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Introduction

Nanophotonic devices are components used to manipulate light, considered as an electro-
magnetic field, at the nanometric scale. They are tailored to accomplish specific tasks
such as guiding an incident wave with negligible loss, splitting it into several output ports,
converting a mode from an incoming waveguide into another mode of an outgoing waveg-
uide, etc. Nanophotonic devices are the basic components of the photonic integrated
circuits (PICs) used, for instance, in fiber optic communications, microscopy, biosensing
and even in the prospective research about photonic computing.

The design of nanophotonic devices involves many variables, both in terms of physical
properties of materials and geometry. As a result, more and more researchers are turning
to numerical optimization, which in principle makes it possible for engineer to achieve the
objectives described in the specifications in a shorter amount of time.

In the situation where the shapes to be determined are not intuitive, and therefore not
simply parameterized a priori, specific geometric or topological optimization methods
must be used. These numerical algorithms, initially developed in structural mechanics
and aeronautics, are now applicable to the optimization of micro and nanometric scale
components.

In this thesis, our primary goal was to set up a numerical framework for the systematic
determination of the design of nanophotonic components with optimized performances
based on geometrical methods of shape and topology optimization. Once implemented,
our research led us to two different mathematical studies:

1. The first one concerns the modeling of uncertainties preventing the proper func-
tioning of nanophotonic devices as well as the implementation of a method to take
these uncertainties into account in the optimization process in order to obtain robust
components. As a result, we have developed a method based on a gradient sampling
algorithm which makes it possible to obtain robust components with respect to un-
certainties over the incident wavelength or regarding the geometry of the produced
component, which is sensitive to the lithography and etching manufacturing process
variations.

2. The second one started as the optimization of the so-called “active” components
in which we tried to optimize the shape of heaters which, when activated, allow to
modify the materials properties by raising the temperature (Joule effect) and thus
the behavior of the light inside a nanophotonic component beneath the heaters.
This study allowed us to see that the underlying mathematical analysis was very
rich and could be applied in a much more interesting way to the optimization of
regions supporting different boundary conditions in mechanical devices.

Before moving to the summary of each chapter we would like to point out that an Index
is supplied at the end of the document where the reader will find the definitions of the
physical and mathematical concepts used throughout the text. The first occurrence of
important keywords is also emphasized in bold in the text.
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INTRODUCTION

Chapter I: The physics behind photonics

The first chapter is an introduction to the fields of electromagnetism and nanopho-
tonics, both from a physical and a mathematical point of views. We begin with the
presentation of the amagnetic time-harmonic vector wave equation with no sources

∇×∇× E− k2n2E = 0,

whose form is derived from the Maxwell equations and which describes the physical behav-
ior of the electric vector field E at a givenwavelength λ. This equation is fundamental
in linear optics since it allows to study the behavior of light as an electromagnetic wave.
The magnetic field H may be recovered from E using the Maxwell-Faraday equation

H = ∇× E/(iωµ0)

where ω = 2πc/λ with µ0 and c constant physical values.

In the previous equation, n represents the optical index of the materials. By using
materials with different optical indices, it is possible to produce waveguides, that is to
say invariant structures in the z direction that allow for the confinement and propagation
of light without loss; see Fig. A(a). The understanding of these waveguides is a key element
in the study of nanophotonic components since they are the basic bricks connecting them
together. In particular, the study of guided modes is of utter importance since they
describes the state of the light which propagates within the waveguides.

(a) Propagation of a guided mode
inside a waveguide

(b) A perturbation of the waveguide’s geometry results in
a modification of the decomposition on the output modes

Figure A: A guided mode injected inside a waveguide propagates without loss. If
the optical indices are no longer invariant in the z direction then the decomposition
of the electric field on the guided modes is modified.

More precisely we can show that any electric field propagating inside a z-invariant waveg-
uide may be decomposed using 2N complex numbers αj under the form:

E(x, y, z) =
N∑
j=1

αjEj(x, y)eiβjz︸ ︷︷ ︸
forward

+α−jE−j(x, y)e−iβjz︸ ︷︷ ︸
backward

,

where the guided modes Ej are eigenvectors associated with the time-harmonic vector
wave equation when looking for solutions of the form E(x, y, z) = E(x, y)eiβz with an
unknown propagation constant β. The sign in front of the modes number and co-
efficients is used to distinguish forward and backward propagating modes along the z
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INTRODUCTION

direction; see Fig. A(b) for an example of an electric field decomposed over two guided
modes. Other concepts related to guided modes are presented such as the TE and TM
polarizations used extensively by physicists and the orthogonality relations which
allow to express the coefficients αj in the previous decomposition as:

αj = 1
4

∫
Γ

(
E×H∗j + H× E∗j

)
· n ds,

where Γ is the 2d cross section in the (x, y) plane of the waveguide.

A particular attention is devoted to the derivation of the appropriate boundary condi-
tions which must be added to the time-harmonic vector wave equation in order to inject
a particular guided mode inside a waveguide. The conclusion of this short study is the
use of a non-local Dirichlet-to-Neumann condition which imposes the value of 1 to
one coefficient αj associated with a forward mode, while fixing the other ones to 0 except
for the backward propagating modes whose coefficients are left free.

The nanophotonic components of interest in this thesis are then presented as silicon-
based nanometric structures connected to each other through waveguides. Once stim-
ulated by a guided mode of an input waveguide, the component redirects part of the
light into the output waveguides so that the outgoing electric field contained inside each
of them is controlled; the decomposition of E on the guided modes on each waveguide
is the desired one. To characterize the performance of a nanophotonic component we
mainly consider the power carried by a mode Ej, defined as |αj|2 and introduce the
scattering matrix of a component.

This first chapter also presents the mathematical tools underlying the study of electro-
magnetic fields. In particular, the Sobolev spaces H(curl) and H(div) are presented,
thus allowing to obtain the variational formulation of the time-harmonic vector wave
equation. The natural boundary conditions verified by the electric field at the interfaces
between materials with different optical indices are expressed with the help of the trace
theorems attached to the previous spaces: the tangential components n × E × n of the
electric field is well-defined on such interfaces, as well as the product n2E ·n between the
normal component of E and the squared optical index; see Fig. B for an illustration.

(a) Real part of Ex (first tan-
gential component)

(b) Real part of Ey (normal
component)

(c) Real part of Ez (second
tangential component)

Figure B: Behavior of the electric field at the interface between two materials.

The chapter eventually present the two numerical methods which are extensively used
throughout this thesis to solve the time-harmonic vector wave equation.
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INTRODUCTION

Chapter II: Geometric shape optimization

The second chapter focuses on geometrical shape optimization using the boundary
variation method of Hadamard and the level-set framework. The goal of this chapter is to
explain a way to find a shape Ω ⊂ Rd which minimizes or maximizes a shape-dependent
functional J (Ω) using a gradient descent algorithm.

To define the gradient of such functional we will need to study the sensitivity of J (Ω)
when a small perturbation is applied on Ω. In this thesis we relies on Hadamard’s
boundary variation method which introduces the concept of shape derivative: a
shape Ω2 is said to be a small perturbation of another shape Ω1 if we can transform one
into to the other using a small vector field θ : Rd → Rd. Mathematically it reads

Ω2 = (Id + θ)(Ω1) = {x + θ(x),x ∈ Ω1}.

(a) An initial shape Ω1 (b) A vector field θ (c) Modification of Ω1 into
(Id + θ)(Ω1) = Ω2

Figure C: Example of deformation of a shape according to Hadamard’s method.

The sensitivity of J (Ω) with respect to the domain Ω is defined as the derivative of the
mapping θ 7→ J ((Id + θ)(Ω)) at θ = 0. Namely, the following Taylor expansion holds:

J ((Id + θ)(Ω)) = J (Ω) + J ′(Ω)(θ)︸ ︷︷ ︸
shape derivative

+ o(θ).

Under mild assumptions on the considered shape functional J (Ω), it turns out that most
shape derivatives used in practice are of the form

J ′(Ω)(θ) =
∫
∂Ω
θ · nVΩ ds,

where VΩ : ∂Ω→ R is a scalar field depending on the considered problem. In other words
the sensitivity of J (Ω) with respect to a deformation θ only depends on the normal
component of the vector field θ on the border of the shape ∂Ω. With this result in mind
it follows that:

J ((Id + δVΩn)(Ω)) = J (Ω) +
∫
∂Ω
|VΩ|2 ds+ o(δ),

and so the maximization of J can be achieved by calculating iteratively VΩ and performing
the modification of Ω into (Id + δVΩn)(Ω) using a small scalar value δ.

Naturally, the mathematical determination of the scalar field VΩ is not a trivial task. Even
though most shape derivative may be found by means of Céa’s method, we explain that
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INTRODUCTION

this technique must be applied with care if one does not want to end up with a wrong
expression of the derivative J ′(Ω)(θ). This technical point can be understood with the
help of the concepts of Eulerian and Lagrangian derivatives. In a nutshell these two
derivatives are used when dealing with partial differential equations (PDE) constrained
functionals such as the one considered in the next chapters. The potential difficulty with
Céa’s method is that it essentially relies on the existence of the Eulerian derivative while
the latter may not exist if the solution to the considered PDE does not enjoy sufficient
regularity on the border of the shape. Two examples of shape optimization problems
where this lack of smoothness occurs are considered in the Chapters III and V.

The second part of this chapter concerns the numerical method used to represent and de-
form shapes. To achieve these goals, we consider the level-set method which represents
a given shape Ω ⊂ Rd by means of a function φ : Rd → R such that ∂Ω is given by the
zero level-set of φ, or more precisely that

Ω = {x, φ(x) < 0} and ∂Ω = {x, φ(x) = 0}.

(a) A two-dimensional shape (b) A level-set function representing the shape in (a)

Figure D: A shape together with one of its level-set representations.

This representation has been proved to be useful in shape optimization since finding a
level-set representation of the deformed shape (Id + VΩn)(Ω) is found as the solution at
t = 1 to the following Hamilton-Jacobi equation:

∂tψ(x, t) + VΩ(x)|∇ψ(x, t)| = 0,

with the initial condition ψ(x, 0) = φ(x).

We conclude this chapter with several important details concerning the numerical imple-
mentation of the gradient descent algorithm, such as the velocity extension method,
and we provide a general pseudo-code to implement a shape optimization algorithm using
Hadamard’s method and a level-set framework.

Chapter III: Optimal design of photonic components

This chapter applies the information gathered in the two previous chapters to the opti-
mization of some classical nanophotonic components. At first, a short review of the state
of the art methods in shape and topology optimization of nanophotonic components is
provided, explaining in particular binarization- and density-based methods.

x/xvi



INTRODUCTION

We then present the general optimization problem considered in most of this thesis: we
are interested in the maximization of the power carried by a guided mode (E ,H) on a
cross section Γout of an outgoing waveguide when injecting light as a guided mode in an
other (possibly the same) waveguide. This amounts to maximize the following figure of
merit

J (Ω) =
∣∣∣∣14
∫

Γout
EΩ ×H∗ + HΩ × E∗ ds

∣∣∣∣2 ,
where EΩ is the solution to the time-harmonic vector wave equation using the Dirichlet-
to-Neumann boundary condition for the injection of the light and considering an optical
index nΩ which depends on the shape and the underlying repartition of the materials
within the design domain. Recall that the magnetic field HΩ is derived from EΩ via the
Maxwell-Faraday equation.

We then move on to the calculation of the shape derivative associated with J (Ω) and we
describe how the resulting formula may be adapted to obtain planar components, that
is to say shapes that are invariant in the y-direction, which is a prerequisite for being
able to produce the nanophotonic component through an etching process. As explained
in the first chapter the electric field is not fully continuous at the interface between two
materials. This notably means that E lacks regularity on ∂Ω resulting in the non-existence
of the Eulerian derivative associated with E and therefore that we have to be careful in
the application of the formal method of Céa or during the rigorous proof of the shape
derivative.

This lack of continuity of the normal component of E also raises difficulties when com-
puting the shape derivative numerically. To alleviate this issue we propose an index
smoothing method where we replace the exact optical index with a smoothed coun-
terpart obtained by convolution of nΩ with a small gaussian, leading to a smooth optical
index and thus to a fully-continuous electric field on ∂Ω. This approximation is proved
to be consistent, simplifies the simulation of the electric field using the Finite Element
Method as it allows to have a constant mesh during the optimization process and justi-
fies the possibility of evaluating E on ∂Ω as required by J ′(Ω) using a Finite Difference
Method which is only defined on a Cartesian grid that does not coincide with ∂Ω .

(a) A ninety degrees bend
which redirects the propagation
direction of the light

(b) A power divider split-
ting equally the input
power in the two top
output waveguides

(c) A mode converter where the
input guided mode is converted
into an other mode in the top
output waveguide

Figure E: A collection of nanophotonic devices optimized in Chapter III.

The chapter continues with the presentation of many numerical results of our shape opti-
mized nanophotonic devices. Some designs resulting from this study are shown in Fig. E.
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INTRODUCTION

The last section of this chapter finally presents an application of these methods to the
optimization of multi-level devices and the application of this new methodology to
obtain efficient polarization rotators. The idea here is to partially release the constraint
that the optimized devices must be y-invariant and to authorize the shape to be composed
of several layers stacked on top of each other.

This introduce a new constraint: for mechanical stability, each layer – represented by a
two dimensional shape Ω̂i for i from 1 to n` – must be located entirely above the lower
layers, meaning that the shapes must verify Ω̂1 ⊂ . . . ⊂ Ω̂n` . To find shapes which respect
this constraint we propose a projection-based algorithm and we discuss its limitations.
We end up with a short explanation about another method to enforce this constraint
which is not yet numerically implemented but which should, in theory, solve the problems
encountered using the projection method.

Figure F: A two-level polarization rotator converting an input guided mode with a
TE polarization mode into a TM polarized one.

Chapter IV: Multi-objective problems and robustness to environ-
mental uncertainties

In this chapter we present the numerical method developed during this thesis to find
shapes which are robust to environmental uncertainties.

We first discuss the treatment of multi-objective shape optimization problems in which
the goal is to simultaneously optimize several objectives functions Ji(Ω) and for which it
is desirable that each of the Ji perform equally well. Mathematically it means that we
are interested in solving problems of the form:

max
Ω

min
i=1,...,N

Ji(Ω).

Such problems are not easy to handle since it involves a min operator which is not differ-
entiable. Moreover, numerically, when it can be computed, the gradient of the minimum
will be equal to that of one of the Ji resulting in numerical oscillations since maximizing
only one objective may degrade the values of the other ones. To deal with this problem,
we then suggest to replace the gradient descent algorithm with a gradient sampling
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INTRODUCTION

one. This method cleverly considers all the “shape gradients” vector fields θi that indi-
vidually maximize each Ji(Ω) and searches for a compromise vector field θ as a convex
combination (a “sampling”) of the θi which maximizes the minimum of the first-order
Taylor expansion of all the Ji(Ω). In other words we search for the solution of

max
θ∈conv({θi}i)

min
i=1,...,N

Ji(Ω) + J ′i (Ω)(θ).

Finding such a vector field is actually fairly simple since it boils down to the resolution
of a linear program. Using this method it is possible to consider the optimization of
components such as diplexers, that is components which redirects the light into one of two
output waveguides depending on the wavelength of the incident electric field; see Fig. G
for an illustration.

(a) Simulation at λ = 1.55 µm (b) Simulation at λ = 1.31 µm

Figure G: A nanophotonic diplexer in which the light is redirected to one of the two
output waveguides depending on the wavelength of the incident guided mode.

The application of the gradient sampling algorithm to address worst-case optimization
problems is then straightforward. Indeed, if the performances of a component are affected
by an uncertain environmental parameter δ which could vary in the interval [δmin, δmax]
then we are interested in obtaining a component which retains good performances regard-
less of the value taken by δ in this interval. To obtain such devices, we could consider the
following optimization problem in which we want to maximize the worst-case scenario:

max
Ω

min
δ∈[δmin,δmax]

Jδ(Ω).

In this formula, Jδ(Ω) is defined as the value of the objective function using the shape Ω
when the uncertain parameter is equal to δ. Sampling the interval [δmin, δmax] at a finite
number of values this program drops down to a multi-objective problem such as those
solved by the same gradient sampling algorithm. A direct application of this method
is the design of components which are robust with respect to a small change of the
wavelength induced for example by a lack of precision in the laser used to inject light.

We then move on to another type of uncertainties, this time caused by the lithography
and etching manufacturing process used to produce nanophotonic components. After
a presentation and a mathematical modeling of the main steps of this manufacturing
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process, we propose a way to cope with the potential sources of uncertainties plaguing the
proper production of the devices. We show in particular that it amounts to obtain a shape
Ω which retains good performances even after an erosion or a dilation, namely that the
border ∂Ω of the shape is perturbed into (Id+ δn)(∂Ω) with δ a small scalar value. Since
this random transformation of the shape involves the normal vector n which depends on
the shape, a mathematical and numerical study is made to deal with the shape derivative
of the altered figure of merit Jdeformed(Ω) = J ((Id + δn)(Ω)). A variety of components
are then optimized to obtain robust versions against the uncertainties inherent to the
manufacturing processes. An example of such component is shown in Fig. H.

Figure H: A non robust (left) and a robust (right) power divider together with the
real part of Ey propagating inside them. The performances of the components when
a small dilation or erosion is applied on the shape is shown in the red and blue
curves.

Chapter V: Boundary shape optimization

This last chapter is devoted to the application of geometrical shape optimization methods
to the determination of the optimal repartition of regions supporting different boundary
conditions in a partial differential equation. Considering at first the toy case consisting
in a Laplacian PDE: 

−∆uΩ = 0 in Ω
∂uΩ
∂n = 0 on Γ
∂uΩ
∂n = g on ΓN
uΩ = 0 on ΓD

,

we are interested in the shape optimization of the surface ΓN and ΓD representing the
areas where respectively inhomogeneous Neumann and homogeneous Dirichlet
boundary conditions are applied, the rest of the boundaries Γ bearing natural homoge-
neous Neumann conditions. The shape optimization of the interface between Γ and ΓD,
named ΣD, happens to be more tricky than the case of the Γ – ΓN interface ΣN . Indeed,
as exemplified in Fig. I(c) the values of the solution uΩ on ΣD appear to be (weakly)
singular. Precisely, in two dimensions, if Ω is locally flat around a point x ∈ ΣD then
using a local frame of polar coordinates (r, ν) centered at x we can express uΩ as

uΩ(r, ν) = ureg + cr
1
2 cos(ν/2),

where ureg is an element in H2(Ω) while the second term appear to be weakly singular
in the sense that it only belongs to Hs(Ω) for 0 ≤ s < 3/2. As for the electric field,
this lack of regularity at the interface of the optimized region implies that the Eulerian
derivative of the considered PDE is not defined and therefore that a careful analysis must
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(a) Boundary conditions (b) Simulation of uΩ (c) Plot of |∇uΩ|2

Figure I: Simulation of −∆uΩ = 1 using an arbitrary geometry and different bound-
ary conditions; ∂nuΩ = 0 on Γ, ∂nuΩ = 1 on ΓN and uΩ = 0 on ΓD. We clearly
see in (c) that there is less regularity near the interfaces between the homogeneous
Neumann boundary Γ and the homogeneous Dirichlet boundary ΓD than between
Γ and the inhomogeneous Neumann boundary ΓN .

be made in order to recover the correct shape derivative. In an even more surprising way,
the incorrect application of Céa’s method despite this lack of regularity yields a shape
derivative equal to zero.

After some reminders concerning the Sobolev spaces adapted to the study of the solutions
of the previous PDE in our context, we derive the correct shape derivatives corresponding
to the optimization of ΣN and ΣD. Interestingly, in the case of ΣD, the associated
shape derivative only uses information coming from the singular part of uΩ. From a
numerical point of view however, this result is problematic since an accurate computation
of the singular behavior of the solution is not easy to implement. We then propose a
regularization procedure which replaces the boundary conditions on Γ and ΓD by one
of the form

∂uΩ,ε

∂n
+ hεuΩ,ε = 0 on Γ ∪ ΓD,

with hε a function chosen in such a way that a smooth transition between the Dirichlet
and Neumann boundary condition is made.

Figure J: Two optimized elastic bridges under their deformed configuration when a
load is applied at the center of the bridge’s deck. The red lines represents the fixed
parts of the structures where a Dirichlet boundary condition is applied while the
blue lines correspond to homogeneous Neumann boundary conditions.

The consistency of this approach is proved by showing that the approximate PDE solu-
tion uΩ,ε using the regularization procedure is close to the exact solution uΩ. It reads

‖uΩ,ε − uΩ‖H1(Ω) −−→
ε→0

0.
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Moreover, since uΩ,ε is more regular than uΩ, we show that, for a large class of objective
functions J (Ω) depending on uΩ, the shape derivative associated with the approximate
objective function Jε(Ω) using uΩ,ε instead of uΩ may be calculated using Céa’s method
and is easier to compute numerically.

This chapter ends with applications of the regularization framework in the context of
linear elasticity where Dirichlet boundary conditions account for the fixed part of a
mechanical structure while the homogeneous Neumann boundary condition corresponds
to the traction-free regions. An example of optimization result in the case of a bridge is
given in Fig. J.
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The physics behind photonics

Summary — This first chapter gives a short presentation of nanophotonics and the
devices of interest, as well as the physical equations governing light propagation inside
them. We decided to give both a formal (Section I.1) and rigorous (Section I.4) description
of the studied physics in order to point out where mathematical precision is really needed
for our purpose.

In Section I.2 we define the so-called waveguide “modes” that underlie the study of
nanophotonic devices and present their main properties. Two orthogonality relations
for the waveguide modes are introduced and an emphasis is made on the link between
these formulas and the power carried by a waveguide. The polarization of a mode is also
defined by means of the two dimensional Maxwell equations.

Section I.3 then presents the full PDE allowing the study of nanophotonic devices (a par-
ticular attention is devoted to the boundary condition allowing the injection of a waveg-
uide mode into the component) studied in the next chapters along with the mathematical
formulations of the figure of merits that physicists seek to optimize.

The last section I.5 concludes this chapter by presenting the main numerical simulation
methods used throughout this thesis to simulate the considered physics, that is the Finite
Element Method (FEM) and the Finite Difference Time Domain (FDTD) method.

Most of the information presented in the following sections can be found in reference
books such as [Jin14, Chapter 1] and [Orf02, Chapter 1] or [Mon03, Chapter 1, 3] for the
mathematical aspects. We also highly suggest Manfred Hammer’s lectures [Ham17] and
the recent book of Westerveld & Urbach [Wes17] for a presentation specifically focused on
photonics, as well as the book of Snyder & Love [Sny83] for a more exhaustive presentation
of waveguides-related informations.

I.1 Waves as an electromagnetic field and the
Maxwell equations

I.1.1 Time dependent Maxwell equations

At the length scales of interest in this thesis, light behaves as an electromagnetic wave and
is fully described by the electric E(x, t) (in V/m) and magnetic H(x, t) (in A/m) fields.
Even if the considered nanophotonic devices can reach sizes as small as ten nanometers,
quantum effects, which are only at play when a corpuscular description of light is adopted
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CHAPTER I. THE PHYSICS BEHIND PHOTONICS

(as photons) have not been observed experimentally in this particular context and allows
us to ignore them.

I.1.1.a General Maxwell equations

The theory of Maxwell’s equations links the evolution of both E : R3 × R → R3 and
H : R3 × R → R3 using a set of 4 coupled partial differential equations. In general this
system of equations reads:

∇× E = −∂tB Maxwell-Faraday (I.1.1)

∇×H = ∂tD + J Maxwell-Ampère (I.1.2)

∇ ·D = ρ Maxwell-Gauss (I.1.3)

∇ ·B = 0 Maxwell-Thomson (I.1.4)

where ρ is the electric charge density and B,D,J are additional functions connected to
the electromagnetic fields through constitutive equations. In the case of simple linear
medium, which will always be the case in this thesis, these relations are simply

B = µH, D = εE and J = σE (I.1.5)

with µ the magnetic permeability, ε the dielectric permittivity and σ the conductivity.
In general, the last three physical quantities are 3×3 symmetric positive definite matrices
which may depend on the spatial position (when different materials are involved) and on
time (memory effects).

I.1.1.b Simplifications in the nanophotonic context

In the context of nanophotonics we will mainly have to deal with amagnetic, dielectric and
isotropic materials, meaning respectively that µ = µ0I3 (where µ0 is the permeability of
free space equal to 4π10−7 Tm/A), σ = ρ = 0 and ε = εI3 with ε > 0. The permittivity
is more frequently given by the optical index n of the material with n2 = ε/ε0 and
ε0 ' 8.85× 10−12 F/m the vacuum permittivity.

With these simplifications, a classical operation consists in injecting Eq. (I.1.2) into the
curl of Eq. (I.1.1) in order to obtain the following equation involving only the electric field

∇×∇× E = −c−2n2∂2
ttE (I.1.6)

and where we also used the relation c−2 = µ0ε0 with c ' 3× 108 m/s the speed of light
in vacuum. The same type of equation is found for the magnetic field as

∇× n−2∇×H = −c−2∂2
ttH (I.1.7)

but will prove less convenient afterwards. It is important to note that, in addition
to Eqs. (I.1.6) and (I.1.7), the vector fields E and H must also verify the conditions
given by Eqs. (I.1.3) and (I.1.4), that is to say ∇ · (n2E) = ∇ ·H = 0.
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I.1.2 Time harmonic vector wave equation
Due to the linearity of Eq. (I.1.6), it is possible to study the frequency response of the
electric field at a given frequency f (thereafter we will prefer to use the wavelength
λ = c/f in m) by using the Fourier transform. To do this, we consider a time-harmonic
regime with

E(x, t) = Re [E(x) exp(−iωt)] (I.1.8)
where ω = 2πc/λ is the pulsation and E : R3 → C3. Note here that we use the same
notation for both time-dependent (E(x, t) ∈ R3) and time-harmonic (E(x) ∈ C3) fields.
This should not be a problem afterwards since we will only rely on the second one.
Injecting Eq. (I.1.8) in Eq. (I.1.6) we find that E(x) is solution to

∇×∇× E− k2n2E = 0 (I.1.9)

where k = ω/c is the wavenumber. Note that if µ were not constant we would have to
solve

∇× µ−1∇× E− ω2εE = 0. (I.1.10)
Respectively, we find that H is solution to

∇× n−2∇×H− k2H = 0 (I.1.11)

where an equivalent decomposition to Eq. (I.1.8) for H is considered. From Eqs. (I.1.1)
and (I.1.2) we also have the relations

∇× E = iωµ0H and ∇×H = −iωεE. (I.1.12)

Equation (I.1.9) is most often refered as the time-harmonic vector wave equation
in the literature and will be the basis for all our nanophotonics computations. Contrary
to Eq. (I.1.6), a vector field satisfying Eq. (I.1.9) automatically verifies the divergence
condition since applying the divergence operator to this equation leads to ∇ · (n2E) = 0
(reminding that of ∇ · ∇× = 0).

Remark I.1.2.1: This observation explains why we prefer using Eq. (I.1.9) rather
than the vectorial Helmholtz equation ∆E + k2n2E (which is more commonly found
in physical textbooks) obtained using the identity ∇ × ∇ × E = ∇∇ · E − ∆E since
a solution of the vectorial Helmholtz equation time the squared optical index does not
necessarily verify the divergence-free condition.

I.1.3 Boundary conditions

I.1.3.a Limit at infinity

A large part of the phenomena studied in photonics involves the analysis of the scattered
field Esc induced by the excitation of a device subject to an incident field Einc. In this
case the total field E is decomposed as

E = Esc + Einc. (I.1.13)

While Einc is known, the scattered field is obtained through Eq. (I.1.9) and should be an
outgoing, exponentially decreasing wave at infinity. To ensure that this is verified, the
Maxwell equations must be complemented with the Silver-Müller radiation condition.
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Supposing that at infinity the medium is, in all direction, homogeneous (for instance air),
then Silver-Müller condition is given by (see [Mon03, Section 1.4.3] or [Néd01, Section
5.2])

lim
x→∞

|x|
(
∇× Esc × x

|x|
− ikEsc

)
= 0. (I.1.14)

I.1.3.b Natural conditions at interfaces

Let us consider the situation depicted in Fig. I.1.1 for which we are going to look at the
variations of the electromagnetic fields inside a domain D ⊂ R3 and more precisely near
the interface between two dielectric and amagnetic domains Ω and D\Ω̄ of respective
optical indices n1 and n2.

Figure I.1.1: Interface between two domain Ω andD\Ω̄ with different optical indices.

To study the precise behavior of the electric field at the interface we look at the restrictions
of E in both domain, namely we define E1 = E|D\Ω̄ and E2 = E|Ω. We will also need to use
the normal vector exterior to Ω which is referred for any point x ∈ ∂Ω as nΩ ∈ S2. With
this definition the normal component of any vector field E is defined as E⊥ = E · nΩ
and the tangential part as E‖ = E− (E · nΩ)nΩ = nΩ × E× nΩ.

At the interfaces between two dielectric and amagnetic materials it can be derived that
E and H must verify the following conditions (these conditions emerges naturally from
the variational equations as we will see in Section I.4.1):

nΩ × E1 = nΩ × E2, n2
1E1 · nΩ = n2

2E2 · nΩ and H1 = H2, (I.1.15)

meaning that the electric field only has its tangential components continuous on interfaces
whereas H is fully continuous. In the same way, using Eq. (I.1.12), we find that

nΩ × n−2
1 ∇×H1 = nΩ × n−2

2 ∇×H2,
∇×H1 · nΩ = ∇×H2 · nΩ and ∇× E1 = ∇× E2,

(I.1.16)

which this time gives the continuity of the electric field’s curl. It is important to keep these
continuity relations in mind when we will deal with interface motion in Chapter III
because some quantities, for instance E ·nΩ, are not well-defined on the interface between
different materials.

I.1.3.c Interface with perfect conductors

In the case of an interface between a dielectric medium and a perfectly conducting one,
such as a metal, the boundary condition Eq. (I.1.15) is simplified into:

n× E = 0 (I.1.17)
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since no electric field may exist inside the metal. Equation (I.1.17) is the same as a
Dirichlet boundary condition on the tangential component of the electric field and is
usually known as the perfect electric conductor (PEC) boundary condition. Let
us also point out here that a similar relation exists at the interface between a dielectric
medium and a perfect magnetic conductor (PMC):

n×∇× E = 0, (I.1.18)

where Eq. (I.1.18) acts as a Neumann boundary condition on E and is most often only
used to impose symmetries into electromagnetic domains (see Remark I.4.3.3).

I.1.4 Two-dimensional approximation
We conclude this section by presenting the case of the two-dimensional Maxwell equations,
which are used when propagation of the electromagnetic fields along one direction (say
the y-axis) may be ignored due to invariances of the material properties, meaning that
the derivative along this direction of any physical quantity is equal to zero

First of all, from Eqs. (I.1.9), (I.1.11) and (I.1.12) a direct calculation shows that

−∆x,zEy − k2n2Ey = 0 and −∇x,z ·
(
n−2∇x,zHy

)
− k2n2Hy = 0 (I.1.19)

where the subscripts x, z indicates that only the partial derivatives with respect to x
and z are considered in the operators. Equation (I.1.19) are usual scalar Helmholtz
equations, which, once solved, give Ey,Hy and subsequently all the other components
using Eq. (I.1.12):

Hx = −∂zEy/(iωµ0), Hz = ∂xEy/(iωµ0), Ex = ∂zHy/(iωε), and Ez = −∂xHy/(iωε).

These equations notably imply that both triplets (Ex,Hy,Ez) and (Hx,Ey,Hz) may be
found independently. This independence leads to defining two “polarizations” of the
light; the components (Ex,Hy,Ez) are said to be in the Transverse Electric (TE)
polarization (only the electric field in the transverse plane (x, z) are considered) whereas
(Hx,Ey,Hz) belongs to the Transverse Magnetic (TM) polarization.

I.2 Waveguides modes and power
Propagation modes describe the fundamental structure of electromagnetic waves prop-
agating in an infinite waveguide. As such, they play a central role in the boundary
conditions accounting for injection of light at the entrance ports of nanophotonic devices
(see Section I.3 later), as well as in the expression of the figure of merits considered for
their optimization. A typical nanophotonic waveguide is depicted in Fig. I.2.1 and is
usually divided into three main parts:

• A core (in red) containing a material with a high-value optical index n = ncore
allowing a good confinement of the light inside it. In practice this core is made of
silicon (Si), germanium (Ge) or an alloy of both leading to ncore > 3.

• A substrate layer (in blue) with a lower optical index n = nsubs. In this thesis we
will only consider silica (SiO2) layers with nsubs ' 1.4 at wavelength in the near- or
mid-infrared (i.e. λ from about 1 µm to 10 µm).
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• A cladding (in gray) covering the rest of the core with index n = nclad. Most of the
time this cladding will simply be air (nclad = 1); in the case of a different material
the waveguide is said to be encapsulated.

(a) A photonic waveguide (b) Two-dimensional view

Figure I.2.1: Schematic representation of a photonic waveguide.

I.2.1 Modes in a waveguide, polarization
In this section we suppose that the waveguide is oriented (and thus propagates light) in
the z direction meaning that the optical index inside the waveguide does not depend on
z, that is n(x, y, z) = n(x, y). Using some kind of separation of variables we search for
electromagnetic fields E,H which are equal to the product of a vector-valued function
depending only on x, y (which is known as the field’s profile) and a harmonic function on
the z direction, meaning that

E(x, y, z) = E(x, y)eiβz and H(x, y, z) = H(x, y)eiβz,

where β ∈ R is called the propagation constant. Thereafter it will be useful to distin-
guish between the component of E,H in the propagation direction E⊥ = E · ẑ and the
other ones E‖ = ẑ× E× ẑ which are perpendicular to it. Using these notations:

E = (E‖(x, y) + E⊥(x, y)ẑ)eiβz and H = (H‖(x, y) + H⊥(x, y)ẑ)eiβz. (I.2.1)

I.2.1.a Eigenvalue problem

We are now searching for particular solutions of the time-harmonic vector wave equa-
tion (I.1.9) of the form given by Eq. (I.2.1). After some calculus we find that the com-
ponents E‖(x, y) and E⊥(x, y) of the electric field are solution of the following 2D system
on R2 (no z component is present){

∇τ ×∇τ × E‖ − iβ∇τE⊥ + (β2 − k2n2)E‖ = 0
−∆τE⊥ − iβ∇τ · E‖ − k2n2E⊥ = 0 , (I.2.2)

where ∇τ = (∂x, ∂y, 0)>. With the change of variables Ê‖ = βE‖ and Ê⊥ = iE⊥ this
equation rewrites (assuming β 6= 0) into the following system involving only β2

{
∇τ ×∇τ × Ê‖ − β2∇τ Ê⊥ + (β2 − k2n2)Ê‖ = 0

−∆τ Ê⊥ +∇τ · Ê‖ − k2n2Ê⊥ = 0
. (I.2.3)
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A solution (β,E) to this (generalized) eigenvalue problem is said to be a propagation
mode associated to the waveguide. Note that we now use a calligraphic E as a means to
indicate that this electric field belongs to a propagation mode and distinguish it from the
electromagnetic field E solution of the time-harmonic vector wave equation (I.1.9). We
also define the effective index of the mode as

neff = β/k. (I.2.4)

This denomination is easily understood by looking at the behavior of a plane progressive
wave. In a homogeneous medium with optical index n, there exist particular solutions
of the time-harmonic vector-wave equation known as the progressive plane waves with
electric fields of the form E0e

inkz where E0 is a vector and k the wavenumber. By com-
parison with Eq. (I.2.1) we see that the waveguide mode is oscillating in the z direction
at the same speed than a progressive plane wave in an “effective” homogeneous material
of optical index neff as defined in Eq. (I.2.4).

(a) First TE mode (TE0) (b) First TM mode (TM0) (c) Third TE mode (TE2)

Figure I.2.2: Some guided mode inside two different waveguides with a silicon core
of size 400× 306 nm and 1000× 306 nm, placed on a silica layer and surrounded by
air at wavelength λ = 1.55 µm.

Remark I.2.1.1: Many other formulations similar to Eq. (I.2.2) allow to obtain the
same propagation modes. Here we consider a formulation involving the 3 components
of the electric field but it is also possible to use only the components (Ez,Hz) [Ham17,
Part E] or the tangential parts (Ex,Ey,Hx,Hy) [Wes17, Section 2.3]. As for Eq. (I.2.2),
it is notably employed in the paper [Lee91].

I.2.1.b Polarization and denominations

Depending on both the value of β and the structure of E , many types of modes exist as
solution to Eq. (I.2.2) with different mathematical nature and physical properties.
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In this thesis we are mainly interested in the case of guided modes, meaning that β
belongs to R with

kmax(nclad, nsubs) < |β| < kncore.

These eigenvalues exist in finite number and we will make a distinction between forward
propagating (β > 0) and backward propagating (β < 0) modes. Moreover, for each
guided mode (β,E ,H) there exist a mode (β̄, Ē , H̄) propagating in the opposite direction
with

β̄ = −β, Ē = E‖ − E⊥ẑ and H̄ = −H‖ +H⊥ẑ. (I.2.5)

This is proved by injecting Eq. (I.2.5) into Eq. (I.2.2).

In addition to its direction of propagation, we also define the polarization of a guided mode
using the same nomenclature as the one presented in Section I.1.4. More precisely if most
of the mode’s energy (see Section I.2.3 and Eq. (I.2.11)) comes from the (Ex,Hy,Ez) (resp.
(Hx,Ey,Hz)) components the mode is said to be in the TE (resp. TM) polarization or
more properly quasi-TE (resp. quasi-TM). The difference between TE and TM is visible
on Figs. I.2.2(a) and I.2.2(b).

Concerning the non-guided modes the reader is referred to [Wes17, Section 2.3.6]
or [Gou10]. In the first reference we find that these other modes must verify either
β ∈ iR or |β| < kmax(nclad, nsubs), constitute a continuum of eigenvalues and are part of
the essential spectrum of the operator associated to Eq. (I.2.2). In the aftermath, these
particular modes will be gathered under the name of radiative mode and we will assume
most of the time that they can be ignored since they are not physically realistic (and so
not observed in practice).

I.2.2 Decomposition of the electric field

I.2.2.a Decomposition

In Section I.2.1 we defined the propagation modes of a waveguide as the eigenvectors asso-
ciated to the operator of Eq. (I.2.2). A difficult result from spectral analysis (see [Gou10,
Appendix A] for this result in the case of the scalar Helmholtz equation) allows to de-
compose any field solution of the time-harmonic vector wave equation in a waveguide
as:

E =
N∑
i=1

αiEi + α−iE−i + Erad, (I.2.6)

H =
N∑
i=1

αiHi + α−iH−i + Hrad (I.2.7)

where N is the number of forward propagating guided modes, (Ei,Hi) (resp. (E−i,H−i))
are the forward (resp. backward) modes and the vector fields (Erad,Hrad) gather all the
radiative modes (see Remark I.2.2.1). In other words the modes constitute a complete
basis for the set of all the electromagnetic fields solution to the time-harmonic vector wave
equation in a section of a waveguide. In the case of N = 1 the waveguide is said to be
single-mode.
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Remark I.2.2.1: Let us quickly comment about the structure of the radiative modes
(see notably [Wes17, Section 2.3.6]). In general we can decompose Erad as

Erad =
∫ kη

−kη
αrad
s E rad

s ds+
∫ i∞

−i∞
αevs
s Eevs

s ds

where the presence of a continuum of real eigenvalues comes from the fact that the
operator is unbounded (note that for closed waveguides these modes does not exists)
and are sometime referred as radiation modes while the complex eigenvalues are inher-
ent to the fact that the operator is not self-adjoint and are called evanescent modes.
These radiative modes are part of the essential spectrum of the operator and are not
physically relevant (radiation modes do not have finite energy while the evanescent
ones are absorbed quickly after propagation in the waveguide).

I.2.2.b Orthogonality relations

In order to determine the coefficients αi in Eq. (I.2.6) one crucial observation is that there
exists an orthogonality relation between the propagation modes. For two propagating
modes (Ei,Hi), (Ej,Hj) with |i| 6= |j| we have the relation (see the reciprocity theorem
and its demonstration for guided modes in [Sny83, Section 31-3])∫

Γ∞

[
Ei ×H∗j

]
· ẑ ds = 0 (I.2.8)

where ẑ is the unit vector of the propagation direction (here the z axis) and Γ∞ an infinite
section of the waveguide, in our context Γ∞ = {(x, y, 0), (x, y) ∈ R2}. To distinguish
between forward and backward modes (j = −i) we need to consider a slightly different
orthogonality condition valid for any i 6= j:∫

Γ∞

[
Ei ×H∗j + Hi × E∗j

]
· ẑ ds = 0. (I.2.9)

Remark I.2.2.2: These orthogonality relations are only true for non-absorbing waveg-
uide modes (i.e. optical indices for the core, substrate and cladding are real-valued).
An equivalent relationship may be found for absorbing ones by dropping the conjugate
on Hj in Eq. (I.2.8).

From these orthogonality relations we easily deduce that the coefficients αi for |i| ∈ [1, N ]
are given by

αi =

∫
Γ∞

[E×H∗i + H× E∗i ] · ẑ ds

2
∫

Γ∞
Re [Ei ×H∗i ] · ẑ ds

. (I.2.10)

For the rest of this manuscript we will impose the modes to have the following normal-
ization (which corresponds to a unit power of 1 W as will be seen in Section I.2.3)

1
2

∫
Γ∞

Re [Ei ×H∗i ] · ẑ ds = 1
2

∫
Γ∞

Re
[
Ei,xH∗i,y − Ei,yH∗i,x

]
ds = sign(i) (I.2.11)

where sign(i) equals 1 for i > 0 and −1 for i < 0. Using Eqs. (I.2.10) and (I.2.11) the
coefficients αi are given by

αi = sign(i)
4

∫
Γ∞

[E×H∗i + H× E∗i ] · ẑ ds (I.2.12)
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which is known as the overlap integral between the electromagnetic field and the i-th
mode.

I.2.3 Power carried by a mode
Physically the local (volumic) density of electromagnetic energy is defined by

ωem = ε

2 |E|
2 + µ

2 |H|
2. (I.2.13)

The power associated with this energy in a volume V ⊂ R3 is then, by definition,
PV =

∫
V ∂tωem dx. Introducing the Poynting vector Π = E × H, a direct calculation

using the Maxwell equations shows that for dielectric medium ∂tωem = −∇ ·Π and thus

PV = −
∫
V
∇ ·Π dx = −

∫
∂V

Π · n ds. (I.2.14)

Averaging this quantity over one period of time (between any t and t+ 2π/ω) leads to

〈PV 〉 = −
∫
∂V
〈Π〉 · n ds = −

∫
∂V

1
2Re [E×H∗] · n ds.

We then define the electromagnetic power (also known as the intensity) in Watt
crossing a surface Γ in R3 as

PΓ = 1
2

∫
Γ
Re [E×H∗] · n ds. (I.2.15)

Remark I.2.3.1: In the two-dimensional situation of Section I.1.4, depending on the
polarization, this equation may be simplified into either

P2D,TE
Γ = 1

2

∫
Γ
Re

[ 1
iωε

∂zHyH∗y
]
ds or P2D,TM

Γ = 1
2

∫
Γ
Re

[
1

iωµ0
Ey∂zE∗y

]
ds.

Injecting the decomposition of Eq. (I.2.6) (again, we ignore the radiative modes) in-
side Eq. (I.2.15) with the orthogonality conditions (I.2.8) and (I.2.9) and the unit nor-
malization (I.2.11) as well as the fact that Re [a] = 1/2(a+ a∗) we find that:

PΓ = 1
2

∫
Γ
Re

( N∑
i=1

αiEi + α−iE−i
)
×
(

N∑
i=1

αiHi + α−iH−i
)∗ · n ds

=
N∑
i=1
|αi|2 −

N∑
i=1
|α−i|2 , (I.2.16)

meaning that the part of power carried by the forward mode Ei (also known as
the transmission) is given by |αi|2 with αi defined in Eq. (I.2.12). Physicists are also
commonly using quantities in decibel, that is the value PdB = 10 log10(P ) dB. The power
carried by a mode in decibel is in turn defined as 20 log10(|αi|).

I.3 Nanophotonic components

I.3.1 General presentation

I.3.1.a Introduction

The nanophotonic devices of interest in this thesis pertain to the field of silicon pho-
tonics, which features photonic integrated circuits composed of a base wafer (that is to
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say a thin slice of semiconductor as in Fig. I.3.1(a)), on which components are patterned
by means of CMOS compatible microfabrication techniques (see Section IV.3.1 for more
details on the manufacturing process). Silicon On Insulator (SOI) base wafers have re-
cently aroused a tremendous enthusiasm among the integrated optics community for their
relatively simple and cheap production, and for their high efficiency in terms of energy
confinement.

(a) Full wafer (200 mm diameter) (b) Zoom on two circuits (c) A single component

Figure I.3.1: Successive magnifications of an engraved wafer.

Accordingly, the devices considered in the next chapters feature a core (remember that
this denomination and the following ones were introduced in the preamble of Section I.2)
which is made of either silicon (Si) or silicon-germanium (SiGe) whereas the substrate is
typically composed of silica (SiO2) or silicon-nitride (SiN). Moreover, in order to increase
the contrast between optical indices, and thus the light guiding characteristics, the silicon
pattern is surrounded by a cladding of air.

Multiple devices can then be tailored into the core material to accomplish specific tasks
such as guiding an incident wave with negligible loss, splitting it into several output
ports, converting a mode from an incoming waveguide into another mode of an outgoing
waveguide, etc. These components constitute the unitary parts that, once chained and
connected by means of waveguides, allow to build complex photonic integrated circuits
(PICs) used, for instance, in fiber optic communications, microscopy, biosensing and even
in the prospective research about photonic computing.

The peculiar, targeted properties of these nanophotonic devices are achieved by acting on
the geometry of the repartition of core and cladding materials within a given design space
Dopt (see Fig. I.3.1(c) and the following). The repartition of core material is characterized
by the subset Ω ⊂ Dopt and is typically composed of several simple geometric shapes
with characteristic sizes varying from a few dozen to several hundreds of micrometers.
Recent developments in the lithography-etching processes now even allow the inclusion of
arbitrary patterns with sizes of about ten nanometers.

I.3.1.b Physical description

Let us now make more precise the geometrical domain’s notations used for the full sim-
ulations of nanophotonic components. The ambient space is decomposed in several sub-
domains, with different optical indices defined as follows (and illustrated in Fig. I.3.2)

• The box D = [−wx, wx] × [−wy, wy] × [−wz, wz] ⊂ R3 is the total computational
domain, accounting for the whole three-dimensional space - at least the region where
it is relevant to consider the electromagnetic fields surrounding the device.
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• Dopt ⊂ D is the fixed design domain; it is typically a box with small thickness h
in the y direction, containing all possible shapes Ω. The optical index inside this
domain is denoted by nΩ since it will depend on the repartition of both the core (Ω)
and cladding (Dopt\Ω̄) materials.

• Dwg ⊂ D is the region occupied by the input and output waveguides.

• Dsubs ⊂ D is the layer supporting Dopt, occupied by the substrate.

• DPML ⊂ D is a “Perfectly Matched Layer”, a region of D filled with absorbing
material aimed at imposing the correct behavior of the electromagnetic fields at
infinity. It is generally shaped as a layer around Dopt; see Section I.3.3.

• Γin ⊂ ∂D is a region of the boundary of D accounting for the entrance of a waveguide
into the device (this area is also called a port); see Section I.3.2.

• Γout ⊂ ∂D is an internal surface in ∂D used for the computation of the optimization
objective; see Section I.3.4.

Figure I.3.2: Different subdomains associated to a nanophotonic component and
their optical indices.

I.3.1.c Components as multi-ports

The behavior of a nanophotonic component is fully described by its scattering matrix.
This type of representation exploits the linearity of Maxwell’s equations, gathering all the
required information to find, in a single product, the outgoing electromagnetic field inside
each waveguide from the datum of the incoming electric field.

(a) Injection from left (b) Injection from top-right (c) Injection from bottom-right

Figure I.3.3: A multi-port nanophotonic component and its scattering parameters.
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To define this matrix we first need to introduce the S-parameters featured in Fig. I.3.3.
An S-parameter Si,j is defined using two indices i, j referring respectively to an ingoing
and outgoing modes of two waveguides (possibly the same).

To better understand, consider a 2-port component where both waveguides are single-
mode (meaning that only one forward/backward guided mode exists) but with different
sizes. When injecting the fundamental mode E left

1 into the left guide, the output electric
field on the right waveguide is given by Eq. (I.2.6) as E = αright

−1 E right
−1 (no forward mode

and we ignore the radiative ones) whereas on the left waveguide it is E = E left
1 +αleft

−1E left
−1 .

Each coefficients αright
−1 , αleft

−1 are given by the relation (I.2.12) and we will denote them
respectively by S2,1 and S1,1. In the same way we can inject the fundamental mode of
the right waveguide and look at the same coefficients αi. In this case αright

−1 (resp. αleft
−1 ) is

referred as S2,2 (resp. S1,2). The output power transported by each modes when injecting
any combination of the forward modes (I leftE left

1 and IrightE right
1 ) is then easily obtained

performing (
αleft
−1

αright
−1

)
=
(
S1,1 S1,2
S2,1 S2,2

)(
I left

Iright

)
. (I.3.1)

For general components, |Si,j|2 is equal to the power transported by the backward mode
number j when injecting the forward mode number i (note that the numbering is arbitrary
and does not necessarily match the index of the modes).

S =


S1,1 . . . S1,N
... . . . ...

SN,1 . . . SN,N

 ∈ MN,N(C) (I.3.2)

Note also that since there must be no energy generation by the component we have for
all i:

N∑
j=1
|Si,j|2 ≤ 1. (I.3.3)

Moreover if we consider a lossless component (for all input vector x the output power
‖Sx‖2

2 is equal to the input power ‖x‖2
2) then its associated scattering matrix should be

unitary (that is SS∗,> = IN where IN is the identity matrix of size N).

Remark I.3.1.1: Most of the time we will only have to consider a submatrix
of Eq. (I.3.2), the full scattering matrix being especially useful when looking at the
global behavior of a circuit. Indeed, to evaluate the performance of a sequence of com-
ponents, as some electric field may partly be converted into irrelevant output guided
modes by each individual component, it is important to know how these wrong modes
will be converted in each component to obtain the correct final output value of the
whole circuit.

I.3.2 PDE with Dirichlet-to-Neumann boundary condition
In this subsection we deal with the derivation of a boundary condition which accounts for
the injection of a wave inside the computational domain D from the border Γin ⊂ D where
a waveguide is located. Generally speaking we are looking at the effect of an incoming
incident wave Einc into the physical domain D (where a component Ω is located). This
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excitation will result in the emergence of a reflected field Eref in such a way that the total
electric field is then defined as

E = Einc + Eref. (I.3.4)
Many boundary conditions accounting for this effect are given in the literature and we
propose here to give a short review of the most significant ones with an emphasis on their
conditions of validity (with respect to the physical context). This subsection is limited
to the case of flat borders with injection in the ẑ direction (some references for curved
borders may be found in [Jin14, Section 9.2]).

(a) Plane wave injection (b) Mode in a closed waveguide (c) Mode in an open waveguide

Figure I.3.4: Different configurations for the wave injection inside a component Ω
(in blue) studied within a domain D (whose border ∂D is represented by solid black
lines). Figures in (x, z)-plane view.

I.3.2.a Plane wave injection

Suppose that we are in the situation of Fig. I.3.4(a) and that we seek to inject an electro-
magnetic plane wave coming from a homogeneous area (say, air) into the physical domain
D. The incident field is therefore Einc(x, y, z) = E0e

ikz where k is the wavenumber and
E0 ∈ R3 the injected field’s amplitude. A direct calculation gives the relation

ẑ ×∇× Einc = −ikẑ × Einc × ẑ or equivalently ẑ ×Hinc = −Z0ẑ × Einc × ẑ (I.3.5)

where Z0 =
√
µ0/ε0 is the impedance of free space. Supposing that the reflected field

Eref has the same profile as Einc (but is an outgoing wave) we have Eref = RE0e
−ikz where

R ∈ R is the reflection coefficient. From Eq. (I.3.4) applying ẑ ×∇× we then infer that
on the border Γin

ẑ ×∇× E + ikẑ × E× ẑ = 2ikẑ × Einc × ẑ (I.3.6)
which is a Robin-like kind of equation known as the first order Scattering Boundary
Condition (SBC). The use of Eq. (I.3.6) makes it possible to inject a plane wave into
D while allowing the plane wave to exit with arbitrary amplitude; the condition is said
to be transparent for outgoing plane waves.

I.3.2.b General wave injection

When a more general form of the incoming wave is considered (such as the modes presented
in Section I.2.1) the incident field is defined as Einc(x, y, z) = Einc(x, y)eikz and Eq. (I.3.5)
may be incorrect (and so does Eq. (I.3.6)).

Remark I.3.2.1: In two dimensions though, Eq. (I.3.6) is still working. Indeed,
considering Ey (or Hy depending on the polarization) we have Einc(x, z) = Einc(x)eikz
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and the relation ∂zEy = ikEy which lead to the following 2d-counterpart of Eq. (I.3.5)

∂zEy + ikEy = 2ikEy. (I.3.7)

To address this problem, in [Tsi11] the authors proposed to modify Eq. (I.3.5) in such a
way that the relation remain true but with a non-scalar impedance Z (that is, a 3 × 3
complex matrix) instead of Z0. Indeed we can show that for any vector field such as a
mode (E ,H) we have

ẑ×H = −Zẑ×E × ẑ with Z =

 Ex(x, y)/Hy(x, y) 0 0
0 −Ey(x, y)/Hx(x, y) 0
0 0 0

. (I.3.8)

And again we find that
ẑ ×∇× E + ikZẑ × E× ẑ = 2ikZẑ × E × ẑ. (I.3.9)

I.3.2.c Mode injection with scattering boundary condition

The problem with all the previous boundary conditions is that they only take into account
reflected waves with profiles proportional to the one of the incident wave. For some devices
this may be true (for instance in a single-mode waveguide with a sufficiently large domain
of simulation) but fails to hold in general since different waves (or propagating modes)
may be excited by a single incoming mode.

To allow for more general propagative modes we propose here to adapt the boundary
condition of [Jin14, Section 11.1.2] to the case of open waveguides. Injecting a forward
propagating mode inside the waveguide is equivalent to consider only one forward mode
En in the decomposition Eq. (I.2.6), that is to say (ignoring radiative modes) to impose
that E is of the form

E = En +
N∑
i=1

α−iE−i on Γin. (I.3.10)

By analogy this is equivalent as taking Einc = En and Eref = ∑N
i=1 α−iE−i in Eq. (I.3.4).

Unlike the previous examples, the scattered field Eref considered here includes all propa-
gation modes.

Invoking the orthogonality condition Eq. (I.2.8) and considering the normalization
of Eq. (I.2.11) it comes

α−i = −1
2

∫
Γin

[
(E− En)×H∗−i

]
· ẑ ds (I.3.11)

Applying ẑ ×∇× to Eq. (I.3.10) it follows that

ẑ ×∇× E = ẑ ×∇× En −
1
2

N∑
i=1

∫
Γin

[
(E− En)×H∗−i

]
· ẑ ds ẑ×∇× E−i (I.3.12)

Using the relations ẑ×H−i = −ẑ×Hi between forward and backward propagating
modes and the fact that ∇× E = iωµH we finally find that

ẑ×∇× E + 1
2iωµ

N∑
i=1

∫
Γin

[E×H∗i ] · ẑ ds ẑ×Hi =

iωµ ẑ×Hn + 1
2iωµ

N∑
i=1

∫
Γin

[En ×H∗i ] · ẑ ds ẑ×Hi = 2iωµ ẑ×Hn.
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The above equation accounts for a non-local Robin-like boundary condition of the form

ẑ×∇× E + γ(E) = U on Γin (I.3.13)

where the operator γ and the field U are given by

γ(E) = 1
2iωµ

N∑
i=1

∫
Γin

[E×H∗i ] · ẑ ds ẑ×Hi and U = 2iωµ ẑ×Hn. (I.3.14)

Equation (I.3.13) maps the Dirichlet data En into a Neumann boundary condition for E
and will therefore be refered as a Dirichlet-to-Neumann (DtN) boundary condition.

I.3.3 Approximation of boundary conditions at infinity
The natural boundary condition accounting for the behavior of the electric field E at
infinity was defined in Section I.1.3; see the Silver Müller radiation condition given
by Eq. (I.1.14). Since numerical calculations takes place in a bounded computational
domain D ⊂ R3, there is the need to impose artificial boundary conditions on ∂D which
mimic Eq. (I.1.14) without inducing too much reflection. There are several ways to achieve
this goal.

I.3.3.a Absorbing boundary condition

The first choice to approximate Silver Müller’s radiation condition is to no longer apply
it to infinity but on the computational domain’s edges. Applying n× to Eq. (I.1.14) and
dividing by |x| leads to

n×∇× E + ik n× E× n = 0. (I.3.15)

This boundary condition is called the first-order Absorbing Boundary Condition
(ABC) and by comparison with Eq. (I.3.6) we see that it is equivalent to impose that
the electric field on Γin is an outgoing plane wave escaping from the domain D along the
direction of the boundary normal vector (for higher order ABC the reader may have a
look at [Jin14, Section 9.2]).

I.3.3.b Perfectly Matched Layer

We now give a quick explanation about the Perfectly Matched Layer (PML) method.
Contrary to the ABC, this method does not involve a new type of boundary condition on
∂D so to speak; it rather relies on a thin, “perfectly matched” layer DPML ⊂ D made of
an artificial, absorbing material with the following properties:

1. Any electromagnetic wave, regardless of its angle of incidence, can penetrate inside
DPML without causing reflection into D.

2. The amplitude of any electromagnetic wave propagating inside DPML decreases ex-
ponentially fast to 0.

If both properties are fulfilled, imposing any type of homogeneous boundary conditions
on ∂D for the electric field E – for instance the usual Dirichlet condition n × E = 0
(known as a PEC condition in Section I.1.3.c) or the previously explained ABC – ensures
a suitable approximation of the radiation condition Eq. (I.1.14).
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Let us now briefly discuss the construction of such a perfectly matched layer, referring
to [Jin14, Section 9.6] or [Mon03, Section 13.5.3.1] for details. Recalling that the compu-
tational domain D is a box with size 2wx × 2wy × 2wz (see Section I.3.1), the perfectly
matched layer DPML is defined by:

DPML = D\[−wx + `, wx − `]× [−wy + `, wy − `]× [−wz + `, wz − `],

where ` is the thickness of the layer. Depending on where the input and output waveguides
are located some part of DPML may be removed (see Fig. I.3.5).

Figure I.3.5: A nanophotonic component together with a perfectly matched layer.

We then define for each component ι = x, y, z:

σι(s) =
{

1 if |s| ≤ wι − `,
1 + iλ

k
1

wι−|s| if |s| > wι − `, (I.3.16)

and thence the anisotropic tensor Λ by:

Λ(x) =

 σ−1
x (x)σy(y)σz(z) 0 0

0 σx(x)σy(y)−1σz(z) 0
0 0 σx(x)σy(y)σz(z)−1

 , x ∈ D. (I.3.17)

In particular, Λ(x) coincides with the identity when x /∈ DPML.

Finally, the electric field E is sought as the solution to Eq. (I.1.10), in which ε and µ are
replaced by the tensors fields εΛ and µΛ, respectively; see Eq. (I.4.7) below.

I.3.3.c Absorbing boundary condition on waveguides

Even though the radiation condition accounts for the correct behavior of the electric
field at infinity, this is only true if the medium is homogenenous in all directions after
a finite distance from the component. In the presence of (infinitely long) waveguides on
the borders of the domain (such as the ones in Fig. I.3.5), we can no longer consider
the Silver-Müller radiation condition and therefore the boundary condition of Eq. (I.3.15)
does not provide the correct behavior of the field on Γout (see [Ott17] for a more in-depth
discussion and analysis on this subject). In a nutshell the problem with the radiation
condition is that it suppose decaying fields at infinity while actually a lossless waveguide
can propagate the fields indefinitely as guided modes.

To alleviate this problem we can add a perfectly matched layer after Γout or consider
the same analysis as the one in Section I.3.2.c. Since no guided modes are entering the
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component through Γout we can decompose the electric field by ignoring the backward
propagating modes, which gives

E =
N∑
i=1

αiEi on Γout.

We can then show that imposing this decomposition is equivalent to the boundary con-
dition

ẑ ×∇× E + γ(E) = 0 on Γout (I.3.18)

with γ defined in Eq. (I.3.14).

Remark I.3.3.1: In practice placing a PML after the output side Γout has the
advantage of not requiring to consider a finite number of modes but can cause spurious
reflections. In Chapter III and particularly Remark III.2.1.3 we will see that it is
interesting to consider the DtN boundary condition Eq. (I.3.18) instead of a PML
since it allows for a simpler mathematical analysis.

I.3.4 Quantities of interest
In Section I.2.3 we showed that the outgoing power conveyed by the i-th mode is given by
|αi|2 with αi defined in Eq. (I.2.12). In Section I.3.1 the scattering matrix was introduced
as a means to represent the behavior of a nanophotonic component and for which we have
seen that the scattering matrix coefficients are exactly the αi. In many cases, the primary
objective in nanophotonic will therefore be to find the shape Ω of the component such
that its scattering matrix is equal to a target matrix. Returning to the two-ports example
of Section I.3.1 (where we wanted to convert one mode into another) the target matrix
would likely be

Sobj =
(

0 −
1 −

)
(I.3.19)

where the − corresponds to values that do not interest us. In order to obtain this matrix
we will have to find the optimal design Ω ⊂ R3 of the core material such that, in this
case, |S2,1|2 is as close as possible to 1. This amounts to maximize

J (Ω) =
∣∣∣∣14
∫

Γ

[
EΩ ×Hout,∗

−1 + HΩ × Eout,∗
−1

]
· ẑ ds

∣∣∣∣2 . (I.3.20)

Note that there is no intrinsic need to simultaneously minimize |S1,1|2 since by definition
it should be equal to 0 if |S2,1|2 = 1. Since only outgoing guided modes may exists on Γ
using the DtN boundary condition of Section I.3.2, Eq. (I.3.20) simplifies into

J (Ω) =
∣∣∣∣12
∫

Γ

[
EΩ ×Hout,∗

−1

]
· ẑ ds

∣∣∣∣2 . (I.3.21)

Remark I.3.4.1: It is interesting to note that this objective does not depend on the
phase φ ∈ R of the injected mode. Indeed if Hn is changed into Hne

iφz it is easy to see
that a solution to Eqs. (I.1.9) and (I.3.13) is simply shifted in the same way (meaning
that the solution is EΩe

iφz with EΩ the unshifted solution) and therefore lead to the
same objective (I.3.21) due to the absolute value.
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From this example we can easily infer why it is interesting to study the following mathe-
matical program  max

Ω⊂R3

∣∣∣∣12
∫

Γ
[EΩ ×H∗] · ẑ ds

∣∣∣∣2
s.t. EΩ solution of Eqs. (I.1.9) and (I.3.13)

(I.3.22)

where Ω refer to the core material distribution inside the domain of interest D. In Chap-
ter III multiple components will be considered and most of them will be resem-
bling Eq. (I.3.22).

I.3.5 Some examples of nanophotonic devices
We conclude this section by presenting a number of conventional nanophotonic compo-
nents that will be studied in Chapters III and IV.

(a) A mirror; this device seek to
redirect the forward mode injected
into the component into the same
mode propagating in the opposite
direction

(b) A crossing; this device al-
low the lossless transport of light
in a straight manner from one
waveguide to the one located on
the other side

(c) A power divider; the purpose
of this device is to equally divide
the input power into two output
(or more) waveguides

(d) A mode converter; this de-
vice convert the input mode com-
ing from the left into an other
mode on the right waveguide

(e) A diode; the goal of this de-
vice is to allow the transmission
of the TE0 mode from the left to
right waveguide while preventing
the transfer of the TE1 mode from
the right into the TE0 on the left

(f) A diplexer; the function of
this device is to redirect the light
coming from the left waveguide
into one of the two waveguides on
the right depending on the wave-
length of the incident’s light

Figure I.3.6: Patchwork of several nanophotonic devices. The arrows shows where
the light should be redirected depending on the input waveguide and wavelength.
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For all the components in Fig. I.3.6, we are searching for a shape Ω inside the domain
Dopt in order to optimize their respective objective functions which are all based on
the optimization program Eq. (I.3.22). All these components and more will be studied
in Section III.3.1 or Section IV.2.2.

I.4 Mathematical aspects
We now move on to the mathematical context. In particular we describes the variational
framework that is necessary to study the time-harmonic vector wave equation as well as
for the implementation of a finite element scheme to solve this PDE.

I.4.1 Functional spaces
In order to give the variational equation verified by the electric field we first need to
review the functional spaces of interest in electromagnetism. We will not recall here the
basics on variational formulations of PDE, Sobolev spaces and classical trace theorems
(the reader is referred to [Mon03, Chapter 2], [Bre10, Chapter 5, 8, 9] or the very good
introductory book [Man18, Section I.5 & Chapter II] for these details) except in the
case of the H(div) and H(curl) spaces which are extensively used in electromagnetism
simulations and which are less classical from our viewpoint.

To understand why these spaces are important we will need the following integration by
parts formulas:

• For any smooth vector fields φ,ψ ∈ (C∞(Ω,R))3 a direct calculation show that∫
∂Ω

(n× φ) · (n×ψ × n) ds =
∫

Ω
∇× φ ·ψ dx−

∫
Ω
φ · ∇ ×ψ dx. (I.4.1)

• For any smooth vector field φ ∈ (C∞(Ω,R))3 and scalar field ψ ∈ C∞(Ω,R):∫
∂Ω

(φ · n)ψ ds =
∫

Ω
φ · ∇ψ dx +

∫
Ω

(∇ · φ)ψ dx. (I.4.2)

I.4.1.a H(curl): the natural space for the electric field

As usual, to find the variational formulation associated to a PDE such as the time-
harmonic vector wave equation ∇ × ∇ × E − k2n2E = 0 we proceed by multiplying
this equation with a test function φ and integrate over the whole simulation domain D.
Using Eq. (I.4.1) we then obtain that E must verify for all test function φ∫

D
∇× E · ∇ × φ∗ − k2n2E · φ∗ dx +

∫
∂D

n×∇× E · n× φ∗ × n ds = 0. (I.4.3)

If we ignore for the moment the boundary integral on ∂Ω (see Section I.4.2.a below) we
see that in order for the integrals in Eq. (I.4.3) to be well-defined, a sufficient condition is
that both ∇× E,∇× φ and E,φ are elements in L2(D,C). This leads to the definition
of the following fundamental (Sobolev) functional space to study electromagnetic fields,
namely H(curl).
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Definition I.4.1.1 – The H(curl) functional space.
For any smooth domain D ⊂ R3 the space H(curl,D) is defined as

H(curl,D) =
{
φ ∈ (L2(D,C))3,∇× φ ∈ (L2(D,C))3

}
,

where the curl is taken in the sense of distribution meaning that ∇ × φ is defined as
the only g ∈ (L2(D,C))3 such that for all ψ ∈ (C∞c (D,C))3 we have∫

D
φ · ∇ ×ψ∗ dx =

∫
D
g ·ψ∗ dx.

When equipped with the following inner product, the space H(curl,D) is a Hilbert space

〈φ,ψ〉H(curl,D) =
∫
D
φ ·ψ∗ dx +

∫
D
∇× φ · ∇ ×ψ∗ dx. (I.4.4)

Physically H(curl,D) is “natural” in electromagnetism analyses as it is equal to the
set of electromagnetic fields with finite energy; indeed in Section I.2.3 we defined the
electromagnetic energy as ωem = ε/2|E|2 + µ/2|H|2 whereas from Eq. (I.4.4) we see that

‖E‖2
H(curl,D) =

∫
D
|E|2 + |∇ × E|2 dx =

∫
D
|E|2 + ω2µ2

0|H|2 dx, (I.4.5)

which is equal (ignoring the finite factors ω, µ and ε) to the integral of ωem on the whole
domain D.

I.4.1.b H(div): natural space of n2E

If the electric field has more regularity than being a mere element ofH(curl) – for instance
if it is solution of the strong formulation of the time-harmonic vector wave equation – then
E verify Eq. (I.4.3) for all φ ∈ (C∞(D,R))3. In particular, it is also true for φ = ∇φ
with φ ∈ C∞c (D,R). In this case, since ∇×∇ = 0, Eq. (I.4.3) reduce to∫

D
(n2E) · (∇φ∗) dx = 0.

Using now the integration by part formula Eq. (I.4.2) together with the fact that φ = 0
on ∂D this results in ∫

D
(∇ · (n2E))φ∗ dx = 0.

In other words, if E is sufficiently regular then the weak divergence of n2E is well-defined.
This brings us to the consideration of the following space

Definition I.4.1.2 – The H(div) functional space.
For any smooth domain D ⊂ R3 the space H(div,D) is defined as

H(div,D) =
{
φ ∈ (L2(D,C))3,∇ · φ ∈ (L2(D,C))3

}
where the divergence is taken in the sense of distribution meaning that ∇·φ is defined
as the only g ∈ L2(D,C) such that for all ψ ∈ C∞c (D,C) we have∫

D
φ · ∇ψ∗ dx =

∫
D
gψ∗ dx.
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Again, together with the inner product

〈φ,ψ〉H(div,D) =
∫
D
φ ·ψ∗ dx +

∫
D
∇ · φ∇ ·ψ∗ dx,

the shape H(div,D) is a Hilbert space.

I.4.2 Traces theorems

We are now going to focus on the traces theorems associated to the spaces H(div) and
H(curl). These theorems will allow us to manipulate the values of electromagnetic fields
on the edges of a domain and to find the results stated in Section I.1.3.b.

I.4.2.a Tangential components in H(curl)

Let us start with the tangential component of the electric field on the border ∂Ω of
a smooth domain Ω. As usual, trace theorems will be defined using an extension by
continuity of an integration by part formula.

If the integral in the right hand side of Eq. (I.4.1) makes sense – that is for example the
case if φ ∈ H(curl,Ω) and ψ ∈ C∞(Ω,R) – then we can define the action of the tangential
components of φ on n×ψ over the border ∂Ω through Eq. (I.4.1). This observation results
in the following theorem which gives a precise definition of the tangential components of
an element in H(curl).

Theorem I.4.2.1 – Green theorem for H(curl).
Let Ω ⊂ R3 be a smooth domain. Then

(1) The mapping

γt : (C∞(Ω,C))3 → (C∞(Ω,C))3, γt(φ) = (n× φ)|∂Ω

can be extended by continuity into a linear map from H(curl,Ω) into the space
Y (∂Ω) ⊂ (H−1/2(∂Ω))3 (the precise definition of Y (∂Ω) is given in [Mon03, Re-
mark 3.32]).

(2) In the same way the mapping

γT : (C∞(Ω,C))3 → (C∞(Ω,C))3, γT (φ) = (n× φ× n)|∂Ω

can be extended into a linear map from H(curl,Ω) into (Y (∂Ω))′.

(3) For any φ ∈ H(curl,Ω) and ψ ∈ Y (∂Ω) there exists ψ̄ ∈ H(curl,Ω) such that
ψ = γt(ψ̄) and the following linear functional is well-defined

〈ψ, γT (φ)〉Y (∂Ω),(Y (∂Ω))′ =
∫

Ω
∇× φ · ψ̄∗ dx−

∫
Ω
φ · ∇ × ψ̄∗ dx. (I.4.6)

A proof may be found in [Mon03, Theorem 3.31]. For simplicity we will refer to the
tangential component of the electric field using the integral notation of Eq. (I.4.1) instead
of the duality product in the left hand side of Eq. (I.4.6). 〈·, ·〉Y (∂Ω),(Y (∂Ω))′ .
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I.4.2.b Normal component in H(div)

Now we move on to the trace theorem associated with the H(div) space. As for H(curl)
we can extend the integration by parts formula of Eq. (I.4.2) to give meaning of the
normal component of an element φ in H(div) on the border of a domain as stated in the
following theorem.

Theorem I.4.2.2 – Green theorem for H(div).
Let Ω ⊂ R3 be a smooth domain. Then

(1) The mapping

γn : (C∞(Ω̄,C))3 → C∞(Ω̄,C), γn(φ) = (φ · n)|∂Ω

can be extended by continuity into a linear map from H(div,Ω) into H−1/2(∂Ω).

(2) The following Green’s formula is valid for any φ ∈ H(div,Ω) and ψ ∈ H1(Ω):∫
∂Ω
γn(φ)ψ ds =

∫
Ω
φ · ∇ψ dx +

∫
Ω

(∇ · φ)ψ dx.

Remembering that in Section I.4.1.b we showed that n2E is an element of
H(div), Th. I.4.2.2 therefore imply that the normal component of n2E is well-defined
on the border of a shape.

We can summarize the information given by the two previous trace theorems as follows:

• Since any electric field is searched as an element of H(curl) then its tangential
components n× E× n are well-defined on a border ∂Ω.

• If an electric field E is smooth inside a domain Ω then the normal component of
n2E is well-defined on ∂Ω.

I.4.3 Variational formulation
We now have all the necessary elements to present the full variational formulation which
we have to solve in order to simulate the electric field inside a nanophotonic component.
Starting from the general PDE:

∇×
(
Λ−1∇× E

)
− k2n2ΛE = 0 in D

n× E = 0 on ∂D\(Γin ∪ Γout)

n×∇× E + 1
2

N∑
j=1

iωµ0n×Hin
j

∫
Γin

[
E×Hin,∗

j

]
· n ds = U on Γin

n×∇× E + 1
2

N∑
j=1

iωµ0n×Hout
j

∫
Γout

[
E×Hout,∗

j

]
· n ds = 0 on Γout

,

(I.4.7)
with U = 2iωµ0n × Hin

m (where m is the index of the injected mode) and Λ given
by Eq. (I.3.17). Multiplying the first equation by φ∗, integrating other D and using
Green’s formula (I.4.1), we see that E is the solution of the following variational formu-
lation for all φ ∈ V with V = {φ ∈ H(curl,D),n× φ = 0 on ∂D\(Γin ∪ Γout)}

a(E,φ) = b(φ) (I.4.8)
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where the sesquilinear form a : V × V → C and antilinear map b : V → C are given by

a(E,φ) =
∫
D

Λ−1∇× E · ∇ × φ∗ − k2n2ΛE · φ∗ dx

−
∫

Γin

1
2

N∑
j=1

iωµ0n×Hin
j

∫
Γin

[
E×Hin,∗

j

]
· n ds · n× φ∗ × n dt

−
∫

Γout

1
2

N∑
j=1

iωµ0n×Hout
j

∫
Γin

[
E×Hout,∗

j

]
· n ds · n× φ∗ × n dt (I.4.9)

and b(φ) = 2iωµ0

∫
Γin

n×Hin
m · n× φ∗ × n dt. (I.4.10)

Remark I.4.3.1: We do not provide a demonstration regarding the existence and
uniqueness of a solution to Eq. (I.4.8) but we will have to assume that this is the case
in Chapter III.

I.4.3.a Dirichlet-to-Neumann boundary condition

We present here a minor modification of the boundary conditions presented in Sec-
tions I.3.2.c and I.3.3.c which leads to great improvements of the finite element matrix
sparsity (this method seems to be presented in [Zhu06, Section 6.3]). The idea is to im-
pose the same boundary condition for the test function φ on both Γin and Γout meaning
that we have

E = E in
m +

N∑
j=1

αin
−jE in

−j and φ =
N∑
j=1

βin
−jE in

−j,

with no backward propagating modes. Putting this expression in Eqs. (I.4.9) and (I.4.10)
we find that the integrals on Γin may be simplified into

Iin =
∫

Γin

2iωµ0n×Hin
m −

1
2

N∑
j=1

iωµ0n×Hin
j α

in
−j

 · n× N∑
j=1

βin,∗
−j E

in,∗
−j × n dt (I.4.11)

where αin
−j, β

in
−j are defined through Eq. (I.2.12). Remembering the orthogonality relations

presented in Section I.2.2 lead to

Iin = iωµ0

N∑
j=1

(2δj,m − αin
−j)β

in,∗
−j , (I.4.12)

where δj,m = 1 if j = m and zero otherwise. The same simplification is applicable to the
integral on Γout leading this time to

iωµ0

N∑
j=1

αout
−j β

out,∗
−j .

Remark I.4.3.2: This representation is particularly useful once discretized using
finite elements since it removes a lot of degrees of freedom and the associated matrix
is sparse except for the (few) lines/columns linking αi, βi and E,φ together whereas
using Eq. (I.4.8) results in a matrix where all the degree of freedom defined on Γin or
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Γout are linked together. This difference is easily seen on Fig. I.4.1 where the matrices
were constructed using only one mode (N = 1).

(a) Using boundary condition Eq. (I.4.8),
non-zeros elements ' 9× 106

(b) Using boundary condition Eq. (I.4.12),
non-zeros elements: ' 8× 106

Figure I.4.1: Finite element matrix sparse representation for the two representations
of the DtN boundary condition.

All the examples presented in Chapter III use Eq. (I.4.12).

I.4.3.b Boundary conditions

To ensure that the boundary condition n×E = 0 which is put at the external boundary of
the PML is satisfied (we recall here that this boundary condition is known as a PEC and
defined in Eq. (I.1.17)), we numerically add to the variational formulation the following
term

1030
∫
∂DPML

n× E · n× φ∗ × n ds (I.4.13)

which, once discretized using finite elements (see Section I.5.1), modifies the lines in
the FEM system in such a way that the condition n × E = 0 is necessarily verified
numerically. Concerning the perfect magnetic conductor boundary condition (known as
a PMC condition and defined by Eq. (I.1.18)), it is naturally verified by the electric field
if no other integral on the corresponding edge is present in the variational formulation.

Remark I.4.3.3: If the physical configuration presents a symmetry (in terms of
material properties and light excitation), say along an axis Γ, the numerical simulation
can be realized on only one half of the computational domain by applying a PMC
boundary condition on it. The same could be done for anti-symmetry around an axis
using PEC instead of PMC, but is more rarely considered.

I.4.3.c Eigenvalue problem

The variational formulation associated to Eq. (I.2.2) is:∫
Γ
β2
(
∇τE⊥ · ∇τφ⊥ + E‖ · φ‖ − k2n2E⊥ · φ⊥

)
− k2n2E‖ ·φ‖ +∇τE‖ · ∇τφ‖ dx, (I.4.14)

where Γ is a two-dimensional section of a waveguide. This generalized eigenvalue problem
should be solved for β ∈ C and E ∈ H(curl,Γ) with the additional Dirichlet boundary
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condition that n × E = 0 on ∂Γ. In practice we did not consider PML to compute
the modes but rather a sufficiently large domain since the PMLs add complex values in
the optical indices leading to complex-valued β even though a guided mode in a lossless
medium should have a real propagation constant (see Section I.2.1.b). The reader is
referred to [Lee91] for the full-presentation and implementation of a numerical solver of
such eigenvalue problem.

I.4.4 Two dimensional approximation

I.4.4.a Functional space

In Section I.1.4, we have seen that in two dimensions, depending on the considered po-
larization, Ey and Hy are solutions of Eq. (I.1.19), that is to say a scalar Helmholtz
equation. Interestingly since (Ex,Hy,Ez) and (Hx,Ey,Hz) are independent we easily see
that the divergence-free conditions ∇· (n2E) = ∇· H = 0 are always satisfied (in the TE
case for instance we have ∂xHx = ∂zHz = 0 since only Hy is considered and ∂yHy = 0 by
definition of the two-dimensional approximation). With this in mind we derive that both
Ey and Hy should simply be elements of

V2D = H1
∂DPML

(D,C) = {φ ∈ L2(D,C),∇φ ∈ (L2(D,C))2, φ|∂DPML = 0} (I.4.15)

with, again, ∇φ defined in the weak sense meaning that there exists gx, gy ∈ L2(D,C)
such that for all ψ ∈ C∞c (D,C)∫

D
φ∂xψ

∗ dx = −
∫
D
gxψ

∗ dx and
∫
D
φ∂yψ

∗ dx = −
∫
D
gyψ

∗ dx. (I.4.16)

I.4.4.b Boundary conditions

In two dimensions, the approriate radiation condition is no longer given by Eq. (I.1.14)
but rather the Sommerfeld condition

lim
x→∞

√
|x|

(
x
|x|
· ∇Ey + ikEy

)
= 0. (I.4.17)

This behavior at infinity of the electric field will once again be approximated by PML
(see Section I.3.3). Concerning the injection of a mode we will this time simply con-
sider Eq. (I.3.7) instead of the DtN boundary condition since, in 2D, it is sufficient to
recover reasonable accuracy (see Remark I.3.2.1).

I.4.4.c Variational formulations

Using the previously formulated elements in this section, the full variational formulation
in 2D for the Ey component of the electric field with PML and the boundary condition
of Eq. (I.3.7) is given by∫
D

Λ−1∇Ey · ∇φ∗ − k2n2ΛEyφ∗ dx + iωµ0

∫
Γin∪Γout

Eyφ∗ dx = 2iωµ0

∫
Γin
E iny φ∗ ds (I.4.18)

where the PML matrix Λ is defined as

Λ(x) =
(
σ−1
x (x)σy(y) 0

0 σx(x)σy(y)−1

)
, x ∈ D. (I.4.19)

and σι is given by Eq. (I.3.16).
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I.5 Numerical aspects

Many numerical methods have been developed to solve either Eq. (I.1.9) or (I.1.6). In this
thesis we only consider the two most widely used methods, namely the Finite Element
Method (FEM) and the Finite Difference Time Domain (FDTD) method which
are briefly presented in the next subsections.

I.5.1 Finite Element Method (FEM)

I.5.1.a Introduction

The FEM is a particular case of Galerkin approximation, which means that it searches
for a solution of the variational formulation Eq. (I.4.8) in a finite-dimensional subset
Hh ⊂ H(curl,D) (or H1(D) in 2D with Eq. (I.1.19)) which makes it possible to write the
electric field as

E =
d∑
i=1

γiψi (I.5.1)

where γi are scalar values, d the dimension of Hh and ψi the shape functions (that
is to say elements composing a basis of Hh). The index h > 0 is used to describe the
approximation accuracy and it is assumed that Hh tends to H(curl,D) when h→ 0.

I.5.1.b Geometry meshing

To define the shape functions ψi, a tetrahedral mesh of the domain D is used
(see Fig. I.5.1) so that each ψi is different from zero only on a small number of ver-
tices, faces or tetrahedron’s volumes. This choice of support is important because it
means that few functions will have a non-zero interaction with each other and it therefore
leads to a sparse system of equations.

Figure I.5.1: Typical mesh of a nanophotonic component composed of approxi-
mately 100 000 tetrahedrons.

To simplify the meshing process and minimize the overall number of tetrahedrons we will
most of the time rely on a mesh that does not exactly coincide everywhere with the edges
of the shapes but which, using an index-smoothing method (see Section III.2.2), still gives
consistent results. Regarding the elements size, it is commonly accepted that if a wave is
propagating at the wavelength λ in a medium with optical index n then the tetrahedron’s
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edges must be of maximum size λ/(5n) such that each oscillation of the wave may be
properly discretized using at least 5 elements in the direction of propagation.

I.5.1.c Nédélec elements

Now that a mesh of the domain is defined let us present the (curl-conforming) edge
elements of Nédélec and the corresponding shape functions. The full definition of these
elements may be found in [Mon03, Section 5.5] or [Jin14, Section 8.3.2] but lets give here
a glimpse of one of their most important properties.

As we have seen in both Sections I.1.3 and I.4.1, a solution E to the time-harmonic wave
equation naturally have its tangential components E‖ continuous at the interfaces while
E⊥ has the same property only if it is multiplied by n2 (see Eq. (I.1.15)). The problem
is that if we consider some subspace of H(curl,D) which only contains fully-continuous
elements (such as (Pk(D))3 where Pk refer to the classic Lagrange elements of degree
k) we numerically see the appearance of so-called “spurious” solutions. To solve this
problem Nédélec notably introduced curl-conforming elements which are only imposing
the continuity of tangential components of the electric field.

I.5.1.d Solving time-harmonic Maxwell equations

The solution E ∈ Hh of the variational formulation

a(E,φ) = b(φ) for all φ ∈ Hh

is, by definition of Hh, the same as the one obtained by solving

a(E,ψi) = b(ψi) for all shape functions ψi.

By linearity, this is equivalent to finding the coefficients (γi)i = γ such that:
n∑
j=1

a(ψj,ψi)γj = b(ψj) for all i = 1, . . . , d. (I.5.2)

That is to say the solution of the linear system Aγ = b with A = (a(ψj,ψi))i,j and
b = (b(ψi))i. To solve this system we rely on the direct sparse LU solver MUMPS (even
though it requires a lot of RAM, it remains reasonable for the components described
in Chapters III and IV) which was found to be faster than iterative methods based on
GMRES or BiCGSTAB.

In practice the meshing and matrix assembly were done on either the commercial soft-
ware Comsol Multiphysics (COMSOL AB, Stockholm, Sweden) for 3D simulations or
FreeFem++ [Hec12] for the 2D ones. For the records, nanophotonic components such as
those in Chapter III were simulated using a mesh containing roughly 100 000 tetrahedrons
and second-order Nédelec elements leading to approximately 500 000 degree of freedom.
On the CEA 20-cores 3.3 Ghz cluster nodes with 128 GB of RAM this is solved in about
5 minutes.

I.5.2 Finite Difference Time Domain (FDTD)
Another widely popular method is the FDTD method (see [Sch10] for a good introduction
and implementation details) which directly deals with the time-dependent Maxwell equa-
tions Eqs. (I.1.1) to (I.1.4). This method is useful when dispersion relations are present
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(meaning that some parameters such as the optical indices depends on the wavelength) or
when the user is looking at multiple wavelengths at the same time (the spectral response
of the component). Even if most of our simulations uses the FEM, we resort to the FDTD
on an ad hoc basis to confirm our results or to quickly obtain the full spectrum.

Since we only used FDTD through the commercial solvers RSoft photonics (RSoft De-
sign Group, Inc., New York, U.S.A) and Lumerical (Lumerical Solutions, Inc., Vancouver,
Canada) as a black-box method we will not dive into much details here (see [Sch10] for
a presentation at introductory level). Nevertheless, it is important to be aware of two
characteristics of this method:

• First, since finite differences are inherently defined on Cartesian grids, the core
medium’s shape Ω of the component may not be properly discretized and it raises
the need to approximate the border ∂Ω using some kind of sub-pixel smoothing
method (see Section III.2.2).

• The second point is about the injection of modes into the waveguides. Since FDTD
considers time-dependent equations we now need to impose both the spatial profile
and the temporal behavior of the mode. To do this, two approaches are possible;
if we are only interested in a single frequency then this dependence could simply
be exp(iωt) (a continuous wave) whereas if we try to study a whole interval of
wavelengths then it is necessary to consider more than a single harmonic by injecting
a time-dependence like f(t) exp(iωt) (a pulse). Once the wave has had enough
time to propagate throughout the component, performing a Fourier transform then
provides the full spectral response, such as the power carried by a mode at every
considered wavelengths.

The consistency between FEM and FDTD is investigated in Section III.5.2 with the
simulation of a polarization rotator.
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Geometric shape optimization

Summary — One of the primary objectives of this thesis is to implement a numerical
method that automatically finds the optimal design of devices such as those presented
in Section I.3. To achieve this goal, most optimization algorithms are based on an iterative
process which produces increasingly efficient shapes (according to a given figure of merit)
and results in a locally optimized design.

For the past ten to twenty years, several shape optimization methods have been applied
in the context of nanophotonics (some of them will be presented in Section III.1.3) based
either on binary discretization and genetic algorithms, continuous approximations of ma-
terial properties or geometric approaches. In this thesis we have decided to focus on
the latter since it allows us to easily handle geometric quantities which will prove to be
particularly useful to deal with manufacturing uncertainties as we will see in Section IV.3.

The full mathematical details being only very seldom documented in photonics papers
which rely on geometric shape optimization, this chapter starts with a comprehensive
overview of Hadamard’s shape derivative concept in Section II.1.1, providing in particular
the necessary ingredients for the implementation of a “shape” gradient descent algorithm.

Sections II.3 and II.4 are then devoted to the presentation of the level set-based numer-
ical framework considered in this thesis with a particular emphasis on numerical details
that are of great importance for the stability and efficiency of the algorithm but often
overlooked in scientific papers (with the noticeable exceptions of the doctoral theses [De
05, Chapter 8] and [Vié16, Part IV]).

A direct application of the elements presented in this chapter to nanophotonics will be
discussed in Chapter III and an extension of this material for the optimization of the ge-
ometry between regions of shapes supporting different types of PDE’s boundary condition
will be proposed Chapter V.

II.1 The sensitivity of a physical objective according
to an infinitesimal variation of a shape

In this section we introduce the concept of shape derivative in the sense of Hadamard
as well as the Eulerian and Lagrangian derivatives of PDE constraint functional used to
define physical figure of merits.

Most of the material presented in this section may be found in the reference books [All07;
Hen06; Sok09; Pir82] or doctoral theses [Mic14; Dap13; De 05; Vié16].
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II.1.1 Shape derivatives in the sense of Hadamard

II.1.1.a Introduction

In Chapter I we saw that finding the design of a component which maximizes some figure
of merit (also referred to as objective function) is a problem of interest to physicists. Since
these figure of merits depends on the shape Ω of the design, we define in this section the
“gradient” of a general (shape) functional J which depends on a shape Ω ⊂ Rd. This
definition being the most important element in the implementation of a gradient descent
method, it will allow us to solve the general shape optimization problem

max
Ω⊂Rd

J (Ω). (II.1.1)

It is actually possible to define this “gradient” in many different ways depending on what
is meant by a “small variation” of a shape. From an algorithmic point of view, this choice
influences the allowed deformations of the shape between each iterations and therefore
limits those that can be obtained numerically.

In his memoir [Had08] Jacques Hadamard proposed to study the sensitivity of a shape
functional J (Ω) when the shape’s contour ∂Ω is shifted

“ by applying on its normals infinitely small lengths δn” (translated from french).

In modern language, he proposed that the contour ∂Ω be slightly modified into
(Id + δn)(∂Ω) = {x + δn(x),x ∈ ∂Ω} where δ ∈ R is a small real number and n is the
normal vector to ∂Ω. Note that the choice to consider only modifications along the normal
vector may seem surprising at first sight but this is due to the fact that at first order, a
tangential movement simply corresponds to a reparameterization of the edges as can be
seen in Fig. II.1.1 (see also Th. II.1.1.3).

Figure II.1.1: A tangential displacement of ∂Ω is, at first order, negligible compared
to a movement along the normal vector and is almost equivalent to a reparametriza-
tion.

This definition of a small variation of a shape was later considered and generalized in many
works (see for instance the original paper of Murat & Simon [Mur75] or the books [Hen06]
and [All07, Chapter 6]) as explained below.

For a given smooth shape Ω ⊂ Rd we are going to continuously move its borders in the
direction specified by a regular vector field of small amplitude. Defining θ : Rd → Rd as
this vector field we obtain a variation Ωθ of Ω by the operation (see Fig. II.1.2)

Ωθ = (Id + θ)(Ω) = {x + θ(x),x ∈ Ω}. (II.1.2)

This deformation is “small” insofar as θ is “small” according to a given norm. The choice
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Figure II.1.2: Schematic representation of a variation of a shape Ω using Hadamard’s
method.

of this norm, and therefore of the associated functional space for θ, is not very important
in practice (the fields will be chosen at least in C1(Rd,Rd) or even C∞(Rd,Rd) cf. Sec-
tion II.4.2) but it is nevertheless important that the vector fields are at least continuous
to ensure that the next theorems are true.

The most general space that can be chosen for θ is the set of vector fields with bounded
values and partial derivatives. More precisely we take θ ∈ W 1,∞(Rd,Rd) the space of
L∞(Rd)d functions (essentially bounded functions) such that its weak partial derivatives
exist and belong to L∞(Rd)d. This choice implies in particular that θ is continuous.
Endowing the space W 1,∞(Rd,Rd) with the norm

‖θ‖W 1,∞(Rd,Rd) = ‖θ‖L∞(Rd)d + ‖∇θ‖L∞(Rd)d×d ,

we obtain a Banach space. We will sometimes have to consider more regular deformations
using the space C1

c (Rd,Rd) ∩W 1,∞(Rd,Rd).

Variations of shapes by a process of the form Eq. (II.1.2) turn out to be homeomorph to
Ω, and in particular they share the same topology:

Theorem II.1.1.1 – Homeomorphism of W 1,∞(Rd,Rd).
Let θ ∈ W 1,∞(Rd,Rd) with ‖θ‖W 1,∞(Rd,Rd) < 1. The mapping Id + θ is an homeomor-
phism with (Id + θ)−1 − Id ∈ W 1,∞(Rd,Rd).

The proof of this theorem is given for example in [All07, Lemma 6.13].

II.1.1.b Definition

With the previous choice of deformations the derivative of a shape-dependent functional
is given in Def. II.1.1.1.
Definition II.1.1.1 – Differentiability of a shape functional.
Let J : Ω→ R be a given functional depending on a shape.

1. J is said to be shape differentiable at Ω if the functional
JΩ : θ 7→ J ((Id + θ)(Ω))

is Fréchet differentiable in W 1,∞(Rd,Rd) at 0.

2. The differential of JΩ at 0 is called the shape derivative of J at Ω and denoted
by J ′(Ω)(θ) = J ′Ω(0)(θ).
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With these definitions the following first-order Taylor expansion of J holds for vector
fields θ ∈ W 1,∞(Rd,Rd):

J ((Id + θ)(Ω)) = J (Ω) + J ′(Ω)(θ) + o(θ) where lim
θ→0

|o(θ)|
‖θ‖W 1,∞(Rd,Rd)

.

Since the definition of the shape derivative is only valid for infinitely small perturbations
of the reference shape, J ′(Ω)(θ) is only defined using vector fields θ with associated
norm inferior to 1, meaning that this kind of sensitivity does not allow topology changes
as explained in Th. II.1.1.1.

Remark II.1.1.1: The vector fields living only in a Banach space (and therefore no
scalar product is available), there is, in general, no gradient associated to J ′(Ω)(θ).
However, it is always possible to recover a gradient using the Hilbert projection method
described in Section II.4.2.

II.1.1.c Application to integral functionals

By directly using the previous definitions we can determine the shape derivative of two
types of functionals which are the basis for all the upcoming demonstrations.

Theorem II.1.1.2 – Shape derivatives of domain-dependent integrals.
Let Ω be an open, regular and bounded subset of Rd, f ∈ W 1,1(Rd,R) and
g ∈ W 2,1(Rd,R). Let

J1(Ω) =
∫

Ω
f(x) dx and J2(Ω) =

∫
∂Ω
g(s) ds. (II.1.3)

The functionals J1 and J2 are shape differentiable at Ω and we have the following
shape derivatives for all θ1 ∈ W 1,∞(Rd,Rd) and θ2 ∈ C1

c (Rd,Rd):

J ′1(Ω)(θ1) =
∫
∂Ω
θ1 · n f(s) ds and J ′2(Ω)(θ2) =

∫
∂Ω
θ2 · n (∇g(s) · n + κg(s)) ds.

where κ = ∇ ·n is the mean curvature of ∂Ω and n the unitary, outer-pointing normal
vector.

See [All07, Section 6.3.2] or [Hen06, Section 5.2] for the proof of Th. II.1.1.2 which is
essentially based on a change of variables through the mapping x 7→ (Id + θ)(x) that is
only valid if it is a homeomorphism.

An interesting case is the one where f = g = 1. In this situation J1 corresponds to
the volume of Ω while J2 represents its perimeter. Th. II.1.1.2 then gives the following
derivatives

J ′1(Ω)(θ) =
∫
∂Ω
θ · n ds and J ′2(Ω)(θ) =

∫
∂Ω
κ θ · n ds. (II.1.4)

In other words, the most efficient way to minimize the volume of Ω (resp. the perimeter)
consists in deforming its boundary using a vector field in the direction opposite to normal
vectors (resp. opposite to normal vectors weighted by the value of the mean curvature).
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II.1.1.d The structure theorem

In Th. II.1.1.2 we have seen that for two integrals functionals the shape derivative only
considered the normal component θ · n of the vector field on the border ∂Ω of the shape.
The following theorem allows to extend this result for more general shape functionals.

Theorem II.1.1.3 – Structure theorem.
Let Ω ⊂ Rd smooth and J : Ω → R a shape differentiable functional with associate
derivative J ′(Ω)(θ). Then there exists a linear form l : ∂Ω → R such that for all
θ ∈ C1

c (Rd,R) ∩W 1,∞(Rd,Rd)

J ′(Ω)(θ) = l(θ · n). (II.1.5)

In other words, the shape derivative only consider the normal component of the vector
fields θ on the border of the shape ∂Ω. Another way to understand this result is
that for any vector field θ with compact support S such that ∂Ω ∩ S = ∅ we have
J ′(Ω)(θ) = 0.

For the proof of this theorem see for instance [Hen06, Theorem 5.9.2].

II.1.1.e Summary of the shape optimization method: sketch of the algorithm

Let us put together everything we have presented so far by describing how we are going to
be able, using Hadamard’s method, to optimize an objective function J which depends
on a shape Ω; namely to solve

max
Ω⊂Rd

J (Ω). (II.1.6)

Considering a functional J as in Th. II.1.1.2 there exists a scalar field VΩ such that:

J ′(Ω)(θ) =
∫
∂D
θ · n VΩ(s) ds.

Therefore, taking θ = VΩn we find that

J ((Id + θ)(Ω)) = J (Ω) +
∫
∂Ω
|VΩ(s)|2 ds+ o(θ).

Using a scalar τ small enough this implies that J ((Id + τVΩn)(Ω)) > J (Ω).

Starting from an initial shape Ω we can iteratively carry out the transformation
(Id + τVΩn)(Ω) as described in Algorithm II.1.1 to obtain increasingly efficient shapes
for the objective function J .
Of course Algorithm II.1.1 does not present all the necessary ingredients to numerically
implement this shape optimization algorithm, this is the purpose of Sections II.3 and II.4.
The resulting fully-detailed algorithm is given at the end of the chapter in Section II.4.3.

II.1.1.f A note on the existence of global maximum in shape optimization
problems

In Section II.1.1.e we proposed a general shape optimization algorithm to solve Eq. (II.1.6).
As for any gradient-based method the convergence into a local maxima is ensured as soon
as the step τ in Line 8 of Algorithm II.1.1 is chosen sufficiently small at each iteration.
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Algorithm II.1.1: Sketch of the shape optimization algorithm to maximize an
objective function.
1 begin (initialization)
2 Ω := Ω0 (initial shape);
3 τ := 1 (the amplitude of the deformation);
4 repeat (optimization)
5 θ := VΩ the shape derivative scalar field (Eq. (II.2.9));
6 τ := small amplitude for the gradient descent;
88 Ω := (Id + τθn)(Ω);
9 until convergence;

10 return Ω;

Starting from different initial shapes Ω we may end up in different local maxima but an
essential question then arises regarding the possibility to obtain a global maximum Ω∗;

Ω∗ = arg max
Ω⊂Rd

J (Ω). (II.1.7)

The problem with such a question is that it assumes the existence of such Ω∗. However,
in general, the existence of a global maximum to this type of optimization problem is
not guaranteed and it might be possible to build a sequence of shape with increasing
efficiency for the objective function that does not converge to a shape Ω∗ ⊂ Rd (see on
this topic [Hen06, Chapter 4] or [Pir82, Chapter 3]).

This also implies that the max in Eq. (II.1.6) does not really makes sense and should be
replaced by a sup instead but we will keep this small abuse of notation later on.

II.1.2 Eulerian and Lagrangian derivatives
Even though Th. II.1.1.2 allows to find the shape derivative of integral functionals, its
result does not apply to physically interesting figure of merits since the integrands f and
g in Eq. (II.1.3) do not depend on the shape Ω.

This dependence is, however, of utmost importance to consider physical quantities (such
as the electric field) that are inherently domain-dependent. Let us recall for instance that
in Section I.3.4 we presented a general optimization program for photonic components
which requires the resolution of Eq. (I.3.22), that is to maximize

J (Ω) =
∣∣∣∣∫

Γ

1
2 [EΩ ·H∗] · n ds

∣∣∣∣2 , (II.1.8)

where EΩ is solution of the time-harmonic vector wave equation which depends on Ω
through the values of the optical index.

In this section we will therefore describe the technique used to adapt Th. II.1.1.2 to
integrals of the form

J1(Ω) =
∫

Ω
f(x,Ω) dx and J2(Ω) =

∫
∂Ω
g(x,Ω) ds. (II.1.9)
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II.1.2.a Definition

To find the shape derivative of the functionals in Eq. (II.1.9), we need to give meaning to
the derivative with respect to Ω of functions such as

uΩ : D → R,

which we assume to be an element of H, an Hilbert space defined on D ⊂ Rd with Ω ⊂ D.
This is the case of the electric field EΩ in Eq. (II.1.8) (as we have seen in Section I.4.3)
which is defined as the solution to a PDE in D ⊂ R3 using an optical index which depends
on Ω ⊂ D.

To study these derivatives, two approaches are possible using either an Eulerian or La-
grangian framework as presented in Def. II.1.2.1, II.1.2.2 and Fig. II.1.3. These denomi-
nations will be explained in Remark II.1.2.1. Note that in general uΩ may be defined only
on Ω, thus requiring some modifications in the following definitions; see Remark II.1.2.2.

(a) Eulerian point of view: we study the
variation between the value of u before and
after the deformation at the position x

(b) Lagrangian point of view: we study the
variation between the value of u at x before
the deformation and after at (Id + θ)(x)

Figure II.1.3: Difference between the Eulerian and Lagrangian points of view.

Definition II.1.2.1 – Eulerian derivative.
On the one hand we can study, for a given point x in space, the variation of the function
uΩ ∈ H at this fixed position x with respect to a modification of Ω (see Fig. II.1.3(a)).
The new value of uΩ at the same position is denoted by ûΩ and defined as

ûΩ : W 1,∞(Rd,Rd)→ H s.t. ûΩ(θ) = u(Id+θ)(Ω) (II.1.10)

When it exists, the derivative of this mapping at 0, in the direction θ, is referred to as
u′Ω(θ), the Eulerian derivative of uΩ. In other words

u′Ω(θ)(x) = dûΩ(0)(θ)(x). (II.1.11)

Notice that since we consider uΩ as an element of Ω a subset of D, then for any
sufficiently small θ with θ = 0 on ∂D, the value of ûΩ(θ) is well defined and so does
u′Ω.

Definition II.1.2.2 – Lagrangian derivative.
Alternatively, one can follow the movement of x ∈ D during the shape deformation
and consider the variation of u ∈ H along the path of x (see Fig. II.1.3(b)). The new
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value of uΩ at the modified position is denoted by ūΩ and defined as

ūΩ : W 1,∞(Rd,Rd)→ H s.t. ūΩ(θ) 7→ u(Id+θ)(Ω) ◦ (Id + θ).

In this case, the derivative ůΩ(θ) of ūΩ at 0, in the direction θ, is called the Lagrangian
derivative of uΩ (also known as the material derivative of uΩ), that is

ůΩ(θ)(x) = dūΩ(0)(θ)(x). (II.1.12)

Even though the Lagrangian derivative is more complex from a mathematical point of
view, it seems more appropriate in shape optimization since it allows to study the precise
behavior of the function uΩ on interfaces such as ∂Ω. Indeed, if θ 6= 0 and x ∈ ∂Ω then
x /∈ (Id + θ)(∂Ω), hence the Eulerian derivative does not allow to track the variation of
uΩ on the border of Ω (it will be important in Chapter V when dealing with boundary
conditions defined on ∂Ω). Moreover, when uΩ is only defined on Ω, the Lagrangian
derivative is easier to handle; see Remark II.1.2.2.

Remark II.1.2.1: The strategies of Definitions II.1.2.1 and II.1.2.2 are named after
two well-known viewpoints used, for instance, in fluid mechanics. When dealing with
flows, depending on the applications, it is customary to observe either the velocity
v(x, t) of the fluid at a given point x ∈ Rd over the time t ∈ R or the evolution of
a particle position χ(x, t) (which begins at the location χ(x, 0) = x for t = 0) and
therefore its individual speed ∂tχ(x, t) = v(χ(x, t), t).

When the quantity v(x, t) is considered, it is said that we are within the Eulerian frame
of reference whereas considering v(χ(x, t), t) falls down in the domain of Lagrangian
coordinates.

A direct analogy between the time t in fluid mechanics and the transformation
θ in shape optimization is made if we let χ(x,θ) = x + θ(x) be the point x
new position. Indeed if w(x,θ) = ûΩ(θ)(x) is the Eulerian derivative at x then
w(χ(x,θ),θ) = ūΩ(θ)(x) is the Lagrangian one.

Remark II.1.2.2: If uΩ is solution to a PDE which is only defined on Ω, then the
Hilbert space H depends on Ω. This means that for any θ 6= 0, ûΩ(θ) /∈ H.

Still, the definition of the Eulerian derivative may be adapted by modifying ûΩ
in Eq. (II.1.10) into ûΩ,x(θ) = u(Id+θ)(Ω)(x) (which is well defined for small enough
vector fields θ) and u′Ω(θ)(x) as the associated derivative.

In this case, the Lagrangian derivative seems to give a more appropriate mathematical
framework since it may still be defined globally as in Def. II.1.2.2 and does not require
a definition at each position.

Nevertheless, whenever both û and ū are well defined, they are linked through a simple
formula. To show this we introduce UΩ : θ 7→ uΩ ◦ (Id + θ) in such a way that a formal
application of the chain rule gives:

dūΩ(0)(θ) = dUΩ(0)(θ) + dûΩ(0)(θ) = θ · ∇xuΩ + dûΩ(0)(θ).
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Using Eqs. (II.1.11) and (II.1.12) this is equivalent to

ůΩ(θ) = θ · ∇xuΩ + u′Ω(θ). (II.1.13)

Since the Lagrangian derivative is more rigorous from a mathematical point of view,
it is common to find the Lagrangian derivative and then define the Eulerian one us-
ing Eq. (II.1.13) as

u′Ω(θ) = ůΩ(θ)− θ · ∇xuΩ. (II.1.14)

II.1.2.b Application to integral with shape-dependent integrands

Using the previous definitions we can now give the derivatives of Eq. (II.1.9) (see [All07,
Prop 6.28]):

Theorem II.1.2.1 – Shape derivatives of domain-dependent integrals and
integrands.
Let Ω be an open, regular and bounded subset of Rd, fΩ, gΩ ∈ L1(Rd,R) with g̊Ω
differentiable at 0 as a mapping from C1(Rd,Rd) into L1(∂Ω). Let

J1(Ω) =
∫

Ω
fΩ(x) dx and J2(Ω) =

∫
∂Ω
gΩ(x) ds. (II.1.15)

The functionals J1 and J2 are shape differentiable at θ = 0 and we have the following
shape derivatives for all θ1 ∈ W 1,∞(Rd,Rd)

J ′1(Ω)(θ1) =
∫

Ω
(∇·θ1)fΩ(x)+ f̊Ω(θ1)dx =

∫
∂Ω
θ1 ·nfΩ(x)ds+

∫
Ω
f ′Ω(θ1)dx, (II.1.16)

and for all θ2 ∈ C1
c (Rd,Rd)

J ′2(Ω)(θ2) =
∫
∂Ω
gΩ(x)(∇ · θ2 −∇θ2n · n) + g̊Ω(θ2) ds

=
∫
∂Ω
θ2 · n (∇gΩ(x) · n + κgΩ(x)) ds+

∫
∂Ω
g′Ω(θ2) ds. (II.1.17)

Note that using the Eulerian derivative the shape derivatives Eqs. (II.1.16) and (II.1.17)
are exactly the ones expected using the chain rule applied formally and Th. II.1.1.2. As
we will see in the next section, this sole theorem will allows us to find the shape derivative
of all the functionals considered in this thesis. However, in practice, since both Eulerian
and Lagrangian derivatives are difficult to obtain numerically we will resort to the adjoint
method to obtain the shape derivatives without computing either u′Ω or ůΩ.

II.1.3 Other type of sensitivity: topological gradient
In this subsection we briefly discuss another type of shape sensitivity, namely the topo-
logical gradient which allows topological changes in the shape.

For more information about this method we refer to [Sok09, Chapter 1] or [Ams03, Chap-
ter 1]. To better appraise the link between shape and topological derivatives we start this
paragraph with a very crude attempt to reuse the previously defined shape derivative in
the context of a topological modification which has the form of the removal of a sphere
within the shape.
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(a) Unperturbed shape Ω (b) Modified shape Ωε = Ω\B(x0, ε)

Figure II.1.4: Variation of the shape using the topological gradient.

To do this, first suppose that we are in the situation depicted in Fig. II.1.4(b). If we
consider the shape Ωε = Ω\B(x0, ε) then we can look at the shape derivative along the
border of B(x0, ε) and check if it should be better to dilate or erode this ball by looking
at the sign of

J ′(Ωε)(n) =
∫
∂B(x0,ε)

VΩε(s) ds

where VΩ only depends on the values of uΩ and vΩ, the adjoint state as defined in Sec-
tion II.2.1. From a numerical point of view we now make two approximations:

• For ε small enough the values of both uΩε and vΩε are constant on the border of the
ball so that J ′(Ωε)(n) ' 2πVΩε(x0).

• If ε is small enough then the PDEs solutions (the state and the adjoint) using either
Ω or Ωε should be equal so that J ′(Ωε)(n) ' 2πVΩ(x0).

In other words considering only the simulation of the state and adjoint using Ω we can
find if it would be better for Ωε to dilate or erode B(x0, ε) by looking at the sign of VΩ(x0)
(negative values implying that a dilation would be better to increase the value of J (Ω)).
Another way to interpret this result is the following if VΩ is negative then it should be
good to nucleate a hole in Ω at x0 since, if such a hole were to exist, then it would be
better to expand it than to shrink it.

Of course, this conclusion does not result from a rigorous mathematical analysis and it
proves wrong in many cases, even though it can be legitimate in some circumstances;
see [Céa00]. In fact the most inaccurate assumption in the last paragraph was that we
considered the shape derivative in the direction n using an amplitude of at most the hole’s
radii ε (remember that the shape derivative is not allowed to alter the shape’s topology)
which is also the magnitude of the perturbation caused by the removal of B(x0, ε). In
other words, these two modifications (the edge of the hole in the normal direction and the
drill of the hole itself) are both functions of ε and it is therefore not justified to disregard
one of them without first checking that one of these perturbation is negligible compared
to the other one (this is the case if they are not of the same order in ε).

A mathematically rigorous counterpart to the previous analysis relies on an asymptotic
expansion of the objective function as

J (Ωε) = J (Ω) + f(ε)T (x0) +R(f(ε)) (II.1.18)

where f(ε)→ 0 and R(f(ε)) = o(f(ε)). In this case T (x0), which is called the topological
gradient of the objective function, then gives information on where to remove balls in the
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shape in order to optimize J . Differentiating Eq. (II.1.18) by ε and dividing by f ′(ε)
then yields

T (x0) = lim
ε→0

(
εJ ′(Ω)(n)
f ′(ε) −R′(f(ε))

)
. (II.1.19)

And if we also have R′(f(ε)) → 0 then T (x0) = VΩ(x0) limε→0 εf
′(ε)−1. In the case

of nanophotonics, proving a relation like Eq. (II.1.18) is very difficult; see Section III.3.2
where we give some optimization results using the value of the shape derivative as a means
of knowing where to nucleate holes inside the shape.

II.2 How to find the shape derivative of a PDE con-
strainted functional

In Sections II.2.1 and II.2.2 we are interested in the shape derivatives of the following
model physical objective in which Ω is a subset of the considered domain D ⊂ Rd (this
type of shape optimization problem where Ω is immersed into a larger domain is sometimes
referred to as an interface optimization problem)

J (Ω) =
∫
D
j(uΩ) dx with uΩ ∈ H s.t. KΩ(uΩ) = 0 (II.2.1)

where uΩ ∈ H a given Hilbert space defined on the whole domain D and KΩ a linear
differential operator. Note here that to ensure the well-posedness of J we have to suppose
the existence and uniqueness of a solution for all smooth Ω to the equation KΩ(uΩ) = 0
(additional regularity are also required in order to integrate j on D but we will ignore
these details here). More precisely, we will consider the variational formulation associated
to the PDE meaning that uΩ ∈ H is solution of

aΩ(uΩ, v) = bΩ(v) (II.2.2)

for all v ∈ H where a (resp. b) is a bilinear (resp. linear) form.

According to Th. II.1.2.1 the shape derivative of Eq. (II.2.1) could be computed but it
involves either the Lagrangian or Eulerian derivative of the mapping Ω → uΩ. Céa’s
method [Céa86] (also known as the adjoint or Lagrangian method) allows us to find the
shape derivative of J without ever having to find this derivative but at the cost of a formal
demonstration. The general structure of the complete proof is presented in Section II.2.2.

II.2.1 Céa’s formal method

II.2.1.a General method

To find the derivative of Eq. (II.2.1) consider the following three steps:

1. Definition of the Lagrangian. Define a function L, which will be referred as
the Lagrangian, as the sum of the objective and the considered PDE’s variational form
(see Remark II.2.1.1 for some explanations about the link between this definition and the
Lagrangian used in optimization)

L(Ω, u, v) = J (Ω) + aΩ(u, v)− bΩ(v). (II.2.3)
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Note here that L is well-defined for all u, v ∈ H and that no dependency between u, v
and Ω is required.

2. Expression of the shape derivative using the Lagrangian. Taking u = uΩ the
solution of the equation aΩ(u, v) = bΩ(v) we have for all v ∈ H:

L(Ω, uΩ, v) = J (Ω). (II.2.4)

And since this equality is verified for all shapes it also mean that for all θ:

L((Id + θ)(Ω), u(Id+θ)(Ω), v) = J ((Id + θ)(Ω)).

Now supposing that the mapping Ω 7→ L(Ω, uΩ, v) ∈ R is shape differentiable for every
v ∈ H, we can use the chain rule and find that the shape derivative of J (Ω) equals to

J ′(Ω)(θ) = ∂ΩL(Ω, uΩ, v)(θ) + ∂uL(Ω, uΩ, v) ◦ u′Ω(θ). (II.2.5)

Remark here that finding ∂ΩL(Ω, u, v)(θ) is easier than J ′(Ω)(θ) since the integrands in
L does not depend on Ω so we can use the results of Th. II.1.1.2 instead of Th. II.1.2.1.

3. Introduction of the adjoint state. Since aΩ is bilinear, Eq. (II.2.5) is equivalent
to

J ′(Ω)(θ) = ∂ΩL(Ω, uΩ, v)(θ) +
∫
D
j′(uΩ)(u′Ω(θ)) dx + aΩ(u′Ω(θ), vΩ). (II.2.6)

We will now see that it is possible to cancel the second and third term in Eq. (II.2.6) which
has the advantage to greatly simplify the shape derivative’s formula by not involving the
Eulerian derivative. To do this it is sufficient to remark that taking v = vΩ solution for
all ũ ∈ H of ∫

D
j′(uΩ)(ũ) dx + aΩ(ũ, v) = 0. (II.2.7)

From Eq. (II.2.6) the shape derivative of J is then found equal to

J ′(Ω)(θ) = ∂ΩL(Ω, uΩ, vΩ)(θ). (II.2.8)

In summary to find J ′(Ω)(θ) we will have to

1. Find uΩ solution of aΩ(uΩ, v) = bΩ(v) for all v ∈ H.

2. Find vΩ solution of aΩ(ũ, vΩ) = −
∫
D j
′(uΩ)(ũ) dx for all ũ ∈ H.

3. Compute the shape derivative as J ′(Ω)(θ) = ∂ΩL(Ω, uΩ, vΩ)(θ) whose exact formula
is obtained through Th. II.1.1.2. From this theorem it is also clear that the final
shape derivative should be of the form

J ′(Ω)(θ) =
∫
∂Ω
θ · nVΩ(s) ds (II.2.9)

where the scalar field VΩ(s) may involve the values of both uΩ and vΩ (note that
this expression is consistent with the structure theorem Th. II.1.1.3).

Remark II.2.1.1: The definition of the Lagrangian (Eq. (II.2.3)) comes from an
analogy with the Lagrangian used in mathematical optimization. Indeed, we can first
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see that maximizing Eq. (II.2.1) is equivalent to solving the following mathematical
program 

max
Ω⊂D
u∈H

∫
D
j(u) dx

s.t. KΩ(u)(x) = 0 for all x ∈ D
.

Introducing a Lagrangian multiplier v(x) for each constraint on u leads us to the
following classical definition for the Lagrangian

L(Ω, u, v) = J (Ω) +
∫
D
v(x)KΩ(u) dx

which, after integration by part, is equal to Eq. (II.2.3). See also [Del11, Chapter 10,
Section 5.2] about this link between the Lagrangian in optimization and the one used
in shape optimization.

II.2.1.b Limitations of Céa’s method

Céa’s method may be adapted to most physical problem and gives the correct shape
derivative in many cases but its application still requires to carefully keep in mind the
underlying assumptions that have been made to ensure that it is correctly adapted. Mainly
two hypotheses are of great importance to find the correct shape derivative.

First, in Eq. (II.2.3), the definition of the Lagrangian supposed that u, v and Ω are
independent. This may not be the case if the Hilbert space H in which uΩ and vΩ are
defined depends on Ω. This occurs for instance when a Dirichlet boundary condition is
applied on (a part of) the border of Ω which is also subject to optimization. It is still
possible to adapt Céa’s method by adding an additional Lagrange multiplier and we refer
the reader to [All07, Section 6.4.3] for information about this particular case.

Secondly, Céa’s method relies heavily on the formula (II.2.5) obtained by assuming the ex-
istence of the Eulerian derivative of uΩ which, as we have seen in Section II.1.2.a, may not
exist contrary to the Lagrangian derivative. We will see in Section III.2.1 that this exact
problem occurs for objective functionals used in nanophotonics. This non differentiability
may be readily seen from Eq. (II.1.14) since the Eulerian derivative is linked to the La-
grangian one by involving the gradient of the solution of the PDE (see Remark II.2.1.2)
which may not be defined on the interface ∂Ω (in Section I.1.3.b we saw that only the
tangential derivatives of the electric field are well-defined on an interface). Just like the
first problem mentioned above, we can still adapt Céa’s method to find the right shape
derivative (see [Pan05] for more details).

Remark II.2.1.2: To be perfectly precise about the Eulerian derivative, it may
be defined but will lack some regularity; u′Ω may not be an element of H. In such
a situation, even if vΩ is defined by canceling the adjoint equation (II.2.7) for all
ũ ∈ H, Eq. (II.2.8) is not verified since u′Ω(θ) /∈ H. Even worse, it may not even be
possible to evaluate aΩ using an element which is not in H (for instance if the Eulerian
derivative is only an element of L2 and aΩ(u, v) involve the gradient of u).
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II.2.1.c Numerical considerations

In this subsection we discuss two numerical features about computation of the adjoint
state. First, as we have seen uΩ is solution of Eq. (II.2.2) and vΩ the adjoint state is the
solution of Eq. (II.2.7). Once discretized using the finite element method (see Section I.5.1)
these equations drop down to:

AΩuΩ = l1,Ω and A>ΩvΩ = l2,Ω

where AΩ is the same stiffness matrix involved for both equations, l1,Ω, l2,Ω are two vectors
and uΩ (resp. vΩ) is collecting the values of uΩ(resp. vΩ) at the degree of freedom of the
finite element discretization. If during the resolution of uΩ the LU decomposition of AΩ
is found (this is most of the time the case when using a sparse direct solver) then vΩ is
easily computed since it involves the same matrix.

It is worth noting that in Section II.2.1.a the Lagrangian involved uΩ and vΩ and not
their discretized counterpart. The same analysis may be carried out using uΩ and vΩ
in the Lagrangian and the question that can legitimately be asked is whether the shape
derivative obtained by considering this new Lagrangian is the same as the previously
obtained one once discretized (in other words, does considering a continuous model and
then discretizing it give the same result as directly considering the discrete model?). For a
lot of classical shape optimization problem these two approaches are indeed equivalent but
unfortunately this is not the case of the problem studied in Section III.2.1; see also [All14b,
Section 2.2].

II.2.2 Structure of the rigorous proof
Even when it gives the right result, Céa’s method remains purely formal as we have
seen at the end of Section II.2.1.a. This section is now dedicated to the explanation of
the full proof required to obtain the shape derivative of Eq. (II.2.1), an application to
nanophotonic will be studied in Section III.2.1.

This demonstration is divided into four main steps.

• First we look at the variational form of the transported field u(Id+θ)(Ω) ◦ (Id + θ).

• Later it is proved that the Lagrangian derivative of uΩ is well defined by using the
implicit function theorem.

• We differentiate both the objective function and the variational formulation of
u(Id+θ)(Ω) ◦ (Id + θ) with respect to θ to find that ůΩ(θ) is obtained by solving
a PDE where θ acts as a parameter. Introducing an adjoint state vΩ it is then
possible to remove the dependence on the Lagrangian derivative and express the
shape derivative using a volumic integral and vΩ.

• The last step is then dedicated to the modification of the previously found expression
into a surfacic one using integration by parts.

Unlike Section II.2.1.a we consider here a particular structure of the variational formu-
lation (we could have once again remained with a general problem but we think that it
would be too vague to adapt this demonstration to other physical problems). For this
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introduction we consider that uΩ is the solution to a fairly simple second order elliptic
problem on D with Neumann boundary condition, precisely we take

aΩ(uΩ, v) =
∫
D
∇uΩ · ∇v + cΩuΩv dx =

∫
D
fv dx = bΩ(v) (II.2.10)

where cΩ(x) equals c1 > 0 inside Ω and c2 > 0 outside Ω with f ∈ C1(D,R). Here the
Hilbert space H is H1(D). In details the proof is then as follows.

1. Mapping of the objective function and the variational formulation in the ref-
erence domain. Let θ ∈ W 1,∞(Rd,Rd) a vector field such that its norm ‖θ‖W 1,∞(Rd,Rd)
is strictly less than 1 (see Th. II.1.1.1). We start by transporting the objective functional
for the shape (Id + θ)(Ω) = Ωθ on Ω:

J (Ωθ) =
∫
D
j(uΩθ

) dx where
∫
D
∇uΩθ

· ∇v + cΩθ
uΩθ

v dx =
∫
D
fv dx

for all v ∈ H. Using a change of variables and defining the transported fields
ūθ = uΩθ

◦ (Id + θ) and v̄θ = v ◦ (Id + θ) we therefore have

J (Ωθ) =
∫
D
j(ūθ)B(θ) dx, (II.2.11)

and for a given v ∈ H∫
D
A(θ)∇ūθ · ∇v̄θ + cΩB(θ)ūθv̄θ dx =

∫
D
B(θ)f ◦ (Id + θ)v̄θ dx

since by definition cΩ = cΩθ
◦ (Id + θ) with

A(θ) = | det(Id +∇θ)|(Id +∇θ)−1(Id +∇θ>)−1 and B(θ) = | det(Id +∇θ)|.

In the previous calculation we have used the fact that

∇(uΩθ
◦ (Id + θ)) = (Id +∇θ>)(∇uΩθ

) ◦ (Id + θ).

Now from Th. II.1.1.1 we see that for θ small enough we have {v ◦ (Id + θ), v ∈ H} = H
which means that ūθ is also solution for all v ∈ H to∫

D
A(θ)∇ūθ · ∇v + cΩB(θ)ūθv dx =

∫
D
B(θ)f ◦ (Id + θ)v dx. (II.2.12)

Note that this first step could be achieved for any PDE and objective function since it
amounts to express the objective function and variational formulation in terms of ūθ.

2. Proof of the Lagrangian differentiability of uΩ using the implicit function
theorem. Now we consider the following functional from W 1,∞(Rd,Rd) × H into H∗
(the dual space of H)

F (θ, u) =
(
v 7→

∫
D
A(θ)∇u · ∇v + cΩB(θ)uv dx−

∫
D
B(θ)f ◦ (Id + θ)v dx

)
.

Using for instance the Lax-Milgram theorem we can prove the existence and uniqueness
of the solution to

aΩ(u, ·) = ` (II.2.13)
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for all Ω and ` ∈ H∗. The function uΩ is therefore the unique u such that F (0, u) = 0,
that is F (0, uΩ)(v) = 0 for all v ∈ H.

Furthermore, F is an affine map with respect to u so ∂uF (0, u)(ũ) = aΩ(ũ, ·). Since
aΩ(ũ, ·) = ` has a unique solution for all either fixed ũ ∈ H or ` ∈ H∗ then
ũ→ ∂uF (0, uΩ)(ũ) is an isomorphism from H into H∗.

Besides, A(θ) and B(θ) are polynomials in θ which implies that F is a C1 application
with respect to θ but also according to u since F is affine for a fixed value of θ.

In summary:

• The three sets W 1,∞(Rd,Rd), H and H∗ are Banach spaces,

• F : W 1,∞(Rd,Rd)×H → H∗ is a C1 mapping,

• F (0, uΩ) = 0,

• ∂uF (0, uΩ) is an isomorphism from H into H∗.

Now owing to the implicit function theorem [Lan12, Chapter 1, Theorem 5.9] there exist
two neighborhoods U ⊂ W 1,∞(Rd,Rd), V ⊂ H of 0 ∈ U and uΩ ∈ V and a differentiable
function g : U → V such that F (θ, g(θ)) = 0 for all θ ∈ U .

Once again by uniqueness of a solution to the PDE we have g(θ) = ūθ for all θ ∈ U which
allows to conclude that θ 7→ ūθ is Fréchet differentiable or, equivalently, that uΩ has a
Lagrangian derivative ůΩ(θ) ∈ H.

For more general PDEs the main difficulty of this step would be to prove the uniqueness
of a solution to the equation aΩ(u, ·) = ` for every linear map `, which is, in general, a
fundamental assumption for the study of physical problems.

3. Volumetric shape derivative using an adjoint state. We can now differentiate
the objective Eq. (II.2.11) to obtain

J ′(Ω)(θ) =
∫
D
j′(uΩ)̊uΩ(θ) dx, (II.2.14)

as well as the variational formulation Eq. (II.2.12) verified by ūθ∫
D
∇ůΩ(θ) · ∇v + cΩůΩ(θ)v dx

= −
∫
D
A′(0)(θ)∇uΩ · ∇v + cΩB

′(0)(θ)uΩv dx +
∫
D
B′(0)(θ)fv + θ · ∇fv dx, (II.2.15)

where simplifications were made using A(0) = Id, B(0) = 1 with the derivatives of A and
B given by

A′(0)(θ) = (∇ · θ)Id−∇θ −∇θ> and B′(0)(θ) = ∇ · θ.

Our goal is now to express Eq. (II.2.14) without resorting to ůΩ(θ) since for the mo-
ment if we want to compute the value of J ′(Ω)(θ) we have to solve one additional PDE
(Eq. (II.2.15)) for each θ. Formula Eq. (II.2.14) is impractical from a numerical point of
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view; in particular it does not lend itself to finding a descent direction θ for J (Ω) (i.e. θ
such that J ′(Ω)(θ) < 0).

To understand how we will solve this problem, let us have a look at the variational
formulations verified by both uΩ and ůΩ(θ). Taking v = uΩ in Eq. (II.2.15) and v = ůΩ(θ)
in Eq. (II.2.10) we find that∫

D
∇ůΩ(θ) · ∇uΩ + cΩůΩ(θ)uΩ dx

= −
∫
D
A′(0)(θ)∇uΩ · ∇uΩ + cΩB

′(0)(θ)u2
Ω dx +

∫
D
B′(0)(θ)fuΩ + θ · ∇fuΩ dx dx,

∫
D
∇uΩ · ∇ůΩ(θ) + cΩuΩůΩ(θ) dx =

∫
D
fůΩ(θ) dx,

and therefore∫
D
fůΩ(θ) dx =

∫
D
B′(0)(θ)fuΩ + θ · ∇fuΩ − A′(0)(θ)∇uΩ · ∇uΩ − cΩB

′(0)(θ)u2
Ω dx.

(II.2.16)
If j′(uΩ) in Eq. (II.2.14) were both equal to f we could use the right-hand side
of Eq. (II.2.16) to compute J ′(Ω)(θ) without solving any additional PDE since it would
not use ůΩ(θ). Unfortunately this is not the case for a general function J (Ω). The idea
is then to introduce a new state, the adjoint, solution of Eq. (II.2.10) with this time a
source term j′(uΩ) instead of f . Indeed if we let vΩ the solution for all v ∈ H of∫

D
∇vΩ · ∇v + cΩvΩv dx =

∫
D
j′(uΩ)v dx (II.2.17)

then taking v = Lu(θ) in Eq. (II.2.17) and v = vΩ in Eq. (II.2.15) we find that

J ′(Ω)(θ) =
∫
D
B′(0)(θ)fuΩ+θ·∇fuΩ−A′(0)(θ)∇uΩ·∇vΩ−cΩB

′(0)(θ)uΩvΩdx, (II.2.18)

which is known as the volumetric expression of the shape derivative.

4. Surfacic form of the shape derivative. To simplify the previous expression and
obtain an integral on ∂Ω involving only the normal component of θ (which should be
possible according to the so-called structure theorem) we rely on the following integration
by parts formulas valid for smooth enough θ, scalar fields u, v and vectorial ones u,v (the
strategy used here follow the development proposed in [Fep18, Section 3.4.3]):∫

D
(∇ · θ)(uv) dx =

∫
∂D

(θ · n)(uv) ds−
∫
D
∇(uv) · θ dx (II.2.19)

∫
D

(∇θu) · v dx =
∫
∂D

(θ · v)(u · n) ds−
∫
D

((∇ · u)v + (∇v)u) · θ dx. (II.2.20)

To apply these formulas note that the last term in the integrand of Eq. (II.2.18) is not
smooth, more precisely since uΩ, vΩ are smooth (a classical result of elliptic PDE may be
used to show that they are at least of class Hk(D,R) with k > 1, see for instance [Bre10,
Section IX.6]) but cΩ is not. We then rewrite the last integrand term as∫

D
cΩB

′(0)(θ)uΩvΩ dx =
∫
D\Ω

c2B
′(0)(θ)uΩvΩ dx +

∫
Ω
c1B

′(0)(θ)uΩvΩ dx, (II.2.21)

for which we can apply both Eqs. (II.2.19) and (II.2.20) to both integrals. Second remark,
since values of θ are only important inside Ω̄ and the shape Ω is an open subset of D
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we can choose any value for θ on ∂D such as θ = 0. From these remarks we can now
use Eqs. (II.2.19) and (II.2.20) on Eq. (II.2.18) to find that the first three integrands are
of the form

∫
D θ · rΩ dx and that finally

J ′(Ω)(θ) =
∫
∂Ω

(θ · n)(c1 − c2)uΩvΩ ds+
∫
D
θ · rΩ dx (II.2.22)

where rΩ is some scalar field depending on both uΩ and vΩ. From Hadamard’s structure
theorem II.1.1.3 however, we know that J ′(Ω)(θ) should vanish for compactly supported
θ in Ω or D\Ω̄ which is only possible if the last integral in Eq. (II.2.22) vanish. This
conclude the four steps proof with the shape derivative given by Eq. (II.2.22) with
rΩ = 0. �

Contrary to Céa’s method we can see that this proof does not involve the Eulerian deriva-
tive of uΩ and therefore only performs mathematically valid operations. The adaptation
of this demonstration to nanophotonics is explained in Section III.2.1.

II.3 Numerical representation of shapes using level-
set functions

This section is a short introduction to the level-set method used to numerically represent
shapes and their deformations. Sections II.3.1 to II.3.3 gives theoretical results on level-set
functions whereas Section II.3.4 deals with its numerical discretization. Most of the mate-
rials presented in this section can be found in the book of Sethian [Set99]. The application
of level-set functions to shape optimization comes from the seminal paper [All04].

II.3.1 Introduction
Rather than representing a shape Ω ⊂ Rd by its characteristic function 1Ω : Rd → {0, 1},
this method implicitly represents Ω using a smooth function φ : Rd → R (a level-set
function) such that ∂Ω corresponds to the zero level-set of φ (see Fig. II.3.1) and Ω to
the negative subdomain of φ. More precisely φ is chosen such that

Ω = {x, φ(x) < 0}, ∂Ω = {x, φ(x) = 0}, (Rd\Ω̄) = {x, φ(x) > 0}.

As we will see, this new degree of freedom (φ gives at each point a value in R instead
of a binary result with 1Ω) is very convenient since a smooth representation means that
small modifications of the shape Ω will corresponds to regular changes of φ allowing a
finer control of the border of the shape and its properties.

Remark II.3.1.1: In the previous section we studied the sensitivity of an objective
function when the shape Ω is deformed according to a vector field. In this section we
have established that a level-set function allows to fully represent a shape. We could
then study the sensitivity of the objective function when one of the level-set function
φ associated with the shape Ω is slightly modified.

If we denote by Ωδ the shape represented by a level-set function φ+δ where δ : Rd → R,
then we are looking for a first order Taylor expansion as

J (Ωδ) = J (Ω) + J ′(Ω)(δ) + o(δ), (II.3.1)
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(a) Characteristic function 1Ω (b) A level-set representation (c) 3D illustration of (b)

Figure II.3.1: A shape Ω and some related discrete representations.

which allows to find the best modification δ to apply on φ in order to improve the
objective function.

This method has been considered in several scientific articles but one criticism is of-
ten made about it; given that this method does not make any distinction between
the shape and its numerical representation, level-set regularization processes such as
redistanciation (see Section II.3.3.c) cannot be mathematically justified (although it is
numerically useful). However, in the case of a derivation and modification of the shape
with respect to a vector field, the level-set being there only to represent the shape, it
is possible to modify it as we like as long as it always represents the same shape.

II.3.2 Geometric properties
The first interesting property of level-set functions is that they allow to conveniently
calculate geometric quantities such as the normal vector or local curvature. Indeed, a
result of differential geometry allows us to find that if a shape Ω ⊂ D is represented by a
smooth level-set function φ then

n = ∇φ
|∇φ|

and κ = ∇ · n (II.3.2)

where n is the normal vector to ∂Ω pointing outward Ω and κ the mean curvature.

Remark II.3.2.1: The geometrical definitions in Eq. (II.3.2) are only valid for a
point x on the border of the shape Ω. Later on, however, we will sometimes refer to
the value of the normal vector outside of ∂Ω. For this purpose we define the extended
normal vector on D through the level-set representation of Ω as n(x) = ∇φ(x)/|∇φ(x)|
for all x ∈ D whenever ∇φ(x) is not equal to 0.

Its also worth noting that the perimeter and volume of Ω may be computed as

Per(Ω) =
∫
{φ(x)=0}

ds =
∫
Rd
δ0 ◦ φ(x)|∇φ(x)| dx (II.3.3)

using the dirac function δ0 and

Volume(Ω) =
∫
{φ(x)<0}

dx =
∫
Rd

1{x,φ(x)<0} dx. (II.3.4)
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II.3.3 Movement along the normal vectors

II.3.3.a Hamilton-Jacobi equation

Let us get back to shape optimization. So far we have seen that in order to optimize a
figure of merit J we need to move the borders of the shape along its normal vector; for
a given initial shape Ω0 we need to compute Ω1 = (Id + θ)(Ω0) with a given vector field
θ (supplied by the shape derivative of J (Ω)) of small amplitude. Remember that a very
crude sketch of the optimization algorithm was given in Section II.1.1.e.

We will now see that Line 8 of Algorithm II.1.1 where we performed the operation
Ω := (Id + τθn)(Ω) is easily numerically performed using a level-set representation of
the shapes. More precisely if Ω0 is given by φ0 then φ1, a level-set representation of Ω1,
is found by solving an Hamilton-Jacobi equation.

To understand this, let us consider the general framework of the movement of a
shape Ω0 ⊂ D through a time-dependent vector field. For all t ∈ [0, 1] we define
Ωt = (Id + θ(x, t))(Ω0) where θ(x, t) is a given vector field. The movement of any “par-
ticle” starting at a point x0 ∈ Ω0 is denoted by χ(x0, t) and defined as the solution

∂tχ(x0, t) = θ(χ(x0, t), t) (II.3.5)

with the initial condition χ(x0, 0) = x0. Knowing φ(·, 0) = φ0 a level-set representation
of Ω0, we are searching, for each t ∈ ]0, 1], a function φ(·, t) representing (Id+θ(·, t))(Ω0).
This implies in particular that a particle on ∂Ω0 has to stay on ∂Ωt after its movement.
In other word if x0 ∈ ∂Ω0 then for all t:

φ(χ(x0, t), t) = 0. (II.3.6)

Differentiating with respect to t Eq. (II.3.6) using the chain rule and the definition of χ
(Eq. (II.3.5)), we find that

∂tφ(x0, t) + θ(x0, t) · ∇xφ(x0, t) = 0. (II.3.7)

If we add the more general constraint that for all x ∈ D such that φ(x, t) = r ∈ R
the particle χ(x, t) associated with x must stay on the same level set value r, that is
φ(χ(x, t), t) = r, then we find that Eq. (II.3.7) must be verified for all x ∈ D and
not only for r = 0 and x0 ∈ ∂Ω. In the particular case of normal vector fields,
θ(x, t) = θ(x, t)n(x, t) and using Eq. (II.3.2) the Eq. (II.3.7) rewrites as the following
Hamilton-Jacobi equation

∂tφ(x, t) + θ(x, t)|∇xφ(x, t)| = 0. (II.3.8)

Together with the initial condition given by φ(x, 0) = φ0(x) this equation characterizes
the motion of the domain Ωt. We shall see in the next section that efficient finite difference
schemes exist to solve the Hamilton-Jaocbi equation.

Remark II.3.3.1: As an example, it is interessting to note that solving Eq. (II.3.8)
using θ(x, t) = δ (resp. −δ) should give the shape dilated (resp. eroded) by a length δ.
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II.3.3.b Distance function and Eikonal equation

Among all the possible level-set functions φ to represent a shape Ω ⊂ D there is one that
is particularly useful in numerical practice. This is the signed distance function to Ω
defined as the unique function dΩ whose sign at x indicates whether or not x is inside Ω
and whose absolute values gives the distance from x to ∂Ω,

dΩ(x) =


−d∂Ω(x) if x ∈ Ω

0 if x ∈ ∂Ω
d∂Ω(x) if x ∈ D\Ω̄

, (II.3.9)

where d∂Ω(x) is the distance from x to ∂Ω (the level-set representation in Fig. II.3.1(c)
is a signed distance function). An interesting property of dΩ is that it is solution of the
following Eikonal equation:

|∇dΩ| = 1 in D, dΩ = 0 on ∂Ω and dΩ < 0 in Ω. (II.3.10)

The resolution of Eq. (II.3.10) provides a way to find a level-set function associated to
a given shape Ω and is useful to initialize the optimization algorithm with an existing
shape.

In addition of being useful numerically, the signed distance function is also used multiple
times in Chapters III to V to simply express geometric properties or to regularize quan-
tities close to the border of the shape; if f : D → R is a discontinuous function, taking
a value f1 in Ω and f2 elsewhere then we can smooth the transition near ∂Ω using the
signed distance function and a small parameter ε as f̃ = f2 + (f2 − f1)H(dΩ) where H
is a smooth heaviside function (see Remark III.2.2.2 or Section V.4.1 for examples using
this regularization).

Handling the signed function as the level-set representation of a shape is convenient since,
in practice, it has been reported many times that solving Eq. (II.3.8) will have the un-
fortunate tendency to flatten areas (resp. make very steeps areas) with near-zero values
hindering the proper determination of the sign of φ (resp. preventing a precise calculation
of the gradient of φ). However, it should be noted that we did not experience these kind
of problems during the optimization of the nanophotonic components presented in Chap-
ter III.

II.3.3.c Redistanciation

One last interesting equation concerning level-set functions that will be used later is the
following:

∂tφ(x, t) + sign(φ0)(|∇xφ| − 1) = 0 and φ(x, 0) = φ0, (II.3.11)
where sign(φ0) is defined as

sign(φ0(x)) =


1 if φ0(x) > 0
0 if φ0(x) = 0
−1 if φ0(x) < 0

. (II.3.12)

In order to grasp the behavior of such equation, suppose that φ0 is a level-set function
associated to a shape Ω. First of all, notice that Eq. (II.3.11) is the same as Eq. (II.3.8)
using the vector field sign(φ0)n (where n is the extended normal vector as explained
in Remark II.3.2.1) and an additional source term sign(φ0). A formal analysis then reveals
that all edge points x (φ0(x) = 0) stay on ∂Ω. Indeed:
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1. The effect of the vector field sign(φ0)n is nearly the same as removing the value
sign(φ0) to all values of φ0(x).

2. Meanwhile the same quantity sign(φ0) is added by the presence of the source term.

Additionally, if a steady state is achieved, Eq. (II.3.11) is equivalent to Eq. (II.3.10),
that is |∇xφ| = 1. By combining all these remarks we can understand that Eq. (II.3.11)
provides, when t→∞, the signed distance to the set associated with the level-set function
φ0. Solving Eq. (II.3.11) periodically allows to keep a well-defined level-set representation
of the set.

II.3.4 Numerical discretization

II.3.4.a Introduction

In order to store and manipulate the level-set function numerically, we need to discretize
the level-set function φ (i.e. parametrize φ by projecting it into a finite-dimensional space)
representing a shape Ω ⊂ Dopt ⊂ Rd. To do so, several options are feasible; see [Dij13] on
this topic in the context of shape optimization. Most of them rely on a discretization of
the domain D leading to φ being defined as

φ(x) =
ndof∑
i=1

αiφi(x) (II.3.13)

where the (αi)i=1,...,ndof are scalar coefficients and (φi)i=1,...,ndof some basis functions. In
this section, as in the rest of this thesis, we will limit ourselves to the two-dimensional
case (N = 2) and a discretization of the domain through a Cartesian, regularly spaced
grid so that Eq. (II.3.13) rewrites into

φ(x, y) =
ny∑
i=1

nx∑
j=1

αi,jφi,j(x, y). (II.3.14)

We also consider bilinear basis functions (see Fig. II.3.2) defined at each nodes of the grid:

φi,j(x, y) =
(

1− |x− xi,j|∆x

)(
1− |y − yi,j|∆y

)
1{(x,y),|x−xi,j |<∆x,|y−yi,j |<∆y}. (II.3.15)

See Fig. II.3.2(a) for a representation of this basis function.

(a) One bilinear basis func-
tion defined in Eq. (II.3.15)

(b) A shape on a 4×4 Carte-
sian grid

(c) One level-set representa-
tion of the shape in (b)

Figure II.3.2: Level-set function on a Cartesian grid.
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Remark II.3.4.1: The bilinear interpolation scheme is mainly used for exportation
purpose when generating the file containing the geometric information of the shape
(GDSII format) and therefore the precise position of its edges. For most computations
we are only interested in the nodal values of φ and the interpolation scheme is not
important.

To enhance the precision of such parametrization it is possible to consider adaptative re-
finements of the grid using for example quad-trees or triangular meshes. Other basis func-
tions include RBF (Radial Basis Functions) or spectral decomposition (again, see [Dij13,
Section 2.2]) which both bring into play smoother level-set functions and therefore more
regularity in numerical quantities such as n and κ.

II.3.4.b Geometric properties

For any matrix of scalar coefficients α = (αi,j)i,j we define the following operators approx-
imating the first and second order partial derivatives considering either forward, centered
or backward finite difference:

D+x
i,j α = αi,j+1 − αi,j

∆x , D−xi,j α = αi,j − αi,j−1

∆x , D=x
i,j φ = αi,j+1 − αi,j−1

2∆x , (II.3.16)

D++x
i,j α = αi,j+2 − 2αi,j+1 + αi,j

(∆x)2 , D−−xi,j α = −αi,j+2 + 2αi,j+1 − 1αi,j
(∆x)2 ,

D+−x
i,j α = D−+x

i,j α = αi,j+1 − 2αi,j + αi,j−1

(∆x)2 ,

and the same holds as far as the y-direction is concerned. With these finite differences
operators the normal vector and curvature (defined in Eq. (II.3.2)) may be approximated
by (see [Set99, Section II.6.7])

nx = D=xα

((D=xα)2 + (D=yα)2)
1
2
,

D=yα

((D=xα)2 + (D=yα)2)
1
2
,

κ = D+−xα(D=yα)2 − 2D=xαD=yα(D=yD=xα) +D+−yα(D=xα)2

((D=xα)2 + (D=yα)2)
3
2

,

where we removed the i, j subscripts for simplicity. Note that for extremal values (i = 1, ny
or j = 1, ny) considering either Dirichlet or Neumann boundary conditions allows to define
the previous operators and geometric values for all i = 1, . . . , ny and j = 1, . . . , ny.

II.3.4.c Resolution of the PDEs using finite differences

Hamilton-Jacobi equation
The numerical resolution of either Eq. (II.3.8) or Eq. (II.3.11) first requires to choose one
particular solution of these equations. Indeed, as it may be seen on Fig. II.3.3, several
solutions can be considered mathematically but one in particular, the viscosity solution,
seems to be the natural one. We do not give here the mathematical definition of such
solution and the reader is referred to [Set99, Section II.2] for more details and to Fig. II.3.3
for an illustration.
The remainder of this section is devoted to the presentation of a second-order finite
difference numerical scheme to obtain this viscosity solution. Information presented here
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(a) Moving each point of the border
through normal vectors, (Id+V n)(∂Ω)
in dotted line

(b) The viscosity solution which border
is different from the one in (a)

Figure II.3.3: One shape Ω and two possible evolutions of its borders ∂Ω when
moved along a vector field V n where V is a scalar field whose precise value is not
important.

mostly comes from [Set99, Section II.6]. We consider an explicit and time-updwind finite
different schemes of Eq. (II.3.8) of the form

αn+1
i,j = αni,j −∆tH(i, j, θn, αn) (II.3.17)

where ∆t is the time step and H(i, j, θn, αn) is some numerical discretization of
θ(x, t)|∇xφ(x, t)| using the values αn = (αni,j)i,j (resp. θn = (θni,j)i,j) of φ(x, n∆t) (resp.
θ(x, n∆t)) at each node of the Cartesian grid at the time n. From [Set99, Section II.6.4]
we consider that the expression of H is given by the following formula in which different
numerical schemes are considered depending on the sign of θni,j

H(i, j, θn, αn) = max(θni,j, 0)H+(i, j, αn) + min(θni,j, 0)H−(i, j, αn). (II.3.18)

In Eq. (II.3.18), H±(i, j, αn) is chosen in order to provide a “good” discretization of
|∇φ(x, t)|. A second order strategy reads as:

H+(i, j, αn) =
√
H+
x (i, j, αn) +H+

y (i, j, αn) ,

H−(i, j, αn) =
√
H−x (i, j, αn) +H−y (i, j, αn) ,

where, this time for ν = x, y, H±ν are approximating (∂νφ(x, t))2 by

H+
ν (i, j, αn) = max(Dν

+(i, j, αn), 0)2 + min(Dν
−(i, j, αn), 0)2,

H−ν (i, j, αn) = max(Dν
−(i, j, αn), 0)2 + min(Dν

+(i, j, αn), 0)2,

and Dν
+,Dι

− are given by

Dν
+(i, j, αn) = D−νi,j α

n + ∆ν
2 m(D−−νi,j αn, D+−ν

i,j αn), (II.3.19)

Dν
−(i, j, αn) = D+ν

i,j α
n + ∆ι

2 m(D++ν
i,j αn, D+−ν

i,j αn). (II.3.20)

The discrete derivatives are defined in Section II.3.4.b and m is the following function

m(a, b) =


√
a if |a| ≤ |b| and ab ≥ 0
b if |a| > |b| and ab ≥ 0
0 if ab < 0

. (II.3.21)
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Note that in Eqs. (II.3.19) and (II.3.20) Dι
+ and Dι

− are either (depending on the value
of m) first or second order approximation of the partial derivatives. The numerical im-
plementation of Eq. (II.3.17) does not require further comments and since it only involve
explicit finite difference its resolution is easily performed in parallel.

As is often the case for explicit finite difference schemes the time and spatial steps ∆t,∆x
and ∆y cannot be arbitrarily chosen in order to keep a stable numerical resolution. In the
case where θ is time-independent (so that θni,j = θi,j for all values of n), ∆t is limited by
both the spatial steps and the maximal value taken by the scalar field θ via the following
relation

∆t ≤ min(∆x,∆y)
supi,j |θi,j|

(II.3.22)

which is known as a CFL condition, and we will refer to the right-hand side as the CFL
value. From a geometrical point of view Eq. (II.3.22) simply means that at each iteration
the boundary of the shape should not move by more than one grid node. Numerically we
used a step ∆t equal to 0.4 times the CFL value.

Redistanciation equation
Let us now turn to the numerical derivation of Eq. (II.3.11). The numerical
scheme Eq. (II.3.17) is simply modified into

αn+1
i,j = αni,j −∆tθni,jH(i, j,θn,αn) + θni,j (II.3.23)

with θni,j = sign(αni,j). For stability reasons it is also advised to smooth the sign function
near zero using for instance

sign(a) ' a/
√
a2 + min(∆x,∆y)2 .

Remark II.3.4.2: It is important to clarify that given the approximations made by
the numerical resolution of Eq. (II.3.11), the level-set function φ(·, n∆t) obtained after
redistanciation of an other one φ(·, 0) may not represent exactly the same shape near the
borders, that is {x, φ(x, n∆t)} 6= {x, φ(x, 0)}. This fact is important since in the last
iterations of the optimization, the successive shapes will be very similar and therefore
the slight modification brought by the redistanciation process may cause too much
numerical errors and prevent the optimization algorithm from properly converging.

Eikonal equation
Numerical schemes to solve the Eikonal equation |∇φ(x)| = 1 (Eq. (II.3.10)) involve
different methods than the one presented for the Hamilton-Jacobi equations since it is
not a time-dependent equation. A good approximation may be obtained by solving the
redistanciation PDE Eq. (II.3.11) starting from an initial level-set representing the same
shape, but numerically it is more stable to use an algorithm such as the fast marching
method for which good explanations may be found for instance in [Set99, Section III.8]
or [Dap13, Section 1.3.1].
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II.4 Shape optimization algorithm based on
Hadamard’s shape derivative

We now have all the required information to implement in details the numerical Algo-
rithm II.1.1 for solving the shape optimization program: max

Ω
J (Ω) =

∫
Ω
j(u) dx

s.t. u ∈ H, and aΩ(u, v) = bΩ(v) for all v ∈ H
. (II.4.1)

II.4.1 Gradient descent algorithm

II.4.1.a Optimization scheme

In Section II.1.2 we have seen how to get the shape derivative J ′(Ω)(θ) of J (Ω) and that
in general this shape derivative may be expressed as

J ′(Ω)(θ) =
∫
∂Ω
θ · nVΩ(s) ds = 〈θ,nVΩ(s)〉L2(∂Ω,R) .

With this information a gradient descent algorithm (note here that we use the term of
“descent” algorithm even though we are considering the maximization of a functional)
consists in an iterative computation of θ = nf(s) and the modification of the shape into
(Id + τθ)(Ω) where τ is the step size (see Algorithm II.1.1 for a sketch of the optimiza-
tion algorithm), an operation which is achieved by solving the Hamilton-Jacobi equation
presented in Section II.3.3.a.

Starting from an initial shape, the previous method should end up into one of the local
maxima of the considered objective function where the gradient, that is θ = nf(s) van-
ishes. For this to happen in practice, high numerical accuracy is required at each step
of the optimization process in order to guarantee that the computed gradient is indeed
an ascent direction for J (Ω). The precision of the overall computation being altered
by many parameters such as the simulation software accuracy (mesh of the geometrical
domain, iterative solver, ...), the computation required for the velocity extension process
(explained later in Section II.4.2), the grid size of the level-set function or even the small
modification of the shape induced by the redistanciation process. An easy way to asses the
validity of the full numerical method is to simply compare the value of J ((Id+τθ)(Ω)) for
some small values of τ with its first order approximation obtained by J (Ω) + τJ ′(Ω)(θ).

In this thesis we only consider gradient descent algorithm and not more evolved scheme
such as non-linear conjugate gradient or second-order methods like Newton’s or BFGS.
The interested reader is referred to [Vié16, Chapter 9] for more details on these numerical
algorithms applied to shape optimization.

II.4.1.b Line search

In order to guarantee convergence towards a local maximum (as well as to improve the con-
vergence speed of the gradient descent algorithm) it is advised to perform a line search
at each iteration so that the step value τ of the gradient (used in the update formula
(Id + τθ)(Ω)) at each iteration is sought so that the objective function increased “suf-
ficiently”. Since the calculation of the objective function is usually very noisy due to
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numerical errors, we have decided not to use classical indicators to find a satisfactory
time step such as Wolfe conditions but rather rely on the following strategy. Starting
from an initial step τ0 and the iteration number nit = 0 we perform a line search by
looking at the value of J ((Id + τnitθ)(Ω)) and considering two cases:

Case 1: If J ((Id + τnitθ)(Ω)) ≥ J (Ω), then we update the shape Ω as (Id + τnitθ)(Ω)
and since the step for the gradient was sufficient for this iteration, we can consider that a
slightly higher value would also work meaning that we can take τnit+1 = γacceptedτnit where
γaccepted > 1 (in our numerical test we used γaccepted = 1.1).

Case 2: If J ((Id + τnitθ)(Ω)) < J (Ω), then the shape is not modified and we continue
the line search using this time τnit+1 = γrejectedτnit where γrejected ∈]0, 1[ (in our numerical
test we used γrejected = 0.5).

Even with a very small step τ it may happen that J ((Id + τθ)(Ω)) < J (Ω) because of
the lack of numerical accuracy. This remark led us to modify the condition of the two
cases by comparing J ((Id + τnitθ)(Ω)) with J (Ω) − η (where η > 0 is a small tolerance
value) to ensure that the line search will end in the hope that subsequent iterations will be
subject to fewer numerical errors. Let us conclude this subsection by pointing out [Pir82,
Section 4.4.3] in which the author proposed a strategy to perform a line search using a
local parabola approximation.

II.4.1.c Stopping criteria

Theoretically, a gradient descent algorithm should stop when the gradient of the objective
functional equals zero. Obviously, it will be impossible to achieve such a precision numer-
ically and a more common stopping criteria is to request that the norm of the gradient
‖f(s)‖2

L2(∂Ω,R) be less than a given threshold ε. Ending the algorithm in this manner
means that at the end of the optimization, if the shape is moved in any direction with a
maximum amplitude of τ then it should not increase the objective function by more than
τ‖f(s)‖2

L2(∂Ω,R) (if τ is sufficiently small so that the first order approximation is valid).

However, in practice, we noticed in our numerical tests that it is really difficult to get pre-
cise values of the gradient’s norm at the end of the optimization process. This observation
lead us to two other stopping criteria.

• The first method is to look at the relative increase of the objective function in the
last nit steps. If it has not improved by more than a given threshold during this
time then we can assume that allowing the optimization algorithm to continue even
further will not allow to increase the objective function by more than several time
the threshold value unless the algorithm is left for many more than nit iterations.

• The other idea is to stop the algorithm if the line search (see Section II.4.1.b) cannot
find a new shape with a better value for the objective function even with a very
small step since this means that the numerical errors are too important (the next
iterations will therefore mainly consist in some kind of noise-optimization).
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II.4.2 Velocity extension

II.4.2.a Introduction

As we have seen in Th. II.1.1.3, Sections II.2.1 and II.2.2, in practice, the shape derivative
of the considered objective functions are always in the form

J ′(Ω)(θ) =
∫
∂Ω
θ · n VΩ(s) ds = 〈θ,nVΩ〉L2(∂Ω,R) , (II.4.2)

where VΩ ∈ L2(∂Ω,R). Considering only normal vector fields θ(x) = θ(x)n we have
J ′(Ω)(θ) = 〈θ, f〉L2(∂Ω,R). Taking θ = ηf on ∂Ω with η sufficiently small will, in theory,
increase the objective function. Unfortunately, there are several problems with the use of
this vector field since it is only defined at the edges ∂Ω of the shape. Although this is in
principle not a problem (any values can be taken outside ∂Ω according to Eq. (II.4.2)),
the efficiency of the numerical schemes presented in Section II.3.4 for the resolution of the
Hamilton-Jacobi equation depends very much on the regularity of θ which VΩ(s) may be
lacking off.

As a matter of fact, in order to numerically compute the values of the scalar field VΩ(s)
on ∂Ω we need, in principle, a mesh of this border, which is not always the case in fi-
nite difference or finite element simulations (see Section III.2.2 in which this problem is
described in more details). Secondly, from a theoretical point of view, as seen in Sec-
tion I.4.1, the trace of a PDE’s solution (like Maxwell’s equations) on the edges may have
limited regularity.

To alleviate all these problems at once, a common method (see for instance [De 05,
Chapter 3]) is to project the normal component VΩ(s) of the shape derivative Eq. (II.4.2)
on a highly regular Hilbert space, for instance H1(D,R). In other words we are now
looking for a scalar field freg ∈ H1(D,R) such that its associated scalar product with all
regular θ in H1(D,R) is equal to

〈θ, VΩ,reg〉H1(D,R) = 〈θ, VΩ〉L2(∂Ω,R) . (II.4.3)

Once the regularized scalar field freg is found we see that taking θ = nfreg gives
〈VΩ,reg, VΩ〉L2(∂Ω,R) = ‖VΩ,reg‖2

H1(D,R) ≥ 0 and so this new vector field is indeed an ascent
direction. In theory, since we have restricted ourselves to a sub-space of L2(D,R), the
gradient VΩ,reg is not an as good ascent direction as VΩ.

II.4.2.b Projection as the solution of a PDE

To properly define Eq. (II.4.3) we need to choose an inner product for the space H1(D,R).
The most convenient option is to have recourse on

〈u, v〉H1
ε (D,R) =

∫
D
ε∇u · ∇v + uv dx, (II.4.4)

where ε > 0 is a small parameter. With this choice of inner product Eq. (II.4.3) is
equivalent to finding VΩ,reg ∈ H1(D,R) such that for all θ ∈ H1(D,R):∫

D
ε∇VΩ,reg · ∇θ + VΩ,regθ dx =

∫
∂Ω
VΩθ ds (II.4.5)
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which is the variational formulation associated to

− ε∆VΩ,reg + VΩ,reg = VΩδ∂Ω in D and ∂nVΩ,reg = 0 on ∂D (II.4.6)

where δ∂Ω is the Dirac distribution on ∂Ω. Physically, the solution Eq. (II.4.6) gives
approximately the same values of VΩ on ∂Ω; if ε = 0 then Eq. (II.4.6) drop down to
VΩ,reg = VΩ on ∂Ω). The presence of the Laplacian operator on his part causes the
diffusion of the values of VΩ over a width of about εd where d is the dimension in which
the set D is immersed; this may be justified by looking at the Green function associated
to Eq. (II.4.6). In other word, the solution VΩ,reg drops down to VΩ after a gaussian blur
of radius ε. In practice we use ε = α(∆x)d with α = 2 and ∆x the spatial step of the
level-set function.
Remark II.4.2.1: A classical result on elliptic equations makes it possible to show that
a solution to Eq. (II.4.6) is of higher regularity than f which provides an understanding
of why this regularization process is of numerical interest.

Let us also note that we can limit modifications of the shape on boundaries. Indeed, to
prevent changes on Γ ⊂ ∂Ω we can search for a regular field VΩ,reg ∈ H1

Γ(D,R) defined as

H1
Γ(D,R) = {u ∈ H1(D,R), u|Γ = 0}.

This is useful in Chapter III to preserve the continuity between waveguides and the
component.

II.4.2.c Numerical resolution

To solve equation Eq. (II.4.6) or (II.4.5) let us first remark that usually the Dirac distri-
bution δ∂Ω is approximated using the level-set function φ as δ∂Ω ' 1/ηζ(φ/η)|∇φ| where
ζ is a mollifier like ζ(x) = 1/β × exp(−1/(1 − x2))δ]−1,1[ where β is chosen such that∫
R ζ(x) dx = 1 and η > 0 is taken as small as possible and generally equals to the level-set
grid spacing (note that the unit normalization of ζ is important to keep consistent values
of the scalar product).

Concerning the effective numerical resolution of Eq. (II.4.6) or (II.4.5) either finite element
or finite differences may be considered, both of them leading to the resolution of a system
Ax = b where the matrix A is always the same no matter the value of f . If the size of the
problem is not too large it is then possible to compute only once the LU decomposition
of A subsequently making this velocity extension/regularization step at each iteration
almost computationally-free.

II.4.2.d Other regularizations/post-processing of the scalar field

Even after regularization some part of the scalar field VΩ,reg may still cause numerical
issues. This is particularly the case when really small details are present in the shape
(think of a thin bar or a small isolated ball) where the scalar field may take extremely
high values. Because of their amplitudes these areas will be almost the only ones where
the shape moves at each iteration. Moreover, since the values of VΩ,reg in these areas could
in turn take positive and negative values (a bar may want to shrink to a narrower width
than the mesh resolution so that at each iteration it will require either to be larger or finer)
this will cause oscillations of the shape update process in these areas and prevent other
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locations from being modified as required. To prevent this problem, a simple method is
to limit the extreme values of the scalar field by, for instance, modifying VΩ,reg into

ṼΩ,reg = sign(VΩ,reg) min(|VΩ,reg|, q0.95)
where q0.95 is defined as the 95 % quantile of |VΩ,reg| (the minimum is also numerically
implemented using some smooth minimum function). It is worth noting here than even
after all these modification on the scalar field it is still an element ofW 1,∞(Rd,R) meaning
that J ′(Ω)(ṼΩ,regn) is still able to inform us about the (first order) sensitivity of the
objective function when following the vector field ṼΩ,regn.

II.4.3 General framework

Algorithm II.4.1: Numerical algorithm for topology optimization of Eq. (II.2.1)
using a level set representation and a simple line search.
1 begin (initialization)
2 φ := Initial level set function φ0 (see Section II.3.3.b);
3 Ω := {x ∈ D, φ(x) < 0} (making the shape geometry for simulation software);
4 uΩ := solution of the PDE (Eq. (II.2.2)) using Ω;
5 J := value of the objective (Eq. (II.2.1)) using uΩ;
6 vΩ := solution of the adjoint PDE (Eq. (II.2.7)) using Ω and uΩ;
7 τ := 1 (step factor for the gradient descent);
8 γCFL := 0.4 (factor for Hamilton-Jacobi equation);
9 γaccepted := 1.1, γrejected := 0.5 (factor if the step is accepted or rejected);

10 repeat (optimization)
11 V := VΩ the shape derivative (Eq. (II.2.9));
12 Vreg := solution of the regularization PDE (Eq. (II.4.5)) using V ;
13 Ṽreg := eventual other regularizations/post-processing (see Section II.4.2.d);
14 δCFL := γCFL × CFL value (Eq. (II.3.22)) using θ = Ṽreg;
15 begin (linear search)
16 ψ := solve the Hamilton-Jacobi equation (Eq. (II.3.17)) for

t ∈ ]0, τδCFL/γCFL] using φ as initial condition and scalar field Ṽreg;
17 ψ := redistanciation of ψ solving Eq. (II.3.23);
18 Ω := {x ∈ D, ψ(x) < 0} (making the geometry for the software);
19 uΩ := solution of the PDE (Eq. (II.2.2)) using Ω;
20 Jtmp := value of the objective (Eq. (II.2.1)) using uΩ;
21 vΩ := solution of the adjoint PDE (Eq. (II.2.7)) using Ω and uΩ;
22 if Jtmp is sufficiently larger than J (see Section II.4.1.b) then
23 φ := ψ, J := Jtmp;
24 τ := γacceptedτ ;
25 goto Line 10
26 else
27 τ := γrejectedτ ;
28 goto Line 15

29 until convergence (see Section II.4.1.c);
30 return Ω;

We conclude this chapter with Algorithm II.4.1, the pseudo-code of a generic shape opti-
mization algorithm using all the information presented throughout the previous sections.
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Optimal design of photonic components

Summary — This chapter combines the results of Chapters I and II to achieve shape
optimization of single-objective nanophotonic components.

Section III.1 starts with a short overview of the state of the art in topology optimization
applied to nanophotonics devices; the bases of the most popular methods are presented,
as well as some references where they have been used.

The second Section III.2 adapts the presentation of geometric shape optimization ex-
plained in Chapter II to the context of nanophotonics by giving the rigorous mathematical
calculation of the shape derivative of the objective function presented in the first chapter.
A strategy featuring a smoothing of the refractive index in order to stabilize the numerical
implementation is discussed in details.

In Section III.3 we present several optimization results demonstrating that our numerical
method manages to maximize the power carried by an outgoing waveguide mode when
it comes to designing components such as crossings, mode converters, mirrors or power
dividers. Some of the optimized devices presented in this section are coming from our
published paper

[Leb19a] N. Lebbe, C. Dapogny, E. Oudet, K. Hassan, and A. Gliere. “Robust shape
and topology optimization of nanophotonic devices using the level set method”. In:
Journal of Computational Physics (2019). doi: 10.1016/j.jcp.2019.06.057.

After presenting these results, some comments are added concerning the use of the topo-
logical gradient in the optimization process.

The short Section III.4 presents some of the technological constraints hindering the fab-
rication of arbitrary geometries and some recently published method to deal with such
constraints in the context of geometric shape optimization.

Finally, Section III.5 is dedicated to the optimization of multi-layers components. This
topic was, until very recently, ignored in shape optimization and has allowed us to achieve
significant results concerning the optimization of nanophotonic polarization rotators. One
part of the results presented in this section was published in the journal article

[Leb19b] N. Lebbe, A. Glière, and K. Hassan. “High-efficiency and broadband pho-
tonic polarization rotator based on multilevel shape optimization”. In: Optics Letters
44.8 (2019), pp. 1960–1963. doi: 10.1364/OL.44.001960.
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III.1 State of the art for the design of photonic com-
ponents using topology optimization methods

In Section I.3.4, we presented a general problem whose resolution make it possible to
optimize nanophotonic components. More precisely, in Section I.3.1.c, we have seen that
it is desirable to control the way in which an incident light arriving in the form of a guided
mode in one waveguide is transformed and redirected to other ones. To characterize a
component, we defined the scattering parameters Sm,n whose squared absolute values give
the power carried by a guided mode on a waveguide. In details, to maximize the power
carried by the n-th outgoing mode (Eout

−n ,Hout
−n) on a waveguide’s cross section Γout when

the m-th input mode (E in
m ,Hin

m) is injected into the section Γin of a waveguide accounts
to solve

max
Ω⊂Dopt

J (Ω) = |Sm,n(EΩ)|2 with Sm,n(EΩ) = 1
2

∫
Γout

[
EΩ ×Hout,∗

−n

]
· n ds, (III.1.1)

where Dopt is a subset of D ⊂ R3. In Eq. (III.1.1), the field EΩ refer to the unique solution
of the following time-harmonic vector wave equation

∇× Λ−1∇× E− k2n2
ΩΛE = 0 in D

n× E = 0 on ∂D\(Γout ∪ Γin)
n×∇× E + γout(E) = 0 on Γout
n×∇× E + γin(E) = 2iωµ0ẑ×Hin

m on Γin

, (III.1.2)

in which nΩ is the optical index equal, in Dopt, to either ncore inside Ω and nclad elsewhere.
The matrix Λ is defined through the PML as Eq. (I.3.17) and the operators γin and γout
are given by

γin(E) = 1
2

N∑
j=1

iωµ0 ẑ×Hin
j

∫
Γin

(
E×Hin,∗

j

)
· ẑ ds,

γout(E) = 1
2

M∑
j=1

iωµ0 ẑ×Hout
−j

∫
Γout

(
E×Hout,∗

−j

)
· ẑ ds.

To design nanophotonic devices which maximize Eq. (III.1.1), physicists derived several
methods based either on simplifications of the Maxwell equations and analytic calculations
or on parameterized designs composed of geometric primitives and optimization of a few
number of parameters. One limitation of these approaches is that, for each component,
a new analysis must be made to adapt the existing tools to this new particular case; i.e.
it requires to find a good approximation of the Maxwell equations and the interesting
parameters to optimize. Moreover, the approximations of the considered PDE may be
valid only for sufficiently large optimization domain Dopt. This notably means that, with
these methods, it is not possible to obtain designs with arbitrarily fixed dimensions.

In the past ten to twenty years, researchers have been working on methods to automati-
cally find the design of photonic components without relying on an a priori parametriza-
tion of the desired design, with the hope to obtaining non-intuitive designs that may,
among other advantages, be much more compact than the previously obtained compo-
nents. In this section we briefly review the main non-parametric methods that have been
applied to the shape optimization of nanophotonic components so far.
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III.1.1 Binarization-based methods
We begin this review with the methods which involves a binary discretization of the
desired shape. The general idea is to discretize the optimization domain Dopt into pixels
(see Fig. III.1.1(a)) meaning that Dopt = ⋃n

i=1Di and search for a subset I ⊂ 1, . . . , n of
these pixels which allows to maximize the value of the objective function for the design
Ω = ⋃

i∈I Di. These methods rely on optimization algorithms featuring a discrete (large
in practice) set of binary variables.

(a) Discretization of the domain Dopt into pixels Di;
example of a shape Ω in blue consisting in some pixels

(b) Extreme values of the objective in the
population at each iteration of the algo-
rithm represented with the blue bar plots

Figure III.1.1: Optimization of a nanophotonic crossing (see Section III.3.1.d for
a presentation of this component) using genetic algorithm with the ga function of
Matlab and its defaults parameters. About 10 000 simulations for the whole op-
timization. It should be noted that because of this high number of simulations
(compared to the SIMP method presented below) the mesh used during this opti-
mization was very coarse.

Among the multiple methods implemented to deal with this type of binary optimal design
problems, let us mention

• Particle swarm methods; see [Mak16]. This metaheuristic considers several shapes
(a population) and at each iteration of the algorithm, modifies all the shapes in
different ways depending on the objective value obtained for each of the other shape.
These modifications are carried out by considering a “distance” between the shapes
and by transforming a shape in a “direction” given by its neighbors (that is, the
shape which are the closest to this one) as in a swarm.

• Evolutionary algorithms; see [Gon08] or Fig. III.1.1. This metaheuristic also consid-
ers a population of shapes but, at each iteration of the algorithm, a new population
of shapes is generated from some of the best shapes (according to the values of the
objective function) by modifying the subset I of pixels constituting the shapes with
operations inspired from biological evolution.

• Deep learning methods; see [Tah19]. Contrary to the two previous methods, this
one is rather a way to reduce the overall computation time and thus to quickly
test many shapes. By using a neural network, the algorithm learns how the elec-
tromagnetic field propagates into a component identified by the subset I used in
the discretization. To this end, the results of many electromagnetic simulations are
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supplied to the neural network, using for instance random sets I. Once these data
have been processed, the neural network is then capable of predicting, at almost no
additional computational cost, the output transmission for any shape Ω. Using this
model, some optimization algorithms are then launched on the component in order
to find the best shape to obtain the desired output transmissions.

Let us also mention [She15; Maj17] and [Xu17; Liu18] which respectively consider the
Direct-binary-search and Fast-search methods but very few details concerning their im-
plementations are given in these papers.

One of the main advantages of all these binary-based methods is that they do not require
a precise analysis of the Maxwell equations and may be used as black-box optimization
procedure. Another significant interest of these methods is that they produce a shape
composed only of pixels. These “Manhattan” structures are well-known in microelectronic;
several methods have been specifically developed to manufacture them correctly.

III.1.2 Density-based optimization methods
In order to use gradient based methods, it is necessary to manipulate continuous variables.
The most logical idea in this direction judging from the presentation of the previous section
is to relax the binary constraint on the pixels by allowing each of them to be composed of
materials with optical indices taking intermediate values between the one of the cladding
and core material. Mathematically, the problem is that of finding a density function
ρ : Dopt → [0, 1], associated with an optical index nρ defined for all x ∈ Dopt by

nρ(x)2 = n2
clad + (n2

core − n2
clad)ρ(x),

which makes optimal a “relaxed” counterpart J (ρ) of the objective function J (Ω). More
precisely, the optimization program Eq. (III.1.1) which seeks to optimize J (Ω) is rewritten
as

max
ρ,E

J (ρ) = J(E),
s.t. ∇×∇× E− k2n2

ρE = 0
, (III.1.3)

where we simplified the time-harmonic vector wave equation for simplicity. Using for
instance a gradient-based algorithm (the gradient may be found using a variation of the
adjoint method presented in Section II.2.1) or a more advanced mathematical program-
ming algorithm such as the MMA method, we can solve Eq. (III.1.3), resulting in a density
ρ. This is unfortunately not a manufacturable shape since it is only possible to produce
the cladding and core materials corresponding respectively to ρ = 0 or 1; see Fig. III.1.2.
To alleviate this problem, one idea is to penalize the intermediate values of ρ. To achieve
this, two popular methods known under the name of the SIMP method modifies the optical
index nρ in Eq. (III.1.3) into nρp where p > 1 or into H(nρ) where H is an “Heaviside
filter” function, which makes it easier to obtain a black and white design. For more details
see the review paper [Jen11] which presents this method in the context of nanophotonics.

Remark III.1.2.1: Another method, known as “objective-first”, which grew popular
after the publication of [Pig15] (for the implementation details see [Lu13, Appendix
C]) is to exchange the objective and PDE-constraint of the optimization program
in Eq. (III.1.3); we minimize the error (according to a given norm) in the fulfillment
of the time-harmonic vector wave equation by the actual electric field E while con-
straining the “true” objective function of the optimization problem to be above a given
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(a) Discretization of the domain Dopt into pixels Di;
example of a density ρ in blue

(b) Convergence history graph

Figure III.1.2: Optimization of a nanophotonic crossing (see Section III.3.1.d for a
presentation of this component) using a density-based gradient descent algorithm
using the SIMP procedure. About 200 simulations for the whole optimization.

threshold τ :
min
ρ,E

‖∇ ×∇× E− k2n2
ρE‖,

s.t. J (ρ) > τ
,

the parameter τ being for instance taken equal to 0.9.

III.1.3 Geometrical shape optimization
Geometrical shape optimization methods are widely detailed in Chapter II. They have
already been used in a few studies in the context of optimization of nanophotonic com-
ponents.

To the best of our knowledge, the first papers dealing with geometric variations of a shape
for the optimization of photonic devices is [Kao05], in the context of photonic crystals,
and [Lal13] for nanophotonic components, such as the one presented hereafter. The
analysis performed in this paper is fairly different from the one presented in Chapter II
and the sections hereafter since it is based on the use of Green’s functions to compute the
sensitivity of the objective function in the case of a small geometric perturbation of the
shape.

As denoted in Remark II.3.1.1, it is also possible to find a shape through the optimization
of one of its level-set representation as it is done in the calculus of variation; see for
instance the supplementary materials of [Pig17; Ver19a].

III.2 Hadamard’s shape optimization method ap-
plied to photonic components

In Chapter II, a shape optimization algorithm based on Hadamard’s boundary variation
method was presented. In order to apply it to the optimization of nanophotonic compo-
nents, the first necessary step is to find the shape derivative of the considered objective
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function Eq. (III.1.1); this is the purpose of Section III.2.1. The second subsection III.2.2
then presents the index smoothing method which trades the sharp-interface (jump of the
optical index value on ∂Ω) into an approximate, smoothed interface, in order to reduce
numerical errors when computing this shape derivative. Section III.2.3 concludes this
section by presenting some variations of the first subsection’s results in the case of other
objective functions than the ones considered in Section III.2.1.

III.2.1 Shape derivative of the general model problem

III.2.1.a Rigorous calculation of the model objective

The following theorem gives the shape derivative of Eq. (III.1.1) and will be widely reused
throughout this chapter and the next one to optimize nanophotonic components. Note
that a similar result was already found in [Joh02] or [Mil13, Section 5.1], but without a
full mathematical analysis.

Theorem III.2.1.1 – Shape derivative of the power carried by a mode.
The shape derivative associated to the problem Eq. (III.1.1) is given by:

J ′(Ω)(θ) =
∫
∂Ω
θ · n VΩ(s) ds (III.2.1)

with

VΩ(s) = k2Re
[
Sm,n(EΩ)∗

2iωµ0

(
q
n2

Ω
y

EΩ,‖ ·A∗Ω,‖ −
s

1
n2

Ω

{
(n2

ΩEΩ,⊥) (n2
ΩA∗Ω,⊥)

)]
(III.2.2)

where JXK = X|D̄\Ω − X|Ω denotes the jump of the quantity X at a discontinuous
interface, X‖ = n × X × n the tangential components of X, X⊥ = X · n its normal
component and AΩ the unique solution to the time-harmonic vector wave equation
when injecting the output mode into the output waveguide, or equivalently stated that
AΩ solves

∇× Λ−1∇×A− k2n2
ΩΛA = 0 in D

n×A = 0 on ∂D\(Γout ∪ Γin)
n×∇×A + γout(A) = 2iωµ0ẑ×Hout

n on Γout
n×∇×A + γin(A) = 0 on Γin

. (III.2.3)

Remark III.2.1.1: In order to prove this theorem we will need the following result
for which elements of proof may be found in [Mon03, Remark 3.48] or [Dau12, Chapter
IX]:

The restrictions EΩ,1 and EΩ,2 of EΩ on Ω and D\Ω̄ satisfy additional smoothness to
that encoded in the spaces H(curl,Ω) and H(curl,D\Ω̄); this is a classical issue in
the theory of elliptic partial differential equations, which follows from the smoothness
of Ω; typically, in our context: EΩ,1 ∈ H1(Ω) and EΩ,2 ∈ H1(D\Ω̄). The same result
holds for AΩ.

Proof of Th. III.2.1.1. This proof follows the general four-parts method presented
in Section II.2.2.
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1. Variational form of the transported field
The variational form associated to Eθ solution of Eq. (III.1.2) for Ωθ = (Id + θ)(Ω) (and
optical index nθ) is given by:
∫
D

Λ−1∇× Eθ · ∇ × φ∗ − k2n2
θΛEθ · φ∗ dx−

∫
Γin
γin(Eθ) · n× φ∗ × n ds

−
∫

Γout
γout(Eθ) · n× φ∗ × n ds+

∫
Γin

2iωµ0n×Hin
m · n× φ∗ × n ds = 0, (III.2.4)

where Eθ and φ are elements of the Hilbert space V defined as

V = {ψ ∈ H(curl,D),ψ = 0 on ∂D\(Γout ∪ Γin)}.

Using a change of variables, the first integral in Eq. (III.2.4) may be expressed as
∫
D

[Λ−1(∇× Eθ) ◦ (Id + θ) · (∇× φ∗) ◦ (Id + θ)

− k2n2
θ ◦ (Id + θ)ΛEθ ◦ (Id + θ) · φ∗ ◦ (Id + θ)]| det(I +∇θ)| dx. (III.2.5)

We define the transported field as Ēθ = (I +∇θ>)Eθ ◦ (Id + θ) and its counterpart for
φ̄θ. The following identity follows

(∇× Eθ) ◦ (Id + θ) = | det(I +∇θ)|−1(I +∇θ)(∇× Ēθ).

Together with the shortcuts

A(θ) = C(θ)−1 = | det(I +∇θ)|−1(I +∇θ>)(I +∇θ),

Eq. (III.2.5) is equal to∫
D

Λ−1A(θ)∇× Ēθ · ∇ × φ∗ − k2n2ΛC(θ)Ēθ · φ∗ dx.

Since θ 7→ (Id+θ) is an homeomorphism, θ = 0 on both Γin,Γout and nθ ◦ (Id+θ) = nΩ,
Ēθ, we get that Ēθ is solution for all φ ∈ V of∫

D
Λ−1A(θ)∇× Ēθ · ∇ × φ∗ − k2n2

ΩΛC(θ)Ēθ · φ∗ dx−
∫

Γin
γin(Ēθ) · n× φ∗ × n ds

−
∫

Γout
γout(Ēθ) · n× φ∗ × n ds+

∫
Γin

2iωµ0n×Hin
m · n× φ∗ × n ds = 0. (III.2.6)

2. Differentiability of the transported field w.r.t. the vector field θ
To prove that EΩ has a Lagrangian derivative, we define a F map from W 1,∞(R3,R3)×V
into the dual space V∗:

F (θ,ψ) : φ 7→ aθ(ψ,φ)− bθ(φ).
where aθ (resp. bθ) is the sesquilinear (resp. antilinear) part of Eq. (III.2.6). Assuming
the existence and uniqueness to a solution ψ of a(ψ,φ) = b(φ) for all φ ∈ V , the implicit
function theorem implies that θ → Ēθ is Fréchet differentiable (see Section II.2.2 for more
details about this second step of the demonstration) meaning that it has a Lagrangian
derivative E̊Ω.

3. Volumetric shape derivative
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Differentiation with respect to θ of the variational form Eq. (III.2.6) gives:∫
D

Λ−1A′(0)(θ)∇× EΩ · ∇ × φ∗ + Λ−1∇× E̊(θ) · ∇ × φ∗

− k2n2
ΩΛC ′(0)(θ)EΩ · φ∗ − k2n2

ΩΛE̊Ω(θ) · φ∗ dx

−
∫

Γin
γin(E̊Ω(θ)) · n× φ∗ × n ds−

∫
Γout

γout(E̊Ω(θ)) · n× φ∗ × n ds = 0 (III.2.7)

where A′(0)(θ) = −C ′(0)(θ) = −(∇·θ)I+∇θ+∇θ>. The objective function Eq. (III.1.1)
may also be expressed with Ēθ (remember again that θ = 0 on Γout):

J (Ωθ) =
∣∣∣∣12
∫

Γout
Ēθ ×Hout,∗

n · n ds
∣∣∣∣2 .

Its shape derivative is given by:

J ′(Ω)(θ) = Re
[(∫

Γout
E̊(θ)×Hout,∗

n · n ds
)
Sm,n(Ωθ)∗

]
. (III.2.8)

We consider an adjoint state AΩ solution of the following variational formulation:∫
D

Λ−1∇×A · ∇ × φ∗ − k2n2
ΩΛA · φ∗ dx−

∫
Γin
γin(A) · n× φ∗ × n ds

−
∫

Γout
γout(A) · n× φ∗ × n ds+ 2iωµ0

(∫
Γout

φ×Hout,∗
n · n ds

)∗
= 0. (III.2.9)

The antilinear part in the variational formulation Eq. (III.2.9) is of the same form as the
one in Eq. (III.2.4), that is a mode injection:

2iωµ0

(∫
Γout

φ×Hout,∗
n · n ds

)∗
=
∫

Γout
2iωµ0n×Hout

n · n× φ∗ × n ds.

But since in the objective the mode is a backward one and the normal component on Γout
point out in the opposite direction as the one on Γin (n = −ẑ and n×Hm = −n×H−m)
we end up with the adjoint being the same as an injection of the forward mode in the
output waveguide.

Note also that (E,φ) → 〈γ(E),n× φ∗ × n〉L2(Γ,C) is sesquilinear, indeed:∫
Γ
γ(E) · n× φ∗ × n ds =

∫
Γ

1
2

N∑
j=1

iωµ0ẑ×Hj

∫
Γ

(
E×H∗j

)
· ẑ ds · n× φ∗ × n dt

=
∫

Γ

1
2

N∑
j=1

iωµ0
(
ẑ×H∗j

) ∫
Γ

(n× φ∗ × n×Hj) · ẑ dt · E ds

=
(∫

Γ
γ(φ) · n× E∗ × n ds

)∗
.

Using φ = AΩ in (III.2.7) and φ = E̊(θ) in (III.2.9) we find that∫
D

Λ−1∇× E̊(θ) · ∇ ×A∗Ω − k2n2
ΩΛE̊(θ) ·A∗Ω dx−

∫
Γin
γin(E̊(θ)) · n×A∗Ω × n ds

−
∫

Γout
γout(E̊(θ)) · n×A∗Ω × n ds

= −
∫
D

Λ−1A′(0)(θ)∇× EΩ · ∇ ×A∗Ω − k2n2ΛC ′(0)(θ)EΩ ·A∗Ω dx
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and∫
D

Λ−1∇×AΩ · ∇ × E̊(θ)∗ − k2n2
ΩΛAΩ · E̊(θ)∗ dx−

∫
Γin
γin(AΩ) · n× E̊(θ)∗ × n ds

−
∫

Γout
γout(AΩ) · n× E̊(θ)∗ × n ds = −2iωµ0

(∫
Γout

E̊(θ)×Hout,∗
n · n ds

)∗
.

Which gives the equality:
∫

Γout
E̊(θ)×Hout,∗

n · n ds = −1
2iωµ0

∫
D

Λ−1A′(0)(θ)∇× EΩ · ∇ ×A∗Ω

− k2n2
ΩΛC ′(0)(θ)EΩ ·A∗Ω dx.

The shape derivative (III.2.8) is therefore equal to:

J ′(Ω)(θ) = Re
[
Sm,n(Ω)∗

2iωµ0

∫
D

Λ−1A′(0)(θ)∇× EΩ · ∇ ×A∗Ω

− k2n2
ΩΛC ′(0)(θ)EΩ ·A∗Ω dx

]
. (III.2.10)

4. Surfacic shape derivative
In order to find the surfacic expression we use the following integration by parts formulas
valid for smooth enough domain D and vector fields θ,ψ and φ:∫

D
(∇ · θ)ψ · φ dx =

∫
∂D
ψ · φ (θ · n) ds−

∫
D
∇(ψ · φ) · θ dx,

∫
D

(∇θψ) · φ dx =
∫
∂D

(θ · φ) (ψ · n) ds−
∫
D

(∇ ·ψ) θ · φ dx−
∫
D

(∇φψ) · θ dx,∫
D

(∇θ>ψ) · φ dx =
∫
∂D

(θ ·ψ) (φ · n) ds−
∫
D

(∇ · φ) θ ·ψ dx−
∫
D

(∇ψφ) · θ dx.

However, the second integrand in Eq. (III.2.10) is discontinuous across the border ∂Ω
meaning that it is not smooth enough to apply one of the previous integration by part
formula. We then decompose Eq. (III.2.10) into

J ′(Ω)(θ) = Re
[
Sm,n(Ω)∗

2iωµ0
(I1 − I2 − I3)

]
,

so that
I1 =

∫
D

Λ−1A′(0)(θ)∇× EΩ · ∇ ×A∗Ω dx,

I2 =
∫

Ω
k2n2

coreΛC ′(0)(θ)EΩ,1 ·A∗Ω,1 dx and I3 =
∫
D\Ω̄

k2n2
cladΛC ′(0)(θ)EΩ,2 ·A∗Ω,2 dx,

in which EΩ,1,AΩ,1 (resp. EΩ,2,AΩ,2) are restrictions of EΩ,AΩ on Ω (resp. D\Ω̄), that is
areas of constant optical indices in which EΩ,AΩ are smooth (at least in H1 as explained
in Remark III.2.1.1). Since θ = 0 on ∂D and Λ = Id on ∂Ω we find that

I1 =
∫
D
θ · r1,Ω dx,

I2 = k2n2
core

∫
∂Ω

(EΩ,1 ·A∗Ω,1)θ ·n + (EΩ,1 ·n)A∗Ω,1 · θ+ (A∗Ω,1 ·n)EΩ,1 · θ ds+
∫
D
θ · r2,Ω dx,
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I3 = −k2n2
clad

∫
∂Ω

(EΩ,2 ·A∗Ω,2)θ ·n+(EΩ,1 ·n)(A∗Ω,1 ·θ)+(A∗Ω,1 ·n)(EΩ,1 ·θ)ds+
∫
D
θ ·r3,Ωdx,

where ri,Ω depends on EΩ,AΩ. Now using the continuity of the tangential components of
EΩ,AΩ and that of the normal components n2

ΩEΩ · n, n2
ΩAΩ · n we can rewrite the last

two integrals into

I2 + I3 =
∫
∂Ω
θ · n k2

(
(n2

core − n2
clad)(n× EΩ × n) · (n×A∗Ω × n)

−(n−2
core − n−2

clad)(n2
ΩEΩ · n)(n2

ΩA∗Ω · n)
)
ds+

∫
D
θ · r4,Ω dx.

Canceling the terms of the form
∫
D θ · rΩ dx (see Section II.2.2 and Th. II.1.1.3) we find

that the shape gradient is equal to

J ′(Ω)(θ) =
∫
∂Ω
θ · n k2Re

[
Sm,n(EΩ)∗

2iωµ0

(
(n2

clad − n2
core)n× EΩ × n · n×A∗Ω × n

−(n−2
clad − n−2

core)(n2
ΩEΩ) · n (n2

ΩA∗Ω) · n
) ]

ds, (III.2.11)

concluding the proof. �

Remark III.2.1.2: One comment is about the units in Eq. (III.2.11). Since J ′(Ω)(θ)
gives the variation of J (Ω) according to a small perturbation on θ, it must be expressed
in W. This remark is useful since it gives a physical meaning to the previous quantity
as well as giving a necessary condition on the obtained formula to ensure its correct
calculation (the obtained formula for J ′(Ω)(θ) must also be in W).

First, since the modes are normalized in Section I.2.2 we have [Sm,n] = 1 (we use
the notation [x] for the unit of x and 1 refer to an adimensional quantity). Secondly,
by definition, [k2/(ωµ0)] = S/m. Lastly, both EΩ and AΩ are electrical fields and so
[EΩ] = [AΩ] = V/m. Combining these results together we find that

[VΩ] = [S/m][V/m]2 = W/m3.

In other word, the scalar field VΩ can be interpreted as the local change of power
transmission when the optical index is modified in a small volume. The integration on
the surface ∂Ω and the multiplication by the perturbation θ (which is a distance and
therefore expressed in m) then leads to [J ′(Ω)(θ)] = [m2][m][W/m3] = W.

Remark III.2.1.3: In Th. III.2.1.1 the electric field EΩ is solution to a PDE using the
Dirichlet-to-Neumann boundary condition defined in Section I.3.2.c for both the input
and output waveguide surfaces. This means in particular that EΩ is only composed of
backward propagating modes on Γout.

If, instead of using this boundary condition, we rather consider a PML after Γout as pro-
posed in Remark I.3.3.1 we may have some spurious forward propagating modes in the
decomposition of EΩ on Γout. This implies that the scattering parameter in Eq. (III.1.1)
is now equal to Eq. (I.2.12) and that the adjoint state must be modified accordingly.
This was our situation in [Leb19a] and we refer to our paper for details on the expres-
sion of the adjoint which, in this case, cannot be exactly written as the injection of
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the output mode into Γout. The result proposed in this section is therefore possible to
implement in commercial photonic simulation software since most of them only act as
black-boxes which only provide a way to simulate the electric field when injecting a
mode into a waveguide. A more general boundary condition like the one in our paper
is impossible to implement in these software.

III.2.1.b Invariance of the shape in the etching direction

The result of Th. III.2.1.1 allows to optimize nanophotonic components but it lacks one
important feature; even though the device’s design Ω ⊂ Dopt is three-dimensional, consid-
ering that it is manufactured through an etching process (explained in Section IV.3.1.b)
it must be invariant in the etching direction (y-axis).

To ensure this constraint, the idea is to consider an initial design Ω0 ⊂ Dopt which is
y-invariant, and deformation fields θ in the method of Hadamard which are y-invariant.
Indeed, let Ω be defined as

Ω = {(x, y, z), (x, z) ∈ Ω̂, y ∈ [−h/2, h/2]}

for some two dimensional shape Ω̂ ⊂ D̂opt where D̂opt ⊂ R2 is a section of the (y-invariant)
optimization domain D. If θ(x, y, z) = θ(x, z) is independent from the y-coordinate
then Eq. (III.2.1) simplifies into

J ′(Ω)(θ) =
∫
∂Ω̂
θ(x, z) · n(x, z)

(∫ h
2

−h2
VΩ(x, y, z) dy

)
ds(x,z),

in which we see that an ascent direction supplied by the method of Hadamard which is
y-invariant is given by

θ(x, z) = n(x, z)
∫ h

2

−h2
VΩ(x, y, z) dy. (III.2.12)

III.2.1.c Application of Céa’s method

We propose to find here the result of Th. III.2.1.1 by using Céa’s method. As pointed
out in [Pan05] in the case of the Laplace equation, the 2-phases setting contains some
difficulties which result in an erroneous shape derivative. In this subsection, we start
with the formal application of Céa’s method which ends up with a wrong result while the
second part of this subsection shows how to modify Céa’s method to recover, in theory,
the correct shape derivative.

Formal application of Céa’s method

If we apply Céa’s method as presented in Section II.2.1.a without extra attention, we end
up with the correct adjoint state but a wrong shape derivative. Indeed, let us consider
the following Lagrangian

L(Ω,E,φ) = J (Ω) + aΩ(E,φ)− b(φ) (III.2.13)

where a(E,φ) = b(φ) is the variational formulation of Eq. (III.1.2) (defined in Eq. (III.2.4)
with θ = 0). Using Th. II.1.1.2, we can infer the adjoint state AΩ equation by canceling
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the derivative of Eq. (III.2.13) with respect to E and then find the shape derivative of J
as the partial derivative of L with respect to the explicit dependence on Ω at (Ω,EΩ,AΩ).
Since the Lagrangian may read as

L(Ω,E,φ) = −k2
∫
D
n2

ΩE · φ∗ dx +R(E,φ),

where R(E,φ) does not depends on Ω, we can separate the integral on both Ω and D\Ω̄
and end up with

J ′(Ω)(θ) =
∫
∂Ω
θ · n k2(n2

cladEΩ,2 ·A∗Ω,2 − n2
coreEΩ,1 ·A∗Ω,1) ds. (III.2.14)

In Eq. (III.2.14), EΩ,1,AΩ,1 (resp. EΩ,2,AΩ,2) are the (smooth; see Remark III.2.1.1)
restrictions of EΩ and AΩ on Ω (resp. D\Ω̄). Equation (III.2.14) rewrites as

J ′(Ω)(θ) =
∫
∂Ω
θ · n k2(n2

clad(n× EΩ,2 × n · n×A∗Ω,2 × n + EΩ,2 · nA∗Ω,2 · n)

− n2
core(n× EΩ,1 × n · n×A∗Ω,1 × n + EΩ,1 · nA∗Ω,1 · n)) ds.

Now using the continuity conditions of the electric field

n×EΩ,1×n = n×EΩ,2×n = n×EΩ×n and n2
coreEΩ,1 ·n = n2

cladEΩ,2 ·n = n2
ΩEΩ ·n,

the shape derivative is equal to

J ′(Ω)(θ) =
∫
∂Ω
θ · n k2

[
(n2

clad − n2
core)n× EΩ × n · n×A∗Ω × n

+(n−2
clad − n−2

core)(n2
ΩEΩ · n)(n2

ΩA∗Ω · n)
]
ds. (III.2.15)

The main difference between this expression and Eq. (III.2.11) is that the second term
(the one involving the normal component of the fields) has opposite sign ! The error in
the previous calculation comes from the fact that Céa’s method assumes the existence of
the Eulerian derivative of the electric field Ω 7→ EΩ, which is not the case here due to the
discontinuity of the normal component of E; see Section II.2.1.a in which this problem
was also explained.

It is also worth noting that the real part and the factor Sm,n(EΩ)∗/(2iωµ0) are absent
from Eq. (III.2.15). This is due to the fact that all these information are contained here
in the adjoint. Indeed, in Section II.2.1.a, we defined the adjoint AΩ as the solution of
∂EL(Ω,EΩ,AΩ)(Ẽ) = 0 for all Ẽ. Here, since L is not holomorphic with respect to E
(due to the fact that J (Ω) is real-valued), we need to consider separately both the real
and imaginary part of E. That is, if E = Ere + iEim, to define A = Are + iAim as the
solution of both

∂EreL(Ω,EΩ,AΩ,re) = 0 and ∂EimL(Ω,EΩ,AΩ,im) = 0,

using the fact that aΩ is sesquilinear and J real-valued we find that for all Ẽre and Ẽim:

aΩ(Ẽre,Are) = −∂EreJ (Ω)(Ẽre), aΩ(Ẽre,Aim) = 0 (III.2.16)
aΩ(Ẽim,Aim) = −∂EimJ (Ω)(Ẽim), aΩ(Ẽim,Are) = 0. (III.2.17)
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For the objective function of Eq. (III.1.1), assuming without loss of generality that the
objective mode H∗−n = H is real, we have

∂EreJ (Ω)(Ẽre) = 1
2Re

[
Sm,n(EΩ)

∫
Γout

[
Ẽre ×H

]
· n ds

]
,

∂EimJ (Ω)(Ẽim) = 1
2Im

[
Sm,n(EΩ)

∫
Γout

[
Ẽim ×H

]
· n ds

]
.

This allows us to summarize Eqs. (III.2.16) and (III.2.17) into

aΩ(Ẽre,Are) + aΩ(Ẽim,Aim) = −Re
[1
2S
∗
m,n(EΩ)

∫
Γout

[
Ẽ×H

]
· n ds

]
,

where the missing real part and factor are present.

A (potential) correct calculation using Céa’s method with two phases

In [Pan05] a method to find the correct shape derivative using Céa’s method despite the
non-existence of the Eulerian derivative of EΩ is explained. We have not been able to
reproduce this method for our objective function and PDE but we still decided to provide
some details in case someone is interested in doing this calculation.

In the previously mentioned paper, the author proposed to separately consider EΩ,1 and
EΩ,2, the solutions of the time-harmonic vector wave equation inside Ω and D\Ω̄ with
the addition of a Lagrange multiplier to link these two solutions to one another. In
mathematical terms, the Lagrangian in Eq. (III.2.13) is modified into

L(Ω,E1,φ1,E2,φ2, λ, µ) = J (Ω) + aΩ,1(E1,φ1)− b1(φ1) + aΩ,2(E2,φ2)− b2(φ2)

+
∫
∂Ω
λ · (n× E1 × n− n× E2 × n) ds+

∫
∂Ω
µ · (n×∇× E1 − n×∇× E2) ds,

(III.2.18)

with a1, b1, a2, b2 the sesquilinear and antilinear form of associated with the variational
formulation of the time-harmonic vector wave equation in Ω and D\Ω̄. The two additional
Lagrangian multiplier λ and µ account for the interface conditions of E on ∂Ω. Since E1
and E2 are smooth on their respective domains of definitions (Remark III.2.1.1), the Eu-
lerian derivatives of each of these functions are defined (through the relation Eq. (II.1.14))
and Céa’s method can be carried out.

Canceling the partial derivatives of Eq. (III.2.18) with respect to E1 and E2 are equal to
A defined in Eq. (III.2.3); A1,A2 are the restrictions of A into Ω and D\Ω̄. We also find
the expressions of λ, µ as

λ = n×∇× φ1 = −n×∇× φ2 and µ = n× E1 × n = −n× E2 × n.

Using these values, Eq. (III.2.18) may be decomposed into

L(Ω,E1,φ1,E2,φ2) = R(E,φ)−
∫
D
k2n2

ΩE · φ∗ dx

− 2
∫
∂Ω

n×∇× E1 · n× φ∗1 × n− n×∇× E2 · n× φ∗2 × n ds. (III.2.19)

A tedious differentiation of Eq. (III.2.19) with respect to θ should give, this time, the
correct shape derivative. Although we have not succeeded in achieving this calculation,
we want to make two precision:
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• Derivating Eq. (III.2.19) with respect to θ brings into play terms of the form∫
∂Ω

(θ · n)(n · ∇)(n×∇× E)n× φ∗ × n ds,

where the term (n · ∇)(n×∇×E) is close to n×∇×∇×E×n = k2n2n×E×n.

• In integrals of the form
∫
∂Ω f(n), the normal vector n depends on the shape Ω and

therefore the derivative of this integral is found using Th. II.1.2.1 and the Eulerian
derivative of the normal vector which is n′(θ) = −∇∂Ω(θ·n) (see [Hen06, Proposition
5.4.14])

III.2.2 Alleviating numerical instabilities using refractive index
smoothing

III.2.2.a Isotropic smoothing

Since the shape derivative Eq. (III.2.1) depends on the evaluation of the electric field’s
tangential components and normal component (n2

ΩEΩ) · n at the interface ∂Ω, we theo-
retically need a precise mesh of the shape at this discontinuity. Indeed, as can be seen
in Fig. III.2.1, if the nodes of the mesh do not coincide exactly with the border of the shape,
then, by definition of the finite element basis functions (for FDTD see Remark III.2.2.1),
the electric field is continuous on these tetrahedrons crossing the interface. This means
that, when evaluating the quantity (n2

ΩEΩ)·n, we want to have a continuous value by com-
puting the product between the two discontinuous ones nΩ and EΩ · n while numerically
EΩ · n is continuous.

(a) Explicit mesh (b) Implicit mesh. The black line indi-
cates the interface between the two medi-
ums

Figure III.2.1: Ey component of the electric field using either an explicit or an
implicit mesh of the interface. In the case of an implicit meshing, the numerical
integration scheme on tetrahedrons crossing the interface leads to continuous values
of the electric field’s normal component.

Although it may be possible to use remeshing algorithms on the moving interface in the
case of the finite element method to always have nodes of the mesh on this boundary,
we prefer to rely on an index-smoothing (also known as sub-pixel smoothing) method
which approximates the discontinuous optical index nΩ by a smoothed version.
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Remark III.2.2.1: This method also has the advantage of being useful in the case
of finite difference simulations, like FDTD, which are inherently defined on Cartesian
grids and therefore never give the possibility to accurately evaluate Eq. (III.2.1).

To explain this method, let us first define a sequence of mollifiers sε such that

sε(x) = ε−2s(ε−1x) with s ∈ C∞c (R2), supp(s) ⊂]−1, 1[2 and
∫
R2
s(x)dx = 1. (III.2.20)

We define the smoothed approximation nΩ,ε of nΩ by:

n2
Ω,ε(·, y, ·) = sε ∗ (n2

Ω(·, y, ·)), n2
Ω,ε(x, y, z) =

∫
R

∫
R
sε(x− t, y − u)n2

Ω(t, y, u) dt du.
(III.2.21)

The unique solution of the time-harmonic vector wave equation using the optical index
nΩ,ε is denoted by EΩ,ε and the smoothed objective function as Jε(Ω) = |Sm,n(EΩ,ε)|2.
In this case, since n2

Ω,ε ∈ C∞(D,R∗+), the electric field EΩ,ε is at least of class C1(D)
(see [Dau12, Chapter IX]) and the shape derivative associated to Jε(Ω) may be found
using Céa’s method:

J ′ε(Ω)(θ) =
∫
∂Ω
θ · n k2

∫ h
2

−h2
Re

[
Sm,n(EΩ,ε)∗

2iωµ0
(n2

clad − n2
core)sε ∗

(
EΩ,ε ·A∗Ω,ε

)]
dy ds,

(III.2.22)
where AΩ,ε is solution of Eq. (III.2.3) using the optical index nΩ,ε.

In summary, to obtain this shape derivative we need to convolve the optical index and
solve for both electric fields (EΩ,ε and A∗Ω,ε) and then convolve the scalar product between
these two quantities. Equation (III.2.22) is much simpler to compute than Eq. (III.2.1)
since it does not involve any discontinuous quantity across ∂Ω.

Remark III.2.2.2: In [All14b] or [Ver19b] the authors also proposed to regularize
the index (the conductivity of the Laplace equation in the original papers) into that
nΩ,ε defined by:

n2
Ω,ε = n2

clad + (n2
core − n2

clad)ε−1h(ε−1dΩ) (III.2.23)
where h is a smooth, non-decreasing function such that h(x) = 0 if x ≤ −1, h(x) = 1 if
x ≥ 1 and dΩ the signed distance function defined in Section II.3.3.b. This additional
dependency of n2

Ω,ε on Ω in Eq. (III.2.23) through the signed distance function dΩ
leads to a different shape derivative which need to evaluate the electric field along rays;
see [All14b, Section 3.2] for the definitions.

We conjecture that the following error estimate concerning the smoothed field is verified
for all p > 1 if EΩ is sufficiently smooth:

‖EΩ,ε − EΩ‖(L2(D,C))3 =
ε→0

o(ε1− 1
p ), (III.2.24)

meaning that the convergence of the regularized field to the real one is at least sub-linear.

One difficulty in proving this result notably comes from the fact that the bilinear form
associated with the time-harmonic vector wave equation is not coercive. Note that to
alleviate this problem it is common to have recourse to the so-called Helmhotz decompo-
sition (see [Mon03, Lemma 4.5]) of the electric field which breaks down EΩ (resp. EΩ,ε)
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into the sum of a divergence free field uΩ (resp. uΩ,ε) and a curl free one ∇vΩ (resp. vΩ,ε)
such that vΩ is solution to a Laplace equation. Proving that vΩ,ε converges to vΩ with
the same order of convergence as in Eq. (III.2.24) is then achieved by classical energy
estimations; see for instance [Dap13, Section 4.8.1].

Using the identity Eq. (III.2.24) and considering that the mapping E 7→ Sm,n(E) defined
in Eq. (III.1.1) is continuous (from (L2(D,C))3 into C) then we have Jε(Ω) which tends
to J (Ω) with at least the same order of convergence as the prior estimate. This validates
the fact that optimizing Jε(Ω) will give a shape Ω with approximately the same value for
J (Ω).

With more calculations it may be possible to show that we also have an error estimate
between J ′ε(Ω)(θ) and J ′(Ω)(θ) and therefore that a local optima found for Jε is close
to a local minima of J when ε tends to zero.

III.2.2.b Anisotropic smoothing

Apart from the smoothing method proposed in Section III.2.2.a, a larger order of conver-
gence (larger value in the power of ε in Eq. (III.2.24)) may be obtained by using another
type of regularization as proposed for instance in [Kot08, Section VI]. The method de-
scribed here was initially found through the following formal observations:

• If we want to numerically compute a discontinuous quantity y = ax equal to the
product of a continuous value x and a discontinuous one a then it is desirable to
smooth a in order to make y also continuous and thus enhancing the stability of its
computation.

• If now y is continuous but with both a and x discontinuous then smoothing a will
still lead to a discontinuous y. Instead we can re-arrange the equation as a−1y = x
which brings us back to the previous case and lead to smooth a−1 instead of a.

In Eq. (III.2.1) we need to compute the continuous value n2
ΩEΩ · nΩ which is the product

of two discontinuous functions, thus we should smooth n−2
Ω for the normal component of

EΩ. When it comes to the computation of the tangential part n2
ΩnΩ×EΩ×nΩ, we rather

need to smooth n2
Ω on the tangential components. This leads to defining the following

smooth, anisotropic, optical index N2
Ω,ε

N2
Ω,ε =

(
sε ∗ (n2

Ω)
)
I3 +

((
sε ∗ (n−2

Ω )
)−1
−
(
sε ∗ (n2

Ω)
))

NΩ (III.2.25)

where the matrix NΩ is equal to NΩ = n>n. In [Kot08, Section VI] the authors claim
that this method is of second order in ε.

Let us conclude by saying that we have observed that the smoothing method presented in
this section is very efficient in practice for shape optimization of photonic devices to get a
stable algorithm. Many numerical software, such as RSoft Synopsys or Lumerical, both
using FDTD, even implement this kind of smoothing procedure by default; see [Han14,
Section 4.2] for the implementation of this idea in the FDTD method and [Mic18] which
considers this kind of smoothing in the shape optimization of nanophotonic devices.

Although very practical for the numerical stability of the optimization algorithm, it is
essential to take care of the fact that the electric field obtained numerically through the
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smoothing method may differ significantly from the real solution even with the result
of Eq. (III.2.24). Typically, if the width of the smoothing is of the order of a mesh
tetrahedron, it seems very unreliable to have isolated shapes of the same size. In practice,
it is therefore recommended to avoid as much as possible this kind of small shapes. A
simple way to check the correct behavior of the electric field is to refine the mesh at
the end of the optimization process or to ensure that other simulation software produces
the same result (see Fig. III.5.6 in which we compare our results using three different
software).

III.2.3 Results for other objectives

III.2.3.a Total power

In the previous sections, as far as the objective function is considered, we were only
interested in the power carried by a given mode. In some situations however, it may
be interesting to look at the total power going through a surface. By definition of Sm,i,
ignoring the radiative modes, the total power P transmitted through an output waveguide
Γout is given by (Eq. (I.2.16)):

P(Ω) = 1
2

∫
Γout

Re [EΩ ×H∗Ω] · n ds '
N∑
i=1
|Sm,i(Ω)|2, (III.2.26)

where Sm,i is given by Eq. (III.1.1). Summing N times the result of Th. III.2.1.1, the
shape derivative is given by:

P ′(Ω)(θ) =
∫
∂Ω
θ · n

N∑
i=1

Vi(s) ds, (III.2.27)

where Vi is defined in Eq. (III.2.2) and requires both the values of EΩ and AΩ,i the adjoint
state (Eq. (III.2.3)) corresponding to the injection of the mode (Ei,Hi) in the output
waveguide. This shape derivative is not satisfying because it requires as many simulations
as there are modes in the decomposition Eq. (III.2.26). If we look at Eq. (III.2.27) we
can see that the sum of the scalar fields Vi may be written as

N∑
i=1

Vi(s) = k2Re
 1

2iωµ0

q
n2y EΩ,‖ ·

(
N∑
i=1

Sm,i(EΩ)AΩ,i,‖

)∗

−
s

1
n2

{
EΩ,⊥

(
N∑
i=1

Sm,i(EΩ)AΩ,i,⊥

)∗ . (III.2.28)

Using the linearity of the time-harmonic vector-wave equation, we can define

AΩ =
N∑
i=1

Sm,i(EΩ)AΩ,i,⊥,

such that AΩ is solution of
∇× Λ−1∇×A− k2n2ΛA = 0 in D

n×A = 0 on ∂D\(Γout ∪ Γin)
n×∇×A + γout(A) = 2iωµ0ẑ×Hout

tot on Γout
n×∇×A + γin(A) = 0 on Γin

, (III.2.29)
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where Hout
tot is defined as

Hout
tot =

N∑
i=1

Sm,i(EΩ)Hout
i .

This method effectively reduces the computational complexity of Eq. (III.2.27) since only
one adjoint state is needed, which corresponds to the simultaneous injection of all the
output modes multiplied by their associated S-parameters.

Note that instead of relying on Th. III.2.1.1, it is possible to directly compute the shape
derivative of Eq. (III.2.26) using the same demonstration as in the theorem but the expres-
sion of the adjoint found in this case is more complex than Eq. (III.2.29) since it contains
information on both the guided and radiative modes (the last equality in Eq. (III.2.26) is
very accurate in practice but is still a mathematical approximation).

III.2.3.b Mode volume

An other figure of merit, which is often considered in, for instance, cavity (see Sec-
tion III.3.1.e), is the so-called mode volume Vmode(Ω). This figure of merit characterizes
the uniform distribution of the electric energy inside a volume V ⊂ R3 of core material
(that is to say, the confinement of light inside V ) and it is defined as

Vmode(Ω) =

∫
V
n2
core|EΩ|2 dx

max
V

n2
core|EΩ|2

. (III.2.30)

Equation (III.2.30) is often simplified by dropping the denominator leading to

Emode(Ω) =
∫
V
n2
core|EΩ(x)|2 dx, (III.2.31)

which is the total electric energy inside the volume V . The shape derivative associated
to Eq. (III.2.31) is given by Eq. (III.2.1) with Γout = ∅ and an adjoint AΩ solution of

∇× Λ−1∇×A− k2n2
ΩΛA = −2n2

coreEΩ1V in D
n×A = 0 on ∂D\Γin

n×∇×A + γin(A) = 0 on Γin

.

From a physical point of view, this is the same as saying that AΩ is the solution of the
time-harmonic vector wave equation with an imposed current density 2n2

coreEΩ inside the
volume V . An application using this shape derivative is given in Section III.3.1.e.

Note that the mode volume, as well as many other figures of merit in photonics, is phys-
ically related to resonant phenomena and thus can be studied through the eigenvalues of
the time-harmonic vector wave equation.

III.3 Numerical examples

III.3.1 Classical components
In this section, we evaluate the efficiency of our shape and topology optimization Algo-
rithm II.4.1 on the design of various nanophotonic devices.
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In all cases, the design domain Dopt is [−dx, dx]× [−h/2, h/2]× [−dz, dz] where dx and dz
vary between 1.5 µm to 3 µm depending on the situation, and h = 306 nm (see Fig. I.3.2 for
a reminder of the considered 3d geometry). The PML width is 500 nm. The tetrahedral
mesh T associated to the finite element resolution is composed of about 105 elements, with
size at most λ/(5nΩ) where λ is the wavelength and nΩ the optical index, as commonly
advised in practice for such simulations. The 2d Cartesian grid G of Dopt dedicated to
practice of the level set method has uniform size ∆x = 10 nm.

The values of the wavelength λ considered in this section lie within the typical range used
in telecommunication applications, that is around 1.31 µm and 1.55 µm. The values of the
refractive indices of the involved materials (core of silicon, cladding of air and substrate
of silica) are:

ncore = 3.476, nsubs = 1.444, nclad = 1 at λ = 1.55 µm
and ncore = 3.506, nsubs = 1.447, nclad = 1 at λ = 1.31 µm (III.3.1)

All the numerical computations are performed on a cluster node with 8 to 20 cores CPU
clocked at 3.0 GHz with 128 GB of reserved memory. For some example, we provide a
rough estimate of the needed CPU time; notice that in each case, more than 99 % of
this time is devoted to the resolution of the state or adjoint time-harmonic vector wave
equations; the effort related to the level set method is negligible by comparison.

III.3.1.a Mirror

Our first numerical example deals with the optimization of a nanophotonic mirror. This
component is connected to the rest of the circuit through a single waveguide which acts as
both an input and an output. The goal of this device is, for a given input forward mode,
to send back this mode in the same waveguide without losing any power as represented
in Fig. III.3.1.

Figure III.3.1: Setting of the mirror test-case of Section III.3.1.a.

This situation falls into the framework of Th. III.2.1.1 with Γin = Γout and n = m = 1. In
particular, the adjoint state AΩ is equal to the direct solution of the PDE (the problem is
said to be self-adjoint) and therefore the shape derivative only involves the electric field
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Figure III.3.2: Optimized shapes of the mirror device of Section III.3.1.a for different
initializations. From left to right and top to bottom, each run was initialized with
the full domain perforated by nh × nh holes with nh ranging from 1 to 6.

EΩ. Precisely, the shape derivative is given by

J ′(Ω)(θ) =
∫
∂Ω
θ · n k2

∫ h
2

−h2
Re

[
Sm,n(EΩ)∗

2iωµ0

(
(n2

core − n2
cladding)|n× EΩ × n|2

−(n−2
core − n−2

cladding)|n2
ΩEΩ · n|2

)]
dy ds. (III.3.2)

Starting from an initial shape made of several holes we end up, after 200 iterations, with
the shapes of Fig. III.3.2.

For each of these optimization examples, the convergence graphs are given in Fig. III.3.3
and as one would expect, the mirror’s performance is almost always better when the
process is started with a large number of holes. The optimized shape’s successive trans-
formations starting from a shape with one hole is shown in Fig. III.3.4 as well as a cross
section of the electric field and energy density at y = 0.

Note that the resulting shapes are not perfectly symmetric while, in theory, since we
started with a symmetric shape, the electric field should be symmetric as well and so does
the vector field used to move the border of the shape. As can be seen on Figs. III.3.4(a)
to III.3.4(d) this non-symmetry develops after a significant number of iterations, before it
can be seen with our naked eye, and is due to the accumulation of small numerical errors.
In the next examples the symmetry is enforced at each iteration.

III.3.1.b Power divider

Let us now turn to the optimization of a very useful device in nanophotonics, namely the
power divider.
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Figure III.3.3: Convergence history for the six optimization examples in Fig. III.3.2.

(a) At nit = 0 (b) At nit = 25 (c) At nit = 50 (d) At nit = 100

(e) Optimized shape (axes in µm)

-1

1

(f) Hy in the section y = 0

0

1

(g) ωΩ in the section y = 0

Figure III.3.4: Evolution and result of the optimization process for the mirror test-
case of Section III.3.1.a starting with an initial shape composed of one hole.

The physical setting is that of Fig. III.3.5(a): our aim is to divide the electromagnetic
power conveyed by the incoming field through the waveguide figured by Γin in an equal
way between both output waveguides Γout,1 and Γout,2. Considering the symmetry of the
problem, we only discretize one half of the design domain Dopt and we restrict the set of
the considered deformation fields θ in the practice of Hadamard’s method to vector fields
of the form

∀(x, z) ∈ D̂opt, θ̃(x, z) = 1
2 (θ(x, z) + θ(−x, z)) . (III.3.3)

This allows to formulate our optimization problem as in Th. III.2.1.1, that is to consider
the maximization of the single objective functional

J1(Ω) = 1
2

∫
Γout,1

[
EΩ ×Hout,∗

−1

]
· n ds. (III.3.4)

Note that considering the symmetrized vector field given by Eq. (III.3.3) is, if the shape
Ω is also symmetric, the same as optimizing the objective function J1(Ω) + J2(Ω) where
Ji is given by Eq. (III.3.4) with Γout,i instead of Γout,1.

81/182



CHAPTER III. OPTIMAL DESIGN OF PHOTONIC COMPONENTS

(a) Schematic representation of the
power divider

(b) Initial shape used by the algorithm

Figure III.3.5: Setting of the power divider test-case of Section III.3.1.b.

Starting from the initial shape of Fig. III.3.5(b), 50 iterations of our optimization al-
gorithm are performed, for a total computational time of roughly 3 hours. Details of
the numerical computation are reported on Fig. III.3.6; the optimized device achieves
approximately 49 % transmission into each output waveguides.

(a) Optimized shape (axes in µm)
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(b) Convergence history (c) ωΩ in the section y = 0

Figure III.3.6: Optimized shape of the power divider of Section III.3.1.b and details
of the numerical computation.

III.3.1.c Mode converters

Our third example deals with the optimization of the shape of devices whose common
purpose is to transform the mode coming from an input waveguide into another mode of
the output waveguide.
The physical settings of interest are depicted on Fig. III.3.7, where the output waveguide
is wide enough to allow for the existence of multiple guided modes. In this context, the
electromagnetic power is injected via the port Γin, using the fundamental mode TE0,
and we seek to transfer this power to the first, second or third TE mode of the output
waveguide.

Due to the symmetry of the situation in the case of the TE0 and TE2 modes with respect
to the x variable (see Fig. III.3.7; the TE1 mode is, unlike the others, antisymmetric),
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(a) TE0 to TE0 (b) TE0 to TE1 (c) TE0 to TE2

Figure III.3.7: Setting of the three mode converters test-cases of Section III.3.1.c.

only one half of the design domain Dopt is discretized in this case and we use symmetrized
deformation fields of the form Eq. (III.3.3) in the practice of Hadamard’s method.

(a) Initial shape used by the algorithm (b) Convergence history graphs

Figure III.3.8: Application of our shape optimization algorithm to the mode con-
verters of Section III.3.1.c.

Starting from the initial shape of Fig. III.3.8(a) we perform 150 iterations of our opti-
mization algorithm leading to the convergence graphs of Fig. III.3.8(b). We end up with
the designs shown in Fig. III.3.9.
Note here that we only considered conversion from TE into TE modes. When the mode
converter modifies also the polarization it is called a polarization rotator, which is a far
more difficult effect to achieve; see Section III.5.

III.3.1.d Crossing

The purpose of this device is to facilitate circuit routing by limiting the crosstalk (un-
desired coupling power) between two intersecting waveguides (see Fig. III.3.10(a)). The
design domain Dopt is connected to two input waveguides via the ports Γin,1 and Γin,2, and
two outgoing waveguides via the surfaces Γout,1 and Γout,2. The fundamental mode TE0 is
injected at Γin,1 (resp. Γin,2) with a wavelength λ = 1.55 µm and our aim is to maximize
the transmitted energy J1(Ω) to the fundamental mode in Γobj = Γout,1 (resp. Γout,2).
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(a) Real part of Hy in the section y = 0

(b) Energy density in the section y = 0

Figure III.3.9: Simulation of the time-harmonic vector wave equation using the final
designs of the mode converters obtained in Section III.3.1.c.

(a) Schematic representation of the
crossing

(b) Initial shape used by the algorithm

Figure III.3.10: Setting of the crossing test-case of Section III.3.1.d.

Taking advantage of the symmetry of the situation, we only consider shapes Ω which are
symmetric with respect to the x and z axes; doing so ensures the symmetry between the
electromagnetic fields EΩ and HΩ obtained in the situations where light is injected from
Γin,1 and Γin,2. Hence, our shape optimization problem boils down to that of maximizing
the single objective in Th. III.2.1.1, where the Maxwell equations describing the physics
at play involve only injection through the port Γin,1 and where Γout = Γout,1. Accord-
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ingly, in the practice of the boundary variation method of Hadamard, we only consider
symmetrized vector fields θ of the form

∀(x, z) ∈ D̂opt, θ̃(x, z) = 1
4(θ(x, z) + θ(−x, z) + θ(x,−z) + θ(−x,−z)). (III.3.5)

Starting from an initial shape made of the union of two orthogonal, straight waveguides
connecting Γin,1 to Γout,1 and Γin,2 to Γout,2 (see Fig. III.3.10(b)), 50 iterations of our
optimization algorithm are performed, for a total computational time of roughly 4 hours.

The optimized design, convergence history, as well as the normalized density of electro-
magnetic energy inside the computational domain are represented on Fig. III.3.11. We
notice that more than 95 % of the electromagnetic energy contained in the incoming field
is successfully conveyed to the output port, while this ratio equals only 70 % in the case of
the initial device of Fig. III.3.10(b). Notice that the shape Ω has changed topology in the
course of the optimization process. In this example, the crosstalk, that is the undesired
coupling to the perpendicular waveguides is less than 1 %.

(a) Optimized shape (axes in µm)

10 20 30 40
0.7

0.8

0.9

1

(b) Convergence history (c) ωΩ in the section y = 0

Figure III.3.11: Optimized shape of the crossing device of Section III.3.1.d and
details of the numerical computation.

III.3.1.e Cavities

Here, we consider the mode volume objective of Section III.2.3.b. We consider the same
geometry as in Fig. III.3.1 with an additional cylinder V at the center of Dopt composed
only of cladding material and in which we want to maximize the mode volume defined
by Eq. (III.2.31), that is

J (Ω) =
∫
V
n2
core|EΩ(x)|2 dx.

Again, the symmetry of the problem allows to consider only 50% of the whole domain using
vector fields of the form Eq. (III.3.3) in the practice of Hadamard’s method. Applying 125
iterations of our numerical algorithm we end up with the result of Fig. III.3.12 and we can
clearly see on Fig. III.3.12(c) that the energy is condensed in the small blue (cylindrical)
volume.

III.3.2 Comments on the use of the topological gradient
In Section II.1.3 the topological gradient was presented as a means to optimize a functional
J (Ω) depending on a shape Ω by iteratively nucleating holes into Ω. We have seen that
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(a) Optimized shape (axes in µm) (b) Convergence history (c) ωΩ in the section y = 0

Figure III.3.12: Optimized shape of the cavity of Section III.3.1.e and details of the
numerical computation. The initial shape was composed of 8 × 8, equally spaced
holes.

the location of where a hole should be nucleated inside Ω relies on an asymptotic expansion
of the objective functional as Eq. (II.1.18), that is

J (Ωε) = J (Ω) + f(ε)T (x0) + o(f(ε)) (III.3.6)

where Ωε = Ω\B(x0, ε) and ε is the radius of the hole.

In our application, Ω is a 3d shape, which is y-invariant (see Section III.2.1.b), and where
a 2d section Ω̂ is optimized. Naturally, a small hole inside Ω̂ amounts to performing a
variation of the 3d shape of the form Ω\C(x0, ε) where C(x0, ε) is a cylinder of radius ε,
centered at x0 and with fixed height h (that of the component) in the y-axis.

(a) Optimal shapes

(b) Convergence history graphs

Figure III.3.13: Formal application of the “topological gradient” of Section III.3.2.
From left to right: a diameter of the holes and a minimum distance between holes
of 100, 50 and 25 nm is used. The optimization procedure was stopped when the
topogical gradient was everywhere negative.
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This type of asymptotic expansion is highly unusual and we did not try to find an equiv-
alent to Eq. (III.3.6) in our context. Nevertheless, as suggested in Section II.1.3, a formal
approach of this problem suggested that the sign of the shape gradient VΩ in Eq. (III.2.2)
(or more precisely its integrated values on [−h/2, h/2] as in Eq. (III.2.12)), indicates
where to remove matter into the shape. This method has been tested on the optimization
of the power divider of Section III.3.1.b and some results are presented in Fig. III.3.13
using different sizes for the holes and a minimal distance between them. Interestingly, the
convergence graphs of Fig. III.3.13(b) are almost always strictly increasing meaning that
the approximation used here for the topological gradient works well in practice.

In reality this good result may be explained in this case by the optical index regularization
process of Section III.2.2. Indeed, since the optical index nΩ is smoothed by applying a
convolution sη on its values (defined in Eq. (III.2.20)), removing a cylinder C(x0, ε) of
radius ε into Ω amounts to changing n2

Ω,η into n2
Ω,η − n2

ε,x0 where n2
ε,x0 ∈ C∞(R2,R) is

defined by

n2
ε,x0(x, y, z) = (n2

core − n2
clad)

∫
C(x0,ε)

sη(x0 − t, z0 − u) dt du,

implying in particular that limε→0 n
2
ε,x0 = 0. In this case, studying the sensitivity of the

objective function with respect to the removal of an infinitely small cylinder then reduces
to compute the derivative of the objective function J with respect to ε at 0. To do
this, we first define for any fixed shape Ω and position x0 ∈ Ω the objective function
Jh(ε) = J (Ω\C(x0, ε)). A direct calculation using Céa’s method allows to find that the
shape gradient with respect to ε of Jh(ε) is proportional to the scalar field in Eq. (III.2.22).
This result means that using the shape derivative as a mean to know where to remove
holes in the shape Ω is justified in the context of smoothed optical indices.

Once again we insist on the fact that this result is only true because of the index smoothing
method. In order to obtain the real shape derivative without taking into account the
smoothing it is still necessary to find an asymptotic expansion as in Eq. (II.1.18) and this
analysis was not considered during this thesis.

III.4 Incorporating constraints into the optimization
process

III.4.1 Introduction
For the moment, no constraints have been imposed on Ω during the resolution of the shape
optimization problem. In practice, however, not all shapes are possible to manufacture;
but defining precisely the set of shapes that may be produced is a complex task. Nowadays,
engineers use programs known as Direct Rule Check (DRC) to verify if a design can be
produced in reality. These programs mainly consists in the verification of three “rules”:

• Minimum gap space: if two different regions of the design Ω are too close from
one another then they are likely to end up accidentally merged in the concretely
produced design (Fig. III.4.1, bottom left). Hence, such pattern are impossible to
assemble without alterations.
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• Minimum feature size: if a region of the shape is too thin then it will disappear
in the final design (Fig. III.4.1, top left).

• Maximum local curvature: sharp corners (high local curvature value) are
smoothed by the manufacturing process (Fig. III.4.1, right) and thus cannot be
produced accurately.

Figure III.4.1: (left) A shape Ω. (right) The associated produced shape.

These DRC programs provide criteria that should be respected for the desired design to
be manufactured faithfully. In theory these rules are not “constraints” in the sense that
we could still try to produce shapes which do not respect them but in practice engineers
require physicists to respect these rules in order to guarantee the proper manufacturing
of the designs.

Even though the modeling and incorporation of manufacturing constraints in the opti-
mization process is not the primary target of this thesis, we hereafter provide some in-
formation about recently published paper on this topic concerning nanophotonic devices
with a particular emphasis on strategies used in the geometric optimization framework.
Let us also point out that this kind of constraints have already been studied extensively
in the context of density-based shape optimization method; see for instance [Zho15].

III.4.2 Projection method
Let us suppose that it is possible to derive a function F which, to any shape Ω ⊂ Dopt,
associates a “projection” of Ω onto the set of admissible shapes. In such a case, a pro-
jected gradient algorithm can be used to enforce these constraints. In [Pig17] the authors
proposed to apply the two following projections after each iteration of the gradient descent
in order to enforce the three previous rules of manufacturability:

• Remove the small isolated connected elements of Ω and the small isolated bubbles
of air in Ω.

• Solve the Hamilton-Jacobi equation over a “short” time period using a scalar field
equal to the opposite of the local curvature κ of the shape in order to reduce the
values of κ.

It is worth noting that in the second projection, using a scalar field equal to the opposite of
κ in the Hamilton-Jacobi equation is mathematically equivalent to adding a penalization
on the perimeter of the shape to the optimization problem (see Eq. (II.1.4)).
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III.4.3 Penalization methods
Another possibility to enforce manufacturing constraints on the optimized shape is to
rely on penalization. In this case, a term is added to the objective function in order to
penalize the regions of the shape which violate the constraints. This penalization may be
expressed by using the level-set numerical representation of the shape as in [Ver19a] or
by using the signed distance function [Mic14, Section II.3].

III.5 Multi-levels: shapes that can be made through
multiple levels of etching

This section is dedicated to the presentation of a method for the design of nanophotonic
components exploiting the possibility of several etching levels (see Fig. III.5.1 for an
example).

(a) Three dimensional representa-
tion of a two-layer shape

(b) Views of the two 2d lay-
ers constituting the compo-
nent, red: bottom layer, blue:
top layer

(c) Level-set representations
of the two layers

Figure III.5.1: A two-layer component and its numerical representations.

III.5.1 Motivation: polarization rotator
In Sections I.1.4 and I.2.1.b the polarization of a mode was defined for a y-invariant
material by looking at the behavior of the electromagnetic fields. In a nutshell, in the case
of y-invariant optical indices, the time-harmonic vector wave equation is simplified into
two uncoupled two-dimensional scalar Helmholtz equations (Eq. (I.1.19)) giving access to
respectively (Ex,Hy,Ez) and (Hx,Ey,Hz). In the case of non-y-invariant optical indices,
a mode is said to be in the TE polarization if the majority of its power is carried by the
first set of three components and is said to be TM in the other case.

A polarization rotator is a component which converts an input TE (or TM) mode into a
mode of the output waveguide with the other polarization as presented in Fig. III.5.2.
Given the independence between TE and TM modes in the case of y-invariant optical
indices, it is not possible to convert an input polarization into the other by using a
device where the index is y-invariant. Even if general waveguides such as the one studied
previously (Fig. I.2.1) are indeed not y-invariant due to the presence of a cladding and
substrate with different optical indices than the one of the core, we can legitimately assume
that having “more” variations of the optical indices in the y-direction may improve the
performance of the polarization rotator. In order to enhance this variation, one idea is to
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Figure III.5.2: Schematic representation of a polarization rotator.

consider components having several depths of etching (see Fig. III.5.1), that is allowing
the shape to have different layers instead of being restricted to the one of the waveguides.

Still, if we try to optimize a polarization rotator using a single etching level though,
starting from a straight waveguide we obtain, after more than a thousand iterations, the
results shown in Fig. III.5.3.

(a) Optimal shape (b) Cut of the energy density at y = 0, λ = 1.55 µm

Figure III.5.3: Classical shape optimization of a polarization rotator starting from
a straight waveguide.

As we can see only 65 % of the input fundamental TE mode is well-converted into the
fundamental TM mode, which still leaves a lot of room for improvement.

III.5.2 A first method using projections
In order to optimize the n` layers Ω1, . . . ,Ωn` constituting the shape Ω = ⋃

i=1,...,n` Ωi, we
can still use the result of Th. III.2.1.1 by changing the height of integration in the shape
derivative (III.2.1) for each layer (see below Eq. (III.5.2)). But we also need a way to
ensure that each layer is always placed above the lower ones; this condition is necessary
to produce the shape through etching. For each layer Ωi, we denote by Ω̂i ⊂ R2 its two
dimensional section such that

Ωi = {(x, y, z), (x, z) ∈ Ω̂i, y ∈ [hi−1, hi]}

with −h/2 = h0 < . . . < hn` = h/2. With these definitions, the manufacturing constraint
reduce to enforcing that

Ω̂1 ⊃ . . . ⊃ Ω̂n` ,
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The general shape optimization problem is now max
Ω1,...,Ωn

J (Ω)
s.t. Ω̂1 ⊃ . . . ⊃ Ω̂n

(III.5.1)

where the value of J (Ω) is given through the solution of the time-harmonic vector wave
equation using the optical index defined through Ω1, . . . ,Ωn. As in Eq. (III.2.12), the
mathematical program Eq. (III.5.1) may be optimized by considering the following vector
fields θi to move each shape Ωi in the practice of the boundary variation method of
Hadamard:

θi(x, z) = n(x, z)
∫ hi

hi−1
VΩ(x, y, z) dy. (III.5.2)

where VΩ was defined in Th. III.2.1.1.

To take into account the constraint, first note that it is sufficient to require that
φ1 < . . . < φn` where φi is a level-set representation of Ω̂i. With this new formu-
lation of the constraint through level-set functions, a simple numerical algorithm to
solve Eq. (III.5.1) is a projected gradient algorithm where, at each iteration, the con-
straint is ensured by using the following projection:

for i from 2 to n` do: φi = max(φi, φi−1). (III.5.3)

With this algorithm and two layers (n` = 2) we end up this time with the results
of Fig. III.5.4. As we can see, the final design is geometrically more simple than the
one in Fig. III.5.3(a) and exhibit a drastic improvement of the transmission, greater than
90 % for the same compactnes (that is, the same size of the optimization domain). A
comparison between the convergence graphs of both one- and two-layer designs is given
in Fig. III.5.5 and, as can be expected, the geometrically simpler shape is obtained in far
fewer iterations of the optimization algorithm.

(a) Optimal shape (b) Cut of the energy density at y = 0, λ = 1.55 µm

Figure III.5.4: Shape optimization of a two-level polarization rotator starting from
a straight waveguide.

Let us now optimize the same component with different lengths of the optimization do-
main, as represented in Fig. III.5.6. In order to increase the confidence in our numerical
results, a comparison between the performances of the optimized design measured by
three different numerical softwares was additionally performed (results in Fig. III.5.6(a)),
namely Lumerical and RSoft Photonics using 3D-FDTD (Section I.5.2) as well as
Comsol Multiphysics using 3D-FEM (Section I.5.1).
The transmission as a function of the wavelength is shown in Fig. III.5.6(b) (top) for
polarization rotator length ranging from 3 µm to 6 µm. A clear improvement of the in-
sertion losses (the power lost during the polarization rotation) can be seen from the blue
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Figure III.5.5: Convergence graphs of both one and two layers designs. Note the
different x-axis for both optimization.

(a) Optimal shapes. Each device is represented in red (bot-
tom layer) and blue (top layer). The multiple dots for
each domain length corresponds to the TM transmission
in the output waveguide computed using different commer-
cial software.

(b) (top) Transmission into TM and
TE polarizations inside the output
waveguide for each two-levels de-
signs, (bottom) corresponding polar-
ization conversion efficiency defined
in Eq. (III.5.4).

Figure III.5.6: Shape optimization of several two-level polarization rotator start-
ing from a straight waveguide and an optimization domain with length between 2
to 6 µm.

curves when increasing the length, down to −0.2 dB (95%) whereas the residual TE trans-
missions remains constant after 5 µm. This fact can be readily seen on the polarization
conversion efficiency plot of Fig. III.5.6(b) (bottom), for which the broadband capability
of our two-level designs is displayed. The polarization conversion efficiency (PCE)
is defined as

PCE = PTM

PTE + PTM
(III.5.4)
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where PTE (resp. PTM) are given by Eq. (III.1.1) using the fundamental TE (resp. TM)
mode in the overlap integral.

Let us conclude these results by having a few words about the projection method explained
in Eq. (III.5.3). First, other projections methods may be used. Indeed by choosing any
layer j ∈ {1, . . . , n`} the projections may be performed in a different order by doing

for i from 1 to j − 1 do: φi = min(φi, φi+1),
for i from j + 1 to n` do: φi = max(φi, φi−1).

One drawback of doing so is that, whatever the order of the projections, this method will
always give priority to one level over the others. If we want to derive a general method
which is not restricted by any order of projection it is necessary to find some sort of best
common descent direction for all the layers, which satisfies the inclusion constraint.

III.5.3 Theoretical general frameworks
Before closing this chapter, we propose here two methods to derive an algorithm which
does not give priority to any layer. This part is still an ongoing work and no numerical
illustration is given for these methods.

III.5.3.a Penalization of the distance

Let us start with the most simple way to deal with this constraint. Again, we limit
ourselves to only two layers for simplicity, meaning that Ω1 (resp. Ω2) represent the
bottom (resp. top) layer. As we have seen in Section III.5.2, the inclusion constraint
Ω̂1 ⊃ Ω̂2 may be equivalently reformulated as φ1 < φ2 where, for i = 1, 2, φi is one level-
set representation of Ω̂i. In particular, this is true using the signed distance functions as
level-sets (defined in Section II.3.3.b), that is φi = dΩi . Since dΩi is uniquely defined for
every shape Ωi, it is possible to study its variations when a deformation is applied on Ωi.
We can then define the penalized objective function to maximize as

J̃δ(Ω) = J (Ω) + δ
∫
Dopt

(dΩ2 − dΩ1) dx, (III.5.5)

for which we can prove that it is Gâteau-differentiable at θ = 0 (where θ = θi in Ωi) and
that

J̃δ(Ω) = J ′(Ω)(θ) + δt
∫
Dopt

(θ2 · n) ◦ p∂Ω2 − (θ1 · n) ◦ p∂Ω1 dx, (III.5.6)

where p∂Ω(x) is the projection of x on ∂Ω; see [Dap13, Section 4.2.2]. Using a decompo-
sition along rays, the second integral in Eq. (III.5.6) may be written as∫

∂Ω
θ · n

(∫
ray∂Ω2

(1 + dΩ2κΩ2) dt−
∫
ray∂Ω1

(1 + dΩ1κΩ1) dt
)

ds, (III.5.7)

where κΩi is the local curvature on ∂Ωi and we refer again to [Dap13, Corollary 4.2]
for the definition of ray∂Ωi . Equation (III.5.7) has the same structure as the previously
obtained shape derivatives which allow to find an ascent direction. The drawback of
this whole penalization scheme is that the optimized layers will tend to be as distant as
possible one to the other. To alleviate this problem it is possible to change the integrand
in Eq. (III.5.5) into Hε(dΩ2 − dΩ1) where Hε is a smooth Heaviside function to only have
a penalization where ∂Ω1 is really close to ∂Ω2 but this will still prevent these borders
from being exactly on top of each other (that is, ∂Ω̂1 ∩ ∂Ω̂2 = ∅).
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III.5.3.b Modifying the Hamilton-Jacobi equation

We now move on to a different, more “algorithmic”, approach of this problem. By “algo-
rithmic” we mean that it will consider the numerical discretization of the shape instead
of dealing with its continuous representation.

Remembering Section II.3.3.a, we saw that to find a level-set representation of (Id+θn)(Ω)
we have to solve the Hamilton-Jacobi equation ∂tφ(x, t) + θ(x)|∇xφ(x, t)| = 0 on t ∈]0, 1]
with the initial condition φ(x, 0) = φ0(x) where φ0 is a level-set representation of Ω. Nu-
merically, the resolution of the Hamilton-Jacobi equation was explained in Section II.3.4.c
and we have seen that it relies on a finite difference scheme which, at each iteration, per-
forms

αn+1
i,j = αni,j −∆tH(i, j, θ, αn) (III.5.8)

where αni,j are the coefficients of the level-set representation at each node of the grid and
the Hamiltonian H is an approximation of θ|∇xφ|. When performing Eq. (III.5.8) on the
level-sets φ1, φ2 corresponding to the lower (Ω1) and upper (Ω2) layer of the design, we
can check at each node if the constraint φ1 < φ2 is locally violated. If it is the case we
need to modify the values of both level-sets at this node. Several choices are possible but
a good heuristic is to consider the expected (first-order) improvement of J using only the
vector field θk which is used to move Ωk.

Let αk,ni,j be the coefficients of φk at the node position xi,j and pseudo-time n∆t. We
also define θki,j = θk(xi,j) where θk = nθk is defined in Eq. (III.5.2). If we detect that
α1,n+1
i,j > α2,n+1

i,j then, depending on the value of θki,j, we modify the coefficients as:

• if |θ2
i,j|2 ≥ |θ1

i,j|2 then α1,n+1
i,j ← α2,n+1

i,j ,

• if |θ2
i,j|2 < |θ1

i,j|2 then α2,n+1
i,j ← α1,n+1

i,j .

This algorithm works like a projection but this time it gives priority locally to the layer
which is expected to increase most the objective function. Indeed, we can write the shape
derivative J ′(Ω)(θ) as

J ′(Ω)(θ) =
2∑

k=1
J ′k(Ωk)(θ|Ωk) where J ′k(Ωk)(θ|Ωk) =

∫
∂Ω̂k
θ|Ωk · θk ds,

and θk given by Eq. (III.5.2). If we now consider the following vector field:

θ̃i,jk (x) =
{
δxi,jθk(x) if x ∈ Ωk

0 elsewhere (III.5.9)

with δx the dirac distribution centered at x, then J ′(Ω)(θ̃i,jk ) = |θki,j|2. Note that this
reasoning remains formal since the vector field in Eq. (III.5.9) is not an element of W 1,∞

and therefore, in theory, J ′(Ω)(θ̃i,jk ) does not give the first order expected improvement
of J (Ω).

In the perspectives part of this manuscript we will also present a way to deal with the
“limit case”, that is when we consider an infinite number of layers (n` = ∞). This is
physically possible using a manufacturing process known as grayscale lithography.
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Multi-objective problems and robustness to envi-
ronmental uncertainties

Summary — This chapter is devoted to the presentation of a method to deal with the
simultaneous optimization of multiple objectives functions for the design of nanophotonic
devices. An interesting application of this framework is related to the incorporation of
a degree of robustness to the considered optimization problems. The method presented
here has been published in the paper

[Leb19a] N. Lebbe, C. Dapogny, E. Oudet, K. Hassan, and A. Gliere. “Robust shape
and topology optimization of nanophotonic devices using the level set method”. In:
Journal of Computational Physics (2019). doi: 10.1016/j.jcp.2019.06.057.

Section IV.1 opens the chapter with a presentation of the gradient sampling method to
consider the optimization of multi-objective problems. Some of the numerical examples
of the previous chapter are also formulated and tackled as multi-objectives problems and
we show that using a “multi-objective point of view” allows to obtain results which are
closer to what is physically expected from these components.

In Section IV.2 we adapt the previous gradient sampling method to take into account the
uncertainties of some environmental parameters (such as the wavelength, the temperature,
etc.) in the course of the optimization process. Our aim is to obtain nanophotonic devices
which are robust to variations of these parameters.

The last section IV.3 concludes this chapter by showing how it is possible to take into
consideration the geometrical uncertainties coming from the manufacturing process of
nanophotonic devices. Several numerical examples are presented which reveal that our
methodology indeed makes it possible to obtain components which are tolerant to these
kind of geometric uncertainties.

IV.1 The gradient sampling method for multi-
objective problems

IV.1.1 Weighted sum of objective functions
In Section III.3.1 we have presented a variety of nanophotonic components but, still, we
have not yet fully addressed the optimization of multi-objective components despite
the fact that they are the most typical devices encountered in physical circuits. Among
others, let us mention the cases of the diplexer and nanophotonic diode, as presented
in Fig. IV.1.1 which both require the joint fulfillment of two objectives.
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In the optimization of such devices we need to simultaneously consider at least two
figures of merit. A first idea to solve a problem involving nobj objective functions
J1(Ω), . . . ,Jnobj(Ω) is to gather all of them into a weighted sum J (Ω):

J (Ω) =
nobj∑
i=1

αiJi(Ω). (IV.1.1)

(a) A diplexer in which the incident light,
as a TE0 mode, is redirected into one of
the two output waveguides depending on
the incoming wavelength

(b) A diode in which the incoming TE0
mode may be converted into the TE1 out-
going mode while preventing light coming
from the output waveguide to come back

Figure IV.1.1: Setting of two multi-objectives test-cases: a diplexer and a nanopho-
tonic “diode”.

One drawback of this formulation is that the coefficients αi should be chosen appropriately
so that the optimization algorithm does not end up in a local maxima which overly favors
one of the objectives Ji(Ω); see Fig. IV.1.2(a) in which α1 = α2 = 1 was chosen. In
practice, the choice of adequate coefficients αi, leading to a satisfactory optimization of
all the involved objectives in the weighted sum is very much case dependent and requires
fine tuning.

When dealing with the joint maximization of several objective functions Ji(Ω), it is cus-
tomary to consider the Pareto front P of the objectives. In our case this front is defined
in the following way:

P = {Ω∗,∀Ω,∃i = 1, . . . , nobj,Ji(Ω∗) ≥ Ji(Ω)}.

In other words, Ω ⊂ P if and only if there does not exists any shape which has strictly
better performance for one of the objectives without being strictly worse for another one.
Once the Pareto front is known, a shape Ω which establishes a compromise between each
objective can be chosen. Of course, the precise determination of the set P is out of reach.
In general, for nanophotonic components such as those depicted in Fig. IV.1.1 there is only
one compromise of interest: we want all the objective functions to have approximately
the same and largest possible values. That is to maximize

J (Ω) = min
i=1,...,nobj

Ji(Ω) (IV.1.2)
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instead of Eq. (IV.1.1). Note that Eq. (IV.1.2) makes sense since the Ji(Ω) all represent
the same physical quantity: a power transmission in the interval [0, 1]. If they do not
correspond to the same quantities, it is necessary to normalize them in order to obtain
comparable values.

(a) Optimization of the sum of the two objec-
tives (αi = 1 in Eq. (IV.1.1))

(b) Optimization of the minimum between the
two objectives as in Eq. (IV.1.2)

Figure IV.1.2: Optimization result of the diplexer test-case presented in Sec-
tion IV.1.1 considering two different objective functions and starting from a shape
made of 2× 2 holes.

In Fig. IV.1.2 we compare the optimization of a diplexer device (see Fig. IV.1.1(a)) using
the objective function Eq. (IV.1.1) with α1 = α2 = 1 (see Fig. IV.1.2(a)) or using the
formulation of Eq. (IV.1.2). In the former case, the two objectives are not optimized
at the same speed: after 200 iterations the first objective function J1(Ω) ends up with
a transmission of almost 90 % while the second one J2(Ω) ended up at 70 %. On the
contrary, using Eq. (IV.1.2), the optimized shape share similar performances for both
figure of merits with J1(Ω) ' J2(Ω) = 85 %. This means that both objectives have
indeed been optimized concurrently. Moreover, the final transmission of both Ji(Ω) is
an intermediate value between thus obtained using Eq. (IV.1.1). In the next section we
explain how we manage to maximize the objective functional of Eq. (IV.1.2) even though
it features a non-differentiable function due to the presence of the minimum operator.

IV.1.2 Algorithm for automatic coefficients adaptation
In the previous section, after the end of the optimization process in Fig. IV.1.2(a), we
could increase the value of α2 then start again the optimization in order to focus on the
maximization of J2(Ω), at the expense of a decrease in J1(Ω). The modification of the
coefficients αi may be done by hand in a tedious trial and error procedure but it would
be desirable to automate this process.

The method that we now discuss provides somehow, at each iteration, the “optimal”
values of the coefficients αi in order to maximize the minimum between all the objective
functions Ji(Ω), that is to maximize the program Eq. (IV.1.2). Our method is also very
close to the Multi Gradient Descent Algorithm (MGDA) proposed in [Dés12].
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Let us recall that our goal is to solve the following optimization problem

max
Ω

min
i=1,...,nobj

Ji(Ω). (IV.1.3)

At a particular given shape Ω, we assume that the shape derivative J ′i (Ω)(θ) of each
objective is known. In order to find an ascent direction θ for Eq. (IV.1.3), we linearize
each function Ji(Ω) in the neighborhood of the actual shape Ω in Eq. (IV.1.3) so that it
becomes:

max
θ

min
i=1,...,N

Ji(Ω) + J ′i (Ω)(θ), (IV.1.4)

where θ runs over the set of admissible perturbations in the practice of Hadamard’s
method. Note that, as it is common in the optimization field, Eq. (IV.1.4) may be
reformulated with the addition of a dummy variable r into

max
θ,r∈R

r

s.t. min
i=1,...,nobj

Ji(Ω) + J ′i (Ω)(θ) ≥ r
. (IV.1.5)

The constraint is then equivalent to the following nobj linear constraints:

Ji(Ω) + J ′i (Ω)(θ) > r, for i = 1, . . . , nobj.

Let us now introduce the shape gradients Vi,Ω,reg associated to the shape derivatives
J ′i (Ω)(θ) via the extension and regularization process Eq. (II.4.5). We remind that Vi,Ω,reg
is given as the only scalar field V ∈ H1(D,R) solution of

a(V, θ) =
∫
D
ε∇V · ∇θ + V θ dx =

∫
∂Ω
Vi,Ωθ ds (IV.1.6)

for all θ ∈ H1(D,R) and Vi,Ω is defined through the shape derivatives as they are supposed
to be of the form

J ′i (Ω)(θ) =
∫
∂Ω
θ · nVi,Ω ds.

We then search for a solution θ = θn to Eq. (IV.1.4) whose amplitude θ is restricted to
the convex hull convi=1,...,nobj {Vi,Ω,reg} where

conv {Vi,Ω,reg} :=
{nobj∑
i=1

αiVi,Ω,reg, 0 ≤ αi ≤ 1,
nobj∑
i=1

αi = 1
}
. (IV.1.7)

In other terms, the vector field θ is sought under the form θ = θn with θ = ∑nobj
i=1 αiVi,Ω,reg,

a convex combination of the scalar fields Vi,Ω,reg. Assuming such a structure for θ, it comes:

J ′i (Ω)(θ) = a(θ, Vi,Ω,reg) =
nobj∑
j=1

αja(Vi,Ω,reg, Vj,Ω,reg)

where a(·, ·) is the bilinear form defined in Eq. (IV.1.6). Using this choice of vector field
θ, Eq. (IV.1.5) rewrites into

max
α, r

r

s.t. α ∈ [0, 1]nobj , r ∈ R,
nobj∑
i=1

αi = 1,

Ji(Ω) +
nobj∑
j=1

αja(Vi,Ω,reg, Vj,Ω,reg) ≥ r, for i = 1, ..., nobj.

(IV.1.8)
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Denoting by P = (Pi,j)i,j the matrix with entries Pi,j = a(Vi,Ω,reg, Vj,Ω,reg) and by
v = (Ji(Ω))i the vector of objective values, the program Eq. (IV.1.8) may be equivalently
rewritten for x = (α, r) as

max
x∈Rnobj+1

c>x

s.t. Ax ≤ b
Aeqx = beq

l ≤ x ≤ u

where c =


0
...
0
1

 , A =


1

−P ...
1

 , A>eq =


1
...
1
0

 , (IV.1.9)

b = v, beq = 1, l> = (0, . . . , 0,−∞) and u> = (1, . . . , 1,+∞). Equation (IV.1.9) is
none other than a small linear program whose resolution may be carried out by using, for
instance, the linprog function of Matlab.

Remark IV.1.2.1: Equation (IV.1.8) may be complemented with other linear con-
straints. For instance if nobj = 2 and the initial shape Ω0 already provides good
performances for one objective, for instance J1 ' 1 then it may be interesting to max-
imize J2 as much as possible without degrading too much the first objective by adding
the linear constraint J1(Ω) + ∑2

j=1 αja(Vi,Ω,reg, Vj,Ω,reg) ≥ 0.9 to Eq. (IV.1.8) in order
to keep a first objective with transmission value above 0.9.

In other words, to solve Eq. (IV.1.4) we replace Line 11 to 13 in Algorithm II.4.1 into the
following Algorithm IV.1.1. We refer to this process as a gradient sampling algorithm.

Algorithm IV.1.1: Gradient sampling algorithm to find a descent direction for
the multi-objective topology optimization of Section IV.1.2: “gradient sampling”.
1 v := (Ji(Ω))i the value of each objective (Eq. (II.2.1));
2 Vi := Vi,Ω the shape derivative of each objective (Eq. (II.2.9));
3 Vi,Ω,reg := solution of the regularization problem (Eq. (IV.1.6)) for each shape

derivative;
4 P := (Pi,j)i,j the matrix with entries the inner product between regularized

gradients Vi,Ω,reg (Eq. (IV.1.9));
5 α := solution of the linear program (Eq. (IV.1.8)) involving v and P ;
6 Vreg := ∑nobj

i=1 αiVi,Ω,reg;

Remark IV.1.2.2: If one wants to perform an additional post-processing on Vi,reg
(see Section II.4.2.d) which is not encoded in the inner product (such as symmetries)
then Line 4 in Algorithm IV.1.1 must be modified into

4a Ṽi,Ω,reg := optional other post-processing (see Section II.4.2.d);
4b P := (Pi,j)i,j the scalar product (Eq. (II.4.5)) between Vi,Ω,reg and Ṽj,Ω,reg;

and Line 6 becomes accordingly:

6 Vreg := ∑nobj
i=1 αiṼi,Ω,reg;

It may happen that one of the shape gradients Vi,Ω,reg has a much higher amplitude
(L∞ norm) than the others. In this case, considering a vector field whose amplitude is
contained inside the convex hull of Eq. (IV.1.7) is not a wise choice.
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Indeed, the shape gradient VΩ associated with an objective function J (Ω) is only optimal
in the sense that there exists a step δ such that for any other scalar field W of the same
amplitude, J ((Id+δWn)(Ω)) ≤ J ((Id+δVΩn)(Ω)). Since each Vi,Ω have different ampli-
tudes, it may happen that for a fixed δ we have J1((Id + δV2)(Ω)) > J1((Id + δV1)(Ω)).
Thus, solving Eq. (IV.1.8) could lead to a strange result where, to optimize J1, we should
only consider V2,Ω.

To alleviate this issue we propose to normalize each shape gradient using the lowest L∞
norm of the shape gradients by replacing Line 4 in Algorithm IV.1.1 by:

4a Vinf := mini(‖Vi,Ω,reg‖∞);
4b V ∗i,Ω,reg := Vi,Ω,reg × Vinf/‖Vi,Ω,reg‖∞;
4c P := (Pi,j)i,j the scalar product (Eq. (II.4.5)) between each Vi,Ω,reg and V ∗j,Ω,reg;

and Line 6 is replaced accordingly:

6 Vreg := ∑nobj
i=1 αiV

∗
i,Ω,reg;

Remark IV.1.2.3: Equation (IV.1.3) may be adapted to consider objective functions
for which different values are requested. For instance, let us consider a non-symmetric
version of the power divider depicted in Fig. III.3.5 where we aim that a fraction
η ∈ [0, 1] of the total power be redirected in the Γout,1 port and (1 − η) in Γout,2. To
obtain such a component we may consider the following objective function

J (Ω) = min{J1(Ω)/η,J2(Ω)/(1− η)},

which, once maximized, should give the desired transmissions for both outputs (up to
the same factor for each Ji). More generally, it is also possible to prescribe a particular
target value J ∗i for each objective by considering

J (Ω) = min
i=1,...,nobj

|Ji(Ω)− J ∗i |2,

which results in a modification of the considered shape derivatives in Eq. (IV.1.8).

IV.1.3 Numerical examples
In this section we show two numerical examples using the gradient sampling method
introduced in the previous section. Note that in the optimization of the diplexer
of Fig. IV.1.2(b) we already relied on this method to maximize both outputs at the
same time.

IV.1.3.a Design of a power divider from 1 to n ports

This first example revisits the power divider example of Section III.3.1.b by considering a
larger number of output waveguides. Even using symmetric vector fields as in Eq. (III.3.3),
the design of such devices requires to consider multiple objectives at the same time.
In Fig. IV.1.4 we optimize a 1 to 3 and a 1 to 4 power dividers starting with a shape as
in Fig. III.3.5(b) and an optimization domain Dopt of respectively 3×3 µm and 4×4 µm;
see Fig. IV.1.3.
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Figure IV.1.3: Settings of the 1 to 3 and 1 to 4 power divider test-cases of Sec-
tion IV.1.3.a.

Due to the symmetry along z-axis we only have to consider two objective functions: the
transmission in one of the central waveguides and one of the outer ones. As we can see
on the convergence history graph, both objectives are maximized simultaneously. The
algorithm is stopped after 100 iterations and results in a 1 to 3 power divider with 31 %
transmission in each output waveguide (6 % of the total power is dissipated) and 22.5 %
in the case of the 1 to 4 power divider (10 % of the total power is dissipated).

(a) Optimization of a 1 to 3 power divider (b) Optimization of a 1 to 4 power divider

Figure IV.1.4: Optimization result of the power dividers test-cases presented in Sec-
tion IV.1.3.a considering the initial shapes in Fig. IV.1.3.

Note also that non-symmetric versions of these power dividers may be obtained in the
spirit of Remark IV.1.2.3.

IV.1.3.b Diode

This second example is based on the test case of [Cal16] and it is illustrated
in Fig. IV.1.1(b). This component is connected to two waveguides with different sizes:
the bottom waveguide linked to the device via the port Γbottom is single-mode while the
top one whose junction with the design domain is denoted by Γtop allows the propagation
of both a TE0 and TE1 mode. The two objective functions of this device is as follows:
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• When the light is injected from Γbottom as the fundamental TE0 mode we want to
convert it into the TE1 mode of the top waveguide.

• When injecting the TE0 mode in Γtop we want to prevent its transmission into the
bottom waveguide.

To achieve these two objectives we consider here the maximization of

J (Ω) = min{J1(Ω), 1− J2(Ω)},

where J1(Ω) is the power carried by the TE1 mode in Γtop when the TE0 mode is in-
jected though Γbottom and J2(Ω) the power carried by the TE0 mode in Γbottom when the
TE0 mode is injected from the top waveguide. Using the gradient sampling algorithm
of Section IV.1.2 and starting with a shape made of 8× 8 holes we end up with the result
of Fig. IV.1.5 where we can see in the plot of the energy density that no power is trans-
mitted into the fundamental mode of the bottom waveguide when injecting light from the
top one.

(a) Optimized shape (b) Convergence history

(c) Electric field and energy density in the section y = 0

Figure IV.1.5: Optimized shape of the diode starting from 8 × 8 holes and details
of the numerical computation.

IV.2 Dealing with robustness to the fluctuation of
physical parameters

The physical and geometrical properties of the considered nanophotonic components and
their environment are characterized by data (the incoming wavelength, the refractive
indices of the media at play, or the morphology of shapes itself, to name a few) which are
in practice known with some uncertainty. The electromagnetic fields around nanophotonic
devices, and thereby their physical behaviors, being very sensitive to these data, it is of
utmost importance to optimize their shapes in such a way that their performances are
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robust with respect to such uncertainties, i.e. so that they retain an acceptable efficiency
in a variety of fabrication or operating conditions.

Optimization of shapes in a way which is robust to uncertainties has been a burning issue
in shape and topology optimization lately. In the recent review [Mol18], manufacturing
uncertainties have been identified as the main obstacle preventing the use of nanophotonic
components at the industrial level, and studies towards alleviating these problems have
been initiated [Wan11; Ele12]. Beyond the field of nanophotonics, robustness issues in
shape and topology optimization have been addressed from two fairly different viewpoints:

• When no information is available about the uncertain data but for a bound on
their maximum amplitude, the worst value of the performance criterion under all
possible uncertain data is optimized. These problems are generally ways too difficult
to be dealt with in utter generality, since their treatment inherently involves a
bilevel optimization program; yet several particular situations or approximations
have provided quite satisfactory answers [All14a; Ams16]. The main drawback
of such approaches is that they are generally too pessimistic: while the worst-
case scenario is likely never to happen in practice, the specific optimization of this
situation may conduct to shapes with poor nominal performance.

• When more information is available about the statistics of the uncertain data (e.g.
about its first- and second-order moments), probabilistic approaches may be con-
sidered for the minimization of the average value or the standard deviation of the
performance criterion; see [Mau14] for an overview. These approaches generally
rely on very costly sampling strategies, such as Monte-Carlo, or collocation meth-
ods, involving a large number of evaluations of the considered cost function and its
derivative; see for instance [Mar16] and the references therein. Linearized approx-
imations of such problems have been proposed [Laz12; All15] which alleviate the
dramatic computational cost of the aforementioned approaches.

In this section, we rely on a simple sampling strategy for the robust worst-case opti-
mization when small uncertainties are expected; this method is particularly well-suited
in situations where the uncertain data lie in a low-dimensional space. Our approach is
guided by the large CPU cost of the numerical resolution of the time-harmonic vector
wave equation, which makes methods involving a large number of evaluations of the ob-
jective function and its derivative totally impractical in our context. The general principle
of the method is presented in Section IV.2.1 in an abstract and formal way. Its particular
application to deal with robustness with respect to the incoming wavelength and to the
geometry of shapes themselves are discussed in Sections IV.2.2 and IV.3, respectively.

IV.2.1 A general framework for dealing with robustness using
a gradient sampling strategy

Our uncertain data are modelled by a (small) parameter δ lying in a set X. In practice
we assume that

X is a ball with small radius m > 0 in a low-dimensional vector space. (IV.2.1)

Denoting by Jδ(Ω) the value of the considered objective functional when the physical
data δ are observed, our purpose is to maximize the worst value of Jδ(Ω) when δ runs
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through X:
max

Ω
min
δ∈X
Jδ(Ω). (IV.2.2)

Taking advantage of the hypothesis Eq. (IV.2.1), the previous problem is consistently
approximated by

max
Ω

min
i=1,...,N

Ji(Ω), where Ji(Ω) := Jδi(Ω), (IV.2.3)

and the δi, i = 1, ..., N constitute a suitable sampling of X. Hence, the prob-
lem Eq. (IV.2.2) is reformulated as that Eq. (IV.2.3) of maximizing the minimum value
between a finite number of objective functions, which falls exactly into the context of
application of the gradient sampling method of Section IV.1.2.

In other words, to find a design Ω robust to some uncertain parameter δ, we only need at
each iteration of our numerical Algorithm IV.1.1:

1. Perform the simulation of the time-harmonic vector wave equation on Ω by using
different values δ1, . . . , δN of the uncertain parameters δ,

2. Compute the value of each objective function Jδi(Ω) as well as their respective shape
derivatives (through the computation of the associated adjoint states),

3. Find a vector field θ which maximizes the minimum between each first order ap-
proximation of the objective Jδ(Ω), i.e, which solves the program Eq. (IV.2.3).

Remark IV.2.1.1: The above strategy is solely based on a sampling Ji(Ω) = Jδi(Ω)
of the perturbed functional Jδ(Ω) at particular values δ = δi, i = 1, ..., N , and on the
derivative of the sampled functionals Ω 7→ Ji(Ω). In particular, it does not involve
the sensitivity of the objective function with respect to the perturbations, that is,
the derivative of the mapping δ 7→ Jδ(Ω), which is a noticeable difference with the
linearization method proposed in [All14a; All15].

IV.2.2 Robust design with respect to the incoming wavelength
Perhaps one of the most crucial aspects where robustness is desired in nanophotonics
is related to the wavelength λ of the light injected into the component. Aiming at a
performance which is little altered by small variations of the incoming wavelength is
indeed a way to cope with the inaccuracy of the laser realizing the light injection, or
simply to construct large bandwidth devices.

Using the notations of Section IV.2.1 the considered set X of perturbations is the interval
[λ − m,λ + m] ⊂ R, where λ is the ideal operating wavelength, and m > 0 is a user-
defined tolerance for the range of wavelengths where the optimized design should retain
good performances. Let us denote by Jλ(Ω) the value of the considered objective function
at a particular shape Ω when the operating wavelength equals λ; notice that λ influences
three parameters of the physical model Eq. (III.1.1):

• the wavenumber k = 2π/λ,

• the optical indices of the silicon core and silica substrate depends on the wavelength
as can be seen in Fig. IV.2.1,
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• the optical modes (E ,H), computed as the eigenvectors of Eq. (I.2.2), also depend on
the values of the wavenumber and the optical indices; they are therefore modified by
a wavelength shift (a dependence which is highly non-linear). From a mathematical
viewpoint, this is reflected by the fact that the operator γ and the value U in the
boundary condition Eq. (I.3.14) also depends on λ.

Figure IV.2.1: Dependence of the silicon and silica to the wavelength (ellipsometric
measures made at the CEA).

The worst-case shape optimization problem reads, when uncertainties of amplitude m
around the value λ are expected about the wavelength:

max
Ω

min
λ∈X
Jλ(Ω). (IV.2.4)

Following Section IV.2.1, the setX is sampled as {λi}i=1,...,N , and Eq. (IV.2.4) readily boils
down to a program of the type Eq. (IV.1.8), which is solved thanks to the methodology
described in Section IV.2.1.

IV.2.2.a Robust crossing

Let us start our numerical analysis with the determination of a wavelength-robust crossing
device (see Section III.3.1.d for the presentation of this component). We first computed an
optimized crossing for the operating wavelength λ = 1.55 µm without taking into account
robustness with respect to λ. Starting from a shape with 2 × 2 holes it produces the
results in Figs. IV.2.2(a) to IV.2.2(c) where Fig. IV.2.2(b) shows that this component is
not particularly robust in the (relatively large) wavelength band [1.35, 1.75] µm: indeed,
its performance drops from nearly 98 % at λ = 1.55 µm to 83 % at λ = 1.65 µm and even
to less than 80 % at λ = 1.35 µm.

To enhance the robustness of this component with respect to uncertainties over the oper-
ating wavelength λ we rely on the multi-objective optimization presented in Section IV.2.1
by considering 3 wavelengths at respectively 1.45, 1.55 and 1.65 µm. Starting from the pre-
viously optimized crossing as an initial shape this leads to the results of Fig. IV.2.2. This
new optimized component is noticeably more robust, exhibiting a transmission greater
than 95 % in the considered bandwidth [1.45, 1.65] µm.
We eventually turn our attention to the optimization of a robust crossing on an even
broader bandwidth considering 5 different wavelengths at 1.35, 1.45, 1.55, 1.65 and 1.75 µm
starting from the same non-robust shape and we end up after 100 iterations of our gradient
sampling algorithm with the results of Fig. IV.2.3 where 90 % of transmission is expected
in the whole bandwidth.
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(a) Non robust shape Ω∗ (b) Sensitivity to wavelength (c) Convergence history

(d) Robust optimized shape (e) Sensitivity to wavelength (f) Convergence history

(g) Electric field in the section y = 0 for different wavelengths

Figure IV.2.2: Results of the robust shape optimization of a crossing with respect
to uncertainties over the wavelength.

(a) Optimized shape (b) Sensitivity to wavelength (c) Convergence history

Figure IV.2.3: Results of the robust shape optimization of a crossing with respect
to uncertainties over the operating wavelength using a sampling of the interval λ ∈
[1.35, 1.75] µm at five equally spaced wavelengths (dashed lines in Fig. IV.2.3(b)).

IV.2.2.b Robust power divider

In this subsection we revisit the power divider example of Section III.3.1.b with the aim
to obtain a broadband component. The power divider obtained in Fig. III.3.6 being geo-
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metrically simple, it is, understandably enough, also reasonably robust according to small
variation of the input wavelength. To demonstrate the efficiency of our method we there-
fore consider another optimized power divider for the operating wavelength λ = 1.55 µm
without considering robustness issues and starting from a shape composed of 3 by 3 holes.
The result is represented in Fig. IV.2.4 and the graph in Fig. IV.2.4(c) reveals that this
component is very sensitive to small variations of the wavelength.

(a) Optimized shape (b) Convergence history (c) Spectrum

Figure IV.2.4: Optimized shape of the power divider of Section III.3.1.b starting
from 3× 3 holes, details of the numerical computation and spectrum.

To obtain a robust component in the bandwidth X = [1.5, 1.6] µm we now consider the
problem Eq. (IV.2.4) with the uncertainty set X sampled at λ = 1.5, 1.55 and 1.6 µm.
Starting from the optimized shape of Fig. IV.2.4, we perform 150 iterations of our gradient
sampling algorithm which results with the component of Fig. IV.2.5.

(a) Optimized shape (b) Convergence history (c) Spectrum

Figure IV.2.5: Optimized shape of the robust power divider starting
from Fig. IV.2.4(a), details of the numerical computation and spectrum.

Comparing Figs. IV.2.4(c) and IV.2.5(c) shows that the new component is indeed far
more robust than the previous one, exhibiting more than 46 % of transmission on the
whole considered bandwidth whereas the non-robust device achieved less than 37 % of
transmission at λ = 1.5 µm.

IV.2.2.c Robust diplexer

Our last example reconsiders the diplexer test-case of Fig. IV.1.1(a). A non-robust com-
ponent is found by starting with an initial shape made of 8 × 8 holes and the result is
depicted in Fig. IV.2.6.
As can be seen on its spectrum (Fig. IV.2.6(c)), more than 80 % of the input power is
well transmitted into the fundamental TE mode of the top left waveguide at λ = 1.31 µm
and on the top right waveguide at λ = 1.55 µm. But as for the two previous examples we
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(a) Optimized shape (b) Convergence history (c) Spectrum

Figure IV.2.6: Optimized shape of the diplexer of Fig. IV.1.1(a) starting from 8× 8
holes, details of the numerical computation and spectrum.

see that a small perturbation of the wavelength dramatically jeopardize the performance
of the component. For instance, considering the top right waveguide (in which we seek to
redirect the light at λ = 1.31 µm) an increase of 25 nm in the incident wavelength implies
a decrease of the transmission of about 20 %.

(a) Optimized shape (b) Convergence history (c) Spectrum

(d) Cut of the energy density at y = 0 for different wavelengths

Figure IV.2.7: Optimized shape of the robust diplexer starting from 8 × 8 holes,
details of the numerical computation and spectrum.

Starting from the same initial shape (8× 8 holes) we perform 100 iterations of our multi-
objective optimization algorithm. In this experiment we considered four objective func-
tions to impose a 50 nm robustness: λ = 1.285 and 1.335 µm for the top right waveguide
while λ = 1.525 and 1.575 µm was used for the top left one. The results are shown
in Fig. IV.2.7. Comparing Figs. IV.2.6(c) and IV.2.7(c), we observe that the new compo-
nent is way more robust, its spectrum exhibiting flat areas around the two wavelengths
of interest.
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IV.3 Geometrical uncertainties in lithography and
etching processes

We now illustrate how the general framework of Section IV.2.1 may be adapted to impose
the robustness of the optimized designs Ω with respect to uncertainties on their geometry.
After a short presentation of the lithography and etching manufacturing process in Sec-
tion IV.3.1 we present two ways to tackle the uncertainties coming from these production
techniques. In Section IV.3.2 we first describe an a-posteriori method to find a shape
which, once modified by the lithography process allows to recover the original shape that
we wanted to produce. Section IV.3.3.a then propose an a-priori method to take into
account the uncertainties related to the etching fabrication process during the topology
optimization algorithm. An extension of this idea is used in Section IV.3.3.b to deal with
uncertainties caused by lithography.

IV.3.1 Presentation of the main steps in silicon on
insulator/wafer fabrication

The lithography-etching method to produce nanophotonic devices may be summarized
into five main steps, as illustrated in Fig. IV.3.1. The production of such a component
is achieved by etching a silicon wafer by means of some chemicals (reactive ion etching);
see Fig. IV.3.1(e). Since this process does not allow for a precise engraving of the silicon
plate locally, we start by making a stencil of the shape that we want to fabricate using
a resist whose purpose is to prevent chemicals from engraving underneath it.

(a) Silicon on insulator wafer (b) Resist thin film coating (c) e-beam lithography

(d) Development (e) Reactive ion etching (f) Resist stripping

Figure IV.3.1: Main steps of the lithography-etching manufacturing process. Silica
is represented in blue, silicon is in gray, resist in green and exposed resist in orange.
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This stencil is then produced by lithography; using deep UV or an electron beam (e-
beam), the resist is locally insolated by a high intensity field. After a sufficient exposition
of the resist to the energy field, the resist will eventually change its physical states as can be
seen in the orange part of Fig. IV.3.1(c). A development step (Fig. IV.3.1(d)) then makes
it possible to remove the areas of the resist that have not been insolated and to recover
the stencil. The final design is then obtained though reacting ion etching (Fig. IV.3.1(e)),
i.e. by applying a chemical product on the plate that will etch the regions not covered by
the stencil. The last step in Fig. IV.3.1(f) is dedicated to the removal of the resist.

In Section IV.3.1.a and Section IV.3.1.b we propose a mathematical model of the lithogra-
phy and etching steps in the perspective of describing the type of geometrical uncertainties
entailed by their action on the manufactured shape.

IV.3.1.a A mathematical model for lithography

Lithography involves many different physical processes. The model presented here results
from [Fri89] and discussions with engineers from the CEA. Even though more precise
model may be found in the literature (see for instance [Zho14]), the one proposed here
catches the most important elements of the lithography process.

As it has been mentioned in the introduction, the lithography stage of the manufacturing
process of nanophotonic devices relies on the alteration of the physical state of a resist
caused by exposition to an e-beam. In order to obtain a stencil of the 2d section of a
shape Ω̂, the e-beam travels over the resist and we denote by (xl, zl) the position of the
beam in the 2d plane corresponding to a section of the nanophotonic device. Whenever
(xl, zl) ∈ Ω̂, the e-beam is activated and it emits a Gaussian energy flux towards the
position (xl, zl) on the resist. Mathematically, the quantity of energy Elitho received by
the resist at each position ξ ∈ D̂ is therefore given by convolution product between 1Ω̂,
the characteristic function of Ω̂, and the energy flux Gσ which we assume to be a Gaussian
kernel with zero mean and standard deviation σ:

∀ξ ∈ D̂, Gσ(ξ) = 1
2πσ2 e

− |ξ|
2

2σ2 . (IV.3.1)

The quantity of energy Elitho is defined by

Elitho(ξ) = (1Ω̂ ∗ Gσ)(ξ) =
∫

Ω̂
Gσ(x− ξ) dx. (IV.3.2)

To change the state of the resist at ξ ∈ R2, a sufficient quantity of energy must be supplied
at ξ. Up to a dimensional constant, we shall assume that this quantity is equal to 1/2,
so that the shape of the stencil resulting from the lithography process is

Ω̂litho = {ξ ∈ D̂, Elitho(ξ) > 1/2}. (IV.3.3)
We will also denote by

L(Ω) = 1[1/2,∞[ ◦ C(Ω) (IV.3.4)
the indicator function associated with the manufactured shape Ω̂litho of Ω after the lithog-
raphy process where C : Ω 7→ 1Ω̂∗Gσ. Thereafter we consider that the only possible source
of uncertainties lying in the lithography process is the standard deviation parameter σ
which is solely limited to belong in an interval of the form

[σ̄ −m, σ̄ +m], (IV.3.5)
where m > 0.
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IV.3.1.b Etching

Once a stencil is obtained via lithography, the etching step is used to produce the desired
silicon shape Ω. In ideal conditions, the resulting shape from etching is exactly that
of Eq. (IV.3.3) following the lithography stage. Unfortunately, in practice, the density
of holes to be etched impacts the uniform distribution of the chemicals. This difficulty
result in what is called under- or over- etching defects; the manufactured 2d section
of the shape Ω̂etch is a little bit dilated or eroded when compared to Ω̂litho:

Ω̂etch = (Id + δn)(Ω̂litho) (IV.3.6)
with δ an uncertain scalar value; see [Sig09; Wan11] for the use of a similar model in the
framework of density-based topology optimization and Fig. IV.3.3 for an illustration.
Remark IV.3.1.1: Depending on the particular etching technology, the manufac-
tured shape Ω̂etch may adopt a more complicated structure than that of Eq. (IV.3.6)
featuring a constant parameter δ. For instance, in some situations, δ could be a function
of the depth y; see the survey [Jan96].

Remark IV.3.1.2: It is sometime argued that if a nanophotonic component is
wavelength-robust then it is naturally robust with respect to a dilation or erosion
caused by the etching process. We propose here an attempt to justify this statement.
The reasoning is as follows: let us consider that the shape Ω is modified into F+(Ω)
obtained from the mapping

F+(x) = (Id +m)(x) = x +mx (IV.3.7)

where m ∈ R and x0 ∈ R2. Let E be the solution to the time-harmonic vector wave
equation ∇ × ∇ × E − k2n2

ΩE = 0 using an optical index given by a shape Ω and a
wavelength λ (we also remind here that the wavenumber is given by k = 2π/λ). Since
nF+(Ω) = nΩ ◦ F+, the solution E+ of the Maxwell equations associated to a shape
F+(Ω) and a wavenumber equal to (1 +m)k satisfies:

∇×∇× E+ − ((1 +m)k)2n2
Ω ◦ F+E+ = 0. (IV.3.8)

Now composing Eq. (IV.3.8) with F−1
+ we obtain

∇×∇× (E+ ◦ F−1
+ )− k2n2

Ω(E+ ◦ F−1
+ ) = 0,

and by uniqueness of a solution we get E+ ◦F−1
+ = E. In other words, for a small value

m, the performance of a nanophotonic component at the wavelength λ is exactly the
same at λ/(1 + m) if the shape is modified into (Id + m)(Ω) (as long as nΩ does not
depend on λ). Equivalently, we could say that being robust to a small modification of
the shape into (Id + δ)(Ω) with δ ∈ [−m,m] is equivalent to robustness with respect
to the wavelength in the interval [λ/(1−m), λ/(1 +m)].

Despite this result, the opening statement of this remark is not true (even as a first
approximation). First of all, Eq. (IV.3.7) is not a dilation of the form (Id + mn)(Ω)
but a magnification: (Id + m)(Ω) = {x + mx,x ∈ Ω}. This notably differs by the
fact that a dilation of Ω extends the outside boundary of the shape and shrinks the
holes inside Ω while a magnification does not modify the size ratios. Moreover, even
though the etching may dilate or erode the shape by a factor m, it does not modify
the height of the silicon plate which is however the case in the previous analysis.
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IV.3.2 Inverse lithography
In this section we consider an “optimal” shape Ωopt found by our numerical Algo-
rithm II.4.1 that is to be manufactured. We discuss an a posteriori optimization method
which makes it possible to modify Ωopt into another shape Ω̃opt which, once manufactured,
is “closer” to Ωopt than Ω̂litho. This is in fact, another shape optimization problem: we seek
for a shape Ω which, after the lithography-etching process, will match with Ωopt. To sim-
plify the presentation we only consider the lithography step meaning that Ω̂etch = Ω̂litho;
we suppose that no defect is caused by etching. Moreover, we also suppose that the mod-
ification of the shape induced by the lithography process is known, that is to say that
the value of the deviation parameter σ in Section IV.3.1.a is fixed equal to σ̄ (m = 0
in Eq. (IV.3.5)).

Optimizing a shape in order to take into account the modifications induced by the lithog-
raphy process has already been studied and is known in the literature as the inverse
lithography problem. However, to our knowledge, no one has ever tried to solve this
problem using the shape optimization framework presented in Chapter II (an attempt us-
ing the SIMP methodology presented in Section III.1.2 may be found in [Zho14; Jan13]).

The inverse lithography shape optimization problem may be modelized as the maximiza-
tion of the following objective function (another model is given in [De 16] using the signed
distance function)

Jlitho(Ω) =
∫

Ωopt
L(Ω) dx−

∫
D\Ω̄opt

L(Ω) dx =
∫
D
sign(Ωopt)L(Ω) dx, (IV.3.9)

where sign(Ω)(x) = 1 if x ∈ Ω and −1 otherwise. We also recall that L(Ω) is defined
in Eq. (IV.3.4). Equation (IV.3.9) characterizes the fact that we want to maximize the
value of L(Ω) inside Ωopt while minimizing the value of L(Ω) elsewhere. The thresholding
involved in L(Ω) causes Eq. (IV.3.9) to be non differentiable. We propose to modify it
into

Jlitho,ε(Ω) =
∫
D
sign(Ωopt)Hε ◦ C(Ω) dx, (IV.3.10)

where Hε(x) is a smooth, non decreasing function equal to 0 if x < 1/2 − ε and 1 if
x > 1/2 + ε. Th. II.1.2.1 allows to find the shape derivative of Eq. (IV.3.10) as

J ′litho,ε(Ω)(θ) =
∫
∂Ω
θ · n

∫
D
sign(Ωopt)(x)G(x− s)H ′ε ◦ C(Ω)(x) dx ds. (IV.3.11)

In Fig. IV.3.2 we present some optimization results associated to three different target
shapes Ωopt representing respectively an “L” shape, a power divider and a diplexer. As
can be seen on Fig. IV.3.2 (middle), the optimized shape resulting from the above process
(in red) exhibits large oscillations where ∂Ωopt is sharp (high local curvature κ). This is
clearly visible on the corners of the “L” shape where large oscillations of Ωopt are observed.
Interestingly, using the shape derivative J ′(Ωopt) we could modify the objective function
of Eq. (IV.3.10) in order to specify where it is important to be close to the shape and
whether it is less damaging to be inside or outside of Ωopt; depending on the sign of VΩopt

in the shape derivative we know if the shape should be locally dilated or eroded. We did
not pursue our research in this direction and therefore this addition has not been tested
numerically.
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(a) A “L” shape (b) A power divider (c) A diplexer

Figure IV.3.2: Optimization of the shape used as an input for the lithography process
in order to obtain after fabrication a shape which is as close as possible to a target
shape Ωopt. In each run, 400 iterations of our shape optimization algorithm was
performed to solve Eq. (IV.3.10) for a total duration of approximately 20 seconds.
The standard deviation in the Gaussian kernel used in (a) and (b) equals σ = 100 nm
and σ = 50 nm in (c).

IV.3.3 Geometrically robust shape optimization

We now illustrate how the general framework of Section IV.2 may be adapted to impose
the robustness of the optimized designs Ω with respect to uncertainties on their geometry.
Uncertainties related to the etching fabrication process are considered in Section IV.3.3.a,
and an extension of these ideas is used in Section IV.3.3.b to deal with uncertainties
caused by lithography. Note that using a worst-case approach for robustness to geometric
uncertainties was also considered in [Zho14] for the optimization of micro-mechanical
devices.
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IV.3.3.a Robustness with respect to uncertainties caused by the etching pro-
cess: an approach using dilation and erosion

As mentioned in Section IV.3.1.b, under- or over-etching of the design Ω is likely to occur
in the course of the etching fabrication process. In other terms, the fabricated shape Ωδ

can be approximated as a uniform dilation or erosion of Ω,

Ωδ := (Id + δnΩ)(Ω), (IV.3.12)

where δ is a real-valued parameter with small amplitude |δ| < m.

In this context, the robust optimization problem Eq. (IV.2.3) of interest here brings into
play the following perturbed functional Jδ(Ω) whose expression reads:

Jδ(Ω) = J (Ωδ) = J ((Id + δnΩ)(Ω)),

where J (Ω) is given by Eq. (III.1.1). In particular, Eq. (IV.2.3) involves the optimized
shape Ω via a modified version Ωδ as for instance in the contribution [Che11]. In our
way towards converting Eq. (IV.2.3) into a linear program of the form Eq. (IV.1.8), the
shape derivative of the individual functions Jδ(Ω) is needed; the latter is the purpose of
the next theorem.
Theorem IV.3.3.1 – Shape derivative considering dilated shapes.
Let Ω, and let δ > 0 be small enough so that (Id + δnΩ) is a diffeomorphism. The
functional Jδ(Ω) is shape differentiable at Ω and its shape derivative reads:

J ′δ(Ω)(θ) =
∫
∂Ω
gΩδ ◦ (Id + δnΩ)H(θ,nΩ) ds, (IV.3.13)

where
H(θ,nΩ) := |det(Id + δ∇nΩ)|

(
((Id + δ∇nΩ)−1nΩ · nΩ)θ · nΩ

)
.

Proof: Let δ > 0 be sufficiently small for (Id+ δnΩ) to be a diffeomorphism from R3 into
itself - where, as in Remark II.3.2.1, nΩ stands for a smooth extension of the unit normal
vector on ∂Ω to R3. Our purpose is to calculate the shape derivative of the functional

Jδ(Ωθ) = J ((Id + δnΩθ
) ◦ (Id + θ)(Ω)),

where we used the shortcut Ωθ = (Id + θ)(Ω). A straightforward calculation yields:

Jδ(Ωθ) = J ((Id + θ + δnΩθ
◦ (Id + θ))(Ω)),

= J ((Id + δnΩ + θ + δ (nΩθ
◦ (Id + θ)− nΩ))(Ω)),

= J ((Id + ξ1(θ) + δξ2(θ)) ◦ (Id + δnΩ)(Ω)),
= J ((Id + ξ1(θ) + δξ2(θ))(Ωδ)),

where we have defined

ξ1(θ) := θ ◦ (Id + δnΩ)−1 , and ξ2(θ) := (nΩθ
◦ (Id + θ)− nΩ) ◦ (Id + δnΩ)−1 ,

considering that δ > 0 is small enough so that (Id + δnΩ) is a diffeomorphism. Using the
following formula for the transformation of the normal vector where com(M) corresponds
to the comatrix of M ,

nΩθ
◦ (Id + θ) = 1

|com(I +∇θ)nΩ|
com(I +∇θ)nΩ, (IV.3.14)
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whence the Lagrangian derivative of the normal vector field Ω 7→ nΩ is calculated, ξ2
expands on ∂Ω as (see [Dap13, Chapter 2]):

ξ2(θ) ◦ (Id + δnΩ) =
(
(∇θ>nΩ) · nΩ

)
nΩ −∇θ>nΩ + o(θ).

Hence, using the Def. II.1.1.1 of the shape derivative of Ω 7→ J (Ω) at Ωδ, it follows that

Jδ(Ωθ) = Jδ(Ω) + J ′(Ωδ)(ξ1(θ) + δξ2(θ)) + o(θ), (IV.3.15)

and we are now left with the calculation of the last quantity in the right-hand side of
Eq. (IV.3.15); to this end, using Th. III.2.1.1 yields:

J ′(Ωδ)(ξ1(θ) + δξ2(θ)) =
∫
∂Ωδ

gΩδ (ξ1(θ) + δξ2(θ)) · nΩδ ds,

where gΩ : ∂Ω → R is given by Eq. (III.2.2). Changing variables in the integral in the
above right-hand side, we finally obtain:

J ′(Ωδ)(ξ1(θ) + δξ2(θ)) =
∫
∂Ω
CΩ (gΩδ (ξ1(θ) + δξ2(θ)) · nΩδ) ◦ (Id + δnΩ) ds,

=
∫
∂Ω
gΩδ ◦ (Id + δnΩ)H̃(θ,nΩ) ds+ o(θ). (IV.3.16)

where CΩ = |com(I + δ∇nΩ)nΩ| and

H̃(θ,nΩ) :=
(
θ + δ

(
(∇θ>nΩ · nΩ)nΩ −∇θ>nΩ

))
· CΩ.

where we have used again Eq. (IV.3.14). The derivative Eq. (IV.3.16) may now be given
the convenient structure Eq. (III.2.1) owing to a little calculation. Indeed, let τ1, τ2
be a local orthonormal basis of the tangent plane of ∂Ω around a fixed, arbitrary point
x0 ∈ ∂Ω, so that (τ1(x), τ2(x),nΩ(x)) is an orthonormal basis of R3 for any point x ∈ ∂Ω
close to x0. Then the Jacobian matrix of nΩ reads in this frame:

∇nΩ =

 κ1 0 0
0 κ2 0
0 0 0

 ,
where κi is the principal curvature in direction τi. Hence,

(
(∇θ>nΩ) · nΩ

)
nΩ −∇θ>nΩ = −

2∑
i=1
∇θ>nΩ · τi,

= −
2∑
i=1
∇(θ · nΩ) · τi +

2∑
i=1

(∇n>Ωθ) · τi,

= −∇∂Ω(θ · nΩ) +
2∑
i=1

κi(θ · τi)τi,

(IV.3.17)

where ∇∂Ωf := ∇f − (∇f ·nΩ)nΩ is the tangential gradient of a smooth enough function
f : ∂Ω→ R. It follows after a little more algebra that

H̃(θ,nΩ) = |det(Id + δ∇nΩ)|
(
((Id + δ∇nΩ)−1nΩ · nΩ)θ · nΩ

)
,

which is just the factor H(θ,nΩ) in Eq. (IV.3.13); this completes the proof. �
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With this result at hand, the abstract framework of Section IV.2 can be readily used to
tackle the robust optimization problem Eq. (IV.2.2), when small perturbations taking the
form of a uniform dilation or erosion are expected on shapes.

As it is clear from the statement (and the proof) of Th. IV.3.3.1, these considerations are
valid provided the maximum amplitude m of the expected dilations or erosions is small
enough so that (Id+ δnΩ) is a diffeomorphism, i.e. Ω and Ωδ share the same topology for
all |δ|< m. This restriction may impose unrealistically small values on m; so as to deal
with more realistic situations, we rely on a heuristic adjustment of the above procedure
when (Id + δnΩ) is not a diffeomorphism. The starting point is the observation that
(Id+δnΩ) may fail to be a diffeomorphism because of the existence of points x ∈ ∂Ω such
that the segment with endpoints x and x + δnΩ(x) crosses the skeleton (or sometimes
also called medial axis) of the shape Ω, which is defined by

Sk(Ω) :=
{
x ∈ R3, ∃y1,y2 ∈ ∂Ω, y1 6= y2 and d(x, ∂Ω) = |x− y1|= |x− y2|

}
.

The skeleton Sk(Ω) may alternatively be seen as the set of points x ∈ R3 where the
squared distance function d2

Ω is not differentiable; see for instance [Del11, Section 6.3]
about these points, and Fig. IV.3.3 for an illustration.

Figure IV.3.3: Two examples of shapes (in grey) with their skeleton. The contours
of the dilated and eroded versions of both shapes are represented in dashed lines,
and the interior (resp. exterior) part of the skeleton Sk(Ω)∩Ω (resp. Sk(Ω)∩(D\Ω̄))
appears in blue (resp. red).

When this happens, we simply replace Ωδ by the modified version

Ωs := (Id + s(x)nΩ)(Ω),

where for x ∈ ∂Ω, |s(x)|< δ is calculated so that so that the segment joining x to
x + s(x)nΩ(x) does not intersect Sk(Ω) - i.e. the considered dilation or erosion of Ω stops
when Sk(Ω) is encountered. To achieve this purpose, we proceed as in [Mic14, Section
3.6.2], relying on the knowledge of the signed distance function dΩ: for every point x,
s(x) is the first value s < 0 (resp. s > 0) such that the function s→ dΩ(x + s∇dΩ(x)) is
no longer monotone in the case of an erosion (resp. dilation).

IV.3.3.b Robust shape optimization with respect to defects caused by the
lithography process: a description using Gaussian kernels

In Section IV.3.1.a we saw that when manufacturing a “blueprint”, (y-invariant) shape

Ω =
{

(x, y, z) ∈ R3, (x, z) ∈ Ω̂, y ∈ (−h/2, h/2)
}
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using the lithography process, the resulting shape is a smeared version Ωδ ⊂ R3 given by:

Ωδ =
{

(x, y, z) ∈ R3, (1Ω̂ ∗ Gδ)(x, z) >
1
2 , y ∈ (−h/2, h/2)

}
, (IV.3.18)

where Gδ(ξ) is the Gaussian kernel with mean 0 and standard deviation δ defined
in Eq. (IV.3.1).

(a) Original shape Ω (b) Perturbed shape Ωδ (c) Local approximation Ω̃δ

(d) Original shape Ω (e) Perturbed shape Ωδ (f) Local approximation Ω̃δ

Figure IV.3.4: Comparison between a shape Ω, its perturbed version Ωδ given by
Eq. (IV.3.18), and the approximation Ω̃δ defined by Eq. (IV.3.19).

Let us recall that, intuitively, perturbations of the form Eq. (IV.3.18) imply that, if for
instance the boundary ∂Ω is flat, ∂Ωδ coincides with ∂Ω; however, if it has positive
or negative curvature, the sharp feature of ∂Ω is smeared; see Fig. IV.3.4 for a two-
dimensional illustration. In general, Ωδ depends on global features of Ω, but it is mostly
influenced by the curvature of ∂Ω, in a rather non explicit fashion.

Figure IV.3.5: Schematic representation of the mapping pΩ,δ involved in the defini-
tion Eq. (IV.3.19) of the approximate perturbation Ω̃δ. Curvature κ = 0 (left), > 0
(middle) and < 0 (right).

The robust optimization problem Eq. (IV.2.3) with respect to uncertainties caused by
lithography then involves the perturbed functional Jδ(Ω) := J (Ωδ). The study of Jδ(Ω),
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and notably its shape derivative, is quite intricate because of the dependence of Ωδ on
global features of Ω. To alleviate this difficulty we trade Ωδ for an approximate counterpart
Ω̃δ of the form:

Ω̃δ = (Id + pΩ,δnΩ)(Ω), (IV.3.19)

for a scalar field pΩ,δ : ∂Ω→ R, which is defined below.

For an arbitrary, given point x0 = (x0, y0, z0) ∈ ∂Ω with projection x̂0 := (x0, z0) onto the
2d section Ω̂, we consider the local, second-order approximation of the section Ω̂ near x̂0,
by means of the half-space PΩ,x0 defined by (see Fig. IV.3.5):

PΩ,x0 =
{
x̂0 + ẑ ∈ R2, zn < κ(x̂0)z2

τ

}
.

In the latter formula, we have denoted by zn := ẑ · nΩ̂(x̂0) and zτ := ẑ · τΩ̂(x̂0), the
normal and tangential components of a vector ẑ ∈ R2 in the local frame (τΩ̂(x̂0),nΩ̂(x̂0))
at x̂0 obtained by gathering the tangent τΩ̂(x̂0) and the normal vector nΩ̂(x̂0) to Ω̂ at x̂0.
Finally, κ(x̂0) is the mean curvature of Ω̂ at x̂0.

For x̂ = (x, z) ∈ R2 close to x̂0, taking advantage of the smallness of δ, we then have:
(
1Ω̂ ∗ Gδ

)
(x, z) =

∫
R2

1Ω̂(ŷ)Gδ(x̂− ŷ) dŷ ≈ FΩ,x0(x̂),

where
FΩ,x0(x̂) :=

∫
R2

1PΩ,x0
(ŷ)Gδ(x̂− ŷ) dŷ

is the convolution between the characteristic function of the local second-order approxi-
mation of ∂Ω̂ at x̂0 and the Gaussian kernel Eq. (IV.3.1). We then define pΩ,δ(x0) as the
unique value s ∈ R such that

f(s) := FΩ,x0(x̂0 + snΩ̂(x̂0)) = 1
2 ,

which makes sense since

f(s) =
∫
R

∫ κ(x0)z2
τ−s

−∞
Gδ(zττΩ̂(x̂0) + tnΩ̂(x̂0)) dt dzτ

= 1
2
√

2π δ

∫
R
e−

x2
2δ2 erfc

(
s− κ(x̂0)x2
√

2 δ

)
dx

(where erfc(x) = 2/
√
π
∫∞
x exp(−t2) dt refers to the so-called complementary error func-

tion) is a smooth, decreasing function with

lim
s→−∞

f(s) = 1 and lim
s→+∞

f(s) = 0.

Notice that pΩ,δ(x0) only depends on Ω̂ via its curvature at x̂0 however the dependence
is not explicit. Nevertheless, pΩ,δ is easy to calculate numerically. As is exemplified
on Fig. IV.3.4 this approximation performs reasonably well: the approximate perturbation
Ω̃δ is close to Ωδ, except that it fails to capture the topological changes between Ωδ and
Ω.
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Returning to our robust optimization problem, the implementation of Eq. (IV.2.3) relies
on the shape derivative of the perturbated functional

J̃δ(Ω) := J ((Id + pΩ,δnΩ)(Ω)). (IV.3.20)

The rigorous calculation and the practical use of this shape derivative are not simple
since pΩ,δ brings into play the curvature of the interface ∂Ω. To simplify this calculation,
we neglect the dependence of pΩ,δ on Ω, so that the shape derivative J ′δ(Ω) is given
by Eq. (IV.3.13) where δ is replaced by pΩ,δ. Although quite rough, this approximation
gives pretty good results as presented in Section IV.3.4.d and it has the advantage of
being simple and fast to implement.

IV.3.4 Numerical examples

IV.3.4.a Geometrically robust power divider

In this section we consider a variant of the power divider test-case tackled in Sec-
tion III.3.1.b in which robustness of the optimized design is desired with respect to uncer-
tainties entailed by the etching manufacturing process, as discussed in Section IV.3.3.a.

The shape Ω∗ resulting from the optimization study in Section III.3.1.b (that is, without
taking robustness issues into account) is not robust with respect to uncertainties related
to etching. Indeed, let us consider Fig. IV.3.6(b) where the variation of the performance
criterion J is represented when a dilation or an erosion of at most m = ± 30 nm is
performed on Ω∗: in particular, if Ω∗ is eroded by 30 nm, the performance of the shape
drops from 49 % down to only 20 %.

To remedy this, starting from Ω∗ as initial shape, we solve the following robust problem
which involves the dilated and eroded versions of the optimized shape:

max
Ω

min {J−m(Ω),J0(Ω),Jm(Ω)} , (IV.3.21)

in which we have defined

Jδ(Ω) = J (Ωδ), Ωδ := (Id + δnΩ)(Ω),

where J (Ω) is again given by Eq. (III.1.1). After 150 iterations of our optimization algo-
rithm, we end up with the shape displayed in Fig. IV.3.6. The comparison of Fig. IV.3.6(b)
and Fig. IV.3.6(e) suggests that the new power divider is much more robust to manufac-
turing uncertainties caused by etching. Moreover, the nominal performance of the device
is not significantly degraded in the process, since it only suffers from a reduction by 1 %
when compared to Ω∗.

IV.3.4.b Geometrically robust mirror

This second example is taken from our paper [Leb19c]: we consider the optimization of a
mirror as in Section III.3.1.a. Note that materials and wavelength used here are different
of the ones considered in the other experiments presented previously. Precisely,

• the operating wavelength lies within the mid-infrared region with λ = 6.06 µm,

• the core is made of an Si60 %Ge40 % alloy whose optical index is taken equal to 3.54,
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(a) Non robust shape Ω∗ (b) Sensitivity to dilation (c) Convergence graph

(d) Robust optimized shape (e) Sensitivity to dilation (f) Convergence history

(g) Electric field of the eroded by 30 nm (left), optimized (middle) and dilated by 30 nm (right)
shape

Figure IV.3.6: Results of the robust shape optimization of a power divider with re-
spect to uncertainties linked to etching in Section IV.3.4.a; the upper row reproduces
the features of the non robust optimized shape Ω∗ of Section III.3.1.b.

• a SiN substrate is used with an optical index of 1.7,

• the upper cladding is still air with nair = 1,

• and finally waveguides with a 1.4 µm×1.4 µm cross-section are used, allowing the
single mode operation of the fundamental TM mode.

The component design obtained after resolution of the mirror objective defined in Sec-
tion III.3.1.a without taking uncertainties into account and using 400 iterations of the
reference optimization algorithm has a reflectivity ' 96 % (Fig. IV.3.7(a)).

It is then used as an initial condition for our robust design process as in the case of the
previous power divider considering the objective function Eq. (IV.3.21) using the value
of the figure of merit J evaluated at eroded and dilated versions of the shape. During
the first iterations, as can be seen on the convergence curve presented on Fig. IV.3.7(b),
the reflectivity of the ± 50 nm eroded and dilated shapes are significantly lower than that
of the nominal shape. However, after a few dozen iterations, all three objectives reach
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approximately the same value, and then continue to improve concurrently to reach an
enhanced final solution, which is robust to fabrication uncertainties (Fig. IV.3.7(c)).

The reflectivity of several mirrors is plotted against the distance of erosion or dilation
on Fig. IV.3.8. The reflectivity of the non robust design (black curve) is dramatically
lowered as soon as the erosion or dilation exceeds a magnitude of ± 50 nm caused by
etching. On the contrary, at the expense of a slight degradation of the maximum perfor-
mance, the ± 25 nm (red curve) and ± 50 nm (green curve) robust designs retain a flat
response on their respective variation interval.

(a) Non-robust mirror used for
initialization

(b) Convergence history (c) Robust design to ± 50 nm
fabrication uncertainty

Figure IV.3.7: Optimization of a geometrically robust mirror to ± 50 nm of ero-
sion/dilation starting from an initial non-robust optimized design.

Figure IV.3.8: Robustness to fabrication uncertainty at 6.06 µm of several optimized
mirror. The black curve represents the non robust design and the red, green and blue
curves respectively represent the ± 25 nm, ± 50 nm and ± 100 nm robust designs.

The loss is more important for the± 100 nm (blue curve) robust design, which has been ob-
tained by optimizing simultaneously five objective functions consisting on equally spaced
eroded and dilated shapes. Let us note however that a ± 100 nm process uncertainty is
excessively pessimistic in practice.

IV.3.4.c Geometrically robust mode converter

In quite the same spirit as in Section IV.2.2, we now revisit the mode converters test
cases of Section III.3.1.c. When optimizing a 1.5 µm×1.5 µm TE0 to TE2 mode converter
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(Fig. IV.3.9(a)) we see on Fig. IV.3.9(d) that the performance of the resulting shape
proves to be very sensitive to small perturbations in the form of a uniform dilation or
erosion.

Starting from this non-robust optimized shape as an initial shape, we now solve the robust
counterpart optimization problem of a mode converter involving the worst-case between
the values taken by the objective function J on the optimized shape Ω and its dilated
and eroded perturbations by 20 nm. After 200 iterations of our shape and topology
optimization algorithm, the results summarized in Fig. IV.3.9 are obtained. The new
optimized shape is significantly more robust to the effect of dilation and erosion; visually,
its main difference with that obtained without considering robustness effects lies in that
the central hole has widened to make up for the effects of dilation.

(a) Non-robust shape (b) Robust shape (c) Convergence history

(d) Sensitivity to dilation of
the non-robust shape

(e) Sensitivity to dilation of
the robust shape

(f) Electric field at y = 0 of
the robust shape

(g) Electric field at y = 0 of the
eroded robust shape by 20 nm

(h) Electric field at y = 0 of the
dilated robust shape by 20 nm

Figure IV.3.9: Optimization of a robust TE0 to TE2 mode converter as defined
in Section III.3.1.c starting from an optimized non-robust 1.5 µm×1.5 µm wide TE0
to TE2 mode converter.

In the same way we move on to the optimization of a robust TE0 to TE1 mode converter.
Compared to Fig. IV.3.9 which exhibits a “simple” topology with only one hole in the
center of the design, we consider here our algorithm for geometrical robustness on a shape
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composed of multiple holes obtained after optimizing a non robust mode converter starting
from an initial guess with 5×5 holes; see Fig. IV.3.10(a). As one would expect the resulting
design is very sensitive to small dilations or erosions of the shape due to the presence of
very small patterns as we can see on Fig. IV.3.10(d). The gradient sampling algorithm
is used considering the normal, dilated by 40 nm and eroded by 40 nm shapes. On the
convergence history of Fig. IV.3.10(c) we can see that the three objectives are optimized
simultaneously. The final design, resulting from about 500 iterations of our algorithm is
depicted on Fig. IV.3.10(b), in which several small holes has been removed from the non
robust design and which is far less sensitive to dilation or erosion; see Fig. IV.3.10(e).

(a) Non-robust shape (b) Robust shape (c) Convergence history

(d) Sensitivity to dilation and
erosion of the non-robust shape

(e) Sensitivity to dilation and
erosion of the robust shape

(f) Electric field at y = 0 of the
robust shape

(g) Electric field at y = 0 of the
eroded robust shape by 40 nm

(h) Electric field at y = 0 of the
dilated robust shape by 40 nm

Figure IV.3.10: Optimization of a robust TE0 to TE1 mode converter as defined
in Section III.3.1.c starting from a non-robust optimized mode converter.

IV.3.4.d Robust components with respect to uncertainties caused by lithog-
raphy

In this last subsection we finally turn to numerically appraising the procedure proposed
in Section IV.3.3.b for imposing robustness of shapes with respect to the lithography
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manufacturing process. The physical setting is that of the mode converter example, as
discussed in Section III.3.1.c.

We consider the robust optimization program with respect to uncertainties caused by
lithography as in Section IV.3.3.b. We recall that the approximate perturbation Ω̃σ of Ω
is defined by Eq. (IV.3.19), and with a value σ = 30 nm for the parameter representing
the standard deviation in the Gaussian kernel Eq. (IV.3.1).

Starting from the initial shape in Fig. III.3.8(a) and performing 120 iterations of our
optimization algorithm yields the optimized design represented on Fig. IV.3.11.

(a) Robust optimized shape
with respect to lithography
uncertainties

(b) Sensitivity to uncertain-
ties caused by lithography for
the robust and non-robust
(Fig. IV.3.12(a)) shapes.

(c) Convergence history

Figure IV.3.11: Lithography robust optimization of a 1.5× 1.5 µm mode converter.

(a) Non robust (see Sec-
tion III.3.1.c)

(b) Etching robust (see Sec-
tion IV.3.4.c)

(c) Lithography robust
(see Section IV.3.4.d)

Figure IV.3.12: Optimized shapes for the mode converter example without taking
robustness effects into account, and considering robustness with respect to etching
and lithography uncertainties.

For an easy to read visual comparison, three designs obtained for the mode converter test-
case (non robust, robust with respect to etching uncertainties, and robust with respect to
lithography uncertainties) are reproduced in Fig. IV.3.12.

We also performed another optimization, using this time an initial design perforated by
8× 8 holes. The results obtained in the case of the non robust optimization problem and
for its robust counterpart are summarized in Fig. IV.3.13. As expected, for small values
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of σ the performances are better than the one in Fig. IV.3.11 but the shapes are also more
sensitive to values of σ larger than ∼ 40 nm.

(a) Convergence his-
tory for the robust
shape

(b) Convergence his-
tory for the non ro-
bust shape

(c) Robustness to
lithography of the
robust shape

(d) Robustness to
lithography of the non
robust shape

(e) Optimized robust
shape

(f) Optimized non ro-
bust shape

(g) Electric field for
the robust shape

(h) Electric field for the
non robust shape

(i) Modified optimized
robust shape, σ = 30 nm

(j) Modified opti-
mized non robust
shape, σ = 30 nm

(k) Electric field for
the dilated robust
shape, σ = 30 nm

(l) Electric field for
the dilated non robust
shape, σ = 30 nm

(m) Modified optimized
robust shape, σ = 60 nm

(n) Modified opti-
mized non robust
shape, σ = 60 nm

(o) Electric field for
the dilated robust
shape, σ = 60 nm

(p) Electric field for
the dilated non robust
shape, σ = 60 nm

Figure IV.3.13: Optimization of a 1.5 µm×1.5 µm wide TE0 to TE2 mode-converter
with an initial shape of 8× 8 holes, with and without lithography robustness.
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Boundary shape optimization

Summary — This chapter is quite different from the two previous ones in the sense
that the numerical examples will not be applied to nanophotonic but rather mechanical
problems whose behaviors are described using the linear elasticity equation. From a math-
ematical point of view this chapter is also different; although based on the geometric shape
optimization method presented in Chapter II, it involve a more precise functional analysis
of the regularity of PDEs solutions than the one used to derive the shape derivative in
the case of the time-harmonic vector wave equation.

Our research on boundary shape optimization originally comes from the study of active
components in nanophotonics. More precisely, we started our investigations with the
optimization of the shape of electric contacts placed around a component and whose
power supply allows the establishment of a current into the component. The electric
current then causes an overheating through Joule effect resulting in the modification of
the optical indices and therefore a change in the overall behavior of the device. During our
mathematical research however, we noticed that given the power that can be injected into
the electric contacts, the low sensitivity of the optical indices to temperature variation
as well as the small size of the components that can be simulated, it is not possible to
obtain sufficiently interesting results. Despite this, we also noticed that our mathematical
study may largely be extended to other physical fields for which there are more concrete
applications such as linear elasticity.

This chapter is presented as follows. In Section V.1 the difficulty behind boundary shape
optimization in which we try to optimize the shape of the interface between two different
boundary conditions is presented in the context of the Laplace PDE. In Sections V.2
and V.3 the cases of inhomogenous Neumann-homogeneous Neumann transition as well
as homogeneous Neumann-homogeneous Dirichlet are studied extensively. In the case of
transitions between Dirichlet and Neumann boundary conditions we find that the shape
derivative involves quantities that are difficult to compute since they comes from the
singular part of the solutions at the interface. We then propose in Section V.4 a regular-
ization procedure to approximate this transition resulting in a problem that consistently
approximates the initial PDE and for which its shape derivative may be efficiently com-
puted. The chapter end with Section V.5 in which we apply the previously derived shape
derivatives to the optimization of mechanical devices.

Most of the material of this chapter is coming from our preprint

[Dap19] C. Dapogny, N. Lebbe, and E. Oudet. “Optimization of the shape of regions
supporting boundary conditions”. working paper or preprint. 2019. url: https:
//hal.archives-ouvertes.fr/hal-02064477v1.
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CHAPTER V. BOUNDARY SHAPE OPTIMIZATION

V.1 General problem

V.1.1 Introduction and motivations
In the previous chapters, we studied the optimization of a shape functional J (Ω) which
depends on the shape Ω via a state uΩ arising as the solution to a boundary value problem
for a certain partial differential equation. In several applications, it turns out that only
one part of the boundary ∂Ω of the shape is subject to optimization, which is associated
to one single type of boundary conditions for the state uΩ in the underlying physical
partial differential equation while the remaining regions are not meant to be modified.
For example, in structural design, where uΩ is the displacement of the structure and
is the solution to the linearized elasticity system, it is customary to optimize only the
traction-free part of ∂Ω (i.e. that bearing homogeneous Neumann boundary conditions).
Likewise, in fluid applications (where uΩ is the velocity of the fluid, solution to the Stokes
or Navier-Stokes equations), one is often interested in optimizing only the region of ∂Ω
supporting no-slip (that is, homogeneous Dirichlet) boundary conditions.

A little surprisingly, the dependence of a given performance criterion J (Ω) with respect to
the relative locations of regions accounting for different types of boundary conditions has
been relatively seldom investigated in shape and topology optimization. Yet, situations
where it is desirable to optimize not only the overall shape of Ω but also the repartition of
the zones on ∂Ω bearing different types of boundary conditions are multiple in concrete
applications. Let us mention a few of them:

• When the objective criterion involves thermal effects inside the optimized shape Ω,
uΩ is the temperature, solution to the stationary heat equation. The regions of ∂Ω
associated to Dirichlet boundary conditions are those where a known temperature
profile is imposed, while Neumann boundary conditions account for heat injection.
It may be desirable to investigate the regions where heat should enter the medium
Ω (or those which should be kept at fixed temperature) in order to minimize, for
instance, the mean temperature inside Ω, or its variance; see for instance [Bar82]
about such physical applications.

• In the context of linearly elastic structures, (homogeneous) Dirichlet boundary con-
ditions account for the regions of ∂Ω where the structure is fixed, while inhomoge-
neous (resp. homogeneous) Neumann boundary conditions correspond to regions of
∂Ω where external loads are applied (resp. to traction-free regions). It may be of
great interest to optimize the design of fixations, or the places where loads should
be applied. One interesting application of this idea concerns the optimization of a
clamping-locator fixture system; see for instance [Ma11] in the framework of density-
based topology optimization method. More recently, in [Xia16; Xia14] the authors
present an adapted level set method for the joint optimization of the shape of an
elastic structure Ω and of the region of its boundary ∂Ω where it should be fixed.

• In acoustic applications, uΩ is the solution to the time-harmonic Helmholtz equation.
In this situation, the contribution [Des18] deals with the optimal repartition of an
absorbing material (accounted for by Robin-like boundary conditions) on the walls
of a room in order to minimize the sound pressure.

From the mathematical point of view, the above problems are of unequal difficulty: the
calculation of the shape derivative J ′(Ω) of the optimized criterion J (Ω) (or that of the
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constraint functions) in the framework of Hadamard’s method depends very much on the
regularity of the physical state uΩ of the problem in the neighborhood of the optimized
transition region between zones bearing different types of boundary conditions.

In some of the above situations, uΩ is “smooth enough” near these transitions, and the
calculation of J ′(Ω) is achieved using Céa’s method presented in Section II.2.1. On
the contrary, the situation become much more difficult to analyze when uΩ happens
to be “weakly singular” near these transitions; indeed, Céa’s method fail to give the
correct result when uΩ does not enjoy sufficient regularity (remember that the Eulerian
derivative of uΩ is not defined if uΩ is not sufficiently regular as it was the case with the
eletric field in Section III.2.1). Moreover, the calculation of the shape derivative of J (Ω)
requires a precise knowledge of this singular behavior of uΩ. The resulting formula is also
quite difficult to handle in algorithmic practice, since it brings into play quantities which
somehow measure this singular behavior, that are difficult to evaluate from the numerical
viewpoint; see Fig. V.1.1.

(a) Boundary conditions (b) Simulation of uΩ (c) Plot of |∇uΩ|2

Figure V.1.1: Simulation of −∆uΩ = 1 using an arbitrary geometry and different
boundary conditions. We clearly see in (c) that there is less regularity near the inter-
faces between the homogeneous Neumann boundary Γ and homogeneous Dirichlet
boundary ΓD than between Γ and the inhomogeneous Neumann boundary ΓN . Sim-
ulation results in arbitrary units. The mesh used here is extremely fine with more
than 25 000 triangles to show that the non-regularity can be observed even with a
high precision mesh.

To the best of our knowledge, the first theoretical calculation of shape derivatives in
a context where regions bearing different types of boundary conditions are optimized –
dealing with the difficulty of a “weakly singular” state uΩ – dates back to [Fre01].

Our purpose in this chapter is to study such shape optimization problems in which the
regions of the boundary of the optimized shape Ω bearing different types of boundary
conditions are subject to optimization. Most of the theoretical analysis unfolds in a
model two-dimensional situation where a functional J (Ω) of the shape Ω is minimized;
J (Ω) depends on Ω via a state uΩ which is the solution to a Laplace equation with
mixed boundary conditions: the boundary ∂Ω is divided into three regions ΓD, ΓN and
Γ, and uΩ satisfies homogeneous Dirichlet boundary conditions on ΓD, inhomogeneous
Neumann boundary conditions on ΓN , and homogeneous Neumann boundary conditions
on Γ; see Section V.1.2 below.

129/182



CHAPTER V. BOUNDARY SHAPE OPTIMIZATION

At first, we rigorously calculate the derivative J ′(Ω) of J (Ω) with respect to variations of
the shape Ω in both situations where the transitions ΣN = Γ ∩ ΓN and ΣD = Γ ∩ ΓD are
also subject to optimization. In the former case, the shape derivative turns out to have a
classical structure, and it lends itself to a fairly simple treatment in numerical algorithms.
On the contrary, in the latter context, the state uΩ is weakly singular near ΣD, which
makes the formula for J ′(Ω) uneasy to handle in practice. To circumvent this drawback,
our second contribution is to propose an approximation method for the considered state
problem, and thereby for the resulting shape optimization problem: the considered “ex-
act” Laplace equation with mixed boundary conditions is replaced with an approximate
counterpart, parametrized by a “small” parameter ε, where Robin boundary conditions
with ε-varying coefficients are imposed on the whole boundary ∂Ω. The “sharp” transi-
tion ΣD between regions equipped with homogeneous Dirichlet and Neumann boundary
conditions is thus “smeared” into a zone with thickness ε (this regularization procedure
is the same kind as the optical index smoothing method of Section III.2.2.a). We then
turn to prove the consistency of this approach: namely, the approximate objective func-
tion Jε(Ω) and its shape derivative J ′ε(Ω) converge to their exact counterparts J (Ω) and
J ′(Ω) when the smoothing parameter ε vanishes.

V.1.2 A model presenting a singularity at the Dirichlet-
Neumann interface

In this section, we present the model problem under scrutiny in most of the chapter,
which concentrates the main difficulties we plan to address in a simplified setting, and
lends itself to a rather complete mathematical analysis.

V.1.2.a Presentation of the model physical problem and notations

Let Ω ⊂ Rd be a smooth bounded domain (d = 2 or 3 in applications), whose boundary
∂Ω is divided into three disjoint, complementary open regions ΓD 6= ∅, ΓN and Γ:

∂Ω = ΓD ∪ ΓN ∪ Γ. (V.1.1)

We denote by uΩ the unique solution in the space

H1
ΓD(Ω) :=

{
u ∈ H1(Ω), u = 0 on ΓD

}
to the following mixed boundary value problem:

−∆uΩ = f in Ω,
uΩ = 0 on ΓD,
∂uΩ
∂n = g on ΓN ,
∂uΩ
∂n = 0 on Γ,

(V.1.2)

where the source term f and boundary flux g are supposed to be regular enough, say
f ∈ L2(Rd), g ∈ H1(Rd). Note that g may vanish on some subset of ΓN , so that the
inclusion Γ ⊂

{
x ∈ ∂Ω, ∂uΩ

∂n = 0
}
may be strict. See Fig. V.1.1 for an example of solution

uΩ.

In this context, we denote by ΣD = ΓD∩Γ ⊂ ∂Ω (resp. ΣN = ΓN ∩Γ ⊂ ∂Ω) the boundary
between the region ΓD ⊂ ∂Ω bearing homogeneous Dirichlet boundary conditions (resp.
the region ΓN ⊂ ∂Ω bearing inhomogeneous Neumann boundary conditions) and that
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Γ endowed with homogeneous Neumann boundary conditions; for simplicity, we assume
that ΓD ∩ ΓN = ∅. The sets ΣD and ΣN are both assumed to be smooth, codimension
1 submanifolds of ∂Ω: in particular, they amount to collections of isolated points in the
case d = 2, and to sets of smooth closed curves drawn on ∂Ω if d = 3. We denote by
nΣD : ΣD → Rd (resp. nΣN : ΣN → Rd) the unit normal vector to ΣD (resp. ΣN)
pointing outward ΓD (resp. ΓN), inside the tangent plane to ∂Ω; see Fig. V.1.2(a) for an
illustration of these definitions.

�D

�N

�

⌃D

⌃N

n⌃N

n⌃D

n

•

(a) Three dimensional setting

⌦

•

•

•

•

⌃D

n⌃D

n⌃N

⌃N

n

�D

�N

�

s0

s1
⌧

(b) Two dimensional setting

Figure V.1.2: Sketch of the considered setting in Section V.1.2.a and the simplified
situation where Assumption Eq. (V.1.3) is fulfilled.

On several occurrences, the rigorous mathematical analysis of this model will be greatly
simplified under further simplifying assumptions; in particular, in some duly specified
situations, we shall proceed under the following hypotheses, in the situation where d = 2:

The region ΓD ∩ Γ consists of only two points ΓD ∩ Γ = {s0, s1} ,
and

the domain Ω ⊂ R2 is locally flat around s0, s1;
(V.1.3)

see Fig. V.1.2(b). In this last case, letting n = (n1, n2), we shall denote by τ := (n2,−n1)
the unit tangent vector to ∂Ω, oriented so that (τ ,n) is a direct orthonormal frame of
the plane.

V.1.2.b The shape optimization problem

In the setting of Section V.1.2.a, we consider the following shape optimization problem:

inf
Ω∈Uad

J (Ω), (V.1.4)

(note here that in this chapter we consider minimization instead of maximization of the
objective functional) featuring an objective criterion J (Ω) of the form

J (Ω) =
∫

Ω
j(uΩ) dx (V.1.5)

where j : R → R is a smooth function satisfying appropriate growth conditions: there
exists a constant C > 0 such that:

∀t ∈ R, |j(t)|≤ C(1 + t2), |j′(t)|≤ C(1 + |t|), and |j′′(t)| ≤ C.

In Eq. (V.1.4), Uad is a set of smooth admissible shapes; in the following, two distinct
shape optimization problems of this form are considered, implying different definitions of
Uad:
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• On the one hand, the transition ΣD between homogeneous Dirichlet and homoge-
neous Neumann boundary conditions is subject to optimization, and the region ΓN
bearing inhomogeneous Neumann boundary conditions is fixed. Then, Uad corre-
sponds to the set:

UDN :=
{

Ω ⊂ Rd is bounded and of class C2, ΓN ⊂ ∂Ω
}
.

• On the other hand, when the region ΣN between Γ and ΓN is optimized (while the
region ΓD ⊂ ∂Ω is fixed), Uad reads:

UNN :=
{

Ω ⊂ Rd is bounded and of class C2, ΓD ⊂ ∂Ω
}
.

Notice that problem Eq. (V.1.4) is not guaranteed to have a solution; nevertheless, we
assume in the following that it is the case or that, at least, local minima exist. Moreover,
observe that the objective function J (Ω) featured in Eq. (V.1.5) and the solution uΩ
to Eq. (V.1.2) depend on the particular subdivision Eq. (V.1.1) of the boundary ∂Ω into
ΓD, ΓN and Γ; with some little abuse and so as to keep notations simple insofar as possible,
this dependence is not made explicit in the formulation of our shape optimization problem.

In practice, so that variations of an admissible shape stay admissible, the considered
deformations θ are confined to a subset Θad ⊂ W 1,∞(Rd,Rd) of admissible deformations.
In the present chapter, Θad stands for one of the sets ΘDN or ΘNN defined by:

ΘDN :=
{
θ ∈ C2(Rd,Rd) ∩W 1,∞(Rd,Rd), θ = 0 on ΓN

}
, (V.1.6)

and
ΘNN :=

{
θ ∈ C2(Rd,Rd) ∩W 1,∞(Rd,Rd), θ = 0 on ΓD

}
, (V.1.7)

both being equipped with the natural norm, when the considered set of admissible shapes
is UDN or UNN, respectively.

V.1.2.c A brief account of the regularity of uΩ

As is well-known in the field of elliptic boundary value problems (see e.g. [Bre10, Section
9.6] for a comprehensive introduction), when the featured data f , g (and Ω itself) are
smooth enough, the solution uΩ to Eq. (V.1.2) is more regular than a mere element in
H1(Ω), as predicted by the classical Lax-Milgram variational theory. For instance, in the
case where Eq. (V.1.2) only brings into play homogeneous Dirichlet boundary conditions
(i.e. Γ and ΓN are empty), a classical theorem states that, provided f belongs to Hm(Ω)
for some m ≥ 0 (and Ω is smooth), uΩ belongs to Hm+2(Ω).

In the situations at stake in the present chapter, such as Eq. (V.1.2), things are a little
more subtle. The assumptions that f ∈ L2(Rd) and g ∈ H1(Rd) still guarantee that uΩ
has H2 regularity in some open neighborhood of an arbitrary point x0 which is either
interior to Ω, or which belongs to ∂Ω but is interior to one of the regions ΓD, Γ or ΓN . On
the contrary, uΩ has limited regularity around those points x0 ∈ ΣD or x0 ∈ ΣN marking
the transition between regions subjected to different types of boundary conditions. A
whole mathematical theory exists in the literature, which is devoted to the precise study
of the “weakly singular” behavior of uΩ in these regions; we refer for instance to the
monographs [Dau06; Gri11; Koz97].
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In this section, we first recall briefly some classical material about functional spaces in Sec-
tion V.1.2.d, before summarizing in Section V.1.2.e the needed results about the regularity
of the solution uΩ to Eq. (V.1.2) for our purposes.

V.1.2.d Some functional spaces

Let Ω be a smooth bounded domain in Rd. For s > 0 and 1 < p <∞, let us introduce:

• The usual Sobolev space W s,p(Ω) (see [Di 12, Section 2]) is defined by, when s = m
is an integer:

Wm,p(Ω) =
{
u ∈ Lp(Ω), ∂αu ∈ Lp(Ω) for α ∈ Nd, |α|≤ m

}
,

and when s = m+ σ with m ∈ N and σ ∈ (0, 1),

W s,p(Ω) =
{
u ∈ Wm,p(Ω),

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|p

|x− y|d+pσ dy dx <∞ for all |α|= m

}
.

(V.1.8)
Both sets are equipped with the natural norms. Let us recall that the exact same
definitions hold when the bounded domain Ω is replaced by the whole space Rd.

• The subspace W̃ s,p(Ω) of W s,p(Ω) is that composed of functions whose extension ũ
by 0 outside Ω belongs to W s,p(Rd).

• The space W s,p
0 (Ω) is the closure of the set C∞c (Ω) of C∞ functions with compact

support in Ω in W s,p(Ω).

As is customary, in the case p = 2 we use the notations Hs(Ω), H̃s(Ω) and Hs
0(Ω) for

W s,p(Ω), W̃ s,p(Ω) and W s,p
0 (Ω) respectively.

In spite of their tight relation, the two spaces W̃ s,p(Ω) and W s,p
0 (Ω) may not coincide

depending on the values of s and p. On the one hand, for any s > 0 and 1 < p < ∞,
W s,p

0 (Ω) ⊂ W̃ s,p(Ω), but the converse inclusion may fail. In fact, the following character-
ization holds (see [Gri11, Lemma 1.3.2.6 and Corollary 1.4.4.10]):

W̃ s,p(Ω) =
{
u ∈ Wm,p

0 (Ω), 1
ρσ
∂αu ∈ Lp(Ω), |α|= m

}
, (V.1.9)

where we have decomposed s = m+σ, with m ∈ N and σ ∈ (0, 1), and ρ(x) := d(x, ∂Ω) is
the (unsigned) distance from x to the boundary of Ω. The space W̃ s,p(Ω) is then endowed
with the norm

‖u‖
W̃ s,p(Ω) =

‖u‖pWm,p(Ω) +
∑
|α|=m

∫
Ω

1
ρpσ
|∂αu|p dx

 1
p

, (V.1.10)

which is equivalent to the natural norm u 7→ ‖ũ‖W s,p(Rd). Let us also note that:

W̃ s,p(Ω) = W s,p
0 (Ω) when

(
s− 1

p

)
is not an integer.

We eventually mention that the above definitions and results hold in the more general
context where Ω is replaced by a smooth submanifold of Rd, e.g. (a region of) the boundary
of a bounded smooth domain of Rd. For instance, in the setting of Section V.1.2.a, we
may consider the spaces W̃ s,p(ΓD), W̃ s,p(ΓN), etc.
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V.1.2.e Local structure of uΩ near the transition ΣD

The classical variational theory for Eq. (V.1.2) (based on the Lax-Milgram theorem)
features a solution uΩ which naturally belongs to H1(Ω). Moreover, assuming that the
boundary ∂Ω is at least of class C2, and that f ∈ L2(Rd), g ∈ H1(Rd), the classical
elliptic regularity theory ensures that uΩ actually has H2 regularity except perhaps near
the transitions zones ΣD and ΣN ; see [Bre10, Section 9.6]. On the contrary, uΩ fails to
enjoy H2 regularity in the vicinity of ΣD or ΣN , where the boundary conditions it fulfills
change types.

The precise behavior of uΩ near ΣD will be of utmost interest for our purpose; it is
exemplified by the following theorem, which takes place under Assumption Eq. (V.1.3)
(see [Gri11, Chapter 4 and notably Theorem 4.4.3.7]):

Theorem V.1.2.1 – Singular decomposition of uΩ.
For any point x0 ∈ Ω or x0 ∈ ∂Ω\ (ΣD ∪ΣN), there exists an open neighborhood W of
x0 in R2 such that uΩ belongs to H2(Ω ∩W ). Furthermore, for either i = 0 or i = 1,
there exists an open neighborhood V of si with the following property: introducing
the polar coordinates (r, ν) at si, assuming without loss of generality that si = 0,
Ω ∩ V = {x ∈ V, s.t. x2 > 0}, and ΓD ∩ V = {x ∈ V, s.t. x2 = 0, x1 < 0}, there exist
a function uir ∈ H2(V ), and a constant ci ∈ R such that:

uΩ = uir + ciSi on V, where Si(r, ν) = r
1
2 cos(ν/2). (V.1.11)

The function Si is sometimes said to be weakly singular, in the sense that it belongs to
H1(V ), but not to H2(V ). More precisely, invoking [Gri11, Theorem 1.4.5.3] to estimate
the Sobolev regularity of functions of the form rαϕ(ν), one proves that, for every 0 ≤ s <
3
2 , uΩ ∈ Hs(V ), with:

‖uΩ‖Hs(V ) ≤ Cs‖f‖L2(Rd). (V.1.12)

In the language of Section V.1.2.d, it follows in particular that uΩ ∈ H̃
1
2 (Γ ∪ ΓN), while

∂uΩ
∂n ∈ (H̃ 1

2 (Γ ∪ ΓN))∗.

Remark V.1.2.1: Higher-order versions of the expansion Eq. (V.1.11) are available.
Actually, for any integer m ≥ 2, if f ∈ Hm−2(Rd), the following decomposition holds
in a neighborhood V of si (see [Gri11, Theorem 5.1.3.5]):

uΩ = uir,m +
m−1∑
k=1

cikS
i
k, where uir,m ∈ Hm(V ) and Sik(r, ν) = rk−

1
2 cos((k − 1/2)ν).

Remark V.1.2.2: Still in the two-dimensional context, when the boundary ∂Ω is
not flat in the vicinity of ΣD, an expansion of the form Eq. (V.1.11) still holds: the
weakly singular function Si shows the same dependence r 1

2 with respect to r, but
its dependence with respect to ν is no longer explicit. Nevertheless, there still holds
that uΩ ∈ Hs(V ) with an estimate of the form Eq. (V.1.12), where V is an open
neighborhood of ΣD in Ω and 0 ≤ s < 3

2 is arbitrary; see [Gri11, Chapter 5].

In Sections V.2 and V.3, we rigorously calculate the shape derivative of the objective
function Eq. (V.1.4); we start in Section V.2 with the case where the transition region ΣN

is optimized and ΣD is fixed (i.e. the sets of admissible shapes and admissible deformations
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are UNN and ΘNN respectively), before turning in Section V.3 to the more difficult case
where ΣD is optimized and ΣN is not – i.e. Uad = UDN and Θad = ΘDN – under the
simplifying assumption Eq. (V.1.3).

V.1.2.f Some facts from tangential calculus

In this section, we briefly review some facts from tangential calculus which come in handy
in several parts of this article; see [Hen06, Section 5.4.3] for a more exhaustive presenta-
tion.

Let Ω be a smooth bounded domain in Rd. There exists a tubular neighborhood U of its
boundary ∂Ω such that the projection mapping p∂Ω : U → Γ given by

p∂Ω(y) = the unique x ∈ Γ s.t. |x− y|= d(y,Γ)

is well-defined and smooth; see [Amb94, Theorem 3.1]. This allows to define smooth
extensions of the normal vector field n and of any tangential vector field τ : ∂Ω→ Rd to
U via the formulas:

n(y) ≡ n(p∂Ω(y)), and τ (y) ≡ τ (p∂Ω(y)),

respectively. From these notions, we define the mean curvature κ of ∂Ω by κ = ∇ · n.

In this context, the tangential gradient ∇∂Ωf of a smooth enough function f : ∂Ω→ R
is defined by ∇∂Ωf = ∇f̃ − (∇f̃ · n)n, where f̃ is any smooth extension of f to an open
neighborhood of ∂Ω.

In the same spirit, the tangential divergence ∇∂Ω ·V of a smooth vector field V : ∂Ω→
Rd is defined by ∇∂Ω ·V := ∇· Ṽ− (∇Ṽn) ·n, where Ṽ is any extension of V to an open
neighborhood of ∂Ω.

Let us finally recall the following integration by parts formulas on the boundary of smooth
domains; see [Hen06, Proposition 5.4.9], for the first point, and [Dap13, Section 5.5.4], for
the second one.
Theorem V.1.2.2 – Integration by parts using tangential operators.
Let Ω ⊂ Rd be a smooth bounded domain with boundary ∂Ω;

1. Let u ∈ H1(∂Ω) and V ∈ H1(∂Ω)d; then:∫
∂Ω
∇∂Ω ·Vu ds =

∫
∂Ω

(−V · ∇∂Ωu+ κuV · n) ds

2. Let G be a subset of ∂Ω with smooth boundary Σ, and denote by nΣ its unit
normal vector pointing outward G (nΣ is a tangent vector field to ∂Ω). Let
u ∈ H1(∂Ω) and V ∈ H1(∂Ω)d; then:∫

G
∇∂Ω ·V u ds =

∫
Σ
uV · nΣ d`+

∫
G

(−∇∂Ωu ·V + κuV · n) ds,

where d` denotes integration over the codimension 2 submanifold Σ of Rd.
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V.2 Transition between Γ and ΓN
V.2.1 Main result
Our main result in this section is the following.
Theorem V.2.1.1 – Shape derivative for Neumann-Neumann interfaces.
The functional J (Ω) defined by Eq. (V.1.5) is shape differentiable over the admissible
set UNN; its shape derivative reads (volumetric form) for all θ ∈ ΘNN:

J ′(Ω)(θ) =
∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds−
∫

Ω
j′(uΩ)∇uΩ · θ dx

+
∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇pΩ dx

+
∫

Ω
f∇pΩ · θ dx−

∫
ΓN

((∇∂Ω · θ)g +∇g · θ)pΩ ds, (V.2.1)

where ∇∂Ω· stands for the tangential divergence on ∂Ω (see Section V.1.2.f), and the
adjoint state pΩ is the unique solution in H1

ΓD(Ω) to the system:
−∆pΩ = −j′(uΩ) in Ω,

pΩ = 0 on ΓD,
∂pΩ
∂n = 0 on ΓN ∪ Γ.

(V.2.2)

The above shape derivative has the alternative, surfacic form:

J ′(Ω)(θ) =
∫

Γ∪ΓN
j(uΩ)θ · n ds+

∫
Γ∪ΓN

∇uΩ · ∇pΩ θ · n ds−
∫

Γ∪ΓN
fpΩθ · n ds

−
∫

ΓN

(
∂g

∂n
+ κg

)
pΩθ · n ds−

∫
ΣN

gpΩθ · nΣN d`. (V.2.3)

Remark V.2.1.1: One comment is in order about the precise meaning of Eq. (V.2.3),
and notably that of the term ∫

Γ∪ΓN
∇uΩ · ∇pΩ θ · n ds (V.2.4)

featured in there. The function uΩ belongs to the space

E(∆, L2(Ω)) :=
{
u ∈ H1(Ω), ∆u ∈ L2(Ω)

}
, (V.2.5)

and as such, it has a normal trace ∂uΩ
∂n ∈ H

−1/2(∂Ω), which is defined by the following
Green’s formula valid for all w ∈ H1(Ω):∫

∂Ω

uΩ

∂n
w ds :=

∫
Ω

∆uΩw dx +
∫

Ω
∇uΩ · ∇w dx; (V.2.6)

see [Gri11, Theorem 1.5.3.10], for more details about this point. Also, since uΩ ∈
H1/2(∂Ω), the tangential derivative ∂uΩ

∂τ
naturally belongs to the dual space H−1/2(∂Ω).

On the other hand, the function pΩ enjoysH2 regularity on account of elliptic regularity
(see Section V.1.2.c), except perhaps near ΣD where it has a weak singularity of the
form Eq. (V.1.11). Since deformations θ ∈ ΘNN are smooth and vanish identically on
ΓD, the product (∇pΩ)θ · n has a trace in H1/2(∂Ω), and so the integral Eq. (V.2.4) is
well-defined as a duality product.
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V.2.2 The proof
Again, the proof will be an application of the method described in Section II.2.2 with
a particular attention devoted to the regularity of uΩ and pΩ. Since variations of this
argument are used in the following, we present a sketch of it for the reader’s convenience.
The proof is decomposed into four steps.

Proof of the shape differentiability of J (Ω) and derivation of Eq. (V.2.1)

This step amounts to the analysis of the differentiability of the mapping θ 7→ J (Ωθ) from
ΘNN into R, which features the solution uΩθ

to the version of Eq. (V.1.2) posed on Ωθ.
The main idea consists in recasting the latter problem as a boundary-value problem on Ω
for the transported function uθ := uΩθ

◦ (Id + θ) ∈ H1(Ω); thence, the implicit function
theorem allows to calculate the derivative of the mapping θ 7→ uθ.

For θ ∈ ΘNN with norm ‖θ‖ΘNN < 1, the function uΩθ
is the unique solution in H1

ΓD(Ωθ)
to the following variational problem:

∀v ∈ H1
ΓD(Ωθ),

∫
Ωθ

∇uΩθ
· ∇v dx =

∫
Ωθ

fv dx +
∫

(ΓN )θ

gv ds.

Using test functions of the form v ◦ (Id + θ)−1, v ∈ H1
ΓD(Ω), a change of variables yields

the following variational formulation for uθ ∈ H1
ΓD(Ω):

∀v ∈ H1
ΓD(Ω),

∫
Ω
A(θ)∇uθ · ∇v dx =

∫
Ω
|det(I +∇θ)|f ◦ (Id + θ)v dx

+
∫

ΓN
|com(I +∇θ)n|g ◦ (Id + θ)v ds,

where A(θ) is the d× d matrix A(θ) = |det(I +∇θ)|(I +∇θ)−1(I +∇θ)−> and com(M)
stands for the cofactor matrix of a d × d matrix M . Now introducing the mapping
F : Θad ×H1

ΓD(Ω)→ (H1
ΓD(Ω))∗ defined by:

∀v ∈ H1
ΓD(Ω), F(θ, u)(v) =

∫
Ω
A(θ)∇u · ∇v dx−

∫
Ω
|det(I +∇θ)|f ◦ (Id + θ)v dx

−
∫

ΓN
|com(I +∇θ)n|g ◦ (Id + θ)v ds,

it follows that for “small” θ ∈ ΘNN, uθ is the unique solution of the equation F(θ, uθ) = 0.
Then, the implicit function theorem together with classical calculations (again, see the
proof in Section II.2.2) imply that the mapping θ 7→ uθ is Fréchet differentiable from a
neighborhood of 0 in ΘNN into H1

ΓD(Ω), and that its derivative θ 7→ ůΩ(θ) at θ = 0 – the
so-called Lagrangian derivative of the mapping Ω 7→ uΩ – is the unique solution to the
following variational problem:

∀v ∈ H1
ΓD(Ω),

∫
Ω
∇ůΩ(θ) · ∇v dx = −

∫
Ω

((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇v dx

+
∫

Ω
∇ · (fθ)v dx +

∫
ΓN

((∇∂Ω · θ)g +∇g · θ) v ds. (V.2.7)

On the other hand, performing the same change of variables in the definition of J (Ω)
yields:

J (Ωθ) =
∫

Ω
|det(I +∇θ)| j(uθ) dx,
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and so the mapping θ 7→ J(Ωθ) from ΘNN into R is Fréchet differentiable at θ = 0 with
derivative:

J ′(Ω)(θ) =
∫

Ω
(∇ · θ j(uΩ) + j′(uΩ)ůΩ(θ)) dx. (V.2.8)

The material derivative ůΩ(θ) can now be eliminated from Eq. (V.2.8) thanks to the
introduction of the adjoint state pΩ, solution to Eq. (V.2.2). Indeed, the variational
formulation of pΩ reads:

∀v ∈ H1
ΓD(Ω),

∫
Ω
∇pΩ · ∇v dx = −

∫
Ω
j′(uΩ)v dx. (V.2.9)

Hence, combining Eqs. (V.2.7) to (V.2.9) yields:

J ′(Ω)(θ) =
∫

Ω
∇ · (j(uΩ)θ) dx−

∫
Ω
j′(uΩ)∇uΩ · θ dx

+
∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇pΩ dx−

∫
Ω
∇ · (fθpΩ) dx

+
∫

Ω
f∇pΩ · θ dx−

∫
ΓN

((∇∂Ω · θ)g +∇g · θ) pΩ ds, (V.2.10)

This results in the desired expression Eq. (V.3.1). Note that at this point, we have not
used the fact that either uΩ or pΩ is more regular than H1(Ω).

Derivation of the surface expression Eq. (V.2.3)

This expression is classically achieved from Eq. (V.2.1) using integration by parts; doing
so requires a more careful attention to the regularity of uΩ and pΩ. Let us notice that
the function uΩ may not be much more regular than just H1 in the neighborhood of the
transition ΣN . Actually, it belongs to the space E(∆, L2(Ω)), defined by Eq. (V.2.5). The
key point is that pΩ is locally H2 in the neighborhood of ΣN , on account of the material
in Section V.1.2.c (note that ∂pΩ

∂n = 0 on Γ ∪ ΓN). Relying on the identity Eqs. (II.2.19)
and (II.2.20) which holds for all smooth functions v, w ∈ C∞c (Rd),∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇v · ∇w dx =

∫
Ω

(∆v∇w + ∆w∇v) · θ dx

+
∫

Γ∪ΓN

(
(∇v · ∇w)θ · n− ∂v

∂n
∇w · θ − ∂w

∂n
∇v · θ

)
ds, (V.2.11)

and using the density of C∞c (Rd) in E(∆, L2(Ω)) and H2(Ω) (see [Gri11, Lemma 1.5.3.9]),
we obtain:∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇pΩ dx =

∫
Ω

(∆uΩ∇pΩ + ∆pΩ∇uΩ) · θ dx

+
∫

Γ∪ΓN

(
(∇uΩ · ∇pΩ)θ · n− ∂uΩ

∂n
∇pΩ · θ −

∂pΩ

∂n
∇uΩ · θ

)
ds. (V.2.12)

Let us now work on the last integral in the right-hand side of Eq. (V.2.1); we obtain:

(∇∂Ω · θ)g +∇g · θ = ∇∂Ω · (gθ) + ∂g
∂n θ · n,

= ∇∂Ω · (g(θ − (θ · n)n)) +
(
∂g
∂n + κg

)
θ · n.

Hence, an integration by parts on the region ΓN using Th. V.1.2.2 yields:∫
ΓN

((∇∂Ωθ)g +∇g · θ) pΩ ds =
∫

ΣN
gpΩ θ · nΣNd`+

∫
ΓN

(
∂g

∂n
+ κg

)
pΩθ · n ds.

(V.2.13)
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Combining Eqs. (V.2.12) and (V.2.13) with the volumetric formula Eq. (V.2.1) and using
the facts that −∆uΩ = f and −∆pΩ = −j′(uΩ) in Ω, we finally obtain the desired surface
formula Eq. (V.2.3). �

V.3 Transition between Γ and ΓD
V.3.1 Main result
In this section, we investigate the shape differentiability of the functional J (Ω) defined
in Eq. (V.1.5) in the particular case where the boundary ΣD between the regions ΓD and
Γ of ∂Ω bearing homogeneous Dirichlet and homogeneous Neumann boundary conditions
is also subject to optimization; in other terms, we suppose:

Uad = UDN, and Θad = ΘDN.

The main difficulty of the present situation lies in the weakly singular behavior of the
solution uΩ to Eq. (V.1.2) near ΣD. In particular, the use of the formal Céa’s method,
which implicitly relies on the smoothness of uΩ since it have recourse to its Eulerian
derivative (which is defined via Eq. (II.1.14)), gives rise to an erroneous shape derivative
in the present context.

The conclusion of Th. V.3.1.1 was already observed in [Aze14; Fre01], but our proof is
slightly different: we rely on a direct calculation based on integration by parts.
Theorem V.3.1.1 – Shape derivative for Dirichlet-Neumann interfaces.
The functional J (Ω) is shape differentiable at any admissible shape Ω ∈ UDN, and its
shape derivative reads (volumetric form) for all θ ∈ ΘDN:

J ′(Ω)(θ) =
∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds−
∫

Ω
j′(uΩ)∇uΩ · θ dx

+
∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇pΩ dx +

∫
Ω
f∇pΩ · θ dx, (V.3.1)

where the adjoint state pΩ is the unique solution in H1
ΓD(Ω) to the system:

−∆pΩ = −j′(uΩ) in Ω,
pΩ = 0 on ΓD,
∂pΩ
∂n = 0 on ΓN ∪ Γ.

(V.3.2)

Moreover, under the assumption Eq. (V.1.3), let us write the local structure of uΩ and
pΩ in an open neighborhood V i of si, i = 0, 1 as follows:

uΩ = uis + uir and pΩ = pis + pir; (V.3.3)

in the above formula, uir, pir ∈ H2(V i) and the weakly singular functions uis and pis ∈
H1(V i) have the following expressions in local polar coordinates centered at si:

uis(r, ν) = ciur
1
2 cos(ν/2), and pis(r, ν) = cipr

1
2 cos(ν/2), if nΣD(si) = e1, (V.3.4)

or

uis(r, ν) = ciur
1
2 sin(ν/2), and pis(r, ν) = cipr

1
2 sin(ν/2), if nΣD(si) = −e1, (V.3.5)
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where (e1, e2) is the canonical basis of the plane. Then Eq. (V.3.1) rewrites (surface
integral form):

J ′(Ω)(θ) =
∫

ΓD∪Γ
(j(uΩ)− fpΩ)θ · n ds−

∫
ΓD

∂pΩ

∂n
∂uΩ

∂n
θ · n ds

+
∫

Γ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds+ π

4
∑
i=0,1

ciuc
i
p(θ · nΣD)(si). (V.3.6)

Remark V.3.1.1: In the surface formula Eq. (V.3.6), the integrals

−
∫

ΓD

∂pΩ

∂n
∂uΩ

∂n
θ · n ds+

∫
Γ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds

are not well-defined individually, since they may blow up around the points si, as is
quite clear from the look of the structure Eqs. (V.3.4) and (V.3.5) of the singular parts
of uΩ and pΩ. However, these integrals turn out to have compensating singularities at
si, so that their sum is well-defined as a Cauchy principal value; see the proof below.

V.3.2 The proof
The calculation of the volumetric formula Eq. (V.3.1) unfolds almost as in the case
of Th. V.2.1.1, and we focus on the derivation of the surface formula Eq. (V.3.6), as-
suming that Eq. (V.1.3) holds. Again, the main idea of the calculation is to perform
integration by parts from Eq. (V.3.1), taking advantage of the smoothness of uΩ and pΩ
far from the singularities at si, i = 0, 1, and of the local structure Eq. (V.3.3) of these
functions in the vicinity of si.

Let θ ∈ ΘDN be fixed; for small δ > 0, let Bi(δ) := B(si, δ) be the ball centered at si with
radius δ, and let Ωδ := Ω \ (B0(δ) ∪ (B1(δ)). Since uΩ and pΩ belong to H1(Ω), it holds
from Eq. (V.3.1):

J ′(Ω)(θ) =
∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds+ lim
δ→0

Iδ,

where:

Iδ := −
∫

Ωδ
j′(uΩ)∇uΩ · θ dx+

∫
Ωδ

((∇ · θ)I−∇θ −∇θ>)∇uΩ · ∇pΩ dx+
∫

Ωδ
f∇pΩ · θ dx.

Using the smoothness of uΩ and pΩ on Ωδ, the fact that θ vanishes on ΓN , the definitions
of uΩ, pΩ and an integration by parts on the second term in the above right-hand side
based on the identity Eq. (V.2.11), we obtain:

Iδ =
∫
∂Ωδ

(
∇uΩ · ∇pΩ θ · n−

∂uΩ

∂n
∇pΩ · θ −

∂pΩ

∂n
∇uΩ · θ

)
ds. (V.3.7)

To proceed further, we decompose the boundary ∂Ωδ as the disjoint reunion:

∂Ωδ = ΓD,δ ∪ Γδ ∪ ΓN ∪ γ0,δ ∪ γ1,δ,

where ΓD,δ = ΓD ∩ Ωδ, Γδ = Γ ∩ Ωδ, and γi,δ = ∂Bi(δ) ∩ Ω is the half-circle with center
si and radius δ. We also denote by si,δ the intersection point between ∂Bi(δ) and Γ; see
Fig. V.3.1 about these notations.
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���D,�

�0,�n

⌧⌦�

s0,�s0
•⌫•

Figure V.3.1: The local situation around the point s0 in the proof of Th. V.3.1.1.

Since θ = 0 on ΓN , it follows that:

Iδ =
∫

Γδ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds−

∫
ΓD,δ

∂uΩ

∂n
∂pΩ

∂n
θ · n ds+

∑
i=0,1

∫
γi,δ

K(uΩ, pΩ) ds, (V.3.8)

where we have introduced the shorthand:

K(v, w) = ∇v · ∇w θ · n− ∂v

∂n
∇w · θ − ∂w

∂n
∇v · θ.

Let us now evaluate the contributions of Iδ on γi,δ for i = 0, 1 in the expression Eq. (V.3.8).
Without loss of generality, we only deal with i = 0, and we assume that s0 = 0; according
to Eq. (V.1.3), ∂Ω is horizontal in the neighborhood of s0 and we also assume that ΓD
(resp. Γ) lies on the left-hand side (resp. the right-hand side) of s0; see again Fig. V.3.1.
Introducing the polar coordinates (r, ν) with origin at s0 = 0, taking into account our
conventions for τ and n, we have:

n = − cos ν e1 − sin ν e2, τ = − sin ν e1 + cos ν e2,

and as far as derivatives are concerned ∂
∂n = − ∂

∂r
and ∂

∂τ
= 1

r
∂
∂ν
. Recalling the local

expressions Eq. (V.3.3) of uΩ and pΩ around s0, we can see that the only possibly non
vanishing contribution of

∫
γ0,δ

K(uΩ, pΩ) ds in the limit δ → 0 is given by the most singular
part of its integrand:

lim
δ→0

∫
γ0,δ

K(uΩ, pΩ) ds = lim
δ→0

Ĩ0
δ , where Ĩ0

δ :=
∫
γ0,δ

K
(
u0
s, p

0
s

)
ds.

Let us then calculate the last integral. We have, on γ0,δ:

∇u0
s · ∇p0

sθ · n =
(
∂u0

s

∂τ

∂p0
s

∂τ
+ ∂u0

s

∂n
∂p0

s

∂n

)
θ · n

=
(

1
r2
∂u0

s

∂ν

∂p0
s

∂ν
+ ∂u0

s

∂r

∂p0
s

∂r

)
θ · n =

c0
uc

0
p

4r θ · n. (V.3.9)

Likewise,

− ∂u0
s

∂n
∇p0

s · θ = −∂u
0
s

∂n
∂p0

s

∂τ
θ · τ − ∂u0

s

∂n
∂p0

s

∂n
θ · n,

= −
c0
uc

0
p

4r cos(ν/2) sin(ν/2)θ · τ −
c0
uc

0
p

4r cos2(ν/2)θ · n, (V.3.10)
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and

− ∂p0
s

∂n
∇u0

s · θ = −∂u
0
s

∂n
∇p0

s · θ

= −
c0
uc

0
p

4r cos(ν/2) sin(ν/2)θ · τ −
c0
uc

0
p

4r cos2(ν/2)θ · n. (V.3.11)

Gathering Eqs. (V.3.9) to (V.3.11), we now obtain:

K(u0
s, p

0
s) =

c0
uc

0
p

4r
(
(1− 2 cos2(ν/2))θ · n− 2 cos(ν/2) sin(ν/2)θ · τ

)
,

=
c0
uc

0
p

4r (−(sin ν)θ · τ − (cos ν)θ · n) =
c0
uc

0
p

4r θ1,

where θ1 is the horizontal component of θ = θ1e1 + θ2e2. Therefore:

Ĩ0
δ =

(∫ π

0

c0
uc

0
p

4 θ1(δ cos ν, δ sin ν) dν
)

δ→0−−→
πc0

uc
0
p

4 θ1(0).

Combining all these results, we obtain the surface form Eq. (V.3.6) of the shape derivative
J ′(Ω)(θ). �

Remark V.3.2.1: The result extends to the case where the boundary ∂Ω is not flat
(but is still smooth) in the neighborhood of ΣD = {s0, s1}. More precisely, let V be a
small enough neighborhood of either of the si, and let us introduce a local description of
Ω as a graph, assuming for simplicity that si = 0 and n(si) = −e2: U is a neighborhood
of 0 in R2 and ψ(x1, x2) = (x1, ϕ(2)) is a smooth diffeomorphism from U onto V such
that:

Ω ∩ V =
{
x = (x1, x2) ∈ R2, x2 > ϕ(x1)

}
∩ U.

Then, it follows from [Gri11, Section 5.2], that uΩ reads in this case:

uΩ = ciSi ◦ ψ−1 + uir on Bδ(si),

where uir ∈ H2(V ). The proof extends to this latter context then.

Remark V.3.2.2: Interestingly, if uΩ and pΩ are assumed to be actually smooth
(say H2) in the neighborhood of the transition points s0 and s1, the shape deriva-
tive Eq. (V.3.6) no longer involves any term related to the geometry of the repartition
of ΓD and Γ. In other terms, all the information about the sensitivity of J (Ω) with
respect to the repartition of ΓD and Γ is encoded in the (weak) singularities of uΩ and
pΩ.

V.4 An approximate model to deal with the
Dirichlet-Neumann transition

V.4.1 Regularization
We have calculated in Sections V.2 and V.3 the shape derivative of the functional J (Ω)
given by Eq. (V.1.5), in the situation where either the transition ΣN or ΣD is subject
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to optimization. The resulting expression in the former case (see Th. V.2.1.1) may be
readily used in a typical gradient-based shape optimization algorithm; see Section V.5.

On the other hand, in the case where ΣD is optimized, the expression supplied
by Th. V.3.1.1 is unfortunately awkward from both the theoretical and practical per-
spectives. Indeed,

• The calculation of the surface form Eq. (V.3.6) of J ′(Ω)(θ) was enabled by the
precise knowledge of the local behavior Eq. (V.3.3) of uΩ and pΩ near the singularities
s0 and s1. In more involved situations, for instance in three space dimensions, or in
more challenging physical contexts (such as those of the linearized elasticity system,
or the Stokes equations), such precise information may not be available, or may be
difficult to handle.

• The numerical evaluation of the shape derivative J ′(Ω)(θ) requires the calculation
of the coefficients cu and cp featured in Eq. (V.3.3); this is doable, but it demands
adapted numerical techniques, for instance an enrichment of the finite element ba-
sis with the singular functions, or adapted p/hp finite mesh refinement methods;
see [Bab90; Ell05; Li00] and the references therein. In our numerical setting, pre-
sented in Section V.5, such techniques are bound to be all the more difficult to carry
out that the boundary ΣD is not explicitly discretized in the computational mesh.

• Eventually, it is possible in principle to rely only on the volumetric form Eq. (V.3.1)
of the shape derivative for algorithmic purposes, as is suggested for instance
in [Hip15; Gia17] and the references therein; nevertheless, for many practical pur-
poses, it is interesting to have a surface expression for this shape derivative - for
instance when it comes to using advanced optimization algorithms such as that
introduced in [Dun15].

We thenceforth focus our efforts on the instance of the problem Eq. (V.1.4) where this
transition zone ΣD is also subject to optimization (while ΣN is not). To overcome the
aforementioned difficulties, we introduce an approximation method which allows for the
optimization of the boundary ΣD between regions bearing homogeneous Dirichlet and
Neumann boundary conditions, without requiring the knowledge of the weakly singular
behavior of uΩ (and that of the adjoint state pΩ) in the neighborhood of ΣD. As we shall
see in Section V.5, this method lends itself to an easy generalization to more difficult
situations: transitions between other types of boundary conditions involving a singular
state, other physical contexts than that of the Laplace equation, etc.

Throughout this section, unless stated otherwise, we consider the shape optimization prob-
lem Eq. (V.1.4) in the physical setting of Section V.1.2, in the particular case where the
transition ΣD between the regions ΓD and Γ of ∂Ω is subject to optimization: Uad = UDN
and Θad = ΘDN. After introducing a few notations and background material regarding the
notion of geodesic distance function in Section V.4.1.a, in Section V.4.1.b, we present an
approximate version of the physical problem Eq. (V.1.2), relying on a “small” parameter
ε > 0, with the noticeable feature that its unique solution uΩ,ε is smooth. This leads to
the introduction of an approximate shape optimization problem of a smoothed functional
Jε(Ω) in Section V.4.2.a; we calculate the shape derivative J ′ε(Ω)(θ) by classical means,
and the numerical evaluation of the resulting expression poses no particular difficulty.
Finally, in Section V.4.2.b, we prove in the model context where Eq. (V.1.3) holds that
the approximate shape optimization problem converges to its exact counterpart, in the
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sense that uΩ,ε → uΩ as ε → 0, and the values of Jε(Ω) and J ′ε(Ω)(θ) converge to their
exact counterparts J (Ω) and J ′(Ω)(θ).

V.4.1.a About the signed distance function to a subset on a submanifold

This section is a concise summary of the result about the signed distance function on a
submanifold presented in our paper [Dap19, Section 4.1].

Let M be an oriented, closed and smooth submanifold of Rd with codimension 1. M
is equipped with a Riemannian structure by endowing its tangent bundle with the inner
product induced by that of Rd and we denote by n its unit normal vector. In the context
of Section V.1.2,M stands for the boundary ∂Ω of the considered shape Ω.

The length `(γ) of a piecewise differentiable curve γ : I → M defined on an interval
I ⊂ R is

`(γ) =
∫
I
|γ′(t)| dt.

The geodesic distance dM(x,y) between two points x,y ∈M is then:

dM(x,y) = inf `(γ),

where the infimum is taken over all piecewise differentiable curves γ : (a, b) → M such
that γ(a) = x and γ(b) = y. Likewise, we denote by

dM(x, K) = inf
y∈K

dM(x,y)

the distance between x ∈M and a subset K ⊂M.

We now turn to the notion of signed distance function on the submanifoldM: let G ⊂M
be an open subset which we assume to be smooth for simplicity; its boundary Σ := ∂G is
a closed, smooth submanifold of Rd with codimension 2, and we denote by nΣ : Σ → S1

the unit normal vector to Σ pointing outward G. In particular, nΣ is a vector field along
Σ which is tangential toM.

Definition V.4.1.1 – Signed distance function on a submanifold.
The signed distance function dG to G is defined by:

∀x ∈M, dG(x) =


−dM(x,Σ) if x ∈ G,

0 if x ∈ Σ,
dM(x,Σ) if x ∈M \G.

For y ∈ M, we denote by pΣ(y) the projection of y onto Σ, that is, the unique point
x ∈ Σ such that dM(x,y) = dM(x,Σ), when this makes sense (i.e. when there is indeed
such a unique point).
We eventually consider the differentiation of the signed distance function dG with respect
to variations of the manifoldM (and thus of Σ). The following result is new to the best
of our knowledge (note here that for simplicity we only give the result concerning the
Eulerian derivative of the signed geodesic distance function and we refer to our paper for
details concerning the Lagrangian derivative):
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Theorem V.4.1.1 – Eulerian derivative of the geodesic signed distance func-
tion.
When it is defined, the Eulerian derivative d′G(θ)(y) of the geodesic signed distance
function dG at y is defined by the formula:

d′G(θ)(y) = −θ(p) · nΣ(p) +
∫ dG(y)

0
ΠMσ(t)(σ′(t), σ′(t)) (θ · n)(σ(t)) dt,

where p = pΣy, σ(t) is the geodesic curve joining p to y and ΠMp is the second
fundamental form ofM at p, that is:

∀v ∈ TpM, ΠMp v · v = −∇n(p)v · v,

where n is any extension of the normal vector n :M→ Rd to an open neighborhood
ofM in Rd.

Remark V.4.1.1: The structure of Th. V.4.1.1 is quite intuitive: the first term
is exactly the one featured in the formula for the Eulerian derivative of the signed
distance function in the Euclidean case, i.e. without taking into account the curvature
of the ambient space (see e.g. [Dap13, Section 4.2]), while the second one expresses the
deformation with respect to θ of the geodesic between p and y out of the (normal)
variation of the manifoldM.

V.4.1.b The smoothed setting

In the setting of Section V.1.2 (see also Fig. V.1.2), and following the works [All14b;
Des18], we trade the solution uΩ to the “exact” problem Eq. (V.1.2) for that uΩ,ε to the
following approximate version, where the homogeneous Dirichlet and Neumann boundary
conditions on ΓD and Γ respectively are replaced by a Robin boundary condition on
ΓD ∪ Γ: 

−∆uΩ,ε = f in Ω,
∂uΩ,ε
∂n + hεuΩ,ε = 0 on Γ ∪ ΓD,

∂uΩ,ε
∂n = g on ΓN .

(V.4.1)

Here, the coefficient hε is defined by:

hε(x) = 1
ε
h

(
dΓD(x)
ε

)
, (V.4.2)

where h : R→ R is a smooth function with the properties:

0 ≤ h ≤ 1, h ≡ 1 on (−∞,−1], h(0) > 0, h ≡ 0 on [1,∞),

and dΓD(x) is the (geodesic) signed distance function to ΓD on the surface ∂Ω; see
Def. V.4.1.1. In other words, hε equals 1/ε inside ΓD, “far” from ΣD, 0 on Γ “far” from
ΣD, and it presents a smooth transition between these two values in a tubular neighbor-
hood of ΣD with (geodesic) width ε, so that the boundary conditions in Eq. (V.1.2) are
approximately satisfied; see Fig. V.4.1.

Remark V.4.1.2: Note here that the regularization function Eq. (V.4.2) is the same
as the one explained in Remark III.2.2.2 and different than the one used to smooth
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the optical index in Section III.2.2.a. We preferred to rely here on the signed distance
function rather a convolution product since it seems to be more coherent in the case
of curved structures.

In particular, hε vanishes on a neighborhood of ΓN in ∂Ω; notice also that our assumptions
on h imply that there exists a real value α > 0 which is independent of ε such that:

∀x ∈ ΓD, α ≤ εhε(x). (V.4.3)

"�"

1/"

0

�D �

Figure V.4.1: Graph of the function hε defined by Eq. (V.4.2).

The variational formulation associated to Eq. (V.4.1) reads: uΩ,ε is the unique function
in H1(Ω) such that

∀v ∈ H1(Ω),
∫

Ω
∇uΩ,ε · ∇v dx +

∫
ΓD∪Γ

hεuΩ,εv ds =
∫

Ω
fv dx +

∫
ΓN
gv ds. (V.4.4)

It follows from the standard Lax-Milgram theory that this problem is well-posed. In ad-
dition, for a fixed value of ε > 0, due to the smoothness of Ω and hε (see Section V.4.1.a
about the smoothness of dΓD), the solution uΩ,ε to Eq. (V.4.1) actually enjoys H2 regu-
larity on a neighborhood of ΣD, as a consequence of the standard regularity theory for
elliptic equations; see e.g. [Bre10, Chapter 9].

Remark V.4.1.3: This approximation method can be straightforwardly adapted to
different contexts, such as that of the linearized elasticity system; see Section V.5 for
illustrations, and [Des18] for an adaptation in the context of the acoustic Helmholtz
equation.

V.4.2 Regularized shape derivative

V.4.2.a The approximate shape optimization problem

We propose to replace the exact shape optimization problem Eq. (V.1.4) by its regularized
counterpart:

inf
Ω∈UDN

Jε(Ω), where Jε(Ω) :=
∫

Ω
j(uΩ,ε) dx, (V.4.5)

and uΩ,ε is the solution to Eq. (V.4.1).

When it comes to the shape derivative of Jε(Ω), the result of interest is the following:
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Theorem V.4.2.1 – Shape derivative of the regularized model.
The functional Jε(Ω) is shape differentiable at any admissible shape Ω ∈ UDN, and its
shape derivative reads, for arbitrary θ ∈ ΘDN (volumetric form):

J ′ε(Ω)(θ) =
∫
∂Ω

(j(uΩ,ε)− fpΩ,ε) θ · n ds−
∫

Ω
j′(uΩ,ε)∇uΩ,ε · θ dx

+
∫

Ω

(
(∇ · θ)I−∇θ −∇θ>

)
∇uΩ,ε · ∇pΩ,ε dx

+
∫

Γ∪ΓD
∇∂Ω · θ hεuΩ,εpΩ,ε ds+

∫
Ω
f∇pΩ,ε · θ dx

+ 1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)(
−θ(x) · logx(pΣD(x))

dΓD(x) − θ(pΣD(x)) · nΣD(pΣD(x))
)
uΩ,εpΩ,ε ds(x)

1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)(∫ dΓD (x)

0
Π∂Ω
σx(t)(σ′x(t), σ′x(t)) (θ · n)(σx(t)) dt

)
uΩ,εpΩ,ε ds(x),

(V.4.6)

where σx(t) is the unique geodesic passing through x and pΣD(x), and the adjoint state
pΩ,ε is the unique solution in H1(Ω) to the following system:

−∆pΩ,ε = −j(uΩ,ε) in Ω,
∂pΩ,ε
∂n + hεpΩ,ε = 0 on ΓD ∪ Γ,

∂pΩ,ε
∂n = 0 on ΓN .

(V.4.7)

Equivalently, this rewrites (surface form):

J ′ε(Ω)(θ) =
∫

Γ∪ΓD

[
j(uΩ,ε)− fpΩ,ε +∇∂ΩuΩ,ε · ∇∂ΩpΩ,ε

−∂uΩ,ε

∂n
∂pΩ,ε

∂n
− κpΩ,ε

∂uΩ,ε

∂n

]
θ · n ds+ 1

ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)[
−θ(pΣD(x)) · nΣD(pΣD(x))

+
∫ dΓD (x)

0
Π∂Ω
σx(t)(σ′x(t), σ′x(t)) (θ · n)(σx(t)) dt

]
uΩ,εpΩ,ε ds(x). (V.4.8)

Proof of Eq. (V.4.6): The proof is very similar to that of the volumetric for-
mula Eq. (V.2.1) in Th. V.3.1.1, and we only sketch the main ingredients. At first,
using the implicit function theorem, one sees that the solution uΩ,ε to Eq. (V.4.1) has
a Lagrangian derivative ůΩ,ε(θ), which is the unique solution in H1(Ω) to the following
variational problem: for all v ∈ H1(Ω),∫

Ω
∇ůΩ,ε(θ) · ∇v dx +

∫
Γ∪ΓD

hε(dΓD )̊uΩ,ε(θ)v ds =∫
Ω

(∇ · (fθ)v + (∇θ +∇θ> − (∇ · θ)I)∇uΩ,ε · ∇v) dx−
∫

Γ∪ΓD
(∇∂Ω · θ) hε(dΓD)uΩ,εv ds

− 1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)(
−θ(x) · logx(pΣD(x))

dΓD(x) − θ(pΣD(x)) · nΣD(pΣD(x))
)
uΩ,εv ds(x)

− 1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)(∫ dΣD (x)

0
Π∂Ω
γ(t)(γ′(t), γ′(t)) (θ · n)(γ(t)) dt

)
uΩ,εv ds(x), (V.4.9)

where we have used Th. V.4.1.1 for the Lagrangian derivative of the geodesic distance.
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On the other hand, using a change of variables yields:

Jε(Ωθ) =
∫

Ω
|det(Id +∇θ)|j(uΩθ ,ε ◦ (Id + θ)) dx,

whence, differentiating with respect to θ and using the variational formulation for the
adjoint system Eq. (V.4.7):

J ′ε(Ω)(θ) =
∫

Ω
∇ · θj(uΩ,ε) dx +

∫
Ω
j′(uΩ,ε)̊uΩ,ε(θ) dx,

=
∫

Ω
∇ · θj(uΩ,ε) dx−

∫
Ω
∇ůΩ,ε(θ) · ∇pΩ,ε dx

∫
Γ∪ΓD

hε(dΓD )̊uΩ,ε(θ)pΩ,ε ds,
(V.4.10)

Combining this with Eq. (V.4.9) eventually yields the desired result.

Proof of Eq. (V.4.8): To simplify the notations, until the end of the proof, we take the
shortcuts u ≡ uΩ,ε and p ≡ pΩ,ε. We decompose the volumetric expression Eq. (V.4.6) as:

J ′ε(Ω)(θ) = I1(θ) + I2(θ),

where

I1(θ) =
∫
∂Ω

(j(u)− fp) θ · n ds−
∫

Ω
j′(u)∇u · θ dx

+
∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇u · ∇p dx +

∫
Γ∪ΓD

∇∂Ω · θ hΩ,εup ds+
∫

Ω
f∇p · θ dx,

and

I2(θ) = 1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)[
−θ(x) · logx(pΣD(x))

dΓD(x) − θ(pΣD(x)) · nΣD(pΣD(x))

+
∫ dΓD (x)

0
Π∂Ω
σx(t)(σ′x(t), σ′x(t)) (θ · n)(σx(t)) dt

]
up ds(x).

Let us first rearrange the expression of I1(θ). To this end, using the same type of calcula-
tions as in the proofs of Theorems V.2.1.1 and V.3.1.1, integration by parts together with
the fact that u and p have at least H2 regularity near ΓD ∪ Γ yield straightforwardly:

I1(θ) =
∫
∂Ω

(j(u)− fp) θ · n ds−
∫

Ω
j′(u)∇u · θ dx +

∫
Ω
f∇p · θ dx

+
∫

Γ∪ΓD
∇∂Ω · θ hΩ,εup ds

+
∫

Γ∪ΓD

(
∇u · ∇p θ · n− ∂u

∂n
∇p · θ − ∂p

∂n
∇u · θ

)
ds

+
∫

Ω
(−∇(∇u · ∇p) + ∆u∇p+ ∆p∇u+∇2p∇u+∇2u∇p) · θ dx

=
∫
∂Ω

(j(u)− fp) θ · n ds+
∫

Γ∪ΓD
∇∂Ω · θ hΩ,εup ds

+
∫

Γ∪ΓD

(
∇u · ∇p θ · n− ∂u

∂n
∇p · θ − ∂p

∂n
∇u · θ

)
ds.

(V.4.11)

Denoting by D the last integrand in the above right-hand side, we obtain:

D := ∇u · ∇p θ · n− ∂u
∂n∇p · θ −

∂p
∂n∇u · θ,

= − ∂u
∂n

∂p
∂nθ · n−

(
∂u
∂n∇∂Ωp · θ + ∂p

∂n∇∂Ωu · θ
)
,

= − ∂u
∂n

∂p
∂nθ · n + hε (u∇∂Ωp · θ + p∇∂Ωu · θ) .

(V.4.12)
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On the other hand, integrating by parts on the surface ∂Ω (see again Th. V.1.2.2), we
obtain:∫

∂Ω
∇∂Ω · θ hΩ,εup ds =

∫
ΓD∪Γ

hεκup θ · n ds−
∫

Γ∪ΓD
hε(p∇∂Ωu · θ + u∇∂Ωp · θ) ds

− 1
ε2

∫
Γ∪ΓD

h′
(
dΓD
ε

)
(∇∂ΩdΓD · θ)up ds. (V.4.13)

Finally, combining Eqs. (V.4.11) to (V.4.13) with the definitions of I1(θ) and I2(θ), as
well as Th. V.1.2.2 for the tangential gradient of the geodesic signed distance function,
the desired result follows. �

V.4.2.b Study of the convergence of the approximate model to the exact
problem

In this section, we are interested in evaluating in which capacity the exact shape op-
timization problem Eq. (V.1.4) is correctly approximated by its smoothed counter-
part Eq. (V.4.5). More precisely, we investigate the convergence of the objective function
Jε(Ω) and that of its shape derivative J ′ε(Ω) to the exact versions J (Ω) and J ′(Ω) respec-
tively, for a fixed shape Ω ⊂ R2. In order to keep the exposition as simple as possible, we
proceed under the assumption Eq. (V.1.3), however we believe the result holds in greater
generality, and notably in the 2d case where ∂Ω is not flat in the neighborhood of ΣD;
see Remark V.1.2.2. Let us mention that a quite similar problem is investigated from
the theoretical viewpoint in [Cos96], with stronger conclusions. Our first result in this
direction is the following:
Theorem V.4.2.2 – Convergence of the regularized model.
Under assumption Eq. (V.1.3), the function uΩ,ε converges to uΩ strongly in H1(Ω),
and the following estimate holds:

‖uΩ,ε − uΩ‖H1(Ω) ≤ Csε
s‖f‖L2(Ω), (V.4.14)

for any 0 < s < 1
4 , where the constant Cs depends on s.

Proof: The error rε := uΩ,ε − uΩ is the unique solution in H1(Ω) to the system:{
−∆rε = 0 in Ω,

∂rε
∂n + hεrε = −∂uΩ

∂n − hεuΩ on ∂Ω, (V.4.15)

which rewrites, under variational form:

∀v ∈ H1(Ω),
∫

Ω
∇rε · ∇v dx +

∫
∂Ω
hεrεv ds = −

∫
∂Ω

∂uΩ

∂n
v ds−

∫
ΓD∪Γ

hεuΩv ds. (V.4.16)

Note that the above variational problem is well-posed, as follows from the Lax-Milgram
lemma and the following Poincaré-like inequality (which is proved by the standard con-
tradiction argument):

∀v ∈ H1(Ω), ‖v‖2
H1(Ω) ≤ C

(∫
Ω
|∇v|2 dx +

∫
ΓD
v2 ds

)
; (V.4.17)

here and throughout the proof, C stands for a positive constant which is independent of
ε. The estimate Eq. (V.4.14) is then obtained within two steps.
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Step 1: We prove that rε is bounded in H1(Ω), uniformly with respect to ε.
To this end, we estimate the first term in the right-hand side of Eq. (V.4.16) as:∣∣∣∣∣

∫
∂Ω

∂uΩ

∂n
v ds

∣∣∣∣∣ ≤ C

∥∥∥∥∥∂uΩ

∂n

∥∥∥∥∥
H−1/2(∂Ω)

‖v‖H1(Ω), (V.4.18)

where we have the control ∥∥∥∥∥∂uΩ

∂n

∥∥∥∥∥
H−1/2(∂Ω)

≤ C‖f‖L2(Rd),

as follows from the Green’s formula Eq. (V.2.6) applied to the function uΩ in E(∆, L2(Ω))
(see Eq. (V.2.5)). We are thus left with the task of estimating the second term in the
right-hand side of Eq. (V.4.16), that is, the integral:∫

ΓD∪Γ
hεuΩv ds =

∫
Γ
hεuΩv ds.

To achieve this goal, recall that, since uΩ ∈ Hs(Ω) for 1
2 < s < 3

2 , and owing to the
continuity of the trace u 7→ u|∂Ω from Hs(Ω) into Hs− 1

2 (∂Ω), for s > 1
2 (see e.g. [McL00,

Theorem 3.37]), it comes that uΩ ∈ Hs− 1
2 (∂Ω), and in fact, using Eq. (V.1.2), that

uΩ ∈ H̃s− 1
2 (ΓN∪Γ). Using now the characterization Eq. (V.1.9) of the space H̃s− 1

2 (ΓN∪Γ),
it follows that for all 0 < σ < 1, the function uΩ/ρ

σ belongs to L2(Γ), where we have
introduced the weight ρ(x) := min(|x− s0|, |x− s1|).

Using this fact in combination with the Sobolev embedding from H1/2(Γ) into Lq(Γ)
for any 1 ≤ q < ∞ (see e.g. [Di 12, Theorem 6.7] or [Man18, Theorem 32]), we get
successively:∣∣∣∣∫

Γ
hεuΩv ds

∣∣∣∣ =
∣∣∣∣∣
∫

Γ
ρσhε

1
ρσ
uΩv ds

∣∣∣∣∣ ,
≤

(∫
Γ
ρpσhpε ds

) 1
p

(∫
Γ

1
ρ2σu

2
Ω ds

) 1
2 (∫

Γ
vq ds

) 1
q

,

≤
(∫

Γ
ρpσhpε ds

) 1
p

‖uΩ‖H̃σ(ΓN∪Γ)‖v‖Lq(Γ),

≤ C
(∫

Γ
ρpσhpε ds

) 1
p

‖uΩ‖H̃σ(ΓN∪Γ)‖v‖H1(Ω),

(V.4.19)

for any p > 2 (the constant C depends on p), where we have used Hölder’s inequality
with 1

2 + 1
p

+ 1
q

= 1 to pass from the first line to the second one.

To proceed further, let us decompose Γ as

Γ = Γε ∪ U0 ∪ U1, where Ui := {x ∈ Γ, |x− si|< ε} , and Γε := {x ∈ Γ, ρ(x) > ε} .

Taking advantage of the structure Eq. (V.4.2) of hε, the first integral in the right-hand
side of Eq. (V.4.19) is of the form∫

Γ
ρpσhpε ds =

∫
U1
ρpσhpε ds+

∫
U2
ρpσhpε ds+

∫
Γε
ρpσhpε ds

≤ C

εp

∫ ε

0
tpσh

(
t

ε

)p
dt,

≤ Cεpσ+1

εp

∫ 1

0
tpσh(t)p dt,

≤ Cεp(σ−1)+1.

150/182



CHAPTER V. BOUNDARY SHAPE OPTIMIZATION

Therefore, (∫
Γ
ρpσhpε ds

) 1
p

≤ Cεσ−1+ 1
p ;

now, choosing p > 2 and σ < 1 adequately and using Eqs. (V.1.10), (V.1.12) and (V.4.19),
we have proved that, for all s < 1

2 , there exists a constant Cs:∣∣∣∣∫
Γ
hεuΩv ds

∣∣∣∣ ≤ Csε
s‖f‖L2(Rd)‖v‖H1(Ω). (V.4.20)

Eventually, taking v = rε as a test function in Eq. (V.4.16), we obtain the standard a
priori estimate for rε:∫

Ω
|∇rε|2 dx +

∫
∂Ω
hεr

2
ε ds = −

∫
∂Ω

∂uΩ

∂n
rε ds−

∫
Γ
hεuΩrε ds. (V.4.21)

Combining Eq. (V.4.21) with the estimates Eqs. (V.4.18) and (V.4.20), the Poincaré
inequality Eq. (V.4.17) and the fact that hε ≥ 1 on ΓD (see Eq. (V.4.3)), it follows that
there exists a constant C, which does not depend on ε, such that:

‖rε‖H1(Ω) ≤ C‖f‖L2(Rd). (V.4.22)

Step 2: We now turn to the proof of Eq. (V.4.14) so to speak.
Multiplying both sides of Eq. (V.4.21) by ε and using Eq. (V.4.3), we obtain:

‖rε‖2
L2(ΓD) ≤ Cε

∫
ΓD
hεr

2
ε ds,

≤ Cε
(∫

Ω
|∇rε|2 dx +

∫
∂Ω
hεr

2
ε ds

)
≤ Cε

∣∣∣∣∣
∫
∂Ω

∂uΩ

∂n
rε ds

∣∣∣∣∣+ Cε
∣∣∣∣∫

Γ
hεuΩrε ds

∣∣∣∣ ,
≤ Cε‖f‖2

L2(Rd),

(V.4.23)

where we have used the estimate Eq. (V.4.20) with v = rε and the bound Eq. (V.4.22)
over rε. Interpolating between Eq. (V.4.22) and Eq. (V.4.23) (see for instance [Lio68,
Proposition 2.3]), for all 0 ≤ s ≤ 1

2 , s = (1− t)0+ 1
2t, there exists a constant Cs such that:

‖rε‖Hs(ΓD) ≤ Cs‖rε‖1−t
L2(ΓD)‖rε‖

t

H
1
2 (ΓD)

≤ Csε
1
2−s‖f‖L2(Rd).

Now, since uΩ ∈ Hs(Ω) for 1
2 < s < 3

2 , it comes that ∂uΩ
∂n ∈ H

s− 3
2 (∂Ω) (see [Cos88, Lemma

4.3]), and so∣∣∣∣∣
∫

ΓD

∂uΩ

∂n
rε ds

∣∣∣∣∣ ≤
∥∥∥∥∥∂uΩ

∂n

∥∥∥∥∥
Hs− 3

2 (ΓD)
‖rε‖

H
3
2−s(ΓD)

≤ Csε
s−1‖f‖2

L2(Rd), (V.4.24)

for all 1 < s < 3
2 . Returning to Eq. (V.4.21) and using Eqs. (V.4.17), (V.4.20)

and (V.4.24), we now see that, for any s < 1
2 and σ < 1

2 , there exists a constant C > 0
(depending on s and σ) such that:

‖rε‖2
H1(Ω) ≤ C

(∫
Ω
|∇rε|2 ds+

∫
ΓD
r2
ε ds

)
≤ C

(
εs‖f‖2

L2(Rd) + εσ‖f‖L2(Rd)‖rε‖H1(Ω)
)
,

Hence Eq. (V.4.14) holds, and this terminates the proof. �

As a straightforward consequence of Th. V.4.2.2, we obtain that under the assump-
tion Eq. (V.1.3) then for any given admissible shape Ω ∈ UDN, the approximate shape
functional Jε(Ω) converges to its exact counterpart J (Ω). Let us now turn to the con-
vergence of the derivative of Jε(Ω).
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Theorem V.4.2.3 – Convergence of the regularized shape derivative.
Under Assumption Eq. (V.1.3), for a given admissible shape Ω ∈ UDN, the approximate
shape derivative J ′ε(Ω) converges to its exact counterpart J ′(Ω) in the sense that:

sup
θ∈ΘDN
‖θ‖ΘDN≤1

|J ′ε(Ω)(θ)− J ′(Ω)(θ)| = 0.

Proof: We rely on the volumetric expressions Eq. (V.3.1) and Eq. (V.4.6) of the shape
derivatives J ′(Ω)(θ) and J ′ε(Ω)(θ). In our context where Eq. (V.1.3) is satisfied, the
boundary ∂Ω is flat in the neighborhood of ΣD = {s0, s1}; hence, for ε > 0 small enough,
the second fundamental form of ∂Ω vanishes where hε > 0, and the normal vectors
nΣD(s0), nΣD(s1) to ΣD coincide with the tangent vectors ±τ (s0) and ±τ (s1) to ∂Ω.
Then, the approximate shape derivative J ′ε(Ω) supplied by Th. V.4.2.1 simply boils down
to:

J ′(Ω)(θ) =
∫
∂Ω

(j(uΩ,ε)− fpΩ,ε) θ · n ds−
∫

Ω
j′(uΩ,ε)∇uΩ,ε · θ dx

+
∫

Ω
((∇ · θ)I−∇θ −∇θ>)∇uΩ,ε · ∇pΩ,ε dx

+
∫

Γ∪ΓD
∇∂Ω · θhεuΩ,εpΩ,ε ds+

∫
Ω
f∇pΩ,ε · θ dx

+
1∑
i=0

1
ε2

∫
Γ∪ΓD

h′
(x− si

ε

)
(θ(x)− θ(si)) · nΣD(si) uΩ,εpΩ,ε ds(x). (V.4.25)

Given the expression Eq. (V.3.1) of the exact shape derivative J ′(Ω), and in light
of Th. V.4.2.2, it is obviously enough to show that the three integrals

I1(θ) :=
∫

Γ∪ΓD
∇Γ · θ hεuΩ,εpΩ,ε ds,

I2(θ) := 1
ε2

∫
Γ∪ΓD

h′
(x− s0

ε

)
(θ(x)− θ(s0)) · τ (s0)uΩ,εpΩ,ε ds(x),

I3(θ) := 1
ε2

∫
Γ∪ΓD

h′
(x− s1

ε

)
(θ(x)− θ(s1)) · τ (s1) uΩ,εpΩ,ε ds(x),

converge to 0 as ε→ 0, uniformly with respect to θ when ‖θ‖ΘDN ≤ 1.

As far as the integral I1(θ) is concerned, Th. V.4.2.2 and the facts that−∆uε = −∆uΩ = f
imply that

∂uΩ,ε

∂n
→ ∂uΩ

∂n
in H−1/2(∂Ω), and uΩ,ε → uΩ in H1/2(∂Ω) as ε→ 0;

similar convergence results hold about pΩ,ε and pΩ. Therefore,∫
Γ∪ΓD

∇Γ · θ hΩ,εuΩ,εpΩ,ε ds ε→0−−→ −
∫

Γ∪ΓD
∇Γ · θ

∂uΩ

∂n
pΩ ds, (V.4.26)

where the last integral may be decomposed as∫
Γ∪ΓD

∇∂Ω · θ
∂uΩ

∂n
pΩ ds =

∫
ΓD
∇∂Ω · θ

∂uΩ

∂n
pΩ ds+

∫
Γ
∇∂Ω · θ

∂uΩ

∂n
pΩ ds = 0,

as follows from the boundary conditions satisfied by uΩ and pΩ. This convergence is easily
seen to be uniform with respect to θ ∈ ΘDN, ‖θ‖ΘDN ≤ 1.
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Let us now turn to the treatment of I2(θ), that of I3(θ) being on all points identical. We
assume for notation simplicity that s0 = 0, and again, we identify the neighborhood of s0
in ∂Ω (which is a horizontal line) with a subset of the real line R. The key remark in the
analysis of I2(θ) is that there exists a vector field θ̃(x) vanishing identically on ΓN such
that (θ(x)− θ(0)) · τ (0) = x · θ̃(x), as is easily seen from a Taylor expansion at 0. This
will allow to improve the available convergence rates of uΩ,ε and pΩ,ε in the integrand of
I2(θ). More precisely, using integration by parts on the boundary ∂Ω, I2(θ) rewrites:

I2(θ) =
∫

Γ∪ΓD
∂τhεx · θ̃(x)uΩ,εpΩ,ε ds,

= −
∫

Γ∪ΓD
hε∂τ

(
x · θ̃(x)uΩ,εpΩ,ε

)
ds,

= −
∫

Γ∪ΓD
hεθ̃(x) ·

(
x
∂uΩ,ε

∂τ
pΩ,ε + x

∂pΩ,ε

∂τ
uΩ,ε

)
ds− hεuΩ,εpΩ,ε

∂

∂τ

(
x · θ̃(x)

)
ds

= −
∫

Γ∪ΓD
hεθ̃(x) ·

(
x
∂uΩ,ε

∂τ
pΩ,ε + x

∂pΩ,ε

∂τ
uΩ,ε

)
ds+Rε(θ),

where Rε(θ) is a remainder (possibly changing from one line to the next) gathering sev-
eral integrals which are proved to converge to 0 as ε → 0, uniformly with respect to θ
when ‖θ‖ΘDN ≤ 1 owing to similar calculations to those involved in the above proof of
convergence of I1(θ) (see Eq. (V.4.26)). Then, using the boundary conditions satisfied by
uΩ,ε and pΩ,ε,

I2(θ) =
∫

Γ∪ΓD

(
ρ(x)∂uΩ,ε

∂τ

∂pΩ,ε

∂n
+ ρ(x)∂pΩ,ε

∂τ

∂uΩ,ε

∂n

)(
x
ρ(x) · θ̃(x)

)
ds+Rε(θ),

=
∫

Γ∪ΓD

(
∂(ρuΩ,ε)

∂τ

∂pΩ,ε

∂n
+ ∂(ρpΩ,ε)

∂τ

∂uΩ,ε

∂n

)(
x
ρ(x) · θ̃(x)

)
ds+Rε(θ),

where we have posed ρ(x) = |x| and the same calculations as in Eq. (V.4.26) have been
used.

At this point, we know from Th. V.4.2.2 that ∂uΩ,ε
∂n (resp. ∂pΩ,ε

∂n ) converges to ∂uΩ
∂n (resp.

∂pΩ
∂n ) in H−1/2(∂Ω). Hence, the proof of the convergence of I2(θ), and thereby that
of Th. V.4.2.3, follows from the following results:

∂(ρuΩ,ε)
∂τ

ε→0−−→ ∂(ρuΩ)
∂τ

in H1(Ω), and ∂(ρpΩ,ε)
∂τ

ε→0−−→ ∂(ρpΩ)
∂τ

in H1(Ω), (V.4.27)

where τ stands for any smooth extension to the whole Ω of the tangent vector τ to ∂Ω;
see Section V.1.2.f. We now sketch the proof of this last statement focusing on the case
of uΩ,ε; the counterpart result as regards pΩ,ε being proved in a similar fashion.

The convergence Eq. (V.4.27) actually follows from exactly the same arguments as that in
the proof of Eq. (V.4.14). At first, using the representation of Th. V.1.2.1 (or more exactly
a higher-order avatar of it, see Remark V.1.2.1), observe that the function ρuΩ belongs
to Hs(Ω) for all 0 ≤ s < 5

2 . Letting the notation rε := uΩ,ε− uΩ, and using test functions
of the form ρ(x)v ∈ H1(Ω) for v ∈ H1(Ω) inside the variational formulation Eq. (V.4.16)
of rε, we see that ρrε satisfies:

∀v ∈ H1(Ω),
∫

Ω
∇(ρrε) · ∇v dx +

∫
Γ∪ΓD

hερrεv ds =

−
∫

Γ
hερuΩv ds−

∫
ΓD

∂uΩ

∂n
ρv ds−

∫
Ω
∇ρ · (v∇rε − rε∇v) dx. (V.4.28)
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Now using test functions of the form ∂v
∂τ
, v ∈ H1(Ω) in Eq. (V.4.28), then integrating by

parts yields the following variational formulation for qε := ∂(ρrε)
∂τ

:

∀v ∈ H1(Ω), −
∫

Ω
∇qε · ∇v dx−

∫
Γ∪ΓD

hεqεv ds =
∫
∂Ω

∂hε
∂τ

ρrεv ds+
∫

Γ

∂

∂τ
(hερ(x)uΩ)v ds

+
∫

ΓD

∂

∂τ

(
ρ
∂uΩ

∂n

)
v ds+ 〈Fε, v〉H1(Ω)∗,H1(Ω), (V.4.29)

where the remainder Fε is a sequence of linear forms in the dual H1(Ω)∗ of H1(Ω) which
converges to 0 in the strong dual topology.

Finally, using the result of Th. V.4.2.2, together with very similar calculations than those
involved in its proof, the desired result Eq. (V.4.27) follows, which concludes the proof.

�

V.5 Numerical applications

V.5.1 Optimization of the repartition of clamps and locators on
the boundary of an elastic structure

We start with the application of the results of Sections V.3 and V.4 to the problem of
optimal repartition of clamps and locators on an elastic structure; see [Baw04, Chapter
9] for a presentation of the physical context and [Kay06; Ma11; Sel13] for optimization
studies conducted in this context.

V.5.1.a Description of the physical setting and of the optimization problem

In this example, Ω stands for a three-dimensional rectangular beam with size 4 × 1 × 1,
filled with a linearly elastic material, whose Hooke’s law A is defined by, for any symmetric
matrix e with size 3× 3:

Ae = 2µe+ λtr(e),
where λ, µ are the Lamé parameters of the material; in our context

λ = Eν

(1 + ν)(1− 2ν) , µ = E

1 + ν
(V.5.1)

with E = 100, ν = 0.3. During its construction, Ω receives the vertical load gtool =
(0, 0,−1) from the manufacturing tool, which is applied on the upper side ΓT of its
boundary. So that the structure do not move under this effort, a clamping-locator
system is used: Ω is attached on a subregion ΓD of the left-hand side ΛD of ∂Ω (locator),
while it receives a prescribed load g = (0,−1, 0) on another region ΓN of the right-hand
side ΛN ⊂ ∂Ω (clamping); the latter is exerted by an external mechanical device pressing
against the structure; see Fig. V.5.1 for a sketch of the situation.
In this context, the displacement of Ω is the unique solution uΓD,ΓN ∈ H1

ΓD(Ω)3 to the
following linear elasticity system:

−∇ · (Ae(uΓD,ΓN ) = 0 in Ω,
uΓD,ΓN = 0 on ΓD,

Ae(uΓD,ΓN )n = gtool on ΓT ,
Ae(uΓD,ΓN )n = g on ΓN ,
Ae(uΓD,ΓN )n = 0 on Γ,

(V.5.2)
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�T

�N

�D g

gtool

e1

e2

e3

Figure V.5.1: Setting of the example of Section V.5.1 about the optimal repartition
of clamps and locators on the boundary of an elastic structure.

where e(u) := 1
2(∇u +∇u>) is the strain tensor associated to a vector field u : Ω→ R3.

Our aim is to optimize the positions ΓN and ΓD of clamps and locators on the surface of
the structure Ω, whose shape itself is not subject to optimization, so that the displacement
of Ω under the action of gtool be minimal. We also add constraints on the size of the regions
ΓN ,ΓD and on the perimeter of ΓD via fixed penalizations of the objective function. More
precisely, we consider the optimization problem:

inf
ΓD⊂ΛD
ΓN⊂ΛN

J (ΓD,ΓN), where J (ΓD,ΓN) =
∫

Ω
|uΓD,ΓN |2 dx

+ `D

∫
ΓD

ds+ `N

∫
ΓN

ds+ `KD

∫
ΣD

ds, (V.5.3)

where `D, `N and `KD are fixed Lagrange multipliers: `D = 2.10−2, `N = 10−3, `KD = 10−2.
In the framework of Hadamard’s method (see Section V.1.2.b), we consider deformations
θ such that:

θ · n = 0 on ∂Ω, and θ = 0 on ∂Ω \ (ΛD ∪ ΛN). (V.5.4)
The numerical resolution of this problem relies on the knowledge of the shape derivatives
of the partial mappings ΓD 7→ J (ΓD,ΓN) and ΓN 7→ J (ΓD,ΓN). In order to accomo-
date the presence of the transition ΣD := ΓD ∩ Γ ⊂ ΛD between homogeneous Dirichlet
and Neumann boundary conditions, we follow the lead of Section V.4 and consider the
following approximate counterpart of Eq. (V.5.3):

inf
ΓD⊂ΛD
ΓN⊂ΛN

Jε(ΓD,ΓN), where Jε(ΓD,ΓN) :=
∫

Ω
|uΓD,ΓN ,ε|2 dx

+ `D

∫
ΓD

ds+ `N

∫
ΓN

ds+ `KD

∫
ΣD

ds, (V.5.5)

where uΓD,ΓN ,ε is the solution in H1(Ω)3 to the system:

−∇ · (Ae(uΓD,ΓN ,ε) = 0 in Ω,
Ae(uΓD,ΓN ,ε) + hεuΓD,ΓN ,ε = 0 on ΛD,

Ae(uΓD,ΓN ,ε)n = gtool on ΓT ,
Ae(uΓD,ΓN ,ε)n = g on ΓN ,
Ae(uΓD,ΓN ,ε)n = 0 on Γ \ ΛD,

(V.5.6)
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featuring the interpolation profile hε in Eq. (V.4.2). Thence, the calculation of the shape
derivative of ΓN 7→ Jε(ΓD,ΓN) is provided by Section V.2, or more exactly, the straight-
forward adaptation of its proof to the present linearized elasticity context. The shape
derivative of the smoothed mapping ΓD 7→ Jε(ΓD,ΓN) is calculated exactly as in the
proof of Th. V.4.2.1 (or by using Céa’s formal method), and we omit the formula for
brevity.

V.5.1.b Numerical application

Let us now consider a concrete example in the previous context. A tetrahedral mesh of Ω
composed of 45 000 vertices is used, and the optimization problem Eq. (V.5.5) is solved for
the positions of ΓD and ΓN while, again, the shape of Ω itself is unchanged. Relying on the
level set method for representing ΓD and ΓN , we use a standard gradient algorithm based
on the knowledge of the shape derivatives of ΓD 7→ Jε(ΓD,ΓN) and ΓN 7→ Jε(ΓD,ΓN);
the computation takes about 8 hours and the results are presented on Fig. V.5.2.

(a) Design of clamps at iteration 1 (b) Design of locators at iteration 1

(c) Design of clamps at iteration 20 (d) Design of locators at iteration 20

(e) Design of clamps at iteration 100 (f) Design of locators at iteration 100

Figure V.5.2: Initial, intermediate and optimized designs of clamps and locators in
the test-case of Section V.5.1.

We notice in particular that the optimized design of the clamps is concentrated under
ΓT whereas the locators are symmetrically positioned at both ends of the beam. The
deformed configurations of the initial and optimized shapes are displayed in Fig. V.5.3.

V.5.2 Joint optimization of the shape and the regions support-
ing different types of boundary conditions

We now turn to examples where the shape Ω of a 2d structure is optimized at the same time
as the region ΓD of its boundary supporting homogeneous Dirichlet boundary conditions.
For simplicity, the region ΓN supporting inhomogeneous Neumann boundary conditions
is fixed, which means that we are exactly in the setting of Sections V.3 and V.4: in all the
examples in this subsection, we consider the following shape and topology optimization
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(a) Deformed configuration of
Ω with the initial configuration
of clamps and locators

(b) Deformed configuration of
Ω with the optimized configu-
ration of clamps and locators

(c) Convergence history

Figure V.5.3: Details of the optimization example of clamps and locators of Sec-
tion V.5.1.

problem:

inf
Ω⊂D

ΓD⊂ΛD∩∂Ω

J (Ω), where J (Ω) = j(uΩ) + `V

∫
Ω
ds+ `D

∫
ΓD

ds (V.5.7)

is a weighted sum of a case-dependent objective defined from a smooth function j, involv-
ing the elastic displacement uΩ of the shape, solution to Eq. (V.5.6), and of constraints
on both the volume of shapes, and on the area of the Dirichlet boundary ΓD (the latter
constraints being enforced by means of fixed Lagrange multipliers `V , `D). Notice that in
the statement Eq. (V.5.7) of the considered shape optimization problem, we have com-
mitted the same abuse of notations as in Section V.1.2.b: uΩ and J (Ω) depend on both
the overall shape Ω of the structure and the position ΓD of the region supporting homo-
geneous Dirichlet boundary conditions (the latter being constrained to belong to a fixed
region ΛD of the computational domain D), while only the first dependence is explicit.

As regards the numerical setting, the computational domain D is equipped with a fixed
mesh. Each shape Ω ⊂ D is represented by the level set method, i.e. Ω is described via
a level set function; see Section II.3.

Since the shape Ω is not discretized (it is only known via the datum of a level set function),
no computational mesh is available to calculate the elastic displacement uΩ by means of
a standard finite element method. To alleviate this issue, the “ersatz material trick”
(see e.g. [All01; All04; Ben13]) is used to approximate the considered linearized elasticity
systems posed on Ω with systems posed on D as a whole: uΩ is approximated by the
solution u to:

−∇ · (Aηe(u)) = 0 in D,
u = 0 on ΓD,

Aηe(u)n = g on ΓN ,
Aηe(u) = 0 on Γ,

where Aη(x) :=
{

A if x ∈ Ω,
ηA otherwise,

and η is a small parameter so that the void region D \Ω is filled with a very soft material
instead of void (typically, we take η = 10−3). In this section the Lamé parameters are
still given by Eq. (V.5.1) but using E = 1, ν = 0.3.
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As far as the representation of the optimized part ΓD of ∂Ω is considered, it is constrained
to belong to a planar subset ΛD of the boundary ∂D in the examples of Sections V.5.2.a
and V.5.2.b. In this case, it is represented by means of a level set function on a subset of
the real line. In Section V.5.2.c, the set ΛD is a whole region ofD. Then, ΓD is represented
by means of a different level set function ψ : ΛD → R from that φ used to represent Ω.
Both cases are simple adaptations from the general idea outlined in Section II.3; see
also [Xia14; Xia16] about this type of representation.

The same process as before is applied to approximate the transition region ΣD between
homogeneous Dirichlet and Neumann boundary condition in the formulation of Prob-
lem Eq. (V.5.7), and we do not repeat the details for brevity.

V.5.2.a Optimization of the shape of a two-dimensional bridge and its sup-
ports

We first consider the joint optimization of the shape of a two-dimensional bridge Ω and
of the location of its fixations. The situation is that depicted in Fig. V.5.4: Ω is enclosed
inside a two-dimensional computational domain D meshed with 80 537 triangles; a unit
vertical load is distributed along the upper deck ΓN , a neighborhood of which is imposed
to be part of Ω. We optimize Ω and the set of fixations ΓD (which is restrained to a subset
ΛD of the lower part of ∂D) with respect to the elastic compliance of the configuration;
more precisely, the optimization problem reads as Eq. (V.5.7) with the expressions:

j(u) =
∫

ΓN
g · u ds, `V = 50, `D = 10.

2

1
2

1
2

1

0.1

ΓN

ΛDΛD

g = (0,-1)

Figure V.5.4: Setting of the 2d bridge test-case of Section V.5.2.a; the dashed rect-
angle corresponds to the deck of the bridge, which is a non-optimizable area of
Ω.

We perform two optimization experiments, corresponding to different initial states as for
Ω and ΓD; the results are reported in Fig. V.5.5 and Fig. V.5.6. In particular, we observe
very different optimized topologies depending on the initial definition of the fixation region
ΓD.

V.5.2.b Optimization of the shape of a force inverter and of its fixations

Our second example deals with the optimization of a force inverter mechanism, that is,
a device which convert a pulling force into a pushing one. The details of the test-case
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(a) Iteration 1 (b) Iteration 25 (c) Iteration 100

(d) Deformed configuration of the optimized shape (e) Convergence history

Figure V.5.5: Concurrent optimization of the shape and the fixation regions of the
bridge of Section V.5.2.a, with an initial configuration for ΓD composed of two line
segments.

(a) Iteration 1 (b) Iteration 25 (c) Iteration 100

(d) Deformed configuration of the optimized shape (e) Convergence history

Figure V.5.6: Concurrent optimization of the shape and the fixation regions of the
bridge of Section V.5.2.a, with an initial configuration for ΓD composed of 18 line
segments.

are presented on Fig. V.5.7: the considered shapes Ω are contained in a box D meshed
with 78 408 triangles; they are subjected to a given load g = (−1, 0) applied on a non
optimizable subset ΓN of their left-hand side, and they are attached on another subset
ΓD of ∂Ω, contained in the upper and lower sides of ∂D. In this context, the aim is
to optimize the overall shape Ω and the location of the fixations ΓD so that the elastic
displacement of Ω on a non optimizable subset ΓT is maximized. The symmetry of the
optimized shapes with respect to the horizontal axis is enforced.
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g = (-1,0)

1

10.15

0.05

ΛD

ΛD

ΓN
ΓT

Figure V.5.7: Setting of the force inverter test-case of Section V.5.2.b. The two
dashed rectangles represent non optimizable areas.

More precisely, in the general formulation of the problem Eq. (V.5.7), we set:

j(u) = 10−1
∫

ΓT
|u− (1, 0)|2 ds− 10−3

∫
ΓN

u1 ds, `V = 5× 10−3, `D = 0

where the little penalization on the compliance was added to make it easier to obtain a
connected structure and u1 corresponds to the first component of u.

(a) Iteration 1 (b) Iteration 50 (c) Iteration 100

(d) Deformed configuration of the optimized
shape

(e) Convergence history

Figure V.5.8: Concurrent optimization of the shape and the fixation regions of the
force inverter of Section V.5.2.b, with an initial configuration for ΓD composed of 8
line segments.
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(a) Iteration 1 (b) Iteration 50 (c) Iteration 300

(d) Deformed configuration of the optimized
shape

(e) Convergence history

Figure V.5.9: Concurrent optimization of the shape and the fixation regions of the
force inverter of Section V.5.2.b, with an initial configuration for ΓD composed of 4
line segments.

V.5.2.c Optimization of the shape and the support regions of a two-
dimensional cantilever beam

Our last example deals with the concurrent optimization of the shape of a classical 2d
cantilever beam and its fixation zones. The considered shapes Ω are contained in a fixed
computational domain D, meshed with 39 402 triangles. They are attached on the upper
and lower left corners, as well as on a region ΓD which is subjected to optimization, and
which is constrained to be contained inside a given region DD ⊂ D. A vertical load
g = (0,−1) is applied on a non optimizable subset ΓN of the right-hand boundary; see
Fig. V.5.10. Notice that, contrary to the previous two examples, the region ΓD is not
a subset of a region ΛD ⊂ ∂D but it is allowed to evolve freely inside a region of D.
This demands a little adaptation of the framework described above (another level set
function is used to identify the region ΓD). Symmetry with respect to the horizontal axis
is imposed on the optimized shape.

ΛD

g = (0,-1)

2

1ΓN0.2

Figure V.5.10: Setting of the 2d cantilever test-case of Section V.5.2.c.
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All things considered, we consider the optimization problem Eq. (V.5.7) with the expres-
sions:

j(u) =
∫

ΓT
g · u ds, `V = 150, `D = 0.

Results are presented on Fig. V.5.11; obviously, the Dirichlet region aims to get as close
as possible to the application region of the load g. It also tends to concentrate on the
top and bottom corners of the region DD, following insofar as possible the principal stress
directions of the structure.

(a) Iteration 1 (b) Iteration 25

(c) Iteration 50 (d) Iteration 100

(e) Convergence history

Figure V.5.11: Concurrent optimization of the shape Ω and the fixation zones ΓD of
the two-dimensional cantilever of Section V.5.2.c (the latter are represented using
red lines).
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General summary, and main research results

In Chapters I and II we introduced the concepts used throughout this thesis: the physical
field of nanophotonics was presented as well as the mathematical tools for the implemen-
tation of a geometric shape optimization algorithm. From these reviews we have pursued
research in several directions. Let us summarize here our main results.

• In Chapter III we have calculated the shape derivative of the perhaps most useful
objective function when it comes to the optimal design of nanophotonic components.
The numerical evaluation of this derivative being quite complex, we proposed an
index smoothing method which provides an efficient way to obtain a good approxi-
mation of the derivative involving the solution of a regularized electric field. Several
numerical examples were included to confirm the efficiency of our framework. The
last section of the chapter also discussed an original work concerning the topology
optimization of components featuring multiple levels of etching and the application
of this method to the optimization of polarization rotators.

• In Chapter IV we described a method to maximize an objective functional defined
as the worst value of a finite collection of figure of merits using a gradient sampling
algorithm. We then showed how this methodology can be adapted in order to solve
worst-case optimization problems when a small number of parameters are uncertain.
The application of this algorithm to the design of robust components with respect
to uncertainties over the wavelength or the geometry of the manufactured shape
was studied on several test-cases and it was shown that this method does indeed
provides satisfying results.

• In Chapter V the shape optimization of regions supporting different boundary con-
ditions was studied in the case of the Laplace equation. We showed that the whole
information about the sensitivity of the objective function with respect to the place-
ment of the transition between Dirichlet and Neumann boundary conditions is en-
coded in the singular part of the PDE solution at the transition between these two
boundary conditions. We then turned our attention to a regularized counterpart of
this problem which makes the numerical implementation easier. This approxima-
tion is proved to be consistent with the original optimization problem. This chapter
ended with numerical examples in the context of linear elasticity in both 2d and 3d
situations.

Before outlining a series of research perspectives that were not fully studied during this
thesis, we present several experimental results concerning shape optimized nanophotonic
components that have been recently produced in the CEA clean room. We also describe
the analyses that should be performed on these experimental results in order to recalibrate
our simulations. This feedback between the practical results and the theory is essential if
one wants to ensure the performance of future optimized devices.
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Experimental results of produced components
Since it took nearly two years between the delivery of the optimized components and
the test of their performances, the designs presented here did not benefit from our most
recent developments and, in particular, they did not use our method to take into account
geometrical robustness. For the details of the manufacturing process conducted to obtain
these results we refer to Section IV.3.1. The results are grouped thematically as follows:

• First, we present some pictures of the realized components in order to asses the
precision of the manufacturing process.

• We then move to the description of the experimental methodology used in order to
test the performance of each component.

• The other subsections presents some experimental results obtained when testing the
performances of our optimized nanophotonic components.

Geometrical precision of the manufactured devices
A selection of components optimized using the method discussed in this thesis which have
been realized are represented in Fig. K(a).

(a) From top to bottom, left to right: a power di-
vider, a TE0 to TE1 mode converter, a crossing
and a TE0 to TE2 mode converter

(b) Zoom on a realized power divider and
comparison with the numerical optimized
shape (black lines)

Figure K: Scanning Electron Microscope (SEM) images of the manufactured designs.

The quality of a manufactured component highly depends on its location on the wafer. We
therefore decomposed the silicon plate into nine, uniformly distributed dies (see Fig. L(a))
in which the same components are manufactured.

As we now have the ability to produce shape optimized nanophotonic components, an im-
age analysis study on Fig. L(b) would enable the precise determination of the uncertainty
intervals regarding the dilation and erosion induced by the etching step. This calibration
between the measurements and the numerical simulations is of utter importance for the
practical efficiency of our shape optimization method. For an even greater accuracy it
would be interesting to precisely analyze how the shape is etched on the edges of the
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design as noted in Remark IV.3.1.1. We now present the method used in order to test
the performance of each component on the wafer.

(a) Repartition of the dies on the
wafer

(b) Manufactured shapes of a diplexer depending on
the die where it is produced

Figure L: The 9 dies considered on our wafers.

Experimental methodology
In order to evaluate the actual performance of each individual component we consider
a circuit where one shape optimized component is connected to two grating couplers
(see Fig. M). Using a prober (see Fig. M, top left corner) light is injected using an optical
fiber into one grating coupler which convert the light into the fundamental TE0 mode of
a waveguide linked to the input of the component.

Figure M: The whole experimental setup with different levels of zoom.

Another waveguide connects the output of the component and a second grating coupler
such that the electric field exiting of the component is received by another optical fiber
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for which the prober can measure the transmitted power. By comparing the input and
output powers we can then deduce the loss induced by the component. Adaptations of this
setup are sometimes mandatory depending on the objective function (number of outputs,
multiple wavelengths, different polarization etc.).

We now analyze experimental results concerning the performances of a selection of
nanophotonic devices.

Experimental results

Performance of the wavelength robust diplexers

We begin with the robust wavelength diplexer presented in Section IV.2.2.c for which
the associated fabricated components are depicted in Fig. L(b). Let us recall that the
goal of this component is to redirect an incoming guided mode into either the top or
bottom output waveguide depending on the wavelength. The graphs of Fig. N reveals
that the routing of light depending on the incoming wavelength is achieved successfully
with approximately 60 % to 65 % of transmission in each output. This is slightly below
our theoretical predictions in Fig. IV.2.7 by about 20 %, but reproducible on nine dies.

(a) Spectrum, the horizontal black line
corresponds to −2 dB

(b) Performance at the nominal wavelengths of the
transmissions in the top left and top right waveguide

Figure N: Characterization of the nine diplexers on each die of the wafer around 1.31
and 1.55 µm. In (a) the quickly oscillating lines corresponds to the raw data for the 9
dies while the solid lines corresponds to a data interpolation with an “envelope”. In
(b) the average transmission for the top and bottom waveguides on the bandwidth
1.55 µm ± 1 nm and 1.31 µm ± 1 nm is averaged for each die and the resulting values
are summarized using boxplots (the horizontal red line inside the boxes corresponds
to the median value while the two extreme horizontal lines represents the 10 % and
90 % quantiles).

Performance of ninety degrees bends

We now move on to some results concerning bends, that is structures which redirect
light coming from an input waveguide to an orthogonal output waveguide. This compo-
nent has not been presented in Chapter III since it involves rather common geometries
(see Fig. O(a)). The evaluation of the performance of such device is made using a chain
structure as represented partially for four bends in Fig. O(a). Since this component has
very low loss the chain allow to find the average transmission of one bend more easily.

166/182



CONCLUSION & PERSPECTIVES

The performance of one single bend is found here by using a chain composed of one
hundred components. The results are summarized in Fig. O(b) for the 9 dies; a median
transmission of 95 % is found as well as a variance inferior to 1 %.

(a) A chain composed of several bends (b) Performance of one bend

Figure O: Evaluation of a ninety degrees nanophotonic bend.

Performance of power dividers

Concerning the power dividers, the results were not totally in line with the expectations
despite the fact that the shapes seem to be well-manufactured (see discussion below).
In Fig. P the performances of three power dividers are reported with respectively two,
three and four outputs waveguides. One first remark is that although symmetric compo-
nents are used, the transmissions measured on the output waveguides are not symmetric.
This might be due to experimental measurements errors generated by misalignment of
the input and output fibers.

Concerning the performances of the individual components, the 1 to 2 power dividers
exhibit a median value of 28 % transmission in both outputs (44 % total loss), 17 % for
the 1 to 3 (48 % total loss) and 12 % as for the 1 to 4 power divider (51 % total loss)
making them useless in practice. We see here that the recalibration between experimental
data and simulation results is very important since the theoretical performance of these
components should be respectively of 49 % (2 % total loss), 31 % (6 % total loss) and
22.5 % (10 % total loss) as seen in Figs. III.3.6 and IV.1.4.

(a) Two output waveguides (b) Three output waveguides (c) Four output waveguides

Figure P: Performances on the nine dies of three 1 to nout power dividers with nout
ranging from 2 to 4.

A partial explanation of such bad experimental behavior would be that an under- or
over-etching of around 20 nm was made as suggested by Fig. K(b) and the robustness
graph Fig. IV.3.6(b) on which a 35 % transmission is expected in the event of such a
manufacturing error.
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Research perspectives and other topics in integrated
photonics that were not addressed in this thesis
We conclude this thesis with several research perspectives arising naturally from the pre-
vious works. We point out some related contributions from the literature, when available.

Other physical equations

In this thesis, we only considered the linear Maxwell equations in the time-harmonic
regime. For the description of the physical behavior of the electric field however, very
interesting components can be obtained by considering different equations or the coupling
with other physical equation:

• The treatment of general electromagnetic phenomena does not rely on the time-
harmonic vector wave equation but rather on its time-dependent counterpart
defined in Eq. (I.1.6). The consideration of this more challenging equation re-
quires some adaptations to the objective function involved in the shape optimization
problem, to the definition of the Perfectly Matched Layers and to the Dirichlet-to-
Neumann boundary condition for light injection. In exchange, once solved, the
time-dependent field allows to recover the full frequency response of a component
using Fourier transform. This could be interesting in the case of components such
as the diplexer for which it is desired to optimize its whole spectrum. In such a
time-dependent context, one could consider objection function such as

J (Ω) = min
λ∈[λmin,λmax]

|T (λ,Ω)− Tobj(λ)|

where T (λ,Ω) is the transmitted power into an output waveguide at the operating
wavelength λ obtained via the Fourier transform of E and Tobj the desired value of
the spectrum at λ.

• Another interesting variation of the time-harmonic vector wave equation concerns
the consideration of non-linear effects. When the amplitude of the electric field
is large, non-linearities coming from the dependence of the optical index n on the
electric field can no longer be neglected. A first-order expansion of n at |E| = 0
gives

n(|E|) = n0 + α1|E|+
1
2α2|E|2 + . . .

where n0 is the unperturbed optical index and the coefficients αi are proportional
to the “electro-optic coefficients” of the material. In some situations one coefficient
is much more significant than the others. These phenomena are referred in the
literature as Pockel effect, Kerr effect, etc. ... By exploiting one of these phenomena
it is possible to obtain components which have a different behavior depending on
the power of the injected light. Topology optimization of non-linear nanophotonic
structures have recently started to be considered with the work of [Hug18].

• Optomechanics is the field studying the interaction between light and mechanical
motion. When the electromagnetic fields are propagating inside a material, they
exerts a force on it, called the Lorentz force FLorentz, equal to

FLorentz = ρE + σE×H
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where ρ and σ are material-dependent values defined in Section I.1.1.a. Usually this
force is expressed using the so-called Maxwell stress tensor (not shown here). As we
have seen in Section V.5.1.a the mechanical movement of a structure under small
deformations is given by the linear elasticity equation −∇· (Ae(u)) = F where A is
the Hooke’s law, e(u) is the strain tensor associated to the displacement vector field
u, and F is the forces applied on the structure, here the Lorentz force. Since the
motion of the material influences the value of the optical indices in space then it also
modifies the flow of light. This mechanism translates mathematically into a coupled
system between Maxwell equations and the linear elasticity one. To the best of our
knowledge, no attempts were made to apply topology optimization methods to this
kind of multiphysics problem.

Complete circuit

Since we now have the possibility to optimize each photonic component individually, it
may be interesting to set up a method to efficiently design a complete circuit. In this
direction, a subject has already been initiated at the CEA following this thesis with the
aim to design a full photonic circuit with shape-optimized components which have the
ability to perform mathematical operations. Without entering into the details about
this particular circuit, let us give some generalities about the goal and difficulties in the
optimization of a full circuit.

As presented in Section I.3.1.c and Remark I.3.1.1, a nanophotonic component acts as
a N × N product where N is equal to the number of forward guided modes which may
exist in all the adjacent waveguides. When N is large, i.e. when the number of inputs
and/or outputs is important, the component is often divided into several smaller devices
with a fewer number of waveguides connected to each of them and for which it is easier
to obtain though optimization a design that achieves a desired functionality. One could
for instance decompose any N × N S-matrix as the product between a diagonal matrix
containing N phases shifts (coefficients of the form exp(iφ)) and N(N − 1)/2 rotations
matrices; see [Pai19].

Implementing a general optimization algorithm that, for a given S-matrix, determines
how the circuit should be broken down into known or easily optimized components would
speed-up drastically the creation process. Phase management in the circuit is a crucial
point; depending on its length, each waveguide connecting two components introduce a
phase shift and acts as a multiplication by exp(iφ) of the transmission and must be taken
into account in the design of the circuit. An important work concerning the treatment
of losses and parasitic reflections should also be done in order to guarantee the overall
performance of the circuit. Indeed if each component introduces some error of amplitude
ε then the transmission error after propagation into d components will be of the order εd.
A global optimization of the components location could compensate for these errors.

Optimization methods

We finish with a few numerical optimization methods that were only partially studied in
this thesis and for which a more comprehensive analysis would be interesting:

• First, as explained in both Sections II.1.3 and III.3.2 the full derivation of the
topological gradient formula associated with the general optimization problem
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of Th. III.2.1.1 has not been obtained in this thesis. The determination of this
gradient would require a complete study of the limiting behavior of the electric field
in the presence of cylindrical-shaped perturbation of the medium whose radius tends
to zero. Note that the asymptotic in the case of a spherical perturbation has already
been studied in [Mas05].

• At the end of Section III.5 we briefly mentioned a method called grayscale lithog-
raphy. Let us enter here into more details about the opportunities offered by this
manufacturing process. In most of this thesis, the considered components are y-
invariant structures, which restricts the degrees of freedom of the shapes that can
be obtained. We partially relaxed this constraint by considering several layers of
etching in Section III.5 but we still are limited to a finite number of them. What
about the limiting case where an infinite number of layers are considered? This is
feasible using grayscale lithography, a manufacturing process which allows to pro-
duce components given by a heightmap; we trade the level-set representation of the
shape with a height function M : R2 → [−h/2, h/2] such that

Ω = {(x, y, z) ∈ Dopt, y < M(x, z)}.

This in fact considerably simplifies the numerical representation of shapes and a
deformation field θ preserving the fact that Ω must always be represented by a
heightmap is simply found under the form θ = θŷ in the shape derivative given
by Th. III.2.1.1. An example of power divider found using this methodology is
displayed in Fig. Q. A more extensive study of this method would be necessary
in order to know if this manufacturing process allows to significantly increase the
performances of some nanophotonic components.

(a) A one dimensional shape and the projection
of the shape gradient VΩn onto the vertical axis

(b) Shape optimized power divider with a shape
defined as an heightmap

Figure Q: Using the vector field depicted on the left it is possible to optimize compo-
nents for the grayscale lithography manufacturing process and end up for instance
with the power divider on the right.

• One last interesting research perspective concerns the shape optimization of regions
bearing boundary conditions in the state PDE and more precisely the numerical
tracking of a shape on a submanifold as was implicitly done in the test case
of Section V.5.2.c. To consider the simultaneous optimization of a shape Ω ⊂ Rd

and a region Γ ⊂ Rd−1 on its boundary ∂Ω a specific numerical representation of
Γ must be implemented. One possibility would be to have recourse to the closest-
point method [Mac08] which allows level-set representation of shapes living on a
submanifold.
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Abstract

This thesis focuses on the mathematical field of shape optimization and explores two topics: one concerns
the systematic determination of the design of nanophotonic components and the other one the optimal
shape and location of boundary conditions defining partial differential equations (PDE).

• In the mathematical setting of the three-dimensional, time-harmonic Maxwell equations, we propose
a shape and topology optimization algorithm combining Hadamard’s boundary variation method
with a level set representation of shapes and their evolution. A particular attention is devoted
to the robustness of the optimized devices with respect to small uncertainties over the physical or
geometrical data of the problem. In this respect, we rely on a simple multi-objective formulation to
deal with the two main sources of uncertainties plaguing nanophotonic devices, namely uncertainties
over the incoming wavelength, and geometric uncertainties entailed by the lithography and etching
fabrication process. Several numerical examples are presented and discussed to assess the efficiency
of our methodology.

• The second application concern the optimization of the shape of the regions assigned to different types
of boundary conditions in the definition of a “physical” PDE. This problem proves to be difficult in
the case of a Dirichlet-Neumann transition since it requires a precise study of the singular nature of
PDE solutions at the transition between two regions supporting these boundary conditions. On the
one hand a full mathematical study is carried out on this theoretical problem and on the other hand
a numerical method based on a regularization of the boundary conditions is proposed to optimize
these regions. Various numerical examples are eventually presented in order to appraise the efficiency
of the proposed process.

Keywords: topology optimization · level-set method · nanophotonics · robustness · Maxwell equations ·
boundary conditions

Résumé

Cette thèse contribue au domaine mathématique de l’optimisation de forme et explore deux sujets: l’une
concerne la détermination automatique du design de composant nanophotonique et l’autre la répartion
optimale des conditions aux limites permettant de définir une équation au dérivées partielles (EDP).

• Dans le cadre mathématique des équations de Maxwell tridimensionnelles et harmoniques dans le
temps, nous proposons un algorithme d’optimisation de forme combinant la méthode d’Hadamard et
une représentation des formes par la méthode level-set. Une attention particulière est accordée à la
robustesse des dispositifs optimisés par rapport à des petites incertitudes sur les données physiques ou
géométriques du problème. À cet égard, nous nous appuyons sur un algorithme provenant du domaine
de l’optimisation multi-objectifs pour traiter les deux principales sources d’incertitudes affectant des
dispositifs nanophotoniques, à savoir les incertitudes sur la longueur d’onde de la lumière injectée ainsi
que les incertitudes géométriques liées au procédé de fabrication par lithographie-gravure. Plusieurs
exemples numériques sont présentés permettant d’évaluer l’efficacité de la méthode proposé.

• La deuxième application concerne l’optimisation de la forme des régions affectées à différentes condi-
tions limites dans la définition d’une EDP d’un problème “physique”. L’étude de ce problème s’avère
être délicate dans le cas d’une transition Dirichlet-Neumann car elle nécessite une analyse précise de
la singularité des solutions d’une EDP à la transition entre deux régions supportant ces conditions
limites. Nous proposons d’une part une étude mathématique complète de ce problème dans le cas
de l’équation du Laplacien et d’autre part une méthode numérique basée sur une régularisation des
conditions aux limites pour optimiser la forme de ces régions. Différents exemples numériques sont
présentés afin d’évaluer l’efficacité de notre méthode.

Mots clés : optimisation de forme · méthode level-set · nanophotonique · robustesse · équations de
Maxwell · conditions aux limites
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