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Vers la modélisation de clusters de centres de données verts

Résumé: La consommation énergétique des clusters de centres de données augmente rapi-
dement, ce qui en fait les consommateurs d’électricité à la croissance la plus rapide au monde.
Les sources d’électricité renouvelables et en particulier l’énergie solaire en tant qu’énergie
propre et abondante peuvent être utilisées pour couvrir leurs besoins en électricité et les ren-
dre «verts», c’est-à-dire alimentés par le photovoltaïque. Ce potentiel peut être exploré en
prévoyant l’irradiance solaire et en évaluant la capacité fournie pour les clusters de centres de
données. Dans cette thèse, nous développons des modèles stochastiques pour l’énergie solaire;
un à la surface de la Terre et un second qui modélise le courant de sortie photovoltaïque.
Nous d’abord validons nos modèles par des données réels, puis nous proposons une étude
comparative avec d’autres systèmes, notamment les modèles dits on-off. Nous concluons que
notre modèle d’irradiance solaire peut capturer les corrélations multi-échelles de façon plus
optimale, et il se montre particulièrement convénient dans le cas d’une production à petite
échelle. De plus, nous proposons une nouvelle analyse de cycle de vie pour un système de
cluster réel, ainsi qu’un modèle de cluster prenant en charge la soumission de travaux par
lots et prenant en compte le comportement client impatient et persistant. Enfin, pour com-
prendre les caractéristiques essentielles du cluster d’ordinateurs, nous analysons deux cas:
le complexe Google publié et le Nef cluster de l’Inria. Nous avons également implémenté
marmoteCore-Q, un outil de simulation d’une famille de modèles de file d’attente, basé sur
nos modèles.
Mots clé: L’énergie renouvelable, l’énergie solaire, le processus semi-markovien, la

théorie des files d’attente, informatique en nuage, le cluster de centres de données, la

caractérisation de la charge de travail, le cluster de Google, le cluster de Nef



On Modeling Green Data Center Clusters

Abstract: Data center clusters’ energy consumption is rapidly increasing making them
the fastest-growing consumers of electricity worldwide - expecting 13% of the total electricity
world-wise in 2030. Renewable electricity sources and especially solar energy as a clean energy
and abundant in many locations, can be used to cover their electricity needs and make them
"green". In this thesis we develop stochastic models for solar energy; one at the surface of
the Earth and a second one which models the photovoltaic output current. We then compare
them with the state of the art on-off model and validate them with real data. Conclude
the solar irradiance model can captures better the multiscales correlations and is suitable for
small scale cases like ITC applications. We first propose a new job life-cycle of complex and
real cluster system and then a multi-server model for data center clusters that supports batch
job submissions and takes into account both impatient and insistent customers’ behavior. To
understand the essential computer cluster characteristics, we analyze in details two different
workload type traces; the first one is the published complex Google trace and the second one
which is simpler and serves scientific purposes, is from the Nef cluster located at the research
center Inria Sophia Antipolis. To simulate our model and evaluate the data center clusters’
performance, we first extract subtraces relative to a subset of the machines and use these for
validation and comparison purposes. We then implement the marmoteCore-Q, a tool for the
simulation of a family of queueing models based on our multi-server model for data center
clusters with abandonments and resubmissions.
Keywords: Renewable energy, solar power, semi-Markov process, queueing theory,

cloud computing, data center cluster, workload characterization, Google cluster, Nef

cluster
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Chapter 1

Introduction

A data center cluster or simply a data center can be defined as a room of a building, or a
whole building or a group of buildings, which houses a large group of networked computers
called "servers". Data center clusters are set up and used by organizations and their clients
(e.g., Google, Facebook, etc.) for the remote storage, processing, or distribution of large
amounts of data. Some of them consume a lot of electricity power equivalent to that of a
small city. Renewable electricity sources can been used to cover their electricity needs and
reduce environmental footprint. In this thesis, we call this setup a green data center cluster.
The analysis and modeling of green data center clusters is an interdisciplinary academic field
at the intersection of physics, mathematics and computer science.

The idea of data centers has its roots in the Electronic Numerical Integrator and Computer
(ENIAC), a huge computer room, established in 1945 in Philadelphia, Pennsylvania, U.S
for military purposes. In 1960, data centers were mainframe computers that would fill up
an entire room. They were costly and businesses rent space on the mainframe to perform
certain functions. By the 1980s, the microcomputer industry was booming, and more and
more companies established computers in the office. In the 1990s, the dot-com bubble leads
to the boom of data center constructions. Suddenly, every organization needed fast Internet
and Web servers. Small companies could not afford to set up such equipment, but managed
cloud computing companies like Rackspace 1 started to build co-location facilities, housing
thousands of servers and built up data centers. Data center power consumption became one
of the main concerns of the community.

Due to the fast development of the data center clusters in the 21st century, the increase in
data center cluster power consumption is inevitable. Data centers are growing continuously in
size, complexity and energy density due to the storage demands, networking and computation.
This has led to a worldwide energy problem. In [S.V. Garimella 2013], it is mentioned that
data center clusters use 1.5% of the total electricity world-wise in 2010 and in [Andrae 2015],
it is expected that they will take up 3-13% of global electricity in 2030. One of the reasons
of this increase is the rapid annual growth rate to around 25% for global data center cluster
usage. Even though, the electricity usage is unlikely to be reduced, an effective solution to
that can be found in the renewable energy sources [Íñigo Goiri 2015, Oró 2015]. Solar energy
is a promising clean energy technology which is abundant in many locations. Another reason
that solar energy is preferable to feed data center cluster, is the low cost; the lifetime of a
photovoltaic panel can surpass the 25 year and solar costs continue to decrease rapidly year
after year and tend to be cheaper than brown energy. Brown energy prices are higher during
the day, which is the on-peak period for data center clusters and during the night, the off-peak
period. On the other hand, the amount of solar energy is higher during the day and non-
existent during the night. Thus, the sun can cover the data center cluster electricity needs

1https://www.rackspace.com/
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by feeding their solar panels during this time when the energy provided is at its maximum.
During the past decades, the demand for resources and capacity of data centers due to

the dynamic nature of modern business have exploded. Companies now have to support a
continuously increased amount of data, since more and more people use data centers’ services.
One of the major concerns of the modern companies is the reliable access to their data, thus
data centers cannot take the risk of interruptions or running out of capacity. To understand
and optimize the running cost of data centers and the ability to cover their actual and future
needs, accurate capacity planning is vital. It implies that models for data center workload
prediction are required and thus, a detailed analysis of workload characterization is necessary.
For this reason, Google publishes a 29-day dataset seven years ago which has attracted the
researchers’ interest. We can conclude that predicting data center workload does not only
facilitate data center computing companies but also creates a valuable source of information
for researchers and business.

1.1 Why Study Solar Power?

With the increase in population and the boom of technology, the electricity needs are expected
to grow rapidly year by year. Hence, it is hard to deny that renewable energy sources, among
them solar power, are playing an important role in ecosystem and consequently in lives of
people. According to the National Renewable Energy Laboratory 2, sunlight received by
earth in one hour is enough to cover the energy needs per year of all people around the world.
In the following, we outline the reasons why we believe solar power should be studied.

Diverse Applications. Solar energy can create photovoltaic power (PV) or concentrated
solar power (CSP) for solar heating and can be used for diverse purposes. The most
common are solar transportation, solar tech such as data centers; one of the most
electricity high consumer in the world, solar heating. Moreover, solar power can be
used for electricity production in the regions that access to the energy grid is limited,
to distill water in areas with limited clean water supplies and even to power satellites
in space.

Ecological Benefits. Solar can replace current fossil fuels like oil, coal and natural gas.
According to the World Wide Fund For Nature 3, the electricity, which is generated by
fossil fuels, causes harmful gas emissions that affect the air, water and soil pollution.
Therefore, the global temperature is rising and climate weather patterns are changing.
On the other hand, solar energy is environmentally friendly. Sun is an unlimited source
of energy that prevents destruction of habitats, landscape damages and avoids harming
the ozone layer. Solar energy is a clean and safe energy source, which is a future
investment of our planet and protects the environment for the next generations.

Economic Benefits. Based on Renewable Power Generation Costs in 2017 report of Inter-
national Renewable Energy Agency (IRENA) 4, the cost of renewable energy sources is
decreasing that it will be less than that one of the traditional fossil fuels by 2020. Since

2https://www.nrel.gov/
3https://www.worldwildlife.org/
4https://www.irena.org/
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2010, the cost of solar photovoltaic (PV) electricity has fallen by 73%. Specifically, the
cost of solar PV is down to $0.10 per KwH, whereas the cost of electricity generated by
fossil fuels is on average $0.11 per KwH. Moreover, panels require almost no mainte-
nance and most reliable solar panel manufacturers offer 20-25 years warranty. The fact
that solar energy provides affordable electricity prices across the countries can increase
the market competition.

Social Benefits. Solar power can improve public health. The use of fossil fuels for energy,
can lead to breathing problems, neurological damage, cancer, heart attacks, premature
death, and other serious healthy problems. However, solar system are environmentally
friendly as already mentioned and the above negative health impact can be avoided.
Furthermore, thank to the development of solar energy, thousands of jobs have been
created not only in solar industry but also in research domains, since many funding for
innovations are devoted to the solar power.

1.2 Challenges and Contributions

In this section, we describe the main steps towards modeling real data center clusters fed by
solar energy (or green data center clusters), the challenges we faced, and the contributions we
made. Our analysis consists of four main parts. (i) we want to understand how to model the
solar power in order to predict the electricity amount at a small time scale, (ii) we propose a
multi-server queuing model for real data center clusters (iii) we characterize the workload of
two different data center clusters to extract our model’s parameter (iv) we develop a queueing
tool to simulate our complex queuing model.

1.2.1 Solar Power

To model solar power, we first need to understand how the sunlight reaches the surface of
Earth and which are the factors that can influence the percentage that can be absorbed or
be lost on the way. Actually, it is obvious that there are some astrological explanations and
weather effects that are responsible for that. For example, not all the regions all over the
world receive the same amount of solar radiation the same period of the year. Another issue
that should be addressed is the equipment that is necessary to convert solar energy to current.
We faced the following challenges during this study.

1.2.1.1 Challenges

Solar pattern. Solar radiation corresponds to a non-periodic pattern. It varies during the
day and from day to day. Radiation is zero during the night and mostly maximum around
noon. It also increases from sunrise to noon and decreases from noon to sunset. However,
solar radiation is not only irregular during the day but also during the seasons and during
the years.

Solar variations. For the same geographical location, the solar radiation variations
due to climate and seasons are expected. These variations can be observed from year to year
because of the changes of climatic conditions. There are also variations from one season to
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another season because the climate factors such as clouds, humidity, etc are changed. For
instance, as we expect at the same place, in the winter there are in general more clouds than
in the summer, consequently more solar radiation to the ground. Even though, there are
sunny days during winter and cloudy days during summer.

System model. The choice of the system model to generate power by a PV panel,
needs interdisciplinary knowledge. Questions like which astronomical model should be
chosen to take the effective solar radiation, which photovoltaic panel module should be an-
swered. In brief, the general idea is to collect solar radiation data and apply an astronomical
model to take the effective solar radiation that hits the photovoltaic panels. We then convert
the effective solar radiation to electrical power and we finally use a DC/DC power processor
to maximize it. In this thesis, we focus on the current at the output of power processor.
Details on how this current is computed, can be found in Section 2.2.3.

1.2.1.2 Contributions

We first develop a stochastic model for the solar irradiance which is defined as the product
of irradiance obtained in clear sky and the disturbance due to climatic conditions; these
two components are modeled separately. We then propose a stochastic on-off model for the
current that comes out of photovoltaic panels. We compare this model to the on-off power
source model developed by Miozzo et al. [Miozzo 2014]. In our on-off model, the output
current is frequently resampled instead of being a constant during the duration of the "on"
state as proposed in [Miozzo 2014].

We have collected and processed per-minute solar irradiance data from the National Re-
newable Energy Laboratory to validate and compare the proposed models, capturing small
time scales fluctuations. Next, we compare the autocorrelation functions for all proposed
models and the clear sky index model captures the multiscale correlations that are presented
in the solar irradiance. Finally, we test the power spectrum density of generated trajectories
of clear sky index model which is close to the measured one.

1.2.2 Modeling real data center clusters

Given the complexity of real data center clusters, it is necessary to understand their features;
how the customers arrive to the system, how the customers are served by the system, how
many servers are used; are there impatient customers or happy customers that can resubmit
their jobs after execution completion. During this analysis we faced the following challenges.

1.2.2.1 Challenges

Modeling problems. There are many challenges faced when modeling real data center
clusters. Jobs that arrive to the system, can consist of more than one task. Actually,
based on TORQUE [Staples 2006] and OAR [Capit 2005], the state of the art open-source
schedulers used in thousands clusters, jobs can be submitted in batches with specific
commands and also resubmitted (e.g, best effort jobs (see Section 4.2.2)). On the other
hand, the majority of queueing models in the literature [Wolff 1989, Harchol-Balter 2013]
assume for simplicity single customer arrival to the system. It implies that any job consists
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of one task. Another common feature in queueing theory, is the exponential assumptions
both in arrival and service process, which are unrealistic but necessary for mathematical
tractability. However, recent works dedicated to the diversity of different types of workload
characterization such as [Amvrosiadis 2018] show that the Poisson assumptions for the above
processes do not fit to the real data center clusters. Another important feature that we
should take into account for our model, is the impatient customers that abandon the system
before being served. Hence, to evaluate the real data center cluster performance metrics,
we should find another way to model these processes, considering all the above features as well.

Technical challenges. Another problem that appears when we try to simulate our
queueing model is the computation of the stationary distribution. Due to the complexity
of our model, the stationary distribution needs to be estimated numerically. Our model
represents a Markov chain, with the dimension of its state space depending on the number
of servers; this number can get very large in a real data center cluster. The service process
can described as a c-dimensional process, where c is the number of servers, checking if each
server is busy or not. Thus, this dimension of the state space is prohibitive, size-wise, for
any computer memory, rendering the stationary distribution of the system impossible to
calculate. In the case it can be calculated, however, we need a tool that produces correct
results in a fast manner.

1.2.2.2 Contributions

We first propose a new job/task life-cycle inside the data center cluster, which fits to the
features of today’s system schedulers [Capit 2005, Staples 2006]. We then develop a generic
multi-server queue model describing the evolution of the number of tasks in a data center
cluster. The arrival process is determined by a Batch Markovian Arrival Process (BMAP) and
the service time has a phase type (PH-type) distribution. Unhappy customers may abandon
the system and happy ones can be resubmitted to the system. As far as the problem of the
computation of the stationary distribution as mentioned above, is concerned, we decrease
the dimension of the state space of the service process, counting how many servers are in
particular phase of service time distribution each time (or at time t). Thus, as showed in
Section 3.3 we have found a way to decrease memory consumption. More details are presented
in Section 3.3.

1.2.3 Workload Characterization

To model real data center clusters, it is hard to deny that the workload characterization plays
a crucial role. Characterizing data center clusters workload is a very demanding task given
the data center cluster complexity, the different types of workload and the hard-to-predict
users’ needs and behaviour. We choose to analysis the Google and Nef traces; two different
workload types; the first one is the well-know complex Google trace which is available online 5

and the Nef one, collected from Inria Sophia-Antipolis Méditerrannée’s data center cluster, is
simpler and serves scientific purpose. During this analysis, we faced the following challenges.

5https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
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1.2.3.1 Challenges

Data collection. The Google data center cluster workload dataset is available online 6and
it was downloaded following the documentation instructions. As far as the Nef cluster
dataset is concerned, however, we encountered difficulties due to the General Data Protection
Regulation (GDPR) that was implemented in Europe on 25th May 2018. The Nef data
cluster serves both academic and scientific purposes and this is why the regulation on data
protection and privacy becomes more severe aiming at protecting the users’ individuality
and scientific copyrights. Approximately four months were required to obtain permission to
access these traces in a way that the Nef users’ privacy is guaranteed.

Data processing. Another challenge is to process the data of a big size; the size of
the compressed Google trace is approximately 41GB. The Google cluster data consists of
six tables recording machines’ attributes and events, jobs’ events, tasks’ events, usage and
constraints. The model for real data center clusters that we developed in Chapter 3, is at
the task level, therefore, most of our trace analysis is related to the task event table.

We downloaded the task event table for the 29-days period which is publicly available.
The uncompressed information of task event tables is approximately 15.5GB large and is split
in 500 different comma-separated values (csv) files. Each task event table line corresponds
to a single event (e.g submit, schedule, finish, fail, etc) and consists of 13 fields. Each field
contains information related to the event such as job index, task index, event type, etc. Each
transition of the life-cycle of a task (see Section 3.2) corresponds to one event/record. Jobs
arrive in the system in batches (by group). Approximately 25 % of the Google traces jobs
consist of more than one task. Therefore, the problem is that not all the transitions for each
job are included in the same csv file and this make more difficult the analysis of the trace.
Even for one task, the transitions sometimes are not appeared in the same file. Hence, parsing
all files for each job/task could take 1 or 2 days.

In order to process the data in detail and extract all the essential information for our
model, we need to find a fast and efficient way to analyze them. This step is not straight-
forward due to two facts. First, due to the size of the dataset, it is important to have a fast
access to the data. As mentioned before, not all the information for one job/task is included
in one csv file. Hence, parsing all files to extract these information seems to be inevitable
each time for a specific job/task, especially that we do not have any clue in which file the last
job/task record is. The possibility of job/task resubmissions makes things more complex.
For example, if a job/task has reached to the finished state of the life-cycle of a job/task,
we could have stopped to look into the following csv files. However as it turns out that tasks
are sometimes resubmitted, thus, we must continue to search for this particular job/task
until the last line of the last csv file. Here is when the second fact comes into play due to
the job/task resubmissions, it is important to keep copies in memory in order to avoid the
repeated parsing/reading of the files and gain time for our following analysis, however disk
memory is limited.

For this reason, at first, we merged the 500 csv files together, then sorted by job index
and finally proceeded to our trace analysis. We have tested multiple state of the art tools

6https://github.com/google/cluster-data
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including Matlab & Simulink, using vectorization 7 for taking exact results in a very fast way.
By vectorizing the Matlab code, we achieve a shorter code without loops and, as a result,
fewer programming errors with better performance. Another tool that we used, was the
numPy Python library which is more complex in terms of code than the Matlab vectorized
one and has overhead in terms of CPU utilization and in terms of memory consumption. In
both cases, it took enough time to launch initially the 15.5 GB file and some results were
suspicious.

1.2.3.2 Contributions

To understand the essential characteristics of a computing cluster for modelling purposes, we
look into the two aforementioned datasets. After a preliminary analysis and sanitizing of each
dataset, a numerical analysis is performed to characterize the different stochastic processes
taking place in the computing cluster. In particular, we characterize the impatience process,
the re-submission process, the arrival process (batch sizes and correlations) the waiting time
and the service time, considering the impact of the scheduling class and of the execution type.

As we saw in the previous section, the conventional attempts at improving the code
performance-wise fell through so, finally, we took the following steps in order to improve
the code. First of all, all of the event information for the same job (job index) was put in
the same file in the beginning of our data processing, using the Hadoop tool 8 and then we
analyzed the traces using bash comments. More details are presented in Section 4.2.

Given the size of the Google computing center, it is not possible to find the stationary
distribution of the queue parameterized for this center. To overcome the technical difficulties
faced, as mentioned in Section 1.2.3.1 when validating the queueing model against the Google
cluster data, we extract two subtraces relative to a subset of the machines and use these for
validation and comparison purposes.

1.2.4 marmoteCore-Q tool

There are few environments for simulating queueing models that can allow programming
a complex Markov model. The most popular mathematical modeling environment such as
Matlab, Mathematica, Maple, R, etc provide packages with special functions to model and
analyse queueing systems. We believe that there is the need of a tool, implemented in C/C++
such that to take the advantage of giving valid results in a short time, simulating even large-
scale complex queueing models without analytical results. This tool can also be used to
simulate simple queues with explicit closed-formulas. During this implementation, we faced
the following challenges.

1.2.4.1 Challenges

To validate complex queueing models with no analytical expressions, it is a non-trivial task.
Each queueing model can be represented by a Markov chain, which has an infinitesimal
generator Q matrix. Each entry of the matrix Q corresponds to one Markov chain state and
is represented by a vector. To find the vector given the position and to find the position

7https://fr.mathworks.com/help/matlab/matlab_prog/vectorization.html
8http://hadoop.apache.org/
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given a vector are two implementation challenges. Details on how these technical challenges
are overcome are presented in Section 5.1.3.

1.2.4.2 Contributions

Using the marmoteCore platform [Jean-Marie 2017], we have developed the marmoteCore-Q
tool for the simulation of a family of queueing models based on the general BMAP/PH/c

queue with impatience and resubmissions. There exist many special cases of this queue for
which analytical results are known. Examples are: the M/M/1 queue and its finite ca-
pacity version, the M/M/c/K queue, the M/PH/1 and M/PH/∞ queues, the MX/M/1

and MX/M/∞ queues. Such examples are used to validate the implementation of the
marmoteCore-Q tool. marmoteCore-Q provides to users an easy and efficient way to simulate
their own queueing models following the instructions which are explained in Chapter 5.

1.3 Thesis outline

This thesis has the following structure. In Chapter 2, we propose two stochastic models; the
first one focuses on solar radiance and the second model focuses on the electrical intensity ob-
tained at the output of a photovoltaic panel. In Chapter 3, we first describe a new life-cycle of
a task and then develop multi-server queueing model with abandonments and resubmissions
for data center clusters. The arrival process is modeled as a Batch Markovian Arrival Process
and the service time service time is determined by a Phase-Type-distribution. In Chapter
4, we present the detailed characterization of two different data center cluster workloads;
the first one is the 29-day Google data set available in the web and the second one is the
Nef cluster dataset from from the data center cluster of research center of French National
Institute for Computer Science and Automation (Inria) in Sophia Antipolis. We then extract
the model’s parameters from the traces to capture the queueing model features, which pre-
sented in Chapter 3. Chapter 5 proposes the marmoteCore-Q, a tool for simulating simple
and numerically complex queues. The implementation details and validation are presented.
Chapter 6 concludes the thesis and discusses the future work.
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In this chapter, we develop a stochastic model for the solar power at the surface of
the earth. We combine a deterministic model of the clear sky irradiance with a stochastic
model for the so-called clear sky index to obtain a stochastic model for the actual irradiance
hitting the surface of the earth. Our clear sky index model is a 4-state semi-Markov process
where state durations and clear sky index values in each state have phase-type distributions.
We use per-minute solar irradiance data to tune the model, hence we are able to capture
small time scales fluctuations. We compare our model with the on-off power source model
developed by Miozzo et al. [Miozzo 2014] for the power generated by photovoltaic panels,
and to a modified version that we propose. In our on-off model the output current is
frequently resampled instead of being a constant during the duration of the "on" state.
Computing the autocorrelation functions for all proposed models, we find that the irradiance
model surpasses the on-off models and it is able to capture the multiscale correlations that
are inherently present in the solar irradiance. The power spectrum density of generated
trajectories matches closely that of measurements. We believe our irradiance model can be
used not only in the mathematical analysis of energy harvesting systems but also in their
simulation.

Note: Part of the material presented in this chapter is published in [Politaki 2017].
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2.1 Introduction

In the past decade, there has been an awareness rising concerning the energy cost and envi-
ronmental footprint of the fastly growing Information and Communication Technology (ICT)
sector. In [Van Heddeghem 2014] Van Heddeghem et al. assess how did the electricity con-
sumption of the ICT sector evolved between 2007 and 2012. They report an increase in the
relative share of ICT products and services (communication networks, personal computers
and data centers, excluding TVs’ set-top boxes and (smart)phones) in the total worldwide
electricity consumption from about 3.9% in 2007 to 4.6% in 2012. Even though devices from
new technologies are more energy efficient, this is outweighed by the fast growth in their
numbers.

Among the most promising approaches recently pursued to reduce the environmental
footprint of the ICT sector, we focus on the use of renewable energy sources and in particular
solar energy. As photovoltaic panels are being used worldwide to power multiple components
of the ICT sector, there is an increasing effort in the literature to consider the solar energy
production when modeling computer and communication systems. For illustration purposes,
we mention two recent papers modeling ICT systems involving renewable energy sources.

In [Dimitriou 2015], Dimitriou, Alouf and Jean-Marie consider a base station that is
powered by renewable energy sources and evaluate in particular the depletion probability.
The base station is modeled as a multi-queue queueing system where energy queues model
the batteries that store the harvested energy. The authors of [Dimitriou 2015] model the
renewable energy production as a Poisson process whose rate is modulated by a Markov
chain representing the random environment.

Neglia, Sereno and Bianchi [Neglia 2016], consider the problem of geographical load bal-
ancing across data centers that have a dual power supply: grid and solar panels. They study
the problem of scheduling jobs giving priority to data centers where renewable energy is
available. The renewable energy source at each data center is modeled as an on-off process
governed by a continuous time Markov chain. In the “on” state the data center can be fully
powered by its renewable energy source; in the “off” state the data center is powered by the
grid.

These examples among others illustrate the lack of a unified stochastic model for the solar
energy to be used in the mathematical analysis of communication/computer systems. Our
objective in this work is to develop such stochastic models for the solar power at the surface
of the earth. Although there are a few models in the recent literature of the networking
community [Miozzo 2014], these rely on per-hour measurements. Therefore, such models do
not capture the fluctuations in the solar irradiance at smaller time scales.

Our main contribution combines a deterministic model of the clear sky irradiance with a
stochastic model of the so-called clear sky index to obtain a model of the actual irradiance
hitting the surface of the earth. We will compare our model (after converting the actual
irradiance to power generated by photovoltaic panels) to the night-day clustering model
developed by Miozzo et al. in [Miozzo 2014] for the generated power. Based on this work, we
propose a modified night-day clustering model. Our model for the harvested power is that of
an on-off source in which the power generated in each state is frequently resampled from an
appropriate distribution capturing the short-time scale fluctuations observed in practice.

To evaluate our models, we consider the autocorrelation functions and the periodograms of
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Figure 2.1: Variations in the daily pattern of the solar irradiance are due to (a) the weather conditions
and (b) the day of the year

the generated trajectories. The autocorrelation function illustrates how well do our proposed
models capture the multiscale correlations found in the data, whereas the spectral analysis
allows to determine which characteristic time-scales are reproduced by the models.

In order to build solar models for small time scales, we consider the following challenges
arise; Beside the obvious dependency on the geographic location, the first challenge is that
the solar irradiance exhibits a night-day pattern that is affected by weather conditions which
may induce burstiness at multiple time scales. The second one is that the solar irradiance
depends also on the day of the year.

We illustrate these variations in Fig. 2.1 where per- minute measurements of the solar
irradiance in Los Angeles [Andreas 2012] are depicted for the same day of different years
(Fig.2.1a) and for different days of the same year (Fig. 2.1b). Even with perfect weather
conditions, there are differences between the solar irradiance on the same day of different
years due to varying astronomical conditions.

The remainder of this chapter is structured as follows. We discuss the related work in
Section 2.3. We then present, in Section 2.4 the model of the clear sky index, and the model of
the generated power in Section 2.5. Finally, we assess our models in Section 2.6 and conclude
in Section 2.7.

2.2 Background

For this chapter, we present the essential background to provide some intuition concerning
the different types of solar irradiance, clear sky index and how the power is generated by a
PV panel.

2.2.1 The Solar Irradiance

The amount of the solar energy that arrives per unit of time at a specific area of a surface is
the solar irradiance and is expressed in W/m2. We present and discuss below the different
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Figure 2.2: Different types of solar irradiance.

types of solar irradiance as illustrated in Fig. 2.2:

• Absorbed Solar Irradiance is the solar radiation which is absorbed by some atmospheric
molecules, solar collectors, and the ocean. Absorbed radiation never reaches to the
surface of the Earth.

• Diffuse Normal Irradiance (DNI) or diffuse is the radiation which strikes a point from
the sky towards the surface of the Earth following a different angle. In case of clear sky,
there should be almost no diffuse sky radiation, whereas in case of hazy atmosphere
and/or cloud reflections DNI assumes high values.

• Direct Horizontal Irradiance (DHI) or direct is the amount of solar radiation from the
direction of the sun.

• Ground-reflected Irradiation is the radiation from the sun which strikes the Earth and
then is reflected back into the atmosphere.

• Reflected Irradiance is the irradiance which strikes a point from the sky and then travel
upwards.

Global horizontal irradiance (GHI) or global irradiance is defined as the total solar radi-
ation; the sum of direct horizal irradiance (DHI), diffuse normal irradiance (DNI) and
ground-reflected irradiance. However, the ground-reflected irradiance is usually insignifi-
cant compared to direct and diffuse irradiance. For this reason, in [Andreas 2012], global
radiation is the the sum of direct and diffuse radiation only and expresses as follow:
GHI = DHI + DNI ∗ cos(Z), where Z is the solar zenith angle 1. In the following the
solar irradiance will refer to the global irradiance IG(t) as defined above. The reason for this
is that we will rely on daily measurements of the global irradiance [Andreas 2012] to tune

1Zenith Angle is the angle between the direction of the sun, and the zenith (directly overhead).
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(2.2) and the resulting clear sky index α(t) on September 28th, 2010, in Phoenix, Arizona [f]

our models. No measurements of the ground-reflected radiations are available for download
from [Andreas 2012].

We define below two meteorological parameters, the air temperature and the relative
humidity, that influence the solar irradiance and will be used in the following.

• Air temperature is the weather parameter which is measured how hot or cold the air is.
Temperature describes the gas kinetic energy that make up air. The air temperature
decreases, when gas molecules move more slowly, whereas it increases. In the following,
the air temperature is measured using the Celsius scale.

• Relative humidity is the amount of water vapor in the air. It expresses as the ratio
between the measured amount and the maximum possible amount

2.2.2 Clear Sky Index

The solar irradiance IG(t) can be seen as the result of applying a multiplicative noise to the
clear sky solar irradiance ICS(t). This multiplicative noise, denoted α(t) in this thesis and
called clear sky index in the literature, captures the perturbations seen in the solar irradiance
with respect to the clear sky solar irradiance. We have IG(t) = α(t)ICS(t). Figure 2.3
illustrates IG(t), ICS(t) and α(t) for a sample day.

2.2.3 The Power Generated by a PV Panel

iPV(t), vPV(t)

Power

processoriPV(t), vPV(t)− vD

IG(t)

Ieff(t) Sun

Schottky diode

vD
iout(t), vout

Θ(t)

Figure 2.4: Using a fraction Ieff of the solar irradiance IG, the PV cells generate a power (current
iPV and voltage vPV) that goes through a Schottky diode and a power processor before it can be
consumed
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The solar irradiance can yield electricity through the use of a PV panel as shown in Fig.
2.4. The usable power is directly related to the solar irradiance arriving at the panel (that is
IG) as thoroughly explained in [Miozzo 2014] and implemented in the tool SolarStat that is
available online [Gianfreda 2014]. The general idea is the following:

1. The solar irradiance effectively used by the PV panel is the component of IG(t) that is
perpendicular to its surface, that is Ieff(t). Ieff(t) depends on Θ(t) which is the angle
made by incident sunlight and the efficient irradiance to the PV panels.

2. The PV panel translates the effective solar irradiance Ieff into electric power with current
iPV(t) and voltage vPV(t).

3. A Schottky diode reduces slightly the voltage but preserves the current.

4. A power processor extracts the maximum power from the PV panel and the output
power has current iout(t) and voltage vout.

The fluctuations seen in the solar irradiance IG(t) are still present in the output current
iout(t). There may be additional fluctuations due to the local temperature and humidity that
affect the functioning of the PV cells.

2.3 Related Work

Studies on the solar irradiance are abundant in the literature. Given the paramount role of the
solar energy in many biological ecosystems, it is crucial to have models for the solar irradiance
as measurements are not always available. For instance, Piedallu and Gégout develop in
[Piedallu 2007] a model that can predict the accumulated solar energy anywhere, providing
annual figures for an entire country, as would be required for predictive vegetation modeling
at a large scale. However such biology-oriented models are not fit for ICT applications that
evolve typically on a much smaller time scales than vegetation.

Targeting the design of a solar system, there is a large body of work focusing on the clear
sky irradiance. To cite a few references, Dave, Halpern and Myers overview in [Dave 1975]
several clear sky irradiance models and compare the accumulated daily and annual energy.
They consider a tilted surface and account for both sky radiations and ground-reflected
radiations. They find in particular that the effective irradiance at a surface is proportional
to the cosine of the angle between the sunlight direction and the normal to the surface. Bird
and Hulstrom compare in [Bird 1981] five models for the maximum clear sky solar irradiance
and propose a sixth model based on algebraic expressions. All these models require many
meteorological input parameters (e.g., the surface pressure, the total ozone, the precipitable
water vapor).

Another important component when modeling the solar irradiance is the clear sky index.
Jurado, Caridad and Ruiz characterize the clear sky index using 5-minute measurements
of the solar irradiance [Jurado 1995]. They partition the data according to the solar angle,
considering two one-hour intervals at a time (both intervals corresponding to the same range of
solar angle). They find that the density of the clear sky index in each partition is bimodal and
can be modeled as a mixture of Gaussian distributions. The parameters of the distributions
and the mixing factor are obtained from measurements by least squares approximation. The
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authors observe that the standard deviations of the Gaussian distributions depend on the
solar angle. Also the bimodal behavior observed over 5-minute intervals is no longer observed
when the interval in the data is larger. This is an important outcome that indicates that a
model tuned with data having a given frequency of measurements can not match data having
a different measurements rate. This observation supports our intuition that if one wants to
use a model of solar power at a given time scale, then the model must be tuned with data at
the same time scale. The authors of [Jurado 1995] are not clear on how do they compute the
clear sky index from the measurements of the solar irradiance. Surprisingly, the computed
clear sky index is always below 1 suggesting that they consider a very large maximum clear
sky irradiance.

Gu et al. consider in [Gu 2001] a related metric which is the relative change of solar
irradiance (this would be 100(α − 1)) under the impact of clouds. They analyze per-minute
measurements of solar irradiance collected in Brazil over a period of two months during
the wet season. They observe that broken cloud fields create a bimodal distribution for
the relative change: shaded areas receive attenuated solar irradiance while sunlit areas may
receive higher irradiance than under a clear sky. This effect is caused by radiations scattering
and reflections from neighboring clouds. Conducting a spectral analysis on the time series
of measured surface irradiance, they observe that clouds are responsible for two different
regimes according to their types and density causing either large or small scale fluctuations.
This study highlights the effect of clouds and have certainly impacted the development of
subsequent models for the solar irradiance.

Miozzo et al. focus on the solar power generated by small embedded photovoltaic panels
such as those used in sensor networks. They develop in [Miozzo 2014] two stochastic models
in which the dynamics of the power source is described by a semi-Markov process with N ≥ 2

states. The first model is an on-off power source and the authors tune the sojourn time
and power in each state by using a night-day clustering on hourly measurements of the solar
irradiance. In the second model, the power source goes through a number of N states in a
round-robin way and all sojourn times are equal and constant. A time slot based clustering
enables the authors to estimate the power distribution in each state.

Ghiassi-Farrokhfal et al. consider also the solar power generated by photovoltaic pan-
els but in the context of dimensioning an energy storage system. To near-optimally size a
storage system, they develop in [Ghiassi-Farrokhfal 2015] a new envelope model for the gen-
erated power. In the general envelope model, the solar power is characterized by a statistical
sample path lower envelope such that the probability of having the maximum of the dis-
tance envelope-solar energy exceed a given value is upper bound by a characteristic bounding
function evaluated at the given value. Inspired by the findings of [Gu 2001], the authors of
[Ghiassi-Farrokhfal 2015] adapt the general envelope model to enable a separate characteri-
zation of the three underlying processes of solar power (diurnal, long-term, and short-term
variations).

To sum up, even though there is ample bibliography related to solar energy models, the
majority of the existing models have not been validated against real data; even the few models
that have been compared to actual solar traces are only suitable for large scale applications.
However, in state-of the art domains such as ITC applications, it is necessary to build solar
models to cater to small scale cases as well.
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2.4 Modeling the Solar Irradiance IG

In this section, we focus on the solar irradiance IG(t). Our aim is to define a model able to
capture the small time-scale fluctuations inherently present in the global irradiance. To that
end, we model separately the clear sky irradiance ICS(t) and the clear sky index α(t). By
definition, we have

IG(t) = α(t)ICS(t) . (2.1)

We discuss ICS(t) in Section 2.4.1 and model α(t) in Section 2.4.2.

2.4.1 Modeling the clear sky irradiance ICS(t)

The solar irradiance arriving at a surface during a clear sky day without any perturbations
due to a change in the meteorological conditions exhibits a predictable pattern as shown
in Fig. 2.1b. The models discussed in [Dave 1975] for the hourly clear sky irradiance and
in [Bird 1981] for the maximum clear sky irradiance are not easily applicable given the un-
availability of many input parameters (e.g. the air mass, the carbon, dioxide and oxygen
absorptance, aerosol measurements etc). Instead, we use the so-called “simple sky model”
[Iqbal 1983] which defines a simple sinusoidal form for each day, taking into account the
times of sunrise and sunset and the maximum clear sky irradiance. The clear sky irradiance
ICS(t) is given by the following equation:

ICS(t) = MaxClearSky · sin

(

t− sunrise
sunset− sunrise

π

)

. (2.2)

The values of “sunrise”, “sunset” and “MaxClearSky” are astronomical data that can be easily
obtained in practice for any date and many selected locations from the website [ptaff.ca ]
(the maximum clear sky irradiance is called there “maximal solar flux”). An illustration of
Eq. (2.2) is in Fig. 2.3a.

2.4.2 Modeling the clear sky index α(t)

The clear sky index α(t) captures the fluctuations over time of the global irradiance with
respect to clear sky conditions, as illustrated in Fig. 2.3b for a sample day and a sample
location. Consequently, one thinks of defining a state for each macro weather condition.
Based on our review of the literature, we define four states for α(t) that correspond to: heavy
clouds between the sun and the surface (very low values of α(t)), medium to light clouds
between the sun and the surface (values of α(t) around 0.6), clear sky (values of α(t) around
1), and high reflection and diffusion in the atmosphere (values of α(t) larger than 1). We
assume all transitions between different states to be possible.

We propose to capture the dynamics of α(t) by a discrete-time semi-Markov process.2

Our model works as follows. When the process α(t) enters a state i, it will remain there for
a duration τi governed by a probability density function fi. While in state i, the clear sky
index α(t) behaves like αi(t), a stochastic process with probability density function gi. When

2Using a discrete-time Markov process does not yield satisfactory results as correlations are not described
well.
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Figure 2.5: Density and cumulative distribution curves of the clear sky index α(t) computed using
Eq. (2.2) and per-minute solar irradiance data [Andreas 2012]

the sojourn time τi expires, the process changes its state. The distributions fi and gi, for
i ∈ {1, 2, 3, 4} will be fitted to empirical distributions of the sojourn times and values of α(t).

Data collection: To tune our model of α(t) we use per-minute measurements of the solar
irradiance IG(t). We collect the data from National Renewable Energy Laboratory (NREL)
[Andreas 2012] for the region of Los Angeles from April 2010 until March 2015. We select
from here the following information:

• Start date

• End date

• Global Horizontal irradiance (W/m2)

• Air Temperature (°C)

• Relative Humidity (%)

We then download the data, choosing selected 1-min data (ZIP compressed). Solar irradiance
measurements are obviously zero during the night and thus, are not included.

We compute α(t) = IG(t)/ICS(t) using the data and Eq. (2.2) for each minute during the
five years. We observe that we may well have in the real measurements IG(t) > 0 around
sunset and sunrise due to diffusion. As ICS(t) = 0 at sunrise (and before) and sunset (and
after), this implies that infinite values for the ratio IG(t)/ICS(t) can occur. To discard such
values when computing α(t), we enforce the (arbitrary) bound α(t) < 3. For illustration
purposes, we compute the density and the cumulative distribution of the clear sky index and
depict them in Fig. 2.5.

The density of the clear sky index depicted in Fig. 2.5a is not bimodal as found in
[Jurado 1995]. The measurements used in [Jurado 1995] were made every 5 minutes and the
densities were computed over two intervals of 1 hour each corresponding to the same range
of the solar angle. Instead, the density shown in Fig. 2.5a is for all 1-minute measurements
over a period of 5 years.

Once that we have computed the values of α(t), we first aim to validate the number
of states of our semi-Markov model. We apply the k-means clustering algorithm as it was

https://midcdmz.nrel.gov/apps/go2url.pl?site=LMU
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Table 2.1: Evaluation of the quality of the clustering for several values of k

k Davis-Bouldin index k Davis-Bouldin index k Davis-Bouldin index
2 0.5113 5 0.5290 8 0.5072
3 0.5057 6 0.5059 9 0.5120
4 0.5017 7 0.5205 10 0.5070

Table 2.2: Values in each cluster according to k-means, their corresponding state in the semi-Markov
model and weather condition

Range of values of α(t) State Physical interpretation
[0, 0.44152) 1 heavy clouds between the sun and the surface
[0.44152, 0.81639) 2 medium to light clouds between the sun and the surface
[0.81639, 1.4343) 3 clear sky
[1.4343, 3) 4 high reflection and diffusion in the atmosphere

first introduced in [Kanungo 2002] and, particularly, the implementation in the core Matlab
library. For a brief overview of the algorithm, one can refer to Appendix A. We use the
Davies-Bouldin index to define the optimal number of clusters. The Davies-Bouldin index is
based on a ratio of within-cluster and between-cluster distances. The smaller its value the
better the clustering.

We tested nine different clustering (for k ∈ {2, . . . , 10}) and computed the Davies-Bouldin
index for each clustering obtained. The values of the index were between 0.5017 and 0.5290.
The smallest value was obtained for k = 4 implying that ideally the values of α(t) should
be classified into four clusters. This analysis supports our choice of having four states in
the model for the clear sky index and each state is mapped to one of the four clusters ob-
tained. The details on the four clusters/states obtained when applying the k-means clustering
algorithm are given in Table 2.2.

We report the values of the Davies-Bouldin index in Table 2.1 for several values of k. We
can make two observations: first, the value of the index does not vary much with the number
of clusters k; and second, very close index values correspond to distant values of k (e.g. for
k = 3 and k = 6). Nevertheless, the value k = 4 yields the smallest index hence the optimal
is to split the data into four clusters. This analysis confirms our choice of having four states
in the model for the clear sky index. Each state is mapped to one of the clusters as specified
in Table 2.2.

Now that we have clearly identified the four states of our semi-Markov model, our next
step is to identify the transition probabilities among the states. We estimate them using the
computed values of α(t) and the identified clusters. We first map each computed value of
α(t) to its corresponding state, then we count the number of transitions between any pair
of states. The transition probability from state i to state j is estimated as the ratio of the
number of transitions from state i to state j to the total number of transitions out of state
i. We find the following transition probability matrix for the four-state semi-Markov model:

P =











0 0.8361 0.0549 0.1090

0.3645 0 0.6296 0.0059

0.0274 0.9019 0 0.0707

0.0484 0.0536 0.8980 0











. (2.3)
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Table 2.3: Number of phases of the phase-type distribution fitting the (shifted) sojourn times and
values in each state

Variable Number of samples Number of phases of the phase-type
used in the fitting distribution fitting the variable

τ1 − 1 19678 5
τ2 − 1 8456 6
τ3 − 1 2094 6
τ4 − 1 15400 6
α1(t) 298141 20
α2(t)− 0.44152 345973 20
α3(t)− 0.81639 563411 6
α4(t)− 1.4343 34432 3

As a final step, we aim is to characterize the densities fi and gi for i = 1, . . . , 4. We carry
out a statistical analysis on the computed values of α in order to determine the distributions
of the sojourn times {τi}i=1..4 and the values {αi}i=1..4. Observe that the sojourn time τi in
a given state i corresponds to the number of consecutive values of α inside the corresponding
cluster. Recall that α is a discrete-time process and as the measurements used for tuning the
model are minute-based, then the time unit in our model is the minute. The sojourn times
{τi}i=1..4 and the values {αi}i=1..4 are bounded variables. After applying an appropriate shift
to each of these random variables, we find the (truncated) phase-type distribution that best
fits each one of the empirical distributions using the PhFit tool [Horváth 2002].

We choose the relative entropy [Cover 1991] as distance measure according to which the
fitting is performed. To decide for the number of phases, we proceed in two steps: first, we
identify the interval where the density is the highest; then, we choose the smallest number of
phases that yields small relative error between the original and fitted cumulative distributions
curves in the identified interval. The resulting fitted distributions are reported in Table 2.3.

To assess the quality of the fit, we use probability plots. Each graph in Fig. 2.6 depicts on
the y-axis the probabilities of the fitted distribution against the probabilities of the sojourn
times in a given state on the x-axis. Similar probability plots are displayed in Fig. 2.7 for the
values of α in each state. We observe that the phase-type distribution fits reasonably well all
variables for all states. We choose to proceed with this fitting nevertheless and see how the
overall model performs before considering to use other distributions to fit the data.

Regarding the values of α(t) in each state, we can see in Fig. 2.7 that the selected phase-
type distributions fit very well the values of α(t). We observe that the quality of fit for α1(t)

and α2(t) is obtained at the cost of having a significantly larger number of phases (that is
20; see Table 2.3) with respect to the other variables.

2.5 Modeling the Harvested Power

To account for the power generated by PV panels when evaluating solar-powered systems,
one has mainly two options. The first option is to use a model for the solar irradiance such
as the one developed in Section 2.4 and then infer the power generated by the PV cells (or
equivalently iout(t); see Fig. 2.4). This second step may be a simple linear model (i.e. the
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Figure 2.6: Probability plots of the phase-type fitting for sojourn times in each state

power generated by a panel of unit size is the solar irradiance effectively received multiplied
by the efficiency of the panel) or a more detailed model such as the one implemented in the
SolarStat tool [Gianfreda 2014]. The second option is to use directly a model for the power
generated by a given PV panel (i.e., a model for iout). Miozzo et al. have developed two such
models in [Miozzo 2014]. In this section, we propose a modification to their on-off model.
We will compare our modified model to theirs in Section 2.6 and also to the model of Section
2.4 after we translate the solar irradiance to generated power using the SolarStat tool. We
present briefly the on-off model in [Miozzo 2014] before explaining our modification.

The dynamics of the harvested current iout(t) are captured by a two-state semi-Markov
process. The distributions of the sojourn times and of iout(t) in each state are statistically
defined using hourly measurements of the solar irradiance. In practice, Miozzo et al. apply
the procedure summarized in Section 2.2.3 to map the solar irradiance data into the power
generated by a PV panel of given size (number of solar cells connected in series/parallel)
and characteristics (open circuit voltage, short circuit current, and reference temperature).
Assuming the output voltage to be constant, the generated power and the output current are
proportional to each other. The mapped data is grouped by month and for each month the
values of the output current iout(t) are classified into two states according to an arbitrarily low
threshold. All points falling below the threshold correspond to the “night” state and points
falling above the threshold correspond to the “day” state. The authors of [Miozzo 2014]
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Figure 2.7: Probability plots of the phase-type fitting for α(t) values in each state

use kernel-smoothing techniques to estimate the distributions of the durations and output
current in each state for every month of the year. The model is as follows: when entering
a state, a current and a duration are drawn from the corresponding distributions, then the
source outputs the drawn current constantly for the drawn duration. At the end of the drawn
duration, the source switches its state. In practice, the output current in the night state is
set to 0.

Modified On-Off Model. To better capture the fluctuations observed in the solar irra-
diance IG(t) (which will inevitably be present in iout(t)), we propose to modify the above-
mentioned model in the following way: instead of keeping the current constant during the
time the process remains in the “day” state, we frequently resample (every ten minutes) from
the current distribution until a transition occurs.

2.6 Results

In this section, we will evaluate the models presented in Sections 2.4 and 2.5. We consider first
the autocorrelation function (ACF) as a metric to test how well do generated synthetic data
match the empirical data according to second order statistics. The autocorrelation function
definition is presented in Appendix B. The empirical data is a 5-year long set of output
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Figure 2.8: ACF of the current harvested using Panasonic solar panels

current values sampled every minute. The current values are those matched by SolarStat (for
a Panasonic solar panel of unit size) for the solar irradiance measurements [Andreas 2012]. In
case of simulations with per-minute data, we modify the SolarStat in order to run properly.
We generate three synthetic data that are:

1. a 5-year long set of output current values sampled every minute using the model of the
solar irradiance presented in Section 2.4 and SolarStat to translate the irradiance into
output current;

2. a 5-year long set of output current values sampled every 10 minutes using the on-off
model in [Miozzo 2014];

3. a 5-year long set of output current values sampled every 10 minutes using our modified
on-off model (Section 2.5).

The autocorrelation functions of these four data sets are depicted in Fig. 2.8. Our
solar irradiance model performs fairly well, capturing most of the correlations present in the
empirical data. As already found by the authors of [Miozzo 2014], the ACF of the on-off
source model poorly resembles that of the empirical data. The ACF of our modified on-off
model performs seemingly equally badly.

Strong correlations in the solar power exists over yearly lags due to the earth’s annual
circumnavigation of the sun. To assess how well does our solar irradiance model capture the
correlations over very long periods, we sample the ACFs every 30 days and display the values
in Fig. 2.9. We can make three observations: first, the ACF of the real data confirms the
expected strong annual correlation; second, our solar irradiance model exhibits correlations
that mimic those in the real data, even though to a lesser extent; third, the on-off models fail
to track the ACF of the real data.

To complete this comparative analysis of the models, we compute the root mean square
error (RMSE) between the ACF of the empirical data set and that of each of the synthetic

data set. The RMSE metric is as follows: RMSE =
√

1
n

∑n
i (yi − ŷi)2, where yi and ŷi are the

ith samples of the empirical and synthetic data respectively, and n is the number of samples.
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Figure 2.9: Samples of the autocorrelation function of the output current (one sample per 30 days)

Table 2.4: Root mean square error (RMSE) between real and synthetic data

Model of solar Model of harvested power
irradiance IG On-off source model [Miozzo 2014] Modified on-off
0.1274 0.3231 0.2839

The results reported in Table 2.4 confirm the superiority of the solar irradiance model over
the on-off models.

We can conclude from the comparison of the ACFs that our model of the solar irradi-
ance outperforms the on-off models of the output current and captures well the multiscale
correlations found in the real data.

We consider next the periodograms or power spectral density (PSD) of the empirical data
set and the synthetic data set generated by the solar irradiance model (see Section 2.4). The
spectral analysis allows to determine which characteristic time-scales are reproduced by the
model. More details about periodogram are described in Appendix C.

We compute the periodogram using the function with the same name in the Signal Pro-
cessing Toolbox of Matlab. We adjust appropriately the x-axis in order to have frequencies
(f , in Hertz) instead of the angular frequency ω. The power spectrum densities are depicted
in Figs. 2.10 and 2.11.



24 Chapter 2. Solar Power

10−1

101

103

105

10−8 10−7 10−6 10−5 10−4 10−3 10−2

Frequency (Hz)

Power spectrum density

Figure 2.10: Power spectrum of the 1-minute values of output current mapped from the real mea-
surements [Andreas 2012] by the SolarStat tool
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Figure 2.11: Power spectrum of the 1-minute values of output current obtained after generating a
5-year trajectory from the model of Section 2.4 and translating it to current with the SolarStat tool

Observe that Gu et al. have analyzed in [Gu 2001] the power spectrum of a 2-month set
of 1-minute measurements of solar irradiance. The PSD had two clear peaks corresponding
to 24 and 12 hours but other than those the absence of other characteristic time-scale was
striking. This is not the case of the PSD of the real data set displayed in Fig. 2.10. We can
observe a series of peaks at larger frequencies that are the harmonics of 1.157407 10−5 Hz
(which corresponds to 24 hours). The same observation applies to the PSD of the synthetic
data set displayed in Fig. 2.11. The peak at the fundamental frequency corresponding to 1
day is clearly visible as well as those of its harmonics frequencies.

We conclude this section by stating that our solar irradiance model is able to generate
synthetic data that exhibits all of the frequency peaks of real data, capturing its characteristic
time-scales.

2.7 Discussion

We have developed in this work a stochastic model for the solar irradiance. The model
combines a deterministic model of the clear sky irradiance with a stochastic model for the so-
called clear sky index to obtain a stochastic model for the actual irradiance hitting the surface
of the earth. As per-minute solar irradiance data is used to tune our model, we are able to
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capture small time scales fluctuations as would be needed by ICT applications. Computing
autocorrelation functions and periodograms of empirical and synthetic traces we found that
our solar irradiance model performs very well. We believe our model can be used not only in
the mathematical analysis of energy harvesting communication/computer systems but also
in their simulation.
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In this chapter, we propose a model for computing clusters. In such systems, jobs to
be executed are submitted by users. These jobs may generate a large number of tasks.
Some tasks may be executed more than once while other may abandon before execution.
We develop a multi-server queueing system with abandonments and resubmissions to model
computing clusters. To capture the correlations observed in real workload submissions, we
consider a Batch Markov Arrival Process. The service time is assumed to have a phase-type
distribution.
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3.1 Introduction

Private or public computing clusters are de facto solutions to run parallel applications. Such
infrastructures comprise of multiple compute nodes offering different resources, e.g, CPU,
memory and storage. A user interacts with a cluster by submitting a job, which consists of
one or more parallel tasks to execute. Each task describes an amount of resource to allocate
to run a given application. The cluster scheduler is then in charge of deploying the tasks to
suitable computer nodes to execute the job.

Performance evaluation of clusters is an established approach to study their usage and
forecast their behavior in different circumstances. For example, the resulting models are
often considered to generate synthetic but theoretically realistic workloads to prototype and
evaluate cluster schedulers [Goiri 2015, Hu 2008, Goiri 2012, Liu 2012b]. Accordingly, the
quality of the decisions made from such experiments depends to a large extend on the quality
and the accuracy of the cluster model.

Many different models have been suggested for clusters, most of them being based on
the Poisson assumption for inter-arrival or service time distributions and single task ar-
rival [Jain 1991, Harchol-Balter 2013, Guo 2014, Mary 2012]. However, according to the
literature in computing systems [Amvrosiadis 2017, Adaptive Computing 2018, Capit 2005,
Reiss 2011], jobs are submitted grouped by batch. Customers may also abandon the system
or resubmit their jobs while a robust scheduler may automatically resubmit crashed tasks or
kill low priority jobs in favor of high priority jobs. We consider fundamentally impactful for
the job life-cycles and may, in such case reduce the representativity of existing models thus
their benefits to forecast properly the job behavior.

Lucantoni [Lucantoni 1991] first has investigated many one-server queues with Batch
Markovian Arrival Process (BMAP) input. However, multi-server queues with BMAP input
need more investigation. In [Baba 1983], an algorithmic solution for delivering the steady
state features of the M/PH/c queue with batch arrivals is proposed. Many models have
been suggested for cloud computing the last decades. Guo et al [Guo 2014] propose M/M/m
queueing system for cloud computing and optimize the average wait time, queue length and
number of customer. Recent works are devoted to unreliable multi-server queues with BMAP
input with Markovian flow of breakdowns [Kim 2017].

In the past, some works have focused on retrial queuing models with BMAP inputs.
In [Breuer 2002b] the most general multi-server retrial queue system with BMAP input and
phase-type distribution for service time is analyzed. Stability and instability conditions for
this model are derived and the algorithm for computing the steady state distribution of
the system is elaborated. In [Kim 2013], a retrial model with BMAP inputs and a finite
buffer for impatient customers is proposed. Customers may either leave the system forever
or go to orbit in case that they are not served immediately. In [Dudin 2013], an extension
of the previous model is analyzed, including non-persistent customers who leave the system
forever after trying unsuccessfully to be served. In [Kim 2008], a generalized BMAP/PH/N
retrial queueing model is investigated with unreliable servers. Breakdowns arriving in a
common MAP cause failure of one of the busy servers. After that the broken-down server
should be repaired during the time interval having PH distribution. A customer whose
service was interrupted can join the orbit or leaves the system forever. In [He 2000], the
complicated system of BMAP/PH/N/N+K type with PH-retrials times is analyzed. He
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solve the important problem of finding the stationary distribution existence condition and
obtain ergodicity conditions of two BMAP/PH/s/s+K retrial queues with PH-retrial times
and impatient customers. In [Kim 2010], the BMAP/PH/N retrial queue system is analyzed.
Even though, the above state of the art works do not capture the features of the real data
center clusters as presented in brief above.

In this chapter, we propose a new model for data center clusters that supports batch
job submissions and takes into account both impatient and insistent customers’ behaviour.
The model is a multi-server queuing model with Batch Markovian Arrival Processes (BMAP)
input, phase-type (PH-type) service time distribution with resubmissions and abandonment.
We show that this model captures the job life-cycle of complex and real cluster systems like
a typical Google cluster [Reiss 2011]. Finally, we discuss the research oriented but also the
technical challenges to overcome to be able to evaluate the performance of real data centers.

The rest of this chapter is structured as follow. Section 3.2 discusses the characteristics
of cluster systems. Section 3.3 details the stochastic model while Section 3.4 shows the
evaluation analysis of our model.

3.2 Cluster Systems

We discuss here the core principles of clusters and cluster schedulers. We then propose
a life-cycle for the jobs that fit today’s systems. This analysis summarises a study of
TORQUE [Staples 2006] and OAR [Capit 2005], two open-source schedulers that are used in
production inside thousands of clusters.

Customers submit their jobs to a single submission queue that aims at being emptied
by the cluster scheduler. We consider that the jobs are picked according to a first come,

first served policy. While this scheduling policy is pretty common in production ready sys-
tems [Capit 2005, Staples 2006], it may not reflect the actual Google scheduler policy which
is not disclosed. To start running a job, the scheduler removes it from the queue and starts to
deploy some of its tasks among the compute nodes. Furthermore, because the probabilities of
having at least one failure increases with the cluster and the job size, today’s clusters support
automatic job resubmissions.

Clusters usually consider that the tasks are independent, executable in parallel, in any
order, and not necessarily simultaneously. Furthermore, clusters usually enable task to share
a single physical machine called task-colocation.

Both features aim at increasing the cluster hosting capacity thus reducing the running
cost per job.

Based on the literature, we propose in Figure 3.1 the life-cycle of a job/task inside the
cluster. We consider a submitted job/task is in the enqueued state. The scheduled state
depicts a job/task that starts being executed on the cluster. The leave queue state depicts
a job/task that is dequeued before it could be scheduled. The finished state indicates the
end of the execution on the cluster. The leave cluster state denotes a terminal state where
the job/task is never again seen in the cluster. Last, the waiting state depicts a job/task
that finished using the resources of the cluster but is about to go to the enqueued state. We
observe three loops inside the life-cycle as jobs/tasks in the finished, the leave queue state
or the waiting state can/will be resubmitted.
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Figure 3.1: Life-cycle of a job/task. Each job/task starts in the enqueued state while the leave

cluster is a terminal state.

Table 3.1 describes the possible paths for a job/task, i.e the state transitions of a job/task
from the enqueued state to either a terminal state or a resubmission. The path 1 characterizes
an impatient customer that removed its submission because it was useless or because the
enqueued duration exceeded his expectations. The paths 2 and 3 characterize the most
idiomatic transitions where a job/task is executed once or is resubmitted after a failure.
Path 4 is a variation of path 3 resulting from the observation that finished jobs may wait
significantly (more than 10 days) before being resubmitted.

Table 3.1: Possible paths for a job/task inside its life-cycle

Id Path
1 enqueued → leave cluster

2 enqueued → scheduled → finished → leave cluster

3 enqueued → scheduled → finished → enqueued

4 enqueued → scheduled → finished → waiting → enqueued

5 enqueued → leave queue → enqueued

Paths 4 and 5 are the least likely of all paths. Therefore, our aim is to develop a queueing
model at task level that captures the essential features of a cluster, considering that a task
(or a customer in the queueing theory terminology) may follow one of the first three paths
presented in Table 3.1.

3.3 Queueing Model

We model the cluster described in the previous section as a multi-server queueing system in
which customers may abandon the queue while waiting for service. Upon service completion,
customers may return to the queue. We denote the number of servers by c. There are multiple
stochastic processes in this queue that we describe next.

Let N(t) ∈ N, be the cumulated number of customers that has arrived to the queue until
time t, and let J(t) ∈ EA = {1, 2, . . . , A}, be the phase of the arrival process at time t. We as-
sume that {(N(t), J(t)), t ≥ 0} is a Batch Markov Arrival Process (BMAP) [Lucantoni 1991].
The BMAP is a general arrival process that exhibits correlations over time and allows for cus-
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tomers to arrive in batches. The BMAP is characterized by a set of matrices Dk = [d
(k)
ij ]i,j∈EA ,

for k ≥ 0. For k > 0, d(k)ij ≥ 0 represents the rate of transitions from phase i to phase j accom-

panied by the arrival of a batch of size k, while d
(0)
ij ≥ 0 with j 6= i represents the transition

rate from phase i to phase j without any arrival, and d
(0)
ii = −

∑

j 6=i d
(0)
ij −

∑

k

∑

j d
(k)
ij .

Observe that {J(t), t ≥ 0} is a continuous-time Markov chain. Assume it has a unique
stationary distribution θ. The customers arrival rate of the BMAP is then

λ = θ(

∞
∑

k=1

kDk)1. (3.1)

Here 1 is a properly sized vector having all elements equal to 1.
Customers that are waiting for service are impatient. If the service of a customer does not

initiate within a time that is exponentially distributed with parameter α, then this customer
leaves the queue. The impatience durations are independent and identically distributed (iid).

Customers service times are iid random variables, furthermore independent of the arrival
process and the impatience process. We assume they follow a phase-type (PH) distribution
having S phases and representation (β,T ). The cumulative distribution function of the
service time is then 1− β eTx1.

Observe that β = (β1, . . . , βS) is the probability row vector giving the initial phase of the
service time. The non-diagonal elements of the matrix T = [tij]i,j∈ES with ES = {1, 2, . . . , S}

are the transition rates between the phases. Service completion while in phase i occurs with
rate ti0 = −

∑

j∈ES tij. Once its service completed, a customer may return to the queue for
an additional service. This occurs with a constant probability p. The resulting BMAP/PH/c
queue with impatient customers and resubmissions is illustrated in Figure 3.2.

BMAP 1− p

p

.

.

.

α

PH

PH

PH

server 1

server 2

server c

Figure 3.2: BMAP/PH/c queue with resubmission probability p and per customer abandon rate α.

The state of the system at time t is fully characterized by the triple (X(t),S(t), J(t)).
Here X(t) denotes the number of customers waiting at time t and S(t) is an S-sized vector
describing the state of the customers under service. To be more precise, the ith entry in S(t)

is the number of customers whose service is currently in phase i. To ease the notation, we
will use |.| for the L1 norm. Hence, the number of customers being served at time t is |S(t)|
and those in the system amount to X(t) + |S(t)|.

The most common approach to describe the service process at c servers, which work
in parallel, having PH distribution is defined by the c-dimensional random process ht =

{h
(1)
t , h

(2)
t , ..., h

(c)
t }, t ≥ 0, where h

(n)
t is the phase of service process at the n-th busy server at

time t. The dimension of the state space of the process ht is Sc, where S is the number phases
of PH distribution. In the case of data centers, the number of servers c is very large and the
dimension of the state space of service process becomes even larger. This dimension of the
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state space cannot fit at all in any computer memory and it is impossible to calculate the
stationary distribution of the system. To overcome this problem, we decrease the dimension
of the state space of the service process from Sc to

(

c+S
S

)

, describing the service process as

S = {s
(1)
t , s

(2)
t , ..., s

(M)
t }, t ≤ 0, where s(q) is the number of servers being in the q state of

service time distribution. The dimension of S is (s+M−1)!
s!(M−1)! . Actually, as larger is the number

of servers c, as larger is the difference between Sc and
(

c+S
S

)

.

It will be convenient to introduce the set Em that contains all S-sized vectors s =

(s1, . . . , sS) such that |s| = m and 0 ≤ sℓ ≤ m. We define E = ∪cm=0Em. Observe that
the cardinal of Em is

(

m+S−1
S−1

)

and that of E is
(

c+S
S

)

.

Under the assumptions introduced in this section, the stochastic process
{(X(t),S(t), J(t)), t ≥ 0} is an (S + 2)-dimensional continuous-time Markov chain
over the state space X = ({0} × E × EA) ∪ (N × Ec × EA). One dimension represents the
number of customers waiting in the queue, another one is for the arrival process and S is for
the number of service phases. We enumerate the states of the process in lexicographic order
of components {(X(t),S(t), J(t)).

We now proceed to the definition of the non-zero elements of its infinitesimal generator
Q, by reviewing all possible events.

The case when there is a change in the arrival process. There are four different
situations in this case. In the first situation, there is a change in the phase of the arrival
process without any batch arrival. In the second situation, actual batch arrivals occur, these
differ according to whether the customers arriving in batch are all immediately handled by
the corresponding number of servers. In the third situation, batch are partially handled such
that some will have to wait. In the fourth situation, all new customers have to wait as all
servers are busy. The elements of Q corresponding to these four situations are then

q((n, s, i), (n, s, j)) = d
(0)
ij ,

for i, j ∈ EA, j 6= i

and for n = 0, s ∈ E , or n > 0, s ∈ Ec ;

q((0, s, i), (0, s + r, j)) = d
(k)
ij

(

k

r1, . . . , rS

) S
∏

ℓ=1

βrℓ
ℓ ,

with r ∈ Ek, k > 0

for s ∈ ∪c−1
m=0Em, s+ r ∈ ∪cm=1Em, i, j ∈ EA ;

q((0, s, i), (k, s + r, j)) = d
(k+c−m)
ij

(

c−m

r1, . . . , rS

) S
∏

ℓ=1

βrℓ
ℓ ,

with s ∈ Em, s+ r ∈ Ec

for 1 ≤ m < c, k ≥ 1, i, j ∈ EA ;

q((n, s, i), (n + k, s, j)) = d
(k)
ij ,

for n ≥ 0, s ∈ Ec, i, j ∈ EA .

The case when there is a change in the service process. There are also four
different situations in this case. In the first situation, the number of customers in the system is
unchanged but some phases of those customers under service change. In the second and third
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situations, one of the ongoing services ends causing the number of those waiting customers
to decrease by one. However in the third situation, the distribution of the phases among
the ongoing services remains the same. Observe that the third situation occurs also when a
waiting customer abandons the queue. In the fourth situation, there are no waiting customers
and an end of service turns one of the servers idle. To write the elements of Q corresponding
to these four situations we will use the notation ei to refer to a row vector (of dimension S)
whose entries are null except the ith entry that is equal to 1. We can write:

q((n, s, i), (n, s + ej − eℓ, i)) = sℓ(tℓj + tℓ0pβj),

for i ∈ EA, j, ℓ ∈ ES , ℓ 6= j,

and for n = 0, s ∈ ∪cm=1Em, or n > 0, s ∈ Ec ;

q((n, s, i), (n − 1, s + ej − eℓ, i)) = sℓtℓ0(1− p)βj ,

for n ≥ 1, s ∈ Ec, i ∈ EA, j, ℓ ∈ ES, ℓ 6= j ;

q((n, s, i), (n − 1, s, i)) = nα+

S
∑

ℓ=1

sℓtℓ0(1− p)βℓ,

for n ≥ 1, s ∈ Ec, i ∈ EA ;

q((0, s, i), (0, s − eℓ, i)) = sℓtℓ0(1− p),

for s ∈ ∪cm=1Em, i ∈ EA, ℓ ∈ ES .

The diagonal elements of Q are

q((n, s, i), (n, s, i)) = −
∑

(n′,s′,i′)∈X
q
(

(n, s, i),
(

n′, s′, i′
))

,

for (n, s, i) ∈ X .
The infinitesimal generator, Q can be expressed as follows.

Lemma 1 The infinitesimal generator Q of the Markov chain Xt, t ≥ 0 has the following

block structure:

Q =



















Q00 Q01 Q02 Q03 Q04 . . .

Q10 Q11 Q12 Q13 Q14 . . .

0 Q21 Q22 Q23 Q24
. . .

0 0 Q32 Q33 Q34
. . .

...
. . . . . . . . . . . . . . .



















.

Before we analyse the sub-blocks, let us (re)define the following notations:
At time t:

• nt be the number of customers in the waiting queue, nt ≥ 0

• At be the number of states of arrival phases, At ≥ 1

• S be the number of states of PH-type distribution of service time, S ≥ 1
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• mt be the total number of arrivals, mt ≥ 0

• ~s be the vector of service phase for service process.
~s = (s1, s2, ..., ss) =

∑S
l=1 sl~el, ~s ≤ 0,∀l = 1, ..., s, where ~el represents the standard

basis for s-dimensional space.
It represents how many active servers are in the respecting phase of service time
distribution.

• pj be the probability of starting a new service from j state

• K max size of a batch

For simplicity, we write nt, At, mt as n, A, m respectively in the following analysis. We
define:

• L = A ∗
(

c+S−1
S

)

• L0 = A ∗
(

c+S
S

)

In the sequel, we use the following notation:

• ⊗ is the symbol of the Kronecker product of matrices

• diag(x), is a diagonal matrix with diagonal entries x, where x is a scalar or matrix

• diagj(x), is the element x in the j-th position of the diagonal of a matrix

• diag−1(x), is the first subdiagonal of a matrix with subdiagonal entries x, where x is a
scalar or matrix

• Ij is an identity matrix of j × j dimension.

The sub-blocks Q1,1+k for 1 ≤ k ≤ K are L×L matrices and corresponds to the transition
rates of arrivals of batch size k:

Q1,1+k =

{

diag(Dk)

0, otherwise

where Dk contain the transition rates for which a batch size k occurs. Hence, for simplicity,
Q1,1+k can be written as Q1,1+k = diag(Dk).
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Qn,n−1 are L × L matrices and corresponds to the end of service of one client and the
start of service of another one. Its block structure is:

Qn,n−1 =

{

diag((nα +
∑S

l=1 sl tl0 (1− p) pl)IA)

(sl tl0 (1− p) pj)× IA, other blocks

where IA is an identity matrix of A×A dimension.

Let M be the l × l matrix with transition rates:

M =











diag(nα +
S
∑

i=1
si ti0 (1− p) pi)

si ti0 (1− p) pj , otherwise

then Qn,n−1 = M ⊗ IA, where M = nα Ic+(1− p)F , where Ic is the identity matrix of c× c

dimension ( c is the number of servers as mentioned above).

Let F be the l × l matrix with transition rates:

F =











diag(
S
∑

i=1
si ti0 pi)

si ti0 pj, otherwise

then Qn,n−1 = n a Ic+A + (1 − p)F ⊗ IA, where n ≥ 2 and IA is the identity matrix of size
A×A and Ic+A is the identity matrix of size (A×

(

c+S−1
S−1

)

)× (A×
(

c+S−1
S−1

)

).

Q1,0 is the L× L0 matrix and structure:

Q1,0 =
(

0 0 . . . 0 Qn,n−1

)

,

where n = 2. Hence, Q1,0 can be written as:

Q1,0 =
(

0 . . . 0 2 a Ic+A + (1− p)F ⊗ IA

)

.

Qn,n is the L × L matrix which corresponds to the case that there is no departure or
arrival but the servers may change service phase.

Let: Bn(~s) = nα+
∑S

l=1 sl tl0 (1− p) pl +
∑S

l=1

∑S
j=0
j 6=l

sl (tlj + tl0 pj) then,

Qn,n =















D0 −Bn(~s) IA, ~s = ~s′

sl (tlj + tl0 p pj) IA, ~s′ = ~s+ ~ej − ~el

0, otherwise.

Let Un be the square matrix of size ℓ with structure:

Un =

{

−Bn(~s) (N ~es), ~s = ~s′

sl (tlj + tl0 p pa)1, ~s′ = ~s+ ~ej − ~el

Qn,n = IN ⊗D0 + Un ⊗ IA, n ≥ 1.

For the sub-blocks Q0,0 and Q0,k the vectors ~s are ordered first according to ||~s|| = |~s|,
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then for the same |~s| = m, they are ordered lexicographically.

Each sub-block of Q0,k has cardinals L0 × L and corresponds to the batch of customers’
arrival of size k when the system is empty, for 1 ≤ k ≤ K. Its block structure is:

Q0,k =













Q
(0)
0k

Q
(1)
0k
...

Q1,1+k













.

Q
(m)
0,k represents the transitions from states (0, ~s, i) to (k, ~s′, j) with |~s| = m, |~s′| = c,

1 ≤ i, j ≤. Q
(m)
0,k has cardinals L×A(

(

m+S−1
S−1

)

) and its structure is:

Q
(m)
0,k =

{

diag(pc−m
s Dk+c−m)

0, otherwise.

Let P (m,m′) be the stochastic matrix with the probabilities that ~r = ~s′ − ~s has a given
value |~r| = |~s′| − |~s| = m′ −m, 0 ≤ m < m′ ≤ c. P (m,m′) block structure is:

Pm,m′ =

(

(

m′−m
r1...rs

)

S
∏

l=1

prl

)

then Q
(m)
0,k = P (m, c)⊗Dk+c−m, 0 ≤ m ≤ Dk+c−m.

Hence, Q0,k is:

Q0,k =

















P (0, c) ⊗Dk+c

P (1, c) ⊗Dk+c−1
...

P (c− 1, c) ⊗Dk+1

Ic ⊗Dk

















.

Q00 has cardinals L0 × L0:

Q0,0 =













Q
(0,0)
00 Q

(0,1)
00 . . . Q

(0,c)
00

Q
(1,0)
00 Q

(1,1)
00 . . . Q

(1,c)
00

0
. . . . . .

...

0 0 Q
(c,c−1)
00 Q

(c,c)
00













.

Let Rm be the following sub-matrix with (
(

m+S−1
S−1

)

×
(

m−1+S−1
S−1

)

):

Rm =













R
(0,0)
m R

(0,1)
m . . . R

(0,m−1)
m

R
(1,0)
m R

(1,1)
m . . . R

(1,m−1)
m

...
...

...
...

R
(m,0)
m R

(m,1)
m . . . R

(m,m−1)
m













.

Each sub-block of R(i,j)
m has cardinals (

(

m−i+S−1
S−1

)

×
(

m−1−j+S−1
S−1

)

) and structure:
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• For j = i− 1, R(i,j)
m = diag(i ti0)

• For j = i

R(i,i)
m =

{

diag(j)((m− j) ts0)

diag−1(i ts−1,0)

where m ≤ i ≤ 0 and m− 1 ≤ j ≤ 0.

Q
(m,m+k)
00 has cardinals A× (

(

m+S−1
S−1

)

×
(

m+k+S−1
S−1

)

) and structure:

Q
(m,m+k)
00 = P (m,m+ k)⊗Dk, where 0 ≤ m ≤ c− 1, 1 ≤ k ≤ c, 0 ≤ m < m+ k ≤ c

Q
(m,m−1)
00 has cardinals A× (

(

m+S−1
S−1

)

×
(

m−1+S−1
S−1

)

) and structure:

Q
(m,m−1)
00 = (1− p)Rm ⊗ IA, where 1 ≤ m ≤ c.

Let B0(~s) =
∑S

l=1 sl tl0 (1− p) +
∑S

l=1

∑S
j=0
j 6=l

sl (tlj + tl0 p pj)

Q
(m,m)
00 transitions from states (0, ~s, i)→ (0, ~s, j) with |~s| = |~s′| = m, 1 ≤ i, j ≤ A, where

~s = m, we have
(

m+S−1
S−1

)

possible vectors ~s, they are ordered lexicographical:
m ~es, ~es−1 + (m− 1) ~es, 2 ~es + (m− 2) ~es, ..., (m − 1) ~e1 + ~e2,m ~e1.

Each block of Q(m,m)
00 has cardinals A× (

(

m+S−1
S−1

)

×
(

m+S−1
S−1

)

) and structure:

Q
(m,m)
00 =















D0 −B0(~s) IA, ~s = ~s′

sl(tlj + tl0 p pj)IA, ~s′ = ~s+ ~ej − ~el

0, for other ~s′.

Let U(m) be the stochastic matrix with cardinals E × E and transitions:

Um =





















−B0(m~es) m(ts,s−1 + ts0pps−1) 0 . . . 0

ts−1,s + ts−1,0pps −B0( ~es−1) + (m− 1)~es (m− 1(ts,s−1 + ts,0pps−1) 0 . . . 0

0 2(ts−1,s + ts−1,0pps) −B0(2 ~es−1 + (m− 2)~es) 0 . . . 0
... . . . . . .

. . . . . .
...

0 . . . . . . . . . −Bo((m− 1)~e1) t21 + t20pp1
0 0 . . . . . . m(t12 + t10pp2) −B0(m~e1)





















then:

• For m = 0, Q(0,0)
0,0 = D0

• For 1 ≤ m ≤ c, Q(m,m)
0,0 = Im ⊗D0 + U(m) ⊗ IA, where Im is the identity matrix size

(

m+S−1
S−1

)

×
(

m+S−1
S−1

)

.

Hence, Q0,0 can be written as:

Q0,0 =



















D0 P (0, 1) ⊗D1 P (0, 2) ⊗D2 . . . P (0, c) ⊗Dc

(1− p)R(1)⊗ IA I1 ⊗D0 + U(1) ⊗ IA P (1, c) ⊗D1 . . . P (1, c) ⊗Dc

0 (1− p)R(2) ⊗ IA I2 ⊗D0 + U(2)⊗ IA
. . . P (2, c) ⊗Dc

...
. . . . . . . . .

...
0 0 . . . (1− p)R(c)⊗ IA Ic ⊗Dk + U(c)⊗ IA



















.
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3.4 Evaluation Analysis

3.4.1 Terminology

We first present below the system terminology:
Offered throughput: rate of arrival of individual customers to the system, denoted λ;
Accepted throughput: rate of customers admitted to the queue, denoted λacc;
Lost throughput: rate of customers rejected from the queue due to its finite capacity,
denoted λloss;
Reneging throughput: rate of customers who leave the queue due to impatience, denoted
λren;
Serving throughtput: rate of customers admitted to service, denoted λser.

3.4.2 Flow Conservations

Taking into account the probability p of a job reentering the queue, but when it does, it
actually switches places with a job that was waiting in the queue (if any), we must have the
flow conservation equations:

λ = (1− p)λser + λloss + λren (3.2)

λ+ pλser = λacc + λloss (3.3)

λacc = λren + λser. (3.4)

The first one is the global conservation of customers that arrive to the queue and must depart,
one way or another. The other ones are flow balances at the entrance and the exit of the
buffer. There are three equations for the four variables, λser, λacc, λloss and λren, but one of
these three equations is redundant.

In the general situation, the values of λloss and λren depend on the queue distribution
and cannot be evaluated without further analysis. There are some cases however where these
values are easy to get: a) In the case where there is no impatience, λren = 0; b) In the case
where N = ∞, λloss = 0. Given the large number of servers in our system, we can assume
that the buffer capacity can be possible infinity and satisfies the second case (b). Thus, when
both conditions hold, we have:

λser = λacc =
λ

1− p
(3.5)

3.4.3 Flow Computations

Given the stationary distribution π(n,~s, a) flow formulas are as follows. When customers
arrive in batches, it is needed to specify the behavior when the whole batch does not fit
in the queue. Given a number of customers n in the waiting room with capacity N and a
batch of size k, we define the number of accepted/rejected customers respectively for the two
following options:
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1. Reject the whole batch ("b-rej"):

N b−rej
acc = k1{k≤N−n} N b−acc

rej = max{0, k −N + n}

2. Accept the part of the batch that fits in the queue ("b-acc"):

N b−acc
acc = min{k,N − n} N b−acc

rej = max{0, k −N + n}

Using these, we have the formulas:

λb−rej
acc = pλser +

N−1
∑

n=0

∑

~s

∑

a

π(n,~s, a)

(N−n)K
∑

k=1

k
∑

b

(Dk)ab (3.6)

λb−rej
loss =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)

K
∑

k=N−n+1

k
∑

b

(Dk)ab (3.7)

λb−acc
acc = pλser +

N−1
∑

n=0

∑

~s

∑

a

π(n,~s, a)

K
∑

k=1

min{k,N − n}
∑

b

(Dk)ab (3.8)

λb−acc
loss =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)
K
∑

k=N−n+1

max{0, k −N + n}
∑

b

(Dk)ab (3.9)

λren =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)(an) (3.10)

λser =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)(
∑

j

s(j)Tj0) (3.11)

When batches are of size one (K = 1), customers/batches are lost only when the queue
is full (n = N), the rules "b-rej" and "b-acc" coincide, and these formulas simplify as:

λacc = pλser +
N−1
∑

n=0

∑

s

∑

a

π(n,~s, a)
∑

b

(D1)ab (3.12)

λloss =
∑

s

∑

a

π(N,~s, a)
∑

b

(D1)ab (3.13)

When arrival processes are Poisson with rate λ, these formulas further simplify into:

λacc = pλser + λ

N−1
∑

n=0

∑

~s

∑

a

π(n,~s, a) (3.14)
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λren =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)(an) (3.15)

λser =

N
∑

n=0

∑

~s

∑

a

π(n,~s, a)(
∑

j

s(j)Tj0) (3.16)

3.4.4 Performance Metrics

Given the stationarity distribution π(n,~s, a), we define the performance metrics: the expected
number of servers and the expected waiting time are defined below as:

• Expected number of servers:

E[|S(t)|] =
∑

(n,s,i)∈X
|s|π(n,s,i) , (3.17)

• Expected waiting time:

E[W ] =
1

λacc

∑

(n,s,i)∈X
nπ(n,s,i) , (3.18)

3.4.5 The Arrival Phase Marginal Distribution

The arrival phase marginal distribution is denoted by, πA(a), where A is the number of arrival
phase

πA(a) =
N
∑

n=0

∑

~s

π(n,~s, a). (3.19)

Effectively, πA(a) expresses the probability that the customers arrive in the system in α

phase. For all α, α ∈ [1, A] where:
A
∑

a=1

πA(a) = 1. (3.20)

3.4.6 The Queue Size Marginal Distribution

The queue size marginal distribution πQ(q) is denoted by:

πQ(q) =
N
∑

n=0

c
∑

~s

A
∑

a

qπ(n,~s, a)

=

N
∑

n=0

c
∑

~s

A
∑

a

(n+ |~(s)|)π(n,~s, a) (3.21)

where, n is the number of customer in the waiting queue, N is the buffer size and, q = n+ |~s|

is the queue size, including both customers in the waiting queue and customers that are
serving. Effectively, this quantity shows the probability that q customers are in the system.
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For all q, q ∈ [0, N + c] where c is the maximum number of servers in the system:

Q
∑

q=0

πQ(q) = 1. (3.22)

3.4.7 The Busy-Server Marginal Distribution

The busy-server marginal distribution is defined as:

πS(|~s|) =



























c−1
∑

|~s|=0

A
∑

a=1
π(0, ~s, a)

A
∑

a=1
π(0, |~s|, a) +

N
∑

n=1

A
∑

a=1
π(n,~s, a), for |~s| = c.

(3.23)

Effectively, πS(|~s|) shows the probability that |~s| servers are occupied in the system. For all
|~s|, |~s| ∈ [0, c] where c is the maximum number of servers in the system:

c
∑

|~s|=0

πS(|~s|) = 1. (3.24)

3.4.8 The distribution of the number of servers in that phase

The number of server marginal distribution in that phase is denoted by:

P(|~s| = m) =

c
∑

k=m

p(k)

(

k

m

)

βm
j (1− βj)

k−m (3.25)

where βj is the initial probability in phase j, m is the number of busy servers, p(k) is the
stationary probability that k servers are busy. We compute the probability over {0, 1, ..., c}.
These probabilities for the same service phase should add up to 1.

3.5 Discussion

Modeling data center clusters is an essential prior to management activities such as capacity
expansion, optimal energy consumption, etc. We propose in this study a task life-cycle in
data center clusters, which corresponds to real situation. Based on that, we suggest and
analyze the BMAP/PH/N queueing model with abandonment and resubmissions. In the
following, we show that queueing models of reasonable complexity can be built to match the
complexity of real situations. In order to proceed to the numerical analysis of Google and
Nef data center clusters. Before that, it is essential to characterize their workload in Chapter
4.
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In this chapter, we characterize in detail the workload of two different data center clusters
and extract the appropriate parameters for our model, which is presented in Chapter 3. We
use two datasets consisting of job scheduler logs: the first one is the well-known Google
cluster dataset, a published 29-days cluster usage dataset, collected in May 2011 and the
second one is the Nef cluster dataset from the data center cluster of the research center of
French National Institute for Computer Science and Automation (Inria) in Sophia Antipolis.
The Nef cluster dataset is collected from 1st July 2016 until 30th June 2018.
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4.1 Introduction

Workload characterization plays an important role in capacity planning provision for real
data center clusters. Hence, characterizing the workload of a single server and predicting
its performance have been widely studied in the last decades [Barford 1998, Downey 1999,
Artis 1979]. Even though, the real data center clusters have a large number of servers.
Last years, research works have focused on workload characterization in cloud computing.
Mishra [Mishra 2010] propose a methodology for workload classifications and its application
to the Google Cloud Backend. Characterizing Google cluster dataset [Reiss 2011], conclude
that machines are fairly homogeneous and the percentage of killed jobs is high. Then, Liu
[Liu 2012a] propose a method to calculate the CPU cycles and they observe that many CPU
cycles are put into jobs and tasks that will be eventually killed or fail. have noted that the
google workload [Reiss 2011] is heterogeneous and quite dynamic and underline the need of
innovating resource scheduling policies in cloud computing. Sharma [Sharma 2011] models
and synthesizes task placement constraints in Google cluster, proposing a new metric for
including constraints to resource. Then, Sharma [Sharma 2011] reproduce task scheduling
delay and resource utilization by benchmarks of Google compute clusters. Wang [Wang 2015]
discusses the resizing of the service capacity of data centers to match the workload and
proposes a model to capture both slow time-scale non-stationarities at a slow time-scale and
stochastic variability at a fast time-scale. In [Amvrosiadis 2018], three different types of data
cluster workload are characterized, emphasizing its diversity and its impact on the result
results. However, none of the above works characterize the arrival and the service process
nor do they define any potential features as a basis for workload prediction model.

As mentioned in Chapter 3, we believe that the exponential assumptions related to arrival
and service processes do not hold for the real data center clusters. In this chapter, we are
going to assess this intuition and find other ways to model the above processes. We assume
that the arrival process can be described by a Batch Markovian Arrival Process (BMAP)
and the service process by a phase-type distribution. In the following analysis, we are going
to attempt to validate these assumptions. Moreover, through this analysis, we are going to
validate whether the abandonment ratio and resubmission probability features exist and, if
yes, we are going to quantify them. Also, in case there is another feature which has not been
previously considered, it will also be taken into account. For this reason, in the following, we
characterize two different data center cluster workload types.

4.2 General Analysis

In this section, we discuss separately the global analysis of Google and Nef traces. The first
trace is used internally by the Google employees and services and the second one is used
for scientific purposes mostly by Inria employees. Before that, we should first refer in brief
to some preliminary points of Google and Nef traces. In both cases, a job is defined as a
Linux program which requires resources from the cluster scheduler to be executed. Jobs are
independent and have their unique identifier given by the cluster scheduler. A job consists
of one or more tasks. Each task represents a Linux program and runs on a single machine.
The tasks of one job can be distributed across cluster nodes. An overview of the main
characteristics of both traces is presented in Table 4.1.
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Table 4.1: Characteristics of the traces

Task event table Google Cluster Nef Cluster

Machines 12,585 136
Jobs 672,005 5,284,650
Tasks 25,424,732 5,440,822
Events 144,648,288 33,660,798
Users 933 231

Size 15.41 GB 2.4 GB

In upcoming sections, we present and discuss the results of our general analysis for both
datasets.

4.2.1 Google Cluster

In this section, we focus on analyzing Google traces [Reiss 2011]. The entire task event table
consists of 144,648,288 records as presented in Table 4.1, each record reports on a single
event. We counted the number of unique tasks that ran on each machine during the logging
period. We remark that there are 12583 (∼ 0.0005 % )tasks and 3966 jobs (∼ 0.59% of jobs)
that have started before the logging. Even though the number of jobs is 672,005, there are
only 183955 distinct job names and just 39730 distinct logical job names. An explanation
could be that people either do not give names to their jobs or can keep the same name for
a different program out of laziness. We depict the empirical cumulative distribution of the
number of submissions per user in Figure 4.1.
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Figure 4.1: Empirical CDF of the number of submissions per user.

We process the traces in order to extract the history of each task from its first submission
until its last recorded event. For each submission/resubmission, we obtain the following
information:

• its job identifier and task index (within the job);

• if it is a resubmission after a fail/kill/lost event while in the queue, then the time
elapsed from the event until the resubmission instant (this time is called “orbit”);
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• if it is a resubmission after an end of execution, then the time elapsed from the end of
execution until the resubmission instant (this time is called “resubmit”);

• the submission instant;

• the time spent in the queue waiting for service;

• the time spent in the service, if any;

• a flag recording the last event relative to the current (re)submission combined with an
index indicating whether the task has been scheduled or not;

An example of the processing performed is illustrated in Table 4.2 and Table 4.3. Task
23 of job 5844213834 is resubmitted (line 2) after its service failed (line 1). It is subsequently
scheduled (line 3), but the service fails again (line 4). Another resubmission (line 5) is
scheduled (line 6) and no other event regarding this task is recorded in the task event table.
This implies that the task was still under service when the logging ended. After processing,
we obtain two records, one for each submission.

Table 4.2: Selected fields of Google task event table used in the processing

Selected fields of records of the task event table

timestamp (µs) jobID task machineID event
...

...
...

...
...

1958394067572 5844213834 23 400468869 3 (event 3 = fail)
1958394067584 5844213834 23 0 (event 0 = submission)
1958425531958 5844213834 23 1094464 1 (event 1 = scheduling)
2403104028538 5844213834 23 1094464 3
2403104028550 5844213834 23 0
2403105165164 5844213834 23 351627471 1

Table 4.3: Selected fields of Google’s task event table used in the resulting information

Information obtained after the processing (all durations and timestamps are in microseconds)

jobID task orbit resubmit submitTime waitingTime serviceTime lastEvent
complete residual age jobScheduled

...
...

...
...

...
...

...
...

...
...

5844213834 23 12 1958394067584 31464374 444678496580 31
5844213834 23 12 2403104028550 1136614 103094834836 11

After processing the data at the level of tasks, we collect the following statistics reported
in Table 4.4; the count of submissions, abandonments, scheduling, complete executions (and
their nature), resubmissions and backlog at the end of the logging period.

Focusing on complete executions we compute the distribution among the possible end
events, namely, “successful” (event 4 in the task event table), “evicted” (event 2), “failed”
(event 3), “killed” (event 5), and "lost" (event 6). We observe that the Google Cluster trace
had 7 missing end events. We also compute the ratio of resubmissions upon end of execution.
Table 4.5 reports all these ratios.

Regarding resubmissions, we count separately those that occur within 30 µs after the end
of the previous execution (these are referred to as “instant” resubmissions) and those that
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Table 4.4: Statistics on tasks

Task event table Google Cluster Data

Submissions 48,375,166
abandonments 1,000,020
still in queue 248
scheduling 47,374,898

Still in service 104,380
Complete executions 47,270,518

evicted (event 2) 5,864,353
failed (event 3) 13,829,769
successful (event 4) 18,217,975
killed (event 5) 9,350,102
lost (event 6) 8,312
missing end event 7

Resubmissions 22,929,812
instant (within 30µs) 22,481,988
delayed beyond 0.5 s 447,824

are delayed beyond 0.5 seconds. The reasons for this discriminative treatment becomes clear
when looking at the resubmission delays displayed in Figure 4.2. There is a clear gap between
very small values at the scale of micro-seconds and values larger than 0.5 seconds. We believe
the resubmissions in both cases are not due to similar causes. This is supported by the figures
reported in Table 4.16. According to Chapter 3, the life-cycle of a task of Google cluster is
illustrated in Figure 4.3.
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Figure 4.2: Delays observed before resubmissions during 29 days logging period.

We observe that there is no instant resubmission after a successful end of execution. In-
stant resubmissions occur mainly after unsuccessful terminations of an execution. By deriving
the actual time spent in each part of the system (see columns 3–9 at the bottom of Table
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Table 4.5: Statistics on complete executions of tasks

Task event table Google Cluster data Nef Cluster data

Type of end event
evicted 12.41 % -
failed 29.26 % -

successful 38.54 % 84.51 %
killed 19.78 % -
lost 0.02 % 7.39 %

missing end event 10−5 % -

Resubmission upon completion
instant (within 30 µs) 47.58 % -
delayed beyond 0.5s 0.95 % -

Total 48.53 % 2.58 %

Figure 4.3: Google cluster data: Life-cycle of a task.

Table 4.6: Statistics on resubmissions according to the nature of the previous complete execution

Task event table Google Cluster data

Nature of previous execution Instant Delayed
evicted 26.04 % 0.068 %
failed 61.13 % 0.016 %

successful − 91.506 %
killed 12.81 % 8.409 %
lost 0.02 % 0.001 %

4.3), our processing allows us to characterize the different stochastic processes taking place
in the system. We are now in position to proceed to the next step.

4.2.2 Nef Cluster

In this section, we introduce Nef cluster dataset consisting of job scheduler logs which are
collected from the data center cluster of research center of the French National Institute for
Computer Science and Automation (Inria) in Sophia Antipolis. The dataset covers 2 years,
starting from 1st July 2016 untill 30th June 2018. Nef cluster is used for scientific purposes.
Nef cluster uses OAR [d], an open source resource and task manager (or in other words
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batch scheduler). In Nef traces, we have jobs and arrays or tasks and jobs respectively in the
Google terminology. In the following, we use the terms jobs and tasks as defined in Google
terminology. There are two execution types; terminated or so-called finished successfully and
error. Error can occur either when a task leaves from the waiting queue before scheduling
(abandonment) to the cluster or is lost. A lost task finishes and never terminates because
of a problem when OAR was doing work internally. As reported in Table 4.5, the majority
of tasks finish successfully (84.51%) and 7.39 % has been lost, the rest abandon. In case
of resubmission, the scheduler gives to the job a new identifier but the information of old
identifier is provided in the new submission.

The entire task table consists of 5,440,822 records as presented in Table 4.1, each record
has one task identifier (taskId) which corresponds to some fields of task event table. Each
record of task event table reports on a single event. For each submission/resubmission, we
process the data in order to obtain the information which is mentioned in Section 4.2.1. An
example is provided in Table 4.7. Task 1333 of job 6517286 (arrayId) has task id 6518618 and
is resubmitted (line 5) with new task identifier 6528311. 2.58 % of tasks have been submitted
for the first time and resubmitted during the log time window. The fact that the timestamps
are in long time scale (seconds) does not permit us to check for instant resubmission or
delayed. An error (line 14) occurred when the task 6518618 has been scheduled for first time
and then resubmitted and finally finished successfully (line 22 and 23).

In this dataset, jobs can be in the default, besteffort or big queues. In cases of default
and big queue, jobs wait until the scheduler can reserve the requested resources. Both queues
give the same maximum walltime 1 to each job which is 30 days, but they differ in terms
of priority. The big queue has higher priority than the default one. Moreover, big queue
permits users to reserve almost 3 times more resources than default queue. However, a user
can have at most 2 jobs running in the big queue at a given time. Thus, the big queue should
be used only for jobs that need more than the maximum user resource of the default queue.
For mode details, one can refer to Nef documentation [c]. Jobs in the besteffort queue run
without resource reservation. If there is available resource on the cluster, they are allowed
to run. A best effort job can be killed by the scheduler at any time because a default job
wanted the used resource and resubmitted automatically when there are available resources.
Besteffort jobs obviously are not a priority and the maximum running duration is 3 days.
Best effort jobs enable users to can use more resources at a time and enhance efficient cluster
usage. Hence, besteffort queue is appropriate for short jobs (several hours) that can easily
be resubmitted. We present the statistics of Nef cluster data on the different queue types in
Table 4.9.

In Nef cluster, two job types are allowed to be executed; the first one is the passive ones
and the second one is the interactive ones. As far as the passive jobs are concerned, the user
specifies a script at the submission time. This script will be executed on the first reserved
node. In case of parallel operations, the user define parallel resources via the script. As for
the interactive jobs , the user interacts with the command shell. Nef cluster statistics on the
different job types are presented in Table 4.8.

1It is the difference between the task finishing time and the corresponding starting time.
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Table 4.7: Selected fields of Nef task event table used in the processing

Selected fields of records of the Nef task table (all timestamps are in seconds)

taskId state queueName submissionTime startTime stopTime taskType resubmitTaskId arrayId arrayIndex
...

...
...

...
...

...
...

...
...

...
6518618 Error besteffort 1526040896 1526044362 1526044362 PASSIVE 0 6517286 1333
...

...
...

...
...

...
...

...
...

...
6528311 Terminated besteffort 1526045700 1526063338 1526063428 PASSIVE 6518618 6517286 1333

Fields of records of the Nef task event table of task 6518618/6528311

taskStateLogId taskId jobState dateStart dateStop
37252706 6518618 Waiting 1526040896 1526044420
...

...
...

...
...

37269664 6518618 toLaunch 1526044420 1526044420
...

...
...

...
...

37269667 6518618 Launching 1526044420 1526045612
...

...
...

...
...

37270048 6518618 Error 1526045612 0

37270051 6528311 Waiting 1526045700 1526063374
...

...
...

...
...

37323253 6528311 toLaunch 1526063374 1526063375
...

...
...

...
...

37323257 6528311 Launching 1526063375 1526063376
...

...
...

...
...

37323278 6528311 Running 1526063376 1526063428
...

...
...

...
...

37323409 6528311 Finishing 1526063428 1526063431
...

...
...

...
...

37323425 6528311 Terminated 1526063431 0

Table 4.8: Statistics on job types

Nef cluster data

job type

passive interactive

99.63 % 0.37 %

Table 4.9: Statistics on queue types

Nef cluster data

queue name

default besteffort big

73.216 % 26.78 % 0.004

4.3 Abandonments

A job/task can wait in the queue for some time but might leave the cluster before being
scheduled. We refer to such events as abandonment. The time which a job/ task spends
waiting in the queue for service before it leaves the cluster is termed as "impatient" time.

It is noteworthy that the observed impatient times are biased i.e. a sample can be observed
only if it is smaller than the current waiting time. The probability that the impatient time,
is smaller than the waiting time can be estimated by computing the ratio of the tasks that
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Figure 4.4: Complementary cumulative distribution function of the observed impatience times and
best exponential/Weibull/Burr fit.

got abandoned before receiving service.

In the upcoming Section 4.3.1, we try to fit the Google and Nef impatience time distri-
butions with the the following distributions: normal, Pareto, Nakagami, lognormal, inverse
gaussian, Rayleight, exponential, Weibull and Burr. The fitting results of the last three ones
are presented below. Details on Burr distribution are presented in Appendix D. Since the rest
of the distributions do not agree fitting-wise with our empirical ones, they are not illustrated
here. The fitting is obtained using the function fitdist 2 implemented in Matlab.

4.3.1 Traces

In Google traces, we have 979,398 samples of the time spent by a task waiting in queue for
service before it leaves the Google cluster. The ratio of the tasks that got abandoned before
receiving service is equal to 2.02 % in the Google cluster data. We illustrate the CCDF of
the impatient times in Figure 4.4 and we depict the CCDF of the best exponential, Weibull
and Burr fit.

In Nef traces, we have 440,450 samples of the time spent by a task waiting in queue for
service before it leaves the Nef cluster. We illustrate the CCDF of the impatient times in
Figure 4.5 and we depict the CCDF of the best exponential, Weibull and Burr fit. This ratio
is equal to 0.0072 % in the Nef cluster data.

It is easy to observe, visually, in both cases that the best fitting corresponds to the Burr
distribution.

4.4 Service Time

The service time is defined as the difference between the time a job/task is scheduled to
the system and the time it is finished. Essentially, it is the time that system resources are
occupied by a job/task.

2https://fr.mathworks.com/help/stats/fitdist.html
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Figure 4.5: Complementary cumulative distribution function of the observed impatience times and
best exponential/Weibull/Burr fit.

4.4.1 Google traces

In this section, we characterize the service times (at the level of tasks). The CCDF of the
service times is depicted in Figure 4.6.
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Figure 4.6: Google cluster data: CCDF of empirical and fitted distributions of the service times.

In this case, we collect all samples of service time from the Google trace [Reiss 2011].
These include executions that ended successfully or abnormally. Jobs and tasks in Google’s
cluster have a scheduling class ranging from 0 for non-production tasks like development to 3
for latency-sensitive tasks like those of revenue-generating user requests. In the following, we
investigate whether a task’s scheduling class affects its service time and the type of execution
affects the CCDF of the service time.

For this, we exclude those executions with an unknown end event (either it is lost or it is
missing). We observe that among all 47,149,520 executions with known end event, the largest
portion (of size 15,263,643) consists of successful executions of class 0 tasks. Over all classes,
successful executions constitute 38.62% of all executions. Across all types of executions, 79.27
% of them are of class 0 tasks.
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Table 4.10: Average service time per scheduling class and for each type of execution (values expressed
in hours)

Class 0 Class 1 Class 2 Class 3 Total

Evicted 1.896410 5.02017 6.83169 15.88630 2.83515
Failed 0.293587 1.13699 1.25747 0.81604 0.40668

Successful 0.451775 0.65381 0.53665 2.01595 0.48337
Killed 0.870284 10.05770 2.63013 26.88520 2.25293

All 0.635717 2.57573 2.75278 12.49110 1.10201

Table 4.11: Number of events across scheduling classes and execution types

Class 0 Class 1 Class 2 Class 3 Total

Evicted 4,372,337 1,112,145 292,973 38,580 5,816,035 12.34%
Failed 11,977,170 1,390,584 342,507 116,279 13,826,540 29.32%

Successful 15,263,643 2,775,974 168,388 60 18,208,065 38.62%
Killed 5,763,550 615,897 2,834,469 84,964 9,298,880 19.72%

Total 37,376,700 5,894,600 3,638,337 239,883 47,149,520 100%
79.27% 12.50% 7.72% 0.51% 100%

Aiming to assess whether a task’s scheduling class affects its service time or not and
whether executions of different types have different distribution, we build the CCDF of the
service time for each execution type and each class. We also derive the CCDF within each
class regardless of the execution type and for each execution type regardless of the class. We
obtain in total 24 different distributions. We comment on these in the following sections.

4.4.1.1 Impact of the scheduling class on the service time
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Figure 4.7: Service time distribution for tasks within the same class (left) and percentage of service
time samples within each execution type (right).

Figure 4.7a shows the CCDFs of the empirical distribution of the service time within each
scheduling class. We observe no stochastic ordering between classes and service times. A
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notable portion (about 10%) of class 0 service times corresponds to approximately 0.5 hour.
This observation will be discussed later on.

We report in Figure 4.7b the distribution of the scheduling class within each execution
type. We observe that samples of each execution type are mostly from class 0.

In Fig. 4.8 we derive the CCDF for a given execution type and a given class. Each graph
display 5 curves illustrating the CCDFs for different scheduling class for the same execution
type. Let σj

i be the service time of a class i task whose execution type is j and σj be a
generic service time of execution type j. Here j takes value in {evict, fail, success, kill}. We
can write:

P (σj > t) =
3
∑

i=0
P (σj

i > t)P (executed task is of class i).

We observe in Fig. 4.10a that there is a stochastic ordering of the distribution according
to the scheduling class. We have

σevict
0 ≤st σ

evict
1 ≤st σ

evict
2 ≤st σ

evict
3 .

Evictions of lower classes occur stochastically earlier than those of higher classes. Fig.
4.8b shows a large density of values around 0.5 hour for class 0 which is due to 97.48 % of
the failed executions of all 20,010 tasks of job 6336594489; these failed executions constitute
4,523,596 samples. This amounts to 9.59% of the total number of complete executions, hence
these samples are also responsible for the density values observed in Figure 4.6b around 0.5
hours. A second large density of values is observed in Fig. 4.8b around 1 hour for class 2
tasks which is due to 92.84% of the failed executions of 4,860 tasks of job 6218406404; these
constitute 53,804 samples. A plausible explanation is that the scheduler resubmits tasks that
have failed but these fail over and over again with failures occurring roughly after the same
execution time. This is not observed when tasks are evicted or when executions are killed.

In Fig. 4.8c, there does not seem to be much difference in the distribution among classes
when the execution ends successfully. The only curve visually different does not serve as a
good estimation of the distribution as there are only 60 samples of class 3 successful executions
(see line 4 in Table 4.11). One would expect to see a stochastic ordering in Fig. 4.8d similar
to the one observed in Fig. 4.8a. It is the case for classes 0, 1 and 3, but not for class 2. It
seems that class 2 tasks are the ones killed preferably. However, the "kill" event is used in
many different situations: cancellation by a user or by a driver, a failure, or when the cause
of a task’s termination is not precisely determined (see [Reiss 2011]).

4.4.1.2 Impact of the execution type on the service time

We display in Figure 4.9a the CCDFs of the empirical service time distribution for tasks
having the same execution type. We observe larger service times for evicted executions.
There is a strikingly large portion of about 0.5 hour service times in failed executions, this
observation is consistent with the earlier discussion.

In Fig. 4.10, we group the service time distribution for tasks according to the scheduling
class. Four graphs are presented. In each of the graphs, we illustrate 5 curves of the CCDFs
which corresponds to different execution types { all types, evict, fail, success, kill }. Let σi
be the service time of a class i task. We write the CCDF for a given class as follows:
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P (σi > t) =
∑

j

P (σj
i > t)P (execution is of type j)

In the case of class 2 tasks, as 78 % of the executions are killed (see Figure 4.9b) the
CCDF P (σ2 > t) is mainly impacted by the CCDF P (σkill

2 > t). We can see in Fig. 4.10c
that the curves labelled "all types" and "kill" are close to each other.

It is interesting to observe that, for any class, evictions occur on average later than the
expected successful execution time. This observation made by looking at the curves labelled
"evict" and "success" in Fig. 4.10 is confirmed by the average service times reported in Table
4.10. A successful execution is smaller on average than both an evicted execution and a killed
execution, whatever the scheduling class. Failed executions are also smaller on average than
evicted/killed executions.

4.4.2 Nef traces

In Nef cluster data, we have 5,000,364 samples of service time and we depict the empirical
complementary cumulative distribution function in Figure 4.11.

4.4.2.1 Impact of the execution type on the service time

We display in Figure 4.11 the CCDFs of the empirical service time distribution for the tasks
having the same execution type. We observe larger service times for lost executions. We can

CCDF of service time per scheduling class
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Figure 4.8: Service time distribution within the same class.
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see in Figure 4.11 the the curves labelled "all types" and "success" are close to each other.
Let σnef

i be the service time of a event type i task. We notice in Figure 4.11 that there is a
stochastic ordering of the distribution according to the event types. We have

σnef
success ≤st σ

nef
lost .

It is interesting to observe that, lost times occur on average later than the expected successful
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Figure 4.11: Nef cluster data: CCDF of service times per event type

execution time. This observation is confirmed by the average service times reported in Table
4.12.

Table 4.12: Nef cluster data: Average service time per event type

Event types success lost

26.20 min 124.23 min

4.5 Arrival Time Characterization

Extracting the information about the arrival process requires additional processing. We need
to identify the instant of an arrival (i.e. a submission) and the size of the batch that arrived
at this instance.

4.5.1 Google

In the Google cluster data, the job event table records (among other things) the submission
instants of jobs. Similarly, the task event table records the submission instants of tasks.
There is a 2-microsecond gap between a job’s submission instant and its first task’s submis-
sion instant. Also, we observed the same gap between most of consecutive tasks’ submission
instants. Rarely, a gap larger than 2 µs is observed between the submission instants of con-
secutive tasks. Observe that only the first submission of each task must be considered, as
resubmissions are accounted for through the resubmission probability. We use these infor-
mation to identify the batch size of each arrival. We define a batch as a set of tasks that
are submitted 2 microseconds apart. The batch arrival instant is the submission time of the
first task in a batch. The range of batch sizes is from 1 to 90050 and the tasks arrival rate is
10.0885s−1 (see lines 2–3 of Table 4.17). We found also that even though most arrivals bring
only one customer/task to the system, about 25% of the arrivals consist of more than one
task and 5% consists of more than 100 tasks, the largest batch size observed being 90,050.
We plot the probability mass function of the batch size in logarithmic scale in Fig. 4.12.
Recall that the data trace contains 751 distinct batch sizes.
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Figure 4.12: Probability mass function of the batch size for Google data cluster.

We then investigate whether there are correlations in the arrival process. We produce
four scatter plots in which the interarrivals are on the x-axis and following ones are in the
y-axis. For comparison, we shuffle the sequence of interarrivals and produce a scatter plot
for the shuffled sequence. This scatter plot corresponds to no correlations in the sequence of
interarrivals. All five scatter plots are presented in Figure 4.13. By comparing the scatter
plots, we observe that Figure 4.13a is the one that differs the most from Figure 4.13e that
has no correlations. On the other hand, the scatter plots in Figures 4.13d and 4.13e resemble
each other. We can conclude that there are correlations between consecutive interarrivals
and the correlations between pairs of interarrivals decrease as the interarrivals considered in
each pair are farther apart.

4.5.2 Nef

In Nef data cluster, we define a batch as a set of tasks that are submitted at the same time
(have same submit timestamp in seconds). Most of the times, a batch has the same array
identifier (see Section 4.2.2). We have 533 distinct batch sizes. The range of batch sizes is
from 1 to 10000 and the tasks arrival rate is 23.7015s−1 (see line 2–3 of Table 4.29). We plot
the probability mass function of the batch size in logarithmic scale in Figure 4.14. Observe
that around 98% of jobs consist of one task.

Similarly, we investigate here whether there are correlations in the arrival process. We
produce six scatter plots in which the interarrivals are on the x-axis and following ones are
in the y-axis and compare them with the scatter plot for the shuffled sequence, as in Section
4.5.1. All six scatter plots are presented in Figure 4.15f. By comparing the scatter plots,
we observe that Figure 4.15a is the one that differs the most from Figure 4.15f that has
no correlations. On the other hand, the scatter plots with twentieth following in Figure
4.15e and 4.15f resemble each other. Observe that there are correlations between consecutive
interarrivals and the correlations between pairs of interarrivals decrease gradually as the
interarrivals considered in each pair are farther apart.
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Figure 4.13: Google cluster data: Interarrivals are on the x-axis and on the y-axis we have (a)
following interarrivals, (b) second following interarrivals, (c) third following interarrivals, (d) fourth
following interarrivals, and (e) shuffled interarrivals.
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4.6 Waiting Time

The waiting time is defined as the difference between the time a job/task is submitted to the
system and the time it is scheduled.

In Google traces, we have 48,218,459 samples of waiting time. We illustrate the com-
plementary cumulative distribution functions (CCDF) of waiting times in Figure 4.16a. We
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Figure 4.15: Nef cluster data: Interarrivals are on the x-axis and on the y-axis we have (a) following
interarrivals, (b) second following interarrivals, (c) third following interarrivals, (d) fourth following
interarrivals, (e) twentieth following interarrivals and (f) shuffled interarrivals.

then group the waiting times according to the scheduling class. In Figure 4.16 the CCDFs
per scheduling class are illustrated. According to Google documentation [Reiss 2011], more
latency-sensitive tasks (represented by class 3) usually have higher task priorities. Hence, it
is expected that the waiting times of class 3, which represent the more latency-task, are less
in comparison to those of the other three classes. However, as we can see in Figure 4.16 the
waiting times of class 2 are most of the times the smallest ones. An explanation could be that
the class 2 represents the second more latency-task and small waiting times are expected as
well. Moreover, only 0.53 % of tasks belongs to class 3 and obviously not all tasks have high
priority. Even though, among the average of waiting times per scheduling class, the class 3
has the smallest one, as reported in Table 4.13. The average waiting times of class 2 is the
second one and very close to one of class 3, following the ones of class 1 and class 0, as it is
expected.

Table 4.13: Average waiting times of Google cluster per scheduling class.

Average waiting times

Google cluster class 0 class 1 class 2 class 3

5.2 min 4.5 min 3.8 min 2.7 min 2.56 min

In Nef traces, we have 5,905,513 samples of waiting time of Nef cluster dataset. We depict
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Figure 4.16: Google data cluster: (a) CCDF of the waiting times and (b) CCDF of the waiting times
per scheduling class.
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the CCDF of waiting times in Figure 4.17. The average waiting time of Nef cluster is 1.13
hour.

We conclude that the average time of Google cluster waiting time is much less than this
one of Nef cluster.

4.7 Extraction of Model’s Parameters from Traces

Obtaining the parameters of the model is a task of varying difficulty. The number of servers
c is relatively easy to obtain from the specification of the cluster. The probability of a
resubmission p can be estimated by counting the appropriate transitions in the life-cycle
model of Section 3.2. It is estimated as the ratio of the number of instant resubmissions
over the total number of executions. To isolate the per customer abandonment process,
we identify those tasks that abandon the queue before receiving service and that are never
resubmitted (the jobs to which they pertain leave the cluster). The waiting times of those
tasks are samples of the per customer abandonment process. The impatience rate is estimated
similarly. The identification of arrival and service characteristics is more complex.
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4.7.1 Google traces

To overcome the technical difficulties faced when validating the queueing model against
the Google cluster data, we extract two subtraces relative to a subset of the machines and
use these for validation and comparison purposes. The characteristics of each subtrace are
presented in Table 4.15. For each subcluster, we compute and present in Table 4.14 the
statistics on the complete executions of tasks, we compare them to the ones of Google cluster,
which are reported in Table 4.5. It is important to observe that the fate of a scheduled task
does not vary much between the entire cluster and the two subclusters as the ratios reported
in lines 3–6 of Tables 4.14 and Table 4.5 are comparable.

Resubmission probability. In the Google cluster, we observe that the resubmission
probability is very large. Over 47 % of the tasks that end a service are resubmitted
instantly (within 30 microseconds) for a new service. As we focus on a subset of 5
machines, it is expected to observe a much smaller resubmission probability as only instant
resubmissions within the five machines of the subset are considered. Yet, there are still 1.6
% of instant resubmissions in subcluster-5b. The probability p is provided in line 5 of Ta-
ble 4.17. Random and instant resubmissions are illustrated in Figure 4.19 for each subcluster.

Abandonment Process. We found 979,398 samples of tasks that abandon the queue
before receiving service and that are never resubmitted. The time that elapses before a task
abandons the queue is on average about 1.12 hours (see line 7 in Table 4.17). According to
Section 4.3, there are three different distribution types that can fit the abandonment process;
the Burr, the exponential and the Weibull ones, with Burr distribution to being the best one.
However, in our model, for simplicity, we assume this time to be exponentially distributed.
When the fitting criterion is to minimize the sum of squares of residuals, the exponential
distribution that best fits the set of samples has the value 3.6 h−1 for the abandonment rate
α. Observe that a fitting that matches the first moments yields α = 0.89 h−1.

Service time. Having computed the service time for each task, it is easy to derive
the average service time. Values are reported in line 4 of Table 4.17. The samples of the
service time are used to characterize their distribution.

Number of servers. The number of servers c is not easily mapped to the specifica-
tion of the cluster. The fact is that our queueing model assumes that a server (in the
queueing terminology) can handle one and only one task at a time. This is not the case of
the machines in the Google cluster. The machines table in the Google cluster data contains
information about 12,583 machines. In the task event table, we can find 12,585 distinct
machine identifiers. However, the number of tasks that are running simultaneously is on
average 126,408 and ranges between 99,631 and 171,232. The same quantities for the two
subclusters are listed in Table 4.18. Figure 4.18 depicts the actual number of tasks under
service over time in the three cases considered. For completeness, we illustrate as well
the number of tasks waiting in the queue and provide some measures on this quantity in
Table 4.18. One possibility is to match the number of servers c with the maximum number
of tasks under service. However this peak value corresponds to a system that would be
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overdimensioned most of the time (see Figure 4.18) yielding a system utilization far from 1.
It has been reported however that the scheduler of the Google cluster overcommits resources
[[Amvrosiadis 2018],4.24] yielding a utilization close to 1. An alternative possibility is to
select the number of servers c such that the system is stable. For each case, we use the
arrival rate, the average service time and the resubmission probability to compute the load
(see line 6 in Table 4.17). The number of servers c must be larger than the load.

Table 4.14: Subclusters: Statistics on complete executions of tasks

Task event table Subcluster-5a Subcluster-5b

Type of end event

evicted 11.18 % 13.22 %
failed 29.26 % 30.36 %
successful 43.13 % 38.58 %
killed 28.50 % 17.80 %
lost 0% 0.04%
missing end event 0% 0%

Resubmission upon completion

instant (within 30 µs) 5.17 % 1.67 %
delayed beyond 0.5s 1.62 % 1.39%

Table 4.15: Characteristics of the subtraces

Task event table Subcluster-5a Subcluster-5b

Machines 5 5
Jobs 2,964 3,968
Tasks 4,689 7,294
Events 15,084 22,664

Size 1.64 MB 2.47 MB

Table 4.16: Google subclusters: Statistics on resubmissions according to the nature of the previous
complete execution

Task event table Subcluster-5a Subcluster-5b

Nature of previous execution Instant Delayed Instant Delayed
evicted 95.753 % 11.18 % 30.4 % 13.46 %
failed 2.317 % 17.19 % 67.2 % 84.62 %

successful − 38.58 % − 0.96 %
killed 1.930 % 28.50 % 2.4 % 0.96 %
lost − − − −
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Table 4.17: Parameters extracted from the traces after processing

Task event table Google Cluster data Subcluster-5a Subcluster-5b

Batch sizes 751 values in [1,90050] 1-5 1-6
Tasks arrival rate 10.0885 s−1 5.8779 s−1 8.9267 s−1

Average service time 1.10201 min 2.05555 h 1.46790 h
Resubmission probability 0.4758 0.0517 0.0167
Load 76,345.36 12.74 13.11
Average impatience time 1.11980 h n/a n/a

4.7.1.1 Fitting the service process of Google cluster data

We used the SPEM-FIT tool 3 to fit a PH distribution into the service times data trace. We
have 47,157,789 samples of service time that we use in the fitting. The complementary cumu-
lative distribution functions of empirical and fitted distributions are depicted in Figure 4.20.
The CCDF of the fitted distribution with more than 5 states are visually non-distinguishable

3The SPEM-FIT tool uses the Expectation-Maximization algorithm to estimate the parameters of the fitted
PH distribution.
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Figure 4.18: Evaluation of the number of tasks in the system during 29 days logging period.
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from the one with 5 states. A fitting with 5 states is needed if one seeks to match the tail
of the distribution. Looking at the relevant metrics reported in Table 4.19, we can see that
the quality of the fitting substantially improves when we increase the number of phases from
4 to 5 and then no substantial improvement is seen until the number of phases is 10. With
a 10-phase distribution, the second moment of the fitted distribution approaches greatly the
empirical second moment. According to the quality aimed, one can approximate the data
with a 5-state or a 10-state PH distribution. If one seeks to minimize the complexity, then a
3-state PH distribution is a good tradeoff between complexity and fitting quality.

4.7.1.2 Subcluster-5a

We have 4,962 samples of service time that we use in the fitting. The CCDFs of empirical
and some of the fitted distributions are depicted in Figure 4.21a. The CCDF of the fitted
distributions with 6, 7, 9 or 10 states are visually non-distinguishable. Looking at the relevant
metrics reported in Table 4.20, we can see that the quality of the fitting substantially improves
when we increase the number of phases from 2 to 3. With a 4-phase distribution, the second
moment of the fitted distribution approaches greatly the empirical second moment. According
to the quality aimed, one can approximate the data with a 3-state, a 4-state or a 6-state PH
distribution.

Table 4.18: Number of tasks in the system

Google Cluster data Subcluster-5a Subcluster-5b

Tasks under service average 126,408 37.4355 35.4433
minimum 99,631 21 27
maximum 171,232 70 66

Tasks waiting average 6,004.22 0.861681 0.278734
minimum 39 0 0
maximum 90,548 17 49
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Figure 4.19: Delays observed before resubmissions during 29 days logging period for two subclusters.



66 Chapter 4. Workload Characterization

Table 4.19: Google cluster: Relevant metrics of the service times

1st moment 2nd moment Log-likelihood
Trace 1.10 h 90.1 h2 −
PH-2 1.10 h 16.7 h2 − 0.033691
PH-3 1.10 h 28.0 h2 0.158648
PH-4 1.10 h 25.6 h2 0.186673
PH-5 1.10 h 60.6 h2 0.214686
PH-6 1.10 h 60.6 h2 0.214686
PH-7 1.10 h 63.1 h2 0.219688
PH-8 1.10 h 63.3 h2 0.232580
PH-9 1.10 h 63.4 h2 0.238442
PH-10 1.10 h 86.5 h2 0.243826

4.7.1.3 Subcluster-5b

We have 7,449 samples of service time that we use in the fitting. The CCDFs of empirical
and some of the fitted distributions are depicted in Figure 4.21b. The best fit is obtained
with 7 phases. Looking at the relevant metrics reported in Table 4.21, we see again that the
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Table 4.20: Subcluster-5a: Relevant metrics of the service times

1st moment 2nd moment Log-likelihood
Trace 2.06 h 240 h2 −
PH-2 2.06 h 47 h2 0.033000
PH-3 2.06 h 112 h2 0.229758
PH-4 2.06 h 224 h2 0.251971
PH-5 2.06 h 141 h2 0.270744
PH-6 2.06 h 248 h2 0.280319
PH-7 2.06 h 248 h2 0.280312
PH-8 2.06 h 234 h2 0.281664
PH-9 2.06 h 250 h2 0.283754
PH-10 2.06 h 250 h2 0.285382

Table 4.21: Subcluster-5b: Relevant metrics of the service times

1st moment 2nd moment Log-likelihood
Trace 1.47 h 133.0 h2 −
PH-2 1.47 h 25.6 h2 0.011947
PH-3 1.47 h 42.9 h2 0.221906
PH-4 1.47 h 39.2 h2 0.250760
PH-5 1.47 h 68.0 h2 0.274209
PH-6 1.47 h 44.3 h2 0.273130
PH-7 1.47 h 43.6 h2 0.291051
PH-8 1.47 h 72.7 h2 0.307154
PH-9 1.47 h 72.7 h2 0.317256
PH-10 1.47 h 68.2 h2 0.323152

quality of the fitting substantially improves when we increase the number of phases from 2 to
3. The second moment of the fitted distribution improves substantially as 5 phases are used
instead of 4. According to the quality aimed, one can approximate the data with a 3-state,
a 5-state or a 7-state PH distribution.

4.7.1.4 Fitting the arrival process of Google cluster data

Our processing of a task event table produces a set of records each contains an interarrival
duration and the size of the arriving batch. We present next our analysis of the three traces
corresponding to the three considered cases.

The trace of the arrival process contains 671,414 records featuring 751 distinct batch sizes.
The analysis of the arrival process in the Google Cluster data presented in Section 4.5 shows
that there are correlations between the interarrivals and 25% of the arrivals consist of more
than 1 task and 5% consist of more than 100 tasks, the largest batch size observed being
90,050.

These first observations support our choice of modeling the arrival process as a BMAP. To
perform the BMAP fitting, we used again the SPEM-FIT tool. This tool uses an Expectation-
Maximization algorithm to estimate the parameters of the BMAP [Horváth 2013a]. We
provide the tool with a trace containing the interarrivals with the corresponding batch sizes.
Observe that due to the large sample size of the entire trace (671,414), the SPEM-Fit tool is
able to return the optimal fitting only when the number of phases is less than 9.
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Running the SPEM-Fit tool, we obtain an output file containing the matrices {Dk}k
that characterize the fitted BMAP. Reading the output file in Python, we can use libraries
of BUTOOLS 4 to derive the marginal distribution of the interarrivals. For the marginal
distribution of the batch sizes, we do the following computation, for all possible values of
batch sizes k > 0:

P (batch size is k) =
A
∑

i=1

πi

∑A
j=1 d

(k)
ij

−d
(0)
ii

. (4.1)

Here, πi is the stationary probability of arrival phase i in the discrete-time Markov chain
embedded at the jump times of the arrival phase process J(t). Recall that for k > 0, d(k)ij

represents the rate of transitions from phase i to phase j accompanied by the arrival of a
batch of size k, and −d(0)ii =

∑

j 6=i dij
(0) +

∑

k

∑

j d
(k)
ij , where d

(0)
ij ≤ 0 with j 6= i represents

the transition rate from phase i to phase j without any arrival.

By noting π̃i the stationary distribution of the arrival phase at jump times and a diagonal
matrix having the diagonal elements of matrix D0, we can rewrite the batch size marginal
distribution as follows:

P (batch size is k) = π̃i(−B)(−1)Dk (4.2)

where 1 is a properly sized column vector having all elements equal to 1.

We report in Figure 4.26a the relative error between the probabilities that the two prob-
ability distributions, the empirical one of and the fitted one in Figure 4.22a, can assign to
the same batch size. Only the results of the five first batch sizes are displayed, and these
indicate that the fitted BMAP with two or three phases matches the empirical distribution
better than those with a higher number of phases. To better assess which fitted distribu-
tion estimates best the empirical one we compute various statistical distances and provide
the results in Table 4.23. The total variation distance is the maximum difference between
probabilities assigned to any event by the two distributions. It ranges between 0 and 1 and
a smaller value indicates that the fitted distribution estimates better the empirical one. The
Hellinger distance is defined as the L2 distance between the square-roots of the two distri-
butions. Again, the closer two distributions are, smaller is their Hellinger distance. The
Bhattacharyya distance ranges between 0 and ∞ and is the logarithm of the inverse of the
Bhattacharyya coefficient that ranges from 0 to 1. A coefficient of 1 indicates a perfect match
between the two distributions, hence the smaller the distance the better. The minimum dis-
tances are reported in bold in Table 4.23 and confirm our earlier observation about BMAP-2
and BMAP-3. As far as the batch size distribution is concerned, the best is to fit the arrival
process with a 3-phase BMAP. We now consider the marginal distribution of the interarrivals.
We depict in Figure 4.22a the CCDFs of the empirical distribution and of some of the fitted
distributions. The marginal distributions for 3 to 6 phases are very close. Similarly, the
CCDF of the fitted distribution with 8 and 9 states are visually non-distinguishable from the
one with 7 states. A similar observation can be made when comparing the relevant metrics
reported in Table 4.25: the figures reported in the last three rows (states 7-9) are very close.
We recommend using the 7-phase BMAP for the interarrivals if the quality of the fitting is
the primary objective. But if one seeks to reduce the complexity, then a 3-phase BMAP is a

4Available at https://github.com/ghorvath78/butools.

https://github.com/ghorvath78/butools
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convenient choice (see Figure 4.22a).

4.7.1.5 Fitting the subclusters’ interarrival times

Before performing the BMAP fitting, we first investigate whether correlations are still present
in the subtraces that we built. As each subtrace contains the informations only about tasks
that were scheduled on five specific machines, we expect little correlations between interar-
rivals. The scatter plots shown in Figures 4.23-4.24 confirm our intuition. As for the case of
the entire trace, each of these figures has five scatter plots. In Figures 4.23a and 4.24a, we
depict the relation between any interarrival and its following one. In Figures 4.23e and 4.24e,
we show the relation between shuffled interarrivals. By shuffling interarrivals, we remove any
possible correlation between the considered interarrivals. In between, we show the relation
between an interarrival and the 2nd/3rd/4th interarrival following it. All five scatter plots
of Figure 4.23 are similar except for the bottom left corner: the density of points is higher
in Figures 4.23a-4.23d than in Figure 4.24d indicating that interarrivals of few minutes are
likely to be followed by intervals in the same range. A similar observation can be made on
Figure 4.24 the scatter plot with shuffled interarrivals has a smaller density in the bottom
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Table 4.22: Google cluster data: Relevant metrics of the interarrivals

1st moment 2nd moment Lag-1 joint moment Log-likelihood

Trace 3.7318 s 61.5132 s2 19.0058 s2 −
BMAP-2 3.7318 s 48.8880 s2 16.8858 s2 2.48144
BMAP-3 3.7318 s 49.6908 s2 16.8271 s2 3.08328
BMAP-4 3.7318 s 49.6908 s2 16.8275 s2 3.11650
BMAP-5 3.7318 s 50.0940 s2 16.7926 s2 3.14762
BMAP-6 3.7318 s 49.6728 s2 16.8188 s2 3.19399
BMAP-7 3.7318 s 58.1040 s2 18.4111 s2 3.25296
BMAP-8 3.7318 s 58.1004 s2 18.4122 s2 3.26999
BMAP-9 3.7318 s 58.1472 s2 18.4302 s2 4.28787

Table 4.23: Google cluster data: Distances between empirical and fitted batch size distributions
Distance BMAP-2 BMAP-3 BMAP-4 BMAP-5 BMAP-6 BMAP-7 BMAP-8 BMAP-9

Total variation 0.007051 0.008466 0.076099 0.078027 0.136973 0.192358 0.199016 0.223530
Hellinger 0.030453 0.014738 0.080431 0.082676 0.150191 0.215822 0.224352 0.256589
Bhattacharyya 0.000799 0.000109 0.073363 0.073706 0.154717 0.242897 0.253839 0.296318
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Figure 4.23: Subcluster-5a: Interarrivals are on the x-axis and on the y-axis we have (a) following
interarrivals, (b) second following interarrivals, (c) third following interarrivals, (d) fourth following
interarrivals, and (e) shuffled interarrivals.

left corner when compared to the other scatter plots.

Subcluster-5a The trace of the arrival process contains 3,724 records featuring batch sizes
ranging from 1 to 5. The probability mass function of the batch size is listed in columns 1-2 of
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Figure 4.24: Subcluster-5b: Interarrivals are on the x-axis and on the y-axis we have (a) following
interarrivals, (b) second following interarrivals, (c) third following interarrivals, (d) fourth following
interarrivals, and (e) shuffled interarrivals.

Table 4.24: Subcluster-5a: Distances between empirical and fitted batch size distributions
Distance BMAP-2 BMAP-3 BMAP-4 BMAP-5 BMAP-6 BMAP-7 BMAP-8 BMAP-9 BMAP-10

Total variation 02415 0.02150 0.00434 0.00912 0.01418 0.01469 0.01203 0.05051 0.00990
Hellinger 0.05184 0.04559 0.01459 0.02310 0.03864 0.03871 0.03490 0.06520 0.03830
Bhattacharyya 0.00134 0.00104 0.00011 0.00027 0.00075 0.00075 0.00061 0.05268 0.00540

Table 4.26. We use again SPEM-Fit to fit a BMAP into the empirical arrival process. Recall
that we provide the tool with a set of records reporting each an interarrival and a batch
size, records being ordered chronologically. We considered up to 10 phases in the fitting
procedures. Given the matrices {Dk}k returned by SPEM-Fit, we compute the marginal
distribution of the batch size using (4.2). We also compute the marginal distribution of the
interarrivals using libraries of BUTOOLS written in Python. We next evaluate the quality
of the fitting with respect to the batch size. We report in Figure 4.26 the relative error
between the probabilities that the two probability distributions, the empirical one of Table
4.26 and the fitted one in 4.2, can assign to the same batch size. The results hint that the
fitted BMAP with four phases could match the empirical distribution better than those with
a lower/higher number of phases. To confirm this observation we compute three statistical
distances between each fitted distribution and the empirical one and report them in Table
4.28. The values in bold correspond to the minimal value for each distance and are obtained
with BMAP-4.

As concerns the interarrivals, the quality of the fitting results can be assessed through
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Table 4.25: Subcluster-5a: Relevant metrics of the interarrivals

1st moment 2nd moment Lag-1 joint moment Log-likelihood

Trace 11.2050 min 664.524 min2 251.053 min2 -
BMAP-2 11.2026 min 286.700 min2 128.938 min2 1.55261
BMAP-3 11.2062 min 500.184 min2 221.634 min2 1.77016
BMAP-4 11.2050 min 509.292 min2 226.332 min2 1.80697
BMAP-5 11.2044 min 514.728 min2 229.946 min2 1.81996
BMAP-6 11.2038 min 534.492 min2 240.343 min2 1.83252
BMAP-7 11.2050 min 555.696 min2 249.851 min2 1.84070
BMAP-8 11.2056 min 560.880 min2 251.705 min2 1.84534
BMAP-9 11.2044 min 531.504 min2 238.475 min2 1.85549
BMAP-10 11.2056 min 558.036 min2 251.269 min2 1.85477

the figures reported in Table 4.27. A 2-state BMAP does not fit well the empirical arrival
process as correlations are not well captured (the lag-1 joint moment of BMAP-2 is 128.938
min2 while that from the trace is 251.053 min2; see column 4 in Table 4.27). It requires to
have at least a 3-state BMAP to approach the lag-1 joint moment. We plot the CCDFs of the
empirical interarrivals and of some of the fitted distributions in Figure 4.25a. The marginal
distributions for 4 to 7 phases are very close. Similarly, the CCDF of the fitted distribution
with 9 or 10 states are visually non-distinguishable from the one with 8 states. Therefore,
we recommend using the 4-phase BMAP for the interarrivals if the quality of the fitting is
the primary objective. But if one seeks to reduce the complexity, then a 3-phase BMAP is a
convenient choice.
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Figure 4.25: CCDF of empirical and fitted distributions of the arrival times.

Subcluster-5b The trace of the arrival process contains 5,223 records and batch sizes range
from 1 to 6 (see distribution in Table 4.17). We repeat the same fitting procedure and will
present the results through the Figures 4.25b and 4.26b and Tables 4.26 and 4.28.

Figure displays the relative error between the probabilities that the empirical distribution
of Table 4.26 and the fitted distribution computed in 4.2 can assign to the same batch size.
BMAP-4 appears to have the smallest relative error across the different batch sizes. Table
4.28 reports the total variation distance and the Hellinger and the Bhattacharyya distances
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Table 4.26: Distribution of the batch size in two subclusters

Subcluster-5a Subcluster-5b

1 0.9242750 1 0.8680830
2 0.0585392 2 0.0882635
3 0.0120838 3 0.0319745
4 0.0045650 4 0.0097645
5 0.0005371 5 0.0015317

6 0.0003829

Table 4.27: Subcluster-5b: Relevant metrics of the interarrivals

1st moment 2nd moment Lag-1 joint moment Log-likelihood

Trace 7.9956 min 200.448 min2 91.0044 min2 −
BMAP-2 7.9944 min 169.560 min2 79.2180 min2 0.68921
BMAP-3 7.9944 min 174.845 min2 80.2980 min2 1.27139
BMAP-4 7.9938 min 179.831 min2 83.1204 min2 1.30153
BMAP-5 7.9938 min 179.035 min2 82.5084 min2 1.32316
BMAP-6 7.9938 min 181.087 min2 82.7280 min2 1.32947
BMAP-7 7.9938 min 181.055 min2 83.0700 min2 1.33811
BMAP-8 7.9932 min 192.989 min2 89.4384 min2 1.35109
BMAP-9 7.9932 min 193.082 min2 89.3376 min2 1.35734
BMAP-10 7.9932 min 197.640 min2 91.4472 min2 1.35998

between the marginal batch size distributions of the fitted BMAP and empirical data. The
results confirm that BMAP-4 brings the best estimate for the marginal distribution of batch
sizes. Figure 4.25b depicts the marginal distribution of the interarrivals in the fitted BMAPs
and of the empirical data. We observe that at least 3 states are needed to have a BMAP that
fits well the empirical interarrivals.

Table 4.28 collects relevant fitting metrics. To better capture the correlations (more
precisely, to match the lag-1 joint moment), an 8-state BMAP can be used at the cost of
higher complexity.

For our future numerical simulations, we recommend to use 3 states for the BMAP fitting
and 3 states for the PH fitting of the service time. The system is then modeled by a 5-
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Figure 4.26: Relative error between probabilities of empirical/fitted marginal batch size distributions.



74 Chapter 4. Workload Characterization

Table 4.28: Subcluster-5b: Distances between empirical and fitted batch size distributions
Distance BMAP-2 BMAP-3 BMAP-4 BMAP-5 BMAP-6 BMAP-7 BMAP-8 BMAP-9 BMAP-10

Total variation 0.02730 0.01437 0.00415 0.00800 0.01517 0.00857 0.00557 0.00943 0.00995
Hellinger 0.03894 0.02258 0.00784 0.01290 0.02754 0.01507 0.01207 0.02879 0.02406
Bhattacharyya 0.00076 0.00026 0.00003 0.00008 0.00038 0.00011 0.00007 0.00041 0.00029

Table 4.29: Nef cluster data: Parameters extracted from the traces after processing

Task event table Nef Cluster data

Batch sizes 533
Tasks arrival rate 23.7015 s−1

Average service time 45.0252 min
Resubmission probability 0.0032

Load 31.68
Average impatience time 0.0305 s

Abandonment rate 0.000074

dimensional Markov chain. As for the value of c, numerical results for multiple values should
be derived and the value returning the best match between analytical and empirical results
should be adopted. A starting point could be to take c between the average count of tasks
under service and the maximum count. In other words, c = 54 for Subcluster-5a and c = 50
for Subcluster-5b.

4.7.2 Nef traces

After processing the Nef traces, we present the extracted parameters in Table 4.29. Based on
the load, the system is stable as long as there are at least 32 servers, thus c = 32 The fitting
of the arrival and service process are discussed in the upcoming sections.

4.7.2.1 PH Fitting of the service times

We have 5,000,364 samples of service time that we use in the fitting. The complementary
cumulative distribution functions (CCDF) of empirical and fitted distributions are depicted
in Figure 4.27. The CCDF of the fitted distribution with more than 17 states are visually non-
distinguishable from the one with 17 states. The CCDF of the fitted distribution with 7, 8
and 9 states are not visually distinguishable among them. Hence, only the 7-state distribution
is presented in Figure 4.27. To distinguish visually the CCDF fitted distributions, we depict
in Figures 4.27c, 4.27b, 4.27d the zoom in on some specific regions from Figure 4.27.

Looking at the relevant metrics reported in Table 4.30, we can see that the quality of
the fitting substantially improves when we increase the number of phases from 4 to 5 and
then from 6 to 7. Next, the quality of fitting decreases for phase 8 and then remains stable
to phase 10. Then, it decreases until the phase 12 and then for phase 13 increases again.
From phase 17 to 20, it remains stable. For phase 13, we have the second moment of the
fitted distribution which approaches greatly the empirical second moment. According to the
quality aimed, one can approximate the data with a 13-state and a 17-state PH distribution.
Aiming to minimize the complexity, we do not propose a 18-state, a 19-state and a 20-
state PH distributions, since the second time moment is exactly the same. If one seeks to
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Figure 4.27: Nef data cluster: (a) CCDF of the empirical and fitted distributions of service times,
(b) Zoom around 1 second (c) Zoom around 0.15 hours and (d) Zoom from 1 until 10 hours.

minimize essentially the complexity, then a 7-state PH distribution is a good tradeoff between
complexity and fitting quality.

4.7.2.2 BMAP Fitting of the interarrival times

We fit the arrival process of Nef cluster as BMAP. The relevant metrics of the interarrivals
are presented in Table 4.31. Observe that the best fitting is for the number of states 12, 8
or 3. Aiming at reducing the complexity, then a 3-phase BMAP is the best choice. Even
though, none of the second moments of fitting distributions are close to the empirical ones.
An explanation could be that the interrarrivals have correlations as discussed in Section 4.5.2.

4.8 Discussion

In this chapter, we presented a global analysis for two different types of data center cluster
workload. For these workload datasets, we characterized the abandonment, the arrival, the
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Table 4.30: Nef cluster data: Relevant metrics of the service times

1st moment 2nd moment Log-likelihood
Trace 0.75 h 30.8 h2 −
PH-2 0.75 h 1.3 h2 −∞
PH-3 0.75 h 14.3 h2 0.613688
PH-4 0.75 h 12.7 h2 0.627025
PH-5 0.75 h 20.6 h2 0.65147
PH-6 0.75 h 20.3 h2 0.685143
PH-7 0.75 h 27.4 h2 0.691204
PH-8 0.75 h 27.1 h2 0.69628
PH-9 0.75 h 27.1 h2 0.69628
PH-10 0.75 h 27.1 h2 0.696279
PH-11 0.75 h 26.5 h2 0.696383
PH-12 0.75 h 26.3 h2 0.696398
PH-13 0.75 h 29.7 h2 0.69426
PH-14 0.75 h 29.5 h2 0.696189
PH-15 0.75 h 22 h2 0.696706
PH-16 0.75 h 26.9 h2 0.703459
PH-17 0.75 h 32 h2 0.704377
PH-18 0.75 h 32 h2 0.704381
PH-19 0.75 h 32 h2 0.706963
PH-20 0.75 h 32 h2 0.704471

service and the waiting times. As far as the abandonment distributions are concerned, we
showed that the best fitting corresponds to a Burr distribution, even though Weibull and
exponential can be an initial choice. For each case, we validated that the arrival process can
be modeled as a Batch Markovian Arrival Process and proposed one and then proposed a
phase-type distribution for the service process. In order to decrease the complexity of our
model, we chose the smallest value of the number of phases among the ones that produced
valid results. We then validated and quantified our model features which were introduced
in Chapter 3; the abandonment ratio and the resubmission probability. As a preliminary
assessment of the results, there does not seem to be any other feature that should be taken
into account. The fitting of the Nef arrival process does not perform as well as in the Google
traces case. This can be justified by the fact that there are many interarrival times which
are the same, and there are too few "training" samples for many arrival types. To provide
some intuition for why this happens, it should be noted that the timestamps regarding the
interarrival times in the Nef traces cluster case are given in seconds, whereas in the Google
traces case they were given in microseconds, increasing the dataset variability in the second
case.

During the above analysis, we attacked the following difficulties. First, using Hadoop,
we managed to overcome the technical challenge related to parsing the 500 files each time
and gathering all the information for one job in one file. Secondly, to overcome the technical
difficulty related to the number of servers, c, that can be used in our numerical simulations, we
extracted two different subclusters for the Google case and showed that the second one seems
capable of representing the whole trace. Due to time restrictions, the subcluster extraction
process was not performed for the Nef cluster, but it would be interesting to explore in future
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Table 4.31: Nef Cluster data: Relevant metrics of the interarrivals

1st moment 2nd moment Log-likelihood

Trace 1.5052 s 3.1611 s2 −
BMAP-2 1.5052 s 0.4890 s2 9.66388
BMAP-3 1.5052 s 0.6696 s2 9.59515
BMAP-4 1.5052 s 0.3629 s2 9.20879
BMAP-5 1.5052 s 0.3585 s2 9.32180
BMAP-6 1.5052 s 0.3585 s2 9.39845
BMAP-7 1.5052 s 0.6808 s2 9.45206
BMAP-8 1.5052 s 0.6687 s2 9.51056
BMAP-9 1.5052 s 0.6644 s2 9.55692
BMAP-10 1.5052 s 0.6696 s2 9.59515
BMAP-11 1.5052 s 0.6618 s2 9.62777
BMAP-12 1.5052 s 6.6874 s2 9.65552
BMAP-13 1.5052 s 0.5391 s2 9.68303
BMAP-14 1.5052 s 0.5365 s2 9.70819
BMAP-15 1.5052 s 0.5331 s2 9.73082

work.
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In this chapter, we describe the marmoteCore-Q tool that can be used to simulate
numerically complex queues but also simpler queueing systems with known explicit closed
form or specific numerical algorithms. This tool can be used to compute the solution to the
complex model BMAP/PH/c/N+c queue model with impatience and reentry as presented in
Chapter 3, overcoming the implementation challenges. To validate the BMAP/PH/c/N+c
solution, we provide the validation methodology and some numerical test-cases.

Keywords: Queueing models, Simulations, BMAP/PH/c/N+c

5.1 Implementation details

In this section, we describe the implementation details, which include the data structures,
the main programming steps, the input parameters and the program output.

For our development of marmoteCore-Q tool, the marmoteCore platform is necessary.
For this reason, we first need to download and install marmoteCore, which is implemented
in C/C++, from [b]. More installation details can be found in Appendix E.

In the following subsections, we first present our data structure in Section 5.1.1. We then
discuss, in Section 5.1.2 the main programming steps and summarize the main and auxiliary
functions. In Section 5.1.3, we explain how we compute the infinitesimal generator Q. Finally,
we discuss, in Section 5.1.4, the marmoteCore-Q input parameters and the output files in
Section 5.1.5.
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5.1.1 Data Structure: problemData

Before we present the tasks performed, we explain below our data structure. For efficient
access and modification, we use this data structure to organize, manage and store the data
of our model. Our data structure is presented below:

struct problemData {

int servers;

int N;

double a;

double ps;

double lam;

double miu;

int Q_car;

double ***arrival;

double ***service;

int phases;

int vt;

int K;

Simplex* f;

Simplex* f1;

int cardinals;

int cardinals0;

double *t0;

}pbm;

and each structure member corresponds respectively to:

• number of servers;

• queue capacity;

• abandonment rate α;

• resubmission probability ps;

• arrival rate λ;

• service rate µ;

• Q matrix dimensions;

• matrix of the representation of service process: T , β, the parameters of the service time
distribution. T a transition structure and β is a vector of a probability distribution;

• matrices of the representation of BMAP: D0, ...,DK , where K is the maximum batch
size;

• number of arrival phases;
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• number of service phases;

• maximum batch size, K;

• Simplex object f, which represents the sequence of integer numbers when the total sum
is c;

• cardinals corresponds to
(

server+phases−1
phases−1

)

;

• cardinals0 corresponds to
(

server+phases
phases

)

;

• T0 = −T1;

5.1.2 Programming Steps

We present below the tasks performed:

• create the infinitesimal generator Q of the queue model from the basic parameters.
To create the infinitesimal generator Q, we create a SparseMatrix object to hold the
transition matrix of the chain, entry by entry with the addToEntry() function and we
give as input parameter the structure which is described above (see Section 5.1.1);

SparseMatrix* Q_infinit_gen(struct problemData *pbm);

• create a DiscreteDistribution object to hold the initial distribution of the process;

• set the type of the infinitesimal generator Q to continuous

Q->set_type( CONTINUOUS );

• create a MarkovChain object and link the infinitesimal generator Q to it;

MarkovChain* myMC = new MarkovChain( Q );

• uniformize the continuous Markov Chain that we created in the previous step;

MarkovChain* uMC = myMC->Uniformize();

• convert type (casting) from TransitionStructure* to SparseMatrix* and get the gener-
ator of uMC, with the aid of function

uMC->generator();

SparseMatrix *spQ = dynamic_cast<SparseMatrix*>(uMC->generator());

• produce diagnostics for the generator such that

spQ->Diagnose( stdout );

The SparseMatrix structure corresponds to the infinitesimal generator Q of our model.
The diagnostic for a SparseMatrix structure are:
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– generator type
The generator types are either continuous or discrete.

– number of origin states of infinitesimal generator Q

– number of destination states of infinitesimal generator Q

– number of transitions of infinitesimal generator Q

– number of empty rows: Let us define max{vi} and min{vi} as the maximum value
and the minimum value of the row i of infinitesimal generator respectively. If the
max{vi} < min{vi}, then the row is considered as empty.

– maximum outdegree: Let outi be the number of outgoing links of node i, then
outdegreemax = max{outi}i∈[1,...,C], where C is the number of states of a Markov
Chain.

– minimum outdegree: Let outi be the number of outgoing links of node i, then
outdegreemin = min{outi}i∈[1,...,C], where C is the number of states of a Markov
Chain.

– maximum indegree: Let ini be the number of ingoing links of node i, then
indegreemin = min{ini}i∈[1,...,C], where C is the number of states of a Markov
Chain.

– minimum indegree: Let ini be the number of ingoing links of node i, then
indegreemax = max{ini}i∈[1,...,C], where C is the number of states of a Markov
Chain.

– maximum value of the infinitesimal generator Q: Let us define the maximum value
as vmax which is at most 1 since the infinitesimal generator represents transition
probabilities.

– minimum value of the infinitesimal generator Q, vmin: Let us define the maximum
value as vmin.

– maximum row sum: Let us define Si =
∑

j

Qij and compute min
i={1,...,C}

Si.

– minimum row sum: Let us define Si =
∑

j

Qij and compute min
i={1,...,C}

Si.

– row sum mismatch: Let us define x as a flag of row mismatch:

x =























0, if max
i={1,...,C}

Si = min
i={1,...,C}

Si

1, if max
i={1,...,C}

Si 6= min
i={1,...,C}

Si

(5.1)

• apply the iterative standard Power method on probability transition matrix

Distribution *stDis0 = uMC->StationaryDistributionIterative( "Power"

,10000, prec, "Zero",\\ NULL, /* progress? */ true);

prec: A precision parameter is used as the stopping criterion for the iterative compu-
tation. This means that the computation stops as soon as two consecutive iterations
are ’closer’ to each other than this preset parameter.



5.1. Implementation details 83

• DiscreteDistribution *stDis = dynamic_cast<DiscreteDistribution*>(stDis0);

• open the file and write to it the stationary distribution function in default format

FILE* out = fopen( fileName.c_str(), "w" );

stDis->Write(out, DEFAULT_PRINT_MODE);

• open the file and write to it the stationary distribution function in maple format. Details
on why maple format is useful are presented in Section 5.2.1.3.

FILE* out1 = fopen( fileName1.c_str(), "w" );

stDis->Write(out1, MAPLE_PRINT_MODE);

• open output file with the name of taking its name from the input parameter

string fileName2;

fileName2 = title + ".txt";

ofstream outputFile;

outputFile.open(fileName2.c_str());

• compute agregate load statistics such that customer arrival and service rate, and, offered
load

• compute and save the marginal of the queue size (a distribution over {0, 1, ..., N − c})
to output file

double marginal_queue_size(ofstream &outputFile, DiscreteDistribution*

dis, struct problemData *pbm)

• compute and save the marginal of the number of busy servers (a distribution over
{0, 1, ..., c}) to output file

void number_busy_server_distrib(ofstream &outputFile,

DiscreteDistribution* dis, struct problemData *pbm)

• for each phase, compute and save the distribution of the number of servers in that phase
(S distributions over {0,1, ...,c}) to output file

void service_phase(ofstream &outputFile, DiscreteDistribution* dis,

struct problemData *pbm)

• compute and save the marginal of the arrival phase (a distribution over EA = {1, ..., A})
to output file

void arrival_phase(ofstream &outputFile, DiscreteDistribution* dis,

struct problemData *pbm)

• compute queue size statistics (e.g average queue size, moments and variance queue
size), performance metrics like expected number of servers, expected waiting time and
computations of flows like accepted, lost, served and reneged throughput.
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Table 5.1: Implemented main functions.

Type method description

long int index0(int sum, struct problemData *pbm, return the position (line or column)

int v, int* foo) of the infinitesimal generator Q

int index_fun(Simplex* f, int n, int* foo, index for n ≤ 1

struct problemData *pbm, int cardinals, int v)

SparseMatrix* Q_infinit_gen(struct problemData *pbm) compute

infinitesimal
generator

double marginal_queue_size(ofstream &outputFile,

DiscreteDistribution* dis,

struct problemData *pbm) see Section 3.4.6

double arrival_phase(ofstream &outputFile,

DiscreteDistribution* dis,

struct problemData *pbm) see Section 3.4.5

void number_busy_server(ofstream &outputFile,

DiscreteDistribution* dis,

struct problemData *pbm) see Section 3.4.7

void service_phase(ofstream &outputFile,

DiscreteDistribution* dis,

struct problemData *pbm) see Section 3.4.8

void compute_flows(ofstream &outputFile,

DiscreteDistribution* dis,

struct problemData *pbm) see Section 3.4.3

void compute_flows_stat_metrics(ofstream &outputFile,

DiscreteDistribution* dis, struct problemData *pbm, int moments )

We present the main and auxiliary implemented functions and their description in Table 5.1
and Table 5.2 respectively.

5.1.3 Infinitesimal Generator (Q)

The infinitesimal generator Q is a sparse matrix 1. Hence, we take advantage of the matrix
sparsity and we compute the values, based on the formulas from Chapter 3, finding only
the corresponding Q indices for non-zeros elements. Each line and each column corresponds
to one Markov chain state which is represented by a vector. We first find the possible
transition states and then the corresponding Q indices. Therefore, we have to overcome two
implementation challenges:

1. to find a way to compute the index of some vector (n1, ..., nk)

2. the vector that corresponds to some index i of the infinitesimal generator Q.

The marmoteCore platform permits us to overcome the above challenges, using the Sim-
plex class which represents sequences of non-negative integer numbers with a given total sum.
We create an object f calling the constructor of the Simplex member class;

1A sparse matrix or sparse array is a matrix in which most of the elements are zero.
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Table 5.2: Implemented auxiliary functions.

Type method description

int file_lines(char* filename) return number of file lines ,

excluding the 1st line

double* parseLine(std::string str, int &number_of_cols) return pointer to the array

of line values

double** parseMatrix(std::string str, int &number_of_cols) return pointer to the infinitesimal

generator Q values

double*** read_file_and_store_matrices(char* filename, read file and store matrices

int K, int &number_of_cols, double *lambda)

long int binomial (int n, int p) compute
(

n
p

)

long double factorial(int q) compute factorial

long double compute_rateQ0(int* foo, int q, int phases, compute rate

(

n

r1, r2, .., rl

)

∗ΠS
l=1p

rl

double **p)

int sum(int* foo, int phases) return
ph
∑

i=0

si

double* compute_t0(double **t, int phases) compute T0 = −T1

void printfn(SparseMatrix* ptr, int num_of_rows, print infinitesimal generator (Q)

int num_of_cols) to the screen

Simplex(int k, int c);

The parameter k represents the number of service phases and specifies the length of the
sequence, the c is the number of servers and specifies the total sum. The index of state
(s1, s2, ..., sk) is given by the Simplex member function

int Index(int* s);

and the vector of index i is given by the Simplex member function

int DecodeState(i, int* s);

The state space, which corresponds to the case that customers waiting in the queue (n > 0),
is Sk,c = {(s1, s2, ..., sk) ∈ N

k such that
∑k

i=1 si = c}. Its cardinal, M is:

M = |Sk,c| =

(

c+ k − 1

k − 1

)

=

(

c+ k − 1

c

)

. (5.2)

The state space, which corresponds to the case that no customers waiting in the queue
(n = 0), is S0

k,c = {(s1, s2, ..., sk) ∈ N
k such that

∑k
i=1 si ≤ c}. Its cardinal, M0 is:

M0 = |S
0
k,c| =

(

c+ k

k

)

. (5.3)

To have all the possible ~s and the corresponding indices for sum ≤ c, we create a second
object f1, calling again the constructor of the Simplex class and increasing the length of the
sequence k by one;

Simplex(int k+1, int c);
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Recall from Section 3.3 that the vectors ~s are ordered first according to |~s|, then for the
same |~s| = m, they are ordered lexicographically, where |~s| =

∑k
l=1 sl. Hence, we first define

the function which compute the index of state {n, (s1, ..., sk)} as index(c, k; s1, ..., sk). We
then compute the index of state {n, (s1, ..., sk), v} of the infinitesimal generator Q as:

indexQ(c, k; s1, ..., sk, n, v) =



















|
∑k

j=0 sj |
∑

i=0

(

i+ k − 1

k − 1

)

+A ∗ index(c, k; s1, ..., sk) + (v − 1), if n = 0 (5.4)

A ∗ (M0 + index(c, k; s1, ..., sk) + (n− 1) ∗M) + v, if n ≥ 2 (5.5)

where n is the number of customer waiting in the queue and v is the the arrival phase.

Algorithm 1 demonstrates the steps to compute the infinitesimal generator Q.

Algorithm 1 Compute infinitesimal generator Q

1: Input: problemData structure
2: Output: Q matrix
3: create the sparse matrix Q object
4: for each server do

5: compute partial cardinals ⊲ partial cardinals are defined as the cardinals with |~s| = c

6: create the corresponding simplex object
7: for each partial cardinals do

8: find the vector & add its element
9: if the summation of the element of the vector is equal to 0 then

10: for each server do

11: create a simplex object
12: compute cardinals
13: for each cardinal do

14: find the vector
15: add the elements of the vector, sum
16: for each arrival phase do

17: if sum! = 0 AND sum < B then

18: compute value dij
(k)

(

k
r1...rs

)

Πl=1Sp
r
l ⊲ (see Section 3.3)

19: add value to the specific position of the matrix
20: if sum == c then

21: for each batch size b do

22: if b ≤ N AND b+ c < B then

23: compute value
24: add value to the specific position of the matrix
25: else if sum == 0 then

26: compute value v = d
(0)
ij

27: add value v to the specific position of the matrix
28: else

29: for each arrival phase from 1 to A do

30: if sum == c then
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31: for each batch size b do

32: if b ≤ N then ⊲ N buffer size
33: compute val = d

(b+c−m)
ij

(

b−m
r1...rs

)

ΠS
l=1p

rl ⊲

(see Section 3.3)
34: add val to Q matrix
35: for each phase ph1 do possible transi-

tions change service phase
36: for each phase ph2 do

37: if sph2 ! = 0 AND sph1 < c then

38: sph2 ← sph2 − 1 & sph1 ←

sph1 + 1

39: compute val ← sph2 ∗

(tph1ph2 + tph1 ∗ p ∗ pph2)

40: for each arrival phase from 1
until A do

41: add val to Q matrix posi-
tion

42: sph2 ← sph2 + 1 & sph1 ←

sph1 − 1 increase each position by x = 1, ..., c −m

43: if sph1 ≤ c AND sum ≤ c then

44: for each batch size b do

45: s
(new)
ph1

← sph1 + b

46: compute difference r one by one
element between initial service vector and new one

47: if sum~s(new) ≤ c AND sumr < B

then

48: for each arrival phase i from 1
to A do

49: for each arrival phase j

from 1 to A do

50: compute val =

d
(b+c−m)
ij

(

c−m
r1...rs

)

ΠS
l=1P

rl

51: add val to matrix Q de-
crease by one each phase

52: if s
(new)
ph1

! = 0 then

53: compute
val = sph1 ∗ tph10 ∗ (1− p) n ≤ 1 find possibles states and positions

54: for each cardinal do

55: find the service vector
56: for each service phase ph1 do

57: compute val1 = sph1 ∗ t0ph1 ∗ (1−

p) ∗ pph1

58: for each arrival phase do

59: add value to Q matrix
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60: for each customer n waiting in the queue
from 2 to N do Qn,n+1

61: for each arrival phase from 1 to A do

62: if n == 2 AND n− 1 < B then

63: for each batch size do

64: if b < N then

65: add value to Q matrix

66: for each batch size do

67: if n+ b >= N then

68: add value to Q matrix

69: for each arrival phase i do

70: add val = n ∗ α+ val1

71: for each arrival phase j do

72: if n == 2 AND i! = j then

73: add value d
(0)
ij to Q ⊲ for

n = 1

74: if i! = j then

75: add value d
(0)
ij to Q ⊲ for

n ≥ 2

76: for each service phase ph1 do

77: if sph1! = 0 then

78: for each service phase ph2 do

79: if ph1! = ph2 AND sph2 < c

then

80: sph1 = sph1 − 1

81: sph2 = sph2 + 1

82: compute value vQnn1 =

sph1 ∗ t0ph1 ∗ (1− p) ∗ pph2

83: compute value vQnn =

sph1 ∗ (tph1ph2 + tph10 ∗ p ∗ pph2)

84: add value vQnn1 to Q ma-
trix

85: add value vQnn to Q ma-
trix

86: if n == 2) then

87: add value v ∗Qnn1 to Q
matrix ⊲ for n = 1

88: add value v ∗Qnn to Q
matrix ⊲ for n = 1

89: sph1 = sph1 + 1

90: sph2 = sph2 − 1
return Q

We finally implement the queue size, arrival and busy server marginals, and for each phase,
the the distribution of the number of servers at that phase as defined in Sections 3.4.6, 3.4.5,
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3.4.7 and 3.4.8 respectively.

5.1.4 Input parameters

In this section, we discuss the input parameters that the user should pass from the command
line after the executable file ./marmoteCore-Q.

In case that we are not sure how to use the marmoteCore-Q, we run the command
./marmotecoreQ --help or ./marmotecoreQ -h. We will see usage information and the
following list of options we can use with the command:

./marmoteCoreQ --help

-h, --help display this help and exit

-u, --usage display a short usage message and exit

<number_of_servers> int

<buffer_size> int

<abandonment_rate> double

<resubmission_probability> double

<arrival_fitting_file> python file matrices D0..Dk

and last line arrival rate lambda

<service_fitting_file> python file matrices {Teta}

and last line service rate mu

<experiment_title> text name of the experiment e.g

MM1K_medium_load

Listing 5.1: Command how to use the marmotecore-Q

If we miss one input or change the order of the inputs, the following message appears in the
screen:

./marmoteCoreQ [--help] [--usage] <number_of_servers> <buffer_size> <

abandonment_rate> <resubmission_probability> <arrival_fitting_file> <

service_fitting_file> <experiment_title>

Listing 5.2: Command how to use the marmotecore-Q

The necessary parameters are presented in Listing 5.1. Most of them are self-explanatory;
with regard to arrival and service fitting files, and experiment title, more information can be
found below:
arrival_fitting_file in python: In this file, the matrices of the representation of Batch
Markovian Arrival Process (BMAP): D0, ...,DK , where K is the maximum batch size are
saved. The arrival rate λ is computed by modifying the equation (3.1) to:

λ = π(

K
∑

k=1

kDk)1 (5.6)

where, π is the stationary distribution and 1 represents an m× 1 vector with every element
being 1. marmoteCore provides the Power Method to compute the stationary distribution π

as already mentioned in Section 5.1.2. The arrival rate is saved to the last line of the file.
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To compute the arrival rate λ, for user convenience, we propose below 3 ways: the first
one launching ipython3, the second one in python and the last one in Matlab. In the example
Listing 5.3, the maximum batch size is K = 6 and we generate the BMAP matrices using
SpemFit [g]. BMAP matrices can be generated in both python and matlab format. The user
can choose one of the following ways to compute the arrival rate, according to their language
preference.

1. We first download BuTools from [a] and then launch ipython3. We finally run the
following commands:

%run "~/Fitting/butools2/Python/BuToolsInit.py"

butools.verbose = True

butools.checkPrecision = 1e-9

%run "result-3-m"

Dm = [D0, D1, D2, D3, D4, D5, D6]

Q = SumMatrixList(Dm[0:])

l = len(Q)

pi = CTMCSolve(Q)

DDm = [D1, 2*D2, 3*D3, 4*D4, 5*D5, 6*D6]

QQ = SumMatrixList(DDm[0:])

customers_per_time = pi*QQ*np.matlib.ones((l,1))

batch_per_time = - pi*D0*np.matlib.ones((l,1))

Listing 5.3: ipython3 comments for computing arrival rate λ

2. We use the python file which is generated by Spemfit [g] and we add the following code:

import numpy.matlib as ml

import numpy as np

from scipy.linalg import eig

# matrix D0 ..Dk in python format as they are generated by BuTools

.....

# \sum_{0}^{k}D_{k}

# Q = D0 + D1 + ..+ Dk;

# example:

Q = D0 + D1 + D2 + D3 + D4 + D5 + D6; # sum_k D_k

# compute stationary distribution

S, U = eig(Q.T)

stationary = np.array(U[:, np.where(np.abs(S) < 1e-8)[0][0]].flat)

stationary = stationary / np.sum(stationary)

print (stationary)

# QQ = 1*D1 + ... + k*Dk;

#example:

QQ = 1*D1 + 2*D2 + 3*D3 + 4*D4 + 5*D5 + 6*D6;

https://bitbucket.org/ghorvath78/spemfit/overview
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print (QQ)

l = stationary * QQ; #np.identity(1,3);

# customers_per_time

lamda = np.sum(l);

l2 = -stationary*D0;

#batch_per_time

lg = np.sum(l2);

print (lg);

print (lamda);

Listing 5.4: Python code for computing arrival rate λ

3. We generate and save the BMAP matrices using the SpemFit tool in Matlab format to
a file. We then launch it to Matlab and do the following:

I = ones(3);

Q = D0 + D1 + D2 + D3 + D4 + D5 + D6;

% compute stationary distribution - uniformalize Q

q=max(abs(diag(Q)));

P = (Q + q*eye(3)-diag(sum(Q’)))/q;

pi0 = zeros(1,3);

pi0(1,1) = 1;

pi_n = pi0*P^1000000000000;

aux = 1*D1 + 2*D2 + 3*D3 + 4*D4 + 5*D5 + 6*D6;

lamda_mat = pi_n*aux*ones(3,1);

lg = -pi_n*D0*ones(3,1);

test = sum(pi_n);

Listing 5.5: Matlab code for computing arrival rate λ

Let us present below an example of the format of the specification of the arrival process
in python:

import numpy.matlib as ml

D0 = ml.matrix([[-22.177, 0, 0], [0, -5.018, 0], [0, 0, -1488559.9215]])

D1 = ml.matrix([[14.24, 0.768, 1.401], [0.108,4.234, 0.319], [404474.388,

705022.355, 290956.849]])

D2 = ml.matrix([[3.333, 0.404, 0.168], [0.025, 0.211, 3.953e-32], [52459.669,

1.975e-74, 3630.994]])

D3 = ml.matrix([[1.099, 0.049, 0.153], [0.013, 0.083, 3.103e

-47],[28704.722,0.006, 0]])

D4 = ml.matrix([[0.42, 0.021, 0.012], [0.007, 0.017, 1.042e-164], [3310.939,

5.787e-96, 0]])
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D5 = ml.matrix([[0.063, 0.008, 0.013], [3.085e-07, 0.003, 2.556e-98], [0, 0,

0]])

D6 = ml.matrix([[0.026, 5.414e-63, 0], [2.13e-08, 3.93e-49, 0], [0, 0, 0]])

8.931

Listing 5.6: Arrival Fitting python file

service_fitting_file in python: In this file, we save the matrix of the representation of
service process: the transition matrix A, and the vector of the initial probability α. In the
last line of the file, we save the service rate. We use below SpemFit tool to generate the
transition matrix A and the initial probability vector α. Let us present below an example of
the format of service fitting filein python:

import numpy.matlib as ml

A = ml.matrix([[-10.0, 10.0, 0], [.4, -1.0, .1], [0, .1, -.1]])

alpha = ml.matrix([[.4, .5, .1]])

0.195312

Listing 5.7: Service Fitting python file

The service rate is denoted by µ = 1
E[X] , where X is the random variable of service time.

The arrival rate is saved to the last line of the service fitting file in python format.
experiment_title is part of the marmoteCore-Q output file names. More details related to
the marmoteCore-Q output are presented in the following Section 5.1.5.

Remark: The user must respect strictly the python format of arrival and service files as
presented above. Pay attention to new lines, spaces and missing or redundant bracket(s).
Otherwise segmentation fault occur.

5.1.5 Output

The program output includes 3 files:

1. experiment_title.txt: In this file, the results of our model are saved. An example is
presented below:

### Test_MM1K_as_map_medium_load2

### Date: Sun Jan 27 21:45:05 2019

# Number of servers: 1

# Buffer size: 4

# Total size: 5

# Number of arrival phases: 2

# Maximal batch size: 1

# Arrival matrices: Array(0..1, [ Matrix(2,2, [-0.4,0],0,-0.4]]), Matrix

(2,2, [0.2,0],0,0.4]])]

# Number of service phases: 2

# Phase-type matrix: Matrix(2,2,[[-0.8,0],[0,-0.8]])

# Phase-type vector: Vector[row](2, [0.5,0.5])

# Reentry probability: 0

# Impatience rate: 0
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### Solution method

# Power method

# Precision: 1e-07

### Results

#

# Index 0: queue size distribution

# Index 1: arrival phase distribution

# Index 2: busy servers distribution

# Index 3: service phase 0 distribution

# Index 4: service phase 1 distribution

#

### Agregate load statistics

# Customer arrival rate: 0.400000

# Customer service rate: 0.800000

# Offered load: 0.500000

### Computations of flows

# Accepted throughput: 0.399707

# Lost throughput: 0.000293

# Served throughput: 0.199853

# Reneged throughput: 0.000000

### Queue size statistics

# Average queue size: 0.331868

# Moment 2 queue size: 0.545786

# Variance queue size: 0.435650

### Performance Metrics

# Expected number of servers: 0.249817

# Expected waiting time: 0.205278

### Queue size distribution (n,p_n)

0 0.750183

1 0.187546

2 0.046886

3 0.011722

4 0.002930

5 0.000733

### Number of busy server distribution (c,p_c)

0 0.750183

1 0.249817

### Arrival phase distribution (f,p_f)

1 1.000000

2 0.000000
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### Service phase distribution 0 (c,p_c)

0 0.875092

1 0.124908

### Service phase distribution 1 (c,p_c)

0 0.875092

1 0.124908

Listing 5.8: experiment_title.txt

2. experiment_title.dat: In this file, the stationary distribution is saved. An example
is presented below:

discrete [ 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 16.0000

17.0000 18.0000 19.0000 20.0000 21.0000 ] [ 0.7502 0.0000 0.0938

0.0000 0.0938 0.0000 0.0234 0.0000 0.0234 0.0000 0.0059 0.0000 0.0059

0.0000 0.0015 0.0000 0.0015 0.0000 0.0004 0.0000 0.0004 0.0000 ]

Listing 5.9: experiment_title.dat

3. experiment_title_maple.dat: In this file, the stationary distribution is saved in maple
format. An example is presented below:

Vector( [ 7.501833e-01,

0.000000e+00,

9.377288e-02,

0.000000e+00,

9.377288e-02,

0.000000e+00,

2.344319e-02,

0.000000e+00,

2.344319e-02,

0.000000e+00,

5.860783e-03,

0.000000e+00,

5.860783e-03,

0.000000e+00,

1.465189e-03,

0.000000e+00,

1.465189e-03,

0.000000e+00,

3.662953e-04,

0.000000e+00,

3.662953e-04,

0.000000e+00
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] );

Listing 5.10: experiment_title_maple.dat

In the experiment_title.txt file, we present the experiment input parameter, we then
define indices for queue size, arrival phase, busy servers and service phases distributions.
Indices help to plot the results using gnuplot.

5.2 Validation of the implementation

Complex models such that BMAP/PH/N + c do not have analytical solutions, thus making
it difficult to evaluate the results. To validate complex models, we present the following ways:

• We define and verify the conservation laws as described in Section 3.4.2.

• We check if the equations (3.20), (3.24) and (3.22) defined in Sections 3.4.5, 3.4.7 and
3.4.6 respectively are satisfied. The summation of service phase probabilities is equal
to 1, as expected (see Section 3.4.8).

• We define and test three types of load. Let us first define the load factor below: For
average arrival rate λ and service rate µ, the system utilization or load is defined by ρ:

ρ =
λ

cµ
(5.7)

Load types are explained below:

– critical load, when ρ = 1. Using critical load, we have simple mathematical
formulas and we check everything at the same time.

– overload, when ρ > 1. In overload case, the buffer size is large. Customers are
more than system capacity (or overcome system capacity) and the system can not
handle the load.

– underload, when ρ < 1. Customers are fewer than the system capacity. Hence,
system can handle the load. The system has a relatively small number of customers
and, consequently, we expect that the probability that customers will be rejected
is low. In other words, the loss probability should be zero or very small.

• To validate all the code parts, we first simulate simpler queueing system with known
explicit closed functions and compare the results with the theoretical ones. Many cases
are used for benchmarking.

Ideally, all of the above validation ways should be satisfied in order for the model results
to be confirmed.

5.2.1 The modeler tricks

The exponential assumption is presented in most models for which an analytical solution
is known. For this reason, we describe below how to emulate exponential distributions or
Poisson proccess from BMAP format for the arrival process and Ph − type format for the
service process. We then discuss the large buffer principle.
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5.2.1.1 Service Process

For services, the Exponential distribution is achieved the following way:

• choose the matrix T as: diag(−µ, ...,−µ)

• pick any distribution β.

With such parameters, the service is exponential with parameter µ, and the probability
that a given service in phase i is βi. Different phase services are actually i.i.d with this
distribution. Hence, in a C-server queue, the joint probability distribution of the number of
servers in the different phases is given by:

P (~s) = p(|~s|)

(

~s

s1, ..., sc

) S
∏

j=1

β
sj
j (5.8)

5.2.1.2 Arrival Process

For arrivals, we choose D1 = λP and D0 = −λI , where P is any ergodic probability transition
matrix. In that case, the arrival process is Poisson with rate λ and the stationary distribution
of the arrival phase is the stationary distribution of P .

5.2.1.3 The large buffer principle

The usual behavior of an exponential queueing system is that the probability distribution
of the number of customers decreases exponentially as a function of this number. As a
consequence, as the size N of the buffer grows, the distribution of the queue with finite buffer
N and that of the same queue with infinite buffer ∞ get closer and closer. In practice, we
can still use the marmoteCore-Q for the infinite cases, using the formulas of queueing theory
for N =∞ as an approximation of the numerical results for N finite but large.

We show below some numerical cases and evaluate our results against theoretical ones,
which are based on the closed-formulas in the literature. We implement the well-known closed
formulas in maple and compare them with marmoteCore-Q results. For more details on these
formulas the reader can refer to AppendixF. Maple output files have the same format as we
present in Section 5.1.5 so that they are comparable with a simple diff command.

5.2.2 Numerical test-cases

Using the above "tricks" we test the following cases and give an example for each one:

1. Basic markov queues M/M/1/K and M/M/1. An example of M/M/1 with high load
(µ > λ) is described below. The input parameters are:

• Poisson process with arrival rate with λ = 2.5, the maximum number of batch
size is K = 1 and D0, D1 are scalars as described in Section 5.2.1.2. Hence, for
λ = 2.5 we have: D0 = −2.5 and D1 = 2.5

• Poisson process with service rate µ = 3 and the matrix T and the vector β are
scalars since there is only one phase. Hence, for µ = 3 we have: T = −3 and β = 1
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• buffer size is very large since the system capacity is infinite. For instance, N =

10000.

Some of the output results are presented below:

### Agregate load statistics

# Customer arrival rate: 2.500000

# Customer service rate: 3.000000

# Offered load: 0.833333

### Computations of flows

# Accepted throughput: 2.500000

# Lost throughput: 0.000000

# Served throughput: 2.500000

# Reneged throughput: 0.000000

### Number of busy server distribution (c,p_c)

0 0.166667

1 0.833333

### Arrival phase distribution (f,p_f)

1 1.000000

### Service phase distribution 0 (c,p_c)

0 0.166667

1 0.833333

Observe that the results satisfy the equations (3.22), (3.2), (3.3), (3.20) and (3.4). The
summation of service phase probabilities is equal to 1, as expected (see Section 3.4.8).
In this case, even the system is underload (offered load = 0.833333<1) and the lost
throughput is zero as expected. Finally, we compare the empirical results with the ones
of theoretical closed-form formulas and verify that they match. For more details on
theoretical closed-form formulas, the reader can refer to Appendix F1.

2. Multi-server, impatience and reentering: M/M/C/N with and without impatience and
reentry. In this category, we have many servers and customers that may abandon the
system and others that try again to be served. We analyze below M/M/C/N with
impatience. The input parameters are presented below:

• Poisson arrival process can be expressed as Markovian Arrival Process (MAP). In
this case, maximum batch size K = 1 and maximum number of arrival phases
A > 1. Hence, the matrices D0 and D1 for λ = 4 are defined as follows:

D0 =







−4 0 0

0 −4 0

0 0 −4






and D1 =







2 0 2

0 0 4

2 2 0







• Exponential service time distribution can be expressed as follows:
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T =











−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











and β =
[

0.1 0.2 0.3 0.4
]

• buffer size = 8, number of servers = 4 and impatience rate = 1.

Some of the output results are demonstrated below:

### Agregate load statistics

# Customer arrival rate: 4.000000

# Customer service rate: 1.000000

# Offered load: 1.000000

### Computations of flows

# Accepted throughput: 3.997433

# Lost throughput: 0.002567

# Served throughput: 3.218319

# Reneged throughput: 0.779114

### Number of busy server distribution (c,p_c)

0 0.018321

1 0.073283

2 0.146565

3 0.195420

4 0.566411

### Arrival phase distribution (f,p_f)

1 0.400000

2 0.200000

3 0.400000

### Service phase distribution 0 (c,p_c)

0 0.676996

1 0.270712

2 0.049727

3 0.002508

4 0.000057

### Service phase distribution 1 (c,p_c)

0 0.523755

1 0.325491

2 0.127687

3 0.022278

4 0.000789

Observe that the system is at critical load (ρ = 1) but the lost throughput is larger than
zero. In this case, customers are impatience with rate 1. The equations (3.2), (3.3) and,
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(3.4), (3.20), (3.24) are satisfied. The summation of each service phase probabilities
is equal to 1, as expected. For more details on theoretical closed-form formulas for
M/M/C/N , the reader can refer to Appendix F2.

3. Phase-type service: M/PH/1 and M/PH/∞. In order to simulate the queueing model
M/PH/∞, we need to give to marmoteCore-Q tool a finite number of servers and buffer
capacity. An example for M/PH/∞ can be M/PH/50/1000 with number of servers
c = 50 and buffer size N = 1000 and is demonstrated below:

• Arrival matrices: D0 = −1 and D1 = 1

• Phase-type matrix & phase-type vector: T =







−10 10 0

0.4 −1 0.1

0 0.1 −0.1






and β =

[

0.4 0.5 0.1
]

.

Some of the output results are demonstrated below:

### Agregate load statistics

# Customer arrival rate: 1.000000

# Customer service rate: 0.195312

# Offered load: 0.102400

### Computations of flows

# Accepted throughput: 1.000000

# Lost throughput: 0.000000

# Served throughput: 0.999873

# Reneged throughput: 0.000000

### Arrival phase distribution (f,p_f)

1 1.000000

Observe that the equations (3.2), (3.3) and (3.4) are not fully satisfied. However, the
difference is 127× 10−6 which can be acceptable, given that the stationary distribution
is approximately computed. Another explanation could be that we cannot pass as an
input to the program infinite number of servers and buffer size. Hence, for models with
infinite number of servers and/or buffer size, it is expected to have numerical errors
in scale of 10−6. Finally, comparing the empirical results with the ones of theoretical
closed-form formulas and we conclude that the results are satisfactory.

4. Batch arrivals: MX/M/1 and MX/M/∞ An example with 2 batches and number of
servers c = 1 is discussed below. The input parameters are defined as follows:

• Arrival process is a Poisson process with 2 batches and arrival rate λ = 0.4 and
the matrices are: D0 = −0.4, D1 = 0.2 and D2 = 0.2

• Poisson service process with service rate µ = 0.8

• buffer size N = 1000

Some of the output results are presented below:
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### Agregate load statistics

# Customer arrival rate: 0.600000

# Customer service rate: 0.800000

# Offered load: 0.750000

### Computations of flows

# Accepted throughput: 0.600000

# Lost throughput: 0.000000

# Served throughput: 0.600000

# Reneged throughput: 0.000000

### Number of busy server distribution (c,p_c)

0 0.250000

1 0.750000

### Arrival phase distribution (f,p_f)

1 1.000000

### Service phase distribution 0 (c,p_c)

0 0.250000

1 0.750000

Observe that the results satisfy the equations (3.22), (3.2), (3.3), (3.20) and (3.4). The
summation of service phase probabilities is equal to 1, as expected. For more details
on theoretical closed-form formulas for MX/M/1, the reader can refer to Appendix F3.
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Conclusions and Future Work

6.1 Conclusions

In this dissertation, we presented new models for solar power and real data center clusters.
For the last purpose, two different types of data center clusters workload were characterized
in detail and a tool was proposed, which simulates both simple queueing models, with known
analytical solutions, and complex ones.

Our initial concern was enabling data centers to consume all their electricity from re-
newable energy sources e.g. solar, wind and water. An obvious challenge associated with
renewable energy sources is the unreliability of supply. Renewable energy often relies on
the weather for its source of power. For instance, hydrogenerators need rain to fill dams
for flowing water supply, wind turbines need wind to turn their blades and solar collectors
need clear skies and sunshine to collect heat and produce electricity. When these resources
are unavailable so is the potential to generate energy from them. This can be unpredictable
and inconsistent. Consequently, a promising research direction is to construct models that
accurately predict the energy supply subject to the weather conditions. In this thesis, we
focused on solar renewable energy which is clean, safe and cheap and is abundant in many
locations. We developed a stochastic model that models the solar irradiance at the surface
of the Earth and a second one that, given the photovoltaic output, models the photovoltaic
output current. We then compared both models with the on-off power source model devel-
oped by Miozzo et al. [Miozzo 2014] and concluded that our solar model at the surface of
the Earth outperformed the other models. We finally validated both models with real solar
irradiance and we concluded that modeling the solar irradiance is more efficient and gives
more accurate results compared to the actual solar traces. Our model captures the multiscale
correlations that are inherently present in the solar irradiance and the time-scales that are
reproduced by the model performs well. We finally concluded that our stochastic model is
suitable for small scale cases and can be used in modern domains such as ITC applications.

The other issue that we addressed in this thesis was the capacity planning provision for
data center clusters. A major factor which plays an important role in making the capacity
planning is the data center cluster’s workload. Based on the data center cluster clients’ de-
mands for both data space and reliable access to their data, the data center cluster should
adapt its capacity. Hence, a model for data center cluster workload forecasting is necessary.
We studied that, in such systems, executed jobs are submitted by users and these jobs may
consist of more than one task. Some jobs may abandon the system before starting to be
served and some others may be executed more than once. A first step towards capturing the
above features is to propose a model that can potentially predict the data center clusters’
workload. This model overcomes the literature stereotypes related to the exponential as-
sumptions for arrival and service process since it does not correspond to the real ones. It is a
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multi-server queueing model with the arrival process determined as Batch Markovian Arrival
Process (BMAP) and the service times fitted to a phase-type distribution. Impatient clients’
abandonments and users’ resubmissions are taken into account as well. To our knowledge,
this model has not been analyzed in the literature. We conclude that our queueing model for
real data center clusters captures the features of real data center clusters.

To support our model assumptions, we analyzed current capacity, characterizing two dif-
ferent types of workloads; the Google one which serves Google employees (or Google internal
needs) and the scientific one which is collected by Nef cluster, the data center cluster of
research center of French National Institute for Computer Science and Automation (Inria) in
Sophia Antipolis. We present the characteristics of the traces and the statistics on task level.
We then characterized, in both traces, the arrival and service process, the abandonments and
waiting times. We concluded that in both cases, the abandonment process can fit to a Burr
distribution, with a Weibull and a exponential distribution to give us acceptable results. It is
worth pointing out that the customers wait less on average in the Google cluster in compari-
son to the Nef cluster. Although this could be explained by the fact that the machines in the
two clusters differ in terms of computing power and in terms of hardware, this factor is hardly
enough to account for such a high difference in the number of machines that correspond to
the user; the number of machines per user is around 13 in the Google traces case, whereas
in the Nef traces case, it is around 0.5 machines per user, namely twenty six times less than
in the Google traces case. As far as the service time is concerned, we showed that, in both
cases, the service time can be fitted to a phase-type distribution. We also conclude that the
execution type has an impact on the service time. In the Google cluster case, the minimum
average service time is for when jobs failed, whereas in the Nef cluster case, the minimum one
is for the jobs which have been successfully executed. Moreover, in both traces, we observed
correlations in the interarrival times and different range of batch sizes. Hence, we showed
that a Batch Markov Arrival Process can be considered to capture the correlations observed
in real workload submissions.

Another issue concerns the model’s extraction parameters which will be used for its sim-
ulation. In such systems, the large number of servers is a very important problem and
influences the problem complexity. Essentially, the smaller the number of system servers the
better. Another conclusion that can be reached is that in order to overcome the technical
challenges of the simulation we needed to find subclusters that can be representative of the
whole clusters in order to simulate our model.

Finally, we believe that the scientific queueing community needed a tool for queueing
simulations, even for complex queues, which does not make use of explicit closed-formulas
and which gives correct and accurate results in a faster way. For this reason, we developed the
marmoteCore-Q tool, using the marmoteCore platform[Jean-Marie 2017]. We used this tool
to validate our BMAP/PH/c model with abandonments and resubmissions for data center
clusters. Moreover, with the marmoteCore-Q tool one can simulate queues with known
analytical results such as the M/M/1 queue and its finite capacity version, the M/M/c/K

queue, the M/PH/1 and M/PH/∞ queues, the MX/M/1 and MX/M/∞ queues, etc.
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6.2 Future Work

Solar Power Perspectives.

Concerning the solar power part of this thesis, we proposed a 4-state semi-Markov
model for solar irradiance for the city of Los Angeles. A perspective can be to investigate
whether the same 4-state semi-Markov model can be tuned and validated using data related
to another city. Each state in this model refers to a given weather condition. Obviously, the
empirical distributions of sojourn times and values in each state from the retrieved traces
will be changed for different regions. The questions if this model can be universal and how
much the same geographical morphology even in the same range of latitude and longtitute
can change the results are still open. Another open question is in which region is better to
locate a data center cluster. This question can be replied after comparing the results of the
most sunny regions and estimate how much energy we have per photovoltaic panel in short
time scale.

Data center cluster Perspectives.

Regarding the queueing model for data center clusters, we saw that, for simplicity, as
a first step we chose to fit the abandonment process with the exponential distribution,
even though the best fit was the Burr one. Hence, a next step could be to include the
abandonment as Burr distribution in our model and propose numerical analytical solutions
for the impatient process. Extended this work by simulating our queueing model, using
marmoteCore-Q and evaluate the results.

Another direction that could be explored is the development of a workload generator
for real data center clusters based on our proposed queueing model. Research devoted to
capacity provision, sheduling problems, cooling, etc needs actual data center cluster traces
to be validated. Providing traces to the researchers is a very complicated and difficult task
due to the privacy and security issues which have been prevalent during the past years all
around the world. Therefore, being able to generate real workload for a data center would
be extremely valuable to the scientific data center community.

Another perspective is the proposition of a fluid model for the real data center cluster.
In reality, the arrival process in real data center clusters shows non-stationarity, since the
system does not empty. The only time that the system is empty is when the data center
cluster is launched for the first time or after maintenance, in which case all the servers are
turned off for a given period. The advantage of the fluid models is that they are not sensitive
to the arrival phase approximation and, thus, there is no need to assume stationarity.

Another perspective is the proposition of a data center simulator that integrates precise
energy provisioning and distribution models when connected to multiple sources (e.g. a
grid and a local PV array). Despite the fact that data center simulators exist (see Simgrid
[Casanova 2014]), their power models are related to the server and network consumption, not
the provisioning and the distribution aspects.

In real data center clusters, the phenomena of processor-sharing has been observed in
practice. Thus, queueing models such as Processor-Sharing (PS) scheduling policies can be
proposed to model real data center clusters and their energy consumption of processors.
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As far as the workload characterization is concerned, we need to parameterize both Google
and Nef clusters. Thus, open questions like the maximum number of machines and the
maximum number of tasks served at the same time that permits us to overcome the technical
challenges and simulate our model, needs more investigation. Furthermore, as for the Nef
cluster, we are going to extract representative subclusters that can be used to our future
numerical analysis, as discussed in Section 4.8.

Combining our solar power model and our queueing model for real data center clusters, it
can be helpful to answer open research questions pertaining to the optimisation of the data
center’s operations. Questions such as optimising the capacity planning decisions, workload
scheduling and finding the optimal buying price for electricity according to demands and
geographical location. These models can be extended to solve different problems regarding
other data center subsystems. In particular, there are open research issues about improving
equipment or the cooling infrastructure.

Finally, open research topics related to the green data center clusters can be if the sched-
ulers compatible with the intermittent nature of a photovoltaic power sources, what are the
theoretical bounds that prevent to power an existing datacenter using photovoltaic arrays,
coupled or not with power storage systems, how to size a photovoltaic array on top of an
existing data center depending on the targeted environmental and economic objectives.



A. k-means Clustering Algorithm 105

Appendix

A k-means Clustering Algorithm

A1 Description

Given a set of observations (x1, x2, ..., xn), where each observation is a d-dimensional real
vector, k-means clustering aims to partition the n observations into k sets S = {S1, S2, ...,
Sk} so as to minimize the within-cluster sum of squares:

n
∑

i=0

min
µj∈S

(||xi − µj||
2) (A1)

where µj is the mean of the samples in the cluster and so-called "centroids".

A2 The Algorithm

The general idea about k-means algorithm is presented below:

Algorithm 2 k-means algorithm

Input: Dataset
1. Place k points into the space represented by the objects that are being clustered. These
points represent initial group centroids.
2. Assign each object to the group that has the closest centroid.
3. When all objects have been assigned, recalculate the positions of the k centroids.
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of
the objects into groups from which the metric to be minimized can be calculated.
Result: optimal k, k-clusters

A3 Davies-Bouldin Index

The Davies-Bouldin Index is a metric to define the optimal k. The Davies-Bouldin criterion
is based on a ratio of within-cluster and between cluster distances. It is defined as:

DB =
1

k
∗

k
∑

i=1

max
j 6=i

Di,j (A2)

where, Di,j =
d̄i+d̄j
di,j

. d̄i is the mean distance between the centroid of the ith cluster and each

point in the ith cluster. d̄j is the mean distance between the centroid of the jth cluster and
each point in the jth cluster. di,j is the Euclidean distance between the jth and ith centroids
of corresponding clusters.

The smallest Davies-Doublin index value (Di,j) represents the optimal clustering solution
and the maximum value the worst one.
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B Autocorrelation Function

Suppose that yt is a stochastic process, the autocorrelation function (ACF) measures the
correlation between yt and yt+k, where k = [0, ...,K], k ∈ Z.

The autocorrelation for lag k is:

rk =
ck
c0
, (B1)

where

• ck = 1
T

∑T−k
t=1 (yt − ȳ)(yt+k − ȳ)

• c0 is the sample variance of the time series.

The estimated standard error (SE) of the autocorrelation at lag k > q, where q is the lag
is beyond which the theoretical ACF is effectively 0, defined as:

SE(rk) =

√

√

√

√

1

T
(1 + 2

q
∑

j=1

r2j ). (B2)

The standard error reduces to 1√
T

in case of completely random series.

C Periodogram

The periodogram is a nonparametric estimate of the power spectral density (PSD) of a
wide-sense stationary random process. The periodogram is the Fourier transform of the
biased estimate of the autocorrelation sequence. For a signal, xn with sample rate fs

1, the
periodogram is defined as:

ˆP (f) =
∆t

N
|

N−1
∑

n=0

xne
−i2πfn |2,−1/2∆t < f ≤ 1/2∆t (C1)

where ∆t is the sampling interval. For a one-sided periodogram, the values at all frequencies
except 0 and the Nyquist, 1/2∆t, are multiplied by 2 so that the total power is conserved.
For frequencies which are in sample, the periodogram is defined as:

P̂ω =
1

2πN
|

N−1
∑

n=0

xne
−iωn|2,−π < ω ≤ π. (C2)

The integral of the true PSD, P (f), over one period, 1/∆t for cyclical frequency, is equal to
the variance of the wide-sense stationary random process:

σ2 =

∫ −1
∆t

−1
∆t

P (f)df. (C3)

1The sample rate is the number of samples per unit time
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For normalized frequency 2π, the P (f) over one period is:

σ2 =

∫ 2π

−2π
P (f)df. (C4)

D Burr distribution

The Burr Type XII distribution or simply the Burr distribution [Burr 1942] is a continuous
probability distribution for a non-negative random variable.

The Burr distribution has probability density function:

f(x; c, k) = ck
xc−1

(1 + xc)k+1

and the cumulative distribution function:

F (x; c, k) = 1− (1 + xc)−k

The complementary cumulative distribution function is defined as:

F̄ (x; c, k) = 1− F (x) = (1 + xc)−k.

For c = 1, the Burr distribution becomes the Pareto Type II (Lomax) 2. The Burr
distribution has mean:

µ1 = kB(
k − 1

c
, 1 +

1

c
),

where B() is the beta function 3 and variance:

V ar(X) = µ2
1 + µ2

where µ2 is the second moment of random variable X.

E marmoteCore-Q Installation Steps

We present below the marmoteCore-Q installatin steps:

1. Download and install marmoteCore from here

2. Replace the Makefile, which is provided by marmoteCore with the one in Listing 6.1

3. To compile the marmoteCore-Q, following the same instructions as presented in here.
Specifically,

• If marmoteCore was installed globally in directory MAR_DIR, do:

2The Pareto Type II (Lomax) has complementary cumulative distribution F̄ (x) =
(

1 + x
σ

)α

, x ≥ 0 and

σ > 0, α
3The beta function is defined by B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt.

http://marmotecore.gforge.inria.fr/dokuwiki/doku.php?id=dowloadinstall
http://marmotecore.gforge.inria.fr/dokuwiki/doku.php?id=dowloadinstall
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make MARMOTEDIR=MAR_DIR

• If marmoteCore was installed locally, do:

make Local=true MARMOTEDIR=MAR_DIR

4. Run the command ./marmoteCore-Q with the appropriate parameters as discussed in
Section 5.1.4.

# Choice of Marmote library: distrib/installed or development

ifdef DISTRIB

MARMOTEDIR=/usr/local/marmotecore

INCLUDEDIR=$(MARMOTEDIR)/include

else ifdef LOCAL

INCLUDEDIR=$(MARMOTEDIR)/include

else

MARMOTEDIR=../../../marmotecoredev

INCLUDEDIR=$(MARMOTEDIR)

endif

LIBDIR=$(MARMOTEDIR)/lib

# Flag for interaction with R

ifdef WITH_R

RFLAGS = -DWITH_R -I/usr/include/R -I/usr/lib64/R/library/Rcpp/include -I/usr

/lib64/R/library/RInside/include -L/usr/lib64/R/lib -lR -L/usr/lib64/R/

library/RInside/lib -lRInside -Wl,-rpath,/usr/lib64/R/library/RInside/lib

else

RFLAGS =

endif

# Choice of C compiler and options

ifeq ($(OS),Windows_NT)

CFLAGS += -std=gnu++11

endif

CPPCOMPILER = g++

CFLAGS += -std=gnu++11 -Wall -pedantic -g

VAL=valgrind --leak-check=full --show-leak-kinds=all

LIBRARIES=$(addprefix -l, MarmoteCore Xborne psi boost_thread

boost_filesystem)

APPLIS=bmap_f

all: $(APPLIS)
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%: %.cpp

$(CPPCOMPILER) $(CFLAGS) -I$(INCLUDEDIR) $^ -o $@ -L$(LIBDIR) $(

LIBRARIES)

clean:

/bin/rm $(APPLIS)

Listing 6.1: Makefile

F Queues

F1 M/M/1 queue

When services are exponential, there is a unique phase. However, this unique phase can be
represented with a phase space of arbitrary size, see Section 5.2.1.1. In the case where the
representation is with a single phase (S = 1), the vector describing services is either ~s = 0

(empty server) or ~s = 1 (busy server).

Using Pollaczek–Khinchine (PK) 4 formula, the probability generating function of N is:

Π(z) =
1− ρ

1− ρz
(F1)

In the following, the average queue size (including service), its second moment and its
variance for M/M/1 are defined:

E[N ] =
ρ

1− ρ
(F2)

E[N2] =
ρ

1− ρ
+

2ρ2

(1− ρ)2
(F3)

V ar[N ] =
ρ

(1− ρ)2
(F4)

The queue size distribution is known:

πn = (1− ρ)ρn, for every n ∈ N (F5)

4Pollaczek-Khinchine formula is L = ρ+ ρ2+λ2
∗V ar(S)

2(1−ρ)
, where λ is the arrival Poisson process, 1

µ
is the mean of

the service time distribution S, ρ = λ
µ

is the utilization, V ar(S) is the variance of the service time distribution
S.
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Using Little’s Law 5, the mean time in the system is:

E[T ] =
E[N ]

λ
=

1

µ− λ
(F6)

Next, the expected waiting time is:

E[W ] = E[T ]−
1

µ
=

ρ

µ− λ
(F7)

F2 M/M/C/N queue

As we mentioned in Section F1, when services and arrivals are exponential, there are a unique
phase for phase-type distribution and batch markovian arrival process (see Section 5.2.1.2)
respectively. Hence, the system can be modeled as a birth-death process using the following
respective arrival and service time:

λn = λ, if 0 ≤ n ≤ N − 1 (F8)

µn =

{

nµ, if 0 ≤ n ≤ c

cµ, if c ≤ n ≤ N
(F9)

The stationary distribution can be written as:

πn =











αn

n!
p0, if 0 ≤ n ≤ c

αn

cn−cc!
p0, if c ≤ n ≤ N

(F10)

where α := λ
µ

and

π0 =















(
c−1
∑

n=0

an

n!
+

ac

c!

1− ρN−c+1

1− ρ
)−1, if ρ 6= 1

(
c−1
∑

n=0

αn

n!
+

αc

c!
(N − c+ 1))−1, if ρ = 1

(F11)

The mean queue length is:

E[Q] =

N
∑

n=c+1

(n− c)πn (F12)

=

N
∑

n=c+1

(n− c)
αn

cn−cc!
π0

5Little’s Law is defined as: L = λ ∗W , where L is the average number of customers in a stationary system,
λ is the arrival rate and W is the average time that a customer spends in the system.
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=
π0ρc
c!

K
∑

n=c+1

(n− c)
ρn−c

cn−c

=
π0ρ

cα

c!

N
∑

n=c+1

(n− c)αn−c−1

=
π0ρ

cα

c!

K−c
∑

i=1

iαi−1

=
π0ρ

cα

c!

d

dα

(

N−c
∑

i=0

αi
)

=
π0ρ

cα

c!

(1− αN−c+1

1− α

)

E[Q] =
π0ρ

cα

c!(1 − a)2
[1− α(N−c+1) − (1− a)(N − c+ 1)α(N−c)] (F13)

The average number of customers in the system is:

E[N ] =
λ

µ
+ π0

ρ(cρ)c

(1− ρ)2c!
(F14)

The mean time in the system is:

E[T ] =
1

µ
+ π0

ρ(cρ)c

(1− ρ)2c!
(F15)

Next, the expected waiting time is:

E[W ] =
E[Q]

λ(1− πN )
=

π0ρ
cα[1 − α(N−c+1) − (1− α)(N − c+ 1)αN−c]

λ
(

1− αNπ0

cN−cc!

) (F16)

F3 MX/M/1 queue

In MX/M/1 queue, the customers arrive in batches in a Poisson process with parameter λ.
The balance equations of the MX/M/1 queue write as:

(λ+ µ)πn = λ
n−1
∑

k=0

πkpn−k + µπn+1, n ≤ 1 (F17)

λπ0 = µπ1 (F18)

Observe that with the convention π0 = 0, we can write
∑n

k=1 πkpn−k =
∑n

k=0 πkpn−k.
Let Π(z) = E(zN ) =

∑∞
n=0 πnz

n. From the balance equations we obtain:

(λ+ µ) ∗ (Π(z) − π0) = λ ∗

∞
∑

n=1

n
∑

k=0

πkpn−kz
n + µ ∗

1

z
(Π(z) − π0 − zπ1)
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(λ+ µ)Π(z)− µ ∗ π0 = λΠ(z)X ∗ (z) + µ ∗
1

z
(Π(z)− π0)

Π(z)(λ + µ− λX ∗ (z)−
µ

z
) = µπ0(1−

1

z
)

Π(z) =
µπ0(z − 1)

λz(1−X ∗ (z)) + µ(z − 1)
(F19)

We determine π0 by letting z → 1. With L’Hôpital rule, we get π0 = 1− λE[X
µ
] = 1− ρ

with the definition ρ := λEX
µ

. Then the problem solution can be expressed as:

Π(z) =
1− ρ

1− ρz

E[x]
1−X∗(z)

1−z

(F20)

. In this expression, the function

−→
X (z) :=

z

EX

1−X ∗ (z)

1− z
=

∞
∑

k=1

P(X ≤ k)

E(X)
zk (F21)

is a probability generating function: that of the "residual batch size".
The queue size moments are then obtained by differentiation:

E[N ] =
ρ

2

E[X2] + E[X]

E[X](1− ρ)
(F22)
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