact line.

from being complete. Many reasons can explain this lack of understanding. First, the physical phe-
nomena controlling the contact line dynamics intervene at several scales, from microscopic lengths
(where molecular mechanics is dominant) to macroscopic lengths (where continuum mechanics is
dominant). Nevertheless, observations realized experimentally on velocity or contact angle, do not
tackle length scales below a decade of micrometers. In addition to the difficulties encountered to
precisely examine phenomena around the contact line, classical boundary conditions applied to
Navier-Stokes equations in the presence of a solid surface lead to the appearance of a singularity of
viscous constraints.

At macroscopic scales, the behavior of a fluid close to the solid surface is usually described by
a no-slip condition. While this condition is often satisfactory in the case of continuous monophasic
flows, in other situations, e.g. for rarefied gases, it reveals inadapted. Similarly, in the case of contact
lines, the no-slip condition is in contradiction with the hypothesis of contact line displacement.
Indeed, a singularity on the viscous constraint due to the no-slip condition has been exposed by
Huh and Scriven [37], demonstrating that a gradient of viscous constraints close to a liquid meniscus
diverges close to the contact line [70]. In the case of partially wetting droplets, the Navier condition,
based on the assumption of the existence of a fictitious liquid film of given width on which the droplet
slips, as shown in Fig. A.3, can be used to alleviate the adherence condition of the contact line to
the solid surface. Other techniques have been developed for perfectly wetting fluids (see again [70]
and the book of de Gennes et al. [18] for more details).

The contact line motion is usually described using its velocity and the contact angle between
the liquid-vapor and solid-vapor interfaces. The theoretical approaches developed to describe the
hydrodynamics in the neighborhood of the contact line are multi-scale models. The region close to
the contact line is thus described at three different scales illustrated in Fig. A.4, the macroscopic,
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Fig. A.4 – The contact line is described at three different scales : the macroscopic, mesoscopic and
microscopic scales. For each scale, a contact angle can be defined [70].

mesoscopic and microscopic scales. One can notice an important element for the study of contact
line motion : the macroscopic contact angle differs from the microscopic contact angle.

At macroscopic scale, the flow motion is described by the Navier-Stokes equations, and the
apparent contact angle can be more easily evaluated considering the shape of the whole bubble.

At mesoscopic scale, the liquid-vapor interface in the immediate neighborhood of the contact
line is of null curvature. An apparent contact angle can then be defined. Surface tension and
viscosity effects compete to reshape the liquid-vapor interface.

At microscopic scale, molecular interactions (e.g. Van der Waals forces) are dominant. The
contact angle θ in Eq. (A.1) and the slipping length mentioned above are defined at this scale.

A.1.3 Wettability of hydrophilic and hydrophobic surfaces

If a liquid drop is small enough to neglect the flattening action of gravity, its sticking on a solid
surface is referred to as the surface wettability. An important parameter used to characterize the
surface wettability is the contact angle θ made by the liquid on the solid. The solid surface is said
wetted if θ < π/2 (see Fig. A.5(a)) and is said unwetted if θ ≥ π/2 (cf. Fig. A.5(b)). In the case
of water, the wetted surface is called hydrophilic and the unwetted surface is called hydrophobic.

Realistic surfaces are alternatively composed of hydrophilic and hydrophobic regions. In the
context of nucleate boiling, hydrophobic regions favor the nucleation of bubbles in cavities since
the liquid is repelled by the solid, enabling the vapor phase to develop in the cavities of the solid,
but tend to slow down the bubble departure. Conversely, hydrophilic regions favor the departure
of bubbles from the nucleation sites by gravity effect since the liquid is attracted by the solid in
the region close to the contact line, but slow down the nucleation of bubbles in the cavities of the
solid since the liquid easily fills the cavities due to the attraction of the solid phase. In order to
optimize the cooling of the solid material, i.e. the heat transfert from the solid to the liquid and
vapor phases, it can be useful to find a compromise between the pros and cons in the repartition of
hydrophilic and hydrophobic surface regions.
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(a) (b)

Fig. A.5 – Surface wettability : (a) wetted or hydrophilic surface (θ < π/2), (b) unwetted or
hydrophobic surface (θ ≥ π/2).

A.2 Contact line dynamics with phase change : nucleate boiling

In this section, we introduce the contribution of boiling to the contact line dynamics. Consider a
liquid phase on top of a solid phase. If the solid temperature is higher than the liquid temperature,
a thermal flux is directed from the solid to the liquid phase. Due to this heat flux, if the liquid
temperature reaches the liquid saturation temperature, then molecules gain sufficient kinetic energy
to escape the attraction of their neighbors. As a result, the liquid in the concerned area turns into
vapor. This physical phenomenon usually occurs at the contact area between the liquid and solid
phases, and is called nucleate boiling.

The nucleation of vapor bubbles demands the creation of surface, that is accompanied by a
certain energy proportional to surface tension. Nucleation begins therefore in sites that offer the
lowest surface per bubble volume, and then the lowest energy barrier, that is in cavities of the
solid. Due to the heat flux originating from the solid, a small vapor bubble forms in a cavity.
This step is called nucleation and the cavity is called nucleation site. Once nucleation is initiated,
the bubble spontaneously grows and then detaches from the solid surface. The complete process
of liquid heating, nucleation, bubble growth and release, collectively refers to as the boiling cycle.
Three main features of this process that affect the rate of heat transfer are the bubble departure
diameter Dd, the bubble emission frequency f and the number of active nucleation sites Nas. The
bubble emission frequency f at a nucleation site is defined as

f =
1

τgt + τwt
, (A.4)

where the growth time τgt is the duration of the bubble growth and the waiting time τwt is the
duration between the departure of the former bubble and the appearance of the current bubble, as
illustrated in Fig. A.6. Over the past eighty years, the bubble departure diameter during nucleate
boiling has been the subject of numerous investigations [25]. In experimental studies, it is typically
determined from high-speed videos of boiling process. Based on experimental data, a number of
correlations were suggested to estimate the bubble departure diameter. Many correlations reflect
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Fig. A.6 – The four steps of the boiling bycle [31].

the role of the capillary length Lc, defined as

Lc =

(
σ

g (ρliq − ρvap)

) 1
2

, (A.5)

where g is the gravity. Indeed, the capillary length accounts for a simple balance of surface tension
force and buoyancy. We only mention here the correlation of Fritz [25] since it takes into account
the effect of the surface wettability :

Dd = 0.0208× θ × Lc, (A.6)

where θ is given in degrees. Several studies [15, 100, 33, 38] show that the frequency of bubble
emission is inversely proportional to the departure diameter. Based on an analogy between the
bubble release process and natural convection, Zuber [100] suggested the following relation,

f ×Dd = 0.59

(
σg (ρliq − ρvap)

ρ2
liq

) 1
4

. (A.7)

The density of active nucleation sites was first estimated by Wang and Dhir [93]. The authors
performed experiments using copper heaters with different degrees of oxidation, which resulted in
different contact angles. The correlation proposed is given by

Nas = Nms (1− cos θ) (Tw − Tsat)
6
, (A.8)

where Nms is the number of micro-cavities on the heated surface of interest and Tw is the temper-
ature of the solid wall. These classical correlations (Eqs. (A.6), (A.7) and (A.8)) have been widely
used as predictive tools. However, they are based on a limited quantity of experimental data and
their accuracy has not been extensively verified. Thus, they should be treated as being approximate
only.

A.2.1 Pool boiling regimes, critical heat flux and the boiling crisis

The study of boiling is usually divided in two categories : flow boiling and pool boiling. Flow
boiling addresses boiling occurring in flows with an overall liquid bulk velocity, whereas pool boiling
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Fig. A.7 – Pool boiling curve of Nukiyama [56] representing the imposed heat flux q at the wall
with respect to the wall superheat Tw − Tsat [31].

addresses boiling in liquids at rest. In this thesis, we focus on pool boiling since the bulk velocity in
flow boiling also influences bubble growth. The different regimes of pool boiling are defined below.
A parameter of interest in the study of nucleate pool boiling is the local heat transfer coefficient h
given in W m−2 K−1 by

h =
q

Tw − Tsat
, (A.9)

where q is the imposed heat flux at the wall and Tw−Tsat is the wall superheat. The regimes of pool
boiling heat transfer are easily understood by referring to the pool boiling curve which is a plot of
q versus Tw − Ts for the circumstances of interest. Nukiyama [56] is well known for his pool boiling
curve based on results from experiment of boiling water at atmospheric pressure. The regimes of
pool boiling encountered for a horizontal flat surface are indicated schematically in Fig. A.7. The
discussion in this section is limited to pool boiling of wetting liquids. The boiling curve can be
conveniently analysed in four different regimes, namely, the natural convection NC, the nucleate
boiling NB, the transition boiling TB and the film boiling FB.

Natural convection regime (NC) Due to the temperature gradients, fluid motions are created,
removing heat from the heated surface to the free liquid surface. The driving force of natural
convection is the buoyancy force, a result of gradients of fluid density.
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Nucleate boiling regime (NB) If the superheat (difference between the solid surface temper-
ature and the fluid saturation temperature) is large enough, nucleation is initiated at some
cavities on the surface. This stage is called the “onset of nucleate boiling” (ONB). At low
wall superheat levels, nucleate boiling is characterized by formation of isolated bubbles. With
increasing surface superheat, more and more nucleation sites become active, and the bubble
frequency at each site generally increases.

Transition boiling regime (TB) Eventually the active sites are spaced so closely that bubbles
from adjacent sites merge together. Bubble coalescence can occur in vertical or horizontal
directions. If the superheat still increases, a vapor film is formed along the surface resulting
from the replacement of liquid by vapor adjacent to the heated surface. Poor thermal conduc-
tivity of vapor phase suddenly decreases the efficiency of heat transfer. The heat flux at this
condition is called the critical heat flux (CHF), which describes the thermal limit of boiling
phenomenon. Indeed, the CHF is the maximum heat flux that can be transferred by boiling
process. A higher heat flux (compared to the CHF) can lead to the burnout of the heated
surface. Once the CHF is reached, a large fraction of the surface is covered by a vapor film,
boiling becomes unstable and transition boiling occurs. The transition from nucleate boiling
to film boiling is known as the boiling crisis. Beyond the CHF point, Fig. A.7 shows that
the heat flux q decreases when the wall superheat increases, Eq. (A.9) thus states that the
heat transfer coefficient decreases once the CHF is reached. As a result, the transition to film
boiling is usually inevitable.

Film boiling regime (FB) A further increase in the heat flux causes an insulating film of vapor
to fully cover the surface. The heat transfer coefficient decreases significantly, and the sur-
face temperature can then exceed the fusion temperature of the solid material, causing its
deterioration.

For nucleate boiling, Cooper [16] developed the following correlation to determine the heat transfer
coefficient :

h = 55p∗0.12−0.2 log10 Rp (− log10 p
∗)
−0.55

q0.67M−0.5, (A.10)

where p∗ = P/Pcr is the reduced pressure with Pcr the critical pressure, Rp is the roughness given
in micrometers as defined in German standard DIN 4762/1, q is the heat flux given in W m−2 and
M is the molecular weight of the fluid given in g mol−1. In general, the correlation of Cooper gives
a good tendency of the heat transfer coefficient versus the heat flux. However, it should not be used
to determine the surface roughness which is an adjustable parameter of this correlation.

In order to avoid the boiling crisis, the physico-chemical properties of the solid surface are also
taken into account.
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Abstract

This appendix contains the necessary developments to the expression of the discretized
pressure laplacian as well as the pressure gradient of each phase used to compute ghost pres-
sures, as they appear in the code of the Boiling solver. The balance equation for the pressure
laplacian is also given in 1D.
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We consider the part of a domain Ω represented in Figure B.1.

B.1 Generalities

For all scalar φ defined on Ω, we define the liquid gradient operator in p at order 2, denoted ∇lp,
by

∇lpφlp :=
1

Vp

Np∑
i=1

φlp + φlqi
2

Ap,qi , (B.1)

where Np is the number of direct neighboring nodes of node p. Similarly, we define the liquid
gradient operator on the pair [p, qi] at order 1, denoted ∇lp,qi , by

∇lp,qiφ
l
p,qi :=

φlqi − φ
l
p

‖∆xp,qi‖
2 ∆xp,qi , ∆xp,qi = xqi − xp. (B.2)

145
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We express φlqi with a first-order Taylor expansion,

φlqi = φlp + ∆xp,qi · ∇lpφlp. (B.3)

From Eqs. (B.2) and (B.3) multiplied by ∆xp,qi , we have, at order 1 in p,

φlqi∆xp,qi = φlp∆xp,qi + ‖∆xp,qi‖
2∇lp,qiφ

l
p,qi

φlqi∆xp,qi = φlp∆xp,qi +
(
∆xp,qi · ∇lpφlp

)
∆xp,qi

}
=⇒ ∇lp,qiφ

l
p,qi =

∆xp,qi · ∇lpφlp
‖∆xp,qi‖

2 ∆xp,qi , (B.4)

the gradient of φ computed on the pair [p, qi] is then equal to the projection on the pair [p, qi] of
the gradient of φ computed on all pairs. The scalar product of Eq. (B.4) and ∆xp,qi gives

∇lp,qiφ
l
p,qi ·∆xp,qi = ∇lpφlp ·∆xp,qi . (B.5)

Equation (B.3) then becomes
φlqi = φlp + ∆xp,qi · ∇lp,qiφ

l
p,qi . (B.6)

The same approach on the vapor side leads to

φgqi = φgp + ∆xp,qi · ∇gp,qiφ
g
p,qi . (B.7)

The difference (B.6) - (B.7) reads

[φ]qi = [φ]p + ∆xp,qi · [∇φ]p,qi . (B.8)

By unicity of the Taylor expansion in p of [φ]qi at order1, we have

[∇φ]p,qi = [∇φ]p . (B.9)

Similarly, by unicity of the Taylor expansion in qi of [φ]p at order 1, we have

[∇φ]p,qi = [∇φ]qi . (B.10)

We also have
[φ]qi = [φ]Γ + (1− θ)∆xp,qi · [∇φ]Γ , (B.11)

where θ := θp,qi is the relative distance to the pair [p, qi] of the interface Γ to node 1 of the pair
[p, qi] (e.g. p in Figure B.1 as the vectors Ap,qi are all directed from p to nodes qi), leading to, by
Eqs. (B.8) and (B.11),

[φ]qi = [φ]p + ∆xp,qi · [∇φ]p,qi = [φ]Γ + (1− θ)∆xp,qi · [∇φ]Γ . (B.12)

Similarly, we have

[φ]p = [φ]qi −∆xp,qi · [∇φ]p,qi = [φ]Γ − θ∆xp,qi · [∇φ]Γ . (B.13)

Moreover,
[φ]Γ = [φ]p + θ∆xp,qi · [∇φ]p , (B.14)

so, by identification in Eq. (B.12) using Eq. (B.9), we have

[∇φ]p = [∇φ]Γ . (B.15)
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To summarize, we have, at order 1 in φ, for all scalar φ defined on Ω, and for all i ∈ {1, . . . , Np}
where Np is the number of neighboring nodes of p,

[∇φ]p = [∇φ]p,qi = [∇φ]Γ = [∇φ]qi . (B.16)

We set φ := P , the fluid pressure. By definition of the operator [·]Γ, we have

[∇P ]Γ := ∇P lΓ −∇P
g
Γ (B.17)

and [
1

ρ
∇P

]
Γ

:=
1

ρl
∇P lΓ −

1

ρg
∇P gΓ , (B.18)

where ρl and ρg are the densities of the liquid and vapor phases. We can then rewrite Eq. (B.17)
using Eq. (B.18), which gives

[∇P ]Γ = ρl

(
1

ρl
∇P lΓ −

1

ρg
∇P gΓ

)
+

(
ρl
ρg
− 1

)
∇P gΓ

= ρl

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρg
∇P gΓ , (B.19)

and

[∇P ]Γ = ρg

(
1

ρl
∇P lΓ −

1

ρg
∇P gΓ

)
+

(
1− ρg

ρl

)
∇P lΓ

= ρg

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρl
∇P lΓ. (B.20)

B.2 Without phase change

We make the assumption [
1

ρ
∇P

]
Γ

= 0. (B.21)

Remark : to our knowledge, there does not exist any rigorous demonstration of Eq. (B.21).
Without phase change, Eq. (B.19) becomes

[∇P ]Γ =
[ρ]Γ
ρg
∇P gΓ , (B.22)

and Eq. (B.20) becomes

[∇P ]Γ =
[ρ]Γ
ρl
∇P lΓ. (B.23)

We can then rewrite Eq. (B.12) as

[P ]qi = [P ]Γ + (1− θ)
[ρ]Γ
ρl

∆xp,qi · ∇P lΓ. (B.24)
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Similarly, Eq. (B.13) becomes

[P ]p = [P ]Γ − θ
[ρ]Γ
ρg

∆xp,qi · ∇P
g
Γ . (B.25)

At order 1 in P , we have

∇lp,qiP
l
p,qi =

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi

=
P gqi − P

l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]qi

‖∆xp,qi‖
2 ∆xp,qi

=
P gqi − P

l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi + (1− θ)
[ρ]Γ
ρl

∆xp,qi · ∇P lΓ
‖∆xp,qi‖

2 ∆xp,qi by Eq. (B.24),

(B.26)

and

∇gp,qiP
g
p,qi =

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi

=
P gqi − P

l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]p

‖∆xp,qi‖
2 ∆xp,qi

=
P gqi − P

l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi − θ
[ρ]Γ
ρg

∆xp,qi · ∇P
g
Γ

‖∆xp,qi‖
2 ∆xp,qi by Eq. (B.25).

(B.27)

We define ∇P lΓ by
∇P lΓ := ∇lp,qiP

l
p,qi (B.28)

and ∇P gΓ by
∇P gΓ := ∇gp,qiP

g
p,qi . (B.29)

Then, the projection of ∇P lΓ on the pair [p, qi] is equal to ∇P lΓ, idem for ∇P gΓ . By Eq. (B.28), Eq.
(B.26) then becomes

∇lp,qiP
l
p,qi =

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi + (1− θ)
[ρ]Γ
ρl
∇lp,qiP

l
p,qi . (B.30)

Similarly, by Eq. (B.29), Eq. (B.27) becomes

∇gp,qiP
g
p,qi =

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi − θ
[ρ]Γ
ρg
∇gp,qiP

g
p,qi . (B.31)

Equations (B.30) and (B.31) are implicit equations. The difference (B.30) - (B.31) gives

[∇P ]p,qi = (1− θ)
[ρ]Γ
ρl
∇lp,qiP

l
p,qi + θ

[ρ]Γ
ρg
∇gp,qiP

g
p,qi , (B.32)
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which gives, factorizing by the gradients,(
1− (1− θ)

[ρ]Γ
ρl

)
∇lp,qiP

l
p,qi =

(
1 + θ

[ρ]Γ
ρg

)
∇gp,qiP

g
p,qi . (B.33)

Moreover, the lhs and the rhs of Eq. (B.33), by respectively Eqs. (B.30) and (B.31), are equal to(
1− (1− θ)

[ρ]Γ
ρl

)
∇lp,qiP

l
p,qi =

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi =

(
1 + θ

[ρ]Γ
ρg

)
∇gp,qiP

g
p,qi .

(B.34)

We search ρΓ such that

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi + fl (ρΓ, [·]Γ) , (B.35)

and
1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi + fg (ρΓ, [·]Γ) , (B.36)

where ρΓ = ρΓ (θ, ρl, ρg) is an intermediate density between ρl and ρg, and fl, fg two functions of
ρΓ and of jumps at the interface. Substracting Eq. (B.36) to Eq. (B.35), we obtain

1

ρl
∇lp,qiP

l
p,qi −

1

ρg
∇gp,qiP

g
p,qi =

1

ρl
∇P lΓ −

1

ρg
∇P gΓ =

[
1

ρ
∇P

]
Γ

= fl (ρΓ, [·]Γ)− fg (ρΓ, [·]Γ) . (B.37)

Without phase change, Eq. (B.21) imposes that this quantity is zero. The benefit of this formalism
appears with phase change. We then determine explicitely the expressions of fl and fg.

B.3 With phase change

B.3.1 Pressure laplacian: ∇ · 1
ρ∇P

We adopt the same methodology. The projection method [14] reads

un+1 = u∗ − ∆t

ρn+ 1
2

∇Pn+ 1
2 , (B.38)

i.e.
1

ρn+ 1
2

∇Pn+ 1
2 =

u∗ − un+1

∆t
. (B.39)

This equality is verified in the whole domain. At the interface, the lhs and the rhs of Eq. (B.39)
exhibit some jumps due to the density jump between the liquid and the vapor. These two jumps
are necessarily equal, i.e.[

1

ρn+ 1
2

∇Pn+ 1
2

]
Γ

=

[
u∗ − un+1

∆t

]
Γ

= fl (ρΓ, [·]Γ)− fg (ρΓ, [·]Γ) by Eq. (B.37). (B.40)



150
APPENDIX B. COUPLING BETWEEN VELOCITY AND PRESSURE IN THE BOILING

SOLVER

In the following part, we will determine the expressions of fl and fg. Replacing [∇P ]Γ in Eq. (B.12)
by its expression in Eq. (B.20), we have

[P ]qi = [P ]Γ + (1− θ)∆xp,qi · [∇P ]Γ

= [P ]Γ + (1− θ)∆xp,qi ·
(
ρg

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρl
∇P lΓ

)
.

(B.41)

Similarly, replacing [∇P ]Γ in Eq. (B.13) by its expression in Eq. (B.19), we have

[P ]p = [P ]Γ − θ∆xp,qi · [∇P ]Γ

= [P ]Γ − θ∆xp,qi ·
(
ρl

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρg
∇P gΓ

)
.

(B.42)

The lhs of Eq. (B.35) then reads

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρl

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρl

[P ]qi

‖∆xp,qi‖
2 ∆xp,qi (B.43)

=
1

ρl

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρl

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

+
1

ρl

(1− θ)∆xp,qi ·
(
ρg

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρl
∇P lΓ

)
‖∆xp,qi‖

2 ∆xp,qi .

(B.44)

Replacing ∇P lΓ by its expression in Eq. (B.28) (∇P lΓ is then equal to its projection on the pair
[p, qi]), we have(

1− (1− θ)
[ρ]Γ
ρl

)
1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρl

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρl

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

+ (1− θ) ρg
ρl

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi (B.45)

We define ρΓ such that

1− (1− θ)
[ρ]Γ
ρl

:=
ρΓ

ρl
, (B.46)

i.e.
ρΓ := ρl − (1− θ) [ρ]Γ = θρl + (1− θ) ρg. (B.47)

Important : ρΓ is then not a smoothing of ρl and ρg ; indeed, if the interface is very close to node
p, then θ ≈ 0 and ρΓ ≈ ρg ; similarly, if θ ≈ 1, ρΓ ≈ ρl.
Equation (B.45) reads

ρΓ

ρl

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρl

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρl

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

+ (1− θ) ρg
ρl

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi (B.48)
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which gives, multiplying at left and right by ρl/ρΓ,

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi

+
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi + (1− θ) ρg
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi︸ ︷︷ ︸

fl(ρΓ,[·]Γ)

, (B.49)

or equivalently

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi −

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

− (1− θ) ρg
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi . (B.50)

Taking the scalar product of Eq. (B.50) by +Ap,qi , we obtain

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi =

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi −

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

− (1− θ) ρg
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi . (B.51)

From Eq. (B.39), we have

∇ ·
(

1

ρl
∇lpP lp

)
= ∇ ·

(
u∗,lp − un+1,l

p

∆t

)
=
∇ · u∗,lp

∆t
, (B.52)

then the first term of the rhs of Eq. (B.51) reads (computation of divergences before division by
Vp)

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi =

1

2

u∗,lp + u∗,lqi
∆t

·Ap,qi , (B.53)

which leads to rewrite Eq. (B.51), replacing
[

1
ρ∇P

]
Γ

by its expression in Eq. (B.40),

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi =

1

2

u∗,lp + u∗,lqi
∆t

·Ap,qi −
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

− (1− θ) ρg
ρΓ

∆xp,qi ·
[u∗]Γ −

[
un+1

]
Γ

∆t
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi . (B.54)
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We make the following assumption:

∆xp,qi ·
[u∗]Γ −

[
un+1

]
Γ

∆t
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi =
[u∗]Γ −

[
un+1

]
Γ

∆t
·Ap,qi , (B.55)

which is true if:

1. ∆xp,qi and Ap,qi are colinear (i.e. regular grid) ;

2.
[u∗]Γ−[un+1]

Γ

∆t is directed toward ∆xp,qi .

Equation (B.54) then becomes

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi =

1

2

u∗,lp + u∗,lqi
∆t

·Ap,qi −
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

− (1− θ) ρg
ρΓ

[u∗]Γ −
[
un+1

]
Γ

∆t
·Ap,qi , (B.56)

which is the contribution of the pair [p, qi] to the computation of the laplacian of P in
p before division by Vp : in red, lhs of the pair [p, qi]; in blue, contribution of the pair [p, qi] to the
rhs of node p, as they appear in the code.

Similarly, the lhs of Eq. (B.36) reads

1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρg

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρg

[P ]p

‖∆xp,qi‖
2 ∆xp,qi (B.57)

=
1

ρg

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρg

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

+
1

ρg

−θ∆xp,qi ·
(
ρl

[
1

ρ
∇P

]
Γ

+
[ρ]Γ
ρg
∇P gΓ

)
‖∆xp,qi‖

2 ∆xp,qi .

(B.58)

Then, by Eq. (B.29), we have

(
1 + θ

[ρ]Γ
ρg

)
1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρg

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi +

1

ρg

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

− θ ρl
ρg

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi . (B.59)
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Multiplying at left and right by ρg/ρΓ, we obtain

1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi

+
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi − θ
ρl
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi︸ ︷︷ ︸

fg(ρΓ,[·]Γ)

, (B.60)

or equivalently

1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi =

1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi −

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi

+ θ
ρl
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi . (B.61)

Taking the scalar product of Eq. (B.61) by −Ap,qi , we obtain

− 1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi = − 1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi +

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

− θ ρl
ρΓ

∆xp,qi ·
[

1

ρ
∇P

]
Γ

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi . (B.62)

By Eq. (B.52) and Eq. (B.53) applied to vapor, and replacing
[

1
ρ∇P

]
Γ

by its expression in Eq.

(B.40), Eq. (B.62) becomes

− 1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi = −1

2

u∗,gp + u∗,gqi
∆t

·Ap,qi +
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

− θ ρl
ρΓ

∆xp,qi ·
[u∗]Γ −

[
un+1

]
Γ

∆t
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi . (B.63)

The hypothesis (B.55) gives

− 1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi = −1

2

u∗,gp + u∗,gqi
∆t

·Ap,qi +
1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

−θ ρl
ρΓ

[u∗]Γ −
[
un+1

]
Γ

∆t
·Ap,qi , (B.64)
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which is the contribution of the pair [p, qi] to the computation of the laplacian of P in
qi before division by Vqi : in red, lhs of the pair [p, qi] ; in blue, contribution of the pair [p, qi] to
the rhs of node qi, as they appear in the code.

Note. By Eqs. (B.40) and (B.55), the difference (B.49) - (B.60) gives

1

ρl

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi −

1

ρg

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi =

[
1

ρ
∇P

]
Γ

. (B.65)

B.3.2 Pressure gradient for the computation of a ghost pressure

Once we have computed P
l,n+ 1

2
p , we have to compute ∇lpP

l,n+ 1
2

p in order to correct the velocity.

To this purpose, we extrapolate a ghost liquid pressure P
l,n+ 1

2 ,G
qi in qi using a liquid pressure

gradient given by Eqs. (B.51), (B.40) and (B.55),

P lqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi = ρl

(
1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi +

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

+ (1− θ) ρg
ρΓ

[u∗]Γ −
[
un+1

]
Γ

∆t
·Ap,qi

)
, (B.66)

and

P
l,n+ 1

2 ,G
qi := P

l,n+ 1
2

p +

(
P lqi − P

l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi

)
‖∆xp,qi‖

= P
l,n+ 1

2
p +

P lqi − P
l
p

‖∆xp,qi‖
∆xp,qi ·Ap,qi .

(B.67)

Similarly, by Eqs. (B.62), (B.40) and (B.55), we have

P gqi − P
g
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi = ρg

(
1

ρΓ

P gqi − P
l
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi +

1

ρΓ

[P ]Γ
‖∆xp,qi‖

2 ∆xp,qi ·Ap,qi

−θ ρl
ρΓ

[u∗]Γ −
[
un+1

]
Γ

∆t
·Ap,qi

)
, (B.68)

and

P
g,n+ 1

2 ,G
p := P

g,n+ 1
2

qi −

(
P gqi − P

g
p

‖∆xp,qi‖
2 ∆xp,qi ·Ap,qi

)
‖∆xp,qi‖

= P
g,n+ 1

2
qi +

P gqi − P
g
p

‖∆xp,qi‖
∆xp,qi ·Ap,qi .

(B.69)

We recover the rhs of Eqs. (B.66) and (B.68) in the code.
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B.3.3 Balance equation for the pressure laplacian in 1D

We write the finite volume discretization of ∇ ·
(

1
ρ∇P

)
in p without considering the inter-

face. We have

∇ ·
(

1

ρ
∇P

)∣∣∣∣
p

=
1

Vp

(
1

ρl

P lp+1 − P lp
‖∆xp,p+1‖2

∆xp,p+1 ·Ap,p+1 +
1

ρl

P lp − P lp−1

‖∆xp,p−1‖2
∆xp,p−1 · (−Ap,p−1)

)

=
1

Vp
1

ρl

(
P lp+1 − P lp
‖∆xp,p+1‖2

∆xp,p+1 ·Ap,p+1 −
P lp − P lp−1

‖∆xp,p−1‖2
∆xp,p−1 ·Ap,p−1

)
(B.70)

The Poisson equation to be solved in s for the pressure is

∆t∇ ·
(

1

ρ
∇P

)∣∣∣∣
s

= ∇ · u∗|s , s ∈ {2, . . . , N − 1} . (B.71)

Integrating ∇ ·
(

1
ρ∇p

)
over the whole domain, we have, by Eq. (B.70),

ˆ
Ω

∇ ·
(

1

ρ
∇P

)
dV =

N−1∑
k=2

Vk ∇ ·
(

1

ρ
∇P

)∣∣∣∣
k

=

N−1∑
k=2

1

ρη

(
P ηp+1 − P ηp
‖∆xp,p+1‖2

∆xp,p+1 ·Ap,p+1 −
P ηp − P

η
p−1

‖∆xp,p−1‖2
∆xp,p−1 ·Ap,p−1

)
, η = l or g

= − 1

ρl

P l2 − P l1
‖∆x1,2‖2

∆x1,2 ·A1,2 +
1

ρg

P gN − P
g
N−1

‖∆xN,N−1‖2
∆xN,N−1 ·AN,N−1

+
1

ρl

P lp+1 − P lp
‖∆xp,p+1‖2

∆xp,p+1 ·Ap,p+1 −
1

ρg

P gp+1 − P gp
‖∆xp,p+1‖2

∆xp,p+1 ·Ap,p+1

= − 1

ρl

P l2 − P l1
‖∆x1,2‖2

∆x1,2 ·A1,2 +
1

ρg

P gN − P
g
N−1

‖∆xN,N−1‖2
∆xN,N−1 ·AN,N−1 +

[
1

ρ
∇P

]
Γ

·Ap,p+1

(B.72)

Moreover, we have

1

∆t
∇ · u∗|p =

1

∆t

1

Vp

(
u∗,lp + u∗,lp+1

2
·Ap,p+1 +

u∗,lp + u∗,lp−1

2
· (−Ap,p−1)

)
(B.73)

=
1

∆t

1

Vp

(
u∗,lp + u∗,lp+1

2
·Ap,p+1 −

u∗,lp + u∗,lp−1

2
·Ap,p−1

)
, (B.74)
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then

ˆ
Ω

∇ ·
(

u∗

∆t

)
dV =

N−1∑
k=2

Vk ∇ ·
(

u∗

∆t

)∣∣∣∣
k

=

N−1∑
k=2

1

∆t

(
u∗,ηk + u∗,ηk+1

2
·Ak,k+1 −

u∗,ηk−1 + u∗,ηk
2

·Ak,k−1

)

= −1

2

u∗,l1 + u∗,l2

∆t
·A1,2 +

1

2

u∗,gN−1 + u∗,gN
∆t

·AN−1,N

+
1

2

(
u∗,lp + u∗,lp+1

∆t
·Ap,p+1 −

u∗,gp + u∗,gp+1

∆t
·Ap,p+1

)

= −1

2

u∗,l1 + u∗,l2

∆t
·A1,2 +

1

2

u∗,gN−1 + u∗,gN
∆t

·AN−1,N +
1

2

[u∗]p + [u∗]p+1

∆t
·Ap,p+1

= −1

2

u∗,l1 + u∗,l2

∆t
·A1,2 +

1

2

u∗,gN−1 + u∗,gN
∆t

·AN−1,N +
[u∗]Γ
∆t

·Ap,p+1

(B.75)

supposing that

[u∗]Γ ·Ap,p+1 =
[u∗]p + [u∗]p+1

2
·Ap,p+1. (B.76)

The difference (B.72) - (B.75) gives

0 =
1

ρg

P gN − P
g
N−1

‖∆xN,N−1‖2
∆xN,N−1 ·AN,N−1 −

1

ρl

P l2 − P l1
‖∆x1,2‖2

∆x1,2 ·A1,2 +

[
1

ρ
∇P

]
Γ

·Ap,p+1

+
1

2

u∗,l1 + u∗,l2

∆t
·A1,2 −

1

2

u∗,gN−1 + u∗,gN
∆t

·AN−1,N −
[u∗]Γ
∆t

·Ap,p+1, (B.77)

which gives, replacing [u∗]Γ by [u∗]Γ −
[
un+1

]
Γ

+
[
un+1

]
Γ

and moving the pressures to the left,

1

ρl

P l2 − P l1
‖∆x1,2‖2

∆x1,2 ·A1,2 −
1

ρg

P gN − P
g
N−1

‖∆xN,N−1‖2
∆xN,N−1 ·AN,N−1

=
1

2

u∗,l1 + u∗,l2

∆t
·A1,2 −

1

2

u∗,gN−1 + u∗,gN
∆t

·AN−1,N −
[
un+1

]
Γ

∆t
·Ap,p+1, (B.78)

which is the balance equation for the laplacian of P in 1D with liquid to the left and
vapor to the right of the interface. This equation has then to be verified at every time step.
It is the integral over the whole domain of the Poisson equation, which is itself the divergence of
the Navier-Stokes equation. This equation then accounts for the conservation of momentum in the
whole domain.

Note : We have
[
un+1

]
Γ

= ṁn+1
[

1
ρ

]n+1

Γ
nn+1 =

[−λ∇T ·n]n+1
Γ

hlv

[
1
ρ

]n+1

Γ
nn+1. When we compute the

pressure, we have already advanced the temperatures and the levelset function, i.e. we already have
Tn+1
l,g and φn+1, we can then use it to compute ṁn+1, and use this last term to compute

[
un+1

]
Γ
.
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•
p

•
q1

•
q2

•
q3

•
q4

•
q5

+

+

+
+

+

◦

◦

◦

◦

◦

Ap,q2

Ap,q3

Ap,q4

Ap,q5

Ap,q1

Γ

Vp

Fig. B.1 – Control volume Vp associated to node p. The neighboring nodes of p are numbered coun-
terclockwise. The barycenter of each element and the middle of each pair of nodes are respectively
represented by the symbols + and ◦. The control volume associated to node p is represented in
simple black dashes. To each pair of nodes are associated two facets of the control volume, each
linking the barycenter of a neighboring element to the middle of the pair. The sum of the fluxes of
a physical field at the two facets is equal to the flux of the same physical field at the “face” linking
the two barycenters of the neighboring elements to the pair, represented in dense red dashes. If
this face is denoted Si and if ni is its outward normal vector to the control volume of p, then the
vector Ap,qi represented in red is equal to Sini. For more clarity, Si and ni are not represented.
The interface Γ is represented in blue.





Appendix C

The Fifth-Order Weighted Essentially
Non-Oscillatory Scheme for cartesian
grids

We present the WENO5 scheme from [78] used in the Hamilton-Jacobi reinitialization equation
of the Signed Distance Function on cartesian grids. For clarity reasons, the temporal dependance
of φ is omitted since reinitialization takes place at fixed physical time. Moreover, only the two-
dimensional case is presented, but the extension to three dimensions is straightforward. We suppose
a homogeneous cartesian grid of cell size h.

On each grid node xi,j and ghost node x̊i,j , we compute first-order upwind gradients in both x
and y directions by

∂φ

∂x

∣∣∣∣
i,j

=
φi,j+1 − φi,j

h
(C.1)

and
∂φ

∂y

∣∣∣∣
i,j

=
φi−1,j − φi,j

h
, (C.2)

where ghost values are used when needed. For simplicity in the notations, theses gradients are
denoted ∇xφi,j and ∇yφi,j .

For each node, we define

u
(1)
x,− = ∇xφj−3,i, u

(2)
x,− = ∇xφj−2,i, u

(3)
x,− = ∇xφj−1,i, u

(4)
x,− = ∇xφj,i, u

(5)
x,− = ∇xφj+1,i,

(C.3)
and

u
(1)
x,+ = ∇xφj+2,i, u

(2)
x,+ = ∇xφj+1,i, u

(3)
x,+ = ∇xφj,i, u

(4)
x,+ = ∇xφj−1,i, u

(5)
x,+ = ∇xφj−2,i.

(C.4)
The gradients in the y direction are manipulated via

u
(1)
y,− = ∇yφj−3,i, u

(2)
y,− = ∇yφj−2,i, u

(3)
y,− = ∇yφj−1,i, u

(4)
y,− = ∇yφj,i, u

(5)
y,− = ∇yφj+1,i,

(C.5)
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and

u
(1)
y,+ = ∇yφj+2,i, u

(2)
y,+ = ∇yφj+1,i, u

(3)
y,+ = ∇yφj,i, u

(4)
y,+ = ∇yφj−1,i, u

(5)
y,+ = ∇yφj−2,i.

(C.6)
We define

S
(1)
x,− =

13

12

(
u

(1)
x,− − 2u

(2)
x,− + u

(3)
x,−

)2

+
1

4

(
u

(1)
x,− − 4u

(2)
x,− + 3u

(3)
x,−

)2

S
(2)
x,− =

13

12

(
u

(2)
x,− − 2u

(3)
x,− + u

(4)
x,−

)2

+
1

4

(
u

(2)
x,− − u

(4)
x,−

)2

S
(3)
x,− =

13

12

(
u

(3)
x,− − 2u

(4)
x,− + u

(5)
x,−

)2

+
1

4

(
3u

(3)
x,− − 4u

(4)
x,− + u

(5)
x,−

)2

(C.7)

and

S
(1)
x,+ =

13

12

(
u

(1)
x,+ − 2u

(2)
x,+ + u

(3)
x,+

)2

+
1

4

(
u

(1)
x,+ − 4u

(2)
x,+ + 3u

(3)
x,+

)2

S
(2)
x,+ =

13

12

(
u

(2)
x,+ − 2u

(3)
x,+ + u

(4)
x,+

)2

+
1

4

(
u

(2)
x,+ − u

(4)
x,+

)2

S
(3)
x,+ =

13

12

(
u

(3)
x,+ − 2u

(4)
x,+ + u

(5)
x,+

)2

+
1

4

(
3u

(3)
x,+ − 4u

(4)
x,+ + u

(5)
x,+

)2

. (C.8)

The analogous for the y direction gives

S
(1)
y,− =

13

12

(
u

(1)
y,− − 2u

(2)
y,− + u

(3)
y,−

)2

+
1

4

(
u

(1)
y,− − 4u

(2)
y,− + 3u

(3)
y,−

)2

S
(2)
y,− =

13

12

(
u

(2)
y,− − 2u

(3)
y,− + u

(4)
y,−

)2

+
1

4

(
u

(2)
y,− − u

(4)
y,−

)2

S
(3)
y,− =

13

12

(
u

(3)
y,− − 2u

(4)
y,− + u

(5)
y,−

)2

+
1

4

(
3u

(3)
y,− − 4u

(4)
y,− + u

(5)
y,−

)2

(C.9)

and

S
(1)
y,+ =

13

12

(
u

(1)
y,+ − 2u

(2)
y,+ + u

(3)
y,+

)2

+
1

4

(
u

(1)
y,+ − 4u

(2)
y,+ + 3u

(3)
y,+

)2

S
(2)
y,+ =

13

12

(
u

(2)
y,+ − 2u

(3)
y,+ + u

(4)
y,+

)2

+
1

4

(
u

(2)
y,+ − u

(4)
y,+

)2

S
(3)
y,+ =

13

12

(
u

(3)
y,+ − 2u

(4)
y,+ + u

(5)
y,+

)2

+
1

4

(
3u

(3)
y,+ − 4u

(4)
y,+ + u

(5)
y,+

)2

. (C.10)

Then we define

A
(1)
x,− =

1

10
(
ε+ S

(1)
x,−

)2 , A
(2)
x,− =

6

10
(
ε+ S

(2)
x,−

)2 , A
(3)
x,− =

3

10
(
ε+ S

(3)
x,−

)2 , (C.11)

and

A
(1)
x,+ =

1

10
(
ε+ S

(1)
x,+

)2 , A
(2)
x,+ =

6

10
(
ε+ S

(2)
x,+

)2 , A
(3)
x,+ =

3

10
(
ε+ S

(3)
x,+

)2 . (C.12)
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For the y direction, we define

A
(1)
y,− =

1

10
(
ε+ S

(1)
y,−

)2 , A
(2)
y,− =

6

10
(
ε+ S

(2)
y,−

)2 , A
(3)
y,− =

3

10
(
ε+ S

(3)
y,−

)2 , (C.13)

and

A
(1)
y,+ =

1

10
(
ε+ S

(1)
y,+

)2 , A
(2)
y,+ =

6

10
(
ε+ S

(2)
y,+

)2 , A
(3)
y,+ =

3

10
(
ε+ S

(3)
y,+

)2 . (C.14)

We define the smoothness indicators with the SI superscript for the x-direction,

ASI
x,− =

1

A
(1)
x,− +A

(2)
x,− +A

(3)
x,−

and ASI
x,+ =

1

A
(1)
x,+ +A

(2)
x,+ +A

(3)
x,+

, (C.15)

and for the y-direction

ASI
y,− =

1

A
(1)
y,− +A

(2)
y,− +A

(3)
y,−

and ASI
y,+ =

1

A
(1)
y,+ +A

(2)
y,+ +A

(3)
y,+

. (C.16)

Next we define the weights for the x-direction

ω
(1)
x,− = A

(1)
x,−A

SI
x,−, ω

(2)
x,− = A

(2)
x,−A

SI
x,−, ω

(3)
x,− = A

(3)
x,−A

SI
x,−, (C.17)

and
ω

(1)
x,+ = A

(1)
x,+A

SI
x,+, ω

(2)
x,+ = A

(2)
x,+A

SI
x,+, ω

(3)
x,+ = A

(3)
x,+A

SI
x,+, (C.18)

and for the y-direction

ω
(1)
y,− = A

(1)
y,−A

SI
y,−, ω

(2)
y,− = A

(2)
y,−A

SI
y,−, ω

(3)
y,− = A

(3)
y,−A

SI
y,−, (C.19)

and
ω

(1)
y,+ = A

(1)
y,+A

SI
y,+, ω

(2)
y,+ = A

(2)
y,+A

SI
y,+, ω

(3)
y,+ = A

(3)
y,+A

SI
y,+. (C.20)

We compute the candidates Sx,−, Sx,+, Sy,− and Sy,+ to the components of ∇φ. We have for
the x-direction,

Sx,− = ω
(1)
x,−

(
1

3
u

(1)
x,− −

7

6
u

(2)
x,− +

11

6
u

(3)
x,−

)
+ ω

(2)
x,−

(
−1

6
u

(2)
x,− +

5

6
u

(3)
x,− +

1

3
u

(4)
x,−

)
+ ω

(3)
x,−

(
1

3
u

(3)
x,− +

5

6
u

(4)
x,− −

1

6
u

(5)
x,−

)
, (C.21)

and

Sx,+ = ω
(1)
x,+

(
1

3
u

(1)
x,+ −

7

6
u

(2)
x,+ +

11

6
u

(3)
x,+

)
+ ω

(2)
x,+

(
−1

6
u

(2)
x,+ +

5

6
u

(3)
x,+ +

1

3
u

(4)
x,+

)
+ ω

(3)
x,+

(
1

3
u

(3)
x,+ +

5

6
u

(4)
x,+ −

1

6
u

(5)
x,+

)
, (C.22)
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and for the y-direction,

Sy,− = ω
(1)
y,−

(
1

3
u

(1)
y,− −

7

6
u

(2)
y,− +

11

6
u

(3)
y,−

)
+ ω

(2)
y,−

(
−1

6
u

(2)
y,− +

5

6
u

(3)
y,− +

1

3
u

(4)
y,−

)
+ ω

(3)
y,−

(
1

3
u

(3)
y,− +

5

6
u

(4)
y,− −

1

6
u

(5)
y,−

)
, (C.23)

and

Sy,+ = ω
(1)
y,+

(
1

3
u

(1)
y,+ −

7

6
u

(2)
y,+ +

11

6
u

(3)
y,+

)
+ ω

(2)
y,+

(
−1

6
u

(2)
y,+ +

5

6
u

(3)
y,+ +

1

3
u

(4)
y,+

)
+ ω

(3)
y,+

(
1

3
u

(3)
y,+ +

5

6
u

(4)
y,+ −

1

6
u

(5)
y,+

)
. (C.24)

We define

Sx = S
(
φ0
) |Sx,+| − |Sx,−|
Sx,+ − Sx,−

and Sy = S
(
φ0
) |Sy,+| − |Sy,−|
Sy,+ − Sy,−

. (C.25)

Finally, the components φx and φy of ∇φ are given by

φx =


Sx,−, if

{
S
(
φ0
)
Sx,+ ≥ 0 and S

(
φ0
)
Sx,− ≥ 0

}
or
{
S
(
φ0
)
Sx,+ < 0 and S

(
φ0
)
Sx,− > 0 and Sx > 0

}
Sx,+, if

{
S
(
φ0
)
Sx,+ ≤ 0 and S

(
φ0
)
Sx,− ≤ 0

}
or
{
S
(
φ0
)
Sx,+ < 0 and S

(
φ0
)
Sx,− > 0 and Sx ≤ 0

}
0 otherwise

(C.26)

and

φy =


Sy,−, if

{
S
(
φ0
)
Sy,+ ≥ 0 and S

(
φ0
)
Sy,− ≥ 0

}
or
{
S
(
φ0
)
Sy,+ < 0 and S

(
φ0
)
Sy,− > 0 and Sy > 0

}
Sy,+, if

{
S
(
φ0
)
Sy,+ ≤ 0 and S

(
φ0
)
Sy,− ≤ 0

}
or
{
S
(
φ0
)
Sy,+ < 0 and S

(
φ0
)
Sy,− > 0 and Sy ≤ 0

}
0 otherwise

. (C.27)

The Godunov flux G of the signed distance function φ at node xi,j is given by

G (φi,j) =
√
φ2
x + φ2

y − 1. (C.28)
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The Fast Marching Method for cartesian
grids
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D.1 Introduction

We present our implementation of the Fast Marching Method in two-dimensional cartesian grids
from [44]. The extension to three dimensions is straightforward. The Fast Marching Method (FMM)
is based on the propagation of the signed distance function from the interface in the interface normal
direction. To this purpose, the FMM solves the Eikonal equation

‖∇φ‖ = 1, (D.1)

by solving quadratic equations on nodes where φ is needed to reconstruct ∇φ. The starting point
of the algorithm is the set of the closest nodes to the interface (band level ±1) which have φ
values considered as exact values. From these exact values, updated values can be computed
on the neighbor nodes by solving quadratic equations. Among the newly computed values, only
the smallest1 value is considered as exact, and the method iterates until all nodes have an exact
signed distance value. The computation is limited to the narrow band around the interface to save
computational time. After advection of the interface (using a Level Set method in the case of the
Boiling solver), the interface must not be moved anymore during the same temporal iteration. In
order to conserve the position of the interface during reinitialization of the signed distance function
by the Fast Marching Method, the φ values of the nodes of band level ±1 are considered as exact

1or biggest, in the vapor phase
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(a) (b)

Fig. D.1 – The problem of reinitialization of the signed distance function φ on the closest nodes
to the interface in multidimensions. In one dimension (a), it is simple to reinitialize φ also on the
closest nodes xi and xi+1 without moving the interface. On two dimensions (b), reinitializing the
signed distance function on the closest nodes to the interface without moving the interface is much
more complex : if one reinitializes φ (xp), φ (xq1) and φ (xq2), the interface represented with blue
crosses on each grid edge will most likely be moved on (xp,xq1) and (xp,xq2) edges.

and are then not updated. As a result, this method does not guarantee ‖∇φ‖ = 1 on these nodes.
This drawback is not specific to the FMM and highlights the compromise of all reinitialization
methods of level set functions that has to be made : while we want to ensure ‖∇φ‖ = 1 on
the whole domain2 including the closest nodes to the interface, we do not want to
move the interface. Figure D.1(a) illustrates the problem.

In our implementation of the Fast Marching Method, we made the choice not to reinitialize the
signed distance function on the closest nodes to the interface.

D.2 Implementation in the Boiling solver

The FMM relies on node lists named Alive, Close and Far. The Alive nodes have φ values
considered as exact, the Close nodes are the nodes which have at least one Alive node as neighbor.
The Far nodes are the nodes which do not belong to the Alive or Close node lists. Figure D.2
illustrates this domain partition. The signed distance function is reinitialized in both phases in the
same pseudo-temporal loop. This feature is available due to the independence of the two phases

2at least on a narrow band around the interface
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Fig. D.2 – Illustration of the domain partition used in the Fast Marching Method.

with respect to the Fast Marching Method : the previously advected φ values on nodes of band
level +1 are Dirichlet boundary conditions for φ in the liquid phase, and the previously advected
φ values on nodes of band level −1 are Dirichlet boundary conditions for φ in the vapor phase. In
the following equations, the “±” sign becomes “+” in the liquid phase and “−” in the vapor phase.
Moreover, the term neighbor is understood as one of the four “direct” (top, bottom, left and right)
neighbors in two dimensions.

Step 1 : Initialization The first step is the initialization of the Alive, Close and Far node lists.
The Alive node list is initialized as the set of all nodes of band level ±1. The Close node list
is initialized as the set of all nodes of band level ±2. The Far node list is initialized as the set
of all nodes of the narrow band which do not belong to the Alive and Close node lists.

Step 2 : Gradient reconstruction by solving quadratic equations For all Close nodes, we
solve quadratic equations depending on the number of Alive neighbors. Let x be a grid node
where the indices i and j are omitted for clarity. We use the following method to solve the
relevant quadratic equations in order to compute intermediate φ∗ values.

• If x has one Alive neighbor x1, the equation solved is

φ∗ (x) = φn+1 (x1)± h. (D.2)

• If x has two Alive neighbors x1 and x2, the equation solved is

φ∗ (x) =
1

2

(
φn+1 (x1) + φn+1 (x2)±

√
2h2 − (φn+1 (x1)− φn+1 (x2))

2

)
. (D.3)

• If x has three Alive neighbors x1, x2 and x3, and

– if x, x1 and x2 are aligned, the equation solved is

φ∗ (x) = φn+1 (x3)±
√
h2 − 1

4
(φn+1 (x1)− φn+1 (x2))

2
; (D.4)

– if x, x1 and x3 are aligned, the equation solved is

φ∗ (x) = φn+1 (x2)±
√
h2 − 1

4
(φn+1 (x1)− φn+1 (x3))

2
; (D.5)
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– if x, x2 and x3 are aligned, the equation solved is

φ∗ (x) = φn+1 (x1)±
√
h2 − 1

4
(φn+1 (x2)− φn+1 (x3))

2
. (D.6)

• If x has four Alive neighbors x1, x2, x3 and x4, the equation solved is

φ∗ (x) =


min

p∈{1,...,4}

{
φn+1 (xp)

}
+ h if x is in the liquid phase

max
p∈{1,...,4}

{
φn+1 (xp)

}
− h if x is in the vapor phase

. (D.7)

Step 3 : Definition of the Trial nodes and node list update Among all Close nodes, we de-
fine the liquid and vapor Trial nodes xTrial,liq and xTrial,vap as the nodes which have respec-
tively the smallest and biggest φ∗ values, i.e. xTrial,liq is defined such that

φ∗ (xTrial,liq) = min
x∈C
{φ∗ (x) : φ∗ (x) ≥ 0}, (D.8)

and xTrial,vap is defined such that

φ∗ (xTrial,vap) = max
x∈C
{φ∗ (x) : φ∗ (x) < 0}, (D.9)

where C denotes the Close node list. The Trial nodes xTrial,liq and xTrial,vap are transferred
to the Alive node list. As a consequence, the reinitialized signed distance values on xTrial,liq

and xTrial,vap are given by
φn+1 (xTrial,liq) = φ∗ (xTrial,liq) , (D.10)

and
φn+1 (xTrial,vap) = φ∗ (xTrial,vap) . (D.11)

Moreover, the neighbors of xTrial,liq and xTrial,vap located in the Far node list, if any, are
transferred to the Close node list.

Step 4 : Exit criterium The number of Close nodes is recomputed, and the method stops if
there is no more Close nodes. Otherwise, the loop goes back to Step 2.
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MPI parallelism of the Hamilton-Jacobi
equation for the reinitialization of the
signed distance function on arbitrary
simplicial unstructured grids in two and
three dimensions
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E.1 The causality principle on distributed memory

Computing the signed distance function to an interface using distributed memory is highly
challenging. Numerical methods designed to build such signed distance functions have to respect
the causality principle : information originates from the interface and propagates away from it,
implying that the signed distance value to the interface can be computed on one node
only if some signed distance values on closer nodes to the interface have already been
computed. The immediate consequence of the causality principle is the major difficulty arising
with the parallelism of signed distance function computation algorithms on multiple cores. Indeed,
as opposed to classical parallel operations such as computing the gradient of a scalar field known
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Fig. E.1 – The causality principle in the reinitialization of the signed distance function to the
interface with distributed memory. The domain is decomposed on three processes P1, P2 and P3

where only P1 and P2 contain a portion of the interface Γ = Γ̃(0). The fictitious interface Γ̃(τ)
propagates from Γ in its normal direction at speed 1. The width of the area Π(n∆τ) delimited by

Γ̃(0) and Γ̃(n∆τ) is the distance on which φ has been reinitialized after n pseudo-temporal iterations
of Eq. (E.1). As opposed to true parallelism where a given operation is performed simultaneously

on all nodes with the same accuracy, the propagation of Γ̃ imposes an order in the computational
times needed to reinitialize φ. The φ value on node q2 ∈ Π(3∆τ) will then be reinitialized faster
than the φ value on node q1 ∈ Π(4∆τ).

in the whole domain, parallel operations needed to reinitialize the signed distance function to an
interface are performed on information that comes from other processes. Figure E.1 shows a portion
of a domain partition composed of three processes P1, P2 and P3, suitable for MPI parallelism.

The interface is located on processes P1 and P2. The resolution of Hamilton-Jacobi Eq. (2.7) is
based on the following idea. Let Γ be the interface after advection of the signed distance function,
and Γ̃(0) a fictitious copy of Γ. Solving Eq. (2.7) is equivalent to propagating Γ̃(0) in the normal

direction of Γ at speed 1. Let Π(τ) be the area delimited by Γ and Γ̃(τ) where τ ∈ [0, c] for

some constant c > 0 and Γ̃(τ) is the interface Γ propagated along its normal direction at speed 1
during the time interval [0, τ ]. Then, at any given instant τ during reinitialization, where τ = 0
is the beginning of reinitialization, Π(τ) is the area where the signed distance function φ has been
reinitialized. Outside Π(τ), φ is not reinitialized yet. The area Π(τ) is fully characterized by the
interface location Γ and the value of time τ , and is thus not related to the domain partition used
for MPI parallelism. As a consequence, algorithms have to be designed to update φ values on nodes
according to their distance to the interface and not on a per-process basis. For instance, on Fig.
E.1, process P1 does contain a portion of the interface but process P3 does not. One could argue
that, in this case, it would be easier to reinitialize φ on all nodes of process P1, and then use φ values
on common nodes between processes P1 and P3 (along with φ values on common nodes between
processes P2 and P3) as boundary conditions to reinitialize φ on process P3. This method would
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violate the causality principle because φ on node q1 in P1 would be reinitialized before φ on node
q2 in P3, whereas q1 ∈ Π (4∆τ) and q2 ∈ Π (3∆τ). The causality principle imposes to reinitialize
φ (q2) before φ (q1).

E.2 Algorithm

We use the algorithm proposed by Dapogny and Frey [17] to solve Hamilton-Jacobi Eq. (2.7) on
arbitrary unstructured grids, in two and three dimensions. The method restricts to grids composed
only of simplices1. This algorithm is reproduced in Alg. 2 with adapted notations where K :=
{K ∈ T : K ∩ Γ 6= ∅} is the set of simplices K ∈ T intersecting the interface Γ, T is the simplicial
grid, and φmax is a characteristic length of the domain typically set to the length of the largest
domain bounding box diagonal. Figure E.2 shows a scheme of the notations used in Alg. 2.

Algorithm 2: Reinitialization of the signed distance function by Hamilton-Jacobi Eq. (2.7)
on arbitrary simplicial unstructured grids [17].

1 Initialize the signed distance function φ0 with:

φ0 (x) =

{
exact signed distance function to Γ, if x belongs to a simplex of K,

φmax, otherwise.

2 for n = 1 to convergence do
3 φn (x) = φn−1 (x) for each node x of T
4 for each simplex T of T do
5 for each node x of T which does not belong to a simplex in K do
6 if x ∈ Ωliq then
7

φn (x) = min

(
φn (x) , φn−1

(
x−

∇
(
φn−1

∣∣
T

)
‖∇ (φn−1|T )‖

∆τ

))
+ ∆τ, (E.1)

8 else
9

φn (x) = max

(
φn (x) , φn−1

(
x +

∇
(
φn−1

∣∣
T

)
‖∇ (φn−1|T )‖

∆τ

))
−∆τ. (E.2)

10 return φn

This algorithm is implemented in the open source2 MshDist library [17]. The library has been
coupled to the Boiling solver, and provided very accurate results in two and three dimensions, as will
be shown in Section 5.11. While the library can be used on multiple cores to speed up computations
by means of shared memory (OpenMP), it cannot be used with multiple processes and distributed
memory (MPI). Indeed, the MshDist library requires that one core has knowledge of all φ values

1Simplices are the non-flat elements with the smallest number of edges for a given spatial dimension. If k ∈ N is
the dimension, a k-simplex is defined as the convex hull of its k + 1 vertices : a 2-simplex is a triangle, a 3-simplex
is a tetrahedron.

2The source code of the MshDist library is freely available at https://github.com/ISCDtoolbox/Mshdist.

https://github.com/ISCDtoolbox/Mshdist
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Fig. E.2 – Notations of Alg. 2 : T is the simplicial grid, K ⊂ T is the simplicial subset of T
intersecting the interface Γ, T1 ∈ T is a simplex, nodes xp and xq are summits of T1, and Ωliq is
the region occupied by the liquid phase. As opposed to node xp, node xq belongs to simplices of K.

on the whole computational domain. Since our goal is to tackle complex geometries, the Boiling
solver is designed to run on multiple processes using distributed memory and MPI parallelism.
Simulations performed with the Boiling solver coupled to the MshDist library are limited to one
single process. To alleviate this problem, parallelism using MPI and distributed memory of Alg. 2
has been implemented. We present the problems that arose with the parallelism of this algorithm
and the solutions found.

E.3 Pre-computation of grid-related informations

Prior to the actual parallelism of Alg. 2 using MPI, grid connectivity-related informations are
pre-computed to ease and speed up the search of neighbor nodes or elements during reinitialization.
For each node x, the two following lists are pre-computed :

Neighbor element list L1 (x) The list L1(x) of elements to which x is a summit. In Fig. E.2,
the neighbor element list L1 (xp) of node xp is given by

L1 (xp) = {T1, T2, T3, T4, T5} . (E.3)

Neighbor element edge list L2 (x) The list L2 (x) of element edges for all elements in L1 (x).
In Fig. E.2, the neighbor element edge list L2 (xp) of node xp is given by

L2 (xp) =
{

(xp,xq1) , (xp,xq2) , (xq1 ,xq2) , (xp,xq3) , (xq2 ,xq3) ,

(xp,xq4) , (xq3 ,xq4) , (xp,xq5) , (xq4 ,xq5) , (xq5 ,xq1)
}
. (E.4)

These two lists are local to one element group (see Chapter 3 for details on the double domain
decomposition used in YALES2).

The final time of reinitialization τmax is given by

τmax =
√
x2

BB + y2
BB, (E.5)
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where xBB and yBB are the dimensions of the whole domain bounding box. Equation (E.5) expresses

time τmax with respect to distances xBB and yBB. Indeed, thanks to the propagation speed of Γ̃
equal to 1, the analogy between times and distances is valid and common in the research field of
viscosity solutions to Hamilton-Jacobi equations.

As will be explained in Section E.5.2.3, the smallest height of all grid simplices is also pre-
computed.

E.4 Initialization

Line 1 of Alg. 2 initializes the signed distance function to be reinitialized, denoted φ0. Here, φ
has already been advected, so the interface location Γ = {x ∈ Ω : φ(x) = 0} is known and has to
be maintained during reinitialization of φ. To this purpose, φ values on the closest nodes to the
interface are not reinitialized. As a result, interface locations on grid edges crossed by the interface,
which can be computed by linear interpolations on these edges, are maintained. With the notations
of [17], this step is described in the first case of line 1 : by definition of K, “if x belongs to a simplex
in K” means “if x is one of the closest nodes to the interface, a node of band level ±1”, such as node
xq in Fig. E.2. In this case, the “exact” φ0 value is assumed to be the previously advected φ value,
and one has

φ0 (x) = φ (x) . (E.6)

As a drawback of maintaining the interface location, we recall that if one does not reinitialize φ on
the closest nodes to the interface, one does not guarantee ‖∇φ‖ = 1 on these nodes, see Appendix
D. If the band level of x is different from ±1, as for node xp in Fig E.2, then one has

φ0 (x) = ±φmax. (E.7)

The idea consists in setting φmax to a value that will never be reached by the reinitialized signed
distance function. In the liquid phase, φmax is set to a big, positive value ; whereas in the vapor
phase, φmax is set to a small, negative value. One can set φmax to “±∞” where ∞ is understood
as a constant real value typically of the order of 1015. Nevertheless, with such an initialization,
the algorithm will take longer time to converge. It has been found sufficient to set φmax to a
characteristic length of the domain such as the length of the largest domain bounding box diagonal.
The analogy between times and distances discussed above then gives

φmax = τmax. (E.8)

Figure E.3 shows the initialization step for a two-dimensional simulation.

E.5 Implementation in two dimensions

In two dimensions, simplices are triangles. In the first iteration, only the processes containing
a portion of the interface, or some closest nodes to the interface, on their subdomain can start
computing new relevant values for the closest neighbors (nodes of band level ±2). The other pro-
cesses have no knowledge of the interface and their computed φ values will be not be accurate until
information has propagated to their subdomain boundary. Since information needed to reinitial-
ize the signed distance function propagates, sufficiently accurate information is not available for
all processes at the same time. This propagation apparently conflicts with true parallelism in the
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(a) The interface Γ is colored in blue. The nodes
of band level ±1 have exact φ values, i.e. values
resulting from the previous advection of φ, and
are colored in green. These values will not be up-
dated during reinitialization. The nodes of band
level < −1 located in the vapor phase are set to
−φmax, and are colored in black. The nodes of
band level > 1 located in the liquid phase are set
to +φmax, and are colored in red. The horizontal
line AB is used to plot interpolated values of φ0

on Subfig. (b).

(b) Interpolated φ0 values on line AB. One can
see the discontinuity of φ0 between nodes of band
level ±1 and ±2. The objective of Alg. 2 is to
reinitialize φ as the theoretical signed distance
function to the interface shown in green.

Fig. E.3 – Initialization of φ0 by line 1 of Alg. 2 for a vapor bubble in two dimensions (φ > 0
in the liquid and φ < 0 in the vapor). Subfig. (a) shows a portion of the domain containing the
interface Γ with initialized values of φ0, and Subfig. (b) shows a plot of φ0 along the red line
linking points A and B. The φmax constant is set to the largest domain bounding box diagonal, i.e.
φmax :=

√
a2 + b2.

sense that, even if signed distance function reinitialization algorithms can be designed to run on
multiple cores, all cores cannot compute relevant φ values at the same time. Figure E.1 illustrates
the causality principle and its obstacle to true parallelism.

The two main difficulties arising when solving Eq. (E.1) are the computation of ∇
(
φn−1

∣∣
T

)
for some simplex T , and the evaluation of φn−1 on x−∆τ∇

(
φn−1

∣∣
T

)
/
∥∥∇ (φn−1

∣∣
T

)∥∥. These key
points are detailed in Sections E.5.1 and E.5.2. The workaround of the obstacle to true parallelism
due to the causality principle is detailed in Section E.5.2.3.

E.5.1 Computation of the per-triangle gradient

In this section, the computation of ∇ (φ|T ) is presented where the temporal exponent n−1 is
omitted.

In YALES2, physical fields are stored on grid nodes, or vertices, enabling differentiation in the
finite volume method by fluxes integration over vertex-centered control volumes. This convention is
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Fig. E.4 – Representation in three dimensions of a two-dimensional element and its associated plane.
The triangular grid element T of summits A (xA, yA, 0), B (xB , yB , 0) and C (xC , yC , 0) lies in the
plane Oxy (in black), the plane P is the plane containing points A′ (xA, yA, φA), B′ (xB, yB, φB)
and C ′ (xC, yC, φC) (in blue), and n is the normal vector to plane P (in red). The gradient of φ
restricted to T , i.e. ∇ (φ|T ), is computed from n (in green), and represents the tilt direction of
plane P with respect to triangle ABC.

also used for the signed distance function φ. Then, on a triangle T of summits A(xA, yA), B(xB , yB)
and C(xC , yC), only φ values computed on A, B and C, namely φA, φB and φC , are known. Let
(O, ex, ey, ez) be a three-dimensional cartesian frame. If triangle T lies in the plane generated by ex
and ey, then the notation φ|T denotes the plane P containing points A′ (xA, yA, φA), B′ (xB, yB, φB)
and C ′ (xC, yC, φC), as shown in Fig. E.4. The gradient of φ on plane P is computed using the

normal vector n = (nx, ny, nz)
T

of plane P , given by

n =

xB − xAyB − yA
φB − φA

×
xC − xAyC − yA
φC − φA

 , (E.9)

where × denotes the cross product in R3. Once n is known, one has

∇ (φ|T ) =

(
−nx/nz
−ny/nz

)
. (E.10)

One can observe that Eq. (E.10) is valid only if nz 6= 0. The case nz = 0 never occurs since it would
imply orthogonality between plane P and triangle T , and alignment of nodes A, B and C. The
gradient of φ restricted to one triangle is computed for all triangles T having at least one summit
of band level different from ±1, i.e. for all triangles T ∈ T \K.

E.5.2 Subgrid interpolation of the signed distance function

This section details the evaluation of φ at point x−∆τ∇ (φ|T ) / ‖∇ (φ|T )‖ for a given node x.
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E.5.2.1 Selecting the per-triangle gradient with the highest norm among neighbor
element list

Once ∇ (φ|T ) has been computed for all triangles T ∈ T , one needs to retain for node x the

vector ∇
(
φ|T∗(x)

)
having the highest norm among all vectors ∇ (φ|T ) where T ∈ L1(x). To this

purpose, the euclidean norm NT (φ) of ∇ (φ|T ) is computed for all triangles T ∈ L1(x) by

NT (φ) =

√
n2
x + n2

y

n2
z

, (E.11)

where the normal vector n = (nx, ny, nz)
T

is given by Eq. (E.9). The triangle T ∗(x) is identified
by its norm NT∗(x)(φ) given by

NT∗(x)(φ) = max {NT (φ) : T ∈ L1(x)}. (E.12)

The selection of ∇
(
φ|T∗(x)

)
on node x using Eq. (E.12) requires a special type of el grp-to-el -

grp (internal communicators) and process-to-process (MPI) communications : the selection by one
node of a vector having the highest norm among a set of vectors defined on the neighor elements
of this node. To this purpose, the communication type COMM_MAX_NORM has been implemented in
the communication type list of YALES23. Similar operations are performed on all other nodes.
Hereinafter, the dependence on x of T ∗(x) is omitted.

E.5.2.2 Shoot in the direction of the steepest gradient

In Alg. 2, the main idea used to reinitialize the signed distance function φ to the interface Γ
is contained in Eqs. (E.1) and (E.2), recalled hereafter. If node x is in the liquid phase, then φ is
updated on x by

φn (x) = min

(
φn−1 (x) , φn−1

(
x−

∇
(
φn−1

∣∣
T∗

)
‖∇ (φn−1|T∗)‖

∆τ

))
+ ∆τ, (E.13)

and, if x is in the vapor phase, then φ is updated on x by

φn (x) = max

(
φn−1 (x) , φn−1

(
x +

∇
(
φn−1

∣∣
T∗

)
‖∇ (φn−1|T∗)‖

∆τ

))
−∆τ, (E.14)

where T ∗ is the triangle maximizing
∥∥∇ (φn−1

∣∣
T

)∥∥ defined by Eq. (E.12), and n ∈ N∗.
In this section, the iterative method is illustrated for some node x located in the liquid phase,

i.e. using Eq. (E.13). The transposition to the vapor phase is straightforward (Eq. (E.14)). Let P
be the following proposition :

φn−1(x) ≥ φn−1

(
x−

∇
(
φn−1

∣∣
T∗

)
‖∇ (φn−1|T∗)‖

∆τ

)
. (P)

3YALES2 uses a wrapper for the MPI library providing homogeneity in the communication commands between
el grp-to-el grp and process-to-process communications.
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If P is verified, then Eq. (E.13) rewrites

φn(x) = φn−1

(
x−

∇
(
φn−1

∣∣
T∗

)
‖∇ (φn−1|T∗)‖

∆τ

)
+ ∆τ, (E.15)

otherwise,
φn(x) = φn−1(x) + ∆τ. (E.16)

Let sn−1(x) be the shoot vector of node x at iteration n− 1, given by

sn−1(x) =
∇
(
φn−1

∣∣
T∗

)
‖∇ (φn−1|T∗)‖

∆τ, (E.17)

implying ∥∥sn−1(x)
∥∥ = ∆τ. (E.18)

Equation (E.15) rewrites
φn(x) = φn−1

(
x− sn−1(x)

)
+ ∆τ. (E.19)

Let xn−1
target ∈ R2 be the target point of node x defined as

xn−1
target = x− sn−1(x). (E.20)

Equation (E.19) finally rewrites

φn(x) = φn−1(xn−1
target) + ∆τ. (E.21)

To summarize, Eq. (E.13) is equivalent to

φn(x) =

{
φn−1

(
xn−1

target

)
+ ∆τ, if Proposition P is true, (E.22)

φn−1 (x) + ∆τ, otherwise. (E.23)

The key idea of the method is to iteratively build ∇ (φ|T∗) such that Proposition P is verified,
i.e. such that s(x) points to the direction of the interface normal vector nΓ at node x, nΓ(x).
Equations (E.18) and (E.20) imply that point xn−1

target ∈ C (x,∆τ) where C (x,∆τ) is the circle of
center x and radius ∆τ . Figure E.5 gives a first resolution example of Eq. (E.13) in sequential
computing.

In the first iterations of Eq. (E.13), ∇
(
φn−1

∣∣
T∗

)
potentially points to a random direction, as

in Fig. E.5(a). As a result, xn−1
target is potentially farther to the interface than x. In this case,

Proposition P is false, and φn(x) is updated by Eq. (E.23), favoring triangle ABC to be, in the
next iteration, the triangle T ∗ maximizing ‖∇ (φn|T )‖ among all triangles T ∈ L1(x), as in Fig.
E.5(b).

Consequently, the next target points of x are most likely closer to the interface than x (Fig.
E.5(b)), and the direction of ∇

(
φn−1

∣∣
T∗

)
converges to the direction of the interface normal vector

at node x, nΓ(x). In this case, Proposition P is true, and φ is updated on x by Eq. (E.22).
After convergence of Eq. (E.13), the direction of ∇ (φ|T∗) is equal to the direction of nΓ(x),

and xn−1
target is closer to the interface than x, as shown in Fig. E.5(c). Again, Proposition P is true,

and φ is accurately updated on x by Eq. (E.22).
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Equation (E.22) solved only on node x is not sufficient to update φ on x. Indeed, except if
xn−1

target is located in a triangle in K, as in Fig. E.5(c), if Eq. (E.22) has not previously been solved

until convergence on the three summits of the triangle containing xn−1
target, as could be the case in

Fig. E.5(b), then Eq. (E.22) solved on x can set φn(x) to an inaccurate value. This problem is
avoided by enforcing the causality principle. Theoretically, the pseudo-time τ exact (x) needed for

Alg. 2 to reinitialize φ on node x is equal to |φexact(x)|, since the fictitious interface Γ̃ propagates
at speed 1 away from the interface Γ, along the interface normal vector nΓ (see Section E.1). The
causality principle is enforced in the design of Alg. 2 by the two following key points :

• The main loop is the pseudo-temporal loop for pseudo-time advancement, and the nested loop
is a loop on grid nodes in which φn−1 is updated to φn. This loop order implies that when
φn(x) is computed on node x, shown in Fig. E.5, using φn−1 on the summits D, E and F
of triangle Tn−1

target containing xn−1
target, φ

n−1 has already been computed on D, E and F in the
previous pseudo-temporal iteration.

• At pseudo-time τ , φn has been reinitialized on all nodes located in Π(τ), where Π(τ) is the area

of thickness τ delimited by Γ and Γ̃(τ) (see Section E.1). Figure E.6 reproduces Fig. E.5(c)

where different positions of Γ̃ are represented. Outside Π(τ), φn has not been reinitialized
yet.

These two properties ensure that, for one grid node p and one point q ∈ R2 located in the same
phase, if q is closer to the interface than p, then Alg. 2 will take less computational time (less
pseudo-temporal iterations) to reinitialize φ on the summits of the triangle containing point q than
on node p. As a consequence, at any given pseudo-temporal iteration n (or any given pseudo-time
τ), the interpolated reinitialized φn value on q will be more or equally accurate than the reinitialized
φn value on p : φn(q) will be more accurate than φn(p) if q ∈ Π(τ) and p /∈ Π(τ), and φn(q) will
be equally accurate as φn(p) if both p,q ∈ Π(τ). As a result, the causality principle is enforced by
the update of φn(p) by means of φn−1(q), i.e. φn(p) = φn−1(q) + ∆τ . Transposed to Figs. E.5(b)
and E.5(c), the causality principle leads to Eq. (E.22).

E.5.2.3 Modification of the pseudo-time step for MPI parallelism

Since at any given pseudo-time τ , the accuracy of the reinitialized φ nodal values depends on
the node distance to the interface (Π (τ − 2∆τ) ⊂ Π (τ −∆τ) ⊂ Π (τ) ⊂ . . . ), the convergence of
Alg. 2 on a given node x can be accelerated if the target points xtarget of x are chosen close to
the interface. For instance, in Fig. E.5, the convergence speed of Alg. 2 on node x is increased by
fixing ∆τ such that xtarget is expected to be close to x′. Since this remark is valid for each node x,
the overall convergence of Alg. 2 can be accelerated if the pseudo-time step ∆τ is node-dependent,
i.e. if ∆τ = ∆τ(x). However, if ∆τ is node-dependent, for a given node x, ∆τ(x) must be adjusted
with caution. Indeed, if the shoot vectors s(x) cross the interface, Eq. (E.22) can provide inaccurate
values for φn(x), as shown in Fig. E.7. In [17], the authors use another strategy :

[. . . ] the time step [∆τ ] must be chosen small enough at the beginning of the process, so
that going back along the characteristic lines does not lead to crossing the interface [Γ]
and picking irrelevant values. But after a certain amount of iterations, we can obviously
increase this time step. [. . . ]
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As a result, the different areas Πn(τ) shown in Fig. E.6, where φn has been reinitialized, do not
have the same increment thickness. For small values of τ , Π(τ) is quite thin, and gets thicker for
larger values of τ , in which case attention is still paid to build the target points in the same phase.
Propagation of Γ̃ along characteristics of Γ at speed 1 is also used to speed up computations :

[. . . ] we decided to fix the values computed at a node x when these values are smaller
than the current total time of the propagation (with a security margin).

Indeed, if node x belongs to Π(τ), then the propagating fictitious interface Γ̃(τ) has already crossed
node x, so the reinitialized signed distance value on node x can be considered accurate and need
not be reinitialized anymore.

In [17], the authors developed the method for use with shared memory only (OpenMP). Since
our goal is to simulate boiling on unstructured grids in multidimensions, we need an algorithm
compatible with distributed memory for execution on multiple cores (MPI). The next part of this
section presents the modification adopted for the pseudo-time step to enable MPI parallelism.

In parallel computing, if the boundary between two processes separates node x from point
xn−1

target, then a procedure is needed for x on one process to :

• locate the triangle Tn−1
target(x) containing xn−1

target on the other process,

• interpolate φn−1 on xn−1
target from φn−1 values in the plane associated to Tn−1

target(x),

• send the interpolated φn−1
(
xn−1

target

)
value to the process containing node x to solve Eq. (E.13).

Such communication scheme is highly complex to implement in an efficient way. To simplify the
problem, we impose that xn−1

target is located in a triangle to which x is a summit, i.e. a triangle
T ∈ L1 (x). This restriction is imposed via the pseudo-time step ∆τ which is set to

∆τ = ηCFL × hmin, (E.24)

where ηCFL is the non-dimensional Courant-Friedrichs-Lewy (CFL) number set to 0.99 and hmin is
the smallest height of all grid triangles. Figure E.8 illustrates this restriction on ∆τ in a domain
decomposed for MPI parallelism. Equation (E.24) ensures that the distance between x and xn−1

target

is always smaller than the smallest height of all triangles to which x is a summit, i.e. xn−1
target is

always located in a triangle Tn−1
target(x) ∈ L1 (x). As a result, for a given node x, since L1 (x) is

pre-computed, the identification of Tn−1
target(x) is much easier and suitable to MPI parallelism. In

Fig. E.8, since node x is not located on a process boundary, Tn−1
target(x) is identified among the

elements of L1(x). Conversely, for node y located on the boundary of processes P1 and P2, since
neighbor element lists are local to one process, only process P2 containing yn−1

target will identify the

appropriate triangle in its list LP2
1 (y). Process P2 will compute the new value φn(y) by Eq. (E.13)

and the result will be communicated to Process P1, so that both processes P1 and P2 have the same
φn(y) value. The same method is used if node y belongs to more than two processes. In all cases,
one has

L1(x) =
⋃
i

LPi
1 (x) , (E.25)

where i ∈ N∗ is the number of processes containing node x.
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E.5.2.4 Linear interpolation of φn−1 on the target point

Equation (E.13) requires the knowledge of φn−1 on point xn−1
target. Once the triangle Tn−1

target

containing xn−1
target is identified, a linear interpolation is used to evaluate φn−1 at xn−1

target from the

φn−1 values at the summits of Tn−1
target.

In order to identify the triangle Tn−1
target containing xn−1

target, the following test is performed on each

triangle T ∈ L1(x). Let A, B and C be the three summits of T . For clarity, we denote xn−1
target by

M . If one has 
(AB×AM) · (AB×AC) > 0,

(BC×BM) · (BC×BA) > 0,

(CA×CM) · (CA×CB) > 0,

(E.26)

then M belongs to triangle T . Figure E.9 shows a case where this test can detect point M in
triangle ABC. It is well-known that, in the case where M is very close to one edge, this test will
not detect the triangle containing M due to numerical errors at the machine precision level. For
instance, if M is inside triangle T and very close to edge AB, then AB×AM will be almost equal
to 0, and in turn (AB×AM) · (AB×AC) will be equal to ε > 0 where ε is arbitrarily close to
0. While mathematically well-defined, this equality is very challenging to detect numerically since
ε > 0 can be much smaller than the smallest real number representable on the current machine, i.e.
the machine precision is potentially insufficient to represent ε. In such case, while mathematically
true, the numerical test (AB×AM) · (AB×AC) > 0 will randomly return true or false. The
problem cannot be solved using a more precise machine since ε is arbitrarily close to 0. The operator
“>” in the test cannot be replaced by “≥” since testing the equality of two real numbers is subjected
to the same problem. As a result, point M can be detected in none, one or more than one triangles.
Figure E.10 illustrates the difficulty in locating the target point M of node C in triangle ABC, in
two different cases : (a), when M is close to an edge linked to C, and (b), when M is close to an
edge not linked to C. For instance, in the case of Fig. E.10(a), test (E.26) can detect point M :

• only in triangle ABC,

• only in triangle ACD,

• in both triangles ABC and ACD,

• in none triangle.

If test (E.26) detects M in one single triangle T of summits A, B and C, then one can interpolate
φ on M using φ values on A, B and C, denoted φA, φB and φC . Let P be the plane in R3 defined by
the three points A′(xA, yA, φA), B′(xB , yB , φB) and C ′(xC , yC , φC), and nP (nx, ny, nz) the normal
vector to plane P given by Eq. (E.9), as shown in Fig. E.4. Since A′, B′, C ′ ∈ P , one has

−−−→
M ′A′ · nP =

−−−→
M ′B′ · nP =

−−−→
M ′C ′ · nP = 0, (E.27)

where M ′ ∈ R3 is the point of coordinates (xM , yM , φM )
T

, and the only unknown is φM . The
interpolated φ value on M is given by

φM = φA +
(xA − xM )nx + (yA − yM )ny

nz
, (E.28)
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where A can be replaced by B or C, and nz is always non zero.
If test (E.26) fails to find M in all triangles in L1(x), then, due to the restriction on ∆τ defined

by Eq. (E.24), one can conclude at least that M is infinitely close to one grid edge P1P2 ∈ L2(x),
as in Fig. E.10. In this case, the edge P1P2 is identified, and φ is interpolated on M using φP1

and/or φP2
. In order to identify P1P2, a loop over the elements of L2(x) is used. This list contains

the identifiers of all edges forming triangles to which x is a summit. For instance, in Fig. E.10, the
neighbor element edge list L2(x), where node x is identified as point C, contains the identifiers of
edges AB, BC, AC, CD, AD, BE, CE and DE. Let P1P2 be the edge of L2(x) to which point
M is the closest. The edge P1P2 is defined by

‖P1M‖+ ‖P2M‖
‖P1P2‖

= min
PQ∈L2(x)

{
‖PM‖+ ‖QM‖

‖PQ‖

}
≥ 1. (E.29)

In Fig. E.10(a), Eq. (E.29) sets P1P2 to AC, and in Fig. E.10(b), to AB. The interpolated φ value
on M is then given by

φM =


φP1

, if |‖P1P2‖ − ‖P2M‖| < ε,

φP2
, if |‖P1P2‖ − ‖P1M‖| < ε,

(1− θ)φP1 + θφP2 , otherwise,

(E.30)

where ε is the smallest real number representable on the current machine, typically of the order of
10−15, and θ = ‖P1M‖ / ‖P1P2‖ is the relative distance of M to P1 on edge P1P2.

Finally, the signed distance function φ is updated on node C by Eq. (E.1) which rewrites

φn(x) = min
{
φn−1(x), φn−1

M

}
+ ∆τ. (E.31)

Figure E.11 shows the pseudo-temporal iterations needed to reinitialize the signed distance function
φ to the interface Γ on node x, by means of the different tilt directions of the associated planes.

E.6 Implementation in three dimensions

The method has been extended to three dimensions. Similarly to the two-dimensional case which
involves geometric operations in R3 (see Fig. E.4), the three-dimensional case involves geometric
operations in R4. Consequently, operations based on the three-dimensional vector product operator
are adapted in four dimensions. The overall logic of the method remains unchanged.
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(a) First iteration of Eq. (E.13)
solved on node x. The shoot
vector sn−1(x) of node x points
to a random direction. As a re-
sult, Proposition P is false, and
φn(x) is updated by Eq. (E.23).

(b) Unsteady state of Eq. (E.13)
solved at node x. The shoot vec-
tor sn−1(x) of node x is not yet
colinear to the interface normal
vector on x, nΓ(x), but Proposi-
tion P is true : φn(x) is updated
by Eq. (E.22) but the obtained
value is not yet accurate.

(c) Steady state of Eq. (E.13)
solved on node x. The shoot
vector sn−1(x) of node x is co-
linear to the interface normal
vector on x, nΓ(x). Proposition
P is true. Since x′,n−1, xn−1

target

and x are aligned, Eq. (E.22)
provides an accurate value for
φn(x).

Fig. E.5 – Equation (E.13) is solved on node x. The plane of φn−1 values associated to the triangle
T ∗ maximizes

∥∥∇ (φn−1
∣∣
T

)∥∥ among all planes associated to triangles T ∈ L1(x) (see Fig. E.4).

The target point xn−1
target of node x is defined by Eq. (E.20), and the distance between node x and

point xn−1
target is equal to ∆τ . The point xn−1

target is not a grid node, so there is no defined φn−1

value on xn−1
target, but φn−1 can be linearly interpolated on xn−1

target from φn−1 values computed at the

summits of triangle Tn−1
target(x), leading to φn−1

(
xn−1

target

)
. The exact, unknown φexact value on x can

be expressed as φexact(x) = ‖x− x′‖, where x′ is the intersection point between the interface Γ and
the line generated by xtarget − x when xtarget has reached steady state. Subfigs. E.5(a) and E.5(b)
show two different iterations of Eq. (E.13), and subfig. E.5(c) shows its steady state.
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Fig. E.6 – Steady state of Eq. (E.13) solved on node x. Reproduction of Fig. E.5(c) where

different positions of the fictitious interface Γ̃ are represented. In the first iterations, the pseudo-
time step ∆τ is small enough to ensure that target points ytarget and node y are located in the
same phase, resulting in thin Π areas. After a certain number of iterations, ∆τ is increased to speed
up convergence by enabling far nodes to the interface, like node x, to shoot at target points xtarget

closer to the interface.



182 APPENDIX E. MPI PARALLELISM OF HJ EQUATION ON SIMPLICES

Fig. E.7 – In this example, the pseudo-time step ∆τ(x) is node-dependent. The shoot vector sn−1(x)
is almost colinear to the interface normal vector nΓ(x) but crosses the interface. Proposition P is
true but Eq. (E.22) fails to update φn(x) accurately.
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Fig. E.8 – Double decomposition of the computational domain on two processes. The hatched area
is the boundary between the processes and the circled areas are the boundaries between element
groups of the same process. The restriction on ∆τ imposed by Eq. (E.24) implies that target point
xn−1

target of node x is contained in one triangle Tn−1
target(x) ∈ L1(x). From node x, it is then easier

to access triangle Tn−1
target(x) (looping only over elements of L1(x) and not over all grid elements),

interpolate φn−1 on Tn−1
target(x), and update φn(x) by Eq. (E.13).
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Fig. E.9 – Point M is easily detected in triangle ABC by test (E.26). The three scalar products
of test (E.26) are evaluated positive without numerical problems since point M is sufficiently far
from the edges of triangle ABC.

(a) Point M is close to edge AC, directly related
to node xC .

(b) Point M is close to edge AB, not directly
related to node xC .

Fig. E.10 – In cases (a) and (b), point C represents a computational node xC . Test (E.26) will
most likely fail to identify triangle ABC as the triangle containing the target point M of node
xC , computed using Eq. (E.20). Case (b) shows that L2 (xC) must also contain edges not directly
related to xC .
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Fig. E.11 – For each iteration n, the distance between node x and point xn−1
target is equal to ∆τ .

After the last iteration N , one has ∇
(
φ|T∗(x)

)
= nΓ(x), i.e. the tilt direction of the final plane

PN is equal to nΓ(x), and one has φN (x) = φN−1(xN−1
target) + ∆τ by Eq. (E.22).





Appendix F

Reinitialization of the Signed Distance
Function by the Geometric Marker
Method in two and three dimensions with
MPI parallelism

Abstract

This Appendix details a new marker-based reinitialization method for the signed distance
function on unstructured grids. This method is an extension of the Multiple Marker Method
presented in Section 5.5.

Outline
F.1 The Geometric Marker Method in two dimensions . . . . . . . . . . . . . . . . . . . 187
F.2 The Geometric Marker Method in three dimensions . . . . . . . . . . . . . . . . . . . 189

The Geometric Marker Method (GMM), developed by Janodet et al. [39], is based on the
Multiple Marker Method (MMM) presented in Section 5.5. The GMM extends the notion of marker
from point to segment.

F.1 The Geometric Marker Method in two dimensions

Let T be a triangle of summits A (xA, yA), B (xB , yB) and C (xC , yC). Points A, B and C
represent grid nodes pA, pB and pC respectively, and segments AB, AC and BC represent grid
edges (pA,pB), (pA,pC) and (pB ,pC) respectively. Assume that the piecewise-linear interface Γ
crosses triangle T on segments AB and AC at points I1 (xI1 , yI1) and I2 (xI2 , yI2) respectively. This
configuration is shown in Fig. F.1. In the GMM, markers are first defined for the closest nodes to
the interface, such as node pA. In order to define a marker for node pA, one first computes the

187
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(a) A′ is inside the triangle. (b) A′ is outside the triangle.

Fig. F.1 – Computation of the orthogonal projection A′ of point A onto the piecewise-linear interface
delimited by I1 and I2.

projection A′ of point A onto the piecewise-linear interface Γ. Let dT (pA) be the distance of node
pA to the piecewise-linear interface part contained in triangle T given by

dT (pA) =


∥∥∥−−→AA′∥∥∥ , if A′ ∈ T (Fig. F.1(a)),

min
{∥∥∥−−→AI1∥∥∥ ,∥∥∥−−→AI2∥∥∥}, otherwise (Fig. F.1(b)).

(F.1)

Triangle T enables the definition of one marker MT (pA) associated to node pA, given by the
5-dimensional vector

MT (pA) = (xI1 , yI1 , xI2 , yI2 , dT (pA))
T
. (F.2)

The signed distance function φ on node pA is then given by

φ (pA) = min
i∈{1,...,N}

dTi(pA), (F.3)

where N ∈ N∗ is the number of triangles crossed by the interface and to which point A is a summit.
In two dimensions, the marker list M (pA) associated to node pA is composed of three markers.
In order to select these three markers, all markers MTi (pA) are sorted in ascending order of their
fifth component. The first three markers of the sorted list compose the list M (pA). As a result,
the fifth component dTj (pA) of the sorted list first marker MTj (pA) is equal to the reinitialized φ
value on pA given by Eq. (F.3), for some j ∈ {1, . . . , N}.

Once φ has been reinitialized on all the closest nodes to the interface, these nodes propagate
their marker list in the narrow band, as shown in Fig. F.2. In Fig. F.2(a), triangles T1 and T2 each
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(a) (b)

Fig. F.2 – Reinitialization of the signed distance function by the GMM on (a) nodes of band level
1, and (b) nodes of band level 2.

give one marker to node pA, and triangles T2 and T3 each give one marker to node pE . In this case,
all components of the third markers associated to nodes pA and pE are set to +∞. In turn, node
pF builds its list of three markers among the six propagated markers from nodes pA and pE , as
shown in Fig. F.2(b). Orthogonal projections F ′ of point F are still computed onto lines generated
by linear-piecewise interface segments I1I2, I2I3 and I3I4, and only the three markers minimizing
dT (pF ) are selected (with a unicity test on marker segments, since for instance triangle T2, by
means of nodes pA and pE , will provide node pF with two different markers related to segment
[I2, I3]).

The propagation of marker lists relies on a complex MPI communication scheme originally
developed for the MMM.

F.2 The Geometric Marker Method in three dimensions

In three dimensions, the same methodology is applied for tetrahedra instead of triangles. Let
T be a tetrahedron of summits A(xA, yA, zA), B(xB , yB , zB), C(xC , yC , zC) and D(xD, yD, zD),
and Γ be the piecewise-planar interface cutting T . The intersection between Γ and T is either a
triangle or a quadrangle. In the latter case, the quadrangle is split into two triangles. As in Fig.
F.1 for the two-dimensional case, the signed distance function is reinitialized on the closest nodes
to the interface by computing their projections onto the piecewise-planar interface, as shown in
Fig. F.3. The reinitialization of φ on the farther nodes is then similar to the method used for the
two-dimensional case shown in Fig. F.2(b).
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(a) A′ is inside the tetrahedron. (b) A′ is outside the tetrahedron.

Fig. F.3 – Computation of the orthogonal projection A′ of point A onto the piecewise-planar inter-
face.
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G.1 Introduction

In order to satify requirements 3 and 4 of Section 6.2.1, we use Aslam’s extrapolation technique
[4]. This extrapolation method is mentioned in [26] and has been used in [85] to extrapolate ghost
temperature values across the interface. The method is based on a PDE resolution and builds a
continuous extension of a discontinuous field. Consider a scalar field f defined on one side of the
interface. One can continuously extend f on the other side of the interface by solving

∂f

∂τ
± n · ∇f = 0, (G.1)

where τ is a pseudo-time, n is the interface normal vector and the ± sign depends on which phase
f is defined. Equation (G.1) performs a constant (order 0) extrapolation of f across the interface.
The method has been extended to preserve the continuity of normal derivatives up to an arbitrary
order. The chosen order gives the number of supplementary equations to solve. In [85], the authors
have performed extrapolations of the temperature fields up to order 2. The three equations solved

191
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to extend the vapor temperature field to the liquid phase are then given by

∂ (Tvap)nn
∂τ

+H−2 (b) n · ∇ (Tvap)nn = 0, (G.2)

∂ (Tvap)n
∂τ

+H−1 (b)
(
n · ∇ (Tvap)n − (Tvap)nn

)
= 0, (G.3)

∂Tvap

∂τ
+H0 (b)

(
n · ∇Tvap − (Tvap)n

)
= 0, (G.4)

where the normal derivative (Tvap)n is computed as

(Tvap)n = ∇Tvap · n. (G.5)

Similarly, the three equations solved to extend the liquid temperature field to the vapor phase are
given by

∂ (Tliq)nn
∂τ

−H2 (b) n · ∇ (Tliq)nn = 0, (G.6)

∂ (Tliq)n
∂τ

−H1 (b)
(
n · ∇ (Tliq)n − (Tliq)nn

)
= 0, (G.7)

∂Tliq

∂τ
−H0 (−b)

(
n · ∇Tliq − (Tliq)n

)
= 0. (G.8)

In Eqs. (G.2)-(G.4) and (G.6)-(G.8), Hb0(b) is the shifted Heaviside function defined for node p of
band level b 6= 0, i.e. node p belongs to the narrow band around the interface, and b0 ∈ Z by

Hb0 (b) =

{
1 if (b0 < 0 and b ≥ b0) or (b0 > 0 and b ≤ b0) or (b0 = 0 and b > 0),

0 otherwise.
(G.9)

We now give more detail about the method. We focus on the extension of the vapor temperature
field to the liquid phase. The counterpart is of course equivalent. Solving only Eq. (G.4) where the
source term (Tvap)n is set to 0 performs a constant (order 0) extrapolation, solving Eqs. (G.3) and
(G.4) where the source term (Tvap)nn is set to 0 performs a linear (order 1) extrapolation, solving
Eqs. (G.2), (G.3) and (G.4) performs a quadratic (order 2) extrapolation.

G.2 Constant extrapolation

As stated above, a constant extrapolation can be performed solving the equation

∂Tvap

∂τ
+H0 (b) n · ∇Tvap = 0. (G.10)

In order to solve Eq. (G.10), one needs to compute ∇Tvap. The temperature gradient cannot be
computed using the centered scheme given in Eq. (3.17) : in order to extrapolate values originating
from one given direction, one needs to use an upwind scheme where the upwinding is performed
w.r.t. the said direction. Refering to Fig. 6.2(b) where node q1 is the only node located in
the vapor phase, Eq. (3.17) would state that the contribution of grid edge (p,q3) to ∇Tvap|p is
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1
2Vp (Tvap(p) + Tvap(q3)) Ap,q3 . Instead, since node p is closer to the vapor phase than node q3,

the upwinding used states that the contribution of grid edge (p,q3) to ∇Tvap|p is

1

Vp
Tvap(p)Ap,q3

, (G.11)

and the contribution of grid edge (p,q3) to ∇Tvap|q3
is

− 1

Vp
Tvap(p)Ap,q3

. (G.12)

The upwinding given by Eqs. (G.11) and (G.12) is performed on all grid edges having at least one
node in the liquid part of the narrow band around the interface. The term H0(b) vanishes in the
vapor phase to avoid polluting the vapor part of the vapor temperature field.

G.3 Higher-order extrapolation

Linear extrapolation is achieved in three steps. One first computes the first normal derivative
of the vapor temperature for the nodes located in the vapor phase, i.e.

(Tvap)n = n · ∇Tvap, (G.13)

where n is the interface normal vector. Equation (G.13) is applied in all the vapor part of the
narrow band around the interface except on the nodes of band level −1, where one or more vapor
temperature values would be needed in the liquid part. The first normal derivative of the vapor
temperature is then extended into the liquid part by the equation

∂ (Tvap)n
∂τ

+H−1 (b) n · ∇ (Tvap)n = 0, (G.14)

where the gradient of the first normal derivative is computed using the upwind scheme detailed in
Section G.2. The function H−1(b) is equal to 1 in the liquid part and also on the nodes of band
level −1 in order to extrapolate the first normal derivative which could not be directly computed
on these nodes. Once all nodes of the narrow band have a physical or extrapolated value of first
normal derivative, the vapor temperature itself is extrapolated into the liquid part of the narrow
band by the equation

∂Tvap

∂τ
+H0 (b)

(
n · ∇Tvap − (Tvap)n

)
= 0, (G.15)

where the first normal derivative is used as a source term and the temperature gradient is again
computed using the upwind scheme detailed in Section G.2. Solving Eq. (G.15) until the pseudo-
temporal fluctuation term vanishes ensures that the newly extrapolated field Tvap and the previously
extrapolated field (Tvap)n respect Eq. (G.13) on all nodes for which H0(b) = 1.

Quadratic extrapolation is based on the same principle : one first computes the first normal
derivative by Eq. (G.13) and the second derivative by

(Tvap)nn = n · ∇
[
(Tvap)n

]
= n · ∇ (n · ∇Tvap) (G.16)
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on nodes of band level strictly smaller than two, and then solves Eqs. (G.2)-(G.4).
One can remark that it is useless to perform an extrapolation of a field f at an order superior

to the order of the polynomial function describing f . For instance, a second-order extrapolation of
the signed distance function to the interface, other than for testing purposes, is useless since the
second normal derivative of φ is zero.

G.4 Numerical results

In order to assess the accuracy of the method, we use the following two-dimensional configu-
ration. The unstructured computational domain is a square of side length L = 6× 10−3 m, with
a characteristic cell size ∆ = 2.5× 10−5 m. The point O(0, 0) is at the center of the domain. A
circular bubble is centered at point O, and the bubble radius is R0 = 1× 10−3 m. Around 85 nodes
are present along the bubble diameter. The liquid temperature profile is defined for all nodes p of
coordinate vector (x, y)

T
in the liquid part of the narrow band by

Tliq (R) = Tsat + a (R− 2R1 +R0) (R−R0) , (G.17)

where R =
√
x2 + y2, Tsat = 373 K, a = 1× 107 K m−2 and R1 = 0.95 × R0. The extrapolation

of the liquid temperature is computed in the vapor part of the narrow band at orders 0, 1 and 2.

From Eq. (G.17), the theoretical extrapolated value at order 0, TG0,th
liq , is given by

TG0,th
liq = Tliq (R = R0) = Tsat. (G.18)

Moreover, one has

∇Tliq(R) = a (2R−R0 − 2R1 +R0)∇R (G.19)

= 2a (R−R1) n, (G.20)

(the gradient of the bubble radius being equal to the interface normal vector), which, for R = R0,
yields

∇Tliq (R0) = 2a (R0 −R1) n. (G.21)

As a result, the theoretical extrapolated values at order 1, TG1,th
liq , are given by

TG1,th
liq (R) = Tsat + (R−R0) n · ∇Tliq (R0) (G.22)

= Tsat + 2a (R−R0) (R0 −R1) , (G.23)

where one can notice that R−R0 = φ (p). Since Eq. (G.17) defines Tliq as a second-order polynomial

function of R, the theoretical extrapolated values at order 2, TG2,th
liq , are simply given by

TG2,th
liq (R) = Tliq(R). (G.24)

Figure G.1 shows the computed and theoretical extrapolated liquid temperature values for the
three extrapolation orders 0, 1 and 2. In the subfigures of the right column, one can see that the
extrapolated liquid temperature values, shown in red, do not fit well the theoretical extrapolated
values in all tested configurations. For instance, while on the right part of Fig. G.1(d), the first-
order extrapolated values are quite accurate, on the left part of Fig. G.1(f), the second-order
extrapolated values do not match the theoretical ones. The method has been tested with different
grid cell sizes and no accuracy improvement has been observed.
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(a) (b)

(c) (d)
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(e) (f)

Fig. G.1 – Extrapolation across the interface of the liquid temperature field along the interface
normal vector direction using the method proposed in [4]. Subfigs. (a) and (b) show the constant
extrapolation (order 0), Subfigs. (c) and (d) show the linear extrapolation (order 1) and Subfigs.
(e) and (f) show the quadratic extrapolation (order 2) of the liquid temperature field in the vapor
part of the narrow band around the interface. In the left column, the white circle is the liquid-vapor
interface, and the white horizontal line is used to extract liquid temperature values and plot it in
the corresponding subfigure of the right column.



Appendix H

Three-dimensional bubble growth: a test
case

Abstract

In this appendix, we use the notations adopted in Scriven [75]. The derivations are given in
spherical coordinates where the spherical symmetry of the liquid temperature field T is used to
cancel components of the differential operators relative to the two angular spatial coordinates.

Outline
H.1 In three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
H.2 In two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

H.1 In three dimensions

For simplicity, the liquid temperature will be denoted T where the liq subscript is omitted.
Following the notations of [75], θ will denote the temporal coordinate, r the radial spatial coordinate,
and R the bubble radius at time θ. The reference frame origin is assumed to be located at the bubble
center.

H.1.1 Some definitions

We first introduce some dimensionless numbers for use in the next sections. Consider

ε = 1− ρvap

ρliq
(H.1)

= −ρvap

[
1

ρ

]
Γ

, (H.2)
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ν =
cp,liq − cp,vap

cp,liq
, (H.3)

τ =
T∞ − Tsat

T∞
, (H.4)

ξ =
ρvapL

ρliqcp,liqT∞
, (H.5)

where L is the mass-averaged latent heat (expressed in J kg−1), and

ω = 1− ε (H.6)

=
ρvap

ρliq
. (H.7)

H.1.2 Derivation of the heat equation written in Scriven’s formalism

The heat equation written in spherical coordinates is given by

∂T

∂θ
= K

(
∂T

∂r2
+

2

r

∂T

∂r

)
− u · ∂T

∂r
er, (H.8)

where K is the liquid thermal diffusivity and u is a velocity vector to be determined. A first
hypothesis on u can be assumed : since, as the bulk velocity is zero, u is only due to phase change,
u is also spherically symmetric, i.e. u = uer. Then, Eq. (H.8) is rewritten

∂T

∂θ
= K

(
∂T

∂r2
+

2

r

∂T

∂r

)
− u∂T

∂r
. (H.9)

The divergence of u is given by

∇ · u =
1

r2

∂
(
r2u
)

∂r
. (H.10)

As a consequence, the incompressible hypothesis (∇ · u = 0) implies

u(r, θ) =
C(θ)

r2
, (H.11)

where C(θ) is a constant w.r.t. r. Then, for r = R(θ), one has

u (R(θ), θ) =
C(θ)

R2(θ)
. (H.12)

Moreover, since the vapor velocity is zero everywhere, the liquid velocity at the interface is equal
to the velocity jump, i.e.

u (R(θ), θ) = [u]Γ (θ) (H.13)

= ṁ(θ)

[
1

ρ

]
Γ

. (H.14)
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Equations (H.12) and (H.14) lead to

C(θ) = ṁ(θ)

[
1

ρ

]
Γ

R2(θ) (H.15)

= −ṁ(θ)

ρvap
εR2(θ). (H.16)

The first term in the rhs of Eq. (H.16), −ṁ(θ)/ρvap, is the interface velocity due to phase change.

This term can also be seen as the temporal variation of the bubble radius, Ṙ(θ), i.e.

Ṙ(θ) = −ṁ(θ)

ρvap
, (H.17)

leading to
C(θ) = εR2(θ)Ṙ(θ). (H.18)

The norm of the velocity is then given by

u(r, θ) =
εR2(θ)Ṙ(θ)

r2
, (H.19)

and Eq. (H.9) is rewritten

∂T

∂θ
= K

(
∂T

∂r2
+

2

r

∂T

∂r

)
− εR2Ṙ

r2

∂T

∂r
, (H.20)

where the dependence of R to θ is omitted, which is the heat equation as expressed in [75].

H.1.3 Derivation of the temperature analytical expression

We now establish the solution of Eq. (H.20). The boundary conditions are the temperature
value at the interface, T (R, θ), and the temperature value infinitely far from the interface, T (∞, θ).
We define

T (R, θ) = Tsat, (H.21)

and
T (∞, θ) = T∞, (H.22)

where T∞ is to be determined. The initial condition is given by

T (r, 0) = T0, (H.23)

where T0 is a uniform value. As stated in [75], since heat generation is not considered in Eq. (H.20),
one has

T0 = T∞, (H.24)

hence
T (r, 0) = T∞. (H.25)

Let t be the reduced temperature defined by

t(r, θ) =
T (r, θ)− T∞

T∞
. (H.26)
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Equivalently, one has

T (r, θ) = T∞t(r, θ) + T∞. (H.27)

The reduced boundary conditions are given by

t(R, θ) =
T (R, θ)− T∞

T∞

=
Tsat − T∞

T∞
= −τ (H.28)

and

t(∞, θ) =
T (∞, θ)− T∞

T∞

=
T∞ − T∞

T∞
= 0, (H.29)

and the reduced initial condition, by

t(r, 0) =
T (r, 0)− T∞

T∞

=
T∞ − T∞

T∞
= 0. (H.30)

Equation (H.20) applied to the rhs of Eq. (H.27) reads

T∞
∂t

∂θ
(r, θ) = K

(
T∞

∂2t

∂r2
(r, θ) +

2

r
T∞

∂t

∂r
(r, θ)

)
− εR2Ṙ

r2
T∞

∂t

∂r
(r, θ). (H.31)

Simplifying Eq. (H.31) by Tsat leads to

ṫ(r, θ) = K

(
trr(r, θ) +

2

r
tr(r, θ)

)
− εR2Ṙ

r2
tr(r, θ), (H.32)

where the temporal derivatives are noted with a dot and spatial derivatives are noted with an
indice representing the direction of differentiation. Equation (H.32) is the heat equation written in
spherical coordinates for the reduced temperature t.

Under the assumptions listed in Section G of [75] and using Eqs. (H.21) and (H.25), the energy
balance written for the open system represented by the bubble reads

ρvapṘ
{
L+ cp,vap [Tsat − T∞]

}
= ρliqcp,liq [Tsat − T∞] (1− ε) Ṙ+ k

(
∂T

∂r

)
r=R

, (H.33)
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where k = ρliqcp,liqK is the liquid thermal conductivity. Isolating the thermal conduction flux at
the interface in Eq. (H.33) leads to

k

(
∂T

∂r

)
r=R

= Ṙ
({
L+ cp,vap [Tsat − T∞]

}
ρvap − ρliqcp,liq [Tsat − T∞] (1− ε)

)
(H.34)

= Ṙ
(
Lρvap + (ρvapcp,vap − ρliqcp,liq (1− ε)) [Tsat − T∞]

)
(H.35)

= Ṙ
(
Lρvap + (ρvapcp,vap − ρliqcp,liqω) [Tsat − T∞]

)
(H.36)

= Ṙ (ξρliqcp,liqT∞ + (ρvapcp,vap − cp,liqρvap) [Tsat − T∞]) (H.37)

= Ṙ

ξρliqcp,liqT∞ + ρvap (cp,vap − cp,liq)︸ ︷︷ ︸
=−ωνρliqcp,liq

[Tsat − T∞]︸ ︷︷ ︸
=−T∞τ

 (H.38)

= Ṙ (ξρliqcp,liqT∞ + ωντρliqcp,liqT∞) . (H.39)

Using Eq. (H.27), the analogous of Eq. (H.39) for the reduced temperature is given by(
∂t

∂r

)
r=R

= k−1Ṙ (ξρliqcp,liq + ωντρliqcp,liq) , (H.40)

which, simplifying by ρliqcp,liq can also be written

tr(R, θ) = K−1Ṙ (ξ + ωντ) . (H.41)

Our goal is the derivation of a self-similar solution of Eq. (H.20). Let s be the reduced spatial
variable defined by

s =
r

2
√
Kθ

, (H.42)

where
√
Kθ is the thermal diffusion length of the liquid. Let β be the dimensionless positive real

number defined as

r = R(θ) =⇒ s = β, (H.43)

yielding the expression of the bubble radius at time θ,

R(θ) = 2β
√
Kθ, (H.44)

and its temporal derivative,

Ṙ(θ) =
β
√
K√
θ
. (H.45)

The spatial differentiation operator ∂/∂r can then be expressed by

∂

∂r
≡ ∂s

∂r

∂

∂s

≡ 1

2
√
Kθ

∂

∂s
, (H.46)
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and the temporal differentiation operator ∂/∂θ, by

∂

∂θ
≡ ∂s

∂θ

∂

∂s

≡ ∂

∂θ

(
r

2
√
Kθ

)
∂

∂s

≡ − r

4
√
Kθ3/2

∂

∂s
. (H.47)

Let t be the reduced temperature taking s as argument, i.e.

t(s) = t(r, θ). (H.48)

Then, the operators in the lhs of Eqs. (H.46) and (H.47) apply to t, and the operators in the rhs
of the same equations apply to t. Equations (H.46) and (H.48) lead to

tr(r, θ) =
1

2
√
Kθ

t(s), (H.49)

and

trr(r, θ) =
1

4Kθ
tss(s). (H.50)

Similarly, Eqs. (H.47) and (H.48) lead to

ṫ(r, θ) = − r

4
√
Kθ3/2

ts(s). (H.51)

Equation (H.32) is then rewritten

− r

4
√
Kθ3/2

ts(s) = K

(
1

4Kθ
tss(s) + 2r−1 1

2
√
Kθ

ts(s)

)
− r−2R2Ṙ

1

2
√
Kθ

ts(s)ε, (H.52)

which, isolating tss(s), is equivalent to

tss(s) = 2ts(s)
(
−s− s−1 + s−2β3ε

)
. (H.53)

Dividing Eq. (H.53) by ts(s) and integrating both lhs and rhs yields

ts(s) = As−2 exp
(
−s2 − 2s−1β3ε

)
, (H.54)

where A is the constant of integration to be determined. Integrating Eq. (H.54) yields

t(s) =

ˆ s

0

Ax−2 exp
(
−x2 − 2x−1β3ε

)
dx. (H.55)

Using Eq. (H.29), one has t(∞) = 0. Consequently, Eq. (H.55) can be rewritten

t(s) =

ˆ +∞

0

Ax−2 exp
(
−x2 − 2x−1β3ε

)
dx−

ˆ +∞

s

Ax−2 exp
(
−x2 − 2x−1β3ε

)
dx (H.56)

= t(∞)−A
ˆ +∞

s

x−2 exp
(
−x2 − 2x−1β3ε

)
dx (H.57)

= −A
ˆ +∞

s

x−2 exp
(
−x2 − 2x−1β3ε

)
dx. (H.58)
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In order to find the value of A, Eq. (H.46) is used to rewrite Eq. (H.41) as

1

2
√
Kθ

ts(s = β) = K−1Ṙ (ξ + ωντ) , (H.59)

which, substituting ts(s) in the lhs by its expression in the rhs of Eq. (H.54), gives

1

2
√
Kθ

As−2 exp
(
−s2 − 2s−1β3ε

)
= K−1Ṙ (ξ + ωντ) . (H.60)

Isolating A in Eq. (H.60) yields

A = 2β3 (ξ + ωντ) exp
(
β2 + 2εβ2

)
, (H.61)

which, substituting in Eq. (H.58), leads to

t(s) = − (ξ + ωντ) 2β3 exp
(
β2 + 2εβ2

) ˆ +∞

s

x−2 exp
(
−x2 − 2εβ3x−1

)
dx, (H.62)

which is the formulation of the analytical solution of Eq. (H.20) as expressed in [75]. The last step
is the determination of the value of β. We recall that t(R, θ) = t(β). Using Eq. (H.28), one has

t(β) = −τ. (H.63)

Moreover, for s = β, Eq. (H.62) yields the self-similar solution of Eq. (H.20) given by

t(β) = − (ξ + ωντ) 2β3 exp
(
β2 + 2εβ2

) ˆ +∞

β

x−2 exp
(
−x2 − 2εβ3x−1

)
dx. (H.64)

Equations (H.63) and (H.64) lead to the implicit equation for β given by

τ

ξ + ωντ
= 2β3 exp

(
β2 + 2εβ2

)ˆ +∞

β

x−2 exp
(
−x2 − 2εβ3x−1

)
dx. (H.65)

Equations (H.62) and (H.65) are written with the notations from [75]. In [85], these equations are
expressed by means of the Jakob number Ja given by

Ja =
ρliqcp,liq (T∞ − Tsat)

ρvapLv
. (H.66)

One can obtain en equivalent formula for Ja using the notations of [75], i.e.

Ja =
τ

ξ + ωντ
(H.67)

=
ρliqcp,liq (T∞ − Tsat)

ρvap

(
L+ (cp,liq − cp,vap) (T∞ − Tsat)

) . (H.68)

Equations (H.66) and (H.68) lead to

Lv = L+ (cp,liq − cp,vap) (T∞ − Tsat) . (H.69)
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Using the expression of the Jakob number given in Eq. (H.67), Eq. (H.62) can be divided by −τ ,
yielding

− 1

τ
t(s) =

2β3

Ja
exp

(
β2 + 2εβ2

) ˆ +∞

s

x−2 exp
(
−x2 − 2εβ3x−1

)
dx. (H.70)

Finally, let T be the temperature taking the reduced variable s as argument, i.e. T (s) = T (r, θ),
yielding

t(s) =
T (s)− T∞

T∞
. (H.71)

Using Eqs. (H.4) and (H.71), Eq. (H.70) is rewritten

T (s)− T∞
Tsat − T∞

=
2β3

Ja
exp

(
β2 + 2εβ2

) ˆ +∞

s

x−2 exp
(
−x2 − 2εβ3x−1

)
dx, (H.72)

which is the formulation of the analytical solution of Eq. (H.20) as expressed in [85]. In [85], Eq.
(H.67) is used to rewrite the implicit equation for β, Eq. (H.65), as

Ja = 2β3 exp
(
β2 + 2εβ2

)ˆ +∞

β

x−2 exp
(
−x2 − 2εβ3x−1

)
dx. (H.73)

Equations (H.72) and (H.73) are the formulations used in our simulations to compute the theoretical
liquid temperature at nodes of radius r and at time θ.

H.1.4 Computation of the theoretical temperature profile

The liquid temperature field Tliq is initialized in the liquid phase with the analytical expression
given in Eq. (H.72). In order to compute this analytical expression, one first needs to specify ρliq,
cp,liq, ρvap, Lv and Tsat. Then, by specifying the Jakob number Ja, the temperature at infinity T∞
is computed using Eq. (H.66) as

T∞ = Tsat +
ρvapLv
ρliqcp,liq

Ja. (H.74)

Using Eq. (H.1), one then computes the value of the growth rate β by solving the implicit equation
(H.73) where β is the only unknown. In our simulations, we used the bisection method to solve Eq.
(H.73). An initial interval

[
β0

0 , β
0
1

]
of β values is chosen. The rhs of Eq. (H.73) is computed for

both β0
0 and β0

1 , leading to Ja0
0 and Ja0

1. If the order relation

Ja0
0 ≤ Ja ≤ Ja0

1 (H.75)

holds, then, for β0
1/2 =

(
β0

0 + β0
1

)
/2, if Ja0

1/2 < Ja, then we set β1
0 = β0

1/2 and β1
1 = β0

1 , other-

wise, we set β1
0 = β0

0 and β1
1 = β0

1/2. The method is iterated N times until
∣∣JaN0 − Ja∣∣ < α or∣∣JaN1 − Ja∣∣ < α where α is the accepted tolerance. The retained value for β is either βN0 or βN1 ,

depending on which one among JaN0 and JaN1 is the closest to Ja. Since the rhs of Eq. (H.73)
involves a term of the form exp

(
β2
)
, the initial upper limit β0

1 must be chosen small enough in
order to avoid numerical errors due to the limited size of the numbers storable on a given machine.
We set β0

0 to 10−15, β0
1 to 15 and α to 10−8. Once β is known, Eq. (H.72) can be solved. Both

Eqs. (H.72) and (H.73) involve the improper integral of a fast decreasing function. This integral is
computed using the midpoint rule within which the integration is performed until x = 20.
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H.2 In two dimensions

In order to speed up computations, we derived an analogous expression of the solution given in
Eq. (H.72) in two dimensions. To the best of our knowledge, such two-dimensional derivation does
not exist in the literature.

Under the notations used in the previous section, the heat equation written for the reduced
temperature t in polar coordinates reads

ṫ(r, θ) = K
(
trr(r, θ) + r−1tr(r, θ)

)
− εRṘ

r
tr(r, θ), (H.76)

with boundary conditions
t(R, θ) = −τ (H.77)

and
t(∞, θ) = 0, (H.78)

and initial condition
t(r, 0) = 0. (H.79)

Equations (H.46) and (H.47) are still valid in two dimensions. Thus, Eq. (H.32) is rewritten

− r

4
√
Kθ3/2

ts(s) = K

(
1

4Kθ
tss(s) + r−1 1

2
√
Kθ

ts(s)

)
− r−1RṘ

1

2
√
Kθ

ts(s)ε, (H.80)

which, isolating tss(s), is equivalent to

tss(s) = 2ts(s)

(
−s− 1

2
s−1 + s−1β2ε

)
. (H.81)

Dividing Eq. (H.81) by ts(s) and integrating both lhs and rhs yields

ts(s) = As−1 exp
(
−s2 + 2β2ε ln s

)
, (H.82)

Integrating Eq. (H.82) gives

t(s) = A

ˆ s

0

x−1 exp
(
−x2 + 2β2ε lnx

)
dx. (H.83)

Similarly to Eqs. (H.56)-(H.58), where we used t(∞) = 0, Eq. (H.83) can be rewritten

t(s) = −A
ˆ +∞

s

x−1 exp
(
−x2 + 2β2ε lnx

)
dx

= −A
ˆ +∞

s

x2β2ε−1 exp
(
−x2

)
dx. (H.84)

Let p ∈ R and x ∈ R+. The primitive of xp exp
(
−x2

)
is given by

ˆ
xp exp

(
−x2

)
= −1

2
Γ

(
p+ 1

2
, x2

)
+ C, (H.85)
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where C is a constant and Γ is the incomplete gamma function defined by

Γ(a, s) =

ˆ +∞

s

xa−1 exp (−x) dx. (H.86)

In order to facilitate the calculations, we restrain the derivation to the class of solutions for which
p = 2β2ε− 1 = 1 in Eq. (H.84), i.e.

β2ε = 1. (H.87)

Equation (H.85) written for p = 1 yields

ˆ
x exp

(
−x2

)
= −

exp
(
−x2

)
2

+ C. (H.88)

Consequently, Eq. (H.84) is rewritten

t(s) = −A
2

exp
(
−s2

)
. (H.89)

The value of A is derived from Eq. (H.77), stating that t(β) = −τ . As a result, Eq. (H.89) is
rewritten

− τ = −A
2

exp
(
−s2

)
, (H.90)

yielding
A = 2τ exp

(
β2
)
. (H.91)

Finally, Eq. (H.89) reads
t(s) = −τ exp

(
β2 − s2

)
. (H.92)

Using Eqs. (H.4) and (H.71), Eq. (H.92) is rewritten

T (s)− T∞
Tsat − T∞

= exp
(
β2 − s2

)
, (H.93)

where, as opposed to the three-dimensional case, no implicit equation similar to Eq. (H.73) has to
be solved to find β, which is indeed directly given by Eq. (H.87). Moreover, in Eq. (H.93), T∞ is
given by Eq. (H.66) for a fixed Jakob number.
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de Mach. PhD thesis, Institut National des Sciences Appliquées de Rouen, 2013.

[50] M. Malandain, N. Maheu, and V. Moureau. Optimization of the deflated conjugate gradient
algorithm for the solving of elliptic equations on massively parallel machines. J. Comput.
Phys., 238:32 – 47, 2013.

[51] E. Marchandise, P. Geuzaine, N. Chevaugeon, and J.-F. Remacle. A stabilized finite element
method using a discontinuous level set approach for the computation of bubble dynamics. J.
Comput. Phys., 225(1):949–974, 2007.

[52] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel cfd code for complex
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Résumé

Cette thèse a pour  objectif  la simulation numérique du phénomène d'ébullition sur
maillages  non  structurés.  L'ébullition  est  le  changement  de  phase  des  particules
fluides de la phase liquide vers la phase vapeur sous l'action des flux thermiques à
l'interface séparant les deux phases. Il s'agit donc d'un phénomène rencontré au sein
d'écoulements diphasiques et piloté par le taux de transfert de masse à l'interface. Ce
taux de transfert de masse est calculé à partir des flux thermiques de part et d'autre
de  l'interface.  Cela  implique  donc  la  nécessité  d'adopter  une  méthode  de  suivi
d'interface très précise pour localiser l'interface à tout instant de la simulation. Les
équations  de  Navier-Stokes  sont  alors  couplées  à  l'équation  de  la  chaleur  par
l'intermédiaire du taux de transfert de masse à l'interface. De telles simulations ont été
menées  par  Tanguy  et  al.  (J.  Comput.  Phys.,  2014)  sur  des  maillages  cartésiens
axisymétriques  en  deux  dimensions.  Dans  cette  thèse,  nous  étendons  cette
méthodologie  à  des  maillages  non  structurés  en  trois  dimensions  (maillages
composés de tétraèdres non réguliers utiles pour décrire des géométries complexes).
Pour ce faire,  nous avons développé un solveur  spécifique dans le  code YALES2
(code diphasique basé sur la méthode des volumes finis pour des maillages 3D non
structurés). Le suivi de l'interface est assuré par la méthode Level Set. Le changement
de  phase  engendre  des  discontinuités  de  vitesse  et  de  pression  à  l'interface  qui
dépendent notamment du taux de transfert de masse. Ces discontinuités sont prises
en compte par la méthode Ghost Fluid à l'aide de deux champs de vitesse et deux
champs  de  température.  Cette  méthodologie  étant  déjà  bien  établie  pour  des
maillages structurés cartésiens, l'apport de cette thèse réside dans la possibilité de
simuler le changement de phase par ébullition sur des maillages non structurés en
trois  dimensions.  Les  spécificités  des  maillages  non  structurés  ont  nécessité  de
nombreux  développements  pour  la  réinitialisation  de  la  fonction  Level  Set  après
advection, ainsi que l'utilisation d'opérateurs d'ordres élevés pour le calcul du taux de
transfert  de  masse  à  l'interface.  L'ensemble  des  développements  proposés  est
finalement validé sur maillages non structurés à l'aide du cas-test analytique d'une
bulle 3D en expansion dans un liquide surchauffé au repos.

Mots-clés : écoulements diphasiques, ébullition, calcul haute performance, maillages
non structurés

Abstract

The objective of this thesis is the numerical simulation of the boiling phenomenon on
unstructured grids. Boiling is the phase change of fluid particles from the liquid phase
to the vapor phase under the action of thermal fluxes at the interface separating the
two phases. Boiling is thus encountered in two-phase flows and driven by the mass
transfer rate at the interface. This mass transfer rate is computed from the thermal
fluxes  on  both  sides  of  the  interface.  Consequently,  a  highly  accurate  numerical
method is needed to locate the interface throughout the simulation. The Navier-Stokes
equations are then coupled to the heat equation by means of the mass transfer rate at
the interface. Such simulations have been performed by Tanguy et al.  (J.  Comput.
Phys.,  2014)  on  two-dimensional  axisymmetric  cartesian  grids.  In  this  thesis,  we
extend  this  methodology  to  three-dimensional  unstructured  grids  (composed  of
irregular  tetrahedra,  useful  to describe complex geometries).  We then developed a
specific solver in the YALES2 code (finite-volume-based code for simulations of two-
phase flows on 3D unstructured grids). The interface motion is captured by the Level
Set  method.  Phase  change  implies  velocity  and  pressure  discontinuities  at  the
interface which especially depend on the mass transfer rate. These discontinuities are
taken  into  account  by  the  Ghost  Fluid  Method,  with  two  velocity  fields  and  two
temperature  fields.  This  methodology  being  already  well  established  for  structured
cartesian grids, the contribution of this thesis relies on the ability to simulate phase
change  by  boiling  on  three-dimensional  unstructured  grids.  The  particularities  of
unstructured grids have demanded numerous developments for the reinitialization of
the Level Set function after advection, as well as the use of high-order operators for
the computation of the mass transfer rate at the interface. The proposed developments
are finally  validated on unstructured  grids  against  the analytical  test-case of  a 3D
bubble expanding inside a superheated quiescent liquid.

Keywords : two-phase flows, boiling, high-performance computing, unstructured grids
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