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Preface

”We do not research for a living, we are living for research.”

Motivation

This thesis has been the result of my work at the GREYC laboratory where I was
asked to bring trust to online transactions with a focus on Keystroke Dynamics.

”Trust in online transactions” is a very broad concept that requires to define the
actors involved and the environment in which such interactions take places. From
this definition we extracted problematic, some of which we answer in this thesis.

I took the approach of considering the problematic in all its facets, and to
provide a global answer, leading to the form of this thesis. This thesis addresses
several problematic with contributions in various sub-domains, leading to a complete
privacy-compliant authentication scheme.

This thesis focuses on Keystroke Dynamics. Keystroke Dynamics is one of the
speciality of the GREYC laboratory with several thesis conducted in this domain
[Mhenni et al., 2019, Idrus et al., 2013, Giot, 2012]. It enables profiling of users
through their way of typing on a Keyboard. This is a very interesting modality as it
does not require neither additional sensors nor additional actions from the user. This
is thus a costless and transparent biometric modality, which explains its growing
popularity.

However little to no work has been made on the Keystroke Dynamics anonymiza-
tion, synthetic generation, or usage with BioHashing1, which this thesis address.

While reading this thesis, I hope you will find as much as pleasure I had while
writing it.

1a biometric ”hash” used in this thesis. It is also one of the speciality of the GREYC laboratory
which made several contributions in this domain [Atighehchi et al., 2019, Ninassi et al., 2017, Plateaux
et al., 2014, Barbier and Rosenberger, 2014, Lacharme et al., 2013]
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Plan

This thesis in organized as follows:
In a first chapter, we explore the Web environment and its issues to then define

the problematic and scope of this thesis.
The second chapter presents information that a Web Server could easily access,

and how they pose a threat to user privacy. The third chapter will then present ways of
protecting such information against non-consented collection. The forth chapter later
proposes a mean of using such information in a multi-modal and privacy-compliant
authentication scheme. These chapters focus on Keystroke Dynamics.

The fifth chapter tackles the problem of keystroke modelisation, necessary to
evaluate and improve the performances of the contributions presented in the previous
chapters.

The sixth and last chapter present some applications of our contributions, as well
as their usage with trusted devices in order to increase security and privacy.
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7.6.4 Objectifs de la thèse . . . . . . . . . . . . . . . . . . . . . . . 150
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7.7.2 Comment protéger mes informations de sites web malicieux ? . 153
7.7.3 Utiliser des données personnelles dans un schéma d’authentification
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Chapter 1

Thesis position

In this chapter, we present the Internet social environment, i.e. the involved

actors, their motivations and issues. We then discuss the thesis scope, objectives,

and the issues it addresses.

Keywords: Internet; Internet actors; Internet issues.
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2 CHAPTER 1. THESIS POSITION

1.1 Environment: The Internet and its actors

The Internet is not only a set of techniques and computers, but is also a set of actors
with different interests and motivations. The deployed technical solutions are not an
end in themselves, but serve actors needs. Understanding this environment, actors
interests, needs and motivations, as well as the conflicts arising from divergences in
actors interests, are thus required to the conception of suitable technical solutions.

In the following, we thus quickly present Internet actors and explore their aims
and motivations. In the next section, we discuss issues inherent to the Internet,
to then establish the scope of this PhD thesis. Still, actors presentation remains
superficial as deep understanding of the ins and outs of actors interactions requires
strong interdisciplinary knowledge mainly in the fields of economics (s.a. game
theory), psychology, sociology, and legal science.

1.1.1 Internet actors

The Internet is defined by the Cambridge dictionary as a ”wordwide system of
computer networks used to exchange information” 1, which highlights the three main
components of the Internet:

• computers , constituting a physical network (of networks);
• users , physical or juridical persons interacting on the Internet;
• information , that are exchanged.

Computers do not act on their own, but on behalf of Internet users. They are tools
instrumented by users for them to pursue their needs. Computers are not legal
persons, and thus cannot be held responsible of their actions. However, users are
accountable of the actions executed by computers on their behalf.

We distinguish between users (Service Provider) instrumenting computers (server)
in order to provide services, and other users (users) accessing such services through
other computers (clients). these roles are non-exclusive, e.g. a computer can be,
depending on the context either, a client, a server, or both.

As illustrated in Figure 1.1, we consider the following non-exclusive roles played
by Internet actors:

• Author , origin/creator of information;
• Subject , what the information is about;
• Viewer , consumes information;
• Service Provider , hosts and distribute information;
• Moderators , regulate information by enforcing policies;
• Society , defines the policies that should be enforced.

Authors create contributions containing information about a subject. They propose
their contributions to Service Providers (SP), which in turn propose them to viewers

1https://dictionary.cambridge.org/dictionary/english-french/internet?q=

Internet

https://dictionary.cambridge.org/dictionary/english-french/internet?q=Internet
https://dictionary.cambridge.org/dictionary/english-french/internet?q=Internet


1.1. ENVIRONMENT: THE INTERNET AND ITS ACTORS 3

Figure 1.1: Internet actors

for consumption. These interactions are enforced by moderators in a framework
influenced and defined by the society. These roles are presented and detailed in the
following.

In short: Internet actors play several non-exclusives roles: they can be au-
thor/viewer/subject of information, a provider of service (Service Provider), a
moderator, or/and be simply part of the society.

1.1.2 Subjects

Subjects are what exchanged information is about. Their aim is to control their image
and reputation, i.e. how viewers perceive them through information consumption.
For a physical or juridical person, this image constitutes their online identity.

Subjects aim at different kinds of interactions depending on the context. For
each, they have a different image and identity [al, 2014, Boyd, 2014]. For example,
in a professional context, a subject is likely to aim at a more serious and professional
image than in a family context. In order to maintain their images, and thus the way
they interact with others, subjects aim, to some extends, at controlling information
about themselves, i.e. who have access to what, independently of the information
truthfulness.

Tristan Nitot2 identifies in [Nitot, 2016, p.32-37] five causes of information leakage
or misuse:

• An entity might voluntary denounce an user;
• An employee might exceed/overstep its functions/duties;
• A server/computer might be hacked;

2Founder of Mozilla Europe, member (2013-2015) of the National Council of the Digital Tech-

nology, a French consultative state institution, and member of the forecasting comity of the French
CNIL since 2015 (https://www.cnil.fr/fr/les-membres-du-comite-de-la-prospective)

https://www.cnil.fr/fr/les-membres-du-comite-de-la-prospective


4 CHAPTER 1. THESIS POSITION

• An entity (e.g. state agency like NSA) might spy on another;
• Authors himself might unintentionally leak information.

A sixth reason can be added: an entity might sell or share information to another
for financial gains [Fox et al., 2000].

Even through, in itself, information, or the knowledge of information, are not
harmful in anyway, their usage and consequences, might be. Uncontrolled information
thus constitute serious threats for subjects:

• Subjects image deterioration impacts the way they interact with others, result-
ing, e.g. to a loss of trust, credibility, or influence (e.g. boycott of a company,
or even of a physical person).

• Subjects might loose power, e.g. negotiation power (e.g. for banking or
insurance fees).

• Another entity might gain power over subjects, e.g. blackmailing, extortion,
social engineering.

• Subjects might be attacked, s.a. thief, identity usurpation, abduction.
• Subjects might be sanctioned by moderators, s.a. banned from using a service,
depraved of Internet by legal responsible, fined or jailed by state, fired from a
job [Fox et al., 2000].

• Subjects might be sanctioned by the society, e.g. slanders, harassment, physical
threats.

• The fear of the consequences above may lead the subject to self-censure or, if
sensitive information are leaked, to suicide.

However, controlling information on the Internet is quite hard. First, it is difficult
for a subject to be conscious of every disclosed information, as well as all the ins
and outs of such disclosures, at short and long terms. Moreover, its identities are
very likely to overlap, and might then be linked by third parties, i.e. asserting
that they belong to the same person. Identities linkability can lead to a ”collision”
of incompatible contexts [Boyd, 2014], i.e. contexts where the subject maintains
contradictory images.

Secondly, information can be easily retrieved on the Internet through the use of
either standard search engines, or more advanced/dedicated tools. Such tools enable
third parties to easily find needles in the humongous haystack that is the Internet.
Thus, an information publicly accessible on the Internet is to be assumed known by
all.

Finally, information can hardly be fully removed from the Internet as they are
easily shared and copied. Any attempt to force removal of a given information is
likely to backfire through the Streigand effect [Jansen and Martin, 2015]. Information
can also be archived by the SP itself (even if the information has been officially
”deleted”) or by specialized websites s.a. https://archive.org/web/. Thus, any
information known at a time, is likely to be known afterwards. In [Nitot, 2016],
Tristan Nitot recommends the POSSE approach3 to increase subjects control on the

3Publish on your Own Site Syndicate Elsewhere - https://indieweb.org/POSSE

https://archive.org/web/
https://indieweb.org/POSSE


1.1. ENVIRONMENT: THE INTERNET AND ITS ACTORS 5

information they disclose. However, this does not prevent third parties to copy such
information on other websites.

In the light of the above, subjects information control mainly remains on the
choice to themselves disclose information.

In short: Subjects need to control, in some extends, the information about
themselves, as they might pose serious threats to them s.a. blackmailing, boycott,
identity usurpation, harassment. However, this control is limited as information
can easily be found on the Internet, and can hardly be deleted.

1.1.3 Authors

Authors are physical or juridical person producing information, seeking it to be
consumed by a given set of viewers, for a given usage.

However, they can hardly ensure that the created information will be consumed
the way they intended, by the viewers they intended. Indeed, once the information
is known, viewers and Service Providers are able to share it, or to perform arbitrary
computations on their clients (or servers), without authors knowledge and consent.
Moreover, any created information also contains scrap information, s.a. authors
pseudonym, a timestamp, IP address, a lexical vocabulary used. Some of these give
information about the author, which is thus, at the same time, both author and
subject. In such cases, authors need, before each creation of information to weight
up their interests as authors and as subjects.

As already seen in the previous section, it is quite difficult to fully understand
all the ins and outs of information disclosures. Besides, it is as difficult for authors
to know the exact information they disclose by contributing. Indeed, even though
Service Providers provides Terms of Services (ToS), not all authors are really aware
of the service ins and outs, and the ToS might not fully match the reality of the
collects and processing made by the Service Provider.

In short: Authors produce information in order to make it consumed by a given
set of viewers. However, as seen in the previous section, information can hardly
be controlled. Also, authors are subject of scrap information without necessary
being fully aware of it.

1.1.4 Viewer

Viewers are physical or juridical persons who aim to access and consume information
they want, in the way they want, possibly, in order to, or leading to, take action,
make a decision, or make up their mind on a given subject.
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However, viewers are physically unable to consume all information created in a
year. Indeed, in 2014, 300 hours of video were uploaded per minutes on Youtube4,
and 220,330 books where published by IPA members5, i.e. one book every 6 minutes.
In 2006, near 1,350,000 research papers were published according to [Bjork et al.,
2009], i.e. one paper every 24 seconds. Requiring viewers to select which information
they wish, or not, to consume.

Viewers select information under their own criteria, e.g. perceived quality, truth-
fulness, subjects, popularity, reputation. Depending on the current context, some
of information might be as well unwanted by viewers, s.a. spam, porn, off topic,
spoils, advertisement. However, it might be difficult for viewers to find what they
seek to consume [Cordier, 2015], and to evaluate information quality and relevance
before actually consuming it. In a sense, some information might deceive users into
consuming it.

The quality, truthfulness, and trust viewers place into information are mandatory
to the proper consumption of the information. In case of incomplete, deformed, or false
information, viewers might take unlighted decisions, leading to tragic consequences,
s.a. financial ruin, absence of medical health, breach of trust.

In short: Viewers aim to access and consume information. With the plethora of
information on the Internet, viewers have to select the information they wish to
consume, to the risk of being deceived.

1.1.5 Service Provider

Service Providers make the link between authors and viewers by distributing infor-
mation. Their aim is often financial, e.g. to make profit from the distribution of
information, but can also be ideologically-driven, and centered around its own values.

Service Providers main issue is to decide how viewers and authors should interact,
in particular which information should be highlighted or/and distributed to whom.
The Service Providers thus have to build an internal policy that will be translated
e.g. into Terms of Services, underlying processes (s.a. automatic censorship of
certain type of words, highlighting popular information), the service structure and
algorithms, resulting into a framework for authors-viewers interactions.

Building such framework is far from trivial. Obviously, in order to be used, the
service must fulfill the needs of its users, i.e. authors and viewers. Moreover, Service
Provider might be, depending on the legislation, partly responsible of the information

4https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-

streaming-songs-mainstream/
5http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.

pdf, page 17

https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-streaming-songs-mainstream/
https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-streaming-songs-mainstream/
http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.pdf
http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.pdf
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they host and distribute. Such legal constraints are even more important that service
provider are often well-known, without the possibility of being fully anonymous,
contrary to viewers or authors that are usually at least pseudonymous on the Internet,
thus, making more difficult for service providers to escape legal sanctions.

Such framework should also match its users ethics and societies morals to not be
disapproved and condemn e.g. with a boycott. Information hosted and shared by
the Service Provider will influence its image, e.g. by association, or by thinking the
SP endorse hosted information. All of this, of course, without losing sight of their
bests interests.

In short: Service Providers distribute information from authors to viewers to
meet their own interests and goals. However, the interaction framework built by
the Service Providers have to meet its users, as well as moderators and society,
wishes.

1.1.6 Society

Society defines which consumptions are lawful, ”moral” or ”ethic”, although several
opposed views might be expressed on some moral/ethic questions. Answers are
often balanced and shaded depending on the exact context and situation [Allen,
1996]. If rules or laws are not recognized as legitimate and fair, they are likely to be
transgressed or not enforced.

Several laws regulate online interactions, we focus on this section on European
privacy laws. In Europe, the right of privacy is declared by:

• article 12 of the Universal Declaration of Human Rights (1948):
”No one shall be subjected to arbitrary interference with his privacy, family, home
or correspondence, nor to attacks upon his honour and reputation. Everyone
has the right to the protection of the law against such interference or attacks.”6

• article 8 of the European Convention on Human Rights (1953):
”1: Everyone has the right to respect for his private and family life, his home
and his correspondence.
2. There shall be no interference by a public authority with the exercise of
this right except such as is in accordance with the law and is necessary in a
democratic society in the interests of national security, public safety or the
economic well-being of the country, for the prevention of disorder or crime,
for the protection of health or morals, or for the protection of the rights and
freedoms of others.”7

• articles 7 and 8 of the Charter of Fundamental Rights of the European Union
(2000):
Article 7. Respect for private and family life. Everyone has the right to respect
for his or her private and family life, home and communications.

6https://www.un.org/en/universal-declaration-human-rights/index.html
7https://www.echr.coe.int/Pages/home.aspx?p=basictexts

https://www.un.org/en/universal-declaration-human-rights/index.html
https://www.echr.coe.int/Pages/home.aspx?p=basictexts
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Article 8. Protection of personal data 1. Everyone has the right to the protection
of personal data concerning him or her. 2. Such data must be processed fairly
for specified purposes and on the basis of the consent of the person concerned
or some other legitimate basis laid down by law. Everyone has the right of
access to data which has been collected concerning him or her, and the right to
have it rectified. 3. Compliance with these rules shall be subject to control by
an independent authority.8

Privacy has been an issue at the early stage of the history of computers and the
Internet, and is still relevant today. Privacy laws were previously defined in France
by the ”Loi informatique et liberté” (1978), modified by decrees in 1991 and in 2004.
This law inspired the European Convention for the protection of individuals with
regard to the processing of personal data9 (1981), as well as the Data Protection
Directive10 (1995). Privacy laws are now defined at the European level by the General
Data Protection Regulation (GDPR) which came into effect the 28th of May 2018,
during this thesis.

The GDPR requires SP to collect users explicit and positive consent before
processing their personal data. In consequences, opt-out options cannot be used
anymore to collect users consent. Terms of Service (ToS) are also required to
be understandable by anyone, and inform users on the performed personal data
processing. ToS were often not adapted to neophyte users who just want to use
services quickly, and often used technical or juridical terms incomprehensible by
lambda users, and discouraging users from reading them with their length [Nitot,
2016, page 86]. ToS were aimed more to protect the SP juridically than to inform
users on the processing carried out.

GDPR also requires privacy by design as well as an obligation of being secure in
order to protect the processed personal data. It thus requires to bring new technical
solutions to enhance privacy and security on the Internet. GDPR application is
extraterritorial, meaning that any entity can be held liable of processing implying
personal data of an European citizen. However, enforcement of such laws is difficult
in an international context, e.g. for the right to be forgotten. European users might
indeed ask search engines to remove results concerning them, but they are only
removed from the website versions intended for the European public11.

In short: Society defines laws, moral, and ethics. The new European GDRP
regulation defines a legal frame to protect users privacy.

8https://www.europarl.europa.eu/charter/pdf/text_en.pdf
9https://www.coe.int/en/web/data-protection/convention108/modernised

10https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
11http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=

&doclang=EN&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289

https://www.europarl.europa.eu/charter/pdf/text_en.pdf
https://www.coe.int/en/web/data-protection/convention108/modernised
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=&doclang=EN&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289
http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=&doclang=EN&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289
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1.1.7 Moderators

Moderators are physical or juridical persons enforcing rules or/and laws. They can
be e.g. the state, a child parents, employer, or the SP moderation service, enforcing
rules at the level of a state, a house, a company, or a website. Their responsibility
can be defined by laws (e.g. parental responsibilities) or/and by contracts (e.g. ToS).

To happen, entities interactions require a framework to structure such interactions,
and enable trust between entities. This framework weight the rights of each entity by
establishing boundaries, a.k.a. rules and laws. The role of moderators is to enforce
such framework, and to sanction transgressors, s.a. with fines, deprivation of rights,
temporary/permanent bans from the service. Moderators have the power to censor
and control what viewers can see, for legitimate purposes (e.g. unsuitable content for
minors) or not (s.a. driven by political, religious or philosophical ideologies). Giving
too much power to moderators might lead to arbitrary law enforcement and abuses,
thus being detrimental to users rights, ”Quis custodiet ipsos custodes?12”, Juvenal.

For example, anonymity and pseudonymity enable authors to escape from the
consequences of their actions. This can be desirable, as anonymity allows whistle-
blowers, journalistic sources, witnesses, and political dissidents to express themselves
without fearing repercussions. But, at the same time, this can be undesirable, as
it also enables people to transgress laws, ethics, or moral with impunity. Indeed,
e.g. suing an user for its misbehavior requires for the plaintiff, or the moderators, to
know the misbehaving user real name and address.

In general, democratic systems cannot exists without secrecy, hence the Human
Right of privacy. Indeed, voting processes often require ballot secrecy to prevent
vote coercion, vote buying, or other electoral frauds. Secrecy of judicial inquiries are
also required to the proper operation of Justice. A too strong law enforcement also
deprives citizens from their Human Right of revolution. A too strong surveillance
also deprives citizens from their freedom of expression and freedom of thought, due
to the panoptic effect [Simon, 2005], where citizens censor themselves, and change
their behaviors, when feeling observed or monitored. Other secrecy are also required
in order to prevent illegitimate discrimination based, e.g. on the user medical state,
sexual orientation, or religion.

Although the private sphere must be protected in order to guarantee citizens
rights, moderators still need to enter the private sphere to sanction serious law
infringement that also threaten other citizen rights. Moderators thus need a special
access to information, but only in the scope of a procedure framed by laws, with
safeguards enabling to preserve users fundamental rights.

This has for consequence that moderators often do not have the power to fully
enforce the rules and laws, for example, by resorting to users reports of inappropriate

12”Who will [moderate] the [moderators] ?”
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content or behaviour. This enables to reduce the resources assigned to services
monitoring, but on an other hand, unreported misbehaviors remain unsanctioned.

In short: Moderators enforce rules to enable interactions between users. However,
they often lacks of the means to properly enforce such rules, partially to prevent
abuses from moderators themselves.

1.2 Security and privacy

Security and privacy are often presented as opposed concepts, security protecting
the system against users, and privacy protecting users against the system, thus,
leading to a false-dilemma, asking system designers to choose between security and
privacy [Schneier, 2001].

Security ensures the proper operation of the system that must remain available
and efficient in order to serve its users. The system must ensure authenticity (i.e.
truthfulness of a claim) of user identity (e.g. to grant access to resources), of messages
origin and integrity (i.e. the message has been sent by the claimed user, and has
not been modified by another), as well as the authenticity of information or user
attributes (e.g. the truthfulness of a statement s.a. users claimed age or gender).
Systems also require identification of users, whether to detect multi-accounts, or
to prevent repudiation (i.e. denying of an act) to engage users accountability. The
system also requires confidentiality of information and to remain secure even if it has
been compromised at some points, past exchanges must remain secured (Backward
Secrecy), as well as future exchanges (Forward Secrecy).

Privacy ensures the right of users to be left alone. Confidentiality of users personal
data must be ensured, as well as the unlikability of their different information or
accounts. Unlikability means that a third party should not be able to determine
whether two information/accounts belongs, or not, to a same entity. Unlikability
implies users anonymity or pseudonymity, i.e. not being able to link an information
to users real identity. Users has also a right to be forgotten, as well as to be able to
repudiate their own acts. Moreover, they should be able to control their information,
i.e. to correct false information, and to choose the information they disclose.

Security and privacy may seem at first opposed, they are not by nature incom-
patibles. For example, security requires non-repudiation whereas privacy requires
repudiation, however, both can be achieved at the same time. Indeed, the entities
to which non-repudiation must be achieved in security, e.g. state moderators in the
scope of a specific procedure, are not the same in privacy, i.e. all other entities.
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1.3 Biometrics

Service Providers through a web page can collect biometric data. Not only they
enable identification and profiling of users, they also verify users essence, and not,
e.g. the knowledge of a secret. This makes biometric data typically harder to share,
copy, and spoof than, e.g. knowledge, or possessions.

Contrary to knowledge and possession-based modalities, biometrics usage is
probabilistic, i.e. in an authentication system, legitimate users has some probability
to be rejected (FRR), and attackers, to be accepted (FAR). This is due to the
variations in users biometric acquisitions (intra-class variations), and similarities
between users (inter-class variations).

Biometrics can also cause privacy issues as they are often hardly revocable and
renewable, and can be used to deduce personal information about users, s.a. their
age, or gender. This makes biometrics a particular authentication modality, as
demonstrated by articles regulating use of biometrics in the GDPR.

Biometric modalities

Behavioral

• Signature;
• Voice;
• Gait.

Morphological

• Fingerprint;
• Face;
• Iris.

Biological

• EEG signals;
• DNA;
• Heart beats.

Figure 1.2: Biometric modalities

We present in Figure 1.2 the three kinds of biometric modalities, with examples
for each. Biological biometrics, also called hidden biometrics, are users physical
particularities invisible without proper devices whereas morphological biometrics can
be easily seen by one another. Behavioral biometrics that are based on how users
behave, s.a. their way of walking [Bours and Denzer, 2018]. In this thesis, we focus
on behavioral biometrics.

We focus on behavioral biometrics as they often do not require additional users
action, and thus enable continuous and/or transparent authentication. Unfortunately,
the lack of specific action from users also enable their use without users knowledge and
consent. Behavioural biometric are also subject of important intra-class variations,
as users behaviors change over time, but also depending on their current state (e.g.
tired, irritated, sad).

From browsers, Mouse and Keystroke Dynamics, i.e. way of using the mouse and
the keyboard, can easily be collected thanks to a simple JavaScript code embedded
in the pages visited by the user without requiring any additional sensors other than
users keyboard and mouse. In this PhD thesis, we focus on Keystroke Dynamics, as
it is one of the speciality of the GREYC laboratory with several thesis conducted in
this domain [Mhenni et al., 2019, Idrus et al., 2013, Giot, 2012].
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1.4 Thesis objectives

This PhD thesis focuses at answering Internet actors needs by using Keystroke
Dynamics. We enable viewers/SP to use Keystroke Dynamics for security purposes,
mainly for users authentication, while enforcing subjects/authors privacy and explicit
consent, without needing moderators supervision.

By considering GDPR, we thus provide many contributions to security and
privacy on the Internet:

• We propose real-time anonymisation of Keystroke Dynamics in order to prevent
their unwanted collection. This enables to ensure users explicit consent for the
processing of such data. We present several techniques to protect KD in Chapter 3,
as well as a proof of concept in Chapter 6.

• We propose a GDPR-compliant multi-modal biometric authentication scheme
without any privacy leakage as the biometric data is not disclosed to the SP. This
therefore guarantees that such personal data will not be used by the SP for other
purposes than authentication. We present in Chapter 4 such authentication protocol
using Keystroke Dynamics, as well as user location, and browser configuration. A
proof of concept is then presented in Chapter 6.

• A proof of authorship built on previous contributions is then proposed with a
proof of concept in Chapter 6.

• A Social Identity Proof is proposed in Chapter 6 to verify users identity through
peers recognition, as well as to enable misbehaving users accountability towards
moderators through proper protocol. Still, users privacy remain guarantee.

• We then propose the use of Trusted devices in Chapter 6 in order to protect
users Keystroke Dynamics, and therefore privacy, against a corrupted or malicious
client.

• We propose a Keystroke Dynamics model, as a way to facilitate research, and
to improve Keystroke Dynamics System performances. Modelling of Keystroke
Dynamics enables their synthetic generation thus making it possible to augment
existing datasets, and in the end, to share Keystroke Dynamics datasets for research
purposes without disclosing any real user personal data.

• We present in the next chapter, information that can be deduced from Keystroke
Dynamics collected through users browser, and how it threatens users online privacy.
We quantify this privacy threat and study the impact of context and configuration on
Keystroke Dynamics Systems performances. In this scope, we present a framework
to fairly compare Keystroke Dynamics Systems.



Chapter 2

What do websites know about you?

In this chapter, we present information websites can obtain through your browser,

posing threat to your online privacy. In the next chapter, we show how to protect

these information from malicious websites, and in the next how to use such

information in a privacy-compliant authentication scheme.

Keywords: Keystroke Dynamics Anonymization System; Keystroke Dynamics;
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Contributions presented in this chapter

• Fairly compare Keystroke Dynamics Systems.
• Distinction between context and configuration.
• Naming convention for context and configuration.
• Impact of context and configuration on Keystroke Dynamics Systems.
• Improvement of distance based Keystroke Dynamics Systems.

Publications

• Migdal, D. and Rosenberger, C. (2019b). Keystroke Dynamics Anonymization
System. In SeCrypt (B - Core), Prague, Czech Republic.
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2.1 Information leaked by browsers

While browsing the Internet, browser leaks information about users. This section
presents such leaked information in order to qualify the privacy threats they represents.
In the next chapter, protection strategies are discussed.

Browser Fingerprinting aims at tracking users through their browser thanks to
discriminant data a service can collect. This is usually proposed to ”personalize
services” corresponding to users profile-type, s.a. suggesting contents depending on
the user’s assumed Internet history. Browser Fingerprinting goal is not to identify
users with assurance, but to classify the user into a category, e.g. by identifying a set
of browsing sessions belonging to the same user, or type of users. Two PhD thesis
study specifically this subject [Laperdrix, 2017, Vastel, 2019].

Panopticlick [Eckersley, 2010], IAmUnique [Laperdrix et al., 2016], and UniqueMa-
chine [Cao and Wijmans, 2017] websites enable the computation of browser finger-
prints from data collected by the website, generally through the network and a
JavaScript API, to determine the fingerprint uniqueness among the previously com-
puted. The more the browser fingerprint is unique, the more the service is able to
discriminate the user. Information used for browser fingerprinting might be linked,
e.g. to the hardware (e.g. GPU [Cao and Wijmans, 2017], screen), to the operating
system, to the browser, its configuration, installed fonts [Eckersley, 2010, Laperdrix
et al., 2016], browser history [Weinberg et al., 2011], or blacklisted domains [Boda
et al., 2012]. Such identification and tracking are often not consented by the user,
and poses a threat to users’ online privacy, thus, leading researcher and developers
to study this issue and propose solutions in order to protect users’ privacy [Laper-
drix et al., 2016, Nikiforakis et al., 2015, Moore and Thorsheim, 2016, Eckersley,
2010, Acar et al., 2013].

Biometric capture can also be added to browser fingerprinting, e.g. using the
mouse [Jorgensen and Yu, 2011, Shen et al., 2013] or/and Keystroke [Revett et al.,
2007a, Giot et al., 2011, Kim et al., 2018].

Other biometric information can also be collected s.a. the user location, and
its journey routines; the time he visits webpages, and thus its daily habits. With
authorization form the users, the webcam and microphone can also be used to collect
users biometrics, or to deduce its environment.

2.2 Keystroke Dynamics

Keystroke Dynamics (KD) enables the profiling of users (s.a. identification, authen-
tication, assertion of users gender/age/handedness/emotions) by analyzing their way
of typing, e.g. when browsing the Internet.

First works on KD have been done in the eighties [Gaines et al., 1980], although,
the idea of using a keyboard to automatically identify individuals has first been
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presented in 1975 [Spillane, 1975]. In the preliminary report of Gaines et al. [Gaines
et al., 1980], seven secretaries typed several paragraphs of text and researchers
showed that it is possible to differentiate users with their typing patterns. Since then,
several studies have been done, allowing to decrease the quantity of information
needed to build the biometric reference, while improving the performances [Umphress
and Williams, 1985, Monrose and Rubin, 2000, Revett et al., 2007b, Lee and Cho,
2007, Giot et al., 2011]. However, studies cannot be compared, or are unfairly
compared, as they each use different datasets and protocols [Giot et al., 2011].

Although, Keystroke Dynamics may be used to pursue legitimate purposes, it
also constitutes a threat against users privacy. Indeed, KD enables identification and
deduction of private information (s.a. gender, age, handedness, or emotions) without
users consent or awareness. In this section, we are seeking to quantify this threat
against user privacy that we later limit in the next chapter. The evaluation scheme
and metrics introduced in this section is used in the next chapter to quantify privacy
gains after KD anonymization, and in chapter 4 to compare KDS performances before
and after KD protection. KD anonymization protects users against unwanted use
of their KD, and KD protection enables KD-based authentication while protecting
users privacy, which is a GDPR requirement.

This section is organized as follows. After presenting some backgrounds on
Keystroke Dynamics, we propose an evaluation scheme enabling fair comparison of
Keystroke Dynamics Systems. In a third part, we then demonstrate the necessity of
our fair evaluation scheme by highlighting context and configuration influences on
KDS performances.

2.2.1 Backgrounds

Goals

Identification

Retrieve identity
(1 vs N).

Authentication

Verify identity claim
(1 vs 1).

Soft biometrics

Assert information:
age, gender, etc.

Cases

Free-text

Can type whatever
we want.

Fixed-text

A typed text per user
(can be secret).

Same-text

Same typed text for all
(known by all).

Figure 2.1: Keystroke Dynamics usages.

In the scope of our work, we focus on the key pressure and released times
received by the Operating System or/and the browser, on a laptop or desktop
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computer. Keystroke Dynamics on Smartphone usually use other modalities, s.a.
screen pressures and phone orientations while typing, however, they are not studied
here. Other studies use Neural Networks for KD on Smartphone [Clarke and Furnell,
2007]. More precisely, and as shown in Figure 2.2, for each typed digraph (two
consecutive characters), we use the 6 durations (d0 to d5) from the 4 received time
corresponding to the pressure (P0) and release (R1) of the first character, and the
pressure (P0) and release (R1) of the second character. After the user has typed
some text, the resulting vector of durations is then used to compute a reference (or
a sample) modeling its way of typing. In the scope of this thesis, the duration i of
the digraph d, in the entry e of the user u, will be written as di(u, e, d). ∗ denotes
all durations, digraphs, entries or users, e.g. d∗(∗, ∗, ∗) is the set of all durations, for
all digraphs, entries, and users.

Figure 2.2: Digraph durations

As shown in Figure 2.1, Keystroke Dynamics can be used for different goals
(Identification, Authentication, Soft Biometrics) in different cases (Free-text, Fixed-
text, Same-text). As any biometric solution, Keystroke Dynamic Systems (KDS)
require sets of prior knowledge (references) that are used to verify a new acquired
data (sample). For identification and authentication, a reference describes the typing
way of a specific user, whereas for soft biometrics, a reference describes the typing
way of a set of users (e.g. man, woman, left-handed/right handed person). References
then enable, from a sample, to retrieve, or verify, the typing user’s identify. Soft
biometrics are handled as an identification, replacing ”user” by ”set of users”.

References and samples can either be used in a distance-based or a learning-based
(s.a. SVM, Random-Forest, Deep learning) KDS. However, as in identification and
authentication scenarios the number of references is usually low, many Keystroke
Dynamics Systems are distance-based. Indeed, learning-based techniques often
require large amount of references in order to be efficient whereas distance-based
techniques can even be used with only one reference per users.

As shown in Figure 2.3, in a distance-based authentication KDS, users claim an
identity and will provide a sample as proof of their claim. A distance score is then
be computed from the given sample, and the reference(s) associated to the claimed
identity. If the distance score is below a given threshold (t), the claim is assumed
to be true, else, the claim is assumed to be false. In a distance-based identification
KDS, a distance score is computed for all the users reference(s), and the n-closest
references to the sample are selected as candidates.
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Claim is True Claim is False

 t > t

Distance

Score

Sample

(proof)

Reference(s)

(of the claim)

(a) Authentication

Candidates

Distance

Score

SampleReference(s)

n closest references

(b) Identification

Figure 2.3: Distance-based KDS principle.

As previously stated, and as shown in Figure 2.1, Keystroke Dynamics can be
used in different cases:

• Same-Text: all users type the same text, e.g. the website name, The typed
text is thus known at the KDS conception. This a priori can thus be used to
optimize the KDS performances.

• Fixed-text: users have a text associated to their account they need to type in
order to authenticate. This text can be secret (e.g. password), unique (e.g.
login), both, or neither. However, such text cannot be known at the KDS
conception.

• Free-text: users can type whatever they like (e.g. a review, a blog/forum
post, a chat message). Text is usually longer than in Same/Fixed-text, but is
of variable length, thus requiring its transformation in order to use distance
functions.

There exist many keystroke dynamics datasets [Monaco, 2018]. Datasets have
been cleaned to remove incoherent data, e.g. entries in which the user did not type
the asked text. This corresponds to 13% of entries in GREYC W, and less than 3
entries for other datasets. In Free-text datasets, repeated and non-keyboard events
have been removed. All timing information has been converted into seconds. In
order to get comparable sets in Same/Fixed-Text datasets, only the first 45 entries
per users is kept, users with less than 45 entries, and datasets with less than 45 users,
are discarded.

Datasets used in the scope of this thesis are described in the Tables below.
From the existing Same/Fixed-Text datasets, only 3 matched our criteria. One of
them containing two typed text, 4 datasets are thus presented in Table 2.1. For
Same/Fixed-Text Soft Biometrics, 5 dataset are used, as shown in Table 2.2. The
KPPDW dataset is used for Free-Text, where users wrote text on several subjects,
with one entry per users, and at least 250 digraphs per entries. 3 Free-Text dataset
are extracted from the KPPDW dataset, one per subject, cf Table 2.3. Free-Text
Soft Biometrics is not studied as no available dataset has been found.
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2.2.2 Fair Evaluation Scheme

As previously stated, studies are difficult to compare, or unfairly compared, as
they each use different datasets and protocols [Giot et al., 2011], leading us to
propose a fair evaluation scheme for Keystroke Dynamics Systems. We distinguish 4
components in our scheme, that is detailed in the following:

• Attacker model: describes the capabilities of the attacker;
• Metrics: quantifies the success of the attack;
• Context: describes the data obtained by the attacker;
• Configuration: describes the KDS.

Attacker model

We focus on a browser environment. The attacker is able to execute arbitrary
JavaScript codes on the Web pages visited by the users, in order to identify, authen-
ticate, or profile them, using only the keyboard events’ timestamps.

As shown in Figure 2.4, the attacker model is based on a real-life two phases
scenario. Due to a vulnerable or complicit website, the attacker is first able to collect
Keystroke Dynamics and to assert the user true identity. Then, due to some changes,
the attacker is subsequently only able to collect and compute a sample, without
being confident on the user identity. The attacker will thus seek to retrieve the user
identity with (authentication) or without (identification) an a priori.

Name Text # of users Source
GREYC K greyc laboratory 104 [Giot et al., 2009]
GREYC W1 laboratoire greyc 62 [Giot et al., 2012]
GREYC W2 sésame 46 [Giot et al., 2012]
CMU .tie5Roanl 51 [Killourhy and Maxion, 2009]

Table 2.1: Description of used Same/Fixed-text datasets.

Name Text # of users Source
GREYC N1 leonardo dicaprio 110 [Syed Idrus et al., 2013]
GREYC N2 michael schumacher 110 [Syed Idrus et al., 2013]
GREYC N3 red hot chilli peppers 110 [Syed Idrus et al., 2013]
GREYC N4 the rolling stones 110 [Syed Idrus et al., 2013]
GREYC N5 united states of america 110 [Syed Idrus et al., 2013]

Table 2.2: Description of used Same/Fixed-text Soft-Biometrics datasets.

Name About # of users Source
KPPDW1 Gay Marriage 400 [Banerjee et al., 2014]
KPPDW2 Gun Control 400 [Banerjee et al., 2014]
KPPDW3 Restaurant Reviews 500 [Banerjee et al., 2014]

Table 2.3: Description of used Free-Text datasets.
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John = Refs Sample = John ?

X=15X - # Refs Sample

Figure 2.4: Attacker model

It is thus assumed that the attacker has, during the first phase, a way to identify
users that becomes unavailable in the second phase. The reason could be a change in
the user IP address as the user rebooted its Internet box, started to use a VPN, or is
moving. The browser fingerprint could have been changed due to a browser update
or a change of browser. An information could have been leaked by a third party
integrated to the Webpage. Other biometric modalities, e.g. the mouse dynamics,
face recognition through the webcam, etc. could have been used.

Our proposed attacker model has however some limitations. We assume that
the samples are posterior to the references, yet they could as well be anterior or
simultaneous to the references. As we focus on finding the best distance (described
by the configuration) in function of the context, we are not interested in references
update mechanisms, or in realistic systems with user-dependant thresholds. Indeed,
both would impact the performances in the way that does not depend on the distances
capabilities, but more on their own performances and compatibility with the distances.
Moreover, we are not interested in a realistic attacker whose performances would
depend, and be limited by, an arbitrary implementation. Instead, we aim at an
unrealistic attacker whose performances are a theoretical maximal bound of the
performances that could be expected in real-life; for example by giving the attacker
the unrealistic power to assert, for each user, the optimal threshold, instead of
depending on a sub-optimal implementation.

Metrics

In order to evaluate the performances of KDS with objective metrics, we use the
Error Rate (ER) which corresponds to the number of false predictions over the total
number of predictions, i.e. ER = #(Errors)/#(Samples). It is worth noticing that
ER = 1− Acc, where Acc is the accuracy.

For authenticating KDS, the ER depends on the threshold, thus having one ER
per possible threshold. As shown in Figure 2.5a, we use the ER obtained when the
False Rejection Rate (FRR) equals the False Acceptation Rate (FAR), i.e. when the
rate of rejected legitimate users equals the rate of accepted illegitimate users. The
obtained ER is then called the Equal Error Rate (EER).
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Figure 2.5: Identification and authentication KDS metrics.

For identifying KDS, the accuracy obtained by considering only the closest
reference is generally used. However, we argue that such metrics is not satisfactory.
Indeed, the rank of the legitimate(s) reference(s) indicates a level of anonymity, i.e.
if the legitimate reference is the n-closest one, the legitimate user can be assumed
to be anonymous among at least n users. Then, even if the legitimate reference is
not the closest one, it could be e.g. among the 5 closest, or 1% closest, that is still
an interesting result, enabling to discriminate users. As shown in Figure 2.5b, we
use the EER considering the identifying KDS as an authenticating KDS with the
authentication distance score being the rank of the legitimate reference. We call
this metric Authentication EER (AEER), which correspond to ER where the rate
of legitimate reference(s) that are not in the n-closest references equals the rate of
illegitimate reference(s) that are in the n-closest references.

In order to keep reasonable computations times, considering that a large amount
of contexts and configurations will be tested, ER are computed as following. For
identification, only a forth of the references are used per samples. For authentication,
all samples (30) are used to compute legitimate distances scores, while only 30
illegitimate distances scores will be computed per users. Illegitimate samples are
randomly selected from the samples ensuring that all samples is used only once. For
Soft Biometrics, all entries are used to compute the ER with cross-validation using a
kFold of 5.

Context

The context describes the conditions in which the attack occurs. The context
influences the attack performances. It includes the datasets used to compute the
metrics, i.e. the number of users, the number of entries per users, the type of text
(Same-Text, Fixed-Text, Free-Text), and the typed text with its length. In the
scope of this thesis, the datasets presented in Section 2.2.1 will be used. Metrics are
computed as the mean of the metric across all dataset.
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Studies are often not comparable as they do not use the same datasets in order
to produce their metrics. But even if they did, the different ways the references
and samples are selected also influences the KDAS performances and make them
incomparable. Indeed, some randomly selects references and samples, while other
use the first entries as references, and the nexts as samples. In our attack model, 3
parameters describes the way the references and samples are selected:

• The position of the attack, separating the references from the samples. In our
case, the first 15 entries are used as references as the others as samples.

• The number of references, from 1 to 15.
• The sample range, relatively to the position of the attack, a subset of [1;30].

In order to prevent bias due to the evolution of the keystroke through time, the
position of the attack is fixed, and the n-first entries preceding the position are used
as the n references.

Configuration

Distance

Function

Distance

Function

SampleReference References

Pre-processing

Durations

Selections

Merge/Features

Selection

Merge

Pre-processing

Raw References
# = 15

Durations

Selections

Pre-processing

Durations

Selections

Raw Sample
Time ✁ [1;30]

Distance

Score

Raw References
# = 15

Features

Selection

Features

Selection

Figure 2.6: Context (in blue) and Configuration (in green)

There is an infinity of possible ways to compute a distance score from a reference(s)
and a sample. Obviously, we are only able to test a subset of the possibilities. We
propose in Figure 2.6 a pipeline enabling to compute such a distance score. The
configuration describes each part of this pipeline:

• Distance function: computes a distance score from a reference and a sample.
• Pre-processing : modifies the references and samples in order to improve the
distance function performances.

• Feature selection: for free-text, build a vector of durations from the free-text
digraphs durations.
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• Durations selection: selects the entry’s durations to use.
• Merging : enables to compute a single distance score from several references
and one sample.

Synergies has been observed between configurations parameters. We thus argue
that the impact of a given parameter value, in a given context, cannot be estimated
without computing the performances of all configurations involving this value. The
impact of a given parameter value will thus be estimated as the maximal performance
it enables to achieve.

Naming convention

We propose a naming convention of context and configuration in order to quickly
describe them. We propose the following format: configuration@context, with
configuration and context concatenations of parameters separated by ’.’.

We propose the following format for configuration:

• Distance function, e.g. Hocquet, Manhattan;
• Pre-processing, e.g. density, reduce;
• Feature selection (for Free-Text), prefixed by the number of features, e.g.
38.quantiles;

• Durations selection, e.g. 034, 013, 045;
• Merging (for multiples references), e.g. min.

We propose the following format for context :

• The type of Same/Fixed-text (for Same/Fixed-text), st for Same-Text, ft for
Fixed-Text;

• Number of digraphs in the entry (for Free-Text), e.g. 125;
• Position of the attack, e.g. 15 (Same/Fixed-Text), 1 (Free-Text);
• Number of references, e.g. 15, 9, 1.
• Sample range (optional), assumed to be all entries after the attack.

Some examples are proposed below:

• Hocquet.density.034.min@st.15.15
• Manhattan.density.013.min@ft.15.9;
• Manhattan.reduce.38.quantiles.045@125.1.1.

The next sections describe the influence of the parameters of configuration and
context on the performances.

2.2.3 Influence of configuration and context on performances

Configuration and context influence the identification and authentication perfor-
mances, the impact of each parameters is described in Figures 2.7 and 2.8. Each are
described in the following. For a given parameter value, performances are the mean
performance across all datasets, for the best configuration and context involving the
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Figure 2.7: Influence on context and configuration on the performances (1/2)
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value. The best configuration and context is deepen in the end of this section, with
user-dependent thresholds, and compared with the state of the art.

Distance function (configuration)

The distance function computes a distance from a single reference and a single
sample. We focus on 5 different well-known distances functions and compares them
to the SVM performances. The distances were generalized, and tested both with and
without reduction.

Assuming a reference R = d∗(u, e, ∗), and a sample S = d∗(u
′, e′, ∗), with Ri,d =

di(u, e, d) and Si,d = di(u
′, e′, d), the distances are defined as follow:

• Cosine: −Σ{i,d}Ri,d ∗ Si,d/
√

R2
i,d ∗

√

S2
i,d;

• Minkowski : (Σ{i,d}|Ri,d − Si,d|
n/|S|)1/n;

• Hocquet : 1− Σ{i,d}e
−|Ri,d−Si,d|/|S|.

The cosine distance is computed as the opposite of the cosine similarity. The
Minkowski distance is equivalent to a generalized mean of the absolute differences
between the reference and the sample. The Hocquet distance is the generalization of
the distance used in [Hocquet et al., 2007]. In this study, 3 particular cases of the
Minkowski distance is used:

• (n=1) Manhattan distance: the mean of the absolute differences;
• (n=2) Euclidian distance: the mean of the square differences;
• (n=+∞) Chebyshev distance: the maximal difference.

It is worth noticing that the Bleha [Bleha et al., 1990] and Monrose [Monrose and
Rubin, 1997] distances are equivalent to specific Euclidian distance-based configura-
tions.

The reduction is performed by computing standard deviations from the references,
σi,d = σ(Ri(u, ∗, d)), and using them to divides each values of the reference and
sample R′

i,d = Ri,d/σi,d, S
′
i,d = Si,d/σi,d. Of course, reduction cannot be performed is

only one reference is available, e.g. in case of a reference merge (see next sections).

Influence of the distance function on the performances are shown in Figure 2.7a.
When values are reduced, the distance name is suffixed by ’R’. For authentication,
the Hocquet distance outperforms all other, whereas for identification, Hocquet
distance is the second best, behind the Manhattan distance, though the difference is
not significant (≤ 0.2%).

Surprisingly, the bests performances are not obtained with reduction, which is
due to the density pre-processing that performs better without reduction, whereas
e.g. the raw pre-processing performs better with reduction. This is an example of
synergy between parameters.

The performances of distance-based KDS are compared to SVM-based KDS in
Figure 2.9. Authentication uses a one-class linear SVM, while identification uses
a multi-class linear SVM. For SVM, only a subset of parameters were tested, the
number of references, the digraphs selection, with and without values sorting.
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Figure 2.9: Comparison between distance-based (SOA and Best) and SVM-based KDS.

Performances are deceiving and do not correspond to the ones obtained in [Giot
et al., 2011], which can be explained by the fact we do not randomly select references.
Indeed, as the user keystroke dynamics evolves through time, randomly selecting
references enables a more diverse learning. Moreover, the context and configuration
slightly differs from ours.

Pre-processing (configuration)

Pre-processing modifies the references and samples in order to improve the distance
function performances. We focus on 4 different pre-processing mechanisms. Values are
then sorted by durations. Assuming en entry E = d∗(u, e, ∗), with Ei,d = di(u, e, d),
the pre-processing functions are defined as follow:

• Raw : no preprocessing, E ′
i,d = Ei,d;

• Reduce: E ′
i,d = Ei,d/σi,d, with:

– σi,d = σ(di(∗, ∗, d)) for same-text;
– σi,d = σ(di(∗, ∗, ∗)) for fixed-text.

• Uniformize: E ′
i,d = cdfi,d(Ei,d), with cdf a cumulative distribution function:

– cdfi,d = cdf(di(∗, ∗, d)) for same-text;
– cdfi,d = cdf(di(∗, ∗, ∗)) for fixed-text.

We estimate the cumulative distribution function through a rank transformation
(density), i.e. the position of the value in the list of all known values, divided by
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the length of the list, cdf(x) = pos(x,X)/len(X), with X the sorted list of the
known values. It is worth noticing that the attacker has knowledge of the global
distribution of the duration across all users. Other estimations of the cdf function
are experimented at the end of this section, but only for the best configuration and
context with same-text authentication and identification, due to computation time
(and memory space) limitations.

Although value reduction is tested, value centering and standardization is not, as
most of the distances are based on a difference between entries values, i.e. a centering
of the values would make no differences on the results, x− µ− (y − µ) being equal
to x− y.

Discretization as preprocessing is also not tested in this study. Existing studies
have found that the clock resolution influence KDS performances [Killourhy and
Maxion, 2008], and discretization might improve KDS performances [Giot et al.,
2011]. However, the gain is small (near 1 point on the EER), and it is unclear if
the gain is not simply due to chance. In a previous study [Migdal and Rosenberger,
2019c], we found out that such gains are seemingly unpredictable and dataset-
dependant, as shown in Figure 2.10. In this study, we used the Hocquet distance
on an authentication KDS with the 10 first entries used as references. This study
also shown that the clock jitter does not have a significant impact on the KDS
performances.

 0.1
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 0.4

0 1 2 3

GREYC K
GREYC W1
GREYC W2

CMU
EER = 0.5

Optimal EER

Figure 2.10: Impact of the discretization on the performance of KDS (zoomed).

Influence of the pre-processing on the performances are shown in Figure 2.7b.
When values are sorted the preprocessing name is suffixed by ’S’. The density
pre-processing offers the best performances while sorting the values decrease the
performances. Reducing provides better performances than raw on identification
KDS, and on free-text authentication KDS.

As previously stated, the cdf function can be estimated in other ways, by assuming
a random distribution followed by the values, and estimating its parameters. We
tested several estimators while assuming the values to follow a normal, gumbel, or
logistic law. The parameters of these laws can either be computed from the mean
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and standard deviation of the values (raw estimator), or by using a fitting algorithm
(see Chapter 5).

Contrary to the rank transformation that requires all known values, these es-
timations only requires to transmit and store the law name and the parameters.
Still, the estimation of the parameters requires all known values, although, a better
understanding of the model followed by Keystroke Dynamics could enable to com-
pute any parameters without requiring any values. In Chapter 5, we propose a first
modelization of Keystroke Dynamics, but further studies still needs to be conducted.

The law providing the best performances has found to be the gumbel law. On the
two configurations and contexts tested, the raw estimator decreases the performances
by 1.2 points for authentication, and 0.2 points for identification, whereas the fitting
estimators increases the performances by 0.05 points for authentication, and decreases
the performances by 0.9 points for identification.

These results might differs depending on the configuration and context. It is
also worth noting that the bests configurations and contexts performances are very
close by a non-significant distance (e.g. 0.03 points for two best configurations and
context for same-text authentication). A better model could also lead to improve
such performances.

Feature selection (configuration)

In Free-text, the typed text changes at each entry, even for the same user, i.e. the
typed digraphs differ. State of the art either assumes some digraph/world would be
typed [Idrus et al., 2013], or requires a long typed text. We propose in this section
ways to build a fixed-length vector from any typed free-text.

Assuming an entry E = d∗(u, e, ∗), with Ei,d = di(u, e, d), the pre-processing
functions are defined as follows:

• mean: mean of the durations for each of the most frequent digraphs in the
typed text, E ′

i,f = µ(Ei,{d=f});
• quantiles : E ′

i,∗ = quantiles(Ei,∗).

The number of the features f is fixed empirically.

Results are shown in Figures 2.8a and 2.8c. Quantiles features are near 4 times
better than means features. As expected, the more features we use, the better the
performance is. However, as the performances initially quickly increase as the number
of features increases, it quickly stagnates near 20 features for authentication, and 15
for identification.

Durations selection (configuration)

As previously stated in Section 2.2.1 with Figure 2.2, digraphs are composed of 6
durations. As shown in Figures 2.7c and 2.7d, using all available durations does not
provide the best performances, which is achieved when using durations d0, d3, and
d4.
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For Same/Fixed-text, as consecutive digraphs share a same duration, d5(u, e, d) =
d0(u, e, d+ 1), d5 combinaisons involving d5 durations are not tested, and the last d5
duration is added to the list of d0 durations. Free-text uses d5 durations, but the
results involving d5 durations are not displayed in the Figures.

Other selection of durations could also be experimented, s.a. computing a distance
score for each durations, then using a weighted mean to obtain a final distance score.
A digraph durations could also be transformed, e.g. using a PCA.

Merging (configuration)

In our model, the attacker has many references per users, however the distance
function only takes one reference to compute a distance score. Then, either the
references should be merged to produce an unique reference, and thus an unique
distance score, or many distances scores should be computed then merged to produce
an unique distance score.

The tested merging strategies are defined as below:

• min: the minimal score;
• max : the maximal score;
• sum: the sum of the scores (equivalent to the mean);
• unique: the mean of the references, Ri,d = µ(di(u, ∗, d)).

The performances of such strategies are presented in the Figure 2.8b, the min merging
strategy is the best in all cases, although, for identification, it is very close to the
sum and unique strategies. The max strategy however, performs worst than any
other.

The experimented merging strategies could also be generalized. Be Si the distance
score computed with the reference Ri, and S the final distance score. The mean, max,
and sum strategies can be generalized as a weighted sum S = Σiwi ∗Si, assuming the
scores sorted by values. The scores could also be sorted by quality (using a quality
metric), or by time. Unique is computed as a mean of the references, but could also
be computed as a weighted mean, and as for distance scores merging, the weight
could depend on the quality, or the time of the reference.

Number of digraphs (context)

Free-text is likely to be used for continuous authentication or identification. However,
the size of the chunk used to compute the references and samples impacts the
performances, as shown in Figure 2.8d.

Obviously, using a very small number of digraphs will not enable neither identi-
fication nor authentication, and the more the number of digraphs, the better the
performances are.
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Number of references (context)

The number of references also impact the performances. The number of references is
also a specific case of the generalized merging of distance score, when the scores are
sorted by time.

As shown in Figure 2.8f, even one reference is enough to enable authentication or
identification. and obviously, the more the number of references we consider, the
better the performance is. However, the performances quickly stagnate, which seems
to indicates that too old references are not useful.

Sample range (context)

The freshness of the references compared to the received sample also impact the
performances.

As shown by Figure 2.8e, the best performances are obtained if the sample is
consecutive to the references, and the performances decrease when the references are
too old.

This suggests that, in order to maintain good performances over time, new
references should be added regularly.

User dependant thresholds (Attacker model)

In our attacker model, we assume that the attacker use a unique threshold for all
users. However, in real-life, attackers can improve performance of KDS by using
user-dependent thresholds [Mhenni et al., 2019].

We thus quantify, in the following, the maximal theoretical performance gain
offered by users-dependant thresholds on Same/Fixed-Text authentication. The
attacker is then granted the unrealistic capacity to choose the optimal threshold for
each users.
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The thresholds are chosen is such a way that each user:
• UNIQUE : have the same thresholds (no-user dependant);
• FAR: have the same FAR;
• FRR: have the same FRR;
• EER: have the same EER;
• MER: have a minimal Error Rate.

Only two of the bests configurations and contexts are tested, Hocquet.density.014.min@st.15.8
for Same-Text, and Hocquet.density.034.min@ft.15.15 for Fixed-Text. The (E)ER of
each strategies is shown in Figure 2.11. MER strategy offers a significant gain on
the ER (2 to 3 points). Although the FRR and EER offers performance gains, the
FAR strategy increases the ER.

The MER strategy is the best suited strategy for an attacker scenario. However,
in a legitimate authentication scenario, the ER strategy is unsuited as some users
might have very high FAR or FRR. In the same way, even though they guarantee the
same FRR or FAR for all users, FRR and FAR strategies are not suited to legitimate
authentications. In such a case, the EER strategy would be more suited as it ensures
that all users has a balanced security between FAR and FRR.

References-dependent thresholds could also be tested for identification, with
threshold(s) on the distance score or/and the rank.

Limitations

Only a small subset of all possible configuration and context could have been tested.
Some differences between configurations and context might not be significant, and
due to e.g. the random selection of the impostor samples that introduces some
variation on the performances computations. The mean of several iteration should
be computed along with a margin of error before assessing a strong ranking of the
configurations and contexts.

Soft Biometrics were not tested using distances function. We propose some results
based on the work of [Idrus et al., 2013] using a SVM with RBF kernel, γ=0.125,
cost=128. The performances of the best configuration and context is shown in
Figure 2.12. The same configuration and contexts will are in the next chapter as an
attack on user privacy.

2.3 Conclusion

We demonstrate that Keystroke Dynamics constitutes a major threat to users privacy
that needs to be addressed. The threat posed by Keystroke Dynamics has been
quantitatively estimated through experiments. However, this is a minimal estimation
of the maximal attacker power. Indeed, the non-existence of a KDS configuration
enabling to achieve greater performances cannot be demonstrated.

Still performances obtained in this chapter are enough to demonstrate threat to
users privacy. In Fixed-Text authentication, EER values of 8.5% can be achieved by
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attackers and could even reach 5.7% with user-dependent thresholds. Fixed-Text
identification offers even better performances with an AEER value of 3.8%.

In this chapter, we tried to increase KDS performances. In the next chapter, we
seek to decrease such performances in order to protect users privacy.

In short: Although Keystroke Dynamics can be used for security purposes, it
also represents a threat to user privacy (identification, profiling). To quantify
this threat, we proposed a fair comparison of KDS while distinguishing between
context (what the attack has) and configuration (what the attacker do) and their
impact on the performances. We focused on the timing event received by the
OS/Browser. Our findings strongly suggest the use of user-dependant threshold
for better performances, and the use of sliding windows on references in order
to maintain performances through time. Better KD modeling could also increase
performances of the attacks.
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How to protect my information from
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threaten users privacy. This chapter presents several techniques enabling to
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Contributions presented in this chapter

• Real-time Keystroke Dynamics anonymisation.

Publications

• Migdal, D. and Rosenberger, C. (2019b). Keystroke Dynamics Anonymization
System. In SeCrypt (B - Core), Prague, Czech Republic.

• Migdal, D. and Rosenberger, C. (2019a). Don’t listen to my Keystroke Dynam-
ics! (Summer School). 16th Int.l Summer School on Biometrics and Forensics
2019.

• Migdal, D. and Rosenberger, C. (2019e). Schéma d’Anonymisation de Dy-
namique de Frappe au Clavier. In APVP, Cap Hornu, France.

Note: [Migdal and Rosenberger, 2019b] has received the best poster awards at
Secrypt 2019.
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3.1 Protection of Keystroke Dynamics

As seen in Chapter 2, Keystroke Dynamics enables the profiling of users by analyzing
their way of typing [Giot and Rosenberger, 2012, Epp, 2010]. However such modality
can be easily be collected without the users consent or knowledge, e.g. when browsing
the Internet. Indeed, a simple JavaScript code embedded in the visited web pages
enables internet services to collect Keystroke Dynamics and profile users. This poses
a major threat to users privacy that needs to be addressed.

While most studies in the state of the art focus on increasing Keystroke Dynamics
Systems performances, we address the opposite issue of avoiding the biometric
capture of Keystroke Dynamics in order to protect users’ privacy. In this section,
we aim at protecting users’ privacy by anonymizing keystroke data, thus limiting
browser fingerprinting and preventing deduction of private information about users,
while still allowing the use of this modality for consenting users authentication.
Authentication, identification, and profiling can be considered as attacks we limit in
this contribution. Experimental results obtained on significant datasets show the
benefits of the proposed approaches.

We propose multiple simple solutions for internet users to decide whether its
Keystroke Dynamics features could be used or not on a specific website. Using
Keystroke Dynamics could be useful to enhance the security of authentication
avoiding complex passwords (logical access control to a bank account as for example).
For other services, such as social networks, an user might choose to disable the
Keystroke Dynamics capture. The proposed methods have been implemented as a
WebExtension as an operational proof of concept. With this WebExtension, any user
can easily decide for which service, its Keystroke Dynamics features could be used
or not (GDPR requirement).

3.1.1 Background

The attacker model is defined in chapter 2. The attacker collects keyboard events
timestamps through a JavaScript code embedded in the visited web pages. In a first
phase, it is able to build references for each users and will try, in a second phase, to
authenticate, identify, or profile users.

Protection

Information can be protected thanks to different techniques. We present some of
them below. The next section will introduce some Keystroke Dynamics protections
strategies inspired from these techniques.

The most common is simply to suppress such information, or, at least, to ask for
users consent before granting access to it. This is used e.g. by WebExtensions and
Android applications. Such applications need user consent before accessing some
API (e.g. location API). Consent can be given either as the application needs it, or
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during the application installation. However, this is hardly applicable to Keystroke
Dynamics as it cannot be suppressed. This technique inspired the costless (A)
strategy. Indeed, if keystroke events are suppressed, the user will no longer be able
to type text. If only the keystroke event timestamp is suppressed, attacker could
simply use, instead, the time it notices the changes induced by the keystroke events.
JavaScript could also be disabled, however it has lots of usage consequences.

Another technique is to lower the information precision, which is already done
by browsers. Indeed, browsers round timestamps in order to prevent fingerprinting
attacks 1. However, the precision of 2 milliseconds is still too high to prevent profiling
through Keystroke Dynamics, and a too low precision would be prejudicial to some
applications (e.g. online games). A combination of rounded timestamp and a required
authorisation for higher timestamp resolutions would however be interesting. This
technique inspired the costless (D) strategy and the non-blocking delay strategy.

Randomizing the information can also protect them. Obviously, the content of the
typed text cannot be randomized, but the timestamp of the events, in some extends,
can. Such technique is used, e.g. to counter browser fingerprinting [Nikiforakis et al.,
2015]. This technique inspired the non-blocking rdelay strategy.

Adding false information can also prevent profiling, although it is not compatible
with Keystroke Dynamics as added Keystroke events would modify the typed text.

Other techniques can also seek to standardize the information. This strategy is
used by the Tor Browser to prevent browser fingerprinting attacks 2. This can be
hardly enforced in KD as users have very different typing speeds. This technique
inspired the blocking strategies.

The main idea of protecting users from identification/profiling given the Keystroke
Dynamics data is thus to disturb the collected information. The attacker being able to
embed arbitrary JavaScript code into web pages, it is able to measure the timestamps
of keyboard events she/he receives with the JavaScript function Date.now(). Thus,
modifying the events’ timestamps will have no effect, as the attacker can measure
them himself. However, events can be delayed, i.e. waiting some time before sending
the keyboard event. As JavaScript events loop is mono-threaded, any active wait is
troublesome and will be easily detected by the attacker using setInterval(), thus
requiring the delayed event to be destroyed, and recreated after a passive wait with
setTimeout().

The way the Keystroke Dynamics is protected, and the eventual parameters of
such anonymization scheme is also assumed to be known by the attacker. Thus, such
parameters should be set for all users in order to prevent the attacker from using
them to discriminate users through browser fingerprinting techniques [Eckersley,
2010].

1https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp
2https://panopticlick.eff.org/self-defense

https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp
https://panopticlick.eff.org/self-defense
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State of the arts

Very few works have been done in the state of the art to avoid the correct capture of
Keystroke Dynamics on Internet. To our knowledge, there exists a single work (but no
research papers) implemented as a browser extension. KeyboardPrivacy [Moore and
Thorsheim, 2016] is a Google Chrome extension that implements such a protection.
Timestamp of each event is computed as follows:

t′i = max(t′i−1, ti)+

{

b 1 time out of 2
0 1 time out of 2

Where b is a random value following an Uniform distribution between 0 and a
(this value is user-defined).

Constraints

As the keyboard events will be delayed, this implies a latency i.e. a time the user
will have to wait for its keyboard input to be processed/”drawn”. The latency must
be minimal and as unperceivable as possible for the user.

Latency will be measured in the number of screen frame skipped assuming a
screen frame every 1/60 seconds (60Hz). Costless protections will thus be assumed
to have a latency of 0. The latency of a typed text is computed as the maximal
latency observed in each pressure events. The latency of a dataset is computed as
the mean of the latency of all typed text, while the maximal latency is computed as
the maximal latency observed in each typed text. The final metrics are computed as
the mean accross all tested datasets.

Pressure keyboard events can only be delayed, and in no case anticipated, as it
is impossible (at the exception of auto-complete features), to predict what the user
will type. The order of the pressure keyboard events must also be kept in order to
keep the meaning of what is typed.

Contrary to other anonymisation techniques, the anonymization is not offline, but
in real-time, as the user type. Also, we are not required to conserve any statistical
meaning, only the meaning of what is typed.

Metrics will only be computed on the best authentication, identification, and soft
biometrics context and configuration found in chapter 2. Used dataset are reminded
below in Tables 2.1 to 2.3. These tables are repeated below. This is only indicative
as there is no guarantee that these configurations and context are still the best
after protection of Keystroke Dynamics. In order to produce better metrics, all
configurations and contexts should be tested and compared for a given protection
and expected latency. KDAS were tested without user-dependant thresholds. The
used configurations and contexts are the following:

• authentication: Hocquet.density.034.min@st.15.15;
• identification:

– Same/Fixed-Text: Manhattan.density.013.min@ft.15.9;
– Free-text: Manhattan.reduce.38.quantiles.045@125.1.1.

• soft biometics: 0123
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Name Text # of users Source
GREYC K greyc laboratory 104 [Giot et al., 2009]
GREYC W1 laboratoire greyc 62 [Giot et al., 2012]
GREYC W2 sésame 46 [Giot et al., 2012]
CMU .tie5Roanl 51 [Killourhy and Maxion, 2009]

Table 2.1: Description of used Same/Fixed-text datasets.

Name Text # of users Source
GREYC N1 leonardo dicaprio 110 [Syed Idrus et al., 2013]
GREYC N2 michael schumacher 110 [Syed Idrus et al., 2013]
GREYC N3 red hot chilli peppers 110 [Syed Idrus et al., 2013]
GREYC N4 the rolling stones 110 [Syed Idrus et al., 2013]
GREYC N5 united states of america 110 [Syed Idrus et al., 2013]

Table 2.2: Description of used Same/Fixed-text Soft-Biometrics datasets.

Name About # of users Source
KPPDW1 Gay Marriage 400 [Banerjee et al., 2014]
KPPDW2 Gun Control 400 [Banerjee et al., 2014]
KPPDW3 Restaurant Reviews 500 [Banerjee et al., 2014]

Table 2.3: Description of used Free-Text datasets.

3.2 Keystroke Dynamics Anonymization System

We propose different solutions to anonymize keytroke dynamics of users we call
Keystroke Dynamics Anonymization System (KDAS). Their objective is to be able
to use Keystroke Dynamics features for internet services when the user consents (for
security applications), and to provide altered data otherwise (for privacy protection).
We present in the following several families of KDAS resumed in Figure 3.1.

Keystroke Dynamics Anonymization Systems

Costless

Latency is impossible to
perceive.

Non-blocking

Latency does not add up
while typing.

Blocking

Latency does not add up
while typing.

Figure 3.1: Keystroke Dynamics usages.
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3.2.1 Costless protection

Costless KDAS delay keyboard events in such a way that latency cannot be perceived
by users. We propose 3 costless KDAS based on 2 strategies:

• Generation of release keyboard events (A);
• Delaying events until the next screen frame (D);
• Doing both (DA).
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Figure 3.2: Absolute loss on the EER with
automatic release (A), delay (D) or both
(DA) costless KDAS.

Figure 3.3: Visual representation of the de-
laying strategy (D). Each vertical line repre-
sents a screen frame.

The first strategy (A) is based under the assumption that each pressed key will
be released. Release keyboard events can thus be automatically generated after the
pressure event, i.e. d0(u, e, d) = d5(u, e, d) = t, with t an arbitrary time after which
the release event will be generated. In case of repeated keyboard events, i.e. the
key is hold pressed in order to produce several characters, a new pressure event can
be generated for each additional characters. As shown in figure 3.2, such strategy
significantly increases the EER value ( +7.2 points ).

The second strategy (D) exploits the fact that computer screens are refreshed
at a regular rate. This means that any changes on the displayed elements will not
be drawn immediately, but on the next frame. Thus, under ordinary use, the exact
time an event occurred makes no difference to the users, only the frame on which the
event will be ”drawn” matters. i.e. any delay of an event to match the time of the
next frame is de facto impossible to perceive for an user, and thus assumed costless.
Such operation is described in Figure 3.3 and can be trivially done in JavaScript
thanks to Window.requestAnimationFrame(). We will assume that users typically
possess 60Hz screens, i.e. that the screen draw a frame every 1/60 seconds.

As shown in Figure 3.2, delaying events to the next frame (D) increases slightly
the EER value (+1.5 points). Doing both strategies (DA) produces a very small
increase of privacy (+0.9 points) compared to (A). However, such strategy is still
interesting as it would suppress information that could be exploited by other KDS.

In the following, the presented KDAS will be assumed to implements the DA
costless strategy: pressure events will be delayed beforehand (D), and release events
will be automatically generated afterwards (A).
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3.2.2 Non-blocking protection

In order to further increase the EER values, some events have to be delayed beyond
the next frame, thus inducing latency. Such latency might be perceivable by the
users and thus constitutes a cost in terms of usability of the KDAS.

Non-blocking KDAS delays pressure events independently from the previous, with
the only constraint to preserve the events’ order. Their parameter p is the number
of frames that can be skipped, and de facto their latency. In order to enable a fair
comparison of KDAS, performances are evaluated at equals latencies.
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Figure 3.4: Absolute loss on the EER with
non-blocking KDAS (in orange) in function
of the latency.

Figure 3.5: Visual representation of non-
blocking strategies (p=4).

Two non-blocking KDAS are studied. First, events are discretized with a resolu-
tion of (p+ 1)/60 (delay), and in the second, events are delayed by n frames with n
an uniform discrete noise n∼U(0, p) (rdelay). A visual representation of these two
strategies are shown in Figure 3.5.

As shown in Figure 3.4, both provide significant protection compared to the
costless KDAS (DA). For the same latency, rdelay seems always better than delay
except for low latency (< 10 frames) where delay is slightly better than rdelay.

As shown in Figure 3.6a, KDAS also offers protection against soft biometrics
profiling. When considering identification, as shown by Figure 3.6b, gains are not
as high as for authentication. For Free-Text identification, as shown by Figure 3.6c,
costless KDAS offers great gain on privacy, while gains offered by non-blocking KDAS
grows slowly. delay and rdelay offers similar privacy for low latency (< 15 frames).
On Free-Text and for high latencies (> 15 frames), delay outperforms rdelay.
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Figure 3.6: Non-blocking KDAS performances.

3.2.3 Blocking protection
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Figure 3.8: Visual representation of blocking
strategies (p=4).

In order to continue to increase the EER value, events can be delayed depending
on the previous event. The first blocking KDAS ensures that there is at least n
frames between each pressure events (block delay), the second (block rdelay) delays
them such as the ith pressure event’s delayed timestamp (t′i) is computed from the
original timestamp ti as follows: t

′
i = max(t′i−1, ti) +U(0, p). A visual representation

is given in Figure 3.8.
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As shown in Figure 3.7, block rdelay is in average slightly better than its non-
blocking equivalent rdelay, and worst than delay for low latencies (< 10 frames). As
for block delay, it is worst than both delay and rdelay for low latencies (< 15 frames).
However, when considering the maximal latency, non-blocking KDAS out-perform
by far blocking KDAS.

Moreover, when users type too fast (or p too high), blocking KDAS latency adds
up at each pressed key. When this happens, t′i will only be computed from t′i−1, i.e.
every users will have the same way of typing, but at the cost of a non-ergonomic
and unacceptable latency. Adapting p to match the user typing speed would enable
browser fingerprinting attacks, as it would enable the attacker to discriminate users
in function of their configuration, i.e. the p parameter. This suggests that blocking
KDAS should be avoided in favor of non-blocking approaches.

3.3 Proof of concept implementation

We developed Keystroke Anonymization, a Firefox WebExtension, that implements
the previously cited KDAS. The WebExtension was used during the writing of
[Migdal and Rosenberger, 2019c] on Overleaf (method: rdelay, p=15). Users can
enable/disable the protection using the Ctrl+K shortcut, and can enable/disable
generation of events using the Ctrl+G shortcut.

Figure 3.9: Screenshot of the WebExtension (debug mode).

A demonstration is also integrated to the WebExtension enabling users to test
usability and the protection of different configurations (see Figure 3.9).

3.3.1 Implementation issues

The manifest is a JSON configuration file used by WebExtensions. In order to make
active the WebExtension on all pages, content script’s matches field is set to



3.3. PROOF OF CONCEPT IMPLEMENTATION 45

<all url>.

The WebExtension listens on each Keyboard events in order to delay them. One
important point is that the WebExtension listeners must be called before any other,
or else the attacker will be able to block call to the WebExtension listeners, i.e. to
prevent events from being delayed by the WebExtension.

For that, content script’s run at field must be set to document start, in order
to the WebExtension script to be executed before the page scripts, thus allowing it
to register listeners before any else. Indeed, listeners are called in the order of their
registration.

Moreover, listeners must be added on document, with the third parameter of
addEventListener(), capture, set to true. Indeed, event propagation has two
phases in JavaScript, capture and bubble. In the capture phase, events are propagated
from the root element, document, to the target element, e.g. an input. Then, during
the bubble phase, events are propagated from the target element to the root element.
Thus, in order to be the first to capture the event, the WebExtension must capture
it during the capture phase, on the root element. The page must be reloaded upon
WebExtension installation or activation, in order to ensure to be the first to register
listener on already opened pages.

Only the keydown and keyup events are listened to. If the event has be been
delayed, its immediate propagation is stopped. If the event is a keydown, the event
is captured, i.e. added to an array. As previously stated, delaying event must
be done without active wait. Thus, requiring to stop the event propagation with
event.stopImmediatePropagation(), and to latter re-inject it with event.target.

dispatchEvent(event).

As the order of pressure keyboard events has to be kept, attacker could estimate
the real event timestamp by regularly generating pressure keyboard events. Untrusted
events should not be delayed, and too much untrusted keyboard events in a short
time should raise an alert.

The function window.requestAnimationFrame() is used to call an handler in
order to process captured events before each frame. The frame in which each event
will have to be re-injected in then computed depending on the KDAS method, and
the parameter p.

However, re-injected events will loose their trusted status as it no longer originate
from user action. This means that the event will trigger listeners but will not
trigger the target default behavior, e.g. add a character on an input. This default
behavior has thus to be simulated. Keyboard events that are not a character
(event.key.length != 1), or when the ctrl key is pressed (event.ctrlKey) will
not be delayed.

For inputs and text area, this requires to delete the current selection (between
elem.selectionStart, elem.selectionEnd), insert the character between, set the
cursor position (elem.setSelectionRange(start+1, start+1)), generate an input
event, and add a listener to trigger a change event when the element loses focus.
As elem.selectionStart and elem.selectionEnd are not defined for all types of
inputs (e.g. email), the type of the input (elem.type), has to be changed to text

while accessing and modifying these properties.
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div elements can also be used to type text thanks to the contentEditable=true
attribute. This is used, e.g. by the webmail GMail to write e-mail. For con-
tentEditable elements, current selection must be deleted window.getSelection().

deleteFromDocument(). The element and position in which insert the character
is givent by selection.focusNode and selection.focusOffset. If the element
is a div, its content must be cleared (div.removeChild(div.fistChild)), and
a new div containing a TextNode must be appended to the first div. If the ele-
ment is a TextNode, or once the TextNode created, its content is modified through
textNode.textContent. Before creating an input event, the cursor has to be up-
dated in the following way:

let range = document.createRange();

range.setStart(textNode, start+1);

range.setEnd(textNode, start+1);

range.collapse(false);

selection.addRange(range).

Unfortunately, the creation of new lines ignore the position of the cursor if the
mouse or the arrows key has not been used since the last delayed event. Events s.a.
keypress, input, change, could also not be generated when simulating the default
behavior on events, to increase the privacy protection by making it more difficult
to an attacker to deduce the event timestamp, however, this might impact the
functionality of some websites.

3.3.2 Comparison with KeyboardPrivacy
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Figure 3.10: Absolute loss on the EER with Keyboard Privacy (in blue) in function of the
latency and maximal latency (prefixed by M ).

As shown in Figure 3.10, KeyboardPrivacy is less efficient than delay and its
maximal latency is worst than block rdelay. It is even less efficient than the costless
KDAS when the maximal latency is near under 10 frames. The construction of this
KDAS extension seems to be ad hoc, and could be improved using the conclusion of
this chapter:

• use passive waits instead of active waits;
• automatically generates release events;
• delays pressure events to the next frame;
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• use non-blocking KDAS (rdelay or delay) to limit the latency;
• use fixed parameters for all users to prevent fingerprinting attacks.
It also suffers from several security vulnerabilities. Indeed, the events are captured

during the bubble phase, instead of the capture phase. Moreover, the script is, by
default, executed after the page has been loaded. This WebExtension also does not
support ContentEditable fields. As an active wait is used to delay events, keyboard
events cannot be, at the same time, protected, and used for e.g. authentication.

3.4 Conclusion and perspectives

This work constitutes a preliminary study on the Keystroke Dynamics Anonymization
Scheme. Performances of presented KDAS has been demonstrated using state of
the art fixed-text Keystroke Dynamics datasets presented in Chapter 2. However,
performances and latency may vary depending on the written text, and the user.
KDAS introduce a trade-off between performances (security) and latency (usability).
The latency has been evaluated in term of duration, and should be evaluated in
terms of usability / user acceptability.

Other KDS could also be tested. An hardware implementation of such KDAS, is
presented in Chapter 6, in the form of a programmable USB to USB device between
the keyboard and the computer. Presented KDAS techniques could be applied to
other biometrics modalities, s.a. mouse events.

In short: Protection of Keystroke Dymanics is necessary to guarantee online
users privacy. However, it introduces a trade-off between privacy and usability
(latency). KDAS were not fairly compared as only the bests configuration and
context were tested without guarantee that such configuration and context remains
the bests after protection. Implementation of KDAS, specially in the form of a
WebExtension must be done with care as any configuration error might leak users
Keystroke Dynamics. The fact that generated events are untrusted requires to
reproduce by end the default behaviors of such events.





Chapter 4

Using personal data in a privacy
compliant scheme

The previous chapter presented methods to protect personal information from

being used against users consent. This chapter presents a way to use them for

authentication, without any privacy leakage.
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Contributions presented in this chapter

• Use of BioHashing with Keystroke Dynamics;
• Use of BioHashing with Browser Fingerprints;
• Use of BioHashing with location (GPS and IP adress);
• Computing a single BioHash from multiple modalities;
• Improvement of BioHashing performances through pre-processessings;
• Secure authentication scheme based on BioHashing.
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4.1 Introduction

In Chapter 2, we stated that, when browsing the Internet, users disclose information
that enable their profiling (authentication, identification, soft biometrics), even
without the users consent or knowledge. In Chapter 3, we proposed strategies to
prevent usage of such information without the users consent or knowledge.

The new GDPR regulation establishes rules in order to protect user privacy
and ensure its consent. These modalities have thus to be used by the service to
authenticate users, but, as possible, without knowing or enabling an attacker to
know, these modalities. In this chapter, we thus propose an authentication scheme
based on personal data without any privacy leakage.

Many studies propose strong user authentication based on biometric modalities.
However, they often either, assume a trusted component, are modality-dependant,
use only one biometric modality, are reversible, or does not enable the service to adapt
the security on-the-fly. We propose in this chapter the concept of Personal Identity
Code Respecting Privacy (PICRP), a non-cryptographic and non-reversible signature
computed from any arbitrary information. We then propose an implementation
of PICRP with the use of Keystroke Dynamics, IP and GPS geo-location and
optimize the pre-processing and merging of collected information. We demonstrate
the performance of the proposed approach through experimental results before
presenting an example of its usage.

Note: This work being prior to the previous chapters, the Fair Evaluation Scheme
presented in Chapter 2 is not used in this chapter. The configuration and context
used in the chapter is equivalent to BioHashing.*.03.*@st.1.1. Still, the presented
metrics on Keystroke Dynamics should be recomputed, using the fair evaluation
scheme.

4.1.1 State of the art

Biometric authentication is a well-studied subject in the literature, however, proposed
solutions often either, assume a trusted component, are modality-dependant, use
only one biometric modality, are reversible, or does not enable the service to adapt
the security on-the-fly. Trusted computing using secure element or sensors often
gives the best security, but requires the possession of a specific hardware that a user
might not possess. Such solutions thus only protect owner of such specifics hardware,
that might be lacking in desktop or laptop computers. It also assumes that such
devices are trusted and cannot be attacked.

Homomorphic or Functional encryption [Tian et al., 2018] enables to compare
biometric modalities in the encrypted domain, i.e. without having the knowledge of
the content. However, the encrypted data often require a lot of memory space, that
can be repellent for a web service. Other solutions can be mono-modal or built for a
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specific modality. Some of which, like Zero Knowledge Protocol [Saini and Singh,
2018], does not enable the change of the security level on the fly.

Other solutions are based on the generation or extraction, of a fixed key from the
modalities, s.a. in Fuzzy vaults, fuzzy commitment, or fuzzy extractor, often based
on error-correcting code. This assumes that variations in the modality are errors
to be corrected in order to produce or extract the secret key. However, the security
level is often set at the creation of the secret key and cannot be changed afterward.

The usage of a trusted device can also enable a secret key unlocking, when the user
is authenticated. The security level can easily be changed on the fly by configuring
such trusted device. However, the security remains only on the assumption that the
trusted device is assumed secure and that no attacker will ever crack it. This is a
strong security assumption, even if the trusted device is tamper resistant, or has a
tamper response. The use of a trusted device should not dispense from protecting
the biometric information inside the trusted device when it is possible.

Finally, other solutions computes non-invertible soft hashes that conserve dis-
tances. The authentication decision can then be based on the distance between the
references and the given sample, enabling to adapt the security on-the-fly, and to
build more complex security policies.

4.2 PICRP

4.2.1 Principle

The issue we want to address in this work is the possibility to answer to Internet
services applications (s.a. authentication, attacks detection) while preserving the
user privacy. From collected personal data, we aim at generating a binary signature
as dynamical user characteristics having lost its semantic description. Finally, the
service is able to exploit this signature without knowing the information used to
generate it.

The goal of the proposed method is to compute a binary code linked to an user
from personal information (technical and biometrics). This code must answer several
requirements:

• Non reversibility : the binary code associated to an user must not give any
information about the collected personal data.

• Confidentiality : the attribute value cannot be known, nor deducted, even by
the service (considered here as honnest but curious).

• Unlikability : two binary codes computed from different secrets should not
reveals their similarity.

• Similarity conservation: if users’ personal information are similar, then their
binary code must be too (Hamming distance).

• Non-usurpation: a tiers cannot forge a code enabling him/her to usurp legiti-
mate users’ identity.

• Revocation: a legitimate user must be able to revoke an existing binary code.
• Discriminant: different users should have different codes.
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• Stable: codes computed for a same user (and with the same secret) are similar.
• Not-costly: in terms of memory, computation time, ergonomics, financial cost.

In the scope of chapter, a trust score can be computed from the Hamming distance
between the proof and the commitment, both fixed-size binary vectors. Therefore,
we consider and detail the following personal information modality:

• What the user is/knows to do: its behavioural biometric;
• What the user has : its browser;
• Where the user is : its physical and organizational localization;
• What the user ”prefers”: personal machine configuration.

A password is used as a secret key [Lacharme and Plateaux, 2011]. In this case, the
user, by inputting its password, consents to give the binary code to the service. The
different computation steps are introduced later.

We thus introduce the concept of Personal Identity Code Respecting Privacy
(PICRP) as a cancelable non-reversible binary code enabling the similarity comparison
of arbitrary private data through the Hamming distance of two PICRP (e.g. a
reference and a sample). PICRP follows the previous defined requirements and can
be computed from several different modalities. Any type of personal information
can be added to the PICRP as long as it can be represented as a fixed-length real
vector (e.g. browser history, free-text, mouse, ...). Soft-biometrics information (s.a.
age, gender) could also be computed from existing modalities and integrated to the
PICRP, in order to improve performances.

In this chapter, we implement the PICRP concept as a BioCode computed from
private data, with the BioHashing algorithm [Teoh et al., 2004], presented in the
next section.

4.2.2 Biometric protection

Biometric data are sensitive information that cannot be easily renewed, and thus
needs to be protected. Indeed, if a biometric modality is stolen, e.g. a fingerprint,
an attacker will be able to build fake fingerprints in order to fasly authenticate.
Contrary to passwords, biometric modalities cannot be easily changed, requiring
either a change in behavior, or a transplant.

Moreover, knowing the biometric modality, the attacker can also attack user
privacy, either by deducing personal data (s.a. gender, age), or by using it to track
the user.

Locality-Preserving Hashing

Usually, hashes algorithms, s.a. SHA256 or SHA3, are used to transform arbitrary
vector of data into a binary vector of fixed length called hash. As the hashing
algorithms are deterministic, i.e. the same input will produce the same hash, and
as the original data cannot be retrieved from the hash, it is widely used to enable
comparison of data without revealing them.



54 CHAPTER 4. USING PERSONAL DATA IN A PRIVACY COMPLIANT

SCHEME

For example, it is common for password authentication to store the hashed
password into the server upon user registration. Then, for verification, the user sends
its password, and the server computes its cryptographic hash. If the computed hash
is equal to the stored one, the user is authenticated. Hashing passwords to store
them is a common practice that theoretically prevents any attackers to retrieve the
original passwords, even if the server dataset is leaked.

The original data could be retrieved from the hash by a brute force attack, i.e.
hashing all possible data and see if their hashes is equal to the attacked hash. Such
attack is in practice impossible without any heuristics, mainly due to the fact that
humans are not much inventive when choosing their passwords. Indeed the number
of possibility is such that it would requires an non-realistic computation power and
computation time.

However, hashes does not conserve the similarity of the data used to compute
them, i.e. two non-equal similar data would produce very different hashes. As the
modality we use are mainly biometric data, they suffers from little variations from
one acquisition to another. We thus need soft hashing, a kind of hash function that
conserves distances. As the conservation of similarity enables hill-climbing attacks,
any attacker, being able to obtain a distance score between a given hash and hashes
computed from arbitrary data, might be able to retrieve the original data from the
hash.

More particularly, we are interested in Locality-Preserving Hashing (LPH) which
is defined as the function H s.a.:
dist1(A,B) < dist1(B,C) =⇒ dist2(H(A),H(B)) . dist2(H(B),H(C)). In our
cases, dist2 is the Hamming distance. Some LPH algorithms assumes dist1 to be an
Hamming distance, i.e. the distance is defined as the number of differences between
two vectors. This does not match our needs as in biometric data variations are
generally distributed on all values.

In biometrics, two LPH are commly used, BioHashing [Teoh et al., 2004], and
BioPhasor [Teoh and Ngo, 2006]. A new LPH derived from BioHashing, GREY-
CHashing, [Atighehchi et al., 2019], has also been proposed very recently. In this
thesis we choose to use the BioHashing algorithm, as presented below.

BioHashing

Biohashing is a well-known algorithm in biometrics. It enables a biometric data
transformation when represented by a fixed-size real vector. It allows the generation
of a binary model called BioCode having a size inferior or equal to the original
size. This transformation is non-reversible and allows to keep input data similarity.
This algorithm originally has been proposed for face and fingerprints by Teoh et
al. in [Teoh et al., 2004]. Biohashing algorithm can be used on every biometric
modality, or personal information, that can be represented by a fixed-size real vector.
This transformation requires a secret linked to the user. In our case, this could be a
password input by the user [Lacharme and Plateaux, 2011]. The BioCode comparison
is realized by the computation of the Hamming distance. The BioHashing algorithm
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transforms a parameter vector T = (T1, . . . Tn) into a binary model called BioCode
B = (B1, . . . Bm), with m ≤ n, as follows:

1. m random orthonormal vectors V1, . . . , Vm of length n are generated from a
secret used as a seed for random draw (typically with the Gram Schmidt
algorithm).

2. For i = 1, . . . ,m, compute the dot product xi =< T, Vi >.

3. BioCode computation B = (B1, . . . , Bm) with the quantization process:

Bi =

{

0 if xi < τ
1 if xi ≥ τ,

Where τ is a given threshold, generally equals to 0.

The algorithm performance is granted by the dot product with orthonormal
vectors, as detailed in [Teoh et al., 2008]. The quantization process guarantees the
data non-reversibility (even if n = m), as each input coordinate T is a real value,
when the BioCode B is binary. We propose the use of this transformation to protect
personal information.

The BioCode being a simple hash, it is vulnerable to replay attacks, and thus
needs to be integrated into a secure protocol. When sending it e.g. to a server for
authentication, it should be transmitted through a secure communication channel,
s.a. a TLS connection. A secure protocol is described in Section 4.6, and the use
of trusted device is proposed in Chapter 6. To evaluate the performance of the
proposed PICRP, the BioHashing secret is assumed to be known by the attacker
(worst case). All PICRP were thus be computed using the same BioHashing secret:
0x1534FA2C4D37. In the next section, we present the PICRP pipeline we used in
this study.

4.2.3 PICRP pipeline
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Figure 4.1: PICRP computation pipeline.
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The computation of PICRP is shown by Figure 4.1. In red, the BioHashing
steps that had been previously presented. In green, the data used to compute the
PICRP, and in blue, the steps added to the BioHashing. Data and additional steps
are presented in the following sections.

Modalities are pre-processed in order to be converted into fixed-length vectors
of real and then merged to produce a unique PICRP. Merging can be performed
before (pre-merge) or after (post-merge) protection (using BioHashing). The secret
is a modality, or set of modality, that is not subject to variations, s.a. a password, a
MAC address, etc.

PICRP can be viewed as a binary interface as its computation does not influence
its usage, and vice versa. This gives the freedom for the user to easily use any
arbitrary modalities. We also argue that the computation of the PICRP, in the
context of a browser, should be performed by a WebExtension, to give to the user
control over the PICRP computation.

Computations of the PICRP can thus be improved without any impact on its
usage, facilitating adoption of PICRP improvements. Usages can also be added,
without any modification on its computation process. For example, one could imagine,
instead of authentication, to use PICRP to generate or extract private keys.

4.3 Datasets

4.3.1 Keystroke Dynamics Datasets

The datasets used in this chapter are presented in Chapter 2, in Tables 2.1 and 2.3.
These tables are repeated below. Contrary to Chapter 2, only the first entry are used
as reference, and the 44 nexts, as samples. As usual, metrics given in this chapter
are computed as the average value of the metric across all datasets.

Name Text # of users Source
GREYC K greyc laboratory 104 [Giot et al., 2009]
GREYC W1 laboratoire greyc 62 [Giot et al., 2012]
GREYC W2 sésame 46 [Giot et al., 2012]
CMU .tie5Roanl 51 [Killourhy and Maxion, 2009]

Table 2.1: Description of used Same/Fixed-text datasets.

Name About # of users Source
KPPDW1 Gay Marriage 400 [Banerjee et al., 2014]
KPPDW2 Gun Control 400 [Banerjee et al., 2014]
KPPDW3 Restaurant Reviews 500 [Banerjee et al., 2014]

Table 2.3: Description of used Free-Text datasets.
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4.3.2 Location datasets

Location datasets are generated from the DBIP dataset [DB-IP, 2019] where each
entry describes an IP network and a GPS location. Only IPv4 entries are considered.
Each user is associated to an origin place, randomly chosen among the DBIP entries,
each entry having a probability to be chosen given by the number of IP addresses the
network enables. Each user entry is then generated by randomly choosing another
entry from DBIP which distance with the origin place is below an arbitrary value
we name user mobility. The generated datasets have 100 users with 45 entries
each. IP addresses are randomly chosen among the one belonging to the IP network.
Two datasets are generated, IP addresses generated from place where each entry IP
addresses are generated from its network, and IP addresses from network, where the
IP address is generated from the origin place network.

GPS coordinates are converted in XYZ location described by 3 reals. In XYZ
location, generated from places, XYZ locations are computed from the DBIP entries
GPS coordinates. In XYZ location, generated from positions, XYZ locations are
randomly picked in all possible coordinates at a distance from the origin place inferior
to the user mobility. XYZ location is a coordinate in the Euclidean space and enables
non-biased distances, as longitude can go to +180 to -180, and that in function of
the latitude, differences in longitudes do not correspond to the same distance.

4.3.3 GPS formula

This section presents formula applied to GPS/XYZ locations used in the scope of
this study.

XYZ locations

XYZ locations (x,y,z) are computed from latitude (lat) and longitude (long) GPS
coordinates with the following algorithm:

gpsToXYZ([lat, long]) : [x,y,z]
lat *= π / 180,
y = 0.5 + sin(lat) * 0.5,
x = 0.5 + sin(long) * r,

long *= π / 180;
r = cos(lat) * 0.5;
z = 0.5 + cos(long) * r;

Distances

Distances between two places are computed as an angle a using the cosinus law. The
distance between two XYZ locations A,B is computed as follow:

angle(A,B): a
cos−1(1− 2 ∗ (Σi∈{x,y,z}(A[i]− B[i])2))

Distances in meters m are converted into angle a distance with the following formula
(assuming the circumference of the earth c to be 40,075,000 meters):

a = m/c ∗ 2 ∗ π
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Random locations

Random locations are generated from an origin location o and a user mobility r, i.e.
the distance between the random locations and o is at most r. Random locations
are generated by randomly picking a polar coordinate [a, d] in a circle of radius r
using pickInCircle(). The polar coordinate are then converted to a GPS location
gps = [long, lat] using pointInCircleToGPS(). Random locations are generated,
first assuming the origin location to be the North Pole (lat. 90, long. 0), then by
rotating the space in order to move the North Pole to the origin location using
moveNorthPoleToOrigin().

pickInCircle(r): [a,d]
a = rand() ∗ 2 ∗ π, d = r ∗

√

rand();
pointInCircleToGPS([a,d]): [long,lat]

lat = 90− 180 ∗ d/π, long = −180 ∗ a/π + 180;
moveNorthPoleToOrigin(gps, o = [olong, olat]): gps

gps = latRotation(gps, (olat-90) / 180 * π);
gps = longRotation(gps, olong / 180 * π);

latRotation(gps, dx): gps
[x, y, z] = gpsToXYZ(gps);
a = angle([0.5,y,z], [0.5, 0.5, 1]) + dx;
r = dist3D([x,y,z], [x,0.5,0.5]);
y = 0.5 + r * sin(a), z = 0.5 + r * cos(a);

longRotation(lat, long], dy): gps
long += dy / π * 180;
long = (long + 360 ) % 360 - 360;

Dist3D(A,B): d
d =

√

Σi∈{x,y,z}(A[i]− B[i])2;

4.4 Pre-processing

We intend to protect collected data with a biometric template protection scheme
called BioHashing. Collected information thus have to be pre-processed in order to
be represented as a vector of real values:

• Fixed-text Keystroke Dynamics data are pre-processed in Section 4.4.1. In this
section, we show that the values distributions in the real vector influence the
BioHashing performances.

• Locations (GPS and IPv4 addresses) are pre-processed in Section 4.4.2. In this
section, we reduce collisions in the final BioCode by extending small vectors of
reals.

Free-text Keystroke Dynamics are also considered and pre-processed, but are not
integrated to the final PICRP.
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4.4.1 Fixed-text Keystroke Dynamics

Keystroke dynamics can be trivially represented as a concatenation of dwell (d0/d5)
and flight times (d3). However, such representation (raw) gives disappointing per-
formances (EER=40%). As stated in Chapter 2, 6 duration times can be extracted
from each digraph, with a shared duration between two consecutives digraphs
d5(u, e, d) = d0(u, e, d + 1). However, as these duration times can be rewritten as
additions of dwell and flight times, they are, by construction, not bringing any addi-
tional security or performance to the BioHashing algorithm. We thus present, in the
following, several pre-processing techniques to the raw representation of Keystroke
Dynamics that improve performances (some of them have already been presented in
Chapter 2).

Standardization

A common practice in Data Sciences is to normalize variables, i.e. to center and
reduce them. Assuming Xi the variable associated to the ith real of the vector, with
µi and σi its mean and standard deviation, those processes are described by the
following formulas:

• center : X ′
i = Xi − µi;

• reduce: X ′
i = Xi/σi;

• standardize: X ′
i = (Xi − µi)/σi;

However, in this study, we used the median value instead of the mean one. Indeed,
the median is more resilient to aberrant values (e.g. hesitation times), and ensures
equal numbers of positives and negatives values after centering.

Indeed, due to the construction of the BioHashing algorithm, two opposed real
vectors produce opposed binary vectors. Thus, centering variables is expected to
help BioHashing to cover the binary vectors space, thus reducing collisions, and
improving performances.
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Figure 4.2: Influence of preprocessing on BioHashing performances.
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Results: As shown in Figure 4.2a, we found that Standardization significantly
improves the EER value (28.8%) compared to the raw (40%), reduced (38%), and
centered (34.5%) cases.

Uniform distribution modelling

Another practice is to change the variable distribution. As the previous section
shown that centered variables seem to significantly improve the EER value, we
choose a target distribution that is centered. We also seek to draw closer extrema
values, and to distance closed values. For these reasons, we choose the target
distribution to be, in this study, a uniform distribution with support [−1; 1]. Change
the distribution of a variable can be easily performed with the following formula:
X ′

i = cdf ′−1
i (cdfi(Xi)), with cdfi(Xi) the Cumulative Density Function describing

the distribution of the variable Xi, and cdf ′
i(X

′i), the target distribution. However,
while the target distribution is known (cdf ′−1

i (x) = 2x− 1), the variable distribution
cdfi(Xi) has to be estimated.

As already stated in Chapter 2, a naive estimation of Xi distribution is given
by cdfi(x) = pos(x,Ai)/len(Ai), with x a value of Xi, Ai a sorted array of all
known values of Xi, len(Ai) its length, and pos(x,Ai) the position of x in Ai. A more
practical estimation of cdfi(Xi) is to compute the parameters of the law Xi is assumed
to follow. In this chapter, we tested 4 laws (gumbel, normal, logistic, and laplace)
and 4 fitting functions (raw, R mle, R mge, and R qme) that are latter described in
Chapter 5. All dwell times were assumed to follow the same law, but with different
parameters, as well for the flight times. Dwell and flight times could however follow
different laws. Configurations are labeled as follow: fitness function.dwell law .flight
law.

Results: As shown in Figure 4.2b, over the 64 tested configurations, the optimal
EER value (24.2%) was found with R mle.normal.gumbel (fitting). The best raw
estimation configuration, raw.gumbel.gumbel (estim), was found slightly better
(24.8%) than the naive estimation (25.4%).

Discretization

As already stated in Chapter 2, previous studies have shown the influence of dis-
cretization on performance of Keystroke Dynamics Systems based on an Hocquet
distance (up to ≃ −0.5 points) [Migdal and Rosenberger, 2019c], and on SVM (up
to −1.04 points) [Giot et al., 2011]. To the knowledge of the authors, none has
yet study the impact of Keystroke Dynamics discretization on BioHashing-based
KDS. Keystroke Dynamics data were discretized and uniformized into identical
probabilities values using the following formula: X ′

i = cdf ′−1
i (discn(cdfi(Xi))), with

discn(x) = ⌊x ∗ n⌋ / (N-1), and n the desired number of discrete values. ⌊n⌋ is
assumed equal to n− 1.
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Results: Uniform Keystroke Dynamics data have been discretized using 999
different values of n ∈ J2, 1000K. The EER value is computed as the lowest EER
obtained from the 999 discretization configurations. As shown in Figure 4.4, dis-
cretization produces negligible EER gains (-0.1 to -0.4 points). Figure 4.3 shows the
impact of discretization on the 4 datasets. As the gains is negligible, and as the best
descretization threshold seems to be dataset-dependant, it is unclear whether the
gain is due to chance or not.

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  5  10  15  20  25  30

GREYC K

GREYC W1

GREYC W2

CMU

Figure 4.3: Impact of discretization on the BioHashing performances

Discussion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

raw standardized naive estim fitting

Continuous
Discretized

 

0.400

0.288

0.254 0.248 0.242

 

0.250 0.247 0.241

Figure 4.4: Keystroke Dynamics pre-processing performances (EER)

As shown in Figure 4.4, uniformization of Keystroke Dynamics greatly improves
EER (24.2% to 25.4%) compared to raw (40%) and normalized (28.8%) values.
Discretization however produces negligible EER gains (-0.1 to -0.4 points). In
addition to being less efficient (+1.2 points), naive estimation of cdfi(Xi) requires
headcounts of each possible values for each variable. As the BioCode is computed
on the client side, this means a large sending and storing large amount of data.
Assuming a fixed-text of 16 characters with 1000 possible values for each variable,
this represents an increase of at least 248ko in the webpage that can be troublesome
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for small Internet connections. In the contrary, non-naive estimations of cdfi(Xi)
only requires mean/median and standard deviations that represent less than 0.5ko,
assuming a fixed-text of 16 characters. While raw estimation of cdfi(Xi) is less efficient
than fitting estimation (+0.6 points), it may be more practical as mean/standard
deviations can easily be computed and updated, storing, for each variable, only the
number, sum, and squared sum of its known values.

Although the comparison is not fair (different configuration and context), protec-
tion introduces a high cost in performances (24.2% against 7.9% without).

With Free-Text

Free-Text were also considered with BioHashing, although we do not use it in our
final PICRP. The feature vector is composed of 25 quantiles extracted from durations
d0 and d1. Only standardizations and naive uniformization pre-processings were
tested.
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Figure 4.5: Free-Text Keystroke Dynamics with BioHashing.

Results are shown in Figure 4.5. Surprisingly, the best pre-processing is the
standardization (EER = 13.7%) ahead of naive uniformization (EER = 15.2%). Raw
performances are quite good (EER = 19.5%) compared to Fixed-Text (EER = 40%).
After pre-processing performances are still better than Fixed-Text (EER = 24.2%)
by 10.5 points, but still higher than without protection (EER = 5.6%) by 8.1 points.

Limits

In the previous sections, we assumed that all users are asked to type the same fixed
text in order to authenticate themselves. However, in real life, they would be more
likely to be asked to type an identifier, s.a. their login or e-mail address, which is
a personal fixed-text known by others. However, as the pre-processing parameters
depends on the content being typed, this would require the service to make hundred
of users type each possible/used fixed-text in order to compute them.

Pre-processing parameters can be estimated by assuming that same parameters
apply to all dwell (or flight) times, enabling to compute them from known dwell
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(or flight) times. Figure 4.6 shows that this assumption induces a significant loss
of EER value (+1 to +2.5 points). The best estimation and fitting configurations
under this assumption were found to be raw.normal.laplace and R mle.normal.laplace.
It is worth noticing that the naive estimation of cdfi(Xi) outperforms estim and
fitting under this assumption. Pre-processing parameters might be estimated with
better accuracy using additional knowledge on Keystroke Dynamics. E.g. computing
parameters in function of the typed character, digraph, or tri-graph either by knowing
their statistics, their position on the keyboard, or/and their frequency in the user
language.

BioHashing should not enable further profiling, e.g. assessment of the age or
gender, although this should be tested.

4.4.2 Location

IP address are represented as a set of bits some of them being more significant than
others, while XYZ locations are represented as a set of 3 real values. Bitfields b on
length n can easily be converted into reals r (and vice versa) thanks to the following
formula: r = Σn−1

i=0 bi ∗ 2
−i−1.

Using the real representation, IP address and XYZ locations are represented by 1
and 3 real values, thus producing BioCode of 1 and 3 bits. 4 bits, i.e. 16 possible
BioCodes, is obviously not enough for both performances and security reasons. We
thus present, in the following, several pre-processing techniques extending small
vectors of reals in order to improve BioHashing performances. Real values will be
assumed to equate to a bitfield of 32 bits, and will be transformed as vectors of 32
real values R, while ensuring that the most significant bits have the most weight.

LogDist

LogDist does not ensure the bits significance. It associates each real value Ri to a
bit bi that determines its sign. In order to ensure that, e.g. bitfields 0111 (=0.4375)
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and 1000 (=0.5) have similar representations, the amplitude is computed from the
following bits (viewed as a real). The amplitude is computed so that, the more such
real is close to 0 or 1, the more the amplitude is close to 0, and the more it is close to 0.5,
the more the amplitude is close to 1: Ri = (−1)bi ∗(3bi+1−1+(−1)bi+1Σn−i−2

j=1 bj+i∗2
−j

).

PrefixDist

PrefixDist associates to each real Ri a bit bi whose sign is determined by bi as well
as the previous computed real: Ri = (−1)bi ∗Ri−1. In this way, two bitfields sharing
their n most significant bits produce vectors sharing at least n real values.

PrefixHash

PrefixHash is a variant of PrefixDist. It associates each real Ri to an hash computed
from all bits b{j≤i}: Ri = Hi ∗ 2

−31 − 1, with Hi a 32-bit hash. The hash is computed
as Hi = H(Hi−1, bi), with H the hashing function. As the hashing function is
not used for its security properties, but to diversify the output, Java hashCode()

algorithm is used in this study: H(IV, c) = IV << 5 − IV + c. The first IV (i.e.
H−1) is computed from the BioHashing secret.

PartitionDist

PartitionDist generates 32 reals Ri by combining N bits from 32 bits bi while
preserving their significance: Ri = (−1)fi(b,0) ∗ ΣN−1

j=1 fi(b, j) ∗ 2
−j. fi(b, j) equals to

br with r chosen between j ∗ 32/N and (j + 1) ∗ 32/N − 1. All combinations of the
n = ⌈log(32)/log(32/N)⌉ first bits are listed. 32 of them are randomly selected, each
determining the fi(b, j) bits for j < n. The other fi(b, j) bits are randomly selected.
Random engines are initialized from the BioHashing secret.

Results

Figure 4.7 shows the performance of the previously described location pre-processing
methods. In all 4 tested datasets, PartitionDist, N=16, and PartitionDist, N=8
outperform other pre-processing methods. IP addresses generated from places
provides an unacceptable EER value (≥ 40% for a user mobility ≥ 5 km) whereas IP
addresses generated from networks provides a great EER value ( 0.17% < EER <
1.6% ). PartitionDist, N=8 is the best setting for IP addresses pre-processing
methods. In real-life, users do not use all networks from a place, like in IP addresses
generated from places, but might still use several networks. This suggests the need
of several templates, e.g. one template per network the user connects to. Further
studies should be conducted with real-life data. XYZ locations provide great EER
values both generated from places (1.08% < EER < 4.53%) and from positions
(1.49% < EER < 6.71%). PartitionDist, N=16 is the best of XYZ locations pre-
processing methods. Contrary to IP addresses, XYZ locations does not need several
templates.
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Figure 4.7: Location pre-processing performances (EER) in function on users mobility.

4.5 Merging of pre-processed data

.

A naive way to merge personal data is to compute a BioCode for each and
concatenating them. However, by doing so, some BioCodes might be too small to
be protected against brute force attacks. For example, an IP address has less than
232 possibilities and its resulting BioCode cannot have more than 32 bits, i.e. 232

possibilities. We present in this section new merging methods, applied on the 3
previously pre-processed modalities:

• XYZ locations, generated from places: PartitionDist, N=16;
• IP addresses, generated from networks: PartitionDist, N=8;
• Keystroke: R mle.normal.gumbel.

In both merging methods, each modality vector mi is associated to, and multiplied
by, a positive weight wi. In the first method, vectors are weighted and concatenated
before applying the BioHashing algorithm. In the second method (post), a BioCode is
computed on each modality. Before the BioHashing quantification step, a new vector
v is computed as a weighted mean of the 3 non-quantification BioCode m{0,1,2} with
the following formula: vi = 1/(Σ2

j=0wj)Σ
2
j=0wjmj[i%len(mj)]. v length is computed
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Pre EER (%) Post EER (%)
min(0) pre.len.1.98 0.069 post.raw.14.85 0.077
min(K) pre.len.19.80 0.102 post.raw.15.84 0.203

min(X.IP) pre.raw.10.6 20.00 post.raw.3.36 21.78
min(K,X.IP) pre.raw.13.25 20.39 post.raw.3.38 21.92

min(IP.K,X.K,X.IP) pre.len.47.25 21.42 post.raw.34.26 24.14

Table 4.3: Best merging configuration performances.

as the length of the longer BioCode. BioHashing quantification step is then applied
on the resulting vector v.

Merging methods are evaluated through 7 scenarios, labelled as the concatenation
of modalities known/stolen by the attacker among the Keystroke (K), XYZ location
(X), and IP addresses (IP). The scenario in which the attacker has no knowledge
is 0. All possible combinations of weights have been tested. Weights were chosen
from 1% to 98% per step of 1 point so that their sum is 100%, then multiplied
by the number of modalities (here 3). As modalities vectors have different lengths
and amplitudes, weights were multiplied to 3 modifiers: raw (no modification),
len (correct the influence of modalities length), alen (correct the influence of both
modalities length and mean amplitude). Modifiers are computed as follows:

• raw: rawi = 1;
• len: li = 1/(len(m) ∗ len(mi)) ∗ Σ

len(m)−1
j=0 len(mj).

• alen: lai = li/ampl(mi),

with ampl(mi) = 1/len(mi) ∗ Σ
len(mi)−1
j=0 |mi(j)|.

Merging configuration are labeled as:
{pre|post}.{raw|len|alen}.w0.w1.
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Figure 4.8: Best merging configurations performances under 7 scenarios.

Results: Table 4.3 shows the best pre and post merging methods configurations
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that minimize the EER value in the scenario indicated in the first column, if several
scenarios are indicated, the configuration minimizes the maximal EER value of each
scenario. Figures 4.8a and 4.8b show the performances of each configuration under
each scenario. As shown in Figures 4.8a and 4.8b, configurations that minimize
the EER value under (0) scenario produce really great EER (< 1%), however such
scenarios poorly perform (EER > 40%) if IP addresses and XYZ location are known
by attackers. Other configurations ensure an EER value . 20% under all scenarios at
the cost of a worst EER value under (0) scenario. A solution would be to use several
configurations to benefit from the best EER under (0) scenario while minimizing
EER under (X.IP) scenario. It is worth noticing that if attackers have the knowledge
of the BioCode (and the BioHashing secret), and some modalities, attackers could
use such knowledge to invert the BioCode, mainly for pre merging configurations. A
possible countermeasure would to to reduce the BioCode size.

4.6 PICRP usage case

User Client Service

A'=A✁PICRP

LKey

A=Rand()

H(A)

PICRP

computation
Veri✂cation

A ✄A'✁PICRP' 

Password (P)

Biometrics
A'✁PICRP'

H(D||LKey||P)

H(D||LKey)

Figure 4.9: Proposed PICRP Authentication Scheme.

In this section, we propose a PICRP authentication scheme illustrated by Fig-
ure 4.9. We assume that the client and the service communicate using a secure
channel, s.a. TLS, with authentication of the service, e.g. using TLS certificates. For
the enrollment, a localkey (LKey) and a random binary vector of length equals to
the PICRP (A) is generated by the client. The hash (H, e.g. using SHA2/SHA3) of
the service domain name (D), LKey, and the user password (P) is used to compute
the PICRP with the user biometrics. A’ is computed from the PICRP and A as
A′ = PICRP ⊕ A. A’ and LKey are stored in the client, encrypted (e.g. with
AES256) by the password. A is transmitted to the service, and is encrypted, with
its hash (H(A)) using the hash of the Domain and LKey. LKey is detailed in
Section 4.7.1.

To authenticate, the client retrieves LKey and A’ with the user password, thus en-
abling the client to compute PICRP’ and thus A⊕PICRP ′. By sending H(D||LKey)
and A⊕PICRP ′ to the server, the server is able to retrieve A, verify its integrity, and
compare it to A′⊕PICRP ′. If the Hamming distance between A and A′⊕PICRP ′

is below a given threshold, the user is authenticated.
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In this system, an attacker getting into the client cannot gain knowledge as the
only stored information are encrypted using a password, without integrity checks.
If the attacker knows the password, it would only be able to know LKey and A’
that are useless without the knowledge of the biometric data, or A. The system is
obviously vulnerable if the attacker gets into the client system while the user discloses
its biometric data on the client. In the same way, attacker cannot gain knowledge by
getting into the service as information are encrypted using a long random key. If the
attacker gets into the service as the user authenticates, it would be able to obtain A
that transports no information as randomly generated. It would however be able to
authenticate (that we can mitigate by adding a 0-Knowledge proof of LKey to the
authentication process).

Thus, to retrieve the biometric data, the attacker has to get into the service, the
client, and guess the user password, or to collect directly the biometric data on the
client during its usage by the user. As LKey is client-dependent, if the user has
many devices, it will either need to get a reference per device, or to compute a new
A’ for each devices from A and the device-dependant PICRP. The latter solution
has the advantage to not disclose the devices used by the user to the server. As the
password is only used to encrypt the data on the client-side, it can also be easily
changed without impacting the existing biometric references.

4.7 Additional modalities

Other modalities than the one presented above can be used. In a very first initial
preliminary study, aimed at demonstrating the feasibility of PICRP, we collected
and used other modalities without evaluating performances. Personal information
have been simply concatenated without any appropriate pre-processing. The data
collection is described in Section 4.7.3.

4.7.1 Collection of personal information

We detail below the modalities collected and used in our initial study.

Browser

To authenticate the browser, a simple key, stored on it is enough. The key, we named
localkey, is an n-bits value randomly generated upon first usage of the browser. This
key is then used to authenticate the browser. For n big enough, the probability
of collisions is insignificant, and the exhaustive research, hard. In the frame of
the experience, n=64, for higher security needs, the key size may be increase, e.g.
with n=512. The key might be stored in the browser localStorage1, or, ideally, in a
WebExtension simple-storage. Nonetheless, it is possible for an attacker to steal the
key if it has access to the device, or to the user session. The keys being randomly

1HTML5 feature
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generated, the theft of one do not compromise the others possessed by the user. The
key might be protected, e.g. with encryption, or the fraudulent usage be detected,
e.g. with others personal information. However, this will not be introduced in the
frame of this study.

Localization

IP addresses are distributed by ranges, from IANA2 to RIR3, from RIR to LIR4, and
finally from LIR to users. It is then possible to deduce from it the user network, the
administrative (e.g. county) or physical (e.g. GPS position) localization. However,
the TOR network, a VPN, or a proxy might be used to masquerade the user IP
address. Then, the network and locations deduced from the IP address would be
the proxy, VPN, or exit TOR nodes. In the scope of this study, the administrative
(country, region, county, town) and physical (latitude and longitude) are extracted
through the Google MAP API from an address extracted from the database DB-IP5.
In a future work, it would be possible to deduce either the user’s ISP (Internet
Service Provider), or the structural localization among an entity (e.g. company,
university, research center, state agencies), thanks to DNS, reverse DNS, WHOIS IP,
and WHOIS domain queries. It is also possible to get more information about the
IP address thanks to DNSBL6.

Network data

Data sent to the service by the communication protocols are discriminant and enable,
by browser fingerprinting techniques, user identification [Eckersley, 2010, Laperdrix
et al., 2016]. In the same way, such data can be used for user authentication by
comparing them to enrolment data. As a consequence, this modality cannot be used
if the data are randomized for each transaction. However, usurpation is trivial for
whom knows this data, e.g. for whom provides a service to the user. Moreover,
the usage of normalized data, e.g. by user the TOR browser, increases the collision
probability. This modality gives little trust in the user authentication, but enables
to detect reception of unusual data. In the scope of this study, the following fields
are extracted from the HTTP header:

• User-Agent : arbitrary string defined by the browser;
• Accept, Accept-Language, Accept-Encoding : formats, languages, and encoding
preferences (values ∈ [0, 1]);

• Referer : previous pages URL, sometimes randomized, truncated, or removed;
• Cookie: cookies sent by the browser;
• DNT, Connection, Upgrade-Insecure-Requests : other parameters.
Figure 4.10 shows the distribution of some network and browser data for different

users. We can see clearly some differences for each user even if most of them are

2Internet Assigned Numbers Authority
3Regional Internet Registry
4Local Internet Registry
5download.db-ip.com/free/dbip-city-2017-05.csv.gz
6DNS Blacklist
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Figure 4.10: Personal information collection: distribution of some collected data (raw
data).
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french. Figure 4.11 shows the distribution of the User-agent value that are very
discriminant among users.
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4.7.2 Data pre-processing

To obtain, for each modality, a fixed-size real vector (required for the protection
scheme), collected data are converted to real vectors then appended. The distance
between two vectors might be influenced by extremes values, they are consequently
normalized.

Browser

Localkey (n-bits key) is converted into a n-bits vector. Thus, the 16-bits localkey
”0x0123”, is converted into [0,0,0,0, 1,0,0,0, 0,1,0,0, 1,1,0,0].

Localisation

An IP address is converted in a vector composed by:
• a vector composed by the IP address bits divided by 232−p−1 with p (bit weight);
• a vector composed by the 128/2k first bits of the locality name’s md5 hash with
k=1 for ”country”, k=2 for ”region”, k=3 for ”county”, and k=4 for ”town”;

• a vector composed of 3 angles ∈ [−90;+90] representing the GPS localization’s
latitude (lat), and the longitude l (lng1, lng2); lng1 and lng2 are equal to:

sign(α) ∗ ||α| − (|α| > 90) ∗ 180|

with α = l for lng1 and α = rot90(l) = (l − 90)%360 − 180 for lng2. These
angles in degree are normalized by the following formula:

angle∗ = (angle+ 90)/180

As for example, the IP adress ”127.0.0.1” is converted in [0, 0.5, 0.25, 0.125,
0.0625, 0.03125, 0.015625, 0, 0.0078125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 4.6566 ∗ 10−10]. The following GPS localization (135, 0) is
converted in [0.5, 0.75, 0.25].

Network data

Referer, User-Agent, Connection and Cookie are converted into histograms, vectors
giving for each character its headcount. Only the ASCII characters ∈ [0x20, 0x7F [,
so 95 characters, are considered. Accept, Accept-Encoding, and Accept-Language are
converted into vectors giving the preference for each format, encoding, and language
from a predefined list. An additional value indicates the presence of spaces after
comma in the field. DNT and Upgrade-Unsecure-Requests are converted into a
1-integer vector, equals to 1 if setted, 0 otherwise. The predefined lists are:

• Accept: ”text/html”, ”application/xhtml+xml”, ”application/xml”, ”image/webp”,
”image/jxr”;

• Accept-Encoding: ”gzip”, ”deflate”, ”br”, ”sdch”;
• Accept-Language: ”fr”, ”fr-FR”, ”en-US”, ”en”.
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As for example, the following User-Agent value
”Browser/1.0 (Operating System; rv:1.0) Engine/20170701 Browser/1.0”
is converted by considering only characters in [a-z] by
[1, 0, 0, 0, 5, 0, 2, 0, 2, 0, 0, 0, 1, 3, 2, 1, 0, 6, 3, 2, 0, 1, 2, 0, 1, 0].
The Accept-Language ”fr;q=0.8, fr-FR;q=0.5, en-US” is described by [0.8, 0.5, 1,
0, 1]. The DNT value ”1” is converted in [1].

4.7.3 Experimental protocol and results

Figure 4.12: Personal information collection questionnaire’s screens

Experimental protocol

An acquisition campaign as be organized in march 2017 in the trust.greyc.fr website.
The participants have been recruited from the GREYC laboratory and the engineering
school ENSICAN, broadcast lists. Thus, collected data come from a unique place,
indeed the majority of the participants are localized in Caen, use the same networks
(ENSICAN and UNICAEN), and thus have the same IP address. Moreover, the use of
GREYC and ENSICAEN devices make the participants configuration, and network
data quite similar. With only 22 participants, mostly located in Caen, the sample is
not representative, but enables a first experimentation of the personal identity code.
During the acquisition, participants are invited to answer to 8 questions on privacy,
then to copy an extract of the Universal Declaration of Human Rights (see 4.12). To
prevent any influence for the keystroke dynamics, participants are informed of the
data collection only from the step 5, where they are invited to give the authorization
to use personal information for research purposes. All the collected data are stored in
the browser sessionStorage and are submitted only after user validation through the
confirmation page, resuming the collected information types, and detailing collected
information. Once the data are submitted, a localkey is generated and stored inside
the browser localStorage, to recognize the browser upon multiples submissions. The
localkey is also printed to users so that they can exercise their right of data access
and correction.
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(a)

(b)

Figure 4.13: Information comparison between the pre-processed data (a) and after protection
(b). In coordinates, the compared entries number: blue for an high similarity, red for low.
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Experimental results

From the 29 collections, from 22 users (8 have been made by the same user in different
contexts), we estimate in which proportion these information enable to compute
users similarity. Figure 4.14 presents the distribution of BioCodes comparisons for
all users using different collected information and the total. In green, are represented
intra-users comparisons between BioCodes and in blue inter-users comparisons. The
distribution of BioCodes generated by taking into account only localization (Figure
4.14 (a)) show some errors to discriminate users. Indeed, the same user provided
some information at different localizations (sometimes more similar to other users).
The BioCode generated using the PHP environment and the total, permits to clearly
discriminate users from each others.
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Figure 4.14: Distribution of BioCode comparisons for all users. In green, are represented
intra-user comparisons and in blue inter-users comparisons.

Figure 4.13 shows two distance matrices. The first (a) compare pre-processed
data (without any protection) with the cosine distance (1 − cos(A,B), if A and
B are two real vectors. In this figure, we can notice two things. The first is that
the signatures 4 and 5 are judged very similar. This is in fact the same user in
the same context. The only difference is in the keystroke dynamics. Signatures 3
to 10 have been generated by the same user, but in different contexts (s.a. Wifi,
browser), the similarity is more contrasted. The second important observation is
the relative similarity of the signatures 4 and 5 with others signatures. This can be
explained as these signatures have been acquired inside the laboratory with devices
with similar configurations and IP address. Figure 4.13 (b) represents the distances
between BioCodes (protected signatures) with, for each user, a unique secret key.
With the protection and these keys, we highlight the similarity between users. For
binary codes linked to signatures 3 to 10, we identify a similarity between then with
variations depending on the similarity of personal information. This demonstrates
the capacity of the proposed method to produce an exploitable code for personal
information similarity computation.

Discussion

This very first experiment only demonstrated the feasibility of a PICRP with the
previously mentioned modality. Modalities should be pre-processed and merged as
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presented in sections 4.4 and 4.5. The very low number of participants in the dataset
(22 users), and another attempt (1 user), compared to the time to prepare such
online acquisition, lead us to opt for dataset synthetic generation (see Chapter 5)
and for chimeric datasets (as in Section 4.3).

4.8 Conclusion

In this chapter, we defined and implemented the concept of PICRP with the use of
Keystroke Dynamics, IP, and GPS geo-location. The pre-processing of Keystroke
Dynamics permits to significantly increase performances (EER from 40% before
pre-processing to 24.2% after). Geo-location has been found to produce great
performances (EER . 5%). Performances obtained after merging of these modalities
produce satisfactory performances (EER < 1%). A PICPR authentication scheme has
been introduced as a possible use case. Other usage could be found s.a. generation
of keys from PICRP in order to sign, encrypt, or hash.

Figure 4.15: PICRP demonstration interface.

(a) Same user, same location. (b) Different users, different location.

Figure 4.16: Examples of differences (in black) between two PICRP (using the same secret)
computed with pre.len.47.25 under scenario (0).
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The interface of a PICRP demonstration is shown in Figure 4.15. Figure 4.16
shows differences in PICRP from the same user and from different users.

Future works could focus on improving the pre-processing steps and merging
methods. Other modalities could also be integrated to the PICRP, s.a. Browser
Fingerprints, mouse, or even soft-biometrics computed from modalities. In this
study, users geo-location have been synthetically generated. Further study should
be conduct with real-life data. References were merged into one in this study,
template-update techniques with user-dependant threshold could also be explored
s.a. in [Mhenni et al., 2019].

In short: Due to the failure of initial collection sessions, we opted for synthetic
and chimerics datasets. We proposed PICRP, a soft hash based on BioHashing,
in order to compare modalities without revealing them. While such protection
introduces a cost in performances, merging modalities provides satisfactory results,
even if some are assumed stolen.



Chapter 5

How to use this data for research
while respecting privacy?

This chapter addresses the issue of Keystroke Dynamics modelling. Keystroke

Dynamics are time-consuming to collect and, as any biometric modality, are

subject to the European GDPR legislation. Thus, it has for consequence the

need of Keystroke Dynamics synthetic generation. Moreover, as seen in the

previous chapter, a better understanding of Keystroke Dynamics could also

improve KDS performances.

Keywords: Keystroke dynamics; Statistical modelling; Synthetic dataset; Data

Analysis.
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Contributions presented in this chapter

• Modelling of Keystroke Dynamics;
• Generation of Keystroke Dynamics for a given user;
• Usurpation of given user Keystroke Dynamics.

Publications

• Migdal, D. and Rosenberger, C. (2019f). Statistical Modeling of Keystroke
Dynamics Samples For the Generation of Synthetic Datasets. Elsevier Journal
on Future Generation Computer Systems, Special Issue on CyberSecurity &
Biometrics for a better Cyberworld (Q1 - JCR).

• Migdal, D. and Rosenberger, C. (2018a). Analysis of Keystroke Dynamics For
the Generation of Synthetic Datasets. In CyberWorlds (B - Core), Singapour,
Singapore.
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5.1 Motivations

Biometrics is an emerging technology more and more present in our daily life.
However, building biometric systems requires a large amount of data that may be
difficult to collect. Collecting such sensitive data is also very time consuming and
constrained, s.a. GDPR legislation in Europe. In the case of keystroke dynamics,
most existing databases have less than 200 users. For these reasons, it is crucial for
this biometric modality to be able to generate a significant and realistic synthetic
dataset of keystroke dynamics samples. We propose in this chapter an original
approach for the generation of synthetic keystroke data given samples from known
users as a first step towards the generation of synthetic datasets. Experimental
results show the capability of the proposed statistical model to generate realistic
samples from existing datasets in the literature.

User authentication with keystroke dynamics is generally done in real time (i.e.,
online) in a real world system. Scientists working on keystroke dynamics do not
analyze the performance of their system in an online way (i.e, by asking users to
authenticate themselves in real time and to impersonate other users). Indeed, they
work in an offline context by using samples previously collected by other researchers,
and stored in a benchmark dataset. A complete list of available keystroke dynamics
datasets has been made in [Monaco, 2018, Giot et al., 2015]. As it can be seen, most
of datasets have less than 200 individuals and few samples are available for each user.
The collection of such datasets is very time consuming, this is the main reason why
there is not more very large datasets like for the face modality [Learned-Miller et al.,
2016]. This is a crucial problem for the research in this area.

In this chapter, our objective is to model real KD data in order to be able to
generate very large synthetic KD datasets. This approach has been used for the
digital fingerprint modality with the SFINGE software [Cappelli et al., 2004] as
their collection and distribution are regulated in many countries. We believe the KD
model could help the research community to create a new dataset of higher quality
than the existing ones. We think this work is important, because it is known that
KD studies are not fair as (i) acquisition protocols are different between studies [Giot
et al., 2011]; (ii) there is not always a comparative study [Killourhy and Maxion,
2011] when authors propose new algorithms; and (iii) there are not always a valuable
statistical evaluation [Killourhy and Maxion, 2011]. Our work contributes to solve
these problems. We show in this chapter that is possible to statistically model the
KD of users from any existing datasets.

5.2 Background

5.2.1 Keystroke Dynamics Systems

In this chapter, we considered 4 configurations and contexts:
• Bleha: Euclidian.raw.*.unique@st.10.10;
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• Hocquet : Hocquet.raw.*.unique@st.10.10;
• Monrose: Euclidian.raw.*.min@st.10.10;
• BioHashing : BioHashing.raw.*.min@st.10.10.
Used dataset are presented in Table 2.1 which is repeated below. We used both

23 and 45 entries per users in this chapter. 23 enables to split sets into 5 classes while
respecting the Cochran rule, i.e. 80% of the classes having at least 5 elements [Sugden
et al., 2000]. 45 enables to split sets into 9 classes of 5 elements, knowing that 46 is
the maximal value that do not discard the GREYC W2 dataset.

Table 5.2 and Figure 5.1 give, for each datasets and each Keystroke Dynamics
System, the Equal Error Rate and the ROC curve.

Name Text # of users (23) # of users (45) Source
GREYC K greyc laboratory 102 104 [Giot et al., 2009]
GREYC W1 laboratoire greyc 79 62 [Giot et al., 2012]
GREYC W2 sésame 66 46 [Giot et al., 2012]
CMU .tie5Roanl 51 51 [Killourhy and Maxion, 2009]

Table 2.1: Description of used Same/Fixed-text datasets.

Distance CMU GREYC K GREYC W1 GREYC W2
BioHashing 0.307 0.220 0.201 0.237

Bleha 0.360 0.315 0.303 0.284
Hocquet 0.183 0.146 0.107 0.212
Monrose 0.343 0.281 0.255 0.233

Table 5.2: Equal Error Rate of used datasets with 45 entries per users.

Note that the times in each dataset have been acquired in different ways. In
particular, GREYC K used C# programming DateTime which has a resolution of
10.0144ms 1, which explains χ2’s poor results on this dataset. Indeed, some sets
of durations have only 8 distinct values which is, when using 45 as the number of
elements, less than the number of classes.

5.2.2 Related works

The generation of synthetic keystroke samples has already been discussed in [Stefan
et al., 2012, Stefan and Yao, 2010] where authors generated synthetic keystrokes from
known users in order to test the robustness of a SVM classifier (used as matching
algorithm). Only the uniform and the normal laws have been considered, with the
laws parameters directly computed from the mean and standard deviation of the
real durations. Authors wanted to generate synthetic keystroke dynamics samples as
a naive attack to test the robustness of their presented model.

Keystrokes durations have been analyzed in [Iorliam et al., 2015] where authors
aim at assisting the detection of synthetic keystroke samples, by detecting aberrant

1https://manski.net/2014/07/high-resolution-clock-in-csharp/#datetime

https://manski.net/2014/07/high-resolution-clock-in-csharp/#datetime
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Figure 5.1: ROC curves for the used datasets with 45 entries per users.

duration. Authors found out that some durations follow a Zipf’s or/and a Ben-
ford’s(/power) law on the CMU dataset using the Maximum Likelihood Estimator
fitness algorithm to estimate the laws parameters. However, these findings do not
enable the synthetic generation of keystroke samples as durations are not separated
by users and digraphs, and thus cannot generate a duration for a given user and
digraph.

In this chapter, we aim at generating synthetic keystrokes as a way to replace
real keystrokes in KD studies. With this approach, we consider 19 laws to find out
that the distribution durations follow a gumbel law more than a normal one. We
also show that laws parameters computations from the mean and standard deviation
give poor results, and the use of a fitness function is required. Moreover, we are
interested in the consistency of the duration between them, to generate keystroke
samples as real as it can be.
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5.3 Analysis of real KD datasets

In this section, we analyze the features from KD samples in existing datasets. We
first define the formalism we consider in this study.

5.3.1 Formalism

We define many terms to build the proposed analysis method:
• Digraph: D = [C0, C1], array of two characters.

• DigraphTime: DTD = [d0, d1, d2, d3, d4, d5], as shown in Figure 5.3, is an
array of 6 durations from 4 times corresponding to the pressure (P) and release
(R) times of each character of a Digraph D. A DigraphTime DTD is defined
as partially consistent if the following equations are verified, consistent if the
following equations and inequalities are verified, and inconsistent otherwise:

• d0 = d2 − d4;
• d0 = d1 − d3;
• d1 = d2 − d5;
• d3 = d4 − d5;

• d0 ≥ 0
• d1 ≥ 0
• d5 ≥ 0

• Text: Tn = {Di}i∈J0,nJ, an array of n Digraphs Di. A text Tn is said consistent
if ∀i ∈K0, nJ, Di−1[1] = Di[0].

• Keystroke dynamics: K = [{DTi}i∈J0,nJ, Tn], an array of n DigraphTime
DTi associated to the Digraph Tn[i]. Keystroke is said consistent (or partially
consistent) if Tn, and all DTi are consistent (or partially consistent), and if
∀i ∈K0, nJ, DTi−1[5] = DTi[0].

Figure 5.2: KD Generative model

Figure 5.3: DigraphTime

We propose in this chapter a generative keystroke dynamics model. We explain
its different components (see also Figures 5.2 and 5.3):

• DigraphGen: DGD() = DT , generates a DigraphTime for a given Digraph.
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• User: U(Tn) = K, generates a keystroke dynamics sample from a given Text.
A User is composed of a set of DigraphGen.

• DigraphGen2: DG2
D() = DGD, generates a DigraphGen for a given Digraph.

• UserGen: UG() = U , generates a User. A UserGen is composed of a set of
DigraphGen2.

• DigraphGen3: DG3(D) = DG2
D, generates a DigraphGen2 for a given di-

graph.

5.3.2 Statistical modelling

As previously seen, generating a keystroke dynamics template from a given text
Tn consists in generating an array of DigraphTime, i.e. generating 6 ∗ n durations.
To be able to generate a keystroke dynamics sample similar to that one user could
type, these 6 ∗ n durations have to be transformed into a set of assumed independent
variables which laws and parameters can then be estimated for a user. We need
then to randomly generate durations associated to a given user. In the scope of this
chapter, only the linear (in)dependency of variables is considered.

Variables (in)dependency

Linearly correlated variables can be transformed into a set of non-linearly correlated
variables, through PCA (Principal component analysis), first introduced by Pearson
in 1901 [KPFRS, 1901]. However, we show that durations are not strongly correlated
between them, and thus, in the scope of this chapter, we assume them to be
independent. Even if the usage of PCA is irrelevant in such a case, its first step
enables the computation of the inter-correlations of two variables by the computation
of a correlation matrix. In a correlation matrix C = {Ci,j}{i,j}∈J0,nJ2 , Ci,j is the linear
correlation between the variables i and j. A correlation matrix C = {Ci,j}{i,j}∈J0,nJ2 ,
with Ci,j the linear correlation between the variables i and j, is computed as follows:

1. Given a matrix M = {Mk}k∈J0,KJ of K entries Mk = {Mk,i}i∈J0,nJ, with Mk,i

the realization of the variable i for the entry k.

2. M̄ =
Mk,i−µi

σi
, i ∈ J0, nJ, k ∈ J0, KJ where µi is the mean of {Mk,i}k∈J0,KJ, and

σi, its standard deviation.

3. C = 1/K ∗ M̄T ∗ M̄

To qualify the presence of specific correlations between two variables i, j inside
m subsets of entries, m correlations matrix C l, l ∈ J0,mJ are computed from such
subsets. Each element Ci,j of the final correlation matrix C is then computed as the
mean of each C l

i,j: Ci,j =
1
m
Σm−1

l=0 C l
i,j. If each subset corresponds to, e.g. a User, M

will be said, in this chapter, ”splitted by User”, and C will qualify the presence of
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User-specifics correlations across all Users.

To identify the same correlations between two sets of variables {ix}x∈J0,mJ, {jx}x∈J0,mJ,
of length m, entries are splitted in m sub-entries M ′

m∗k+x = {Mk,ox}o∈{i,j}. The corre-
lation matrix C is then computed from M’. If each x corresponds to, e.g. a Digraph,
M will be said, in this chapter, ”merged by Digraph”, and C will qualify the presence
of non-Digraphs-specifics correlations across all Digraphs.

Laws followed by Variables

Once the variables are assumed independent, or transformed in such a way, laws
followed by each variable are searched through the following process:

1. Given the realizations of a variable X, and a law lawp with unknown parameters
p;

2. Estimate p̂ from the median, mean, min, max, or/and standard deviation of X;

3. Estimate p through a fitness algorithm using p̂ as a starting point.

In the scope of this chapter, we seek to maximize 1 − χ2(X, law, p). The χ2

test qualifies the capacity of a set of observed values to match a set of expected
values. The χ2 test returns χ2(X, law, p) = 1 − α, in which α is the p-value, i.e.
the probability to obtain the same 1− α score if X follows lawp. If the p-value is
below an arbitrary threshold (s.a. 0.05), the hypothesis ”X follows lawp” can then
be rejected.

However, in the scope of this chapter, our goal is not to reject hypothesis, but
to select laws that best represent X. The χ2(X, law, p) score can then be seen as a
score of distance between observed values of X, and the expected values. For the
same reason, the number of estimated parameters is not subtracted to the freedom,
in order to have comparable values across all laws.

We compute χ2(X, law, p) as follows:

1. Let Card(X) be the cardinal of X;

2. Let a%b be the rest of the division of a by b;

3. IR is divided in n = ⌈Card(X)/5⌉ subspaces Ei, i ∈ J0, nJ, each expected to
contain 5 elements of X. En−1 is expected to contain Card(X)%5 elements of
X if 5 ∤ Card(X);

4. Let Xi = X ∩ Ei;

5. Let Card(Ei) = 5, and Card(En−1) = Card(X)%5 if 5 ∤ Card(X);

6. Let Sum = Σn−1
i=0 (Card(Ei)− Card(Xi))

2/Card(Ei).

7. Let cdf f be the cumulative distribution function of the law χ2 of freedom f;
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8. χ2(X, law, p) = cdfn−1(Sum).

To qualify the capacity of n subsets of X, Xi, i ∈ J0, nJ, to follow a same law law,
but each with different parameters pi, s = 1− χ2(X, law) is computed as the mean
of the χ2 test applied on each Xi: s = 1− 1

n
Σn−1

i=0 χ
2(Xi, law, pi). The higher s is, the

more the law law is assumed to fit the observed values. In the scope of this chapter,
5 fitness algorithms are used:

• Maximum Likelihood Estimation (R mle);
• Quantile Matching Estimation (R qme);
• Maximum Goodness-of-fit Estimation (R mge);
• The best estimation between R mle, R qme, and R mge (R max);
• p̂ (raw);

The R mle, R qme, and R mge fitness algorithms are executed through R’s fitdist
function2. {1/3,2/3} is used as probs parameter for R qme. If the fitness algorithm
fails to estimate p, p is set to p̂, and 1− χ2(X, law, p) is assumed to be 0.

In this chapter, a set of 19 laws have been tested with the raw estimator, with
and without exclusion of aberrant values (here, values that differ from ±3σ from the
median value of X):

• arcsine
• beta
• betaprime
• chi
• chisquare

• raised cosine
• erlang
• exponential
• f
• gamma

• gumbel
• laplace
• logistic
• lognormal
• uniform

• normal
• rayleigh
• student’s t
• triangular

From these tested laws, the best 3 are selected, i.e. the 3 laws that maximize
s = 1− 1

n
Σn−1

i=0 χ
2(Xi, law, pi), and are tested again with the other fitness algorithms.

All laws are not directly tested with all fitness algorithms to gain time on the
execution, but also due to the fact that all laws (s.a. raised cosine) are not defined
in R.

5.3.3 Experimental observations

In this section, we first analyze the statistics of real keystroke dynamics from the
datasets presented in section 2.3.

Durations correlations

We analyze as a starting point the correlation between durations in a keystroke
dynamics sample.

First, diagonals of correlation matrix are discarded. Correlations between two
durations DTDi

[5], and DTDj
[0] are discarded if j = i+1, as they are in fact the same

2 https://www.rdocumentation.org/packages/fitdistrplus/versions/1.0-11/topics/

fitdist

https://www.rdocumentation.org/packages/fitdistrplus/versions/1.0-11/topics/fitdist
https://www.rdocumentation.org/packages/fitdistrplus/versions/1.0-11/topics/fitdist
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Figure 5.4: Number of correlations greater to a minimal value, between durations from
different Digraphs (Out, Out U), durations d0 and d5, with durations of the same Digraph
(05 K, 05 D, 05), and between durations d1 to d4 inside a same Digraph (/05).

duration. Digraph are considered equal if their positions in the keystroke sample are
equals.

As shown in Figure 5.4, no strong stable correlation has been found between
durations from different Digraph, (Out: dataset, Out U: dataset splitted by User).
DigraphTime will be thus assumed as independent. Also, no strong stable correlation
implying durations d0 and d5 of a same DigraphTime has been found (05 K: dataset
splitted by User, 05 D: dataset merged and splitted by Digraph, 05: dataset merged
by Digraph).

Stable correlations have been detected between durations d1, d2, d3, d4 of a same
DigraphTime (05: dataset merged by Digraph). It is easy to understand such a
result as these durations can be written as dx = d3 + kx ∗ d0 + lx ∗ d5 with lx ∈ {0, 1},
kx ∈ {0, 1}, and σ(d3) ≈ 3 ∗ σ(d0 + d5) (see Table 5.3). In the scope of this chapter,
DigraphTime is assumed to be computable from 3 independent durations.
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Dataset σ(d3)/(σ(d0 + d5)) σ(d3)/(σ(d0) + σ(d5))
GREYC K 3.86 2.98
GREYC W1 3.14 2.41
GREYC W2 2.51 2.03

CMU 6.24 4.96

Table 5.3: Standard deviation of d0 durations, compared to the standard deviation
of d3 and d5 durations.

Datasets Rank d0 χ2 d1 χ2 d2 χ2 d3 χ2 d4 χ2 d5 χ2

CMU

1 normal (3σ) 0.550 gumbel (3σ) 0.262 gumbel (3σ) 0.266 gumbel (3σ) 0.266 gumbel (3σ) 0.285 normal (3σ) 0.546
2 logistic (3σ) 0.546 logistic (3σ) 0.194 logistic (3σ) 0.200 logistic (3σ) 0.193 logistic (3σ) 0.210 logistic (3σ) 0.546
3 cosine (3σ) 0.524 normal (3σ) 0.172 normal (3σ) 0.189 normal (3σ) 0.166 normal (3σ) 0.197 cosine (3σ) 0.523
4 logistic 0.505 laplace (3σ) 0.159 laplace (3σ) 0.167 laplace (3σ) 0.156 laplace (3σ) 0.178 logistic 0.507
5 normal 0.491 cosine (3σ) 0.149 cosine (3σ) 0.163 cosine (3σ) 0.142 cosine (3σ) 0.162 normal 0.484
6 cosine 0.438 gumbel 0.127 gumbel 0.133 gumbel 0.123 gumbel 0.142 cosine 0.433
7 gumbel (3σ) 0.410 logistic 0.081 logistic 0.084 rayleigh (3σ) 0.078 logistic 0.085 gumbel (3σ) 0.403
8 gumbel 0.388 normal 0.068 laplace 0.076 logistic 0.077 laplace 0.077 laplace 0.391
9 laplace (3σ) 0.384 laplace 0.063 normal 0.072 laplace 0.067 normal 0.067 laplace (3σ) 0.390
10 laplace 0.380 cosine 0.057 cosine 0.063 normal 0.055 cosine 0.051 gumbel 0.377

GREYC K

1 normal (3σ) 0.009 gumbel (3σ) 0.149 gumbel (3σ) 0.175 gumbel (3σ) 0.143 gumbel (3σ) 0.157 cosine (3σ) 0.008
2 cosine (3σ) 0.008 normal (3σ) 0.143 normal (3σ) 0.173 normal (3σ) 0.140 normal (3σ) 0.154 normal (3σ) 0.008
3 normal 0.008 cosine (3σ) 0.135 logistic (3σ) 0.162 logistic (3σ) 0.137 logistic (3σ) 0.147 normal 0.008
4 cosine 0.007 logistic (3σ) 0.135 cosine (3σ) 0.153 cosine (3σ) 0.129 cosine (3σ) 0.142 cosine 0.007
5 logistic (3σ) 0.006 gumbel 0.099 gumbel 0.109 gumbel 0.092 gumbel 0.098 logistic (3σ) 0.005
6 logistic 0.005 laplace (3σ) 0.088 laplace (3σ) 0.103 laplace (3σ) 0.089 laplace (3σ) 0.096 logistic 0.005
7 uniform (3σ) 0.004 normal 0.076 normal 0.090 logistic 0.079 logistic 0.084 uniform (3σ) 0.004
8 gumbel 0.004 logistic 0.074 logistic 0.086 normal 0.072 normal 0.076 gumbel (3σ) 0.004
9 gumbel (3σ) 0.004 cosine 0.068 cosine 0.075 cosine 0.067 cosine 0.069 gumbel 0.004
10 uniform 0.004 laplace 0.055 laplace 0.065 rayleigh (3σ) 0.055 laplace 0.057 uniform 0.004

GREYC W1

1 cosine (3σ) 0.149 logistic (3σ) 0.194 logistic (3σ) 0.231 logistic (3σ) 0.164 normal (3σ) 0.188 cosine (3σ) 0.147
2 normal (3σ) 0.145 normal (3σ) 0.192 normal (3σ) 0.227 gumbel (3σ) 0.159 logistic (3σ) 0.186 normal (3σ) 0.145
3 logistic (3σ) 0.136 gumbel (3σ) 0.192 gumbel (3σ) 0.220 normal (3σ) 0.153 gumbel (3σ) 0.181 logistic (3σ) 0.135
4 logistic 0.124 cosine (3σ) 0.171 cosine (3σ) 0.207 cosine (3σ) 0.132 cosine (3σ) 0.164 logistic 0.124
5 normal 0.119 laplace (3σ) 0.140 laplace (3σ) 0.166 laplace (3σ) 0.123 laplace (3σ) 0.133 normal 0.119
6 cosine 0.116 logistic 0.114 gumbel 0.140 gumbel 0.089 logistic 0.108 cosine 0.115
7 laplace 0.095 gumbel 0.110 logistic 0.137 logistic 0.084 gumbel 0.107 laplace 0.096
8 laplace (3σ) 0.095 normal 0.103 normal 0.131 normal 0.076 normal 0.093 laplace (3σ) 0.095
9 gumbel (3σ) 0.092 laplace 0.091 cosine 0.113 laplace 0.072 laplace 0.085 gumbel (3σ) 0.092
10 gumbel 0.091 cosine 0.086 laplace 0.104 cosine 0.063 cosine 0.074 gumbel 0.091

GREYC W2

1 normal (3σ) 0.208 gumbel (3σ) 0.235 gumbel (3σ) 0.264 gumbel (3σ) 0.198 logistic (3σ) 0.226 normal (3σ) 0.210
2 cosine (3σ) 0.191 logistic (3σ) 0.217 logistic (3σ) 0.250 logistic (3σ) 0.188 gumbel (3σ) 0.219 logistic (3σ) 0.190
3 logistic (3σ) 0.190 normal (3σ) 0.193 normal (3σ) 0.224 normal (3σ) 0.188 normal (3σ) 0.212 cosine (3σ) 0.187
4 logistic 0.161 cosine (3σ) 0.179 cosine (3σ) 0.214 cosine (3σ) 0.155 cosine (3σ) 0.173 logistic 0.165
5 gumbel (3σ) 0.158 laplace (3σ) 0.169 laplace (3σ) 0.179 laplace (3σ) 0.128 laplace (3σ) 0.156 gumbel (3σ) 0.150
6 normal 0.148 gumbel 0.138 gumbel 0.146 gumbel 0.106 gumbel 0.136 normal 0.148
7 cosine 0.135 logistic 0.114 logistic 0.124 normal 0.096 logistic 0.121 cosine 0.133
8 gumbel 0.132 normal 0.093 normal 0.117 logistic 0.094 normal 0.107 gumbel 0.131
9 laplace (3σ) 0.131 laplace 0.092 laplace 0.115 laplace 0.084 laplace 0.105 laplace (3σ) 0.123
10 laplace 0.118 cosine 0.082 cosine 0.104 rayleigh (3σ) 0.083 cosine 0.092 laplace 0.115

Table 5.4: Top 10 results of χ2 tests with 19 laws, using raw estimator, with (3σ)
and without exclusion of aberrant values. χ2 = 1 -χ2(X, law)

Durations laws

For the 6 DigraphTime durations DTD[i], i ∈ J0, 6J, the 10 best laws that maximize
1 − χ2(DTD[i], law), with parameters depending on the Digraph and User, are
presented in Table 5.4. DigraphTime durations will then be assumed to best follow
either a gumbel, a normal, or a logistic, which parameters depend on the User and
Digraph.
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Datasets Rank d0 χ2 d1 χ2 d2 χ2 d3 χ2 d4 χ2 d5 χ2

CMU

1 normal (3σ) 0.685 gumbel (3σ) 0.530 gumbel (3σ) 0.533 gumbel (3σ) 0.533 gumbel (3σ) 0.544 normal (3σ) 0.680
2 logistic (3σ) 0.677 gumbel 0.503 gumbel 0.511 gumbel 0.503 gumbel 0.515 logistic (3σ) 0.673
3 logistic 0.668 logistic (3σ) 0.360 logistic (3σ) 0.352 logistic (3σ) 0.338 logistic (3σ) 0.363 logistic 0.665
4 normal 0.668 normal (3σ) 0.348 normal (3σ) 0.347 normal (3σ) 0.327 normal (3σ) 0.360 normal 0.663
5 gumbel (3σ) 0.604 normal 0.322 logistic 0.324 logistic 0.309 logistic 0.334 gumbel (3σ) 0.591
6 gumbel 0.596 logistic 0.321 normal 0.324 normal 0.301 normal 0.324 gumbel 0.577

GREYC K

1 normal 0.011 gumbel (3σ) 0.305 gumbel (3σ) 0.357 gumbel (3σ) 0.287 gumbel (3σ) 0.310 normal 0.010
2 normal (3σ) 0.011 gumbel 0.296 gumbel 0.350 gumbel 0.282 gumbel 0.302 normal (3σ) 0.010
3 logistic 0.009 normal (3σ) 0.235 normal (3σ) 0.279 normal (3σ) 0.223 normal (3σ) 0.247 logistic 0.009
4 logistic (3σ) 0.009 logistic (3σ) 0.229 logistic (3σ) 0.267 logistic (3σ) 0.214 logistic (3σ) 0.238 logistic (3σ) 0.008
5 gumbel (3σ) 0.009 normal 0.209 normal 0.250 normal 0.201 normal 0.222 gumbel (3σ) 0.008
6 gumbel 0.008 logistic 0.209 logistic 0.248 logistic 0.194 logistic 0.221 gumbel 0.008

GREYC W1

1 normal (3σ) 0.197 gumbel (3σ) 0.347 gumbel (3σ) 0.408 gumbel (3σ) 0.299 gumbel (3σ) 0.350 normal (3σ) 0.198
2 normal 0.196 gumbel 0.342 gumbel 0.403 gumbel 0.292 gumbel 0.343 normal 0.196
3 logistic 0.191 normal (3σ) 0.309 normal (3σ) 0.359 logistic (3σ) 0.257 normal (3σ) 0.297 logistic 0.193
4 logistic (3σ) 0.186 logistic (3σ) 0.301 logistic (3σ) 0.357 normal (3σ) 0.255 logistic (3σ) 0.294 logistic (3σ) 0.188
5 gumbel (3σ) 0.161 logistic 0.283 logistic 0.338 normal 0.240 logistic 0.281 gumbel (3σ) 0.163
6 gumbel 0.155 normal 0.283 normal 0.333 logistic 0.237 normal 0.274 gumbel 0.158

GREYC W2

1 normal (3σ) 0.280 gumbel (3σ) 0.441 gumbel (3σ) 0.491 gumbel (3σ) 0.358 gumbel (3σ) 0.417 normal (3σ) 0.278
2 logistic 0.267 gumbel 0.419 gumbel 0.462 gumbel 0.338 gumbel 0.408 logistic 0.264
3 logistic (3σ) 0.265 logistic (3σ) 0.340 normal (3σ) 0.383 normal (3σ) 0.294 logistic (3σ) 0.350 logistic (3σ) 0.260
4 normal 0.260 normal (3σ) 0.331 logistic (3σ) 0.370 logistic (3σ) 0.284 normal (3σ) 0.345 normal 0.253
5 gumbel 0.245 logistic 0.319 normal 0.367 normal 0.267 logistic 0.311 gumbel 0.240
6 gumbel (3σ) 0.239 normal 0.318 logistic 0.362 logistic 0.265 normal 0.307 gumbel (3σ) 0.237

Table 5.5: Top 6 results of χ2 tests with 3 laws, using R max estimator, with (3σ)
and without exclusion of aberrant values. χ2 = 1 -χ2(X, law)

Figure 5.5: Density function (pdf) of several laws (with median=0, standard deviation=1).

These findings are confirmed in Table 5.5. The gumbel law seems to best fit d1
to d4 durations followed by either the normal or the logistic law. However, for d0
and d5 durations, the normal law seems to best fit them, followed by the logistic law
and the gumbel law. The exclusion of aberrant values seems to increase the fitness
of the law.

As shown in Figure 5.5, these three laws are quite similar. Contrary to the
two others, the gumbel law is asymmetric and possesses a trail that match users’
hesitations when typing.

We define the coverage as the headcount of sets for which 1 -χ2(X, law) > 0.01.
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Figure 5.6: 1 -χ2(law) for gumbel (3σ) with
23 elements per sets
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Figure 5.7: 1 -χ2(law) for gumbel (3σ) with
45 elements per sets
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Figure 5.8: Coverage for gumbel (3σ) with
23 elements per sets
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Figure 5.9: Coverage for gumbel (3σ) with
45 elements per sets

As shown in Figures 5.6 to 5.9, sets of 23 elements give better χ2 scores than with
45 elements, that can be explained by the fact that sets of 45 elements have more
classes, and thus the χ2 test is more strict. GREYC K gives poor results, that can
be explained to its d0 and d5 durations and the time precision of near 10ms. On the
contrary, CMU gives the best results, followed by GREYC W2 and GREYC W1. As
expected, the R max fitness algorithm performs better than other fitness algorithms.
Although, R mle and R qme perform poorly, they still give a significant increase to
the R max fitness algorithm. Surprisingly, raw fitness algorithm outperforms R qme.

In order to reduce the number of possible combinations, each duration will be
generated with by two laws X, Y (X being used for d0 and d5, and Y for d1 to d4),
but with different parameters. The configuration will be noted X Y. If X and Y are
the same law, the configuration will be noted X.

In our study, we used 7 configurations obtained by combining the normal, and
logistic law as X, and the gumbel, normal, and logistic law as Y, and adding the
configuration gumbel gumbel (i.e. gumbel). If the parameters of the laws have been
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estimated with exclusion of aberrant values, ”-3s” is appended to the configuration
name.

We can see clearly in Tables 5.4 and 5.5 that the estimated laws and parameters
for all DigraphTime durations are quite similar for the datasets we used in this study.
Thanks to these statistical observations, we propose a generative model of keystroke
dynamics data in the next section.

5.4 Keystroke dynamics generative model

5.4.1 Principles

As seen in the previous section, DigraphTime durations follow either a gumbel, a
normal, or a logistic law which parameters can be estimated for each known User and
Digraph. For a given User and Digraph, a DigraphGen can be then implemented as
a set of 6 random engines generating the 6 DigraphTime durations with the chosen
law and estimated parameters.

The full generative algorithm is thus the following:
• Select two laws, one for d0 and d5, one for d1 to d4;
• Estimate the parameters of the durations for each DigraphTime;
• Generate a new Keystroke by randomly generating durations from the chosen
laws and estimated parameters;

• Apply a consistency strategy on the generated Keystroke.

We propose 10 consistency strategies, 1 for inconsistent DigraphTime, in which all
durations are randomly generated (u), and 10 for partially-consistent DigraphTime,
in which 3 durations are computed from the 3 others. The durations to compute can
be chosen among the 8 following lists, and be used for all Digraph and User, or be
randomly chosen (null) for each new DigraphTime to generate:

• 0: d3d4d5
• 1: d2d3d5

• 2: d2d3d4
• 3: d1d4d5

• 4: d1d3d4
• 5: d1d2d5

• 6: d1d2d4
• 7: d2d1d3

We also propose an 11th consistency strategy that perform the mean of the 8
strategies from the previous list (m). For each consistency strategy, we propose
a fully-consistent version which first applies the consistency strategy, then set to
0 negative d0, d5, and d1 durations, before recomputing d2, d3, and d4 from the 3
previous duration. Such strategies are suffixed by ’c’.

Once the DigraphGen created for a given User, the keystroke dynamics of a given
Text Tn is generated through the following process:

1. K[1] = Tn

2. ∀i ∈ J0, nJ, K[0][i] = DTTn[i] = DGTn[i]().
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Before the consistency strategy application, and if Keystroke is expected to be
consistent (or partially consistent), the DigraphTime first duration K[0][i][0] is
settled, if exists (i.e. if i > 0), to the last duration of the previous DigraphTime
K[0][i− 1][5].

3. If fully-consistent strategy, d2 to d4 recomputed after setting negative d0, d1,
and d5 to 0.

5.4.2 Synthetic dataset generation: protocol

20 synthetic datasets are generated for each real KD datasest, and each possible
configuration, i.e. each law configuration L and each consistency strategy CS. The
configuration is labelled L.CS. These synthetic datasets are generated so as to contain
the same number of users and entries per user than the real dataset from which it is
generated (as seen in previous section).

For each synthetic dataset, and each distance function DistFct (matching algo-
rithm), 3 sub-datasets are computed:

• DataSU: to qualify the capacity of synthetic Keystroke dynamics to be indis-
tinguishable from real Keystroke dynamics;

• DataU: to qualify the KDS performance with real Keystroke dynamics data;
• DataS: to qualify, in comparison with DataU, the capacity of synthetic datasets
to match the KDS performance that would be expected with real Keystroke
dynamics data.

These datasets are composed of legitimate and impostor scores, computed with
the DistFct distance function. Legitimate scores are obtained by comparing the
reference template with samples from the same user. The 10 first entries of each
User are used as templates, and the other entries as samples. Impostors scores are
obtained by comparing the reference template of users with samples from other users.
DataU is computed from the real dataset, and DataS, from the synthetic one. In
DataSU, legitimate scores are legitimate scores of DataU, and impostors scores are
the distance, for each User, between real user templates, and its synthetic samples.

We consider the False Acceptance Rate (FAR) describing the ratio of accepted
impostor data, the False Rejection Rate (FRR) describing the ratio of falsely rejected
legitimate users. The Equal Error Rate (EER) corresponds to configuration of
the biometric system when FAR equals FRR. Computed indicators across the 20
synthetic datasets are aggregated by generating the following values:

• mean: the mean of the indicators;
• error: the difference between the mean of the indicators and an expected value;
• prec: the maximal absolute difference between the mean and the second greater
indicator, and between the mean and the second lesser indicator.

These values can then be aggregated with the following process:
• mean: by the mean of the mean indicators;
• error: by the absolute mean of the error indicators;
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• prec: by the maximal prec indicators.

5.4.3 Synthetic dataset generation: results

We present the obtained results of the synthetic generation of KD datasets given
real ones.

Indicators

In this study, the durations are assumed independent, and the laws parameters,
assumed to be correctly estimated by the fitness algorithm. The equivalency between
synthetic keystroke samples and real keystroke samples should be guaranteed by the
proposed model, and has thus to be verified.

Three performance metrics are used to qualify the capacity of the generated
synthetic samples to match samples that would have been expected:

• Area Between the Curves (ABC): qualify the capacity of the synthetic datasets
to estimate the ROC curves of real datasets (the lesser, the better);

• EER estimation error (EEE): qualify the capacity of the synthetic datasets to
estimate the EER of real datasets (the lesser, the better);

• EER of real against synthetic data (ERS): qualify the capacity of synthetic
datasets to usurp users from real datasets (the greater, the better).

In order to compare our findings to the related work [Stefan et al., 2012, Stefan
and Yao, 2010], we added one consistency strategy (6o) where the durations d1, d2,
and 4 are computed, and all durations are positives. We used the normal law (StefN),
and the uniform law (StefU), using the raw parameter estimation. As we work on
fixed text, the Markov model is not used. We show in the following sections that the
uniform law gives poor performances, as expected.

These three indicators are detailed in the following sections. As shown in Figures
5.10 and 5.12, best results for the configuration gumbel.5 are found for R mge and
R qme fitness algorithm, while the raw fitness algorithm gives the worst results. The
use of only 23 elements per set seems surprisingly to give slightly better results than
using 45 elements. This might be due to the fact that users’ ways of typing evolve
with time. The use of R mge fitness algorithm will thus be, by default, assumed in
the following sections, as for the use of 45 elements per sets.

As shown in Figures 5.11 and 5.13, results highly depend on the dataset and
the used distance function. For example, GREYC W1 dataset with Blesha distance
gives an EER estimation error of 0.069 using gumbel.5, 45 elements per sets, and
R mge fitness algorithm while the best configuration, for this dataset and distance,
is normal-3s.1c with an EEE of 0.026, which performs poorly, on the same dataset,
with the Hocquet distance with an EEE of 0.148.

As shown in Figures 5.14 and 5.15, the selection of the configuration is a trade-off
between EEE and ERS, although some configurations give both satisfying EEE and
ERS.
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Figure 5.10: EER estimation error (EEE) using R mge, gum-
bel.5, and 45 elements per sets.
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Figure 5.11: EER estimation error (EEE) using R mge, gum-
bel.5, and 45 elements per sets.

ROC curve estimations

The Area Between the Curves (ABC), computed from the synthetic (DataS) and
real (DataU) entries, qualify the capacity of the synthetic datasets to estimate the
ROC curves of real datasets.

Table 5.6 shows the best configurations that minimize the ABC. For each config-
uration, the first line describes the mean distance between the synthetic and the real
ROC curve, then the ABC, then prec, the maximal variation of the synthetic ROC
curves relatively to its mean. The second line gives the ERS with its mean, error,
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Figure 5.12: EER of real against synthetic data (ERS) using
R mge, gumbel.5, and 45 elements per sets.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

BioHashing Blesha Hocquet Monrose

CMU
GREYC K

GREYC W1
GREYC W2

 

0.304

0.443

0.225

0.377

 

0.332

0.433

0.193

0.378

 

0.382

0.470

0.242

0.396
 

0.342

0.413

0.326 0.330

Figure 5.13: EER of real against synthetic data (ERS) using
R mge, gumbel.5, and 45 elements per sets.

and then prec.

As shown in Table 5.6, the ROC curve can be estimated with a great accuracy
(ABC of 0.027 with a prec of 0.095). The best ABC values are obtained with the
gumbel law, and with strategies 5, null, and 0 which, as said in the previous section
does not generate d5, but compute it from the other durations. Removal of aberrant
values when estimating the parameters (-3s) does not seem to benefit the ABS. Fully
consistant strategies are missing from this top. R qme is over represented in this
top. Best configurations in ABS have lower performances in ERS (> 0.10 instead of
∼0.02).
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Figure 5.14: Performances of configurations with sets of 23 elements
(using R mge)
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Figure 5.15: Performances of configurations with sets of 45 elements
(using R mge)

The best configurations to estimate the ROC curves of real datasets has been
found to be gumbel.5 (using R qme), followed by gumbel-3s.5 (using raw). The
estimation of the ROC curves with gumbel.5 and R qme is shown in Figure 5.16
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Sets of 23 elements Sets of 45 elements

1 R qme:gumbel.null
0.045 (0.025±0.095)
0.415 (0.085±0.021)

R qme:gumbel.5
0.045 (0.027±0.095)
0.337 (0.163±0.009)

2 R qme:normal gumbel.null
0.045 (0.026±0.089)
0.410 (0.090±0.021)

raw:gumbel-3s.5
0.045 (0.028±0.089)
0.326 (0.174±0.009)

3 R qme:logistic normal.null
0.044 (0.026±0.086)
0.437 (0.065±0.017)

R qme:logistic gumbel.null
0.053 (0.029±0.085)
0.433 (0.067±0.009)

4 R qme:logistic gumbel.null
0.049 (0.027±0.084)
0.454 (0.054±0.017)

R qme:gumbel.null
0.049 (0.029±0.080)
0.400 (0.100±0.012)

5 R qme:gumbel.0
0.045 (0.027±0.080)
0.344 (0.156±0.013)

R qme:gumbel-3s.5
0.046 (0.029±0.086)
0.354 (0.146±0.008)

6 R qme:normal.null
0.049 (0.028±0.085)
0.396 (0.104±0.018)

R qme:logistic normal.null
0.050 (0.029±0.087)
0.420 (0.080±0.013)

7 R qme:normal gumbel-3s.null
0.047 (0.028±0.089)
0.430 (0.071±0.017)

R qme:normal gumbel.null
0.049 (0.029±0.086)
0.396 (0.104±0.011)

8 R qme:gumbel.5
0.046 (0.028±0.087)
0.346 (0.154±0.013)

R qme:gumbel-3s.0
0.048 (0.029±0.090)
0.346 (0.154±0.012)

9 R qme:normal-3s.null
0.048 (0.029±0.084)
0.418 (0.082±0.021)

R qme:gumbel.0
0.047 (0.030±0.079)
0.329 (0.171±0.009)

10 R qme:gumbel-3s.null
0.048 (0.029±0.085)
0.433 (0.068±0.013)

R qme:normal.5
0.049 (0.030±0.077)
0.323 (0.177±0.010)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.057 (0.035±0.080)
0.389 (0.111±0.009)

raw:StefN-3s.6o
0.112 (0.078±0.093)
0.496 (0.029±0.008)

raw:StefU.6o
0.261 (0.165±0.082)
0.640 (0.140±0.008)

raw:StefU-3s.6o
0.305 (0.181±0.072)
0.691 (0.191±0.010)

Table 5.6: TOP10 configurations that minimize the area between the ROC curves
(ABC). In the first line, the ABC value, in the second line we present the ERS value
is given. Each line contains the absolute value, the error, then the precision.

Usurpation of keystroke dynamics

The EER value computed from DataSU (ERS) is used to qualify the capacity of
synthetic Keystroke dynamics data to be indistinguishable from real Keystroke
dynamics data. As the EER corresponds to configuration of the biometric system
when FAR equals the FRR, it is not possible to set a threshold enabling to reject
less than EER % of genuine users, without accepting less than EER % impostors.
Thus, with an EER of 50%, it is not possible to set a threshold that reject of accept
users better than random. With a, EER > 50%, more impostors will be accepted
than genuine users.

However, a biometric system with an EER < 50% can be trivially built from
an existing one having an EER > 50%, simply by considering distance scores as
similarity scores, i.e. by rejecting users below, instead of rejecting them over, a given
threshold. Meaning that for each biometric system with an EER of X, one can build
a biometric system with an EER of 1 - X.

In this study, we aim at building synthetic Keystroke dynamics data that are
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Figure 5.16: ROC curves for the CMU dataset with 45 entries per users, using R qme and
gumbel.5.

indistinguishable (using the 4 distances functions we study) from real one, i.e.
maximizing the minimum of ERS and 1 - ERS, i.e. getting an ERS as close as 50%.
Obviously, if the Keystroke dynamics sample contains aberrant values, it would be
easily detected. Thus, fully consistent strategies are desired.

Table 5.7 shows the best configurations that minimize the ERS error (i.e. |ERS−
0.50|). For each configuration, the first line describes the ERS with its mean, error,
and then prec, and the second line the synthetic data EER with its mean, EEE, and
then prec.

The best usurpations are obtained with either the gumbel or the normal law for
strategies 6, 7, 4, and 2. None of these strategies recomputes d5. Removal of aberrant
values when estimating the parameters (-3s) seems to benefit the usurpation. R max
and R mge are missing from these top. However, as already shown in the previous
section, the best configurations in usurpation have poor results in EER estimation,
with an EEE > 0.05, which is still high.
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Sets of 23 elements Sets of 45 elements

1 R max:logistic normal.nullc
0.498 (0.033±0.013)
0.199 (0.065±0.016)

raw:normal-3s.6
0.500 (0.021±0.011)
0.175 (0.075±0.011)

2 R qme:normal.4
0.506 (0.034±0.021)
0.182 (0.080±0.013)

raw:normal-3s.6c
0.501 (0.022±0.010)
0.172 (0.077±0.010)

3 R mle:normal gumbel.6c
0.505 (0.034±0.019)
0.192 (0.070±0.013)

R mle:normal-3s.6
0.499 (0.022±0.010)
0.175 (0.074±0.010)

4 R mle:normal gumbel.6
0.505 (0.034±0.019)
0.193 (0.069±0.012)

R mle:normal-3s.6c
0.501 (0.022±0.010)
0.173 (0.077±0.010)

5 R max:logistic gumbel.nullc
0.489 (0.034±0.017)
0.212 (0.053±0.014)

raw:normal gumbel-3s.7
0.510 (0.024±0.011)
0.172 (0.078±0.012)

6 R qme:normal.6
0.513 (0.035±0.015)
0.178 (0.084±0.013)

raw:normal gumbel-3s.7c
0.511 (0.024±0.011)
0.171 (0.078±0.012)

7 R mle:normal-3s.4
0.519 (0.035±0.016)
0.179 (0.082±0.014)

R qme:gumbel.4
0.500 (0.024±0.012)
0.169 (0.080±0.010)

8 R qme:logistic normal-3s.nullc
0.489 (0.035±0.015)
0.207 (0.057±0.015)

R mle:normal-3s.7c
0.495 (0.025±0.010)
0.176 (0.074±0.009)

9 R qme:normal.4c
0.510 (0.035±0.023)
0.175 (0.087±0.017)

raw:normal-3s.2c
0.499 (0.025±0.010)
0.173 (0.076±0.011)

10 raw:normal-3s.4
0.518 (0.035±0.013)
0.180 (0.082±0.015)

R mle:normal-3s.2c
0.499 (0.025±0.008)
0.173 (0.077±0.010)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.389 (0.111±0.009)
0.246 (0.021±0.010)

raw:StefN-3s.6o
0.496 (0.029±0.008)
0.177 (0.072±0.010)

raw:StefU.6o
0.640 (0.140±0.008)
0.062 (0.188±0.007)

raw:StefU-3s.6o
0.691 (0.191±0.010)
0.028 (0.221±0.006)

Table 5.7: TOP10 configurations that enables good usurpation (ERS). In the first
line, the ERS value, the second line corresponds to the EEE value. Each line contains
the absolute value, the error, then the precision.

As shown by the symmetric of the FAR/FRR curves in Figure 5.17, our proposed
Keystroke generation method is thus able to produce synthetic samples that enable
identity usurpation of a known user, by imitating its keystroke dynamics.

EER estimations

The difference between the EER values (EEE), computed from the synthetic (DataS)
and real (DataU) entries, qualify the capacity of the synthetic datasets to estimate
the EER value of the real one. Note that the threshold, in which the EER value is
reached, is not taken into account.

Table 5.8 shows the best configurations that minimize the EEE value. For each
configuration, the first line describes the mean of the synthetic dataset EER with its
EEE, and then prec, and the second line the ERS with its mean, error, and then
prec.

As shown in Table 5.8, the EER value can be estimated with a great accuracy
(EEE of 0.016 with a prec of 0.012). The best EEE values are obtained with the
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Figure 5.17: FAR/FRR curves using Hocquet distance of real sam-
ples against synthetics samples generated with the configuration logis-
tic gumbel-3s.nullc using R mge, with sets of 45 elements.

gumbel law, and with strategies 5, 2, 7, and 6. Removal of aberrant values when
estimating the parameters (-3s) does not seem to benefit to the EEE. R mge and
R max are missing from this top. As already shown in previous sections, the best
configurations in EEE have lower performances in ERS (> 0.12 instead of ∼0.021).

The best configurations to estimate the EER value of real datasets has been
found to be gumbel.5 (using R qme), followed gumbel-3s.5 (using R qme).

5.5 Conclusion and perspectives

In this chapter, we presented a method that enables the generation of synthetic
keystroke dynamics data from known Users, to either usurp real user KD, or to
estimate the EER value of a KDS. These methods have been tested on fixed text,
but could be as well applied to free text.

We show that, the best estimation of the EER value of a KDS is met when using
gumbel laws, without exclusion of aberrant values, and by computing durations d5, d1,
and d2 from other durations instead of generating them (gumbel.5). However, even
though some configurations have satisfying performances in both usurpation and EER
estimation, our findings show that the generation of synthetic keystroke dynamics is
a trade-off between an optimal EER estimation, and an optimal usurpation capability.
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Sets of 23 elements Sets of 45 elements

1 R qme:gumbel.0
0.258 (0.015±0.016)
0.344 (0.156±0.013)

R qme:gumbel.5
0.251 (0.016±0.012)
0.337 (0.163±0.009)

2 R qme:gumbel.5
0.255 (0.016±0.015)
0.346 (0.154±0.013)

R qme:gumbel-3s.5
0.238 (0.017±0.012)
0.354 (0.146±0.008)

3 R qme:normal.0
0.264 (0.018±0.015)
0.329 (0.171±0.015)

raw:gumbel-3s.5
0.262 (0.017±0.010)
0.326 (0.174±0.009)

4 R qme:normal.5
0.260 (0.019±0.017)
0.331 (0.169±0.014)

R qme:normal.5
0.254 (0.018±0.011)
0.323 (0.177±0.010)

5 R qme:gumbel.null
0.259 (0.019±0.015)
0.415 (0.085±0.021)

R mle:normal.2c
0.244 (0.019±0.013)
0.378 (0.122±0.009)

6 R qme:gumbel-3s.0
0.246 (0.019±0.015)
0.361 (0.139±0.011)

raw:normal.7c
0.247 (0.019±0.012)
0.375 (0.125±0.012)

7 R qme:normal gumbel.null
0.261 (0.019±0.016)
0.410 (0.090±0.021)

raw:normal.6c
0.245 (0.019±0.013)
0.380 (0.120±0.008)

8 raw:gumbel-3s.5
0.257 (0.019±0.013)
0.348 (0.152±0.014)

R mle:normal.6c
0.244 (0.019±0.013)
0.380 (0.120±0.008)

9 raw:gumbel-3s.0
0.261 (0.019±0.016)
0.342 (0.158±0.015)

raw:normal.2c
0.245 (0.019±0.013)
0.378 (0.122±0.009)

10 R qme:logistic normal.null
0.257 (0.021±0.012)
0.437 (0.065±0.017)

R mle:normal.7c
0.247 (0.019±0.015)
0.376 (0.124±0.011)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.246 (0.021±0.010)
0.389 (0.111±0.009)

raw:StefN-3s.6o
0.177 (0.072±0.010)
0.496 (0.029±0.008)

raw:StefU.6o
0.062 (0.188±0.007)
0.640 (0.140±0.008)

raw:StefU-3s.6o
0.028 (0.221±0.006)
0.691 (0.191±0.010)

Table 5.8: TOP10 configurations that minimize the mean of EER estimation error
(EEE). In the first line, we show the EEE value, in the second line the ERS value is
given. Each line contains the absolute value, the error, then the precision.

This work constitutes a first step towards the generation of large synthetic
Keystroke dynamics datasets. The following step would be the generation of keystroke
dynamics data for an unknown user. Such large synthetic Keystroke dynamics
datasets could then be used to fairly compare KDS performances, as well as to
improve KDS pre-processings. It constitutes a perspective of this work.

In short: We generate entries for a given user. Our model assumes that Keystroke
Dynamics does not evolve through time, and that durations are independent. How-
ever, this produces a trade-off between usurpation and EER estimation. Durations
d1 to d4 seems to follow a gumbel law. Durations d5 and d0 are harder to generate,
but can be computed from others. This model still needs to be improved.
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6.1 Introduction

Applications (Chap. 6)

Attacker (Chap. 2)

Trusted Untrusted

Consent

KDAS (Chap. 3)

Keystroke Modeling

(Chap. 5)

User

PICRP (Chap. 4)

Figure 6.1: Complete pipeline.

Our contributions enable consented user authentication based on Keystroke Dy-
namics (with other modalities) while protecting user privacy. The full pipeline is
presented in Figure 6.1. The Keyboard events are collected under a trusted com-
ponent (could be a WebExtension, the browser, the OS, or a dedicated hardware)
preventing the untrusted component (could be a web page, or the whole computer)
to access them.

Keystroke events are anonymized with a Keystroke Dynamics Anonymisation
System (see Chapter 3 in order to transmit the meaning of the keyboard event
without their true timing information, thus preventing user profiling (authentication,
identification, soft biometrics) without its consent (see Chapter 2). Under the user
consent, PICRP are computed (see Chapter 4) and sent to the applications in order
to enable user authentication. Keystroke Modeling (see Chapter 5) is a first step
towards improvement of PICRP and attacks performances. In this chapter, we
focus on the application of our PICRP contribution, its integration with dedicated
hardware and the associated proof of concept we developed.

In Chapter 4, we presented an authentication protocol that can be used to
straighten Account authentication. For example, Same/Fixed-Text can be used during
login processes while the user types its credentials. Once the user logged in into its
account, Free-Text can be used, either for continuous or punctual authentication
while the user type a message, e.g. on a chat, forum, or blog, thus preventing
lunch-time attacks. If the authentication fails, either a challenge can be issued for
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authors.

Figure 6.2: PICRP examples of applications

the user to prove its identity, or the user can be automatically disconnected. In
such scenarios, attackers will try to impersonate legitimate users while legitimate
are consenting to the authentication and have no interest into misbehaving.

As shown in Figure 6.2, we can consider two more applications. Multi-account
detection where the service provider aims to detect users possessing several accounts,
and Proof of authorship where users tries to prove authorship of a written text, but
can also misbehave.

In the scope of this PhD thesis, several proof of concepts have been developed.
They are available online on https://trust.greyc.fr. A WebExtension gathering
all functionalities will also be made available.

Note: Presented softwares might be subject to modifications.

6.2 Anonymization

First, we consider the Anonymisation of keystroke dynamics to protection users
privacy. We implemented a proof of concept of Keystroke Dynamics Anonymization
System techniques presented in Chapter 3. The Graphical User Interface (GUI) is
presented in Figure 6.3.

The KDAS can be configured in the area (a) by selecting the type of KDAS and
its parameter p. The performances of the KDAS are given in the area (b), the privacy
score is computed as 2∗EER. Performances are computed from the known fixed-text
datasets. Usability of the selected KDAS can be experienced through the area (c)
where the user can type a free-text while its Keystroke Dynamics is anonymized.
The latency observed during typing of the free-text is shown in real-time. The level
of protection offered by the KDAS can also be experienced through the area (d).
The user selects a fixed-text and types it several times, 3 as references, and 3 as
samples. Performances are then shown in area (e).

https://trust.greyc.fr
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(a)

(d)

(b)

(c)

(e)

Figure 6.3: Anonymization demonstration interface.

As for the WebExtention version, Keystroke Dynamics is anonymized on all web
pages. Default behaviors are not entirely implemented, and modifiers keys are not
delayed, see Section 3.3.1.

6.3 Account authentication

The PIRCP signature allows the user authentication for logical access control applica-
tions. In this developed proof of concept, we show the computation and comparison
of two PICRP proposed in Chapter 4. The GUI is presented in Figure 6.4.

Users are invited to give two PICRP in order to compare them. They can either
generate them (a) or paste one (b). A visual representation is then given in the area
(c). In order to generate them, users type a fixed-text that is used as a secret. The
generated PICRP is then printed in field (b).

The differences between the two PICRP are shown in the area (d), while similarity
scores computed from the PICRP Hamming pseudo-distance are shown in area (e).
Similarity scores can only be computed if the PICRP are generated, or otherwise, if
the first version of PICRP is used.

6.4 Proof of authorship

Instead of being used for account authentication, PICRP could also be used as proof
of authorship on a written text.

We developed a proof of concept to verify the authorship of a document. It is
implemented as a continuous authentication solution based on PICRP and Free-Text
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(b)

(d) (e)

(c)

(a)

Figure 6.4: Authentication demonstration interface.

Keystroke Dynamics. The GUI is presented in Figure 6.5. The shown interfaces
are based on ShareLaTeX, an online collaborative platform used to edit LaTeX
documents.

The online demonstration is based on a self-hosted ShareLaTeX instance. The
demonstration integrated to the WebExtension works on any ShareLaTeX and
Overleaf instances. As we do not save any information in this demonstration, we do
not use these fields to straighten authentication by using Fixed-Text-based PICRP
or BioCode. As shown in Figure 6.5, Keyboard Events are collected on the area (a).
A BioCode is then computed from the typed Free-Text, using only the last 125 typed
digraph. A similarity score is then computed using a sliding window. The score of
all users typing in the current document is shown in the area (b).

In this demonstration, we thus use author continuous authentication to prevent
repudiation of one author contribution by other malicious authors, as well as iden-
tity theft. However, this does not protect against ghostwriting, or fake accounts.
Ghostwriting might be detected as, either a large insertion of copied text, a failed
authentication, or through the ghostwriter identification. However, as the legitimate
owner of the account is complicit, it can automatically produce authentication proofs
for the ghostwriter.

The use of a trusted device authenticated and trusted by the service could harden
such complicit usurpation. Else, if PICRP are computed on the service, and the
keystroke sent in real-time, the service could ensure PICRP are computed from the
typed content, and might try to detect synthetic or replayed keystroke, as well as
the manual transcript of a text.
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(a)

(b)

Figure 6.5: Online Editor demonstration interface.

6.5 Social identity proof

As presented in the previous sections, P2P authentication requires Trust On First
Usage (TOFU). Indeed, any peer must first assume that it communicates with the
appropriate user before being able to authenticate him in future exchanges. We
tackle down this issue by proposing in this section a social proof of identity enabling
existent peers to certify the user identity to new peers.

We illustrate this proposition in the context of a social network, where new users
want to befriend users they know. However, they are unsure whether the account is
legitimate or if the claimed identity has been usurped. The social proof of identity
solve this issue.

Note: This social proof of identity originates from a collaboration with the
University of Reggio Calabria. A paper [Buccafurri et al., 2017b] was published in
the scope of this collaboration.

6.5.1 Background

Motivations

In some cases, being able to authenticate past interlocutors is enough. In such cases,
the identity of the interlocutor is built as the way the user perceive its interlocutor
through their previous exchanges. De facto, the identity of an interlocutor varies
from one user to another. In simpler terms, the interlocutor’s identity is defined
through its acts.

However, as described in Figure 6.6 other cases requires to ensure the interlocutor
identity, properties, or trust. Ensuring the interlocutor is who it claims to be is
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Social identity proof enables to verify:

Identity

Real name, pseudonym.

Properties

E.g. claimed age, sexe,
contact information.

Trust

Past behaviors.

Figure 6.6: Social proof usages

required when the user seeks to communicate e.g. with a specific acquaintance it
met or known in real-life or on another service. Impersonation of an acquaintance
might lead to various scams, s.a. fake president fraud, or breach of trust. By giving
private information to a stranger, this can also lead to thief, kidnapping, or to an
abduction of a minor. Moreover the person impersonated might be hold liable, or
have its reputation damaged.

Ensuring the interlocutor is what it claims to be might be mandatory for the
user security or to prevent user deception. For example, sexe verification could
prevent some of the romance scams, in which attackers seduce users to extort
money. Age verification could ensure that grown-up adults does not pose as minor
when exchanging with minors. Contact information are also necessary to make the
interlocutor liable and to initiate legal proceedings.

Finally, ensuring the interlocutor past behaviors enables to trust well-behaved
interlocutors while being wary of misbehaving interlocutors. Interlocutor reputation
is essential in some contexts, s.a. on online markets. In such a way, bad and
good behaviors are punished or rewarded through peer reputation, thus creating an
incentive to good behaviors.

Formalism

As shown in Table 6.1, we distinguish between the theoretical model (abstraction),
and the model implementation (implementation). For example, a node in the
theoretical model represents an account/user, while a trust relation is implemented
as a certificate. The concepts of trust/certificate chains/graphs are defined in the
next sections. A confirmed node/account is a node/account whose owner identity
has been confirmed by our proposed social identity proof.

Security requirements

Our proposed approach aims at reinforcing trust in social entities interactions, by
ensuring that an entity who and what it claims to be. We thus aim at preventing
attacks s.a. identity usurpation (i.e. using an existing identity), typo-squatting (i.e.
using a very similar name), and fictitious identities.
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Abstraction Implementation
Node Entity/Account/User

Edge/Trust Relation Certificate
Claim to recognize/trust Certify

Recognized/trusted Certified
Recognizer/truster Certifier

Trust chain Certificate chain
Trust graph Certificate graph
Confirmed Confirmed

Table 6.1: Formalism

Reputations systems sanction users past behaviors through a gain or loss of trust.
They are based on the assumption that users stay in the system, expect future
interaction requiring trust, that treason would cost more than the expected profits,
and that users looks to their long terms interests (requiring trust) instead of their
short terms benefices (treason).

Reputations systems are also vulnerable to several attacks, s.a. the use of several
identities, trust manipulations, or competitive misbehavior. Misbehaving users might
recreate a new identity to start with a clean reputation after a treason (whitewashing),
or use dedicated accounts to their dishonest activities, s.a. stolen accounts. Trust
can be manipulated through the creation of fake identities (Sybil attacks), or through
social engineering techniques. Competition might also lead users to attack others
reputations, e.g. through slanders or false flag attacks.

Our Social Proof of Identity is a form of reputation system as users behaviors
are sanctioned through certifications, representing trust. However, we enforce users
proper behavior, not only through the use of trust, but also by enabling moderators
to revoke users anonymity when they misbehave.

Our approach being based on peers recognition/certification, it necessitates the
following security properties in order to be effective:

• Integrity: one should not be able to forge or modify certificates in the name of
another certifier.

• Performance: computations should be computed in a reasonable time and
memory occupation.

• Availability: computations of trust should be possible even if some nodes are
unavailable or corrupted/malicious.

• Accountability: entities should be held accountable of the certificates they issue,
implying non-repudiation of the issued certificates.

• Revocation: entities should be able to revoke the certificates they issued.
• Uniqueness: an entity should not be able to certify a same entity several times,
e.g. by creating multiple accounts.

Accountability prevents entities from certifying unrecognized, untrusted, or mis-
behaving accounts, e.g. in exchange of money. Revocation enables an entity to
revoke certificates in cases of misbehaving entity, change of an account ownership
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(e.g. stolen/sold account) or a mistakenly issued certificate.

Our proposed approach should be protected from (or at least mitigate) the
following well-known reputation attacks:

• Collusion: system should be resilient to collusions.
• Sybil attacks: see uniqueness.
• Slanders: malicious entities should not be able to remove an account confirma-
tion.

• Whitewashing: a misbehaving entity should not be able to create a new account
to start with a new reputation.

• Identity usurpation, typo-squatting, and fictitious identities.
• Hacking: a hacked account should not be able to issue or revoke certificates,
and should no longer be considered as confirmed.

We also require our approach to respect users privacy. The system should minimize
the amount of information it discloses, even in case of misbehaving accounts, e.g.
the users biometrics, and who certifies who, should not be disclosed.

6.5.2 Social Identity Proof principles

Certificate chain

Servers are typically authenticated by browsers through certificate chains. When a
browser establishes a new TLS connection with a server, the server typically sends a
certificate chain as a proof of its identity. The certificate chain prove that a given
public key is associated to a given identity. Then any entity knowing the private key
is assumed possessing the certified identity.

A simplified version of a certificate chain is shown in Figure 6.7. The certificate,
associated to a server, certifies the server public key and identity, while intermediate
certificates, associated to a Certification Authority (CA), certify the validity of other
certificates. The Root CA certificate, associated to a Root Certification Authority
(Root CA/RCA), is installed in, and trusted by, browsers.

When receiving a certificate chain, the browser verifies, among other things, that
the server certificate is indirectly certified by a known RCA certificate. Meaning
that, considering certificates as nodes, and certify relations as oriented edges from
the certified to the certifier, there exists a path from the server certificate node to the
RCA certificate node. Certification is performed by signing the certified certificate
with the private key whose public key is contained in the certifier certificate.

Certificate graph

Although certificate chains are used to verify server identities, they remain vulnerable
to, e.g., typo-squatting, malicious certifiers, or private key thieves. In our scheme,
biometrics is used as an additional authentication modality mitigating the impact
of private key thieves. Indeed, if the certifiers revoke their certification if they do
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Figure 6.7: Certificate chain

not recognize the certified entity biometrics. In our context, typo-squatting attacks
are assumed inefficient as certification is done by peers, upon recognition of the
account/entity.

Still, attackers might become confirmed due to the presence of a misbehaving
certifiers. For example a RCA belonging to a country can be used to issue dubious
certificates enabling to spy on users by usurping servers identities. The private key
of a CA might also be leaked, enabling attackers to forge certificates in its name, a
misconfiguration might enable servers to be considered as a CA, enabling it to issue
certificates, or a certifier might have little regards on the servers they certifies.

The accountability properties enable to punish misbehaving certifiers, however
this does not prevent the consequences of such misbehavior. We thus require each
nodes, in order to become confirmed, to be trusted, not by only one truster, but by t
already confirmed trusters, as shown in Figure 6.8. We thus replace the trust chain
by a trust graph, as shown in Figure 6.9.

Minimal trust subgraph

We defined the minimal trust subgraph as a subgraph containing only the confirmed
nodes with the minimal number of trust relation so that the nodes remain confirmed,
i.e. deletion of any trust relation, would make a node unconfirmed. This implies that
as least t trust relations has to be deleted in order to disconnect the minimal trust
subgraph. This means that each nodes needs t trust relations from the minimal trust
subgraph in order to be confirmed.

As a node cannot be, at a given time, both confirmed and unconfirmed, an
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Figure 6.8: Trust graph with t = 2

Figure 6.9: Certificate graph with t = 2

unconfirmed node cannot be in a minimal trusted subgraph, i.e. an unconfirmed
node cannot become confirmed thanks to, or partially thanks to, the nodes it certifies,
i.e. by construction, the minimal trust subgraph cannot contain loops. The minimal
trust subgraph is thus a directed acyclic graph.

Resilience

As a node requires t trust relations from the minimal trust subgraph to be confirmed,
and as each nodes can only trust a given node once, in order to arbitrary confirm
nodes, at least t misbehaving confirmed nodes have to collude. This thus increases
attacks cost and feasibility.

Our proposed method is vulnerable to sybils attacks were t attacker colludes to
certify arbitrary nodes. However, the system is resilient and such account could be
easily identified and deleted, once done, the system come back to its original state.
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6.5.3 Social Identity Proof considerations

We present here some consideration about the Social Identity Proof. Algorithms are
proposed in the next section.

Accountability

We assumed that Root Nodes are nodes trusted by a Root Node Certifier (RNC),
whose task is to ensure Root Nodes real identities, and ensuring that they remains
trusted. RNC can perform heavier verification for RN recognition, s.a. background
checks, requiring an ID card, requiring a real-life appointment. We assumed that a
node trusted by at least one RNC became a confirmed RN. However this work can
easily be extended by requiring instead of one, at least t′ RNC truster in order to
become a RN.

In case of misbehavior, the certifier is required to disclose the certified node
identity to the proper authority in order to held the certified node liable of its
behavior. Any refusal to cooperate is in itself a misbehavior, thus requiring the
certifier’s certifier to disclose the certifier node identity. The certificate chain does
not only represent a trust chain, but also a responsability chain. At the end, the RN,
whose identity is verified by the RNC, will be held liable if no certifiers cooperate.
Thus any victim of misbehavior would be able to legally recourse against at least
one entity. Being able to sue somebody for the loss or prejudice suffered is very
important in law in order to protect entities rights.

Minimizing disclosed information

When responding to a proof of identity query, a confirmed node sends a trust graph
to the requester. However, a node cannot trust another several times, and cannot
be present several times in a trust chain (i.e. loop in the minimal trust subgraph).
In consequence, node linkability must be ensured in order to verify the trust graph.
Meaning that the trust graph leaks the topology, and thus the trust relation between
some identified nodes.

We define the minimal trust subgraph for a node (MTSN) as a trust graph in
which the removal of any edges or nodes would make the node unconfirmed. i.e. the
number of truster disclosed for a node is equal to the trust level t, thus limiting the
amount of disclosed information.

A distinction should be made between intermediary and final certificates. When
final certificates must contain the confirmed node identity, e.g. an URL, it is not
required in intermediary certificates. Indeed, in the MTSN only the identity of the
requested node matter. This means that each trust relation will be represented by
two certificates, one enabling the trusted node to emit certificate, and one used as
proof of its confirmed status.

Another measure is to prevent attackers from reconstructing the whole trust
graph by asking all confirmed nodes for them MTSN. For example, when asking the
MTSN, a requester must first send its own to the requested that will explicitly accept,
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or not, to respond to the requester query. As shown in Figure 6.10, for a friendship
query on a social network, the requester (i) send a friendship query and its MTSN
to the node it wants to befriend; (ii) the requested accept/reject the query; (iii) if
the friendship query is accepted, the requested send its MTSN; (iv) the requester
validate the friendship relation.

Requester Requested

friendship query + MTSN

accept
MTSN

OK

Figure 6.10: A friendship request

Unlikability of nodes across MTSN (MTSN unlikability), as well as between
intermediary and final certificates, can also be used to prevent reconstruction of the
trust graph from several MTSN. This can be achieved by issuing MTSN-dependant
certificates, i.e. certificates, with different public keys would be issued for each
MTSN.

Ergonomics

Users are an important part of a system security. If the system is not ergonomics or
too costly for the users, they are likely to bypass the system, leading to breaches of
security.

First, an incentive to certification should not be created, e.g. by giving extra-
features to either the certifier or certified accounts. Indeed, such incentive may lead
to dubious certifications if the entities estimate that the taken risks is worthy of the
gain offered by such features. Such risk does not only impact the security of such
misbehaving account, but also the security of all accounts present in the system.

In order to prevent false security feelings as well as putting too much trust into
confirmed status, the absence of the confirmed status should be highlighted, instead
of its presence. Moreover, the certification process should encourage and incite
challenges through another medium, e.g. exchanging a short secret in real-life in
order to validate the certification.

Finally, as previously stated, entities might have legitimate needs to posses several
accounts. However, this would enable such entity to produce several certificates for a
same account. We thus propose that secondaries account only need the certification
of the confirmed primary account to become confirmed, however, such accounts would
not be authorized to be certified by other accounts, and to certify an account already
certified by the primary account, or another secondary account. The certificate
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produced by the primary account must be distinguishable from other certificates,
e.g. by adding a field stating the secondary status of the certified account.

Certificates should contain a proof that no illegitimate multi-accounts are present
in MTSN. For example through a GREYCHashing-based PICRP computed on, and
signed by, a trusted device.

Trust graphs

Several variants of trust graphs and MTSN can be considered. For example certifica-
tions could include context(s) or level(s) of confidence. For example, certifying that
a pseudonymous account whose identity originate from a specific community (e.g.
forum, online game), or a type of account, s.a. institution, company, association,
person. The level of confidence refers to the nature of the relation between the
certified and certifier entities, e.g. colleague, friend in real-life, online friend, family
member.

Entities might also set a maximal depth to MTSN and reject taller MTSN, i.e.
only accepting confirmed nodes close to root nodes.

In the same way that users can add or remove RCA certificate on their browser,
they should be able to do the same on MTSN, i.e. to add or remove RNC (RNC
selection). Removal can be done if the RNC is not trusted anymore, and addition
could be made for local MTSN, e.g. on a company, school, association, or other
institution.

However, requester should not be able to choose which nodes or root nodes they
trust, as they would be able to enforce the presence or absence of nodes the the
MTSN they receive, and thus, to deduce information.

6.5.4 Social Identity Proof operations

Certification

One of the main operation of our system is to issue certificate for a certified-to-be
account. Certificates issuing can be performed upon queries (e.g. MTSN unlikability,
RNC selection), or only once, at the trust relation establishment. In both cases,
confirmed nodes save their MTSN in order to give it upon queries, without re-
generating it.

As shown in Figure 6.11 Certification consists in two phases,(i) an ascending
phase, where the query is transmitted to the certifier nodes, up to the root nodes,
and (ii) a descending phase, where the MTSM is built from the root nodes to the
requester. The ascending phase is only necessary when certificates are issued upon
queries.

The ascending phase starts when an account have enough truster in order to
be confirmed. The query might contain a nonce (e.g. an url) dependant on the
requester node (e.g. for MTSN unlikability), or a set of accepted RNC (e.g. for RNC
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Figure 6.11: Certification process

selection). The nonce will be used to diversify the asymmetric keys of each entity in
order to enable unlikability.

In the descendant phase, confirmed certifier accounts send its MTSN with its final
and intermediary certificates, alongside with the intermediary and final certificate
it issues for the certified account. The certified node verifies the received MTSN
and certificates (cf nexts sections). The certified node stores the received elements.
Then, if it becomes confirmed, i.e. having at least t certificate, the certified node
merges t received MTSN and certificates, sorts the certificates (by the certified key)
and removes duplicates. The selection of the MTSN to use can be random, e.g. for
MTSN unlikability, be e.g. the smallest MTSN or the t oldest MTSN. Then the
newly confirmed account issues certificates to the accounts it trusts, and in the case
of upon-query certification, only to the nodes that queried him.

Merging of MTSN and certificates is illustrated in Figure 6.12. Final certificates
are represented as a circle, while intermediate certificates are squares. The letter
indicates the public key certified by the certificate. In this example, t = 2. E is
certified by A and C; A by B and D; C by B and F; F and D are root nodes; and B
is not certified.

Revocation

Revocation of a certificate can be achieved in two ways. Either the certificate is
explicitly revoked, or has an expiration time and is not renewed.

The first solution requires to store a list of revoked certificates on a platform that
could be queried and trusted. As for the second solution, it requires an expiration
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E EE E

Certi er A Certi er C

C C Intermediate certi catesA A Intermediate certi cates

Certi ed E

E E Intermediate certi cates

Certify Certify

Figure 6.12: MTSN Merging

time long enough to not have to constantly regenerate certificates, and short enough
to be able to quickly revoke misbehaving nodes.

We propose to use the root nodes to store a list of revoked certificates (or their
hash). Thus enabling, when verifying MTSN, to query its included root nodes for
the revoked certificates.

Revocation can thus be performed by contacting directly the root nodes and
giving him a hash of the revoked certificate with the certificate expiration timestamp,
both signed by the certifier asymmetric keys. The root node then respond by signing
such query as a proof the revocation has been taken into account. Alternatively, the
query and proof can be transmitted through ascendant and descendant phases, as in
the certification.

This thus requires to corrupt at least t nodes in order to prevent certificate revo-
cations. Expired certificates should be removed from the list of revoked certificates.

The certifier account then inform (in case of explicit revocation) the revoked
account of the revocation, for it to be able to rebuild its MTSN and send it, if still
confirmed, to the accounts it certify. Otherwise, it inform them that it is no longer
confirmed. The account certified by the revoked account can then in turn update
their MTSN. The whole MTSN does not need to be sent, only the new certificates,
and the list of certificates to delete.

Query for identity disclosure

In case of misbehavior from a given node, its MSTN being known, the contained
root nodes are contacted by a competent authority. a query for identity disclosure is
then issued to reveal the misbehaving node identity.
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The query is composed of the MSTN signed by the recognized competent authority,
and is transmitted from the root node to the misbehaving node certifiers following
the paths indicated in the MSTN.

The identity of the misbehaving node is encrypted using the authority public key,
and signed by the certifier node. The respond is then transmitted to the root node
following the same path, and signed by each nodes on the path.

If a node refuse to respond in a reasonable time, its certifiers must respond to the
query revealing the identity of the non-responding node(s). If a node modifies the
answer, invalid signature(s) would immediately reveal the position of the modification
in the path, and can be reported to the authority.

Alternatively, certifier nodes can choose to reveal their identity to the authority
by directly contacting it. The authority them produces a proof of answer the node
can send its certifiers nodes.

In order to prove the revealed identity is the one that was certified, the certificate
should contain a proof of the certified identity, only readable by the certified, or
other nodes knowing a secret. For example, a hash of the certified node identity with
a nonce stored by the certifier. The nonce and the hash can then be transmitted
with the answer.

Biometric authentication

Certifiers ensure the account remains in the hand of its legitimate owner through
biometric authentication (e.g. using PICRP). If a change in ownership is detected,
certifiers can revoke their certificates. However, the more the account have certifiers,
the more it is likely, that the attacker is likely to find t certifiers that continue to
recognize it, thus enabling it to remain confirmed.

When used by its legitimate owner, we assume that the certified node has no
interest into manipulating its biometric authentication. A secure communication can
thus be established between the confirmed certified nodes through the certified node
without revealing the certifiers node identities (e.g. with a Diffie-Hellman symmetric
key negotiation).

When authenticating the user, a certifier node can then query the other certifiers
for their decisions (authenticated/rejected). The hacked certified node, can only stop
transmission of the query or the answer, that would be interpreted as a rejection.
Misbehaving certifiers might also lie on their decision. The certifier node is thus
able to take a final decision, given the other nodes decisions and the biometric
authentication score.

In order to prevent dubious certifier addition and legitimate certifier removal, the
user should be authenticated when adding or removing a new certifier. Only one
certifier can be removed at a time.

Moreover, the certifiers should send their decisions to the other certifiers, before
revealing their final decision (certificate revocation or renewal). i.e. the query sent
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to other certifiers should contain the decision, and answers to the query would thus
be acknowledgement of the decision reception.

The whole protocol is illustrated in Figure 6.13.

Certi er A Certi er C

Certi ed E

(a) Secure channel

Certi er A Certi er C

Certi ed E

(b) Query + A Decision

Certi er A Certi er C

Certi ed E

(c) Ack + C decision

Figure 6.13: Biometric authentication

Trust graph centralized verification

Our model being assumed decentralized, centralized verification of the trust graph is
not possible in practice. However this might be useful when testing and evaluating
the performances of such system. This verification is thus used in our experiments
and is presented in Listing 1.

This algorithm only go through the nodes certified by the lasts confirmed nodes
instead of going through all nodes. This requires only h∗|C| nodes checks, with h <<
len(n), the mean number a certification a node can issue (generally h = 3 [Barabási
and Albert, 1999]). Which corresponds, in the worst case, only to 2 ∗ nb edges nodes
checks. In worst case, using 16,000,000 nodes, this algorithm takes less than 72
seconds. A limitation on the number of certification a node can easily prevents denial
of service attacks.

MTSN verification

Upon queries, confirmed nodes send their MTSN in order to prove their identity. The
MTSN is easily verified through a depth-first graph traversal. The validity of each
certificate is verified as well as the absence of loops. Algorithm is given in Listing 2.

Certificate verification

Certificate verification is achieved by verifying the certificate signature, and that
the certifier public key is certified by t different certifiers. The different fields of
the certificate should also be verified, e.g. that the creation timestamp and the
expiration timestamp are respectively lesser and greater than the current timestamp.
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Algorithm 1 Trust graph centralized verification

1: procedure Compute confirmed nodes C
2: Variable: RN , set of nodes; ⊲ Set of root nodes
3: Variable: n1, . . . , n|N |, array of nodes; ⊲ The set of all graph nodes
4: Variable: fifo, array of nodes; ⊲ The FIFO list of nodes to be processed
5: Variable: idx, index; ⊲ Index of the next node to process
6: Variable: cur, node; ⊲ Current node being processed
7: Variable: conf1, . . . , conf|N |, array of boolean; ⊲ Whether a node is

confirmed or not
8: Variable: t1, . . . , t|N |, array of integer; ⊲ The set of integers representing the

computed level of trust of each node
9: Procedure: Cert(x) ⊲ the nodes certified by x

10:

11: t.fill(0); ⊲ Initialization: trust level is 0 for all nodes
12: conf.fill(false); ⊲ Initialization: no nodes are confirmed
13: idx = 0; ⊲ Initialization: first index
14:

15: for all nodes ni ∈ N do ⊲ Search for root nodes
16: if (ni ∈ RN) then
17: confi = true; ⊲ the node is confirmed
18: fifo.push(ni); ⊲ the confirmed node has to be processed

19:

20: while ( idx! = fifo.size() ) do ⊲ Iterative computation of node trust level
21: cur = fifo[idx++];
22: for all nodes nj ∈ Cert(cur) do
23: if ( confj && tj ++ ≥ t) then ⊲ An unconfirmed node with enough

certification has to be processed.
24: trustedj = true;
25: fifo.push(nj)

26: C = fifo; ⊲ Building C to be returned

6.5.5 Experiments

Implementation Issues

We assume that a node confirmed status verification is performed by users client
while browsing. As previously said, the centralized algorithm is not adapted to such
verification, as it would requires to leak all topology and biometric data, thus being
a treat to confirmed users privacy. Moreover the quantity of information required to
such computation make it not realistic to be downloaded by users while browsing.

Unfortunately, decentralized algorithms cannot be used for research purposes as
it is unrealistic to dispose of billions of clients for tests and demonstration purposes.
Thus requiring at best to simulate decentralized algorithms in an iterative way.
In such cases, costs induced by communications cannot be measured, but can be
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Algorithm 2 MTSN verification

1: procedure Verify MTSN

2: Argument: final certs, array of final certificates;
3: Variable: cur path, array of certificates; ⊲ Current traversed path
4: Variable: cur cert, certificate; ⊲ Current certificate
5:

6: if (len(final certs) < t) then
7: throw;

8: for all certificat f cert ∈ final certs do
9: cur path = [certificate];

10: go end of path(cur path);
11: while ( cur cert = next cert(cur path) ) do
12: verify cert(cur cert);

13:

14: procedure Next cert

15: Argument: cur path, array of certificates; ⊲ Current traversed path
16: Variable: cur cert, certificate;
17: Variable: next cert, certificate;
18:

19: cur cert = cur path.pop();
20: if (!cur cert) then
21: Return: cur cert
22: if (next cert = cur path.front().next certifier(cur cert)) then
23: if (cur path.contains(cur cert)) then
24: throw;

25: cur path.add(next cert);
26: go end of path(cur path);

27: Return: cur cert
28:

29: procedure go end of path

30: Argument: cur path, array of certificates; ⊲ Current traversed path
31: Variable: cur cert, certificate;
32:

33: cur cert = cur path.front();
34: while (cur cert = cur cert.first certifier()) do
35: if (cur path.contains(cur cert)) then
36: throw;

37: cur path.add(cur cert);

estimated from the number and length of such communications.

As the decentralized algorithm is simulated on a unique computer, cryptographics
operations generation and verification of signature were also simulated, as such
operations tend to be pretty slows. As for the communication costs, Cryptographics
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costs can be estimated from the number of required signatures generation and
verification. Cryptographics operation still can be easily implemented in JavaScript
using the WebCrypto API 1.

Datasets

We assume that each certified node send the same biometric data to its certifiers
that give it the same biometric score, and therefore take the same decision, to revoke,
or not, their certification. We assume use of Fixed-Text and Free-Text Keystroke
Dynamics, with a threshold corresponding to the EER of the used KDS. As we
consider more users than we have in the Keystroke Dynamics datasets, we simulate
the certifiers decision as a Bernoulli trial, with a probability for an attacker to be
accepted, and for a legitimate user to be rejected equal to the KDS EER value. This
corresponds to 24.2% for Fixed-Text and to 13.7% for Free-Text.

It is well known that the degree of social-network graphs follows a power-law
distribution [Kumar et al., 2010, Cha et al., 2010, Buccafurri et al., 2013]. This can be
obtained by using the Barabási–Albert model [Barabási and Albert, 1999], one of the
most famous algorithms for generating random scale-free networks using preferential
attachment. Starting from a single-node graph, each new node is connected to the
existing nodes by following the law: the more the node degree is, the more the
probability to receive new link is.

Instead of using such synthetic social-network graph, we use a real-life graph
from the Stanford Large Network Dataset Collection (SNAP)2, the ego-facebook
dataset, with 4,039 nodes, and 88,234 edges.

Attacker model

We assume that PICRP is used in order for the certified to be authenticated by their
certifiers. Attackers thus cannot impersonate users without knowing their secret,
as well as having access to their computer. In such a case, we can assume that the
attacker is able to obtain/use users GPS and IP location, security thus exclusively
remain on Keystroke Dynamics. Such attack is quite extreme, but could be e.g. a
user relative knowing its secret and having access to its client, s.a. partner or childs.

We consider 4 scenarios:

• None: when the biometric authentication is unable to distinguish attackers
and legitimate users.

• Fixed-Text: security remains exclusively on Fixed-Text;
• Free-Text: security remains exclusively on Free-Text;
• Perfect: ideal case where the biometric authentication is error-free.

1https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
2https://snap.stanford.edu/data/index.html

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://snap.stanford.edu/data/index.html
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Protocol

We randomly select root nodes among nodes with degree higher than 0, assuming
that isolated nodes has little to no interest into being certified by RNC. Attacker
nodes are randomly selected from all nodes. The social network graph, the biometric
performances, and the rate of RN and attacker constitute a context. The trust level
corresponds to the system configuration.

For this experiments, we set the rate of attackers to 5%, as well as the trust level
t to 15. The social network graph depends on the dataset used, and the biometric
performance to the attack scenario.

Biometric authentication schemes are usually evaluated though their EER (Equal
Error Rate) where the FAR (False Acceptance Rate) equals the FRR (False Rejection
Rate). In our case, we will use FCR (False Confirmation Rate) and FNCR (False
Non-Confirmation rate), corresponding to the rate of attackers falsely confirmed,
and to the rate of users falsely not-confirmed. FNCR rate is computed among the
set of candidates nodes. Candidates nodes are defined as nodes having at least t
certifiers or being root nodes.

Results
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Figure 6.14: Number of candidates in function of RN headcount, and trust level.

As shown in Figure 6.14, even with an high trust level t, the number of candidates
in the graph is high. Assuming that 5% of nodes are root nodes, the rate of candidates
is ≃ 70%.

As shown in Figure 6.15, use of biometric data, significantly decreases the
False Confirmation Rate in the most extreme scenarios (Free-Text and Fixed-Text).
However, this comes at the cost of an higher False Non-Confirmed Rate.

In this experiment, we used an high The trust level (t = 15), a lower trust level
should decrease the FNCR, specially when the RN rate is low.
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Figure 6.15: FCR and FNCR in function of the RN headcount, with trust level t = 15,
and 5% of attackers.

6.5.6 Proof of concept

We developed a proof of concept using the two PICRP proposed in Chapter 4. The
GUI is presented in Figure 6.16.

The area (a) gives a visual representation of the trust graph. Icon (b) enables to
tweak parameters while icon (d) prints a list of the trust graph node. By clicking on
a node in the list, or in the visual representation, a synthetic account, associated to
the node, is shown. Icon (c) enables to visualize the last shown account.

In the parameters, topology (e) enables to change the trust graph topology, i.e.
the number of nodes, and the trust relations. They can either be randomly generated
with the Barabási-Albert algorithm, or through real-life datasets. Coloration (f)
enables to select the rate of root nodes (certified nodes), as well as the rate of
attackers.

Biometrics scores (g) can be generated from real-life datasets. The method gives
the algorithm used to generate the Biometric scores, while the template size gives
the number of references to use per users. The trust area (h) enables to tweak the
trust computation. The trust level, t, indicates how many confirmed certifiers is
required to become certified. Thresholds are used by the certifier to decide, given a
biometric score, whether revoking or not a given certified node. Several metrics are
then computed and shown below the parameters.

In short: We propose a Social Proof of Identity enabling accountability of
misbehaving users while respecting their privacy.
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(e)
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(c)

Figure 6.16: Social Network demonstration interface.

6.6 Enhancing security with dedicated Hardware

Until then, it was assumed that the attacks were performed by JavaScript codes
injected into web pages. However, the user computer (the client), might as well be
complicit, corrupted, and/or malicious. This section reveals how to protect user
privacy in such cases.

Previously, its was assumed that the trusted component, providing KDAS and
PICRP features where a WebExtension, but could be integrated to the browser, a
driver, or the Operating System. With correct right management, integration to a
driver or the OS could requires administrator privilege to access users Keystroke
Dynamics, thus preventing some malicious code from accessing it.

However, this does not protect against complicit client, or malicious code with
administrator privilege. When the client is assumed untrusted, it is common, in
order to increase security, to use an external or internal trusted component. Internal
components s.a. Secure Element (SE), or Trusted Execution Environment (TEE) are
hardware components integrated to the client that are assumed secure and trusted.
Though such internal trusted components often requires a blind trust to the chips
manufacturers, and generally does not provides a secure path to the keyboard.
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We thus suggest the use of an external trusted device that will be plugged between
the keyboard and the client, in order to protect secure KDAS and PICRP features
even though the client is complicit, corrupted or/and malicious. Such external trusted
device could even be integrated to the keyboard.

6.6.1 KDAS on trusted device

Assuming a trusted device between the keyboard and the client, implementing KDAS
feature is trivial, as the trusted device just has to forward keyboard events with some
delay. However one challenge remains to be addressed: synchronizing the trusted
device with the screen frame refresh rate.

Note: One simple proof of concept has been implemented during Benjamin
Graindorge-Lamour’s bachelor internship. This proof of concept is only able to
receive keyboard events (from the keyboard), and to send arbitrary events (to the
client). The hardware and the reception/emission of keyboard events are presented
in the following sections.

Hardware

KDAS

Manager

Figure 6.17: KDAS on Raspberry Pi (prototype).

A Raspberry Pi were used as a trusted device in order to intercept and emit
keyboard events. As shown in Figure 6.17, a Raspberry Pi Zero W3 is plugged to
the client thanks to an USB-A addon board4, while a keyboard is connected to the
Raspberry Pi through Bluetooth. The Raspberry Pi is manageable through WiFi.

As the Raspberry Pi is already connected to the client through USB, the keyboard
has to be connected to the Raspberry Pi using Bluetooth. Indeed the Raspberry Pi

3https://www.kubii.fr/les-cartes-raspberry-pi/1851-raspberry-pi-zero-w-kubii-

3272496006997.html
4https://www.kubii.fr/cartes-extension-cameras-raspberry-pi/2063-adaptateur-

zerokey-usb-pour-pi-zero-kubii-3272496009271.html

https://www.kubii.fr/les-cartes-raspberry-pi/1851-raspberry-pi-zero-w-kubii-3272496006997.html
https://www.kubii.fr/les-cartes-raspberry-pi/1851-raspberry-pi-zero-w-kubii-3272496006997.html
https://www.kubii.fr/cartes-extension-cameras-raspberry-pi/2063-adaptateur-zerokey-usb-pour-pi-zero-kubii-3272496009271.html
https://www.kubii.fr/cartes-extension-cameras-raspberry-pi/2063-adaptateur-zerokey-usb-pour-pi-zero-kubii-3272496009271.html


6.6. ENHANCING SECURITY WITH DEDICATED HARDWARE 127

cannot act, at the same time, as slave (to send keystroke to the client) and as master
(to receive keystroke from the keyboard), as it only possess one USB controller.
Indeed, the USB-A addon board doesn’t add any USB controller, but uses Pogo
pins to connect onto the circuit board, directly on the conductive tracks of the
Raspberry Pi micro-USB female port. This implies that if both the keyboard (using
the micro-USB port) and the client (using the USB-A addon board) were connected
to the Raspberry Pi through USB, the keystroke would be directly forwarded from
the keyboard to the client without any means of intercepting it. Bluetooth would not
be required if the device would have at least two USB controllers. WiFi is also not
required for the device management, and could be done, e.g. through the keyboard.

Although the used hardware is high priced 21e40 (≃ $23.69), production of
a dedicated hardware (or integration to keyboards) could be expected to be way
cheaper.

Receiving Keyboard events

The received keyboard events are read on the Raspberry Pi thanks to /dev/input/eventX5.
An example of a keystroke on a 64-bits OS is shown in Figure 6.18.

c78c835d00000000234f0e0000000000 0400 0400 10000000

c78c835d00000000234f0e0000000000 0100 1000 01000000

c78c835d00000000234f0e0000000000 0000 0000 00000000

c88c835d000000004423000000000000 0400 0400 10000000

c88c835d000000004423000000000000 0100 1000 00000000

c88c835d000000004423000000000000 0000 0000 00000000

Timestamp ValueType Code

Physical Key

(0x10 = KEY_Q)

Logical Key

(0x10 = KEY_Q)

Key is pressed

Key is released

Figure 6.18: Description of keyboard input events.

Input events are structured as follow:
• Timestamp (8 bytes on 32-bits OS, 16 bytes on 64-bits OS);
• Type (2 bytes);
• Code (2 bytes);
• Value (4 bytes).

Each Keyboard event generates the following input events:
• EV MSC (Type 0x04) MSC SCAN (Code 0x04) is used (here) to de-
scribe a keyboard physical key.

– Value: the physical key released, pressed, or repeated.
• EV KEY (Type 0x01) is used to describes a keyboard event.

– Code: the logical key released, pressed, or repeated.
– Value: 0 for release, 1 for keypress, and 2 for autorepeat.

• EV SYN (Type 0x00) is used to separate events and does not contains any
information.

5https://www.kernel.org/doc/Documentation/input/input.txt

https://www.kernel.org/doc/Documentation/input/input.txt
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Input event values are described in input-event-codes.h6.

Sending Keyboard events

Emission of keyboard events from the Rapsberry Pi to the client is performed by
writing reports into /dev/hidgX7. A report is an 8-bytes structure:
0b00000000 00 00 00 00 00 00 00, with:

• Modifiers (1-byte), describes the state of modifiers keys (s.a. the control key);
• Reserved (1-byte), always 0x00;
• Keys pressed (6x 1-byte), describes up to 6 pressed keys.

The keys pressed field describes 0 to 6 key pressed, each byte contains the code of
a pressed key, or otherwise 0x00. Meaning that only up to 6 keys can be pressed
at the same time. All keys that does not appears in a report are assumed released.
Thus, after each press events, a report without any pressed key is written in order to
release the pressed key.

6.6.2 PICRP on trusted device

Assuming that a KDAS is performed on a trusted external device, the PICRP
obviously cannot be computed on the client. Indeed, it would be absurd if the
Keystroke Dynamics were protected with a KDAS, only to be revealed at each
PICRP computations on the client.

Moreover, PICRP cannot be computed at the sole request of the client, and must
requires the user consent. Indeed, the client could asks for PICRP whenever it wants,
without the user knowledge and consent, in order to continuously identify him.

KDAS will be assumed to be applied by the trusted device on the keystroke
events it receives, before transmitting it to the client. Indeed, computing a PICRP
on the trusted device while exposing the user keystroke dynamics would have little
to not interest.

Hardware

We assume that the trusted device does not have any button, has only two commu-
nication channels (one from the keyboard, and one to the client), and behaves as
a keyboard. Bluetooth could be used to control the trusted device, and to connect
wireless keyboards, however it would raise the price of such device. We thus assume
that the trusted device does not have any wireless capabilities.

As shown in Figure 6.19, communications are assumed unidirectional. The user
types on the keyboard, the keyboard sends keyboard events to the trusted device,
the trusted device delays and forwards them to the client, and the client prints them
on its screen, to be viewed by the user.

As the client is assumed untrusted, and is able to print arbitrary content on the
screen, the user cannot trusts what he sees on the screen. In order to ensure a secure

6https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-

codes.h
7https://www.kernel.org/doc/Documentation/usb/gadget_hid.txt

https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h
https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h
https://www.kernel.org/doc/Documentation/usb/gadget_hid.txt
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START Secret ENTER Text ENTER

START ***** ENTER Text ENTER PICRP ENTER

Figure 6.19: PICRP on Raspberry Pi.

and trusted information printing, a screen could be added to the trusted device. E.g.
for the prototype, an e-Ink screen could be used. This costs near 10e43 (≃ $11.53)
for a 200x200 pixels screen8 or a 250x122 pixels screen9, raising the prototype price
to 31e83 (≃ $35.22).

In such case, the user has to be notified of any new printed message on the trusted
device, for him to read it. The notification could be displayed on the client (e.g.
on the visited web page), or be a sound played by the trusted device (s.a. a bip),
requiring an additional component, either a speaker or a buzzer. The keyboard event
could also be blocked until the user has acknowledged the notification.

In the following, it will be assumed that information are printed on the client,
and therefore untrusted.

Control messages

In order to give consent, users have thus to type additional content on the keyboard,
generating keyboard events that will need to be interpreted by the trusted device
and the client. We call this control messages.

For Same/Fixed-text we propose the following format:
START Secret ENTER Text ENTER [PICRP ENTER], with:

8https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-1-

54-200x200-display-only
9https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-2-

13-250x122-display-only

https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-1-54-200x200-display-only
https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-1-54-200x200-display-only
https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-2-13-250x122-display-only
https://thepihut.com/collections/raspberry-pi-screens/products/eink-screen-2-13-250x122-display-only
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• START, a combination of keys (e.g. Ctrl+P) to start the control message.
• Secret and Text , texts typed by the user;
• ENTER, a key or combination of keys (e.g. Enter);
• PICRP , the computed PICRP encoded in base 64.

The control message is transmitted to the client as the user type it, with a KDAS
protection. The typed characters for Secret are replaced by, e.g., ’*’ when transmitting
it to the client. After the second ENTER, the trusted device send the PICRP encoded
in base 64 to the client. At any moment the user can CANCEL the control message
using e.g. the backspace key. Please note that Secret or Text might be empty,
therefore the PICRP should be computed without the keystroke dynamics modality
associated to the missing element.

Even though the client is untrusted, it can be used to improve usability by
printing information to the user. For example, to highlight fields where a PICRP is
required, or to show the status of the current control message.

Free-text are a little more complex to handle as several Free-Text authentication
can be performed simultaneously. It requires 4 to 5 different control messages:

• START FREE name ENTER: starts the Free-Text authentication named name.
• STOP FREE name ENTER: stops the Free-Text authentication named name.
• STOP ALL FREE: stops all Free-Text authentications.
• NEW PICRP name ENTER PICRP ENTER: sent regularly by the trusted device
to the client for each running Free-Text authentications.

• LIST: for the trusted device screen, show the running Free-Text authentications.
The client could be used to keep track of the running Free-Text authentications, but
using the trusted device screen would be more secure, as the client might lie.

A simple JavaScript code, embedded either in a web page or in a WebExtension,
cannot prevent the client from printing the PICRP where it does not belong, e.g.
outside the web page, or outside the browser. A native application (i.e. running
outside the browser) must thus either to collect and dispatch PICRP, using their
name, or to explicitly asks the trusted device to produce PICRP (using then a
bidirectional communication with the trusted device). The native application could
then communicate with a WebExtension using native messaging10.

In case of bidirectional communication with the trusted device, the client could
send additional modalities to use to compute the PICRP. Please remind that as the
client is untrusted, all information received from the client, s.a. other modalities, is
therefore untrusted and should be verified with care on the trusted device.

In short: Security can be increased using external trusted devices, however this
requires a cost that users may not be willing to pay. Solutions must thus be cheap,
ergonomics, and optional.

10https://developer.mozilla.org/fr/docs/Mozilla/Add-ons/WebExtensions/Native_

messaging

https://developer.mozilla.org/fr/docs/Mozilla/Add-ons/WebExtensions/Native_messaging
https://developer.mozilla.org/fr/docs/Mozilla/Add-ons/WebExtensions/Native_messaging


Chapter 7

Conclusion and future works

This short chapter gathers the contributions of this PhD thesis and associated

research perspectives that could be exploited to pursue this work.
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7.1 What do websites know about you?

This chapter demonstrated that Keystroke Dynamics constitutes a threat to users
privacy. The threat was quantitatively estimated through a fair KDS comparison,
taking into account the influence of the KDS context and configuration.

In our attacker model, attackers collect each user Keystroke Dynamics, to then
be able to recognize their future typing. This model could be completed by enabling
attackers to recognize users past typing. The attacker could also collect, for each
users, non-consecutive Keystroke Dynamics, and then try to recognize users on their
past, concurrent, and future typing.

We tested KDS with theoretical user-dependent thresholds without any references
updates, realistic methods s.a. in [Mhenni et al., 2019] could be tested and compared
to our theoretical results. References freshness or/and quality could also be exploited
by template update and users-dependent thresholds mechanisms. For identification,
references-dependent thresholds on rank and/or distance scores could also be tested.

KDS configuration could also be improved by using other distances, e.g. based on
the merging of several distances. Better pre-processing would improve performances,
either through better laws estimations/fittings, or by estimating laws followed by
unknown digraphs. Different weights could also be applied on durations or digraphs,
either before the distance computation, or by computing a weighted mean from
distances computed for each durations/digraphs. In the same way, different weights
could be applied when merging references or scores, e.g. based on the reference
freshness or quality. Deep learning could also be exploited, e.g. for Soft-Biometrics,
or to convert Keystroke Dynamics into vectors of optimal features for a given distance.

Other modalities could also be explored in depth, s.a. mouse dynamics, the
browser fingerprinting, or recognition of sound (microphone) and video (webcam),
not only for identification/authentication, but also for Soft Biometrics. For example,
using browser fingerprinting to assert users age or gender. Larger datasets should
also be constituted and tested, especially for Free-Text authentication/identification,
and Free-Text Soft Biometrics.

7.2 How to protect my information from malicious

websites

This chapter proposed several techniques enabling to protect users against unwanted
Keystroke Dynamics collection Our findings showed a trade-off between privacy and
usability (latency).

KDAS were not fairly compared as only the best configurations and context
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were tested without any guarantee that they remain the best after protection. All
configuration and context should be tested for a given KDAS and expected latency.
Moreover, users shared the same threshold. Theoretical user-dependent thresholds
should be used to estimate a lower boundary to attackers capabilities.

Usability has been evaluated in terms of seconds, but should also be evaluated
in terms of users acceptations, i.e. at which point the latency is noticed, bothering,
or unaccepted by users. Website compatibility with such techniques should also be
tested, especially due to the lost of events trusted status.

Privacy preservation across time should also be studied, especially on long Free-
Text. Indeed, non-blocking KDAS sill expose users typing speed. Anonymisation
of mouse dynamics could also be considered. Contrary to keyboard events, mouse
events not only can be delayed, but can also be suppressed, modified, on created.

7.3 Using personal data in a privacy compliant scheme

This chapter described our Personal Identity Code Respecting Privacy (PICRP)
enabling the comparison of several arbitrary biometric information without revealing
them.

In this chapter, we presented a user authentication protocol based on the indirect
comparison of PICRP. Other avenues should be studied, s.a. the use of 0-Knowledge
protocols to verify PICRP, the creation of One-Time Passwords from PICRP, or the
signature of arbitrary contents using the PICRP as a private key.

Our PICRP used Fixed-Text Keystroke Dynamics, GPS location and IP location.
Free-Text and some Browser Fingerprinting information Keystroke Dynamics were
presented and pre-processed, but were not included in the final PICRP. Other
biometric modalities could also be tested, s.a. the mouse dynamics, soft biometrics
information (s.a. age, gender), or the user travel behavior. These personal data are
merged using weights set empirically through an exhaustive search. Better strategies
for searching the optimal weights should also be proposed. Other merging strategies
could also be proposed (e.g. mixing pre and post merges).

PICRP is based on BioHashing, a keyed Local Preverving Hashing (LPH). Other
key-based LPH could be tested, s.a. GreycHashing. However, such protection
introduces a cost in performances. Better pre-processing solutions could help to solve
this issue, e.g. by using deep-learning to produce optimal feature-vectors.

As always, a better understanding of the Keystroke Dynamics model could help
to improve performances, e.g. by improving KD laws estimations or being able to
estimate laws followed by unknown digraphs. For Free-Text, only one configuration
were tested, other configurations should be considered, and might offers better
performances. XYZ locations could be also uniformized in such a way that each
triplet as an equal probability to appear.

Finally, due to the failure of initial collects, we opted for synthetic and chimeric
datasets. Our proposed PICRP should be tested using real-life data, specially for
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the GPS and IP location. However, in such context, a single reference might not be
enough, thus requiring the use of template update strategies.

7.4 How to use this data for research while respecting

privacy?

This chapter modeled Same-Text Keystroke Dynamics thus enabling dataset aug-
mentation, or user usurpation through syntheticly generated data.

We assumed that user KD model does not evolve through time, which is obviously
not the case in real-life. We speculate that the observed trade-off between ERS
and EEE might be due to this assumption. Futur models should take into account
the user KD evolution. Evaluation of the generated synthetic data should be done
in a faster way without depending on a particular context and configuration. In a
same way, the capacity to estimate laws parameters should not influence the model
performances, and should be evaluated separately. Moreover, discrimination of real
and synthetic data should be tested, e.g. using deep learning. Estimation of unknown
digraphs parameters on Free/Fixed-text could also be considered, as well as real-time
usurpation.

7.5 Some examples of applications of these findings

This chapter explored applications of the proposed contributions, as well as security
enhancement through trusted devices. Implementation of the proposed applications
should be pursued and tested with real-life data.

We presented the issue of multi-account detection. GreycHashing could be
considered to tackle this issue and its security in such context should be evaluated.

We proposed to use the PICRP to build proof of authorship of an online co-written
document. However, the pertinence of each author contribution should be evaluated,
and not judged only on the number of keyboard events. Synthetic data should as
well be detected.

We tackled the issue of Trust On First Use (TOFU) with a Social Proof of
Identity. Our experiments assumed an automatic decision based on biometrics,
with no evolution of the trust graph through time. Future experiments should
aim at reproducing real-life behaviors, to demonstrate if the produced indicators
helps manual users decisions. Disclosed information should also be reduced, and the
security of the biometric verification improved.

Trusted devices were then considered in order to bring security if the client is
assumed corrupted or malicious. The usability of each approach should be determined
through experiments. Prices of dedicated hardware should also be considered. The
device plugged on the client, and viewed as a Keyboard. However, proposed KDAS
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approaches require a synchronisation of the device with the client screen refresh rate.
This issue should be considered in future works.
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7.6 Position de la thèse

7.6.1 L’environnement: Internet et ses acteurs

Internet n’est pas seulement un ensemble de techniques et d’ordinateurs, il est aussi
constitué d’acteurs ayant divers intérêts et motivations. Les solutions techniques
déployées ne sont pas une fin en soit, mais sont au service des acteurs et de leurs
besoins. La compréhension de cet environnement, des intérêts des acteurs, leurs
besoins et motivations, aussi bien que les conflits émergeant des divergences d’intérêts
entre acteurs, sont ainsi requises à la conception de solutions techniques adaptées.

Dans la suite, nous présentons ainsi rapidement les acteurs d’Internet et explorons
leurs buts et motivations. Dans la section suivante, nous discutons les problématiques
inhérentes à Internet, pour ensuite établir les objectifs de cette thèse. Cependant, la
présentation des acteurs reste superficiel, la compréhension des tenants et aboutis-
sants des interactions d’acteurs requièrent de solides connaissances interdisciplinaire,
principalement dans le domaine de l’économie (Théorie des jeux), la psychologie, la
sociologie, ainsi qu’en sciences juridiques.

Les acteurs d’Internet

Internet est défini par le dictionnaire de Cambridge comme un ”système mondial
de réseau d’ordinateurs utilisés pour échanger de l’information”, soulignant les 3
composants principaux d’Internet :

• ordinateurs , constituant un réseau physique (de réseaux) ;
• utilisateurs , personnes physiques ou juridiques interagissant sur Internet ;
• information , qui sont échangées sur Internet.

Les ordinateurs n’agissent pas de leur propre initiative, mais au nom d’utilisateurs.
Ce sont des outils instrumenté par les utilisateurs afin de poursuivre la réalisation
de leurs besoins. Les ordinateur n’étant pas des personnalités juridiques, ils ne
peuvent être tenus responsables de leurs actions. En revanche, les utilisateurs sont
responsables des actions exécutées en leur nom par les ordinateurs.

Nous distinguons les utilisateurs (Service Provider) instrumentant des ordinateurs
(server) à fin de fournir des services, des utilisateurs (users) accédant ces services
via d’autres ordinateurs (clients). Ces rôles sont non-exclusifs, e.g. un ordinateur
peut être, en fonction du contexte, soit un client, un serveur, ou les deux.

Comme illustré par la Figure 7.1, nous considérons les rôles non-exclusifs joués
par les acteurs d’Internet suivants :

• Auteur , source/créateur de l’information ;
• Sujet , ce dont l’information parle ;
• Lecteur , consomme l’information ;
• Fournisseur de Service , héberge et distribue l’information ;
• Modérateurs , régule l’information en appliquant des politiques ;
• Société , définie les politiques qui devraient être appliquées.
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Figure 7.1: Acteurs d’Internet

Les auteurs créent des contributions contenant de l’information à propos d’un sujet.
Ils proposent leurs contributions aux Fournisseurs de Services (FdS), qui, en retour,
les propose aux lecteurs pour leur consommation. Ces interactions sont régulées
par les modérateurs dans un cadre influencé et défini par la société. Ces rôles sont
présentés et détaillés dans la suite.

En bref : Les acteurs d’Internet jouent des rôles non-exclusifs : ils peuvent être
auteurs/lecteurs/sujets d’informations, un fournisseur de service, un modérateur,
ou/et être simplement parti prenante de la société.

Sujets

Le sujet est ce dont l’information échangée parle. Son but est de contrôler son image
et sa réputation, i.e. comment les lecteurs les perçoivent suite à la consommation
d’informations. Pour une personne physique ou juridique, cette image constitue leur
identité virtuelle.

Les sujets visent des interactions de différentes natures en fonction du contexte.
Pour chaque ils maintiennent une image et identité différente [al, 2014, Boyd, 2014].
Par exemple, dans un contexte professionnel, un sujet aura tendance à viser une image
plus sérieuse et professionnelle que dans un contexte familiale. Afin de maintenir
leur image, et ainsi la manière dont ils interagissent avec les autres, les sujets visent,
dans une certaine mesure, à contrôler les informations les concernant, i.e. qui a accès
à quoi, indépendamment de la véracité de l’information.

Tristan Nitot1 identifie dans [Nitot, 2016, p.32-37] cinq causes des fuites ou des
mauvais usage de l’information :

1Foundateur de Mozilla Europe, membre (2013-2015) du Conseil National du Numérique, une
institution étatique consultative française, et membre du comité de la prospective de la CNIL depuis
2015 (https://www.cnil.fr/fr/les-membres-du-comite-de-la-prospective)

https://www.cnil.fr/fr/les-membres-du-comite-de-la-prospective
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• Une entité peut volontairement dénoncer un utilisateur ;
• Un employé peut outrepasser ses fonctions et devoirs ;
• Un ordinateur/serveur peut être hacké ;
• Une entité (e.g. une agence étatique comme la NSA) peut espionner un
individu ;

• L’auteur, lui-même, peut malencontreusement dévoiler une information.

Une sixième raison peut être ajoutée : une entité peut vendre, ou partager, l’information
à un autre en vue d’un gain financier [Fox et al., 2000].

Bien qu’en soit l’information, ou la connaissance de l’information ne constitue
pas une menace de quelque manière que ce soit, leur utilisation et conséquences
peuvent l’être. L’information non-contrôlée constitue ainsi une menace sérieuse pour
les sujets :

• La détérioration de l’image d’un sujet impact la manière dont il interagit avec
les autres, résultant, e.g. à une perte de confiance, de crédibilité, ou d’influence
(e.g. boycott d’une entreprise, voire même d’une personne physique).

• Les sujets peuvent perdre du pouvoir, e.g. du pouvoir de négociation (e.g. pour
des frais bancaires ou d’assurances).

• Un tiers peut gagner du pouvoir sur les sujets, e.g. chantage, extorsion,
ingénierie sociale.

• Les sujets peuvent être attaqués, s.a. vols, usurpation d’identités, enlèvements.
• Les sujets peuvent être sanctionnés par les modérateurs, s.a. banni du service,
privé d’Internet pour leurs responsables légaux, recevoir une amande, mis en
prison, ou renvoyé d’un emploi [Fox et al., 2000].

• Les sujets peuvent être sanctionnés par la société, e.g. calomnies, harcèlement,
menaces physiques.

• La peur des conséquences listées ci-dessus peuvent conduire le sujet à l’auto-
censure, ou, si une information sensible a été dévoilée, au suicide.

Cependant, le contrôle de l’information sur Internet est difficile. Premièrement,
il est difficile pour un sujet d’être conscient de chaque informations dévoilées, ainsi
que de tous les tenants et aboutissants de telles divulgations, à la fois à court et
long termes. De plus, ses identités ont de fortes chances de se recouper et ainsi être
liées par des entités tierces, i.e. déterminer qu’elles appartiennent bien à la même
personne. La possibilité de lier des identités peut conduire à des ”collisions” de
contextes incompatibles [Boyd, 2014], i.e. des contextes où le sujet maintient des
images contradictoires.

Deuxièmement, l’information peut être facilement trouvée sur Internet via
l’utilisation de moteur de recherches standards, plus avancés/spécifiques. De tels
outils permettent à un tiers de retrouver une aiguille dans la botte de foin immense
qu’est Internet. Ainsi, l’information publiquement accessible sur Internet doit être
assumé connu par tous.

Enfin, l’information peut difficilement être totalement retirée d’Internet car
pouvant facilement être copié et partagé. Toute tentative de forcer la suppression



142 FRENCH SYNTHESIS

d’une information est souvent contre-productive à cause de l’effet Streisand [Jansen
and Martin, 2015]. L’information peut aussi être archivée par le FdS lui-même,
quand bien même l’information aurait été officiellement ”supprimée”, ou par des
sites spécialisés, s.a. https://archive.org/web/. Ainsi, toute information connue
à un temps donné, le sera probablement par la suite. Dans [Nitot, 2016], Tristan
Nitot recommande l’approche POSSE2 pour augmenter le contrôle des sujets sur
l’information qu’ils dévoilent. Cependant, cela n’empêche pas un tiers de copier une
telle information sur d’autres sites.

À la lumière de ce qui a été dit précédemment, le contrôle de l’information
par les sujets repose principalement sur leur choix de dévoiler, ou non, eux-même
l’information.

En bref : Les sujets ont besoin de contrôler, dans une certaine mesure,
l’information les concernant, ces dernières pouvant constituer de sérieuses men-
aces à leur encontre, s.a. chantages, boycott, usurpation d’identité, harcèlements.
Cependant, ce contrôle est limité, donné que l’information peut être facilement
trouvée sur Internet, et peut très difficilement en être retiré.

Auteurs

Les auteurs sont une personnalité physique ou juridique créant de l’information afin
qu’elle soit consommée par un ensemble de lecteurs donné, pour un usage donné.

Cependant, ils peuvent difficilement s’assurer que l’information créée sera con-
sommé de la manière qu’ils souhaitent, par les lecteurs qu’ils visaient. En effet, une
fois l’information connue, les lecteurs et les fournisseurs de services sont capables
de la partager, ou d’effectuer des calculs arbitraires sur leurs clients ou serveurs,
sans que les auteurs en aient connaissance ou y ai consenti. De plus, toute création
d’information contient aussi des informations rebuts, s.a. le pseudonyme de l’auteur,
un timestamp, une adresse IP, un champ lexical utilisé. Certaines de ces informations
concernent l’auteur, qui est ainsi à la fois auteur et sujet. Ainsi, l’auteur a besoin,
avant chaque création d’information, d’arbitrer entre ses intérêts en tant qu’auteur
et en tant que sujet.

Comme nous l’avons vu dans la section précédente, il est très difficile de compren-
dre tous les tenants et aboutissants des informations qu’on dévoile. De plus, il est
difficile pour un auteur de connâıtre avec précision les informations qu’ils dévoilent
en contribuant. En effet, quand bien même les fournisseurs de services fournissent
des Conditions Générales d’Utilisations (CGU), les auteurs ne sont pas tous au fait
des tenants et aboutissants du service offert, et les CGU peuvent ne pas tout à fait
correspondre à la réalité des collectes et traitements effectués par le fournisseur de
service.

2Publish on your Own Site Syndicate Elsewhere - https://indieweb.org/POSSE

https://archive.org/web/
https://indieweb.org/POSSE
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En bref : Les auteurs produisent de l’information afin de le faire consommer par
un ensemble de lecteurs donnés. Cependant, comme vu dans la section précédente,
l’information peut difficilement être contrôlée. Aussi les auteurs son les sujets de
l’information rebut sans nécessairement en avoir pleinement conscience.

Lecteurs

Les lecteurs sont une personnalité physique ou juridique visant à accéder et consommer
l’information qu’ils souhaitent, de la manière qu’ils souhaitent, potentiellement afin
de, ou pour effet de, prendre une action, prendre une décision, ou se forger leur
opinion sur un sujet donné.

Cependant, les lecteurs sont physiquement incapables de consommer toute
l’information créée. En effet, en 2014, 300 heures de vidéos par minutes ont été
téléchargées sur Youtube3, et 220 330 livres ont été publiés par les membres de l’IPA4,
i.e. un livre toutes les 6 minutes. En 2006, près de 1 350 000 articles scientifiques
ont été publiés d’après [Bjork et al., 2009], i.e. un article toutes les 24 secondes.
Les lecteurs ont donc besoin de sélectionner l’information qu’ils veulent, ou non,
consommer.

Les lecteurs sélectionnent l’information avec leur propres critères, e.g. la qualité
perçue, la véracité, les sujets, la réputation. Selon le contexte certaines informations
peuvent être indésirables pour les lecteurs, s.a. spam, porn, hors sujets, publicités.
Cependant, il peut être difficile pour les lecteurs de trouver ce qu’ils veulent consom-
mer [Cordier, 2015], et d’évaluer la qualité de l’information et sa pertinence avant de
la consommer. Dans un sens, certaines information peuvent tromper les lecteurs afin
d’être consommées.

La qualité, véracité, et la confiance que les lecteurs placent dans une information
est nécessaire à la correcte consommation de l’information. Si une information est
incomplète, déformée, ou fausse, les lecteurs peuvent être amenés à prendre des
décisions non-éclairées, pouvant conduire à des conséquences tragiques, s.a. ruine
financière, absence de soins médicaux, abus de confiance.

En bref : Les lecteurs visent à accéder et consommer l’information. Avec la
multitude d’informations continue sur Internet, les lecteurs doivent sélectionner
celles qu’ils souhaitent consommer, au risque d’être déçus ou trompés.

3https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-

streaming-songs-mainstream/
4http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.

pdf, page 17

https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-streaming-songs-mainstream/
https://www.cnet.com/news/youtube-music-key-googles-stab-at-taking-paid-streaming-songs-mainstream/
http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.pdf
http://www.internationalpublishers.org/images/annual-reports/ipa_ar_online.pdf
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Fournisseurs de Services

Les fournisseurs de services servent d’intermédiaires entre les auteurs et lecteurs et
distribuent l’information. Leur objectif est souvent d’ordre financier, e.g. générer
un profit en distribuant de l’information, mais peut aussi être idéologique, et centré
autour de leurs propres valeurs.

La problématique des fournisseurs de services est décider la manière dont les
lecteurs et auteurs doivent interagir, en particulier, de quelles informations devraient
être mises en avant et/ou distribuées à qui. Les fournisseurs de services doivent ainsi
construire une politique interne qui sera traduite, e.g. en des conditions générales
d’utilisations, des processus sous-jacents (s.a. censure automatique de certains types
de mots, mise en avant des informations populaires), la structure du service et ses
algorithmes, résultants en un cadre pour les interactions auteurs/lecteurs.

La construction d’un tel cadre est loin d’être trivial. Évidemment, pour être
utilisé, le service doit remplir les besoins de ses utilisateurs, i.e. les auteurs et lecteurs.
De plus, le fournisseur de service peut être, en fonction de la législation, partiellement
responsable de l’information qu’ils hébergent et distribuent. De telles contraintes
légales sont d’autant plus importantes que le fournisseur de service est souvent connu,
sans la possibilité d’être entièrement anonyme, contrairement aux lecteurs ou auteurs
qui sont généralement au moins pseudonymes sur Internet. Les fournisseurs de
services peuvent ainsi moins facilement échapper aux sanctions légales.

Un tel cadre doit aussi correspondre à l’éthique de ses utilisateurs et à la morale
de la société afin de ne pas être désapprouvé et condamné, e.g. via un boycott.
L’information hébergée et partagée par le fournisseur de service va influencer son
image, e.g. par association, ou en pensant que le FdS approuve les informations
hébergées. Le tout, bien évidemment, sans perdre en vue leurs meilleurs intérêts.

En bref : Les fournisseurs de services distribuent l’information des auteurs aux
lecteurs pour atteindre leurs intérêts et besoins. Cependant, le cadre d’interaction
construit par le fournisseur de service doit aussi correspondre aux voeux de ses
utilisateurs, ainsi que ceux des modérateurs et de la société.

Société

La société définie quelles consommations are légales, ”morales”, ou ”éthiques”.
Cependant, plusieurs points de vues opposés peuvent être exprimés sur quelques
questions morales ou éthiques. Les réponses sont souvent pondérées et nuancées en
fonction de l’exact contexte de la situation [Allen, 1996]. Si les règles ou loi ne sont
pas reconnues comme légitimes ou justes, elles risquent de se faire transgresser ou de
ne pas être appliquées.

Plusieurs lois régulent les interactions en ligne, nous nous concentrons dans cette
section aux lois européennes sur la vie privée. En Europe, le droit à la vie privée est
déclarée par :
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• l’article 12 de la Déclaration Universelle des Droits de l’Homme (1948):
”Nul ne sera l’objet d’immixtions arbitraires dans sa vie privée, sa famille, son
domicile ou sa correspondance, ni d’atteintes à son honneur et à sa réputation.
Toute personne a droit à la protection de la loi contre de telles immixtions ou
de telles atteintes.”5

• l’article 8 de la Convention Européenne des Droits de l’Homme (1953) :
”1. Toute personne a droit au respect de sa vie privée et familiale, de son
domicile et de sa correspondance.
2. Il ne peut y avoir ingérence d’une autorité publique dans l’exercice de ce droit
que pour autant que cette ingérence est prévue par la loi et qu’elle constitue
une mesure qui, dans une société démocratique, est nécessaire à la sécurité
nationale, à la sûreté publique, au bien-être économique du pays, à la défense
de l’ordre et à la prévention des infractions pénales, à la protection de la santé
ou de la morale, ou à la protection des droits et libertés d’autrui.”6

• les articles 7 et 8 de la Charter of Fundamental Rights of the European Union
(2000) :
Article 7. Respect de la vie privée et familiale. Toute personne a droit au
respect de sa vie privée et familiale, de son domicile et de ses communications.
Article 8. Protection des données à caractère personnel. 1.Toute personne a
droit à la protection des données à caractère personnel la concernant. 2. Ces
données doivent être traitées loyalement, à des fins déterminées et sur la base
du consentement de la personne concernée ou en vertu d’un autre fondement
légitime prévu par la loi. Toute personne a le droit d’accéder aux données
collectées la concernant et d’en obtenir la rectification. 3. Le respect de ces
règles est soumis au contrôle d’une autorité indépendante.7

La vie privée a été une problématique relativement tôt dans l’histoire des ordina-
teurs et d’Internet, et est toujours d’actualité de nos jours. Les lois sur la vie privée
on précédemment été définies, en France, par la ”Loi informatique et liberté” (1978),
modifiée par décrets en 1991 et en 2004. Cette loi a inspirée la Convention pour la
protection des personnes à l’égard du traitement des données à caractère personnel8

(1981), ainsi que la Directive 95/46/CE sur la protection des données personnelles9

(1995). Les lois sur la vie privée sont maintenant définies au niveau Européen par le
Règlement Général sur la Protection des Données ( (RGPD) qui est entré en vigueur
le 28 Mai 2018, durant cette thèse.

Le RGPD requiert que les FdS obtiennent le consentement explicite et positif
des utilisateurs avant de traiter leur données personnelles. En conséquences, les
options de retraits (opt-out) ne peuvent désormais plus être utilisées pour obtenir
le consentement des utilisateurs. Les Conditions Générales d’Utilisations (CGU)

5https://www.un.org/fr/universal-declaration-human-rights/index.html
6https://www.echr.coe.int/Pages/home.aspx?p=basictexts&c=fre
7https://www.europarl.europa.eu/charter/pdf/text_fr.pdf
8https://www.coe.int/fr/web/data-protection/convention108/modernised
9https://eur-lex.europa.eu/legal-content/FR/TXT/HTML/?uri=CELEX:31995L0046

https://www.un.org/fr/universal-declaration-human-rights/index.html
https://www.echr.coe.int/Pages/home.aspx?p=basictexts&c=fre
https://www.europarl.europa.eu/charter/pdf/text_fr.pdf
https://www.coe.int/fr/web/data-protection/convention108/modernised
https://eur-lex.europa.eu/legal-content/FR/TXT/HTML/?uri=CELEX:31995L0046
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doivent aussi être compréhensibles pour tout à chacun, et informer les utilisateurs
sur les traitements de données personnelles effectués. Les CGU ne sont souvent pas
adaptés aux utilisateurs néophytes qui veulent juste utiliser le service rapidement.
Elles utilisent souvent des termes techniques ou juridiques non-compréhensibles par
un utilisateur lambda, et leur longueur découragent les utilisateurs de les lire [Nitot,
2016, page 86]. Les CGU visent plus à protéger juridiquement le FdS que d’informer
les utilisateurs sont les traitements effectués.

Le RGPD exige aussi la protection de la vie privée dès la conception, ainsi que
l’obligation d’être sécurisé afin de protéger les données personnelles traitées. Cela
demande ainsi de concevoir de nouvelles solutions techniques permettant d’améliorer
la vie privée et la sécurité sur Internet. Le RGPD a une portée extra-territoriale,
signifiant que toute entité peut être tenue responsable des traitements impliquant
des données personnelles d’un citoyen Européen. Cependant, l’application de telles
lois sont difficiles dans un contexte international, e.g. pour le droit à l’oubli. Les
utilisateurs Européens peuvent en effet demander aux moteurs de recherches de
retirer des résultats les concernant, mais ces entrées ne sont retirées que des versions
du site à destination du publique Européen10.

En bref : La société définie les loi, la morale et l’éthique. La nouvelle
réglementation Européenne RGPD défini un cadre légal afin de protéger la vie
privée des utilisateurs.

Modérateurs

Les modérateurs sont des personnalités physiques ou juridiques font appliquer les
règles et/ou loi. Ils peuvent être e.g. étatiques, les parents d’un enfant, un employeur,
ou le service modération d’un fournisseur de service, faisant appliquer les règles
au niveau d’un état, d’une maison, d’une entreprise, ou d’un site Internet. Leurs
responsabilités sont définies par la loi (e.g. les responsabilités parentales) et/ou par
contrats (e.g. CGU).

Les interactions entre entités requirent un cadre structurant permettant la confi-
ance entre les entités. Ce cadre balance le droit de chaque entité par l’établissement
de limites, a.k.a. des règles et lois. Le rôle des modérateurs est de faire appliquer un
tel cadre et de sanctionner les contrevenants, s.a. avec des amendes, la privation de
droits, ou des bannissements temporaires ou permanent du service. Les modérateurs
ont le pouvoir de censurer et de contrôler ce que les lecteurs peuvent lire, pour des
fins légitimes (e.g. contenus inadaptés pour les mineurs) ou non (s.a. motivé par des
idéologies religieuses, politiques, ou philosophiques). Donner trop de pouvoir aux
modérateurs peut conduire à une application arbitraire de la loi, ainsi qu’à des abus,

10http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=

&doclang=FR&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289

http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=&doclang=FR&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289
http://curia.europa.eu/juris/document/document.jsf?docid=218105&text=&dir=&doclang=FR&part=1&occ=first&mode=DOC&pageIndex=0&cid=4477289
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au détriments des droits des utilisateurs, ”Quis custodiet ipsos custodes?11”, Juvénal.

Par exemple, l’anonymat et le pseudonymat permettent aux auteurs d’échapper
aux conséquences de leurs actions. Cela peut être désirable, l’anonymat permettant
les lanceurs d’alertes, les sources journalistiques, ainsi que les témoins, et dissidents
politiques de s’exprimer sans craintes. Cependant, dans le même temps, cela peut être
non-désirable, comme l’anonymat permettant aussi de transgresser les lois, l’éthique,
ou la morale en toute impunité. En effet, e.g. porter plainte contre un utilisateur
pour son mauvais comportement requiert que le plaignant, ou les modérateurs, aient
connaissance du vrai nom et adresse de l’utilisateur au mauvais comportement.

En général, les systèmes démocratiques ne peuvent exister sans secret, d’où
le Droit de L’Homme à la vie privée. En effet, les processus de votes requiert
fréquemment le secret du butin afin d’empêcher la coercition de votants, l’achat
de votes, ainsi que d’autres fraudes électorales. Le secret de l’instruction est aussi
requis au bon fonctionnement de la Justice. Une application trop forte de la loi prive
aussi les citoyens de leur Droit de l’Homme à la résistance à l’oppression. Une trop
forte surveillance prive aussi les citoyens de leur Liberté d’expression ainsi que de
leur Liberté de pensé, du fait de l’effet panoptique [Simon, 2005], où les citoyens se
censurent eux-mêmes, et changent leur comportement lorsqu’ils se sentent observés
ou surveillés. D’autres secrets sont aussi requis afin d’empêcher des discriminations
illégales, e.g. basé sur l’état médical de l’utilisateur, son orientation sexuelle, ou sa
religion.

Bien que la sphère privée doit être protégée afin de garantir les droits des citoyens,
les modérateurs ont cependant besoin d’entrer dans cette sphères pour sanctionner
des infractions graves qui menacent aussi le droit d’autres citoyens. Les modérateurs
ont ainsi besoin d’un accès spécial à l’information, mais uniquement dans le cadre
d’une procédure encadrée par la loi, avec des gardes-fous permettant la préservation
des droits fondamentaux des utilisateurs.

Cela a pour conséquence que les modérateurs n’ont souvent pas le pouvoir
d’appliquer entièrement les règles et lois, par exemple, en recourant aux signalements
des utilisateurs des contenus ou comportements inappropriés. Cela permet de réduire
les ressources assignées aux services de monitorats, mais d’un autre côté, les mauvais
comportements non-signalés restent non-sanctionnés.

En bref : Les modérateurs font appliquer les règles pour permettent les interac-
tions entre utilisateurs. Cependant ils leur manque souvent les moyens de faire
correctement appliquer de telles règles, en parti pour empêcher les abus de la part
des modérateurs eux-mêmes.

11”Qui va [modérer] les [modérateurs] ?”
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7.6.2 Sécurité et vie privée

La sécurité et la vie privée sont souvent présentées comme des concepts opposés,
la sécurité protégeant le système contre les utilisateurs, et la vie privée protégeant
les utilisateurs contre le système. Cela conduit à un faux-dilemme, demandant aux
concepteurs du système de choisir entre sécurité et vie privée [Schneier, 2001].

La sécurité garanti le bon fonctionnement du système qui doit rester disponible
et efficace afin de pouvoir servir ses utilisateurs. Le système doit s’assurer de
l’authenticité (i.e. véracité d’une déclaration) de l’identité de l’utilisateur (e.g. pour
donner l’accès à une ressource), de l’origine et intégrité des messages (i.e. le message
a été envoyés par l’utilisateur déclaré, et n’a pas été modifié par un tiers), ainsi que
de l’authenticité de l’information ou des attributs de l’utilisateur (e.g. la véracité des
déclarations s.a. l’âge ou le sexe déclaré par l’utilisateur). Les systèmes doivent aussi
garantir l’identification des utilisateurs, que ce soit pour détecter des multi-comptes,
ou pour empêcher la répudiation (i.e. nier un acte) afin d’engager la responsabilité
des utilisateurs. Le système a aussi besoin de la confidentialité de l’information afin
de rester sécurisé, même s’il a été compromis à un moment donné. Les échanges
passés doivent restés sécurités (Backward Secrecy) de même que les échanges futurs
(Forward Secrecy).

La vie privée garanti le droit des utilisateurs d’être laissé seuls. La confiden-
tialité des données à caractère personnel doit être garantie, de même que la non-
correspondance de leur différentes informations ou comptes. La non-correspondance
signifie qu’un tiers ne devrait pas être capable de déterminer si deux informations ou
comptes appartiennent, ou non, à une même entité. La non-correspondance implique
l’anonymat ou la pseudonymat des utilisateurs, i.e. de ne pas être capable de lier une
information à la réelle identité d’un utilisateur. Les utilisateurs ont aussi un droit à
l’oublie, ainsi que de pouvoir répudier leurs propres actions. De plus, ils doivent être
capables de contrôler leur information, i.e. de corriger des informations fausses, et
de choisir les informations qu’ils révèlent.

La sécurité et la vie privée peuvent sembler opposées de premier bord, ils ne sont
pas incompatibles par nature. Par exemple, la sécurité requiert la non-répudiation
quand la vie privée requiert la répudiation, cependant, les deux peuvent être atteint
en même temps. En effet, les entités auprès desquelles la non-répudiation doit être
atteinte pour la sécurité e.g. modérateurs étatiques dans le cadre d’une procédure
spécifique, ne sont pas les même que dans la vie privée, i.e. toutes les autres entités.

7.6.3 Biométrie

Les fournisseurs de services peuvent collecter des données biométrique à travers d’une
simple page web. Non seulement ils peuvent identifier et profiler les utilisateurs, ils
peuvent aussi vérifier l’essence des utilisateurs et pas uniquement leur connaissance
d’un secret. Cela rend les données biométriques typiquement plus difficile à partager,
copier, et usurper que e.g. la connaissance ou une possession.



7.6. POSITION DE LA THÈSE 149

Contrairement aux modalités basées sur une connaissance ou une possession,
l’usage de la biométrie est probabiliste, i.e. dans un système d’authentification, les
utilisateurs légitimes ont une certaine probabilité d’être rejeté (FRR), et pour un
attaquant, d’être accepté (FAR). Cela est due aux variations lors des acquisitions
biométriques d’un même utilisateur (variations intra-classes), ainsi qu’aux similarités
entre utilisateurs (variations inter-classes).

La biométrie peut aussi constituer des problèmes de vie privée comme ils sont
souvent difficilement révocables et renouvelables, et peuvent être utilisés pour déduire
des informations personnelles sur les utilisateurs, s.a. leur âge, ou sexe. Cela fait
de la biométrie une modalité d’authentification particulière, comme le démontre les
articles régulant son usage dans le RGPD.

Modalités biométriques

Comportementales

• Signature;
• Voix;
• Démarche.

Morphologiques

• Empreinte;
• Face;
• Iris.

Biologique

• Signaux EEG;
• ADN;
• Coeur.

Figure 7.2: Modalités biométriques

Nous présentons dans la Figure 7.2 les trois types de modalités biométriques, avec
des exemples pour chaques. La biométrie biologique, aussi appelée biométrie cachée,
sont des particularités des utilisateurs, invisibles sans les capteurs appropriés, tandis
que la biométrie morphologique peut être facilement vue par tous. La biométrie
comportementale est basée sur la manière dont les utilisateurs se comportent, s.a. leur
façon de marcher [Bours and Denzer, 2018]. Dans cette thèse, nous nous concentrons
sur la biométrie comportementale.

Nous nous concentrons sur la biométrie comportementale car elle ne requiert
généralement pas d’action supplémentaires de la part de l’utilisateur, et permenttent
ainsi une authentification continue et/ou transparente. Malheureusement, l’absence
d’action spécifique de l’utilisateur permet aussi son utilisation sans son consentement
ou sa connaissance. La biométrie comportementale est aussi sujette à d’importante
variations intra-classes, le comportement de l’utilisateur changeant au fil du temps,
et dépendant aussi de son état actuel (e.g. fatigué, irrité, triste).

La dynamique de frappe au clavier ainsi que la dynamique d’utilisateur de la
souris, i.e. la manière d’utiliser la souris et le clavier, peuvent être facilement collectés
sur navigateurs via un simple code JavaScript embarqué dans les pages visitées par
l’utilisateur sans nécessiter de capteurs additionnels autre que le clavier et la souris
de l’utilisateur. Dans cette thèse, nous nous concentrons sur la dynamique de frappe
au clavier, l’une des spécialité du laboratoire GREYC avec plusieurs thèses conduites
dans ce domaine [Mhenni et al., 2019, Idrus et al., 2013, Giot, 2012].
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7.6.4 Objectifs de la thèse

Cette thèse vise à répondre aux besoin des acteurs d’Internet via l’utilisation de
la dynamique de frappe au clavier. Nous permettons aux lecteurs/fournisseurs de
service d’utiliser la dynamique de frappe au clavier pour des applications de sécurité,
principalement pour l’authentification des utilisateurs, tout en garantissant la vie
privée et le consentement explicite des sujets/auteurs, sans nécessiter la supervision
des modérateurs. En considérant le RGPD, nous proposons plusieurs contributions à
la sécurité et la vie privée sur Internet :

• Nous proposons une anonymisation en temps réel de la dynamique de frappe
au clavier afin de prévenir des collectes non-consenties. Cela permet de s’assurer
du consentement explicite des utilisateurs pour le traitement de telles données.
Nous présentons plusieurs techniques pour protéger la dynamique de frappe dans le
Chapitre 3, ainsi qu’une preuve de concept dans le Chapitre 6.

• Nous proposons une authentification biométrique multi-modale compatible avec
le RGPD sans dévoiler d’informations privées, les données biométriques n’étant pour
dévoilées au fournisseur de service. Cela garanti ainsi que de telles données ne seront
pas utilisées par le fournisseur de service pour d’autres finalités que l’authentification.
Nous présentons dans le Chapitre 4 un tel protocole d’authentification utilisant
la dynamique de frappe au clavier, ainsi que la position de l’utilisateur, et la
configuration de son navigateur. Une preuve de concept est ainsi présentée dans le
Chapitre 6.

• Une preuve de paternité basée sur les précédentes contributions est ensuite
proposée avec une preuve de concept dans le Chapitre 6.

• Une preuve d’identité sociale est proposée dans le Chapitre 6 afin de vérifier
l’identité des utilisateurs via une reconnaissance par les pairs, ainsi que pour rendre
responsable les utilisateurs au comportement inapproprié envers les modérateurs, via
un protocole dédié. La vie privée des utilisateurs reste garantie.

• Nous proposons ensuite l’utilisation de matériels sécurisés dans le Chapitre 6
à fin de protéger la dynamique de frappe des utilisateurs, et ainsi leur vie privée,
contre un client corrompu ou malicieux.

• Nous proposons une modélisation de la dynamique de frappe au clavier, ce
pour faciliter la recherche et améliorer les performances des systèmes de dynamique
de frappe au clavier. La modélisation de la dynamique de frappe au clavier permet
leur génération synthétique rendant ainsi possible d’augmenter des bases de données
existantes, à terme, permettant de partager des bases de données de dynamique de
frappe au clavier pour des finalités de recherches, sans dévoiler aucune information
personnelle d’utilisateurs réels.

• Nous présentons dans le Chapitre 2, que l’information peut être déduite à partir
de la dynamique de frappe au clavier collectée via le navigateur des utilisateurs, et
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en quoi elle menace la vie privée des utilisateurs. Nous quantifions cette menace et
étudions l’impacte du contexte et de la configuration sur les performances du système
de dynamique de frappe au clavier. Dans ce cadre, nous présentons un système de
comparaison équitable des systèmes de dynamique de frappe au clavier.

7.7 Contributions de la thèse

Applications (Chap. 6)

Attacker (Chap. 2)

Trusted Untrusted

Consent

KDAS (Chap. 3)

Keystroke Modeling

(Chap. 5)

User

PICRP (Chap. 4)

Figure 7.3: Pipeline complet.

Nos contributions permettent une authentification utilisateur consentie basée
sur la dynamique de frappe au clavier (en association d’autres modalités) tout en
protégeant la vie privée de l’utilisateur. Le pipeline complet est présenté dans la
Figure 7.3. Les événements claviers sont collectés au sein d’un composant sécurisé
(peut être une WebExtension, le navigateur, le système d’exploitation, ou un matériel
dédié) empêchant les composants qui ne sont pas de confiances (peut être une page
web, ou le client) d’y avoir accès.

Les événements claviers sont anonymisés avec un Schémas d’Anonymisation
de Dynamique de Frappe au Clavier (voir Chapitre 3) afin de transmettre le sens
de l’évènement sans sa réelle information temporelle, empêchant ainsi de profiler
l’utilisateur sans sont consentement (voir Chapitre 2). Avec le consentement de
l’utilisateur, un PICRP est calculé (voir Chapitre 4) et est envoyé aux applications
afin de permettre l’authentification de l’utilisateur. La modélisation de la dynamique
de frappe au clavier (voir Chapitre 5) est une première étape vers l’amélioration à la
fois du PICRP et de l’évaluation de la capacité des attaquant.
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7.7.1 Que savent les sites web à votre propos ?

La dynamique de frappe au clavier permet de profiler les utilisateurs (s.a. identifi-
cation, authentification, détermination de l’âge/sexe/émotions de l’utilisateur) en
analysant sa manière de taper au clavier, e.g. lorsque naviguant sur Internet. De
nombreuses études visent à améliorer les performances de tels systèmes de dynamique
de frappe au clavier [Umphress and Williams, 1985, Monrose and Rubin, 2000, Revett
et al., 2007b, Lee and Cho, 2007, Giot et al., 2011], cependant elles ne sont pas
comparables, ou difficilement, car elles utilisent différentes bases de données ou
différents protocoles [Giot et al., 2011].

Afin d’estimer la menace que représente la dynamique de frappe au clavier vis
à vis de la vie privée des utilisateurs, nous avons ainsi besoin d’établir un système
de comparaison équitable permettant de sélectionner les meilleurs systèmes de
dynamique de frappe au clavier. Dans le cadre de ce travail nous nous concentrons
sur les temps de pressions et de relâchement des touches reçues par le système
d’exploitation et/ou le navigateur.

Système de comparaison équitable des systèmes de dynamique de frappe au
clavier

Nous distinguons 4 composants de notre système de comparaison :
• Le modèle de l’attaquant : décris les capacités de l’attaquant ;
• Métriques : quantifie le succès de l’attaque ;
• Contexte : décris les données obtenues par l’attaquant ;
• Configuration : décris le système de dynamique de frappe au clavier.

Nous assumons un attaquant collectant la dynamique de frappe d’utilisateurs
identifiés afin de les reconnâıtre par la suite ensuite. Nous ne prenons pas en compte
les mécanismes de mises à jours de références ainsi que les systèmes réalistes de seuils
dépendants de l’utilisateur.

Afin d’évaluer les performances du système de dynamique de frappe au clavier,
nous utilisons le taux d’erreur (ER) qui correspond au taux de fausses prédictions
sur le nombre total de prédictions. Pour les systèmes dépendant d’un seuil, nous
prenons l’Equal Error Rate (EER) qui est l’ER correspondant au seuil où le taux de
faux positifs (FAR) est égal au taux de faux négatifs (FRR).

Le contexte regroupe plusieurs paramètres allant des bases de données utilisées
(dont le nombre d’utilisateur de la base, le texte tapé, sa taille, etc.), ainsi que la
manière dont les références et les échantillons sont sélectionnés.

La configuration décrit le système de dynamique de frappe au clavier, i.e. la
sélection des caractéristiques, les pré-traitements, la fonction de distance utilisée,
ainsi que les processus de fusions de scores ou de références.

Ces paramètres étant soumis à des phénomènes de synergies, l’ensemble des
combinaisons doivent être comparées afin d’établir l’influence de la valeur d’un
paramètre sur les performances.
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Dynamique de frappe au clavier et vie privée
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Figure 7.4: Impact du seuil sur les perfor-
mances d’authentification.
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Figure 7.5: Performances du profilage via
dynamique de frappe au clavier.

Nous présentons dans la Figure 7.4 les performances des meilleurs systèmes
d’authentification de dynamique de frappe au clavier basés sur une fonction de
distance en fonction de la capacité de l’attaquant à établir un seuil dépendant de
l’utilisateur. Dans la Figure 7.5, nous présentons les performances des meilleurs
systèmes de profilage de dynamique de frappe au clavier basé sur un SVM.

Nous démontrons ainsi que la dynamique de frappe au clavier constitue une
menace majeure sur la vie privée des utilisateur qui a besoin d’être adressé. Pour un
texte fixe, la valeur d’EER en authentification est de 8,5% et peut descendre à 5,7%
avec des seuils dépendant de l’utilisateur. En identification, les performances sont
encore meilleure avec un EER de 3,8%.

7.7.2 Comment protéger mes informations de sites web mali-

cieux ?

Afin de protéger la vie privée des utilisateurs, nous proposons différentes stratégies
permettant de perturber la capture de la dynamique de frappe au clavier, tout en
permettant son exploitation pour des usages légitimes et consentis par l’utilisateur.

Plusieurs stratégies existent afin de protéger les informations sensibles, les
différentes méthodes proposées s’en inspirent. Les données peuvent être simplement
supprimées, la précision diminuée, les valeurs randomisées, de fausses informations
ajoutées, ou standardisées.

Bien évidemment, la protection de la dynamique de frappe au clavier s’accompagne
de plusieurs contraintes. Le sens du contenu tapé ne doit pas changer. La protection
s’effectuant en temps réel, la latence doit être minimale et aussi imperceptible que
possible. Les évènements de pressions ne peuvent aussi qu’être retardés, et ne peuvent
pas être prédis (sauf en cas d’utilisation de fonctionnalités d’auto-complétions), l’ordre
des évènements de pression doit être conservé.
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Schémas d’Anonymisation de Dynamique de Frappe au Clavier

Sans coûts

La latence est impossible
à percevoir.

Non-bloquant

La latence ne peut pas
se cumuler.

Bloquant

La latence peut se
cumuler.

Figure 7.6: Schémas d’Anonymisation de Dynamique de Frappe au Clavier.

Nous proposons ainsi des Schémas d’Anonymisation de Dynamique de Frappe au
Clavier (SADFS) dont nous distinguons 3 familles comme montré par la Figure 7.6.
Nous nous concentrons dans cette synthèse sur les SADFS non-bloquant.
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Figure 7.7: Performances de SADFS non-bloquants.

La Figure 7.7, montre le gain de vie privée offert par les SADFS. Les gains sont
significatifs, cependant une forte protection de la vie privée vient au prix d’une
diminution de l’utilisabilité, i.e. d’une forte latence.

(a)

(d)

(b)

(c)

(e)

Figure 7.8: Interface de la démonstration d’anonymisation.
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Nous proposons une démonstration dont l’interface est présentée dans la Figure 7.8.
Le SADFS est configuré dans la zone (a), ses performances sont données dans la
zone (b). La zone (c) permet de tester l’utilisabilité (latence) du SADFS. La zone
(d) permet d’en tester la sécurité, les résultats sont présentés dans la zone (e).

L’implémentions d’un SADFS doit se faire avec prudence, d’autant plus s’il est
implémenté sous la forme d’une WebExtension. En effet, le mécanisme de protection
peut être facilement contourné si mal configuré ou implémenté. Notamment le
gestionnaire d’évent du SADFS doit être appelé avant tout autre afin de retarder les
évènements claviers. De plus, ce retardement doit se faire via une attente passive, ce
qui requiert la re-création des évènements qui perdent alors leur statu de ”confiance”,
i.e. les comportements par défauts des touches claviers doivent être simulées.

7.7.3 Utiliser des données personnelles dans un schéma d’authentification

respectueux de la vie privée.

Nous proposons le concept de Code d’Identité Personnel Respectueux de la Vie
Privée (PICRP), une signature non-cryptographique irréversible calculée à partir de
données arbitraires. Dans nos expériences, nous utilisons la dynamique de frappe au
clavier, l’adresse IP, et la géo-localisation GPS. Les données sont pré-traitées puis
fusionnées suivant différentes stratégies.

Cette signature a la particularité d’être multi-modale, de ne pas être dépendant
d’une modalité donnée, d’être irréversible et renouvelable, avec la possibilité d’adapter
le niveau de sécurité à la volée, le tout sans requérir d’éléments sécurisés. Nous
l’utilisons principalement à finalité d’authentification, la comparaison de deux sig-
natures permettant de comparer les données d’origines sans les dévoiler. En effet,
tout type de modalité peut être utilisées dans notre signature tant qu’elle peut être
représentée sous la forme d’un vecteur de réel de taille fixe. Le changement d’un mot
de passe connu par l’utilisateur permet la renouvelabilité de notre signature.

OR

User

Protection

(BioHashing)
Quantify

Pre

processing

Gram-Schmidt

Matrix

Post-mergePre-merge

Keystroke

IP

GPS Location

Secret
Random

Matrix

Figure 7.9: Pipeline du calcul du PICRP

Le calcul du PICRP est montré dans la Figure 7.9. En rouge, les étapes cor-
respondant au calcul du BioHashing, une méthode permettant de transformer un
vecteur de réel en un vecteur binaire non-inversible. En vert les données utilisées
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pour le calcul du PICRP, et en bleu les étapes ajoutées pour pré-traiter et fusionner
les données.

Le BioHashing est calculé comme le produit matriciel entre un vecteur de réel, et
une matrice aléatoire orthogonalisée via l’algorithme de Gram-Schmidt. Le vecteur
de réel résultant est binarisé afin de produire un vecteur binaire. Le secret de
l’utilisateur est utilisé comme une graine afin de générer la matrice aléatoire.

Les méthodes proposées sont évaluées à travers 7 scénarios, nommées comme la
concaténation des modalités assumées connues par l’attaquant, dont la dynamique de
frappe au clavier (K), la position GPS (X), et l’adresse IP (IP). Toutes les attaques
assument que l’attaquant a connaissance du secret de l’utilisateur utilisé pour le
BioHashing. 0 correspond au scénario où l’attaquant ne possède pas de connaissance
supplémentaires. Les résultats sont présentés dans la Figure 7.10.
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Figure 7.10: Meilleures configurations sous 7 scénarios.

Les configurations minimisant la valeur de l’EER sous le scénario (0) produisent
de très bon EER (< 1%), mais sont peu performantes (EER > 40%) si l’adresse IP ou
la localisation GPS est connue des attaquants. D’autres configurations garantissent
une valeur d’EER . 20% sous tous les scénarios, au coût d’une valeur d’EER plus
mauvaise sous le scénario (0).

Un exemple de protocole d’authentification utilisant PICRP est proposé dans la
Figure 7.11, mais n’est pas détaillé ici. Le principe général étant d’utiliser le PICRP
pour reconstruire un aléa et d’utiliser cet aléa pour s’authentifier, empêchant ainsi le
service d’accéder à la moindre information.

Une démonstration permettant de comparer des PICRP a été développée. Son
interface est présentée dans la Figure 7.12. Cette démonstration permet de créer (a)
ou de copier (b) deux PICRP (c) puis de visualiser leurs différences (d), ainsi que
d’obtenir un score de similarité pour chaque modalités (e).
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Figure 7.11: Schéma d’authentification basé sur PICRP.

(b)

(d) (e)

(c)

(a)

Figure 7.12: Interface de la démonstration d’authentification.

7.7.4 Comment utiliser cet données à finalité de recherche tout
en respectant la vie privée des utilisateurs ?

La construction de systèmes biométrique nécessitant de grandes quantités de données.
Cependant, la collecte de dynamique de frappe au clavier étant très chronophage
et contraint, e.g. par le RGPD. Pour ces raisons il est crucial de générer des bases
de données synthétiques de dynamique de frappe au clavier. Nous proposons ainsi
une méthode de génération de la dynamique de frappe au clavier pour un utilisateur
connu, comme première étape à la génération de telles bases synthétiques. La seconde
étape étant alors la génération d’utilisateurs.

La méthode proposée, sur texte fixe, assume l’indépendance des durées de pres-
sions/relâchements. Ces durées sont représentées par une variable aléatoire suivant
une loi dont les paramètres varient d’un utilisateur à l’autre. La dynamique de
frappe au clavier est assumée ne pas évoluer au court du temps. La génération
s’effectue donc par l’estimation de ces paramètres pour chaque utilisateurs, puis par
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la génération aléatoire de nouvelles valeurs à partir de ces lois.

Nous considérons trois métriques, l’estimation de l’EER des données réelles via
les données synthétiques (EEE), la capacité d’usurpation des données synthétiques
(ERS), et l’aire entre les courbes ROC des données synthétiques et réelles (ABS).

Comme le montre la Figure 7.13, les configurations testées montre un compromis
entre l’EEE et l’ERS, bien que certaines configurations donnent des EEE et ERS
satisfaisant.
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Figure 7.13: Performances des configurations de génération synthétiques
de dynamique de frappe au clavier.

7.7.5 Quelques exemples d’applications avec preuves de concept

Preuve de parternité

Nous proposons l’utilisation du PICRP comme preuve de paternité d’un texte écrit.
L’utilisateur est authentifié de manière continue lors de l’écriture collaborative d’un
document. L’authentification continue prévient la répudiation du travail fournit par
un auteur ainsi que l’usurpation d’identité non-consentie. Cependant cela ne protège
pas contre les faux-comptes, ou les auteurs fantômes.

Preuve sociale d’identité

Nous proposons aussi une preuve sociale d’identité permettant à un tiers de vérifier
l’identité d’une personne sur un réseau social. L’identité d’une personne est garantie
par des membres de ce même réseau, leur identité étant elle même garantie par
d’autres membres du réseau. PICRP est alors utilisé comme moyen d’authentification
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continue et transparente afin de garantir que le compte demeure dans les mains du
même utilisateur.

La certification de l’identité associée à un compte est représentée sous forme
d’un certificat cryptographique. Pour que l’identité soit confirmée, le compte doit
recevoir t certificats provenant de comptes dont l’identité a été confirmée. Des entités
externes, les Root Node Certifiers (e.g. un État), peuvent aussi vérifier l’identité de
comptes de manière plus exhaustive (e.g. via une carte nationale d’identité), dès lors
une seule certification est requise. Ces comptes sont appelés Root Nodes (RN). Une
représentation est donnée dans la Figure 7.14.

Figure 7.14: Certification avec t = 2

Nous visons aussi à engager la responsabilité des nœuds en cas de comportements
inappropriés, tout en respectant la vie privée des utilisateurs, i.e. en minimisant la
quantité d’informations que nous dévoilons. Nous ne dévoilons pas ces aspects dans
cette synthèse.
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Figure 7.15: FCR et FNCR en fonction du taux de RN, avec t = 15, et 5% de comptes
compromis.

La performance de notre proposition est présentée dans la Figure 7.15. Nous
comparons plusieurs scénario, l’un sans authentification (None), un théorique avec
une authentification parfaite (Perfect), et deux avec une authentification basés
respectivement sur du texte fixe (Fixed-Text) et du texte libre (Free-Text). Nous
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regardons le taux de fausse confirmation (FCR) ainsi que le taux de fausses non-
confirmations (FNCR) correspondant aux taux d’attaquants faussement confirmé, et
au taux d’utilisateurs faussement non-confirmés. Le FNCR est calculé sur l’ensemble
des nœuds candidats, i.e. l’ensemble des RN ou des nœuds avec au moins t certificats.
Dans cette expérience, nous avons utilisé t = 15, un nombre de certificats requis plus
faible devrait faire baisser le FNCR, notamment lorsque le taux de RN est faible.

Une preuve de concept a été developpé, son interface graphique est présenté dans
la Figure 7.16. La zone (a) donne une représentation visuelle du réseau configuré via
la zone (e). La coloration du graphe (f) détermine le nombre d’attaquant et de Root
Nodes. La zone (g) détermine la manière dont l’authentification est effectuée, et la
zone (h) la manière dont les nœuds deviennent certifiés. Plusieurs métriques sont
ensuite calculées.

(a)

(e)

(g)

(f)

(h)

(b) (d)

(c)

Figure 7.16: Interface graphique de la preuve de concept de la preuve d’identité sociale.

Améliorer la sécurité via un matériel dédié

Afin de protéger les utilisateurs d’un client corrompu ou malicieux (e.g. ordinateur
publique ou d’entreprise), nous proposons l’utilisation d’un matériel dédié afin
d’anonymiser la dynamique de frappe au clavier et de calculer des PICRP sans
exposer l’information biométrique sur le client.
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START Secret ENTER Text ENTER

START ***** ENTER Text ENTER PICRP ENTER

Figure 7.17: PICRP sur Raspberry Pi.

Comme montré par la Figure 7.17, la communication est mono-directionnelle.
Le matériel spécifique se place entre le clavier et le client se faisant passer pour un
clavier et retardant les événements qu’il reçoit du vrai clavier.

Afin de pouvoir générer, à la demande de l’utilisateur, des PICRP, des combi-
naisons de touches spéciales (START et ENTER) sont nécessaires afin d’envoyer
des commandes qui se distinguent de la simple saisie de texte. Le secret tapé par
l’utilisateur n’est pas pas transmis au client, chaque caractère est remplacé par un
astérisque. Ces commandes doivent aussi être interprétées par le client (e.g. via une
WebExtension) afin de collecter le PICRP envoyé par le matériel.
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CONTRIBUTIONS TO KEYSTROKE DYNAMICS FOR PRIVACY AND
SECURITY ON THE INTERNET

Interactions on the Internet require trust between each involved party. Internet
entities assume, at the same time, several roles, each having their own interests and
motivations; leading to conflicts that must be addressed to enable security and trust.
In this thesis, we use, and focus on, Keystroke Dynamics (the way a user type on its
keyboard) in an attempt to solve some of these conflicts.

Keystroke Dynamics is a a costless and transparent biometric modality as it
does not require neither additional sensors nor additional actions from the user.
Unfortunately, Keystroke Dynamics also enables users profiling (s.a. identification,
gender, age), against their knowledge and consent.

In order to protect users privacy, we propose to anonymize Keystroke Dynamics.
Still, such information can be legitimately needed by services in order to straighten
user authentication. We then propose a Personal Identity Code Respecting Privacy,
enabling biometric users authentication without threatening users privacy.

We also propose a Social Proof of Identity enabling to verify claimed identities
while respecting user privacy, as well as ensuring users past behaviors through a system
of accountability. Generation of synthetic Keystroke Dynamics is also considered to
augment existent Keystroke Dynamics datasets, and, in the end, enabling sharing of
Keystroke Dynamics datasets without exposing biometric information of real users.

Les interactions requièrent une confiance mutuelle des parties impliquées. Les
entités d’Internet endossent plusieurs rôles, chacun ayant ses propres intérêts et
motivations; conduisant à des conflits qui doivent être adressés afin de permettre
confiance et sécurité. Dans cette thèse nous nous concentrons sur la dynamique de
frappe au clavier afin de résoudre quelques de ces conflits.

https://www.overleaf.com/project/5b961d6379823d6602532919La manière de
taper au clavier est une modalité biométrique sans coûts et transparente, elle ne
requiert ni capteurs ni actions additionnels. Malheureusement, elle permet aussi le
profilage des utilisateurs (s.a. identification, âge, sexe), contre leur consentement et
connaissance.

Afin de protéger la vie privée des utilisateurs, nous proposons d’anonymiser la
dynamique de frappe au clavier. Cependant, cette information peut être légitimement
requise afin de renforcer l’authentification des utilisateurs. Nous proposons ainsi un
Code Personnel d’Identité Respectueux de la Vie Privée, permettant l’authentification
biométrique des utilisateurs, sans menacer leur vie privée.

Nous proposons aussi une preuve sociale d’identité permettant de vérifier des
déclarations d’identités ainsi que la génération synthétique de dynamique de frappe
au clavier.
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